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PRELIMINARIES

The purpose of this book is to develop the understanding of basic numerical meth-
ods and their implementations as software that are necessary for solving fundamental
mathematical problems by numerical means. It is designed for the person who wants
to do numerical computing. Through the examples and exercises, the reader studies the
behavior of solutions of the mathematical problem along with an agorithm for solv-
ing the problem. Experience and understanding of the algorithm are gained through
hand computation and practice solving problems with a computer implementation. It
is essential that the reader understand how the codes provided work, precisely what
they do, and what their limitations are. The codes provided are powerful, yet smple
enough for pedagogical use. The reader is exposed to the art of numerical computing
as well as the science.

The book is intended for a one-semester course, requiring only calculus and a
modest acquaintance with FORTRAN, C, C++, or MATLAB. These constraints of
background and time have important implications. the book focuses on the problems
that are most common in practice and accessible with the background assumed. By
concentrating on one effective agorithm for each basic task, it is possible to develop
the fundamental theory in a brief, elementary way. There are ample exercises, and
codes are provided to reduce the time otherwise required for programming and debug-
ging. The intended audience includes engineers, scientists, and anyone else interested
in scientific programming. The level is upper-division undergraduate to beginning
graduate and there is adegquate material for a one semester to two quarter course.

Numerical analysis blends mathematics, programming, and a considerable amount
of art. We provide programs with the book that illustrate this. They are more than mere
implementations in a particular language of the agorithms presented, but they are not
production-grade software. To appreciate the subject fully, it will be necessary to study
the codes provided and gain experience solving problems first with these programs and
then with production-grade software.

Many exercises are provided in varying degrees of difficulty. Some are designed
to get the reader to think about the text material and to test understanding, while others
are purely computational in nature. Problem sets may involve hand calculation, alge-
braic derivations, straightforward computer solution, or more sophisticated computing
EXErcises.

The agorithms that we study and implement in the book are designed to avoid
severe roundoff errors (arising from the finite number of digits available on computers
and calculators), estimate truncation errors (arising from mathematical approxima-
tions), and give some indication of the sensitivity of the problem to errors in the data
In Chapter 1 we give some basic definitions of errors arising in computations and
study roundoff errors through some simple but illuminating computations. Chapter 2
deals with one of the most frequently occurring problems in scientific computation,
the solution of linear systems of eguations. In Chapter 3 we deal with the problem of
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interpolation, one of the most fundamental and widely used tools in numerical com-
putation. In Chapter 4 we study methods for finding solutions to nonlinear equations.
Numerical integration is taken up in Chapter 5 and the numerical solution of ordinary
differential equations is examined in Chapter 6. Each chapter contains a case study
that illustrates how to combine analysis with computation for the topic of that chapter.

Before taking up the various mathematical problems and procedures for solving
them numerically, we need to discuss briefly programming languages and acquisition
of software.

PROGRAMMING LANGUAGES

The FORTRAN language was developed specifically for numerical computation and
has evolved continuoudly to adapt it better to the task. Accordingly, of the widely
used programming languages, it is the most natura for the programs of this book. The
C language was developed later for rather different purposes, but it can be used for
numerical computation.

At present FORTRAN 77 is very widely available and codes conforming to the
ANSI standard for the language are highly portable, meaning that they can be moved
to another hardware/software configuration with very little change. We have chosen
to provide codes in FORTRAN 77 mainly because the newer Fortran 90 is not in wide
use at this time. A Fortran 90 compiler will process correctly our FORTRAN 77
programs (with at most trivial changes), but if we were to write the programs so as
to exploit fully the new capabilities of the language, a number of the programs would
be structured in a fundamentally different way. The situation with C is similar, but
in our experience programs written in C have not proven to be nearly as portable as
programs written in standard FORTRAN 77. As with FORTRAN, the C language has
evolved into C++, and as with Fortran 90 compared to FORTRAN 77, exploiting fully
the additional capabilities of C++ (in particular, object oriented programming) would
lead to programs that are completely different from those in C. We have opted for a
middle ground in our C++ implementations.

In the last decade several computing environments have been developed. Popular
ones familiar to us are MATLAB [I] and Mathematica [2]. MATLAB is very much in
keeping with this book, for it is devoted to the solution of mathematical problems by
numerical means. It integrates the formation of a mathematica model, its numerica
solution, and graphical display of results into a very convenient package. Many of the
tasks we study are implemented as a single command in the MATLAB language. As
MATLAB has evolved, it has added symbolic capabilities. Mathematica is a similar
environment, but it approaches mathematical problems from the other direction. Orig-
inaly it was primarily devoted to solving mathematical problems by symbolic means,
but as it has evolved, it has added significant numerical capabilities. In the book we
refer to the numerical methods implemented in these widely used packages, as well
as others, but we mention the packages here because they are programming languages
in their own right. It is quite possible to implement the algorithms of the text in these
languages. Indeed, this is attractive because the environments dea gracefully with a
number of issues that are annoying in general computing using languages like FOR-
TRAN or C.
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At present we provide programs written in FORTRAN 77, C, C++, and MATLAB
that have a high degree of portability. Quite possibly in the future the programs will
be made available in other environments (e.g., Fortran 90 or Mathematica.)

In this section we describe how to obtain the source code for the programs that ac-
company the book and how to obtain production-grade software. It is assumed that the
reader has available a browser for the World Wide Web, athough some of the software
is available by ftp or gopher.

The programs that accompany this book are currently available by means of anony-
mous ftp (log in as anonymous or as ftp) at

ftp.wiley.com

in subdirectories of public/college/math/sapcodes for the various languages discussed
in the preceding section.

The best single source of software is the Guide to Available Mathematical Soft-
ware (GAMS) developed by the National Institute of Standards and Technology (NIST).
It is an on-line cross-index of mathematical software and a virtual software repository.
Much of the high-quality software is free. For example, GAMS provides a link to
netlib, a large collection of public-domain mathematical software. Most of the pro-
grams in netlib are written in FORTRAN, athough some are in C. A number of the
packages found in netlib are state-of-the-art software that are cited in this book. The
internet address is

http://gams.nist.gov

for GAMS.
A useful source of microcomputer software and pointers to other sources of soft-
ware is the Mathematics Archives at

http://archives.math.utk.edu:80/

It is worth remarking that one item listed there is an “Index of resources for numerica
computation in C or C++.”

There are a number of commercial packages that can be located by means of
GAMS. We are experienced with the NAG and IMSL libraries, which are large col-
lections of high-quality mathematical software found in most computing centers. The
computing environments MATLAB and Mathematica mentioned in the preceding sec-
tion can aso be located through GAMS.
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CHAPTER 1

ERRORS AND FLOATING POINT
ARITHMETIC

Errors in mathematical computation have several sources. One is the modeling that
led to the mathematical problem, for example, assuming no wind resistance in study-
ing projectile motion or ignoring finite limits of resources in population and economic
growth models. Such errors are not the concern of this book, although it must be kept
in mind that the numerical solution of a mathematical problem can be no more mean-
ingful than the underlying model. Another source of error is the measurement of data
for the problem. A third source is a kind of mathematical error called discretization
or truncation error. It arises from mathematical approximations such as estimating an
integral by a sum or a tangent line by a secant line. Still another source of error is the
error that arises from the finite number of digits available in the computers and cal-
culators used for the computations. It is called roundoff error. In this book we study
the design and implementation of algorithms that aim to avoid severe roundoff errors,
estimate truncation errors, and give some indication of the sendtivity of the problem
to errors in the data. This chapter is devoted to some fundamental definitions and a
study of roundoff by means of simple but illuminating computations.

1.1 BASIC CONCEPTS

How well a quantity is approximated is measured in two ways:

absolute error = true value - approximate value

true value - approximate value
true value '

relative error

Relative error is not defined if the true value is zero. In the arithmetic of computers,
relative error is the more natural concept, but absolute error may be preferable when
studying quantities that are close to zero.

A mathematical problem with input (data) x and output (answer) y = F(X) is said
to be well-conditioned if “small” changes in x lead to “small” changes in y. If the

1
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changes in y are “large,” the problem is said to be ill-conditioned. Whether a problem
is well- or ill-conditioned can depend on how the changes are measured. A concept
related to conditioning is stability. It is concerned with the sengitivity of an algorithm
for solving a problem with respect to small changes in the data, as opposed to the sen-
sitivity of the problem itself. Roundoff errors are almost inevitable, so the reliability
of answers computed by an agorithm depends on whether small roundoff errors might
serioudly affect the results. An agorithm is stable if “small” changes in the input lead
to “small” changes in the output. If the changes in the output are “large,” the agorithm
is unstable.

To gain some insight about condition, let us consider a differentiable function F(x)
and suppose that its argument, the input, is changed from x to x + ex. This is a relative
change of e in the input data. According to Theorem 4 of the appendix, the change
induces an absolute change in the output value F(x) of

F(x) - F(x+tex & exF'(X).
The relative change is

F(X) - F(x+ex)~_ - F(X
F(X) ~ F(x) -

Example 1.1. If, for example, F(X) = €, the absolute change in the value of the
exponential function due to a change ex in its argument X is approximately - exe’, and
the relative change is about - ex. When x is large, the conditioning of the evauation of
this function with respect to a small relative change in the argument depends strongly
on whether the change is measured in an absolute or relative sense. ]

Example 1.2. If F(X) = cosx, then near x = p/2 the absolute error due to perturbing
X to X + ex is approximately - ex( - sinx) ~ ne/ 2. The relative error at x = p/2 is not
defined since cos(p/2) = 0. However, the accurate values

cos( 1.57079) = 0.63267949 x 10°
cos( 1.57078) = 1.63267949 x 10°

show how a very small change in the argument near p/2 can lead to a significant (63%)
change in the value of the function. In contrast, evaluation of the cosine function is
well-conditioned near x = O (see Exercise 1.4). |

Example 1.3. A common application of integration by parts in calculus courses is
the evaluation of families of integrals by recursion. As an example, consider

1
E, = / L ldx forn = 1, 2,....
0

From this definition it is easy to see that

E,>E,>-->E, ,>E,>-->0.
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To obtain a recursion, integrate by parts to get

1 1
_/ nx"te* tdx
0 0
=1- nE,q.
The first member of the family is
1
E;= |- / &ldx = &7,
0

and from it we can easily compute any E,. If this is done in single precision on a PC
or workstation (IEEE standard arithmetic), it is found that

E.= xe

E = 0.367879

E, = 0.264241

E, = 00506744

E, = 0.442581 (the exact E, decrease!)

E, = -4.31097 (the exact E, are positive!l)

E, = -0.222605 x 10" (the exact E, are between 0 and 1!)

This is an example of an unstable algorithm. A little analysis helps us understand what

is happening. Suppose we had started with E; = E; + d and made no arithmetic errors
when evaluating the recurrence. Then

g, =1-26=1-2E - 2d=E-2d
B, =1-36=1-3E,+6d=E+3d

E, = E, *+ nld
A small change in the first value E; grows very rapidly in the later E,. The effect is
worse in a relative sense because the desired quantities E, decrease as n increases.
For this example there is a way to get a stable agorithm. If we could find an
approximation Ey to Ey for some N, we could evaluate the recursion in reverse order,

| - E,
En. e n=N,N-1..2
to approximate Ey.,, En., - . ., E;. Studying the stability of this recursion as before,
if Ey = Ey + € then
. 1-Ey 1-Ey ¢ e
E -1 = = -——:E ] — —
N-1 N N N N-17
Ev_y=Ey_g+—u
N-2 — LN-=-2 N(N—l)
Bil=E +=

N!
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The recursion is so cheap and the error damps out so quickly that we can start with a
poor approximation Ey for some large N and get accurate answers inexpensively for
the E, that redly interest us. Notice that recurring in this direction, the E, increase,
making the relative errors damp out even faster. The inequality

1
n+1

1
0<E,< / X'dx =
0

shows how to easily get an approximation to E, with an error that we can bound. For
example, if we take N = 20, the crude approximation E,, = 0 has an absolute error less
than 1/21 in magnitude. The magnitude of the absolute error in Eq is then less than
/(20 x 21) = 0.0024,. . . , and that in E;5 is less than 4 x 10°® The approximations
to Eqs,. . ., E; Will be even more accurate.

A stable recurrence like the second algorithm is the standard way to evaluate cer-
tain mathematical functions. It can be especialy convenient for a series expansion in
the functions. For example, evaluation of an expansion in Bessdl functions of the first
kind,

oo

= 2, @ndn(x),

n=0

requires the evduation of J,(x) for many n. Using recurrence on the index n, this is
accomplished very inexpensively. n

Any red number y# (O can be written in scientific notation as
y = +.0,d,-dgdg, 4x 10° (1.2)

Here there are an infinite number of digits d.. Each d; takes on one of the vaues

0, 1,...., 9 and we assume the number y is normalized so that d; > 0. The portion
.dd,... is called the fraction or mantissa or significand; it has the meaning

d x 10" + dy x 10%+ -+ dgx 10 S+
There is an ambiguity in this representation; for example, we must agree that
0.24000000 -
is the same as
0.23999999 ...

The quantity e in (1.1) is caled the exponent; it is a signed integer.

Nearly al numerical computations on a digital computer are done in floating point
arithmetic. This is a number system that uses a finite number of digits to approximate
the real number system used for exact computation. A system with s digits and base
10 has dl of its numbers of the form

y = +.ddy - dg x 10°. (1.2)
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Again, for nonzero numbers each d; is one of the digits 0, 1,...,9 and d; > O for a
normalized number. The exponent e also has only a finite number of digits, we assume
the range

m<e<M.
The number zero is specid; it is written as
0.0 - 0x10"?

Example 1.4. If s=1, m= -1 and M = 1, then the set of floating point numbers is

+01 x 10% +02 x 107, .) +09 x 107
+0.1 x 10° +0.2 x 10° ...) +0.9 x 10°
+0l1 x 10 +02 x 10% .) +09 x 10%

together with the negative of each of these numbers and 0.0 x 10" for zero. There are
only 55 numbers in this floating point number system. In floating point arithmetic the
numbers are not equaly spaced. This is illustrated in Figure 1.1, which is discussed
after we consider number bases other than decimal. |

Because there are only finitely many floating point numbers to represent the real
number system, each floating point number must represent many real numbers. When
the exponent e in (1.1) is bigger than M, it is not possible to represent y at al. If in
the course of some computations a result arises that would need an exponent e > M,
the computation is said to have overflowed. Typical operating systems will terminate
the run on overflow. The situation is less clear when e < m, because such a y might
reasonably be approximated by zero. If such a number arises during a computation,
the computation is said to have underflowed. In scientific computation it is usualy ap-
propriate to set the result to zero and continue. Some operating systems will terminate
the run on underflow and others will set the result to zero and continue. Those that
continue may report the number of under-flows at the end of the run. If the response of
the operating system is not to your liking, it is usualy possible to change the response
by means of a system routine.

Overflows and underflows are not unusua in scientific computation. For exam-
ple, exp(y) will overflow for y > O that are only moderately large, and exp(-y) will
underflow. Our concern should be to prevent going out of range unnecessarily.

FORTRAN and C provide for integer arithmetic in addition to floating point arith-
metic. Provided that the range of integers alowed is not exceeded, integer arithmetic
is exact. It is necessary to beware of overflow because the typical operating system
does not report an integer overflow; the computation continues with a number that is
not related to the correct value in an obvious way.

Both FORTRAN and C provide for two precisions, that is, two arithmetics with
different numbers of digits s, caled single and double precision. The languages dea
with mixing the various modes of arithmetic in a sensible way, but the unwary can get
into trouble. This is more likely in FORTRAN than C because by default, constants in
C are double precision numbers. In FORTRAN the type of a constant is taken from the
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way it is written. Thus, an expression like (3/4)*5. in FORTRAN and in C means that
the integer 3 is to be divided by the integer 4 and the result converted to a floating point
number for multiplication by the floating point number 5. Here the integer division 3/4
results in 0, which might not be what was intended. It is surprising how often users
ruin the accuracy of a calculation by providing an inaccurate value for a basic constant
like p Some constants of this kind may be predefined to full accuracy in a compiler
or a library, but it should be possible to use intrinsic functions to compute accurately
constants like p = acos(-1.0).

Evaluation of an asymptotic expansion for the specia function Ei(x), called the
exponential integral, involves computing terms of the form n!/x". To contrast com-
putations in integer and floating point arithmetic, we computed terms of this form for
arange of n and x = 25 using both integer and double precision functions for the
factorial. Working in C on a PC using |IEEE arithmetic, it was found that the results
agreed through n= 7, but for larger n the results computed with integer arithmetic were
useless-the result for n = 8 was negative! The integer overflows that are responsible
for these erroneous results are truly dangerous because there was no indication from
the system that the answers might not be reliable.

Example 1.5. In Chapter 4 we study the use of bisection to find a number z such
that f(z2) = O, that is, we compute a root of f(x). Fundamental to this procedure is
the question, Do f(a) and f(b) have opposite signs? If they do, a continuous function
f(x) has a root z between a and b. Many books on programming provide illustrative
programs that test for f(a)f(b) < 0. However, when f(a) and f(b) are sufficiently
small, the product underflows and its sign cannot be determined. This is likely to
happen because we are interested in a and b that tend to z causing f(a) and f(b) to
tend to zero. It is easy enough to code the test so as to avoid the difficulty; it is just
necessary to redize that the floating point number system does not behave quite like
the real number system in this test. [ ]

As we shall see in Chapter 4, finding roots of functions is a context in which
underflow is quite common. This is easy to understand because the aim is to find a z
that makes f(z) as small as possible.

Example 1.6. Determinants. In Chapter 2 we discuss the solution of a system of
linear equations. As a by-product of the algorithm and code presented there, the deter-
minant of a system of n equations can be computed as the product of a set of numbers
returned:

det = y1Ys Y.
Unfortunately, this expression is prone to unnecessary under- and overflows. If, for
example, M = 100 and y; = 10%, y, = 10%°, y, = 10, all the numbers are in range
and o is the determinant 10%°. However, if we form (y, x y,) X s, the partial product
Y, x Y, overflows. Note that y; x (y, x y3) can be formed. This illustrates the fact that
floating point numbers do not always satisfy the associative law of multiplication that
is true of real numbers.
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The more fundamental issue is that because det(cA) = c"det(A), the determinant
is extremely sengtive to the scale of the matrix A when the number of equations n
is large. A software remedy used in LINPACK [4] in effect extends the range of
exponents available. Another possibility is to use logarithms and exponentials:

n
Injdet| Inly|]
i=1

|det|=exp(In|det]).

If this leads to an overflow, it is because the answer cannot be represented in the float-
ing point number system. |

Example 1.7. Magnitude. = When computing the magnitude of a complex number

z=x+iy,
e = V2 +y2,

there is a difficulty when either x or y is large. Suppose that|x| > |y|. If || is suf-
ficiently large, x* will overflow and we are not able to compute |2 even when it is a
valid floating point number. If the computation is reformulated as

|2l = |xly/ 1+ (v/x)?,

the difficulty is avoided. Notice that underflow could occur when |y| << |x|. This is
harmless and setting the ratio y/x to zero results in a computed |z that has a small
relative error.

The evauation of the Euclidean norm of a vector v = (v{,V5,...,Vp),

" 0.5
Mll2 = (Zv%) :
i=1

involves exactly the same kind of computations. Some writers of mathematical soft-
ware have preferred to work with the maximum norm

V|lee = mMax |vjl,

Mo = max
because it avoids the unnecessary overflows and underflows that are possible with a
straightforward evauation of the Euclidean norm. [ ]

If areal number y has an exponent in the alowed range, there are two standard
ways to approximate it by a floating point number fl(y). If al digits after the first s
in (1.1) are dropped, the result is known as a chopped or truncated representation. A
floating point number that is usually closer to y can be found by adding 5 x 10
to the fraction in (1.1) and then chopping. This is called rounding.

Example 1.8. If m=-99, M = 99, s =5, and p = 3.1415926..., then in chopped
arithmetic

fl(p) = 0.31415 x 10"
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while

fl(p) = 0.31416 x 10'

in rounded arithmetic. [ |

If the representation (1.1) of y is chopped to s digits, the relative error of fl(y) has
magnitude

‘y—ﬂ(y) ‘ _0.00-+Odyy ydyyp - X 10°

y | 0didy---doyidegy - x 10°
0.00---099---
~ 0.10---000---
000100 oy
0.10---000---

In decimal arithmetic with s digits the unit roundoff u is defined to be 10"° when
chopping is done. In a similar way it is found that
|y—fl(y)‘
y

1 1—-s

< 210
when rounding is done. In this case u is defined to be %210"°. In either case, u is a
bound on the relative error of representing a nonzero real number as a floating point
number.

Because fl(y) is a real number, for theoretical purposes we can work with it like
any other real number. In particular, it is often convenient to define a real number d
such that

fily) = y(1 + d).
In general, al we know about d is the bound

18] < u.

Example 1.9. Impossible accuracy. Modern codes for the computation of a root of
an equation, a definite integral, the solution of a differential equation, and so on, try
to obtain a result with an accuracy specified by the user. Clearly it is not possible
to compute an answer more accurate than the floating point representation of the true
solution. This means that the user cannot be allowed to ask for a relative error smaller
than the unit roundoff u. It might seem odd that this would ever happen, but it does.
One reason is that the user does not know the value of u and just asks for too much
accuracy. A more common reason is that the user specifies an absolute error r. This
means that any number y* will be acceptable as an approximation to vy if

ly—y*<r
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Such a request corresponds to asking for a relative error of
*
Iy y \S T
y Iyl

When |rly| < u, that is, r < u]y|, this is an impossible request. If the true solution is
unexpectedly large, an absolute error tolerance that seems modest may be impossible
in practice. Codes that permit users to specify an absolute error tolerance need to
be able to monitor the size of the solution and warn the user when the task posed is
impossible. |

There is a further complication to the floating point number system-most com-
puters do not work with decimal numbers. The common bases are b = 2, binary arith-
metic, and b = 16, hexadecimal arithmetic, rather than b = 10, decimal arithmetic. In
general, a real number y is written in base b as

y = +.dd,-dgdg, - x b®, (1.3)

where each digit is one of 0, 1,.., b - 1 and the number is normalized so that d, > 0
(as long as y# 0). This means that

£(d x bt + dy x b3t dg x bS+-) x b®.

All the earlier discussion is easily modified for the other bases. In particular, we have

in base b with s digits the unit roundoff

- { B!=*,  chopped

%B]“s , rounded. (14)

Likewise,
fily) = y(1 + d), where [d<u.

For most purposes, the fact that computations are not carried out in decimal is incon-
sequential. It should be kept mind that smal rounding errors are made as numbers
input are converted from decimal to the base of the machine being used and likewise
on output.

Table 1.1 illustrates the variety of machine arithmetics used in the past. Today the
IEEE standard [I] described in the last two rows is almost universa. In the table the
notation 1.2(-7) means 1.2 x 107

As was noted earlier, both FORTRAN and C specify that there will be two preci-
sions available. The floating point system built into the computer is its single precision
arithmetic. Double precison may be provided by either software or hardware. Hard-
ware double precision is not greatly slower than single precision, but software double
precision arithmetic is considerably slower.

The IEEE standard uses a normalization different from (1.2). For y# 0 the leading
nonzero digit is immediately to the left of the decima point. Since this digit must be
1, there is no need to store it. The number O is distinguished by having itse = m - 1.
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Table 1.1 Examples of Computer Arithmetics.

machine b s m M approximate u
VAX 2 24 -128 127 6.0(-08)
VAX 2 56 -128 127 1.4(-17)
CRAY- 1 2 48 -16384 16383 3.6(-15)
IBM 3081 16 6 -64 63 9.5(-07)
IBM 3081 16 14 -64 63 2.2(-16)
|IEEE

Single 2 24 -125 128 6.0(-08)

Double 2 53 -1021 1024 I.1(-16)

It used to be some trouble to find out the unit roundoff, exponent range, and the
like, but the situation has improved greeatly. In standard C, constants related to float-
ing point arithmetic are available in <float.h>. For example, dbl_epsilon is the unit
roundoff in double precision. Similarly, in Fortran 90 the constants are available from
intrinsic functions. Because this is not true of FORTRAN 77, several approaches were
taken to provide them: some compilers provide the constants as extensions of the lan-
guage; there are subroutines DIMACH and IIMACH for the machine constants that
are widely available because they are public domain. Major libraries like IMSL and
NAG include subroutines that are similar to DIMACH and IIMACH.

In Example 1.4 earlier in this section we mentioned that the numbers in the floating
point number system were not equally spaced. As an illustration, see Figure 1.1 where
al 19 floating point numbers are displayed for the system for which b = 4, s = 1,
m=-1 and M = 1.

Arithmetic in the floating point number system is to approximate that in the real
number system. We use &, S, ®, @ tto indicate the floating point approximations to
the arithmetic operations +, -, x, /. If y and z are floating point numbers of s digits,
the product y x z has 2s digits. For example, 0.999 x 0.999 = 0.998001. About the
best we could hope for is that the arithmetic hardware produce the result fi(y x 2), so
that y®z = (y X z)(1 +8) for some real number d with |d|<iu. It is practical to do this
for al the basic arithmetic operations. We assume an idealized arithmetic that for the
basic arithmetic operations produces

ydz=fl(y+2)
yoz=fl(y—2)
y®z= fl(yxz)
yoz= fl(y/2),
provided that the results lie in the range of the floating point system. Hence,

y©p)z= (yopz)(1+3)

where op = +, -, X, or / and d is a rea number with |d|< iu. This is a reasonable
assumption, athough hardware considerations may lead to arithmetic for which the
bound on d is a small multiple of u.



11 BASIC CONCEPTS 11

| | [ [ 1] | |
I I N 1 J I

-3.0 -20 -1.0 0.0 1.0 2.0 3.0

Figure 1.1 Digtribution of floating point numbersforb =4,s=1, m=-1, M= 1.

To carry out computations in this model arithmetic by hand, for each operation
+, -, %, [/, perform the operation in exact arithmetic, normalize the result, and round
(chop) it to the allotted number of digits. Put differently, for each operation, calculate
the result and convert it to the machine representation before going on to the next
operation.

Because of increasingly sophisticated architectures, the unit roundoff as defined
in (1.4) is simplistid-or example, many computers do intermediate computations
with more than s digits. They have at least one “guard digit,” perhaps several, and as
a consequence results can be rather more accurate than expected. (When arithmetic
operations are carried out with more than s digits, apparently harmless actions like
printing out intermediate results can cause the final result of a computation to change!
This happens when the extra digits are shed as numbers are moved from arithmetic
units to storage or output devices.) It is interesting to compute (1 + d) -1 for decreas
ing d to see how small d can be made and still get a nonzero result. A number of codes
for mathematical computations that are in wide use avoid defining the unit roundoff
by coding a test for ulx| < h as

if (x+h) #.x)then....

On today’s computers this is not likely to work properly for two reasons, one being the
presence of guard digits just discussed. The other is that modern compilers defeat the
test when they “optimize’ the coding by converting the test to

if (h#£0)then...,
which is aways passed.
EXERCISES
1.1 Solve mates the unit roundoff u by a computable quantity
u:
0.461x, + 0.311x, = 0.150
_ A = 4.J3
0.209x, + 0.141x, = 0.068 B =A-1
using three-digit chopped decimal arithmetic. The ex- CL:J f l(E;' Bl+| B

act answer isx; = 1, X, = -1; how does yours com-

pare? . . L
(@ What does the above agorithm yield for U in six-

1.2 The following agorithm (due to Cleve Moler) esti- digit decima rounded arithmetic?
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(b) What does it yidd for U in six-digit decimal
chopped arithmetic?

(c) What are the exact values from (1.4) for u in the
arithmetics of (@) and (b)?

(d) Use this algorithm on the machine(s) and calcu-
lator(s) you are likely to use. What do you get?

1.3 Consider the following agorithm for generating noise

14

15

16

in a quantity x:
A:=10"* x
B:=A+X
y:=B-A

(a) Caculate y when x = 0.123456 and n = 3 using
six-digit decimal chopped arithmetic. What is the er-
ror x - y?
(b) Repeat (a) for n = 5.
Show that the evaluation of F(xX) = cosx is well-
conditioned near x = 0; that is, for |x|< & show
that the magnitude of the relative error | [F(X) -
F(0)] /F(0) | is bounded by a quantity that is not large.
If F(X) = (x - 1)% what is the exact formula for
[F(x + ex) - F(X))/F(X)? What does this say about
the conditioning of the evaluation of F(x) near x = 1?
Let S, := JF(x/m)?* sinxdx and show that two inte-
grations by parts results in the recursion

2n(2n—1)

p)

Further arguethat §; = 2 and that S,.; > S, > 0 for
every n.

S,,:l Sn—]v n=l,2,....

ERRORS AND FLOATING POINT ARITHMETIC

(@) Compute Ss with this recursion (make sure that
you use an accurate value for p).

(b) To analyze what happened in (a), consider the re-
cursion

- 2n(2n—1)
S,,:l——%sn_l,

n=12,...,

with So = 2( 1 - u), that is, the same computation with
the starting value perturbed by one digit in the last
place. Find a recursion for S, - .. From this recur-
sion, derive aformulafor Sy5 -85 i in terms of So — Sp.
Use this formula to explain what happened in ().

(c) Examine the “backwards’ recursion

s (1=-8)m?
"1 on(2n—1)

sarting with §js= 0. What is 55? Why?

1.7 For brevity let uswrites=sin(qg), ¢ = cos(q) for some

value of g. Once c is computed, we can compute s
inexpensively from s =v/1—cZ2. (Either sign of the
square root may be needed in general, but let us con-
sider here only the positive root.) Suppose the cosine
routine produces ¢ + dc instead of c. Ignoring any er-
ror made in evaluating the formula for s, show that this
absolute error of dc induces an absolute error in s of ds
with8s = —(c/s)8c. For therange 0< 8 < x/2, are
there g for which this way of computing sin(g) has an
accuracy comparable to the accuracy of cos(q)? Are
there g for which it is much less accurate? Repeat for
reletive errors.

12 EXAMPLES OF FLOATING POINT CALCULATIONS

The floating point number system has properties that are similar to those of the real
number system, but they are not identical. We have dready seen some differences
due to the finite range of exponents. It might be thought that because one arithmetic
operation can be carried out with small relative error, the same would be true of severa
operations. Unfortunately this is not true. We shall see that multiplication and division
are more satisfactory in this respect than addition and subtraction.

For floating point numbers x, y and z,

x®y=xy(1+81)

(x®y) @z = (xy(1+81))z(1+32),

182 < u

=xyz(1+81)(1+3,).
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The product
1 +d)(l +d)=1+¢

where e is “small,” and can, of course, be explicitly bounded in terms of u. It is more
illuminating to note that

(1+d )(1+d)=1+d +dy*+d 0,
®d;+d,,

s0 that
ex8+96

and an approximate bound for e is 2u. Before generalizing this, we observe that it may
well be the case that

xR(Y®z) # (x®y) Oz,
even when the exponent range is not exceeded. However,
x®@ (y®z) = xyz(1+83)(1+84),
so that

x@(y®z) _ (1+83)(1+84)
(x@y)®z  (1+8))(1+8,)

where h is “smal.” Thus, the associative law for multiplication is approximately true.

=1+n,

In generd, if we wish to multiply X, X5, . . . X, we might do this by the agorithm
Pb= X
P = P, ®Xx, i=23,.,n

Treating these operations in rea arithmetic we find that
P = XX (I + d)(1 + dy)-+(1 + d),

where each. |§;] < u. The relative error of each P, can be bounded in terms of u without
difficulty, but more insight is obtained if we approximate

Pire X% (Il +dy +dp + - -+ d),
which comes from neglecting products of the d. Then
|di+dpt - +d| < i

This says that a bound on the approximate relative errors grows additively. Each mul-
tiplication could increase the relative error by no more than one unit of roundoff. Di-
vison can be anadyzed in the same way, and the same conclusion is true concerning
the possible growth of the relative error.

Example 1.10. The gamma function, defined as

I'(x) =/ e~ dr,
0
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generalizes the factorial function for integers to real numbers x (and complex x as
well). This follows from the fundamental recursion

I(x)=(x-1I(x-1) (1.5)

and the fact that T'i(1) = 1. A standard way of approximating I'(x) for x> 2 uses the
fundamental recursion to reduce the task to approximating I'i(y) for 2 <y < 3. This
is done by letting N be an integer such that N < x < N + 1, lettingy = x - N + 2, and
then noting that repeated applications of (1.5) yield

[x)=TH)(x—N+2)(x=N+3)--- (x—2)(x—1).

The function I’(y) can be approximated well by the ratio R(y) of two polynomias for
2 <y < 3. Hence, we approximate

I(x)~Ry)(x—=N+2)---(x—1).

If X is not too large, little accuracy is lost when these multiplications are performed in
floating point arithmetic. However, it is not possible to evaluateI'(x) for large x by
this approach because its value grows very quickly as a function of x. This can be seen
from the Stirling formula (see Case Study 5)

T(x) ~ \/m(g)".

This example makes another point: the virtue of floating point arithmetic is that it
automatically deals with numbers of greatly different size. Unfortunately, many of the
specia functions of mathematical physics grow or decay extremely fast. It is by no
means unusua that the exponent range is exceeded. When this happens it is necessary
to reformulate the problem to make it better scaled. For example, it is often better to
work with the specia function In T'(x) than with I’(x) because it is better scaled. [

Addition and subtraction are much less satisfactory in floating point arithmetic
than are multiplication and division. It is necessary to be aert for severa situations
that will be illustrated. When numbers of greatly different magnitudes are added (or
subtracted), some information is lost. Suppose, for example, that we want to add
d = 0.123456 x 10 to 0.100000 x 10" in six-digit chopped arithmetic. First, the
exponents are adjusted to be the same and then the numbers are added:

0.100000 x 10"
+ 0.0000123456  x10*
0.1000123456  x10.

The result is chopped to 0.100012 x 10". Notice that some of the digits did not par-
ticipate in the addition. Indeed, if |y| < |X|u, then b y = x and the “small” number y
plays no role a dl. The loss of information does not mean the answer is inaccurate;
it is accurate to one unit of roundoff. The problem is that the lost information may be
needed for later calculations.
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Example 1.11. Difference quotients. Earlier we made use of the fact that for small
3,

F(x+3)—F(x)
)

In many applications this is used to approximate F'(X). To get an accurate approxima-
tion, d must be “small” compared to x. It had better not be too small for the precision,
or else we would have x@ 8 = x and compute a value of zero for F'(X). If d is large
enough to affect the sum but still “small,” some of its digits will not affect the sum in
the sense that x® 8 — x # 6. In the difference quotient we want to divide by the actual
difference of the arguments, not d itself. A better way to proceed is to define

A=(x®d)Sx

~ F'(x).

and approximate
F(x+A)—F(x)
S e—
The two approximations are mathematically equivalent, but computationaly different.
For example, suppose that F(x) = x and we approximate F'(x) for x = 1 using d =
0.123456 x 10™ in six-digit chopped arithmetic. We have just worked out 1 &d =
0.100012 x 10% similarly, A= 0.120000 x 10™ showing the digits of d that actually
affect the sum. The first formula has
(18 o1 _ 0.120000 x 10~
5 ~0.123456 x 10—

F'(x) =

=0.972006 x 10°.

The second has
(1aA)&1  0.120000 x 1074
A 0.120000 x 10-%
Obvioudy the second form provides a better approximation to F'(1) = 1. Qudity
codes for the numerical approximation of the Jacobian matrices needed for optimiza-

tion, root solving, and the solution of tiff differentia equations make use of this sim-
ple device. |

=0.100000 x 10!.

Example 1.12. Limiting precision. In many of the codes in this book we attempt to
recognize when we cannot achieve a desired accuracy with the precision available. The
kind of test we make will be illustrated in terms of approximating a definite integral

/abf(x) dx.

This might be done by splitting the integration interval [a,b] into pieces [a,b] and
adding up approximations on al the pieces. Suppose that

/:f(x) dx~ B;GOC [f((x) +4f (%B) +f(B)] .

The accuracy of this formula improves as the length b - a of the piece is reduced, so
that, mathematically, any accuracy can be obtained by making this width sufficiently
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small. However, if |b - a| < 2ufal, the floating point numbers a and a + (b - a)/2
are the same. The details of the test are not important for this chapter; the point is that
when the interval is small enough, we cannot ignore the fact that there are only a finite
number of digits in floating point arithmetic. If a and b cannot be distinguished in the
precision available, the computational results will not behave like mathematical results
from the real number system. In this case the user of the software must be warned that
the requested accuracy is not feasible. |

Example|. 13. Summing a divergent series. The sum S of a series

2, an

m=1
is the limit of partial sums
n
Sy = z an.
m=1
There is an obvious agorithm for evaluating S:
S =
S = S1% a n=2 3.,

continuing until the partial sums stop changing. A classic example of a divergent series
is the harmonic series

If the above algorithm is applied to the harmonic series, the computed S, increase and
the a, decrease until

Sn=S8-1Da, =S,

and the partial sums stop changing. The surprising thing is how small S, is when this
happens-try it and see. In floating point arithmetic this divergent series has a finite
sum. The observation that when the terms become small enough, the partial sums
stop changing is true of convergent as well as divergent series. Whether the value so
obtained is an accurate approximation to S depends on how fast the series converges.
It redly is necessary to do some mathematical analysis to get reliable results. Later in
this chapter we consider how to sum the terms a little more accurately. u

An acute difficulty with addition and subtraction occurs when some information,
lost due to adding numbers of greatly different size, is needed later because of a sub-
traction. Before going into this, we need to discuss a rather tricky point.

Example 1.14. Cancellation (loss of significance). Subtracting a number y from a
number x that agrees with it in one or more leading digits leads to a cancdllation of
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these digits. For example, if x = 0.123654 x 10° and y = 0.123456 x 10°, then

0.123654 x 10°
— 0123456 x 10°
0.000198 x 10° = 0.198000 x 10

The interesting point is that when cancellation taekes place, the subtraction is done
exactly, so that x &y =X - y. The difficulty is what is caled a loss of significance.
When cancellation takes place, the result x - y is smaller in size than x and y, so
errors already present in X and y are relatively larger in x - y. Suppose that x is an
approximation to X and y is an approximation to Y. They might be measured values or
the results of some computations. The difference x - y is an approximation to X - Y
with the magnitude of its relative error satisfying

(1=y) - (X-7)| _ <x—X>~(y—Y>l
X-Y X-Y
s = kwalr=r

If x is so close to y that there is cancellation, the relative error can be large be-
cause the denominator X - Y is small compared to X or Y. For example, if X =
0.123654700 - x 10”, then x agrees with X to a unit roundoff in six-digit arithmetic.
With Y =y the value we seek is X - Y = 0.198700 --- x 10°®. Even though the sub-
traction x - y = 0.198000 x 10® is done exactly, x - y and X - Y differ in the fourth
digit. In this example, x and y have at least six significant digits, but their difference
has only three significant digits. u

It is worth remarking that we made use of cancellation in Example 1.11 when we
computed

A= (x®d)ox.

Because d is small compared to x, there is cancellation and A = (x@®3) —x. In this
way we obtain in A the digits of d that actually affected the sum.

Example 1.15. Roots of a quadratic. ~Suppose we wish to compute the roots of
x?+bx+c=0.

The familiar quadratic formula gives the roots x; and x, as

b b\?
x1'2=—§:|: (5) —C,

assuming b > 0. If ¢ is smal compared to b, the square root can be rewritten and
approximated using the binomial series to obtain

b [ 4 b( 2
2V T2 b2 :
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This shows that the true roots
-b
-c/b.

X1
X2

2

In finite precision arithmetic some of the digits of ¢ have no effect on the sum (b/2)? -

c. The extreme case is
b\? b\?
(3) == (3)-

It is important to appreciate that the quantity is computed accurately in a relative sense.
However, some information is lost and we shall see that in some circumstances we
need it later in the computation. A sgquare root is computed with a small relative
error and the same is true of the subtraction that follows. Consequently, the bigger
root X, &b is computed accurately by the quadratic formula. In the computation
of the smaller root, there is cancellation when the sgquare root term is subtracted from
-b/2. The subtraction itself is done exactly, but the error already present in (b/2)> ©c¢
becomes important in a relative sense. In the extreme case the formula results in zero
as an approximation to X,.

For this particular task a reformulation of the problem avoids the difficulty. The
expression

( X=X)(X-%5) = X - (X + X) + X%
= X+ bx+c

shows that x;x, = ¢. As we have seen, the bigger root x can be computed accurately
using the quadratic formula and then

X, = CfX
provides an accurate value for x,. u
Example 1.16. Alternating series.  As we observed earlier, it is important to know
when enough terms have been taken from a series to approximate the limit to a desired

accuracy. Alternating series are attractive in this regard. Suppose ay > g > -+ > a,>
ap+ 1> > 0andlim,—.ca, = 0. Then the alternating series

S (1)
m=0

converges to a limit S and the error of the partial sum

n

Sp= z (=1)"an
m=0
satisfies
|S-S,| < a,tl
To see a specific example, consider the evaluation of sinx by its Maclaurin series
x3 )CS x7
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Although this series converges quickly for any given X, there are numerical difficulties
when |x| is large. If, say, x = 10, the a, are

10 10° 107
"6 71207504077

Clearly there are some fairly large terms here that must cancel out to yield a result
sin 10 that has magnitude at most 1. The terms a,,, are the result of some computation
that here can be obtained with small relative error. However, if a,, is large compared
to the sum S, a small relative error in a,, will not be small compared to S and S will
not be computed accurately.

We programmed the evauation of this series in a straightforward way, being care-
ful to compute, say,

S5 06,

s0 as to avoid unnecessarily large quantities. Using single precision standard |EEE
arithmetic we added terms until the partiad sums stopped changing. This produced the
value -0.544040 while the exact value should be sinx = -0.544021. Although the
series converges quickly for all x, some intermediate terms become large when |X| is
large. Indeed, we got an overflow due to the small exponent range in IEEE single
precision arithmetic when we tried x = 100. Clearly floating point arithmetic does not
free us from al concerns about scaling.

Series are often used as a way of evauating functions. If the desired function
value is smal and if some terms in the series are comparatively large, then there must
be cancellation and we must expect that inaccuracies in the computation of the terms
will cause the function value to be inaccurate in a relative sense. |

We have seen examples showing that the sum of several numbers depends on the
order in which they are added. Is there a “good” order? We now derive a rule of thumb
that can be quite useful. We can form a; + a, + - + ay by the agorithm used in
Example 1.13. The first computed partial sum is

fl(S2) = a®ay=(a1+az)(1+8&)
= 8§+ 08a; +6an,

where |d,] < u. It is a little special. The general case is represented by the next
computed partial sum, which is

fU(S3) = flU(Sy)Dasz = (fI(S;)+a3)(1+63)
= 834 (82+83)a; + (82 +83)ar + d3a3
+ 8,03a; + 0,03a;,

where |d;] < u. To gain insight, we approximate this expression by dropping terms
involving the products of small factors so that

fI(S3) = S3+ (82 +83)a; + (82 + 83)as + 83as.
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Continuing in this manner we find that

fllaj+--+ay) =~ (aj+-+ay)
+ (8 + 83+ +8y)a
+ (82 +03+ -+ +dy)az
+ (63 +084+ - +0dn)a3
+ ---+Onay.

According to this approximation, the error made when a, is added to S, might grow,
but its effect in S will be no bigger than (N - k + 1) ula. This suggests that to
reduce the total error, the terms should be added in order of increasing magnitude. A
careful bound on the error of repeated summation leads to the same rule of thumb.
Adding in order of increasng magnitude is usually a good order, but not necessarily
a good order (because of the complex ways that the individua errors can interact).
Much mathematical software makes use of this device to enhance the accuracy of the
computations.
The approximate error can be bounded by

N
|f1(Sn) = Swl S Nu Y, |a|.
n=0
Here we use the symbol C to mean “less than or equal to a quantity that is approxi-
mately.” (The “less than” is not sharp here.) Further manipulation provides an approx-
imate bound on the magnitude of the sum’s relative error

LF1(SN) = Su| ¢ . Zncolanl
syl = e el

The dangerous situation is when |ZV_an| < TN_ax|. ‘which is when cancellation
takes place. An important conseguence is that if al the terms have the same sign, the
sum will be computed accurately in a relative sense, provided only that the number of
terms is not too large for the precision available.

For a convergent series

S= Z ay,
m=0

it is necessary that |ap,| — O as m — e, Rather than sum in the natural order m =
0, 1,..., it would often be better to work out mathematically how many terms N are
needed to approximate S to the desired accuracy and then calculate S, in the reverse
order ay, ay.1,----

Example 1.17. There are two ways of interpreting errors that are important in nu-
merical analysis. So far we have been considering a forward error analysis. This
corresponds to bounding the errors in the answer by bounding at each stage the errors
that might arise and their effects. To be specific, recall the expression for the error of
summing three numbers:

fl (S3) =5+ (62 + 83 +8253)X1 + (62 + 83 + 8263))C2 +83X3.



12 EXAMPLES OF FLOATING POINT CALCULATIONS 21

A forward error analysis might bound the absolute error by

1£1(85) =851 < (2u-+42) (Jual + beal) + ]

(This is a sharp version of the approximate bound given earlier.) A backward error
analysis views the computed result as the result computed in exact arithmetic of a
problem with somewhat different data. Let us reinterpret the expression for fl(S3) in
this light. It is seen that

fI(Sa) =y +y.+ys,
where

yi=x1 (148, +83+8,83)
y2 =x (148, +03+8,83)
y3 =x3(1+4383).

In the backward error analysis view, the computed sum is the exact sum of terms yj
that are each close in a relative sense to the given data x. An agorithm that is stable
in the sense of backward error analysis provides the exact solution of a problem with
data close to that of the original problem. As to whether the two solutions are close,
that is a matter of the conditioning of the problem. A virtue of this way of viewing
errors is that it separates the roles of the stability of the agorithm and the condition
of the problem. Backward error anaysis is particularly attractive when the input data
are of limited accuracy, as, for example, when the data are measured or computed. It
may well happen that a stable algorithm provides the exact solution to a problem with
data that cannot be distinguished from the given data because of their limited accuracy.
We redlly cannot ask more of the numerical scheme in such a situation, but again we
must emphasize that how close the solution is to that corresponding to the given data
depends on the conditioning of the problem. We shall return to this matter in the next
chapter.

A numerical example will help make the point. For x, = 0.12 x 10% %, = 0.34 x
10", x3 = -0.15 x 10% the true vaue of the sum is S; = 0.40 x 10°. When evaluated
in two digit decimal chopped arithmetic, fl (S;) = 0.00 x 10°, a very inaccurate result.
Nevertheless, with y; = 0.116 x 10% Yy, = X,, and Y5 = X3, we have fl(S;) = y;+ y, +
y3. The computed result is the exact sum of numbers close to the original data. Indeed,
two of the numbers are the same as the origina data and the remaining one differs by
less than a unit of roundoff. |

For most of the numerical tasks in this book it is not necessary to worry greatly
about the effects of finite precision arithmetic. Two exceptions are the subject of the
remaining examples. The first is the computation of a root of a continuous function
f(x). Naturally we would like to compute a number z for which f(2) is as close to
zero as possible in the precision available. Routines for this purpose ask the user to
specify a desired accuracy. Even if the user does not request a very accurate root, the
routine may “accidentally” produce a number z for which f(2) is very small. Because
it is usually not expensive to solve this kind of problem, it is quite reasonable for a user
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to ask for al the accuracy possible. One way or the other, we must ask what happens
when x is very close to a root. An underflow is possible sincef(x) — 0 as x — z. | f
this does not happen, it is usualy found that the value of f(z) fluctuates erratically as
x — z.Because of this we must devise agorithms that will behave sensibly when the
computed value f(x) does not have even the correct sign for x near z An example will
show how the details of evauation of f(x) are important when x is near a root.

Example 1.18. Let f(x) = x* - 2x + 1 be evaluated at x = 1.018 with three-digit

chopped arithmetic and - 100 < e < 100. The exact answer is f (1.018) = 0.324 x

10°. Because the coefficients of f are small integers, no error arises when they are

represented as floating point numbers. However, x is not a floating point number in

this arithmetic and there is an error when % .= fl(X) = 0.101 x 10" is formed. Severa
algorithms are possible that arise in different ways of writing f(x):

O +

@ 2 ) 5 @

(x - D2

These forms work out to
i = [G®x)e(2e3)|e1
= 0.000x 107100
2 = I@(xe2)el
= 0.100x 1072
3 = FeleEsl)
= 0.100x 1073,
All of the results have large relative errors. This should not be too surprising since the
problem is poorly conditioned (see Exercise 1.5).

Figure 1.2 is a plot of 281 values of the function f(x) = ( xexp(x ) - 1)° for argu-
ments near x = 0.567. Single precision IEEE arithmetic was used for this calculation
and the cubed term in the function was expanded out to generate more roundoff. In
exact arithmetic f(x) vanishes a only one point a near 0.567, a point that satisfies
a = exp( - a). However, it is clear from the figure that the floating point version is not
nearly so well behaved near this ct. |

In Chapter 2 we discuss the numerical solution of a system of linear equations. In
contrast to the solution of nonlinear equations, codes based on the method there try to
compute an answer as accurately as possible in the precision available. A difficulty
with precision arises when we try to assess the accuracy of the result.

Example 1.19. Residual calculation. The simplest system of linear equations is
ax=b.

The qudlity of an approximate solution z can be measured by how well it satisfies the
equation. The discrepancy is called its residual:

r=>b-az
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Figure 1.2 Floating point evaluation of f(x) = x%¥ - 3x*¢® + 3xe* - 1.

If z is a very good solution, its residual r is small and there is cancellation when
forming

bo(a®z)=b—(a®z).
Defining d by
a®z=az(1+9),
the computed residua
bs(a®z) =b—az—azd=r—azd.

The computed residua differs from the true residual by a quantity that can be as large
as |azlu & |bju. When r is small because z is a good solution and |b| happens to be en
large, the computed residual may have few, if any, correct digits (athough the relative
residual |r/b| is fine). When z is a good solution, it is generaly necessary to use double
precision to obtain its residua to single precision accuracy. |

EXERCISES

1.8 Suppose that z = 0.180 x 107 is an approximate solu-
tion of ax = b for a = 0.111 x 10° b = 0.200 x 10"
Use three-digit decima chopped arithmetic to com-
pute the residual r = b - az. Compute the residua in
double precision and in exact arithmetic. Discuss the
results.

1.9 For a = 0.8717 and b = 0.8719 calculate the midpoint
of the interval [a, b] using the formula (a+ b)/2. First

1.10

use four-digit decimal chopped arithmetic, then four-
digit decimal rounded arithmetic. How reasonable are
the answers? Find another formula for the midpoint
and use four-digit decimal (rounded or chopped) arith-
metic to calculate the midpoint of [0.8717,0.8719]. Is
your formula better or worse?

In the model arithmetic, a single operation is car-
ried out with a smal relative error. Unfortunately
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the same is not true of complex arithmetic. To see
this, let z=a + iband w = c + id. By definition,
2w = (ac - bd) + i(ad + bc). Show how the real part,
ac - bd, of the product zw might be computed with a
large relative error even though al individual calcula
tions are done with a small relative error.

1.11 An approximation S to € can be computed by using

112

the Taylor series for the exponential function:

S==1

P:=1

for k = 1,2,..begin
P = xP/k
S = S+P

end k.

The loop can be stopped when S= S+ P to machine
precision.

(8 Try this agorithm with x = - 10 using single pre-
cison arithmetic. What was k when you stopped?
What is the relative error in the resulting approxima-
tion? Does this appear to be a good way to compute
e ™ to full machine precision?

(b) Repest (8) with x = + 10.

(c) Why are the results so much more reasonable for
(b)?

(d) What would be a computationally safe way to
compute e'%?

Many problems in astrodynamics can be approxi-
mated by the motion of one body about another under
the influence of gravity, for example, the motion of a
satellite about the earth. This is a useful approxima-
tion because by a combination of anaytical and nu-
merical techniques, these two body problems can be
solved easily. When a better approximation is desired,
for example, we need to account for the effect of the
maoon or sun on the satellite, it is natural to compute it
as a correction to the orhit of the two body problem.
This is the basis of Encke's method; for details see
Section 9.3 of [2]. A fundamental issue is to calculate
accurately the small correction to the orbit. This is
reduced to the accurate calculation of a function f(q)
for small g > 0. The function is

flg)= (’;[1 —(1-29)7¥7,

ERRORS AND FLOATING POINT ARITHMETIC

Explain why f(g) cannot be evaluated accurately in
finite precision arithmetic when g is small. In the ex-
planation you should assume that y*? can be eva-
uated with a relative error that is bounded by a small
multiple of the unit roundoff. Use the binomial series
to show

Why is this series a better way to evauate f(q) when
g issmal?

1.13 Let aregular polygon of N sides be inscribed in a unit

circle. If Ly denotes the length of one side, the cir-
cumference of the polygon, N x Ly, approximates the
circumference of the circle, 2p; hence p:~. NL\/2 for
large N. Using Pythagoras' theorem it is easy to relate

Loy tO Ly
L%N=2(l—\/l—L]2V/4).

Starting with L, = V2 for a square, approximate p
by means of this recurrence. Explain why a straight-
forward implementation of the recurrence in floating
point arithmetic does not yield an accurate value for
p. (Keepinmind that Ly — 0 as N — o.) Show that
the recurrence can be rearranged as

L /4

2(1+/1-13/4)

and demonstrate that this form works better.

Lin/4=

1.14 A study of the viscous decay of a line vortex leads to

an expression for the velocity

o)

a adistance r from the origin at time t > 0. Here Iy
istheinitial circulation and v > 0 is the kinematic vis-
cosity. For some purposes the behavior of the velocity
at distances r <<+/4vr is of particular interest. Why
is the form given for the velocity numericaly unsat-
isfactory for such distances? Assuming that you have
available a function for the accurate computation of
sinh( x ), manipulate the expression into one that can
be evaluated in a more accurate way for very small r.
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Now let us look at a couple of examples that illustrate points made in this chapter. The
first considers the evaluation of a special function. The second illustrates the fact that
practical computation often requires tools from several chapters of this book. Filon's
method for approximating finite Fourier integrals will be developed in Chapter 3 and
applied in Chapter 5. An aspect of the method that we take up here is the accurate
computation of coefficients for the method.

The representation of the hyperbolic cosine function in terms of exponentias

X = cosh(y) = exp( y) '; exp(-y)

makes it easy to verify that for x > 1,
y=—ln( - x2—1).

Let us consider the evaluation of this expression for cosh™ (x) in floating point arith-
metic when x >> 1. An approximation made earlier in this chapter will help us to
understand better what it is that we want to compute. After approximating

1 1
Vai-1=x 1_sz<l_ﬁ+”')’

we find that

y=—In (x— x2—1) ~—In (%) = In(2x).

The first difficulty we encounter in the evaluation is that when x is very large, X over-
flows. This overflow is unnecessary because the argument we are trying to compute is
on scale. If x islarge, but not so large that X overflows, the effect of the 1 “falls off the
end” in the subtraction, meaning that fl(X® - 1) = fI(®). This subtraction is carried
out with a small relative error, and the same is true of less extreme cases, but there is
a loss of information when numbers are of greatly different size. The square root is
obtained with a small relative error. The information lost in the subtraction is needed
a the next step because there is severe cancellation. Indeed, for large x, we might end
up computing X - x = 0 as the argument for In(x), which would be disastrous.

How might we reformulate the task to avoid the difficulties just noted? A little
calculation shows that

—tn (3= V=T) =in (o) = (3 V1),

a form that avoids cancellation. The preliminary analysis we did to gain insight sug-
gests a better way of handling the rest of the argument:

Ve -1=xif1- G)z
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Notice that here we form (I/x)*> instead of I/X*. This rearrangement exchanges a
possible overflow when forming x* for a harmless underflow, harmless, that is, if the
system sets an underflow to zero and continues on. We see now that the expression

1 2
y=In|x+x 1—<—>
x

avoids al the difficulties of the origina expression for cosh™ (x). Indeed, it is clear
that for large X, evaluation of this expression in floating point arithmetic will lead to an
approximation of In(2x), as it should.

For our second example we consider Filon's method for approximating finite
Fourier integrals, which is developed in Chapter 3:

b
| £(x) cos(wx) dx ~ hleu(£(5) sin(@b) — f(a)sin(wa) + BC. +1C,].
Here g = wh and
o= (92 +8sin(8) cos(8) — 2sin2(6)) /6°

B=2 ((-) (1 +cosZ(6)) — 2sin(0) cos(G)) /8?
y=4(sin(8) — Bcos(6)) /6>,

The details of the terms C, and C, do not concern us here. There is a similar for-
mula for integrals with the sine function in place of the cosine function that involves
the same coefficients a, b, g It is shown in Case Study 3 that the absolute error of
this approximation is bounded by a constant times h® To get an accurate integral, it
might be necessary to use a smal h, meaning that g is small, but the expressions for
the coefficients are unsatisfactory in this case. Each suffers from cancellation in the
numerator, and the resulting error is amplified by the division by the small quantity of.
To see the cancellation more clearly, let us approximate the sine and cosine terms in,
say, a by the leading terms in their Taylor series, sin(q) =~ q and cos(q) = 1, to get

o (62+6-6-1-20-6) /6%
Obvioudly there is perfect cancellation of leading terms in the numerator. This anaysis

suggests a remedy: for small g, expand the coefficients in Taylor series and dea with
the cancellation and small divisor analytically. The resulting series are

2 2 2 3 4
:_93_____95 7 _ 99 I _
“=35Y 73150 Yas? T 367.775° ' 8.513,505
SIS S S 0 910 _
B=3+5%"105% *567° ~22275° Tems6em5
2 1 1 1 1
Y=i“—92+ 4 o5 + P 0104 ...

3715 2100 11,340 ' 997,920 129,729,600
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It might be remarked that it was easy to compute these expansions by means of the
symbolic capabilities of the Student Edition of MATLAB. In the program used to com-
pute the integral of Case Study 3, these expressions were used for g < 0.1. Because the
terms decrease rapidly, nested multiplication is not only an efficient way to evauate
the expressions but is also accurate.

As a numerical illustration of the difficulty we evaluated both forms of a for a
range of g in single precision in FORTRAN. Reference values were computed using
the trigonometric form and double precision. This must be done with some care. For
instance, if T is a single precision variable and we want a double precision copy DT
for computing the reference values, the lines of code

T = 0.IEO
DT = 0. 1D0

are not equivaent to

T =0.1E0
DT=T

This is because on a machine with binary or hexadecimal arithmetic, 0. 1IEO agrees with
0.1 DO only to single precision. For the reference computation we require a double pre-
cision version of the actual machine number used in the single precision computations,
hence we must use the second code. As we have remarked previously, most computers
today perform intermediate computations in higher precision, despite specification of
the precision of al quantities. With T, S, and C declared as single precision variables,
we found remarkable differences in the result of

S=SIN(T)
C = COS(T)
ALPHA=(T**2+T*S*C-2EO* S**2)/T**3

and
ALPHA=(T**2+T*SIN(T)* COS(T)-2EO* SIN(T)**2)/T**3

differences that depended on the machine and compiler used. On a PC with a Pentium
chip, the second code gave nearly full single precision accuracy. The first gave the
poor results that we expect of computations carried out entirely in single precision.

The coefficient a was computed for a range of q using the trigonometric defini-
tion and single precision arithmetic and its relative error computed using a reference
value computed in double precision. Similarly the error of the value computed in sin-
gle precison from the Taylor series was found. Plotted against g in Figure 1.3 is the
relative error for both methods (on a logarithmic scale). Single precision accuracy
corresponds to about seven digits, so the Taylor series approach gives about al the
accuracy we could hope for, athough for the largest value of q it appears that another
term in the expansion would be needed to get full accuracy. Obvioudy the trigono-
metric definition leads to a great loss of accuracy for “smal” q. Indeed, g is not very
smal in an absolute sense here; rather, it is small considering its implications for the
cost of evaluating the integral when the parameter w is moderately large.
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Figure 1.3 Error in series form (¢) versus trig form (*) for a Filon coefficient.

14 FURTHER READING

A very interesting and readable account of the interaction of the floating point number
system with the solution of quadratic equations has been given by Forsythe [6]. Henrici
[8] gives another elementary treatment of floating point arithmetic that introduces the
useful idea of a datistical treatment of errors. To pursue the subject in depth, consult
the book Rounding Errors in Algebraic Processes by J. H. Wilkinson [10]. Wilkin-
son’'s books are unmatched for their blend of theoretical advance, striking examples,
practical insight, applications, and readability. For more information on the practica
evaluation of specia functions, see the books by Cody and Waite [3] or Fike [5]. Other
interesting discussions on floating point arithmetic are the books of Goldberg [7] and
Higham [9].
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MISCELLANEOUS EXERCISES FOR CHAPTER 1

1.15 Use three-digit decimal chopped arithmetic with m =

- 100 and M = 100 to construct examples for which
@ (xRy)R®z#x0(yQz)

®) (xBy)Pz#xB(yD2)

©) x@(D2) # (xRy)D(x®2)

(d) (x®y)@zhas a“large” relative error.

You are allowed to use negative numbers. Examples
can be constructed so that either one of the expres-
sions cannot be formed in the arithmetic, or both can
be formed but the values are different.

Xy, the sample
mean X is defined to be

o1 ¥
X = ﬁi:zlx,'.

The sample standard deviation sis defined to be

N
(N=1Ds?= Y (xi— 5%

i=1

Anocther expression,

2 N 1 N 2
(N=1)s* = > x%—ﬁ Z:x,- ,
i=1 i=1
is often recommended for hand computation of s.
Show that these two expressions for s are mathemat-
icaly equivalent. Explain why one of them may pro-
vide better numerical results than the other, and con-
struct an example to illustrate your point.

1.17 Fourier series,

ap+ 2 (an cosnx + sinnx),

n=1

are of great practical value. It appears to be necessary
to evaluate a large number of sines and cosines if we
wish to evaluate such a series, but this can be done
cheaply by recursion. For the specific x of interet, for
n=1, 2,..let

S, = sinnx and ¢, = COshX.
Show that forn= 2, 3,. ..
Sy = S1Cny + €18y and €, = CiCpy -SiSpa-

After evaluating § = sinx and ¢, = cosx with the in-
trinsic functions of the programming language, this
recursion can be used to evaluate smply and inex-
pensively all the sinnx and cosnx that are needed.
To see that the recursion is stable, suppose that for
some m > 1, s, and ¢, are computed incorrectly as
Sm = Sn+ €nandc, = Gy Hm. If no further arith-
metic errors are made, the errors e, and t,, will prop-
agate in the recurrence so that we compute

Sn = 51Cp—1 +C15p—1 and T = €18yt — 51501

forn=m+l,.. Lete,and 1, lbetheerorsin 5, and
Cn ¢ S0 that, by definition,

Sn=25n—€n and y = cn — Tn.
Prove that for al n > m
e +12 =€+ 12,

which implies that for al n > m

len] < 4/€2,+ T3 and |T,] < /€% + T3

In this sense, errors are not amplified and the recur-
rence is quite stable.
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SYSTEMS OF LINEAR EQUATIONS

One of the most frequently encountered problems in scientific computation is that of
solving n simultaneous linear equations in n unknowns. If we denote the unknowns by

X1 X9, « .+ . X, SUCh @ system can be written in the form
anxy + apxy + -+ apx = b
anxy + anxy + -+ @ = b
: . 2.1
amx; + apxa + - + amxpn = b,
The given data here are the right-hand sides by, i = 1, 2,. . ., n, and the coefficients a;
fori,j =1, 2,..., n. Problems of this nature arise amost everywhere in the applications

of mathematics (e.g., the fitting of polynomials and other curves through data and
the approximation of differentiad and integral equations by finite, agebraic systems).
Several specific examples are found in the exercises for this chapter (see aso [12]
or [13]). To tak about (2.1) conveniently, we shal on occasion use some notation
from matrix theory. However, we do not presume that the reader has an extensive
background in this area. Using matrices, (2.1) can be written compactly as

Ax=b, 2.2)
where
ajy app -+ a4y x1 by
ay ayp -+ ap x by
A= . . Cl.x=| . l,b=] .
anl an2 ' Qpn Xn by

Consider for the moment the case n = 1 in (2.1),
apxy — bl .

If a;; #' 0, the equation has a unique solution, namely x; = by/ay;. If a;; = 0, then
some problems do not have solutions (b, #0) while others have many solutions (if
b, = 0, any number x; is a solution). The same is true for general n. There are two
kinds of matrices, nonsingular and singular. If the matrix A is nonsingular, there is a
unique solution vector x for any given right-hand side b. If A is singular, there is no
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solution for some right-hand sides b and many solutions for other b. In this book we
concentrate on systems of linear equations with nonsingular matrices.

Example 2.1. The problem
2%, + 3% = 8 or 2 3\ (1) _ (8
5 Xl + 4X2 = 13 5 4 x2 - 13

has a nonsingular coefficient matrix. The linear system has the unique solution

X1=1,x,=2 or x:(;).

Example 2.2. The problem

2%, + 3%
I, + 66X

A (2 3\ () (4
7 4 6)\x,) 7
has a singular coefficient matrix. If

()

there is no solution, for if x; and x, were numbers such that 4 = 2x; + 3x,, then we
would have 8 = 2 x 4 = 2 x (2x+ 3X,) = 4x;+ 6x,, which is impossible because of

()

the second equation. If

there are many solutions, namely

for al rea numbers c.

In the nonsingular case there exists a matrix caled the inverse of A, denoted by
A, such that the unique solution of (2.2) is given by
x = A7b.
For n = 1, A* = (1/a;,). Should we compute A" and then form the product A* b

to solve (2.2)? We shall see that the answer is generdly no even if we want to solve
(2.2) with the same matrix A and many different right-hand sides b.
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21 GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

The most popular method for solving a nonsingular system of linear equations (2.1) is
caled Gaussian elimination. It is both ssmple and effective. In principle it can be used
to compute solutions of problems with singular matrices when they have solutions, but
there are better ways to do this. The basic idea in elimination is to manipulate the
equations of (2.1) so as to obtain an equivalent set of equations that is easy to solve.
An equivalent set of eguations is one that has the same solutions. There are three basic
operations used in eimination: (1) multiplying an equation by a nonzero constant,
(2) subtracting a multiple of one eguation from another, and (3) interchanging rows.
First, if any equation of (2.1) is multiplied by the nonzero constant a we obtain an
equivalent set of equations. To see this, suppose that we multiply the kth equation by

ato get

Olag Xy + Oy Xy + -+ + Qg X = Oby. (2.3)
If Xq, X5, . . . X, Salisfy (2.1), then they obvioudy satisfy the set of equations that is the
same as (2.1) except for the kth eguation, which is (2.3). Conversely, because a# 0,
if X, X, ... X, satisfy this second set of eguations, they obviousy satisfy the first.

