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PRELIMINARIES

The purpose of this book is to develop the understanding of basic numerical meth-
ods and their implementations as software that are necessary for solving fundamental
mathematical problems by numerical means. It is designed for the person who wants
to do numerical computing. Through the examples and exercises, the reader studies the
behavior of solutions of the mathematical problem along with an algorithm for solv-
ing the problem. Experience and understanding of the algorithm are gained through
hand computation and practice solving problems with a computer implementation. It
is essential that the reader understand how the codes provided work, precisely what
they do, and what their limitations are. The codes provided are powerful, yet simple
enough for pedagogical use. The reader is exposed to the art of numerical computing
as well as the science.

The book is intended for a one-semester course, requiring only calculus and a
modest acquaintance with FORTRAN, C, C++, or MATLAB. These constraints of
background and time have important implications: the book focuses on the problems
that are most common in practice and accessible with the background assumed. By
concentrating on one effective algorithm for each basic task, it is possible to develop
the fundamental theory in a brief, elementary way. There are ample exercises, and
codes are provided to reduce the time otherwise required for programming and debug-
ging. The intended audience includes engineers, scientists, and anyone else interested
in scientific programming. The level is upper-division undergraduate to beginning
graduate and there is adequate material for a one semester to two quarter course.

Numerical analysis blends mathematics, programming, and a considerable amount
of art. We provide programs with the book that illustrate this. They are more than mere
implementations in a particular language of the algorithms presented, but they are not
production-grade software. To appreciate the subject fully, it will be necessary to study
the codes provided and gain experience solving problems first with these programs and
then with production-grade software.

Many exercises are provided in varying degrees of difficulty. Some are designed
to get the reader to think about the text material and to test understanding, while others
are purely computational in nature. Problem sets may involve hand calculation, alge-
braic derivations, straightforward computer solution, or more sophisticated computing
exercises.

The algorithms that we study and implement in the book are designed to avoid
severe roundoff errors (arising from the finite number of digits available on computers
and calculators), estimate truncation errors (arising from mathematical approxima-
tions), and give some indication of the sensitivity of the problem to errors in the data.
In Chapter 1 we give some basic definitions of errors arising in computations and
study roundoff errors through some simple but illuminating computations. Chapter 2
deals with one of the most frequently occurring problems in scientific computation,
the solution of linear systems of equations. In Chapter 3 we deal with the problem of
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vi PRELIMINARIES

interpolation, one of the most fundamental and widely used tools in numerical com-
putation. In Chapter 4 we study methods for finding solutions to nonlinear equations.
Numerical integration is taken up in Chapter 5 and the numerical solution of ordinary
differential equations is examined in Chapter 6. Each chapter contains a case study
that illustrates how to combine analysis with computation for the topic of that chapter.

Before taking up the various mathematical problems and procedures for solving
them numerically, we need to discuss briefly programming languages and acquisition
of software.

PROGRAMMING LANGUAGES

The FORTRAN language was developed specifically for numerical computation and
has evolved continuously to adapt it better to the task. Accordingly, of the widely
used programming languages, it is the most natural for the programs of this book. The
C language was developed later for rather different purposes, but it can be used for
numerical computation.

At present FORTRAN 77 is very widely available and codes conforming to the
ANSI standard for the language are highly portable, meaning that they can be moved
to another hardware/software configuration with very little change. We have chosen
to provide codes in FORTRAN 77 mainly because the newer Fortran 90 is not in wide
use at this time. A Fortran 90 compiler will process correctly our FORTRAN 77
programs (with at most trivial changes), but if we were to write the programs so as
to exploit fully the new capabilities of the language, a number of the programs would
be structured in a fundamentally different way. The situation with C is similar, but
in our experience programs written in C have not proven to be nearly as portable as
programs written in standard FORTRAN 77. As with FORTRAN, the C language has
evolved into C++, and as with Fortran 90 compared to FORTRAN 77, exploiting fully
the additional capabilities of C++ (in particular, object oriented programming) would
lead to programs that are completely different from those in C. We have opted for a
middle ground in our C++ implementations.

In the last decade several computing environments have been developed. Popular
ones familiar to us are MATLAB [l] and Mathematica [2]. MATLAB is very much in
keeping with this book, for it is devoted to the solution of mathematical problems by
numerical means. It integrates the formation of a mathematical model, its numerical
solution, and graphical display of results into a very convenient package. Many of the
tasks we study are implemented as a single command in the MATLAB language. As
MATLAB has evolved, it has added symbolic capabilities. Mathematica is a similar
environment, but it approaches mathematical problems from the other direction. Orig-
inally it was primarily devoted to solving mathematical problems by symbolic means,
but as it has evolved, it has added significant numerical capabilities. In the book we
refer to the numerical methods implemented in these widely used packages, as well
as others, but we mention the packages here because they are programming languages
in their own right. It is quite possible to implement the algorithms of the text in these
languages. Indeed, this is attractive because the environments deal gracefully with a
number of issues that are annoying in general computing using languages like FOR-
TRAN or C.



SOFTWARE vii

At present we provide programs written in FORTRAN 77, C, C++, and MATLAB

that have a high degree of portability. Quite possibly in the future the programs will
be made available in other environments (e.g., Fortran 90 or Mathematica.)

SOFTWARE

In this section we describe how to obtain the source code for the programs that ac-
company the book and how to obtain production-grade software. It is assumed that the
reader has available a browser for the World Wide Web, although some of the software
is available by ftp or gopher.

The programs that accompany this book are currently available by means of anony-
mous ftp (log in as anonymous or as ftp) at

ftp.wiley.com

in subdirectories of public/college/math/sapcodes for the various languages discussed
in the preceding section.

The best single source of software is the Guide to Available Mathematical Soft-
ware (GAMS) developed by the National Institute of Standards and Technology (NIST).
It is an on-line cross-index of mathematical software and a virtual software repository.
Much of the high-quality software is free. For example, GAMS provides a link to
netlib, a large collection of public-domain mathematical software. Most of the pro-
grams in netlib are written in FORTRAN, although some are in C. A number of the
packages found in netlib are state-of-the-art software that are cited in this book. The
internet address is

http://gams.nist.gov

for GAMS.
A useful source of microcomputer software and pointers to other sources of soft-

ware is the Mathematics Archives at

http://archives.math.utk.edu:80/

It is worth remarking that one item listed there is an “Index of resources for numerical
computation in C or C++.”

There are a number of commercial packages that can be located by means of
GAMS. We are experienced with the NAG and IMSL libraries, which are large col-
lections of high-quality mathematical software found in most computing centers. The
computing environments MATLAB and Mathematica mentioned in the preceding sec-
tion can also be located through GAMS.

REFERENCES

1. C. Moler, J. Little, S. Bangert, and S. Kleiman,
Mass., 1987. email: info@mathworks.com

ProMatlab User’s Guide, MathWorks, Sherborn,

2. S. Wolfram, Mathematica, Addison-Wesley, Redwood City, Calif., 1991. email: info@wri.com



viii PRELIMINARIES

ACKNOWLEDGMENTS

The authors are indebted to many individuals who have contributed to the production
of this book. Professors Bernard Bialecki and Michael Hosea have been especially
sharp-eyed at catching errors in the latest versions. We thank the people at Wiley, Bar-
bara Holland, Cindy Rhoads, and Nancy Prinz, for their contributions. David Richards
at the University of Illinois played a critical role in getting the functioning
for us, and quickly and accurately fixing other We also acknowledge
the work of James Otto in checking all solutions and examples, and Hong-sung Jin
who generated most of the figures. Last, but certainly not least, we are indeed grateful
to the many students, too numerous to mention, who have made valuable suggestions
to us over the years.



CONTENTS

CHAPTER 1 ERRORS AND FLOATING POINT ARITHMETIC 1
1.1 Basic Concepts 1

1.2 Examples of Floating Point Calculations 12

1.3 Case Study 1 25

1.4 Further Reading 28

CHAPTER 2 SYSTEMS OF LINEAR EQUATIONS 30
2.1 Gaussian Elimination with Partial Pivoting 32

2.2 Matrix Factorization 44

2.3 Accuracy 48

2.4 Routines Factor and Solve 61

2.5 Matrices with Special Structure 65

2.6 Case Study 2 72

CHAPTER 3 INTERPOLATION  82
3.1 Polynomial Interpolation 83

3.2 More Error Bounds 90

3.3 Newton Divided Difference Form 93

3.4 Assessing Accuracy 98

3.5 Spline Interpolation 101

3.6 Interpolation in the Plane 119

3.7 Case Study 3 128

CHAPTER 4 ROOTS OF NONLINEAR EQUATIONS 134
4.1 Bisection, Newton’s Method, and the Secant Rule 137

4.2 An Algorithm Combining Bisection and the Secant Rule 150

4.3 Routines for Zero Finding 152

4.4 Condition, Limiting Precision, and Multiple Roots 157

4.5 Nonlinear Systems of Equations 160
4.6 Case Study 4 163

ix



X CONTENTS

CHAPTER 5 NUMERICAL INTEGRATION 170
5.1 Basic Quadrature Rules 170

5.2 Adaptive Quadrature 184

5.3 Codes for Adaptive Quadrature 188

5.4 Special Devices for Integration 191

5.5 Integration of Tabular Data 200

5.6 Integration in Two Variables 202

5.7 Case Study 5 203

CHAPTER 6 ORDINARY DIFFERENTIAL EQUATIONS 210
6.1 Some Elements of the Theory 210

6.2 A Simple Numerical Scheme 216

6.3 One-Step Methods 221

6.4 Errors-Local and Global 228

6.5 The Algorithms 233

6.6 The Code Rke 236

6.7 Other Numerical Methods 240

6.8 Case Study 6 244

APPENDIX A NOTATION AND SOME THEOREMS FROM THE
CALCULUS 251
A.1 Notation 251

A.2 Theorems 252

ANSWERS TO SELECTED EXERCISES 255

INDEX 266



CHAPTER 1

ERRORS AND FLOATING POINT
ARITHMETIC

Errors in mathematical computation have several sources. One is the modeling that
led to the mathematical problem, for example, assuming no wind resistance in study-
ing projectile motion or ignoring finite limits of resources in population and economic
growth models. Such errors are not the concern of this book, although it must be kept
in mind that the numerical solution of a mathematical problem can be no more mean-
ingful than the underlying model. Another source of error is the measurement of data
for the problem. A third source is a kind of mathematical error called discretization
or truncation error. It arises from mathematical approximations such as estimating an
integral by a sum or a tangent line by a secant line. Still another source of error is the
error that arises from the finite number of digits available in the computers and cal-
culators used for the computations. It is called roundoff error. In this book we study
the design and implementation of algorithms that aim to avoid severe roundoff errors,
estimate truncation errors, and give some indication of the sensitivity of the problem
to errors in the data. This chapter is devoted to some fundamental definitions and a
study of roundoff by means of simple but illuminating computations.

1.1 BASIC CONCEPTS

How well a quantity is approximated is measured in two ways:

absolute error = true value - approximate value

relative error =
true value - approximate value

true value
.

Relative error is not defined if the true value is zero. In the arithmetic of computers,
relative error is the more natural concept, but absolute error may be preferable when
studying quantities that are close to zero.

A mathematical problem with input (data) x and output (answer) y = F(x) is said
to be well-conditioned if “small” changes in x lead to “small” changes in y. If the

1



2 CHAPTER 1 ERRORS AND FLOATING POINT ARITHMETIC

changes in y are “large,” the problem is said to be ill-conditioned. Whether a problem
is well- or ill-conditioned can depend on how the changes are measured. A concept
related to conditioning is stability. It is concerned with the sensitivity of an algorithm
for solving a problem with respect to small changes in the data, as opposed to the sen-
sitivity of the problem itself. Roundoff errors are almost inevitable, so the reliability
of answers computed by an algorithm depends on whether small roundoff errors might
seriously affect the results. An algorithm is stable if “small” changes in the input lead
to “small” changes in the output. If the changes in the output are “large,” the algorithm
is unstable.

To gain some insight about condition, let us consider a differentiable function F(x)
and suppose that its argument, the input, is changed from x to x + εx. This is a relative
change of ε in the input data. According to Theorem 4 of the appendix, the change
induces an absolute change in the output value F(x) of

F(x) -  F( x+εx )   (x).

The relative change is

F (x) - F(x+ εx ) F´(x)

F(x) F(x) .

Example 1.1. If, for example, F(x) = ex, the absolute change in the value of the
exponential function due to a change εx in its argument x is approximately −εxex, and
the relative change is about −εx. When x is large, the conditioning of the evaluation of
this function with respect to a small relative change in the argument depends strongly
on whether the change is measured in an absolute or relative sense. n

Example 1.2. If F(x) = cosx, then near x = π/2 the absolute error due to perturbing
x to x + εx is approximately −εx( - sin x)  2. The relative error at x = π/2 is not
defined since cos(π/2) = 0. However, the accurate values

cos( 1.57079) = 0.63267949 × 10-5

cos( 1.57078) = 1.63267949 × 10-5

show how a very small change in the argument near π/2 can lead to a significant (63%)
change in the value of the function. In contrast, evaluation of the cosine function is
well-conditioned near x = 0 (see Exercise 1.4). n

Example  1.3. A common application of integration by parts in calculus courses is
the evaluation of families of integrals by recursion. As an example, consider

En = dx for n = 1, 2,....

From this definition it is easy to see that

E 1 > E 2 > - - > E n - 1 > E n > - - > 0 .
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To obtain a recursion, integrate by parts to get

En= xnex-1 n x n - 1 e x - 1 d x

= 1 - nEn-1.

The first member of the family is

E1= l ex-1dx = e-1,

and from it we can easily compute any En. If this is done in single precision on a PC
or workstation (IEEE standard arithmetic), it is found that

El = 0.367879
E2 = 0.264241

E10 = 0.0506744

El1 = 0.442581 (the exact En decrease!)

E12 = -4.31097 (the exact En are positive!)

E20 = -0.222605 × 1011 (the exact En are between 0 and 1!)

This is an example of an unstable algorithm. A little analysis helps us understand what
is happening. Suppose we had started with Ê1 = E1 + δ and made no arithmetic errors
when evaluating the recurrence. Then

Ê 2
= l - 2Ê1 = l - 2 Ê1 - 2δ = E2 - 2δ

Ê3
= l - 3Ê2 = l - 3 E2 + 6δ = E3 + 3!δ

Ên = En  + n!δ.

A small change in the first value E1 grows very rapidly in the later En. The effect is
worse in a relative sense because the desired quantities En decrease as n increases.

For this example there is a way to get a stable algorithm. If we could find an
approximation ÊN to EN for some N, we could evaluate the recursion in reverse order,

l - En
E n - l n 

n = N , N - 1,...,2,

to approximate EN-1, EN-2, . . . , E1. Studying the stability of this recursion as before,
if ÊN = EN + ε, then
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The recursion is so cheap and the error damps out so quickly that we can start with a
poor approximation ÊN for some large N and get accurate answers inexpensively for
the En that really interest us. Notice that recurring in this direction, the En increase,
making the relative errors damp out even faster. The inequality

0 < E n < xndx =
1

n + 1

shows how to easily get an approximation to En with an error that we can bound. For
example, if we take N = 20, the crude approximation Ê20 = 0 has an absolute error less
than l/21 in magnitude. The magnitude of the absolute error in Ê19 is then less than
l/(20 × 21) = 0.0024,. . . , and that in Ê15 is less than 4 × 10-8. The approximations
to E14,. . . , E1 will be even more accurate.

A stable recurrence like the second algorithm is the standard way to evaluate cer-
tain mathematical functions. It can be especially convenient for a series expansion in
the functions. For example, evaluation of an expansion in Bessel functions of the first
kind,

f(x)= a n J n (x ) ,

requires the evaluation of Jn(x) for
accomplished very inexpensively.

many n. Using recurrence on the index n, this is
n

Any real number y  0 can be written in scientific notation as

y = ±.d1d2···d s d s + 1 ···×10 e (1.1)

Here there are an infinite number of digits di. Each di takes on one of the values

0, 1,..., 9 and we assume the number y is normalized so that d1 > 0. The portion
.dld2... is called the fraction or mantissa or significand; it has the meaning 

dl × 10-l + d2 × 10-2 +  ··· +  ds × 10- s +   ··· .

There is an ambiguity in this representation; for example, we must agree that

0.24000000 ···  

is the same as

0.23999999  ··· .

The quantity e in (1.1) is called the exponent; it is a signed integer.
Nearly all numerical computations on a digital computer are done in floating point

arithmetic. This is a number system that uses a finite number of digits to approximate
the real number system used for exact computation. A system with s digits and base
10 has all of its numbers of the form

y = ±.dld2 ··· ds × 10e . (1.2)
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Again, for nonzero numbers each di is one of the digits 0, 1,...,9 and d1 > 0 for a
normalized number. The exponent e also has only a finite number of digits; we assume
the range

The number zero is special; it is written as

0.0 ··· 0 × 10m ?

Example 1.4.  If s = l, m = -1, and M = 1, then the set of floating point numbers is

+0.l × 10-1, +0.2 × 10-1, ...) +0.9 × 10-1

+0.l  × 10 0 ,  +0.2 × 10 0 ,  . . . )  +0.9 × 10 0

+0.l × 101) +0.2 × 101, ...) +0.9 × 101,

together with the negative of each of these numbers and 0.0 × 10-l for zero. There are
only 55 numbers in this floating point number system. In floating point arithmetic the
numbers are not equally spaced. This is illustrated in Figure 1.1, which is discussed
after we consider number bases other than decimal. n

Because there are only finitely many floating point numbers to represent the real
number system, each floating point number must represent many real numbers. When
the exponent e in (1.1) is bigger than M, it is not possible to represent y at all. If in
the course of some computations a result arises that would need an exponent e > M,
the computation is said to have overflowed. Typical operating systems will terminate
the run on overflow. The situation is less clear when e < m, because such a y might
reasonably be approximated by zero. If such a number arises during a computation,
the computation is said to have underflowed. In scientific computation it is usually ap-
propriate to set the result to zero and continue. Some operating systems will terminate
the run on underflow and others will set the result to zero and continue. Those that
continue may report the number of under-flows at the end of the run. If the response of
the operating system is not to your liking, it is usually possible to change the response
by means of a system routine.

Overflows and underflows are not unusual in scientific computation. For exam-
ple, exp(y) will overflow for y > 0 that are only moderately large, and exp(-y) will
underflow. Our concern should be to prevent going out of range unnecessarily.

FORTRAN and C provide for integer arithmetic in addition to floating point arith-
metic. Provided that the range of integers allowed is not exceeded, integer arithmetic
is exact. It is necessary to beware of overflow because the typical operating system
does not report an integer overflow; the computation continues with a number that is
not related to the correct value in an obvious way.

Both FORTRAN and C provide for two precisions, that is, two arithmetics with
different numbers of digits s, called single and double precision. The languages deal
with mixing the various modes of arithmetic in a sensible way, but the unwary can get
into trouble. This is more likely in FORTRAN than C because by default, constants in
C are double precision numbers. In FORTRAN the type of a constant is taken from the
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way it is written. Thus, an expression like (3/4)*5. in FORTRAN and in C means that
the integer 3 is to be divided by the integer 4 and the result converted to a floating point
number for multiplication by the floating point number 5. Here the integer division 3/4
results in 0, which might not be what was intended. It is surprising how often users
ruin the accuracy of a calculation by providing an inaccurate value for a basic constant
like π Some constants of this kind may be predefined to full accuracy in a compiler
or a library, but it should be possible to use intrinsic functions to compute accurately
constants like π = acos(-1.0).

Evaluation of an asymptotic expansion for the special function Ei(x), called the
exponential integral, involves computing terms of the form n!/xn. To contrast com-
putations in integer and floating point arithmetic, we computed terms of this form for
a range of n and x = 25 using both integer and double precision functions for the
factorial. Working in C on a PC using IEEE arithmetic, it was found that the results
agreed through n = 7, but for larger n the results computed with integer arithmetic were
useless-the result for n = 8 was negative! The integer overflows that are responsible
for these erroneous results are truly dangerous because there was no indication from
the system that the answers might not be reliable.

Example 1.5. In Chapter 4 we study the use of bisection to find a number z such
that f(z) = 0, that is, we compute a root of f(x). Fundamental to this procedure is
the question, Do f(a) and f(b) have opposite signs? If they do, a continuous function
f(x) has a root z between a and b. Many books on programming provide illustrative
programs that test for f(a)f(b) < 0. However, when f(a) and f(b) are sufficiently
small, the product underflows and its sign cannot be determined. This is likely to
happen because we are interested in a and b that tend to z, causing f(a) and f(b) to
tend to zero. It is easy enough to code the test so as to avoid the difficulty; it is just
necessary to realize that the floating point number system does not behave quite like
the real number system in this test. n

As we shall see in Chapter 4, finding roots of functions is a context in which
underflow is quite common. This is easy to understand because the aim is to find a z
that makes f(z) as small as possible.

Example 1.6. Determinants. In Chapter 2 we discuss the solution of a system of
linear equations. As a by-product of the algorithm and code presented there, the deter-
minant of a system of n equations can be computed as the product of a set of numbers
returned:

de t  =  y1 y2 ···yn.

Unfortunately, this expression is prone to unnecessary under- and overflows. If, for
example, M = 100 and yl = 1050, y2 = 1060, y3 = 10-30, all the numbers are in range
and so is the determinant 1080. However, if we form (yl × y2) × y3, the partial product
yl × y2 overflows. Note that yl ×  (y2 × y3) can be formed. This illustrates the fact that
floating point numbers do not always satisfy the associative law of multiplication that
is true of real numbers.
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The more fundamental issue is that because det(cA) = cndet(A), the determinant
is extremely sensitive to the scale of the matrix A when the number of equations n
is large. A software remedy used in LINPACK [4] in effect extends the range of
exponents available. Another possibility is to use logarithms and exponentials:

l n | d e t | =  ln|y i|

|det|=exp(ln|det|).

If this leads to an overflow, it is because the answer cannot be represented in the float-
ing point number system. n

Example 1.7. Magnitude. When computing the magnitude of a complex number
z = x + i y ,

there is a difficulty when either x or y is large. Suppose that    If |x| is suf-
ficiently large, x2 will overflow and we are not able to compute |z| even when it is a
valid floating point number. If the computation is reformulated as

the difficulty is avoided. Notice that underflow could occur when |y| << |x|. This is
harmless and setting the ratio y/x to zero results in a computed |z| that has a small
relative error.

The evaluation of the Euclidean norm of a vector v = (v 1 , v 2 , . . . , v n) ,

involves exactly the same kind of computations. Some writers of mathematical soft-
ware have preferred to work with the maximum norm

because it avoids the unnecessary overflows and underflows that are possible with a
straightforward evaluation of the Euclidean norm. n

If a real number y has an exponent in the allowed range, there are two standard
ways to approximate it by a floating point number fl(y). If all digits after the first s
in (1.1) are dropped, the result is known as a chopped or truncated representation. A
floating point number that is usually closer to y can be found by adding 5 × 10-(s+1)

to the fraction in (1.1) and then chopping. This is called rounding.

Example 1.8. If m = -99, M = 99, s = 5, and π = 3.1415926..., then in chopped
arithmetic

fl(π) = 0.31415 × 101



8 CHAPTER 1 ERRORS AND FLOATING POINT ARITHMETIC

while

fl(π) = 0.31416 ×

in rounded arithmetic.

101

n

If the representation (1.1) of y is chopped to s digits, the relative error of fl(y) has
magnitude

In decimal arithmetic with s digits the unit roundoff u is defined to be 101-s when
chopping is done. In a similar way it is found that

when rounding is done. In this case u is defined to be ½101-s. In either case, u is a
bound on the relative error of representing a nonzero real number as a floating point
number.

Because fl(y) is a real number, for theoretical purposes we can work with it like
any other real number. In particular, it is often convenient to define a real number δ
such that

fl(y) = y(1 + δ).

In general, all we know about δ is the bound

Example 1.9. Impossible accuracy. Modern codes for the computation of a root of
an equation, a definite integral, the solution of a differential equation, and so on, try
to obtain a result with an accuracy specified by the user. Clearly it is not possible
to compute an answer more accurate than the floating point representation of the true
solution. This means that the user cannot be allowed to ask for a relative error smaller
than the unit roundoff u. It might seem odd that this would ever happen, but it does.
One reason is that the user does not know the value of u and just asks for too much
accuracy. A more common reason is that the user specifies an absolute error r. This
means that any number y* will be acceptable as an approximation to y if
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Such  a  r eques t  co r responds  to  a sk ing  fo r  a  r e l a t ive  e r ro r  o f

When |r/y| < u, that is, r < u|y|, this is an impossible request. If the true solution is
unexpectedly large, an absolute error tolerance that seems modest may be impossible
in practice. Codes that permit users to specify an absolute error tolerance need to
be able to monitor the size of the solution and warn the user when the task posed is
i m p o s s i b l e . n

There is a further complication to the floating point number system-most com-
puters do not work with decimal numbers. The common bases are β = 2, binary arith-
metic, and β = 16, hexadecimal arithmetic, rather than β = 10, decimal arithmetic. In
general, a real number y is written in base β as

y = ±.dld2···dsds+l ··· × βe , (1.3)

where each digit is one of 0, 1,..., β - 1 and the number is normalized so that d 1 > 0
(as long as y  0). This means that

± ( dl × β- 1  + d 2  × β-2+···+ ds × β-s +···)  × βe .

All the earlier discussion is easily modified for the other bases. In particular, we have

in base β with s digits the unit roundoff

(1.4)

Likewise,

fl(y) = y(1 + δ), where |δ|  u.

For most purposes, the fact that computations are not carried out in decimal is incon-
sequential. It should be kept mind that small rounding errors are made as numbers
input are converted from decimal to the base of the machine being used and likewise
on output.

Table 1.1 illustrates the variety of machine arithmetics used in the past. Today the
IEEE standard [l] described in the last two rows is almost universal. In the table the
notation 1.2(-7) means 1.2 × 10-7.

As was noted earlier, both FORTRAN and C specify that there will be two preci-
sions available. The floating point system built into the computer is its single precision
arithmetic. Double precision may be provided by either software or hardware. Hard-
ware double precision is not greatly slower than single precision, but software double
precision arithmetic is considerably slower.

The IEEE standard uses a normalization different from (1.2). For y  0 the leading
nonzero digit is immediately to the left of the decimal point. Since this digit must be
1, there is no need to store it. The number 0 is distinguished by having its e = m - 1.
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Table 1.1 Examples of Computer Arithmetics.

machine β s m M approximate u

VAX 2 24 -128 127 6.0(-08)
VAX 2 56 -128 127 1.4(-17)
CRAY- 1 2 48 -16384 16383 3.6(-15)
IBM 3081 16 6 - 6 4 63 9.5(-07)
IBM 3081 16 14 - 6 4 63 2.2(-16)
IEEE

Single 2 24 -125 128 6.0(-08)
Double 2 53 -1021 1024 l . l (-16)

It used to be some trouble to find out the unit roundoff, exponent range, and the
like, but the situation has improved greatly. In standard C, constants related to float-
ing point arithmetic are available in <float.h>. For example, dbl_epsilon is the unit
roundoff in double precision. Similarly, in Fortran 90 the constants are available from
intrinsic functions. Because this is not true of FORTRAN 77, several approaches were
taken to provide them: some compilers provide the constants as extensions of the lan-
guage; there are subroutines DlMACH and IlMACH for the machine constants that
are widely available because they are public domain. Major libraries like IMSL and
NAG include subroutines that are similar to DlMACH and IlMACH.

In Example 1.4 earlier in this section we mentioned that the numbers in the floating
point number system were not equally spaced. As an illustration, see Figure 1.1 where
all 19 floating point numbers are displayed for the system for which β = 4, s = 1,
m = -1, and M = 1.

Arithmetic in the floating point number system is to approximate that in the real
number system. We use       to indicate the floating point approximations to
the arithmetic operations +, -, ×, /. If y and z are floating point numbers of s digits,
the product y × z has 2s digits. For example, 0.999 × 0.999 = 0.998001. About the
best we could hope for is that the arithmetic hardware produce the result fl(y × z), so
that for some real number δ with |δ|  u. It is practical to do this
for all the basic arithmetic operations. We assume an idealized arithmetic that for the
basic arithmetic operations produces

provided that the results lie in the range of the floating point system. Hence,

where op = +, -, ×, or / and δ is a real number with |δ|  u. This is a reasonable
assumption, although hardware considerations may lead to arithmetic for which the
bound on δ is a small multiple of u.
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Figure 1.1 Distribution of floating point numbers for β = 4, s = 1, m = -1, M = 1.

To carry out computations in this model arithmetic by hand, for each operation
+, -, ×, /, perform the operation in exact arithmetic, normalize the result, and round
(chop) it to the allotted number of digits. Put differently, for each operation, calculate
the result  and convert  i t  to the machine representation before going on to the next
operation.

Because of increasingly sophisticated architectures,  the unit  roundoff as defined
in (1.4) is simplistic.For example,  many computers do intermediate computations
with more than s digits. They have at least one “guard digit,” perhaps several, and as
a consequence results  can be rather more accurate than expected.  (When ari thmetic
operations are carried out with more than s  digits,  apparently harmless actions l ike
printing out intermediate results can cause the final result of a computation to change!
This happens when the extra digits  are shed as numbers are moved from arithmetic
units to storage or output devices.) It is interesting to compute (1 + δ) -1 for decreas-
ing δ to see how small δ can be made and still get a nonzero result. A number of codes
for mathematical computations that are in wide use avoid defining the unit roundoff
by coding a test for u|x| < h as

if ((x+h)    x) then . . . .

On today’s computers this is not likely to work properly for two reasons, one being the
presence of guard digits just discussed. The other is that modern compilers defeat the
test when they “optimize” the coding by converting the test to

which is always passed.

if (h  0) then . . . ,

EXERCISES

1.1 Solve

0.461x1 + 0.311x2 = 0.150

0.209x1 + 0.141x2 = 0.068

using three-digit chopped decimal arithmetic. The ex-
act answer is x1 = 1, x2 = -1; how does yours com-
pare?

1.2 The following algorithm (due to Cleve Moler) esti-

mates the unit roundoff u by a computable quantity
U:

A := 4./3
B  := A -1
C := B+B+B
U := |C - 1.|

(a) What does the above algorithm yield for U in six-
digit decimal rounded arithmetic?
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(b) What does it yield for U in six-digit decimal
chopped arithmetic?

(c) What are the exact values from (1.4) for u in the
arithmetics of (a) and (b)?

(d) Use this algorithm on the machine(s) and calcu-
lator(s) you are likely to use. What do you get?

1.3 Consider the following algorithm for generating noise
in a quantity x:

A := 10n * x

B : = A + x

y : = B - A

(a) Calculate y when x = 0.123456 and n = 3 using
six-digit decimal chopped arithmetic. What is the er-
ror x - y?

(b) Repeat (a) for n = 5.

1.4 Show that the evaluation of F(x) = cosx is well-
conditioned near x = 0; that is, for |x|    show
that the magnitude of the relative error | [F(x) -
F(0)] /F(0) | is bounded by a quantity that is not large.

1.5 If F(x) = (x - 1)2, what is the exact formula for
[F(x + εx) - F(x)]/F(x)? What does this say about
the conditioning of the evaluation of F(x) near x = l?

1.6 Let Sn :=  sinxdx and show that two inte-
grations by parts results in the recursion

Further argue that S0 = 2 and that Sn-1 > Sn > 0 for
every n.

(a) Compute Sl5 with this recursion (make sure that
you use an accurate value for π).

(b) To analyze what happened in (a), consider the re-
cursion

with     = 2( 1 - u), that is, the same computation with
the starting value perturbed by one digit in the last
place. Find a recursion for Sn -    . From this recur-
sion, derive a formula for         in terms of
Use this formula to explain what happened in (a).

(c) Examine the “backwards” recursion

starting with     = 0. What is      Why?

1.7 For brevity let us write s = sin(θ), c = cos(θ) for some
value of θ. Once c is computed, we can compute s
inexpensively from s =       (Either sign of the
square root may be needed in general, but let us con-
sider here only the positive root.) Suppose the cosine
routine produces c + δc instead of c. Ignoring any er-
ror made in evaluating the formula for s, show that this
absolute error of δc induces an absolute error in s of δs
with  For the range 0            /2, are
there θ for which this way of computing sin(θ) has an
accuracy comparable to the accuracy of cos(θ)? Are
there θ for which it is much less accurate? Repeat for
relative errors.

1.2 EXAMPLES OF FLOATING POINT CALCULATIONS

The floating point number system has properties that are similar to those of the real
number system, but they are not identical. We have already seen some differences
due to the finite range of exponents. It might be thought that because one arithmetic
operation can be carried out with small relative error, the same would be true of several
operations. Unfortunately this is not true. We shall see that multiplication and division
are more satisfactory in this respect than addition and subtraction.

For floating point numbers x, y and z,
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The product

(1 + δ1)(l + δ2) = 1 + ε,

where ε is “small,” and can, of course, be explicitly bounded in terms of u. It is more
illuminating to note that

( 1 + δ1 )( 1 + δ2 ) = 1+ δ1 + δ2+ δ1 δ2 
 1 + δ 1 + δ 2 ,

so that

and an approximate bound for ε is 2u. Before generalizing this, we observe that it may
well be the case that

even when the exponent range is not exceeded. However,

so that

where η is “small.” Thus, the associative law for multiplication is approximately true.
In general, if we wish to multiply xl ,x2 , . . . ,xn, we might do this by the algorithm

Pl = xl

Pi = Pi-1 x i , i = 2, 3 ,... ,n.

Treating these operations in real arithmetic we find that

Pi = xlx2···xi(l + δ1)(1 + δ2)···(1 + δι),

where each  The relative error of each Pi can be bounded in terms of u without
difficulty, but more insight is obtained if we approximate

Pi  xIx2 ···xi(l + δ1 + δ2 + · · · + δι),

which comes from neglecting products of the δι. Then

| δ1 + δ2 + ··· + δι |   iu.

This says that a bound on the approximate relative errors grows additively. Each mul-
tiplication could increase the relative error by no more than one unit of roundoff. Di-
vision can be analyzed in the same way, and the same conclusion is true concerning
the possible growth of the relative error.

Example 1.10. The gamma function, defined as
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generalizes the factorial function for integers to real numbers x (and complex x as
well). This follows from the fundamental recursion

(1.5)

and the fact that  (1) = 1. A standard way of approximating   (x) for x    2 uses the
fundamental recursion to reduce the task to approximating   (y) for 2 < y < 3. This
is done by letting N be an integer such that N < x < N + 1, letting y = x - N + 2, and
then noting that repeated applications of (1.5) yield

The function I’(y) can be approximated well by the ratio R(y) of two polynomials for
2 < y < 3. Hence, we approximate

If x is not too large, little accuracy is lost when these multiplications are performed in
floating point arithmetic. However, it is not possible to evaluate (x) for large x by
this approach because its value grows very quickly as a function of x. This can be seen
from the Stirling formula (see Case Study 5)

This example makes another point: the virtue of floating point arithmetic is that it
automatically deals with numbers of greatly different size. Unfortunately, many of the
special functions of mathematical physics grow or decay extremely fast. It is by no
means unusual that the exponent range is exceeded. When this happens it is necessary
to reformulate the problem to make it better scaled. For example, it is often better to
work with the special function ln       than with I’(x) because it is better scaled. n

Addition and subtraction are much less satisfactory in floating point arithmetic
than are multiplication and division. It is necessary to be alert for several situations
that will be illustrated. When numbers of greatly different magnitudes are added (or
subtracted), some information is lost. Suppose, for example, that we want to add
δ = 0.123456 × 10-4 to 0.100000 × 101 in six-digit chopped arithmetic. First, the
exponents are adjusted to be the same and then the numbers are added:

0.100000 × 101

+ 0.0000123456 ×101

0.1000123456 ×101.

The result is chopped to 0.100012 × 101. Notice that some of the digits did not par-
ticipate in the addition. Indeed, if |y| < |x|u, then x    y = x and the “small” number y
plays no role at all. The loss of information does not mean the answer is inaccurate;
it is accurate to one unit of roundoff. The problem is that the lost information may be
needed for later calculations.
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Example 1.11. Difference quotients. Earlier we made use of the fact that for small

In many applications this is used to approximate F'(x). To get an accurate approxima-
tion, δ must be “small” compared to x. It had better not be too small for the precision,
or else we would have  and compute a value of zero for F'(x). If δ is large
enough to affect the sum but still “small,” some of its digits will not affect the sum in
the sense that  In the difference quotient we want to divide by the actual
difference of the arguments, not δ itself. A better way to proceed is to define

and approximate

The two approximations are mathematically equivalent, but computationally different.
For example, suppose that F(x) = x and we approximate F'(x) for x = 1 using δ =
0.123456 × 10-4 in six-digit chopped arithmetic. We have just worked out 1  δ =
0.100012 × 101; similarly,  = 0.120000 × 10-4 showing the digits of δ that actually
affect the sum. The first formula has

The second has

Obviously the second form provides a better approximation to F'(1) = 1. Quality
codes for the numerical approximation of the Jacobian matrices needed for optimiza-
tion, root solving, and the solution of stiff differential equations make use of this sim-
ple device. n

Example 1.12. Limiting precision. In many of the codes in this book we attempt to
recognize when we cannot achieve a desired accuracy with the precision available. The
kind of test we make will be illustrated in terms of approximating a definite integral

This might be done by splitting the integration interval [a,b] into pieces [α,β] and
adding up approximations on all the pieces. Suppose that

The accuracy of this formula improves as the length β - α of the piece is reduced, so
that, mathematically, any accuracy can be obtained by making this width sufficiently



16 CHAPTER 1 ERRORS AND FLOATING POINT ARITHMETIC

small. However, if |β - α| < 2u |α|, the floating point numbers a and a + (β - α)/2
are the same. The details of the test are not important for this chapter; the point is that
when the interval is small enough, we cannot ignore the fact that there are only a finite
number of digits in floating point arithmetic. If a and β cannot be distinguished in the
precision available, the computational results will not behave like mathematical results
from the real number system. In this case the user of the software must be warned that
the requested accuracy is not feasible. n

Example I. 13. Summing a divergent series. The sum S of a series

is the limit of partial sums

There is an obvious algorithm for evaluating S:

S1 = a1

Sn  =  Sn-1        an, n = 2, 3,...,

continuing until the partial sums stop changing. A classic example of a divergent series
is the harmonic series

If the above algorithm is applied to the harmonic series, the computed Sn increase and
the a, decrease until

and the partial sums stop changing. The surprising thing is how small Sn is when this
happens-try it and see. In floating point arithmetic this divergent series has a finite
sum. The observation that when the terms become small enough, the partial sums
stop changing is true of convergent as well as divergent series. Whether the value so
obtained is an accurate approximation to S depends on how fast the series converges.
It really is necessary to do some mathematical analysis to get reliable results. Later in
this chapter we consider how to sum the terms a little more accurately. n

An acute difficulty with addition and subtraction occurs when some information,
lost due to adding numbers of greatly different size, is needed later because of a sub-
traction. Before going into this, we need to discuss a rather tricky point.

Example 1.14. Cancellation (loss of significance). Subtracting a number y from a
number x that agrees with it in one or more leading digits leads to a cancellation of
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these digits. For example, if x = 0.123654 × 10-5 and y = 0.123456 × 10-5, then

0.123654 × 10-5

– 0.123456 × 10-5

0.000198 × 10-5 = 0.198000 × 10-8.

The interesting point is that when cancellation takes place, the subtraction is done
exactly, so that x    y = x - y. The difficulty is what is called a loss of significance.
When cancellation takes place, the result x - y is smaller in size than x and y, so
errors already present in x and y are relatively larger in x - y. Suppose that x is an
approximation to X and y is an approximation to Y. They might be measured values or
the results of some computations. The difference x - y is an approximation to X - Y
with the magnitude of its relative error satisfying

If x is so close to y that there is cancellation, the relative error can be large be-
cause the denominator X - Y is small compared to X or Y. For example, if X =
0.123654700 ··· × 10-5, then x agrees with X to a unit roundoff in six-digit arithmetic.
With Y = y the value we seek is X - Y = 0.198700 ··· × 10-8. Even though the sub-
traction x - y = 0.198000 × 10-8 is done exactly, x - y and X - Y differ in the fourth
digit. In this example, x and y have at least six significant digits, but their difference
has only three significant digits. n

It is worth remarking that we made use of cancellation in Example 1.11 when we
computed

Because δ is small compared to x, there is cancellation and  In this
way we obtain in A the digits of δ that actually affected the sum.

Example 1.15. Roots of a quadratic. Suppose we wish to compute the roots of

x 2 + b x + c = 0 .

The familiar quadratic formula gives the roots xl and x2 as

assuming b > 0. If c is small compared to b, the square root can be rewritten and
approximated using the binomial series to obtain
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This shows that the true roots

x1  -b
x2  -c/b.

In finite precision arithmetic some of the digits of c have no effect on the sum (b/2)2 -
c. The extreme case is

It is important to appreciate that the quantity is computed accurately in a relative sense.
However, some information is lost and we shall see that in some circumstances we
need it later in the computation. A square root is computed with a small relative
error and the same is true of the subtraction that follows. Consequently, the bigger
root xl  -b is computed accurately by the quadratic formula. In the computation
of the smaller root, there is cancellation when the square root term is subtracted from
-b/2. The subtraction itself is done exactly, but the error already present in (b/2)2  c
becomes important in a relative sense. In the extreme case the formula results in zero
as an approximation to x2.

For this particular task a reformulation of the problem avoids the difficulty. The
expression

( x-x1)( x-x2) = x2 - (xl + x2) + x1x2

=  x2+ bx + c

shows that x1x2 = c. As we have seen, the bigger root xl can be computed accurately
using the quadratic formula and then

x2 = c/xl

provides an accurate value for x2. n

Example 1.16. Alternating series. As we observed earlier, it is important to know
when enough terms have been taken from a series to approximate the limit to a desired
accuracy. Alternating series are attractive in this regard. Suppose a0 > al > ··· > an> 
an+ 1 > ··· > 0 and = 0. Then the alternating series

converges to a limit S and the error of the partial sum

satisfies

|S-S n |  < a n+1·

To see a specific example, consider the evaluation of sinx by its Maclaurin series
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Although this series converges quickly for any
when |x| is large. If, say, x = 10, the am are

given x, there are numerical difficulties

Clearly there are some fairly large terms here that must cancel out to yield a result
sin 10 that has magnitude at most 1. The terms am are the result of some computation
that here can be obtained with small relative error. However, if am is large compared
to the sum S, a small relative error in am will not be small compared to S and S will
not be computed accurately.

We programmed the evaluation of this series in a straightforward way, being care-
ful to compute, say,

so as to avoid unnecessarily large quantities. Using single precision standard IEEE
arithmetic we added terms until the partial sums stopped changing. This produced the
value -0.544040 while the exact value should be sinx = -0.544021. Although the
series converges quickly for all x, some intermediate terms become large when |x| is
large. Indeed, we got an overflow due to the small exponent range in IEEE single
precision arithmetic when we tried x = 100. Clearly floating point arithmetic does not
free us from all concerns about scaling.

Series are often used as a way of evaluating functions. If the desired function
value is small and if some terms in the series are comparatively large, then there must
be cancellation and we must expect that inaccuracies in the computation of the terms
will cause the function value to be inaccurate in a relative sense. n

We have seen examples showing that the sum of several numbers depends on the
order in which they are added. Is there a “good” order? We now derive a rule of thumb
that can be quite useful. We can form a1 + a2 + ··· + aN by the algorithm used in
Example 1.13. The first computed partial sum is

where |δ2| < u. It is a little special. The
computed partial sum, which is

general case is represented by the next

where |δ3| < u. To gain insight, we approximate this expression by dropping terms
involving the products of small factors so that
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Continuing in this manner we find that

According to this approximation, the error made when ak is added to Sk might grow,
but its effect in S, will be no bigger than (N - k + l) u|ak|. This suggests that to
reduce the total error, the terms should be added in order of increasing magnitude. A
careful bound on the error of repeated summation leads to the same rule of thumb.
Adding in order of increasing magnitude is usually a good order, but not necessarily
a good order (because of the complex ways that the individual errors can interact).
Much mathematical software makes use of this device to enhance the accuracy of the
computations.

The approximate error can be bounded by

Here we use the symbol     to mean “less than or equal to a quantity that is approxi-
mately.” (The “less than” is not sharp here.) Further manipulation provides an approx-
imate bound on the magnitude of the sum’s relative error

The dangerous situation is when which is when cancellation
takes place. An important consequence is that if all the terms have the same sign, the
sum will be computed accurately in a relative sense, provided only that the number of
terms is not too large for the precision available.

For a convergent series

it is necessary that Rather than sum in the natural order m =

 0, 1,..., it would often be better to work out mathematically how many terms N are
needed to approximate S to the desired accuracy and then calculate SN in the reverse
order aN, aN-1,....

Example 1.17. There are two ways of interpreting errors that are important in nu-
merical analysis. So far we have been considering a forward error analysis. This
corresponds to bounding the errors in the answer by bounding at each stage the errors
that might arise and their effects. To be specific, recall the expression for the error of
summing three numbers:
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A forward error analysis might bound the absolute error by

(This is a sharp version of the approximate bound given earlier.) A backward error
analysis views the computed result as the result computed in exact arithmetic of a
problem with somewhat different data. Let us reinterpret the expression for fl( S 3) in
this light. It is seen that

f l( S 3) = y l + y 2 + y 3 ,

where

In the backward error analysis view, the computed sum is the exact sum of terms yk

that are each close in a relative sense to the given data xk. An algorithm that is stable
in the sense of backward error analysis provides the exact solution of a problem with
data close to that of the original problem. As to whether the two solutions are close,
that is a matter of the conditioning of the problem. A virtue of this way of viewing
errors is that it separates the roles of the stability of the algorithm and the condition
of the problem. Backward error analysis is particularly attractive when the input data
are of limited accuracy, as, for example, when the data are measured or computed. It
may well happen that a stable algorithm provides the exact solution to a problem with
data that cannot be distinguished from the given data because of their limited accuracy.
We really cannot ask more of the numerical scheme in such a situation, but again we
must emphasize that how close the solution is to that corresponding to the given data
depends on the conditioning of the problem. We shall return to this matter in the next
chapter.

A numerical example will help make the point. For xl = 0.12 × 102, x2 = 0.34 ×
101, x3 = -0.15 × 102, the true value of the sum is S3 = 0.40 × 100. When evaluated
in two digit decimal chopped arithmetic, fl (S3) = 0.00 × 100, a very inaccurate result.
Nevertheless, with y1 = 0.116 × 102, y2 = x2, and y3 = x3, we have fl(S3) = y1+ y2 +
y3. The computed result is the exact sum of numbers close to the original data. Indeed,
two of the numbers are the same as the original data and the remaining one differs by
less than a unit of roundoff. n

For most of the numerical tasks in this book it is not necessary to worry greatly
about the effects of finite precision arithmetic. Two exceptions are the subject of the
remaining examples. The first is the computation of a root of a continuous function
f(x). Naturally we would like to compute a number z for which f(z) is as close to
zero as possible in the precision available. Routines for this purpose ask the user to
specify a desired accuracy. Even if the user does not request a very accurate root, the
routine may “accidentally” produce a number z for which f(z) is very small. Because
it is usually not expensive to solve this kind of problem, it is quite reasonable for a user
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to ask for all the accuracy possible. One way or the other, we must ask what happens

when x is very close to a root. An underflow is possible since I f
this does not happen, it is usually found that the value of f(z) fluctuates erratically as

Because of this we must devise algorithms that will behave sensibly when the
computed value f(x) does not have even the correct sign for x near z. An example will
show how the details of evaluation of f(x) are important when x is near a root.

Example 1.18. Let f(x) = x2 - 2x + 1 be evaluated at x = 1.018 with three-digit
chopped arithmetic and - 100 < e < 100. The exact answer is f (1.018) = 0.324 ×
10-3. Because the coefficients of f are small integers, no error arises when they are
represented as floating point numbers. However, x is not a floating point number in
this arithmetic and there is an error when      = fl(x) = 0.101 × 101 is formed. Several
algorithms are possible that arise in different ways of writing f(x):

f(x) = [(x2) - (2x)] + 1
=  x ( x -2) + 1
=  (x - l)2 .

These forms work out to

All of the results have large relative errors. This should not be too surprising since the
problem is poorly conditioned (see Exercise 1.5).

Figure 1.2 is a plot of 281 values of the function f(x) = ( x exp( x ) - 1)3 for argu-
ments near x = 0.567. Single precision IEEE arithmetic was used for this calculation
and the cubed term in the function was expanded out to generate more roundoff. In
exact arithmetic f(x) vanishes at only one point α near 0.567, a point that satisfies
α = exp( - α). However, it is clear from the figure that the floating point version is not
nearly so well behaved near this ct. n

In Chapter 2 we discuss the numerical solution of a system of linear equations. In
contrast to the solution of nonlinear equations, codes based on the method there try to
compute an answer as accurately as possible in the precision available. A difficulty
with precision arises when we try to assess the accuracy of the result.

Example 1.19. Residual calculation. The simplest system of linear equations is

ax = b.

The quality of an approximate solution z can be
equation. The discrepancy is called its residual:

r = b - az.

measured by how well it satisfies the
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Figure 1.2 Floating point evaluation of f(x) = x3e3x - 3x2 e2x + 3xex - 1.

If z is a very good solution, its residual r is small and there is cancellation when
forming

Defining δ by

the computed residual

The computed residual differs from the true residual by a quantity that can be as large
as |az|u |b|u. When r is small because z is a good solution and |b| happens to be en
large, the computed residual may have few, if any, correct digits (although the relative
residual |r/b| is fine). When z is a good solution, it is generally necessary to use double
precision to obtain its residual to single precision accuracy. n

EXERCISES

1.8 Suppose that z = 0.180 × 102 is an approximate solu- use four-digit decimal chopped arithmetic, then four-
tion of ax = b for a = 0.111 × 100, b = 0.200 × 101. digit decimal rounded arithmetic. How reasonable are
Use three-digit decimal chopped arithmetic to com- the answers? Find another formula for the midpoint
pute the residual r = b - az. Compute the residual in and use four-digit decimal (rounded or chopped) arith-
double precision and in exact arithmetic. Discuss the metic to calculate the midpoint of [0.8717,0.8719]. Is
results. your formula better or worse?

1.9 For α = 0.8717 and β = 0.8719 calculate the midpoint 1.10 In the model arithmetic, a single operation is car-
of the interval [α, β] using the formula (α+ β)/2. First ried out with a small relative error. Unfortunately
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the same is not true of complex arithmetic. To see
this, let z = a + ib and w = c + id. By definition,
zw = (ac - bd) + i(ad + bc). Show how the real part,
ac - bd, of the product zw might be computed with a
large relative error even though all individual calcula-
tions are done with a small relative error.

1.11 An approximation S to ex can be computed by using
the Taylor series for the exponential function:

S := 1
P := 1
for k = 1,2,...begin

P := xP/k
S := S+P

end k.
The loop can be stopped when S = S + P to machine
precision.

(a) Try this algorithm with x = - 10 using single pre-
cision arithmetic. What was k when you stopped?
What is the relative error in the resulting approxima-
tion? Does this appear to be a good way to compute
e -10 to full machine precision?

(b) Repeat (a) with x = + 10.

(c) Why are the results so much more reasonable for

(b)?
(d) What would be a computationally safe way to
compute e-10?

1.12 Many problems in astrodynamics can be approxi-
mated by the motion of one body about another under
the influence of gravity, for example, the motion of a
satellite about the earth. This is a useful approxima-
tion because by a combination of analytical and nu-
merical techniques, these two body problems can be
solved easily. When a better approximation is desired,
for example, we need to account for the effect of the
moon or sun on the satellite, it is natural to compute it
as a correction to the orbit of the two body problem.
This is the basis of Encke’s method; for details see
Section 9.3 of [2]. A fundamental issue is to calculate
accurately the small correction to the orbit. This is
reduced to the accurate calculation of a function f(q)
for small q > 0. The function is

Explain why f(q) cannot be evaluated accurately in
finite precision arithmetic when q is small. In the ex-
planation you should assume that y-3/2 can be eval-
uated with a relative error that is bounded by a small
multiple of the unit roundoff. Use the binomial series
to show

Why is this series a better way to evaluate f(q) when
q is small?

1.13 Let a regular polygon of N sides be inscribed in a unit
circle. If LN denotes the length of one side, the cir-
cumference of the polygon, N × LN, approximates the
circumference of the circle, 2π; hence π:    NLN/2 for
large N. Using Pythagoras’ theorem it is easy to relate
L2N to LN:

Starting with L4 =     for a square, approximate π
by means of this recurrence. Explain why a straight-
forward implementation of the recurrence in floating
point arithmetic does not yield an accurate value for
π. (Keep in mind that Show that
the recurrence can be rearranged as

and demonstrate that this form works better.

1.14 A study of the viscous decay of a line vortex leads to
an expression for the velocity

at a distance r from the origin at time t > 0. Here
is the initial circulation and v > 0 is the kinematic vis-
cosity. For some purposes the behavior of the velocity
at distances r << is of particular interest. Why
is the form given for the velocity numerically unsat-
isfactory for such distances? Assuming that you have
available a function for the accurate computation of
sinh( x ), manipulate the expression into one that can
be evaluated in a more accurate way for very small r.
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1.3 CASE STUDY 1

Now let us look at a couple of examples that illustrate points made in this chapter. The
first considers the evaluation of a special function. The second illustrates the fact that
practical computation often requires tools from several chapters of this book. Filon’s
method for approximating finite Fourier integrals will be developed in Chapter 3 and
applied in Chapter 5. An aspect of the method that we take up here is the accurate
computation of coefficients for the method.

The representation of the hyperbolic cosine function in terms of exponentials

x = cosh(y) = exp( y) + exp(-y)
2

makes it easy to verify that for x > 1,

Let us consider the evaluation of this expression for cosh-1 (x) in floating point arith-
metic when x >> 1. An approximation made earlier in this chapter will help us to
understand better what it is that we want to compute. After approximating

we find that

The first difficulty we encounter in the evaluation is that when x is very large, x2 over-
flows. This overflow is unnecessary because the argument we are trying to compute is
on scale. If x is large, but not so large that x2 overflows, the effect of the 1 “falls off the
end” in the subtraction, meaning that fl(x2 - 1) = fl(x2). This subtraction is carried
out with a small relative error, and the same is true of less extreme cases, but there is
a loss of information when numbers are of greatly different size. The square root is
obtained with a small relative error. The information lost in the subtraction is needed
at the next step because there is severe cancellation. Indeed, for large x, we might end
up computing x - x = 0 as the argument for ln(x), which would be disastrous.

How might we reformulate the task to avoid the difficulties just noted? A little
calculation shows that

a form that avoids cancellation. The preliminary analysis we did to gain insight sug-
gests a better way of handling the rest of the argument:
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Notice that here we form (l/x)2 instead of l/x2. This rearrangement exchanges a
possible overflow when forming x2 for a harmless underflow, harmless, that is, if the
system sets an underflow to zero and continues on. We see now that the expression

avoids all the difficulties of the original expression for cosh-1 (x). Indeed, it is clear
that for large x, evaluation of this expression in floating point arithmetic will lead to an
approximation of ln(2x), as it should.

For our second example we consider Filon’s method for approximating finite
Fourier integrals, which is developed in Chapter 3:

Here θ = ωh and

The details of the terms Ce and C0 do not concern us here. There is a similar for-
mula for integrals with the sine function in place of the cosine function that involves
the same coefficients α, β, γ. It is shown in Case Study 3 that the absolute error of
this approximation is bounded by a constant times h 3

. To get an accurate integral, it
might be necessary to use a small h, meaning that θ is small, but the expressions for
the coefficients are unsatisfactory in this case. Each suffers from cancellation in the
numerator, and the resulting error is amplified by the division by the small quantity θ3.
To see the cancellation more clearly, let us approximate the sine and cosine terms in,
say, a by the leading terms in their Taylor series, sin(θ)    θ and cos(θ)    1, to get

Obviously there is perfect cancellation of leading terms in the numerator. This analysis
suggests a remedy: for small θ, expand the coefficients in Taylor series and deal with
the cancellation and small divisor analytically. The resulting series are
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It might be remarked that it was easy to compute these expansions by means of the
symbolic capabilities of the Student Edition of MATLAB. In the program used to com-
pute the integral of Case Study 3, these expressions were used for θ < 0.1. Because the
terms decrease rapidly, nested multiplication is not only an efficient way to evaluate
the expressions but is also accurate.

