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CHAPTER 1

INTRODUCTION

Modern mechanical and aerospace systems are often very complex and con-
sist of many components interconnected by joints and force elements such as
springs, dampers, and actuators. These systems are referred to, in modern lit-
erature, as multibody systems. Examples of multibody systems are machines,
mechanisms, robotics, vehicles, space structures, and biomechanical systems.
The dynamics of such systems are often governed by complex relationships
resulting from the relative motion and joint forces between the components of
the system. Figure 1 shows a hydraulic excavator, which can be considered as
an example of a multibody system that consists of many components. In the
design of such a tracked vehicle, the engineer must deal with many interrelated
questions with regard to the motion and forces of different components of the
vehicle. Examples of these interrelated questions are the following: What is the
relationship between the forward velocity of the vehicle and the motion of the
track chains? What is the effect of the contact forces between the links of the
track chains and the vehicle components on the motion of the system? What
is the effect of the friction forces between the track chains and the ground on
the motion and performance of the vehicle? What is the effect of the soil–track
interaction on the vehicle dynamics, and how can the soil properties be charac-
terized? How does the geometry of the track chains influence the forces and the
maximum vehicle speed? These questions and many other important questions
must be addressed before the design of the vehicle is completed. To provide
a proper answer to many of these interrelated questions, the development of a
detailed dynamic model of such a complex system becomes necessary. In this
book we discuss in detail the development of the dynamic equations of complex
multibody systems such as the tracked hydraulic excavator shown in Fig. 1. The



2 INTRODUCTION

Figure 1.1 Hydraulic excavator

methods presented in the book will allow the reader to construct systematically
the kinematic and dynamic equations of large-scale mechanical and aerospace
systems that consist of interconnected bodies. The procedures for solving the
resulting coupled nonlinear equations are also discussed.

1.1 COMPUTATIONAL DYNAMICS

The analysis of mechanical and aerospace systems has been carried out in the
past mainly using graphical techniques. Little emphasis was given to compu-
tational methods because of the lack of powerful computing machines. The
primary interest was to analyze systems that consist of relatively small num-
bers of bodies such that the desired solution can be obtained using graphical
techniques or hand calculations. The advent of high-speed computers made it
possible to analyze complex systems that consist of large numbers of bodies
and joints. Classical approaches that are based on Newtonian or Lagrangian
mechanics have been rediscovered and put in a form suitable for the use on
high-speed digital computers.

Despite the fact that the basic theories used in developing many of the com-
puter algorithms currently in use in the analysis of mechanical and aerospace
systems are the same as those of the classical approaches, modern engineers
and scientists are forced to know more about matrix and numerical methods in
order to be able to utilize efficiently the computer technology available. In this
book, classical and modern approaches used in the kinematic and dynamic anal-
ysis of mechanical and aerospace systems that consist of interconnected rigid
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bodies are introduced. The main focus of the presentation is on the modeling of
general multibody systems and on developing the relationships that govern the
dynamic motion of these systems. The objective is to develop general method-
ologies that can be applied to a large class of multibody applications. Many
fundamental and computational problems are discussed with the objective of
addressing the merits and limitations of various procedures used in formulating
and solving the equations of motion of multibody systems. This is the sub-
ject of the general area of computational dynamics that is concerned with the
computer solution of the equations of motion of large-scale systems.

The role of computational dynamics is merely to provide tools that can be
used in the dynamic simulation of multibody systems. Various tools can be used
for the analysis and computer simulation of a given system. This is due mainly
to the fact that the form of the kinematic and dynamic equations that govern the
dynamics of a multibody system is not unique. As such, it is important that the
analyst chooses the tool and form of the equations of motion that is most suited
for his or her application. This is not always an easy task and requires familiarity
of the analysts with different formulations and procedures used in the general
area of computational dynamics. The forms of the equations of motion depend
on the choice of the coordinates used to define the system configuration. One
may choose a small or a large number of coordinates. From the computational
viewpoint, there are advantages and drawbacks to each choice. The selection of
a small number of coordinates always leads to a complex system of equations.
Such a choice, however, has the advantage of reducing the number of equa-
tions that need to be solved. The selection of a large number of coordinates, on
the other hand, has the advantage of producing simpler and less coupled equa-
tions at the expense of increasing the problem dimensionality. The main focus
of this book is on the derivation and use of different forms of the equations
of motion. Some formulations lead to a large system of equations expressed in
terms of redundant coordinates, while others lead to a small system of equa-
tions expressed in terms of a minimum set of coordinates. The advantages and
drawbacks of each of these formulations when constrained multibody systems
are considered are discussed in detail.

Generally speaking, multibody systems can be classified as rigid multibody
systems or flexible multibody systems. Rigid multibody systems are assumed to
consist only of rigid bodies. These bodies, however, may be connected by mass-
less springs, dampers, and/ or actuators. This means that when rigid multibody
systems are considered, the only components that have inertia are assumed to
be rigid bodies. Flexible multibody systems, on the other hand, contain rigid
and deformable bodies. Deformable bodies have distributed inertia and elastic-
ity which depend on the body deformations. As the deformable body moves, its
shape changes and its inertia and elastic properties become functions of time.
For this reason, the analysis of deformable bodies is more difficult than rigid
body analysis. In this book, the branch of computational dynamics that deals
with rigid multibody systems only is considered. The theory of flexible multi-
body systems is covered by the author in a more advanced text (Shabana, 1998).
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1.2 MOTION AND CONSTRAINTS

Systems such as machines, mechanisms, robotics, vehicles, space structures,
and biomechanical systems consist of many bodies connected by different types
of joints and different types of force elements, such as springs, dampers, and
actuators. The joints are often used to control the system mobility and restrict
the motion of the system components in known specified directions. Using the
joints and force elements, multibody systems are designed to perform certain
tasks; some of these tasks are simple, whereas others can be fairly complex and
may require the use of certain types of mechanical joints as well as sophisti-
cated control algorithms. Therefore, understanding the dynamics of these sys-
tems becomes crucial at the design stage and also for performance evaluation
and design improvements. To understand the dynamics of a multibody system,
it is necessary to study the motion of its components. In this section, some of
the basic concepts and definitions used in the motion description of rigid bodies
are discussed, and examples of joints that are widely used in multibody system
applications are introduced.

Unconstrained Motion A general rigid body displacement is composed of
translations and rotations. The analysis of a pure translational motion is rela-
tively simple and the dynamic relationships that govern this type of motion are
fully understood. The problem of finite rotation, on the other hand, is not a triv-
ial one since large rigid body rotations are sources of geometric nonlinearities.
Figure 2 shows a rigid body, denoted as body i. The general displacement of

Figure 1.2 Rigid body displacement
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this body can be conveniently described in an inertial XYZ coordinate system
by introducing the body X iY iZi coordinate system whose origin Oi is rigidly
attached to a point on the rigid body. The general displacement of the rigid
body can then be described in terms of the translation of the reference point Oi

and also in terms of a set of coordinates that define the orientation of the body
coordinate system with respect to the inertial frame of reference. For instance,
the general planar motion of this body can be described using three independent
coordinates that define the translation of the body along the X and Y axes as
well as its rotation about the Z axis. The two translational components and
the rotation are three independent coordinates since any one of them can be
changed arbitrarily while keeping the other two coordinates fixed. The body
may translate along the X axis while its displacement along the Y axis and its
rotation about the Z axis are kept fixed.

In the spatial analysis, the configuration of an unconstrained rigid body in the
three-dimensional space is identified using six coordinates. Three coordinates
describe the translations of the body along the three perpendicular axes X, Y,
and Z, and three coordinates describe the rotations of the body about these three
axes. These again are six independent coordinates, since they can be varied
arbitrarily.

Mechanical Joints Mechanical systems, in general, are designed for spe-
cific operations. Each of them has a topological structure that serves a certain
purpose. The bodies in a mechanical system are not free to have arbitrary dis-
placements because they are connected by joints or force elements. While a
force element such as springs and dampers may significantly affect the motion
of the bodies in one or more directions, such an element does not completely
prevent motion in these directions. As a consequence, a force element does not
reduce the number of independent coordinates required to describe the config-
uration of the system. On the other hand, mechanical joints as shown in Fig.
3 are used to allow motion only in certain directions. The joints reduce the num-

Figure 1.3 Mechanical joints
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Figure 1.4 Cam and gear systems

ber of independent coordinates of the system since they prevent motion in some
directions. Figure 3a shows a prismatic (translational) joint that allows only
relative translation between the two bodies i and j along the joint axis. The use
of this joint eliminates the freedom of body i to translate relative to body j in
any other direction except along the joint axis. It also eliminates the freedom of
body i to rotate with respect to body j. Figure 3b shows a revolute (pin) joint
that allows only relative rotation between bodies i and j. This joint eliminates
the freedom of body i to translate with respect to body j. The cylindrical joint
shown in Fig. 3c allows body i to translate and rotate with respect to body j
along and about the joint axis. However, it eliminates the freedom of body i
to translate or rotate with respect to body j along any axis other than the joint
axis. Figure 3d shows the spherical (ball) joint, which eliminates the relative
translations between bodies i and j. This joint provides body i with the freedom
to rotate with respect to body j about three perpendicular axes.

Other types of joints that are often used in mechanical system applications
are cams and gears. Figure 4 shows examples of cam and gear systems. In Fig.
4a, the shape of the cam is designed such that a desired motion is obtained from
the follower when the cam rotates about its axis. Gears, on the other hand, are
used to transmit a certain type of motion (translation or rotary) from one body
to another. The gears shown in Fig. 4b are used to transmit rotary motion from
one shaft to another. The relationship between the rate of rotation of the driven
gear to that of the driver gear depends on the diameters of the base circles of
the two gears.

1.3 DEGREES OF FREEDOM

A mechanical system may consist of several bodies interconnected by differ-
ent numbers and types of joints and force elements. The degrees of freedom
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Figure 1.5 Slider crank mechanism

of a system are defined to be the independent coordinates that are required to
describe the configuration of the system. The number of degrees of freedom
depends on the number of bodies and the number and types of joints in the
system. The slider crank mechanism shown in Fig. 5 is used in several engi-
neering applications, such as automobile engines and pumps. The mechanism
consists of four bodies: body 1 is the cylinder frame, body 2 is the crankshaft,
body 3 is the connecting rod, and body 4 is the slider block, which represents the
piston. The mechanism has three revolute joints and one prismatic joint. While
this mechanism has several bodies and several joints, it has only one degree
of freedom; that is, the motion of all bodies in this system can be controlled
and described using only one independent variable. In this case, one needs only
one force input (a motor or an actuator) to control the motion of this mecha-
nism. For instance, a specified input rotary motion to the crankshaft produces
a desired rectilinear motion of the slider block. If the rectilinear motion of the
slider block is selected to be the independent variable, the force that acts on
the slider block can be chosen such that a desired output rotary motion of the
crankshaft OA can be achieved. Similarly, two force inputs are required in order
to be able to control the motion of a mechanical system that has two degrees of
freedom, and n force inputs are required to control the motion of an n-degree-
of-freedom mechanical system.

Figure 6a shows another example of a simple planar mechanism called the
four-bar mechanism. This mechanism, which has only one degree of freedom,
is used in many industrial and technological applications. The motion of the

Figure 1.6 Four-bar mechanism
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links of the four-bar mechanism can be controlled by using one force input,
such as driving the crankshaft OA using a motor located at point O. A desired
motion trajectory on the coupler link AB can be obtained by selecting the proper
dimensions of the links of the four-bar mechanism. Figure 6b shows the motion
of the center of the coupler AB when the crankshaft OA of the mechanism
shown in Fig. 6a rotates one complete cycle. Different motion trajectories can
be obtained by using different dimensions.

Another one-degree-of-freedom mechansm is the Peaucellier mechanism,
shown in Fig. 7. This mechanism is designed to generate a straight-line path.
The geometry of this mechanism is such that BC c BP c EC c EP and AB c

AE. Points A, C, and P should always lie on a straight line passing through
A. The mechanism always satisfies the condition AC × AP c c, where c is a
constant called the inversion constant. In case AD c CD, point P should follow
an exact straight line.

The majority of mechanism systems form single-degree-of-freedom closed
kinematic chains, in which each member is connected to at least two other mem-
bers. Robotic manipulators as shown in Fig. 8 are examples of multidegree-of-
freedom open-chain systems. Robotic manipulators are designed to synthesize
some aspects of human functions and are used in many applications, such as
welding, painting, material transfers, and assembly tasks. Some of these applica-
tions require high precision and consequently, sophisticated sensors and control
systems are used.

While the number of degrees of freedom of a system is unique and depends
on the system topological structure, the set of degrees of freedom is not unique,
as demonstrated previously by the slider crank mechanism. For this simple
mechanism, the rotation of the crankshaft or the translation of the slider block

Figure 1.7 Peaucellier mechanism
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Figure 1.8 Robotic manipulators

can be considered as the system degree of freedom. Depending on the choice
of the degree of freedom, a motor or an actuator can be used to drive the mech-
anism. In the design and control of multibody systems, precise knowledge of
the system degrees of freedom is crucial for motion generation and control. The
number and type of degrees of freedom define the numbers and types of motors
and actuators that must be used at the joints to drive and control the motion
of the multibody system. In Chapter 3, simple criteria are provided for deter-
mining the number of degrees of freedom of multibody systems. These criteria
depend on the number of bodies in the system as well as the number and type
of the joints. When the complexity of the system increases, the identification
of the system degrees of freedom using the simple criteria can be misleading.
For this reason, a numerical procedure for identifying the degrees of freedom
of complex multibody systems is presented in Chapter 6.

1.4 KINEMATIC ANALYSIS

In kinematic analysis we are concerned with the geometric aspects of the
motion of the bodies regardless of the forces that produce this motion. In the
classical approaches used in kinematic analysis, the system degrees of freedom
are first identified. Kinematic relationships are then developed and expressed
in terms of the system degrees of freedom and their time derivatives. The step
of determining the locations and orientations of the bodies in the mechanical
system is referred to as position analysis. In this first step, all the required dis-
placement variables are determined. The second step in kinematic analysis is
velocity analysis, which is used to determine the respective velocities of the
bodies in the system as a function of the time rate of the degrees of freedom.
This can be achieved by differentiating the kinematic relationships obtained
from position analysis. Once the displacements and velocities are determined,
one can proceed to the third step in kinematic analysis, which is referred to
as acceleration analysis. In acceleration analysis, the velocity relationships are
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differentiated with respect to time to obtain the respective accelerations of the
bodies in the system.

To demonstrate the three principal steps of kinematic analysis, we consider
the two-link manipulator shown in Fig. 9. This manipulator system has two
degrees of freedom, which can be chosen as the angles v2 and v3 that define
the orientation of the two links. Let l2 and l3 be the lengths of the two links
of the manipulator. The global position of the end effector of the manipulator
is defined in the coordinate system XY by the two coordinates rx and ry. These
coordinates can be expressed in terms of the two degrees of freedom v2 and
v3 as follows:

rx c l 2 cos v2 + l3 cos v3

ry c l 2 sin v2 + l3 sin v3 } (1.1)

Note that the position of any other point on the links of the manipulator can
be defined in the XY coordinate system in terms of the degrees of freedom v2

and v3. Equation 1 represents the position analysis step. Given v2 and v3, the
position of the end effector or any other point on the links of the manipulator
can be determined.

The velocity equations can be obtained by differentiating the position rela-
tionships of Eq. 1 with respect to time. This yields

ṙx c − v̇2l 2 sin v2
− v̇3l3 sin v3

ṙy c v̇2l 2 cos v2 + v̇3l3 cos v3 } (1.2)

Figure 1.9 Two-degree-of-freedom robot manipulator
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Given the degrees of freedom v2 and v3 and their time derivatives, the velocity
of the end effector can be determined using the preceding kinematic equations.
It can also be shown that the velocity of any other point on the manipulator
can be determined in a similar manner.

By differentiating the velocity equations (Eq. 2), the equations that define
the acceleration of the end effector can be written as follows:

r̈x c − v̈2l 2 sin v2
− v̈3l3 sin v3

− (v̇2)2l 2 cos v2
− (v̇3)2l3 cos v3

r̈y c v̈2l 2 cos v2 + v̈l3 cos v3
− (v̇2)2l 2 sin v2

− (v̇3)2l3 sin v3 } (1.3)

Therefore, given the degrees of freedom and their first and second time deriva-
tives, the absolute acceleration of the end effector or the acceleration of any
other point on the manipulator links can be determined.

Note that when the degrees of freedom and their first and second time deriva-
tives are specified, there is no need to write force equations to determine the
system configuration. The kinematic position, velocity, and acceleration equa-
tions are sufficient to define the coordinates, velocities, and accelerations of
all points on the bodies of the multibody system. A system in which all the
degrees of freedom are specified is called a kinematically driven system. If one
or more of the system degrees of freedom are not known, it is necessary to
develop the force equations using the laws of motion in order to determine
the system configuration. Such a system will be referred to in this book as a
dynamically driven system.

In the classical approaches, one may have to rely on intuition to select the
degrees of freedom of the system. If the system has a complex topological struc-
ture or has a large number of bodies, difficulties may be encountered when clas-
sical techniques are used. While these techniques lead to simple relationships
for simple mechanisms, they are not suited for the analysis of a large class of
mechanical system applications. Many of the basic concepts used in the classical
approaches, however, are the same as those used for modern computer techniques.

In Chapter 3, two approaches are discussed for kinematically driven multi-
body systems: the classical and computational approaches. In the classical
approach, which is suited for the analysis of simple systems, it is assumed
that the system degrees of freedom can easily be identified and all the kine-
matic variables can be expressed, in a straightforward manner, in terms of the
degrees of freedom. When more complex systems are considered, the use of
another computer-based method, such as the computational approach, becomes
necessary. In the computational approach, the kinematic constraint equations
that describe mechanical joints and specified motion trajectories are formulated,
leading to a relatively large system of nonlinear algebraic equations that can be
solved using computer and numerical methods. This computational method can
be used as the basis for developing a general-purpose computer program for the
kinematic analysis of a large class of kinematically driven multibody systems,
as discussed in Chapter 3.
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1.5 FORCE ANALYSIS

Forces in mechanical systems can be categorized as inertia, external, and joint
forces. Inertia is the property of a body that causes it to resist any effort to
change its motion. Inertia forces, in general, depend on the mass and shape of
the body as well as its velocity and acceleration. If a body is at rest, its inertia
forces are equal to zero. Joint forces are the reaction forces that arise as the
result of the connectivity between different bodies in mechanical systems. These
forces are sometimes referred to as internal forces or constraint forces. Accord-
ing to Newton’s third law, the joint reaction forces acting on two interconnected
bodies are equal in magnitude and opposite in direction. In this book, exter-
nal forces are forces that are not inertia or joint forces. Examples of external
forces are spring and damper forces, motor torques, actuator forces, and gravity
forces.

While in kinematics we are concerned only with motion without regard to
the forces that cause it, in dynamic analysis we are interested in the motion
and the forces that produce it. Unlike the case of static or kinematic analysis,
where only algebraic equations are used, in dynamic analysis, the motion of a
mechanical system is governed by second-order differential equations. Several
techniques are discussed in this book for the dynamic analysis of mechanical
systems that consist of interconnected rigid bodies. Only the reader’s familiarity
with Newton’s second law is assumed for understanding the developments pre-
sented in later chapters. This law states that the force that acts on a particle is
equal to the rate of change of momentum of the particle. Newton’s second law,
with Euler’s equations that govern the rotation of the rigid body, leads to the
dynamic conditions for the rigid bodies. D’Alembert’s principle, which implies
that inertia forces can be treated the same as applied forces, can be used to
obtain the powerful principle of virtual work. Lagrange used this principle as
a starting point to derive his dynamic equation, which is expressed in terms of
scalar energy quantities. D’Alembert’s principle, the principle of virtual work,
and Lagrange’s equation are discussed in detail in Chapters 4 and 5.

1.6 DYNAMIC EQUATIONS AND THEIR DIFFERENT FORMS

Depending on the number of coordinates selected to define the configuration of
a mechanical system, different equation structures can be obtained and different
solution procedures can be adopted. Some of the formulations lead to equations
that are expressed in terms of the constraint forces, while in other formulations,
the constraint forces are eliminated automatically. For instance, the equations
of motion of a simple system such as the block shown in Fig. 10 can be formu-
lated using a minimum set of independent coordinates or using a redundant set
of coordinates that are not totally independent. Since the system has one degree
of freedom representing the motion in the horizontal direction, one equation
suffices to define the configuration of the block. This equation can simply be
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Figure 1.10 Forms of the equations of motion

written as

mẍ c F (1.4)

where m is the mass of the block, x is the block coordinate, and F is the force act-
ing on the block. Note that when the force is given, the preceding equation can
be solved for the acceleration. We also note that the preceding equation does not
include reaction forces since this equation describes motion in terms of the degree
of freedom. As we will see in subsequent chapters, it is always possible to obtain
a set of dynamic equations which do not include any constraint forces when the
degrees of freedom are used. The principle of virtual work in dynamics represents
a powerful tool that enables us systematically to formulate a set of dynamic equa-
tions of constrained multibody systems such that these equations do not include
constraint forces. This principle is discussed in detail in Chapter 5.

Another approach that can be used to formulate the equations of motion of
the simple system shown in Fig. 10 is to use redundant coordinates. For exam-
ple, we may choose to describe the dynamics of the block using the following
two equations:

mẍ c F

mÿ c N − mg } (1.5)

where y is the coordinate of the block in the vertical direction, N is the reaction
force due to the constraint imposed on the motion of the block, and g is the
gravity constant. If the force F is given, the preceding two equations have three
unknowns: two acceleration components and the reaction force N. For this rea-
son, another equation is needed to be able to solve for the three unknowns. The
third equation is simply the equation of the constraint imposed on the motion
of the block in the vertical direction. This equation can be written as

y c c (1.6)

where c is a constant. This algebraic equation along with the two differential equa-
tions of motion (Eq. 5) form a system of algebraic and differential equations that



14 INTRODUCTION

can be solved for all the coordinates and forces. Here we obtained a larger sys-
tem expressed in terms of a set of redundant coordinates since the y coordinate is
not a degree of freedom. As we will see in this book, use of the redundant system
can have computational advantages and can also increase the generality and flexi-
bility of the formulation used. For this reason, many general-purpose multibody
computer programs use formulations that employ redundant coordinates. There
are, however, several general observations with regard to the use of redundant
coordinates. Using our simple system, we note that the number of independent
constraint (reaction) forces is equal to the number of coordinates used minus the
number of the system degrees of freedom. We also note that the number of inde-
pendent reaction forces is equal to the number of constraint equations. As we will
see in subsequent chapters, this is always the case regardless of the complexity of
the system analyzed, and the elimination of a reaction force can be equivalent to
the elimination of a dependent coordinate or a constraint equation. In our example
we have one reaction force (N) and one constraint equation (y c c).

When the equations of motion are formulated in terms of the system degrees
of freedom only, one obtains differential equations that can be solved using a
simpler numerical strategy. When the equations of motion are formulated in
terms of redundant coordinates, a more elaborate numerical scheme must be
used to solve the resulting system of algebraic and differential equations. These
algebraic and differential equations for most multibody systems are coupled and
highly nonlinear. Direct numerical integration methods are used to solve for the
system coordinates and velocities, and iterative numerical procedures are used
to check on the violation of the constraint equations. This subject is discussed in
more detail in Chapter 6, in which the Lagrangian formulation of the equations
of motion is introduced. In this formulation, a symmetric structure of equations
of motion expressed in terms of redundant coordinates and constraint forces is
presented. To obtain this symmetric structure, the concept of generalized con-
straint forces, which are expressed in terms of multipliers known as Lagrange
multipliers, is introduced.

The simple example of the one-degree-of-freedom block discussed in this sec-
tion alludes to some of the fundamental issues in computational dynamics. How-
ever, the equations of motion of multibody mechanical systems are not likely to
be as simple as the equations of the block due to the geometric nonlinearities and
the kinematic constraints. As the complexity of the system topology increases, the
dimensionality and nonlinearity increase. Computational methods for modeling
complex and nonlinear multibody systems are discussed in Chapter 6.

1.7 FORWARD AND INVERSE DYNAMICS

In studying the dynamics of mechanical systems, there are two different types
of analysis that can be performed. These are inverse and forward dynamics.
In inverse dynamics, the motion trajectories of all the system degrees of free-
dom are specified and the objective is to determine the forces that produce this
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motion. This type of analysis requires only the solution of systems of algebraic
equations. There is no need in this type of analysis for the use of numerical inte-
gration methods since the position coordinates, velocities, and accelerations of
the system are known. In the case of the forward dynamics, however, the forces
that produce the motion are given and the objective is to determine the position
coordinates, velocities, and accelerations. In this type of analysis, the acceler-
ations are first determined using the laws of motion. These accelerations must
then be integrated to determine the coordinates and velocities. In most appli-
cations, a closed-form solution is difficult to obtain and, therefore, one must
resort to direct numerical integration methods.

The difference between forward and inverse dynamics can be explained
using a simple example. Consider a mass m which moves only in the hori-
zontal direction with displacement x as the result of the application of a force
F. The equation of motion of the mass is

mẍ c F (1.7)

In forward dynamics, the force F is given and the objective is to determine the
motion of the mass as the result of the application of force. In this case, we
first solve for the acceleration as

ẍ c

F
m

Knowing F and m, we integrate the acceleration to determine the velocity. Using
the preceding equation, we have

dẋ
dt

c

F
m

which yields

∫
ẋ

ẋ0

dẋ c ∫
t

0

F
m

dt

where ẋ0 is the initial velocity of the mass. It follows that

ẋ c ẋ0 + ∫
t

0

F
m

dt

If the force F is known as a function of time, the preceding equation can be used
to solve for the velocity of the mass. Having determined the velocity, following
equation can be used to determine the displacement:

dx
dt

c ẋ
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from which

x c x0 + ∫
t

0
ẋ dt

where x0 is the initial displacement of the mass. It is clear from this simple exam-
ple that one needs two initial conditions: an initial displacement and an initial
velocity, to be able to integrate the acceleration to determine the displacement and
velocity in response to given forces. In the case of simple systems, one may be
able to obtain closed-form solutions for the velocities and displacements. In more
complex systems, integration of the accelerations to determine the velocities and
displacements must be performed numerically as described in Chapter 6.

In inverse dynamics, on the other hand, there is no need for performing inte-
grations: One need only solve a system of algebraic equations. For instance, if
the displacement of the mass is specified as a function of time, one can sim-
ply differentiate the displacement twice to obtain the acceleration and substitute
the result into the equation of motion of the system to determine the force. For
example, if the displacement of the mass is prescribed as

x c A sin qt

where A and q are known constants, the acceleration of the mass can be defined
simply as

ẍ c −q2A sin qt

Using the equation of motion of the mass (Eq. 7), the force F can be determined
as

F c mẍ c −mq2A sin qt

This equation determines the force required to produce the prescribed displace-
ment of the mass.

Inverse dynamics is widely used in the design and control of many indus-
trial and technological applications, such as robot manipulators and space struc-
tures. By specifying the task to be performed by the system, the actuator forces
and motor torques required to accomplish this task successfully can be pre-
dicted. Furthermore, different design alternatives and force configurations can
be explored efficiently using the techniques of inverse dynamics.

1.8 PLANAR AND SPATIAL DYNAMICS

The analysis of planar systems can be considered as a special case of spatial
analysis. In spatial analysis, more coordinates are required to describe the con-
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figuration of unconstrained body. As mentioned previously, six coordinates
that define the location of a point on the body and the orientation of a coor-
dinate system rigidly attached to the body are required to describe the uncon-
strained motion of a rigid body in space. In planar analysis, only three
coordinates are required, and one of these coordinates suffices to define the
orientation of the body as compared to three orientation coordinates in the
three-dimensional analysis. Furthermore, in the planar analysis, the order of
rotation is commutative since the rotation is performed about the same axis;
that is, two consecutive rotations can be added and the sequence of perform-
ing these rotations is immaterial. This is not the case, however, in three-
dimensional analysis, where three independent rotations can be performed
about three perpendicular axes. In this case, the order of rotation is not in
general commutative, and two consecutive rotations about two different axes
cannot in general be added. This can be demonstrated by using the simple
block example shown in Fig. 11, which illustrates different sequences of rota-
tions for the same block. In Fig. 11a, the block is first rotated 908 about
the Y axis and then 908 about the Z axis. In Fig. 11b, the same rotations in

Figure 1.11 Sequence of rotations
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reverse order are employed; that is, the block is first rotated 908 about the Z
axis and then 908 about the Y axis. It is clear from the results presented in Figs.
11a and b that a change in the sequence of rotations leads to different final ori-
entations. We then conclude from this simple example that the order of the
finite rotations in the spatial analysis is not commutative, and for this reason,
the finite rotations in the spatial analysis cannot be in general added or treated
as vector quantities. The subject of the three-dimensional rotations is discussed
in more detail in Chapters 7 and 8, where different sets of orientation coordi-
nates are discussed. These sets include Euler angles, Euler parameters, direction
cosines, and Rodriguez parameters. The general dynamic equations that govern
the constrained and unconstrained spatial motion of rigid body systems are also
developed in Chapter 7. This includes the Newton–Euler equations and recur-
sive formulations that are often used in computer-aided analysis of constrained
mechanical systems.

1.9 COMPUTER AND NUMERICAL METHODS

While the analytical techniques of Newton, D’Alembert, and Lagrange were
developed centuries ago, these classical approaches have proven to be suitable
for implementation on high-speed digital computers when used with matrix and
numerical methods. The application of these methods leads to a set of differen-
tial equations that can be expressed in a matrix form and can be solved using
numerical and computer methods. Several numerical algorithms are developed
based on the Newtonian or the Lagrangian approaches. These algorithms, which
utilize matrix and numerical methods, are used to develop general- and special-
purpose computer programs that can be used for the dynamic simulation and
control of multibody systems that consist of interconnected bodies. These pro-
grams allow the user to introduce, in a systematic manner, elastic or damp-
ing elements such as springs and dampers, nonlinear general forcing functions,
and/ or nonlinear constraint equations.

The computational efficiency of the computer programs developed for the
dynamic analysis of mechanical systems depends on many factors, such as the
choice of coordinates and the numerical procedure used for solving the dynamic
equations. The choice of the coordinates directly influences the number and the
degree of nonlinearity of the resulting dynamic equations. The use of a rela-
tively small number of coordinates leads to a higher degree of nonlinearity and
more complex dynamic equations. For this reason, in many of the computa-
tional methods developed for the dynamic analysis of mechanical systems, a
larger number of displacement coordinates is used for the sake of generality.

As pointed out previously, the reader will recognize when studying this book
that there are two basic dynamic formulations which are widely used in the
computer simulation of multibody systems. In the first formulation, the con-
straint forces are eliminated from the dynamic equations by expressing these
equations in terms of the system degrees of freedom. Variables that represent



1.9 COMPUTER AND NUMERICAL METHODS 19

joint coordinates are often used as the degrees of freedom in order to be able to
express the system configuration analytically in terms of these degrees of free-
dom. The use of the joint variables has the advantage of reducing the number of
equations and the disadvantage of increasing the nonlinearity and complexity of
the equations. This can be expected since all the information about the system
dynamics must be included in a smaller set of equations. Formulations that use
the joint variables or the degrees of freedom to obtain a minimum set of equa-
tions are referred to in this book as the embedding techniques. The embedding
techniques are also the basis for developing the recursive methods, which are
widely used in the analysis of robot manipulators. The recursive methods are
discussed in Chapter 7.

Another dynamic formulation that is widely used in the computer simula-
tion of multibody systems is the augmented formulation. In this formulation,
the equations of motion are expressed in terms of redundant set of coordinates
that are not totally independent. Because of this redundancy, the kinematic alge-
braic constraint equations that describe the relationship between these coordi-
nates must be formulated. As a result, the constraint forces appear in the final
form of the equations of motion. Clearly, one of the drawbacks of using this
approach is increasing the number of coordinates and equations. Another draw-
back is the complexity of the numerical algorithm that must be used to solve
the resulting system of differential and algebraic equations. Nonetheless, the
augmented formulation has the advantage of producing simple equations that
have a sparse matrix structure; therefore, these equations can be solved effi-
ciently using sparse matrix techniques. Furthermore, the general-purpose multi-
body computer programs based on the augmented formulation tend to be more
user friendly since they allow the user systematic introduction of any nonlin-
ear constraint or force function. In most general-purpose computer programs
based on the augmented formulation, the motion of the bodies in the system is
described using absolute Cartesian and orientation coordinates. In planar analy-
sis, two Cartesian coordinates that define the location of the origin of the body
coordinate system selected, and one orientation coordinate that defines the ori-
entation of this coordinate system in a global inertial frame, are used. In the
spatial analysis, six absolute coordinates are used to define the location and ori-
entation of the body coordinate system. The use of similar sets of coordinates
for all bodies in the system makes it easy for the user to change the model by
adding or deleting bodies and joints and/ or introducing nonlinear forcing and
constraint functions.

Both the embedding technique and augmented formulation are discussed in
detail in this book, and several examples will be used to show the structure of
the equations obtained using each formulation. These two methods have been
applied successfully to the analysis, design, and control of many technological
and industrial applications, including vehicles, mechanisms, robot manipula-
tors, machines, space structures, and biomechanical systems. It is hoped that
by studying these two basic formulations carefully, the reader will be able to
make a better choice of the method that is most suited for his or her application.
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1.10 ORGANIZATION, SCOPE, AND NOTATIONS OF THE BOOK

The purpose of this book is to provide an introduction to the subject of com-
putational dynamics. The goal is to introduce the reader to various dynamic
formulations that can be implemented on the digital computer. The computer
implementation is necessary to be able to study the dynamic motion of large-
scale systems. The general formulations presented in this book can also be used
to develop general-purpose computer codes that can be used in the analysis of
a large class of multibody system applications. The book is organized in eight
chapters, including this introductory chapter.

As the dimensionality and complexity of multibody systems increase, a
knowledge of matrix and numerical methods becomes necessary for under-
standing the theory behind general- and special-purpose multibody computer
programs. For this reason, Chapter 2 is devoted to a brief introduction to the
subject of linear algebra. Matrix and vector operations and identities as well
as methods for the numerical solution of systems of algebraic equations are
discussed. The QR and singular value decompositions, which can be used in
multibody dynamics to determine velocity transformation matrices that relate
the system velocities to the time derivatives of the degrees of freedom, are also
introduced in this chapter.

The kinematics of multibody systems are discussed in Chapter 3. In this
chapter, kinematically driven systems in which all the degrees of freedom are
specified are investigated. For these systems, to define the system configura-
tion, one need only formulate a set of algebraic equations. There is no need to
use the laws of motion since the degrees of freedom and their time derivatives
are known. Two basic approaches are discussed, the classical approach and the
computational approach. The classical approach is suited for the analysis of sys-
tems that consist of small number of bodies and joints, and in which the degrees
of freedom can be identified easily and intuitively. The computational approach,
on the other hand, is suited for the analysis of complex systems and can be used
to develop a general-purpose computer program for the kinematic analysis of
varieties of multibody system applications. Based on a systematic and general
description of the system topology, a general-purpose computer program can be
developed and used to construct nonlinear kinematic relationships between the
variables. This program can also be used to solve these relationships numeri-
cally, in order to determine the system configuration.

Various forms of the dynamic equations are presented in Chapter 4. A simple
Newtonian mechanics approach is used in this chapter to derive these differ-
ent forms and demonstrate the basic differences between them. It is shown in
this chapter that when the equations of motion are derived in terms of a set of
redundant coordinates, the constraint forces appear explicitly in the equations.
This leads to the augmented form of the equations of motion. It is shown in
Chapter 4 that the constraint forces can be eliminated from the system equations
of motion if these equations are expressed in terms of the degrees of freedom.
This procedure is referred to in this book as the embedding technique.
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Although as demonstrated in Chapter 4, the embedding technique can be
applied in the framework of Newtonian mechanics, the result of this technique
can be obtained more elegantly by using the principle of virtual work. This
principle can be used to eliminate the constraint forces systematically and obtain
a minimum set of dynamic equations expressed in terms of the system degrees
of freedom. The concepts of the virtual work and generalized forces that are
necessary for the application of the virtual work principle, Lagrange’s equation,
and the Hamiltonian formulation are among the topics discussed in Chapter
5. The chapter concludes by examining the relationship between the principle
of virtual work and the Gaussian elimination used in the solution of algebraic
systems of equations.

The analytical methods presented in Chapter 5 are used as the foundation
for the computational approaches discussed in Chapter 6. A computer-based
embedding technique and an augmented formulation suitable for the analy-
sis of large-scale constrained multibody systems are introduced. The impor-
tant concepts of the generalized constraint forces and Lagrange multipliers are
discussed. Numerical algorithms for solving the differential and algebraic equa-
tions of multibody systems are also presented in Chapter 6. It is important to
point out that the basic methods presented in Chapter 6 are not different from
the methods presented in Chapters 4 and 5 except for using a certain set of
coordinates that serves our computational goals.

In Chapters 3 through 6, planar examples are used to focus on the main
concepts and the development of the basic methods without delving into the
details of the three-dimensional motion. The analysis of the spatial motion
is presented in Chapter 7. In this chapter, methods for describing the three-
dimensional rotations are developed, and the concept of angular velocity in
spatial analysis is introduced. The three-dimensional form of the equations of
motion is presented in terms of the generalized coordinates and used to obtain
the known Newton–Euler equations. Formulations of the algebraic constraint
equations of several spatial joints, such as the revolute, prismatic, cylindri-
cal, and universal joints, are discussed. The use of Newton–Euler equations
to develop a recursive formulation for multibody systems is also demonstrated
in Chapter 7.

In Chapter 8, special topics are discussed. These topics include gyroscopic
motion and various sets of parameters that can be used to define the orien-
tation of the rigid body in space. These parameters include Euler parameters,
Rodriguez parameters, and the quaternions.

It is important that readers become familiar with the multibody notations
used in this book as described in the preface in order to follow the develop-
ments presented in different chapters. Boldface letters are used to indicate vec-
tors or matrices. Superscripts are used to indicate body numbers. To distinguish
between a superscript that indicates the body number and the power, parenthe-
ses are used whenever a quantity is raised to a certain power. For example, (l5)3

is a scalar l associated with body 5 raised to the power of 3.
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CHAPTER 2

LINEAR ALGEBRA

Vector and matrix concepts have proved indispensable in the development of
the subject of dynamics. The formulation of the equations of motion using the
Newtonian or Lagrangian approach leads to a set of second-order simultaneous
differential equations. For convenience, these equations are often expressed in
vector and matrix forms. Vector and matrix identities can be utilized to provide
much less cumbersome proofs of many of the kinematic and dynamic relation-
ships. In this chapter, the mathematical tools required to understand the devel-
opment presented in this book are discussed briefly. Matrices and matrix oper-
ations are discussed in the first two sections. Differentiation of vector functions
and the important concept of linear independence are discussed in Section 3. In
Section 4, important topics related to three-dimensional vectors are presented.
These topics include the cross product, skew-symmetric matrix representations,
Cartesian coordinate systems, and conditions of parallelism. The conditions of
parallelism are used in this book to define the kinematic constraint equations
of many joints in the three-dimensional analysis. Computer methods for solv-
ing algebraic systems of equations are presented in Sections 5 and 6. Among
the topics discussed in these two sections are the Gaussian elimination, piv-
oting and scaling, triangular factorization, and Cholesky decomposition. The
last two sections of this chapter deal with the QR decomposition and the sin-
gular value decomposition. These two types of decompositions have been used
in computational dynamics to identify the independent degrees of freedom of
multibody systems. The last two sections, however, can be omitted during a
first reading of the book.
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2.1 MATRICES

An m × n matrix A is an ordered rectangular array that has m × n elements.
The matrix A can be written in the form

A c (aij) c








a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn








(2.1)

The matrix A is called an m × n matrix since it has m rows and n columns. The
scalar element aij lies in the ith row and jth column of the matrix A. Therefore,
the index i, which takes the values 1, 2, . . . , m, denotes the row number, while
the index j, which takes the values 1, 2, . . . , n denotes the column number.

A matrix A is said to be square if m c n. An example of a square matrix is

A c 




3.0 −2.0 0.95

6.3 0.0 12.0
9.0 3.5 1.25





In this example, m c n c 3, and A is a 3 × 3 matrix.

The transpose of an m × n matrix A is an n × m matrix denoted as AT and
defined as

AT c








a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn








(2.2)

For example, let A be the matrix

A c [ 2.0 −4.0 −7.5 23.5
0.0 8.5 10.0 0.0 ]

The transpose of A is

AT c








2.0 0.0
−4.0 8.5
−7.5 10.0
23.5 0.0
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That is, the transpose of the matrix A is obtained by interchanging the rows
and columns.

A square matrix A is said to be symmetric if aij c aji. The elements on the
upper-right half of a symmetric matrix can be obtained by flipping the matrix
about the diagonal. For example,

A c 




3.0 −2.0 1.5
−2.0 0.0 2.3

1.5 2.3 1.5





is a symmetric matrix. Note that if A is symmetric, then A is the same as its
transpose; that is, A c AT.

A square matrix is said to be an upper-triangular matrix if aij c 0 for i >
j. That is, every element below each diagonal element of an upper-triangular
matrix is zero. An example of an upper-triangular matrix is

A c








6.0 2.5 10.2 −11.0
0 8.0 5.5 6.0
0 0 3.2 −4.0
0 0 0 −2.2








A square matrix is said to be a lower-triangular matrix if aij c 0 for j > i.

That is, every element above the diagonal elements of a lower-triangular matrix
is zero. An example of a lower-triangular matrix is

A c








6.0 0 0 0

2.5 8.0 0 0

10.2 5.5 3.2 0

−11.0 6.0 −4.0 −2.2








The diagonal matrix is a square matrix such that aij c 0 if i � j, which

implies that a diagonal matrix has element aii along the diagonal with all other
elements equal to zero. For example,

A c 




5.0 0 0

0 1.0 0

0 0 7.0





is a diagonal matrix.
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The null matrix or zero matrix is defined to be a matrix in which all the
elements are equal to zero. The unit matrix or identity matrix is a diagonal
matrix whose diagonal elements are nonzero and equal to 1.

A skew-symmetric matrix is a matrix such that aij c −aji. Note that since aij

c −aji for all i and j values, the diagonal elements should be equal to zero. An
example of a skew-symmetric matrix Ã is

Ã c 




0 −3.0 −5.0
3.0 0 2.5
5.0 −2.5 0





It is clear that for a skew-symmetric matrix, Ã

T c −Ã.
The trace of a square matrix is the sum of its diagonal elements. The trace

of an n × n identity matrix is n, while the trace of a skew-symmetric matrix is
zero.

2.2 MATRIX OPERATIONS

In this section we discuss some of the basic matrix operations that are used
throughout the book.

Matrix Addition The sum of two matrices A and B, denoted by A + B, is
given by

A + B c (aij + bij) (2.3)

where bij are the elements of B. To add two matrices A and B, it is necessary
that A and B have the same dimension; that is, the same number of rows and
the same number of columns. It is clear from Eq. 3 that matrix addition is
commutative, that is,

A + B c B + A (2.4)

Matrix addition is also associative, because

A + (B + C) c (A + B) + C (2.5)

Example 2.1

The two matrices A and B are defined as

A c [ 3.0 1.0 −5.0
2.0 0.0 2.0 ] , B c [ 2.0 3.0 6.0

−3.0 0.0 −5.0 ]
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The sum A + B is

A + B c [ 3.0 1.0 −5.0
2.0 0.0 2.0 ] + [ 2.0 3.0 6.0

−3.0 0.0 −5.0 ]
c [ 5.0 4.0 1.0

−1.0 0.0 −3.0 ]
while A − B is

A − B c [ 3.0 1.0 −5.0
2.0 0.0 2.0 ] − [ 2.0 3.0 6.0

−3.0 0.0 −5.0 ]
c [ 1.0 −2.0 −11.0

5.0 0.0 7.0 ]
Matrix Multiplication The product of two matrices A and B is another
matrix C, defined as

C c AB (2.6)

The element cij of the matrix C is defined by multiplying the elements of the
ith row in A by the elements of the jth column in B according to the rule

cij c ai1b1j + ai2b2j + · · · + ainbnj

c���
k

aikbkj (2.7)

Therefore, the number of columns in A must be equal to the number of rows in
B. If A is an m × n matrix and B is an n × p matrix, then C is an m × p matrix.
In general, AB � BA. That is, matrix multiplication is not communative. Matrix
multiplication, however, is distributive; that is, if A and B are m × p matrices
and C is a p × n matrix, then

(A + B)C c AC + BC (2.8)

Example 2.2

Let

A c 




0 4 1

2 1 1

3 2 1





, B c 





0 1

0 0

5 2








2.2 MATRIX OPERATIONS 27

Then

AB c 




0 4 1

2 1 1

3 2 1










0 1

0 0

5 2





c 




5 2

5 4

5 5





The product BA is not defined in this example since the number of columns in B
is not equal to the number of rows in A.

The associative law is valid for matrix multiplications. If A is an m × p
matrix, B is a p × q matrix, and C is a q × n matrix, then

(AB)C c A(BC) c ABC

Matrix Partitioning Matrix partitioning is a useful technique that is fre-
quently used in manipulations with matrices. In this technique, a matrix is
assumed to consist of submatrices or blocks that have smaller dimensions. A
matrix is divided into blocks or parts by means of horizontal and vertical lines.
For example, let A be a 4 × 4 matrix. The matrix A can be partitioned by using
horizontal and vertical lines as follows:

A c










a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

.................

. . . . . . . . . . . . . . . . . . . .
a41 a42 a43 a44









In this example, the matrix A has been partitioned into four submatrices; there-
fore, we can write A compactly in terms of these four submatrices as

A c [ A11 A12

A21 A22 ]
where

A11 c





a11 a12 a13

a21 a22 a23

a31 a32 a33





, A12 c






a14

a24

a34





,

A21 c [a41 a42 a43], A22 c a44

Apparently, there are many ways by which the matrix A can be partitioned. As
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we will see in this book, the way the matrices are partitioned depends on many
factors, including the applications and the selection of coordinates.

Partitioned matrices can be multiplied by treating the submatrices like the
elements of the matrix. To demonstrate this, we consider another matrix B such
that AB is defined. We also assume that B is partitioned as follows:

B c [ B11 B12 B13 B14

B21 B22 B23 B24 ]
The product AB is then defined as follows:

AB c [ A11 A12

A21 A22 ] [ B11 B12 B13 B14

B21 B22 B23 B24 ]
c [ A11B11 + A12B21 A11B12 + A12B22 A11B13 + A12B23 A11B14 + A12B24

A21B11 + A22B21 A21B12 + A22B22 A21B13 + A22B23 A21B14 + A22B24 ]
When two partitioned matrices are multiplied we must make sure that additions
and products of the submatrices are defined. For example, A11B12 must have
the same dimension as A12B22. Furthermore, the number of columns of the
submatrix Aij must be equal to the number of rows in the matrix Bjk. It is,
therefore, clear that when multiplying two partitioned matrices A and B, we
must have for each vertical partitioning line in A a similarly placed horizontal
partitioning line in B.

Determinant The determinant of an n × n square matrix A, denoted as |A | ,
is a scalar defined as

|A | c

|
|
|
|
|
|
|
|
|
|

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

|
|
|
|
|
|
|
|
|
|

(2.9)

To be able to evaluate the unique value of the determinant of A, some basic
definitions have to be introduced. The minor Mij corresponding to the element
aij is the determinant formed by deleting the ith row and jth column from the
original determinant |A | . The cofactor Cij of the element aij is defined as

Cij c (−1)i + jMij (2.10)

Using this definition, the value of the determinant in Eq. 9 can be obtained in
terms of the cofactors of the elements of an arbitrary row i as follows:

|A | c
n

���
j c 1

aijCij (2.11)
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Clearly, the cofactors Cij are determinants of order n − 1. If A is a 2 × 2 matrix
defined as

A c [ a11 a12

a21 a22 ]
the cofactors Cij associated with the elements of the first row are

C11 c (−1)2a22 c a22, C12 c (−1)3a21 c −a21

According to the definition of Eq. 11, the determinant of the 2 × 2 matrix A
using the cofactors of the elements of the first row is

|A | c a11C11 + a12C12 c a11a22 − a12a21

If A is 3 × 3 matrix defined as

A c 




a11 a12 a13

a21 a22 a23

a31 a32 a33





the determinant of A in terms of the cofactors of the first row is given by

|A | c
3

���
j c 1

a1jC1j c a11C11 + a12C12 + a13C13

where

C11 c
|
|
|
|
|

a22 a23

a32 a33

|
|
|
|
|

, C12 c −
|
|
|
|
|

a21 a23

a31 a33

|
|
|
|
|

, C13 c
|
|
|
|
|

a21 a22

a31 a32

|
|
|
|
|

That is, the determinant of A is

|A | c a11

|
|
|
|
|

a22 a23

a32 a33

|
|
|
|
|

− a12

|
|
|
|
|

a21 a23

a31 a33

|
|
|
|
|

+ a13

|
|
|
|
|

a21 a22

a31 a32

|
|
|
|
|

c a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

(2.12)

One can show that the determinant of a matrix is equal to the determinant of
its transpose, that is,

|A | c |AT | (2.13)

and the determinant of a diagonal matrix is equal to the product of the diago-
nal elements. Furthermore, the interchange of any two columns or rows only
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changes the sign of the determinant. If a matrix has two identical rows or two
identical columns, the determinant of this matrix is equal to zero. This can be
demonstrated by the example of Eq. 12. For instance, if the second and third
rows are identical, a21 c a31, a22 c a32, and a23 c a33. Using these equalities
in Eq. 12, one can show that the determinant of the matrix A is equal to zero.
More generally, a square matrix in which one or more rows (columns) are linear
combinations of other rows (columns) has a zero determinant. For example,

A c 




1 0 −3

0 2 5

1 2 2





and B c 





1 0 1

0 2 2

−3 5 2





have zero determinants since in A the last row is the sum of the first two rows
and in B the last column is the sum of the first two columns.

A matrix whose determinant is equal to zero is said to be a singular matrix.
For an arbitrary square matrix, singular or nonsingular, it can be shown that the
value of the determinant does not change if any row or column is added to or
subtracted from another.

Inverse of a Matrix A square matrix A−1 that satisfies the relationship

A−1A c AA−1 c I (2.14)

where I is the identity matrix, is called the inverse of the matrix A. The inverse
of the matrix A is defined as

A−1 c Ct

|A |
where Ct is the adjoint of the matrix A. The adjoint matrix Ct is the transpose
of the matrix of the cofactors Cij of the matrix A.

Example 2.3

Determine the inverse of the matrix

A c 




1 1 1

0 1 1

0 0 1





Solution. The determinant of the matrix A is equal to 1, that is,

|A | c 1
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The cofactors of the elements of the matrix A are

C11 c 1, C12 c 0, C13 c 0,
C21 c −1, C22 c 1, C23 c 0,
C31 c 0, C32 c −1, C33 c 1

The adjoint matrix, which is the transpose of the matrix of the cofactors, is given
by

Ct c





C11 C21 C31

C12 C22 C32

C13 C23 C33





c 




1 −1 0

0 1 −1

0 0 1





Therefore,

A−1 c Ct

|A |
c 




1 −1 0

0 1 −1

0 0 1





Matrix multiplications show that

A−1A c 




1 −1 0

0 1 −1

0 0 1










1 1 1

0 1 1

0 0 1





c 




1 0 0

0 1 0

0 0 1





c AA−1

If A is the 2 × 2 matrix

A c [ a11 a12

a21 a22 ]
the inverse of A can be written simply as

A−1 c 1

|A | [ a22 −a12

−a21 a11 ]
where |A | c a11a22 − a12a21.

If the determinant of A is equal to zero, the inverse of A does not exist. This
is the case of a singular matrix. It can be verified that

(A−1)T c (AT)−1
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which implies that the transpose of the inverse of a matrix is equal to the inverse
of its transpose.

If A and B are nonsingular square matrices, then

(AB)−1 c B−1A−1

In general, the inverse of the product of square nonsingular matrices A1, A2,
. . . , An − 1, An is

(A1A2 · · · An − 1An)−1 c A−1
n A−1

n − 1 · · · A−1
2 A−1

1

This equation can be used to define the inverse of matrices that arise naturally
in mechanics. One of these matrices that appears in the formulations of the
recursive equations of mechanical systems is

D c











I 0 0 0 · · · 0 0

−D2 I 0 0 · · · 0 0

0 −D3 I 0 · · · 0 0
...

...
...

...
...

. . .
...

0 0 0 0 · · · −Dn I










The matrix D can be written as the product of n − 1 matrices as follows:

D c














I

−D2 I

0 I

0
. . .
. . .

0 I



























I

0 I

−D3 I

0
. . .
. . .

0 I














· · ·














I

0 I

0 I

0
. . .
. . .

−Dn I
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from which

D−1 c














I

0 I

0 I

0
. . .
. . .

Dn I



























I

0 I

0
. . .
. . .

Dn − 1 I

0 I














· · ·














I

D2 I

0 I

0
. . .
. . .

0 I













Therefore, the inverse of the matrix D can be written as

D−1 c














I 0 0 · · · 0

D21 I 0 · · · 0

D32 D31 I · · · 0

D43 D42 D41 · · · 0
...

...
...

. . .
...

Dn(n − 1) Dn(n − 2) Dn(n − 3) · · · I













where

Dkr c DkDk − 1 · · · Dk − r + 1

Orthogonal Matrices A square matrix A is said to be orthogonal if

ATA c AAT c I

In this case

AT c A−1
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That is, the inverse of an orthogonal matrix is equal to its transpose. An example
of orthogonal matrices is

A c I + ṽ sin v + (1 − cos v)(ṽ)2 (2.15)

where v is an arbitrary angle, ṽ is the skew-symmetric matrix

ṽ c 




0 −v3 v2

v3 0 −v1

−v2 v1 0





and v1, v2, and v3 are the components of an arbitrary unit vector v, that is, v c
[v1 v2 v3]T. While ṽ is a skew-symmetric matrix, (ṽ)2 is a symmetric matrix.
The transpose of the matrix A of Eq. 15 can then be written as

AT c I − ṽ sin v + (1 − cos v)(ṽ)2

It can be shown that

(ṽ)3 c − ṽ, (ṽ)4 c − (ṽ)2

Using these identities, one can verify that the matrix A of Eq. 15 is an orthog-
onal matrix. In addition to the orthogonality, it can be shown that the matrix A
and the unit vector v satisfy the following relationships:

Av c ATv c A−1v c v

In computational dynamics, the elements of a matrix can be implicit or
explicit functions of time. At a given instant of time, the values of the elements
of such a matrix determine whether or not a matrix is singular. For example,
consider the following two matrices, which depend on the three variables f, v ,
w:

G c 




0 cos f sin v sin f

0 sin f − sin v cos f

1 0 cos v





and

G c 




sin v sin w cos w 0

sin v cos w − sin w 0

cos v 0 1
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The inverses of these two matrices are given as

G−1 c 1
sin v






− sin f cos v cos f cos v sin v

sin v cos f sin v sin f 0

sin f − cos f 0





and

G
−1 c 1

sin v






sin w cos w 0

sin v cos w − sin v sin w 0

− cos v sin w − cos v cos w sin v





It is clear that these two inverses do not exist if sin v c 0. The reader, however,
can show that the matrix A, defined as

A c GG
−1

is an orthogonal matrix and its inverse does exist regardless of the value
of v .

2.3 VECTORS

An n-dimensional vector a is an ordered set

a c (a1, a2, . . . , an) (2.16)

of n scalars. The scalar ai, i c 1, 2, . . . , n is called the ith component of a.
An n-dimensional vector can be considered as an n × 1 matrix that consists
of only one column. Therefore, the vector a can be written in the following
column form:

a c








a1

a2
...

an








(2.17)

The transpose of this column vector defines the n-dimensional row vector

aT c [a1 a2 · · · an]
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The vector a of Eq. 17 can also be written as

a c [a1 a2 · · · an]T (2.18)

By considering the vector as special case of a matrix with only one column or
one row, the rules of matrix addition and multiplication apply also to vectors.
For example, if a and b ar two n-dimensional vectors defined as

a c [a1 a2 · · · an]T

b c [b1 b2 · · · bn]T

then a + b is defined as

a + b c [a1 + b1 a2 + b2 · · · an + bn]T

Two vectors a and b are equal if and only if ai c bi for i c 1, 2, . . . , n.
The product of a vector a and scalar a is the vector

aa c [aa1 aa2 · · · aan]T (2.19)

The dot, inner, or scalar product of two vectors a c [a1 a2 · · · an]T and b c
[b1 b2 · · · bn]T is defined by the following scalar quantity:

a . b c aTb c [a1 a2 · · · an]









b1

b2
...

bn








c a1b1 + a2b2 + · · · + anbn (2.20a)

which can be written as

a . b c aTb c
n

���
i c 1

aibi (2.20b)

It follows that a . b c b . a.
Two vectors a and b are said to be orthogonal if their dot product is equal

to zero, that is,

a . b c aTb c 0

The length of a vector a denoted as |a | is defined as the square root of the
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dot product of a with itself, that is,

|a | c
f

aTa c [(a1)2 + (a2)2 + · · · + (an)2]1/ 2 (2.21)

The terms modulus, magnitude, norm, and absolute value of a vector are also
used to denote the length of a vector. A unit vector is defined to be a vector
that has length equal to 1. If â is a unit vector, one must have

| â | c [(â1)2 + (â2)2 + · · · + (ân)2]1/ 2 c 1

If a c [a1 a2 · · · an]T is an arbitrary vector, a unit vector â collinear with the
vector a is defined by

â c a

|a |
c 1

|a |
[a1 a2 · · · an]T

Example 2.4

Let a and b be the two vectors

a c [0 1 3 2]T, b c [−1 0 2 3]T

Then

a + b c [0 1 3 2]T + [−1 0 2 3]T

c [−1 1 5 5]T

The dot product of a and b is

a . b c aTb c [0 1 3 2]









−1

0

2

3








c 0 + 0 + 6 + 6 c 12

Unit vectors along a and b are

â c a

|a |
c 1
f

14
[0 1 3 2]T

b̂ c b

|b |
c 1
f

14
[−1 0 2 3]T

It can be easily verified that | â | c | b̂ | c 1.

Differentiation In many applications in mechanics, scalar and vector func-
tions that depend on one or more variables are encountered. An example of a
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scalar function that depends on the system velocities and possibly on the system
coordinates is the kinetic energy. Examples of vector functions are the coordi-
nates, velocities, and accelerations that depend on time. Let us first consider a
scalar function f that depends on several variables q1, q2, . . . , and qn and the
parameter t, such that

f c f (q1, q2, . . . qn, t) (2.22)

where q1, q2, . . . , qn are functions of t, that is, qi c qi(t).
The total derivative of f with respect to the parameter t is

d f
dt

c ∂f
∂q1

dq1

dt
+

∂f
∂q2

dq2

dt
+ · · · +

∂f
∂qn

dqn

dt
+

∂f
∂t

which can be written using vector notation as

d f
dt

c [ ∂f
∂q1

∂f
∂q2

· · ·
∂f
∂qn ]
















dq1

dt

dq2

dt
...

dqn

dt
















+
∂f
∂t

(2.23)

This equation can be written as

d f
dt

c ∂f
∂q

dq
dt

+
∂f
∂t

(2.24)

in which ∂f / ∂t is the partial derivative of f with respect to t, and

q c [q1 q2 · · · qn]T

∂f
∂q

c f q c [ ∂f
∂q1

∂f
∂q2

· · ·
∂f
∂qn ] (2.25)

That is, the partial derivative of a scalar function with respect to a vector is a
row vector. If f is not an explicit function of t, ∂f / ∂t c 0.

Example 2.5

Consider the function

f (q1, q2, t) c (q1)2 + 3(q2)3 − (t)2
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where q1 and q2 are functions of the parameter t. The total derivative of f with
respect to the parameter t is

d f
dt

c ∂f
∂q1

dq1

dt
+

∂f
∂q2

dq2

dt
+

∂f
∂t

where

∂f
∂q1

c 2q1,
∂f

∂q2
c 9(q2)2,

∂f
∂t

c −2t

Hence

d f
dt

c 2q1
dq1

dt
+ 9(q2)2 dq2

dt
− 2t

c [2q1 9(q2)2]







dq1

dt

dq2

dt







− 2t

where ∂f / ∂q can be recognized as the row vector

∂f
∂q

c f q c [2q1 9(q2)2]

Consider the case of several functions that depend on several variables. These
functions can be written as

f 1 c f 1(q1, q2, . . . , qn, t)

f 2 c f 2(q1, q2, . . . , qn, t)
...

f m c f m(q1, q2, . . . , qn, t)













(2.26)

where qi c qi(t), i c 1, 2, . . . , n. Using the procedure previously outlined in
this section, the total derivative of an arbitrary function f j can be written as

d fj
dt

c ∂f j

∂q
dq
dt

+
∂f j

∂t
j c 1, 2, . . . , m

in which ∂f j/ ∂q is the row vector

∂f j

∂q
c [ ∂f j

∂q1

∂f j

∂q2
· · ·

∂f j

∂qn ]
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It follows that

df
dt

c
















d f1
dt

d f2
dt
...

d fm
dt
















c
















∂f 1

∂q1

∂f 1

∂q2
· · ·

∂f 1

∂qn

∂f 2

∂q1

∂f 2

∂q2
· · ·

∂f 2

∂qn
...

...
. . .

...

∂f m

∂q1

∂f m

∂q2
· · ·

∂f m

∂qn































dq1

dt

dq2

dt
...

dqn

dt
















+
















∂f 1

∂t

∂f 2

∂t
...

∂f m

∂t
















(2.27)

where

f c [ f 1 f 2 · · · f m]T (2.28)

Equation 27 can also be written as

df
dt

c ∂f
∂q

dq
dt

+
∂f
∂t

(2.29)

where the m × n matrix ∂f/ ∂q, the n-dimensional vector dq/ dt, and the
m-dimensional vector ∂f/ ∂t can be recognized as

∂f
∂q

c fq c
















∂f 1

∂q1

∂f 1

∂q2
· · ·

∂f 1

∂qn

∂f 2

∂q1

∂f 2

∂q2
· · ·

∂f 2

∂qn
...

...
. . .

...

∂f m

∂q1

∂f m

∂q2
· · ·

∂f m

∂qn
















(2.30)

dq
dt

c [ dq1

dt
dq2

dt
· · ·

dqn

dt ] T

(2.31)

∂f
∂t

c ft c [ ∂f 1

∂t
∂f 2

∂t
· · ·

∂f m

∂t ] T

(2.32)

If the function f j is not an explicit function of the parameter t, then ∂f j/ ∂t is
equal to zero. Note also that the partial derivative of an m-dimensional vector
function f with respect to an n-dimensional vector q is the m × n matrix fq

defined by Eq. 30.
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Example 2.6

Consider the vector function f defined as

f c 




f 1

f 2

f 3





c 




(q1)2 + 3(q2)3 − (t)2

8(q1)2 − 3t

2(q1)2 − 6q1q2 + (q2)2





The total derivative of the vector function f is

df
dt

c













d f1
dt

d f2
dt

d f3
dt













c 




2q1 9(q2)2

16q1 0

(4q1 − 6q2) (2q2 − 6q1)













dq1

dt

dq2

dt







+





−2t

−3

0






where the matrix fq can be recognized as

fq c





2q1 9(q2)2

16q1 0

(4q1 − 6q2) (2q2 − 6q1)





and the vector ft is

∂f
∂t

c ft c [−2t − 3 0]T

In the analysis of mechanical systems, we may also encounter scalar func-
tions in the form

Q c qTAq (2.33)

Following a similar procedure to the one outlined previously in this section,
one can show that

∂Q
∂q

c qT(A + AT) (2.34)

If A is a symmetric matrix, that is A c AT, one has

∂Q
∂q

c 2qTA (2.35)
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Linear Independence The vectors a1, a2, . . . , an are said to be linearly
dependent if there exist scalars e1, e2, . . . , en, which are not all zeros, such that

e1a1 + e2a2 + · · · + enan c 0 (2.36)

Otherwise, the vectors a1, a2, . . . , an are said to be linearly independent.
Observe that in the case of linearly independent vectors, not one of these vectors
can be expressed in terms of the others. On the other hand, if Eq. 36 holds, and
not all the scalars e1, e2, . . . , en are equal to zeros, one or more of the vectors
a1, a2, . . . , an can be expressed in terms of the other vectors.

Equation 36 can be written in a matrix form as

[a1 a2 · · · an]









e1

e2
...

en








c 0 (2.37)

which can also be written as

Ae c 0 (2.38)

in which

A c [a1 a2 · · · an] (2.39)

If the vectors a1, a2, . . . , an are linearly dependent, the system of homogeneous
algebraic equations defined by Eq. 38 has a nontrivial solution. On the other
hand, if the vectors a1, a2, . . . , an are linearly independent vectors, then A must
be a nonsingular matrix since the system of homogeneous algebraic equations
defined by Eq. 38 has only the trivial solution

e c A−10 c 0

In the case where the vectors a1, a2, . . . , an are linearly dependent, the square
matrix A must be singular. The number of linearly independent columns in a
matrix is called the column rank of the matrix. Similarly, the number of inde-
pendent rows is called the row rank of the matrix. It can be shown that for any
matrix, the row rank is equal to the column rank is equal to the rank of the
matrix. Therefore, a square matrix that has a full rank is a matrix that has lin-
early independent rows and linearly independent columns. Thus, we conclude
that a matrix that has a full rank is a nonsingular matrix.

If a1, a2, . . . , an are n-dimensional linearly independent vectors, any other
n-dimensional vector can be expressed as a linear combination of these vectors.
For instance, let b be another n-dimensional vector. We show that this vector
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has a unique representation in terms of the linearly independent vectors a1, a2,
. . . , an. To this end, we write b as

b c x1a1 + x2a2 + · · · + xnan (2.40)

where x1, x2, . . . , and xn are scalars. In order to show that x1, x2, . . . , and xn

are unique, Eq. 40 can be written as

b c [a1 a2 · · · an]









x1

x2
...

xn








which can be written as

b c Ax (2.41)

where A is a square matrix defined by Eq. 39 and x is the vector

x c [x1 x2 · · · xn]T

Since the vectors a1, a2, . . . , an are assumed to be linearly independent, the
coefficient matrix A in Eq. 41 has a full row rank, and thus it is nonsingular.
This system of algebraic equations has a unique solution x, which can be written
as

x c A−1b

That is, an arbitrary n-dimensional vector b has a unique representation in terms
of the linearly independent vectors a1, a2, . . . , an.

A familiar and important special case is the case of three-dimensional vec-
tors. One can show that the three vectors

a1 c





1

0

0





, a2 c






0

1

0





, a3 c






0

0

1





are linearly independent. Any other three-dimensional vector b c [b1 b2 b3]T

can be written in terms of the linearly independent vectors a1, a2, and a3 as

b c b1a1 + b2a2 + b3a3

where the coefficients x1, x2, and x3 can be recognized in this special case as

x1 c b1, x2 c b2, x3 c b3

The coefficients x1, x2, and x3 are called the coordinates of the vector b in the
basis defined by the vectors a1, a2, and a3.



44 LINEAR ALGEBRA

Example 2.7

Show that the vectors

a1 c





1

0

0





, a2 c






1

1

0





, a3 c






1

1

1





are linearly independent. Find also the representation of the vector b c [−1 3 0]T

in terms of the vectors a1, a2, and a3.

Solution. In order to show that the vectors a1, a2, and a3 are linearly independent,
we must show that the relationship

e1a1 + e2a2 + e3a3 c 0

holds only when e1 c e2 c e3 c 0. To show this, we write

e1





1

0

0





+ e2






1

1

0





+ e3






1

1

1





c 0

which leads to

e1 + e2 + e3 c 0

e2 + e3 c 0

e3 c 0

Back substitution shows that

e3 c e2 c e1 c 0

which implies that the vectors a1, a2, and a3 are linearly independent.
To find the unique representation of the vector b in terms of these linearly inde-

pendent vectors, we write

b c x1a1 + x2a2 + x3a3

which can be written in matrix form as

b c Ax

where

A c 




1 1 1

0 1 1

0 0 1





, b c 





−1

3

0





Hence, the coordinate vector x can be obtained as

x c 




x1

x2

x3





c A−1b c 





1 −1 0

0 1 −1

0 0 1










−1

3

0





c 




−4

3

0
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2.4 THREE-DIMENSIONAL VECTORS

A special case of n-dimensional vectors is the three-dimensional vector. A three-
dimensional vector a has three components, and can be written as

a c [a1 a2 a3]T (2.42)

Three-dimensional vectors are important in mechanics because the position,
velocity, and acceleration of a particle or an arbitrary point on a rigid or
deformable body can be described in space using three-dimensional vectors.
Since these vectors are a special case of the more general n-dimensional vec-
tors, the rules of vector additions, dot products, scalar multiplications, and dif-
ferentiations of these vectors are the same as discussed in the preceding section.

Cross Product Consider the three-dimensional vectors a c [a1 a2 a3]T, and
b c [b1 b2 b3]T. These vectors can be defined by their components in the three-
dimensional space XYZ. Therefore, the vectors a and b can be written in terms
of their components along the X, Y, and Z axes as

a c a1i + a2 j + a3 k
b c b1i + b2 j + b3 k

where i, j, and k are unit vectors defined along the X, Y, and Z axes, respectively.
The cross or vector product of the vectors a and b is another vector c orthog-

onal to both a and b and is defined as

c c a × b c
|
|
|
|
|
|
|

i j k

a1 a2 a3

b1 b2 b3

|
|
|
|
|
|
|

c (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k (2.43a)

which can also be written as

c c 




c1

c2

c3





c a × b c 





a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1





(2.43b)

This vector satisfies the following orthogonality relationships:

a . c c aTc c 0

b . c c bTc c 0
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It can also be shown that

c c a × b c −b × a (2.44)

If a and b are parallel vectors, it can be shown that c c a × b c 0. It follows
that a × a c 0. If a and b are two orthogonal vectors, that is, aTb c 0, it can
be shown that

|c | c |a | |b |

The following useful identities can also be verified:

a . (b × c) c (a × b) . c
a × (b × c) c (aTc)b − (aTb)c } (2.45)

Example 2.8

Let a and b be the three-dimensional vectors

a c [0 − 5 1]T

b c [1 − 2 3]T

The cross product of a and b is

c c a × b c
|
|
|
|
|
|
|

i j k

a1 a2 a3

b1 b2 b3

|
|
|
|
|
|
|

c
|
|
|
|
|
|
|

i j k

0 −5 1

1 −2 3

|
|
|
|
|
|
|

c −13i + j + 5k

The vector c can then be defined as

c c [−13 1 5]T

It is clear that

cTa c cTb c 0

a × b c −b × a

Skew-Symmetric Matrix Representation The vector cross product as
defined by Eq. 43 can be represented using matrix notation. By using Eq. 43b,
one can write a × b as
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a × b c 




a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1






c 




0 −a3 a2

a3 0 −a1

−a2 a1 0










b1

b2

b3





(2.46)

which can be written as

a × b c ãb (2.47)

where ã is the skew-symmetric matrix associated with the vector a and defined
as

ã c 




0 −a3 a2

a3 0 −a1

−a2 a1 0





(2.48)

Similarly, the cross product b × a can be written in a matrix form as

b × a c −a × b c b̃a (2.49)

where b̃ is the skew-symmetric matrix associated with the vector b and is
defined as

b̃ c 




0 −b3 b2

b3 0 −b1

−b2 b1 0





If â is a unit vector along the vector a, it is clear that

â × a c −a × â c 0

It follows that

− ãâ c ãTâ c 0 (2.50)

In some of the developments presented in this book, the constraints that rep-
resent mechanical joints in the system can be expressed using a set of algebraic
equations. Quite often, one encounters a system of equations that can be written
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in the following form:

a × x c 0 (2.51)

where a c [a1 a2 a3]T and x c [x1 x2 x3]T. Using the notation of the skew
symmetric matrices, Eq. 51 can be written as

ãx c 0 (2.52)

where ã is defined by Eq. 48. Equation 52 leads to the following three algebraic
equations:

a2x3 − a3x2 c 0

a3x1 − a1x3 c 0

a1x2 − a2x1 c 0






(2.53)

These three equations are not independent because, for instance, adding a1/ a3

times the first equation to a2/ a3 times the second equation leads to the third
equation. That is, the system of equations given by Eq. 51 or equivalently, Eq.
52, has at most two independent equations. This is due primarily to the fact
that the skew-symmetric matrix ã of Eq. 48 is singular and its rank is at most
two.

Example 2.9

Let a and b be the three-dimensional vectors

a c [−1 7 1]T

b c [0 − 3 8]T

Determine the skew-symmetric matrices ã and b̃ associated, respectively, with the
vectors a and b and evaluate the cross product a × b.

Solution. The skew-symmetric matrices ã and b̃ are

ã c 




0 −1 7

1 0 1

−7 −1 0





, b̃ c 





0 −8 −3

8 0 0

3 0 0





The cross product a × b can be written as

a × b c ãb c 




0 −1 7

1 0 1

−7 −1 0










0

−3

8






c 




59

8

3
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Example 2.10

Solve the system of equations

ãx c 0

where a is the vector

a c [−1 7 1]T

Solution. As pointed out in this section, the system of equations ãx c 0 has only
two independent equations since the rank of the skew-symmetric matrix ã is at
most two. Consequently, this system of equations has a nontrivial solution that can
be determined to within an arbitrary constant. The equation ãx c 0 can be written
explicitly as

a2x3 − a3x2 c 0

a3x1 − a1x3 c 0

a1x2 − a2x1 c 0

Since this system has only two independent equations, we can determine x2 and x3
in terms of x1. This leads to

x2 c
a2

a1
x1, x3 c

a3

a1
x1

This solution satisfies the three algebraic equations, and for a given value of x1,
the other two variables x2 and x3 can be determined. Using the components of the
vector a, we have

x2 c
a2

a1
x1 c −7x1

x3 c
a3

a1
c −x1

Therefore, the solution vector x is

x c 




1

−7

−1





x1

Cartesian Coordinate System In spatial dynamics, several sets of orienta-
tion coordinates can be used to describe the three-dimensional rotations. Some
of these orientation coordinates, as will be demonstrated in Chapter 7, lack any
clear physical meaning, making it difficult in many applications to define the
initial configuration of the bodies using these coordinates. One method which
is used in computational dynamics to define a Cartesian coordinate system is
to introduce three points on the rigid body and use the vector cross product to
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define the location and orientation of the body coordinate system in the three-
dimensional space. To illustrate the procedure for using the vector cross product
to achieve this goal, we consider body i which has a coordinate system X iY iZi

with its origin at point Oi as shown in Fig. 1. Two other points Pi and Qi are
defined such that point Pi lies on the X i axis and point Qi lies in the XiY i plane.
If the position vectors of the three points Oi, Pi, and Qi are known and defined
in the XYZ coordinate system by the vectors ri

O, ri
P, and ri

Q, one can first define
the unit vectors ii and iit as

ii c ri
P − ri

O

|ri
P − ri

O |
, iit c

ri
Q − ri

O

|ri
Q − ri

O |
where ii defines a unit vector along the X i axis. It is clear that a unit vector ki

along the Z i axis is defined as

ki c ii × iit

A unit vector along the Y i axis can then be defined as

ji c ki × ii

The vector ri
O defines the position vector of the reference point Oi in the XYZ

Figure 2.1 Cartesian coordinate system
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coordinate system, while the 3 × 3 matrix

Ai c [ii ji ki]

as will be shown in Chapter 7, completely defines the orientation of the body
coordinate system X iY iZi with respect to the coordinate system XYZ. This
matrix is called the direction cosine transformation matrix.

Conditions of Parallelism In formulating the kinematic constraint equa-
tions that describe a mechanical joint between two bodies in a multibody sys-
tem, the cross product can be used to indicate the parallelism of two vectors
on the two bodies. For instance, if ai and a j are two vectors defined on bod-
ies i and j in a multibody system, the condition that these two vectors remain
parallel is given by

ai × a j c 0

As pointed out previously, this equation contains three scalar equations that are
not independent. An alternative approach to formulate the parallelism condition
of the two vectors ai and a j is to use two independent dot product equations.
To demonstrate this, we form the orthogonal triad ai, ai

1, and ai
2, defined on

body i as shown in Fig. 2. It is clear that if the vectors ai and a j are to remain
parallel, one must have

aiT
1 a j c 0

aiT
2 a j c 0

These are two independent scalar equations that can be used instead of using
the three dependent scalar equations of the cross product.

For a given nonzero vector ai, a simple computer procedure can be used to

Figure 2.2 Parallelism of two vectors
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determine the vectors ai
1 and ai

2 such that ai, ai
1, and ai

2 form an orthogonal triad.
In this procedure, we first define a nonzero vector ad that is not parallel to the
vector ai. The vector ad can simply be defined as the three-dimensional vector
that has one zero element and all other elements equal to one. The location of
the zero element is chosen to be the same as the location of the element of ai

that has the largest absolute value. The vector ai
1 can then be defined as

ai
1 c ai × ad

Clearly, ai
1 is perpendicular to ai. One can then define ai

2 that completes the
orthogonal triad ai, ai

1, and ai
2 as

ai
2 c ai × ai

1

To demonstrate this simple procedure, consider the vector ai defined as

ai c [1 0 − 3]T

The element of ai that has the largest absolute value is the third element. There-
fore, the vector ad is defined as

ad c [1 1 0]T

The vector ai
1 is then defined as

ai
1 c ai × ad c






0 3 0

−3 0 −1

0 1 0










1

1

0





c 




3

−3

1





and the vector ai

2 is

ai
2 c ai × ai

1 c





0 3 0

−3 0 −1

0 1 0










3

−3

1





c 




−9

−10

−3






2.5 SOLUTION OF ALGEBRAIC EQUATIONS

The method of finding the inverse can be utilized in solving a system of n alge-
braic equations in n unknowns. Consider the following system of equations:
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a11 x1 + a12 x2 + · · · + a1n xn c b1

a21 x1 + a22 x2 + · · · + a2n xn c b2
...

an1 x1 + an2 x2 + · · · + ann xn c bn











(2.54)

where aij, i, j c 1, 2, . . . , n are known coefficients, b1, b2, . . . , and bn are
given constants, and x1, x2, . . . , and xn are unknowns. The preceding system
of equations can be written in a matrix form as









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

















x1

x2
...

xn








c








b1

b2
...

bn








(2.55)

This system of algebraic equations can be written as

Ax c b (2.56)

where the coefficient matrix A and the vectors x and b are given by

A c








a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann








(2.57a)

x c [x1 x2 · · · xn]T (2.57b)

b c [b1 b2 · · · bn]T (2.57c)

If the coefficient matrix A in Eq. 56 has a full rank, the inverse of this matrix
does exist. Multiplying Eq. 56 by the inverse of A, one obtains

A−1Ax c A−1b

Since

A−1A c I

where I is the identity matrix, the solution of the system of algebraic equations
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can be defined as

x c A−1b (2.58)

It is clear from Eq. 58 that if A is a nonsingular matrix, the homogeneous
system of algebraic equations

Ax c 0

has only the trivial solution

x c 0

Example 2.11

Find the solution of the system of algebraic equations

2x1 − x2 c 2

−x1 + 3x2 − 2x3 c −1

−2x2 + 2x3 c 0

Solution. This system of algebraic equations can be written in a matrix form as






2 −1 0

−1 3 −2

0 −2 2










x1

x2

x3





c 




2

−1

0





which can also be written as

Ax c b

where

A c 




2 −1 0

−1 3 −2

0 −2 2





x c [x1 x2 x3]T

b c [2 − 1 0]T

It can be verified that the inverse of the matrix A is

A−1 c 




1 1 1

1 2 2

1 2 2.5
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Using this inverse, the solution of the system of equations can be written as

x c A−1b c 




1 1 1

1 2 2

1 2 2.5










2

−1

0





c 




1

0

0





Since the matrix A is nonsingular, this solution is unique.

Gaussian Elimination The method of finding the inverse is rarely used in
practice to solve a system of algebraic equations. This is mainly because the
explicit construction of the inverse of a matrix by using the adjoint matrix
approach, which requires the evaluation of the detrminant and the cofactors,
is computationally expensive and often leads to numerical errors.

The Gaussian elimination method is an alternative approach for solving a
system of algebraic equations. This approach, which is based on the idea of
eliminating variables one at a time, requires a much smaller number of arith-
metic operations as compared with the method of finding the inverse. The
Gaussian elimination consists of two main steps: the forward elimination and
the back substitution. In the forward elimination step, the coefficient matrix is
converted to an upper-triangular matrix by using elementary row operations.
In the back substitution step, the unknown variables are determined. In order to
demonstrate the use of the Gaussian elimination method, consider the following
system of equations:






2 1 1

−1 2 −1

4 −3 1










x1

x2

x3





c 




6

0

2





To solve for the unknowns x1, x2, and x3 using the Gaussian elimination method,
we first perform the forward elimination in order to obtain an upper-triangular
matrix. With this goal in mind, we multiply the first equation by 1

2 . This leads to






1 1
2

1
2

−1 2 −1

4 −3 1










x1

x2

x3





c 




3

0

2





By adding the first equation to the second equation, and −4 times the first equa-
tion to the third equation, one obtains






1 1
2

1
2

0 5
2 − 1

2

0 −5 −1










x1

x2

x3





c 




3

3

−10
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Now we multiply the second equation by 2
5 to obtain






1 1
2

1
2

0 1 − 1
5

0 −5 −1










x1

x2

x3





c 




3
6
5

−10





By adding 5 times the second equation to the third equation, one obtains






1 1
2

1
2

0 1 − 1
5

0 0 −2










x1

x2

x3





c 




3
6
5

−4





(2.59)

The coefficient matrix in this equation is an upper-triangular matrix and hence,
the back substitution step can be used to solve for the variables. Using the third
equation, one has

x3 c 2

The second equation yields

x2 c 6
5 + 1

5 x3 c 8
5

The first equation can then be used to solve for x1 as

x1 c 3 − 1
2 x2 − 1

2 x3 c 6
5

Therefore, the solution of the original system of equations is

x c [ 6
5

8
5 2]T

It is clear that the Gaussian elimination solution procedure reduces the sys-
tem Ax c b to an equivalent system Ux c g, where U is an upper-triangular
matrix. This new equivalent system is easily solved by the process of back
substitution.

Gauss–Jordan Method The Gauss–Jordan reduction method combines the
forward elimination and back substitution steps. In this case, the coefficient
matrix is converted to a diagonal identity matrix, and consequently, the solution
is defined by the right-hand-side vector of the resulting system of algebraic
equations. To demonstrate this procedure, we consider Eq. 59. Dividing the
third equation by −2, one obtains






1 1
2

1
2

0 1 − 1
5

0 0 1










x1

x2

x3





c 




3
6
5

2
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By adding 1
5 times the third equation to the second equation and − 1

2 times the
third equation to the first equation, one obtains






1 1
2 0

0 1 0

0 0 1










x1

x2

x3





c 




2
8
5

2





Adding − 1

2 times the second equation to the first equation yields






1 0 0

0 1 0

0 0 1










x1

x2

x3





c 




6
5
8
5

2





The coefficient matrix in this system is the identity matrix and the right-hand
side is the solution vector previously obtained using the Gaussian elimination
procedure.

It is important, however, to point out that the use of Gauss–Jordan method
requires 50 percent more additions and multiplications as compared to the Gaus-
sian elimination procedure. For an n × n coefficient matrix, the Gaussian elim-
ination method requires approximately (n)3/ 3 multiplications and additions,
while the Gauss–Jordan method requires approximately (n)3/ 2 multiplications
and additions. For this reason, use of the Gauss–Jordan procedure to solve lin-
ear systems of algebraic equations is not recommended. Nonetheless, by taking
advantage of the special structure of the right-hand side of the system Ax c I,
the Gauss–Jordan method can be used to produce a matrix inversion program
that requires a minimum storage.

Pivoting and Scaling It is clear that the Gaussian elimination and
Gauss–Jordan reduction procedures require division by the diagonal element
aii. This element is called the pivot. The forward elimination procedure at the
ith step fails if the pivot aii is equal to zero. Furthermore, if the pivot is small,
the elimination procedure becomes prone to numerical errors. To avoid these
problems, the equations may be reordered in order to avoid zero or small pivot
elements. There are two types of pivoting strategies that are used in solving
systems of algebraic equations. These are the partial pivoting and full pivot-
ing. In the case of partial pivoting, during the ith elimination step, the equations
are reordered such that the equation with the largest coefficient (magnitude) of
xi is chosen for pivoting. In the case of full or complete pivoting, the equations
and the unknown variables are reordered in order to choose a pivot element
that has the largest absolute value.

It has been observed that if the elements of the coefficient matrix A vary
greatly in size, the numerical solution of the system Ax c b can be in error.
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In order to avoid this problem, the coefficient matrix A must be scaled such
that all the elements of the matrix have comparable magnitudes. Scaling of
the matrix can be achieved by multiplying the rows and the columns of the
matrix by suitable constants. That is, scaling is equivalent to performing simple
row and column operations. While the row operations cause the rows of the
matrix to be approximately equal in magnitude, the column operations cause the
elements of the vector of the unknowns to be of approximately equal size. Let
C be the matrix that results from scaling the matrix A. This matrix can be writ-
ten as

C c B1AB2

where B1 and B2 are diagonal matrices whose diagonal elements are the scal-
ing constants. Hence, one is interested in solving the following new system of
algebraic equations:

Cy c z

where

y c B−1
2 x

z c B1b

The solution of the system Cy c z defines the vector y. This solution vector
can be used to define the original vector of unknowns x as

x c B2y

The Gaussian elimination method, in addition to being widely used for solv-
ing systems of algebraic equations, can also be used to determine the rank of
nonsquare matrices and also to determine the independent variables in a given
system of algebraic equations. This is demonstrated by the following example.

Example 2.12

Consider the following system of algebraic equations:






1 1 0 1 4

2 2 2 0 1

3 3 2 1 5
















x1

x2

x3

x4

x5











c 




0

0

0






A forward elimination in the first column yields
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1 1 0 1 4

0 0 2 −2 −7

0 0 2 −2 −7
















x1

x2

x3

x4

x5











c 




0

0

0






Since the coefficients of x2 in the second and third equations are equal to zero,
these coefficients cannot be used as pivots in the Gaussian elimination. By using
an elementary column operation, the second and third columns can be interchanged
leading to a reordering of the variables. Such an elementary operation yields






1 0 1 1 4

0 2 0 −2 −7

0 2 0 −2 −7
















x1

x3

x2

x4

x5











c 




0

0

0






Dividing the second row by 2 and performing forward elimination in the second
column yields






1 0 1 1 4

0 1 0 −1 − 7
2

0 0 0 0 0
















x1

x3

x2

x4

x5











c 




0

0

0






The coefficient matrix in this equation has two independent rows and, consequently,
its rank is equal to two. This is an indication that there are only two independent
equations. One can then disregard the third equation and use the following system
of equations:

[ 1 0 1 1 4

0 1 0 −1 − 7
2

]










x1

x3

x2

x4

x5











c [ 0

0 ]

which can also be written as

[ 1 0

0 1 ] [ x1

x3 ] c − [ 1 1 4

0 −1 − 7
2

] 




x2

x4

x5
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It is clear from this equation that x1 and x3 can be determined if the values of x2,
x4, and x5 are given. Therefore, x2, x4, and x5 are called the independent variables,
while x1 and x3 are called the dependent variables.

2.6 TRIANGULAR FACTORIZATION

In the Gaussian elimination procedure used to solve the system Ax c b, the n
× n coefficient matrix reduces to an upper-triangular matrix after n − 1 steps.
The new system resulting from the forward elimination can be written as









(a11)1 (a12)1 · · · (a1n)1

0 (a22)2 · · · (a2n)2
...

...
. . .

...
0 0 · · · (ann)n

















x1

x2
...

xn








c








(b1)1

(b2)2
...

(bn)n








(2.60)

where ( )k refers to step k in the forward elimination process and

(aij)k + 1 c (aij)k − mik(akj)k

(bi)k + 1 c (bi)k − mik(bk)k } i, j c k + 1, . . . , n (2.61)

and

mik c (aik)k / (akk)k i c k + 1, . . . , n (2.62)

Let U denote the upper-triangular coefficient matrix in Eq. 60 and define the
lower-triangular matrix L as

L c








1 0 0 · · · 0

m21 1 0 · · · 0
...

...
...

. . .
...

mn1 mn2 mn3 · · · 1








(2.63)

where the coefficients mij are defined by Eq. 62. Using Eqs. 61 and 62, direct
matrix multiplication shows that the matrix A can be written as

A c LU (2.64)

which implies that the matrix A can be written as the product of a lower-
triangular matrix L and an upper-triangular matrix U.
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Example 2.13

The lower-triangular matrix L can also be defined using the elementary operations
of Gaussian elimination. In order to demonstrate this, we consider the system






2 1 1

−1 2 −1

4 −3 1










x1

x2

x3





c 




6

0

2





whose solution was obtained in the preceding section using Gaussian elimination.
In order to solve this system, the following three elimination steps are used.

1. Add 1
2 times the first equation to the second equation.

2. Subtract 2 times the first equation from the third equation.
3. Add 2 times the second equation to the third equation.

The result of these three elementary operations is an equivalent but simpler system
given by






2 1 1

0 5
2 − 1

2

0 0 −2










x1

x2

x3





c 




6

3

−4





in which the upper-triangular matrix U can be recognized as

U c 




2 1 1

0 5
2 − 1

2

0 0 −2





Elementary operations can also be performed using elementary matrices. An ele-
mentary matrix is obtained by performing the elementary operation on an identity
matrix. Premultiplying the coefficient matrix A by an elementary matrix produces
the same elementary operation for A. For instance, if 1

2 times the first row of a 3
× 3 identity matrix is added to the second row, one obtains the elementary matrix

E1 c





1 0 0
1
2 1 0

0 0 1





Also, if 2 times the first row of a 3 × 3 identity matrix is substracted from the third
row, one obtains the elementary matrix

E2 c





1 0 0

0 1 0

−2 0 1
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Similarly, if 2 times the second row is added to the third row, one obtains the
elementary matrix

E3 c





1 0 0

0 1 0

0 2 1





The product of the three elementary matrices E3, E2, and E1 is

E c E3E2E1 c





1 0 0

0 1 0

0 2 1










1 0 0

0 1 0

−2 0 1










1 0 0
1
2 1 0

0 0 1





c 




1 0 0
1
2 1 0

−1 2 1





Note that E is a lower-triangular matrix with all the diagonal elements equal to 1.
Note also that premultiplying the coefficient matrix A by E leads to

EA c 




1 0 0
1
2 1 0

−1 2 1










2 1 1

−1 2 −1

4 −3 1





c 




2 1 1

0 5
2 − 1

2

0 0 −2





which is the same upper-triangular matrix U obtained previously by the elementary
operations of Gaussian elimination. The diagonal elements of the matrix U are the
pivots. Therefore, one has

EA c U

or

A c E−1U

where E−1 c (E3E2E1)−1 c E−1
1 E−1

2 E−1
3 is the matrix L that defines the LU factor-

ization of the matrix A. The inverse of an elementary matrix is also an elementary
matrix. The inverses of the matrices E1, E2, and E3 are defined as

E−1
1 c 





1 0 0

− 1
2 1 0

0 0 1





, E−1

2 c 




1 0 0

0 1 0

2 0 1





, E−1

3 c 




1 0 0

0 1 0

0 −2 1





It follows that

L c E−1
1 E−1

2 E−1
3 c 





1 0 0

− 1
2 1 0

0 0 1










1 0 0

0 1 0

2 0 1










1 0 0

0 1 0

0 −2 1






c 




1 0 0

− 1
2 1 0

2 −2 1
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While Eqs. 60 through 64 present the LU factorization resulting from the use of
Gaussian elimination, we should point out that in general such a decomposition
is not unique. The triangular matrix L obtained by using the steps of Gaussian
elimination has diagonal elements that are all equal to 1. The method that gives
explicit formulas for the elements of L and U in this special case is known as
Doolittle’s method. If the upper-triangular matrix U is defined such that all its
diagonal elements are equal to 1, we have Crout’s method. Obviously, there
is only a multiplying diagonal matrix that distinguishes between Crout’s and
Doolittle’s methods. To demonstrate this, let us assume that A has the following
two different decompositions:

A c L1U1 c L2U2 (2.65)

It is then clear that

U2U−1
1 c L−1

2 L1 (2.66)

Since the inverse and product of lower (upper)-triangular matrices are again
lower (upper) triangular, the left and right sides of Eq. 66 must be equal to a
diagonal matrix D, that is,

U2U−1
1 c D

L−1
2 L1 c D

It follows that

U2 c DU1

L2 c L1D−1

which demonstrate that there is only a multiplying diagonal matrix that distin-
guishes between two different methods of decomposition.

