
Biological Modeling and Simulation

Russell Schwartz

A Survey of Practical Models, Algorithms, and Numerical Methods

B
io

lo
gical M

o
d

elin
g an

d
 Sim

u
latio

n

Schwartz

biology/computer science

Biological Modeling and Simulation

A Survey of Practical Models, Algorithms,

 and Numerical Methods

Russell Schwartz

There are many excellent computational biology

resources now available for learning about methods

that have been developed to address specific biologi-

cal systems, but comparatively little attention has

been paid to training aspiring computational biolo-

gists to handle new and unanticipated problems. This

text is intended to fill that gap by teaching students

how to reason about developing formal mathemati-

cal models of biological systems that are amenable to

computational analysis. It collects in one place a selec-

tion of broadly useful models, algorithms, and theo-

retical analysis tools normally found scattered among

many other disciplines. It thereby gives students the

tools that will serve them well in modeling problems

drawn from numerous subfields of biology. These

techniques are taught from the perspective of what

the practitioner needs to know to use them effectively,

supplemented with references for further reading on

more advanced use of each method covered.

 The text covers models for optimization, simula-

tion and sampling, and parameter tuning. These top-

ics provide a general framework for learning how to

formulate mathematical models of biological systems,

what techniques are available to work with these mod-

els, and how to fit the models to particular systems.

Their application is illustrated by many examples

drawn from a variety of biological disciplines and sev-

eral extended case studies that show how the methods

described have been applied to real problems

in biology.

Russell Schwartz is Associate Professor in

the Department of Biological Sciences at Carnegie

Mellon University.

Computational Molecular Biology series

“Russell Schwartz has produced an excellent and time-

ly introduction to biological modeling. He has found

the right balance between covering all major develop-

ments of this recently accelerating research field and

still keeping the focus and level of the book at a level

that is appropriate for all newcomers.”

—Zoltan Szallasi, Children’s Hospital, Boston

The MIT Press

Massachusetts Institute of Technology

Cambridge, Massachusetts 02142

http://mitpress.mit.edu

978-0-262-19584-3

M
D

 D
A

L
IM

 970038 7/2/08 C
Y

A
N

 M
A

G
 Y

E
L

O
 B

L
K

“In twenty-first-century biology, modeling has a

similar role as the microscope had in earlier centuries;

it is arguably the most important research tool for

studying complex phenomena and processes in all

areas of the life sciences, from molecular biology to

ecosystems analysis. Every biologist therefore needs

to be familiar with the basic approaches, methods,

and assumptions of modeling. Biological Modeling and

Simulation is an essential guide that helps biologists

explore the fundamental principles of modeling.

It should be on the bookshelf of every student and

active researcher.”

—Manfred D. Laubichler, School of Life Sciences,

Arizona State University, and coeditor of Modeling

Biology (MIT Press, 2007)

Biological Modeling and Simulation

Sorin Istrail, Pavel Pevzner, and Michael Waterman, editors

Computational molecular biology is a new discipline, bringing together computa-

tional, statistical, experimental, and technological methods, which is energizing and

dramatically accelerating the discovery of new technologies and tools for molecular

biology. The MIT Press Series on Computational Molecular Biology is intended to

provide a unique and e¤ective venue for the rapid publication of monographs, text-

books, edited collections, reference works, and lecture notes of the highest quality.

Computational Molecular Biology: An Algorithmic Approach

Pavel A. Pevzner, 2000

Computational Methods for Modeling Biochemical Networks

James M. Bower and Hamid Bolouri, editors, 2001

Current Topics in Computational Molecular Biology

Tao Jiang, Ying Xu, and Michael Q. Zhang, editors, 2002

Gene Regulation and Metabolism: Postgenomic Computation Approaches

Julio Collado-Vides, editor, 2002

Microarrays for an Integrative Genomics

Isaac S. Kohane, Alvin Kho, and Atul J. Butte, 2002

Kernel Methods in Computational Biology

Bernhard Schölkopf, Koji Tsuda and Jean-Philippe Vert, editors, 2004

Immunological Bioinformatics

Ole Lund, Morten Nielsen, Claus Lundegaard, Can Keşmir and Søren Brunak,

2005

Ontologies for Bioinformatics

Kenneth Baclawski and Tianhua Niu, 2005

Biological Modeling and Simulation

Russell Schwartz, 2008

BIOLOGICAL MODELING AND SIMULATION

A Survey of Practical Models, Algorithms, and Numerical Methods

Russell Schwartz

The MIT Press
Cambridge, Massachusetts
London, England

6 2008 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical
means (including photocopying, recording, or information storage and retrieval) without permission in
writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales promotional use.
For information, please email special_sales@mitpress.mit.edu or write to Special Sales Department, The
MIT Press, 55 Hayward Street, Cambridge, MA 02142.

This book was set in Times New Roman and Syntax on 3B2 by Asco Typesetters, Hong Kong. Printed
and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Schwartz, Russell.
Biological modeling and simulation : a survey of practical models, algorithms, and numerical methods /
Russell Schwartz.

p. cm. — (Computational molecular biology)
Includes bibliographical references and index.
ISBN 978-0-262-19584-3 (hardcover : alk. paper) 1. Biology—Simulation methods. 2. Biology—
Mathematical models. I. Title.
QH323.5.S364 2008
570.101—dc22 2008005539

10 9 8 7 6 5 4 3 2 1

Contents

Preface xi

1 Introduction 1
1.1 Overview of Topics 1

1.2 Examples of Problems in Biological Modeling 2

1.2.1 Optimization 2

1.2.2 Simulation and Sampling 4

1.2.3 Parameter-Tuning 8

I MODELS FOR OPTIMIZATION 13

2 Classic Discrete Optimization Problems 15
2.1 Graph Problems 16

2.1.1 Minimum Spanning Trees 16

2.1.2 Shortest Path Problems 19

2.1.3 Max Flow/Min Cut 21

2.1.4 Matching 23

2.2 String and Sequence Problems 24

2.2.1 Longest Common Subsequence 25

2.2.2 Longest Common Substring 26

2.2.3 Exact Set Matching 27

2.3 Mini Case Study: Intraspecies Phylogenetics 28

3 Hard Discrete Optimization Problems 35
3.1 Graph Problems 36

3.1.1 Traveling Salesman Problems 36

3.1.2 Hard Cut Problems 37

3.1.3 Vertex Cover, Independent Set, and k-Clique 38

3.1.4 Graph Coloring 39

3.1.5 Steiner Trees 40

3.1.6 Maximum Subgraph or Induced Subgraph with Property P 42

3.2 String and Sequence Problems 42

3.2.1 Longest Common Subsequence 42

3.2.2 Shortest Common Supersequence/Superstring 43

3.3 Set Problems 44

3.3.1 Minimum Test Set 44

3.3.2 Minimum Set Cover 45

3.4 Hardness Reductions 45

3.5 What to Do with Hard Problems 46

4 Case Study: Sequence Assembly 57
4.1 Sequencing Technologies 57

4.1.1 Maxam–Gilbert 57

4.1.2 Sanger Dideoxy 59

4.1.3 Automated Sequencing 61

4.1.4 What About Bigger Sequences? 63

4.2 Computational Approaches 64

4.2.1 Sequencing by Hybridization 64

4.2.2 Eulerian Path Method 66

4.2.3 Shotgun Sequencing 67

4.2.4 Double-Barreled Shotgun 69

4.3 The Future? 71

4.3.1 SBH Revisited 71

4.3.2 New Sequencing Technologies 72

5 General Continuous Optimization 75
5.1 Bisection Method 76

5.2 Secant Method 78

5.3 Newton–Raphson 80

5.4 Newton–Raphson with Black-Box Functions 84

5.5 Multivariate Functions 85

5.6 Direct Methods for Optimization 89

5.6.1 Steepest Descent 89

5.6.2 The Levenberg–Marquardt Method 90

5.6.3 Conjugate Gradient 91

6 Constrained Optimization 95
6.1 Linear Programming 96

6.1.1 The Simplex Method 97

6.1.2 Interior Point Methods 104

6.2 Primals and Duals 107

6.3 Solving Linear Programs in Practice 107

6.4 Nonlinear Programming 108

II SIMULATION AND SAMPLING 113

7 Sampling from Probability Distributions 115
7.1 Uniform Random Variables 115

7.2 The Transformation Method 116

7.2.1 Transformation Method for Joint Distributions 119

7.3 The Rejection Method 121

7.4 Sampling from Discrete Distributions 124

vi Contents

8 Markov Models 129
8.1 Time Evolution of Markov Models 131

8.2 Stationary Distributions and Eigenvectors 134

8.3 Mixing Times 138

9 Markov Chain Monte Carlo Sampling 141
9.1 Metropolis Method 141

9.1.1 Generalizing the Metropolis Method 146

9.1.2 Metropolis as an Optimization Method 147

9.2 Gibbs Sampling 149

9.2.1 Gibbs Sampling as an Optimization Method 152

9.3 Importance Sampling 154

9.3.1 Umbrella Sampling 155

9.3.2 Generalizing to Other Samplers 156

10 Mixing Times of Markov Models 159
10.1 Formalizing Mixing Time 160

10.2 The Canonical Path Method 161

10.3 The Conductance Method 166

10.4 Final Comments 170

11 Continuous-Time Markov Models 173
11.1 Definitions 173

11.2 Properties of CTMMs 175

11.3 The Kolmogorov Equations 178

12 Case Study: Molecular Evolution 185
12.1 DNA Base Evolution 185

12.1.1 The Jukes–Cantor (One-Parameter) Model 185

12.1.2 Kimura (Two-Parameter) Model 188

12.2 Simulating a Strand of DNA 191

12.3 Sampling from Whole Populations 192

12.4 Extensions of the Coalescent 195

12.4.1 Variable Population Sizes 196

12.4.2 Population Substructure 197

12.4.3 Diploid Organisms 198

12.4.4 Recombination 198

13 Discrete Event Simulation 201
13.1 Generalized Discrete Event Modeling 203

13.2 Improving Efficiency 204

13.3 Real-World Example: Hard-Sphere Model of Molecular Collision Dynamics 206

13.4 Supplementary Material: Calendar Queues 209

14 Numerical Integration 1: Ordinary Differential Equations 211
14.1 Finite Difference Schemes 213

14.2 Forward Euler 214

14.3 Backward Euler 217

Contents vii

14.4 Higher-Order Single-Step Methods 219

14.5 Multistep Methods 221

14.6 Step Size Selection 223

15 Numerical Integration 2: Partial Differential Equations 227
15.1 Problems of One Spatial Dimension 228

15.2 Initial Conditions and Boundary Conditions 230

15.3 An Aside on Step Sizes 233

15.4 Multiple Spatial Dimensions 233

15.5 Reaction–Diffusion Equations 234

15.6 Convection 237

16 Numerical Integration 3: Stochastic Differential Equations 241
16.1 Modeling Brownian Motion 241

16.2 Stochastic Integrals and Differential Equations 242

16.3 Integrating SDEs 245

16.4 Accuracy of Stochastic Integration Methods 248

16.5 Stability of Stochastic Integration Methods 249

17 Case Study: Simulating Cellular Biochemistry 253
17.1 Differential Equation Models 253

17.2 Markov Models Methods 256

17.3 Hybrid Models 259

17.4 Handling Very Large Reaction Networks 260

17.5 The Future of Whole-Cell Models 262

17.6 An Aside on Standards and Interfaces 263

III PARAMETER-TUNING 265

18 Parameter-Tuning as Optimization 267
18.1 General Optimization 268

18.2 Constrained Optimization 269

18.3 Evaluating an Implicitly Specified Function 271

19 Expectation Maximization 275
19.1 The ‘‘Expectation Maximization Algorithm’’ 277

19.2 EM Theory 278

19.3 Examples 280

20 Hidden Markov Models 291
20.1 Applications of HMMs 292

20.2 Algorithms for HMMs 295

20.2.1 Problem 1: Optimizing State Assignments 295

20.2.2 Problem 2: Evaluating Output Probability 297

20.2.3 Problem 3: Training the Model 299

20.3 Parameter-Tuning Example: Motif-Finding by HMM 303

21 Linear System-Solving 309
21.1 Gaussian Elimination 310

21.1.1 Pivoting 312

viii Contents

21.2 Iterative Methods 316

21.3 Krylov Subspace Methods 317

21.3.1 Preconditioners 319

21.4 Overdetermined and Underdetermined Systems 320

22 Interpolation and Extrapolation 323
22.1 Polynomial Interpolation 326

22.1.1 Neville’s Algorithm 326

22.2 Fitting to Lower-Order Polynomials 329

22.3 Rational Function Interpolation 330

22.4 Splines 331

22.5 Multidimensional Interpolation 334

22.6 Interpolation with Arbitrary Families of Curves 334

22.7 Extrapolation 337

22.7.1 Richardson Extrapolation 337

22.7.2 Aitken’s d2 Process 338

23 Case Study: Inferring Gene Regulatory Networks 341
23.1 Coexpression Models 342

23.1.1 Measures of Similarity 342

23.1.2 Finding a Union-of-Cliques Graph 344

23.2 Bayesian Graphical Models 347

23.2.1 Defining a Probability Function 347

23.2.2 Finding the Network 349

23.3 Kinetic Models 351

24 Model Validation 355
24.1 Measures of Goodness 355

24.2 Accuracy, Sensitivity, and Specificity 358

24.3 Cross-Validation 361

24.4 Sensitivity Analysis 362

24.5 Modeling and the Scientific Method 363

References 367

Index 377

Contents ix

Preface

This text arose from a class on biological modeling I have been teaching annually at

Carnegie Mellon University since 2004. I created the class to fill what I saw as a gap

in the available computational biology teaching materials. There are many excellent

sources from which one can learn about successful approaches that have been devel-

oped for various core problems in computational biology (e.g., building phylogenies,

implementing molecular simulations, or inferring DNA binding motifs). What seems

to me to have been missing, though, is material to prepare aspiring computational

biologists to solve the next problem, the one that no one has studied yet. Too often,

computational biology courses assume that if a student is well prepared in biology

and in computer science, then he or she can figure out how to apply the one to the

other. In my experience, however, a computational biologist who wants to be pre-

pared for a broad range of unexpected problems needs a great deal of specialized

knowledge that is not part of the standard curriculum of either discipline. The mate-

rial included here reflects my attempt to prepare my students for the sorts of un-

anticipated problems a computational biology researcher is like to encounter by

collecting in one place a set of broadly useful models and methods one would ordi-

narily find scattered across many classes in several disciplines.

Meeting this challenge—preparing students for solving a wide array of problems

without knowing what those problems will be—requires some compromises. Many

potentially useful tools had to be omitted, and none could be covered in as much

depth as I might have liked so that I could put together a ‘‘bag of tricks’’ that is

likely to serve the aspiring researcher well on a broad class of biological problems. I

have for the most part chosen techniques that have proved useful in diverse biologi-

cal modeling contexts in the past. In a few cases, I have selected methods that are not

yet widely used in biological modeling but that I believe have great potential. For

every topic, I have tried to focus on what the practitioner needs to know in order to

use these techniques e¤ectively, sacrificing theoretical depth to accommodate greater

breadth. This approach will surely grate on some readers, and indeed I feel that this

material is best treated not as a way to master any particular techniques, but rather

as a set of possible starting points for use in the modeling problems one encounters.

My goal is that a reader who learns the material in this text will be able to make at

least a first attempt at solving nearly any computational problem he or she will en-

counter in biology, and will have a good idea where to go to learn more if that first

attempt proves inadequate.

This text is designed for readers who already have some familiarity with computa-

tional and biological topics. It assumes an introductory knowledge of algorithms and

their analysis. Portions of the text also assume knowledge of calculus, linear algebra,

and probability at the introductory undergraduate level. Furthermore, though the

text teaches computational methods, its goal is to help readers solve biological prob-

lems. The reader should therefore be prepared to encounter many toy examples and

a few extended case studies showing how the methods covered here have been ap-

plied to various real problems in biology. Readers are therefore likely to need a gen-

eral knowledge of biology at the level of at least an undergraduate introductory

survey course. When I teach this material, a key part of the learning experience con-

sists of exercises in which students are presented with biological problems and are

expected to formulate, and often implement, models using the techniques covered

here. While one need not necessarily use the text in that way, it is written for readers

capable of writing their own computer code.

I would like to thank the many people who have made this work possible. Sorin

Istrail, one of my mentors in this field, provided very helpful encouragement for

this project, as did my editors at the MIT Press, Bob Prior and Katherine Almeida.

Mor Harchol-Balter provided valuable advice on clarifying my presentation of

continuous-time Markov models. And I am grateful to my many teachers through-

out the years in whose classes I picked up bits and pieces of the material of this text.

I had the mixed blessing of having realized I wanted to be a computational biologist

as a student in the days before computational biology classes were widespread. Many

of the topics here are pieced together from subjects I found useful in inventing my

own computational biology curriculum with the advice of my graduate mentor, Bon-

nie Berger. Most important in preparing this work have been the students in my

class, who have provided much helpful criticism as this material evolved from hand-

written lecture notes to typeset handouts, and finally to its present form. Though all

of my students deserve some thanks, the following have been particularly helpful in

o¤ering corrections and criticism on various editions of this work and suggesting new

topics that made their way into the final version: Byoungkoo Lee, Srinath Sridhar,

Tiequan Zhang, Arvind Ramanathan, and Warren Ruder.

This material is based upon work supported by the National Science Foundation

under glant no. 0346981. Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the author and do not necessarily reflect

the views of the National Science Foundation.

xii Preface

1 Introduction

1.1 Overview of Topics

This book is divided into three major sections: models for optimization, simulation

and sampling, and parameter-tuning. Though there is some overlap among these

topics, they provide a general framework for learning how one can formulate models

of biological systems, what techniques one has to work with those models, and how

to fit those models to particular systems.

The first section covers perhaps the most basic use of mathematical models in bio-

logical research: formulating optimization problems for biological systems. Examples

of models used for optimization problems include the molecular evolution models

generally used to formulate sequence alignment or evolutionary tree inference prob-

lems, energy functions used to predict docking between molecules, and models of

the relationships between gene expression levels used to infer genetic regulatory net-

works. We will start with this topic because it is a good way for those who already

have some computational background to get experience in reasoning about how to

formulate new models.

The second section covers simulation and sampling (i.e., how to select among pos-

sible system states or trajectories implied by a given model). Examples of simulation

and sampling questions we could ask are how a biochemical reaction system might

change over time from a given set of initial conditions, how a population might

evolve from a set of founder individuals, and how a genetic regulatory network

might respond to some outside stimulus. Answering such questions is one of the

main functions of models of biological systems, and this topic therefore takes up the

greatest part of the text.

The third section covers techniques for fitting model parameters to experimental

data. Given a data set and a class of models, the goal will be to find the best model

from the class to fit the data. A typical parameter-tuning problem would be to esti-

mate the interaction energy between any two amino acids in a protein structure

model by examining known protein structures. Parameter-tuning overlaps with

optimization, as finding the best-fit parameters for a model is often accomplished by

optimizing for some quality metric. There are, however, many specialized optimiza-

tion methods that frequently recur in parameter-tuning contexts. We will conclude

our discussion of parameter-tuning by considering how to evaluate the quality of

whatever fit we achieve.

1.2 Examples of Problems in Biological Modeling

To illustrate the nature of each of these topics, we can work through a few simple

examples of questions in biology that we might address through computational

models. In this process, we can see some of the issues that come up in reasoning

about a model.

1.2.1 Optimization

Often, when we examine a biological system, we have a single question we want to

answer. A mathematical model provides a way to precisely judge the quality of pos-

sible solutions and formulate a method for solving it. For example, suppose I have

a hypothetical group of organisms: a bacterium, a protozoan, a yeast, a plant, an

invertebrate, and a vertebrate. Our question is ‘‘What are the evolutionary relation-

ships among these organisms?’’ That may seem like a pretty straightforward ques-

tion, but it hides a lot of ambiguity. By modeling the problem, we can be precise

about what we are asking.

The first thing we need is a model of what ‘‘evolutionary relationships’’ look like.

We can use a standard model, the evolutionary tree. Figure 1.1 shows a hypothetical

(and rather implausible) example of an evolutionary tree for our organisms. Note

that by choosing a tree model, we are already restricting the possible answers to our

question. The tree leaves out many details that may be of interest to us, for example,

which genes are conserved among subsets of these organisms. It also makes assump-

tions, such as a lack of horizontal transfer of genes between species, that may be in-

accurate when understanding the evolution of these organisms. Nonetheless, we have

to make some assumptions to specify precisely what our output looks like, and these

Figure 1.1
Hypothetical evolutionary tree linking our example set of organisms.

2 1 Introduction

are probably reasonable ones. We have now completed one step of formalizing our

problem: specifying our output format.

We then must deal with another problem: even if our model specifies that our out-

put is a tree, we do not know which one. We cannot answer our question with cer-

tainty, so what we really want to find is the best answer, given the evidence available

to us. So, what is the evidence available to us? We might suppose that our evidence

consists of genetic sequences of some highly conserved gene or genetic region in

each organism. That means we assume we are given m strings on an alphabet

fA;C;T;Gg. Figure 1.2 is an example of such strings that have been aligned to

each other by inserting a gap (‘‘-’’) in one. We have now completed another step in

formalizing our problem: specifying our input format.

Now we face another problem. There are many possible outputs consistent with

any input. So which is the best one? To answer that, our model needs to include

some measure of how well any given tree matches the data. A common way to this

is to assume some model of the process by which the input data may have been gen-

erated by the process of evolution. This model will then have implications for the

probability of observing any given tree. Let us propose some assumptions that will

let us define a formal model:

� Our gene is modified only by point mutations, changing one base at a time.
� Mutations are rare.
� Any one mutation (or insertion or deletion) is as likely to occur as any other.
� Mutations are selectively neutral, that is, they do not a¤ect the probability of the

organism’s surviving and reproducing.

Those are not exactly correct assumptions, but they may be reasonable approxi-

mations, depending on the characteristics of our problem. Given these assumptions,

we might propose that the best tree is the one that involves the fewest mutations be-

tween organisms. A model that seeks to minimize some measure of complexity of the

solution is called a parsimony model. Parsimony formulations often lead to recogniz-

able optimization problems. In this case, we can define an edit distance d between

Figure 1.2
A set of strings on the alphabet fA;C;T;Gg that have been aligned to each other.

1.2 Examples of Problems in Biological Modeling 3

two strings s1 and s2 to be the minimum number of insertions, deletions, and base

changes necessary to convert one string into the other. Then our solution to the prob-

lem will consist of a tree with leaves labeled with our input strings and with internal

nodes labeled with other strings such that the sum of the edit distances across all

edges in the tree is minimized. We have now accomplished the third task in formaliz-

ing our problem: specifying a metric for it.

Now that we have the three components of our formal specification—an input for-

mat, an output format, and a metric—we have specified our model well enough to

formulate a well-defined computational optimization problem. We can take the

same problem we specified informally above and write it more formally as follows:

Input A set S of strings on the alphabet S ¼ fA;C;T;Gg representing our DNA

sequences to be examined

Output A tree T ¼ ðV ;EÞ with jSj leaves LJV and an assignment of string tags

to nodes t : V ! S� satisfying the constraint Es A Sbl A L s.t. tðlÞ ¼ s (read as ‘‘for

all strings s in set S, there exists a leaf node l from set L such that the tag of l, tðlÞ,
is the string s’’)

Metric
P
ðu; vÞ AE dðtðuÞ; tðvÞÞ (read as ‘‘the sum over all edges u to v in the edge set

E of the edit distance between the tag of u, tðuÞ and the tag of v, tðvÞ’’) is minimized

over trees T and tag assignments t.

In other words, we want to find the tree whose leaves are labeled with the

sequences of our organisms and whose internal nodes are labeled with the sequences

of presumed common ancestors such that we minimize the total number of base

changes over all pairs of sequences sharing an edge in the tree. This does not yet tell

us how to solve the problem, but it does at least tell us what problem to solve. Later

in the book, we will see how we might go about solving that problem.

1.2.2 Simulation and Sampling

Another major use of models is for simulation. Usually, we use simulations when we

are interested in a process rather than a single outcome. Simulating the process can

be useful as a validation of a model or a comparison of two di¤erent models. If we

have reason to trust our model, then simulation can further be used to explore how

interventions in the model might a¤ect its behavior. Simulations are also useful if the

long-term behavior of the model is hard to analyze by first principles. In such cases,

we can look at how a model evolves and watch for particularly interesting but un-

expected properties.

As an example of what one might do with simulation, let us consider an issue

motivated by protein structure analysis. Suppose we are given the structure of a pro-

tein and we wish to understand whether we can mutate the protein in some way that

increases its stability. Simulations can provide a way to answer this sort of question.

4 1 Introduction

Our input can be assumed to be a protein sequence (i.e., a string of amino acids).

More formally, our input is a string s A S� (‘‘S�’’ is a formal notation for a string of

zero or more characters from the alphabet S), where S ¼ fA;C;D;E;F ;G;H; I ;K ;

L;M;N;P;Q;R;S;T ;V ;W ;Yg.
If we want to answer this question, we first need a model for the structure of our

protein. For the purposes of this illustration, we will use a common form of simpli-

fied model called a lattice model. In a lattice model, we treat a protein as a chain of

beads sitting at points on a regular grid. To simplify the illustration, we will represent

this as a two-dimensional structure sitting on a square grid. In practice, much more

flexible lattices are available that better capture the true range of motion of a protein

backbone. Lattice models tend to be a good choice for simulations involving protein

folding because they are simple enough to allow nontrivial rearrangements to occur

on a reasonable time scale. They are also often used in optimizations related to pro-

tein folding because of the possibility of enumerating discrete sets of conformations

in them. Our model of the protein structure is, then, a self-avoiding chain on a 2-D

square lattice (see figure 1.3).

If we want to study protein energetics, we need a model of the energy of any par-

ticular structure. Lattice models are commonly used with contact potentials that as-

sign a particular energy to any two amino acids that are adjacent on the lattice but

not in the protein chain. For example, in the model protein above, we have two con-

tacts, S to L at the top and D to K at the bottom. These are shown as thick dashed

lines in figure 1.3. On more sophisticated lattices, these potentials might vary with

distance between the amino acids or their orientations relative to one another, but

we will ignore that here.

As a first pass at solving our problem, we might simply stop here and say that we

can estimate the stability e¤ect of an amino acid change by looking at the change

in contact energies it produces. For example, suppose our model specifies a contact en-

ergy of þ1 kcal/mol for contact between S and L and �1 kcal/mol for contact

Figure 1.3
A hypothetical protein folded on a lattice. Solid lines represent the path of the peptide backbone. Thick
dashed lines show contacts between amino acids adjacent on the lattice but not on the backbone. Thin
dashed lines show the lattice grid. (a) Initial conformation of the protein. (b) Alternative conformation
produced by pivoting around the arginine (R) amino acid.

1.2 Examples of Problems in Biological Modeling 5

between S and T. Then we might propose that if the conformation in figure 1.3(a) is

our protein’s native (normal) state, then mutating L to T will increase stability (re-

duce energy) by 2 kcal/mol. We might then propose to solve the problem by attempt-

ing substitutions at all positions until we find the set of amino acids with the lowest

possible energy summed over all contacts. This first-pass solution is problematic,

though, in that it neglects the fact that an amino acid change which stabilizes the na-

tive conformation might also stabilize nonnative conformations. The change might

thereby reduce the time spent in the native state even while reducing the native state’s

intrinsic energy.

We therefore need some way to study how the protein might move under the con-

trol of our energy model. There are many move sets for various lattices that attempt

to capture how a protein chain might bend. A move set is a way of specifying how

any given conformation can be transformed into other conformations. Figure 1.4

shows an example of a possible move for a move set. Anywhere we observe a subset

of a conformation matching the left pattern, it would be legal to transform it to

match the right pattern, and vice versa. This move alone would be insu‰cient to cre-

ate a realistic folding model, but it might be part of a larger set allowing more free-

dom of movement. For this small example, though, we will assume a simpler move

set. We will say that a single move of a protein consists of choosing any one bond in

the protein and bending it to any arbitrary position that does not produce collisions

in the chain. We can get from any chain configuration to any other by some sequence

of these single-bond bends. For example, we could legally change our chain configu-

ration in figure 1.3(a) into that in figure 1.3(b) by pivoting 90� at the S-R-K bend.

We would not be able to pivot an additional 90�, though, because that would create

a collision between the M and D amino acids.

The move set only tells us which moves are allowed, though, not which are

likely. We further need a model of dynamics that specifies how we select among

di¤erent legal moves at each point in time. One common method is the Metropolis

criterion:

Figure 1.4
An example of a lattice move. X stands for any possible amino acid, and the ellipses stand for any possible
conformation of the chain outside of a local region of interest. This move indicates that a 180� bend of
four residues can be flipped about the surrounding backbone.

6 1 Introduction

1. Pick uniformly at random among all possible moves from the current conforma-

tion C1 to some neighboring conformation C2.

2. If the energy of C2 is less than the energy of C1, accept the move and change to

conformation C2.

3. Otherwise, accept the move with probability e�ðEðC2Þ�EðC1ÞÞ=kBT , where T is the ab-

solute temperature and kB is Boltzmann’s constant.

4. If the move is not yet accepted, reject the move and remain in conformation C1.

This method produces a sequence of moves with some nice statistical properties that

we will cover in more depth in chapter 9. The choice of this model of dynamics once

again involves a substantial oversimplification of how a chain would really fold, but

it is a serviceable model for this example. This completes a model, if not a very good

model, of how a protein chain will move over time.

We are now ready to formulate our initial question more rigorously. We can pro-

pose to estimate the stability of the chain as follows:

1. Place the chain into its native configuration.

2. Select the next state according to the Metropolis criterion.

3. If it is in the native configuration, record a hit; otherwise, record a miss.

4. Return to step 2.

We can run this procedure for some predetermined number of steps and use the frac-

tion of hits as a measure of the stability of the protein. We can repeat this experiment

for each mutation we wish to consider. A mutation that yields a higher percentage of

hits than the original sequence over a su‰ciently long simulation run is inferred to be

more stable. A mutation that yields a lower percentage of hits is inferred to be less

stable. This example thus demonstrates how we might use simulation to solve a bio-

logical problem.

An issue closely related to simulation is sampling: choosing a state according to

some probability distribution. For example, instead of simulating a trajectory from

the native state, we might repeatedly sample from the partition function defined by

the energies of the states of our protein sequence. That is, we might have some prob-

ability distribution over possible configurations of the protein defined by the relative

energies of the folds, then repeatedly pick random configurations from this distribu-

tion. We could then ask what fraction of states that we sample are the native state.

This is actually closer to what we really want to do to solve our problem, although if

we look at a lot of steps of simulation, the two approaches should converge on the

same answers. In fact, simulation is often a valid way to perform sampling, although

there may be much more e‰cient ways for some problems. For a short amino acid

chain like this, for example, it might be feasible to analytically determine the proba-

bility distribution of states, given our model.

1.2 Examples of Problems in Biological Modeling 7

1.2.3 Parameter-Tuning

The final area of modeling and simulation we will consider is how to fit a general

class of model to a specific set of data. Whether we are using a model for simulation

or optimization, we will commonly have a general format for input and output, but

some unknown parameters are needed to translate one to the other. We may also

have a set of examples from which to learn the missing parameters. We then wish to

establish the function relating inputs to outputs. A model lets us constrain the space

of possible functions and judge which among the allowed ones are better explana-

tions than others. That in turn lets us formulate a precise computational problem.

For example, suppose we want to learn about the function of a novel protease we

have identified. A protease is a protein that cuts other proteins or peptides. It usually

has some specificity in selecting the sites at which it cuts other proteins. That is, if it is

presented with many copies of the same protein, there are some sites it will cut fre-

quently and some it will cut rarely or not at all. Suppose we have the following

examples of how the protease cleaves some known peptides:

SIVVAKSASK ! SASIVVAK þ SASK

HEPCPDGCHSGCPCAKTC ! H þ EPCPDGCH þ SGCPCAKTC:

We can treat these examples as the input to a parameter-fitting problem. More for-

mally, we can say our input is a set of strings on the alphabet of amino acids

S ¼ fA;C;D;E;F ;G;H; I ;K ;L;M;N;P;Q;R;S;T ;V ;W ;Yg

and a set of integer cut sites in each string. Our goal is to predict how this protease

will act on novel sequences. Typically, we would answer this by assuming a class of

models based on prior knowledge about our system, with some unspecified parame-

ters distinguishing particular members of the class. We would then try to determine

the parameters of the specific model from our class that best explain our observed

data. We can then use the model with that parameter assignment to make predictions

about how the protease will act on novel sequences.

We first need to define our class of models. A good way to get started is to ask

what we know about proteases in general. Proteases usually recognize a small motif

close to the cut site. The closer a residue is to the cut site, the more likely it is to be

important to deciding where the cut occurs. A good model then may assume that the

protease examines some window of residues around a potential cut site and decides

whether or not to cut based on the residues in that window. The parameter-tuning

problem for such a model consists of identifying the probability of cutting for any

specific window. If we have a lot of training data, we may assume that the protease

can consider very complicated patterns. Since our data are very sparse, though, we

8 1 Introduction

probably need to assume the motif it recognizes is short and simple. That assumption

is not necessarily true, and if it is not, then we will not be able to learn our model

without more data. Many known proteases cut exclusively on the basis of the residue

immediately N-terminal of the cut site, so for this example we will assume that the

window examined consists only of that one residue.

Using these basic assumptions, we can create a formal model for cut-site predic-

tion. As a first pass, we can assume that the probability of cutting at a given site is

a function of the amino acid immediately N-terminal from that site. More formally,

then, our class of models is the set of mappings from amino acids to cut probabilities,

f : fA;C;D;E;F ;G;H; I ;K ;L;M;N;P;Q;R;S;T ;V ;W ;Yg ! ½0; 1�:

The parameters of the model are then the 20 values f ðAÞ; f ðCÞ; . . . ; f ðYÞ defining
the function over the amino acid alphabet. This may be an acceptable model if we

have su‰cient data available to estimate all of these values. In this case, though,

our training data are so sparse that we do not have any examples of some amino

acids with which to estimate cut probabilities. So how do we predict their behavior?

Once again, to answer this sort of question we have to ask what we know about our

system. Specifically, what do we know about amino acids that might help us reduce

the parameter space? One useful piece of information is that some amino acids are

more chemically similar than others, and they can be roughly grouped into categories

by chemical properties. Typical categories are hydrophobic (H), polar (P), basic (B),

acidic (A), and glycine (G). If we then classify our amino acids into these groups, we

end up with the following inputs:

PHHHHBPHPB! PHHHHBþ PHPB

BAPHPAGHBPGHHHHBPH ! Bþ APHPAGHBþ PGHHHHBPH

We now have five parameters to fit in this model: f ðHÞ, f ðPÞ, f ðBÞ, f ðAÞ, and
f ðGÞ, that is, the probabilities of cutting after each amino acid class. In this simple

model, the procedure for fitting our model to the data is straightforward: count the

fraction of times a particular residue class is followed by a cut site. This procedure

gives us the following parameters:

f ðHÞ ¼ 0

f ðPÞ ¼ 0

f ðBÞ ¼ 0:75

f ðAÞ ¼ 0

f ðGÞ¼ 0

1.2 Examples of Problems in Biological Modeling 9

That answers our general question about the rules determining the behavior of this

protease. In particular, we have derived what are known as maximum likelihood esti-

mates of the parameters, which means these are the parameter values that maximize

the probability of generating the observed outputs from our model. If we want to get

more sophisticated, we can also consider how much confidence to place in our

parameters based on the amount of data used to determine each one. We will also

need to consider issues of validating the model, preferably on a di¤erent data set

than the one we used to train it. We will neglect such issues for now, but return to

them in chapter 24.

References and Further Reading

Though I am not aware of any references on the general subject matter of this chap-

ter, the specific examples are drawn from a variety of sources in the literature. Evo-

lutionary tree-building is a broad field, and there are many fine references to the

general topic. Three excellent texts for the computationally savvy reader are Felsen-

stein [1], Gusfield [2], and Semple and Steel [3]. The notion of a parsimony-based

tree, as we have examined it here, first appeared in the literature in a brief abstract

by Edwards and Cavalli-Sforza [4]. There are many computational methods now

available for inferring trees by parsimony metrics, and the three texts cited above

([1], [2], [3]) are all good references for these methods. We will see a bit more about

them in chapters 2 and 3.

The use of lattice models for protein-folding applications was developed in a paper

by Taketomi et al. [5], the first of a series introducing a general class of these lattice

models that became known as Gō models. The specific example of a lattice move

presented in figure 1.4 was introduced in a paper by Chan and Dill [6] as part of a

move set called MS2. The Metropolis method, which we will cover in more detail in

chapter 9, is one of the most important and widely used of all methods for sampling

from complicated probability distributions. It was first proposed in an influential pa-

per by Metropolis et al. [7].

The problem of predicting proteolytic cleavage sites is not nearly as well studied as

evolutionary tree-building or protein-folding, but nonetheless has its own literature.

The earliest reference to the computational problem of which I am aware is a paper

by Folz and Gordon [8] introducing algorithms for predicting the cleavage of signal

peptides. Much of the current interest in the problem arises from its importance in

some specific medical contexts. One of these is understanding the activity of the

human immunodeficiency virus (HIV) protease, a protein that is critical to the HIV

life cycle and an important target of anti-HIV therapeutics. A review by Chou [9]

o¤ers a good discussion of the problem and methods in that context. Another impor-

10 1 Introduction

tant application is prediction of cleavage by the proteasome, a molecular machine

found in all living cells. The proteasome is used for general protein degradation, but

has evolved in vertebrates to play a special role in the identification of antigens by

the immune system. Its specificity has therefore become important to vaccine design,

among other areas. Saxová et al. [10] conducted a survey and comparative analysis

of the major prediction methods for proteasome cleavage sites, which is a good place

to start learning more about that application.

References and Further Reading 11

I MODELS FOR OPTIMIZATION

2 Classic Discrete Optimization Problems

Often, an excellent way to begin work on a project involving modeling is to look at

an informal representation of the problem we need to solve and ask whether it

reminds us of any problem we have seen before. We may have to simplify the prob-

lem a bit or distort aspects of it to match it to something we already know how to

solve. Nonetheless, this can be a good way to get a first pass at a solution. Later on,

we can look at whether the problem can be modified to restore important aspects of

the real system that were removed in that first pass. The same basic algorithm can

often accommodate fairly large changes in the model.

The purpose of this chapter is to help with this process by examining some of the

classic discrete optimization problems that we are likely to see reflected in applied

work. I have tried to focus here on problems that may ‘‘look hard’’ if we are not fa-

miliar with them, since those are the problems for which it is most valuable to know

what is and is not doable. For readers who have taken an introductory algorithms

class, this chapter will be largely a review, hopefully a useful one. Some of these

problems already have important applications in practical computational biology.

Others come up often enough in other applied contexts that we might consider them

good guesses when looking for solutions to new problems. When looking at a mod-

eling problem for which we do not yet have a solution, we can try to run through

some of the problems in this chapter and see if any of them remind us of the problem

we need to solve.

We will begin by looking at graph problems. Graphs have proved to be a very use-

ful abstraction for a broad range of optimization problems in computational biology.

We will then consider some important string and sequence problems. These two

abstractions are broadly important to computer science in general, and particularly

to computational biology. We will then examine some of the issues in adapting clas-

sic algorithms to real-world problems through a mini case study on the topic of

building evolutionary trees.

2.1 Graph Problems

We will start with a quick review of graphs. A graph G consists of a set of nodes, V ,

and a set of edges, E. Each edge ei is defined by a pair of nodes ðvi; vjÞ. A graph can

be directed, meaning ðvi; vjÞ0 ðvj ; viÞ, or undirected, meaning ðvi; vjÞ ¼ ðvj; viÞ. It can
also be weighted, meaning each edge ei has an associated numerical weight wðeiÞ. w
is then a function from edges to real numbers, denoted by w : E ! R. In some cases,

it is convenient to treat the weight function as a function from V � V to real num-

bers (denoted w : V � V ! R). We may sometimes see these two representations

used interchangeably even though it is an abuse of notation. One may sometimes be

interested in multigraphs, in which multiple edges can connect the same pair of

nodes, but we will not be using multigraphs here. When the type of graph is not

specified, we generally assume that we are speaking about a weighted, directed

graph. Figure 2.1 shows a weighted, undirected graph that we will use to illustrate

the various graph problems we cover.

We will now briefly survey many solvable graph problems that frequently show up

in real-world applications. As a practical matter, it is not that important that one

memorize the algorithms which solve these problems. In the unlikely event that we

need to use a standard algorithm that is not found in some generally available code

library, it is easy enough to look it up. We do, however, need to be able to recognize

these problems when they come up in practice, so that when we try to model a novel

system, we will have a good idea what algorithmic tools are available to us. Once we

identify the existing tools suitable for a given problem, we will also be better able to

reason about how we might adapt our initial model to make it more realistic or more

tractable for our specific application.

2.1.1 Minimum Spanning Trees

Many graph problems consist of finding a subset of a graph that optimizes for some

metric. One common variant of optimal subgraph selection is finding a minimum

spanning tree. A tree is a graph that is connected and contains no cycles, and a span-

Figure 2.1
A weighted, undirected graph.

16 2 Classic Discrete Optimization Problems

ning tree is a tree that includes every node of a given input graph. Informally, the

minimum spanning tree problem is the problem of taking a weighted graph and find-

ing the spanning tree of smallest weight (i.e., the tree of minimum total edge weight

that connects all nodes of the graph). The minimum spanning tree problem is formal-

ized as follows:

Input A weighted, undirected, connected graph G ¼ ðV ;EÞ
Output A subset of the graph G 0 ¼ ðV ;E 0Þ such that G 0 is a tree (a connected,

cycle-free graph), and for each vertex v A V , there exists some u A V such that

ðu; vÞ A E 0

Metric
P
ðu; vÞ AE 0 wðu; vÞ is minimized.

Figure 2.2 shows the minimum spanning tree for the graph of figure 2.1.

There are two principal algorithms for finding minimum spanning trees in general

graphs. Kruskal’s algorithm splits a graph into sets, initially one for each node,

then repeatedly greedily joins the two sets with the smallest edge weight between

them. Figure 2.3 provides pseudocode for the algorithm. The runtime of Kruskal’s

Figure 2.2
A minimum spanning tree for the example graph. Solid edges are those present in the spanning tree, and
dashed edges are those absent from it.

Figure 2.3
Pseudocode for Kruskal’s algorithm for the minimum spanning tree problem.

2.1 Graph Problems 17

algorithm depends on the sort algorithm and the data structure used for maintaining

and merging subsets of the nodes, but in the best case it is OðjEj lgjEjÞ.
The second general method is Prim’s algorithm, which builds the spanning tree

outward from a single node, greedily adding in whichever node not in the current

tree has the lowest-weight edge connecting it to the tree. Figure 2.4 provides pseudo-

code for Prim’s algorithm. The runtime of Prim’s algorithm depends on the priority

queue used to select the node with minimum key. Most standard priority queue algo-

rithms will give OðjEj lgjV jÞ runtime, as with Kruskal’s algorithm, although Prim’s

algorithm can be implemented with runtime OðjEj þ jV j lgjV jÞ by using a sophisti-

cated kind of priority queue called a Fibonacci heap. As is often the case, there are

better algorithms for special cases of input. For example, there are algorithms for

sparse graphs (graphs with few edges) that can get runtime down to OðjEj lg�jV jÞ,
which is an improvement over Prim’s algorithm if jEj < jV j lgjV j=lg�jV j. In appli-

cations where runtime is a concern, it may be worth looking into the literature to

see whether any special-purpose algorithms apply to the particular problem variant

being solved.

There is also a directed version of the minimum spanning tree problem, called

a minimum spanning arborescence, the algorithms for which are a bit more

complicated.

Figure 2.4
Pseudocode for Prim’s algorithm for the minimum spanning tree problem.

18 2 Classic Discrete Optimization Problems

2.1.2 Shortest Path Problems

Another common graph problem is to find a shortest path in a graph (i.e., a path of

minimum weight or minimum number of edges between a pair of nodes). The sim-

plest version of this problem can be stated as follows:

Input A graph G ¼ ðV ;EÞ (possibly directed), a weight function w : E ! R, a

source node s A V , and a sink node t A V

Output A path s, v1; . . . ; vk, t such that e0 ¼ ðs; v1Þ A E, ei ¼ ðvi; viþ1Þ A E for all i,

and ek ¼ ðvk; tÞ A E

Metric
Pk

i¼0 wðeiÞ is minimized.

That is, we want a path of minimum weight from s to t in G.

This problem is more specifically known as the single-pair shortest-path problem

because we want a shortest path between one given pair of nodes. Figure 2.5 shows

a single-pair shortest path for the graph of figure 2.1 with a chosen source s and sink

t. A special case of this problem is where wðeÞ1 1, meaning we want the path with

the minimum number of edges. In an unweighted graph, we can find the single-pair

shortest path by an algorithm called breadth-first search in OðjV j þ jEjÞ time. In a

breadth-first search, we search through a graph by maintaining a queue of nodes

and repeatedly pulling the node o¤ the front of a queue and adding all of its neigh-

bors to the end of the queue. As we process each neighbor of the current node, we

update the distance to that neighbor if there is a shorter path through the current

node than any of which we were aware before. In a weighted graph, we generally

need to use algorithms for the more general single-source shortest-path problem, one

of several other important shortest-path problem variants:

� Single-source shortest-path: Find the shortest path from a given node to all other

nodes.
� Single-destination shortest-path: Find the shortest path from each node to a given

node.
� All-pairs shortest-path: Find the shortest path between each pair of nodes.

Figure 2.5
A single-pair shortest-path assignment from a source s to a sink t for the graph in figure 2.1. Directed edges
on the path are shown as solid arrows. Edges omitted from the path are shown as dashed lines.

2.1 Graph Problems 19

These variants can of course be solved by solving for multiple individual instances of

single-pair shortest paths. However, there are in general more e‰cient methods.

For a general single-source shortest-path problem, we have several options. When

all edge weights are nonnegative, we can use Dijkstra’s algorithm, which works by

successively adding nodes to a growing set of those of known shortest path. It is

very similar to Prim’s algorithm for finding minimum spanning trees. Figure 2.6

presents pseudocode for Dijkstra’s algorithm. Dijkstra’s algorithm requires time

OðjV j2Þ.
When edge weights may be negative, we instead need to use the Bellman–Ford al-

gorithm, which performs a repeated ‘‘relaxation’’ operation on all edges to keep

updating path costs based on local information until all costs can be guaranteed op-

timal. Figure 2.7 presents pseudocode for the Bellman–Ford algorithm. Note that

the shortest path may not be well defined in a graph with negative-weight edges. In

particular, if there is a cycle in the graph for which the total weight is negative, then

it is possible to construct pathways of arbitrarily low weight by repeatedly circling

around the given cycle. The Bellman–Ford algorithm detects this case and rejects its

input if a negative-weight cycle is detected. Otherwise, it finds a shortest path and

accepts the input. The algorithm requires time OðjV j jEjÞ. There are also more spe-

cialized algorithms for such cases as sparse graphs and restricted domains of edge

weights, but we will not cover those here.