Second, suppose we replace equation i by the result of subtracting the multiple a of
equation k from equation i:

ayxy+apxs+--+apx, = by

ai_11%1 +aj—12%+ "+ ai_1 nXn = bi_y
(aig — oayy)x; + (ap — Q) xp + - - + (@ip — Qg )Xy = bj — by, (2.4)

an1X] +appxz + -+ appXn = by.
If X1, X, . . . X, satisfy (2.1), then by definition
ajix1 +apxy+ -+ + ainXn = b

and
QX Ak s +aeX, = by,
so that
(anXy + @Xp + - + &pXy) - a (aaXy + - + X)) = b - aby.
Thus X, X5, - - . %, Satisfy all the equations of (2.4). To work in reverse, suppose now
that X;, Xo,. . . X, Satisfy (2.4). Then in particular they satisfy equations i and K,
(@it — 0agy)x1 + -+ (Gin — Oagn)xn = by —0by
QX1+t agpxn = by,
so that

[(ow@iy — 0@y )xy + -+ + (@in — Oagp ) xn]
+ (x[aklxl +--+ ak,,x,,] =(b;— (Ibk) + oy,
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which is just
ainxy+ - +apxn = b;.

Thus Xg, X5, . . . X, dso satisfy (2.1). Third, writing the equations in a different order
clearly does not affect the solution, so interchanging rows results in an equivalent set
of eguations.

Example 2.3. Consider the problem

3 X + 6X2 + 9X3 = 39
2X, + 5% - 2% = 3 (2.5)
XX + X - X = 2

If we subtract a multiple a of the first equation from the second, we get
(2-30)x; + (5 —60)x; + (—2 — 90t)x3 = 3 — 390

Choosing a = 2/3 makes the coefficient of x, zero, so that the unknown x; no longer
appears in this equation:

Xy - 8X3 = -23.

We say that we have “eliminated” the unknown x; from the equation. Similarly, we
eliminate x; from equation (2.5) by subtracting 1/3 times the first equation from it:

X - 4% = -11.
The system of equations (2.5)-(2.5) has been reduced to the equivaent system
3Xl + 6X2 + 9X3 = 39
X - 88X = -23 (2.6)
X - 4y = -11.

Now we set aside the first equation and continue the elimination process with the last
two equations in the system (2.6) involving only the unknowns x, and x;. Multiply the
second equation by 1 and subtract from the third to produce

4x; = 12, (2.7)

a single equation in one unknown. The equations (2.6) have now become the equiva
lent set of egquations

3 X1 + 6X2 + 9X3 = 39
Xo - 8 = -23 (2.8)
4xs = 12.

The system (2.8)-(2.8) is easy to solve. From (2.8) x3 = 12/4 = 3. The known value
of X3 is then used in (2.8) to obtain x,, that is,

X, = 8%-23=8%x3-23=1
Finaly, the values for x, and X; are used in (2.8) to obtain x,,
X, = (-6%, - 9% + 39)/3
=(-6x1-9x3+39)/3=2.
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Because this set of equations is equivaent to the original set of equations, the solution
of (25)-(25)isx; =2, %=1, % = 3. |

Let us turn to the genera problem (2.1), which we now write with superscripts to
help explain what follows:

Ell)xl + a?;;xz + -+ aél)xn = bil)
“211)x Lo+ oaym + e 4 azl) = by
aflll) x + aftlz)xz + -+ ag,) Xy, = bg,]) .

If a(l) # 0, we can eiminate the unknown x; from each of the succeedmg equations.

A typica step is to subtract from equation i the multiplea;, (n /a of the first equation.
The results will be denoted with a superscript 2. The step |s carned out by first forming

)

il
(1)’
an

mj; =

and then forming

a(z)zaf )—m,,a(lj) j=12,.

and

2 1 1
b = bV — Y.
The multiple of the first equation is chosen to make al(.lz) =0, that is, to eliminate the
unknown x; from equation i. Of course, if my = 0, the variable x; does not appear in
equation i, so it does not need to be eliminated. By recognizing this, the arithmetic of

elimination can be avoided. Doing this for each i = 2,. . . ,n we arrive at the system
a(lll)xl + a(l)xz + - + a(l)x,, = b(])
S M
%%"2 N NS
a3y %2 + ayixm = by
aflzz)xz 4+ o+ dPx = b,

Notice that if we start out with A stored in a C or FORTRAN array, we can save
a considerable amount of storage by overwriting the a(]') with the a(jz) as they are
created. Also, we can save the multipliers m, in the space formerly occupied by the

(1') entries of A and just remember that al the elements below the diagonal in the first
cofumn are redlly zero after elimination. Later we shall see why it is useful to save the

multipliers. Similarly, the origina vector b can be overwritten with the b,(k) as they are
formed.
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Now we set the first equation aside and eliminate x, from equationsi = 3,. .., nin
the same way. If a%) # 0, thenfori = 3,4, .., nwefirst form
a2
mp = 222) 3
a2
and then
513) —a(]) m,-za(zj), j=23,....n
and
3 2 2
B = b — mpb.
This results in
agl)xl + a(l)xz + + (l)x,, = pP
B o 8
a%)xg + e+ a3),l Xp = b33)
Ba b ot A = D

As before, we set the first two equations aside and eliminate x; from equations i =

4, ... n. This can be done as long as ag? # 0. The elements a(lll),agz), . are cdled
pivot elements or simply pivots. Clearly, the process can be continued as long as no

pivot vanishes. Assuming this to be the case, we finaly arrive at

agll) + a(l)xz + + a(l)x,, = b(l)
B B b
a3, X2 + %”) = b%
axs + -+ aﬁlxn = b 2.9)
e = B,

In the computer implementation, the elements of the origina matrix A are successively
overwritten by the ag.‘) as they are formed, and the multipliers m; are saved in the
places corresponding to the variables eliminated. The process of reducing the system
of equations (2.1) to the form (2.9) is called (forward) eimination. The result is a
system with a kind of coefficient matrix called upper triangular. An upper triangular
matrix U = (u;;) is one for which
ujj = 0 if i>].

It is easy to solve a system of eguations (2.9) with an upper triangular matrix by a
process known as back substitution. If aﬁl’,'l) # 0, we solve the last equation for x,,

Xp = bs,n) / aﬁ,’,l,).
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Using the known value of x,, we then solve equation n - 1 for x,.;, and so forth. A
typical step is to solve equation k,

(k) k)

@ 1 ¥k + a,(‘t (k) (k)

ke 1%k o @ X = by
for x, using the previously computed X,, Xn.1,- - - X1

k - (K k
X = (bgc)_ Z al(cj)xj /aik)-

Jj=k+1

The only way this process can break down (in principle) is if a pivot element is zero.

Example 2.4. Consider the two examples

0')q+2X2:3

4Xl+ 5X2:6
and

O0:-X%X +2% =3

0 " Xl + SXZ = 6
The entry agll) =0, s0 it cannot be used as a pivot, but there is a simple remedy for the
difficulty. We merely interchange the equations to get the equivalent set

6
3.

4x, + 5%
0 X + 2%

For this problem the difficulty was easily avoided. This device will not work on the
other problem, however, as it is singular. The first equation of this set requires x, = 3/2

and the second requires x, = 6/5, so there is no solution at al. u

In the general case, suppose we have arrived at

dVx + o+ g o+ Ak = Y
a,(c];c)xk + -+ agl)xn = bg{k)
N S N

and ag‘) = 0. We examine the elements ag.l,? in column k for j > k. If for some index

[, ag:) # 0, we interchange equations k and |I. This does not affect the solution, so

we rename the coefficients in the same way as before. The new pivot ag,? is the old

aE,I:), which was nonzero, so the elimination process can now proceed as usud. If,

however, a'f) = 0 for all j = k,k+1,...,n, we have a difficulty of another sort: the
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matrix is singular. We prove this by showing that if a solution exists, it cannot be
unique. Assume X is a solution to the problem. Set z,;, = X4y, - . ., Z, = X, and let z
be arbitrary. The quantities z.,z.,,, . . . ,z, satisfy equations k through n because the
unknown X, does not appear in any of those equations. Now vaues for z, . . ., zZ.
may be determined by back substitution so that equations 1 through k - 1 are satisfied:

afxi+--+al)_mor =4 - Yoz

n
i=k

n
(k=1) _(k=1) (k-1)_
Yy f—1%k-1 = by, Z“k—u i

i=k
This can be done because none of these pivot elements vanishes. Since al of the

equations are satisfied, we have produced a whole family of solutions, namely z, z,
v Zo Xt - o %y With z arbitrary. This shows that the matrix is singular.

Example 2.5. The following problems illustrate how singular systems are reveded
during €limination. In the system

X + 2% - X3 = 2
2% ot A + X3 = 7
3, + 6x% - 2% = 7,
one step of elimination yields
X + 2% - X = 27
Ox, + 3x3 = 3
Ox, + x3 = 1

Since we cannot find a nonzero pivot for the second elimination step, the system is
singular. It is not hard to show that the solutions are

X, =3-2C
X = C
X =1
for dl real numbers c. The system
XX - X + X = 0
2+ X - X = -3
X t 2% - 2% = -2
is dso singular, since two steps of elimination give
X - X + X = 0
3, - 3x = -3
Oxg = 1
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In this case there is no solution at al. [ |

We conclude that by using interchanges, the elimination process has a zero pivot
only if the origina problem is singular. This statement is fine in theory, but the dis-
tinction between singular and nonsingular problems is blurred in practice by roundoff
effects. Unless a pivot is exactly zero, interchange of equations is unnecessary in the-
ory. However, it is plausible that working with a pivot that is amost zero will lead to
problems of accuracy in finite precision arithmetic, and this turns out to be the case.

Example 2.6. The following example is due to Forsythe and Moler [6]:

0.000100%, + 1.00%, = 1.00
1.00x, + 1.00x, = 2.00.

Using three-digit decimal rounded floating point arithmetic, one step in the elimination
process without interchanging equations yields for the second equation

[ 1.00 - (10,000) (1.00)]x, = [2.00 - (10,000) (1.00)]

or
-10,000x, = -10,000.

Clearly, x, = 1.00 and, by back substitution, x; = 0.00. Notice that al information
contained in the second eguation was lost at this stage. This happened because the
small pivot caused a large multiplier and subsequently the subtraction of numbers of
very different size. With interchange we have

100x, + 1.00x, 2.00
1.00x, 1.00

and x = 1.00, x, = 1.00. The true solution is about x; = 1.00010, X, = 0.99990. =

smal pivot elements a,(:,? may lead to inaccurate results. As we saw in the last
example, when eliminating_the variable x, in row i, a small pivot element leads to a

large multiplier my, = al(,f)/a,(c’,‘c). “When
k+1 k k
az(‘j )= az('j) _mika[((j)
is formed, there is a loss of information whenever m,-kag;) is much larger than ag.‘),

information that may be needed later. A large multiplier is aso likely to result in a
large entry in the upper triangular matrix resulting from elimination. In the solution of
the corresponding linear system by back substitution, we compute

K - (k k
X = (bgc)— 2 al(cj)> aik)'
j=k+1

If the pivot (the denominator) is small and the true value x, is of moderate size, it
must be the case that the numerator is also small. But if there are entries. a,((';.) of
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the upper triangular matrix that are large, this is possible only if cancellation occurs
in the numerator. The large entries might well have been computed with a modest
relative error, but because the entries are large this leads to a large absolute error in
the numerator after cancellation. The small denominator amplifies this and there is a
substantial relative error in X,.

Partial pivoting is the most popular way of avoiding small pivots and controlling

the size of the af;‘). When we diminate x,, we select the largest coefficient (in magni-
tude) of x in the last n - k + 1 equations as the pivat. That is, if |a§,l?l is the largest of
the |a5.’]?| forj=k k+ 1..., n, weinterchange row k and row |. By renaming the rows

we can assume that the pivot a,(cl,‘{) has the largest magnitude possible. Partial pivoting
avoids smal pivots and nicely controls the size of the multipliers

o0

k| <1
1G]
D

|| =

Controlling the size of the multipliers moderates the growth of. the entries in the upper
triangular matrix resulting from elimination. Let a = max; ; |a£})|. Now

2 1 1
|a,(j)| = |al(j) _mila,(j)l <2a
and it is easy to go on to show that

)| < 2*la.

This implies that

(k) n—1 .
rir,lj’])c(|aij | <2 rr;gx|a,,| (2.10)
when partial pivoting is done. The growth that is possible here is very important to
bounds on the error of Gaussian eimination. Wilkinson [15] points out that there is

equality in this bound for matrices of the form

1 0 0 0 1
-1 1 0 0 1
-1 -1 1 0 1
-1 -1 -1 1 1
-1 -1 -1 -1 1

However, usuadly the growth is very modest. Research into this matter is surveyed
in [11]. There are other ways of selecting pivot elements that lead to better bounds
on the error and there are other ways of solving linear systems that have till better
bounds. Some details will be mentioned later, but in practice the numerical properties
of Gaussian elimination with partial pivoting are so good that it is the method of choice
except in special circumstances, and when one spesks of “Gaussian eimination” it is
assumed that partial pivoting is done unless something to the contrary is said. Gaussian
elimination with partial pivoting is the basic method used in the popular computing
environments MATLAB, Mathematica, and MATHCAD.
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Example 2.7. Using exact arithmetic and elimination with partial pivoting, solve the

following system:
1 2 1 X1 0
2 2 3 <x2> = (3) .
-1 -3 0 X3 2

Since 2] > |1], we interchange the first and second equations to get

2 2 3 X1 3
1 2 1 <x2) = (0).
-1 =3 0 X3 2

Using 2 as a pivot, we eliminate the coefficients of X in eguations two and three to get

(2 2 3 ) X 3 )
0 1 -1/2 (x2>= -3/2 |.
0 -2 32 X3 7/2

Since |-2| > |I|, we interchange equations two and three,

2 2 3 ) x| 3 )
0 -2 3/2 (x2)= 7/2 1,
0 1 -1/2 x3 -3/2

and using -2 as pivot obtain

2 2 3 X1 3
0 -2 3/2 (x2> = ( 7/2 ) .
( 0 0 1/4 ) x3 1/4

Back subgtitution then gives

x3 = (1/4)/(1/4)=1
x = [(7/2)-(3/2)()]/(=2) = ~1
x o= [3)-3)1)-@)(=DI/(2)=1

or

The algorithm for elimination is quite compact:
Elimination, modification of b.

interchange rows so that |ay| = MaX<icn |
if |ag] = 0, set singularity indicator, return
fori=k+I,..., n begin
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t = a.ik/akk
forj=k+1,...,nbegin
a =& -t ay

end |
bi ::bi't*bk

end i

end k
if |ans| = O, set singularity indicator.

Back substitution

fori=n,...,1begin

% = by
forj=i+1,...,nbegn
R T

end |
X = Xl

endi.

Sometimes we are interested in solving problems involving one matrix A and severa
right-hand sides b. Examples are given in the exercises of problems with the right-
hand sides corresponding to different data sets. Also, if we should want to compute the
inverse of an n x n matrix A, this can be done a column at atime. It is left as an exercise
to show that column i of A’ is the result of solving the system of equations with
column i of the identity matrix as b. If we know all the right-hand sides in advance, it
is clear that we can process them simultaneoudly. It is not aways the case that they are
al known in advance. The residual correction process we take up later is an example.
For such problems it is important to observe that if we save the multipliers and record
how the rows are interchanged when processing A, we can process b separately. To
understand how this can be vauable, we first need to look at the costs of the various
portions of this algorithm.

As a measure of work we count arithmetic operations. Since the number of addi-
tions and subtractions equals the number of multiplications, only the latter (as well as
divisions) are counted. It is easy enough to see that elimination requires

n(n- 1) (2n - 1)/6 multiplications and n( n - 1)/2 divisions.
Modification of b requires
n(n - 1)/2 multiplications.
Back subgtitution requires
n(n - 1)/2 multiplications and n divisions.

For large n the multiplications dominate the cost, both because there are more of them
and because they are relatively expensive. The most important point is that processing
the matrix A is the bulk of the cost of solving a system of linear equations of even
moderate size.
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Several designs are seen in popular codes. The most straightforward is to input
A and b and have the code compute the solution x and return it. It is quite easy to
modify such a code to accept input of m right-hand sides, process al the right-hand
sides dong with A, and return all the solutions in an array. This is considerably cheaper
than solving the problems one after another because A is processed only once and this
is the most expensive part of the computation. In detail, solving m systems with the
same A simultaneously requires

n(n—1)(2n—1) n(n—1) nn-1] _n* n* n
6 +m[ 3 + 5 ]—?——2—+g+m(n2—n)

multiplications. Solving them independently requires
m[n(n—l)(Zn—1)+n(n—1)+n(n—1)] nd  mn®> Smn

3 2 6

multiplications. If, for example, we wished to invert A, we would have m = n and the
cost would be

6 2 2 |~

nt nd sn?

37276

multiplications. For large n, there is a considerable difference. The most flexible de-
sign separates the two phases of the computation. By saving the information necessary
for processing the right-hand side, systems involving the same matrix A can be solved
independently and just as inexpensively as if al the right-hand sides were available to
begin with. This is the design found in production-grade software and in the programs
of this chapter. Because it is a little more trouble to use than the simplest design, it
is not unusual for libraries to have both. The computing environment MATLAB is an
example of this.

2.1 Using dimination with partial pivoting, determine which of the following sys-
tems are singular and which are nonsingular. For the nonsingular problems, find
solutions. Use exact arithmetic.

@)

—x1 + 20 + x3 = 5
xy + 4x, — 3x3 = -8
—2x1 + X3 = 5
(b)
Xy - Xy - 2x3 = -1
=2x1 — 2x + 4x3 = 4
3 + 3% 4+ x3 = 1
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(©)

X + 2% - X = 2
2% + M + X = 7
3, + 6X - 2% = 7
@
X - X + X =0
2% + X - X = -3
Xt 2% - 2% = -2
()
X t X + x = 0
2%, t X - X = -3
2X4 - 4 = -6
(f)
2% - 3 t+ 2 o+

3, + 2% + 2% +
X + X - 3X3 -

coFw

SXy
Xg - X + X3 + 2X
X4
X4

2.2 Four loads applied to a three-legged table yield the following system for the reac-
tions on the legs:

R + R, + Ry = 110.00
R,+ R, = 78.33
R, + Ry = 58.33.

Solve for Ry, R,, and Ry by hand.
2.3 The following set of equations arises in analyzing loads on an A-frame:

8.00R: - 1784.00 = 0.00

-800R, + 1416.00 = 0.00

Ch + Dh = 0.00

C, + D, + 223.00 = 0.00

-5.18C, - 5.18C, + 446.00 = 0.00
-5.77D, - 1456.00 = 0.00
-5.77B, - 85200 = 0.00

Bh + Dh = 0.00.

Solve the equations by hand.
2.4 Consider the linear system

X * 1/2)(2 + 1/3X3 = 1
2%, + 1U3x, + 1dx

|
o

U3x, + 1U4x, + 1/5%g

I
©
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(&) Solve the system using exact arithmetic (any method).

(b) Put the system in matrix form using a two-digit decimal chopped representa-
tion.

(c) Solve the system in (b) without partial pivoting [same arithmetic as (b)].
(d) Solve the system in (b) with partia pivoting [same arithmetic as (b)].
(e) Solve the system in (b) using exact arithmetic.

2.2 MATRIX FACTORIZATION

Because it is illuminating, more advanced books invariably study elimination by view-
ing it as a matrix factorization. In this section we shall see that if no pivoting is done,
the elimination algorithm factors, or decomposes, the matrix A into the product LU of
a lower triangular matrix L =(¢;;), where

f,’j =0if i < j,
and an upper triangular matrix U = (u;;), where

uij =0 ifi> J

When partial pivoting is done, it is a version of A with its rows interchanged that is
decomposed. Rows can be interchanged in A by multiplication with a matrix P called
a permutation matrix. It is easy to construct P. If PA is to be the result of interchanging
some rows of A, al we need do is take P to be the result of interchanging these rows
in the identity matrix |. For example, to interchange rows 1 and 3 of the 3 x 3 matrix

Ain PA, we use
0 0 1
pz(o ! o).
1 00

The entire elimination process with partial pivoting can be written as the

LU factorization

PA = LU.

Rather than sort out the permutations, we concentrate here on the factorization without
pivoting to show how the “LU decomposition” arises. The remainder of this section
provides the details of this factorization and it may be skipped by the reader unfamil-
iar with linear algebra. Looking back a the elimination described in the preceding
section, we see that if agll) # 0, we could multiply row 1 by m;; = 0511)/0(111) and sub-
tract it from row i to eiminate the first unknown from row i. This is done for rows
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i=23,...,n ltiseasly verified that when the matrix

1
—Mmy 1
My=|-ma 0 1

-m, 0 0 1
multiplies any matrix A on the left, it has the effect of multiplying row 1 of A by m, and
subtracting the result from row i of Afori = 2, .., n. As with permutation matrices,
this kind of matrix is found by performing the operations on the identity matrix. With
the multipliers m; chosen as specified, the product M;A has the form

1 1 1 1
agl) “gz) ‘123) ()

2 2 2
MA = 0 a%Z) ag3) agn)
SRR

For later use we note that multiplication by the inverse of a matrix “undoes’ a
multiplication by the matrix. To “undo” multiplication by M,, we need to multiply
row 1 by my and add the result to row i fori = 2,. . ., n. In this way, we see that

1
my; 1
M= | ma 01
my 0 0 1
It is also easy to verify directly that M;*M, = I. Suppose we have formed

(A o )

a22 s aZk v a2n

My \My_p---MM A = (k) (%)

G 0 Gk

B W
If a,((',? # 0, we want to multiply row k of this matrix by m, :ag:)/“kk ; and subtract it
from row i of the matrix fori =k +1, ..., n. This is done by multiplying the matrix by

1
1
M, =
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Then
(1) 1
/ a3 a(ln) \
a,((';) . a®
MMy ---MaMA = 0 gD (klfu)
et 1,41 Yet1,n
: (k:+1) k+l)
0 an,k+1 ( )
and
1
1
-1 _
M, = M1k
mn’k 1

Elimination without pivoting results after n - 1 steps in
(1) (1)

an ’ P
o 0

My \My_p---MiA = 2 o,
)

which is an upper triangular matrix that we shall call U. Multiplication of this equation
on the left by M;_ll,then M;_lz,..., resultsin

A=Mm7tom m o
Earlier we saw the smple form of these inverse matrices. It is a delightful fact that
their product is aso extremely simple. Now

1
-1 '
n—-1= 1
0 1
0 Myn—-1 1
Multiplication by M;_lz means to multiply row n - 2 by m;,, and add it to row i for
i =n- 1, n. In the specia case of M;_‘z ltimasM;_ll this clearly results in

1
M Mn 1= 1
Mp—_1,n—-2 1
My p_2 My p—1 1
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Repetition of this argument shows that
1

my 1
-1 -1 a1 _ | m m 1
MMM = [ M :
: : 1
mp1 Mp2 Mp3 > Myp | 1

which is a lower triangular matrix that we shall call L. Finaly, then, we see that
A = LU, where the L and U arise in an smple way during elimination. Because the
diagonal eements of L are al ones, we do not need to store them. The matrix L is
formed a column a a time and the elements can be written in the space occupied by
elements of A that are set to zero. As the scheme was described in the preceding
section, the elements of U are written over the elements of A as they are formed. One
of the virtues of describing elimination in terms of a matrix factorization is that it is
clear how to handle more than one vector b in solving Ax = LUx = b. For any given
b we first solve

Ly=»Db
and then
Ux=y.
This yields the desired x, for substitution shows that
Ly=L(Ux) = (LU)x = Ax = b.
Forward substitution to solve the lower triangular system Ly = b, or
y1=b
Mpay1 +Yo = by
Mp 11+ My 2y2+ -+ Yn = by,
is just
i = by
Y2 = by - my,1Y;
Y = bn = MyyaY1 - MyoYs - o - I’T"n,n—:I.YH—I-
Back substitution is used to solve Ux = vy, or

Uy + UpX + =+ UpXy, = Y
UpXy + -+ UpXy = V2

unan = yﬂl
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but now the order is X, Xy, - - X4
Xo = YolUng
Xp = (yn-l - un-lvnxn)/un-l,n-l
Xp = (Y= UppXo = UpgXg = =+ = Uj oXo)/Uy 1.

There is another important decomposition of A that arises naturally in a discussion
of least squares fitting of data. The reader should turn to the advanced texts cited for
details, but a little perspective is useful. If the Gram-Schmidt process is used to form a
set of orthonormal vectors from the columns of A, a decomposition A = QR is obtained,
where Q is an orthogona matrix and R is an upper triangular matrix. An orthogonal
matrix Q is one for which Q* = Q', so to solve Ax = QRx = b, al we have to do
is form Rx = Q'b and solve it by backward substitution. The Gram-Schmidt process
in its classic form is not numerically stable, but there is a modification that is. A
more popular way to obtain a QR decomposition stably is by means of Householder
transformations. Error bounds for this way of solving systems of linear equations are
much better than those for Gaussian elimination because there is no growth factor.
However, the method is about twice as expensive. In another section dealing with
matrices with specia structure we take up important circumstances that favor Gaussian
elimination over QR decomposition. Because the accuracy of Gaussian elimination is
amost aways satisfactory in practice, it is preferred except in specia circumstances.
One exception is in the solution of least squares problems where the QR decomposition
is especialy convenient and problems are often very ill-conditioned.

EXERCISES

2.5 Find the L and U in the LU decomposition (no pivot- (c) Exercise 2. 1f.
ing) for the coefficient matrices in
(a) Exercise 2.1g; 2.6 Find an LU decomposition for the singular coefficient
(b) Exercise 2.1b; matrix in Exercise 2.1d. Is the decomposition unique?

2.3 ACCURACY

There are two main sources of error in the computed solution z of the linear system
Ax = b. The data A and b may not be measured exactly, and even if they are, errors are
generally made in representing them as floating point numbers. Roundoff errors occur
in the eimination and forward/backward substitution algorithms. It seems obvious
that we should study the error

e=X-2

but it turns out that a different way of approaching the issue of accuracy is illuminating.
A backward error analysis views z as the exact solution of a perturbed problem

(A +AA)z=Db +Ab.



2.3 ACCURACY 49

If the perturbations,AA and Ab are comparable to the measurement errors or the round-
off in the entries of A or b, then it is reasonable to say that z is about as good a solution
as we might hope to get.

A BACKWARD ERROR ANALYSIS

A floating point error analysis of a simple system of linear equations will be illuminat-
ing. Suppose that the system

by
UxX, = b,

UpXp + UpXo

has arisen directly or as the result of applying Gaussian elimination to a more genera
system. In our development of elimination we discussed how a small pivot, here uy,
and u,,, could be dangerous both for its direct effects and because it might lead to
large elements in the upper triangular matrix, here uy,. Analyzing the error in this
simple case will help us to understand this. Backward substitution in exact arithmetic
produces the true solution as

by
Xy = —

U

by ~ xauy2
X = —"=.

un
In floating point arithmetic,

b
B =byQup=—=(148;) =xp(1+38y).
U2

Computation of the other component involves several steps. First we compute
X Quiz =x3u1z (14 82) = xupp (1+81) (1+8,),

then
b1 © (X5 Qu12) = (b1 — (53 ®@u1z)) (1+83),
and finally
x; = (b1© (53 ®u2)) Quny
b E
— ( 16(x2®u12)) (1+84)
Ui
by —xupp (148
_ "2";2( 2 (1483 (1454).
1

In a backward error analysis, we express the solutionxj,x3 computed in floating
point arithmetic as the solution in exact arithmetic of a perturbed problem:

* * * * __
Ui X1 + uipx; = by
* *
u22x2 = bz.



50

CHAPTER 2 SYSTEMS OF LINEAR EQUATIONS

As the notation suggests, this can be done without perturbing the right-hand side of
the equation. The equation

by
Xy =—=
U3,
by
=—(1+8
uzz( 1)
will be vaid if we define
* U2
= 1 —6 .
U (T+5)) up(1-98y)
Similarly, the equation
= bl _xiuh
1= u*
11
by —x3 146
= (b =12 (148)) (1+83) (1+84)
Ui
will be valid if we define
u}‘z =u12(1+52)
Wi = ey (18— 84).
(1+83) (1+54)

With these definitions we have expressed the computed solution of the given prob-
lem as the exact solution of a problem with perturbed matrix. It is seen that none of
the coefficients of the matrix is perturbed by more than about two units of roundoff.

This analysis tells us that the backward substitution algorithm is sure to produce a
good result in the sense that the computed solution is the exact solution of a problem
close to the one given. However, that is not the same as saying that the computed
solution is close to the true solution. A forward error analysis bounds directly the
difference between the computed and true solutions.

Our basic assumption about floating point arithmetic is that a single operation is
carried out with a relative error bounded by the unit of roundoff u, so we have

)

=& <u
x2

Substitution of the expressions developed earlier and a little manipulation shows that

X1 XU

L3
x}—x1 XQU12
il IR o1 (1+063),

where
61=0,+08,+8,%
Gy = 83+ 84+ 839;.

This implies that

x] — X1 XoU12

Xiun

< (2u+u2) [1+

(1+2u+u2)].

X1
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According to this bound, the relative error is generally small. A large relative error
is possible only when |xu;s| >> |Xuq4]. If the solution is such that both components
are of comparable size, a large relative error is possible only when the pivot uy; is
small and/or the entry u,, in the upper triangular matrix is large. Large relative errors
are more likely when [x,| >> [x;]. The denominator can be written in the form

XUy = by - XoUgy,

showing that the relative error can be large when the numerator is large and the de-
nominator is small because of cancellation.

ROUNDOFF ANALYSIS

A natura way to measure the quality of an approximate solution z is by how well it
satisfies the equation. A virtue of this is that it is easy to compute the residua

r=b-Az.

In this measure, a good solution z has a small residua. Because of cancellation (see
Example 1.10), if we should want an accurate residual for a good solution, it will be
necessary to compute it in higher precision arithmetic, and this may not be available.
The residual provides a Ab for the backward error analysis, namely,

Ab:= -r.
The residua r is connected to the error e by
r=b-Az=Ax-Az=AX-2 = Ae

or e= A" r. A smal residua r, hence a smallAb, may be perfectly satisfactory from
the point of view of backward error analysis even when the corresponding error e is
not small.

Example 2.8. To illustrate the distinction between the two points of view, consider
the system
0.747 0.547 xy\ _ (0.200
(0.623 0.457) (xz) - (0,166 : (2.11)

We carry out the elimination process using three-digit chopped decimal arithmetic.
After the first step we have

0.747 0.547\ (x1\ _ (0.200
0 0.001 x,/ ~ \0.000/°

0.000
= =2 0.000
2= 5.001 ’

It then follows that

z, = (0.200 - 0.5472,)/0.747 = 0.267,
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so0 the computed solution is

2o 0.267
~\0.000/"
The exact solution to (2.11) is easily found to be x, = 1 and x, = -1. Therefore the
error (in exact arithmetic) is

e—x—z— 1-0.267 \ _(0.733
- “\ —-1-0.000 )"\ -1 /)
In contrast, the residual (in exact arithmetic) is

r=>b-Az

(0.200 — [(0.747 x 0.267) + (0.547 x 0.000)]
0.166 — [(0.623 x 0.267) + (0.457 x 0.000)]

_ 0.000551

- —-0.000341 /-
This says that z is the exact solution of Az = b + Ab, where b; = 0.200 is perturbed to
0.199449 and b, is perturbed to 0.166341. Thus, z is the solution of a problem very

close to the one posed, even though it differs considerably from the solution x of the
origina problem. |

The fundamental difficulty in Example 2.8 is that the matrix in the system (2.11)
is nearly singular. In fact, the first equation is, to within roundoff error, 1.2 times the
second. If we examine the eimination process we see that z, was computed from two
guantities that were themselves on the order of roundoff error. Carrying more digits in
our arithmetic would have produced a totaly different z,. The error in z, propagates
to an error in z. This accounts for the computed solution being in error. Why then
are the residuals small? Regardless of z, the number z; was computed to make the
residual for the first equation as nearly zero as possible in the arithmetic being used.
The residual for the second equation should also be small because the system is close
to singular: the first equation is approximately a multiple of the second. In Section 2.2
we observed that any matrix A could have its rows interchanged to obtain a matrix
PA, which can be decomposed as the product of a lower triangular matrix L and an
upper triangular matrix U. For simplicity we ignore the permutation matrix P in what
follows. An error analysis of elimination using floating point arithmetic shows that L
and U are computed with errors AL and AU, respectively. Then A is not exactly equal
to the product (L + AL) (U +AU). Let AA be defined so that

A+AA = (L+AL)(U +AU)
= LU + (AL)U + L(AU) + (AL)(AU),

that is,
AA = (AL)U + L(AU) + (AL)(AU) .
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We might reasonably hope to compute L with errors M that are smal relative to L, and
the same for U. However, the expression for AA shows that the sizes of L and U play
important roles in how well A is represented by the computed factors. Partial pivoting
keeps the elements of L less than or equal to 1 in magnitude. We also saw in (2.10) that

the size of elements of U, the ag-‘), was moderated with partial pivoting. In particular,
they cannot exceed 2™* max;; |a;| for an n x n matrix. It can be shown rigorously, on
taking into account the errors of decomposition and of forward/backward substitution,

that the computed solution z of Ax = b satisfies
(A +AA)z=D, (2.12)

where the entries of AA are usually small. To make precise how small these entries
are, we need a way of measuring the sizes of vectors and matrices. One way to mea
sure the size of a vector x of n components is by its norm, which is denoted by ||x|].
Severa definitions of norm are common in numerical analysis. One that is likely to be

familiar is the Euclidean length of x, ( ;’:lx,?)l/z. All vector norms possess many of
the properties of length. The norm used in this chapter is the maximum norm

= i|- 2.13
Il = max | e

If Aisan n x n matrix and X is an n-vector, then Ax is aso an n-vector. A matrix norm
can be defined in terms of a vector norm by

A
I

) (2.14)
x70 ||x||

Geometrically, this says that ||A]| is the maximum relative distortion that the matrix A
creates when it multiplies a vector x# 0. It is not easy to evauate ||A|| directly from
(2.14), but it can be shown that for the maximum norm (2.13)

(2.15)

which is easy enough to evaluate. An important inequality connects norms of vectors
and matrices:

(A < TIAI] - (2.16)

For x # 0 this follows immediately from the definition (2.14). For x = 0 we note that
Ax = 0 and that [|x]| = 0, from which the inequality is seen to hold.

-1
Example 2.9. Let x = 2 |.Then
3

lIXIl = max [| - 1], 2], [3]] = 3.
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1 -1 0
LeA=| 2 -2 3
-4 1 -1

A= [0+ ML+ 10D, (21 121+ (3], (H4] + 1] + )]
= max[(2), (7), ()] = 7.

Returning to the roundoff analysis for Gaussian elimination, it can be shown rig-
orously [11] that the computed solution z satisfies the perturbed eguation (2.12) where

AA]| < YaullAll- (217)

As usud, u is the unit roundoff. The factor g, depends on n and can grow as fast
as 2"". To put this in perspective, suppose that AA arises from rounding A to form
machine numbers. Then |Aa;j| could be as large as ula;| and ||AA|| could be as large
as

n
maxu Y. |a;j| = ul|All.
i j:l
According to the bounds, the perturbations due to the decomposition and forward/back-
ward substitution process are at worst a factor of g, times the error made in the initia
rounding of the entries of A. If the rigorous bound 2™ on g, truly reflected prac-
tice, we would have to resort to another agorithm for large n. Fortunately, for most
problems g, is more like 10, independent of the size of n.
From this it can be concluded that Gaussian elimination practically aways pro-
duces a solution z that is the exact solution of a problem close to the one posed. Since
Az - b =—AAz, the residual r satisfies

[Irll = llAz~b|| < [|AA]ll|z]] < yaullAlllz]-

This says that the size of the residua is nearly always small relative to the sizes of A
and z. However, recall that this does not imply that the actua error e is small.

For additional insight as to why Gaussian elimination tends to produce solutions
with small residuas, think of the LU factorization of A discussed in Section 2.2. The
forward substitution process used to solve the lower triangular system Ly = b succes-
sively computes vy, Ys,. . . , Y, SO @ to make the residual zero. For example, regardless
of the errors in y; and m,; the value of y, is computed so that

My + Yo = by,
that is, the residua of this equation is zero (in exact arithmetic) with this value of y,.
The same thing happens in the back substitution process to compute XpXn.1,- - - X1

that satisfy Ux = y. Thus, the very nature of the process responds to errors in the
data in such a way as to yield a small residua. This is not at al true when x is
computed by first calculating the inverse A' and then forming A’ b. With a little
extra work it is possible to make Gaussian elimination stable in a very strong sense.
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Suppose that we have solved Ax = b to obtain an approximate solution z. We can
expect it to have some accuracy, athough perhaps not all the accuracy possible in the
precision used. A little manipulation shows that the error e = x - z sdatisfies Ae = r,
where r is the residua of the approximate solution z. We have seen that if Gaussian
elimination is organized properly, it is inexpensive to solve this additional system of
equations. Of course, we do not expect to solve it exactly either, but we do expect
that the computed approximation d to the error in z will have some accuracy. If it
does, w = z + d will approximate x better than z does. In principle this process, called
iterative refinement, can be repeated to obtain an approximation to x correct in al its
digits. The trouble in practice is that for the process to work as described, we have to
have an accurate residual, and the better the approximate solution, the more difficult
this is to obtain. Skeel [14] has shown that just one step of iterative refinement with
the residual computed in the working precision will provide a computed solution that
is very satisfactory. This solution will have a smal residual and will satisfy exactly
a system of equations with each coefficient differing dightly from that of the given
system. This is much better than the result for z that states that the perturbation in
a coefficient is smal compared to the norm of the whole matrix, not that it is small
compared to the coefficient itself. So, if we are concerned about the reliability of
Gaussian elimination with partial pivoting, we could save copies of the matrix and
right-hand side and perform one step of iterative refinement in the working precision
to correct the result as necessary.

NORM BOUNDS FOR THE ERROR

In the preceding subsection, we found that roundoff errors in the agorithm could be
considered equivalent to errors in the data A. We now study the effect of such pertur-
bations, as well as errors in the given data, on the error e. For simplicity, let us first
consider the case where only the data b is in error. Let x +Ax be the solution of

A(x+Ax) = b+ Ab.
Multiply this by A* and use the fact that x = A'b to get

Ax=A"1Ab. (2.18)
Norm inequalities say that
llax]|| < [|A~]|]|Ab]. (2.19)
But b = Ax similarly implies ||b|| < ||Al] |Ix||, hence
l|Ax]] _1;;/|Ab]]
< AJNA™ | T (2.20)
[Ix] [Ibll
Inequality (2.19) says that in an absolute sense, input errors can be amplified by

as much as ||A™|| in the solution. In contrast, (2.20) says that in a relative sense, input
errors can be magnified by as much as ||A]| ||A™Y{|. The important quantity [|Al| [|AY|
denoted by cond(A) is cdled the
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condition number of A
cond(A) = [|A]] [IA']l.

A theorem that helps us understand the condition number is
. Is=Al] 1

w0 Al x(A)
In words this says that there is a singular matrix S that differs from A in a relative
sense by the reciprocal of the condition number of A. Put differently, if A has a “large”
condition number, it is “close” to a singular matrix.

The condition number clearly depends on the norm, but in this book we consider
only the maximum norm (2. 15).

Example 2.10. For A (; i) find [|Al|,||A"]|, cond(A). First,
AL = max[(I[+2]).(13+4D] = max[(3).(7)] = 7.
For 2 x 2 matrices, the inverse matrix is easy to work out. If A = (Z; Z;) , then
Al=( 92 —9n / —apa). 2.21
( —ay ay) (ana —apzaz) (2.21)

So, in our case
_1 -2 1
A" = 3 _1
2 2

max[(| — 2|+ 1)), (13/2] +| - 1/2])]
max|(3), (2)] = 3.

and
llA=1|

Then
cond(A) = [JA]]-]|A"Y|=7x3 =21

Example 2.11. The matrix

1 -
A= (1 —1+10-5)

is much closer to being singular than the matrix in Example 2.10 since

1 [1-10° 10°
A ‘(—105 10°
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and
Al = 2, [|A']l = 2 x 10°, cond(A) = 4 x 10°.

The theorem about the condition number says that there is asingular matrix that is
within Z/cond(A) = 2.5 x 10° of A. Although not quite this close, the simple matrix

s=(1 1)

1S — Al
llAll

is obviously singular and

=5x1075.

The effect of perturbing A is more complicated because it is possible that A + DA is
singular. However, if the perturbation is sufficiently small, say |[|A™]| |IDA]| < 1, then
it can be shown [9] that A + DA isnonsingular and further that if (A + DA) (x + Dx) =
b + Db, then we have the so-called

condition number inequality
lax]] . cond(4) (IlAAll +lIAbII)
x| ~ 1= AA A b|| /’
Ixll ~ 1 cond(A)qm“ liall -~ [bll

valid for ||A7|| ||DA]| < 1.

(2.22)

Inequdity (2. 17) and the related discussion say that rounding errors in the course of
Gaussian elimination are equivaent to solving a perturbed system for which we usu-
aly have

||AA]]
Al

where u is the unit roundoff. In some applications data errors maybe much larger than
this, and they must be used in (2.22).

= 10u, (2.23)

Example 2.12. Suppose we solve Ax = b on a machine with u = 5 x 10" and
obtain

18.6243

Then from (2.22), assuming exact data so that ||DA||/||A|| a5 x 107, the bound on
the relative error is
llax)) 104
IIx|| = 1-10%4(5 x 10-10)

= (6'23415), cond(A) = 1.0 x 10%,

(5%10710) ~ 5% 1076,
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On the other hand, if the data are known to be in error, say ||AA||/||A]| ~ 1075 and
||Ab||/|[b]| ~~ 1075, then

|| Ax|| < 104
[Ix]| = 1-~10%(10-%)

With |[X]| = ||z|| =~ 18.6 the absolute error bound is 0.37, so this analysis says that

(2x107%) ~0.02.

X = 6.23 + 0.37
X, = 18.62 + 0.37.

One criticism of the analysis based on norms is that it is a worst-case anaysis.
The condition number does not depend on b, so the inequality (2.22) must alow for
the worst choice of b and Ab. A large condition number is cause for concern, but it
does not mean a given problem will be solved inaccurately. Furthermore, the fact that
||Ab]|/i|blis small does not mean that for each i, |Ab;/b;|is small.

OTHER ERROR EXPRESSIONS AND APPROXIMATIONS

A better understanding of the size of the error can be obtained with a more careful
andysis. Again, it is simpler to consider first only changes in b. If the entries of A™
are denoted by a;;;, then Ax = A™'Ab in component form is

n
Axi=Y 0jpAby,  i=1,... (2.24)
p=1

Hence, for x; #0

Axi by, Ab
==y a"”_pb_p
Xi p=1 Xi Dp

is the exact formula for the relative change in x as a function of the relative changes
in the by,. The special case of a change in only one entry of b is

Ax,- = (XipAbp (2.25)

and
— = Q. 2.26
P o (2.26)

This says that the relative error of a solution component X, will be sensitive to the
relative error in a data component b, whenever the factor 0ipbp /i is large. The resuilts
using norms told us that “large” components in the inverse matrix indicate possible
sensitivity to errors in the data. This result goes much further. It brings to our attention
that “small” components in the solution vector indicate possible sensitivity to errors in
the data. More to the point, it shows which components are sensitive and how much.
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What if A is perturbed? For simplicity we study the effect on a solution component
X when only a single entry a,, of A is atered. In component form Ax = b is

n
b,-=2a,-jxj, i=1,...,n
j=1

Taking the partial derivative with respect to a,, leads to
n ox;
0=Y a;—L for i#p
j:zl Y dap,
and
n ox;
0=x,+ Za,,j—]— for i=gq.
j=1 9apy
In terms of the vectors
v= ax,-
~ \dapq

w = (w;), where w = 0 for i?é P Wp= -Xg,

this is a system of equations Av = w. Then v = A™w, or in component form,
ox;

n
éa—zvi:Zaijo:—aipxq for i=1,...,n.
P4 j=1

We conclude that for “small” perturbations Aapg of a,,, the solution component x is
perturbed to x; + Ax;, where
ax,-

Ax; & =——Aapy = —QipxgAap.
dapg

In terms of relative changes, this is

Ax; Aa
2h o —ttipapg L ( P4 > : (2.27)
X X Qpq

This approximate result shows much more detail than the bound (2.22). In particular,
it is clear that if there is a solution component X, that is large compared to a component
X, then X, can be sensitive to perturbations in column q of A.

ESTIMATING CONDITION

Although there is far more information in the equality (2.26) and the approxima
tion (2.27) than in the condition number inequality (2.22), they require knowledge
of A*, which is relatively expensive to compute. An efficient agorithm for the cal-
culation of A requires roughly three times the work needed for elimination. To
compute cond(A) exactly requires A', but for our purposes an estimate for ||A™|
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would suffice. An adequate estimate can be obtained with little more work than a for-
ward/backward substitution. The calculation of ||A|| using the maximum norm is easy.
To estimate ||AY|| the basic observation is that if Ay = d, then from (2.16)

llyll = [IA™d]| < [JA-1]] [id]l
For any vector y we can form d and then obtain a lower bound for ||A”|| from

A1 > llyVidl|

Using a factorization of A, Cline, Moler, Stewart, and Wilkinson [3] construct y and
d that result in a “large’ ratio |ly|/|ld]l. A lower bound for ||A™|| is obtained in any
case, and often the algorithm results in a value comparable to ||A™||. The code Factor
discussed below uses this approach to estimating cond(A). LAPACK [I] refines this
estimate by an iterative procedure that involves repeated solutions of linear systems
involving A.

The idea behind the condition estimate explains a common way that ill-condition-
ing is revealed in a computation. Let y be the computed solution of Ax = d. In the
inequality

1y AN
lAlA= ] > T

let us approximate ||x|| by |lyll. Suppose we find that the right-hand side of the in-
equdity is then “large.” If the computed solution is comparable to the size of the true
solution, this says that the problem is ill-conditioned. If the computed solution is not
even comparable in size to the true solution, it is very inaccurate. Either way, a large
value of this quantity is a warning. Often a problem is scaled naturally so that ||Al
and ||d|| are about the same size, and in this common situation a large vaue of the
guantity corresponds to a large computed solution. With this in mind, if you should
compute a solution that seems “large,” you should question the conditioning of the
problem and/or the accuracy of the solution.

Often a problem is scaled so that ||A|| and ||d|| are &bout 1. If this is the case and y
should turn out to be large, the inequality shows that the matrix must be ill-conditioned.

Example 2.13. An example of Wilkinson [15] illustrates this and makes the point
that a matrix can be very ill-conditioned without any small pivots arising in the eimi-
nation process. Because the matrix of the set of 100 equations

0.501 -1
0.502 -1

o o

0599 -1
0.600

is upper triangular, the pivot elements are on the diagonal, and obvioudy none is
“small.” Back substitution shows that

x = 1/(0.600 x 0599 x - x 0.502 x 0.501) > (0.6)’® > 10%

0
1
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hence this matrix is very ill-conditioned. |

The purpose of the condition number estimator in Factor is not to get an accurate
value for the condition number, rather to recognize when it is “large.” The inequdity
(2.22) is a worst-case bound. If the condition estimate of Factor indicates that the
problem is ill-conditioned, you might well feel justified in computing A* so that you
can use the more informative (2.26) and (2.27) to assess the effects of perturbations to

the data

For the linear system in Exercise 1.1, let
_ 0.999 _ 0.463
Y=\ -1001 )0 T\ -0204 )
In exact arithmetic, caculate the residuasr = b - Ay

and s = b - Az Does the better approximation have
the smaller residual?

Consider the system
X+ X =2
10% + 10x, =10+ 10"
Do not use more than 15-digit decima arithmetic in

the computations of parts (&) and (b). This will, for
example, result in 10 + 10" becoming just 10.

() Solve using Gaussian elimination with partia piv-
oting.

(b) Divide each row by its largest |a;| and then use
Gaussian elimination with partia pivoting.

(c) Solve by hand using any method and exact arith-
metic.

2.9

2.10

(d) Use exact arithmetic to calculate residuas for
each solution. Which method seems better [compare
with part (c)]? Do the residuas indicate this?

(6) Using the formula (2.21), compute A™ for this
system, and cond(A).

Assume that the computed solution to a nonsingular
linear system is

(-10.4631, 0.00318429, 3.79144, -0.000422790)

and the condition number is 1200.

() What is the uncertainty (x?) in each component
of the computed solution? Assume exact data and a
unit roundoff of 107,

(b) Repesat (8) but for the case when ||AA4||/||A]] and
||Ab]|/||b|| are each 107°.

On a machine with unit roundoff 10" with b exact
but ||AA||/[|A]| = 10712, how large a condition num-
ber can wetolerate if wewant ||Ax||/||x|| < 10757

24 ROUTINES FACTOR AND SOLVE

In this section we describe routines Factor and Solve that can be used to solve the
sysem Ax = b. Routine Factor performs Gaussian eimination with partia pivoting
on the matrix A and estimates its condition number. It saves the multipliers and the
pivot information to be used by Solve to obtain the solution x for any right-hand side
b. A typica cdl to Factor in FORTRAN is

CALL FACTOR (A,MAXROW,NEQ,COND,PVTIDX,FLAG TEMP)
while a typica function evauation of Factor is
flag = Factor(a, neq, cond, pivot_index);
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in the C++ version. The parameter cond must be passed by reference since its value is
set by the function Factor; in C the address of cond must be explicitly passed so that
its call looks like

flag = Factor(a, neq, &cond, pivot_index);

Input variables in FORTRAN are A, the array containing the coefficient matrix A;
MAXROW, the declared row dimension of A in the program that calls Factor; and
NEQ, the number of equations to be solved. Output variables are A, containing the
upper triangular matrix U in positions g;,i < j, and the lower triangular matrix L in
positions a;;, i > j (as long as FLAG is zero), FLAG, an integer variable that indicates
whether or not zero pivots were encountered; COND, an estimate of the condition
number of A in the maximum norm; PVTIDX, an array that records the row inter-
changes; and in FORTRAN 77 we need TEMP, an array used for temporary storage.

In the C and C++ versions corresponding variables are a for A, neq for NEQ,
cond for COND, and pivotindex for PVTIDX. Note that in the C and C++ versions,
(1) instead of declaring the matrix A to have two indices, we use a pointer to a vector
consisting of the rows of A; (2) there is no need to reserve space for the temporary
index TEMP because this alocation can be made dynamically when needed (as can be
done for a and for pivotindex); (3) the output flag is the return variable for the function
Factor. Because arrays are typicaly indexed starting with zero in C and C++, we have
modified the algorithm accordingly. Some further comments are in order about the
variables for Factor

MAXROW and NEQ (or neq). If, for example, the array A is declared
as A(10,10) in the caling program and we are solving three equations
in three unknowns, then MAXROW would have the value 10 in the
FORTRAN version and NEQ (or neq in the C version) the value 3.

COND. COND is a lower bound for cond(A) in the maximum norm
and is often a good approximation to cond(A). If fI(COND + 1) =
COND, the matrix A is singular to working precision. Because we
are working with arithmetic of limited precision, exact singularity is
difficult to detect. In particular, the occurrence of a zero pivot does not
necessarily mean that the matrix is singular nor does a singular matrix
necessarily produce a zero pivot (see Exercise 2.16). When FLAG is
nonzero, the output COND is meaningless.

PVTIDX (or pivotindex). When the elimination process has been com-
pleted, the kth component of PVTIDX (pivotindex) is the index of the
kth pivot row and the nth component is set to (- 1)” where m is the
number of interchanges. Computation of the determinant of A requires
PVTIDX(NEQ) in FORTRAN or pivot_index[neg-I] in C and C++ (see
Exercise 2.23).

The argument list for Solve is

SOLVE(A,MAXROW,NEQ,PVTIDX,B)
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in FORTRAN; in C and C++ it is
Solve(a,neq,pivotindex,b);

The variables A, MAXROW, NEQ, PVTIDX are as specified in the Factor list. Routine
Solve uses the arrays A and PVTIDX as output from Factor and the right-hand side
contained in the vector B to solve Ax = b. The solution x is returned in B.

Example 2.14. To illustrate the codes, we solve the problem

369 X1
2 5 =2 ()Cz) ':b,
1 3 -1 X3

for two right sides b = (39, 3, 2)T and b = (6, 7, - 12)". The main program sets up the
problem and calls the routines Factor/Solve to obtain a solution. Note that after the
cal to Factor, the variable FLAG is checked to see if any pivots are zero. If FLAG >
0 and Solve were used, a zero divide error would result. When FLAG = 0 the routine
Solve is used once for each right-hand side to obtain the solutions. Note that Factor is
not (and should not be) used twice since it does not act on b. The output is as follows
(the floating point values may vary dightly from one computer to another).

Condition number = 106.642857142857100
Solution of the first system

2.000000000000000 1.000000000000000 3.000000000000000
Solution of the second system
76.75000000000000 -31.00000000000000 -4.250000000000000
]
EXERCISES
2.11 Solve the system in Exercise 2.2 using Factor/Solve. If we form the matrix
Compare to the true solution. 1 2
x1 x xi
2.12 Solve the system in Exercise 2.3 using Factor/Solve. X x% X
Compute the residual. X=1. . N
2.13 The codes Factor/Solve can be used to find the ele- );1 xz x"
ments of A, The inverse is used to estimate certain oo "
statistical parameters. It is also used to study the sen- it is easy to show that X = A-. Do so. Use Fac-
sitivity of the solution to errors in the data. Let X tor/Solve to find the inverse of the matrix
denote the solution of
1 2 3
Ax=b,i=1,2 .0, A= 4 5 6 ).
7 8 9.01

where the ith right-hand side b' is 2.14 Consider the linear system of Exercise 2.4.

. 0 ifi#] (8 Using the method of Exercise 2.13, find the in-
yi [0 ifi#]
JT1 ifi=]. verse of the original linear system. Calculate the exact
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condition number.

(b) Use Factor/Solve on the system in Exercise 2.4b.
What is COND? Is the condition number inequal-
ity (2.22) valid for this problem? (Use [|AA|]
0.003333.)

Suppose we are given the electrical network shown
in Figure 2.1, and we desire to find the potentials at
junctions (1) through (6). The potentia applied be-
tween A and B is V volts. Denoting; the potentials
by vi, Vs, ..., Vs, application of Ohm’s law and Kirch-

hoff’s current law yield the following set of linear
equations for the v;:

11v; - 5v, - v = BV
-20v; + 41v, - 15v; - 6v5 = 0
-3V, + vy - 4v, = 0
Va3t 2v,-v5 =0
-3v, - 10v, + 28v; - 15v5 = 0
-2vy - 15v5 + 47vg = 0.
Solve when V = 50.

2.16 The system

1
o

0.473x, - 0.115x,
0.731x, -0.391x,
-0.782%,

+ 0.267%
+  0.979x,

issingular.

(@ Apply Fector to the coefficient matrix. What is
the smallest pivot? Is it near the unit roundoff u? Is
it near underflow? Is COND large? The results you
obtain will depend on the hardware and software that
you use. If Factor turns up a pivot that is exactly zero,
perturb the coefficient 0.979 by a very small amount
S0 as to get a system that is computationally nonsin-
gular for the rest of this problem. Adding 10™ to the
coefficient will suffice for a number of configurations.

(b) Use Factor/Solve to compute x for b =
(0.084,0.357,0.833). Is there any indication of sin-
gularity in the answer?
(c) Use Factor/Solve to compute x for b =
(0.566,0.404,0.178). Is there any indication of sin-
gularity in the answer?

(d) Compute the residuals for(b) and for (c). Do they
give any indication of singularity?

2.17 In analyzing environmental samples taken from the

atmosphere, a simple model with m samples and n
sources and chemicals produces AX = B, where a
is the average concentration of element i from source
k, X 1S the mass of particles from source k contribut-
ing to sample j, by is the concentration of element i
insamplej,and1<i<n 1<k<nl1<j<mlf
m=4,n=3, then

0.172 0.013 0.144
A= 0368 0.681 0.271 |,
0.099 0.510 0.329

2.84 930 2.9 8.29
236 345 325 1735

(a) What is X? What does COND tell you about the
reliability of this result? First assume exact data, then
that the entries of A and B are rounded to the displayed
values.

(b) Use the method of Exercise 2.13 to compute A™.
What is the exact cond(A)?

(c) What does (2.24) tell you about the sensitivity of
%o, to changes in by, ? Replace by, by 1.43 and re-
calculate x,;. Do the numerical answers confirm the
theory? Here you are to consider relative changes to
the data and the solution.

[1.44 435 132 3.95j|
B= .

2.18 Consider the linear system

0.217 0.732 0414 0.741
0.508 0.809 0.376 [x=| 0.613
0.795 0.886 0.338 0.485

(@ Solve for x using Factor/Solve.

(b) If each entry in A and b might have an error of
+0.0005, how reliable is x?

(c) Make arbitrary changes of +0.0005 in the ele-
ments of A to get A + AA and in the elements of b to
get b + Ab. Solve (A + AA)(x + Ax) = b+ Abto get
x + Ax. Calculate ||Ax||/||x|]. Isthisconsistent with
(b)? What is the relative change in each x;?
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A 1 2 3
AN —e—AN—e— AN
3Q 3Q 4Q
V volts ; 15Q ; 10Q ; 3Q
1Q 2Q 3Q
— N\ N\ —"— AN ——A"\N\"—e
B 6 5 4

Figure 2.1 Circuit for Exercise 2.15.

25 MATRICES WITH SPECIAL STRUCTURE

Most genera-purpose linear system solvers are based on Gaussian eimination with
partial pivoting. When the matrix A has special properties, it is possible to reduce the
storage and the cost of solving linear systems very substantially. This section takes up
important examples.

When it is possible to factor the matrix without pivoting, this is both faster and
reduces the storage required. There are two kinds of matrices that are common for
which it is not necessary to pivot. An n x n matrix A is said to be diagonally dominant
(by columns) if for each column

Al > Y Al
i#]j
This says that the entry on the diagona is the biggest one in the column, and by
some margin. An induction argument can be used to show that Gaussian elimination
applied to a nonsingular, diagonally dominant matrix will always select the entry on the
diagonal; hence do no row interchanges. The matrix A is said to be symmetric if AT =
A. A symmetric matrix is positive definite if for any vector v 0, the quantity v' Av >
0. It is not only possible to dispense with pivoting for positive definite matrices, but
even to exploit symmetry by working with a variant of Gaussian elimination.

BAND MATRICES

Recall that in the basic elimination agorithm, the innermost loop can be omitted when
the multiplier t = 0. This reflects the fact that the variable is not present in this equation
and so does not need to be eliminated. When the matrix A is dready “close” to an
upper triangular matrix, testing for a zero multiplier can save quite a hit of work. A
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kind of matrix that is extremely important in several areas of computation is a banded
matrix. A matrix A = (a;;) is said to be banded when all the nonzero elements lie in a
band about the diagonal. Specificaly, when a; = 0 if i - j >my andj - i > m, the
matrix is said to have the lower band width m,, upper band width m,, and band width
m = my+my,+ 1. An example of a matrix with my =2and m,, = lis

x 0

OO = % =
=

= = © O

= % OO0

X
x
X x
0 x x

Here x indicates an entry that might not be zero. When elimination is performed on
such a matrix, at most m, elements have to be eliminated at each stage. Examination of
the elements above the diagonal shows that many zero elements remain zero. Indeed,
partial pivoting will leave zeros in ag.() “for j - i > m, +my. Aswith zero multipliers,
we can speed up the computation by recognizing elements that are zero and stay zero.
Another important observation is that by using a specia storage scheme, there is no
need to provide storage for a,(f) with i - j >myiorj-i>m,+my. Codes implementing
a gpecial version of Gaussian eimination for banded matrices can be found in either
LINPACK [5] or LAPACK [1]. Although it is a little more trouble to set up A in the
special storage format used, the advantages can be great. The numerical results are
identical, but the storage in the banded case is roughly n(2 my+ m,) instead of n%. The
operation count for the decomposition is comparable to nmy(my+my,) instead of n’3
and there is a similar advantage for the forward and back substitution. Complete details
are found in [5], [I], or [9]. The main point is that when n is large and my and m, are
small, tremendous savings are possible. This is what makes solution of systems with
n = 10% and, say, mpy = m, = 5, a routine matter when solving differential equations.
It will be convenient now to derive an alternative form of the Gaussian elimination

algorithm. Assume the decomposition A = LU exists with L lower triangular and U
upper triangular. First note that

n
aj = Y, Limitmy = 11011
m=1

because the matrices are triangular. Choose £1; # 0 and then
un =an /-
Fori>1

n
ait = Y, ity = Liyuyy,
m=1

by =ajfuy for i=2,...,n
Also, for j > 1,

n
ajj= Y, Oimitmj = L1101},
m=1
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wj=agj/ty for j=2,...n
In general we form a column of L and arow of U at a time. Suppose we have computed

columnsl, ..., k-lof Landrowsl, ..., k-1of U Then
n k—1
aik =3, Limttmk = Lot + 3, Lmmk-

The terms in the sum on the right are known. Choose £;; # 0, and then

k—1
uge = | a— Y, fkmumk) / k-
m

=1
Now for i > Kk,

n k—1
ax =Y, Limm = Lihie+ Y, LimUm-
m=1

m=1
The terms in the sum on the right are known, so

k—1
by = (aik— 2 fimumk) /ukk for i=k+1,...,n

m=1

Similarly, for j > k,

n k—1
ag; = 21 Cimimj = Lty j+ 21 Ckmtmj
m= m=

and

k-1
Ugj = (akj_ zlfkmumj) /fkk for j=k+1,...;n.
m=

If al the diagonal elements of L are taken to be 1, this algorithm is Gaussian eim-
ination without pivoting. Later it will prove useful to choose other values for these
elements. In our discusson of elimination applied to a band matrix A, we observed
that quite a lot of storage and work could be saved. The situation is even better when
no pivoting is done. If A is a band matrix with lower band width m, and upper band
width m,, then L is aso a band matrix with lower band width myand U is a band
matrix with upper band width m,. If we choose the diagona elements of L to be 1,
it is not necessary to store them and as is the case for full matrices, the factors L and
U can be written over A as they are computed. These statements about the form of L
and U follow by examination of the recipe for their computation when the form of A
is taken into account. Of course, a specia storage scheme is needed to exploit the fact
that only elements in a band about the diagonal can be nonzero. This approach to solv-
ing banded linear systems is of great practical importance. In Chapter 3 matrices with
my = 1 = m, arise in the fitting of splines to data. They are examples of nonsingular
diagonally dominant matrices for which we can be sure that pivoting is not needed for
stability of the agorithm. Fortunately, many banded systems arising in practice are
diagonaly dominant.
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TRIDIAGONAL LINEAR SYSTEMS

Some specia cases of my and m, occur sufficiently often that special codes are written
for them. For example, when my, =m, =1 the coefficient matrix is called tridiagonal.
For the numerical solution of partial differential equations by a number of important
methods, it is necessary to solve a great many tridiagonal systems involving a grest
many unknowns, perhaps thousands of each. This would be impractical with Fac-
tor/Solve, but with a special-purpose agorithm it is not that difficult. Let us assume
that the tridiagonal system is written as

a ¢ X1 d1

b2 a < 0 p%) d2

0 bp1 an-1 cn1 Xn—1 dn—
by an Xp d,

When no pivoting is done, elimination zeros out the b; to lead to a structure like

fi a X3 el
fH 0 X2 e

0 Ja-1 cn-t Xn—1 en—1
fn Xn €n

As we shall see, the ¢; are unchanged from the original system. To show this and to
derive formulas for f; and e, first observe that f; = a; and e = d; since Gaussian
elimination without pivoting does not change the first equation. To eliminate b, the
multiplier is m, = b,/f;. Hence,

fa = ax—mc
¢y = cp—m-0=cy (as we stated)
€ = dz - m2d1 .

Notice that x, does not appear in any other equation, so this completes the first stage
of the elimination. To complete the derivation we use induction. Assume that we have
derived the f; and g through row k. Then we have the pattern

0 fk Ck 0 €r
0  bry1 @1 Gkt | il

in rows k and k + 1. Clearly the multiplier is m, = by, / f; then eliminate on row
k + I to get

Set1 = Gy —mpgack
Cktt = Ckil —Miy1 0= crp
€rr1 = dryy —myy1dy,

which finishes the elimination of variable x.. In agorithmic form this is

=
for k = 1,..,n - 1 begin
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My = by /[ fr
Jet1 = Q1 —mpp1ck

end k.
For the solution of many systems with the same coefficient matrix, we save the mul-
tipliers my as well as the f,, ¢, and solve separately for the datad, , . . . , d,. Forward
edimination is

e =d

fork=1,...,n-1begn

€e1 = Oy - My, €
end k.

Back substitution is simply

X, = e)l/f,
fork=n-1,n-2,...,1begin

X = (8 - CXe) /Ty
end k.

Storage can be managed extremely efficiently. A general matrix requires storage for
n® entries, but a tridiagonal matrix requires storage for only 3n - 2 nonzero entries.
A natura scheme is to store the three diagonal bands with a,, b, and ¢, as three
vectors of length n. We can Write m, over b, and f, over a, as they are computed;
during the forward and backward substitution stages e, and x, can overwrite d, so that
only one additional n vector is needed. We leave as an exercise the task of counting
arithmetic operations to see that they are dramatically less than for a genera matrix
(see Exercise 2.15). The above algorithm assumed no pivoting, but as was seen earlier
in this chapter, it is not aways possible to solve linear systems without pivoting, and
even when it is possible, the numerica results may be poor. For tridiagonal systems
there is a simple condition that guarantees that all goes well, a condition often satisfied
by systems that arise in practice. First note that if any ¢, or b, vanishes, the system
can be broken into smaler systems that are also tridiagonal. Hence, we can assume
that ¢, # (0 and b,# 0 for al k. The key assumption is that

lai] > |5

lar| > |bey1] +leg—1l,  k=2,...,n-1

lan| > len-1]-
This condition is a little stronger than being diagonally dominant, enough that we can
prove that the matrix is nonsingular. The argument is by induction. By assumption

|my| = |by/ay| < 1. Supposing now that |m| < 1forj=2...,Kk
b1
M| = | ——
I + l fk ’
but
Al = lax—mera| 2 lai| = |myller—1]

> lakl — le__ll > |bk+1| > 0.
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This implies that |[m 4| < 1 as desired. From the above inequaity we have |f| >
|be| > O, so

Il = lax —mger_y] < lag] + [millcr—i]
< Jag| +lex-1l.