Cholesky’s Method A more efficient decomposition can be found if the
matrix A is symmetric and positive definite. The matrix A is said to be positive
definite if

xTAx > 0

for any n-dimensional nonzero vector x. In the case of symmetric positive def-
inite matrices, Cholesky’s method can be used to obtain a simpler factorization
for the matrix A. In this case, there exists a lower-triangular matrix L such that

A c LLT (2.67)

where the elements lij of the lower-triangular matrix L can be defined by equat-
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ing the elements of the products of the matrices on the right side of Eq. 67 to
the elements of the matrix A. This leads to the following general formulas for
the elements of the lower-triangular matrix L:

lij c
aij −

j − 1

���
k c 1

likljk

ljj
j c 1, . . . , i − 1 (2.68)

lii c [aii −
i − 1

���
k c 1

(lik)2] 1/ 2

(2.69)

Cholesky’s method requires only 1
2 n(n + 1) storage locations for the lower-

triangular matrix L as compared to (n)2 locations required by other LU
factorization methods. Furthermore, the number of multiplications and addi-
tions required by Cholesky’s method is approximately 1

6 (n)3 rather than 1
3 (n)3

required by other decomposition methods.

Numerical Solution Once the decomposition of A into its LU factors is
defined, by whatever method, the system of algebraic equations

Ax c LUx c b (2.70)

can be solved by first solving

Ly c b (2.71)

and then solve for x using the equation

Ux c y (2.72)

The coefficient matrices in Eqs. 71 and 72 are both triangular and, consequently,
the solutions of both equations can be easily obtained by back substitution.

We should point out that the accuracy of the solution obtained using the
direct methods such as Gaussian elimination and other LU factorization tech-
niques depends on the numerical properties of the coefficient matrix A. A linear
system of algebraic equations Ax c b is called ill-conditioned if the solution
x is unstable with respect to small changes in the right-side b. It is important
to check the effectiveness of the computer programs used to solve systems of
linear algebraic equations when ill-conditioned problems are considered. An
example of an ill-conditioned matrix that can be used to evaluate the perfor-
mance of the computer programs is the Hilbert matrix. A Hilbert matrix of
order n is defined by
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Hn c















1
1
2

1
3

· · ·
1
n

1
2

1
3

1
4

· · ·
1

n + 1
...

...
...

. . .
...

1
n

1
n + 1

1
n + 2

· · ·
1

2n − 1














The inverse of this matrix is known explicitly. Let cij be the ijth element in the
inverse of Hn. These elements are defined as

c(n)
ij c (−1)i + j(n + i − 1)!(n + j − 1)!

(i + j − 1)[(i − 1)!( j − 1)!]2(n − i)!(n − j)!
i ≥ 1, j ≤ n

The Hilbert matrix becomes more ill-conditioned as the dimension n increases.

2.7 QR DECOMPOSITION

Another important matrix factorization that is used in the computational dynam-
ics of mechanical systems is the QR decomposition. In this decomposition, an
arbitrary matrix A can be written as

A c QR (2.73)

where the columns of Q are orthogonal and R is an upper-triangular matrix.
Before examining the factorization of Eq. 73, some background material will
first be presented.

In Section 3, the orthogonality of n-dimensional vectors was defined. Two
vectors a and b are said to be orthogonal if

aTb c 0 (2.74)

Orthogonal vectors are linearly independent, for if a1, a2, . . . , an is a set of
nonzero orthogonal vectors, and

a1a1 + a2a2 + · · · + anan c 0, (2.75)

one can multiply this equation by aT
i and use the orthogonality condition to

obtain

aiaT
i ai c 0

This equation implies that ai c 0 for any i. This proves that the orthogonal
vectors a1, a2, . . . , an are linearly independent. In fact, one can use any set of
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linearly independent vectors to define a set of orthogonal vectors by applying
the Gram–Schmidt orthogonalization process.

Gram–Schmidt Orthogonalization Let a1, a2, . . . , am be a set of
n-dimensional linearly independent vectors where m ≤ n. To use this set of
vectors to define another set of orthogonal vectors b1, b2, . . . , bm, we first
define the unit vector

b1 c a1/ |a1 | (2.76)

Recall that the component of the vector a2 in the direction of the unit vector
b1 is defined by the dot product aT

2 b1. For this reason, we define b′2 as

b′2 c a2 − (aT
2 b1)b1 (2.77)

Clearly, b′2 has no component in the direction of b1 and, consequently, b1 and b′2
are orthogonal vectors. This can simply be proved by using the dot product
bT

1 b′2 and utilizing the fact that b1 is a unit vector. Now the unit vector b2 is
defined as

b2 c b′2/ |b′2 | (2.78)

Similarly, in defining b3 we first eliminate the dependence of this vector on b1

and b2. This can be achieved by defining

b′3 c a3 − (aT
3 b1)b1 − (aT

3 b2)b2 (2.79)

The vector b3 can then be defined as

b3 c b′3/ |b′3 | (2.80)

Continuing in this manner, one has

b′i c ai − (aT
i b1)b1 − (aT

i b2)b2 · · · − (aT
i bi − 1)bi − 1

c ai −
i − 1

���
j c 1

(aT
i bj)bj (2.81a)

and

bi c b′i / |b′i | (2.81b)

As the result of the application of the Gram–Schmidt orthogonalization process
one obtains a set of orthonormal vectors that satisfy

bT
i bj c { 0 if i � j

1 if i c j
(2.82)
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The Gram–Schmidt orthogonalization process cannot be completed if the vec-
tors are not linearly independent. In this case, it is impossible to obtain a set
that consists of only nonzero orthogonal vectors.

Example 2.14

Consider the linearly independent vectors defined by the columns of the rectangular
matrix

A c








2 1 1

−1 2 −1

4 −3 1

1 0 2








Let

a1 c








2

−1

4

1








, a2 c









1

2

−3

0








, a3 c









1

−1

1

2








In order to define a set of orthogonal vectors, we first define

b1 c
a1

|a1 |
c 1
f

22









2

−1

4

1








c








0.4264

−0.2132

0.8528

0.2132








The vector b′2 is

b′2 c a2 − (aT
2 b1)b1 c









1

2

−3

0








− (−2.5584)









0.4264

−0.2132

0.8528

0.2132









c








1

2

−3

0








−








−1.0909

0.5455

−2.1818

−0.5455








c








2.0909

1.4545

−0.8182

0.5455
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The vector b2 can then be defined as

b2 c
b′2

|b′2 |
c








0.7658

0.5327

−0.2997

0.1998








The vector b′3 is defined as

b′3 c a3 − (aT
3 b1)b1 − (aT

3 b2)b2

c








1

−1

1

2








− (1.9188)









0.4264

−0.2132

0.8528

0.2132








− (0.3330)









0.7658

0.5327

−0.2997

0.1998









c








−0.0732

−0.7683

−0.5366

1.5244








Therefore, the vector b3 is

b3 c
b′3

|b′3 |
c







−0.0409

−0.4290

−0.2996

0.8512







The three orthonormal vectors are

b1 c








0.4264

−0.2132

0.8528

0.2132








, b2 c









0.7658

0.5327

−0.2997

0.1998








, b3 c









−0.0409

−0.4290

−0.2996

0.8512









Q and R Matrices The Gram–Schmidt orthogonalization process can be
used to demonstrate that an arbitrary rectangular matrix A with linearly inde-
pendent columns can be expressed in the following factored form:

A c QR (2.83)

where the columns of Q are orthogonal or orthonormal vectors and R is an
upper-triangular matrix. To prove Eq. 83, we consider the n × m rectangular
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matrix A. If a1, a2, . . . , am are the columns of A, the matrix A can be written
as

A c [a1 a2 · · · am] (2.84)

If the n-dimensional vectors a1, . . . , and am are linearly independent, the
Gram–Schmidt orthogonalization procedure can be used to define a set of m
orthogonal vectors b1, b2, . . . , and bm as previously described in this section.
Note that in Eq. 83, the columns of A are a linear combination of the columns
of Q. Thus, to obtain the factorization of Eq. 83, we attempt to write a1, a2,
. . . , am as a combination of the orthogonal vectors b1, b2, . . . , bm. From Eqs.
81a and 81b, one has

ai c
i − 1

���
j c 1

(aT
i bj)bj + |b′i |bi (2.85)

Since b1, b2, . . . , and bm are orthonormal vectors, the use of Eq. 85 leads to

aT
i bi c bT

i ai c |b′i | (2.86)

Substituting Eq. 86 into Eq. 85, one gets

ai c
i − 1

���
j c 1

(aT
i bj)bj + (aT

i bi)bi

c
i

���
j c 1

(aT
i bj)bj c

i

���
j c 1

(bT
j ai)bj (2.87)

Using this equation, the matrix A, which has linearly independent columns, can
be written as

A c [a1 a2 · · · am]

c [b1 b2 · · · bm]









bT
1 a1 bT

1 a2 · · · bT
1 am

0 bT
2 a2 · · · bT

2 am
...

...
. . .

...
0 0 · · · bT

mam








(2.88)

which can also be written as

A c QR
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where

Q c [b1 b2 · · · bm] (2.89a)

R c








bT
1 a1 bT

1 a2 · · · bT
1 am

0 bT
2 a2 · · · bT

2 am
...

...
. . .

...
0 0 · · · bT

mam








(2.89b)

The matrix Q is an n × m matrix that has orthonormal columns. The m × m
matrix R is an upper triangular and is invertible.

If A is a square matrix, the matrix Q is square and orthogonal. If the Q and
R factors are found for a square matrix, the solution of the system of equations

Ax c b

can be determined efficiently, since in this case we have

QRx c b

or

Rx c QTb

The solution of this system can be obtained by back-substitution since R is an
upper-triangular matrix.

Example 2.15

Consider the 4 × 3 matrix

A c








2 1 1

−1 2 −1

4 −3 1

1 0 2








which has the linearly independent columns

a1 c








2

−1

4

1








, a2 c









1

2

−3

0








, a3 c









1

−1

1

2








It was shown in the preceding example that the application of the Gram–Schmidt



2.7 QR DECOMPOSITION 71

orthogonalization process leads to the following orthonormal vectors:

b1 c








0.4264

−0.2132

0.8528

0.2132








, b2 c









0.7658

0.5327

−0.2997

0.1998








, b3 c









−0.0409

−0.4290

−0.2996

0.8512








The Q and R factors of the matrix A are

Q c [b1 b2 b3] c








0.4264 0.7658 −0.0409

−0.2132 0.5327 −0.4290

0.8528 −0.2997 −0.2996

0.2132 0.1998 0.8512









R c 




bT
1 a1 bT

1 a2 bT
1 a3

0 bT
2 a2 bT

2 a3

0 0 bT
3 a3





c 




4.6904 −2.5584 1.9188

0 2.7303 0.333

0 0 1.7909






Householder Transformation The application of the Gram–Schmidt
orthogonalization process leads to a QR factorization in which the matrix Q
has orthogonal column vectors, while the matrix R is a square upper-triangular
matrix. In what follows, we discuss a procedure based on the Householder trans-
formation. This procedure can be used to obtain a QR factorization in which
the matrix Q is a square orthogonal matrix.

A Householder transformation or an elementary reflector associated with a
unit vector v̂ is defined as

H c I − 2v̂v̂T (2.90)

where I is an identity matrix. The matrix H is symmetric and also orthogonal
since

HTH c (I − 2v̂v̂T)(I − 2v̂v̂T)

c I − 4v̂v̂T + 4v̂v̂T c I (2.91)

It follows that H c HT c H−1. It is also clear that if v c |v | v̂, then

Hv c −v

Furthermore, if u is the column vector

u c [1 0 0 · · · 0]T (2.92)
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and

v c a + bu (2.93)

where

b c |a | c
f

aTa (2.94)

then

Ha c [ I − 2vvT

(|v | )2 ] a c a − 2vvT

(|v | )2
a

Using Eq. 93, one obtains

Ha c a − (a + bu)
2(a + bu)Ta

(a + bu)T(a + bu)
(2.95)

Since

(b)2uTu c (b)2 c aTa

the denominator in Eq. 95 can be written as

(a + bu)T(a + bu) c 2(a + bu)Ta

Substituting this equation into Eq. 95 yields

Ha c −bu c











−b

0

0
...
0











(2.96)

This equation implies that when the Householder transformation constructed
using the vector v of Eq. 93 is multiplied by the vector a, the result is a vec-
tor whose only nonzero element is the first element. Using this fact, a matrix
can be transformed to an upper-triangular form by the successive application
of a series of Householder transformations. In order to demonstrate this process,
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consider the rectangular n × m matrix

A c








a11 a12 a13 · · · a1m

a21 a22 a23 · · · a2m
...

...
...

. . .
...

an1 an2 an3 · · · anm








(2.97)

where n ≥ m. First we construct the Householder transformation associated
with the first column a1 c [a11 a21 · · · an1]T. This transformation matrix can be
written as

H1 c I − 2v̂1v̂T
1

where the vector v1 is defined as

v1 c a1 + b1u1

in which b1 is the norm of a1, and the vector u1 has the same dimension as a1

and is defined by Eq. 92. Using Eq. 96, it is clear that

H1a1 c −b1u1 c











−b1

0

0
...
0










It follows that

A1 c H1A c











−b1 (a12)1 (a13)1 · · · (a1m)1

0 (a22)1 (a23)1 · · · (a2m)1

0 (a32)1 (a33)1 · · · (a3m)1
...

...
...

. . .
...

0 (an2)1 (an3)1 · · · (anm)1










Now we consider the second column of the matrix A1 c H1A. We use the last
n − 1 elements of this column vector to form

a2 c [(a22)1 (a32)1 · · · (an2)1]T
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A Householder transformation matrix H2 can be constructed such that

H2a2 c −b2u2 c











−b2

0

0
...
0










where b2 is the norm of the vector a2, and u2 is an (n − 1)-dimensional vector
defined by Eq. 92. Observe that at this point, the Householder transformation
H2 is only of order n − 1. This transformation can be imbedded into the lower-
right corner of an n × n matrix H2, where

H2 c [ 1 0

0 H2 ]
Because only the first element in the first row and first column of this matrix
is nonzero and equal to 1, when this transformation is applied to an arbitrary
matrix it does not change the first row or the first column of that matrix. Fur-
thermore, H2 is an orthogonal symmetric matrix, since H2 is both orthogonal
and symmetric. By applying the matrix H2 to A1, one obtains

A2 c H2A1 c H2H1A c











−b1 (a12)1 (a13)1 · · · (a1m)1

0 −b2 (a23)2 · · · (a2m)2

0 0 (a33)2 · · · (a3m)2
...

...
...

. . .
...

0 0 (an3)2 · · · (anm)2










We consider the third column of the matrix A2, and use the last n − 2 elements
to form the vector

a3 c [(a33)2 (a43)2 · · · (an3)2]T

The Householder transformation H3 associated with this (n − 2)-dimensional
vector can be constructed. This matrix can then be imbedded into the lower-
right corner of the n × n matrix

H3 c





1 0 0

0 1 0

0 0 H3





Using this matrix, one has
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H3A2 c H3H2H1A1 c












−b1 (a12)1 (a13)1 · · · (a1m)1

0 −b2 (a23)2 · · · (a2m)2

0 0 −b3 · · · (a3m)3
...

...
...

. . .
...

0 0 0 · · · (anm)3











where b3 is the norm of the vector a3. It is clear that by continuing this process,
all the elements below the diagonal of the matrix A can be made equal to zero. If
A is a square nonsingular matrix, the result of the Householder transformations
is an upper-triangular matrix. If A, on the other hand, is a rectangular matrix,
the result of m-Householder transformations is

Am c HmHm − 1 · · · H1A c [ R1

0 ] (2.98)

where R1 is an m × m upper-triangular matrix.

Example 2.16

Consider the matrix

A c








2 1 1

−1 2 −1

4 −3 1

1 0 2








First we consider the first column of this matrix:

a1 c [2 − 1 4 1]T

The norm of this vector is

b1 c |a1 | c 4.6904

The vector v1 is defined as

v1 c a1 + b1u c








2

−1

4

1








+ 4.6904









1

0

0

0








c








6.6904

−1

4

1








The unit vector v̂1 is

v̂1 c [0.8445 − 0.1262 0.5049 0.1262]T
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The Householder transformation H1 is

H1 c I − 2v̂v̂T c








−0.4264 0.2132 −0.8528 −0.2132

0.2132 0.9681 0.1274 0.0319

−0.8528 0.1274 0.4902 −0.1274

−0.2132 0.0319 −0.1274 0.9681








The matrix A1 is

A1 c H1A c








−4.6904 2.5584 −1.9188

0 1.7672 −0.5637

0 −2.0686 −0.7448

0 0.2328 1.5637








The vector a2 can be obtained from the second column of this matrix as

a2 c [1.7672 −2.0686 0.2328]T

The norm of this vector is

b2 c |a2 | c 2.7306

The vector v2 is defined as

v2 c a2 + b2u c 




1.7672

−2.0686

0.2328





+ 2.7306






1

0

0






c 




4.4978

−2.0686

0.2328





It follows that

v̂2 c [0.9075 −0.4174 0.0470]T

The matrix H2 is

H2 c I − 2v̂2v̂T
2 c






−0.6471 0.7576 −0.0853

0.7576 0.6516 0.0392

−0.0853 0.0392 0.9956
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The matrix H2 can be written as

H2 c [ 1 0

0 H2 ] c








1 0 0 0

0 −0.6471 0.7576 −0.0853

0 0.7576 0.6516 0.0392

0 −0.0853 0.0392 0.9956








and

A2 c H2A1 c H2H1A c








−4.6904 2.5584 −1.9188

0 −2.7306 −0.3329

0 0 −0.8511

0 0 1.5757








Using the last two elements of the third column of this matrix, one defines

a3 c [−0.8511 1.5757]T

The norm of this vector is

b3 c |a3 | c 1.7909

The vector v3 is defined as

v3 c a3 + b3u c [ −0.8511

1.5757 ] + 1.7909 [ 1

0 ] c [ 0.9398

1.5757 ]
A unit vector in the direction of v3 is

v̂3 c [0.5122 0.8588]T

The Householder transformation associated with this vector is

H3 c I − 2v̂3v̂T
3 c [ 0.4753 −0.8798

−0.8798 −0.4751 ]
Using this matrix, the transformation H3 can be defined as

H3 c





1 0 0

0 1 0

0 0 H3





c








1 0 0 0

0 1 0 0

0 0 0.4753 −0.8798

0 0 −0.8798 −0.4751
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Using this matrix, one obtains

A3 c H3A2 c H3H2H1A c








−4.6904 2.5584 −1.9188

0 −2.7306 −0.3329

0 0 −1.7909

0 0 0








The matrix A3 can be written as

A3 c [ R1

0 ]
where R1 is the upper-triangular matrix

R1 c





−4.6904 2.5584 −1.9188

0 −2.7306 −0.3329

0 0 −1.7909





Note the relationship between the matrix R1 obtained in this example by the suc-
cessive application of Householder transformations and the matrix R obtained in
Example 15 as the result of the application of the Gram–Schmidt orthogonalization
process. The similarity between these two matrices is not surprising because the
uniqueness of the QR factorization can easily be demonstrated.

The application of a sequence of Householder transformations to an n × m
rectangular matrix A with linearly independent columns leads to

HmHm − 1 · · · H1A c R (2.99)

where Hi is the ith orthogonal Householder transformation and R is an n × m
rectangular matrix that can be written as

R c [ R1

0 ] (2.100)

where R1 is an m × m upper-triangular matrix. If A is a square matrix, R c R1.
Since the Householder transformations are symmetric and orthogonal, one has

HT
i c H−1

i c Hi (2.101)

Using this identity, Eq. 99 leads to

A c H1H2 · · · HmR (2.102)
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Since the product of orthogonal matrices defines an orthogonal matrix, Eq. 102
can be written as

A c QR (2.103)

where Q is an orthogonal square matrix defined as

Q c H1H2 · · · Hm (2.104)

Example 2.17

In the preceding example it was shown that the Householder transformations that
reduce the matrix

A c








2 1 1

−1 2 −1

4 −3 1

1 0 2








to the matrix

R c








−4.6904 2.5584 −1.9188

0 −2.7306 −0.3329

0 0 −1.7909

0 0 0








are

H1 c








−0.4264 0.2132 −0.8528 −0.2132

0.2132 0.9681 0.1274 0.0319

−0.8528 0.1274 0.4902 −0.1274

−0.2132 0.0319 −0.1274 0.9681









H2 c








1 0 0 0

0 −0.6471 0.7576 −0.0853

0 0.7576 0.6516 0.0392

0 −0.0853 0.0392 0.9956









H3 c








1 0 0 0

0 1 0 0

0 0 0.4753 −0.8798

0 0 −0.8798 −0.4751
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In this case, the matrix Q of Eq. 104 is

Q c H1H2H3

c








−0.4264 −0.7659 0.0409 0.4795

0.2132 −0.5327 0.4290 −0.6977

−0.8528 0.2997 0.2996 −0.3052

−0.2132 −0.1998 −0.8512 −0.4359








The similarity between the first three columns of this matrix and the matrix Q
obtained in Example 15 using the Gram–Schmidt orthogonalization process is clear.

If the fourth column of the preceding matrix is denoted as Q2, that is,

Q2 c [0.4795 − 0.6977 − 0.3052 − 0.4359]T

it is easy to verify that

ATQ2 c 0

Important Identities for the QR Factors If A is an n × m rectangular
matrix that has the QR decomposition given by Eq. 103, the matrix R takes
the form given by Eq. 100. In this case, one can use matrix partitioning to write

A c [Q1 Q2] [ R1

0 ] (2.105)

where Q1 and Q2 are partitions of the matrix Q, that is,

Q c [Q1 Q2] (2.106)

The matrix Q1 is an n × m matrix, while Q2 is an n × (n − m) matrix. Both
Q1 and Q2 have columns that are orthogonal vectors. Furthermore,

QT
1 Q2 c 0 (2.107)

It follows from Eq. 105 that

A c Q1R1 (2.108)

Consequently,

ATA c RT
1 QT

1 Q1R1 c RT
1 R1 (2.109)

If A has linearly independent columns, Eq. 109 represents the Cholesky fac-
torization of the positive definitive symmetric matrix ATA. Therefore, R1 is
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unique. The uniqueness of Q1 follows immediately from Eq. 108, since

Q1 c AR−1
1 (2.110)

While Q1 and R1 are unique, Q2 is not unique. We note, however, that

QT
2 A c QT

2 Q1R1 c 0

or

ATQ2 c 0 (2.111)

which implies that the orthogonal column vectors of the matrix Q2 form the
basis of the null space of the matrix AT. This fact was demonstrated by the
results presented in Example 17.

2.8 SINGULAR VALUE DECOMPOSITION

Another factorization that is used in the dynamic analysis of mechanical systems
is the singular value decomposition (SVD). The singular value decomposition
of the matrix A can be written as

A c Q1BQ2 (2.112)

where Q1 and Q2 are two orthogonal matrices and B is a diagonal matrix which
has the same dimension as A. Before we prove Eq. 112, we first discuss briefly
the eigenvalue problem.

Eigenvalue Problem In mechanics, we frequently encounter a system of
equations in the form

Ax c lx (2.113)

where A is a square matrix, x is an unknown vector, and l is an unknown
scalar. Equation 113 can be written as

(A − lI)x c 0 (2.114)

This system of equations has a nontrivial solution if and only if the determinant
of the coefficient matrix is equal to zero, that is,

|A − lI | c 0 (2.115)

This is the characteristic equation for the matrix A. If A is an n × n matrix,
Eq. 115 is a polynomial of order n in l. This polynomial can be written in the
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following general form:

anl
n + an − 1l

n − 1 + · · · + a0 c 0 (2.116)

where ak are the coefficients of the characteristic polynomial. The solution of
Eq. 116 defines the n roots l1, l2, . . . , ln. The roots li, i c 1, . . . , n are called
the characteristic values or the eigenvalues of the matrix A. Corresponding to
each of these eigenvalues, there is an associated eigenvector xi, which can be
determined by solving the system of homogeneous equations

[A − liI]xi c 0 (2.117)

If A is a real symmetric matrix, one can show that the eigenvectors associated
with distinctive eigenvalues are orthogonal. To prove this fact, we use Eq. 117
to write

Axi c lixi (2.118)

Axj c ljxj (2.119)

Premultiplying Eq. 118 by xT
j and postmultiplying the transpose of Eq. 119 by

xi, one obtains

xT
j Axi c lixT

j xi

xT
j Axi c ljxT

j xi

Subtracting yields

(li − lj)xT
j xi c 0

which implies that

xT
i xj c 0 if i � j

� 0 if i c j } (2.120)

This orthogonality condition guarantees that the eigenvectors associated with
distinctive eigenvalues are linearly independent.

Example 2.18

Find the eigenvalues and eigenvectors of the matrix

A c 




4 1 2

1 0 0

2 0 0
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Solution. The characteristic equation of this matrix is

|A − lI | c





4 − l 1 2

1 −l 0

2 0 −l





c (4 − l)(l)2 + l + 4l

c −l(l − 5)(l + 1) c 0

Therefore, the eigenvalues are

l1 c −1, l2 c 5, l3 c 0

To evaluate the ith eigenvector, one may use the following equation:

Axi c lixi

where xi is the ith eigenvector. The preceding equation can be written as

(A − liI)xi c 0

which yields the following eigenvectors:

x1 c





1

−1

−2





, x2 c






5

1

2





, x3 c






0

2

−1





These eigenvectors are orthogonal because the matrix A is real and symmetric. We
also observe that the resulting eigenvalues are all real. It can be shown that if A is
a real symmetric matrix, then all its eigenvalues and eigenvectors are real.

Equation 113 indicates that the eigenvectors are not unique since this equa-
tion remains valid if it is multiplied by an arbitrary nonzero scalar. In the case
of a real symmetric matrix, if each of the eigenvectors is divided by its length,
one obtains an orthonormal set of vectors denoted as x̂1, x̂2, . . . , x̂n. These
orthonormal eigenvectors satisfy the following equation:

x̂T
i Ax̂j c {li if i c j

0 if i � j
(2.121)

An orthogonal matrix whose columns are the orthonormal eigenvectors x̂1, x̂2,
. . . , x̂n can be written as

U c [x̂1 x̂2 · · · x̂n] (2.122)
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From Eq. 121, it follows that

UTAU c







l1

l2 0

0
. . .

ln







(2.123)

Example 2.19

It was shown in the preceding example that the eigenvalues of the real symmetric
matrix

A c 




4 1 2

1 0 0

2 0 0





are l1 c −1, l2 c 5, and l3 c 0. The eigenvectors associated with these eigenvalues
were found to be

x1 c





1

−1

−2





, x2 c






5

1

2





, x3 c






0

2

−1





An orthonormal set of eigenvectors can be obtained by dividing each eigenvector
by its length. This leads to

x̂1 c
1
f

6






1

−1

−2





, x̂2 c

1
f

30






5

1

2





, x̂3 c

1
f

5






0

2

−1





The orthonormal matrix U of Eq. 122 can then be defined as

U c













1
f

6

5
f

30
0

−1
f

6

1
f

30

2
f

5
−2
f

6

2
f

30

−1
f

5












Matrix multiplications show that

UTAU c 




−1 0 0

0 5 0

0 0 0
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The zero eigenvalue that appears as the last element of the diagonal of the matrix
UTAU indicates a rank deficiency of the matrix A since the second and third rows
of the matrix A are not linearly independent. The rank of this matrix is 2.

Singular Value Decomposition In the singular value decomposition of Eq.
112, A can be an arbitrary n × m rectangular matrix. In this case Q1 is an n
× n matrix, B is an n × m matrix, and Q2 is an m × m matrix. To prove the
decomposition of Eq. 112, we consider the real symmetric square matrix ATA.
The eigenvalues of ATA are real and nonnegative. To demonstrate this, we
assume that

ATAx c lx

It follows that

xTATAx c lxTx

and also

xTATAx c (Ax)T(Ax)

It is clear from the preceding two equations that

l c (Ax)T(Ax)
xTx

which demonstrates that l is indeed nonnegative and

ATAx c 0

if and only if

Ax c 0

If was demonstrated previously in this section that if x̂1, x̂2, . . . , x̂m are the
eigenvectors of ATA, there exists an orthogonal matrix

U c [x̂1 x̂2 · · · x̂m]
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such that

UTATAU c








l1 0 · · · 0

0 l2 · · · 0
...

...
. . .

...
0 0 · · · lm








(2.124)

where l1, l2, . . . , lm are the eigenvalues of the matrix ATA. Equation 124
implies that the columns b1, b2, . . . , bm of the matrix AU satisfy

bT
i bj c {li if i c j

0 if i � j
(2.125)

For the r nonzero eigenvalues, where r ≤ m, we define

b̂i c
1
f

li

bi i c 1, 2, . . . , r (2.126)

This is an orthonormal set of vectors. If r < m and n ≥ m, we choose b̂r + 1,
. . . , b̂n such that

Q1 c [b̂1 b̂2 · · · b̂n] (2.127)

is an n × n orthogonal matrix. Recall that AU c [b1 b2 · · · bm]. Using this
equation and Eq. 126, it can be verified that

AU c [
f

l1b̂1

f
l2b̂2 · · ·

f
lmb̂m] c Q1
















f
l1 0 · · · 0

0
f

l2 · · · 0
...

...
. . .

...
0 0 · · ·

f
lm

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0















or

A c Q1BQ2
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where Q2 c UT, and B is the n × m matrix

B c
















f
l1 0 · · · 0
0

f
l2 · · · 0

...
...

. . .
...

0 0 · · ·
f

lm

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
















(2.128)

This completes the proof of Eq. 112.

Example 2.20

Find the singular value decomposition of the matrix

A c 




2 1

1 0

1 0





Solution. The matrix ATA is a 2 × 2 matrix that can be calculated as

ATA c [ 2 1 1

1 0 0 ] 




2 1

1 0

1 0





c [ 6 2

2 1 ]
The characteristic polynomial of this matrix is

|
|
|
|

6 − l 2

2 1 − l

|
|
|
|
c (6 − l)(1 − l) − 4 c 0

from which the eigenvalues can be determined as

l1 c 0.2984, l2 c 6.7016

The eigenvectors are

x1 c [ 1

−2.8508 ] , x2 c [ 1

0.3508 ]
The orthonormal eigenvectors are

x̂1 c [ 0.3310

−0.9436 ] , x̂2 c [ 0.9436

0.3310 ]
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The matrix U is then defined as

U c [ 0.3310 0.9436

−0.9436 0.3310 ]
It follows that

AU c 




2 1

1 0

1 0





[ 0.3310 0.9436

−0.9436 0.3310 ]
c 




−0.2816 2.2182

0.3310 0.9436

0.3310 0.9436





c [b1 b2]

The orthonormal vectors b̂1 and b̂2 are

b̂1 c





−0.5155

0.6059

0.6059





, b̂2 c






0.8569

0.3645

0.3645





The matrix Q1 can then be defined as

Q1 c [b̂1 b̂2 b̂3] c 




−0.5515 0.8569 0

0.6059 0.3645 0.7071

0.6059 0.3645 −0.7071





and the matrix Q2 is

Q2 c UT c [ 0.3310 −0.9436

0.9436 0.3310 ]
The matrix B that contains the singular values is

B c 




0.5463 0

0 2.5887

0 0





Therefore, the matrix A can be written as

A c Q1BQ2
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Important Results from the SVD Using the factorization of Eq. 112, one
has

AAT c (Q1BQ2)(Q1BQ2)T

c Q1BBTQT
1

which implies that the columns of the matrix Q1 are eigenvectors of the matrix
AAT and the square of the diagonal elements of the matrix B are the eigenvalues
of the matrix AAT. That is, the eigenvalues of ATA are the same as those of
AAT. The eigenvectors, however, are different since

ATA c QT
2 BTBQ2

which implies that the rows of Q2 are eigenvectors of ATA. These conclusions
can be verified using the results obtained in Example 20.

The matrix B, whose diagonal elements are the square roots of the eigenval-
ues of the matrix ATA, takes the form of Eq. 128 if the number of rows of the
matrix A is greater than the number of columns (n > m). If n < m, the matrix
B takes the form

B c







f
l1 0 · · · 0 0 · · · 0
0

f
l2 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...
0 0 · · ·

f
ln 0 · · · 0







(2.129)

where the number of zero columns in this matrix is m − n. This fact is also
clear from the definition of the transpose of the rectangular matrix A, for if the
singular value decomposition of a rectangular matrix A is given by Eq. 112,
the singular value decomposition of its transpose is given by

AT c QT
2 BTQT

1 (2.130)

Now let us consider the singular value decomposition of the n × m rectan-
gular matrix where n > m. The matrix B of Eq. 128 can be written as

B c [ B1

0 ] (2.131)

where B1 is a diagonal matrix whose elements, the singular values, are the
square roots of the eigenvalues of the matrix ATA. Using the partitioning of
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Eq. 131, Eq. 112 can be written in the following partitioned form:

A c [Q1d Q1i] [ B1

0 ] Q2 (2.132)

where Q1d and Q1i are partitions of the matrix Q1. The columns of the matrices
Q1d and Q1i are orthogonal vectors, and

QT
1dQ1i c 0, QT

1iQ1d c 0 (2.133)

It follows from Eq. 132 that

A c Q1dB1Q2 (2.134)

Multiplying this equation by QT
1i and using the results of Eq. 133, one obtains

QT
1iA c 0 (2.135)

which implies that the orthogonal columns of the matrix Q1i span the null space
of the matrix AT. In the dynamic analysis of mechanical systems, Eq. 135 can be
used to obtain a minimum set of independent differential equations that govern
the motion of the interconnected bodies in the system.

PROBLEMS

1. Find the sum of the following two matrices:

A c 




−3.0 8.0 −20.5
5.0 11.0 13.0
7.0 20.0 0





, B c 





0 3.2 0

−17.5 5.7 0

12.0 6.8 −10.0





Evaluate also the determinant and the trace of A and B.

2. Find the product AB and BA, where A and B are given in problem 1.

3. Find the inverse of the following matrices.

A c 




−1 2 −1

2 −1 0

0 −1 1





, B c 





0 −3 5

−2 2 −3

6 −2 0
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4. Show that an arbitrary square matrix A can be written as

A c A1 + A2

where A1 is a symmetric matrix and A2 is a skew-symmetric matrix.

5. Show that the interchange of any two rows or columns of a square matrix
changes only the sign of the determinant.

6. Show that if a matrix has two identical rows or two identical columns, the
determinant of this matrix is equal to zero.

7. Let

A c [ A11 A12

A21 A22 ]
be a nonsingular matrix. If A11 is square and nonsingular show by direct
matrix multiplications that

A−1 c [ (A−1
11 + B1H−1B2) −B1H−1

−H−1B2 H−1 ]
where

B1 c A−1
11 A12, B2 c A21A−1

11

H c A22 − B2A12 c A22 − A21B1

c A22 − A21A−1
11 A12

8. Using the identity given in problem 7, find the inverse of the matrices A
and B given in problem 3.

9. Let a and b be the two vectors

a c [1 0 3 2 − 5]T

b c [0 − 1 2 3 − 8]T

Find a + b, a . b, |a | , and |b | .
10. Find the total derivative of the function

f (q1, q2, q3, t) c q1q3 − 3(q2)2 + 5(t)5

with respect to the parameter t. Define also the partial derivative of the
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function f with respect to the vector q(t) where

q(t) c [q1(t) q2(t) q3(t)]T

11. Find the total derivative of the vector function

f c 




f 1

f 2

f 3





c 




(q1)2 + 3(q2)2 − 5(q4)3 + (t)3

(q2)2 − (q3)2

q1q4 + q2q3 + t





with respect to the parameter t. Define also the partial derivative of the
function f with respect to the vector

q c [q1 q2 q3 q4]T

12. Let Q c qTAq, where A is an n × n square matrix and q is an n-dimensional
vector. Show that

∂Q
∂q

c qT(A + AT)

13. Show that the vectors

a1 c





0

0

1





, a2 c






0

1

1





, a3 c






1

1

1





are linearly independent. Determine also the coordinates of the vector b c
[1 −5 3]T in the basis a1, a2, and a3.

14. Find the rank of the following matrices:

A c 




2 5 1

6 9 3

4 0 2





, B c 





3 5 1 0

2 0 −1 3

7 1 2 9





15. Find the cross product of the vectors a c [1 0 3]T and b c [9 −3 1]T.

If c c a × b, verify that cTa c cTb c 0.

16. Show that if a and b are two parallel vectors, then

a × b c 0
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17. Show that if a and b are two orthogonal vectors and c c a × b, then

|c | c |a | |b |

18. Find the skew-symmetric matrices associated with the vectors

a c [−2 5 −9]T

b c [18 −3 10]T

Using these skew-symmetric matrices, find the cross product a × b and
b × a.

19. Find the solution of the homogeneous system of equations

a × x c 0

where a is the vector

a c [−2 5 −9]T

20. Find the solution of the system of homogeneous equations

a × x c 0

where a is the vector

a c [−11 −3 4]T

21. If a c [a1 a2 a3]T and b c [b1 b2 b3]T are given vectors, show using
direct matrix multiplication that

c̃ c ãb̃ − b̃ã

where

c c a × b

22. Find the solution of the following system of algebraic equations:

−x1 + 2x2 − x3 c 2

2x1 − x2 c 1.5
−x2 + x3 c 5
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23. Find the solution of the following system of equations:

−3x2 + 5x3 c 0

−2x1 + 2x2 − 3x3 c 0

6x1 − 2x2 c 5.5

24. Use the Gram–Schmidt orthogonalization process to determine the QR
decomposition of the matrices

A c 




−1 2

2 −1

0 −1





, B c 





0 −3 5

−2 2 −3

6 −2 0





25. Use the Householder transformations to solve problem 24.

26. Determine the singular value decomposition of the matrices A and B of
problem 24.

27. Prove that the determinant of the matrix

G c 2
1 + (g)2






1 −g3 g2

g3 1 −g1

−g2 g1 1





is 2, where (g)2 c (g1)2 + (g2)2 + (g3)2. Prove also that the inverse of the
matrix G is

G−1 c 1
2






1 + (g1)2 g1g2 + g3 g1g3 − g2

g1g2 − g3 1 + (g2)2 g2g3 + g1

g1g3 + g2 g2g3 − g1 1 + (g3)2





Show that the matrix A c G(G−1)T is an orthogonal matrix. Show also that
the vector

g c [g1 g2 g3]T

is an eigenvector for the matrix A and determine the corresponding eigen-
value.

28. Prove the polar decomposition theorem, which states that a nonsingular
square matrix A can be uniquely decomposed into

A c QV1 or A c V2Q

where Q is an orthogonal matrix and V1 and V2 are positive-definite sym-
metric matrices.
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CHAPTER 3

KINEMATICS

In kinematic analysis we are concerned with studying motion without consid-
ering the forces that produce the motion. Unlike the case of dynamic analysis,
where the motion of the system due to known forces is determined, the objective
of kinematic analysis is to determine the positions, velocities, and accelerations
as the result of known prescribed input motions. Recall that the degrees of free-
dom of a mechanical system, by definition, are the smallest set of independent
coordinates that are required to define the system configuration. If the degrees
of freedom and their time derivatives are known, other coordinates and their
time derivatives that represent the displacements, velocities, and accelerations
of the bodies of the mechanical system can be expressed in terms of the system
degrees of freedom and their time derivatives. This leads to the displacement,
velocity, and acceleration kinematic relationships that can be solved for the
state of the system regardless of the forces that produce the motion.

There are three stages that must be followed for the complete kinematic anal-
ysis of a mechanical system: position, velocity, and acceleration analyses. In
position analysis, the displacement kinematic relationships are solved assum-
ing that the selected degrees of freedom of the system are specified. These
relationships are, in general, nonlinear functions in the system coordinates and
their solution may require the use of an iterative numerical procedure such as
Newton–Raphson methods. The velocity and acceleration kinematic equations
can be obtained by differentiating the displacement equations, once and twice,
respectively. This procedure leads to a system of linear algebraic equations in
the velocities and accelerations.

In this chapter, the constrained motion of mechanical systems that consist of
interconnected bodies is examined. Two different, yet equivalent, approaches
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are presented in this chapter for the kinematic analysis of mechanical systems
whose degrees of freedom are specified. The first is the classical approach,
which is suited for studying the kinematics of systems that consist of small
numbers of bodies and joints. The use of this approach is demonstrated by
Examples 3 through 6 of this chapter. No detailed discussion of this approach
is provided, since the focus of the book is on computational methods. The sec-
ond approach, on the other hand, can be used for solving large-scale applica-
tions, which consist of large numbers of bodies and joints. In this approach,
the algebraic kinematic constraint relationships between coordinates are for-
mulated and used to develop a number of equations equal to the number of
unknown coordinates. These constraint equations, which are, in general, non-
linear functions of the coordinates, can be solved using iterative numerical and
computer methods to determine the positions of the bodies in the system. By
differentiating the constraint equations once, and twice with respect to time,
linear systems of equations in the velocities and accelerations can be obtained.
These linear equations can be solved in a straightforward manner to determine
the first and second time derivatives of the coordinates. Computer implementa-
tion of this general computational procedure is discussed and several examples
are presented in order to demonstrate its use.

In Section 1, the relationship between the kinematic constraints, number of
bodies, and degrees of freedom of the system is discussed, and simple criteria
for determining the number of the system degrees of freedom are introduced.
In Section 2, a planar transformation matrix that can be used to define the ori-
entation of a rigid body is derived. The basic kinematic position, velocity, and
acceleration equations of rigid bodies are developed in Sections 3 and 4. While
these equations are general and are heavily used in developing the computa-
tional methods discussed in later sections, several examples are presented in
Sections 3 and 4 to demonstrate use of the classical approach in the kinematic
analysis of simple multibody systems. Computational methods in kinematics
are discussed in Sections 5 through 9.

3.1 MECHANICAL JOINTS

Mechanical systems are assemblages of bodies connected by joints. The purpose
of the joints is to transmit the motion from one body to another in a certain
fashion. Throughout the analysis presented in this chapter and the following
chapters, it is assumed that mechanical systems consist of rigid bodies, such
that the effect of the deformations can be neglected. In the rigid body anal-
ysis, it is assumed that the distance between two points on the body remains
unchanged. The assumption of rigidity is justified when the components of the
mechanical system are made of bulky solids that experience only small defor-
mations such that the effect of the deformation on the overall motion is neg-
ligible. If the interest, however, is to determine the stresses, or if the defor-
mations of the body are large such that their effect cannot be neglected, the
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rigid body assumption is no longer adequate and a deformable body modeling
approach must be adopted. In this section, we briefly discuss the formulation
of some of the joint constraints and introduce the mobility criterion that can be
used to determine the number of degrees of freedom of a multibody system.
A more detailed formulation of the planar joints is presented in Section 6 of
this chapter, while a more detailed analysis of the spatial joints is presented in
Chapter 7.

Planar Kinematics The kinematic relationships that describe the joint con-
straints can be formulated using a set of algebraic equations. As will be seen in
the remainder of this book, the form of these equations depends on the parame-
ters or coordinates used to describe the motion of the system. Figure 1a shows
two bodies, i and j, in planar motion, which are connected by a revolute joint.
The joint definition point is defined by point P. The corresponding point on
body i is denoted as Pi while the corresponding point on body j is denoted as
P j . The conditions for the revolute joint require that point Pi on body i remain
in contact with point P j on body j throughout the motion. This condition can
be expressed mathematically as

ri
P c r j

P (3.1)

where ri
P is the global position vector of point Pi, while r j

P is the global position
vector of point P j . The conditions given by Eq. 1 eliminate the possibility of
the relative translation between the two bodies. The two bodies, however, have
the freedom to rotate with respect to each other. This is the only relative motion
between the two bodies that can occur as the result of their connectivity using
the revolute joint. Therefore, the revolute joint in the planar analysis has one
degree of freedom since it eliminates two degrees of freedom of the relative
translation between the two bodies along two perpendicular axes.

Figure 3.1 Planar joints
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Another one-degree-of-freedom joint in the planar kinematics is the transla-
tional (prismatic) joint shown in Fig. 1b. In this case, the only relative motion
between the two bodies i and j is the relative translation along the joint axis.
In the case of the prismatic joint, there are two kinematic constraint conditions
that restrict two possible relative displacements. First, there should be no rel-
ative rotation between the two bodies. Second, there is no relative translation
between the two bodies along an axis perpendicular to the axis of the prismatic
joint. These two conditions can be stated mathematically as

v i − v j c c (3.2a)

hiTrij
P c 0 (3.2b)

where v i and v j are, respectively, the angular orientations of bodies i and j, c
is a constant, rij

P is a vector that connects the two points Pi and P j defined,
respectively, on bodies i and j on the joint axis, and hi is a vector defined on
body i perpendicular to the joint axis.

Spatial Kinematics In the spatial kinematics, the unconstrained motion of
a rigid body is described using six independent coordinates or degrees of free-
dom. Three of these degrees of freedom represent the translations of the body
along three perpendicular axes and three degrees of freedom represent three
independent rotational displacements. Figure 2 shows examples of mechanical
joints in spatial kinematics. The spherical joint shown in Fig. 2a allows only
three relative rotational motions between the two bodies i and j connected by
this joint. In this case, there is no relative translation between the two bodies,
and hence, one needs three kinematic constraint conditions that eliminate the
freedom of the two bodies to translate with respect to each other. Let point P
be the joint definition point, Pi be the corresponding point on body i, and P j

be the corresponding point on body j. The three kinematic conditions for the

Figure 3.2 Spatial joints
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spherical joint require that points Pi and P j remain in contact throughout the
motion. These kinematic conditions can be stated in a vector form as

ri
P c r j

P (3.3)

where ri
P and r j

P are three-dimensional vectors that represent, respectively, the
global position vectors of points Pi and P j . The spherical joint is considered as
a three-degree-of-freedom joint, because the three kinematic constraints of Eq. 3
do not impose any restriction on the relative rotations between the two bodies.

Figure 2b shows the two-degree-of-freedom cylindrical joint that allows rel-
ative translational and rotational displacements between bodies i and j along the
joint axis. Two components of the relative translational displacements and two
components of the relative rotational displacements along two axes perpendicu-
lar to the joint axis are not allowed. In order to eliminate four degrees of freedom,
four kinematic constraint conditions are imposed in the case of a cylindrical joint.
Let hi be a vector drawn on body i along the joint axis, and h j be a vector drawn
on body j along the joint axis. Also, let sij be a vector of variable magnitude that
connects points Pi and P j on bodies i and j, respectively. The vector sij is defined
on the axis of the cylindrical joint as shown in Fig. 2b. Throughout the motion of
the bodies i and j that are connected by the cylindrical joint, the vector hi must
remain collinear to the vectors h j and sij. The kinematic constraint conditions of
the cylindrical joint can then be written as

hi × h j c 0 (3.4a)

hi × sij c 0 (3.4b)

As explained in Chapter 2, each vector equation in Eq. 4 contains only two inde-
pendent equations, that is, the number of the independent kinematic constraint
equations is four, leaving two degrees of freedom for the cylindrical joint.

The case of the prismatic joint in the spatial kinematics can be obtained as a
special case from the case of the cylindrical joint in which the relative rotation
between the two bodies i and j is not allowed. In order to mathematically define
this condition, two orthogonal vectors ni and n j are drawn perpendicular to the
joint axis on bodies i and j, respectively, as shown in Fig. 2c. To eliminate the
freedom of the rotations between the two bodies i and j, the vectors ni and n j must
remain perpendicular throughout the motion. By considering the prismatic joint
as a special case of the cylindrical joint, one needs to add one condition in Eq. 4,
leading to the following kinematic constraint equations for the prismatic joint:

hi × h j c 0 (3.5a)

hi × sij c 0 (3.5b)

niTn j c 0 (3.5c)
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where hi, h j , and sij are as defined in Eq. 4. Equation 5 contains five indepen-
dent constraint equations that define the kinematic conditions for the single-
degree-of-freedom prismatic joint in the spatial analysis.

Similarly, the revolute joint shown in Fig. 2d can be considered a special case
of the cylindrical joint where the relative translation between the two bodies is
not allowed. The revolute joint in the spatial kinematics is a one-degree-of-
freedom joint. In addition to the constraint equations of the cylindrical joint,
one needs another condition that guarantees that the distance between the two
points Pi on body i and P j on body j, defined on the joint axis, remains constant
throughout the motion. If sij (Fig. 2b) is the vector that connects points Pi and
P j , the kinematic conditions for the revolute joint obtained as a special case of
the cylindrical joint are given by

hi × h j c 0 (3.6a)

hi × sij c 0 (3.6b)

sijTsij c c (3.6c)

where the vectors hi, h j , and sij are the same as in the case of the cylindrical
joint and c is a constant. The condition of Eq. 6c guarantees that the length of
the vector sij remains constant throughout the motion.

The universal (Hooke) joint shown in Fig. 3a is a two-degree-of-freedom
joint since it allows relative rotation between the bodies connected by this joint
about two perpendicular axes. The constraint equations for this joint can be
obtained as a special case of the spherical joint. The four conditions for the
universal joint can be written as

ri
P c r j

P (3.7a)

hiTh j c 0 (3.7b)

Figure 3.3 Universal and screw joints
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where ri
P and r j

P are the global position vectors of point Pi on body i and point
P j on body j that coincide with point P at the intersection of the two bars of
the cross, and the vectors hi and h j are two vectors defined on body i and body
j, respectively, along the bars of the cross as shown in Fig. 3a.

The screw joint shown in Fig. 3b can be considered a special case of the
cylindrical joint in which the translation and rotation along the joint axis are
not independent. They are related by the pitch of the screw. By considering the
screw joint as special case of the cylindrical joint, the constraint equations of
this joint can be defined using the relationships

hi × h j c 0 (3.8a)

hi × sij c 0 (3.8b)

tij − avij c c (3.8c)

where hi, h j , and sij are as defined in the case of the cylindrical joint, tij is the
relative translation, v ij is the relative rotation, a is the pitch rate of the screw
joint, and c is a constant that accounts for the initial relative displacements
between the two bodies.

Mobility Criteria It was shown in this section that the number of independent
kinematic conditions of a joint is equal to the number of degrees of freedom
eliminated as the result of using this joint. One of the basic steps in the kine-
matic and dynamic analysis of mechanical systems is to determine the number
of the system degrees of freedom or the independent coordinates required to
determine the configuration of the system. There are different types of mechani-
cal systems that consist of different numbers of bodies interconnected by differ-
ent numbers and types of joints. The degrees of freedom of the system define
the minimum number of independent inputs required to drive or control the
system. A mechanical system with zero degrees of freedom is a structure. The
components of such a system are not permitted to undergo relative rigid body
motion regardless of the forces acting on the system. Most mechanisms that
are in use in industrial and technological applications are designed as single-
degree-of-freedom systems. Their motion is controlled by a single input that
is transmitted to a single output. Robotic manipulators, on the other hand, are
multidegree-of-freedom systems. They require several inputs in order to drive
the manipulator and control the position of its end effector. In this section, a
simple criterion is presented for determining the number of degrees of freedom
of multibody systems.

As pointed out previously, the configuration of a rigid body that undergoes
unconstrained planar motion can be identified using three independent coordi-
nates or degrees of freedom. These coordinates describe the translational motion
of the body along two perpendicular axes as well as the rotation of the body. A
planar system that consists of nb unconstrained bodies has 3 × nb coordinates.
If these bodies are connected by joints, the number of the system degrees of
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freedom decreases. The reduction in the system degrees of freedom depends
on the number of independent constraint equations that describe the joints. In
planar motion, the number of the system degrees of freedom can be evaluated
according to the mobility criterion

nd c 3 × nb − nc (3.9)

where nd is the number of the system degrees of freedom, nb is the number
of the bodies in the system, and nc is the total number of linearly independent
constraint equations that describe the joints in the system. Each revolute or
prismatic joint in the planar analysis introduces two kinematic constraints that
reduce the number of degrees of freedom by two.

Example 3.1

The slider crank mechanism shown in Fig. 4 consists of four bodies, the ground
(fixed link) denoted as body 1, the crankshaft denoted as body 2, the connecting
rod denoted as body 3, and the slider block denoted as body 4. The system has
three revolute joints at O, A, and B, each introduces two kinematic constraint equa-
tions that make the total number of kinematic constraints of the revolute joints six.
The system has one prismatic joint between the slider block and the fixed link. This
joint introduces two kinematic relationships. The fixed link constraints (ground con-
straints) are three since in planar motion two conditions are required to eliminate
the freedom of the body to translate and one condition is required to eliminate the
freedom of the body to rotate. The total number of constraints nc is

nc c 6(revolute) + 2(prismatic) + 3(fixed link) c 11

Thus, the use of Eq. 9 leads to

nd c 3nb − nc c 3 × 4 − 11 c 1

That is, the mechanism has only one degree of freedom.

Figure 3.4 Slider crank mechanism
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In spatial kinematics, the configuration of a rigid body in space is identi-
fied using six coordinates. If the mechanical system consists of nb bodies, the
mobility criterion in the spatial analysis can be written as

nd c 6 × nb − nc (3.10)

The freedom of the relative translation between two bodies is eliminated if they
are connected by a spherical joint. It follows that a spherical joint reduces the
number of the system degrees of freedom by three. A cylindrical or a universal
joint introduces four independent kinematic constraint equations that reduce the
number of degrees of freedom by four. A revolute, prismatic, or a screw joint,
on the other hand, introduces five kinematic constraint conditions that reduce
the number of degrees of freedom by five.

Example 3.2

The spatial RSSR (revolute, spherical, spherical, revolute) mechanism shown in Fig.
5 consists of four bodies. Body 2 is connected to body 1 at O by a revolute joint,
body 3 is connected to body 2 at A by a spherical joint, body 4 is connected to body
3 at B by a spherical joint, and body 4 is connected to body 1 at C by a revolute
joint. Since each spherical joint introduces three kinematic constraints, the spherical
joints at A and B introduce six kinematic constraint conditions. The two revolute
joints at O and C introduce 10 constraints. In the spatial analysis, six conditions
are required to eliminate the freedom of the body to translate or rotate. Thus, the
number of fixed link constraints (ground constraints) for body 1 is six. The total
number of constraint equations for the RSSR mechanism is

nc c 6(spherical) + 10(revolute) + 6(fixed link) c 22

Figure 3.5 RSSR mechanism
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Using the mobility criterion of Eq. 10, the number of system degrees of freedom
can be determined as

nd c 6nb − nc c 6 × 4 − 22 c 2

which indicates that the system has two degrees of freedom. One of these degrees
of freedom is the freedom of the coupler link (body 3) to rotate about its own axis.

3.2 COORDINATE TRANSFORMATION

We now consider the problem of a simple finite rotation about a fixed axis and
develop the relationships between the axes of different coordinate systems as
the result of the finite rotation. These relationships define the coordinate trans-
formation between moving coordinate systems. Figure 6 shows two coordinate
systems XY and X iY i. The axis X i is assumed to make an angle v i with respect
to the X axis of the coordinate system XY. We assume for the moment that the
origins of both coordinate systems coincide. Let i and j be unit vectors along
the X and Y axes, respectively, and let ii and ji be, respectively, unit vectors
along the X i and Y i axes. Using Fig. 7a, the components of the unit vector ii

can be expressed in the XY coordinate system as

ii c cos v i i + sin v i j (3.11)

From Fig. 7b, one can also show that the components of the unit vector ji can
be expressed in the coordinate system XY as

ji c −sin v i i + cos v i j (3.12)

Equations 11 and 12 define the unit vectors along the axes of the coordinate
system X iY i in terms of unit vectors along the axes of the coordinate system
XY. To obtain the inverse relationship, we multiply Eqs. 11 and 12 by cos v i

Figure 3.6 Rigid body rotation
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Figure 3.7 Coordinate transformation

and sin v i, respectively, and subtract the resulting equations. This leads to

cos v i ii − sin v i ji c [(cos v i)2 + (sin v i)2]i

Using the trigonometric identity (cos v i)2 + (sin v i)2 c 1, the equation above
leads to

i c cos v i ii − sin v i ji (3.13)

This equation defines a unit vector along the X axis in terms of the unit vectors
along the axes of the X iY i coordinate system. Similarly, multiplying Eqs. 11
and 12 by sin v i and cos v i, respectively, and adding leads to

j c sin v i ii + cos v i ji (3.14)

in which the unit vector j along the Y axis is expressed in terms of the unit
vectors ii and ji of the coordinate system X iY i.

3.3 POSITION, VELOCITY, AND ACCELERATION EQUATIONS

For the convenience of describing the motion of the rigid bodies in the multi-
body system, we assign a coordinate system for each body. The origin of this
body coordinate system is rigidly attached to a point on the body and, therefore,
the coordinate system experiences the same rigid body motion as the body. Let
X iY i, as shown in Fig. 8, be the body coordinate system and XY be a selected
global inertial frame of reference that is fixed in time. Let Pi be an arbitrary
material point on the body. The coordinates of point Pi in the body coordinate
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Figure 3.8 Rigid body displacement

system are fixed and can be defined by the vector

ui
P c [x i

P y i
P]T (3.15)

which can also be written in terms of unit vectors along the axes of the coor-
dinate system X iY i as

ui
P c x i

P ii + y i
P ji (3.16)

where ii and ji are, respectively, unit vectors along the X i and Y i axes of the
body coordinate system. Substituting Eqs. 11 and 12 into Eq. 16 yields the
coordinates of the vector ui

P in the global coordinate system as

ui
P c x i

P(cos v i i + sin v i j) + y i
P(−sin v i i + cos v i j) (3.17)

where ui
P is the global representation of the vector ui

P. Equation 17 can be
written as

ui
P c (x i

P cos v i − y i
P sin v i)i + (x i

P sin v i + y i
P cos v i)j (3.18)

This equation can also be written in the following form:

ui
P c [ x i

P cos v i − y i
P sin v i

x i
P sin v i + y i

P cos v i ] (3.19)
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or in the following matrix form:

ui
P c [ cos v i − sin v i

sin v i cos v i ] [ x i
P

y i
P ] (3.20)

Using Eq. 15, Eq. 20 can be written simply as

ui
P c Aiui

P (3.21)

where ui
P is the local position vector of the arbitrary point Pi as defined by Eq.

15, and Ai is the planar transformation matrix defined as

Ai c [ cos v i − sin v i

sin v i cos v i ] (3.22)

The matrix Ai is an orthogonal matrix because

AiAiT c AiTAi c I (3.23)

where I is the 2 × 2 identity matrix.
The global position vector of the arbitrary point Pi in the fixed XY coordinate

system can be written as shown in Fig. 8 as the sum of the two vectors Ri and
ui

P, where Ri is the global position vector of the origin Oi of the coordinate
system X iY i. One can then write the following equation:

ri
P c Ri + ui

P (3.24)

which upon the use of Eq. 21 yields

ri
P c Ri + Aiui

P (3.25)

It is clear from Eq. 25 that the global position vector of an arbitrary point on
the rigid body i can be written in terms of the rotational coordinate of the body
v i, as well as the translation of the origin of the body reference Ri. That is,
the most general rigid body displacement can be described by a translation of
a reference point plus a rotation about an axis passing through this point.

Velocity Equations The second step in the kinematic analysis is to deter-
mine the velocities of the bodies in the system. In the velocity analysis, it is
assumed that the positions and orientations of the bodies are already known
from the position analysis. The absolute velocity of a point on a rigid body



108 KINEMATICS

that undergoes planar motion can be obtained by differentiating Eq. 25 with
respect to time. This yields

ṙi
P c Ṙi + Ȧiui

P (3.26)

By using Eq. 22, the time derivative of the transformation matrix can be written
as

Ȧi c v̇ iAi
v (3.27)

where Ai
v is the partial derivative of the rotation matrix with respect to the

rotational coordinate v i and is given by

Ai
v c [ − sin v i − cos v i

cos v i − sin v i ] (3.28)

The velocity vector of the arbitrary point Pi can then be expressed as

ṙi
P c Ṙi + v̇ iAi

vui
P (3.29)

The second term on the right-hand side of this equation can be written explicitly
as

v̇ iAi
vui

P c v̇ i [ − sin v i − cos v i

cos v i − sin v i ] [ x i
P

y i
P ]

c v̇ i [ −x i
P sin v i − y i

P cos v i

x i
P cos v i − y i

P sin v i ] (3.30)

Equation 30 can be written in a simple form if we define the angular velocity
vector �i of body i as

�i c v̇ ik (3.31)

where k is a unit vector along the axis of rotation that is perpendicular to the
plane of the motion. Equation 31 can also be written in an alternative form as

�i c [0 0 v̇ i]T (3.32)

The velocity vector of an arbitrary point on the rigid body can be expressed in
terms of the angular velocity vector. To prove this, we evaluate the vector �i
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× ui
P, where the vector ui

P is given by Eq. 21 as

ui
P c Aiui

P c [ cos v i − sin v i

sin v i cos v i ] [ x i
P

y i
P ]

c [ x i
P cos v i − y i

P sin v i

x i
P sin v i + y i

P cos v i ] c [ ui
x

ui
y ] (3.33)

where ui
x and ui

y are the components of the vector ui
P given by

ui
x c x i

P cos v i − y i
P sin v i (3.34a)

ui
y c x i

P sin v i + y i
P cos v i (3.34b)

It follows that

�i × ui
P c

|
|
|
|
|
|
|

i j k

0 0 v̇ i

ui
x ui

y 0

|
|
|
|
|
|
|

c 




− v̇ iui
y

v̇ iui
x

0





(3.35)

which upon using the definition of the components ui
x and ui

y of Eq. 34 leads
to

�i × ui
P c v̇ i [ −x i

P sin v i − y i
P cos v i

x i
P cos v i − y i

P sin v i ] (3.36)

Comparing Eqs. 36 and 30 and using Eqs. 27 and 33, we obtain the following
identity:

Ȧui
P c v̇ iAi

vui
P c �i × ui

P c �i × (Aiui
P) (3.37)

Using this identity, the absolute velocity vector of an arbitrary point on the rigid
body i can be written in terms of the angular velocity vector as

ṙi
P c Ṙi + �i × ui

P (3.38)

which indicates that the velocity of any point Pi on the rigid body can be written
in terms of the velocity of a reference point Oi plus the relative velocity between
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the two points. This can be expressed as

vi
P c vi

O + vi
PO (3.39)

where vi
P and vi

O are, respectively, the absolute velocities of points Pi and Oi,
and vi

PO is the relative velocity of point Pi with respect to point Oi and is given
by

vi
PO c �i × ui

P (3.40)

Acceleration Equations The absolute acceleration of a point fixed on a
rigid body can be obtained by differentiating the velocity equation with respect
to time. If Eq. 29 is differentiated with respect to time, one obtains the accel-
eration of an arbitrary point Pi on the rigid body i as

r̈i
P c R̈i + v̇ iȦi

vui
P + v̈ iAi

vui
P (3.41)

where R̈i is the absolute acceleration of the reference point. In the case of planar
motion, the following identity can be verified:

Ȧi
v c −Aiv̇ i (3.42)

which upon substitution into Eq. 41 leads to

r̈i
P c R̈i − (v̇ i)2Aiui

P + v̈ iAi
vui

P (3.43)

It can be shown that

− (v̇ i)2Aiui
P c �i × (�i × ui

P) (3.44)

v̈ iAi
vui

P c �i × ui
P (3.45)

where �i is the angular velocity vector, and �i is the angular acceleration
vector of body i defined as

�i c v̈ ik (3.46)

By substituting Eqs. 44 and 45 into Eq. 43, one obtains

r̈i
P c R̈i + �i × (�i × ui

P) + �i × ui
P (3.47)

which can be rewritten as

ai
P c ai

O + (ai
PO)n + (ai

PO)t (3.48)
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where ai
P c r̈i

P is the absolute acceleration vector of the arbitrary point Pi and
ai

O c R̈i is the absolute acceleration vector of the reference point. The vectors
(ai

PO)n and (ai
PO)t are called, respectively, the normal and tangential compo-

nents of the acceleration of point Pi with respect to the reference point Oi.
They are defined as

(ai
PO)n c �i × (�i × ui

P) (3.49)

(ai
PO)t c �i × ui

P (3.50)

The normal component has a magnitude (v̇ i)2li
P where li

P is the distance between
point Pi and the reference point Oi. The direction of the normal component, how-
ever, is always along a line connecting Pi and Oi and is directed from Pi to Oi. The
tangential component on the other hand has a magnitude v̈ ili

P and its direction is
along a line perpendicular to the line connecting points Pi and Oi.

Equation 48 can also be written as

ai
P c ai

O + ai
PO (3.51)

where ai
PO is the relative acceleration of point Pi with respect to point Oi and

is defined as

ai
PO c (ai

PO)n + (ai
PO)t (3.52)

The use of the position, velocity, and acceleration equations obtained in this
section for the kinematic analysis of mechanical systems consisting of inter-
connected bodies is demonstrated by the following example.

Example 3.3

Figure 9 shows an offset slider crank mechanism that consists of four bodies. Body 1
is the fixed link or the ground, body 2 is the crankshaft, body 3 is the connecting rod,
and body 4 is the slider block at B. The system has one degree of freedom, which
is selected to be the angular orientation of the crankshaft v2. Express the angular
orientation of the connecting rod and the location of the slider block in terms of
the degree of freedom. Also determine the angular velocity and acceleration of the
connecting rod and the velocity and acceleration of the slider block in terms of the
angular velocity v̇2 and angular acceleration v̈2 of the crankshaft.
Solution. Consider point A to be the reference point of the connecting rod, the posi-
tion vector of point B on the connecting rod can be written as

r3
B c R3 + A3u3

B

where R3 is the global position vector of the reference point A, A3 is the trans-
formation matrix from the connecting rod coordinate system to the global coordi-
nate system, and u3

B is the local position vector of point B. The vectors R3 and u3
B
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Figure 3.9 Offset slider crank mechanism

and the transformation matrix A3 are defined as

R3 c [ l 2 cos v2

l 2 sin v2 ] , u3
B c [ l3

0 ]
and

A3 c [ cos v3 − sin v3

sin v3 cos v3 ]
where v2 and v3 are, respectively, the angular orientations of the crankshaft and the
connecting rod, and l 2 and l3 are, respectively, the lengths of the crankshaft and
the connecting rod. One can write the global position vector of point B as

r3
B c [ l 2 cos v2

l 2 sin v2 ] + [ cos v3 − sin v3

sin v3 cos v3 ] [ l3

0 ]
c [ l 2 cos v2 + l3 cos v3

l 2 sin v2 + l3 sin v3 ]
From the geometry of the slider crank mechanism, it is clear that

r3
B c [ x4

B

h ]
where x4

B is the coordinate of the slider block in the horizontal direction and h is
the magnitude of the offset. The preceding two equations lead to the following two
scalar equations:

x4
B c l 2 cos v2 + l3 cos v3

h c l 2 sin v2 + l3 sin v3

which imply that

x4
B c l 2 cos v2 ±

f
(l3)2 − (h − l 2 sin v2)2
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and

v3 c sin−1 h − l 2 sin v2

l3

By using Eq. 39, the velocity of point A on the crankshaft can be written using
point O as the reference point as

v2
A c v2

O + v2
AO

Since O is a fixed point, v2
O c 0. Using Eqs. 36 and 40, the global velocity vector

of point A is

v2
A c �2 × u2

A c v̇2l 2 [ − sin v2

cos v2 ]
The velocity of point B on the connecting rod can also be written as

v3
B c v3

A + v3
BA c v3

A + �3 × u3
B

Clearly, v2
A c v3

A since both represent the global velocity vector of the same point
A. Using this fact and Eq. 36, the velocity of point B is given by

v3
B c v̇2l2 [ − sin v2

cos v2 ] + v̇3l3 [ − sin v3

cos v3 ]
The slider block at B moves only in the horizontal direction, and as a consequence

v3
B c [ẋ4

B 0]T

The last two vector equations lead to

[ ẋ4
B

0 ] c v̇2l 2 [ − sin v2

cos v2 ] + v̇3l3 [ − sin v3

cos v3 ]
which can be rearranged and written as






l3 sin v3 1

− l3 cos v3 0





[ v̇3

ẋ4
B

] c v̇2l 2 [ − sin v2

cos v2 ]
or

[ v̇3

ẋ4
B

] c v̇2l 2

l3 cos v3 [ 0 −1

l3 cos v3 l3 sin v3 ] [ − sin v2

cos v2 ]
c v̇2l 2

l3 cos v3 [ − cos v2

l3 sin (v3 − v2) ]
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The acceleration equations can be obtained by differentiating the preceding equa-
tion or by using the general expression of Eq. 51. Using Eq. 51, the acceleration
of point A on the crankshaft is

a2
A c a2

O + a2
AO

Since O is a fixed point, one has a2
O c 0, and accordingly,

a2
A c a2

AO c (a2
AO)n + (a2

AO)t

where

(a2
AO)n c �2 × (�2 × u2

A) c − l 2(v̇2)2 [ cos v2

sin v2 ]
(a2

AO)t c �2 × u2
A c l 2v̈2 [ − sin v2

cos v2 ]
Thus

a2
A c [ − l 2(v̇2)2 cos v2 − l 2v̈2 sin v2

− l 2(v̇2)2 sin v2 + l 2v̈2 cos v2 ]
The acceleration of point B on the connecting rod is

a3
B c a3

A + a3
BA

Since a3
A c a2

A because A represents the same point on the crankshaft and the con-
necting rod, one has

a3
B c a2

A + a3
BA c a2

A + (a3
BA)n + (a3

BA)t

where

(a3
BA)n c �3 × (�3 + u3

B) c − l3(v̇3)2 [ cos v3

sin v3 ]
(a3

BA)t c �3 × u3
B c l3v̈3 [ − sin v3

cos v3 ]
Using the expression for a2

A, one has

a3
B c [ − l 2(v̇2)2 cos v2 − l 2v̈2 sin v2

− l 2(v̇2)2 sin v2 + l 2v̈2 cos v2 ] + [ − l3(v̇3)2 cos v3 − l3v̈3 sin v3

− l3(v̇3)2 sin v3 + l3v̈3 cos v3 ]
Since the slider block moves only in the horizontal direction, one has

a3
B c [ẍ4

B 0]T
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The preceding two vector equations lead to the following two scalar equations:

ẍ4
B c − l 2(v̇2)2 cos v2 − l 2v̈2 sin v2 − l3(v̇3)2 cos v3 − l3v̈3 sin v3

0 c − l 2(v̇2)2 sin v2 + l 2v̈2 cos v2 − l3(v̇3)2 sin v3 + l3v̈3 cos v3

Since v3 and v̇3 are assumed to be known from the position and velocity analyses,
and v2, v̇2, and v̈2 are assumed to be given, the preceding two equations are func-
tions of the only two unknowns v̈3 and ẍ4

B. These equations can be rearranged and
written as

[ l3 sin v3 1

− l3 cos v3 0 ] [ v̈3

ẍ4
B

]
c [ − l 2(v̇2)2 cos v2 − l 2v̈2 sin v2 − l3(v̇3)2 cos v3

− l 2(v̇2)2 sin v2 + l 2v̈2 cos v2 − l3(v̇3)2 sin v3 ]
which leads to

[ v̈3

ẍ4
B

] c 1
l3 cos v3 [ 0 −1

l3 cos v3 l3 sin v3 ] [ c1

c2 ]
c 1

l3 cos v3 [ −c2

c1l3 cos v3 + c2l3 sin v3 ]
where

c1 c − l 2(v̇2)2 cos v2 − l 2v̈2 sin v2 − l3(v̇3)2 cos v3

c2 c − l 2(v̇2)2 sin v2 + l 2v̈2 cos v2 − l3(v̇3)2 sin v3

The kinematic equations obtained in this example can be programmed on a digital
computer to obtain the values of the coordinates, velocities, and accelerations of
the mechanism links for different values of v2, v̇2, and v̈2. Consider, for example,
the case of a slider crank mechanism which has the following data: h c 0, l 2 c
0.2 m, and l3 c 0.4 m. The angular velocity of the crankshaft v̇2 is assumed to be
constant and is equal to 50 rad/ s. Table 1 shows v3, x4

B, v̇3, ẋ4
B, v̈3, and ẍ4

B for
different values of the crank angle v2. In Table 1, angles are measured in radians
and distances are in meters.

In some applications, the motion simulation of the single- and multidegree-
of-freedom systems does not proceed smoothly with time. A lockup configura-
tion may be encountered or more than one possible motion at certain mechanism
configurations can occur. These cases are called singular configurations. The
singularity of motion may depend on the nature of the driving input. For exam-
ple, consider the slider crank mechanism shown in Fig. 10. First assume that
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Figure 3.10 Slider crank mechanism

the mechanism is driven by rotating the crankshaft with a given angular velocity
q2

c v̇2. It was shown in the preceding example that the angular velocity of
the connecting rod v̇3 and the velocity of the slider block ẋ4

B can be expressed
in terms of the angular velocity of the crankshaft v̇2 as

[ l3 sin v3 1

− l3 cos v3 0 ] [ v̇3

ẋ4
B ] c v̇2l2 [ − sin v2

cos v2 ] (3.53)

where l 2 and l3 are, respectively, the lengths of the crankshaft and the connect-
ing rod and v2 and v3 are, respectively, the angular orientations of the crankshaft
and the connecting rod. Equation 53 can be used to define v̇3 and ẋ4

B as

[ v̇3

ẋ4
B ] c

v̇2l2

l3 cos v3 [ − cos v2

l3 sin (v3
− v2) ] (3.54)

Consider now the special case where l 2
c l3 and v2

c p/ 2; in this special
case, one has

l 2 sin v2 + l3 sin v3
c 0

or

sin v2 + sin v3
c 0

It follows that

v3
c

3p

2
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Figure 3.11 Singular configurations

In this configuration, cos v3
c 0 and the coefficient matrix in Eq. 53 is singular.

This implies that at this configuration, more than one possible motion can occur.
One possible motion is that the crankshaft and the connecting rod are locked
together and rotate as a single pendulum, as shown in Fig. 11a. Another possible
motion is that the slider block moves to the right or to the left in the horizontal
direction, as shown in Fig. 11b.

The configurations shown in Fig. 11 are not the only singular configurations
encountered in the analysis of the slider crank mechanism. To demonstrate this,
consider the case where the mechanism is driven by moving the slider block
with a specified velocity ẋ4

B. In this case, Eq. 53 can be rearranged and written
as

[ l 2 sin v2 l3 sin v3

− l 2 cos v2
− l3 cos v3 ] [ v̇2

v̇3 ] c [ − ẋ4
B

0 ] (3.55)

Now consider the configuration shown in Fig. 12, where v2
c v3

c 0. At this
configuration, the coefficient matrix of Eq. 55 is singular, which indicates that it
is impossible for the motion to continue by moving the slider block. The mech-
anism at this configuration, however, can be driven by rotating the crankshaft,
since at this configuration the coefficient matrix in Eq. 53 is not singular.

Figure 3.12 Another singular configuration
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Figure 3.13 Four-bar mechanism

Example 3.4

Figure 13 shows a four-bar linkage. Body 1 is the fixed link or the ground, body
2 is the crankshaft OA, body 3 is the coupler AB, and body 4 is the rocker BC.
Obtain an expression for the angular orientation, velocities, and accelerations of
the coupler and the rocker in terms of the angular orientation, angular velocity, and
angular acceleration of the crankshaft. Assuming that the angular velocity of the
crankshaft is constant and is equal to 50 rad/ s, determine the values of the angular
coordinates, velocities and accelerations of the coupler and the rocker for different
values of the angles of the crankshaft. Assume that the lengths of the crankshaft,
coupler and the rocker are 0.2, 0.4, and 0.5 m, respectively, and the distance OC is
0.4 m.

Solution. The position vector of point C can be expressed in terms of the Cartesian
coordinates of the rocker as

r4
C c R4 + A4u4

C

where R4 is the global position vector of the reference point of the rocker, which
we select in this example to be point B, A4 is the transformation matrix of the
rocker, u4

C c [l4 0]T is the local position vector of point C, and l4 is the length of
the rocker. The global position vector of the reference point of the rocker can be
written as

R4
c r3

B c R3 + A3u3
B

where R3 is the global position vector of the reference point of the coupler, which
is selected in this example to be point A, A3 is the transformation matrix of the
coupler, u3

B c [l3 0]T, and l3 is the length of the coupler. The vector R3 is

R3
c [ l 2 cos v2

l 2 sin v2 ]
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where l 2 is the length of the crankshaft. The vector R4 can then be written as

R4
c [ l 2 cos v2

l 2 sin v2 ] + [ cos v3
− sin v3

sin v3 cos v3 ] [ l3

0 ]
c [ l 2 cos v2 + l3 cos v3

l 2 sin v2 + l3 sin v3 ]
Using this equation, the global position vector of point C can be written as

r4
C c R4 + A4u4

C c [ l 2 cos v2 + l3 cos v3

l 2 sin v2 + l3 sin v3 ] + [ cos v4
− sin v4

sin v4 cos v4 ] [ l4

0 ]
c [ l 2 cos v2 + l3 cos v3 + l4 cos v4

l 2 sin v2 + l3 sin v3 + l4 sin v4 ]
From Fig. 13 it is clear that

r4
C c [ l1

0 ]
where l1 is the distance OC. The preceding two equations lead to the following two
scalar equations:

l 2 cos v2 + l3 cos v3 + l4 cos v4
c l1

l 2 sin v2 + l3 sin v3 + l4 sin v4
c 0

These two equations are called the loop closure equations of the four-bar linkage.
They can be used to express the angles v3 and v4 in terms of the angle v2. It is left
to the reader to try to solve the loop closure equations and determine v3 and v4 as
a function of the crank angle v2.

Following the procedure described in the preceding example, one can show that
the global velocity vector of point B on the coupler is

v3
B c v̇2l 2 [ − sin v2

cos v2 ] + v̇3l3 [ − sin v3

cos v3 ]
The velocity of point C, which, in this example, is equal to zero can be expressed
in terms of the velocity of point B as

v4
C c v4

B + v4
CB

Using Eqs. 36 and 40 and the fact that v4
B c v3

B and v4
C c 0, one obtains

[ 0

0 ] c v̇2l 2 [ − sin v2

cos v2 ] + v̇3l3 [ − sin v3

cos v3 ] + v̇4l4 [ − sin v4

cos v4 ]
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which can be rearranged and written as

[ − l3 sin v3
− l4 sin v4

l3 cos v3 l4 cos v4 ] [ v̇3

v̇4 ] c v̇2l 2 [ sin v2

− cos v2 ]
or

[ v̇3

v̇4 ] c

l 2v̇2

l3l4 sin (v4
− v3) [ l4 cos v4 l4 sin v4

− l3 cos v3
− l3 sin v3 ] [ sin v2

− cos v2 ]
c

l 2v̇2

l3l4 sin (v4
− v3) [ l4 sin (v2

− v4)

l3 sin (v3
− v2) ]

Following a procedure similar to the one described in the preceding example,
one can show that the acceleration of point B is

a3
B c [ − l 2(v̇2)2 cos v2

− l 2v̈2 sin v2
− l3(v̇3)2 cos v3

− l3v̈3 sin v3

− l 2(v̇2)2 sin v2 + l 2v̈2 cos v2
− l3(v̇3)2 sin v3 + l3v̈3 cos v3 ] (3.56)

The acceleration of point C on the rocker is

a4
C c a4

B + a4
CB c a3

B + (a4
CB)n + (a4

CB)t

Since C is a fixed point, one has a4
C c 0, and accordingly,

0 c a3
B + (a4

CB)n + (a4
CB)t

which leads to

a3
B c −�4 × (�4 × u4

C) − �4 × u4
C

c [ l4(v̇4)2 cos v4 + l4v̈4 sin v4

l4(v̇4)2 sin v4
− l4v̈4 cos v4 ] (3.57)

Substituting Eq. 57 into Eq. 56, one obtains the following scalar equations:

l4(v̇4)2 cos v4 + l4v̈4 sin v4

c − l 2(v̇2)2 cos v2
− l 2v̈2 sin v2

− l3(v̇3)2 cos v3
− l3v̈3 sin v3

l4(v̇4)2 sin v4
− l4v̈4 cos v4

c − l 2(v̇2)2 sin v2 + l 2v̈2 cos v2
− l3(v̇3)2 sin v3 + l3v̈3 cos v3

Assuming that v3, v4, v̇3, and v̇4 are known from the position and velocity analyses,
and v2, v̇2, and v̈2 are given, there are only two unknowns v̈3 and v̈4 in the preceding
two equations. These equations can be rearranged and rewritten as

[ − l3 sin v3
− l4 sin v4

l3 cos v3 l4 cos v4 ] [ v̈3

v̈4 ] c [ c1

c2 ] (3.58)
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where c1 and c2 are

c1 c l4(v̇4)2 cos v4 + l 2(v̇2)2 cos v2 + l 2v̈2 sin v2 + l3(v̇3)2 cos v3

c2 c l4(v̇4)2 sin v4 + l 2(v̇2)2 sin v2
− l 2v̈2 cos v2 + l3(v̇3)2 sin v3

Equation 58 can be solved for the angular accelerations v̈3 and v̈4 as follows:

[ v̈3

v̈4 ] c

1
l3l4 sin (v4

− v3) [ l4 cos v4 l4 sin v4

− l3 cos v3
− l3 sin v3 ] [ c1

c2 ]
c

1
l3l4 sin (v4

− v3) [ l4(c1 cos v4 + c2 sin v4)

− l3(c1 cos v3 + c2 sin v3) ]
Using the dimensions of the mechanism and the kinematic equations presented

in this example, the angular coordinates, velocities and accelerations of the links
can be determined as functions of the crank angle as shown in Table 2. The angles
presented in this table are in radians, the angular velocities are in rad/ s, and the
angular accelerations are in rad/ s2.

The position kinematic equations obtained in the preceding example can be
used to express the orientations of the coupler and the rocker in terms of the
crank angle v2. One of the important considerations in the design of many of
the four-bar linkages is to ensure that the crankshaft can rotate a complete revo-
lution. In order to determine whether the input crank of the four-bar mechanism
can make a complete revolution, Grashof’s law can be used. This law states
that, for a planar four-bar linkage, if the sum of the lengths of the shortest and
longest links is less than the sum of the lengths of the other two links, then a
continuous relative motion between two links can be achieved. Let s and l be,
respectively, the lengths of the shortest and longest links, and p and q be the
lengths of the other two links. According to Grashof’s law, the shortest link
will rotate continuously if

s + l ≤ p + q

This inequality has to be satisfied, otherwise none of the links will make a
complete revolution relative to the other links. If link 2 in the four-bar linkage
(Fig. 13) can make a complete revolution while link 4 oscillates, the mechanism
is called a crank-rocker linkage. If both link 2 and link 4 oscillate between
limits, the mechanism is called a double-rocker linkage.

Grashof’s law makes no mention of which link is fixed or of the order in
which the links are connected. Several kinematic inversions of the four-bar
mechanism, however, can be obtained by selecting which link is to be fixed
and by arranging the connectivity of the links based on their lengths. When
the crank is the shortest link and it is adjacent to the fixed link, the result-
ing mechanism is of the crank-rocker type. If the shortest link is the fixed
link, one obtains the double-crank mechanism, which is also called a drag-
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Figure 3.14 Straight-line mechanisms

link mechanism. When the link opposite to the shortest link is the fixed link,
one obtains again the double-rocker mechanism. The double-rocker mechanism
is also obtained if the sum of the lengths of the shortest link and longest link
is larger than the sum of the other two links.

It is clear in the case of the four-bar linkage of Fig. 13 that any point on the
crankshaft OA or the rocker BC moves on a circular arc that has a radius equal
to the distance between this point and the fixed points O and C, respectively.
During the dynamic motion of the mechanism, any point on the coupler of
the four-bar linkage generates a path, called a coupler curve, that depends on
the location of this point. Clearly, the two paths generated by points A and B
are simple circles. Four-bar mechanisms can be designed such that a point on
the coupler link moves in a straight line. Such mechanisms are called straight-
line mechanisms. An example of an approximate straight-line mechanism is
the four-bar Watt’s mechanism shown in Fig. 14a. If, in this mechanism, the
position of point P on the coupler is such that the ratio of the lengths of the
segments AP and PB is inversely proportional to the ratio of the lengths of
the links OA and BC, respectively, then the coupler curve of point P is an
approximate straight line. A mechanism that generates an exact straight line
is the Peaucellier mechanism shown in Fig. 14b. This mechanism consists of
eight links including the fixed link. As pointed out in Chapter 1, if the lengths of
link AB and link AE are equal, lengths of links BC, BP, EC, and EP are equal,
and the length of link AD is equal to the distance CD, point P will trace out an
exact straight-line path. Straight-line mechanisms are used in many mechanical
system applications such as gear switch equipment and engine indicators.

3.4 KINEMATICS OF A POINT MOVING ON A RIGID BODY

In the preceding section, the kinematic equations that define the position, veloc-
ity and acceleration of an arbitrary point fixed on a rigid body were developed.
In this section, we present the kinematic equations of a point moving on a rigid
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Figure 3.15 Motion of a point on a rigid body

body. Figure 15 shows a particle point P moving on a rigid body i. The position
vector of point P with respect to the body coordinate system X iY i is defined
by the vector ui

P. The global position vector of point P can be written as

ri
P c Ri + Aiui

P (3.59)

where Ri is the global position vector of the reference point, and Ai is the
transformation matrix from the body coordinate system to the global coordinate
system. The vector ui

P in Eq. 59 is not a constant vector since point P moves
with respect to the coordinate system of body i.

The absolute velocity of point P can be obtained by differentiating Eq. 59
with respect to time. This leads to

ṙi
P c Ṙi + Ȧiui

P + Aiu̇i
P

c Ṙi + v̇ iAi
vui

P + Aiu̇i
P (3.60)

By using the identity of Eq. 37, Eq. 60 takes the form

ṙi
P c Ṙi + �i × ui

P + (vi
P)r (3.61)

where

(vi
P)r c Aiu̇i

P (3.62)
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Equation 61 can also be written as

vi
P c vi

O + �i × ui
P + (vi

P)r (3.63)

where vi
P c ṙi

P is the absolute velocity of point P, and vi
O c Ṙi is the absolute

velocity of the reference point.
The absolute acceleration of point P can be obtained by differentiating Eq.

63 or, equivalently, Eq. 60 with respect to time. This leads to

r̈i
P c R̈i + v̇ iȦi

vui
P + v̈ iAi

vui
P + v̇ iAi

v u̇i
P + v̇ iAi

v u̇i
P + Aiüi

P (3.64)

The second and third terms on the right-hand side of Eq. 64 are, respectively, the
normal and tangential components of the acceleration defined in the preceding
section by Eqs. 44 and 45. By combining the fourth and fifth terms in the right-
hand side of Eq. 64, this equation reduces to

r̈i
P c R̈i + �i × (�i × ui

P) + �i × ui
P + 2v̇ iAi

v u̇i
P + Aiüi

P (3.65)

where �i is the angular acceleration vector of the coordinate system of body i
and ui

P is as defined by Eq. 33. Using Eq. 62 and an identity similar to Eq. 37,
one can show that

v̇ iAi
v u̇i

P c �i × (Aiu̇i
P) c �i × (vi

P)r (3.66)

Substituting Eq. 66 into Eq. 65, one obtains

ai
P c ai

O + �i × (�i × ui
P) + �i × ui

P + 2�i × (vi
P)r + (ai

P)r (3.67)

where

ai
P c r̈i

P (3.68a)

ai
O c R̈i (3.68b)

(ai
P)r c Aiüi

P (3.68c)

in which (ai
P)r is the relative acceleration of point P with respect to the coor-

dinate system of body i. The fourth term in the right-hand side of Eq. 67 given
by

(ai
P)c c 2�i × (vi

P)r (3.69)

is called the Coriolis component of the acceleration. This component of the
acceleration has a direction along a line perpendicular to both �i and (vi

P)r. In
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the special case where point P is fixed, the vectors (ai
P)r and (ai

P)c are identically
the zero vectors and Eq. 67 reduces, in this special case, to the equation that
defines the acceleration of a point fixed on the rigid body.

Example 3.5

Figure 16 shows a block P that slides on a slender rod i. The rod is connected to
the ground by a pin joint at O and rotates with angular velocity v̇ i. Determine the
absolute velocity of point P and the absolute acceleration of the slider block P.