As a numerical illustration of the difficulty we evaluated both forms of a for a
range of θ in single precision in FORTRAN. Reference values were computed using
the trigonometric form and double precision. This must be done with some care. For
instance, if T is a single precision variable and we want a double precision copy DT
for computing the reference values, the lines of code

T = 0.lE0
DT = 0. 1D0

are not equivalent to

T = 0.1E0
D T = T

This is because on a machine with binary or hexadecimal arithmetic, 0. 1E0 agrees with
0.1 D0 only to single precision. For the reference computation we require a double pre-
cision version of the actual machine number used in the single precision computations,
hence we must use the second code. As we have remarked previously, most computers
today perform intermediate computations in higher precision, despite specification of
the precision of all quantities. With T, S, and C declared as single precision variables,
we found remarkable differences in the result of

S = SIN(T)
C = COS(T)
ALPHA=(T**2+T*S*C-2EO*S**2)/T**3

and

ALPHA=(T**2+T*SIN(T)*COS(T)-2EO*SIN(T)**2)/T**3

differences that depended on the machine and compiler used. On a PC with a Pentium
chip, the second code gave nearly full single precision accuracy. The first gave the
poor results that we expect of computations carried out entirely in single precision.

The coefficient a was computed for a range of θ using the trigonometric defini-
tion and single precision arithmetic and its relative error computed using a reference
value computed in double precision. Similarly the error of the value computed in sin-
gle precision from the Taylor series was found. Plotted against θ in Figure 1.3 is the
relative error for both methods (on a logarithmic scale). Single precision accuracy
corresponds to about seven digits, so the Taylor series approach gives about all the
accuracy we could hope for, although for the largest value of θ it appears that another
term in the expansion would be needed to get full accuracy. Obviously the trigono-
metric definition leads to a great loss of accuracy for “small” θ. Indeed, θ is not very
small in an absolute sense here; rather, it is small considering its implications for the
cost of evaluating the integral when the parameter ω is moderately large.
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Figure 1.3 Error in series form (•) versus trig form (*) for a Filon coefficient.

1.4 FURTHER READING

A very interesting and readable account of the interaction of the floating point number
system with the solution of quadratic equations has been given by Forsythe [6]. Henrici
[8] gives another elementary treatment of floating point arithmetic that introduces the
useful idea of a statistical treatment of errors. To pursue the subject in depth, consult
the book Rounding Errors in Algebraic Processes by J. H. Wilkinson [10]. Wilkin-
son’s books are unmatched for their blend of theoretical advance, striking examples,
practical insight, applications, and readability. For more information on the practical
evaluation of special functions, see the books by Cody and Waite [3] or Fike [5]. Other
interesting discussions on floating point arithmetic are the books of Goldberg [7] and
Higham [9].
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MISCELLANEOUS EXERCISES FOR CHAPTER 1

1.15 Use three-digit decimal chopped arithmetic with m =
- 100 and M = 100 to construct examples for which

You are allowed to use negative numbers. Examples
can be constructed so that either one of the expres-
sions cannot be formed in the arithmetic, or both can
be formed but the values are different.

1.16 For a set of measurements xl ,x2,. . . ,xN, the sample
mean      is defined to be

The sample standard deviation s is defined to be

Another expression,

is often recommended for hand computation of s.
Show that these two expressions for s are mathemat-
ically equivalent. Explain why one of them may pro-
vide better numerical results than the other, and con-
struct an example to illustrate your point.

1.17 Fourier series,

are of great practical value. It appears to be necessary
to evaluate a large number of sines and cosines if we
wish to evaluate such a series, but this can be done
cheaply by recursion. For the specific x of interest, for
n = 1, 2,...let

sn = sinnx and cn = cosnx.

Show that for n = 2, 3,. . .

sn = S1Cn-I + c1sn-l and cn = c1cn-l -s1sn-l.

After evaluating sl = sinx and c1 = cosx with the in-
trinsic functions of the programming language, this
recursion can be used to evaluate simply and inex-
pensively all the sinnx and cosnx that are needed.
To see that the recursion is stable, suppose that for
some m > 1, sm and cm are computed incorrectly as
    = sm + εm and      = cm +      If no further arith-
metic errors are made, the errors εm and     will prop-
agate in the recurrence so that we compute

for n = m + l,.... Let εn and     be the errors in      and
      so that, by definition,

Prove that for all n > m

which implies that for all n > m

In this sense, errors are not amplified and the recur-
rence is quite stable.



CHAPTER 2

SYSTEMS OF LINEAR EQUATIONS

One of the most frequently encountered problems in scientific computation is that of
solving n simultaneous linear equations in n unknowns. If we denote the unknowns by
x1,x2, . . .  xn, such a system can be written in the form

The given data here are the right-hand sides bi, i = 1, 2,. . . , n, and the coefficients aij

for i, j = 1, 2,..., n. Problems of this nature arise almost everywhere in the applications
of mathematics (e.g., the fitting of polynomials and other curves through data and
the approximation of differential and integral equations by finite, algebraic systems).
Several specific examples are found in the exercises for this chapter (see also [12]
or [13]). To talk about (2.1) conveniently, we shall on occasion use some notation
from matrix theory. However, we do not presume that the reader has an extensive
background in this area. Using matrices, (2.1) can be written compactly as

(2.2)

where

A x = b ,

If a11    0, the equation has a unique solution, namely x1 = b1/a11. If a11 = 0, then
some problems do not have solutions (b1  0) while others have many solutions (if
b1 = 0, any number x1 is a solution). The same is true for general n. There are two
kinds of matrices, nonsingular and singular. If the matrix A is nonsingular, there is a
unique solution vector x for any given right-hand side b. If A is singular, there is no

30
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solution for some right-hand sides b and many solutions for other b. In this book we
concentrate on systems of linear equations with nonsingular matrices.

Example 2.1. The problem

2 x1 + 3x2 = 8
5 x1 + 4x2 = 13

has a nonsingular coefficient matrix. The linear system has the unique solution

x 1 = 1 , x 2 = 2  o r  x =

Example 2.2. The problem

2x1 + 3x2 = 4
4x1 + 6x2 = 7

has a singular coefficient matrix. If

there is no solution, for if x1 and x2 were numbers such that 4 = 2x1 + 3x2, then we
would have 8 = 2 × 4 = 2 × (2x1+ 3x2) = 4x1+ 6x2, which is impossible because of
the second equation. If

there are many solutions, namely

for all real numbers c. n

In the nonsingular case there exists a matrix called the inverse of A, denoted by
A-1, such that the unique solution of (2.2) is given by

x = A-1b.

For n = 1, A-1 = (1/a11). Should we compute A-1 and then form the product A-1  b
to solve (2.2)? We shall see that the answer is generally no even if we want to solve
(2.2) with the same matrix A and many different right-hand sides b.
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2.1 GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

The most popular method for solving a nonsingular system of linear equations (2.1) is
called Gaussian elimination. It is both simple and effective. In principle it can be used
to compute solutions of problems with singular matrices when they have solutions, but
there are better ways to do this. The basic idea in elimination is to manipulate the
equations of (2.1) so as to obtain an equivalent set of equations that is easy to solve.
An equivalent set of equations is one that has the same solutions. There are three basic
operations used in elimination: (1) multiplying an equation by a nonzero constant,
(2) subtracting a multiple of one equation from another, and (3) interchanging rows.
First, if any equation of (2.1) is multiplied by the nonzero constant a, we obtain an
equivalent set of equations. To see this, suppose that we multiply the k th equation by
a to get

(2.3)

If x1, x2, . . . ,xn satisfy (2.1), then they obviously satisfy the set of equations that is the
same as (2.1) except for the kth equation, which is (2.3). Conversely, because α  0,
if x1, x2, . . . ,xn satisfy this second set of equations, they obviously satisfy the first.
Second, suppose we replace equation i by the result of subtracting the multiple a of
equation k from equation i:

If x1, x2, . . . ,xn satisfy (2.l), then by definition

and

aklxl + ak2x2 + ··· + aknxn = bk,

so that

( ai1x1 + ai2x2 + ··· + ainxn) - α (ak1x1 + ··· + aknxn) = bi - αbk.

Thus xl, x2 , . . . ,xn satisfy all the equations of (2.4). To work in reverse, suppose now
that x1, x2,. . . ,xn satisfy (2.4). Then in particular they satisfy equations i and k,

so that
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which is just

Thus x1, x2 , . . . ,xn also satisfy (2.1). Third, writing the equations in a different order
clearly does not affect the solution, so interchanging rows results in an equivalent set
of equations.

Example 2.3. Consider the problem

3 x1 + 6x2 + 9x3 = 39
2x1 + 5x2 - 2x3 = 3

x1 + 3x2 - x3 = 2.

If we subtract a multiple α of the first equation from the second, we get

(2.5)

Choosing α = 2/3 makes the coefficient of x1 zero, so that the unknown x1 no longer
appears in this equation:

x2 - 8x3 = -23.

We say that we have “eliminated” the unknown x1 from the equation. Similarly, we
eliminate x1 from equation (2.5) by subtracting l/3 times the first equation from it:

x2 - 4x3 = -11.

The system of equations (2.5)-(2.5) has been reduced to the equivalent system

3x1 + 6x2 + 9x3 = 39
x2 - 8x3 = -23 (2.6)
x2 - 4x3 = -11.

Now we set aside the first equation and continue the elimination process with the last
two equations in the system (2.6) involving only the unknowns x2 and x3. Multiply the
second equation by 1 and subtract from the third to produce

4x3 = 12, (2.7)

a single equation in one unknown. The equations (2.6) have now become the equiva-
lent set of equations

3x1 + 6x2 + 9x3 = 39
x2 - 8x3 = -23 (2.8)

4 x3 = 12.

The system (2.8)-(2.8) is easy to solve. From (2.8) x3 = 12/4 = 3. The known value
of x3 is then used in (2.8) to obtain x2, that is,

x 2  =  8x3 - 23 = 8 × 3 - 23 = 1.

Finally, the values for x2 and x3 are used in (2.8) to obtain x1,

x1 = (-6x2 - 9x3 + 39)/3

= ( - 6 × 1 - 9 × 3 + 3 9 ) / 3 = 2 .
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Because this set of equations is equivalent to the original set of equations, the solution
of (2.5)-(2.5) is x1 = 2, x2 = 1, x3 = 3. n

Let us turn to the general problem (2.1), which we now write with superscripts to
help explain what follows:

If we can eliminate the unknown x1 from each of the succeeding equations.

A typical step is to subtract from equation i the multiple of the first equation.
The results will be denoted with a superscript 2. The step is carried out by first forming

and then forming

and

The multiple of the first equation is chosen to make that is, to eliminate the
unknown x1 from equation i. Of course, if mil = 0, the variable x1 does not appear in
equation i, so it does not need to be eliminated. By recognizing this, the arithmetic of
elimination can be avoided. Doing this for each i = 2,. . . ,n we arrive at the system

Notice that if we start out with A stored in a C or FORTRAN array, we can save

a considerable amount of storage by overwriting the with the as they are
created. Also, we can save the multipliers mi1 in the space formerly occupied by the

entries of A and just remember that all the elements below the diagonal in the first
column are really zero after elimination. Later we shall see why it is useful to save the

multipliers. Similarly, the original vector b can be overwritten with the as they are
formed.
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Now we set the first equation aside and eliminate x2 from equations i = 3,. . . , n in

the same way. If 0, then for i = 3, 4,. . . , n we first form

and then

and

This results in

As before, we set the first two equations aside and eliminate x3 from equations i =

4, . . . n. This can be done as long as The elements are called
pivot elements or simply pivots. Clearly, the process can be continued as long as no
pivot vanishes. Assuming this to be the case, we finally arrive at

In the computer implementation, the elements of the original matrix A are successively

overwritten by the as they are formed, and the multipliers mij are saved in the
places corresponding to the variables eliminated. The process of reducing the system
of equations (2.1) to the form (2.9) is called (forward) elimination. The result is a
system with a kind of coefficient matrix called upper triangular. An upper triangular
matrix U = (u i j ) is one for which

It is easy to solve a system of equations (2.9) with an upper triangular matrix by a

process known as back substitution. If we solve the last equation for xn,
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Using the known value of xn, we then solve equation n - 1 for xn-1, and so forth. A
typical step is to solve equation k,

for xk using the previously computed xn, xn-1,. . . ,xk+1 :

The only way this process can break down (in principle) is if a pivot element is zero.

Example 2.4. Consider the two examples

0 · xl + 2x2 = 3

4 x1 + 5x2 = 6

and

0 · x1 + 2x2 = 3

0 · x1 + 5x2 =  6.

The entry so it cannot be used as a pivot, but there is a simple remedy for the
difficulty. We merely interchange the equations to get the equivalent set

4 x 1  +  5x2 = 6
0 · x1 + 2x2 = 3.

For this problem the difficulty was easily avoided. This device will not work on the
other problem, however, as it is singular. The first equation of this set requires x2 = 3/2

and the second requires x2 = 6/5, so there is no solution at all. n

In the general case, suppose we have arrived at

and We examine the elements in column k for j > k. If for some index

l, we interchange equations k and l. This does not affect the solution, so

we rename the coefficients in the same way as before. The new pivot is the old

which was nonzero, so the elimination process can now proceed as usual. If,

however, we have a difficulty of another sort: the
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matrix is singular. We prove this by showing that if a solution exists, it cannot be
unique. Assume x is a solution to the problem. Set zk+l = xk+l , . . . , zn = xn and let zk

be arbitrary. The quantities zk,zk+l , . . . ,zn satisfy equations k through n because the
unknown xk does not appear in any of those equations. Now values for z1, . . . , zk-1

may be determined by back substitution so that equations 1 through k - 1 are satisfied:

This can be done because none of these pivot elements vanishes. Since all of the
equations are satisfied, we have produced a whole family of solutions, namely zl, z2,
. . ., zk, xk+l,. . ., xn with zk arbitrary. This shows that the matrix is singular.

Example 2.5. The following problems illustrate how singular systems are revealed
during elimination. In the system

xl + 2x2 - x3 = 2
2x1 + 4x2 + x3 = 7
3x1 + 6x2 - 2x3 = 7,

one step of elimination yields

xl + 2x2 - x3 = 27
0 x2 + 3x3 = 3
0 x2 + x3 = 1.

Since we cannot find a nonzero pivot for the second elimination step, the system is
singular. It is not hard to show that the solutions are

x1 = 3 - 2c
x2 = c
x3 = 1

for all real numbers c. The system

x1 - x2 + x3 = 0

2x1 + x2 - x3 = -3
xl + 2x2 - 2x2 = -2

is also singular, since two steps of elimination give

xl - x2 + x3 = 0
3x2 - 3x3 = -3

0 x3 = 1.
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In this case there is no solution at all. n

We conclude that by using interchanges, the elimination process has a zero pivot
only if the original problem is singular. This statement is fine in theory, but the dis-
tinction between singular and nonsingular problems is blurred in practice by roundoff
effects. Unless a pivot is exactly zero, interchange of equations is unnecessary in the-
ory. However, it is plausible that working with a pivot that is almost zero will lead to
problems of accuracy in finite precision arithmetic, and this turns out to be the case.

Example 2.6. The following example is due to Forsythe and Moler [6]:

0.000100x1 + 1.00x2 = 1.00

1.00x1 + 1.00x2 = 2.00.

Using three-digit decimal rounded floating point arithmetic, one step in the elimination
process without interchanging equations yields for the second equation

[ 1.00 - (10,000) (1.00)]x2 = [2.00 - (10,000) (1.00)]

or

-10,000x2 = -10,000.

Clearly, x2 = 1.00 and, by back substitution, x1 = 0.00. Notice that all information
contained in the second equation was lost at this stage. This happened because the
small pivot caused a large multiplier and subsequently the subtraction of numbers of
very different size. With interchange we have

1.00x1 + 1.00x2 = 2.00
1.00x2 = 1.00

and xl = 1.00, x2 = 1.00. The true solution is about x1 = 1.00010, x2 = 0.99990. n

small pivot elements may lead to inaccurate results. As we saw in the last
example, when eliminating the variable xk in row i, a small pivot element leads to a

large multiplier mik = When

is formed, there is a loss of information whenever is much larger than
information that may be needed later. A large multiplier is also likely to result in a
large entry in the upper triangular matrix resulting from elimination. In the solution of
the corresponding linear system by back substitution, we compute

If the pivot (the denominator) is small and the true value xk is of moderate size, it

must be the case that the numerator is also small. But if there are entries of
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the upper triangular matrix that are large, this is possible only if cancellation occurs
in the numerator. The large entries might well have been computed with a modest
relative error, but because the entries are large this leads to a large absolute error in
the numerator after cancellation. The small denominator amplifies this and there is a
substantial relative error in xk.

Partial pivoting is the most popular way of avoiding small pivots and controlling

the size of the When we eliminate xk, we select the largest coefficient (in magni-

tude) of xk in the last n - k + 1 equations as the pivot. That is, if is the largest of

the for j = k, k + 1,. . . ,  n, we interchange row k and row l. By renaming the rows

we can assume that the pivot has the largest magnitude possible. Partial pivoting
avoids small pivots and nicely controls the size of the multipliers

Controlling the size of the multipliers moderates the growth of the entries in the upper

triangular matrix resulting from elimination. Let a = maxi , j Now

and it is easy to go on to show that

This implies that

(2.10)

when partial pivoting is done. The growth that is possible here is very important to
bounds on the error of Gaussian elimination. Wilkinson [15] points out that there is
equality in this bound for matrices of the form

However, usually the growth is very modest. Research into this matter is surveyed
in [11]. There are other ways of selecting pivot elements that lead to better bounds
on the error and there are other ways of solving linear systems that have still better
bounds. Some details will be mentioned later, but in practice the numerical properties
of Gaussian elimination with partial pivoting are so good that it is the method of choice
except in special circumstances, and when one speaks of “Gaussian elimination” it is
assumed that partial pivoting is done unless something to the contrary is said. Gaussian
elimination with partial pivoting is the basic method used in the popular computing
environments MATLAB, Mathematica, and MATHCAD.



40 CHAPTER 2 SYSTEMS OF LINEAR EQUATIONS

Example 2.7. Using exact arithmetic and elimination with partial pivoting, solve the
following system:

Since |2| > |1|, we interchange the first and second equations to get

Using 2 as a pivot, we eliminate the coefficients of xl in equations two and three to get

Since |-2| > |l|, we interchange equations two and three,

and using -2 as pivot obtain

Back substitution then gives

or

The algorithm for elimination is quite compact:
Elimination, modification of b.

for k = l,...,n - 1 begin

interchange rows so that |akk| = maxk<i<n |aik|
if |akk| = 0, set singularity indicator, return
for i = k + l, . . . , n begin
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t := aik/akk

for j = k + l, . . . , n begin
aij := aij - t * akj

end j
bi := bi - t * bk

end i

end k
if |ann| = 0, set singularity indicator.

Back substitution

for i = n, . . . , 1 begin

xi := bi

for j = i + l, . . . ,n begin

xi := xi - aij * xj

end j
xi := xi/aii

end i.

Sometimes we are interested in solving problems involving one matrix A and several
right-hand sides b. Examples are given in the exercises of problems with the right-
hand sides corresponding to different data sets. Also, if we should want to compute the
inverse of an n × n matrix A, this can be done a column at a time. It is left as an exercise
to show that column i of A-1 is the result of solving the system of equations with
column i of the identity matrix as b. If we know all the right-hand sides in advance, it
is clear that we can process them simultaneously. It is not always the case that they are
all known in advance. The residual correction process we take up later is an example.
For such problems it is important to observe that if we save the multipliers and record
how the rows are interchanged when processing A, we can process b separately. To
understand how this can be valuable, we first need to look at the costs of the various
portions of this algorithm.

As a measure of work we count arithmetic operations. Since the number of addi-
tions and subtractions equals the number of multiplications, only the latter (as well as
divisions) are counted. It is easy enough to see that elimination requires

n( n - 1) (2n - 1)/6 multiplications and n( n - 1)/2 divisions.

Modification of b requires

n( n - 1)/2 multiplications.

Back substitution requires

n( n - 1)/2 multiplications and n divisions.

For large n the multiplications dominate the cost, both because there are more of them
and because they are relatively expensive. The most important point is that processing
the matrix A is the bulk of the cost of solving a system of linear equations of even
moderate size.
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Several designs are seen in popular codes. The most straightforward is to input
A and b and have the code compute the solution x and return it. It is quite easy to
modify such a code to accept input of m right-hand sides, process all the right-hand
sides along with A, and return all the solutions in an array. This is considerably cheaper
than solving the problems one after another because A is processed only once and this
is the most expensive part of the computation. In detail, solving m systems with the
same A simultaneously requires

multiplications. Solving them independently requires

multiplications. If, for example, we wished to invert A, we would have m = n and the
cost would be

multiplications. For large n, there is a considerable difference. The most flexible de-
sign separates the two phases of the computation. By saving the information necessary
for processing the right-hand side, systems involving the same matrix A can be solved
independently and just as inexpensively as if all the right-hand sides were available to
begin with. This is the design found in production-grade software and in the programs
of this chapter. Because it is a little more trouble to use than the simplest design, it
is not unusual for libraries to have both. The computing environment MATLAB is an
example of this.

EXERCISES

2.1 Using elimination with partial pivoting, determine which of the following sys-
tems are singular and which are nonsingular. For the nonsingular problems, find
solutions. Use exact arithmetic.
(a)

(b)
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(c)

xl + 2x2 - x3 = 2
2x1 + 4x2 + x3 = 7
3 x1 + 6x2 - 2x3 = 7

(d)

xl - x2 + x3 = 0
2 x1 + x2 - x3 = -3

x1 + 2x2 - 2x3 = -2

(e)

xl + x2 + x3 = 0
2x1 + x2 - x3 = -3
2 x 1 - 4x3 = -6

(f)

2 x1 - 3x2 + 2x3 + 5x4 = 3

3 x1 + 2x2 + 2x3 + x4 = 0
x1 - x2 + x3 + 2x4 = 1

xl + x2 - 3x3 - x4 = 0

2.2 Four loads applied to a three-legged table yield the following system for the reac-
tions on the legs:

Rl + R2 + R3 = 110.00
R 1 +  R 2  =  7 8 . 3 3
R 2  +  R 3  =  5 8 . 3 3 .

Solve for R1, R2, and R3 by hand.

2.3 The following set of equations arises in analyzing loads on an A-frame:

8.00RE - 1784.00 = 0.00
-8.00RA + 1416.00 = 0.00

Ch  + D h  = 0.00
Cv + Dv + 223.00 = 0.00

-5.18Cv - 5.18Ch + 446.00 = 0.00
-5.77 Dv - 1456.00 = 0.00

-5.77Bv - 852.00 = 0.00
Bh  + D h  = 0.00.

Solve the equations by hand.

2.4 Consider the linear system

xl + 1/2x2 + 1/3x3 = 1

1/2x1 + 1/3x2 + 1/4x3 = 0

1/3x1 + 1/4x2 + 1/5x3 = 0.
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(a) Solve the system using exact arithmetic (any method).

(b) Put the system in matrix form using a two-digit decimal chopped representa-
tion.

(c) Solve the system in (b) without partial pivoting [same arithmetic as (b)].

(d) Solve the system in (b) with partial pivoting [same arithmetic as (b)].

(e) Solve the system in (b) using exact arithmetic.

2.2 MATRIX FACTORIZATION

Because it is illuminating, more advanced books invariably study elimination by view-
ing it as a matrix factorization. In this section we shall see that if no pivoting is done,
the elimination algorithm factors, or decomposes, the matrix A into the product LU of
a lower triangular matrix L =     where

     = 0 if i < j,

and an upper triangular matrix U = (uij), where

uij = 0 if i > j.

When partial pivoting is done, it is a version of A with its rows interchanged that is
decomposed. Rows can be interchanged in A by multiplication with a matrix P called
a permutation matrix. It is easy to construct P. If PA is to be the result of interchanging
some rows of A, all we need do is take P to be the result of interchanging these rows
in the identity matrix I. For example, to interchange rows 1 and 3 of the 3 × 3 matrix
A in PA, we use

The entire elimination process with partial pivoting can be written as the

LU factorization

PA = LU.

Rather than sort out the permutations, we concentrate here on the factorization without
pivoting to show how the “LU decomposition” arises. The remainder of this section
provides the details of this factorization and it may be skipped by the reader unfamil-
iar with linear algebra. Looking back at the elimination described in the preceding

section, we see that if we could multiply row 1 by and sub-
tract it from row i to eliminate the first unknown from row i. This is done for rows
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i = 2,3,. . . ,n. It is easily verified that when the matrix

multiplies any matrix A on the left, it has the effect of multiplying row 1 of A by mil and
subtracting the result from row i of A for i = 2,. . . ,n. As with permutation matrices,
this kind of matrix is found by performing the operations on the identity matrix. With
the multipliers mil chosen as specified, the product M1A has the form

For later use we note that multiplication by the inverse of a matrix “undoes” a
multiplication by the matrix. To “undo” multiplication by Ml, we need to multiply
row 1 by mil and add the result to row i for i = 2,. . . , n. In this way, we see that

It is also easy to verify directly that M1
-1M1 = I. Suppose we have formed

If we want to multiply row k of this matrix by mik = and subtract it
from row i of the matrix for i = k + l, . . . , n. This is done by multiplying the matrix by
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Then

and

Elimination without pivoting results after n - 1 steps in

which is an upper triangular matrix that we shall call U. Multiplication of this equation
on the left by then results in

Earlier we saw the simple form of these inverse matrices. It is a delightful fact that
their product is also extremely simple. Now

Multiplication by means to multiply row n - 2 by mi,n-2 and add it to row i for

i = n - 1, n. In the special case of times this clearly results in
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Repetition of this argument shows that

which is a lower triangular matrix that we shall call L. Finally, then, we see that
A = LU, where the L and U arise in an simple way during elimination. Because the
diagonal elements of L are all ones, we do not need to store them. The matrix L is
formed a column at a time and the elements can be written in the space occupied by
elements of A that are set to zero. As the scheme was described in the preceding
section, the elements of U are written over the elements of A as they are formed. One
of the virtues of describing elimination in terms of a matrix factorization is that it is
clear how to handle more than one vector b in solving Ax = LUx = b. For any given
b we first solve

L y = b

and then

U x = y .

This yields the desired x, for substitution shows that

Ly = L ( Ux) = (LU)x = Ax = b.

Forward substitution to solve the lower triangular system Ly = b, or

y1 = b1

m2,1y1 +y2 = b2

is just

y1 = b1

y 2  = b 2  -  m 2 , 1 y 1

yn =  bn - mn,1y1 - mn,2y2 - ··· - mn,n-1yn-l.

Back substitution is used to solve Ux = y, or

u11 + u12x2 + ··· + ulnxn = yl

u22x2 + ··· + u2nxn = y2

unnxn = yn,
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but now the order is xn,xn-l,. . . ,x1 :

xn = yn/un,n

xn- l  = (yn-1  - un- l ,nxn)/un- l , n - l

x1 = ( y1 - u12x2 - u13x3 -  ··· - ul,nxn)/u1,1.

There is another important decomposition of A that arises naturally in a discussion
of least squares fitting of data. The reader should turn to the advanced texts cited for
details, but a little perspective is useful. If the Gram-Schmidt process is used to form a
set of orthonormal vectors from the columns of A, a decomposition A = QR is obtained,
where Q is an orthogonal matrix and R is an upper triangular matrix. An orthogonal
matrix Q is one for which Q-1 = QT, so to solve Ax = QRx = b, all we have to do
is form Rx = QTb and solve it by backward substitution. The Gram-Schmidt process
in its classic form is not numerically stable, but there is a modification that is. A
more popular way to obtain a QR decomposition stably is by means of Householder
transformations. Error bounds for this way of solving systems of linear equations are
much better than those for Gaussian elimination because there is no growth factor.
However, the method is about twice as expensive. In another section dealing with
matrices with special structure we take up important circumstances that favor Gaussian
elimination over QR decomposition. Because the accuracy of Gaussian elimination is
almost always satisfactory in practice, it is preferred except in special circumstances.
One exception is in the solution of least squares problems where the QR decomposition
is especially convenient and problems are often very ill-conditioned.

EXERCISES

2.5 Find the L and U in the LU decomposition (no pivot- (c) Exercise 2. 1f.
ing) for the coefficient matrices in

(a) Exercise 2.1a; 2.6 Find an LU decomposition for the singular coefficient

(b) Exercise 2.1b; matrix in Exercise 2.1d. Is the decomposition unique?

2.3 ACCURACY

There are two main sources of error in the computed solution z of the linear system
Ax = b. The data A and b may not be measured exactly, and even if they are, errors are
generally made in representing them as floating point numbers. Roundoff errors occur
in the elimination and forward/backward substitution algorithms. It seems obvious
that we should study the error

e = x - z,

but it turns out that a different way of approaching the issue of accuracy is illuminating.
A backward error analysis views z as the exact solution of a perturbed problem

(A +  A ) z = b  + b.
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If the perturbations,   and    are comparable to the measurement errors or the round-
off in the entries of A or b, then it is reasonable to say that z is about as good a solution
as we might hope to get.

A BACKWARD ERROR ANALYSIS
A floating point error analysis of a simple system of linear equations will be illuminat-
ing. Suppose that the system

u11x1 + u12x2 = b1

u22x2 = b2

has arisen directly or as the result of applying Gaussian elimination to a more general
system. In our development of elimination we discussed how a small pivot, here u11

and u22, could be dangerous both for its direct effects and because it might lead to
large elements in the upper triangular matrix, here u12. Analyzing the error in this
simple case will help us to understand this. Backward substitution in exact arithmetic
produces the true solution as

In floating point arithmetic,

Computation of the other component involves several steps. First we compute

then

and finally

In a backward error analysis, we express the solution computed in floating
point arithmetic as the solution in exact arithmetic of a perturbed problem:
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As the notation suggests, this can be done without perturbing the right-hand side of
the equation. The equation

will be valid if we define

Similarly, the equation

will be valid if we define

With these definitions we have expressed the computed solution of the given prob-
lem as the exact solution of a problem with perturbed matrix. It is seen that none of
the coefficients of the matrix is perturbed by more than about two units of roundoff.

This analysis tells us that the backward substitution algorithm is sure to produce a
good result in the sense that the computed solution is the exact solution of a problem
close to the one given. However, that is not the same as saying that the computed
solution is close to the true solution. A forward error analysis bounds directly the
difference between the computed and true solutions.

Our basic assumption about floating point arithmetic is that a single operation is
carried out with a relative error bounded by the unit of roundoff u, so we have

Substitution of the expressions developed earlier and a little manipulation shows that

where

This implies that
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According to this bound, the relative error is generally small. A large relative error
is possible only when |x2u12| >> |x1u11|. If the solution is such that both components
are of comparable size, a large relative error is possible only when the pivot u11 is
small and/or the entry u12 in the upper triangular matrix is large. Large relative errors
are more likely when |x2| >> |x1|. The denominator can be written in the form

xlu11 = b1 - x2u12,

showing that the relative error can be large when the numerator is large and the de-
nominator is small because of cancellation.

ROUNDOFF ANALYSIS
A natural way to measure the quality of an approximate solution z is by how well it
satisfies the equation. A virtue of this is that it is easy to compute the residual

r = b - Az .

In this measure, a good solution z has a small residual. Because of cancellation (see
Example 1.10), if we should want an accurate residual for a good solution, it will be
necessary to compute it in higher precision arithmetic, and this may not be available.
The residual provides a     for the backward error analysis, namely,

   = -r.

The residual r is connected to the error e by

r = b - Az = Ax - Az = A(x - z) = Ae

or e = A-1 r. A small residual r, hence a small     may be perfectly satisfactory from
the point of view of backward error analysis even when the corresponding error e is
not small.

Example 2.8. To illustrate the distinction between the two points of view, consider
the system

(2.11)

We carry out the elimination process using three-digit chopped decimal arithmetic.
After the first step we have

It then follows that

z1 = (0.200 - 0.547z 2)/0.747 = 0.267,
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so the computed solution is

The exact solution to (2.11) is easily found to be xl = 1 and x2 = -1. Therefore the
error (in exact arithmetic) is

In contrast, the residual (in exact arithmetic) is

r = b - Az

This says that z is the exact solution of Az = b +      where b1 = 0.200 is perturbed to
0.199449 and b2 is perturbed to 0.166341. Thus, z is the solution of a problem very
close to the one posed, even though it differs considerably from the solution x of the
original problem. n

The fundamental difficulty in Example 2.8 is that the matrix in the system (2.11)
is nearly singular. In fact, the first equation is, to within roundoff error, 1.2 times the
second. If we examine the elimination process we see that z2 was computed from two
quantities that were themselves on the order of roundoff error. Carrying more digits in
our arithmetic would have produced a totally different z2. The error in z2 propagates
to an error in z1. This accounts for the computed solution being in error. Why then
are the residuals small? Regardless of z2, the number z1 was computed to make the
residual for the first equation as nearly zero as possible in the arithmetic being used.
The residual for the second equation should also be small because the system is close
to singular: the first equation is approximately a multiple of the second. In Section 2.2
we observed that any matrix A could have its rows interchanged to obtain a matrix
PA, which can be decomposed as the product of a lower triangular matrix L and an
upper triangular matrix U. For simplicity we ignore the permutation matrix P in what
follows. An error analysis of elimination using floating point arithmetic shows that L
and U are computed with errors      and       respectively. Then A is not exactly equal
to the product (L +     ) (U +    ). Let     be defined so that

that is,
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We might reasonably hope to compute L with errors M that are small relative to L, and
the same for U. However, the expression for AA shows that the sizes of L and U play
important roles in how well A is represented by the computed factors. Partial pivoting
keeps the elements of L less than or equal to 1 in magnitude. We also saw in (2.10) that

the size of elements of U, the was moderated with partial pivoting. In particular,

they cannot exceed 2n-1 maxij |aij| for an n × n matrix. It can be shown rigorously, on
taking into account the errors of decomposition and of forward/backward substitution,
that the computed solution z of Ax = b satisfies

(A +   )z = b, (2.12)

where the entries of     are usually small. To make precise how small these entries
are, we need a way of measuring the sizes of vectors and matrices. One way to mea-
sure the size of a vector x of n components is by its norm, which is denoted by ||x||.
Several definitions of norm are common in numerical analysis. One that is likely to be

familiar is the Euclidean length of x, All vector norms possess many of
the properties of length. The norm used in this chapter is the maximum norm

(2.13)

If A is an n × n matrix and x is an n -vector, then Ax is also an n-vector. A matrix norm
can be defined in terms of a vector norm by

(2.14)

Geometrically, this says that ||A|| is the maximum relative distortion that the matrix A
creates when it multiplies a vector x    0. It is not easy to evaluate ||A|| directly from
(2.14), but it can be shown that for the maximum norm (2.13)

(2.15)

which is easy enough to evaluate. An important inequality connects norms of vectors
and matrices:

||Ax|| < ||A|| ||x||. (2.16)

For x    0 this follows immediately from the definition (2.14). For x = 0 we note that
A x = 0 and that ||x|| = 0, from which the inequality is seen to hold.

Example 2.9. Let x =

||x|| = max [| - 1|, |2|, |3|]  = 3.



54 CHAPTER 2 SYSTEMS OF LINEAR EQUATIONS

Let A =

||A|| = [(|l| + |-l| + |0|), (|2|+ |-2| + |3|), (|-4| + |1| + |-1|)]
= max[(2), (7), (6)] = 7.

Returning to the roundoff analysis for Gaussian elimination, it can be shown rig-
orously [11] that the computed solution z satisfies the perturbed equation (2.12) where

(2.17)

As usual, u is the unit roundoff. The factor γn depends on n and can grow as fast
as 2n-1. To put this in perspective, suppose that AA arises from rounding A to form
machine numbers. Then could be as large as u|aij| and could be as large
as

According to the bounds, the perturbations due to the decomposition and forward/back-
ward substitution process are at worst a factor of γn times the error made in the initial
rounding of the entries of A. If the rigorous bound 2n-1 on γn truly reflected prac-
tice, we would have to resort to another algorithm for large n. Fortunately, for most
problems γn is more like 10, independent of the size of n.

From this it can be concluded that Gaussian elimination practically always pro-
duces a solution z that is the exact solution of a problem close to the one posed. Since
Az - b = the residual r satisfies

This says that the size of the residual is nearly always small relative to the sizes of A
and z. However, recall that this does not imply that the actual error e is small.

For additional insight as to why Gaussian elimination tends to produce solutions
with small residuals, think of the LU factorization of A discussed in Section 2.2. The
forward substitution process used to solve the lower triangular system Ly = b succes-
sively computes y1, y2,. . . , yn so as to make the residual zero. For example, regardless
of the errors in y1 and m2,1 the value of y2 is computed so that

m2,lyl + y2 = b2,

that is, the residual of this equation is zero (in exact arithmetic) with this value of y2.
The same thing happens in the back substitution process to compute xn,xn-1,. . . ,x1

that satisfy Ux = y. Thus, the very nature of the process responds to errors in the
data in such a way as to yield a small residual. This is not at all true when x is
computed by first calculating the inverse A-1 and then forming A-l b. With a little
extra work it is possible to make Gaussian elimination stable in a very strong sense.
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Suppose that we have solved Ax = b to obtain an approximate solution z. We can
expect it to have some accuracy, although perhaps not all the accuracy possible in the
precision used. A little manipulation shows that the error e = x - z satisfies A e = r,
where r is the residual of the approximate solution z. We have seen that if Gaussian
elimination is organized properly, it is inexpensive to solve this additional system of
equations. Of course, we do not expect to solve it exactly either, but we do expect
that the computed approximation d to the error in z will have some accuracy. If it
does, w = z + d will approximate x better than z does. In principle this process, called
iterative refinement, can be repeated to obtain an approximation to x correct in all its
digits. The trouble in practice is that for the process to work as described, we have to
have an accurate residual, and the better the approximate solution, the more difficult
this is to obtain. Skeel [14] has shown that just one step of iterative refinement with
the residual computed in the working precision will provide a computed solution that
is very satisfactory. This solution will have a small residual and will satisfy exactly
a system of equations with each coefficient differing slightly from that of the given
system. This is much better than the result for z that states that the perturbation in
a coefficient is small compared to the norm of the whole matrix, not that it is small
compared to the coefficient itself. So, if we are concerned about the reliability of
Gaussian elimination with partial pivoting, we could save copies of the matrix and
right-hand side and perform one step of iterative refinement in the working precision
to correct the result as necessary.

NORM BOUNDS FOR THE ERROR

In the preceding subsection, we found that roundoff errors in the algorithm could be
considered equivalent to errors in the data A. We now study the effect of such pertur-
bations, as well as errors in the given data, on the error e. For simplicity, let us first
consider the case where only the data b is in error. Let x +     be the solution of

Multiply this by A-1 and use the fact that x = A-lb to get

(2.18)

Norm inequalities say that

But b = Ax similarly implies ||b|| < ||A|| ||x||, hence

(2.19)

(2.20)

Inequality (2.19) says that in an absolute sense, input errors can be amplified by
as much as ||A-1|| in the solution. In contrast, (2.20) says that in a relative sense, input
errors can be magnified by as much as ||A|| ||A-1||. The important quantity ||A|| ||A-1||
denoted by cond(A) is called the
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condition number of A

cond(A) = ||A|| ||A-l||.

A theorem that helps us understand the condition number is

In words this says that there is a singular matrix S that differs from A in a relative
sense by the reciprocal of the condition number of A. Put differently, if A has a “large”
condition number, it is “close” to a singular matrix.

The condition number clearly depends on the norm, but in this book we consider
only the maximum norm (2. 15).

Example 2.10. For A , find ||A||,||A-l||, cond(A ). First,

||A|| = max[(|l|+|2|),(|3|+|4|)] = max[(3),(7)] = 7.

For 2 x 2 matrices, the inverse matrix is easy to work out. If A =

So, in our case

and

Then

Example 2.11. The matrix

is much closer to being singular than the matrix in Example 2.10 since

(2.21)
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and

||A|| = 2, ||A-l|| = 2 x 105, cond(A) = 4 x 105.

The theorem about the condition number says that there is asingular matrix that is
within 1/cond(A) = 2.5 x 10–6 of A. Although not quite this close, the simple matrix

is obviously singular and

The effect of perturbing A is more complicated because it is possible that A + ∆ A is
singular. However, if the perturbation is sufficiently small, say ||A–1|| ||∆ A|| < 1, then
it can be shown [9] that A + ∆ A is nonsingular and further that if (A +  ∆A) (x + ∆x) =
b + ∆b, then we have the so-called

condition number inequality

valid for ||A–l|| ||∆ A|| < 1.

(2.22)

Inequality (2. 17) and the related discussion say that rounding errors in the course of
Gaussian elimination are equivalent to solving a perturbed system for which we usu-
ally have

(2.23)

where u is the unit roundoff. In some applications data errors maybe much larger than
this, and they must be used in (2.22).

Example 2.12. Suppose we solve Ax = b on a machine with u = 5 x 10–11 and
obtain

Then from (2.22), assuming exact data so that ||∆A||/||A|| 5 x 10-10, the bound on
the relative error is
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On the other hand, if the data are known to be in error, say and
then

With ||x||    ||z||    18.6 the absolute error bound is 0.37, so this analysis says that

xl = 6.23 ± 0.37

x2 = 18.62 ± 0.37.

One criticism of the analysis based on norms is that it is a worst-case analysis.
The condition number does not depend on b, so the inequality (2.22) must allow for
the worst choice of b and     A large condition number is cause for concern, but it
does not mean a given problem will be solved inaccurately. Furthermore, the fact that

is small does not mean that for each i, is small.

OTHER ERROR EXPRESSIONS AND APPROXIMATIONS
A better understanding of the size of the error can be obtained with a more careful
analysis. Again, it is simpler to consider first only changes in b. If the entries of A-1

are denoted by then in component form is

(2.24)

Hence, for

is the exact formula for the relative change in xi as a function of the relative changes
in the bp. The special case of a change in only one entry of b is

(2.25)

and

(2.26)

This says that the relative error of a solution component xi will be sensitive to the
relative error in a data component bp whenever the factor is large. The results
using norms told us that “large” components in the inverse matrix indicate possible
sensitivity to errors in the data. This result goes much further. It brings to our attention
that “small” components in the solution vector indicate possible sensitivity to errors in
the data. More to the point, it shows which components are sensitive and how much.
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What if A is perturbed? For simplicity we study the effect on a solution component
xi when only a single entry apq of A is altered. In component form Ax = b is

Taking the partial derivative with respect to apq leads to

and

In terms of the vectors

w =  (w i), where wi = 0 for i     p, wp= -xq,

this is a system of equations Av = w. Then v = A-1w, or in component form,

We conclude that for “small” perturbations of apq, the solution component xi is
perturbed to xi + where

In terms of relative changes, this is

(2.27)

This approximate result shows much more detail than the bound (2.22). In particular,
it is clear that if there is a solution component xq that is large compared to a component
xi, then xi can be sensitive to perturbations in column q of A.

ESTIMATING CONDITION
Although there is far more information in the equality (2.26) and the approxima-
tion (2.27) than in the condition number inequality (2.22), they require knowledge
of A-1, which is relatively expensive to compute. An efficient algorithm for the cal-
culation of A-1 requires roughly three times the work needed for elimination. To
compute cond(A) exactly requires A-l, but for our purposes an estimate for ||A-1||
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would suffice. An adequate estimate can be obtained with little more work than a for-
ward/backward substitution. The calculation of ||A|| using the maximum norm is easy.
To estimate ||A-1|| the basic observation is that if Ay = d, then from (2.16)

||y|| = ||A-1d|| < ||A-1|| ||d||.

For any vector y we can form d and then obtain a lower bound for ||A-l|| from

||A-1|| > ||y||/||d||

Using a factorization of A, Cline, Moler, Stewart, and Wilkinson [3] construct y and
d that result in a “large” ratio ||y||/||d||. A lower bound for ||A-1|| is obtained in any
case, and often the algorithm results in a value comparable to ||A-1||. The code Factor
discussed below uses this approach to estimating cond(A). LAPACK [l] refines this
estimate by an iterative procedure that involves repeated solutions of linear systems
involving A.

The idea behind the condition estimate explains a common way that ill-condition-
ing is revealed in a computation. Let y be the computed solution of Ax = d. In the
inequality

let us approximate ||x||  by ||y||.  Suppose we find that the right-hand side of the in-
equality is then “large.” If the computed solution is comparable to the size of the true
solution, this says that the problem is ill-conditioned. If the computed solution is not
even comparable in size to the true solution, it is very inaccurate. Either way, a large
value of this quantity is a warning. Often a problem is scaled naturally so that ||A||
and ||d|| are about the same size, and in this common situation a large value of the
quantity corresponds to a large computed solution. With this in mind, if you should
compute a solution that seems “large,” you should question the conditioning of the
problem and/or the accuracy of the solution.

Often a problem is scaled so that ||A|| and ||d|| are about 1. If this is the case and y
should turn out to be large, the inequality shows that the matrix must be ill-conditioned.

Example 2.13. An example of Wilkinson [15] illustrates this and makes the point
that a matrix can be very ill-conditioned without any small pivots arising in the elimi-
nation process. Because the matrix of the set of 100 equations

is upper triangular, the pivot elements are on the diagonal, and obviously none is
“small.” Back substitution shows that

xl = l/(0.600 × 0.599 × ··· × 0.502 × 0.501) > (0.6)-100 > 1022,
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hence this matrix is very ill-conditioned. n

The purpose of the condition number estimator in Factor is not to get an accurate
value for the condition number, rather to recognize when it is “large.” The inequality
(2.22) is a worst-case bound. If the condition estimate of Factor indicates that the
problem is ill-conditioned, you might well feel justified in computing A-1 so that you
can use the more informative (2.26) and (2.27) to assess the effects of perturbations to
the data.

EXERCISES

2.7

2.8

For the linear system in Exercise 1.1, let

In exact arithmetic, calculate the residuals r = b - Ay
and s = b - Az. Does the better approximation have
the smaller residual? 2.9

Consider the system

x1 + x2 = 2

10x1 + 1018x2 = 10 + 1018

Do not use more than 15-digit decimal arithmetic in
the computations of parts (a) and (b). This will, for
example, result in 10 + 1018 becoming just 10.

(a) Solve using Gaussian elimination with partial piv-
oting.

(b) Divide each row by its largest |aij| and then use
Gaussian elimination with partial pivoting. 2.10

(c) Solve by hand using any method and exact arith-
metic.

(d) Use exact arithmetic to calculate residuals for
each solution. Which method seems better [compare
with part (c)]? Do the residuals indicate this?

(e) Using the formula (2.21), compute A-1 for this
system, and cond(A).

Assume that the computed solution to a nonsingular
linear system is

(-10.4631, 0.00318429, 3.79144, -0.000422790)

and the condition number is 1200.

(a) What is the uncertainty (±?) in each component
of the computed solution? Assume exact data and a
unit roundoff of 10-6.

(b) Repeat (a) but for the case when and
are each 10-5.

On a machine with unit roundoff 10-l7 with b exact
but how large a condition num-
ber can we tolerate if we want

2.4 ROUTINES FACTOR AND SOLVE

In this section we describe routines Factor and Solve that can be used to solve the
system Ax = b. Routine Factor performs Gaussian elimination with partial pivoting
on the matrix A and estimates its condition number. It saves the multipliers and the
pivot information to be used by Solve to obtain the solution x for any right-hand side
b. A typical call to Factor in FORTRAN is

CALL FACTOR (A,MAXROW,NEQ,COND,PVTIDX,FLAG,TEMP)

while a typical function evaluation of Factor is

flag = Factor(a, neq, cond, pivot_index);
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in the C++ version. The parameter cond must be passed by reference since its value is
set by the function Factor; in C the address of cond must be explicitly passed so that
its call looks like

flag = Factor(a, neq, &cond, pivot_index);

Input variables in FORTRAN are A, the array containing the coefficient matrix A;
MAXROW, the declared row dimension of A in the program that calls Factor; and
NEQ, the number of equations to be solved. Output variables are A, containing the
upper triangular matrix U in positions aij, i < j, and the lower triangular matrix L in
positions aij, i > j (as long as FLAG is zero); FLAG, an integer variable that indicates
whether or not zero pivots were encountered; COND, an estimate of the condition
number of A in the maximum norm; PVTIDX, an array that records the row inter-
changes; and in FORTRAN 77 we need TEMP, an array used for temporary storage.

In the C and C++ versions corresponding variables are a for A, neq for NEQ,
cond for COND, and pivotindex for PVTIDX. Note that in the C and C++ versions,
(1) instead of declaring the matrix A to have two indices, we use a pointer to a vector
consisting of the rows of A; (2) there is no need to reserve space for the temporary
index TEMP because this allocation can be made dynamically when needed (as can be
done for a and for pivotindex); (3) the output flag is the return variable for the function
Factor. Because arrays are typically indexed starting with zero in C and C++, we have
modified the algorithm accordingly. Some further comments are in order about the
variables for Factor

MAXROW and NEQ (or neq). If, for example, the array A is declared
as A(10,10) in the calling program and we are solving three equations
in three unknowns, then MAXROW would have the value 10 in the
FORTRAN version and NEQ (or neq in the C version) the value 3.

COND. COND is a lower bound for cond(A) in the maximum norm
and is often a good approximation to cond(A). If fl(COND + 1) =
COND, the matrix A is singular to working precision. Because we
are working with arithmetic of limited precision, exact singularity is
difficult to detect. In particular, the occurrence of a zero pivot does not
necessarily mean that the matrix is singular nor does a singular matrix
necessarily produce a zero pivot (see Exercise 2.16). When FLAG is
nonzero, the output COND is meaningless.

PVTIDX (or pivotindex). When the elimination process has been com-
pleted, the kth component of PVTIDX (pivotindex) is the index of the
kth pivot row and the nth component is set to (- 1)” where m is the
number of interchanges. Computation of the determinant of A requires
PVTIDX(NEQ) in FORTRAN or pivot_index[neq-l] in C and C++ (see
Exercise 2.23).

The argument list for Solve is

SOLVE(A,MAXROW,NEQ,PVTIDX,B)
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in FORTRAN; in C and C++ it is

Solve(a,neq,pivotindex,b);

63

The variables A, MAXROW, NEQ, PVTIDX are as specified in the Factor list. Routine
Solve uses the arrays A and PVTIDX as output from Factor and the right-hand side
contained in the vector B to solve Ax = b. The solution x is returned in B.

Example 2.14. To illustrate the codes, we solve the problem

for two right sides b = (39, 3, 2)T and b = (6, 7, - 12)T. The main program sets up the
problem and calls the routines Factor/Solve to obtain a solution. Note that after the
call to Factor, the variable FLAG is checked to see if any pivots are zero. If FLAG >
0 and Solve were used, a zero divide error would result. When FLAG = 0 the routine
Solve is used once for each right-hand side to obtain the solutions. Note that Factor is
not (and should not be) used twice since it does not act on b. The output is as follows
(the floating point values may vary slightly from one computer to another).

Condi t ion  number  = 106.642857142857100
Solution of  the first system

2.000000000000000 1.000000000000000 3.000000000000000
Solution of the second system

76.75000000000000 -31.00000000000000 -4 .250000000000000

n

EXERCISES

2.11 Solve the system in Exercise 2.2 using Factor/Solve.
Compare to the true solution.

2.12 Solve the system in Exercise 2.3 using Factor/Solve.
Compute the residual.

2.13 The codes Factor/Solve can be used to find the ele-
ments of A-1. The inverse is used to estimate certain
statistical parameters. It is also used to study the sen-
sitivity of the solution to errors in the data. Let xi

denote the solution of

Ax=bi, i = 1, 2 ,..., n,

where the ith right-hand side bi is

If we form the matrix

it is easy to show that X = A-1. Do so. Use Fac-
tor/Solve to find the inverse of the matrix

2.14 Consider the linear system of Exercise 2.4.

(a) Using the method of Exercise 2.13, find the in-
verse of the original linear system. Calculate the exact
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condition number.

(b) Use Factor/Solve on the system in Exercise 2.4b.
What is COND? Is the condition number inequal-
ity (2.22) valid for this problem? (Use
0.003333.)

2.15 Suppose we are given the electrical network shown
in Figure 2.1, and we desire to find the potentials at
junctions (1) through (6). The potential applied be-
tween A and B is V volts. Denoting; the potentials

(d) Compute the residuals for(b) and for (c). Do they
give any indication of singularity?

2.17 In analyzing environmental samples taken from the
atmosphere, a simple model with m samples and n
sources and chemicals produces AX = B, where ajk

is the average concentration of element i from source
k, xki is the mass of particles from source k contribut-
ing to sample j, bij is the concentration of element i
in sample j, and 1 < i < n, 1 < k < n, 1 < j < m. If

by v1, v2, ..., v6, application of Ohm’s law and Kirch-

hoff’s current law yield the following set of linear
equations for the vi:

11v1 - 5v2 - v6 = 5V

m = 4, n = 3, then

-20v1 + 41v2 - 15v3 - 6v5 = 0

-3v2 + 7v3 - 4v4 = 0

-v3 + 2v4 - v5 = 0

-3v2 - 10v4 + 28v5 - 15v6 = 0

-2v1 - 15v5 + 47v6 = 0.

Solve when V = 50.

2.16 The system

0.473x1 - 0.115x 2 = bl

0.731x1 -0.391x2 + 0.267x3 = b2

-0.782x2  + 0.979x3 = b3

is singular.

(a) Apply Factor to the coefficient matrix. What is
the smallest pivot? Is it near the unit roundoff u? Is

(a) What is X? What does COND tell you about the
reliability of this result? First assume exact data, then
that the entries of A and B are rounded to the displayed
values.

(b) Use the method of Exercise 2.13 to compute A-1.
What is the exact cond(A)?

(c) What does (2.24) tell you about the sensitivity of
x21 to changes in b11 ? Replace b11 by 1.43 and re-
calculate x21. Do the numerical answers confirm the
theory? Here you are to consider relative changes to
the data and the solution.

it near underflow? Is COND large? The results you 2.18 Consider the linear system

obtain will depend on the hardware and software that
you use. If Factor turns up a pivot that is exactly zero,
perturb the coefficient 0.979 by a very small amount
so as to get a system that is computationally nonsin-
gular for the rest of this problem. Adding 10-l4 to the (a) Solve for x using Factor/Solve.

coefficient will suffice for a number of configurations.

(b) Use Factor/Solve to compute x for b =
(0.084,0.357,0.833). Is there any indication of sin-
gularity in the answer?

(c) Use Factor/Solve to compute x for b =
(0.566,0.404,0.178). Is there any indication of sin-
gularity in the answer?

(b) If each entry in A and b might have an error of
±0.0005, how reliable is x?

(c) Make arbitrary changes of ±0.0005 in the ele-
ments of A to get A + AA and in the elements of b to
get b + Solve to get
x + Calculate Is this consistent with
(b)? What is the relative change in each xi?
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Figure 2.1 Circuit for Exercise 2.15.

2.5 MATRICES WITH SPECIAL STRUCTURE

Most general-purpose linear system solvers are based on Gaussian elimination with
partial pivoting. When the matrix A has special properties, it is possible to reduce the
storage and the cost of solving linear systems very substantially. This section takes up
important examples.

When it is possible to factor the matrix without pivoting, this is both faster and
reduces the storage required. There are two kinds of matrices that are common for
which it is not necessary to pivot. An n × n matrix A is said to be diagonally dominant
(by columns) if for each column

This says that the entry on the diagonal is the biggest one in the column, and by
some margin. An induction argument can be used to show that Gaussian elimination
applied to a nonsingular, diagonally dominant matrix will always select the entry on the
diagonal; hence do no row interchanges. The matrix A is said to be symmetric if AT =
A. A symmetric matrix is positive definite if for any vector v  0, the quantity vTAv >
0. It is not only possible to dispense with pivoting for positive definite matrices, but
even to exploit symmetry by working with a variant of Gaussian elimination.