The solution to the single-destination shortest path follows trivially from the

single-source shortest path. We simply reverse all of the edge directions, and then

Figure 2.6
Pseudocode for Dijkstra’s algorithm for the single-source shortest-path problem.

20 2 Classic Discrete Optimization Problems

the single-destination shortest-path problem becomes a single-source shortest-path

problem that we can solve by the Dijkstra or Bellman–Ford algorithm.

The all-pairs shortest path can be solved by multiple runs of a single-source

shortest-path algorithm, but there are more e‰cient ways in practice. One standard

algorithm for this problem is the Floyd–Warshall, a form of dynamic programming

algorithm that solves for the subproblem of finding the shortest path between each

pair of nodes, using only intermediate nodes with index less than k for increasing

values of k. It runs in time OðjV j3Þ. For sparse graphs, the preferred method is

Johnson’s algorithm, a more complicated method which uses a technique called

‘‘reweighting’’ to eliminate negative-weight cycles and then uses Dijkstra’s algorithm

to find the shortest path from each node to all of the others. It has runtime

OðjV j2 lgjV j þ jV j jEjÞ. We will omit detailed coverage of those algorithms here.

2.1.3 Max Flow/Min Cut

Two related graph problems of which we should be aware are the maximum flow

and minimum cut problems. Maximum flow can be formally stated as follows:

Input A weighted, directed graph G ¼ ðV ;EÞ with weight function w : E ! R (also

known as the capacity), a source node s A V , and a sink node t A V

Output An assignment of flow to the edges of E, which is a function f : E ! R sat-

isfying the following properties:

� For all v A V where v0 s and v0 t,
P
ðu; vÞ AE f ððu; vÞÞ ¼

P
ðv;uÞ AE f ððv; uÞÞ (i.e., the

flow into any node other than the source and sink is equal to the flow out of that

node)

Figure 2.7
Pseudocode for the Bellman-Ford algorithm for the single-source shortest-path problem.

2.1 Graph Problems 21

� f ðu; sÞ ¼ 0 for all u (i.e., there is no flow into the source)
� f ðt; uÞ ¼ 0 for all u (i.e., there is no flow out of the sink)
� f ððu; vÞÞawððu; vÞÞ (i.e., the flow through an edge never exceeds its capacity).

Metric
P
ðs;uÞ AE f ððs; uÞÞ (or, equivalently,

P
ðu; tÞ AE f ððu; tÞÞ) is maximized.

We can visualize a flow problem by imagining that the edges of our graph represent

pipes joined at the nodes and we are trying to run water through these pipes from the

source to the sink. Each pipe has a maximum amount of water it can handle, repre-

sented by the edge’s capacity. We want to get as much water as we can from the

source to the sink, subject to these constraints. We can also make an analogy to elec-

trical current flowing through wires with a maximum current allowable in each. Fig-

ure 2.8(a) illustrates a maximum flow assignment for the graph in figure 2.1.

The minimum cut problem can be formally stated as follows:

Input A directed, weighted graph G ¼ ðV ;EÞ with weight function w : E ! R, a

source s A V , and a sink t A V

Output A cut, or set of edges E 0JE such that any path from s to t passes through

some e A E 0

Metric
P

e AE 0 wðeÞ is minimized.

Informally, a cut is a set of edges we need to remove in order to separate s from t in

the graph. The maximum flow and minimum cut problems are closely related in that

the maximum flow and the minimum cut in a graph have the same weight. Though

we will not cover the proof here, we can intuitively understand why this is so by not-

ing that the minimum cut is the tightest bottleneck through which a flow must pass,

and is therefore the limiting factor on the maximum flow. Figure 2.8(b) shows a min-

imum cut for the graph of figure 2.1.

Because of the relationship between max flow and min cut, they are generally

solved simultaneously by the same algorithm. The standard method is the Edmonds–

Karp algorithm, an instance of the more general Ford–Fulkerson method. Ford–

Figure 2.8
Maximum flow (a) and minimum cut (b) for the graph in figure 2.1, assuming that we treat edges as bi-
directional with the same capacity in each direction. Solid arrows represent edges used by the flow or pres-
ent in the cut, and dashed lines, edges absent from the flow or cut.

22 2 Classic Discrete Optimization Problems

Fulkerson constructs a maximum flow iteratively by repeatedly finding a single path

from s to t in which all edges have excess capacity, known as an augmenting path.

The algorithm increases the flow along that one path before searching for a new aug-

menting path. When no such path is available, the graph will have reached its maxi-

mum flow. The Edmonds–Karp algorithm requires OðjV j jEj2Þ time.

There are many variants on maximum flow problems, some of which are tractable

and some of which are not. Some variants can trivially be converted into the form

stated above. For example, suppose we want to place capacities on nodes in addition

to edges. We can convert such a problem to the above form by splitting each node v

with capacity cðvÞ into vs and vt, replacing each edge ðu; vÞ with ðu; vsÞ and each edge

ðv; uÞ with ðvt; uÞ, and adding an edge ðvs; vtÞ with capacity wððvs; vtÞÞ ¼ cðvÞ. Another

variant of this problem is the multicommodity flow, in which we have multiple pairs

of sources and sinks, and wish to maximize the sum of flows between all pairs, sub-

ject to the constraint that the sum of flows along any edge cannot exceed a single ca-

pacity for that edge. Some versions of the multicommodity problem can be solved by

linear programming, a technique we will cover in chapter 6.

2.1.4 Matching

Another class of graph problem that is somewhat less well known but nonetheless

important in practice is a matching problem. Matching frequently comes up in vari-

ous disguises in problems related to statistical physics, so it is often a good guess for

a model when looking at optimization problems in molecular modeling. Given a

graph G ¼ ðV ;EÞ, a matching in the graph is a subset of the edges E 0JE such that

no vertex is incident to more than one edge. There are several important variants of

matching to consider.

The simplest is unweighted bipartite maximum matching. A bipartite graph is one

in which the vertex set V can be split into two subsets V ¼ V1 WV2 such that all

edges in the graph are between a node in V1 and a node in V2 (i.e., Ee ¼
ðv1; v2Þ A E, v1 A V1, and v2 A V2). Unweighted bipartite maximum matching is sim-

ply maximum matching when the input is an unweighted bipartite graph:

Input An unweighted bipartite graph G ¼ ðV ;EÞ
Output A matching E 0JE

Metric jE 0j is maximized.

Figure 2.9 is an example of unweighted bipartite maximum matching. Though this

variant may seem specialized, it is very useful in practice. It is also easy to solve,

since it can be cast as a maximum flow problem. To accomplish this, we divide the

the graph into its two parts, V1 and V2, and convert all edges into directed edges

from V1 to V2. We then add an additional source node s and sink node t. Next, we

add edges ðs; v1Þ for each v1 A V1 and ðv2; tÞ for each v2 A V2. Finally, we give each

2.1 Graph Problems 23

edge a capacity of 1 and compute the maximum flow from s to t. I will assert without

proof that the cost of the maximum flow in this graph is equal to the weight of the

maximum matching. Given the weight, it is trivial to find a maximum matching. The

best-known algorithm for this matching variant runs in OðjV j jEjÞ time.

A more general but often more useful variant of this problem is weighted bipartite

matching. In this case, we have a weighted graph and wish to choose the matching of

maximum weight. This problem can be solved in time OðjV j jEj log2þjEj=jV jjV jÞ by a

technique known as the Hungarian method. The Hungarian method uses a substan-

tially more complicated conversion into maximum flow problems, which we will not

cover here. There are also polynomial algorithms available for matching in non-

bipartite graphs, but they are extremely complicated. We will therefore just state

some runtimes so we are aware of what can be done with these problems, but we

will not cover how to do it. Readers who need to know can refer to the primary

sources or more advanced texts covered in the References and Further Reading sec-

tion. For the fully general case (weighted, nonbipartite) there is an OðjV j3Þ algorithm
due to Gabow. There are also faster algorithms for various special classes of graphs.

Matching algorithms is still an active area of research, and if we actually have to

solve a large matching problem, it is often worth our while to do some research on

the current state of the art to find the algorithm most specific to the version we are

solving.

2.2 String and Sequence Problems

One of the major reasons that computational biology emerged as a distinct field was

the need to solve problems that arose as sequence data started to accumulate in large

amounts. Important examples include finding frequent patterns in DNA or protein

sequences (the motif-finding problem) and finding regions of homology between

sequences (the sequence alignment problem). In practice, we often have to modify

our normal understanding of the terms ‘‘tractable’’ and ‘‘intractable’’ when dealing

with such data. It is common to refer to a problem as ‘‘tractable’’ when it can be

Figure 2.9
Unweighted bipartite maximum matching. (a) A sample unweighted bipartite graph. (b) A maximum
matching in the graph. Solid thick edges are those present in the matching, and dashed edges are those
absent from the matching.

24 2 Classic Discrete Optimization Problems

solved in runtime polynomial in its input size, but a quadratic algorithm is not gen-

erally ‘‘tractable’’ when applied to a 3� 109 base-pair genome. Though computa-

tional biologists often work with very specialized versions of these problems, such

specialized problems are frequently solved using methods based on classic string and

sequence algorithms.

2.2.1 Longest Common Subsequence

One example of such a classic problem is the longest common subsequence problem.

A sequence is an ordered set of characters from some alphabet. A subsequence is an

ordered subset of the characters of a sequence in which the characters have the same

order as in the original sequence but need not be consecutive in the original sequence.

The longest common subsequence problem can be formally stated as follows:

Input Two sequences A and B

Output A sequence C that is a subsequence of both A and B

Metric jCj is maximized.

For example, if we take the sequences A ¼ ABCABCABC and B ¼ CABBCCBB,

then the sequence C ¼ ABBCB is a subsequence of both A and B. We can see this

by lining up A and B by the positions of overlap to produce C:

ABCABCA BC

CAB BC CB B

AB BC B

Readers who have already taken an introductory computational biology class may

find that this problem looks familiar. It is actually a special case of the global se-

quence alignment problem, and can be solved by a dynamic programming algorithm

similar to the Needleman–Wunsch and Smith–Waterman methods used in sequence

alignment. If we define A½i� to be the ith character of A and likewise for B½i�, then we

can solve for the length of the longest common subsequence by solving for the sub-

problem MAX ði; jÞ, defined as the size of the longest common subsequence on the

first i characters of A and the first j characters of B. This is accomplished by the fol-

lowing recurrences:

MAX ½i; j� ¼ maxfMAX ði � 1; j � 1Þ þ 1;MAX ði; j � 1Þ;MAX ði � 1; jÞg

if ðA½i� ¼ B½ j�Þ

MAX ½i; j� ¼ maxfMAX ði; j � 1Þ;MAX ði � 1; jÞg if ðA½i�0B½ j�Þ:

We can derive the Needleman–Wunsch algorithm, in which we allow gap and mis-

match penalties, by some slight modifications of the recurrence equations:

2.2 String and Sequence Problems 25

MAX ½i; j� ¼ maxfMAX ði � 1; j � 1Þ þ 1;MAX ði; j � 1Þ � g;MAX ði � 1; jÞ � gg

if ðA½i� ¼ B½ j�Þ

MAX ½i; j� ¼ maxfMAX ði � 1; j � 1Þ �m;MAX ði; j � 1Þ � g;MAX ði � 1; jÞ � gg

if ðA½i�0B½ j�Þ;

where m is a penalty for aligning mismatched characters and g is a penalty for insert-

ing a gap in the alignment. Other common sequence alignment variants—including

a‰ne gaps, semiglobal alignments, and local alignments—can also be derived with

small modifications on the longest common subsequence algorithm. This is thus a

fine example of a case where a classic computer science problem can be adapted in

various ways to solve important real-world problems in biology.

2.2.2 Longest Common Substring

The longest common substring problem is nearly the same as the longest common

subsequence, except that we do not allow gaps in the alignment of the sequences.

For the two strings above, A ¼ ABCABCABC and B ¼ CABBCCBB, the longest

common substring is C ¼ CAB. We can find this by aligning A and B to one another

as follows:

ABCABCABC

CABBCCBB

CAB

The problem is trivially solvable in quadratic time simply by trying all possible

ways of lining one sequence against the other and testing for the longest exact match

for each. Though we would traditionally think of a quadratic problem as tractable,

for biological problems involving large sequences (e.g., eukaryotic genomes), even

quadratic time may be intractable. Perhaps surprisingly, there is a method for solving

this problem in linear time in the sum of the sequence lengths. The method uses a

data structure called a su‰x tree. A su‰x tree implicitly encodes each su‰x of a

given sequence or set of sequences. Conceptually, we can think of a su‰x tree as if

it were similar to the example in figure 2.10, directly encoding every possible su‰x of

the string. What is surprising about su‰x trees, though, is that we can create a data

structure that encodes this same information but requires only linear space and can

be constructed in linear time. The construction is quite involved and would require a

whole chapter to explain, so we omit it here. For our purposes, it is important to

know that we can construct su‰x trees in linear time in the length of their con-

tents, and that we can then search them as e‰ciently as we could the abstraction in

26 2 Classic Discrete Optimization Problems

figure 2.10, allowing us to e‰ciently solve many seemingly di‰cult string matching

problems.

We can solve the longest common substring problem in time OðjAj þ jBjÞ with suf-

fix trees by creating a su‰x tree for A, building another on top of it for B, then find-

ing the deepest node in both trees. The path from the root to that deepest node is the

longest common substring of A and B.

2.2.3 Exact Set Matching

Exact set matching is another classic computer science problem that shows up in

many variations in computational biology applications. It is not an optimization

problem, but is worth covering here for completeness. It is formally stated as follows:

Input a text T (a large string or possible set of strings) and a set of strings

S1;S2; . . . ;Sm

Output the locations of all exact occurrences of any string Si in T .

We can trivially solve the problem in time OðjT jðjS1j þ jS2j þ � � � þ jSmjÞÞ by

searching for the first pattern, then the second, then the third, and so forth. In prac-

tice, though, that is often not su‰cient. For example, if our text is a large eukaryotic

genome and we are looking for thousands of patterns representing possible transcrip-

tion factor binding sites, then this trivial algorithm may be too expensive to be prac-

tical. It is less obvious that this problem can be solved much more e‰ciently by again

using su‰x trees. By reading the text into a su‰x tree and searching sequentially for

each pattern, we can solve this problem in time OðjT j þ jS1j þ jS2j þ � � � þ jSmj þ kÞ,
where k is the number of times the patterns occur.

Figure 2.10
Conceptual illustration of a su‰x tree encoding the string ABCCA. Each su‰x of the string is represented
by a path from the root to a terminal node (/). A true su‰x tree would not explicitly encode all of the
nodes in this tree, but can be searched as if it did.

2.2 String and Sequence Problems 27

2.3 Mini Case Study: Intraspecies Phylogenetics

We will now look at an example of how a knowledge of classic computational prob-

lems can help one solve a real-world problem in biology: the intraspecies phylog-

eny problem. A brief history of this problem o¤ers a fine example of how a classic

computational problem can provide a beginning from which we can build practical

methods for a real-world biological problem. A general phylogeny depicts the evolu-

tionary relationships among a set of sequences of organisms. We saw a brief example

of a phylogeny in chapter 1. An intraspecies phylogeny is in principle the same thing,

but we take as an assumption of the model that all of the sequences are derived from

members of a single species. That assumption has two important consequences. First,

it means that we are assuming short time scales compared with what we look at when

developing interspecies trees. Second, it means that the ancestral sequences are gen-

erally still present in the modern population.

We can see what an intraspecies phylogeny is by looking at an example. Suppose

we examine a population which has four di¤erent genetic regions, each of which has

two variants (called alleles in genetics). The first gene comes in alleles A and a, the

second in alleles B and b, the third in C and c, and the fourth in D and d. Let us

say that we have sequenced chromosomes from five organisms and observed the fol-

lowing sequences of alleles:

� ABCD
� aBCD
� abCD
� abCd
� abcD.

We would like to establish some evolutionary tree describing how the sequences may

be related to each other. Figure 2.11 provides a possible answer.

Our problem here is to find some method to produce a ‘‘good’’ phylogeny, given

our data. In accomplishing this task, we need to find a way to model the problem

consistent with our prior knowledge that draws on the algorithmic tools available to

us. As mentioned above, we have two key assumptions that distinguish this intra-

Figure 2.11
Hypothetical intraspecies phylogeny for five input sequences.

28 2 Classic Discrete Optimization Problems

species phylogeny problem from the more familiar species tree phylogeny problems.

First, common ancestors are usually present in the observed data in an intraspecies

phylogeny problem. By contrast, in a species tree, we generally assume the observed

data are at the leaves of the tree and that the internal nodes represent extinct, unob-

served data points. Suppose we take it as an assumption of the model that all of the

common ancestors of our sequences are in fact present in the data set. Then we will

say that our input is a set of sequences and our output is a tree each of whose nodes

is labeled with one of the input sequences.

Even given that definition, it is unclear which among the many possible trees fit-

ting it is best. We can break the problem down a bit by inferring that we have some

metric for evolutionary distance between individual nodes and then embedding that

metric into our input. That is, our input becomes a graph of all observed nodes with

weighted edges between all pairs of nodes representing the evolutionary distances be-

tween them. Our output is then a tree taken from that graph. Which tree to choose is

based on how we assign edge weights and how we choose the optimal tree, given

those edge weights. We can look at our second assumption, short time spans, to get

an idea for a metric in this model. We would like to find a metric that fits that as-

sumption and turns our problem into something we know how to solve. The assump-

tion of short time spans suggests a specific definition of edge weight—the number of

allele changes between two nodes—and a specific metric for optimization: parsi-

mony. That is, we want the tree such that the number of mutations between all pairs

of adjacent nodes is minimized. By now, we should recognize what we are solving

here: we have defined the problem such that its solution is a minimum spanning tree

of the input graph. That seems to be a success for us; we have found a reasonable

model for our problem and we know how to solve it.

I have been arguing in this chapter that we need to know what tools are available

because we want to find models with which we know how to work. In the real world,

though, that is just the beginning of crafting a good model. Once we have a theoret-

ically clean model, we then need to ask ourselves what compromises we have made in

specifying that model and which of those compromises must be corrected for it to

have practical value. This model makes many assumptions that may not be valid.

The following are some examples:

� The parsimony criterion assumes all mutations are equally likely and that they

occur independently of one another.
� The format of output, a single tree, hides ambiguity in the assignment of the phy-

logeny to the data.
� The format of input, as we have described it, neglects some important data likely to

be available to us, such as population frequencies of individual nodes.

2.3 Mini Case Study: Intraspecies Phylogenetics 29

� The method does not include a model of errors in the data, so results may not be

robust to the kinds of errors one would expect in sequencing genetic data.
� The method also lacks a model of missing data (e.g., if we have failed to observe

some common ancestor of other observed sequences), and so may not be robust to

small sample sizes.

We can easily come up with many other hidden assumptions. Model-building al-

most always involves trade-o¤s between realism and tractability, and we may decide

that some of these are acceptable flaws for a particular application. Sometimes we

may have to decide that a weakness of the model is tolerable because resolving it

would impose unreasonable di‰culties in solving for the model. Some weaknesses

may be easy to solve; for example, if we have reason to believe that some alleles mu-

tate at a di¤erent rate than others, we can then weight their contributions to edge

weight accordingly and still end up with a minimum spanning tree problem. In other

cases, though, we may need to augment our basic model in more complicated ways

to make it practical.

Let us consider how to adapt our model to address the second flaw above: the loss

of ambiguity in the data. For instance, suppose we observe the sequences AB, aB,

Ab, and ab. Any of the trees shown in figure 2.12 would be an equally good solution

to the problem by our metric because each has cost 3. Whether or not this is a prob-

lem depends on the application. In this case, we are generally trying to make a pro-

nouncement of scientific truth—these sequences are related in this way—and it is not

satisfactory for us to make such a pronouncement when we know aspects of the tree

are completely arbitrary.

To resolve the problem we have observed here, we might propose that we revise

our model of the output. Instead of having an edge for each inferred evolutionary re-

lationship, we will have an edge for each relationship we think has a good chance of

being present. Suppose we retain our parsimony formulation, but instead of having a

minimum spanning tree, we consider the union of all minimum spanning trees. This

is now a representation of evolutionary relationships that includes ambiguity. It may

contain cycles, which yield multiple possible paths between di¤erent nodes. Where

Figure 2.12
Four minimum spanning trees for the input sequences AB, aB, Ab, and ab, each with cost 3.

30 2 Classic Discrete Optimization Problems

there are two paths between a given pair of nodes, we can consider them equally

good possible explanations of how one evolved from the other.

This seems like a reasonable revision of our model, but it is useful only if we can

still solve acceptably for it. It turns out that we can readily adapt our existing algo-

rithms to this problem. Recall that in Kruskal’s algorithm, we sort the edges, then

successively join together the pair of subtrees not already joined that have the mini-

mum weight edge between them. The algorithm itself can make an arbitrary decision

at that point, in that it may have multiple edges of equal weight to choose from. It

turns out that if we simply add all such minimum-weight edges connecting discon-

nected subtrees at each step, rather than just a single arbitrarily chosen edge, we end

up with the union of all minimum spanning trees. We have thus found a way to re-

vise our theoretically clean model to make it more realistic without compromising its

computational tractability. What we have derived here is in fact a method from the

computational genetics literature, originally proposed by Exco‰er and Smouse [11],

for finding what are called minimum spanning networks.

A more insidious problem is that our assumption that all of the common ancestors

of observed sequences are also observed may not be valid. For example, suppose we

observe the following sequences:

� ABC
� abC
� aBc.

If we see this set of data, we may reasonably infer that we are missing a sequence

aBC which lies in between the three observed sequences. Maybe we did not look at

a large enough number of samples and missed some sequences. Maybe the missing

sequence simply died out through random genetic drift. In any event, we want to be

able to infer this ‘‘missing’’ node. This is a case of the model being inadequate to the

problem. Our prior model was not wrong to leave out these sequences, but a more

useful model would include them.

We want to augment our model again to account for the possibility of these miss-

ing intermediates. One hypothetical solution would be to enumerate all of the possi-

ble missing nodes (i.e., all possible combinations of our alleles) and then solve the

problem for a tree derived from a graph of all of these nodes. If the number of vari-

able sites is not too large, we can construct this graph. The optimization is a little

di¤erent from the minimum spanning tree, since we really want only a minimum

tree that contains all of the observed nodes, rather than a tree containing every pos-

sible node. At first glance, it seems that this is a problem not too di¤erent from the

minimum spanning tree problem, and perhaps may be solved by similar methods. In

fact, though, this new variant is an NP-hard problem called the minimum Steiner

tree problem, and will not be solvable for realistic data set sizes.

2.3 Mini Case Study: Intraspecies Phylogenetics 31

Since we cannot reasonably neglect the intermediates, and we also cannot rigor-

ously solve for a metric including them, we have to compromise. That is, we have

to find some method that is tractable on reasonable data sets and that mostly solves

the problem. One possibility is to use the Steiner tree model but use an inexact or

heuristic method to solve it. One such heuristic solution to the Steiner tree problem

has become widely adopted as a way of solving intraspecies phylogenies in practice.

This heuristic relies on resolving one basic subproblem: given a triplet of nodes, find

the fourth node that ought to occur between them. For example, given nodes 000,

101, and 110, we can infer that there is likely to be an intermediate node 100 between

all of them, as in figure 2.13.

Since we cannot solve the general problem of finding these missing nodes (called

Steiner nodes), we will try to solve this triplet problem for all triplets in the graph.

We can accomplish this for binary (0-1) data by finding, for each triplet of sequences,

the consensus of those three sequences. The consensus means the sequence with the

most common bit value in each position. So, for example, the consensus of 000,

101, and 110 is 100 because two of the three inputs have 1 in the first bit, two of three

have 0 in the second bit, and two of three have 0 in the third bit. Using this basic

operation, we can create a heuristic method for finding a good solution for the entire

graph:

1. Iterate through all triplets of nodes in the graph.

2. For each triplet, find its consensus sequence.

3. If the consensus is not already in the graph, add it.

4. If any consensus is missing, return to step 1.

This algorithm will augment the graph with all of the triplet intermediates. We can

then find the minimum spanning tree, or minimum spanning network, on the aug-

mented graph. Note that this tree is not in general going to be the most parsimonious

tree having all of our sequences and all intermediates, since there may be better sets

of intermediates we could derive by considering more than three nodes at a time. But

Figure 2.13
Inference of a median node (100) in order to produce an optimal phylogeny on input nodes 000, 101, and
110. Adding the inferred median (in gray) reduces the cost of the optimal phylogeny from 4 to 3.

32 2 Classic Discrete Optimization Problems

it is an acceptable solution to our problem that is solvable on realistic data sets, and

that is what we generally require in a real-world modeling situation.

What we have derived here is a practical method called the reduced median net-

work method, due to Bandelt et al. [12], which has been widely used for this problem.

This model is still too simple for some cases—for example, when the variable sites

are not binary—and there is an even more complicated algorithm, the median-

joining algorithm [13], for handling that case. Nonetheless, this simple study provides

a good example of how recognizing common algorithmic problems can help us in

practical model-building, and also of how we may have to move beyond our classic

problems if we want an approach we can use in the real world.

References and Further Reading

The discussion of graph problems above, and the survey of primary literature below,

are heavily indebted to the coverage by Cormen, Leiserson, Rivest, and Stein [14],

one of the classic introductory texts on algorithms and an excellent reference for the

topic in general. Other recommended texts for introductory discrete algorithms are

Aho et al. [15], Knuth [16], and Kozen [17]. The discussion of string problems in

this text draws on problems covered in much greater depth in Gusfield [2], a great

reference for string algorithms in general.

Most of the problems and algorithms covered here have appeared at one time or

another in the primary scientific literature. The introductory reader will almost cer-

tainly be better served by learning these methods from the textbooks mentioned

above. Curious readers may, however, wish to refer to the following primary sources:

Kruskal’s algorithm [18], Prim’s algorithm [19], Dijkstra’s algorithm [20], the

Bellman–Ford algorithm [21], [22], the Floyd–Warshall algorithm [23], Johnson’s al-

gorithm [24], the Edmonds–Karp algorithm [25], the Ford–Fulkerson method [22],

the Hungarian method [26], the Gabow algorithm [27], and the Needleman–Wunsch

[28] and Smith–Waterman [29] algorithms for sequence alignment. Su‰x tree con-

struction was first shown to be possible in linear time by Weiner [30], although a

more memory e‰cient algorithm by Ukkonen [31] is now generally the preferred

method. See Gusfield [2] for more information on applying su‰x trees to exact set

matching, the longest common subsequence problem, and various other uses in bio-

logical data analysis.

The case study on intraspecies phylogenies was based on three papers on the prob-

lem from the scientific literature [11], [12], [13]. The interested reader can learn more

about this problem in general and other methods for it from Gusfield [2], Felsenstein

[1], or Semple and Steel [3].

References and Further Reading 33

3 Hard Discrete Optimization Problems

Just as it is important to recognize when a problem we are looking at has been

solved, it is also important to recognize a problem we are unlikely to solve. In com-

puter science, problems are conventionally divided into the tractable, which admit

polynomial-time exact algorithms in input size, and the intractable, which do not.

Many of the most important problems that come up in practice are not known to

have polynomial-time algorithms, but fall into the class of NP-complete problems.

NP-complete problems can be defined in many ways, one of them being that these

are the hardest problems for which it is possible to check the validity of a solution

in polynomial time. There is not space in this text for a detailed examination of in-

tractable problems. Readers unfamiliar with NP-completeness or related concepts in

complexity theory may benefit by referring to one of the references discussed at the

end of this chapter.

There are several important reasons to be able to recognize NP-complete problems

when they come up. One is to avoid wasting time trying to solve problems we are not

going to be able to solve. It is generally believed that NP-complete problems do not

have polynomial-time solutions, so it is probably a good idea to stop looking for one

once we know a problem is NP-complete. Tractability is an important consideration

in model design, so recognizing that a model leads to hard problems is a good hint

that we may need a di¤erent model. Subtle changes in model definitions can some-

times make the di¤erence between tractable and intractable models, and one may no-

tice that some of the hard problems we will discuss below seem like minor variations

on tractable problems we discussed in chapter 2.

One other important argument for recognizing NP-complete problems is that the

split into tractable and intractable is not so clear-cut with real-world problems, and

there is likely to be a lot known about some problems that can help us. In practice,

it is often less helpful to think of ‘‘intractable’’ problems as unsolvable than to think

of them as a class that requires a di¤erent set of tools than the ‘‘tractable’’ problems.

Depending on the needs of the problem (Do we need optimal solutions? Do we need

them quickly?) and the nature of the data (Do we generally have small problem

instances? Do they tend to be ‘‘easy’’ cases?), we will often be able to craft an ac-

ceptable solution to an ‘‘intractable’’ real-world problem. To make such decisions,

though, it helps to know as much as we can about common problems we are likely

to encounter.

We will now review some of the frequently occurring intractable problems and see

what is known about alternatives for them. As with our quick examination of tracta-

ble problems, this chapter is far from exhaustive. It covers only a small selection of

problems that are particularly likely to come up in biological modeling contexts. We

will cover a set of graph problems and string problems, as well as some problems in

set theory. By convention, these hard problems are posed as decision problems, for

which we must answer a true/false question, rather than as optimization problems.

Most have straightforward optimization problems associated with them that can be

solved by solving a few instances of the decision problem.

3.1 Graph Problems

3.1.1 Traveling Salesman Problems

One of the best-known NP-hard problems is the traveling salesman problem (TSP).

In this problem, we wish to determine whether it is possible to take a tour of the

graph (a path that traverses each node exactly once) for which the sum of the edge

weights is below some bound. The problem derives its name from the fact that it is

a model of how a salesman might plan a route to visit a set of cities in which he

wishes to sell his goods. The nodes of the graph represent the cities, and the edges

represent routes between the cities, weighted by the distance or cost of travel. The

salesman wishes to find a path that takes him to each city once while incurring the

least time or cost. More formally, we have the following problem:

Traveling Salesman Problem

Input A directed graph G ¼ ðV ;EÞ where V ¼ v1; . . . ; vn with weight function

f : V � V ! R and a bound B A R

Question Does there exist a permutation of the nodes, p1; . . . ; pn such that

f ðpn; p1Þ þ
Pn�1

i¼1 f ðpi; piþ1ÞaB?

Figure 3.1 provides an example of a graph and a TSP solution for it.

TSP is also related to the Hamiltonian path problem, an NP-complete decision

problem that does not have a clear associated optimization problem. The Hamilto-

nian path problem asks whether an unweighted graph has some path that visits each

node in the graph exactly once. The problem can be formally posed as follows:

36 3 Hard Discrete Optimization Problems

Hamiltonian Path Problem

Input A directed, unweighted graph G ¼ ðV ;EÞ
Question Does there exist a permutation of the nodes, p1; . . . ; pn such that

ðpi; piþ1Þ A E for all i ¼ 1; . . . ; n� 1?

3.1.2 Hard Cut Problems

It is quite common for a tractable problem to have a very similar but intractable

variant. Some examples of this principle can be seen with cut problems. Recall that

the minimum cut problem is solvable in polynomial time. There are several other

problems involving cut inference that are NP-hard. One simple one is maximum

cut. Maximum cut is not quite the same as simply flipping the optimization criterion

in minimum cut, since that would yield a trivial problem. Rather, in maximum cut,

we seek to partition the graph into two sets so as to maximize the cost of the cut

separating those sets. The decision variant of this problem can be formally stated as

follows:

Maximum Cut

Input An undirected graph G ¼ ðV ;EÞ with weight function f : V � V ! R and a

bound B A R

Question Does there exist a partition of V , V ¼ V1 WV2, such that
P

v1AV1; v2AV2
f ðv1; v2ÞbB?

Figure 3.2(a) and 3.2(b) provide examples of a graph and a maximum cut in that

graph.

Figure 3.1
A traveling salesman problem. (a) A weighted, directed graph. (b) A minimum weight tour of the graph
solving the TSP problem. The edges on the tour are shown with thick solid lines and the edges not on the
tour with dashed lines.

3.1 Graph Problems 37

We can also formalize k-cut problems, in which we wish to partition nodes into

k sets for some parameter k > 2. Figure 3.2(c) provides an example of a max 3-cut

for the graph of figure 3.2(a). Both maximum k-cut and minimum k-cut are NP-

complete.

3.1.3 Vertex Cover, Independent Set, and k-Clique

Two related problems that often come up in practice are vertex cover and indepen-

dent set. In the vertex cover problem, we want a set of edges of minimum size (or

weight) such that every vertex in the graph has some edge in the cover incident on

it. The formal decision problem for the unweighted version of vertex cover is the

following:

Vertex Cover

Input An undirected graph G ¼ ðV ;EÞ and a bound B A R

Question Does there exist a set of vertices V 0JV such that for all ðu; vÞ A E, either

u A V 0 or v A V 0 and jV 0jaB?

Figure 3.3(a) and 3.3(b) illustrate the vertex cover problem.

In the independent set problem, we seek a set of nodes in a graph such that no two

nodes share an edge in the graph, where the total number of nodes is maximized. The

formal decision problem is the following:

Independent Set

Input An undirected graph G ¼ ðV ;EÞ and a bound B A R

Question Does there exist a set of nodes V 0JV such that there does not exist any

edge ðu; vÞ A E where u A V 0 and v A V 0 and such that jV 0jbB?

Figure 3.2
Hard cut problems. (a) A weighted, undirected graph. (b) A maximum cut solution for the graph. The
dashed line passes through the edges included in the cut, separating the nodes into two sets. (c) A maxi-
mum 3-cut solution for the graph. Two dashed lines pass through edges involved in the 3-cut, separating
the nodes into three sets.

38 3 Hard Discrete Optimization Problems

Figure 3.3(c) shows an independent set solution for the graph of figure 3.3(a). It is

not a coincidence that the nodes in the vertex cover of figure 3.3(b) are precisely

those not in the independent set of figure 3.3(c). The independent set and vertex

cover problems are duals of one another, meaning that if we are given a vertex cover,

the nodes missing from it are an independent set, and vice versa. That directly

implies that a minimum-size vertex cover is the complement of a maximum-size inde-

pendent set.

Independent set is also related to a third common problem, maximum clique. In-

formally, a clique is a subgraph in which all pairs of nodes have edges between them.

The maximum clique problem is the problem of identifying the largest clique in an

input graph. Maximum clique is formally defined as follows:

Maximum Clique

Input An undirected graph G ¼ ðV ;EÞ and a bound B A R

Question Does there exist a set of nodes V 0JV such that Ev1; v2 A V 0:ðv1; v2Þ A E,

where jV 0jbB?

Figure 3.4(a) and 3.4(b) show a sample graph and a maximum clique in that graph.

Clique is related to independent set (and thus to vertex cover) because a clique in a

graph corresponds to an independent set in the the complementary graph (that in

which we flip which node pairs have edges). Figure 3.4(c) and 3.4(d) show this rela-

tionship by repositioning the nodes of the graph of figure 3.4 to show that it is in fact

the complement graph of that in figure 3.3.

3.1.4 Graph Coloring

Another frequently occurring class of graph problems is called graph coloring.

Graph coloring is applied to an undirected, unweighted graph. The goal of a graph

coloring problem is to assign a distinct ‘‘color,’’ which can be thought of as an inte-

ger label, to each node in a graph. This needs to be done in such a way as to ensure

Figure 3.3
Vertex cover and independent set problems. (a) An unweighted, undirected graph. (b) A vertex cover for
the graph, marked by dashed circles around the nodes in the vertex cover. (c) An independent set for the
graph, marked by dashed circles around the nodes in the independent set.

3.1 Graph Problems 39

that no edge connects two nodes of the same color. In the optimization variant, we

typically want to solve the problem using as few distinct colors as possible. This min-

imum number of colors is called the chromatic number of the graph. More formally,

the decision variant of the problem is the following:

Graph k-Coloring

Input An undirected graph G ¼ ðV ;EÞ and a bound k

Question Does there exist a mapping c : V ! f1; . . . ; kg such that Eðu; vÞ A
E:cðuÞ0 cðvÞ?

Figure 3.5 illustrates a graph coloring for the graph of figure 3.3(a). Graph color-

ing comes up in practice in many problems in which we are trying to apportion finite

resources to several users and need to figure out a way to make sure no two users try

to use the same resource at the same time. The problem is easily solvable in polyno-

mial time for k ¼ 2 but is hard for any fixed kb 3. There are many kinds of special-

ized graphs for which the problem is not hard, though.

3.1.5 Steiner Trees

Another problem that has particular relevance to the biological world is the Steiner

tree problem. We saw this problem briefly in chapter 2 in the context of intra-

Figure 3.4
A clique problem. (a) An unweighted, undirected graph. (b) A maximum clique in the graph. (c) An arbi-
trary labeling of nodes in the graph. (d) Repositioning of the labeled nodes to illustrate that the graph in
this figure is the complement of that in figure 3.3.

Figure 3.5
A 3-coloring of a graph. The coloring is minimal for this graph.

40 3 Hard Discrete Optimization Problems

species phylogenies. Given a graph and a subset of its nodes, called the terminal

nodes, a Steiner tree is a tree containing all of the terminal nodes, as well as pos-

sibly others from the graph. The minimum weight Steiner tree problem is defined as

follows:

Minimum Weight Steiner Tree

Input A graph G ¼ ðV ;EÞ, a weight function w : E ! R, a subset of the vertices

SJV , and a bound B A R

Question Does there exist a tree T ¼ ðV 0;E 0Þ for which SJV 0JV and
P

e AE 0 wðeÞaB?

In this formalization, the nodes in V 0 that are not terminal (i.e., V 0 � S) are called

Steiner nodes. Figure 3.6 gives an example of the Steiner tree problem.

Intraspecies phylogeny and similar problems in molecular evolution are some of

the major motivations for studying Steiner tree problems. Often, as in intraspecies

phylogeny, we are not explicitly given the Steiner nodes but must infer their exis-

tence. When our nodes are labeled with DNA bases, we may assume that any string

of bases not in our input is a Steiner node in the graph. In such cases, we need the

weight function to be specified in such a way that we can compute it between pairs

of nodes not explicitly in the input. This leads to a commonly seen special case of the

Steiner tree problem, in which the terminal nodes are bit strings of fixed length n, all

other bit strings are presumed to be present as potential Steiner nodes, and the cost

of any edge is the number of bit flips between the endpoints (called the Hamming dis-

tance). This bit-string Steiner tree problem is also NP-hard.

Figure 3.6
A Steiner tree problem. (a) An input graph in which nodes required to be in the output tree (terminal
nodes) are shown as solid circles, and those that need not be in the output tree (potential Steiner nodes)
are shown as open circles. (b) A Steiner tree for the graph.

3.1 Graph Problems 41

3.1.6 Maximum Subgraph or Induced Subgraph with Property P

Finally, we will look at one very broad class of graph problems, all of which are

hard, involving what are called inheritable graph properties. A graph property is

called inheritable if, when given a graph possessing the property, removing any

node or edge leaves us with a graph possessing the property. A property is considered

nontrivial if there are an infinite number of graphs that have the property and an

infinite number that do not. An example of a nontrivial, inheritable property is

bipartiteness. Recall that a bipartite graph is defined by the fact that nodes can be

partitioned into two groups (parts) with no edges between any two nodes in the

same group. Figure 3.7 shows that bipartiteness is nontrivial, since there are both bi-

partite and nonbipartite graphs that can be infinitely extended. Furthermore, remov-

ing a node or edge cannot cause an edge to appear between two nodes in the same

part, so bipartiteness is inheritable.

We further need to define a subgraph of a graph G ¼ ðV ;EÞ to be a graph

G 0 ¼ ðV ;E 0Þ where E 0JE. An induced subgraph of a graph G ¼ ðV ;EÞ is a graph

G 0 ¼ ðV 0;E 0Þ where V 0JV and E 0 ¼ fðu; vÞ A E j u; v A V 0g. Perhaps surprisingly, it
is NP-hard, given a graph, to find a subgraph or induced subgraph of maximum size

possessing any nontrivial, inheritable property. Some of the problems we have al-

ready seen are special cases of one or the other of these two general classes of hard

problem. For example, independent set can be cast as a maximum induced subgraph

problem, where the property P is independence.

3.2 String and Sequence Problems

3.2.1 Longest Common Subsequence

We discussed a problem by the same name in the context of tractable problems in

chapter 2. This is exactly the same problem, except that now we consider a set of ar-

bitrarily many sequences, not just a pair of sequences. More formally, our problem is

the following:

Figure 3.7
Demonstration that bipartiteness is nontrivial. (a) A bipartite graph that can be infinitely extended
while remaining bipartite. (b) A nonbipartite graph that can be infinitely extended while remaining non-
bipartite. The existence of infinite families of bipartite and nonbipartite graphs proves the property to be
nontrivial.

42 3 Hard Discrete Optimization Problems

Longest Common Subsequence

Input A set of sequences w1 ¼ ðw11;w12; . . . ;w1nÞ; w2 ¼ ðw21;w22; . . . ;w2nÞ; . . . ;
wk ¼ ðwk1;wk2; . . . ;wknÞ and a bound B

Question Is there a sequence s1; s2; . . . ; sm such that s1; . . . ; sm is a subsequence of

each wi, where mbB?

For example, the sequences ACGAT, CGAAT, and GCATA can be seen to have

the subsequence CAT as follows:

ACGA T

CGAAT

GC A TA

C A T

The tractable version we have seen is the special case of this problem for k ¼ 2.

The general case can be solved with dynamic programming, but the runtime will be

the product of the lengths of all of the sequences, making it exponential in k. The

problem for general k is relevant as a model for multiple sequence alignment prob-

lems in computational biology. Because it is intractable, though, it is not so useful as

a basis for designing methods for more biologically reasonable variants. The longest

common substring problem remains tractable for arbitrary k, and in fact can be

solved in linear time in the sum of the sequence lengths by nearly the same su‰x

tree algorithm as we described for the two-sequence case.

3.2.2 Shortest Common Supersequence/Superstring

Instead of finding the longest sequence contained in a set of input sequences, we can

look for the shortest sequence that contains all of a set of input sequences. This

is another NP-hard problem called the shortest common supersequence problem.

More formally, the problem is the following:

Shortest Common Supersequence

Input A set of sequences w1;w2; . . . ;wk and a bound B

Question Is there a sequence s1; s2; . . . ; sm such that each wi is a subsequence of

s1; . . . ; sm and maB?

For example, the shortest common supersequence of the inputs ACGAT, GCAAT,

and GCATA is AGCGAATA, as shown by the following alignment:

A CGA T

CGAAT

GC A TA

AGCGAATA

3.2 String and Sequence Problems 43

The string analogue to this problem, the shortest common superstring, is also

hard. It is formally posed as follows:

Shortest Common Superstring

Input A set of strings w1;w2; . . . ;wk and a bound B

Question Is there a string s1; s2; . . . ; sm such that each wi is a substring of s1; . . . ; sm
and maB?

For example, we can find the shortest common superstring of ACGTTA, TAGCCT,

ACAATA, and CCTACA through the following alignment:

ACGTTA

TAGCCT

CCTACA

ACAATA

ACGTTAGCCTACAATA

It is trivial to find a superstring simply by concatenating all of the strings in the

input, but it is hard to find the smallest one. The shortest common superstring prob-

lem has particular biological importance because it is a model of sequence assembly,

a topic we will cover as an extended case study in chapter 4.

3.3 Set Problems

In addition to graph and sequence problems, we often encounter problems related

to sets. Sets are a more general way of representing many of the same kinds of prob-

lems as graphs, and thus will sometimes come up as generalizations of graph

problems.

3.3.1 Minimum Test Set

Our first problem is called the minimum test set problem, and it is defined as follows:

Minimum Test Set

Input A set S ¼ fs1; s2; . . . ; sng; a collection of subsets of S, C ¼ fc1; c2; . . . ; cmg
where for all i, ci JS; and a bound B

Question Does there exist a set C 0JC such that for each si; sj A S there exists some

c A C 0 containing exactly one of si and sj, for which jC 0jaB?

One way to think of what this problem means, and to see a potential connection to

biology, is to imagine we are constructing a DNA test. We have a set of n organisms

and we look at a piece of DNA that occurs in a di¤erent variant in each organism. If

44 3 Hard Discrete Optimization Problems

we ignore the sites that are the same between them and look only at the sites that

di¤er between at least some organisms, we may see the following:

organism 1 AATAA

organism 2 TCCGG

organism 3 ACCAA

organism 4 TATAG

organism 5 TCTGA

We want to be able to examine a DNA sample and identify which organism pro-

vided it, using as few bases as possible. Suppose we define our sets c1; . . . ; cm so that

ci is the set of sequences having the more common base at variant site i. So, for ex-

ample, c1 ¼ f2; 4; 5g because T is the more common base at site 1 and organisms 2,

4, and 5 have that base. Then a minimum test set is the solution to our problem,

since it will give us a set of bases that can distinguish between any two organisms.

Here, C 0 ¼ fc1; c2; c3g will work, since looking at the first three bases allows us to

distinguish any two sequences in the input. This particular example is a real-world

problem called ‘‘tagging SNP selection’’ [32].

3.3.2 Minimum Set Cover

The following problem has a statement very similar to the minimum test set, but asks

a subtly di¤erent question:

Minimum Set Cover

Input A set S, collection C of subsets of S, and a bound B

Question Does there exist a C 0JC such that for all s A S there exists a c A C 0 for

which s A c, where jC 0jaB?

To think of what this problem is asking, we may think of a di¤erent, somewhat

contrived medical problem. Imagine we have a sick patient and we have narrowed

down the cause of his disease to a set of possible bacteria. Each bacterium is sensitive

to certain kinds of antibiotics and not to others. We want to give the patient as few

drugs as possible. If we define S to be our set of bacteria and each ci A C to be the

subset of bacteria a¤ected by antibiotic i, then a minimum cover would give us

the smallest possible set of antibiotics that a¤ects every bacterium. The vertex cover

problem we saw earlier in the chapter can be thought of as a special case of set

cover in which we have a set for each edge containing the two endpoints of the edge.