Solution. We first select the rod coordinate system to be X iY i with origin at O. The
position vector of the block with respect to this coordinate system is

ui
P c [x i

P 0]T

Since the block is moving with respect to the rod, its velocity is described by Eq.
63 as

vi
P c vi

O + �i × ui
P + (vi

P)r

Since O is a fixed point, vi
O c 0, and

vi
P c �i × ui

P + (vi
P)r

in which

�i × ui
P c v̇ i [ −x i

P sin v i

x i
P cos v i ]

and

(vi
P)r c Aiu̇i

P c [ cos v i
− sin v i

sin v i cos v i ] [ ẋ i
P

0 ] c [ ẋ i
P cos v i

ẋ i
P sin v i ]

Figure 3.16 Pendulum with a sliding block
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The absolute velocity of the block P can then be written as

vi
P c [ −x i

Pv̇ i sin v i + ẋ i
P cos v i

x i
Pv̇ i cos v i + ẋ i

P sin v i ]
The absolute acceleration vector of the block P can be obtained by differentiating

the absolute velocity vector vi
P or by using the general expression of Eq. 67. Both

methods yield the same results. In this example, the general expression of Eq. 67 is
used. Since point O is fixed, the absolute acceleration of point O is equal to zero,
that is,

ai
O c 0

In this case, the acceleration of point P takes the form

ai
P c �i × (�i × ui

P) + �i × ui
P + 2�i × (vi

P)r + (ai
P)r

in which

�i × (�i × ui
P) c −x i

P(v̇ i)2 [ cos v i

sin v i ]
�i × ui

P c x i
Pv̈ i [ − sin v i

cos v i ]
2�i × (vi

P)r c 2ẋ i
Pv̇ i [ − sin v i

cos v i ]
(ai

P)r c Aiüi
P c [ ẍ i

P cos v i

ẍ i
P sin v i ]

Substituting these equations into the expression for the acceleration of point P, one
obtains

ai
P c − [ cos v i

sin v i ] x i
P(v̇ i)2 + [ − sin v i

cos v i ] x i
Pv̈ i

+ 2 [ − sin v i

cos v i ] ẋ i
Pv̇ i + [ cos v i

sin v i ] ẍ i
P

c [ [ẍ i
P − x i

P(v̇ i)2] cos v i
− (x i

Pv̈ i + 2ẋ i
Pv̇ i) sin v i

[ẍ i
P − x i

P(v̇ i)2] sin v i + (x i
Pv̈ i + 2ẋ i

Pv̇ i) cos v i ]
Example 3.6

Figure 17 shows two rotating rods that are connected by the slider block P. Given
the angular velocity and angular acceleration of rod 2, determine the angular veloc-
ity and angular acceleration of rod 3 and the relative velocity and acceleration of
the slider block P with respect to rod 3.
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Figure 3.17 Coriolis acceleration

Solution. First we perform the velocity analysis of the mechanism. We first consider
rod 2 as shown in Fig. 18a. The absolute velocity of point P on rod 2 is

v2
P c v2

O + v2
PO

where

v2
O c 0

and

v2
PO c �2 × u2

P c v̇2 [ − l 2 sin v2

l 2 cos v2 ]
Here, l 2 is the length of link 2. The absolute velocity of point P can then be written
as

v2
P c v̇2 [ − l 2 sin v2

l 2 cos v2 ]
Due to the fact that the slider block P slides on link 3, the absolute velocity of point
P can also be evaluated by analyzing the motion of link 3 shown in Fig. 18b. In
this case, one has

v3
P c v3

O + v3
PO + (v3

P)r

Figure 3.18 Motion of block P
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Keeping in mind that point O3 is a fixed point, one has

v3
O c 0

One also has

v3
PO c �3 × u3

P c v̇3 [ −x 3
P sin v3

x 3
P cos v3 ]

(v3
P)r c A3u̇3

P c [ cos v3
− sin v3

sin v3 cos v3 ] [ ẋ 3
P

0 ] c ẋ 3
P [ cos v3

sin v3 ]
where x 3

P is the distance between point P and point O3. The absolute velocity of
point P can then be written as

v3
P c v̇3 [ −x 3

P sin v3

x 3
P cos v3 ] + ẋ 3

P [ cos v3

sin v3 ]
Since

v2
P c v3

P

one has

v̇2 [ − l 2 sin v2

l 2 cos v2 ] c v̇3 [ −x 3
P sin v3

x 3
P cos v3 ] + ẋ 3

P [ cos v3

sin v3 ]
This equation can be written in a matrix form as

[ −x 3
P sin v3 cos v3

x 3
P cos v3 sin v3 ] [ v̇3

ẋ 3
P

] c v̇2 [ − l 2 sin v2

l 2 cos v2 ]
This matrix equation contains two scalar algebraic equations that can be solved for
the two unknowns v̇3 and ẋ 3

P as

[ v̇3

ẋ 3
P

] c

v̇2

x 3
P

[ l 2 cos (v3
− v2)

x 3
Pl 2 sin (v3

− v2) ]
Having determined v̇3 and ẋ 3

P, one can now proceed to solve for the accelera-
tions. Considering rod 2, the absolute acceleration of point P can be written as

a2
P c a2

O + (a2
PO)t + (a2

PO)n

where

a2
O c 0

(a2
PO)t c �2 × u2

P c v̈2 [ − l 2 sin v2

l 2 cos v2 ]
(a2

PO)n c �2 × (�2 × u2
P) c − (v̇2)2 [ l 2 cos v2

l 2 sin v2 ]
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The absolute acceleration of point P can then be written as

a2
P c v̈2 [ − l 2 sin v2

l 2 cos v2 ] − (v̇2)2 [ l 2 cos v2

l 2 sin v2 ]
As the slider block P moves with respect to rod 3, the absolute acceleration of point
P takes the form

a3
P c a3

O + �3 × (�3 × u3
P) + �3 × u3

P + 2�3 × (v3
P)r + (a3

P)r

where

a3
O c 0

�3 × (�3 × u3
P) c − (v̇3)2x 3

P [ cos v3

sin v3 ]
�3 × u3

P c v̈3x 3
P [ − sin v3

cos v3 ]
2q3 × (v3

P)r c 2v̇3ẋ 3
P [ − sin v3

cos v3 ]
(a3

P)r c A3ü3
P c [ cos v3

− sin v3

sin v3 cos v3 ] [ ẍ 3
P

0 ] c ẍ 3
P [ cos v3

sin v3 ]
The absolute acceleration of point P is

a3
P c − (v̇3)2x 3

P [ cos v3

sin v3 ] + v̈3x 3
P [ − sin v3

cos v3 ]
+ 2v̇3ẋ 3

P [ − sin v3

cos v3 ] + ẍ 3
P [ cos v3

sin v3 ]
Using the fact that

a2
P c a3

P

one obtains

v̈2 [ − l 2 sin v2

l 2 cos v2 ] − (v̇2)2 [ l 2 cos v2

l 2 sin v2 ]
c − (v̇3)2x 3

P [ cos v3

sin v3 ] + v̈3x 3
P [ − sin v3

cos v3 ]
+ 2v̇3ẋ 3

P [ − sin v3

cos v3 ] + ẍ 3
P [ cos v3

sin v3 ]
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The terms in this equation can be rearranged and written in a matrix form as

[ −x 3
P sin v3 cos v3

x 3
P cos v3 sin v3 ] [ v̈3

ẍ 3
P

]
c [ − v̈2l 2 sin v2

− (v̇2)2l 2 cos v2 + (v̇3)2x 3
P cos v3 + 2v̇3ẋ 3

P sin v3

v̈2l 2 cos v2
− (v̇2)2l 2 sin v2 + (v̇3)2x 3

P sin v3
− 2v̇3ẋ 3

P cos v3 ]
This matrix equation can be solved for the two unknowns v̈3 and ẍ 3

P since all the
variables on the right-hand side of this equation are either given or can be deter-
mined from the position and velocity analyses.

3.5 CONSTRAINED KINEMATICS

A careful examination of the solution procedures used for the position, veloc-
ity, and acceleration analysis of the mechanisms discussed in the examples pre-
sented thus far in this chapter reveals that, in general, a set of algebraic kine-
matic equations that describe the joint connectivity between the bodies of the
system are used. For instance, for the slider crank mechanism of Example 3, we
explicitly or implicitly used the following algebraic equations and their deriva-
tives

v2
O c 0, v2

A c v3
A, v3

B c v4
B

Ṙ4
y c 0, v̇4

c 0, v̇2
c q2

where R4
y and v4 are the vertical displacement and the angular orientation of the

slider block, and q2 is a known function of time. The last equation describes the
constraint condition used to drive the crankshaft of the mechanism. Each one of
the preceding equations was manipulated separately so as to yield a procedure
which is tailored only for the analysis of the slider crank mechanism.

Another alternative, yet equivalent approach is to combine the preceding
equations and solve them simultaneously using matrix and computer methods.
While this alternative approach is not different in principle from the methods
used in the preceding examples, its use, as demonstrated in the remainder of
this chapter, allows us to develop a systematic computer procedure that can be
used in the kinematic analysis of varieties of mechanical system applications.
The kinematic relationships that describe the joint connectivity between bodies
as well as specified motion trajectories will be formulated so as to obtain a
number of algebraic equations equal to the number of the system coordinates.
The resulting system of loosely coupled equations can be solved efficiently
using numerical techniques.

Absolute Coordinates As pointed out previously, the planar motion of an
unconstrained rigid body can be described using three independent coordinates.
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Two coordinates define the translation of the body as rpresented by the displace-
ment of the origin of a selected body reference and one coordinate defines the
orientation of the body. The translational motion of the rigid body i can be
defined by the vector Ri that describes the position of the origin of the body
reference with respect to the global coordinate system, while the orientation of
the body can be described using the angle v i. Using the three coordinates Ri

c

[Ri
x Ri

y]T and v i, the position vector of an arbitrary point Pi on the rigid body
can be written as (see Eq. 25)

ri
P c Ri + Aiui

P (3.70)

where

ui
P c [ x i

P

y i
P ] (3.71)

is the position vector of the arbitrary point defined in the body coordinate sys-
tem, and Ai is the transformation matrix from the body coordinate system to
the global coordinate system defined in terms of the angle of rotation v i as

Ai
c [ cos v i

− sin v i

sin v i cos v i ] (3.72)

In this chapter and in the following chapters, the coordinates Ri and v i are
referred to as the absolute Cartesian generalized coordinates of the rigid body
i.

A multibody system consisting of nb unconstrained rigid bodies has 3 × nb

independent generalized coordinates. The vector q of the generalized coordi-
nates of the multibody system is then defined as

q c [R1
x R1

y v1 R2
x R2

y v2 · · · Ri
x Ri

y v i · · · Rnb
x Rnb

y vnb ]T

c [R1T
v1 R2T

v2 · · · RiT v i · · · RnT
b vnb ]T (3.73)

which can also be written in the following form:

q c [q1T
q2T

· · · qiT · · · qnT
b ]T (3.74)

where

qi
c [ Ri

v i ] (3.75)

is the vector of generalized coordinates of body i.
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Kinematic constraints impose restrictions on the relative motion between
bodies in the mechanical systems. In this text, constraints are classified as joint
constraints and driving constraints. Joint constraints, which are the result of
restrictions imposed by the mechanical joints such as revolute, prismatic, cylin-
drical, and spherical joints, describe the connectivity between the multibody
system components, and therefore, define the topological structure of the sys-
tem. The formulation of the joint constraint equations will be discussed in more
detail in the following section.

Driving Constraints Other types of constraints that arise in the dynamic
analysis of mechanical systems are the driving constraints. While joint con-
straints are assumed to depend only on the system coordinates, driving con-
straints describe the specified motion trajectories and, therefore, may depend
on the system generalized coordinates as well as time. An example of driving
constraints is the specified motion of the crankshaft of a slider crank mecha-
nism, as the one shown in Fig. 19. If the crankshaft is denoted as body 2, and
it is assumed to rotate with a constant angular velocity, one has

v̇2
c q2

where q2 is a constant. The preceding equation is a differential equation that
can be integrated to define a kinematic constraint equation that depends on the
coordinate v2 as well as time and can be written as

v2
c q2t + v2

o (3.76)

where t is time and v2
o is the initial angular position of the crankshaft. Equa-

tion 76 is an example of a simple constraint that can be imposed on the abso-
lute coordinates of a body in the system. For body i in the system, one may
encounter situations in which one or more of the following simple driving con-
straints must be imposed:

Ri
x c f 1(t) (3.77a)

Ri
y c f 2(t) (3.77b)

v i
c f 3(t) (3.77c)

Figure 3.19 Slider crank mechanism



3.5 CONSTRAINED KINEMATICS 135

where f 1(t), f 2(t), and f 3(t) are time-dependent functions and Ri
x , Ri

y, and v i are
the absolute coordinates of the rigid body i.

More complex driving constraints arise in mechanical system applications
when the motion of an arbitrary point on a rigid body is prescribed. Specified
trajectories in the analysis of robotic manipulators and numerically controlled
machine tools are examples of such driving constraints. For example, if the
coordinates of a point Pi on the rigid body i are prescribed such that this point
follows a given trajectory defined by the function f(t) c [ f 1(t) f 2(t)]T, the use
of Eq. 70 leads to

ri
P c Ri + Aiui

P c f(t) (3.78)

This equation leads to two scalar equations that can be written in terms of the
absolute coordinates of body i as

Ri
x + x i

P cos v i
− y i

P sin v i
c f 1(t) (3.79a)

Ri
y + x i

P sin v i + y i
P cos v i

c f 2(t) (3.79b)

In these two equations which constrain the two global coordinates of point Pi,
the first constraint specifies the horizontal motion of the point while the second
specifies the vertical motion. If point Pi coincides with the origin of the body
reference, that is, ui

P c 0, Eqs. 79a and 79b reduce, respectively, to Eqs. 77a
and 77b, which describe simple constraints.

Other types of driving constraints may result from imposing conditions on
the relative motion between two bodies in the mechanical system. For example,
if the relative rotation between two bodies i and j in the system is specified,
the constraint equation can be written as

v i
− v j

c f (t) (3.80)

where v i and v j are the angular orientation of bodies i and j, respectively, and
f (t) is a known function of time. Similarly, if the relative displacement between
points Pi and P j on bodies i and j is specified, the resulting kinematic con-
straints can be classified as driving constraints and can be written as

ri
P − r j

P c f(t) (3.81)

where ri
P and r j

P are, respectively, the global position vectors of points Pi and
P j , and f(t) c [ f 1(t) f 2(t)]T is a time dependent vector function. By using Eq.
70, Eq. 81 can be written as

Ri + Aiui
P − R j

− A ju j
P c f(t) (3.82)

This vector equation has two scalar equations that describe the constraints
between the coordinates of point Pi and point P j .
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In many mechanical system applications, both joint and driving constraints
exist. A simple example is the slider crank mechanism shown in Fig. 19. The
mechanism has four joints; three revolute and one prismatic. A driving con-
straint similar to the one given by Eq. 76 can still be imposed on the motion of
the crankshaft. We should, however, keep in mind that the maximum number of
driving constraints that can be imposed on the motion of a given system must
not exceed the number of the system degrees of freedom.

3.6 FORMULATION OF THE JOINT CONSTRAINTS

In this section, the formulation of some of the joint constraints used in the
dynamic analysis of mechanical systems are presented. The algebraic constraint
equations are formulated in terms of the absolute coordinates that describe the
location and orientation of the rigid bodies with respect to a fixed global coor-
dinate system. Only planar motion constraints are considered in this section.
The formulation of the joint constraints in the spatial analysis is presented in
Chapter 7.

Ground Constraints A body that has zero degrees of freedom is called a
ground or fixed link. The ground constraints imply that the body has no trans-
lational or rotational degrees of freedom. If body i is assumed to be a ground
or a fixed link, the algebraic kinematic constraints are given by

Ri
x − c1 c 0 (3.83a)

Ri
y − c2 c 0 (3.83b)

v i
− c3 c 0 (3.83c)

where c1, c2, and c3 are constants. Equations 83a and 83b eliminate the trans-
lational degrees of freedom of the body, while Eq. 83c eliminates the freedom
of the body to rotate. Equations 83a, 83b, and 83c can be combined into one
vector equation as

qi
− c c 0 (3.84)

where qi
c [Ri

x Ri
y v i]T is the vector of absolute coordinates of body i and

c c [c1 c2 c3]T is a constant vector.

Revolute Joint When two bodies are connected by a revolute joint, only rel-
ative rotation between the two bodies is allowed. Figure 20 depicts two rigid
bodies i and j that are connected by a revolute joint at point P which is called
the joint definition point. It is clear from the figure that the position vector of
this point as defined using the absolute coordinates of body i must be equal
to the position vector of the same point as defined in terms of the absolute
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Figure 3.20 Revolute joint

coordinates of body j. The kinematic constraint conditions of the revolute joint
can then be stated mathematically as

ri
P c r j

P (3.85)

or equivalently,

Ri + Aiui
P − R j

− A ju j
P c 0 (3.86)

where ui
P c [x i

P y i
P]T and u j

P c [x j
P y j

P]T are the local position vectors of
point P defined with respect to the coordinate systems of body i and body j,
respectively. Equation 86 can also be written in a more explicit form as

[ Ri
x

Ri
y ] + [ cos v i

− sin v i

sin v i cos v i ] [ x i
P

y i
P ] − [ R j

x

R j
y ]

− [ cos v j
− sin v j

sin v j cos v j ] [ x j
P

y j
P ] c [ 0

0 ] (3.87)

which yields the two scalar equations

Ri
x + x i

P cos v i
− y i

P sin v i
− R j

x − x j
P cos v j + y j

P sin v j
c 0 (3.88a)

Ri
y + x i

P sin v i + y i
P cos v i

− R j
y − x j

P sin v j
− y j

P cos v j
c 0 (3.88b)

These are the two constraint equations that eliminate the freedom of the relative
translation between the two bodies.
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If a rigid body i is connected to the ground by a revolute joint, Eq. 86 reduces
in this special case to

Ri + Aiui
P − c c 0 (3.89)

where c is a constant vector that defines the absolute Cartesian coordinates of
point P. The kinematic conditions of Eq. 89, which are sometimes called point
constraints, imply that point P on the rigid body i is a fixed point.

Prismatic Joint The prismatic joint, which is also called the translational
joint, allows only relative translation between the two bodies along the joint
axis. The constraint equations for the prismatic joint reduce the number of
degrees of freedom of the system by two. Figure 21 depicts two bodies i and
j that are connected by a prismatic joint. A constraint equation that eliminates
the relative rotation between the two bodies can be written as

v i
− v j

− c c 0 (3.90)

where c is a constant defined by the equation

c c v i
o − v j

o

in which v i
o and v

j
o are the initial orientation angles of bodies i and j, respec-

tively.
A second condition for the prismatic joint is required in order to eliminate

the relative translation between the two bodies along an axis perpendicular to
the joint axis. To formulate this condition, the two perpendicular vectors rij

P and
hi are defined. The vector rij

P connects two arbitrary points Pi and P j that lie on
the axis of the prismatic joint as shown in the figure. Point Pi is defined on body
i, and therefore, its coordinates are fixed with respect to the coordinate system
of body i, while point P j is defined on body j and accordingly, its coordinates
are fixed in the coordinate system of body j. The vector hi, which is assumed to

Figure 3.21 Prismatic joint
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be perpendicular to the joint axis, may be defined on body i and can be selected
to be the vector joining points Pi and Qi, as shown in the figure. The vectors
rij

P and hi can then be defined in terms of the coordinates of body i and body
j as

rij
P c ri

P − r j
P c Ri + Aiui

P − R j
− A ju j

P (3.91)

hi
c Ai(ui

P − ui
Q) (3.92)

where ui
P, u j

P, and ui
Q are the local position vectors of points Pi, P j , and Qi,

respectively. If there is no relative translation between the two bodies along an
axis perpendicular to the joint axis, the vectors rij

P and hi must remain perpen-
dicular, a condition that can be written as

hiTrij
P c 0 (3.93)

This is a scalar equation that can be written in a more explicit form using Eqs.
91 and 92.

One can combine the two constraint equations of the prismatic joint given
by Eqs. 90 and 93 in one vector equation as

[ v i
− v j

− c

hiTrij
P ] c [ 0

0 ] (3.94)

While the first equation in Eq. 94 is a linear function of the rotational coordi-
nates of body i and body j, the second equation is a nonlinear equation in the
absolute coordinates of the two bodies.

Example 3.7

Derive the algebraic kinematic constraint equations of the three-body system shown
in Fig. 22, and determine the number of the system degrees of freedom.
Solution. The absolute coordinates of body i in the system are assumed to be Ri

x ,
Ri

y, and v i, i c 1, 2, 3. The ground constraints are

R1
x − c1 c 0

R1
y − c2 c 0

v1
− c3 c 0

where c1, c2, and c3 are constants. If the axes of the coordinate system of body 1
are assumed to coincide with the axes of the global coordinate system, the constants
c1, c2, and c3 are identically zeros. The two kinematic constraint equations for the
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Figure 3.22 Two-degree-of-freedom system

pin (revolute) joint at O can be written in a vector form as

R2 + A2u2
O c 0

where u2
O is the position vector of point O with respect to the origin of the coordinate

system of body 2. If body 2 is assumed to be a uniform rod and the origin of this
body coordinate system is assumed to be at its center as shown in the figure, one
has

u2
O c [ − l 2

2
0] T

where l 2 is the length of the rod 2. The constraint equations for the revolute joint
at O lead to

[ R2
x

R2
y

] + [ cos v2
− sin v2

sin v2 cos v2 ] 





−

l 2

2

0






c 0

or

R2
x −

l 2

2
cos v2

c 0

R2
y −

l 2

y
sin v2

c 0
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Similarly, the constraint equations for the revolute joint at A are given by

R2 + A2u2
A − R3

− A3u3
A c 0

Assuming that body 3 is a uniform rod of length l3 with the origin of its body
coordinate system attached to its center, one has

u2
A c [ l 2

2
0] T

, u3
A c [ − l3

2
0] T

which can be used to define the kinematic constraints of the revolute joint at A as

[ R2
x

R2
y

] + [ cos v2
− sin v2

sin v2 cos v2 ] 





l 2

2

0






− [ R3

x

R3
y

]

− [ cos v3
− sin v3

sin v3 cos v3 ] 





−

l3

2

0






c [ 0

0 ]
or

R2
x +

l 2

2
cos v2

− R3
x +

l3

2
cos v3

c 0

R2
y +

l 2

2
sin v2

− R3
y +

l3

2
sin v3

c 0

The kinematic constraint equations of the system can be written in a vector form
as

C(q1, q2, q3) c
































R1
x − c1

R1
y − c2

v1
− c3

R2
x −

l 2

2
cos v2

R2
y −

l 2

2
sin v2

R2
x +

l 2

2
cos v2

− R3
x +

l3

2
cos v3

R2
y +

l 2

2
sin v2

− R3
y +

l3

2
sin v3
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where C c [C1 C2 C3 · · · C7]T is the vector of algebraic constraints. There are
seven constraint equations, and since the system has nine absolute coordinates (Ri

x ,
Ri

y, v i, i c 1, 2, 3), the number of degrees of freedom of the system is equal to two.

Cams A cam is a mechanical component that is used to drive another com-
ponent called a follower. The cams are convenient and versatile mechanical
devices for motion generation because of their various geometrical shapes and
the various existing combinations between the cam and its follower. The cam
and the follower mechanism constitute an important part in many mechanism
systems such as instruments, internal combustion engines, and machine tools.
Cams may be classified according to their basic shapes or according to the basic
shapes of the followers. Figure 23 shows two different types of cam systems
classified according to the shape of the cam, while Fig. 24 shows different types
of cam systems classified according to the shape of the follower element. As the
result of the rotation of the camshaft, the output motion of the follower can be
translating or rotating motion. In most cam applications, as shown in Figs. 23
and 24, the shape of the follower in the contact region with the cam is chosen
to be of simple geometry, while the desired motion is achieved by the proper
design of the cam shape. The cam and follower, however, must remain in con-
tact at all times. This can be achieved by using a suitable spring, by utilizing
the effect of gravity, or by using any mechanical constraints.

In order to demonstrate the formulation of the algebraic kinematic constraints
in the case of cam systems, as an example, the offset reciprocating knife-edge
follower shown in Fig. 25 is first considered. The cam and the follower denoted,

Figure 3.23 Cams
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Figure 3.24 Follower motion

Figure 3.25 Offset reciprocating knife-edge follower



144 KINEMATICS

respectively, as bodies i and j may be connected with other bodies in a system
by different types of joints. The point of contact between the cam and the fol-
lower is assumed to be point P, where point P is a fixed point in the follower
coordinate system. The coordinates of this point, however, in the cam coordi-
nate system depend on the cam shape. The global position of point P as defined
using the absolute coordinates of the cam (body i) and the follower (body j)
can be written as

ri
P c Ri + Aiui

P

r j
P c R j + A ju j

P
} (3.95)

where ui
P and u j

P are the local coordinates of point P as defined in the coordinate
systems of the cam and the follower, respectively. While u j

P is a constant vector,
ui

P depends on the shape of the cam and, therefore, it is not a constant vector.
It is clear from Fig. 25b that ui

P depends on the rotation of the cam relative to
the follower, and can be written as

ui
P c ui

P(v i
− v j) (3.96a)

This equation defines the exact nature of the shape of the cam. By using the
functional relationship of Eq. 96a, the desired follower motion can be specified
as a function of the relative rotation between the cam and the follower. This
can be accomplished if the vector ui

P is represented in a parametric form in
terms of the two variables d and f. It is clear from Fig. 25b that any point on
the cam profile can be expressed as

ui
P c [ x i

P

y i
P ] c [ d cos f

d sin f ] (3.96b)

which implies that any point on the surface of the cam corresponds to a unique
set of the two parameters d and f, which define the shape of the cam that
produces the desired follower motion. The shape of the cam can be defined by
expressing d analytically or numerically in terms of the angle f as

d c d(f) (3.97)

Consequently, the coordinates of any point on the cam surface can be defined in
terms of the angle f. The initial configuration of the cam system can be used to
define the relationship between the angles v i, v j , and f. One can then use this
linear relationship to express the angle f in terms of the angles v i and v j that
define the orientations of bodies i and j. This leads to the functional relationship
of Eq. 96a that can be described numerically using the cubic spline functions.

By using Eq. 95, the kinematic constraint equations for the cam system
shown in Fig. 25 can be written as
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ri
P − r j

P c 0 (3.98a)

or

[ Ri
x

Ri
y ] + [ cos v i

− sin v i

sin v i cos v i ] [ x i
P

y i
P ] − [ R j

x

R j
y ]

− [ cos v j
− sin v j

sin v j cos v j ] [ x j
P

y j
P ] c [ 0

0 ] (3.98b)

These are two equations that eliminate two degrees of freedom including the
nongeneralized surface parameter f.

Another type of cam systems is the roller follower cam, shown in Fig. 26.
The contact point between the cam and the roller is point P, while the center
of the roller is defined by point Q j on the follower, which is denoted as body
j. The vector n connecting the two points P and Q j is perpendicular to the
vector t, which is tangent to the roller at the contact point. The two kinematic
constraint equations for this type of cam system can be written as

nTn − (r)2
c 0 (3.99)

tTn c 0 (3.100)

where r is the radius of the roller and the vector n is defined in terms of the
absolute coordinates of the cam and the follower as

n c Ri + Aiui
P − R j

− A ju j
Q (3.101)

The vectors ui
P and u j

Q are the local position vectors of points P and Q j defined,

Figure 3.26 Roller follower
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respectively, in the cam and follower coordinate system. The vector u j
Q has

fixed components in the follower coordinate system, while ui
P has components

that depend on the shape of the cam. The condition given by Eq. 99 ensures
no separation or penetration between the cam and the follower.

The tangent vector t of Eq. 100 can also be defined in the cam coordinate
system using Eq. 96b as

t
i
c

∂ui
P

∂f
c







−d sin f +
∂d
∂f

cos f

d cos f +
∂d
∂f

sin f






(3.102)

Using this equation, the tangent vector can be defined in the global coordinate
system as

t c Ait
i

Example 3.8

Derive the kinematic constraint equations of the offset flat-faced follower shown in
Fig. 27.
Solution. Let point Pi denote the contact point on the cam and point Q j be an arbi-
trary point on the flat-faced follower. Two perpendicular vectors n and t1 emanating
from point Q j are defined. The vector t1 connects the contact point Pi with point
Q j . This vector can be written as

t1 c ri
P − r j

Q c Ri + Aiui
P − R j

− A ju j
Q

This vector must remain perpendicular to n, that is, the first constraint equation is

Figure 3.27 Offset flat-faced follower
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given by

tT
1 n c 0

Another vector t2 that is tangent to the cam at point Pi may be defined. This vector
is also perpendicular to the vector n, leading to the second condition

tT
2 n c 0

Using the preceding two equations, the constraint equations for this type of cam
can be written in a vector form as

[ tT
1 n

tT
2 n ] c [ 0

0 ]
While the second condition guarantees that the flat-faced follower remains parallel
to the tangent to the cam surface at the contact point, the first condition guarantees
that there is no separation or penetration between the cam and the follower. The
vector t1 depends on the absolute coordinates of the cam and the follower as well
as the shape of the cam, while the vector t2 depends on the absolute coordinates
and the shape of the cam only.

Gears Gears are widely used in machines for the purpose of transmission
of rotary or rectilinear motion from one component to another (Litvin, 1994).
Gears are used in a variety of industrial and technological applications such
as automobiles, tractors, electric drills, helicopter rotor systems, machine tools,
kitchen appliances, aircrafts, alarming clocks, and others. The theory of gearing
is based on the fact that power can be transmitted from one body to another if
the bodies have rolling contact. A rotary motion, for instance, can be transmitted
from one body to another by friction if the two bodies are pressed against each
other. If the friction force is high enough such that the two bodies roll with-
out slipping, the velocities of the two bodies at the point of contact are equal.
In this case, there is a definite relationship between the input and the output
motions. The friction between the two bodies can be increased by increasing
the roughness of the two surfaces in contact. A more reliable approach is to
cut teeth on the surfaces of the two bodies. In this case, motion is transmitted
by successive engagement of the teeth. Spur gears as shown in Fig. 28a are
formed if the teeth are cut in a direction parallel to the axis of rotation. Gears
can also be formed by cutting the teeth along a helix generated around the axis
of the gear. In this case, the gear is called a helical gear and is shown in Fig.
28b. Both spur and helical gears are used to transmit power between two par-
allel axes. If the diameter of one of the spur gears goes to infinity, one obtains
the rack and pinion system. Another type of gear that is widely used are bevel
gears which, as shown in Fig. 28c, are cut from cones and are used in the case
of intersecting shafts. In the case of nonintersecting and nonparallel shafts, the
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Figure 3.28 Gears

skew gears, hypoid gears, and worm gears (Fig. 28d) are used for the purpose
of power transmission.

The simple case of spur gears is considered as an example in this section
to demonstrate the formulation of the kinematic constraints in gear systems.
Figure 29 shows a pair of spur gears which are assumed to be attached to a
third body k. The condition that no sliding occurs between the two gears i and

Figure 3.29 Spur gears
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j at the contact point can be written as

(v̇ i
− v̇k)ai

c − (v̇ j
− v̇k)a j (3.103)

where ai and a j are, respectively, the radius of the pitch circles of gears i
and j.

Integrating Eq. 103, one obtains the kinematic constraint equation for the
spur gear system as

[(v i
− v i

o) − (vk
− vk

o)]ai + [(v j
− v j

o) − (vk
− vk

o)]a j
c 0 (3.104)

in which v i
o, v

j
o, and vk

o are the initial angular orientations of bodies i, j, and
k, respectively.

If body k does not rotate, that is, vk
c vk

o, Eq. 104 reduces to

(v i
− v i

o)ai + (v j
− v j

o)a j
c 0 (3.105)

Differentiation of Eq. 105 with respect to time leads to the simple conditions
that the velocities of the gears at the points of contact are equal, that is,

vi
P c v j

P

The formulation of the kinematic constraints for other types of gears can be
developed using a similar procedure as demonstrated by the following example.

Example 3.9

Figure 30 shows a rack-and-pinion mechanism in which the pinion is denoted as
body i while the rack is denoted as body j. The pinion is assumed to have only
rotational motion about its own axis, while the rack is assumed to have only trans-
lational motion along the horizontal direction. The condition at the point of contact
that ensures no sliding between the two bodies is given by

v̇ iai
c ẋ

j
P

where ai is the radius of the pitch circle of the pinion, v̇ i is the angular velocity of
the pinion, and ẋ

j
P is the velocity of the contact point on the rack. By integrating

the preceding equation, one obtains the kinematic constraint equation for this simple
mechanism as

(v i
− v i

o)ai
− (x j

P − x
j
Po

) c 0
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Figure 3.30 Rack and pinion

where v i
o and x

j
Po

are the constants of integration that represent the initial condi-
tions.

3.7 COMPUTATIONAL METHODS IN KINEMATICS

The formulations of the algebraic constraint equations presented in the pre-
ceding sections are used in this section to develop computer methods for the
position, velocity, and acceleration analyses of mechanical systems consisting
of interconnected rigid bodies. In the analysis presented in this section, the con-
figuration of the mechanical system is described by n coordinates, which can
be written in a vector form as

q c [q1 q2 q3 · · · qn]T (3.106)

In the planar analysis, if the system consists of nb bodies, and the absolute
coordinates are selected to describe the system configuration, one has n c 3 ×
nb and the coordinates are defined as

q c [q1 q2 q3 q4 q5 q6 · · · qn − 2 qn − 1 qn]T

c [R1
x R1

y v1 R2
x R2

y v2 · · · Rnb
x Rnb

y vnb ]T (3.107)

In mechanical system applications, these coordinates are not independent as the
result of the kinematic constraint equations that describe system joints, as well
as specified motion trajectories. Examples of these constraints are the driving
constraints, prismatic joints, revolute joints, and cam and gear constraints dis-
cussed in the preceding sections. These constraint equations can be written in
a vector form as

C(q, t) c [C1(q, t) C2(q, t) · · · Cnc (q, t)]T
c 0 (3.108)

where nc is the total number of constraint equations and t is time.
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Kinematically Driven Systems There are two cases that are encountered
in the dynamic analysis of mechanical systems. In the first case, the number of
linearly independent constraint equations is equal to the number of the system
coordinates, that is, nc c n. This situation arises when all the degrees of freedom
of the system are prescribed using driving constraints. For example, a slider
crank mechanism that consists of four bodies (including the ground) has 12
absolute coordinates. The three ground constraints, the three revolute joints, and
the prismatic joint in the mechanism make the number of the degrees of freedom
of the mechanism equal to one. One may select this degree of freedom to be the
crank angle. If a driving constraint is used to specify the angular velocity of the
crankshaft, the number of joint constraints plus the driving constraint becomes
equal to 12, equal to the number of absolute coordinates of the system. When
the number of constraint equations is equal to the number of system coordinates,
the system is said to be kinematically driven.

In the second case, the number of constraint equations including the driving
constraints is less than the number of the system coordinates, that is, nc < n.
This situation arises when some of the degrees of freedom of the system are
dynamically driven using force inputs. In this case, some of the degrees of
freedom are not specified, and the system in this case is said to be dynamically
driven. In the case of a dynamically driven system, a force analysis is required
in order to obtain the position, velocity, and acceleration of the system compo-
nents.

In this chapter, only kinematically driven systems are discussed. Dynami-
cally driven systems are discussed in later chapters when the force analysis of
mechanical systems is considered. In the case of kinematically driven systems,
the vector of the constraint equations, defined by Eq. 108, includes the joint
and driving constraints as demonstrated by the following simple example.

Example 3.10

For the three-body system of Example 7, bodies 2 and 3 are assumed to rotate
with constant angular velocities v̇2 c q2 and v̇3 c q3. Determine the vector of the
constraint functions of the system.

Solution. If the absolute coordinates are used, the number of coordinates n is equal
to 9 and the number of the joint constraints is equal to 7. By imposing constraints on
the angular velocities of bodies 2 and 3, the system becomes kinematically driven.
The two driving constraints

v̇2 − q2 c 0

v̇3 − q3 c 0

can be integrated, yielding

v2 − v2
o − q2t c 0

v3 − v3
o − q3t c 0



152 KINEMATICS

where v2
o and v3

o are the initial angular orientations of bodies 2 and 3, respectively.
These two driving constraint equations can be combined with the joint constraints
obtained in Example 7, leading to

C(q, t) c


































C1(q, t)

C2(q, t)

C3(q, t)

C4(q, t)

C5(q, t)
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Position Analysis For kinematically driven systems, the total number of
constraint equations nc is equal to the number of system coordinates n. Con-
sequently, the vector of the constraint equations defined by Eq. 108 contains n
algebraic equations that describe joint constraints as well as driving constraints.
This vector of the constraint equations can then be written as

C(q, t) c [C1(q, t) C2(q, t) · · · Cn(q, t)]T c 0 (3.109)

Equation 109 represents n scalar equations that can be solved for the n unknown
coordinates

q c [q1 q2 · · · qn]T (3.110)

These equations, however, can be nonlinear functions of the system coordinates
and time, a fact which was demonstrated in the preceding example where non-
linear trigonometric functions of the system coordinates appear in the algebraic
kinematic constraint equations.

The numerical procedure often used for solving a system of nonlinear alge-
braic equations is the Newton–Raphson algorithm. This iterative procedure
which can be employed to solve the nonlinear kinematic constraint equations
starts by making an estimate of the desired solution vector. If this estimate at
certain point in time t is denoted as qi, the exact solution can be written as qi
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+ Dqi. By using Taylor’s theorem, the vector of constraint equations defined
by Eq. 109 can be written as

C(qi + Dqi, t) c C(qi, t) + Cqi
Dqi + 1

2 (Cqi
Dqi)qi

Dqi + · · · (3.111)

where Dq c [Dq1 Dq2 · · · Dqn]T is called the vector of Newton differences,
and Cqi

is the constraint Jacobian matrix, defined as

Cqi
c
















∂C1

∂q1

∂C1

∂q2

∂C1

∂q3
· · ·

∂C1

∂qn

∂C2

∂q2

∂C2

∂q2

∂C2

∂q3
· · ·

∂C2

∂qn
...

...
...

. . .
...

∂Cnc

∂q1

∂Cnc

∂q2

∂Cnc

∂q3
· · ·

∂Cnc

∂qn
















(3.112)

For a kinematically driven system, the Jacobian matrix is a square matrix since
nc c n, and additionally, if the constraint equations are assumed to be linearly
independent, Cq is a nonsingular matrix. If the vector qi + Dqi is assumed to
be the desired exact solution, C(qi + Dqi, t) c 0, and Eq. 111 reduces to

C(qi, t) + Cqi
Dqi + 1

2 (Cqi
Dqi)qi

Dqi + · · · c 0 (3.113)

If the assumed solution is close to the exact solution, the norm of the vector
Dqi becomes small and higher-order terms in the vector Dq in Eq. 113 can be
neglected. This assumption defines the first-order approximation of Eq. 113 as

C(qi, t) + Cqi
Dqi ≈ 0 (3.114)

which yields

Cqi
Dqi c −C(qi, t) (3.115)

Since the constraint Jacobian matrix Cqi
is assumed to be nonsingular, Eq. 115

can be solved for the vector of Newton differences Dqi. This vector can be
used to iteratively update the vector of the system coordinates as

qi + 1 c qi + Dqi (3.116)

where i is the iteration number. The updated vector qi + 1 can then be used to
reconstruct Eq. 115 and solve this system of equations for the new vector of
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Newton differences Dqi + 1, which can be used again to update the vector of
the system coordinates, thus defining the vector qi + 2. This process continues
until the norm of the vector of Newton differences or the norm of the vector
of constraint equations becomes less than a specified tolerance, that is,

|Dqk | < e1 or |C(qk , t) | < e2 (3.117)

where e1 and e2 are specified tolerances and k is the iteration number.
It is important to mention at this point that due to the fact that the

Newton–Raphson method does not always converge, one must specify an upper
limit on the number of iteractions used in this numerical algorithm. Failure to
achieve convergence may be due to several factors, such as the initial estimate
of the desired solution is not close enough to the exact solution, an error is
made in the definition of the system constraints, and/ or the mechanical system
is close to a singular configuration.

Example 3.11

For the three-body system of Example 10, it was shown that the vector of constraint
equations is

C(q, t) c
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where the vector q is selected to be the vector of absolute coordinates given by

q c [R1
x R1

y v1 R2
x R2

y v2 R3
x R3

y v3]T



3.7 COMPUTATIONAL METHODS IN KINEMATICS 155

The Jacobian matrix as defined by Eq. 112 can be developed for this system as

Cq c


































1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0
l 2

2
sin v2 0 0 0

0 0 0 0 1 − l 2

2
cos v2 0 0 0

0 0 0 1 0 − l 2

2
sin v2 −1 0 − l3

2
sin v3

0 0 0 0 1
l 2

2
cos v2 0 −1

l3

2
cos v3

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

































The matrix Cq is a square matrix, since the number of the constraint equations nc
is equal to the number of coordinates n.

Velocity Analysis Differentiating the vector of constraint equations defined
by Eq. 109 with respect to time, and using the chain rule of differentiation leads
to

Cqq̇ + Ct c 0 (3.118)

where Cq is the constraint Jacobian matrix defined by Eq. 112 and Ct is the
vector of partial derivative of the constraint equations with respect to time. This
vector is defined as

Ct c [ ∂C1

∂t
∂C2

∂t
· · ·

∂Cn

∂t ] T

(3.119)

If the constraint equations are not explicit functions of time, the vector Ct is
identically the zero vector.

Since the coordinates of the system components are assumed to be known
from the position analysis, the Jacobian matrix Cq and the vector Ct which
can be functions of the coordinates and time only can be evaluated. Equation
118, which can be considered as a linear system of algebraic equations in the
velocity vector q̇, can be written as

Cqq̇ c −Ct (3.120)

Because Cq is assumed to be a square and nonsingular matrix in the case of
kinematically driven systems, Eq. 120 can be solved for the velocity vector q̇.
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Acceleration Analysis The acceleration equations can be obtained by dif-
ferentiating Eq. 118 with respect to time, leading to

d
dt

(Cqq̇ + Ct) c 0 (3.121)

This equation, by using the chain rule of differentiation, yields

(Cqq̇ + Ct)qq̇ +
∂
∂t

(Cqq̇ + Ct) c 0

which can be written as

(Cqq̇)qq̇ + Ctqq̇ + Cqtq̇ + Cqq̈ + Ct t c 0

After rearranging the terms in this equation, one obtains

Cqq̈ + (Cqq̇)qq̇ + 2Cqtq̇ + Ct t c 0 (3.122)

This is a linear system of algebraic equations in the acceleration vector q̈, which
can be written in the following form:

Cqq̈ c Qd (3.123)

where the vector Qd absorbs terms that are quadratic in the velocities and is
defined as

Qd c − (Cqq̇)qq̇ − 2Cqtq̇ − Ct t (3.124)

Having determined the coordinate and velocity vectors q and q̇ using the posi-
tion and velocity analysis methods discussed previously, the coefficient matrix
Cq and the vector Qd in Eq. 123 can be evaluated. Assuming Cq to be nonsingu-
lar for a kinematically driven system, Eq. 123 can be solved for the acceleration
vector q̈.

Example 3.12

For the three-body system of Example 11, one can verify that the vector Ct of Eq.
119 is given by

Ct c [ ∂C1

∂t
∂C2

∂t
· · ·

∂Cn

∂t ] T

c [0 0 0 0 0 0 0 − q2 − q3]T

Using Eq. 120 and the constraint Jacobian matrix obtained in Example 11, it can
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be shown that the velocity vector q̇ is given at any point in time for this example
by

q̇ c [Ṙ1
x Ṙ1

y v̇1 Ṙ2
x Ṙ2

y v̇2 Ṙ3
x Ṙ3

y v̇3]T

c [0 0 0 h1 h2 q2 h3 h4 q3]T

where

h1 c −
q2l 2

2
sin v2

h2 c
q2l 2

2
cos v2

h3 c −q2l 2 sin v2 − q3l3

2
sin v3

h4 c q2l 2 cos v2 +
q3l3

2
cos v3

For the acceleration analysis, one has to evaluate the vector Qd of Eq. 124. For this
system, if the angular velocities are assumed to be constant, the vector Ct is not an
explicit function of the system coordinates or time. It follows that

Cqt c 0, Ct t c 0

The vector Cqq̇ is

Cqq̇ c
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Ṙ2
x −
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v̇3l3

2
cos v3

v̇2

v̇3






































158 KINEMATICS

which can be used to define the matrix (Cqq̇)q as

(Cqq̇)q c


































0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0
v̇2l 2

2
cos v2 0 0 0

0 0 0 0 0
v̇2l 2

2
sin v2 0 0 0

0 0 0 0 0 − v̇2l 2

2
cos v2 0 0 − v̇3l3

2
cos v3

0 0 0 0 0 − v̇2l 2

2
sin v2 0 0 − v̇3l3

2
sin v3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

































The vector Qd c − (Cqq̇)qq̇ is given by

Qd c − (Cqq̇)qq̇

c − [0 0 0
(v̇2)2l 2

2
cos v2 (v̇2)2l 2

2
sin v2

− � (v̇2)2l 2

2
cos v2 +

(v̇3)2l3

2
cos v3�

− � (v̇2)2l 2

2
sin v2 +

(v̇3)2l3

2
sin v3� 0 0]T

in which v2, v3, v̇2, and v̇3 are assumed to be known from the position and velocity
analyses. Substituting the vector Qd into Eq. 124, one obtains the acceleration vector
q̈ as

R̈1
x c R̈1

y c v̈1 c v̈2 c v̈3 c 0

R̈2
x c − (v̇2)2 l 2

2
cos v2

R̈2
y c − (v̇2)2 l 2

2
sin v2

R̈3
x c − (v̇2)2l 2 cos v2 − (v̇3)2 l3

2
cos v3

R̈3
y c − (v̇2)2l 2 sin v2 − (v̇3)2 l3

2
sin v3
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The results obtained in this simple example, using the general procedure outlined in
this section, can also be obtained by simply differentiating the following kinematic
relationships:
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l 2

2
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l 2 cos v2 +
l3

2
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2
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The formulation presented in the preceding section for kinematically driven
systems leads to a number of nonlinear algebraic constraint equations which is
equal to the number of coordinates. These constraint equations can be solved
for the coordinates using a Newton–Raphson algorithm. Differentiation of the
kinematic constraints once and twice leads to a linear system of algebraic equa-
tions in the velocities and accelerations which can be solved in a straightforward
manner to determine the vector of system velocities and accelerations. Clearly,
the number of resulting algebraic constraint equations depends on the choice
of coordinates. Different sets of coordinates lead to different sets of algebraic
equations. The number of the system degrees of freedom, however, remains the
same, regardless of the type of coordinates used. As a consequence, the use of a
larger number of coordinates requires the use of a larger number of constraint
equations. Consider, for example, the four-bar mechanism shown in Fig. 31.
One may select the system coordinates as

q c [v2 v3 v4]T (3.125)

which is a subset of the absolute Cartesian coordinates of the mechanism. In this
case, fewer constraint equations are required in order to describe the kinematic
relationships between the angles v2, v3, and v4. The constraint equations can
be expressed in terms of these coordinates as

l 2 cos v2 + l3 cos v3 + l4 cos v4 c l1 (3.126a)

l 2 sin v2 + l3 sin v3 + l4 sin v4 c 0 (3.126b)

where l1 is the length OC. If the system is kinematically driven, a driving con-
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Figure 3.31 Four-bar mechanism

straint must be introduced in order to control the degree of freedom of the
system, thereby making the number of constraint equations equal to the num-
ber of coordinates. In this case, the general procedure outlined in the preceding
section can still be used to solve a smaller system of equations as demonstrated
by the following example.

Example 3.13

For the four-bar linkage shown in Fig. 31, let l1 c OC c 0.35 m, l 2 c 0.2 m, l3

c 0.35 m, and l4 c 0.25 m. The crankshaft of the mechanism is assumed to rotate
with a constant angular velocity v̇2 c 5 rad/ s. Determine the angular orientations,
velocities, and accelerations of the coupler and the rocker when t c 0.02 s. Use v2,
v3, and v4 as the system coordinates. Assume that the initial angular orientation of
the crankshaft is 57.278.

Solution. Since the mechanism has only one degree of freedom, the coordinates
v2, v3, and v4 are not independent. They are related by the following loop-closure
equations and the driving constraint equation

C(q, t) c 




C1(q, t)

C2(q, t)

C3(q, t)





c 




l 2 cos v2 + l3 cos v3 + l4 cos v4 − l1

l 2 sin v2 + l3 sin v3 + l4 sin v4

v2 − q2t − v2
o





c 




0

0

0





where q2 c v̇2 c 5 rad/ s, v2

o is the initial angular orientation of the crankshaft, and

q c [v2 v3 v4]T

The Jacobian matrix of the constraint equations is

Cq c





− l 2 sin v2 − l3 sin v3 − l4 sin v4

l 2 cos v2 l3 cos v3 l4 cos v4

1 0 0





At t c 0.02 s, v2 c 638 c 1.0996 rad. To start the numerical solution, we make an
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initial guess for the angles v2, v3, and v4 as

q0 c [638 108 2458]T c [1.0996 0.1745 4.2761]T rad

Using the initial guess, the Jacobian matrix is

Cq(q0) c 

−0.1782 −0.06077 0.22658

0.09079 0.34468 −0.105646

1.0 0.0 0.0




and the constraint equations are

C(q0, t) c 




−0.020176

0.01239

0.0





For this mechanism, Eq. 115 can be written as






−0.1782 −0.06077 0.22658

0.09079 0.34468 −0.105646

1.0 0.0 0.0










Dv2
0

Dv3
0

Dv4
0





c − 





−0.020176

0.01239

0.0





It is clear that Dv2

0 c 0, and

[ −0.06077 0.22658

0.34468 −0.105646 ] [ Dv3
0

Dv4
0

] c − [ −0.020176

0.01239 ]
which can be solved for Dv3

0, and Dv4
0 as

Dv3
0 c −9.4285 × 10−3, Dv4

0 c 0.086517

The vector of the system coordinates can be updated according to Eq. 116 as

q1 c q0 + Dq0 c





1.0996

0.1745

4.2761





+





0.0
−9.4285 × 10−3

0.086517





c 




1.0966

0.16507

4.362617





Using the vector q1 c [v2

1 v3
1 v4

1]T, the Jacobian matrix and the vector of con-
straint equations can be evaluated as

Cq(q1) c 




−0.1782 −0.05751 0.23486

0.09079 0.34524 −0.08567

1.0 0.0 0.0






C(q1, t) c 




3.6 × 10−4

8.5 × 10−4

0.0
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Equation 115 yields






−0.1782 −0.05751 0.23486

0.09079 0.34524 −0.08567

1.0 0.0 0.0










Dv2
1

Dv3
1

Dv4
1





c − 





3.6 × 10−4

8.5 × 10−4

0.0





The solution of this system of equations yields

Dq1 c [Dv2
1 Dv3

1 Dv4
1]T c [0.0 − 3.026 × 10−3 − 2.2738 × 10−3]T

We may define the norms of C and Dq as

|C | c
[ nc

���
i c 1

(Ci)2] 1/ 2

nc
c 1

3

f
(C1)2 + (C2)2 + (C3)2

|Dq | c
[ n

���
i c 1

(Dqi)2] 1/ 2

n
c 1

3

f
(Dv2)2 + (Dv3)2 + (Dv4)2

where nc and n are, respectively, the number of constraint equations and the number
of coordinates. It follows that

|C(q1, t) | c
10−4

3

f
(3.6)2 + (8.5)2 + (0)2 c 3.077 × 10−4

|Dq1 | c
10−3

3

f
(0)2 + (3.026)2 + (2.2738)2 c 1.261 × 10−3

Since the norms of C and Dq1 are relatively small, one may decide to accept q1
as the correct answer for the position analysis and proceed to perform the velocity
analysis. In this example, the vector Ct is

Ct c





0

0

−q2





c 




0

0

−5.0





Using the Jacobian matrix previously evaluated at q c q1, the linear algebraic veloc-
ity equations can be written as






−0.1782 −0.05751 0.23486

0.09079 0.34524 −0.08567

1.0 0.0 0.0










v̇2

v̇3

v̇4





c − 





0.0
0.0
−5.0





This equation defines the angular velocities v̇2, v̇3, and v̇4 at t c 0.02 s as

v̇2 c 5 rad/ s, v̇3 c −0.39764 rad/ s, v̇4 c 3.6964 rad/ s
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One can verify that the vector Qd of Eq. 124 is given for this example by

Qd c





(v̇2)2l 2 cos v2 + (v̇3)2l3 cos v3 + (v̇4)2l4 cos v4

(v̇2)2l 2 sin v2 + (v̇3)2l3 sin v3 + (v̇4)2l4 sin v4

0





Using the values of the coordinates and velocities obtained previously in the position
and velocity analyses at time t c 0.02 s, the vector Qd can be evaluated as

Qd c











(5)2(0.2) cos (1.0996) + (−0.39764)2(0.35) cos (0.16507)

+ (3.6964)2(0.25) cos (4.362617)

(5)2(0.2) sin (1.0996) + (−0.39764)2(0.35) sin (0.16507)
+ (3.6964)2(0.25) sin (4.362617)

0











c 




1.153798

1.255206

0.0





The linear algebraic equations for the angular accelerations can then be written as






−0.1782 −0.05751 0.23486

0.09079 0.34524 −0.08567

1.0 0.0 0.0










v̈2

v̈3

v̈4





c − 





1.153798

1.255206

0.0





The solution of this system yields

[v̈2 v̈3 v̈4]T c [0 5.1689 6.1784]T rad/ s2

The choice of the coordinates v2, v3, and v4 in the preceding example was
made by examining the topological structure of the four-bar mechanism. If
another mechanism is considered, this set of coordinates is no longer suitable,
and different constraint equations that take different forms must be formulated.
For this reason, the choice of the coordinates based on the topological struc-
ture of the system under consideration makes it difficult to develop a general-
purpose computer program for the kinematic analysis of multibody systems.

An alternative method for choosing the coordinates of the four-bar mecha-
nism shown in Fig. 32 is to assume that the mechanism consists of four bodies,
the fixed link or ground (body 1), the crankshaft (body 2), the coupler (body
3), and the rocker (body 4). Every body is assigned an identical set of coordi-
nates that we select to be the absolute Cartesian coordinates Ri

x , Ri
y, and v i (i

c 1, 2, 3, 4). As the result of this choice, the configuration of the mechanism
is described using 12 coordinates, and consequently, the number of constraint
equations increases. In this case, we have 11 joint constraints which include
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Figure 3.32 Four-bar mechanism

three ground constraints and eight constraints resulting from the revolute joints
at O, A, B, and C. The formulation for the ground constraints can be simply
written as

R1
x c R1

y c v1 c 0 (3.127)

while the revolute joint constraints can be written as

R1 + A1u1
O − R2 − A2u2

O c 0 (3.128a)

R2 + A2u2
A − R3 − A3u3

A c 0 (3.128b)

R3 + A3u3
B − R4 − A4u4

B c 0 (3.128c)

R4 + A4u4
C − R1 − A1u1

C c 0 (3.128d)

where ui
O, ui

A, ui
B, and ui

C are the local position vectors of points O, A, B, and C,
respectively, defined with respect to the selected coordinate system of body i,
Ai is the planar transformation matrix from the body i coordinate system to the
global coordinate system, and Ri c [Ri

x Ri
y]T is the global position vector of

the origin of the body coordinate system. Note that the loop closure equations
of Eqs. 126a and 126b can be obtained by adding the joint constraints of Eqs.
128a, 128b, 128c, and 128d.

The use of the three absolute coordinates Ri
x , Ri

y, and v i for each body in
the system, however, makes it possible to develop a general-purpose computer
program for the dynamic analysis of mechanical systems. What is needed to
formulate the constraints of Eqs. 127 and 128 is to identify which body is the
ground, the bodies connected by the revolute joints, and the local position vec-
tors of the joint definition points at O, A, B, and C. The local position vectors
ui

O, ui
A, ui

B, ui
C are constant in the body coordinate systems and their values

remain constant during the simulation time. Also observe that the form of the
constraint equations in this case does not depend on the topological structure
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of the mechanism. In fact, links can be added or removed from this mechanism
by simply adding or deleting some of the kinematic constraints.

Computer Formulation of the Joint Constraints If three absolute coor-
dinates are used for each body in the mechanical system, the kinematic alge-
braic constraint equations of the joints can be formulated in a general form.
This general formulation for the joint constraints does not depend on a specific
application problem and can be used in the computer-aided kinematic analysis
of varieties of mechanical systems that consist of interconnected rigid bodies.
Standard formulations for typical joints such as the ground constraints as well
as revolute and prismatic joints can be implemented on the digital computer
and made available for the analysis of a large class of mechanical systems. For
example, the kinematic constraints of a revolute joint between any pair of two
rigid bodies i and j are given by

C(q, t) c Ri + Aiui
P − R j − A ju j

P c 0 (3.129)

where P is the joint definition point. If one provides the body numbers, and
the two constant vectors ui

P and u j
P, a general purpose routine can be used

to automatically generate Eq. 129. Note that Eqs. 128a through 128d are in
the same form as Eq. 129 except for the superscripts, which indicate the body
numbers.

The position, velocity, and acceleration analyses require the evaluation of
the constraint Jacobian matrix. The Jacobian matrix of constraints such as the
ground as well as revolute and prismatic joints can be also made as a stan-
dard element in a general-purpose computer program. For instance, the Jaco-
bian matrix of the revolute joint constraints of Eq. 129 can be written using
vector notation as

Cq c
∂C
∂q

c [ ∂C

∂Ri

∂C
∂v i

∂C
∂R j

∂C
∂v j ] c [I Ai

vui
P − I −A j

vu j
P] (3.130)

where I is the 2 × 2 identity matrix, and Ai
v and A j

v are the partial derivatives
of Ai and A j with respect to the rotational coordinates of bodies i and j, respec-
tively. It is clear that the form of the Jacobian matrix of Eq. 130 remains the
same for any pair of two rigid bodies connected by a revolute joint and this
equation can be used for an arbitrary revolute joint in a mechanical system.
One only has to change the superscripts, which indicate the body numbers, and
the constant vectors that define the local positions of the joint definition points.

For the velocity analysis, one has to evaluate the vector Ct of Eq. 120. This
vector is equal to zero in the case of the revolute joint constraints of Eq. 129
because these constraints are not explicit functions of time.

For the acceleration analysis, one must evaluate the vector Qd of Eq. 124.
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In the case of revolute joint, this vector reduces to

Qd c − (Cqq̇)qq̇ (3.131)

By using the Jacobian matrix of Eq. 130, one has

(Cqq̇) c Ṙi + Ai
vui

Pv̇ i − Ṙ j − A j
vu j

Pv̇ j

It follows that

(Cqq̇)q c [(Cqq̇)Ri (Cqq̇)v i (Cqq̇)R j (Cqq̇)v j ]

c [0 Ai
v vu

i
Pv̇ i 0 − A j

v vu
j
Pv̇ j] (3.132)

Using the fact that the planar transformation matrix Ai satisfies the identity

Ai
v v c −Ai

Eq. 132 yields

(Cqq̇)q c [0 − Aiui
Pv̇ i 0 A ju j

Pv̇ j]

Substituting this equation into Eq. 131 yields the vector Qd in the case of a
revolute joint as

Qd c Aiui
P(v̇ i)2 − A ju j

P(v̇ j)2 (3.133)

This equation has the same form for any pair of rigid bodies connected by a
revolute joint.

Example 3.14

The constraint equations of the prismatic joint were defined by Eq. 94 as

C c [ C1

C2 ] c [ v i − v j − c

hiT rij
P

] c [ 0

0 ]
where

hi c Aihi

rij
P c Ri + Aiui

P − R j − A ju j
P

in which

hi c (ui
P − ui

Q)
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The nonzero elements of the Jacobian matrix are

C13 c
∂C1

∂v i c 1, C16 c
∂C1

∂v j c −1

C21 c
∂C2

∂Ri
x
c hi

x , C22 c
∂C2

∂Ri
y
c hi

y

C23 c
∂C2

∂v i c rijT

P Ai
vhi

+ hiT Ai
vui

P

C24 c
∂C2

∂R
j
x

c −hi
x , C25 c

∂C2

∂R
j
y

c −hi
y

C26 c
∂C2

∂v j c −hiT A j
vu j

P

where hi
x and hi

y are the components of the vector hi, that is,

hi c [hi
x hi

y]T

The Jacobian matrix of the prismatic joint can then be defined as

Cq c








∂C1

∂Ri
x

∂C1

∂Ri
y

∂C1

∂v i

∂C1

∂R
j
x

∂C1

∂R
j
y

∂C1

∂v j

∂C2

∂Ri
x

∂C2

∂Ri
y

∂C2

∂v i

∂C2

∂R
j
x

∂C2

∂R
j
y

∂C2

∂v j








c [ 0 0 C13 0 0 C16

C21 C22 C23 C24 C25 C26 ]
Since the prismatic joint constraints are not explicit functions of time, one has

Ct c 0

It follows that

Ct t c 0, Cqt c 0

and

Cqq̇ c [ v̇ i − v̇ j

d1 ]
where

d1 c hiT (Ṙi − Ṙ j) + v̇ i[rijT

P Ai
vhi

+ hiT Ai
vui

P] − v̇ jhiT A j
vu j

P
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Hence,

(Cqq̇)q c [ 0 0 0 0 0 0

C21 C22 C23 C24 C25 C26 ]
where

[ C21

C22 ] c v̇ iAi
vhi

C23 c (Ai
vhi

)T(Ṙ
i − Ṙ j) + v̇ i[uiT

P hi − rijT

P hi] − v̇ j(Ai
vhi

)T(A j
vu j

P)

[ C24

C25 ] c − v̇ iAi
vhi

C26 c − v̇ i(A j
vu j

P)TAi
vhi

+ v̇ jhiT u j
P

in which

ui
P c Aiui

P, u j
P c A ju j

P

The vector Qd can then be defined as

Qd c [ Qd1

Qd2 ] c − (Cqq̇)qq̇

c − [ 0

C21Ṙi
x + C22Ṙi

y + C23v̇ i + C24Ṙ
j
x + C25Ṙ

j
y + C26v̇ j ]

where Qd2 can be written explicitly as

Qd2 c −2v̇ i(Ai
vhi

)T(Ṙi − Ṙ j) − (v̇ i)2[uiT
P hi − rijT

P hi − uiT
P hi]

+ 2v̇ i v̇ j(Ai
vhi

)TA j
vu j

P − (v̇ j)2hiT u j
P

Computer Algorithm It is clear from the discussion presented in this sec-
tion that the kinematic constraint equations of joints, such as revolute, pris-
matic, and other joints that are commonly used in mechanical systems, can be
derived systematically in a general form in terms of the absolute Cartesian coor-
dinates. These joints can be made available as standard elements in a general-
purpose computer program that can be used for the kinematic analysis of vari-
eties of multibody system applications. The driving constraints, on the other
hand, depend on the application and can be introduced to the general-purpose
computer program by using user subroutines.

In what follows, a numerical algorithm that can be implemented in a general-
purpose computer program for the position, velocity, and acceleration analyses
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of mechanical systems is presented. The basic kinematic equations used in this
numerical algorithm are first summarized.

In the position analysis, one needs to solve the system of nonlinear algebraic
constraint equations

C(q, t) c 0 (3.134)

As pointed out in this chapter, a Newton–Raphson algorithm can be used for
solving this equation. Thus, one must construct the matrix equation

Cq Dq c −C (3.135)

where Dq is the vector of Newton differences.
The basic equations used in the velocity and acceleration analyses are

Cqq̇ c −Ct (3.136)

Cqq̈ c Qd (3.137)

where the vector Qd is defined by Eq. 124.
The computational scheme for the analysis of kinematically driven systems

that consist of interconnected rigid bodies is shown in Fig. 33 and proceeds in
the following routine.

Step 1 At a given point in time t, an estimte for the desired solution is made.
This estimate must be close to the exact solution in order to avoid
divergence.

Step 2 The Jacobian matrix Cq and the vector of constraint equations C of
Eq. 135 can be evaluated.

Step 3 Equation 135 is solved for the vector of Newton differences Dq.

Step 4 If the norm of the vector Dq or the norm of the vector of constraint
equations C is small and less than specified tolerances (Eq. 117),
proceed to step 5. Othrewise, update the vector of coordinates, that
is, q c q + Dq and go to step 2 if the number of specified iterations
is not exceeded.

Step 5 Having determined the vector of system coordinates, this vector can
be used to evaluate the Jacobian matrix Cq and the vector Ct of Eq.
136.

Step 6 Equation 136 is a linear system of algebraic equations in the velocity
vector. This system of equations can be solved for the vector q̇.

Step 7 Using the vectors q and q̇ determined from the position and velocity
analyses, evaluate the Jacobian matrix Cq and the vector Qd of Eq.
137.
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Figure 3.33 Flowchart for the kinematic analysis

Step 8 Equation 137 is a linear system of algebraic equations in the accel-
eration vector. This equation can be solved for the vector q̈.

Step 9 Steps 1 through 8 are repeated until the simulation time ends.

For the most part, in a well-posed problem, there are no numerical problems
encountered in the solution for the velocities and accelerations because only the
solution of a linear system of equations is required. If the constraints are linearly
independent, the constraint Jacobian matrix is a nonsingular square matrix, and
consequently, there is a unique solution for Eqs. 136 and 137. Some numerical
problems, however, may be encountered in the position analysis since an itera-
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tive scheme is required for the solution of a nonlinear system of equations.
As pointed out previously, the Newton–Raphson algorithm may diverge if the
assumed initial guess at each time step is not close enough to the exact solution.
The use of the solution obtained in a previous step as the initial guess for the
iterative Newton–Raphson algorithm at the current step may require the use of a
very small step size in order to achieve convergence. One method for obtaining
an improved initial approximation for the solution at a given step is to use the
velocity and acceleration vectors obtained in the previous step to predict the
solution. For example, the following truncated Taylor series expressed in terms
of the coordinates, velocities, and accelerations at the previous step can be used:

qi + 1 c qi + Dtq̇i +
(Dt)2

2
q̈i (3.138)

where qi, q̇i, and q̈i are the coordinate, velocity, and acceleration vectors deter-
mined at step i, Dt is the time step, and qi + 1 is the improved initial guess for
the solution at step i + 1. The use of Eq. 138 to obtain the initial guess for the
Newton–Raphson algorithm may significantly reduce the number of iterations
required to achieve convergence.

3.9 KINEMATIC MODELING AND ANALYSIS

In this section, an example is used to demonstrate the use of the computer meth-
ods presented in the preceding section in the kinematic analysis of mechanism
systems. For this purpose, the single-degree-of-freedom slider crank mechanism
shown in Fig. 34 is used. The mechanism consists of four bodies; the fixed link
denoted as body 1, the crankshaft OA denoted as body 2, the connecting rod
AB denoted as body 3, and the slider block B denoted as body 4. Bodies 1 and
2 are connected by a revolute joint at O, bodies 2 and 3 are connected by a
revolute joint at A, and bodies 3 and 4 are connected by a revolute joint at B.
Bodies 1 and 4 are connected by a prismatic joint. The length of the crankshaft
is assumed to be 0.15 m and the length of the connecting rod is assumed to
be 0.35 m. As shown in Fig. 35, a body fixed coordinate system is attached to
every body in the system including the ground. The vector of absolute coordi-

Figure 3.34 Slider crank mechanism



172 KINEMATICS

Figure 3.35 Body coordinate systems

nates of the slider crank mechanism is given by

q c [R1
x R1

y v1 R2
x R2

y v2 R3
x R3

y v3 R4
x R4

y v4]T

Initially, the crankshaft is assumed to make an angle v2
0 c 308. The local position

vectors of the revolute joint definition points are as follows:

u1
O c [0.0 0.0]T, u2

O c [−0.075 0.0]T

u2
A c [0.075 0.0]T, u3

A c [−0.175 0.0]T

u3
B c [0.175 0.0]T, u4

B c [0.0 0.0]T

In this example, the prismatic constraints between bodies 1 and 4 reduce to

R4
y c 0

v4 c 0

It is clear that the total number of joint constraints is 11 (three ground con-
straints, six revolute joint constraints, and two prismatic joint constraints).
Recall that in the kinematic analysis, the number of coordinates must be equal to
the number of constraint equations so as to have a kinematically driven system.
There are two alternatives for introducing a driving constraint for this mecha-
nism. The first alternative is to drive the mechanism by rotating the crankshaft,
while in the second alternative, the mechanism is driven by moving the slider
block. In each case, one driving constraint can be defined. This driving con-
straint, when it is added to the joint constraints, makes the total number of kine-
matic constraint equations equal to the total number of absolute coordinates of
the mechanism.
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Prescribed Rotation of the Crankshaft First, we consider the case where
the angular velocity of the crankshaft is prescribed as

v̇2 c f (t)

where f (t) is a specified function of time. This equation can also be written as

dv2 c f (t) dt

which upon integration yields

v2 − v2
0 c ∫

t

0
f (t) dt

where v2
0 is the angular orientation of the crankshaft at the initial configuration.

The preceding equation can be written as

Cd c v2 − v2
0 − g(t) c 0

where Cd is the driving constraint and

g(t) c ∫
t

0
f (t) dt

Using the definition of the ground and revolute joint constraints presented in
the preceding sections and the special form of the prismatic joint and driving
constraints presented in this section, the vector of the constraint equations of
the slider crank mechanism can be written as

C(q, t) c






















R1
x

R1
y

v1

R2 + A2u2
O

R2 + A2u2
A − R3 − A3u3

A

R3 + A3u3
B − R4 − A4u4

B

R4
y

v4

v2 − v2
O − g(t)






















c 0

in which the first three constraints are the ground constraints, the fourth to the
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ninth constraints represented by the three vector equations are the revolute joint
constraints, the tenth and eleventh constraints are the prismatic joint constraints,
and the twelfth constraint is the driving constraint.

The Newton–Raphson iterative procedure used for the position analysis
requires the evaluation of the constraint Jacobian matrix, which is defined for
this example as

Cq c






























1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 C4, 6 0 0 0 0 0 0

0 0 0 0 1 C5, 6 0 0 0 0 0 0

0 0 0 1 0 C6, 6 −1 0 C6, 9 0 0 0

0 0 0 0 1 C7, 6 0 −1 C7, 9 0 0 0

0 0 0 0 0 0 1 0 C8, 9 −1 0 0

0 0 0 0 0 0 0 1 C9, 9 0 −1 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0





























where

C4, 6 c
l 2

2
sin v2, C5, 6 c −

l 2

2
cos v2,

C6, 6 c −
l 2

2
sin v2, C7, 6 c

l 2

2
cos v2

C6, 9 c −
l3

2
sin v3, C7, 9 c

l3

2
cos v3,

C8, 9 c −
l3

2
sin v3, C9, 9 c

l3

2
cos v3

Using the Jacobian matrix and the vector of constraint equations, an iterative
Newton–Raphson procedure can be used to determine the coordinates of the
bodies of the slider crank mechanism. Figures 36a and 36b show, respectively,
the angular orientation of the connecting rod and the displacement of the slider
block as a function of the crank angle when the crankshaft rotates with a con-
stant angular velocity equal to 150 rad/ s. In this special case, g(t) c 150t.
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Figure 3.36a Orientation of the connecting
rod

Figure 3.36b Displacement of the slider
block

For the velocity analysis, one needs to evaluate the vector Ct , which is given
in this case by

Ct c [0 0 0 0 0 0 0 0 0 0 0 f (t)]T

where f (t) c 150. Figures 37a and 37b show, respectively, the angular velocity
of the connecting rod and the velocity of the slider block as functions of the
crank angle.

For the acceleration analysis, the Jacobian matrix and the vector Qd must be
evaluated. The vector Qd is

Figure 3.37a Angular velocity of the con-
necting rod

Figure 3.37b Velocity of the slider block
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Qd c
























0

0

0

(v̇2)2A2u2
O

(v̇2)2A2u2
A − (v̇3)2A3u3

A

(v̇3)2A3u3
B − (v̇4)2A4u4

B

0

0

0























Using this vector and the Jacobian matrix, Eq. 137 can be solved for the accel-
erations. Figures 38a and 38b show, respectively, the angular acceleration of
the connecting rod and the acceleration of the slider block as functions of the
crank angle.

Prescribed Motion of the Slider Block If the mechanism is kinematically
driven by prescribing the motion of the slider block, the driving constraint in
this case takes the following form:

Cd c R4
x − f (t) c 0

where f (t) is a specified function of time. In this case, the vector of the con-

Figure 3.38a Angular acceleration of the
connecting rod

Figure 3.38b Acceleration of the slider
block
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straint equations can be written as

C(q, t) c


























R1
x

R1
y

v1

R2 + A2u2
O

R2 + A2u2
A − R3 − A3u3

A

R3 + A3u3
B − R4 − A4u4

B

R4
y

v4

R4
x − f (t)


























c 0

and the Jacobian matrix of the kinematic constraints is

Cq c




































1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 C4, 6 0 0 0 0 0 0

0 0 0 0 1 C5, 6 0 0 0 0 0 0

0 0 0 1 0 C6, 6 −1 0 C6, 9 0 0 0

0 0 0 0 1 C7, 6 0 −1 C7, 9 0 0 0

0 0 0 0 0 0 1 0 C8, 9 −1 0 0

0 0 0 0 0 0 0 1 C9, 9 0 −1 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0




































where the coefficients that appear in this matrix are the same as those defined
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in the case of the prescribed rotation of the crankshaft. The vectors Ct and Qd
are

Ct c [0 0 0 0 0 0 0 0 0 0 0
∂f
∂t ] T

Qd c




























0

0

0

(v̇2)2A2u2
O

(v̇2)2A2u2
A − (v̇3)2A3u3

A

(v̇3)2A3u3
B − (v̇4)2A4u4

B

0

0

∂2f
∂t2



























Figures 39a and 39b show, respectively, the angular orientations of the
crankshaft and the connecting rod as functions of time when

f (t) c 0.35 − 0.8l 2 sin 150t

Figure 3.39a Orientation of the crankshaft Figure 3.39b Orientation of the connecting
rod
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Figure 3.40a Angular velocity of the crank-
shaft

Figure 3.40b Angular velocity of the con-
necting rod

Figures 40a and 40b show, respectively, the angular velocities of the crankshaft
and the connecting rod, while Figs. 41a and 41b show their angular accelera-
tions as the result of the specified motion of the slider block.

At the special configuration in which v2 c v3 c 0, one has

C4, 6 c C6, 6 c C6, 9 c C8, 9 c 0

C5, 6 c −C7, 6 c −
l 2

2
, C7, 9 c C9, 9 c

l3

2

Figure 3.41a Angular acceleration of the
crankshaft

Figure 3.41b Angular acceleration of the
connecting rod
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and at this special configuration, the Jacobian matrix becomes

Cq c





































1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 − l 2

2
0 0 0 0 0 0

0 0 0 1 0 0 −1 0 0 0 0 0

0 0 0 0 1
l 2

2
0 −1

l3

2
0 0 0

0 0 0 0 0 0 1 0 0 −1 0 0

0 0 0 0 0 0 0 1
l3

2
0 −1 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0




































This matrix is singular since the sum of the sixth, eighth and twelfth rows is the
fourth row. This is an indication that it is impossible to drive the mechanism at
this singular configuration by specifying the motion of the slider block. This
singularity, however, does not occur at this configuration when the mechanism
is driven by specifying the angular orientation of the crankshaft.

3.10 CONCLUDING REMARKS

In this chapter, methods for the analysis of kinematically driven systems are
presented. Two distinctive, yet equivalent, procedures can be recognized from
the kinematic development presented in this chapter. The first is the classical
approach, which is suited for the analysis of multibody systems that consist of
small numbers of bodies and joints. The kinematic analysis using the classi-
cal approach, as demonstrated by Examples 3 through 6, starts by developing
trigonometric relationships between the angles that define the orientation of the
bodies in the system. These trigonometric relationships, which depend on the
topological structure of the system, define a set of nonlinear algebraic equations
that can be solved for the position variables. Once the position coordinates are
defined, the kinematic velocity analysis starts by considering the velocities of



PROBLEMS 181

a body in the system and their relationships to the velocities of other bodies
as the result of the joint connections. By utilizing the topological structure of
a given system, a set of linear algebraic constraint equations in the velocities
can be determined and solved for the time derivatives of the coordinates. The
acceleration analysis can be performed once the velocities are determined, and
in the classical approach it heavily utilizes the particular topological structure
of the system, as in the case of the position and velocity analyses.

The second approach presented in this chapter is more general and can be
applied to a wide class of multibody system applications. In this approach,
the nonlinear constraint equations that describe mechanical joints and specified
motion trajectories of the system are formulated. In the case of kinematically
driven systems, the resulting number of equations is equal to the number of the
system coordinates. Therefore, these equations can be solved using numerical
and computer methods to determine the system coordinates. By differentiating
the constraint equations once and twice with respect to time, one obtains linear
systems of algebraic equations in the velocities and accelerations, respectively.
These equations can be solved in a straightforward manner to determine the
first and second time derivatives of the system coordinates. This procedure for
the kinematic analysis can be implemented on the digital computer and used in
the kinematic analysis of varieties of multibody system applications as demon-
strated in this chapter.

In the analysis of kinematically driven systems, it is assumed that all the
system degrees of freedom are specified. In this case, one obtains a number of
algebraic equations equal to the number of system coordinates, and therefore, a
complete kinematic analysis can be performed without the need for developing
the differential dynamic equations of motion, which are expressed in terms of
the inertia, applied, and/ or joint forces. If one or more of the degrees of free-
dom are not specified, the algebraic constraint equations are not sufficient to
solve for the system coordinates. This is the case of dynamically driven systems
whose analysis requires use of the laws of motion and formulation of the differ-
ential equations of the system as well as consideration of the force relationships
in addition to the kinematic relationships. In the following chapters, different
techniques for formulating the dynamic equations of constrained multibody sys-
tems are presented and the computer implementation of these techniques is dis-
cussed.

PROBLEMS

1. Figure P1 shows a rigid body i that has a body fixed coordinate system
X iY i. The global position vector of the origin of the body coordinate sys-
tem Oi is defined by the vector Ri, and the orientation of the body i coordi-
nate system in the global coordinate system is defined by the angle v i. The
local position vector of point Pi on the body is defined by the vector ui

P. If
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Figure P3.1

Ri c [5 3]T m, v i c 458, and ui
P c [0.2 1.5]T m, determine the global

position vector of point Pi. If the body rotates with a constant angular veloc-
ity q i c 150 rad/ s, determine the absolute velocity of point Pi assuming
that the absolute velocity of the reference point Ṙi c [32 −10]T m/ s.

2. In problem 1, let Ri c t[5 3]T m, v i c qt, q c 50 rad/ s, and ui
P c [0.2

1.5]T m, determine the global position vector of point Pi at t c 0, 0.25,
and 1 s. Also determine the absolute velocity of point Pi at these points in
time.

3. In the slider crank mechanism shown in Fig. P2, the lengths of the
crankshaft OA and the connecting rod AB are, respectively, 0.3 and 0.5
m. The crankshaft is assumed to rotate with a constant angular velocity
v̇ i c 100 rad/ s (counterclockwise). Assuming that the offset h c 0, use
analytical methods to determine the orientation and angular velocity and
acceleration of the connecting rod and the position, velocity, and acceler-
ation of the slider block when the angular orientation v2 of the crankshaft
is 458. Also determine the absolute velocity and acceleration of the center
of the connecting rod.

Figure P3.2

4. Repeat problem 3 assuming that the offset h c 0.05 m.

5. The lengths of the crankshaft OA and the connecting rod AB of the slider
crank mechanism shown in Fig. P2 are 0.3 and 0.5 m, respectively, and
the offset h c 0.0. The motion of the crankshaft is such that v2 c 150t +
3.0 rad. Determine the orientation of the connecting rod and the position
of the slider block at time t c 0, 0.01, and 0.03 s.

6. The lengths of the crankshaft OA, coupler AB, and rocker BC of the four-
bar linkage shown in Fig. P3 are, respectively, 0.3, 0.35, and 0.4 m. The dis-
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tance OC is 0.32 m. The crankshaft rotates with a constant angular velocity
of 100 rad/ s. Determine the orientation and angular velocity and acceler-
ation of the coupler and the rocker when the orientation of the crankshaft
v2 c 608. Also determine the orientation and angular velocity and angular
acceleration of the crankshaft and the coupler when the orientation of the
rocker v4 c 608.

Figure P3.3

7. Using Eq. 38, show that the velocities of two points A and B on a rigid
body have equal components along the line AB.

8. Repeat problem 1 assuming that the absolute velocity of the reference point
is zero. Prove in this case, by using vector algebra, that the absolute velocity
of point Pi is perpendicular to the line OiPi, where Oi is the reference point.

9. Show that in the case of a general rigid body displacement, there exists
a point on the rigid body whose velocity is instantaneously equal to zero.
This point is called the instantaneous center of rotation.

10. In problem 3, let the velocity of the slider block be constant and equal to
5 m/ s. Determine the angular velocities and angular accelerations of the
crankshaft and the connecting rod. Also determine the absolute velocity
and acceleration of the center of the connecting rod.

11. Prove the identities of Eqs. 44 and 45.

12. Prove the identity of Eq. 66.

13. The motion of a rigid body i is such that the location of the origin of its
reference is defined by the vector Ri c [t 8(t)3]T m, its angular velocity v̇ i

c −150 rad/ s (clockwise), and its angular acceleration v̈ i c 0. Determine the
position, velocity, and acceleration of a point P that moves with respect to
the body such that its coordinates are defined in the body coordinate system
by the vector ui

P c [1.5(t)2 − 3(t)3]T m. Find the solution at time t c 0,
1, and 1.5 s.
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14. Solve problem 13 assuming that v̇ i c −150(t)2 rad/ s.

15. Examine the singular configurations of the four-bar mechanism.

16. In the system shown in Fig. P4, OA c 0.2 m, OB c 0.3 m, and BC c 0.6
m. Link OA is assumed to rotate with an angular velocity 50 rpm counter-

Figure P3.4

clockwise. Find the velocity and acceleration of point C and the angular
velocity and acceleration of link BC.

17. Figure P5 shows a gear system that consists of gears i, j, and k, which
are pinned at their centers to the rod r at points O, A, and B, respectively.
Gear i is fixed with ri c 0.3 m, while r j c r k c 0.1 m. If the rod r rotates

Figure P3.5

counterclockwise with a constant angular velocity of 15 rad/ s, determine
the angular velocities and angular accelerations of the gears j and k.

18. Solve problem 17 if the angular velocity and the angular acceleration of
the rod are 15 rad/ s, and 120 rad/ s2, respectively. The angular velocity and
acceleration of the rod are assumed to be counterclockwise.
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19. The motion of a rigid body i is such that the global coordinates of point
P on the rigid body is given by ri

P c [vt 0]T, where v is a constant. The
angular velocity of the rigid body is assumed to be v̇ i c a0 + a1t. Derive an
expression for the kinematic constraint equations of this system in terms
of the absolute coordinates Ri

x , Ri
y, and v i. Assume that ui

P c [0.3 1.2]T

m. Also determine the first and the second derivatives of the constraint
equations. Use the resulting equations to determine the velocities Ṙi

x , Ṙi
y,

and v̇ i and the accelerations R̈i
x , R̈i

y, and v̈ i at t c 0, and 2 s. Use the data
v c 5 m/ s, a0 c 0, a1 c 15 rad/ s2.

20. The motion of two bodies i and j is such that Ri
x c 5 m c constant, Ri

y c 3
sin 5t m, v̇ i − v̇ j c 5 rad/ s c constant, and the position vector of point P j

on body j with respect to point Pi on body i is defined by

r j
P − ri

P c [ 0.5 sin 3t

0.1 cos 3t ]
where

ui
P c [0.7 1.2]T, u j

P c [0.5 − 0.8]T

Derive the vector of the constraint equations of this system and determine
the number of degrees of freedom.

21. For the three-body system shown in Fig. P6, use three absolute coordinates

Figure P3.6

for each body to write the kinematic constraint equations of the revolute and
prismatic joints. Also derive the constraint Jacobian matrix for the system.

22. Figure P7 shows two bodies i and j connected by a revolute-revolute joint
that keeps the distance between points Pi and P j constant. Derive the con-
straint equations for this type of joint using the absolute Cartesian coordi-
nates. Derive also the constraint Jacobian matrix for this joint.
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Figure P3.7

23. Derive the constraint Jacobian matrix of the reciprocating knife-edge fol-
lower cam system, and the roller follower cam system.

24. Derive the kinematic constraint Jacobian matrix of the offset flat-faced fol-
lower of Example 8.

25. Determine the vectors Ct and Qd of Eqs. 120 and 123, respectively, for the
revolute-revolute joint of problem 22.

26. Determine the vectors Ct and Qd of Eqs. 120 and 123, respectively, in the
case of the reciprocating knife-edge follower cam system and the roller
follower cam system of problem 23.

27. Determine the vectors Ct and Qd of Eqs. 120 and 123, respectively, in the
case of the offset flat-faced follower of Example 8.

28. Derive the constraint equations, the Jacobian matrix, the vector Ct , and the

Figure P3.8

vector Qd for the system shown in Fig. P8 using the absolute Cartesian
coordinates.

29. Figure P9 shows a slider crank mechanism. The lengths of the crankshaft
and the connecting rod are 0.2 m and 0.4 m, respectively. The crankshaft
is assumed to rotate with a constant angular velocity v̇2 c 30 rad/ s. The
initial angle v2

o of the crankshaft is assumed to be 308. Using three absolute
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Figure P3.9

coordinates Ri
x , Ri

y, and v i for each body in the system and the methods of
constrained kinematics, determine the positions, velocities, and accelera-
tions of the bodies at time t c 0, 1, and 2 s.

30. Figure P10 shows a four-bar mechanism. The lengths of the crankshaft,
coupler, and rocker are 0.2 m, 0.4 m, and 0.3 m, respectively. The
crankshaft

Figure P3.10

of the mechanism is assumed to rotate with a constant angular velocity v̇2

c 15 rad/ s. The initial orientation of the crankshaft is assumed to be v2
o c

458. By using three absolute coordinates Ri
x , Ri

y, and v i for each body in
the system, determine the position, velocity, and acceleration of each body
at time t c 0, 1, and 2 s.

Administrator
v
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CHAPTER 4

FORMS OF THE DYNAMIC
EQUATIONS

The focus of Chapter 3 was on the analysis of kinematicallly driven systems in
which all the degrees of freedom are specified. Since the system configuration
can be completely determined when the degrees of freedom are known, the anal-
ysis of kinematically driven systems leads to a system of algebraic equations
that can be solved for the coordinates, velocities, and accelerations without the
need for a force analysis. However, if one or more of the system degrees of
freedom are not known a priori, the force analysis becomes necessary and the
system equations of motion must be formulated to obtain a number of equa-
tions equal to the number of the unknown variables. In the case of unconstrained
motion, the equations of motion of the system take a simple known form defined
by Newton–Euler equations, and therefore, the selection of the system coordi-
nates is not the subject of much argument. In the case of constrained multibody
dynamics, on the other hand, different numbers of coordinates can be selected,
leading to different forms of the dynamic equations. Some formulations that
employ redundant coordinates lead to a relatively large system of equations
expressed in terms of the constraint forces, while some other formulations lead
to a minimum set of differential equations of motion expressed in terms of
the degrees of freedom. Since the degrees of freedom, by definition, are inde-
pendent and are not related by kinematic relationships, it is expected that the
constraint forces are automatically eliminated when the equations of motion are
formulated in terms of the degrees of freedom.

Much of the research on computational dynamics has been focused on the
selection of the coordinates and on studying the advantages and drawbacks of
different formulations. Despite the drawback of increasing the number of equa-
tions and the dimensionality of the problem, the use of redundant coordinates
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instead of using the degrees of freedom has the advantage of increasing the
generality of the formulation and achieving a sparse matrix structure. On the
other hand, the formulations in terms of the degrees of freedom have the advan-
tage of reducing the number of equations at the expense of increasing the com-
plexity of the inertia and force coefficients that appear in these equations. In
this chapter, a brief introduction to some forms of the dynamic equations of
motion is presented. D’Alembert’s principle is introduced and its use in for-
mulating the equations of motion of mechanical systems is demonstrated using
simple examples. Different matrix formulations for the equations of motion are
then obtained using D’Alembert’s principle. Some of these formulations lead to
a large number of equations which include the constraint forces, while others
lead to a smaller set of equations which do not include any constraint forces.
Among the matrix formulations presented in this chapter are the augmented for-
mulation, the embedding technique, and the amalgamated formulation. This
chapter also includes a brief discussion on the analysis of open- and closed-
chain systems. The material presented in this chapter can be considered as an
introduction to some of the concepts and computational methods which are dis-
cussed in more detail in the remainder of the book. Simple procedures are used
in this chapter to introduce different formulations; a more systematic and rig-
orous development of some of these formulations is presented in the following
chapters.

4.1 D’ALEMBERT’S PRINCIPLE

As demonstrated in Chapter 3, the unconstrained planar motion of a rigid body
can be described using three independent coordinates. As shown in Fig. 1, two
coordinates Ri

x and Ri
y can be used to define the translation of the reference

point and one coordinate v i defines the orientation of the rigid body coordinate
system XiYi with respect to the global coordinate system XY. Associated with
these three coordinates, there are three independent differential equations that
govern the unconstrained planar motion of a rigid body. If the reference point
is selected to be the center of mass of the body, these equations can be written
as

miai
x c Fi

x

miai
y c Fi

y

Jiv̈ i
c Mi









(4.1)

where mi is the total mass of the rigid body, Ji is the mass moment of inertia
defined with respect to the center of mass, ai

x and ai
y are the components of the

absolute acceleration of the center of mass of the body, v̈ i is the angular accel-
eration, Fi

x and Fi
y are the components of the resultant force acting at the center
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Fig. 4.1 Rigid body coordinates

of mass, and Mi is the resultant moment. The first two equations in Eq. 1 are
called Newton’s equations, while the last equation is called Euler’s equation.
The left-hand side of the first two equations in Eq. 1 is called the inertia or
effective force, and the left-hand side of the third equation is called the inertia
or effective moment. D’Alembert’s principle states that the effective or inertia
forces and moments of a rigid body are equal to the external forces acting on the
body; that is, the inertia forces and moments can be treated in the same way as
the externally applied forces. This fact is demonstrated by the simple diagram
shown in Fig. 2. Note that the system of forces and moments acting on body i
as shown in Fig. 2 can be replaced by an equivalent (equipollent) system that

Figure 4.2 D’Alembert’s principle
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consists of one force vector acting at the center of mass and a moment acting
on the rigid body.

Example 4.1

Figure 3 shows a simple system that consists of two moving bodies. Body 1 is
a slider block that has a specified motion defined by the function z(t). Body 2 is
a uniform slender rod that has mass m2, mass moment of inertia about its center
of mass J2, and length l. The rod that is subjected to the external moment M2 is
connected to the sliding block by a pin joint at O.

Figure 4 shows a free-body diagram for the rod. By applying Eq. 1, one obtains

m2a2
x c F12

x

m2a2
y c F12

y − m2g

J2v̈2
c M2 + F12

x
l
2

sin v2
− F12

y
l
2

cos v2

where F12
x and F12

y are the joint reaction forces at the pin joint. Since the motion
of the sliding block is specified, the system has only one degree of freedom, which
can be considered as the angular orientation of the rod v2. The coordinates of the
center of mass of the rod can be written as

R2
x c z(t) +

l
2

cos v2

R2
y c

l
2

sin v2

Figure 4.3 Pendulum with moving base
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Figure 4.4 Dynamic equilibrium

which upon differentiation once and twice lead to

Ṙ2
x c ż(t) − v̇2 l

2
sin v2

Ṙ2
y c v̇2 l

2
cos v2

a2
x c R̈2

x c z̈(t) − v̈2 l
2

sin v2
− (v̇2)2 l

2
cos v2

a2
y c R̈2

y c v̈2 l
2

cos v2
− (v̇2)2 l

2
sin v2

Substituting these kinematic relationships into the dynamic equations, one obtains

m2 [ z̈(t) − v̈2 l
2

sin v2
− (v̇2)2 l

2
cos v2] c F12

x

m2 [ v̈2 l
2

cos v2
− (v̇2)2 l

2
sin v2] c F12

y − m2g

J2v̈2
c M2 + F12

x
l
2

sin v2
− F12

y
l
2

cos v2

These are three equations that can be solved for the three unknowns v̈2, F12
x , and

F12
y . For instance, multiplying the first equation by − (l/ 2) sin v2, the second equa-

tion by (l/ 2) cos v2, and adding the resulting two equations to the third, one ob-
tains

[J2 + m2 � l
2 �

2] v̈2
c M2

− m2g
l
2

cos v2 + m2z̈
l
2

sin v2
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This equation does not contain the joint reaction forces and can be solved for the
angular acceleration v̈2.

Another alternative for obtaining the preceding equation is to apply D’Alembert’s
principle. According to this principle, the moment of the inertia forces about O is
equal to the moment of the externally applied forces about the same point. This
leads to one differential equation that does not include the joint reaction forces.
The moment of the inertia (effective) forces about point O is

(M2
e)O c J2v̈2

− m2a2
x

l
2

sin v2 + m2a2
y

l
2

cos v2

The moment of the externally applied forces about O is

(M2
a)O c M2

− m2g
l
2

cos v2

D’Alembert’s principle implies that

(M2
e)O c (M2

a)O

or

J 2v̈2
− m2a2

x
l
2

sin v2 + m2a2
y

l
2

cos v2
c M2

− m2g
l
2

cos v2

Substituting for the accelerations of the center of mass of the rod using the previ-
ously obtained kinematic relationships, one obtains

[J2 + m2 � l
2 �

2] v̈2
c M2

− m2g
l
2

cos v2 + m2z̈
l
2

sin v2

which is the same equation obtained previously by eliminating the joint reaction
forces.

It is clear from the analysis presetned in Example 1 that the direct application
of Newton’s second law or D’Alembert’s principle to derive the dynamic con-
ditions for a body in a mechanical system leads to a set of equations expressed
in terms of the accelerations, the applied forces and moments, and the joint
reaction forces. If the applied forces and moments are known, the resulting
dynamic equations can be considered as a linear system of algebraic equations
that can be solved for the accelerations and the joint reaction forces. The accel-
erations can be integrated forward in time in order to determine the coordi-
nates and velocities. There are, however, several methods for formulating the
acceleration equations. These methods are discussed briefly in this chapter to
provide a motivation for the study of the materials covered in the following
chapters.
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4.2 CONSTRAINED DYNAMICS

Mechanical joints and specified motion trajectories in multibody systems
impose restrictions on the motion of the system components. Because of the
kinematic constraints of the joints and specified motion trajectories, the selec-
tion of coordinates and the form of the equations of motion is not a trivial task
and has been the subject of extensive research in the area of computational
multibody dynamics. The efficiency, generality, and numerical algorithm of a
solution procedure strongly depend on the choice of the coordinates and the
resulting form of the equations of motion. Joints and specified motion trajec-
tories introduce constraint forces that may explicitly appear in the formulation
or can be eliminated by expressing the dynamic equations in terms of a chosen
set of independent coordinates or degrees of freedom. As will be demonstrated
in this section using a simple example, the number of independent constraint
forces is always equal to the number of independent constraint equations, which
is equal to the number of dependent coordinates. Obviously, if there are no con-
straints between the coordinates, there are no constraint forces and there are no
dependent coordinates. This simple fact is crucial in understanding the basis of
different forms of the dynamic equations of motion.