BAND MATRICES

Recall that in the basic elimination algorithm, the innermost loop can be omitted when
the multiplier t = 0. This reflects the fact that the variable is not present in this equation
and so does not need to be eliminated. When the matrix A is already “close” to an
upper triangular matrix, testing for a zero multiplier can save quite a bit of work. A
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kind of matrix that is extremely important in several areas of computation is a banded
matrix. A matrix A = (a i j) is said to be banded when all the nonzero elements lie in a
band about the diagonal. Specifically, when aij = 0 if i - j > and j - i > mu, the
matrix is said to have the lower band width upper band width mu, and band width

An example of a matrix with  = 2 and mu, = 1 is

Here x indicates an entry that might not be zero. When elimination is performed on
such a matrix, at most elements have to be eliminated at each stage. Examination of
the elements above the diagonal shows that many zero elements remain zero. Indeed,

partial pivoting will leave zeros in for j - i > mu + As with zero multipliers,
we can speed up the computation by recognizing elements that are zero and stay zero.
Another important observation is that by using a special storage scheme, there is no

need to provide storage for with i - j > or j - i > mu + Codes implementing
a special version of Gaussian elimination for banded matrices can be found in either
LINPACK [5] or LAPACK [1]. Although it is a little more trouble to set up A in the
special storage format used, the advantages can be great. The numerical results are
identical, but the storage in the banded case is roughly n(2 + mu) instead of n2. The
operation count for the decomposition is comparable to instead of n3/3
and there is a similar advantage for the forward and back substitution. Complete details
are found in [5], [l], or [9]. The main point is that when n is large and and mu are
small, tremendous savings are possible. This is what makes solution of systems with
n = 103, and, say, = mu = 5, a routine matter when solving differential equations.

It will be convenient now to derive an alternative form of the Gaussian elimination
algorithm. Assume the decomposition A = LU exists with L lower triangular and U
upper triangular. First note that

because the matrices are triangular. Choose and then

For i > 1

so

Also, for j > 1,
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so

In general we form a column of L and a row of U at a time. Suppose we have computed
columns l, . . . , k - l of L and rows l, . . . , k - l of U.  Then

The terms in the sum on the right are known. Choose and then

Now for i > k,

The terms in the sum on the right are known, so

Similarly, for j > k,

and

If all the diagonal elements of L are taken to be 1, this algorithm is Gaussian elim-
ination without pivoting. Later it will prove useful to choose other values for these
elements. In our discussion of elimination applied to a band matrix A, we observed
that quite a lot of storage and work could be saved. The situation is even better when
no pivoting is done. If A is a band matrix with lower band width and upper band
width mu, then L is also a band matrix with lower band width and U is a band
matrix with upper band width mu. If we choose the diagonal elements of L to be 1,
it is not necessary to store them and as is the case for full matrices, the factors L and
U can be written over A as they are computed. These statements about the form of L
and U follow by examination of the recipe for their computation when the form of A
is taken into account. Of course, a special storage scheme is needed to exploit the fact
that only elements in a band about the diagonal can be nonzero. This approach to solv-
ing banded linear systems is of great practical importance. In Chapter 3 matrices with

= 1 = mu arise in the fitting of splines to data. They are examples of nonsingular
diagonally dominant matrices for which we can be sure that pivoting is not needed for
stability of the algorithm. Fortunately, many banded systems arising in practice are
diagonally dominant.
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TRIDIAGONAL LINEAR SYSTEMS

Some special cases of and mu occur sufficiently often that special codes are written
for them. For example, when the coefficient matrix is called tridiagonal.
For the numerical solution of partial differential equations by a number of important
methods, it is necessary to solve a great many tridiagonal systems involving a great
many unknowns, perhaps thousands of each. This would be impractical with Fac-
tor/Solve, but with a special-purpose algorithm it is not that difficult. Let us assume
that the tridiagonal system is written as

When no pivoting is done, elimination zeros out the bi to lead to a structure like

As we shall see, the ci are unchanged from the original system. To show this and to
derive formulas for fi and ei, first observe that f1 = a1 and e1 = d1 since Gaussian
elimination without pivoting does not change the first equation. To eliminate b2 the
multiplier is m2 = b2/f1. Hence,

(as we stated)

Notice that x1 does not appear in any other equation, so this completes the first stage
of the elimination. To complete the derivation we use induction. Assume that we have
derived the fi and ei through row k. Then we have the pattern

in rows k and k + 1. Clearly the multiplier is mk+l = bk+l / fk; then eliminate on row
k + l to get

which finishes the elimination of variable xk. In algorithmic form this is

f1 = a1
for k = l,...,n - 1 begin
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end k.

For the solution of many systems with the same coefficient matrix, we save the mul-
tipliers mk as well as the fk, ck and solve separately for the data d1 , . . . , dn. Forward
elimination is

e1 = d1

for k = l , . . . , n - 1 begin

ek+l  = dk+l  - mk+lek

end k.

Back substitution is simply

xn  = en /fn
for k = n - l, n - 2, . . . , 1 begin

xk = (ek - ckxk+l) / f k

end k.

Storage can be managed extremely efficiently. A general matrix requires storage for
n2 entries, but a tridiagonal matrix requires storage for only 3n - 2 nonzero entries.
A natural scheme is to store the three diagonal bands with ak, bk, and ck as three
vectors of length n. We can Write mk over bk and fk over ak as they are computed;
during the forward and backward substitution stages ek and xk can overwrite dk so that
only one additional n vector is needed. We leave as an exercise the task of counting
arithmetic operations to see that they are dramatically less than for a general matrix
(see Exercise 2.15). The above algorithm assumed no pivoting, but as was seen earlier
in this chapter, it is not always possible to solve linear systems without pivoting, and
even when it is possible, the numerical results may be poor. For tridiagonal systems
there is a simple condition that guarantees that all goes well, a condition often satisfied
by systems that arise in practice. First note that if any ck or bk vanishes, the system
can be broken into smaller systems that are also tridiagonal. Hence, we can assume
that ck     0 and bk     0 for all k. The key assumption is that

This condition is a little stronger than being diagonally dominant, enough that we can
prove that the matrix is nonsingular. The argument is by induction. By assumption
|m2| = |b2/a1| < 1. Supposing now that |mj| < 1 for j = 2,. . . , k,

but
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This implies that |mk+1| < 1 as desired. From the above inequality we have |fk| > 
|bk+l| > 0, so

Thus, under these assumptions all the quantities computed in the elimination are well
defined and they are nicely bounded in terms of the data. In particular, the matrix must
be nonsingular.

SYMMETRIC MATRICES

So far we have not considered how we might take advantage of a symmetric matrix A.
It might seem possible to decompose A into the product of an upper triangular matrix
U and its transpose UT, which is a lower triangular matrix. However, it is not always
possible to decompose a symmetric matrix in this way. This follows from the fact
that such a decomposition implies that the matrix must be positive definite and not all
symmetric matrices are positive definite. To see this, if A = UTU for a nonsingular
matrix U, then

where y = Uv. Because U is nonsingular, if v    0, then y     0 and

showing that A is positive definite. Although we shall not prove it, any positive definite,
symmetric A can be decomposed as A = UTU for a nonsingular upper triangular matrix
U. Symmetric, positive definite matrices are very important. In applications such as
the least squares fitting of data and the variational formulation of the finite element
solution of partial differential equations, the quantity vTAv is a kind of “energy” and
is naturally positive. We shall discuss a very effective way of solving problems with
A that are symmetric, positive definite. There are more complicated ways of dealing
with symmetric matrices that are not positive definite that approach the efficiency of
the definite case for large systems, but they do not cope with the storage nearly so
well. Codes can be found in LINPACK [5] or LAPACK [l] for both cases. Supposing
that A is symmetric, positive definite and using the fact stated that it can be factored
as A = UTU, we can obtain U by specializing the recipe given earlier. Now we are to
have LT = U. Thus

so

and as before

u1j = alj/ull for j = 2, . . . , n.
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Now

(2.28)

from which we find

Then, as before,

This decomposition has excellent numerical properties. From (2.28) we see that

hence

which says the multipliers in Gaussian elimination cannot get large relative to A. This
decomposition is called the Cholesky or square root decomposition. The square roots
in this algorithm can be avoided if we use a factorization of the form LDLT, where D
is diagonal and L is lower triangular with ones on the diagonal. As in the case of the
LU decomposition, when A is a band matrix, so is U. The Cholesky decomposition
preserves more than the band structure of a matrix. By examination of its recipe it is
seen that as one goes down a column of U, the first (possibly) nonzero element occurs
in the same place as the first nonzero element of A. This says that the “profile” or
“envelope” or “skyline” of A is preserved. Obviously it is more trouble to work with a
data structure that takes advantage of this fact than with one suitable for a band, but it
is not much more trouble and the storage can be reduced quite a lot. Renumbering the
unknowns alters the band width and the envelope of a matrix. There are algorithms that
attempt to find the best numbering in the sense of minimizing the storage and cost of
computing the Cholesky factorization. Many techniques have been developed for the
solution of large, symmetric, positive definite systems when most of the components of
A are zero. The monograph [8] explains the methods and presents codes; see [9] also. It
is possible to solve efficiently systems arising in many areas of scientific computation
that involve thousands of unknowns.



72 CHAPTER 2 SYSTEMS OF LINEAR EQUATIONS

EXERCISES

2.19 Count the arithmetic operations required by the algo-
rithm in Section 2.5.2 for a linear system of n equa-
tions with a tridiagonal coefficient matrix and m right-

hand sides. Compare this with what is required for a
general system.

2.6 CASE STUDY 2

All the standard methods of approximating the solution of elliptic partial differential
equations, PDEs, involve the solution of a system of linear equations. The numerical
solution of PDEs is a large subject and there are many books devoted to the solution
of particular classes of problems and to the use of particular kinds of methods. The
Galerkin method is a very important one that we illustrate here with a simple example
from [4]. After some preparation, the velocity w(x,y) of the steady flow of a viscous
fluid in a duct with square cross section can be found as the solution of

subject to no-slip boundary conditions

w(x,y) = 0 on |x| = 1 and |y| = 1.

The same mathematical problem arises in the torsion of a bar of square cross section.
Galerkin methods approximate w(x,y) by an expansion

The choice of the basis functions φj is of fundamental importance. For the example
we shall use

Notice that each φj satisfies the boundary conditions. Also, the problem is such that
w(x,y) has certain symmetry properties, properties shared by these basis functions.
Because the φj reflect well the qualitative behavior of the solution, we can hope to get
a reasonable approximation with just a few terms in the expansion. This is a global
Galerkin method because each φj approximates the solution over the entire domain.
We shall see in Chapter 3 that approximating functions by piecing together polynomial
approximations over subdomains can be very effective. In the present context the sub-
domains are called elements, and a Galerkin method based on piecewise polynomial
basis functions is called a finite element method. In any case, when wN is substituted
into the differential equation, there is a residual

The idea is to find coefficients aj that make this residual small in some sense. Gen-
erally there is a residual arising from boundary conditions, too, but for simplicity we
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discuss only the case of basis functions that satisfy the boundary conditions exactly. To
quantify the notion of being small, we make use of an inner product of two functions

f(X,Y) and g(x,y):

The Galerkin method requires that the residual of the approximation be small in the
sense that it is orthogonal to all the basis functions, that is, (φi,R) = 0 for i = 1,. . . , N.
If we substitute the expansion into the definition of the residual, this becomes

This is a system of linear equations Ca = b for the coefficients ai, where
and bi = - (φ i, 1). When there is more than one independent variable, it is not so
easy to piece together polynomial approximations over elements so that they connect
smoothly, and it is usual to reduce the order of differentiation in the inner product of Cij

from two to one by means of integration by parts (Green’s theorem). With the global
polynomial approximation of this example, there is no difficulty forming directly the
Laplacian of the basis functions.

In the classic Galerkin method the integrals of the inner products are computed
exactly. This is possible for our simple example, but in practice integrals are approxi-
mated numerically. A common procedure for general functions is based on Gaussian
quadrature. As we shall see in Chapter 5, a Gaussian quadrature formula of M points
consists of a set of nodes η i and weights Ai such that

provides the best possible approximation in a certain sense. In particular, the formula
is exact for any polynomial u(x) of degree no more than 2M - 1. In Section 5.6 we
discuss how such a formula can be used to obtain an approximation to the integral of
a function of two variables:

Generally M is quite small, but for our example we take it to be 5. The basis functions
we use are polynomials and inspection of the integrands for the cases N = 1, 2, 3
that we solve numerically shows that with M = 5, the integrals we need are computed
exactly.

Often when solving PDEs, quantities computed from the solution are at least as in-
teresting as the solution itself. Such a quantity for this example is the nondimensional
flow rate

The Galerkin approximations computed in the manner described gave
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Figure 2.2 The flow rate w(x, 0) approximated by Galerkin’s method (3 terms).

The “exact” values here were obtained from a series solution for w(x, y). Figure 2.2
shows w3(x,0), which exhibits the kind of velocity distribution across the duct that
we expect on physical grounds. These are exceptionally good approximations because
we have incorporated so much information about the solution into the basis functions.
It should be appreciated that if the solution did not have the symmetry properties of
the basis functions, we could not expect such a good answer. Moreover, consistent
results found on adding terms to the expansion might just be consistently poor results
because it is not possible to represent well the solution with the basis functions chosen.
Because finite element methods approximate the solution locally, they are better suited
for a general problem.

Finite differences represent another approach to solving PDEs that leads to large
systems of linear equations. In this approach w(x,y) is approximated only on a mesh.
For example, if we choose an integer N and define a mesh spacing h = l/N, we might
approximate w(ih,jh) by wij for i, j = -N,  - N + 1,. . . , N - 1, N. To satisfy the bound-
ary conditions we take wij = 0 when i = ±N and j = ±N. Taylor series expansion of
a smooth solution w(x,y) shows that

Further, there is a constant γ such that |τ| < γh2 for all i, j and all sufficiently small h.
We say that this is a difference approximation to the second derivative that is of order
two. All we wish to do here is make plausible that the expression on the left imitates
the partial derivative for small h. This expression and the differential equation suggest
that we define the approximation wij at mesh points (ih, jh) interior to the square by
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The set of (2N - 1)2 equations can be rewritten as

For this discrete approximation to the PDE to be a reasonable one, the mesh spacing h
must be small, but then we must have a large set of linear equations. It is of the utmost
practical importance that the equations are sparse. Indeed, there are only five nonzero
coefficients in each row of the matrix. Historically such equations were solved by iter-
ative methods. The methods used are very simple and self-correcting, so that a mistake
does not prevent computing the correct answer. Both characteristics are very important
to hand computation. Also important is that the methods require storage only for the
nonzero coefficients, the solution itself, and perhaps another vector of the same size as
the solution. For a problem as simple as this example, it is not even necessary to store
the coefficients of the matrix. Iterative methods take advantage of the fact that we do
not require an accurate solution. After all, wi,j is only an approximation to w(ih, jh)
of modest accuracy, so there is little point to computing it very accurately.

The classic iterative procedures for solving equations like those arising in this
example are most naturally described in terms of the equation itself. First let us rewrite
the equation as

The Jacobi iteration improves an approximation w(k) by computing

for all i, j. This amounts to saying that we define so as to make the residual in
equation j equal to zero. This is a very simple and inexpensive iteration that requires
only storage for the current and next approximations. A refinement suggests itself:

Would it not be better to use instead of for the rest of the computation?
Besides, if we do this, we would halve the storage required. This is called the Gauss-
Seidel iteration. There is a complication with this method. So far we have not written

out the matrix explicitly, so we have not specified the order of the components

in the vector w(k). If we are to start using as soon as it is computed, the order
in which components are improved matters. ‘A question that arises in the use of any
iterative method is when to quit. A natural way is to measure the residual of the current
solution and quit when it is less than a tolerance.

For the example we used the Gauss-Seidel iteration and improved the unknowns
from left to right, bottom to top, that is, for each i = -N + 1,. . . , N - 1, we improved
wi , j for j = -N + l,..., N - 1. We took N = 5, which led to a system of 81 equations

for unknowns at points interior to the region. It was convenient to start with

for all i, j. With a tolerance of 5 × 10-4, convergence was achieved in 89 iterations.
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Figure 2.3 Residual versus iteration number for Gauss-Seidel iteration.

The behavior of the residuals is displayed in Figure 2.3. Except for the first few it-
erates, the residual was reduced by a factor close to 0.9 at each iteration. It might
be remarked that the residual measured was that of the finite difference equation in
the form with the 1 present because it provides a natural measure of scale. The ap-
proximation to w(0,0) found in this way was 0.2923. A plot of the approximations to
w( ih,0) was in good agreement with that of Figure 2.2. We have had to solve a very
much larger system of equations to get an approximation comparable to that of the
global Galerkin method. On the other hand, the finite difference approximation does
not depend on the special form of the solution. Another distinction appears when we
ask about the flow rate, for we now have to compute the integral of a function defined
only on a mesh. How this might be done is discussed in Chapter 5, but for the sake of
simplicity, we do not go into the matter here.

Let us now consider the Jacobi and Gauss-Seidel iterations for a general problem
Ax = b and prove a simple result about convergence. One approach to iterative meth-
ods supposes that it is relatively easy to solve systems of the form My = c for a matrix
M that is “close” to A. The idea is to rewrite the given problem as

and calculate a sequence of approximate solutions x (k) by

The Jacobi iteration arises in this form when we take M to be the diagonal of A. Sim-
ilarly, the Gauss-Seidel iteration arises when we take M to be the diagonal of A and
all the elements below the diagonal. Clearly it is very easy to solve linear systems
involving M in either form. We have also seen another example in this chapter. Gen-
erally the factors L and U resulting from Gaussian elimination applied to A are very
accurate in the sense that M = LU is very nearly A. By virtue of having a factorization
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of this M, it is easy to compute the iterates by forward and back substitution in the
usual fashion. With this choice of M, the iteration is the iterative refinement discussed
in Section 2.3.2.

Passing to the limit on both sides of the equation defining the iteration, we see that
if the approximations converge at all, they must converge to x. A little manipulation
of the equations for x and x(k+1) shows that error e(k) = x - x(k) satisfies

This then implies that

If the number this inequality implies that the process con-

verges for any starting guess x(0). The error decreases by a factor of ρ at each iteration,
so if M is close to A in the sense that ρ is small, the process converges quickly. Notice
that the crucial quantity ρ is a kind of relative error of the approximation of A by M.
Sharp convergence results are known, but they are beyond the scope of this book; see,
for example, [2] or [10].

The situation with iterative refinement is special because we want a very accurate
value for x. For reasons taken up in Chapter 1, it would be better then to compute the
iterate by means of the difference of successive iterates, This
leads to the form suggested in Section 2.3.2,

Although we have not provided all the details, it is not surprising that even when
A is extraordinarily ill-conditioned, M is sufficiently close to A that the result just
established guarantees convergence.

The Jacobi iteration is more easily understood by looking at components. Equa-
tion j is

A little manipulation results in

We cannot expect this iteration to work unless the entries off the diagonal of A are small
compared to those on the diagonal. To obtain a sufficient condition for convergence,
let us suppose that A is strictly diagonally dominant by rows, meaning that there is a
number ρ < 1 such that for all j,
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A little calculation shows that the error

This holds for each j, so

telling us that the worst error is reduced by a factor
large system of linear equations arises in Chapter 3
splines. Equation j has the form

of ρ at each iteration. A (possibly)
when fitting data by smooth cubic

and the first and last equations have the form

2hlxl + hl = bl

hn-lxn-l + 2hnxn = bn.

The quantities hj appearing in these equations are all positive. Evidently this system of
equations is strictly diagonally dominant by rows with ρ = l/2. The Jacobi iteration
would be a reasonable way to solve these systems, but A is a symmetric tridiagonal
matrix and the special version of elimination from Section 2.5.2 is so effective that
there is little point to iterative methods. In components the Gauss-Seidel iteration is

A modification of the proof given for the Jacobi iteration shows that this iteration also
converges whenever A is strictly diagonally dominant by rows. The finite difference
equations of the example do not satisfy the convergence criterion just developed, but
they do have a kind of diagonal dominance for which it is possible to prove conver-
gence of both the Jacobi and Gauss-Seidel methods.

The Jacobi iteration and the Gauss-Seidel iteration are too slow to be practical for
most problems arising in practice. However, they are still important as preconditioners
for more elaborate iterative procedures. For more information about iterative methods,
see [2] or [10]. The latter provides some substantial applications to the numerical
solution of PDEs.
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MISCELLANEOUS EXERCISES FOR CHAPTER 2

2.20 A finite element analysis of a certain load bearing frame yields the stiffness equa-
tions

where α = 482,317., β = 2,196.05, and γ = 6,708.43. Here x1, x2, x3 are the lat-
eral and x4, x5, x6 the rotational (three-dimensional) displacements corresponding
to the applied force (the right-hand side).

(a) Solve for x.

(b) How reliable is the computation? First assume exact data, then
5 × 10-7.

2.21 Wang (Matrix Methods of Structural Analysis, International Textbook Company,
Scranton, Pa., 1966) considers a statically indeterminate pin-jointed truss. With
this problem is associated a statics matrix A that defines the configuration of the
framework, a member stiffness matrix S that relates the elastic properties of the
constituent members, and an external force vector p that describes the applied
forces at the joints. A displacement vector bfx that accounts for the displacement
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2.22

at each degree of freedom and an internal force vector f acting on each member
satisfies

For one example

The matrix S has all zero entries except along the diagonal where the entries are

{4800: 10000, 4800, 10000, 10000, 10000, 3000, 4800, 4800, 3000}.

Write a program to form matrix products and determine the elements of K. Solve
for x using the three p vectors

Find the corresponding vectors f.

This exercise assumes a familiarity with matrix multiplication. An appropriate
organization of Gaussian elimination as in Factor/Solve makes it efficient to solve
systems of equations with different right-hand sides but the same coefficient ma-
trix A. It is more complicated to deal with changes in A, but a formula called the
Sherman-Morrison formula makes it possible to deal with certain modifications
efficiently. Assume that we have already factored A into LU and we want to solve
(A + uvT)x = b for given column vectors u, v, and b. Show that this can be done
by first solving AZ = u and Ay = b, then forming

A proper choice of u and v handles the change of one row or one column of A.
For example, if row i of A is to be changed by adding to it a given row vector vT,
just take the column vector u to be zero in all entries except the ith, which is 1.

(a) How do you change column j in A so as to add a given column vector u ?

(b) How do you choose u and v in order to change aij into aij + δ?
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(c) A change in A may make it singular. How would this be revealed when using
the Sherman-Morrison formula? Note that this approach may not be an accurate
way to solve for x when A is poorly conditioned because the elimination is done
on A. Still for small changes to A, the accuracy should be acceptable and this is
an inexpensive way to study the effect of changes to the data of A.

2.23 Occasionally it is desirable to compute the determinant of a matrix A with n rows
and columns. Using the factorization PA = LU discussed in Section 2.2, it can be
shown that

detA = (-1) number of row interchanges × product of pivots.

In terms of the output from Factor (FORTRAN version) this is

detA = PVTIDX(n) * A(l,1) *···* A( n,n).

In the C or C++ versions this would be

detA = pivot_index[n - l] * a[0] [0] * ··· * a[n - l] [n - l].

Use this formula to compute the determinant of

(a) A in Exercise 2.13 and

(b) the matrix in Exercise 2.15.



CHAPTER 3

INTERPOLATION

Often we need to approximate a function f(x) by another “more convenient” function
F(x). This arises in physical processes where f(x) is known only through its values
at certain sample points x and F(x) is needed to approximate maximum or minimum
values, to estimate integrals or derivatives, or merely to generate values for f(x) at
points where experimental data are not available. This also arises when f(x) is known
but is difficult to evaluate, integrate, or differentiate. A familiar example is the function
f(x) = sinx that has to be approximated in a way that can be evaluated by calculators
and computers. This is a fundamental principle of numerical analysis: if we cannot
carry out a basic computation with the function of interest, we approximate it by a
function for which we can do the computation.

In this chapter a function f(x) is approximated by an interpolant F(x), a function
that agrees with f(x) at certain points. A formal definition of the verb interpolate is as
follows.

Definition. interpolation: A function F(x) is said to interpolate f(x) at the
points {x l , . . . ,xN) if

F(x j) = f(x j), j = 1,2 ,..., N.

The process of constructing such a function F(x) is called interpolation.

There are many types of approximating functions F(x) and which one to use de-
pends to a large extent on the nature of the data and the intended use of the approxima-
tion. Perhaps the simplest approximating functions are polynomials. It can be shown
that any continuous function can be approximated arbitrarily well over a finite inter-
val by a polynomial. More to the point, polynomials and their ratios (called rational
functions) are the only functions that can be evaluated directly on a computer. For
this reason polynomials are used not only for interpolation but also as a foundation for
most of the methods in the remaining chapters of the book. Polynomial splines, that is,
piecewise polynomial functions, are a very powerful tool for approximating functions
and are the main object of study in this chapter. In many applications the appearance
of the graph of F(x) is of great importance. For this reason it is very helpful to have
a graphing package for visualization of the approximating functions derived in this
chapter.

82
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For a more thorough treatment of the theory of polynomial interpolation see [15,
Chapters 5 and 6] and for more about approximation theory see [4]. The book [3] is
an excellent introduction to polynomial splines and contains many FORTRAN codes.

3.1 POLYNOMIAL INTERPOLATION

In this section the approximation F(x) is a polynomial and it is traditional to use the
notation PN instead of F. The interpolation problem, formally stated, is as follows.
Given the ordered pairs (xj,fj) for j = 1,2,. . . , N, where each fj = f(xj) for some
probably unknown function f(x),

find a polynomial PN(x) such that PN(xj) = fj, 1 < j < N.

What degree should PN have? A polynomial of degree N - 1,

(3.1)

PN(x) = c1 + c2x + c3x
2 + ··· + cNxN-1,

has N free parameters, the coefficients ck. Since the polynomial must satisfy conditions
at N points xj, called interpolating points or nodes, we might expect to need this
many parameters to satisfy the conditions. In an exercise you are asked to show by
example that if the interpolating polynomial is allowed to be of degree N or higher,
there are many polynomials satisfying the interpolation conditions. It is easy to show
by example that if the degree is less than N - 1, it may not be possible to satisfy all the
conditions. Degree N - 1 is just right; with this degree there is always a solution to the
interpolation problem and only one.

Theorem 3.1. Given N distinct points {xj} there is one and only one polyno-
mial PN (x) of degree less than N that interpolates a given function f(x) at these points.

Proof. We first show that such a polynomial PN(x) exists and then show that it
is unique. Write

the Lagrange form of the interpolating polynomial

(3.2)

where the functions {Lk(x)} are at our disposal and are to be chosen independently of
f(x). If PN(x) is to be a polynomial of degree less than N for any choice of the data
f1,...,fN, then each Lk (x) must also be a polynomial of degree less than N. Further-
more, in order to have PN(xj) = fj for 1 < j < N, again for any choice of the data,
then the Lk(x) must satisfy

This says that the polynomial Lk(x) has zeros at each xj with j   k, and so must
have the form Lk(x) = (x - xj) for some constant C. The condition Lk(xk) = 1
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implies that C =  hence

(3.3)

To show that PN(x) is unique, let QN(x) be another polynomial of degree less than
N that satisfies QN(xj) = fj for 1 < j < N. The difference D(x) = PN(x) - QN(x) is
also a polynomial of degree less than N, and D(xj) = PN(xj) - QN(xj) = fj - fj = 0
for 1 < j < N. This says that D has N distinct zeros. But the Fundamental Theorem of
Algebra states that any polynomial of degree less than N can have at most N - 1 zeros
unless it is identically zero. Accordingly D    0, which is to say that PN  QN and the
interpolating polynomial is unique. n

The polynomial Lk(x) given by (3.3) is called a fundamental interpolating polyno-
mial or shape function. The fundamental interpolating polynomials are of exact degree
N - 1, but the interpolant can be of lower degree. Indeed, it is important to appreciate
that when f(x) is a polynomial of degree less than N, the interpolant must be f(x)
itself. After all, the polynomial f(x) interpolates itself and its degree is less than N, so
by uniqueness, PN(x) = f(x).

Example 3.1. Let f(x) = sinx. Find the P3(x) that interpolates f(x) at the three
points {0, π/2, π}. The corresponding function values are {0, 1, 0}, so

Example 3.2. Let P4(x) interpolate the tabular data

x 1.82 2.50 3.65 4.03
y 0.00 1.30 3.10 2.52

Then the Lagrange form of P4(x) is
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Figure 3.1 Plot of P4(x) for Example 3.2.

The polynomial P4(x) is plotted in Figure 3.1. Figure 3.2 shows plots of the four
fundamental polynomials L1, L2, L3, and L4 associated with these data.

How well does PN approximate f? Will interpolating at more points (increasing
N) improve the approximation? The next theorem helps answer these questions.

Theorem 3.2. Assume that f(x) has N continuous derivatives on an interval I
containing the interpolating points If PN(x) is the polynomial of degree less

than N interpolating f on these data, then for any x in I there is a point in I such
that

the error in polynomial interpolation is

(3.4)

where

(3.5)

and

Proof Clearly the equality is valid for x = xj, 1 < j < N. For x not equal to any
of the interpolating points, define the new function
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Figure 3.2 The four Lagrange polynomials for Example 3.2.

Now G has N continuous derivatives on I and

G(xj) = fj - fj - 0. [f(x) - PN(x)]/wN(x) = 0, 1 < j < N.

Also, G(x) = f(x) - PN(x) - wN(X) [f(x) - PN(x)]/wN(x) = 0, so G has N + 1 distinct
zeros. By Rolle’s theorem (see the appendix), G’ has at least N distinct zeros in I.
Repeating this argument, G” has at least N - 1 distinct zeros in I, and so on, and G(N)

has at least one zero in I. Denoting a zero of G(N) by we find 0 = G(N)

The polynomial PN is of degree
less than N, so its Nth derivative is identically zero. The polynomial wN(t) is of degree
N with leading term tN, so its Nth derivative is N!. These observations show that

which is merely a rearrangement of (3.4).

If the interval I = [a,b] and we let

then two upper bounds for the interpolation error are

A sharper version of this last bound is

(3.6)

(3.7)
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Theorem 3.2 is a classic result about the error of interpolation. Sometimes it can
be used directly. For example, along with the tables of [13] are instructions about
the degree of interpolating polynomial needed to get full tabular accuracy. As a
concrete example, the scaled exponential integral xexp(x ) E1( x ) is tabulated for x =
2.0, 2.1, 2.2,. . . , 10.0 and it is said that degree 4 is appropriate. This is an example of
interpolation for which we can choose the nodes from a set of possibilities. The as-
sertion for the table assumes that the nodes have been chosen in an appropriate way, a
matter to be taken up shortly. For a specific function that can be differentiated readily
and for specific nodes, a bound on the error of interpolation might be obtained from
the theorem. More often in practice we use guidelines that will be deduced below from
the theorem.

Example 3.3. Again consider f(x) = sinx and suppose values are known at the five
points {0.0, 0.2, 0.4, 0.6, 0.8}. Inequality (3.6) can be used to bound the error in ap-
proximating sin 0.28 by P5 (0.28). Since

we have the bound

| sin(0.28) - P5(0.28) | < | 0.28(0.28 - 0.2)(0.28 - 0.4)(0.28 - 0.6)(0.28 - 0.8) | /5!

= 3.7 × 10-6

An actual evaluation shows P5 (0.28) = 0.2763591, while sin0.28 = 0.2763556, so the
exact error is -3.5 × 10-6. n

Theorem 3.2 and the bounds provide insight and guidelines for practical interpo-
lation. The factor wN(x) in the error expression increases near the ends of the data
interval and increases very rapidly as x is taken farther away from [a,b]; the higher
the degree, the more this is true. Because of this the bound (3.6) increases rapidly, but
the sharper equality (3.4) shows that this effect might be lessened for a given f and
given x by a derivative factor that gets smaller. Approximating f(x) by PN(x) outside
the smallest interval I containing the points of interpolation (the nodes) is sometimes
called extrapolation. In general, it is clearly dangerous to extrapolate very far outside
the span of the data, especially when using polynomials of high degree. On the other
hand, wN(x) is relatively small for x in the middle of the nodes. And, of course, be-
cause of continuity, the error must be small close to a node. These two observations
suggest that when possible, it is best to interpolate at nodes centered about the x of
interest and as close to x as possible. This is what was meant earlier when reference
was made to choosing the nodes in an appropriate way.

The plot of w9(x) = (x + 4) (x + 3) ··· (x - 3) (x - 4) on [-4,4] seen in Figure 3.3
shows the qualitative behavior of this factor in the error expression. This function
grows extremely fast outside the span of the nodes and is large toward the ends, but
it is of modest size in the middle (as verified in Exercise 3.7). Figure 3.6 shows a
polynomial interpolant of high degree. Figure 3.7 displays the same data and inter-
polant over a subinterval in the middle of the data. The physical origin of the data and
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Figure 3.3 Plot of w9(x) on the interval [-4,4].

the plot of the data suggest that the underlying f(x) should vary slowly. Clearly the
interpolant P16(x) does not provide a plausible approximation to f(x) over the whole
interval. Nevertheless, in the middle of the range the fit appears to be quite acceptable.
The qualitative behavior seen here for a high degree polynomial interpolant might have
been expected from consideration of the wN(x) factor in the error.

Sometimes we can evaluate a function anywhere we like in an interval, but wish
to approximate it by a simpler function so as to approximate its derivative or integral
or . . . . It is then natural to ask if there is a good choice of nodes for interpolating in the
sense of making

small. The answer is known (e.g., [12, pp. 227-228]). The points

(3.8)

(3.9)

called Chebyshev points, make (3.8) as small as possible. More details about the qual-
ity of this approximation are provided in the next section.

If derivative information is available, we can interpolate it along with the values
of f. There are a great many possibilities and only one, called Hermite interpolation,
will be described. Suppose that in addition to the values fj given at xj for j = 1,. . . , N,
we have the first derivative values f´j With 2N independent values it is reasonable to
try to interpolate with a polynomial of degree 2N - 1. We leave as an exercise the fact
that the fundamental polynomials of degree less than 2N that satisfy
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are given by

(3.10)

Here the Lk(x) are given by (3.3). It is now obvious that the polynomial

satisfies

P(xj) = fj, j = l, . . . , N
P´(xj) = f´j, j = 1,. . . , N.

There is an expression like (3.4) for Hermite interpolation:

where wN(x) is again given by (3.5).
Two cases of Hermite interpolation are of special interest in this book. In the

solution of ordinary differential equations we use fifth degree polynomials (quintics)
to interpolate f and f' at three points. In this chapter we use third degree polynomials
(cubits) to interpolate f and f' at two points. It will be convenient later to express the
Hermite cubic interpolant in a different form. If we write

H(x) = a + b(x - xn) + c(x - xn)
2 + d(x - xn)

3 (3.11)

and require that

H(xn) = fn, H´(xn) = f´n

H(xn+1) = fn+l, H´(xn+1) = f´n+1,

then it is easy to show that for h = xn+1 - xn,

a = fn,b= f´n

c = [3(fn+l - fn)/h - 2f´n - f´n+1] /h

d = [f´n + f´n+1 - 2(fn+l - fn)/h]/h2.

(3.12)

(3.13)

(3.14)

EXERCISES

3.1

3.2

3.3

Is the interpolating polynomial (3.2) always of exact
degree N - l? If not, illustrate by an example.

Suppose that f(x) is a polynomial of degree N - 1 or
less. Prove that if Pn(x) interpolates f(x) at N dis-
tinct points, then PN(x)    f(x). Make up an example

( N > 3) and verify by direct calculation.

For the data

construct P2(x) using (3.2). Find a polynomial Q(X)
of degree 2 that also interpolates these data. Does this
contradict the theory about uniqueness of the interpo-
lating polynomial? Explain.
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3.4 An alternate method for computing PN(x) is to write

PN(x) = cl + c2x + c3x
2 + ··· + cNxN-l .

Then the interpolation conditions, PN(xi) = fi for
1 < i < N, yield a system of N equations in the N
unknowns c1, c2, . . . , cN that can be solved using the
codes Factor/Solve. Unfortunately, there are two dif-
ficulties with this method: (1) it is expensive (N3/3
multiplications), and (2) the coefficient matrix can be
very ill-conditioned.

(a) Implement this algorithm.

(b) Test it on the data in Example 3.5. Use the
same six interpolating values and evaluate (see Exer-
cise 3.5) at the remaining points. What is COND?
How do the answers compare with those in the text
for&(x) computed by another method?

3.5    There arc several ways to evaluate PN(x) = c1 + c2x +
··· + cNxN-1. As a first algorithm we could use

P:= c1

for i = 2, 3, . . . , N begin

P : = P + c i * x i - l

end i.

How many multiplications does this algorithm re-
quire? A better approach is based on the nested form
of PN(x) used in Section 3.3:

c1 + x{ c2 + x[ c3 + x ( c4 + ··· + cNx) ··· ]}.

For example,

3 + 4x - 6x2+ 5x3 = 3 + x[4 + x(-6 + 5x)].

The new algorithm is

P : = c N

for i = N - l, N - 2, . . . , 1 begin

P: = P * x + ci

end i.

Compare the number of multiplications for this algo-
rithm to those for the first one.

3.6 Use the algorithm suggested by Exercise 3.4 to com-
pute P12(w), which interpolates all the data in Exam-
ple 3.5. Plot P12(w) for 5 < w < 100. Does it look
reasonable?

3.7 Verify the plot in Figure 3.3 of w9(x) to see that
it has smallest magnitude near the middle of the
data. Choose xi = -5 + i and evaluate w9(x) at
{±0.5, ±1.5 , . . . ,±4.5, ±5 ±4.5, ±5}.

3.8 Derivatives of f(x) can be estimated by the corre-
sponding derivative of PN(x) for some choice of N and

The usual approach is to try

Since PN(x) has degree at most N - 1, must
be a constant function (i.e., independent of x) .

(a) Use (3.2) to show that

(b) What approximation to f’(x) results when N = 2?

3.9 Verify that the functions given in (3.10) have the fun-
damental interpolation properties claimed.

3.10 Derive equations (3.12)-(3.14). Start with

and then derive and solve the four equations for a, b, c,
and d resulting from the conditions

3.2 MORE ERROR BOUNDS

Far more can be said about the error in polynomial interpolation. In this section some
useful results are discussed and some results are given for the error made in approxi-
mating derivatives by derivatives of an interpolating polynomial.

One way to measure how well PN(x) approximates f(x) on an interval [a, b] is by
the worst error:



3.2 MORE ERROR BOUNDS 91

A fundamental theorem due to Weierstrass (see [4]) states that any function f(x) con-
tinuous on a finite interval [a,b] can be approximated arbitrarily well by a polynomial.
Stated formally, given any ε > 0, there is a polynomial P(X) such that ||f - P|| < ε. It
is plausible that interpolating f at more and more points in [a,b] would lead to a better
and better approximation. The bound (3.7) shows that if MN does not grow too fast as

the interpolants PN approximate f arbitrarily well. Unfortunately, this is not
true for all continuous f. A result due to Faber says that for any given set of nodes

in [a,b], there is a function f(x) continuous on [a,b] such that
the interpolants PN(x) of degree less than N defined by

do not even have ||f - PN|| bounded as Runge’s function

(3.15)

on [-5,5] is a classic example. It seems obvious that interpolating such a smooth
function at more and more equally spaced points should lead to convergence, but it
is found that for even modest N, the interpolants are completely unacceptable (see
Exercise 3.11).

It turns out that if one can interpolate at the good nodes (3.9), interpolation is about
as good a way to approximate f(x) by a low degree polynomial as possible. In fact,
Runge’s function can be quite accurately approximated by a polynomial that interpo-
lates at the Chebyshev points (see Exercise 3.12). In general, there is a polynomial

of degree less than N that is the best approximation to f(x) on [a, b] in the sense

that provides the smallest value of ||f - P|| for all polynomials P of degree
less than N. Let PN(x) interpolate f(x) at the nodes x1,. . . ,xN in [ a,b]. For any x,

Now is a polynomial of degree less than N, so

because Lagrangian interpolation at N points is exact for such polynomials. Using the
fact that PN(xk) = fk, we then find that

and then
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This inequality relates the error of PN to the error of the best possible polynomial
by a factor

which is given in terms of the points of interpolation alone. A simple analytical bound
for the particular nodes (3.9) is found in [17]:

The surprising thing is that the bound is so small for moderate degrees N. For N < 20,
it is less than 4. Thus

for all N < 20. These easily constructed interpolating polynomials are, then, about as
good as possible.

Interpolation is not so effective when the nodes cannot be chosen, and as Faber’s
theorem suggests, high order interpolation can be quite unsatisfactory. It is common in
practice that a high order interpolating polynomial exhibits large amplitude oscillations
even when the data appear to come from a smooth function f(x). Examples are given
in the next section; for extreme examples the reader need only try interpolating the data
in Exercises 3.22, 3.23, and 3.26 by polynomials. For these reasons data are usually
fit with relatively low degree polynomials, and a variety of devices are used to prevent
oscillations. Some of these are studied in Section 3.5.

Polynomial interpolation is a basic tool in numerical analysis. As an example,
derivatives of an interpolant PN(x) to f(x)  can be used to approximate derivatives of
f(n). An argument very similar to that of Theorem 3.2 (see [15, pp. 289-290] for
details) can be used to show that for any r < N

where the points are known to be distinct and to satisfy

The point depends on x and lies in the same interval I as the in Theorem 3.2. It
has been assumed here that xl < x2 < ··· < xN. As a consequence,

(3.16)

as long as xl < x < xN. The Lagrange form of the interpolating polynomial is conve-
nient for deriving formulas for numerical differentiation. To approximate a derivative
of f(x) at a point z, given values fk at points {x1, . . . ,xN}, we simply form the inter-
polant, differentiate it, and evaluate it at x = z:
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Because the coefficients in this expression depend only on the nodes, we have here a
formula that can be used for any f(x). The programs provided with this chapter for the
computation of cubic splines approximate the first derivative at the ends of the range
of nodes in this way. At one end they define a cubic polynomial C(x) interpolating
at the nodes x1,x2,x3,x4 and then approximate f´(x1) by C´(x1), and similarly at the
other end. For closely spaced data, this provides an accurate approximation.

Error bounds like (3.16) can be derived for the Hermite polynomials considered
at the end of the preceding section (see [2] for details). Using the earlier notation,
if f has four continuous derivatives for any x in the interval [ xn ,xn + h], then with

(3.17)

(3.18)

(3.19)

(3.20)

EXERCISES

3.11 Verify that using polynomials interpolating at the N = 3.12
2 m + 1 equally spaced points xj = -5 + 5( j - 1)/m
give poor approximations to Runge’s function f(x) =
l/(1 + x2) on [-5,5].

(a) Compute the maximum value of |f(x) -
P2m+1 (x)| over a large set of x values (not interpolat-
ing points) in [-5,5] form = 7, m = 10, and m = 13.
Are the errors increasing or decreasing as m gets big- 3.13
ger?

(b) Repeat (a) but this time only compute error on
[ -1, 1|. Use the same {xj} and the same three m val- 3.14
ues as in (a). What happens this time as N increases?

Verify that using polynomials interpolating at the
Chebyshev points (3.9) gives good approximations to
Runge’s function (3.15). As in the preceding exer-
cise, compute the maximum value of |f(x) - PN(x)|
over a large set of x values (not interpolating points)
in [-5,5] for N = 15, N = 21, and N = 27. What is
the behavior of the errors as N gets bigger?

Repeat Exercise 3.11b for the function f(x) = |x| on
[-l,l]. The {xj} are now xj = -1 + (j - 1)/m for
j = 1, 2, . . . , 2m + l.

Repeat Exercise 3.12 for the function f(x) = |x| on
[-l,l]. Use N = 21, 41, and 61 this time.

3.3 NEWTON DIVIDED DIFFERENCE FORM

We have repeatedly used the fact that there is exactly one polynomial PN(x) of degree
less than N that assumes given values fj at N distinct points xj. The Lagrange form
(3.2) is just one way to represent this polynomial. As we have seen in the case of
differentiation, it is well suited for many applications because of the simple depen-
dence on the fj. On the other hand, the nodes xj do not appear in a simple way, and
this is inconvenient for some tasks. In particular, it is not convenient when we do not
know in advance what degree is appropriate. This is the most common situation when
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approximating data, so an alternative form due to Newton is preferred for practical
interpolation by polynomials. Polynomial interpolation underlies two kinds of meth-
ods widely used for the numerical solution of ordinary differential equations, Adams
methods and backward differentiation formulas (Gear’s methods). At each step of the
numerical solution of an initial value problem, the codes attempt to find the most ap-
propriate degree for the underlying polynomial interpolant. For this reason such codes
use either the Newton form of the polynomial or a closely related form. Although the
machinery that must be developed for the Newton form may seem formidable at first,
the calculations are easy to learn.

A basic tactic of numerical analysis is to estimate the error in a quantity by com-
paring it to a quantity believed to be more accurate. If PN(x) interpolates at the
nodes {x1, . . . ,xN} and PN+1(x) interpolates at the same nodes plus xN+l, then in suit-
able circumstances the latter is a better approximation to f(x) and f(x) - PN(x) 
PN+1(x) - PN(x). If we do not know what degree is appropriate, this suggests a way
to proceed. Start with the constant polynomial P1(x) = f1 interpolating at x1. Having
computed PN(x), compute PN+l(x) and use it to estimate the error of PN(x). If the esti-
mated error is too big, increase the degree by interpolating at another node and repeat.
This process is the basis of the Newton form of the interpolating polynomial.

For each n, the interpolant Pn(x) is constructed as a “correction” to Pn-l(x). Be-
cause Pn-l(x) is of degree less than n - 1 and Pn(x) is of degree at most n - 1, their
difference must be a polynomial Qn(x) of degree at most n - 1:

Pn(x) = Pn-l(x) + Qn(x). (3.21)

The polynomial Pn(x) interpolates at xl,. . . ,xn-1 just as Pn-1(x) does, so for j =
1, . . . ,n-1,

This implies that the xl,. . . ,xn-l are roots of Qn(x). Because its degree is at most
n - 1, Qn(x) must have the form

Qn(x) = cn(x - xl) (x - x2) ··· (x - xn-l)

for some constant cn. The polynomial Pn(x) also interpolates at xn: fn = Pn(xn) =

Because the nodes are distinct, none
of the factors (xn - xj) can vanish, and

(3.22)

The relations (3.21) and (3.22) along with P1(x1) = f1 provide the Newton form
of the interpolating polynomial. The coefficient cn is called the (n - 1) st divided dif-
ference off over the points x1,. . . ,xn. A number of notations are seen. A common
one is
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the Newton divided difference form is

(3.23)

It is clear from (3.23) that the leading coefficient (the coefficient of the highest
degree term) of PN(x) is f[x 1 , . . . ,xN]. Some authors take this as the definition of the
(N - 1)st divided difference.

Before working some examples we present a theorem that relates an nth order
divided difference to a pair of (n - 1)st order divided differences. The relation leads to
an algorithm for computing the cn that is computationally more convenient than (3.22).

Theorem 3.3. For distinct nodes {xj} and any k > i,

(3.24)

and

Proof Let R1(x) be the polynomial of degree less than k - i that interpolates f(x)

on xi+l, . . . , xk and let R2(x) be the polynomial of degree less than k - i that interpolates
on xi, . . . ,xk-l. The polynomial

(3.25)

has a degree at most one higher than the degrees of R1(x) and R2(x). Accordingly, its
degree is less than k - i + l. For j = i + l, . . ., k - 1,

so S(x) interpolates f(x) on xi+1 , . . . ,xk-l. Moreover, S(xi) = fi and S(xk) = fk. By
Theorem 3.1, S(x) is the interpolating polynomial of degree less than k - i + 1 that
interpolates f(x) on all the data. The result (3.24) simply expresses the fact that the
leading coefficient of the left-hand side of (3.25) equals the leading coefficient of the
right-hand side. n

To illustrate the use of this theorem, we construct a divided difference table. Sup-
pose that three rows and columns of differences have already been computed and writ-
ten in a lower triangular array as follows:
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To add another row corresponding to the node x4, start with the data f [x4] = f4. Then

Notice the pattern in these calculations:

In general, the first column of the divided difference table is xj, the second is fj,
the next is the first divided difference, and so on. The table provides a convenient
device for constructing the required divided differences: the coefficients of the inter-
polating polynomial are the quantities along the diagonal.

Example 3.4. For the data from Example 3.2, first form the difference table:

Then according to (3.23),

P4(x) = 0.0 + 1.91(x - 1.82) - 0.19(x - 1.82)(x - 2.50)

-0.83( x - 1.82)(x - 2.50)(x - 3.65).

For computational efficiency this should be evaluated in the nested form

P4(x) = (x - 1.82){1.91 + x - 2.50)[-0.19 - 0.83(x - 3.65)]}.

Of course, if you expand this out, you should get the same (except for roundoff) as the
Lagrange form. n

There are two parts to an algorithm for calculating the Newton divided differ-
ence form of the interpolating polynomial. The first computes the divided differences
needed for the coefficients of PN(x). It is not necessary to save the whole table as we
can use a vector cj to save the entry in the current row j as long as we compute one
diagonal at a time (and do the calculations in the correct order):



3.3 NEWTON DIVIDED DIFFERENCE FORM 97

cN := fN

for j = N - l, . . . ,l begin

cj = fj

for k = j + l, . . . , N begin

ck := (ck - ck-l) / (xk - xj)

end k

end j.

Once these coefficients are available, the second part of the algorithm is to evaluate
PN(x) for a given x:

PN := cN

for k = N - l, . . . ,l begin

PN := PN * (x - xk) + ck

end k.

Divided differences can be related to the derivatives of f(x) using Theorem 3.2.
Application of the theorem to Pn-l(x) with x = xn leads to

where

min (x1 , . . . ,xn) < < max (x1, . . .  ,xn).

However, we also have

Equating the two expressions shows that

(3.26)

for a point in the span of the data xl,. . . ,xn. With the efficient way of computing
divided differences just presented and (3.26), we have a way to approximate derivatives
of a function f(x) known only from its values at certain points.

This last result gives us a better understanding of the error estimate we used to
motivate the approach. According to Theorem 3.2,

We have just seen that
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Comparison of these two expressions shows that if f(N) does not vary much over the
span of the data, the error of PN(x) can be estimated by comparing it to PN+1(x).
It should be appreciated that the Newton form of the interpolating polynomial was
used to obtain this result, but it is true regardless of the form used for computing the
polynomial.

The Newton form (3.23) is closely related to the Taylor series of f(x) about the
point xl :

As a consequence of (3.26), the Newton form of the interpolating PN(x) becomes the
Taylor polynomial of degree N - 1 when the nodes x2,. . . ,xn all tend to xl.

EXERCISES

3.15 For the data (c) in the Newton divided difference form (3.23).

3.17 Compute the divided difference table and P3(x) for the

calculate P4(x) data from Example 3.1. Verify that this polynomial is

(a) in the Lagrange form (3.2),
the same as the one in Lagrange form.

(b) using the matrix method discussed in Exercise 3.4
(the linear system here is small enough to be solved by
hand), and

(c) in the Newton divided difference form (3.23).

3.16 For the data

calculate P5(x)

(a) in the Lagrange form (3.2),

(b) using the matrix method discussed in Exercise 3.4
(the linear system here is small enough to be solved by
hand), and

3.18 What is the operation count for the evaluation of the
coefficients in the Newton divided difference form of
the interpolating polynomial? What is the operation
count for each evaluation of PN(x)? How does this
compare to the Lagrange form?

3.19 Implement the algorithms for the Newton divided dif-
ference form. See if you can reproduce the graphs in
Figures 3.4 and 3.5. Try your algorithm on some of
the other data sets in the exercises to test the conjec-
ture that high degree polynomial interpolation often
results in approximations whose graphs show unde-
sirable behavior.

3.4 ASSESSING ACCURACY

How do we know when we have a good approximation? We have already seen a
couple of possibilities. One is to use (3.4), that is,
Since wN is a polynomial, it is easily evaluated at any x. The derivative factor presents
problems, however, since we certainly do not know and probably do not even know
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Figure 3.4 P6(x) from Example 3.5.

f(N). Another possibility is to compare the result of interpolating on one set of nodes
to that of a result of higher degree obtained by interpolating on the same set plus one
more node. A variation on this is to compare results of the same degree obtained by
interpolating on different sets of nodes. Often the best approach is to reserve some
data and evaluate the exact error f(x) - PN(x) at these nodes. A realistic appraisal
may require that a lot of data be held in reserve, and it is far from clear how to decide
which nodes to use for interpolation and which to keep in reserve. Usually we have
some idea about the behavior of the underlying function. A graph of the data and
the interpolant is then a great help in deciding whether the interpolant reproduces this
behavior adequately.

It is illuminating to see some examples of polynomial interpolation. The programs
used to calculate the interpolating polynomials below are straightforward implemen-
tations of the Newton divided difference form. We do not provide the codes because
they are easy to write and, as will be seen, interpolating with high degree polynomials
is generally not a good idea.

Example 3.5. The following table of the relative viscosity V of ethanol as function
of the percent of anhydrous solute weight w is taken from [12, p. D-236]:

To see how good or bad P(w) is, some data points will be held in reserve. Specifically,
we define P6(w) as the polynomial interpolating at {10, 20, 40, 60, 80, 100}. The error
of this interpolant is assessed by evaluating it at the remaining nodes where we know
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Figure 3.5 P16(v) from Example 3.6.

the value of the function:

This is probably sufficiently accurate for most purposes. Figure 3.4 shows that P6(x)
provides a fit that looks reasonable. However, if all 12 data points are interpolated, the
resulting P12(x) is not nearly so nice (see Exercise 3.6). n

Example 3.6. As a second example, we consider some data taken from [19, p. 84].
Here v is the reciprocal of the wavelength of light and the function E(v) measures
the relative extinction of light at this frequency due to observation and scattering by
interstellar materials.
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Figure 3.6 P16(v) from Example 3.6 over the interval [3.5,6].

The data points marked (>) were interpolated by P16(v), which is graphed in Fig-
ure 3.5. This is not a good idea! Still, Figure 3.6 shows that the fit is acceptable
in the middle of the span of data. As discussed earlier, we might have expected this
from the form of the error expression. Several values of Pl6 at points held in reserve
are P1 6(0.29) = -108.8, Pl6(1.11) = -28.3, P16(5) = 5.01, P16(8.5) = -5035, and
P 1 6 (9.5)= 60,749. n

3.5 SPLINE INTERPOLATION

The error expression of Theorem 3.2 suggests that raising the degree of the interpo-
lating polynomial will provide a more accurate approximation. Unfortunately, other
factors play a role and this tactic often does not succeed in practice. The expression
suggests another tactic that will succeed. The error depends strongly on the length of
the interval containing the nodes. If we can somehow reduce this length, the theorem
says that we will then get a better approximation. The basic idea of this section is to
approximate f(x) by a polynomial only on a piece of the interval. The approximations
over all the pieces form an interpolant called a spline. (In this book the word spline is
a synonym for piecewise polynomial function.) More specifically, the function f(x) is
to be approximated on [x1, xN]. The interval [x1, xN] is split into subintervals [xn, xn+1],
where x1 < x2 < ··· < xN. A spline is a polynomial on each interval [xn, xn+l]. In this
context the {xi} are called the breakpoints or knots. In the subsections that follow, a
selection of splines that arise from interpolation with constraints are studied. A key
issue is how smoothly the polynomials connect at the knots, and this governs the order
in which they are taken up.
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DISCONTINUOUS AND CONTINUOUS SPLINES

The simplest splines are those arising from interpolation done independently on each
subinterval [xn, xn+l]. The bound (3.7) can be applied to each subinterval. For ex-
ample, suppose that any four nodes are chosen in each subinterval [xn, xn+1]. Let the
spline interpolant S(x) consist of the cubic polynomial interpolants on the subintervals.
If h = max(xn+l - xn) and

then

As h 0, a good approximation is obtained over the whole interval. Evidently the
tactic of fixing the degree and approximating the function on pieces is more promising
for practical interpolation than approximating the function over the whole interval by
means of increasing the degree.