3.4 Hardness Reductions

Our main goal in studying the preceding problems is to recognize when we have

developed a model that leads to a hard optimization problem. When trying to prove

3.4 Hardness Reductions 45

a problem is hard, we do not need to show that it is identical to some problem we

know to be hard. It is enough to show that it can be polynomially reduced from a

problem we know to be hard (i.e., that there is a polynomial-time transformation

that converts a known hard problem into the new problem). For example, suppose

we do not know that the independent set problem is hard. We will be able to show

it is hard by constructing a reduction from the vertex cover problem to the indepen-

dent set problem. Suppose we are given a graph G ¼ ðV ;EÞ and are asked to find a

minimum-size vertex cover in it. Then we can propose that we will accomplish this

by first finding a maximum independent set, V 0, in the graph and then returning

V � V 0 as our vertex cover. If the maximum independent set is e‰ciently solvable,

then this strategy will e‰ciently solve the vertex cover. Conversely, if the vertex cover

is hard, then this strategy cannot work, and thus independent set must be hard as

well. We can use similar reductions to show that clique is hard because we can reduce

vertex cover or independent set to it, or that set cover is hard because we can reduce

vertex cover to it. It is often very di‰cult to prove that a problem is NP-hard in this

way. Those needing to do so would be well advised to study a more thorough text

specifically on NP-completeness where they can find less trivial examples of these

reductions and various strategies for finding them. Some suggested texts are listed in

the section References and Further Reading.

3.5 What to Do with Hard Problems

One reason for studying hard problems is so we can try to develop models that avoid

them, or at least recognize when we have a model for which we will not be able to

develop provably e‰cient optimization methods. But that does not mean that if we

come up with a model and it turns out to yield a hard problem, we should immedi-

ately give up on that model. It is certainly worth considering whether small changes

to the model might make it tractable. But even if we cannot make our model tracta-

ble, we still have options. This section is an attempt to provide a nonexhaustive but

useful guidebook to some of the options we can consider when confronted with a

hard problem. There are other, more sophisticated options than those outlined below

available, but this is a set that should be reasonably accessible to anyone who can

follow the rest of this chapter.

Make Sure the Problem Is Really Hard

One of the most common mistakes in working with NP-hard problems is to assume

that because a problem of interest can be cast as an NP-hard problem, it actually is

NP-hard. Remember that proofs of NP-hardness actually work in the opposite way:

to show our problem is NP-hard, we must show that all instances of a known NP-

hard problem can be converted into instances of our problem. The reverse does not

46 3 Hard Discrete Optimization Problems

follow because many NP-hard problems are not hard if restricted to a subset of pos-

sible inputs. If we are more specific about the assumptions of a seemingly hard prob-

lem, then the problem may become tractable. Some things that often make a big

di¤erence in the tractability of a problem are the following:

� For graph problems, special classes of graphs (e.g., planar, bounded degree, chor-

dal, overlap graph) may yield tractable problems.
� Hard string problems may be tractable with bounded numbers or sizes of strings or

with bounded (or nonbounded) alphabets.
� Set problems may be tractable when set sizes are bounded.
� Many error correction problems are tractable when the number of errors is

bounded.
� Any intractable problem becomes tractable when the total input size is bounded.

Brute Force

Even if our problem is NP-complete, it is always solvable by trying every possible so-

lution. That approach may be theoretically unsatisfying, but in the real world it is

often a perfectly valid solution. For example, with the ‘‘tagging SNP’’ variant of the

test set problem mentioned earlier in this chapter, sets with up to about 20 variant

bases are likely to be easily solvable in practice by trying all possibilities. In fact,

brute force is often the best way to solve a problem in the real world because it is

generally easier to code quickly, and may actually run faster than more sophisticated

methods on small problem instances. So before going to more advanced methods, we

should always ask if our real-world problem involves problem instances that justify

those more advanced methods.

Approximation Algorithms

If we have ruled out the two ‘‘easy’’ options above, then we should start considering

the more advanced techniques. Approximation algorithms are one such class of

methods. An approximation algorithm is a tractable algorithm for an optimization

problem that does not exactly solve the problem, but gets a solution that is guaran-

teed to be close to an optimal solution. For example, we cannot e‰ciently find the

smallest possible vertex cover of a graph, but there is an e‰cient algorithm to find a

vertex cover that is at most twice the size of the smallest one: find a maximal match-

ing in the graph and return all the endpoints of the edges in the matching. (Note that

a maximal matching only means that we cannot add any additional edges without

the set’s no longer being a matching. A maximal matching need not be a maximum

matching, but a maximum matching is necessarily maximal.) This set of edges will be

a vertex cover because any edge uncovered could have been added to the matching,

meaning that the set leaves an edge uncovered only if the matching is not maximal.

3.5 What to Do with Hard Problems 47

The set will not generally be of minimum size, but it cannot be more than twice the

minimum size because we add two points per edge of the matching, and we must add

at least one point per edge of the matching to cover all edges. This is known as a

2-approximation algorithm.

Di¤erent problems are approximable to di¤erent degrees. Some problems have a-

approximation algorithms, in which we have a method which guarantees that we find

a solution within some factor of a of the quality of the best possible solution. Others

have approximation schemes, in which we can solve a problem within some factor e

of the optimum for any possible e > 0, but with runtime exponential in 1=e. In other

cases, approximations are possible only within a factor of some function of the prob-

lem size (e.g., a logðnÞ approximation). Even when a problem proves di‰cult to ap-

proximate, it will often be the case that special cases of that problem will prove much

easier. If a problem has been proved NP-hard, there is a good chance that its approx-

imability has also been studied. When considering approximation algorithms as an

option, it is therefore always useful to start with a literature search to see whether

the general problem or any relevant special cases are approximable.

A particularly elegant example of an approximation algorithm is described by

Garey and Johnson [33] for the triangle-TSP problem. Triangle-TSP is the traveling

salesman problem when edge weights are required to obey the triangle inequality:

wðu;wÞawðu; vÞ þ wðv;wÞ:

This restriction is valid for many practical TSP instances. For example, if the edge

weights are actually physical distances on a map, then they will obey the triangle in-

equality. The algorithm works as follows:

1. Find a minimum spanning tree on the graph.

2. Take a tour of the spanning tree, starting at any arbitrary node and walking

across all nodes in depth-first order.

3. Return the order in which nodes are first reached in the depth-first search as the

solution to the traveling salesman problem.

Figure 3.8 illustrates this method. The resulting tour is guaranteed to have a cost no

more than twice that of the optimal tour in the graph. Informally, the guarantee

comes from the fact that we know that walking the tree along the MST edges and

going back when we reach a dead end will cost at most twice the weight of edges in

the tree. The triangle property guarantees that a direct tour among these nodes can-

not cost more than this walk along the MST. Furthermore, the optimal TSP tour

cannot have smaller weight than the MST, since the TSP tour is a tree in the graph

plus one edge. Thus, the tour we find cannot have cost more than twice the TSP tour.

This algorithm specifically depends on the triangle property and will not work for

general TSP. In fact, general TSP is not approximable to any constant factor. Eucli-

48 3 Hard Discrete Optimization Problems

dean TSP, a special case of triangle TSP in which vertices are treated as points in a

Euclidean space and edge weights are linear distances between those points, has an

approximation scheme and thus is approximable to any constant factor. Just as a

hard problem may be tractable for some special cases of inputs, so that problem

may be more accurately approximable for some special cases of inputs even when it

is still hard.

It is worth noting that approximation algorithms are popular in pure theoretical

computer science circles, but have a bad reputation among computational biologists.

The reason is that it is easy to misuse approximation algorithms by developing them

without regard to whether an approximation makes sense for the real-world problem

being solved. For instance, if we are performing a sequence assembly and our pro-

gram returns a genome that is twice the size of the actual genome, that will generally

be considered a useless result by biologists. Before using an approximation algorithm

to solve a real-world problem, one should always consider whether the approxima-

tion will actually be useful to someone who cares about that problem.

Branch-and-Bound

Branch-and-bound is a general class of techniques that can be very useful when we

genuinely need optimal solutions but are dealing with problems too large for brute

force methods. Branch-and-bound methods have exponential runtime in the worst

case, but often have reasonable runtimes up to much larger problem sizes than pure

brute force methods do. At a high level, the idea behind branch-and-bound is to do a

nearly brute force search by building up a solution in pieces, but abort and back up

whenever the partial solution provably cannot lead to an optimal solution. This can

generally be represented as a strategy for searching a tree of possible solutions where

each branch we take from the root to a leaf represents one possible choice in con-

structing a solution.

We can illustrate the approach with a very simple variant, shown in figure 3.9, for

the graph coloring problem. We can color the graph of figure 3.9(a) by performing a

Figure 3.8
Illustration of the 2-approximation algorithm for triangle TSP. (a) An initial graph (edge weights are
assumed but not shown in the figure). (b) A possible MST for the input graph. (c) A walk along the graph
in depth-first order. (d) Conversion of the depth-first walk into a tour by short-circuiting paths that include
nodes already visited.

3.5 What to Do with Hard Problems 49

depth-first search of the decision tree in figure 3.9(b). If we simply try each possible

leaf of the tree and test whether it is a valid coloring and how many colors it uses, we

will have a brute force approach. In a branch-and-bound approach, we stop at each

internal node of the decision tree and see if the latest decision has created an invalid

coloring. Furthermore, we can see if the cost as of that internal node exceeds our best

known cost for the whole problem. For example, if we know of a three-color solu-

tion, then we will stop searching at any node that adds a fourth color to the tree,

even if it is not a leaf node.

A practical branch-and-bound algorithm will generally use a more sophisticated

method to try to prove that a solution is nonoptimal. One good way of doing this is

through approximation algorithms. For example, suppose we are trying to solve a

vertex cover problem on a graph G ¼ ðV ;EÞ and we decide that we must have an

optimal solution. Figure 3.10 provides pseudocode showing how we can use a 2-

approximation algorithm for vertex cover to accelerate a search for an optimal ver-

Figure 3.9
A highly simplified branch-and-bound solution to the graph coloring problem. (a) A graph we wish to
color. (b) A tree of possible solutions. Each edge in the tree represents a choice to color a particular node
a particular color.

Figure 3.10
Pseudocode for a branch-and-bound algorithm for vertex cover using a vertex cover 2-approximation
algorithm. To solve for a graph G, we would invoke the method with a call to vertex-cover-
bbðG; j; j;CÞ, where C is the cost of a vertex cover 2-approximation on G.

50 3 Hard Discrete Optimization Problems

tex cover solution. The method works through a series of recursive calls to build two

sets, K and R, representing the nodes that we propose to be in the vertex cover and

those proposed to be removed from it. The approximation algorithm allows us to test

at each step whether the number of nodes kept so far plus the minimum possible

number needed in the rest of the graph is smaller than our best known solution. If

it is not, then the method cannot find an optimum along its current branch of the

search tree, allowing it to reject that partial solution and back up. This procedure

could potentially allow us to avoid searching a large fraction of the possible solutions

without missing any true optima.

What can we do if we do not have an approximation algorithm for our problem?

One general and broadly useful approach uses what is called a linear programming

relaxation. In this approach, we convert our problem into a special NP-complete

problem called an integer linear program. There are many variations on integer linear

programs, but a typical statement (for a version called 0–1 integer programming) is

the following:

Input A set of variables x1; . . . ; xn, a set of linear constraints

a11x1 þ a12x2 þ � � � þ a1nxn a y1

a21x1 þ a22x2 þ � � � þ a2nxn a y2

..

.

am1x1 þ am2x2 þ � � � þ amnxn a ym

and an objective function c1x1 þ c2x2 þ � � � cnxn.
Output An assignment of the value 0 or 1 to the variables x1; x2; . . . ; xn that is con-

sistent with all of our constraints.

Metric c1x1 þ c2x2 þ � � � cnxn is maximized (or minimized).

Any NP-complete problem can be cast in this form. We then solve the same prob-

lem, except that we allow our variables to be any real number between 0 and 1, and

not just the integers 0 or 1. Surprisingly, while the integer variant is NP-hard, the

real-valued variant (called a relaxation of the integer problem) is solvable in polyno-

mial time. The real-valued variant is guaranteed to give us a metric value at least as

good as the 0–1 variant, but often not very much better, making it generally a good

bound on the value of the solution of the original problem. Furthermore, it is gener-

ally easy to adapt the linear program to reflect a partially solved problem, making it

ideal for branch-and-bound formulations. There are several software packages avail-

able, some commercial and some free, that have highly optimized solvers for the in-

teger and real-valued versions of these problems, making them often the best choice

3.5 What to Do with Hard Problems 51

in practice when one needs to solve a di‰cult NP-hard problem. We will revisit lin-

ear programming in chapter 6.

Heuristic Methods

A heuristic method is essentially any method that seems to work well but cannot be

proved to do a good job in any objective sense. Heuristics are often problem-specific,

and this book cannot give better advice than just to think about the problem and see

if any tricks come to mind. There are a few very general techniques, though, that

people often try when they have no idea how to solve a problem of interest. Interest-

ingly, some of the most commonly used techniques were actually inspired by real-

world systems in statistical physics and biology.

One such technique is called simulated annealing. Annealing is a technique for

hardening materials by heating them to a high temperature and gradually cooling

them. Simulated annealing is named by analogy to this actual physical process. At a

high level, simulated annealing works as follows:

1. Define a series of moves that allow us to transform any solution to our problem

into any other. An example of a move would be the conformational changes in our

protein lattice model that we saw in chapter 1.

2. Define the energy of each solution to be the negative of its cost.

3. Run the Metropolis method (from chapter 1) on the problem while gradually

reducing the temperature to zero.

4. Return the solution that the system ‘‘freezes’’ into when it reaches absolute zero

temperature.

Intuitively, a system at a high temperature rapidly jumps between possible solutions.

It settles down into a local energy minimum when it cools. If we run this method

with a fixed low temperature, we will get stuck in a local optimum similar to our ini-

tial state but potentially much worse than the global optimum among all possible so-

lutions. If we run at a fixed high temperature, we will jump rapidly between very

di¤erent solutions but will be likely to skip over the optima, local or global. By cool-

ing slowly, it is believed that we can reasonably compromise between the need to ex-

plore a large fraction of the space and the need to settle into good solutions as we

encounter them. We will see more about this technique when we cover the Metropo-

lis method in greater depth in chapter 9.

Another very general heuristic technique is called a genetic algorithm. Genetic

algorithms have nothing per se to do with solving problems in genetics, although

you can use them for that purpose. They try to find a good solution to a problem

by mimicking the process of genetic evolution. In a genetic algorithm, we maintain

a set of possible solutions and try to ‘‘evolve’’ them into better solutions. This evolu-

tion is accomplished by two operations:

52 3 Hard Discrete Optimization Problems

� Mating merge two solutions to construct a hybrid solution.
� Mutation randomly change a solution in some way.

The genetic algorithm typically proceeds by first generating a new set of candidate

solutions by choosing some random pairs of existing solutions, mating the members

of each pair, and mutating the results. It then evaluates the quality of the new solu-

tions and picks some subset of old and new solutions as its guesses for the next round

of the algorithm. For example, we may start with a set of ten solutions, randomly

pick ten pairs from those to mate and mutate, and then pick the five best old solu-

tions and the five best new solutions as our solution set for the next round. This pro-

cess is continued for some number of rounds, and eventually the best solution is

returned.

If we want to use a genetic algorithm to solve vertex cover, for example, we can

generate a candidate solution by randomly picking nodes until all edges are covered.

Repeating this process a few times will give us an initial candidate set. We can then

mate two solutions by merging their node sets and randomly deleting nodes until no

more can be removed without leaving some edge uncovered. We can mutate a solu-

tion by randomly deleting some node, then adding in the other endpoints for any

edges left uncovered by that deletion. Putting these operations together will give us

a heuristic that may do reasonably well at finding good vertex covers e‰ciently.

The Kitchen Sink Approach

This is what people generally really do in practice when they need to solve hard

instances of a hard problem: throw in whatever tools help. For example, we may

use brute force for small problems or subproblems, do branch-and-bound with ap-

proximation algorithms for larger problems, and use various heuristics to improve

on the solutions at leaves of the tree.

Now Give Up

Sometimes we really do have to recognize that we cannot find a useful solution for a

given model of our problem, and go back to the drawing board to find a new and

hopefully more tractable model.

References and Further Reading

The classic reference for the concept of NP-completeness is Garey and Johnson [33],

which provides an excellent introduction to the theory and to the concepts of hard-

ness proofs and approximation, which receive only perfunctory attention in this

chapter. Garey and Johnson also has a thorough compilation of NP-hard problems,

including those discussed here and many others from di¤erent disciplines. When the

References and Further Reading 53

hardness of a problem is in doubt, it is often advisable to scan the problem list in

Garey and Johnson to see if the problem has already been studied in some form or

for suggestions of similar problems with which one may build a reduction. Crescenzi

and Kann [34] created a Web repository of NP-hard problems to serve a similar

function that is more up-to-date. A version of their compendium is in Ausiello et al.

[35]. Their compendium is also a great place to find whether a given problem or any-

thing like it has been studied. All three sources also provide information on hardness

and approximation results for various specialized versions of many of the more stud-

ied problems.

The primary literature o¤ers many references for the general topic and for the spe-

cific problems covered here. This text cannot o¤er an exhaustive list, but can provide

primary references for key topics and problems. The theory of NP-completeness in

general derives from a paper by Cook [36], which developed a famous NP-complete

problem we have not covered, called circuit satisfiability. Primary literature refer-

ences for NP-completeness proofs are available for many of the specific problems we

have covered. Many were originally established as NP-complete in a classic book

chapter by Karp [37], including Hamiltonian path, maximum cut, minimum vertex

cover, maximum independent set, k-clique, graph k-coloring, Steiner trees, minimum

set cover, and integer programming. Other primary proofs are scattered throughout

the literature: the traveling salesman problem [38], maximum/minimum k-cut [39],

maximum subgraph/induced subgraph with property P [40], [41], [42], longest com-

mon subsequence/shortest common supersequence [43], shortest common superstring

[44], and minimum test set [33].

We also discussed several approximation algorithms for which primary citations

are available. The 2-approximation for triangle TSP that we presented is due to

Rosenkrantz et al. [45], and was derived for this text from Garey and Johnson [33],

but the problem has a more complicated 3
2 approximation algorithm due to Christo-

fides [46]. The Euclidean TSP approximation scheme is due to Arora [47]. We also

briefly discussed a 2-approximation algorithm for the minimum vertex cover, a

method attributed to Gavril and Yannakakis but for which our direct source was

Cormen et al. [14]. Two other algorithms are available that o¤er somewhat better

bounds for this problem: 2� log logjV j
2 logjV j [48], [49] and 2� 2 ln lnjV j

lnjV j ð1� oð1ÞÞ [50]. There
are many other hardness, approximability, and nonapproximability results available

for numerous variations on the problems we have examined. We again refer the

reader to Ausiello et al. [35], Crescenzi and Kann [34], and Garey and Johnson [33]

as starting points for learning more.

Some of the suggestions for practical solution of NP-hard problems above are too

obvious to have specific citations, but others can be traced to the primary literature.

The simulated annealing method was independently proposed by Kirkpatrick et al.

54 3 Hard Discrete Optimization Problems

[51] and Cerny [52]. The earliest known description of a genetic algorithm is due to

Barricelli [53].

Readers looking for more background on the general topic of complexity theory

would do well to check out Sipser [54] for an introduction to complexity theory in

general or Papadimitriou [55] for more advanced theory. Guidance on solving NP-

hard problems in practice can be found in many sources. Garey and Johnson [33]

provides many useful general suggestions. Hochbaum [56] is a good source for

advanced material on the design and use of approximation algorithms.

References and Further Reading 55

4 Case Study: Sequence Assembly

This is the first of several full chapters devoted to a single biological topic. Though

the point of this text is to learn broadly useful computational methods and how to

apply them to new problems, case studies can be a good way to learn about some of

the issues that come up in applying the theory we study to the real world. Our topic

here is sequence assembly, the problem of figuring out the sequence of a genome

using technologies for sequencing small numbers of bases at a time. To begin, we first

need to know a bit about the sequencing technologies that produce the data used to

assemble a sequence. We can then see some of the ways computational biologists

have modeled the assembly problem and how they have worked with these models

in practice.

4.1 Sequencing Technologies

There are two classic methods for DNA sequencing: the Maxam–Gilbert (chemical

cleavage) and Sanger dideoxy (terminator base) methods. Modern methods we will

cover below are primarily based on the Sanger dideoxy method. Both were originally

more or less comparable, though, and it is useful to understand how each works. We

will then look at how these methods evolved into the standard techniques of today.

4.1.1 Maxam–Gilbert

The Maxam–Gilbert method works by selectively breaking DNA strands at in-

stances of a single base. By looking at the resulting strand lengths, which we can infer

through a technique called polyacrylamide gel electrophoresis, we can infer where

that base occurs in the sequence. Repeating for all four bases then gives us a com-

plete DNA sequence. Assume that we have many copies of our strand to be

sequenced, typically because we have used PCR to amplify a region of interest. The

Maxam–Gilbert method can be summarized as follows:

1. Attach radioactive phosphorus (P32) to one end of one DNA strand.

2. Break the strand preferentially at a single kind of base (using a specialized chem-

istry developed for each of the four bases).

3. Run the resulting broken strands on a polyacrylamide gel and look for radioactive

bands.

4. Determine positions of the cleavage base from the lengths of the strands on the

gel.

To illustrate this method, suppose we start with the strand

CTACGCCT-P32:

If we cut this strand immediately before each C base, then our resulting radio-

active strands would be

CTACGCCT-P32

CGCCT-P32

CCT-P32

CT-P32

We ignore the pieces that do not contain the radioactive phosphorus because they

will not show up as radioactive bands on our gel. If we run these strands out on a

gel, we will see something like the first column in figure 4.1. Repeating the experi-

ment for the other bases will result in something like the other columns of the gel in

Figure 4.1
A polyacrylamide gel that might be produced by Maxam–Gilbert sequencing from the sequence
CTACGCCT. Vertical band positions correspond to di¤erent strand lengths, labeled at the left edge of
the gel. Each column of the gel shows the lengths of strands produced by breaking preferentially after the
base at the bottom.

58 4 Case Study: Sequence Assembly

figure 4.1. Then it should be easy to see how to read o¤ the sequence of the strand

simply by looking at which column yields which length of fragment. For example,

we see only a single-base strand when we break at T, so the last base must be T. We

see only a two-base strand when we break at C, so the next-to-last base must be C.

And so forth. Proceeding in this fashion allows us to read o¤ the entire sequence with

the exception of the base farthest from the P32.

This seems like a very good general sequencing method, but it presents some prac-

tical problems. First of all, working with radioactive material is somewhat inconve-

nient. And the process of running and reading gels is labor-intensive. The most

important problem, though, is that the method does not scale well. If we tried to

sequence a very long strand in this way, the bands of the gel would start to run to-

gether and would become hard to resolve with certainty. Furthermore, it would sim-

ply be very hard to produce strands with very long lengths. If we want a strand that

terminates at the 100th T base in a sequence, that means it must be cut at that base

and simultaneously not be cut at any of the 99 T bases before that. It will be impos-

sible to ensure a good distribution of cut sites if there are too many possible sites.

The method can sequence up to about 100 bases in a row, but not beyond that. Ulti-

mately, though, the Maxam–Gilbert technique has been largely abandoned because

it is di‰cult to automate for reasons we will understand better when we see the other

classic technique.

4.1.2 Sanger Dideoxy

The Sanger dideoxy method is in some sense the opposite of the Maxam–Gilbert

method. Instead of breaking the strand selectively at a single base, we build up a

strand but stop it when it reaches any copy of a single base. This is accomplished by

using a dideoxy, or terminator, base. Dideoxy means that the base is lacking the 3 0

hydroxyl group of DNA in addition to the 2 0 hydroxyl lacking in DNA but found in

RNA. DNA polymerizes by attaching a phosphate group at the 5 0 hydroxyl of a

newly added base to the 3 0 hydroxyl of the last base in the chain. This process is illus-

trated in figure 4.2. If we incorporate a base lacking the 3 0 hydroxyl into the chain,

then we cannot perform this chemistry and therefore cannot incorporate any addi-

tional bases into the chain. Thus the alternate name ‘‘terminator base.’’

In the classic Sanger dideoxy method, we introduce the elements needed for poly-

merization (primers, dATP, dGTP, dCTP, dTTP, and a DNA polymerase) into a so-

lution of the DNA we want to sequence. We then add a single kind of terminator

base, say ddGTP, which we have labeled with a fluorescent group. The polymerase

will then attempt to copy the DNA strand. Every so often, though, it will incorporate

a fluorescent terminator base into the strand and get stuck. For example, if we label

our fluorescent terminator ddGTP as *G, then our template strand from above,

CTACGCCT, would yield the following set of sequences:

4.1 Sequencing Technologies 59

CTACGCCT

*GA

*GGA

*GCGGA

*GATGCGGA

GATGCGGA

Repeating this process for the other three terminator bases and running them out

on a polyacrylamide gel would give something like the illustration of a gel shown in

figure 4.3. This gel can be read out very much like the Maxam–Gilbert gel, except

that we must keep in mind that the column from each terminator base tells us where

the complementary bases are in the sequence. For example, the column run with

ddGTP tells us where to find C bases in the original sequence.

This method initially appeared to have strengths and weaknesses similar to those

of Maxam–Gilbert. Though the chemistry is somewhat simpler and the lack of radio-

active materials is convenient, Sanger dideoxy has similar limitations on sequence

lengths that can be processed. The same issues of bands running together are prob-

Figure 4.2
Chemical mechanism of DNA polymerization. A newly added DNA nucleotide (bottom) attaches the 3 0

end of the existing strand (top) by linking its own 5 0 carbon to the 3 0 hydroxyl group of the last base of
the existing strand through a phosphate group. The remaining two phosphate groups are cleaved o¤, pro-
viding the energy that drives the reaction.

60 4 Case Study: Sequence Assembly

lematic for Sanger dideoxy. Furthermore, in order to produce a long strand by

Sanger dideoxy, we must incorporate the terminator base at the final position but

not at any earlier position, which becomes extremely unlikely for long sequences.

Like Maxam–Gilbert, then, the classic Sanger dideoxy method was limited to

sequencing approximately 100 bases at a time.

4.1.3 Automated Sequencing

In order for large-scale sequencing to become a reality, it was necessary that some

less labor-intensive technology be developed. Two major advances have made that a

reality. One of these is the development of fluorescent dyes that could be easily dis-

tinguished from each other, allowing reactions for all four bases to be run together.

By running a Sanger dideoxy reaction with the polymerization bu¤er (primers,

dNTPs, and polymerase) and all four terminator bases (ddATP, ddCTP, ddGTP,

and ddTTP), we will get strands of all lengths incorporating all four kinds of termi-

nator bases. If the four kinds of terminator bases have di¤erent colors of fluorescent

dye, then we can allow all of them to polymerize together and we can read out the

sequence by reading the sequence of dye colors in a single column. Figure 4.4 illus-

trates how such a four-color gel might appear. Note that this strategy works for the

Sanger method, but will not work for the Maxam–Gilbert method, in which the ra-

dioactive base is far from the selectively cut base.

Though these four color bases reduce the work of sequencing by roughly a fac-

tor of 4, their real advantage is in enabling even further automation through a tech-

nology called capillary sequencing. In capillary sequencing, we replace the slab of

Figure 4.3
A polyacrylamide gel that might be produced by Sanger dideoxy sequencing from the sequence
CTACGCCT. Vertical band positions correspond to di¤erent strand lengths, labeled at the left edge of
the gel. Each column of the gel shows the lengths of strands produced by polymerizing up to the base at
the bottom.

4.1 Sequencing Technologies 61

polyacrylamide gel with a thin tube, or capillary, filled with gel. An electric current

forces DNA through the capillary, where smaller pieces of DNA move faster than

larger ones, as in a standard polyacrylamide gel. A light source excites the DNA as

it passes through the strand, and a detector measures fluorescence at all four wave-

lengths corresponding to the probes on the terminator bases. A computer can then

record intensity in each wavelength as the bases pass through the capillary. Figure

4.5 conceptually illustrates the apparatus.

A plot of the intensities of the fluorescence in each wavelength over time as DNA

passes through the capillary, called a ‘‘sequence trace,’’ can be interpreted by a com-

Figure 4.4
A four-color gel produced by running all four terminator bases with distinct fluorescent dyes in a single
sample. Distinct shades of gray in the image would be distinct colors in a real four-color gel.

Figure 4.5
A capillary sequencer design. DNA strands move through the polyacrylamide gel in the capillary. A sta-
tionary laser excites the fluorescent dyes as they pass by, producing fluorescence that is measured by a light
meter and recorded by a computer.

62 4 Case Study: Sequence Assembly

puter to directly determine the DNA sequence. Figure 4.6 shows an image of what

one of these traces looks like. An actual trace will be somewhat messier than this,

and bases cannot always be determined with perfect accuracy. This automated ap-

proach does greatly improve quality beyond prior methods, though. With a modern

capillary sequencer, one can read sequences of about 500–1000 bases in a row with

99 percent or better accuracy.

4.1.4 What About Bigger Sequences?

Even with a modern sequencing machine reading 1000 bases at a time, it is still not

clear how we will read the thousands of bases of a viral sequence, potentially millions

of a bacterial sequence, or even billions of a large eukaryotic sequence. The classic

method for this problem is a labor-intensive practice called ‘‘chromosome walking.’’

Chromosome walking works approximately as follows:

1. Find a probe sequence anywhere in the DNA strand.

2. Amplify a piece of DNA starting from the probe.

3. Sequence the first few hundred bases of the amplified sequence.

4. Choose a new probe near the end of the newly sequenced region.

5. Start again with the new probe and return to step 2.

Though this may sound tedious, given enough e¤ort it could sequence very long

pieces of chromosome. It might eventually get stuck because some sequences of

DNA are di‰cult to sequence for various reasons. For example, if the method runs

into a highly repeated piece of DNA, it may prove impossible to find a good probe.

But eventually this approach can be used to get hundreds of thousands or even mil-

lions of bases in a row.

Even this will not be enough to sequence large eukaryotic genomes, though. When

the sequencing of the approximately 3-billion-base human genome was first pro-

posed, it was planned that it would be accomplished with a hierarchical ‘‘clone-by-

clone’’ strategy. The idea behind this approach was that scientists would break the

Figure 4.6
An idealized model of a sequence trace. Peaks of di¤erent shades identify regions of the strand correspond-
ing to particular bases. Although the figure is in gray scale, an actual trace would use four di¤erent colors
for the four bases.

4.1 Sequencing Technologies 63

genome into large pieces (on the order of 100 kilobases) and insert them into micro-

organisms. Eventually, a construct called a bacterial artificial chromosome (BAC)

was chosen, which would allow these large DNA pieces to be inserted into bacteria

and replicated. Scientists could then take these colonies of bacteria with various

human DNA strands, copy out the strands, and sequence them by chromosome

walking. Finally, they could use a long-distance mapping technique to figure out

where the BACs were positioned relative to each other on the genome, allowing

them to put the whole thing together. There was still criticism that this approach

was too slow and labor-intensive, though, which is where computational biology

enters the picture.

4.2 Computational Approaches

The basic issue, from a computational modeling point of view, is to try to take the

basic capability of sequencing a few hundred bases at a time and combine that with

computer science to sequence larger pieces of DNA more e‰ciently than can be done

with the prevailing laboratory methods. We will first examine one approach that has

mostly turned out to be a dead end for sequencing large genomes. We do this in part

because it illustrates some of the pitfalls we can run into in modeling biological prob-

lems, and in part because it did eventually turn out to have important applications.

We will then discuss what has actually worked in practice for sequencing large

genomes.

4.2.1 Sequencing by Hybridization

One proposed strategy of harnessing computational methods for sequencing involved

using a very di¤erent technology, called a microarray. A microarray is typically a

small glass plate covered with tiny spots of DNA. Each spot has a uniform DNA se-

quence, but di¤erent spots have di¤erent sequences. When we wash a solution of

DNA over a microarray, DNA strands stick to spots that have sequences comple-

mentary to them. By seeing which spots have DNA bound to them, we can deter-

mine which sequences are in our sample. A typical microarray may have tens of

thousands of spots, so we can have a separate spot for every possible sequence of

length up to about eight bases (called 8-mers, or k-mers for arbitrary length k).

Thus, a microarray can in principle tell us exactly which 8-mers occur in some

DNA strand of interest. In practice, microarrays are noisy and our data may contain

some errors. But for the moment, we can suppose that we really can determine ex-

actly which k-mers are in a sequence of interest.

Sequencing by hybridization (SBH) was a method proposed to sequence DNA

computationally, using this information about the k-mers a given sequence contains.

To illustrate this approach, let us suppose we have a sequence ACGCCATCA and

64 4 Case Study: Sequence Assembly

we run it on a microarray with all length-4 strands. We should then see hybridization

for the spots complementary to ACGC, CGCC, GCCA, CCAT, CATC, and ATCA.

It is easy to go from the full strand to the k-mers, but not obvious how to go from

the k-mers to the full strand. The SBH approach starts by modeling the data as a

graph. Our nodes are the k-mers present in our input. Our edges correspond to pairs

of k-mers that may be consecutive in the sequence. For example, the 4-mer GCCA

may be followed by CCAT (if they come from the longer sequence GCCAT), or it

may be followed by CCAA, CCAC, or CCAG. In our example above, only CCAT

occurs from among these four choices, so we know that CCAT follows GCCA unless

GCCA is the last k-mer in the sequence. In general, two k-mers may occur sequen-

tially if the ðk� 1Þ su‰x of the first is the ðk� 1Þ prefix of the second. If we construct

a graph using this relationship, then a path that passes through all nodes in the graph

represents a possible sequence of the DNA. Figure 4.7 shows the graph for our sam-

ple sequence. Our sequence can be read out directly from the graph by following the

unique path through the k-mers.

The above approach is likely to work fine for short sequences and long k-mers, but

it will not work well in general. In particular, a problem appears when we have

ðk� 1Þ-mers repeated in our sequence. To illustrate the problem, imagine that we

start with the sequence ACCAGACAT, with k ¼ 3. Then we will get the graph

shown in figure 4.8. In this case, it is not so obvious what the sequence should be.

First of all, the graph has a cycle, and we can go around that cycle an arbitrary num-

ber of times. For example, the sequence ACCAGACCAGACCAGACAT will give

us the same set of k-mers. The second problem, though, is that trying to find a path

in a graph that visits every node is a well-known NP-hard problem we saw in chapter

3: the Hamiltonian path problem. Computer scientists who worked on this SBH

Figure 4.7
k-mer graph corresponding to the sequence ACGCCATCA for k ¼ 4. Each node corresponds to a 4-mer
observed in the sequence. Each edge marks a pair of k-mers for which the ðk� 1Þ su‰x of the source
matches the ðk� 1Þ prefix of the destination.

Figure 4.8
k-mer graph corresponding to the sequence ACCAGACAT with k ¼ 3.

4.2 Computational Approaches 65

problem cast it as a Hamiltonian path problem and then tried to use various inexact

methods to solve it, but ultimately these approaches were not very useful for solving

any real-world instances of the problem. It would seem, then, that the problem, at

least as it is formulated here, will not be solvable. It turns out, though, that this intu-

ition is an example of one of the fallacies mentioned in chapter 3—not making sure

one’s ‘‘hard’’ problem is really hard—as we will see in the next section.

4.2.2 Eulerian Path Method

A di¤erent formulation of the SBH problem ultimately led to very e‰cient algo-

rithms. To understand how this is possible, we need to recognize that although find-

ing a path through a fragment graph is a kind of Hamiltonian path problem and a

Hamiltonian path is a hard problem, that does not mean that finding a path through

a fragment graph is a hard problem. An alternate graph reduction, proposed by

Pevzner [71], shows how we can find paths very quickly.

In the Eulerian path method, we construct a graph from our k-mers by a di¤erent

reduction. Now, we create a node for each ðk� 1Þ-mer in our graph and create a

directed edge between two nodes if there is a k-mer whose prefix is the first node

and whose su‰x is the second node. Suppose, for example, we use the sequence

ACCAGACAT with k ¼ 3. The result will be the graph in figure 4.9, where each

edge is labeled with the k-mer that created it.

Now, instead of looking for a path that passes through every node, we need a path

that passes through every edge in our graph. The problem of finding a path using

every edge in a graph is called an Eulerian path problem. Whereas the Hamiltonian

path problem is hard, the Eulerian path problem is tractable, and in fact solvable in

linear time. Though proving that a problem of interest is a special case of a hard

problem does not prove it hard, proving it is a special case of an easy problem does

prove it easy. This is a simple case where having the right model makes a huge di¤er-

ence in the tractability of the problem.

Does this mean sequencing is a solved problem? Unfortunately, no. One problem

is that DNA arrays are noisy and often have false positive and false negative values.

Figure 4.9
Eulerian path graph for the sequence ACCAGACAT with k ¼ 3. Nodes of the graph are 2-mers, and
edges correspond to 3-mers.

66 4 Case Study: Sequence Assembly

The algorithms we have discussed do not deal well with errors in the data, and even

tractable problems tend to become hard when one starts including an error model. A

more insidious problem, though, is that repeated sequences still defeat the approach.

In the Eulerian path SBH example above, we have one cycle in our graph and could

endlessly go around that cycle. In general, if we have a k-mer repeated anywhere in

our sequence, it will become ambiguous to determine how to put the sequence to-

gether. And microarrays pretty much will not allow us to make k-mers longer than

about 8. In other words, this approach really seems to have no hope of sequencing

large pieces of DNA.

SBH was an extremely popular topic among computational biologists for a num-

ber of years because it leads to very elegant theoretical problems. But from the bio-

logical point of view, it ultimately seemed to have been a dead end as a means of

sequencing large genomes, even in the Eulerian path version. This is an unfortunate

but useful example of how computational biologists have sometimes been led astray

by putting too much emphasis on doing good computer science and not enough on

doing good biology. As we will see later on, though, this work did ultimately prove

useful for some kinds of sequencing, although not exactly as originally intended.

4.2.3 Shotgun Sequencing

Though SBH may not have worked out for the problem of sequencing large eukary-

otic genomes, computational biology was ultimately crucial to the field through a

very di¤erent avenue called shotgun sequencing. The basic idea behind shotgun

sequencing is to break the DNA into lots of random pieces, sequence them by a

sequencing machine to yield many roughly 500 bp fragments, and then put the frag-

ments together computationally by trying to find the shortest possible sequence con-

taining all of them. You should recognize this as an example of the shortest common

superstring problem we saw in chapter 3. In contrast to the SBH case, this really is a

hard problem, and we cannot solve it exactly. It will turn out, though, that with a lot

of tricks we can do a very good job in practice.

There are approximation algorithms for this problem, but their bounds are not

good enough for practical use. Traditionally, the way people really solved this prob-

lem in practice was through a greedy algorithm that would build up a sequence by

repeatedly merging whichever two fragments had the greatest overlap between

them. For example, if we had the fragment sequences

1. ACAGGAC

2. AGGTTGA

3. GACTA

4. TGTTCA

4.2 Computational Approaches 67

our sequence of operations would be the following:

1. Merge fragments ACAGGAC and GACTA, using the overlap sequence GAC to

get ACAGGACTA.

2. Merge TGTTCA and AGGTTGA to get TGTTCAGGTTGA.

3. Merge TGTTCAGGTTGA and ACAGGACTA to give TGTTCAGGTTGA-

CAGGACTA.

This greedy merging is conjectured to be a 2-approximation algorithm, but generally

does much better than that in practice.

This process of fragment merging can be visualized by representing the problem as

a special case of the traveling salesman problem (TSP). To perform the reduction to

TSP, we create one node for each fragment. We then place a directed edge between

each pair of nodes vi and vj whose value is the negative of the maximum overlap of a

su‰x of sequence i and a prefix of sequence j. For the fragment set above, this reduc-

tion would give the graph of figure 4.10. TSP is a hard problem even compared with

other NP-complete problems and is harder to approximate than the shortest com-

mon superstring problem, so this reduction would not at first seem to be a very useful

thing to do. TSP is, however, a very well studied problem, so there are a lot of heu-

ristics one can bring to bear on the problem by representing it as TSP. This reduction

is also a good way to understand the structure of the problem.

The above method really does yield a practical means of performing sequence as-

sembly, although it requires some small modifications. For example, because se-

quencing technologies are not error-free, we would not use exact overlaps for the

edge scores, but rather something analogous to a sequence alignment score that

allows for imprecise overlaps. But the TSP reduction is basically the core of how

real sequence assemblers for microbial genomes work.

Figure 4.10
Traveling salesman instance created from the fragment set fACAGGAC;AGGTTGA;GACTA;
TGTTCAg. Nodes correspond to fragments, and edges, to the negative of the amount of overlap between
fragments.

68 4 Case Study: Sequence Assembly

The method does, however, run into problems when moving from microbial to

eukaryotic genomes. In particular, though this shotgun method is not sensitive

to the short random repeats that make SBH impractical, it does have di‰culty with

the longer repeat regions one finds in eukaryotes. For example, if we have a region

of tandem repeats (the same sequence or something close to it repeated side by side)

that is longer than the fragment length, then shotgun assembly has a tendency to

‘‘collapse’’ the region by reducing the number of repeats. Figure 4.11 illustrates the

problem by showing how a region of four Alu repeats might be misinterpreted as

only two repeats in the assembly.

Repeats that are distant in the genome also create problems; once the assembly

enters a repeat region, an assembly algorithm cannot tell which of the copies it is in.

For example, if we had the following sequence with three Alus in it

ACCCATG ... Alu ... TTGCTA ... Alu ... GTAGCA ... Alu ...

TACTCA

the assembler might misassemble it as follows:

ACCCATG ... Alu ... GTAGCA ... Alu ... TTGCTA ... Alu ...

TACTCA

It can infer that the two middle regions start and end in Alus but cannot tell which

ones.

4.2.4 Double-Barreled Shotgun

A solution to the problem of repeats was developed using a technique called double-

barreled shotgun sequencing. Double-barreled shotgun sequencing exploits a slight

inaccuracy in a statement above about the limits of the available sequencing technol-

ogies. Earlier, we claimed that modern sequencing machines can sequence strands of

up to about 500 bp. In fact, sequencing machines can sequence the first 500 bp of a

strand even if it is much longer than 500 bp. The importance of this distinction is that

we can also sequence the first 500 bp of the complementary strand. As a result, we

can really sequence 500 bp from each end of a single strand. Figure 4.12(a) illustrates

Figure 4.11
Illustration of how shotgun assembly can collapse tandem repeats. A set of fragments (straight lines) gath-
ered from four consecutive Alu repeats could explained by only two Alu repeats.

4.2 Computational Approaches 69

this concept. We will not know the sequence of the strands between those 500 bp

ends, but we can easily determine its approximate length.

In double-barreled shotgun sequencing, we will use these paired fragments (called

mate pairs) to constrain our assembly. If we have a pair of fragments on both sides of

a repeat region and we know the distance between the fragments, then we can deter-

mine the size of the repeat region. We can also assemble the genome correctly on

both sides of the repeat region. However, we may still make mistakes in determining

the correct sequence of the region. Maybe we can determine that it consists of 30

copies of an Alu repeat, but because Alus are not 100 percent identical to each other,

we may get individual bases wrong within them. From the point of view of generat-

ing a biologically useful sequence, though, this is generally a tolerable problem. In

practice, it is helpful to have a range of fragment sizes to help span both large and

small problem areas in the genome, as illustrated in figure 4.12(b).

The development of this double-barreled shotgun approach is a great example of

how valuable it can be to have an understanding of both the limits of the experimen-

tal technology and the needs of the computational problem. In the real world,

though, the picture gets somewhat more complicated. Once we reach the point of

incorporating mate pairs, it is no longer possible to come up with elegant, practically

useful theoretical representations of the problem. Furthermore, there is a strong in-

centive to use every kind of potentially useful data available. For example, we may

have other mapping information giving approximate locations of markers on the

genome, as well as other partial sequence information we can use to improve the as-

sembly. Because of these complications, the methods used in practice are essentially a

variant on the ‘‘kitchen sink’’ approach described in chapter 3. For those interested

in learning more, the References and Further Study section provides citations to

some real implementations of shotgun sequence assemblers used for di‰cult eukary-

otic genomes.

Even when we have a good assembly method, though, we are not yet done. The

assembly will almost certainly have gaps in it that need to be systematically filled in.

Figure 4.12
Illustration of the concept of double-barreled shotgun sequencing. (a) Sequences derived from both ends of
a DNA molecule by sequencing the first 500 bp of the forward and reverse strands. (b) Linked mate-paired
fragments providing long-distance connectivity along a piece of sequenced genome.

70 4 Case Study: Sequence Assembly

Furthermore, there may be regions of the genome that do not sequence for various

technical reasons, and we may need to go back into the laboratory and individually

fill these in with specialized methods. These later steps make up a process called ‘‘fin-

ishing’’ that is used to polish and complete the genome produced by an assembler.

Even then, there are regions of the genome likely to be left undone, particularly the

highly repetitive sequences close to the centromeres and telomeres.

4.3 The Future?

What we have covered in the preceding sections more or less brings us to the current

state of the art in how computational biology applies to sequencing today. But it is

always interesting to consider how things may change in the future and what this will

mean to computational modelers.

4.3.1 SBH Revisited

One intriguing possibility raised recently is that SBH may not be quite the dead end

indicated earlier. In particular, it may be possible to salvage some of the nice com-

putational properties of the SBH method while eliminating the problems of the ex-

perimental technology it is based on by using a technique called ‘‘shotgun SBH.’’

Shotgun SBH uses the SBH computational abstraction but applies it to the long se-

quence fragments produced by sequencing machines rather than to the short k-mers

one gets from a microarray. The basic approach is to take fragment sequences from a

sequencing machine and artificially ‘‘shred’’ them into k-mers, as illustrated in figure

4.13.

Suppose, for example, we have the following fragments:

AGACTTAC

ACGGTAG

GATTCATA

We can shred them into the following set of k-mers, assuming k ¼ 5:

AGACT, GACTT, ACTTA, CTTAC,

ACGGT, CGGTA, GGTAG

GATTC, ATTCA, TTCAT, TCATA

We can then solve the problem exactly as if we have a microarray that checks every

k-mer and tells us that precisely those above are observed. The advantage of this

approach is that we can use k-mers much longer than those actually feasible on a

microarray, say 30 bp. As long as we have su‰cient overlap between our fragments,

4.3 The Future? 71

we can learn exactly which 30-mers are present in our data. We can then process the

data by using the very fast Eulerian path methods developed for the standard SBH

method, but with a k-mer length long enough to skip over the random repeats we

would expect just by chance even in a 1 Mb microbial sequence.

This method does not solve all of our problems, however. It would still fail to deal

with the long repeat regions that confound standard shotgun assembly, and therefore

may never be appropriate for large genomes. It will also have trouble if we do not

have enough density of fragments. If consecutive fragments do not have an overlap

at least as long as the k-mer length, then we may end up missing k-mers that span the

overlap region, and thus be unable to complete the sequence. Nonetheless, shotgun

SBH, too, appears to be another good example of how a simultaneous appreciation

of what we can do experimentally and what we can do computationally can lead to

very good approaches in practice.