Consider the simple system shown in Fig. 5. This system consists of the
ground denoted as body 1, a rod OA denoted as body 2, and a disk denoted as
body 3. The rod is connected to the ground by a pin joint at O, while the disk
is connected to the rod by a pin joint at A. The rod is assumed to be uniform
and its length is l. Figures 6a and b show the free-body diagrams of the rod
and the disk. It is clear from these diagrams that

Figure 4.5 Illustrative example
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Figure 4.6 Dynamic equilibrium

m2a2
x c F12

x − F23
x

m2a2
y c F12

y − F23
y − m2g

J2v̈2
c M2 + F12

x
l
2

sin v2
− F12

y
l
2

cos v2

+F23
x

l
2

sin v2
− F23

y
l
2

cos v2

m3a3
x c F23

x

m3a3
y c F23

y − m3g

J3v̈3
c M3









































(4.2)

These are six dynamic equations in 10 unknowns; six acceleration components
and four components of the reaction forces. Since the system has two degrees
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of freedom, the six acceleration components can be expressed in terms of two
independent accelerations. In this example, the accelerations of the centers of
mass of bodies 2 and 3 can be written in terms of the angular acceleration of
body 2. Since point O is a fixed point, the absolute accelerations of the centers
of mass of bodies 2 and 3 can be written as

a2
c [ a2

x

a2
y ] c �2 × u2

CO + �2 × (�2 × u2
CO)

c v̈2 l
2 [ − sin v2

cos v2 ] − (v̇2)2 l
2 [ cos v2

sin v2 ] (4.3)

a3
c [ a3

x

a3
y ] c �2 × u2

AO + �2 × (�2 × u2
AO)

c v̈2l [ − sin v2

cos v2 ] − (v̇2)2l [ cos v2

sin v2 ] (4.4)

where u2
CO and u2

AO are the vectors that define the locations of the centers of the
rod and the disk with respect to point O. Note that the number of constraints
of Eqs. 3 and 4 is equal to the number of the four independent reaction forces
of the two pin joints. This number is also equal to the number of dependent
coordinates used to formulate the equations of motion of the system.

There are several matrix methods for solving Eqs. 2 through 4 for the
accelerations and the joint reaction forces. In this chapter we discuss briefly
some of the matrix methods that are used to formulate the acceleration equa-
tions. Among these methods are the augmented formulation, the embedding
technique, and the amalgamated formulation. Equations 2 through 4, which
describe the dynamics of the system shown in Fig. 5, are used as an example
to illustrate the concepts underlying these methods.

4.3 AUGMENTED FORMULATION

In the augmented formulation, the constraint forces explicitly appear in the
dynamic equations, which are expressed in this case, in terms of redundant
coordinates. The constraint relationships are used with the differential equa-
tions of motion to solve for the unknown accelerations and constraint forces.
This approach leads to a sparse matrix structure and can be used as the basis for
developing more general multibody codes. Nonetheless, the augmented formu-
lation has the drawback of increasing the problem dimensionality and it requires
more sophisticated numerical algorithms to solve the resulting system of dif-
ferential and algebraic equations, as discussed in the following chapters. In this
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section, the simple example discussed in the preceding section is used to intro-
duce the augmented formulation.

In the augmented formulation, Eqs. 2–4 are combined in order to form a sys-
tem of 10 scalar equations that can be solved for the 10 unknown accelerations
and joint reaction forces. This leads to the following system:

































m2 0 0 0 0 0 −1 0 1 0

0 m2 0 0 0 0 0 −1 0 1

0 0 J2 0 0 0 −

l
2

sin v2 l
2

cos v2
−

l
2

sin v2 l
2

cos v2

0 0 0 m3 0 0 0 0 −1 0

0 0 0 0 m3 0 0 0 0 −1

0 0 0 0 0 J3 0 0 0 0

−1 0 −

l
2

sin v2 0 0 0 0 0 0 0

0 −1
l
2

cos v2 0 0 0 0 0 0 0

0 0 − l sin v2
−1 0 0 0 0 0 0

0 0 l cos v2 0 −1 0 0 0 0 0

































































a2
x

a2
y

v̈2

a3
x

a3
y

v̈3

F12
x

F12
y

F23
x

F23
y

































c

































0

−m2g

M2

0

−m3g

M3

(v̇2)2 l
2

cos v2

(v̇2)2 l
2

sin v2

(v̇2)2l cos v2

(v̇2)2l sin v2
































(4.5)

Note that in this form of the equations of motion, the constraint equations are
not used to eliminate the dependent accelerations. As a result, a relatively large
system of equations is obtained. It is also clear that the coefficient matrix in this
equation is a sparse matrix since it has many zero elements. Sparse matrix tech-
niques can then be used to solve the preceding form of the dynamic equations
efficiently in order to determine the accelerations and the constraint forces.

A more systematic and general procedure for developing the augmented
equations of motion is discussed in Chapter 6. The technique of Lagrange mul-
tipliers is used to define the generalized constraint forces and to obtain an aug-
mented formulation in which the coefficient matrix is symmetric. In Chapter 6,
the relationship between the generalized and actual joint forces is discussed in
more detail.

4.4 ELIMINATION OF THE DEPENDENT ACCELERATIONS

This approach is not one of the basic methods used in computational dynam-
ics and is not widely used for solving multibody applications. It is discussed
in this section to serve as an intermediate step and as a brief introduction to
the more widely used technique, the embedding technique, introduced in the
following section. In this section, the constraint equations are used to eliminate
the dependent accelerations leading to a system of equations that can be solved
for the independent accelerations and the constraint forces. To demonstrate the
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use of this procedure, we consider the same example that was discussed in the
preceding two sections.

To solve Eqs. 2 through 4, the kinematic relationships of Eqs. 3 and 4 are
used to eliminate the dependent components of the accelerations. To this end,
we substitute Eqs. 3 and 4 into Eq. 2, and arrange the terms to obtain

−m2 l
2

v̈2 sin v2
− F12

x + F23
x c m2 l

2
(v̇2)2 cos v2

m2 l
2

v̈2 cos v2
− F12

y + F23
y c m2 l

2
(v̇2)2 sin v2

− m2g

J2v̈2
− F12

x
l
2

sin v2 + F12
y

l
2

cos v2
− F23

x
l
2

sin v2 + F23
y

l
2

cos v2
c M2

−m3v̈2l sin v2
− F23

x c m3l(v̇2)2 cos v2

m3v̈2l cos v2
− F23

y c m3l(v̇2)2 sin v2
− m3g

J3v̈3
c M3

These six equations, which have two unknown angular accelerations and four
unknown reaction forces, can be written in the following matrix form:













a11 0 −1 0 1 0

a21 0 0 −1 0 1

a31 0 a33 a34 a35 a36

a41 0 0 0 −1 0

a51 0 0 0 0 −1

0 a62 0 0 0 0

























v̈2

v̈3

F12
x

F12
y

F23
x

F23
y













c













b1

b2

M2

b4

b5

M3













(4.6)

where

a11 c −m2 l
2

sin v2

a21 c m2 l
2

cos v2

a31 c J2

a41 c −m3l sin v2

a51 c m3l cos v2

a62 c J3

a33 c a35 c −

l
2

sin v2

a34 c a36 c
l
2

cos v2

















































(4.7)
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and

b1 c m2 l
2

(v̇2)2 cos v2

b2 c m2 l
2

(v̇2)2 sin v2
− m2g

b4 c m3l(v̇2)2 cos v2

b5 c m3l(v̇2)2 sin v2
− m3g





















(4.8)

The system of matrix equations defined by Eq. 6 can be solved for the unknown
independent angular accelerations and the joint reaction forces. The dependent
accelerations can be determined using Eq. 4.

4.5 EMBEDDING TECHNIQUE

In the formulations discussed in the preceding two sections, the equations of
motion are expressed in terms of the constraint forces. By using the embedding
technique, the constraint forces can be eliminated systematically and a number
of equations of motion equal to the number of the system degrees of freedom
can be obtained. To obtain this minimum set of differential equations, it is nec-
essary to use a velocity transformation matrix. This matrix can be defined sys-
tematically when the total vector of the system accelerations is expressed in
terms of the independent accelerations. To demonstrate the use of the embed-
ding technique to eliminate the constraint forces and obtain a minimum set of
differential equations of motion, the example discussed and some of the equa-
tions obtained in the preceding sections are also used in this section. Note that
the kinetmatic relationships of Eqs. 3 and 4 can be written as
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0

0 1
























[ v̈2

v̈3 ] − (v̇2)2
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which can be written as

q̈ c Bi q̈i + g (4.9)

where

q̈ c [ a2
x a2

y v̈2 a3
x a3

y v̈3 ]T (4.10a)

q̈i c [ v̈2 v̈3 ]T (4.10b)

Bi c





















a11

m2
0

a21

m2
0

1 0
a41

m3
0

a51

m3
0

0 1





















(4.10c)

g c − (v̇2)2


















l
2

cos v2

l
2

sin v2

0

l cos v2

l sin v2

0


















(4.10d)

in which the coefficients aij are defined in Eq. 7. Equation 6 can also be written

Aaq̈i + Af Fc c b (4.11)

where

Aa c














a11 0

a21 0

a31 0

a41 0

a51 0

0 a62














(4.12a)
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Af c














−1 0 1 0

0 −1 0 1

a33 a34 a35 a36

0 0 −1 0

0 0 0 −1

0 0 0 0














(4.12b)

Fc c [ F12
x F12

y F23
x F23

y ]T (4.12c)

b c [ b1 b2 M2 b4 b5 M3 ]T (4.12d)

Premultiplying Eq. 11 by the transpose of the matrix Bi of Eq. 10c, one obtains

BT
i Aaq̈i + BT

i Af Fc c BT
i b (4.13)

By using the definitions of the coefficients aij given in Eq. 7, one can verify
that

BT
i Af c 0 (4.14)

Substituting this equation into Eq. 13 yields

Miq̈i c Qi (4.15)

where

Mi c BT
i Aa (4.16a)

Qi c BT
i b (4.16b)

The matrix Mi is 2 × 2 matrix and, consequently, Eq. 15 contains two scalar
equations that can be solved for the independent angular accelerations. The
dependent accelerations can be obtained using the kinematic relationships of
Eqs. 3 and 4. Having solved for the accelerations, the joint reaction forces can
be obtained from Eq. 2.

The matrix Bi, which appears in Eq. 9 and is defined by Eq. 10c, is called the
velocity transformation matrix. This matrix, which plays a fundamental role in
the embedding formulation, allows for the elimination of the dependent accel-
erations and also for the elimination of the constraint forces as demonstrated
by Eq. 14. By so doing, a minimum set of dynamic differential equations of
motion can be defined and expressed solely in terms of the system degrees
of freedom. In Chapter 5, a systematic procedure based on the concept of the
virtual displacement is used to define the velocity transformation matrix. The
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principle of virtual work is also used in Chapter 5 to systematically develop
the embedding technique, which is introduced in this section using the familiar
Newtonian mechanics.

4.6 AMALGAMATED FORMULATION

Another method for solving for the accelerations and the joint reaction forces
is to obtain a very large system of loosely coupled algebraic equations. To this
end, Eq. 2 is written compactly in a matrix form as

Mq̈ c Qe + Qc (4.17)

where

M c














m2 0 0 0 0 0

0 m2 0 0 0 0

0 0 J2 0 0 0

0 0 0 m3 0 0

0 0 0 0 m3 0

0 0 0 0 0 J3













Qe c [ 0 −m2g M2 0 −m3g M3 ]T

Qc c
















F12
x − F23

x

F12
y − F23

y

F12
x

l
2

sin v2
− F12

y
l
2

cos v2 + F23
x

l
2

sin v2
− F23

y
l
2

cos v2

F23
x

F23
y

0















It was previously shown that the vector of accelerations can be expressed in
terms of the independent accelerations using Eq. 9, which is repeated here:

q̈ c Biq̈i + g (4.18)

One can verify by direct matrix multiplications or by using Eq. 14 that

BT
i Qc c 0 (4.19)

where Bi is the matrix defined by Eq. 10c.
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Equations 17, 18, and 19 can be combined in one matrix equation to yield






M I 0

I 0 −Bi

0 −BT
i 0










q̈

−Qc

q̈i





c






Qe

g

0





(4.20)

This large system, which has a sparse symmetric coefficient matrix, can be
solved for the accelerations and the joint forces.

4.7 OPEN AND CLOSED CHAINS

As demonstrated in Chapter 6, one of the advantages of using the augmented
formulation is that open and closed kinematic chains can be treated alike. When
other methods are used, special attention must be given to closed kinematic
chains, which can have singular configurations, as also discussed in Chap-
ter 6. In this section we discuss some of the basic differences between open
and closed chains to demonstrate the difficulties encountered in the analysis of
closed chains and to have an appreciation of some of the advantages of the
technique of Lagrange multipliers, which is discussed in detail in Chapter 6.

Open-Chain Systems Two methods are used in this section to develop the
dynamic equations of open-chain systems. In the first method, the dynamic con-
ditions are developed for each body in the system, leading to a set of equations
expressed explicitly in terms of the joint reaction forces. The resulting number
of equations is equal to the number of the system degrees of freedom plus the
number of the joint reaction forces. These equations can be solved for the reac-
tion forces in addition to a number of unknowns equal to the number of degrees
of freedom of the system as demonstrated in Section 4. For example, if all the
external forces are specified, the resulting dynamic equations can be solved for
the reaction forces and a number of unknown accelerations equal to the num-
ber of degrees of freedom of the system. In the second method discussed in
this section, cuts are made at selected joints and the dynamic conditions are
formulated for selected subsystems leading to minimum number of differential
equations. The number of these equations, which do not contain the joint reac-
tion forces, is equal to the number of degrees of freedom of the system. Clearly,
this minimum number of equations can be obtained using the first approach by
eliminating the joint reaction forces, as demonstrated in Section 5.

First, we consider the formal application of the dynamic conditions to each
body in the system. The two-degree-of-freedom two-arm manipulator system
shown in Fig. 7 is used. Body 1 represents the ground or the fixed link. Body 2
represents the first movable link in the manipulator, and its orientation is defined
by the angle v2. Body 3 represents the second movable link in the manipulator,
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Figure 4.7 Open-chain system

and the orientation of this body is defined by the angle v3. Let M2 and M3 be
the joint torques that act on body 2 and body 3, respectively. Figure 8 shows the
free-body diagrams of the two bodies. From this figure the dynamic conditions
of body 2 are

F12
x − F23

x c m2a2
x (4.21)

F12
y − m2g − F23

y c m2a2
y (4.22)

Figure 4.8 Free-body diagram
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F12
x l 2

O sin v2
− F12

y l 2
O cos v2 + M2 + F23

x l 2
A sin v2

− F23
y l 2

A cos v2
c J2v̈2 (4.23)

where m2 and J2 are, respectively, the mass and mass moment of inertia of
body 2; a2

x and a2
y are the components of the acceleration of the center of mass

of this body, g is the gravity constant; and Fij
x and Fij

y are the components of
the reaction force acting on body i as the result of its connection with body j.
In a similar manner, one may write the dynamic equations for body 3 as

F23
x c m3a3

x (4.24)

F23
y − m3g c m3a3

y (4.25)

F23
x l 3

A sin v3
− F23

y l 3
A cos v3 + M3

c J3v̈3 (4.26)

In this section, the case of the inverse dynamics (kinematically driven system) is
considered to focus the attention on the basic differences between the open and
closed kinematic chains. In this case, the motion of the system is assumed to be
known and the goal is to solve for the external and joint forces. Assuming that
the accelerations are known, Eqs. 21 through 26 can be arranged and combined
in one matrix equation as














1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 1 0 0 0

0 0 0 1 0 0

l 2
O sin v2

− l 2
O cos v2 l 2

A sin v2
− l 2

A cos v2 1 0

0 0 l 3
A sin v3

− l 3
A cos v3 0 1



























F12
x

F12
y

F23
x

F23
y

M2

M3














c














m2a2
x

m2a2
y + m2g

m3a3
x

m3a3
y + m3g

J2v̈2

J3v̈3














(4.27)

which can be written as

Ax c b (4.28)
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where

A c














1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 1 0 0 0

0 0 0 1 0 0

A51 A52 A53 A54 1 0

0 0 A63 A64 0 1














(4.29)

x c [F12
x F12

y F23
x F23

y M2 M3]T (4.30)

b c [m2a2
x (m2a2

y + m2g) m3a3
x (m3a3

y + m3g) J2v̈2 J3v̈3]T (4.31)

in which

A51 c l 2
O sin v2, A52 c − l 2

O cos v2

A53 c l 2
A sin v2, A54 c − l 2

A cos v2

A63 c l 3
A sin v3, A64 c − l 3

A cos v3 (4.32)

and l i
O and l i

A are the distances of points O and A from the center of mass of
link i.

The solution of Eq. 28 is given by

x c A−1b (4.33)

where the matrix A−1 is the inverse of the matrix A given by

A−1
c














1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 0 0

0 0 0 1 0 0

−A51 −A52 − (A51 + A53) − (A52 + A54) 1 0

0 0 −A63 −A64 0 1














(4.34)
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Substituting Eq. 34 into Eq. 33 and using the definitions of Eq. 32, one obtains

F12
x c m2a2

x + m3a3
x (4.35a)

F12
y c m2a2

y + m2g + m3a3
y + m3g (4.35b)

F23
x c m3a3

x (4.35c)

F23
y c m3a3

y + m3g (4.35d)

M2
c J2v̈2

− A51m2a2
x − A52(m2a2

y + m2g) − (A51 + A53)m3a3
x

− (A52 + A54)(m3a3
y + m3g) (4.35e)

M3
c J3v̈3

− A63m3a3
x − A64(m3a3

y + m3g) (4.35f)

Equations 35e and 35f do not include the reaction forces which are given
by Eqs. 35a through 35d. In the analysis of open-chain systems, Eqs. 35e and
35f can be obtained directly, without considering the internal reaction forces
by studying the equilibrium of selected subsystems, as shown in Fig. 9. For
example, we may consider the dynamic equilibrium of link 3 in our example
and take the moment about point A for both the systems of external and effective
forces. The moments of the external forces and moments are

Me c M3
− m3gl3

A cos v3 (4.36)

Fig. 4.9 Equilibrium of the subsystems
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The moments of the inertia forces about A are

Mi c −m3a3
xl 3

A sin v3 + m3a3
yl 3

A cos v3 + J3v̈3 (4.37)

Applying D’Alembert’s principle, which implies that the inertia or effective
moment is equal to the moment of the applied forces, one obtains

M3
− m3gl3

A cos v3
c −m3a3

xl 3
A sin v3 + m3a3

yl 3
A cos v3 + J3v̈3 (4.38)

which can be rearranged as

M3
c J3v̈3

− m3a3
xl 3

A sin v3 + (m3a3
y + m3g)l 3

A cos v3 (4.39)

This equation is the same as Eq. 35f. A second equation can be obtained by
studying the equilibrium of bodies 2 and 3 together, as shown in Fig. 9. By
taking the moments about point O, we can eliminate the internal reactions. For
the external forces and moments, we have

Me c M2 + M3
− m2gl2

O cos v2
− m3g(l 2 cos v2 + l 3

A cos v3)

The moments of the inertia forces and moments about O yield

Mi c J2v̈2 + J3v̈3
− m2a2

xl 2
O sin v2 + m2a2

yl 2
O cos v2

− m3a3
x(l 2 sin v2 + l 3

A sin v3) + m3a3
y(l 2 cos v2 + l 3

A cos v3)

Thus, the dynamic equilibrium condition for this subsystem is

M2 + M3
− m2gl2

O cos v2
− m3g(l 2 cos v2 + l 3

A cos v3)

c J2v̈2 + J3v̈3
− m2a2

xl 2
O sin v2 + m2a2

yl 2
O cos v2

− m3a3
x(l 2 sin v2 + l 3

A sin v3) + m3a3
y(l 2 cos v2 + l 3

A cos v3)

which can be rearranged and written as

M2 + M3
c J2v̈2 + J3v̈3

− m2a2
xl 2

O sin v2 + (m2a2
y + m2g)l 2

O cos v2

− m3a3
x(l 2 sin v2 + l 3

A sin v3) + (m3a3
y + m3g)

. (l 2 cos v2 + l 3
A cos v3) (4.40)



4.7 OPEN AND CLOSED CHAINS 209

Equations 39 and 40 represent the dynamic conditions for the two-degree-of-
freedom system. They are two independent equations that can be solved for two
unknowns. It is clear that upon subtracting Eq. 39 from Eq. 40, one obtains

M2
c J2v̈2

− m2a2
xl 2

O sin v2 + (m2a2
y + m2g)l 2

O cos v2

− m3a3
xl 2 sin v2 + (m3a3

y + m3g)l 2 cos v2 (4.41)

This is the same equation as Eq. 35e obtained from the application of the
dynamic conditions to each body in the system separately. Therefore, the two
methods discussed in this section lead to the same results. The second method,
however, represents the foundation for some of the recursive methods, which
allow elimination of the joint reaction forces in the analysis of open kinematic
chains. Another systematic and straightforward approach to obtain Eqs. 39 and
41, which are the same as Eqs. 35e and 35f, is to use the principle of virtual
work in dynamics, which will be discussed in the following chapter.

Closed-Chain Systems It was demonstrated by the analysis presented thus
far in this section that the joint reaction forces can be eliminated from the
dynamic equations of open-chain systems by considering the equilibrium of
selected subsystems. The analysis that follows will demonstrate the differences
between open- and closed-chain systems, and as in the case of open-chain sys-
tems, two methods will be considered. In the first method, the dynamic equa-
tions are developed for each body in the system leading to a set of equations
which are explicit functions of the joint reaction forces. In the second approach,
cuts are made at selected secondary joints and the dynamics of the resulting
subsystems is examined.

As in the case of open-chain systems, the dynamic equations of a closed-
chain system are first obtained by developing the dynamic equations of each
body in the system separately. This leads to a number of equations equal to the
number of reaction forces plus the number of degrees of freedom of the system.
To demonstrate the use of this approach, we consider the closed-chain four-bar
linkage shown in Fig. 10. The fixed link is denoted as body 1, the crankshaft is
denoted as body 2, the coupler is denoted as body 3, and the rocker is denoted
as body 4. The dynamic equations of the crankshaft, which is subjected to an
external moment M2 as shown in Fig. 11, are given by the following three
equations:

F12
x − F23

x c m2a2
x

F12
y − m2g − F23

y c m2a2
y

F12
x l 2

O sin v2
− F12

y l 2
O cos v2 + M2 + F23

x l 2
A sin v2

− F23
y l 2

A cos v2
c J2v̈2

where the moment equation is defined with respect to the center of mass of the
crankshaft.
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Figure 4.10 Closed-chain mechanisms

The coupler, as shown in Fig. 11, is subjected to an external force F3 that acts
at its center of mass. The dynamic equations for the coupler can be written as

F23
x + F3

x − F34
x c m3a3

x

F23
y − m3g + F3

y − F34
y c m3a3

y

F23
x l 3

A sin v3
− F23

y l 3
A cos v3 + F34

x l 3
B sin v3

− F34
y l 3

B cos v3
c J3v̈3

where F3
x and F3

y are the components of the external force vector F3.

Figure 4.11 Free-body diagrams



4.7 OPEN AND CLOSED CHAINS 211

As shown in Fig. 10, the rocker is subjected to the external moment M4. The
dynamic equations of the rocker are

F34
x − F41

x c m4a4
x

F34
y − m4g − F41

y c m4a4
y

F34
x l 4

B sin v4
− F34

y l 4
B cos v4 + M4 + F41

x l 4
C sin v4

− F41
y l 4

C cos v4
c J4v̈4

The dynamic conditions of the four-bar mechanism lead to nine equations that
can be solved for nine unknowns; eight of them are the reaction forces at the
joints. We arrange these nine equations and write them in the following matrix
form:





















1 0 −1 0 0 0 0 0 0

0 1 0 −1 0 0 0 0 0

0 0 1 0 −1 0 0 0 0

0 0 0 1 0 −1 0 0 0

0 0 0 0 1 0 −1 0 0

0 0 0 0 0 1 0 −1 0

A71 A72 A73 A74 0 0 0 0 0

0 0 A83 A84 A85 A86 0 0 0

0 0 0 0 A95 A96 A97 A98 1









































F12
x

F12
y

F23
x

F23
y

F34
x

F34
y

F41
x

F41
y

M4





















c





















m2a2
x

m2a2
y + m2g

m3a3
x − F3

x

m3a3
y + m3g − F3

y

m4a4
x

m4a4
y + m4g

J2v̈2
− M2

J3v̈3

J4v̈4




















(4.42)

where

A71 c l 2
O sin v2, A72 c − l 2

O cos v2

A73 c l 2
A sin v2, A74 c − l 2

A cos v2

A83 c l 3
A sin v3, A84 c − l 3

A cos v3

A85 c l 3
B sin v3, A86 c − l 3

B cos v3

A95 c l 4
B sin v4, A96 c − l 4

B cos v4

A97 c l 4
C sin v4, A98 c − l 4

C cos v4



























(4.43)

Equation 42 can be written as

Ax c b (4.44)
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where A is the coefficient matrix

A c























1 0 −1 0 0 0 0 0 0

0 1 0 −1 0 0 0 0 0

0 0 1 0 −1 0 0 0 0

0 0 0 1 0 −1 0 0 0

0 0 0 0 1 0 −1 0 0

0 0 0 0 0 1 0 −1 0

A71 A72 A73 A74 0 0 0 0 0

0 0 A83 A84 A85 A86 0 0 0

0 0 0 0 A95 A96 A97 A98 1























(4.45)

and the vectors x and b are

x c [F12
x F12

y F23
x F23

y F34
x F34

y F41
x F41

y M4]T (4.46)

b c [m2a2
x (m2a2

y + m2g) (m3a3
x − F3

x) (m3a3
y + m3g − F3

y) m4a4
x

(m4a4
y + m4g) (J2v̈2

− M2) J3v̈3 J4v̈4]T (4.47)

The solution of Eq. 44 can be defined as

x c A−1b

As in the case of the analysis of open-chain systems, a reduced number of
equations can be obtained by studying the equilibrium of subsystems resulting
from cuts at selected joints. For example, to obtain three independent equations
in terms of M4 and the reactions F12

x and F12
y , we make a cut at the revolute

joint at O. We first study the equilibrium of the crankshaft shown in Fig. 11.
By taking the moments of the forces acting on the crankshaft about point A,
we obtain the following equation:

F12
x l 2 sin v2

− F12
y l 2 cos v2 + M2 + m2gl2

A cos v2

c J2v̈2 + m2a2
xl 2

A sin v2
− m2a2

yl 2
A cos v2 (4.48)

A second equation can be obtained by studying the equilibrium of the system
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Figure 4.12 Equilibrium of two bodies

shown in Fig. 12. By taking the moments about joint B, one obtains

F12
x (l 2 sin v2 + l 3 sin v3) − F12

y (l 2 cos v2 + l 3 cos v3) + M2

+ m2g(l 2
A cos v2 + l 3 cos v3) + F3

xl 3
B sin v3

+ (m3g − F3
y)l 3

B cos v3

c J2v̈2 + m2a2
x(l 2

A sin v2 + l 3 sin v3)

− m2a2
y(l 2

A cos v2 + l 3 cos v3)

+ J3v̈3 + m3a3
xl 3

B sin v3
− m3a3

y l 3
B cos v3 (4.49)

which, upon using Eq. 48, can be reduced to

F12
x l 3 sin v3

− F12
y l 3 cos v3 + m2gl3 cos v3 + F3

xl 3
B sin v3

+ (m3g − F3
y)l 3

B cos v3

c m2a2
xl 3 sin v3

− m2a2
y l 3 cos v3 + J3v̈3 + m3a3

xl 3
B sin v3

− m3a3
y l 3

B cos v3 (4.50)

A third equation can be obtained by examining the system shown in Fig. 13.
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Figure 4.13 Equilibrium of three bodies

By taking the moments about point C, the following equation can be obtained:

− F12
y l 1 + M2 + m2g(l 2

A cos v2 + l 3 cos v3 + l 4 cos v4)

+ F3
x(l 3

B sin v3 + l 4 sin v4) + (m3g − F3
y)(l 3

B cos v3 + l 4 cos v4)

+ M4 + m4gl4
C cos v4

c J2v̈2 + m2a2
x(l 2

A sin v2 + l 3 sin v3 + l 4 sin v4)

− m2a2
y(l 2

A cos v2 + l 3 cos v3 + l 4 cos v4) + J3v̈3

+ m3a3
x(l 3

B sin v3 + l 4 sin v4)

− m3a3
y(l 3

B cos v3 + l 4 cos v4) + J4v̈4 + m4a4
xl 4

C sin v4

− m4a4
y l 4

C cos v4 (4.51)

where

l 1
c l 2 cos v2 + l 3 cos v3 + l 4 cos v4 (4.52)

By using the first two moment equations about A and B (Eqs. 48 and 50), the
third equation (Eq. 51) reduces to

F12
x l 4 sin v4 + (m2g − F12

y )l 4 cos v4 + F3
xl 4 sin v4

+ (m3g − F3
y)l 4 cos v4 + M4 + m4gl4

C cos v4

c (m2a2
x + m3a3

x)l 4 sin v4
− (m2a2

y + m3a3
y)l 4 cos v4

+ J4v̈4 + m4a4
xl 4

C sin v4
− m4a4

y l 4
C cos v4 (4.53)
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Equations 48, 50, and 53 can be solved for the three unknowns: the two reac-
tions F12

x and F12
y and the external moment M4. Using a similar procedure,

another set of three equations in terms of F23
x , F23

y , and M4, or in terms of F34
x ,

F34
y , and M4, or in terms of F41

x , F41
y , and M4 can be obtained. It is clear, how-

ever, that unlike the case of open kinematic chains the equilibrium conditions of
the subsystems of closed kinematic chains will always lead to a set of equations
that contain some components of the reaction forces. Obviously, these reaction
forces can be eliminated by further manipulations of the resulting equations.

The source of the extra efforts required for the solution of the closed-chain
equations can be understood because such a chain can be converted to an open
chain by making a cut at a selected secondary joint. One can systematically
derive the equations of motion of the resulting open chain and augment these
equations by a set of algebraic equations that describe the connectivity con-
ditions at the secondary joint, thereby defining the differential and algebraic
equations of the closed chain. Lagrange multipliers and the augmented formu-
lation, which is discussed in detail in Chapter 6, can be used to solve the chain
differential and algebraic equations. Another alternative approach is to use fur-
ther manipulations to eliminate the dependent variables using the algebraic con-
straint equations of the secondary joint. In the latter case, a procedure similar
to the embedding technique can be employed.

4.8 CONCLUDING REMARKS

In this chapter, different forms of the dynamic equations of motion were pre-
sented. These different forms were developed using elementary Newtonian
mechanics. Among the forms discussed in this chapter, two forms are widely
used in computational dynamics: the augmented formulation and the embed-
ding technique. The augmented formulation leads to a relatively large system
of equations expressed in terms of a redundant set of coordinates. As a result
of this redundancy, the coordinates are not independent and they are related by
a set of kinematic constraints. As was pointed out, the number of dependent
coordinates used in the augmented formulation is equal to the number of inde-
pendent constraint forces. By using the equations of motion and the constraint
equations, a number of equations equal to the number of unknown variables
can be obtained. The augmented formulation leads to a sparse matrix structure
and is used as the basis for developing many of the general-purpose multibody
computer programs. Its drawbacks are the increase in problem dimensionality
and the need for using a more elaborate numerical algorithm to solve the result-
ing system of differential and algebraic equations, as discussed in Chapter 6. A
systematic construction of the equations of motion of multibody systems using
the augmented formulation is also presented in detail in Chapter 6.

In the embedding technique, the vector of the system accelerations is
expressed in terms of independent accelerations using the velocity transforma-
tion matrix. This kinematic relationship is used to obtain a minimum set of
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differential equations expressed in terms of the independent accelerations only.
It was demonstrated that the use of the embedding technique leads to elimina-
tion of the constraint forces. In the following chapter we discuss the principle
of virtual work, which can be used to systematically eliminate the constraint
forces and obtain a minimum set of differential equations of motion.

PROBLEMS

1. Discuss the relationship between the number of dependent coordinates used
to describe the dynamics of a multibody system and the number of the
constraint forces that appear in the dynamic equations.

2. What are the advantages and drawbacks of the augmented formulation?

3. Discuss the sparse matrix structure of the augmented formulation and how
such a structure can be utilized in the computer implementation of this
formulation.

4. Can you formulate the pin joint constraints of Eqs. 3 and 4 to obtain a
symmetric coefficient matrix in Eq. 5?

5. Develop the equations of motion of the two-link robotic system shown in
Fig. 7 using the augmented formulation.

6. Develop the equations of motion of the four-bar mechanism shown in Fig.
10 using the augmented formulation.

7. What are the advantages and drawbacks of the embedding technique?

8. What is the role of the velocity transformation matrix in the embedding
technique?

9. Discuss the basic differences between the techniques presented in Sections
4 and 5.

10. Develop the equations of motion of the two-link robotic system shown in
Fig. 7 using the embedding technique.

11. Develop the equations of motion of the four-bar mechanism shown in Fig.
10 using the embedding technique.

12. What are the differences between the augmented and amalgamated formu-
lations?

13. What are the differences between open and closed kinematic chains when
the equations of motion are formulated?
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CHAPTER 5

VIRTUAL WORK AND LAGRANGIAN
DYNAMICS

The principle of virtual work represents a powerful tool for deriving the static
and dynamic equations of multibody systems. Unlike Newtonian mechanics,
the principle of virtual work does not require considering the constraint forces,
and it requires only scalar work quantities to define the static and dynamic
equations. This principle can be used to systematically derive a minimum set
of equations of motion of the multibody systems by eliminating the constraint
forces. To use the principle of virtual work, the important concepts of the virtual
displacements and generalized forces are first introduced and used to formulate
the generalized forces of several force elements, such as springs and dampers
and friction forces. It is shown in this chapter that the principle of virtual work
can be used to obtain a number of equations equal to the number of the sys-
tem degrees of freedom, thereby providing a systematic procedure for obtaining
the embedding form of the equations of motion of the mechanical system. Use
of the principle of virtual work in statics and dynamics is demonstrated using
several applications. The principle of virtual work is also used in this chapter
to derive the well-known Lagrange’s equation, in which the generalized inertia
force is expressed in terms of the scalar kinetic energy. Several other forms of
the generalized inertia forces are also presented, including the form that appears
in the Gibbs–Appel equation, in which the generalized inertia is expressed in
terms of an acceleration function. The Hamiltonian formulation and the rela-
tionship between the virtual work and the Gaussian elimination are discussed
in the last two sections of this chapter.
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5.1 VIRTUAL DISPLACEMENTS

An important step in the application of the principle of virtual work is the def-
inition of the virtual displacements and generalized forces. The concept of the
generalized forces is introduced in Section 3, while the concept of the virtual
displacement is discussed in this and the following section. Throughout this
section and the sections that follow, the term generalized coordinates is used
to refer to any set of coordinates used to describe the system configuration.

The virtual displacement is defined to be an infinitesimal displacement that
is consistent with the kinematic constraints imposed on the motion of the sys-
tem. Virtual displacements are imaginary in the sense that they are assumed to
occur while time is held fixed. Consider, for instance, the displacement of the
unconstrained body shown in Fig. 1. The position vector of an arbitrary point
Pi on the rigid body is given by

r i
P c Ri + Aiu i

P (5.1)

where Ri is the position vector of the reference point, u i
P is the position vector

of point Pi with respect to the reference point Oi, and Ai is the transformation
matrix given by

Ai c [ cos v i −sin v i

sin v i cos v i ] (5.2)

where v i is the angle that defines the orientation of the body. A virtual change
in the position vector of point Pi of Eq. 1 is denoted as dr i

P and is given by

dr i
P c dRi + d(Aiu i

P) (5.3)

Figure 5.1 Position vector
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Since the vector Aiu i
P depends only on one variable, namely the angular ori-

entation v i, Eq. 3 can be rewritten as

dr i
P c dRi + Ai

vu i
P dvi (5.4)

where Ai
v is the partial derivative of Ai with respect to the angle v i, that is,

Ai
v c ∂Ai

∂v i
c [ −sin v i −cos v i

cos v i −sin v i ] (5.5)

In Eq. 4, the virtual change in the position vector of an arbitrary point on the
body is expressed in terms of the virtual changes in the body coordinates, or
in this case the body degrees of freedom. Equation 4 can also be written as

dr i
P c r i

qi dqi (5.6)

where

qi c [R
iT v i]T (5.7a)

r i
qi c ∂r i

∂qi
c [I Ai

vu i
P] (5.7b)

Clearly, if the reference point Oi is fixed, as in the case of a simple pendulum,
we have dRi c 0 and Eq. 4 reduces to

dr i
P c Ai

vu i
P dvi

Example 5.1

For the two-degree-of-freedom manipulator shown in Fig. 2, express the virtual
change in the position of point P (end effector) in terms of the virtual changes in
the system degrees of freedom.

Solution. The position vector of point P is given by

rP c [ l2 cos v2 + l3 cos v3

l2 sin v2 + l3 sin v3 ]
where l2 and l3 are, respectively, the lengths of links 2 and 3 (the fixed link is
denoted as body 1), and v2 and v3 are, respectively, the angular orientations of
links 2 and 3. By taking a virtual change in the position vector of point P, we
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Figure 5.2 Two-degree-of-freedom
manipulator

obtain

drP c [ − l2 sin v2dv2 − l3 sin v3dv3

l2 cos v2dv2 + l3 cos v3dv3 ]
which can be written as

drP c [ − l2 sin v2 − l3 sin v3

l2 cos v2 l3 cos v3 ] [ dv2

dv3 ]
Virtual displacements can be regarded as partial differentials with time

assumed to be fixed. Thus, the differential of time is taken to be zero. To explain
the difference between the actual displacement and the virtual displacement, we
consider the case of a position vector that is an explicit function of the gener-
alized coordinates q and time t. This vector can be written as

r c r(q, t) (5.8)

Differentiating this equation with respect to time, one obtains

dr
dt

c ∂r
∂q

q̇ +
∂r
∂t

(5.9)

Multiplying both sides of this equation by dt yields the actual differential dis-
placement as
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dr c ∂r
∂q

dq +
∂r
∂t

d t (5.10)

If r is not an explicit function of time, the virtual displacement dr and the actual
differential displacement dr are the same provided that the partial differential
dq is the same as the total differential dq. It follows that in the case of an
n-dimensional vector of generalized coordinates, one has

dr c ∂r
∂q1

dq1 +
∂r
∂q2

dq2 + · · · +
∂r
∂qn

dqn

c n

���
j c 1

∂r
∂qj

dqj c ∂r
∂q

dq (5.11)

where qj is the jth generalized coordinate, and

∂r
∂q

c [ ∂r
∂q1

∂r
∂q2

· · ·
∂r
∂qn ]

5.2 KINEMATIC CONSTRAINTS AND COORDINATE PARTITIONING

In constrained multibody systems, the system coordinates are related by a set
of kinematic constraint equations as the result of mechanical joints or specified
motion trajectories. If the system is not kinematically driven, the number of the
kinematic constraint equations nc is less than the number of the system coordi-
nates n. In this case, the constraint kinematic relationships can be used to write
a subset of the coordinates in terms of the others. Therefore, the coordinates
of a mechanical system can be divided into two groups: the first group is the
set of dependent coordinates qd and the second group is the set of independent
coordinates or the degrees of freedom of the system qi. The number of depen-
dent coordinates is equal to the number of the kinematic constraint equations
nc and the number of independent coordinates is equal to n − nc. By using the
kinematic relationships, the virtual changes in the dependent coordinates can
be expressed in terms of the virtual changes of the independent coordinates.
Consider, for example, the slider crank mechanism shown in Fig. 3. The loop-
closure equations for this mechanism can be written in a vector form as

r2 + r3 + r1 c 0 (5.12)

which can be written more explicitly as

l2 cos v2 + l3cos v3 c R4
x (5.13a)

l2 sin v2 + l3sin v3 c 0 (5.13b)
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Figure 5.3 Slider crank mechanism

where l2 and l3 are the lengths of the crankshaft and the connecting rod, and R4
x

is the position of the slider block with respect to point O. By taking the virtual
changes of the coordinates, these two equations lead to

− l2 sin v2 dv2 − l3 sin v3 dv3 c dR4
x (5.14a)

l2 cos v2 dv2 + l3 cos v3 dv3 c 0 (5.14b)

One may select the dependent coordinates to be v3 and R4
x , that is,

qd c [v3 R4
x]T (5.15)

where qd is the nc-dimensional vector of dependent coordinates. Since the
mechanism has only one degree of freedom, there is only one independent coor-
dinate that can be selected as v2, that is,

qi c v2 (5.16)

One may then rearrange Eqs. 14a and 14b and write them using matrix notation
as

[ − l3 sin v3 −1

− l3 cos v3 0 ] [ dv3

dR4
x ] c [ sin v2

cos v2 ] l2 dv2 (5.17)

which defines dv3 and dR4
x in terms of the independent coordinate dv2 as

[ dv3

dR4
x ] c −1

l3 cos v3 [ l2 cos v2

l2l3 sin (v2 − v3) ] dv2 (5.18)

It is clear from this equation that a singular configuration occurs when v3 c
p/ 2 or 3p/ 2. At this singular configuration dv3 and dR4

x cannot be expressed
in terms of dv2.
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Alternatively, one may try to express dv2 and dv3 in terms of dR4
x using Eq.

14. This leads to

[ − l2 sin v2 − l3 sin v3

l2 cos v2 l3 cos v3 ] [ dv2

dv3 ] c [ dR4
x

0 ]
The solution of this matrix equation is

[ dv2

dv3 ] c 1
l2l3 sin(v2 − v3) [ − l3 cos v3

l2 cos v2 ] dR4
x

In this case, singularity occurs whenever v2 is equal to v3.

Example 5.2

For the four-bar linkage shown in Fig. 4, obtain an expression for the virtual changes
in the angular orientations of the coupler and the rocker in terms of the virtual
change of the angular orientation of the crankshaft.

Solution. The loop-closure equations for this mechanism are

l2 cos v2 + l3 cos v3 + l4 cos v4 − l1 c 0 (5.19a)

l2 sin v2 + l3 sin v3 + l4 sin v4 c 0 (5.19b)

where l2, l3, and l4 are, respectively, the lengths of the crankshaft, coupler, and
rocker; l1 is the distance between points O and C; and v2, v3, and v4 are, respec-

Figure 5.4 Four-bar mechanism
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tively, the angular orientations of the crankshaft, coupler, and rocker. By taking
virtual changes in the coordinates v2, v3, and v4, and keeping in mind that l1 is
constant, the loop-closure equations yield

l2 sin v2 dv2 + l3 sin v3 dv3 + l4 sin v4 dv4 c 0 (5.20a)

l2 cos v2 dv2 + l3 cos v3 dv3 + l4 cos v4 dv4 c 0 (5.20b)

The coordinates v3 and v4 may be selected as dependent coordinates and v2 as the
independent coordinate leading to the following relationship:

[ l3 sin v3 l4 sin v4

l3 cos v3 l4 cos v4 ] [ dv3

dv4 ] c − [ sin v2

cos v2 ] l2 dv2 (5.21)

or

[ dv3

dv4 ] c 1
l3l4 sin(v3 − v4) [ l2l4 sin(v4 − v2)

l2l3 sin(v2 − v3) ] dv2 (5.22)

A similar procedure can be used if dv3 or dv4 is selected to be the independent
coordinate.

Constraint Jacobian Matrix One may generalize the procedure described
in this section for expressing the virtual changes of the dependent coordinates in
terms of the virtual changes of the independent ones. This can be demonstrated
by writing the algebraic kinematic constraint equations between coordinates in
the following general form:

C(q, t) c 0 (5.23)

where q c [q1 q2 · · · qn]T is the vector of the system coordinates, t is time,
and C is the vector of constraint functions, which can be written as

C c [C1(q, t) C2(q, t) · · · Cnc (q, t)]T (5.24)

where nc is the total number of constraint equations that are assumed to be lin-
early independent. If the system is dynamically driven, the number of constraint
equations nc is less than the number of the coordinates n.

Equation 23, as the result of a virtual change in the vector of system coor-
dinates, leads to

Cq dq c 0 (5.25)

where Cq is the constraint Jacobian matrix defined as
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Cq c ∂C
∂q

c













∂C1

∂q1

∂C1

∂q2
· · ·

∂C1

∂qn

∂C2

∂q1

∂C2

∂q2
· · ·

∂C2

∂qn...
...

. . .
...

∂Cnc

∂q1

∂Cnc

∂q2
· · ·

∂Cnc

∂qn














(5.26)

The constraint Jacobian matrix has a number of rows equal to the number of
constraint equations and a number of columns equal to the number of the sys-
tem coordinates. The vector of coordinates q can be written in the following
partitioned form:

q c [qT
d qT

i ]T (5.27)

where qd is an nc-dimensional vector of the dependent coordinates, and qi is
an (n − nc)-dimensional vector of independent coordinates. According to this
coordinate partitioning, Eq. 25 can be rewritten as

Cqd
dqd + Cqi

dqi c 0 (5.28)

where the dependent and independent coordinates are chosen such that the nc

× nc matrix Cqd
is nonsingular. Equation 28 can then be used to write dqd in

terms of dqi as

dqd c −C−1
qd

Cqi
dqi (5.29)

or simply as

dqd c Cdi dqi (5.30)

where

Cdi c −C−1
qd

Cqi
(5.31)

By using Eqs. 27 and 30, the virtual change in the total vector of system coor-
dinates can be expressed in terms of the virtual change of the independent coor-
dinates as

dq c [ dqd

dqi ] c [ Cdi

I ] dqi (5.32)

This equation can be written as

dq c Bi dqi (5.33)
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where the matrix Bi is an n × (n − nc) matrix defined as

Bi c [ Cdi

I ] (5.34)

The use of the general procedure described in this section can be demon-
strated using the four-bar linkage discussed in Example 2. In this example, the
vector of coordinates q is selected to be

q c [v2 v3 v4]T

The kinematic constraint equations that relate these coordinates are defined by
the loop-closure equations (see Eq. 19). These constraint equations are

C(q, t) c [ C1(q, t)

C2(q, t) ] c [ l2 cos v2 + l3 cos v3 + l4 cos v4 − l1

l2 sin v2 + l3 sin v3 + l4 sin v4 ] c [ 0

0 ]
By taking a virtual change in the system coordinates, one has

Cq dq c [ − l2 sin v2 dv2 − l3 sin v3 dv3 − l4 sin v4 dv4

l2 cos v2 dv2 + l3 cos v3 dv3 + l4 cos v4 dv4 ] c [ 0

0 ]
which can also be written as

Cq dq c [ − l2 sin v2 − l3 sin v3 − l4 sin v4

l2 cos v2 l3 cos v3 l4 cos v4 ] 


dv2

dv3

dv4



c [ 0

0 ]
From which the Jacobian matrix of the kinematic constraints can be identified
as

Cq c [ − l2 sin v2 − l3 sin v3 − l4 sin v4

l2 cos v2 l3 cos v3 l4 cos v4 ]
If v2 is selected as the independent coordinate, one has

qi c v2, qd c [v3 v4]T

It follows that

Cqd
dqd + Cqi

dqi c [ − l3 sin v3 − l4 sin v4

l3 cos v3 l4 cos v4 ] [ dv3

dv4 ]
+ [ − l2 sin v2

l2 cos v2 ] dv2 c 0
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where

Cqd
c [ − l3 sin v3 − l4 sin v4

l3 cos v3 l4 cos v4 ] , Cqi
c [ − l2 sin v2

l2 cos v2 ]
The virtual changes in the dependent coordinates can then be expressed in terms
of the virtual change in the independent coordinate as

dqd c −C−1
qd

Cqi
dqi

Since in this example

C−1
qd
c 1

l3l4 sin(v4 − v3) [ l4 cos v4 l4sin v4

− l3 cos v3 − l3 sin v3 ]
the preceding equation yields

dqd c [ dv3

dv4 ]
c 1

l3l4 sin(v3 − v4) [ l4 cos v4 l4 sin v4

− l3 cos v3 − l3 sin v3 ] [ − l2 sin v2

l2 cos v2 ] dv2

c 1
l3l4 sin(v3 − v4) [ l2l4 sin(v4 − v2)

l2l3 sin(v2 − v3) ] dv2

which is the same result obtained in Eq. 22 of Example 2. The matrix Cdi of
Eq. 31 is recognized as

Cdi c 1
l3l4 sin(v3 − v4) [ l2l4 sin(v4 − v2)

l2l3 sin(v2 − v3) ]
The virtual change in the total vector of system coordinates can be expressed
in terms of the virtual change in the independent coordinate as

dq c 




dv3

dv4

dv2





c 




l2 sin(v4 − v2)/ l3 sin(v3 − v4)

l2 sin(v2 − v3)/ l4 sin(v3 − v4)

1





dv2
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where the matrix Bi of Eq. 34 can be recognized as

Bi c 




l2 sin(v4 − v2)/ l3 sin(v3 − v4)

l2 sin(v2 − v3)/ l4 sin(v3 − v4)

1





Absolute Coordinates As pointed out in Chapter 3, in many general-
purpose multibody computer algorithms the absolute coordinates are employed
for the sake of generality. In this case, the configuration of the rigid body is
identified by the global position vector of the origin of the body reference (ref-
erence point) and by a set of orientational coordinates that define the orien-
tation of the body in a global fixed frame of reference. Kinematic constraints
that represent mechanical joints in the system can be formulated in terms of
the absolute coordinates. For example, the algebraic kinematic constraint equa-
tions that describe the revolute joint between body i and body j in Fig. 5 can
be expressed as

r i
P − r j

P c 0 (5.35)

where r i
P is the position vector of the joint definition point P expressed in terms

of the coordinates of body i, and r j
P is the position vector of the same point

P expressed in terms of the coordinates of body j. Equation 35 can be written in
a more explicit form in terms of the absolute coordinates as

Ri + Aiu i
P − R j − A ju j

P c 0 (5.36)

Figure 5.5 Two-body system
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where Ri and R j are, respectively, the position vectors of the reference points
of body i and body j, Ai and A j are the transformation matrices of body i and
body j, and u i

P and u j
P, as shown in Fig. 5, are the local position vectors of

point P defined in the coordinate systems of bodies i and j, respectively.
By taking a virtual change in the absolute coordinates of body i and body j,

Eq. 36 leads to

dRi + (Ai
vu i

P) dvi − dR j − (A j
vu j

P) dv j c 0 (5.37a)

Since the revolute joint eliminates two degrees of freedom, one may select dR j

as the vector of dependent coordinates and write this vector in terms of the other
absolute coordinates as

dR j c dRi + Ai
vu i

P dvi − A j
vu j

P dv j (5.37b)

Example 5.3

Figure 6 shows a two-body system that consists of the ground and a rigid rod with
a uniform cross-sectional area and length l2. In this example, three absolute coordi-
nates Ri

x , Ri
y, and v i are selected for each body i in the system. The reference point

of the rod is assumed to be at its geometric center. If the system is assumed to be
dynamically driven, there are only joint constraints that represent the ground and
the revolute joint constraints. The ground constraints are

R1
x c 0, R1

y c 0, v1 c 0

Figure 5.6 Simple pendulum
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The revolute joint constraints are

R2 + A2u2
O c 0

where u2
O c [− l2/ 2 0]T, and A2 is the planar transformation matrix. The revolute

joint constraints can be written more explicitly as








R2
x − l2

2
cos v2

R2
y − l2

2
sin v2







c [ 0

0 ]
The vector of the system generalized coordinates is

q c [q1 q2 q3 · · · q6]T c [R1
x R1

y v1 R2
x R2

y v2]T

The vector of the system constraint equations is

C(q, t) c


















R1
x

R1
y

v1

R2
x − l2

2
cos v2

R2
y − l2

2
sin v2


















c











0

0

0

0

0












and the constraint Jacobian matrix is

Cq c

















1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0
l2

2
sin v2

0 0 0 0 1 − l2

2
cos v2
















In this example, there are six coordinates (n c 6) and five constraint equations (ncc 5). Therefore, the system has one degree of freedom. One may select this degree
of freedom to be v2 and write Eq. 28 as

Cqd dqd + Cqi dqi c 0

where in this case qd c [R1
x R1

y v1 R2
x R2

y]T and qi c v2. According to this
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generalized coordinate partitioning, the matrices Cqd and Cqi can be identified as

Cqd c









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









, Cqi c
















0
0
0

l2

2
sin v2

− l2

2
cos v2















It follows that the matrix Cdi of Eq. 31 can be written in this case as

Cdi c −C−1
qd

Cqi c −
















0
0
0

l2

2
sin v2

− l2

2
cos v2















and the matrix Bi in Eq. 33 is

Bi c


















0
0
0

− l2

2
sin v2

l2

2
cos v2

1

















Using Eq. 33, the virtual change in the total vector of the system coordinates can
be expressed in terms of the virtual change in the system degrees of freedom as

dq c













dR1
x

dR1
y

dv1

dR2
x

dR2
y

dv2














c


















0
0
0

− l2

2
sin v2

l2

2
cos v2

1


















dv2
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Nonholonomic Constraints Joint and driving constraints that can be
described by Eq. 23 are called holonomic constraints since they can be
expressed as algebraic equations in the system coordinates and time. There are
other types of constraints that cannot be expressed as functions of the coordi-
nates and time only. These types of constraints, which are known as nonholo-
nomic constraints, can be expressed in terms of differentials of the coordinates
as

n

���
k c 1

ajk dqk + bj dt c 0 j c 1, 2, . . . , ncn (5.38)

where ncn is the number of nonholonomic constraint equations, and ajk and
bk can be functions of the system coordinates q c [q1 q2 · · · qn]T as well as
time. One should not be able to integrate the preceding equation and write it
in terms of the coordinates and time only; otherwise we obtain the form of
the holonomic constraints. Hence, one cannot use nonholonomic constraints to
eliminate dependent coordinates and, consequently, in this case of a nonholo-
nomic system, the number of independent coordinates is more than the number
of independent velocities.

Recall that a differential form is integrable if it is an exact differential. In
this case, the following conditions hold:

∂ajk

∂ql
c ∂ajl

∂qk

∂ajk

∂t
c ∂bj

∂qk

If these conditions are not satisfied, Eq. 38 is of the nonholonomic type since
this equation cannot be integrated and written in the form of Eq. 23. It follows
that in the case of a nonholonomic system, none of the constraint equations of
Eq. 38 can be written in the form

dC(q, t) c ∂C
∂q1

dq1 +
∂C
∂q2

dq2 + · · · +
∂C
∂qn

dqn +
∂C
∂t

d t c 0

An example of nonholonomic constraints is

dq1 − sin q3 dq4 c 0

dq2 − cos q3 dq4 c 0

These are two independent constraint equations expressed in terms of the dif-
ferentials of the four coordinates q1, q2, q3, and q4. These two equations do not
satisfy the conditions of exact differentials and, therefore, cannot be integrated
and expressed in the form of Eq. 23.
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5.3 VIRTUAL WORK

The virtual work of a force vector is defined to be the dot (scalar) product of
the force vector and the vector of the virtual change of the position vector of
the point of application of the force. Both vectors must be defined in the same
coordinate system. The virtual work of a moment that acts on a rigid body is
defined to be the product of the moment and the virtual change in the angular
orientation of the body. Figure 7 shows a rigid body i that is acted upon by a
moment Mi and a force vector Fi whose point of application is dentoed as Pi.
The virtual work of this system of forces is given by

dW i c FiT dr i
P + Mi dvi (5.39)

where r i
P is the position vector of point Pi, and v i is the angular orientation of

the body i.

Generalized Forces The position vector of an arbitrary point on a rigid
body can be expressed in terms of the position vector of the reference point as
well as the angular orientation of the body. The coordinates of the rigid body
may be defined by the vector qi where

qi c [R iT v i]T (5.40)

where Ri is the position vector of the reference point and v i is the angular
orientation of the body. In terms of these coordinates, the position of point Pi

given by the vector r i
P of Eq. 39 can be written as

r i
P c Ri + Aiu i

P (5.41)

Figure 5.7 Virtual work
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where Ai is the transformation matrix from the body coordinate system to the
global coordinate system, and u i

P c [ui
x u i

y]T is the local position vector of
the point of application of the force Fi. By taking a virtual change in the body
coordinates, Eq. 41 yields

dr i
P c dRi + Ai

vu i
P dvi (5.42)

Substituting Eq. 42 into Eq. 39, the virtual work of the force Fi and the moment
Mi can be expressed as

dW i c FiT(dRi + Ai
vu i

P dvi) + Mi dvi

c FiT dRi + (FiTAi
vu i

P + Mi) dvi (5.43)

This equation can be written as

dW i c QiT
R dRi + Qi

v d vi (5.44)

where

Qi
R c Fi (5.45a)

Qi
v c Mi + u iT

P AiT
v Fi (5.45b)

The vector Qi
R is called the vector of generalized forces associated with the

coordinates of the reference point, and the scalar Qi
v is called the generalized

force associated with the rotation of the body. The second term in Eq. 45b,
which is the contribution of the force Fi to the generalized force associated
with the rotation of the body, can be written as

u iT
P AiT

v Fi c [ui
x u i

y] [ −sin v i cos v i

−cos v i −sin v i ] [ F i
x

F i
y ]

c −F i
x(ui

x sin v i + ui
y cos v i) + F i

y(ui
x cos v i − ui

y sin v i)

One can verify that this equation also takes the following form:

u iT
P AiT

v Fi c (ui
P × Fi) . k

or

u iT
P AiT

v Fi c [Ai(u i
P × F i)] . k
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where k is a unit vector along the Z axis, and

ui
P c Aiu i

P

F i c AiTFi

It follows that Eq. 45b can simply be written as

Qi
v c Mi + (ui

P × Fi) . k (5.46)

Equations 45a and 46 imply that a force vector Fi that acts at an arbitrary point
Pi is equivalent (equipollent) to another system of forces that consists of the
same force Fi acting at the reference point and a moment (ui

p × Fi) . k associated
with the rotation of the body.

The method discussed in this section for obtaining the generalized forces
can be generalized to any number of forces and moments. The procedure is to
express the position vectors of the points of application of the forces in terms of
the system coordinates. Substituting the resulting kinematic relationships into
the expression for the virtual work leads to the definition of the generalized
forces associated with the system coordinates. For example, if the configuration
of the mechanical system is described by the n coordinates

q c [q1 q2 · · · qn]T (5.47)

The virtual work of the forces acting on the system can be expressed in the
general form

dW c Q1 dq1 + Q2 dq2 + · · · + Qn dqn (5.48)

where Qj is the generalized force associated with the jth coordinate qj .
Equation 48 can be written in a vector form as

dW c QT dq (5.49)

where Q is the vector of generalized forces and dq is the vector of the virtual
changes in the coordinates. The vectors Q and dq are

Q c [Q1 Q2 · · · Qn]T (5.50)

dq c [dq1 dq2 · · · dqn]T (5.51)

Coordinate Transformation Equation 48 or its equivalent vector form of
Eq. 49 defines the generalized forces associated with the coordinates q c [q1

q2 · · · qn]T. The generalized forces associated with another set of coordinates
can be obtained if the transformation between the two sets of coordinates is
defined. Let p c [p1 p2 · · · pm]T be another set of coordinates such that the
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vector of virtual changes in q can be expressed in terms of the virtual changes
in p as

dq c Bqp dp (5.52)

By substituting Eq. 52 into Eq. 49, one obtains

dW c QTBqp dp c QT
p dp (5.53)

where

Qp c BT
qpQ c [Qp1 Qp2 · · · Qpm]T (5.54)

is the vector of generalized forces associated with the vector of coordinates p.
As an illustrative example, the slider crank mechanism shown in Fig. 8 is

considered. The virtual work of the external forces acting on the links of this
mechanism is

dW c M2 dv2 + F3T
dr3

C + F 4 dR4
x

where F3 c [F 3
x F 3

y]T.
The vector r 3

C is

r3
C c [ l2 cos v2 + l3

A cos v3

l2 sin v2 + l3
A sin v3 ]

where l3
A is the distance between points A and C. Therefore, one has

dr3
C c [ − l2 sin v2 − l3

A sin v3

l2 cos v2 l3
A cos v3 ] [ dv2

dv3 ]
Substituting this equation into the expression for the virtual work, one obtains

dW c M2dv2 + [F 3
x F 3

y] [ − l2 sin v2 − l3
A sin v3

l2 cos v2 l3
A cos v3 ] [ dv2

dv3 ] + F 4 dR4
x

Figure 5.8 Slider crank mechanism
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or

dW c Qv2 dv2 + Qv3 dv3 + QR4
x

dR4
x c [Qv2 Qv3 QR4

x
]





dv2

dv3

dR4
x





(5.55a)

where

Qv2 c M2 − F 3
xl2 sin v2 + F 3

yl2 cos v2

Qv3 c −F 3
xl3

A sin v3 + F 3
yl3

A cos v3

QR4
x
c F 4









(5.55b)

It was shown in Section 2 that dv3 and dR4
x can be expressed in terms of dv2

as

[ dv3

dR4
x ] c 1

l3 cos v3 [ − l2 cos v2

− l2l3 sin(v2 − v3) ] dv2 (5.56)

One may define the vector q as

q c [v2 v3 R4
x]T

The virtual change in this vector can be written in terms of the virtual change
in v2 as






dv2

dv3

dR4
x





c 




1

− l2 cos v2/ l3 cos v3

− l2 sin (v2 − v3)/ cos v3





dv2 (5.57)

Substituting this equation into Eq. 55a leads to the definition of the generalized
force, of all the forces and moments acting on the slider crank mechanism,
associated with the coordinate v2 as

dW c [Qv2 Qv3 QR4
x
]





1

− l2 cos v2/ l3 cos v3

− l2 sin (v2 − v3)/ cos v3





dv2

c QT
p dp

where in this case dp reduces to

dp c dv2
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and

Qp c Qv2 − (Qv3 l2 cos v2/ l3 cos v3) − QR4
x
l2 sin (v2 − v3)/ cos v3

in which Qv2 , Qv3 , and QR4
x

are defined by Eq. 55b.

Example 5.4

Determine the generalized force associated with the rotation of the crank shaft, due
to the system of forces acting on the four-bar linkage shown in Fig. 9.

Solution. The virtual work of the forces shown in Fig. 9 is given by

dW c M2 dv2 + F3T
dr3

C + M4 dv4

where F3 c [F 3
x F 3

y]T and

r3
C c [ l2 cos v2 + l3

A cos v3

l2 sin v2 + l3
A sin v3 ]

where l3
A is the distance between point A and the center of the coupler. It follows

that

dr3
C c [ − l2 sin v2 − l3

A sin v3

l2 cos v2 l3
A cos v3 ] [ dv2

dv3 ]

Figure 5.9 Four-bar mechanism
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Substituting this into the expression for the virtual work, one obtains

dW c (M2 − F 3
x l2 sin v2 + F 3

y l2 cos v2) dv2

+ (−F 3
x l3

A sin v3 + F 3
y l3

A cos v3) dv3 + M4 dv4

By using the results of Example 2, dv3 and dv4 can be expressed in terms of dv2

as

[ dv3

dv4 ] c 1
l3l4 sin(v3 − v4) [ l2l4 sin(v4 − v2)

l2l3 sin(v2 − v3) ] dv2

which upon substitution into the expression of the virtual work yields

dW c (M2 − F 3
x l2 sin v2 + F 3

y l2 cos v2) dv2

+
l2 sin(v4 − v2)
l3 sin(v3 − v4)

(−F 3
x l3

A sin v3 + F 3
y l3

A cos v3) dv2

+
M4l2 sin(v2 − v3)

l4 sin(v3 − v4)
dv2

which can be written as

dW c Qp dv2

where

Qp c M2 − F 3
x l2 sin v2 + F 3

y l2 cos v2

+
l2 sin(v4 − v2)
l3 sin(v3 − v4)

(−F 3
x l3

A sin v3 + F 3
y l3

A cos v3)

+
M4l2 sin(v2 − v3)

l4 sin(v3 − v4)

Before concluding this section it is important to point out that, in general,
the virtual work in not an exact differential. That is, the virtual work is not, in
general, the variation of a certain function. In the special case where the virtual
work is an exact differential one has

Qj c ∂W
∂qj

and consequently,

∂Qj

∂qk
c ∂Qk

∂qj

In this special case, the forces are said to be conservative since they can be
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obtained using a potential function. Nonconservative forces, however, cannot
be derived from a potential function, and hence their virtual work is not equal
to the variation of a certain function. Examples of conservative forces are the
gravity forces and linear spring forces. Examples of nonconservative forces are
the damping, friction, and actuator forces. In this book, for the sake of gener-
ality, we use the general expression of Eq. 49 to define the generalized forces
regardless of whether these forces are conservative or nonconservative.

5.4 EXAMPLES OF FORCE ELEMENTS

In this section, the generalized forces associated with some of the commonly
encountered forces in multibody dynamics are developed. The definitions of
these generalized forces are obtained by using the virtual work expression.

Gravity The virtual work of the gravity force acting on body i is given by

dW i c −mig dyi (5.58)

where mi is the mass of body i, g is the gravity constant, and yi is the vertical
coordinate of the position vector of the body center of mass. If the reference
point is the same as the center of mass, one has

dyi c dRi
y

If, on the other hand, the reference point is different from the center of mass,
yi can be expressed in terms of the coordinates of body i as

yi c Ri
y + ui

x sin v i + ui
y cos v i

where u i c [ui
x u i

y]T is the local position vector of the center of mass with
respect to the reference point of body i. The virtual change in yi in terms of
the virtual change in the coordinates of body i is

dyi c dRi
y + (ui

x cos v i − ui
y sin v i) dvi

which upon substitution into the expression for the virtual work of Eq. 58 leads
to

dW i c −mig dRi
y − mig(ui

x cos v i − ui
y sin v i) dvi

c Qi
y dRi

y + Qi
v d vi (5.59)

where Qi
y and Qi

v are, respectively, the generalized forces associated with the
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coordinates Ri
y and v i, and are given by

Qi
y c −mig (5.60a)

Qi
v c −mig(ui

x cos v i − ui
y sin v i) (5.60b)

If the reference point is selected to be the center of mass of the body, Qi
v is

identically zero since ui
x c ui

y c 0.

Spring–Damper–Actuator Element Figure 10 shows two bodies i and j
connected by a force element that consists of a translational spring, damper,
and actuator. The spring stiffness is assumed to be k, the damping coefficient
is c, and the actuator force is fa. The point of attachment of this force element
on body i is assumed to be Pi, while on body j it is assumed to be Pj . The
position vectors of these points with respect to their respective body coordinate
systems are denoted as u i

P and u j
P. The resultant force of the spring, damper,

and actuator acting along a line connecting points Pi and Pj is given by

fs c k(l − l0) + cl̇ + fa (5.61)

where l is the current spring length, l0 is the undeformed length of the spring,
and l̇ is the time derivative of l with respect to time. In Eq. 61, k(l − l0) is the
spring force and cl̇ is the damper force, which is assumed to be proportional
to the relative velocity between points Pi and Pj . The spring stiffness, the damp-

Figure 5.10 Spring–damper–actuator force
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ing coefficient, and the actuator force can be nonlinear functions of the system
coordinates and velocities as well as time.

The virtual work due to the force defined by Eq. 61 can be written as

dW c − fs dl (5.62)

where dl is the virtual change in the distance between points Pi and Pj . In terms
of the absolute coordinates of the two bodies, the position vector of point Pj

with respect to point Pi can be written as

r ij
P c Ri + Aiu i

P − R j − A ju j
P (5.63)

One can, therefore, define the current spring length as

l c (r ijT

P r ij
P)1/ 2 (5.64)

and the virtual change in this length as

dl c ∂l
∂q

dq c (r ijT

P r ij
P)−1/ 2r ijT

P
∂r ij

P

∂q
dq (5.65)

where q is the vector of coordinates of body i and body j given by

q c [qiT q jT
]T c [RiT v i R jT

v j]T (5.66)

Equation 65, upon the use of Eq. 64, can be expressed as

dl c r ijT

P

l
∂r ij

P

∂q
dq

c Î
T [ ∂r ij

P

∂qi
dqi +

∂r ij
P

∂q j
dq j]

c Î
T [ ∂r ij

P

∂qi

∂r ij
P

∂q j ] [ dqi

dq j ] (5.67)

where Î is a unit vector in the direction of the vector r ij
P, and ∂r ij

P/ ∂qi and
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∂r ij
P/ ∂q j can be obtained using Eq. 63 as

∂r ij
P

∂qi
c [I Ai

vu i
P] (5.68a)

∂r ij
P

∂q j
c − [I A j

vu j
P] (5.68b)

in which Ai
v and A j

v are the matrices

Ai
v c [ −sin v i −cos v i

cos v i −sin v i ] , A j
v c [ −sin v j −cos v j

cos v j −sin v j ]
The generalized forces associated with the coordinates of body i and body j
can be obtained by substituting Eq. 67 into Eq. 62, yielding

dW c − fsÎ
T [ ∂r ij

P

∂qi

∂r ij
P

∂q j ] [ dqi

dq j ] c QiT dqi + Q jT
dq j (5.69)

where Qi and Q j are the vectors of the generalized forces associated with the
coordinates of body i and body j, respectively. Using Eq. 68, these vectors are

Qi c [ Qi
R

Qi
v
] c − fs [ ∂r ij

P

∂qi ] T

Î c − fs [ I

u iT
P AiT

v
] Î (5.70a)

Q j c [ Q j
R

Q j
v
] c fs [ ∂r ij

P

∂q j ] T

Î c fs [ I

u jT

P A jT

v
] Î (5.70b)

in which fs is defined by Eq. 61. In the expression for the force fs, l is defined
by Eq. 64, and l̇ can be obtained according to

l̇ c ∂l
∂q

q̇ c ÎT ∂r ij
P

∂q
q̇ (5.71)

The special case, in which there is only a spring element, can be obtained
from the general development presented in this section by assuming that c c
fa c 0. Similarly, if the force element consists of a damper or an actuator only,
one has k c fa c 0 or k c c c 0, respectively.
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Example 5.5

Figure 11 shows a spring–damper force element that is connected between the
crankshaft and the rocker of a four-bar linkage. The stiffness coefficient k of the
spring is assumed to be 250 N/ m and the damping coefficient c is assumed to be
10 N . s/ m. The undeformed length of the spring is assumed to be 0.35 m. The
local positions of the attachment points of the spring–damper element with respect
to the crankshaft and the rocker coordinate systems are given, respectively, by u2

P c
[0.03 0]T and u4

P c [−0.05 0]T. The respective lengths of the crankshaft, rocker,
and coupler are l2 c 0.2 m, l3 c 0.4 m, and l4 c 0.3 m. The distance between points
O and C is assumed to be 0.35 m. At a particular configuration, the angular orien-
tation of the crankshaft v2 c 708 and its angular velocity v̇2 c 150 rad/ s. Determine
the generalized forces of the spring–damper element associated with the absolute
Cartesian coordinates Ri

x , Ri
y, and v i. If the generalized coordinates are selected to

be v2, v3, and v4, determine the generalized forces of the spring–damper associated
with this set of the generalized coordinates.

Solution. By performing a position analysis for the four-bar mechanism, one ob-
tains

v2 c 708, v3 c 13.318, v4 c 248.978
The velocity analysis leads to

v̇2 c 150 rad/ s, v̇3 c 1.6328 rad/ s, v̇4 c 101.212 rad/ s

The spring–damper force is

fs c k(l − l0) + cl̇

Figure 5.11 Spring–damper force
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the virtual work of the spring–damper force is

dW c − fs dl

Note that

r24
P c R2 + A2u2

P − R4 − A4u4
P

c 






l2

2
cos v2

l2

2
sin v2







+ [ cos v2 −sin v2

sin v2 cos v2 ] [ 0.03

0 ]
− 






l2 cos v2 + l3 cos v3 +
l4

2
cos v4

l2 sin v2 + l3 sin v3 +
l4

2
sin v4







− [ cos v4 −sin v4

sin v4 cos v4 ] [ −0.05

0 ] c [ −0.3773

−0.0927 ]
It follows that

|r24
P | c l c f(−0.3773)2 + (−0.0927)2 c 0.3885

A unit vector along a line connecting the attachment points of the spring–damper
element is

Î c r24
P

l
c [ −0.9712

−0.2386 ]
The vector of the generalized coordinates of the crankshaft and the rocker can be
written as

q c [R2T
v2 R4T

v4]T

The time derivative of the spring length is

l̇ c ÎT ∂r24
P

∂q
q̇

∂r24
P

∂q
c [I A2

vu2
P − I −A4

vu4
P]
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in which

A2
vu2

P c [ −sin v2 −cos v2

cos v2 −sin v2 ] [ 0.03

0 ] c [ −0.0282

0.0103 ]
A4

vu4
P c [ −sin v4 −cos v4

cos v4 −sin v4 ] [ −0.05

0 ] c [ −0.0467

0.0179 ]
q̇ c [Ṙ2T

v̇2 Ṙ4T
v̇4]T

c [−14.0954 5.1303 150 − 14.1706 5.4481 101.212]T

which yield

l̇ c −0.4159 m/ s

fs c 250(0.3885 − 0.35) + 10(−0.4159) c 5.466 N

The generalized forces can then be written as

Q2 c [ Q2
R

Q2
v

] c − fs [ I

u2T

P A2T

v
] Î c 





5.3086

1.3042

0.1363






Q4 c [ Q4
R

Q4
v

] c fs [ I

u4T

P A4T

v
] Î c 





−5.3086

−1.3042

0.2246





These are the generalized forces associated with the absolute coordinates of the
crankshaft and the rocker. Note that the forces associated with the translational coor-
dinates are equal in magnitude and opposite in direction.

To determine the generalized forces associated with the angles v2, v3, and v4,
we first evaluate dr24

P as

dr24
P c ∂r24

P

∂q
dq c ∂r24

P

∂q
∂q
∂�

d� c ∂r24
P

∂�
d�

where

� c [v2 v3 v4]T

and

∂r24
P

∂�
c ∂r24

P

∂q
∂q
∂�

Using this equation, it can be shown that

dr24
P c [ 0.0658 0.0921 −0.0933

−0.0342 −0.3893 0.0359 ] 




dv2

dv3

dv4
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The spring–damper force vector is

Fs c fs Î c [ −5.3086

−1.3042 ] N

The virtual work of this force is

dW c −FT
s dr24

P c − [−5.3086 − 1.3042] [ 0.0658 0.0921 −0.0933

−0.0342 −0.3893 0.0359 ]
. 




dv2

dv3

dv4






c − [−0.3047 0.0188 0.4485]





dv2

dv3

dv4





where the generalized forces associated with the angles v2, v3, and v4 are recognized
as

Qv1 c 0.3047

Qv2 c −0.0188

Qv3 c −0.4485

Rotational Spring–Damper Element Figure 12 depicts two bodies i and
j that are connected by rotational spring and damper. The stiffness coefficient
of the spring is assumed to be kr and the damping coefficient is assumed to be
cr. The resultant moment of the spring and damper can be expressed as

Ms c kr(v − v0) + cr v̇ (5.72)

where v0 is the angle between body i and body j before displacements, and v

Figure 5.12 Torsional spring and damper
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is the relative angular displacement between the two bodies, that is,

v c v i − v j

The virtual work due to the moment of Eq. 72 is

dW c −Ms dv c − [kr(v − v0) + cr v̇] dv

Using the preceding two equations,

dW c − [kr(v − v0) + cr v̇](dvi − dv j)

which can be written as

dW c Qi
v d vi + Qj

v d v j (5.73a)

where Qi
v and Qj

v are the generalized forces associated with the rotational coor-
dinates of bodies i and j, respectively. These generalized forces are

Qi
v c − [kr(v − v0) + cr v̇] (5.73b)

Qj
v c kr(v − v0) + cr v̇ (5.73c)

If the force element consists of a spring only, cr c 0. On the other hand, if the
force element consists of a damper only, kr c 0

Coulomb Friction In the case of ideal joints, the reaction forces are assumed
to be normal to the contact surfaces. Although this assumption is valid in many
situations and its use leads to a relatively small error, there are many applica-
tions wherein the interaction between the contact surfaces must be described by
normal and tangential components. The tangential component that opposes the
relative motion between the two surfaces is called the friction force. In many
types of mechanical systems, such as gears and bearings, it is desirable to mini-
mize the effect of the friction forces, while in other applications, such as brakes
and clutches, one desires to maximize the friction effect.

In the case of Coulomb or dry friction, the friction force is not an explicit
function of the displacement and its derivatives. Figure 13a shows two bodies i
and j that are in contact. Let t be a unit vector along the flat contact surface, and
vi and v j be the absolute velocities of the reference points of the two bodies.
The velocity of body i with respect to body j along the vector t is

vr c (vi − v j)Tt

As shown in Fig. 13a, the contact force is represented by two components: the
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Figure 5.13 Friction force

component Fn, which is normal to the flat contact surface, and the component
Ff , which is parallel to that surface. The component Ff , which is developed by
friction, opposes the relative motion. In the classical theory of dry friction, the
friction force Ff is directly proportional to the normal force Fn. Depending on
the materials of the two bodies, there is a limit to the magnitude of the force
Ff . In the special case where vr c 0, one has

Ff ≤ msFn

where ms, called the coefficient of static friction, depends on the properties of
the materials in contact. The values of the coefficient of static friction can be
found experimentally. Table I shows approximate values of this coefficient in
several cases of dry surfaces.

If body i slides with respect to body j with a relative velocity vr, the friction
force takes on the value

Ff c mkFn sgn(vr) (5.74)

where mk is called the coefficient of sliding friction. This coefficient can also

TABLE 5.1 Coefficient of Static Friction

Rubber on concrete 0.60–0.90
Metal on stone 0.30–0.70
Metal on wood 0.20–0.60
Metal on metal 0.15–0.60
Stone on stone 0.40–0.70
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be determined experimentally and its value is slightly less than ms for most
materials. The function sgn(vr) has the value ±1 depending on the sign of its
argument vr. Figure 13b shows the friction force Ff as a function of the relative
velocity vr. It is clear from this figure that when vr is equal to zero, the friction
force Ff can have any magnitude. The actual magnitude of this force can be
determined from the static equilibrium conditions. While it is often assumed in
the analysis of systems involving dry friction that the maximum friction force
is mkFn, in reality the force required to initiate the motion is slightly larger than
the force required to maintain it.

It is clear from Eq. 74 that

Ff

Fn
c mk c tan f

where the angle f shown in Fig. 13a is called the friction angle.

Example 5.6

The mass–spring system shown in Fig. 14 has mass m c 5 kg, stiffness coefficient
k c 5 × 103 N/ m, coefficient of friction mk c 0.1, initial displacement xo c 0.03
m, and zero initial velocity. Determine the number of cycles of oscillations of the
mass before it comes to rest.

Solution. The equation of motion of the mass is

mẍ + kx c ±
Ff

where the negative sign is used when the mass moves to the right and the posi-
tive sign is used when the mass moves to the left. The solution of the differential
equation of motion can be written as

x(t) c








A1 sin qt + A2 cos qt − Ff

k
ẋ ≥ 0 (5.75a)

B1 sin qt + B2 cos qt +
Ff

k
ẋ ≤ 0 (5.75b)

Figure 5.14 Mass–spring system
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where q is the natural frequency of the system defined as

q c
h

k
m
c
h

5 × 103

5
c 31.6228 rad/ s

Substituting with the initial conditions into Eq. 75b, which describes the dynamics
of the system when the mass moves to the left, one obtains

xo c 0.03 c B2 +
Ff

k

ẋo c 0 c qB1

where

Ff c mkmg c (0.1)(5)(9.81) c 4.905 N

It follows that

B1 c 0, B2 c xo − Ff

k
c 0.02902

Therefore, the displacement and velocity of the mass when it first moves to the left
can be described by the equations

x(t) c �xo − Ff

k � cos qt +
Ff

k

ẋ(t) c −q �xo − Ff

k � sin qt

The direction of the motion will change when the velocity is equal to zero, that is

0 c −q �xo − Ff

k � sin qt1

which yields

t1 c p

q
c 0.0993 s

At this time the displacement is determined from Eq. 75b, which describes the
motion to the left, as

x(t1) c x �
p

q � c −xo +
2Ff

k
c −0.028038 m

This equation shows that the amplitude in the first half cycle is reduced by the
amount 2Ff / k as the result of dry friction.
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In the second half cycle, the mass moves to the right and the motion is governed
by Eq. 75a, which describes the motion to the right with the initial conditions

x �
p

q � c −xo +
2Ff

k
c −0.028038 m

ẋo �
p

q � c 0

These initial conditions yield

A1 c 0, A2 c xo − 3Ff

k
c 0.027057 m

The displacement x(t) in the second half cycle can then be written as

x(t) c �xo − 3Ff

k � cos qt − Ff

k

and the velocity

ẋ(t) c −q �xo − 3Ff

k � sin qt

The velocity is zero at time t2 c 2p/ q c t, where t is the periodic time of the natural
oscillations. At time t2, the end of the first cycle, the displacement is

x(t2) c x � 2p

q � c xo − 4Ff

k
c 0.026076 m

which indicates that the amplitude decreases in the second half cycle by the amount
2Ff / k, as shown in Fig. 15. By continuing in this manner, one can verify that there
is a constant decrease in the amplitude of 2Ff / k every half cycle. It is not necessary
that the system comes to rest at the undeformed spring position. The final position
will be at an amplitude Xf , where the spring force Fs c kXf is less than or equal
to the friction force. In this example, the motion will stop if

kXf ≤ 4.905

Figure 5.15 Effect of the friction force
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or

Xf ≤
4.905

k
c 4.905

5 × 103 c 0.981 × 10−3 m

The amplitude loss per half cycle is

2Ff

k
c 2(4.905)

5 × 103 c 1.962 × 10−3 m

The number of half cycles nr completed before the mass comes to rest can be
obtained from the following equation:

xo − nf � 2Ff

k � ≤ 0.981 × 10−3 m

which implies that

0.03 − nr(1.962 × 10−3) ≤ 0.981 × 10−3 m

The smallest nr that satisfies this inequality is nr c 15 half cycles; that is, the number
of cycles completed before the mass comes to rest is 7.5.

The preceding example demonstrates the complexity of the analysis of dry
friction using a simple mass spring system. In a more complex mechanical
system that consists of a set of interconnected bodies, the generalized friction
forces associated with the system generalized coordinates can be systematically
determined. Recall that in rigid body dynamics, a force is a sliding vector that
can be moved along its line of action without changing its effect. It follows that
once the friction force along the flat contact surface is determined, the gener-
alized forces associated with the generalized coordinates of two bodies i and j
in contact can be simply obtained using the concept of equipollent systems of
forces or using the expression of the virtual work of the friction force where
the point of application of the force is assumed to be an arbitrary point on the
contact surface.

Further generalization of the development presented in this section can be
made if the friction force is considered as arising from uniformly or nonuni-
formly distributed shear stress at the contact area (Greenwood, 1988). In this
case, the frictional shear stress is equal to mk times the normal pressure. While
this approach gives the same results for the simpler case of a flat contact sur-
face, it can also be used in the analysis of more complicated systems. In order
to demonstrate the use of this approach, consider the case of a circular rotat-
ing disk of radius a being pressed against another disk with a force Fn. If the
compressive stress jn is assumed to be uniform, one has

jn c mkFn

p(a)2
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The moment due to the friction force acting on an annular element of radius
dr and area

dA c 2pr dr

as shown in Fig. 16 is

dM c jn(2pr dr)r c mkFn

p(a)2
2p(r)2 dr

which upon integration leads to

M c 2mkFn

(a)2 ∫
a

0
(r)2 dr c 2a

3
mkFn (5.76)

Another important friction application pertains to wheeled vehicles, which
depend on the friction forces for starting, moving, and stopping. A point on
a moving wheel as the one shown in Fig. 17 can have an instantaneous zero
velocity while its acceleration is different from zero. Generally, there are two
different situations that may occur. In the first situation, the wheel rolls and
slides on the ground such that the wheel motion can be described using two
degrees of freedom; one describes the rolling motion, while the other describes
the sliding displacement. Because of the sliding motion, the velocity of the
point of contact P on the wheel is not equal to zero. In the case of pure rolling
motion, on the other hand, no sliding occurs and the instantaneous velocity of
the contact point P on the wheel is equal to zero. In this case, the instantaneous
velocity of the center of the wheel C is

vC c � × uCP

Figure 5.16 Friction stress



5.4 EXAMPLES OF FORCE ELEMENTS 255

Figure 5.17 Rolling contact

where � is the angular velocity of the wheel, and uCP is the position vector of
point C with respect to point P. We must keep in mind that while in the preced-
ing equation the velocity of point C is expressed in terms of the instantaneous
velocity of point P, vC takes on the same value so long as uCP represents the
position vector of point C with respect to the contact point P. The direction of
this velocity is always perpendicular to CP and its magnitude is equal to

|vC | c v̇a

where v is the angle of rotation of the wheel and a is the radius of the wheel.
The absolute acceleration of point C is

aC c � × uCP

where � is the angular acceleration of the wheel. The absolute acceleration of
the contact point P can then be written as

aP c aC + aPCc � × uCP + � × uPC + � × (� × uPC)

c � × (� × uPC)

Assuming that the wheel is balanced such that its center of mass is the same
as its geometric center, the absolute acceleration of the center of mass is equal to
aC. Since in the case of pure rolling the wheel has only one degree of freedom,
the equation of motion of the wheel can be obtained by taking the moments of
the inertia and applied forces about the contact point P. This equation can be
used to determine the unknown force or acceleration. The reaction force at the
contact point can then be determined by evaluating the sum of the forces in the
vertical direction.
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5.5 WORKLESS CONSTRAINTS

Mechanical joints in multibody systems give rise to constraint forces that influ-
ence the motion of the system components. These forces appear in the static
and dynamic equations when the equilibrium conditions are developed for each
body in the system. As demonstrated in the remainder of this book, the resulting
system of equations can be solved for a number of unknowns equal to the num-
ber of the constraint reaction forces plus the number of the system degrees of
freedom. These equations, by eliminating the reaction forces, reduce to a num-
ber of equations equal to the number of degrees of freedom of the system, and
therefore, the constraint reaction forces may be considered as auxiliary quanti-
ties that we are forced to introduce when we study the equilibrium of each body
in the system separately. These forces, which can be eliminated by consider-
ing the equilibrium of the entire system of bodies, are the result of workless or
ideal constraints. The internal reaction forces between the particles that form
a rigid body are constraint forces which do no work. This can be demonstrated
by using the fact that the distance between two particles i and j on a rigid body
remains constant, that is,

(r i
− r j)T(r i

− r j) c c1 (5.77)

where r i and r j are, respectively, the position vectors of the particles i and j,
and c1 is a constant. By assuming a virtual change in the position vector of the
two particles, Eq. 77 yields

(r i
− r j)T(dr i

− dr j) c 0 (5.78)

Let Fij
c be the constraint force acting on particle i as the result of the kinematic

constraint of Eq. 78. Newton’s third law states that when two particles exert
forces on each other, the resulting interaction forces are equal in magnitude,
opposite in direction, and directed along the straight line joining the two parti-
cles. According to this law, one may write F ji

c c −Fij
c as the reaction force that

acts on particle j. Furthermore,

Fij
c c c2(r i

− r j) (5.79)

where c2 is a constant. The virtual work of the forces Fij
c and F ji

c can be written
as

dW c FijT
c dr i + F jiT

c dr j
c FijT

c dr i
− FijT

c dr j
c FijT

c (dr i
− dr j) (5.80)

Substituting Eq. 79 into Eq. 80 and using Eq. 78, yields

dW c c2(r i
− r j)(dr i

− dr j) c 0
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Figure 5.18 Constraint forces

which implies that the connection forces resulting from the constraints between
the particles forming the rigid body do no work.

Similar comments apply to the case of other friction-free mechanical joints
such as the revolute joint shown in Fig. 18. For instance, the virtual work of
the reaction forces acting on body i is

dW i
c −FijT

c drP

where rP is the global position vector of the joint definition point P shown in
Fig. 18. The virtual work of the joint reaction forces acting on body j is

dW j
c FijT

c drP

Using the preceding two equations, one has

dW i + dW j
c 0

This simple fact will be utilized in developing the principle of virtual work
to eliminate the reaction forces from the equilibrium conditions leading to a
number of equations equal to the number of degrees of freedom of the system.

5.6 PRINCIPLE OF VIRTUAL WORK IN STATICS

The concepts and definitions presented in the preceding sections are used in
this section to develop the principle of virtual work for static equilibrium. The
principle of virtual work in dynamics is discussed in the following section.

Equipollent Systems of Forces The first step in deriving the principle of
virtual work is to prove that two equipollent systems of forces produce the same
virtual work. It was shown in Section 3 that a force Fi acting at an arbitrary
point Pi on a rigid body i is equipollent to a force Fi that acts at the reference
point and a moment Mi given by

Mi
c u iT

P AiT
v Fi (5.81)
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where u i
P is the local position vector of point Pi defined with respect to the ref-

erence point, and Ai
v is the partial derivative of the transformation matrix with

respect to the angle v i. The virtual work of the system of forces that consists
of the force Fi and the moment Mi is

dW i
r c FiT dRi + Mi dvi

c FiT dRi + u iT
P AiT

v Fi dvi (5.82)

The virtual work of the original system of forces that consists of the force Fi

is

dW i
c FiT dr i

P (5.83)

where r i
P is the global position vector of the arbitrary point Pi, which can be

expressed in terms of the coordinates of the reference point and the angular
orientation of the body as

r i
P c Ri + Aiu i

P (5.84)

Substituting Eq. 84 into Eq. 83 yields

dW i
c FiT dRi + FiTAi

vu i
P dvi (5.85)

By comparing Eqs. 82 and 85 one concludes that

dW i
c dW i

r (5.86)

which implies that two equipollent systems of forces do the same work.

Principle of Virtual Work The fact that two equipollent systems of forces
do the same work can be utilized to provide a systematic development of the
principle of virtual work. Consider a body i that is acted upon by the system of
forces Fi

1, Fi
2, . . . , Fi

nf
and the system of moments Mi

1, Mi
2, . . . , Mi

nm
. This sys-

tem of forces and moments that also includes the reaction forces and moments
can be replaced by an equipollent system that consists of one force Fi

e and one
moment Mi

e as shown in Fig. 19. The virtual work of the original system of
forces shown in Fig. 19a is

dW i
c FiT

1 dr i
1 + FiT

2 dr i
2 + · · · + FiT

nf
dr i

n

+ (Mi
1 + Mi

2 + · · · + Mi
nm

) dvi (5.87)

where r i
j is the position vector of the point of application of the force Fi

j and
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Figure 5.19 Equipollent forces

v i is the angular orientation of the body i. Equation 87 can be written as

dW i
c

nf

���
j c 1

FiT
j dr i

j + �
nm

���
j c 1

Mi
j� dvi (5.88)

The virtual work of the system of forces shown in Fig. 19b can simply be
written as

dW i
r c FiT

e dr i
e + Mi

e dvi (5.89)

where r i
e is the position vector of the point of application of the resultant force

Fi
e.