Generally the polynomial on [xn,xn+1] does not agree at xn with the polynomial
on [xn-1,xn ], so this spline is generally discontinuous at the knots. When approximat-
ing a continuous function f(x) this may not be acceptable. It is easy to modify this
construction to obtain a continuous spline. All we need do is include the ends of each
subinterval among the points where f(x) is interpolated. The polynomial on [xn ,xn+1 ] 
then has the value f(xn) at xn and so does the polynomial on [xn-1 ,xn ] .

Only data from [xn-1,xn ] are used in constructing the spline on this subinterval, so
the error depends only on the behavior of f(x) on this subinterval. This will not be the
case for splines taken up later. In some contexts the spline is to be constructed before
all the data are available and this property of the construction is essential.

The simplest continuous spline is one that is piecewise linear, that is, S(x) is a
broken-line function (see Figure 3.7). If S(x) is required to interpolate f(x) at the
knots, then on [xn,xn+1 ] for 1 < n < N - 1 the Lagrange form is

which can be rewritten as

(3.27)

Example 3.7. Given the data (5, 1.226) (30, 2.662) (60, 2.542) (100, 1.201) taken
from Example 3.5, (3.17) yields
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Figure 3.7 A typical linear spline function.

The linear interpolating spline (3.27) is very easy to evaluate once the proper
subinterval has been located. All spline evaluation routines must contain an algorithm
for finding the right subinterval. Often this takes longer than the actual evaluation of
the polynomial there. For linear interpolation, an error bound is

(3.28)

where Convergence is guaranteed as is
bounded. A similar argument using (3.16) yields

(3.29)

Thus, S´(x) can be used as an estimate for f’(x) that gets better as h 0.
Continuous splines are used in the solution by finite elements of boundary value

problems for second order differential equations. The simple program CODE1 in [l]
allows the user to specify the degree of the interpolating polynomial on each element-
the subinterval [xn,xn+1 ]—in the range 1 to 3. The higher the degree, the more accurate
the approximation, but the greater the possibility of unwanted oscillations. This may
not matter when using the spline for finite elements, but it is to be avoided when
representing data. For the latter purpose a good compromise seems to be the use of
cubic polynomials, so in the rest of this section we concentrate on them.

The error of a continuous cubic spline constructed by interpolation independently
on each subinterval can be analyzed using the error expressions developed for polyno-
mial interpolation. On each subinterval

for k = 0, l, .  . . , 3 and suitable constants Ck. It is not so easy to prove and the powers
of h differ, but similar results can be established for all the cubic splines we take up.
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The point, though, is that on each subinterval This implies that for suf-
ficiently small h, P´4(x) has the same sign as f´(x) as long as f´(x)      0. Put differently,
except near the extrema of f(x), for small h the spline is monotonely increasing (de-
creasing) wherever f(x) is. The same argument applies to the second derivative and
leads to the conclusion that except near inflection points of f(x), for small h the spline
is concave (convex) wherever f(x) is. We conclude that for small h, the spline will re-
produce the shape of the function it interpolates. The same will be true of all the cubic
splines we take up. This is one reason why spline interpolation is much more satis-
factory than interpolation by high degree polynomials. But what if h is not “small”?
When the data are sparse, it is necessary to impose conditions on the spline to preserve
the shape of the function, one of the matters we take up in the next subsection.

CONTINUOUS FIRST DERIVATIVE

If we have derivative data available, it is easy to extend the approach of the preceding
subsection to obtain an interpolant with a continuous derivative. For example, we
could interpolate f(xn), f´(x,), f(xn+1), f´(xn+1) by the cubic Hermite interpolating
polynomial on [xn,xn+1 ]. Doing this on each subinterval produces a spline H(x) with
a continuous first derivative. Each interval is treated independently, so the bounds
(3.17)-(3.20) hold and show that a good approximation is obtained. In the chapter on
differential equations, we produce, for successive n, approximations to a function y(x)
and its derivative at the points xn, xn + h/2, and xn + h. By forming the quintic (degree
5) Hermite interpolant to these data, a spline with a continuous derivative is formed
that approximates y(x) and y´(x) for all x. It is especially important in this context that
the interval [xn,xn + h] is handled independently because generally it is only the data
on this interval that are available when interpolation is done.

Let us now consider the representation of data when only f(xi) values are known
and there are not many of them. It has been found that a cubic spline H(x) yields a plot
pleasing to the eye if it has a continuous derivative and if it preserves monotonicity. By
the latter is meant that if fn < fn+1, then H(x) increases on (xn,xn+1 ) and if fn > fn+1,
then H(x) decreases. The point is to avoid oscillations that do not appear in the data.
A moment’s thought shows that linear splines preserve monotonicity. The problem
with them is that their graphs have “corners.” By going to cubits and a continuous
first derivative, we avoid the corners. Such a “shape-preserving” interpolant can be
constructed along the lines of the cubic Hermite interpolant. The cubits on [xn - 1 ,xn]
and [xn,xn+l] both interpolate to fn at xn. If the first derivative is to be continuous, the
first derivatives of the two cubits must have the same value at xn, but now the value of
this derivative is an unknown parameter that we choose to achieve monotonicity.

As in (3.11) the cubic is written in the form

for xn < x < xn+1, 1 < n < N - 1. Note that the parameter bn is just the slope of
H(x) at the point xn. Proceeding as in the derivation of (3.12)–(3.14) with the notation
hn = xn+l - xn and = (fn+ 1 - fn) /hn yields

an = fn
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(3.30)

These equations result from solving the three interpolation conditions H(xn) = fn,
H(xn+l) = fn+1, and H´(xn+l) = bn+l for the three unknowns an, cn, and dn.

The quantity A, is the slope of the line through (x n , f n ) and (xn+1, fn+1). If    = 0,
it seems reasonable to force H(x) to be constant on [xn ,xn + 1], that is, to make the slopes
bn = bn+1 = 0. If         0, let us define αn = bn/     and βn = bn+1      To preserve
monotonicity it is necessary that the sign of the slope of H(x) at xn and xn+l be the
same as that of      Mathematically this is αn > 0, βn > 0.

A sufficient condition on α and β to preserve monotonicity was found by Ferguson
and Miller [7]. This was independently discovered by Fritsch and Carlson and pub-
lished in the more accessible reference [10]. The argument involves studying H’(x)
as a function of αn and βn. This is not too complicated since H’(x) is a quadratic on
(xn ,xn+l ). A simple condition that guarantees monotonicity is preserved is that αn

and βn lie in the interval [0,3]. There are many formulas for α n and βn that satisfy this
restriction. One given in [9] that works pretty well is to use

with

(3.3 1)

(3.32)

for n = 2, 3, . . . , N - 1. If then the slopes change sign at xn. In such
a case we probably should not impose any requirements on the slope of H(x) at xn.
Some people suggest setting bn = 0 when this happens. Others say to go ahead and
use (3.31) as long as there is no division by zero. The heuristic actually chosen can
have a significant impact on the behavior of the shape-preserving cubic spline near
those regions where At the ends the simplest rule is to use b1 =    and
bN = A better choice is to use the end slope of the quadratic interpolating
the three closest data points (assuming it satisfies the constraint on a and β); other
possibilities are given in [9]. With (3.31) and the simple choice for b1 and bN it is easy
to show that the sufficient conditions on αn and βn are satisfied. At the ends α1 = 1
and βN-1 = l, which are certainly in [0,3]. For n = 2, 3, . . . , N - 1,
so αn = and

as desired.
The algorithm for H(x) is very simple. Compute b1 by whatever formula you

choose; for n = 2, 3, . . . , N - 1 take bn = 0 if otherwise compute bn from
(3.31), (3.32). Compute bN. The values cn and dn can be computed from (3.30) for
n = l, . . . , N - 1 either at the same time the bn are computed or in a separate pass
over the data. Later in this chapter we provide a routine SVALUE/Spline_value for the
evaluation of H(x).

Examination of the algorithm shows that on the subinterval [xn ,xn + 1 ], the spline
depends on the data (xn-1, fn-1) , (xn, fn)  (xn+l, fn+l) and (xn+2, fn+2). It should
be no surprise that it depends on data from adjacent subintervals because the first
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Figure 3.8 Data from Exercise 3.30 interpolated by the polynomial P8.

derivatives of the polynomials in adjacent subintervals have to match at the nodes.
Although not as local as the cubic splines of the preceding subsection, the construction
of the shape-preserving spline on a subinterval requires only data from the subinterval
itself and the two adjacent subintervals. As might be expected this H(x) works very
well on data that are always monotone but is less successful on oscillatory data. See
Huynh [14] for some alternatives.

This spline is not very accurate as h = max(xn+l - xn) tends to zero, but that is
not its purpose. It should be used when the data are “sparse” and qualitative properties
of the data are to be reproduced. It is a simple and effective automatic French curve.

Example 3.8. Exercise 3.30 describes a situation in which a shape-preserving spline
is particularly appropriate for the approximation of a function f(C). There are only
eight data points and it is necessary to approximate the derivative f´(C). The concen-
tration C and diffusion coefficient D(C) that make up the function f(C) = CD(C) to
be approximated are nonnegative. As can be seen in Figure 3.8, a polynomial inter-
polant to f(C) is unsatisfactory because it fails to reproduce this fundamental property.
Also, it does not reproduce the monotonicity of the data, casting doubt on its use for
approximating f´(C). The shape-preserving spline requires the monotonicity of the
interpolant to match that of the data; Figure 3.9 shows that the result is a much more
plausible fit. n

CONTINUOUS SECOND DERIVATIVE

The last spline considered has a historical origin. To draw smooth curves through data
points, drafters once used thin flexible strips of plastic or wood called splines. The
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Figure 3.9 Data from Exercise 3.30 interpolated by the shape-preserving spline.

data were plotted on graph paper and a spline was held on the paper with weights so
that it went over the data points. The weights were constructed so that the spline was
free to slip. The flexible spline straightened out as much as it could subject to the
constraint that it pass over the data points. The drafter then traced along the spline
to get the interpolating curve. The smooth cubic spline presented here is the solution
of a linearized model of the physical spline. The physical analogy already points out
something very different about this spline—its value at any point depends on all the
data.

To construct the smooth cubic spline, we write once again

(3.33)

on each [xn,xn+1], 1 < n < N - 1. There are 4(N - 1) free parameters to be determined.
The interpolation conditions require that for 1 < n < N - 1

(3.34)

giving 2N - 2 conditions. There remain 2N - 2 degrees of freedom that can be used
to make S(x) smooth on all of [x1 ,xN]. Note that (3.34) automatically ensures that S is
continuous on [x l ,xN]. For S´ to be continuous at interior knots,

(3.35)

This provides N - 2 conditions, so N degrees of freedom remain. For S´´ to be contin-
uous at interior knots,

(3.36)

for another N - 2 conditions. Exactly 2 degrees of freedom are left. This is not enough
to achieve a continuous S”’ (this is undesirable anyway since the resulting S would
be a cubic polynomial rather than a piecewise cubic polynomial). There are many
possibilities for the two additional constraints.
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Figure 3.10 Graphs of S(x) and S´´(X) from Example 3.9.

Type 1. S´(x1) = f´(x1),S´(xN) = f´(xN).

Type 2. S´´(x1) = S´´(xN) = 0.

Type 3. S´´(x1) = f´´´(xl),S´´(xN) = f´´´(xN).

Type 4. S´´(x1) = S´(xN),S´´(x1) = S´´(xN).

For obvious reasons these conditions are known as end conditions. The second condi-
tion is the one leading to a spline that approximates the physical spline. The physical
spline straightens out as much as possible past the last data point on each end, so it be-
comes a straight line with zero second derivative. In the form stated, the first and third
conditions are useful only if extra information is available about f. However, the exact
slopes or curvatures needed here are often replaced by polynomial approximations in
practice. The last end condition is appropriate when f is periodic with period xN-x1

because then f(x) and all its derivatives have the same values at x1 and xN.

Example 3.9. Let

It is easily verified that S is in C2[0,2], and satisfies the interpolation conditions S(0) =
2, S(1) = 1, S(2) = 4 and the end conditions S´(0) = 1, S´(2) = 13. Graphs of S and
S´´ are shown in Figure 3.10. Note that the graph of S appears very smooth, while that
for S´´ has an obvious corner at the knot x = 1. n

Returning to the earlier characterization of S(x), we had 4N - 4 conditions on the
4 N - 4 unknowns given by (3.33). A matrix method is in order, but some preliminary
manipulations will simplify the task considerably. On each interval [xn,xn+1 ]

(3.37)
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(3.38)

The interpolation conditions immediately yield, from (3.33),

an = fn, 1 < n < N - 1, (3.39)

and also fn+1 = an + bnhn + cnh
2

n + dnh
3

n which can be rewritten as

bn = (fn+l - fn)/hn - cnhn-dnh
2

n, 1 < n < N -1. (3.40)

This eliminates half of the unknowns. The continuity condition (3.36) on S´´ says that
2cn = 2cn-l + 6dn-1hn-1 or [with cN = S´´(xN)/2]

(3.41)

Only formulas for c1, . . . , cN remain. They are provided by the two end conditions
and the global continuity of S´. From (3.35) and (3.37) it follows that bn = bn-1 +
2cn-1hn-l + 3dn-1h

2
n-1 for 2 < n < N - 1. Substitution in (3.40) and (3.41) gives

for 2 < n < N - 1 and a rearrangement yields

(3.42)

Only the first type of end conditions (prescribed slopes) is taken up here. From (3.33),
(3.40), and (3.41),

so

2h lc1  + h1c2  = 3 {(f 2  -  f 1)/h1 - f´(x1)}.

Similarly, f´(xN) = S´(xN) leads to

(3.43)

(344)

Equations (3.41)–(3.44) provide a set of N equations in the N unknowns c1, c2, . . ., cN.
The coefficient matrix has the very special structure
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Such a matrix is called tridiagonal (all the nonzero entries lie in three diagonal bands),
symmetric (the entry in row i of column j equals the one in row j of column i ), and
diagonally dominant (in each column the magnitude of the entry on the main diagonal
exceeds the sum of the magnitudes of the other entries in the column). We saw in
Section 2.5.2 that for such matrices the system has a unique solution for each right-
hand side and the solution can be found accurately using Gaussian elimination without
any row interchanges.

Theorem 3.4. Given the knots x1 < x2 < ··· < xN and fn = f(xn), 1 < n < N,
there exists one and only one function S(x) that satisfies each of the following:

1. S(x) is a cubic polynomial in each [xn,xn+1], 1 < n < N - 1.

2. S(x) is in C2[x1 ,xN].

3. S(xn) = fn, 1 < n < N.

4. S´(x1) = f´(x1),S´(xN) = f´(xN).

For this choice of end conditions, S(x) is called the complete cubic spline. The
coefficient matrix has the same structure for end conditions of types (2) and (3) and
similar results are true for them. With the choice of type (2), S(x) is called the natural
cubic spline. The matrix has a somewhat different form for the periodic end conditions,
type (4), but similar results are true and the spline can be computed conveniently.

Because the smooth cubic spline depends on all the data, a system of linear equa-
tions must be solved to construct it. Often large data sets are to be fit, and if the
solution of the linear equations were anything like as expensive as for a general sys-
tem, the approach would be impractical. Fortunately, the system is very special and
it is practical to interpolate data involving thousands of nodes. First the tridiagonal
system (3.42)–(3.44) must be solved. Since it is not necessary to do row interchanges
in this case, the elimination formulas are very simple. For reinforcement, let us work
through the details.

To eliminate the first entry in row 2, multiply row 1 by and subtract. The re-
maining equations have the same pattern, so at the kth stage multiply row k by the
current and subtract from row k + 1. The algorithm for elimination and modifi-
cation of the right-hand side is

for k = 2, 3, . . . , N begin

end k.
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Back substitution is also easy:

The whole computation costs only 3N – 3 multiplications and 2N – 1 divisions. Once
the c vector is known, vector d can be computed from (3.41), and vector b from (3.40).
The storage required is a small multiple of N rather than the N* needed for a general
system of equations.

We finish this section by discussing some of the mathematical properties of the
complete cubic interpolator spline S(x). The physical spline used by drafters can be
modeled using the theory of thin beams. In general, the curvature K(X) of a function
f(x) is

and in this theory the expression is linearized to K(x) |f"(x)|. When (S'(x))2 << 1,
the quantity can be regarded as a measure of the curvature of the spline
S(x). We prove now that in this measure, any smooth interpolating function satisfying
the type (1) end conditions must have a curvature at least as large as that of S(x). This
is sometimes referred to as the minimum curvature property of the complete cubic
spline. The same result is true for the natural cubic spline when the requirement that
the interpolant satisfy the type (1) end conditions is dropped.

Theorem 3.5. If g is any C2[x1,xN] function that interpolates f over {XI, . . . .
x N} and satisfies the type (1) end conditions, then

where S(x) is the complete cubic interpolator spline. The same inequality holds for
g that do not necessarily satisfy the type (1) end conditions when S(x) is the natural
cubic interpolator spline.

Proof First observe that

If it can be shown that the second integral on the right is zero, then

since the integral of a nonnegative function is always nonnegative, and we are finished.
To establish that the desired integral is zero, note that
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and two integrations by parts give

Since S is a cubic on each [xn,xn+l ], it follows that S(4) 0, so the last integral is zero.
Also, (g – S) = (fn+l - fn+l ) - (fn - fn) = 0 since both g and S interpolate f.
Thus,

which telescopes to (g' – S')S"|xn – (g' – S')S"|x1, and the type (1) end conditions
force these terms to vanish. The terms vanish without assuming that g satisfies type
(1) end conditions when S(x) is the natural cubic spline because it satisfies the end
conditions S" (xl) = S" (xn) = 0 . n

While the minimum curvature property is nearly always desirable, there are cir-
cumstances in which it is a disadvantage. Note that f certainly interpolates itself, so
Theorem 3.5 implies In examples where f has very large
curvature, there can be a considerable discrepancy between S and f unless there are
enough knots (data points) in the region of large curvature that S can turn sufficiently
fast. Several illustrative examples are given in the next section.

Convergence rates analogous to (3.17)-(3.20) for the Hermite cubic spline can be
established in the complete cubic case. However, proofs are more difficult because
S(x) is determined by all the data and it is not possible to treat each subinterval inde-
pendently. The following result is from [1 1].

Theorem 3.6. If f is in and S(x) is the complete cubic interpolatory
spline for f with knots {xl < . . .< xN}, then for any x in [x1 ,xN]

where M4 = max

In contrast to polynomial interpolation, S(x) does converge to f(x) as N as
long as h 0. The first and second derivatives of the spline also converge to the
corresponding derivatives of f. Because of this, the spline inherits the shape of f
when h is small. For example, at a point t where f'(t) > 0, convergence implies that
for all sufficiently small h, S’(t) >0. Accordingly, the smooth spline inherits the
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monotonicity of f for small h, except possibly near the extrema of f. The shape-
preserving spline is required only when the data are so sparse that we must impose
directly the property of monotonicity on the spline. The same argument shows that for
small h, the smooth spline is convex where f is, except possibly near inflection points.

The complete cubic spline will converge when f has fewer than four continuous
derivatives on [a,b], just not as fast. Experimentation with a physical spline shows
that the farther a node xk is from a given point t, the less the effect of the value of fk

on S(t). This is also true of the mathematical spline, and a careful analysis, see [16],
of convergence reveals that the rate of convergence at t depends only on how smooth
f(x) is near t. In particular, the convergence rates of the theorem hold on subintervals
of [a,b] where f has four continuous derivatives.

In practice, it is usually impossible to use the conclusions of Theorem 3.6 to esti-
mate errors, given only discrete data, since M4 is not available. As was suggested for
polynomial interpolation, it is wise to reserve some data as a check on the approxima-
tion. A graph of S can help in making judgments about the quality of the fit.

ROUTINES FOR CUBIC SPLINE INTERPOLATION

Two routines are provided for the calculation of the complete cubic interpolatory spline
S. One, SPCOEF in FORTRAN, Spline_coeff in C, sets up the tridiagonal system
(3.42)–(3.44) for {ci}, 1 solves it, and computes {di} and {bi} from (3.41) and (3.40).
This routine should be called only once for a given set of data. The coefficients output
from this routine are then used in the evaluation routine, SVALUE in FORTRAN,
Spline-value in C. It is called once for each point t where S(t) is to be evaluated. A
routine to compute the coefficients defining the shape-preserving interpolant is quite
useful. It can be written easily by modifying SPCOEF or Spline_coeff so as to use the
formulas of Section 3.5.2. Proceeding in this way, SVALUE or Spline_value can be
used for the evaluation of both kinds of spline.

Instead of using the slopes f´(x1) and f´(xN) needed for the end conditions of the
complete cubic spline, the routines provided interpolate the four data points nearest
each end with cubits, and the slopes of these approximations are used in (3.43) and
(3.44). As h 0, the resulting spline converges to the complete cubic spline. In prac-
tice this approximation works well enough if N is not too small. The approximation
is not plausible for Example 3.8 because there are only eight data points, all of which
are used to approximate the derivatives at the end as well as the function through-
out the interval. When the data are this sparse, the shape-preserving spline is more
appropriate.

A typical call in FORTRAN is

CALL SPCOEF (N, X, F, B, C, D, FLAG)

and

flag = Spline_coeff(n, x, f, b, c, d);

in the C and C++ versions. The input vectors X and F hold the data points (xi,fi)
to be interpolated and N is the number of such points. The output vectors B, C, and
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D contain the coefficients of the cubits. In normal circumstances the output variable
FLAG is set to zero. However, if the input N < 2, then no calculations are performed
and FLAG := - 1. If the entries of X are not correctly ordered (so that some hj < 0),
then FLAG := -2.

To evaluate the spline the FORTRAN version SVALUE first finds an index i such
that xi < t < xi+1 and then the ith cubic is evaluated to get S(t). A typical call in FOR-
TRAN is

CALL SVALUE (N, X, F, B, C, D, T, INTERV, S, FLAG)

and

flag = Spline_value(n, x, f, b, c, d, t, interval, s);

in the C++ version. The last two parameters are output, so their addresses must explic-
itly be passed in C:

flag = Spline-value(n, x, f, b, c, d, t, &interval, &s);

As usual, arrays in the C and C++ versions are indexed starting at 0 rather than 1 as
is typical of FORTRAN. The parameters N, X, F, B, C, and D have the same meaning
for SPCOEF and Spline_coeff. The last three are input quantities that must have been
set by a prior call to SPCOEF or Spline_coeff. The variable T holds the point where
the evaluation is to be made and the answer comes back in S. If the index i satisfying
xi < T < xi+1 is known, this can be input using the variable INTERV or interval, as
the case may be. However, it is not necessary to do this since the code will calculate
the correct value and assign it to INTERV or interval. The normal value of FLAG (the
return value in the C version) is zero. When N < 2, FLAG is returned with the value
- 1. If T < x1, then FLAG is set to 1, and the cubic for [x1 ,x2] is used for S. If T > xN,
then FLAG is set to 2, and the cubic for [xN-1, xN] is used for S.

Example 3.1O. A sample driver is provided to interpolate sinx over { 0, 0.2, 0.4, 0.6,
0.8 } ; the resulting S(x) is then tabulated at { 0.1, 0.3, 0.5, 0.7, 0.9 } to yield the
following.

Note that only one call is made to SPCOEF or Spline_coeff even though the spline is
evaluated at five points. Why is FLAG = 2 in the last line? n

Example 3.11. A graph of the spline S(v) interpolating the 16 indicated data points
from Example 3.6 appears in Figure 3.11. It is a dramatically better approximation
than the polynomial of high degree appearing in Figure 3.2. Values of S at some of
the reserved data points are S(0.29) = -2.88, S(1.11) = -1.57, S(5) = 5.50, S(8.5) =
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Figure 3.11 S(v) from Example 3.11.

7.41, and S(9.5) = 9.74. They are in good agreement with the actual values. n

Example 3.12. Observed values for the thrust (T) versus time (t) curve of a model
rocket are

t I > 0 . 0 0 >0.05 > 0 . 1 0 >0.15 > 0 . 2 0 0.25 > 0 . 3 0
T 0.0 1.0 5.0 15.0 33.5 38.0 33.0
t 0.35 > 0 . 4 0 0.45 > 0 . 5 0 0.55 > 0 . 6 0 0.65
T 21.5 16.5 16.0 16.0 16.0 16.0 16.0
t > 0 . 7 0 0.75 > 0 . 8 0 >0.85 > 0 . 9 0 > 0 . 9 5 > 1 . 0 0
T 16.0 16.0 16.0 16.0 6.0 2.0 0.0

The 15 values indicated by (>) were used as data. The resulting complete cubic spline
S(x) is graphed in Figure 3.12. Note that the large curvatures near t = 0.40 and t = 0.85
are difficult to handle. Values of S at some reserved data points are S(0.25) = 39.1,
S(0.35) = 23.6, and S(0.65) = 16.1. n

3.20 Derive equation (3.44) from the end condition f'(xn) = S'(xn).

3.21 If the end conditions S"(x1) = f“(x1) and S"(xN) = f"(xN) are used, what equa-
tions should replace (3.43) and (3.44)?

3.22 The vapor pressure P of water (in bars) as a function of temperature T (0 C ) is
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Figure 3.12 S(t) from Example 3.12.

T o 10 20 30
P(T) 0.006107 0.012277 0.023378 0.042433

T 40 50 60 70
P(T) 0.073774 0.12338 0.19924 0.31166

T 80 90 100
P(T) 0.47364 0.70112 1.01325

3.23

Interpolate these data with the cubic spline S(x). It is also known that P(5)=
0.008721, P(45) = 0.095848, and P(95) = 0.84528. How well does S(x) do at
these points?

The following data give the absorbance of light (A) as a function of wavelength
(λ) for vanadyl D-tartrate dimer.

λ >3125 >3250 3375 > 3 5 0 0 3625
Α(λ)

>3750
0.700 0.572 0.400 0.382 0.449 0.560

λ 3875 >4000 4125 >4250 4375
Α(λ) 0.769 0.836 0.750 0.530 0.315

λ >4500 4625 >4750 4875 > 5 0 0 0
Α(λ) o.170 0.144 0.183 0.252 0.350

Use the cubic spline S(x) to interpolate the nine indicated (>) data points. Explore
the effects of scaling and shifting the independent variable (x = wavelength) with
each of the following.

(a) The data as is.

(b) Replace x by x/ 1000 for all inputs.

(c) Replace x by (x – 4000)/ 1000 for all inputs.

For each case evaluate S(x) at the remaining noninterpolated wavelengths. How
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3.24

3.25

3.26

3.27

3.28

well do these values compare with the known absorbances? Does shifting and/or
scaling affect the accuracy of S(X)?

Repeat Exercise 3.23 except use P9(x) instead of S(X). Use the method suggested
in Exercise 3.4. What effect does the scaling have on COND?

The absorption of sound (at 20°C, 40% humidity) as a function of frequency, f, is

Use the cubic spline S(X) to interpolate the nine indicated (>) points in the fol-
lowing two ways.

(a) The data as is.

(b) log f versus logA(f)

Which seems to be better?

The following table gives values for a property of titanium as a function of tem-
perature T.

Compute and plot the cubic spline S(T) for these data (use about 15 interpolating
points). How well does it do?

In performing potentiometric titrations one obtains a potential difference curve
plotted against volume of titrant added. The following table gives the measure-
ments for the potentiometric titration of Fe2+ solution with 0.1095N Ce4+ solu-
tion using platinum and calomel electrodes.

Compute the cubic spline S(X) for these data (use about 15 interpolating points).
Graph S(x) or x in [20, 24]. How well does it behave? The physical problem has
exactly one inflection point. Is this true for S(X)?

The potential energy of two or more interacting molecules is called van der Waal’s
interaction energy. A theoretical calculation for two interacting helium atoms has
the set of energies V(r) for various values of the internuclear distance r given
below. The energy exhibits repulsion (V > 0) for small r and attraction (V < 0)
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for larger values of r.

Compute the cubic spline S(x) using about 12 interpolating points. How well does
it work?

3.29 Modify the routine SVALUE or Spline_value to return S´(x) and S´´(X) as well as

S(x).
3.30 In [5] a method is given for deducing the diffusion coefficient D for chloroform in

polystyrene from uptake measurements. Using several assumptions, they arrive at
the quantity

which can be measured for a number of C0 values. A differentiation with respect
to C0 gives an expression for D in terms of the quantity

Using the data

approximate D for each C0 value by differentiating the appropriate spline fit.

3.31 Show that the cubic spline S(X) has a critical point z in [xn ,xn+1], that is, S´(z) = 0,
if and only if the following are true:

Why is it not sufficient merely to use (i) and the test bnbn+1 = S´(xn)S´(xn+1) < 0?

3.32 Show that the cubic spline S(X) has an inflection point z in (xn,xn+1), that is,
S´´(z) = 0, if and only if cncn+1 < 0, in which case z = xn - cn /(3dn).

3.33 Use the formula in Exercise 3.31 to find all local minima for the data in Exer-
cise 3.23.

3.34 Use the formula in Exercise 3.31 to find the local maximum (near T = 905) for
the data in Exercise 3.26.
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Figure 3.13 Scattered data in the plane.

3.35 For the data in Exercise 3.28 the global minimum at r = re corresponds to stable
equilibrium (V’ = 0). There is also an inflection point (where V´´ = 0) at r = ri.
What does S(x) yield for re and ri? Are the answers reasonable?

3.36 Use the formulas in Exercises 3.31 and 3.32 to find the local maximum (near
v = 4.5) and all inflection points for the data in Example 3.5.

3.6 INTERPOLATION IN THE PLANE

In this section a few of the ideas involved in interpolating functions of several variables
are taken up. Although the ideas of the case of one variable generalize, there are new
difficulties arising from geometrical considerations. To be specific, only the case of
two independent variables will be considered.

Suppose we have values fi given at distinct points pi for i = 1,. . . , N in a region    
in the x-y plane (see Figure 3.13), and we seek a polynomial in the two variables x and
y that interpolates the data. This is easily accomplished in a way similar to Lagrangian
interpolation. If p = (x,y) is a general point in      an interpolating polynomial is given

by

provided that
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and each φi is a polynomial in x and y. It is easy to verify that

satisfies the requirements. Thus, it is easy to construct a polynomial in two variables,

which interpolates given values at any set of distinct points in the plane.
The interpolating polynomial given is not closely analogous to that for one vari-

able because the degree is much higher than the number of nodes. Unfortunately, the
facts are simply different when there is more than one independent variable. This can
be seen by considering a general quadratic polynomial in two variables (x, y):

P(x, y) = a0 + a1x + a2y + a3x
2 + a4xy + a5y

2.

There are six parameters ai. The analog of the result for one variable would be that
there is a unique polynomial interpolating at six distinct points (xi,yi) in the plane. For
each node the interpolation condition is

Interpolation at six nodes provides six linear equations for the six parameters. Suppose
that five of the nodes are {(0,0),(1,0),(0,-1),(-1,0),(0,1)} and the sixth is ( α,β) .
In the equation corresponding to each of the first five nodes, the coefficient of a4 is
zero. It is also zero in the sixth equation if α = 0 or if β = 0. For any node ( α,β)
of this kind, the system amounts to six equations in only five unknowns. The system
may or may not have a solution, but if there is a solution, it cannot be unique because
a4 can have any value. In several dimensions the placement of the nodes has a role in
questions of existence and uniqueness that we did not see in one dimension.

If we had a choice about the points of interpolation, we might like to work on a
rectangular grid. By this is meant there are n x-coordinates, x1 < x2 < ··· < xn, and
m y-coordinates, y1 < y2 < ··· < ym and the n × m points of interpolation consist of
the pairs (xi ,yj) for 1 < i < n, 1 < j < m; see Figure 3.14. In this special, but quite
useful, case, the fundamental polynomials or shape functions are easily constructed
from the functions in one variable. Recalling (3.3), let

Then an interpolant Q(x,y) such that

(3.45)
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Figure 3.14 Data on a rectangular grid (n = 4, m = 5).

is given by

(3.46)

If Q(x,y) is multiplied out, it clearly has the form

(3.47)

We now show that the coefficients ast are uniquely determined by the interpolation
conditions (3.45). Choose any i with 1 < i < n and consider the polynomial in the one
variable y:

We know that there is exactly one polynomial

that interpolates the values fij at yj for j = 1,. . . , m. Because Q(xi,y) does this, it must
be that
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This equation holds for each i. Now choose a t with 0 < t < m. There is exactly one
polynomial

such that

R(xi) = bit for i = l, . . . ,n.

Because the polynomial

does this, it must be the case that cst = ast for 0 < s < n and for any 0 < t < m. Thus the
coefficients ast are uniquely determined by the interpolation coefficients as we wanted
to show.

As a simple example, let us consider interpolation at the four comers of a rectan-
gle: (x1,yl) (xl,y2), (x2 ,y1) (x2 ,y2).

(3.48)

Figure 3.15 displays a typical interpolant for n = 4 and m = 3.
Interpolants constructed in this way are called tensor product interpolants. The

example (3.48) is said to be a bilinear interpolant over a rectangle because it has the
form

a00 + a10x + a01y + a11xy, (3.49)

that is, it is linear in each variable when the other is held fixed. The general first degree
polynomial has the form (3.49) with a11 = 0. A biquadratic has the form

while the general second degree polynomial has here a21 = a22 = a12 = 0. General-
izations to bicubic versus cubic and higher degrees should be clear.

In studying how well a function of two variables is approximated by a particular
kind of interpolating polynomial, a critical matter is the highest degree for which the
approximation is exact. For example, in the rectangle of Figure 3.16, we can inter-
polate at the nine indicated points using a biquadratic. However, it is exact only for
second degree polynomials in spite of the presence of the higher degree terms x2y, yx2,
and x2y2. In fact only six interpolating points are needed to construct a quadratic inter-
polating polynomial that is exact to second degree. It is not at all clear how to choose
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Figure 3.15 A typical bilinear interpolating function.

the six points symmetrically from the rectangular grid. Because of this, biquadratics
or bicubics are generally used for interpolation on rectangular grids.

Just as in the case of one variable, piecewise polynomial interpolation may provide
more satisfactory interpolants than a polynomial interpolant over the whole region. If
the region can be broken up into rectangles, tensor product interpolants can be used
on each piece. In the case of one variable, two pieces connect at a single point, but
in the plane they connect along a line, and more than one piece can touch at a point.
In contrast to the ease with which the polynomial pieces could be connected smoothly
in the case of one variable, it is hard to get much smoothness where polynomials in
several variables are joined.

Figure 3.16 Interpolation points for biquadratics.
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Figure 3.17 Two triangulations for the data in Figure 3.13.

In piecewise polynomial interpolation the idea is to work with regions for which
interpolants are readily constructed and to decompose the region of interest into re-
gions of this kind. A popular alternative to rectangles is triangles. For example, one
might triangulate the region of Figure 3.13 in the two ways sketched in Figure 3.17. As
a rule it is best to avoid the “skinny” triangles of the second possibility, and routines
for triangulating regions generally try to avoid nearly degenerate triangles. It is not
hard to write down the shape functions for linear interpolation on the general triangle
of Figure 3.18. They are

where

and A is the area of the triangle. Then the linear function that has given values at the
comers

is

fi given at (xi,yi), i = 1,2,3,

Note that on this triangle Q has the form

Q(x,y) = a + bx + cy (3.50)

for some a, b, and C. See Figure 3.19 for an illustration of piecewise linear interpolation
on a triangular grid.
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Figure 3.18 A general triangle.

Figure 3.19 Linear interpolation on a triangular grid.

In finite element analysis one tries to determine a piecewise polynomial approx-
imation to the solution of an ordinary or partial differential equation. Polynomial
approximations over subregions prove to be very convenient in computation. Also,
representing solutions in the Lagrangian, or nodal, form

is convenient because the fi are approximate solution values at the nodes (xi ,yi ). One
difficulty is that rectangles or triangles are too restrictive. A way to accommodate
subregions with curved sides is to transform the region to a “standard,” “reference,”
or “master” region. For example, we might choose to work with a standard triangle
such as the one given in Figure 3.20. Suppose we want to represent a function f ( x , y)
on a region If it is known how to map the region onto the standard triangle, then
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Figure 3.20 Mapping from the standard triangle.

interpolation can be done. Let T be a mapping such that

and as ranges over the standard triangle, the values (x,y) range over       Then
f(x,y) for (x,y) in    has

and we can simply interpolate    over the triangle. Of course, the mapping must be a
proper one, meaning that as ranges over the triangle, the (x,y) cover all of
and there is no overlap [different go into different (x,y)]. A nice idea used for
finite elements is to construct the mapping by interpolation, too. As an example, let us
construct the mapping from the standard triangle to the general triangle of Figure 3.20.
The shape functions for the standard triangle are obviously

when we let

node 1 be (1,0)
node 2 be (0,1)
node 3 be (0,0)

because, for example,
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Interpolating x we have

and, similarly,

In this particular case the mapping carries straight lines into straight lines and there
is no difficulty about a proper mapping. If higher degree interpolation were used, the
triangle would be mapped into a region with curved sides. Roughly speaking, if the
region is not too different from a triangle, the mapping will be proper. Continuing
with the example, suppose we interpolate the fi by the same basis functions used to
construct the mapping. The interpolant Q(x,y) is

If we were to solve the relation to get the inverse mapping

and eliminate and η in this interpolant, we would get the expression earlier for the
bilinear interpolant. This seems a complicated way to get a simple result. The virtue of
the procedure is that interpolation is done on regions with curved boundaries by trans-
forming them to a simple, standard region for which interpolation is comparatively
easy. In finite element computations it is found that the process is easily programmed
and very powerful. All we aim to do here is sketch the process. For details the reader
may consult one of the great many books devoted to finite elements. The books span a
great range of mathematical sophistication; a good introduction is [1].

EXERCISES

3.37 The formula (3.48) could be called a Lagrange form 3.38 Show that Q(x,y), which is a quadratic polynomial in
of the bilinear interpolating polynomial; consider the x and y [generalizing (3.50)], has six coefficients. On a
“Newton form” triangle, its interpolating points are usually chosen to

be the three triangle vertices and the three edge mid-
points. For the triangle with vertices (0,0), (1,0), and

Solve for a, b, c, and d so that Q interpolates a (0,l) compute the shape function that is one at (0,0)
function f(x,y) at the four corners. As in (3.48) let and zero at the remaining five interpolating points.
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3.7 CASE STUDY 3

This case study has two parts, one applying continuous splines and the other, smooth
splines. Integrals of the form

with finite a and b are called finite Fourier integrals. For large ω such integrals present
special difficulties for numerical methods because of the rapid oscillation of the inte-
grand. Filon’s method [8] for approximating finite Fourier integrals will be developed
here by means of a continuous spline. Accurate evaluation of the coefficients of the
method was discussed in Chapter 1. Other aspects of the task will be discussed in
Chapter 5. The second part of the case study takes up the use of smooth splines for
fitting data with curves instead of functions.

Broadly speaking, Filon approximates finite Fourier integrals in a manner like that
used in Chapter 5 for integrals of the form

when w(x) presents some difficulty. Namely, first approximate f(x) with a convenient
function S(x) and then compute analytically

as an approximation to the desired integral. In detail there are important differences
because here the weight function w(x) does not have one sign and oscillates rapidly
for large frequencies ω. Also, the approach of Chapter 5 would apply to particular
ω, and we would like a method that can be applied conveniently for any ω. Insight
is provided by a classic technique of applied mathematics for approximating Fourier
integrals when w is “large.” If derivatives of f(x) are available, asymptotic approxi-
mations can be obtained by means of integration by parts. For example, integrating by
parts twice gives

where

If M1 is a bound on the magnitude of f´(x), then

that is, R(ω) is 0(ω−2) as        Accordingly, the asymptotic approximation
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is accurate to 0(ω-2). However, the integral itself ordinarily goes to zero like ω - 1 ,
so the relative error is ordinarily only 0( ω-1). The situation is typical of classical
asymptotic approximation of integrals. The bigger w is, the better the asymptotic ap-
proximation and the more difficult the integral is for conventional numerical methods.
On the other hand, for a given w, the asymptotic approximation may not be sufficiently
accurate and there is no easy way to improve it. When w is “small,” finite Fourier inte-
grals are easy for conventional numerical methods, and when w is “large,” asymptotic
approximations are satisfactory. Filon’s method provides a way to compute accurate
integrals when w is of moderate size.

Filon divides the interval [a,b] into 2N subintervals of equal length h. Let us define
xj = a + jh for j = 0, . . . ,2N. The function f(x) is approximated by a continuous spline
S(x) that is a quadratic polynomial on each [x 2 m , x m + 2 ] defined there by interpolation
to f(xj) for j = 2m, 2m + 1,2m + 2. Each of the integrals in the approximation

can be evaluated analytically by integration by parts. A lengthy calculation results in
Filon’s method:

Here θ = ωh and

Also,

There is a similar approximation when cosine is replaced by sine. The formula is

The coefficients α, β, γ are the same, and Se and So are like Ce and Co with the cosines
replaced by sines.

Using the results developed in this chapter for the error of interpolation, it is easy
to bound the error of Filon’s method. On each subinterval [x 2 m , x 2 m + 2 ], S(x) is a
quadratic interpolant to f(x). If M3 is a bound on the third derivative of f(x) on
all of [a,b], we found that
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uniformly for a < x < b. Then

This is a bound on the absolute error that depends on f(x) and the sampling interval
h, but not on ω. If we want a meaningful result for “large” ω, we have to take into
account that the integral is 0(ω-l). This leads to a bound on the relative error that is
0 ( θ- 1 h 4 ) .

In a subsection of Chapter 5 about applying a general-purpose code to problems
with oscillatory integrands, the example

is discussed. The function f(x) = l/(1 + x2) ought to be approximated well by a
quadratic interpolatory spline with a relatively crude mesh, so Filon’s method ought
to be quite effective. A matter not usually discussed with Filon’s method is how to
estimate the accuracy of the result. One way to proceed is to compute a result that we
believe to be more accurate and estimate the error of the less accurate result by com-
parison. If the accuracy is acceptable, often the more accurate result is the one taken as
the answer. Inspection of the formulas shows that if h, or equivalently θ, is halved, we
can reuse all the evaluations of f, sin(x), and cos(x) made in the first approximation
to keep down the cost. According to the bounds, the error should be reduced enough
by halving h to get a good estimate of the error by comparison. Using Filon’s method
with θ = 0.4, we obtained an approximate integral of 0.04566373122996. Halving θ
resulted in the approximation 0.04566373690838. Estimating the accuracy by com-
parison suggests that we have an answer with an error smaller than 6 × 10-9. Reuse
of the function evaluations by virtue of halving θ holds the cost to 315 evaluations
of the integrand. The quadrature code Adapt developed in Chapter 5 asks the user
to specify the accuracy desired. Using the code in the manner outlined in that chap-
ter and experimenting some with the error tolerances, we obtained an approximation
0.04566373866324 with an estimated error of about -1.6 × 10-9. This cost 1022
evaluations of the integrand.

Let us now change the subject from applying a continuous spline to applying a
smooth spline. In this chapter we have been looking at the approximation of functions
y = f(x), but sometimes we want to approximate curves. This will be discussed in
the plane for it will then be clear how to deal with a curve in three dimensions. The
basic idea is to use a parametric representation (x(s),y(s)) for the curve and approx-
imate independently the coordinate functions x(s) and y(s). The parameter s can be
anything, but often in the theory it is taken to be arc length. Having chosen somehow
nodes si, i = l, . . . , N, we can interpolate the data xi = x(si) by a spline Sx(s) and like-
wise the data yi = y(si) by a spline Sy(s). The curve (x(s),y(s)) is then approximated
by (Sx(s),Sy(s)). This yields a curve in the plane that passes through all the points
(x(si),y(si)) in order. It is natural to use the smooth cubic spline of SPCOEF because
it leads to a curve with continuous curvature, but if the data are sparse, we might have
to resort to the shape-preserving spline to get a curve of the expected shape. All these
computations are familiar except for the selection of the nodes si. One way to proceed
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Figure 3.21 Curve fit for a sewing machine pattern.

is to choose them so that the parameter s approximates the arc length of the curve.
This is done by taking s1 = 0 and defining the difference between si and si+1 as the
distance between the points (xi,yi ) and (xi+1,yi+l ), namely

Exercise 3.39 suggests an alternative. See Farin [6] for many other approaches.
An interesting example of the technique is furnished by a need to approximate

curves for automatic control of sewing machines. Arc length is the natural parameter
because a constant increment in arc length corresponds to a constant stitch length.
An example taken from [18] fits the data (2.5, -2.5), (3.5, -0.5), (5, 2), (7.5, 4),
(9.5, 4.5), (11.8, 3.5), (13, 0.5), (11.5, -2), (9, -3), (6, -3.3), (2.5, -2.5), (0, 0),
(-1.5, 2), (-3, 5), (-3.5, 9), (-2, 11), (0, 11.5), (2, 11), (3.5, 9), (3, 5), (1.5, 2),
(0, 0), (-2.5, -2.5), (-6, -3.3), (-9, -3), (-11.5, -2), (-13, 0.5), (-11.8, 3.5),
(-9.5, 4.5), (-7.5, 4), (-5, 2), (-3.5, -0.5), (-2.5, -2.5). The resulting spline curve
is seen in Figure 3.21. n
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MISCELLANEOUS EXERCISES FOR CHAPTER 3

3.39 As mentioned in the case study, there are other ways to select the nodes when
fitting data with curves. A simple one is

t1 = 0

ti+l = ti + |xi+l - xi| + |yi+l - yi| 1 < i < N.

Using this scheme and SPCOEF or Spline_coeff, fit the data
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Using SVALUE or Spline_value, evaluate at sufficiently many points to sketch a
smooth curve in the xy plane.

3.40 Find a technique that gives a good fit to the model rocket data from Example 3.11.
Interpolate the indicated (>) data and avoid undesirable oscillations.

3.41 Implement the shape-preserving cubic spline described in Section 3.5. Test it out
on some of the data sets from this chapter, for example, Exercises 3.22, 3.25,
and 3.27. Sketch the graph of H(x). Also try it on the nonmonotone data in
Example 3.11, Exercise 3.26, and Exercise 3.28. How well does it do?

3.42 Implement the bilinear interpolating function Q(x,y) given in (3.48). Test it on
several different functions and several different grids.

3.43 Implement the linear interpolating function Q(n,y) given in (3.50). Test it on
several different functions and several different triangulations.



CHAPTER 4

ROOTS OF NONLINEAR EQUATIONS

Finding solutions of a system of nonlinear equations

f(x) = 0 (4.1)

is a computational task that occurs frequently both on its own and as a part of a more
complicated problem. Most of this chapter is devoted to the case of a continuous real
function f(x) of a single real variable x because it is important and can be discussed
in elementary terms. The general case of n nonlinear equations in n unknowns is
much more difficult both in theory and practice. Although the theory is too involved
to be developed here, some of the basic methods are discussed briefly at the end of the
chapter.

A root of (4.l), or a zero of f(x), is a number a such that f(α) = 0. A root is
described more fully by its multiplicity m. This means that for x near α, f(x) can be
written in the form

f(x) = (x  -  α) mg(x) (4.2)

where g(x) is continuous near α and g(α)     0. If m = 1, the root is said to be simple
and otherwise, multiple. The basic definition permits m to be a fraction. For example,
with the function

equation (4.1) has α = 1 as a root of multiplicity l/2 (and α = 0 as a simple root).
However, if f(x) is sufficiently smooth, then m must be a positive integer. Indeed, if
f(x) has its first m derivatives continuous on an interval that includes a and

(4.3)

then a is a root of multiplicity m. This is seen by expanding f(x) in a Taylor series
about a to obtain

134
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where lies between x and α. Using (4.3), this simplifies to

(4.4)

If we take g(x) =  then g(α) = We shall always as-
sume that f(x) is sufficiently smooth near a that we can use (4.4) instead of the basic
definition (4.2) and in particular, that roots are of integer multiplicity.

According to the definition of a root α, the graph of f(x) touches the x axis at α
(Figure 4.1). For a root of multiplicity m, the function f(m) (x) does not change sign
near a because it is continuous and f(m) (α) 0. This observation and the expression
(4.4) show that if m is even, f(x) is tangent to the x axis at α but does not cross there
and that if m is odd, f(x) crosses the axis at a.

A family of problems taken up in Case Study 4 has the form 0 = f(x) = F(x) - γ
for a parameter γ > 0. Specifically, F(x) = xexp(-x) and a representative value of γ
is 0.07. Curve sketching as in an introductory calculus course is often used to locate
roots and determine their multiplicity. For this family, as and as

It is seen from the first derivative, f´(x) = (1 - x) exp (-x), that
f is strictly increasing for x < 1 and strictly decreasing for x > 1. At the extremum,
f(1) = e-l - γ is positive for γ = 0.07. Also, f(0) = −γ is negative. These facts
and the continuity of f tell us that when γ = 0.07, there are exactly two roots that
are simple, One is in (0,l) and the other is greater than 1. In general, for a root of
f(x) to be multiple, f’(x) must vanish at the root. So, wherever the function is strictly
increasing or strictly decreasing, any root it might have must be simple. For the family
of functions, the fact that f´(x) = 0 only at x = 1 means that this is the only point
where the function might have a multiple root. It is easily seen that there is a multiple
root only when γ = e-l and the root then is of multiplicity 2 (a double root).

An approximate root z that results in a computed value f(z) = 0 is not unusual,
especially when it approximates a multiple root a. After all, the aim is to find a z that
makes f(z) vanish. When the root is of multiplicity m, f(z)   ( z - α)mg( α). Some
numbers will help us to understand this. For a root of high multiplicity like m = 10, an
approximation of modest accuracy like z = α + 10-4 leads to f(z) = 10-40g (α). Then
if |g(α)| < 1, the function f(z) underflows in IEEE single precision arithmetic.

As we shall see, standard methods are not as effective for multiple roots as they
are for simple roots. To understand the performance of codes based on these methods,
it is necessary to appreciate that roots that are close together “look” like multiple roots.
Suppose that f(x) has the two simple roots α1 α2. The basic definition and a little
argument show that f(x) = (x - α1) (x - α2)G(x) for a G(x) that does not vanish at
either root. This expression can be rewritten as

For x far from the roots in the sense that |x - α1| >> |α2 - α1|, the pair of simple roots
“looks” like a double root because
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Figure 4.1 f(x) = tanx for 0 < x < 10.

A concept from the theory of complex variables related to that of a root of multi-
plicity m is a pole of multiplicity m. If we can write

where G(α) 0, then we say that a is a pole of F(x) of multiplicity m. It is easy to
see that if α is a root of f(x)  of multiplicity m, then it is a pole of F(x) = l/ f(x) of
the same multiplicity, and vice versa. A familiar example is tan(x ) = sin(x)/cos(x),
plotted in Figure 4.1. This function has a root where sin(x) vanishes and a pole where
cos(x) vanishes. Functions change sign at poles of odd multiplicity, just as they do at
roots of odd multiplicity.

One difficulty in computing a root of f(x) = 0 is deciding when an approximation
z is good enough. The residual f(z) seems an obvious way to assess the quality of an
approximate root. MATHCAD does exactly this. It accepts z as a root when |f(z)| <
TOL, with TOL = 10-3 by default. The trouble with a residual test is that there is
no obvious measure of scale. Multiple roots present difficulties because the function
is nearly flat in a considerable interval about the root. The issue is related to the
conditioning of a root, but also to the way we set up the equation.

When we formulate a problem, we select a scaling. This may be no more than
choosing a system of units, but often we use the fact that any zero of f(x) is a zero of
F(x) = g(x) f(x). Introducing a scaling g(x) can make quite a difference. For instance,
the two problems sin(x) = 0 and F(x) = 10-38 sin(x) = 0 are mathematically equiva-
lent, but the second is badly scaled because forming F(z) for even a moderately good
approximate root z will result in underflow in single precision IEEE arithmetic. Often
we scale problems without giving any special thought to the matter, but a good scale
can be quite helpful. It is quite a useful device for dealing with real or apparent singu-
larities. The function f(x) = sin(x)/x is perfectly well behaved at x = 0 (it is analytic),
but it has an apparent singularity there and some care is needed in its evaluation. This
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Figure 4.2 Graphical interpretation of roots.

can be circumvented by calculating the roots of the scaled function F(x) = xf (x). It
must be kept in mind that as with this example, F(x) has all the roots of f(x), but it
might pick up additional roots from g(x). A more substantial example is furnished by
an equation to be solved in an exercise:

This function has a simple pole at all the points where cos(x) = cos(π/10) and an
apparent singularity at x = 0. Scaling this function with g(x) =
makes computing the roots more straightforward.

Sometimes a natural measure of scale is supplied by a coefficient in the equation.
An example is provided by the family of problems f(x) = F(x) - γ with γ > 0. Just
as when solving linear equations, the residual r = f(z) = F(z) - γ can be used in a
backward error analysis. Obviously z is the exact solution of the problem 0 = F(x) - γ´ ,
where γ´ = γ + r. If |r| is small compared to |γ|, then z is the exact solution of a problem
close to the given problem. For such problems we have a reasonable way to specify
how small the residual ought to be.

4.1 BISECTION, NEWTON’S METHOD, AND THE SECANT RULE

If a continuous function f(x) has opposite signs at points x = B and x = C, then it has
at least one zero in the interval with endpoints B and C. The method of bisection (or
binary search) is based on this fact. If f(B) f (C) < 0, the function f(x) is evaluated
at the midpoint M = (B + C)/2 of the interval. If f(M) = 0, a zero has been found.
Otherwise, either f(B) f (M) < 0 or f(M) f (C) < 0. In the first case there is at least
one zero between M and B, as in Figure 4.2, and in the second case there is at least one
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zero between C and M. In this way an interval containing a root is found that has half
the length of the original interval. The procedure is repeated until a root is located to
whatever accuracy is desired.

In algorithmic form we have the

bisection method:

until |B - C| is sufficiently small or f(M) = 0 begin

M := (B + C)/2
if f(B)f(M) < 0 then

C := M

else

B := M

end until.

Example 4.1. When f(x) = x2 - 2, the equation (4.1) has the simple root
For B = 0, C = 6, the bisection method produces [note: 0.16 (+01) means 0.16 × 101]

Note the erratic behavior of the error, although the interval width |B - C| is halved at
each step. n

Bisection is often presented in programming books in this manner because it is a
numerical algorithm that is both simple and useful. A more penetrating study of the
method will make some points important to understanding many methods for comput-
ing zeros, points that we require as we develop an algorithm that attempts to get the
best from several methods.

An interval [B,C] with f(B) f(C) < 0 is called a bracket. A graphical interpretation
tells us somewhat more than just that f(x) has a root in the interval. Zeros of even
multiplicity between B and C do not cause a sign change and zeros of odd multiplicity
do. If there were an even number of zeros of odd multiplicity between B and C, the
sign changes would cancel out and f would have the same sign at both ends. Thus, if
f(B) f(C) < 0, there must be an odd number of zeros of odd multiplicity and possibly
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some zeros of even multiplicity between B and C. If we agree to count the number of
zeros according to their multiplicity (i.e., a zero of multiplicity m counts as m zeros),
then we see that there are an odd number of zeros between B and C.

A careful implementation of bisection takes into account a number of matters
raised in Chapter 1. There is a test for values off that are exactly zero; the test for a
change of sign is not programmed as a test of f(B) f(C) < 0 because of the potential
for underflow of the product; and the midpoint is computed as M = B + (B - C)/2
because it is just as easy to compute and more accurate than M = (B + C)/2.