4.3.2 New Sequencing Technologies

One last point to note is that sequencing is a very active area of research. Some

groups are working on incremental improvements to the current technologies that

can be quite helpful to computational methods. For example, increasing fragment

sizes may make assembly computations much easier. Other approaches are lowering

the time and cost of generating fragments, potentially making far greater depth of

coverage available for assembly algorithms. The topic that has people in the field

most excited, though, is called ‘‘single-molecule sequencing.’’ The principle behind

Figure 4.13
Illustration of the concept of shotgun SBH. Shotgun sequence fragments of several hundred base pairs (top
of figure) are computationally ‘‘shredded’’ to produce k-mers approximately 30 bp long (bottom of figure).
These k-mers are then used to simulate the output of a hypothetical 30 bp sequencing array.

72 4 Case Study: Sequence Assembly

single-molecule sequencing is to get rid of fragments entirely and simply sequence an

entire DNA strand, possibly hundreds of megabases, all at once. So far, this is just

hypothetical, but many scientists feel it may not be far in the future. The most prom-

ising approaches to this problem are based on a strategy called ‘‘nanopore sequenc-

ing,’’ which works by passing DNA through a tiny pore (typically a ring of proteins)

and measuring how the electrical field across the pore changes over time. In princi-

ple, the voltage gradient across the pore depends on which base is passing through it.

Current instruments are sensitive enough to distinguish long runs of one base from

another, but no one has managed to get bases to move slowly enough through the

nanopores to read out individual bases. But it may be only a matter of time before

the whole field of computational sequence assembly is rendered obsolete.

References and Further Reading

For background on the basic sequencing technologies, see Stryer [57], a comprehen-

sive and widely used text on general biochemistry. Those interested in more depth on

the development of sequencing technologies can look to the primary literature. Pri-

mary references are available for Maxam–Gilbert sequencing [58], Sanger dideoxy

sequencing [59], the use of four-color fluorescence to automate DNA sequencing

[60], capillary electrophoresis sequencing [61], and chromosome walking [62]. It is

di‰cult to identify a primary reference for the strategy ultimately used for the

clone-by-clone sequencing of the human genome since it was hashed out in many in-

dividual meetings and position papers. The International Human Genome Sequenc-

ing Consortium’s first publication announcing the complete genome provides

perhaps the most complete primary description of the strategy [63].

The topic of sequence assembly algorithms is covered in depth in a text by Pevzner

[64]. Jones and Pevzner [65] provide a more introductory coverage of the topic in the

general context of graph algorithms in computational biology. The prospect of

sequencing by hybridization was independently proposed by four di¤erent groups:

Bains and Smith [66], Southern [67], Lysov et al. [68], and Drmanac et al. [69]. The

first practical report of its use came from Drmanac et al. [70]. The Eulerian path for-

mulation is due to Pevzner [71]. The shotgun SBH method was proposed by Idury

and Waterman [72]. There are many other computational works arising from varia-

tions of SBH that we did not cover here. The interested reader can refer to Pevzner’s

textbook [64] for references to much of this work.

Shotgun sequence assembly was first developed to sequence the genome of Haemo-

philus influenzae [73]. The double-barrel technique was first developed by Edwards

et al. [74] to sequence a single gene locus. An influential, and controversial, paper

by Weber and Myers [75] first proposed that the double-barrel technique would

make whole-genome sequencing possible for complex eukaryotes. Whole-genome

References and Further Reading 73

double-barrel shotgun sequencing was first demonstrated by Myers et al. [76] to

assemble the Drosophila melanogaster genome. Readers interested in more detail on

what goes into designing a real-world sequence assembler may refer to the Myers et

al. paper on Drosophila, as well as to the more complex assembler required for the

shotgun assembly of the human genome [77]. Batzoglou et al. [78] provide another

example of a real-world shotgun assembler designed for general genome assembly

problems.

The concept of nanopore sequencing was first suggested by Akeson et al. [79]. For

a general review of nanopore sequencing ideas, see Deamer and Akeson [80]. A more

recent review of that and other new prospects for rapid sequencing can be found in

Shendure et al. [81]. Prospects for single-molecule sequencing are, however, a matter

of great speculation as of this writing, and it is uncertain which, if any, of these meth-

ods will ultimately prove successful.

74 4 Case Study: Sequence Assembly

5 General Continuous Optimization

We have seen many ways of solving discrete problems, but biological modeling often

involves continuous systems. A continuous system is one in which we have one or

more real-valued independent variables and one or more real-valued dependent vari-

ables. Optimization in continuous systems is often not covered in computing curric-

ula, but from my point of view it is as important as in discrete systems. The material

we are going to cover would ordinarily be grouped under the topic of numerical

methods. We cannot present an exhaustive treatment of numerical methods here,

but will provide an introduction to a few basic and broadly useful techniques.

Continuous optimization comes up in many contexts in biological modeling. For

instance, working with molecular models often involves solving continuous optimiza-

tion problems. Suppose, for example, we want to find how best to fit a small mole-

cule into a binding pocket of a protein. We can represent this as a continuous

optimization problem by treating the protein as fixed in space and using six continu-

ous variables to represent the six degrees of freedom (three translational and three

rotational) of the small molecule. If we imagine that we have some black box that

computes the energy of binding, given the position of the small molecule, Eðx; y; z;
y; f;cÞ, then our problem is equivalent to finding the values of the six continuous

variables that minimize E. In a more sophisticated variant, we may have three

degrees of freedom for each atom in our system and seek to minimize Eðx1; y1; z1; x2;
y2; z2; . . . ; xn; yn; znÞ in terms of all the variables. These are both examples of general

continuous optimization. Continuous optimization will also be important later in the

text when we examine fitting parameters to data sets, a problem that is often a form

of continuous optimization. For example, we might have a set of di¤erential equa-

tions describing progress of a reaction and a data set of time points from the reac-

tion. Finding the reaction rate constants that minimize the di¤erence between the

model and the observations is also a form of continuous optimization.

When working with numerical algorithms, we often have to make some assump-

tions about the systems we are examining. What we need to assume varies from

method to method, but some common assumptions are the following:

1. Continuity (often we assume Cy continuity, which means that the function and

all of its derivatives are continuous)

2. Bounded derivatives:
d ky

dxk
< B for some (possible unknown) constant B.

It is also important to understand that when talking about general continuous opti-

mization, we are rarely talking about truly optimizing for our systems. Usually, what

we will find are local optima, which means that they are sets of variables that cannot

be improved by infinitesimal changes in any variables. They are distinct from global

optima, which are the absolute best solutions that exist over the entire space of allow-

able solutions. It is impossible to develop any method that will find global optima of

any arbitrary continuous function, although there are special cases, some of which

we will see in the next chapter, for which it is possible to globally optimize continu-

ous systems. For the remainder of this chapter, though, we will generally assume we

are looking for local optima.

Suppose we have a continuous function FðxÞ and we want to find a maximum (or

minimum). Those who remember their introductory calculus may recall that extrema

of FðxÞ are found at points where dF
dx

(which we will also call F 0ðxÞ or f ðxÞ) is zero. If
we are maximizing over some finite region—for example, finding the maximum of

F ðxÞ for x A ½�1; 1�—then the maxima may also be at the boundaries of the interval.

But maximization and minimization are essentially problems of finding zeros of a

function. So how do we find zeros?

There are a few special cases for which zero-finding has a simple analytical solu-

tion. For example, with polynomials, there is the well-known quadratic formula for

ax2 þ bxþ c, �bG
ffiffiffiffiffiffiffiffiffiffiffi
b2�4ac
p

2a . There is also a less well-known cubic formula that is some-

times useful in practice. There is even a formula for quartic (degree 4) polynomials

that is so complicated no one uses it in the real world. There is no general for-

mula beyond quartic. For general functions, though, there is no analytical solution,

and we therefore need to use some kind of numerical algorithm. In this chapter, we

will cover a few of the most important zero-finding or continuous optimization

algorithms.

5.1 Bisection Method

The bisection method is the simplest zero-finding method. The basic idea behind the

bisection method is to start with some region that we know includes a zero, then

repeatedly cut the region in half until we have zeroed in on our zero. Suppose we

are finding a zero of a function f and we know that f ðxminÞ < 0 and f ðxmaxÞ > 0

for some xmin < xmax. Then we know there must be a zero somewhere between xmin

and xmax. Figure 5.1 provides pseudocode for the bisection method to find a single

76 5 General Continuous Optimization

zero of a function. The code will run until the size of the x interval we are examining

is less than some user-specified threshold e. This interval provides a bound on the

final error in x, which is known as a backward error. We can also use as our stopping

condition an estimate of the error in f ðxÞ, which is called the forward error. To do

that, we might replace line 4 with

4. until ðj fmid j < eÞ:

For now, however, we can assume we are using backward errors.

To see how the method works, we can look at an example. Suppose we are looking

for a zero of x2 � 2. We can easily determine analytically that the answer isG
ffiffiffi
2
p

,

but let us suppose we do not know how to find that. We will further suppose that

we know a zero lies somewhere on the interval ½0; 2�. If we apply the bisection

method, it will repeatedly cut this interval in half until it converges on the zero. Table

5.1 shows how the variables evolve over time. Figure 5.2 shows the progress of the

first few steps of the algorithm by illustrating the region of the curve under consider-

ation at each step. The initial region, ½0; 2�, spans the entire width of the plot. The

subsequent region, ½1; 2�, and the next region after that, ½1; 1:5�, each covers a smaller

fraction of the plot bounding the zero of the function. At the end of four steps of the

algorithm, we have established that the zero lies somewhere in the interval x ¼
½1:25; 1:5�. Our best guess is that it lies in the middle of the region (1.375). We can

also estimate that the error in this guess is about half the size of the interval we are

guessing from, or 0:125.

Figure 5.1
Pseudocode for the bisection method, assuming that f ðxminÞ < 0 and f ðxmaxÞ > 0. e is an estimated back-
ward error tolerance for the search.

5.1 Bisection Method 77

The bisection method is very general, and as long as we can find a good starting

region, it will eventually get us arbitrarily close to a zero. It can converge somewhat

slowly, though. Each step cuts our interval in half, which may take a while if we are

trying to get from a large region to a small error tolerance. It is therefore worth con-

sidering faster methods.

5.2 Secant Method

To understand how we can improve on the bisection method, consider the situation

in which we are trying to shrink our boundaries but one endpoint of our boundary

has an f value much closer to zero than the other. With the bisection method, we

shrink our interval by choosing the middle of the region as our next guess for an end-

point of the region. Suppose we pick another point instead of the midpoint, though.

Table 5.1
Changes in variables of the bisection algorithm over successive steps on the curve f ðxÞ ¼ x2 � 2

step 1 2 3 4

xmin 0 1 1 1.25

xmax 2 2 1.5 1.5

fmin �2 �1 �1 �0.4375
fmax 2 2 0.25 0.25

xmid 1 1.5 1.25 1.375

fmid �1 0.25 �0.4375 �0.1094

Figure 5.2
Plot of the curve f ðxÞ ¼ x2 � 2 over two successive steps of the bisection algorithm. The full width of the
plot shows the initial interval ½0; 2�. Vertical dashed lines show the intervals after one step (½1; 2�) and after
two steps (½1; 1:5�).

78 5 General Continuous Optimization

What would be a good point to use? We might guess that our method would con-

verge fastest if we replaced the midpoint with some point very close to the zero.

The secant method uses this intuition by trying to guess where the zero of f lies

and using that, rather than the midpoint of the interval, as the new boundary. It

does this by linear interpolation between the endpoints we already know. That means

we project a line between the two endpoints of our interval and ask where that line

crosses f ðxÞ ¼ 0. The line passing through our two known points ðxmin; fminÞ and
ðxmax; fmaxÞ has the form

ð f ðxÞ � fminÞ ¼
fmax � fmin

xmax � xmin

ðx� xminÞ:

If we solve this equation for x, we get the following:

f ðxÞ ¼ fmin þ
fmax � fmin

xmax � xmin

ðx� xminÞ ¼ 0

x ¼ xmin �
xmax � xmin

fmax � fmin

fmin:

Thus, to implement the secant method, we use the same algorithm as for the bisec-

tion method, except that we replace line 3.A in figure 5.1,

xmid
xmin þ xmax

2
;

with

xmid xmin �
xmax � xmin

fmax � fmin

fmin:

Using the secant method with our example function f ðxÞ ¼ x2 � 2, we begin by

projecting a line between the endpoints of our curve in our starting region, x ¼
½0; 2�. Figure 5.3 shows the resulting line, y ¼ 2x� 2. We then pick as our new mid-

point the point where that line crosses the x axis. In this case, it is 1, just as with the

bisection method. We next move to the region x ¼ ½1; 2� and draw a new line be-

tween the endpoints of the curve on that region, y ¼ 3x� 4. The new line now

crosses the x-axis noticeably to the left of the center of the interval. The secant

method will thus choose a new endpoint where f is much closer to zero than it would

be with the bisection method, producing an answer slightly closer to the true zero

than we would get if we chose the midpoint of the region. Executing one more itera-

tion would give us the line y ¼ 10
3 x� 14

3 . As we can see, the accuracy of our guess is

now far better than we saw with the bisection method.

5.2 Secant Method 79

Table 5.2 shows the progress of the variables on successive steps of the algorithm.

Based on these values, our best guess after the final step will be 1.412 with an esti-

mated error about half the size of the final region, or 0.3. The actual error is much

lower, about 0.0022. Often a more accurate measure of error is the amount by which

the answer changes between the last two steps, 0.0787, which is still high but closer.

In this case, the secant method works much better than the bisection method, al-

though there are no guarantees that it will do so on all curves.

5.3 Newton–Raphson

Although the secant method is generally an improvement over the bisection method,

it is typically only a slight improvement. First of all, we need a bounding interval

Figure 5.3
Demonstration of three successive steps of the secant method on f ðxÞ ¼ x2 � 2, starting from interval
½0; 2�. Dashed lines show the secants; and circles, the intercepts. The line y ¼ 2x� 2 is the secant for inter-
val ½0; 2� with intercept 1. The line y ¼ 3x� 4 is the secant for the interval ½1; 2� with intercept 1.33. The
line y ¼ 10

3 x� 14
3 is the secant for the interval ½1:33; 2� with intercept 1.4.

Table 5.2
Changes in variables of the secant algorithm over successive steps on the curve f ðxÞ ¼ x2 � 2

step 1 2 3 4

xmin 0 1 1.33333 1.4

xmax 2 2 2 2

fmin �2 �1 �0.22222 �0.04
fmax 2 2 2 2

xmid 1 1.3333 1.4 1.412

fmid �1 �0.2222 �0.04 �0.00692

80 5 General Continuous Optimization

around a zero to get started, and we may have di‰culty finding one. Second, it is still

quite slow for some cases. There is another method that can help us with both of

these issues: the Newton–Raphson method (often called Newton’s method).

To understand Newton–Raphson, imagine that we are applying the secant method

but using tighter and tighter intervals to get our secant. Ignore for the moment the

fact that our interval may not contain a zero if we make it too small. We will see

something like the image in figure 5.4, where the secant line keeps moving to the

right as we interpolate between closer and closer points. If we simply keep making

the interval tighter and tighter, we eventually end up with a tangent to our curve at

a single point. In figure 5.4, the rightmost line is the tangent to x2 � 2 at the point

ð2; 2Þ. The idea behind Newton–Raphson is to try to project a zero of the curve using

linear interpolation, just as with the secant method, but to do it using a tangent to

a single point rather than a secant to two endpoints of an interval. We start with a

single point, representing an initial guess as to the location of our zero; find the tan-

gent to the curve at that point; and use the tangent to find a point likely to be closer

to the zero. This is an example of a very general technique called ‘‘locally lineariz-

ing,’’ which means pretending that a curve of interest is linear in a local region in

order to create an easier computational problem.

To use the Newton–Raphson method, we therefore need to be able to figure out

what the tangent is at any point on our curve and where that tangent crosses

f ðxÞ ¼ 0. The first part is fairly simple. Suppose we start from some initial guess x0.

Then the tangent at x0 is the line passing through ðx0; f ðx0ÞÞ whose slope is the de-

rivative of f ðxÞ at x0, which we can denote by f 0ðx0Þ. The equation for this line is

Figure 5.4
Illustration of the intuition behind the Newton–Raphson method using f ðxÞ ¼ x2 � 2. By progressively
tightening the interval between two points on a secant line, we converge on a tangent to our curve. This
tangent can then be used to estimate the location of a zero of the function.

5.3 Newton–Raphson 81

f ðxÞ � f ðx0Þ ¼ f 0ðx0Þðx� x0Þ

or, equivalently,

f ðxÞ ¼ f 0ðx0Þðx� x0Þ þ f ðx0Þ:

If we solve for where this line crosses f ðxÞ ¼ 0, we get the following:

f 0ðx0Þðx� x0Þ þ f ðx0Þ ¼ 0

f 0ðx0Þðx� x0Þ ¼ �f ðx0Þ

x� x0 ¼ �
f ðx0Þ
f 0ðx0Þ

x ¼ x0 �
f ðx0Þ
f 0ðx0Þ

:

This final equation gives us an iterative formula we can use to successively refine a

guess as to the zero of our system.

We will illustrate the method by again using the curve f ðxÞ ¼ x2 � 2. For this

f ðxÞ we get f 0ðxÞ ¼ 2x. If we start from the initial guess x ¼ 2, then the values on

successive steps of the algorithm are those given in table 5.3. By the fourth step, our

actual error is down to 2:5� 10�6.

In general, once Newton–Raphson gets close to the answer, it converges very

quickly on the correct answer. To understand why this is the case, we can use a Tay-

lor series approximation. We may recall from calculus that any curve f ðxÞ can be

approximated by a Taylor series about some point xi:

f ðxÞ ¼ f ðxiÞ þ f 0ðxiÞðx� xiÞ þ
f 00ðxÞ
2
ðx� xiÞ2;

where x is some unknown number between x and xi. Therefore, where f ðxÞ ¼ 0, we

have

Table 5.3
Changes in variables of the Newton–Raphson algorithm over successive steps on the curve f ðxÞ ¼ x2 � 2

step 1 2 3 4

x 2 1.5 1.417 1.414216

f ðxÞ 2 0.25 0.00694 8:8� 10�6

f 0ðxÞ 4 3 2.834 2.828

82 5 General Continuous Optimization

f ðxiÞ þ f 0ðxiÞðx� xiÞ þ
f 00ðxÞ
2
ðx� xiÞ2 ¼ 0:

If f 0ðxiÞ0 0, then we can divide through by f 0ðxiÞ to get

f ðxiÞ
f 0ðxiÞ

þ x� xi þ
f 00ðxÞ
2f 0ðxiÞ

ðx� xiÞ2 ¼ 0:

Rearranging a bit, we get

x� xi þ
f ðxiÞ
f 0ðxiÞ

¼ � f 00ðxÞ
2f 0ðxiÞ

ðx� xiÞ2:

Note that if xi is our ith guess as to the zero, then xi � f ðxiÞ
f 0ðxiÞ is the improved value

xiþ1 that we would get from one more round of Newton–Raphson. Therefore, we

can make the following substitution:

x� xiþ1 ¼ �
f 00ðxÞ
2f 0ðxiÞ

ðx� xiÞ2:

Since we assumed that x is a zero of f , then ðx� xiÞ is the error in our approxima-

tion before applying Newton–Raphson, and ðx� xiþ1Þ is our error afterward. If we
can bound

f 00ðxÞ
2f 0ðxÞ

�
�
�

�
�
� by some constant C in the region between our initial guess and our

zero, then we can assert that

jx� xiþ1jaCjx� xij2:

If we let ei be the error at the ith iteration, then the preceding statement is equivalent

to saying

eiþ1 aCe2i :

In other words, each successive iteration of Newton–Raphson approximately squares

the error. Once the error gets close to zero, then, it will drop very rapidly.

Note, though, that we did make an important assumption above: the derivative is

not zero at our guess, xi. We can see from our example curve that the method would

fail if we picked the initial guess x ¼ 0, which is a zero of the derivative. If we happen

to pick a guess or land on one that has a derivative of zero, we can always perturb it

slightly to move away from zero. A more subtle problem is if the zero we are looking

for is also a zero of the derivative. In these cases, Newton–Raphson does generally

work, but more slowly than normal. In fact, the accuracy generally will improve by

about a constant multiple at each step (as with the bisection method) rather than by

5.3 Newton–Raphson 83

squaring the error. Newton–Raphson also may not work at all if we do not have a

good guess to start from.

Nonetheless, Newton–Raphson is often the best option for finding zeros, and

therefore maxima and minima, quickly. Given a reasonable guess, it is usually

much faster than the secant or bisection method and can get errors to within typical

machine precision in a few steps. In fact, a variant of Newton–Raphson is often used

in modern computer processors for doing division, square roots, and other opera-

tions because it is a fast and simple way of doing what would otherwise be costly

operations to perform in hardware.

5.4 Newton–Raphson with Black-Box Functions

I have suggested that Newton–Raphson is a very good choice for general optimiza-

tion problems, but one might wonder what to do if we do not have an expression for

the derivative of our function. For example, the function we are optimizing might

be the output of a complex simulation, and we do not have any way of analytically

determining the derivative of the function. In fact, we can still use Newton–Raphson

by using approximate derivatives. To see how this works, we can apply Taylor series

again to some arbitrary function f ðxÞ:

f ðxþ DxÞ ¼ f ðxÞ þ Dxf 0ðxÞ þ Dx2

2
f 00ðxÞ

f ðxþ DxÞ � f ðxÞ ¼ Dxf 0ðxÞ þ Dx2

2
f 00ðxÞ

f ðxþ DxÞ � f ðxÞ
Dx

¼ f 0ðxÞ þ Dx

2
f 00ðxÞ:

The final line shows us that the term on the left-hand side is an approximation to

f 0ðxÞ with error Dx
2 f 00ðxÞ. We can derive this approximation by knowing f ðxÞ and

f ðxþ DxÞ for some Dx. This is called a forward di¤erence approximation and is con-

sidered first-order-accurate because its error varies linearly with Dx. If we need f 0ðx0Þ
and cannot calculate it, we can get a good approximation by picking some small Dx

and using
f ðxþDxÞ� f ðxÞ

Dx
in place of f 0ðxÞ in our Newton–Raphson formula.

We can also consider other ways to approximate f 0ðxÞ. For example, suppose we

take the following two Taylor expansions,

f ðxþ DxÞ ¼ f ðxÞ þ Dxf 0ðxÞ þ Dx2

2
f 00ðxÞ þ Dx3

3
f 000ðxÞ

84 5 General Continuous Optimization

and

f ðx� DxÞ ¼ f ðxÞ � Dxf 0ðxÞ þ Dx2

2
f 00ðxÞ � Dx3

3
f 000ðxÞ;

and subtract the second from the first. We then get

f ðxþ DxÞ � f ðx� DxÞ ¼ 2Dxf 0ðxÞ þ 2
Dx3

3
f 000ðxÞ;

which we can rearrange to

f ðxþ DxÞ � f ðx� DxÞ
2Dx

¼ f 0ðxÞ þ Dx2

3
f 000ðxÞ:

The left-hand side of the equation is therefore also an approximation to f 0ðxÞ, in this

case a second-order-accurate approximation known as a centered di¤erence.

We can derive formulas for derivatives of arbitrarily high orders of accuracy by

combining many Taylor approximations—such as f ðxÞ, f ðxþ DxÞ, f ðx� DxÞ, and
f ðxþ 2DxÞ—and solving for the coe‰cients needed to cancel out as many low-order

error terms as possible. The actual calculation of the formulas for the di¤erent ap-

proximations is an example of a linear system problem, which we will read about in

chapter 21. For most applications of Newton–Raphson, we are unlikely to need bet-

ter than a second-order approximation, though. We will see later where higher-order

accuracy derivatives may be needed when doing numerical integration. It is also

worth noting that we need the assumption of bounded derivatives from earlier in

the chapter in order to establish the accuracy of these approximations. If any deriva-

tives of the function are unbounded on the region of interest to us, we may be unable

to generate high-order approximations to the first derivative.

5.5 Multivariate Functions

One other advantage of the Newton–Raphson method over the bisection and secant

methods is that it provides a much better way of dealing with systems of several vari-

ables. In a multidimensional space, it can be di‰cult to find the positive and negative

points we need in order to start searching for a zero. The Newton–Raphson method

still works when we have more than one variable, although it gets a bit more compli-

cated to apply. Suppose that instead of maximizing or minimizing a function F ðxÞ,
we want to maximize or minimize a multivariate function Fðx1; x2; . . . ; xnÞ. To un-

derstand how to use Newton–Raphson for this job, we need to consider how some

of our concepts from earlier in the chapter generalize to functions of more than one

variable.

5.5 Multivariate Functions 85

First, recall that we were using a theorem of calculus which states that maxima or

minima of a function occur at zeros of the function’s derivative. The multivariate

equivalent of this statement is that the maxima or minima occur at places where all

of the partial first derivatives are zero. That is,

qF

qx1
¼ 0

qF

qx2
¼ 0

..

.

qF

qxn
¼ 0:

An equivalent statement is that the vector of the first derivatives is the all-zero vec-

tor. That is:

qF

qx1

qF

qx2
� � � qF

qxn

� �

¼ ½0 0 � � � 0�:

This vector of derivatives is known as the gradient of F and is abbreviated ‘F .

For example, suppose we have the function F ðx; y; zÞ ¼ ðx2 þ 2yþ zÞ
sinðxÞ cosðyÞ.

‘F ¼
2x sinðxÞ cosðyÞ þ ðx2 þ 2yþ zÞ cosðxÞ cosðyÞ
2 sinðxÞ cosðyÞ � ðx2 þ 2yþ zÞ sinðxÞ sinðyÞ

sinðxÞ cosðyÞ;

2

6
4

3

7
5

which we can abbreviate

‘F ¼
f1ð~vvÞ
f2ð~vvÞ
f3ð~vvÞ

2

6
4

3

7
5¼ ~ff ð~vvÞ;

where fi is
qF
qxi

and~vv is the vector of all of our variables, ðx; y; zÞ.
Thus, instead of finding a point where our scalar function has derivative zero, we

want a point where our function has gradient equal to the all-zero vector. Now how

do we find that? The idea behind the scalar Newton–Raphson method was to find a

zero of f ðxÞ by locally linearizing about some guess, using the derivative of the de-

rivative ðF 00ðxÞ ¼ f 0ðxÞÞ at that point. The multidimensional equivalent of the deriv-

ative of the derivative is called the Jacobian of ‘f or the hessian of F . It is a matrix

containing all second derivatives of F :

86 5 General Continuous Optimization

Jð~vvÞ ¼

q2F
qx2

1

q2F
qx1qx2

� � � q2F
qx1qxn

q2F
qx2qx1

q2F
qx2

2

� � �

..

. . .
.

q2F
qxnqx1

� � � q2F
qx2

n

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

:

For example, for the function Fðx; yÞ ¼ ðx2yþ xy� y2 þ yÞ, the gradient would

be

‘Fðx; yÞ ¼ ½2xyþ y x2 þ x� 2yþ 1�;

and the hessian would be

Jðx; yÞ ¼ 2y 2xþ 1

2xþ 1 �2

� �

:

Now that we know the equivalent of a derivative and a second derivative in multi-

ple dimensions, we can figure out how to do a multidimensional Newton–Raphson

iteration. Instead of

xiþ1 xi �
f ðxiÞ
f 0ðxiÞ

;

we would use

~vviþ1 ~vvi � Jð~vviÞ�1‘F :

Although the formula includes a matrix inverse, it is almost never a good idea to

invert a matrix in practice. Almost anything one would want to compute with a ma-

trix inverse can be computed more quickly than the matrix inverse itself. This is no

exception. Instead of calculating Jð~vviÞ�1‘F , what we really want to do is define the

vector yi as follows:

yi ¼ Jð~vviÞ�1‘F ;

then rearrange to get the linear system

Jð~vviÞyi ¼ ‘F :

We can solve this linear system much faster in practice than we could invert J.

We will see methods for this problem in chapter 21. We can then plug yi into the

Newton–Raphson formula.

5.5 Multivariate Functions 87

To see an example of multivariate Newton–Raphson, we can use our function

F ðx; yÞ ¼ ðx2yþ xy� y2 þ yÞ from above. If we guess ð0; 0Þ as the maximum of

our function, then we will get the following:

‘Fð0; 0Þ ¼ ½0 1�

Jð0; 0Þ ¼ 0 1

1 �2

� �

:

Therefore, our Newton–Raphson iteration would be

x1

y1

� �

 0

0

� �

� 0 1

1 �2

� ��1 0

1

� �

:

We then solve

0 1

1 �2

� �
u1

u2

� �

¼ 0

1

� �

for u1 and u2. The linear system is solved by

u1

u2

� �

¼ 1

0

� �

:

Plugging that into the iteration formula, we get

x1

y1

� �

 0

0

� �

� 1

0

� �

¼ �1
0

� �

:

Thus we will use x ¼ �1, y ¼ 0 as the next guess for the extremum of our func-

tion. We still have the same problem as with the one-dimensional case: we need a

good initial guess. If we get a good start, though, then essentially all of the nice prop-

erties of Newton–Raphson work just as well in multiple dimensions.

The multidimensional Newton–Raphson method is often the best tool for solving

di‰cult continuous optimization problems, but it can be very tricky to use in prac-

tice. If our initial guess is not close enough to a solution, the method can end up

making the guess worse rather than better. Sometimes it will seem to do exactly the

opposite of what we would expect, moving farther and farther away from a seem-

ingly close solution. There is a huge body of literature on how to make Newton–

Raphson more robust, and one can take entire courses on that topic. We will not

cover these more advanced methods here, but those who plan to make a lot of use

of continuous optimization methods would do well to study more advanced course-

work on the topic. The References and Further Study section provides some starting

points for learning more.

88 5 General Continuous Optimization

5.6 Direct Methods for Optimization

Although we earlier saw that optimization is equivalent to zero-finding, it is some-

times useful to work directly on the optimization problem rather than through a

zero-finding method. In this section we will see a few other optimization approaches

that do not explicitly rely on attempts to find zeros of the gradient vector.

5.6.1 Steepest Descent

Though Newton–Raphson is fast but sometimes lacking in robustness, we can use

similar ideas to derive a method that tends to be slower but more robust. In using

Newton–Raphson to maximize or minimize a function F , we try to find zeros of the

gradient ‘F by finding the hessian of F at a point and projecting where the locally

linearized function will go to zero. We can similarly work directly with a locally lin-

ear model of F by finding F ’s gradient. ‘F points in the direction of most rapid

increase of F , and �‘F points in the direction of most rapid decrease. We may

therefore propose that we can make the best possible local progress in maximizing

or minimizing F by moving in the direction of the gradient (or its negative). Thus,

we can propose to get closer to our maximum or minimum by taking a small step

along the direction of the gradient. We can then find a new gradient at the updated

point, move in the direction of the new gradient, and so on until we get to our

extremum. Let us assume here that we are trying to minimize F , and thus moving

in the direction of �‘F . The method resulting from the description above is called

steepest descent or gradient descent.

To perform steepest descent, we first find the gradient of F at our initial starting

point~vv, ‘Fð~vvÞ ¼ qF
qv1
ð~vvÞ qF

qv2
ð~vvÞ � � � qF

qvn
ð~vvÞ

h i
. Once we have decided that we want

to move in the direction of �‘F to improve our guess, we need to decide how far to

move in that direction. We want to move along �‘F by an amount that minimizes F

as much as possible. That is, we ideally want to find the minimum of F along the line

passing through~vv, our current guess, with direction �‘Fð~vvÞ. We can formulate that

as an optimization problem in itself. We want to solve

min
r

F ð~vv� r‘Fð~vvÞÞ:

We have now transformed our multidimensional optimization problem into a prob-

lem of optimizing for a function of a single variable, r. We already know some fine

options for minimizing a function of one variable. Once we have r, we replace our

past guess~vv with~vv� r‘F ð~vvÞ. We can then keep repeating steepest descent steps until

we are satisfied with the quality of our solution.

Figure 5.5 shows pseudocode for the steepest descent method. As with our other

methods, we can decide to stop based on an estimate of the backward error (i.e.,

5.6 Direct Methods for Optimization 89

looking for when k~vviþ1 �~vvik becomes su‰ciently small) or the forward error (i.e., look-

ing for when jFð~vviþ1Þ � F ð~vviÞj becomes su‰ciently small).

Steepest descent tends to be slow in practice compared with Newton–Raphson,

but is simpler and often more robust. It is also possible to combine the two, for ex-

ample, by using steepest descent to get close to a local minimum, then switching to

Newton–Raphson to converge very rapidly to the minimum with high precision.

This heuristic can be formalized to give rise to the next method we will consider.

5.6.2 The Levenberg–Marquardt Method

We saw above two simple optimization methods, each of which has some very nice

properties. Newton–Raphson tends to have very rapid convergence close to zeros,

and is therefore an excellent choice if we start with a good initial guess. Steepest de-

scent is a slower but more robust method that can get us to a local minimum pretty

reliably but may take a long time to do it. One might reasonably ask if there is some

way to get the best of both worlds. It turns out that there very often is, through a

hybrid of Newton–Raphson and steepest descent called the Levenberg–Marquardt

method.

To understand how Levenberg–Marquardt works, it will be helpful to review the

update rules for Newton–Raphson and steepest descent. For Newton–Raphson, our

updates take the form

~vviþ1 ~vvi � Jð~vviÞ�1‘F :

For steepest descent, they take the form

~vviþ1 ~vivi � r‘F ð~viviÞ

for some scalar r. Levenberg proposed that we can do better by creating a hybrid al-

gorithm whose steps are a mixture of Newton–Raphson and steepest descent steps,

switching from primarily steepest descent far from zeros to primarily Newton–

Raphson close to zeros. We can do this by using the interpolation formula

~vviþ1 ~vvi � ðJð~vviÞ þ lIÞ�1‘F ;

Figure 5.5
Pseudocode for the steepest descent method, assuming an initial guess~vv0.

90 5 General Continuous Optimization

where I is the identity matrix and l is a parameter we will adjust based on estimates

of how close we are to a solution. Marquardt suggested a minor modification of this

formula that turns out to make a big di¤erence in practice:

~vviþ1 ~vvi � ðJð~vviÞ þ l DiagðJð~vviÞÞÞ�1‘F ;

where DiagðJð~vviÞÞ is the matrix containing the diagonal of the Jacobian and the

zeros in all o¤-diagonal entries. This change has the e¤ect of weighting the gradient

so as to take smaller steps in directions of high curvature of the function.

Figure 5.6 provides pseudocode for the full method. The method adjusts l by ei-

ther multiplying or dividing it by a small constant scaling factor S on each step. A

typical S might be between 2 and 10. When a step leads to a worse solution, then

we assume that l is too small and that we must increase it, shifting the method

more toward steepest descent and also reducing the step size. When a step leads to a

better solution, then we assume that l can be reduced, shifting the method more to-

ward Newton–Raphson. By the time it gets near a zero, it should convert to almost

pure Newton–Raphson and converge rapidly on the true zero.

The Levenberg–Marquardt method has become a de facto standard for generic

nonlinear optimization problems. It will often turn out to be our best option for

real-world problems.

5.6.3 Conjugate Gradient

There is another method worth mentioning here, although we will not cover the

theory behind it until chapter 21. This is a method called conjugate gradient. Conju-

gate gradient is actually a method for solving linear systems, the most famous of a

broadly useful class called Krylov subspace methods. By treating our function as

locally linear, though, we can transform conjugate gradient into a very e¤ective

method for general continuous optimization. Conjugate gradient is very similar to

Figure 5.6
Pseudocode for the Levenberg–Marquardt method, assuming an initial guess~vv0 and scaling factor S.

5.6 Direct Methods for Optimization 91

steepest descent, but uses a subtly di¤erent minimization criterion that has the e¤ect

of avoiding a lot of wasted work the steepest descent method performs.

Figure 5.7 presents pseudocode for the conjugate gradient algorithm. For the most

part, the method should remind us of steepest descent. The major di¤erence is that

we are moving in the direction of the vector ~ppi instead of the gradient in lines 8 and

9. ~ppi is essentially a ‘‘corrected’’ version of the gradient that we create by subtracting

o¤ components of the previous ~pp vector to prevent ~ppi from undoing work done with

~ppi�1. Lines B.i and B.ii identify a ~ppi orthogonal to the previous ones. If we were opti-

mizing in a linear system, this would have the e¤ect of choosing movement vectors

that are all at right angles to each other, guaranteeing that work that is done in one

step is not undone in subsequent steps. When we apply conjugate gradient to non-

linear systems, some of the theory of optimality breaks down, but in practice it is

likely to work extremely well if the system is generally well behaved. The method

also depends on the fact that the matrix is positive semidefinite, a concept we will

discuss in chapter 21, although it is needed only for e‰ciency, not for correctness.

There are related methods that work on general matrices, which we will also see in

that chapter.

References and Further Study

The Numerical Recipes series by Press et al. [82] is an excellent general reference to

commonly used numerical algorithms, and was perhaps the single most important

source for this text. It covers pretty much everything covered in this chapter, as well

as many other methods I have omitted. The series includes the basic Numerical Rec-

ipes, as well as Numerical Recipes in Java, Numerical Recipes in C, Numerical

Figure 5.7
Pseudocode for the conjugate gradient method, assuming an initial guess~vv0. For a linear system, n is the
dimension of the matrix. It can be replaced with an arbitrary maximum number of steps for nonlinear
system-solving.

92 5 General Continuous Optimization

Recipes in FORTRAN, and others that provide code samples in a given language

for the algorithms covered. The series is sometimes criticized for a ‘‘cookbook’’ ap-

proach to presenting algorithms without much regard to the theory behind them and

how one might need to adapt them in practice. In that regard, it is similar to this text,

and one would be well advised to look deeper into the theory than one will find here

or in Press et al. for any method one will be using extensively for particularly

demanding applications. Regardless of the merits of this criticism, though, a Numer-

ical Recipes book is a very handy reference for anyone planning to work in any kind

of scientific computing.

As with many topics we will cover, we have only scratched the surface of some of

the key classic methods for nonlinear optimization. The coverage here is likely to

serve one well with reasonably small, well-behaved systems, and at least get one

started on the harder problems. There is, however, an extensive body of theory and

practical tricks of the trade available for tackling the harder problems. Those inter-

ested specifically in a deeper coverage of optimization might look to Dennis and

Schnabel [83] or Ruszczyński [84] for more theoretical treatments, or Fletcher [85]

for a more practice-oriented treatment. The methods covered here are for the most

part quite old as computational methods go, and there are many other texts in which

one may look for deeper coverage. Trefethen and Bau [86] is often considered the

standard text for numerical linear algebra, and provides information on the conju-

gate gradient method. It is also useful for learning more about some of the linear

systems-solving issues we glossed over in this chapter and will return to in chapter

21. There is also a great deal of information available online on these methods, and

many others covered in this text. Those looking for detailed pseudocode, links to re-

lated methods, and descriptions of their history can refer, for example, to Wikipedia

[87] as a great starting point.

The methods covered in this chapter are for the most part quite old, and getting

copies of the primary sources will not be easy. Most are simply considered part of

the basic knowledge of the numerical methods field, and no source is generally

cited for their use. Nonetheless, I can provide some references here. The Newton–

Raphson method was first mentioned by Newton [88] as a means of deriving a poly-

nomial approximation to the root of a polynomial, and was first published by

Wallis [89] in that form. It was later formalized as a general iterative method by

Raphson [90]. The method underwent several refinements, though, and others can

lay claim to having developed what we today call the Newton–Raphson method.

The conjugate gradient method was first proposed by Hestenes and Stiefel [91]. The

Levenberg–Marquardt method derives from a paper by Levenberg [92], proposing

the original method, and one by Marquardt [93], proposing the modification of using

the hessian to improve the steepest descent component of the steps. I have never seen

a primary reference to the bisection or secant methods, but similar methods have

been known for thousands of years, and their true origin appears to have been lost.

References and Further Study 93

6 Constrained Optimization

In the last chapter, we examined some general methods for optimization. In this

chapter, we will look at a special kind of optimization problem called a constraint

satisfaction or constrained optimization problem. A constraint satisfaction problem

is an optimization problem in which we have some rules restricting the allowable so-

lutions and we want to find the optimal value of some objective function consistent

with the restrictions.

For example, suppose we have an organism that must produce several proteins—

which we can call protein 1, protein 2, and protein 3—for its growth. Its growth rate

is limited to the amount of protein 1 it can produce plus twice the amount of protein

2 plus three times the amount of protein 3. We then restrict the amount of an essen-

tial amino acid needed by all three proteins. Protein 1 requires two copies of the

missing amino acid per molecule, protein 2 requires three copies per molecule, and

protein 3 requires four copies per molecule. We then ask how quickly the organism

can grow, given these restrictions, if we provide it with the missing amino acid at

some fixed rate K . How would we formulate this problem?

We would first assign a variable to the rate of production of each protein, p1, p2,

and p3. Our optimization criterion can be expressed in terms of these three rates by

saying that we want to maximize f ðp1; p2; p3Þ ¼ p1 þ 2p2 þ 3p3, and that this will

provide the maximum growth rate possible for the organism. Our solution, however,

must satisfy our other constraints. First, since we cannot have a negative amount of

any protein, we have the following three constraints:

p1 b 0

p2 b 0

p3 b 0:

Second, our proteins cannot be produced at a rate that would consume more than K

units of amino acid. That gives us the constraint

2p1 þ 3p2 þ 4p3 aK :

The problem of maximizing f subject to the constraints on p1, p2, and p3 is an ex-

ample of a constraint satisfaction problem. In particular, it is something called a lin-

ear programming problem, an important special case of constraint satisfaction with

which we will begin.

6.1 Linear Programming

In the general case, a linear programming problem is defined by three features:

1. A set of variables, ~xx ¼ ½x1; x2; . . . ; xn�
2. A set of linear constraints,

Pn
i¼1 aijxj a bi (which can be abbreviated as A~xxa~bb)

3. A linear function to be optimized, also called an objective function, min (or max)
Pn

i¼1 cixi (which can be abbreviated min (or max)~ccT~xx).

For example, we can consider the following system:

maximize x1 þ x2 subject to

x1 b 0

x2 b 0

2x1 þ x2 a 6

�x1 þ 2x2 a 8:

One way to understand the problem is to plot the constraints graphically, as in fig-

ure 6.1. Each constraint forms a line in a 2-D plot, with solutions constrained to lie

Figure 6.1
Constraints for a sample linear programming problem.

96 6 Constrained Optimization

on one side of that line. If we are looking at a problem with more variables, then the

constraints will generally form hyperplanes (high-dimensional flat surfaces) with solu-

tions constrained to lie on one side of each hyperplane. The shape defined by the set

of constraints is called a polytope, and in the general case it can be a complicated

high-dimensional solid. Because our constraints are linear (depending only on first-

order terms in our variables), the faces of the polytope are flat. As we look for solu-

tions, we will consider points in the space of our variables. We require points lying

inside the polytope, which are known as feasible points. A point outside the poly-

tope, known as an infeasible point, will not be a valid solution because it will violate

at least one of our constraints. Our goal, then, is to find a feasible point maximizing

the value of our function.

6.1.1 The Simplex Method

There is a classic method for this problem, variations of which are still used today,

called the simplex method. The simplex method depends on a theorem stating that a

constraint satisfaction problem with linear constraints and a linear objective function

has its maximum and its minimum at vertices of the polytope. We cannot have an

extremum inside the polytope or in the middle of one of its faces, unless there hap-

pens to be an equally good solution at a vertex. We therefore only have to look at the

vertices to find an optimum.

Given this theorem, one might propose that we can solve this problem simply by

testing the value of the objective function at every vertex. While this will work even-

tually, it is not a practical solution because the number of vertices can be exponen-

tial in the size of the problem. The simplex method instead searches only a small

fraction of vertices by relying on local movements over the edges of the polytope.

For example, imagine that we are trying to maximize the function f ðx1; x2Þ ¼
x1 þ x2 on the polytope of figure 6.2. Using the simplex method, we may start at

Figure 6.2
A polytope in two variables. The vertices v1, v2, v3, v4, v5 mark a path we might follow to maximize
f ðx1; x2Þ ¼ x1 þ x2 by the simplex method.

6.1 Linear Programming 97

vertex v1 and then move through v2, v3, and so on, up to v5, increasing the value

of f at each step. When we get to v5 and realize that there is no move we can make

to increase the objective further, we know we are done and have reached the global

optimum.

In order to see how to choose these points, it will help to simplify our problem a

bit by converting it into something called standard form. A linear programming

problem in standard form is expressed as follows:

minimize c1x1 þ c2x2 þ � � � cnxn subject to

a11x1 þ a12x2 þ � � � þ a1nxn ¼ b1

a21x1 þ a22x2 þ � � � þ a2nxn ¼ b2

..

.

am1x1 þ am2x2 þ � � � þ amnxn ¼ bm

x1 b 0

x2 b 0

..

.

xn b 0:

This form can be abbreviated in matrix notation as

minimize~ccT~xx subject to A~xx ¼~bb; ~xxb~00;

where A~xx ¼~bb will typically be an underdetermined system of equations and will

therefore have an infinite number of possible solutions.

Given any linear programming problem, there are a few simple steps we can take

to put the problem in standard form:

1. Anywhere we have a constraint of the form~aaj~xxb bj other than xi b 0, convert it

to �~aaj~xxa bj .

2. Anywhere we have a constraint ~aajxa bj, add a new slack variable xj and replace

the constraint with the two constraints

~aaj~xxþ xj ¼ bj

xj b 0:

3. If we have a variable xi that may become negative, replace xi everywhere it occurs

with ðxiþ � xi�Þ, and add the constraints

98 6 Constrained Optimization

xiþb 0

xi�b 0:

4. If our problem is a maximization problem, max~ccT~xx, convert it to the minimiza-

tion problem min �~ccT~xx.

The first step turns any of our ‘‘greater than or equal to’’ constraints into ‘‘less

than or equal to’’ constraints. The second allows us to convert each ‘‘less than or

equal to’’ constraint into an ‘‘equality’’ constraint and a constraint forcing a single

variable to be positive. The third converts our problem to one in which all variables

are constrained to be positive. The fourth ensures that we have a minimization prob-

lem. Putting all of these together, we convert any possible linear program into a pro-

gram in standard form. We will go through an example of this procedure after we

have covered the main portion of the simplex algorithm.