Since the two systems of forces shown in Fig. 19 are equipollent, one has

dW i
c dW i

r (5.90)

or

nf

���
j c 1

FiT
j dr i

j + �
nm

���
j c 1

Mi
j� dvi

c FiT
e dr i

e + Mi
e dvi (5.91)

If body i is to be in static equilibrium, the following conditions must hold:

Fi
e c 0, Mi

e c 0 (5.92)

which also yield

FiT
e dr i

e c 0, Mi
e dvi

c 0 (5.93)
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Substituting these two equations into Eq. 91, one obtains

nf

���
j c 1

FiT
j dr i

j + �
nm

���
j c 1

Mi
j� dvi

c 0 (5.94)

This is a mathematical statement of the principle of virtual work for the static
equilibrium of body i. Equation 94 states that if body i is in static equilibrium,
the virtual work of all the forces and moments that act on this body must be
equal to zero. This equation can be written as

dW i
c 0 (5.95)

Constraint Forces Equation 95 includes the effect of the external and con-
straint forces and moments. One may write Eq. 95 as

dW i
c dWi

e + dW i
c c 0 (5.96)

where dW i
e is the virtual work of the external forces and moments and dW i

c is
the virtual work of the constraint forces and moments.

If the mechanical system consists of nb bodies, an equation similar to Eq. 96
can be obtained for each body in the system. By summing up these equations,
one obtains

nb

���
i c 1

dW i
c

nb

���
i c 1

dW i
e +

nb

���
i c 1

dW i
c c 0 (5.97)

Since joint constraint forces are equal in magnitude and opposite in direction,
the virtual work of the constraint forces that act on the system must be equal
to zero, that is,

nb

���
i c 1

dW i
c c 0 (5.98)

Substituting Eq. 98 into Eq. 97 leads to the principle of virtual work for the
static equilibrium of mechanical systems as

dWe c

nb

���
i c 1

dW i
e c 0 (5.99)

which implies that the mechanical system that consists of interconnected bodies
is in static equilibrium if the virtual work of all the external forces acting on
the system is equal to zero.
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Equilibrium Equations Let a multibody mechanical system that consists of
nb bodies be subjected to a system of external forces and moments given by

F c [FT
1 FT

2 · · · FT
nf

]T

M c [M1 M2 · · · Mnm ]T

The virtual work of this system of forces and moments is

dWe c

nf

���
j c 1

FT
j dr j +

nm

���
j c 1

Mj dvj (5.100)

As demonstrated previously, r j and v j can be expressed in terms of the inde-
pendent coordinates of the system, that is,

r j c r j(qi)

v j c v j(qi)

where qi is the vector of system independent coordinates or degrees of freedom.
Virtual changes in the system coordinates yield

dr j c
∂r j

∂qi
dqi (5.101a)

dvj c
∂v j

∂qi
dqi (5.101b)

Substituting Eq. 101 into Eq. 100 leads to

dWe c �
nf

���
j c 1

FT
j

∂r j

∂qi
+

nm

���
j c 1

Mj
∂v j

∂qi � dqi (5.102)

which can be written as

dWe c QT
e dqi (5.103)

where Qe is the vector of generalized external forces defined as

Qe c

nf

���
j c 1 �

∂r j

∂qi
�

T

Fj +
nm

���
j c 1

Mj � ∂v j

∂qi
�

T

(5.104)
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If the stystem is in static equilibrium, Eqs. 99 and 103 yield

dWe c QT
e dqi c 0 (5.105)

Since the components of the vector qi are assumed to be independent, one has

Qe c 0 (5.106)

This equation implies that if the system is in static equilibrium, the vector of
generalized external forces associated with the system degrees of freedom must
be equal to zero. Equation 106 represents a system of algebraic equilibrium
equations that has a number of equations equal to the number of degrees of
freedom of the system. Therefore, these equations can be solved for a number
of unknowns equal to the number of degrees of freedom of the system.

It is clear that several basic steps are used in deriving the principle of virtual
work for static equilibrium. In the first step, the fact that equipollent systems of
forces do the same work is utilized. In the second step, the static equilibrium
conditions are used to obtain the principle of virtual work as applied to each
body in the system. At this intermediate step, the virtual work of the joint reac-
tion forces must be considered because each body is treated separately. In the
third step, the principle of virtual work for the mechanical system that consists
of a set of interconnected bodies is developed. Since in this step the equilib-
rium of the entire system is considered, the fact that the virtual work of the
joint reaction forces acting on the system is equal to zero is utilized. This step
leads to Eq. 99, which is valid regardless of the set of coordinates used. Finally,
a set of independent equilibrium conditions is obtained by writing the principle
of virtual work in terms of the virtual change in the system degrees of freedom.
This step leads to the static equilibrium conditions of Eq. 106.

Illustrative Example To demonstrate the use of the principle of virtual work
in the static equilibrium analysis of multibody systems, the slider crank mech-
anism shown in Fig. 20 is used. The crankshaft is subjected to an external
moment M2, while the slider block is acted upon by a force F 4. We assume

Figure 5.20 Slider crank mechanism



5.6 PRINCIPLE OF VIRTUAL WORK IN STATICS 263

that the origins of the body coordinate systems are attached to the body centers
of mass. To illustrate the process of eliminating the reaction forces, Eq. 95 is
first used for the static equilibrium analysis of each body in the mechanism.
For the crankshaft, Eq. 95 is given by

F12T
dr2

O − F23T
dr2

A − m2g dR2
y + M2 dv2

c 0 (5.107)

where m2 is the mass of the crankshaft, r2
O and r2

A are, respectively, the global
position vectors of points O and A, R2

y is the vertical component of the position
vector of the center of mass of the crankshaft, and Fij is the vector of the joint
reaction forces acting on body j as the result of its connection with body i.

Similarly, the virtual work of the forces acting on the connecting rod can be
written as

F23T
dr3

A − F34T
dr3

B − m3g dR3
y c 0 (5.108)

where m3 is the mass of the connecting rod, r3
B is the global position vector of

point B, and R3
y is the vertical component of the position vector of the center

of mass of the connecting rod.
The virtual work of the forces acting on the slider block is also equal to zero.

This leads to

F34T
dr4

B + (F 41
− m4g) dR4

y + F 4 dR4
x c 0 (5.109)

Observe that dr2
O c 0 since point O is a fixed point, and that dr2

A c dr3
A and

dr3
B c dr4

B as the result of the conditions of the revolute joints at points A and B,
respectively. Also, dR4

y c 0, since the slider block moves only in the horizontal
direction. Keeping this in mind and adding Eqs. 107 through 109 leads to Eq.
99 for this mechanism as

−m2g dR2
y − m3g dR3

y + M2 dv2 + F 4 dR4
x c 0 (5.110)

While the reaction forces appear in the static equilibrium equations when the
principle of virtual work is applied to each link separately, these reactions are
automatically eliminated by adding the resulting equilibrium equations leading
to Eq. 110 which contains only the virtual work of the external forces. This
equation in its current form is not very useful. In order to make use of this
equation we express dR2

y , dR3
y , dv2, and dR4

x in terms of the system degree of
freedom which we may select as v2. In this case, one has

dR2
y c l2

O cos v2 dv2

dR3
y c l2 cos v2 dv2 + l3

A cos v3dv3

dR4
x c − l2 sin v2 dv2

− l3 sin v3 dv3









(5.111)
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where l2
O is the distance from point O to the center of the crankshaft and l3

A is
the distance from point A to the center of the connecting rod. Since

sin v3
c −

l2

l3
sin v2

one has

dv3
c −

l2 cos v2

l3 cos v3
dv2 (5.112)

Substituting this equation into Eq. 111 yields

dR2
y c l2

O cos v2 dv2

dR3
y c l2 �1 −

l3
A

l3 � cos v2 dv2

dR4
x c l2(− sin v2 + cos v2 tan v3) dv2













(5.113)

Substituting these equations into Eq. 110 leads to

[ −m2gl2O cos v2
− m3gl2 �1 −

l3
A

l3 � cos v2 + M2

+ F 4l2(− sin v2 + cos v2 tan v3)] dv2
c 0 (5.114)

which can be written in the form of Eq. 105 as

Qe dv2
c 0 (5.115)

where Qe is the generalized force associated with the independent coordinate
v2 and is given by

Qe c −m2gl2O cos v2
− m3gl2 �1 −

l3
A

l3 � cos v2 + M2

+ F 4l2(− sin v2 + cos v2 tan v3) (5.116)

Since v2 is an independent coordinate, the scalar Qe of Eq. 115 must be equal
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to zero, leading to the following algebraic equation:

− m2gl2O cos v2
− m3gl2 �1 −

l3
A

l3 � cos v2 + M2

+ F 4l2(− sin v2 + cos v2 tan v3) c 0

This equation does not include any reaction forces and can be solved for one
unknown. For example, if the external moment M2 is given, one can use the
preceding equation to determine the force F 4, which is required in order to
keep the mechanism in a given static equilibrium configuration.

Example 5.7

The four-bar linkage shown in Fig. 21 is subjected to two external moments M2 and
M4 that act, respectively, on the crankshaft and the rocker. If the effect of gravity
of the links is neglected and if M2 is assumed to be known, determine the moment
M4 that acts on the rocker such that the mechanism is in static equilibrium.

Solution. Since the mechanism is in static equilibrium, the virtual work of all the
external forces and moments that act on the mechanism must be equal to zero. This
yields

dWe c −M2 dv2 + M4 dv4
c 0

In Example 2, it was shown that

dv4
c

l2 sin(v2
− v3)

l4 sin(v3
− v4)

dv2

Substituting this equation into the expression for the virtual work, one obtains

dWe c [ −M2 +
l2 sin(v2

− v3)
l4 sin(v3

− v4)
M4] dv2

c 0

Figure 5.21 Four-bar mechanism
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Since the mechanism has one degree of freedom, v2 can be selected as the inde-
pendent coordinate. The coefficient of dv2 in the preceding equation must then be
equal to zero, leading to the following equilibrium condition:

−M2 +
l2 sin(v2

− v3)
l4 sin(v3

− v4)
M4

c 0

from which M4 can be determined as

M4
c

l4 sin(v3
− v4)

l2 sin(v2
− v3)

M2

Example 5.8

The two-arm robotic manipulator shown in Fig. 22 is subjected to a torque M2 that
acts on link 2 and a force F3 that acts at the tip point of link 3, as shown in the
figure. The force F3 is assumed to have a known direction defined by the angle f.
The mass of link 2 is assumed to be m2, while the mass of link 3 is m3. Considering
the effect of gravity, determine M2 and F3 such that the system remains in static
equilibrium.

Solution. The virtual work of the forces and moments that act on the system is

dWe c M2 dv2
− m2g dR2

y − m3g dR3
y + F3T

dr3
P

Figure 5.22 Robotic manipulator
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where

R2
y c l2

O sin v2

R3
y c l2 sin v2 + l3

A sin v3

r3
P c [ l2 cos v2 + l3 cos v3

l2 sin v2 + l3 sin v3 ]
These equations yield

dR2
y c l2

O cos v2 dv2

dR2
y c l2 cos v2 dv2 + l3

A cos v3 dv3

dr3
P c [ − l2 sin v2

− l3 sin v3

l2 cos v2 l3 cos v3 ] [ dv2

dv3 ]
Substituting these virtual changes into the expression for the virtual work, and
writting F3 in terms of its components F 3 cos f and F 3 sin f, one obtains

dWe c M2 dv2
− m2gl2O cos v2 dv2

− m3g(l2 cos v2 dv2 + l3
A cos v3 dv3)

+ [F 3 cos f F 3 sin f] [ − l2 sin v2
− l3 sin v3

l2 cos v2 l3 cos v3 ] [ dv2

dv3 ]
If the system is in static equilibrium, one has dWe c 0, and consequently

dWe c [M2
− m2gl2O cos v2

− m3gl2 cos v2

− F 3l2 sin v2 cos f + F 3l2 cos v2 sin f] dv2

+ [−m3gl3A cos v3
− F 3l3 sin v3 cos f + F 3l3 cos v3 sin f] dv3

c 0

Since v2 and v3 are independent coordinates, their coefficients in the preceding
equation must be equal to zero. This leads to the following algebraic equations:

M2 + F 3l2 sin(f − v2) c m2gl2O cos v2 + m3gl2 cos v2

F 3l3 sin(f − v3) c m3gl3A cos v3

The solution of these two equations defines F 3 and M2 as

F 3
c

m3gl3A cos v3

l3 sin(f − v3)

M2
c m2gl2O cos v2 + m3gl2 cos v2

− m3gl3A cos v3 l2 sin(f − v2)
l3 sin(f − v3)

Note that if the gravity of the two links are neglected, M2 and F 3 are equal to
zero. In this special case, external forces and moments are not required to keep the
system in static equilibrium.
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5.7 PRINCIPLE OF VIRTUAL WORK IN DYNAMICS

The principle of virtual work can be generalized to study the dynamics of
mechanical systems that consist of interconnected bodies. In this case, the iner-
tia forces and D’Alembert’s principle can be used to establish the principle of
virtual work in dynamics. For the rigid body i, the equations of motion are

Fi
− miai

c 0 (5.117)

Mi
− J iv̈ i

c 0 (5.118)

where Fi is the vector of resultant forces that act on body i, Mi is the sum of
the moments about the center of mass, ai is the acceleration vector of the center
of mass, v̈ i is the angular acceleration, mi is the mass of body i, and J i is the
mass moment of inertia of the body about an axis passing through the body
center of mass.

Using the concept of the equipollent systems of forces discussed in the pre-
ceding sections, and without any loss of generality, the force vector Fi can be
selected in such a manner that its point of application is the center of mass of
the body. One may then multiply Eq. 117 by dRi and Eq. 118 by dvi, where
Ri is the global position vector of the center of mass of the body. This yields

(Fi
− miai)T dRi

c 0 (5.119)

(Mi
− J iv̈ i) dvi

c 0 (5.120)

By adding these two equations, one obtains

(Fi
− miai)T dRi + (Mi

− J iv̈ i) dvi
c 0

or

FiT dRi + Mi dvi
− miaiT dRi

− J iv̈ i dvi
c 0 (5.121)

This equation can be written as

dW i
− dW i

i c 0 (5.122)

where dW i is the virtual work of the external and reaction forces and moments
that act on body i, and dW i

i is the virtual work of the inertia forces and moments
of this body, that is,

dW i
c FiT dRi + Mi dvi (5.123)

dW i
i c miaiT dRi + J iv̈ i dvi (5.124)
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Note that dW i can also be written as

dW i
c dW i

c + dW i
e (5.125)

where dW i
c is the virtual work of the constraint forces and moments, and dW i

e
is the virtual work of the external forces and moments. Substituting Eq. 125
into Eq. 122, one obtains

dW i
c + dW i

e − dW i
i c 0 (5.126)

which implies that when the dynamics of a body is considered separately, the
virtual work of the reaction forces acting on the body must be included. It is
also important to reiterate at this point that the virtual work of Eq. 126 may be
expressed in terms of the actual system of external and reaction forces acting
on this body instead of the equipollent system, since both systems produce the
same virtual work.

Connectivity Conditions If the mechanical system consists of nb intercon-
nected rigid bodies, the use of Eq. 126 leads to

nb

���
i c 1

(dW i
c + dW i

e − dW i
i) c 0 (5.127)

Due to the fact that the joint constraint forces that act on two adjacent bodies
are equal in magnitude and opposite in direction, one has

nb

���
i c 1

dW i
c c 0 (5.128)

Substituting this equation into Eq. 127 yields

nb

���
i c 1

dW i
e −

nb

���
i c 1

dW i
i c 0 (5.129)

This is the principle of virtual work for dynamics, which states that the vir-
tual work of the external forces and moments acting on the system is equal to
the virtual work of the inertia forces and moments of the system. In Eq. 129,
one does not need to consider the reaction forces of the workless constraints.
Equation 129 can be written as

dWe − dWi c 0 (5.130)

where
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dWe c

nb

���
i c 1

dW i
e

dWi c

nb

���
i c 1

dW i
i

The coefficients of the virtual displacements in Eq. 130 cannot be set equal to
zero because these displacements are not independent. To make use of Eq. 130,
the virtual changes in the system degrees of freedom are used.

Dynamic Equations As in the case of the static equilibrium, the virtual dis-
placements can be expressed in terms of the virtual displacements of the inde-
pendent coordinates. By so doing, the virtual work of the external and inertia
forces and moments can be expressed as

dWe c QT
e dqi (5.131)

dWi c QT
i dqi (5.132)

where Qe and Qi are, respectively, the vectors of generalized external and iner-
tia forces associated with the system independent coordinates qi. Substituting
Eqs. 131 and 132 into Eq. 130, one obtains

QT
e dqi − QT

i dqi c 0

or

(QT
e − QT

i ) dqi c 0 (5.133)

Since the components of the vector qi are assumed to be independent, Eq. 133
leads to

Qe − Qi c 0

or

Qe c Qi (5.134)

These are the dynamic equations for the mechanical system, which imply that
the vectors of the generalized external and inertia forces associated with the
independent coordinates must be equal. The number of scalar equations in Eq.
134 is equal to the number of degrees of freedom of the system. Consequently,
Eq. 134 can be used to solve for a number of unknowns equal to the number
of the system degrees of freedom.

Illustrative Example The use of the principle of virtual work in dynamics
can be demonstrated using the slider crank mechanism discussed in the pre-
ceding section and shown in Fig. 20. Since the mechanism has one degree of
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freedom, the vectors Qe and Qi of Eq. 134 reduce to scalars. It was shown in
the preceding section that the generalized external force Qe associated with the
angular rotation of the crankshaft is given by

Qe c −m2gl2O cos v2
− m3gl2 �1 −

l3
A

l3 � cos v2 + M2

+ F 4l2(− sin v2 + cos v2 tan v3) (5.135)

where all the variables in this equation are as defined in the preceding section.
The virtual work of the inertia forces is given by

dWi c m2a2
x dR2

x + m2a2
y dR2

y + J 2v̈2 dv2

+ m3a3
x dR3

x + m3a3
y dR3

y + J 3v̈3 dv3

+ m4a4
x dR4

x (5.136)

where ai
x and ai

y are the components of the acceleration of the center of mass
of link i, v̈ i is its angular acceleration, and Ri

x and Ri
y are the components of

the global position vector of the center of mass of link i. The components R2
x

and R3
x can be written as

R2
x c l2

O cos v2

R3
x c l2 cos v2 + l3

A cos v3

which upon using Eq. 112 yields

dR2
x c − l2

O sin v2 dv2 (5.137)

dR3
x c − l2 �sin v2

−

l3
A

l3
cos v2 tan v3� dv2 (5.138)

Substituting Eqs. 112, 113, 137, and 138 into Eq. 136 yields

dWi c [ −m2a2
xl2

O sin v2 + m2a2
yl2

O cos v2 + J 2v̈2

− m3a3
xl2 �sin v2

−

l3
A

l3
cos v2 tan v3�

+ m3a3
yl2 �1 −

l3
A

l3 � cos v2
− J 3v̈3 l2 cos v2

l3 cos v3

+ m4a4
xl2(− sin v2 + cos v2 tan v3)] dv2
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which can be written as

dWi c Qi dv2

where

Qi c −m2a2
xl2

O sin v2 + m2a2
yl2

O cos v2 + J 2v̈2

− m3a3
xl2 �sin v2

−

l3
A

l3
cos v2 tan v3�

+ m3a3
yl2 �1 −

l3
A

l3 � cos v2
− J 3v̈3 l2 cos v2

l3 cos v3

+ m4a4
xl2(− sin v2 + cos v2 tan v3) (5.139)

By using Eqs. 134, 135, and 139, the dynamic condition for the slider crank
mechanism can be written as

− m2a2
xl2

O sin v2 + m2a2
yl2

O cos v2 + J 2v̈2

− m3a3
xl2 �sin v2

−

l3
A

l3
cos v2 tan v3�

+ m3a3
yl2 �1 −

l3
A

l3 � cos v2
− J 3v̈3 � l2 cos v2

l3 cos v3 �
+ m4a4

xl2(− sin v2 + cos v2 tan v3)

c −m2gl2O cos v2
− m3gl2 �1 −

l3
A

l3 � cos v2 + M2

+ F 4l2(− sin v2 + cos v2 tan v3) (5.140)

The acceleration components that appear in this equation are not independent
by virtue of the kinematic constraints. The relationships between these accel-
erations can be found by differentiating the algebraic constraint equations, as
previously explained. All the acceleration components of the slider crank mech-
anism can be expressed in terms of v2, v̇2, and v̈2 because the mechanism has
one degree of freedom only. If all the forces in Eq. 140 are given, this equation
can be solved for the angular acceleration of the crankshaft in terms of v2 and
v̇2. Given a set of initial conditions, the angular accleration v̈2 can be integrated
to determine the angular displacement v2 and the angular velocity v̇2. Having
determined the degree of freedom and its time derivatives, other coordinates
and their time derivatives can be determined using the kinematic equations.



5.7 PRINCIPLE OF VIRTUAL WORK IN DYNAMICS 273

Example 5.9

Obtain the dynamic equations of the two-arm robotic manipulator of Example 8.

Solution. Since the system has two degrees of freedom, the virtual work of the
applied forces can be expressed in terms of the virtual changes in these two degrees
of freedom. It was shown in Example 8 that the virtual work of the external forces
is

dWe c [M2
− m2gl2O cos v2

− m3gl2 cos v2

− F 3l2 sin v2 cos f + F 3l2 cos v2 sin f] dv2

+ [−m3gl3A cos v3
− F 3l3 sin v3 cos f + F 3l3 cos v3 sin f] dv3

or

dWe c QT
e dqi

where qi c [v2 v3]T, and Qe c [Q1 Q2]T, where

Q1 c M2
− m2gl2O cos v2

− m3gl2 cos v2 + F 3l2 sin(f − v2)

Q2 c −m3gl3A cos v3 + F 3l3 sin (f − v3)

The virtual work of the inertia forces is

dWi c m2a2
x dR2

x + m2a2
y dR2

y + J 2v̈2 dv2 + m3a3
x dR3

x + m3a3
y dR3

y + J 3v̈3 dv3

where

dR2
x c − l2

O sin v2 dv2

dR2
y c l2

O cos v2 dv2

dR3
x c − l2 sin v2 dv2

− l3
A sin v3 dv3

dR3
y c l2 cos v2 dv2 + l3

A cos v3 dv3

Substituting these virtual changes into the expression of the virtual work of the
inertia forces, one obtains

dWi c (−m2a2
x l2

O sin v2 + m2a2
y l2

O cos v2 + J 2v̈2

− m3a3
x l2 sin v2 + m3a3

y l2 cos v2) dv2

+ (−m3a3
x l3

A sin v3 + m3a3
y l3

A cos v3 + J 3v̈3) dv3

which can be written as

dWi c QT
i dqi

where

Qi c [Qi1 Qi2]T
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in which

Qi1 c −m2a2
x l2

O sin v2 + m2a2
y l2

O cos v2 + J 2v̈2
− m3a3

x l2 sin v2

+ m3a3
y l2 cos v2

Qi2 c −m3a3
x l3

A sin v3 + m3a3
y l3

A cos v3 + J 3v̈3

Applying Eq. 134, the dynamic equations for this system are

− m2a2
x l2

O sin v2 + m2a2
y l2

O cos v2 + J 2v̈2
− m3a3

x l2 sin v2 + m3a3
y l2 cos v2

c M2
− m2gl2O cos v2

− m3gl2 cos v2 + F 3l2 sin(f − v2)

− m3a3
x l3

A sin v3 + m3a3
y l3

A cos v3 + J 3v̈3

c −m3gl3A cos v3 + F 3l3 sin(f − v3)

5.8 LAGRANGE’S EQUATION

The principle of virtual work allows us to formulate the dynamic equations
using any set of independent generalized coordinates. Lagrange (1736–1813)
created this powerful tool, recognized its superiority in formulating the dynamic
equations, and used it as the starting point to formulate Lagrange’s equation,
which we will discuss in this section.

The virtual work of the inertia forces of a rigid body i is defined as

dW i
i c ∫Vi

rir̈ iT dr i d Vi (5.141)

where ri and V i are, respectively, the mass density and volume of the rigid
body, and r i is the global position vector of an arbitrary point on the rigid
body. The global position vector of the arbitrary point can be written in terms
of the system generalized coordinates as

r i
c r i(q, t) (5.142)

It follows that

dr i
c

∂r i

∂q
dq (5.143)

Substituting Eq. 143 into Eq. 141, the virtual work of the inertia forces of the
rigid body i can be written as

dWi
i c ∫Vi

rir̈ iT ∂r i

∂q
dq d Vi (5.144)
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or

dW i
i c QiT

i dq (5.145)

where

Qi
i c ∫Vi

ri � ∂r i

∂q �
T

r̈ i d Vi (5.146)

is the vector of generalized inertia forces of body i associated with the system
generalized coordinates q.

We note also that the absolute velocity vector of the arbitrary point on the
rigid body is

ṙ i
c

∂r i

∂q1
q̇1 +

∂r i

∂q2
q̇2 + · · · +

∂r i

∂qn
q̇n +

∂r i

∂t

c

n

���
j c 1

∂r i

∂qj
q̇j +

∂r i

∂t

c

∂r i

∂q
q̇ +

∂r i

∂t
(5.147)

from which one can deduce the following identity:

∂ṙ i

∂q̇
c

∂r i

∂q
(5.148)

By using a similar procedure, one can also show that

∂r i

∂q
c

∂ṙ i

∂q̇
c

∂r̈ i

∂q̈
(5.149)

By using the identity of Eq. 148, the generalized inertia forces of the rigid body
i given by Eq. 146 can be written as

Qi
i c ∫Vi

ri � ∂ṙ i

∂q̇ �
T

r̈ i d Vi (5.150)

Note that

d
dt {� ∂ṙ i

∂q̇ �
T

ṙ i} c { d
dt � ∂ṙ i

∂q̇ �
T} ṙ i + � ∂ṙ i

∂q̇ �
T

r̈ i
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which upon utilizing the identity of Eq. 148 leads to

� ∂ṙ i

∂q̇ �
T

r̈ i
c

d
dt {� ∂ṙ i

∂q̇ �
T

ṙ i} −

d
dt { ∂r i

∂q } ṙ i

c

d
dt { ∂

∂q̇ � 1
2

ṙ iT ṙ i�} −

∂
∂q { 1

2
ṙ iT ṙ i} (5.151)

Substituting Eq. 151 into Eq. 150 and using the definition of the kinetic energy
of body i

T i
c

1
2 ∫Vi

riṙ iT ṙ i d Vi (5.152)

the generalized inertia forces of the rigid body i can be expressed int erms of
the body kinetic energy as

Qi
i c

d
dt � ∂T i

∂q̇ �
T

− � ∂T i

∂q �
T

(5.153)

The inertia forces of a system of nb rigid bodies can then be written as

Qi c

nb

���
i c 1

Qi
i

c

nb

���
i c 1

d
dt �

∂T i

∂q̇ �
T

− � ∂T i

∂q �
T

c

d
dt � ∂T

∂q̇ �
T

− � ∂T
∂q �

T

(5.154)

where T is the system kinetic energy defined as

T c

nb

���
i c 1

T i

Using the principle of virtual work in dynamics, one concludes that if the gen-
eralized coordinates are independent, the system equations of motions can be
written as

d
dt � ∂T

∂q̇j
� −

∂T
∂qj

c Qj j c 1, 2, . . . , n (5.155)
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where qj , j c 1, 2, . . . , n are the independent coordinates or the system degrees
of freedom and Qj is the generalized applied force associated with the indepen-
dent coordinate qj . Equation 155 is called Lagrange’s equation of motion.

To demonstrate the use of Lagrange’s equation, we consider the system
shown in Fig. 23. The rod in this system is assumed to be uniform and has
mass m2, mass moment of inertia about its center of mass J 2, and length l. The
block is assumed to have a specified motion z(t) and, consequently, the system
has one degree of freedom, which we select to be the angular orientation of the
rod v2. The kinetic energy of the rod can be written as

T c

1
2 m2[(Ṙ2

x)2 + (Ṙ2
y)2] + 1

2 J 2(v̇2)2

where R2
x and R2

y are the Cartesian components of the position vector of the
center of mass of the rod. These coordinates are defined as

R2
x c z(t) +

l
2

cos v2

R2
y c

l
2

sin v2

and their time derivatives are

Ṙ2
x c ż(t) − v̇2 l

2
sin v2

Ṙ2
y c v̇2 l

2
cos v2

Figure 5.23 Pendulum with moving base
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The kinetic energy of the rod takes the form

T c

1
2

m2 [�ż(t) − v̇2 l
2

sin v2�
2

+ �v̇2 l
2

cos v2�
2] +

1
2

J2(v̇2)2

c

1
2

m2 


(ż)2
− żv̇2l sin v2 + � v̇2l

2 �
2


+
1
2

J2(v̇2)2

The virtual work of the external forces acting on the rod is

dWe c −m2g dR2
y + M2 dv2

c �−m2g
l
2

cos v2 + M2� dv2
c Qe dv2

where Qe is the generalized force associated with the system degree of freedom
v2 and is defined as

Qe c −m2g
l
2

cos v2 + M2 (5.156)

Lagrange’s equation of motion of this system can then be written as

d
dt �

∂T

∂v̇2 � −

∂T
∂v2

c Qe (5.157)

where

∂T

∂v̇2
c −

1
2

m2żl sin v2 + [ J2 + m2 (l)2

4 ] v̇2

It follows that

d
dt � ∂T

∂v̇2 � c −m2z̈
l
2

sin v2
− m2żv̇2 l

2
cos v2 + J2

Ov̈2 (5.158)

in which

J2
O c J2 +

m2(l)2

4

One also has

∂T
∂v2

c −m2żv̇2 l
2

cos v2 (5.159)
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Substituting Eqs. 156, 158, and 159 into Eq. 157, one obtains

J2
Ov̈2 + m2g

l
2

cos v2
c M2 + m2z̈

l
2

sin v2 (5.160)

Clearly, Eq. 160 can also be derived using D’Alembert’s principle by equat-
ing the moments of the applied and inertia forces about point O. The use of
D’Alembert’s principle to obtain Eq. 160 was demonstrated in the preceding
chapter. A third alternative for deriving this equation is to use the principle of
virtual work, which is the starting point in deriving Lagrange’s equation.

5.9 GIBBS–APPEL EQUATION

The identity of Eq. 149 clearly demonstrates that the virtual work of the inertia
forces of the rigid body i can be evaluated using any of the following expres-
sions:

Qi
i c ∫Vi

ri � ∂r i

∂q �
T

r̈ i d Vi (5.161a)

Qi
i c ∫Vi

ri � ∂ṙ i

∂q̇ �
T

r̈ i d Vi (5.161b)

Qi
i c ∫Vi

ri � ∂r̈ i

∂q̈ �
T

r̈ i d Vi (5.161c)

or by using the expression of the kinetic energy in Lagrange’s equation as pre-
viously discussed. All of these forms are equivalent and lead to the same results
when the same set of coordinates are used.

While in Lagrange’s equation, the generalized inertia forces are expressed in
terms of the kinetic energy which is quadratic in the velocities; in Gibbs–Appel
equation, the generalized inertia forces are expressed in terms of an accelera-
tion function. The Gibbs–Appel form of the inertia forces can be obtained using
Eq. 161c. This equation can be written as

Qi
i c ∫Vi

ri [ ∂
∂q̈ � 1

2
r̈ iT r̈ i� ] T

d Vi (5.162)

which can also be written as

Qi
i c

∂S i

∂q̈
(5.163)
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where S i is an acceleration function defined as

S i
c

1
2 ∫Vi

rir̈ iT r̈ i d Vi (5.164)

5.10 HAMILTONIAN FORMULATION

The forces acting on a mechanical system can be classified as conservative and
nonconservative forces. If Qe is the vector of generalized forces acting on the
multibody system, this vector can be written as

Qe c Qco + Qnc (5.165)

where Qco and Qnc are, respectively, the vectors of conservative and noncon-
servative forces. As pointed out previously, conservative forces can be derived
from a potential function V , that is,

Qco c − � ∂V
∂q �

T

(5.166)

where q c [q1 q2 · · · qn]T is the vector of generalized coordinates of the
mechanical system. Substituting Eq. 166 into Eq. 165, one obtains

Qe c − � ∂V
∂q �

T

+ Qnc (5.167)

If the generalized coordinates are independent, Lagrange’s equation can be
written in the following form:

d
dt � ∂T

∂q̇ �
T

− � ∂T
∂q �

T

c Qe (5.168)

Using Eqs. 167 and 168 and keeping in mind that the potential function V does
not depend on the generalized velocities, one gets

d
dt [ ∂(T − V )

∂q̇ ] T

− [ ∂(T − V )
∂q ] T

c Qnc (5.169)

Define the Lagrangian L as

L c T − V (5.170)

In terms of the Lagrangian, Lagrange’s equation takes the form

d
dt � ∂L

∂q̇ �
T

− � ∂L
∂q �

T

c Qnc (5.171)
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Canonical Equations If the mechanical system has n degrees of freedom,
Lagrange’s equation defines n second-order differential equations of motion
expressed in terms of the degrees of freedom and their time derivatives. The
Hamiltonian formulation, on the other hand, leads to a set of first-order differ-
ential equations defined in terms of the generalized coordinates and generalized
momenta Pi, which are defined as

Pi c
∂T
∂q̇i

c

∂L
∂q̇i

(5.172)

In obtaining Eq. 172, the fact that the potential energy is independent of the
velocities is utilized. This equation can be used to define the vector of generalize
momenta as

P c � ∂T
∂q̇ �

T

c � ∂L
∂q̇ �

T

(5.173)

The Hamiltonian H is defined as

H c q̇TP − L (5.174)

and

dH c q̇T
dP + PTdq̇ − � ∂L

∂q̇ � dq̇ − � ∂L
∂q � dq

It is clear from the definition of the vector of the generalized momenta of Eq.
173 that the second and third terms on the right side of the preceding equation
cancel. Consequently,

dH c q̇T dP − � ∂L
∂q � dq (5.175)

Using Eq. 173, the generalized velocity vector can be expressed in tems of the
generalized momenta. If the results are substituted into Eq. 174, the Hamiltonian
can be expressed in terms of the generalized coordinates and momenta as

H c H(P, q) (5.176)

If follows that

dH c

∂H
∂P

dP +
∂H
∂q

dq (5.177)
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Comparing Eqs. 175 and 177, it is clear that

q̇ c � ∂H
∂P �

T

(5.178a)

∂L
∂q

c −

∂H
∂q

(5.178b)

Using these identities and Eq. 171, one obtains the following set of 2n first-
order differential equations:

Ṗ c − � ∂H
∂q �

T

+ Qnc

q̇ c � ∂H
∂P �

T

(5.179)

These equations are called the canonical equations of Hamilton. The 2n first-
order differential equations replace the n second-order differential equations that
can be derived using the principle of virtual work or Lagrange’s equation. In
order to use the canonical equations, one first needs to define the Lagrangian
L as a function of the coordinates and velocities using Eq. 170. The vector
of generalized momenta can then be defined using Eq. 173. The generalized
momenta and the Lagrangian can be used to define the Hamiltonian H using
Eq. 174. The first-order differential equations of the system can be obtained by
substituting the Hamiltonian H into Eq. 179.

In principle, the principle of virtual work, Lagrange’s equation, Gibbs–Appel
equation, and the canonical equations of Hamilton can be used to define the same
set of differential equations. The answer to the question of which method is bet-
ter for formulating the dynamic equations depends on the application. In compu-
tational dynamics wherein the interest is focused on developing general solution
procedures, it is not clear what advantage each method can provide as a compu-
tational tool since all these methods can be used to obtain the same equations.

Example 5.10

It was shown in Section 8 that the kinetic energy of the system shown in Fig. 23
is given by

T c

1
2

m2 


(ż)2
− żv̇2l sin v2 + � v̇2l

2 �
2


+
1
2

J2(v̇2)2

The potential energy of the system is

V c m2gRy c m2g
l
2

sin v2
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The Lagrangian L is then given by

L c T − V

c

1
2

m2[(ż)2
− żv̇2l sin v2] +

1
2

J2
O(v̇2)2

− m2g
l
2

sin v2

where J2
O is the mass moment of inertia of the rod about point O. Since the system

has one degree of freedom, the generalized momentum is defined as

P c

∂L

∂v̇2
c

∂T

∂v̇2
c −

1
2

m2żl sin v2 + J2
Ov̇2

The preceding equation can be used to express v̇2 in terms of the generalized
momentum as

v̇2
c

1

J2
O

[ P +
1
2

m2żl sin v2]
The Hamiltonian is defined as

H c v̇2P − L

c v̇2P −

1
2

m2[(ż)2
− żv̇2l sin v2] −

1
2

J2
O(v̇2)2 + m2g

l
2

sin v2

Substituting for v̇2 in terms of the generalized momentum P, one obtains

H c

P

J2
O

[ P +
1
2

m2żl sin v2]
−

1
2

m2 {(ż)2
−

1

J2
O

[ P +
1
2

m2żl sin v2] żl sin v2}
−

1

2J2
O
� P +

1
2

m2żl sin v2�
2

+ m2g
l
2

sin v2

The first-order equations of the system can then be obtained using Eq. 179 as

Ṗ c −

∂H

∂v2 + M2

c −

1

2J2
O

m2Pżl cos v2
−

1

4J2
O

(m2lż)2 sin v2 cos v2
− m2g

l
2

cos v2 + M2

v̇2
c

∂H
∂P

c

1

J2
O
�P +

1
2

m2żl sin v2�
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Conservation Theorem A generalized coordinate that does not appear in
the Lagrangian L is called cyclic or ignorable. Cyclic or ignorable coordinates
are also absent from the Hamiltonian H. For a cyclic coordinate qk , one has

∂L
∂qk

c

∂H
∂qk

c 0

If there are no nonconservative forces associated with the cyclic coordinate qk ,
Eq. 179 yields

Ṗk c 0

which implies that the generalized momentum associated with the cyclic coor-
dinate is conserved, that is,

Pk c constant

We also note that if all the forces acting on the system are conservative, one
has from Lagrange’s equation

d
dt �

∂L
∂q̇ � c

∂L
∂q

(5.180)

The total time derivative of the Lagrangian L is given by

dL
dt

c � ∂L
∂q̇ � q̈ + � ∂L

∂q � q̇

Substituting Eq. 180 into the preceding equation, one gets

dL
dt

c

∂L
∂q̇

q̈ + { d
dt � ∂L

∂q̇ �} q̇

which yields

dL
dt

c

d
dt { ∂L

∂q̇
q̇}

or equivalently,

d
dt �L −

∂L
∂q̇

q̇� c 0 (5.181)
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Since the potential energy function is independent of the velocities, one has

∂L
∂q̇

c

∂T
∂q̇

c PT

Using this equation, Eq. 181 can be written as

d
dt

(L − PTq̇) c
d
dt

(−H) c 0

which implies that

H c PTq̇ − L c constant

That is, in the case of a conservative system, the Hamiltonian H is a constant
of motion. We also note that since

PTq̇ c

∂T
∂q̇

q̇ c 2T ,

the Hamiltonian H takes the following form:

H c 2T − L c 2T − T + V c T + V (5.182)

which implies that, for a conservative system, the Hamiltonian is the sum of the
kinetic and potential energies of the system and it remains constant throughout
the system motion.

Example 5.11

Figure 24 shows a homogeneous circular cylinder of radius r, mass m, and mass
moment of inertia J about its center of mass, where J c m(r)2/ 2. The cylinder rolls
without slipping on a curved surface of radius R. Use the principle of conservation
of energy to derive the equation of motion of the cylinder.

Solution. The kinetic and potential energies of the cylinder are

T c

1
2 m(vc)2 + 1

2 J(q)2

V c mg(R − r)(1 − cos v)

where vc is the absolute velocity of the center of mass of the cylinder and q is its
angular velocity, both defined as

vc c (R − r)v̇

q c

vc

r
c

(R − r)v̇
r

Substituting from these two equations into the expression of the kinetic energy, we
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Figure 5.24 Conservation of energy

obtain

T c

3
4 m(R − r)2(v̇)2

The Hamiltonian H is

H c T + V c

3
4 m(R − r)2(v̇)2 + mg(R − r)(1 − cos v)

Since the Hamiltonian is constant,

dH
dt

c

3
2

m(R − r)2v̇ v̈ + mg(R − r)v̇ sin v c 0

which yields the equation of motion of the cylinder

3
2 (R − r)v̈ + g sin v c 0

5.11 RELATIONSHIP BETWEEN VIRTUAL WORK AND GAUSSIAN
ELIMINATION

The results obtained previoulsy in this chapter for the slider crank mechanism
shown in Fig. 20 using the principle of virtual work can also be obtained using
the Gaussian elimination and the equations of the static equilibrium. Figure
25 shows the forces acting on the links of the slider crank mechanism. The
equations of the static equilibrium of the crankshaft can be written as

F 12
x − F 23

x c 0

F 12
y − F 23

y − m2g c 0

F 12
x l2

O sin v2
− F 12

y l2
O cos v2 + F 23

x l2
A sin v2

− F 23
y l2

A cos v2 + M2
c 0
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Figure 5.25 Forces of the slider crank mechanism

The equations of the static equilibrium of the connecting rod are

F 23
x − F 34

x c 0

F 23
y − F 34

y − m3g c 0

F 23
x l3

A sin v3
− F 23

y l3
A cos v3 + F 34

x l3
B sin v3

− F 34
y l3

B cos v3
c 0

The equation of the static equilibrium fo the slider block is

F 34
x + F 4

c 0

The preceding seven equations of the static equilibrium of the three links of the
slider crank mechanism can be rearranged and written in the following matrix
form:

















1 0 −1 0 0 0 0

0 1 0 −1 0 0 0

0 0 1 0 −1 0 0

0 0 0 1 0 −1 0

0 0 0 0 1 0 0

l2
O sin v2

− l2
O cos v2 l2

A sin v2
− l2

A cos v2 0 0 1

0 0 l3
A sin v3

− l3
A cos v3 l3

B sin v3
− l3

B cos v3 0

















.
















F 12
x

F 12
y

F 23
x

F 23
y

F 34
x

F 34
y

M2
















c
















0

m2g

0

m3g

−F 4

0

0
















In this matrix equation it is assumed that the unknowns are the external moment
M2 and the components of the reaction forces F 12

x , F 12
y , F 23

x , F 23
y , F 34

x , and F 34
y .

A standard Gaussian elimination procedure can be used to obtain an upper tri-
angular form of the coefficient matrix in the preceding equation. This Gaussian
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elimination procedure leads to
















1 0 −1 0 0 0 0

0 1 0 −1 0 0 0

0 0 1 0 −1 0 0

0 0 0 1 0 −1 0

0 0 0 0 1 0 0

0 0 0 0 0 1 −1/ l2 cos v2

0 0 0 0 0 0 − l3 cos v3/ l2 cos v2































F 12
x

F 12
y

F 23
x

F 23
y

F 34
x

F 34
y

M2
















c
















0

m2g

0

m3g

−F 4

−A1/ l2 cos v2

A2















where

A1 c m2gl2O cos v2 + m3gl2 cos v2 + F 4l2 sin v2

A2 c m3gl3A cos v3 + F 4l3 sin v3

The preceding matrix equation can be easily solved for M2 as

M2
c m2gl2O cos v2 + m3gl2 �1 −

l3
A

l3 � cos v2
− F 4l2(− sin v2 + cos v2 tan v3)

which is the same equation obtained earlier in this chapter (Section 6) using
the principle of virtual work.

PROBLEMS

1. For the rod shown in Fig. P1, assume that F c 5 N, M c 3 N . m, and f c

458. Assuming that the generalized coordinates of the rod are the Cartesian
coordinates of point A and the angular orientation of the rod, determine the
generalized forces associated with these generalized coordinates.

Figure P5.1
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2. Repeat problem 1 assuming that the generalized coordinates of the rod are
the Cartesian coordinates of point C and the angular orientation of the rod.

3. For the system shown in Fig. P2, let v be the independent generalized coor-
dinate of the rod. Determine the generalized forces associated with this
generalized coordinate. Neglect the effect of gravity.

Figure P5.2

4. Repeat problem 3 taking into consideration the effect of gravity.

5. For the system shown in Fig. P3, let F c 10 N, M2
c 3 N . m, M3

c 3
N . m, v2

c 458, and v3
c 308. Determine the geenralized forces associated

with the generalized coordinates v2 and v3. Neglect the effect of gravity.

Figure P5.3

6. Repeat problem 5 taking into account the effect of gravity.

7. Repeat problem 5 assuming that the generalized coordinates are x2 and x3.

8. For the system shown in Fig. P4, write the virtual changes in the posi-
tion vector of point C in terms of the virtual change in the independent
generalized coordinates v2, v3, and v4.



290 VIRTUAL WORK AND LAGRANGIAN DYNAMICS

Figure P5.4

9. For the system shown in Fig. P4, obtain the generalized forces associated
with the generalized coordinates v2, v3, and v4. Assume v2

c 458, v3
c 308,

v4
c 458, f c 308, F c 10 N, M2

c 10 N . m, M3
c 8 N . m, and M4

c 3
N . m. Consider the effect of gravity.

10. For the slider crank mechanism shown in Fig. P5, assume that v2
c 458, M2

c 10 N . m, and F 4
c 10 N. Determine the generalized force associated with

the independent generalized coordinate v2. Consider the effect of gravity.

Figure P5.5

11. Repeat problem 10 assuming that the independent generalized coordinate
is the location of the slider block.

12. For the four-bar linkage shown in Fig. P6, obtain the generalized force
associated with the independent generalized coordinate v2. Assume that v2

c 608, f c 308, M2
c 5 N . m, F 3

c 3 N, and M4
c 5 N . m. Consider the

effect of gravity.
13. Repeat problem 12 assuming that the generalized coordinate is selected to

be the angular orientation of the coupler v3.

14. Repeat problem 12 assuming that the generalized coordinate is selected to
be the angular orientation of the rocker v4.



PROBLEMS 291

Figure P5.6

15. For the unconstrained rod shown in Fig. P1, determine F, M, and f such
that the rod is in static equilibrium. Use the principle of virtual work.

16. For the system shown in Fig. P2, let v c 458, F c 5 N, and f c 608. Assume
that the mass and length of the rod are, respectively, 1 kg and 1 m. Deter-
mine the moment M such that the system is in static equilibrium position.
Use the principle of virtual work and consider the effect of gravity.

17. For the system shown in Fig. P2, let the length of the rod be 1 m, v c 458,
F c 5 N, M c 3 N . m, and f c 608. Using the principle of virtual work
determine the weight of the rod such that the system is in static equilibrium
position.

18. Use the principle of virtual work in statics to determine the joint torque
M2 and M3 of the system shown in Fig. P3. Assume that v2

c 458, v3
c

308, and F c 5 N. Consider the effect of gravity.

19. For the system shown in Fig. P3, let M2
c 3 N . m, M3

c 5 N . m, F c

5 N. Does a static equilibrium configuration exist for this system? Use
the principle of virtual work to find the answer and consider the effect of
gravity.

20. For the system shown in Fig. P4, let v2
c 458, v3

c 308, v4
c 458, f c

308, and F c 5 N. Use the principle of virtual work to determine M2, M3,
and M4 such that the system is in static equilibrium. Consider the effect of
gravity.

21. Use the principle of virtual work in statics to determine the input torque
M2 of the slider crank mechanism shown Fig. P5. Assume that v2

c 458

and F 4
c 4 N. Take into consideration the effect of the gravity. Assume

that the generalized coordinate is the joint angle v2.

22. Repeat problem 21 assuming that the generalized coordinate is the hori-
zontal position of the slider block.
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23. Use the principle of virtual work in statics to determine the input torque M2

of the four-bar linkage shown in Fig. P6. Consider the generalized coor-
dinate to be the crank angle v2. Consider the effect of gravity and assume
that v2

c 608, f c 458, F 3
c 5 N, and M4

c 5 N . m.

24. Repeat problem 23 assuming that the generalized coordinate is the orien-
tation of the coupler v3.

25. Repeat problem 23 assuming that the generalized coordinate is the orien-
tation of the rocker v4.

26. Use the principle of virtual work in statics to determine the output torque
M4 that acts on the rocker of the four-bar linkage shown in Fig. P6. Assume
that v2

c 608, f c 458, F 3
c 5 N, and M2

c 5 N . m. Consider the crank
angle v2 as the generalized coordinate. Take the effect of gravity into con-
sideration.

27. Repeat problem 26 assuming that the generalized coordinate is the rocker
angle v4.

28. The components of the acceleration of the center of mass of the rod shown
in Fig. P1 are ax c 50 m/ s2, ay c 120 m/ s2. The angular acceleration of
the rod is assumed to be 500 rad/ s2. The rod is assumed to be slender and
uniform with mass 1 kg. Use the principle of virtual work in dynamics to
determine M, F, and f. Consider the effect of gravity.

29. For the system shown in Fig. P2, let v c 458, f c 608, F c 10 N. The rod
shown in the figure is assumed to be uniform and slender with mass 1 kg
and length 1 m. The angular velocity and angular acceleration of the rod are
assumed to be, respectively, v̇ c 150 rad/ s and v̈ c 0 rad/ s2. Considering the
effect of gravity, use the principle of virtual work in dynamics to determine
the moment M.

30. Repeat problem 29 assuming that the angular acceleration v̈ c 500 rad/ s2.

31. Use the principle of virtual work in dynamics to determine the joint torques
M2 and M3 for the system shown in Fig. P3. Use the following data: v2

c 458, v3
c 308, v̇2

c 70 rad/ s, v̇3
c 40 rad/ s, v̈2

c 120 rad/ s2, v̈3
c 180

rad/ s2, and F c 10 N. Assume that the two links shown in the figure are
uniform slender rods. Consider the effect of gravity.

32. The system shown in Fig. P4 consists of three uniform slender rods that
are connected by revolute joints. Let v2

c 458, v3
c 308, v4

c 458, v̇2
c 10

rad/ s, v̇3
c 8 rad/ s, v̇4

c 4 rad/ s, v̈2
c 200 rad/ s2, v̈3

c 250 rad/ s2, v̈4
c

500 rad/ s2, f c 308, and F c 8 N. Considering the effect of gravity, use
the principle of virtual work in dynamics to determine the torques M2, M3,
and M4.

33. Determine the joint reaction forces in problem 31.
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34. Determine the joint reaction forces in problem 32.

35. The crankshaft and connecting rod of the slider crank mechanism shown in
Fig. P5 are assumed to be uniform slender rods. Use the principle of virtual
work in dynamics to determine the input torque M2. Use the following data:
v2

c 458, v̇2
c 150 rad/ s, v̈2

c 0 rad/ s2, and F 4
c 10 N. Consider the effect

of gravity.

36. Repeat problem 35 assuming that v̈2
c 500 rad/ s2.

37. Determine the joint reaction forces in problem 35.

38. Determine the joint reaction forces in problem 36.

39. The crankshaft, coupler, and rocker of the four-bar linkage shown in Fig.
P6 are assumed to be uniform slender rods. Assume that v2

c 608, v̇2
c 150

rad/ s, v̈2
c 0, f c 308, F c 10 N, and M4

c 5 N . m. Considering the effect
of gravity, use the principle of virtual work in dynamics to determine the
input torque M2. Use v2 as the generalized coordinate.

40. Repeat problem 39, assuming the rocker angle v3 as the generalized coor-
dinate.

41. Repeat problem 39, assuming the coupler angle v4 as the generalized coor-
dinate.

42. Determine the joint reaction forces in problem 39.

43. Repeat problem 39 assuming that v̈2
c 700 rad/ s2.

44. The system shown in Fig. P7 consists of a slider block of mass m2 and
a uniform slender rod of mass m3, length l3, and mass moment of inertia
about its center of mass J 3. The slider block is connected to the ground by
a spring that has a stiffness coefficient k. The slider block is subjected to
the force F(t), while the rod is subjected to the moment M. Obtain the dif-
ferential equations of motion of this two-degree-of-freedom system using
Lagrange’s equation.

Figure P5.7
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45. Determine the generalized inertia forces of the system of problem 44 using
Eqs. 161a, 161b, and 161c. Compare the results obtained using these three
equations with the results obtained using Lagrange’s equation.

46. Derive the differntial equations of motion of the system of problem 44
using the Gibbs–Appel equation.
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CHAPTER 6

CONSTRAINED DYNAMICS

When the kinematic relationships are expressed in terms of the system degrees
of freedom, the application of the principle of virtual work in dynamics leads to
a number of dynamic differential equations equal to the number of the system
degrees of freedom. In these equations the forces of the workless constraint are
automatically eliminated. Constraint forces, however, appear in the dynamic
equations if these equations are formulated in terms of a set of coordinates that
are not totally independent. The number of independent constraint forces that
appear in these equations is equal to the number of dependent coordinates used
in the dynamic formulation.

In this chapter, we describe an approach in which the equations of motion
are formulated in terms of a set of redundant coordinates. In this approach,
the generalized inertia and applied forces associated with the redundant set of
coordinates are first defined using the virtual work as described in the preceding
chapter. A set of algebraic equations that describe the kinematic relationships
between the redundant variables is formulated and used to systematically define
the generalized constraint forces. The equations of motion of the system can
then be defined in terms of the redundant coordinates and the generalized con-
straint forces. The use of the methods developed in this chapter is demonstrated
using planar systems in order to emphasize the concepts and procedures pre-
sented without delving into the details of the three-dimensional motion. The
analysis of the spatial systems is presented in the following chapter.

6.1 GENERALIZED INERTIA

In this section we demonstrate that the concept of equipollent systems of forces
can also be applied to the inertia forces. This concept allows us to use the simple
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definition of the inertia forces defined at the center of mass of the body to obtain
the inertia forces associated with the coordinates of an arbitrary point.

If the reference point Oi of the rigid body is selected to be its center of mass,
the inertia force consists of the two components

Fi
i c mi [ R̈i

x

R̈i
y ] (6.1)

and the inertia moment is

Mi
i c J iv̈ i (6.2)

where mi is the mass of the rigid body i, J i is the polar mass moment of inertia
of the body about an axis passing through its mass center, Ri

x and Ri
y are the

coordinates of the reference point, and v i is the angular orientation of the body.
The mass moment of inertia J i is defined as

J i
c ∫Vi

riu iTu i d Vi

where ri and V i are, respectively, the mass density and volume of the rigid
body i, and u i is the position vector of an arbitrary point on the rigid body i
defined with respect to the center of mass.

The virtual work of the inertia force Fi
i and the inertia moment Mi is given

by

dW i
i c FiT

i dRi + Mi
i dvi (6.3)

where

Ri
c [Ri

x Ri
y]T (6.4)

The inertia forces and moment acting at the center of mass may be replaced
by an equipollent system of inertia forces and moments acting at another point
on the body. The original and the equivalent systems must do the same work
and accordingly, the selection of the reference point is a matter of preference
or convenience. To demonstrate this fact, let Pi be an arbitrary point on the
rigid body. As shown in Fig. 1, the position vector of point Pi in terms of the
coordinates of the reference point is

r i
P c Ri + Aiu i

P (6.5)

where Ai is the transformation matrix from the body coordinate system to the
global coordinate system, and u i

P is the local position vector of point Pi with
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Figure 6.1 Reference coordinates

respect to the reference point. By assuming a virtual change in the coordinates,
Eq. 5 leads to

dr i
P c dRi + Ai

vu i
P dvi (6.6)

or equivalently

dRi
c dr i

P − Ai
vu i

P dvi (6.7)

Substituting Eq. 7 into Eq. 3 leads to

dW i
i c FiT

i dr i
P + (Mi

i − FiT
i Ai

vu i
P) dvi (6.8)

One can show that

FiT
i Ai

vu i
P c (ui

P × Fi
i) . k (6.9)

where

ui
P c Aiu i

P (6.10)

Substituting Eq. 9 into Eq. 8, one obtains

dW i
i c FiT

i dr i
P + [Mi

i − (ui
P × Fi

i) . k] dvi (6.11)

This equation states that the system of inertia forces and moments acting at the
reference point (center of mass) is equipollent to another system, defined at the
arbitrary point Pi, which consists of the force Fi

i and the moment Mi
i − (ui

P ×
Fi

i) . k. This fact is the familiar result obtained for the equivalence of systems
of applied forces.
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Parallel Axis Theorem The parallel axis theorem can be obtained from Eq.
11 as a special case. To demonstrate this, we consider the special case where
point Pi is a fixed point. In this special case,

dr i
P c 0

and Eq. 11 reduces to

dW i
i c (Mi

i − FiT
i Ai

vu i
P) dvi

c [Mi
i − (ui

P × Fi
i) . k] dvi (6.12)

where

Fi
i c mi [ R̈i

x

R̈i
y ] c mi{− v̈ iAi

vu i
P + (v̇ i)2Aiu i

P}

Using this equation, one can verify that

−FiT
i Ai

vu i
P c mi(li

P)2v̈ i (6.13)

where

li
P c (u iT

P u i
P)1/ 2

Therefore, Eq. 12 can be written as

dW i
i c {Mi

i + mi(li
P)2v̈ i} dvi

which upon the use of Eq. 2 yields

dW i
i c {J i + mi(li

P)2}v̈ i dvi
c J i

Pv̈ i dvi (6.14)

where J i
P is the mass moment of inertia about an axis passing through point Pi

and is defined as

J i
P c J i + mi(li

P)2 (6.15)

This equation is the parallel axis theorem, which states that the mass moment
of inertia defined with respect to an arbitrary point Pi on the rigid body is equal
to the mass moment of inertia defined with respect to the center of mass plus
the product of the mass and the square of the distance between point Pi and
the center of mass. This familiar result was obtained in this section using the
general expression of the virtual work of the inertia forces as defined by Eq.
11. It is important to emphasize, however, that if point Pi is not a fixed point,
the general expression of Eq. 11 must be used in order to define the equivalent
system of inertia forces at Pi. In this case, the resulting system consists of an
inertia force vector as well as a moment, as demonstrated by the following
example.
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Example 6.1

Figure 2 shows a composite body i that consists of a slender rod, a rectangular
prism, and a removed round disk. The length of the rod is li

c 1 m, its mass is mi
1

c 0.62 kg, and its mass moment of inertia about its center of mass is J i
1 c 5.167

× 10−2 kg . m2. The length of the rectangular prism is bi
c 1 m, its mass before

the removal of the disk is mi
2 c 39.45 kg, and its mass moment of inertia about its

center of mass is J i
2 c 4.109 kg . m2. The diameter of the removed round disk is Di

c 0.25 m, its mass is mi
3 c 3.873 kg, and its mass moment of inertia about its center

of mass is J i
3 c 3.026 × 10−2 kg . m2. Using the parallel axis theorem, determine

the mass moment of inertia of the composite body about the body center of mass.
If the absolute acceleration of the center of mass of the body at a given instant of
time is defined by the vector ai

c c [100 −45]T m/ s2, and the angular acceleration
of the body is 150 rad/ s2, determine the generalized inertia forces associated with
the coordinates of the reference point Oi and the orientation of the body v i. Assume
that v i

c p/ 2.

Solution. The location of the center of mass of the composite body in the coordinate
system shown in the figure is given by

x i
c c

mi
1

li

2
+ mi

2 �li +
bi

2 � − mi
3 �li +

bi

2 �
mi

1 + mi
2 − mi

3

c

0.62( 1
2 ) + (39.45)(1 + 1

2 ) − 3.873(1 + 1
2 )

0.62 + 39.45 − 3.873

c 1.483 m

Figure 6.2 Composite body
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One can then define the location of the center of mass of the rod, the rectangular
prism, and the removed round disk, from the center of mass of the composite system,
respectively, as

di
1 c

li

2
− x i

c c 0.5 − 1.483 c −0.983 m

di
2 c �li +

bi

2 � − x i
c c 1.5 − 1.483 c 0.017 m

di
3 c �li +

bi

2 � − x i
c c 1.5 − 1.483 c 0.017 m

Using the parallel axis theorem, the mass moment of inertia of the composite system
about its center of mass can be obtained as

J i
c [J i

1 + mi
1(di

1)2] + [J i
2 + mi

2(di
2)2] − [J i

3 + mi
3(di

3)2]

c [5.176 × 10−2 + 0.62(−0.983)2] + [4.109 + 39.45(0.017)2]

− [3.026 × 10−2 + 3.873(0.017)2]

c 0.651 + 4.120 − 0.314 × 10−1
c 4.7396 kg . m2

The parallel axis theorem can also be used to determine the mass moment of inertia
about the reference point Oi as

J i
O c J i + mi(x i

c)2

where mi is the total mass of the composite body defined as

mi
c mi

1 + mi
2 − mi

3 c 0.62 + 39.45 − 3.873 c 36.227 kg

It follows that

J i
O c 4.7396 + 36.227(1.483)2

c 84.413 kg . m2

The virtual work of the inertia forces is

dW i
i c miaiT

c dr i
c + J i v̈ i dvi

where r i
c is the global position vector of the center of mass. This vector can be

expressed in terms of the reference coordinates as

r i
c c Ri + Aiu i

c

where Ri is the global position vector of the reference point, and u i
c is the position

vector of the center of mass with respect to the reference point. Using the preceding
equation, the virtual work of the inertia forces is

dW i
i c miaiT

c dRi + (J i v̈ i + miaiT
c Ai

vu i
c) dvi

which defines the generalized inertia force associated with the translation of the
body reference as

Fi
i c miai

c c 36.227 [ 100

−45 ] c [ 3.6227 × 103

−1.6302 × 103 ] N
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and the generalized inertia moment as

Mi
i c J i v̈ i + miaiT

c Ai
vu i

c

where

Ai
v c [ −sin v i

−cos v i

cos v i
−sin v i ] c [ −1 0

0 −1 ]
u i

c c [x i
c 0]T

c [1.483 0]T

Thus

Mi
i c (4.7396)(150) + [3.6227 × 103

− 1.6302 × 103]

. [ −1 0

0 −1 ] [ 1.483

0 ]
c −4.6615 × 103 N . m

Note that J i
0v̈ i

c (84.413)(150) c 1.2662 × 103 N . m, which is not the same as Mi
i.

6.2 MASS MATRIX AND CENTRIFUGAL FORCES

In this section, an expression for the kinetic energy for the rigid body i is defined
and used to develop the general form of themass matrix of a rigid body that
undergoes an arbitrary large displacement. The effect of the selection of the
reference point on the form of the kinetic energy and the mass matrix of the
rigid body is also examined.

The kinetic energy of the rigid body i is defined as

T i
c

1
2 ∫Vi

riṙ iT ṙ i d Vi (6.16)

where ri and V i are, respectively, the mass density and volume of the body,
and r i is the global position vector of an arbitrary point on the rigid body. The
vector r i can be expressed in terms of the coordinates Ri of the reference point
and the angle of rotation v i of the body as

r i
c Ri + Aiu i (6.17)

where Ai is the planar transformation matrix, and u i is the local position vector
of the arbitrary point on the body. Differentiating Eq. 17 with respect to time
yields

ṙ i
c Ṙi + Ai

vu iv̇ i (6.18)
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This equation can be written in a matrix form as

ṙ i
c [I Ai

vu i] [ Ṙi

v̇ i ] (6.19)

where I is the 2 × 2 identity matrix.
Substituting Eq. 19 into Eq. 16, one obtains

T i
c

1
2 ∫Vi

ri[ṘiT v̇ i] [ I

u iTAiT
v

] [I Ai
vu i] [ Ṙi

v̇ i ] d Vi

which upon carrying out the matrix multiplication and utilizing the fact that
AiT

v Ai
v c I, one obtains

T i
c

1
2 [ṘiT v̇ i]{∫Vi

ri [ I Ai
vu i

uiTAiT
v uiTu i ] d Vi}[ Ṙi

v̇ i ] (6.20)

which can be written as

T i
c

1
2 q̇iTMiq̇i (6.21)

where qi and Mi are, respectively, the vector of coordinates and mass matrix
of the rigid body i given by

qi
c [RiT v i]T (6.22)

Mi
c [ mi

RR mi
Rv

mi
vR mi

v v
] (6.23)

in which

mi
RR c ∫Vi

riI d Vi
c miI (6.24a)

mi
Rv c miT

vR c Ai
v ∫Vi

riu i d Vi (6.24b)

mi
v v c ∫Vi

riu iTu i d Vi (6.24c)

and mi is the total mass of the body. Note that mi
v v is a scalar that defines

the body mass moment of inertia with respect to an axis passing through the
reference point of the body. The matrix mi

Rv and its transpose mi
vR represent the
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inertia coupling between the translation of the reference point and the rotation
of the body.

Example 6.2

In order to demonstrate the use of Eqs. 23 and 24, we consider the case of a uni-
form slender rod that has mass density ri, cross-sectional area ai, and lenght li. We
assume that the reference point is selected to be one of the endpoints at which x i

c

0, where x i is the coordinate along the rod axis. Keeping in mind that in this case

d Vi
c ai dx i

and

mi
c ∫Vi

ri d Vi
c ∫

li

0
riai dx i

c riaili

where V i is the volume, and mi is the total mass of the rod. The matrix mi
RR can

be evaluated as

mi
RR c ∫Vi

riI d Vi
c miI c [ mi 0

0 mi ]
The matrix mi

Rv , which represents the inertia coupling between the translation and
rotation of the rod, can be written as

mi
Rv c Ai

v ∫Vi
riu i d Vi

in which

Ai
v c [ −sin v i

−cos v i

cos v i
−sin v i ] , u i

c [x i 0]T

It follows that

mi
Rv c

mili

2 [ −sin v i

cos v i ]
The mass moment of inertia of the rod defined with respect to an axis passing
through the reference point is given by

mi
v v c ∫Vi

riuiT u i d Vi
c ∫

li

0
riai(x i)2 dx i

c

mi(li)2

3

Therefore, the mass matrix of the rod is given by

Mi
c







mi 0 −

1
2 mili sin v i

0 mi 1
2 mili cos v i

−

1
2 mili sin v i 1

2 mili cos v i 1
3 mi(li)2
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Centrifugal Inertia Forces The general expression of the kinetic energy
obtained in Eq. 21 can be used to define the generalized inertia forces of the
rigid body i using Lagrange’s equation. In this case, one has

Qi
i c

d
dt � ∂T i

∂q̇i �
T

− � ∂T i

∂qi �
T

(6.25)

Another elegant way for defining the generalized inertia forces associated
with the absolute coordinates is to use the virtual work. Recall that the virtual
work of the inertia forces of the rigid body i is defined as

dW i
i c ∫Vi

rir̈ iTdr i d Vi (6.26)

where r i is the global position vector of an arbitrary point on the rigid body as
defined by Eq. 17. It follows that

dr i
c dRi + Ai

vu i dvi

c [I Ai
vu i] [ dRi

dvi ] (6.27)

This equation can be written as

dr i
c Li dqi (6.28)

where

Li
c [I Ai

vu i] (6.29)

dqi
c [dRiT dvi]T (6.30)

Using Eq. 19, the absolute velocity vector of the arbitrary point can be written
as

ṙ i
c Liq̇i (6.31)

Differentiating this equation with respect to time yields the absolute acceleration
of the arbitrary point as

r̈ i
c Liq̈i + L̇iq̇i (6.32)

in which

L̇i
c [0 v̇ iAi

v vu
i]

c [0 − v̇ iAiu i] (6.33)
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Substituting Eqs. 28 and 32 into Eq. 26, one obtains

dW i
i c ∫Vi

riq̈iTLiTLi dqi d Vi + ∫Vi
riq̇iTL̇iTLi dqi d Vi (6.34)

Note that the symmetric mass matrix of Eq. 23 is

Mi
c ∫Vi

riLiTLi d Vi (6.35)

Equation 34 can then be written as

dW i
i c [Miq̈i

− Qi
v]T dqi (6.36)

where Qi
v is the vector of centrifugal inertia forces defined as

Qi
v c − ∫Vi

riLiTL̇
i
q̇i d Vi (6.37)

Substituting Eqs. 29 and 33 into Eq. 37, one obtains

Qi
v c [ (Qi

v)R

(Qi
v)v ] c − ∫Vi

ri [ I

u iTAiT
v

] [0 − v̇ iAiu i] [ Ṙi

v̇ i ] d Vi

c − ∫Vi
ri [ − (v̇ i)2Aiu i

− (v̇ i)2u iTAiT
v Aiu i ] d Vi (6.38)

The product AiT
v Ai is a skew-symmetric matrix defined as

AiT
v Ai

c [ −sin v i cos v i

−cos v i
−sin v i ] [ cos v i

−sin v i

sin v i cos v i ]
c [ 0 1

−1 0 ] (6.39)

and as a consequence

u iTAiT
v Aiu i

c 0 (6.40)

Therefore, the vector of centrifugal inertia forces of Eq. 38 reduces to

Qi
v c [ (Qi

v)R

(Qi
v)v ] c (v̇ i)2Ai 


∫Vi

riu i d Vi

0




(6.41)
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For the simple rod discussed in Example 2 one can show that the vector of
centrifugal inertia forces is

Qi
v c (v̇ i)2 mili

2





cos v i

sin v i

0





Centroidal Body Coordinate System A special case of the foregoing
development is the case in which the reference point is selected to be the center
of mass of the body. This is the case of a centroidal body coordinate system.

The integral in Eq. 24b represents the moment of mass of the body. If the
reference point is chosen to be the center of mass, this integral is identically
zero; that is,

∫Vi
riu i d Vi

c 0 (6.42)

and, as a consequence, the matrices mi
Rv and mi

vR defined by Eq. 24b are identi-
cally equal to zero. In this special case, the mass matrix Mi of the body reduces
to

Mi
c [ mi

RR 0

0 mi
v v

] (6.43)

and the kinetic energy of the body can be written as

T i
c

1
2 miṘiTṘi + 1

2 mi
v v(v̇

i)2 (6.44)

In this special case, there is no coupling between the translation and rotation
of the body in the mass matrix. Furthermore, the vector of centrifugal inertia
forces is identically equal to zero, that is

Qi
v c 0 (6.45)

Thus, in the case of a centroidal body coordinate systme, the mass matrix of a
rigid body in planar motion is diagonal, the vector of centrifugal inertia forces
vanishes, and the kinetic energy of the rigid body consists of two terms; one is
due to the translation of the center of mass and the other is due to the planar
rigid body rotation.
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Example 6.3

Consider the slender rod of Example 2. The rod is assumed to have mass density
ri, cross-sectional area ai, and length li. We consider the case where the reference
point is selected to be the center of mass of the rod. In this case, one has

∫Vi
riu i d Vi

c ∫
li/ 2

− li/ 2
riai [ x i

0 ] dx i
c 0

which implies that

mi
Rv c miT

vR c 0

The matrix mi
RR is

mi
RR c ∫Vi

riI d Vi
c [ mi 0

0 mi ]
The mass moment of inertia mi

v v is given by

mi
v v c ∫Vi

riu iT u i d Vi
c ∫

li/ 2

− li/ 2
riai(x i)2 dx i

c

mi(li)2

12

The mass matrix of the rod can then be written as

Mi
c








mi 0 0

0 mi 0

0 0
mi(li)2

12







Comparing the results obtained in this example and the results of Example 2, we
see that the mass matrix in the case of a centroidal body coordinate system is diag-
onal, as compared to the nondiagonal mass matrix obtained in the preceding exam-
ple. Furthermore, the mass moment of inertia obtained when the reference point is
selected to be at one of the endpoints of the rod is equal to the mass moment of
inertia defined with respect to the center of mass plus mi(li/ 2)2.

6.3 EQUATIONS OF MOTION

The equations of motion of the rigid body are developed in this section in terms of
the absolute Cartesian coordinates that represent the translation of the reference
point of the body as well as its orientation with respect to the global inertial frame
of reference. This representation will prove useful in developing general-purpose
computer algorithms for the dynamic analysis of interconnected sets of rigid bod-
ies, since practically speaking, there is no limitation on the number of bodies or
the types of forces and constraints that can be introduced to this formulation.

In the preceding chapter it was shown that the conditions for the dynamic
equilibrium for the rigid body i can be developed using the principle of virtual
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work as

dW i
i c dW i

e + dW i
c (6.46)

where dW i
i is the virtual work of the inertia forces, dW i

e is the virtual work
of the externally applied forces, and dW i

c is the virtual work of the constraint
forces. The virtual work of the externally applied forces can be expressed in
terms of the vector of generalized coordinates as

dW i
e c QiT

e dqi (6.47)

where Qi
e is the vector of generalized forces, and qi is the vector of generalized

coordinates of the rigid body i. Using the Cartesian coordinates, the vector qi

is given by

qi
c [RiT v i]T (6.48)

where Ri is the position vector of the reference point, and v i is the angular
orientation of the body.

One can also write the virtual work of the joint constraint forces acting on
the rigid body i as

dW i
c c QiT

c dqi (6.49)

where Qi
c is the vector of the generalized constraint forces associated with the

body generalized coordinates.
The virtual work of the inertia forces can be obtained using the development

of the preceding section as

dW i
i c [q̈iTMi

− QiT
v ] dqi (6.50)

where Mi is the symmetric mass matrix of the body defined by Eq. 23 or equiv-
alently by Eq. 35, and Qi

v is the vector of centrifugal forces defined by Eq. 41.
Substituting Eqs. 47, 49, and 50 into Eq. 46, one obtains

[q̈iTMi
− QiT

v ] dqi
c QiT

e dqi + QiT
c dqi (6.51)

which, upon utilizing the fact that the mass matrix is symmetric, leads to

[Miq̈i
− Qi

v − Qi
e − Qi

c]T dqi
c 0 (6.52)

Since the constraint forces, as result of the connection of this body with other
bodies in the system, are included in this equation and represented by the vector
Qi

c, the elements of the vector qi can be treated as independent. Consequently,
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Eq. 52 leads to

Miq̈i
c Qi

e + Qi
c + Qi

v (6.53)

which can be rewritten according to the coordinate partitioning of Eq. 48 as

[ mi
RR mi

Rv

mi
vR mi

v v
] [ R̈i

v̈ i ] c [ (Qi
e)R

(Qi
e)v ] + [ (Qi

c)R

(Qi
c)v ] + [ (Qi

v)R

0 ] (6.54)

Equation 53, or its equivalent form of Eq. 54, represents the dynamic equations
of motion of the rigid body i, developed using an arbitrary reference point.

If the reference point is selected to be the center of mass of the body, one
has

mi
Rv c miT

vR c 0 (6.55)

Qi
v c 0 (6.56)

In this case, Eq. 53 reduces to

Miq̈i
c Qi

e + Qi
c (6.57)

which can be written in a more explicit form as

[ miI 0

0 J i ] [ R̈i

v̈ i ] c [ (Qi
e)R

(Qi
e)v ] + [ (Qi

c)R

(Qi
c)v ] (6.58)

where mi is the mass of the body, and J i is its mass moment of inertia about
an axis passing through the center of mass. Clearly, Eq. 58 is the same as the
fundamental Newton and Euler equations that govern the motion of the rigid
bodies. These equations are obtained, however, as a special case of the general
form represented by Eq. 54.

6.4 SYSTEM OF RIGID BODIES

It was shown in the preceding section that affixing the origin of the body coor-
dinate system to the body center of mass leads to a significant simplification in
the resulting dynamic equations. Therefore, without any loss of generality, we
consider the case of a centroidal body reference where the origin of the body
coordinate system is rigidly attached to the body center of mass. In this case,
the mass matrix is diagonal and the vector of centrifugal forces is identically
equal to zero. By using Eq. 57, the equations of motion of a multibody system
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consisting of nb interconnected bodies are given by

Miq̈i
c Qi

e + Qi
c i c 1, 2, . . . , nb (6.59)

which can also be written as

[ miI 0

0 J i ] [ R̈i

v̈ i ] c [ (Qi
e)R

(Qi
e)v

] + [ (Qi
c)R

(Qi
c)v

] i c 1, 2, . . . , nb (6.60)

where all the scalars, vectors, and matrices that appear in Eqs. 59 and 60 are
the same as defined in the preceding section. The number of scalar equations
given by the matrix equation of Eq. 59 or Eq. 60 is 3 × nb. These equations
can be combined into one matrix equation given by














M1

M2 0
. . .

Mi

0
. . .

Mnb



























q̈1

q̈2

...
q̈i

...
q̈nb














c














Q1
e

Q2
e

...
Qi

e
...

Qnb
e














+














Q1
c

Q2
c

...
Qi

c
...

Qnb
c














(6.61)

which can be written as

Mq̈ c Qe + Qc (6.62)

where M is the system mass matrix, q is the total vector of system generalized
coordinates, Qe is the vector of system generalized external forces, and Qc is
the vector of the system generalized constraint forces. The mass matrix M and
the vectors q, Qe, and Qc are

M c














M1

M2 0
. . .

Mi

0
. . .

Mnb














(6.63)

q c [q1T
q2T

· · · qiT · · · qnT
b ]T (6.64)

Qe c [Q1T

e Q2T

e · · · QiT
e · · · Q

nT
b

e ]T (6.65)

Qc c [Q1T

c Q2T

c · · · QiT
c · · · Q

nT
b

c ]T (6.66)
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Note that the equations of motion of the multibody system given by Eq. 62 con-
tain the generalized constraint forces, since these equations are not expressed
in terms of the system degrees of freedom.

Example 6.4

Figure 3a shows a two link planar manipulator. The origins of the body coordinate
systems are assumed to be rigidly attached to the centers of mass of the links. Let
mi and J i, and m j and J j be, respectively, the mass and mass moment of inertia of
links i and j, and Mi nad M j be, respectively, the external torque applied to links
i and j. Obtain the differential equations of motion of the system in terms of the
absolute coordinates. Neglect the effect of gravity.

Solution. The virtual work of the reaction forces acting on link i can be expressed
as

dW i
c c [F 1i

x F 1i
y ]dr i

O − [F ij
x F

ij
y ] dr i

A

where F 1i
x , F 1i

y , F
ij
x , and F

ij
y are the reaction forces acting on link i as shown in

Fig. 3b, and dr i
O and dr i

A can be expressed in terms of the absolute coordinates of
link i as

dr i
O c dRi + Ai

vu i
O dvi

dr i
A c dRi + Ai

vu i
A dvi

Figure 6.3 Planar manipulator
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where

Ri
c [ Ri

x

Ri
y

] , u i
O c [ − li

O

0 ] , u i
A c [ li

A

0 ] , Ai
v c [ −sin v i

−cos v i

cos v i
−sin v i ]

and li
O and li

A are, respectively, the distances of points O and A from the center of
mass of link i. The virtual work of the reaction forces of link i is

dW i
c c [F 1i

x F 1i
y ] [ dRi

x

dRi
y

] + [F 1i
x F 1i

y ] [ −sin v i
−cos v i

cos v i
−sin v i ] [ − li

O

0 ] dvi

− [F ij
x F

ij
y ] [ dRi

x

dRi
y

] − [F ij
x F

ij
y ] [ −sin v i

−cos v i

cos v i
−sin v i ] [ li

A

0 ] dvi

This equation leads to

dW i
c c (F 1i

x − F
ij
x )dRi

x + (F 1i
y − F

ij
y )dRi

y

+ {(F 1i
x sin v i

− F 1i
y cos v i)li

O + (F ij
x sin v i

− F
ij
y cos v i)li

A} dvi

from which the vector of generalized reactions Qi
c associated with the absolute coor-

dinates of link i can be expressed as

Qi
c c






F 1i
x − F

ij
x

F 1i
y − F

ij
y

(F 1i
x sin v i

− F 1i
y cos v i)li

O + (F ij
x sin v i

− F
ij
y cos v i)li

A





Using Eq. 60, the equation of motion of link i can be written as






mi 0 0

0 mi 0

0 0 J i










R̈i
x

R̈i
y

v̈ i






c






0

0

Mi





+





F 1i
x − F

ij
x

F 1i
y − F

ij
y

(F 1i
x sin v i

− F 1i
y cos v i)li

O + (F ij
x sin v i

− F
ij
y cos v i)li

A





Similarly, the virtual work of the generalized reactions acting on link j is

dW
j
c c [F ij

x F
ij
y ] dr j

A

where

dr j
A c dR j + A j

vu j
A dv j

in which

R j
c [R j

x R
j
y ]T, u j

A c [− l
j
A 0]T
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and

A j
v c [ −sin v j

−cos v j

cos v j
−sin v j ]

where l
j
A is the distance of point A from the center of mass of link j. It follows that

dW
j
c c [F ij

x F
ij
y ] [ dR

j
x

dR
j
y ]

+ [F ij
x F

ij
y ] [ −sin v j

−cos v j

cos v j
−sin v j ] [ − l

j
A

0 ] dv j

c F
ij
x dR

j
x + F

ij
y dR

j
y + (F ij

x sin v j
− F

ij
y cos v j)l j

A dv j

from which the vector of joint reaction forces Q j
c associated with the absolute coor-

dinates of link j can be defined as

Q j
c c






F
ij
x

F
ij
y

(F ij
x sin v j

− F
ij
y cos v j)l j

A





The equations of motion of link j are






m j 0 0

0 m j 0

0 0 J j










R̈
j
x

R̈
j
y

v̈ j





c






0

0

M j





+





F
ij
x

F
ij
y

(F ij
x sin v j

− F
ij
y cos v j)l j

A





The system equations of motion can be defined as














mi 0 0 0 0 0

0 mi 0 0 0 0

0 0 J i 0 0 0

0 0 0 m j 0 0

0 0 0 0 m j 0

0 0 0 0 0 J j



























R̈i
x

R̈i
y

v̈ i

R̈
j
x

R̈
j
y

v̈ j














c














0

0

Mi

0

0

M j














+














F 1i
x − F

ij
x

F 1i
y − F

ij
y

(F 1i
x sin v i

− F 1i
y cos v i)li

O + (F ij
x sin v i

− F
ij
y cos v i)li

A

F
ij
x

F
ij
y

(F ij
x sin v j

− F
ij
y cos v j)l j

A
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These are six scalar equations in 10 unknowns R̈i
x , R̈i

y, v̈ i, R̈
j
x , R̈

j
y , v̈ j , F 1i

x , F 1i
y , F

ij
x

and F
ij
y . The first six unknowns, however, can be expressed in terms of two acceler-

ation components only, since the system has two degrees of freedom. This reduces
the number of unknowns to six and consequently the preceding six equations can
be solved for the six independent unknowns. Note also that

dW i
c + dW i

c c 0,

since dr i
O c 0, and dr i

A c dr j
A.

6.5 ELIMINATION OF THE CONSTRAINT FORCES

The equations of motion obtained for the multibody system in the preceding sec-
tion and given by Eq. 62 contain the generalized constraint forces due mainly
to the fact that these equations are formulated using a redundant set of coor-
dinates. It is important, however, to point out that the force of constraints can
be eliminated from the dynamic formulation if the redundant coordinates are
expressed in terms of the independent coordinates. To illustrate the use of such
a procedure, Eq. 46, which is a statement of the principle of virtual work for
body i, is reproduced here for convenience.

dW i
i c dW i

e + dW i
c (6.67)

where dW i
i is the virtual work of the inertia forces given by Eq. 50, dW i

e is
the virtual work of the external forces given by Eq. 47, and dW i

c is the virtual
work of the constraint forces given by Eq. 49. If the multibody system consists
of nb interconnected bodies, Eq. 67 leads to

nb

���
i c 1

dWi
i c

nb

���
i c 1

dW i
e +

nb

���
i c 1

dW i
c (6.68)

As demonstrated in the preceding chapter,

nb

���
i c 1

dW i
c c 0 (6.69)

Using this equation, Eq. 68 reduces to

nb

���
i c 1

(dWi
i − dW i

e) c 0 (6.70)

Substituting Eqs. 47 and 50 into this equation, and keeping in mind that the
origin of the body i coordinate system is rigidly attached to the body center of
mass, that is Qi

v c 0, one obtains

nb

���
i c 1

[Miq̈i
− Qi

e]T dqi
c 0 (6.71)



6.5 ELIMINATION OF THE CONSTRAINT FORCES 315

which can be written in a matrix form as














M1q̈1
− Q1

e

M2q̈2
− Q2

e
...

Miq̈i
− Qi

e
...

Mnb q̈nb
− Qnb

e














T














dq1

dq2

...
dqi

...
dqnb














c 0 (6.72)

This equation can also be written as














dq1

dq2

...
dqi

...
dqnb














T 






































M1

M2 0
. . .

Mi

0
. . .

Mnb



























q̈1

q̈2

...
q̈i

...
q̈nb














−














Q1
e

Q2
e

...
Qi

e
...

Qnb
e








































c 0

(6.73)

or

dqT[Mq̈ − Qe] c 0 (6.74)

where M is the system mass matrix, q is the vector of system absolute coor-
dinates, and Qe is the vector of system generalized forces associated with the
absolute coordinates. The matrix M and the vectors q and Qe are defined in
the preceding section.

Coordinate Partitioning Equation 74 is a scalar equation that does not con-
tain the constraint forces. The coefficient vector [Mq̈ − Qe] of the vector dq
cannot, however, be set equal to zero, since the components of the vector of
coordinates q are not totally independent because of the kinematic constraints
that represent specified motion trajectories and mechanical joints in the system.
These constraints can be expressed mathematically as

C(q, t) c 0 (6.75)

where C c [C1(q, t) C2(q, t) · · · Cnc (q, t)]T is the vector of linearly independent
constraint equations, and nc is the number of constraint functions.
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For a virtual change in the system coordinates, Eq. 75 yields

Cq dq c 0 (6.76)

where Cq is the constraint Jacobian matrix defined as

Cq c














∂C1

∂q1

∂C1

∂q2
· · ·

∂C1

∂qn

∂C2

∂q1

∂C2

∂q2
· · ·

∂C2

∂qn...
...

. . .
...

∂Cnc

∂q1

∂Cnc

∂q2
· · ·

∂Cnc

∂qn














(6.77)

in which q c [q1 q2 · · · qn]T is the n-dimensional vector of system coordinates.
Because of the kinematic constraints of Eq. 75, the components of the vector

q are not independent. One, therefore, may write the vector q in the following
partitioned form:

q c [qT
d qT

i ]T (6.78)

where qd is the nc-dimensional vector of dependent coordinates and qi is the
vector of independent coordinates, which has the dimension (n− nc). According
to the coordinate partitioning of Eq. 78, Eq. 76 can be written as

Cqd
dqd + Cqi

dqi c 0 (6.79)

where the vector qd is selected such that the matrix Cqd
is nonsingular. This

choice of the matrix Cqd
is always possible since the constraint equations are

assumed to be linearly independent. Equation 79 can then be used, as described
in the preceding chapter, to write the virtual changes of the dependent coordi-
nates in terms of the virtual changes of the independent ones as

dqd c −C−1
qd

Cqi
dqi (6.80)

or

dqd c Cdi dqi (6.81)

in which

Cdi c −C−1
qd

Cqi
(6.82)
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The virtual changes in the total vector of system coordinates can be written in
terms of the virtual changes of the independent coordinates using Eq. 81 as

dq c [ dqd

dqi ] c [ Cdi

I ] dqi (6.83)

which can be written as

dq c Bi dqi (6.84)

where

Bi c [ Cdi

I ] (6.85)

Embedding Technique Equations 74 and 84 can be used to obtain a min-
imum number of differential equations expressed in terms of the independent
coordinates. In order to demonstrate this, Eq. 84 is substituted into Eq. 74, lead-
ing to

dqT
i BT

i [Mq̈ − Qe] c 0 (6.86)

Since the components of the vector dqi are independent, their coefficients in
Eq. 86 must be equal to zero. This leads to

BT
i Mq̈ − BT

i Qe c 0 (6.87)

This is a system of n − nc differential equations that can be expressed in terms
of the independent accelerations. For instance, by differentiating Eq. 75 once
and twice with respect to time, one obtains

Cqq̇ c −Ct (6.88)

Cqq̈ c − [(Cqq̇)qq̇ + 2Cqtq̇ + Ct t] (6.89)

where subscript t indicates a partial differentiation with respect to time. By
using the coordinate partitioning of Eq. 78, Eq. 89 can be written as

q̈d c Cdiq̈i + Cd (6.90)

where

Cd c −C−1
qd

[(Cqq̇)qq̇ + 2Cqt
q̇ + Ct t] (6.91)
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Equation 90 can then be used to write the total vector of system accelerations
in terms of the independent ones as

q̈ c [ q̈d

q̈i ] c [ Cdiq̈i + Cd

q̈i ]
c [ Cdi

I ] q̈i + [ Cd

0 ] (6.92)

which upon using Eq. 85 leads to

q̈ c Biq̈i + �i (6.93)

where

� i c [ Cd

0 ] (6.94)

Using Eqs. 87 and 93, one obtains

BT
i MBiq̈i + BT

i M� i − BT
i Qe c 0 (6.95)

which can be written as

Miq̈i c Qi (6.96)

where Mi is an (n − nc) × (n − nc) mass matrix associated with the indepen-
dent coordinates, and Qi is the vector of generalized forces associated with the
independent coordinates. This vector also contains terms that are quadratic in
the first time derivatives of the coordinates. The matrix Mi and the vector Qi
are

Mi c BT
i MBi (6.97)

Qi c BT
i Qe − BT

i M� i (6.98)

For a given system of forces, Eq. 96 can be solved for the independent accel-
erations as follows:

q̈i c M
−1
i Qi (6.99)

For a well-posed problem with linearly independent constraint equations, the
inverse of the matrix Mi does exist. Equation 99 can then be used to define
the independent accelerations that can be integrated forward in time in order to
determine the independent coordinates and velocities. Dependent coordinates,
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velocities, and accelerations can be obtained by using Eqs. 75, 88, and 90,
respectively. Each of these matrix equations, by providing the known indepen-
dent variables, represents nc algebraic scalar equations, which can be solved
for the dependent variables.

It is important to mention that Eq. 96 can be obtained directly from Eq.
62 by using Eq. 93. The transformation of Eq. 93 automatically eliminates the
constraint force vector Qc of Eq. 62. Substituting Eq. 93 into Eq. 62, one obtains

M(Biq̈i + � i) c Qe + Qc

Premultiplying this equation by BT
i , one obtains

BT
i MBiq̈i c BT

i Qe + BT
i Qc − BT

i M� i

Since this equation is expressed in terms of the independent accelerations, one
must have

BT
i Qc c 0

which implies that the columns of the matrix Bi are orthogonal to the constraint
force vector Qc. Consequently, the system differential equation reduces to

BT
i MBiq̈i c BT

i Qe − BT
i M� i

The matrices and vectors that appear in this equation are exactly the same as
those of Eq. 95 which was used to define Eq. 96.