Thus, under these assumptions al the quantities computed in the eimination are well
defined and they are nicely bounded in terms of the data. In particular, the matrix must
be nonsingular.

SYMMETRIC MATRICES

So far we have not considered how we might take advantage of a symmetric matrix A.
It might seem possible to decompose A into the product of an upper triangular matrix
U and its transpose U, which is a lower triangular matrix. However, it is not aways
possible to decompose a symmetric matrix in this way. This follows from the fact
that such a decomposition implies that the matrix must be positive definite and not al
symmetric matrices are positive definite. To see this, if A = U'U for a nonsingular
matrix U, then

viav=vIuTuv = yTy,

where y = Uv. Because U is nonsingular, if v # 0, theny # 0 and

n
yy=3Y>0,

i=1
showing that A is positive definite. Although we shal not prove it, any positive definite,
symmetric A can be decomposed as A = U'U for a nonsingular upper triangular matrix
U. Symmetric, positive definite matrices are very important. In applications such as
the least squares fitting of data and the variational formulation of the finite element
solution of partia differential equations, the quantity v'Av is a kind of “energy” and
is naturally positive. We shall discuss a very effective way of solving problems with
A that are symmetric, positive definite. There are more complicated ways of dealing
with symmetric matrices that are not positive definite that approach the efficiency of
the definite case for large systems, but they do not cope with the storage nearly so
well. Codes can be found in LINPACK [5] or LAPACK [I] for both cases. Supposing
that A is symmetric, positive definite and using the fact stated that it can be factored
as A = U'U, we can obtain U by specializing the recipe given earlier. Now we are to
have L' = U. Thus

_ _ 2
apy =€ ug = uyy,

Uil =+4an,

and as before

ulj = a.”'/U” fOI’j = 2, R | 8
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Now

n k
Ak = Z LemUmy = z urznka (2.28)

m=1 m=1

from which we find

Then, as before,

k—1
uka (ak]-— zlfkmumj> /fkk
m=
k—1
=\ aj— 2 UmkUm j /ukk, j=k+1,...,n

m=1
This decomposition has excellent numerical properties. From (2.28) we see that
a > Ul
hence

|umk| < Vak allm > k, all k,

which says the multipliers in Gaussian elimination cannot get large relative to A. This
decomposition is called the Cholesky or square root decomposition. The square roots
in this algorithm can be avoided if we use a factorization of the form LDL', where D
is diagonal and L is lower triangular with ones on the diagonal. As in the case of the
LU decomposition, when A is a band matrix, so is U. The Cholesky decomposition
preserves more than the band structure of a matrix. By examination of its recipe it is
seen that as one goes down a column of U, the first (possibly) nonzero element occurs
in the same place as the first nonzero element of A. This says that the “profile’ or
“envelope” or “skyling” of A is preserved. Obvioudly it is more trouble to work with a
data structure that takes advantage of this fact than with one suitable for a band, but it
is not much more trouble and the storage can be reduced quite a lot. Renumbering the
unknowns aters the band width and the envelope of a matrix. There are agorithms that
attempt to find the best numbering in the sense of minimizing the storage and cost of
computing the Cholesky factorization. Many techniques have been developed for the
solution of large, symmetric, positive definite systems when most of the components of
A are zero. The monograph [8] explains the methods and presents codes; see [9] aso. It
is possible to solve efficiently systems arising in many areas of scientific computation
that involve thousands of unknowns.
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EXERCISES
2.19 Count the arithmetic operations required by the algo- hand sides. Compare this with what is required for a
rithm in Section 2.5.2 for a linear system of n equa- general system.

tions with a tridiagona coefficient matrix and m right-

2.6 CASE STUDY 2

All the standard methods of approximating the solution of elliptic partial differentia
equations, PDEs, involve the solution of a system of linear equations. The numerical
solution of PDEs is a large subject and there are many books devoted to the solution
of particular classes of problems and to the use of particular kinds of methods. The
Galerkin method is a very important one that we illustrate here with a simple example
from [4]. After some preparation, the velocity w(xy) of the steady flow of a viscous
fluid in a duct with square cross section can be found as the solution of
*w  Pw
I+ =5 +=5=14+V2w=0
+ 32 + 2 +Vew

subject to no-dip boundary conditions

w(xy) =0on|x =1and |y =1

The same mathematical problem arises in the torsion of a bar of sguare cross section.
Galerkin methods approximate w(x,y) by an expansion

N
wy(x,y) = Zlaj‘bj(xJ)-
]:

The choice of the basis functions f; is of fundamental importance. For the example
we shall use

o)) = [(1-2)(1-7)] .

Notice that each f; satisfies the boundary conditions. Also, the problem is such that
w(X,y) has certain symmetry properties, properties shared by these basis functions.
Because thef; reflect well the qualitative behavior of the solution, we can hope to get
a reasonable approximation with just a few terms in the expansion. This is a global
Galerkin method because each f; approximates the solution over the entire domain.
We shall see in Chapter 3 that approximating functions by piecing together polynomial
approximations over subdomains can be very effective. In the present context the sub-
domains are caled elements, and a Galerkin method based on piecewise polynomial
basis functions is called a finite element method. In any case, when wy is substituted
into the differential equation, there is a residua

R(x,y) = 14+ VZwy.

The idea is to find coefficients a that make this residual small in some sense. Gen-
eraly there is a residua arising from boundary conditions, too, but for simplicity we
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discuss only the case of basis functions that satisfy the boundary conditions exactly. To
guantify the notion of being small, we make use of an inner product of two functions

f(X)Y) and g(xy):
1 rl
9= [ flxysley)dsdy.

The Galerkin method requires that the residual of the approximation be small in the
sense that it is orthogonal to al the basis functions, that is, (f;,R) = 0 for i = 1,. . . , N.
If we substitute the expansion into the definition of the residual, this becomes

N
0= (¢,~,R) = (q)i’ 1+ Zajv2¢j> ¢za + 2 aj (¢17V ¢1)
Jj=1

This is a system of linear equations Ca = b for the coefficients a;, where C;; = (¢;, V20;)
and b, = - (f;, 1). When there is more than one independent variable, it is not so
easy to piece together polynomial approximations over elements so that they connect
smoothly, and it is usual to reduce the order of differentiation in the inner product of C;;
from two to one by means of integration by parts (Green's theorem). With the global
polynomial approximation of this example, there is no difficulty forming directly the
Laplacian of the basis functions.

In the classic Galerkin method the integrals of the inner products are computed
exactly. This is possible for our simple example, but in practice integrals are approxi-
mated numerically. A common procedure for general functions is based on Gaussian
quadrature. As we shall see in Chapter 5, a Gaussian quadrature formula of M points
congists of a set of nodes h; and weights A; such that

1 M

/ 1u(x) dx = ZAiu(Tli)
- i=1

provides the best possible approximation in a certain sense. In particular, the formula

is exact for any polynomia u(x) of degree no more than 2M - 1. In Section 5.6 we

discuss how such a formula can be used to obtain an approximation to the integral of

a function of two variables:

/ / (x,y)dxdy = z zAA;f ni,M)-

i=1j=1
Generally M is quite small, but for our example we take it to be 5. The basis functions
we use are polynomias and inspection of the integrands for the cases N = 1, 2, 3
that we solve numerically shows that with M = 5, the integrals we need are computed
exactly.
Often when solving PDEs, quantities computed from the solution are at least as in-
teresting as the solution itself. Such a quantity for this example is the nondimensiona

flow rate
qg= // y) dxdy.

The Galerkin approximations computed in the manner described gave
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Figure 2.2 The flow rate w(x, 0) approximated by Galerkin’s method (3 terms).

N=1 N=2 N=3 Exact
w(0,0) 0.3125 0.2927 0.2947 0.2947
q 0.5556  0.5607 0.5608 0.5623

The “exact” values here were obtained from a series solution for w(x, y). Figure 2.2
shows ws(%,0), which exhibits the kind of velocity distribution across the duct that
we expect on physical grounds. These are exceptionally good approximations because
we have incorporated so much information about the solution into the basis functions.
It should be appreciated that if the solution did not have the symmetry properties of
the basis functions, we could not expect such a good answer. Moreover, consistent
results found on adding terms to the expansion might just be consistently poor results
because it is not possible to represent well the solution with the basis functions chosen.
Because finite element methods approximate the solution locally, they are better suited
for a general problem.

Finite differences represent another approach to solving PDEs that leads to large
systems of linear equations. In this approach w(x.y) is approximated only on a mesh.
For example, if we choose an integer N and define a mesh spacing h = I/N, we might
approximate w(ih,jh) by w; fori,j=-N, -N+1...,N-1 N. To satisfy the bound-
ary conditions we take w; = 0 when i = N and j = £N. Taylor series expansion of
a smooth solution w(x,y) shows that

w((i+ 1)h, jh) —2w(ih, jh) +w((i— Dh, jh) Pw . .
((i+ Dk, jh) (hz,J ) +w((i=Dh, jh) = T2, jm)
Further, there is a constant g such that |t| < gh® for al i, j and &l sufficiently small h.
We say that this is a difference approximation to the second derivative that is of order
two. All we wish to do here is make plausible that the expression on the left imitates
the partial derivative for small h. This expression and the differential equation suggest
that we define the approximation w; a mesh points (ih, jh) interior to the square by
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the equation
Wit = Wit Wislj | Wit = 2Wij F Wi jot =0
h? h?
The set of (2N - 1)? equations can be rewritten as
wijo1 +wignj —4wi j+wiiy j+wije =~k

For this discrete approximation to the PDE to be a reasonable one, the mesh spacing h
must be small, but then we must have a large set of linear equations. It is of the utmost
practical importance that the equations are sparse. Indeed, there are only five nonzero
coefficients in each row of the matrix. Historically such equations were solved by iter-
ative methods. The methods used are very simple and self-correcting, so that a mistake
does not prevent computing the correct answer. Both characteristics are very important
to hand computation. Also important is that the methods require storage only for the
nonzero coefficients, the solution itself, and perhaps another vector of the same size as
the solution. For a problem as simple as this example, it is not even necessary to store
the coefficients of the matrix. Iterative methods take advantage of the fact that we do
not require an accurate solution. After al, w;; is only an approximation to w(ih, jh)
of modest accuracy, so there is little point to computing it very accurately.

The classic iterative procedures for solving equations like those arising in this
example are most naturally described in terms of the equation itself. First let us rewrite
the equation as

Wi j = (h2 Wi j-1 Wit wiog i+ Wi,j+1) /4.

The Jacobi iteration improves an approximation w® by computing

k+1) _ (12 4 (0 (k) (k)
w,j (h +w11 1+wi+1,j+wi—lj 1}+1)/4
for dl i, j. This amounts to saying that we define w(’;“)so as to make the residual in

equation j equal to zero. This is a very simple and inexpensive iteration that requires
only storage for the current and next approximations. A refinement suggests itself:

Would it not be better to use w(k+1) instead of w( 1) for the rest of the computation?

Besides, if we do this, we Would halve the storage required. This is caled the Gauss-
Seidd iteration. There is a complication with this method. So far we have not written

out the matrix explicitly so we have not specified the order of the components wk)

L
in the vector w. If we are to start using w(kH) as soon as it is computed, the order

in which components are improved matters. ‘A question that arises in the use of any
iterative method is when to quit. A natura way is to measure the residua of the current

solution and quit when it is less than a tolerance.
For the example we used the Gauss-Seidel iteration and improved the unknowns
from left to right, bottom to top, that is, for eachi =-N + 1,. . ., N - 1, we improved
j for j =-N+1,..,,N-1 Wetook N = 5, which led to a system of 81 equations

for unknowns at points interior to the region. It was convenient to start with w(o) =
for al i, j. With a tolerance of 5 x 10, convergence was achieved in 89 |terat|ons.
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Residual

2,

20 40 60 80

Iteration

Figure 2.3 Residual versus iteration number for Gauss-Seidel iteration.

The behavior of the residuas is displayed in Figure 2.3. Except for the first few it-
erates, the residual was reduced by a factor close to 0.9 a each iteration. It might
be remarked that the residual measured was that of the finite difference equation in
the form with the 1 present because it provides a natura measure of scale. The ap-
proximation to w(0,0) found in this way was 0.2923. A plot of the approximations to
w( ih,0) was in good agreement with that of Figure 2.2. We have had to solve a very
much larger system of eguations to get an approximation comparable to that of the
global Galerkin method. On the other hand, the finite difference approximation does
not depend on the specia form of the solution. Another distinction appears when we
ask about the flow rate, for we now have to compute the integral of a function defined
only on a mesh. How this might be done is discussed in Chapter 5, but for the sake of
simplicity, we do not go into the matter here.

Let us now consider the Jacobi and Gauss-Seidel iterations for a general problem
Ax = b and prove a simple result about convergence. One approach to iterative meth-
ods supposes that it is relatively easy to solve systems of the form My = c¢ for a matrix
M that is “close” to A. The idea is to rewrite the given problem as

Mx=b+(M—-A)x
and calculate a sequence of approximate solutions x® by
Mx*D =4 (M - A)x®).

The Jacobi iteration arises in this form when we take M to be the diagonal of A. Sim-
ilarly, the Gauss-Seidel iteration arises when we take M to be the diagona of A and
al the elements below the diagonal. Clearly it is very easy to solve linear systems
involving M in either form. We have aso seen another example in this chapter. Gen-
eraly the factors L and U resulting from Gaussian elimination applied to A are very
accurate in the sense that M = LU is very nearly A. By virtue of having a factorization
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of this M, it is easy to compute the iterates by forward and back substitution in the
usual fashion. With this choice of M, the iteration is the iterative refinement discussed
in Section 2.3.2.

Passing to the limit on both sides of the equation defining the iteration, we see that
if the approximations converge at al, they must converge to x. A little manipulation
of the equations for x and x®D shows that error e¥ = x - x¥ satisfies

et = M= (M — A)e®,
This then implies that
lle® V] < lp (v - A)]|[[e®).

If the numberp = ||[M~1(M —A)|| < 1,this inequality implies that the process con-
verges for any starting guess x@. The error decreases by a factor of r at each iteration,
s0 if M is close to A in the sense that r is small, the process converges quickly. Notice
that the crucia quantity r is a kind of relative error of the approximation of A by M.
Sharp convergence results are known, but they are beyond the scope of this book; see,
for example, [2] or [10].

The situation with iterative refinement is special because we want a very accurate
value for x. For reasons taken up in Chapter 1, it would be better then to compute the
iterate by means of the difference of successive iterates, §K*+1) = x(k+1) — x(k)  This
leads to the form suggested in Section 2.3.2,

M*HD = p — Ax®) = p®)

Although we have not provided all the details, it is not surprising that even when
A is extreordinarily ill-conditioned, M is sufficiently close to A that the result just
established guarantees convergence.

The Jacobi iteration is more easily understood by looking a components. Equa
tion j is

ajlxl+-~-+ajjxj+---+aj,,x,,:bj.

A little manipulation results in
k+1 k k k k
x§~ )= (bj‘ajlxg ) """aj,j—lxgjl “aj,j+1x§v31 - ---—a,-,,xﬁ, )) /ajj.

We cannot expect this iteration to work unless the entries off the diagonal of A are small
compared to those on the diagonal. To obtain a sufficient condition for convergence,
let us suppose that A is drictly diagonaly dominant by rows, meaning that there is a
number r < 1 such that for dl j,

n
;|aﬁ| <plajj|-
i#)
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A little calculation shows that the error ¢ = x; —x**1) satisfies

(k+1) - (k) 01N k
[0 < |3 —ae®| [ lajil < 1e®IY Jai] /]ajs] < plle®]].
i=1 i=1
i£j i#j
This holds for each j, so
lle®+ D)) < plle®)]],

telling us that the worst error is reduced by a factor of r at each iteration. A (possibly)
large system of linear equations arises in Chapter 3 when fitting data by smooth cubic
splines. Equation j has the form

hj_1xj—1+2(hj_1+hj)xj+hjxj =bj,
and the first and last equations have the form
2hx + h = b
hoX + 2hx, = b,

The quantities h; appearing in these equations are all postive. Evidently this system of
equations is gtrictly diagonally dominant by rows with r = /2. The Jacobi iteration
would be a reasonable way to solve these systems, but A is a symmetric tridiagonal
matrix and the specia version of eimination from Section 2.5.2 is so effective that
there is little point to iterative methods. In components the Gauss-Seiddl iteration is

XS'HI) - (bi _ajlx(lkH) - ”aj,j—lxgkjll) ‘“LJ‘HXSQI - _“j"x'(fk)) /ajj-
A modification of the proof given for the Jacobi iteration shows that this iteration also
converges whenever A is grictly diagonaly dominant by rows. The finite difference
equations of the example do not satisfy the convergence criterion just developed, but
they do have a kind of diagonal dominance for which it is possible to prove conver-
gence of both the Jacobi and Gauss-Seidel methods.

The Jacobi iteration and the Gauss-Seidel iteration are too slow to be practical for
most problems arising in practice. However, they are still important as preconditioners
for more elaborate iterative procedures. For more information about iterative methods,
see [2] or [10]. The latter provides some substantial applications to the numerica
solution of PDEs.
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MISCELLANEOUS EXERCISES FOR CHAPTER 2

2.20 A finite element analysis of a certain load bearing frame yields the stiffness equa-

tions
a 0 0 0 B -B 15
0 «o 0o - 0 -B 0
0 O o B B 0 _ | —15
o -B B y O of*T 0|’
B 0 B O y O 25
B B 0 0 0 y_ 0_

where a = 482,317., b = 2,196.05, and g = 6,708.43. Here x;, X,, X3 are the lat-
erd and x4, X5, X the rotational (three-dimensional) displacements corresponding
to the applied force (the right-hand side).

(& Solve for x.

(b) How reliable is the computation? First assume exact data, then [|AA]|/]|A] =
5 x 10"

2.21 Wang (Matrix Methods of Structural Analysis, International Textbook Company,
Scranton, Pa., 1966) considers a statically indeterminate pin-jointed truss. With
this problem is associated a statics matrix A that defines the configuration of the
framework, a member stiffness matrix S that relates the elastic properties of the
congtituent members, and an external force vector p that describes the applied
forces at the joints. A displacement vector bfx that accounts for the displacement
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2.22

at each degree of freedom and an interna force vector f acting on each member
satisfies

Kx=p, K =ASAT f=(SAT)x.
For one example

06 -1.0 0.0 00 00 00 00 -06 0.0 0.0 ]
0.8 0.0 0.0 00 00 00 10 08 00 0.0
00 1.0 -06 00 00 00 00 00 06 0.0
0.0 00 038 00 00 00 00 00 08 1.0
0.0 00 00 1.0 -1.0 00 00 00 -0.6 0.0
0.0 00 0.0 00 00 00 -1.0 00 -0.8 0.0
00 00 0.0 00 1.0 -1.0 00 06 0.0 0.0

L 0.0 0.0 06 00 00 10 00 00 00 0.0

The matrix S has al zero entries except along the diagona where the entries are

{4800: 10000, 4800, 10000, 10000, 10000, 3000, 4800, 4800, 3000}.

Write a program to form matrix products and determine the elements of K. Solve
for x using the three p vectors

T 007 [ 007 [ 0.07
-1.0 0.0 0.0
0.0 0.0 0.0
| 00 ~1.0 0.0
P=1 00 |- 0.0 |’ 0.0
0.0 0.0 -1.0
0.0 0.0 0.0

. 00_ | 00_ | 00

Find the corresponding vectors f.

This exercise assumes a familiarity with matrix multiplication. An appropriate
organization of Gaussian elimination as in Factor/Solve makes it efficient to solve
systems of eguations with different right-hand sides but the same coefficient ma-
trix A. It is more complicated to deal with changes in A, but a formula caled the
Sherman-Morrison formula makes it possible to deal with certain modifications
efficiently. Assume that we have aready factored A into LU and we want to solve
(A + uv')x = b for given column vectors u, v, and b. Show that this can be done
by first solving Az = u and Ay = b, then forming

va
14+v7z
A proper choice of u and v handles the change of one row or one column of A.

For example, if row i of A is to be changed by adding to it a given row vector v',
just take the column vector u to be zero in al entries except the ith, which is 1.

(& How do you change column j in A so as to add a given column vector u ?
(b) How do you choose u and v in order to change a; into a; + d?

xX=y A
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(c) A change in A may make it singular. How would this be reveadled when using
the Sherman-Morrison formula? Note that this approach may not be an accurate
way to solve for x when A is poorly conditioned because the elimination is done
on A. Still for small changes to A, the accuracy should be acceptable and this is
an inexpensive way to study the effect of changes to the data of A.

2.23 Occasiondly it is desirable to compute the determinant of a matrix A with n rows
and columns. Using the factorization PA = LU discussed in Section 2.2, it can be
shown that

detA = (-1)"umber of row interchanges . gt of pivots.
In terms of the output from Factor (FORTRAN version) this is
detA = PVTIDX(n) * A(,1) *-* A(n,n).

In the C or C++ versions this would be

detA = pivot_index[n-1] * 0] [0] * ---* gn - 1] [n - I].
Use this formula to compute the determinant of
(a) A in Exercise 2.13 and
(b) the matrix in Exercise 2.15.
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INTERPOLATION

Often we need to approximate a function f(x) by another “more convenient” function
F(X). This arises in physical processes where f(X) is known only through its values
at certain sample points x and F(X) is needed to approximate maximum or minimum
values, to estimate integrals or derivatives, or merely to generate values for f(x) at
points where experimental data are not available. This also arises when f(x) is known
but is difficult to evaluate, integrate, or differentiate. A familiar example is the function
f(X) = sinx that has to be approximated in a way that can be evaluated by calculators
and computers. This is a fundamental principle of numerica analysis: if we cannot
carry out a basic computation with the function of interest, we approximate it by a
function for which we can do the computation.

In this chapter a function f(X) is approximated by an interpolant F(x), a function
that agrees with f(x) at certain points. A formal definition of the verb interpolate is as
follows.

Definition. interpolation: A function F(x) is said to interpolate f(x) at the
points {X;, ... Xy) if

F(x) = f(x), i=12 .., N
The process of constructing such a function F(X) is caled interpolation.

There are many types of approximating functions F(x) and which one to use de-
pends to a large extent on the nature of the data and the intended use of the approxima-
tion. Perhaps the simplest approximating functions are polynomials. It can be shown
that any continuous function can be approximated arbitrarily well over a finite inter-
va by a polynomial. More to the point, polynomials and their ratios (called rational
functions) are the only functions that can be evaluated directly on a computer. For
this reason polynomials are used not only for interpolation but also as a foundation for
most of the methods in the remaining chapters of the book. Polynomial splines, that is,
piecewise polynomia functions, are a very powerful tool for approximating functions
and are the main object of study in this chapter. In many applications the appearance
of the graph of F(x) is of great importance. For this reason it is very helpful to have
a graphing package for visudization of the approximating functions derived in this
chapter.
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For a more thorough treatment of the theory of polynomial interpolation see [15,
Chapters 5 and 6] and for more about approximation theory see [4]. The book [3] is
an excellent introduction to polynomia splines and contains many FORTRAN codes.

3.1 POLYNOMIAL INTERPOLATION

In this section the approximation F(X) is a polynomia and it is traditiona to use the
notation Py instead of F. The interpolation problem, formally stated, is as follows.
Given the ordered pairs (x,fj)) for j = 1,2,. . ., N, where each f; = f(x) for some
probably unknown function f(x),

find a polynomia Py(x) such that Py(x) = f, 1 <j < N. (3.1)
What degree should Py have? A polynomia of degree N - 1,
Py = ¢ + CX + Co¢ + - + X

has N free parameters, the coefficients c,. Since the polynomial must satisfy conditions
a N points x, caled interpolating points or nodes, we might expect to need this
many parameters to satisfy the conditions. In an exercise you are asked to show hy
example that if the interpolating polynomia is alowed to be of degree N or higher,
there are many polynomias satisfying the interpolation conditions. It is easy to show
by example that if the degree is less than N - 1, it may not be possible to satisfy dl the
conditions. Degree N - 1 is just right; with this degree there is always a solution to the
interpolation problem and only one.

Theorem 3.1. Given N distinct points {x} there is one and only one polyno-
mial Py (X) of degree less than N that interpolates a given function f(x) at these points.

Proof. We first show that such a polynomia Py(X) exists and then show that it
is unique. Write

the Lagrange form of the interpolating polynomial

N
Py(x) =Y, fily(x), (3.2)
k=1

where the functions {L (X)} are at our disposal and are to be chosen independently of
f(x). If Py(X) is to be a polynomial of degree less than N for any choice of the data
f1,...fn, then each L, (X) must aso be a polynomial of degree less than N. Further-
more, in order to have Py(x) = f for 1 < j < N, again for any choice of the data,
then the L (X) must satisfy
Nv_JO ifj#k
Le(x;) = {1 if j=k.
This says that the polynomial L(x) has zeros at each x; with j# k, and so must

have the form Ly(X) = C]'[’}L](x - ;) for some constant C. The condition L(x) = 1
#k
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implies that C =1/TTY, (x; — x;); |hence
J#k

N
X=X
Li(x) = L. 33
W=Il= (33)
J#k

To show that Py(X) is unique, let Qy(X) be another polynomia of degree less than
N that satisfies Qu(x) = f; for 1 < j < N. The difference D(X) = Py(X) - Qu(X) is
aso a polynomial of degree less than N, and D(x) = Py(X) - QOn(x) = fj - f; =0
for 1 <j < N. This says that D has N distinct zeros. But the Fundamental Theorem of
Algebra states that any polynomial of degree less than N can have at most N - 1 zeros
unless it is identically zero. Accordingly D = O, which is to say that Py= Qy and the
interpolating polynomial is unique. n

The polynomia L(x) given by (3.3) is called a fundamental interpolating polyno-
mial or shape function. The fundamental interpolating polynomials are of exact degree
N - 1, but the interpolant can be of lower degree. Indeed, it is important to appreciate
that when f(x) is a polynomial of degree less than N, the interpolant must be f(X)
itself. After all, the polynomia f(x) interpolates itself and its degree is less than N, so
by uniqueness, Py(x) = f(X).

Example 3.1. Let f(xX) = sinx. Find the Py(x) that interpolates f(x) at the three
points {0, p/2, p}. The corresponding function values are {0, 1, 0}, so

P3(x) = O-Ll (x)+ 1 [/z(x) +O-L3(x)

= (- 0)x=1)/ [(5~0) (3 -n)]

4
= —ﬁx(x—ﬂ:).

Example 3.2. Let P,(X) interpolate the tabular data

x | 182 250 365 403
y | 000 130 310 252

Then the Lagrange form of P4(X) is

Py(x) = 0- Ly (x) + 1.30Ly(x) + 3.10L3(x) 4 2.52L4(x)
(x — 1.82) (x— 3.65) (x — 4.03) (x— 1.82)(x — 2.50) (x — 4.03)
(0.68)(—1.15)(—1.53) (1.83)(1.15)(—0.38)
(x— 1.82)(x — 2.50) (x — 3.65)
(2.21)(1.53)(0.38)
= 1.09(x — 1.82)(x — 3.65) (x — 4.03) — 3.88(x — 1.82) (x — 2.50) (x — 4.03)
+1.96(x — 1.82) (x — 2.50) (x — 3.65). n

=1.30 +3.10

+2.52




3.1 POLYNOMIAL INTERPOLATION 85

Figure 3.1 Plot of P,(x) for Example 3.2.

The polynomia P,(X) is plotted in Figure 3.1. Figure 3.2 shows plots of the four
fundamental polynomials L,, L,, L;, and L, associated with these data.

How well does Py approximate f? Will interpolating at more points (increasing
N) improve the approximation? The next theorem helps answer these questions.

Theorem 3.2.  Assume that f(x) has N continuous derivatives on an interval |
containing the interpolating points {xj}’}’zl.lf Pn(X) is the polynomial of degree less
than N interpolating f on these data, then for any x in | there is a point & in | such
that

the error in polynomial interpolation is

70 = Pu(a) = ™ G (), (34)
where
N
wy(x) = rll(x—xj) (3.5)
j=
and

min(xy,...,xy,x) < & < max(xj,...,xy,x).

Proof Clearly the equdlity is valid for x = x, 1 < j < N. For x not equal to any
of the interpolating points, define the new function

(x) — Pn(x)

G(r) = £(t)  Pu(t) — L )
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2r

-1¢

Figure 3.2 The four Lagrange polynomials for Example 3.2.

Now G has N continuous derivatives on | and
Gx) =1 - -0 [f(x) - P/ =0, 1 <j <N

Also, G(X) = f(X) - Py(X) - Wy(X) [f(X) - Py = 0, so G has N + 1 distinct
zeros. By Rolle's theorem (see the appendix), G' has at least N distinct zeros in |.
Repeating this argument, G” has at least N - 1 distinct zeros in |, and so on, and c™
has at least one zero in I. Denoting a zero of G™ by &,, we find 0 = GM(E,) =

FMIE) —PI(\,N)(QX) —wxv)(@x)[f(x) — Py(x)]/wn(x). The polynomia Py is of degree
less than N, so its Nth derivative is identically zero. The polynomia wy(t) is of degree
N with leading term tV, so its Nth derivative is N!. These observations show that

0= M (&) - N1[f(x) = Pa ()l /ww (),

which is merely a rearrangement of (3.4). |

If the interval | = [a,b] and we let
My = max |[f™)(x)],
xel

then two upper bounds for the interpolation error are

M
|f(x) = Py(x)| < ‘N_];,IWN()C)l (3.6)
My(b—a)¥ .
< —N——N—'———v—— for x in (a,b). (3.7)

A sharper version of this last bound is

max, 17(x) ~ Pu(x)] < ¥ max, w9l
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Theorem 3.2 is a classic result about the error of interpolation. Sometimes it can
be used directly. For example, aong with the tables of [13] are instructions about
the degree of interpolating polynomial needed to get full tabular accuracy. As a
concrete example, the scaled exponential integral xexp(x) E4(x) is tabulated for x =
20,21,22,. .., 10.0 and it is said that degree 4 is appropriate. This is an example of
interpolation for which we can choose the nodes from a set of possibilities. The as-
sertion for the table assumes that the nodes have been chosen in an appropriate way, a
matter to be taken up shortly. For a specific function that can be differentiated readily
and for specific nodes, a bound on the error of interpolation might be obtained from
the theorem. More often in practice we use guidelines that will be deduced below from
the theorem.

Example 3.3. Again consider f(x) = sinx and suppose values are known at the five
points {0.0, 0.2, 0.4, 0.6, 0.8}. Inequality (3.6) can be used to bound the error in ap-
proximating sin 0.28 by Ps (0.28). Since

Ms= max |sin®(r)| = max |cost|=1,
1€[0,0.8] 1€{0,0.8]

we have the bound

| sin(0.28) - P5(0.28) | < | 0.28(0.28 - 0.2)(0.28 - 0.4)(0.28 - 0.6)(0.28 - 0.8) | /5!
= 37 x 10°

An actual evaluation shows Pg (0.28) = 0.2763591, while sin0.28 = 0.2763556, so the
exact error is -35 x 10° n

Theorem 3.2 and the bounds provide insight and guidelines for practical interpo-
lation. The factor wy(X) in the error expression increases near the ends of the data
interval and increases very rapidly as x is taken farther away from [ab]; the higher
the degree, the more this is true. Because of this the bound (3.6) increases rapidly, but
the sharper equality (3.4) shows that this effect might be lessened for a given f and
given x by a derivative factor that gets smaller. Approximating f(x) by Py(X) outside
the smallest interval | containing the points of interpolation (the nodes) is sometimes
caled extrapolation. In genera, it is clearly dangerous to extrapolate very far outside
the span of the data, especially when using polynomias of high degree. On the other
hand, wy(X) is relatively smal for x in the middie of the nodes. And, of course, be-
cause of continuity, the error must be small close to a node. These two observations
suggest that when possible, it is best to interpolate at nodes centered about the x of
interest and as close to x as possible. This is what was meant earlier when reference
was made to choosing the nodes in an appropriate way.

The plot of wg(X) = (X +4) (X + 3) - (x - 3) (X - 4) on [-4,4] seen in Figure 3.3
shows the quditative behavior of this factor in the error expression. This function
grows extremely fast outside the span of the nodes and is large toward the ends, but
it is of modest size in the middle (as verified in Exercise 3.7). Figure 3.6 shows a
polynomial interpolant of high degree. Figure 3.7 displays the same data and inter-
polant over a subinterval in the middle of the data. The physical origin of the data and
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Figure 3.3 Plot of wyg(xX) on the interval [-4,4].

the plot of the data suggest that the underlying f(x) should vary dowly. Clearly the
interpolant P;¢(X) does not provide a plausible approximation to f(x) over the whole
interval. Nevertheless, in the middle of the range the fit appears to be quite acceptable.
The qualitative behavior seen here for a high degree polynomia interpolant might have
been expected from consideration of the wy(x) factor in the error.

Sometimes we can evauate a function anywhere we like in an interval, but wish
to approximate it by a smpler function so as to approximate its derivative or integra
or.... It isthen natura to ask if there is a good choice of nodes for interpolating in the
sense of making

Jmax, [ww (x)] (3.8)
small. The answer is known (e.g., [12, pp. 227-228]). The points
a — -
= (b;r )+(b2a)cos (212N1)n,j=1,...,1v, (39)
caled Chebyshev points, make (3.8) as small as possible. More details about the qual-
ity of this approximation are provided in the next section.

If derivative information is available, we can interpolate it adong with the values
of f. There are a great many possibilities and only one, caled Hermite interpolation,
will be described. Suppose that in addition to the values fj given at x; forj = 1,. . . , N,
we have the first derivative values f'; With 2N independent values it is reasonable to
try to interpolate with a polynomial of degree 2N - 1. We leave as an exercise the fact
that the fundamental polynomials ¢y (x),®y(x) of degree less than 2N that satisfy

ole) =17 1128 )= aj
Dy (x)) = { (1) jﬁ j i I,z Dy (x;) =0 all j,
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Oie(x) = [1 = 2Lj, (i) (x — %) | L (%)

@ (x) =

(3.10)

(x —xk)L,%(x).

Here the L, (X) are given by (3.3). It is now obvious that the polynomial

P(x) =

setisfies

P(x) =

Z Sidi(x) + Z [ @ (%)

fi,j= ..» N

P(xj)—fJ,J—l ., N.

There is an expression like (3.4) for Hermite interpolation:

flx)=

A

T 2N

where wy(X) is again given by (3.5).

Two cases of Hermite interpolation are of specia interest in this book. In the
solution of ordinary differential equations we use fifth degree polynomias (quintics)
to interpolate f and f' at three points. In this chapter we use third degree polynomials
(cubits) to interpolate f and f* at two points. It will be convenient later to express the
Hermite cubic interpolant in a different form. If we write

H(X) = a+ b(X - X)) + c(X - X)* + d(x - x,)° (3.12)
and require that
H(x) = fo, H'(x) =
H(Xn+l) = fn+|v H,(Xn+l) = f,n+lv
then it is easy to show that for h = X1 - X,

a = f,b= f, (3.12)
C = [B(fpus - fo)h - 2, - £ ,.4]/h (3.13)
d=[fn+ fuy - 2(fw - f)/H]/A2 (3.14)

EXERCISES

3.1 Is the interpolating polynomial (3.2) aways of exact
degree N - 1? If not, illustrate by an example.

3.2 Suppose that f(x) is a polynomial of degree N - 1 or
less. Prove that if P,(x) interpolates f(x) at N dis
tinct points, then Py(X) = f(x). Make up an example
(N > 3) and verify by direct calculation.

3.3 For the data

x |1 2
@ 2 4
construct P,(X) using (3.2). Find a polynomia Q(X)
of degree 2 that aso interpolates these data. Does this
contradict the theory about uniqueness of the interpo-
lating polynomia? Explain.
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3.4 An adternate method for computing Py(X) is to write

35

PuX) = G + CX + ¢ + - + ™.

Then the interpolation conditions, Py(x) = f; for
1 <i <N, yied a system of N eguations in the N
unknowns ¢;, C,, . . ., Cy that can be solved using the
codes Factor/Solve. Unfortunately, there are two dif-
ficulties with this method: (1) it is expensive (N%/3
multiplications), and (2) the coefficient matrix can be
very ill-conditioned.
(a) Implement this agorithm.
(b) Test it on the data in Example 3.5. Use the
same six interpolating values and evaluate (see Exer-
cise 3.5) a the remaining points. What is COND?
How do the answers compare with those in the text
for&(x) computed by another method?
There arc several ways to evaluate Py(X) = ¢; + ¢X +
-« + X" As a first algorithm we could use
P:= ¢
fori=2,3,...,Nbegin
P:=P+c;*x'"
end i.
How many multiplications does this algorithm re-
quire? A better approach is based on the nested form
of Py(X) used in Section 3.3:

Gt X G+ e+ x(C+ -+ gy 1}
For example,
3+ 4x- 6%+ 5X = 3+ x[4 + X(-6 + 5X)].
The new agorithm is
P:=cy
fori=N-I,N-2,...,1begin
P:=P*x+g¢

end i.
Compare the number of multiplications for this algo-
rithm to those for the first one.

3.6 Use the algorithm suggested by Exercise 3.4 to com-

pute P;,(w), which interpolates al the data in Exam-
ple 3.5. Plot P;y(w) for 5 < w < 100. Does it look
reasonable?

3.7 Verify the plot in Figure 3.3 of wy(X) to see that

3.8

it has smalest magnitude near the middle of the
data. Choose x; = -5 + i and evaluate wy(x) at
{05, £15, ... ,#45, +5+45, +5}.
Derivatives of f(x) can be estimated by the corre-
sponding derivative of Py(x) for some choice of N and
{xa }V_,. The usual approach is to try

SN () 2 PNV (),

Since Py(X) has degree a most N - 1, must

be a constant function (i.e., independent of x).
(a) Use (3.2) to show that
N
(N-1) Sx
P ()=(N=-1)! ) —=—"——.
N k; H(Xk —xj)
j#k

(b) What approximation to f’'(x) results when N = 2?

3.9 Verify that the functions given in (3.10) have the fun-

damental interpolation properties claimed.

3.10 Derive eguations (3.12)-(3.14). Start with

H(x) =a+b(x—xx) ~]—c(x~)c,,)2 +d(x—x,,)3,

and then derive and solve the four equations for a, b, c,
and d resulting from the conditions

H(xp) = fu, H(Xp11) = fr1
H’(x") = fr,u H,(xn-H) :f,',.H .

3.2 MORE ERROR BOUNDS

Far more can be said about the error in polynomia interpolation. In this section some
useful results are discussed and some results are given for the error made in approxi-
mating derivatives by derivatives of an interpolating polynomial.

One way to measure how well Py(X) approximates f(x) on an interval [a, b] is by

the worst error:

IlLf—Bnll = Jpax, | f(x) — Pn(x)].
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A fundamental theorem due to Welerstrass (see [4]) states that any function f(x) con-
tinuous on a finite interval [ab] can be approximated arbitrarily well by a polynomial.
Stated formally, given any e > 0, there is a polynomial P(x) such that ||f - P|| < e It
is plausible that interpolating f at more and more points in [a,b] would lead to a better
and better approximation. The bound (3.7) shows that if My does not grow too fast as
N — oo, the interpolants Py approximate f arbitrarily well. Unfortunately, this is not
true for all continuous f. A result due to Faber says that for any given set of nodes
{xgl)},{x(lz),xgz)},... iin [a,b], there is a function f(x) continuous on [a,b] such that
the interpolants Py(x) of degree less than N defined by
Py = f:M),i=1,...,N,

do not even have ||f - Py|| bounded as N — . Runge's function

1
flx)= 1+x2
on [-55] is a classic example. It seems obvious that interpolating such a smooth
function a more and more equally spaced points should lead to convergence, but it
is found that for even modest N, the interpolants are completely unacceptable (see
Exercise 3.11).

It turns out that if one can interpolate at the good nodes (3.9), interpolation is about
as good a way to approximate f(x) by a low degree polynomia as possible. In fact,
Runge's function can be quite accurately approximated by a polynomia that interpo-
lates at the Chebyshev points (see Exercise 3.12). In general, there is a polynomial
P(x) of degree less than N that is the best approximation to f(x) on [a, b] in the sense

that ||f — PYll provides the smallest value of ||f - P|| for al polynomias P of degree
less than N. Let Py(x) interpolate f(x) at the nodes xy,. . . Xy in [a,b]. For any X,

f(x) = Pr(x) = f(x) = Py(x) + Py(x) — P (x).
Now Py (x) — Py(x)is a polynomial of degree less than N, so

(3.15)

N

Py(x) — Pn(x) = Z,] (Pxv (k) — P (xk) ) La(x)

because Lagrangian interpolation at N points is exact for such polynomias. Using the
fact that Py(x) = f,, we then find that
1769 = Pu()| < 1709~ P+ 3, i) — fll o)
k=1 y
<|If =Pyl (1 +a§‘f§b,§1 ILk(x)|> :
and then

N
1 =Pl = max, 1) = Pu()] < 1 = Pl (1 + max, 3, |Lk<x>|) :
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This inequality relates the error of Py to the error of the best possible polynomia Py,
by a factor

N
1 L
+;§§bek§1l k()
which is given in terms of the points of interpolation aone. A simple analytical bound
for the particular nodes (3.9) is found in [17]:

)n
1 L < tan
+ar£ax 2| ()| <1+ = Z
The surprising thing is that the bound is so smal for moderate degrees N. For N < 20,
it is less than 4. Thus

If = Pull < NIf = Pwll < 411 = PAll
for al N < 20. These easily constructed interpolating polynomials are, then, about as
good as possible.

Interpolation is not so effective when the nodes cannot be chosen, and as Faber's
theorem suggests, high order interpolation can be quite unsatisfactory. It is common in
practice that a high order interpolating polynomia exhibits large amplitude oscillations
even when the data appear to come from a smooth function f(x). Examples are given
in the next section; for extreme examples the reader need only try interpolating the data
in Exercises 3.22, 3.23, and 3.26 by polynomials. For these reasons data are usually
fit with relatively low degree polynomials, and a variety of devices are used to prevent
oscillations. Some of these are studied in Section 3.5.

Polynomia interpolation is a basic tool in numerica anaysis. As an example,
derivatives of an interpolant Py(X) to f(X) can be used to approximate derivatives of
f(n). An argument very similar to that of Theorem 3.2 (see [15, pp. 289-290] for
details) can be used to show that for any r < N

(N) N—r
70 - B 9 = S ]

where the points{&;} are known to be distinct and to satisfy
xk<§k<xk+,, 1<k<N-r

The point &, depends on x and lies in the same interval | as the & in Theorem 3.2. It
has been assumed here that x < X, < -+ < Xy. AS a consequence,
My (xy — x1

r (r)
170 - P < Ml =

as long as x < X < Xy. The Lagrange form of the interpolating polynomia is conve-
nient for deriving formulas for numerical differentiation. To approximate a derivative
of f(x) a a point z, given values f, a points {x;, . . . X}, we smply form the inter-
polant, differentiate it, and evaluate it at x = z

") (z) ~ P (2) kaL (g

)N—r
(3.16)
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Because the coefficients in this expression depend only on the nodes, we have here a
formula that can be used for any f(x). The programs provided with this chapter for the
computation of cubic splines approximate the first derivative at the ends of the range
of nodes in this way. At one end they define a cubic polynomia C(X) interpolating
at the nodes x3,%,%3,X, and then approximate f'(x;) by C'(x;), and smilarly at the
other end. For closely spaced data, this provides an accurate approximation.

Error bounds like (3.16) can be derived for the Hermite polynomias considered
a the end of the preceding section (see [2] for details). Using the earlier notation,
if f has four continuous derivatives for any x in the interval [x, %, + h], then with

M4 = maxanxSx"+h If(4) (x)|,

1F(x) —H@)| € = Mah® (3.17)

384

V3
Myh? 3.18
£ (x) - ()I_216 4 (318)
lf"(x) = H"(x)] < §M4h2 (3.19)
|f" (x) = H" (x)| < 5M4h. (3.20)

EXERCISES

3.11 Veify that using polynomials interpolating at the N = 3.12 Verify that using polynomials interpolating at the
2m + 1 equaly spaced points x = -5 + 5(j - 1)/m Chebyshev points (3.9) gives good approximations to
give poor approximations to Runge’s function f(x) = Runge's function (3.15). As in the preceding exer-
/(1 + x® on [-55]. cise, compute the maximum vaue of [f(X) - Py(X)|

over a large set of x values (not interpolating points)
n[-55] for N =15 N =21, and N = 27. What is
the behavior of the errors as N gets bigger?

(a) Compute the maximum value of [f(x) -
Pome1 (X)| Over alarge set of x values (not interpolat-
ing points) in [-5,5] form = 7, m = 10, and m = 13.
Are the errors increasing or decreasing as m gets big- 3.13 Repeat Exercise 3.11b for the function f(x) = |x| on

ger? [-LI]. The {x} are now x = -1 + (j - 1)/m for
(b) Repesat (a) but this time only compute error on j=12,...,2m+l

[ -1, 1]. Use the same {x;} and the same three mval- 3.14 Repeat Exercise 3.12 for the function f(x) = |x| on
ues asin (a). What happens this time as N increases? [-1]]. Use N = 21, 41, and 61 this time.

3.3 NEWTON DIVIDED DIFFERENCE FORM

We have repeatedly used the fact that there is exactly one polynomia Py(x) of degree
less than N that assumes given values f; a N digtinct points x. The Lagrange form
(3.2) is just one way to represent this polynomia. As we have seen in the case of
differentiation, it is well suited for many applications because of the smple depen-
dence on the f;. On the other hand, the nodes X do not appear in a simple way, and
this is inconvenient for some tasks. In particular, it is not convenient when we do not
know in advance what degree is appropriate. This is the most common situation when



94

CHAPTER 3 INTERPOLATION

approximating data, so an dternative form due to Newton is preferred for practica
interpolation by polynomias. Polynomia interpolation underlies two kinds of meth-
ods widely used for the numerical solution of ordinary differential equations, Adams
methods and backward differentiation formulas (Gear's methods). At each step of the
numerical solution of an initial value problem, the codes attempt to find the most ap-
propriate degree for the underlying polynomia interpolant. For this reason such codes
use either the Newton form of the polynomia or a closely related form. Although the
machinery that must be developed for the Newton form may seem formidable at first,
the calculations are easy to learn.

A basic tactic of numerical andlysis is to estimate the error in a quantity by com-
paring it to a quantity believed to be more accurate. If Py(x) interpolates at the
nodes {x;, . . . X and Py, 1(X) interpolates at the same nodes plus Xy, then in suit-
able circumstances the latter is a better approximation to f(x) and f(x) - Py(Xx
Pue1(X) - Py(X). If we do not know what degree is appropriate, this suggests a way
to proceed. Start with the constant polynomia P;(x) = f; interpolating at x;. Having
computed Py(X), compute Py, (X) and use it to estimate the error of Py(X). If the esti-
mated error is too big, increase the degree by interpolating at another node and repeat.
This process is the basis of the Newton form of the interpolating polynomial.

For each n, the interpolant P,(X) is constructed as a “correction” to P,,(X). Be-
cause P, (X) is of degree less than n - 1 and P,(X) is of degree at most n - 1, their
difference must be a polynomial Q,(x) of degree at most n - 1.

Pn(x) = Pn—l(x) + Qn(x)- (3-21)

The polynomia P,(Xx) interpolates at x,. . . ,X,1 just as P,.4(X) does, so for j =
1,....n1,

fj :Pn(xj) :Pn—l(xj)"‘Qn(xj) :fj+Qn(xj)-
This implies that the x,. . . X,, ae roots of Q,(x). Because its degree is a most
n -1, Q,X) must have the form
Qn(®¥) = Ca(X - %) (X - X)) =+ (X - Xq)

for some constant c,. The polynomia P,(X) aso interpolates at x,. f, = Py(X) =
Po1(%n) +Qn (%) = Pu_1 (¥n) +caIT)={ (%1 — ;). Because the nodes are distinct, none
of the factors (x, - X) can vanish, and

n—1
en=(fo = Paci () / T (o= (3.22)
j:

The relations (3.21) and (3.22) along with Py(x;) = f; provide the Newton form
of the interpolating polynomia. The coefficient ¢, is caled the (n - 1) st divided dif-
ference off over the points x;,. . . X,. A number of notations are seen. A common
oneis

cn = flx15 .-y Xn)-
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In this notation

the Newton divided difference form is
Py(x) = flx1]+ flxr,x2] (x = x1) + flxe, 00, x3] (x — xp ) (x — xp) + - -

N—-1
+f[x1,x2,...,xN] H(x-—xj). (3.23)
j=1

It is clear from (3.23) that the leading coefficient (the coefficient of the highest
degree term) of Py(X) is f[xy, . . . X]. Some authors take this as the definition of the
(N - 1)st divided difference.

Before working some examples we present a theorem that relates an rth order
divided difference to a pair of (n - 1)st order divided differences. The relation leads to
an algorithm for computing the c, that is computationally more convenient than (3.22).

Theorem 3.3. For distinct nodes {x} and any k > i,

Slxigty-oxe] = flxiy - xe—1]

f[xiv' . 9xk—laxk] = X —x; (3.24)
and
flxi] = fi.

Proof Let R/(X) be the polynomial of degree less than k - i that interpolates f(x)
on X, - - -, % and let Ry(X) be the polynomial of degree less than k - i that interpolates
on X, . . . Xq. The polynomia

—_ — R
S(x) — (xk x)Rz(X)-F(X x,) l(x) (3.25)
Xk — Xi
has a degree at most one higher than the degrees of R;(X) and Rx(X). Accordingly, its
degreeislessthank-i+ 1. Forj=i+I,..., k-1,
so S(x) interpolates f(X) oN Xj+1 , - - . ,X. Moreover, Sx) = f; and §x) = f,. By

Theorem 3.1, SX) is the interpolating polynomial of degree less than k - i + 1 that
interpolates f(x) on al the data. The result (3.24) simply expresses the fact that the
leading coefficient of the left-hand side of (3.25) equals the leading coefficient of the
right-hand side. |

To illustrate the use of this theorem, we construct a divided difference table. Sup-
pose that three rows and columns of differences have aready been computed and writ-
ten in a lower triangular array as follows:

xi flx)
x2 fP]  flx1,x)

x3 fles]  fleo,xs]  flxi,x0,x3).
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To add another row corresponding to the node x,, start with the data f [x,] = f;. Then
X4 — J|X
flxs,xg] = %Pl
flx3,xa] = fx2, %3

flxax3,x4] =

—x
X2,X3,X4] — f|X1,X2,X
f[xl,xz,x3,x4] _ f[ 2,43, ;l—-{l[ 15X%2, 3].

Notice the pattern in these calculations:

x1 flx]
x3  flxa) Flx1,x] _ _
x3  flx3] Slx2,x3] Slx1,%2,%3)

x4 flxa] = flxaxa] = flo,xs,xa] — flxr,xo,x3,x4)

In genera, the first column of the divided difference table is x;, the second is fj,
the next is the first divided difference, and so on. The table provides a convenient
device for constructing the required divided differences. the coefficients of the inter-
polating polynomia are the quantities along the diagond.

Example 3.4. For the data from Example 3.2, first form the difference table:

o i /51 /51 Il
1.82  0.00

250 130 =00 =191

365 310 LB _q56 0 L1 =019

w3 2% FRR-1s -0 FRMP- -

Then according to (3.23),
P,x) = 0.0 + 1.91(x - 1.82) - 0.19(x - 1.82)(x - 2.50)
-0.83(x - 1.82)(x - 2.50)(x - 3.65).
For computational efficiency this should be evauated in the nested form
Ps(x) = (x - 1.82){1.91 + x - 2.50)[-0.19 - 0.83(x - 3.65)]}.

Of course, if you expand this out, you should get the same (except for roundoff) as the
Lagrange form. n

There are two parts to an agorithm for calculating the Newton divided differ-
ence form of the interpolating polynomial. The first computes the divided differences
needed for the coefficients of Py(x). It is not necessary to save the whole table as we
can use a vector ¢ to save the entry in the current row j as long as we compute one
diagona at a time (and do the calculations in the correct order):
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cy = fy
forj=N-1I,... | begin
G = f
fork=j+1,...,Nbegin
Cc = (Ck - Crp) 1 (X - X))
end k
end j.

Once these coefficients are available, the second part of the algorithm is to evauate
Py(X) for a given x:

Py = ¢y
fork=N-1,..., begin

Pnoi= P™ (X - %) + G
end k.

Divided differences can be related to the derivatives of f(x) using Theorem 3.2.
Application of the theorem to P,,(X) with x = x, leads to

&) o
f(xn) =Py (xn) = W‘]l:[l(xn-xj),
where
min(Xg, ... %) < &n<max (X, ... X,).
However, we aso have
n—1
f(xn) —Pn~1 (xn) = Pn(xn) —Pn—l(xn) =Cn H(xn _xj)-
j=1
Equating the two expressions shows that
(&)
flxtse 2] = NCE (3.26)

for a point &,in the span of the data x,. . . ,x,. With the efficient way of computing
divided differences just presented and (3.26), we have a way to approximate derivatives
of a function f(x) known only from its values at certain points.

This last result gives us a better understanding of the error estimate we used to
motivate the approach. According to Theorem 3.2,

f(x) = Py(x) =—f(N) &)1‘[ x—xj).

We have just seen that

N
Pny1(x) = Pn(x) = flx15. ., xN41] 1:[1 (x=x;)
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L mym T
:mf (n)H(x—xj).

j=1

Comparison of these two expressions shows that if f™ does not vary much over the
span of the data, the error of Py(X) can be estimated by comparing it t0 Py.1(X).
It should be appreciated that the Newton form of the interpolating polynomia was
used to obtain this result, but it is true regardless of the form used for computing the

polynomial.
The Newton form (3.23) is closely related to the Taylor series of f(x) about the
point x; :
(1) (2) (3)
fonyt Lo + L a2 L5 ()4
f(N*l)g ) B

As a consequence of (3.26), the Newton form of the interpolating Py(X) becomes the
Taylor polynomia of degree N - 1 when the nodes x,,. . . X, al tend to Xx.

EXERCISES
3.15 For the data I (c) inthe Newton divided difference form (3.23).
x —1 0 1 2
f 2 2 5 5 3.17 Compute the divided difference table and P5(x) for the
calculate P,(X) data from Example 3.1. Verify that this polynomial is

(@) in the Lagrange form (3.2), the same as the one in Lagrange form.

(b) using the matrix method discussed in Exercise 3.4 3.18 What is the operation count for the evaluation of the

(the linear system hereis small enough to be solved by coefficients in the Newton divided difference form of
hand), and the interpolating polynomia? What is the operation
(©) in the Newton divided difference form (3.23). count for each evaluation of Py(x)? How does this
316 For the data compare to the Lagrange form?

x | -2 -1 0 ! 2 3.19 Implement the algorithms for the Newton divided dif-

fl -4 1 1 2 10 ference form. See if you can reproduce the graphs in
calculate Ps(x) Figures 3.4 and 3.5. Try your agorithm on some of
(@ in the Lagrange form (3.2), the other data sets in the exercises to test the conjec-
(b) using the matrix method discussed in Exercise 3.4 ture that high degree polynomia interpolation often
(the linear system here is small enough to be solved by results in approximations whose graphs show unde-
hand), and sirable behavior.

3.4 ASSESSING ACCURACY

How do we know when we have a good approximation? We have dready seen a
couple of possibilities. One is to use (3.4), that is,f(x) — Px(x) = fM) (E)wy(x)/N!.
Since wy, is a polynomial, it is easily evaluated at any x. The derivative factor presents
problems, however, since we certainly do not know &x and probably do not even know
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0 20 40 60 80 100
Figure 3.4 P¢(x) from Example 3.5.

™. Another possihility is to compare the result of interpolating on one set of nodes
to that of a result of higher degree obtained by interpolating on the same set plus one
more node. A variation on this is to compare results of the same degree obtained by
interpolating on different sets of nodes. Often the best approach is to reserve some
data and evaluate the exact error f(x) - Py(X) a these nodes. A redlistic appraisa
may require that a lot of data be held in reserve, and it is far from clear how to decide
which nodes to use for interpolation and which to keep in reserve. Usualy we have
some idea about the behavior of the underlying function. A graph of the data and
the interpolant is then a great help in deciding whether the interpolant reproduces this
behavior adequately.

It is illuminating to see some examples of polynomid interpolation. The programs
used to calculate the interpolating polynomias below are straightforward implemen-
tations of the Newton divided difference form. We do not provide the codes because
they are easy to write and, as will be seen, interpolating with high degree polynomials
is generaly not a good idea.

Example 3.5. The following table of the relative viscosity V of ethanol as function
of the percent of anhydrous solute weight w is taken from [12, p. D-236]:

w 5 10 15 20 30 40
V(w) 1.226 1.498 1.822 2.138 2.662 2.840

50 60 70 80 90 100
2.807 2.542 2.210 1.877 1.539 1.201

To see how good or bad P(w) is, some data points will be held in reserve. Specificaly,
we define Pg(w) as the polynomia interpolating at {10, 20, 40, 60, 80, 100}. The error
of this interpolant is assessed by evaluating it a the remaining nodes where we know
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Figure 3.5 Pg(v) from Example 3.6.

the value of the function:

w | 5 15 30 50 70 90
Ps(w) 1.201 1.824 2.624 2787 2210 1.569
V(w)—Pg(w) | 0.025 -0.002 0.038 0.020 0.000 —0.030

This is probably sufficiently accurate for most purposes. Figure 3.4 shows that Pg(X)
provides a fit that looks reasonable. However, if al 12 data points are interpolated, the
resulting P;,(X) is not nearly so nice (see Exercise 3.6). u

Example 3.6. As a second example, we consider some data taken from [19, p. 84].
Here v is the reciprocal of the wavelength of light and the function E(v) measures
the relative extinction of light at this frequency due to observation and scattering by
interstellar materials.

v E(v) Y E(v) v E(V)
> 0.00 -3.10 365 3.10 > 5.88 4.77

029 294 | >4.00 4.19 6.25 5.02
> 0.45 -2.72 4.17 490 >6.71 5.05
>080 -223 | >435 577 7.18 5.39

1.11 —-1.60 | >4.57 657 > 8.00 6.55
> 1.43 —-0.78 | >4.76 6.23 8.50 7.45

1.82 0.00 5.00 552 > 9.00 8.45
>2.27 1.00 | >5.26 4.90 9.50 9.80

2.50 1.30 556 4.65 > 10.00 11.30
>291 1.80
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3.5 2.5 5 5.5 6
Figure 3.6 Py(v) from Example 3.6 over the interval [3.5,6].

The data points marked (>) were interpolated by Pig(Vv), which is graphed in Fig-
ure 3.5. This is not a good ideal Still, Figure 3.6 shows that the fit is acceptable
in the middle of the span of data. As discussed earlier, we might have expected this
from the form of the error expression. Severa values of Pg at points held in reserve
are P.;(0.29) = -108.8, Pg(1.11) = -28.3, Py(5) = 5.01, Py(8.5) = -5035, and
P 1 6(9.5)= 60,749. [ |

3.5 SPLINE INTERPOLATION

The error expression of Theorem 3.2 suggests that raising the degree of the interpo-
lating polynomial will provide a more accurate approximation. Unfortunately, other
factors play a role and this tactic often does not succeed in practice. The expression
suggests another tactic that will succeed. The error depends strongly on the length of
the interval containing the nodes. If we can somehow reduce this length, the theorem
says that we will then get a better approximation. The basic idea of this section is to
approximate f(x) by a polynomia only on a piece of the interval. The approximations
over al the pieces form an interpolant called a spline. (In this book the word spline is
a synonym for piecewise polynomia function.) More specifically, the function f(x) is
to be approximated on [x;, Xy]. Theinterval [x;, Xy] is split into subintervals [X,, Xn+1],
where X; < X, < - < Xy. A spline is a polynomial on each interval [X,, X..]. In this
context the {x} are caled the breakpoints or knots. In the subsections that follow, a
selection of splines that arise from interpolation with constraints are studied. A key
issue is how smoothly the polynomials connect at the knots, and this governs the order
in which they are taken up.
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DISCONTINUOUS AND CONTINUOUS SPLINES

The simplest splines are those arising from interpolation done independently on each
subinterval [X,, X.,+]- The bound (3.7) can be applied to each subinterval. For ex-
ample, suppose that any four nodes are chosen in each subinterval [x,, Xn:1].- Let the
spline interpolant §(x) consist of the cubic polynomia interpolants on the subintervals.
If h = max(X,,; - X, and

M4 = max |f(4) (‘x)l s

x<xay

then

)=S0l < 4R for x <x <y,

As h— 0, a good approximation is obtained over the whole interval. Evidently the
tactic of fixing the degree and approximating the function on pieces is more promising
for practical interpolation than approximating the function over the whole interval by
means of increasing the degree.

Generaly the polynomia on [X,,X,+1] does not agree at x, with the polynomia
on [Xn.1,X,], So this spline is generally discontinuous at the knots. When approximat-
ing a continuous function f(x) this may not be acceptable. It is easy to modify this
construction to obtain a continuous spline. All we need do is include the ends of each
subinterval among the points where f(x) is interpolated. The polynomia on [X,,Xp+1]
then has the value f(x,) a X, and so does the polynomia on [X,.1,X,].

Only data from [X,.1,X,] ae used in constructing the spline on this subinterval, so
the error depends only on the behavior of f(x) on this subinterval. This will not be the
case for splines taken up later. In some contexts the spline is to be constructed before
al the data are available and this property of the construction is essential.

The simplest continuous spline is one that is piecewise linear, that is, §X) is a
broken-line function (see Figure 3.7). If §X) is required to interpolate f(x) at the
knots, then on [X,,X,+1] for 1 < n < N - 1 the Lagrange form is

X — Xpi1 X—X
S()C) = fn s +fn+1 - 5
Xn = Xp+1 Xn+1 — Xn
which can be rewritten as
S() = ot P TIN), (3.27)
Xn+1 — Xn

Example 3.7. Given the data (5, 1.226) (30, 2.662) (60, 2.542) (100, 1.201) taken
from Example 3.5, (3.17) yields

1.266+0.05744(x—5), 5<x<30
S(x) = { 2.662 — 0.00400(x — 30), 30 < x < 60
2.542—0.03352(x — 60), 60 <x< 100
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/

Figure 3.7 A typica linear spline function.

The linear interpolating spline (3.27) is very easy to evaluate once the proper
subinterval has been located. All spline evaluation routines must contain an agorithm
for finding the right subinterval. Often this takes longer than the actual evauation of
the polynomial there. For linear interpolation, an error bound is

1
|£(x) = S(x)| < gM2h® for xy < x < v, (3.29)

whereM, = max,, <y, [f"(¥)|. Convergence is guaranteed as h — 0 if |f"] is
bounded. A similar argument using (3.16) yields

[f(x) =8 (x)| S Mahyxp < x < Xpy1, 1<n<N-—1. (3.29)

Thus, S(X) can be used as an estimate for f'(x) that gets better as h— 0.

Continuous splines are used in the solution by finite elements of boundary value
problems for second order differential equations. The simple program CODEL in [I]
alows the user to specify the degree of the interpolating polynomia on each element-
the subinterval [x,,X,+1]—in the range 1 to 3. The higher the degree, the more accurate
the approximation, but the greater the possibility of unwanted oscillations. This may
not matter when using the spline for finite elements, but it is to be avoided when
representing data. For the latter purpose a good compromise seems to be the use of
cubic polynomials, so in the rest of this section we concentrate on them.

The error of a continuous cubic spline constructed by interpolation independently
on each subinterval can be analyzed using the error expressions developed for polyno-
mial interpolation. On each subinterval

1P () - PP ()] < ot

fork =0,1,. .., 3 and suitable constants C,. It is not so easy to prove and the powers
of h differ, but similar results can be established for all the cubic splines we take up.
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The point, though, is that on each subinterval Py(x) ~ f’(x). This implies that for suf-
ficiently small h, P",(x) has the same sign as f'(x) as long as f'(x) # 0. Put differently,
except near the extrema of f(x), for small h the spline is monotonely increasing (de-
creasing) wherever f(x) is. The same argument applies to the second derivative and
leads to the conclusion that except near inflection points of f(x), for smal h the spline
is concave (convex) wherever f(x) is. We conclude that for small h, the spline will re-
produce the shape of the function it interpolates. The same will be true of al the cubic
splines we take up. This is one reason why spline interpolation is much more satis-
factory than interpolation by high degree polynomias. But what if h is not “smal”?
When the data are sparse, it is necessary to impose conditions on the spline to preserve
the shape of the function, one of the matters we take up in the next subsection.

CONTINUOUS FIRST DERIVATIVE

If we have derivative data available, it is easy to extend the approach of the preceding
subsection to obtain an interpolant with a continuous derivative. For example, we
could interpolate f(x,), f'(x,), f(X.+1), ' (X.+1) by the cubic Hermite interpolating
polynomia on [X,,X,+1]. Doing this on each subinterval produces a spline H(x) with
a continuous first derivative. Each interval is treated independently, so the bounds
(3.17)-(3.20) hold and show that a good approximation is obtained. In the chapter on
differential equations, we produce, for successive n, approximations to a function y(x)
and its derivative at the points x,, X, + h/2, and x, + h. By forming the quintic (degree
5) Hermite interpolant to these data, a spline with a continuous derivative is formed
that approximates y(x) and y'(X) for dl x. It is especialy important in this context that
the interval [x,X, + h] is handled independently because generdly it is only the data
on this interva that are available when interpolation is done.