We often try to find an approximate root z for which f(z) is as small as possible.
In attempting this, the finite word length of the computer must be taken into account
and so must the details of the procedure for evaluating f. Eventually even the sign
of the computed value may be incorrect. This is what is meant by limiting precision.
Figure 1.2 shows the erratic size and sign of function values when the values are so
small that the discrete nature of the floating point number system becomes important.
If a computed function value has the wrong sign because the argument is very close
to a root, it may happen that the bracket selected in bisection does not contain a root.
Even so, the approximations computed thereafter will stay in the neighborhood of the
root. It is usually said that a bisection code will produce an interval [B,C] of specified
length that contains a root because f(B) f(C) < 0. This is superficial. It should be
qualified by saying that either this is true, or a root has been found that is as accurate
as the precision allows. The qualification “as accurate as the precision allows” means
here that either the computed f(z) vanishes, or that one of the computed values f(B),
f(C) has the wrong sign.

A basic assumption of the bisection method is that f(x) is continuous. It should be
no surprise that the method can fail when this is not the case. Because a bisection code
pays no attention to the values of the function, it cannot tell the difference between a
pole of odd multiplicity and a root of odd multiplicity [unless it attempts to evaluate
f(x) exactly at a pole and there is an overflow]. So, for example, if a bisection code is
given the function tan(x) and asked to find the root in [5,7], it will have no difficulty.
If asked to find the root in [4,7], it will not realize there is a root in the interval because
the sign change due to the simple pole cancels out the sign change due to the simple
root. And, what is worse, if asked to find a root in [4,5], it will locate a pole or cause
an overflow. We see here another reason for scaling: removing odd order poles by
scaling removes the sign changes that might cause bisection to locate a pole rather
than a zero. Here this is done by F(x) = cos(x) tan(x) = sin(x). One of the examples
of scaling given earlier is a less trivial illustration of the point. Because of the very real
possibility of computing a pole of odd multiplicity, it is prudent when using a bisection
code to inspect the residual f(z) of an alleged root z-it would be highly embarrassing
to claim that z results in a very small value of f(z) when it actually results in a very
large value!

A bisection code can converge to a pole because it makes no use of the value
f(M), just its sign. Because of this its rate of convergence is the same whether the root
is simple or not and whether the function is smooth or not. Other methods converge
much faster when the root is simple and the function is smooth, but they do not work
so well when this is not the case.

Bisection has a number of virtues. Provided an initial bracket can be found, it will
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converge no matter how large the initial interval known to contain a root. It is easy
to decide reliably when the approximation is good enough. It converges reasonably
fast and the rate of convergence is independent of the multiplicity of the root and the
smoothness of the function. The method deals well with limiting precision.

Bisection also has some drawbacks. If there are an even number of zeros between
B and C, it will not realize that there are any zeros at all because there is no sign
change. In particular, it is not possible to find a zero of even multiplicity except by
accident. It can be fooled by poles. A major disadvantage is that for simple zeros,
which seem to be the most common by far, there are methods that converge much
more rapidly. There is no way to be confident of calculating a particular root nor of
getting all the roots. This is troublesome with all the methods, but some are (much)
better at computing the root closest to a guessed value. Bisection does not generalize
to functions of a complex variable nor easily to functions of several variables.

Let us now take up two methods that are superior to bisection in some, although
not all, of these respects. Both approximate f(x) by a straight line L(x) and then
approximate a root of f(x) = 0 by a root of L(x) = 0.

Newton’s method (Figure 4.3) will be familiar from calculus. It takes L(x) as the
line tangent to f(x) at the latest approximation xi and the next approximation (iterate)
is the root xi+1 of L(x) = 0. Equivalently, approximating f(x) by the linear terms of a
Taylor’s series about xi,

suggests solving

for its root xi+1 to approximate α [assuming that f´(xi) 0]. The resulting method is
known as

Newton's method:

(4.5)

When it is inconvenient or expensive to evaluate f´(x), a related procedure called
the secant rule is preferred because it uses only values of f(x). Let L(x) be the secant
line that interpolates f(x) at the two approximations xi-1,xi:

The next approximation xi+1 is taken to be the root of L(x) = 0. Hence, assuming that
f(xi) f(xi-l), we have the

secant rule:

(4.6)
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Figure 4.3 Newton’s method.

The method is illustrated graphically in Figure 4.4. Although a picture furnishes a nat-
ural motivation for the method, an alternative approach is to approximate the derivative
in Newton’s method (4.5) by a difference quotient to get (4.6).

A little analysis shows that Newton’s method and the secant rule converge much
faster than bisection for a simple root of (4.1). Considering first Newton’s method, we
have from (4.5)

If xi is near α, then

Now f(α) = 0 and f´(α) for a simple root, so

It is seen that if xi is near a simple root, the error in xi+1 is roughly a constant multiple
of the square of the error in xi. This is called quadratic convergence.

A similar look at the secant rule (4.6) leads to

(4.7)
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Figure 4.4 Secant rule.

This method does not converge as fast as Newton’s method, but it is much faster than
bisection. For both methods it can be shown that if the starting values are sufficiently
close to a simple root and f(x) is sufficiently smooth, the iterates will converge to that
root. For Newton’s method,

and for the secant rule,

A careful treatment of the secant rule even shows that

where p =

Example 4.2. As in Example 4.1, let f(x) = x2 - 2. An easy calculation shows that
for the secant rule started with x1 = 3 and x2 = 2,
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and for Newton’s method started with x1 = 3,

Both methods converge quite rapidly and the quadratic convergence of Newton’s method
is apparent. Comparison with the bisection method of Example 4.1 shows the superi-
ority of the secant rule and Newton’s method (for this problem). n

If an iteration is such that

the method is said to converge at rate r with constant γ. It has been argued that for a
simple root, Newton’s method converges at the rate r = 2 and it has been stated that
the secant rule converges at the rate r = p 1.618. Bisection does not fit into this
framework; the width of the bracketing intervals are being halved at every step, but
nothing can be said about

(see Example 4.1).
The secant rule is a principal part of the code Zero developed in this chapter, so

we now state conditions that guarantee its convergence to a simple root of (4.1) and
study how fast it converges. As a first step we derive an expression that relates the
function values at three successive iterates xi-l, xi, xi+1. Let L(x) be the polynomial
of degree 1 interpolating f(x) on the set {xi,xi-1 }. The iterate xi+1 is the zero of L(x).
In Chapter 3 we developed an expression for the error of interpolation [see (3.4)],
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which in this case is

or, since L( xi+1) = 0,

(4.8)

for a suitable (unknown) point Some manipulation of equation (4.6) gives the two
relations

(4.9)

(4.10)

A third relation is obtained from the mean value theorem for derivatives:

(4.11)

where ζ, a point between xi and xi-l, is unknown. Combining equations (4.8)–(4.1l),
we arrive at

Let us assume that on an appropriate interval we have

(4.12)

and that we are computing a simple zero a. (Why must it be simple with these hy-
potheses?) Then these bounds and the expression above for f(xi+1) imply that

If we let

this inequality leads to

Supposing that
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it is easy to argue by induction that

where

The formal proof is left as an exercise. Since

we see that for i large,

In any event, and since 0 < ε < 1, we must have which is
what we wanted to prove. Let us now state a formal theorem and complete the details
of its proof.

Theorem 4.1. The secant rule defined by (4.6) with initial guesses x0, x1 con-
verges to a simple zero α of f(x) if x0, x1 lie in a sufficiently small closed interval
containing α on which f´(x), f´´(x) exist and are continuous and f’(x) does not van-
ish.

Proof. Without loss of generality we assume that M2 defined by (4.10) is posi-
tive. Otherwise f´´(x) = 0 near a, implying that f(x) is a linear function and the secant
rule converges in one step. With the assumptions on f´ and f´´, the bounds m1, m2,
and M2 are well defined. Using the mean value theorem for derivatives, we see that

This implies that the quantity ε defined above is less than 1 if x0 and x1 are sufficiently
close to α. The argument above shows that

But
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Hence,

This says that The argument suggests that the rate of convergence is the golden
mean stated earlier. n

Methods that converge at a rate r > 1 are said to be superlinearly convergent. We
have seen that this is the case for Newton’s method and the secant rule when computing
a simple root. Unfortunately it is not the case when computing a multiple root. It is
easy enough to see this for Newton’s method. If xi is near a root α of multiplicity
m > 1, then

This implies that

This expression shows that for a root of multiplicity m, Newton’s method is only lin-
early convergent with constant (m - 1)/m.

An example from Wilkinson [11] illustrates several difficulties that can arise in
the practical application of Newton’s method.

Example 4.3. Consider the problem

x20 - l = 0.

In attempting to compute the simple root α = 1 using Newton’s method, suppose we
start with x0 = 1/2. Then from (4.5)

because the tangent is nearly horizontal. Thus, a reasonably good guess for a root leads
to a much worse approximation. Also, notice that if xi is much larger than 1, then

To the same degree of approximation,

which says that we creep back to the root at 1 at a rate considerably slower than
bisection. What is happening here is that the roots of this equation are the roots of
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unity. The 20 simple roots lie on a circle of radius 1 in the complex plane. The roots
are well separated, but when “seen” from as far away as 26000, they appear to form a
root of multiplicity 20, as argued earlier in this chapter. Newton’s method converges
linearly with constant 19/20 to a root of multiplicity 20, and that is exactly what is
observed when the iterates are far from the roots.

Much is made of the quadratic convergence of Newton’s method, but it is quadrat-
ically convergent only for simple roots. Even for simple roots, this example shows
that quadratic convergence is observed only when “sufficiently” close to a root. And,
of course, when “too” close to a root, finite precision arithmetic affects the rate of
convergence. n

Let us now consider the behavior of Newton’s method and the secant rule at lim-
iting precision. Figure 1.2 shows an interval of machine-representable numbers about
α on which computed values of the function vary erratically in sign and magnitude.
These represent the smallest values the computed f(x) can assume when formed in the
working precision, and quite frequently they have no digits in agreement with the true
f(x). For a simple root, |f´(α)| is not zero, and if the root is not ill-conditioned, the
derivative is not small. As a consequence, the computed value of the first derivative
ordinarily has a few digits that are correct. It then follows that the correction to xi

computed by Newton’s method is very small at limiting precision and the next iterate
stays near the root even if it moves away because f(xi) has the wrong sign. This is like
bisection and is what is meant by the term “stable at limiting precision.” The secant
rule behaves differently. The correction to the current iterate,

has unpredictable values at limiting precision. Clearly it is possible that the next iterate
lie far outside the interval of limiting precision.

There is another way to look at the secant rule that is illuminating. One approach
to finding a root α of f(x) is to interpolate several values yi = f(xi) by a polyno-
mial P(x) and then approximate α by a root of this polynomial. The secant rule is
the case of linear interpolation. Higher order interpolation provides a more accurate
approximation to f(x), so it is plausible that it would lead to a scheme with a higher
rate of convergence. This turns out to be true, although only the increase from lin-
ear to quadratic interpolation might be thought worth the trouble. The scheme based
on quadratic interpolation is called Muller’s method. Muller’s method is a little more
trouble than the secant rule, because it involves computing the roots of a quadratic, and
it converges somewhat faster. There are some practical differences. For all methods
based on interpolation by a polynomial of degree higher than 1, there is a question of
which root to take as the next iterate xi+1. To get convergence, the root closest to xi

should be used. An important difference between Muller’s method and the secant rule
is due to the possibility of a real quadratic polynomial having complex roots. Even
with real iterates and a real function, Muller’s method might produce a complex iter-
ate. If complex roots are interesting, this is a virtue, but if only real roots are desired,
it is a defect. The secant rule can be used to compute complex roots, but it will not
leave the real line spontaneously like Muller’s method. The MATHCAD documentation
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points out that its code, which is based on the secant rule, can be used to compute the
roots of a complex-valued function by starting with a guess that is complex.

An alternative to direct interpolation is inverse interpolation. This approach is
based on interpolating the inverse function f--1(y) of y = f(x). To prevent confusion
with the reciprocal of f(x), the inverse function will be denoted here by G(y). We
assume that we have at our disposal only a procedure for evaluating f(x). However,
each value f(xi) = yi provides a value of the inverse function because by definition
xi = G(yi). Finding a root of f(x) corresponds to evaluating the inverse function: a
root α satisfies f(α) = 0, hence α = G(0). This is a familiar task that we solve in a
familiar way. We are able to evaluate a function G(y) at certain points yi and we wish
to approximate the value G(0). This is done by approximating G(y) with a polynomial
interpolant P(y) and then evaluating P(0) a. Of course, it is easy to interpolate
G(y) by whatever degree polynomial we want. However, as with direct interpolation,
most of the improvement to the rate of convergence is gained on going to quadratic
interpolation. An interesting fact left to an exercise is that the method derived from
linear inverse interpolation is the same as that derived from linear direct interpolation,
namely the secant rule. Examination of Figure 4.4 helps in understanding this. On the
other hand, quadratic direct and inverse interpolation are quite different. For one thing,
quadratic inverse interpolation cannot produce a complex iterate when the function and
the previous iterates are real.

Inverse interpolation is attractive because of its simplicity. Unfortunately, there is
a fundamental difficulty—f might not have an inverse on the interval of interest. This
is familiar from the trigonometric functions. For instance, the function y = sin(x) does
not have an inverse for all x. To invert the relationship with x = arcsin(y) the argument
x is restricted to an interval on which sin(x) is monotone. In a plot like Figure 4.2, the
inverse of f is found by “turning the picture on its side.” Only on an interval where
f(x) is monotone does the inverse function exist as a single-valued function. At a
simple root a, f´(a) 0, so there is an interval containing a on which
is monotone] and G(y) exists. So, the usual kind of result is obtained. If we can start
close enough to a simple root, there is an inverse function and we can compute the
root with inverse interpolation. When some distance from a root or when the root is
multiple, there may be serious difficulties with inverse interpolation because then the
function does not have an inverse on the relevant interval.

With the exception of bisection, the methods we have studied are guaranteed to
converge only when sufficiently close to a zero of a function that is sufficiently smooth.
This is rather unsatisfactory when we have no idea about where the roots are. On the
other hand, often we are interested in the root closest to a specific value. It is by no
means certain that the methods will converge from this value to the nearest root since
that depends on just how close the value is to the root, but it is a useful characteristic of
the methods. In contrast, if the initial bracket given a bisection code contains several
roots, the code might locate any one of them. The technique of continuation is useful
when it is hard to find a starting guess good enough to get convergence to a particular
root, or to any root. Many problems depend on a parameter λ and it may be that zeros
can be computed easily for some values of the parameter. The family x exp(-x) - γ = 0
is an example. Solutions are desired for values γ > 0, but it is obvious that a = 0
is a root when γ = 0. It is generally the case, although not always, that the roots



4.1 BISECTION, NEWTON’S METHOD, AND THE SECANT RULE 149

α(λ) depend continuously on λ. The idea of continuation is to solve a sequence of
problems for values of λ ranging from one for which the problem is solved easily to
the desired value of the parameter. This may not be just an artifice; you may actually
want solutions for a range of parameter values. Roots obtained with a value λ  ́ are
used as guesses for the next value λ´´. If the next value is not too different, the guesses
will be good enough to obtain convergence. In the case of the example, the smallest
positive root is desired, so starting with α(0) = 0 should result in the desired root α(λ).
When there is no obvious parameter in f(x) = 0, one can be introduced artificially. A
common embedding of the problem in a family is 0 = F (x,λ) = f(x) + (λ - 1) f(x0).
By construction, x0 is a root of this equation for λ = 0 and the original equation is
obtained for λ = 1. Another embedding is 0 = F( x,λ) = λf(x) + (1 - λ) (x - x0),
which is also to be started with the root x0 for λ = 0 and a sequence of problems
solved for λ increasing to 1.

A virtue of bisection is that it is easy to decide when an approximate root is good
enough. The convergence of Newton’s method, the secant rule, quadratic inverse in-
terpolation, and the like cannot be judged in this way. Many codes use the size of the
residual for this purpose, but this is hazardous for reasons already studied. Superlinear
convergence provides another way to decide convergence. When the iterate xi is suffi-
ciently close to a root α, superlinear convergence implies that the next iterate is much
closer, Because of this, the error of xi can be approximated by

This is computationally convenient for if the estimated error is too large, xi+1 is avail-
able for another iteration. In the case of Newton’s method, this estimate of the error
i s

This estimate might be described as a natural scaling of the residual f (xi). If xi passes
a convergence test based on superlinear convergence, it is assumed that xi+1 is a rather
better approximation to α, so why not use it as the answer? Reporting xi+1 as the
answer is called local extrapolation.

EXERCISES

4.1 The residual of an alleged root r of F(x) = 0 is F(r).
One often sees the statement that a residual is “small,”
so the approximate root must be “good.” Is this reli-
able? What role does scaling play?

4.2 How are simple and multiple roots distinguished
graphically? Interpret graphically how well the roots
are determined. Compare with Exercise 4.1.

4.3 Geometrically estimate the root of the function F(x) (a) For an initial bracket of [0.0, 1.0] what are the next
whose graph is given below. three brackets using the bisection method on this func-
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tion? linear polynomial that interpolates G(y) at f(xi) and

(b) If xl = 0.0 and x2 = 1.0, mark on the graph the f(xi-l), show that P(0) = xi+1 is given by (4.6).

approximate location of x3 using one step of the se- 4.7 In the convergence proof for the secant rule, it was
cant method. stated that if ε = max(ε0, ε1) < 1, then the inequality

(c) If x1 = 0.5, mark on the graph the approximate
location of x2 and x3 using two steps of Newton’s
method.

4.4 The polynomial f(x) = x3 - 2x - 5 has a root a in
[2,3].

(a) Show that [2,3] is a bracket for f(x).

(b) Apply four steps of the bisection method to re-
duce the width of the bracket to 1/16.

(c) Calculate x3 and x4 by the secant method starting
with xl = 3 and x2 = 2.

(d) Calculate x2, x3, and x4 using Newton’s method
with x1 = 2.

4.5 To find where sinx = x/2 for x > 0,

(a) find a bracket for an appropriate function f(x).

(b) Apply four steps of the bisection method to re-
duce the width of the bracket by 1/16.

(c) Calculate x3 and x4 by the secant method starting
with x1 and x2 equal to the bracket values.

(d) Calculate x2, x3, and x4 using Newton’s method
with x1 the midpoint of your bracket.

4.6 Given x0 and x1, show that the inverse secant rule,
discussed at the end of Section 4.1, and the direct se-
cant rule (4.6) produce the same iterates. In particular,
with G(y) the inverse function of f(x), and P(y) the

implied

and

Establish this.

4.8 The special function

is important in statistics and in many areas of science
and engineering. Because the integrand is positive for
all t, the function is strictly increasing and so has an
inverse x = erf-1(y). The inverse error function is an
important function in its own right and can be evalu-
ated for given y by solving the equation y = erf(x).
The algorithm of the MATLAB function erfinv.m
first forms a rational approximation to y that is ac-
curate to about six figures. Two Newton iterations
are then done to get a result to full accuracy. What
is Newton’s method for solving this equation? Why
would you expect two iterations to be enough? (Don’t
forget to consider the multiplicity of the root.)

4.2 AN ALGORITHM COMBINING BISECTION AND THE SECANT RULE

It is a challenging task to fuse several methods into an efficient computational scheme.
This section is devoted to a code, Zero, based on one written by Dekker [6] that does
this. Roughly speaking, the code uses the secant rule unless bisection appears advan-
tageous. A very similar code is found in the NAG library. Brent [3] added the use of
quadratic inverse interpolation to Dekker’s ideas. Brent’s code is the basis for codes in
MATLAB and the IMSL library.

Normal input to Zero is a subprogram for the evaluation of a continuous function
f(x) and arguments B and C for which f(B)f(C) < 0. Throughout the computation
B and C are end points of an interval with f(B)f(C) < 0 that is decreasing in length.
In favorable circumstances B is computed with the secant rule and is a much better
approximate root than either C or the midpoint M = (C + B)/2 of the interval. To
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deal with unfavorable circumstances, the code interchanges the values of B and C as
necessary so that |f(B)| < |f(C)| holds. If at any time the computed f(B) is zero, the
computation is terminated and B is reported as a root.

The convergence test is a mixed relative-absolute error test. Two parameters AB-
SERR and RELERR are input and it is asked of each iterate whether

(4.13)

For reasons discussed in Chapter 1, the code will not permit RELERR to be smaller
than 10 units of roundoff, nor ABSERR to be zero. However, to understand what the
test means, first suppose that RELERR is zero. The test is then asking if an interval
believed to contain a root has a length no more than 2 × ABSERR. If so, the midpoint
M is no farther than ABSERR from a root and this is a pure absolute error test on
M as an approximate root. However, it is believed that the quantity B reported as the
answer is closer to a root than M is. Even if it is not, the test implies that B is within
2 × ABSERR of a root. Similarly, if the parameter ABSERR is zero and if the test
were

the test would be a pure relative error test for the approximate root M. Because it is
believed that B is a better approximate root, it is used in the test rather than M. The
fzero.m function in MATLAB has a similar, but somewhat simpler, test. The codes in
the NAG and lMSL libraries have convergence tests that are broadly similar, but they
also test the size of the residual and convergence can occur either because the root has
been located to a specified accuracy or because the magnitude of the residual is smaller
than a specified value.

Unless there is a reason to do otherwise, Zero uses the secant rule. A variable A is
initialized to C. The two variables A, B are the two iterates used by the secant rule to
calculate

A danger with the secant rule (and Newton’s method) is an interpolant that is horizontal
or nearly so. The extreme case is a division by zero in this formula. This danger is
avoided by requiring D to lie in the interval [B,C] known to contain a root and checking
this without performing the division. Pursuing the tactic further, the code requires that
D lie in [B,M] on the grounds that B ought to be a better approximation to the root than
C, so if the secant rule is working properly, D ought to be closer to B than to C. If D
does not lie in [B,M], the midpoint M is used as the next iterate.

The performance of the code can be improved in some circumstances by selecting
an iterate in a different way. If D is too close to B, a better tactic is to move a minimum
distance away from B. The quantity max[ABSERR, |B| × RELERR] is called TOL in
the code. If |D - B| < TOL, then the value B + TOL × sign(C - B) is used instead of
D. This choice cannot result in an iterate outside the interval [B,C] since |B - C| >
2 × TOL (or else the error test would have been passed). If the root a is further from
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B than TOL, the iterate chosen in this way is closer to the root than D. If it is closer,
this iterate and B will bracket the root and the code will converge at the next test on
the error because the length of the bracket is TOL.

There are circumstances in which the current iterate B is converging to a root, but
the end point C is fixed. Because convergence is judged by the length of the interval
[B,C] and because the rate of convergence of the secant rule depends on using values
from the neighborhood of the root, the code monitors the length of the interval. If four
iterations have not resulted in a reduction by a factor of l/8, the code bisects three
times. This guarantees that the code will reduce the length of an interval containing a
root by a factor of l/8 in a maximum of seven function evaluations.

In summary, if the value D of the secant rule lies outside [B,M] or if the overall
reduction in interval length has been unsatisfactory, the code bisects the interval. If
D is too close to B, a minimum change of TOL is used. Otherwise D is used. After
deciding how to compute the next iterate, it is formed explicitly and replaces B. If
f(B) = 0, the code exits. Otherwise, quantities are updated for the next iteration: the
old B replaces A. The old C is kept or is replaced by the old B, whichever results in

f(B)f(C) < 0.
If the code is given normal input [f(x) continuous, f(B)f(C) < 01, then on nor-

mal return, either the computed f(B) = 0, or the computed f(B) and f(C) satisfy
f(B)f(C) < 0, |f(B)| < |f(C)| and the output values of B and C satisfy (4.13). In
the latter case there is either a root of f(x) in the interval [B,C] or else one of the end
points is so close to a root that the sign has been computed incorrectly in the working
precision.

EXERCISES

4.9 The algorithm described combining the bisection
method with the secant method is very efficient. Sup-
pose that the initial B and C satisfy |B - C| = 1010,
and a root is sought with an absolute error of at most
1 0 - 5

(a) How many function evaluations does the bisec-
tion method use?

(b) What is the maximum number of function evalu-
ations needed by the combined algorithm?

4.3 ROUTINES FOR ZERO FINDING

The algorithm of the preceding section has been implemented in a routine called Zero
designed to compute a root of the nonlinear equation F(x) = 0. A typical invocation
of Zero in C++ is

flag = Zero(f, b, c, abserr, relerr, residual);

in FORTRAN it is

CALL ZERO(F, B, C, ABSERR, RELERR, RESIDL, FLAG)

and



4.3 ROUTINES FOR ZERO FINDING 153

flag = Zero(f, &b, &c, abserr, relerr, &residual);

in C. In FORTRAN F, or f in C and C++, is the name of the function subprogram
for evaluating F(x). In FORTRAN it must be declared in an EXTERNAL statement
in the program that calls ZERO. Normal input consists of a continuous function F(x)
and values B and C such that F(B)F(C) < 0. Both B and C are also output quantities,
so they must be variables in the calling program. On output it is always the case that

|F(B)| < |F(C)|
The code attempts to bracket a root between B and C, with B being the better

approximation, so that the convergence test

is satisfied. It makes no sense to allow RELERR < u, the unit roundoff of the com-
puter used, because this is asking for a more accurate result than the correctly rounded
true result. To provide a little protection near limiting precision, it is required that
RELERR > 10u. If the desired root should be zero, or very close to zero, a pure
relative error test is not appropriate. For this reason it is required that ABSERR > 0.

Normal output has either F(B)F(C) < 0 and the convergence test met, or F(B) =
0. This is signaled by FLAG = 0. At most 500 evaluations of F are allowed. If
more appear to be necessary, FLAG is set to 1 and the code terminates before the
convergence test is satisfied. The value FLAG = -1 indicates invalid input, that is,
ABSERR < 0 or RELERR < 10u, and FLAG = -2 means F(B)F(C) > 0. The value
RESIDL (or residual in C and C++) is the final residual F(B). Convergence is judged
by the length of an interval known to contain a root. The algorithm is so robust that
it can locate roots of functions that are only piecewise continuous. If it is applied to
a function that has a pole of odd multiplicity, it might locate a pole rather than a root.
This is recognized by a “large” residual and signaled by FLAG = 2.

Example 4.4. The function F(x) = e-x - 2x has F(0) > 0 and F(1) < 0, hence the
equation F(x) = 0 has a root between C = 0 and B = 1. The sample program provided
illustrates the use of the zero-finding routine. Note that a globally defined integer is
used to count the number of F evaluations required. In FORTRAN this is accom-
plished via a COMMON statement (preferably labeled COMMON) and in C or C++
it is done by an appropriate placement of the variable declarations. The output is

Example 4.5. In Chapter 5 we discuss a problem that requires the solution of

for its smallest positive root. The particular values of the parameters used there are
x = y = z = 50 and a = l, b = 2, c= 100. Figure 4.5 is a rough sketch of φ for a2 <
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b2 < c2. It is drawn by looking at the behavior of φ as λ and
The portion of interest to us is between -a2 and Since as from the

right, φ(λ) and since as the continuous function φ must
have a zero larger than -a2. Differentiating φ(λ) we get

Because φ(λ) is strictly decreasing, there is only one zero λ0 greater than -a2. The
root is simple since

Interestingly, φ(λ) can be scaled to a cubic polynomial

This allows us to apply some bounds on the relative error of an approximate zero of a
polynomial developed in Exercise 4.31.

The equation φ(λ) = 0 was solved using the code Zero with relative and absolute
error requests of 10-6 and 10-8, respectively. Poor initial values of B and C were used
to show the excellent rate of convergence. Table 4.1 displays successive values of B
and C and tells which method was used by Zero in computing B.

Table 4.1. Solution of φ(λ) = 0 by Zero

For the error bounds in Exercise 4.31, we computed P(B) = 1.6261594 × 104 and
P´(B) = 8.5162684 × 107. The constant term in P(λ) is a0 = x2b2c2 - y2a2c2 -
z2a2b2 + a2b2c2, which in this case is - 1.2497000 × 108. The bounds state that there
is a root rj of P such that

and a root ri such that

The second error bound is quite good, but the first is pessimistic. Generally we do
not know which of the two bounds will be better. An interesting point here is the size
of the residual P(B). The value B is supposed to be a root of φ(λ) = 0 and P(λ) =
0. If its quality were judged by the size of the residual, B might be thought a poor
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Figure 4.5 φ(λ) for Example 4.5.

approximation when solving the one equation and a good approximation when solving
the other. This is despite the fact that it approximates the same root in both cases. To
be more concrete, MATHCAD’S default convergence test that the residual be smaller
in magnitude than 10-3 would reject an approximate root of P(λ) = 0 that is actually
quite accurate. This problem illustrates well the issue of scaling. The convergence test
in Zero and in similar codes is reliable. The magnitude of the residual reported by the
code is important only for detecting the convergence to a pole that is possible when
the function input is not continuous. Otherwise its size is a statement about the scaling
of the problem, not the quality of the approximate zero. n

EXERCISES

Unless otherwise indicated, use ABSERR = 10-8 and
(g)

RELERR = 10-6 for the computations with Zero.

4.10 Use the code Zero with an initial bracket of [0, l] to (h) (x - 3)(x + 1)
find the roots of the equation F(x) = 0, where F(x) is Print out the approximate roots, FLAG, the number of
given by each of the following. function evaluations required, and the residual. Dis-

(a) cos 2x cuss the results. [Sketches of F(x) will be helpful.]

(b) (x - 0.3)(x - 0.6) 4.11 A wire weighs 0.518 lb/ft and is suspended between

(c) (x - 0.3)(x - 0.6)(x - 0.9)
two towers of equal height (at the same level) and
500 ft apart. If the sag in the wire is 50 ft, find

(d) (x + 1)(x - 0.8)7

(e) (x + l)[x7 - 7(0.8)x6 + 21(O.8)2x 5

- 35(0.8)3x4 + 35(0.8)4x3 - 21(0.8)5x 2

+ 7(0.8)6x - (0.8)7]

(f) l / cos 2x

the maximum tension T in the wire. The appropriate
equations to be solved are
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4.12 For turbulent flow of fluid in a smooth pipe, the equa- 4.17 In trying to solve the equations of radiative transfer in
tion semi-infinite atmospheres, one encounters the nonlin-

ear equation

models the relationship between the friction factor cf

and the Reynold’s number Re. Compute cf for Re =
104, 105, 106. Solve for all values of the Reynold’s where the number ω0, 0 < ω0 < 1, is called an albedo.

number in the same run. Do this by communicating Show that for fixed ω0, if k is a root, so is -k, and that

the parameter Re to the function subprogram using la- there is a unique value of k with 0 < k < 1 satisfying

beled COMMON in FORTRAN or a globally defined the equation. For ω0 = 0.25, 0.50, and 0.75, find the

variable in C or C++. corresponding positive k values. Make some sketches

4.13 In [12] the study of neutron transport in a rod leads to
to help you locate the roots.

a transcendental equation that has roots related to the 4.18 Exercise 5.27 concerns a temperature distribution

critical lengths. For a rod of length the equation is problem where it is necessary to find positive roots
of

Make a rough sketch of the two functions cot(&) and
(x2 - l)/(2x) to get an idea of where they intersect to
yield roots. For = 1, determine the three smallest
positive roots.

4.14 An equation determining the critical load for columns
with batten plates is derived in [9, p. 151]. Suitable
values of the physical parameters for experiments per-
formed by Timoshenko lead to the problem

and the smallest positive root is desired. Make a rough
sketch of the function to get an idea of where the root
is. Scale to avoid difficulties with poles and the appar-
ent singularity at 0, and then compute the root.

4.15 An equation for the temperature T at which o-
toluidine has a vapor pressure of 500 mm Hg is found
in [8, p. 424]. In degrees absolute T satisfies

It is not obvious where the roots are, but a little anal-
ysis will help you locate them. Using brackets from
your analysis, compute all the roots.

4.16 The geometrical concentration factor C in a certain so-
lar energy collection model [10, p. 33] satisfies

Rescale the problem to avoid poles. Find the small-
est positive root A if h = 300, C = 1200, f = 0.8, and
D = 14.

where J0(x) and J1(x) are zeroth and first order Bessel 
functions of the first kind. Compute the three smallest
positive roots.

4.19 An analysis of the Schrodinger equation for a parti-
cle of mass m in a rectangular potential well leads to
discrete sets of values of the total energy E that are
solutions of a pair of transcendental equations. One of
these equations is

where

is Planck’s constant. Find the value of E that satisfies
this equation. Use the following data, which corre-
spond to a simplified model of the hydrogen atom:

On some machines it may be necessary to scale some
of the variables to avoid underflow. Also, be careful
with your choice of ABSERR if you want an accurate
answer.

4.20 The following problem concerns the cooling of a
sphere. Suppose the sphere is of radius a and is ini-
tially at a temperature V. It cools by Newton’s law
of cooling with thermal conductivity k, thalpance ε,
and diffusivity h2 after being suddenly placed in air
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at 0°C. It can be shown that the temperature θ(r,t) at
time t > 0 and radius r is

Here the γn are the (positive) roots of

and

For a steel sphere cooling in air at 0°C, suppose the
initial temperature is V = 100°C and the radius is
a = 0.30 meters. Appropriate physical constants are
h2 = 1.73 × 10-5, ε = 20, and k = 60. Find the three
smallest values of  γna and use them to compute A1,
A2, and A3. Approximate the temperature at r = 0.25
for t = 10k seconds, k = 2, 3, 4, 5.

4.21 When solving f(x) = 0, the subroutine Zero requires
you to input B and C such that f(B)f(C) < 0. Often
it is not obvious what to use for B and C, so many
routines that are similar to Zero begin with a search

for B and C that provide a change of sign. Write a
routine Root that first finds a change of sign and then
calls Zero to compute a root. The parameter list of
Root should be the same as that of Zero except that
B and C are replaced by arguments Z and SCALE.
Here the Z input is a guess for a root. If all goes well,
on output Z is to be the answer B obtained by Zero.
The search algorithm you are to implement is essen-
tially that of the fzero.m program of MATLAB. How-
ever, fzero.m begins searching with an increment
Z/20 if Z 0 and 1/20 otherwise. In Root the initial
search increment is to be an input variable SCALE.
Initialize DZ = SCALE, B = Z - DZ, C = Z + DZ.
If f(B)f(C) < 0 (be sure to code this properly), call
Zero to compute a root. Otherwise, double the incre-
ment, DZ = 2 × DZ, expand the search to the left by
B = B - DZ, and test again. If this does not result in
a change of sign, expand the search to the right by
C = C + DZ and test again. If this does not result
in a change of sign, double the increment and repeat.
Limit the number of tries. Test your code using one of
the examples in the text. After you are sure it works,
you might want to use it in other exercises.

4.4 CONDITION, LIMITING PRECISION, AND MULTIPLE ROOTS

It is important to ask what limitations on accuracy are imposed by finite precision
arithmetic. Since we seek a machine representable number that makes   as nearly
zero as possible, the details of the computation off, the machine word length, and the
roundoff characteristics play important roles. We have remarked that the computed
function values may vary erratically in an interval about the zero and we have seen an
example in Figure 1.2. Let us look at another example in more detail.

Example 4.6. Consider the polynomial (x - 1)3 that we evaluate in the form ((x -
3) x + 3)x - 1 in three-digit decimal chopped floating point arithmetic. For x = 1.00, 1.01,
. . ., 1.17 the computed function values are exactly zero with the exception of the value
0.0100 at x = 1.01, 1.11, 1.15. For x = 1.18, 1.19,. . . ,1.24 all function values are
0.200 except for a value of exactly zero at x = 1.20 and a value of 0.0200 at x = 1.23.
The reader might enjoy evaluating the function for x values less than 1 to explore this
phenomenon. It is clear that these erratic values might cause the secant rule to be un-
stable. Evaluating the derivative shows that Newton’s method can also be unstable at
a multiple root like this one. n

What effect on the accuracy of a root does inaccuracy in the function values have?
To get some feeling for this, suppose that the routine for f(x) actually returns a value
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and for x a machine number near a root a, the best we can say is that

for a suitable e. Suppose that z is a machine number and = 0. How much in error
can z be? If  a is of multiplicity m, then

Since it is possible for f(z) to be as large as e, we could have

so it is possible that

(4.14)

For small ε and m > 1 the term ε1 / m  is much larger than ε and there is a serious loss of
accuracy. The other factor plays a role, but generally we must consider multiple roots
to be ill-conditioned (sensitive to errors in the evaluation off). The ill conditioning of
the root of multiplicity 3 in (x - 1)3 = 0 is evident in Example 4.6. We saw there that
x = 1.20 led to a function value of exactly zero, and this is certainly a poor approxi-
mation to the root at 1.00. The essence of the matter is that at a multiple root, f(x)
is almost tangent to the horizontal axis so that shifting the curve vertically by a small
amount shifts its intersection with the axis by a considerable amount. Exercise 4.24 is
an example of this effect.

Even when m = 1, the root can be poorly determined. As we have already seen,
clusters of roots “look” like multiple roots from a distance, but we are now considering
what happens close to a root. Even when well separated and simple, a root is poorly
determined if f(x) passes through zero with a small slope. More formally, the quantity

can be large when the slope |f´ (α)| is small. A famous example from Wilkinson [11,
p. 43] illustrates this dramatically.

Example 4.7. Consider the polynomial equation

(x - 1)(x - 2)···(x - 19)(x - 20) = 0,

which has the roots 1, 2,. . . , 19, 20. These roots are obviously simple and well sepa-
rated. The coefficient of xl9 is -210. If this coefficient is changed by 2-23 to become
-210.000000119, the roots become those shown in Table 4.2.



4.4 CONDITION, LIMITING PRECISION, AND MULTIPLE ROOTS 159

Notice that five pairs of roots have become complex with imaginary parts of sub-
stantial magnitude! There is really no remedy for this ill conditioning except to use
more digits in the computations. n

Multiple roots are awkward not only because of their ill conditioning but for other
reasons, too. Bisection cannot compute roots of even multiplicity because there is no
sign change. Its rate of convergence to roots of odd multiplicity is not affected by
the multiplicity, but the other methods we have presented slow down drastically when
computing multiple roots. If the derivative f´(x) is available, something can be done
about both these difficulties. Near α,

and

where

and

This says that zeros of f(x) of even multiplicity are zeros of f´(x) of odd multiplicity,
so they could be computed with a bisection code or Zero. Also, notice that

where

H(x) = g(x)/G(x), H(α) = l/m  0 ,

so that u(x) has only simple zeros. Because of this, solving u(x) = 0 with Zero is
faster than solving f(x) = 0 and allows the code to compute zeros of f(x) of even
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multiplicity. However, it must be appreciated that u(x) has a pole wherever f(x) = 0
and f(x)  0.

EXERCISES

4.22 What is the value of the right-hand side of (4.14) for for the condition of this root. Perturb f(x) by 10-7

the root in Exercise 4.10a? using the form in Exercise 4.10e; then solve

4.23 What is the value of the right-hand side of (4.14) for f(x) + 10-7 = 0
the root of f(x) = (x- 10)(3x- 1)2 in [0,l]? Assume
that ε = 10-12.

accurately with Zero (use ABSERR = RELERR =
10-10). How much was the root 0.8 perturbed? Com-

4.24 The problem f(x) = (x + 1)(x - 0.8)7 = 0 has 0.8 as a pare this to the result of (4.14) with ε = 10-7. Repeat
root of multiplicity 7. Evaluate the expression (4.14) using the form in Exercise 4.10d.

4.5    NONLINEAR SYSTEMS OF EQUATIONS

A problem occurring quite frequently in computational mathematics is to find some or
all of the solutions of a system of n simultaneous nonlinear equations in n unknowns.
Such problems are generally much more difficult than a single equation. An obvious
starting point is to generalize the methods we have studied for the case n = 1. Unfor-
tunately, the bracketing property of the method of bisection does not hold for n > 1.
There is a generalization of the secant method, but it is not at all obvious because of the
more complicated geometry in higher dimensions. Newton’s method, however, does
extend nicely. Only the case n = 2 is examined because the notation is simpler and the
basic ideas are the same for the general case.

Consider the system of equations

f(x,y) = 0

g(x,y) = 0,

(4.15)

which we occasionally write in vector form as

To solve (4.15), Newton’s method for finding the root of a single nonlinear equa-
tion is generalized to two dimensions. The functions f(x,y) and g(x,y) are expanded
about a point (x0, y0) using Taylor’s theorem for functions of two variables (see the ap-
pendix for a statement of the theorem). Carrying only terms of degrees 0 and 1 gives
the approximating system

(4.16)
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which is linear in the variables x - x0 and y - y0. The next approximation (x1 ,y1) to
the solution of (4.16) is found by solving the linear equations

for ∆x0 = x1 - x0 and ∆y0 = y1 - y0 and forming

x1 = ∆x0 + x0 and y1 = ∆y0 + y0.

In general (xk+1 ,yk+l) is obtained from (xk, yk) by adding a correction

obtained by solving a linear system. To summarize, we have derived

Newton’s method for two equations and two unknowns:

or in matrix form,

The matrix J is called the Jacobian matrix of the system of equations composed of f
and g.

Example 4.8. Set up Newton’s method for obtaining solutions to the equations

f(x,y) = x2 + xy3 - 9 = 0

g(x,y) = 3x2y - y3 - 4 = 0.

Since

the system to be solved at each iteration is

The following table gives some numerical results for different starting points (x0, y0) .
In all cases the iterations were terminated when the quantity
was less than 10-6.
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These computations show that this system of equations has at least three solutions.
Which solution is found depends on the starting guess (x0, y0). n

As with Newton’s method for a function of one variable, it can be shown that if h
is twice continuously differentiable near a root a of h(w) = 0, if the Jacobian matrix at
a, J(a), is not singular, and if w0 is sufficiently close to a, then Newton’s method will
converge to a and the convergence will be quadratic.

Advanced references like [7] develop Newton’s method much further. A serious
practical difficulty is to find an initial approximation sufficiently close to the desired
root a that the method will converge. A knowledge of the problem and continuation
can be very helpful in this. A general approach is to connect finding a root w of
h(w) = 0 with minimizing the residual R(w) = f2(w) + g2(w). Clearly this function
has a minimum of zero at any root of h(w) = 0. The idea is to regard the change ∆w k

computed from Newton’s method as giving a direction in which we search for a value
λ such that the iterate

wk+l = wk + λ∆w k

results in a smaller value of the residual:

This is always possible because until we reach a root,

There are many practical details to be worked out. For example, it is not necessary, or
even desirable, to find the value of λ that minimizes the residual. Methods of this kind
are called damped Newton methods. A careful implementation will often converge
when Newton’s method on its own will not and will have nearly the same efficiency
when both converge.

EXERCISES

4.25 Use Newton iteration to find a solution (good to at y2 - 14xz = 0.
least an absolute error of 10-4 in magnitude) near
(0.5, l.0, 0.0) of the nonlinear system 4.26 We seek the three parameters α, β, and γ in the model

2x2- x + y2- z = 0

32x2- y2- 20z = 0 by interpolating the three data points (1, 10), (2, 12),



and (3,18). Use Newton iteration to solve for the pa-
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rameters to three significant figures.
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The Lotka-Volterra equations

describing the populations of predator and prey are studied at length in most modern
books on ordinary differential equations (see, e.g., Boyce and DiPrima [2]). Those
emphasizing a modeling approach, like Borrelli and Coleman [l], give considerable
attention to the formulation of the model and conclusions that can be drawn. Although
the population equations do not have an analytical solution, the equation

for trajectories in the phase plane can be solved because it is separable. An easy
calculation detailed in the books cited shows that the solutions satisfy the conservation
law

where K is an arbitrary constant. The trajectories reveal the qualitative properties of
the solutions, so there is great interest in their computation. Davis [5] exploits the
conservation law to compute trajectories by solving nonlinear algebraic equations, the
subject of this case study.

Following Volterra, Davis considered evaluation of the trajectory for parameters
a = 2, c = 1 and initial condition (x,y) = (1,3). In this case there is a periodic solution
of the differential equations, that is, the populations of predator and prey are sustain-
able for all time. In the phase plane this periodic solution corresponds to a trajectory
that is a closed curve, as seen in Figure 4.6. The initial condition determines the con-
stant K for the solution of interest. A little manipulation of the conservation law leads
to

Points (x,y) on the trajectory are computed for a sequence of y by forming the corre-
sponding γ > 0 and solving this algebraic equation for x. Davis gives a series for the
smallest positive root,

For positive γ we are summing positive terms, so as we learned in Chapter 1 we can
expect to evaluate the series accurately in a relative sense provided that it converges at
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Figure 4.6 A periodic solution of the Lotka-Volterra equation.

a reasonable rate. The ratio test for convergence is illuminating. A well-known limit
for e shows that the ratio

has the limit

The ratio test amounts to comparing the rate of convergence of the series to the rate
of convergence of a geometric series, in this case For values of γ rather
less than l/e, the series converges quickly. It was pointed out in Chapter 1 that n !
grows rapidly as n increases, making integer overflow a dangerous possibility when
evaluating the series, and the factor nn grows even more rapidly. It is better to compute
the coefficients by

which is nicely scaled.
The function f(x) = xe-X and its derivative, f´(x) = (1 - x ) e-x, are so simple that

properties of the equation f(x) = γ are easily determined. The function vanishes at
x = 0 and tends to 0 as It strictly increases to its maximum of e-l at x = 1
and strictly decreases thereafter. These facts tell us that for 0 < γ < e-l, the equation
f(x) = γ has exactly two roots. One lies in (0,l) and the other in Both are
simple. The roots merge to form the double root x = 1 when γ = e-l and there is
no root at all for γ > e-1. This is easily understood geometrically. The trajectory
is a closed curve and the two roots represent the left and right portions of the curve



4.6 CASE STUDY 4 165

for given y. We have to expect numerical difficulties solving for x(y) when g = e-l

because the curve has a horizontal tangent then.
If we were solving this equation for a given γ as an isolated problem, a good way

to proceed would be to use Zero. Because the code converges very quickly from poor
guesses, we might try a “large” interval so as to increase the chance of locating the root
that is larger than 1. We might, for example, choose [B,C] = [1, l000]. This presents
no difficulty for the code, but makes a point raised in Chapter 1. The function exp(-x )
underflows for x as large as 1000, causing problems with some operating systems.
Davis solves for x when y = 1. It is a matter of a few minute’s work to alter the
example code provided with Zero to solve this problem using a system that deals with
underflows by setting them to 0. With a relative error tolerance of 10-6 and an absolute
error tolerance of 10-8, only 15 evaluations of the function were needed to compute
the root x 4.24960. With this value of y, the constant 0.060641. The code reports
the residual of the approximate root to be r   8 × 10-9. This is a situation illuminated
by backward error analysis: the computed root is the exact root of f(x) = γ + r, a
problem very close to the one posed. Here we see that the x coordinate computed by
Zero is the exact value for a slightly different y coordinate.

When computing a trajectory, we are solving a sequence of problems, indeed,
more than a hundred in generating the figure. The first derivative is readily available,
the roots are simple, and a good initial guess is available. The circumstances suggest
that writing a code based on Newton’s method would be worth the trouble. Before
discussing the computation of the trajectory, let’s do a couple of experiments with
Newton’s method. First we compute the smaller root when y = 1. Recall that when
solving F(x) = f(x) - γ = 0, the method is

Because the method is quadratically convergent for these simple roots, the difference
between successive iterates provides a convenient and reliable way to test for conver-
gence. Of course, for this test to work it is necessary that the iterate be close enough
to the root that the method really is converging quadratically fast and not so close that
finite precision corrupts the estimate. Because γ is relatively small in this case, we can
compute an accurate value for x using the series to see how well the procedure works.
With x0 = γ, the table shows that convergence appears to be quadratic right from the
start and the estimated error is quite close to the true error, except at limiting precision.
(It is quite possible that the root computed in this manner is more accurate than the ref-
erence value computed with the series.) Because there is a natural measure of scale
provided by the constant γ, the small residual tells us that after only a few iterations,
we have a very accurate solution in the sense of backward error analysis.
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This is what we expect of Newton’s method, but things do not always go so well.
Suppose now that we try to compute the larger root starting with a guess of 8. In order
to measure the error, we computed the root accurately in a preliminary computation.
The first difficulty we encountered is that the method does not converge to this root.
Remember that we can expect convergence to the root nearest the guess only when the
guess is “sufficiently close.” The error reported in the table is the difference between
the iterate and an accurate value for the smaller root.

As the residual makes clear, we went from a reasonable initial guess to approximations
that are terrible in the sense of backward error analysis. This kind of thing did not
happen with Zero, even though it was given much worse guesses, because of the way
it combines the secant rule and bisection. All goes well near the root, but convergence
is very slow when an iterate is large and negative. Indeed, the estimated error is the
change in the iterate and the table shows it to be nearly constant then. This is easy to
see analytically from

Examination of the sizes of the terms when xi << - 1 shows that the change is approx-
imately xi/(1 - xi). This can be further approximated as 1, agreeing as well as might
be expected with the values 0.94 seen in the table. These approximations make it clear
that if we should turn up an approximation xi << - 1, the iterates are going to increase
slowly to the positive roots.

Davis used this algebraic approach only for computing a couple of points on the
trajectory. If we want to compute the closed trajectory of the figure, we need to do con-
tinuation efficiently and deal with the fact that the differential equation for the phase
is singular when x = 1. First let’s look for a moment at the solution of x exp( -x)  =  γ
for a sequence of values γ. Suppose we have found a root x corresponding to a given γ
and want to compute a root corresponding to γ + δ for some “small” δ. One possibility
for an initial guess is simply x. Often this works well enough, but for this equation a
short calculation shows that

A rather better initial guess is then x + δdx/dγ. Notice the change in character of the
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problem that shows up here when x = 1. This is the kind of difficulty that we overcome
when tracing a trajectory by exploiting additional information at our disposal.

The program that computed the figure accepts the constants a, c and the initial
point (x,y). Using these data, it computes the constant K. The conservation law allows
us to solve for x when y is given, or to solve for y when x is given, and the code selects
the more appropriate at each step. The differential equations for the populations tell
us that for a small increment δ in t, the change in x is about δdx/dt and the change in
y is about δdy/dt. If |dy/dt| < |dx/dt|, the code uses the value x + δdx/dt and solves
for y(x). Otherwise, it uses the value y + δdy/dt and solves for x(y). This amounts to
changing the coordinate system in which the curve is viewed so as to avoid difficulties
with vertical tangents. After choosing which equation to solve, Newton’s method is
easily applied and converges very rapidly. Superlinear convergence is used to test for
convergence to a specified relative error tolerance.
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MISCELLANEOUS EXERCISES FOR CHAPTER 4

4.27 A semi-infinite medium is at a uniform initial tem-
perature T0 = 70°F. For time t > 0, a constant heat
flux density q = 300 Btu/hr sq ft is maintained on the
surface x = 0. Knowing the thermal conductivity k =
1.0 Btu/hr/ft/°F and the thermal diffusivity α = 0.04
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sq ft/hr, the resulting temperature T(x, t) is given by

where

is the error function. Find the times t required for the
temperature at distances x = 0.1, 0.2, . . . ,0.5 to reach a
preassigned value T = 100°F. Use ABSERR = 10-8

and RELERR = 10-6. The function erf(y) is available
in many FORTRAN and some C and C++ libraries.

4.28 Write a code like Zero based upon bisection and New-
ton’s method. Are there advantages to using Newton’s
method instead of the secant rule?

4.29 Modify Zero so as to input f´(x) along with f(x).
The code is to compute roots via the function u(x) =
f(x)/f´(x) as described in the text. This makes the
modified code faster for multiple roots and permits the
computation of roots of even multiplicity.

4.30 Given

devise an algorithm using the codes Zero and Fac-
tor/Solve to solve for x1, x2, x3 and θ. Sketch a pro-
gram in FORTRAN or C or C++ to implement your
scheme. Do not worry about input/output nor an ini-
tial bracket, but do define F(x) carefully.

4.31 In parts (a) and (b) below, error bounds are derived for
an approximate root σ (real or complex) of the poly-
nomial equation

In each case we require an accurate value of P(σ).
Since root solvers may make this residual about as
small as possible in the working precision, it is nec-

Show that

a0 = (-1)nr1r2···rn

and then that

This implies that

which says that there is some zero that is approxi-
mated with a relative error of no more than

This bound is very pessimistic when σ approximates
well a zero that is much larger than some other zero.
To understand this assertion, work out a numerical ex-
ample for a quadratic with σ      r1 and |r1| >> |r2|.
Then argue that the assertion is true in general.

(b) Show that

by differentiating ln P(x). This then implies that

and

This is an absolute error bound, but we get the follow-
ing relative error bound easily:

How is this error bound related to the error estimate
derived for Newton’s method?

essary to compute P(σ) in higher precision. Let 4.32 The book [4, p. 65] contains a cubic equation for a pa-
r1,r2. . . , rn be the roots of P(x) = 0. rameter s in the context of corrections for the earth’s
(a) The theory of equations tells us that P(x) can be curvature in the interference zone. The equation
factored in the form

P(x) = (x - r1)(x - r2)···(x - rn).
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depends on two parameters, u and v, which are ob-
tamed from the heights of the towers, the distance be-
tween stations, and the radius of the earth. Represen-
tative values are v = 1/291, u = 30. The smallest pos-
itive root is the one of interest, but calculate them all.

The residuals of the larger roots are quite large. Are
they inaccurate? Compare with Exercise 4.1. Use the
computable error bounds of Exercise 4.31 to bound
the errors of the roots.



CHAPTER 5

NUMERICAL INTEGRATION

Approximating numerically is called numerical integration or quadrature.
Most of this chapter is concerned with finite intervals [a,b], but there is some discus-
sion of integrals with a and/or b infinite. Sometimes it is useful to introduce a weight
function w(x) > 0 and so approximate integrals of the form There are
a number of reasons for studying numerical integration. The antiderivative of f may
not be known or may not be elementary. The integral may not be available because
the function f is defined by values in a table or by a subprogram. Or, definite integrals
must be approximated as part of a more complicated numerical scheme, such as one
for the solution of differential equations by finite elements by means of variational or
Galerkin methods.

A basic principle in numerical analysis is that if we cannot do what we want with
a given function f(x), we approximate it with a function for which we can. Often the
approximating function is an interpolating polynomial. Using this principle we shall
derive some basic quadrature rules and study their errors. When approximating func-
tions we found that piecewise polynomial interpolants had advantages over polynomial
interpolants, and the same is true in this context. In a way piecewise polynomial in-
terpolants are more natural for quadrature because using such a function amounts to
breaking up the interval of integration into pieces and approximating by a polynomial
on each piece. A key idea in quadrature is to take account of the behavior of f(x)
when splitting up the interval. This “adaptive” quadrature is described in Section 5.2
and a code is discussed in the following section. Adaptive quadrature is the main topic
of the chapter, but some attention is given to the integration of tabular data and to the
integration of functions of two independent variables. Particular attention is paid to
preparing problems for their effective solution by codes of the kind developed here.

5.1 BASIC QUADRATURE RULES

To approximate

170

(5.1)
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suppose that values of f are available at N distinct points {xl,. . . ,xN}. Let PN(x) be
the polynomial that interpolates f at these points. The Lagrangian form of PN(x) leads
easily to the approximation

(5.2)

It is assumed here that the weights Ai exist. This is equivalent to the existence of the
integrals

In the case of most interest in this chapter, namely w(x) = 1, a and b finite, there is no
doubt about this. However, if the interval is infinite the approach
fails because none of the xj has an integral over this interval.

The fundamental difficulty with the approach in the case of is that it
is based on approximating f(x) by a polynomial, and polynomials do not have finite
integrals over infinite intervals. For the integral of f(x) to exist, it must tend to zero
rapidly as A useful device is to isolate the behavior that is different from
a polynomial in a weight function that is handled analytically in the formula. For
example, if we introduce the weight function w(x) = e-x and define F(x) = f(x)ex,
the integral can be rewritten as It is straightforward to obtain formulas

for integrals of the form because the integrals exist for all j.
Whether this device results in a good approximation to is a question about
whether F(x) behaves more like a polynomial than f(x).