Once our problem is in standard form, we are guaranteed to have at least one vari-

able for each linearly independent constraint. Suppose we have m constraints and

n variables. If m is exactly n, then there is only one solution to the Ax ¼ b portion

of our constraint set, so our problem reduces to linear system-solving. In general,

though, n > m, so we have an underdetermined Ax ¼ b and need to look among so-

lutions that satisfy it. In the simplex method, we will search these solutions by look-

ing specifically at points for which n�m of the variables are zero and the remaining

m are chosen to satisfy the constraints of Ax ¼ b. By fixing all but m of our con-

straints, we ensure that the remaining m now constitute a full-rank linear system

and thus are uniquely determined. Since n�m of the variables are forced to collide

with nonnegative constraints, we ensure that the full set of values will fall on a corner

of our polytope. The full simplex algorithm for a system in standard form is provided

in figure 6.3.

Figure 6.3
Pseudocode for the simplex method for a linear system in standard form.

6.1 Linear Programming 99

Simplex Example We can see how the simplex method works by looking at an

example:

maximize f ðx1; x2Þ ¼ x1 þ 3x2 subject to

�x1 þ x2 a 4

x1 þ x2 a 10

x1 b 0

x2 b 0:

The first thing we need to do is put the problem in standard form. This one is not

too far from standard form to begin with, so we do not have very much to do. We

need to introduce two slack variables, which we can call x3 and x4, and flip the max-

imization to a minimization. The result will be the following:

minimize gðx1; x2; x3; x4Þ ¼ �x1 � 3x2 subject to

�x1 þ x2 þ x3 ¼ 4

x1 þ x2 þ x4 ¼ 10

x1 b 0; x2 b 0; x3 b 0; x4 b 0:

Now we are ready to apply the simplex method.

First, we make an initial guess by forcing the nonslack variables to zero:

x1 ¼ x2 ¼ 0:

Next, we write the equations in terms of the zero variables, x1 and x2. Our minimi-

zation function is already expressed in terms of x1 and x2, so that is fine. We can re-

write our two other constraints as follows:

�x1 þ x2 þ x3 ¼ 4

+

x3 ¼ x1 � x2 þ 4

and

x1 þ x2 þ x4 ¼ 10

+

x4 ¼ �x1 � x2 þ 10:

100 6 Constrained Optimization

If we then solve for x3 and x4, we get

x3 ¼ 0� 0þ 4 ¼ 4

x4 ¼ �0� 0þ 10 ¼ 10:

We are therefore starting at the point ~xx ¼ ½ x1 x2 x3 x4 � ¼ ½ 0 0 4 10 �.
Third, we need to find a zero variable we can increase. We are minimizing the

function gðx1; x2; x3; x4Þ ¼ �x1 � 3x2. We can immediately see that increasing x1 or

x2 will decrease g, since both have negative coe‰cients in g. We can therefore use ei-

ther one. But let us try x2, since g decreases more quickly with x2 than with x1, as

x2’s coe‰cient has a larger absolute value than x1’s.

Fourth, we have to see how much we can increase x2 before some other variable

hits zero. Our first constraint is

x3 ¼ x1 � x2 þ 4;

and since x1 is currently 0, this is equivalent to

x3 ¼ �x2 þ 4:

Therefore, we can increase x2 up to 4 before it forces x3 to be 0. The second con-

straint is

x4 ¼ �x1 � x2 þ 10;

which is currently equivalent to

x4 ¼ �x2 þ 10:

We can therefore increase x2 up to 10 before x4 becomes 0. Taking the minimum of

these two limits on x2, we will decide to increase x2 to 4, forcing x3 to 0 and leaving

x4 positive.

We have now moved x3 into our set of zero variables and x2 out of it, so we need

to rewrite our objective and constraints in terms of x3 instead of x2. We can first do

the following rewrite to express x2 in terms of x3:

x3 ¼ x1 � x2 þ 4

+

x2 ¼ x1 � x3 þ 4:

We can then plug this new expression for x2 into the second constraint to get the

following:

6.1 Linear Programming 101

x4 ¼ �x1 � x2 þ 10

+

x4 ¼ �x1 � ðx1 � x3 þ 4Þ þ 10 ¼ �2x1 þ x3 þ 6:

We also need to rewrite our objective function:

min �x1 � 3x2

+

min �x1 � 3ðx1 � x3 þ 4Þ ¼ �4x1 þ 3x3 � 12:

If we now solve again for our nonzero variables, we get the following:

x2 ¼ x1 � x3 þ 4 ¼ 0� 0þ 4 ¼ 4

x4 ¼ �2x1 þ x3 þ 6 ¼ �2ð0Þ þ 0þ 6 ¼ 6:

Therefore, we are now at the point ½ 0 4 0 6 �, which corresponds to the point

ðx1; x2Þ ¼ ð0; 4Þ in our original problem.

Now we need to find another zero variable to increase. We have two zero vari-

ables, x1 and x3. Our objective function is now �4x1 þ 3x3 � 12, so increasing x1
will reduce the objective but increasing x3 will increase the objective. We therefore

must use x1 as our variable to increase.

Now we need to figure out how much we can increase x1. Our constraints are

x2 ¼ x1 � x3 þ 4

x4 ¼ �2x1 þ x3 þ 6:

Increasing x1 will only increase x2, so the first constraint does not place any limits on

how much we can increase x1. The second constraint limits x1 to 3 before x4 is forced

to 0. Therefore, we can increase x1 to 3 and convert x4 to 0 in the process.

Now we have removed x1 from our zero set and put x4 into it. We therefore need

to rewrite our objective and constraints again, to put them in terms of x4 instead of

x1. We first use the second constraint to get an expression for x1 in terms of x4:

x4 ¼ �2x1 þ x3 þ 6

+

x1 ¼
1

2
x3 �

1

2
x4 þ 3:

We then substitute this new expression for x1 into the other constraint:

102 6 Constrained Optimization

x2 ¼ x1 � x3 þ 4

+

x2 ¼
1

2
x3 �

1

2
x4 þ 3

� �

� x3 þ 4 ¼ � 1

2
x3 �

1

2
x4 þ 7:

We also substitute it into the objective function:

min �4x1 þ 3x3 � 12

+

min �4 1

2
x3 �

1

2
x4 þ 3

� �

þ 3x3 � 12 ¼ x3 þ 2x4 � 9:

We now look for another variable to increase. Our objective function now has

only positive coe‰cients, though, so we cannot increase any of our zero variables

without increasing the objective function. This tells us that we cannot improve our

solution, and have hit the global optimum. Our constraints tell us the values of our

nonslack variables:

x1 ¼
1

2
x3 �

1

2
x4 þ 3 ¼ 3

x2 ¼ �
1

2
x3 �

1

2
x4 þ 7 ¼ 7:

Therefore, we are at the point ½ 3 7 0 0 �, which corresponds to the point

ðx1; x2Þ ¼ ð3; 7Þ in our original problem. With our transformed objective function,

gðx1; x2; x3; x4Þ ¼ �x1 � 3x2, we therefore have an objective value of �24. If we flip

back to our original maximization objective, f ðx1; x2Þ ¼ x1 þ 3x2, we see that

f ð3; 7Þ ¼ 24. This, then, is the global optimum of our original problem.

There are a few details worth noting about the simplex method. Note that while

the simplex method is guaranteed to find the global optimum, there is no guarantee

it will not visit an exponentially large number of vertices before it does so. In prac-

tice, though, the method tends to work very well, typically requiring a number of

steps that is approximately linear in the number of constraints. It is also not always

trivial to find an initial vertex as a starting point, although that is often something we

can control through choice of model. Finally, there are other ways to do the compu-

tation of the model that some may find easier. For example, the step of rewriting the

equations in terms of the zero variables after each change of values is equivalent to

solving a full-rank linear system for the nonzero variables. We can automate this step

through the process of Gaussian elimination, which we will see in chapter 21.

6.1 Linear Programming 103

6.1.2 Interior Point Methods

Although the simplex method generally works well in practice, it can in the worst

case require exponential time. It was long an open question whether there was any

provably tractable method to solve linear programming problems. It was eventually

shown that linear programs can in fact be solved in polynomial time in input size

through a class of methods called interior point methods. As the name implies, inte-

rior point methods work by exploring the interior of the simplex, rather than just the

surface. Although the solution is guaranteed to lie on a vertex, it turns out that it can

nonetheless be useful to perform a search within the interior of the simplex.

Linear programming was first proved to be a tractable problem through an inte-

rior point method called the ellipsoid method. The ellipsoid method works by defining

an ellipsoid (a higher-dimension equivalent of an ellipse) that contains part of the

feasible region. It then checks if the center of the ellipsoid is feasible, and if it is, the

method can guarantee that the center contains an optimal solution to the problem. If

the center of the ellipsoid is not feasible, the method finds another, slightly smaller

ellipsoid that is guaranteed to overlap with the feasible region unless the feasible re-

gion is empty. This continues until either a solution is found or the ellipsoid becomes

so small that one can prove there is no solution. The method guarantees that the

ellipsoid shrinks by at least a constant factor at each step, which makes it possible

to put a polynomial bound on the runtime. Nonetheless, the method ultimately

proved impractical, and for purposes of solving real linear programming problems,

it is essentially of purely historical interest now. We therefore mention it only in

passing.

Interior point methods did ultimately prove practical for real-world linear pro-

gramming problems, though, starting with a di¤erent kind of method called Karmar-

kar’s method, which is an example of a broader class of interior point methods called

barrier methods. We will look at a simplified version of Karmarkar’s method called

an a‰ne method. Pseudocode for the basic a‰ne method for solving a system in stan-

dard format is presented in figure 6.4.

To see how this works in practice, we can examine some of the steps in isolation.

Assume we are solving min cTx subject to Ax ¼ b, xi b 0. Suppose we have a feasi-

ble initial guess ~xx0. For the moment, let us ignore step 2 and pretend that our initial

guess is far from the boundaries of the polytope. We can return to the issue of scaling

at the end. Our method, then, is the following:

Find the steepest descent direction. This is the vector �~cc. So if we are minimizing

�x1 � 3x2, the steepest descent direction will be the vector ½ 1 3 �.
Project into the null-space of A. Null-space is a concept one would ordinarily learn

about in a full linear algebra course, but it can be understood with a minimal under-

standing of linear algebra. Essentially, if we find any set of linearly independent vec-

104 6 Constrained Optimization

tors ~vv1;~vv2; . . . ;~vvk for which A~vvi ¼~00 for all i, then any linear combination of these

vectors, ~vv ¼ d1~vv1 þ d2~vv2 þ � � � þ dk~vvk, will also have the property that A~vv ¼~00. If we

imagine that our vectors~vv1; . . . ;~vvk are the axes of a coordinate system, then the space

they define will consist entirely of points having the property A~vv ¼~00. The space of all

possible vectors of this form is called the null-space of A because A transforms any

vector in the space into the zero vector. We can find the component of �‘g lying in

the null-space of A by the following formula:

~hh ¼ ðI � AT ðAATÞ�1AÞð�‘gÞ:

Now we need to move along ~hh so as to almost hit a boundary of the polytope. In

other words, we need to find a scalar a for which~xxiþ1 ¼~xxi þ a~hh is nearly at a bound-

ary. So how do we find a good a? First, we can figure out the value amin for which we

first hit a boundary. To do so, we separately examine each constraint and determine

how large a can be before that constraint is violated. The smallest of all of those is

amin. We can then simply pick something slightly smaller than amin, say 0:99amin, and

that gives us our answer.

Next, we can reconsider the issue we neglected above about transforming our co-

ordinate system to move the point far from any boundaries of the polytope. Because

we assume our system is in standard format, our boundaries occur where variables

go to zero. A good way to ensure we are not near a boundary is to scale all vari-

ables so none of them are close to zero. We can accomplish this by dividing each

variable xi by its current value, thus transforming every xi into a new variable xi,

which has a value of 1. We also have to transform the rest of the problem, though,

into an equivalent problem with these new scaled variables. To understand how to

do that, we can express what we are doing as matrix operations.

Figure 6.4
Pseudocode for an a‰ne method for linear programming.

6.1 Linear Programming 105

Suppose we create a diagonal matrix X for which entry ði; iÞ is xi. That is,

X ¼

x1 0 � � � 0

0 x2
..
.

..

. . .
. ..

.

0 � � � � � � xn

2

66
6
6
6
4

3

77
7
7
7
5
:

Transforming each xi to xi is equivalent to multiplying ~xx by X�1. That is,

x ¼ X�1~xx:

If we want to create an equivalent problem using x instead of ~xx as our set of vari-

ables, then we need to transform our constraints and objective function as follows:

min~ccT~xx

+

minðX~ccÞTxð¼ ðX~ccÞTX�1~xx ¼~ccTXX�1~xx ¼~ccT~xxÞ

and

A~xx ¼~bb

+

AXx ¼~bbð¼ AXX�1~xx ¼ A~xxÞ:

Note that

~xxb~00

+

xb~00;

which is essentially unchanged since we have simply scaled the xis by positive

constants.

Now that we are through specifying the method, it is helpful to consider intuitively

what it is doing at each step, and why. We begin by finding the gradient of the objec-

tive. This is the direction of greatest increase of the objective, so moving approxi-

mately in the opposite direction will reduce the value of the objective, improving the

solution quality. We cannot just move in the direction of the gradient, though, be-

cause that may cause us to violate our constraints. By moving only along the compo-

nent of �‘g that lies in the null-space of A, we guarantee that we are not changing

106 6 Constrained Optimization

the value of A~xx, and therefore that we still satisfy all of our equality constraints,

A~xx ¼~bb. We also need to make sure we do not violate our inequality constraints,

~xxb 0. Since our variables go to zero exactly at boundaries of the polytope, we guar-

antee we are not violating our inequality constraints by stopping just short of the

boundary. Putting all of this together, we get a new solution vector that has

improved cost and still satisfies all of the constraints. This a‰ne method will give a

provably polynomial time solution to the linear programming problem, although in

practice it might be slower or faster than the simplex method on any given problem.

6.2 Primals and Duals

There are some important variants on the methods we have seen so far, called

primal-dual methods, that we will mention briefly. For every linear programming

problem for which we are seeking to minimize ~ccT~xx there is a related problem for

which we maximize a function ~bbT~yy. The original problem is called the primal, and

the paired problem is the dual. Suppose we are solving the primal problem

min z ¼~ccT~xx subject to A~xxb~bb; ~xxb~00:

Then the dual problem has the form

max w ¼~bbT~yy subject to AT~yya~cc; ~yyb~00.

Note that A, ~bb, and~cc are the same for the primal and the dual. The primal and the

dual are related by two important properties:

� For all feasible ~xx and ~yy,~ccT~xxb~bbT~yy
� For optimal ~xx and ~yy,~ccT~xx ¼~bbT~yy.

In other words, solutions to the two problems approach the same optimum from

opposite directions. There are variants of both the simplex and the interior point

methods that exploit these properties to try to solve linear programs more e‰ciently

by switching back and forth between the primal and dual variants of the problems,

trying to close in on a solution from both above and below. We will not look into

these methods any further, but it is useful to be familiar with the terminology of pri-

mals and duals because they are terms one will often hear when looking further into

the topic of linear programming.

6.3 Solving Linear Programs in Practice

For practical linear programming problems, there is no clear best method. The sim-

plex method was long the standard, and the ellipsoid method, although theoretically

6.3 Solving Linear Programs in Practice 107

superior, proved inferior in practice. Karmarkar’s method and its derivatives quickly

proved competitive with, and even superior to, the simplex method, and for a time

were the preferred way of solving hard linear systems. Both simplex and interior

point methods have continued to advance, though, and one can make a case for ei-

ther being the best approach for hard linear programming problems.

Although it is not too di‰cult to write correct linear programming solvers, there is

a huge bag of tricks known to experts in the field that leads to much better perfor-

mance than we are likely to get by coding the methods as we have seen them here.

If we need to solve a reasonably hard linear programming problem in the real world,

we are much better o¤ using code written by people who know the field well. We can

find code for the methods discussed above on the Internet. Unfortunately for scien-

tists, though, linear programming has many important applications in the business

world, and the best codes for it are therefore prohibitively expensive. Nonetheless,

good codes are freely available for scientific work.

6.4 Nonlinear Programming

So far, we have only been talking about linear programming problems, those for

which our constraints and objective are linear functions of our variables. Linear

functions are important, but they are also a fairly restrictive class. It turns out,

though, that the interior point methods will work for a somewhat broader class of

problems. Specifically, we can solve e‰ciently for any such constraint satisfaction

problem, provided our constraints and objective function are convex.

A set S is formally defined as convex if for any two points x and y in S

and any a A ½0; 1�, axþ ð1� aÞy is in S. A function f on R is defined to be con-

vex if

f ðaxþ ð1� aÞyÞa f ðxÞ þ ð1� aÞ f ðyÞ Ex A R; y A R; a A ½0; 1�:

Informally, what the first definition means is that a set is convex if when we pick any

two points in the set, the entire line between them is contained in the set. The second

definition informally means that if we pick two points on a convex curve, the line be-

tween them is entirely above the curve. Figure 6.5 illustrates the concepts of convex

and nonconvex sets of functions. Linear objectives are always convex functions and

linear constraints always define convex sets. The opposite of a convex function is a

concave function, defined by

f ðaxþ ð1� aÞyÞb f ðxÞ þ ð1� aÞ f ðyÞ Ex A R; y A R; a A ½0; 1�:

Note that a function is not necessarily convex or concave. Figure 6.5(b) shows a

function that does not satisfy either condition. The problem of minimizing a convex

108 6 Constrained Optimization

function over a convex set is solvable by the interior point methods we have dis-

cussed. Likewise, maximizing a concave function over a convex set is solvable. This

fact follows from a property of such problems that any local optimum is also a

global optimum.

How can we tell if a function is convex? The exact condition that tells us whether a

function is convex over a space is if its hessian is positive semidefinite over that space.

Positive semidefinite and positive definite matrices come up in many contexts in nu-

merical methods for linear algebra and have several equivalent definitions. Two par-

ticularly useful definitions of positive definite are

� For all x, xTAx > 0 (or xTAxb 0 for a positive semidefinite matrix).
� All eigenvalues of A are real.

Intuitively, what these definitions mean is that the function has positive curvature at

every point, similar to the usual English meaning of the term ‘‘convex.’’ The formal

definitions can be di‰cult to work with in the general case, though, without a lot

more linear algebra than we can cover here. In particular, it can be di‰cult to show

that a hessian whose entries are functions of several variables is in fact positive defi-

nite across some space. We can show it in some special cases, though.

One special case worth considering is quadratic programming. In quadratic pro-

gramming, we have a linear constraint set, just as in a linear program, but an objec-

tive of the form

xTBxþ cTx;

where B is a constant matrix and c is a constant vector. The hessian for this objective

is Bþ BT , which is positive definite exactly when B is. Thus, quadratic programming

can be solved optimally when the constraint matrix B is positive definite. One place

Figure 6.5
Illustration of the concept of convexity. (a) A convex function, which we can observe because, for each
pair of points it bounds, all points on the line between the points are in the set. The space above the func-
tion is thus a convex set. (b) A function that is neither convex nor concave.

6.4 Nonlinear Programming 109

where such matrices sometimes show up is in objectives of the form ðAxÞTðAxÞ ¼
xTðATAÞx. Any matrix that can be expressed in the the form ATA where A has all

real entries will be positive semidefinite. We can see this because xTATAx is the dot

product of Ax with itself and thus must be nonnegative.

It is worth noting that semidefinite programming has recently been appearing quite

a bit for optimization problems in biology. Science has its fads in which a technique

becomes popular and suddenly gets a lot of exposure, and this may be an example.

But semidefinite programming is a very broadly useful tool, and it may also be that

as more in the community have become aware of what it can do, it has taken on a

role appropriate to its potential. In any event, it is a useful method of which to be

aware, and it is a valuable skill to be able to recognize when the mathematical pro-

gramming problems we encounter are solvable. If we are solving for a nonconvex

function or constraint set, then we generally will not be able to find a global opti-

mum. It is likely that our interior point methods or the general continuous methods

we saw in the last chapter will be able to find local optima, though.

References and Further Study

We have only scratched the surface of the field of constraint satisfaction and exam-

ined a couple of very basic tools for the problem. This elementary coverage will

hopefully serve the reader well in recognizing constraint optimization problems, for-

mulating them in practice, and understanding the basic principles behind their solu-

tion. For our purposes as modelers, there is usually little practical value in knowing

more about how to solve linear programs, for the simple reason that it would almost

never be a good idea to write one’s own linear or nonlinear program solver. There is,

however, a vast literature on methods for solving these problems to which one can

refer for more depth. This chapter was prepared using a text by Nash and Sofer

[94], and relied heavily on their presentations of the simplex and a‰ne methods.

That text provides an excellent introduction to these topics as well as much greater

depth than we can cover in this one chapter. As with many of our other topics, Wiki-

pedia [87] has become an excellent resource for the background, history, and meth-

ods of constrained optimization.

The simplex method was developed by George Dantzig in 1947 and first described

in a book chapter from 1951 [95]. The ellipsoid method, and thus the first proof that

linear programming was e‰ciently solvable, was developed by Khachiyan [96], based

on an earlier method for convex optimization of Nemirovskii and Iudin [97]. Kar-

markar’s method [98] was the first that was e‰cient in both theory and practice. It

formed the basis for the somewhat simpler a‰ne method covered here, which comes

from Nash and Sofer [94].

110 6 Constrained Optimization

Those needing to solve linear programs in practice can choose from many avail-

able packages. The COIN-OR [99] linear program solver, the lpsolve [100] library,

and the Gnu Linear Programming Kit (GLPK) [101] are all fine alternatives for

free, open-source solution of linear programs. Many others are available commer-

cially, in some cases free or at a reduced rate for students, academics, or other

researchers. This is far from an exhaustive list, and a Web search may turn up better

options for some situations.

References and Further Study 111

II SIMULATION AND SAMPLING

7 Sampling from Probability Distributions

At the most basic level, most of what we are doing in simulation is sampling from

probability distributions. That is, we can treat a simulation as set of coupled random

variables (the final outputs of the simulation), and then we wish to pick one possible

set of outcomes according to the joint distribution of all of the variables. For exam-

ple, we will see in chapter 12 how we can simulate molecular evolution in a popula-

tion, generating a set of k individuals, each with its individual DNA sequence. We

may treat each base in each sequence as a random variable, with all of the variables

related to each other through some complicated joint distribution. We may not be

able to explicitly determine the joint distribution function, but we can create a model

that implies the desired distribution and then run simulations to sample from the

implied distribution.

In some cases, though, we will be interested in sampling from some simpler distri-

butions we can explicitly express and analyze. These may be self-contained problems

in themselves, such as determining the probability of success of an experiment, or

they may be tiny modules of more complicated simulations. In either case, it is help-

ful to know when and how we can easily choose a random variable according to

some arbitrary distribution. We will start out by considering continuous distributions

and then see, toward the end, what to do about discrete distributions.

7.1 Uniform Random Variables

For now, we will assume we have a way to generate random numbers from a uni-

form discrete distribution. That is, if we have k elements, we can pick one of the k

with equal probability. In practice, pretty much any programming language will

have some routine for choosing approximately uniformly among a large set of inte-

gers (e.g., rand() and random() in C and Cþþ). Computers are not actually capa-

ble of generating random numbers, so they instead use pseudorandom numbers that

are generated by a deterministic procedure but ‘‘look’’ random. If we know how the

generator works, we can generally devise tests that will show the pseudorandom

numbers to be nonrandom, and in some applications this nonrandomness can create

problems for scientific computing. Most built-in random number generators belong

to a class called linear congruential generators whose numbers fail some tests of ran-

domness when treated as points in high-dimensional spaces. For serious applications

of random numbers, it is useful to understand how these methods work and how one

can test whether a number is su‰ciently good for a given application. In the interests

of space, we will not cover random number generation and tests of randomness here.

Pointers to information on those topics will be provided under References and Fur-

ther Study.

Given the ability to generate uniform discrete numbers over a large set, we can

generate almost any kind of random number we want. We can sample uniformly

from any small discrete set almost perfectly by taking the original variable modulo

the number of elements. So, for example,

x=random()%k

in C or Cþþ would set x to be a random number chosen almost perfectly uniformly

from the integers 0; 1; . . . ; k � 1, provided k is much smaller than the range of num-

bers produced by random().

We can also use the capability of generating random integers uniformly from a

large discrete space to generate approximately uniform continuous random variables.

We can accomplish this by dividing the discrete random variable by the size of the

set. Thus, if we can sample uniformly from the integers 0; 1; 2; . . . ;m� 1, then divid-

ing by m will give us approximately a U ½0; 1� random variable (i.e., a uniform ran-

dom variable on the interval ½0; 1�). We can convert this U ½0; 1� variable into a

U ½a; b� random variable by the transformation

U ½a; b� ¼ aþ ðb� aÞU ½0; 1�:

The precision of the real-valued variable will be b�a
m

.

Since we can assume that we can generate uniform random numbers, our main

concern now will be how we translate this capability of generating uniform random

numbers into a capability of generating other distributions. We will see that we can

accurately sample from pretty much any distribution so long as we can calculate its

density function. We will accomplish this through two basic methods: the transfor-

mation method and the rejection method.

7.2 The Transformation Method

Suppose we know how to sample from some continuous density function f ðxÞ and
we want to sample from some other continuous density function gðyÞ. There is a

116 7 Sampling from Probability Distributions

basic theorem called the fundamental transformation law of probabilities that provides

a solution in many cases. The law states that if we sample a random variable from

some density f ðxÞ, then apply a function yðxÞ to x, the density gðyÞ of y will be re-

lated to that of x by the following rule:

gðyÞ ¼ f ðxÞ dx
dy

�
�
�
�

�
�
�
�:

We can show why this is so by using a proof from the Numerical Recipes series

[82]. Suppose x ¼ U ½0; 1�. Then

f ðxÞ dx ¼ dx 0 < x < 1

0 otherwise

�

:

We can therefore derive a method to convert x into some y obeying some desired

density gðyÞ as follows:

dx

dy
¼ gðyÞ

x ¼
ð y

�y
gðuÞ du ¼ GðyÞ

) y ¼ G�1ðxÞ:

That is, we find the distribution GðyÞ by integrating the density gðyÞ, invert the dis-

tribution to get G�1, and apply this inverse distribution to x to get y distributed

according to gðyÞ. This is called the transformation method. Figure 7.1(a) provides

pseudocode for the transformation method.

Figure 7.1
The transformation method for sampling from an arbitray density gðyÞ, using a U ½0; 1� uniform random
number generator. (a) Pseudocode for the transformation method. (b) Graphical interpretation of the
method. We invert GðyÞ, which normally maps from the real numbers to ½0; 1�, by picking a number uni-
formly on ½0; 1� on the vertical axis and mapping it into R on the horizontal axis through GðyÞ.

7.2 The Transformation Method 117

The transformation method has a simple graphical interpretation, illustrated in

figure 7.1(b). The probability of picking y in some range ½y0; y1� from density gðyÞ
is Gðy1Þ � Gðy0Þ. Therefore, the probability of landing within any range on the

vertical axis is proportional to the amount of space on the horizontal axis covered

by the corresponding region of the curve. We can use this intuition to sample

from the desired density gðyÞ by choosing a point uniformly between 0 and 1 on the

vertical axis, and using the distribution GðyÞ to map that point to its correspond-

ing value on the horizontal axis. This point on the horizontal axis will then be dis-

tributed according to GðyÞ. That is exactly what we are doing above in the

transformation method: we sample a U ½0; 1� variable representing a value on the ver-

tical axis, then see what value it corresponds to on the horizontal axis mapped

through GðyÞ.
We are assuming we know gðyÞ, but how do we then get GðyÞ and G�1ðxÞ? Some-

times it is easy: we integrate analytically to get GðyÞ and invert analytically to get

G�1ðxÞ. Other times, we can integrate analytically but may not know how to invert

G. In those cases, we still can numerically invert, that is, find y ¼ G�1ðxÞ by finding a

zero of hðyÞ ¼ GðyÞ � x. In other cases, we will not be able to integrate analytically.

We can still generally solve those problems by integrating numerically, a topic we

will cover in chapter 14.

Example Sampling from an exponential distribution. Suppose we want to sample an

exponential random variable with parameter l. Exponential random variables have

the following density function:

gðyÞ ¼ 0 y < 0

le�ly yb 0

�

:

To sample from gðyÞ, we first need to find its distribution GðyÞ:

GðyÞ ¼
ð y

�y
gðuÞ du ¼

ð y

0

gðuÞ du ¼ �e�lujy0 ¼ 1� e�ly:

We then need to invert GðyÞ:

x ¼ 1� e�ly

e�ly ¼ 1� x

�ly ¼ lnj1� xj:

y ¼ � 1

l
lnj1� xj:

118 7 Sampling from Probability Distributions

Thus, if x ¼ U ½0; 1�, then � 1
l
lnj1� xj is exponential with parameter l. Note that we

can actually simplify a little in this case, since x ¼ U ½0; 1� implies that j1� xj is also
U ½0; 1�. We can thus use y ¼ � 1

l
ln x. Also, note that if we do this on a computer,

there is a small possibility that x will be exactly zero. This will produce an underflow

when we try to take a logarithm of zero, so we should check for that possibility be-

fore taking the logarithm.

7.2.1 Transformation Method for Joint Distributions

It is also possible to use the transformation method on joint distributions, sampling

from one distribution using random variables sampled from another. The method is

similar in theory, although much harder to use in practice. If we want to transform

joint density function f ðx1; . . . ; xkÞ into some desired gðy1; . . . ; ykÞ, then we use a

modified version of the fundamental transformation law of probabilities:

gðy1; . . . ; ykÞ ¼ f ðx1; . . . ; xkÞ

qx1
qy1

� � � qx1
qyn

..

. . .
. ..

.

qxk
qy1

� � � qxk
qyk

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

;

where jAj refers to the determinant of matrix A.

So if we have a way of sampling variables x1; . . . ; xk according to joint density

f ðx1; . . . ; xkÞ, then we can sample y1; . . . ; yk from joint density gðy1; . . . ; ykÞ. In par-

ticular, if we assume that each xi is an independent U ½0; 1� variable, then we can

sample for the yis if we can find a set of functions

y1ðx1; . . . ; xkÞ

y2ðx1; . . . ; xkÞ
..
.

y2ðx1; . . . ; xkÞ

such that we can invert these functions to get

x1ðy1; . . . ; ykÞ

x2ðy1; . . . ; ykÞ
..
.

x2ðy1; . . . ; ykÞ:

7.2 The Transformation Method 119

We can then verify that

qx1
qy1

� � � qx1
qyn

..

. . .
. ..

.

qxk
qy1

� � � qxk
qyk

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

¼ gðy1; . . . ; ykÞ:

Unfortunately, this knowledge is not very helpful in figuring out what the transfor-

mation functions y1ðx1; . . . ; xkÞ; . . . ; ykðx1; . . . ; xkÞ should be. If we have a reason-

able guess for what might work, though, it does give us a way to prove whether it

will or will not work.

The transformation method for joint distributions does have one important practi-

cal application, though, in that it gives us a way to sample from normal distributions.

The normal distribution is at first glance hard to use for the transformation method

because we cannot analytically integrate the density, gðyÞ ¼ 1ffiffiffiffi
2p
p e�y

2=2. There is, how-

ever, a set of transformations that lets us generate two independent Nð0; 1Þ normals

simultaneously by the transformation method. This technique for sampling normal

variables is called the Box–Müller method.

In performing Box–Müller, we seek to sample two variables according to the joint

distribution

gðy1; y2Þ ¼
1
ffiffiffiffiffiffi
2p
p e�y

2
1
=2 1

ffiffiffiffiffiffi
2p
p e�y

2
2
=2:

We can separate this function into a product of two functions gðy1; y2Þ ¼
g1ðy1Þg2ðy2Þ that each refer to only one variable. As a result, y1 and y2 are indepen-

dent. Furthermore, they have the densities

g1ðy1Þ ¼
1
ffiffiffiffiffiffi
2p
p e�y

2
1
=2; g2ðy2Þ ¼

1
ffiffiffiffiffiffi
2p
p e�y

2
2
=2;

so they are both Nð0; 1Þ normals. I will assert that we can take two U ½0; 1� indepen-
dent uniform variables x1 and x2 and determine y1 and y2 from them as follows:

y1ðx1; x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln x1

p
cosð2px2Þ

y2ðx1; x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln x1

p
sinð2px2Þ:

As noted above, the theory we have seen is not particularly helpful in figuring out

what these formulas should be. I do not know how Box and Müller came up with

them, and cannot recommend any general technique for coming up with a similar

120 7 Sampling from Probability Distributions

method for other distributions. Nonetheless, the transformation method does let us

verify that the formulas are correct, as follows:

y21 þ y22 ¼ �2 ln x1ðcos2ð2px2Þ þ sin2ð2px2ÞÞ ¼ �2 ln x1) x1 ¼ e�ðy
2
1
þy2

2
Þ=2

y2

y1
¼ tanð2px2Þ) x2 ¼

1

2p
arctan

y2

y1
:

Therefore

qx1
qy1

qx1
qy2

qx2
qy1

qx2
qy2

�
�
�
�
�
�

�
�
�
�
�
�
¼
�2y1e�ðy

2
1
þy2

2
Þ=2 �2y1e�ðy

2
1
þy2

2
Þ=2

� y2

y2
1

1
2p

y2
1

y2
1
þy2

2

1
y1

1
2p

y2
1

y2
1
þy2

2

��
�
�
�
�
�

��
�
�
�
�
�

¼ � 1

2p
e�ðy

2
1
þy2

2
Þ=2 1þ y22

y21

" #
y21

y21 þ y22

" #

¼ � 1

2p
e�ðy

2
1
þy2

2
Þ=2

¼ 1
ffiffiffiffiffiffi
2p
p e�y

2
1
=2 1

ffiffiffiffiffiffi
2p
p e�y

2
2
=2:

7.3 The Rejection Method

The rejection method is an alternative to the transformation method that we can use

to generate random variables from a distribution f ðxÞ. In order to perform the rejec-

tion method, we need to find a function gðxÞ that strictly upper bounds f ðxÞ. That is:

gðxÞb f ðxÞ Ex:

Furthermore, we require that we can figure out the area under gðxÞ, A ¼
Ðy
�y gðuÞ du.

Note that gðxÞ is not a probability density because its integral from �y to y is not

1, but 1
A
gðxÞ is a probability density. The rejection method works by sampling points

uniformly under gðxÞ, using the fact that 1
A
gðxÞ is a probability density, and then

throwing away those points that are not also under f ðxÞ. The method is described

by the pseudocode of figure 7.2(a) and is is depicted graphically in figure 7.2(b).

Of course, this assumes that we know how to sample from 1
A
gðxÞ. But we get to

pick gðxÞ, so that is not too restrictive. We can pick any gðxÞ that upper bounds

f ðxÞ and that has a finite integral we can calculate and invert; then we can use the

transformation method to sample from gðxÞ. The more tightly gðxÞ bounds f ðxÞ,
the more e‰cient the method will be. The ratio of the area under the curves is the

average number of points under gðxÞ we will need to generate before we succeed in

picking a point under both curves.

7.3 The Rejection Method 121

Example We can use the rejection method to find another way to sample from nor-

mal distributions. Suppose we want to sample from

f ðxÞ ¼ 1
ffiffiffiffiffiffi
2p
p e�x

2=2;

that is, from an Nð0; 1Þ normal. First, we can note that the Nð0; 1Þ normal is sym-

metric about x ¼ 0, so we can sample from positive values of x and then pick a single

random bit to decide whether to use þx or �x. So we really just need a function that

bounds f ðxÞ for positive x.
We will use a function of the form

gðxÞ ¼ Ce�x=2

on the logic that this will decay more slowly than e�x
2=2, and therefore is guaranteed

to bound the normal density for su‰ciently large C. So how do we pick C? We re-

quire a C satisfying

Ce�x=2 b
1
ffiffiffiffiffiffi
2p
p e�x

2=2

Cb
1
ffiffiffiffiffiffi
2p
p eðx�x

2Þ=2:

The right-hand side is maximized where x� x2 is maximized, which is where

d

dx
ðx� x2Þ ¼ 1� 2x ¼ 0) x ¼ 1

2
:

Figure 7.2
The rejection method for sampling from a distribution f ðxÞ using an upper-bounding function gðxÞ. (a)
Pseudocode for the rejection method. (b) Graphical interpretation of the rejection method. We want to
pick points uniformly from the space under f ðxÞ, so we instead pick them uniformly under gðxÞ and reject
any choice that is not also under f ðxÞ.

122 7 Sampling from Probability Distributions

So we require

Cb
1
ffiffiffiffiffiffi
2p
p eð1=2�1=4Þ=2 ¼ e1=8

ffiffiffiffiffiffi
2p
p :

Thus we will choose

gðxÞ ¼ e1=8
ffiffiffiffiffiffi
2p
p e�x=2:

Figure 7.3 plots these choices of f ðxÞ and gðxÞ.
Now must figure out how to sample under gðxÞ. We first need to know the area

under gðxÞ:

A ¼
ðy

0

e1=8
ffiffiffiffiffiffi
2p
p e�u=2 du ¼ 2e1=8

ffiffiffiffiffiffi
2p
p :

If we scale gðxÞ by 1
A
, we will get a probability distribution:

1

A
gðxÞ ¼

ffiffiffiffiffiffi
2p
p

2e1=8
e1=8
ffiffiffiffiffiffi
2p
p e�x=2 ¼ 1

2
e�x=2:

Thus the scaled version of gðxÞ is in fact an exponential with parameter 1
2 . We al-

ready know how to sample from an exponential by the transformation method, so

to sample from the unit normal distribution, we have to do the following:

Figure 7.3
Plot of f ðxÞ ¼ 1ffiffiffiffi

2p
p e�x

2=2 for the unit normal and bounding function gðxÞ ¼ e1=8ffiffiffiffi
2p
p e�x=2 for use with the rejec-

tion method.

7.3 The Rejection Method 123

1. Sample x ¼ Exp 1
2

� �
.

2. Sample y ¼ U 0; e
1=8ffiffiffiffi
2p
p e�x=2

h i
.

3. If yb 1ffiffiffiffi
2p
p e�x

2=2, return to step 1.

4. If I 1
2

� �
¼ 1, return x, else return �x.

The probability of accepting any point will be the ratio of the areas under the two

curves. We know the area under f ðxÞ is 1
2 since it covers the right half of the normal

distribution function. The area under gðxÞ is 2e1=8ffiffiffiffi
2p
p . Thus the probability of accepting a

point should be
ffiffiffiffi
2p
p

4e1=8
A :553. We therefore need to try about two points each time we

want to sample from the normal distribution.

7.4 Sampling from Discrete Distributions

Sampling from discrete distributions is generally much easier than sampling from

continuous distributions. If we have a small finite set of outcomes 1; . . . ; k with prob-

abilities p1; . . . ; pk, then we can sample from the distribution implied by those prob-

abilities, using the pseudocode of figure 7.4(a). We first sample a uniform random

number and then move through the possible outcomes, accumulating probabilities

until they exceed our uniform random number. The outcome on which we first ex-

ceed the uniform number is then selected. This method is basically a discrete version

of the transformation method, as illustrated by figure 7.4(b). We sample a point uni-

formly along the vertical axis, then see to which element on the horizontal axis it cor-

responds. This discrete transformation method may be feasible even if we have an

infinite sample space, so long as the probabilities fall o¤ relatively quickly. The num-

ber of iterations it takes on average will be the mean of the distribution, so it can be

slow if we are using a distribution with a large expectation.

In those cases where the discrete transformation method is not practical, we can

create a discrete version of the rejection method. We can do this by creating a con-

Figure 7.4
Discrete transformation method for sampling from a distribution p1; . . . ; pk . (a) Pseudocode for the dis-
crete transformation method. (b) Graphical interpretation of the discrete transformation method.

124 7 Sampling from Probability Distributions

tinuous analog of the discrete density by turning it into a step function, as illustrated

in figure 7.5. Prfx ¼ kg in the discrete density is transformed into Prfka x < k þ 1g
in the continuous density. We can then use the rejection method by bounding our

step function above with a continuous curve gðxÞ.

Example Suppose we want to sample from a Geom 1
2

� �
geometric variable. This ran-

dom variable has the density function

PrfX ¼ kg ¼ 1

2

� �k�1 1

2

� �

¼ 1

2

� �k
:

To use the discrete rejection method, we first convert this discrete probability func-

tion into a continuous step function density f ðxÞ:

f ðxÞ ¼

0 xa 0

1=2 0 < xa 1

1=4 1 < xa 2

1=8 2 < xa 3

..

. ..
.

8
>>>>>><

>>>>>>:

:

Then we bound f ðxÞ with a continuous function gðxÞ. We can use the following

function:

gðxÞ ¼
0 xa 0

1
2

� �x ¼ e�x ln 2 x > 0

(

:

Figure 7.6 plots these two functions.

We then need to sample from the area under gðxÞ. To do that, we need the total

area under gðxÞ:

Figure 7.5
Conversion of a density over a discrete set into a density over the real numbers by creation of a step
function.

7.4 Sampling from Discrete Distributions 125

A ¼
ðy

�y
gðuÞ du ¼

ðy

0

e�u ln 2 du ¼ 1

ln 2
:

We then apply the main procedure for the rejection method:

1. Sample X from density 1
A
gðxÞ ¼ ln 2e�X ln 2 (which is Expðln 2Þ).

2. Sample from Y ¼ U ½0; e�X ln 2�.
3. If Y a 1

2

� �dXe
, then return X , else go to step 1.

Since we know the area under f ðxÞ must be 1, the ratio of the areas is 1
ln 2 A1:44, so

we need an average of about 1.44 trials before we pick a valid point.

References and Further Study

Press et al. [82] provides excellent coverage of the methods cited here as well as re-

lated methods we have not seen. Texts by Ross on probability models [102] and sim-

ulation [103] also o¤er detailed coverage of these and many related topics. Those

interested in learning more about random number generation, a topic referenced

only briefly above, can refer to Press et al. [82]. For greater depth, readers can refer

to Knuth’s The Art of Computer Programming [104], particularly volume 2 (Seminu-

merical Algorithms). Knuth’s series is among the most useful reference sets for any-

one working in computer research. I highly recommend that those planning a career

involving large amounts of computing acquire their own copy of that series, as well

as Press et al.’s Numerical Recipes.

The methods we have covered here are simple enough that one rarely consults pri-

mary references, and the first uses of sampling and rejection on various specific

distributions are probably mostly forgotten. Nonetheless, we can acknowledge a few

Figure 7.6
A geometric Geomð12Þ step function f ðxÞ and an exponential bounding curve gðxÞ.

126 7 Sampling from Probability Distributions

of the most important results. Both the transformation method and the rejection

method are due to John von Neumann. The earliest written statement of either

appears to be in a letter von Neumann sent to Stanislaw Ulam in 1947. Ulam later

inspired some of the earliest work in computational biology. Interested readers can

find the letter reproduced in an article by Eckhardt on Ulam and von Neumann’s

contributions to Monte Carlo simulation [105]. The first citable reference of which I

am aware is from 1951 [106]. The Box–Müller method is, unsurprisingly, due to Box

and Müller [107]. Some of the specific distributions examined in this chapter are cov-

ered in Press et al., Ross, or Knuth.

References and Further Study 127

8 Markov Models

We will now begin the first of several chapters on a broadly useful class of discrete

models called Markov models. A Markov model is generally represented as a graph

containing a set of states represented as nodes and a set of transitions with probabil-

ities represented by weighted edges. Figure 8.1 shows a Markov model with four

states.

We simulate a Markov model by starting at some state and moving to successive

neighboring states by choosing randomly among neighbors according to their labeled

probabilities. For example, if we start in state q4, then we would have probability p1
of moving to q1, p2 of moving to q2, and 1� p1 � p2 of moving to q3. If we move to

q2, then we have probability p3 of moving to q1 and 1� p3 of moving to q3, and so

on. The result is a walk through the state set (e.g., q1; q2; q1; q2; q3; q3; . . .). The result-

ing sequence of states is called a Markov chain.

Markov models show up in many areas of biology. For example, figure 8.2 shows

a pair of Markov models that may be used to simulate random strings of DNA. Fig-

ure 8.2(a) is a simple Markov chain for generating DNA bases. We can develop

much more sophisticated models, though. Figure 8.2(b) shows how we might orga-

nize a model specifically for coding DNA to account for di¤erent base frequencies

in the three codon positions. We can go further and join the models of figures 8.2(a)

and (b) to create a new model capable of representing both coding and noncoding

DNA. As we will discuss later, real-world DNA models can get far more complex,

merging special modules for many di¤erent kinds of DNA. There are limits to what

can be modeled with Markov models, though. For example, exon lengths must be

geometrically distributed with any such model. Nonetheless, they can be very versa-

tile, as we shall see.

A Markov model is formally defined by the following components:

� A state set Q ¼ fq1; q2; . . . ; qng.
� A starting distribution Prfqð0Þ ¼ qig ¼ pi (which can be represented by a vector

~pp).

� A set of transition probabilities Prfqðnþ 1Þ ¼ qj j qðnÞ ¼ qig ¼ pij (which can be

represented by a matrix P).

To simulate a Markov model, we pick an initial state qð0Þ from distribution ~pp,

then repeatedly pick the next state qði þ 1Þ from distribution P, given prior state qðiÞ.
This is actually a definition of what is called a first-order Markov model because

the transition probabilities are of the form Prfqðnþ 1Þ ¼ qj j qðnÞ ¼ qig ¼ pij, with

the probability of entering each possible next state dependent only on the current

state. In a kth-order Markov model, transition probabilities take the form PrfqðnÞ ¼

Figure 8.1
A Markov model.

Figure 8.2
Examples of Markov models we might use to generate random strings of DNA. (a) A simple model we
might use to generate bases with a single set of frequencies for all positions. (b) A more complicated model
we might use for simulating coding DNA to account for variations in base frequencies in the three codon
positions.

130 8 Markov Models

qi;n j qðn� 1Þ ¼ qi;n�15qðn� 2Þ ¼ qi;n�25� � � qðn� kÞ ¼ qi;n�kg ¼ pij. That is, the

probability of the next state depends on the previous k states. This representation

can sometimes be convenient. For example, in a DNA model, the distribution of

the third base in a codon will generally depend on the previous two, suggesting that

a second-order Markov model would be a good way to generate more exonlike

sequences. However, any kth-order Markov model can be transformed into a first-

order Markov model by defining a new state set Q 0 ¼ Qk (i.e., each state in Q 0 is a

set of k states in Q), with the current state in Q 0 being the last k states visited in Q.

Then a Markov chain in the kth-order model Q—q1; q2; q3; q4; . . .—becomes the

chain fq1; q2; . . . ; qkg; fq2; q3; . . . ; qkþ1g; fq3; q4; . . . ; qkþ2g; . . . in Q 0. We can there-

fore generally ignore higher-order Markov models when talking about the theory be-

hind Markov models, even though they may be conceptually useful in practice.