Let us now consider the representation of data when only f(x) vaues are known
and there are not many of them. It has been found that a cubic spline H(X) yields a plot
pleasing to the eye if it has a continuous derivative and if it preserves monotonicity. By
the latter is meant that if f, < f,.,, then H(X) increases on (X,,X,+1) and if f, > f..q,
then H(X) decreases. The point is to avoid oscillations that do not appear in the data.
A moment’s thought shows that linear splines preserve monotonicity. The problem
with them is that their graphs have “corners.” By going to cubits and a continuous
first derivative, we avoid the corners. Such a “shape-preserving” interpolant can be
constructed along the lines of the cubic Hermite interpolant. The cubits on [X,.1,Xp]
and [x,,X,+;] both interpolate to f, at x,. If the first derivative is to be continuous, the
first derivatives of the two cubits must have the same value a x,, but now the value of
this derivative is an unknown parameter that we choose to achieve monotonicity.

As in (3.11) the cubic is written in the form

H(x) = an+ by(x—xp) +cn(x—)c,,)2—%—d,,(x—x,,)3

for X, < X < X413, 1 £ n < N - 1. Note that the parameter b, is just the slope of
H(x) at the point x,. Proceeding as in the derivation of (3.12)—3.14) with the notation

hy = X - X, ad An = (f+ 1 - f) /h, yields
a, = f,
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cn=(38n—2bp—byi1)/hn (3.30)
dy = (bp+ by —2A,) /12

These equations result from solving the three interpolation conditions H(xn) = f,,
H(X) = e, @d H (X)) = b,y for the three unknowns a,, ¢, and d,.

The quantity A, is the sope of the line through (X, f,) ad (X,+1,  foeq). If A= 0,
it seems reasonable to force H(X) to be constant on [X,,X,+ 1], that is, to make the slopes
by = by = 0. If A # ' 0, let us define @, = b,An and b, = by.,/An- To preserve
monotonicity it is necessary that the sign of the dope of H(X) a x, and x,., be the
same as that of A,. Mathematically thisisa, > 0, b,, > 0.

A sufficient condition on a and b to preserve monotonicity was found by Ferguson
and Miller [7]. This was independently discovered by Fritsch and Carlson and pub-
lished in the more accessible reference [10]. The argument involves studying H’(X)
as a function of a, and b,. This is not too complicated since H'(X) is a quadratic on
(Xn,Xn+1)- A simple condition that guarantees monotonicity is preserved is that a,
and b, lie in the interval [0,3]. There are many formulas for a,, and b, that satisfy this
restriction. One given in [9] that works pretty well is to use

An—lAn

by, = 331
T A+ (1= 1) A (31)
with
hn-—l +2hn
fn=——— 3.32
n 3(hn__1 +h,,) ( )
foon=2,3,...,N-L1If A,_1A, <0, then the dopes change sign a X, In such

a case we probably should not impose any requirements on the slope of H(X) a x,.
Some people suggest setting b, = 0 when this happens. Others say to go ahead and
use (3.31) as long as there is no division by zero. The heuristic actualy chosen can
have a significant impact on the behavior of the shape-preserving cubic spline near
thoseregionswhere A, _1A, < 0. At the ends the smplest rule is to use b; =A; and
by = Ay—1. A better choice is to use the end slope of the quadratic interpolating
the three closest data points (assuming it satisfies the constraint on a and b); other
possibilities are given in [9]. With (3.31) and the simple choice for b; and by it is easy
to show that the sufficient conditions on a, and b, are satisfied. At the endsa; = 1
and by = |, which are certainly in [0,3]. Forn=2,3,...,N- 1, clearly  <r, <
s0 @y =Ap—1/[rmdn+(1=rn)Ap1] < 1/(1=ry) <3 and Bu—1 = An/[raAn + (1 -
rn)An—1] < 1/r, <3 as desired.

The dgorithm for H(X) is very smple. Compute b, by whatever formula you

choosg; forn=2,3,..., N - 1take b, = 0if A,_1A, <0, otherwise compute b, from
(3.31), (3.32). Compute by. The values ¢, and d, can be computed from (3.30) for
n=1 ..., N-1ether a the same time the b, are computed or in a separate pass

over the data. Later in this chapter we provide a routine SVALUE/Spline_value for the
evaluation of H(X).
Examination of the algorithm shows that on the subinterval [X,,Xn+1], the spline

dependsonthedata (X1, fi1)» K fr) es Tre) @d (Xoso fi0). It should
be no surprise that it depends on data from adjacent subintervals because the first
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Figure 3.8 Data from Exercise 3.30 interpolated by the polynomial Psg.

derivatives of the polynomias in adjacent subintervals have to match at the nodes.
Although not as local as the cubic splines of the preceding subsection, the construction
of the shape-preserving spline on a subinterval requires only data from the subinterval
itself and the two adjacent subintervals. As might be expected this H(X) works very
well on data that are always monotone but is less successful on oscillatory data. See
Huynh [14] for some aternatives.

This spline is not very accurate as h = max(x,,; - X,) tends to zero, but that is
not its purpose. It should be used when the data are “sparse” and qudlitative properties
of the data are to be reproduced. It is a simple and effective automatic French curve.

Example 3.8. Exercise 3.30 describes a situation in which a shape-preserving spline
is particularly appropriate for the approximation of a function f(C). There are only
eight data points and it is necessary to approximate the derivative f'(C). The concen-
tration C and diffusion coefficient D(C) that make up the function f(C) = CD(C) to
be approximated are nonnegative. As can be seen in Figure 3.8, a polynomia inter-
polant to f(C) is unsatisfactory because it fails to reproduce this fundamental property.
Also, it does not reproduce the monotonicity of the data, casting doubt on its use for
approximating f'(C). The shape-preserving spline requires the monoctonicity of the
interpolant to match that of the data; Figure 3.9 shows that the result is a much more
plausible fit. u

CONTINUOUS SECOND DERIVATIVE

The last spline considered has a historical origin. To draw smooth curves through data
points, drafters once used thin flexible strips of plastic or wood called splines. The



3.5 SPLINE INTERPOLATION 107

B 6 8 10 12 14 16
Figure 3.9 Data from Exercise 3.30 interpolated by the shape-preserving spline.

data were plotted on graph paper and a spline was held on the paper with weights so
that it went over the data points. The weights were constructed so that the spline was
free to dip. The flexible spline straightened out as much as it could subject to the
congtraint that it pass over the data points. The drafter then traced along the spline
to get the interpolating curve. The smooth cubic spline presented here is the solution
of a linearized model of the physical spline. The physical analogy aready points out
something very different about this spline—its value at any point depends on all the
data.
To construct the smooth cubic spline, we write once again

S(xX) = @y +by(x—x) + cn(x — x0)* + dp(x—x,)° (3.33)

on each [X,,Xp+1], 1 < N < N - 1. There are 4(N - 1) free parameters to be determined.
The interpolation conditions require that for 1 < n <N -1

S(xy) = fus and S(x;p1) = fur1, (3.34)
giving 2N - 2 conditions. There remain 2N - 2 degrees of freedom that can be used

to make §(xX) smooth on al of [x;,xy]. Note that (3.34) automatically ensures that Sis
continuous on [x;,Xy]. For S to be continuous at interior knots,

S'(x;)=8(x),2<n<N-1. (3.35)

This provides N - 2 conditions, so N degrees of freedom remain. For S” to be contin-
uous at interior knots,

§"(x;)=8"(x}),2<n<N-1 (3.36)

for another N - 2 conditions. Exactly 2 degrees of freedom are left. This is not enough
to achieve a continuous S’ (this is undesirable anyway since the resulting S would
be a cubic polynomia rather than a piecewise cubic polynomial). There are many
possihilities for the two additional constraints.
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Figure 3.10 Graphs of §x) and S”(x) from Example 3.9.

Type 1. S(x) = f(X),S(xn) = F(xn)-
Type 2. S (%)) = S (%) = O.
Type 3. S"(x) = F7(%).S (%) = (%)

Type 4. S'(x) = S(x).S"(x) = S"(x)-

For obvious reasons these conditions are known as end conditions. The second condi-
tion is the one leading to a spline that approximates the physical spline. The physical
spline straightens out as much as possible past the last data point on each end, so it be-
comes a straight line with zero second derivative. In the form stated, the first and third
conditions are useful only if extra information is available about f. However, the exact
slopes or curvatures needed here are often replaced by polynomial approximations in
practice. The last end condition is appropriate when f is periodic with period Xy-X;
because then f(x) and al its derivatives have the same values at x; and Xy.

Example 3.9. Let

S(x) = 24x—3x% +x3, 0<x<1
TlU1-2(x—-1)+5(x—1)3, 1<x<2.

It is easily verified that Sis in C¥[0,2], and satisfies the interpolation conditions S(0) =
2, 51) =1, §2) = 4 and the end conditions S(0) = 1, S(2) = 13. Graphs of S and
S’ are shown in Figure 3.10. Note that the graph of S appears very smooth, while that
for S” has an obvious corner at the knot x = 1. n

Returning to the earlier characterization of §x), we had 4N - 4 conditions on the
4N - 4 unknowns given by (3.33). A matrix method is in order, but some preliminary
manipulations will simplify the task considerably. On each interval [X,,xn. ]

S'(x) = by + 2cn(x — x5) + 3dn(x — x4)* (3.37)
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S"(x) = 2c, + 6dp (x — x,)- (3.38)
The interpolation conditions immediately yield, from (3.33),
a,=f,l<n<N-1 (3.39)

and dso f..; = a, + b,h, + c,h?, + d,h®, which can be rewritten as

bn = (f,, - fn)/h, - c;hy-dh%, 1 < n< N -1 (3.40)

This eliminates half of the unknowns. The continuity condition (3.36) on S™ says that
2c, = 2c,, + 6d,.1h,; or [with cy = S (X\)/2]

dyg =" o< p<N. (3.41)
3hy—1
Only formulas for c;, . . ., ¢y remain. They are provided by the two end conditions

and the globa continuity of S. From (3.35) and (3.37) it follows that b, = b,; +
2C.1hny + 3dy4h?%4 for 2 < n < N - 1. Substitution in (3.40) and (3.41) gives

fn+l fn fn fnl

1
—ch — = —e) =
hn Cnlln 3 h"l (Cn+l c’l) hn—l

2
+en—1hp—1+ ghn—l(cn ~Cn1)

for 2<n <N - 1and a rearrangement yields

(3.42)

Bn_1cn—1+2(hn_1 +hn)cn +hncpir =3 (f”“ “In_Jn "f”“) .

hn hn-1
Only the first type of end conditions (prescribed slopes) is taken up here. From (3.33),
(3.40), and (3.41),

Fx)=5x)=b=(fr—fi)/h —c1h —dih}
= (2= fi)/m —cil -%’H(Cz—Cl)a

2hicy + hicy = 3{(f2 - fo)/hy - F(x)}. (3.43)
Similarly, f(xy) = S(xy) leads to
SN —IN- 1)

hy_1cny—1+2hy_1cn =3 (f'(xN) T

Equations (3.41)—(3.44) provide a set of N equations in the N unknowns ¢, C,, . . ., Cy.
The coefficient matrix has the very specia structure

2h, hy

hy 2(hi+hy) h

(344)

hn-2 2(hn—2+hn_1) By
hn-1 2hN_y



110

CHAPTER 3  INTERPOLATION

Such a matrix is called tridiagonal (&l the nonzero entries lie in three diagonal bands),
symmetric (the entry in row i of column j equals the one in row j of column i), and
diagonaly dominant (in each column the magnitude of the entry on the main diagonal
exceeds the sum of the magnitudes of the other entries in the column). We saw in
Section 2.5.2 that for such matrices the system has a unique solution for each right-
hand side and the solution can be found accurately using Gaussian elimination without
any row interchanges.

Theorem 3.4. Given the knots x; < X, < - < xy and f, = f(x,), 1 < n < N,
there exists one and only one function S(x) that satisfies each of the following:

1. §x) is a cubic polynomial in each [X, X1, 1 < n< N- 1L
2. 9X) is in CYxq,Xy].

3 9%) =f,1<n<N

4. S(x) = F(x).Sx) = F(x)-

For this choice of end conditions, ) is called the complete cubic spline. The
coefficient matrix has the same structure for end conditions of types (2) and (3) and
similar results are true for them. With the choice of type (2), Sx) is called the natural
cubic spline. The matrix has a somewhat different form for the periodic end conditions,
type (4), but similar results are true and the spline can be computed conveniently.

Because the smooth cubic spline depends on al the data, a system of linear equa-
tions must be solved to congtruct it. Often large data sets are to be fit, and if the
solution of the linear equations were anything like as expensive as for a genera sys
tem, the approach would be impractical. Fortunately, the system is very speciad and
it is practica to interpolate data involving thousands of nodes. First the tridiagona
system (3.42)—3.44) must be solved. Since it is not necessary to do row interchanges
in this case, the elimination formulas are very smple. For reinforcement, let us work
through the details.

arcr +Bica =1
Bier + e +Prcz =12

Bn-1cn—1+ ONCN = YN.

To eiminate the first entry in row 2, multiply row 1 byBi/o iand subtract. The re-
maining equations have the same pattern, so a the kth stage multiply row k by the
current B3 /oy and subtract from row k + 1. The agorithm for elimination and modifi-
cation of the right-hand side is

fork=2,3,...,Nbegn

P =B/

oy i= O — p* Pr—1

Yo = Yo — P*Yk—1
end k.
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Back substitution is aso easy:

cN = Y/oN
fork=N-1,N—-2,...,1 begin

k= (Ve = Br* 1)/ 0
end k.

The whole computation costs only 3N — 3 multiplications and 2N — 1 divisions. Once
the ¢ vector is known, vector d can be computed from (3.41), and vector b from (3.40).
The storage required is a small multiple of N rather than the N* needed for a genera
system of equations.

We finish this section by discussing some of the mathematical properties of the
complete cubic interpolator spline S(x). The physical spline used by drafters can be
modeled using the theory of thin beams. In genera, the curvature K(x) of a function
f(x) is

" (x)]
(1+(F(x))?)*/?

and in this theory the expression is linearized to k(x)= |f"(X)]. When (S(X)? << 1,
the quantity fo (5")2dx can be regarded as a measure of the curvature of the spline
S(x). We prove now that in this measure, any smooth interpolating function satisfying
the type (1) end conditions must have a curvature at least as large as that of S(x). This
is sometimes referred to as the minimum curvature property of the complete cubic
spline. The same result is true for the natural cubic spline when the requirement that
the interpolant satisfy the type (1) end conditions is dropped.

K(x) =

Theorem 3.5. If g is any C[x,,xy] function that interpolates f over {xi,
XN} and satisfies the type (1) end conditions, then

[ spax< [T (gh2ax

where S(X) is the complete cubic interpolator spline. The same inequality holds for
g that do not necessarily satisfy the type (1) end conditions when S(x) is the natural
cubic interpolator spline.

Proof First observe that

/x.(” -8\ dt = /(g" / —5")8"dt - /XN(S”)zdt

If it can be shown that the second integral on the right is zero, then

L= [T [T - [T @2

since the integral of a nonnegative function is aways nonnegative, and we are finished.
To establish that the desired integral is zero, note that

/( _§")§"dt = 2/}( — §")s" dr,
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and two integrations by parts give

/X"H(g” —5")s"dt = (¢' - 5')8"

n

X"H—/X"H(gl—sl)smdt
Xn Xn

Ty / (g —8)S@ dr.

Xn

=g~ 58"~ (g- 9"

Since S is a cubic on each [X,,X,y ], it follows that S9=0, so the last integral is zero.

Also, (@ = Sl = (fy - fon ) - (fa - f) = O since both g and S interpolate f.
Thus,

/x,( —§")S" dr = zug )8 lirer = (€ = $)S"Lxa)s

which telescopes to (g — S)S'|x, — (' — S)S'|x;, and the type (1) end conditions
force these terms to vanish. The terms vanish without assuming that g satisfies type
(1) end conditions when S(x) is the natura cubic spline because it satisfies the end
conditions S' (x) = S" (x,) = 0. n

While the minimum curvature property is nearly always desirable, there are cir-
cumstances in which it is a disadvantage. Note that f certainly interpolates itself, so
Theorem 35 implies [f¥(8")?dx < [7¥(f")?dx. In examples where f has very large
curvature, there can be a considerable discrepancy between S and f unless there are
enough knots (data points) in the region of large curvature that S can turn sufficiently
fast. Severa illustrative examples are given in the next section.

Convergence rates analogous to (3.17)-(3.20) for the Hermite cubic spline can be
established in the complete cubic case. However, proofs are more difficult because
S(x) is determined by all the data and it is not possible to treat each subinterval inde-
pendently. The following result is from [1 1].

Theorem 3.6. If fis inC4[x1,xN], and () is the complete cubic interpolatory
spline for f with knots {x <~ '< x\}, then for any x in [X; ,X\]

< 3 8
[£x) = S| < 5 M
1 5
< —_
|f (x) = §'(x)] < 24hM4

£ () =S ()] < §h2M4,
where M, = max | 1) (x)| for x in [xy,xn]

In contrast to polynomid interpolation, S(X) does converge to f(xX) as N— o as
long as h— 0. The first and second derivatives of the spline also converge to the
corresponding derivatives of f. Because of this, the spline inherits the shape of f
when h is small. For example, a a point t where f'(t) > 0O, convergence implies that
for al sufficiently small h, S(t) >0. Accordingly, the smooth spline inherits the
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monotonicity of f for small h, except possibly near the extrema of f. The shape-
preserving spline is required only when the data are so sparse that we must impose
directly the property of monotonicity on the spline. The same argument shows that for
small h, the smooth spline is convex where f is, except possibly near inflection points.

The complete cubic spline will converge when f has fewer than four continuous
derivatives on [ab], just not as fast. Experimentation with a physical spline shows
that the farther a node x is from a given point t, the less the effect of the vaue of f
on St). This is aso true of the mathematical spline, and a careful anaysis, see [16],
of convergence revedls that the rate of convergence at t depends only on how smooth
f(x) is near t. In particular, the convergence rates of the theorem hold on subintervals
of [ab] where f has four continuous derivatives.

In practice, it is usualy impossible to use the conclusions of Theorem 3.6 to esti-
mate errors, given only discrete data, since M, is not available. As was suggested for
polynomia interpolation, it is wise to reserve some data as a check on the approxima
tion. A graph of S can help in making judgments about the quality of the fit.

ROUTINES FOR CUBIC SPLINE INTERPOLATION

Two routines are provided for the calculation of the complete cubic interpolatory spline
S One, SPCOEF in FORTRAN, Spline coeff in C, sets up the tridiagonal system
(3.42)—3.44) for {c}, 1 solves it, and computes {d;} and {b} from (3.41) and (3.40).
This routine should be called only once for a given set of data. The coefficients output
from this routine are then used in the evauation routine, SVALUE in FORTRAN,
Spline-value in C. It is called once for each point t where St) is to be evauated. A
routine to compute the coefficients defining the shape-preserving interpolant is quite
useful. It can be written easily by modifying SPCOEF or Spline _coeff so as to use the
formulas of Section 3.5.2. Proceeding in this way, SVALUE or Spline value can be
used for the evauation of both kinds of spline.

Instead of using the slopes f'(x;) and f(xy) needed for the end conditions of the
complete cubic spline, the routines provided interpolate the four data points nearest
each end with cubits, and the slopes of these approximations are used in (3.43) and
(3.44). As h— 10, the resulting spline converges to the complete cubic spline. In prac-
tice this approximation works well enough if N is not too smal. The approximation
is not plausible for Example 3.8 because there are only eight data points, al of which
are used to approximate the derivatives at the end as well as the function through-
out the interval. When the data are this sparse, the shape-preserving spline is more
appropriate.

A typica cal in FORTRAN is

CALL SPCOEF (N, X, F, B, C, D, FLAG)
and

flag = Spline_coeff(n, x, f, b, c, d);

in the C and C++ versions. The input vectors X and F hold the data points (x,f;)
to be interpolated and N is the number of such points. The output vectors B, C, and
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D contain the coefficients of the cubits. In norma circumstances the output variable
FLAG is set to zero. However, if the input N < 2, then no calculations are performed
and FLAG := - 1. If the entries of X are not correctly ordered (so that some h; < 0),
then FLAG = -2

To evduate the spline the FORTRAN version SVALUE first finds an index i such
that x, <t < x4 and then the ith cubic is evaluated to get St). A typical cal in FOR-
TRAN is

CALL SVALUE (N, X, F, B, C, D, T, INTERV, S, FLAG)
and
flag = Spline_value(n, x, f, b, ¢, d, t, intervd, 9);

in the C++ version. The last two parameters are output, so their addresses must explic-
itly be passed in C:

flag = Spline-vdue(n, x, f, b, ¢, d, t, &interval, &3);

As usud, arrays in the C and C++ versions are indexed starting at O rather than 1 as
is typical of FORTRAN. The parameters N, X, F, B, C, and D have the same meaning
for SPCOEF and Spline_coeff. The last three are input quantities that must have been
set by a prior cal to SPCOEF or Spline_coeff. The variable T holds the point where
the evaluation is to be made and the answer comes back in S. If the index i satisfying
X < T < X4 is known, this can be input using the variable INTERV or interval, as
the case may be. However, it is not necessary to do this since the code will calculate
the correct value and assign it to INTERV or interval. The norma vaue of FLAG (the
return value in the C version) is zero. When N < 2, FLAG is returned with the value
-1 If T < x, then FLAG is set to 1, and the cubic for [xq,X,] isused for S. If T > Xy,
then FLAG is set to 2, and the cubic for [Xy.1, %] iS used for S.

Example 3.10. A sample driver is provided to interpolate sinx over { 0, 0.2, 0.4, 0.6,
0.8 } ; the resulting SX) is then tabulated a { 0.1, 0.3, 0.5, 0.7, 0.9 } to yield the
following.

T = 1.000000000000000E-001
= 35.000000000000000E-001

= 9.984780844446299E-002 FLAG =
= 2.955172204918649E-001 FLAG =
5.000000000000000E-001 4,794156789556284E-001 FLAG =
7.000000000000001E-001 6.442480866255412E-001 FLAG
9.000000000000000E-001 S 1.8308356115227855E-001 FLAG

Note that only one cdl is made to SPCOEF or Spline_coeff even though the spline is
evaluated at five points. Why is FLAG = 2 in the last line? n

S
S
S
S

—
I
[
O O OO

Example 3.11. A graph of the spline Sv) interpolating the 16 indicated data points
from Example 3.6 appears in Figure 3.11. It is a dramatically better approximation
than the polynomial of high degree appearing in Figure 3.2. Vaues of S a some of
the reserved data points are §(0.29) = -2.88, §1.11) = -1.57, §(5) = 5,50, §8.5) =
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10}

-2t

Figure 3.11 S(v) from Example 3.11.

7.41, and §(9.5) = 9.74. They are in good agreement with the actual values. |

Example 3.12. Observed values for the thrust (T) versus time (t) curve of a model

rocket are
t >0.00 >0.05 >0.10 >0.15 >0.20 0.25 >0.30
T 0.0 1.0 5.0 15.0 335 38.0 33.0
t 0.35 >0.40 0.45 >0.50 0.55 >0.60 0.65
T 215 16.5 16.0 16.0 16.0 16.0 16.0
t >0.70 0.75 >0.80 >0.85 >0.90 >0.95 >1.00
T 16.0 16.0 16.0 16.0 6.0 2.0 0.0

The 15 values indicated by (>) were used as data. The resulting complete cubic spline
S(X) is graphed in Figure 3.12. Note that the large curvatures near t = 0.40 and t = 0.85
are difficult to handle. Vaues of S at some reserved data points are S(0.25) = 39.1,
$(0.35) = 23.6, and S(0.65) = 16.1. |

EXERCISES

3.20 Derive equation (3.44) from the end condition f'(x,) = S(x,)-

321 If the end conditions S'(x;) = f(x) and S'(x) = f'(xy) ae used, what egua
tions should replace (3.43) and (3.44)?

3.22 The vapor pressure P of water (in bars) as a function of temperature T (° C ) is
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Figure 3.12 §t) from Example 3.12.
T 0 10 20 30
P(T) 0.006107 0.012277 0.023378 0.042433
T 40 50 60 70
P(T) 0.073774 0.12338 0.19924 0.31166
T 80 90 100
P(T) 0.47364 0.70112 1.01325

Interpolate these data with the cubic spline S(x). It is also known that P(5)=
0.008721, P(45) = 0.095848, and P(95) = 0.84528. How well does S(x) do at
these points?

3.23 The following data give the absorbance of light (A) as a function of wavelength
(1) for vanadyl D-tartrate dimer.

| >3125  >3250 3375 >3500 3625 >3750
A(l) 0.700 0.572 0.400 0.382 0.449 0.560
| 3875  >4000 4125  >4250 4375
Al) 0.769 0.836 0.750 0.530 0.315
| >4500 4625 >4750 4875 >5000
Adl) 0.170 0.144 0.183 0.252 0.350

Use the cubic spline S(x) to interpolate the nine indicated (>) data points. Explore
the effects of scaling and shifting the independent variable (x = wavelength) with
each of the following.

(8) The data as is.

(b) Replace x by x/ 1000 for al inputs.

(c) Replace x by (x — 4000)/ 1000 for al inputs.

For each case evaduate S(x) at the remaining noninterpolated wavelengths. How
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well do these values compare with the known absorbances? Does shifting and/or
scaling affect the accuracy of S(x)?

Repeat Exercise 3.23 except use Py(x) instead of §X). Use the method suggested
in Exercise 3.4. What effect does the scaling have on COND?

The absorption of sound (at 20°C, 40% humidity) as a function of frequency, f, is
f >20 > 40 63 > 100 200
A(f) 0.008 0.030 0.070 0.151 0.359
f > 400 800 > 1250 2000 > 4000
A(f) 0.592 0.935 1.477 2.870 9.618
f 10,000 >16,000 >40,000 > 80,000
A(f) 53.478 122.278 429.310 850.536

Use the cubic spline §(X) to interpolate the nine indicated (>) points in the fol-
lowing two ways.

(@ The data as is.

(b) log f versus logA(f)

Which seems to be better?

The following table gives values for a property of titanium as a function of tem-
perature T,
T 605 645 685 725 765 795 825
C(T) 0.622 0.639 0.655 0.668 0.679 0.694 0.730
T 845 855 865 875 885 895 905
c(T) 0.812  0.907 1.044 1.336 1.881 2.169  2.075
T 915 925 935 955 975 1015 1065
C(T) 1.598 1.211 0916 0.672 0.615 0.603 0.601

Compute and plot the cubic spline S(T) for these data (use about 15 interpolating
points). How well does it do?

In performing potentiometric titrations one obtains a potential difference curve
plotted against volume of titrant added. The following table gives the measure-
ments for the potentiometric titration of Fe** solution with 0.1095N Ce* solu-
tion using platinum and calomel electrodes.

Added sol. (ml) 1.0 5.0 10.0 150 200 21.0 22.0
E (mV) 373 415 438 459 491 503 523
Added sol. (ml) | 22.5 226 227 228 229 23.0 231
E (mV) 543 550 557 565 575 590 620
Added sol. (ml) | 23.2 233 234 235 240 26.0 30.0
E (mV) 860 915 944 958 986 1067 1125

Compute the cubic spline S(x) for these data (use about 15 interpolating points).
Graph S(x) or x in [20, 24]. How well does it behave? The physical problem has
exactly one inflection point. Is this true for x)?

The potential energy of two or more interacting molecules is caled van der Waal’s
interaction energy. A theoretical calculation for two interacting helium atoms has
the set of energies V(r) for various values of the internuclear distance r given
below. The energy exhibits repulsion (V > 0) for small r and attraction (V < 0)
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for larger values of r.

r (bohrs) 4.6 4.8 5.0 5.1 5.2

V(r) 32.11 9.00 -3.52 =7.11 -9.22

r 53 5.4 5.5 5.6 5.7

V(r) -10.74 -11.57 —-11.95 -12.00 -11.73

r 5.8 5.9 6.0 6.5 7.0

V(r) -11.23 —-10.71 -10.13 - -7.15 —-4.77
r 75 8.0 9.0 10.0
V(r) -3.17 -2.14 —-1.03 -0.54

Compute the cubic spline §x) using about 12 interpolating points. How well does
it work?

Modify the routine SVALUE or Spline value to return S(x) and S’ (x) as well as
S(x).

3.30 In [5] a method is given for deducing the diffusion coefficient D for chloroform in

331

3.32

3.33

3.34

polystyrene from uptake measurements. Using several assumptions, they arrive at
the quantity

~ 1 G
D(CO):E(;/O D(C)dC,

which can be measured for a number of C, vaues. A differentiation with respect
to C, gives an expression for D in terms of the quantity

d ~

— [CoD(Cy) | -

dcC, [CO ( 0)]

Using the data

Co 5.0 7.5 9.9 12.9
D(Cp) | 0.0240 0.0437 0.0797 0.1710
Co 13.2 15.1 16.3 16.8
D(Cp) | 0.1990 0.3260  0.8460  0.9720

approximate D for each C, value by differentiating the appropriate spline fit.
Show that the cubic spline (x) has a critical point zin [X,,X,.1], that is, S(2) = 0,
if and only if the following are true:

(i)  z=xy+(—cnt /i —3bnd,)/(3dp)

() x <z

(i) 2 < X1
Why is it not sufficient merely to use (i) and the test b,b,,q; = S(X,)S (X+1) < 0?

Show that the cubic spline S(x) has an inflection point z in (X,,X,+1), that is,
S’(2 =0, if and only if ¢,cx1 < 0, in which case z = x, - ¢,/(3dn).

Use the formula in Exercise 3.31 to find al loca minima for the data in Exer-
cise 3.23.

Use the formula in Exercise 3.31 to find the local maximum (near T = 905) for
the data in Exercise 3.26.
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Figure 3.13 Scattered data in the plane.

3.35 For the data in Exercise 3.28 the global minimum at r = r, corresponds to stable
equilibrium (V' = 0). There is aso an inflection point (where V" = 0) at r = r;.
What does S(X) yidd for r, and r;? Are the answers reasonable?

3.36 Use the formulas in Exercises 3.31 and 3.32 to find the loca maximum (near
v = 4.5) and al inflection points for the data in Example 3.5.

3.6 INTERPOLATION IN THE PLANE

In this section a few of the ideas involved in interpolating functions of several variables
are taken up. Although the ideas of the case of one variable generalize, there are new
difficulties arising from geometrica considerations. To be specific, only the case of
two independent variables will be considered.

Suppose we have values f; given at distinct points p; fori = 1,.. ., Nin aregion
in the x-y plane (see Figure 3.13), and we seek a polynomia in the two variables x and
y that interpolates the data. This is easily accomplished in a way similar to Lagrangian
interpolation. If p = (x,y) is a genera point in €, an interpolating polynomia is given

by

N N
Q(x,y) = Y, fii(p) = 2, fidi(x,y)
i=1 i=1
provided that

or)={5 iz
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and each f; is a polynomial in x and y. It is easy to verify that

A e A
hiey) = g {(xi_x;)2+(yi_;j)2:| = b,

J#i

satisfies the requirements. Thus, it is easy to construct a polynomial in two variables,

M
Qx,y)= Y, amx™",

m,n=0

which interpolates given values at any set of distinct points in the plane.

The interpolating polynomial given is not closely analogous to that for one vari-
able because the degree is much higher than the number of nodes. Unfortunately, the
facts are simply different when there is more than one independent variable. This can
be seen by considering a general quadratic polynomial in two variables (X, y):

P(X,y) = 8 + X + ay + agX’ + axy + asy’.
There are six parameters a. The analog of the result for one variable would be that
there is a unique polynomial interpolating at six distinct points (xi,yi) in the plane. For
each node the interpolation condition is

fi = P(xi,yi) = ag + arx; + agy; + asx? + asxiyi + asy?.

Interpolation at six nodes provides six linear equations for the six parameters. Suppose
that five of the nodes are {(0,0),(1,0),(0,-1),(-1,0),(0,1)} and the sixth is (a,b).
In the equation corresponding to each of the first five nodes, the coefficient of a, is
zero. It is also zero in the sixth equation if a = 0 or if b = 0. For any node ( a,b)
of this kind, the system amounts to six eguations in only five unknowns. The system
may or may not have a solution, but if there is a solution, it cannot be unique because
a, can have any vaue. In severa dimensions the placement of the nodes has a role in
questions of existence and uniqueness that we did not see in one dimension.

If we had a choice about the points of interpolation, we might like to work on a
rectangular grid. By this is meant there are , x-coordinates, x; < X, < -+ < X, and
m y-coordinates, y; <y, < -+ <y, and the n x m points of interpolation consist of
the pairs (x;,y;) for 1 <i <n, 1 <j < m; see Figure 3.14. In this special, but quite
useful, case, the fundamental polynomials or shape functions are easily constructed
from the functions in one variable. Recalling (3.3), let

1 X — X

Li(x) = =1,...
() k:l-xi_'xk’l et

ki

m
Y=Yk .
Ly)=1|——,j=1,....m
=11 Yji=Yk
k]
Then an interpolant Q(x,y) such that

Q(xiayj) =ft]a 1 SIS n, 1 S. J Sma (345)
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(x1,y5) (x4.y5)

(x1,¥1) (X4,¥1)

Figure 3.14 Data on a rectangular grid (n = 4, m = 5).

is given by
0xy) =Y ZL,(x ) fij- (3.46)
i=1j=1
If Q(xy) is multiplied out, it clearly has the form
n m
)= 2, 2 axx’y. (3.47)
s=01=0

We now show that the coefficients ay are uniquely determined by the interpolation
conditions (3.45). Choose any i with 1 <i < n and consider the polynomia in the one
variable y:

Q(xi,y) = 2 (2 astxs>

t=0 \s=0
We know that there is exactly one polynomial

m

2 bit)"

=0
that interpolates the values f; at y; for j = 1,. . ., m. Because Q(x,y) does this, it must
be that

n
by =Y agx} for t=0,...,m.
s=0
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This eguation holds for each i. Now choose at with O <t < m. There is exactly one

polynomial
n
R(x) = 2 cux’
s=0
such that
R(xi) = by fori=1...,n
Because the polynomial
n
Zas,xy
s=0

does this, it must be the case that cg = a4 for 0 < s< nand for any 0 <t < m. Thus the
coefficients aq are uniquely determined by the interpolation coefficients as we wanted
to show.

As a simple example, let us consider interpolation at the four comers of a rectan-

gle: (x,y) (X.¥2), (X2,¥1) (X2,¥2)-

X=X X —X]
L = , =
1(x) X —x (x) P
y—y2 y—Ji
0y) =222, h(y) = —=
yY1—y2 Y2—)1

xX—X2 y—x2 X=X YN
w(E2)(2) o
)= fu <x1*x2) ()’1"Y2) 2 X1 —X2 Y2—X1
X— X1 Y—»n o y=—Nn
+ + .
P (Xz—xl) ()’1 —)’2) fz (xz —xl) ()’2 —)’1)
Figure 3.15 displays a typical interpolant for n =4 and m = 3.
Interpolants constructed in this way are called tensor product interpolants. The

example (3.48) is said to be a bilinear interpolant over a rectangle because it has the
form

ago + &oX + Aoy + Ag1XY, (3.49)

that is, it is linear in each variable when the other is held fixed. The genera first degree
polynomial has the form (3.49) with a;; = 0. A biquadratic has the form

ago + ajox+agry + azxx” +apxy+ a2y + ag1 X2y + anx*y? +apxy?,

while the genera second degree polynomia has here a,; = a,, = a;;, = 0. Genera-
izations to bicubic versus cubic and higher degrees should be clear.

In studying how well a function of two variables is approximated by a particular
kind of interpolating polynomial, a critical matter is the highest degree for which the
approximation is exact. For example, in the rectangle of Figure 3.16, we can inter-
polate at the nine indicated points using a biquadratic. However, it is exact only for
second degree polynomials in spite of the presence of the higher degree terms X%y, yx,
and XA, In fact only six interpolating points are needed to construct a quadratic inter-
polating polynomia that is exact to second degree. It is not at al clear how to choose
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Figure 3.15 A typicd bilinear interpolating function.

the six points symmetrically from the rectangular grid. Because of this, biquadratics
or bicubics are generally used for interpolation on rectangular grids.

Just as in the case of one variable, piecewise polynomial interpolation may provide
more satisfactory interpolants than a polynomid interpolant over the whole region. If
the region can be broken up into rectangles, tensor product interpolants can be used
on each piece. In the case of one variable, two pieces connect at a single point, but
in the plane they connect dong a line, and more than one piece can touch a a point.
In contrast to the ease with which the polynomial pieces could be connected smoothly
in the case of one variable, it is hard to get much smoothness where polynomias in
severa variables are joined.

[ ° *
® ° ®
® - °

Figure 3.16 Interpolation points for biquadratics.
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h 4

Figure 3.17 Two triangulations for the datain Figure 3.13.

In piecewise polynomia interpolation the idea is to work with regions for which
interpolants are readily constructed and to decompose the region of interest into re-
gions of this kind. A popular alternative to rectangles is triangles. For example, one
might triangulate the region of Figure 3.13 in the two ways sketched in Figure 3.17. As
arule it is best to avoid the “skinny” triangles of the second possibility, and routines
for triangulating regions generally try to avoid nearly degenerate triangles. It is not
hard to write down the shape functions for linear interpolation on the genera triangle
of Figure 3.18. They are

01(x,y) = %[(xz)@ = x3y2) + (y2 = y3)x+ (33 — x2)y]
02(5) = 5 [(xa1 = 1) + (3 = 30)a (31 = 3))

d3(xy) = '2-;7[061)'2 —x31) + (1 —y2)x+ (x2 —x1)y),
where

2A = xpy3 +X1y2 +X3y1 — Y1X2 — Y2X3 — ¥3X1,

and A is the area of the triangle. Then the linear function that has given values a the
comers

f, given a (x.y;), i = 1,2,3,

0(x,y) = fi01(x%,y) + 202(x,¥) + f393(x, ).
Note that on this triangle Q has the form
Q(xy) = a+ bx + cy (3.50)

for some @, b, and c. See Figure 3.19 for an illustration of piecewise linear interpolation
on a triangular grid.
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(x3.y3)

(x2,y2)

(x1,y1)

Figure 3.18 A generdl triangle.

Figure 3.19 Linear interpolation on atriangular grid.

In finite element analysis one tries to determine a piecewise polynomial approx-
imation to the solution of an ordinary or partial differential equation. Polynomial
approximations over subregions prove to be very convenient in computation. Also,
representing solutions in the Lagrangian, or nodal, form

Zfi(bi(xvy)

is convenient because the f; are approximate solution values at the nodes (x;,y;). One
difficulty is that rectangles or triangles are too restrictive. A way to accommodate
subregions with curved sides is to transform the region to a “standard,” “reference,”
or “master” region. For example, we might choose to work with a standard triangle
such as the one given in Figure 3.20. Suppose we want to represent a function f (x,y)
on aregion . If it is known how to map the region onto the standard triangle, then
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(x3.¥3)

(x2,y2)
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Figure 3.20 Mapping from the standard triangle.

interpolation can be done. Let T be a mapping such that

. x=x(§n)
T y:)’(é’ﬂ)»

and as (&) ranges over the standard triangle, the values (xy) range over £2. Then
f(x,y) for (xy) in Q has

fxy) = f(x(En), y(&m)) = F(E),

and we can simply interpolate f rover the triangle. Of course, the mapping must be a
proper one, meaning that as (§,m) ranges over the triangle, the (xy) cover al of Q,
and there is no overlap [different (§,m) go into different (x,y)]. A nice idea used for
finite elements is to construct the mapping by interpolation, too. As an example, let us
construct the mapping from the standard triangle to the general triangle of Figure 3.20.
The shape functions for the standard triangle are obviously

01(&m) =§
¢2(§an) =n
¢3(§ﬂ1) =1 —ﬁ—ﬂ

when we let

node 1 be (1,0)
node 2 be (0,1)
node 3 be (0,0)

because, for example,

¢1(1,0) =1, ¢1(0a 1) =0,¢ (030) =0.
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Interpolating x we have

x=x101(&M) +x202(E,M) +x303(§,M)
=xn§+xn+x(l1-§-n)

and, similarly,

y=y&+ym+y3(1-&—n).

In this particular case the mapping carries straight lines into straight lines and there
is no difficulty about a proper mapping. If higher degree interpolation were used, the
triangle would be mapped into a region with curved sides. Roughly speaking, if the
region is not too different from a triangle, the mapping will be proper. Continuing
with the example, suppose we interpolate the f; by the same basis functions used to
construct the mapping. The interpolant Q(x,y) is

Q(x(gan)a))(gan)) = f1¢1 (&ﬂl) +f2¢2(§,71) +f3¢3(§an)
= fif+fn+f(1-E-m).

If wewereto solvetherelation  x(&,m),y(§,m) to get theinverse mapping

—1. §=&(xy)
d 1. T]=11(xay)

and eiminate & and h in this interpolant, we would get the expression earlier for the
bilinear interpolant. This seems a complicated way to get a simple result. The virtue of
the procedure is that interpolation is done on regions with curved boundaries by trans-
forming them to a simple, standard region for which interpolation is comparatively
easy. In finite element computations it is found that the process is easily programmed
and very powerful. All we aim to do here is sketch the process. For details the reader
may consult one of the great many books devoted to finite elements. The books span a
great range of mathematical sophistication; a good introduction is [1].

EXERCISES

3.37 The formula (3.48) could be called a Lagrange form 3.38 Show that Q(x,y), which is a quadratic polynomial in

of the bilinear interpolating polynomial; consider the
“Newton form”
O(x,y) = a+b(x—x1)+c(y—y1)+d(x—x1)(y—yi)-

Solve for a, b, ¢, and d so that Q interpolates a
function f(x,y) a the four corners. As in (3.48) let

fij = f(xi,y)-

x and y [generalizing (3.50)], has six coefficients. On a
triangle, its interpolating points are usualy chosen to
be the three triangle vertices and the three edge mid-
points. For the triangle with vertices (0,0), (1,0), and
(0,) compute the shape function that is one at (0,0)
and zero at the remaining five interpolating points.
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3.7 CASE STUDY 3

This case study has two parts, one applying continuous splines and the other, smooth
splines. Integrals of the form

/a ’ f(x)cos(x)dx and / ? F(x) sin(cn) dox

with finite a and b are called finite Fourier integrals. For large w such integrals present
specia difficulties for numerical methods because of the rapid oscillation of the inte-
grand. Filon's method [8] for approximating finite Fourier integrals will be developed
here by means of a continuous spline. Accurate evaluation of the coefficients of the
method was discussed in Chapter 1. Other aspects of the task will be discussed in
Chapter 5. The second part of the case study takes up the use of smooth splines for
fitting data with curves instead of functions.

Broadly speaking, Filon approximates finite Fourier integrals in a manner like that
used in Chapter 5 for integrals of the form

[/ st ax

when w(x) presents some difficulty. Namely, first approximate f(x) with a convenient
function §x) and then compute anayticaly

/abS(x)w(x) dx

as an approximation to the desired integral. In detail there are important differences
because here the weight function w(x) does not have one sign and oscillates rapidly
for large frequencies w. Also, the approach of Chapter 5 would apply to particular
w, and we would like a method that can be applied conveniently for any w. Insight
is provided by a classic technique of applied mathematics for approximating Fourier
integrals when w is “large.” If derivatives of f(x) are available, asymptotic approxi-
mations can be obtained by means of integration by parts. For example, integrating by
parts twice gives

/ab f(x)cos(ax)dx = %[f(b) sin(wb) — f(a) sin(®a)]+ R(w),

1 b
R(®) = ~— [/'(b) cos(wb) - f'(a) cos(0a)] + — / £ (x) cos(ex) dx.
a
If M; is a bound on the magnitude of f'(x), then
IR(K)| < 072 (24 (b—a)) M1,
that is, R(w) is O(w %) as @ — oo. . Accordingly, the asymptotic approximation

/abf(x) cos(wx)dx ~ %[f(b) sin(wb) — f(a) sin{wa)]
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is accurate to O(w?). However, the integral itself ordinarily goes to zero like w'!,
so the relative error is ordinarily only O(w™). The situation is typica of classica
asymptotic approximation of integrals. The bigger w is, the better the asymptotic ap-
proximation and the more difficult the integra is for conventional numerica methods.
On the other hand, for a given w, the asymptotic approximation may not be sufficiently
accurate and there is no easy way to improve it. When w is “small,” finite Fourier inte-
gras are easy for conventional numerical methods, and when w is “large,” asymptotic
approximations are satisfactory. Filon's method provides a way to compute accurate
integrals when w is of moderate size.

Filon dividesthe interval [a,b] into 2N subintervals of equal length h. Let us define
X =a+ jhforj=0,...,2N. The function f(x) is approximated by a continuous spline
SX) that is a quadratic polynomia on each [X,.,,Xm+ 2] defined there by interpolation
to f(x) for j = 2m, 2m + 1,2m + 2. Each of the integrals in the approximation

/bf(x)cos(mx)dxm/b S(x)cos(x)dx = Z/xz(mm (x) cos(ex) dx

m=0
can be evauated analytically by integration by parts. A lengthy calculation results in
Filon's method:

[ 766 cos(ox) e Al 7(6)sinw8) = 1(a) sin() + BCo 1G]
Here g = wh and
= (8% +6sin(8) cos(6) — 2sin’(6) ) /67
B=2(8(1+cos?(8)) —2sin(6)cos(e) ) /6
Y= 4(sin(8) — Bcos(0)) /6°.

Also,
N-1
C.=0.5f(a)cos(wa) + Y, f(xom)cos(@xzy) +0.5f(b) cos(wb)
m=1
N—-1
Co=Y, f(xam1)cos(@xzmi1).
m=0

There is a similar approximation when cosine is replaced by sine. The formula is

/abf(x) sin(@x) dx = h[—o (f(b) cos(®b) — f(a) cos(wa)) + BS, + 1S, -

The coefficients a, b, g are the same, and S, and S, are like C, and C, with the cosines
replaced by sines.
Using the results developed in this chapter for the error of interpolation, it is easy
to bound the error of Filon's method. On each subinterval [Xom,Xoms2], S(X) is a
guadratic interpolant to f(x). If M3 is a bound on the third derivative of f(x) on
al of [a,b], we found that
M;3(2n)3 4

1£(x) = S(x) | < =7 = 3 M’
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uniformly for a < x < h. Then

b b
/af(x)cos(a)x)dx—/ S(x)cos(wx)dx

a

< [ 170 =5 e < 2o i,

This is a bound on the absolute error that depends on f(x) and the sampling interva
h, but not on w. If we want a meaningful result for “large” w, we have to take into
accouqt tpam the integral is O(W"). This leads to a bound on the relative error that is
0o(g~h").

In a subsection of Chapter 5 about applying a general-purpose code to problems
with oscillatory integrands, the example

/T‘ sin(20x) d
X
0o 1+x2

is discussed. The function f(x) = 1/(1 + x°) ought to be approximated well by a
quadratic interpolatory spline with a relatively crude mesh, so Filon’s method ought
to be quite effective. A matter not usualy discussed with Filon's method is how to
estimate the accuracy of the result. One way to proceed is to compute a result that we
believe to be more accurate and estimate the error of the less accurate result by com-
parison. If the accuracy is acceptable, often the more accurate result is the one taken as
the answer. Inspection of the formulas shows that if h, or equivaently g, is halved, we
can reuse al the evduations of f, sin(x), and cos(x) made in the first approximation
to keep down the cost. According to the bounds, the error should be reduced enough
by halving h to get a good estimate of the error by comparison. Using Filon's method
with g = 0.4, we obtained an approximate integral of 0.04566373122996. Halving q
resulted in the approximation 0.04566373690838. Estimating the accuracy by com-
parison suggests that we have an answer with an error smaller than 6 x 10°. Reuse
of the function evauations by virtue of halving q holds the cost to 315 evaluations
of the integrand. The quadrature code Adapt developed in Chapter 5 asks the user
to specify the accuracy desired. Using the code in the manner outlined in that chap-
ter and experimenting some with the error tolerances, we obtained an approximation
0.04566373866324 with an estimated error of about -1.6 x 10°. This cost 1022
evaluations of the integrand.

Let us now change the subject from applying a continuous spline to applying a
smooth spline. In this chapter we have been looking at the approximation of functions
y = f(x), but sometimes we want to approximate curves. This will be discussed in
the plane for it will then be clear how to deal with a curve in three dimensions. The
basic idea is to use a parametric representation (x(s),y(s)) for the curve and approx-
imate independently the coordinate functions x(s) and y(s). The parameter s can be
anything, but often in the theory it is taken to be arc length. Having chosen somehow
nodes s, i =1,..., N, we can interpolate the data x; = x(5) by a spline S(s) and like-
wise the data y; = y(s) by a spline §(s). The curve (x(s),y(s)) is then approximated
by (S(9),S(s)). This yields a curve in the plane that passes through al the points
(X(5),¥(s)) in order. It is natural to use the smooth cubic spline of SPCOEF because
it leads to a curve with continuous curvature, but if the data are sparse, we might have
to resort to the shape-preserving spline to get a curve of the expected shape. All these
computations are familiar except for the selection of the nodes s. One way to proceed
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Figure 3.21 Curvefit for a sewing machine pattern.

is to choose them so that the parameter s approximates the arc length of the curve.
This is done by taking s, = 0 and defining the difference between s and s, as the
distance between the points (x,,y;) and (X;1,Yi+), hamely

Sit1=Si+ \/(xi+l — %)%+ (yiy1 —i)%

Exercise 3.39 suggests an aternative. See Farin [6] for many other approaches.

An interesting example of the technique is furnished by a need to approximate
curves for automatic control of sewing machines. Arc length is the natural parameter
because a constant increment in arc length corresponds to a constant stitch length.
An example taken from [18] fits the data (2.5, -2.5), (3.5, -0.5), (5, 2), (7.5, 4),
(9.5, 45), (11.8, 3.5), (13, 0.5), (11.5, -2), (9, -3), (6, -3.3), (2.5, -2.5), (0, 0),
(-15, 2), (-3, 5), (-35, 9), (-2, 11), (0, 11.5), (2, 11), (35, 9), (3, 5), (1.5, 2,
(0, 0), (-2.5, -2.5), (-6, -3.3), (-9, -3), (-11.5, -2), (-13, 0.5), (-11.8, 3.5),
(-9.5, 4.5), (-7.5, 4), (-5, 2), (-35, -0.5), (-2.5, -2.5). The resulting spline curve
is seen in Figure 3.21. |
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3.39 As mentioned in the case study, there are other ways to select the nodes when
fitting data with curves. A simple one is
t;=0
G =6+ X - X+ Y - Wi L <0 <N
Using this scheme and SPCOEF or Spline_coeff, fit the data
1.00 0.34 -0.59 -0.58 0.04 0.38

0.00 0.88 054 -029 -0.51 —0.11

019 -0.13 -020 -0.03 0.12
0.25 022 -0.04 —0.17 -0.08

~ o= x
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Using SVALUE or Spline value, evauate at sufficiently many points to sketch a
smooth curve in the xy plane.

3.40 Find a technique that gives a good fit to the modd rocket data from Example 3.11.
Interpolate the indicated (>) data and avoid undesirable oscillations.

3.41 Implement the shape-preserving cubic spline described in Section 3.5. Test it out
on some of the data sets from this chapter, for example, Exercises 3.22, 3.25,
and 3.27. Sketch the graph of H(X). Also try it on the nonmonotone data in
Example 3.11, Exercise 3.26, and Exercise 3.28. How well does it do?

3.42 Implement the bilinear interpolating function Q(x,y) given in (3.48). Test it on
severa different functions and severa different grids.

3.43 Implement the linear interpolating function Q(ny) given in (3.50). Test it on
severa different functions and severa different triangulations.
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ROOTS OF NONLINEAR EQUATIONS

Finding solutions of a system of nonlinear equations

fx) =0 4.1
is a computational task that occurs frequently both on its own and as a part of a more
complicated problem. Most of this chapter is devoted to the case of a continuous rea
function f(x) of a single rea variable x because it is important and can be discussed
in elementary terms. The general case of n nonlinear equations in n unknowns is
much more difficult both in theory and practice. Although the theory is too involved
to be developed here, some of the basic methods are discussed briefly at the end of the
chapter.

A root of (4l), or a zero of f(x), is a number a such that f(a) = 0. A root is
described more fully by its multiplicity m. This means that for x near a, f(x) can be
written in the form

f) = (x - a)"g(x) (4.2)
where g(x) is continuous near a and g(a) # 0. If m =1, the root is said to be simple
and otherwise, multiple. The basic definition permits m to be a fraction. For example,
with the function

f(x)=xvx——l,

equation (4.1) has a = 1 as a root of multiplicity 1/2 (and a = 0 as a simple root).
However, if f(x) is sufficiently smooth, then m must be a positive integer. Indeed, if
f(X) has its first m derivatives continuous on an interval that includes a and

flo)=0
fllo)=f'(o) == fm=D(a)=0 4.3)
Fm (a) #0,

then a is a root of multiplicity m. This is seen by expanding f(x) in a Taylor series
about a to obtain

2
1) = @)+ (- 0) (o) + E 20 @)
_ y\m—1 x— o)™
4o %f(m—l)(a) + L%f(m) (&),
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where &, lies between x and a. Using (4.3), this simplifies to

7= E ey, @4

If we take g(x) =f(&,)/m!, then g(@) = £ (a)/m! # 0. We shall always as-
sume that f(x) is sufficiently smooth near a that we can use (4.4) instead of the basic
definition (4.2) and in particular, that roots are of integer multiplicity.

According to the definition of a root a, the graph of f(x) touches the x axis a a
(Figure 4.1). For a root of multiplicity m, the function £ (X) does not change sign
near a because it is continuous and f™ (a)# 0. This observation and the expression
(4.4) show that if m is even, f(X) is tangent to the x axis a a but does not cross there
and that if mis odd, f(x) crosses the axis a a

A family of problems taken up in Case Study 4 has the form 0 = f(X) = F(X) - g
for a parameter g > 0. Specifically, F(X) = xexp(-x) and a representative value of g
is 0.07. Curve sketching as in an introductory calculus course is often used to locate
roots and determine their multiplicity. For this family, as x — —co, f(x) — —oo,and as
x — oo, f(x) = —7. It is seen from the first derivative, f'(x) = (1 - x)exp(-x), that
f is grictly increasing for x < 1 and strictly decreasing for x > 1. At the extremum,
f(1) = e - g is positive for g = 0.07. Also, f(0) = - g is negative. These facts
and the continuity of f tell us that when g = 0.07, there are exactly two roots that
are smple, One is in (0,]) and the other is greater than 1. In genera, for a root of
f(x) to be multiple, f'(x) must vanish at the root. So, wherever the function is strictly
increasing or strictly decreasing, any root it might have must be simple. For the family
of functions, the fact that f(x) = O only a x = 1 means that this is the only point
where the function might have a multiple root. It is easily seen that there is a multiple
root only when g = e' and the root then is of multi plicity 2 (a double root).

An approximate root z that results in a computed value f(zZ) = 0 is not unusua,
especialy when it approximates a multiple root a. After al, the aim is to find a z that
makes f(z) vanish. When the root is of multiplicity m, f(2) ~ (z - a)"g(a). Some
numbers will help us to understand this. For a root of high multiplicity like m = 10, an
approximation of modest accuracy like z = a + 10 leads to f(2) = 10%g(a). Then
if Jg(a)] < 1, the function f(z) underflows in IEEE single precision arithmetic.

As we shall see, standard methods are not as effective for multiple roots as they
are for simple roots. To understand the performance of codes based on these methods,
it is necessary to appreciate that roots that are close together “look” like multiple roots.
Suppose that f(X) has the two simple roots a, # a,. The basic definition and a little
argument show that f(x) = (x - a;) (x - a,)G(x) for a G(x) that does not vanish at
either root. This expression can be rewritten as

f(x) = (x— o) [(x—0ty) = (02 — 1) ] G(x) .

For x far from the roots in the sense that [x - a4, >> |a, - a,|, the pair of simple roots
“looks” like a double root because

fx) & (x = 01)G(x).
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Figure 4.1 f(x) = tanx for 0 < x < 10.

A concept from the theory of complex variables related to that of a root of multi-
plicity m is a pole of multiplicity m. If we can write

F(x) = (x - 0)™"G(x),

where G(a) # 0, then we say that a is a pole of F(X) of multiplicity m. It is easy to
see that if a is aroot of f(x) of multiplicity m, then it is a pole of F(x) = I/f(x) of
the same multiplicity, and vice versa. A familiar example is tan(x) = sin(x)/cos(x),
plotted in Figure 4.1. This function has a root where sin(x) vanishes and a pole where
cos(x) vanishes. Functions change sign at poles of odd multiplicity, just as they do at
roots of odd multiplicity.

One difficulty in computing a root of f(x) = O is deciding when an approximation
z is good enough. The residual f(z) seems an obvious way to assess the qudity of an
approximate root. MATHCAD does exactly this. It accepts z as a root when |f(2)| <
TOL, with TOL = 10 by default. The trouble with a residual test is that there is
no obvious measure of scale. Multiple roots present difficulties because the function
is nearly flat in a considerable interval about the root. The issue is related to the
conditioning of a root, but also to the way we set up the equation.

When we formulate a problem, we select a scaling. This may be no more than
choosing a system of units, but often we use the fact that any zero of f(x) is a zero of
F(X) = g(¥) f(x). Introducing a scaling g(x) can make quite a difference. For instance,
the two problems sin(x) = 0 and F(x) = 10%® sin(x) = 0 are mathematically equiva-
lent, but the second is badly scaled because forming F(2) for even a moderately good
approximate root z will result in underflow in single precision IEEE arithmetic. Often
we scale problems without giving any specia thought to the matter, but a good scae
can be quite helpful. It is quite a useful device for dealing with real or apparent singu-
larities. The function f(x) = sin(x)/x is perfectly well behaved at x = 0 (it is anaytic),
but it has an apparent singularity there and some care is needed in its evaluation. This
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Y

a root of even multiplicity

N

a root of odd muiltiplicity

Figure 4.2 Graphicd interpretation of roots.

can be circumvented by calculating the roots of the scaled function F(X) = xf (X). It
must be kept in mind that as with this example, F(X) has all the roots of f(x), but it
might pick up additional roots from g(x). A more substantial example is furnished by
an equation to be solved in an exercise:

1 1 —cos(n/10) sin(x)
%_<cos(n/10)—cos(x)> x

This function has a simple pole a al the points where cos(x) = cos(p/10) and an
apparent singularity at x = 0. Scaling this function with g(X) = x(cos(n/10) — cos(x))
makes computing the roots more straightforward.

Sometimes a natural measure of scale is supplied by a coefficient in the equation.
An example is provided by the family of problems f(x) = F(X) - g with g > 0. Just
as when solving linear equations, the residua r = f(2) = F(2 - g can be used in a
backward error analysis. Obvioudly z is the exact solution of the problem 0 = F(X) - g,
where g =g+ r. If |r] is small compared to |g|, then z is the exact solution of a problem
close to the given problem. For such problems we have a reasonable way to specify
how small the residual ought to be.

flx)=

41 BISECTION, NEWTON'SMETHOD, AND THE SECANT RULE

If a continuous function f(x) has opposite signs at points X = B and x = C, then it has
a least one zero in the interval with endpoints B and C. The method of hisection (or
binary search) is based on this fact. If f(B) f (C) < 0, the function f(x) is evaluated
a the midpoint M = (B + C)/2 of the interva. If f(M) = 0, a zero has been found.
Otherwise, either f(B) f (M) < 0 or f(M) f (C) < 0. In the first case there is at least
one zero between M and B, as in Figure 4.2, and in the second case there is at least one
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zero between C and M. In this way an interval containing a root is found that has half
the length of the origina interval. The procedure is repeated until a root is located to
whatever accuracy is desired.

In agorithmic form we have the

bisection method:
until |B - C| is sufficiently small or f(M) = 0 begin
M = (B + C)/2
if f(B)f(M) < O then
C:=M
else
B:=M
end until.

Example 4.1. When f(X) = * - 2, the equation (4.1) has the simple root o = V2.
For B =0, C = 6, the hisection method produces [note: 0.16 (+01) means 0.16 x 10|

B C [o.—M]
0.0 6.0 0.16(+01)
0.0 3.0 0.86(—01)
0.0 1.5 0.66(+00)
0.75 1.5 0.29(+00)

1.125 1.5 0.10(+00)
1.3125 1.5 0.80(~02)
1.40625 1.5 0.39(—01)

1.40625  1.453125  0.15(-01)

Note the erratic behavior of the error, although the interval width |B - C| is halved at
each step. n

Bisection is often presented in programming books in this manner because it is a
numerica algorithm that is both smple and useful. A more penetrating study of the
method will make some points important to understanding many methods for comput-
ing zeros, points that we require as we develop an algorithm that attempts to get the
best from severa methods.

An interval [B,C] with f(B) f(C) < 0 is called a bracket. A graphical interpretation
tells us somewhat more than just that f(x) has a root in the interval. Zeros of even
multiplicity between B and C do not cause a sign change and zeros of odd multiplicity
do. If there were an even number of zeros of odd multiplicity between B and C, the
sign changes would cancel out and f would have the same sign at both ends. Thus, if
f(B) f(C) < 0, there must be an odd number of zeros of odd multiplicity and possibly
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some zeros of even multiplicity between B and C. If we agree to count the number of
zeros according to their multiplicity (i.e, a zero of multiplicity m counts as m zeros),
then we see that there are an odd number of zeros between B and C.

A careful implementation of bisection takes into account a number of matters
raised in Chapter 1. There is a test for values off that are exactly zero; the test for a
change of sign is not programmed as a test of f(B) f(C) < O because of the potential
for underflow of the product; and the midpoint is computed as M = B + (B - C)/2
because it is just as easy to compute and more accurate than M = (B + C)/2.

We often try to find an approximate root z for which f(2) is as small as possible.
In attempting this, the finite word length of the computer must be taken into account
and so must the details of the procedure for evaluating f. Eventually even the sign
of the computed value may be incorrect. This is what is meant by limiting precision.
Figure 1.2 shows the erratic size and sign of function values when the values are so
smal that the discrete nature of the floating point number system becomes important.
If a computed function value has the wrong sign because the argument is very close
to a root, it may happen that the bracket selected in bisection does not contain a root.
Even so, the approximations computed thereafter will stay in the neighborhood of the
root. It is usualy said that a bisection code will produce an interval [B,C] of specified
length that contains a root because f(B) f(C) < 0. This is superficia. It should be
qudified by saying that either this is true, or a root has been found that is as accurate
as the precision alows. The qudification “as accurate as the precision alows’ means
here that either the computed f(2) vanishes, or that one of the computed values f(B),
f(C) has the wrong sign.

A basic assumption of the bisection method is that f(x) is continuous. It should be
no surprise that the method can fail when this is not the case. Because a bisection code
pays no attention to the vaues of the function, it cannot tell the difference between a
pole of odd multiplicity and a root of odd multiplicity [unless it attempts to evaluate
f(X) exactly a a pole and there is an overflow]. So, for example, if a bisection code is
given the function tan(x) and asked to find the root in [5,7], it will have no difficulty.
If asked to find the root in [4,7], it will not realize there is a root in the interval because
the sign change due to the simple pole cancels out the sign change due to the simple
root. And, what is worse, if asked to find a root in [4,5], it will locate a pole or cause
an overflow. We see here another reason for scaling: removing odd order poles by
scaling removes the sign changes that might cause bisection to locate a pole rather
than a zero. Here this is done by F(x) = cos(x) tan(x) = sin(x). One of the examples
of scaling given earlier is a less trivia illustration of the point. Because of the very real
possibility of computing a pole of odd multiplicity, it is prudent when using a bisection
code to inspect the residua f(Z) of an dleged root z-it would be highly embarrassing
to claim that z results in a very small value of f(Z) when it actually results in a very
large value!

A bisection code can converge to a pole because it makes no use of the value
f(M), just its sign. Because of this its rate of convergence is the same whether the root
is simple or not and whether the function is smooth or not. Other methods converge
much faster when the root is smple and the function is smooth, but they do not work
so well when this is not the case.

Bisection has a number of virtues. Provided an initial bracket can be found, it will
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converge no matter how large the initial interval known to contain a root. It is easy
to decide reliably when the approximation is good enough. It converges reasonably
fast and the rate of convergence is independent of the multiplicity of the root and the
smoothness of the function. The method deals well with limiting precision.

Bisection also has some drawbacks. If there are an even number of zeros between
B and C, it will not redize that there are any zeros at al because there is no sign
change. In particular, it is not possible to find a zero of even multiplicity except by
accident. It can be fooled by poles. A mgor disadvantage is that for simple zeros,
which seem to be the most common by far, there are methods that converge much
more rapidly. There is no way to be confident of calculating a particular root nor of
getting al the roots. This is troublesome with al the methods, but some are (much)
better at computing the root closest to a guessed value. Bisection does not generdize
to functions of a complex variable nor easily to functions of several variables.

Let us now take up two methods that are superior to bisection in some, although
not al, of these respects. Both approximate f(x) by a straight line L(x) and then
approximate a root of f(x) = 0 by a root of L(x) = 0.

Newton’s method (Figure 4.3) will be familiar from calculus. It takes L(x) as the
line tangent to f(x) at the latest approximation X, and the next approximation (iterate)
is the root x,, of L(x) = 0. Equivaently, approximating f(x) by the linear terms of a
Taylor's series about X,

F(x) = fox)+ (=) f (%),
suggests solving
Fx)+ (x—x)f (x) =0

for its root x,, to approximate a [assuming that f'(x) 7 !0]. The resulting method is
known as

Newton's method:
f(x)
flx)

Xipl =X — (4.5)

When it is inconvenient or expensive to evaluate f'(x), a related procedure called
the secant rule is preferred because it uses only values of f(x). Let L(X) be the secant
line that interpolates f(x) at the two approximations X.i,X;:

X—Xj X —Xj—-1

fiort ——— /i

Xi—1 — X Xj — Xi-1

L(x) =

The next approximation X, is taken to be the root of L(x) = 0. Hence, assuming that
f(x) # f(x.), we have the

secant rule:
Xj — Xj~1

Xip1 =X —f(n)m- (4.6)
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Figure 4.3 Newton's method.

The method is illustrated graphically in Figure 4.4. Although a picture furnishes a nat-
ural motivation for the method, an aternative approach is to approximate the derivative
in Newton’s method (4.5) by a difference quotient to get (4.6).