Infinite intervals are one kind of problem that presents difficulties. An integrand
that is singular also presents difficulties because it does not behave like a polynomial.
Often a weight function is a good way to deal with such problems. For example, in the
solution of plane potential problems by boundary element methods, it is necessary to
approximate a great many integrals of the form

(and subsequently to solve a system of linear equations to produce a numerical solution
to an integral equation of potential theory). The function ln x can be used as a weight
function because it is nonpositive over the interval and the integrals

exist for all j (so the weight function w(x) in (5.1) can be taken to be - ln x). Similarly
to what was done with the example of an integral over an infinite interval, if we wish to
compute and f(x) behaves like ln (x) as we could introduce ln (x) as
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a weight function and write F(x) = f(x)/ln(x). By “behaves like” as is meant

From here on this will be written as f(x) ~ c ln(x). Because F(x) has a finite limit at
x = 0, it is better approximated by a polynomial than f(x), which is infinite there.

A formula of the form

(5.3)

for approximating (5.1) is called a quadrature formula or quadrature rule. The scheme
for generating rules just described leads to interpolutory quadrature rules. Such a
rule will integrate exactly any polynomial of degree less than N. This is because if
f(x) is a polynomial of degree less than N, then by the uniqueness of interpolation,
PN(x) = f(x) and the rule is constructed so as to integrate PN(x) exactly. In general,
we say that a quadrature formula (5.3) has the degree of precision d > 0 if it integrates
exactly any polynomial of degree at most d, but not one of degree d + 1. We shall find
that a judicious selection of the interpolation points {xi} in the construction of (5.2)
leads to formulas with a degree of precision greater than N - 1. Generally we have in
mind {xi} that lie in [a,b], but in some important applications this is not the case. For
example, the very important Adams formulas for the solution of ordinary differential
equations are based on quadrature rules that use the end points a and b as nodes, but
all other xi lie outside the interval. The same is true of a method for integrating tabular
data that is considered later in this chapter.

The following theorem develops some bounds on the error of a formula with de-
gree of precision d. It is stated using the notation ||f|| for the maximum over [a, b] of
|f(x)|. Also, as in Chapter 3, Mq is used for ||f(q)||. Finally, the absolute error of the
quadrature formula is denoted by E(f), that is,

Theorem 5.1. If the quadrature formula (5.2) has degree of precision d, then
for any polynomial p(x) of degree q < d,

If each Ai > 0, then

Proof For p(x) any polynomial of degree q < d,

(5.4)

(5.5)
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where we have used the fact that E(p) = 0. (Why?) This is (5.4). For (5.5), when each
Ai > 0 the absolute values in (5.4) can be dropped. Because the quadrature formula
integrates constants exactly, applying it to f(x) = 1 shows that

which results in (5.5).

Corollary 5.1. If f(x) has d + 1 continuous derivatives on [a, b], then

If each Ai > 0, then

(5.6)

(5.7)

Proof Since the bounds of Theorem 5.1 hold for any p(x), we can use the p(x)
coming from Taylor’s theorem (see the appendix) with x0 = (a + b)/2 and n = q:

where

and

for some z between x0 and x. This implies that

(5.8)

Substituting this with q = d into (5.4) or (5.5) yields (5.6) or (5.7). n

When we studied polynomial interpolation, we learned that interpolants of high
degree are likely to oscillate and provide unsatisfactory fits. The situation now is dif-
ferent because it is the area under the curve that is being approximated, and it seems at
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least possible that the oscillations will average out. This is the importance of the spe-
cial case of formulas with all Ai > 0. At least as far as the bound of the Theorem 5.1
goes, increasing the degree of precision with such formulas can only help. Unfor-

tunately, the interpolatory quadrature formulas for based on {xi} equally
spaced in [a, b], which are called Newton-Cotes formulas, have some Ai that are neg-
ative for even modest degrees. The results of these formulas may not converge to the
value of the integral as the degree is increased. However, we shall take up another fam-
ily of formulas of arbitrarily high degree of precision for which all the Ai are positive.

In the bounds (5.4), (5.5) we can choose any polynomial p(x) of any degree q < d.
For finite a, b there is a polynomial p*(x) of degree at most d that is as close as possible
to f in the sense that

The code that accompanies this chapter, called Adapt, is based on two formulas with
Ai > 0 for all i. One has d = 5 and the other, d = 11. In the bound (5.5), in the one case
we have ||f - p*|| for the best possible approximation by a polynomial p*

5 of degree 5
and in the other, p*

11 of degree 11. According to the bound, the formula of degree 11
cannot be worse because the polynomial of degree 5 can be considered a polynomial
of degree 11 with some zero coefficients. It would be remarkable if it were not the case
that ||f - p*

11|| is quite a bit smaller than ||f - p*
5||, hence that the formula of degree 11

is quite a bit more accurate than the formula of degree 5.
A more detailed analysis of the error shows that for many formulas with w(x) = 1,

including all those considered in this book, the error E(f) can be expressed as

(5.9)

for some ξ in (a,b). Note that this is an equality rather than a bound.
The result (5.9) is a traditional one, but when it involves a derivative of high order,

it causes people to doubt whether the formula is practical. For instance, the formula
of degree 11 mentioned earlier satisfies (5.9) with f(12). It is hard to come to any
understanding of such a high order derivative, and a natural question is, What happens
if you use the formula and the derivative does not exist? We appreciate now that
the form (5.9) is just a consequence of the method of analysis. The inequality (5.8)
provides bounds when f has only q + 1 continuous derivatives, and the bound based
on best approximation does not directly assume any continuous derivatives. There is
no reason to fear a formula of high degree of precision because of an expression like
(5.9); other expressions for its error are applicable when the function is less smooth.

If a quadrature formula has the degree of precision d, then

(5.10)

and

(5.11)
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If we assume that the error has the form (5.9), it is easy to find c from

The equations (5.10), (5.11) furnish another way to generate quadrature rules. The
approach is known as the method of undetermined coeficients. In this approach the
coefficients {Ai} are regarded as unknowns that are found by satisfying the system of
linear equations (5.10) for d as large as possible. Before giving examples, we note that
It is often convenient to apply the method of undetermined coefficients to a standard
interval [-1,l] and then transform to a general interval [a,b] by a simple change of
variable. If we have

let

Then dt = (b - a)dx/2 and

Since

it follows that

so that the change of variable yields

Example 5.1. We seek a quadrature formula of the form

In the method of undetermined coefficients

f ( x )  =  1  i m p l i e s  2  =  A 1  +  A 2

f ( x )  =  x  i m p l i e s  0  =  - A 1  +  A 2 .
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Figure 5.1 trapezoid rule.

Hence, A1 = A2 = 1. We also observe that, by construction, d > 1. Then f(x) = x2

yields

Since E(x2)     0 this tells us that d = 1 and c = E(x2)/2 ! = -2/3, which is to say that

for some ξ in (-1,l).
For a general interval [a, b] we apply the result of the change of variable formula

(5.12). We have (in braces) the

trapezoid rule:

for some ξt in (a,b). The name of the quadrature rule comes from the fact that it
amounts to approximating the area under the curve f(x) by the area of a trapezoid.
See Figure 5.1 for an illustration. n

Example 5.2. Let us find the most accurate formula of the form



5.1 BASIC QUADRATURE RULES 177

In the method of undetermined coefficients, we try to integrate powers of x exactly to
as high a degree as possible.

This set of equations determines the coefficients to be To find
the degree of precision d, we check the next higher power,

f(x) = x3 implies 0 = -Al + A3 + E(x3) = E(x3)

and find that d is at least 3, higher than we might have expected. For the next power,

so d = 3 and E(x4) = (2/5) - (2/3) = -(4/15). Then c = -(4/15)/4! = -l/90 and

for some ξ. As in (5.12), for a general [a,b] this gives us

Simpson’s rule:

See Figure 5.2 for an illustration. n

Both these formulas are Newton-Cotes formulas because the nodes are equally
spaced in [a,b]. The procedure was to select the nodes {xi} and then solve a system
of linear equations for the {Ai}. This is typical when the nodes are specified in ad-
vance. But what if the {xi} are allowed to be unknown as well? With twice as many
unknowns, 2N, at our disposal, we might hope to find formulas with a much higher
degree of precision, perhaps even 2N - 1; that is, we might hope to get a (2N - 1)st
degree formula that uses only N evaluations of f. Unfortunately, the system of equa-
tions for {Ai} and {xi} is then not linear. It is not obvious that there are real solutions,
and if there are, how to obtain them. Gauss elegantly solved the problem for general
N, even with rather general weight functions and infinite intervals. The resulting for-
mulas are known as Gaussian quadrature formulas. Special cases can be worked out
in an elementary way.

Example 5.3. For N = 1 the Gaussian formula has the form
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Figure 5.2 Simpson’s rule.

In the method of undetermined coefficients,

f(x) = 1 implies 2 = A1
f(x) = x implies 0 = A1x1,

hence, A1 = 2 and x1 = 0. To determine the error, we try

f(x) = x2 implies    = 2 × 0 + E(x2),

and find d = 1, c = and

On [a,b] this becomes

This formula is known as the midpoint rule.

(5.14)

n

Example 5.4. For N = 3, the form is

Because of the symmetry of the interval [-1,1], it is plausible that A1 = A3, x2 = 0,
and x1 = -x3, so let us try
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Now,

f(x) = 1 implies 2 = 2A1 + A2

f(x) = x implies 0 = A1x1 - A1x1 = 0 (automatic)

f(x) = x2 implies

f(x) = x3 implies 0 = A1x
3

1 - A1x
3

1 = 0 (automatic)

f(x) = x4 implies

At this point we have three equations in the three unknowns A1, A2, and x1. The last
two equations require that x2

1 = 3/5, A1 = 5/9 and the first that A2 = 8/9. To find the
error, we try

f(x) = x5 implies 0 = A1x
5

1 - A1x
5

1 + E(x5) = E(x5).

This implies that d > 5. Finally

f(x) = x6 implies

This says that d = 5 and c = Collecting the results,

On [a, b] the resulting quadrature rule is called the

three-point Gaussian quadrature formula,

(5.15)

and its error is

(5.16)

See Figure 5.3 for an illustration. n

For larger N the method of undetermined coefficients is impractical for deriving
Gaussian quadrature rules. Besides, the questions of the existence of formulas and the
best possible degree of precision are left open in this approach. Gauss used the theory
of orthogonal polynomials to answer these questions. We cannot develop the theory
here (see [8, pp. 327-331]), but it is possible to see how high degrees of precision can
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Figure 5.3 Three-point Gaussian quadrature.

be achieved. With reasonable conditions on w(x) and [a,b], it is known that there is a
sequence of polynomials θN+1 (x), N = 0, 1, . . . , such that θ N+1 (x) is of degree N and

(5.17)

When w(x) = 1, a = -1, and b = 1, these polynomials are the Legendre polynomials
(see [8, p. 202]). It is also known that the N distinct roots of θ N+1 (x) are real and lie in
(a, b). Suppose that an interpolatory quadrature formula (5.2) is based on interpolation
at the roots of θN+1 (x). If f(x) is any polynomial of degree 2N - 1, it can be written
as

f(x) = q(x)θθN+l (x) + r(x),

where the quotient q(x) and remainder r(x) polynomials are of degree at most N - 1.
Then

where the first integral vanishes because of (5.17). For any choice of the nodes {x i} ,
the formula of (5.2) integrates a polynomial of degree N exactly, so

The formula applied to f(x) has
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Now we use the fact that the xi are roots of θ n(x) to see that

Since any polynomial f(x) of degree 2N - 1 is integrated exactly, this formula has a
degree of precision that is at least 2N - 1.

There are computationally convenient ways to derive Gaussian quadrature rules,
and formulas may be found in specialized books. Gaussian formulas are valuable be-
cause they provide the highest degree of precision for the number of values of f(x).
An important fact about Gaussian formulas is that the Ai are all positive. As discussed
in connection with the error bounds, this means that we can use formulas of a very high
degree of precision, even for integrands that are not smooth. Gaussian formulas incor-
porating weight functions are especially valuable tools for dealing with integrands that
are singular and intervals that are infinite. Whether or not there is a weight function,
the nodes of a Gaussian formula all lie in the interior of [a, b]. This means that the
formula does not use f(a) or f(b). We shall see that this is quite helpful in dealing
with singular integrands.

So far we have been considering procedures based on approximating f(x) over the
whole interval [a,b]. Just as with polynomial interpolation, the error depends strongly
on the length of the interval. This suggests that we break up the interval and so approx-
imate the function by a piecewise polynomial function rather than a single polynomial.
The simplest approach is to split the interval into pieces specified in advance. If we
partition [a,b] into a = x1 < x2 < ··· < xn+1 = b, then
and we can apply standard quadrature rules to each of the n integrals. The resulting
formula is known as a composite or compound rule. Traditionally the {xi} have been
chosen to be equally spaced in [a,b] and the same formula used on each piece, but this
is not necessary.

Example 5.5. Composite Trapezoid Rule. The composite trapezoid rule approxi-
mates I = by splitting [a,b] into n pieces of length h = (b - a)/n and apply-
ing the trapezoid rule to each piece. With the definition xi = a + ih, this is

which simplifies to

Figure 5.4 illustrates the composite trapezoid rule. n

An ingenious use of repeated integration by parts establishes the Euler-Maclaurin
sum formula. It states that if f(2v)(x) is continuous on [a,b], then
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Figure 5.4 Composite trapezoid rule.

for some x in [a,b]. The coefficients B2k appearing here are known as the Bernoulli
numbers. The first few terms of the error expansion are

The basic trapezoid rule applied to an interval of length h has an error that goes to zero
like h3. When the n = 1/h terms are combined, the error of the approximation to the
integral goes to zero like h2. However, notice that if it should happen that f(1)(b) =
f(1)(a), the formula is more accurate than usual. If in addition other derivatives have
the same values at the ends of the interval, the formula is still more accurate. When
integrating a periodic function over a multiple of a period, all the derivatives at the
ends of the interval are equal and this formula is extraordinarily accurate. In fact, if
the periodic function is analytic, so that it has derivatives of all orders, Tn     I faster
than any power of h! Although rather special, this is extremely important in the context
of Fourier analysis.

The error of Tn can be estimated by comparing it to the more accurate result T2n

obtained by halving each subinterval. A convenient way to evaluate the formula is

where

It is important to note that all the evaluations of f made in forming Tn are reused in
T2n.

There is a way of exploiting the error expansion of the composite trapezoid rule
due to Romberg that is popular for general integrands. The idea is to combine Tn and
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T2n in such a way as to obtain a higher order result. According to the error expansion,

A little manipulation then shows that

The formula

is of higher order than each of the individual formulas. As it turns out, this formula
is the composite Simpson’s rule. Romberg developed a computationally convenient
way of successively combining results so as to increase the order by two with each
computation of a composite trapezoid rule. The process is called extrapolation.

Romberg integration can be very effective. It adapts the order of the method to
the problem. It does, however, depend on the integrand being smooth throughout the
interval. Also, it evaluates at the ends of the interval, which is sometimes inconvenient.
MATHCAD uses Romberg integration for quadrature. If there is a singularity at an end
of an interval or if the process does not converge, the code switches to a variant based
on the midpoint rule that does not evaluate at the ends of the intervals and divides
intervals by 3 rather than 2. n

E X E R C I S E S

5.1 Use the method of undetermined coefficients to derive
Newton’s

Calculate A1, A2, A3, A4, d, and c in the usual manner.

5.2 Use the method of undetermined coefficients to find
the two-point Gaussian quadrature formula with its as-
sociated error. Begin with

and calculate A1 and x1 in the usual manner. Assum-
ing E(f) = cf(d+1)(ξ), find d and c. What is the cor-
responding formula and associated error on the gen-
eral interval [a,b]?

5.3 Implement the composite trapezoid rule and apply it
to

Of course, you must choose h small enough that sam-
ples are taken in each period. Approximate the inte-
gral for a number of values of h that tend to 0. Accord-
ing to the theory of Example 5.5, the approximations
Tn ought to converge extremely fast. Is that what you
find?
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5.2 ADAPTIVE QUADRATURE

In this section a code is developed that approximates I = to an accuracy
specified by the user. This is done by splitting the interval [a,b] into pieces and apply-
ing a basic formula to each piece. The interval is split in a way adapted to the behavior
of f(x). A fundamental tool is an error estimate. With the capability of estimating the
error of integrating over a subinterval, we ask if the error is acceptable, and if it is not,
the subinterval is split again. As we have seen, for a formula of even modest degree of
precision, reducing the length of the interval increases substantially the accuracy of the
approximation. Proceeding in this manner, the formula is applied over long subinter-
vals where f(x) is easy to approximate and over short ones where it is difficult. Codes
like the one developed here are in very wide use, being found, for example, in the
collection of state-of-the-art codes QUADPACK [12], libraries like NAG and IMSL,
and computing environments like MATLAB.

When the code is supplied absolute and relative error tolerances ABSERR and
RELERR, it attempts to calculate a value ANSWER such that

|I - ANSWER| < max(ABSERR, RELERR × |I|).

The computational form of this uses an error estimate

and replaces I by ANSWER:

|ERREST| < max(ABSERR, RELERR × |ANSWER|). (5.18)

We cannot hope to get a more accurate approximate integral than the correctly rounded
true value, so it makes no sense to take RELERR < u, the unit roundoff of the computer
used. Indeed, we require RELERR > 10u so that we do not work with error estimates
that are nothing but roundoff. We also require ABSERR > 0 so as to deal with the rare
situation that I = 0.

The method employed in the code breaks the interval [a,b] into pieces [α,β] on
which the basic quadrature rule is sufficiently accurate. To decide this we must be
able to estimate the error of the rule. This is done with a basic principle of numerical
analysis, namely to estimate the error of a result by comparing it to a more accurate
result. Besides the approximation

another approximation is formed that is believed to be more accurate. Then

says that when  is more accurate than  the error in  is approximately equal to
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To keep down the cost of estimating the error, we use evaluations of f(x) in both
formulas. As a simple example, we might take Q to be the trapezoid rule and to be
Simpson’s rule. The trapezoid rule is based on the values f (α) and f(β). The error
estimate is computed with Simpson’s rule, which needs only the one additional value

f((α+β) /2 Simpson’s rule is considerably more accurate than the trapezoid rule,
giving us reason to hope that the estimate will be a good one.

The code Adapt uses for Q the three-point Gaussian quadrature formula of Ex-
ample 5.4 that has degree of precision d1 = 5. A formula of much higher degree of
precision is used for The error analysis based on best possible polynomial approx-
imation gives us confidence that will be more accurate than Q. It would be possible
to use another Gaussian rule for but the N-point Gaussian rule for N    3 uses N
completely different {xi} (except possibly x = 0). To keep the number off evaluations
to a minimum, another approach is taken. In 1964 Kronrod derived for each N-point
Gaussian rule a corresponding rule of degree 3N + 1 or 3N + 2 (depending on whether
N is even or odd). The idea was to start with the N Gaussian nodes and add N + 1
others chosen to obtain the highest possible degree of precision. Formulas for N < 40
are tabulated in [10]. The N = 3 case is

where

x1 = (as for three-point Gaussian quadrature)

x2 = 0.9604912687080202

x3 = 0.4342437493468026

A1 = 0.2684880898683334

A2 = 0.1046562260264672

A3 = 0.4013974147759622

A4 = 0.4509165386584744.

The basic idea of adaptive quadrature is to approximate the integral over a subin-
terval (α,β). If the approximation is not accurate enough, the interval is split into
(usually) two parts and the integral approximated over each subinterval. Eventually,
accurate approximations are computed on all the subintervals of [a,b] that are added
up to approximate the integral over [a,b] or the cost is deemed too high and the compu-
tation terminated. The error terms of the formulas quantify the benefit of splitting
an interval; recall from (5.16) that

The corresponding result for the Kronrod formula of seven points is
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Figure 5.5 Example where quadrature should be adaptive (for efficiency).

Clearly, halving β - α will generally result in much more accurate approximations.
This process will resort to short intervals only where f(x) changes rapidly and long
ones elsewhere. For example, the function f(x) graphed in Figure 5.5 is likely to
require short intervals near 0 and [2, 3], but not elsewhere. A process like the one
described is called adaptive because where f(x) is evaluated in the approximation of
its integral depends on its behavior.

It is important to understand that quadrature formulas of the kind taken up in
this chapter sample f at only a finite number of points, and if these points are not
representative of the behavior of the curve f(x), the result will not be accurate. What
is even worse is that the error estimate comes from comparing the result to that of
another formula of the same kind, so it is possible that both are inaccurate. Because
of this any quadrature formula and error estimate of the kind taken up here is doomed
to be completely wrong on some problems. As a concrete example, for the Gauss-
Kronrod (N = 3) case, let

Clearly, f(x) > 0 on [-1,1], so is a positive number. Yet both formulas

see only f(xi) = 0, hence calculate The result is terribly wrong and the
error estimate does not detect this. Applying a quadrature code blindly can get you
into trouble!

The core of an adaptive quadrature code is a function that approximates

by Q and estimates the error of the approximation by Suppose we want
I = to an accuracy

TOL := max(ABSERR, RELERR × |ANSWER|).

A state-of-the-art code like those of QUADPACK [12] proceeds as follows. At a given
stage of the process the interval [a,b] is partitioned into subintervals a = α1 < β1 =
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α2 < β2 = α3 < ··· < βN = b; there is an estimate Qj available for the integral of
f(x) over each subinterval [αj ,β j] and an estimate Ej available of the error of Qj. By
adding up the Qj and Ej, an approximation Q = ANSWER to I is available along with
an estimate E = ERREST of its error. If the current approximation to I is not good
enough, the subinterval [αj, β j] with the largest error |Ej| is selected for improvement.
It is split into two pieces [αj, (αj + β j) /2], [(αj + β j) /2, β j ], and approximate integrals
over these pieces and estimates of their error are computed. The two subintervals and
the associated quantities replace the subinterval [αj, β j ] and its associated quantities.
This global adaptive procedure is extremely efficient, but at a cost of keeping track
of all the subintervals and the information associated with them. In the code Adapt
the adaptation is more local and the implementation a little simpler. The difference
in Adapt is that when a subinterval is integrated with enough accuracy, it is no longer
a candidate for improvement. Thus a queue is kept of subintervals on which the es-
timated error of the integral over the subinterval is considered to be too large. At a
typical stage of the process, the code tests whether the current approximation to I is
sufficiently accurate to satisfy the user’s error request. If it is not, the next subinterval
[αj, β j] is removed from the queue, split in half, and approximations to the integral
over each half, along with error estimates, are computed. They are placed at the end of

the queue. If an approximation to an integral is estimated to have an error
no more than |(β - α) / (b - a)] × TOL, it is accepted and [α, β] is not examined again.
This is more stringent than necessary because adding up approximations

that satisfy this condition will result in an error such that

The global adaptation used in the collection QUADPACK [12] subdivides until
TOL. The more local adaptation of Adapt subdivides until TOL. Because

is always at least as big as and perhaps much larger, the local process
works harder but should provide answers that are more accurate than the specified
tolerance TOL.

Let us now formalize the algorithm. To start the process, form the approximation
Q to the integral over [a,b] and its estimated error ERREST. If |ERREST| < TOL, we
take ANSWER = Q as the result and return. If ERREST does not pass the error test,
a, b, Q, and E = ERREST are placed in the queue and the following loop is entered:

remove α, β, Q, E from top of queue

compute QL with estimated error EL

compute QR with estimated error ER
ANSWER := ANSWER + (( QL + QR) - Q)
ERREST := ERREST + ((EL + ER) - E)
if EL is too big, add α, (α + β)/2, QL, EL to end of queue
if ER is too big, add (α + β)/2, β, QR, ER to end of queue.
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This procedure is repeated until one of the following events occurs:

1. The queue becomes empty.

2. |ERREST| < TOL.

3. The queue becomes larger than the space allocated.

4. Too many f evaluations are made.

The first two cases represent a success. The last two represent a failure in the sense
that the code has failed to achieve the desired accuracy in the work allotted. It may
be that the estimated error, although larger than specified by means of the tolerances,
is acceptable and the answer reported will suffice. Even when it is not, an inaccurate
value of the integral may be useful as a indication of the size of the integral when
selecting appropriate tolerances.

Notice the way quantities have been grouped in the computation of ANSWER and
ERREST. The quantity Q and the sum QL + QR both approximate the integral off over
[α, β]. They normally agree in a few leading digits, so their difference involves cancel-
lation and is computed without arithmetic error. Because the difference is normally a
small correction to ANSWER, it is possible to make a great many corrections without
accumulation of arithmetic error. If the quantities are not grouped, the correction of a
“small” ANSWER may be inaccurate.

5.3 CODES FOR ADAPTIVE QUADRATURE

The code presented here uses the three-point Gaussian rule to estimate integrals along
with the seven-point Kronrod rule to estimate errors. In FORTRAN the routine Adapt
has a typical call

CALL ADAPT (F, A, B, ABSERR, RELERR, ANSWER, ERREST, FLAG)

and in C++,

flag = Adapt(f, a, b, abserr, relerr, answer, errest);

and it is

flag = Adapt(f, a, b, abserr, relerr, &answer, &errest);

in the C version.

The first argument, F or f, is the name of the function that provides values of
the integral. In FORTRAN F must be declared in an EXTERNAL statement. The
next four variables are input parameters: A and B are the (finite) end points of the
integration interval, ABSERR and RELERR are the required absolute and relative er-
ror tolerances. The remaining variables are output quantities: ANSWER contains the
approximation to the integral and ERREST an estimate for the error of the approxi-
mation. The value of FLAG is 0 for a normal return with (5.18) satisfied. FLAG > 0
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signals that there was not enough storage for the queue, or that too many function eval-
uations were needed. Illegal input (ABSERR < 0 or RELERR < 10u) is indicated by
FLAG  = -1. In C and C++ the value of flag is the return value of the function Adapt.

Example 5.6. Let us try the code on a problem with an analytical integral, for ex-
ample, for which I = e - 1 = 1.71828182845904. Its output for a requested

accuracy of ABSERR= 10 -5  and RELERR = 10 -8  follows.

FLAG = 0
Approximate value of the integral = 1.718281004372522
Error in ANSWER is approximately 8.240865232136876E-007

7 evaluations of F were required.

Routine Adapt evaluates f at least seven times, so the code found this task to be very
easy. It is seen that ERREST approximates the true error of 0.82408652 × 10-6 ex-
t r e m e l y  w e l l . n

Example 5.7. A more interesting problem is to estimate again
with ABSERR = 10-5, RELERR = 10-8. Although continuous at x = 0, the integrand
has infinite derivatives there, so it does not behave like a polynomial near this point.
An adaptive code deals with this by using short intervals near the point. Application
of the Adapt code results in

FLAG = 0
Approximate value of the integral = 6.718072986891337E-001
Error in ANSWER is approximately -6.448552584540975E-005

119 evaluations of F were required.

The techniques of the next section can be used to produce an accurate value of I =
0.671800032402 for the integral, which tells us that the actual error is about -0.73 x
10-5. In comparison to Example 5.6, this problem required many more evaluations of
f, and ERREST is not nearly as accurate. It should be appreciated that all we need is a
rough approximation to the error, so this one is perfectly acceptable. It is instructive to
see how Adapt samples the integrand in this example. In Figure 5.6 ordered pairs (x,y)
are plotted (as are pairs (x, 0) along the x-axis); x is a sampling point used by Adapt and
y the corresponding value of the integrand. Notice how the points congregate around
the singularity at zero as the theory predicts they should. n

EXERCISES

Unless otherwise indicated, use as tolerances AB- (b) x1/10

SERR = 10-8 and RELERR = 10-6 for the comput-
ing exercises. (c) 1/[(3x - 2)2]

5.4 To test out Adapt try the following integrands.

(a) 4/(1 + x2) (d) 1 + sin2 38πx
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Figure 5.6 Sampling of the integrand of Example 5.8 by Adapt.

Use ABSERR = 10-12, RELERR = 10-6, and A = 0,
B = 1 for all parts. Which problems require the most
function evaluations? Why? What are the exact an-
swers? What are the actual errors? How good an esti-
mate is ERREST? On which problems is it better than
others? Why?

5.5 The integrand in Exercise 5.4d has period l/38.

Rewrite this as and use
Adapt on this with the same tolerances as in Exer-
cise 5.4. Is this approach faster? More accurate?

5.6 If a package is not available for evaluating the ze-
roth order Bessel function J0(x), then an alternative
is based on the formula

Use the formula to evaluate J0(x) for x = 1.0, 2.0, 3.0.
Compare with tabulated results (e.g., [7]).

5.7 The function y(x) = is called Dawson’s
integral. Tabulate this function for x = 0.0, 0.1, 0.2,
0.3, 0.4, 0.5. To avoid unnecessary function evalua-
tions, split the integral into pieces.

5.8 Derive a step function f(x) (a function that is con-
stant on subintervals of [a,b]) for which Adapt returns

FLAG = 0, ERREST = 0, yet ANSWER is totally
wrong. Explain.

5.9 A sphere of radius R floats half submerged in a liq-
uid. If it is pushed down until the diametral plane is
a distance p (0 < p < R) below the surface of the
liquid and is then released, the period of the resulting
vibration is

where k2 = p2/(6R2 - p2) and g = 32.174 ft/sec2. For
R = 1 find T when p = 0.50, 0.75, 1.00.

5.10 A population is governed by a seasonally varying abil-
ity of the environment to support it. A simple model
of this is the differential equation

where t measures time in months, P(t) is the popula-
tion at time t, and the remaining parameters are known
constants. This equation will be solved numerically in
the next chapter (Exercise 6.19); here we note that the
problem can be transformed into

where F(t) = exp[kM( t - (6r) /πsin(π t /6))]. As-

sume that k = 0.001, M = 1000, r = 0.3, P(0) =



5.4 SPECIAL DEVICES FOR INTEGRATION 191

5.11

5.12

250 and use Adapt efficiently to table P(t) for t =
0, 3, 6, 9,. . . , 36.

Examine the effect of noise on Adapt as follows. For
the input function F(x) use

T 1 := f(x) × 10n

T 2 := T1 + f(x)

F(x) := T2- T1

where f(x) is the original integrand (use some of the
examples in Exercise 5.4). With ABSERR = REL-
ERR (u the unit roundoff) try

and then n What is the behavior? Does
the algorithm appear to be stable?

To solve the nonlinear two-point boundary value prob-
lem

using standard initial value problem codes (e.g., Rke),
it is necessary to find the missing initial condition

y´(0). Observing that y´´ = exp(y) - 1 can be written
in the form

we can integrate to obtain

Since y(0) = 0, this says y´(0) = Solving for
y´(x) (by separation of variables) yields

which, when evaluated at x = 1, becomes

Use Adapt and Zero to find c and then y´(0).

5.4 SPECIAL DEVICES FOR INTEGRATION

Quadrature formulas approximate integrals using a finite number of samples. If the
samples are not representative, the result may be inaccurate despite an estimated error
that is acceptable. Put differently, the approximate integral and its error estimate are
based on an assumption that the integrand changes smoothly between samples. Adap-
tive codes generally do very well at recognizing the behavior of integrands, but f(x)
with sharp peaks or many oscillations in the interval present special difficulties. Some-
times it is necessary to assist a code by breaking up the interval of integration yourself
so as to ensure that the code will take samples in critical areas. A contrived example
will help make the point.

The family of integrals

can be evaluated readily with the recurrence

When n is large, the integrand has a sharp peak at the midpoint of the interval. With
tolerances of ABSERR = 10-5 and RELERR = 10-11, for n = 200 Adapt returned
ANSWER = 0.1252567600019366 and an estimated error of about -3.654 × 10-6 at
a cost of 203 evaluations of the integrand. The true error is about -3.654 × 10-6. The
code had no difficulty producing an accurate answer and an excellent error estimate
because it samples at the midpoint and “sees” the peak. However, if the interval is split
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into [0,2.6] and [2.6,π], the results are quite different. Integrating over the two inter-
vals and adding the results provides an approximate integral of 4.111202459491848 ×
10-7 and an estimated error of about -1.896 × 10-7 at a cost of 14 evaluations of the
integrand. The code has been completely fooled! This happened because the initial
samples did not reveal the presence of the peak. The code took the minimum number
of samples from each interval, namely seven, showing that it believed the problem to
be very easy. When this happens it is prudent to consider whether you agree that the
problem is very easy and if not, to break up the interval into pieces that will cause the
code to “see” the behavior of the integrand. Of course, one must be careful how to do
this breaking into pieces, as [0,2.6] and [2.6,π] won’t do for this problem.

Adapt is based on approximation by polynomials over finite intervals. As a con-
sequence it may have to resort to a great many subintervals to integrate functions that
do not behave like a polynomial near a critical point or to integrate functions over an
infinite interval. Gaussian quadrature formulas with a suitable weight function are a
good way to handle such problems. Specific formulas can be found in sources like
[13]. Substantial collections of quadrature codes such as those of QUADPACK, NAG,
and IMSL contain specialized routines for a variety of difficulties. In this section we
discuss some techniques for preparing problems to make them more suitable for a
general-purpose code like Adapt. With a little mathematical effort, a problem that the
code cannot solve might be put into a form that it can solve, and problems that it can
solve are solved more efficiently.

OSCILLATORY INTEGRANDS
If the integral f(x) is periodic with period p, that is, f(x + p) = f(x) for all x, and
b - a is some integer multiple of p, the integration should be performed over just one
period (or sometimes less) and symmetry used for the remainder. For example, for the
integral in Exercise 5.3,

If you have worked Exercise 5.3 you should have found that the composite trapezoid
rule is very efficient; consequently, if you have many functions to be integrated over a
period, it is advisable to use a special-purpose code based on the composite trapezoidal
rule.

Oscillatory nonperiodic functions are more difficult. Generally the integral should
be split into subintervals so that there are few oscillations on each subinterval. Adapt
may do this automatically, but the computation can be made more reliable and possibly
less expensive by a little analysis. As an example, let us estimate

This integral could be rewritten many ways, one of which is
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Proceeding in this manner, Adapt is called 20 times, but on each interval the inte-
grand has constant sign and varies smoothly between samples. This is a reasonable
way to deal with a single integral of this kind, but in contexts like Fourier analysis,
where many functions having the form of a periodic function times a nonperiodic
function need to be integrated, it is better to use special-purpose formulas such as
product quadrature. This particular example is treated in Case Study 3 where the use
of the general-purpose code Adapt is contrasted with Filon’s method for finite Fourier
integrals.

INFINITE INTEGRATION INTERVAL
Adapt cannot be applied directly to because it deals only with finite inter-
vals. One way to apply the code is to use the definition

The idea is to determine an analytical bound for the tail With it an end

point b can be selected large enough that equals to the accuracy
required. It does not matter if b is rather larger than necessary, so a crude bound for
the tail will suffice.

Another way to get to a finite interval is to change the variable of integration. For
example, to estimate the new variable s = 1/x yields the equivalent

integral on a finite interval. Generally this trades one difficulty
(an infinite interval) for another (a singularity at an end point). For this particular
example, so the integrand is continuous at s = 0 and
Adapt can be applied directly. If the original problem were then
s = x-1

would not help because it produces the same infinite interval. The choice
s = e-x leads to for which the integrand approaches 0 as
On the integration interval the transformation s = arctan x is often useful.

SINGULAR INTEGRANDS
By a singularity we mean a point where the function or a low order derivative is dis-
continuous. There are two cases: (1) finite jumps and (2) infinite values. In either case,
if there is a known singularity at a point c in (a,b), a basic tactic is to split the interval
into (a,c) and (c,b). In this way we can arrange that we approximate integrals with
integrands that are finite except possibly at one end.

If f(x) is finite at the singularity (as for step functions), Adapt can be used on each
piece and the results added to produce an approximation to This is clear
enough, but it must be kept in mind that a function that is smooth to the eye may not be
smooth to the code. Surprisingly often someone integrates a spline with a quadrature
routine. Of course, such an integration should be done analytically, but it may be
convenient to resort to an adaptive quadrature routine. Just remember that splines have
discontinuities in low order derivatives. If a routine like Adapt is applied to each piece
of a piecewise polynomial function, it will have no difficulty. Indeed, it will be exact
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if the degree of precision of the basic formula is sufficiently high. However, if no
attention is paid to the lack of smoothness at the knots, the code will have to deal with
it automatically. This can represent quite a substantial, and completely unnecessary,
expense as the code locates the knots and resorts to short intervals to deal with them.

Infinite discontinuities require some study. First we reduce the problem to com-

puting an integral with a singularity at one end, let us say a for definiteness.
Then we have to sort out the behavior of the integrand at a to convince ourselves that
the integral even exists. We have already seen problems for which the singularity is
logarithmic, f(x) ~ c ln (x) as and (in Example 5.7) algebraic, f(x) ~ x1/7 as

In the case of an algebraic singularity, f(x) ~ c (x - a)γ as it is necessary
that γ > -1 for the integral to exist. The behavior at the singular point tells us what
kind of weight function to introduce if we wish to deal with the difficulty by means of
a special formula.

One way to deal with singularities using a general-purpose code like Adapt is to
introduce a new variable with the aim of removing, or at least weakening, the singu-
larity. This can be done quite generally for singularities of the form f(x) ~ c ( x - a) γ.
Let us try a new variable t with x = a + tβ. Then

The new integrand G(t) ~ It will be nonsingular if β(γ + 1) - 1 > 0. By
choosing β = l/(γ + 1) (recall that γ > -l), the function G(t) ~ cβ as and we
can apply our favorite code to the new problem. If the code evaluates at the ends of
the interval of integration, we have to code the subprogram for G(t) carefully so that
the proper limit value is returned when the argument is t = 0. For such codes we
might prefer to take, say, β = 2/(γ + 1) so that G(t) ~ cβ t and the limit value is simply
G(0) = 0.

To illustrate the technique, suppose we want to compute

Often series expansions are an easy way to understand the behavior of an integrand.
Here the difficulty is at x = 0. Using the series for exp(x),

Thus f(x) ~ x-1/3 and γ = -1/3. The integral exists because γ > -1. If we take
β = 2/(γ + 1) = 3, the integral becomes

which presents no difficulty at all.
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Example 5.8. As a more substantial example, suppose we wish to approximate

Using the series expansion

we have

The integrand f(x) ~ x-1/4 as so the integral exists and a suitable change of
variables would be x = t4/3. Since Adapt does not evaluate at endpoints, it can be
applied in a straightforward way to the transformed integral

Applying Adapt directly to the original problem with ABSERR = 10-10 and REL-
ERR = 10-8, results in ANSWER = 1.913146656196971 and an estimated error of
about 1.485 × 10-8 at a cost of 1841 evaluations of f. On the other hand, apply-
ing the code to the problem after the change of variables results in ANSWER =
1.913146663755082 and an estimated error of about 1.003 × 10-8 at a cost of 147
evaluations off. n

A technique called subtracting out the singularity is a valuable alternative to a
change of variables. The integrand is split into two terms, one containing the singular-
ity that is integrated analytically and another that is smoother and is approximated nu-
merically. The technique is an alternative to using special formulas based on a weight
function suggested earlier for the integrals arising in plane potential computations:

Before it was assumed implicitly that f(x) is well behaved at x = 0. Then

f(x) ln(x) ~ f(0) ln(x)
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Figure 5.7 Integrands for Examples 5.8 and 5.9 near x = 0.

and we can write

The first integral is done analytically and the second numerically. The integral to
be computed numerically is easier than the original one. This is seen by expanding
f(x) = f(0) + f´(0)x + ··· and observing that the integrand behaves like f´(0)x ln(x)
as 

It is easier to apply this technique than to change variables, but a good change of
variables will be more effective because it deals with all the singular behavior rather
than just the leading term(s) that are subtracted out.

Example 5.9. Let us compare the techniques for the problem in Example 5.8. In
subtracting the singularity, we write

With the same tolerances as before, the output from Adapt is

ANSWER = 1.913146679435873, ERREST = -5.476 × 10-9

at a cost of 287 calls to f. See Figure 5.7 for a plot near x = 0 of the original integrand
and those from Examples 5.8 and 5.9. n

We end this section with a more realistic problem.
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Example 5.10. A conducting ellipsoidal column projecting above a flat conducting
plane has been used as a model of a lightning rod [2]. When the ellipsoid is given by
the equation

the potential function is known to be

The constant A depends only on the shape of the rod and is given by

The quantity λ is a function of the place where we want to evaluate the potential. It is
the unique nonnegative root of the equation

Suppose that for a tall, slender rod described by a = 1, b = 2, and c = 100, we seek
the potential V at x = y = z = 50. As we saw in the preceding chapter, the root λ of φ
is approximately 5928.359. To compute

(5.19)

we note that the integrand tends to zero like u-5/2 as so the integral is well
defined and the change of variables u = 1/t is satisfactory. This substitution produces

This is acceptable mathematically but is in poor computational form. Here it is easy to
rearrange to obtain

Using Adapt with RELERR = 10-5 and ABSERR = 10-l4 produces

ANSWER = 0.5705983 × 10-6, and ERREST = -0.52 × 10-11,

which requires 105 f evaluations. The integrand is approximately near t = 0, which
suggests that a better change of variables could have been made (e.g., u = 1/w2). Then
the integral is
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This is a somewhat easier integral to evaluate. Routine Adapt produces

ANSWER = 0.5705883 × 10-6, and ERREST = 0.46 × 10-11,

which requires 35 f evaluations. Note that the two results agree to the requested five
figures.

These transformations cannot be applied directly to computing A because the in-
terval remains infinite. However, since (5.19) has to be computed anyway, we could
split

into The first integral is computed to be 0.7218051 × 10-5 with an error
estimate of 0.31 × 10-10 and requires 357 f evaluations, while the sum using the
second value from above is 0.7788639 × 10-5. This yields A = 0.1283921 × 106 and
finally V = -46.3370. n

EXERCISES

Unless otherwise indicated, use as tolerances AB-
SERR = 10-8 and RELERR = 10-6 for the comput-
ing exercises.

5.13 Evaluate using Adapt

(a) on the problem as is,

(b) using one of the series techniques, and

(c) using a change of variable.

Compare the results.

5.14 Repeat Exercise 5.13 with

5.15 The integral

can be difficult to estimate because of the large num-
ber of oscillations as (although the amplitudes
are approaching zero, too).

(a) Use Adapt for this problem with RELERR =

Try Adapt with RELERR = 10-2 and ABSERR =
½ × 10-3, ½ × 10-6, and ½ × 10-9.

(c) Compare the answers in (a) and (b). Discuss effi-
ciency and accuracy.

5.16 The integral

has a rather nasty singularity at x = 0. Analyze the
nature of the singularity and argue informally that the
integral exists.

(a) Use Adapt for this problem as it is. How is this
even possible?

(b) Treat the singularity using a technique from Sec-
tion 5.4, then use Adapt.

(c) Compare the answers in (a) and (b). Discuss effi-
ciency and accuracy.

10-l2 and the three absolute tolerances ABSERR =
10-3, 10-6, and 10-9.

5.17  The exponential integral

(b) The change of variable t = 1/x produces the
equivalent integral Approximate this
by where b is chosen sufficiently large.
How large should b be in order to guarantee that

t > 0, arises in the study of radiative transfer and trans-
port theory [9]. Some manipulation shows that



5.18

5.19

The expression in braces is known to have the value
0.5772157, the Euler-Mascheroni constant. The

second term integrates analytically to - lnt. Hence,

Evaluate E1 (t) for t = 1.0, 2.0, 3.0. Does there appear
to be any difficulty caused by the behavior of the inte-
grand at x = 0?

In studying the conduction properties of a V-grooved
heat pipe, a heat flux constant C(θ) satisfies

( θ in radians). Compute values of C for θ = π/6, π/4,
π /3, 5π/12, 17π/36. It can be shown mathematically
that C(θ) is strictly decreasing and 0 < C(θ) < 1. The
denominator in the integrand vanishes at π/2. Use se-
ries expansions to sort out the behavior of the inte-
grand at this point, and if it causes difficulty, fix it.

Debye’s specific heat law gives the molar specific heat
of a solid, Cv, as a function of its temperature, T:

where R = 1.986 calories/mole is the molar gas con-
stant, UD = θD/T, and θD is the Debye temperature
that is characteristic of each substance. For diamond
θD = 1900K, evaluate Cv(T) at the temperatures in-
dicated in the accompanying table. Compare with the
experimental values given. Does the behavior of the
integrand at x = 0 appear to cause problems?

5.20
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The Gibb’s effect describes the behavior of a Fourier
series near a discontinuity of the function approxi-
mated. The magnitude of the jump can be related to
the integral

which is about 0.281. Routine Adapt cannot be ap-
plied directly because it requires a finite interval. One
way of dealing with this is to drop the tail of the inte-
gral, that is, approximate the integral by

This does not work well in this instance because the
integrand decays slowly as To see this, work
out an analytical bound for the error made in dropping
the tail, that is, bound

Integration by parts leads to

The integral arising here is easier to approximate be-
cause the integrand decays faster. Integration by parts
can be repeated to get integrals that are even easier
to approximate. Approximate the original integral ac-
curately enough to verify that its magnitude is about
0.281. Do this by applying Adapt to the integral that
arises after integrating by parts a few times. To ap-
ply the code you will have to drop the tail. There are
two sources of error in the computation. One is the
error made by Adapt, which you can control by the
tolerances that you specify. The other error is due to
dropping the tail. You can control this error by work-
ing out an analytical bound for the error and choosing
a value b large enough to guarantee the accuracy that
you need.
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5.5 INTEGRATION OF TABULAR DATA

The problem addressed here is the approximation of given only (xn,yn) for
1 < n < N, where yn = f(xn). Adaptive quadrature routines cannot be used because
they automatically choose the points where f is to be evaluated and it is unlikely that
such points will correspond to the data points {xn}. The basic approach is the same as
in Section 5.1: approximate f(x) by a piecewise polynomial function F(x), which is
then integrated exactly.

Since the complete cubic interpolating spline worked so well as an approximating
function in Chapter 3, it is a natural choice for F(x). For the sake of simplicity, let us
assume that a = x1 and b = xN. Then, using the notation of Chapter 3 for the spline,

Substituting the expressions for an, bn, and dn in terms of the data and cn leads to

(5.20)

An algorithm based on this technique first uses SPCOEF/Spline_coeff from Chapter 3
to get and then evaluates (5.20). In terms of h = maxn(xn - xn-1), the com-
plete cubic spline S(x) provides an approximation to a smooth function f that is accu-
rate to O(h4). Accordingly, if the sample points xi are sufficiently dense in [x1 ,xN] and
the function is sufficiently smooth, we can expect to be an O(h4) estimate
of

The cubic spline is familiar and it is easy enough to manipulate once the linear
system for has been solved, but there are other interesting possibilities. The
linear system arises because S(x) is required to have two continuous derivatives on
[x1 ,xN]. This smoothness is unnecessary to the approximation of The
shape-preserving spline of Section 3.5.2 is less smooth but is attractive here for several
reasons. The reasons and the following formula are left as an exercise:

(5.21)

A widely used scheme is based on local quadratic interpolation. To approximate
f(n) by a quadratic over [xn,xn+1 ], we must interpolate it at three points. One possi-
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bility is to interpolate at {xn-1 ,xn ,xn+l}. Another is to interpolate at {xn ,xn+1 ,xn+2 } .
There is no obvious reason to prefer one to the other and the computation is inexpen-
sive, so a reasonable way to proceed is to compute both and average the two results.
This provides a symmetrical formula that smooths out mild measurement errors in the
tabulated values off. Of course, at the ends n = 1 and n = N - 1, only one quadratic
is used. The formula for a typical (interior) interval [xn ,xn+l ] is

(5.22)

Reference [4] contains further discussion and a FORTRAN code AVINT.
There is no obvious way to obtain a good estimate of the error of these quadrature

rules, much less to control it. The difficulty is inherent to functions defined solely by
tables.

EXERCISES

5.21 In performing an arginine tolerance test, a doctor mea-
sures glucose, insulin, glucagon, and growth hormone
levels in the blood over a l-hour time period at 10-
minute intervals to obtain the following data:

time glucose insulin
0 102 11
10 114 26
20 122 36
30 132 47
40 115 39 5.22
50 107 27
60 100 15 5.23

time glucagon growth
hormone

0 188 1.70
10 1300 1.70
20 2300 1.20
30 2600 2.50
40 1800 7.25
50 840 8.10
60 460 8.00

The doctor is interested in the integrated effect of each
response. For example, if the glucose curve is repre-
sented by g(t), then is desired. Compute
one of the integrals by

(a) the method (5.20) based on splines,

(b) the method (5.21) based on splines, and

(c) the method based on averaging quadratics (5.22).

Compare the results.

Supply the details of the derivation of (5.22). Work
out the special forms for the end points.

Derive the formula (5.21) for the integration of tabular
data using the shape-preserving spline. When might
you prefer this to formula (5.20) based on the com-
plete cubic spline? Consider the cost of computing
the spline and how well the spline might fit the data.
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5.6 INTEGRATION IN TWO VARIABLES

Definite integrals in two or more variables are generally much more difficult to approx-
imate than those in one variable because the geometry of the region causes trouble. In
this section we make a few observations about the common case of two variables,
especially as it relates to finite elements.

Integration over a rectangle,

can be handled easily with the formulas for one variable by treating I as an iterated
integral. Thus we first approximate

with one quadrature rule using N1 points {x i} and then

using another rule of N2 points {y j}. This approach generalizes to

It is even possible to use an adaptive code for the integrals in one variable, but the
matter is a little complicated. In Fritsch, Kahaner, and Lyness [6] it is explained how
to go about this; for pitfalls to be avoided, see [11, Section 9].

Degree of precision now refers to polynomials in two variables, so a formula of,
for example, degree 2 must integrate all polynomials of the form

exactly on the region of interest. Just as in the case of one variable, we can derive
quadrature formulas by interpolating f(x,y) and integrating the interpolant. This is
quite practical for integration over a square or a triangle and is often done. The scheme
for rectangles based on iterated integrals can be quite efficient when the formulas for
integration in one variable are Gaussian. They are not necessarily the best that can be
done. As in the one-dimensional case, formulas can be derived that use the smallest
number of evaluations of f(x,y) to obtain a given degree of precision. Nevertheless,
the most efficient formulas may not be the most attractive in practice. The approach
based on interpolation can be very convenient when the interpolation is done at points
interesting for other reasons, as in finite elements. The iterated integral approach can
be very convenient because of its simplicity and generality.

In one dimension the transformation of any finite interval [a,b] to a standard one
such as [-1,l] is trivial. In two dimensions the matter is far more important and
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difficult. Now an integral over a general region R,

must be broken up into pieces that can be transformed into a standard square or trian-
gle. Discretizing a region R in this way is an important part of any finite element code.
If the region is decomposed into triangles (with straight sides), the easy transformation
was stated in Chapter 3. An integral over a general triangle T becomes an integral over
the standard, reference triangle T*,

Here |D*| is the determinant of the Jacobian of the transformation. It relates the in-
finitesimal area dydx in the one set of variables to that in the other set. For the affine
transformation from one triangle (with straight sides) to another, this matter is easy.
In the general case it is necessary to investigate whether the transformation is a proper
one, meaning that the image covers all the triangle T* and has no overlaps.

The main point of this section is that the basic ideas of the one variable case
carry over to several variables. There is the additional and very serious complication
of splitting up the region of integration and transforming properly each piece to a
standard region. The whole area of integration of functions of more than one variable
is still the subject of research.

EXERCISES

5.24 Given the triangular domain T with vertices (0,0),
(1,0), and (01), we would like to approximate

over T.

(a) Derive a quadrature approximation of the form

A 1 f (0, 0) + A2f(0, 1) + A3f(1, 0)

where the coefficients are chosen to make the approx-
imation exact for f = 1, x, and y.

(b) Derive a corresponding composite quadrature for-
mula for the subdivision obtained by cutting T into
four subtriangles by connecting the midpoints of the
edges of T.

5.7 CASE STUDY 5

This case study has two parts, one devoted to a problem involving singular integrands
and the other to problems with integrands that have sharp peaks. As usual, our aim is
to understand the difficulties and what might be done to make it possible to solve the
problems effectively with standard codes. The first part is an example of a problem
requiring more than one code for its solution. The second part develops a technique of
classical applied mathematics and uses it for insight.

Reference [5] discusses the motion of a particle of mass m at position q in a po-
tential field V(q). In suitable circumstances the motion is a libration (or oscillation or
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vibration). For an energy level E, it is found that if the equation E - V(q) = 0 has
simple roots q1 < q2, the period T of the motion is given by

The integrand is singular at both end points, so the first thing we must do is sort out its
behavior there. Near a simple root qi, a Taylor series expansion tells us that as

hence the singularity is integrable. The argument shows why the theory requires that
the roots be simple. If qi were a multiple root, say double, the integrand would behave
like

and the integral would not exist. Percival and Richards [5] write, “Gaussian numerical
integration is a very effective method of obtaining the periods of libration in practice.”
Gaussian quadrature is generally quite effective, but a crucial point in the present situ-
ation is that it can be applied directly because it does not evaluate the integrand at the
ends of the interval. The formulas of Adapt have the same property.

As a simple example let us take V(q) = (q + l)(q - 0.8)7 and E = -4. As can
be deduced easily from the derivative V´(q) = (8q + 6.2)(q - 0.8)6 or by inspection
of Figure 5.8, V(q) has a minimum at q = -0.775, and for V(-0.775) < E < 0, the
equation E - V(q) = 0 has two simple roots, one in [-1, -0.775] and the other in
[-0.775,0.8]. To evaluate the integral, we must first compute these roots numerically.
The roots should be located very accurately because they define the integral that we
wish to approximate. Moreover, if they are not determined accurately, a quadrature
code might evaluate the integrand at an argument q for which the integrand is not
defined because of taking the square root of a negative number or dividing by zero.
A problem like this is very easy for Zero, so we take ABSERR = 10-l4 and REL-
ERR = 10-14. Even with these stringent tolerances the code requires only 21 function
evaluations to find that -0.9041816 with a residual of about 1.3 × 10-l5 and

-0.5797068 with a residual of about 1.9 × 10-15. Because E provides a natural
measure of scale for this equation, the residuals and a backward error analysis make it
clear that the roots are very accurate, although of course we already know that because
Zero reported that it had obtained the specified accuracy.

Using the computed values for the end points, it is possible to approximate the
integral by a simple call to Adapt. With ABSERR = 10-6 and RELERR = 10-6 this
results in an answer of about 0.444687 with an estimated error of about 9.0 × 10-7 at a
cost of 3171 function evaluations. This is relatively expensive for Adapt with its (arbi-
trary) limit of 3577 evaluations. If we wanted to do a number of integrals of this kind,
some preparation of the problem would be worthwhile. We have already worked out
the dominant behavior of the integrand at the end points and the value of the derivative
appearing in the expression is readily available, so the method of subtracting out the
singularity would be easy to apply. However, because the singularity is algebraic, it
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Figure 5.8 The potential V(q) = (q+ l)(q - 0.8)7.

is easy to change variables and this technique is generally more effective. We need to
break the interval of integration so that there is at most one singularity in each piece
and when present, it is an end point. A natural choice is [q1, -0.775] and [-0.775, q2].
In the notation used earlier in the chapter, γ = -1/2, so we might choose β = 2, that
is, introduce the variable t2 = q - q1 in the portion to the left and t2 = q2 - q in the
portion to the right. Adapt is used twice with the same tolerances as before and the
integrals are added to obtain an answer of about 0.444688. The estimated errors can
also be added since they are estimates of the error rather than the magnitude of the
error, and this gives an estimated error of about 8.2 × 10-7. The value for the integral
is consistent with that of the direct approach, but it costs a total of only 56 function
evaluations.