Example 6.5

For the two-link manipulator of Example 4, the revolute joint constraints at points
O and A can be written as

r i
O c 0, r i

A − r j
A c 0

which can be expressed in terms of the absolute coordinates of the two links as

Ri + Aiu i
O c 0, Ri + Aiu i

A − R j
− A ju j

A c 0

These are four scalar constraint equations in which

u i
O c [− li

O 0]T

u i
A c [li

A 0]T

u j
A c [− l

j
A 0]T

The vector of constraints C(q, t) can then be written as

C(q, t) c [ Ri + Aiu i
O

Ri + Aiu i
A − R j

− A ju j
A

] c 0
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where

q c [qiT q jT
]T

c [RiT v i R jT
v j]T

c [Ri
x Ri

y v i R
j
x R

j
y v j]T

It follows that

Cq dq c [ dRi + Ai
vu i

O dvi

dRi + Ai
vu i

A dvi
− dR j

− A j
vu j

A dv j ]
c [ I Ai

vu i
O 0 0

I Ai
vu i

A −I −A j
vu j

A
] 






dRi

dvi

dR j

dv j







c 0

Since the system has two degrees of freedom, we may select v i and v j to be the
independent coordinates, that is

qi c [v i v j]T, qd c [Ri
x Ri

y R
j
x R

j
y ]T

According to this coordinate partitioning, the preceding equation can be rewritten
as

Cq dq c Cqd dqd + Cqi dqi

c [ I 0

I −I ] [ dRi

dR j ] + [ Ai
vu i

O 0

Ai
vu i

A −A j
vu j

A
] [ dvi

dv j ] c 0

where the Jacobian matrices Cq, Cqd and Cqi can be recognized as

Cq c [ I Ai
vu i

O 0 0

I Ai
vu i

A −I −A j
vu j

A
]

Cqd c [ I 0

I −I ] , Cqi c [ Ai
vu i

O 0

Ai
vu i

A −A j
vu j

A
]

The matrix Cqd is nonsingular and its inverse is

C−1
qd

c Cqd c [ I 0

I −I ]
The matrix Cdi of Eq. 82 can then be defined as

Cdi c −C−1
qd

Cqi c − [ I 0

I −I ] [ Ai
vu i

O 0

Ai
vu i

A −A j
vu j

A
]

c [ −Ai
vu i

O 0

Ai
v (u i

A − u i
O) −A j

vu j
A

]
The matrix Cdi is a 4 × 2 matrix since the system has four dependent coordinates
and two independent coordinates. The virtual change of the system coordinates can
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be expressed in terms of the virtual changes of the independent coordinates using
Eq. 84, where in this example, the matrix Bi of Eq. 85 is given by

Bi c








−Ai
vu i

O 0
Ai

v (u i
A − u i

O) −A j
vu j

A

1 0
0 1







This is a 6 × 2 matrix since the system has six coordinates and only two of them
are independent. The matrix Bi can be written more explicitly as

Bi c














− l i
O sin v i 0

l i
O cos v i 0

− (l i
O + l i

A) sin v i
− l

j
A sin v j

(l i
O + l i

A) cos v i l
j
A cos v j

1 0
0 1













The mass matrix of the system, which was derived in Example 4, can be rearranged
according to the partitioning of the coordinates as dependent and independent. This
yields

M c












mi 0 0 0 0 0
0 mi 0 0 0 0
0 0 m j 0 0 0
0 0 0 m j 0 0
0 0 0 0 J i 0
0 0 0 0 0 J j











It follows that

MBi c













−mili
O sin v i 0

mili
O cos v i 0

−m jli sin v i
−m jl

j
A sin v j

m jl i cos v i m jl
j
A cos v j

J i 0
0 J j












where l i

c l i
O + l i

A is the length of link i. The mass matrix associated with the
independent coordinates can be evaluated using Eq. 97 as

Mi c BT
i MBi

c [ m(l i
O)2 + m j(l i)2 + J i m jl il

j
A cos(v i

− v j)
m jlil

j
A cos(v i

− v j) m j(l j
A)2 + J j ]

which is a 2 × 2 symmetric matrix, since the system has two degrees of freedom.
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The constraint force vector Qc of the system discussed in this example was
defined in Example 4. If the components of this vector are rearranged according to
the partitioning of the coordinates as dependent and independent, one obtains

Qc c














F 1i
x − F

ij
x

F 1i
y − F

ij
y

F
ij
x

F
ij
y

(F 1i
x sin v i

− F 1i
y cos v i)l i

O + (F ij
x sin v i

− F
ij
y cos v i)l i

A

(F ij
x sin v j

− F
ij
y cos v j)l j

A













It is easy to verify that

BT
i Qc c 0

Identification of the System Degrees of Freedom In the computer anal-
ysis of large-scale mechanical systems, numerical methods are often used to
identify the system-dependent and system-independent coordinates. Based on
the numerical structure of the constraint Jacobian matrix, an optimum set of
independent coordinates can be identified. Recall that for a dynamically driven
system, the Jacobian matrix is an nc × n nonsquare matrix, where nc is the num-
ber of constraint equations and n is the total number of the system coordinates.
If the constraints are linearly independent, the Jacobian matrix has a full row
rank, and Gaussian elimination can be used to identify a nonsingular nc × nc

sub-Jacobian. For instance, consider the equation

Cq dq c 0

Applying the Gaussian elimination method with complete or full pivoting on the
constraint Jacobian matrix and assuming that no zero pivots are encountered,
the preceding equation, after nc steps, can be written in the following form:









1 C12 · · · C1nc C1(nc + 1) · · · C1n

0 1 · · · C2nc C2(nc + 1) · · · C2n
...

...
. . .

...
...

. . .
...

0 0 · · · 1 Cnc(nc + 1) · · · Cncn



























du1

du2
...

dunc

dv1

dv2
...

dvn − nc



















c



















0

0
...
0

0

0
...
0
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In the case of full pivoting, elementary column operations are used and the ele-
ments of the vector dq are reordered accordingly. Hence, the vectors du c [du1

du2 · · · dunc ]T and dv c [dv1 dv2 · · · dvn − nc ]T contain elements of the vector
dq, which are reordered as the result of the elementary column operations. The
preceding equation can be written in a partitioned form as

U du + V dv c 0

where

U c









1 C12 · · · C1nc

0 1 · · · C2nc
...

...
. . .

...
0 0 · · · 1








, V c






C1(nc + 1) · · · C1n
...

. . .
...

Cnc(nc + 1) · · · Cncn





The matrix U is an upper-triangular matrix with all the diagonal elements equal
to one. Because this matrix is nonsingular, the vector du can be expressed in
terms of the components of the vector dv. The elements of the vector dv can
then be recognized as the independent coordinates and the elements of the vec-
tor du are recognized as the dependent coordinates, that is,

dqd c du

dqi c dv

The Gaussian elimination method can also be used to detect redundant con-
straints. If such redundant constraints exist, the constraint equations are no
longer independent and the constraint Jacobian matrix does not have a full row
rank. In this case, the Gaussian elimination procedure leads to zero rows, and
the number of these zero rows is equal to the number of the dependent constraint
equations which is the same as the row-rank deficiency of the constraint Jaco-
bian matrix. The redundant constraints must be eliminated in order to determine
a set of linearly independent constraint equations that yield a Jacobian matrix
that has a full row rank.

6.6 LAGRANGE MULTIPLIERS

The embedding technique that leads to a minimum set of strongly coupled equa-
tions has several computational disadvantages. It requires finding the inverse of
the sub-Jacobian matrix associated with the dependent coordinates and it also
leads to a dense and highly nonlinear generalized mass matrix. In this section,
some basic concepts in the force analysis of constrained systems of rigid bod-
ies are discussed. These concepts, which are fundamental and are widely used
in classical and computational mechanics, will allow us to obtain a system of
loosely coupled dynamic equations in which the coefficient matrix is sparse and
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symmetric. The solution of this system of equations defines the accelerations
and a set of multipliers that can be used to define the constraint forces. In order
to introduce these multipliers, we first consider the simple system shown in Fig.
4. The system consists of two rigid bodies, body i and body j, which are rigidly
connected at point P. The constraint equations for this system can be expressed
in terms of the Cartesian coordinates as

Ri + Aiu i
P − R j

− A ju j
P c 0 (6.100)

v i
− v j

c 0 (6.101)

where Ri and R j are, respectively, the global position vectors of the origins
of the coordinate systems of bodies i and j, Ai and A j are, respectively, the
transformation matrices from the coordinate systems of body i and body j to
the global coordinate system, u i

P and u j
P are, respectively, the local position

vectors of point P with respect to the reference points of body i and body j,
and v i and v j are the angular orientations of bodies i and j. While Eq. 100
guarantees that there is no translational displacements between body i and body
j, Eq. 101 ensures that there is no relative rotations between the two bodies.

Equations 100 and 101 can be written as

C(qi, q j) c 0 (6.102)

where C is the vector of constraint equations defined as

C c [ Ri + Aiu i
P − R j

− A ju j
P

v i
− v j ] c 0 (6.103)

Figure 6.4 Two-body system



6.6 LAGRANGE MULTIPLIERS 325

The Jacobian matrix of these constraint equations can be written in a partitioned
form as

Cq c [Cqi Cq j ] (6.104)

where

Cqi c [ I Ai
vu i

P

0 1 ] (6.105)

Cq j c − [ I A j
vu j

P

0 1 ] (6.106)

where I is the 2 × 2 identity matrix and Ai
v and A j

v are, respectively, the par-
tial derivatives of the transformation matrices Ai and A j with respect to the
rotational coordinates v i and v j .

Equipollent Systems of Forces Figure 5 shows the actual reaction forces
acting on bodies i and j of Fig. 4 as a result of the rigid connection between
the two bodies. Let � be the vector

� c − [ F

M ] (6.107)

The reaction forces acting on body i and body j, which are equal in magnitude
and opposite in direction, can be expressed, respectively, in a vector form as

Fi
c −� c [ F

M ] and F j
c � c − [ F

M ] (6.108)

The systems of the actual reaction forces of Eq. 108 are equipollent to other
systems of generalized reaction forces defined at the origins of the coordinate

Figure 6.5 Constraint forces and moments
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systems of the two bodies and given by

Qi
c c [ F

M + (Aiu i
P × F) . k ] (6.109)

Q j
c c − [ F

M + (A ju j
P × F) . k ] (6.110)

Equations 109 and 110 are the result of the simple fact that a force F acting at
a point P is equipollent to a system of forces that consists of the same force
acting at another point O plus a moment defined as the cross product between
the position vector of P with respect to O and the force vector F.

Lagrange Multipliers Recall that

[(Aiu i
P) × F] . k c u iT

P AiT
v F (6.111)

[(A ju j
P) × F] . k c u jT

P AjT

v F (6.112)

Using these identities and Eqs. 109 and 110, one obtains

Qi
c c [ F

M + u iT
P AiT

v F ] (6.113)

Q j
c c − [ F

M + u jT

P AjT

v F ] (6.114)

which can be written using matrix notation as

Qi
c c [ I 0

u iT
P AiT

v 1 ] [ F

M ] (6.115)

Q j
c c − [ I 0

u jT

P AjT

v 1 ] [ F

M ] (6.116)

Comparing the matrices in these equations with the Jacobian matrices of Eqs.
105 and 106, one concludes that the generalized reactions can be expressed in
this example in terms of the actual reactions as

Qi
c c −CT

qi � (6.117)

Q j
c c −CT

q j � (6.118)

Each of Eqs. 117 and 118 contains three force components; two force compo-
nents associated with the translation of the reference point and one component
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associated with the rotation of the body. Equations 117 and 118 imply that the
generalized reaction forces as the result of the rigid connection between bodies
i and j can be expressed in terms of the Jacobian matrices of the kinematic
constraint equations. In this example, the vector � was found to be the nega-
tive of the vector that contains the reaction force and moment. The vector �,
whose dimension is equal to the number of constraint equations, is called the
vector of Lagrange multipliers. While the form of Eqs. 117 and 118 is valid
for all types of constraints, the vector of Lagrange multipliers may not, in some
applications, take the simple form of Eq. 107.

Example 6.6

Find the generalized reaction forces associated with the Cartesian coordinates of
two bodies i and j connected by a revolute joint in terms of Lagrange multipliers.

Solution. The revolute joint between two bodies i and j allows only relative rotation.
The constraint equations for this joint are

Ri + Aiu i
P − R j

− A ju j
P c 0

where u i
P and u j

P are, respectively, the local position vectors of the joint definition
points. The Jacobian matrix of the revolute joint constraints can be written as

Cq c [I Ai
vu i

P − I − A j
vu j

P]

which can be written as
Cq c [Cqi Cq j ]

in which

Cqi c [I Ai
vu i

P]

Cq j c [−I − A j
vu j

P]

The generalized constraint reactions of the revolute joint associated with the trans-
lation of the reference points and the rotations of the bodies i and j are

Qi
c c −CT

qi �

Q j
c c −CT

q j �

which can be written explicitly as

Qi
c c −






1 0

0 1

−x i
P sin v i

− y i
P cos v i x i

P cos v i
− y i

P sin v i





[ l1

l2 ]
c






−l1

−l2

(x i
P sin v i + y i

P cos v i)l1 − (x i
P cos v i

− y i
P sin v i)l2








328 CONSTRAINED DYNAMICS

Q j
c c −






−1 0

0 −1

x
j
P sin v j + y

j
P cos v j

−x
j
P cos v j + y

j
P sin v j





[ l1

l2 ]
c






l1

l2

− (x j
P sin v j + y

j
P cos v j)l1 + (x j

P cos v j
− y

j
P sin v j)l2





where

u i
P c [x i

P y i
P]T

u j
P c [x j

P y
j
P]T

Example 6.7

A link in a mechanism is assumed to be fixed if it is subjected to the ground con-
straints, which do not allow the translational and rotational displacements of the
link. These ground constraints for link i are given by

Ri
c C1

v i
c C2

where C1 and C2 are, respectively, a constant vector and a constant scalar. The
Jacobian matrix of the ground constraints is

Cqi c [ I 0

0 1 ] c






1 0 0

0 1 0

0 0 1





The generalized reactions as the result of imposing the ground constraints are

Qi
c c −CT

qi � c −






1 0 0

0 1 0

0 0 1










l1

l2

l3





c −






l1

l2

l3






Multiple Joints A body in a multibody system may be connected to other
bodies by several joints. For example, in multibody vehicle systems the chas-
sis of the vehicle is connected to the suspension elements by different types of
joints. If a body in the mechanical system is connected with other bodies by
more than one joint, one can use the procedure previously described in this sec-
tion to define the contribution of each joint to the generalized reaction forces.
For example, let body i be connected to other bodies in the system by ni joints.
The constraint equations that describe these joints can be expressed in vector
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forms as

C1(q, t) c 0

C2(q, t) c 0
...

Cni (q, t) c 0

















(6.119)

where q c [q1T
q2T

· · · qnT
b ]T is the total vector of the system coordinates,

t is time, and nb is the total number of bodies in the system. Each of the vec-
tor equations in Eq. 119, which contains a number of scalar equations equal to
the number of degrees of freedom eliminated by the corresponding joint, con-
tributes to the vector of generalized forces of body i. By using Eq. 117, the
generalized reactions of these constraint equations are

Qi
1 c − (C1)T

qi �1

Qi
2 c − (C2)T

qi �2

...

Qi
ni
c − (Cni )

T
qi �ni

















(6.120)

where �k is the vector of Lagrange multipliers associated with the vector of con-
straints Ck . The resultant generalized reaction forces due to all the constraints
of Eq. 119 can be written as

Qi
c c Qi

1 + Qi
2 + · · · + Qi

ni

c

ni

���
k c 1

Qi
k (6.121)

which upon using Eq. 120, yields

Qi
c c − (C1)T

qi �1 − (C2)T
qi �2 − · · · − (Cni )

T
qi �ni

c −

ni

���
k c 1

(Ck)T
qi �k (6.122)

Equation 122 can also be written in a matrix form as

Qi
c c − [(C1)T

qi (C2)T
qi · · · (Cni )

T
qi ]









�1

�2
...

�ni








(6.123)
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It is clear that there will be no contribution from other joints that do not involve
body i since the constraint equations that describe these joints are not explicit
functions of the coordinates of body i. Equation 123 can then be written in a
more general form as

Qi
c c −CT

qi � (6.124)

where C is the total vector of constraint equations of the system, and � is the
vector of the system Lagrange multipliers. Constraints which are not explicit
functions of the coordinates of body i define zero rows in the Jacobian matrix
Cqi of Eq. 124.

Equations 124 can be used to define the total vector of the system generalized
reactions. If the system consists of nb bodies, one has

Qc c [Q1T

c Q2T

c · · · Q
nT

b
c ]T (6.125)

which upon using Eq. 124, leads to

Qc c −









CT
q1 �

CT
q2 �
...

CT
qnb �








(6.126)

By factoring out the vector of Lagrange multipliers � and keeping in mind that

Cq c [Cq1 Cq2 · · · Cqnb ] (6.127)

where Cq is the constraint Jacobian matrix of the system, Eq. 126 can be
written as

Qc c − [Cq1 Cq2 · · · Cqnb ]T�

c −CT
q � (6.128)

Since each joint is formulated in terms of the coordinates of the two bodies
connected by this joint, the Jacobian matrix Cq in a large-scale constrained
mechanical system is a sparse matrix, which has a large number of zero entries.

Example 6.8

In order to demonstrate the use of Eq. 128, the slider crank mechanism shown in
Fig. 6 is considered. The configuration of this mechanism can be identified using 12
Cartesian coordinates. There are, however, 11 constraint equations that describe the
joints in the system. These constraint equations are the three ground constraints, the
two revolute joint constraints at O, the two revolute joint constraints at A, the two
revolute joint constraints at B, and the two constraints that allow only the translation
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Figure 6.6 Slider crank mechanism

of the slider block in the horizontal direction. The Jacobian matrix of the constraint
equations of this mechanism was developed in Chapter 3 and is given by

Cq c


























1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 C4, 6 0 0 0 0 0 0

0 0 0 0 1 C5, 6 0 0 0 0 0 0

0 0 0 1 0 C6, 6 −1 0 C6, 9 0 0 0

0 0 0 0 1 C7, 6 0 −1 C7, 9 0 0 0

0 0 0 0 0 0 1 0 C8, 9 −1 0 0

0 0 0 0 0 0 0 1 C9, 9 0 −1 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

























where

C4, 6 c

l2

2
sin v2, C5, 6 c −

l2

2
cos v2, C6, 6 c −

l2

2
sin v2, C7, 6 c

l2

2
cos v2

C6, 9 c −

l3

2
sin v3, C7, 9 c

l3

2
cos v3, C8, 9 c −

l3

2
sin v3, C9, 9 c

l3

2
cos v3

The vector of system generalized reaction forces is

Qc c









Q1
c

Q2
c

Q3
c

Q4
c








c −CT

q �

where

� c [l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11]T
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The vector Qc is given explicitly in terms of Lagrange multipliers by

Qc c





































−l1

−l2

−l3

− (l4 + l6)

− (l5 + l7)

l2

2
[− (l4 − l6) sin v2 + (l5 − l7) cos v2]

l6 − l8

l7 − l9

l3

2
[(l6 + l8) sin v3 − (l7 + l9) cos v3]

l8

l9 − l10

l11





































6.7 CONSTRAINED DYNAMIC EQUATIONS

The use of the generalized coordinate partitioning of the constraint Jacobian
matrix to develop a minimum number of differential equations that govern the
motion of the multibody system was demonstrated in Section 5. These equa-
tions are expressed in terms of the independent accelerations and, therefore, the
constraint forces are automatically eliminated. An alternative approach for for-
mulating the dynamic equations of the multibody systems is to use redundant
coordinates which are related by the virtue of the kinematic constraints. This
approach, in which the constraint forces appear in the final form of the equa-
tions of motion, leads to a larger system of loosely coupled equations which
can be solved using sparse matrix techniques.

In this section, we discuss the augmented formulation in which the kine-
matic constraint equations are adjoined to the systems differential equations
using the vector of Lagrange multipliers. This approach leads to a system of
algebraic equations with a symmetric positive-definite coefficient matrix. This
system can be solved for the accelerations and Lagrange multipliers. Lagrange
multipliers can be used to determine the generalized reactions as discussed in
the preceding section, while the accelerations can be integrated in order to deter-
mine the system coordinates and velocities.

In terms of the absolute Cartesian coordinates, the motion of a rigid body i
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in the multibody system is governed by Eq. 57, which is repeated here as

Miq̈i c Qi
e + Qi

c (6.129)

where Mi is the mass matrix of the rigid body i, q̈i c [R̈iT v̈ i]T is the accel-
eration vector, Qi

e is the vector of generalized external forces, and Qi
c is the

vector of generalized constraint forces. If the reference point is taken to be the
center of mass of the body, the mass matrix is diagonal and is given by

Mi c [ miI 0

0 J i ] (6.130)

where mi is the mass of the body, and J i is the mass moment of inertia defined
with respect to the body center of mass.

If the system consists of nb interconnected bodies, a matrix equation similar
to Eq. 129 can be developed for each body in the system. This leads to

M1q̈1 c Q1
e + Q1

c

M2q̈2 c Q2
e + Q2

c

...

Miq̈i c Qi
e + Qi

c

...

Mnb q̈nb c Qnb
e + Qnb

c





























(6.131a)

These equations can be combined in one matrix equation as














M1

M2 0
. . .

Mi

0
. . .

Mnb



























q̈1

q̈2

...

q̈i

...

q̈nb














c














Qi
e

Q2
e

...

Qi
e

...

Qnb
e














+














Q1
c

Q2
c

...

Qi
c

...

Qnb
c













(6.131b)

which can be written as

Mq̈ c Qe + Qc (6.131c)
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where

M c














M1

M2 0
. . .

Mi

0
. . .

Mnb














(6.132a)

q c [q1T
q2T

· · · qiT · · · qnT
b ]T (6.132b)

Qe c [Q1T

e Q2T

e · · · QiT
e · · · Q

nT
b

e ]T (6.132c)

Qc c [Q1T

c Q2T

c · · · QiT
c · · · Q

nT
b

c ]T (6.132d)

in which M is the system mass matrix, q is the total vector of system generalized
coordinates, Qe is the vector of system generalized external forces, and Qc
is the vector of the system generalized constraint forces. It was shown in the
preceding section that the vector Qc of the system generalized constraint forces
can be written in terms of the system constraint Jacobian matrix and the vector
of Lagrange multipliers as

Qc c −CT
q � (6.133)

where Cq is the constraint Jacobian matrix, � is the nc-dimensional vector of
Lagrange multipliers, and nc is the number of constraint equations. Substituting
Eq. 133 into Eq. 131c, one obtains

Mq̈ c Qe − CT
q �

or equivalently,

Mq̈ + CT
q � c Qe (6.134)

These are n second-order differential equations of motion, where n is total num-
ber of system coordinates.

Theoretical Proof In the preceding section, we used a simple example to
introduce the technique of Lagrange multipliers. Before we start our discussion
on the solution of the equations of motion, it may be helpful to provide the
general theoretical derivation of Eq. 134 in order to demonstrate the generality
of the technique of Lagrange multipliers. We make use of Eqs. 74 and 76, which
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are given by

dqT[Mq̈ − Qe] c 0 (6.135a)

Cq dq c 0 (6.135b)

Since the vector Cq dq is equal to zero from the second equation, the scalar
product of this vector with any other vector is also equal to zero. Hence, the
second equation yields

�TCq dq c 0

for an arbitrary vector �, which has a dimension equal to the number of the
constraint equations. When this equation is added to Eq. 135a, one obtains

dqT[Mq̈ − Qe + CT
q �] c 0

The coefficients of the elements of the vector dq in this equation cannot be set
equal to zero because the coordinates are not independent. Using the coordinate
partitioning of Eq. 78, the preceding equation yields

[dqT
i dqT

d ]{[ Mii Mid

Mdi Mdd ] [ q̈i

q̈d ] − [ Qei

Qed
] + [ CT

qi

CT
qd

] �} c 0

where the subscripts i and d refer, respectively, to independent and dependent
coordinates. It follows that

dqT
i [Miiq̈i + Midq̈d − Qei

+ CT
qi

�] c 0 (6.136a)

dqT
d [Mdiq̈i + Mddq̈d − Qed

+ CT
qd

�] c 0 (6.136b)

As previously pointed out, the independent coordinates can be selected such that
the matrix CT

qd
is a square nonsingular matrix. The vector of Lagrange multi-

pliers can then be selected to be the unique solution of the following system of
algebraic equations:

CT
qd

� c Qed
− Mdiq̈i − Mddq̈d

This choice of Lagrange multipliers guarantees that the coefficients of the ele-
ments of the vector dqd in Eq. 136b are equal to zero. Furthermore, since in
Eq. 136a the elements of the vector dqi are independent, one has

Miiq̈i + Midq̈d + CT
qi

� c Qei
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Combining the preceding two equations, one obtains

[ Mii Mid

Mdi Mdd ] [ q̈i

q̈d ] + [ CT
qi

CT
qd

] � c [ Qei

Qed
]

which leads to the general form of Eq. 134:

Mq̈ + CT
q � c Qe

Augmented Formulation If the vector of generalized external forces Qe
is known, the unknowns in Eq. 134 are the vector of accelerations q̈ and the
vector of Lagrange multipliers �. The number of unknowns in this case is n
+ nc. Because Eq. 134 contains only n equations, in order to be able to solve
this system one needs to have additional nc equations. These nc equations are
the nonlinear algebraic constraint equations that represent the joints and the
specified motion trajectories. These constraint equations can be written as

C(q, t) c 0 (6.137)

which upon differentiation once and twice with respect to time, one obtains

Cqq̇ c −Ct (6.138)

Cqq̈ c Qd (6.139)

where the subscript t denotes partial differentiation with respect to time and Qd
is a vector that absorbs first derivatives in the coordinates and is given by

Qd c −Ct t − (Cqq̇)qq̇ − 2Cqtq̇ (6.140)

Equations 134 and 139 can be combined in one matrix equation as

[ M CT
q

Cq 0 ] [ q̈

� ] c [ Qe

Qd ] (6.141)

The vectors of accelerations and Lagrange multipliers can be obtained by solv-
ing Eq. 141 as

[ q̈

� ] c [ M CT
q

Cq 0 ] −1 [ Qe

Qd ] (6.142)

By direct matrix multiplication, one can verify that

[ M CT
q

Cq 0 ] −1

c [ Hqq Hql

Hlq Hll ] (6.143)
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where

Hll c (CqM−1CT
q )−1

Hqq c M−1 + M−1CT
q HllCqM−1

Hql c HT
lq c −M−1CT

q Hll













(6.144)

Substituting Eq. 143 into Eq. 142 and carrying out the matrix multiplication,
one obtains

q̈ c HqqQe + HqlQd (6.145a)

� c HlqQe + HllQd (6.145b)

For a given set of initial conditions, the vector q̈ can be integrated in order
to determine the coordinates and velocities. The vector � of Eq. 145b can be
used to determine the generalized constraint forces by using Eq. 133. These
generalized constraint forces can be used to determine the actual reactions at
the joints as described in the following section.

It is important to emphasize at this point that due to the approximations
involved in the direct numerical integration, the resulting coordinates and veloc-
ities are not extact. One, therefore, expects that the constraints of Eq. 137 will
be violated with a degree depending on the accuracy of the numerical integra-
tion method used. With the accumulation of the errors in some applications, the
violation in the constraint of Eq. 137 may not be acceptable. In order to circum-
vent this difficulty, Wehage (1980) proposed a coordinate partitioning technique
in which the independent accelerations are identified and integrated forward in
time using a direct numerical integration method, thus defining the indepen-
dent coordinates and velocities. By knowing the independent coordinates as a
result of the direct numerical integration, Eq. 137 which can be considered as nc

nonlinear algebraic constraint equations in the nc-dependent coordinates is then
used to determine the dependent coordinates using a Newton–Raphson algo-
rithm. Having also determined the independent velocities as the result of the
numerical integration, Eq. 138 can be used to determine the dependent veloci-
ties by partitioning the constraint Jacobian matrix, and rewriting Eq. 138 in the
following form:

Cqd
q̇d + Cqi

q̇i c −Ct

where qd and qi are, respectively, the vectors of dependent and independent
coordinates that are selected in such a manner that Cqd

is nonsingular. It follows
that

q̇d c −C−1
qd

Cqi
q̇i − C−1

qd
Ct
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This equation defines the dependent velocities. Having determined both depen-
dent and independent coordinates and velocities, Eq. 141 can be constructed
and solved for the accelerations in order to advance the numerical integration.

Example 6.9

Figure 7 shows a two-body system that consists of body i and body j which are
connected by a revolute joint at point P. In this case, the system mass matrix M is

M c [ Mi 0

0 M j ]
where

Mi c 




mi 0 0

0 mi 0

0 0 J i





, M j c 





mj 0 0

0 mj 0

0 0 J j





Therefore, the mass matrix M is

M c














mi 0 0 0 0 0

0 mi 0 0 0 0

0 0 J i 0 0 0

0 0 0 mj 0 0

0 0 0 0 mj 0

0 0 0 0 0 J j













The Jacobian matrix of the revolute joint is

Cq c [I Ai
vu i

P − I − Aj
vu j

P]

c [ 1 0 C13 −1 0 C16

0 1 C23 0 −1 C26 ]

Figure 6.7 Two-body system
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where

[ C13

C23 ] c Ai
vu i

P c [ −sin v i −cos v i

cos v i −sin v i ] [ x i
P

y i
P

] c [ −x i
P sin v i − y i

P cos v i

x i
P cos v i − y i

P sin v i ]
[ C16

C26 ] c −A j
vu j

P c − [ −sin v j −cos v j

cos v j −sin v j ] [ x
j
P

y
j
P

]
c [ x

j
P sin v j + y

j
P cos v j

−x
j
P cos v j + y

j
P sin v j ]

It can also be shown that the vector Qd of Eq. 140 is

Qd c [ (Qd)1

(Qd)2 ] c (v̇ i)2Aiu i
P − (v̇ j)2A ju j

P

Equation 141 for this system can be written as


















mi 0 0 0 0 0 1 0

0 mi 0 0 0 0 0 1

0 0 J i 0 0 0 C13 C23

0 0 0 m j 0 0 −1 0

0 0 0 0 m j 0 0 −1

0 0 0 0 0 J j C16 C26

1 0 C13 −1 0 C16 0 0

0 1 C23 0 −1 C26 0 0



































R̈i
x

R̈i
y

v̈ i

R̈
j
x

R̈
j
y

v̈ j

l1

l2


















c


















F i
x

F i
y

Mi

F
j
x

F
j
y

M j

(Qd)1

(Qd)2

















where Fi c [F i

x F i
y]T and F j c [F j

x F
j
y]T are, respectively, the vectors of forces

acting at the center of masses of bodies i and j, and Mi and M j are the moments
acting, respectively, on body i and body j.

6.8 JOINT REACTION FORCES

The solution of Eq. 141 presented in the preceding section defines the vector
of Lagrange multipliers which can be used in Eq. 133 to determine the vector
of generalized constraint forces associated with the translation of the center
of mass and the rotation of the body. While these generalized forces may not
be the actual reaction forces of the joint, the generalized and actual constraint
forces represent two equipollent systems of forces. This fact will be used to
determine the actual joint forces in terms of the generalized constraint forces
which are assumed, in the following discussion, to be known from the analytical
or numerical solution of Eq. 141.

For a given joint k in the multibody system, the generalized constraint forces
acting on body i, which is connected by this joint, are

(Qi
c)k c − (Ck)T

qi �k c [F i
xk

F i
yk

Mi
k]T (6.146)
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where F i
xk

, F i
yk

, and Mi
k are the components of the vector (Qi

c)k which are
assumed to be known, Ck is the vector of constraint equations of the joint k,
and �k is the vector of Lagrange multipliers associated with these constraints.

The system of forces of Eq. 146 is equipollent to another system of forces
defined on the joint surface. Let ui

P be the position vector of the joint definition
point with respect to the reference point. A system equipollent to the system
of Eq. 146 can be obtained as

Fi c 




F i
xk

F i
yk

Mi
k − (ui

P × Fi
k) . k





(6.147)

where Fi
k c [F i

xk
F i

yk
]T, and k is a unit vector along the axis of rotation. Equa-

tion 147 defines the system of reaction forces at the joint.

Example 6.10

The constraint equations of the revolute joint of the pendulum shown in Fig. 8 are

Ri + Aiu i
O c 0

and the Jacobian matrix of the constraints are

Cq c [ 1 0 C13

0 1 C23 ]
where

[ C13

C23 ] c Ai
vu i

O c [ −sin v i −cos v i

cos v i −sin v i ] [ x i
O

y i
O

] c [ −x i
O sin v i − y i

O cos v i

x i
O cos v i − y i

O sin v i ]

Figure 6.8 Pendulum motion
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The generalized reaction forces can be expressed in terms of Lagrange multipliers as

Qc c −CT
q � c − 





1 0

0 1

C13 C23





[ l1

l2 ] c − 




l1

l2

C13l1 + C23l2





This system must be equipollent to a system of reaction forces acting at the joint.
Using Eq. 147, the actual reaction forces can be written as

Fi c 




−l1

−l2

− (C13l1 + C23l2) + Mi
O





where Mi

O is the moment of the generalized reactions about point O and defined
by the cross product

Mi
O c − (ui

O × Fi
k) . k c −{(Aiu i

O) × [−l1 − l2]T} . k

c −






|
|
|
|
|
|
|

i j k

x i
O cos v i − y i

O sin v i x i
O sin v i + y i

O cos v i 0

−l1 −l2 0

|
|
|
|
|
|
|






. k

c − 




0

0

−l2(x i
O cos v i − y i

O sin v i) + l1(x i
O sin v i + y i

O cos v i)





. k

c l2(x i
O cos v i − y i

O sin v i) − l1(x i
O sin v i + y i

O cos v i)

By substituting this expression into the definition of Fi and using the definition of
C13 and C23, one obtains

Fi c 




−l1

−l2

0





which implies that the actual reactions at the joints are the negative of Lagrange
multipliers. Furthermore, the actual moment is equal to zero, which is an expected
result for the revolute joint.

Virtual Work A more systematic procedure for determining the reaction
forces at the joint definition points is to use the virtual work. Let Fi

k and Mi
k be,

respectively, the generalized constraint force and moment associated with the
reference coordinates as the result of a joint k. The virtual work of the constraint
force and moment can be expressed as

dW i
c c FiT

k dRi + Mi
k dvi
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The global position vector of the joint definition point r i
k can be expressed

in terms of the reference coordinates as

r i
k c Ri + Aiu i

k

where Ai is the planar transformation matrix of body i, and u i
k is the local

position vector of the joint definition point with respect to the reference point.
It follows that

Ri c r i
k − Aiu i

k

and

dRi c dr i
k − Ai

vu i
k dvi

The virtual work of the constraint forces can be expressed in terms of the virtual
change in the coordinates of the joint definition point as

dW i
c c FiT

k dr i
k + (Mi

k − FiT
k Ai

vu i
k) dvi (6.148)

The coefficients of dr i
k and dvi in this equation define the reaction force and

moment at the joint definition point. In the case of a revolute joint, the coef-
ficient of dvi in the preceding equation is identically equal to zero as demon-
strated by the preceding example.

6.9 ELIMINATION OF LAGRANGE MULTIPLIERS

While the use of the embedding technique is not recommended as a basis for
developing general-purpose multibody computer programs because of the com-
putational overhead, it is important to understand some of the basic concepts
and techniques used in classical and computational dynamics to obtain a min-
imum set of independent differential equations. We have previously demon-
strated that if Qc is the vector of generalized constraint forces, then

BT
i Qc c 0

where Bi is the matrix defined by Eq. 85. In the method of Lagrange multipliers,
the generalized constraint forces are expressed in terms of the Jacobian matrix
of the kinematic constraints as

Qc c −CT
q �

It follows that

BT
i CT

q � c 0
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This equation which is valid regardless of the values of Lagrange multipliers
implies that the vector of generalized constraint forces CT

q � is orthogonal to
the columns of the matrix Bi. To demonstrate that

BT
i CT

q c 0

we rewrite the constraint Jacobian matrix according to the coordinate partition-
ing as dependent and independent (see Eqs. 78 and 79) as

Cq c [Cqd
Cqi

]

Recall that

Bi c [ −C−1
qd

Cqi

I ]
Using this matrix, one gets

BT
i CT

q c [−CT
qi

(CT
qd

)−1 I] [ CT
qd

CT
qi

] c 0

as previously stated.
The matrix Bi of Eq. 85 defines the relationship between the total vector of

the system velocities and a smaller independent subset of the same velocities.
There are other methods that can be used to express the system variables in
terms of a more general set of independent coordinates, each of which can be a
linear combination of the system coordinates. These methods can also be used
to eliminate Lagrange multipliers and obtain a minimum set of independent
differential equations. Among these methods are the QR decomposition and
the singular value decomposition.

QR Decomposition Assuming that the constraint equations are independent
such that the contraint Jacobian matrix has a full row rank, Householder trans-
formations can be used, as described in Chapter 2, to write the transpose of the
constraint Jacobian matrix as

CT
q c [Q1 Q2] [ R1

0 ]
where Q1 and Q2 are n × nc and n × (n − nc) matrices, respectively, and R1 is
an nc × nc upper-triangular matrix. It was demonstrated in Chapter 2 that the
columns of the matrices Q1 and Q2 are orthogonal and

QT
2 Q1 c 0
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and

QT
2 CT

q c 0

In the QR decomposition, one can select the matrix Bi, such that

Bi c Q2

With this choice of Bi we are guaranteed that

BT
i CT

q � c 0

and consequently, the velocity transformation

q̇ c Biq̇i

can be used, as previously described, to obtain a minimum set of independent
equations. The vector qi in this case represents a new set of independent vari-
ables, each of which may be a combination of the system coordinates. The
equations of motion can be expressed in terms of these new variables and their
time derivatives and the solution can be obtained as described in later sections
using the methods of numerical integration.

As pointed out in Chapter 2, while Q1 and R1 in the QR decomposition
are unique, the matrix Q2 in this factorization is not unique. It is, therefore,
numerically difficult to preserve the directional continuity of the bases repre-
sented by the columns of the transformation Q2. Kim and Vanderploeg (1986)
defined constant orthogonal matrices Q1 and Q2 at the initial configuration and
used the velocity constraint relationships to iteratively update these matrices in
order to preserve the directional continuity of the null space of the constraint
Jacobian matrix.

Singular Value Decomposition The singular value decomposition of the
transpose of the Jacobian matrix can be written as

CT
q c Q1BQ2

where Q1 and Q2 are two orthogonal matrices whose dimensions are n × n and
nc × nc, respectively, and B is an n × nc matrix that contains the singular values
along its diagonal. It was shown in Chapter 2 that the preceding equation can
be written in the following partitioned form:

CT
q c [Q1d Q1i] [ B1

0 ] Q2

where B1 is a diagonal matrix and Q1d and Q1i are partitions of the matrix Q1.
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The columns of the matrices Q1d and Q1i are orthogonal vectors and

QT
1iQ1d c 0

It is also clear that

CT
q c Q1dB1Q2

The preceding two equations imply that

QT
1iC

T
q c 0

If the matrix Bi is selected such that

Bi c Q1i

then BT
i CT

q � c 0, and the transformation q̇ c Biq̇i can be used to eliminate
Lagrange multipliers and obtain a minimum set of independent differential
equations as described in Section 5.

Kim and Vanderploeg (1986) pointed out that the QR decomposition is about
two times more computationally expensive than the LU decomposition, while
the singular value decomposition is two to ten times more expensive than the
QR decomposition, depending upon the size of the constraint Jacobian matrix.
The QR and the singular value decompositions can also be used to obtain an
identity-generalized mass matrix associated with the independent coordinates.
For example, in the planar analysis using the absolute Cartesian coordinates, the
mass matrix M of Eq. 132a is a diagonal matrix whose inverse can be easily
defined. Multiplying Eq. 134 by the inverse of the mass matrix, one obtains

q̈ + M−1CT
q � c M−1Qe

Now, let Bi be the orthogonal velocity transformation obtained by the QR
decomposition or the singular value decomposition of the matrix M−1CT

q . Sub-
stituting the transformation q̇ c Biq̇i into the preceding equation and premulti-
plying by the transpose of the matrix Bi leads to an identity-generalized mass
matrix associated with the independent coordinates since in this special case
Mi c BT

i Bi c I.

6.10 STATE SPACE REPRESENTATION

By now, it should be clear that there are two basic approaches for formulating
the dynamic equations of multibody mechanical systems. These approaches are
the embedding technique and the augmented formulation. In the embedding tech-
nique, the dynamic equations are formulated in terms of the system degrees of
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freedom, thereby eliminating the workless constraint forces. This approach leads
to a system of linear algebraic equations in the independent accelerations. The
coefficient matrix in this system of algebraic equations is the generalized mass
matrix associated with the independent coordinates, and the right-hand side is the
vector of externally applied and centrifugal forces which depend on the system
coordinates, velocities, and possibly on time. By assuming that the mass matrix
is positive definite, the inverse of this matrix can be obtained and used to express
the independent accelerations in terms of the independent coordinates, velocities,
and time. This procedure leads to Eq. 99, which is repeated here as

q̈i c M
−1

i Qi (6.149)

where Mi is the system mass matrix associated with the independent coordi-
nates, q̈i is the vector of independent accelerations, and Qi is the vector of
forces associated with the independent coordinates. The mass matrix can be a
nonlinear function of the system coordinates, while the force vector, which con-
tains externally applied forces and Coriolis and centrifugal forces is a function
of the system coordinates, velocities, and possibly time. Since the dependent
coordinates and velocities can always be expressed in terms of the independent
variables, Eq. 149 can be written as

q̈i c Gi(qi, q̇i, t) (6.150)

where Gi is the vector function

Gi c M
−1

i Qi (6.151)

In Eq. 150, the independent coordinates can be the joint variables or any set
of independent coordinates identified based on the numerical structure of the
constraint Jacobian matrix.

In the second approach, the augmented formulation is used, leading to the
dynamic equations which are expressed in terms of the dependent and indepen-
dent accelerations. The nonlinear algebraic constraint equations are adjoined to
the dynamic equations using the vector of Lagrange multipliers. This formula-
tion leads to a linear system of algebraic equations in the system accelerations
and Lagrange multipliers. The coefficient matrix in this system of equations
(Eq. 141) depends on the system mass matrix as well as the constraint Jaco-
bian matrix. As shown in Section 7, the solution of this system of equations
defines the vector of accelerations as well as the vector of Lagrange multipliers
(Eqs. 145), which can be used to evaluate the generalized reaction forces, as
discussed in the preceding section. Clearly, in this case the independent acceler-
ations can be identified and expressed in the form of Eq. 150, and consequently,
the form of Eq. 150 can be obtained by using the embedding technique, or by
using the augmented formulation.
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Having expressed the independent accelerations in terms of the independent
coordinates, velocities, and time, one can proceed a step further in the direction
of obtaining the numerical solution of the nonlinear equations of the multibody
system. To this end, we define the state vector y as

y c [ y1

y2 ] c [ qi

q̇i ] (6.152)

The dimension of this vector is equal to twice the number of the system degrees
of freedom. Differentiating Eq. 152 with respect to time and using the definition
of Eq. 150, one obtains the following first-order state equations:

ẏ c [ ẏ1

ẏ2 ] c [ q̇i

q̈i ] c [ ẏ1

Gi(qi, q̇i, t) ] (6.153)

Since y c [qT
i q̇T

i ]T, the preceding equation can be written as

ẏ c [ ẏ1

ẏ2 ] c [ ẏ1

Gi(y, t) ] (6.154)

which can simply be written as

ẏ c f(y, t) (6.155)

where

f(y, t) c [ ẏ1

Gi(y, t) ] (6.156)

Equation 155 represents the state space equations of the multibody system.
These equations are first-order differential equations and their number is equal
to twice the number of the system degrees of freedom. Therefore, in the state
space formulation, the second-order differential equations associated with the
independent coordinates are replaced by a system of first-order differential
equations that has a number of equations equal to twice the number of the
degrees of freedom of the system.

Example 6.11

In order to demonstrate the formulation of the state space equations in both cases of
the augmented formulation and the formulation in terms of the degrees of freedom,
we consider the simple system discussed in Example 10. If the dynamic relation-
ships are formulated in terms of the degrees of freedom using the embedding tech-
nique, the system has one differential equation, which can be expressed in terms of
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this degree of freedom. If we select the angular orientation v i to be the degree of
freedom, the differential equation of motion of the system is given by

J i
Ov̈ i c Mi − migliO cos v i

where J i
O c J i +mi(li

O)2 is the mass moment of inertia defined with respect to point
O, J i is the mass moment of inertia defined with respect to the center of mass, mi is
the total mass of the rod, Mi is the applied external moment acting on the rod, and
li
O is the distance of point O from the center of mass of the rod. In this example,

the vector qi reduces to a scalar defined by the angle v i. The preceding equation
then yields

q̈i c v̈ i c 1

J i
O

[Mi − migliO cos v i]

From which the vector Gi of Eq. 150 reduces to a scalar and is recognized as

Gi c
1

J i
O

[Mi − migliO cos v i]

The state vector is

y c [ y1

y2
] c [ v i

v̇ i ]
and the state equations can be defined using Eqs. 155 and 156 as

ẏ c [ ẏ1

ẏ2
] c [ v̇ i

v̈ i ] c 




v̇ i

1

J i
O

[Mi − migliO cos v i




Let us now consider the second approach of the augmented formulation in which

the equations are developed in terms of the absolute coordinates Ri
x , Ri

y, and v i. In
this case, the mass matrix Mi is

Mi c 




mi 0 0

0 mi 0

0 0 J i





The algebraic constraints of the revolute joint are

C(q, t) c Ri + Aiu i
O c 0

and the constraint Jacobian matrix is

Cq c [ 1 0 li
O sin v i

0 1 − li
O cos v i ]

The vector Ct of Eq. 138 is the null vector while the vector Qd of Eq. 140 is

Qd c (v̇ i)2Aiu i
O c (v̇ i)2 [ li

O cos v i

li
O sin v i ]
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Equation 141 can be constructed for this system as











mi 0 0 1 0

0 mi 0 0 1

0 0 J i li
O sin v i − li

O cos v i

1 0 li
O sin v i 0 0

0 1 − li
O cos v i 0 0





















R̈i
x

R̈i
y

v̈ i

l1

l2











c











0

−mig

Mi

(v̇ i)2li
O cos v i

(v̇ i)2li
O sin v i










One can verify that the solution of this system of algebraic equations defines

q̈i c v̈ i c 1

J i
O

[Mi − migliO cos v i]

which is the same equation obtained previously using the degree of freedom of the
system as the generalized coordinate. Therefore, the state space equations are the
same as obtained previously in this example.

6.11 NUMERICAL INTEGRATION

Many of the existing accurate numerical integration algorithms are developed
for the solution of first-order differential equations. By putting the dynamic
equations in the state space form, one can use many of the existing well-devel-
oped numerical integration methods to obtain the state of the multibody system
over a specified period of simulation time. In this section, some of these numeri-
cal integration methods are discussed, and we shall start with a simple but a
less accurate method called Euler’s method.

Euler’s Method Perhaps the simplest known numerical integration method
is Euler’s method. While this method is not accurate enough for practical appli-
cations, it can be used to demonstrate many of the features that are common
in most numerical integration methods. The form of the state space equations
given by Eq. 155 can be used to derive Euler’s formula for the numerical inte-
gration. For this purpose, Eq. 155 is rewritten as

dy
dt

c f(y, t) (6.157)

or

dy c f(y, t) dt

which upon integration leads to

∫
y1

y0

dy c ∫
t1

t0

f(y, t) dt (6.158)
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where

y0 c y(t c t0), y1 c y(t c t1) (6.159)

in which t1 c t0 + h, where h is a selected time step, and y0 is the state vector
that contains the initial conditions. Equation 158 can be written as

y1 c y0 + ∫
t1

t0

f(y, t) dt (6.160)

If the time step h is selected to be very small, the integral on the right-hand
side of Eq. 160 can be approximated as

∫
t1

t0

f(y, t) dt c f(y0, t0)h (6.161)

Substituting this equation into Eq. 160, one obtains

y1 c y0 + f(y0, t0)h (6.162)

By using a similar procedure, one can also show that

y2 c y1 + hf(y1, t1)

This procedure leads to Euler’s method defined in its general form by the equa-
tion

yn + 1 c yn + hf(yn, tn) (6.163)

where

yn c y(t c tn)

Equation 163 implies that if the state vector of the system is known at time tn

and the step size h is assumed, the right-hand side of Eq. 163 can be evaluated
and used to predict the state of the system at time tn + 1. Once yn + 1 is determined,
the procedure can be repeated to advance the numerical integration and evaluate
the state of the system at time tn + 2. This procedure continues until the end of
the simulation time is reached.

As pointed out earlier, Euler’s method is not an accurate technique for the
numerical integration because of its low order of integration. In order to demon-
strate this fact, we write Taylor’s expansion for the state vector y at time tn + 1

as

y(tn + 1) c y(tn) + hẏ(tn) +
(h)2

2!
ÿ(tn) +

(h)3

3!
d 3y(tn)

dt3
+ · · ·
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where

ẏ(tn) c dy(tn)
dt

c f(yn, tn)

ÿ(tn) c d 2y(tn)
dt2

c df(yn, tn)
dt

By dropping terms of an order higher than the first order in h, Euler’s method
can be obtained from Taylor’s series. In this case, the error in the numerical
integration is defined by the equation

En c
(h)2

2!
ḟ(yn, tn) +

(h)3

3!
f̈(yn, tn) + · · · (6.164)

Being a first-order method (straight-line approximation), Euler’s method
becomes inaccurate when the state vector is a rapidly varying function of time.

Example 6.12

In order to demonstrate the use of Euler’s method for the numerical integration, we
consider the simple system of Example 11. We assume that the mass of the body is
1 kg, the distance from the center of mass to point O is 0.5 m and its mass moment
of inertia about point O is 0.3333 kg . m2. The joint torque Mi is assumed to be
harmonic function that takes the form

Mi c 10 sin 5t N . m

The initial conditions are assumed to be zeros, that is

v i
0 c v̇ i

0 c 0

The state space equations of this system were obtained in Example 11 as

ẏ c [ ẏ1

ẏ2 ] c 




v̇ i

1

J i
O

[Mi − migliO cos v i]





Keeping in mind that y1 c v i and y2 c v̇ i c ẏ1, the state space equations can be
written as

ẏ c 




y2

1

J i
O

[Mi − migliO cos y1]





c f(y, t)

If J i
O c 0.3333 kg . m2, mi c 1 kg, g c 9.81 m/ s2, and li

O c 0.5 m, one has

ẏ c f(y, t) c [ y2

30 sin 5t − 14.715 cos y1 ]
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subject to the initial conditions

y0 c [ y1(t c 0)

y2(t c 0) ] c [ v i
0

v̇ i
0 ] c [ 0

0 ]
If we select the time step for the numerical integration to be h c 0.01 s, the solution
at time t1 c t0 + h c 0.01 s is

y1 c y0 + hf(y0, t0)

c [ 0

0 ] + 0.01 [ 0

0 − 14.715 ] c [ 0

−0.14715 ]
The solution at t2 c t1 + h c 0.02 s can be obtained as

y2 c y1 + hf(y1, t1)

c [ 0

−0.14715 ] + 0.01 [ −0.14715

30 sin (5)(0.01) − 14.715 cos 0 ]
c [ −0.0014715

−0.279306 ]
Similarly, the solution at t3 c t2 + h c 0.03 s is

y3 c y2 + hf(y2, t2)

c [ −0.0014715

−0.279306 ] + 0.01 [ −0.279306

30 sin (5)(0.02) − 14.715 cos (−0.0014715) ]
c [ −4.26456 × 10−3

−0.396506 ] .

This process continues until the desired end of the simulation time is reached.

Higher-Order Numerical Integration Methods Euler’s method is a single-
step method with an order of integration equal to 1. The error resulting from the
use of this method is large, especially in the analysis of nonlinear systems. For
rapidly varying functions, the use of low-order integration methods is not gener-
ally recommended since the error is a function of the frequency content and as
the frequency increases the error also increases when these integration methods
are used. In order to demonstrate this, we consider the simplest oscillatory sys-
tem that consists of mass m, which is supported by a linear spring that has a stiff-
ness coefficient k. The equation of motion that describes the free vibration of this
system is given by

mẍ + kx c 0

where x is the displacement of the mass. The exact solution of the preceding
differential equation is

x c X sin(qt + f)
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where q c
f

k/ m is the natural frequency of the system, and X and f are
constants that can be determined using the initial conditions. For this system,
the state vector is defined as

y c [ y1

y2 ] c [ x

ẋ ]
If we use the exact solution to substitute for x and ẋ, the state vector can be
written in terms of the system natural frequency as

y c [ y1

y2 ] c X [ sin(qt + f)

q cos(qt + f) ]
and

ẏ c [ ẏ1

ẏ2 ] c f(y, t) c Xq [ cos(qt + f)

−q sin(qt + f) ]
In Euler’s method, first-order approximation is made. Second- and higher-order
terms are neglected and the error is in the form defined by Eq. 164. It is clear
from this error equation that the first term that appears in the error series is
function of ÿ c ḟ(y, t). For our simple oscillatory system, ÿ is given by

ÿ c −X(q)2 [ sin(qt + f)
q cos(qt + f) ] c − (q)2y

As differentiation continues, the resulting terms become functions of higher
power of the frequency q and, therefore, as the frequency increases, the error
resulting from the use of Euler’s method increases. For that reason, low-
order numerical integration methods are hardly used in the analysis of non-
linear multibody systems. More accurate numerical integration methods such
as the single-step Runge–Kutta methods and multistep Adams–Bashforth and
Adams–Moulton methods are often used. While in single-step methods only
knowledge of the numerical solution yn is required in order to compute the
next value yn + 1, in multistep methods several previous values are required.

Runge–Kutta Methods Runge–Kutta methods are widely used in the
numerical solutions of the nonlinear differential equations of mechanical sys-
tems. While the order of integration of Runge–Kutta methods is normally higher
than one, only knowledge of the function f(y, t) is required since the use of
Runge–Kutta methods does not require determining the derivatives of the func-
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tion f(y,t). One of the most widely used Runge–Kutta formulas is

yn + 1 c yn + 1
6 (f1 + 2f2 + 2f3 + f4)

where

f1 c hf(yn, tn)

f2 c hf �yn +
1
2

f1, tn +
h
2 �

f3 c hf � yn +
1
2

f2, tn +
h
2 �

f4 c hf(yn + f3, tn + h)

where h is the time step size, and yn and yn + 1 are, respectively, the solutions
at time tn and tn + 1.

In order to demonstrate the use of Runge–Kutta methods, we consider the
problem discussed in Example 11. For this example, the vector function f is

f(y, t) c [ y2

30 sin 5t − 14.715 cos y1 ]
and

y0 c [ 0

0 ]
In order to advance the numerical integration using Runge–Kutta methods, we
must evaluate the functions f1, f2, f3, and f4. If h c 0.01 s, one has

f1 c hf(y0, 0) c 0.01 [ 0

−14.715 ] c [ 0

−0.14715 ]
Using f1, one evaluates

y0 + 1
2 f1 c [ 0

0 ] + 1
2 [ 0

−0.14715 ] c [ 0

−0.073575 ]
It follows that

f2 c hf �y0 +
1
2

f1, t0 +
h
2 � c 0.01 [ − 0.073575

−13.96508 ] c [ −0.73575 × 10−3

−0.1396508 ]
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The function f2 can be used to evaluate y0 + 1
2 f2 as

y0 + 1
2 f2 c [ 0

0 ] + 1
2 [ −0.73575 × 10−3

−0.1396508 ] c [ −0.367875 × 10−3

−0.069825 ]
Therefore, f3 can be evaluated as

f3 c hf �y0 +
1
2

f2, t0 +
h
2 � c 0.01 [ − 0.069825

−13.96508 ] c [ −0.69825 × 10−3

−0.1396508 ]
This vector can be used to evaluate y0 + f3 as

y0 + f3 c [ 0

0 ] + [ −0.69825 × 10−3

−0.1396508 ] c [ −0.69825 × 10−3

−0.1396508 ]
and

f4 c hf(y0 + f3, t0 + h) c 0.01 [ − 0.1396508

−13.215621 ]
c [ −0.1396508 × 10−2

−0.13215621 ]
The solution at time t1 c t0 + h c 0.01 s can be obtained using the Runge–Kutta
method as

y1 c y0 + 1
6 (f1 + 2f2 + 2f3 + f4)

c 1
6 {[ 0

−0.14715 ] + 2 [ −0.00073575

−0.1396508 ] + 2 [ −0.00069825

−0.1396508 ]
+ [ −0.001396508

−0.13215621 ]}
c [ −0.71075 × 10−4

−0.139652 ]
The vector y1 can then be used to predict the solution at time t2 c t1 + h.
This process continues until the desired end of the simulation time is reached.
Clearly, the use of the Runge–Kutta method requires many more calculations
as compared to Euler’s method, a price that must be paid for higher accuracy.
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Multistep Methods In the case of a single function y, the general form of
the multistep methods is given by (Atkinson, 1978)

yn + 1 c
k

���
j c 0

ajyn − j + h
k

���
j c −1

bj f (tn − j , yn − j) (6.165)

where h is the time step size, tn c t0 + nh, a0, · · ·, ak , b−1, b0, · · · , and bk are
constants, and k ≥ 0. The multistep method is called the k + 1 step method if
k + 1 previous solution values are used to evaluate yn + 1. In this case, either
ak � 0 or bk � 0. Note that Euler’s method is an example of a one-step method
with k c 0 and

a0 c 1, b0 c 1, b−1 c 0

If the term yn + 1 appears only on the left-hand side of Eq. 165, the method
is said to be an explicit method. This is the case in which b−1 c 0. If b−1 � 0,
yn + 1 appears on both sides of Eq. 165 which, in this case, defines an implicit
method. In general, iterative procedures are used to solve implicit methods.

An example of an explicit method is the two-step midpoint method defined
by the formula

yn + 1 c yn − 1 + 2h f(tn, yn)

An example of an implicit method is the one-step trapezoidal method defined
by the formula

yn + 1 c yn +
h
2

[ f (tn, yn) + f (tn + 1, yn + 1)]

The convergence of the approximate solution obtained by using multistep
methods can be proved by defining an error function and requiring that this
error function approaches zero as the step size approaches zero. This condi-
tion, which is called the consistency condition, can be used to obtain a set of
algebraic equations that relate the constants aj and bj of Eq. 165. In general,
there are two approaches for deriving higher order multistep methods. These
are the method of undetermined coefficients and the method of numerical inte-
gration. In the method of undetermined coefficients, the algebraic equations
obtained using the consistency condition are used to define the constants aj

and bj , while in the method of numerical integration, polynomial approxima-
tions are employed. The methods based on the numerical integration are more
popular and are used to derive the most widely used multistep methods such
as the predictor–corrector Adams methods, where an explicit formula is used
to predict the solution at tn + 1 using the previous solution values. The predicted
solution is then substituted into the implicit corrector formula to determine the
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corrected solution. Such a solution procedure can be used to control the size of
the truncation error.

Adams Methods Adams methods are widely used in solving first-order ordi-
nary differential equations. They are used to obtain predictor-corrector algo-
rithms where the error is controlled by varying the step size and the order of
the method. Adams methods can be derived using the method of numerical
integration starting with the following equation:

yn + 1 c yn + ∫
tn + 1

tn

f [t, y(t)] dt

Interpolation polynomials are used to approximate f [t, y(t)], and by integrat-
ing these polynomials over the interval [tn, tn + 1], one obtains an approxima-
tion to yn + 1. Two formulas are often used; these are the predictor explicit
Adams–Bashforth methods and the corrector implicit Adams–Moulton methods.

In the explicit or predictor Adams–Bashforth methods, interpolation polyno-
mials Pk(t) of a degree less than or equal to k are used to approximate f (y, t) at
tn − k , . . . , tn. A convenient way of construcitng the interpolation polynomials
is to use the Newton backward difference formula expanded at tn,

Pk(t) c f (tn) +
t − tn

h
∇f n +

(t − tn)(t − tn − 1)
2! (h)2

∇2f n

+ · · · +
(t − tn) · · · (t − tn − k + 1)

k! (h)k
∇kf n

where f n c f (yn, tn) and the backward differences are defined as

∇1f n c f n − f n − 1

∇2f n c ∇1f n − ∇1f n − 1

...

∇kf n c ∇k − 1f n − ∇k − 1f n − 1

The integral of Pk(t) is given by (Atkinson, 1978)

∫
tn + 1

tn

Pk(t) c h
k

���
j c 0

g j∇ j f n

where the coefficients g j are obtained using the formula

g j c
1
j! ∫

1

0
s(s + 1) · · · (s + j − 1) ds j ≥ 1
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in which s c (t − tn)/ h with g0 c 1. It can also be shown that g1 c 1/ 2, g2 c
5/ 12, g3 c 3/ 8, g4 c 251/ 720, and g5 c 95/ 288.

The derivation of the corrector implicit Adams–Moulton method is exactly
the same as the Adams–Bashforth method except we interpolate f (y, t) at the
k + 1 points tn + 1, . . . , tn − k + 1. The formula for the implicit Adams–Moulton
method is

yn + 1 c yn + h
k

���
j c 0

dj∇ j f n + 1

where

dj c
1
j! ∫

1

0
(s − 1)s(s + 1) · · · (s + j − 2)ds j ≥ 1

with d0 c 1. It can also be shown that d1 c −1/ 2, d2 c −1/ 12, d3 c −1/ 24, d4 c
−19/ 720, and d5 c −3/ 160. Note that the trapezoidal method is a special case
of the Adams–Moulton formula with k c 1. Since the Adams–Moulton formula
is an implicit method, the iterative procedure for solving it requires the use of
a predictor formula such as the explicit Adams–Bashforth formula. One of the
main reasons for using the implicit Adams–Moulton formulas is the fact that
they have a much smaller truncation error as compared to the Adams–Bashforth
formulas when comparable order is used. Computationally, it is desirable to
make the order of the predictor formula less than the order of the corrector
formula by one. Such a choice has the advantage that the predictor and cor-
rector would both use derivative values at the same nodes. The second-order
Adams–Moulton formula that uses the first-order Adams–Bashforth formula as
a predictor is the same as the trapezoidal method that uses the Euler formula
as a predictor.

Most of the predictor–corrector algorithms that are based on Adams method
control the truncation error by varying both the order and the step size. By using
a variable order, there is no difficulty in starting the numerical integration and
obtain starting values for the higher order formulas. For instance, the numeri-
cal integration begins with the second-order trapezoidal method that uses Euler
formula as a predictor, and as more starting values become available, the order
of the method can be increased.

6.12 DIFFERENTIAL AND ALGEBRAIC EQUATIONS

The formulation of the dynamic equations using the independent variables leads
to the smallest system of strongly coupled equations. The numerical solution
of this system that requires only the numerical integration of differential equa-
tions defines the independent velocities and coordinates which can be used to
determine the dependent coordinates and velocities in a straighforward manner
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using the kinematic equations. In the augmented formulation, on the other hand,
the kinematic constraint equations are adjoined to the system differential equa-
tions using the vector of Lagrange multipliers. This approach leads to a large
system of loosely coupled equations that can be solved for the accelerations
and Lagrange multipliers. The vector of Lagrange multipliers can be used to
determine the generalized reaction forces while the independent accelerations
are identified and integrated forward in time in order to determine the indepen-
dent velocities and coordinates. In this approach, the solution for the dependent
coordinates requires the solution of the algebraic system of nonlinear constraint
equations:

C(q, t) c 0 (6.166)

where C is the vector of kinematic constraint equations, q is the total vector of
system coordinates, and t is time. A Newton–Raphson algorithm must be used
in order to solve Eq. 166 for the dependent coordinates. Once the dependent
coordinates are determined, the dependent velocities can be determined using
Eq. 138, which can be written according to the partitioning of the coordinates
as dependent and independent as

Cqd
q̇d + Cqi

q̇i c −Ct (6.167)

where qd and qi are, respectively, the vectors of dependent and independent
coordinates, and Cqd

and Cqi
are the constraint Jacobian matrices associated,

respectively, with these coordinates. The vector Ct which is the partial deriva-
tive of the constraint equations with respect to time has dimension equal to the
number of the kinematic constraints.

As pointed out in the preceding sections, if the kinematic constraints are lin-
early independent, the independent coordinates can be selected in such a manner
that the matrix Cqd

is a nonsingular matrix. Since the independent velocities are
assumed to be known as a result of the numerical integration of the indepen-
dent state equations, Eq. 167 can be considered as a linear system of algebraic
equations in the dependent velocities. This equation can be used to define the
dependent velocities as

q̇d c −C−1
qd

[Cqi
q̇i + Ct] (6.168)

An alternative, yet equivalent approach for solving for the dependent veloc-
ities is to solve the following linear system of algebraic equations in the total
vector of system velocities:

[ Cq

Id ] q̇ c [ −Ct

q̇i ] (6.169)
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where Id is a matrix that contains ones in the locations corresponding to the
independent coordinates and zeros everywhere else. The right-hand side of Eq.
169 is assumed to be known since q̇i is determined from the numerical integra-
tion and Ct depends on time and the coordinates that are assumed to be known
from the position analysis. Note that Eq. 169 is simply the result of combining
the two equations:

Cqq̇ c −Ct

q̇i c q̇i

While the use of Eq. 169 is equivalent to the use of Eq. 168, the advantage
of using Eq. 169 is that one avoids the partitioning of the constraint Jacobian
matrix and identifying the sub-Jacobians Cqd

and Cqi
. Furthermore, if the set

of independent coordinates changes during the simulation time one has only to
change the locations of the nonzero entries of the matrix Id , while the structure
of the Jacobian matrix Cq remains the same.

Once the generalized coordinates and velocities are determined, the equations
for the accelerations and Lagrange multipliers can be constructed as

[ M CT
q

Cq 0 ] [ q̈

� ] c [ Qe

Qd ] (6.170)

where all the matrices and vectors that appear in this equation are as defined in
Section 7. Equation 170 can be solved for the accelerations and Lagrange mul-
tipliers and the independent accelerations can be identified and used to define
the independent state equations, which can be integrated forward in time to
determine the independent coordinates and velocities.

The main steps for a numerical algorithm that can be used to solve the mixed
system of differential and algebraic equations that appear in the analysis of
multibody systems can be summarized as follows.

1. An estimate of the initial conditions that define the initial configuration
of the multibody system is made. The initial conditions that represent the
initial coordinates and velocities must be a good approximation of the
exact initial configuration.

2. Using the initial coordinates, the constraint Jacobian matrix can be con-
structed, and based on the numerical structure of this matrix an LU factor-
ization algorithm can be used to identify a set of independent coordinates.

3. Using the values of the independent coordinates, the constraint equa-
tions can be considered as a nonlinear system of algebraic equations in
the dependent coordinates. This system can be solved iteratively using a
Newton–Raphson algorithm as discussed in Chapter 3.

4. Using the total vector of system coordinates, which is assumed to be
known from the previous step, one can construct Eq. 167 or equivalently,
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Eq. 169, which represents a linear system of algebraic equations in the
velocities. The solution of this system of equations defines the dependent
velocities.

5. Having determined the coordinates and velocities, Eq. 170 can be con-
structed and solved for the accelerations and Lagrange multipliers. The
vector of Lagrange multipliers can be used to determine the generalized
reaction forces.

6. The independent accelerations can be identified and used to define the
state space equations which can be integrated forward in time using a
direct numerical integration method. The numerical solution of the state
equations defines the independent coordinates and velocities, which can
be used to determine the dependent coordinates and velocities as dis-
cussed in steps 3 and 4.

7. This process continues until the desired end of the simulation time is
reached.

Singular Configurations The selection of the set of independent coordi-
nates is an important step in the computer solution of the constrained dynamic
equations. This selection has a significant effect on the stability of the solu-
tion and also on reducing the accumulation of the numerical error when the
algebraic kinematic constraint equations are solved for the dependent variables.
In Section 5, a numerical procedure that utilizes the Gaussian elimination for
identifying the set of independent coordinates was discussed. It is necessary,
however, in many applications, to change the set of independent coordinates
during the numerical integration of the equations of motion.

In order to demonstrate some of the difficulties encountered when the inde-
pendent coordinates are not properly selected, we consider the closed kinematic
chain shown in Fig. 9. Such a closed kinematic chain that consists of nb links
connected by revolute joints has nb degrees of freedom. In order to define the
chain configuration in the global coordinate system, at least two translational
Cartesian coordinates must be selected as degrees of freedom, as shown in
Fig. 9. The other remaining degrees of freedom can be selected as rotation
angles, and hence there are two rotational coordinates for two links that must
be treated as dependent coordinates. The dependent rotational coordinates can
be expressed in terms of the independent angles using the loop-closure equa-
tions.






nb

���
i c 1

(i � j, k)

l cos v i





+ l cos v j + l cos vk c 0






nb

���
i c 1

(i � j, k)

l sin v i





+ l sin v j + l sin vk c 0



362 CONSTRAINED DYNAMICS

Figure 6.9 Singular configurations

where nb is the total number of the links, v j and vk are the dependent rotation
angles of the links j and k, and l is the length of the link. For simplicity, we
assumed here that all the links are of equal length. The preceding two equations
can be written as

l cos v j + l cos vk c A

l sin v j + l sin vk c B

where

A c −
nb

���
i c 1

(i � j, k)

l cos v i

B c −
nb

���
i c 1

(i � j, k)

l sin v i

By differentiating the resulting loop-closure equations with respect to time, one
obtains






nb

���
i c 1

(i � j, k)

lv̇ i sin v i





+ lv̇ j sin v j + lv̇k sin vk c 0
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nb

���
i c 1

(i � j, k)

lv̇ i cos v i





+ lv̇ j cos v j + lv̇k cos vk c 0

These two equations can be rewritten as

lv̇ j sin v j + lv̇k sin vk c −Ad

lv̇ j cos v j + lv̇k cos vk c −Bd

where

Ad c
dA
dt

c
nb

���
i c 1

(i � j, k)

lv̇ i sin v i

Bd c
dB
dt

c
nb

���
i c 1

(i � j, k)

lv̇ i cos v i

It follows that

[ l sin v j l sin vk

l cos v j l cos vk ] [ v̇ j

v̇k ] c − [ Ad

Bd ]
This system of equations can be solved for v̇ j and v̇k as

[ v̇ j

v̇k ] c −1
l sin(v j − vk) [ Ad cos vk − Bd sin vk

−Ad cos v j + Bd sin v j ]
It is clear from this equation that singularities will be encountered when

v j − vk is close to or equal to 0 or p. In these situations, an alternate set of
independent coordinates must be used; otherwise, a small error in the indepen-
dent variables will lead to a very large error in the dependent variables.

It is clear from the closed-chain example that if the set of independent coordi-
nates is defined only once at the beginning of the simulation, numerical difficul-
ties may be encountered when the system configuration changes. If the error in
the dependent coordinates becomes large, the number of the Newton–Raphson
iterations required to solve the nonlinear kinematic constraint equations will
significantly increase. Furthermore, the numerical errors in the dependent coor-
dinates may lead to significant changes in the forces and system inertia, which,
in turn, make the dynamic equations appear as being stiff, thereby forcing the
numerical integration method to select a smaller step size. For this reason, it
is recommended that one redefines the set of independent coordinates every few
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Figure 6.10 Tracked vehicle (Photograph courtesy of Komatsu Ltd.)

time steps in order to avoid such numerical difficulties. An example of these
difficulties was observed in the analysis of the tracked vehicle shown in Fig.
10. A planar model that consists of 54 rigid bodies was used in a numerical
investigation (Nakanishi and Shabana, 1994). These bodies, as shown in Fig. 11,
are the ground denoted as body 1, the chassis denoted as body 2, the sprocket
denoted as body 3, the idler denoted as body 4, the seven lower rollers denoted
as bodies 5–11, the upper roller denoted as body 12, and 42 track links denoted
as bodies 13–54.

In the model shown in Fig. 11, the idler, sprocket, upper roller, and lower
rollers are connected to the chassis using revolute joints. The track is mod-
eled as a closed kinematic chain in which the track segments are connected
by revolute joints. The equations of motion of the multibody tracked vehicle
was obtained using the augmented approach where the kinematic constraints are
adjoined to the dynamic equations using the technique of Lagrange multipliers.
Contact force models which describe the interaction between the sprocket, the
idler, the rollers, and the track segments were developed and were introduced
to the dynamic formulation as a set of nonlinear generalized forces that depend
on the system coordinates and velocities. Friction forces between the track seg-
ments and the ground were also considered (Nakanishi and Shabana, 1994). In
the Lagrangian formulation, the dynamics of the vehicle is described using 162
absolute coordinates and 52 revolute joints that introduce 104 kinematic con-
straint equations in addition to three ground constraint equations. Because of
the joint constraints, the vehicle has only 55 degrees of freedom. The vehicle,
however, was driven by rotating the sprocket with a constant angular velocity,
and the driving constraint of the sprocket when applied reduces the number of
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Figure 6.11 Two-dimensional tracked vehicle model

degrees of freedom by one. For the tracked vehicle model shown in Fig. 11,
the coefficient matrix of Eq. 170 is a 270 × 270 symmetric matrix.

The numerical solution of the tracked vehicle equations was obtained first by
using one set of independent coordinates throughout the dynamic simulation.
Figure 12 shows the contact forces acting on some of the rollers, while Fig. 13
shows the acceleration of the chassis of the vehicle. From the results presented
in these two figures, some unexpected dynamic behaviors can be observed.
There was no reason to justify the sudden change in the contact forces and
the accelerations shown in Figs. 12 and 13 after 4 s. The sudden increase in

Figure 6.12 Contact forces Figure 6.13 Chassis acceleration
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Figure 6.14 Contact forces Figure 6.15 Chassis acceleration

the contact forces was found to be the result of the motion of body 24, whose
coordinates were all selected as dependent coordinates.

In order to avoid the singular configuration, the dynamic simulation was
carried out using different sets of independent coordinates. Before the time of
the singular configuration was reached, the set of independent coordinates was
changed to include the rotation of body 24. Significant improvements in the
results were achieved as the result of changing the set of degrees of freedom.
Figures 14 and 15 show, respectively, the contact forces acting on some of the
rollers, and the acceleration of the center of the mass of the chassis when differ-
ent sets of degrees of freedom were used to avoid the singular configurations.
Figure 16 shows the results of a computer animation of the vehicle model.

Constraint Stabilization Methods The success of the numerical algorithm
based on the coordinate partitioning method, which has been extensively used
in multibody dynamics literature, depends on the convergence of the iterative
Newton–Raphson algorithm. A simple approach that can eliminate the need
for using the Newton–Raphson method is Baumgarte’s constraint stabilization
method. Recall that the second time derivative of the constraints can be written
as

C̈ c Cqq̈ − Qd c 0

It is known, however, that the solution of the preceding equation can be an
exponential growth, which is the case of an unstable solution. In Baumgarte’s
method, the equation above is modified and is written in the following form:

C̈ + 2aĊ + (b)2C c 0

where a > 0 and b � 0. The preceding two equations lead to

Cqq̈ c Qd − 2a(Cqq̇ + Ct) − (b)2C
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Figure 6.16 Motion simulation
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The equations of motion of the system (Eq. 170) can be modified and written
as

[ M CT
q

Cq 0 ] [ q̈

� ] c [ Qe

Qd − 2a(Cqq̇ + Ct) − (b)2C ]
With this modification in the equations of motion, all the accelerations are
numerically integrated without partitioning the coordinates into dependent
and independent, thereby eliminating the need for the use of the iterative
Newton–Raphson method.

While Baumgarte’s constraint stabilization method gives accurate results in
some applications, there is no known reliable method for selecting the coeffi-
cients a and b. Improper selection of these coefficients can lead to erroneous
results.

6.13 INVERSE DYNAMICS

We discussed in Chapter 3 the case of kinematically driven systems in which
the number of constraint equations is equal to the number of system-generalized
coordinates. In this case, the Jacobian matrix is a square matrix, and if the
constraint equations are linearly independent, the Jacobian matrix has a full row
rank, and all the system coordinates can be considered as dependent. Equation
166 can then be solved for the system coordinates using a Newton–Raphson
algorithm. Once the coordinates are determined, Eq. 138 can be considered as
a linear system of algebraic equations which can be solved for the total vector of
system velocities. The accelerations, however, can be obtained by either using
Eq. 139 as discussed in Chapter 3 or by using Eq. 170. In many multibody
computer programs, Eq. 170 is used since its solution determines the vector of
Lagrange multipliers, which can be used to evaluate the generalized constraint
forces, including the generalized driving constraint forces.

The inverse dynamics is the problem of determining the driving joint forces
that produce the desired motion trajectories. The procedure for solving the
inverse dynamics problem is to define a kinematically driven system by intro-
ducing a set of driving constraints that define the prescribed motion. Hence, the
position coordinates, velocities, and accelerations of the bodies that form the
system can be determined using a standard kinematic analysis procedure as dis-
cussed in Chapter 3. Knowing the coordinates, velocities, and accelerations, the
equations of motion of the system can be solved as a set of algebraic equations
to determine the joint reaction forces as well as the driving constraint forces
that are required to generate the prescribed motion. The obtained driving joint
forces are often referred to as the feed forward control law. It is expected that
when these forces are used to drive the system, the desired motion trajectories
will be obtained.
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The algorithms for the kinematic and dynamic analyses presented in Chapter
3 and in the preceding section can be used to solve the inverse dynamics prob-
lem. In order to demonstrate the procedure for solving the inverse dynamics
problem using the augmented formulation, we consider the slider crank mech-
anism shown in Fig. 17. One may be interested in determining the crankshaft
torque that produces a specified desired motion of the slider block of the mech-
anism. Let us assume that the prescribed motion of the slider block is

R4
x c f (t)

where f (t) is a given function of time. The objective then is to determine the
crankshaft driving torque that produces the desired motion defined by the pre-
ceding equation. Since the slider crank mechanism has one degree of freedom,
the use of the driving constraint defined by the preceding equation leads to
the kinematically driven system discussed in Chapter 3. The coordinates and
velocities of the bodies in the mechanism can be determined using a kinematic
analysis procedure similar to the one discussed in Chapter 3. Once the coordi-
nates and velocities are determined, the vectors of accelerations and Lagrange
multipliers can be determined at every time step using the equation

[ M CT
q

Cq 0 ] [ q̈

� ] c [ Qe

Qd ]
The solution of this equation defines Lagrange multipliers associated with the
joint and driving constraints. Lagrange multipliers associated with the driving
constraints can be identified and used to evaluate the driving constraint force.

For the slider crank mechanism example, the driving constraint can be
written in the following form:

Cd c R4
x − f (t) c 0

It is clear from this equation that the only nonzero component of the driving
constraint force is the component associated with the motion of the slider block.

Figure 6.17 Inverse dynamics
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This force component is defined as

F 4
x c −

∂Cd

∂R4
x

ld c −ld

where ld is the Lagrange multiplier associated with the driving constraint Cd .
The virtual work of the driving constraint force is

dWd c F 4
x dR4

x

In order to determine the crankshaft torque that is required to generate the
desired motion of the slider block, we write dR4

x in terms of the virtual change
in the crankshaft angle v2. The loop equations of the mechanism are

l2 cos v2 + l3 cos v3 c R4
x

l2 sin v2 + l3 sin v3 c 0

where l2 and l3 are, respectively, the lengths of the crankshaft and the connect-
ing rod, and v3 is the angle that defines the orientation of the connecting rod.
Using the loop equations, one has

dR4
x c − l2[sin v2 − cos v2 tan v3] dv2

Using this equation, the virtual work of the driving constraint force can be
written as

dWd c F 4
x dR4

x c −F 4
xl2[sin v2 − cos v2 tan v3] dv2

or

dWd c M2 dv2

where M2 is the crankshaft driving torque that is required to generate the desired
motion of the slider block. This torque, which defines the feedforward control
law, is given by

M2 c −F 4
xl2[sin v2 − cos v2 tan v3] c ldl2[sin v2 − cos v2 tan v3]

The simple one-degree-of-freedom slider crank mechanism example dis-
cussed in this section demonstrates the use of the augmented formulation and
general-purpose multibody computer programs to solve the inverse dynamics
problem. A similar procedure can be used if the mechanical system has multi-
degree of freedom. For such a multidegree of freedom system, one obtains the
driving generalized joint forces associated with the independent joint coordi-
nates.
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6.14 STATIC ANALYSIS

Another case that can be considered as a special case of the general computa-
tional algorithm discussed earlier in this chapter is the case of the static analysis
of constrained multibody systems. It is desirable in many applications to obtain
the static equilibrium configuration prior to the dynamic simulation. Since in
the case of static equilibrium, the velocities and accelerations are assumed to
be equal to zero, Eq. 170 reduces to

CT
q � c Qe (6.171)

This equation implies that if the multibody system is in static equilibrium, the
generalized constraint forces must be equal to the generalized applied forces.
Multiplying both sides of Eq. 171 by the vector dq yields

[Qe − CT
q �]T dq c 0 (6.172)

As described in Section 6 of this chapter, the vector dq of the virtual changes
of the system-generalized coordinates can be expressed in terms of the virtual
changes of the independent coordinates as

dq c Bi dqi (6.173)

Substituting Eq. 173 into Eq. 172 leads to

[Qe − CT
q �]TBi dqi c 0 (6.174)

Using the fact that CqBi c 0, the preceding equation reduces to

QT
e Bi dqi c 0 (6.175)

Since the components of the vector dqi are assumed to be independent, the
preceding equation reduces to

BT
i Qe c 0 (6.176)

This system, which has a number of equations equal to the number of indepen-
dent coordinates, can be written as

Ri(q) c 0 (6.177)

where

Ri c BT
i Qe
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Equation 177 is a nonlinear equation in the system coordinates and can be
solved using a Newton–Raphson approach.

Keeping in mind that the kinematic constraints can be used to express the
dependent coordinates in terms of the independent ones, the numerical proce-
dure for solving Eq. 177 starts by making a guess for the independent coordi-
nates and use the constraint equations to determine the dependent coordinates.
Being able to do this, allows us to write Eq. 177 in terms of the independent
coordinates only as

Ri(qi) c 0 (6.178)

This vector equation can be solved for the independent coordinates using an
iterative Newton–Raphson algorithm.

Another alternative, yet equivalent, approach for the static analysis of a
multibody system is to consider Eq. 171 with the constraint equations

C(q) c 0 (6.179)

Equations 171 and 179 represent n + nc nonlinear algebraic equations in the
n + nc unknowns q and �. These two vector equations can be solved for the
unknowns using a Newton–Raphson algorithm. The main difficulty in using this
approach is the need for having an initial estimate of the vector of Lagrange
multipliers.

PROBLEMS

1. Figure P1 shows a uniform slender rod that has mass 1 kg. At a given
configuration, the velocity and acceleration of the center of mass are given

Figure P6.1

by

Ṙ c [Ṙx Ṙy]T c [5 − 15]T m/ s

R̈ c [R̈x R̈y]T c [100 250]T m/ s2
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The angular velocity of the rod at this point in time is 150 rad/ s, while
the angular acceleration is zero. Determine the generalized inertia forces
associated with the absolute coordinates of the center of mass as well as
the rotation of the rod.

2. Repeat problem 1 assuming that the angular acceleration is 450 rad/ s2.
What is the kinetic energy of the system and what is the mass matrix.

3. In problem 1 determine the generalized inertia forces associated with the
absolute coordinates of point A as well as the rotation of the rod.

4. In problem 2 determine the generalized inertia forces associated with the
absolute coordinates of point A as well as the rotation of the rod.

5. In problem 1, what will be the mass matrix if the generalized coordinates
are selected to be the absolute coordinates of point A and the angular ori-
entation of the rod? Also calculate the generalized centrifugal forces.

6. The slender rod shown in Fig. P1 has mass m c 1 kg, F c 5 N, M c 10 N . m,
and f c 458. Determine the matrix equation of motion of this rod assuming
that the generalized coordinates are the absolute Cartesian coordinates of
the center of mass and the angular orientation of the rod. Using the obtained
equations, determine the accelerations of the center of mass and the angular
acceleration of the rod.

7. Repeat problem 6 assuming that the generalized coordinates are the abso-
lute Cartesian coordinates of point A and the angular orientation of the rod.

8. For the system shown in Fig. P2, let F c 10 N, M c 15 N . m, v c 458,
f c 808, and assume that the rod is slender with mass m c 1 kg, length l
c 1 m, and its angular velocity at the given configuration is 150 rad/ s. If

Figure P6.2

the generalized coordinates are selected to be the absolute coordinates of
the center of mass and the angular orientation of the rod, obtain the matrix
differential equations of the system in terms of these coordinates and the
reaction forces. Express the absolute accelerations of the center of mass in
terms of the angle v . Use these kinematic relationships with the dynamic
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equations to determine the numerical values of the acceleration and the
joint reaction forces.

9. In the preceding problem formulate the constraint equations of the rev-
olute joint. Define the constraint Jacobian matrix and use the generalized
coordinate partitioning to identify the Jacobian matrices associated with the
dependent and independent coordinates. Use the coordinate partitioning to
reduce the three differential equations obtained in the preceding problem
to one that can be solved to determine the angular acceleration of the rod.

10. For the system shown in Fig. P3, let M2 c M3 c 15 N . m, F c 10 N,
v2 c 608, and v3 c 458. The angular velocities of the links are assumed to
be v̇2 c 10 rad/ s and v̇3 c 5 rad/ s. If the generalized coordinates are selected

Figure P6.3

to be the absolute Cartesian coordinates of the center of mass of the slender
rods and their angular orientations, obtain the matrix differential equations
of the system in terms of these coordinates and the joint reaction forces.
Express the absolute accelerations of the centers of mass in terms of the
angular orientations of the two links. Use these kinematic equations with
the obtained differential equations to solve for the accelerations and the
joint reaction forces.

11. Use the generalized coordinate partitioning of the constraint Jacobian
matrix to solve the preceding problem.

12. For the system shown in Fig. P4, let M2 c 10 N . m, M3 c 8 N . m, M4 c
5 N . m, F 4 c 5 N, f c 308, v2 c 608, v̇3 c 308, v4 c 458, v̇2 c 4 rad/ s, v̇3

c v̇4 c 3 rad/ s, and assume the links to be slender rods. If the generalized
coordinates are selected to be the absolute coordinates of the center of mass
and the angular orientations of the links, obtain the differential equations of
motion of the system in terms of these coordinates and the reaction forces.
Express the accelerations in terms of the angular orientations of the links.
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Use these kinematic relationships with the dynamic equations to solve for
the accelerations and the joint reaction forces.

Figure P6.4

13. Use the generalized coordinate partitioning of the constraint Jacobian
matrix to solve the preceding problem.

14. Develop the differential equations of motion of the slider crank mechanism
shown in Fig. P5 in terms of the absolute coordinates. Assume that M2 c

Figure P6.5

10 N . m, F 4 c 15 N, v2 c 458, and v̇2 c 150 rad/ s. Use the general-
ized coordinate partitioning of the constraint Jacobian matrix to reduce the
number of equations to one.

15. Develop the differential equations of motion of the four-bar mechanism
shown in Fig. P6 in terms of the absolute coordinates of each link. Assume
M2 c M4 c 5 N . m, F 3 c 10 N, v2 c 608, and v̇2 c 150 rad/ s. Use the gen-
eralized coordinate partitioning of the constraint Jacobian matrix to reduce
the number of equations of motion to one.
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Figure P6.6

16. Develop the equations of motion of the system of problem 12 in terms
of Lagrange multipliers. Use the computer to solve the resulting system
of equations for the accelerations and Lagrange multipliers, and use the
obtained solution to determine the generalized and the actual reaction
forces.

17. Develop the equations of motion of the slider crank mechanism of problem
14 in terms of Lagrange multipliers. Solve the resulting system of equa-
tions using computer methods in order to determine the accelerations and
Lagrange multipliers, and determine the generalized and actual joint reac-
tion forces.

18. Obtain the differential equations of motion of the four-bar linkage of prob-
lem 15 in terms of Lagrange multipliers. Use the computer to solve the
resulting system of equations for the accelerations and Lagrange multipli-
ers, and determine the generalized and actual joint reaction forces.

19. Put the second-order differential equations of motion of the system of prob-
lem 6 in the state space form. Using the Runge–Kutta method, develop a
computer program for the numerical integration of the state space equations
of this system. Plot the angular displacement and velocity versus time for
1 s of simulation time. Use a step size Dt c 0.01 s, and assume that the
initial conditions are Ṙo c [5 −15]T m/ s and v̇o c 150 rad/ s.

20. Develop the state space equations of the system of problem 8. Using the
Runge–Kutta method, develop a computer program for the numerical inte-
gration of these equations. Plot the angular displacement and velocity of
the rod for 1 s of simulation. Assume a step size of 0.005 s and use the
configuration described in problem 8 as the initial configuration.
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21. Find the state space equations of the system of problem 10. Develop a
computer program based on the Runge–Kutta method for the numerical
solution of this system. Plot the solution obtained using this program for 2
s of simulation with a step size Dt c 0.01 s. Use the configuration described
in problem 10 as the initial configuration.

22. Obtain the state space equations of the slider crank mechanism of prob-
lem 14. Solve these equations numerically using the Runge–Kutta method
and plot the position and orientation of the links for one revolution of the
crankshaft. Use the configuration described in problem 14 as the initial
configuration. Present the solution for two different time step sizes (Dt c
0.001 and 0.005 s) and compare the results.

23. Obtain the state space equations of the four-bar mechanism of problem 15.
Solve these equations numerically using the Runge–Kutta method, and plot
the angular displacements and velocities of the links for one revolution of
the crankshaft. Use the configuration described in problem 15 as the initial
configuration, and use a step size Dt c 0.001 s.
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CHAPTER 7

SPATIAL DYNAMICS

In the planar analysis, the rotation of the rigid body can be described using one
coordinate, such that the angular velocity of the body is defined as the time
derivative of this orientation coordinate. Furthermore, the order of the finite
rotation is commutative since the body rotation is about the same axis. Two
consecutive rotations can be added and the sequence of performing these rota-
tions is immaterial. One of the principal differences between the planar and the
spatial kinematics is due to the complexity of defining the orientation of a body
in a three-dimensional space. In the spatial analysis, the unconstrained motion
of a rigid body is described using six coordinates; three coordinates describe
the translation of a reference point on the body and three coordinates define the
body orientation. The order of the finite rotation in the spatial analysis is not
commutative and, consequently, the sequence of performing the rotations must
be taken into consideration. Moreover, the angular velocities of a rigid body
are not the time derivatives of a set of orientation coordinates. These angular
velocities, however, can be expressed in terms of a selected set of orientation
coordinates and their time derivatives.

In this chapter, methods for describing the orientation of rigid bodies in space
are presented. The configuration of the rigid body in a multibody system is
described using a set of generalized coordinates that define the global posi-
tion vector of a reference point on the body as well as the body orientation.
As in the planar analysis, coordinate transformations are defined in terms of
the generalized orientation coordinates. The relationships between the angular
velocity vectors and the time derivatives of the generalized orientation coordi-
nates are developed and used to define the absolute velocity and acceleration
vectors of an arbitrary point on the rigid body. These kinematic relationships are



7.1 GENERAL DISPLACEMENT 379

then used to develop the dynamic equations of motion of multibody systems in
terms of the system-generalized coordinates. As it is shown in the analysis pre-
sented in this chapter, the equations that describe the motion of a rigid body in
three-dimensional space are quite complex as compared to the equations of the
planar motion. Derivation of the dynamic equations of motion and definition of
the mass matrix of spatial rigid body systems are presented and the simplifica-
tions in the dynamic relationships when the reference point is selected to be the
body center of mass are discussed. This special case leads to the formulation of
the Newton–Euler equations, in which there is no inertia coupling between the
translation and rotation of the rigid body. The application of the augmented for-
mulation and recursive methods to the dynamics of spatial multibody systems
consisting of interconnected rigid bodies is also demonstrated in this chapter.

7.1 GENERAL DISPLACEMENT

In the three-dimensional analysis, the unconstrained motion of a rigid body
is described using six independent coordinates; three independent coordinates
describe the translation of the body and three independent coordinates define
its orientation. The translational motion of the rigid body can be defined by the
displacement of a selected reference point that is fixed in the rigid body. As
shown in Fig. 1, which depicts a rigid body i in the three-dimensional space,
the global position vector of an arbitrary point on the body can be written
as

ri c Ri + Aiui (7.1)

Figure 7.1 Rigid body coordinates
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where Ri is the global position vector of the origin of the body reference
X i YiZ i, Ai is the transformation matrix from the body coordinate system to
the global XYZ coordinate system, and ui is the position vector of the arbitrary
point with respect to the body coordinate system. The transformation matrix Ai

is a 3 × 3 matrix, and Ri and ui are three-dimensional vectors defined as

Ri c [Ri
x Ri

y Ri
z]

T (7.2)

ui c [ui
x ui

y ui
z]

T c [xi yi zi]T (7.3)

In the case of pure translational motion, the orientation of the body does not
change and, consequently, all the points on the rigid body move with equal
velocities. On the other hand, if the reference point is fixed, the body does
not have the freedom to translate and the remaining degrees of freedom are
rotational.