8.1 Time Evolution of Markov Models

Although the behavior of Markov models is random, it is also in some ways predict-

able. One way to understand how Markov models behave is to work through a few

steps of a Markov model simulation. Suppose we have a two-state model, Q ¼
fq1; q2g, with initial probabilities p1 and p2 and transition probabilities p11, p12, p21,

and p22. We will then ask how likely we are to be in any given state at each point in

time.

At step zero, the distribution of states is exactly described by the initial probability

vector ~pp:

Prfqð0Þ ¼ q1g
Prfqð0Þ ¼ q2g

� �

¼ p1

p2

� �

:

After one step of the Markov model, the probabilities will be the following:

Prfqð1Þ ¼ q1g
Prfqð1Þ ¼ q2g

� �

¼ p1p11 þ p2p21

p1p12 þ p2p22

� �

:

That is, the probability of being in state 1 at time 1 is the probability of being in state

1 at time 0 and staying there, plus the probability of being in state 2 at time 0 and

moving from state 2 to state 1. Likewise, the probability of being in state 2 at time

1 is the probability of being in state 1 at time 0, then moving from state 1 to state 2

plus the probability of starting in state 2 at time 0 and staying there.

After the next step, the probability distribution will be the following:

Prfqð2Þ ¼ q1g
Prfqð2Þ ¼ q2g

� �

¼ ðp1p11 þ p2p21Þp11 þ ðp1p12 þ p2p22Þp21
ðp1p11 þ p2p21Þp12 þ ðp1p12 þ p2p22Þp22

� �

:

8.1 Time Evolution of Markov Models 131

In other words, the probability of being in state 1 at time 2 is the probability of being

in state 1 at time 1 and staying there plus the probability of being in state 2 at time 1

and moving from state 2 to state 1. Similarly, the probability of being in state 2 at

time 2 is the probability of being in state 2 at time 1 and staying there plus the prob-

ability of being in state 1 at time 1 and moving from state 1 to state 2.

We can see the pattern here by using the matrix and vector representations of the

Markov model probability distributions. If we know the distribution at step i, the

probability distribution at step i þ 1 will be the following:

Prfqði þ 1Þ ¼ q1g
Prfqði þ 1Þ ¼ q2g

� �

¼ p11 p21

p12 p22

� �
PrfqðiÞ ¼ q1g
PrfqðiÞ ¼ q2g

� �

:

This implies that if we want to know the distribution at state n, we can find it by

multiplying the initial distribution by the transition matrix n times:

PrfqðnÞ ¼ q1g
PrfqðnÞ ¼ q2g

� �

¼ p11 p21

p12 p22

� �

� � � � � p11 p21

p12 p22

� �
p1

p2

� �

:

Example Suppose we design a Markov model to represent our probability of being

in an intron, an exon, or an intergenic region in a genetic sequence. For the sake of

argument, we can suppose the transition probabilities are as illustrated in figure 8.3.

We can say that q1 is the exon state, q2 is the intron state, and q3 is the intergenic

state. Then the transition matrix P is

P ¼
:8 :1 :1

:1 :9 0

:1 0 :9

2

6
4

3

7
5:

Further assume the initial state vector ~pp is the following:

p1

p2

p3

2

6
4

3

7
5 ¼

0:2

0:3

0:5

2

6
4

3

7
5:

Figure 8.3
Hypothetical Markov model for generating distributions of introns, exons, and intergenic sequences.

132 8 Markov Models

Then the probability of being in each state at time 0 is

:2

:3

:5

2

4

3

5

At time 1, the distribution is

P ¼
:8 :1 :1

:1 :9 0

:1 0 :9

2

6
4

3

7
5

:2

:3

:5

2

6
4

3

7
5 ¼

:24

:29

:47

2

6
4

3

7
5:

At time 2, the distribution is

P ¼
:8 :1 :1

:1 :9 0

:1 0 :9

2

6
4

3

7
5

:24

:29

:47

2

6
4

3

7
5 ¼

:268

:285

:447

2

6
4

3

7
5:

In general, for time n the distribution will be

P ¼
:8 :1 :1

:1 :9 0

:1 0 :9

2

6
4

3

7
5

n
:2

:3

:5

2

6
4

3

7
5:

We can more e‰ciently find the distribution of states for larger n through succes-

sive squaring, a process by which we can recursively compute FðnÞ ¼ Pn. The succes-

sive squaring algorithm is illustrated in figure 8.4. There is an even more e‰cient way

that we will see shortly.

We can generalize this notion of how the distribution of states of a Markov model

evolves over time through the Chapman–Kolmogorov equations. Suppose we have a

Markov model with jQj states where we define pijðnÞ to be the probability of going

Figure 8.4
Pseudocode for the successive squaring method for computing Pn in Oðlog nÞ steps.

8.1 Time Evolution of Markov Models 133

from state i to state j in exactly n steps in this model. The Chapman–Kolmogorov

equations for the model are the following:

pijðnþmÞ ¼
XjQj

k¼1
pikðnÞpkjðmÞ

for all nb 0, mb 0, and any states i and j. That is, the probability of getting to state

j from state i in nþm steps is the sum over all possible intermediate states k of the

probability of getting from i to k in n steps, then from k to j in the remaining m

steps.

8.2 Stationary Distributions and Eigenvectors

Suppose we want to look at the evolution of our Markov model over really long time

scales. We can keep multiplying by our transition matrix. Eventually, though, the ex-

ample above will converge on a single probability distribution that will not change

on further multiplication:

:2

:3

:5

2

6
4

3

7
5!

:24

:29

:47

2

6
4

3

7
5!

:268

:285

:447

2

6
4

3

7
5! � � � !

:33333

:33333

:33333

2

6
4

3

7
5!

:33333

:33333

:33333

2

6
4

3

7
5:

Once we have multiplied enough times that we are at a distribution which does not

change appreciably, then we know we no longer need to do further multiplications.

Furthermore, it does not matter what our initial distribution is for this model; we will

always converge to the same final distribution vector, regardless of our starting point.

This vector on which the state distribution converges after a large number of steps is

called the stationary distribution.

One might wonder if this property of convergence on a unique stationary distribu-

tion, regardless of starting point, will work for any example. The answer is no. It is

possible that the final vector we converge to is not unique. Consider the example of

figure 8.5(a). Here, the transition matrix is

P ¼
:8 0 0

:1 1 0

:1 0 1

2

6
4

3

7
5

If we have starting distribution

0

1

0

2

6
4

3

7
5

134 8 Markov Models

then it will get stuck at

0

1

0

2

6
4

3

7
5

If we have starting distribution

0

0

1

2

6
4

3

7
5

then it will get stuck at

0

0

1

2

6
4

3

7
5

The distribution of states still eventually converges, but where it converges depends

on where we start. The final distribution can be any combination of probabilities for

states q2 and q3, depending on where we start.

A Markov model is not even guaranteed to converge on any vector. Consider the

Markov model of figure 8.5(b) with transition matrix

0 1

1 0

" #

If we initialize this model with the probability vector

Figure 8.5
Markov models that do not converge on unique stationary vectors.

8.2 Stationary Distributions and Eigenvectors 135

p

1� p

� �

then the distribution of states on successive steps will be the following:

p

1� p

� �

! 1� p

p

� �

! p

1� p

� �

! 1� p

p

� �

! p

1� p

� �

! � � �

The model thus never converges on any final state.

We can understand why these examples do not converge on a single distribution

by considering what properties our first example has that the second and third do

not. What the second model, with

P ¼
:8 0 0

:1 1 0

:1 0 1

2

6
4

3

7
5

is lacking is a property called ergodicity. Ergodicity means that for any two states qi
and qj there is some sequence of transitions with nonzero probability that go from qi
to qj . An ergodic Markov chain is also sometimes called irreducible. In the above ex-

ample, we cannot move from q2 to q1 or q3, or from q3 to q1 or q2, so the Markov

model is not ergodic. If our model is not ergodic, then it is possible for it to converge

to di¤erent stationary distributions, depending on the starting distribution.

We can understand why this is so by reviewing our linear algebra. A Markov

model is in its stationary distribution if multiplying the transition matrix by the dis-

tribution vector results in the same distribution vector. This means that the distribu-

tion vector must be an eigenvector of the transition matrix. Recall that vector x is an

eigenvector of matrix A if Ax ¼ lx, where l is a scalar value called the eigenvalue.

The stationary distribution is then an eigenvector of P that has eigenvalue l ¼ 1. A

Markov model will converge to a unique stationary distribution if its transition ma-

trix has exactly one eigenvector with eigenvalue l ¼ 1 and has jlj < 1 for every other

eigenvector.

To see why this is so, suppose we call our eigenvalues l1; . . . ; ln and our eigenvec-

tors~xx1; . . . ;~xxn, and we assume l1 ¼ 1, jlij < 1 for i ¼ 2; . . . ; n. Then, if we have some

starting distribution ~pp, we can decompose ~pp into a linear combination of the eigen-

vectors as follows:

~pp ¼ c1~xx1 þ c2~xx2 þ � � � þ cn~xxn:

Then the distributions at successive steps will look like the following:

P~pp ¼ c1P~xx1 þ c2P~xx2 þ � � � þ cnP~xxn

¼ c1l1~xx1 þ c2l2~xx2 þ � � � þ cnln~xxn

136 8 Markov Models

P2~pp ¼ c1P
2~xx1 þ c2P

2~xx2 þ � � � þ cnP
2~xxn

¼ c1l
2
1~xx1 þ c2l

2
2~xx2 þ � � � þ cnl

2
n~xxn

..

.

Pk~pp ¼ c1P
k~xx1 þ c2P

k~xx2 þ � � � þ cnP
k~xxn

¼ c1l
k
1~xx1 þ c2l

k
2~xx2 þ � � � þ cnl

k
n~xxn:

As we move to large k, all of the lk
i terms except lk

1 will converge toward zero. Even-

tually, we will approach the limit

lim
k!y

Pk~pp ¼ c1 � 1 �~xx1 þ c2 � 0 �~xx2 þ � � � þ cn � 0 �~xxn ¼ c1~xx1:

In other words, the model will converge on a distribution proportional to ~xx1.

If a Markov model is not ergodic, then its state set can be partitioned into discrete

graph components unreachable from one another. Each such component will have its

own eigenvector with eigenvalue 1. Depending on which component we start in, we

may converge on any of them. In our nonergodic example above, both

0

1

0

2

6
4

3

7
5 and

0

0

1

2

6
4

3

7
5

are eigenvectors of the transition matrix with eigenvalue 1. (The third eigenvector is

:81650

�:40825
�:40825

2

6
4

3

7
5

with eigenvalue 0.8.)

Eigenvectors also help explain why the second model, with

P ¼ 0 1

1 0

" #

failed to converge on a stationary distribution. This matrix has two eigenvectors:

~xx1 ¼
1
2

1
2

" #

with eigenvalue 1, and

8.2 Stationary Distributions and Eigenvectors 137

~xx2 ¼
1
2

� 1
2

" #

with eigenvalue �1. When we decompose the initial distribution into a linear combi-

nation of eigenvectors, any component of ~xx2 will never die away. The model will ex-

hibit an oscillatory behavior that comes from flipping the sign of the ~xx2 component

on each successive step of the model. For example, if we had the initial vector

~pp ¼ 1

0

� �

then that would be decomposed into

~pp ¼ 1

0

� �

¼
1
2

1
2

" #

þ
1
2

� 1
2

" #

¼~xx1 þ~xx2:

After k steps, this would become

Pk~pp ¼ lk
1

1
2

1
2

" #

þ lk
2

1
2

� 1
2

" #

¼
1
2

1
2

" #

þ ð�1Þk
1
2

� 1
2

" #

¼~xx1 þ ð�1Þk~xx2:

Each successive step of the Markov model would flip the sign on the ~xx2 term, so we

would end up cycling between ~xx1 þ~xx2 ¼ ½ 1 0 �T and ~xx1 �~xx2 ¼ ½ 0 1 �T .
There is a test we can do to determine whether a given Markov model converges

on a stationary distribution. A Markov model is guaranteed to converge on a sta-

tionary distribution ~pp if there exists some integer N > 0 such that

min
i; j

pijðNÞ ¼ d; d > 0:

That is, there is some number of steps N such that no matter where we start, we have

some bounded nonzero probability of getting to any given ending position in exactly

N steps. The preceding example fails this test because there is no single N for which

p11ðNÞ and p12ðNÞ are both nonzero.

8.3 Mixing Times

Eigenvalues and eigenvectors can also tell us about one more important property of

a Markov model: its mixing time. Informally, the mixing time is the time needed for

the Markov model to get close to its stationary distribution. We will see a more for-

mal discussion of this concept in chapter 9. For now, though, we should be aware

that we can approximately determine the mixing time by knowing the ratio of the

138 8 Markov Models

two largest eigenvalues, j l2
l1
j. Since the largest eigenvalue, l1, is 1, this is really just

jl2j. jl2j is approximately the amount by which the transient behavior decays on

each successive step, assuming we have run the model long enough. Therefore, if we

want to run the model long enough for the transients to die away by some factor r,

then we need to run for a number of rounds k, approximately defined by

jl2jk ¼ r

k log l2 ¼ log r

k ¼ log r

log l2
:

Note that this is only approximate, since the exact contribution of each eigenvalue

will depend on the starting distribution vector. If we start with a stronger component

of~xx2, then we may need more steps, and if we start with a stronger component of~xx1,

then we may need fewer.

References and Further Study

There are many fine references on the subject of Markov models. Ross’s text on

probability models [102] provides a strong foundation of the topic in greater depth

than we can cover here. Ross’s text on simulation [103] also provides some coverage

of Markov models in their specific application to simulations. Many other texts on

probability or simulation might serve equally well, though. This chapter was pre-

pared in part with guidance from Rozanov [108].

There are several texts one might consider for the topic of Markov models spe-

cifically for scientific simulation. Gillespie [109] is written for physical scientists in

general, and describes applications particularly relevant, for our purposes, to bio-

chemical and biophysical modeling. One recent addition to the literature that is par-

ticularly useful for our purposes is Wilkinson [110], which discusses Markov model

theory extensively with application to systems biology models.

The theory of Markov chains was, unsurprisingly, first developed by Markov

[111]. Seminal advances from this first formulation are too numerous to cite individ-

ually and at this point are generally regarded as part of the core knowledge of any-

one working with probability models.

References and Further Study 139

9 Markov Chain Monte Carlo Sampling

One of our major concerns in studying simulation methods is figuring out how to

sample e‰ciently from a complicated distribution implied by some model. As we

have seen, there are some general sampling methods that can handle many situations

we will encounter in biological domains. There are some situations, though, in which

it would be prohibitively ine‰cient to sample exactly from such a model. For exam-

ple, we may want accurate sampling of a small portion of the probability space. If we

construct a Markov model of particles moving in a di¤use space and we want accu-

rate sampling of the rate of particle collisions, we may have to simulate the model for

an extremely long time to observe any collisions. If we develop a structural model of

an enzymatic reaction and we want to know how often the model enters a rare tran-

sitional state, again we may need to run the model for an extremely long time to get

accurate sampling of the small fraction of the probability distribution that is of con-

cern to us.

In this chapter, we will consider a few specialized methods by which Markov mod-

els can help us with these hard-to-sample probability densities. We will first examine

Metropolis sampling, a method that was developed for finding stationary distribu-

tions of thermodynamic systems but has much broader application. We will then

examine Gibbs sampling, a specialized method for sampling from complicated distri-

butions of many variables. Both Metropolis and Gibbs sampling are often used as

approximate optimization methods in addition to sampling methods. We will then

examine a general strategy, called importance sampling, for selectively accelerating

estimates of some regions of the stationary distribution of a model. Finally, we will

examine umbrella sampling, a special case of importance sampling widely used in bio-

physics contexts for improving estimates of the frequencies of rare events.

9.1 Metropolis Method

We will begin with a model we examined very briefly in chapter 1, called a Metropolis

model. Metropolis models are very useful for looking at problems in thermodynamics,

which include many problems in biophysics. The Metropolis method (also called the

Metropolis–Hastings or Hastings–Metropolis method) is a technique for using a

Markov model to determine the thermodynamic equilibrium of a system of discrete

states for which we know potential energies. The method creates a Markov model

whose stationary distribution is the distribution of states at the thermodynamic equi-

librium of the system. Simulating the Markov model then samples from the states of

the system at thermodynamic equilibrium.

Suppose we have a system of five states. These may represent folds of a single mol-

ecule, binding states in a reaction system, or any other set of discrete conditions in

which a given system may be found. If we define some possible ways of moving be-

tween states (e.g., reaction events or structural rearrangements), then we end up with

a system we can represent by a graph in which nodes represent states and edges rep-

resent allowed transitions between states. Figure 9.1(a) shows a hypothetical graph

model of this form. Further assume that each state qi has a potential energy Ei. For

example, if the states correspond to folds of a protein, then each fold may have some

free energy. Thermodynamics tells us that at equilibrium, the stationary probability

of being in state qi, which we can call pi, is described by a Boltzmann distribution:

pi ¼
e�Ei=kT

Pn
j¼1 e

�Ej=kT
;

where k is Boltzmann’s constant and T is the absolute temperature. If the number of

states is small, then we can calculate this distribution directly. The Metropolis

Figure 9.1
A state transition graph (a) and a corresponding Metropolis Markov model (b).

142 9 Markov Chain Monte Carlo Sampling

method is helpful when the state set is extremely large and we do not have time to

explicitly compute the energy of each state. The Metropolis method creates a Mar-

kov model whose stationary distribution will be the Boltzmann distribution defined

by the state energies. For this system, the Metropolis model will be that shown in fig-

ure 9.1(b), where d is the maximum degree of any node in the graph (in this case, 3).

Although the probabilities look complicated, the model is actually fairly easy to

simulate. Starting from state qi, we can find the next state as follows:

1. Pick a random neighbor of qi, which we will call qj, with probability 1
d
, or qj ¼ qi

with probability 1� di
d
if the degree of node i ðdiÞ is less than d.

2. If Ej aEi, then move to qj.

3. If Ej > Ei, then with probability e�ðEj�EiÞ=kT move to qj, otherwise stay in qi.

Note that we do not need to know anything about the global structure of the graph

or the global energy landscape in order to simulate these transitions. We just need to

know the maximum degree of the entire graph, or even an upper bound on it, and to

have a way to determine the degree of the current node and the energy of each of its

neighbors. If we have a very large state space but spend almost all time at equilib-

rium in a tiny fraction of the states (as might be the case for a protein-folding simu-

lation, for example), then the Metropolis method provides a way to sample the

equilibrium distribution e‰ciently without needing to explicitly create the full state

graph.

The simplicity of the model is a virtue only if it is correct, though. We can in fact

prove that this model will accurately sample from the Boltzmann distribution. As

long as the energies are finite, all of the edges are reversible; if you can go from qi
to qj, you can go from qj to qi, although generally with di¤erent probabilities. That

immediately tells us that the model is ergodic as long as the original graph is con-

nected. Furthermore, as long as we wait enough steps, we have a nonzero probability

of getting from any node to any other. For example, suppose the largest number of

steps necessary to travel between any two states is D (the diameter of the graph).

Then we can get from any qi to any qj with some nonzero probability in exactly N

steps for any Nb 2D by walking to any node qk that has a self-loop, which must ex-

ist unless every node has the same energy; taking a few passes around the self-loop,

then continuing from qk to qj, provided we linger at the self-loop just long enough to

bring the total path length to N. The probability of this transition is bounded below

by the minimum edge probability to the Nth power. This tells us that min pijðNÞ > 0

for some su‰ciently large N, proving that the model converges to a unique station-

ary distribution.

The Markov models created by the Metropolis method not only have a stationary

distribution; they also obey a stronger condition called detailed balance (also known

9.1 Metropolis Method 143

as microreversibility). This property says that given any two states qi and qj with

transition probabilities pij and pji and stationary probabilities pi and pj, then

pipij ¼ pjpji:

We will see in chapter 10 how to prove that a given Markov model obeys detailed

balance. Detailed balance implies a stationary distribution, but not every chain hav-

ing a stationary distribution satisfies detailed balance. If we know we have a chain

obeying detailed balance, we often can easily establish the relative stationary proba-

bilities of a set of states using the detailed balance condition.

Suppose we look at two states qi and qj for which Ej < Ei. Then

pipij ¼ pi
1

d

pjpji ¼ pj
1

d
e�ðEi�EjÞ=kT :

If we now plug in pi ¼ e�Ei=kT

Z
and pj ¼ e

�Ej=kT

Z
, where Z ¼

P
k e
�Ek=kT , then

pipij ¼
e�Ei=kT

Z

1

d

¼ e�Ei=kT

Zd

¼ e�Ej=kT
e�ðEi�EjÞ=kT

Zd

¼ e�Ej=kT

Z

e�ðEi�EjÞ=kT

Zd

¼ pjpji:

This verifies that these two values of pi and pj satisfy the detailed balance condition.

Any set of probabilities satisfying detailed balance must be a stationary distribution,

since the net change in the state distribution from each step of the Markov model

must be zero if all pairs of state probabilities are in detailed balance. That is, the

probability lost from pi to qj by one application of P when Prfq ¼ qig ¼ pi is pipij ,

and the probability gained by pi from pj when Prfq ¼ qjg ¼ pj is pjpji. When these

two are equal for all i and j, then the model is at its stationary distribution. Since

these values are exactly the Boltzmann weights that we should get at the thermo-

dynamic equilibrium, this tells us that the Boltzmann distribution is a stationary

144 9 Markov Chain Monte Carlo Sampling

distribution of the model, and thus that the model will uniquely converge on that

distribution.

Example Let us see an example of how this method would be applied to a model of

protein-folding. Suppose we start with a lattice model of protein-folding like that we

saw in chapter 1. We will assume that the protein sits on a regular grid, with consec-

utive amino acids at adjacent grid points and no two amino acids allowed to occupy

the same grid point. The energy of any particular configuration of the chain will be

given by a contact potential between pairs of amino acids occupying adjacent grid

points but not consecutive in the chain backbone. We want to know how often the

protein takes on each possible configuration. If the chain is short, we may be able to

try every possible shape, determine the energy of each, and directly calculate the

Boltzmann distribution of the energies. This will be impractical for even moderate

chain sizes (maybe 30 amino acids), though, because the number of configurations

grows exponentially with the chain size.

Once we have decided we will use a Metropolis model, we need to consider how

the details of the model will be set. The states of the model are simply the possible

configurations of the chain. We do not have an easy way to enumerate all of the

states, but it is enough to know they exist and to be able to distinguish the ones we

visit.

Next, we need to know the transitions of the Markov model. They are defined by

the move set we choose for our lattice protein model. Suppose we decide that our

allowed moves are chain changes that take a single set of three consecutive amino

acids and bend them to a di¤erent position, as in figure 9.2. This move set tells us

which pairs of states have transitions: those that are separated by a single chain

bend. We can also infer from this an upper bound on the maximum degree of the

graph. If we have n amino acids, then on each move we have n� 2 positions we can

bend and up to two possible positions to which each can be bent, giving a maximum

Figure 9.2
Allowed moves for a hypothetical lattice protein-folding model.

9.1 Metropolis Method 145

degree of 2ðn� 2Þ. Not all of these moves will lead to valid conformations, since

some may cause overlaps in the chain, so any particular node may have lower de-

gree. In fact, for the purposes of correctly implementing the Metropolis algorithm,

it does not actually matter if any node has exactly this degree, so long as it is an up-

per bound. If it is a poor upper bound, that will a¤ect runtime, but not correctness.

We can then implement the Metropolis method for this problem as follows:

1. Choose a random amino acid from position 2 through n� 1.

2. Choose a random bend direction from among the two possibilities (flip 90� left or

90� right if it is currently straight, or flip 90� or 180� if it is currently bent).

3. If the flipped chain is not self-avoiding, reject the move.

4. If the change in energy is less than or equal to zero, accept the move.

5. Otherwise, accept with probability e�DE=kT .

Running this model long enough will yield accurately sampled Boltzmann probabil-

ities for all of the states, even if our upper bound on the node degree is not tight.

Caveats About Metropolis The Metropolis method can be a powerful and easy-to-use

means of estimating the thermodynamic equilibrium of a system, but there are two

important cautions to consider when using it.

1. The Metropolis method is thermodynamically correct, but it is not generally kineti-

cally correct. This means that if we have all of the energies right, then the stationary

distribution will be the thermodynamic equilibrium distribution, but the pathways

between states may not be in any way connected to how the real system will move

between states. Metropolis is often used as a simulation method for kinetic processes,

but it is not correct to do so.

2. Mixing times can be very long, especially if the transitions are poorly chosen. The

Metropolis method can easily get stuck in local minima for long periods of time or

have di‰culty finding the correct trajectories. And it can be very di‰cult to judge

whether the method is getting a good sample or is temporarily stuck in one part of

the state space.

9.1.1 Generalizing the Metropolis Method

Although we described the Metropolis method in terms of thermodynamics, there is

nothing in the algorithm that requires the stationary distribution to be a Boltzmann

distribution. If we look carefully at the Metropolis algorithm, we can note that we

do not really need the energies of the states. For any state qi, we can find transition

probabilities to each neighbor state qj by knowing only the ratio of their stationary

probabilities. When the stationary distribution is a thermodynamic equilibrium, then

these ratios are of the form e�DE=kBT . But we can ignore the energies and work di-

146 9 Markov Chain Monte Carlo Sampling

rectly with the ratios. This will give us the following generalized Metropolis move

operation:

1. Pick a random neighbor of qi, which we will call qj, with probability 1
d
, or qj ¼ qi

with probability 1� di
d
if the degree of node i, di, is less than d.

2. If
pj
pi
b 1, then move to qj .

3. If
pj
pi
< 1, then with probability

pj
pi
move to qj, otherwise stay in qi.

The proof of correctness above will follow identically for this general method as

when we derive the ratios from energies. We can therefore apply the Metropolis

method to estimating any discrete distribution, provided we can establish a con-

nected graph on the states and determine the ratio of stationary probabilities along

any edge in the graph.

9.1.2 Metropolis as an Optimization Method

Although the Metropolis method is, strictly speaking, a sampling method, it is also

sometimes used as a heuristic method for optimization. Given a discrete optimization

problem, we can declare that each possible solution to the problem has an ‘‘energy’’

which is determined by the value of the optimization metric on that solution. If we

define ‘‘moves’’ between possible solutions, then a Metropolis simulation will be

expected to move toward low-energy (high-quality) solutions. This method can be

useful for locally improving on the solution returned by other methods, such as an

approximation algorithm or another heuristic.

For example, suppose we want to find solutions to a traveling salesman problem

(TSP). We can begin with some cycle in our input graph, such as that in figure

9.3(a). We can then declare that the ‘‘energy’’ of that path is the sum of the weights

of its edges. We can then run the Metropolis method for a while, expecting that it

will tend to move toward ‘‘low-energy’’ (i.e., short) paths. If we eventually return

Figure 9.3
Illustration of use of Metropolis models for creating a heuristic traveling salesman problem solver. (a) Hy-
pothetical initial tour in a graph. (b) A ‘‘move’’ we can use to define new tours, given existing ones.

9.1 Metropolis Method 147

the lowest-energy (shortest) path encountered by the Metropolis model, then we may

expect this to be a good guess as to the shortest traveling salesman tour in the graph.

It is important when using this approach to make sure the chosen move set defines

an ergodic Markov model. For TSP, we may use the move shown in figure 9.3(b),

which allows us to flip the order of two nodes in a subpath. This move will define

an ergodic Markov model. To show this, we need to show that for any two cycles p

and p 0 in the TSP graph, there is a path of nonzero probability in the Markov model

graph connecting them. Suppose we define p� to be the tour connecting all nodes in

some canonical order q1; q2; q3; . . . ; qn; q1. Then we can get from p to p� by bubble-

sorting the list of nodes, which we can do solely by exchanging consecutive pairs of

nodes using our one move. We can also go from p 0 to p� by bubble-sorting nodes

and, therefore, go from p� to p 0 by following the reverse of those moves. Thus, we

can get from p to p 0 by some sequence of these moves. Since any such move will

have nonzero probability (assuming finite energies), the model must be ergodic.

One improvement on this Metropolis optimization approach that we have briefly

mentioned before is simulated annealing. Simulated annealing is exactly the same as

simulating a Metropolis model, except that we gradually reduce the temperature in

the model. In the limit of high temperature,

lim
T!y

e�ðE2�E1Þ=kT ¼ e0 ¼ 1:

Therefore, when the temperature is very high, almost all moves will be accepted and

the model will choose transitions almost uniformly at random. It should therefore

move easily out of local minima and get a good sample of the probability space. In

the limit of low temperature, if E2 > E1, then

lim
T!0

e�ðE2�E1Þ=kT ¼ e�y ¼ 0:

Therefore, at very low temperatures, the method will almost never choose a move

that is energetically unfavorable. It will behave as a pure local optimizer and will

settle into some local minimum energy state, for which no one move can lead to an

improvement. The hope is that somewhere between very high and very low temper-

atures, the method will be good at escaping local minima while still settling into low-

energy regions of the graph. Then, as the temperature cools below that point, the

method will seek the lowest energy state in that low-energy region. The actual perfor-

mance will depend on exactly how the method goes from high to low temperatures

(known as the cooling schedule) in ways that are not well understood. It can also be

helpful to run the method multiple times, since it may get stuck in a bad region on

some runs but not others.

148 9 Markov Chain Monte Carlo Sampling

9.2 Gibbs Sampling

Gibbs sampling is another technique for constructing a Markov model whose sta-

tionary distribution is some probability distribution from which it would otherwise

be hard to sample. Gibbs sampling is particularly useful for sampling from joint dis-

tributions on many variables. We accomplish this by allowing states of the Markov

model to correspond to possible assignments of the full state vector of the jointly dis-

tributed variables. We then allow transitions corresponding to possible changes in a

single element of the state vector.

Assume we are given a joint distribution

PrfX1 ¼ x1;X2 ¼ x2; . . . ;Xn ¼ xng ¼ pðx1; x2; . . . ; xnÞ;

where R1;R2; . . . ;Rn are the ranges of the respective random variables. The state set

of the Gibbs sampler is the product of the ranges of the variables:

Q ¼ R1 � R2 � � � � � Rn:

That is, there is one state for each possible assignment of values to the random

variables. There is a transition possible for any change of a single random variable.

The probability of making any possible transition obeys the following density:

Prfðx1; x2; . . . ; xi; . . . ; xnÞ ! ðx1; x2; . . . ; x 0i ; . . . ; xnÞg

¼ 1

n
PrfXi ¼ x 0i jX1 ¼ x1;X2 ¼ x2; . . . ;Xi�1 ¼ xi�1;Xiþ1 ¼ xiþ1 . . . ;Xn ¼ xng:

Just as with Metropolis models, Gibbs sampling Markov models lend themselves

to a very simple procedure for making transitions:

1. Pick a variable Xi uniformly at random.

2. Sample a new value for that one variable from the conditional distribution of that

variable, given the current values of all of the other variables:

PrfXi ¼ x 0i jX1 ¼ x1;X2 ¼ x2; . . . ;Xi�1 ¼ xi�1;Xiþ1 ¼ xiþ1 . . . ;Xn ¼ xng:

Repeatedly applying that transition step will produce a correct sample of the joint

distribution of the variables. We can show the correctness of the method by establish-

ing that the desired joint distribution is a stationary distribution satisfying detailed

balance for the Gibbs sampler. We can show that as follows:

Prfðx1; x2; . . . ; xi; . . . ; xnÞ ! ðx1; x2; . . . ; x 0i ; . . . ; xnÞg

� Prfðx1; x2; . . . ; xi; . . . ; xnÞg

9.2 Gibbs Sampling 149

¼ 1

n
PrfXi ¼ x 0i jX1 ¼ x1; . . . ;Xi�1 ¼ xi�1;Xiþ1 ¼ xiþ1; . . . ;Xn ¼ xng

� Prfðx1; x2; . . . ; xi; . . . ; xnÞg

¼ 1

n

PrfX1 ¼ x1; . . . ;Xi ¼ x 0i ; . . . ;Xn ¼ xng
PrfX1 ¼ x1;X2 ¼ x2; . . . ;Xi�1 ¼ xi�1;Xiþ1 ¼ xiþ1; . . . ;Xn ¼ xng

� Prfðx1; x2; . . . ; xi; . . . ; xnÞg

¼ 1

n

PrfX1 ¼ x1; . . . ;Xi ¼ xi; . . . ;Xn ¼ xng
PrfX1 ¼ x1;X2 ¼ x2; . . . ;Xi�1 ¼ xi�1;Xiþ1 ¼ xiþ1; . . . ;Xn ¼ xng

� Prfðx1; x2; . . . ; x 0i ; . . . ; xnÞg

¼ 1

n
PrfXi ¼ xi jX1 ¼ x1; . . . ;Xi�1 ¼ xi�1;Xiþ1 ¼ xiþ1; . . . ;Xn ¼ xng

� Prfðx1; x2; . . . ; x 0i ; . . . ; xnÞg

¼ Prfðx1; x2; . . . ; x 0i ; . . . ; xnÞ ! ðx1; x2; . . . ; xi; . . . ; xnÞg

� Prfðx1; x2; . . . ; x 0i ; . . . ; xnÞg:

Thus, Prfðx1; x2; . . . ; xi; . . . ; xnÞg is the unique stationary distribution of the

model. Running it for a su‰cient number of steps will therefore accurately sample

from that joint distribution. As with any Markov model, though, it is important to

remember that the time to converge on the stationary distribution may be quite long.

Example Consider a two-variable example. Suppose we want to sample a pair of

DNA bases, which we can call X1 and X2, consecutive in a protein-coding sequence.

It is likely that these bases are highly correlated. We can study these correlation pat-

terns and establish a set of joint probabilities:

PrfA15A2g ¼ pAA; PrfA15C2g ¼ pAC ; PrfA15G2g ¼ pAG;

. . .PrfT25C1g ¼ qTC ; PrfT25G1g ¼ qTG; PrfT25T1g ¼ qTT :

Then we can begin by picking an arbitrary pair of bases, say C1G2. We then

choose to change either the first base or the second with equal probability. If

we choose to change the first, then we will sample a new base from the distribu-

tion PrfX1 jX2 ¼ Gg. Alternatively, we will sample a new X2 from the distribution

150 9 Markov Chain Monte Carlo Sampling

PrfX2 jX1 ¼ Cg. Putting these possibilities together, we will get the following transi-

tion probabilities from our current state:

PrfC1G2 ! A1G2g ¼
1

2
PrfA1 jG2g ¼

pAG

2ðpAG þ pCG þ pGG þ pTGÞ

PrfC1G2 ! G1G2g ¼
1

2
PrfG1 jG2g ¼

pGG

2ðpAG þ pCG þ pGG þ pTGÞ

PrfC1G2 ! T1G2g ¼
1

2
PrfT1 jG2g ¼

pTG

2ðpAG þ pCG þ pGG þ pTGÞ

PrfC1G2 ! C1A2g ¼
1

2
PrfA2 jC1g ¼

qAC

2ðqAC þ qCC þ qGC þ qTCÞ

PrfC1G2 ! C1C2g ¼
1

2
PrfC2 jC1g ¼

qCC

2ðqAC þ qCC þ qGC þ qTCÞ

PrfC1G2 ! C1T2g ¼
1

2
PrfT2 jC1g ¼

qTC

2ðqAC þ qCC þ qGC þ qTCÞ

PrfC1G2 ! C1G2g ¼
1

2
PrfC1 jG2g þ

1

2
PrfG2 jC1g

¼ pCG

2ðpAG þ pCG þ pGG þ pTGÞ
þ qGC

2ðqAC þ qCC þ qGC þ qTCÞ
:

Note that we have to count the self-transition twice, since it can be reached from

either initial choice of which variable to modify.

This method can be applied to almost any joint distribution, provided the condi-

tional distributions of isolated variables are easy to sample. Note that this technique

can generalize even to continuous distributions. Given some joint continuous density

fxyðx; yÞ, we can construct a Gibbs sampler by repeatedly sampling x or y individu-

ally from the conditional densities fxðx j y ¼ y0Þ and fyðy j x ¼ x0Þ. These are calcu-

lated as follows:

fxðx j y ¼ y0Þ ¼
fxyðx; y0ÞÐ

x
fxyðu; y0Þ du

fxðy j x ¼ x0Þ ¼
fxyðx0; yÞÐ

y
fxyðx0; vÞ dv

:

These two formulas describe continuous densities on one variable each, and they are

therefore likely to be easier to sample. The resulting Gibbs sampler will become a

9.2 Gibbs Sampling 151

continuous-state Markov model, meaning that its state set has an uncountably infinite

number of elements.

9.2.1 Gibbs Sampling as an Optimization Method

Gibbs sampling, like Metropolis sampling, is often used as a heuristic optimization

method, particularly for maximum likelihood problems. A classic example of this

practice in biology is motif-finding. Given a set of DNA sequences, each of which

is presumed to contain some motif, our goal is to infer the motifs by aligning the

sequences to some window. Suppose we are given a window size k and a set of n

sequences each of at least length k. We want to find the alignment of all sequences

to the window that best captures the similarity of the sequences. Figure 9.4 illustrates

the problem. In this figure, we see several sequences aligned to a common window of

four bases. If this alignment correctly identifies a binding motif, then we will con-

clude that the motif has a strongly conserved A in the first position, preference for

either T or G in the second position, a weakly conserved C in the third position,

and a strongly conserved T in the fourth position.

If we want to find the best alignment by Gibbs sampling, we first create a proba-

bility model expressing the probability of generating any given multiple alignment of

the sequences to the window. We may assume that there is some position-specific

score matrix identifying the probability of outputting any given base in each position

of the sequence:

p1A p2A p3A p4A

p1C p2C p3C p4C

p1G p2G p3G p4G

p1T p2T p3T p4T

2

6
6
6
4

3

7
7
7
5

where piN is the probability of emitting base N from position i. We can then say that

the probability of emitting the observed sequences in the windows, given the align-

Figure 9.4
A Gibbs sampling for motif-finding.

152 9 Markov Chain Monte Carlo Sampling

ment, is the product of the per-base output frequencies over all observed bases. We

can write the sequences in the windows for a given alignment as follows:

S1 ¼ sd1þ1sd1þ2sd1þ3sd1þ4

S2 ¼ sd2þ1sd2þ2sd2þ3sd2þ4

..

.

Sn ¼ sdnþ1sdnþ2sdnþ3sdnþ4;

where di is the o¤set of the window in the alignment of sequence i. Then the likeli-

hood of a full global alignment D is

PrfS jDg ¼
Yn

i¼1
p1;sdiþ1 � p2;sdiþ2 � p3;sdiþ3 � p4;sdiþ4 :

We can then construct a Markov model where each state corresponds to a possible

alignment D ¼ fd1; d2; . . . ; dng and the stationary probability of any given state D is

proportional to the likelihood of D:

pDi
¼ PrfS jDigP

Dj
PrfS jDjg

:

We accomplish this by saying that any given transition from some D1 ¼
fd1; d2; . . . ; dj; . . . ; dng to some D2 ¼ fd1; d2; . . . ; d 0j ; . . . ; dng has probability

Prfd 0j j d1; d2; . . . ; dj�1; djþ1; . . . ; dng:

To be strictly correct, we should also consider that there may be a distribution

over possible scoring matrices. This is known as a prior distribution, and reflects our

previous knowledge about likely solutions to the problem. Often in practice this will

be accomplished by assuming a uniform prior distribution, in which all scoring ma-

trices are presumed to be equally likely. In that case, we can choose transitions in the

Markov model as follows:

1. Pick a sequence k uniformly at random.

2. Compute the base frequency within the window for all sequences other than k as

an estimate of the score frequencies piN .

3. For each possible o¤set j of sequence k, compute the probability pj ¼ p1; jþ1 �
p1; jþ2 � p1; jþ3 � p1; jþ4.

4. Choose some new o¤set j for sequence k with probability pj=ð
P

j 0 pj 0 Þ.

9.2 Gibbs Sampling 153

We can, however, weight the probabilities in step 3 by the probability of the derived

scoring matrix to create a nonuniform prior distribution. For example, we may have

some prior reason to believe that the motif is pyrimidine-rich, and may therefore give

extra weight to o¤sets that tend to produce pyrimidine-rich motifs.

Regardless of our prior, repeated application of the steps above will eventually

converge on a stationary distribution of possible alignments. We can then pick the

most commonly occurring alignment from that distribution as our maximum-

likelihood estimate.

9.3 Importance Sampling

The Metropolis and Gibbs sampling methods provide ways of sampling from distri-

butions that may be hard to express analytically. Sometimes, though, having a cor-

rect sampler is not enough. We also need the sampler to be e‰cient, in that it gets

close to its stationary distribution in a small number of steps. Importance sampling

is a technique we can use when we have a sampler for a given distribution but want

to accelerate it. The basic idea is fairly simple. Given some model with state set

Q ¼ fq1; . . . ; qng

and corresponding stationary distribution

P ¼ fp1; . . . ; png;

we construct a new model with the same state set Q but biased stationary

distribution,

P̂P ¼ f bp1p1; . . . ; bpnpng;

where bpipi ¼ wipi for some set of weights wi. We then sample from distribution P̂P but

adjust the estimated frequencies for each state qi sampled from P̂P by a factor of 1
wi
.

The result is an accurate estimator of pi, but one in which the variance of the esti-

mates has been changed. In particular, we generally want to choose the weights wi

such that the variance of the model is reduced, leading to faster estimation of P.

One common use of importance sampling is to bias a model toward those states

that account for the majority of the probability density, thus accelerating estimation

of those states. For example, in a protein-folding model, we may be most interested

in compact states of the protein, where it is likely to spend most of its time at equi-

librium. If we sample states by a Metropolis model, though, we may need to run the

model for a long time before we start to see an accurate sample of these compact

states. We can likely accelerate this convergence by biasing the probability based on

154 9 Markov Chain Monte Carlo Sampling

the radius of gyration (essentially the diameter) of the current state. Suppose we have

a Monte Carlo model of protein-folding with the following distribution:

P ¼ fp1; . . . ; png:

We can generate a modified distribution by attaching a penalty of e�kri to each

state, where ri is the radius of gyration of state qi and k is a scaling constant. Then

we get the new distribution

P̂P ¼ fp1e�kr1=Z; . . . ; pne
�krn=Zg;

where Z is a scaling factor used to make the probabilities sum to 1. We can sample

from this new distribution by multiplying the ratio pj=pi by e�kðrj�riÞ when picking

our Metropolis moves. The result will be a sampler of P̂P that is likely to sample

compact states more quickly. When we believe we have adequately sampled the dis-

tribution, we can then convert P̂P into P by retroactively scaling the states we have

sampled. We know each ri and can therefore find the vector P 0, defined as

p 0i ¼ bpipi � ekri ¼ pi=Z:

We can then solve for Z using the fact that since P is a probability distribution,
P

i pi ¼ 1:

Z ¼
X

i

p 0i

 !�1

:

Finally, we can estimate

pi ¼ p 0i � Z:

For su‰ciently many trials, we will expect this procedure to derive the same esti-

mates as if we had not used importance sampling. Our modified method should,

however, perform these estimates more quickly. In particular, it should give us a

more accurate sample of the compact states quickly.

9.3.1 Umbrella Sampling

There is a special case of importance sampling, called umbrella sampling, commonly

used in statistical physics problems to give more accurate estimates of frequencies of

rare events in a model. For example, imagine that we have a protein that has been

destabilized by a mutation. It spends most of its time correctly folded, but occasion-

ally unfolds. We would like to understand how that protein behaves when it is in an

9.3 Importance Sampling 155

unfolded form. We might, for example, be concerned with whether it maintains its

secondary structure when it loses its tertiary structure, or how often some crucial

binding pocket is formed when it is mostly unfolded.

Umbrella sampling proceeds in essentially the same way as general importance

sampling, but is biased so that our modified chain spends a disproportionate amount

of time in the portion of space we want to estimate accurately. For our mutant pro-

tein problem, we may simply reverse the weight function we used in the preceding

protein-folding example to illustrate importance sampling. That is, we can create a

model in which we provide extra weight to states with large radii of gyration by using

weight terms of the form eþkri=Z. We can then proceed exactly as in the previous sec-

tion to estimate P̂P and convert it into an estimate of P:

1. Scale each Metropolis ratio
pj
pi
by ekðrj�riÞ to get a sampler for distribution P̂P.

2. Scale each estimated bpipi by e�kri to get p 0i ¼ pi=Z.

3. Solve for Z ¼ ð
P

p 0i Þ
�1.

4. Find the unbiased estimates pi ¼ p 0i � Z.

As before, su‰ciently long runtimes will yield identical estimates of P whether or

not we use umbrella sampling. With the protocol we describe above, though, the

model will tend to quickly find accurate samples of the rare space we elevated in

weight. The overall model, however, will tend to converge more slowly on an accu-

rate stationary distribution because states with high equilibrium frequency will now

rarely be sampled.

9.3.2 Generalizing to Other Samplers

Although the examples assumed we were sampling from Metropolis models, that is

not a necessary assumption to importance or umbrella sampling. The same basic

procedure will work no matter how we choose to estimate the distribution. For

example, suppose we want to sample from a distribution of many variables

pðx1; . . . ; xnÞ and are interested in the probability space in which some particular xi
is large. We can construct a Gibbs sampler of p and weight each state by exi when

varying xi to derive a Gibbs sampler of some p̂p biased toward large xi. We can then

adjust the final estimated probabilities by e�xi to convert the probabilities derived

from the p̂p sampler into an estimate of the stationary distribution of p. As long as

we have a sampling method that allows us to weight particular parts of the distribu-

tion, we can use the methods above to perform importance sampling or umbrella

sampling.

We can even do this with continuous distributions, just as we could with a Gibbs

sampler. For example, suppose we define a continuous model of the mutant protein

example we considered above. We may, for instance, define a molecular dynamics

energy function for our protein structure Eð~CCÞ, where ~CC is our protein’s conforma-

156 9 Markov Chain Monte Carlo Sampling

tion expressed as a point in a continuous, high-dimensional parameter space (e.g., a

vector of f-c angles.) Our protein’s time evolution would be expressed deterministi-

cally by the following second-order di¤erential equation:

d 2~CC

dt2
¼ �M�1‘Eð~CCÞ;

where M is a matrix with atom masses on the diagonal for each degree of freedom.