Let us turn now to a different kind of difficulty, integrands with sharp peaks. Many
important problems of applied mathematics are solved by transform methods that lead
to the task of evaluating integrals. A method developed by Laplace illustrates the use of
asymptotic methods for this purpose. A family of integrals depending on a parameter
s >> 1 of the form

is considered. If the function f(x) has a unique maximum at x0 with a < x0 <     the
integrand has a sharp peak at x0, and the greater s is, the sharper the peak. The idea is
first to approximate f(x) near x0 by

and then to approximate the integral by integrating this function. Because the integrand
decays so rapidly for large s, the approximation to the integral is scarcely affected by
extending the interval of integration to This is done in order to integrate the
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approximating function analytically. It amounts to approximating the integrand by the
familiar bell-shaped curve of a normal distribution with mean x0 and standard devia-
tion The result of these approximations is Laplace’s formula,

A classic application of this formula is to the Stirling approximation of the gamma
function seen in Example 1.10. Some manipulation of the integral definition of the
gamma function puts it into the form required:

(Here t = xs.) Laplace’s formula with f(x) = lnx - x and x0 = 1 then gives

Laplace’s formula and the class of integrals it approximates illustrate how the ap-
proximations of classical applied mathematics differ from those of numerical analysis.
A general-purpose code like Adapt that accepts any smooth integrand is likely to fail
when presented an integrand with a sharp peak because it is not likely to “see” the
peak. By this we mean that the code is not likely to take samples from the small subin-
terval where the peak occurs, so it, in effect, approximates the integrand by a function
that does not have a peak. The approach of applied mathematics is much less general
because it requires that the location of the peak be supplied along with information
about its width. An advantage of the approach is that it provides important qualitative
information about how the integral depends on a parameter. On the other hand, the
accuracy of the formula depends on the parameter, and for a given value of s it might
not be enough. As is often the case, when used to obtain a numerical approximation
to an integral, the approaches are complementary with the one working better as the
parameter increases and the other working worse, and vice versa. Let us take advan-
tage of the insight provided by Laplace’s method to compute an accurate value for
an integral with a sharp peak using a general-purpose code. Clearly we ought first to
locate the peak, then get some information about its width, and finally break up the in-
terval appropriately. D. Amos [l] does exactly this to evaluate integral representations
of statistical distributions. In each case an evaluation of the function amounts to the
numerical integration of a bell-shaped integrand with a single maximum at x0. First
Newton’s method is used to locate x0. A scale σ is then determined using the Laplace
method. Finally quadratures over intervals of length σ to the left and right of x0 are
summed until a limit of integration is reached or the truncation error is small enough.
The basic idea is simple, but the generality of the distributions allowed and the re-
finements needed for fast evaluation of the functions make the details too complex to
describe here. To illustrate the approach, we refine the Stirling approximation for the
computation of a large factorial, a simple example that allows the easy computation of
a reference value.
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As pointed out in Chapter 1, if we are to evaluate the gamma function for a large
argument, we must scale it to avoid overflow. The Stirling approximation derived
above suggests that we approximate

which is both simple and well scaled. If, for example, we take s = 201, we can obtain
a reference value from

The Stirling approximation is which is about 0.17680393 and would be
adequate for many purposes. An attempt to approximate the integral simply by trun-
cating the semi-infinite interval to [0, 100] and calling Adapt with ABSERR = 10-8

and RELERR = 10-8 results in a value of 0 at a cost of seven function evaluations.
If you should find that Adapt requires only seven function evaluations, the smallest
number it makes, you should give some thought to your problem. Either the integral
is very easy or the scale of the problem has been missed entirely. For this integrand
x0  = 1 and The derivation of the Laplace formula suggests
that the bulk of the integral is accounted for by the interval [ x0 - 3σ, x0 + 3σ], so we
compute it first and then add on approximations to the integrals over subintervals of
length σ on each side. The table shows the approximations computed in this way for
the interval [1 - kσ, 1 + kσ] along with the cumulative cost in function evaluations.

The last interval here was about [0.5,1.5], making the point that only a small portion
of the interval of integration is important. Notice that the code is doing the minimal
number of function evaluations (14 for the two pieces) for the larger k. The quadra-
tures are very cheap then because the integrand is small and there is an absolute error
tolerance.
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EXERCISES

Unless otherwise indicated, use ABSERR = 10-8 and
RELERR = 10-6 for the computing exercises.

5.25 The potential inside the unit circle due to a specified
potential f(θ) on the boundary is given by Poisson’s
integral:

There is difficulty evaluating this integral as
since for θ´ = θ,

This is not too severe because the term is large only
if r is very close to 1, but in principle there should be
no difficulty at all since as
Bateman [2, pp. 239-241]). Realizing that

and argue that it should have somewhat better numer-
ical properties. Explore this by evaluating φ(r,θ) for r
approaching 1 with f(θ) = sinθ. The analytical solu-
tion is then just ϕ(r, θ) = rsinθ.

5.26 The potential in a conducting strip of width b with
potential zero on the bottom edge and a specified po-
tential F(x) on the upper edge is

where β = πy/b. Suppose that an experimenter ap-
plies the potential F(x) = 1 for |x| < 0.99 and F(x) =
exp[- 100( |x| - 0.99)] for |x| > 0.99. When b = π,
compute and plot the potential along the middle of the
strip, ψ(x, π/2).

Realizing that

bound the effect on ϕ(x,y) for y    0 of replacing the
derive the form infinite interval by a finite one:



For a suitable choice of z, use this instead of the infi- 5.28
nite interval. Show for the given F(x) that ϕ(x,y) =
ϕ(-x,y), so only a plot for x > 0 is necessary.

5.27 This exercise is representative of a great many com-
putations arising in the use of the classical separa-
tion of variables technique for solving field problems.
Typically, one must compute many roots of nonlinear
equations and integrals. The temperature distribution
in a cylinder of radius a and height b with the bottom
held at a temperature zero, the top at a temperature
f(r), and the side dissipating heat according to New- 5.29
ton’s law of cooling, can be represented by a series.
If the thermal conductivity of the cylinder is k and the
thalpance is ε, then the temperature ϕ(r,z) is

The numbers qn are the positive roots of the equation

where the function J0(x) and J1(x) are Bessel func-
tions of the first kind of orders zero and one, respec-
tively. The coefficients An are given by

The roots qn depend only on the geometry and the ma-
terial. Once they have been computed, one can con-
sider virtually any temperature distribution f(r) by 5.30
computing the quantities An. For k/ε a = 2, we give
the problem of solving for qna for n = 1, 2, 3 in Ex-
ercise 4.18. If you have not done that problem, the
roots are 0.940770563949734, 3.95937118501253,
and 7.08638084796766. Then for a = 1, compute
A1, A2, A3 for f(r) = exp(-r) - exp(-1).
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If 6 what is C? To answer this,
apply Zero with modest tolerances to compute the root

C of f(C) = 6 Evaluate the in-
tegral appearing in the function with Adapt and more
stringent tolerances. A little analysis will provide an
appropriate bracket to use for the root solver. Show
analytically that the root is simple. This is an exam-
ple of computing the roots of a function that is rela-
tively expensive to evaluate. How many evaluations
did Zero need?

Reference [3] contains the following problem. The
length L of a carbon dioxide heat exchanger with in-
put temperature T1 and output T0 satisfies

where m = 22.5, D = 0.495, Ts = 550 (temperature of
the CO2),

For T1 = 60, and L = 10, use Adapt and Zero to com-
pute T0.

The code Adapt uses a queue to hold the subinter-
vals whose quadrature errors are deemed too large to
pass the tolerance test. Do you think there would be
any difference in performance if a stack were used in-
stead? Explain. Modify Adapt so that it uses a stack
and test it on some difficult problems to see what ac-
tually happens.



CHAPTER 6

ORDINARY DIFFERENTIAL
EQUATIONS

Historically, ordinary differential equations have originated in chemistry, physics, and
engineering. They still do, but nowadays they also originate in medicine, biology,
anthropology, and the like. Because differential equations are more complex theoreti-
cally than the other topics taken up in this book and because their numerical solution
is less well understood, the art of numerical computing plays an important role in this
chapter. There is a subdiscipline of numerical analysis called mathematical software
that colors all the work of this book. It is particularly evident in this chapter with its
more complex task.

6.1 SOME ELEMENTS OF THE THEORY

The simplest kind of ordinary differential equation problem is to find a function y(x)
with a derivative continuous on [a,b] such that

y´(x) = f(x), a < x < b,

for a given continuous function f(x). From elementary calculus it is known that such a
function y(x) exists—the indefinite integral of f(x). However, if y(x) satisfies the dif-
ferential equation, so does y(x) + c for any constant c. To specify a particular solution,
some more information about y(x) is required. The most common kind of additional
information supplied is the value A of y(x) at the initial point a. Then

is the unique solution to the initial value problem consisting of the differential equation
satisfied by y(x) and the initial value of y(x).

The general first order ordinary differential equation has f depending on y as well
as x. It is assumed that f(x,y) is continuous for a < x < b and all y. A solution y(x) is
a function of x with a continuous derivative for a < x < b that satisfies the equation

y´(x) = f(x,y(x)) (6.1)

210



6.1 SOME ELEMENTS OF THE THEORY 211

for each x in the interval [a,b]. Typically the solution desired is specified by its value
at the initial point of the interval:

y(a) = A. (6.2)

Equation (6.2) is called an initial condition, and the combination of (6.1) and (6.2) is
called an initial value problem for an ordinary differential equation.

In elementary treatments of differential equations, the initial value problem has a
unique solution that exists throughout the interval of interest and that can be obtained
by analytical means (more familiarly called a “trick”). However, for most problems
that are not contrived, an analytical solution is impossible to obtain or is less satisfac-
tory than a numerical solution. Matters are also complicated by the fact that solutions
can fail to exist over the desired interval of interest. Problems with solutions that
“blow up” place a special burden on a numerical procedure, although we might well
expect a general-purpose code to compute such solutions until overflow occurs. Prob-
lems that have more than one solution are especially troublesome. Difficulties with
existence and uniqueness will be excluded at the level of the theory to be developed
here. A simple condition that guarantees that these difficulties will not occur can be
formulated in terms of how f(x,y) depends on y.

The function f(x,y) satisfies a Lipschitz condition in y if for all x in the interval
[a,b] and for all u, v,

with L a constant, hereafter called a  Lipschitz constant. The inequality assumes a more
familiar form if f has a continuous partial derivative in its second variable, for then

for some w between u and v. If is bounded in magnitude for all arguments, then
f satisfies a Lipschitz condition and any constant L such that

for all x in [a,b] and all w is a Lipschitz constant. If the partial derivative is not
bounded, it is not hard to show that the inequality (6.3) cannot hold for all u, v and all
x in [a,b], so f does not satisfy a Lipschitz condition.

Example 6.1. The function f(x,y) = x2 cos2 y + y sin2x defined for |x| < 1 and all
y satisfies a Lipschitz condition with constant L = 3. To see this, differentiate with
respect to y to get

and so for the range of x allowed

n
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Example 4.2. The function f(x,y)    does not satisfy a Lipschitz condition
because it has a continuous partial derivative for y > 0 that is not bounded as

An important special case of (6.1) is that of a linear differential equation, an equa-
tion of the form f(x,y) = g(x)y + h(x). The function f(x,y) being continuous in (x,y)
is then equivalent to g(x) and h(x) being continuous in x. Because

and because a continuous function g(x) is bounded in magnitude on any finite interval
[a,b], a linear equation is Lipschitzian in nearly all cases of practical interest.

Example 6.3. Dawson’s integral is the function

You should verify that it is a solution of the initial value problem for the linear differ-
ential equation

y´ = l - 2x y

y(0) = 0.

On the interval [0,b] for any b  0, the function f(x,y) = 1 - 2 xy is continuous and
Lipschitzian with Lipschitz constant L = 2|b|. n

Sufficient conditions for existence and uniqueness can now be stated formally. For
a proof, see [3].

Theorem 6.1. Let f(x,y) be continuous for all x in the finite interval [a,b] and
all y and satisfy (6.3). Then for any number A, the initial value problem y´ = f(x,y),
y(a) = A has a unique solution y(x) that is defined for all x in [a,b].

So far we have spoken of a single equation in a single unknown y(x). More com-
monly there are several unknowns. By a system of m first order differential equations
in m unknowns is meant

(6.4)
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Along with the equations (6.4) there are initial conditions

Y1(a) = A1

Y2(a) = A2

( 6 . 5 )

then (6.4) and (6.5) become

Ym(a) = Am.

This can be written in tidy fashion using vector notation. If we let

Y´ = F(x, Y)

Y(a) = A.

(6.6)

(6.7)

We again refer to the combination of (6.4) and (6.5) as an initial value problem. Using
vector notation makes the case of m unknowns look like the case of one unknown. One
of the fortunate aspects of the theory of the initial value problem is that the theory for
a system of m first order equations is essentially the same as for a single one. Proofs
for systems just introduce vectors and their norms where there are scalars and absolute
values in the proofs for a single equation. For the vector function F( x,Y) to satisfy
a Lipschitz condition, it is sufficient that each Fi (x, Y1, Y2,. . . , Ym) satisfy a Lipschitz
condition with respect to each variable Yj; that is, there are constants Lij such that

for each i, j. With this, the natural analog of Theorem 6.1 holds. Since the theory of
numerical methods for a system of equations is also essentially the same as for a single
equation, we content ourselves with treating the case of a single equation in detail and
just state the analog for systems.

Most computer codes require the problem to be provided in the standard form
(6.4) and (6.5), but equations arise in a great variety of forms. For example, second
order equations, that is, equations of the form

y´´ = g(x,y,y´),

are quite common in the context of dynamical systems. The definition of a solu-
tion is the obvious extension of the first order case and suitable initial conditions are
y(a) = A1, y´(a) = A2. This is a second order equation for one unknown quantity, y(x).
An equivalent problem in the standard form (6.4) can be found by introducing two
unknown quantities and finding two first order equations satisfied by them. One of the
new unknowns has to provide us with the original unknown, so we take Y1(x) = y(x).
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We take the other unknown to be the derivative of the original unknown, Y2(x) = y´(x).
Differentiating the new unknown quantities, we find that

Y´1 = y´(x) = Y2(x),

Y´2 = y´´(x) = g(x,y(x),y´(x)) = g(x,Y1(x),Y2(x)).

In this way we come to the system of two first order equations in two unknowns:

Y´1 = Y2

Y´2 = g(x,Y1,Y2).

This is in standard form and the theory may be applied to it to conclude the existence
of unique functions Y1(x) and Y2(x) that satisfy initial conditions

Y1(a) = A1

Y2(a) = A2.

The solution of the original problem is obtained from y(x) = Y1(x). To verify this, first
notice that one of the equations states that y´(x) = Y´1(x) = Y2(x), and the other that

y´´(x) = Y´2(x) = g(x,Y1(x),Y2(x)) = g(x,y(x),y´(x)).

Similarly it is found that the initial conditions are satisfied.
The general mth order equation in one unknown,

y(m) = g(x, y, y´, . . . , y(m-1)

y(a) = A1,y´(a) = A2,. . . , y(m-1) = Am,

can be put into standard form via the m unknowns Y1(x) = y(x), Y2(x) = y´(x), . . .,
Ym(x) = y(m-l)(x) and

Example 6.4. To convert the initial value problem

y´´ + (y2- l)y´ + y = 0, y(0) = 1, y´(0) = 4

into a system of first order equations, let

Y1(x) = y(x), Y2(x) = y´(x)

Then

Y´1 = y´ = Y2

Y´2 = y´´ = -(Y2
1 - l)Y2 - Y1
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and

Y1(0) = 1, Y2(0) = 4.

This can be put into the form (6.7) by defining

Example 6.5. Consider the system of second order equations

Let Y1(x) = u(x), Y2(x) = u´(x), Y3(x) = v(x), and Y4(x) = v´(x). Then the equations
are

Y´2 + 5Y4 + 7Y1 = sinx, Y´4 + 6Y4 + 4Y2 + 3Y1 + Y3 = cosx,

which is rearranged as

with initial conditions

Y 1(0) = 1, Y2(0) = 2, Y3(0) = 3, Y4(0) = 4.

To put this into the form (6.7) define

and

Notice that for each unknown in the original set of equations, new unknowns are in-
troduced for the original unknown and each of its derivatives up to an order one less
than the highest appearing in the original set of equations. n

The procedure we have illustrated is the usual way to convert a system of higher
order equations to a system of first order equations. There are, however, other ways to
do it. For some examples, see Exercise 6.6.
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EXERCISES

6.1 As an example of nonuniqueness of solutions, verify
that for any constant c, 0 < c < b, the function y(x)
defined by

is a solution of the initial value problem

6.2 Consider the problem

Verify that

(a) y(x) = 1 is a solution on any interval containing
x = 0,

(b) y(x) = coshx is a solution on [0,b] for any b > 0,
and

(c) y(x) = cosx is a solution on a suitable interval.
What is the largest interval containing x = 0 on which
cosx is a solution?

6.3 Verify the statement in the text that Dawson’s integral
is a solution of the initial value problem

y´ = l - 2x y

y (0) = 0.

6.4 For each initial value problem, verify that the given
y(x) is a solution.

(d) y´ = 100(sinx - y) , y(0) = 0;y(x) = [102(e-100x -
cosx) + 104 sin x]/(104 + 1)

6.5 Do the following functions satisfy a Lipschitz condi-
tion? If so, give suitable constants.

(a) f(x,y) = 1 + y2 for 0 < x π/2

(b) f(x,y) = 1 - 2xy for 0 < x < b

(c) f(x,y) = y/x for 1 < x < 2

(d) f(x,y) = y/x for -1 < x < 1

(e) f(x,y) = cosx siny for -106 < x < 106

6.6 Verify for each of the following systems of equations

(a) Y´1 = Y2, Y´
2 = -x2Y1 - xY2

(b) Y´1 =

(c) Y´1 = -(x/2)Y1 + Y2, Y´2 = (1/2 - 3x 2/4)Y1 -
( x / 2 )Y 2

that Y1(x) = y(x), where y(x) satisfies the second order
equation

y´´(x) + xy´(x) + x2y(x) = 0.

6.7 Put the following problems in standard form. Differ-
entiation is with respect to t.

(a) u(4) + etu´ - tu = cos αt

(b) u´´ + v´ cost + u = t,v´ + u´ + v = et

(c) u´´ + 3v´ + 4u + v = 8t,u´´ - v´ + u + v = cost

(d) mx´´ = X(t, x, y, z, x´, y´, z´),
my´´ = Y(t, x, y, z, x´, y´, z´),
mz´´ = Z(t, x, y, z, x´, y´, z´)

(e) u(6) + uu´ = et

6.2 A SIMPLE NUMERICAL SCHEME

Let us again consider the initial value problem (6.1) and (6.2),

y  ́ = f(X,Y)

y(a) = A,

on the interval [a,b]. The numerical methods we consider generate a table of approx-
imate values for y(x). For the moment we suppose that the entries are for equally
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spaced arguments in x. That is, we choose an integer N and for h = (b - a) /N, we
construct approximations at the points xn = a + nh for n = 0, 1, . . . , N. The notation
y(xn) is used for the solution of (6.1) and (6.2) evaluated at x = xn, and yn is used for
an approximation to y(xn).

A differential equation has no “memory.” If we know the value y(xn), Theorem 6.1
applies to the problem

u´ = f(x,u)

u(xn) = y(xn)

and says that the solution of this initial value problem on the interval [xn,b] is just
y(x). [After all, y(x) is a solution and the theorem says there is only one.] That is, the
values of y(x) for x prior to x = xn, do not directly affect the solution of the differential
equation for x after xn. Some numerical methods have memory and some do not. The
class of methods known as one-step methods have no memory—given yn, there is a
recipe for the value yn + 1 that depends only on xn, yn, f, and h. Starting with the obvious
initial value y0 = A, a one-step method generates a table for y(x) by repeatedly taking
one step in x of length h to generate successively y1, x2, . . . .

The simplest example of a one-step method is Euler’s method. We study it because
the details do not obscure the ideas and the general case is much the same. A Taylor
series expansion of y(x) about x = x, gives

with xn < ξn < xn+1, provided that y(x) Using the fact that y(x) satisfies
(6.1), this is

For small h,

(6.8)

This relation suggests

Euler’s method:

y0 = A

yn+l = yn + hf(xn,yn), n = 0, 1, . . . , N - 1. (6.9)

Example 6.6. Tabulate Dawson’s integral on [0, 0.5] using Euler’s scheme with h =
0.1. Recall from Example 6.3 that Dawson’s integral is the solution of the initial value
problem

y´ = 1 - 2xy

y(0) = 0.
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Taking y0 = 0, we see that

y1 = 0 + 0.1 × (1 - 2 × 0 × 0) = 0.l;

similarly,

y2 = 0.1 + 0.l × (1 - 2 × 0.1 × 0.1) = 0.198.

Continuing in this manner, the following table results. The true values of the integral
y(xn) are taken from [7].

To study the convergence of Euler’s method, we relate the error at xn+1 to the error
at xn. Subtracting (6.9) from (6.8) gives

Denoting the error at xn by En = y(xn) - yn, the Lipschitz condition on f and this
equation imply that

With the definition

we obtain

(6.10)

Here the term h2M2/2 bounds the error made in the current step and the other term
bounds the error propagated from preceding steps.

To prove convergence, we bound the worst error that can arise as we step from
x0 = a to xN = b and then show that it tends to zero as h does. The first order of
business is to see how rapidly the inequality (6.10) allows the error to grow. To do this
we establish a general result for later use. Suppose there are numbers δ > 0 and M > 0
such that the sequence d0, d1 , . . . satisfies
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The case n = 0,

d1 < (1 + δ)d0 + M,

can be combined with the case n = 1 to obtain

d2 < (l + δ)dl + M < (1 + δ) 2d0 + M[1 + (1 + δ)].

Similarly,

d 3  <  ( l  +  δ )d2 + M < (1 + d)3d0 + M[1 + (1 + δ) + (1 + δ)2].

At this point we might guess that

dn < (1 + δ) n d0 + M[1 + (1 + δ) + (1 + δ)2+ ··· +(1 + δ)n-1]. (6.11)

To prove this, we use induction. The inequality (6.11) certainly holds for n = 1, 2, 3.
Suppose the inequality is true for the case n = k. Then

dk + 1 < (1 + δ)dk + M

< (1 + δ)k+1 d0 + M[1 + (1 + δ) + ··· + (1 + δ)k],

which establishes the result for n = k + 1 and completes the induction argument.

Lemma 6.1. Suppose there are numbers δ > 0 and M > 0 such that the sequence
d0, d1 , . . . satisfies

dk+l < (l + δ) dk + M, k = 0, l, . . . .

Then for any n > 0,

(6.12)

Proof. Using the identity

with x = 1 + δ, we see that the right-hand side of (6.11) can be rewritten in the form

(6.13)

Expansion of the exponential function about zero gives for δ > 0,

It then follows that

and
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This implies that (6.13) is bounded by

which establishes (6.12). n

Returning now to Euler’s method, we apply Lemma 6.1 to (6.10) and arrive at

However, nh = xn - a and E0 = y0 - A = 0, so

(6.14)

Using xn - a < b - a, this implies that

(6.15)

It is seen that the error of Euler’s method is bounded by a constant times h. When the
value of the constant is immaterial, such expressions are written as 0(h).

Generally speaking, we try to ignore the effects of finite precision arithmetic.
When the tolerance corresponds to a relative accuracy comparable to the word length
of the computer, this is not possible. Also, if the solution is very hard to approximate
accurately at xn, the step size necessary may be so small that the precision must be
considered. To gain some insight, note that we do not obtain f(xn,yn) from a subrou-
tine, but rather f(xn,yn) + εn. Similarly, in computing yn+1 = yn + h[ f(xn,yn) + εn] m
additional error ρn is made. The sequence generated computationally is then

yn+l = yn + hf(xn,yn) + hεn + ρn .

Let us suppose that |ρn| < ρ and |ρn| < ε for all h < h0. Then the analysis can be
modified to yield

According to this bound, roundoff effects get worse as the step size is reduced in
an attempt to get a more accurate solution. Clearly there is a maximum accuracy
possible that depends on the problem, the numerical method, and the arithmetic of the
computer used. The effects are more complex than this bound shows, but the bound
is qualitatively correct. It is easy to show experimentally that as h is decreased, the
numerical solution is at first more accurate, reaches a best value, and subsequently is
increasingly less accurate.

The convergence analysis just presented is the traditional one. The trouble is that
this is not the way modern codes work. Rather than take a step of specified length
h, they select a step size automatically that will produce a solution with a specified
accuracy. A reasonable model of the step sizes selected by such codes is that at xn

the code selects a step hn where  is a piecewise-continuous function
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satisfying 0 < q < < 1 for a < x < b. With this model it is easy enough to modify
the convergence proof just given to account for variable step size. The result is that as
the maximum step size H tends to zero, It is not hard
to see how the model comes about. The user specifies a tolerance τ. In a step of length
h from xn, Euler’s method makes an error of approximately h2|y´´(xn)|/2. The largest
step size hn that can be used and still keep the error less than τ is then about

Special rules come into play in the codes when y´´(xn,) is nearly zero, so suppose that
y´´(x) does not vanish in [a,b]. If

and

then

defines Notice that H = O(τ 1/2) so that max |y(xn) - yn| is O(τ 1/2) for Euler’s
method with automatic selection of the step size.

EXERCISES

6.8 Use Euler’s method on the following problems using 6.9 Implement Euler’s method to estimate solutions of the
a fixed step size h = 1.0, and then h = 0.5. In each initial value problem in Exercise 6.8b. Use h = l/40
case calculate the errors at x = 1.0. and h = l/80. Compute the errors at x = 0.5 and

(a) y´ = -y/ ( x + 1) with y(0) = 1, so y(x) = l/(x + x = 1.0 to see if they are roughly halved as h is. How

1).
small an h would you estimate is needed in order for

(b) y´ = -y3/2 with y(0) = 1, so y(x)  
the absolute error to be less than 10-6 in magnitude?

6.3 ONE-STEP METHODS

Let us now consider general one-step methods and base our assumptions on the suc-
cessful treatment of Euler’s method. The recipe is to be of the form

y0 = A
(6.16)
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The method has no memory, so Φ depends only on the arguments listed. Usually f
and h are omitted in the notation. It is assumed that Φ is continuous in x and y. The
treatment of Euler’s method had Φ(x,y) = f(x,y) and a Lipschitz condition was used
in an important way. So, for the general procedure we assume that

(6.17)

for a < x < b, all 0 < h < h0 for some h0, any continuous function f satisfying a
Lipschitz condition, and all u, v.

In discussing Euler’s method we used as a starting point the fact that the solution
y(x) almost satisfies the recipe (6.9) used to define the numerical approximation. The
analog here is

(6.18)

with µn “small.” More precisely, if for all xn in [a,b] and all h < h0, there are constants
C and p such that

(6.19)

then we say that the method is of order p for the equation (6.1). The quantity µn is
called the local truncation error.

Theorem 6.2. Suppose the initial value problem

y´ = f(x,y)

y(a) = A

on the finite interval [a,b] is solved by the one-step method (6.16) and suppose that the
hypotheses of Theorem 6.1 are satisfied. If Φ(x,y) satisfies (6.17) and if the method is
of order p > 1 for y(x), then for any xn = a + nh     [a,b],

Proof As before, let En = y(xn) - yn and subtract (6.16) from (6.18) to obtain

Using the Lipschitz condition (6.17) and the fact that the method is of order p, we see
that

The theorem now follows from Lemma 6.1 and the fact that E0 = 0. n

As with our discussion of Euler’s method, the result of this theorem gives conver-
gence of O(hP). This explains our calling the method of order p for y(x). The term “a
method of order p´´ is used to describe a method that is of order p if f is sufficiently
smooth. The order of convergence is lower when f is not so smooth.

As explained in connection with Euler’s method, codes select the step size auto-
matically so as to keep the error smaller than a tolerance τ at each step. At the same
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time they try to use an efficiently large step. A reasonable model of such a step size
algorithm leads to a step size hn at xn given by

for a piecewise-continuous function Θ(x) with 0 < θ < Θ(x) < 1 on [a,b] With step
sizes specified in this way, the convergence proof can be altered easily to conclude that
the error is O(HP) = 0(τ1 / P ) .

The most important task now left is to find functions Φ that are inexpensive to
evaluate and of order p for smooth f. We need, then,

with µn = O(hp). A Taylor series expansion of y(x) shows that

if y(x) So we find that if the method is of order p, then it must be the
case that

with z(x) = O(hP). Because y(x) is a solution of the differential equation y´(x) =

f(x,y(x)), the derivatives of y can be expressed in terms of total derivatives of f.
Using the notation f(m) (x,y(x)) for the mth total derivative of f and subscripts for
partial derivatives, the relation is

y(m)(x) = f(m-1) (x,y(x)),

where

The expression for Φ(x,y) becomes

(6.20)

An obvious choice for Φ is the function T(x,y),

which yields a family of one-step methods called the Taylor series methods. Euler’s
method is the case p = 1. When it is possible to evaluate derivatives efficiently, these
methods are very effective.
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For a simple equation like that satisfied by Dawson’s integral, and especially when
high accuracy is desired, a Taylor series method may be the best way to proceed. This
equation has

f(x,y) = 1 - 2xy

f(1)(x,y) = -2.x + (4x2 - 2)y,

and so forth. Exercise 6.13 develops a simple recursion that makes it easy to use a
Taylor series method of very high order for this equation.

Runge-Kutta methods use several evaluations of f(x,y) in a linear combination to
approximate y(x). The simplest case is Euler’s method that uses one evaluation. Let
us now derive a procedure using the two evaluations f(xn,yn) and f(xn + p1h,yn +
p2hf(xn,yn)), where p1 and p2 are parameters. Then for Φ we use the linear combi-
nation R(x,y):

R(xn,yn) = a1f(xn,yn) + a2f(xn + p1h,yn + p2hf(xn,yn)).

In this expression we are free to choose any useful values for p1, p2, a1, and a2. The
aim is to choose the parameters so that the representation (6.19) holds for as large a
value of p as possible. To carry this out we expand all the quantities in Taylor series
in h and equate coefficients of like powers. To simplify the notation, arguments are
shown only if they are different from (xn,yn). The reader familiar with Taylor series
expansions of a function of two variables may skip to the result. Otherwise, we can
proceed by a succession of familiar one-variable expansions as follows:

Now we want to choose the parameters so that

or, writing this out,
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Equating terms involving the same powers of h, it is found that it is possible to obtain
agreement only for h0 and h1 :

h0 : a1 + a2 = 1

h1 : a2p2 = ½

a2p1 = ½.

Let a2 = α. Then for any value of the parameter α,

a2 = α

a1 = 1 - α

gives a formula with agreement in all terms involving h0. If we further require that
the choice

gives a formula with agreement in all terms involving h1. Then

yields a family of one-step methods of order 2 when and f is sufficiently smooth.
Some of the members of this family of formulas have names. Euler’s method

has α = 0 and the order p = 1. Heun’s method (the improved Euler method) is the
case α = l/2, and the midpoint or modified Euler method is the case α = 1. The broad
applicability of these formulas is seen when we ask what is needed for the convergence
theorem to be valid. The continuity of R obviously follows from that of f. It is a
pleasant fact that the Lipschitz condition on R also follows from that on f:

for all 0 < h < h0, and we may take the Lipschitz constant for R to be
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Therefore, if the differential equation satisfies the conditions of Theorem 6.1, and if the
function f has two continuous derivatives [which implies the solution
any member of the family with is convergent of order 2.

Higher order procedures involving more substitutions can be derived in the same
way, although naturally the expansions become (very) tedious. As it happens, p evalu-
ations off per step lead to procedures of order p for p = 1, 2, 3, 4 but not for 5. For this
reason, fourth order formulas were often preferred for constant step size integrations.
As in the second order case, there is a family of fourth order procedures depending on
several parameters. The classical choice of parameters leads to the algorithm

y0 = A,

and for n = 0, l, . . . ,

This is formulated for the first order system of equations

Y(a) = A

Y´ = F(x,Y)

in a natural way:

Y0 = A,

and for n = 0, l, . . . ,

the classical Runge-Kutta algorithm is
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Another quite similar fourth order procedure is

(6.21)

There is little reason to prefer one of these procedures over the other as far as a single
step is concerned. In the next section we shall learn how R. England exploited (6.21)
to achieve an estimate of the error made in the step.

EXERCISES

6.10

6.11

6.12

A definite integral can be evaluated by solv-
ing an initial value problem for an ordinary differential
equation. Let y(x) be the solution of

y´ = f(x), a < x < b

y(a) = 0.

Then

Runge-Kutta methods integrate the more general
equation y´ = f(x,y). In this special case, they assume
forms familiar in quadrature. Referring to Chapter 5,
identify the familiar procedure to which both the clas-
sical fourth order formula and England’s formula de-
generate.

Implement Heun’s method to estimate the solution
of the initial value problem in Exercise 6.8b. Use
h = 1/40 and h = 1/80. Compute the errors at x = 0.5
and x = 1.0 to see if they are roughly quartered as h is
halved. How small an h would you estimate is needed
in order for the absolute error to be less than 10-6 in
magnitude?

Implement the classical Runge-Kutta algorithm to es-
timate the solution of the initial value problem in Ex-
ercise 6.8b. Use h = 1/40 and h = 1/80. Compute
the errors at x = 0.5 and x = 1.0. By what factor are
the errors reduced as h is halved? Roughly speaking,

what is the largest value of h for which the absolute
error will be less than 10-6 in magnitude?

6.13 Consider the linear equation

y´ = P1(x)y + Q1(x).

Show that the derivatives needed in Taylor series
methods can be obtained from

y(r) = Pr(x)y + Qr(x),

where

Pr(x) = P´r-1(x) + P1(x)Pr-1(x)

Qr(x) = Q´r-1(x) + Q1(x)Pr-1(x), r = 2, 3, . . . .

Use this to develop a fifth order formula for comput-
ing Dawson’s integral.

6.14 An interesting fact about Runge-Kutta methods is that
the error depends on the form of the equation as well
as on the solution itself. To see an example of this,
show that y(x) = (x + 1)2 is the solution of each of the
two problems

y´ = 2(x + 1), y(0) = 1
y´ = 2y/(x + 1), y(0) = 1.

Then show that Heun’s method is exact for the first
equation. Prove that the method is not exact when ap-
plied to the second equation, although it has the same
solution.
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6.4 ERRORS-LOCAL AND GLOBAL

Modern codes for the initial value problem do not use a fixed step size h. The error
made at each step is estimated and h is adjusted both to obtain an approximation that is
sufficiently accurate and to carry out the integration efficiently. There is an unfortunate
confusion on the part of many users of codes with error estimates as to what is being
measured and what its relation to the true error is.

The function y(x) denotes the unique solution of the problem

y´ = f(x,y)
y(a) = A.

The true or global error at xn+l is

y(xn+l) - yn+1.

Unfortunately, it is relatively difficult and expensive to estimate this quantity. This is
not surprising, since in the step to xn+1 the numerical procedure is only supplied with
xn,yn and the ability to evaluate f. The local solution at xn is the solution u(x) of

u´ = f(x,u)

u(xn) = yn.

The local error is

This is the error made approximating the solution of the differential equation orig-
inating at (xn,yn) in a single step. These errors are illustrated in Figure 6.1. It is
reasonable to ask that a numerical procedure keep this error small. What effect this
has on the global error depends on the differential equation itself. After all,

(6.22)

The quantity

y(xn+1) - u(xn+1) 

is a measure of the stability of the differential equation since it is a consequence (at
x n + l) of the initial difference y(xn) - yn at xn. If this quantity increases greatly, the
problem is poorly posed or ill-conditioned or unstable.

Example 6.7. Consider

y´ = αy

for a constant a. A little calculation shows that
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Figure 6.1 Local and global errors.

furthermore,

If α > 0, the solution curves spread out (Figure 6.2a), the more so as a is large. From
the expression (6.23) it is clear that a small local error at every step does not imply a
small global error. On the other hand, if α < 0, the curves come together (Figure 6.2b)
and (6.23) shows that controlling the local error will control the global error. For
general functions f(x,y) the Lipschitz condition alone cannot predict this behavior,
since for this example the Lipschitz constant is |α| in either case. n

The local error is related to the local truncation error. Indeed, it is just h times the
local truncation error, µ, for the local solution u(x):

local error = u(xn+1) - yn+l

For example, when y(x) is a solution of y´ = f(x,y), we have seen that Euler’s method
has

Applying this to u(x), we have

local error = 



230 CHAPTER 6 ORDINARY DIFFERENTIAL EQUATIONS

Figure 6.2 Solution curves for (a) y´ = 2y and (b) y´ = -2y.

Similarly, for the Runge-Kutta formulas of order we have

then the numerical approximations satisfy

This leads to

local error =

A little reflection about these expressions suggests a way to estimate the local
error. Suppose we compute yn+1 with Euler’s method and we also compute an ap-
proximate solution with one of the second order Runge-Kutta formulas. The
expressions above show that

That is, the discrepancy between the two values estimates the error in the lower order
formula. This is the same principle used in Chapter 5 to estimate quadrature errors. In
general, suppose that in addition to the value

with truncation error µn = O(hP), we compute another approximation
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with truncation error of higher order, q > p. Then by definition

and, similarly,

which, on subtracting, shows that

Because goes to zero faster than we can estimate the local error by

local error

We would like to approximate the local solution u(xn+1). In view of the fact that
we have a good estimate of the error in yn+l, why not try to improve it by taking
out the error? This process, called local extrapolation, is here formally equivalent to
advancing the integration with the higher order approximation because

This tells us that local extrapolation will raise the effective order of the pair from p to q.
Thus we can think of what is happening in two ways. One is that a formula of order p is
being used with its result improved by local extrapolation. The other is that a formula
of order q is being used with the step size selected conservatively by pretending that
the step is being taken with a formula of a lower order p. Because local extrapolation
increases the accuracy at no increase in cost, all the current production-grade codes
based on explicit Runge-Kutta methods use it.

A Runge-Kutta formula of order 4 requires (at least) four evaluations of F per step
and a companion formula of order 5 requires at least six. Just as with Gauss-Kronrod
quadrature, the trick to being efficient is to derive the formulas as a pair in which
function evaluations are used in both formulas. R. England published such a pair of
formulas in [5]. To advance from xn to xn + h, he takes a step of length h/ 2 with (6.2 1)
to get the fourth order result and then another step of length h/2

to get the fourth order result By working with two half-steps, he has
enough function evaluations available that with only one extra evaluation, he is able
to form a fifth order approximation In this way, one extra function
evaluation is made every two half-steps to get an error estimate. An error estimate is
used to control the local error and so give some credibility to the computed solution.
It also allows the code to select the largest step size that will result in the error test
being passed. Except in unusual cases, adaptation of the step size to the solution in
this way greatly increases the efficiency of integration. It corresponds to the adaptive
quadrature schemes of Chapter 5.
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England’s formulas are as follows:

One drawback of conventional algorithms for solving initial value problems is that
they produce a table of approximate values while the mathematical solution y(x) is a
continuous function. It is possible to approximate the solution for all x by interpola-
tion. At the beginning of a step we have Yn and form

Similarly, at the start of the second half-step we have and

The code Rke does local extrapolation, hence reports the fifth order solution as its
approximate solution at xn+1. It will be called Yn+1 on the next step. By programming
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the procedure so that is evaluated in the current step and later used as
the K0 of the next step, we have an approximation to Y´ (xn+1) In this way we have
approximations to Y(x) and Y´(x) at xn,xn + h/2, and xn+1 in the course of taking a
step. It is natural to interpolate these data by quintic (degree 5) Hermite interpolation.
It turns out that in a certain sense this interpolant is as accurate an approximation to
Y (x) on (xn,xn+1) as Yn+l is to Y(xn+1). Notice that only information generated in
the current step is needed. Furthermore, the quintic polynomial on [xn,xn+l] agrees in
value and slope at xn+l with the quintic polynomial on [xn+l,xn+2]. Thus the piecewise
polynomial function resulting from this scheme is continuous and has a continuous
derivative on all of [a,b]. An interpolation capability can greatly increase the efficiency
of an ordinary differential equation solver because the step size can be selected solely
for reliability and efficiency.

6.5 THE ALGORITHMS

It is easy enough to write a code based on a pair of Runge-Kutta formulas like Eng-
land’s, but it is not easy to write a code of production quality. A subdiscipline of
numerical analysis called mathematical software has developed that concerns itself
with such tasks. References [l], [2], [4], [6], [8], [9], and [10] discuss the issues for
ordinary differential equations at length. The code Rke that we provide is significantly
more complex than the codes in other chapters, so its description is far more detailed.

In this section we consider briefly portions of the code with the aim of explaining
some of the care needed in converting a pair of formulas into a production code. It is
hard to come to a full understanding of such complex codes because decisions about
one algorithmic question usually depend on those made in connection with several
others. Perhaps a good place to start is with the way error is to be measured.

For simplicity, only the scalar case is described; the vector case is handled sim-
ilarly. At each step the code attempts to keep the local error less than a tolerance
specified by the user:

|local error| < τ.

How this error is measured is important. A reasonable error tolerance will depend on
the size of the solution. Because this size is usually not known in advance, a good way
to proceed is to measure the error relative to the size computed by the code:

It is not so clear what we should take here as the “size” of y. Besides needing a
reasonable definition of size when a solution component vanishes, we need to avoid
the technical difficulty of dividing by zero. We have a value yn at the beginning of the
step, an approximate solution of order 4, yn+½, at half the step, and two approximate

solutions of orders 4 and 5, at the end of the step. A reasonable way to
define the size of y over the step is to average these magnitudes, taking account of the
fact that two of the values approximate y(x) at the same point:
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With this definition, it is unlikely that a zero value for wt would arise unless the so-
lution underflows identically to zero. The local error is approximated by
I f the error is estimated to be zero, and there is no need to compute the
weighted error. If the definition of wt implies that wt > 0. Because

there is then no difficulty in performing the test

Proceeding in this way, we have a good measure of “size” and we avoid numerical
difficulties. Nonetheless, a pure relative error control may not be appropriate when the
solution vanishes or becomes “small.” What constitutes “small” necessarily depends
on the scale of the problem and must be supplied from the insight of the problem solver
or a preliminary computation. The code Rke asks the user to specify a threshold value
and measures the error relative to max(wt,threshold). This tells the code that when
the magnitude of the solution drops below the threshold, the user is interested only in
an absolute error.

Some attention must be paid to the arithmetic of the computer being used. The
error control provided in Rke stresses pure relative error. It makes no sense to ask
for a numerical solution more accurate than the correctly rounded true solution. To
avoid difficulties the code insists that τ not be smaller than 10 units of roundoff and
h not be too small for the precision available. These elementary precautions are very
helpful. They are the kinds of things that distinguish mathematical software from
research codes.

Suppose we have just tried a step of length h from xn and formed the local error
estimate

A Taylor series expansion of the local error leads to an expression of the form

local error = h5ΦΦ (xn,yn) + O(h6).

Earlier we wrote out Φ explicitly for some low order formulas. If h is small enough,

If the step is a success, meaning that

we would like to estimate a suitable step size H for the next step. The largest step size
possible has

The function Φ is (usually) smooth so that
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Writing H = αh we then find

so that the “optimal” H is

It is much too bold to try this H because if it is even slightly too large, the step will
fail and this is expensive. Besides, after making all those approximations, we should
not take H too seriously. In practice a fraction of H is tried, or equivalently a fraction
of τ is used in computing H, and an efficient fraction determined by experiment. In
Rke the tolerance aimed at is 0.6τ. This is equivalent to using about nine-tenths of the
“optimal” H.

The same argument is used to obtain the step size for trying again after a failed
step. In either case we must program the process with some care. For example, we
must deal with the possibility that the estimated local error is zero. This technical
difficulty highlights the fact that large increases or decreases cannot be justified by the
arguments made. For this reason changes are limited to an order of magnitude. If a
large change is truly called for, this action allows a large change to be accumulated
over a few steps without the disastrous possibilities opened up by a large change in a
single step. In the case of a failed step we must be especially cautious about taking the
estimated error at face value. In Rke we try the predicted value once, but if it fails, we
simply halve the step size until we get success.

For the numerical solution of ordinary differential equations there are two difficult
ranges of tolerances. It is to be expected that tolerances near limiting precision are
difficult, but it turns out that nominal tolerances are also difficult. Often users think
that because engineering accuracy of 10% will suffice in their use of the results, they
can keep their costs down by specifying such a large tolerance. This may result in
cheap results that are not reliable because the local error test may not keep the step
size small enough to justify the approximations used throughout the code. Even if the
results are reliable, they can be far from what is desired because at crude tolerances the
true, or global, errors can be much larger than the local errors controlled by the code.
It is prudent to ask for accuracy of at least a couple of digits, so that the error control
of Rke emphasizes relative error and it is required that the relative tolerance τ < 0.01.

EXERCISES

6.15 Implement Euler’s method and a local error estimator and compare the estimated local error to the true local
based on Heun’s method. Apply it to the problem error. Also compare the global error at several points

to the general size of the local errors made in the com-
y´ = 10(y-x), y(0) = 1/10 putations up to this point.
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6.6 THE CODE RKE

The routine Rke solves the initial
differential equations of the form

value problem for a system of first order ordinary

A typical call for Rke in FORTRAN is

CALL RKE (F, NEQ, X, Y, H, FIRST, TOL, THRES, FLAG, STEP,
YCOEFF, SCR, NDIM)

In C it is

Rke (f, neq, &x, y, &h, &first, tol, threshold, &flag, &step, ycoeff);

and it is

Rke (f, neq, x, y, h, first, tol, threshold, flag, step, ycoeff);

in C++.
Input parameters to Rke are F, the name of the routine that defines the differential

equations [i.e., F(x, Y)]; NEQ, the number of first order differential equations to be in-
tegrated; X, the initial value of the independent variable; Y, an array of dimension NEQ
containing the values of the solution components at X; H, step size for the current step
(its sign determines the direction of integration); FIRST, a variable indicating whether
this is the first or a subsequent step; a scalar TOL and a vector THRES (or threshold
in C and C++) are tolerances for the local error control; and NDIM > 6× NEQ, the
dimension of the output vector YCOEFF and in FORTRAN of the auxiliary storage
vector SCR. Output parameters are X, Y, the integration was advanced to X and Y is
the solution there; H, the step size suitable for the next step; FLAG, a flag reporting
what the code did; STEP, the actual length of the step taken (output X minus input
X); and YCOEFF, an array of coefficient values for quintic Hermite interpolation to be
used by the routine Yvalue.

Some of the variables in the call list require more explanation. The initial step size
H informs the code of the scale of the problem. It should be small enough to capture
changes in the solution near the initial point. Also, the sign of H indicates the direction
of integration because the code will try to step to X + H. After the first call, the code
provides a suitable H for the next call.

The variable FIRST enables the code to initialize itself. The start of a new problem
is indicated by input of FIRST = .TRUE. in FORTRAN and first = 1 in C or C++. After
the first call, the code sets FIRST = .FALSE. in FORTRAN and first = 0 in C and C++
for subsequent calls. The error parameters TOL and THRES (or threshold in C and
C++) tell the code how accurately the solution is to be computed. The vector THRES
must have dimension at least NEQ in the calling program. All components of THRES
must be nonnegative. The relative error tolerance TOL must satisfy

10u < TOL < 0.01
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where u is the unit roundoff of the machine. The tolerances are used by the code
local error test at each step that requires roughly that

in a

|local error| < TOL max(|Y(I)|, THRES(I))

for component I of the vector Y. Setting THRES(I ) = 0 results in a pure relative error
test on the component. On the first call to the code, if some Y(I ) = 0, the corresponding
THRES(I) must be strictly positive. The size of the solution component is carefully
defined so that vanishing of the true solution at the current step is very unlikely to
cause trouble. Any such trouble can be avoided by a positive value of THRES(I ) .

The code will not attempt to compute a solution at an accuracy unreasonable for
the computer being used. It will report if this situation arises. To continue the integra-
tion after such a report, TOL and/or THRES must be increased. Note that Rke is an
efficient code for moderate relative accuracies. For more than, say, six-digit accuracy,
other methods are likely to be more efficient.

The true (global) error is the difference between the true solution of the initial
value problem and the computed one. Nearly all initial value codes, including this one,
control only the local error at each step, not the global error. Moreover, controlling
the local error in a relative sense does not necessarily result in the global error being
controlled in a relative sense. Roughly speaking, the codes produce a solution Y(x)
that satisfies the differential equation with a residual R(x),

that is usually bounded in norm by the error tolerances. Usually the true accuracy
of the computed Y is comparable to the error tolerances. This code will usually, but
not always, deliver a more accurate solution when the problem is solved again with
smaller tolerances. By comparing two such solutions a fairly reliable idea of the true
error in the solution at the larger tolerances can be obtained.

The principal task of the code is to integrate one step from X toward X + H. Rou-
tine Rke is organized so that subsequent calls to continue the integration involve little
(if any) additional effort. The status of the integration is reported by the value of the
FLAG parameter. After a successful step the routine Yvalue is used to approximate
the solution at points within the span of the step. A typical call is

CALL YVALUE(NEQ, X, STEP, YCOEFF, POINT, U)

in the FORTRAN version and

Yvalue(neq, x, step, ycoeff, point, u);

in the C and C++ versions. Input parameters are NEQ, X, STEP, YCOEFF (as returned
from Rke) and POINT, the point at which a solution is desired. The output is U(*), the
vector of solution components at P. Routine Yvalue can be used only after a successful
step by Rke and should be used only to interpolate the solution values on the interval
[ X - STEP,X].
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Example 6.8. To illustrate Rke, we solve the initial value problem

Y´1 = Y1, Y l(0) = 1
Y´2 = -Y2, Y 2(0) = 1

on the interval [0,1] and print the solution at x = 1. The problem has the solution
Yl(x) = ex, Y2(x) = e-x. As the solution component Y1 is increasing, a pure relative
error test is appropriate and we set THRES(1) = 0. Y2, on the other hand, is decreasing
and we choose THRES(2) = 10-5, which results in an absolute error test for small |Y2|.

XOUT = 1.00000000000000
The numerical solution is 2.7182755628071 3.6787784616084E-01
The true solution is 2.7182818284590 3.6787944117144E-01

Example 6.9. This example i
The initial value problem

llustrates the use of Yvalue in conjunction with Rke.

is integrated over the interval [0,10] and the solution tabulated at x = 0, 1, 2,. . . , 10.
Note that Rke must be called before Yvalue. The output is as follows.

XOUT = 0.00
XOUT = 1.00
XOUT = 2.00
XOUT = 3.00
XOUT = 4.00
XOUT = 5.00
XOUT = 6.00
XOUT = 7.00
XOUT = 8.00
XOUT = 9.00
XOUT =10.00

Y(1) = 1.000000
Y(1) = 1.298484
Y(1) = 0.421178
Y(1) =-1.634813
Y(1) =-1.743960
Y(1) =-0.878664

Y(1) = 1.187072
Y(1) = 1.933030
Y(1) = 1.245572
Y(1) =-0.329599
Y(1) =-2.008260

Y(2) = 1.000000

Y(2) =-0.367034
Y(2) =-1.488951
Y(2) =-1.485472
Y(2) = 0.568922
Y(2) = 1.258102

Y(2) = 2.521700
Y(2) =-0.406833
Y(2) =-0.963183
Y(2) =-2.467240
Y(2) =-0.034172

EXERCISES

Unless otherwise indicated, use 10-5 for tolerance
values and 10-7 for the threshold values for the com-
puting exercises.

in Exercise 6.4.

(a) y´ = -½y3, y(0) = 1; b = 3

(b) y´ = -2xy2, y(0) = 1; b = 1
6.16 Use Rke with a tolerance of 10-6 and threshold values

of 1 to calculate y(b) in the following cases. Check the
(c) y´ = ¼y(1 - y/20), y(0) = 1; b = 5

computed output with the exact answers that are given (d) y´ = 100(sinx - y), y(0) = 0; b = 1



6.17

6.18

(e) y´ = (15 cos 10x)/y, y(0) = 2; b = π/4.

Are the true (global) errors within the tolerance
on the local errors? Which problems needed the most
steps? Why do you think they are more difficult than
the others?

An important equation of nonlinear mechanics is van
der Pol’s equation:

x´´(t) + ε( x2(t) - 1)x´(t) + x(t) = 0

for ε > 0. Regardless of the initial conditions, all so-
lutions of this equation converge to a unique periodic
solution (a stable limit cycle). For ε = 1, choose some
initial conditions t0, x(t0), and x´(t0) and integrate the
equation numerically until you have apparently con-
verged to the limit cycle. A convenient way to view
this is to plot x´(t) against x(t), a phase plane plot. In
the phase plane, a periodic solution corresponds to a
closed curve.

Deriving the equations for the quintic interpolating
polynomial used in Rke/Yvalue is not difficult. Write

U(p) = a + bz + cz2 + dz3 + ez4 + fz5

for p in [x - ∆, x], where

(a) Apply the interpolation conditions

to generate six linear equations in the six unknowns a,
b, c, d, e, and f.

(b) Solve the linear system to get

(In the code, α =
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6.19 Use Rke to approximate the solution to the initial
value problem

P´(t) = 0.001P(t)[1000(1 - 0.3 cos πt/6) -P(t)],

with P(0) = 250; sketch its graph for 0 < t < 36. (If
you have worked Exercise 5.10, compare results.)

6.20 The response of a motor controlled by a governor can
be modeled by

The motor should approach a constant (steady-state)
speed as Assume s(0) = s´(0) = u´(0) =
θ (0) = 0, u(0) = 50, v(0) = w(0) = x(0) = 75.

(a) Evaluate v(t) for t = 0, 25, 50, 75, 100, 150, 200,
250, 300, 400, 500.

(b) What does appear to be? You can
check this by working out the steady-state solution
(the constant solution of the differential equation).

6.21 Consider the initial value problem

y´´´ - y´´ sinx - 2y´ cosx + ysinx = lnx,

y(1) = A1,
y´(1) = A2,
y´´(1) = A3.

Show that the solution y(x) satisfies the first integral
relation

y´´(x) - y´(x) sinx - y(x) cosx = c2 + xl nx - x

and the second integral relation

What are c1, c2 in terms of A1, A2, A3? Choose values
for A1, A2, and A3 and integrate this problem numeri-
cally. Monitor the accuracy of your solution by seeing
how well it satisfies the integral relations. Argue that
if the integral relations are nearly satisfied, then the
numerical solution may or may not be accurate, but
that if they are not satisfied, the numerical solution

and γ = UR-UL.) must be inaccurate.
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6.22 The Jacobian elliptic functions sn(x), cn(x), and dn(x)
satisfy the initial value problem

y´1 = y2y3, y1(0) = 0
y´2 = -y 1 y3 , y2(0) = 1
y´3 = -k2y1y2, y3(0) = 1

where k2 is a parameter between 0 and 1 and y1(x) = 6.23
sn(x), y2(x) = cn(x), and y3(x) = dn(x).

Evaluate these functions numerically. Check your
accuracy by monitoring the relations

sn2(x) + cn2(x) = 1

dn2(x) + k2sn2(x) = 1

dn2(x) - k2cn2(x) = 1 - k2.

Argue that if these relations are well satisfied numer-
ically, you cannot conclude that the computed func-
tions are accurate, rather that their errors are corre-
lated. If the relations are not satisfied, the functions
must be inaccurate. Thus, this test is a necessary test
for accuracy but it is not sufficient.

The Jacobian elliptic functions are periodic. You
can get the true solutions for k2 = 0.51 from the fact
that the period is 4K, where K = 1.86264 08023  6.24
32738 55203 02812 20579 ···. If tj = jK, j =
1, 2, 3, . . . , the solutions are given by the relation

and the following table:

A simple model of the human heartbeat gives

ε x´ = -(x3 - Ax + c)

c´ = x,

where x(t) is the displacement from equilibrium of the
muscle fiber, c(t) is the concentration of a chemical
control, and ε and A are positive constants. Solutions
are expected to be periodic. This can be seen by plot-
ting the solution in the phase plane (x along the hori-
zontal axis, c on the vertical), which should produce a
closed curve. Assume that ε = 1.0 and A = 3.

(a) Calculate x(t) and c(t) for 0 < t < 12 starting with
x(0) = 0.1, c(0) = 0.1. Sketch the output in the phase
plane. What does the period appear to be?

(b) Repeat (a) with x(0) = 0.87, c(0) = 2.1.

Devise a step size strategy for Euler’s method with a
local error estimator based on Heun’s method. Imple-
ment it in a code for a single equation. Test it on some
of the problems of this section and compare it to Rke.