7.2 FINITE ROTATIONS

In this section, a method for determining the transformation matrix Ai of Eq. 1
is presented. This matrix defines the orientation of the body coordinate system
X iY iZ i with respect to the coordinate system XYZ. Figure 2 shows the coordi-
nate system X iY iZ i of body i. The orientation of this coordinate system in the
XYZ system can be described using the method of the direction cosines. Let ii,
ji, and ki be unit vectors along the X i, Y i, and Z i axes, respectively, and let
i, j, and k be unit vectors along the axes X, Y , and Z, respectively. Let bi

1 be
the angle between the X i and X axes, bi

2 be the angle between X i and Y axes,
and bi

3 be the angle between X i and Z axes. The components of the unit vector ii

Figure 7.2 Direction cosines
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along the X, Y , and Z axes are given, respectively, by

a11 c cos bi
1 c ii . i

a12 c cos bi
2 c ii . j

a13 c cos bi
3 c ii . k






(7.4)

where a11, a12, and a13 are the direction cosines of the X i axis with respect to
the X, Y , and Z axes, respectively. In a similar manner, the direction cosines
a21, a22, and a23 of the axis Y i, and the direction cosines a31, a32, and a33 of
the axis Z i, can be defined as

a21 c ji . i

a22 c ji . j

a23 c ji . k






(7.5)

and

a31 c ki . i

a32 c ki . j

a33 c ki . k






(7.6)

Since the direction cosines aij represent the components of the unit vectors ii,
ji, and ki along the axes X, Y , and Z, one has

ii c a11i + a12 j + a13k

ji c a21i + a22 j + a23k

ki c a31i + a32 j + a33k









(7.7)

Let us now consider the vector ui whose components in the body i coordinate
system are denoted as ui

x , ui
y, and ui

z, and in the coordinate system XYZ, the
components of the vector ui are denoted as ui

x , ui
y, and ui

z. The vector ui can,
therefore, have the following different representations:

ui c ui
xii + ui

y ji + ui
zk

i (7.8)

or

ui c ui
xi + ui

y j + ui
zk (7.9)

Substituting Eq. 7 into Eq. 8, one obtains

ui c ui
x(a11i + a12 j + a13k)

+ ui
y(a21i + a22 j + a23k)

+ ui
z(a31i + a32 j + a33k)
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which leads to

ui c (a11ui
x + a21ui

y + a31ui
z)i

+ (a12ui
x + a22ui

y + a32ui
z)j

+ (a13ui
x + a23ui

y + a33ui
z)k (7.10)

By comparing Eqs. 9 and 10, one concludes

ui
x c a11ui

x + a21ui
y + a31ui

z

ui
y c a12ui

x + a22ui
y + a32ui

z

ui
z c a13ui

x + a23ui
y + a33ui

z

That is, the relationship between the coordinates of the vector ui in the XYZ
coordinate system, and its coordinates in the X iY iZ i coordinate system, can be
written in the following matrix form






ui
x

ui
y

ui
z





c 




a11 a21 a31

a12 a22 a32

a13 a23 a33










ui
x

ui
y

ui
z





(7.11)

In order to distinguish between the two different representations of the vector
ui, this vector will be denoted as ui whenever its components are defined in
the X iY iZ i coordinate system. That is

ui c [ui
x ui

y ui
z]

T (7.12)

and

ui c [ui
x ui

y ui
z]

T (7.13)

Using this notation, Eq. 11 can be rewritten as

ui c Aiui (7.14)

where Ai is recognized as the transformation matrix defined in terms of the
direction cosines aij, i, j c 1, 2, 3 as

Ai c 




a11 a21 a31

a12 a22 a32

a13 a23 a33





(7.15)
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Orthogonality of the Transformation Matrix The transformation matrix
of Eq. 15 is expressed in terms of nine parameters aij, i, j c 1, 2, 3. The nine
direction cosines aij are not totally independent because only three independent
parameters are sufficient to describe the orientation of a rigid body in space.
Since the direction cosines represent the components of three orthogonal unit
vectors, they are related by the six algebraic equations

ak1al1 + ak2al2 + ak3al3 c dkl k, l c 1, 2, 3 (7.16)

where dkl is the Kronecker delta defined as

dkl c { 1 if k c l

0 if k � l
(7.17)

Because of the six algebraic relationships of Eq. 16, there are only three inde-
pendent components among the elements of the transformation matrix Ai.

An important property of the transformation matrix is the orthogonality, that
is

AiTAi c AiAiT c I (7.18)

where I is the 3 × 3 identity matrix. The orthogonality of the transformation
matrix can be verified by direct matrix multiplication and the use of the identity
of Eq. 16. The relationship of Eq. 18 remains valid regardless of the set of
coordinates used to describe the orientation of the body in the three-dimensional
space.

Example 7.1

If the axes X i, Y i, and Z i of the coordinate system of body i are defined in the coor-
dinate system XYZ by the vector [1.0 0.0 1.0]T, [1.0 1.0 −1.0]T, and [−1.0
2.0 1.0]T, obtain the transformation matrix that defines the orientation of the coor-
dinate system X iY iZ i with respect to the system XYZ.

Solution. The unit vectors ii, ji, and ki along the axes X i, Y i, and Z i are

ii c [ 1f
2

0
1f

2 ]T

ji c [ 1f
3

1f
3

−1f
3 ]T

ki c [ −1f
6

2f
6

1f
6 ]T
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The vectors i, j, and k are

i c [1 0 0]T

j c [0 1 0]T

k c [0 0 1]T

It follows that

a11 c ii . i c 1f
2

a12 c ii . j c 0

a13 c ii . k c 1f
2

Similarly,

a21 c 1f
3

, a22 c 1f
3

, a23 c −1f
3

and

a31 c −1f
6

, a32 c 2f
6

, a33 c 1f
6

The transformation matrix Ai that defines the orientation of the coordinate system
X iY iZ i with respect to the coordinate system XYZ is

Ai c 




a11 a21 a31

a12 a22 a32

a13 a23 a33





c














1f
2

1f
3

−1f
6

0
1f

3

2f
6

1f
2

−1f
3

1f
6













Note that

AiAiT c














1f
2

1f
3

−1f
6

0
1f

3

2f
6

1f
2

−1f
3

1f
6



























1f
2

0
1f

2

1f
3

1f
3

−1f
3

−1f
6

2f
6

1f
6














c 




1 0 0

0 1 0

0 0 1





c I c AiT Ai
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Figure 7.3 Simple rotation

Simple Rotations We now consider the case of simple finite rotations of
the coordinate system X iY iZ i about the axes of the coordinate system XYZ.
Consider the case in which the axes of the two coordinate systems are initially
parallel and the origins of the two systems coincide. First we consider the rota-
tion of the coordinate system X iY iZ i about the Z axis by an angle fi. As shown
in Fig. 3, as a result of this finite rotation

a11 c ii . i c cos fi

a12 c ii . j c sinfi

a13 c ii . k c 0

Similarly, one can show that the other direction cosines are

a21 c −sinfi,
a31 c 0,

a22 c cos fi,
a32 c 0,

a23 c 0

a33 c 1

It follows that the transformation matrix that defines the orientation of the coor-
dinate system X iY iZ i as the result of a rotation fi about the Z axis is given
by

Ai c 




cos fi −sinfi 0

sinfi cos fi 0

0 0 1





(7.19)

The use of a similar procedure shows that if the coordinate system X iY iZ i

rotates an angle v i about the Y axis, the transformation matrix is

Ai c 




cos v i 0 sin v i

0 1 0

−sin v i 0 cos v i





(7.20)
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and in the case of a rotation w i about the X axis, the resulting transformation
matrix is

Ai c 




1 0 0

0 cos w i −sin w i

0 sin w i cos w i





(7.21)

Successive Rotations As demonstrated in Chapter 1, the order of the finite
rotation is not commutative. An exception to this rule occurs only when the axes
of rotation are parallel. Consider the case of three coordinate systems X 1Y 1Z 1,
X 2Y 2Z 2, and X 3Y 3Z 3. As shown in Fig. 4, these three coordinate systems have
different orientations. Let A32 be the transformation matrix that defines the ori-
entation of the coordinate system X 3Y 3Z 3 with respect to the coordinate system
X 2Y 2Z 2, and let A21 be the transformation matrix that defines the orientation of
the coordinate system X 2Y 2Z 2 with respect to the coordinate system X 1Y 1Z 1.
Let u3 be a vector defined in the coordinate system X 3Y 3Z 3. The components
of the vector u3 can be defined in the coordinate system X 2Y 2Z 2 by the vector
u2, where

u2 c A32u3 (7.22)

The components of the vector u2 can be defined in the coordinate system
X 1Y 1Z 1 by the vector u1, where

u1 c A21u2 (7.23)

Figure 7.4 Successive rotations
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Substituting Eq. 22 into Eq. 23, the vector u1 can be expressed in terms of the
original vector u3 as

u1 c A21A32u3 (7.24)

which can be written as

u1 c A31u3 (7.25)

where, in this case, the transformation matrix A31 that defines the orientation of
the coordinate system X 3Y 3Z 3 with respect to the coordinate system X 1Y 1Z 1

is given by

A31 c A21A32 (7.26)

Similarly, in the case of n coordinate systems, one has

An1 c A21A32 · · · A(n − 1)(n − 2)An(n − 1) (7.27)

where Aij is the transformation matrix that defines the orientation of the ith
coordinate system with respect to the jth coordinate system. Note that in general

AijAjk � AjkAij

as previously demonstrated.

Example 7.2

In the initial configuration, the axes X i, Y i, and Z i of the coordinate system of
body i are defined in the XYZ coordinate system by the vectors [1.0 0.0 1.0]T,
[1.0 1.0 −1.0]T, and [−1.0 2.0 1.0]T, respectively. The body then rotates an
angle v i

1 c 908 about its Z i axis followed by a rotation v i
2 c 908 about its X i axis.

Determine the transformation matrix that defines the orientation of the body i in the
XYZ coordinate system as a result of the successive rotations. If ui c [0.0 −1.0
0.0]T is a vector defined in the body coordinate system, define this vector in the
XYZ coordinate system after the rotations v i

1 and v i
2.

Solution. In the initial configuration, the method of the direction cosines can be
used to determine the transformation Ai

0 that defines the orientation of the body
before the rotations v i

1 and v i
2. It was shown in Example 1 that this transformation

matrix is

Ai
0 c













1f
2

1f
3

−1f
6

0
1f

3

2f
6

1f
2

−1f
3

1f
6
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As a result of the rotation v i
1, the body occupies a new position. The orientation of

the body as a result of this rotation is defined with respect to the initial configuration
by the matrix Ai

1 defined as

Ai
1 c 





cos v i
1 −sin v i

1 0

sin v i
1 cos v i

1 0

0 0 1





c 




0 −1 0

1 0 0

0 0 1





Since the second rotation v i

2 is about the X i axis, the matrix Ai
2 is given by

Ai
2 c 





1 0 0

0 cos v i
2 −sin v i

2

0 sin v i
2 cos v i

2





c 




1 0 0

0 0 −1

0 1 0





The final orientation of the body is defined by the matrix Ai given by

Ai c Ai
0Ai

1Ai
2 c













1f
2

1f
3

−1f
6

0
1f

3

2f
6

1f
2

−1f
3

1f
6


















0 −1 0

1 0 0

0 0 1










0 0 0

0 0 −1

0 1 0






c













1f
3

−1f
6

1f
2

1f
3

2f
6

0

−1f
3

1f
6

1f
2













c 




0.5773 −0.4082 0.7071

0.5773 0.8165 0

−0.5773 0.4082 0.7071






The components of the vector ui c [0.0 −1.0 0.0]T in the coordinate system XYZ
can then be obtained as

ui c Aiui c













1f
3

−1f
6

1f
2

1f
3

2f
6

0

−1f
3

1f
6

1f
2


















0

−1

0





c













1f
6

−2f
6

−1f
6













7.3 EULER ANGLES

The direction cosines are rarely used in describing the three-dimensional rota-
tions of multibody systems. Among the most widely used parameters for
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describing the orientation are the three independent Euler angles. Several dif-
ferent sets of Euler angles are in common use in the analysis of mechanical
and aerospace systems. In this section, the most widely used Euler angles are
defined and the transformation matrix in terms of them is developed.

Euler angles involve three successive rotations about three axes that are not,
in general, perpendicular. By performing these three successive rotations in the
proper sequence, a coordinate system can reach any orientation. Consider the
coordinate systems XYZ and X iY iZ i, which initially coincide. The sequence
starts as shown in Fig. 5, by rotating the system X iY iZ i an angle fi about
the Z axis. Since fi is a rotation about the Z axis, the transformation matrix
resulting from this rotation is given by

Ai
1 c 





cosfi −sinfi 0

sinfi cosfi 0

0 0 1





(7.28)

The coordinate system X iY iZ i is then rotated an angle v i about the current X i

axis, which at the current position is called the line of nodes. The change in
the orientation of the coordinate system X iY iZ i as a result of the rotation v i is
described using the matrix

Ai
2 c 





1 0 0

0 cos v i −sin v i

0 sin v i cos v i





(7.29)

Finally, the coordinate system X iY iZ i is rotated an angle w i about the current
Z i axis. The change in the orientation of the system X iY iZ i as a result of this
rotation is given by

Ai
3 c 





cos w i −sin w i 0

sin w i cos w i 0

0 0 1





(7.30)

Figure 7.5 Euler angles
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Using the transformation matrices Ai
1, Ai

2, and Ai
3 given, respectively, by

Eqs. 28, 29, and 30, the final orientation of the coordinate system X iY iZ i can
be defined in the system XYZ by the transformation matrix Ai given by

Ai c Ai
1Ai

2Ai
3 (7.31)

This equation can be used to define the matrix Ai in terms of the angles fi, v i,
and w i as

Ai c 




cos w icosfi − cos v isinfisin w i −sin w icosfi − cos v isinficos w i sin v isinfi

cos w isinfi + cos v icosfisin w i −sin w isinfi + cos v icosficos w i −sin v icosfi

sin v isin w i sin v icos w i cos v i





(7.32)

The three angles fi, v i, and w i are called the Euler angles. The orientation of
any rigid body in space can be obtained by performing these three independent
successive rotations.

In the discussion presented in this section, we considered the sequence of
rotations about the Z i, X i, and Z i axes. Other sequences that are also used to
define Euler angles are rotations about Z i, Y i, and X i, or rotations about Z i,
Y i, and Z i. The use of these sequences leads to transformation matrices that are
different from the one presented in this section. The procedure used to define the
transformation matrix using these sequences, however, is the same as described
in this section and is left to the reader as an exercise. There are also other sets
of rotational coordinates that are often used to describe the orientations of rigid
bodies in space. Among these coordinates are the four Euler parameters and
the three independent Rodriguez parameters. These sets will be introduced in
the following chapter.

Relationship between Euler Angles and Direction Cosines Using the
fact that the elements of the transformation matrix are the direction cosines of
the axes X i, Y i, and Z i, the nine direction cosines can be easily expressed in
terms of Euler angles. For instance, the elements of the third column in the
transformation matrix of Eq. 32 are the direction cosines of the Z i axis. These
three direction cosines are functions of the angle fi since the rotation v i is
about an axis whose direction cosines are defined by the unit vector [cos fi

−sinfi 0]T. Euler angles can also be expressed in terms of the direction cosines
by equating the elements of the transformation matrices in the two cases. For
example, using the last row and column, one has

v i c cos−1(a33)

fi c cos−1 { −a32

sin v i }
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w i c cos−1 { a23

sin v i }
The quadrants where the angles lie are selected so as to ensure that all the
remaining elements in the Euler angle transformation matrix are the same as
the elements of the transformation matrix evaluated using the direction cosines.

7.4 VELOCITY AND ACCELERATION

The general displacement of a rigid body in space is the result of translational
and rotational displacements. In this case, the global position vector of an arbi-
trary point on the body is given by Eq. 1, which is reproduced here:

ri c Ri + Aiui (7.33)

where Ri is the global position vector of the origin of the body fixed coordinate
system, Ai is the transformation matrix that defines the orientation of the body
in the global coordinate system, and ui is the position vector of the arbitrary
point with respect to the origin of the body coordinate system. The vectors
Ri and ui are defined by Eqs. 2 and 3, respectively. In the case of rigid body
analysis, the components of the vector ui are constant.

Velocity The absolute velocity of an arbitrary point on the rigid body can be
obtained by differentiating Eq. 33 with respect to time. This leads to

ṙi c Ṙi + Ȧiu i (7.34)

Since the transformation matrix is orthogonal, one has

AiAiT c I (7.35)

which upon differentiation leads to

ȦiAiT + AiȦiT c 0 (7.36)

or

ȦiAiT c −AiȦiT (7.37)

This equation implies that

ȦiAiT c − (ȦiAi T
)T (7.38)
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A matrix that is equal to the negative of its transpose is a skew symmetric
matrix. Therefore, Eq. 38 can be written as

ȦiAiT c �̃i (7.39)

where �̃i is a skew symmetric matrix that can be written as

�̃i c 




0 −q i
3 q i

2

q i
3 0 −q i

1

−q i
2 q i

1 0





(7.40)

and q i
1, q i

2, and q i
3 are called the components of the angular velocity vector

�i, that is

�i c [q i
1 q i

2 q i
3]T (7.41)

Postmultiplying both sides of Eq. 39 by the matrix Ai and using the orthogo-
nality of the transformation matrix, one obtains

Ȧi c �̃iAi (7.42)

Substituting this equation into Eq. 34 yields

ṙi c Ṙi + �̃iAiui (7.43)

which can also be written as

ṙi c Ṙi + �̃iui (7.44)

where

ui c Aiui (7.45)

Using the cross product notation, Eq. 44 can be rewritten as

ṙi c Ṙi + �i × ui (7.46)

Example 7.3

Consider the case in which the rigid body i rotates about the fixed Z axis. If the
angle of rotation is denoted as v i, the transformation matrix is

Ai c 




cos v i −sin v i 0

sin v i cos v i 0

0 0 1
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and

Ȧi c v̇ i 




−sin v i −cos v i 0

cos v i −sin v i 0

0 0 0





The skew-symmetric matrix �̃i of Eq. 39 is

�̃i c ȦiAiT c v̇ i 


0 −1 0
1 0 0
0 0 0




That is,

�̃i c 




0 −q i
3 q i

2

q i
3 0 −q i

1

−q i
2 q i

1 0





c v̇ i 





0 −1 0

1 0 0

0 0 0





which defines the angular velocity vector �i as

�i c 




q i
1

q i
2

q i
3





c 




0

0

v̇ i





c v̇ ik

where k is a unit vector along the axis of rotation. The preceding equation, which
is the familiar form of the angular velocity vector used in the planar analysis, is
obtained here using the general development presented in this section.

An Alternative Representation Equation 39 defines the components of the
angular velocity vector in the global coordinate system. The components of
this vector can also be defined in the coordinate system of body i using the
transformation

� i c AiT�i (7.47)

where � i is the absolute angular velocity vector defined in the coordinate sys-
tem of body i.

An alternative form for the absolute velocity vector of an arbitrary point on
the rigid body can be obtained by using the vector � i. This can be achieved by
directly using Eq. 47, or by utilizing the orthogonality condition of the trans-
formation matrix. To demonstrate the use of the second route, the orthogonality
condition is repeated here:

AiTAi c I (7.48)

which, upon differentiation, leads to

AiTȦi c − (AiTȦi)T (7.49)
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This implies that the matrix AiTȦi is a skew-symmetric matrix that can be
written as

AiTȦi c �̃ i (7.50)

where

�̃ i c 




0 −q i
3 q i

2

q i
3 0 −q i

1

−q i
2 q i

1 0





(7.51)

where q i
1, q i

2, and q i
3 are the components of the angular velocity vector defined

in the coordinate system of body i, that is,

� i c [q i
1 q i

2 q i
3]T (7.52)

Premultiplying Eq. 50 with Ai and using the orthogonality of the transformation
matrix, one obtains

Ȧi c Ai�̃ i (7.53)

Substituting this equation into Eq. 34, another form of the absolute velocity
vector of an arbitrary point on the rigid body can be obtained as

ṙi c Ṙi + Ai�̃ iui c Ṙi + Ai(�i × ui) (7.54)

The use of Eqs. 42 and 53 implies that

�̃iAi c Ai�̃ i

which leads to the following identities:

�̃i c Ai�̃ iAiT (7.55)

�̃ i c AiT�̃iAi (7.56)

Example 7.4

We again consider the case of simple rotation of a rigid body i about the fixed Z
axis by an angle v i. The transformation matrix Ai and its time derivative Ȧi are

Ai c 




cos v i −sin v i 0

sin v i cos v i 0

0 0 1





, Ȧi c v̇ i 





−sin v i −cos v i 0

cos v i −sin v i 0

0 0 0
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Using Eq. 50, one has

�̃ i c AiT Ȧi c v̇ i 




0 −1 0

1 0 0

0 0 0





c 




0 −q i
3 q i

2

q i
3 0 −q i

1

−q i
2 q i

1 0





which defines the components of the absolute angular velocity vector in the body
coordinate system as

� i c 




q i
1

q i
2

q i
3





c v̇ i 





0

0

1





Comparing these results with the results obtained in Example 3, we conclude in
this special case of a simple rotation about a fixed axis that � i c �i. This situation
occurs only when the axis of rotation is fixed in space. In this special case, the
relationships

�i c Ai� i, � i c AiT�i

are still in effect.

The transformation matrix that defines the orientation of an arbitrary body i
can be expressed in terms of the transformation matrix that defines the orien-
tation of another body j as

Ai c A jAij

It follows that

�̃i c ȦiAiT c (Ȧ jAij + A jȦij)(A jAij)T

c (�̃ jA jAij + A j(�̃ij)jAij)(A jAij)T (7.57)

where (�̃ij)j is the skew-symmetric matrix associated with the angular velocity
of body i with respect to body j defined in the coordinate system of body j.
Since the following identity:

�̃ij c A j(�̃ij)jA jT

holds (see Eqs. 55 and 56), where �̃ij is the skew-symmetric matrix associated
with the angular velocity of body i with respect to body j defined in the global
coordinate system, Eq. 57 yields

�̃i c �̃ j + �̃ij

which implies that

�i c � j + �ij (7.58)
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This equation states that the absolute angular velocity of body i is equal to the
absolute angular velocity of body j plus the angular velocity of body i with
respect to body j.

Acceleration The equation of the absolute acceleration can be obtained by
differentiating Eq. 34 with respect to time. This leads to

r̈i c R̈i + Äiui (7.59)

Differentiating Eq. 42 with respect to time, one obtains

Äi c ˙̃�iAi + �̃iȦi (7.60)

Substituting Eq. 42 into Eq. 60, one obtains

Äi c ˙̃�iAi + �̃i�̃iAi

c �̃iAi + (�̃i)2Ai (7.61)

where �̃i is a skew symmetric matrix defined as

�̃i c ˙̃�i (7.62)

Substituting Eq. 61 into Eq. 59, the absolute acceleration of an arbitrary point
on the rigid body i can be written as

r̈i c R̈i + �̃iAiui + (�̃i)2Aiui (7.63)

which, upon the use of Eq. 45 and the notation of the cross product, can be
written as

r̈i c R̈i + �i × ui + �i × (�i × ui) (7.64)

where �i c [ai
1 ai

2 ai
3]T is the angular acceleration vector of body i. The

term �i × ui on the right-hand side of Eq. 64 is called the tangential compo-
nent of the acceleration, while the term �i × (�i × ui) is called the normal
component.

Equation 64 can also be written in an alternative form as

r̈i c R̈i + Ai(�i × ui) + Ai[� i × (� i × ui)] (7.65)

in which

� i c AiT�i (7.66)
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7.5 GENERALIZED COORDINATES

The kinematic and dynamic relationships of multibody mechanical systems can
be formulated in terms of the angular velocity and acceleration vectors. The
angular velocities, however, are not the time derivatives of a set of orientation
coordinates and, therefore, they cannot be integrated to obtain the orientation
coordinates. For this reason it is desirable to formulate the dynamic equations
using the rotational coordinates such as Euler angles. In order to achieve this
objective, Eq. 46, which defines the absolute velocity vector of an arbitrary
point on the rigid body i, is written as

ṙi c Ṙi − ui × �i (7.67)

which can be written using the skew-symmetric matrix notation as

ṙi c Ṙi − ũi�i (7.68)

where ũi is the skew symmetric matrix

ũi c 




0 −ui
z ui

y

ui
z 0 −ui

x

−ui
y ui

x 0





(7.69)

and ui
x , ui

y, and ui
z are the components of the vector ui.

In Section 3, the transformation matrix that defines the orientation of body
i was developed in terms of Euler angles. By using this transformation matrix
and the identity of Eq. 39, the angular velocity vector �i defined in the global
coordinate system can be expressed in terms of Euler angles and their time
derivatives as

�i c Gi�̇i (7.70)

where �i is the set of Euler angles defined as

�i c [fi v i w i]T (7.71)

and

Gi c 




0 cosfi sin v isinfi

0 sinfi −sin v icosfi

1 0 cos v i





(7.72)

The columns of this matrix, which represent unit vectors along the axes about
which the Euler angle rotations fi, v i, and w i are performed, are vectors defined
in the fixed coordinate system.
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Substituting Eq. 70 into Eq. 68, the absolute velocity of an arbitrary point
on the rigid body can be expressed in terms of Euler angles as

ṙi c Ṙi − ũiGi�̇i (7.73a)

which can be written using matrix partitioning as

ṙi c [I − ũiGi] [ Ṙi

�̇i ] (7.73b)

Similarly, the absolute acceleration of the arbitrary point on the rigid body
can also be expressed in terms of the generalized orientation coordinates using
Eq. 64, which can be written using the skew symmetric matrix notation as

r̈i c R̈i − ũi�i + (�̃i)2ui (7.74)

Differentiating Eq. 70 with respect to time, one obtains

�i c Gi�̈i + Ġi�̇i (7.75)

Substituting this equation into Eq. 74, the absolute acceleration vector r̈i can
be written as

r̈i c R̈i − ũiGi�̈i + ai
v (7.76)

where ai
v is a vector that absorbs terms which are quadratic in the velocities.

This vector is defined as

ai
v c (�̃i)2ui − ũiĠi�̇i (7.77)

The vector ai
v absorbs the normal component of the acceleration as well as the

portion of the tangential component that is quadratic in the velocities.

Another Representation In the development of the kinematic equations
presented in this section, the angular velocity and acceleration vectors defined
in the global coordinate system are used. Another alternate approach to the
formulation of the kinematic equations is to use the expressions of the angular
velocity and acceleration vectors as defined in the body coordinate system. By
following this procedure, one can show that

ṙi c [I − Aiũ
i
G i] [ Ṙi

�̇i ] (7.78)
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and

r̈i c [I − Aiũ
i
G i] [ R̈i

�̈i ] + ai
v (7.79)

where

G i c AiTGi (7.80)

The matrix G i, in the case of Euler angles, is given by

G i c 




sin v i sin w i cos w i 0

sin v i cos w i −sin w i 0

cos v i 0 1





(7.81)

and

ũ i c 




0 −ui
z u i

y

u i
z 0 −ui

x

−ui
y u i

x 0





c 




0 −zi yi

zi 0 −xi

−yi xi 0





(7.82)

where u i c [ui
x u i

y u i
z]

T c [xi yi zi]T. The columns of the matrix G i

define, in the body coordinate system, unit vectors along the axes about which
the Euler angles fi, v i, and w i are performed.

Using Eq. 47 or Eq. 50, it can be shown that the angular velocity vector � i

defined in the body coordinate system can be written in terms of the matrix G i

of Eq. 81 as

� i c G i�̇i (7.83)

Equations 78 and 79 can be obtained directly from Eqs. 73b and 76 by using
the identity

ũi c Aiũ iAiT (7.84)

Recall that

�i c Ai� i

which upon differentiation and the use of the identity of Eq. 53 leads to

�i c Ai�̇ i + Ȧi� i

c Ai�̇ i + Ai�̃ i� i
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Since � i × � i c 0, one has

�i c Ai�̇i c AiG i�̈i + AiĠi�̇

Comparing this equation with Eq. 75, one concludes that

Ġi�̇i c AiĠ i�̇i

Therefore, the quadratic velocity vector of Eq. 77 that also appears in Eq. 79
can be written in another form using the identity of Eq. 84 as

ai
v c Ai(�̃ i)2u i − Aiũ iĠi�̇i

The fact that Ġi�̇i c AiĠ i�̇i does not imply that Ġi c AiĠ i as will be demon-
strated in Example 8.

Remarks It can be verified that the determinant of the matrix G i of Eq. 81
is equal to − sin v i, which is the same as the determinant of the matrix Gi.
Consequently, there is a singularity in the transformation using Euler angles
when v i is equal to zero or p. In this case, the axes of rotation of the Euler
angles fi and w i are parallel and, therefore, these two angles are not distinct.
In other words, in the singular configuration, the Euler angles rates cannot be
represented in terms of three independent components of the angular velocity
vector using Eq. 70 or Eq. 83. The transformation matrix Ai of Eq. 32 can be
written in the case of the singular configuration as

Ai c 




cos(w i + fi) −sin(w i + fi) 0

sin(w i + fi) cos(w i + fi) 0

0 0 1





which is a nonsingular orthogonal matrix whose inverse remains equal to its
transpose. All Euler angle representations suffer from the singularity problem,
which is encountered when two rotations occur about two axes that have the
same orientation in space. In this case, the two Euler angles are not indepen-
dent. A similar singularity problem is encountered when any known method
that employs three parameters to describe the orientation of the rigid bodies in
space is used. For this reason, the four Euler parameters are often used in the
computer-aided analysis of the spatial motion of rigid bodies.

Equations 81 and 83 can be used to demonstrate that the components of the
angular velocities are not exact differentials. For example, the use of these two
equations defines q i

y in terms of Euler angles and their time derivatives as

q i
y c g21ḟ

i + g22v̇ i + g23ẇ i
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where

g21 c sin v i cos w i, g22 c − sin w i, g23 c 0

It is clear from these definitions that

∂g21

∂v i
�

∂g22

∂fi
,

∂g21

∂w i
�

∂g23

∂fi

which imply that q i
y is not an exact differential. Similar comments apply to q i

x
and q i

z.

7.6 GENERALIZED INERTIA FORCES

There are several methods for developing the dynamic equations of motion of
the rigid bodies. In this chapter, the principle of virtual work in dynamics will
be used to obtain the differential equations that govern the spatial motion of
the rigid bodies. First, we develop in this section an expression for the virtual
work of the generalized inertia forces.

The virtual change in the position vector of an arbitrary point on the rigid
body i is given by (see Eq. 78)

dri c [I − Aiũ iG i] [ dRi

d�i ] (7.85)

The virtual work of the inertia forces of the rigid body is

dW i
i c ∫Vi

rir̈iT dri d Vi (7.86)

where ri and V i are, respectively, the mass density and volume of the rigid
body i. Substituting Eqs. 79 and 85 into Eq. 86, one obtains

dW i
i c [R̈iT �̈iT]{∫Vi

ri {[ I

−G
iT

ũ
iT

AiT ] [I − Aiũ
i
G i]

+ aiT
v [I − Aiũ

i
G i]} d Vi}[ dRi

d�i ] (7.87)

which can be written as

dW i
i c [q̈iTMi − QiT

v ] dqi (7.88)

where qi is the vector of generalized coordinates of the rigid body i defined as

qi c [RiT �iT]T (7.89)
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Mi is the symmetric mass matrix

Mi c ∫Vi
ri [ I −Aiũ iG i

symmetric G iT ũ iT ũ iG i ] d Vi (7.90)

and Qi
v is the vector of the inertia forces that absorbs terms that are quadratic

in the velocities. This vector is

Qi
v c − ∫Vi

ri [ I

−G iT ũ iTAiT ] ai
v d Vi (7.91)

In developing Eq. 88, the origin of the body coordinate system (reference
point) is assumed to be an arbitrary point on the rigid body, and therefore, the
mass matrix of Eq. 90 and the inertia force vector of Eq. 91 are presented in
their most general form. Equations 90 and 91 can be simplified if the refer-
ence point is chosen to be the center of mass of the body, which is the case
of a centroidal body coordinate system. The use of a centroidal body coordi-
nate system is one of the basic assumptions used in developing the well-known
Newton–Euler equations, which are discussed in later sections.

Mass Matrix The symmetric mass matrix of the rigid body i defined by Eq.
90 can be written in the form

Mi c [ mi
RR mi

Rv

mi
vR mi

v v
] (7.92)

where

mi
RR c miI (7.93a)

mi
Rv c miT

vR c −Ai [ ∫Vi
riũ i d Vi] G i (7.93b)

and

mi
v v c G iTI

i
v vG

i (7.93c)

where mi is the total mass of the rigid body i, and I
i
v v is a 3 × 3 symmetric

matrix, called the inertia tensor of the rigid body, and is defined by the equation

I
i
v v c ∫Vi

riũ iT ũ i d Vi (7.94a)



7.6 GENERALIZED INERTIA FORCES 403

Using Eqs. 3, 82, and 94a, the inertia tensor of the rigid body i can be written
as

I
i
v v c 





ixx ixy ixz

iyy iyz

symmetric izz





(7.94b)

where the elements ixx, iyy, izz are called the moments of inertia and ixy, ixz, iyz

are called the products of inertia. These elements are defined as

ixx c ∫Vi
ri[(yi)2 + (zi)2] d Vi

iyy c ∫Vi
ri[(xi)2 + (zi)2] d Vi

izz c ∫Vi
ri[(xi)2 + (yi)2] d Vi

ixy c −∫Vi
rixiyi d Vi

ixz c −∫Vi
rixizi d Vi

izy c −∫Vi
riyizi d Vi





















































(7.95)

It is clear that the moments of inertia satisfy the following identity:

ixx + iyy + izz c 2 ∫Vi
ri[(xi)2 + (yi)2 + (zi)2] d Vi

c 2 ∫Vi
riu iTu i d Vi

While the moments and products of inertia defined by Eq. 95 are constant
since they are defined in the rigid body coordinate system, the matrix mi

v v of
Eq. 93c is a nonlinear matrix since it depends on the orientation coordinates
of the rigid body. This matrix, upon the use of the identity of Eq. 80, can be
written in an alternate form as

mi
v v c G iTAiI

i
v vA

iTGi c GiTIi
v vG

i
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where

Ii
v v c AiI

i
v vA

iT

Note also that in the mass matrix of Eq. 92, there is a dynamic or inertia cou-
pling between the translation and the rotation of the rigid body, and this cou-
pling is represented by the off-diagonal nonlinear matrices, mi

Rv and mi
vR, which

also depend on the orientation coordinates of the rigid body.

Example 7.5

Obtain the components of the inertia tensor of the rectangular prism shown in Fig.
6 with respect to a coordinate system whose origin is located at one of the corners,
as shown in the figure.

Solution. The elements of the inertia tensor can be evaluated using Eq. 95. For the
rectangular prism shown in the figure,

ixx c ∫Vi
ri[(yi)2 + (zi)2] d Vi

c ∫
c

0 ∫
b

0 ∫
a

0
ri[(yi)2 + (zi)2] dxi dyi dzi

c ∫
c

0 ∫
b

0
ria[(yi)2 + (zi)2] dyi dzi

c mi

3
[(b)2 + (c)2]

Figure 7.6 Solid prism
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where mi is the total mass of the rectangular prism. Similarly, one can show that

iyy c mi

3
[(a)2 + (c)2], izz c mi

3
[(a)2 + (b)2]

The product of inertia ixy is

ixy c − ∫Vi
rixiyi d Vi c − ∫

c

0 ∫
b

0 ∫
a

0
rixiyi dxi dyi dzi

c − ∫
c

0 ∫
b

0
ri (a)2yi

2
dyi dzi c − ∫

c

0
ri (a)2(b)2

4
dzi c − miab

4

Similarly,

ixz c − ∫Vi
rixizi d Vi c − miac

4

iyz c − ∫Vi
riyizi d Vi c − mibc

4

The inertia tensor of the rectangular prism defined in the coordinate system shown
in the figure can be written as

I i
v v c mi







1
3 [(b)2 + (c)2] − 1

4 (ab) − 1
4 (ac)

− 1
4 (ab) 1

3 [(a)2 + (c)2] − 1
4 (bc)

− 1
4 (ac) − 1

4 (bc) 1
3 [(a)2 + (b)2]






In the special case of a homogeneous cube, a c b c c, and the elements of the

inertia tensor reduce to

ixx c iyy c izz c 2mi(a)2

3

ixy c ixz c iyz c − mi(a)2

4

Parallel Axis Theorem The elements of the inertia tensor given by Eq. 95
are defined in a coordinate system whose origin is attached to an arbitrary point
on the rigid body. In this coordinate system, let u i

c be the local position vector
of the center of mass of the body. The vector u i that defines the location of an
arbitrary point with respect to the reference point Oi can be written as shown
in Fig. 7 as

u i c u i
c + u i

r
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Figure 7.7 Centroidal coordinates

where u i
r is the position vector of the arbitrary point with respect to the center

of mass. It follows from the use of the preceding equation and Eq. 94a that

I
i
v v c ∫Vi

riũ iT ũ i d Vi

c ∫Vi
ri[(ũ i

c + ũ i
r)

T(ũ i
c + ũ i

r)] d Vi

or

I
i
v v c ũ iT

c ũ i
c [ ∫Vi

ri d Vi] + ũ
iT

c [ ∫Vi
riũ i

r d Vi]
+ [ ∫Vi

riũ iT
r d Vi] ũ i

c + ∫Vi
riũ iT

r ũ
i
r d Vi

Since u i
r defines the position vector of an arbitrary point on the rigid body

with respect to the center of mass, one has

∫Vi
riu i

r d Vi c 0

and consequently,

∫Vi
riũ i

r d Vi c 0
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The equation for the inertia tensor of the body becomes

I
i
v v c miũ iT

c ũ i
c + (I

i
v v)c (7.96)

where the fact that

mi c ∫Vi
ri d Vi

was utilized, and

(I
i
v v)c c ∫Vi

riũ iT
r ũ i

r d Vi

is the inertia tensor of the body defined in a centroidal X i
cY i

cZ i
c coordinate

system whose axes are parallel to the axes of the coordinate system X iY iZi

as shown in Fig. 7. Equation 96 is called the parallel axis theorem, which
states that the mass moments of inertia defined with respect to a noncentroidal
coordinate system X iY iZi are equal to the mass moments of inertia defined with
respect to a centroidal coordinate system X i

cY i
cZi

c plus the mass of the body
times the square of the distances between the respective axes. These moments
of inertia as well as the products of inertia can be expressed in terms of those
defined with respect to the centroidal coordinate system as

ixx c (ixx)c + mi[(yi
c)2 + (zi

c)2]

iyy c (iyy)c + mi[(xi
c)2 + (zi

c)2]

izz c (izz)c + mi[(xi
c)2 + (yi

c)2]

ixy c (ixy)c − mixi
cyi

c

ixz c (ixz)c − mixi
czi

c

iyz c (iyz)c − miyi
czi

c

where (ixx)c, (iyy)c, (izz)c, (ixy)c, (ixz)c, and (iyz)c are the moments and products
of inertia defined with respect to the center of mass, and xi

c, yi
c, and zi

c are the
components of the vector u i

c that defines the location of the center of mass
with respect to the reference point Oi as shown in Fig. 7. Since the moments
of inertia are always positive, it can be seen from the preceding equations that
a translation of a coordinate system away from the center of mass always leads
to an increase in the moments of inertia. The products of inertia, however,
may increase or decrease depending on the direction of the translation. Table 1
shows the mass moments of inertia of some homogeneous solids. The moments
of inertia presented in this table are defined with respect to a centroidal body
coordinate system.
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TABLE 7.1 Mass Moments of Inertia of Homogeneous Solids
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It is worth noting that since ui
r c u i − u i

c, one can always determine the
vector u i

c that defines the location of the center of mass with respect to the
origin of the body coordinate system. To demonstrate this, we write

∫Vi
riu i

r d Vi c ∫Vi
riu i d Vi − ∫Vi

riu i
c d Vi c 0

or

u i
c ∫Vi

ri d Vi c ∫Vi
riu i d Vi

which leads to

u i
c c 1

mi ∫Vi
riu i d Vi (7.97)

This equation defines the position vector of the center of mass with respect to
the origin of the body coordinate system.

Example 7.6

For the rectangular prism of Example 5, obtain the elements of the inertia tensor
defined with respect to a centroidal coordinate system whose axes are parallel to
the axes of the coordinate system shown in Fig. 6.

Solution. It is clear in this simple example that the center of mass of the rectangular
prism in the X iY iZi coordinate system is

u i
c c 





xi
c

yi
c

zi
c





c 




a/ 2

b/ 2

c/ 2





This obvious result can also be obtained using the general equation

u i
c c 1

mi ∫Vi
riu i d Vi

which, by assuming that the mass density ri is constant, yields in this example

u i
c c 





xi
c

yi
c

zi
c





c 1

mi ∫
c

0 ∫
b

0 ∫
a

0
ri 





xi

yi

zi





d Vi c 1

2





a

b

c





as expected.
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The element (ixx)c of the inertia tensor defined with respect to the centroidal
coordinate system can be evaluated using the results obtained in Example 5 as

(ixx)c c ixx − mi[(yi
c)2 + (zi

c)2]

c mi

3
[(b)2 + (c)2] − mi [� b

2 �
2

+ �
c
2 �

2]
c mi

12
[(b)2 + (c)2]

Similarly, one can show that

(iyy)c c mi

12
[(a)2 + (c)2], (izz)c c mi

12
[(a)2 + (b)2]

The product of inertia (ixy)c is

(ixy)c c ixy + mixi
cyi

c c ixy + mi ab
4

Using the results of the preceding example, one has

(ixy)c c −mi � ab
4 � + mi � ab

4 � c 0

It can be also shown that
ixz c iyz c 0

Thus,

(Ii
vv )c c mi

12





(b)2 + (c)2 0 0

0 (a)2 + (c)2 0

0 0 (a)2 + (b)2





The results obtained in this example using the parallel axis theorem can also be

obtained by attaching the origin of the body coordinate system X iY iZ i to the center
of mass and using Eq. 95. For example,

ixx c ∫Vi
ri[(yi)2 + (zi)2] d Vi

c ∫
c/ 2

−c/ 2 ∫
b/ 2

−b/ 2 ∫
a/ 2

−a/ 2
ri[(yi)2 + (zi)2] dxi dyi dzi

c mi

12
[(b)2 + (c)2]

which is the same result obtained previously by the application of the parallel axis
theorem.

In the special case of a homogeneous cube, the moments and products of inertia
reduce to

(ixx)c c (iyy)c c (izz)c c mi(a)2

6

(ixy)c c (ixz)c c (iyz)c c 0
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Principal Moments of Inertia The parallel axis theorem shows the effect
of the translation of the coordinate system on the definition of the moments
and products of inertia. In order to define the relationship between two inertia
tensors defined with respect to two body-fixed coordinate systems that differ in
their orientation, let (I

i
vv )1 be the inertia tensor defined with respect to a body-

fixed coordinate system X i
1Y i

1Zi
1, and (I

i
vv )2 be the inertia tensor defined with

respect to another body-fixed coordinate system X i
2Y i

2Z i
2. It is assumed that

the origins of the two coordinate systems X i
1Y i

1Z i
1 and X i

2Y i
2Z i

2 coincide. The
orientation of the coordinate system X i

2Y i
2Z i

2 with respect to the coordinate
system X i

1Y i
1Z i

1 is defined by the constant transformation matrix Ci. Let u i
1

and u i
2 be the position vectors of an arbitrary point on the rigid body i defined

in the coordinate systems X i
1Y i

1Z i
1 and X i

2Y i
2Z i

2, respectively. Using an identity
similar to the one of Eq. 84, one has

ũ i
1 c C iũ i

2CiT (7.98)

Using this equation, it can be shown that the relationship between the inertia
tensors defined in the two body-fixed coordinate systems can be written as

(I
i
vv )1 c Ci(I

i
vv )2CiT (7.99)

Using the orthogonality of the transformation matrix, and postmultiplying both
sides of this equation by Ci, one obtains

(I
i
vv )1Ci c Ci(I

i
vv )2 (7.100)

It is possible to select the orientation of the body-fixed coordinate system
X i

2Y i
2Z i

2 such that all the products of inertia are equal to zeros. In this special
case, the inertia tensor (I

i
vv )2 is a diagonal matrix. In fact, this is the case that

occurred in the preceding example. In this case, the axes of the body-fixed
coordinate system X i

2Y i
2Z i

2 are called the principal axes and the moments of
inertia are referred to as the principal moments of inertia.

The principal axes and principal moments of inertia can be determined using
Eq. 100. If X i

2, Y i
2, and Z i

2 are principal axes, the inertia tensor (I
i
vv )2 can be

written as

(I
i
vv )2 c 





i1 0 0

0 i2 0

0 0 i3





where i1, i2, and i3 are the principal moments of inertia. The inertia tensor (I

i
vv )1,
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on the other hand, takes the general form

(I
i
vv )1 c 





ixx ixy ixz

iyy iyz

symmetric izz





Now let Ci

k be the kth column of the transformation matrix Ci in Eq. 100.
Equation 100 can, therefore, be written as

[(I
i
vv )1 − ikI]Ci

k c 0, k c 1, 2, 3 (7.101)

where I is the 3 × 3 identity matrix. Equation 101 is a system of homogeneous
equations that can be solved for the vector Ci

k . This system has a nontrivial
solution if and only if the coefficient matrix is singular. That is,

| (I
i
vv )1 − ikI | c 0 (7.102a)

or

|
|
|
|
|
|
|

ixx − ik ixy ixz

ixy iyy − ik iyz

ixz iyz izz − ik

|
|
|
|
|
|
|

c 0 (7.102b)

This determinant defines a cubic polynomial in ik . The roots of this polynomial
define the principal moments of ienrtia ik , k c 1, 2, 3, and the principal directions
Ci

k can be defined using Eq. 101. Since (I
i
vv )1 is real symmetric and positive

definite matrix, the principal moments of inertia obtained by solving Eq. 102 are
all real and nonnegative. Furthermore, one can show that the principal directions
associated with distinctive mass moments of inertia are orthogonal, that is

CiT
k Ci

l c 0 if k � l

� 0 if k c l, k, l c 1, 2, 3

Once Ci
k are determined, they can be used to determine unit vectors along

the principal directions. These unit vectors define the vectors of the direction
cosines, which form the columns of the transformation matrix Ci that defines
the orientation of the coordinate system X i

2Y i
2Z i

2 with respect to the coordinate
system X i

1Y i
1Z i

1. If two principal moments of inertia are equal, say i2 c i3 � i1,
the direction of the principal axis associated with i1 is uniquely defined but any
axis that lies in the plane whose normal is defined by Ci

1 is a principal axis. In
the case i1 c i2 c i3, any three mutually perpendicular axes form the principal
directions. An example of this special case is the case of a sphere.
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We note, in general, that in the case of repeated roots, the substitution of the
repeated root in the coefficient matrix of Eq. 101 reduces the rank of this matrix
by the number of the equal roots. This makes the dimension of the null space of
the resulting coefficient matrix equal to the number of the repeated roots, ensuring
that Eq. 101 has a number of independent solutions equal to the number of the
repeated roots. These independent solutions define the principal directions.

Centrifugal Forces Using Eq. 91, the vector Qi
v that absorbs terms that are

quadratic in the velocities can be written as

Qi
v c [ (Qi

v)R

(Qi
v)v ] (7.103a)

which upon the use of the expression for the vector ai
v presented at the end of

the preceding section yields

(Qi
v)R c −Ai ∫Vi

ri[�̃ i)2u i − ũ iĠ i�̇i] d Vi

(Qi
v)v c G iT ∫Vi

ri[ũ iT(�̃ i)2u i − ũ iT ũ iĠ i�̇i] d Vi

The vectors (Qi
v)R and (Qi

v)v can be written as

(Qi
v)R c −Ai(�̃ i)2 [ ∫Vi

riu i d Vi] + Ai [ ∫Vi
riũ i d Vi] Ġ i�̇i (7.103b)

and

(Qi
v)v c G

iT [ ∫Vi
riũ

iT
(�̃ i)2u i d Vi] − G

iT
I

i
vvĠ i�̇i (7.103c)

where the definition of I
i
vv given by Eq. 94 is utilized.

The following vector and matrix identities can be verified

(ũ i�̃ i) c � iuiT − uiT� iI
˜(ũ i�̃ i) c � iu iT − u i� iT c ũ i�̃ i − �̃ iũ i

ũ i�̃ i + u i� iT c �̃ iũ i + � iu iT









(7.104)

Using the last identity in the preceding equation, one has

∫Vi
riũ iT�̃ i�̃ iu i d Vi c ∫Vi

riũ i�̃ iũ i� i d Vi

c ∫Vi
ri{�̃ iũ iũ i� i + � iu iT ũ i� i − u i� iT�̃ iu i} d Vi
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The last two terms in this equation are identically equal to zero. Thus

∫Vi
riũ iT�̃ i�̃ iu i d Vi c ∫Vi

ri�̃ iũ iũ i� i d Vi

c −�̃ iI
i
vv� i c −� i × (I

i
vv� i)

Substituting this equation into Eq. 103c, one obtains

(Qi
v)v c −G

iT
[� i × (I

i
vv� i) + I

i
vvĠi�̇i] (7.105)

7.7 GENERALIZED APPLIED FORCES

The generalized external forces of the rigid body i can be defined using the
expression of the virtual work. Examples of these forces are the gravity, spring,
damping, friction, actuator forces, and motor torques. Examples of some of
these forces which can be nonlinear functions of the system variables are pre-
sented in this section and the formulation of the generalized applied forces
associated with the generalized coordinates of the spatial rigid body systems
are discussed.

Force Vector Let Fi be a force vector that acts at a point Pi on the rigid body i as
shown in Fig. 8. This force vector is assumed to be defined in the global coordinate
system. The virtual work of this force vector can be written as

dW i
e c FiT dri

P (7.106)

Figure 7.8 Force vector
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where dri
P can be obtained using Eq. 85 as

dri
P c dRi − Aiũ i

PG
i
d�i (7.107)

where ũ
i
P is the skew symmetric matrix associated with the vector u i

P that
defines the local coordinates of the point Pi. Also note that Eq. 107 can be
written as

dri
P c dRi − ũi

PGi d�i (7.108)

This equation can be obtained from Eq. 107 by using the identity of Eq. 84.
Substituting Eq. 108 into Eq. 106, one obtains

dW i
e c FiT dRi − FiT ũi

PGi d�i (7.109)

or

dW i
e c FiT

R dRi + FiT
v d�i (7.110)

in which

Fi
R c Fi (7.111a)

Fi
v c −GiT ũiT

P Fi (7.111b)

Equation 110 implies that a force that acts at an arbitrary point on the rigid body
i is equipollent to another system defined at the reference point that consists of
the same force and a set of generalized forces, defined by Eq. 111b, associated
with the orientation coordinates of the body.

Since ũi
P is a skew-symmetric matrix, it follows that ũi

P c − ũiT
P . Using this

fact and the cross-product notation, Eq. 111b leads to

Fi
v c GiT(ui

P × Fi) (7.112)

Recall that ui
P × Fi is the Cartesian moment resulting from the application of

the force Fi, that is,

Mi
a c ui

P × Fi (7.113)

where Mi
a is the moment vector whose components are defined in the Cartesian

coordinate system. Equation 112, therefore, defines the relationship between the
generalized forces associated with the orientation coordinates and the Cartesian
components of the moment as

Fi
v c GiTMi

a (7.114)
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One can also show that if the components of the moment vector are defined in
the body coordinate system, one has

Fi
v c G

iT
M

i
a (7.115)

where M
i
a c AiTMi

a is the moment vector whose components are defined in the
coordinate system of body i.

A special case occurs when the reference point lies on the line of action of
the force Fi. In this special case, the vector ui

P and the force Fi are parallel,
and hence

ui
P × Fi c 0

It follows that Fi
v c 0. This equation and Eqs. 111a and 111b imply that the

effect of the force does not change if its point of application is moved to an
arbitrary position along its line of action. For this reason, the force is considered
as a sliding vector.

Example 7.7

A force vector Fi c [5.0 0.0 −3.0]T N is acting on body i whose orientation is
defined by the Euler angles

fi c p

4
, v i c p

2
, w i c 0

The local position vector of the point of application of the force is

u i
P c [0.2 0 − 0.15]T m

Using the absolute Cartesian coordinates and Euler angles as the generalized coor-
dinates, define the generalized forces associated with the body generalized coordi-
nates.

Solution. The transformation matrix that defines the orientation of the body is

Ai c 




0.7071 0 0.7071

0.7071 0 −0.7071

0 1 0





At the given configuration,

G
i c 





0 1 0

1 0 0

0 0 1





, Gi c 





0 0.7071 0.7071

0 0.7071 −0.7071

1 0 0





The virtual work of the force is

FiT dri
P c FiT dRi − FiT Aiũ i

PG
i

d�i
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where

ũ
i
P c 





0 0.15 0

−0.15 0 −0.2
0 0.2 0





and

Aiũ
i
PG

i c 




0.2475 0 0

−0.0354 0 0

0 −0.15 −0.2





The generalized forces associated with the translation of the body reference are

Qi
R c Fi c [5.0 0 − 3.0]T

and the generalized forces associated with the orientation coordinates are

Qi
v c − (Aiũ

i
PG

i
)T Fi

c − 




0.2475 −0.0354 0

0 0 −0.15

0 0 −0.2










5.0
0

−3.0





c 




−1.2375

−0.45

−0.6





The generalized forces associated with the orientation coordinates can be defined
using an alternative approach by first defining the Cartesian moment ui

P × Fi, where

ui
P c Aiu i

P c 




0.0354

0.2475

0





The Cartesian moment can then be defined as

ui
P × Fi c 





0 0 0.2475

0 0 −0.0354

−0.2475 0.0354 0










5.0
0

−3.0





c 




−0.7425

0.1061

−1.2375





The vector of generalized forces associated with the orientation coordinates is

Qi
v c GiT (ui

P × Fi)

c 




0 0 1

0.7071 0.7071 0

0.7071 −0.7071 0










−0.7425

0.1061

−1.2375





c 




−1.2375

−0.45

−0.60





which is the same vector obtained previously.

System of Forces and Moments If a rigid body i is subjected to a set of
forces Fi

1, Fi
2, . . . , Fi

nf
that act, respectively, at points whose position vectors
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are ri
1, ri

2, . . . , ri
nf

, and a set of moments Mi
1, Mi

2, . . . , Mi
nm

, then the virtual
work of these forces and moments can be written as

dW i
e c FiT

1 dri
1 + FiT

2 dri
2 + · · · + FiT

nf
dri

nf

+ (Mi
1 + Mi

2 + · · · + Mi
nm

)TGi d�i

which upon the use of the relationship presented previously in this section yields

dW i
e c (Fi

1 + Fi
2 + · · · + Fi

nf
)T dRi

− (FiT
1 ũi

1 + FiT
2 ũi

2 + · · · + FiT
nf

ũi
nf

)Gi d�i

+ (Mi
1 + Mi

2 + · · · + Mi
nm

)TGi d�i

This equation can be written as

dW i
e c (Qi

e)T
R dRi + (Qi

e)T
v d�i

where (Qi
e)R and (Qi

e)v are the vectors of generalized forces associated, respec-
tively, with the generalized translation and orientation coordinates. These two
vectors are defined as

(Qi
e)R c Fi

1 + Fi
2 + · · · + Fi

nf
c

nf

���
j c 1

Fi
j

(Qi
e)v c GiT[Mi

1 + Mi
2 + · · · + Mi

nm
+ ui

1 × Fi
1 + ui

2

× Fi
2 + · · · + ui

nf
× Fi

nf
]

c GiT [ nm

���
j c 1

Mi
j +

nf

���
k c 1

(ui
k × Fi

k)]
Spring–Damper–Actuator Element Figure 9 shows two bodies, body i
and body j, connected by a spring–damper–actuator element. The attachment
points of the spring–damper–actuator element on body i and body j are, respec-
tively, Pi and Pj . The spring constant is k, the damping coefficient is c, and
the actuator force acting along a line connecting points Pi and Pj is fa. Here,
fa is a general actuator force that may depend on the system coordinates, on
velocities, and possibly on time, and the coefficients k and c can also be non-
linear functions of the system variables. The underformed length of the spring
is denoted as lo. The component of the spring–damper–actuator force along a
line connecting points Pi and Pj can then be written as

Fs c k(l − lo) + cl̇ + fa (7.116)
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Figure 7.9 Spring–damper–actuator force

where l is the current spring length. The first term on the right-hand side of
Eq. 116 is the spring force, the second term is the damping force, and the third
term is the actuator force. The virtual work of the force of Eq. 116 is

dW c −Fs dl (7.117)

where

l c |rij
P | c

g
rijT

P rij
P (7.118)

and rij
P is the position vector of point Pi with respect to point Pj , that is,

rij
P c ri

P − r j
P

c Ri + Aiui
P − R j − A ju j

P

where ui
P and u j

P are, respectively, the position vectors of points Pi and Pj

defined in the coordinate system of the respective body, Ai and A j are the trans-
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formation matrices of the two bodies, and Ri and R j are the global position
vectors of the origins of the coordinate systems of bodies i and j, respectively.
Using Eq. 118, the virtual change in the spring length is

dl c (rijT

P rij
P)−1/ 2rijT

P drij
P

which, upon using Eq. 118, yields

dl c 1
l

rijT

P drij
P

c rijT

P

l
[dRi − ũi

PGi d�i − dR j + ũ j
PG j d� j] (7.119)

where ũ i
P and ũ j

P are the skew symmetric matrices associated, respectively, with
the vectors Aiu i

P and A ju j
P.

Let

r̂ij
P c rij

P

l

be a unit vector along the line of action of the force Fs. Using the preceding
equation and Eqs. 116 and 119, the virtual work of Eq. 117 takes the form

dW c −Fsr̂
ijT

P [dRi − ũi
PGi d�i − dR j + ũ j

PG j d� j]

which can be written as

dW c QiT
R dRi + QiT

v d� i + Q jT

R dR j + Q jT

v d� j (7.120)

where the generalized forces Qi
R, Qi

v , Q j
R, and Q j

v are

Qi
R c −Fsr̂

ij
P

Qi
v c FsGiTũiT

P r̂ij
P

Q j
R c Fsr̂

ij
P

Q j
v c −FsG jTũ jT

P r̂ij
P













(7.21)

The virtual work of Eq. 120 can also be expressed in the following form:

dW c QiT dqi + Q jT
dq j (7.122)
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where qi and q j are the generalized coordinates of body i and body j, respec-
tively, and

Qi c [ Qi
R

Qi
v
] c [ −Fsr̂

ij
P

FsGiT ũiT
P r̂ij

P ] (7.123)

Q j c [ Q j
R

Q j
v
] c [ Fsr̂

ij
P

−FsG jT
ũ jT

P r̂ij
P ] (7.124)

Rotational Spring–Damper–Actuator Element While the order of the
finite rotation is not commutative and, consequently, such rotations cannot be
treated as vector quantities, the order of the infinitesimal rotation is commuta-
tive. Thus, infinitesimal rotations can be treated as vectors. This can be demon-
strated by considering two successive infinitesimal rotations that define the two
transformation matrices Ai

1 and Ai
2. By using a first-order approximation, one

can show that

Ai
1Ai

2 c Ai
2Ai

1 (7.125)

We have shown previously that the angular velocity vector, defined in the
global coordinate system, can be written in terms of the orientation coordinates
and their time derivatives as

�i c Gi�̇i (7.126)

where the matrix Gi in the case of Euler angles is defined by Eq. 72. We observe
from the preceding equation that the angular velocity in the spatial analysis
is not the time derivative of the orientation coordinates. The angular velocity
vector, however, can be considered as the time rate of a set of infinitesimal
rotations dpi about the axes of the global coordinate system. Therefore, the use
of the preceding equation leads to

�i c d�i

dt
c Gi d�i

dt
(7.127)

which leads to the relationship between the infintesimal virtual rotations about
the axes of the global Cartesian coordinate system and the virtual change in the
generalized orientation coordinates �i as

dpi c Gi d�i (7.128)

We now consider the case of a rotational spring–damper–actuator element
(Fig. 10) that connects two arbitrary bodies i and j in the multibody system.
These two bodies may be connected by a revolute, screw, or cylindrical joint.
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Figure 7.10 Torsional spring and damper

Let v ij be the rotation of body i with respect to body j along the joint axis,
and let hij be a unit vector along the joint axis. The virtual change dvij can be
expressed in terms of the generalized orientation coordinates of bodies i and j
as

dvij c hijT(d�i − d� j) c hijT(Gi d�i − G j d� j) (7.129)

This equation implies that the virtual relative rotation dvij is the projection of
the relative Cartesian rotation (d�i − d� j) on the joint axis.

The torque exerted on body i by the rotational spring–damper–actuator ele-
ment as the result of the rotation v ij is

T ij c (krv
ij + cr v̇

ij + Ta) (7.130)

where kr and cr are, respectively, the rotational spring and damping coefficients,
and Ta is the actuator torque. The coefficients kr and cr and the torque Ta can
be nonlinear functions of the system coordinates, velocities, and time.

The virtual work of the torque T ij is

dW c −T ij dvij c −T ijhijT(Gi d�i − G j d� j)

This equation can also be written as

dW c QiT dqi + Q jT
dq j (7.131)

where the generalized forces Qi and Q j are given by

Qi c [ 0

−T ijGiThij ] , Q j c [ 0

T ijG jT
hij ] (7.132)
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7.8 DYNAMIC EQUATIONS OF MOTION

In the preceding two sections, the virtual work of the inertia forces and the
virtual work of the applied forces acting on the rigid body i were developed.
It was shown that the virtual work of the inertia forces can be written as (Eq.
88)

dW i
i c [Miq̈i

− Qi
v]T dqi (7.133)

where Mi is the symmetric mass matrix, qi
c [RiT �iT]T is the vector of gen-

eralized coordinates, and Qi
v is the vector of inertia forces that absorbs terms

that are quadratic in the velocities.
The virtual work of the applied forces is

dW i
e c QiT

e dqi (7.134)

where Qi
e is the vector of generalized applied forces.

Using the principle of virtual work in dynamics for unconstrained motion,
one has

dW i
i c dW i

e (7.135)

Substituting Eqs. 133 and 134 into Eq. 135, one obtains

[Miq̈i
− Qi

v]T dqi
c QiT

e dqi

or

[Miq̈i
− Qi

v − Qi
e]T dqi

c 0 (7.136)

In the case of unconstrained motion, the elements of the vector dqi are inde-
pendent. In this case, Eq. 136 leads to

Miq̈i
c Qi

e + Qi
v, i c 1, 2, . . . , nb (7.137)

where nb is the total number of rigid bodies in the system. The preceding equa-
tion can be written in a partitioned matrix form as

[ mi
RR mi

Rv

mi
vR mi

vv
] [ R̈i

�̈i ] c [ (Qi
e)R

(Qi
e)v ] + [ (Qi

v)R

(Qi
v)v ] , i c 1, 2, . . . , nb (7.138)

where mi
RR, mi

Rv c miT
vR, and mi

vv are defined by Eq. 93, and (Qi
v)R and (Qi

v)v

are defined by Eqs. 103 and 105, respectively.
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Centroidal Coordinate System Equation 138 is the matrix equation that
governs the unconstrained motion of the rigid body. This equation can be sim-
plified if the origin of the body coordinate system is rigidly attached to the
center of mass of the body. In this case

∫Vi
riu i d Vi

c ∫Vi
ri[xi yi zi]T d Vi

c 0 (7.139)

It follows also that

∫Vi
riũ i d Vi

c 0 (7.140)

Substituting this equation into Eq. 93b, one obtains

mi
Rv c 0, mi

vR c 0 (7.141)

which imply that in the case of a centroidal body coordinate system, there is
no inertia coupling between the translation and the rotation of the rigid body.
Furthermore, in this special case

(Qi
v)R c 0 (7.142)

The use of Eqs. 141, 142, and 138 leads to the following dynamic equations:

[ mi
RR 0

0 mi
vv

] [ R̈i

�̈i ] c [ (Qi
e)R

(Qi
e)v ] + [ 0

(Qi
v)v ] , i c 1, 2, . . . , nb (7.143)

where, as previously defined by Eqs. 93a, 93c, and 105,

mi
RR c miI (7.144)

mi
vv c G iTIi

vvG i (7.145)

(Qi
v)v c −G iT[� i × (I i

vv� i) + I i
vvĠ i�̇ i] (7.146)

When Euler angles are used, the set of orientation coordinates �i has three
elements and the mass matrix in Eq. 143 is a 6 × 6 matrix.

Example 7.8

A force vector Fi [5.0 0.0 −3.0]T N is acting on unconstrained body i. The ori-
entation of a centroidal body coordinate system is defined by the Euler angles

fi
c

p

4
, v i

c

p

2
, w i

c 0
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The time rate of change of Euler angles at the given configuration is

ḟi
c 20, v̇ i

c 0, ẇ i
c −35 rad/ s

The local position vector of the point of application of the force is

u i
P c [0.2 0 − 0.15]T m

The mass of the body is 2 kg and its inertia tensor is

I i
vv c




0.3 0 0
0 0.3 0
0 0 0.3




kg . m2

Write the equations of motion of this system at the given configuration and deter-
mine the accelerations.

Solution. The transformation matrix that defines the orientation of the body is

Ai
c




0.7071 0 0.7071
0.7071 0 −0.7071
0 1 0




At the given configruation, one also has

G i
c




0 1 0
1 0 0
0 0 1




, Gi
c




0 0.7071 0.7071
0 0.7071 −0.7071
1 0 0




It was shown in Example 7 that the generalized forces associated with the translation
and the orientation coordinates of the body reference are

Qi
R c Fi

c [5.0 0 − 3.0]T

Qi
v c [−1.2375 − 0.45 − 0.6]T

Using the mass of the body, one has

mi
RR c miI c 


2 0 0
0 2 0
0 0 2




and

mi
vv c G iT Ii

vvG i
c




0.3 0 0
0 0.3 0
0 0 0.3




Since a centroidal body coordinate system is used

mi
Rv c miT

vR c 0

The angular velocity vector in the body coordinate system is

� i
c G i�̇i

c [0 20 − 35]T
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Using Euler angles and their time derivatives, one has

Ġ i
c






v̇ i cos v i sin w i + ẇ i sin v i cos w i
− ẇ i sin w i 0

v̇ i cos v i cos w i
− ẇ i sin v i sin w i

− ẇ i cos w i 0

− v̇ i sin v i 0 0





c






−35 0 0

0 35 0

0 0 0





It follows that

Ġ i�̇i
c [−700 0 0]T

The quadratic velocity inertia force vector associated with the translation of the
body reference is equal to zero since a centroidal body coordinate system is used,
while the force vector associated with the orientation coordinates is

(Qi
v)v c −G iT [� i × (I i

vv� i) + I i
vvĠ i�̇i] c






0

210

0





Using the case of the centroidal body coordinate system, the matrix equation of
motion of the body can be written as














2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 0.3 0 0

0 0 0 0 0.3 0

0 0 0 0 0 0.3



























R̈i
x

R̈i
y

R̈i
z

f̈i

v̈ i

ẅ i














c














5.0
0

−3.0
−1.2375

−0.45

−0.6














+














0

0

0

0

210

0













or














2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 0.3 0 0

0 0 0 0 0.3 0

0 0 0 0 0 0.3



























R̈i
x

R̈i
y

R̈i
z

f̈i

v̈ i

ẅ i














c














5.0
0

−3.0
−1.2375

209.55

−0.6













The solution of this system of equations defines the accelerations as

[R̈i
x R̈i

y R̈i
z f̈i v̈ i ẅ i] c [2.5 0 − 1.5 − 4.125 698.5 − 2.0]

The results obtained in this example can also be used to show that

AiĠ i
c






−24.7485 0 0

−24.7845 0 0

0 35 0
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while

Ġi
c






0 −ḟi sinfi v̇ i cos v i sinfi + ḟi sin v i cosfi

0 ḟi cosfi
− v̇ i cos v i cosfi + ḟi sin v i sinfi

0 0 − v̇ i sin v i






c






0 −14.142 14.142

0 14.142 14.142

0 0 0





Nonetheless,

AiĠ i�̇i
c Ġi�̇i

c






−494.97

−494.97

0





remains in effect.

7.9 CONSTRAINED DYNAMICS

As in the case of planar analysis, there are different approaches for formulat-
ing the dynamic equations of constrained spatial multibody systems. The first
approach, in which a set of independent coordinates are used in the formulation
of the dynamic relationships, leads to the smallest set of differential equations
expressed in terms of the system degrees of freedom. This method will be dis-
cussed in more detail in Section 13 of this chapter. An alternative approach that
is discussed in this section is to use the augmented formulation, wherein the
dynamic equations are formulated in terms of a set of dependent and indepen-
dent coordinates. The kinematic relationships that describe mechanical joints
and specified motion trajectories are adjoined to the system differential equa-
tions using the technique of Lagrange multipliers. This approach leads to a
relatively large system of loosely coupled equations that can be solved using
matrix, numerical, and computer methods.

Kinematic Equations Consider a multibody system that consists of nb inter-
connected bodies. In the analysis presented in this section, the configuration of
each body in the multibody system is described using the absolute Cartesian
coordinates Ri and the orientation coordinates �i. The vector of system gen-
ralized coordinates can be written as

q c [R1T
�2T

R2T
�2T

· · · RnT
b �nT

b ]T (7.147)

which can also be written as

q c [q1T
q2T

· · · qnT
b ]T (7.148)
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where

qi
c [RiT �iT]T (7.149)

The kinematic relationships that describe mechanical joints and specified
motion trajectories such as driving constraints can be written in the following
vector form:

C(q, t) c 0 (7.150)

If the number of kinetmatic constraint equations is equal to the number of
the generalized coordinates, the system is said to be kinematically driven, and
in this case, Eq. 150 can be solved for the generalized coordinates using a
Newton–Raphson algorithm.

The velocity kinematic equations can be obtained by differentiating Eq. 150
with respect to time, yielding

Cqq̇ c −Ct (7.151)

where Cq is the constraint Jacobian matrix and Ct is the vector of partial
derivatives of the constraint equations with respect to time. The Jacobian matrix
is obtained by differentiating the constraint equations with respect to the coor-
dinates, while the vector Ct is defined as

Ct c
∂C
∂t

(7.152)

The vector Ct is the zero vector if the constraint equations are not explicit func-
tions of time. If the constraint equations are linearly independent, the constraint
Jacobian matrix has a full row rank, and in the case of kinematically driven sys-
tems, the Jacobian matrix becomes a square matrix. In this special case, Eq. 151
can be considered as a linear system of algebraic equations in the velocities,
and this system has a unique solution that can be determined assuming that the
generalized coordinates are known from solving Eq. 150.

The kinematic acceleration equations can be obtained by differentiating Eq.
151 with respect to time. This leads to

Cqq̈ c Qd (7.153)

where Qd is a vector that absorbs terms that are quadratic in the velocities. This
vector is defined as

Qd c −Ct t − (Cqq̇)qq̇ − 2Cqtq̇ (7.154)
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Equation 153 can be considered as a linear system of algebraic equations in the
accelerations, and in the case of kinematically driven systems, Eq. 153 has a
unique solution that determines the vector of generalized accelerations.

It is clear that the kinematic equations of the spatial multibody systems are
similar to the equations obtained in the case of planar systems. Consequently,
the numerical algorithms used in the spatial kinematic analysis have the same
steps as the algorithms used in the planar kinematic analysis. These algorithms
were discussed in detail in Chapter 3.

Constrained Dynamic Equations In the formulation of the dynamic equa-
tions using the absolute coordinates, the technique of Lagrange multipliers is
used to adjoin the kinematic constraint equations to the differential equations
of motion. For body i in the system, the equations of motion can be written in
a matrix form as

Miq̈i + CT
qi � c Qi

e + Qi
v, i c 1, 2, . . . , nb (7.155)

where Mi is the body mass matrix, qi
c [RiT �iT]T is the vector of body gen-

eralized coordinates, Cqi is the constraint Jacobian matrix, � is the vector of
Lagrange multipliers, Qi

e is the vector of generalized applied forces, and Qi
v is

the vector of inertia forces that absorbs terms that are quadratic in the velocities.
In the forward dynamics, the unknowns in Eq. 155 are the vectors of acceler-
ations and Lagrange multipliers. The number of generalized coordinates is 6
× nb, while the number of Lagrange multipliers is nc, where nc is the number
of kinematic constraint equations. Therefore, the total number of unknowns is
6nb + nc. Equation 155, when it is written for each body in the system, leads
to 6nb differential equations. The remaining nc equations, which are required
in order to be able to solve for the 6nb + nc unknowns, are defined by Eq. 153.
This equation can be written in the following form:

[Cq1 Cq2 · · · Cqnb ]









q̈1

q̈2

...
q̈nb








c Qd (7.156)

Equations 155 and 156 can be combined in order to obtain the following matrix
equation:











M1 0 · · · 0 CT
q1

0 M2 · · · 0 CT
q2

...
...

. . .
...

...
0 0 · · · Mnb CT

qnb

Cq1 Cq2 · · · Cqnb 0





















q̈1

q̈2

...
q̈nb

�











c











Q1
e + Q1

v

Q2
e + Q2

v
...

Qnb
e + Qnb

v

Qd











(7.157)
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which can also be written as

[ M CT
q

Cq 0 ] [ q̈

� ] c [ Qe + Qv

Qd ] (7.158)

This equation can be solved for the vectors of accelerations and Lagrange mul-
tipliers. The vector of Lagrange multipliers can be used to determine the gener-
alized constraint forces CT

q �, while the accelerations can be integrated forward
in time in order to determine the generalized coordinates and velocities. The
obtained numerical solution, however, has to satisfy the algebraic kinematic
constraint relationships of Eq. 150. The numerical algorithm for solving this
mixed system of differential and algebraic equations is the same as the one
discussed in the preceding chapter.

7.10 FORMULATION OF THE JOINT CONSTRAINTS

In the analysis presented in this book, the kinematic constraints are classified as
joint or driving constraints. Joint constraints define the connectivity between
bodies in the system, while driving constraints describe the specified motion
trajectories. The driving constraints may depend on time and may take any form
depending on the particular application. On the other hand, in the case of using
the absolute coordinates in the analysis of mechanical systems, the formulation
of the kinematic constraints that describe a joint between two arbitrary bodies
in the system can be made independent of the particular topological structure
of that system since similar sets of coordinates are used to describe the motion
of the bodies. A computer library that contains the formulations of a number
of mechanical joints that are often encountered in the analysis of mechanical
systems can be developed and used in the computer-aided analysis of a variety
of applications. In this section, the formulations of some of the mechanical
joints used in spatial multibody systems are discussed.

Spherical Joint Figure 11 shows two bodies, i and j, connected by a spheri-
cal joint which eliminates the freedom of relative translations between the two
bodies, and it allows only three degrees of freedom of relative rotations. The
kinematic constraints of the spherical joint require that two points, Pi and Pj

on bodies i and j, respectively, coincide throughout the motion. This condition
can be written as

C(qi, q j) c Ri + Aiu i
P − R j

− A ju j
P c 0 (7.159)

where Ri and R j are the global position vectors of the origins of the coordi-
nate systems of bodies i and j, respectively; Ai and A j are the transformation
matrices of the two bodies; and ui

P and u j
P are the local position vectors of the
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Figure 7.11 Spherical joint

joint definition points Pi and PJ , respectively. Recall that

∂(Aiu i
P)

∂�i c ũiT
P Gi

c Ai(ũ iT
P G i) (7.160a)

∂(A ju j
P)

∂� j
c ũ jT

P G j
c A j(ũ jT

P G j) (7.160b)

where ũ i
P, ũ i

P, ũ j
P, and ũ j

P are skew symmetric matrices associated with the
vectors ui

P, u i
P, u j

P, and u j
P, respectively, and

ui
P c Aiu i

P, u j
P c A ju j

P (7.161)

Therefore, a virtual change in the kinematic constraints of the spherical joint
leads to

dC c dRi + ũ iT
P Gi d�i

− dR j
− ũ jT

P G j d� j
c 0 (7.162)

This equation can be expressed in matrix form as

dC c [I ũ iT
P Gi

− I − ũ jT
P G j]









dRi

d�i

dR j

d� j








c 0 (7.163)
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which can be written as

Cq dq c 0 (7.164)

where Cq is the Jacobian matrix of the spherical joint constraints defined as

Cq c [I ũ iT
P Gi

− I − ũ jT
P G j] (7.165)

This Jacobian matrix can also be written as

Cq c [Cqi Cq j ] c [Hi
P − H j

P] (7.166)

where

Hi
P c [I ũ iT

P Gi] c [I Aiũ iT
P G i] (7.167a)

H j
P c [I ũ jT

P G j] c [I A jũ jT
P G j] (7.167b)

Example 7.9

Two bodies i and j are connected by a spherical joint. The orientation of the two
bodies are defined by the Euler angles

fi
c v i

c w i
c 0,

fj
c

p

2
, v j

c w j
c 0

The local position vectors of the joint definition point on bodies i and j are defined,
respectively, by the vectors

u i
P c [0 0 0.15]T, u j

P c [0.12 0 0]T

Using the absolute Cartesian coordinates and Euler angles as the generalized coor-
dinates, obtain the Jacobian matrix of the kinematic constraints of this two-body
system at the given configuration.

Solution. The transformation matrices that define the orientation of the two bodies
are

Ai
c






1 0 0

0 1 0

0 0 1





, A j

c






0 −1 0

1 0 0

0 0 1





Using Eq. 81, it can be shown at the given configuration, that

G i
c G j

c






0 1 0

0 0 0

1 0 1
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The Jacobian matrix of the kinematic constraints is

Cq c [I Aiũ iT
P G i

−I −A j ũ jT
P G j]

where

q c [Ri
x Ri

y Ri
z fi v i w i R

j
x R

j
y Rj

z fj v j w j]T

ũ i
P c






0 −0.15 0

0.15 0 0

0 0 0





, ũ j

P c






0 0 0

0 0 −0.12

0 0.12 0





It can also be shown that

Aiũ iT
P G i

c −




0 0 0
0 0.15 0

0 0 0




, A j ũ jT

P G j
c −






0.12 0 0.12

0 0 0

0 0 0





Thus,

Cq c






1 0 0 0 0 0 −1 0 0 0.12 0 0.12

0 1 0 0 −0.15 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0 −1 0 0 0





where each row corresponds to one of the constraint equations of the spherical
joint and each column corresponds to one of the generalized coordinates ordered as
defined in the vector q.

Cylindrical Joint Figure 12 shows a cylindrical joint that allows relative
translation and rotation between body i and body j along the joint axis. The
joint has two degrees of freedom because it eliminates the freedom of four pos-
sible independent relative displacements between the two bodies. The cylindri-
cal joint constraints can, therefore, be described using four algebraic equations.
Let vi and vi be two vectors defined along the joint axis on body i and body
j, respectively, and let Pi and Pj be two points on body i and body j, defined
along the joint axis. The constraint equations for the cylindrical joint can be
defined as

C(qi, q j) c [ vi × v j

vi × (ri
P − r j

P) ] c 0

Since each of the cross products in the preceding equation defines two indepen-
dent equations only, the preceding equation defines four independent kinematic
relationships.

An alternative for the use of the cross product is to use two independent dot
product equations as described in Chapter 2. In this case, two vectors vi

1 and
vi

2 are defined on body i such that vi, vi
1, and vi

2 form an orthogonal triad.
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Figure 7.12 Cylindrical joint

The constraint equations for the cylindrical joint can then be defined as

C(qi, q j) c









viT
1 v j

viT
2 v j

viT
1 rij

P

viT
2 rij

P








c 0 (7.168)

where rij
P is defined as

rij
P c ri

P − r j
P

A simple computer procedure for defining the vectors vi
1 and vi

2 was described
in Chapter 2.

The Jacobian matrix of the cylindrical joint constraint equations can be
written as

Cq c [Cqi Cq j ] c









v jT
Hi

1 viT
1 H j

v jT
Hi

2 viT
2 H j

rijT

P Hi
1 + viT

1 Hi
P −viT

1 H j
P

rijT

P Hi
2 + viT

2 Hi
P −viT

2 H j
P








(7.169)
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where Hi
P and H j

P are as defined by Eq. 167, and

Hi
1 c

�vi
1

�qi c

�
�qi (Aiv i

1)

Hi
2 c

�vi
2

�qi c

�
�qi (Aiv i

2)

H j
c

�v j

�q j
c

�
�q j

(A jv j)





















(7.170)

in which v i
1 and v i

2 are the constant vectors defined in body i coordinate system,
and v j is the constant vector defined in body j coordinate system.

Revolute Joint The revolute joint has one degree of freedom and can be
considered as a special case of the cylindrical joint by eliminating the freedom
of the relative translation between the two bodies. In order to preclude the rela-
tive translation between the two bodies, the distance between point Pi on body i
and point Pj on body j (Fig. 12), both defined along the joint axis, must remain
constant, that is,

rijT
P rij

P − kr c 0 (7.171)

where kr is a constant and

rij
p c ri

P − r j
P (7.172)

Equation 171 is a scalar equation that when added to the constraints of the
cylindrical joint, as defined by Eq. 168, leads to

C(qi, q j) c



















viT
1 v j

viT
2 v j

viT
1 rij

P

viT
2 rij

P

rijT
P rij

P − kr



















c 0 (7.173)

This system of equations has five independent constraint equations.
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The Jacobian matrix of the revolute joint constraints is

Cq c [Cqi Cq j ] c


















v jTHi
1 viT

1 H j

v jTHi
2 viT

2 H j

rijT
P Hi

1 + viT
1 Hi

P −viT
1 H j

P

rijT
P Hi

2 + viT
2 Hi

P −viT
2 H j

P

2rijT
P Hi

P −2rijT
P H j

P


















(7.174)

where all the variables that appear in this equation are the same as the ones
used in the case of the cylindrical joint.

Another alternate approach for formulating the revolute joint constraints is to
consider it as a special case of the spherical joint in which the relative rotation
between the two bodies is allowed only along the joint axis. If point P is the
joint definition point as defined in the case of the spherical joint, and vi and v j

are two vectors defined along the joint axis on bodies i and j, respectively, the
constraint equations of the revolute joint can be written as

C(qi, q j) c





ri
P − r j

P

viT
1 v j

viT
2 v j





c 0 (7.175)

The last two equations in Eq. 175 guarantee that the two vectors vi and v j

remain parallel, thereby eliminating the freedom of the relative rotation between
the two bodies in two perpendicular directions.

The Jacobian matrix of the revolute joint constraints as defined by Eq. 175
is

Cq c [Cqi Cq j ] c





Hi
P −H j

P

v jTHi
1 viT

1 H j

v jTHi
2 viT

2 H j





(7.176)

where the matrices Hi
P, H j

P, Hi
1, and Hi

2 are as defined by Eqs. 167a, 167b, and
170, respectively.

Prismatic Joint The single-degree-of-freedom prismatic joint can also be
obtained as a special case of the cylindrical joint by eliminating the freedom
of the relative rotation between the two bodies about the joint axis. The two
orthogonal vectors hi and h j drawn perpendicular to the joint axis are defined
on bodies i and j, respectively, as shown in Fig. 13. In order to preclude the
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Figure 7.13 Translational joint

relative rotation between the two bodies, one must have

hiTh j
c 0 (7.177)

This equation can be added to the constraint equations of the cylindrical joint, as
defined by Eq. 168, in order to define the constraint equations of the prismatic
joint as

C(qi, q j) c












viT
1 v j

viT
2 v j

viT
1 rij

P

viT
2 rij

P

hiTh j












c 0 (7.178)

This vector equation has five independent constraint equations that depend only
on the generalized coordinates of bodies i and j.

The Jacobian matrix of the prismatic joint constraints is

Cq c [Cqi Cq j ] c












v jTHi
1 viT

1 H j

v jTHi
2 viT

2 H j

rijT
P Hi

1 + viT
1 Hi

P −viT
1 H j

P

rijT
P Hi

2 + viT
2 Hi

P −viT
2 H j

P

h jTHi
h hiTH j

h












(7.179)
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where

Hi
h c [0 h̃ iTGi] c [0 Aih̃ iTG i] (7.180a)

H j
h c [0 h̃ jTG j] c [0 A jh̃ jTG j] (7.180b)

in which h i and h j contain the constant components of the vectors hi and h j ,
respectively.

Universal Joint The universal joint shown in Fig. 14 is a two-degree-of-
freedom joint. Let point P be the point of intersection of the two bars of the
joint cross, as shown in the figure. The coordinates of this point in the coordinate
systems of bodies i and j are constant. Let hi and h j be two orthogonal vectors
defined along the intersecting axes of the joint on bodies i and j, respectively.
The constraint equations of the universal joint can be written as

C(qi, q j) c [ ri
P − r j

P

hiTh j ] c 0 (7.181)

where ri
P and r j

P are the global position vectors of point P defined using the
generalized coordinates of bodies i and j, respectively.

The Jacobian matrix of the universal joint constraints is

Cq c [Cqi Cq j ] c [ Hi
P −H j

P

h jTHi
h hiTH j

h ] (7.182)

where the matrices Hi
P, H j

P, Hi
h, and H j

h are as previously defined.

Figure 7.14 Universal joint
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Rigid Joint A rigid joint between two rigid bodies i and j does not allow any
freedom of relative translation or relative rotation between the two bodies. The
rigid joint is described using six constraint equations that can be written as

C(qi, q j) c [ Ri
− R j

− kr

�i
− � j

− kv ] c 0 (7.183)

where kr and kv are two constant vectors.
The Jacobian matrix of the rigid joint can simply be written as

Cq c [Cqi Cq j ] c [CRi C�i CR j C� j ] c [ I 0 −I 0

0 I 0 −I ] (7.184)

A special case of the rigid joint concerns the ground constraints. If, for
example, body i is the fixed link (ground), one has

C(qi) c [ Ri
− kr

�i
− kv ] c 0 (7.185)

where kr and kv are constant vectors. The preceding constraint equations elim-
inate the freedom of body i to translate or rotate.

Remarks It is clear from the discussion presented in this section that most of
the joint kinematic constraint equations can be formulated in terms of simple
vector addition and/ or scalar product. For instance, the following basic vector
operations were used in formulating the joint constraints between body i and
body j:

ri
P − r j

P c c

viTv j
c 0

viTrij
P c 0

where c is a constant vector, vi and v j are vectors defined on body i and body
j, respectively, and rij

P is as defined by Eq. 172. The preceding three basic equa-
tions and their partial derivatives with respect to the generalized coordinates can
be used to develop a computer library that can be used in formulating many
of the joint constraint equations described in this section.

7.11 NEWTON–EULER EQUATIONS

In the Newton–Euler formulation, the equations of motion of the rigid body are
expressed in terms of the angular velocity and acceleration vectors. It is also
assumed that the origin of the body coordinate system (reference point) is the
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center of mass of the body. Using this assumption and the relationships between
the angular velocity and acceleration vectors, and the orientation coordinates,
it can be shown that Eq. 143 leads to

miR̈i
c (Qi

e)R (7.186)

Ii
vv�i

c Fi
v − �i × (Ii

vv�i) (7.187)

where �i and �i are, respectively, the angular acceleration and velocity vectors
defined in the global coordinate system, mi is the mass of the rigid body, Ii

vv c

AiI
i
vvAiT is the inertia tensor defined in the global coordinate system, and Fi

v

is the vector of Cartesian moments that act on the rigid body i. Equations 186
and 187 can be combined in one matrix equation as

[ miI 0

0 Ii
vv

] [ R̈i

�i ] c [ (Qi
e)R

Fi
v − �i × (Ii

vv�i) ] (7.188a)

or

Mi
dP̈i

c Fi
e + Fi

v (7.188b)

where

Mi
d c [ miI 0

0 Ii
vv

] (7.189a)

P̈i
c [R̈iT �iT]T (7.189b)

Fi
e c [(Qi

e)T
R FiT

v ]T (7.189c)

Fi
v c [0 − [�i × (Ii

vv�i)]T]T (7.189d)

As pointed out previously, the angular velocities in the spatial analysis are
not, in general, the time derivatives of a set of orientation coordinates. For this
reason, the angular accelerations obtained by solving Newton–Euler equations
cannot be integrated directly in order to obtain the system coordinates. One
must first determine the second derivatives of the generalized orientation coor-
dinates as a function of the angular accelerations. The second derivatives of the
generalized orientation coordinates can then be integrated to determine the gen-
eralized coordinates and velocities. In the recursive methods discussed in Sec-
tion 13, however, the angular velocity and acceleration vectors are expressed
in terms of the joint coordinates and their first and second time derivatives.
The joint accelerations can be determined and can be integrated numerically in
order to determine the joint angles and joint velocities.
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7.12 LINEAR AND ANGULAR MOMENTUM

Newton–Euler equations can also be derived using the principle of linear and
angular momentum. The linear momentum of a rigid body is defined as

pi
c ∫Vi

riṙ i d Vi

where ṙ i is the velocity vector of an arbitrary point on the rigid body as defined
by Eq. 68 in terms of the angular velocity vector and in Eq. 73a in terms of
the generalized orientation coordinates. Upon the use of the identities of Eqs.
84 and 140, the linear momentum reduces in the case of a centroidal body
coordinate system to

pi
c ∫Vi

riṘi d Vi
c miṘi

where Ri, in this case, is the global position vector of the center of mass of the
rigid body.

Newton’s law of motion states that the rate of change of the linear momentum
is equal to the vector of the resultant force acting on the body, that is

dpi

d t
c ṗi

c (Qi
e)R

which leads to Newton’s equations

miR̈i
c (Qi

e)R

The angular momentum of the rigid body i is defined as

�i
c ∫Vi

riri × ṙi d Vi

c ∫Vi
ri{(Ri + ui) × (Ṙi + �i × ui)} d Vi

which upon the use of Eqs. 84 and 140 and the definition of the linear momen-
tum reduces to

�i
c Ri × pi + �i

r

where �i
r is the angular momentum defined with respect to the center of mass

of the body, and is given by

�i
r c ∫Vi

riui × (�i × ui) d Vi
c ∫Vi

riAiũ iT ũ i� i d Vi

c AiI i
vv� i
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where I i
vv is defined by Eq. 94. It follows that

d�i
r

d t
c ȦiI i

vv� i + AiI i
vv�̇ i

c �̃iAiI i
vvAiT�i + AiI i

vvAiT�i

where the fact that � i
c AiT�i and � i

c AiT�i is utilized. Recall that Ii
vv c

AiI i
vvAiT. Using this equation, the time rate of change of the angular momentum

can be written as

d�i
r

d t
c �̃iIi

vv�i + Ii
vv�i

c �i × (Ii
vv�i) + Ii

vv�i

The rate of change of the angular momentum �i
r is equal to the applied torques.

Therefore,

d�i
r

d t
c Fi

v

which leads to Euler equations

Ii
vv�i

c Fi
v − �i × (Ii

vv�i)

This equation can also be expressed in terms of vectors defined in the centroidal
body coordinate system as

AiI i
vvAiTAi� i

c Fi
v − Ai[� i × (I i

vv� i)]

which upon premultiplying by AiT yields

I i
vv� i

c F i
v − � i × (I i

vv� i)

where

F i
v c AiTFi

v

is the vector of moments defined in the coordinate system of body i.
It is clear from the preceding discussion that if there are no forces or

moments acting on the rigid body, one gets

dpi

d t
c 0

d�i
r

d t
c 0

which imply that the linear and angular momentum are constants of motion.
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Example 7.10

Consider the rigid body whose inertia tensor defined in a centroidal body coordinate
system is

I i
vv c






1.5 0.0 −1.0
0.0 2.0 0.0

−1.0 0.0 2.5





kg . m2

The body rotates with a constant angular velocity such that

� i
c




15.0
0.0
0.0




rad/ s

Determine the components of the external moments applied to this body.

Solution. Euler’s equation defined in the body coordinate system is

I i
vv� i

c F i
v − � i × (I i

vv� i)

Since the angular velocity vector is constant, it follows that

� i
c 0

Euler’s equation reduces in this case to

F i
v c �̃ i(I i

vv� i)

c






0.0 0.0 0.0
0.0 0.0 −15.0
0.0 15.0 0.0










1.5 0.0 −1.0
0.0 2.0 0.0

−1.0 0.0 2.5










15.0
0.0
0.0






c






0.0
225.0

0.0





N . m

It can be seen from these results that the applied moment is constant in the body
coordinate system. This moment is equal in magnitude and opposite in direction to
the inertial moment due to the centrifugal force.