We can convert this expression to a system of first-order equations:

d~VV

dt
¼ �M�1‘Eð~CCÞ

d~CC

dt
¼ ~VV :

From there, we can create a probabilistic model of the protein’s movement in con-

tinuous space using stochastic di¤erential equations, a technique we will see in chap-

ter 16:

d~VV ¼ �M�1‘Eð~CCÞ dtþ mM�1 d ~WW

d~CC ¼ ~VV dt;

where d ~WW is a vector of normal random variables representing Brownian noises act-

ing on each degree of freedom of the model. Stochastic integration of these equations

will then provide a continuous sampler of a probability distribution describing the

range of motion of the protein in the presence of Brownian noise. We can directly

integrate this model to study the protein’s dynamics, but it may be very slow if the

protein only rarely unfolds. If we want to selectively sample the unfolded space by

umbrella sampling, we may change our energy function as follows:

E 0ð~CCÞ ¼ Eð~CCÞ � krð~CCÞ;

where r now specifies the radius of gyration of the continuous-space model ~CC. We

can then integrate

d~VV ¼ �M�1‘E 0ð~CCÞ dtþ mM�1 d ~WW

d~CC ¼ ~VV dt

to sample the probability space biased toward unfolded chains. If we then want to

know, for example, the fraction of time the radius exceeded some r0, we can take

the states at all time points simulated by the biased model, scale each by ekrð
~CCÞ=kbT

to cancel the e¤ect of the biasing energy, and rescale the whole set by the sum of

9.3 Importance Sampling 157

these scaling factors to get a corrected distribution from the original probability

space. The weighted sum of states for which rð~CCÞ > r0 will be an estimate of our

desired probability that will be expected to provide accurate probabilities for the

unfolded states much more quickly than if we have used the uncorrected SDEs. We

can also ask questions about properties of the chain when it is unfolded, such as how

often r > r0 and a given hydrogen bond is formed, or how often r > r0 and two given

amino acids are within 1 nm of one another.

References and Further Study

The topics in this section are commonly covered in probability texts of various levels.

Several we have seen previously are fine references for these topics, including Roza-

nov [108] and Ross [102]. Hochbaum [56] is a good reference for the use of sampling

methods as heuristics for optimization. These techniques are also widely used in

statistical applications for sampling from complicated densities, and a good text on

statistical modeling is likely to have some coverage of them. Wasserman [112], for

example, provides coverage of all of the samplers we have seen here.

Primary references are available for several of the topics covered here. The Me-

tropolis method was first described in a seminal paper by Metropolis et al. [7], which

remains one of the most widely cited papers in the entire scientific literature. The

simulated annealing method is due to Kirkpatrick et al. [51] and Cerny [52]. Al-

though Gibbs sampling was named after the physicist J. W. Gibbs, it was actually

invented by Geman and Geman [113]. Importance sampling is considered part of

the basic knowledge of the statistical sampling field, and I have never seen a primary

citation for the method in general. The umbrella sampling method was developed by

Torrie and Valleau [114].

158 9 Markov Chain Monte Carlo Sampling

10 Mixing Times of Markov Models

When we first introduced Markov models in chapter 8, we briefly discussed the con-

cept of mixing time: the time it takes for a Markov model to approximately reach its

stationary distribution. As we saw in chapter 9, we will often design a Markov model

so that its stationary distribution will be some probability distribution we care about

but that is di‰cult to state explicitly. It is therefore important to know how long we

need to run the model to estimate the stationary distribution accurately. We saw that

we could get an approximate idea of the mixing times for some Markov models by

looking at the eigenvalues of the transition matrix. When we cannot explicitly state

the transition matrix, perhaps because it is too large, or we cannot find its eigenval-

ues, then we need some other options. In this chapter, we will explore some theoreti-

cal methods we can use to put rigorous bounds on the mixing time. Much of the

material in this chapter is derived from a chapter on the topic by Sinclair and Jerrum

in Hochbaum [56].

For the remainder of this chapter, we will make the following assumptions about

our Markov models:

1. ergodicity

2. pii b
1
2 for all i

3. detailed balance ðpipij ¼ pjpji ¼ QijÞ.

It is not generally meaningful to talk about the stationary distribution for a nonergo-

dic Markov chain, so that is not a di‰cult criterion on which to insist. If the second

condition is not satisfied for a model of interest, it is easy to convert the model to one

that has the same stationary distribution and does satisfy the condition by cutting all

of the non-self-transition probabilities in half and then adding 1
2 to all of the self-

transition probabilities. This operation will exactly double the mixing time by caus-

ing the model to linger in each state chosen for an average of two steps, but it will not

change the equilibrium state distribution. The third condition is trickier. If we have

a distribution from which we want to sample, then we can easily define a model to

satisfy the third condition if we know the ratios between the equilibrium probabilities

of neighboring states. We assign a transition probability in one direction for each

edge, and the ratio tells us the transition probability in the other direction needed to

satisfy detailed balance. In the Metropolis–Hastings method, for example, we can

determine the ratios of the transition probabilities from the energy di¤erences be-

tween the states. If we do not know these ratios, it is not necessarily easy to design a

model satisfying detailed balance. It is, however, possible to determine after the fact

if a given model does satisfy detailed balance. This is established by the Kolmogorov

criterion:

p12 � p23 � � � � � pk�1;k � pk1 ¼ p1k � pk;k�1 � � � � � p3;2 � p21

for all cycles q1; . . . ; qk, q1 in the graph. The criterion tests whether the probability of

moving around a cycle in one direction is equal to the probability of moving around

the cycle in the other direction, for all cycles in the graph. If the model satisfies the

Kolmogorov criterion, then it has a stationary distribution obeying detailed balance.

10.1 Formalizing Mixing Time

Before we can talk about formal bounds on the mixing time, we need to be more

rigorous about what we mean by mixing time. To do so, we first need to define a

concept called the variation distance, where we follow Jerrum and Sinclair’s termi-

nology:

DqðtÞ ¼ max
SJQ

PrfqðtÞ A S j qð0Þ ¼ qg �
X

qi AS

pi

�
�
�
�
�

�
�
�
�
�

¼ 1

2

X

qi AQ

jPrfqðtÞ ¼ qi j qð0Þ ¼ qg � pij;

where, as previously, Q is the state set, qðtÞ is the state at time t, and pi is the station-

ary probability of state i. Variation distance is a measure of how much the distribu-

tion of states at time t di¤ers from the distribution at equilibrium, given some

starting state q. There is an alternative definition of variation distance that is some-

times more intuitive:

D ¼ max
i

PrfqðtÞ ¼ qig � pi

pi
;

but we will not use that latter definition here.

160 10 Mixing Times of Markov Models

We can define the mixing time formally in terms of the variation distance as

tqðeÞ ¼ minft jDqðt 0Þa e Et 0b tg:

In other words, the mixing time is the time at which the variation distance first

falls below some fixed e and remains there. Note that we are defining mixing time

relative to some fixed starting state q. We often really want to know the mixing time

maximized over all possible starting states, but that is an easy generalization to

make.

10.2 The Canonical Path Method

We will start looking at formal bounds on mixing time using a proof technique called

the canonical path method. In the canonical path method, we put a bound on the mix-

ing time by showing that, for most pairs of nodes, there is some path allowing rapid

transitions between those nodes. For each pair of nodes qi and qj, we will identify

one canonical path from qi to qj , which we will call gij. This can be any path in the

graph from qi to qj, although how we choose the path will a¤ect the tightness of

the mixing time bound. We will then define G to be the set of all canonical paths,

G ¼ fgij j qi; qj A Qg.
We then define the maximum edge loading of the canonical path set G to be

rðGÞ ¼ max
e AE

1

Qe

X

gij C e

pipjjgij j;

where E is the set of transitions in the Markov graph and Qe is pipij for e ¼ ðqi; qjÞ.
Our goal will be to choose a set of canonical paths which ensures that the edge

loading is not too high for any edge in the graph. That will establish that it is in

some sense easy to get from any node to any other, and thus that the mixing time is

small.

Example We will now see how we would compute the maximum edge loading of a

sample graph. Suppose we want to simulate the Markov model of figure 10.1. The

stationary distribution of this graph is P ¼ 1
3

1
6

1
3

1
6

� �
, a fact we can verify by

showing that P satisfies detailed balance for the graph:

p1p12 ¼
1

3
� 1

8
¼ 1

6
� 1

4
¼ p2p21

p2p23 ¼
1

6
� 1

4
¼ 1

3
� 1

8
¼ p3p32

10.2 The Canonical Path Method 161

p3p34 ¼
1

3
� 1

8
¼ 1

6
� 1

4
¼ p4p43

p4p41 ¼
1

6
� 1

4
¼ 1

3
� 1

8
¼ p1p14:

We then need to define the canonical paths. We choose one canonical path for

each pair of states. Since we want to keep edge loading low, we want to avoid placing

too many paths through any edge and to avoid using low-capacity edges altogether.

In this case, it is fairly easy since we have only two choices for any pair of nodes:

clockwise or counterclockwise. We will declare that gij is clockwise for i < j and

counterclockwise for i > j.

We can then compute the maximum edge loading rðGÞ by examining the edge

loading for each edge ðqi; qjÞ:

r12 ¼
1

p1p12
ðp1p2jg12j þ p1p3jg13j þ p1p4jg14j þ p2p1jg21j þ p3p1jg31j þ p4p1jg41jÞ

¼ 24
1

3
� 1
6
� 1þ 1

3
� 1
3
� 2þ 1

3
� 1
6
� 3þ 1

6
� 1
3
� 1þ 1

3
� 1
3
� 2þ 1

6
� 1
3
� 3

� �

¼ 24
1

18
þ 4

18
þ 3

18
þ 1

18
þ 4

18
þ 3

18

� �

¼ ð24Þð16Þ
18

¼ 64

3

Figure 10.1
A Markov model graph with states and transition probabilities labeled.

162 10 Mixing Times of Markov Models

r23 ¼
1

p2p23
ðp1p3jg13j þ p1p4jg14j þ p2p3jg23j þ p2p4jg24j þ p3p1jg31j þ p4p1jg41j

þ p3p2jg32j þ p4p2jg42jÞ

¼ 24

�
1

3
� 1
3
� 2þ 1

3
� 1
6
� 3þ 1

6
� 1
3
� 1þ 1

6
� 1
6
� 2þ 1

3
� 1
3
� 2

þ 1

6
� 1
3
� 3þ 1

3
� 1
6
� 1þ 1

6
� 1
6
� 2
�

¼ 24
4

18
þ 3

18
þ 1

18
þ 1

18
þ 4

18
þ 3

18
þ 1

18
þ 1

18

� �

¼ ð24Þð18Þ
18

¼ 24:

The other cases are each equivalent to one of these two, so we can conclude that

the maximum edge loading in the graph is 24.

The reason we care about the edge loading is that we can use it to bound the mix-

ing time with the following theorem.

Theorem Given a finite, reversible, ergodic Markov chain with maximum edge load-

ing r, tqiðeÞa rðlnðp�1i Þ þ lnðe�1ÞÞ for any initial state qi.

Intuitively, what the theorem means is that if there is a set of paths allowing the

model to move quickly between all pairs of nodes, then the chain will mix rapidly.

For our example above, the maximum edge loading is 24 and the minimum pi is
1
6 .

Therefore, we can bound tqðeÞ by 24ðlnð6Þ þ lnðe�1ÞÞ.

Example We will now look at a more complicated, and biologically motivated, ex-

ample: mixing time of a simple model of DNA evolution. Suppose we have a model

of the evolution of a strand of DNA. We will assume there is no selective pressure;

bases randomly mutate over time according to some Markov process. We want to

know how long the process must run before we essentially have a random sequence.

This may be useful for inferring, for example, how long the similarity between two

common ancestors will be preserved, which we can use to understand when homol-

ogy approaches are likely to be successful.

Suppose we assume that we have a string of n bases (e.g., AACATGAT if n ¼ 8)

defining a Markov model with 4n states. We will assume that these evolve by some

random process and that each transition can flip a single DNA base. If mutation

is rare enough, then that should be a reasonable assumption. Thus, we will have a

transition between any pair of sequences that di¤er by a single base. Thus, AACAT-

GAT’s neighbors will be CACATGAT, GACATGAT, TACATGAT, ACCAT-

GAT, AGCATGAT, and so on. We may incorporate an estimate of the rate of

molecular evolution into the model by controlling the self-transition probabilities,

pii. For example, if bases flip an average of every 1000 generations, we may set

10.2 The Canonical Path Method 163

pii ¼ 0:999 for all i. For now, though, we will keep it simple and assume the follow-

ing transition probabilities:

pij ¼
1

6n
; i0 j

pii ¼
1

2
:

In this case, it is pretty obvious what the stationary distribution will be—all bases

will eventually become equally likely in all positions—but we want to know how

quickly we approach it. We will use the canonical path method to put a bound on

the mixing time.

We first need to verify that this model meets the preconditions of the canonical

path method:

� Ergodicity: We can transition from any sequence to any other by converting bases

one at a time wherever they di¤er between the two sequences. Therefore, we have

ergodicity.
� Self-transitions have probability of at least 1

2 . This is true by the design of the

model.
� Detailed balance: We can verify detailed balance by noting that all non-self-

transitions have the same probability 1
6n

� �
, so the product of the transition probabil-

ities along any cycle of length k is 1
6

� �k
, regardless of whether we take the cycle in the

forward or reverse direction. The model therefore satisfies the Kolmogorov criterion

and exhibits detailed balance.

Having verified that we can use the canonical path method for this model, we next

need to choose a set of canonical paths. Suppose we define the canonical path be-

tween any pair of sequences to be the path we will get by changing the bases that dif-

fer between them in the order they occur in the sequence. For example, the canonical

path from ATCCAG to GACTAC would be

ATCCAG! GTCCAG! GACCAG! GACTAG! GACTAC:

This procedure establishes a full canonical path set G.

We then need to establish rðGÞ. In this case, we know that each node will have sta-

tionary probability pi ¼ 1

4n . We can therefore infer that the capacity of each edge,

Qij , will be
1

4n � 1
6n

for all i and j. The hard part is figuring out which paths use any

given edge. For any particular edge that flips the kth base of its sequence, the paths

using that edge are those going from a starting node with the same su‰x following

base k as the edge’s endpoints to an ending node with the same prefix before base k

as the edge’s endpoints. For example, if we consider the edge

164 10 Mixing Times of Markov Models

Ak�1AAn�k ! Ak�1TAn�k;

which moves from a sequence of n As to a sequence with a T in position k, then the

canonical paths using that edge will be those of the form

Nk�1AAn�k ! � � � ! Ak�1TNn�k;

where an N stands for any base. We know this because we have chosen our paths

such that we flip base k after we have set the first k � 1 bases to their final values,

but before we have made any changes to bases k þ 1 to n.

Suppose we now pick some edge ðq1; q2Þ and evaluate its edge loading:

r ¼ 1

Q12

X

i; j; e A gij

pipj jgij j ¼ 6n� 4n
X

i; j; e A gij

1

4n �
1

4n � jgijj

¼ 6n� 4n � 1

4n �
1

4n

X

i; j; e A gij

jgij j ¼
6n

4n

X

i; j; e A gij

jgij j:

The number of paths of any given length m will correspond to the number of ways

of choosing m1 bases from the k � 1 prefix bases of the first node in the path and

m�m1 bases from the n� k su‰x bases of the last node in the path, then choosing

among the three possible ways to flip each base chosen. The choice of bases to flip is

equivalent to simply picking m bases from a set of size n� 1, n�1
m

� �
, giving us the fol-

lowing sum:

r ¼ 6n

4n 0� 1
n� 1

0

� �

þ 1� 3
n� 1

1

� �

þ 2� 32
n� 1

2

� ��

þ � � � þ ðn� 1Þ � 3n�1 n� 1

n� 1

� ��

¼ 6n

4n

Xn�1

i¼0
i3 i n� 1

i

� � !

:

Since we are trying to bound the mixing time, we do not need to solve exactly for

r. We just need to put a reasonably tight upper bound on it. We can do that by

replacing the factor of i in the sum with an upper bound of ðn� 1Þ, which can then

be pulled out of the sum as follows:

ra
6nðn� 1Þ

4n

Xn�1

i¼0
3 i n� 1

i

� �

:

10.2 The Canonical Path Method 165

We can then evaluate the sum, using the binomial theorem. The binomial theorem

says that ðaþ bÞm ¼
Pm

i¼0
m
i

� �
aibm�i for any a and b and any integer m. Plugging in

a ¼ 1, b ¼ 3, and m ¼ n� 1, we then get

ra
6nðn� 1Þ

4n ð1þ 3Þn�1

¼ 6nðn� 1Þ
4

:

Using this bound on r, we can put the following bound on the mixing time:

tqðeÞa
6nðn� 1Þ

4
ðlnð4�nÞ þ lnðe�1ÞÞ ¼ Oðn3 þ n2 lnðe�1ÞÞ:

In other words, we can show that a number of steps cubic in the number of bases is

su‰cient for this Markov chain to mix e¤ectively. A chain that mixes in a number of

steps polynomial in its parameters is called a rapidly mixing Markov chain.

10.3 The Conductance Method

If we have trouble proving a good mixing time with the canonical path method, we

can try an alternative called the conductance method. Intuitively, the conductance

method estimates how prone the model is to getting stuck in some subset of the

states. If it is unlikely to be stuck in any subset of states for very long, then its mixing

time must be short. More formally, we will define the conductance out of a given

state set S to be

fðSÞ ¼
P

qi AS;q j BS
Qij

PðSÞ ;

where PðSÞ ¼
P

i;qi AS
pi. The conductance of the full Markov model is then defined

to be the minimum conductance over all choices of S for which PðSÞ is at most 1
2 :

F ¼ min
SHQ;0aPðSÞa0:5

P
qi AS;qj BS

Qij

PðSÞ :

For example, given our Markov model from figure 10.1, the conductances we

would get for di¤erent possible choices of S are as follows:

S ¼ fq1; q2g:

Q14 þQ23

p1 þ p2
¼ 1=24þ 1=24

1=3þ 1=6
¼ 1=12

1=2
¼ 1

6

166 10 Mixing Times of Markov Models

S ¼ fq2; q4g:

Q12 þQ14 þQ23 þQ24

p2 þ p4
¼ 1=24þ 1=24þ 1=24þ 1=24

1=6þ 1=6
¼ 1=6

1=3
¼ 1

2

S ¼ fq1g:

Q12 þQ14

p1
¼ 1=24þ 1=24

1=3
¼ 1=12

1=3
¼ 1

4

S ¼ fq2g:

Q21 þQ23

p2
¼ 1=24þ 1=24

1=6
¼ 1=12

1=6
¼ 1

2
:

The other cases will all be equivalent to one of these, so we can conclude that the

conductance of the model is F ¼ 1
6 .

We can use the conductance to establish a bound on the mixing time by the follow-

ing theorem:

Theorem Given a finite, ergodic, reversible Markov chain with pii b
1
2 for all i,

which has conductance F, tqiðeÞa 2F�2ðlnðp�1i Þ þ lnðe�1ÞÞ.
Thus, for the example system above, we can say that tqiðeÞa 2� 36�

ðlnð6Þ þ lnðe�1ÞÞ ¼ 72ðlnð6Þ þ lnðe�1ÞÞ. In this case, we get a slightly worse bound

than we do using the canonical path method. In other cases, the conductance method

may yield a tighter bound, depending on the specific Markov model and the canoni-

cal paths chosen.

Example We will now examine how the conductance method might apply to a more

involved example, a bounded random walk. A random walk is a kind of Markov

process in which we assume we have a particle on some grid and we allow it to

move randomly to adjacent grid points. Random walks are often used as models of

di¤usive processes, such as movement of a molecule under Brownian motion. In a

bounded random walk, we assume that there are boundaries the particle cannot

move beyond. For example, figure 10.2(a) shows a Markov model corresponding to

a one-dimensional bounded random walk. We want to know how long we need to

run this model in order to get it to mix su‰ciently, uniformly randomizing the parti-

cle position. We will use the conductance method to establish a bound.

First, we need to see if our model fits the preconditions for these methods:

� Ergodicity We can get from any position in the walk to any other by stepping be-

tween consecutive positions, so the model is ergodic.

10.3 The Conductance Method 167

� Detailed balance The graph has no cycles, which means that it trivially satisfies

the Kolmogorov criterion. In fact, any Markov model whose underlying graph is a

tree (neglecting self-loops and directed edges) will satisfy the Kolmogorov criterion,

and therefore will satisfy detailed balance.
� Self-transitions have a probability of at least 1

2 This condition is not satisfied for

our model, so we will need to convert to a nearly equivalent model that does satisfy

it. Suppose we cut all non-self-transition probabilities in half and then correct the

self-probabilities accordingly. We will then get the model of figure 10.2(b), which

has the same stationary distribution and exactly twice the mixing time of the model

in figure 10.2(a). If we bound the mixing time of this modified model, then we will

have shown that the original model has a mixing time with half that bound.

We next need to find S minimizing

P
qi AS; qj BS

Qij

PðSÞ , which we can denote QðS; SÞ
PðSÞ . Sup-

pose we try picking S ¼ fq1; . . . ; qkg. Then we can leave the set only by the edge

ðqk; qkþ1Þ. All adjacent pairs of nodes in the model have transition probabilities

pij ¼ pji, which tells us that all states have the same stationary probability, 1
n
. There-

fore, we can establish the capacity of the edge ðqk; qkþ1Þ to be pkpk;kþ1 ¼ 1
n
� 1

4 , since

we cut non-self-transition probabilities in half. Furthermore, PðSÞ will be k
n
. Thus,

Figure 10.2
Markov model defining a one-dimension random walk. (a) The initial Markov model. (b) A modification
of the model with the same stationary distribution but self-transition probabilities of at least 1

2 . (c) A pos-
sible choice of state subsets we need to consider in bounding the conductance F.

168 10 Mixing Times of Markov Models

QðS; SÞ
PðSÞ ¼

1=n� 1=4

k=n
¼ 1

4k

for S ¼ fq1; . . . ; qkg.
This is a nice bound, but we cannot use it yet because we do not know if we chose

the right S. With the canonical path method, we can choose our canonical paths, but

with the conductance method we cannot choose our subset S. We need to find the S

that gives us the minimum conductance. It may be, for example, that S is some arbi-

trary collection of ‘‘islands’’ of state space like that in figure 10.2(c). It may be hard

to determine rigorously which of the possible configurations will give us minimum

conductance.

Fortunately, though, we are only seeking to put an upper bound on mixing time,

which requires only that we find a lower bound on the conductance. Suppose that we

choose some arbitrary set of k ‘‘islands’’ containing m total states. Then our conduc-

tance will be the sum over the edges exiting from the endpoints of the islands. There

must be at least 2k � 2 such endpoints (in the worst case, our islands include the first

and last node), and there cannot be zero if there is any state not in S. Each island

endpoint contributes a value of pipi; iþ1 ¼ 1
4n to the conductance. Thus,

QðS; SÞb 2k � 2

4n
:

We need to consider k ¼ 1 as a special case, or we will get a bound of zero. There

must be at least one edge out of a single state, so for the k ¼ 1 case

QðS; SÞb 1

4n
:

Furthermore, PðSÞ ¼ m
n
. Therefore, we can set the following lower bounds on the

possible conductance F:

QðS; SÞ
PðSÞ b 2k�2

4n � n
m
¼ 2k�2

4m ; k > 1

QðS; SÞ
PðSÞ b 1

4n� n
m
¼ 1

4m ; k ¼ 1

8
<

:

We can minimize this by choosing k ¼ 1 and setting m as large as possible. PðSÞ
can be at most 1

2 , so the worst case is m ¼ n
2 . Choosing k ¼ 1, m ¼ n

2 , we get that the

conductance is bounded by

Fb
1

2n
:

10.3 The Conductance Method 169

We can then bound the mixing time as follows:

tqðeÞa 2
1

2n

� ��2
ln

1

n

� ��1
þ lnðeÞ�1

 !

¼ 8n2 ln
1

n

� ��1
þ lnðeÞ�1

 !

¼ Oðn2 ln nþ n2 ln e�1Þ:

Recall that we slowed our Markov chain down by a factor of 2 in order to satisfy

the condition of self-loop probabilities at least 1
2 , so our original chain should actu-

ally mix twice as fast as this. In any event, though, our chain is rapidly mixing, and

we can show that its mixing time is at worst Oðn2 log nÞ.
In general, we will not know the stationary distribution for this kind of problem,

so we will need to use bounds for that as well. As long as we can lower-bound con-

ductance (or upper-bound maximum edge loading), we can put some sort of bound

on the mixing time.

10.4 Final Comments

We have been using these theorems on the assumption that we are provided the Mar-

kov model and wish to analyze it. In practice, we usually design the model, and our

task is to design one that is rapidly mixing. For example, we may know ratios of

equilibrium values between states, as with thermodynamic equilibrium distributions,

and will want to design a Markov model that rapidly approaches the right equilib-

rium. If we use a Metropolis model, then we get to choose the edge set, even though

the transition probabilities are fixed for us, given the edge set. We can also apply im-

portance sampling to adjust the transition probabilities for a given edge set. We can

consider the bounding methods covered in this chapter as guidelines for how to make

a good (i.e., rapidly mixing) model, rather than just a way to prove things about a

model given to us. For example, if we design a model, we want to design it so we

do not place too much load on any edge, avoiding bottleneck edges that can slow

down mixing. We also want to design it so there are no ‘‘trapped’’ subsets of states

that are hard to exit once the model enters them.

References and Further Study

The standard reference for this topic is a chapter in Hochbaum [56] written by two

of the inventors of this field, Alisdair Sinclair and Mark Jerrum; it was the primary

source in developing the material presented here. That chapter was the source of the

mixing time notation and of the two theorems cited here establishing mixing time

bounds from edge loading and conductance. Sinclair and Jerrum focus on mixing

170 10 Mixing Times of Markov Models

time bounds in the context of finding solutions to computationally intractable opti-

mization and counting problems, but the techniques are nonetheless more broadly

applicable. For example, they include an extended example using the techniques to

study equilibria of monomer–dimer systems, which may be of direct interest to read-

ers of this text.

Those interested in the primary literature can refer to Sinclair and Jerrum [115] for

the conductance method and to Sinclair [116] for the canonical path method. There

is also an extensive literature on uses of the methods for various specific applications,

which may be useful to readers looking for additional illustrative examples of their

use in practice. Hochbaum provides a good starting point for a search for these

methods. The field has advanced considerably since that text was written, though,

and a manual literature search may be necessary for those interested in learning the

state of the art in the use of these and other mixing-time bounding techniques.

References and Further Study 171

11 Continuous-Time Markov Models

So far, we have seen Markov models that describe purely discrete processes. That is,

they move between discrete sets of states at discrete points in time. In this chapter, we

will see a way of generalizing Markov models to consider at least continuous evolu-

tion of time, even though the state set is still discrete. A continuous-time Markov

model (CTMM) moves through a state set like a standard Markov model, but allows

the time per step to vary according to a continuous distribution. The time change be-

tween states can be thought of as either the time required to leave the current state or

the time required to enter the next state. We will refer to this as a waiting time. The

result is a class of model in which we can consider not just which sequence of steps

we take, but also when we take them. As we will see in this chapter and chapters 12

and 17, these models are very useful in describing several important systems in biol-

ogy, ranging from molecular evolution to reaction chemistry.

11.1 Definitions

In order to describe the evolution of Markov models over continuous time, we need

to generalize the notion of a transition matrix to incorporate the times at which

transitions occur. Instead of defining a constant transition probability pij as the prob-

ability of going from qi to qj, we instead have a function pijðtÞ representing the prob-

ability of being in qj at time t, given that we were in qi at time 0. That is:

pijðtÞ ¼ PrfqðtÞ ¼ qj j qð0Þ ¼ qig:

For a CTMM, the functions pij cannot be chosen arbitrarily, however. We want to

define our models in such a way that they are ‘‘memoryless,’’ meaning that what hap-

pens next in the model depends only on the current state and not on any prior state

or on the current time. This is an extension of the standard Markov model property

that what the model does next depends only on its current state. In other words,

pijðtÞ ¼ PrfqðtÞ ¼ qj j qð0Þ ¼ qig ¼ Prfqðsþ tÞ ¼ qj j qðsÞ ¼ qig Es > 0:

It turns out that this property can be satisfied only if the waiting times are

described by exponential random variables. Thus the model will move through its

states with some set of transition probabilities, just like a standard Markov model,

but will also have attached to each transition an exponential random variable

describing how long it needs to make the transition. The parameter of the exponen-

tial random variable and the probability of the transition will have to be related to

one another, though, in ways that will become apparent shortly.

One way to think of how such a model works is to imagine each edge ði; jÞ having
a characteristic rate lij . If the model starts at state q1, then we can characterize its

behavior a short time later by considering how likely it is to move to any neighbor

state j over a very short span of time. We define this probability, pijðDtÞ for i0 j,

to be lijDt for su‰ciently small Dt. This implies that piiðDtÞ ¼ 1� ð
P

j0i lijÞðDtÞ.
The waiting times for any nonzero Dt in this model will be geometrically distributed

with probability 1� piiðDtÞ. In the limit, however, as Dt goes to zero (shrinking the

probability of movement and the time elapsed per step), these discrete geometric

waiting time distributions will approach continuous exponential distributions.

This realization leads to an alternative but equivalent way to understand CTMMs.

We can think of each possible transition out of a node as having its own waiting time

distribution, an exponential random variable. This exponential random variable will

have parameter lij , the same lij as in the previous representation. A move is accom-

plished by sampling from all of the waiting time distributions and choosing the

smallest one. Suppose we are at state q1 of our model and we examine the transitions

out of that state. Then we can imagine that each neighbor state has an independent

timer attached to it with its own characteristic rate. State q2’s timer waits an amount

of time described by an Expðl12Þ random variable, state q3’s timer waits an amount

of time described by an Expðl13Þ random variable, and state q4’s timer waits an

amount of time described by an Expðl14Þ random variable. When the first timer

goes o¤, we move to the corresponding state and start a new set of timers based on

transition rates out of the new state. That gives us a simple way to simulate a

CTMM, shown in figure 11.1.

Example Suppose we have the CTMM of figure 11.2. Then we may start in state q1.

We sample two exponential random variables:

t12 Expðl12Þ

t14 Expðl14Þ

If t12 < t14, we move to q2 and update the time to t12. Otherwise we move to q4 and

update the time to t14.

Suppose we end up in state q2 at time t2. Then we sample waiting times for the two

neighbors

174 11 Continuous-Time Markov Models

t21 Expðl21Þ

t23 Expðl23Þ:

If t21 < t23, we move to q1 and update the timer to t12 þ t21. Otherwise we move to q3
and update the time t12 þ t23.

11.2 Properties of CTMMs

This second definition of CTMMs is also convenient for studying some of their

properties. Suppose we are in state qi and we have a set of k transitions out of qi
with rates l1; . . . ; lk. We can then ask some questions about how our CTMM will

behave.

Figure 11.1
Pseudocode for simulating a CTMM.

Figure 11.2
A CTMM with associated edge rates.

11.2 Properties of CTMMs 175

How long we can expect to remain in qi? We will leave qi at a time described by

the minimum of k exponential random variables. This minimum, minfExpðl1Þ;
Expðl2Þ; . . . ;ExpðlkÞg, is itself a random variable and has a simple closed-form

expression:

PrfminfExpðl1Þ;Expðl2Þ; . . . ;ExpðlkÞg > tg

¼ PrfExpðl1Þ > t5Expðl2Þ > t5� � �5ExpðlkÞ > tg:

Because the distributions are independent, we can say this is equal to the

following:

PrfExpðl1Þ > tg � PrfExpðl2Þ > tg � � � � � PrfExpðlkÞ > tg

¼ e�l1t � e�l2t � � � � � e�lkt

¼ e�ðl1þl2þ���þlkÞt:

This final expression is equal to

PrfExpðl1 þ l2 þ � � � þ lkÞ > tg;

which is exactly the distribution for an Expðl1 þ l2 þ � � � þ lkÞ random variable.

That is,

minfExpðl1Þ;Expðl2Þ; . . . ;ExpðlkÞg ¼ Exp
Xk

j¼1
lj

 !

:

So we know that the time we spend in state qi is exponentially distributed with pa-

rameter
Pk

j¼1 lj. The mean of an exponential with parameter l is l�1, so we expect

to spend ð
Pk

j¼1 ljÞ
�1 units of time in qi before moving to some qj.

What is the probability we will go to any given qj next? What we are asking is the prob-

ability that a particular ExpðljÞ has the minimum value over all of the exponential

distributions we sample at a given step. We can first simplify a bit by noting that

this is equivalent to asking the probability that ExpðljÞ < minj 00jfExpðlj 0 Þg ¼
Expð

P
j 00j lj 0 Þ. Let us define l� ¼

P
j 00j lj 0 . Then we want to know

PrfExpðljÞ < Expðl�Þg, which we can evaluate as follows:

ðy

0

ðy

x

l�e�l
�y dy

� �

lje
�ljx dx ¼

ðy

0

ðe�l
�xÞlje�ljx dx

¼
ðy

0

lje
�ðljþl �Þx dx ¼ lj

lj þ l�
¼ lj

l1 þ � � � þ lk
:

176 11 Continuous-Time Markov Models

Thus, the probability of going to any given state j out of the k possible states is

proportional to the rate of the transition to state j relative to the other rates.

Example Let us use these facts to look at a real-world system we may model by a

CTMM: particle interactions in a simple trimer system. Suppose we have a solution

with three proteins in it: A, B, and C. The proteins are capable of forming a trimer,

ABC, and can do this by any of three possible reaction pathways:

1. A binds B to form AB, then AB binds C to form ABC.

2. A binds C to form AC, then AC binds B to form ABC.

3. B binds C to form BC, then BC binds A to form ABC.

Let us suppose that we have a series of rate constants for each of these possible

transitions: lAþB, lAþC , lBþC , lABþC , lACþB, and lBCþA. Then the time for that in-

teraction to occur will be distributed as the minimum of the times for each of the

three possible dimerization reactions to occur. In general, the time to the next reac-

tion in such a system will be distributed as the minimum of the times to all possible

next reactions. Thus, a CTMM provides a good description of such a system. This

particular system is represented by the CTMM of figure 11.3.

Given this model, we can ask about some properties of the system. For example,

what are the probabilities of following each of the pathways? We can evaluate these

probabilities by noting that if we do not allow reversible bonds, then the pathway

chosen is entirely determined by the first step in the pathway. The probability of

choosing the first pathway is then the probability of taking transition Aþ B! AB

first. This is given by

lAþB
lAþB þ lAþC þ lBþC

:

Similarly, the probability of taking the second pathway is

Figure 11.3
A CTMM model for a heterotrimer system.

11.2 Properties of CTMMs 177

lAþC
lAþB þ lAþC þ lBþC

;

and the probability of taking the third pathway is

lBþC
lAþB þ lAþC þ lBþC

:

We can also ask what the overall expected rate of trimer formation for the model

will be. The first step has time distributed as ExpðlAþB þ lAþC þ lBþCÞ. If we take

the first option, which happens with probability lAþB
lAþBþlAþCþlBþC , then the remaining

time required will be described by an ExpðlABþCÞ random variable. Likewise, if

we take the second option, which happens with probability lAþC
lAþBþlAþCþlBþC , then the

remaining time required will be described by an ExpðlACþBÞ random variable; and

if we take the third option, which happens with probability lBþC
lAþBþlAþCþlBþC , then the

remaining time required will be described by an ExpðlBCþAÞ random variable. Put-

ting this together, the total expected time for the trimer formation is described by

E½ExpðlAþB þ lAþC þ lBþCÞ� þ
lAþB

lAþB þ lAþC þ lBþC
E½ExpðlABþCÞ�

þ lAþC
lAþB þ lAþC þ lBþC

E½ExpðlACþBÞ� þ
lBþC

lAþB þ lAþC þ lBþC
E½ExpðlBCþAÞ�

¼ 1

lAþB þ lAþC þ lBþC
þ lAþB
ðlAþB þ lAþC þ lBþCÞlABþC

þ lAþC
ðlAþB þ lAþC þ lBþCÞlACþB

þ lBþC
ðlAþB þ lAþC þ lBþCÞlBCþA

¼ lABþClACþBlBCþA þ lAþBlACþBlBCþA þ lAþClABþClBCþA þ lBþClABþClACþB
lAþB þ lAþC þ lBþC

:

That tells us that the overall rate of the reaction is

lAþB þ lAþC þ lBþC
lABþClACþBlBCþA þ lAþBlACþBlBCþA þ lAþClABþClBCþA þ lBþClABþClACþB

:

11.3 The Kolmogorov Equations

The sort of analysis we did above will help us learn some basic properties of rela-

tively simple CTMMs, but there is a more general way to evaluate the time evolution

of a CTMM, using the Kolmogorov equations. To present them, we first need to de-

178 11 Continuous-Time Markov Models

fine some terms. Assume we have a CTMM with n states, with rate lij between any

pair of states qi and qj . Further define for each state qi a self-transition rate lii, where

lii ¼ �
X

j0i

lij:

Finally, define

pijðtÞ ¼ PrfqðtÞ ¼ qj j qð0Þ ¼ qig

as at the beginning of the chapter. Then the time evolution of the Markov model is

described by the following sets of di¤erential equations:

dpijðtÞ
dt
¼
Xn

k¼1
pikðtÞlkj ðforward Kolmogorov equationsÞ

or, equivalently,

dpijðtÞ
dt
¼
Xn

k¼1
likpkjðtÞ ðbackward Kolmogorov equationsÞ:

Essentially, the forward Kolmogorov equations say that the rate at which the

model moves into state qj is determined by the sum over all intermediate states qk
of the probability of being in qk times the instantaneous rate of movement from qk
to qj. The backward Kolmogorov equations say that the rate of movement from qi
to qj is the sum over instantaneous rates of movement from qi to any intermediate

state qk times the probability of moving from qk to qj in time t. The Kolmogorov

equations are essentially a continuous-time extension of the Chapman–Kolmogorov

equations we saw in the context of discrete-time Markov models.

The Kolmogorov equations can be represented more concisely in a matrix format:

dPðtÞ
dt
¼ LPðtÞ;

where PðtÞ is a matrix whose entries are the pijðtÞ functions and L is the transition

rate matrix, where entry ði; jÞ is lij . In the scalar case,

dpðtÞ
dt
¼ lpðtÞ

is solved by

pðtÞ ¼ pð0Þelt:

11.3 The Kolmogorov Equations 179

In the matrix case, the system is similarly solved by

PðtÞ ¼ Pð0ÞeLt;

except that we have to define what it means to use a matrix as an exponent. We de-

fine eLt for matrix L using the Taylor series for ex centered on x ¼ 0:

eLt ¼
Xy

i¼0

ðLtÞ i

i!
:

Therefore, the solution to the Kolmogorov equations is

PðtÞ ¼ Pð0Þ
Xy

i¼0

ðLtÞ i

i!
:

Unfortunately, that summation is generally going to be di‰cult to evaluate. We can

approximate the series using the following identity:

eLt ¼ lim
n!y

I þL
t

n

� �n
:

Plugging in a su‰ciently large n will give a reasonable estimate of the distribution

at any given point in time. We may also want to numerically integrate the Kolmo-

gorov equations, a topic we will cover in a subsequent chapter. It may also be possi-

ble to work with the model more e‰ciently by using more advanced linear algebra

concepts than we assume in this text. Nonetheless, we can sometimes get a useful

closed-form expression directly from the Kolmogorov equations, as we will see from

the following example.

Example Proline cis-trans isomerization. The amino acid proline is unusual in that

its side chain loops back from the alpha carbon to connect to its amino group. (It is

therefore technically an imino acid, not an amino acid.) It is possible for proline to

take on two isomeric forms, depending on whether the loop is pointing in the same

direction as or in the opposite direction from the carboxyl oxygen. These are called

the cis and trans isomers, and are illustrated in figure 11.4.

The trans isomer is favored by a factor of about 1000:1 thermodynamically, but

there is a high energy barrier to the conversion and it therefore happens slowly.

This isomerization is the rate-limiting step in some protein-folding reactions; the pro-

tein cannot fold properly until the prolines all shift into the right isomers. We can

represent the behavior of a single proline as a CTMM by declaring that state q0 is

the cis isomer and q1 is the trans isomer. We can then define lf ¼ l01 to be the rate

180 11 Continuous-Time Markov Models

of cis-trans isomerization and lr ¼ l10 to be the rate of trans-cis isomerization. We

can then ask, If we start out in the trans state, what is the probability we are still in

the trans state at some arbitrary time t? Or, if we start out in the cis state, what is the

probability we have moved and are in the trans state at time t? We can answer these

questions with the Kolmogorov equations.

First, we need to know the transition rate parameters of the model. The non-self-

transitions are already known to us:

l01 ¼ lf

l10 ¼ lr:

The self-transitions are defined to be lii ¼ �
P

j0i lij , giving us the following:

l00 ¼ �lf

l11 ¼ �lr:

These values give us the following forward Kolmogorov equations:

dp00ðtÞ
dt

¼ p00ðtÞl00 þ p01ðtÞl10 ¼ �lf p00ðtÞ þ lrp01ðtÞ

dp01ðtÞ
dt

¼ p00ðtÞl01 þ p01ðtÞl11 ¼ lf p00ðtÞ � lrp01ðtÞ

dp10ðtÞ
dt

¼ p10ðtÞl00 þ p11ðtÞl10 ¼ �lf p10ðtÞ þ lrp11ðtÞ

dp11ðtÞ
dt

¼ p10ðtÞl01 þ p11ðtÞl11 ¼ lf p10ðtÞ � lrp11ðtÞ:

Figure 11.4
Cis and trans isomerization of proline. (a) Molecular model showing the proline ring. (b) Model of the cis
and trans states.

11.3 The Kolmogorov Equations 181

If we look at two of these in isolation, we can simplify a bit:

dp00ðtÞ
dt

¼ �lf p00ðtÞ þ lrp01ðtÞ ¼ �lf p00ðtÞ þ lrð1� p00ðtÞÞ ¼ �ðlf þ lrÞp00ðtÞ þ lr

dp11ðtÞ
dt

¼ lf p10ðtÞ � lrp11ðtÞ ¼ lf ð1� p11ðtÞÞ � lrp11ðtÞ ¼ �ðlf þ lrÞp11ðtÞ þ lf :

In the above forms, we can solve for these two functions. In general,
dy

dt
¼ ayþ b is

solved by yðtÞ ¼ Ceat � b
a
. Plugging into that form gives us

p00ðtÞ ¼ C0e
�ðlfþlrÞt þ lr

lf þ lr

p11ðtÞ ¼ C1e
�ðlfþlrÞt þ lf

lf þ lr
:

If we then use the initial condition that p00ð0Þ ¼ p11ð0Þ ¼ 1 to set C0 and C1, we get

the following:

p00ðtÞ ¼ 1� lr

lf þ lr

� �

e�ðlfþlrÞt þ lr

lf þ lr

p11ðtÞ ¼ 1� lf

lf þ lr

� �

e�ðlfþlrÞt þ lf

lf þ lr
:

And since p01 ¼ 1� p00 and p10 ¼ 1� p11:

p01ðtÞ ¼ 1� lr

lf þ lr

� �

� 1� lr

lf þ lr

� �

e�ðlfþlrÞt ¼ lf

lf þ lr
ð1� e�ðlfþlrÞtÞ

p10ðtÞ ¼ 1� lf

lf þ lr

� �

� 1� lf

lf þ lr

� �

e�ðlfþlrÞt ¼ lr

lf þ lr
ð1� e�ðlfþlrÞtÞ:

We can therefore determine the exact distribution of the system at any point in

time from its initial distribution. If we take the limit as t goes to infinity, these equa-

tions also tell us that at equilibrium, the states are occupied proportionally to their

transition rates from one to another, no matter where we start, which is as we would

expect. Knowing the thermodynamic equilibrium thus tells us the ratios of the rates

to one another, although it cannot tell us the actual values of the rates.

We can extend this kind of model to a model of the states of N prolines in a larger

protein. We then need 2N states to represent the isomerizations of all N prolines. The

Kolmogorov equations can once again be used to analyze the time evolution of the

model, although the math becomes somewhat more involved.

182 11 Continuous-Time Markov Models

References and Further Study

There are many places one can learn more about continuous-time Markov models.

Two texts by Ross that we have previously encountered [103], [102], as well as a third

we have not yet seen [117], provide excellent coverage of the topic. Some of the clas-

sic references for the topic include Doob [118], Cox and Miller [119], Karlin [120],

and Resnick [121]. We have only scratched the surface of the theory of these models

here, and these references will provide greater depth. Readers may benefit from see-

ing coverage of this material specifically for scientific applications. Three options for

more applied treatments of this material are Wilkinson [110], van Kampen [122], and

Benedek and Villars [123]. CTMM models have many applications beyond biologi-

cal modeling, including modeling in other natural sciences, finance, and computer

systems, and readers interested in greater depth in these areas can turn to the litera-

tures for modeling in those fields as well.

References and Further Study 183

12 Case Study: Molecular Evolution

This is the second of our case study chapters, in which we look at how some of the

methods we have been studying have been applied to real-world systems in biology.

We will specifically look at some of the ways Markov models are used in studies of

molecular evolution. Markov models show up in many contexts in understanding

molecular evolution, from the level of single DNA bases up to whole populations of

organisms.

12.1 DNA Base Evolution

At a small scale, Markov models provide a way to describe how a single DNA base

behaves across multiple generations. Suppose we isolate one single DNA base in a

single-cell organism, then ask what base is found in the corresponding position of

each descendant of that organism along a single evolutionary lineage. That is, we

look at the corresponding base in one child of the original organism, one child of

that child, one child of that grandchild, and so on. For simplicity, we will assume

that the base is not under any selective pressure, meaning that there is no survival

advantage to having one allele (base value) rather than another. Usually, if we look

one or a few generations later, the ancestor and the descendant will have the same

allele. Many generations later, though, the base in the descendant will be indepen-

dent of that in the ancestor. We want to understand how we move between these

two extremes.

12.1.1 The Jukes–Cantor (One-Parameter) Model

One way to study this problem is to treat it as a purely discrete process. Each gener-

ation, we have a new organism with its own base. It would seem reasonable to as-

sume that the base in one generation depends only on the base in the immediately

previous generation. The sequence of bases over a single line from ancestor to

descendants is then a Markov chain. The Markov model has four states correspond-

ing to the four possible bases, which we can call qA, qC , qG, and qT .

The simplest such model of base evolution assumes that on each generation we are

equally likely to change the current base to any of the three remaining possibilities.

This is known as the Jukes–Cantor model. The Jukes–Cantor model is described by a

single parameter, l. In terms of this parameter, the model has the following transi-

tion matrix:

M ¼

1� 3l l l l

l 1� 3l l l

l l 1� 3l l

l l l 1� 3l

2

6
6
6
4

3

7
7
7
5

In other words, we have probability l of moving to any particular di¤erent base and

1� 3l of staying with the current base. This matrix gives us the Markov model

graph of figure 12.1(a).

Once we have a Markov model describing the base evolution process, we can ap-

ply our tools for analyzing Markov models to understand how this model behaves

over long periods of time. For example, we can look at the eigenvalues and eigenvec-

tors of the matrix:

Figure 12.1
Markov graphs for the (a) Jukes–Cantor and (b) Kimura models of base evolution.