6.7 OTHER NUMERICAL METHODS

The explicit Runge-Kutta methods discussed in this chapter have no memory of what
has happened prior to the current point of the integration. Other methods take ad-
vantage of previously computed solution values. The Adams methods furnish a very
important example that is easily understood. On reaching X, with the approximate
solution yn  y(xn), there are (usually) available values yn+l-i = y(xn+1+i) for i =
2, 3, . . . , k. From the differential equation y´ = f(x,y), approximations to the deriva-
tives y´(xn+1-i) can be obtained as

Knowledge of solution values prior to the current point xn are exploited by means of
the integrated form of the differential equation:

This is done with ideas used throughout this book: interpolate y´(t) by a polynomial
and approximate the integral by integrating the polynomial. Let P(t) be the polynomial
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that interpolates fn+l-i at xn+l-i for i = 1, 2, . . . , k. A numerical approximation yn+l

to the exact solution y(xn+l) is then defined by

This is called the Adams-Bashforth formula of order k. When P(t) is written in La-
grange form, this formula becomes

In terms of the current step size hn = xn+1 - xn and the coefficients

this is

The integration coefficients αk,i depend on the spacing of the mesh points xn+l, xn, . . .
and in general must be computed at each step. It is easy to verify that they depend only
on the relative spacing, so when the step size is a constant h, they can be computed
once and for all. Using the theory of interpolation developed in Chapter 3, it is not
difficult to show that if the “memorized” values yn+l-i are sufficiently accurate and
f satisfies a Lipschitz condition, then this formula is of order k (hence the name).
An Adams-Bashforth formula involves only one evaluation of f per step. Given yn

and previously computed values fn-1, fn-2,. . . , the value fn = f(xn,yn) is formed; if
necessary, the coefficients αk,i are computed, and then yn+l is evaluated by the formula
to advance to xn+1. An attractive feature of this approach is that it naturally provides
a polynomial approximation to y(x) that can be used to obtain values between mesh
points:

An Adams-Bashforth formula is so much cheaper than a Runge-Kutta formula of
the same order that it is natural to ask how Runge-Kutta codes can possibly be compet-
itive. It seems that by recycling previously computed values we get something (high
order) for almost nothing (only one new f evaluation per step). Unfortunately, we do
not. All methods with memory have certain difficulties. One is getting started: Where
do the “previously computed” values come from on the first few steps? A related
difficulty is the recurring one of changing the step size. When previously computed
values are recycled, it is natural to wonder if a “feedback” of errors might cause the
computed results to “explode.” This instability can occur, and some accurate formulas
that resemble the Adams-Bashforth formulas cannot be used at all because the inte-
gration is unstable even for arbitrarily small step sizes. Fortunately, if the step size
is small enough, integration with Adams-Bashforth formulas is stable. Returning to
the striking difference in cost of the formulas, it is important to realize that it is not
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merely the cost per step that is the issue but also how big a step can be taken and
still achieve a desired accuracy. The popular Runge-Kutta formulas cost much more
per step, but offset this by taking larger steps. Which method proves more efficient
in practice depends on the problem, the accuracy desired, and the particular formulas
being compared. There are many issues to be considered when selecting a method and
unfortunately, there is no choice that is best for all problems.

The Adams-Moulton formulas arise when the polynomial P(t) interpolates fn+1-i

for i = 0, l,. . . , k - 1. Proceeding analogously to the Adams-Bashforth case, we are
led to the formula

The term involving interpolation to fn+1 at xn+1 has been extracted from the sum to
emphasize that yn+1 is only defined implicitly by this formula. It is not obvious that
yn+l is even well defined. To establish that it is, we will show how to solve the nonlin-
ear equations defining yn+1 for all sufficiently small step sizes. This is accomplished
by first “predicting” a value using an explicit formula such as an Adams-Bashforth

formula. Let denote this predicted value. “Simple” or “functional” iteration im-
proves or “corrects” the mth approximation according to the explicit recipe

for m = 0, l,. . . . If L is a Lipschitz constant for f and the step size is small enough that
for some constant ρ,

it is not difficult to show that there is a unique solution yn+l to the algebraic equations
and that the error of each iterate is decreased by a factor of ρ at each iteration. For
“small” step sizes, the predicted value is close to yn+1 and the iteration converges
quickly.

An implicit formula like an Adams-Moulton formula is more trouble and more ex-
pensive to evaluate than an explicit formula like an Adams-Bashforth formula. Why
bother? For one thing, the Adams-Moulton formula of order k is considerably more
accurate than the Adams-Bashforth formula of the same order so it can use a bigger
step size. For another, the Adams-Moulton formula is much more stable. When all
factors are considered, the Adams-Moulton formulas are advantageous. A modern
code based on such formulas is more complicated than a Runge-Kutta code because it
must cope with the difficulties mentioned above concerning starting values and chang-
ing the step size. It is much more complicated than even this brief discussion suggests.
With sufficiently many memorized values, we can use whatever order formula we wish
in the step from xn. Modern codes attempt to select the most efficient formula at each
step. Unfortunately, the art of computing has run ahead of the theory in this regard-
there is an adequate theoretical understanding of variation of step size with a fixed
formula, but little has been proven about variation of order. Nevertheless, years of
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heavy usage of codes that vary the order have demonstrated that they do “work” and
that the variation of the order is very important to the efficiency of such codes.

Another natural approach to approximating the solutions of differential equations
is based on numerical differentiation. Again using a basic idea of this book, we start
by interpolating previously computed solution values yn, yn+1, . . . ,yn+l-k as well as
the new one yn+l by a polynomial P(t). The derivative of the solution at xn+1 is then
approximated by P´(xn+1). This approximation is tied to the differential equation at
xn+1 by requiring that

A formula for yn+l is obtained by writing P(t) in Lagrange form and using it in the
P´(xn+1) term of the equation. For certain practical reasons it is usual with this family
of formulas to work with a constant step size h. Making this assumption, carrying out
the substitution, and scaling by h lead to a formula of the form

This is a member of a family known as backward differentiation formulas, or just
BDFs. They were popularized by Gear [6] and are sometimes known as Gear’s formu-
las. Obviously, these formulas are implicit like the Adams-Moulton formulas. They
are not nearly as accurate as the Adams-Moulton formulas of the same order, and
formulas of orders 7 and up cannot be used because they are not stable (hence not
convergent) as the step size tends to zero. The reason they are interesting is that at the
orders for which they are stable, they are much more stable than explicit Runge-Kutta
and Adams formulas. Before discussing their usage, some general remarks about the
step size are necessary.

The selection of the step size is affected by a number of issues. The one that
receives the most attention is choosing the step size sufficiently small to obtain the
desired accuracy. We have also seen that for some methods the step size might have
to be reduced to produce an answer at a desired point. There are other less obvious
constraints on the step size. Earlier we touched on the matter that the step size might
have to be restricted so as to evaluate an implicit formula efficiently and also alluded
to the issue of restricting the step size in order to make the integration stable. There
are problems of great practical interest called stiff for which these other restrictions
will cause an explicit Runge-Kutta method or an Adams-Moulton formula evaluated
by simple iteration to need a step size very much smaller than that permitted by the ac-
curacy of the formula. The excellent stability properties of the BDFs have made them
the most popular formulas for solving such problems. They cannot be evaluated by
simple iteration because it restricts the step size too much. In practice, a modification
of the Newton iteration described in Chapter 4 is used to solve the nonlinear algebraic
equations for yn+1. This has many disagreeable consequences due to the necessity of
approximating partial derivatives and solving systems of linear equations. Each step is
very expensive compared to a Runge-Kutta or Adams method, but when the problem
is stiff, the steps can be so much larger that this is a bargain. Indeed, the solution
of a problem that is quite stiff is impractical with codes not specifically intended for
such problems. As with the Adams formulas, modern codes based on the BDFs vary
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the order as well as the step size. Stiff problems are difficult technically as well as
practically and how to solve them is an active area of research.

There is a large literature on the solution of the initial value problem for a sys-
tem of ordinary differential equations. References [4], [8], and [9] provide useful
orientation, especially in regard to the software available. State-of-the-art codes are
available from netlib: RKSUITE [l] makes available explicit Runge-Kutta formulas
of three different orders. ODE/STEP/INTRP [10] is a variable step, variable order
Adams-Bashforth-Moulton code. The methods of RKSUITE and ODE/STEP/INTRP
are not appropriate for stiff problems. Both suites of codes diagnose stiffness when it
is responsible for unsatisfactory performance. VODE [2] is a variable step, variable
order code that makes available two kinds of methods, Adams-Moulton formulas and
a variant of the BDFs. The computing environments MATLAB and MATHCAD provide
codes based on a variety of methods, including some not mentioned here, but the code
that is to be tried first (assuming that the problem is not stiff) is an explicit Runge-
Kutta code. Mathematics provides a single code that, like VODE, makes available
both Adams-Moulton methods and the BDFs. It is unusual in that the code attempts
to recognize stiffness and select an appropriate method automatically.

6.8 CASE STUDY 6

The restricted three-body problem is obtained from Newton’s equations of motion
for the gravitational attraction of three bodies when one has a mass infinitesimal in
comparison to the other two. For example, the position (x,y) of a spaceship or satellite
moving under the influence of the earth and the moon in a coordinate system rotating
so as to keep the positions of the earth and moon fixed changes according to

Here

and µ = 1/82.45, µ* = 1 - µ. More insight is possible when the general equations
of motion are reduced to those of the restricted three-body problem, but it is still not
possible to determine orbits analytically. A search using high precision computation
identified several periodic orbits. One has initial conditions x(0) = 1.2, x´(0) = 0,
y(0) = 0, and y´(0) = -1.04935750983031990726. The period of this orbit is about
T = 6.19216933131963970674. Integration of this problem with Rke is straightfor-
ward after the equations are written as a first order system by introducing the vector
of unknowns y(t) = (x(t),y(t),x´(t),y´(t))T. The orbit displayed in Figure 6.3 was
computed using 10-6 for TOL and all components of THRESHOLD. Although the
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Figure 6.3 Rke solution of the satellite problem.

analytical solution is not known, we do know y(T) = y(0) = Y0 because the orbit
has period T. Using this known value, we measured the global error of the approx-
imation YN to y(T) and tested whether the computed orbit is periodic by computing
||YN  -  Y0||. The discrepancy turned out to be about 6.1 × 10-5, which is about what
we would expect for the local error tolerances given the code. The figure shows the
“natural” output, the values at each step, connected by straight lines in the manner typ-
ical of plotting packages. At this tolerance the natural output is sufficiently dense that
the curve appears to be smooth. However, at less stringent tolerances it was found that
in portions of the integration, the step size is so large that the curve is visibly composed
of straight lines. This unsatisfactory situation can be remedied easily by computing in-
expensively with Yvalue the additional output values needed for a smooth graph. A
less efficient alternative that is acceptable in this particular instance is to limit the step
size so as to force Rke to take more steps.

Conservation of energy has a special form for the restricted three-body problem.
The Jacobi integral is

A little calculation shows that the derivative dJ/dt is zero when it is evaluated at argu-
ments x(t), y(t) that satisfy the differential equations. This leads to the conservation
law

expressing the fact that the Jacobi integral is constant along a solution of the restricted
three-body problem. We monitored the integration by computing G(t) at each step.
For the tolerances specified, it was never larger in magnitude than about 1.8 × 10-5.
Many differential equations have conservation laws that arise naturally from physi-
cal principles, but others satisfy laws that are not so readily interpreted. Recall, for



246 CHAPTER 6 ORDINARY DIFFERENTIAL EQUATIONS

example, the conservation law we used in Case Study 4 to solve the Lotka-Volterra
equations in the phase plane. Conservation laws are consequences of the form of the
differential equations. It does not follow that numerical approximations will satisfy
the laws, and generally speaking they do not. However, they must satisfy the laws
approximately. To see this, suppose that G(t) = G(t,y (t)) = 0 for any solution y(t) of
a differential equation y´ = F(t , y ). If yn    y(tn), then linearization tells us that

Evidently the residual of the numerical solution in the conservation law is of the same
order as the global error of the numerical solution, y(tn) - yn. This observation helps
us understand the size of the residual we found in integrating the periodic earth-moon
orbit. It is worth remarking that solutions of a system of differential equations might
satisfy several conservation laws.

The conservation laws mentioned so far are nonlinear, but others arising from
conservation of mass, charge balance, and the like are linear. A linear conservation
law for the equation y´ = F( t , y) arises mathematically when there is a constant vector
v such that vT F( t ,u) = 0 for all arguments (t ,u). If y(t) is a solution of the equation,
then

implying that G(t) = vT y (t) - vT y (0) = 0. A simple example is provided by a system
of equations that describes a certain radioactive decay chain:

The right-hand sides here sum to zero, hence the system satisfies a linear conservation
law with vT = (1, 1,. . . , l)T. Figure 6.4 shows the solution of this system with initial
condition y(0) = (1, 0,. . . ,0) computed using Rke with TOL equal to 10-3 and allT

components of THRESHOLD equal to 10-10. Despite the modest relative accuracy
requested, the error in the conservation law was at the roundoff level, specifically a
maximum of 4.4 × 10-l6 in the MATLAB environment on the workstation we used.
This illustrates an interesting fact: all standard numerical methods produce approxi-
mations that satisfy linear conservation laws exactly. This is easy to show for explicit
Runge-Kutta formulas. In advancing from xn to xn + h, such a formula has the form

Each stage Ki has the form F( x*,Y*) for arguments (x*,Y*) that are defined in terms
of xn, h, and the previous stages. The details do not matter, for all we need here is that
v T K i = 0 because vT F( t ,u) = 0 for all arguments (t ,u). It then follows immediately
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Figure 6.4 Rke solution of the radioactive decay problem.

that vT Yn + l = vT Yn for all n. We start the integration with the given initial values so
that Y0 = y(0). This implies that for all n,

Put differently, G( xn,Yn ) = 0 for all n. Accordingly, it was no accident that the numer-
ical solution computed by Rke satisfied the conservation law to roundoff error, that is
what we should expect of a linear conservation law.

Returning now to the satellite problem, suppose we would like to know when the
satellite is nearest and farthest from earth. The distance to the satellite is

so we look for the extrema of this function by finding the times t for which d’(t) =
0. Let us avoid square roots by working with the square of the distance, D(t). The
derivative of this function is

in the original variables and those of the first order system, respectively. Notice that for
the orbit we study, the initial distance d(0) = 1.2 is an extremum because D´(0) = 0.
This will afford a check on our computations because the orbit is periodic and the
same must be true of d(T). We want to compute the roots of F(t) = D´ (t) = 0. At
each step we have an approximation to the solution that allows us to evaluate F(t),
so when we reach x after a step of size step, we ask if F(x - step) F(x) < 0. If so,
we have found just the kind of bracket for a root that we need for applying Zero to
locate a root precisely. Evaluation of F(t) is easy enough; we just invoke Yvalue to
get an approximation to y at t, and then use these approximations in the expression
for D´(t). There is one snag, which is a very common one when combining items
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of mathematical software. We invoke Zero with the name of a function F of just
one argument t. However, to evaluate F(t) we must invoke Yvalue, and it requires
three other arguments, namely x, step, and ycoeff, the array of coefficients defining
the interpolating polynomial over [x - step,x], returned by Rke. Somehow we must
communicate this output from Rke in the main program to the function for evaluating
F. There can be more than one way to do this, depending on the language, but it is
always possible to do it by means of global variables. As a specific example, we coded
the function in MATLAB as

function Ft = F(t)
global x step ycoeff
yt = Yvalue(t,x,step,ycoeff);
Ft = 2*(yt(1:2)´*yt(3:4));

The quantities listed in the second line of this code are computed by Rke in the main
program. By duplicating the line there, the quantities are made accessible from the
function F. Proceeding in the manner described with the same tolerances in both Rke
and Zero, we found

time distance
1.45857 0.03338
3.09606 1.26244
4.73354 0.03338
6.19210 1.19998

The last extremum occurs at a time that agrees to about five figures with the period and
agrees with the initial distance to about the same accuracy, which is quite reasonable
given the tolerances. In Figure 6.3 the points nearest the earth and farthest away that
we found in this way are indicated by circles.
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MISCELLANEOUS EXERCISES FOR CHAPTER 6

Unless otherwise indicated, use 10-5 for tolerance
values and 10-7 for the threshold values for the com-
puting exercises.

6.25 Consider the problem

y´ = 2|x|y, y(-1) = 1/e

on the interval [-1,1]. Verify that the existence and
uniqueness theorem (Theorem 6.1) applies to this
problem. Verify that the solution to this problem is

and further that y(x) has one continuous derivative
on [-1,1] but does not have two. Is Euler’s method
convergent and O(h) for this problem? What about
“higher order” Runge-Kutta methods? What are the
answers to these questions for the two problems

y´ = 2|x|y, y(-1) = 1/e

on [-1,0] and

y´ = 2|x|y, y(0) = 1

on [0,1]? Show that solving the original problem on
[-1,1] with a mesh point at x = 0 is the same as solv-
ing these two problems.

Explain the following numerical results: A fourth
order Runge-Kutta code was used to integrate

y´ = 2|x|y, y(-1) = 1/e

from x = -1 to x = 1 using a fixed step size h and
the true error at x = 1 computed from the analytical
solution. Two computations were done. One used
h = 2/2k and the other h = 2/3k. The results in the
following table were obtained:

k
1
2
3
4
5
6
7
8
9

10

error error
h = 2/2k h = 2/3k

1.0E - 1 2.4E - 1
1.0E - 2 2.3E - 2
8.2E - 4 2.5E - 3
5.6E - 5 2.8E - 4
3.6E - 6 3.1E - 5
2.3E - 7 3.4E - 6
1.4E - 8 3.8E - 7

9.0E - 10 4.2E - 8
5.6E - 11 4.7E - 9
3.5E - 12 5.2E - 10

6.26 In modeling circuits containing devices with electri-
cal properties that depend on the current, differential
equations of the form

occur. For the case where

and

compute x(t),t = 0.4, 0.8, 1.2, . . . , 16. Plot x1(t),
x2(t), and x3(t), 0 <  t < 16, on separate graphs. (Hint:
Use Factor/Solve in conjunction with Rke.)

6.27 Approximate the solution to the nonlinear two-point
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6.28

6.29

boundary value problem

y´´ = ey - 1, y(0) = 0, y(l) = 3

at x = 0.1, 0.2,. . . , 0.9. First use Rke and Zero to find
the missing initial condition y´(0). Then use Rke to
solve the resulting initial value problem at the desired
x values. (Hint: Denoting the solution of

y´´ = ey - l, y(0) = 0, y´(0) = s

by y(t;s), the problem is to find s so that y(1;s ) = 3.
Use Zero to find the root of G(s) = y(1;s) - 3 = 0.) If
you have worked Exercise 5.12, compare results.

The following set of differential equations arises in
semiconductor theory:

Typical side conditions are n(0) = p(0), p(1) = 0, and
n (1) = 1. For ε = 1 find E(1) such that n(0) = p(0).
Print out your final value for E(1). What happens if
ε = 10-2?

The motion of a wind-blown balloon can be approxi-
mated by the solution of the initial value problem

where for each time t, a(t) is the altitude of the bal-
loon above ground, x(t) is the horizontal distance of
the balloon from a fixed starting point, and v(a) is

the velocity of the wind as a function of altitude. As-
sumptions are that the wind direction is constant, the
ground is level, and the balloonist is only allowed to
coast. Lengths are measured in feet and time in sec-
onds. The following data have been collected for v(a):

The problem is to find the initial altitude, a(0) = A, so
that the balloon lands at x = 35,000 ft from its point
of origin, and the time of flight tf. At tf we know that
a(tf) = 0 and x(tf) = 35,000 so the system can be in-
tegrated backwards in time until t = 0. The value tf

is to be chosen so that x(0) = 0; the initial altitude A
will be the value of a(0) for this tf.

To solve the problem, perform the following steps
in the order indicated.

(a) Assuming that v(a) = 20 (constant wind velocity)
and tf = 2000, use Rke to calculate x(0) and a(0).
Check your results with an analytical solution of the
differential equations.

(b) Fit the v(a) data using the complete cubic inter-
polating spline. Plot v as a function of a.

(c) Using v(a) from part (b), again calculate x(0) and
a (0), this time for tf = 1000, 1500, 2000, 2500. Tabu-
late tf, x(0), and a(0) for each case.

(d) Modify your program in (c) to use Zero to find
the time of flight tf so that x(0) = 0. What is A?



APPENDIX A

NOTATION AND SOME THEOREMS
FROM THE CALCULUS

We assume that the reader is familiar with the topics normally covered in the under-
graduate analytical geometry and calculus sequence. For purpose of reference, we
present some standard notation used in this book and a few theorems from the calcu-
lus.

A.1 NOTATION

[a,b ], the interval consisting of the real numbers x such that a < x < b.

(a,b), the interval consisting of the real numbers x such that a < x < b.

lies in the interval [a, b].

belongs to the class of functions having a first derivative continuous on
the interval [a,b].

belongs to the class of functions having an nth derivative continuous on

[a,b]
The norm ||f|| of a function f(x) continuous on the interval [a,b] is the maximum
value of |f(x)| over the interval.

and so on, denote

partial differentiation.

0.d1 d2 . . . dn(e) stands for 0.d1 d2 . . . dn × 10e; for example, 0.123(4) means 0.123 ×
104. More often, we use 0.123E4 for this.

251
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is approximately equal to.

f(x+) = limit of f(x + η) as with η > 0, the limit from the right.

f(x-) = limit of f( x - η ) as with η > 0, the limit from the left.

<<, much less.

v = (v1v2··· vn), notation for a vector.

The norm ||v|| of a vector v is the maximum magnitude component of the vector.

q(h) = 0(hk) as means that there are (unknown) constants h0, K such that
|q(h)| < Khk for all 0 < h < h0.

A.2 THEOREMS

Theorem. Intermediate Value Theorem. Let f(x) be a continuous function on
the interval [a,b]. If for some number a and for some x1 ,x2    [a, b] we have f(xl) <
α < f(x2), then there is a point c    [a,b] such that a = f(c).

Theorem. Rolle’s Theorem. Let f(x) be continuous on the finite interval [a,b]
and differentiable on (a, b). If f(a) = f(b) = 0, there is a point c    (a,b) such that
f´(c) = 0.

Theorem. Mean Value Theorem for Integrals. Let g(x) be a nonnegative func-
tion integrable on the interval [a,b]. If f(x) is continuous on [a,b], then there is a point
c  [a,b] such that

Theorem. Mean Value Theorem for Derivatives. Let f(x) be continuous on
the finite interval [a,b] and differentiable on (a,b). Then there is a point c  (a,b)
such that

Theorem. Taylor’s Theorem (for f(x)). Let f(x) have n + 1 continuous deriva-
tives on (a,b) for some n > 0 and let x,x0  (a, b). Then

f(x) = Pn(x) + Rn+1(x),

where

and
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for some z between x0 and x.

Theorem. Taylor’s Theorem (for f(x,y)). Let (x0,y0) and (x0 + ξy0 + η) be
given points and assume that f(x,y) is n + 1 times continuously differentiable in some
neighborhood of the line L(x0, y0;x0 + ξ,y0 + η) connecting (x0,y0) and (x0 + ξ,y0 +
η). Then

for some 0 < θ < 1. [The point (x0 + θξ,y0 + θη) is an unknown point on the line L.]
For n = 2, the formula without remainder becomes

Theorem. Let f(x) be a continuous function on the finite interval [a,b]. Then
f(x) assumes its maximum and minimum values on [a, b]; that is, there are points
x1 ,x2  [a,b] such that

f(x1) < f(x) < f(x2)

for all x  [a,b].

Theorem. Integration by Parts. Let f(x) and g(x) e real-valued functionsb
with derivatives continuous on [a,b]. Then

Theorem. Fundamental Theorem of the Integral Calculus. Let f(x) be con-
tinuous on the interval [a,b], and let

Then F(x) is differentiable on (a, b) and

F´(x) = f(x).

Theorem. Common Maclaurin Series. For any real number x,
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For |x| < 1,

For discussions and proofs of these theorems, see A. Taylor, Advanced Calculus, Wiley,
New York, 1983.
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Exercise Set 1.1 (Page 11)

1.2 (a) In six-digit decimal rounded arithmetic

U = 0.00001 = 10-5

(b) Same as those in part (a).

1.3 (a) With n = 3 in six-digit decimal chopped

arithmetic x - y = 0.000456.

1.5 

The last quantity becomes infinite as x approaches

1.

Exercise Set 1.2 (Page 23)

1.7 With s =

factor |c/s| = |cot( θ )| < 1. In this range, the value

of s is as accurate as the value of c, and it will be of

comparable accuracy for θ not greatly smaller than

π/4. However, for θ << 1, the factor cot

is very large and s computed in this manner is

much less accurate than c. The relative error

Because the relative error in s is related to the

relative error in c by a factor that is the square of

that arising for absolute errors, conclusions about

the usefulness of the scheme for the various θ are

essentially the same as for absolute errors.

1.9 In four-digit decimal chopped

(0.8717 + 0.8719)/2 = 1.743/2 = 0.8715, in

four-digit decimal rounded the midpoint is

1.744/2 = 0.8720; neither of these is even inside

the desired interval. A good alternative is to

compute h = b - a and then the midpoint is

a + h/2. For this example, we get h = 0.0002000

and the midpoint is 0.8718, the exact value.

1.11 (a) In IEEE single precision the final k = 46 with

S = 0.00008138; its relative error is -0.793 or

79%.

(c) The series is a better algorithm for positive x

because there is no cancellation error.

1.13 Some information is lost in the subtraction of

from 1 because

showing that there is

severe cancellation when this quantity is subtracted

from 1. The information lost is small in magnitude,

but it becomes important due to cancellation,

especially after it is multiplied by the large value of

N to form the approximation NL2N/2 to π. The

rearranged form avoids the cancellation in the

original form of the recurrence.

Miscellaneous Exercises for Chapter 1 (Page
29)

1.15 (a) Let x = 8.01, y = 1.25, z = 80.8, then

(c) Let x = 200., y = -60.0, z = 6.03, then

-10700. while

= -10800.
1.17 Use

sin nx = sin(1 + n- 1)x

= sin x cos(n - 1)x + cos x sin(n - 1)x

and

cos nx = cos(1 + n - 1)x

= cos x cos(n - 1)x - sin x sin(n - 1)x.

Then

255
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2.5 (a)

and

Hence, ( c )

Exercise Set 2.1 (Page 42)

2.1 (a) nonsingular; x1 = -1, x2 = 1/2, x3 = 3

(c) singular (but consistent)

(e) singular (but consistent)

2.3 RE = 223, RA = 177, Ch = 56.7607,

Dh = -56.7607, Cv = 29.3397, Dv = -252.340,

Bv = -147.660, Bh, = 56.7607

Exercise Set 2.2 (Page 48)

2.4 (a) x1 = 9, x2 = -36, x3 = 30

(c)

so x3 = 220, x2 = -230, and x1 = -37.

(e) x1 = 500/9, x2 = -2500/9, x3 = 2300/9

Exercise Set 2.3 (Page 61)

2.7 r = (0.000772, 0.000350) and

s = (0.000001, -0.000003), so the more accurate

answer has the larger residual.

2.9 (a) The uncertainty in each xi is ± ||x| times the

right side of the Condition Inequality, that is,

±0.0075386.

Exercise Set 2.4 (Page 63)

2.11 Factor/Solve produces the exact answers

R1 = 51.67, R2 = 26.66, and R3 = 31.67 with

minor perturbations at the roundoff level. The

value of COND is 1.50.

2.13 COND = 1.438E+4

2.15 COND = 112.9; for V = 50 we have

v = (35, 26, 20, 15.5, 11, 5) with minor

perturbations at the roundoff level.



2.17 (a) COND = 6.44

For exact data the answers are very reliable;

however, if the entries in A are known only to

±0.0005 and those in B to ±0.005, then from the

condition number inequality

where Xk is the kth column of X. For example,

when k = 1 we have ||∆Xk||/||Xk|| < 0.018. In

particular, x21 is probably incorrect; it certainly

makes no sense physically.

(c) The analog of (2.27) here is

For this problem, α23 is much smaller than the

other entries, but the rest are about the same. The

x3 values are most sensitive to changes in b since

the third row of A-1 contains the largest entries.

When b11 is changed to 1.43, that is,

∆ b11 = -0.01, then x21 = 0.016; hence,

∆ x21 = 0.03  α21 ∆b11 as predicted by the theory.

Exercise Set 2.5 (Page 72)

2.19 There are n - 1 divisions for the elimination and n

for each b; there are n - 1 multiplications for the

elimination and 2n - 2 for each b. Hence, there is a

total of (m + 1)n - 1 divisions and (2m + l)(n - 1)

multiplications. The number of

additions/subtractions equals the number of

multiplications.

Miscellaneous Exercises for Chapter 2 (Page
79)

2.21   (0.5500E-5, -0.l653E-3, -0.3717E-5,

-0.4737E-4, 0.3714E-4, -0.1212E-3,

0.6434E-4, 0.6362E-4) and COND = 18.01.

Then  = (-0.6190, -0.9217E-l, 0.1202E-1,

0.3714, 0.2720, -0.7209E-2, -0.1325, -0.4654,

0.1656, -0.1421).

2.23 (a) det A = 1,500,000
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Exercise Set 3.1 (Page 89)

3.1

3.3

3.5

3.7

3.9

No, coefficients of higher degree terms may be

zero. For example, for the data

xi = i, yi = 2i, 1 < i < 4, the interpolating

polynomial is clearly P4(x) = 2x which has degree

only 1.

interpolates (1,2), (2,4), and (3,c) for any c. The

formula for P3(x) simplifies to

so that we get exact degree 2 as long as c    6. This

does not contradict Theorem 3.1 since the degree

of P2 is too large for that theorem.

The standard algorithm requires 1 + 2 + ··· + N - 1

multiplications for a total of N( N - 1)/2. The

nested version requires only N - 1.

Near the ends of the interpolating points w9(x) is

large in magnitude, for example,

-w9(0) = w9(10) = 362,880. In the middle, for

example, w(5.5) = 193.80, it is smaller.

H(xn) = a = fn, H´(xn) = b = f´n,

H(xn+l = a + bh + ch2+ dh3 =

fn + hf´n + [3(fn+1 - fn) - 2hf´n - hf´n+1] + [hf´n +

hf´n+1 - 2(fn+1 - fn)] = fn+l. Similarly,
H´(xn+l) = f´n+1.

Exercise Set 3.2 (Page 93)

3.11 The errors on [-5,5] are diverging, but they appear

to be converging in [- 1,1]. These data came from

a sample of 1001 points.
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3.13

Error increases as N does.

Exercise Set 3.3 (Page 98)

3.15 (a) P4(x) =

Hence

Exercises for Section 3.5 (Page 115)

3.17

Hence

as before.

3.21 For S´´(x1) = f´´(x1) use c1 = f´´(x1); for

S´´(xN) = f”(xN) use cN = f´´(xN).

3.23 The results for S(x) are the same (to the displayed

digits) for the three different sets of {xi}.

3.25

3.27

3.31

X f(x) S(x)
3375 0.400 0.447

3625 0.449 0.424

3875 0.769 0.741

4125 0.750 0.741

4375 0.315 0.316

4625 0.144 0.137

4875 0.252 0.262

f A( f ) (a)S (b)S
63 0.070 0.070 0.070

200 0.359 0.340 0.343

800 0.935 0.984 0.959

2000 2.870 2.796 2.835

10000 53 .478  54 .761 54.343

The results from (b) are better than those from (a)

but neither is especially accurate (particularly for

large f ) .
Using all the data but those at

{21, 22.6, 22.8, 23.0, 23.2, 23.4} produces an S(x)

for which

x Exact S(x)
21.0 503 500

22.6 550 548

22.8 565 570

23.0 590 570

23.2 860 767

23.4 944 966

This is good for small x, but deteriorates

eventually. For this choice of interpolating points

there are 10 sign changes in the {ci} sequence

indicating 10 inflection points, not 1. Hence, there

must be a lot of undesired oscillation; however, a

graph of S(x) would show that, for the most part,

the amplitudes of the oscillations are small enough

to not be visible.

S´ = 0 in [xn,xn+I] if and only if

bn + 2c n( z - xn) + 3d n( z - xn)
2 = 0 for

xn < z < xn+1. Using the quadratic formula this

reduces to the statement in the text. Checking

bnbn+1 < 0 will not detect all zeros of S´, since S´
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3.33

3.35

(a piecewise quadratic) may have two zeros in a

particular [xn ,x n +l] and consequently

S´(xn)S´(xn+l) > 0.
For the data used in Exercise 3.15, the resulting

S(x) had a local maximum at (4001.3, 0.8360), and

local minima at (3514.9, 0.3811) and

(4602.5, 0.1353).

For the choice of the 12 data points in

Exercise 3.20, there was one critical point at

re = 5.5544 for which S(re) = -12.036; there

were two inflection points at (6.199, -8.979) and

(9.685, -0.6798). The second inflection point is

spurious.

Exercises for Section 3.6 (Page 127)

3.37 The four coefficients are

a = f11

b  = (f 2 1  -  f 1 1 )/(x2 - x1)

c = (f12  - f11)/( y2 - y1)

d = (f 1 1  +  f 2 2  -  f 1 2  -  f 2 l)/[(x2 - x1)(y2  - y1).

Miscellaneous Exercises for Chapter 3 (Page
132)

3.39 {ti} = {0.00, 1.54, 2.81, 3.65, 4.49, 5.23, 5.78,

6.13, 6.46, 6.76, 7.00}. The graph is a spiral in the

xy plane.

Exercise Set 4.1 (Page 149)

4.1

4.3

If a given F(x) has residual ε at x = r, then the

scaled function f(x) = MF(x) has residual Mε at

x = r. Hence, a small residual (ε) can be scaled up

by a large M while a large residual can be scaled

down by a tiny M; consequently, a single residual

tells us very little about accuracy.

(a) The next bracket is [0.5, 1.0], the second is

[0.75, 1.0], and the third is [0.75, 0.875].

(c) Newton’s method:

4.5

4.7

(a) There are many possible brackets; here π/2 and

π were used.

(c) x3 = 1.928478 and x4 = 1.897313

(e) B = 1.895494

Let ε = max(ε0 ,ε1) < 1. Then εi < εδi, where

For i = 0, δ0 = 1, so ε0 = ε. Assume that

ε n-1 < εn-1 ; then

But, after some algebra,

hence εn < εδn, which, by induction, gives the

desired result.

Exercise Set 4.2 (Page 152)

4.9 (a) One step of the bisection method reduces the

width of a bracket by a factor of 2, so n steps

reduce the width by 2N. To get from a width of

1010 to one of 10-5 then requires

or N > 15 log 10 / log 2 = 49.8    50. Technically,

this is the number of midpoint evaluations required;

you may want to add two more to get the function

values at the endpoints of the initial bracket.

(b) The worst case for Zero is four wasted secant

iterations for every three bisections. Hence
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Exercise Set 4.3 (Page 155) There is also an answer (0.2114, -0.4293, 0.0623).

4.10

4.11

4.13

4.15

4.17

4.19

(a) The output B = 0.7853982, Flag = 0, Residual

= -2.1E - 11, and there were 7 calls to the f

function. There was just one root in [0,1] which

Zero found quickly and accurately.

(d) The output B = 0.8000003, Flag = 0, Residual

= 5.3E - 46, and there were 44 calls to the f

function. The high multiplicity root is

ill-conditioned, yet, with this form off, Zero was

able to compute it accurately after many function

evaluations. The small residual is in accord with

the flatness of the graph at the root.

(h) There is no root in the input interval [0, 1]; Zero

correctly reported the lack of a bracket through the

Flag = -2 value.

C = 633.162 and T = 353.878

The three smallest positive roots are 1.30654,

3.67319, and 6.58462.

There are two roots: one at T = 456.9975, the

other at T = 12,733.77 is physically dubious.

With f(k) = ω0 ln(1 + k)/(1 - k) - 2k, it is easily

seen that f(-k) = -f(k), f(0) = 0, f(1-) =
and f´´(k) > 0 on [0,l), so the mathematical

conclusions follow. The three k values are 0.99933,

0.95750, and 0.77552.

E = 1.1903E- 11

Exercise Set 4.4 (Page 160)

4.23 m = 2 and α = 1/3, so the right side of (4.14) is

10 - 6 10-7.

Exercise Set 4.5 (Page 162)

4.25
n x y z

0 0.5000 1.OOOO 0.0000

1 0.2808 0.6278 0.0365

2 0.2138 0.4635 0.0565

3 0.2113 0.4305 0.0622

4 0.2114 0.4293 0.0623

5 0.2114 0.4293 0.0623

Miscellaneous Exercises for Chapter 4 (Page
167)

4.27
x t

0.1 0.656578

0.2 1.236000

0.3 1.918448

0.4 2.694180

0.5 3.556555

4.31 (a) The expression for a0 follows from a0 = P(0)

and the factorization of P(x). The expression

is the geometric mean (average value) of the factors

(σ - ri)/ri, and the bound merely states that the

least value of a factor is no more than the average

value. If some factor is much larger than the

smallest one, the average will be substantially

larger than the smallest factor and the bound will

be rather poor. If σ is approximately a large root,

say rj, then the factor (σ - rj)/ rj is small. But if

some root, say rk, is much smaller than σ, that is,

|rk| >> |σ|, then the factor

is quite large and the bound is poor.

Exercise Set 5.1 (Page 183)

5.1 A1 = A4 =   and A2 = A3 =    From f(x) = x4

we get d = 3 and c = -2/405. (The name -rule

comes from the coefficient values for the interval

[0,1] instead of [-1,1].)

5.3 With h = π/N we have

N N-panel trapezoid

60 0.811148922853

100 0.811155733422

140 0.811155735194



Note: the routine Adapt from Section 5.3 requires

441 function evaluations for comparable accuracy.

Exercise Set 5.3 (Page 189)

5.4

5.5

5.7

5.9

(a) This integrand is very smooth, so Adapt has no

trouble getting an accurate answer in only 21

function calls. The output is Answer

= 3.14159122, Flag = 0, Errest = 1.431E-5. Since

the exact answer is π, the actual error is 1.431E-5,

which was what was estimated by Adapt.

(d) This integrand is highly oscillatory, yet Adapt

has little trouble getting an accurate answer in 49

function calls. The output is ANSWER

= 1.5000000, FLAG = 0, ERREST =

-1036E-16. Since the exact answer is 3/2,

Adapt’s error estimate is quite accurate.

(f) This integrand has a vertical asymptote at 0.25

but it still is integrable with exact answer of

1 +      Adapt has great difficulty with this

problem, even when f is defined to be finite, say

1.E+8, at 0.25 to avoid the division by zero. The

output is ANSWER = 2.7319539, FLAG = 2,

ERREST = 9.264E-5. The actual error is

9.264E-5, which is close to the actual error of

9.691E-5. The Flag of 2 indicates that Adapt was

unable to compute a sufficiently accurate answer in

the 3577 function calls allowed.

ANSWER = 1.500000 and ERREST = -2.4E-18

are comparable to the results from Exercise 5.4d.

The number of integrand evaluations was 21,

which is faster than for Exercise 5.4d.

x Answer Flag F calls

0.0 0.0000000 0 7

0.1 0.0993360 0 7

0.2 0.1947510 0 7

0.3 0.2826317 0 7

0.4 0.3599435 0 7

0.5 0.4244364 0 7

T (0.50) = 3.736767, T(0.75) = 3.904747,

T (1.00) = 4.187184.
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5.11 For a machine with u = 1.4 × 10-17, the first n = 4

and the second is 12. Exercise 1.3 suggests that for

the first n, 4 digits of accuracy (out of 17) might be

lost due to the noise. For the second n, 12 digits

might be lost. This idea was used with integrand

(b) of Exercise 5.4. The output ANSWER

= 0.909090912, with ERREST = -7.82E-9 that

required 49 function calls. The noise level was not

magnified by Adapt, so the code appears to be

stable. When n = 12 we got ANSWER

= 0.909099105 in 2807 function calls with

ERREST = -7.82E-6. The accuracy was

contaminated by the noise after the expected 5

digits; the number of function evaluations required

also increased due to the lack of smoothness.

Exercise Set 5.4 (Page 198)

5.13

5.15

5.17

Part Answer Flag F calls

(a) 0.6205370 0 147

(b) 0.6205362 0 35

(c) 0.6205366 0 49

For the first method in (b) we used

with ε = 0.23; the first integral was done

analytically and the second by Adapt. For (c), we

used the change of variable t = x2.

(a) For ABSERR = 10-9 Adapt returned

ANSWER = 0.2865295 and an error estimate of

-0.34E-9 with 1897 function calls.

(c) Method (a) is faster at the larger tolerances and

is more accurate at ABSERR = 10-9.

The singularity at x = 0 causes no problems.

t E1(t) estimate

1.0 0.2193838

2.0 0.0489004

3.0 0.0130475
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5.19

This function has the form
it is most

efficiently evaluated as a reverse iteration. Let

for i = 5, 4, . . . , 1 with the integral for F(T6) taken

over the interval [0, 1900/T 6] to get the iteration

started. Then Cv(T) = g(T)F(T).

Exercise Set 5.5 (Page 201)

5.21
Method (a) (b)

Glucose 6930.9 6927.1

Insulin 1905.1 1904.6

Glucagon 92319.4 92688.3

Cr. Hormone 256.5 256.7

Exercise Set 5.6 (Page 203)

5.24 (a) Al = A2 = A3 = 1/6; hence,

Miscellaneous Exercises for Chapter 5 (Page
208)

5.25 For convenience in notation, let

Since

we have, after some algebra

which should have better numerical properties for r

near 1. This is because as both the

numerator f(θ´) - f(θ) and the denominator

1 - 2rcos(θ − θ´) + r2 become small. Since the

integral acts as a small correction to the term f(θ)
and since the integrand is of one sign, the

numerator must balance out the effect of the small

denominator. Moreover, even if the integral is

grossly in error, it has little effect on the result of

the sum as To illustrate this, let θ = π/2

with f(θ) = sin θ so that the solution becomes

φ(r,θ) = r. The function φ was evaluated using

both forms, the original and the modified, and

function counts were used as a measure of the

computational effort. For example, at

r = 0.9921875 we got for the original φ, a value of

0.99218012 requiring 1057 function evaluations.

The modified φ value was 0.99218750 requiring

329 function evaluations. The modified version is

clearly faster and a little more accurate.

5.27 For n = 3 we have qn = 7.08638 so Adapt returned

 0.000049746 with Errest =

-7.21E-9; hence, An = 0.011046.

5.29 The main program is the usual driver to produce

the answer T0. The function f for Zero has

independent variable T0 and output

where ANSWER is the output from Adapt that is

called inside F since the upper limit of integration



is T0. The result is T0 = 246.73.

Exercise Set 6.1 (Page 216)

6.1

6.3

6.5

6.7

Clearly y(0) = 0 and y´(x) = 0 for 0 < x < c and

y´ = (x - c)/2 for c < x < b. The limits as 

are the same in both cases, so y´ is continuous on

[0, b]. Also, for 0 < x < c,

and for c < x < b,

so that y(x) satisfies the differential equation.

Recall that Dawson’s integral is the expression

Now, y(0) = 0 and differentiation shows that

Obviously, y´ is continuous on [0,b] for any finite b.

(a) fy = 2y; the partial derivative is not bounded for

all y and so does not satisfy a Lipschitz condition

for 0 < x < π/2.

(c) fy = 1/x; since |fy| < 1/1 = 1 for x in [1,2], the

function f does satisfy a Lipschitz condition with

constant L = 1.

(e) fy = cos x cos y; since |fy| < 1.1 for any x and

y, the function f does satisfy a Lipschitz condition

with constant L = 1.

(a) One solution is Y1 = u, Y2 = u´, Y3 = u´´, and

Y4 = u´´´ ; then Y´1 = Y2, Y´2 = Y3, Y´3 = Y4, and

Y´4 = cos αt + tY1 - e
tY2.

(c) One solution is Y1 = u, Y2 = u´, and Y3 = v; then

solving the system for u´´ and v´, we have

Hence Y´1 = Y2, Y´2 = 2t + (3 cos t)/4 - 7Y1/4 - Y3,

and Y´3 = 2t - (cos t)/4 - 3Y1/4.
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(e) One solution is Yl = u, Y2 = u´, Y3 = u´´,

Y4 = u(3), Y5 = u(4), and Y6 = u(5) ; then Y´1 = Y2,

Y´2 = Y3, Y´3 = Y4, Y´4 = Y5, Y´5 = Y6, and

Y´6 = et - Y1Y2.

Exercise Set 6.2 (Page 221)

6.9 For h = l/40 the error at 0.5 is 0.0021; at 1.0 the

error is 0.0010. For h = l/80 the error at 0.5 is

0.0023; at 1.0 the error is 0.00116. For both x

values the error does drop by a factor of 2 as h is

halved. To achieve an absolute error of 10-6 in

magnitude would require h  0.000011.

Exercise Set 6.3 (Page 227)

6.11

6.13

For h = l/40 the error at 0.5 is -0.l434E-4; at

1.0 the error is -0.l395E-4. For h = l/80 the

error at 0.5 is -0.3564E-5; at 1.0 the error is

-0.3471. For both x values the error does drop by

a factor of 4 as h is halved. To achieve an absolute

error of 10-6 in magnitude would require

h 0.0067.

To show that y(r) can be computed via the formula

y(r) = Pry + Qr we use induction. The result is true

for r = 2 since

y´´ = P´1y + P1y´ + Q´1

= P´1y + P1(P1y + Q1) + Q´1

= (P´1 + P1 · P1)y + (Q´1 + Q1P1)

= P2y + Q2.

Assume it to be true for r = k; then

y(k+1) = P´ky + Pky´ + Q´k

= P´ky + Pk(P1y + Ql) + Q´k

= (P´k + P1Pk)y + (Q´k + Q1Pk)

=P k + l y  + Q k + l .

A fifth order formula is obtained by dropping the

remainder term in the expression
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where hn = xn+l - xn,y´ = 1 - 2xy, and

Y(r) = Pry + Qr. The polynomials Pr and Qr are

given recursively by

P r  = P´ r - 1  + P1 P r - 1 ,

Q r  = Q´r - 1 , + Q1Pr - 1 ,

with Pl = -2x and Ql = l.

Exercise Set 6.6 (Page 238)

6.16

6.17

6.21

(a) The solution is quite smooth on [0,3] and Rke

computes an accurate solution very efficiently. The

output y = 0.49999991 with 8 calls to Rke has

absolute error 0.00000009 well within the

requested tolerance.

(d) The large Lipschitz constant of 100 is a clue

that this problem may be difficult. Rke produces

y = 0.83598456 requiring 63 calls. Thge actual

global error is -0.0000002, which is within the

requested tolerance. This problem is “stiff” in the

sense of Section 6.7.

The equation x´´ + (x2 - 1)x´ + x = 0 is of the form

treated by Lienhard with f(x) = x2 - 1. The

indefinite integral G(x) = x3/3 - x, so the Liénard

variables are

The results are comparable to those of

Exercise 5.15. For example, P(12) = 778.030,

P(21) = 1112.06, and P(30) = 1246.86.

Note that the equation can be written in the form

Integrate this to obtain

y´´ - y´ sinx - y cos x = x ln x - x + c2,

the first integral relation. Write this in the form

which can be integrated to get the second integral

relation

Y1(t) = x(t)

Y2(t) = x´(t) + G(x(t))

and we have

To determine c2, evaluate the first relation at x = 1

and use the initial conditions to get

c2 = A3 - A2 sin 1 - A1 cos 1 + 1.

Evaluate the second integral relation at x = 1 to get

Y´1(t) = Y2(t) + Y1(t) - Y1
3(t)/3

Y´2 ( t )  = -Y1( t ) .

To plot the solution in the phase plane, it is

necessary to plot

The following sample results were generated by

Rke with the residuals computed for each integral

relation.

x´(t) = Y2(t) - G(x(t)) = Y2(t) - G(Yl(t)) against x

x(t) = Yl(t). With Y1(0) = -1 and Y2(0) = 1 for y(x)

0 < t < 15 the resulting phase plane plot is shown y´(x)

below. The closed curve was traced over in the y´´(x)

computation so that (to plotting accuracy) the limit First res.

cycle was obtained. Second res.

6.19

1.500000 2.000000

1.647253 2.642695

1.629417 2.316041

1.468284 1.010749

1.94E-6 7.32E-6

-3 .92E-7 -4 .80E-6
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6.23 (a)

t x(t) c(t)
0.00 0.10000 0.10000

2.00 1.39122 1.75478

4.00 -1.95327 2.57504

6.00 -1.58142 -0.11364

8.00 0.39677 -3.14858

10.00 1.71102 0.40587

12.00 0.66878 3.04524

The period appears to be approximately 9.

Miscellaneous Exercises for Chapter 6 (Page
249)

6.25 Clearly f(x,y) = 2|x|y is continuous on [-1,1];

also, fY = 2|x| < 2, so f satisfies a Lipschitz

condition with constant L = 2. The hypotheses of

Theorem 1 are satisfied. Let y(x) be defined by

so that y(-l) = e-1 and

Thus, y´ is continuous on [-1, 1]. Also, for x

positive or negative y´ = 2|x|y, so that y does satisfy

the differential equation. Since

we have y´´(0+) = 2 while y´´(0-) = -2, so y´´ is

not continuous at x = 0. Euler’s method is

convergent for this problem but not 0(h). Higher

order Runge-Kutta methods will not improve

convergence past 0(h2). If the problem is split at

x = 0, then y(x) is infinitely differentiable on each

of [-1, 0] and [0, 1]. If, in the original problem, a
mesh point is placed at x = 0, this is equivalent to

solving the two problems separately. By using a

fixed step h = 2/2k we guarantee that x = 0 is a

mesh point, so convergence is 0(h4) with the

fourth order Runge-Kutta code; in contrast, x = 0

cannot be a mesh point for h = 2/3k, so

convergence will occur at a slower rate.

6.27 The missing initial condition is y´(0) = 2.155796;

the following table gives the solution at a few

values.

x y(x) y´(x)
0.0 0.000000 2.155580

0.2 0.434337 2.205839

0.4 0.891567 2.396098

0.6 1.408763 2.830332

0.8 2.055972 3.763435

1.0 3.000000 6.067751

6.29 (a) The exact solution is x(t) = 20t - 5000,

u(t) = -2.6 × 106exp[2 × 10-5(t - 2000)] + 50t +

0.25 × 107. Rke produces

x (0) = -5000.00

and

a (0) = 1947.46,

which are both correct.

(c) If FORTRAN is used, the program should be

written so that Spcoef is called only once by the

driver. The vectors X, F, B, C, and D should be

passed through a COMMON statement to the

routine defining the differential equation. In C and

C++ these will have to be global variables. The

output is given in the following table.

1000 497.29 27884.60

1500 1109.42 16736.78

2000 1950.42 1656.81

2500 3030.94 -7811.70
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Absolute error, 1

Accuracy

of linear system algorithms, 48-61

of polynomial interpolation, 98-101

of quadrature, 184-187

of spline interpolation, 111-113

Adams-Bashforth formula, 241

Adams-Moulton formula, 242

Adams methods, 240-243

Adapt (code), 188-189

Adaptive quadrature, 184-188

AVINT, 201

Back substitution, 35,41

Backward differentiation formulas, 243

Backward error analysis, 49

Band matrix, 65

Base of a number system, 9

Bilinear polynomial, 122-123

Binary search, 138

Bisection method, 138

Bracket, 138

Breakpoints, 101

C (language), vi
C++, vi

Cancellation error, 16

Chebyshev interpolating points, 88

Chopped arithmetic, 7

Composite trapezoid rule, 181

Conditioning, 1

of a linear system, 55-61,

of a nonlinear equation, 158

Condition number, 56

Condition number inequality, 57

Cubic spline, 103-115

Curve drawing, 130-131

Dawson’s integral, 190, 212, 217-218

Degree of precision, 172

Determinant, 6, 62, 81

Diagonally dominant matrix, 65

Differential equations, 210-215

Divided differences, 93-98

Divided difference table, 95-96

Elimination (see Gaussian elimination)

End conditions, 108

England (see Runge-Kutta-England method)

Error in polynomial interpolation, 88-93, 98-101

Error in spline interpolation, 102-103, 112

Error estimation

in Adapt, 184-187

in Rke, 230-235

Euler’s method, 217

Euler-Maclaurin formula, 181

Extrapolation, 183

Factor (code), 61

Filon quadrature, 26, 128-130

Floating point

distribution, 10-11

notation, fl(x), 7

number system, 9

representation, 9

FORTRAN 77, vi

Fortran 90, vi

Fundamental Theorem of Integral Calculus, 253

Galerkin’s method, 72, 170

Gamma function, 13-14

GAMS, vii
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Gaussian elimination, 32-42

Gaussian quadrature, 177

Gauss-Seidel method, 76

Global error (for ODE’s), 228

Heun’s method, 225

Higher order systems of differential equations, 214-215

IEEE arithmetic, 10

Ill-conditioned, 2

Initial value problem, 210-211

Integration by parts, 253

Intermediate Value Theorem, 252

Interpolation

C2 cubic spline, 106-113

error, 85-93, 98-101, 102-103, 112

in the plane, 119-127

inverse, 148

polynomial, 82-101

shape preserving spline, 104-106

Inverse matrix, 31, 63

Iterative refinement, 55

Jacobi iteration, 76

Knots, 101

Lagrange form, 83

LAPACK, 66, 70

Linear system, 30

LINPACK, 66, 70

Lipschitz condition, 211

Lipschitz constant, 211

Local error, 222, 228-231, 233-235

Loss of significance, 16

Lotka-Volterra equation, 163

Lower triangular matrix, 44

LU factorization, 44-48

Maclaurin series, 253-254

Mantissa, 4

MATHCAD, 136, 147, 155, 183, 244, 248

Mathematica, vi, 244

MATLAB, vi, 27, 150, 151, 157, 244

Matrix, 30

Mean Value Theorems, 252

Midpoint rule, 178

Minimum curvature property, 111

Modification of right-hand-side, 40

Muller’s method, 147

Multiple root, 134

Multistep method, 240-244

Natural cubic spline, 110, 112

Natural end condition, 110

Netlib, vii

Newton-Cotes formulas, 174

Newton divided difference form, 95

Newton’s method

for a single equation, 140

for systems, 160-162

Nodes, 83

Nonlinear equations

scalar, 134-160

systems of, 160-162

Nonsingular matrix, 30

Normalized floating point number, 4, 9

Norms, 53

Numerical integration (see Quadrature)

One-step methods, 221-223

Order, 221

Oscillatory integrand, 192

Overflow, 5

Partial pivoting, 39

Periodic end conditions, 108

Periodic integrand, 181-182, 192-193

Piecewise polynomial, 101

Pivot, 35

Poisson’s equation, 72

Pole, 136

Polynomial interpolation, 83-98

Positive definite matrix, 65



268 INDEX

QUADPACK, 184, 186-187

Quadratic convergence, 141

Quadratic equation, 17

Quadrature formula, 172

Relative error, 1

Residual

of a linear system, 22, 51

of a nonlinear equation, 136

Right-hand-side vector, 30

Rke (code), 236-238

RKSUITE, 244

Rolle’s theorem, 252

Romberg integration, 183

Root, 134

of a nonlinear system, 160

of a quadratic, 17

of a single function, 134

Rounded arithmetic, 7

Runge-Kutta

classical, 226

England method, 231-233

formulas, 224-227

Runge’s function, 91, 93

Secant method, 140

Simple root, 134

Simpson’s rule, 177

Singular integrand, 193-198

Singular matrix, 30

Solve (code), 62

Spline-coeff (code), 113-115

Spline-value (code), 113-115

Spline, 101

complete cubic, 110, 200

shape preserving, 104-106, 200-201

Stability, 2

Stiff diffferential equation, 243

Stirling’s approximation, 14, 206-207

Symmetric matrix, 70

Systems of

differential equations, 212-214

linear equations, 30-31

nonlinear equations, 160-162

Tabular data, integration of, 200-201

Taylor series, 223, 252

Taylor’s theorems, 252-253

Trapezoid rule, 176

Triangular matrix, 35

Tridiagonal matrix, 68

Underflow, 5

Undetermined coefficients, 175

Unit roundoff, 9

Unstable, 2

Upper triangular matrix, 35

Weight

function, 171-173

quadrature, 171

Well-conditioned, 1

Wilkinson polynomial, 158-159

Yvalue (code), 236-238

Zero (code), 152-155

Zero (see root)
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