7.13 RECURSIVE METHODS

As pointed out previously, one of the major advantages of using the absolute
coordinates is that the motion of each body in the multibody system is described
using similar sets of generalized coordinates that do not depend on the topo-
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logical structure of the system. The mass matrices of the bodies in the system
have similar form and dimensions, such that a computer program with simple
structure can be developed based on the augmented formulation. A library of
standard joint constraints can also be developed and used as a module in this
computer program. One disadvantage, however, of using the augmented formu-
lation is the complexity of the numerical algorithm that must be used to solve
the resulting mixed system of differential and algebraic equations.

Other alternate approaches for formulating the equations of motion of con-
strained mechanical systems are the recursive methods, wherein the equations
of motion are formulated in terms of the joint degrees of freedom. This formu-
lation leads to a minimum set of differential equations from which the workless
constraint forces are automatically eliminated. The numerical procedure used in
solving these differential equations is much simpler than the procedure used in
the solution of the mixed system of differential and algebraic equations result-
ing from the use of the augmented formulation.

There are several techniques for formulating the recursive dynamic equations
of multibody systems. These techniques eventually lead to the same equations
if the same set of joint variables is used. In fact, the equivalence of these tech-
niques can be demonstrated using simple coordinate transformations. One of
the approaches used for formulating the dynamic recursive equations is based
on Newton–Euler equations that are expressed in terms of the angular acceler-
ations. We discuss this approach in this section in order to have a better under-
standing of the basic joint–force relationships in the analysis of interconnected
bodies. By so doing, we will have an appreciation of the principle of virtual
work in dynamics, which can also be used to obtain the same recursive dynamic
equations presented in this section.

Recursive Kinematic Equations In order to illustrate the development of
the recursive kinematic equations, we consider the two bodies i − 1 and i, which
are connected by a cylindrical joint as shown in Fig. 15. The two-degree-of-
freedom cylindrical joint allows relative translation along, and relative rotation
about the joint axis. If ti and fi denote, respectively, the relative translation and
rotation between the two bodies, the following kinematic relationships between
the absolute and relative coordinates hold:

Ri + Aiu i
P − Ri − 1

− Ai − 1u i − 1
P c vi − 1ti (7.190a)

�i
c �i − 1 + �i, i − 1 (7.190b)

where u i
P and u i − 1

P are the local position vectors of the joint definition points
on bodies i and i − 1, respectively, vi − 1 is a unit vector defined along the axis
of rotation, and �i, i − 1 is the angular velocity vector of body i with respect to
body i − 1. The vector �i, i − 1 can be written as

�i, i − 1
c vi − 1ḟi (7.191)
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Figure 7.15 Relative motion

and the vector vi − 1 can be written as

vi − 1
c Ai − 1v i − 1 (7.192)

where v i − 1 is a unit vector along the axis of rotation and is defined in the
coordinate system of body i − 1. The components of the unit vector v i − 1 are
constant. It follows that

v̇ i − 1
c �̃ i − 1Ai − 1v i − 1

c �i − 1 × vi − 1 (7.193a)

v̈ i − 1
c �i − 1 × vi − 1 + �i − 1 × (�i − 1 × vi − 1) (7.193b)

Similarly, differentiating Eq. 191 with respect to time, one obtains

�̇ i, i − 1
c vi − 1f̈i + (�i − 1 × vi − 1)ḟi (7.194)

Differentiating Eq. 190a twice with respect to time and Eq. 190b once with
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respect to time and using Eqs. 193a through 194, one obtains

R̈i + �i × ui
P + �i × (�i × ui

P)

− R̈i − 1
− �i − 1 × ui − 1

P − �i − 1 × (�i − 1 × ui − 1
P )

c (�i − 1 × vi − 1)ti + �i − 1 × (�i − 1 × vi − 1)ti + vi − 1ẗ i + 2v̇ i − 1ṫ i

(7.195)

and

�i
c �i − 1 + vi − 1f̈i + (�i − 1 × vi − 1)ḟi (7.196)

Using the skew-symmetric matrix notation, the preceding two equations can be
written as

R̈ i
− ũ i

P�i
c R̈i − 1

− (ũ i − 1
P + tiṽ i − 1)�i − 1 + vi − 1ẗ i + � i

R (7.197)

�i
c �i − 1 + vi − 1f̈i + � i

v (7.198)

where � i
R and � i

v are vectors that absorb terms that are quadratic in the veloc-
ities. Those vectors are defined as

� i
R c −�i × (�i × ui

P) + �i − 1 × (�i − 1 × ui − 1
P )

+ �i − 1 × (�i − 1 × vi − 1)ti + 2v̇ i − 1ṫ i (7.199)

� i
v c (�i − 1 × vi − 1)ḟi (7.200)

Equations 197 and 198 can be combined into one matrix equation as

[ I − ũ i
P

0 I ] [ R̈i

�i ] c [ I − (ũ i − 1
P + tiṽ i − 1)

0 I ] [ R̈i − 1

�i − 1 ]
+ [ vi − 1 0

0 vi − 1 ] [ ẗ i

f̈i ] + [ � i
R

� i
v
] (7.201)

Note that

[ I − ũ i
P

0 I ] −1

c [ I ũ i
P

0 I ] (7.202)

Using this equation, Eq. 201 leads to

[ R̈i

�i ] c [ I ũ i
P − (ũ i − 1

P + tiṽ i − 1)

0 I ] [ R̈i − 1

�i − 1 ]
+ [ vi − 1 ũ i

Pvi − 1

0 vi − 1 ] [ ẗ i

f̈i ] + [ � i
R + ũ i

P� i
v

� i
v

] (7.203)
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which can also be written as

P̈i
c DiP̈i − 1 + HiP̈i

r + � i (7.204)

where

P̈i − 1
c [R̈i − 1T

�i − 1T
]T (7.205a)

P̈i
c [R̈iT �iT]T (7.205b)

Di(Pi, Pi − 1) c [ I ũ i
P − (ũ i − 1

P + tiṽ i − 1)

0 I ] (7.205c)

Hi
c [ vi − 1 ũ i

Pvi − 1

0 vi − 1 ] (7.205d)

Pi
r c [ti fi]T (7.205e)

� i
c [(� i

R + ũ i
P� i

v )T � iT
v ]T (7.205f)

The matrix Di can be written as

Di(Pi, Pj) c [ I r̃ ij
P

0 I ]
and r̃ ij

P is the skew-symmetric matrix associated with the position vector of the
origin of body i with respect to the origin of body j with j c i − 1, that is,

rij
P c ui

P − u j
P − tiv j

The matrix Di satisfies the following identities:

[Di(Pi, Pj)]−1
c D j(Pj , Pi)

Di(Pi, Pk) c Di(Pi, Pj)D j(Pj , Pk)

Di(Pi, Pi) c I

In Eq. 204, the vector of accelerations of body i is expressed in terms of the accel-
erations of body i−1 and the vector of joint accelerations P̈i

r. The dimension of the
vector Pi

r is equal to the number of the joint degrees of freedom. For a multibody
system consisting of a set of interconnected rigid bodies, a matrix equation similar
to Eq. 204 can be obtained for any pair of bodies connected by a joint. The form
of the matrices Di and Hi depends on the joint type, and consequently, equations
similar to Eq. 204 can be developed in the cases of spherical, universal, prismatic,
and revolute joints. The case of revolute joint can be considered as a special case
of the cylindrical joint in which the translation ti is constant, and the case of the
prismatic joint can also be considered as a special case of the cylindrical joint in
which the rotation fi is assumed to be constant.
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Since Eq. 204 is developed for two arbitrary bodies, one also has

P̈i − 1
c Di − 1P̈i − 2 + Hi − 1P̈

i − 1
r + �i − 1

P̈i − 2
c Di − 2P̈i − 3 + Hi − 2P̈i − 2

r + � i − 2

...

P̈2
c D2P̈

1
+ H2P̈2

r + � 2

















(7.206)

where body 1 is considered as the base body.
Substituting Eq. 206 into Eq. 204, the accelerations of body i can be

expressed in terms of the accelerations of the base body and the joint accel-
erations as

P̈i
c Di

tP̈
1 + Hi

tP̈r + � i
t (7.207)

where Pr is the vector of the system joint degrees of freedom, Di
t and Hi

t are
velocity influence coefficient matrices, and � i

t is a vector that absorbs terms
that are quadratic in the velocities. The vector Pr is given by

Pr c [P2T

r P3T

r · · · PiT
r ]T (7.208a)

where Pk
r is the vector of the degrees of freedom of the joint connecting bodies

k and k − 1, and

Di
t c DiDi − 1Di − 2 · · · D2

c

i

∏
j c 2

Di + 2 − j (7.208b)

Hi
t c [Hi

2 Hi
3 · · · Hi

i] (7.208c)

� i
t c DiDi − 1 · · · D3� 2 + DiDi − 1 · · · D4�3

+ · · · + Di� i − 1 + � i (7.208d)

in which

Hi
k c DiDi − 1 · · · Dk + 1Hk (7.208e)

If the motion of the base body is specified, Eq. 207 can be written as

P̈i
c Hi

tP̈r + � i
t (7.209)

where

� i
t c � i

t + Di
tP̈

1 (7.210)
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Example 7.11

Figure 16 shows a two-degree-of-freedom robotic manipulator which consists of
three bodies including the ground (body 1). Body 2 is connected to body 1 by a
revolute joint at point Q, and the axis of this joint is along the Y 1 axis. Body 3 is
connected to body 2 by a revolute joint at point P, and the axis of this revolute joint
is assumed to be parallel to the Z2 axis. Obtain the recursive kinematic relationships
of this system.

Solution. Since body 2 is rotating about the Y 1 axis, the transformation matrix that
defines the orientation of this body is given by

A2
c




cosf2 0 sinf2

0 1 0

−sinf2 0 cosf2




where f2 is the degree of freedom of the joint at point Q. Similarly, since body 3
rotates about an axis parallel to the Z2 axis, the orientation of this body with respect
to body 2 is defined by the matrix

A32
c






cosf3
−sinf3 0

sinf3 cosf3 0

0 0 1





where f3 is the degree of freedom of the second revolute joint.

Figure 7.16 Manipulator example



450 SPATIAL DYNAMICS

The transformation matrix that defines the orientation of body 3 with respect to
body 1 is then given by

A3
c A2A32

c






cosf2 0 sinf2

0 1 0
−sinf2 0 cosf2








cosf3
−sinf3 0

sinf3 cosf3 0
0 0 1




c






cosf2 cosf3
−cosf2 sinf3 sinf2

sinf3 cosf3 0
−sinf2 cosf3 sinf2 sinf3 cosf2





Equations 190a and 190b can be used to describe the connectivity between bodies
2 and 3 as

R3 + A3u3
P c R2 + A2u2

P

�3
c �2 + �32

where u2
P and u3

P are the local position vectors of point P defined in the coordinate
systems of body 2 and 3, respectively, and �32 is the angular velocity vector of
body 3 with respect to body 2. The vector �32 is given by

�32
c ḟ3v2

in which

v2
c






cosf2 0 sinf2

0 1 0
−sinf2 0 cosf2










0
0
1





c






sinf2

0
cosf2





This defines �32 as

�32
c ḟ3 





sinf2

0
cosf2





which upon differentiation yields

�̇32
c f̈3 





sinf2

0
cosf2





+ ḟ2ḟ3 





cosf2

0
−sinf2





c f̈3v2 + � 3

v

where

� 3
v c ḟ2ḟ3 





cosf2

0
−sinf2





By differentiating the kinematic relationships of the revolute joint at P, one obtains

R̈3
− ũ3

P�3
c R̈2

− ũ2
P�2

− (�̃3)2u3
P + (�̃2)2u2

P

�3
c �2 + �̇32
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or

[ I − ũ3
P

0 I ] [ R̈3

�3 ] c [ I − ũ2
P

0 I ] [ R̈2

�2 ] + [ 0
v2 ] f̈3 + [ � 3

R

� 3
v

]
where ũ2

P and ũ3
P are the skew-symmetric matrices associated with the vectors

u2
P c A2u2

P

u3
P c A3u3

P

and

� 3
R c (�̃2)2u2

P − (�̃3)2u3
P

It follows that

[ R̈3

�3 ] c [ I ũ3
P − ũ2

P

0 I ] [ R̈2

�2 ] + [ ũ3
Pv2

v2 ] f̈3 + [ �3
R + ũ3

P�3
v

�3
v

]
This equation can also be obtained as a special case of Eq. 203 or equivalently, Eq.
204, that describes the more general two-parameter screw motion. It is clear from
the preceding equation that the matrix H3 reduces in the case of revolute joint to a
six-dimensional vector since the revolute joint has only one degree of freedom.

For the revolute joint between body 2 and body 1, similar kinematic relationships
can be obtained. Nonetheless, the resulting equations can be simplified since body
1 is fixed in space. In this case, one has

[ R̈2

�2 ] c [ ũ2
Qv1

v1 ] f̈2 + [ �2
R

0 ]
where ũ2

Q is the skew-symmetric matrix associated with the vector

u2
Q c A2u2

Q

and

v1
c [0 1 0]T, � 2

R c − (�̃2)2u2
Q

The absolute acceleration of body 3 can then be expressed in terms of the joint
variables as

[ R̈3

�3 ] c [ I ũ3
P − ũ2

P

0 I ] {[ ũ2
Qv1

v1 ] f̈2 + [ �2
R

0 ]}
+ [ ũ3

Pv2

v2 ] f̈3 + [ � 3
R + ũ3

P� 3
v

�3
v

]
which can be written in the form of Eq. 209 as

P̈3
c H3

t P̈r + �3
t

where

P̈3
c [R̈3T

�3T
]T

Pr c [f2 f3]T
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H3
t c [ (ũ2

Q + ũ3
P − ũ2

P)v1 ũ3
Pv2

v1 v2 ]
� 3

t c [ � 2
R + � 3

R + ũ3
P� 3

v

� 3
v

]
We note also from the preceding equations that the angular velocity of body 3

can be expressed in terms of the joint rates as

�3
c �2 + �32

c ḟ2v1 + ḟ3v2

c ḟ2 




0

1

0





+ ḟ3 





sinf2

0

cosf2





c






ḟ3 sinf2

ḟ2

ḟ3 cosf2





Using the results obtained in this example, one can also verify that

�̃3A3
c Ȧ3

and

�32T
v2

c ḟ3

Dynamic Equations Equation 209, in which the accelerations of body i are
expressed in terms of the joint accelerations, can be used with Newton–Euler
equations to obtain a minimum set of differential equations expressed in terms
of the joint degrees of freedom. If Eq. 209 is substituted into Newton–Euler
equations of body i as defined by Eq. 188b, one gets

Mi
d(Hi

tP̈r + � i
t) c Fi

e + Fi
v + Fi

c (7.211)

where Fi
c is the vector of joint reaction forces acting on body i. Premultiplying

Eq. 211 by HiT
t , and rearranging terms, one obtains

HiT
t Mi

dHi
tP̈r c HiT

t (Fi
e + Fi

v + Fi
c − Mi

d� i
t) (7.212)

which can be written as

Mi
rP̈r c Qi

r + HiT
t Fi

c, i c 1, 2, . . . , nb (7.213)

where nb is the total number of bodies, and

Mi
r c HiT

t Mi
dHi

t (7.214)

Qi
r c HiT

t (Fi
e + Fi

v − Mi
d� i

t) (7.215)

Note that Mi
r is a square matrix whose dimension is the same as the number of

the system joint degrees of freedom. Since Eq. 213 is developed for an arbitrary
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body in the system, one has

nb

���
i c 1

Mi
rP̈r c

nb

���
i c 1

Qi
r +

nb

���
i c 1

HiT
t Fi

c

Utilizing the fact that

nb

���
i c 1

HiT
t Fi

c c 0,

one obtains

MrP̈r c Qr (7.216)

where Mr is the generalized system mass matrix associated with the joint
degrees of freedom, and Qr is the vector of generalized forces. The matrix
Mr and the vector Qr are given by

Mr c

nb

���
i c 1

Mi
r (7.217)

Qr c

nb

���
i c 1

Qi
r (7.218)

Since the kinetic energy is a positive definite quadratic form, the system mass
matrix Mr is nonsingular, and Eq. 216 can be solved for the joint accelerations
as

P̈r c M−1
r Qr (7.219)

These accelerations can be integrated numerically forward in time using a direct
numerical integration method. The numerical solution defines the joint coordi-
nates and velocities. Once the joint variables are determined, the absolute vari-
ables can be determined by using the kinematic relationships.

Example 7.12

Use the recursive kinematic relationships obtained in Example 11 to derive the
independent differential equations of motion of the two degree of freedom robotic
manipulator shown in Fig. 16.

Solution. Newton–Euler equations of body 3 can be written in the following matrix
form:

M3
d P̈

3
c F3

e + F3
v + F3

c
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or

[ m3I 0

0 I3
vv

] [ R̈
3

�3 ] c [ (F3
e)R + (F3

c)R

(F3
e)v − �3 × (I3

vv�3) + (F3
c)v ]

This equation can be expressed in terms of the joint degrees of freedom using the
kinematic equations obtained in Example 11. It was shown that the acceleration
kinematic relationships are

P̈3
c H3

t P̈r + � 3
t

where

H3
t c [ (ũ2

Q + ũ3
P − ũ2

P)v1 ũ3
Pv2

v1 v2 ]
and

� 3
t c [ � 2

R + �3
R + ũ3

P�3
v

� 3
v

]
Using Eq. 213, one has

M3
r P̈r c Q3

r + H3T

t F3
c

where

M3
r c H3T

t M3
dH3

t c [ v1T
(ũ2

Q + ũ3
P − ũ2

P)T v1T

v2T
ũ3T

P v2T ] [ m3I 0

0 I3
vv

]
. [ (ũ2

Q + ũ3
P − ũ2

P)v1 ũ3
Pv2

v1 v2 ]
c [ m3

11 m3
12

m3
21 m3

22
]

in which

m3
11 c m3v1T

(ũ2
Q + ũ3

P − ũ2
P)T(ũ2

Q + ũ3
P − ũ2

P)v1 + v1T
I3
vvv1

m3
12 c m3

21 c v1T
{m3(ũ2

Q + ũ3
P − ũ2

P)Tũ3
P + I3

vv}v2

m3
22 c v2T

[m3ũ3T

P ũ3
P + I3

vv ]v2

The vector Q3
r is given by

Q3
r c H3T

t [F3
e + F3

v − M3
d� 3

t ]

c [ v1T
(ũ2

Q + ũ3
P − ũ2

P)T v1T

v2T
ũ3T

P v2T ] [ (F3
e)R − m3(� 2

R + � 3
R + ũ3

P� 3
v )

(F3
e)v − �3 × (I3

vv�3) − I3
vv� 3

v
]

c [ (Q3
r )1

(Q3
r )2 ]
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where

(Q3
r )1 c v1T

(ũ2
Q + ũ3

P − ũ2
P)T{(F3

e)R − m3(� 2
R + � 3

R + ũ3
P� 3

v )}

+ v1T
{(F3

e)v − �3 × (I3
vv�3) − I3

vv� 3
v}

(Q3
r )2 c v2T

ũ3
P{(F3

e)R − m3(� 2
R + � 3

R + ũ3
P� 3

v )}

+ v2T
{(F3

e)v − �3 × (I3
vv�3) − I3

vv� 3
v}

Similarly, for body 2, one has

P̈2
c H2

t P̈r + � 2
t

where, as shown in Example 11,

H2
t c [ ũ2

Qv1 0
v1 0 ]

� 2
t c [ � 2

R

0 ]
It follows that

M2
r c H2T

t M2
dH2

t

c [ v1T
ũ2T

Q v1T

0 0 ] [ m2I 0
0 I2

vv
] [ ũ2

Qv1 0
v1 0 ] c [ m2

11 0

0 0 ]
where

m2
11 c v1T

[m2ũ2T

Q ũ2
Q + I2

vv ]v1

and

Q2
r c H2T

t (F2
e + F2

v − M2
d� 2

t )

c [ v1T
ũ2T

Q v1T

0 0 ] [ (F2
e)R − m2� 2

R

(F2
e)v − �2 × (I2

vv�2) ] c [ (Q2
r )1

0 ]
where

(Q2
r )1 c v1T

ũ2T

Q {(F2
e)R − m2� 2

R} + v1T
{(F2

e)v − �2 × (I2
vv�2)}

The system equations of motion can then be written in terms of the joint degrees
of freedom using Eq. 216 as

[ m2
11 + m3

11 m3
12

m3
21 m3

22
] [ f̈2

f̈3 ] c [ (Q2
r )1 + (Q3

r )1

(Q3
r )2 ]
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The recursive method presented in this section can also be extended to the
analysis of open-chain multibody systems with multiple branches. The use of
this approach in the dynamic analysis of such systems has two major com-
putational advantages over the augmented formulations that employ Lagrange
multipliers. The first advantage is that a minimum set of differential equations
is obtained. As a result of that, the constraint forces are automatically elimi-
nated since the dynamic equations are expressed in terms of the joint degrees
of freedom. The second advantage is the simplicity of the numerical scheme
used for the solution of the dynamic equations developed using the recursive
methods. There is no need for using a Newton–Raphson algorithm since the
recursive formulation of the equations of open kinematic chains leads only to a
set of differential equations. One disadvantage of using the recursive method,
however, is that the dynamic equations are expressed in terms of a set of joint
variables that depend on the topological structure of the multibody system. For
that reason, it is more difficult to develop general-purpose multibody computer
programs based on the recursive methods. These methods also become less
attractive in the analysis of closed-chain mechanical systems. One approach
for dealing with closed-chain systems using the recursive methods is to make
cuts at selected secondary joints to form spanning tree structures. The method
of analysis presented in this section can then be used to develop the equations of
motion of the resulting open-chain branches. Connectivity conditions between
the branches at the secondary joints can be handled by either eliminating the
dependent variables or by using the method of Lagrange multipliers. In the case
of Lagrange multipliers, the recursive formulation leads to a mixed system of
differential and algebraic equations that must be solved using the same numeri-
cal procedure used in the case of the augmented formulation.

An Alternative Matrix Approach Another elegant approach similar, in
principle, to the methods discussed in Chapter 6 can be used for deriving the
recursive kinematic and dynamic equations of spatial mechanical systems. In
this approach, Eq. 206 can be written for nb bodies as

P̈nb
− Dnb P̈nb − 1

c Hnb P̈nb
r + � nb

P̈nb − 1
− Dnb − 1P̈nb − 2

c Hnb − 1P̈nb − 1
r + � nb − 1

...

P̈i
− DiP̈i − 1

c HiP̈i
r + � i

...

P̈2
− D2P̈1

c H2P̈2
r + � 2

P̈1
c P̈1
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which leads to











I 0 0 0 · · · 0 0

−D2 I 0 0 · · · 0 0

0 −D3 I 0 · · · 0 0
...

...
...

...
...

. . .
...

0 0 0 0 · · · −Dnb I





















P̈1

P̈2

P̈3

...
P̈

nb











c










I

H2 0

H3

0
. . .

Hnb




















P̈1

P̈2
r

P̈3
r
...

P̈nb
r











+











0

� 2

� 3

...
� nb











This equation can be written as

DP̈ c Hq̈i + �

where

D c











I 0 0 0 · · · 0 0

−D2 I 0 0 · · · 0 0

0 −D3 I 0 · · · 0 0
...

...
...

...
...

. . .
...

0 0 0 0 · · · −Dnb I











H c










I

H2 0

H3

0
. . .

Hnb









P̈ c [P̈1T

P̈2T
P̈3T

· · · P̈nT
b ]T

q̈i c [P̈1T
P̈2T

r P̈3T

r · · · P̈
nT

b
r ]T

� c [0 �2T
�3T

· · · �nT
b ]T
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The matrix D can be written as the product of nb − 1 matrices as follows:

D c















I

−D2 I

0 I

0
. . .

. . .

0 I





























I

0 I

−D3 I

0
. . .

. . .

0 I















· · ·












I
0 I

0 I
0

. . .
. . .

−Dnb I












from which

D−1
c















I

0 I

0 I

0
. . .

. . .

Dnb I





























I

0 I

0
. . .

. . .

Dnb − 1 I

0 I















· · ·















I

D2 I

0 I

0
. . .

. . .

0 I
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or

D−1
c















I 0 0 · · · 0

D2
1 I 0 · · · 0

D3
2 D3

1 I · · · 0

D4
3 D4

2 D4
1 · · · 0

...
...

...
. . .

...

Dnb
nb − 1 Dnb

nb − 2 Dnb
nb − 3 · · · I














where

Dk
r c DkDk − 1 · · · Dk − r + 1

The absolute accelerations can then be expressed in terms of the joint acceler-
ations as

P̈ c Biq̈i + � i

where Bi c D−1H and � i c D−1� . In the case of constrained motion, the con-
straint forces can be added to Eq. 188b and the system equations of motion can
be written in terms of the absolute variables as

MdP̈ c Fe + Fv + Fc

where Md is the block diagonal mass matrix, Fe is the vector of applied forces,
Fv is the vector of centrifugal forces, and Fc is the vector of constraint forces.
The matrix Md and the vectors Fe, Fv, and Fc are defined as

Md c








M1
d

M2
d 0

0
. . .

Mnb
d








Fe c









F1
e

F2
e
...

Fnb
e








, Fv c









F1
v

F2
v
...

Fnb
v








, Fc c









F1
c

F2
c
...

Fnb
c
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Substituting the kinematic acceleration equations into the dynamic equations of
motion and premultiplying by BT

i , one obtains

BT
i [Md(Biq̈i + �i)] c BT

i (Fe + Fv + Fc)

Since these equations are expressed in terms of the independent joint acceler-
ations one must have

BT
i Fc c 0

Using the preceding two equations, the independent differential equations of
motion of the system reduce to

Miq̈i c Qi

where

Mi c BT
i MdBi, Qi c BT

i (Fe + Fv − Md� i)

PROBLEMS

1. If the axes X i, Y i, and Zi of the coordinate system of body i are defined
in the coordinate system XYZ by the vectors [0.5 0.0 0.5]T, [0.25 0.25
−0.25]T, and [−2.0 4.0 2.0]T, respectively, use the method of direction
cosines to determine the transformation matrix that defines the orientation
of body i in the coordinate system XYZ.

2. The axes X i, Y i, and Z i of the coordinate system of body i are defined
in the coordinate system XYZ by the vectors [0.0 1.0 1.0]T, [−1.0 1.0
−1.0]T, and [−2.0 −1.0 1.0]T, respectively. Use the method of the direc-
tion cosines to determine the transformation matrix that defines the orien-
tation of the rigid body i in the coordinate system XYZ.

3. The axes X i, Y i, and Z i of the coordinate system of the rigid body i are
defined in the coordinate system XYZ by the vectors [0.0 −1.0 1.0]T,
[−1.0 1.0 1.0]T, and [−2.0 −1.0 −1.0]T, respectively. Determine the
transformation matrix of body i using the method of the direction cosines.

4. The axes X i, Y i, and Z i of the coordinate system of the rigid body i
are defined in the coordinate system XYZ by the vectors [0.0 1.0 1.0]T,
[−1.0 1.0 −1.0]T, and [−2.0 −1.0 1.0]T, respectively. The axes X j ,
Y j , and Z j of the coordinate system of body j are defined in the coor-
dinate system XYZ by the vectors [0.0 −1.0 1.0]T, [−1.0 1.0 1.0]T,
and [−2.0 −1.0 −1.0]T, respectively. Use the method of the direction
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cosines to define the orientation of body i with respect to body j. Define
also the orientation of body j with respect to body i.

5. The axes of the coordinate system of body i are defined in the XYZ coordi-
nate system by the vectors [1.0 0.0 1.0]T, [1.0 1.0 −1.0]T, and [−1.0
2.0 1.0]T. Use the method of the direction cosines to define the orientation
of body i in the coordinate system of body j whose axes are defined by the
vectors [0.0 −1.0 1.0]T, [−1.0 1.0 1.0]T, and [−2.0 −1.0 −1.0]T.

6. In problem 1, if body i rotates an angle v i
1 c 458 about its Z i axis followed

by another rotation v i
2 c 608 about its X i axis, determine the transformation

matrix that defines the orientation of the body in the XYZ coordinate system
as the result of these two consecutive rotations.

7. In problem 2, if body i rotates an angle v i
1 c 908 about its Y i axis followed

by a rotation v i
2 c 308 about its X i axis, determine the transformation matrix

that defines the orientation of the rigid body as the result of these two
consecutive rotations.

8. If the rigid body i in problem 3 rotates an angle v i
1 c 608 about its X i

axis, and an angle v i
2 c 458 about its Z i axis, determine the transformation

matrix that defines the final orientation of the body in the XYZ coordinate
system.

9. Obtain the transformation matrix in terms of Euler angles if the sequence
of rotations is defined as follows: a rotation fi about Zi axis, a rotation v i

about Y i axis, and a rotation w i about X i axis.

10. Obtain the transformation matrix in terms of Euler angles if the sequence
of rotation is defined as follows: a rotation fi about Z i axis, a rotation v i

about Y i axis, and a rotation w i about Z i axis.

11. Use the transformation obtained in problem 1 to extract the three Euler
angles by considering the sequence of rotation described in Section 3. If
the origin of the body coordinate system is defined by the vector Ri

c [−1.5
0.4 3.2]T, determine the global position vector of point Pj whose local
coordinates are defined by the vector u i

P c [0.3 0.1 −0.5]T.

12. Use the transformation matrix obtained by solving problem 2 to extract the
three Euler angles using the sequence of rotation described in Section 3.
If the origin of the body coordinate system is defined by the vector Ri

c

[2.1 3.4 −11.0]T, determine the global position vector of point Pi whose
position vector in the body coordinate system is defined by the vector u i

P
c [0.1 −0.2 0.35]T.

13. Use the general development presented in Section 4 to define the angular
velocity vector �i in the following two cases: (a) a simple rotation about
the global X axis, and (b) a simple rotation about the global Y axis.
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14. Use the general development presented in Section 4 to define the angular
velocity vector � i in the following two cases: (a) a simple rotation about
the global X axis, and (b) a simple rotation about the global Y axis.

15. The angular velocity in the body coordinate system is defined by Eq. 83
as � i

c G i�̇i. Using this equation, show that � i
c �̇ i

c AiT�i.

16. Use Eq. 97 to determine the location of the center of mass of the hemi-
sphere and right circular cone shown in Fig. P1.

Figure P7.1

17. Determine the elements of the inertia tensor of a right circular cylinder
with radius r and length h with respect to a centroidal coordinate system.

18. Determine the elements of the inertia tensor of hollow cylinder with inner
and outer radii ri and ro, respectively, and length h. Use a centroidal coor-
dinate system.

19. Using a centroidal coordinate system, determine the elements of the inertia
tensor of the hemisphere and right circular cone shown in Fig. P1. Use the
parallel axes theorem to determine the moments of inertia in the coordinate
system X iY iZ i shown in the figure.

20. Determine the elements of the inertia tensor of the composite bodies shown
in Fig. P2 in the coordinate systems shown in the figure.

21. In problem 11, let the rigid body be subjected to a moment whose compo-
nents are defined in the global coordinate system by

Mi
a c [3.0 − 11.0 0.0]T N . m

Obtain the generalized forces associated with Euler angles as the result of
the application of the moment Mi

a.
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Figure P7.2

22. In problem 11, let the rigid body be subjected to the forces

Fi
1 c [10.0 0.0 35.0)]T N, Fi

2 c [5.0 12.0 − 25.0]T N

and the moment

Mi
a c [3.0 − 11.0 0.0]T N . m

The coordinates of the point of application of the forces Fi
1 and Fi

2 are
given, respectively, by

u i
1 c [0.0 − 0.25 0.8]T m, u i

2 c [0.15 − 0.3 0.65]T m

Assuming that the forces and the moment are defined in the global coor-
dinate system, obtain the generalized forces associated with the translation
and orientation coordinates of the rigid body. Use Euler angles as the ori-
entation coordinates.

23. Repeat the preceding problem assuming that the forces and the moment are
defined in the body coordinate system.

24. A force vector Fi
c [3.0 0.0 -8.0]T N is acting on unconstrained body

i. The orientation of a centroidal body coordinate system is defined by the
Euler angles

fi
c

p

4
, v i

c

p

2
, w i

c p

The time rate of change of Euler angles at the given configuration is

ḟi
c 15, v̇ i

c 80, ẇ i
c −35 rad/ s
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The local position vector of the point of the application of the force is

u i
c [0.1 0 − 0.15]T m

The mass of the body is 5 kg and its inertia tensor is

I i
vv c






4.5 −1.5 0

−1.5 7.5 0

0 0 9.0





kg . m2

Write the equations of motion of this system at the given configuration and
determine the accelerations.

25. A force vector Fi
c [9.0 7.0 −12.0]T N is acting on unconstrained body

i. The orientation of a centroidal body coordinate system is defined by the
Euler angles

fi
c 0, v i

c

p

2
, w i

c

p

4

The time rate of change of Euler angles at the given configuration is

ḟi
c v̇ i

c ẇ i
c 0

The local position vector of the point of the application of the force is

u i
c [0.2 0 − 0.15]T m

The mass of the body is 3 kg and its inertia tensor is

I i
vv c






15 0 −10

0 25 0

−10 0 30





kg . m2

Write the equations of motion of this system at the given configuration and
determine the accelerations.

26. The orientation of a centroidal body coordinate system of unconstrained
body i is defined by the Euler angles

fi
c

p

4
, v i

c

p

2
, w i

c 0

The time rate of change of Euler angles at the given configuration is

ḟi
c 20, v̇ i

c 0, ẇ i
c −35 rad/ s
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and the second time derivatives of the coordinates are

[R̈i
x R̈i

y R̈i
z] c [0 150 − 28] m/ s2

[f̈i v̈ i ẅ i] c [300 10 − 15] rad/ s2

The mass of the body is 4 kg and its inertia tensor is

I i
vv c






15 0 −10

0 25 0

−10 0 20





kg . m2

Determine the resultant external force vector acting at the center of mass
as well as the external moment vector acting on the body.

27. Determine the vector Qd of Eq. 153 in the case of the spherical joint.

28. Determine the vector Qd of Eq. 153 in the case of the cylindrical joint.

29. Determine the vector Qd of Eq. 153 in the case of the revolute joint.

30. Two bodies i and j are connected by a spherical joint. Let

Ri
c [Ri

x Ri
y Ri

z]
T
c [0.95 3.0 − 1.5]T m

�i
c [fi v i w i]T

c [308 608 1508]T

� j
c [fj v j w j]T

c [608 308 908]T

The position vectors of the joint definition points on body i and body j
defined in the respective body coordinate systems are given by

u i
P c [0.1 0.1 0.25]T m

u j
P c [−0.3 − 0.15 0.0]T m

Determine the vector R j and the Jacobian matrix of the spherical joint con-
straints.

31. Using Eq. 143 as the starting point, derive Newton–Euler equations.

32. The inertia tensor of a rigid body defined in a centroidal body coordinate
system is given by

I i
vv c






2.0 1.5 −1.0
1.5 1.8 0.5

−1.0 0.5 3.0





kg . m2

The body rotates with a constant angular velocity equal to 20 rad/ s about
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its Y i axis. Determine using Newton–Euler equations the external moments
applied to this body.

33. Determine the velocity influence coefficient matrices Di and Hi and the
vector � i of Eq. 204 in the case of the revolute joint.

34. Determine the velocity influence coefficient matrices Di and Hi and the
vector � i of Eq. 204 in the case of prismatic joint.

35. Determine the velocity influence coefficient matrices Di and Hi and the
vector � i of Eq. 204 in the case of spherical joint.

36. Use the principle of virtual work in dynamics to obtain the recursive for-
mulation of Eq. 216.

37. Figure P3 shows a disk, denoted as body 3, which rotates about its X 3 axis
with an angle v3. The supporting arm, denoted as body 2, rotates with an
angle v2 about its Z2 axis. Determine the absolute angular velocity vector
of the disk in the fixed X 1Y 1Z 1 coordinate system. Determine also the
components of this angular velocity vector in the disk coordinate system.

Figure P7.3

38. Obtain the recursive kinematic relationships of the system of Example 11,
if body 1 rotates about its X 1 axis with an angle f1. Assume that the X 1 axis
is fixed in space. Determine the absolute angular velocity and acceleration
vectors of bodies 2 and 3 in terms of the joint variables f1, f2, and f3 and
their time derivatives.

39. In the preceding problem, determine the recursive dynamic equations using
the Newton–Euler formulation. Obtain the system of independent differen-
tial equations and identify the mass matrix associated with the joint degrees
of freedom.
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CHAPTER 8

OTHER TOPICS IN SPATIAL
DYNAMICS

In this chapter, several topics in spatial dynamics are presented. In the first sec-
tion, the use of Euler angles to study the gyroscopic motion is discussed. In the
following sections, several alternative methods for defining the orientations of the
rigid bodies in space are presented. In Section 2, the Rodriguez formula, which
is expressed in terms of the angle of rotation and a unit vector along the axis
of rotation, is presented. Euler parameters, which are widely used in general-
purpose multibody computer programs to avoid the singularities associated with
Euler angles, are introduced in Section 3. Rodriguez parameters are discussed in
Section 4 for the sake of completeness. Euler parameters can be considered as an
example of the quaternions, which are introduced in Section 5. In Section 6, the
problem of nonimpulsive contact between rigid bodies is discussed.

8.1 GYROSCOPES AND EULER ANGLES

The study of the gyroscopic motion is one of the most interesting problems
in spatial dynamics. This problem occurs when the orientation of the axis of
rotation of a rigid body changes. The gyroscope shown in Fig. 1 consists of a
rotor that spins about its axis of rotational symmetry Z3 which is mounted on a
ring called the inner gimbal. As shown in the figure, the rotor is free to rotate
about its axis of symmetry relative to the inner gimbal, and the inner gimbal
rotates freely about the axis X 2, which is perpendicular to the axis of the rotor.
The axis X 2 is mounted on a second gimbal, called the outer gimbal, which
is free to rotate about the axis Z1. The rotor whose center of gravity remains
fixed may attain any arbitrary position as shown in Fig. 1 by the following three
successive rotations.
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Figure 8.1 Gyroscope

1. A rotation f of the outer gimbal about the axis Z1.

2. A rotation v of the inner gimbal about the axis X 2.

3. A rotation w of the rotor about its own axis Z3.

These three Euler angles are called the precession, the nutation, and the spin,
and the type of mounting used in the gyroscope is called a cardan suspension.

The angular velocity of the rotor can be written as

� c ḟk1 + v̇i2 + ẇk3

where k1 is a unit vector along the Z1 axis, i2 is a unit vector along the X 2

axis, and k3 is a unit vector along the Z3 axis. The unit vector k1 is

k1 c [0 0 1]T

Since the rotation f is about the Z1 axis, the unit vector i2 is defined as

i2 c 




cosf −sinf 0

sinf cosf 0

0 0 1










1

0

0





c 




cosf

sinf

0
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Since the rotation v is about the X 2 axis, the unit vector k3 is defined as

k3 c 




cosf −sinf 0

sinf cosf 0

0 0 1










1 0 0

0 cos v −sin v

0 sin v cos v










0

0

1






c 




sinf sin v

−cosf sin v

cos v





The angular velocity of the rotor can then be written as

� c ḟ





0

0

1





+ v̇






cosf

sinf

0





+ ẇ






sinf sin v

−cosf sin v

cos v





which can be written in a matrix form as

� c 




0 cosf sinf sin v

0 sinf −cosf sin v

1 0 cos v










ḟ

v̇

ẇ





This equation can be written as

� c G�̇

where G is the matrix whose columns are the unit vectors k1, i2, and k3. This
matrix was previously defined in terms of Euler angles by Eq. 72 of the pre-
ceding chapter as

G c 




0 cosf sinf sin v

0 sinf −cosf sin v

1 0 cos v





and

� c [f v w]T

Differentiating the angular velocity vector with respect to time, one obtains the
absolute angular acceleration vector � of the rotor as

� c G�̈ + Ġ�̇



470 OTHER TOPICS IN SPATIAL DYNAMICS

where Ġ�̇ can be written explicitly as

Ġ�̇ c 




−ḟv̇ sinf + ẇ(ḟcosf sin v + v̇ sinfcos v)

ḟv̇ cosf + ẇ(ḟ sinf sin v − v̇ cosfcos v)

− v̇ẇ sin v





The equations of motion of the rotor of the gyroscope can be conveniently

derived using Lagrange’s equation. To this end, we first define the angular
velocity vector in the rotor coordinate system as

� c G�̇ c 




sin v sin w cos w 0

sin v cos w −sin w 0

cos v 0 1










ḟ

v̇

ẇ





c 




ḟ sin v sin w + v̇ cos w

ḟ sin v cos w − v̇ sin w

ẇ + ḟcos v





(8.1)

Because of the symmetry of the rotor about its X 3 axis, its products of inertia
are equal to zero, and ixx c iyy. The inertia tensor of the rotor defined in the
rotor coordinate system is

Iv v c 




ixx 0 0

0 ixx 0

0 0 izz





Since the center of mass of the rotor is fixed, the kinetic energy of the rotor is
given by

T c 1
2 �TIv v� c 1

2 {ixx[(ḟ)2 sin2 v + (v̇)2]

+ izz(ẇ + ḟcos v)2} (8.2)

Using the Eulerian angles f, v , and w as the generalized coordinates of the
rotor, the equations of motion of the rotor are given by

d
dt � ∂T

∂ḟ � − ∂T
∂f

c Mf

d
dt � ∂T

∂v̇ � − ∂T
∂v

c Mv

d
dt � ∂T

∂ẇ � − ∂T
∂w

c Mw
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where Mf, Mv and Mw are the components of the generalized applied torque
associated with the angles f, v , and w, respectively. Using the expression previ-
ously obtained for the kinetic energy, one can show that the equations of motion
of the rotor are

d
dt

[ixxḟ sin2 v + izz(ẇ + ḟcos v) cos v] c Mf (8.3a)

ixxv̈ − ixx(ḟ)2 sin v cos v + izz(ẇ + ḟcos v)ḟ sin v c Mv (8.3b)

d
dt

[izz(ẇ + ḟcos v)] c Mw (8.3c)

In what follows, several important special cases are discussed.

Ignorable Coordinates It can be seen that the kinetic energy of the rotor
is not an explicit function of the precession and spin angles f and w, that is,

∂T
∂f

c ∂T
∂w

c 0

If the torques Mf and Mw are equal to zero, Lagrange’s equation yields

d
dt � ∂T

∂ḟ � c 0,
d
dt � ∂T

∂ẇ � c 0

or

� ∂T

∂ḟ � c d1, � ∂T

∂ẇ � c d2

where d1 and d2 are constants. In this special case, the precession and spin
angles f and w are called ignorable coordinates since the generalized momen-
tum associated with these coordinates is conserved. The use of the preceding
equations yields the following integrals of motion:

ixxḟ sin2 v + izz(ẇ + ḟcos v) cos v c d1 (8.4)

izz(ẇ + ḟcos v) c d2 (8.5)

where the constants d1 and d2 can be determined using the initial conditions.
In this special case, the equation for the nutation angle v can be written as

ixx[v̈ − (ḟ)2 sin v cos v] + d2ḟ sin v c Mv (8.6)

Precession at a Steady Rate Consider the special case in which the rotor
precesses at a steady rate ḟ at a constant angle v and with a constant spin
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velocity ẇ. These conditions can be expressed as

ḟ c constant, f̈ c 0

v c constant, v̇ c v̈ c 0

ẇ c constant, ẅ c 0

In this case, the equations of the rotor reduce to

0 c Mf

(ḟ)2(izz − ixx)sin v cos v + izzḟẇ sin v c Mv

0 c Mw

It is clear that in this case Mf c Mw c 0, and the only nonzero torque acting on
the rotor is the constant torque associated with the nutation angle v . The axis
of this torque is perpendicular to the axis of precession. If we further assume
that

v c p/ 2

the torque Mv takes the simple form

Mv c ḟẇizz

8.2 RODRIGUEZ FORMULA

Euler’s theorem states that the most general displacement of a body with one
point fixed is a rotation about an axis called the instantaneous axis of rotation.
According to this theorem, the coordinate transformation can be defined by a
single rotation about the instantaneous axis of rotation. The components of a
unit vector along the instantaneous axis of rotation as well as the angle of rota-
tion of the rigid body about this axis can be used to develop the transformation
matrix that defines the body orientation. The obtained transformation matrix, in
this case, is expressed in terms of four parameters; the three components of the
unit vector along the instantaneous axis of rotation and the angle of rotation.

Figure 2 shows the initial position of a vector r i on the rigid body i. The
final position of the vector r i as the result of a rotation v i about an axis of
rotation defined by the unit vector vi c [vi

1 vi
2 vi

3]T is defined by the vector
r i. It is clear from Fig. 2 that the vector r i can be expressed as

r i c r i + Dr i

It can be shown that (Shabana, 1998)

Dr i c (vi × r i) sin v i + 2[vi × (vi × r i)] sin2 v i

2
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Figure 8.2 Rodriguez formula

It follows that

r i c r i + (vi × r i) sin v i + 2[vi × (vi × r i)] sin2 v i

2

Using the skew-symmetric matrix notation, the vector r i can be written as

r i c r i + ṽir i sin v i + 2(ṽi)2r i sin2(v i/ 2)

which can also be written as

r i c Air i

where Ai is the transformation matrix defined in terms of the unit vector vi and
the rotation angle v i as

Ai c I + ṽi sin v i + 2(ṽi)2 sin2(v i/ 2) (8.7)

This equation, which is called Rodriguez formula, is expressed in terms of the
four parameters vi

1, vi
2, vi

3, and v i which are not totally independent since

viTvi c (vi
1)2 + (vi

2)2 + (vi
3)2 c 1

Angular Velocity The components of the angular velocity vector �i of the
rigid body i can be defined using the relationship,

�̃i c ȦiAiT
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from which

�i c 2vi × v̇i sin2(v i/ 2) + v̇i sin v i + v̇ ivi (8.8)

which can be expressed in a matrix form as

�i c Gi�̇i (8.9)

where

�i c [viT v i]T c [vi
1 vi

2 vi
3 v i]T (8.10)

Gi c [�I sin v i + 2ṽi sin2 v i

2 � vi] (8.11)

Similarly, the components of the angular velocity vector of the rigid body i
defined in the body coordinate system can be obtained using the relationship

�̃i c AiTȦi,

from which

� i c −2vi × v̇i sin2(v i/ 2) + v̇i sin v i + v̇ ivi (8.12)

which can also be written in a matrix form as

� i c G i�̇i (8.13)

where

G i c [�I sin v i − 2ṽi sin2 v i

2 � vi] (8.14)

Equations 8 and 12 clearly demonstrate that the magnitude of the angular veloc-
ity is v̇ i only if the axis of rotation is fixed in space. If the axis of rotation is
not fixed, the angular velocity vector has two additional components along the
two perpendicular vectors v̇i and vi × v̇i.

Application of Rodriguez Formula If the axis of rotation is parallel to one
of the axes of the coordinate system, the use of Rodriguez formula leads to the
definition of the simple rotation matrices defined by Eqs. 19 through 21 of the
preceding chapter. Interestingly, Rodriguez formula suggests that there are two
different procedures for solving the problem of successive rotations. In order
to illustrate the use of these two different procedures, we consider the robotic
manipulator shown in Fig. 3. It is clear from this figure that the orientation of
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Figure 8.3 Application of Rodriguez formula

object 4 with respect to link 3 is defined by the transformation matrix

A43 c 




cos w −sin w 0

sin w cos w 0

0 0 1





The orientation of link 3 with respect to link 2 is defined by the transformation
matrix

A32 c 




1 0 0

0 cos v −sin v

0 sin v cos v





and the orientation of link 2 with respect to link 1 is

A21 c 




cosf −sinf 0

sinf cosf 0

0 0 1





The transformation matrix that defines the orientation of object 4 with respect
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to the fixed link (link 1) can then be written as

A41 c A21A32A43

Matrix multiplications show that the matrix A41 takes the same form as the
Euler angle transformation matrix given by Eq. 32 of the preceding chapter.

Using the Rodriguez formula, a different procedure can be used to define the
orientation of object 4. In this procedure, the joint axes of rotations are defined
in the fixed coordinate system as

v1 c [0 0 1]T

v2 c [cosf sinf 0]T

v3 c [sinf sin v − cosf sin v cos v]T

Using these three unit vectors, the following three transformation matrices are
defined:

A1 c I + ṽ1 sinf + 2(ṽ1)2 sin2 f

2

A2 c I + ṽ2 sin v + 2(ṽ2)2 sin2 v

2

A3 c I + ṽ3 sin w + 2(ṽ3)2 sin2 w

2

It is left to the reader as an exercise to show that the transformation matrix A41

can also be defined as

A41 c A3A2A1

This sequence of transformations differs from the sequence discussed previ-
ously in the sense that after each rotation the orientation of the body is redefined
in the fixed coordinate system using Rodriguez formula (Shabana, 1998).

8.3 EULER PARAMETERS

An alternative set of four parameters that can be used to describe the orientation
of the rigid bodies is the set of Euler parameters. The four Euler parameters
can be expressed in terms of the components of the unit vector along the instan-
taneous axis of rotation as well as the angle of rotation as

bi
0 c cos(v i/ 2)

bi
1 c vi

1 sin(v i/ 2)

bi
2 c vi

2 sin(v i/ 2)

bi
3 c vi

3 sin(v i/ 2)















(8.15)
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The four Euler parameters are not totally independent since

3

���
k c 0

(bi
k)2 c 1 (8.16)

Using Rodriguez formula, the transformation matrix Ai can be expressed in
terms of Euler parameters as

Ai c I + 2�̃i
s(b

i
0I + �̃i

s) (8.17)

where �̃i
s is the skew-symmetric matrix associated with the vector

�i
s c [bi

1 bi
2 bi

3]T (8.18)

The transformation matrix can be written explicitly in terms of Euler parameters
as

Ai c 




1 − 2(bi
2)2 − 2(bi

3)2 2(bi
1bi

2 − bi
0bi

3) 2(bi
1bi

3 + bi
0bi

2)

2(bi
1bi

2 + bi
0bi

3) 1 − 2(bi
1)2 − 2(bi

3)2 2(bi
2bi

3 − bi
0bi

1)

2(bi
1bi

3 − bi
0bi

2) 2(bi
2bi

3 + bi
0bi

1) 1 − 2(bi
1)2 − 2(bi

2)2





(8.19)

In terms of Euler parameters, the angular velocity vector of the rigid body i is
defined as

�i c Gi�̇i (8.20)

where

�i c [bi
0 bi

1 bi
2 bi

3]T (8.21)

Gi c 2





−bi
1 bi

0 −bi
3 bi

2

−bi
2 bi

3 bi
0 −bi

1

−bi
3 −bi

2 bi
1 bi

0





(8.22)

The angular velocity vector defined in the body coordinate system is

� i c G i�̇i (8.23)

where

G i c 2





−bi
1 bi

0 bi
3 −bi

2

−bi
2 −bi

3 bi
0 bi

1

−bi
3 bi

2 −bi
1 bi

0





(8.24)
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The transformation matrix Ai can be expressed in terms of the matrices Gi and
G i as

Ai c 1
4 GiG iT (8.25)

Note also that

GiGiT c G iG iT c 4I

GiTGi c G iTG i c 4(I4 − �i�iT)

Gi�̇i c G i�̇i c 0

�iT�̇i c 0















(8.26)

where I4 is the 4 × 4 identity matrix. Differentiating Eqs. 20 and 23 and using
the identities of Eq. 26, it can be shown that the angular acceleration vectors
can be expressed in terms of Euler parameters as

�i c Gi�̈i (8.27)

� i c G i�̈i (8.28)

Clearly, Euler parameters have one redundant variable since they are related
by Eq. 16. Nonetheless, Euler parameters are used in several general-purpose
multibody computer programs because they do not suffer from the singularity
problem associated with the three-parameter representation. Euler parameters
are also bounded because they are defined in terms of sine and cosine functions.
Moreover, the time derivatives of Euler parameters can be determined at any
configuration of the rigid body, if the angular velocity vector is given. This is
demonstrated by the following example.

Example 8.1

The orientation of a rigid body is defined by the four Euler parameters

bi
0 c 0.9239, bi

1 c bi
2 c bi

3 c 0.2209

At the given configuration, the body has an instantaneous angular velocity defined
in the global coordinate system by the vector

�i c [120.72 75.87 − 46.59]T rad/ s

Find the time derivatives of Euler parameters

Solution. Using Eq. 20, one has

�i c Gi�̇i

Multiplying both sides of this equation by GiT and using the identities of Eq. 26,
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one obtains

GiT�i c GiT Gi�̇i c 4(I4 − �i�iT )�̇i c 4�̇i

which yields

�̇i c 1
4 GiT�i c 1

4









−0.4418 −0.4418 −0.4418

1.8478 0.4418 −0.4418

−0.4418 1.8478 0.4418

0.4418 −0.4418 1.8478









. 


120.72
75.87

−46.59



c








−16.5675

69.2923

16.5688

−16.5686








This solution must satisfy the identity

�iT�̇i c 0

Using Euler parameters given in this example, one can show that the transformation
matrix Ai is

Ai c 




0.8048 −0.3106 0.5058

0.5058 0.8048 −0.3106

−0.3106 0.5058 0.8048





Using this transformation matrix, it can be shown that the angular velocity vector
defined in the body coordinate system is

� i c AiT�i c [150 0.0 0.0]T

The time derivatives of Euler parameters can also be evaluated using the relationship

�̇i c 1
4 G iT� i

8.4 RODRIGUEZ PARAMETERS

In Rodriguez formula and in the case of Euler parameters, the transformation
matrix is expressed in terms of four parameters. It was demonstrated in the
preceding chapter that the transformation matrix can be expressed in terms of
the three independent Euler angles. In what follows, an alternate representation
that uses three parameters called Rodriguez parameters, is developed. The three
Rodriguez parameters are defined in terms of the components of a unit vector
along the axis of rotation and the angle of rotation as

� i c [g i
1 g i

2 g i
3]T c vi tan(v i/ 2) (8.29a)
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That is

g i
1 c vi

1 tan(v i/ 2), g i
2 c vi

2 tan(v i/ 2), g i
3 c vi

3 tan(v i/ 2) (8.29b)

Using the definitions of the preceding equation and the Rodriguez formula of
Eq. 7, one obtains the transformation matrix expressed in terms of Rodriguez
parameters as

Ai c I +
2

1 + (g i)2
[�̃i + (�̃i)2] (8.30)

where �̃i is the skew symmetric matrix associated with the vector �i and

g i c f�iT�i (8.31)

The angular velocity vectors can be expressed in terms of Rodriguez parameters
as

�i c Gi�̇i (8.32)

� i c G i�̇i (8.33)ŗ

where

Gi c 2
1 + (g i)2






1 −g i
3 g i

2

g i
3 1 −g i

1

−g i
2 g i

1 1





(8.34)

G i c 2
1 + (g i)2






1 g i
3 −g i

2

−g i
3 1 g i

1

g i
2 −g i

1 1





(8.35)

Example 8.2

The orientation of a rigid body is defined by the four Euler parameters

bi
0 c 0.9239, bi

1 c bi
2 c bi

3 c 0.2209

At the given configuration, the body has an instantaneous absolute angular velocity
defined by the vector

�i c [120.72 75.87 − 46.59]T rad/ s

Find the time derivatives of Rodriguez parameters.

Solution. Rodriguez parameters at the given orientation are

g i
1 c bi

1

bi
0

, g i
2 c bi

2

bi
0

, g i
3 c bi

3

bi
0
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Using the values of Euler parameters given in this example, one has

g i
1 c g i

2 c g i
3 c 0.2209

0.9239
c 0.2391

Recall that

�i c Gi�̇ i

where

Gi c 2
1 + (g i)2






1 −g i
3 g i

2

g i
3 1 −g i

1

−g i
2 g i

1 1





The time derivatives of Rodriguez parameters can then be expressed in terms of

the angular velocity as

�̇ i c (Gi)−1�i

where

(Gi)−1 c 1
2






1 + (g i
1)2 g i

1g i
2 + g i

3 g i
1g i

3 − g i
2

g i
1g i

2 − g i
3 1 + (g i

2)2 g i
2g i

3 + g i
1

g i
1g i

3 + g i
2 g i

2g i
3 − g i

1 1 + (g i
3)2






c 




0.5286 0.1481 −0.0910

−0.0910 0.5286 0.1481

0.1481 −0.0910 0.5286





The time derivatives of Rodriguez parameters are

�̇i c 




ġ i
1

ġ i
2

ġ i
3





c (Gi)−1�i c 





0.5286 0.1481 −0.0910

−0.0910 0.5286 0.1481

0.1481 −0.0910 0.5286










120.72

75.87

−46.59






c 




79.2886

22.2194

−13.6530






8.5 QUATERNIONS

Quaternion algebra can be used to study the rotations of the rigid bodies in
space. This algebra can serve as a convenient way for describing the relative
rotations between different bodies. For instance, Euler parameters discussed
previously in this chapter can be considered as an example of the quaternions.
Before demonstrating the use of the quaternions to describe the three-dimen-
sional rotations, a brief introduction to quaternion algebra is presented (Mega-
hed, 1993).



482 OTHER TOPICS IN SPATIAL DYNAMICS

Quaternion Algebra A quaternion qt is defined using a scalar and a vector
as follows:

qt c s + v1i + v2 j + v3k c s + v (8.36)

where s is a scalar, i, j, and k are unit vectors along three perpendicular Carte-
sian axes, and v is the vector which is defined as

v c [v1 v2 v3]T

Given two quaternion qt1 and qt2 defined as

qt1 c s1 + v1, qt2 c s2 + v2

quaternion addition and subtraction follows the rule

qt c qt1 ± qt2 c (s1 ± s2) + (v1 ± v2) (8.37)

The multiplication of the quaternions is noncommutative and follows the rule

qt c qt1qt2 c (s1 + v1)(s2 + v2)

c s1s2 + s1v2 + s2v1 + v1 × v2 − v1 . v2

c (s1s2 − v1 . v2) + (s1v2 + s2v1 + v1 × v2)

c s + v (8.38)

where (.) indicates a dot product, × indicates a cross product, and the scalar s
and the vector v are defined as

s c s1s2 − v1 . v2

v c s1v2 + s2v1 + v1 × v2
} (8.39)

The conjugate of the quaternion qt is defined as

q*
t c s − v (8.40)

The norm of the quaternion qt is defined as

|qt | c
g

qtq*
t (8.41)

Using the rule of multiplication of the quaternions, it can be shown that

|qt | c
g

qtq*
t c
f

(s)2 + v . v (8.42)

If the scalar part of the quaternion is equal to zero, the quaternion norm reduces
to the definition of the length of vectors used in conventional vector algebra.

Three-Dimensional Rotations The set of Euler parameters can be consid-
ered as a quaternion with a unit norm. This fact can easily be demonstrated by
writing the set of Euler parameters of a rigid body or a frame of reference i in
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the following quaternion form:

qi
t c bi

0 + �i
s (8.43)

where the scalar and vector components of this quaternion are defined in Section
3. The conjugate of the quaternion defined in the preceding equation is

qi*
t c bi

0 − �i
s

and its norm is

|qi
t | c

g
qi

tqi
t
* c

g
(bi

0)2 + �i
s

. �i
s c 1

If A1, A2, and A3 are three orthogonal transformation matrices defined in terms
of the sets of Euler parameters (b1

0, �1
s ), (b2

0, �2
s ), and (b3

0, �3
s ), respectively,

matrix multiplication and quaternion multiplication are in one-to-one correspon-
dence; that is, if

A1 c A2A3 (8.44)

then

�1 c �2�3 (8.45)

or

b1
0 c b2

0b3
0 − �2

s
. �3

s

�1
s c b2

0�3
s + b3

0�2
s + �2

s × �3
s
} (8.46)

This important result from quaternion algebra can be used to study the relative
motion between rigid bodies or coordinate systems. For instance, let Ai and
Aj be the transformation matrices that define the orientation of two coordinate
systems i and j, respectively, and let Aji be the matrix that defines the orientation
of the coordinate system j with respect to the coordinate system i. It follows
that

Aj c AiAji

or

Aji c AiTAj (8.47)

Recall that if (bi
0, �i

s) is the set of Euler parameters of Ai, the set of Euler
parameters associated with the transpose of Ai is (bi

0, −�i
s) (Shabana, 1998).

It follows that the set of Euler parameters associated with the relative transfor-



484 OTHER TOPICS IN SPATIAL DYNAMICS

mation matrix Aji can easily be obtained using the quaternion algebra as

b
ji
0 c bi

0b
j
0 + �i

s
. �j

s

� ji
s c bi

0�j
s − b

j
0�i

s − �i
s × �j

s
} (8.48)

As an example that illustrates the use of the preceding equations, we assume
that body j rotates with respect to body i with a constant angular velocity q ji.
It follows from the first equation of the preceding set of equations that

cos � q jit
2 � c bi

0b
j
0 + bi

1b
j
1 + bi

2b
j
2 + bi

3b
j
3

Clearly, this constraint equation is of the holonomic type.

Example 8.3

As an example of the use of the quaternion algebra, we consider a rigid body whose
orientation is defined at the initial configuration before displacement by the trans-
formation matrix B expressed in terms of the four Euler parameters b0, b1, b2, and
b3. In this example, we consider three cases of the body rotation with a constant
angular velocity. The first is the rotation of the body about the global X axis, the
second is the rotation of the body about the global Y axis, and the third is the rota-
tion about the global Z axis. In the three cases, we assume that the axes of rotations
are defined in the global system. For simplicity of notation, we drop the superscript
that indicates the body number.

Rotation about the Global X Axis: If the body rotates with a constant angular
velocity q about the X axis, the final orientation of the body is defined by the
transformation matrix C given by

C c AB

where A is the transformation matrix resulting from the rotation of the body about
the global X axis with a constant angular velocity. The order of the matrix multi-
plication used in the preceding equation is due to the fact that the axis of rotation
is defined in the global system. It can be shown that the four Euler parameters that
define the matrix A are as follows:

a0 c cos
qt
2

, a1 c sin
qt
2

, a2 c 0, a3 c 0

Using the quaternion multiplication role, it can be shown that the four Euler param-
eters g0, g1, g2, and g3 that define the transformation matrix C are given by

g0 c a0b0 − a1b1

g1 c a0b1 + a1b0

g2 c a0b2 − a1b3

g3 c a0b3 + a1b2
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Rotation about the Global Y Axis: In the case of the rotation with a constant
angular velocity about the Y axis, the four Euler parameters that define the matrix
A are given by

a0 c cos
qt
2

, a1 c 0, a2 c sin
qt
2

, a3 c 0

The four Euler parameters that define the matrix C are then given by

g0 c a0b0 − a2b2

g1 c a0b1 + a2b3

g2 c a0b2 + a2b0

g3 c a0b3 + a2b1

Rotation about the Global Z Axis: If the rotation is about the global Z axis, the
four Euler parameters that define the matrix A are given by

a0 c cos
qt
2

, a1 c 0, a2 c 0, a3 c sin
qt
2

In this case, the four Euler parameters of the matrix C that defines the final orien-
tation of the body are as follows:

g0 c a0b0 − a3b3

g1 c a0b1 − a3b2

g2 c a0b2 + a3b1

g3 c a0b3 + a3b0

8.6 RIGID BODY CONTACT

The nonimpulsive contact between rigid bodies does not result in instantaneous
change in the system velocities and momentum. Examples of this type of non-
impulsive contact are cam and follower contact, wheel and rail contact, disk
rolling on a flat surface, and nonimpulsive contact between the end effector of
a robot and a surface, among others. In this section, the kinematic equations that
describe the nonimpulsive contact between two surfaces of two rigid bodies in
the multibody system are formulated in terms of the system generalized coor-
dinates and the surface parameters. Each contact surface is defined using two
independent parameters that completely define the tangent and normal vectors
at an arbitrary point on the body surface. The surface parameters can be consid-
ered as a set of nongeneralized coordinates since there are no inertia or external
forces associated with them (Shabana and Sany, 2000). In the contact model dis-
cussed in this section, the location of the contact points on the two surfaces are
determined by solving the nonlinear differential and algebraic equations of the
constrained multibody system. The equations of motion of the bodies in con-
tact are developed using the principle of mechanics, and the contact constraint
equations are augmented by the system dynamic equations using the technique
of Lagrange multipliers. Lagrange multipliers associated with the contact con-
straints are used to determine the generalized contact constraint forces.
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Parameterization of the Contact Surfaces The two bodies in contact are
denoted as bodies i and j. Contact between the two surfaces of the bodies is
assumed to occur at point P. Two coordinate systems X iY iZi and X jY jZ j are
introduced for bodies i and j, respectively, as shown in Fig. 4. At a given instant
of time, the location of the contact point P with respect to the coordinate sys-
tems of the two bodies is defined by the following two vectors:

u i
P c 





x i

y i

z i





, u j

P c 




x j

y j

z j





(8.49)

The contact surface of body i is assumed to be defined by the two surface
parameters si

1 and si
2, while the contact surface of body j is defined in terms

of the surface parameters s j
1 and s j

2. Therefore, the local position vectors of
the contact point, defined in Eq. 49, can be expressed in terms of the surface
parameters as follows:

u i
P(si

1,si
2) c 





x i(si
1,si

2)

y i(si
1,si

2)

z i(si
1,si

2)





, u j

P(s j
1,s j

2) c 




x j(s j
1,s j

2)

y j(s j
1,s j

2)

z j(s j
1,s j

2)





(8.50)

Figure 8.4 Contact surfaces
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The tangents to the surface at the contact point on body i are defined in the body
coordinate system by the following two independent, not necessarily orthogonal
vectors:

t i
1 c ∂u i

P

∂si
1

, t i
2 c ∂u i

P

∂si
2

(8.51)

The normal to the surface at the contact point on body i is defined in the body
coordinate system as

n i c t i
1 × t i

2 (8.52)

Similarly, the tangents and normal to the surface of body j at the contact point,
defined in the body coordinate system, are given by

t
j

1 c ∂u j
P

∂s j
1

, t
j

2 c ∂u j
P

∂s j
2

, n j c t
j

1 × t
j

2 (8.53)

The tangent and normal vectors and their first and second derivatives with
respect to the surface parameters are required to enforce the contact kinematic
constraints discussed below.

Contact Constraints In the multibody contact formulation presented in this
section, it is assumed that the body motion is described using absolute Cartesian
and orientation coordinates. For an arbitrary body k in the multibody system,
the three-dimensional vector of absolute Cartesian coordinates Rk (k c i or j)
is used to define the global location of the origin of the kth body coordinate
system, while the orientation coordinates �k are used to define the orientation of
the body coordinate system. Using this motion description, the global position
vectors of the contact point on bodies i and j can be defined, respectively, as
follows:

r i
P c Ri + Aiu i

P

r j
P c Rj + Aju j

P
} (8.54)

where Ai and Aj are the spatial transformation matrices that define the ori-
entation of bodies i and j, respectively, in a global inertial frame of reference.
These matrices are functions of the orientation coordinates �i and � j . Using this
motion description, each unconstrained body has six independent coordinates.
In the general case of contact where slipping is allowed, the contact conditions
eliminate only one degree of freedom. Therefore, body i has five degrees of
freedom with respect to body j.

To formulate the contact conditions, five constraint equations expressed in
terms of the generalized coordinates of the two bodies and the four surface
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parameters are introduced. These constraint equations impose the following two
conditions (Roberson and Schwertassek, 1988; Litvin, 1994):

1. Two points on the two contact surfaces coincide. This implies that the
global position coordinates of the contact point P evaluated using the
generalized coordinates of body i are the same as the coordinates of the
same point evaluated using the generalized coordinates of body j. This
condition can be expressed mathematically as follows:

r i
P c r j

P (8.55)

where the two vectors in this equation are defined explicitly in Eq. 54.
2. The normals to the two surfaces at the point of contact are parallel. This

condition can be stated mathematically as follows:

ni c an j (8.56)

where a is a constant and ni and n j are the normals at the contact point
defined in the global coordinate system, that is,

ni c Ain i, n j c Ajn j (8.57)

It is important to point out that Eq. 56 leads to two independent equations
only. An alternative to Eq. 56 is to use the unit normals instead of intro-
ducing the constant a. Another alternative to Eq. 56 is to use the tangent
vectors to write two independent constraint equations which guarantee
that the normals to the two surfaces remain parallel. These equations can
be written as follows:

n jT
ti
1 c 0, n jT

ti
2 c 0 (8.58)

where

ti
1 c Ait i

1, ti
2 c Ait i

2 (8.59)

Equations 55 and 56 or, alternatively, Eqs. 55 and 58, represent five indepen-
dent nonlinear equations which can be used to impose the contact conditions.
Note that the normal and tangent vectors in Eq. 59 are expressed in terms of
the first derivatives of the local coordinates of the contact point with respect
to the surface parameters. Imposing the constraints of Eq. 58 at the accelera-
tion level requires the evaluation of the third partial derivatives of the contact
point coordinates with respect to the surface parameters. Note also that the five
independent contact constraint equations can be used to identify five dependent
variables (including the four surface parameters si

1, si
2, s j

1, and s j
2). Therefore,

the surface parameters and one generalized coordinate can be eliminated using
a coordinate partitioning scheme and the embedding technique as discussed pre-
viously in this book. In the remainder of this section, however, an alternative
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technique based on the augmented formulation that employs Lagrange multi-
pliers is discussed.

Multibody Formulation The contact constraint formulation presented in the
preceding section can be implemented in general-purpose multibody algorithms.
Recall that these contact constraints are formulated in terms of a mixed set
of generalized and nongeneralized surface parameters. Using the principle of
virtual work, the following Lagrange–D’Alembert form can be obtained:

{Mq̈ − Q}T�q c 0 (8.60)

where M is the system mass matrix, q is the vector of the system generalized
coordinates, and Q is the vector of all forces acting on the system, excluding
the constraint forces, which are eliminated automatically using the virtual work
principle. The generalized force vector Q includes externally applied forces,
gravity forces, and spring, damper, and actuator forces as well as friction forces.
The constraint equations that describe mechanical joints and specified motion
trajectories as well as the contact constraints can be written in the following
form:

C(q, s, t) c 0 (8.61)

where s is the vector of the parameters that describe the geometry of the surfaces
in contact. Virtual changes in the system coordinates and the surface parameters,
which are consistent with the kinematic constraints, lead to

Cq�q + Cs�s c 0 (8.62)

which for an arbitrary nonzero vector � leads to

�T{Cq�q + Cs�s} c 0 (8.63)

Adding Eqs. 60 and 63, one obtains

�qT{Mq̈ + CT
q � − Q} + �sTCT

s � c 0 (8.64)

The procedure used to obtain the augmented formulation when only generalized
coordinates are used (see Chapter 6) can be generalized for the case of system
with nongeneralized coordinates. To demonstrate this, the preceding equation
can be written as follows:

�pT(H + CT
p �) c 0 (8.65)

where

H c [ Mq̈ − Q

0 ] , p c [ q

s ] (8.66)
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The vector p, which includes generalized coordinates and nongeneralized sur-
face parameters, can be partitioned into two sets: the set of independent coor-
dinates pi and the set of dependent coordinates pd , that is,

p c [ pi

pd ] (8.67)

Each set, independent or dependent, may include nongeneralized surface param-
eters. According to this coordinate partitioning, Eq. 65 can be written as follows:

[�pT
i �pT

d ] [ Hi + CT
pi

�

Hd + CT
pd

� ] c 0 (8.68)

Assuming that the constraint sub-Jacobian Cpd
associated with the dependent

generalized and nongeneralized coordinates has a full row rank, the vector of
Lagrange multipliers � can be selected to be the solution of the following sys-
tem of algebraic equations:

CT
pd

� c −Hd (8.69)

It follows from Eqs. 68 and 69 that

�pT
i (CT

pi
� + Hi) c 0 (8.70)

Since the element of the vector pi are assumed to be independent, Eq. 70 leads
to

CT
pi

� + Hi c 0 (8.71)

Combining Eqs. 69 and 71 and using the definition of H given by Eq. 66, one
obtains

Mq̈ + CT
q � c Q

CT
s � c 0 } (8.72)

Differentiating the constraints of Eq. 61 twice with respect to time yields

Cqq̈ + Css̈ c Qd (8.73)

where Qd is a vector that absorbs terms which are quadratic in the first time
derivatives of the coordinates and the surface parameters. Combining Eqs. 72
and 73 yields (Shabana and Sany, 2000)






M 0 CT
q

0 0 CT
s

Cq Cs 0










q̈

s̈

�





c 




Q

0

Qd





(8.74)
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It is important to point out that the sub-Jacobian Cs associated with the surface
parameters must have rank equal to the number of these surface parameters
to be able to solve for the second derivatives of the coordinates and surface
parameters as well as the vector of Lagrange multipliers. Therefore, the surface
profiles must be chosen to guarantee a point contact. In the case of a line contact,
such as in the case of a contact between a cylinder and a flat surface, there are
infinite number of solutions, and the matrix Cs has a rank that is not equal to the
number of the surface parameters. This special case can also be handled using
the algorithm proposed in this chapter by changing the number of equations
and variables required to describe the contact.

The case of a point contact is described using five independent constraint
equations and four independent surface parameters. Nonetheless, the second
equation of Eq. 72 implies that for each contact, there is only one nontrivial
solution since the rank of the matrix CT

s is four times the number of contacts.
Therefore, there is only one independent Lagrange multiplier associated with
each contact. That is, there is only one independent generalized contact force,
which can easily be visualized in simple contact configurations to be the normal
force at the point of contact.

PROBLEMS

1. Use the Rodriguez formula to prove the orthogonality of the rotation
matrix.

2. Using the Rodriguez formula, show that the axis of rotation is an eigen-
vector of the spatial rotation matrix. Determine the associated eigenvalue.

3. Use the Rodriguez formula to determine the form of the spatial rotation
matrix in the case of infinitesimal rotations.

4. Use the Rodriguez formula to show that two general consecutive three
dimensional rotations are not commutative.

5. Discuss the singularity associated with Euler angles and show that this sin-
gularity problem does not arise when Euler parameters are used.

6. Use Newton–Euler equations to define the equations of motion of a rigid
body in space in terms of Euler parameters.

7. Discuss the singularity problem associated with Rodriguez parameters.

8. Use Newton–Euler equations to define the equations of motion of a rigid
body in space in terms of Rodriguez parameters.

9. Find the relationships between Euler and Rodriguez parameters.
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10. The orientation of a rigid body is defined by the four Euler parameters

bi
0 c 0.8660, bi

1 c bi
2 c bi

3 c 0.35355

At the given orientation, the body has an instantaneous absolute angular
velocity defined by the vector

�i c [60.36 37.935 − 23.295]T rad/ s

Find the time derivatives of Euler parameters. Find also the time derivatives
of Rodriguez parameters.

11. In the preceding problem, find the time derivatives of Euler angles.

12. Use the Rodriguez formula and unit vectors along the joint axes of rotation,
defined in a fixed coordinate system, to obtain the transformation matrix
that defines the orientation of body 4 shown in Fig. P1. Show that the form
of this transformation matrix is the same as the Euler angle transformation
matrix.

Figure P8.1

13. Discuss the use of the quaternions in describing the relative rotations
between rigid bodies.
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Index

A

Absolute Cartesian coordinates, 133, 427

Absolute Coordinates, 132, 150, 228-229, 427

Acceleration(s), 95, 110-111, 391-396

analysis, 9, 95, 156

angular, 110, 396, 444

Coriolis, 126

elimination of the dependent, 197-199

equations, 105-124, 428

function, 279

independent, 346

normal component, 110, 396

relative, 111

tangential component, 110, 396

Actual reactions, 325-326

Actuator force, 241-243, 418-421

Adams-Bashforth method, 353

Adams-Moulton method, 353

Algebra, linear, 22-94,

Algebraic-differential equations, 13, 358-368

Algebraic equations, 52-60

Gauss-Jordan reduction method, 56-57

Gaussian elimination, 55-56

solution, 52

Amalgamated formulation, 189, 196, 202-203

Angular acceleration, 110, 396, 444

Angular momentum, 441- 443



 

  

Angular velocity, 108, 110, 473- 474

in global coordinate system, 392

in moving coordinate system, 393

Applied forces (see External forces)

Augmented formulation, 19, 189, 196, 196-197, 332, 336-338, 427

Axis of rotation, 472

B

Back substitution, 55

Ball joint (see Spherical joint)

Base circle, 6

Baumgarte's method (see Constraint(s), stabilization methods)

Bevel gear, 147

C

Cam(s), 6, 142-147

roller follower, 145

Canonical equations, 282
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Cardan suspension, 468

Cartesian coordinates, 22, 49-51, 427

Cartesian moments, 440

Center of mass, 409

Centrifugal force, 301-307, 413- 414

Centroidal body coordinate system, 306-307, 309, 402, 407, 424

Chain rule of differentiation, 155

Characteristic equation, 81

Cholesky's method, 22, 63-64

Closed kinematic chain (see Closed chain systems)

Closed chain systems, 189, 209-215, 456

Coefficient of static friction, 249

sliding friction, 249

Cofactor, 28

Computer methods, 18-19, 159, 165

Computational dynamics, 2-3

Computational methods in kinematics, 150-159

Computer algorithm(s), 168-171

Computer implementation, 159-171

Computer library, 430, 439

Conditions of parallelism, 22, 51-52

Connectivity conditions, 269-270

Conservation theorem, 284-286

Conservative force, 239, 280

Consistency condition, 356

Constants of motion, 442

Constrained dynamics, 194, 295-377, 427- 430

Constrained kinematics, 132-136

Constrained motion, 4-6,



Constraint(s), 4-6, 221-232

cam(s), 142-147

contact, 487-489

cylindrical joint, 6, 99, 433- 435, 444

driving, 134, 134-136, 430

equations, 150

fixed link, 102, 103, 136, 439

force, 12, 14, 260, 314-323

gear(s), 147-150

ground, 102, 103, 136, 439

holonomic, 232

ideal, 256

Jacobian matrix, 153, 224-228, 428

nonholonomic, 232

nonintegrable, 232

redundant, 323

revolute joint, 6, 97, 100, 136-138, 435- 436

rigid joint, 439

screw joint, 101

simple, 134

spherical joint, 6, 98-99, 430- 433

stabilization methods, 366-368

translational, 6, 98, 99, 138-139, 436- 438

universal joint, 100, 438- 439

violations (see Wehage's algorithm)

workless, 256-257

Contact constraints, 487- 489

Contact problem, 485- 491

Coordinate(s), 97, 427

absolute, 132, 150, 228-229, 427



 

  

Cartesian, 49-51, 133

dependent, 221

generalized, 133, 218, 397- 401

ignorable, 284

independent, 5, 221

orientation, 427

partitioning, 221, 315-317

system, 306-307, 402, 407, 424

transformation, 104-105, 235-238

Coriolis acceleration, 126

Coulomb friction, 248-255

Coupler curve, 124

Crank-rocker linkage, 122

Crankshaft, 102

torque, 370

Cross product, 22, 45-52

Crout's method, 63

Cubic spline function, 144

Cyclic coordinates (see Ignorable coordinates)

Cylindrical joint, 6, 99, 433- 435, 444

D

D'Alembert's principle, 189-193

Damper, 241, 418

Damping, coefficients, 241, 418

force, 241-243, 418- 421

Degrees of freedom, 6-9, 95, 101, 221, 444

identification of, 322-323
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Dependent coordinates, 221

Dependent variables, 60

Determinant, 28-30

Differential-algebraic equations, 358-368

Differentiation, 37- 41

Direction cosines, 51, 380, 390-391

Direct methods, 64

Direct numerical integration

(see Numerical integration)

Displacement, 95, 379-380

Virtual (see Virtual displacement)

Doolittle's method, 63

Double-crank mechanism, 122

Double-rocker linkage, 122

Drag-link mechanism, 122

Driving constraints, 134, 134-136, 430

Dry friction, 248

Dynamic analysis

(see Dynamics)

Dynamic coupling, 404

Dynamic equations, 12-14, 188-216, 270, 423- 427, 452- 460

Dynamically driven system, 11, 151, 181, 322

Dynamics, 427

forward, 14-16,

inverse, 14-16, 368-370

planar, 16-18,

spatial, 16-18, 378- 466, 467-492

E

Effective force, 190



Effective moment, 190

Eigenvalues, 82

Eigenvectors, 82

Elementary reflector, 71

Elementary row operations, 55

Elimination of the constraint forces, 314-323, 342-345

Embedding technique, 19, 189, 196, 197, 199-202, 317-319

Equations of equilibrium, 261-262

Equations of motion, 307-309, 423- 427

Equilibrium

equations, 261-262

static, 257

Equipollent forces, 257-258, 295, 325-327

Euler angles, 388-391, 421, 467- 472

relationship with angular velocity, 397, 399

relationship with direction cosines, 390-391

transformation matrix in terms of, 390

Euler parameters, 390, 400, 467, 476- 479

Euler's equation(s), 12, 190, 442

Euler's method, 349-352

Euler's theorem, 472

Exact differential, 232, 239, 401

External forces, 261, 414- 422

External moments, 261

F

Feed forward control law, 368

Finite rotation, 4, 380-388

Fixed link constraints (see Ground constraints)

Follower, 6, 142

offset flat-faced, 146



 

  

offset reciprocating knife edge, 142

roller, 145

Force, analysis, 12,

actuator, 241-243, 418- 422

centrifugal, 301-307, 413- 414

conservative, 239, 280

constraint, 12, 260, 314-323

damping, 241-243, 418- 421

effective, 190

elements, 5

equipollent, 257-258, 295, 325-326

external, 12, 261, 414- 422

friction, 253

generalized, 217, 233-235

gravitational, 240-241

inertia, 12, 401- 414

joint, 12, 339-342

nonconservative, 240, 280

spring, 241-243, 418- 421

Forward dynamics, 14-16

Forward elimination, 55

Four-bar mechanism, 7

Friction, 147, 248-255
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G

Gauss-Jordan reduction methods, 56-57

Gaussian elimination, 22, 55-56, 286-288

Gears, 6, 147-150

bevel, 147

helical, 147

hypoid, 148

skew, 148

spur, 147

worm, 148

General displacement, 379-380

Generalized coordinate partitioning

(see Coordinate partitioning)

Generalized constraint forces, 14, 339

Generalized coordinates, 133, 218, 397- 401, 485

Generalized forces, 14, 217, 233-235, 253, 414- 422

Generalized inertia, 295-301, 401- 414

Generalized reactions

(see Generalized constraint forces)

Geometric nonlinearities, 4

Gibbs-Appel equation, 217, 279-280

Gimbal inner, 467

outer, 467

Gram-Schmidt orthogonalization, 66-68

Grashof's law, 122

Gravitational force, 240-241

Ground constraints, 102, 103, 136, 439

Gyroscope, 467- 472

H



Hamiltonian, 281

Hamiltonian formulation, 217, 280

Helical gear, 147

Hilbert matrix, 64

Holonomic constraints, 232

Hooke joint (see Universal joint)

Householder transformation, 71-78, 343

Hypoid gear, 148

I

Ignorable coordinates, 284, 471

Independent accelerations, 6-9, 346

Independent coordinates, 5, 221

Independent variables, 60

Inertia, 295-301

coupling, 404

force, 12, 190, 401- 414

mass moment of, 296, 302, 403, 411

moment, 190

product of, 403

tensor, 402

Infinitesimal rotation, 421

Inner gimbal, 467

Instantaneous center of rotation, 183

Internal force, 12

Inverse dynamics, 14-16, 368-370

Inversion constant, 8

J

Jacobian matrix constraint, 153, 224-228, 428

Joint(s), 96-104

constraints, formulation of, 134, 136-150, 430- 439



 

  

cylindrical, 6, 99, 433- 435, 444

degrees of freedom, 444

force, 12

multiple, 328-330

reaction force, 339-342

revolute, 6, 97, 100, 136-138, 435- 436

rigid, 324, 439

screw, 101

secondary, 209, 456

spherical, 6, 98, 430- 433

translational, 6, 98, 99, 138-139, 436- 438

universal, 100, 438- 439

K

Kinematic analysis, 9-11, 95-187

closed-loop, 8, 456

open-loop, 8

Kinematic chain, 8, 456

Kinematic equations, 426, 427- 429

recursive, 444- 452

Kinematic inversions, 122

Kinematic modeling and analysis, 171-180

Kinematically driven system, 11, 151-152, 169, 368, 428

Kinematics, 95-187

classical and computer methods, 11
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planar, 97

spatial, 98-101

Kinetic energy, 276

L

Lagrange multipliers, 14, 323-332, 427

elimination of, 342-345

Lagrange's equation, 274-279, 470

Lagrangian, 280

Lagrangian Mechanics, 2, 217-294

Laws of motion, 181

Line of nodes, 389

Linear algebra, 22-94

Linear dependence, 22, 42

Linear independence, 42- 44

Linear momentum, 441- 443

Lockup configuration, 115

Loop closure equations, 120

LU factorization, 60-65

M

Mass

center of, 409

matrix, 301-307, 402- 405

moment of inertia, 296, 302,403

Matrix, 23-25,

addition, 25-26

column rank of, 42

determinant of, 28-30

diagonal, 24

Hilbert, 64



identity, 25

ill-conditioned, 64

inverse, 30-35

lower-triangular, 24

mass, 301-307, 402- 405

multiplication, 26-27

null, 25

orthogonal, 33

partitioning, 27-28

positive definite, 63

product, 26

rank, 42

row rank of, 42

scaled, 58

singular, 30

skew-symmetric, 22, 25, 46- 49

sparse, 330

square, 23

symmetric, 24, 63

trace, 25

transpose, 23

unit, 25

upper triangular, 24

zero, 25

Mechanical joints, 5-6, 96-104

Mechanism double-crank, 122

drag-link, 122

four bar, 7

peaucellier, 8, 124

RSSR, 103



slider crank, 7, 102, 171

straight-line, 124

Watt's, 124

Midpoint method, 356

Minor, 28

Mobility criteria, 101-104

Moment(s) of inertia, 296, 302, 403

principal, 411- 413

products of, 403

Momentum angular, 441- 443

linear, 441- 443

Multibody systems, 1, 3, 489- 491

Multiple branches, 456

Multiple joints, 328-330

Multistep method (s), 356-357

N

Newton backward difference formula, 357

Newton differences, 153

Newton-Euler equations, 379, 402, 439- 440, 444

Newton-Raphson algorithm, 152, 337, 428

Newton's equations, 190, 441

Newton's second law, 12

Newton's third law, 12

Newtonian mechanics, 2

Nonconservative forces, 240, 280

Nonholonomic constraints, 232

Normal component of acceleration, 110, 396

Null space, 413

Numerical integration, 349-358, 357

Adams–Bashforth methods, 353



 

  

Adams' method, 357-358, 357

Adams–Moulton methods, 353

consistency conditions, 356
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(continued)

Numerical integration

Euler's method, 349-352

explicit method, 356

higher order methods, 352-353

implicit methods, 356, 358

midpoint method, 356

multistep method, 356-357

predictor-corrector methods, 356

Runge-Kutta method, 353-355

single-step method, 352

trapezoidal method, 356

undetermined coefficients, 356

Numerical methods, 18-19, 64-65

Nutation, 468

O

Offset slider crank mechanism, 111

Open-loop kinematic chain

(see Open-loop systems)

Open-loop systems, 189, 203-209

Orientation coordinates, 427

Orthogonality of rotation matrix, 383

Orthogonal matrix, 33

Outer gimbal, 467

P

Parallel axis theorem, 298, 405- 410

Peaucellier mechanism, 8, 124

Pin joint (see Revolute joint)

Pitch rate, 101



Pivoting, 22, 57-58

full, 57

partial, 57

Planar dynamics, 16-18, 295

Planar kinematics, 97-98

Planar motion, 16-17, 102, 306

Polar decomposition theorem, 94

Position analysis, 9, 95, 152-155

equations, 105-124

Potential function, 280

Precession, 468, 471

Predictor-corrector methods, 356

Prescribed motion, 176-180

Prescribed rotation, 173-176

Principal axes, 411

Principal moments of inertia, 411- 413

Principle of virtual work, 12, 307, 401, 423

in dynamics, 13, 268-274

in statics, 257-267

Prismatic joint, (see Translational joint)

Product(s) of inertia, 403

Q

QR decomposition, 22, 65-81, 343-344

Quaternion(s), 467, 481- 485

quaternion algebra, 482

three-dimensional rotations, 482-485

R

Reaction force(s), 339-342

Reactions actual, 339

generalized, 339



 

  

Recursive equations (see Recursive methods)

Recursive formulation (see Recursive methods)

Recursive methods, 32, 443- 460

Redundant constraints, 323

Reference point, 5, 379, 402

Revolute joint, 6, 97, 100, 136-138, 435- 436

Rigid body, 2, 96, 309-314

contact, 485-491

equations of motion, 307-309

kinematics (see Kinematics)

planar motion (see Planar motion)

Rigid joint, 324, 439

Robotic manipulator, 9

Rodriguez formula, 467, 472- 476

Rodriguez parameters, 390, 467, 479- 481

Rolling motion, 254

Rotation finite, 380-388

infinitesimal, 422

matrix, 382

simple, 385-386

successive, 386-387

Rotational spring-damper elements, 247-248, 421- 422

RSSR mechanism, 103

Runge-Kutta method(s), 353-355

S

Scaling, 22, 57-58

Screw joint, 101
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Screw motion, 451

Secondary joint, 209, 456

Simple constraints, 135, 385-386

Simple rotation (s), 385-386

Single-step method, 352

Singular configuration(s), 115, 180, 361-366

Singularities, 115-118, 361-366, 400

Singular value decomposition, 22, 81-90, 343, 344-345

Skew gear, 148

Skew symmetric matrix, 22, 46- 49

Slider crank mechanism, 7, 102, 171

offset, 111

Sliding vector, 253, 416

Sparse matrix, 330

Spatial dynamics, 16-18, 378- 466, 467- 492

Spatial kinematics, 98-101

Spherical joint, 6, 98, 430- 433

Spin, 468

Spring

force, 241-243, 418- 421

stiffness, 241, 418

Spur gear, 147

State space equations, 347

State space formulation, 347

State space representation, 345-349

Static analysis, 371-372

equilibrium, 257

Stiff equations, 363

Straight-line mechanism, 124



Successive rotation(s), 386-387

Surface parameters, 486- 487

System of rigid bodies, 309-314

T

Tangential component of acceleration, 111, 396

Taylor series, 153

Three-dimensional vectors, 45-52

Torsional spring, 247-248

Tracked vehicles, 364

Trajectories, specified, 173-180

Transformation matrix

in terms of direction cosines, 51, 382

in terms of Euler angles, 390

in terms of Euler parameters, 477

in terms of Rodriguez parameters, 480

orthogonality, 383

planar, 107

spatial, 380-388

Translation, 4

Translational joint, 6, 98, 99, 138-139, 436- 438

Transpose of matrix, 23

Trapezoidal method, 356

Triangular factorization, 22, 60-65

U

Unconstrained motion, 4-5, 423

Universal joint, 100, 438- 439

V

Vector(s), 35- 44

absolute value, 37

cross product, 45- 46



 

  

dot product, 36

functions, 40

inner product, 36

length of, 36

linear dependence, 42

linear independence, 42

magnitude, 37

modulus, 37

norm, 37

orthogonal, 36, 65

scalar product, 36

three-dimensional, 45-52

unit, 37

Velocity, 95, 107-110, 391-396

analysis, 9, 95, 155

angular, 108, 110, 392, 393

equations, 105-124, 428

influence coefficient matrices, 448

Velocity transformation matrix, 199, 201

Virtual displacement(s), 201, 217, 218-221

Virtual work, 217, 233-240, 257-274, 286-288, 341-342, 401, 423

W

Watt's mechanism, 124

Wehage's algorithm, 337

Workless constraints, 256-257

Worm gear, 148