A little analysis shows that Newton's method and the secant rule converge much
faster than bisection for a simple root of (4.1). Considering first Newton’s method, we
have from (4.5)

o= X1 = 0 —x;+ Jf,((x'))
If % is near a, then
fl) = fo) + (x— a) f (a)+ f”(a

f(x) = f{o)+ (xi—a) f' ().

Now f(a) = 0 and f'(a) # 0 for asimple root, so

(- a) (o) + E= f"(oc)
f(o)+(x a)f’
!
2 f (o)
) ——.
7@
It is seen that if X is near a simple root, the error in x4 is roughly a constant multiple

of the square of the error in x. This is called quadratic convergence.
A similar look at the secant rule (4.6) leads to

O—Xip] RO—x;+

~ —(x,-—

f"(o)
) 2@ (4.7)

=X ~ —(xi —a)(x,-_l -
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f (x)

Figure 4.4 Secant rule.

This method does not converge as fast as Newton’s method, but it is much faster than
bisection. For both methods it can be shown that if the starting values are sufficiently
close to a simple root and f(x) is sufficiently smooth, the iterates will converge to that
root. For Newton's method,

- (xip1 — )
= =C+#0
xlil—rpa (xi - (x)2 :,é

and for the secant rule,

. (x,-+1 - (1)
= 0.
o, G- o) —0) 7

A careful treatment of the secant rule even shows that

lim b1 =
xi—a |x; —olfP

=Y7é07

where p = (1++/5)/2 ~ 1.618.

Example 4.2. As in Example 4.1, let f(x) = X - 2. An easy calculation shows that
for the secant rule started with x; = 3 and x, = 2,
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Xi I(l - x,-|
3.0000000000000000  0.16(+01)
2.0000000000000000  0.59(400)
1.5999999999999999  0.19(+00)
1.4444444444444444  0.30(-01)
1.4160583941605840  0.18(—02)
1.4142330592571590  0.19(—04)
1.4142135750814935  0.13(—07)
1.4142135623731826  0.87(—13)

0~ NN B WD e~

and for Newton's method started with x; = 3,

Xi o —xi|
3.0000000000000000  0.16(401)
1.8333333333333335  0.42(+00)
1.4621212121212122  0.48(—01)
1.4149984298948028  0.78(—03)
1.4142137800471977  0.22(—06)
1.4142135623731118  0.17(—13)

[« 307, W TSI NS T N

Both methods converge quite rapidly and the quadratic convergence of Newton's method
is apparent. Comparison with the bisection method of Example 4.1 shows the superi-
ority of the secant rule and Newton’s method (for this problem). |

If an iteration is such that

fim i1 =0
xi—o |x; — o

=7#0,

the method is said to converge at rate r with constant g It has been argued that for a
simple root, Newton's method converges at the rate r = 2 and it has been stated that
the secant rule converges at the rate r = p = 1.618. Bisection does not fit into this
framework; the width of the bracketing intervals are being halved at every step, but
nothing can be said about

i — o
X;i—0l |x,~ - (Xl

(see Example 4.1).

The secant rule is a principal part of the code Zero developed in this chapter, so
we now state conditions that guarantee its convergence to a simple root of (4.1) and
study how fast it converges. As a first step we derive an expression that relates the
function values at three successive iterates xi;, X, X.1. Let L(X) be the polynomia
of degree 1 interpolating f(x) on the set {x;,%., }. The iterate x., is the zero of L(x).
In Chapter 3 we developed an expression for the error of interpolation [see (3.4)],
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which in this case is

0]
2

Sxig1) = Lxip1) = (xip1 = xim1) (Xigp1 — )
or, since L(Xj+1) =0,

F(xig1) = (xip1 — Xim1) (Xig1 — %) f”2(§) (4.8)

for a suitable (unknown) point & Some manipulation of equation (4.6) gives the two
relations

(xi —xi1) f(x;)

TS T ) — fler) (4.9)
e xe) fxaen)
X+l —Xj—1 = f(xi)“f(xi—l) . (4.10)
A third relation is obtained from the mean value theorem for derivatives:
Fxi) = fOxiz1) _
X; = Xi—1 = fl(C)v (41]_)

where z, a point between x, and X, is unknown. Combining equations (4.8)—(4.1l),
we arrive at

flxip1) = f(xi)f(xi—l)%%))]?

Let us assume that on an appropriate interval we have

If" (x)] < M2, 0 < my < |f'(x)| S my (4.12)

and that we are computing a simple zero a. (Why must it be simple with these hy-
potheses?) Then these bounds and the expression above for f(x,,) imply that

)l < UG i)l

1

If we let

this inequality leads to

Supposing that

€ = max(ggp,€1) < 1,
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it is easy to argue by induction that
& < g
g3<et-e=¢>

gg<ed.g?=¢’

ﬁiﬁﬁs'}
where
i+1 i+1
8.——1_ 1+\/§ i+ 1_\/5 i+
TV 2 2
The forma proof is left as an exercise. Since
1 5 1-+v5
+v/5 o1s Y& ’
2 2
we see that for i large,
i+1
5 L [(11V3Y)
’N ﬁ 2 .

In any event, §; — o0 as i — o, iand since 0 < e < 1, we must have g; — 0, which is
what we wanted to prove. Let us now state a forma theorem and complete the details
of its proof.

Theorem 4.1. The secant rule defined by (4.6) with initial guesses Xy, X; con-
verges to a simple zero a of f(x) if Xy, X, lie in a sufficiently small closed interval
containing a on which f'(x), f"(x) exist and are continuous and f'(x) does not van-
ish.

Proof. Without loss of generality we assume that M, defined by (4.10) is posi-
tive. Otherwise f'(X) = 0 near a, implying that f(x) is a linear function and the secant
rule converges in one step. With the assumptions on f* and f~, the bounds my, m,,
and M, are well defined. Using the mean value theorem for derivatives, we see that

|f(x0)| = |f () + (30— &) f'(E1)] < |0 — at|my

| Gen)] = 1 (0) + (21 — ) f(G2)] < |y — otfomy.
This implies that the quantity e defined above is less than 1 if x, and x; are sufficiently
close to a. The argument above shows that

My &
N —= < e,
el 3 <

But
|f ()l = 1 f(xi) = o] = |(xi — o) f (m)]

> |x; — ofmy.
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Hence,
2my .
— o < ——e”.
le | = M2 €

Thissaysthat x; — o. The argument suggests that the rate of convergence is the golden
mean (1++/5)/2 stated earlier. n

Methods that converge at a rate r > 1 are said to be superlinearly convergent. We
have seen that this is the case for Newton's method and the secant rule when computing
a smple root. Unfortunately it is not the case when computing a multiple root. It is
easy enough to see this for Newton’s method. If x is near a root a of multiplicity
m > 1, then

(x—0)" (m)
fx) = — (o)
( X — (1) m—1

fx) ~ m!—f(’")(a).

This implies that

fli)  (m—1
] —=x;— 0o — ~ | — ;— ).
Sy Wy A
This expression shows that for a root of multiplicity m, Newton’s method is only lin-
early convergent with constant (m - 1)/m.
An example from Wilkinson [11] illustrates severa difficulties that can arise in
the practica application of Newton’s method.

Example 4.3. Consider the problem
X° -1 =0.

In attempting to compute the simple root a = 1 using Newton's method, suppose we
start with X, = /2. Then from (4.5)

1,20
X = % - ﬁ)—l—}; = 26214.875
20(3)
because the tangent is nearly horizontal. Thus, a reasonably good guess for a root leads
to a much worse approximation. Also, notice that if x, is much larger than 1, then

x20—1 2019
= i

_ X — ———— =
2020 T 20xP T 20™

To the same degree of approximation,

Xit1 =X

Xig1—1 xipn 19

~ —

xi—1 X; ~ 20

which says that we creep back to the root a 1 at a rate considerably slower than
bisection. What is happening here is that the roots of this equation are the roots of
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unity. The 20 simple roots lie on a circle of radius 1 in the complex plane. The roots
are well separated, but when “seen” from as far away as 26000, they appear to form a
root of multiplicity 20, as argued earlier in this chapter. Newton's method converges
linearly with constant 19/20 to a root of multiplicity 20, and that is exactly what is
observed when the iterates are far from the roots.

Much is made of the quadratic convergence of Newton’s method, but it is quadrat-
icaly convergent only for simple roots. Even for simple roots, this example shows
that quadratic convergence is observed only when “sufficiently” close to a root. And,
of course, when “too” close to a root, finite precison arithmetic affects the rate of
convergence. [ |

Let us now consider the behavior of Newton's method and the secant rule at lim-
iting precision. Figure 1.2 shows an interval of machine-representable numbers about
a on which computed values of the function vary erraticaly in sign and magnitude.
These represent the smallest values the computed f(X) can assume when formed in the
working precision, and quite frequently they have no digits in agreement with the true
f(x). For a smple root, |f'(a)| is not zero, and if the root is not ill-conditioned, the
derivative is not small. As a consequence, the computed vaue of the first derivative
ordinarily has a few digits that are correct. It then follows that the correction to X
computed by Newton's method is very small at limiting precision and the next iterate
stays near the root even if it moves away because f(x;) has the wrong sign. This is like
bisection and is what is meant by the term “stable at limiting precision.” The secant
rule behaves differently. The correction to the current iterate,

Xi — Xi~1
fOa) = fxiz1)’
has unpredictable values at limiting precision. Clearly it is possible that the next iterate
lie far outside the interval of limiting precision.

There is another way to look at the secant rule that is illuminating. One approach
to finding a root a of f(X) is to interpolate severd vaues y; = f(x) by a polyno-
mial P(X) and then approximate a by a root of this polynomia. The secant rule is
the case of linear interpolation. Higher order interpolation provides a more accurate
approximation to f(x), so it is plausible that it would lead to a scheme with a higher
rate of convergence. This turns out to be true, athough only the increase from lin-
ear to quadratic interpolation might be thought worth the trouble. The scheme based
on quadratic interpolation is caled Muller's method. Muller's method is a little more
trouble than the secant rule, because it involves computing the roots of a quadratic, and
it converges somewhat faster. There are some practica differences. For all methods
based on interpolation by a polynomial of degree higher than 1, there is a question of
which root to take as the next iterate x,,. TO get convergence, the root closest to x
should be used. An important difference between Muller's method and the secant rule
is due to the possibility of a red quadratic polynomia having complex roots. Even
with real iterates and a rea function, Muller's method might produce a complex iter-
ate. If complex roots are interesting, this is a virtue, but if only real roots are desired,
it is a defect. The secant rule can be used to compute complex roots, but it will not
leave the real line spontaneously like Muller's method. The MATHCAD documentation
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points out that its code, which is based on the secant rule, can be used to compute the
roots of a complex-valued function by starting with a guess that is complex.

An dternative to direct interpolation is inverse interpolation. This approach is
based on interpolating the inverse function f'(y) of y = f(x). To prevent confusion
with the reciprocal of f(x), the inverse function will be denoted here by G(y). We
assume that we have at our disposal only a procedure for evaluating f(x). However,
each value f(x) = y; provides a vaue of the inverse function because by definition
X = G(y). Finding a root of f(x) corresponds to evaluating the inverse function: a
root a satisfies f(a) = 0O, hence a = G(0). This is a familiar task that we solve in a
familiar way. We are able to evaluate a function G(y) at certain points y; and we wish
to approximate the value G(0). This is done by approximating G(y) with a polynomial
interpolant P(y) and then evaluating P(0) ~ a. Of course, it is easy to interpolate
G(y) by whatever degree polynomial we want. However, as with direct interpolation,
most of the improvement to the rate of convergence is gained on going to quadratic
interpolation. An interesting fact left to an exercise is that the method derived from
linear inverse interpolation is the same as that derived from linear direct interpolation,
namely the secant rule. Examination of Figure 4.4 helps in understanding this. On the
other hand, quadratic direct and inverse interpolation are quite different. For one thing,
guadratic inverse interpolation cannot produce a complex iterate when the function and
the previous iterates are real.

Inverse interpolation is attractive because of its simplicity. Unfortunately, there is
a fundamentd difficulty—f might not have an inverse on the interval of interest. This
is familiar from the trigonometric functions. For instance, the function y = sin(x) does
not have an inverse for al x. To invert the relationship with x = arcsin(y) the argument
X is restricted to an interval on which sin(x) is monotone. In a plot like Figure 4.2, the
inverse of f is found by “turning the picture on its side” Only on an interva where
f(x) is monotone does the inverse function exist as a single-vaued function. At a
simple root &, f'(a) s O, so there is an interval containing a on whichf’(x) # 0 [f(x)
is monotone] and G(y) exists. So, the usua kind of result is obtained. If we can start
close enough to a simple root, there is an inverse function and we can compute the
root with inverse interpolation. When some distance from a root or when the root is
multiple, there may be serious difficulties with inverse interpolation because then the
function does not have an inverse on the relevant interval.

With the exception of hisection, the methods we have studied are guaranteed to
converge only when sufficiently close to a zero of a function that is sufficiently smooth.
This is rather unsatisfactory when we have no idea about where the roots are. On the
other hand, often we are interested in the root closest to a specific vaue. It is by no
means certain that the methods will converge from this value to the nearest root since
that depends on just how close the value is to the root, but it is a useful characteristic of
the methods. In contrast, if the initia bracket given a bisection code contains several
roots, the code might locate any one of them. The technique of continuation is useful
when it is hard to find a starting guess good enough to get convergence to a particular
root, or to any root. Many problems depend on a parameter | and it may be that zeros
can be computed easily for some values of the parameter. The family xexp(-x) - g = 0
is an example. Solutions are desired for values g > O, but it is obvious that a = 0
is a root when g = 0. It is generdly the case, athough not aways, that the roots
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a(l) depend continuoudy on |. The idea of continuation is to solve a sequence of
problems for values of | ranging from one for which the problem is solved easily to
the desired value of the parameter. This may not be just an artifice; you may actualy
want solutions for a range of parameter values. Roots obtained with a value | = are
used as guesses for the next value | 7. If the next value is not too different, the guesses
will be good enough to obtain convergence. In the case of the example, the smallest
positive root is desired, so starting with a(0) = 0 should result in the desired root a(l ).
When there is no obvious parameter in f(x) = 0, one can be introduced artificially. A
common embedding of the problem in afamily isO=F (xl) = f(x) + (I - 1) f(x).
By construction, X, is a root of this equation for | = 0 and the original equation is
obtained for | = 1. Another embedding is 0 = F(xI) = 1f(x) + (1 - ) (X - Xo),
which is dso to be started with the root x; for | = 0 and a sequence of problems
solved for | increasing to 1.

A virtue of bisection is that it is easy to decide when an approximate root is good
enough. The convergence of Newton's method, the secant rule, quadratic inverse in-
terpolation, and the like cannot be judged in this way. Many codes use the size of the
residua for this purpose, but this is hazardous for reasons already studied. Superlinear
convergence provides another way to decide convergence. When the iterate x; is suffi-
ciently close to a root a, superlinear convergence implies that the next iterate is much
closer, | —x;;1| < |ot—x;|. Because of this, the error of x; can be approximated by

0 —x; = (Xip1 —X;) + (00— Xiy1) R Xig1 — X

This is computationally convenient for if the estimated error is too large, x4 is avail-
able for another iteration. In the case of Newton's method, this estimate of the error
is

N iC))

i+1 i f, (xi) .

This estimate might be described as a natural scaling of the residual f (xi). If % passes
a convergence test based on superlinear convergence, it is assumed that x,, is a rather
better approximation to a, so why not use it as the answer? Reporting X, as the
answer is caled local extrapolation.

EXERCISES

4.1 The residual of an alleged root r of F(x) = 0 is F(r).

One often sees the statement that aresidual is“small,”
so the approximate root must be “good.” Is this reli-
able? What role does scaling play? ; >

0 0.5 1.0
4.2 How are simple and multiple roots distinguished
graphically? Interpret graphicaly how well the roots
are determined. Compare with Exercise 4.1.
4.3 Geometricaly estimate the root of the function F(x) (8) For aninitial bracket of [0.0, 1.0] what are the next

whose graph is given below. three brackets using the bisection method on this func-
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tion?

(b) If ¥ = 0.0 and x, = 1.0, mark on the graph the
approximate location of X; using one step of the se-
cant method.

(c) If x; = 0.5, mark on the graph the approximate
location of x, and x; using two steps of Newton's
method.

4.4 The polynomia f(x) = x* - 2x - 5 has a root a in

[2,3].
(a) Show that [2,3] is a bracket for f(x).

(b) Apply four steps of the bisection method to re-
duce the width of the bracket to 1/16.

(c) Caculate x3 and x, by the secant method starting
with x, = 3 and x, = 2.

(d) Calculate x,, X3, and x, using Newton’s method
with x; = 2.

4.5 To find where sinx = x/2 for x > 0,

(@ find a bracket for an appropriate function f(x).

(b) Apply four steps of the bisection method to re-
duce the width of the bracket by 1/16.

(c) Calculate x5 and x, by the secant method starting
with x; and x, equal to the bracket values.

(d) Calculate x,, X3, and x, using Newton’s method
with x; the midpoint of your bracket.

4.6 Given X, and x;, show that the inverse secant rule,

discussed at the end of Section 4.1, and the direct se-
cant rule (4.6) produce the same iterates. In particular,
with G(y) the inverse function of f(x), and P(y) the

linear polynomial that interpolates G(y) at f(x) and
(%), show that P(0) = x4 iS given by (4.6).

4.7 In the convergence proof for the secant rule, it was

stated that if e = max(ey, &) < 1, then the inequality

Eip1 €€
implied
Sife&,
and
1 )

8._L 1+\/§ i+ B 1_\/5 i+1

Vs 2 2 :
Establish this.

4.8 The specia function

2 [ _p
erf(x) = 7—1?/(; e dt

is important in statistics and in many areas of science
and engineering. Because the integrand is positive for
al t, the function is strictly increasing and so has an
inverse x = erf’(y). The inverse error function is an
important function in its own right and can be evalu-
ated for given y by solving the equation y = erf(x).
The algorithm of the MATLAB function erfinv. m
first forms a rationa approximation to y that is ac-
curate to about six figures. Two Newton iterations
are then done to get a result to full accuracy. What
is Newton's method for solving this equation? Why
would you expect two iterations to be enough? (Don’t
forget to consider the multiplicity of the root.)

42 AN ALGORITHM COMBINING BISECTION AND THE SECANT RULE

It is a challenging task to fuse several methods into an efficient computational scheme,
This section is devoted to a code, Zero, based on one written by Dekker [6] that does
this. Roughly speaking, the code uses the secant rule unless bisection appears advan-
tageous. A very similar code is found in the NAG library. Brent [3] added the use of
quadratic inverse interpolation to Dekker’'s ideas. Brent's code is the basis for codes in
MATLAB and the IMSL library.

Normal input to Zero is a subprogram for the evaluation of a continuous function
f(x) and arguments B and C for which f(B)f(C) < 0. Throughout the computation
B and C are end points of an interval with f(B)f(C) < O that is decreasing in length.
In favorable circumstances B is computed with the secant rule and is a much better
approximate root than either C or the midpoint M = (C + B)/2 of the interval. To
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deal with unfavorable circumstances, the code interchanges the values of B and C as
necessary so that |f(B)|] < |f(C)| holds. If a any time the computed f(B) is zero, the
computation is terminated and B is reported as a root.
The convergence test is a mixed relative-absolute error test. Two parameters AB-
SERR and RELERR are input and it is asked of each iterate whether
C-B
l—z—— < max[ABSERR, |B| X RELERR]. (4.13)

For reasons discussed in Chapter 1, the code will not permit RELERR to be smaller
than 10 units of roundoff, nor ABSERR to be zero. However, to understand what the
test means, first suppose that RELERR is zero. The test is then asking if an interva
believed to contain a root has a length no more than 2 x ABSERR. If so, the midpoint
M is no farther than ABSERR from a root and this is a pure absolute error test on
M as an approximate root. However, it is believed that the quantity B reported as the
answer is closer to a root than M is. Even if it is not, the test implies that B is within
2 x ABSERR of a root. Similarly, if the parameter ABSERR is zero and if the test
were

C-B
‘—2— < |M| x RELERR,

the test would be a pure relative error test for the approximate root M. Because it is
believed that B is a better approximate root, it is used in the test rather than M. The
fzero. m function in MATLAB has a similar, but somewhat simpler, test. The codes in
the NAG and IMSL libraries have convergence tests that are broadly similar, but they
also test the size of the residual and convergence can occur either because the root has
been located to a specified accuracy or because the magnitude of the residual is smaller
than a specified value.

Unless there is a reason to do otherwise, Zero uses the secant rule. A variable A is
initialized to C. The two variables A, B are the two iterates used by the secant rule to
calculate

B-A

F(B) = f(A)

A danger with the secant rule (and Newton’s method) is an interpolant that is horizontal
or nearly so. The extreme case is a division by zero in this formula. This danger is
avoided by requiring D to lie in the interval [B,C] known to contain a root and checking
this without performing the division. Pursuing the tactic further, the code requires that
D liein [B,M] on the grounds that B ought to be a better approximation to the root than
C, so if the secant rule is working properly, D ought to be closer to B than to C. If D
does not lie in [B,M], the midpoint M is used as the next iterate.

The performance of the code can be improved in some circumstances by selecting
an iterate in a different way. If D is too close to B, a better tactic is to move a minimum
distance away from B. The quantity max[ABSERR, |B| x RELERR] is caled TOL in
the code. If |D - B| < TOL, then the value B + TOL x sign(C - B) is used instead of
D. This choice cannot result in an iterate outside the interval [B,C] since |B - C| >
2 x TOL (or else the error test would have been passed). If the root a is further from

D=B- f(B)
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B than TOL, the iterate chosen in this way is closer to the root than D. If it is closer,
this iterate and B will bracket the root and the code will converge at the next test on
the error because the length of the bracket is TOL.

There are circumstances in which the current iterate B is converging to a root, but
the end point C is fixed. Because convergence is judged by the length of the interval
[B,C] and because the rate of convergence of the secant rule depends on using values
from the neighborhood of the root, the code monitors the length of the interval. If four
iterations have not resulted in a reduction by a factor of 1/8, the code bisects three
times. This guarantees that the code will reduce the length of an interval containing a
root by a factor of 1/8 in a maximum of seven function evauations.

In summary, if the value D of the secant rule lies outside [B,M] or if the overall
reduction in interval length has been unsatisfactory, the code bisects the interva. If
D is too close to B, a minimum change of TOL is used. Otherwise D is used. After
deciding how to compute the next iterate, it is formed explicitly and replaces B. If
f(B) = 0O, the code exits. Otherwise, quantities are updated for the next iteration: the
old B replaces A. The old C is kept or is replaced by the old B, whichever results in
f(B)f(C) < 0.

If the code is given normal input [f(X) continuous, f(B)f(C) < 01, then on nor-
mal return, either the computed f(B) = 0, or the computed f(B) and f(C) satisfy
f(B)f(C) < 0, |f(B)] < |f(C)| and the output values of B and C satisfy (4.13). In
the latter case there is either a root of f(X) in the interval [B,C] or else one of the end
points is so close to a root that the sign has been computed incorrectly in the working
precision.

EXERCISES

4.9 The algorithm described combining the bisection
method with the secant method is very efficient. Sup-
pose that the initiadl B and C satisfy |B - C| = 10%,
and z;root is sought with an absolute error of at most
10°

(8 How many function evaluations does the bisec-
tion method use?

(b) What is the maximum number of function evalu-
ations needed by the combined agorithm?

43 ROUTINES FOR ZERO FINDING

The agorithm of the preceding section has been implemented in a routine called Zero
designed to compute a root of the nonlinear equation F(X) = 0. A typical invocation

of Zero in C++ is

flag = Zero(f, b, c, abserr, relerr, residua);

in FORTRAN it is

CALL ZERO(F, B, C, ABSERR, RELERR, RESIDL, FLAG)

and
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flag = Zero(f, &b, &c, abserr, relerr, &residud);

in C. In FORTRAN F, or f in C and C++, is the name of the function subprogram
for evauating F(x). In FORTRAN it must be declared in an EXTERNAL statement
in the program that calls ZERO. Normd input consists of a continuous function F(x)
and values B and C such that F(B)F(C) < 0. Both B and C are also output quantities,
so0 they must be variables in the calling program. On output it is dways the case that
IF(B) < IF(C)] _ _

The code attempts to bracket a root between B and C, with B being the better
approximation, so that the convergence test

B-C

< max[ABSERR, |B| x RELERR]

is satisfied. It makes no sense to alow RELERR < u, the unit roundoff of the com-
puter used, because this is asking for a more accurate result than the correctly rounded
true result. To provide a little protection near limiting precision, it is required that
RELERR > 10u. If the desired root should be zero, or very close to zero, a pure
relative error test is not appropriate. For this reason it is required that ABSERR > 0.

Normal output has either F(B)F(C) < 0 and the convergence test met, or F(B) =
0. This is signaled by FLAG = 0. At most 500 evaluations of F are alowed. If
more appear to be necessary, FLAG is set to 1 and the code terminates before the
convergence test is satisfied. The value FLAG = -1 indicates invaid input, that is,
ABSERR < 0 or RELERR < 10u, and FLAG = -2 means F(B)F(C) > 0. The value
RESIDL (or residua in C and C++) is the fina residual F(B). Convergence is judged
by the length of an interval known to contain a root. The algorithm is so robust that
it can locate roots of functions that are only piecewise continuous. If it is applied to
a function that has a pole of odd multiplicity, it might locate a pole rather than a root.
This is recognized by a “large” residual and signaled by FLAG = 2.

Example 4.4. The function F(X) = € - 2x has F(0) > 0 and F(1) < 0, hence the
equation F(X) = 0 has a root between C = 0 and B = 1. The sample program provided
illustrates the use of the zero-finding routine. Note that a globaly defined integer is
used to count the number of F evauations required. In FORTRAN this is accom-
plished via a COMMON statement (preferably labeled COMMON) and in C or C++
it is done by an appropriate placement of the variable declarations. The output is

Approximate root B = 3.517337121480649E-001
The residual F(B) = -2.430063176779660E-009
7 evaluations of F were required.

Example 4.5. In Chapter 5 we discuss a problem that requires the solution of
2 2 2
OA) = + 2y T3
a?+A  b2+A 2+A
for its smallest positive root. The particular values of the parameters used there are
x=y=z=50anda=1,b=2 c= 100. Figure 4.5 is a rough sketch of f for a’ <

-1=0
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b? < ¢ It is drawn by looking at the behavior of f asl— —a?, —b2, —c2, 40, and
—oo, The portion of interest to us is between -a° and +oo. Since ask-» —a? from the
right, f(I) — 4oo and since as — 4o, $(A) — —1, the continuous function f must
have a zero larger than -a°. Differentiating f (1) we get

o 2 2 2
=- - - 0.
YN = T @A <
Because f (1) is strictly decreasing, there is only one zero |, greater than -a% The
root is smple since ¢/ (Ag) # 0.
Interestingly, f (I ) can be scaled to a cubic polynomial

P(A) = —(a> +A) (B2 + 1) (2 +M)d(N).

This alows us to apply some bounds on the relative error of an approximate zero of a
polynomia developed in Exercise 4.31.

The equation f (1) = 0 was solved using the code Zero with relative and absolute
error requests of 10° and 10, respectively. Poor initial values of B and C were used
to show the excellent rate of convergence. Table 4.1 displays successive values of B
and C and tells which method was used by Zero in computing B.

Table 4.1. Solution of f(1) = 0 by Zero

B C Method o(B)
10000. 0 Input —3.7512496(—1)
9998.7995 0 Secant —3.7505744(—1)
4999.3997  9998.7995  Bisect 1.6629363(—1)
6535.1283  4999.3997  Secant —8.4003349(-2)
6019.7152  4999.3997  Secant —1.3682969(-2)
5919.4259  6019.7152  Secant 1.3608157(—3)
5928.4978  5919.4259  Secant —2.0070584(—5)
5928.3659  5919.4259  Secant —2.9023897(-8)

For the error bounds in Exercise 4.31, we computed P(B) = 1.6261594 x 10* and
P'(B) = 85162684 x 10’. The constant term in P(l) is a, = X%b°c® - y?a’c?
Za’h® + av’c?, which in this case is - 1.2497000 x 10°. The bounds state that there
is aroot rj of P such that

B—r;| |P(B)|Y?
| | PBT sy k102
rj ap
and a root r; such that
B-ri P(B) | _97x10-8,
B BP'(B)

The second error bound is quite good, but the first is pessmistic. Generdly we do
not know which of the two bounds will be better. An interesting point here is the size
of the residua P(B). The value B is supposed to be a root of f(I) = 0 and P(l) =
0. If its quality were judged by the size of the residual, B might be thought a poor
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Figure 4.5 f (1) for Example 4.5.

cmmemce—— e s e el c— e ——————————
e SN PO,

approximation when solving the one equation and a good approximation when solving
the other. This is despite the fact that it approximates the same root in both cases. To
be more concrete, MATHCAD'S default convergence test that the residua be smaller
in magnitude than 10 would reject an approximate root of P(l) = O that is actually
quite accurate. This problem illustrates well the issue of scaling. The convergence test
in Zero and in similar codes is reliable. The magnitude of the residua reported by the
code is important only for detecting the convergence to a pole that is possible when
the function input is not continuous. Otherwise its size is a statement about the scaling
of the problem, not the quality of the approximate zero. |

Unless otherwise indicated, use ABSERR = 10°® and
RELERR = 10° for the computations with Zero.

4.10 Use the code Zero with an initial bracket of [0, I] to

find the roots of the equation F(x) = 0, where F(x) is
given by each of the following.

(a) cos 2x

(b) (x - 0.3)(x - 0.6)

© (x - 0.3)(x - 0.6)(x - 0.9)
(d (x + H(x - 08’

(& (x + D[X - 7(0.8)x° + 21(0.8)*x°
- 35(0.8)°%* + 35(0.8)*¢ - 21(0.8)°x*
+ 7(0.8)° - (0.8)"]

(f) I/ cos 2x

+1, 0<x<03
@ -2, 03<x<1

(h) (x- 3(x + 1)
Print out the approximate roots, FLAG, the number of

function evaluations required, and the residua. Dis-
cuss the results. [Sketches of F(x) will be helpful.]

411 A wire weighs 0.518 Ib/ft and is suspended between

two towers of equa height (at the same level) and
500 ft apart. If the sag in the wire is 50 ft, find
the maximum tension T in the wire. The appropriate
equations to be solved are

c+50= ccosh@
2c
T =0.518(c + 50).
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4.12 For turbulent flow of fluid in a smooth pipe, the equa-  4.17 In trying to solve the equations of radiative transfer in

4.13

tion

1 = ,/c7(—0.4+1.74In(Re \/c7))

models the relationship between the friction factor ¢
and the Reynold’'s number Re. Compute ¢; for Re =
10%, 10° 10° Solve for al values of the Reynold's
number in the same run. Do this by communicating
the parameter Re to the function subprogram using la-
beled COMMON in FORTRAN or a globally defined
variable in C or C++.

In [12] the study of neutron transport in arod leads to

a transcendental equation that has roots related to the

critical lengths. For a rod of length £ the equation is
xr—1

bx) = —.

cot(£x) P

Make a rough sketch of the two functions cot(&) and
(€ - 1)/(2x) to get an idea of where they intersect to

yield roots. For £ = 1, determine the three smallest
positive roots.

4.14 An equation determining the critical load for columns

with batten plates is derived in [9, p. 151]. Suitable
values of the physica parameters for experiments per-
formed by Timoshenko lead to the problem

I 1—cos(n/10) )
180 (cos(n/lO) — cos(z)

and the smallest positive root is desired. Make a rough
sketch of the function to get an idea of where the root
is. Scale to avoid difficulties with poles and the appar-
ent singularity at 0, and then compute the root.

sin(z)
2

4.15 An equation for the temperature T at which o-

toluidine has a vapor pressure of 500 mm Hg is found
in [8, p. 424]. In degrees absolute T satisfies
3480.3

21.1306 — — —5.081logyo T =0.

It is not obvious where the roots are, but a little anal-
ysis will help you locate them. Using brackets from
your analysis, compute al the roots.

4.16 The geometrical concentration factor C in a certain so-

lar energy collection model [10, p. 33] stisfies

B n(h/cosA)? f
~ 1aD2 (1+sinA - LcosA)

Rescale the problem to avoid poles. Find the small-
est positive root A if h = 300, C = 1200, f = 0.8, and
D =14

4.18

semi-infinite atmospheres, one encounters the nonlin-
ear equation

B 2%k

T [T+ K)/(1 k)

where the number w,, 0 < w, < 1, is called an abedo.
Show that for fixed wy, if kisaroot, sois -k, and that
there is a unique value of k with 0 < k < 1 satisfying
the equation. For wy = 0.25, 0.50, and 0.75, find the

corresponding positive k values. Make some sketches
to help you locate the roots.

Wo

Exercise 5.27 concerns a temperature distribution
problem where it is necessary to find positive roots
of

2xJ1(x) = Jo(x) =0,

where Jy(X) and J,(X) are zeroth and first order Bessel
functions of the first kind. Compute the three smallest
positive roots.

4.19 An analysis of the Schrodinger equation for a parti-

4.20

cle of mass min a rectangular potential well leads to
discrete sets of vaues of the tota energy E that are
solutions of a pair of transcendental equations. One of
these equations is

cot(%\/Zm_VO\/EW) - \/E

1—E/Vy’
where
h= —h—, h=6.625 x 1077 erg-sec,
2r

is Planck’s constant. Find the value of E that satisfies
this equation. Use the following data, which corre-
spond to a simplified model of the hydrogen atom:

m=9.109x 1028 g
Vo=2.179x10"" erg
a=5.292x10"% cm.

On some machines it may be necessary to scale some
of the variables to avoid underflow. Also, be careful
with your choice of ABSERR if you want an accurate
answer.

The following problem concerns the cooling of a
sphere. Suppose the sphere is of radius a and is ini-
tidly at a temperature V. It cools by Newton's law
of cooling with thermal conductivity k, thalpance e,
and diffusivity h® after being suddenly placed in air
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a 0°C. It can be shown that the temperature q(r,t) at
timet > 0 and radiusr is
— An _232, .
o)=Y, THe Tah siny,r.

n=1

Here the g, are the (positive) roots of

(1 e) ,
YnCOSYra— | — — — ) sinypa=20
a k

and
2Y,V

a
- rsiny,rdr.
[Yna — cosYpasiny,a] Jo

Ay =

For a steel sphere cooling in air a 0°C, suppose the
initia temperature is V = 100°C and the radius is
a = 0.30 meters. Appropriate physical constants are
h® = 1.73 x 10®, e = 20, and k = 60. Find the three
smallest values of g,a and use them to compute A,,
A,, and A;. Approximate the temperature at r = 0.25
for t = 10 seconds, k=2, 3, 4, 5.

4.21 When solving f(x) = 0, the subroutine Zero requires

you to input B and C such that f(B)f(C) < 0. Often
it is not obvious what to use for B and C, so many
routines that are similar to Zero begin with a search

for B and C that provide a change of sign. Write a
routine Root that first finds a change of sign and then
cals Zero to compute a root. The parameter list of
Root should be the same as that of Zero except that
B and C are replaced by arguments Z and SCALE.
Here the Z input is a guess for aroot. If al goes well,
on output Z is to be the answer B obtained by Zero.
The search algorithm you are to implement is essen-
tidly that of the f zer o. m program of MATLAB. How-
ever, f zer 0. m begins searching with an increment
Z/20 if Z #10 and 1/20 otherwise. In Root the initial
search increment is to be an input variable SCALE.
Initidlize DZ = SCALE, B=2Z-DZ, C=Z + DZ
If f(B)f(C) < O (be sure to code this properly), cal
Zero to compute a root. Otherwise, double the incre-
ment, DZ = 2 x DZ, expand the search to the left by
B = B - DZ, and test again. If this does not result in
a change of sign, expand the search to the right by
C = C + DZ and test again. If this does not result
in a change of sign, double the increment and repest.
Limit the number of tries. Test your code using one of
the examples in the text. After you are sure it works,
you might want to use it in other exercises.

44 CONDITION, LIMITING PRECISION, AND MULTIPLE ROOTS

It is important to ask what limitations on accuracy are imposed by finite precision
arithmetic. Since we seek a machine representable number & that makes f(&) . as nearly
zero as possible, the details of the computation off, the machine word length, and the
roundoff characteristics play important roles. We have remarked that the computed
function values may vary erratically in an interval about the zero and we have seen an
example in Figure 1.2. Let us look at another example in more detail.

Example 4.6. Consider the polynomia (x - 1)° that we evauate in the form ((x -
3) x + 3)x - 1 in three-digit decimal chopped floating point arithmetic. For x = 1.00, 1.01,
.. ., 117 the computed function values are exactly zero with the exception of the value
0.0100 at x = 1.01, 1.11, 1.15. For x = 1.18, 1.19,. . . ,1.24 dl function values are
0.200 except for a vaue of exactly zero at x = 1.20 and a value of 0.0200 at x = 1.23.
The reader might enjoy evauating the function for x values less than 1 to explore this
phenomenon. It is clear that these erratic values might cause the secant rule to be un-
stable. Evaluating the derivative shows that Newton’s method can also be unstable at
a multiple root like this one. n

What effect on the accuracy of a root does inaccuracy in the function values have?
To get some feeling for this, suppose that the routine for f(x) actualy returns a value



158

CHAPTER 4 ROOTS OF NONLINEAR EQUATIONS

f(x), and for x a machine number near a root a, the best we can say is that

lf(x) - fx)l<e

for a suitable e. Suppose that z is a machine number and f(z) = 0. How much in error
can z be? If ais of multiplicity m, then

(o)

m!

fl@)~(z—a)™

Since it is possible for f(2) to be as large as e, we could have

™ (0)
:Fez(z—a)'”T,
S0 it is possible that
o amerm|m " (414)
RN VO™ |

For small eand m> 1 the term "/ ™ is much larger than e and there is a serious loss of
accuracy. The other factor plays a role, but generaly we must consider multiple roots
to be ill-conditioned (sensitive to errors in the evaluation off). The ill conditioning of
the root of multiplicity 3 in (x - 1)® = 0 is evident in Example 4.6. We saw there that
x = 1.20 led to a function value of exactly zero, and this is certainly a poor approxi-
mation to the root at 1.00. The essence of the matter is that at a multiple root, f(x)
is amost tangent to the horizontal axis so that shifting the curve verticaly by a small
amount shifts its intersection with the axis by a considerable amount. Exercise 4.24 is
an example of this effect.

Even when m = 1, the root can be poorly determined. As we have already seen,
clusters of roots “look” like multiple roots from a distance, but we are now considering
what happens close to a root. Even when well separated and simple, a root is poorly
determined if f(x) passes through zero with a small slope. More formaly, the quantity

lz—of =

_£&
| (o0)]

can be large when the slope [f* (a)| is small. A famous example from Wilkinson [11,
p. 43] illustrates this dramatically.

Example 4.7. Consider the polynomia equation
(X - D(x - 2)+(x - 19)(x - 20) = O,

which has the roots 1, 2,. . ., 19, 20. These roots are obviously simple and well sepa
rated. The coefficient of X° is -210. If this coefficient is changed by 2% to become
-210.000000119, the roots become those shown in Table 4.2.
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Table 4.2.

Roots of (x—1)(x—2)-+-(x—20) —=2"23x1? =0
1.000000000 6.000006944
2.000000000 6.999697234
3.000000000 8.007267603
4.000000000 8.917250249

4.999999928

10.095266145 £0.643500904i
11.793633881 +1.652329728i
13.992358137 £2.518830070i
16.730737466 +2.812624894i
19.502439400 +1.940330347i
20.846908101

Notice that five pairs of roots have become complex with imaginary parts of sub-
stantiadl magnitude! There is realy no remedy for this ill conditioning except to use
more digits in the computations. u

Multiple roots are awkward not only because of their ill conditioning but for other
reasons, too. Bisection cannot compute roots of even multiplicity because there is no
sign change. Its rate of convergence to roots of odd multiplicity is not affected by
the multiplicity, but the other methods we have presented sow down drastically when
computing multiple roots. If the derivative f'(X) is available, something can be done
about both these difficulties. Near a,

fx) = (x—0)"g(x)

and

fx)=x-0)""'G(x),
where

G(x) = mg(x) + (x— )¢’ (x)
and

G() = mg(0t) #0.
This says that zeros of f(xX) of even multiplicity are zeros of f'(X) of odd multiplicity,
so they could be computed with a bisection code or Zero. Also, notice that

fx)
u(x) = —= = (x— a)H(x) near q,
(x) = 5y = (= WH()
where
H(X) = g()/G(x), H@) = I/m# 0,
so that u(x) has only simple zeros. Because of this, solving u(x) = O with Zero is
faster than solving f(x) = O and alows the code to compute zeros of f(x) of even
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multiplicity. However, it must be appreciated that u(x) has a pole wherever f(x) = 0

and f(x)# 0.

EXERCISES

4.22 What is the value of the right-hand side of (4.14) for
the root in Exercise 4.10a?

4.23 What is the value of the right-hand side of (4.14) for
the root of f(x) = (x- 10)(3x- 1) in [0,]? Assume
that e = 10™

4.24 The problem f(X) = (x + 1)(x - 0.8)’ = 0 has 0.8 as a
root of multiplicity 7. Evaluate the expression (4.14)

for the condition of this root. Perturb f(X) by 107
using the form in Exercise 4.10e; then solve

f(x) + 10" = 0

accurately with Zero (use ABSERR = RELERR =
10™). How much was the root 0.8 perturbed? Com-
pare this to the result of (4.14) with e = 10”. Repeat
using the form in Exercise 4.10d.

45 NONLINEAR SYSTEMS OF EQUATIONS

A problem occurring quite frequently in computational mathematics is to find some or
al of the solutions of a system of n simultaneous nonlinear equations in n unknowns.
Such problems are generally much more difficult than a single equation. An obvious
starting point is to generalize the methods we have studied for the case n = 1. Unfor-
tunately, the bracketing property of the method of bisection does not hold for n > 1.
There is a generdlization of the secant method, but it is not at all obvious because of the
more complicated geometry in higher dimensions. Newton’s method, however, does
extend nicely. Only the case n = 2 is examined because the notation is simpler and the
basic ideas are the same for the genera case.
Consider the system of equations

fixy) = 0 (4.15)
a(xy) =0,
which we occasionaly write in vector form as

o= (- )

To solve (4.15), Newton's method for finding the root of a single nonlinear equa-
tion is generdlized to two dimensions. The functions f(x,y) and g(xy) are expanded
about a point (X,, Yo) using Taylor's theorem for functions of two variables (see the ap-
pendix for a statement of the theorem). Carrying only terms of degrees O and 1 gives
the approximating system

)
$150.30)+ 2 (20,30)x = 30)+ S 30,30) (3 =30) =0
(4.16)

J )
g(x0,¥0) + gg(xodo)(x‘xo) + gg(xoeyO)(y —Yo) =0,
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which is linear in the variables x - X, and y - Yy,. The next approximation (X; ,y;) to
the solution of (4.16) is found by solving the linear equations

0 bS]
gi:(xo,)’o)Axo + a—f(xosyo)A)’O = —f(x0,¥0)

0 d
a—i (x0,y0)Axo + a—i(xo,)’o)AJ’o = —g(x0,¥0)

for Dx, = X' - X, and Dy, = y; - Y, and forming
X; = Dxo + % and y; = Dyp + Yo.

Ingenerd (X1 ,Yke) iS Obtained from (x,, Vi) by adding a correction
(Ax, Ayi) = (X1 = Xis Vi1 — Vi)

obtained by solving a linear system. To summarize, we have derived

Newton's method for two equations and two unknowns:

%)é(xka}’k) %g(xk,)’k) (Axk) _ _(f(xks)’k))’

%ﬁ(xk,yk) %(xk,yk) Ay g(Xk; Vi)

or in matrix form,
J(W)Awg = —h(Wy).

The matrix J is caled the Jacobian matrix of the system of equations composed of f
and g.

Example 4.8. Set up Newton’s method for obtaining solutions to the equations
fxy) = X +x°-9=0
gixy) = 3y -y' -4 =0,

Since
of _ 3 9f . 5
ax—2x+ya-a;_3xy
Jg Jg

=2 -6 — 3y2 _ 322
3 xy,ay 3x° =3y,

the system to be solved at each iteration is

(Zxk +yi 3 ) (Axk) _ _(x%+xky,3c—9)
6xkyk 3xlzc - 3}1% Ayk 3xl%yk - yl:z —4 '
The following table gives some numerical results for different starting points (X, Vo) -

In &l cases the iterations were terminated when the quantitymax(||h||,||Aw]|/||w]|)
was less than 10°.
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Solution Number of
(x0,70) (x,y) Iterations
(12,2.5) (1.3364,1.7542) 4
(—2.0,2.5)  (—0.9013,—2.0866) 9
(~1.2,-2.5)  (~0.9013,—2.0866) 4
(2.0,-2.5)  (—3.0016,0.1481) 19

These computations show that this system of equations has at least three solutions.
Which solution is found depends on the starting guess (xo, Yo)- |

As with Newton’'s method for a function of one variable, it can be shown that if h
is twice continuoudly differentiable near a root a of h(w) = 0, if the Jacobian matrix at
a, J(a), is not singular, and if w, is sufficiently close to a, then Newton's method will
converge to a and the convergence will be quadratic.

Advanced references like [7] develop Newton's method much further. A serious
practical difficulty is to find an initia approximation sufficiently close to the desired
root a that the method will converge. A knowledge of the problem and continuation
can be very helpful in this. A genera approach is to connect finding a root w of
h(w) = 0 with minimizing the residual R(w) = f*(w) + g*w). Clearly this function
has a minimum of zero at any root of h(w) = 0. The idea is to regard the change Dw
computed from Newton's method as giving a direction in which we search for a vaue
| such that the iterate

Wit = Wy + | Dwy
results in a smaler value of the residual:
R(wy11) < R(wg).

This is aways possible because until we reach a root,

[iR(wﬁ—lAwk) = —2R(wy) < 0.
oA A=0

There are many practical details to be worked out. For example, it is not necessary, or
even desirable, to find the value of | that minimizes the residual. Methods of this kind
are called damped Newton methods. A careful implementation will often converge
when Newton’s method on its own will not and will have nearly the same efficiency
when both converge.

EXERCISES

4.25 Use Newton iteration to find a solution (good to at Y - 14xz= 0.
least an absolute error of 10* in magnitude) near
(0.5, 1.0, 0.0) of the nonlinear system

2%-x+y-z=0 f(x) = e +yx

4.26 We seek the three parameters a, b, and gin the model

32x%- y*- 20z =0 by interpolating the three data points (1, 10), (2, 12),
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and (3,18). Use Newton iteration to solve for the pa- rameters to three significant figures.

4.6 CASE STUDY 4

The LotkaVolterra equations

dx

o= a(x—xy)
dy

i —c(y—xy)

describing the populations of predator and prey are studied at length in most modern
books on ordinary differentia equations (see, eg., Boyce and DiPrima [2]). Those
emphasizing a modeling approach, like Borrelli and Coleman [I], give considerable
atention to the formulation of the model and conclusions that can be drawn. Although
the population equations do not have an anaytical solution, the equation

dy  cy—xy)

dx —  a(x—xy)
for trgectories in the phase plane can be solved because it is separable. An easy
caculation detailed in the books cited shows that the solutions satisfy the conservation
law

ecx+ay — Kxcya’

where K is an arbitrary constant. The tragjectories revea the qualitative properties of
the solutions, so there is great interest in their computation. Davis [5] exploits the
conservation law to compute trajectories by solving nonlinear algebraic equations, the
subject of this case study.

Following Volterra, Davis considered evaluation of the trgectory for parameters
a =2, ¢ =1 and initia condition (xy) = (1,3). In this case there is a periodic solution
of the differential equations, that is, the populations of predator and prey are sustain-
able for dl time. In the phase plane this periodic solution corresponds to a trgjectory
that is a closed curve, as seen in Figure 4.6. The initia condition determines the con-
stant K for the solution of interest. A little manipulation of the conservation law leads
to

() =xe™ =y 2P K = (3> =¥,

Points (x,y) on the trgectory are computed for a sequence of y by forming the corre-
sponding g > 0 and solving this agebraic equation for x. Davis gives a series for the
smallest positive root,

3 n1 —
x=y+72+573+...+7f+... = Zt’"
: n=1

For positive g we are summing positive terms, so as we learned in Chapter 1 we can
expect to evaluate the series accurately in a relative sense provided that it converges at
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3}

1 2 3 4
Figure 4.6 A periodic solution of the Lotka-Volterra equation.

a reasonable rate. The ratio test for convergence is illuminating. A well-known limit

for e shows that the ratio
t 1 n—l
n+1

t 1\ ! 1"
= 1 —_— bt == '1'|
am = JLE&Y(H,,) (1+n) ¥

has the limit

lim

The ratio test amounts to comparing the rate of convergence of the series to the rate
of convergence of a geometric series, in this case Y,-_;(Ye)". For values of g rather
less than I/e, the series converges quickly. It was pointed out in Chapter 1 that n!
grows rapidly as n increases, making integer overflow a dangerous possibility when
evaluating the series, and the factor n" grows even more rapidly. It is better to compute

the coefficients by
1 ’l—l
Int1 :tnY(lJf';) )
which is nicely scaled.

The function f(x) = xe* and its derivative, f(x) = (1 - x)€*, are so simple that
properties of the equation f(X) = g are easly determined. The function vanishes at
x =0 and tends to 0 asx — . It gtrictly increases to its maximum of eax=1
and strictly decreases thereafter. These facts tell us that for 0 < g < €', the equation
f(X) = g has exactly two roots. One lies in (0,) and the other in (1,e0). Both are
simple. The roots merge to form the double root x = 1 when g = e’ and there is
no root a al for g > e’ This is easly understood geometrically. The trgjectory
is a closed curve and the two roots represent the left and right portions of the curve
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for given y. We have to expect numerica difficulties solving for x(y) when g = e'
because the curve has a horizontal tangent then.

If we were solving this equation for a given g as an isolated problem, a good way
to proceed would be to use Zero. Because the code converges very quickly from poor
guesses, we might try a “large” interval so as to increase the chance of locating the root
that is larger than 1. We might, for example, choose [B,C] = [1, 1000]. This presents
no difficulty for the code, but makes a point raised in Chapter 1. The function exp(-x)
underflows for x as large as 1000, causing problems with some operating systems.
Davis solves for x when y = 1. It is a matter of a few minute's work to ater the
example code provided with Zero to solve this problem using a system that deals with
underflows by setting them to 0. With a relative error tolerance of 10° and an absolute
error tolerance of 10°®, only 15 evauations of the function were needed to compute
the root x= 4.24960. With this value of y, the constanty=a 0.060641. The code reports
the residual of the approximate root to be r &8 x 10°. This is a situation illuminated
by backward error anaysis. the computed root is the exact root of f(x) = g+ r, a
problem very close to the one posed. Here we see that the x coordinate computed by
Zero is the exact value for a dightly different y coordinate.

When computing a trajectory, we are solving a sequence of problems, indeed,
more than a hundred in generating the figure. The first derivative is readily available,
the roots are simple, and a good initial guess is available. The circumstances suggest
that writing a code based on Newton's method would be worth the trouble. Before
discussing the computation of the trgjectory, let's do a couple of experiments with
Newton's method. First we compute the smaller root when y = 1. Recall that when
solving F(x) = f(x) - g = 0, the method is

_ . Fx)
Xi+l = Xj— F’—(;j
]

Because the method is quadratically convergent for these simple roots, the difference
between successive iterates provides a convenient and reliable way to test for conver-
gence. Of course, for this test to work it is necessary that the iterate be close enough
to the root that the method really is converging quadratically fast and not so close that
finite precision corrupts the estimate. Because g is relatively small in this case, we can
compute an accurate value for x using the series to see how well the procedure works.
With x, = g, the table shows that convergence appears to be quadratic right from the
start and the estimated error is quite close to the true error, except at limiting precision.
(It is quite possible that the root computed in this manner is more accurate than the ref-
erence vaue computed with the series) Because there is a natura measure of scale
provided by the constant g, the small residud tells us that after only a few iterations,
we have a very accurate solution in the sense of backward error anaysis.

Iterate X Residual Est. error Error
0 0.606415¢—1 —0.36e — 02 0.40e — 02 0.41e—02
1 0.646775¢ — 1 —0.15¢ - 04 0.17e—04 0.17¢ — 04
2 0.646944¢ — 1 —0.26¢ — 09 0.30e — 09 0.30e — 09
3 0.646944¢ — 1 0.45¢—17 —0.51e—17 —0.28¢—16
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This is what we expect of Newton’s method, but things do not always go so well.
Suppose now that we try to compute the larger root starting with a guess of 8. In order
to measure the error, we computed the root accurately in a preliminary computation.
The first difficulty we encountered is that the method does not converge to this root.
Remember that we can expect convergence to the root nearest the guess only when the
guess is “sufficiently close.” The error reported in the table is the difference between
the iterate and an accurate value for the smaller root.

Iterate X Residual Est. error Error
0 0.800000¢ + 1 —0.58¢ — 01 —0.25¢+02 —0.79¢ + 01
1 —0.166814¢+2 —0.29¢+ 09 0.94¢ + 00 0.17¢+02
2 —0.157380e+2 —0.11e+09 0.94¢ +00 0.16e+02
3 —0.147977e+2 —0.40e + 08 0.94¢ +00 0.15¢+02
23 0.620850e — 1 —0.23¢-02 0.26¢ — 02 0.26e — 02
24 0.646873¢ — 1 —0.62¢ — 05 0.70e — 05 0.70e — 05
25 0.646944¢ — 1 —0.45¢ - 10 0.51e—10 0.5te—10
26 0.646944¢ — 1 0.45¢ — 17 —0.51e—17 0.00e 4+ 00

As the residual makes clear, we went from a reasonable initial guess to approximations
that are terrible in the sense of backward error analysis. This kind of thing did not
happen with Zero, even though it was given much worse guesses, because of the way
it combines the secant rule and bisection. All goes well near the root, but convergence
is very dow when an iterate is large and negative. Indeed, the estimated error is the
change in the iterate and the table shows it to be nearly constant then. This is easy to
see anaytically from

xe -y
(1 —x;)e%i

Examination of the sizes of the terms when x; << - 1 shows that the change is approx-
imately x/(1 - x). This can be further approximated as 1, agreeing as well as might
be expected with the values 0.94 seen in the table. These approximations make it clear
that if we should turn up an approximation x, << - 1, the iterates are going to increase
slowly to the positive roots.

Davis used this agebraic approach only for computing a couple of points on the
trgjectory. If we want to compute the closed trgjectory of the figure, we need to do con-
tinuation efficiently and deal with the fact that the differentia equation for the phase
is singular when x = 1. First let's look for a moment at the solution of xexp(-x) = @
for a sequence of values g Suppose we have found a root x corresponding to a given g
and want to compute a root corresponding to g + d for some “small” d. One possibility
for an initial guess is simply x. Often this works well enough, but for this equation a
short calculation shows that

Xigp] =X =

dx &
dy 1-x

A rather better initial guess is then x + ddx/dg. Notice the change in character of the
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problem that shows up here when x = 1. This is the kind of difficulty that we overcome
when tracing a trgjectory by exploiting additional information at our disposal.

The program that computed the figure accepts the constants a, ¢ and the initia
point (x,y). Using these data, it computes the constant K. The conservation law allows
us to solve for x when y is given, or to solve for y when X is given, and the code selects
the more appropriate at each step. The differential equations for the populations tell
us that for a small increment d in t, the change in x is about ddx/dt and the change in
y is about ddy/dt. If |dy/dt] < |dx/dt|, the code uses the value x + ddx/dt and solves
for y(x). Otherwise, it uses the value y + ddy/dt and solves for x(y). This amounts to
changing the coordinate system in which the curve is viewed so as to avoid difficulties
with vertical tangents. After choosing which equation to solve, Newton's method is
easily applied and converges very rapidly. Superlinear convergence is used to test for
convergence to a specified relative error tolerance.
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MISCELLANEOUS EXERCISES FOR CHAPTER 4

427 A semi-infinite medium is a a uniform initial tem-
perature T, = 70°F. For time t > 0, a constant heat
flux density q = 300 Btu/hr sq ft is maintained on the
surface x = 0. Knowing the thermal conductivity k =
1.0 Btu/hr/ft/°F and the thermal diffusivity a = 0.04
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sq ft/hr, the resulting temperature T(x, t) is given by

T(x,1) = T0+% {2\/%}*/@
()}

2 Y 2
erf(y) = 7&/0 e dz

is the error function. Find the times t required for the
temperature at distances x = 0.1, 0.2, . . . ,0.5toreach a
presssigned value T = 100°F. Use ABSERR = 10°®
and RELERR = 10°®. The function erf(y) is available
in many FORTRAN and some C and C++ libraries.

where

4.28 Write a code like Zero based upon bisection and New-

4.29

4.30

ton’s method. Are there advantages to using Newton's
method instead of the secant rule?

Modify Zero so as to input f'(x) along with f(x).
The code is to compute roots via the function u(x) =
f(x)/f (X) as described in the text. This makes the
modified code faster for multiple roots and permits the
computation of roots of even multiplicity.

Given
apxy sin9+a12x2 +ajzxz cos0 = bl
ap1x) +axpxycos0+arxz = by
a3 x; cos® + azpxy +aszxysin® = bj
ag1 X1 + agxy sin® + aqyxz = by,
devise an agorithm using the codes Zero and Fac-
tor/Solve to solve for x;, X, X3 and g. Sketch a pro-
gram in FORTRAN or C or C++ to implement your

scheme. Do not worry about input/output nor an ini-
tial bracket, but do define F(X) carefully.

4.31 In parts (8) and (b) below, error bounds are derived for

an approximate root s (real or complex) of the poly-
nomial equation

Px)=x"+a,_ X" '+ +ax+ag=0.

In each case we require an accurate value of P(s).
Since root solvers may make this residual about as
small as possible in the working precision, it is nec-
essary to compute P(s) in higher precison. Let
r,fo . ., Iy be the roots of P(x) = 0.

(a) The theory of equations tells us that P(x) can be
factored in the form

POJ = (X - ra)(x - rg)=(Xx - p).

ROOTS OF NONLINEAR EQUATIONS

Show that

a9 = (-1)"ryrp-r,
and then that

P(o) "

ap

. ()'—rj
2 min | ——
J

T
This implies that

X 1/n
G-r; /

min < f(p‘_)
i a

Tj
which says that there is some zero that is approxi-
mated with arelative error of no more than

P(O‘) t/n

ap

This bound is very pessimistic when s approximates
well a zero that is much larger than some other zero.
To understand this assertion, work out a numerical ex-
ample for a quadratic with s &~ ryand |rq| >> |ry|.
Then argue that the assertion is true in general.

(b) Show that

PO ]

P(o) Zio-rj

by differentiating In P(x). This then implies that

PO)|_
P(c) |~ minj|o—rj|
and
. P(o)
o—rij|l <n|—=}|.
mjm] ril<n P (o)

Thisis an absolute error bound, but we get the follow-

ing relative error bound easily:
o1 P(o)

e 6P (o)

J

How is this error bound related to the error estimate
derived for Newton's method?

4.32 The book [4, p. 65] contains a cubic equation for a pa-

rameter s in the context of corrections for the earth’s
curvature in the interference zone. The equation

3 s 1+u 1
S-82-Z —1}+-—=0
A ta2




depends on two parameters, u and v, which are ob-
tamed from the heights of the towers, the distance be-
tween stations, and the radius of the earth. Represen-
tative values are v = 1/291, u = 30. The smallest pos-
itive root is the one of interest, but calculate them all.
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The residuas of the larger roots are quite large. Are
they inaccurate? Compare with Exercise 4.1. Use the
computable error bounds of Exercise 4.31 to bound
the errors of the roots.




CHAPTER 5

NUMERICAL INTEGRATION

Approximating ff f(x)dx numerically is called numerica integration or quadrature.
Most of this chapter is concerned with finite intervals [a,b], but there is some discus-
sion of integrals with a and/or b infinite. Sometimes it is useful to introduce a weight
function w(x) > 0 and so approximate integrals of the form fab f(x)w(x)dx. There are
a number of reasons for studying numerical integration. The antiderivative of f may
not be known or may not be elementary. The integra may not be available because
the function f is defined by values in a table or by a subprogram. Or, definite integrals
must be approximated as part of a more complicated numerical scheme, such as one
for the solution of differential equations by finite elements by means of variationa or
Galerkin  methods.

A basic principle in numerical analysis is that if we cannot do what we want with
a given function f(x), we approximate it with a function for which we can. Often the
approximating function is an interpolating polynomial. Using this principle we shall
derive some basic quadrature rules and study their errors. When approximating func-
tions we found that piecewise polynomia interpolants had advantages over polynomial
interpolants, and the same is true in this context. In a way piecewise polynomial in-
terpolants are more natural for quadrature because using such a function amounts to
breaking up the interval of integration into pieces and approximating by a polynomial
on each piece. A key idea in quadrature is to take account of the behavior of f(x)
when splitting up the interval. This “adaptive” quadrature is described in Section 5.2
and a code is discussed in the following section. Adaptive quadrature is the main topic
of the chapter, but some attention is given to the integration of tabular data and to the
integration of functions of two independent variables. Particular attention is paid to
preparing problems for their effective solution by codes of the kind developed here.

5.1 BASIC QUADRATURE RULES

To approximate
b
/a FOOw(x)dx (5.1)

170
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suppose that values of f are available a N distinct points {x,. . . X}. Let Py(X) be
the polynomial that interpolates f at these points. The Lagrangian form of Py(x) leads
easly to the approximation

b b b N
x)w(x)dx = x)w(x)dx= x;)Li(x)w(x)dx
[, remdss [ uewde= [ 3 S Litm(x)a

N b N
= 2 £) [ Lisw(x dr= Y. Aif (). 52
a i=1
It is assumed here that the weights A; exist. This is equivaent to the existence of the
integrals

b
/ xw(x)dx for j=0,1,....N—-1.
a

In the case of most interest in this chapter, namely w(x) = 1, a and b finite, there is no
doubt about this. However, if the interval is infinite(e.g., fy f(x)dx), the approach
fails because none of the X has an integral over this interval.

The fundamental difficulty with the approach in the case of fy° f(x)dxis that it
is based on approximating f(x) by a polynomial, and polynomias do not have finite
integrals over infinite intervals. For the integral of f(X) to exist, it must tend to zero
rapidly as x — oo. A useful device is to isolate the behavior that is different from
a polynomiad in a weight function that is handled andyticaly in the formula. For
example, if we introduce the weight function w(x) = €* and define F(X) = (X)€",
the integral can be rewritten as f,” F(x)e *dx. It is straightforward to obtain formulas
for integrals of the form f;° F(x)e* dx because the integrals [? x/e™* dx exist for al j.
Whether this device results in a good approximation to f;” f(x)dx is a question about
whether F(x) behaves more like a polynomial than f(x).

Infinite intervals are one kind of problem that presents difficulties. An integrand
that is singular also presents difficulties because it does not behave like a polynomial.
Often a weight function is a good way to dea with such problems. For example, in the
solution of plane potential problems by boundary element methods, it is necessary to
approximate a great many integrals of the form

1
/ F(x)Inxdx
0

(and subsequently to solve a system of linear equations to produce a numerical solution
to an integral equation of potentia theory). The function In x can be used as a weight
function because it is nonpositive over the interval and the integrals

/ ’ x/ In(x) dx

a
exist for al j (so the weight function w(x) in (5.1) can be taken to be - In x). Similarly
to what was done with the example of an integral over an infinite interval, if we wish to
compute fol f(x)dx and f(x) behaves like In (x) asx — 0, ' we could introduce In (x) as
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a weight function and write F(X) = f(X)/In(x). By “behaves like" as x — 0 is meant

S

ss0ln(x) ¢

From here on this will be written as f(x) ~ ¢ In(x). Because F(X) has a finite limit at
x = 0, it is better approximated by a polynomid than f(x), which is infinite there.
A formula of the form

N
;Aif (x:) (5.3)

for approximating (5.1) is called a quadrature formula or quadrature rule. The scheme
for generating rules just described leads to interpolutory quadrature rules. Such a
rule will integrate exactly any polynomia of degree less than N. This is because if
f(x) is a polynomial of degree less than N, then by the uniqueness of interpolation,
Pu(¥) = f(x) and the rule is constructed so as to integrate Py(X) exactly. In general,
we say that a quadrature formula (5.3) has the degree of precision d > O if it integrates
exactly any polynomia of degree at most d, but not one of degree d + 1. We shal find
that a judicious selection of the interpolation points {x} in the construction of (5.2)
leads to formulas with a degree of precision greater than N - 1. Generally we have in
mind {x;} that lie in [a,b], but in some important applications this is not the case. For
example, the very important Adams formulas for the solution of ordinary differential
equations are based on quadrature rules that use the end points a and b as nodes, but
al other x; lie outside the interval. The same is true of a method for integrating tabular
data that is considered later in this chapter.

The following theorem develops some bounds on the error of a formula with de-
gree of precision d. It is stated using the notation ||f|| for the maximum over [a, b] of
|f(X)|. Also, as in Chapter 3, M, is used for [|f?||. Finaly, the absolute error of the
quadrature formula is denoted by E(f), that is,

b N
E(f)= [ rlominds- 3. Aif(w)

Theorem 5.1. If the quadrature formula (5.2) has degree of precision d, then
for any polynomial p(x) of degree q < d,

b N
EDI <117 =l ( / w(x)dx+2|Ai|> (54

i=1

If each A, > 0, then
b
E@ <21 =Pl [ i 5)

Proof For p(x) any polynomid of degree q < d,

b b
EN | [ pew)dr+ [ (760 - plwix)
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N

N
= X Aip(x) = S A (x) = pla)|

i=1
b N
SEQ)+ [ 17 - plw(a)dr+ X ladlr

b N
SIIf—pII(/a w(x)dx+§|A,~|),

i=

where we have used the fact that E(p) = 0. (Why?) This is (5.4). For (5.5), when each
A > 0 the absolute values in (5.4) can be dropped. Because the quadrature formula

integrates constants exactly, applying it to f(x) = 1 shows that

ZA 1= / (x) - 1dx,
which results in (5.5). ]

Corollary 5.1. If f(x) has d + 1 continuous derivatives on [a, b], then

a d+1 b N
|E f)l<(b ) (zlﬁl)!(/a W(x)dx+i=21|Ai|)- (5.6)

If each A, > 0, then

b—a\ %! M
EI<(P52) g2 [ v )

Proof Since the bounds of Theorem 5.1 hold for any p(x), we can use the p(x)
coming from Taylor's theorem (see the appendix) with x, = (a + b)/2 and n = q:

f(x) = p(x) + Rgy1(x),
where

o) = 750)+ E3 20 o) -+ B2 100

and

Ryt1(x) = —(x( _T_Of;ﬁ 4 (z)

for some z between X, and x. This implies that

o |E=2 b—a\ "™ Mgy
If=pll= max | =m 5 A7 @ < | 3 ) G+t 63
Substituting this with q = d into (5.4) or (5.5) yields (5.6) or (5.7). |

When we studied polynomia interpolation, we learned that interpolants of high
degree are likely to oscillate and provide unsatisfactory fits. The situation now is dif-
ferent because it is the area under the curve that is being approximated, and it seems at
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least possible that the oscillations will average out. This is the importance of the spe-
cia case of formulas with al A, > 0. At least as far as the bound of the Theorem 5.1
goes, increasing the degree of precison with such formulas can only help. Unfor-

tunately, the interpolatory quadrature formulas for ff f(x)dx based on {x} equally
spaced in [a, b], which are called Newton-Cotes formulas, have some A; that are neg-
ative for even modest degrees. The results of these formulas may not converge to the
value of the integral as the degree is increased. However, we shall take up another fam-
ily of formulas of arbitrarily high degree of precision for which al the A, are positive.

In the bounds (5.4), (5.5) we can choose any polynomia p(x) of any degree q < d.
For finite a, b there is a polynomia p*(x) of degree at most d that is as close as possible
to f in the sense that

lf=p"ll= min |If—pl|.
p apoly.
of deg. <gq

The code that accompanies this chapter, called Adapt, is based on two formulas with
A; > 0 for dl i. One has d = 5 and the other, d = 11. In the bound (5.5), in the one case
we have ||f - p*|| for the best possible approximation by a polynomia p's of degree 5
and in the other, p';; of degree 11. According to the bound, the formula of degree 11
cannot be worse because the polynomial of degree 5 can be considered a polynomial
of degree 11 with some zero coefficients. It would be remarkable if it were not the case
that ||f - p 14| is quite a bit smaller than ||f - p s||, hence that the formula of degree 11
is quite a bit more accurate than the formula of degree 5.

A more detailed analysis of the error shows that for many formulas with w(x) = 1,
including all those considered in this book, the error E(f) can be expressed as

_ g\ 42
pn=c(252) /e 59

for some x in (a,b). Note that this is an equality rather than a bound.

The result (5.9) is a traditional one, but when it involves a derivative of high order,
it causes people to doubt whether the formula is practical. For instance, the formula
of degree 11 mentioned earlier satisfies (5.9) with f*2. It is hard to come to any
understanding of such a high order derivative, and a natural question is, What happens
if you use the formula and the derivative does not exist? We appreciate now that
the form (5.9) is just a consequence of the method of analysis. The inequality (5.8)
provides bounds when f has only g + 1 continuous derivatives, and the bound based
on best approximation does not directly assume any continuous derivatives. There is
no reason to fear a formula of high degree of precision because of an expression like
(5.9); other expressions for its error are applicable when the function is less smooth.

If a quadrature formula has the degree of precision d, then

E(x/)=0,j=0,1,...,d, (5.10)
and

E(xth) £0. (5.11)
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If we assume that the error has the form (5.9), it is easy to find ¢ from

E() =¢ (b;a)d"'z @41

The equations (5.10), (5.11) furnish another way to generate quadrature rules. The
approach is known as the method of undetermined coeficients. In this approach the
coefficients {A} are regarded as unknowns that are found by satisfying the system of
linear equations (5.10) for d as large as possible. Before giving examples, we note that
It is often convenient to apply the method of undetermined coefficients to a standard
interval [-1,]] and then transform to a genera interval [a,b] by a simple change of
variable. If we have

N
[, 7= B ista) +er 401,

let
b—a

=
2

(x+1)+a.

Then dt = (b - a)d2 and
b - 1 —

/ Fiyde="2 "/ (=% +a) dx
a 2 -1 2

N b—a a+b b—a
- 2 ;Aif( 2 i ) ) 2 E(f)
Since
d_did_b-ad
dx  dxdt 2 dt’
it follows that

dd-l-] b— a d+1 dd+l
P ( ) ) PRk
so that the change of variable yields

/abf(t) dr = i (b;aAi) f (b%ax"J“ #) * (Q;_a)d+2 0@

i=1

Example 5.1. We seek a quadrature formula of the form

/;11 f(x)dx=Af(—=1) +A2f(1) +E(f).

In the method of undetermined coefficients
f(x) = 1 implies 2 = A; + A,
f(x) = x implies 0 = -A; + A,.



176

CHAPTER 5 NUMERICAL INTEGRATION

Figure 5.1 trapezoid rule.

Hence, A, = A, = 1. We aso observe that, by construction, d > 1. Then f(X) = X
yields

=A;+Ay +E(X).

W N

Since E(¢) # 0 this tells us that d = 1 and ¢ = E(xA)/2! = -2/3, which is to say that

[ f@as= =045 -2

for some x in (-1,1).
For a genera interva [a, b] we apply the result of the change of variable formula
(5.12). We have (in braces) the

trapezoid rule:

[ 1= {25200 + 16 } - 15 6-aP @)

for some x; in (a,b). The name of the quadrature rule comes from the fact that it
amounts to approximating the area under the curve f(X) by the area of a trapezoid.
See Figure 5.1 for an illustration. |

Example 5.2. Let us find the most accurate formula of the form

[ 75)dx = AL (=1)+ A2 (0) + A () +E):
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In the method of undetermined coefficients, we try to integrate powers of x exactly to
as high a degree as possible.

f(x ) = 1 implies 2 = A 1+ A2 -+ A3

f(x) = x implies 0 = -—A; + Az
PN a . .. o) . .

f(x) = x* implies § = A + Asj.

This set of equations determines the coefficients to be A; =A; = §,4;, = $To find
the degree of precision d, we check the next higher power,

f(x) = ¢ implies 0 = -A + A + E(C) = E(X)
and find that d is at least 3, higher than we might have expected. For the next power,
L2 2
f(x) = x* implies 3 =A|+A3+E() = §+E(x4),
so d = 3 and E(x*) = (2/5) - (2/3) = -(4/15). Then ¢ = -(4/15)/4! = -1/90 and

[ @dx= 11+ 370)+ 370) - 55O @)
-1

for some x. Asin (5.12), for a general [a,b] this gives us

Smpson’s rule;

See Figure 5.2 for an illustration. u

Both these formulas are Newton-Cotes formulas because the nodes are equaly
spaced in [a,b]. The procedure was to select the nodes {x} and then solve a system
of linear equations for the {A}. This is typica when the nodes are specified in ad-
vance. But what if the {x;} are alowed to be unknown as well? With twice as many
unknowns, 2N, a our disposal, we might hope to find formulas with a much higher
degree of precision, perhaps even 2N - 1; that is, we might hope to get a (2N - 1)st
degree formula that uses only N evaluations of f. Unfortunately, the system of equa
tions for {A} and {x;} is then not linear. It is not obvious that there are real solutions,
and if there are, how to obtain them. Gauss elegantly solved the problem for genera
N, even with rather general weight functions and infinite intervals. The resulting for-
mulas are known as Gaussian quadrature formulas. Special cases can be worked out
in an elementary way.

Example 5.3. For N = 1 the Gaussian formula has the form

[ 1) =Anfx0) +E).
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Figure 5.2 Smpson’'srule.

In the method of undetermined coefficients,

fx) = 1 implies 2
fx) = x implies O
hence, A; = 2 and x; = 0. To determine the error, we try

f) = » implies 2 = 2 x 0 + EGA),
and find d = 1, c = (%)/2= 4, and

A
Ale ’

[ Fdx=270)+ 17"0).

3
On [a,b] this becomes

/abf(x)dx= {(b_a)f (a;b)}+2i4(;,_a)3fw(g). (5.14)

This formula is known as the midpoint rule.

|
Example 5.4. For N = 3, the form is

[ 10 dx = Af) 4 Ao (e2) 45 25) + B,

Because of the symmetry of the interval [-1,1], it is plausible that A, = As, % = 0,
and x; = -X3, SO let us try

[ £ dx= A1) 4 427(0) + Ars(-x) + B
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Now,
fxd) = 1 implies 2 = 2A;, + A
fxd) = x implies 0 = Ax - Ax = 0 (automatic)
fx) = X implies % = 24,8
f)0 = X implies 0 = AX, - AX,; = 0 (automatic)
fx) = x* implies % = 24.x%

At this point we have three equations in the three unknowns A;, A,, and x;. The last
two equations require that x4, = 3/5, A, = 5/9 and the first that A, = 8/9. To find the
error, we try

This implies that d > 5. Finally

f(x) = 3 implies 0 = AX®; - Ay + E(C) = E(X).
6 . . g__ZA 6 E (]
f) = x° implies 5= 1% +E(x7)
6
=—+E(5).

10\ /3\° P
2N (2) +E
(3)(5) +20
25
This says that d = 5 and ¢ = (3 — &) /6!. Collecting the resuilts,

/ 11 f@)dr=g [Sf (— @) +8£(0)+5f (ﬁ)] + 15’1750f(6)(§)-

On [a, b] the resulting quadrature rule is called the

three-point Gaussian quadrature formula,

b—a a+b b—-a [3 a+b a+b b-—a [3
18 [Sf(T_ 2 §)+8f( 2 )+5f( 2 T2 \/;)J

(5.15)
and its error is
(b—a) L6
— . 5.16
2,016,000f ® (5-16)
See Figure 5.3 for an illustration. u

For larger N the method of undetermined coefficients is impractica for deriving
Gaussian quadrature rules. Besides, the questions of the existence of formulas and the
best possible degree of precision are left open in this approach. Gauss used the theory
of orthogona polynomials to answer these questions. We cannot develop the theory
here (see [8, pp. 327-331]), but it is possible to see how high degrees of precision can
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Figure 5.3 Three-point Gaussian quadrature.

be achieved. With reasonable conditions on w(x) and [a,b], it is known that there is a
sequence of polynomias gn. (X), N=0, 1, . . ., such that qy.1 (X) is of degree N and

b
/x19N+1(x)w(x)dx=0 for j<N. (5.17)
a

When w(X) = 1, a = -1, and b = 1, these polynomias are the Legendre polynomials
(see [8, p. 202)). It is dso known that the N distinct roots of qu.; (X) are rea and lie in
(a, b). Suppose that an interpolatory quadrature formula (5.2) is based on interpolation
a the roots of gy, (X). If f(xX) is any polynomia of degree 2N - 1, it can be written
as

f0) = alan (¥ + r(3,
where the quotient q(X) and remainder r(x) polynomias are of degree a most N - 1.
Then

/abf(x)w(x)dx= /abq(x)9N+1(x)w(x)dx+/ab r(x)w(x) dx
= /a br(x)w(x) dx,

where the first integral vanishes because of (5.17). For any choice of the nodes {x;},
the formula of (5.2) integrates a polynomial of degree N exactly, so

b N
/a r(x)w(x)dx= ZAir(x,-).

i=1
The formula applied to f(x) has
N

N N
;Aif (x:) = X Aig(x)On11(x) + X Air(xi).

i=1 i=1
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Now we use the fact that the x; are roots of q,(x) to see that

N N b b
if(xi) = r(x) = [ rixwkx)dx= x)w(x)dx.
i) = ) = [ rwde= [ 5ewtx)

Since any polynomia f(x) of degree 2N - 1 is integrated exactly, this formula has a
degree of precision that is at least 2N - 1.

There are computationally convenient ways to derive Gaussian quadrature rules,
and formulas may be found in specialized books. Gaussian formulas are valuable be-
cause they provide the highest degree of precison for the number of values of f(x).
An important fact about Gaussian formulas is that the A, are all positive. As discussed
in connection with the error bounds, this means that we can use formulas of a very high
degree of precision, even for integrands that are not smooth. Gaussian formulas incor-
porating weight functions are especialy valuable tools for dealing with integrands that
are singular and intervals that are infinite. Whether or not there is a weight function,
the nodes of a Gaussian formula all lie in the interior of [a b]. This means that the
formula does not use f(a) or f(b). We shall see that this is quite helpful in desling
with singular integrands.

So far we have been considering procedures based on approximating f(x) over the
whole interval [a,b]. Just as with polynomial interpolation, the error depends strongly
on the length of the interval. This suggests that we break up the interval and so approx-
imate the function by a piecewise polynomia function rather than a single polynomial.
The simplest approach is to split the interval into pieces specified in advance. If we
partition [ab] into a = X < X, < = < Xy = b, then f2 f(x)dx= 31, f5+ f(x)dx,
and we can apply standard quadrature rules to each of the n integras. The resulting
formula is known as a composite or compound rule. Traditionaly the {x} have been
chosen to be equally spaced in [a,b] and the same formula used on each piece, but this

iS not necessary.

Example 5.5. Composite Trapezoid Rule. The composite trapezoid rule approxi-
mates | = fa”f(x) dx by splitting [a,b] into n pieces of length h = (b - a)/n and apply-
ing the trapezoid rule to each piece. With the definition x, = a + ih, thisis
h h
I=T,= ) [f(x0) + f(x)] +--- + 'i[f(xn—l) + f(xn)] s

which simplifies to

To = [ 300+ £la0) -+ £ snr) + 3706

Figure 5.4 illustrates the composite trapezoid rule. u

An ingenious use of repeated integration by parts establishes the Euler-Maclaurin
sum formula It states that if f?(x) is continuous on [a,b], then
v—1 h2k

I=T~ 3 Gy [f00) - /D) -

k=1

nh2v+l
(2v)!

Boy ) (&)
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a b C 4d e f

Figure 5.4 Composite trapezoid rule.

for some x in [a,b]. The coefficients By, appearing here are known as the Bernoulli
numbers. The first few terms of the error expansion are
I=T — h_2 [f(l)(b) —f(l)(a)] +_h‘_1_ [f(3)(b) —f(3)(a)] _
12 720 '
The basic trapezoid rule applied to an interval of length h has an error that goes to zero
like h®. When the n = 1/h terms are combined, the error of the approximation to the
integral goes to zero like h?. However, notice that if it should happen that f(b) =
fY(a), the formula is more accurate than usual. If in addition other derivatives have
the same values at the ends of the interval, the formula is gtill more accurate. When
integrating a periodic function over a multiple of a period, all the derivatives a the
ends of the interval are equal and this formula is extreordinarily accurate. In fact, if
the periodic function is analytic, so that it has derivatives of al orders, T,— | faster
than any power of h! Although rather specia, this is extremely important in the context
of Fourier andysis.
The error of T, can be estimated by comparing it to the more accurate result T,,
obtained by halving each subinterval. A convenient way to evaluate the formula is

Ty = g % F(@)+ F(x10) + F1) + o+ Fltnt) + Fluei o) + %f(b)]
= % (7;1 +Mn) s
where

My=h'S fla+(k—1/2)h).
k=1

It is important to note that all the evaluations of f made in forming T,, are reused in
Ton.
There is a way of exploiting the error expansion of the composite trapezoid rule
due to Romberg that is popular for genera integrands. The idea is to combine T,, and
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T,y in such a way as to obtain a higher order result. According to the error expansion,
2 4
1=, = = [f00) - 1@ + 75 [00) - 9 (@)] -
h/2 h/2
= 13— 22 [0 p0(0)] + 22 [ 14 1)

720
A little manipulanon then shows that

2D, - T, (22-2%\ (h/2)* 3 (b) — £
I==%3 +(22~1> 720 [f( i ]

The formula
22T, —T,
221

is of higher order than each of the individual formulas. As it turns out, this formula
is the composite Simpson's rule. Romberg developed a computationally convenient
way of successively combining results so as to increase the order by two with each
computation of a composite trapezoid rule. The process is caled extrapolation.
Romberg integration can be very effective. It adapts the order of the method to
the problem. It does, however, depend on the integrand being smooth throughout the
interval. Also, it evaluates at the ends of the interval, which is sometimes inconvenient.
MATHCAD uses Romberg integration for quadrature. If there is a singularity a an end
of an interval or if the process does not converge, the code switches to a variant based
on the midpoint rule that does not evaluate at the ends of the intervals and divides

intervals by 3 rather than 2. |

EXERCISES
5.1 Use the method of undetermined coefficients to derive and calculate Al and x; in the usual manner. Assum-
Newton's 3-rule: ing E(f) = cf“*P(x), find d and ¢. What is the cor-

responding formula and associated error on the gen-
erd interval [a,b]?

5.3 Implement the composite trapezoid rule and apply it
to

[ s =avs-1)+aor (-3)

+s7 (3) +AS D)+ s ®) i

0 4+sin(20x)"

Of course, you must choose h smal enough that sam-
ples are taken in each period. Approximate the inte-
grd for a number of values of h that tend to 0. Accord-
ing to the theory of Example 5.5, the approximations

1 T, ought to converge extremely fast. Is that what you
[ 0 dx=Arf(=x)+ A1) + E(F) find?

Cdculate A;, Ay, Ag, Ay, d, and c in the usual manner.

5.2 Use the method of undetermined coefficients to find
the two-point Gaussian quadrature formula with its as-
sociated error. Begin with
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5.2 ADAPTIVE QUADRATURE

In this section a code is developed that approximates | = ff f(x)dx ito an accuracy
specified by the user. This is done by splitting the interval [a,b] into pieces and apply-
ing a basic formula to each piece. The interval is split in a way adapted to the behavior
of f(x). A fundamenta tool is an error estimate. With the capability of estimating the
error of integrating over a subinterval, we ask if the error is acceptable, and if it is not,
the subinterva is split again. As we have seen, for a formula of even modest degree of
precision, reducing the length of the interval increases substantially the accuracy of the
approximation. Proceeding in this manner, the formula is applied over long subinter-
vals where f(x) is easy to approximate and over short ones where it is difficult. Codes
like the one developed here are in very wide use, being found, for example, in the
collection of state-of-the-art codes QUADPACK [12], libraries like NAG and IMSL,
and computing environments like MATLAB.

When the code is supplied absolute and relative error tolerances ABSERR and
RELERR, it attempts to calculate a value ANSWER such that

Il - ANSWER| < max(ABSERR, RELERR x |I|).

The computational form of this uses an error estimate

b
ERREST ~ / f(x)dx — ANSWER
a

and replaces | by ANSWER:
[ERREST| < max(ABSERR, RELERR x |[ANSWER)). (5.18)

We cannot hope to get a more accurate approximate integral than the correctly rounded
true value, so it makes no sense to take RELERR < u, the unit roundoff of the computer
used. Indeed, we require RELERR > 10u so that we do not work with error estimates
that are nothing but roundoff. We also require ABSERR > 0 so as to deal with the rare
Situation that | = 0.

The method employed in the code bresks the interva [a,b] into pieces [a,b] on
which the basic quadrature rule is sufficiently accurate. To decide this we must be
able to estimate the error of the rule. This is done with a basic principle of numerical
analysis, namely to estimate the error of a result by comparing it to a more accurate
result. Besides the approximation

B
O~ / f(x)dx,
o
another approximation Q is formed that is believed to be more accurate. Then
i ~ p ~
[} redz-0=0-0+| [ strjas-g]

says that when Q iis more accurate than Q, the error in Qis approximately equal to
Q0-0.
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To keep down the cost of estimating the error, we use evauations of f(x) in both

formulas. As a simple example, we might take Q to be the trapezoid rule and Q to be
Simpson’'s rule. The trapezoid rule is based on the values f(a) and f(b). The error
estimate is computed with Simpson’s rule, which needs only the one additional vaue

f((a+h)/2 Simpson’s rule is considerably more accurate than the trapezoid rule,
giving us reason to hope that the estimate will be a good one.

The code Adapt uses for Q the three-point Gaussian quadrature formula of Ex-
ample 5.4 that has deAgree of precision d; = 5. A formula of much higher degree of
precision is used for Q. The error anaysis based on best possible polynomia approx-
imation gives us confidence that Q will be more accurate than Q. It would be possible
to use another Gaussian rule for @, but the N-point Gaussian rule for N # 3usesN
completely different {x;} (except possibly x = 0). To keep the number off evaluations
to a minimum, another approach is taken. In 1964 Kronrod derived for each N-point
Gaussian rule a corresponding rule of degree 3N + 1 or 3N + 2 (depending on whether
N is even or odd). The idea was to start with the N Gaussian nodes and add N + 1
others chosen to obtain the highest possible degree of precision. Formulas for N < 40
are tabulated in [10]. The N = 3 case is

[ 709 = {0 (e0) + Anf0)+ A (0) + 4050

+A3f(—x3) + Ao f(—x2) + A1 f(~x1)} +5.84% 10713 f12)(E),
where

3
X, = \/; (as for three-point Gaussian quadrature)

X = 0.9604912687080202

Xg = 0.4342437493468026

A; = 0.2684880898683334

A, = 0.1046562260264672

A; = 0.4013974147759622

A, = 0.4509165386584744.
The basic idea of adaptive quadrature is to approximate the integral over a subin-
terva (a,b). If the approximation is not accurate enough, the interval is split into
(usually) two parts and the integral approximated over each subinterval. Eventualy,

accurate approximations are computed on al the subintervas of [a,b] that are added
up to approximate the integral over [a,b] or the cost is deemed too high and the compu-

tation terminated. The error terms of the formulas Q,Q quantify the benefit of splitting
an interval; recal from (5.16) that

[ 1) = 496 x 10°7) (B -0y FO 51,

The corresponding result for the Kronrod formula of seven points is

[ 509 dx=0= (.14 1077) 8- A2 ),
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Y
4+t [}
3»
2.
1.
. YA ' %
1 2 3 4

Figure 5.5 Example where quadrature should be adaptive (for efficiency).

Clearly, having b - a will generaly result in much more accurate approximations.
This process will resort to short intervals only where f(x) changes rapidly and long
ones elsewhere. For example, the function f(X) graphed in Figure 5.5 is likely to
require short intervals near 0 and [2, 3], but not elsewhere. A process like the one
described is called adaptive because where f(x) is evaluated in the approximation of
its integral depends on its behavior.

It is important to understand that quadrature formulas of the kind taken up in
this chapter sample f a only a finite number of points, and if these points are not
representative of the behavior of the curve f(x), the result will not be accurate. What
is even worse is that the error estimate comes from comparing the result to that of
another formula of the same kind, so it is possible that both are inaccurate. Because
of this any quadrature formula and error estimate of the kind taken up here is doomed
to be completely wrong on some problems. As a concrete example, for the Gauss-
Kronrod (N = 3) case, let

f(x) =2 (@ =) - x3)* (- x3)%.
Clearly, f(x) > 0 on [-1,1], sof_llf(x)cix is a poditive number. Yet both formulas

see only f(x) = 0, hence caculate Q = Q = 0. The result is terribly wrong and the
error estimate does not detect this. Applying a quadrature code blindly can get you
into trouble!

The core of an adaptive quadrature code is a function that approximates fa,l f(x)dx

-~

by Q and estimates the error of the approximation by Ej := Q@ — Q. Suppose we want
I = fabf(x)dx to an accuracy

TOL := max(ABSERR, RELERR x |JANSWER)).

A dtate-of-the-art code like those of QUADPACK [12] proceeds as follows. At a given
stage of the process the interval [a,b] is partitioned into subintervals a = a; < by =
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a; <b, =az < < by =Db there is an edimate Q, available for the integral of
f(x) over each subinterva [a;,bj] and an estimate Ej available of the error of Q;. By
adding up the Q; and Ej, an approximation Q = ANSWER to | is available along with
an estimate E = ERREST of its error. If the current approximation to | is not good
enough, the subinterval [a;, b;] with the largest error |Ej| is selected for improvement.
It is split into two pieces [a;, (a; + b;) /2], [(a; + b)) /2, b;], and approximate integrals
over these pieces and estimates of their error are computed. The two subintervals and
the associated quantities replace the subinterval [a;, b;] and its associated quantities.
This global adaptive procedure is extremely efficient, but at a cost of keeping track
of al the subintervals and the information associated with them. In the code Adapt
the adaptation is more loca and the implementation a little simpler. The difference
in Adapt is that when a subinterval is integrated with enough accuracy, it is no longer
a candidate for improvement. Thus a queue is kept of subintervals on which the es-
timated error of the integral over the subinterval is considered to be too large. At a
typical stage of the process, the code tests whether the current approximation to | is
sufficiently accurate to satisfy the user’s error request. If it is not, the next subinterval
[a;, bj] is removed from the queue, split in half, and approximations to the integral
over each half, aong with error estimates, are computed. They are placed at the end of
the queue. If an approximation to an integral ff f(x)dx is etimated to have an error
no more than |(b - a) / (b - a@)] x TOL, it is accepted and [a, b] is not examined again.
This is more stringent than necessary because adding up approximations

/abf(x)dxz Z/a[jjf(x)dszQj

that satisfy this condition will result in an error such that

jerror| = | S | < 3| B~
The globa adaptation used in the collection QUADPACK [12] subdivides until | Y E;| <
TOL. The more local adaptation of Adapt subdivides until ¥ |E;| < TOL. Because
Y|Ej| is aways at least as big as | Y Ej|, and perhaps much larger, the local process
works harder but should provide answers that are more accurate than the specified
tolerance TOL.

Let us now formalize the agorithm. To start the process, form the approximation
Q to the integral over [a,b] and its estimated error ERREST. If |ERREST| < TOL, we
take ANSWER = Q as the result and return. If ERREST does not pass the error test,
a, b, Q, and E = ERREST are placed in the queue and the following loop is entered:

x TOL = TOL.

o
a

remove a, b, Q, E from top of queue
compute QL ~ fé‘“’ﬁ)/ 2 f(x)dxwith estimated error EL

compute QR ~ f(l?x.l_ﬁ) /2 f(x)dx with estimated error ER
ANSWER := ANSWER + (( QL + QR) - Q)

ERREST := ERREST + ((EL + ER) - E)

if EL istoo hig, add a, (a + b)/2, QL, EL to end of queue
if ER istoo big, add (a + b)/2, b, QR, ER to end of queue.
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This procedure is repeated until one of the following events occurs:

1. The queue becomes empty.

2. |[ERREST| < TOL.

3. The queue becomes larger than the space alocated.
4. Too many f evaluations are made.

The first two cases represent a success. The last two represent a failure in the sense
that the code has failed to achieve the desired accuracy in the work allotted. It may
be that the estimated error, although larger than specified by means of the tolerances,
is acceptable and the answer reported will suffice. Even when it is not, an inaccurate
vaue of the integra may be useful as a indication of the size of the integra when
selecting appropriate tolerances.

Notice the way quantities have been grouped in the computation of ANSWER and
ERREST. The quantity Q and the sum QL + QR both approximate the integral off over
[a, b]. They normally agree in a few leading digits, so their difference involves cancel-
lation and is computed without arithmetic error. Because the difference is normaly a
small correction to ANSWER, it is possible to make a great many corrections without
accumulation of arithmetic error. If the quantities are not grouped, the correction of a
“small” ANSWER may be inaccurate.

5.3 CODES FOR ADAPTIVE QUADRATURE

The code presented here uses the three-point Gaussian rule to estimate integrals along

with the seven-point Kronrod rule to estimate errors. In FORTRAN the routine Adapt
has a typical call

CALL ADAPT (F, A, B, ABSERR, RELERR, ANSWER, ERREST, FLAG)

and in C++,
flag = Adapt(f, a, b, abserr, relerr, answer, errest);
and it is
flag = Adapt(f, a, b, abserr, relerr, &answer, &errest);
in the C version.

The first argument, F or f, is the name of the function that provides values of
the integral. In FORTRAN F must be declared in an EXTERNAL statement. The
next four variables are input parameters: A and B are the (finite) end points of the
integration interval, ABSERR and RELERR are the required absolute and relative er-
ror tolerances. The remaining variables are output quantities. ANSWER contains the
approximation to the integra and ERREST an estimate for the error of the approxi-
mation. The value of FLAG is 0 for a normal return with (5.18) satisfied. FLAG > 0
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signals that there was not enough storage for the queue, or that too many function eval-
uations were needed. Illegal input (ABSERR < 0 or RELERR < 10u) is indicated by
FLAG = -1. In C and C++ the value of flag is the return value of the function Adapt.

Example 5.6. Let us try the code on a problem with an anaytical integral, for ex-
ample, [y ¢*dx for which | = e - 1 = 1.71828182845904. Its output for a requested

accuracy of ABSERR 10° and RELERR = 10® follows.

FLAG = 0
Approximate value of the integral = 1.718281004372522
Error in ANSWER is approximtely 8.240865232136876E- 007

7 evaluations of F were required.

Routine Adapt evaluates f at least seven times, so the code found this task to be very
easy. It is seen that ERREST approximates the true error of 0.82408652 x 10° ex-
tremely well. |

Example 5.7. A more interesting problem is to estimate fy x!/7/(x* 4 1) dx, again
with ABSERR = 10°, RELERR = 10®. Although continuous at x = 0, the integrand
has infinite derivatives there, so it does not behave like a polynomia near this point.
An adaptive code deals with this by using short intervals near the point. Application
of the Adapt code results in

FLAG = 0
Approximate value of the integral =  6.718072986891337E-001
Error in ANSWER is approximtely -6.448552584540975E- 005

119 evaluations of F were required.

The techniques of the next section can be used to produce an accurate value of | =
0.671800032402 for the integral, which tells us that the actua error is about -0.73 X
10°. In comparison to Example 5.6, this problem required many more evaluations of
f, and ERREST is not nearly as accurate. It should be appreciated that all we need is a
rough approximation to the error, so this one is perfectly acceptable. It is instructive to
see how Adapt samples the integrand in this example. In Figure 5.6 ordered pairs (x,y)
are plotted (as are pairs (x, 0) aong the x-axis); x is a sampling point used by Adapt and
y the corresponding value of the integrand. Notice how the points congregate around
the singularity at zero as the theory predicts they should. ]

Unless otherwise indicated, use as tolerances AB- (b) x¥*°
SERR = 10® and RELERR = 10° for the comput-

ing exercises.

(© VI(3x - 27

5.4 To test out Adapt try the following integrands.

(@ 41 + YD)

(d) 1 + sin? 38px



190

55

CHAPTER 5 NUMERICAL INTEGRATION
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Figure 5.6 Sampling of the integrand of Example 5.8 by Adapt.

0 0<x<01
2 01<x<0.6
-1 06<x<1

© flx)= {

—-1/2

® k-4

Use ABSERR = 10", RELERR = 10°, and A = 0,
B = 1 for al parts. Which problems require the most
function evaluations? Why? What are the exact an-
swers? What are the actual errors? How good an esti-
mate is ERREST? On which problemsiisit better than
others? Why?

The integrand in Exercise 5.4d has period 1/38.
Rewrite this as 38 fol/38(1 + sin?38mx)dx and use
Adapt on this with the same tolerances as in Exer-
cise 5.4. Is this approach faster? More accurate?

5.6 If a package is not available for evauating the ze-

roth order Bessdl function Jy(X), then an aternative
is based on the formula

T
Jo(x) = %/(; cos(xsin6)do.

Use the formula to evauate Jy(x) for x = 1.0, 2.0, 3.0.
Compare with tabulated results (e.g., [7]).

5.7 The function y(x) = e f()‘e’2 dt iscaled Dawvson's

integral. Tabulate this function for x = 0.0, 0.1, 0.2,
0.3, 0.4, 0.5. To avoid unnecessary function evalua-
tions, split the integral into pieces.

5.8 Derive a step function f(x) (a function that is con-

gant on subintervals of [a,b]) for which Adapt returns

FLAG = 0, ERREST = 0, yet ANSWER is totaly
wrong. Explain.

5.9 A sphere of radius R floats half submerged in a lig-

uid. If it is pushed down until the diametral plane is
a distance p (0 < p < R) below the surface of the
liquid and is then released, the period of the resulting
vibration is

2n
T =8R R 2/ a
8(6R*—p*)Jo /1 —k2sin’t

where I& = p%(6R? - p?) and g = 32.174 ft/sec’. For
R =1find T when p = 0.50, 0.75, 1.00.

5.10 A population is governed by a seasonally varying abil-

ity of the environment to support it. A simple model
of this is the differential equation

P () = kP(r) [M (1= rcos g:) ~P(1)],

where t measures time in months, P(t) is the popula-
tion at time t, and the remaining parameters are known
constants. This equation will be solved numerically in
the next chapter (Exercise 6.19); here we note that the
problem can be transformed into

P(OYF(r)
1+ kP(0) [jF(s)ds’
where F(t) = exp[kM(t - (6r)/psin(pt /6))]. As-
sume that k = 0.001, M = 1000, r = 0.3, P(0) =

P(t) =
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5.12

250 and use Adapt efficiently to table P(t) for t =
0,36,9,...,36.
Examine the effect of noise on Adapt as follows. For
the input function F(X) use
T1:=1f(x) x 10"
T2 = T1+f(x)
F(x) := T2- T1

where f(x) is the original integrand (use some of the
examples in Exercise 5.4). With ABSERR = REL-
ERR =~ v/ (u the unit roundoff) try n ~ —1logjqu

and then n ~ — 3 log;o u. "What is the behavior? Does
the algorithm appear to be stable?

To solve the nonlinear two-point boundary value prob-
lem

Y =€ ~1,50)=0,y1)=3

using standard initia vaue problem codes (e.g., Rke),
it is necessary to find the missing initial condition
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y'(0). Observing that y* = exp(y) - 1 can be written
in the form

£

-+ y] =0,
we can integrate to obtain

/\2
—(yZ) & +y =c, aconstant.

Since y(0) = 0, this says y'(0) =v/2c+ 2. Solving for
Y (X) (by separation of variables) yields

y dy
Vie= [ 2,
0 Vet+e—y

which, when evaluated at x = 1, becomes
3 d
va= [
0 Vet+e—y
Use Adapt and Zero to find ¢ and then y'(0).
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Quadrature formulas approximate integrals using a finite number of samples. If the
samples are not representative, the result may be inaccurate despite an estimated error
that is acceptable. Put differently, the approximate integra and its error estimate are
based on an assumption that the integrand changes smoothly between samples. Adap-
tive codes generally do very well a recognizing the behavior of integrands, but f(x)
with sharp peaks or many oscillations in the interval present specia difficulties. Some-
times it is necessary to assist a code by breaking up the interval of integration yourself
S0 as to ensure that the code will take samples in critica areas. A contrived example
will help make the point.
The family of integras

T
I, = / sin®" (x) dx

0
can be evauated readily with the recurrence
_2n-1
T 2n
When n is large, the integrand has a sharp peak at the midpoint of the interval. With
tolerances of ABSERR = 10° and RELERR = 10™, for n = 200 Adapt returned
ANSWER = 0.1252567600019366 and an estimated error of about -3.654 x 10° at
a cost of 203 evaluations of the integrand. The true error is about -3.654 x 10°. The

code had no difficulty producing an accurate answer and an excellent error estimate
because it samples at the midpoint and “sees’ the peak. However, if the interval is split

Iy L1, lp=m.
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into [0,2.6] and [2.6,p], the results are quite different. Integrating over the two inter-
vals and adding the results provides an approximate integral of 4.111202459491848 x
10”7 and an estimated error of about -1.896 x 10" at a cost of 14 evaluations of the
integrand. The code has been completely fooled! This happened because the initial
samples did not revea the presence of the peak. The code took the minimum number
of samples from each interval, namely seven, showing that it believed the problem to
be very easy. When this happens it is prudent to consider whether you agree that the
problem is very easy and if not, to break up the interva into pieces that will cause the
code to “see” the behavior of the integrand. Of course, one must be careful how to do
this breaking into pieces, as [0,2.6] and [2.6,p] won't do for this problem.

Adapt is based on approximation by polynomials over finite intervals. As a con-
sequence it may have to resort to a great many subintervals to integrate functions that
do not behave like a polynomial near a critical point or to integrate functions over an
infinite interval. Gaussian quadrature formulas with a suitable weight function are a
good way to handle such problems. Specific formulas can be found in sources like
[13]. Substantia collections of quadrature codes such as those of QUADPACK, NAG,
and IMSL contain speciaized routines for a variety of difficulties. In this section we
discuss some techniques for preparing problems to make them more suitable for a
general-purpose code like Adapt. With a little mathematical effort, a problem that the
code cannot solve might be put into a form that it can solve, and problems that it can
solve are solved more efficiently.

OSCILLATORY INTEGRANDS

If the integral f(X) is periodic with period p, that is, f(x + p) = f(x) for dl x, and
b - a is some integer multiple of p, the integration should be performed over just one
period (or sometimes less) and symmetry used for the remainder. For example, for the
integral in Exercise 5.3,

n 1 J n/10 1 4
R — =10 —_—dx.
/o 44 sin(200) /o 4+sin(20x)

If you have worked Exercise 5.3 you should have found that the composite trapezoid
rule is very efficient; consequently, if you have many functions to be integrated over a
period, it is advisable to use a special-purpose code based on the composite trapezoidal
rule.

Oscillatory nonperiodic functions are more difficult. Generaly the integra should
be split into subintervals so that there are few oscillations on each subinterval. Adapt
may do this automatically, but the computation can be made more reliable and possibly
less expensive by a little analysis. As an example, let us estimate

i
/ sin(20x) I
0o 1+x2
This integral could be rewritten many ways, one of which is

2 /j"/zo sin(20x) g

S0 1T+x7
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Proceeding in this manner, Adapt is called 20 times, but on each interval the inte-
grand has constant sign and varies smoothly between samples. This is a reasonable
way to ded with a single integral of this kind, but in contexts like Fourier anayss,
where many functions having the form of a periodic function times a nonperiodic
function need to be integrated, it is better to use specia-purpose formulas such as
product quadrature. This particular example is treated in Case Study 3 where the use
of the general-purpose code Adapt is contrasted with Filon's method for finite Fourier
integrals.

INFINITE INTEGRATION INTERVAL

Adapt cannot be applied directly to [.° f(x)dx because it deals only with finite inter-
vals. One way to apply the code is to use the definition

b

/ " fw)de= lim [ f(x)dx.

a
The idea is to determine an analytical bound for the tail | [;° f(x)dx|. With it an end

point b can be sdlected large enough that [, f(x)dx equals fa” f(x)dx to the accuracy
required. It does not matter if b is rather larger than necessary, so a crude bound for
the tail will suffice.

Another way to get to a finite interval is to change the variable of integration. For
example, to estimate f;” (e *sinx)/xdx, the new variable s = 1/x yields the equivalent
integral fol(e‘l/s sin1/s)/sds on a finite interval. Generally this trades one difficulty
(an infinite interval) for another (a singularity a an end point). For this particular
example, lims_m(e_l/s sinl/s)/s = 0, so the integrand is continuous a s = 0 and
Adapt can be applied directly. If the origina problem were f;°(e™*sinx)/xdx, then

s = x* would not help because it produces the same infinite interval. The choice

s = € leads to — fj (sinlns)/Insds for which the integrand approaches 0 as s — 0.
On the integration interval (—oo,0) the transformation s = arctan x is often useful.

SINGULAR INTEGRANDS

By a singularity we mean a point where the function or a low order derivative is dis-
continuous. There are two cases: (1) finite jumps and (2) infinite values. In either case,
if there is a known singularity at a point ¢ in (a,b), a basic tactic is to split the interval
into (a,c) and (c,b). In this way we can arrange that we approximate integrals with
integrands that are finite except possibly at one end.

If f(x) is finite at the singularity (as for step functions), Adapt can be used on each
piece and the results added to produce an approximation to ff f(x)dx. This is clear
enough, but it must be kept in mind that a function that is smooth to the eye may not be
smooth to the code. Surprisingly often someone integrates a spline with a quadrature
routine. Of course, such an integration should be done analytically, but it may be
convenient to resort to an adaptive quadrature routine. Just remember that splines have
discontinuities in low order derivatives. If a routine like Adapt is applied to each piece
of a piecewise polynomia function, it will have no difficulty. Indeed, it will be exact
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if the degree of precision of the basic formula is sufficiently high. However, if no
atention is paid to the lack of smoothness at the knots, the code will have to deal with
it automatically. This can represent quite a substantial, and completely unnecessary,
expense as the code locates the knots and resorts to short intervals to deal with them.

Infinite discontinuities require some study. First we reduce the problem to com-
puting an integral fa" f(x)dx with a singularity at one end, let us say a for definiteness.
Then we have to sort out the behavior of the integrand at a to convince ourselves that
the integral even exists. We have aready seen problems for which the singularity is
logarithmic, f(X) ~ ¢ In (x) asx — a and (in Example 5.7) agebraic, f(x) ~ x" as
x— 0. Inthe case of an agebraic singularity, f(x) ~c (x - @)° as x — a, it is necessary
that g > -1 for the integral to exist. The behavior at the singular point tells us what
kind of weight function to introduce if we wish to dea with the difficulty by means of
a specia formula.

One way to ded with singularities using a genera-purpose code like Adapt is to
introduce a new variable with the aim of removing, or a least weakening, the singu-
larity. This can be done quite generally for singularities of the form f(x) ~ ¢ (x - a)®.
Let us try a new variable t with x = a + t°. Then

b (b_a)l/B (b—a)l/ﬂ
_ BypB—-1 4, _
/a Flx)dx = /0 Fla+®)pddr = /0 G(t)d.

The new integrand G(t) ~ czPYBP—1. 1t will be nonsingular if b(g + 1) - 1 > 0. By
choosing b = 1/(g + 1) (recall that g > -lI), the function G(t) ~ cb ast — 0 and we
can apply our favorite code to the new problem. If the code evaluates at the ends of
the interval of integration, we have to code the subprogram for G(t) carefully so that
the proper limit value is returned when the argument is t = 0. For such codes we
might prefer to take, say, b = 2/(g + 1) so that G(t) ~ cbt and the limit value is smply
G(0) = 0.
To illustrate the technique, suppose we want to compute

1 g*
—dx.
0\3/J_cx

Often series expansions are an easy way to understand the behavior of an integrand.
Here the difficulty is a x = 0. Using the series for exp(x),

2
A s .30 . AL SO V. S

Thus f(x) ~ X" and g = -1/3. The integral exists because g > -1. If we take
b =2/(g+ 1) = 3, the integral becomes

1 X L, N
—d :/ —3t dtzf 3te" dt,
o x VB 0

which presents no difficulty at dl.
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Example 5.8. As a more substantial example, suppose we wish to approximate

1 x4
/ ——dx.
0 sinh”(x)

Using the series expansion
. x3
sinh(x) = x+ £ +---

we have

_ x7/4(1+x+...)

= 3 5
X
(+20)
:x7/4 I+x+---
2 2 2
X (1+x*/6+--)
_ _1/4 1+x+"'
=X —
1+x2/3 4
:x_1/4+..._

The integrand f(x) ~ x** as x — 0, :s0 the integral exists and a suitable change of

variables would be x = t*3. Since Adapt does not evaluate at endpoints, it can be
applied in a straightforward way to the transformed integral

1 4/3
/ 4 exp(t™”) 803 41,
o3 sinhz(t4/ 3)

Applying Adapt directly to the origina problem with ABSERR = 10™° and REL-
ERR = 10%, results in ANSWER = 1.913146656196971 and an estimated error of
about 1.485 x 10° a a cost of 1841 evaluations of f. On the other hand, apply-
ing the code to the problem &fter the change of variables results in ANSWER =
1.913146663755082 and an estimated error of about 1.003 x 10° at a cost of 147
evaluations off. |

A technique called subtracting out the singularity is a valuable aternative to a
change of variables. The integrand is split into two terms, one containing the singular-
ity that is integrated analytically and another that is smoother and is approximated nu-
merically. The technique is an alternative to using special formulas based on a weight
function suggested earlier for the integrals arising in plane potential computations:

1
/ F(x) In(x) dx.
0
Before it was assumed implicitly that f(x) is well behaved a x = 0. Then

f(x) In(x) ~ f(0) In(x)
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asis

 change of variable singularity subtracted out

0 ‘ 0.1 0.2

Figure 5.7 Integrands for Examples 5.8 and 5.9 near x = 0.

and we can write

1 1
[ sem@ar= [ romedst [ 17 - £O)in(x)

The first integral is done analytically and the second numerically. The integra to
be computed numerically is easier than the original one. This is seen by expanding
f(x) = f(0) + f(O)x + - and observing that the integrand behaves like ' (0)xIn(x)
asx— 0.

It is easier to apply this technique than to change variables, but a good change of
variables will be more effective because it deads with all the singular behavior rather
than just the leading term(s) that are subtracted out.

Example 5.9. Let us compare the techniques for the problem in Example 5.8. In
subtracting the singularity, we write

/1jﬂ/ldx:/19€_1/4dx+/1 P s
0 sinh?(x) 0 0 |sinh?(x)

With the same tolerances as before, the output from Adapt is

ANSWER = 1.913146679435873, ERREST = -5.476 x 107

at a cost of 287 calsto f. See Figure 5.7 for a plot near x = 0 of the origina integrand
and those from Examples 5.8 and 5.9. |

We end this section with a more realistic problem.



5.4 SPECIAL DEVICES FOR INTEGRATION 197

Example 5.10. A conducting elipsoida column projecting above a flat conducting
plane has been used as a model of a lightning rod [2]. When the ellipsoid is given by
the equation

2P 2
2Tpta=h
the potential function is known to be
o du

—z+Az / :

A V(@@ +u) (b2 +u)(c2+u)3
The constant A depends only on the shape of the rod and is given by

1

5 (V@ F 0@ 0w du

The quantity | is a function of the place where we want to evaluate the potential. It is
the unique nonnegative root of the equation
2 2 2
X y z
A) = —
o) a2+7»+b2+7»+62+7\.
Suppose that for a tall, ender rod described by a = 1, b = 2, and ¢ = 100, we seek
the potential V a x = y = z = 50. As we saw in the preceding chapter, the root | of f
is approximately 5928.359. To compute

V(xeyaz) =

1=0.

= du
/;» V(@ +u) (b2 +u)(c2 +u)3

2

(5.19)

we note that the integrand tends to zero like u®? asu — oo, 0 the integral is well
defined and the change of variables u = 1/t is satisfactory. This substitution produces

1/A (1/¢%)dt
o V(@+1/)BP+1/N(E+1]1)3

This is acceptable mathematically but is in poor computational form. Here it is easy to
rearrange to obtain

1/A 7
/0 \/(a2t+1)(b2t+l)(c2t+l)3dt'
Using Adapt with RELERR = 10° and ABSERR = 10™ produces
ANSWER = 0.5705983 x 10° and ERREST = -0.52 x 10",

which requires 105 f evaluations. The integrand is approximately /¢ near t = 0, which
suggests that a better change of variables could have been made (e.g., u = w?). Then
the integral is

/1/‘/}_‘ 2w? dw
0 V@ + )W+ 1) (w2 +1)3



198 CHAPTER 5 NUMERICAL INTEGRATION

This is a somewhat easier integral to evauate. Routine Adapt produces
ANSWER = 0.5705883 x 10° and ERREST = 0.46 x 10™,

which requires 35 f evaluations. Note that the two results agree to the requested five
figures.

These transformations cannot be applied directly to computing A because the in-
terva remains infinite. However, since (5.19) has to be computed anyway, we could
split

/"" du
0 (a2 +u)(b*+u)(c?+u)3
into fo}‘ + f3°. The first integral is computed to be 0.7218051 x 10™ with an error

estimate of 0.31 x 10™° and requires 357 f evaluations, while the sum using the
second value from above is 0.7788639 x 10°. This yidlds A = 0.1283921 x 10° and

findly V = -46.3370. |
EXERCISES
Unless otherwise indicated, use as tolerances AB- Try Adapt with RELERR = 102 and ABSERR =
SERR = 10® and RELERR = 10° for the comput- Y% x 107, 5 x 10°, and %2 x 10°.
INg Exercises. (c) Compare the answers in (a) and (b). Discuss effi-
5.13 Evaluate fj (sinx/+/x)dx using Adapt ciency and accuracy.
(a) on the problem as is, 5.16 The integra

(b) using one of the series techniques, and /1 x1/4(ex B 1)2
0

— dx
sin”(x)

(c) using a change of variable.
Compare the results.

5.14 Repeat Exercise 513 with fo‘ (¥ /3 dx. has a rather nasty singularity at x = 0. Anayze the

nature of the singularity and argue informally that the

5.15 The integral integral exists.
‘xz ! d (8) Use Adapt for this problem as it is. How is this
/0 Sin - ax even possible?
can be difficult to estimate because of the large num- (b) Treat the singularity using a technique from Sec-
ber of oscillations as x — 0  (although the amplitudes tion 5.4, then use Adapt.
are approaching zero, too). (c) Compare the answers in (a) and (b). Discuss effi-
(@ Use Adapt for this problem with RELERR = ciency and accuracy.

10" and the three absolute tolerances ABSERR = 5.17 The exponentia integral
10°, 10°, and 10°.

(b) The change of variable t = 1/x produces the E((r) = f e"‘d—x,

equivalent integral f;"(sinz/t*)dr. Approximate this ! *

by fll’(sint/t4)dt where b is chosen sufficiently large. t >0, arisesin the study of radiative transfer and trans-
How large should b be in order to guarantee that port theory [9]. Some manipulation shows that

o0 1
< ABSERR/2? E(t) =/ N
1 X t X

/"" sintdt /bsintdt
A 14




5.18

5.19

[t fo-cn)

1 t
+/ d—x-{-/(l—e_")g.
t X 0 X

The expression in braces is known to have the value
Y= 0.5772157, the Euler-Mascheroni constant. The
second term integrates anayticaly to - Int. Hence,

t dx
—_— —_— — —X ——

Ey(t) = —y 1nt+/0(1 )<
Evaluate E, (t) for t = 1.0, 2.0, 3.0. Does there appear
to be any difficulty caused by the behavior of the inte-
grand at x = 0?

In studying the conduction properties of a V-grooved
heat pipe, a heat flux constant C(q) satisfies

sin?@ [m/2

a®) =5

sint

: 3
n—2t—sin2t
t0 — ——————| dt,
[CO 2cos?t ]

(g inradians). Compute values of C for q = p/6, p/4,
p/3, 5p/12, 17p/36. It can be shown mathematically
that C(q) is strictly decreasing and 0 < C(q) < 1. The
denominator in the integrand vanishes at p/2. Use se-
ries expansions to sort out the behavior of the inte-
grand at this point, and if it causes difficulty, fix it.
Debye's specific heat law gives the molar specific heat
of asolid, C,, as afunction of its temperature, T:
9R [Up xie*

C(T) = Ug/() (e — 1)2 dx,
where R = 1.986 caloriesmole is the molar gas con-
stant, Up = qp/T, and qp is the Debye temperature
that is characteristic of each substance. For diamond
Oo = 1900K, evaluate C(T) at the temperatures in-
dicated in the accompanying table. Compare with the
experimental values given. Does the behavior of the
integrand at x = O appear to cause problems?

T(K) C, (calories/mole)
100 0.06
200 0.56
300 1.46
400 242
500 3.17

1000 5.09
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5.20 The Gibb's effect describes the behavior of a Fourier

series near a discontinuity of the function approxi-
mated. The magnitude of the jump can be related to
the integral

i * sins
I:—/ —ds,
T S

which is about 0.281. Routine Adapt cannot be ap-
plied directly because it requires a finite interval. One
way of dealing with this is to drop the tail of the inte-
grd, that is, approximate the integral by

b o
sins
- / —ds.
T s

This does not work well in this instance because the
integrand decays dowly as s — . To see this, work
out an analytical bound for the error made in dropping
the tail, that is, bound

_/ smsds.
b s
Integration by parts leads to
I= CcOSs +/‘ co;sd)r
s In T S
COST *° COS S
ey
n T s

The integral arising here is easier to approximate be-
cause the integrand decays faster. Integration by parts
can be repeated to get integrals that are even easier
to approximate. Approximate the origina integral ac-
curately enough to verify that its magnitude is about
0.281. Do this by applying Adapt to the integral that
arises after integrating by parts a few times. To ap-
ply the code you will have to drop the tail. There are
two sources of error in the computation. One is the
error made by Adapt, which you can control by the
tolerances that you specify. The other error is due to
dropping the tail. You can control this error by work-
ing out an analytical bound for the error and choosing
avalue b large enough to guarantee the accuracy that
you need.
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INTEGRATION OF TABULAR DATA

The problem addressed here is the approximation of ff f(x)dx given only (x,y,) for
1 <n <N, wherey, = f(x,). Adaptive quadrature routines cannot be used because
they automatically choose the points where f is to be evaluated and it is unlikely that
such points will correspond to the data points {X,}. The basic approach is the same as
in Section 5.1: approximate f(x) by a piecewise polynomia function F(x), which is
then integrated exactly.

Since the complete cubic interpolating spline worked so well as an approximating
function in Chapter 3, it is a natural choice for F(x). For the sake of simplicity, let us
assume that a = X, and b = Xy. Then, using the notation of Chapter 3 for the spline,

/ ) dx = 2 /x‘:n-H

N— hZ h3 h4
= hy+ by — —+d,—

Substituting the expressions for a,, b,, and d, in terms of the data and c, leads to

b N-1 2 1
/ S(x)dx = Z {fnh + {fn-*-;l Jn - gcnhn - §Cn+lhn]
a n=1 n

ﬁ_l_ h3 Cn—I—l—Cnh_ﬁ
2 "3 3h, 4

3

- h
2{ (fut far1) — 1;(6n+c,,+1)}. (5.20)

An agorithm based on this technique first uses SPCOEF/Spline_coeff from Chapter 3
to get {ca}_, and then evaluates (5.20). In terms of h = max,(X, - %), the com-
plete cubic spline SX) provides an approximation to a smooth function f that is accu-
rate to O(h"). Accordingly, if the sample points x, are sufficiently densein [x; %] and
the function is sufficiently smooth, we can expect [ S(x)dx to be an O(h”) estimate
of [N f(x)dx.

The cubic splme is familiar and it is easy enough to manipulate once the linear
system for {c,}N_ has been solved, but there are other interesting possibilities. The
linear system arises because §(x) is required to have two continuous derivatives on
[X1,Xy]- This smoothness is unnecessary to the approximation of f;" f(x)dx. The
shape-preserving spline of Section 3.5.2 is less smooth but is attractive here for severa
reasons. The reasons and the following formula are left as an exercise:

2

/s dx— { (Fa+ fort1) + i‘z(bn—b,,ﬂ)}. (5.21)

A widely used scheme is based on local quadratic interpolation. To approximate
f(n) by a quadratic over [X,,X,+1], we must interpolate it at three points. One possi-
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bility is to interpolate at {X,.1,Xn,Xn+1}- Another is to interpolate at {Xp,Xn+1,Xn+27} -
There is no obvious reason to prefer one to the other and the computation is inexpen-
sive, s0 a reasonable way to proceed is to compute both and average the two results.
This provides a symmetrical formula that smooths out mild measurement errors in the
tabulated values off. Of course, a the endsn =1 and n = N - 1, only one quadratic
is used. The formula for a typical (interior) interval [X,,Xn+(] iS

Xn+-1 hn h2
dx~ —(———80 ———f .
" s 55 { at Ut + ) ! 52
3hy_1+h,  3huq+ 2h,,) (3hn_1 +2h,
+ + + | =
( hn"l h’H"l +hn fn hn—] +hn
3hpi1 +hy

h2
+ fog) - ——————s .
hn+1 ) e hn-H (hn + hn+1 ) fn+2 }

Reference [4] contains further discussion and a FORTRAN code AVINT.

There is no obvious way to obtain a good estimate of the error of these quadrature
rules, much less to control it. The difficulty is inherent to functions defined solely by
tables.

EXERCISES
5.21 In performing an arginine tolerance test, a doctor mea- The doctor isinterested in the integrated effect of each
sures glucose, insulin, glucagon, and growth hormone response. For example, if the glucose curve is repre-
levels in the blood over a I-hour time period at 10- sented by g(t), then fgo g(t)dr is desired. Compute
minute intervals to obtain the following data: one of the integrals by
time glucose insulin (a) the method (5.20) based on splines,
0 102 1 (b) the method (5.21) based on splines, and
;g Eg gg (c) the method based on averaging quadratics (5.22).
30 132 47 Compare the results.
40 115 39 5.22 Supply the details of the derivation of (5.22). Work
50 107 27 out the special forms for the end points.
60 100 5 5.23 Derive the formula (5.21) for the integration of tabular
time glucagon growth data using th_e shape-preserving spline. When might
hormone you prefer this to formula (5.20) based on the com-
0 188 170 plete cubic spline? Consider the cost of computing
10 1300 1:70 the spline and how well the spline might fit the data.
20 2300 1.20
30 2600 2.50
40 1800 7.25
50 840 8.10
60 460 8.00
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INTEGRATION IN TWO VARIABLES

Definite integrals in two or more variables are generally much more difficult to approx-
imate than those in one variable because the geometry of the region causes trouble. In
this section we make a few observations about the common case of two variables,
especidly as it relates to finite elements.

Integration over a rectangle,

by by
:/ / f(x,y)dydx,
aj a

can be handled easily with the formulas for one variable by treating | as an iterated
integral. Thus we first approximate

ZA / flxi,y)dy

with one quadrature rule using N; points {x;} and then
Nl N2
I(f) = Y A Y, Bjf(xi,y;)
i=1 j=1

using another rule of N, points {y;}. This approach generalizes to

x2(y)
/ / f(x,y)dydx.
x1(y)

It is even possible to use an adaptive code for the integrals in one variable, but the
matter is a little complicated. In Fritsch, Kahaner, and Lyness [6] it is explained how
to go about this; for pitfalls to be avoided, see [11, Section 9].

Degree of precision now refers to polynomials in two variables, so a formula of,
for example, degree 2 must integrate al polynomials of the form

2 2
ap o+ ay ox+ap 1y +az ox” +ag1xy +agp2y

exactly on the region of interest. Just as in the case of one variable, we can derive
qguadrature formulas by interpolating f(xy) and integrating the interpolant. This is
quite practica for integration over a square or a triangle and is often done. The scheme
for rectangles based on iterated integrals can be quite efficient when the formulas for
integration in one variable are Gaussian. They are not necessarily the best that can be
done. As in the one-dimensional case, formulas can be derived that use the smallest
number of evaluations of f(xy) to obtain a given degree of precision. Nevertheless,
the most efficient formulas may not be the most attractive in practice. The approach
based on interpolation can be very convenient when the interpolation is done at points
interesting for other reasons, as in finite elements. The iterated integral approach can
be very convenient because of its simplicity and generdity.

In one dimension the transformation of any finite interval [a,b] to a standard one
such as [-1,]] is trivia. In two dimensions the matter is far more important and
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difficult. Now an integral over a genera region R,

must be broken up into pieces that can be transformed into a standard square or trian-
gle. Discretizing a region R in this way is an important part of any finite element code.
If the region is decomposed into triangles (with straight sides), the easy transformation
was stated in Chapter 3. An integral over a genera triangle T becomes an integral over
the standard, reference triangle T,

[ [ranavax= [ [ s y)i0tldytax,
T T,

Here |D*| is the determinant of the Jacobian of the transformation. It relates the in-
finitesimal area dydx in the one set of variables to that in the other set. For the affine
transformation from one triangle (with straight sides) to another, this matter is easy.
In the general case it is necessary to investigate whether the transformation is a proper
one, meaning that the image covers al the triangle T. and has no overlaps.

The main point of this section is that the basic ideas of the one variable case
cary over to severa variables. There is the additional and very serious complication
of splitting up the region of integration and transforming properly each piece to a
standard region. The whole area of integration of functions of more than one variable
is still the subject of research.

EXERCISES
5.24 Given the triangular domain T with vertices (0,0), where the coefficients are chosen to make the approx-
(1,0), and (01), we would like to approximate imation exact for f = 1, x, and y.
JJ f(x,y)dxdyover T. (b) Derive a corresponding composite quadrature for-
(@) Derive a quadrature approximation of the form mula for the subdivision obtained by cutting T into
four subtriangles by connecting the midpoints of the
ALf (0, 0) + Af(0, 1) + Af(L, 0) edges of T.

5.7 CASE STUDY 5

This case study has two parts, one devoted to a problem involving singular integrands
and the other to problems with integrands that have sharp peaks. As usud, our am is
to understand the difficulties and what might be done to make it possible to solve the
problems effectively with standard codes. The first part is an example of a problem
requiring more than one code for its solution. The second part develops a technique of
classical applied mathematics and uses it for insight.

Reference [5] discusses the motion of a particle of mass m at position g in a po-
tentia field V(q). In suitable circumstances the motion is a libration (or oscillation or
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vibration). For an energy level E, it is found that if the equation E - V(q) = O has
simple roots g, < gy, the period T of the motion is given by

r= \/_111 \/E V

The integrand is singular at both end points, so the first thlng we must do is sort out its
behavior there. Near a simple root q;, a Taylor series expansion tells us that as g — ¢;,

1 1
VE-V(g) V-V'(a)a—q)
hence the singularity is integrable. The argument shows why the theory requires that

the roots be simple. If g; were a multiple root, say double, the integrand would behave
like

1 1
V=0.5V"(q:)(a—q:)*  la—ail vV~0.5V"(g;)
and the integral would not exist. Percival and Richards [5] write, “Gaussian numerical
integration is a very effective method of obtaining the periods of libration in practice.”
Gaussian quadrature is generally quite effective, but a crucia point in the present situ-
ation is that it can be applied directly because it does not evaluate the integrand at the
ends of the interval. The formulas of Adapt have the same property.

As a simple example let us take V(q) = (q + )(q - 0.8) and E = -4. As can
be deduced easily from the derivative V'(q) = (8q + 6.2)(q - 0.8)° or by inspection
of Figure 5.8, V(g) has a minimum a q = -0.775, and for V(-0.775) < E < 0, the
equation E - V(q) = O has two simple roots, one in [-1, -0.775] and the other in
[-0.775,0.8]. To evaluate the integral, we must first compute these roots numerically.
The roots should be located very accurately because they define the integral that we
wish to approximate. Moreover, if they are not determined accurately, a quadrature
code might evaluate the integrand a an argument g for which the integrand is not
defined because of taking the square root of a negative number or dividing by zero.
A problem like this is very easy for Zero, so we take ABSERR = 10" and REL-
ERR = 10™. Even with these stringent tolerances the code requires only 21 function
evaluations to find that q; ~ -0.9041816 with a residual of about 1.3 x 10™ and
g2 ~ -0.5797068 with a residual of about 1.9 x 10", Because E provides a natural
measure of scale for this equation, the residuals and a backward error analysis make it
clear that the roots are very accurate, although of course we aready know that because
Zero reported that it had obtained the specified accuracy.

Using the computed values for the end points, it is possible to approximate the
integral by a simple cal to Adapt. With ABSERR = 10° and RELERR = 10° this
results in an answer of about 0.444687 with an estimated error of about 9.0 x 107 at a
cost of 3171 function evaluations. This is relatively expensive for Adapt with its (arbi-
trary) limit of 3577 evaluations. If we wanted to do a number of integrals of this kind,
some preparation of the problem would be worthwhile. We have aready worked out
the dominant behavior of the integrand at the end points and the value of the derivative
appearing in the expression is readily available, so the method of subtracting out the
singularity would be easy to apply. However, because the singularity is algebraic, it
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Figure 5.8 The potentia V(q) = (q+ I)(q - 0.8)".

is easy to change variables and this technique is generally more effective. We need to
break the interval of integration so that there is at most one singularity in each piece
and when present, it is an end point. A natura choice is [q;, -0.775] and [-0.775, q,].
In the notation used earlier in the chapter, g = -1/2, so we might choose b = 2, that
is, introduce the variable t* = q - q, in the portion to the left and £ = g, - q in the
portion to the right. Adapt is used twice with the same tolerances as before and the
integrals are added to obtain an answer of about 0.444688. The estimated errors can
also be added since they are estimates of the error rather than the magnitude of the
error, and this gives an estimated error of about 8.2 x 107, The vaue for the integral
is consistent with that of the direct approach, but it costs a total of only 56 function
evaluations.

Let us turn now to a different kind of difficulty, integrands with sharp peaks. Many
important problems of applied mathematics are solved by transform methods that lead
to the task of evaluating integrals. A method developed by Laplace illustrates the use of
asymptotic methods for this purpose. A family of integrals depending on a parameter
s>> 1 of the form

b
L(s)= /a ) dx

is considered. If the function f(X) has a unique maximum at X, with a < x, < b, the
integrand has a sharp peak at x,, and the greater s is, the sharper the peak. The idea is
first to approximate f(X) near x, by

Fx) = f(x0) +0.57" (xo) (x — x0)?

and then to approximate the integral by integrating this function. Because the integrand
decays so rapidly for large s, the approximation to the integral is scarcely affected by
extending the interval of integration to (—oe,00). This is done in order to integrate the
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approximating function anayticaly. It amounts to approximating the integrand by the
familiar bell-shaped curve of a normal distribution with mean X, and standard devia-

tiono = +/1/(—sf"(xo)). The result of these approximations is Laplace's formula,

o [ S0P )00 gy — g8 (x0) | 2T
L(s) /;me dx=e¢ =P ()

A classic application of this formula is to the Stirling approximation of the gamma
function seen in Example 1.10. Some manipulation of the integral definition of the
gamma function puts it into the form required:

r(s) _ F(S:- 1) — s—l/O et dt = s—l/(; e-t+slntdt — ss/O es(—x+lnx) dx.

(Here t = xs.) Laplace's formula with f(xX) = Inx - x and X, = 1 then gives

ro=(2)'y2

Laplace's formula and the class of integrals it approximates illustrate how the ap-
proximations of classical applied mathematics differ from those of numerical anayss.
A genera-purpose code like Adapt that accepts any smooth integrand is likely to fail
when presented an integrand with a sharp peak because it is not likely to “see’ the
peak. By this we mean that the code is not likely to take samples from the small subin-
terval where the peak occurs, so it, in effect, approximates the integrand by a function
that does not have a peak. The approach of applied mathematics is much less general
because it requires that the location of the peak be supplied aong with information
about its width. An advantage of the approach is that it provides important quditative
information about how the integra depends on a parameter. On the other hand, the
accuracy of the formula depends on the parameter, and for a given value of s it might
not be enough. As is often the case, when used to obtain a numerical approximation
to an integral, the approaches are complementary with the one working better as the
parameter increases and the other working worse, and vice versa. Let us take advan-
tage of the insight provided by Laplace’'s method to compute an accurate value for
an integral with a sharp peak using a genera-purpose code. Clearly we ought first to
locate the peak, then get some information about its width, and finally break up the in-
terval appropriately. D. Amos [I] does exactly this to evaluate integral representations
of statistical distributions. In each case an evauation of the function amounts to the
numerica integration of a bell-shaped integrand with a single maximum at X, First
Newton's method is used to locate x,. A scale s is then determined using the Laplace
method. Finally quadratures over intervals of length s to the left and right of x, are
summed until a limit of integration is reached or the truncation error is small enough.
The basic idea is simple, but the generality of the distributions allowed and the re-
finements needed for fast evaluation of the functions make the details too complex to
describe here. To illustrate the approach, we refine the Stirling approximation for the
computation of a large factorial, a smple example that alows the easy computation of
a reference vaue.
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As pointed out in Chapter 1, if we are to evaluate the gamma function for a large
argument, we must scale it to avoid overflow. The Stirling approximation derived
above suggests that we approximate

I(s) (f)s _ /O‘”es(l—xﬂnx) dx,

N

which is both simple and well scaled. If, for example, we take s = 201, we can obtain
a reference value from

I(201) (ﬁ)ml = 200! (2(‘);1>201 = (ﬂ%) :ﬁl (i%ff) ~ 0.17687724.

The Stirling approximation is 4/2m/201.which is about 0.17680393 and would be
adequate for many purposes. An attempt to approximate the integra simply by trun-
cating the semi-infinite interval to [0, 100] and calling Adapt with ABSERR = 10°®
and RELERR = 10°® results in a value of 0 at a cost of seven function evaluations.
If you should find that Adapt requires only seven function evauations, the smallest
number it makes, you should give some thought to your problem. Either the integra
is very easy or the scale of the problem has been missed entirely. For this integrand
Xo = 1 and = 4/1/201 = 0.0705. The derivation of the Laplace formula suggests
that the bulk of the integral is accounted for by the interval [x, - 3s, X, + 3s], sO we
compute it first and then add on approximations to the integrals over subintervals of
length s on each side. The table shows the approximations computed in this way for
the interval [1 - ks, 1 + ks] aong with the cumulative cost in function evaluations.

result nfeval
0.17628738 105
0.17685170 133
0.17687653 147
0.17687723 161
0.17687724 175

true  0.17687724

NN AW

The last interval here was about [0.5,1.5], making the point that only a small portion
of the interval of integration is important. Notice that the code is doing the minimal
number of function evaluations (14 for the two pieces) for the larger k. The quadra-
tures are very cheap then because the integrand is small and there is an absolute error
tolerance.

REFERENCES

1. D. Amos, “Evaluation of some cumulative distribution functions by numerical quadrature,”
SIAM Review, 20 (1978), pp. 778-800.

2. H. Bateman, Partial Differential Equations of Mathematical Physics, Cambridge University
Press, London, 1964.

3. B. Camahan, H. Luther, and J. Wilkes, Applied Numerical Methods, Wiley, New Y ork, 1969.



208 CHAPTER 5 NUMERICAL INTEGRATION

4. P. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd ed., Academic Press, New
York, 1984.

5. 1. Percival and D. Richards, Introduction to Dynamics, Cambridge University Press, Cambridge,
Mass, 1982.

6. F. Fritsch, D. Kahaner, and J. Lyness, “Double integration using one-dimensional adaptive
quadrature routines: A software interface problem,” ACM Trans. on Math. Software, 7 (1981),
pp. 46-75.

7. Handbook of Mathematical Functions, M. Abramowitz and I. Stegun, eds., Dover, Mineola,
N.Y., 1964.

8. E. Issacson and H. Kéller, Analysis of Numerical Methods, Dover, Mineola, N.Y ., 1994.

9. V. Kourganoff, Basic Methods in Transfer Problems, Relative Equilibrium and Newton Dim-
sion, Dover, New York, 1963.

10. A. Kronrod, Nodes and Weights of Quadrature Formulas, (Trans.) Consultants Bureau, New
York, 1965.

11. J. Lyness, “When not to use an automatic quadrature routine,” SIAM Review, 25 (1983), pp. 63-
87.

12. R. Piessens, E. de Doncker-Kapenga, C. Uberhuber, and D. Kahaner, QUADPACK: Subroutine
Package for Automatic Integration, Springer-Verlag, New York, 1983.

13. A. Stroud and D. Secrest, Gaussian Quadrature Formulas, Prentice Hall, Englewood Cliffs,
N.J., 1966.

EXERCISES

Unless otherwise indicated, use ABSERR = 10°® and
RELERR = 10® for the computing exercises.

[£(8") — f(8)] 46,

and argue that it should have somewhat better numer-
ica properties. Explore this by evauating f(r,q) for r
approaching 1 with f(g) = sing. The analytical solu-
tion is then just j (r, g) = sing.

1 fon 1-r2 oy 5.26 The potential in a conducting strip of width b with
®(r,8) = %/0 1—2rcos(6—9') +,2f(e )de’. potential zero on the bottom edge and a specified po-

tential F(x) on the upper edge is
There is difficulty evaluating this integrd as r — 1, ]
since for g =g, o(x,y) = sin(B) /"’ F(E)dE
’ b J-w cosh[(§ ~ x)n/b] + cos(B)’

where b = py/b. Suppose that an experimenter ap-
plies the potential F(x) = 1 for |x| < 0.99 and F(x) =

5.25 The potentia inside the unit circle due to a specified
potential f(q) on the boundary is given by Poisson’s
integral:

1-r2 _d4r
1—2rcos(0—0)+r2  t1—r

This is not too severe because the term is large only
if r isvery close to 1, but in principle there should be
no difficulty a al since asr — 1,¢(r,0) — f(06) (see
Bateman [2, pp. 239-241]). Redlizing that

__1_/21: 1-r do’
T ondo 1-2rcos(0—0) 412’

derive the form

1—-r?
1—2rcos(0—0')+r2

1 ron
0(r0) = FO)+ - [

exp[- 100( |x| - 0.99)] for |x| > 0.99. When b = p,
compute and plot the potential along the middle of the

rip, y (x, p/2).
Redlizing that
cosh((§ —x)m/b] > 1,

bound the effect on j (x,y) for y # 0 of replacing the
infinite interval by a finite one:

/Z F(§)dg
—z cosh[(§ — x)n/b] + cos(m/b) "




For a suitable choice of z, use this instead of the infi-
nite interval. Show for the given F(x) that j (x)y) =
j (x}y), so only a plot for x > 0 is necessary.

5.27 This exercise is representative of a great many com-

putations arising in the use of the classica separa
tion of variables technique for solving field problems.
Typicaly, one must compute many roots of nonlinear
equations and integrals. The temperature distribution
in a cylinder of radius a and height b with the bottom
held a a temperature zero, the top a a temperature
f(r), and the side dissipating heat according to New-
ton’s law of cooling, can be represented by a series.
If the thermal conductivity of the cylinder is k and the
thalpance is g, then the temperature j (r,2) is
sinh(gnz)

o(rz) = ng,l Apn MJO(W)-

The numbers g, are the positive roots of the equation

k
a‘ha-’l (gna) ~ Jo(qna) =0,

where the function Jy(X) and J;(X) are Bessel func-
tions of the first kind of orders zero and one, respec-
tively. The coefficients A, are given by

2
@ 1+ (kan/e)2] X ana)

[ )0

The roots ¢, depend only on the geometry and the ma-
terial. Once they have been computed, one can con-

Ap=

sder virtualy any temperature distribution f(r) by 5.30

computing the quantities A,. For k/ea = 2, we give
the problem of solving for g,a for n =1, 2, 3 in Ex-
ercise 4.18. If you have not done that problem, the
roots are 0.940770563949734, 3.95937118501253,
and 7.08638084796766. Then for a = 1, compute
A, Ay A; for f(r) = exp(-r) - exp(-1).
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5.28 If 6= fy V/C+ 12¢™* dt, what is C? To answer this,

5.29

apply Zero with modest tolerances to compute the root
C of f(C) = 6— [} V/C+12¢™* dr. Evaluate the in-
tegral appearing in the function with Adapt and more
gringent tolerances. A little analysis will provide an
appropriate bracket to use for the root solver. Show
anayticaly that the root is smple. This is an exam-
ple of computing the roots of a function that is rela-
tively expensive to evaluate. How many evauations
did Zero need?

Reference [3] contains the following problem. The
length L of a carbon dioxide heat exchanger with in-
put temperature T, and output T, satisfies

m To Cp(T)

L=— [ =) __4r
D Jr, WT)Ts~T)

where m= 225, D = 0.495, T, = 550 (temperature of
the CO,),

14,400
(T +460)2

( 4m )%(T)@(T)]""

Cp(T) = 0.251+0.346 % 107T —

0.023k
D

WT) = 7Du(T) k

T + 460\ %93
460

u(T) =0.0332(
k=0.011.

For T, = 60, and L = 10, use Adapt and Zero to com-
pute T,

The code Adapt uses a queue to hold the subinter-
vals whose quadrature errors are deemed too large to
pass the tolerance test. Do you think there would be
any difference in performance if a stack were used in-
stead? Explain. Modify Adapt so that it uses a stack
and test it on some difficult problems to see what ac-
tualy happens.




CHAPTER 6

ORDINARY DIFFERENTIAL
EQUATIONS

Historically, ordinary differential equations have originated in chemistry, physics, and
engineering. They still do, but nowadays they also originate in medicine, biology,
anthropology, and the like. Because differential equations are more complex theoreti-
caly than the other topics taken up in this book and because their numerical solution
is less well understood, the art of numerical computing plays an important role in this
chapter. There is a subdiscipline of numerical analysis called mathematical software
that colors al the work of this book. It is particularly evident in this chapter with its
more complex task.

6.1 SOME ELEMENTSOF THE THEORY
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The simplest kind of ordinary differential equation problem is to find a function y(X)
with a derivative continuous on [a,b] such that

y (X = f(x), as<x<b,

for a given continuous function f(x). From elementary caculus it is known that such a
function y(x) exists—the indefinite integral of f(x). However, if y(x) satisfies the dif-
ferential equation, so does y(x) + ¢ for any constant c. To specify a particular solution,
some more information about y(X) is required. The most common kind of additional
information supplied is the value A of y(x) at the initial point a. Then

Yo =A+ [ s

is the unique solution to the initial value problem consisting of the differential equation
satisfied by y(x) and the initia value of y(x).

The general first order ordinary differential equation has f depending on y as well
as X. It is assumed that f(xy) is continuous for a < x < b and al y. A solution y(X) is
a function of x with a continuous derivative for a < x < b that satisfies the equation

y(¥) = f(xy(x) (6.1)
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for each x in the interval [a,b]. Typically the solution desired is specified by its value
a the initia point of the interval:

y@ = A (6.2)

Equation (6.2) is called an initial condition, and the combination of (6.1) and (6.2) is
caled an initial value problem for an ordinary differentia equation.

In elementary treatments of differential equations, the initiad value problem has a
unique solution that exists throughout the interval of interest and that can be obtained
by andytical means (more familiarly called a “trick”). However, for most problems
that are not contrived, an analytical solution is impossible to obtain or is less satisfac-
tory than a numerical solution. Matters are also complicated by the fact that solutions
can fail to exist over the desired interval of interest. Problems with solutions that
“blow up” place a specia burden on a numerical procedure, although we might well
expect a general-purpose code to compute such solutions until overflow occurs. Prob-
lems that have more than one solution are especially troublesome. Difficulties with
existence and uniqueness will be excluded at the level of the theory to be developed
here. A simple condition that guarantees that these difficulties will not occur can be
formulated in terms of how f(x,y) depends on .

The function f(x,y) satisfies a Lipschitz condition in y if for al x in the interval
[a,b] and for dl u, v,

|f () = f(x,v)| < Lju—v| (6.3)

with L a constant, hereafter called a Lipschitz constant. The inequality assumes a more
familiar form if f has a continuous partia derivative in its second variable, for then

50 = 53] = | E )

for some w between u and v. If df/dy is bounded in magnitude for al arguments, then
f satisfies a Lipschitz condition and any constant L such that

|u—v|

|%f(x,w)|5L

for al x in [a,b] and al w is a Lipschitz constant. If the partial derivative is not
bounded, it is not hard to show that the inequality (6.3) cannot hold for all u, v and all
X in [a,b], so f does not satisfy a Lipschitz condition.

Example 6.1. The function f(xy) = * cos’ y + y sin’x defined for [x| < 1 and all
y satisfies a Lipschitz condition with constant L = 3. To see this, differentiate with
respect to y to get
of _
dy
and so for the range of x alowed

—2x% cosysiny+ sin® X,

|y’§2xlxlxl+1=3. »
dy
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The function f(xy) = /|y|does not satisfy a Lipschitz condition

212 CHAPTER 6
Example 4.2.
because it has a continuous partial derivative for y > 0 that is not bounded as y — 0:

T
2y n

An important special case of (6.1) is that of a linear differential equation, an equa-
tion of the form f(x)y) = g(X)y + h(x). The function f(x,y) being continuous in (x.y)

is then equivaent to g(x) and h(x) being continuous in x. Because

)
a;i =g(x),

and because a continuous function g(x) is bounded in magnitude on any finite interval
[a,b], a linear equation is Lipschitzian in nearly all cases of practica interest.

Dawson’s integra is the function

X
y(x) = e’xZ/ & d.
0

You should verify that it is a solution of the initia value problem for the linear differ-

Example 6.3.

ential equation
y =1-2xy

y(0) = 0.
On the interva [0,b] for any bs#0, the function f(xy) = 1 - 2xy is continuous and
Lipschitzian with Lipschitz constant L = 2|b. |
Sufficient conditions for existence and uniqueness can now be stated formally. For
a proof, see [3].
Theorem 6.1. Let f(x,y) be continuous for all x in the finite interval [a,b] and
all y and satisfy (6.3). Then for any number A, the initial value problem y" = f(x,y),
y(a) = A has a unique solution y(x) that is defined for all x in [a,b].

So far we have spoken of a single equation in a single unknown y(x). More com-
monly there are several unknowns. By a system of m first order differentia equations

in m unknowns is meant
Y{=F](x,Y1,Y2,...,Ym)

Y2l =F2(X7Y13Y2’-'-st)
(6.4)

Y,:1=Fm(anl’Y2a“°aYm)'
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Along with the equations (6.4) there are initial conditions

Y@ = A
Yo(a) = Ay
(6.5)
Ym(@) = An
This can be written in tidy fashion using vector notation. If we let
" Exg Ay Fi(xY)
Y2 X A2 Fz(x,Y)
Y(x)= : ,A= - F(x,Y)= : , (6.6)
Ym(x) Am Fm(xa Y)
then (6.4) and (6.5) become
Y =F(x Y) (6.7)
Y(@) = A.

We again refer to the combination of (6.4) and (6.5) as an initial value problem. Using
vector notation makes the case of m unknowns look like the case of one unknown. One
of the fortunate aspects of the theory of the initial value problem is that the theory for
a system of m first order equations is essentialy the same as for a single one. Proofs
for systems just introduce vectors and their norms where there are scalars and absolute
values in the proofs for a single equation. For the vector function F(Xx,Y) to satisfy
a Lipschitz condition, it is sufficient that each F; (X, Y1, Ys,. . ., Y,) satisfy a Lipschitz
condition with respect to each variable Y;; that is, there are constants L;; such that

|Fi(x7Y1a"'7Yj——lauan+1""7Ym)_Fi(xayla-“’Yj—]av7Yj+la'-'7Ym)|

S L,-jlu—vl

for each i, j. With this, the natural analog of Theorem 6.1 holds. Since the theory of
numerical methods for a system of equations is aso essentialy the same as for a single
equation, we content ourselves with treating the case of a single equation in detail and
just state the andog for systems.

Most computer codes require the problem to be provided in the standard form
(6.4) and (6.5), but equations arise in a great variety of forms. For example, second
order equations, that is, equations of the form

Yy = gxyy),

are quite common in the context of dynamical systems. The definition of a solu-
tion is the obvious extension of the first order case and suitable initial conditions are
y(@@) = A, Y(@) = A,. This is a second order equation for one unknown quantity, y(x).
An equivaent problem in the standard form (6.4) can be found by introducing two
unknown quantities and finding two first order equations satisfied by them. One of the
new unknowns has to provide us with the original unknown, so we take Y;(X) = y(X).
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We take the other unknown to be the derivative of the origina unknown, Y,(X) = y'(X).
Differentiating the new unknown quantities, we find that
Y=Y X = Yy(x),
Yo =y (¥ = gxy(x).y () = 9(x,Y1(x),Y2(X).
In this way we come to the system of two first order equations in two unknowns:
Yo = g(XYy,Yo).

This is in standard form and the theory may be applied to it to conclude the existence
of unique functions Y;(X) and Y,(X) that satisfy initiad conditions

Yi(@) = A
Yio(@) = A

The solution of the original problem is obtained from y(x) = Y;(X). To verify this, first
notice that one of the equations states that y'(X) = Y'1(X) = Y,(X), and the other that

Y = Yo = g(xYi(x),Y2(x)) = g(xy(x),y (X))

Similarly it is found that the initia conditions are satisfied.
The general mth order equation in one unknown,

YO =gy, Y, ., Y
y(a) = Al,y'(a) = A, .., y(m—l) = A,

can be put into standard form via the m unknowns Y;(X) = y(X), Yo(X) = Y (X), . . .,
Yo = ¥™(x) and

F](xleaYZa'-'aYm) =h
FZ(anlaY2a~--aYm) =0

Fm—-l(anI’YZa"'aYm) :Ym
Fm(anlaY21'°'aYm) :g(x’YlaY?,a"--,Ym)-

Example 6.4. To convert the initial value problem
Y + (- )y +y=0y0 =1y(0=4
into a system of first order equations, let
Yi(®) = y(x), Yo = y(¥)
Then
Yi=y =Y,
Y=y’ = '(Yzl -DY, - Y
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and
Y1(0) = 1, Y,(0) = 4.
This can be put into the form (6.7) by defining

= (2)or= (3 70 (o )

Example 6.5. Consider the system of second order equations

u'" +5V +7Tu = sinx,
V' + 6V +4u' +3u+v = cosx,
u(0)=1, u'(0) =2,
v(0) =3, V/(0) = 4.
Let Vi) = u(X), Yo(X) = u'(x), Ya(¥) = v(x), and Y,(X) = V' (X). Then the eguations
are
Y, +5Y,+ 7Y, =8nXx, Y,+ 6Y,+ 4Y,+ 3Y; + Y; =cosx,

which is rearranged as

Y=Y,
Yzl = —T7Y1 — 5Y4 + sinx,
Y3l =1y,

Y, = —3Y, —4Y, — Y3 — 6Y4 +cosx,
with initial conditions
Y1(0) = 1, Y,(0) = 2, Y3(0) = 3, Y,(0) = 4.
To put this into the form (6.7) define

Y, 1
_|F _12
Y= Y3 9 A= 3 9
Y, 4
and
()
—7Y; — 5Y4 4+ sinx
F(x,Y) = ! Y44

—3Y1 — 4Y2 - Y3 - 6Y4 +cosx

Notice that for each unknown in the original set of equations, new unknowns are in-
troduced for the original unknown and each of its derivatives up to an order one less
than the highest appearing in the original set of equations. |

The procedure we have illustrated is the usual way to convert a system of higher
order equations to a system of first order equations. There are, however, other ways to
do it. For some examples, see Exercise 6.6.
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EXERCISES

CHAPTER 6 ORDINARY DIFFERENTIAL EQUATIONS

6.1 As an example of nonuniqueness of solutions, verify

that for any constant c, 0 < ¢ < b, the function y(x)
defined by

[0, if0<x<c

)= Yx—c)?, ifc<x<b

is a solution of the initial value problem

Y =vDbl

¥(0) =0.
6.2 Consider the problem

Y =4/I1-
¥0)=1.
Verify that
(@ y(¥) = 1 is a solution on any interval containing
x =0,
(b) y(x) = coshx is a solution on [0,b] for any b > O,
and

(©) y(X) = cosx is a solution on a suitable interval.
Wheat is the largest interval containing x = 0 on which
cosx is a solution?

6.3 Verify the statement in the text that Dawson’s integral
is a solution of the initia value problem
y =1-2xy
y (0) =0.
6.4 For each initid vaue problem, verify that the given
y(x) is a solution.
@ ¥ =-3750) =Ly =1/vT+x
®) ¥ =-202,5(0) = Liy(x) = 1/(1+2%)
© y = §y(1-/20),5(0) = Ly(x) = 20/(1 +
19¢/4)

(d) y = 100(sinx - y),y(0) = O}y(x) = [10°(e*™
cosx) + 10" sin X]/(10° + 1)

e ¥y = (15cos10x)/y,y(0) =
V3sinl10x+ 4

6.5 Do the following functions satisfy a Lipschitz condi-
tion? If so, give suitable constants.

@ f(xy) = 1 + y* for 0 < x p/2
(b) fixy) =1-2xyfor0<x<b
() f(xy) =yixforl<x<2

Zy(x) =

(d) f(xy) =yixfor-1<x<1
(® f(xy) = cosx siny for -10° < x < 10°
6.6 Verify for each of the following systems of equations
@ Y=Yy Y, = 3Y, - XY,
(b) Y1 =12, ¥} = -2 /2,

(© Y1 = -(X2)Yy + Y, Y, = (1/2 - 3x%/4)Y, -
(x/2)Y,

that Y;(X) = y(X), where y(x) satisfies the second order
equation

Y 09 + 37 (9 + xy(x) = 0.
6.7 Put the following problems in standard form. Differ-
entiation is with respect to t.
(@ u® + €u - tu= cosat
MU +vVeost+u=ty +u +v=¢
©Qu +3V +4u+v=8tu” -V + u+v=cost
d)mx” =Xt xy,zX,Y,7),

my’ =Yt %y, zX,Y,Z),
' =Z(txy,zX,Y,2)

©u® +ur =¢

6.2 A SMPLE NUMERICAL SCHEME

Let us again consider the initial value problem (6.1) and (6.2),
y = f(XY)
y(@) = A,

on the interval [a,b]. The numerical methods we consider generate a table of approx-
imate values for y(x). For the moment we suppose that the entries are for equally
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spaced arguments in X. That is, we choose an integer N and for h = (b - a)/N, we
construct approximations at the points x, = a + nh forn =0, 1, . . . , N. The notation
y(X,) is used for the solution of (6.1) and (6.2) evaluated at x = x,, and y, is used for
an approximation to y(x,).

A differential equation has no “memory.” If we know the value y(x,), Theorem 6.1
applies to the problem

u = f(xu)

u(x.) = y(xn)

and says that the solution of this initid value problem on the interval [x,,b] is just
y(x). [After all, y(x) is a solution and the theorem says there is only one] That is, the
values of y(x) for x prior to x = X, do not directly affect the solution of the differential
equation for x after x,. Some numerical methods have memory and some do not. The
class of methods known as one-step methods have no memory—qgiven vy, there is a
recipe for the value y,, + 1 that depends only on x,, Y, f, and h. Starting with the obvious
initial value y, = A, a one-step method generates a table for y(x) by repeatedly taking
one step in x of length h to generate successively yy, X, . . . .

The simplest example of a one-step method is Euler’s method. We study it because
the details do not obscure the ideas and the general case is much the same. A Taylor
series expansion of y(x) about x = X, gives

h2
Y1) = Yon) + Y (xn) + 5 (&)

With X, < X, < X1, provided that y(x)€ C2[a,b]. Using the fact that y(x) satisfies
(6.1), thisis
h2 n
y(xng1) =y(xn)+hf(xn,y(xn))+—2-y (En). (6.8)
For smal h,

Y(Xnt1) = ¥(xn) + 1S (Xn, y(xn))-
This relation suggests

Euler’s method:

Yo= A
VYorl = Yo + Df(XY), n=0,1, ..., N-1 (6.9)

Example 6.6. Tabulate Dawson’s integra on [0, 0.5] using Euler’s scheme with h =
0.1. Recall from Example 6.3 that Dawson’s integral is the solution of the initial value
problem
y =1-2xy
y(0) = 0.
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Taking yo = 0, we see that
yy=0+01x%x(1-2x%x0x0)=0.l;
similarly,
y,=01+0lx (1-2x 0.1x 0.1) =0.198.

Continuing in this manner, the following table results. The true values of the integra
y(x,) are taken from [7].

Xn Yn y(xn)

0.0 0.00000 0.00000
0.1 0.10000 0.09934
0.2 0.19800 0.19475
0.3  0.29008  0.28263
0.4 0.37268 0.35994
0.5 0.44287 0.42444

To study the convergence of Euler’s method, we relate the error at X,., to the error
a x, Subtracting (6.9) from (6.8) gives

2
y(xn-H) —Yn41 = y(xn) —Ynt h[f(xna}’(xn)) - f(xm)’n)] + %yﬂ(&n)-

Denoting the error a x, by E, = y(X,) - V. the Lipschitz condition on f and this
equation imply that

h2
|Eps1| < IEnI +hL|)’(xn) _)’n| + ?ly”(én)l'

With the definition

M: 1!
ztg@b&%

we obtain

2
IEHASMMU+MJ+%Mbn=QLn”N—L (6.10)
Here the term h?M,/2 bounds the error made in the current step and the other term
bounds the error propagated from preceding steps.

To prove convergence, we bound the worst error that can arise as we step from
Xo = a to xy = b and then show that it tends to zero as h does. The first order of
business is to see how rapidly the inequality (6.10) allows the error to grow. To do this
we establish a general result for later use. Suppose there are numbersd > 0 and M > 0
such that the sequence d,, d; , . . . satisfies

dpoy < (14 8)dp+M, n=0,1,....
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Thecasen = 0,
d <(@+dd, + M,
can be combined with the case n = 1 to obtain
dy < (I +d)d +M< (1+d)3dy + M[1+ (1 + d)].
Similarly,
d; < (I + d)dy, + M < (1 + d)°dy + M[1+(L+d)+(L+d)?.
At this point we might guess that
dy< L+ d)"dy + M[1 + (1 +d) + (1 + d)> - +1+d"Y. (6.11)

To prove this, we use induction. The inequality (6.11) certainly holds for n = 1, 2, 3.
Suppose the inequality is true for the case n = k. Then

di+1l<(@1+dd.+M
S@+A " do + ML+ (L+d)+ -+ (1+d)],
which establishes the result for n = k + 1 and completes the induction argument.

Lemma 6.1. Suppose there are numbersd > 0 and M > 0 such that the sequence
dy, dy , . . . satisfies

dt < (+ddc+Mk=0,1I,....

Then for any n> 0,

e — 1

d, < dy+M 5

(6.12)

Proof. Using the identity
n—1 n n—1
x-1) Y &= er_ YaP=x"-x"=x"-1,

p=0 £=1 p=0
with x = 1 + d, we see that the right-hand side of (6.11) can be rewritten in the form
(1+8)"—1

5 .

Expansion of the exponential function about zero gives for d > 0,

(1+8)"do+ M (6.13)

e8=1+5+§2—2-e€,0<§<8.
It then follows that
1+8<éd
and
(148)" < ™.
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This implies that (6.13) is bounded by

e —1

8 b
which establishes (6.12). N

ensdo +M

Returning now to Euler’'s method, we apply Lemma 6.1 to (6.10) and arrive at

M
|En < €™ |Eo| + =2 (™ — 1).

However, nh=x,-aand Ey =y, - A=0, s0

hM
|y(%n) = yn| < =2 (M0 — 1), (6.14)
2L
Using X, - a < b - a, this implies that
hM, -
—y, | < 222 (Lb-a) _ 1. (6.15)
omax, () =yl < Z75(" 1)

It is seen that the error of Euler's method is bounded by a constant times h. When the
value of the constant is immaterial, such expressions are written as 0O(h).

Generaly speaking, we try to ignore the effects of finite precision arithmetic.
When the tolerance corresponds to a relative accuracy comparable to the word length
of the computer, this is not possible. Also, if the solution is very hard to approximate
accurately at x,, the step size necessary may be so smal that the precision must be
considered. To gain some insight, note that we do not obtain f(x,y,) from a subrou-
tine, but rather f(x,,y,) + €. Similarly, in computing Yn.1 = ¥, + h[ f(X,,y,) + en] m
additional error r, is made. The sequence generated computationaly is then

Yoel = Yo + hf(X,y,) + hen + r .

Let us suppose that [r| < r and |5 < e for dl h < hy. Then the analysis can be
modified to yidd

max I)’(xn) _)’nl <

0<n<N L tet+y

2 h

According to this bound, roundoff effects get worse as the step size is reduced in
an attempt to get a more accurate solution. Clearly there is a maximum accuracy
possible that depends on the problem, the numerical method, and the arithmetic of the
computer used. The effects are more complex than this bound shows, but the bound
is qualitatively correct. It is easy to show experimentally that as h is decreased, the
numerical solution is at first more accurate, reaches a best value, and subsequently is
increasingly less accurate.

The convergence analysis just presented is the traditional one. The trouble is that
this is not the way modern codes work. Rather than take a step of specified length
h, they sdlect a step size automatically that will produce a solution with a specified
accuracy. A reasonable model of the step sizes selected by such codes is that a x,
the code selects a step h= O(x,)H, wher®(x) is a piecewise-continuous function

elb—a) 1 <th p)
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satisfying 0 < g < ©(x) < 1 for a < x < b. With this model it is easy enough to modify
the convergence proof just given to account for variable step size. The result is that as
the maximum step size H tends to zero, maxo<,<n |y(*n) — ¥a| is O(H). 1t is not hard
to see how the model comes about. The user specifies a tolerance t. In a step of length
h from x, Euler's method makes an error of approximately h?ly”(xn)|/2. The largest
step size h, that can be used and still keep the error less than t is then about

2t
by~ ———.
" V 1y (xa)

Specia rules come into play in the codes when y”(x,,) is nearly zero, so suppose that
Yy (X) does not vanish in [a,b]. If

T /4
C—r[gyl;]lly (x)[>0

and

then

e
S\ e = O

defines @(x). Notice that H = O(t '%) so that max |y(x,) - Ya| is O(t ) for Euler's
method with automatic selection of the step size.

EXERCISES

6.8 Use Euler's method on the following problems using 6.9 Implement Euler’s method to estimate solutions of the
a fixed step size h = 1.0, and then h = 0.5. In each initial value problem in Exercise 6.8b. Use h = 1/40
case calculate the errors at x = 1.0. and h = 1/80. Compute the errors at x = 0.5 and
@y = -y/(x+ 1) with y0) = 1, s0 y(x) = l/(x + x = 1.0 to see if they are roughly halved as h is. How

small an h would you estimate is needed in order for

1. the absolute error to be less than 10° in magnitude?

(b) y = -y¥2with y(0) = 1, so y(x)= 1/V1+x.

6.3 ONE-STEP METHODS

Let us now consider general one-step methods and base our assumptions on the suc-
cessful treatment of Euler's method. The recipe is to be of the form

Yo = A
Yn+1 = Yn +hq)(xnaynafah)’ n=0,1,.... (6.16)
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The method has no memory, so F depends only on the arguments listed. Usualy f
and h are omitted in the notation. It is assumed that F is continuous in x and y. The
treatment of Euler's method had F (xy) = f(x)y) and a Lipschitz condition was used
in an important way. So, for the general procedure we assume that

|©(x,u) = D(x,v)| < Lo|u—v| (6.17)

fora<x<b dl 0<h<hy for some hy, any continuous function f satisfying a
Lipschitz condition, and al u, v.

In discussing Euler's method we used as a starting point the fact that the solution
y(X) amost satisfies the recipe (6.9) used to define the numerical approximation. The
analog here is

)’(an) = y(xn) +h®(xn,y(xn)) + hitn, (6.18)
with m, “small.” More precisaly, if for dl x, in [a,b] and dl h < h,, there are constants
C and p such that

lun| < CHP, (6.19)

then we say that the method is of order p for the equation (6.1). The quantity m, is
called the local truncation error.

Theorem 6.2. Suppose the initial value problem

y' = f(xy)
y@ = A
on the finite interval [a,b] is solved by the one-step method (6.16) and suppose that the

hypotheses of Theorem 6.1 are satisfied. If F (x,y) satisfies (6.17) and if the method is
of order p > 1 for y(x), then for any x, = a+ nh € [ab],
Ch? _
b’(xn) "'}’nl < Z’T(el‘d’(x" %) 1)-

Proof As before, let E, = y(x,) - ¥, and subtract (6.16) from (6.18) to obtain
E,.1=E, +h[q)(xmy(xn)) - (I>(x,l,y,,)] +huy.

Using the Lipschitz condition (6.17) and the fact that the method is of order p, we see
that

|En11] € (14 hLg)|E,| +ChPT!.

The theorem now follows from Lemma 6.1 and the fact that E, = 0. n

As with our discussion of Euler's method, the result of this theorem gives conver-
gence of O(h"). This explains our caling the method of order p for y(x). The term “a
method of order p~* is used to describe a method that is of order p if f is sufficiently
smooth. The order of convergence is lower when f is not so smooth.

As explained in connection with Euler's method, codes select the step size auto-
matically so as to keep the error smaler than a tolerance t at each step. At the same
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time they try to use an efficiently large step. A reasonable model of such a step size
algorithm leads to a step size h, at x, given by

hy, =0O(x,)H

for a piecewise-continuous function Q(x) with 0 < g < Q(X) < 1 on [ab] With step
sizes specified in this way, the convergence proof can be dtered easily to conclude that
the error is O(H") = ot*'").

The most important task now left is to find functions F that are inexpensive to
evaluate and of order p for smooth f. We need, then,

Y(Xng1) = y(xn) +h®(xn,y(xn)) + hptn,
with m, = O(h"). A Taylor series expansion of y(X) shows that

W (E,)

-1
Y(xnt1) =y(xn) +h [y’(xn) +- ﬁ%—y(p) (Xn)] + D)

if y(x) € CP*1[a,b]. So we find that if the method is of order p, then it must be the
case that

-1
D536 =5/ (9 + 7 () 4+ =y () + L),

with z(X) = O(h). Because y(x) is a solution of the differential equation y'(x) =
f(x,y(X)), the derivatives of y can be expressed in terms of total derivatives of f.
Using the notation f™ (xy(X)) for the mth tota derivative of f and subscripts for
partial derivatives, the relation is

YO0 = T (xy),

where

FOy) = felx,y) + f(x,3) f(x,5)
™ xy) = £ @)+ A ) Fry), m=1,2,....
The expression for F (x,y) becomes

-1
O(x,y) = f(x,y) + %f(l)(x,y) 4ot hpr(P“) (x,y) + O(KP). (6.20)

An obvious choice for F is the function T(x.y),

p—1
T(03) = f(3) + gD (x) o+ = 0D ),

which yields a family of one-step methods called the Taylor series methods. Euler’s
method is the case p = 1. When it is possible to evaluate derivatives efficiently, these
methods are very effective.
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For a simple equation like that satisfied by Dawson’s integral, and especialy when
high accuracy is desired, a Taylor series method may be the best way to proceed. This
equation has

fixy) = 1 - 2xy
fOxy) = -2x + (& - 2y,

and so forth. Exercise 6.13 develops a simple recursion that makes it easy to use a
Taylor series method of very high order for this equation.

Runge-Kutta methods use severa evauations of f(x)y) in a linear combination to
approximate y(x). The simplest case is Euler's method that uses one evaluation. Let
us now derive a procedure using the two evaluations f(xn,yn) and f(x, + p:hy, +
pohf(X,,yn), where p; and p, are parameters. Then for F we use the linear combi-
nation R(x,y):

R(nyn) = aif(xnyn) + af(xn + phy, + pohf(xa.yn)).
In this expression we are free to choose any useful values for p,, p,, &, and a,. The
aim is to choose the parameters so that the representation (6.19) holds for as large a
value of p as possible. To carry this out we expand al the quantities in Taylor series
in h and equate coefficients of like powers. To smplify the notation, arguments are
shown only if they are different from (X,y,). The reader familiar with Taylor series
expansions of a function of two variables may skip to the result. Otherwise, we can
proceed by a succession of familiar one-variable expansions as follows:

R=aif+ayf(xu+ pih,yn+ p2hf)
= a1+ | f(5n,3n+ P2hf) + P11k In + 2hf)

2p?
+%“ xx(xna)’n +P2hf) + 0(h3)

=aif+a f+pzhffy+ ff +0(h?)

2,2
h
+pihfe+ p1p2h? fg +O() + plexx + O(hs)]

= (a1 +ay) f + axhlp2ffy + p1fi]

h
+ 2R3 fy+ 2p1paf iy + Pl + O(F).

Now we want to choose the parameters so that

R=f+z (ffy+fx)+ (fzfyy+2ffxy+fxx+fxfy+ffy)+0(h3)-
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Equating terms involving the same powers of h, it is found that it is possible to obtain
agreement only for h® and h* :

g +a,=1

h : ap, = ¥
ap, = %2

Let a, = a. Then for any value of the parameter a,
a=a
a,=1-a

gives a formula with agreement in al terms involving h°. If we further require that
o # 0, ithe choice

1

P1=P2=%

gives a formula with agreement in al terms involving h'. Then

h
R=(1-0)f(x,y)+of (x+ %,y+ ﬁf(x,y))

yields a family of one-step methods of order 2 when ot # 0 and f is sufficiently smooth.

Some of the members of this family of formulas have names. Euler's method
has a = 0 and the order p = 1. Heun's method (the improved Euler method) is the
case a = I/2, and the midpoint or modified Euler method is the case a = 1. The broad
applicability of these formulas is seen when we ask what is needed for the convergence
theorem to be valid. The continuity of R obvioudy follows from that of f. It is a
pleasant fact that the Lipschitz condition on R aso follows from that on f:

R(5) = ROx0)| = (1= @) = )]
[f (x+ ot -;:—xf(x,u)) —f(x+ v 5"af(x,v))H
< 1= alLju—v]+|olL [u+ - f(x,u)] _ [v+ - f(x,v)]

< |1~ v| +lafLlu— v+ 22—

hL
= {|l—(x|+|a|+7}L|u-—v|

for dl 0 < h < hy, and we may take the Lipschitz constant for R to be

{|1—a|+|a|+%}L.
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Therefore, if the differential equation satisfies the conditions of Theorem 6.1, and if the
function f has two continuous derivatives [which implies the solution y(x) € C3[a, b]],
any member of the family with o # 0 -is convergent of order 2.

Higher order procedures involving more substitutions can be derived in the same
way, athough naturaly the expansions become (very) tedious. As it happens, p evau-
ations off per step lead to procedures of order p for p = 1, 2, 3, 4 but not for 5. For this
reason, fourth order formulas were often preferred for constant step size integrations.
As in the second order case, there is a family of fourth order procedures depending on
severa parameters. The classical choice of parameters leads to the agorithm

Yo = Av
andforn=0,1,...,
kO_f(xmyn)
h h
= = n+ =k
ky f(xn+2a)’n+2 0)
h h
= - —k
ko f(xn+2a)’n+2 1)

k3 = f(xn+h,yn + hky)
h
Ynel =Yn+ g(k0+2k1 + 2k + k3).

This is formulated for the first order system of equations

Y@ = A
Y = F(xY)
in a natural way:
Y, = A,
andforn=0,1,...,

the classical Runge-Kutta algorithm is

Ko ZF(men)
h h
K, =F xn+§~,Yn+§K0

2 2
K3 = F(x, +h,Yn+hK)

h h
K,=F (xn+ = Yo+ —Kl)

h
Yo=Y+ E(Ko +2K; + 2K, +K3).
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Another quite similar fourth order procedure is

K():F(xn,Yn)
K, =F -|—ﬁ Y +]1K0
1— Xn 23 n 2
h h h
K2=F(xn+’2',Yn+ZK0+ ZKI) (6.21)

h
Yoi1 =Yn+ ¢ (Ko +4K; +Ks).

There is little reason to prefer one of these procedures over the other as far as a single
step is concerned. In the next section we shall learn how R. England exploited (6.21)
to achieve an estimate of the error made in the step.

6.10 A definite integral [ f(x)dx can be evaluated by solv-

6.11

6.12

ing an initia value problem for an ordinary differential
equation. Let y(x) be the solution of

y =f(x),a<x<hb
y(@) = 0.
Then

)= [ 109d

Runge-Kutta methods integrate the more general
equation y* = f(x,y). In this specid case, they assume
forms familiar in quadrature. Referring to Chapter 5,
identify the familiar procedure to which both the clas-
sical fourth order formula and England’s formula de-
generate.

Implement Heun's method to estimate the solution
of the initial value problem in Exercise 6.8b. Use
h = 1/40 and h = 1/80. Compute the errors at x= 0.5
and x = 1.0 to seeif they are roughly quartered ash is
halved. How small an h would you estimate is needed
in order for the absolute error to be less than 10° in
magnitude?

Implement the classical Runge-Kutta agorithm to es-
timate the solution of the initial vaue problem in Ex-
ercise 6.8b. Use h = 1/40 and h = 1/80. Compute
the errors at x = 0.5 and x = 1.0. By what factor are
the errors reduced as h is halved? Roughly spesking,

what is the largest value of h for which the absolute
error will be less than 10°® in magnitude?

6.13 Consider the linear equation

6.14

Yy = Pi(X)y + QuX).
Show that the derivatives needed in Taylor series
methods can be obtained from

¥ = Py + Q)

where

P = Pra() + Pix)Pri(¥)
Qr(9) = Qra(¥) + QP r = 2,3, .. ..

Use this to develop a fifth order formula for comput-
ing Dawson’ s integral.

An interesting fact about Runge-Kutta methods is that
the error depends on the form of the equation as well
as on the solution itself. To see an example of this,
show that y(x) = (x + 1)? is the solution of each of the
two problems

y = 2x + 1), y(0)

y 2yix + 1),  Y(0)
Then show that Heun’s method is exact for the first
equation. Prove that the method is not exact when ap-
plied to the second equation, although it has the same
solution.

1
1.
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6.4 ERRORS-LOCAL AND GLOBAL

Modern codes for the initial value problem do not use a fixed step size h. The error
made at each step is estimated and h is adjusted both to obtain an approximation that is
sufficiently accurate and to carry out the integration efficiently. There is an unfortunate
confusion on the part of many users of codes with error estimates as to what is being
measured and what its relation to the true error is.

The function y(x) denotes the unique solution of the problem

y = f(xy)
y(@ = A
The true or global error at X, iS

y(xn+l) = Yn+1-

Unfortunately, it is relatively difficult and expensive to estimate this quantity. This is
not surprising, since in the step to x,,; the numerical procedure is only supplied with
XnYn @nd the ability to evaluate f. The local solution at X, is the solution u(x) of

u = f(xu)
uX) = Yo
The local error is
U(Xpt1) = Ynt1-

This is the error made approximating the solution of the differential equation orig-
inating a (X,Yy,) in a single step. These errors are illustrated in Figure 6.1. It is
reasonable to ask that a numerical procedure keep this error small. What effect this
has on the globa error depends on the differential equation itself. After al,

Y(*n41) = Ynr1 = {y(xns1) — u(xng1) } +{#(Xn41) — Yna1}- (6.22)
The quantity

Y1) = U(Xne1)

is a measure of the stability of the differential equation since it is a consequence (at
Xnh+1) Of the initid difference y(x,) - Yy, a X, If this quantity increases greatly, the
problem is poorly posed or ill-conditioned or unstable.

Example 6.7. Consider
y =ay
for a constant a A little calculation shows that
Y(x) = y(xp) e

u(x) =Yn eoc(x—-x,,) >
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y y (x)

U (Xk41) global

- -~ ————— - -_———— - —————

Figure 6.1 Local and global errors.

furthermore,

Y(xnt1) = #(xnt1) = {y(xn) — yn}e*.

If a > 0, the solution curves spread out (Figure 6.2a), the more so as a is large. From
the expression (6.23) it is clear that a small local error at every step does not imply a
small global error. On the other hand, if a < 0, the curves come together (Figure 6.2b)
and (6.23) shows that controlling the local error will control the globa error. For
general functions f(x,y) the Lipschitz condition alone cannot predict this behavior,
since for this example the Lipschitz constant is |a| in either case. u

The local error is related to the local truncation error. Indeed, it is just h times the
loca truncation error, m for the local solution u(x):

local error = U(Xye1) - Yl
= (Yn +h®(xn,Yn) + httn) — Ynt1
= hyp.
For example, when y(X) is a solution of y = f(x,y), we have seen that Euler's method
has

2
y(xn—H) = )’(xn) +hf(xm)’(xn)) + 'hz—(f(xm)’(xn))fy(xm}’(xn))

+ fi(%n, (1)) +0(h3)'
Applying this to u(x), we have

2
local error = hy, = %—(ffy+fx)+0(h3).
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I

W

(@) (b)
Figure 6.2 Solution curvesfor () y =2y and (b) Y = -2y.

Similarly, for the Runge-Kutta formulas of order2 (o # 0),we have

2
u(_er_l) :yn+h [f+gf(l) + %.f(z)] +0(h4)

then the numerical approximations satisfy

~ h 2
Jut1 =ynth [f+ SUh+fo)+ g—a<f2fyy+2ffxy+fxx)] +0(h%).

This leads to

. 11 3
local error = hfi, = b3 (E - @> (f2fyy+2f fop+ fx) + %(fxfy+ffy2) +0(hY).

A little reflection about these expressions suggests a way to estimate the loca
error. Suppose we compute V,.; with Euler’'s method and we also compute an ap-
proximate solution y,,; with one of the second order Runge-Kutta formulas. The
expressions above show that

~ n?
Vbl = Yn1 = E(ffy + ) +O(h?)
= hyty + O(h3).

That is, the discrepancy between the two vaues estimates the error in the lower order
formula. This is the same principle used in Chapter 5 to estimate quadrature errors. In
general, suppose that in addition to the vaue

Y1 = Yn+hD®(xn,yn)

with truncation error m, = O(h"), we compute another approximation

5’\"—1—1 =Y+ ha\)(xmyn)
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with truncation error g, = O(h?) of higher order, g > p. Then by definition

u(x,,+1) =yn+ h(I)(x,,,yn) + hin
= Yn+1 + hup

and, similarly,

u(Xpy1) = Vnt1+ Ay,

which, on subtracting, shows that

yn+1 —Yn+1 = hyy, — hﬁn
= hu, + O(h7t1).

Because A, goes to zero faster than hu,, we can estimate the local error by
local error= huy = Yy — Ynt1-

We would like to approximate the local solution u(x,.;). In view of the fact that
we have a good estimate of the error in y,,,, why not try to improve it by taking
out the error? This process, caled loca extrapolation, is here formaly equivalent to
advancing the integration with the higher order approximation 3, because

“(Xn+1) = Yng1l Hhup R ypp + (§n+1 —)’n+l) = Ynt1-

This tells us that local extrapolation will raise the effective order of the pair from p to g.
Thus we can think of what is happening in two ways. One is that a formula of order p is
being used with its result improved by local extrapolation. The other is that a formula
of order g is being used with the step size selected conservatively by pretending that
the step is being taken with a formula of a lower order p. Because local extrapolation
increases the accuracy a no increase in cost, al the current production-grade codes
based on explicit Runge-Kutta methods use it.

A Runge-Kutta formula of order 4 requires (at least) four evaluations of F per step
and a companion formula of order 5 requires at least six. Just as with Gauss-Kronrod
quadrature, the trick to being efficient is to derive the formulas as a pair in which
function evaluations are used in both formulas. R. England published such a pair of
formulas in [5]. To advance from x, to x, + h, he takes a step of length h/2 with (6.2 1)
to get the fourth order resultY 1R Y(xn+h/2) and then another step of length h/2

to get the fourth order resultYy41 = Y(x,+4). By working with two half-steps, he has
enough function evaluations available that with only one extra evauation, he is able
to form a fifth order approximation }A{,H.l to Y(x,+h). In this way, one extra function
evaluation is made every two half-steps to get an error estimate. An error estimate is
used to control the local error and so give some credibility to the computed solution.
It also allows the code to select the largest step size that will result in the error test
being passed. Except in unusual cases, adaptation of the step size to the solution in
this way greatly increases the efficiency of integration. It corresponds to the adaptive
guadrature schemes of Chapter 5.



232 CHAPTER 6 ORDINARY DIFFERENTIAL EQUATIONS

England's formulas are as follows:

Ko = F(xy, Yn)
Ky =F (x4 2 Yo+ 2K,
1= Xn 3’ nT g

h h
K;=F (xn+ ZaYn+ §(K0+K1))

h h
K3 =F (xn+ E,Yn - EKI +hK2>

h
Y 1=Y+ (K0+4K2+K3)

K6=F(xn+ ~h, Y, 1+ (K4+K5))

EKs + hK6)

K7=F(xn+h,Yn+% - 2

h
Y1 = Yn+% + E(K“ +4Kg +K7);

h
Kg_.F(x,,+hYn+ (—Ko — 96K + 92K, — 121K3 + 144K 4

+6Ks — 12K6))

,,+1 =Yn+ IZO (14K + 64K, + 32K3 — 8K4 + 64K + 15K7 — K3
One drawback of conventional agorithms for solving initial value problems is that
they produce a table of approximate values while the mathematical solution y(x) is a
continuous function. It is possible to approximate the solution for all x by interpola
tion. At the beginning of a step we have Y,, and form

Ko =F(x,, Yn) & Y (xn) = F(x4, Y (xp)).
Similarly, a the start of the second half-step we haveYn+% and

h h
K4 :F(Xn+ E,Yn_l_%) zYI (xn+5) .

The code Rke does local extrapolation, hence reports the fifth order sol ution Yn+1as its
approximate solution at x,,,. It will be caled Y., on the next step. By programming
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the procedure so that F(x,y1,Y,,;) is evaluated in the current step and later used as
the K, of the next step, we have an approximation to Y’ (x,.1) In this way we have
approximationsto Y(x) and Y'(X) a x,Xx, + h/2, and x,.; in the course of taking a
step. It is natura to interpolate these data by quintic (degree 5) Hermite interpolation.
It turns out that in a certain sense this interpolant is as accurate an approximation to
Y(X) on (X, Xw1) 8 Yy IS t0 Y(X.1). Notice that only information generated in
the current step is needed. Furthermore, the quintic polynomia on [X,X,.] agrees in
value and dope a Xx,,, with the quintic polynomia on [X,.;,X.+2]. Thus the piecewise
polynomial function resulting from this scheme is continuous and has a continuous
derivative on al of [a,b]. An interpolation capability can greatly increase the efficiency
of an ordinary differential equation solver because the step size can be selected solely
for reliability and efficiency.

6.5 THE ALGORITHMS

It is easy enough to write a code based on a pair of Runge-Kutta formulas like Eng-
land's, but it is not easy to write a code of production quality. A subdiscipline of
numerical analysis caled mathematical software has developed that concerns itself
with such tasks. References [I], [2], [4], [6], [8], [9], and [10] discuss the issues for
ordinary differential equations at length. The code Rke that we provide is significantly
more complex than the codes in other chapters, so its description is far more detailed.

In this section we consider briefly portions of the code with the am of explaining
some of the care needed in converting a pair of formulas into a production code. It is
hard to come to a full understanding of such complex codes because decisions about
one agorithmic question usually depend on those made in connection with severa
others. Perhaps a good place to start is with the way error is to be measured.

For simplicity, only the scalar case is described; the vector case is handled sim-
ilarly. At each step the code attempts to keep the loca error less than a tolerance
specified by the user:

[local error| < t.
How this error is measured is important. A reasonable error tolerance will depend on
the size of the solution. Because this size is usualy not known in advance, a good way
to proceed is to measure the error relative to the size computed by the code:
[local error|
size of y

It is not so clear what we should take here as the “size’ of y. Besides needing a
reasonable definition of size when a solution component vanishes, we need to avoid
the technical difficulty of dividing by zero. We have a vaue y, at the beginning of the
step, an approximate solution of order 4, y,.., a haf the step, and two approximate

solutions of orders 4 and 5, y,;1,¥,41, @ the end of the step. A reasonable way to
define the size of y over the step is to average these magnitudes, taking account of the
fact that two of the values approximate y(x) at the same point:

1 1 -
wt = 2 lyl + g1+ 3 (ynrrl + 5 ])]-
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With this definition, it is unlikely that a zero value for wt would arise unless the so-
lution underflows identically to zero. The loca error is approximated by v, —y,41.
[ f¥,4r1 = Yns1, the error is estimated to be zero, and there is no need to compute the
weighted error. If ¥, 1 # i1, the definition of wt implies that wt > 0. Because

|§n+l —yn+l| < Wn-{—l | + Iyn-H' < 6w,
there is then no difficulty in performing the test

|5’\n+1 '_)’n—Hl <t
wt

Proceeding in this way, we have a good measure of “size’” and we avoid numerical
difficulties. Nonetheless, a pure relative error control may not be appropriate when the
solution vanishes or becomes “small.” What constitutes “small” necessarily depends
on the scale of the problem and must be supplied from the insight of the problem solver
or a preliminary computation. The code Rke asks the user to specify a threshold value
and measures the error relative to max(wtthreshold). This tells the code that when
the magnitude of the solution drops below the threshold, the user is interested only in
an absolute error.

Some attention must be paid to the arithmetic of the computer being used. The
error control provided in Rke stresses pure relative error. It makes no sense to ask
for a numerical solution more accurate than the correctly rounded true solution. To
avoid difficulties the code insists that t not be smaller than 10 units of roundoff and
h not be too small for the precision available. These elementary precautions are very
helpful. They are the kinds of things that distinguish mathematical software from
research codes.

Suppose we have just tried a step of length h from x, and formed the local error
estimate

llocal error| # (1~ Y 1l-
A Taylor series expansion of the loca error leads to an expression of the form
local error = h°F (X,y,) + O(h°).
Earlier we wrote out F explicitly for some low order formulas. If h is smal enough,
Vst = Ynt1] = h5|q)(xm)’n)l~
If the step is a success, meaning that

|§n+l _)’n+l|
wt

we would like to estimate a suitable step size H for the next step. The largest step size
possible has

<t

51 @@yl o
wt
The function F is (usually) smooth so that

I(D(xn+l sYn+1 )| ~ |cb(xmyn)|'
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Writing H = ah we then find

T~ oK |(D(xna)’n)| ~ as |?n+1 —)’n+1|
wt wt

)

so that the “optimal” H is

T 1/5
H=h — .
((I)’n+l _}’n+1'/Wt))

It is much too bold to try this H because if it is even dightly too large, the step will
faill and this is expensive. Besides, after making al those approximations, we should
not take H too serioudly. In practice a fraction of H is tried, or equivaently a fraction
of t is used in computing H, and an efficient fraction determined by experiment. In
Rke the tolerance aimed at is 0.6t. This is equivalent to using about nine-tenths of the
“optimal” H.

The same argument is used to obtain the step size for trying again after a failed
step. In either case we must program the process with some care. For example, we
must deal with the possibility that the estimated local error is zero. This technical
difficulty highlights the fact that large increases or decreases cannot be justified by the
arguments made. For this reason changes are limited to an order of magnitude. If a
large change is truly called for, this action alows a large change to be accumulated
over a few steps without the disastrous possibilities opened up by a large change in a
single step. In the case of a failed step we must be especialy cautious about taking the
estimated error at face value. In Rke we try the predicted value once, but if it fails, we
simply halve the step size until we get success.

For the numerical solution of ordinary differentia equations there are two difficult
ranges of tolerances. It is to be expected that tolerances near limiting precision are
difficult, but it turns out that nominal tolerances are also difficult. Often users think
that because engineering accuracy of 10% will suffice in their use of the results, they
can keep their costs down by specifying such a large tolerance. This may result in
cheap results that are not reliable because the loca error test may not keep the step
size smal enough to justify the approximations used throughout the code. Even if the
results are reliable, they can be far from what is desired because at crude tolerances the
true, or global, errors can be much larger than the local errors controlled by the code.
It is prudent to ask for accuracy of at least a couple of digits, so that the error control
of Rke emphasizes relative error and it is required that the relative tolerance t < 0.01.

EXERCISES
6.15 Implement Euler’s method and a local error estimator and compare the estimated locd error to the true local
based on Heun's method. Apply it to the problem error. Also compare the globa error a severa points

to the general size of the local errors made in the com-
y = 10(y-x), y(0) = 1/10 putations up to this point.
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6.6 THE CODE RKE

The routine Rke solves the initial value problem for a system of first order ordinary
differential equations of the form

dyY
dt
A typicd cal for Rke in FORTRAN is

=F(x,Y), Y(a) =A.

CALL RKE (F, NEQ, X, Y, H, FIRST, TOL, THRES, FLAG, STEP,
YCOEFF, SCR, NDIM)

InCitis

Rke (f, neqg, &x, y, &h, &firgt, tol, threshold, &flag, &step, ycoeff);
and it is

Rke (f, neqg, x, vy, h, first, tol, threshold, flag, step, ycoeff);

in C++.

Input parameters to Rke are F, the name of the routine that defines the differentia
equations [i.e., F(x, Y)]; NEQ, the number of first order differential equations to be in-
tegrated; X, the initia value of the independent variable; Y, an array of dimension NEQ
containing the values of the solution components at X; H, step size for the current step
(its sign determines the direction of integration); FIRST, a variable indicating whether
this is the first or a subsequent step; a scalar TOL and a vector THRES (or threshold
in C and C++) are tolerances for the local error control; and NDIM > 6x NEQ, the
dimension of the output vector YCOEFF and in FORTRAN of the auxiliary storage
vector SCR. Output parameters are X, Y, the integration was advanced to X and Y is
the solution there; H, the step size suitable for the next step; FLAG, a flag reporting
what the code did; STEP, the actua length of the step taken (output X minus input
X); and YCOEFF, an array of coefficient values for quintic Hermite interpolation to be
used by the routine Yvaue.

Some of the variables in the call list require more explanation. The initial step size
H informs the code of the scale of the problem. It should be small enough to capture
changes in the solution near the initial point. Also, the sign of H indicates the direction
of integration because the code will try to step to X + H. After the first cal, the code
provides a suitable H for the next cal.

The variable FIRST enables the code to initidize itself. The start of a new problem
is indicated by input of FIRST = .TRUE. in FORTRAN and first = 1 in C or C++. After
the first call, the code sets FIRST = .FALSE. in FORTRAN and first = 0 in C and C++
for subsequent calls. The error parameters TOL and THRES (or threshold in C and
C++) tell the code how accurately the solution is to be computed. The vector THRES
must have dimension at least NEQ in the caling program. All components of THRES
must be nonnegative. The relative error tolerance TOL must satisfy

10u < TOL < 0.01
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where u is the unit roundoff of the machine. The tolerances are used by the code in a
local error test at each step that requires roughly that

[local error] < TOL max(]Y(l)|, THREX())

for component | of the vector Y. Setting THRES(1) = O results in a pure relative error
test on the component. On the first call to the code, if some Y(I) = 0, the corresponding
THRES(I) must be strictly positive. The size of the solution component is carefully
defined so that vanishing of the true solution a the current step is very unlikely to
cause trouble. Any such trouble can be avoided by a positive value of THRES(I).

The code will not attempt to compute a solution a an accuracy unreasonable for
the computer being used. It will report if this situation arises. To continue the integra-
tion after such a report, TOL and/or THRES must be increased. Note that Rke is an
efficient code for moderate relative accuracies. For more than, say, six-digit accuracy,
other methods are likely to be more efficient.

The true (global) error is the difference between the true solution of the initial
value problem and the computed one. Nearly al initial value codes, including this one,
control only the local error at each step, not the global error. Moreover, controlling
the local error in a relative sense does not necessarily result in the globa error being
controlled in a relative sense. Roughly speaking, the codes produce a solution Y (x)
that satisfies the differential equation with a residual R(X),

dY(x)
dx

— F(x, Y()) +R(x),

that is usually bounded in norm by the error tolerances. Usualy the true accuracy
of the computed Y is comparable to the error tolerances. This code will usualy, but
not aways, deliver a more accurate solution when the problem is solved again with
smaller tolerances. By comparing two such solutions a fairly reliable idea of the true
error in the solution at the larger tolerances can be obtained.

The principal task of the code is to integrate one step from X toward X + H. Rou-
tine Rke is organized so that subsequent calls to continue the integration involve little
(if any) additional effort. The status of the integration is reported by the value of the
FLAG parameter. After a successful step the routine Yvalue is used to approximate
the solution at points within the span of the step. A typical cal is

CALL YVALUE(NEQ, X, STEP, YCOEFF, POINT, U)
in the FORTRAN version and
Yvaue(neg, X, step, ycoeff, point, u);

in the C and C++ versions. Input parameters are NEQ, X, STEP, Y COEFF (as returned
from Rke) and POINT, the point at which a solution is desired. The output is U(*), the
vector of solution components at P. Routine Yvalue can be used only after a successful
step by Rke and should be used only to interpolate the solution values on the interval
[X - STEP,X].
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Example 6.8. To illustrate Rke, we solve the initial value problem

Y, Y1, Y1(0) 1
Y, Y2, Y,(0) 1

on the interval [0,1] and print the solution at x = 1. The problem has the solution
Yi(X) = €, Yy(X) = €”. As the solution component Y; is increasing, a pure relative
error test is appropriate and we set THRES(1) = 0. Y,, on the other hand, is decreasing
and we choose THRES(2) = 10°, which results in an absolute error test for small |Y,).

At XQUT = 1. 00000000000000
The nunerical solution is 2.7182755628071 3.6787784616084E-01
The true solution is 2.7182818284590  3.6787944117144E-01

Example 6.9. This example illustrates the use of Yvalue in conjunction with Rke.
The initia value problem

Y/ =Y,
==Y -(¥2-1)-1,
Y1 (0)=1(0)=1

is integrated over the interval [0,10] and the solution tabulated at x = 0, 1, 2,. . ., 10.
Note that Rke must be caled before Yvaue. The output is as follows.
XOUT = 0.00 Y(1) = 1.000000 Y(2) = 1.000000
XOUT = 1.00 Y(1) = 1.298484 Y(2) =-0.367034
XOUT = 2.00 Y(1) = 0.421178 Y(2) =-1.488951
XOUT = 3.00 Y(1) =-1.634813 Y(2) =-1.485472
XOUT = 4.00 Y(1) =-1.743960 Y(2) = 0.568922
XOUT = 5.00 Y(1) =-0.878664 Y(2) = 1.258102
XOUT = 6.00 Y(1) = 1.187072 Y(2) = 2.521700
XOUT = 7.00 Y(1) = 1.933030 Y(2) =-0.406833
XOUT = 8.00 Y(1) = 1.245572 Y(2) =-0.963183
XOUT = 9.00 Y(1) =-0.329599 Y(2) =-2.467240
XaJr =10. 00 Y(1) =-2.008260 Y(2) =-0.034172
|
EXERCISES
Unless otherwise indicated, use 10° for tolerance in Exercise 6.4.

values and 107 for the threshold values for the com- . 1
=%, y0) =1, b=3
puting exercises. @y % Y0)
. Oy =-2¢y0=1b=1
6.16 Use Rke with atolerance of 10™ and threshold values -1 i} -1 b=
of 1to calculate y(b) in the following cases. Check the ©y =¥yl -y20),y0) =L b=5
computed output with the exact answers that are given (d)y =100(sinx -y), y(0) =0; b =1
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(e y = (15 cos 10x)ly, y(0) = 2; b = p/4.

Are the true (global) errors within the tolerance
on the local errors? Which problems needed the most
steps? Why do you think they are more difficult than
the others?

An important equation of nonlinear mechanics is van
der Pol’s equation:
X[ + e(xX(®) - DX(t) + x(®) =0

for e > 0. Regardless of the initia conditions, al so-
lutions of this equation converge to a unique periodic
solution (a stable limit cycle). For e = 1, choose some
initial conditions ty, X(ty), and X (ty) and integrate the
equation numerically until you have apparently con-
verged to the limit cycle. A convenient way to view
this is to plot X (t) against x(t), a phase plane plot. In
the phase plane, a periodic solution corresponds to a
closed curve.

Deriving the equations for the quintic interpolating
polynomia used in Rke/Yvalue is not difficult. Write
Up)=a+bz+ cZ+dl+ e + 2

for pin[x - D, X], where
_p—x,1
z= A + 2
(@ Apply the interpolation conditions
Ux—A)=UL
U(x—A/2)=Uy
U(x) = UR
Ux—-A)=U;
U'(x-A/2)=Uy
U'(x) = Ug
to generate six linear equations in the six unknowns a,
b, c d, e andf.
(b) Solve the linear system to get

a=Uy, b=A-Ujy
1
c=4[Uy —2Uy + Ug)+ EA[Ui — Uy
d = 10[Ug — U] — A{U; + 8Ujs + Ug]
e = —8[Up — 2Up + Ug] — 2A[UL — Ug]
f = —24[Ug — U] +4A[UL + 4Uy, + Ug).

(In the code, a =A[U] — Ug], B = U —2Up + Ug,
and g = Ug-U..)
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6.19 Use Rke to approximate the solution to the initial
value problem

P'(t) = 0.001P(t)[1000(1 - 0.3 cos pt/6) -P(t)],

with P(0) = 250; sketch its graph for 0 < t < 36. (If
you have worked Exercise 5.10, compare results.)

6.20 The response of a motor controlled by a governor can

be modeled by
5" 4+0.0425' +0.961s = 0' +0.0630
" +0.087d = s’ +0.025s
vV = 0.873(u—v)
w o= 0433(v-w)
X = 0.508(w—x)
o = —0.396(x—47.6).

The motor should approach a constant (steady-state)
speed ast — eo. Assume s(0) = s(0) = u'(0) =
g (0) =0, u(0) = 50, v(0) = w(0) = x(0) = 75.

(a) Evauate v(t) for t = 0, 25, 50, 75, 100, 150, 200,
250, 300, 400, 500.

(b) What doeslimy_...v(t) appear to be? You can
check this by working out the steady-state solution
(the constant solution of the differentia equation).

6.21 Consider the initial value problem

Yy -y snx-2y cosx + ysinx = Inx,

y(l) = A11
YD) = A,
y'(1) = As

Show that the solution y(x) satisfies the first integral
relation

Y (¥ -y (X sinx - y(x) cosx = ¢, + XInx-X

and the second integral relation
’ . 1 3
¥ (x)—y(x)sinx = ¢y +cox+ Elenx— sz.

What are ¢, ¢, in terms of A, A, A;? Choose values
for A;, Ay, and A; and integrate this problem numeri-
caly. Monitor the accuracy of your solution by seeing
how well it satisfies the integra relations. Argue that
if the integral relations are nearly satisfied, then the
numerical solution may or may not be accurate, but
that if they are not satisfied, the numerical solution
must be inaccurate.
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and the following table:

satisfy the initial value problem i on@) »n@)  »ny)
0 0 1 1.0

yi1 = Yays, Yi(0) =0 1 1 0 0.7

Y:z = QY1Y3v ¥(0) = 1 2 0 -1 1.0

Y3 = Ky, Ys(0) = 1 3 -1 0 0.7

where k? is a parameter between 0 and 1 and y;(x) = 6.23

sN(X), ¥2(X) = cn(x), and y5(x) = dn(x).
Evauate these functions numerically. Check your
accuracy by monitoring the relations

sn’(x) + cn’(x) = 1
dn¥(x) + Ksn’(x) = 1
dn¥(x) - Ken®(X) = 1 - &

Argue that if these relations are well satisfied numer-
ically, you cannot conclude that the computed func-
tions are accurate, rather that their errors are corre-
lated. If the relations are not satisfied, the functions
must be inaccurate. Thus, this test is a necessary test
for accuracy but it is not sufficient.

The Jacobian eliptic functions are periodic. You
can get the true solutions for K = 0.51 from the fact

that the period is 4K, where K = 1.86264 08023 ¢ .24

32738 55203 02812 20579 ---. If tj = K, j =
1,2 3, ..., the solutions are given by the relation

yiltjza) = yilt))

A simple model of the human heartbeat gives

ex =-(x* - AX + ©)

c =X,

where Xx(t) is the displacement from equilibrium of the
muscle fiber, c(t) is the concentration of a chemical
control, and e and A are positive constants. Solutions
are expected to be periodic. This can be seen by plot-
ting the solution in the phase plane (x along the hori-
zontal axis, ¢ on the vertical), which should produce a
closed curve. Assumethat e= 1.0 and A = 3.

(@ Calculate x(t) and c(t) for 0 <t < 12 starting with
X(0) = 0.1, c(0) = 0.1. Sketch the output in the phase
plane. What does the period appear to be?

(b) Repest (a) with x(0) = 0.87, c(0) = 2.1.

Devise a step size strategy for Euler’s method with a
local error estimator based on Heun’s method. Imple-
ment it in acode for asingle equation. Test it on some
of the problems of this section and compare it to Rke.

6.7 OTHER NUMERICAL METHODS

The explicit Runge-Kutta methods discussed in this chapter have no memory of what
has happened prior to the current point of the integration. Other methods take ad-
vantage of previously computed solution values. The Adams methods furnish a very
important example that is easily understood. On reaching x, with the approximate
solution y, = y(X,), there are (usualy) available values y,..; = Y(Xqs14+i) for i =
2, 3, ..., k From the differential equation y = f(x,y), approximations to the deriva-
tives ¥ (X,+1.) can be obtained as

Jnp1-i = yl(xn+l—i) = f(xnr1-i>Y(Xnt1-i))-

Knowledge of solution vaues prior to the current point x, are exploited by means of
the integrated form of the differentia equation:

) =)+ [ @ di =3+ [ fe ).

n

This is done with ideas used throughout this book: interpolate y'(t) by a polynomia
and approximate the integra by integrating the polynomial. Let P(t) be the polynomial
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that interpolates fn. ;i a X for i = 1, 2, . .., k. A numerical approximation Y.,
to the exact solution y(X..;) is then defined by

Xn+1
Yntl =Dn +/ P(t)dt.
Xn

This is caled the Adams-Bashforth formula of order k. When P(t) is written in La
grange form, this formula becomes

k Xn+1
Yn+1 =)’n+2 (/ Li(t)dt) Jot1-i-
i=1 \Yxn

In terms of the current step size h, = X1 - X, and the coefficients

Xn+1
o = hi Li(z)dt,
n Jx,
thisis
k
Ynt1 =Yn+hy zak,ifn-f-l—i-
i=1
The integration coefficients a,; depend on the spacing of the mesh points X,.,, X, . . .
and in general must be computed at each step. It is easy to verify that they depend only
on the relative spacing, so when the step size is a constant h, they can be computed
once and for al. Using the theory of interpolation developed in Chapter 3, it is not
difficult to show that if the “memorized” values vy,,,; are sufficiently accurate and
f sdatisfies a Lipschitz condition, then this formula is of order k (hence the name).
An Adams-Bashforth formula involves only one evauation of f per step. Given vy,
and previously computed vaues f.,, f..,. . ., the vaue f, = f(x,y, is formed; if
necessary, the coefficients a,; are computed, and then y,., is evauated by the formula
to advance to X,.;. An attractive feature of this approach is that it naturally provides
a polynomia approximation to y(x) that can be used to obtain values between mesh
points:

X
(%) % yn+ / P(1)dr.
Xn

An Adams-Bashforth formula is so much cheaper than a Runge-Kutta formula of
the same order that it is natural to ask how Runge-Kutta codes can possibly be compet-
itive. It seems that by recycling previousy computed values we get something (high
order) for almost nothing (only one new f evaluation per step). Unfortunately, we do
not. All methods with memory have certain difficulties. One is getting started: Where
do the “previousy computed” values come from on the first few steps? A related
difficulty is the recurring one of changing the step size. When previously computed
values are recycled, it is natural to wonder if a “feedback” of errors might cause the
computed results to “explode.” This instability can occur, and some accurate formulas
that resemble the Adams-Bashforth formulas cannot be used at all because the inte-
gration is unstable even for arbitrarily small step sizes. Fortunately, if the step size
is small enough, integration with Adams-Bashforth formulas is stable. Returning to
the striking difference in cost of the formulas, it is important to realize that it is not



242

CHAPTER 6 ORDINARY DIFFERENTIAL EQUATIONS

merely the cost per step that is the issue but also how big a step can be taken and
still achieve a desired accuracy. The popular Runge-Kutta formulas cost much more
per step, but offset this by taking larger steps. Which method proves more efficient
in practice depends on the problem, the accuracy desired, and the particular formulas
being compared. There are many issues to be considered when selecting a method and
unfortunately, there is no choice that is best for al problems.

The Adams-Moulton formulas arise when the polynomia P(t) interpolates f,,1.i
fori =0, 1,..., k- 1 Proceeding analogoudy to the Adams-Bashforth case, we are
led to the formula

k=1

Yn+1 =n +hnaz,0f(xn+la)’n+l) +hn 0th,ifn+l—i-

i=1
The term involving interpolation to f.,; a X,.; has been extracted from the sum to
emphasize that y,., is only defined implicitly by this formula. It is not obvious that
Ve 1S even well defined. To establish that it is, we will show how to solve the nonlin-
ear equations defining v,., for al sufficiently small step sizes. This is accomplished
by first “predicting” a value using an explicit formula such as an Adams-Bashforth

formula Let y,(10+)1 denote this predicted value. “Simple” or “functional” iteration im-
proves or “corrects’ the mth approximation according to the explicit recipe

k—1
1
)’E,'ZT )= Yn +hna;,0f(xn+laYS,,:_)1) +hy Z a]t,ifn+1—i
i=1

form=0,1,....If LisalLipschitz constant for f and the step size is small enough that
for some congtant r,

o olL < p <1,

it is not difficult to show that there is a unique solution y,,, to the algebraic equations
and that the error of each iterate is decreased by a factor of r at each iteration. For
“small” step sizes, the predicted value is close to y,.; and the iteration converges
quickly.

An implicit formula like an Adams-Moulton formula is more trouble and more ex-
pensive to evduate than an explicit formula like an Adams-Bashforth formula. Why
bother? For one thing, the Adams-Moulton formula of order k is considerably more
accurate than the Adams-Bashforth formula of the same order so it can use a bigger
step size. For another, the Adams-Moulton formula is much more stable. When all
factors are considered, the Adams-Moulton formulas are advantageous. A modern
code based on such formulas is more complicated than a Runge-Kutta code because it
must cope with the difficulties mentioned above concerning starting values and chang-
ing the step size. It is much more complicated than even this brief discussion suggests.
With sufficiently many memorized values, we can use whatever order formula we wish
in the step from x,. Modern codes attempt to select the most efficient formula at each
step. Unfortunately, the art of computing has run ahead of the theory in this regard-
there is an adequate theoretical understanding of variation of step size with a fixed
formula, but little has been proven about variation of order. Nevertheless, years of
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heavy usage of codes that vary the order have demonstrated that they do “work” and
that the variation of the order is very important to the efficiency of such codes.

Another natural approach to approximating the solutions of differential equations
is based on numerica differentiation. Again using a basic idea of this book, we start
by interpolating previously computed solution vaues V., Yni1, - - - Yosik 8 Well as
the new one y,,, by a polynomia P(t). The derivative of the solution a X,.; is then
approximated by P’(x,.;). This approximation is tied to the differential equation at
Xne1 DY requiring that

Pl(xn+1) = f(xn+laP(xn+l)) = f(xn+17)’n+1)-

A formula for y,,, is obtained by writing P(t) in Lagrange form and using it in the
P’ (x,.1) term of the equation. For certain practical reasons it is usual with this family
of formulas to work with a constant step size h. Making this assumption, carrying out
the substitution, and scaling by h lead to a formula of the form

0OYn1+0uYn+ -+ Yni1—k = hf (Xnt 1, Yns1)-

This is a member of a family known as backward differentiation formulas, or just
BDFs. They were popularized by Gear [6] and are sometimes known as Gear's formu-
las. Obvioudy, these formulas are implicit like the Adams-Moulton formulas. They
are not nearly as accurate as the Adams-Moulton formulas of the same order, and
formulas of orders 7 and up cannot be used because they are not stable (hence not
convergent) as the step size tends to zero. The reason they are interesting is that at the
orders for which they are stable, they are much more stable than explicit Runge-Kutta
and Adams formulas. Before discussing their usage, some general remarks about the
step size are necessary.

The sdection of the step size is affected by a number of issues. The one that
receives the most attention is choosing the step size sufficiently small to obtain the
desired accuracy. We have also seen that for some methods the step size might have
to be reduced to produce an answer at a desired point. There are other less obvious
congtraints on the step size. Earlier we touched on the matter that the step size might
have to be redtricted so as to evauate an implicit formula efficiently and aso aluded
to the issue of redtricting the step size in order to make the integration stable. There
are problems of great practical interest called tiff for which these other restrictions
will cause an explicit Runge-Kutta method or an Adams-Moulton formula evauated
by simple iteration to need a step size very much smaller than that permitted by the ac-
curacy of the formula. The excellent stability properties of the BDFs have made them
the most popular formulas for solving such problems. They cannot be evaluated by
simple iteration because it restricts the step size too much. In practice, a modification
of the Newton iteration described in Chapter 4 is used to solve the nonlinear agebraic
equations for y,.;. This has many disagreeable consequences due to the necessity of
approximating partial derivatives and solving systems of linear equations. Each step is
very expensive compared to a Runge-Kutta or Adams method, but when the problem
is stiff, the steps can be so much larger that this is a bargain. Indeed, the solution
of a problem that is quite stiff is impractical with codes not specificaly intended for
such problems. As with the Adams formulas, modern codes based on the BDFs vary
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the order as well as the step size. Stiff problems are difficult technically as well as
practically and how to solve them is an active area of research.

There is a large literature on the solution of the initial value problem for a sys
tem of ordinary differential equations. References [4], [8], and [9] provide useful
orientation, especiadly in regard to the software available. State-of-the-art codes are
available from netlib: RKSUITE [lI] makes available explicit Runge-Kutta formulas
of three different orders. ODE/STEP/INTRP [10] is a variable step, variable order
Adams-Bashforth-Moulton code. The methods of RKSUITE and ODE/STEP/INTRP
are not appropriate for stiff problems. Both suites of codes diagnose stiffness when it
is responsible for unsatisfactory performance. VODE [2] is a variable step, variable
order code that makes available two kinds of methods, Adams-Moulton formulas and
a variant of the BDFs. The computing environments MATLAB and MATHCAD provide
codes based on a variety of methods, including some not mentioned here, but the code
that is to be tried first (assuming that the problem is not iff) is an explicit Runge-
Kutta code. Mathematics provides a single code that, like VODE, makes available
both Adams-Moulton methods and the BDFs. It is unusua in that the code attempts
to recognize stiffness and select an appropriate method automatically.

6.8 CASE STUDY 6

The restricted three-body problem is obtained from Newton's equations of motion
for the gravitational attraction of three bodies when one has a mass infinitesimal in
comparison to the other two. For example, the position (x,y) of a spaceship or satellite
moving under the influence of the earth and the moon in a coordinate system rotating
S0 as to keep the positions of the earth and moon fixed changes according to

M (x+p)  px—pt)

" !
xX =2y +x-— —
AT
*
non

Here
ri =1/ (x+u)?+y?
r=4/(x—p*)2+y

and p = 1/8245, p* = 1 - u. More insight is possible when the general equations
of motion are reduced to those of the restricted three-body problem, but it is still not
possible to determine orbits analyticaly. A search using high precision computation
identified several periodic orbits. One has initid conditions x(0) = 1.2, X'(0) = 0,
y(0) = 0, and y'(0) = -1.04935750983031990726. The period of this orbit is about
T = 6.19216933131963970674. Integration of this problem with Rke is straightfor-
ward after the equations are written as a first order system by introducing the vector
of unknowns y(t) = (x(t),y(t),X (t),y’(t))". The orbit displayed in Figure 6.3 was
computed using 10° for TOL and al components of THRESHOLD. Although the
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Figure 6.3 Rke solution of the satellite problem.

analytical solution is not known, we do know y(T) = y(0) = Y, because the orbit
has period T. Using this known vaue, we measured the global error of the approx-
imation Yy to y(T) and tested whether the computed orbit is periodic by computing
[¥n - Yol The discrepancy turned out to be about 6.1 x 10, which is about what
we would expect for the local error tolerances given the code. The figure shows the
“natural” output, the values at each step, connected by straight lines in the manner typ-
ical of plotting packages. At this tolerance the natural output is sufficiently dense that
the curve appears to be smooth. However, at less stringent tolerances it was found that
in portions of the integration, the step size is so large that the curve is visibly composed
of straight lines. This unsatisfactory situation can be remedied easily by computing in-
expensively with Yvaue the additional output values needed for a smooth graph. A
less efficient alternative that is acceptable in this particular instance is to limit the step
Size s0 as to force Rke to take more steps.

Conservation of energy has a special form for the restricted three-body problem.
The Jacobi integra is

J(x(t)ﬂy(t)’x,(t)a)’/(t))=O.5(xl(t)z-}-y'(t)z_x(t)l__y(t)z)___'fl(*_t)'_%(t).

A little calculation shows that the derivative dJ/dt is zero when it is evaluated at argu-
ments x(t), y(t) that satisfy the differential equations. This leads to the conservation
law

G(r) = J(x(1),¥(1), X (1),¥ (1)) = J(x(0),¥(0),%'(0),5' (0)) = 0,
expressing the fact that the Jacobi integral is constant along a solution of the restricted
three-body problem. We monitored the integration by computing G(t) at each step.
For the tolerances specified, it was never larger in magnitude than about 1.8 x 10°.
Many differential equations have conservation laws that arise naturally from physi-
ca principles, but others satisfy laws that are not so readily interpreted. Recall, for
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example, the conservation law we used in Case Study 4 to solve the LotkaVolterra
equations in the phase plane. Conservation laws are conseguences of the form of the
differential equations. It does not follow that numerical approximations will satisfy
the laws, and generaly speaking they do not. However, they must satisfy the laws
approximately. To see this, suppose that G(t) = G(t,y(t)) = 0 for any solution y(t) of
a differential equation y° = F(t,y). If y,~ y(t,), then linearization tells us that

Gltnn) ~ Gltnr¥(1n)) + %‘yf(tn,y(tn)> (Yn — ¥(ta))

_ %y‘fu,,,y(tn)) (v —¥(t).

Evidently the residua of the numerica solution in the conservation law is of the same
order as the globa error of the numerical solution, y(t,) - vy, This observation helps
us understand the size of the residua we found in integrating the periodic earth-moon
orbit. It is worth remarking that solutions of a system of differential equations might
satisfy severa conservation laws.

The conservation laws mentioned so far are nonlinear, but others arising from
conservation of mass, charge balance, and the like are linear. A linear conservation
law for the equation y~ = F(t,y) arises mathematically when there is a constant vector
v such that v' F(t,u) = O for al arguments (t,u). If y(t) is a solution of the equation,
then

diva(t) =v'F(1,y(1)) =0,
t
implying that G(t) = v'y(t) - vy (0) = 0. A simple example is provided by a system
of eguations that describes a certain radioactive decay chain:

Yi=-n
y;(: (k—- l)yk—l _kyk fork=2,...,9
Y1o = 99

The right-hand sides here sum to zero, hence the system satisfies a linear conservation
lav with v' = (1, 1,. . ., ). Figure 6.4 shows the solution of this system with initial
condition y(0) = (4, O,. . . ,O)Tcomputed using Rke with TOL equa to 10° and all
components of THRESHOLD equal to 10'°. Despite the modest relative accuracy
requested, the error in the conservation law was at the roundoff level, specificaly a
maximum of 4.4 x 10" in the MATLAB environment on the workstation we used.
This illustrates an interesting fact: al standard numerical methods produce approxi-
mations that satisfy linear conservation laws exactly. This is easy to show for explicit
Runge-Kutta formulas. In advancing from x, to x, + h, such a formula has the form

Yoi1 =Y, +h(boKo+ b1 Ki +--- +bK).

Each stage K; has the form F( x*,Y*) for arguments (x*,Y*) that are defined in terms
of x,, h, and the previous stages. The details do not matter, for al we need here is that
v 'K, = 0 because v' K(t,u) = 0 for all arguments (t,u). It then follows immediately
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Figure 6.4 Rke solution of the radioactive decay problem.

that v' Y., = V'Y, for al n. We start the integration with the given initial values so
that Yo = y(0). This implies that for dl n,

vIY, =v'Yy = vTy(0).

Put differently, G(x,,Y,) = O for al n. Accordingly, it was no accident that the numer-
ica solution computed by Rke satisfied the conservation law to roundoff error, that is
what we should expect of a linear conservation law.

Returning now to the satellite problem, suppose we would like to know when the
satellite is nearest and farthest from earth. The distance to the satellite is

d(e) = /x(1)* +y()?,

so we look for the extrema of this function by finding the times t for which d'(t) =
0. Let us avoid square roots by working with the square of the distance, D(t). The
derivative of this function is

D'(r) =2 (x(2)x'(£) +y(2)Y (1))
=2(y1()y3(2) +y2(t)ya(2))

in the origina variables and those of the first order system, respectively. Notice that for
the orbit we study, the initial distance d(0) = 1.2 is an extremum because D'(0) = O.
This will afford a check on our computations because the orbit is periodic and the
same must be true of d(T). We want to compute the roots of F(t) = D" (t) = 0. At
each step we have an approximation to the solution that alows us to evauate F(t),
so when we reach x after a step of size step, we ask if F(x - step) F(x) < 0. If so,
we have found just the kind of bracket for a root that we need for applying Zero to
locate a root precisely. Evaluation of F(t) is easy enough; we just invoke Yvaue to
get an approximation to y at t, and then use these approximations in the expression
for D'(t). There is one snag, which is a very common one when combining items
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of mathematical software. We invoke Zero with the name of a function F of just
one argument t. However, to evaluate F(t) we must invoke Yvaue, and it requires
three other arguments, namely x, step, and ycoeff, the array of coefficients defining
the interpolating polynomial over [x - step,x], returned by Rke. Somehow we must
communicate this output from Rke in the main program to the function for evaluating
F. There can be more than one way to do this, depending on the language, but it is
always possible to do it by means of globa variables. As a specific example, we coded
the function in MATLAB as

function Ft = F(t)

global x step ycoeff

yt = Yvalue(t,x,step,ycoeff);
Ft = 2*(yt(1:2) *yt(3:4));

The quantities listed in the second line of this code are computed by Rke in the main
program. By duplicating the line there, the quantities are made accessible from the
function F. Proceeding in the manner described with the same tolerances in both Rke
and Zero, we found

time distance
1.45857 0.03338
3.09606 1.26244
473354 0.03338
6.19210 1.19998

The last extremum occurs at a time that agrees to about five figures with the period and
agrees with the initia distance to about the same accuracy, which is quite reasonable
given the tolerances. In Figure 6.3 the points nearest the earth and farthest away that
we found in this way are indicated by circles.
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MISCELLANEOUS EXERCISES FOR CHAPTER 6

Unless otherwise indicated, use 10° for tolerance
values and 107 for the threshold values for the com-

puting exercises.

6.25 Consider the problem

y = 2|y, y(-1) = Ve

on the interval [-1,1]. Verify that the existence and
uniqueness theorem (Theorem 6.1) applies to this
problem. Verify that the solution to this problem is

yu>={ <, 20

, x<0

and further that y(X) has one continuous derivative
on [-1,1] but does not have two. Is Euler's method
convergent and O(h) for this problem? What about
“higher order” Runge-Kutta methods? What are the
answers to these questions for the two problems

Y = 2|y, y(-1) = lVe
on [-1,0] and

y =2y, y(0) =1

on [0,1]? Show that solving the origina problem on
[-1,1] with a mesh point at x = 0 is the same as solv-
ing these two problems.

Explain the following numerical results: A fourth
order Runge-Kutta code was used to integrate

Yy = 2|y, y(-1) = le

from x = -1 to x = 1 using a fixed step size h and
the true error a x = 1 computed from the analytical
solution. Two computations were done. One used
h = 2/2* and the other h = 2/3*. The results in the
following table were obtained:

error error

k h=2/2¢ h=2/3
1 10E-1 24E-1

2 1.0E- 2 23E-2
3 8.2E - 4 25E-3

4 5.6E - 5 2.8E - 4
5 36E- 6 31E-5
6 23E-7 34E-6
7 14E-8 38E-7
8 90E-10 42E-8
9 56E-11 47E-9
10 35E-12 52E-10

6.26 In modeling circuits containing devices with electri-

cal properties that depend on the current, differential
equations of the form

A = 10,%)

occur. For the case where

3— x2/40 0 1-2
A(x):( 4 xg )

1-x3/40 2 4 x§

30cost —4x) + 5x3
f(t,x) = 2x; = 3xp ;

3x2 - 3JC3

0
x(0) = (O) s
0

compute x(t),t = 0.4, 0.8, 1.2, . . ., 16. Plot x(t),
%o(t), and x(t), 0 < t < 16, on separate graphs. (Hint:
Use Factor/Solve in conjunction with Rke.)

and

6.27 Approximate the solution to the nonlinear two-point
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6.28

6.29

CHAPTER 6

boundary vaue problem

y' =¢-1y0)=0y()=3
ax=0.10.2,...,0.9. First use Rke and Zero to find
the missing initial condition y'(0). Then use Rke to

solve the resulting initial value problem at the desired
x vaues. (Hint: Denoting the solution of

y ' =¢€-1y0) =0,y(0 =s

by y(t;s), the problem is to find s so that y(1;s) = 3.
Use Zero to find the root of G(s) = y(1;s) - 3=10.) If
you have worked Exercise 5.12, compare results.

The following set of differential equations arises in
semiconductor theory:

€2E':p——n+1
ep' = pE—¢
en' =—n"+¢

Typica side conditionsare n(0) = p(0), p(1) = 0, and
n(1) = 1. For e = 1 find E(1) such that n(0) = p(0).
Print out your final value for E(1). What happens if
e =10%

The motion of a wind-blown balloon can be approxi-
mated by the solution of the initial value problem

d . .3 6 4
Ea(:)_—lo t+10 a(t)dtx(t)

%x(t) =v(a)

a(0)=A
x(0) =0,
where for each time t, a(t) is the dtitude of the bal-

loon above ground, x(t) is the horizontal distance of
the balloon from a fixed starting point, and v(a) is

ORDINARY DIFFERENTIAL EQUATIONS

the velocity of the wind as a function of dtitude. As-
sumptions are that the wind direction is constant, the
ground is level, and the baloonist is only alowed to
coast. Lengths are measured in feet and time in sec-
onds. The following data have been collected for v(a):

a 0 50 200 500 1000
v 0 3 5 10 15
a 1500 2000 3000 4000 5000
v 20 20 18 15 12

The problem isto find the initia altitude, a(0) = A, so
that the balloon lands at x = 35,000 ft from its point
of origin, and the time of flight t;. At t; we know that
a(t)) = 0 and x(t;)) = 35,000 so the system can be in-
tegrated backwards in time until t = 0. The value t;
is to be chosen so that x(0) = 0; the initia atitude A
will be the value of a(0) for this t;.

To solve the problem, perform the following steps
in the order indicated.

(a) Assuming that v(a) = 20 (constant wind velocity)
and t; = 2000, use Rke to calculate x(0) and a(0).
Check your results with an analytical solution of the
differential equations.

(b) Fit the v(a) data using the complete cubic inter-
polating spline. Plot v as a function of a.

(c) Using v(a) from part (b), again caculate x(0) and
a(0), thistime for t; = 1000, 1500, 2000, 2500. Tabu-
late t;, x(0), and a(0) for each case.

(d) Modify your program in (c) to use Zero to find
the time of flight t; so that x(0) = 0. What isA?




APPENDIX A

NOTATION AND SOME THEOREMS
FROM THE CALCULUS

We assume that the reader is familiar with the topics normaly covered in the under-
graduate analytical geometry and calculus segquence. For purpose of reference, we
present some standard notation used in this book and a few theorems from the calcu-

lus.

A.1 NOTATION

[a,b], the interval consisting of the real numbers x such that a < x < b.
(a,b), the interval consisting of the real numbers x such that a < x < b.
x € [a,b], x liesintheinterval [a, b].
1y d
£ =4 £(x)
(") (x) = 42
fM(x) d){'f (x)
fec! [a,b], f belongs to the class of functions having a first derivative continuous on
the interval [a,b].

f €C"a,b], f belongs to the class of functions having an nth derivative continuous on

[a.b]
The norm |[|f|]] of a function f(x) continuous on the interval [ab] is the maximum
vaue of |f(X)| over the interval.

2
gx(x.y) = ;;a;g(fc,y), gy(xy) = %g(x,y)’ ry(%,y) = g%g(x,y), and so on, denote
partial differentiation.

YicoGi =ao+ai+---+ap

H?:Oa,- =agXa) X:-Xay

0.d; d, . ..dye) standsfor 0.d; d,. .. d, x 10% for example, 0.123(4) means 0.123 x
10°. More often, we use 0.123E4 for this.

251
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=, is approximately equd to.

f(x") = limit of f(x + h) as n — 0 with h > 0, the limit from the right.

f(x) = limit of f(x - h) as n — 0 with h > O, the limit from the left.

<<, much less.

vV = (Vo V), notation for a vector.

The norm ||v|| of a vector v is the maximum magnitude component of the vector.

q(h) = 0(h") as # — 0 ‘means that there are (unknown) constants h,, K such that
lg(h)| < Kh* for all 0 < h < hy.

A.2 THEOREMS

Theorem. Intermediate Value Theorem. Let f(x) be a continuous function on
the interval [a,b]. If for some number a and for some x; xg |[a, b] we have f(x) <
a < f(x), then there is a point ¢ € [a,b] such that a = f(c).

Theorem. Rolle's Theorem. Let f(x) be continuous on the finite interval [a,b]
and differentiable on (a, b). If f(a) = f(b) = O, there is a point ce(a,b) such that
f(c) = 0.

Theorem. Mean Value Theorem for Integrals.  Let g(x) be a nonnegative func-
tion integrable on the interval [a,b]. If f(X) is continuous on [a,b], then there is a point
C € [a,b] such that

b b
[ 1015 dx=1(0) [ gl) .

Theorem. Mean Value Theorem for Derivatives.  Let f(X) be continuous on
the finite interval [a,b] and differentiable on (a,b). Then there is a point c€ (a,b)
such that

b—a

Theorem. Taylor’'s Theorem (for f(x)). Let f(x) have n + 1 continuous deriva-
tives on (a,b) for some n > 0 and let XX, € {(a, b). Then

f) = P(¥) + RyalX),

where

Py(x) = f(x0) + ~(')'C‘%O)f(xo) +oet (x_n—J;O)"f(") (x0)
and

x—xg)"t1
Rn_H(x):%f{rHl)(z)
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for some z between x, and x.

Theorem. Taylor’'s Theorem (for f(xy)). Let (X.Yo) and (X, + Xy, + h) be
given points and assume that f(x,y) is n + 1 times continuously differentiable in some

neighborhood of the line L(Xg, Yo;% + X,Yo + h) connecting (Xo,Yo) and (X, + XY +
h). Then

n b) J
flxo+E&yo+m) = f(x0,50) + Z ( 5;) f(xy)

1 p) a n+1
+—(n+1)!<§a+n‘5;) )

for some 0 < g < 1. [The point (X, + gX,Yp + gh) is an unknown point on the line L.]
For n = 2, the formula without remainder becomes

xX=x0
Y=Yo

x=x0+6§
y=yg+6n

a )
S0+ 30-+7) = £(30,30) + B3 s0.30) +n 3 (10,30

1 Zazf aZf 2azf
+'2—' |:§ 'W(anyO)'i'Z&nax_ay(anyO) +n W(X(),yo) .

Theorem. Let f(xX) be a continuous function on the finite interval [a,b]. Then
f(x) assumes its maximum and minimum values on [a, b]; that is, there are points
X1 % € [a,b] such that

fx) < f¥) < f(x)
for all x € [a,b].

Theorem. Integration by Parts. Let f(x) and g(x) @ real-valued functions
with derivatives continuous on [a,b]. Then

/abf (1)g(t)dt = f(1)g(0)]i=h - / f()g @) dr.

Theorem. Fundamental Theorem of the Integral Calculus.  Let f(x) be con-
tinuous on the interval [a,b], and let

F(x) = / “f)dt forall x€lab].
Then F(X) is differentiable on (a, b) and
Fx = f(x).

Theorem. Common Maclaurin Series.  For any real number X,

x? x"
e"—1+x+2'+ + +
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inx = +x5 +(-D" L +
e TR V)
x4 n Xen

cosle_.27+z!._....+(_1) (zn)!+...

For ¥ < 1,
1
_— 1+x+x2+...+x"+....
1—x
For discussions and proofs of these theorems, see A. Taylor, Advanced Calculus, Wiley,
New York, 1983.



ANSWERS TO SELECTED EXERCISES

Exercise Set 1.1 (Page 11)

1.2 (&) In six-digit decima rounded arithmetic
U = 0.00001 = 10°
(b) Same as those in part ().

1.3 (8 With n = 3 in six-digit decima chopped
arithmetic x - y = 0.000456.

1.5 [F(x+ex)— F(x)]/F(x) = [(1+2e+€*)x2 —2(1 +
ex+1—x242x—1)/(x—1)? =e22/(x - 1)2.
The last quantity becomes infinite as x approaches
1.

Exercise Set 1.2 (Page 23)

1.7 With s =vV1—-¢c2 = F(c),

8s~ F'(c)8c = —(c/s)8c. For n/4 < 6 < m/2, the
factor |c/g| = |cot(q)| < 1. In this range, the value
of sis as accurate as the value of ¢, and it will be of
comparable accuracy for g not greatly smaller than
p/4. However, for q << 1, the factor cot(8) ~ 1/6
is very large and s computed in this manner is
much less accurate than c. The relative error

ds 1/c c\2 &¢

7o (5)e=-0) %
Because the relative error in s is related to the
relative error in ¢ by afactor that is the square of
that arising for absolute errors, conclusions about
the usefulness of the scheme for the various q are
essentially the same as for absolute errors.

1.9 In four-digit decima chopped

(0.8717 + 0.8719)/2 = 1.743/2 = 0.8715, in
four-digit decimal rounded the midpoint is
1.744/2 = 0.8720; neither of these is even inside
the desired interval. A good aternative is to
compute h = b - a and then the midpoint is
a + h/2. For this example, we get h = 0.0002000
and the midpoint is 0.8718, the exact value.

1.11 (a) In IEEE single precision the final k = 46 with
S = 0.00008138; its relative error is -0.793 or
79%.

(c) The series is a better algorithm for positive x
because there is no cancellation error.

1.13 Some information is lost in the subtraction of L%,/4
from 1 becauseLy — 0 as N — oo,
\/1—L%/4~1-L%/8, showing that there is
severe cancellation when this quantity is subtracted
from 1. The information lost is small in magnitude,
but it becomes important due to cancellation,
especidly after it is multiplied by the large vaue of
N to form the approximation NL,\/2 to p. The
rearranged form avoids the cancellation in the
origina form of the recurrence.

Miscellaneous Exercises for Chapter 1 (Page
29)

1.15 (a) Let x =8.01, y = 1.25, z= 80.8, then
(*®y)®z=808. while x® (y®z) = 809.
(c) Let x = 200., y = -60.0, z = 6.03, then
x® (y®z) =--10700. while
(x®y)®(x®z) = -10800.
1.17 Use
snnx=sn(l+ n- )X

=sgnxcosn- 1)x + cos x sin(n - 1)x
and

cosnx=cos(1l + n- 1)x
= cos x cos(n - 1)x - sin x sin(n - 1)x.
Then
€n = Sn—35p
= s1(cn—1—En-1)

+c1(Sn-1 — 8p—1)

255
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=51Ty—1 +C1€4—1 25 (3
and 1 0 0
L=|-1 1 o],
Tn = En=Cn 2 —2/3 1
=c1(cn—1—Ep-1) _
—51(Sp—1 _fn—l) -2 1
U= 0 6 -2
=C1Tp—1 —51€p—1- 0 0 -3
Hence, (c)
&+ =51 10 0 0 0]
+2¢151€0—1Th_1 +C%82_1 L= 05 1 0 O
LOR L —2eisie L5 13 1 0
C1n-1 151€7—1Tn—1 05 5 4 1|
+siel_
=€ | +Tp1 =" 2 -3 2 5
=g} +1. y—|0 05 0- 05
0 0 -1 0
0 0 0 -1
Exercise Set 2.1 (Page 42)
2.1 (a) nonsingular; X, = -1, X, = 1/2, x; = 3 Exercise Set 2.3 (Page 61)

(c) singular (but consistent)
(e) singular (but consistent)
2.3 Re = 223, Ry = 177, C;, = 56.7607,
Dy, = -56.7607, C, = 29.3397, D, = -252.340,
B, = -147.660, B, = 56.7607

2.7 r = (0.000772, 0.000350) and
s = (0.000001, -0.000003), so the more accurate
answer has the larger residual.

2.9 (8 The uncertainty in each x; is £ ||x| times the
right side of the Condition Inequality, that is,
+0.0075386.

Exercise Set 2.2 (Page 48)

Exercise Set 2.4 (Page 63)
24 (8 X =9, % =-36, X3 = 30

© 2.11 Factor/Solve produces the exact answers

R, =51.67, R, = 26.66, and R; = 31.67 with
minor perturbations at the roundoff level. The
vaue of COND is 1.50.

0 0  0.001 2.13 COND = 1.438E+4

1.0 050 0.33
U= 0 0.080 0.09 |,

98.331 —199.329 99.998
1.0 Al =1| —198.662  399.658 —199.995
L '5=1| —050 |, 99.998 —199.995 99.998

0.22 2.15 COND = 112.9; for V = 50 we have
S0 X3 = 220, X, = -230, and X, = -37. v = (35, 26, 20, 15.5, 11, 5) with minor
() x, = 500/9, x, = -2500/9, x; = 2300/9 perturbations at the roundoff level.
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2.17 (a) COND = 6.44 Exercise Set 3.1 (Page 89)

3.14 2238 021 7.05 3.1 No, coefficients of higher degree terms may be
X=| -0.014 019 062 0.83 zero. For example, for the data
6.25 3.46 8.85 18.93 X =i,y = 2i,1<i <4, theinterpolating

For exact data the answers are very reliable;
however, if the entriesin A are known only to
+0.0005 and those in B to +0.005, then from the
condition number inequality

3.3

polynomia is clearly P,(x) = 2x which has degree
only 1.

Pa(x)=2(x—2)(x—3) 4(x_ )(x-3)

A1l < 6.44(0.0011 +0.005/| Byl e,
where X, is the kth column of X. For example, te (2)(1)

when k = 1 we have ||DX|/]|X| < 0.018. In
particular, x,, is probably incorrect; it certainly
makes no sense physically.

(c) The analog of (2.27) here isAx;; = oAb, .
For this problem, a,; is much smaller than the
other entries, but the rest are about the same. The
X3 values are most senditive to changes in b since
the third row of A contains the largest entries.
When by, is changed to 1.43, that is,

Db,; = -0.01, then x,; = 0.016; hence,

Dx,; = 0.03~a,, Db,, as predicted by the theory.

Exercise Set 2.5 (Page 72)

219 Therearen - 1 divisions for the eimination and n

for each b; there are n - 1 multiplications for the
eimination and 2n - 2 for each b. Hence, thereis a
total of (m + 1)n - 1 divisons and (2m + I)(n - 1)
multiplications. The number of
additions/subtractions equals the number of
multiplications.

Miscellaneous Exercises for Chapter 2 (Page

221 x1T=1 (0.5500E-5, -0.I653E-3, -0.3717E-5,

-0.4737E-4, 0.3714E-4, -0.1212E-3,
0.6434E-4, 0.6362E-4) and COND = 18.01.
Then fy= (-0.6190, -0.9217E-1, 0.1202E-1,
0.3714, 0.2720, -0.7209E-2, -0.1325, -0.4654,
0.1656, -0.1421).

2.23 (a) det A = 1,500,000

35

3.7

3.9

interpolates (1,2), (2,4), and (3,c) for any c. The
formula for P5(x) smplifies to

%(c—6)x2+(11 —3¢/2)x+(c—6)

S0 that we get exact degree 2 aslong as c# 6. This
does not contradict Theorem 3.1 since the degree
of P, istoo large for that theorem.

The standard algorithm requires1 + 2+ - + N - 1
multiplications for a total of N(N - 1)/2. The
nested version requires only N - 1.

9
wo(x) = [J(x~n)

n=1
Near the ends of the interpolating points wg(x) is
large in magnitude, for example,
-Wo(0) = wy(10) = 362,880. In the middle, for
example, w(5.5) = 193.80, it is smaller.
HOq) = a=f, H(x) = b=f,
H(X. = a + bh + ch’+ dh® =
fo + hf'y + [3(feq - f) - 20, - hf',q] + [Df, +
hf s - 2(fer - )] = fo. Similarly,
H (Xe1) = frea

Exercise Set 3.2 (Page 93)

3.11 The errors on [-5,5] are diverging, but they appear

to be converging in [- 1,1]. These data came from
a sample of 1001 points.
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m N Error on Error on X f(x) )
[-5,9] -1,1] 3375 0400 0.447
7 15 7.19 0.019716 3625 0449 0424
10 21 59.77 0.003280 3875 0769 0.741
13 27 538.17 0.000748 4125 0750 0.741
4375 0315 0.316
3.13 4625 0144  0.137
N Ermor 4875 0252  0.262
15 4.06 3.25
21 95.11 f A(f) (a)s (b)s
27 2933.04 63 0.070 0.070 0.070

200 0.359 0.340 0.343
800 0.935 0.984 0.959
2000 2.870 2.796 2.835

Error increases as N does.

Exercise Set 3.3 (page 98) 10000 53.478 54.761 54.343
3.15 () Py = The results from (b) are better than those from (a)
X 1)(x—2) (et D= 1)(x—2) but neither is especially accurate (particularly for
2 +2 large f).
6 2 ;
(4 Dx(x=2) (x4 Dx(x=1) 3.27 Using al the data but those at
+2 = +5 6 {21, 22.6, 22.8, 23.0, 23.2, 23.4} produces an X)
© for which
x f X Exact S(x)
-1 2 21.0 503 500
0 2 0 22.6 550 548
1 2 1 0 22.8 565 570
2 5 8 1.5 0.5 23.0 590 570
23.2 860 767
Hence P4(x) =2+ %(x+ Dx(x—1). 23.4 944 966
Thisis good for small x, but deteriorates
Exercises for Section 3.5 (Page 115) eventually. For this choice of interpolating points
3.17 there are 10 sign changes in the {¢;} sequence
X 7 indicating 10 inflection points, not 1. Hence, there
0 0.0 must be alot of undesired oscillation; however, a
/2 1.0 2/n graph of x) would show that, for the most part,
T 00 -2/m -4/ the amplitudes of the oscillations are small enough
to not be visible.
Hence P3(x) = 2x/m— (4/m%)x(x—m/2) = 331 S = 0in [XuXw] if and only if
—4x? /1% + 4x/m as before. by + 2Cn(Z - %) + 3d( Z- %.)? = O for
321 For S'(x) = f"(x) use ¢, = f7(x); for X, < Z < Xqp. Using the quadratic formula this
S'(x) = P (xN) use ¢y = 7(xy)- reduces to the statement in the text. Checking
3.23 The results for §x) are the same (to the displayed byby.; < O will not detect al zeros of S, since S

digits) for the three different sets of {x}.



3.33

3.35

(a piecewise quadratic) may have two zerosin a
particular [X,,Xn+)] and consequently

S (%)S (Xne1) > 0.

For the data used in Exercise 3.15, the resulting
S(x) had alocal maximum at (4001.3, 0.8360), and
local minima at (3514.9, 0.3811) and

(4602.5, 0.1353).

For the choice of the 12 data pointsin

Exercise 3.20, there was one critica point at

ro = 5.5544 for which Sr,) = -12.036; there
were two inflection points at (6.199, -8.979) and
(9.685, -0.6798). The second inflection point is
spurious.

Exercises for Section 3.6 (Page 127)

3.37 The four coefficients are

a=fy
b = (for - f120)/(% - %)
c=(fz - f2)/(Y2 - W)

d = (fi1 + fop - fip - F)[( - x)(Y2 - Yo

Miscellaneous Exercises for Chapter 3 (Page

132)

3.39 {t} = {0.00, 1.54, 2.81, 3.65, 4.49, 5.23, 5.78,

6.13, 6.46, 6.76, 7.00}. The graph isa spiral in the
Xy plane.

Exercise Set 4.1 (Page 149)

4.1

4.3

If agiven F(X) has residua e at x =r, then the
scaled function f(x) = MF(X) has residua Me at
X = r. Hence, a small residual (€) can be scaled up
by alarge M while a large residua can be scaled
down by atiny M; consequently, a single residual
tells us very little about accuracy.

(a) The next bracket is[0.5, 1.0], the second is
[0.75, 1.0], and the third is [0.75, 0.875].

(c) Newton's method:
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4.5 (8) There are many possible brackets; here p/2 and
p were used.
(c) x3 =1.928478 and x, = 1.897313
(e) B =1.895494

47 Lete=max(e, ,e) < 1. Thene < & where

1+\/5,‘+1 1_\/5141
=) |72 :

Fori=0,dy, =1, s0 g = e Assume that
€n1 < €1 ; then

1
81‘:%

€, <€, 18,2 < eon-1+8n2
But, after some algebra,
814852 = 8}

hence g, < e which, by induction, gives the
desired result.

Exercise Set 4.2 (Page 152)

4.9 (a) One step of the bisection method reduces the
width of a bracket by afactor of 2, so n steps
reduce the width by 2. To get from a width of
10" to one of 10°® then requires

1010

-5
<10

or N>151log 10/ log 2 = 49.8 =2 50. Technicaly,
this is the number of midpoint evaluations required;
you may want to add two more to get the function
values at the endpoints of the initial bracket.

(b) The worst case for Zero is four wasted secant
iterations for every three bisections. Hence

N2> %'50= 116.27 =~ 117.
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Exercise Set 4.3 (Page 155)

4.10 (& The output B = 0.7853982, Flag = 0, Residual
= -2.1E - 11, and there were 7 calls to the f
function. There was just one root in [0,1] which
Zero found quickly and accurately.

(d) The output B = 0.8000003, Flag = 0, Residual
= 5.3E - 46, and there were 44 calls to the f
function. The high multiplicity root is
ill-conditioned, yet, with this form off, Zero was
able to compute it accurately after many function
evaluations. The small residua is in accord with
the flatness of the graph at the root.

(h) Thereisno root in the input interval [0, 1]; Zero
correctly reported the lack of a bracket through the
Fag = -2 vaue

411 C=633.162 and T = 353.878

4.13 The three smallest positive roots are 1.30654,
3.67319, and 6.58462.

4.15 There are two roots: one at T = 456.9975, the
other at T = 12,733.77 is physically dubious.

4.17 With f(K) = w, In(1 + K)/(1 - k) - 2K, it is essily
seen that f(-k) = -f(k), f(0) = 0, f(1) = oo,
and (k) > 0 on [0,l), so the mathematical
conclusions follow. The three k values are 0.99933,
0.95750, and 0.77552.

419 E = 1.1903E- 11

Exercise Set 4.4 (Page 160)

4.23 m=2and a = 1/3, so theright side of (4.14) is
10°° /87~ 107.

Exercise Set 4.5 (Page 162)

4.25

n X y z

0 0.5000 1.0000 0.0000
1 0.2808 0.6278 0.0365
2 0.2138 0.4635 0.0565
3 0.2113 0.4305 0.0622
4 0.2114 0.4293 0.0623
5 0.2114 0.4293 0.0623

There is also an answer (0.2114, -0.4293, 0.0623).

Miscellaneous Exercises for Chapter 4 (Page
167)

4.27
X t
0.1 0.656578
0.2 1.236000
0.3 1.918448
0.4 2.694180
0.5 3.556555

4.31 (&) The expression for a, follows from a, = P(0)
and the factorization of P(x). The expression

n — 1/n
_ i

1/n

1 Po)
a

is the geometric mean (average value) of the factors
(s - r)/r;, and the bound merely states that the
least value of afactor is no more than the average
value. If some factor is much larger than the
smallest one, the average will be substantialy
larger than the smallest factor and the bound will
be rather poor. If s is approximately a large root,
sy r;, then the factor (s - rj)/r; is small. But if
some root, say ry, is much smaller than s, that is,
|ri] >>|s|, then the factor

o}

Tk

g—r
Tk

~

is quite large and the bound is poor.

Exercise Set 5.1 (Page 183)

51 A = A, =} and A, = Ay =3. From f(x) = X'
we get d = 3 and ¢ = -2/405. (The name %-rule
comes from the coefficient values for the interval
[0,1] instead of [-1,1].)

5.3 With h = p/N we have

N N-panel trapezoid
60 0.811148922853
100 0.811155733422
140 0.811155735194




Note: the routine Adapt from Section 5.3 requires
441 function evaluations for comparable accuracy.

Exercise Set 5.3 (Page 189)

5.4

55

5.7

5.9

(a) Thisintegrand is very smooth, so Adapt has no
trouble getting an accurate answer in only 21
function calls. The output is Answer

= 3.14159122, Flag = 0O, Errest = 1.431E-5. Since
the exact answer is p, the actual error is 1.431E-5,
which was what was estimated by Adapt.

(d) This integrand is highly oscillatory, yet Adapt
has little trouble getting an accurate answer in 49
function cdls. The output is ANSWER

= 1.5000000, FLAG = 0, ERREST =

-1036E-16. Since the exact answer is 3/2,
Adapt’s error estimate is quite accurate.

(f) This integrand has a vertica asymptote at 0.25
but it still is integrable with exact answer of

1 +/3. Adapt has great difficulty with this
problem, even when f is defined to be finite, say
1.E+8, at 0.25 to avoid the division by zero. The
output is ANSWER = 2.7319539, FLAG = 2,
ERREST = 9.264E-5. The actual error is
9.264E-5, which is close to the actual error of
9.691E-5. The Flag of 2 indicates that Adapt was
unable to compute a sufficiently accurate answer in
the 3577 function calls allowed.

ANSWER = 1.500000 and ERREST = -2.4E-18
are comparable to the results from Exercise 5.4d.
The number of integrand evaluations was 21,
which is faster than for Exercise 5.4d.

X Answer Flag F cdls
0.0 0.0000000 0 7
0.1 0.0993360 0 7
0.2 0.1947510 0 7
0.3 0.2826317 0 7
0.4 0.3599435 0 7
0.5 0.4244364 0 7

T (0.50) = 3.736767, T(0.75) = 3.904747,
T (1.00) = 4.187184.
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5.11 For amachine withu = 1.4 x 10%, thefirt n =4

and the second is 12. Exercise 1.3 suggests that for
the first n, 4 digits of accuracy (out of 17) might be
lost due to the noise. For the second n, 12 digits
might be lost. This idea was used with integrand
(b) of Exercise 5.4. The output ANSWER

= 0.909090912, with ERREST = -7.82E-9 that
required 49 function calls. The noise level was not
magnified by Adapt, so the code appears to be
stable. When n = 12 we got ANSWER

= 0.909099105 in 2807 function calls with
ERREST = -7.82E-6. The accuracy was
contaminated by the noise after the expected 5
digits; the number of function evaluations required
also increased due to the lack of smoothness.

Exercise Set 5.4 (Page 198)

513

5.15

517

Part Answer Flag F cdls
@ 0.6205370 0 147
(b) 0.6205362 0 35
(©) 0.6205366 0 49
For the first method in (b) we used
in € 2/6
Bz [T St [ fwyan

with e = 0.23; the first integral was done
anayticaly and the second by Adapt. For (c), we
used the change of variable t = .

(a) For ABSERR = 10 Adapt returned
ANSWER = 0.2865295 and an error estimate of
-0.34E-9 with 1897 function calls.

(c) Method (@) is faster at the larger tolerances and
is more accurate at ABSERR = 10°.

The singularity at x = 0 causes no problems.

t E, () estimate
1.0 0.2193838
2.0 0.0489004
3.0 0.0130475
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5.19
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T Co(T) F calls
100  0.067688 21
200 0.521380 21
300 1.41696 7
400 2.37916 7
500 3.17812 21
1000 5.00724 49
total 126

This function has the form
C(T) = g(T) ()lgoo/Tf(x)dx so it is most

efficiently evaluated as a reverse iteration. Let

1900/T;
F(T)=FT)t [0 - )

fori=5,4, ..., lwiththeintegral for F(Ts) taken
over the interva [0, 1900/T ¢] to get the iteration
started. Then C(T) = g(MF(T).

Exercise Set 5.5 (Page 201)

521

Method (@ (b)
Glucose 6930.9 6927.1
Insulin 1905.1 1904.6
Glucagon 92319.4 92688.3
Cr. Hormone 256.5 256.7

Exercise Set 5.6 (Page 203)

A, = A; = 1/6; hence,
[ fxy)dzdy~[£0,1) + £(0.0)+ £1,0))/6
®)

JIf(xy)dxdy~
(1/12){[f(0,1) + £(0,1/2) + f(1/2,1/2)]
+£(0,1/2) + £(0,0) + f(1/2,0)]
+A(1/2,1/2)+ £(1/2,0) + f(1,0)]
—[A(1/2,0)+ f(1/2,1/2) + f(0,1/2)l}
= [£(0,0)+ £(1/2,0) + f(0,1/2)
+£(0,1) + f(1,0)+ £(1/2,1/2)] /12

Miscellaneous Exercises for Chapter 5 (Page
208)

5.25 For convenience in notation, let

1—72

h(r,0,0") = .
(r6,6) 1—2rcos(0—6')+r2

Since
1= —l 2 h(r,0 9' de
2n -/(.) (r7 ’ ) ’

we have, after some agebra

|
0,0) = 5= [ hin 0,88 - SO,

which should have better numerical properties for r
near 1. Thisis because as 8’ — 8, both the
numerator f(q") - f(g) and the denominator

1- 2rcos(q - q) + r? become small. Since the
integra acts as a smal correction to the term f(q)
and since the integrand is of one sign, the
numerator must balance out the effect of the small
denominator. Moreover, even if the integrd is
grosdly in error, it has little effect on the result of
thesumasr — 1. ‘To illustrate this, let q = p/2
with f(g) = sin g so that the solution becomes

f (r,q) =r. The function f was evaluated using
both forms, the original and the modified, and
function counts were used as a measure of the
computationd effort. For example, at

r =0.9921875 we got for the original f, avaue of
0.99218012 requiring 1057 function evaluations.
The modified f value was 0.99218750 requiring
329 function evaluations. The modified version is
clearly faster and a little more accurate.

5.27 For n = 3 we have g, = 7.08638 so Adapt returned

5.29

Jo rf(r)Jo(gnr)dr = 0.000049746 with Errest =
-7.21E-9; hence, A, = 0.011046.

The main program is the usua driver to produce
the answer T,. The function f for Zero has
independent variable T, and output

f= %Answer —L,

where ANSWER is the output from Adapt that is
called inside F since the upper limit of integration



is Typ. The result is Ty = 246.73.

Exercise Set 6.1 (Page 216)

6.1

6.3

6.5

6.7

Clearly y(O) =0and y'(x) = 0 for 0 < x < c and
y =(x-c)2forc<x<bh. Thelimitsas x—c¢
are the same in both cases, so Y’ is continuous on
[0, b]. Also, for 0< x <,

Y =0=/10]=+/lyl

and forc<x<b,

Y = 30-0) = I3 =Pl = /B,

s0 that y(X) satisfies the differential eguation.
Recall that Dawson’s integra is the expression

X
yx) =€ /0 ¢ dt.
Now, y(0) = 0 and differentiation shows that
X
Y =P 4 (=20 /0 & di
=1-2xy.

Obvioudy, y' is continuous on [0,b] for any finite b.
(&) f, = 2y, the partial derivative is not bounded for
al y and so does not satisfy a Lipschitz condition
for 0 < x < p/2.

(©) f, = Ux; dncelfy| < Y1 =1forxin[L2], the
function f does satisfy a Lipschitz condition with
constant L = 1.

(e) f, = cosx cosy, since [f,| < 1.1 for any x and
y, the function f does satisfy a Lipschitz condition
with constant L = 1.

(@) One solutionisY; =u, Y, =u", Y3=u", and

Y, =u” then Y1 =Y, Y=Y, Y=Y, ad

Y, = cosat + tY; - €Y,.

(c) One solutionisY; =u, Y, = U, and Y5 = v; then
solving the system for u”” and V', we have

u =2t+%cost— —}u—v

cost 3

= "%

Hence Y1 =Y, Y, =2t+ (3cost)/d-T7Y,/4 - Y,
and Y5 = 2t - (cost)/4 - 3Y,/4.

V=2—

ANSWERS TO SELECTED EXERCISES 263

(e) OnesolutionisY, = u, Yo, = U, Y;=u",
Y= u® Y= u® and Yo = U® ; then Y, = Vs,
Yz = Y3, Y3 = Y4, Y4 = Y5, Y5 = YGY al"ld
Ye=€-Y,Y,

Exercise Set 6.2 (Page 221)

6.9 For h = 1/40 the error at 0.5 is 0.0021; at 1.0 the

error is 0.0010. For h = 1/80 the error at 0.5 is
0.0023; at 1.0 the error is 0.00116. For both x
values the error does drop by afactor of 2 ashis
halved. To achieve an absolute error of 10° in
magnitude would require h~ 0.000011.

Exercise Set 6.3 (Page 227)

6.11

6.13

For h = 1/40 the error a 0.5 is -0.1434E-4; at
1.0 the error is -0.1395E-4. For h = 1/80 the
error a 0.5 is -0.3564E-5; at 1.0 the error is
-0.3471. For both x values the error does drop by
afactor of 4 ash is haved. To achieve an absolute
error of 10°® in magnitude would require

h= 0.0067.

To show that Y can be computed via the formula
vy = Py + Q, we use induction. The result is true
for r =2 since

y© =Py+Py +Q,
=P+ P(Py+ Q)+ Q)
=P+ P Ply+ (Q1+ QP
= Py + Qu
Assume it to be true for r = k; then

YU = Py + Py + Q,

Py + PPy + Q) + Q'

(P + PIPJy + (Q'k + Q1P
=Py + Qs

A fifth order formula is obtained by dropping the

remainder term in the expression

Yome1) = () + (y‘(x,.)

hny" (xn) hﬁym(x,,)
+ 2! + 3!
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L ) +h2y(5)(xn)>
4! S!
RGN
6! ’
where hy = X - X,y =1 - 2xy, and
Y = Py + Q,. The polynomials P, and Q, are
given recursively by

P = P .1 + PPy,
Qr = Q.1, + QP4
W|th P| = -2X and Q| = |

Exercise Set 6.6 (Page 238)

6.16 (&) The solution is quite smooth on [0,3] and Rke
computes an accurate solution very efficiently. The
output y = 0.49999991 with 8 calls to Rke has
absolute error 0.00000009 well within the
requested tolerance.

(d) The large Lipschitz constant of 100 is a clue
that this problem may be difficult. Rke produces
y = 0.83598456 requiring 63 calls. Thge actua
global error is -0.0000002, which is within the
requested tolerance. This problem is “stiff” in the
sense of Section 6.7.

6.17 The equation X” + (¢ - 1)X + x = O is of the form
treated by Lienhard with f(X) = X* - 1. The
indefinite integral G(x) = X3 - x, so the Liénard
variables are

Yi) = x@®
Yo(t) = X'(t) + G(x(1))
and we have
Ya(t) = Yat) + Yi(t) - Y 3(t)/3
Y ,o(t) = -Y1(t).
To plot the solution in the phase plane, it is
necessary to plot
X0 = Ya(t) - GX(1)) = Yot) - G(Yi(t) against
X(t) = Y,(t). With Y4(0) = -1 and Y,(0) = 1 for
0 <t < 15 the resulting phase plane plot is shown
below. The closed curve was traced over in the
computation so that (to plotting accuracy) the limit
cycle was obtained.

-3

N
-

6.19 The results are comparable to those of
Exercise 5.15. For example, P(12) = 778.030,
P(21) = 1112.06, and P(30) = 1246.86.

6.21 Note that the equation can be written in the form

d
P (y" —y' sinx — ycosx) = Inx.

Integrate this to obtain

Yy -y snx-ycosx=xInx-Xx+c,,

the first integra relation. Write this in the form
d (' —ysinx) = xInx— x+
p y —ysinx) =xlnx—x+cy,

which can be integrated to get the second integral
relation

1
y —ysinx=c;+ex+ ilenx— %xz

To determine c,, evaluate the firs relationat x = 1
and use the initia conditions to get

C,=Ag-A,sinl-Ajcosl+ 1
Evaluate the second integral relation at x = 1 to get
. 3
¢y =Ay—Agsinl —cy + e

The following sample results were generated by
Rke with the residuals computed for each integral

relation.
X 1.500000 2.000000
y(X) 1.647253 2.642695
Y (X) 1.629417 2.316041
yY'(X) 1.468284 1.010749
First res. 1.94E-6 7.32E-6
Second res. -3.92E-7 -4.80E-6
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6.23 (a) solving the two problems separately. By using a
fixed step h = 2/2 we guarantee that x = 0 is a
mesh point, so convergence is 0(h%) with the

t x(t) c(t)

. . 0.10000 .
0.00 0.10000 fourth order Runge-Kutta code; in contrast, x = 0
2.00 1.39122 1.75478 ) K
cannot be a mesh point for h = 2/3°, so
4.00 -1.95327 2.57504 .
6.00 158142 0.11364 convergence will occur a a dower rate.
' X ' 6.27 The missing initial condition is y'(0) = 2.155796;
8.00 0.39677 -3.14858 ) ) .
the following table gives the solution at a few
10.00 1.71102 0.40587 values
12.00 0.66878 3.04524 )
X y(x) Y (¥)

The period appears to be approximately 9. 0.0 0.000000 2 155580

0.2 0.434337 2.205839

Miscellaneous Exercises for Chapter 6 (Page 04 0891567 2 396098
249) 0.6 1.408763 2.830332
6.25 Clearly f(x,y) = 2|X]y is continuous on [-1,1]; 0.8 2.055972 3.763435

aso, fy = 2|X| < 2, so f stisfies a Lipschitz 1.0 3.000000 6.067751

condition with constant L = 2. The hypotheses of

6.29 (@) The exact solution is x(t) = 20t - 5000,
Theorem 1 are satisfied. Let y(X) be defined by

ut) = -2.6 x 10%xp[2 x 10°(t - 2000)] + 50t +
{ &, x>0 0.25 x 107. Rke produces
y =

e"‘l, x<0
x(0) = -5000.00
s0 that y(-I) = €' and

. { 2xe* , x>0 and
T -2, x<O. a (0) = 1947.46,
Thus, y is continuous on [-1, 1]. Also, for x which are both correct.
positive or negative y’ = 2|xly, so that y does satisfy (c) If FORTRAN is used, the program should be
the differential equation. Since written so that Spcoef is called only once by the
y { 26 + dx2e" x>0 driver. The vectors X, F, B, C, and D should be
T —2e7F 4227, x<0, passed through a COMMON statement to the

routine defining the differentia equation. In C and
C++ these will have to be globa variables. The
output is given in the following table.

we have y'(0") = 2 whiley’(0) = -2, 0y is
not continuous at X = 0. Euler’s method is
convergent for this problem but not O(h). Higher

order Runge-Kutta methods will not improve tr a(0) x(0)

convergence past O(h?). If the problem is split at 1000 497.29 27884.60
x = 0, then y(x) is infinitely differentiable on each 1500 1109.42 16736.78
of [-1, Q] and [0, 1]. If, in the origina problem, a 2000 1950.42 1656.81

mesh point is placed at x = 0, thisis equivalent to 2500 3030.94 -7811.70
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Bisection method, b=d

Bracket, fizd

Breakpoints, od

C (language), vi
C++, Vi
Cancellation error,
Chebyshev interpolating points,
Chopped arithmetic, 7]
Composite trapezoid rule, ka1
Conditioning,
of alinear system, @‘
of anonlinear equation, fi=d
Condition number,
Condition number inequality, 5|

Cubic spline, o114
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Curve drawing, 20131

Dawson’s integral, @I El b1z214
Degree of precision, W7

Determinant, El §| ki

Diagonaly dominant matrix, B4
Differential equations, b1o21d
Divided differences, B3-08

Divided difference table, ©5-08

Elimination (see Gaussian elimination)
End conditions,
England (see Runge-Kutta-England method)
Error in polynomia interpolation, Ba-a3] ba-101
Error in spline interpolation, m XD
Error estimation

in Adapt, faa-187

in Rke, Ban-22d
Euler's method, b1d
Euler-Maclaurin formula, hal
Extrapolation, ksd

Factor (code), B
Filon quadrature, El f2a-12d
Floating point
distribution, £0-11
notation, fl(x), 7]
number system, g
representation, g
FORTRAN [Z] vi
Fortran RQ) vi
Fundamental Theorem of Integral Calculus, bs3

Galerkin’s method, El hzd
Gamma function, XY
GAMS, vii



Gaussian dimination, B2-43
Gaussian quadrature, 172
Gauss-Seidel method,
Global error (for ODE’s), B2

Heun's method, 223
Higher order systems of differential equations, P12-213

IEEE arithmetic,
ll-conditioned, B
Initia value problem, b10-211
Integration by parts, bs3
Intermediate VValue Theorem, P53
Interpolation
¥ cubic spline, fos113
error, B5-03] Ba-101] L02-103) 19
in the plane, f1o-127
inverse, 124
polynomial, B2-101
shape preserving spline,
Inverse matrix, B1] B3
Iterative refinement, B3

Jacobi iteration,
Knots, fd

Lagrange form, Bd
LAPACK, B8]

Linear system,
LINPACK, B8]

Lipschitz condition, b1l
Lipschitz constant, b1d
Local error, £22] b28-231] P33-234
Loss of significance,
Lotka-Volterra equation, fisd
Lower triangular matrix, 44
LU factorization, la-2d

Maclaurin series, b53-254
Mantissa, B

MaThHcaD, [136] [a7] i55) ia3] baa)

INDEX

Mathematica, vi, P44

MaTLAB, vi, BZ) 150] i51] (157) Bad
Matrix,

Mean Value Theorems, P52
Midpoint rule, 178

Minimum curvature property, 11
Modification of right-hand-side,
Muller’s method, 147

Multiple root, i34

Multistep method, P40-244

Natural cubic spline, [10) 12
Natural end condition, fl1d
Netlib, vii
Newton-Cotes formulas, 174
Newton divided difference form,
Newton’s method
for a single equation,
for systems,
Nodes, B3
Nonlinear equations
scalar, (24160
systems of, fie0-163
Nonsingular matrix,
Normalized floating point number, ] B
Norms, B3
Numerical integration (see Quadrature)

One-step methods, £21-223
Order, P21

Oscillatory integrand, fiod
overflow, B

Partial pivoting,

Periodic end conditions,

Periodic integrand, m fo2-103
Piecewise polynomial, oY |

Pivot,

Poisson’s equation, 2

Pole, 24

Polynomial interpolation, B3-0d
Positive definite matrix, B3
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QUADPACK, [184] iss-183
Quadratic convergence, ka1
Quadratic equation, |
Quadrature formula, bz3

Relative error, il
Residua
of alinear system, B2l Ed
of anonlinear equation, f=d
Right-hand-side vector,
Rke (code), bag23d
RKSUITE, b4
Rolle's theorem, 52
Romberg integration, fiad
Root, b4
of anonlinear system,
of aquadratic, |
of asingle function, Y
Rounded arithmetic,
Runge-Kutta
classical, b28
England method, ba1233
formulas, £24-223
Runge's function, B1] k3

Secant method,

Simple root, Y
Simpson’srule, bz2

Singular integrand, flo310d
Singular matrix,

Solve (code), B4

Spline-coeff (code), 13-119
Spline-value (code), 13113
Spline, fod

complete cubic, f10)

shape preserving, boo-201

Stability, B
Siiff diffferential equation, 43
Stirling’s approximation, fi4] Bos-207
Symmetric matrix,
Systems of
differential equations, b12-214
linear equations, Boal
nonlinear equations, fie0-163

Tabular data, integration of, boo201
Taylor series, b23)bsd

Taylor’'s theorems, pr2-253
Trapezoid rule, fizd

Triangular matrix,

Tridiagonal matrix, B4

Underflow, B

Undetermined coefficients, i
Unit roundoff, g8

Unstable, 7]

Upper triangular matrix,

Weight
function, 171173
quadrature, W2
Well-conditioned, fi
Wilkinson polynomial, fi5a-15d

Yvaue (code), bag23d
Zero (code), f52-154

Zexro (see root)
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