186 12 Case Study: Molecular Evolution

x1 ¼

1=4

1=4

1=4

1=4

2

6
6
6
4

3

7
7
7
5
; x2 ¼

1=2

�1=2
0

0

2

6
6
6
4

3

7
7
7
5
; x3 ¼

1=4

1=4

�1=2
0

2

6
6
6
4

3

7
7
7
5
; x4 ¼

1=6

1=6

1=6

�1=2

2

6
6
6
4

3

7
7
7
5
;

l1 ¼ 1; l2 ¼ 1� 4l; l3 ¼ 1� 4l; l4 ¼ 1� 4l:

We can then determine the probability of observing any given base after k genera-

tions by explaining the initial distribution in terms of eigenvectors:

Mk

1

0

0

0

2

6
6
6
4

3

7
7
7
5
¼ 1k

1=4

1=4

1=4

1=4

2

6
6
6
4

3

7
7
7
5
þ ð1� 4lÞk

1=2

�1=2
0

0

2

6
6
6
4

3

7
7
7
5

þ 2

3
ð1� 4lÞk

1=4

1=4

�1=2
0

2

6
6
6
4

3

7
7
7
5
þ 1

2
ð1� 4lÞk

1=6

1=6

1=6

�1=2

2

6
6
6
4

3

7
7
7
5

We can then infer that as k goes to infinity, all the components except the first will

die away and the model will approach an equal probability of each base. We can also

determine the rate at which the transients die away from the preceding solution. All

eigenvalues but the first are 1� 4l, so the transients should decay geometrically by a

factor of 1� 4l per generation.

For a process like this, where the probability of base mutation per generation is

very small (perhaps 10�9), a discrete model is not usually particularly appropriate

because so many generations are needed to move away from the starting state. We

can therefore also consider a continuous version of the Jukes–Cantor model. For

example, we may say that one ‘‘unit’’ of time is 106 generations, and then we can

mostly ignore the fact that the process becomes discrete if we look at extremely small

numbers of time units.

In this variant, we say that there is an instantaneous rate l of moving from any base

to any other, giving us a continuous-time Markov model. This assumption then fixes

our self-transition rates at �3l. Given this model, we can use the Kolmogorov equa-

tions to determine the behavior over long time scales. For example, we can find the

probability that a base that was initially A remains A at time t as follows:

dpAA

dt
¼ �3lpAA þ lpAC þ lpAG þ lpAT

¼ �3lpAA þ lðpAC þ pAG þ pAT Þ

12.1 DNA Base Evolution 187

¼ �3lpAA þ lð1� pAAÞ

¼ �4lpAA þ l:

This di¤erential equation is solved by

pAAðtÞ ¼
1

4
þ Ce�4lt:

Applying the initial condition pAAð0Þ ¼ 1 gives us

pAA ¼
1

4
þ 3

4
e�4lt:

Thus, we can conclude that the model approaches an equilibrium with a 1
4 station-

ary probability of being in qA and that it approaches this equilibrium with a rate of

4l. By symmetry, pCC , pGG, and pTT will behave identically. Similarly, the probabil-

ity that A evolves into any other particular base, say T, at time t can be determined

as follows:

dpAT

dt
¼ lpAA þ lpAC þ lpAG � 3lpAT

¼ lð1� pAT Þ � 3lpAT

¼ �4lpAT þ l:

This di¤erential equation has the solution

pAT ðtÞ ¼
1

4
þ Ce�4lt:

Applying the initial condition pATð0Þ ¼ 0 then yields

pAT ðtÞ ¼
1

4
� 1

4
e�4lt:

By symmetry, any pij where i0 j will behave identically, approaching an equilib-

rium probability of 1
4 with rate 4l. Figure 12.2 plots these equations for l ¼ 1. All

probabilities converge on 1
4 , with pii decaying from 1 to 1

4 and pij increasing from 0

to 1
4 , both at rate 4l.

12.1.2 Kimura (Two-Parameter) Model

As we can see, Jukes–Cantor is a very tractable model mathematically, but it is not

very realistic biologically. There are many ways in which real molecular evolution

188 12 Case Study: Molecular Evolution

di¤ers from the simple assumptions of Jukes–Cantor. For example, bases are often

under selection. They may have very di¤erent mutation rates from one another,

depending on local sequence context. They may have a bias toward high GC or

high AT content, depending on organism or sequence type. Addressing these prob-

lems, though, will require a lot of other information that may not be available to

us. One flaw in the Jukes–Cantor model that can, however, be addressed without

too much case-specific knowledge is that a base is not equally likely to mutate into

each of the three other possibilities. In particular, mutations of bases are classified

into two types: transitions, which involve either A $ G or C $ T conversions, and

transversions, which involve any other conversions. Transitions occur at a signifi-

cantly higher rate than transversions, although the ratio varies between di¤erent

types of DNA. For example, animal nuclear DNA has about a 2:1 ratio, whereas

mitochondrial DNA has about a 20:1 ratio.

We can capture this bias for transitions over transversions with the Kimura model,

which uses two separate rates, l1 for transitions and l2 for transversions. The discrete

Kimura model has the following transition matrix:

A G C T

A

G

C

T

1� l1 � 2l2 l1 l2 l2

l1 1� l1 � 2l2 l2 l2

l2 l2 1� l1 � 2l2 l1

l2 l2 l1 1� l1 � 2l2

2

6
6
6
4

3

7
7
7
5

This matrix gives rise to the graph of figure 12.1(b).

As with the Jukes–Cantor model, we can use powers of the matrix to find the mu-

tation probabilities after multiple generations. For long time scales, we can use also

Figure 12.2
Time progress of piiðtÞ and pijðtÞ as a function of time for any base i and base j0 i in the continuous
Jukes–Cantor model.

12.1 DNA Base Evolution 189

use a continuous version of the Kimura model much like the one we saw for the

Jukes–Cantor model. The continuous Kimura model has the following rates:

lAG ¼ lGA ¼ lCT ¼ lTC ¼ l1

lAA ¼ lGG ¼ lCC ¼ lTT ¼ �l1 � 2l2

lij ¼ l2 otherwise:

We can again analyze the long-term behavior of the model using the Kolmogorov

equations. The Kolmogorov equations for conversions starting from A are as

follows:

dpAA

dt
¼ ð�l1 � 2l2ÞpAA þ l1pAG þ l2ðpAC þ pAT Þ

dpAG

dt
¼ l1pAA þ l2ðpAC þ pAT Þ þ ð�l1 � 2l2ÞpAG

dpAC

dt
¼ l2ðpAA þ pAGÞ þ l1pAT þ ð�l1 � 2l2ÞpAC

dpAT

dt
¼ l2ðpAA þ pAGÞ þ l1pAC þ ð�l1 � 2l2ÞpAT :

Equations for other starting bases would proceed similarly.

Solving for these equations analytically requires more advanced math than we

cover in this text. Essentially, we have to find the eigenvalues of the transition matrix

and then guess solutions of the form
P

cie
li t. We will not go through how this is

done here, but the results are the following:

pAA ¼
1

4
þ 1

4
e�4l2t þ 1

2
e�2ðl1þl2Þt

pAG ¼
1

4
þ 1

4
e�4l2t � 1

2
e�2ðl1þl2Þt

pAT ¼ pAC ¼
1

4
� 1

4
e�4l2t:

Again, solutions for the other starting bases will follow by symmetry.

The probability distribution thus evolves toward equilibrium at two rates: a fast

rate, 2ðl1 þ l2Þ, at which we establish an equilibrium between the original base and

its transition base, and a slower rate, 4l2, at which we establish an equilibrium with

190 12 Case Study: Molecular Evolution

the other two bases. Note that when l1 ¼ l2, both rates are 4l1, just as we would ex-

pect from our analysis of the Jukes–Cantor model.

12.2 Simulating a Strand of DNA

If we trace a single evolutionary lineage, it is likely we are concerned about more

than just a single mutating base. We want a way of simulating mutations in a seg-

ment of many DNA bases. One way to simulate multiple bases is to simulate each

independently, according to its own Kimura or Jukes–Cantor Markov model. For

example, if we have the starting strand AAAAA, we may represent the homolo-

gous strand in descendant organisms by assuming it is produced by five independent

Markov models, each with initial state qA. We can then sample independently from

each model at any time point at which we want to choose a random descendant.

We can, however, exploit some properties of the probability models we are using

to derive another model that can be more e‰cient, especially for simulating large

pieces of DNA over relatively short time scales. One of the consequences of the con-

tinuous Kimura and Jukes–Cantor models is that the time until a mutation appears

in any particular base will be described by an exponential random variable. This

means that the time until a mutation first appears anywhere in a set of n bases is

also exponential, with n times the rate of the single-base model. A process in which

some event occurs repeatedly, with the time between events described by independent

identically distributed (i.i.d.) exponential random variables, is known as a Poisson

process. The number of events occurring in any span of time t in a Poisson process

with waiting time parameter l is described by a Poisson random variable with pa-

rameter lt. Therefore, if bases accumulate mutations at rate l per generation per

base, then the number of mutations in k generations for n bases will be Poisson-

distributed with parameter lkn. We cannot quite consider that to be a good model

of the number of mutations in a short strand, though, because a base can mutate

more than once. We can get a base that mutates from A to C to T, which will give

us only one change even though there are two mutation events. Or we can get A to T

to A, which will give us no changes at all.

Suppose, though, that we assume the limit of a large number of bases and a low

probability of mutation. We assume that we have some new parameter l�, which is

the limit of ln as l! 0 and n!y. In this case, the probability of a mutation occur-

ring twice in the same base will approach zero. We can therefore treat the number of

mutations accumulated in a particular span of time t as purely Poisson-distributed

with parameter l�t. Furthermore, we can treat our DNA strand as a continuous seg-

ment running from, say, position 0 to position 1. Then, as long as we assume the

same mutation rate across the strand, the mutations will be equally likely to occur

12.2 Simulating a Strand of DNA 191

anywhere on the strand. So if we sample our Poissonðl�tÞ random variable and find

that there are k mutations, we can simply pick k U ½0; 1� uniform random numbers to

represent their positions. This model, in which we assume we have so many bases

that multiple mutations in the same base never happen, is called the infinite sites

model.

12.3 Sampling from Whole Populations

So far, we have been discussing how to simulate DNA changes along a single evolu-

tionary line. But what if we want to study changes throughout a population? We can

still use the methods we just learned to simulate molecular evolution along any par-

ticular line, but we need to embed those DNA-level models into a model of the be-

havior of the population. It turns out that this population-level behavior can also be

described by Markov models. We will see here how to derive a particular very useful

Markov model, called the coalescent, widely used in population genetics to simulate

possible population histories.

Before we can describe the model, though, we need to make some assumptions. In

particular, we will make a collection of assumptions called the Wright–Fisher neutral

model. The model assumes the following:

1. Discrete generations a population goes through distinct generations where every

organism in generation i has parents only from generation i � 1.

2. Random mating each organism in a generation selects its parent(s) uniformly at

random from the previous generation and independently from all other organisms in

its own generation.

3. No selection no organism is more likely than any other to survive and

reproduce.

4. Random mutations mutations accumulate with equal probability in all bases at

all times.

None of these assumptions is exactly true, but they can be a good model for studying

the evolution of selectively neutral bases. For the moment, we will also assume that

we are looking at a haploid organism and that we have a fixed population size

throughout time. (We will see how to discard those assumptions later in the chapter.)

Our goal will be to create a model in which we can sample a collection of k indi-

viduals from a population of size N after the population has evolved for t genera-

tions, where generally NX k. This model is meant to simulate what we will observe

if we sequence the DNA of a small number of individuals from a large population.

We will eventually see the coalescent method for this problem. But in order to ex-

plain how the coalescent works, it will be helpful to work through two simpler mod-

els that we will not actually want to use in practice.

192 12 Case Study: Molecular Evolution

First, imagine that we simulate a population by simulating every individual in that

population for t generations, then picking k individuals at random from the final

generation as our sample. The model will work as follows:

1. Start with a group of N founders with random DNA sequences to fill the first

generation.

2. Pick N random members of the current generation, allowing repeats, to be the

parents of the next generation.

3. Mutate each chosen parent according to whatever mutation model we want to

create the next generation.

4. Return to step 2 until we have reached t generations.

5. Choose a sample of k individuals at random from the final generation and return

their sequences.

This method is illustrated by figure 12.3(a).

Figure 12.3
Derivation of the coalescent model. (a) Initial description of a discrete simulation forward in time from a
population of N founders to the final population from which samples are drawn. (b) Simulation backward
in time from the sample of k to the ancestors of those k. (c) Replacement of discrete sampling steps with
continuous-time coalescence steps.

12.3 Sampling from Whole Populations 193

This first method is a fine approach in the sense that it is a correct simulation of

our model. But it is also very ine‰cient. The runtime will vary linearly with the pop-

ulation size and number of generations. We will, for example, probably be unable

to simulate a bacterial population with perhaps 1012 members over thousands of

generations—realistic numbers for studying molecular evolution in a real laboratory

setting.

We can improve on the approach by making two realizations. First, we really do

not care about anyone in the final generation who is not one of the k we sample. We

also do not care about anyone in any previous generation who is not an ancestor of

one of those k, anyone in the generation before that who is not an ancestor of one of

those ancestors, and so on. We can use these insights to create a more e‰cient simu-

lation by essentially turning the problem upside down. Instead of starting with the

founders and working forward in time, we can start with the k individuals we care

about in the final generation and then go backward in time to figure out from

whom they are descended in the previous generations.

In this revised model, we only need to represent k people in the final generation.

Furthermore, we need at most k in any previous generation because the k in the last

generation cannot have more than k ancestors in any other generation. In fact, each

time that two members of generation i happen to share an ancestor in generation

i � 1, the number of individuals we need to keep track of goes down by 1 for all prior

generations. This process by which two lineages converge into one when they share a

common ancestor is called coalescence. If we have a population of size N, then the

probability that any two given lineages will coalesce in the previous generation is 1
N
.

When all the lineages coalesce into one, called the most recent common ancestor

(MRCA), we can generate a random DNA strand for that one MRCA, who will be

a common ancestor of everyone in our sample, and then go back down the tree, sim-

ulating the mutations acquired in each subsequent generation. Figure 12.3(b) illus-

trates this revised model, tracing a lineage from the final generation (top) down to

the point where every lineage has coalesced into one.

This approach will generally be much more practical than our first attempt, since

we only have to simulate organisms and mutations in direct evolutionary paths to the

members of our final sample from their common ancestor. The runtime will therefore

depend on k and t, but not on N, except indirectly through N’s influence on the num-

ber of mutations observed.

We can actually do even better, though, at least approximately, by noting a few

things:

Prfcoalesce 2 given lineages in one generationg ¼ 1

N
;

therefore

194 12 Case Study: Molecular Evolution

Prfdo not coalesce 2 given lineages in one generationg ¼ 1� 1

N

and

Prfdo not coalesce 2 given lineages in Nt generationsg ¼ 1� 1

N

� �Nt

:

1� 1
N

� �Nt
is approximately e�t for large N. This means that we can treat coales-

cences as an approximately exponential process with parameter N. In fact, it is often

easier to adopt a notion called ‘‘scaled time’’ and sample coalescence times from a

distribution with parameter 1, then later scale the number of generations elapsed by

a factor of N. These observations lead to a third attempt at simulating a population,

which is illustrated in figure 12.3(c) and presented as pseudocode in figure 12.4. In

this revised model, we simulate the sample set, as in our second attempt, but jump

directly to successively coalescence events rather than simulating all the noncoalesc-

ing generations in between.

This third version is the full coalescent model. The runtime of this method is inde-

pendent of N (except in the number of mutations observed) and does not require a

parameter t. Simulating the coalescences requires time dependent only on k. Because

it jumps between discrete states with exponentially distributed times, we can repre-

sent the coalescent model as a kind of continuous-time Markov model in which we

start in some state k and transition to a state k � 1, then k � 2, and so on, terminat-

ing when we reach state 1.

12.4 Extensions of the Coalescent

The basic coalescent model we just described provides a means to simulate mole-

cular evolution within a single haploid population of fixed size over time. The coales-

cent model is very versatile, though, and can accommodate many extensions. The

Figure 12.4
Simplified pseudocode for the basic coalescent method for simulating a population sample of size k.

12.4 Extensions of the Coalescent 195

remainder of this chapter considers some ways we can generalize the method to

handle other sequence types or to relax some of our starting assumptions.

12.4.1 Variable Population Sizes

First, suppose we want to relax the assumption of fixed population size. Instead of

assuming a constant population N, suppose that at any point in time, t, we have a

population size NðtÞ. Population size enters into the coalescent model only in how

much we have to scale coalescent time to get the number of generations on any given

edge. For example, in a population that is doubling with each generation, we will cut

the scaled time in half with each generation, as illustrated in figure 12.5(a).

Figure 12.5
Various extensions of the coalescent model. (a) Variable population size, as in this example of a popula-
tion doubling with each generation. (b) Population substructure, illustrated with two populations with
sizes NA and NB. (c) Diploid organisms, illustrated by a hermaphroditic organism capable of undergoing
selfing.

196 12 Case Study: Molecular Evolution

In terms of NðtÞ, the scaled time that elapses in t generations is

gðtÞ ¼
Xt

i¼1

1

NðiÞ :

If we assume a continuous model of time, we will instead have

gðtÞ ¼
ð t

0

1

NðsÞ ds:

We can then translate a coalescent time t into the number of generations elapsed,

t, by applying the inverse function:

t ¼ g�1ðtÞ:

This procedure allows us to run the coalescent model as before, ignoring NðtÞ, then
after the fact convert coalescent time into elapsed number of generations along each

edge of the resulting tree. We can then sample the mutations along each edge based

on generations and get a distribution that is correct for the true variable population

size.

Example For the doubling population of figure 12.5(a):

gðtÞ ¼
ð t

0

1

2s ds ¼
es ln s � 1

Nð0Þ ln 2

g�1ðtÞ ¼ lnð1þNð0Þ ln 2tÞ
ln 2

:

To sample from this model of doubling population, we first run the coalescent as if

there were a fixed population size. We then find the start time t0 and the end time t1
for each edge in the tree. Next, we scale that edge into generations with the formula

t ¼ g�1ðt1Þ � g�1ðt0Þ. Then we sample mutations for the edge, based on the assump-

tion that it represents t generations of elapsed time.

12.4.2 Population Substructure

Suppose we have have two separate populations with sizes NA and NB. If at some

point in time we have kA lineages in population A and kB lineages in population B,

then the time to coalesce in either one is Exp 1
NA

kA
2

� �
þ 1

NB

kB
2

� �� �
. We can generalize

this to m populations by saying the time to coalesce is Exp
Pm

i¼1
1
Ni

ki
2

� �� �
. This situa-

tion is illustrated in figure 12.5(b).

12.4 Extensions of the Coalescent 197

We can also throw in ‘‘migration probabilities’’ by which someone can move from

one population to another. For example, if we allow an exponential time with rate bij
of someone moving from population i to population j, then the time to any event

(either coalescence or migration) will be distributed as

Exp
Xm

i¼1

1

Ni

ki

2

� �

þ
Xm

i¼1

X

j0i

kibij

 !

:

12.4.3 Diploid Organisms

The coalescent model can usually be generalized in a straightforward manner to dip-

loid organisms. If we are simulating haploid DNA with diploid organisms (e.g., Y

chromosome or mitochondrial DNA), then we can simulate it exactly as with a hap-

loid population. For truly diploid autosomal DNA, we can approximately treat the

system as if it were a population of 2N individuals and group them after the fact into

pairs corresponding to organisms. Some slight corrections may be needed to account

for a phenomenon known as selfing. Selfing occurs when an organism reproduces

with itself and creates a child with two copies of a single ancestral strand. Selfing is

illustrated in figure 12.5(c). Though some organisms are incapable of selfing, others,

such as many flowering plants, may undergo selfing more frequently than reproduc-

tion with others of their species. We thus may need to adjust coalescence rates to ac-

count for the bias introduced by having a di¤erential selfing rate. Readers can refer

to the sources in References and Further Reading for details on how these adjust-

ments may be made for di¤erent cases of diploid reproduction.

12.4.4 Recombination

When we are looking at diploid organisms, we generally have to worry about recom-

bination, in which segments of chromosome swap between homologous chromo-

somes in each organism. Recombination is illustrated in figure 12.6(a), which shows

segments of DNA swapping between the two chromosome copies. Simulating recom-

bination is a bit challenging, since it means that a given piece of DNA can have more

than one ancestor. We can add recombination to the coalescent model by allowing

the number of lineages to both expand and contract as we go back in time. The

model will still allow coalescences, in which two lineages join together because they

have a common ancestor. It will also allow recombinations, in which one lineage

splits into two because two ancestors contributed to that descendant lineage’s DNA.

In such cases, we assign some random position in the sequences at which we switch

from the first ancestor to the second ancestor. This is illustrated in figure 12.6(b). We

then need to treat recombination and coalescence as two possible transitions from

the current state of the coalescent model, each with its own intrinsic rate. We will

have a waiting time of Exp 1
N

k
2

� �� �
until the next coalescence, exactly as with the stan-

198 12 Case Study: Molecular Evolution

dard coalescent, and a waiting time of Expðkr=2Þ until the next recombination for

some rate parameter r. r is derived from a per-sequence recombination rate r by the

formula r ¼ 4Nr. Combining these two rates gives us a total waiting time to any next

event of Exp 1
N

k
2

� �
þ kr=2

� �
. Figure 12.6(c) shows the CTMM describing this process.

Since the number of lineages can both increase and decrease, we may wonder how

we can be sure we will ever get a common ancestor. In fact, we can guarantee that

the model will eventually find an MRCA by using the CTMM representation of

the coalescent with recombination. This CTMM is a special kind of Markov model

known as a branching process, in which we have a set of elements that can divide or

disappear independently of one another. Informally, we know that the model must

eventually get to just one lineage because the probability of moving toward larger k

grows proportionally to k while the probability of moving toward smaller k grows

proportionally to k2. This means that the model is extremely unlikely to get to very

large k and is certain to eventually reach k ¼ 1. It may increase again afterward, but

for the purposes of simulating the process, we only need it to get to one lineage once.

Once we have an MRCA, we can create its sequence and insert mutations along the

lineages forward in time from there.

Figure 12.6
Incorporating recombination into the coalescent model. (a) The process of recombination between homol-
ogous chromosomes. (b) The coalescent process in the presence of recombination. As we go backward in
time, pairs of lineages can merge due to common ancestry (coalescence) or a single lineage can divide to
reflect multiple ancestry (recombination). (c) The bidirectional CTMM created by the coalescent with
recombination.

12.4 Extensions of the Coalescent 199

References and Further Study

The Jukes–Cantor and Kimura models are standard models for studies of molecular

evolution and are covered adequately in a wide variety of sources on these topics.

Graur and Li [124] provides a clear coverage of these issues, as well as many others

likely to be of interest to readers of this chapter. The best presentation of the coales-

cent model of which I am aware is found in a review chapter by Nordborg [125] in

the Handbook of Statistical Genetics, which was an important source in preparing

this chapter’s discussion of the coalescent and its extensions. For more depth on the

general topics covered here, the reader may refer to a more general text on popula-

tion genetics, such as Hartl and Clark [126].

The Jukes–Cantor and Kimura models are, of course, originally due to Jukes and

Cantor [127] and Kimura [128]. The coalescent model is due to Kingman [129]. The

various extensions of the basic coalescent that were covered here are derived from

Nordborg [125]. Many other coalescent extensions are available in the literature,

and a current search may therefore prove helpful for those requiring more specialized

coalescent variants.

200 12 Case Study: Molecular Evolution

13 Discrete Event Simulation

As we have seen, one way of representing continuous-time Markov models is to

repeatedly consider every transition that may happen next, determine the time at

which each will happen, and pick the one with minimum time. This representation

of CTMMs is a special case of a more general class of models called discrete event

models. In a discrete event model, we have a set of discrete states, just as in a Markov

model, and move between states in continuous time, as in a CTMM. However, in-

stead of insisting that all transitions have exponential times, we will allow for any

possible waiting time distributions.

Example Suppose we have a cell with a set of channel proteins. Each channel type

takes in or expels some given type of ion. We will assume we have three ions, A, B,

and C, and counts of each, nA, nB, and nC . As a first pass, we will assume waiting

times are in fact exponential. We will assume three channel types moving ions into

the cell, with rates lAþ, lBþ, and lCþ, and three channel types moving the ions out

of the cell, with rates nAlA�, nBlB�, and nClC�. The model is illustrated in figure

13.1(a). Because waiting times are exponential, we can treat this system as a

CTMM. The underlying graph will be a three-dimensional cubic grid where each

point represents a count of each of the three ions. Using this representation, we can

simulate the system using the pseudocode of figure 13.1(b). We can also simulate the

system by using the Kolmogorov equations to establish the distribution of states over

time and sample from that distribution.

This approach will work in limited cases, but it has problems. The most important

one is that we must have exponential distributions for all waiting times to get a

CTMM and to be able to use the tools we have available for working with CTMMs.

It can also be ine‰cient, even if we have a proper CTMM, if we cannot solve the

Kolmogorov equations.

Suppose we now assume instead that the input channels have waiting times of the

form U ½aA; bA�, U ½aB; bB�, and U ½aC ; bC �. This may be a reasonable approximation

if the channels need a certain amount of time to ‘‘recover’’ after transporting an ion

202 13 Discrete Event Simulation

before they can send the next one, but never wait too long after that. We will assume

that the output channels still have exponential waiting times. If we do this, the Kol-

mogorov equations are no longer valid. Furthermore, our previous simulation algo-

rithm no longer works. In particular, we cannot simply sample all the times again on

each step because we need to know how much time has elapsed since each channel

was last used. We need to modify our algorithm as in figure 13.1(c).

By recomputing only some of the events on each step, we can keep track of elapsed

time for the remaining ones since they were first sampled. This is not necessary when

the events are exponentially distributed, since the exponential distribution is memo-

ryless. When we are dealing with other distributions, such as uniform, though, it is

needed. Then the tþ values will be sampled correctly since we calculate the waiting

time when the channel is last used and keep track of that sampled value until the

channel is next used.

13.1 Generalized Discrete Event Modeling

We can derive a more general simulation method by examining what we needed to

do to adapt our model to uniform waiting times. The algorithm we developed did

not depend on the fact that our waiting times were uniform for some events, and in

fact it would have worked fine for any strictly positive random variables. In an ab-

stract sense, we created a method for simulating this system by stepping between

events that could have any waiting times between them. We can generalize further

by saying that an event may be anything that changes the state of a simulation. The

behavior of an event is characterized by the following properties:

� The time when it occurs
� How it changes the simulation state
� Other events it invalidates (deletes)
� Other events it creates.

For instance, in the current example, if we have an event of the tAþ kind, that event

changes the simulation state by incrementing nAþ. It invalidates the preexisting tA�
event. And it creates a new tAþ and a new tA� event.

Suppose we define e:time to be the time at which event e should occur, e:invalidðEÞ
to be a function that identifies events in E invalidated by e, e:addð Þ to be a function

Figure 13.1
Model of ion entry and exit through a set of channel proteins in a cell. (a) Graphical illustration of the
model. Ions enter with fixed rates per ion type and leave with rates proportional to the current concentra-
tion in the cell. (b) Pseudocode for a first version of the model, assuming all waiting times are exponentially
distributed. (c) Pseudocode for a variant of the model, assuming ions enter the cell with uniformly distrib-
uted waiting times.

13.1 Generalized Discrete Event Modeling 203

that outputs the new events created by event e, and e:updateðSÞ to be a function that

updates system state S to reflect the action of event e. Then we can summarize this

process of discrete event simulation generically by the pseudocode of figure 13.2.

This approach is less restrictive than CTMMs, although much harder to analyze

in general. It is, however, usually easy to implement, in that it lends itself well to

object-oriented design. Specifically, we can think of an event as an object that has

an activation time, that has a method that acts on the simulation state to produce

an updated state, that has a method for identifying some events as invalid, and that

has a method for creating some new events that may occur later. Then we can simu-

late the system by repeatedly finding the minimum-time event, activating its meth-

ods, and using them to update the system state and the set of pending events.

13.2 Improving Efficiency

This discrete event approach gives us a very general simulation framework, but if we

want to use it in practice, we will need to consider how we can make it e‰cient. To

examine this issue, suppose we look at our previous example but imagine that we

have N types of ions instead of three. What will the e‰ciency of each step of the

method be? Sampling among all possible events requires OðNÞ time, once per simu-

lation. Picking the minimum of the tiþ and ti� events requires OðNÞ time per simula-

tion step. Updating the state and picking new events requires Oð1Þ time per

simulation step. The initial sampling step will have negligible cost if we run the sim-

ulation long enough, so we are mainly concerned with the per-step costs in step 2 of

the pseudocode. This step constitutes the event loop, the set of operations repeatedly

performed to activate successive events. Picking the minimum event is therefore the

bottleneck, with a cost of OðNÞ for each pass through the event loop.

Figure 13.2
Pseudocode for generic discrete event simulation showing the correspondence to the channel example. The
pseudocode assumes we have procedures to find the time at which a given event occurs (e.time), to deter-
mine how a given event e updates the event list (e.update()), to identify the other events e it invalidates
(e.invalidate()), and to enumerate the other events e creates (e.add()).

204 13 Discrete Event Simulation

To speed up this method, we need a way to choose the minimum of N items

quickly. We can accomplish this by maintaining a data structure that lets us choose

its minimum element quickly, without requiring too much additional time to main-

tain the data structure as we update the simulation. Specifically, we need to be able

to perform the following three operations e‰ciently:

1. Extract-min: remove the minimum element from the data structure.

2. Insert: add a new element to the data structure.

3. Delete: remove an element from the data structure.

These are the operations that define a priority queue. Di¤erent priority queue imple-

mentations have di¤erent times for these operations, as summarized in table 13.1.

Using this table, we can find ways to speed up our N-ion channel example. For

instance, if we use a Fibonacci heap to maintain our event set, then our event loop

will require Oðlog NÞ time per step to pick the minimum-time event, plus Oðlog NÞ
time to update the state and pick new events. Although we increased the time of the

updating step, we have reduced the total amortized runtime from OðNÞ to Oðlog NÞ
per pass through the event loop. This assumption will be valid provided the number

of steps is W
�

N
log N

�
, which will cause the amortized cost of the first step to be

Oðlog NÞ per pass through the event loop. We could apply a similar analysis to any

other application of discrete event methods to select a queue method that gives us

optimal e‰ciency for that application with minimum implementation di‰culty.

One practical issue worth mentioning is that it is often more e‰cient not to delete

invalidated events from the queue but simply to have a way to check whether an

event is invalid when it reaches the top of the queue. This strategy is particularly use-

ful if we are using a queue type for which extract-min is a faster operation than de-

lete. A queuing method that defers the test for validity until an event is ready for

processing is called a lazy queuing strategy. With our channel protein example, we

could extend our data structures by adding a posting time to each event that says

when it was placed in the queue. We could then maintain an array, valid, of times

at which events referring to particular ions were invalidated. That is, when we add

Table 13.1
Runtimes for priority queue operations for five queue data structures

Extract-min Insert Delete Notes

Unsorted list O(N) O(1) O(N)

Sorted list O(1) O(N) O(N)

Binary heap O(log N) O(log N) O(log N)

Fibonacci heap O(log N) O(1) O(log N) Amortized

Calendar queue O(1) O(1) O(N) Expected, with caveats

13.2 Improving Efficiency 205

an ion of type i, we would set valid½i� to the current time. We would then check

whether an event is still ‘‘valid’’ by comparing the time it was placed on the queue

with the time at which its ion type was last invalidated. Invalid events could thus

be discarded with constant cost, as opposed to the typically larger cost of actively

removing them from the queue.

13.3 Real-World Example: Hard-Sphere Model of Molecular Collision Dynamics

One real application of discrete event simulations is simulating collision interactions

in a molecular system. One common simplified model for this system is the hard-

sphere model, in which we ignore the exact interaction forces among particles and

treat them as if they were simply solid spheres moving through space. A sphere is

assumed to have inertia, so if it is in motion, it will continue moving with the same

velocity until it collides with something. At that point, it will deflect with a perfectly

elastic collision. This is sometimes referred to as a billiard ball model because the par-

ticles are assumed to behave like billiard balls moving on a table. The model is illus-

trated by figure 13.3. Spheres can collide either with boundaries of the system or with

other spheres.

Although this is a continuous system, in which we could track particle positions

over any point in continuous time, it can in fact be implemented more e‰ciently as

a discrete event system. Specifically, we simulate the system only through discrete

changes in state produced by collision events, jumping over all of the time between

these events. If we need to know what is going on at some point in time between col-

lisions, we can linearly interpolate particle positions between the states at the sur-

rounding collisions.

If we have two particles, this is easy enough to simulate, but what if we have N

particles? To develop a discrete event model, we need to define the allowed event

types of the simulation. There are two possible event types we need to consider:

Figure 13.3
The hard-sphere collision dynamics model. (a) An inelastic collision between a particle and a boundary,
producing an angle of reflection equal to the incident angle. (b) A collision between two particles. (c)
Grid method for accelerating computation by dividing the space into artificial grid boxes.

206 13 Discrete Event Simulation

1. Collision of sphere i with a wall:
� The time is calculated by solving for

min
t
fxiðtÞ ¼ xmin þ r; xiðtÞ ¼ xmax � r; yiðtÞ ¼ ymin þ r; yiðtÞ ¼ ymax � rg;

where xmin, xmax, ymin, and ymax are the boundaries of the space; r is the sphere

radius; and ðxiðtÞ; yiðtÞÞ is the position of sphere i at time t. Since the spheres have

constant velocity between steps, xiðtÞ and yiðtÞ are simple linear equations of one

variable, making this an easy calculation.
� Upon the event, we find the new trajectory of sphere i, invalidate any existing

events involving sphere i, determine new times for collisions by sphere i with the

walls or with any other spheres, and place the events in the queue.

2. Collision of spheres i and j:
� The collision time is calculated by solving for

ðxiðtÞ � xjðtÞÞ2 þ ðyiðtÞ � yjðtÞÞ2 ¼ ð2rÞ2

(i.e., when the centers of the two spheres are exactly two sphere radii apart).
� Upon the event, we update both sphere trajectories, invalidate any existing events

referring to either sphere, and create new events for all possible collisions involving

either sphere.

We can then simulate the hard-sphere model using a discrete event loop. We first ini-

tialize by finding all OðN 2Þ possible ways two sphere would collide, given their initial

positions and velocities and all OðNÞ ways a sphere could collide with a wall, creat-

ing an event for each. We then repeatedly pick the minimum-time event and imple-

ment the event behavior described above. If we want to know the simulation state at

a specific point in continuous time, we can apply the discrete event loop until we pass

that time, then interpolate back to the desired time point.

At any given time, we are likely to have events in our queue that will never happen

because they will be invalidated before they reach the top of the queue. For example,

it might be that we initially create an event for spheres 1 and 2 colliding at time 10

and spheres 3 and 4 colliding at time 5. When spheres 3 and 4 collide, we may com-

pute new events for them based on their new trajectories, and decide that now

spheres 1 and 3 will collide at time 8. When spheres 1 and 3 collide, the event for col-

lision between 1 and 2 that has been sitting on the queue will become invalid. We will

need to compute a new possible collision time for those two spheres. We can handle

this situation by invalidating events in the event queue that refer to those spheres or

by using a lazy strategy to recognize that their collision was invalid at the time it

reached the top of the queue.

13.3 Real-World Example: Hard-Sphere Model of Molecular Collision Dynamics 207

The e‰ciency of this method will depend on what kind of data structures we use to

implement it. We can implement this model without a queue by simply computing all

possible next events on each step and picking the minimum. That will require OðN 2Þ
work per step, trying every possible next event to find the one with minimum time.

Using a priority queue implemented as a binary heap would allow us to reduce that

to OðN log NÞ work per step. A calendar queue can potentially reduce this to OðNÞ
work per step, although that is not guaranteed (see supplementary material below).

It is possible to improve on this method by creating a new kind of ‘‘artificial

event.’’ The bottleneck in our existing implementation is the need on each event to

find possible collisions between the a¤ected sphere(s) and all OðNÞ others. Suppose
we artificially create new boundaries within our simulation space. That is, we break

up the space into a set of boxes, as illustrated in figure 13.3(c). Then we create a new

kind of event, a box change event, representing the time at which the center of a

sphere moves from one box to another. The event has the following properties:

� The time to the event is computed in the same way as for boundary collisions, but

using the current box boundaries as xmax, xmin, ymax, and ymin.
� Upon a box change event for sphere i, we invalidate all existing events for sphere i,

create new box change events for the ways i might leave its current box, create new

wall collision events for i if its box borders a wall, and create collision events for i

with particles in the same or adjacent boxes.

This modification in principle will require more events per unit time, since we are

simulating the same process as before and still need an event for every collision in

addition to these extra box change events that do not change the physical system.

However, the method will generally do much less work per event since the bottleneck

with the old method—sampling OðNÞ new sphere–sphere collision events every time

we have a valid event—is reduced to sampling only among spheres in the same or

neighboring boxes. We can do this so long as the box width is at least twice the

sphere radius, because then a sphere cannot collide with another sphere before the

next event if there is at least a box width separating them. There must be a box

change event for at least one of them before any collision.

The exact runtime change will of course depend on how many boxes we have. If

we have very small boxes, then our simulation will be overwhelmed by box change

events and will make very little progress. If we have very large boxes, then our

method will reduce to the original method and we will get no advantage from having

boxes. If we assume that the spheres are, on average, uniformly distributed in the

space, then having O
�

N
log N

�
boxes is likely to work well. That will reduce the average

number of spheres per box to Oðlog NÞ, reducing the time per event to logarithmic

while not generally adding too many additional events due to box changes. To

choose the exact optimal box size will require a more sophisticated analysis involving

208 13 Discrete Event Simulation

the relative sphere and space sizes and the velocities of the particles, which we will

not go into here.

13.4 Supplementary Material: Calendar Queues

We referred above to several data structures for implementing priority queues. Read-

ers with introductory discrete algorithms training are likely to be familiar with all of

them, with the possible exceptions of Fibonacci heaps and calendar queues. Those

two can be very e¤ective in practice, though, so it is useful to know at least what

their performance bounds are, and preferably how to implement them. One can

read about Fibonacci heaps in various algorithms texts, such as Cormen et al. [14].

Information on calendar queues is harder to find, though. We will therefore briefly

cover them here.

The basic idea behind a calendar queue is to divide our queue into a set of ‘‘buck-

ets’’ chosen so that approximately a constant number of events sits in each bucket.

Each bucket is treated like a day of the week on a calendar. If we have a Monday

bucket, then any event occurring this Monday goes into the bucket, as does any

event occurring next Monday, the Monday after that, and so on. The Tuesday

bucket contains all events occurring this Tuesday, next Tuesday, the Tuesday after

that, and so on. Hence the name ‘‘calendar queue.’’ In general, we assume that we

have n buckets, each with width w. All events from time span ½0;w� go in bucket 1,

½w; 2w� go in bucket 2, ½2w; 3w� go in bucket 3, . . . , and ½ðn� 1Þw; nw� go in bucket n.

We then wrap around and place events from time span ½nw; ðnþ 1Þw� in bucket 1,

those from ½ðnþ 1Þw; ðnþ 2Þw� in bucket 2, and so on. This process is illustrated in

figure 13.4. Within each bucket, we can store the events as a sorted linked list.

We can perform the basic priority queue operations on a calendar queue as

follows:

Figure 13.4
Calendar queue data structure. A set of buckets represents intervals of time stored in the queue. Times be-
yond the last bucket wrap around to the first.

13.4 Supplementary Material: Calendar Queues 209

� Insert: given an event e with time t, find the bucket b ¼ t “mod” nw
w

� �
, where we are

somewhat abusing notation to have ‘‘mod’’ mean the number left over after taking

the largest possible integer number of factors of nw from t. Place e into bucket b,

then insert it into the sorted list.
� Extract-min: given current time t, do the following:

while (first element of current bucket is greater than tþ w)

t tþ w

go to the next bucket, wrapping around from bucket n to bucket 1

return the first element of the current bucket.
� Delete: search all buckets for the event, to delete and remove it.

In the worst case, all three operations take linear time in the queue size. In prac-

tice, though, the calendar queue tends to take constant time for insert and extract-

min operations. This can actually be proved in the average case for many common

distributions of event times (e.g., uniform, normal, exponential), provided n and w

are chosen intelligently for the distribution. The two parameters can be chosen from

prior knowledge of the event time distributions or dynamically adjusted, based on

observed event distributions as the method runs. The method is therefore a little

complicated to use, but is often the fastest method in practice.

References and Further Study

Discrete event simulation, though widely used in practice, is not often taught as a

methodology in itself in the simulation literature since it is simply a way of conceptu-

alizing any of a broad class of simulation methods. Nonetheless, any standard intro-

ductory algorithms text will provide basic information on most of the data structures

and methods seen in this chapter, as well as other queue methods we have not cov-

ered. Cormen et al. [14] remains an excellent choice, as is Kozen [17], although many

others will serve well. The extended example on hard-sphere collisions was based on

work by Rapaport [130] on discrete event methods for this problem. Calendar queues

are a relatively recent addition to the data structure literature, and one may refer to

the primary reference by Brown [131] for more information on their theory and use.

210 13 Discrete Event Simulation

14 Numerical Integration 1: Ordinary Differential Equations

At this point, we will shift our discussion from discrete to continuous simulation

models. When working with continuous models, we will assume that we have a sys-

tem whose state is described by a vector of continuous functions of time:

~vvðtÞ ¼ ðv1ðtÞ; v2ðtÞ; . . . ; vkðtÞÞ:

One example of such a continuous simulation model is molecular motion. If we

have a single atom moving freely in a vacuum, then we may describe our system as

a vector of three variables representing the spatial position of the atom over time:

~vvðtÞ ¼ ðxðtÞ; yðtÞ; zðtÞÞ ¼ ðaxtþ bx; aytþ by; aztþ bzÞ:

Here ðax; ay; azÞ represents the velocity of the atom, and ðbx; by; bzÞ its initial posi-

tion. More generally, we may imagine that we have n atoms that are under the influ-

ence of some force field:

~ff ðx1ðtÞ; y1ðtÞ; z1ðtÞ; x2ðtÞ; y2ðtÞ; z2ðtÞ; . . .Þ

¼ m1
d 2x1

dt2
;m1

d 2y1

dt2
;m1

d 2z1

dt2
;m2

d 2x2

dt2
;m2

d 2y2

dt2
;m2

d 2z2

dt2
; . . .

� �

:

The force is a vector in which each element of the vector corresponds to one degree

of freedom of one atom, and is itself a function of the positions of all atoms. Force is

related to the second derivative of position (i.e., acceleration) by Newton’s second

law of motion, ~ff ¼ m~aa.

Another example of a continuous simulation model we often use in biology appli-

cations is the representation of a chemical reaction system by the law of mass action.

Suppose we have the reaction system

Aþ BÐk1
k2

I Ðk3
k4

C þ B:

This can be a model of an enzymatic reaction, in which enzyme B binds to substrate

A, forming intermediate I, then catalyzes a conversion from A to C before releas-

ing C. This system can be described by a vector of concentrations of the various

reactants:

~vvðtÞ ¼ ð½A�; ½B�; ½C�; ½I �Þ:

The behavior of this system is then described in the limit of large numbers of mole-

cules by the following di¤erential equations:

d½A�
dt
¼ k2½I � � k1½A�½B�

d½B�
dt
¼ ðk2 þ k3Þ½I � � k1½A�½B� � k4½C�½B�

d½C�
dt
¼ k3½I � � k4½C�½B�

d½I �
dt
¼ k1½A�½B� þ k4½C�½B� � ðk2 þ k3Þ½I �:

Yet another example of a continuous simulation system in biology is population

dynamics on large scales. For example, suppose we have a predator A that repro-

duces at rate l1A and a prey B that reproduces at rate l2B. The predator consumes

prey at a rate l3AB. Predators also die of starvation at a rate l4e
�BA. If we have just

a few predators and preys, then we may model this as a CTMM. If we have a lot,

though, then we can model this system by the following di¤erential equations:

dA

dt
¼ l1A� l4e

�BA

dB

dt
¼ l2B� l3AB:

The common theme in all of these models is di¤erential equations. For nontrivial

systems, we often will have a description of how the system instantaneously changes

at any given point in time, and we need to translate that into a simulation of the time

evolution of the system. Such simulations are described by systems of di¤erential

equations. Therefore, simulating continuous systems is typically the same problem

as integrating di¤erential equations.

This is one of those topics, like continuous optimization, for which we will only be

able to scratch the surface. There is an enormous body of literature on the theory of

212 14 Numerical Integration 1: Ordinary Differential Equations

numerical integration and on special-purpose methods particularly well suited for

certain various kinds of systems, which we unfortunately must skip due to space lim-

itations. The goal of this chapter is to introduce some of the basic principles of nu-

merical integration, present some broad general-purpose tools, and show how to

apply them in practice and assess their performance. Readers who end up working

extensively with such systems will do well to undertake more advanced study on

di¤erential equations and numerical integration. A few sources providing more

advanced coverage of various topics are in References and Further Study.

14.1 Finite Difference Schemes

It is usually impossible to analytically integrate a system of di¤erential equations.

There are some special cases, such as those where a system is linear (i.e., d~vv
dt
¼ A~vv),

where analytical solutions are possible. Generally, though, we will need to use numer-

ical integration schemes, which approximate the integration of a specific system for a

specific amount of time. The most common way to do this is by using finite di¤erence

schemes, in which we approximately integrate by summing over approximations for

short time steps. In general, a finite di¤erence scheme will involve successive itera-

tions of the form

~vvnþ1 ¼ ~ff ð~vvn;~vvn�1; . . .Þ:

That is, the estimated value of the integral at each successive step is some function

of the values at the previous steps. We then compute successive approximations to~vv

over some range t ¼ ½0; t� by computing approximations at di¤erent time steps:

~vv0 ¼~vvð0Þ

~vv1A~vvðDtÞ

~vv2A~vvð2DtÞ

..

.

~vvt=DtA~vvðtÞ:

For most of this discussion we will examine di¤erent methods by assuming we

have only a single dependent variable, x, and a single independent variable, t. We

can generalize to multiple dependent variables by having one iterator formula for

each variable for each time step. For a system of k dependent variables where vi; j is

the approximation to variable i at time step j, the approximation for the full system

will take the following form:

14.1 Finite Difference Schemes 213

v1;nþ1 ¼ f1ðv1;n; v2;n; . . . ; vk;n; v1;n�1; v2;n�1; . . . ; vk;n�1; . . .Þ

v2;nþ1 ¼ f2ðv1;n; v2;n; . . . ; vk;n; v1;n�1; v2;n�1; . . . ; vk;n�1; . . .Þ

..

.

vk;nþ1 ¼ fkðv1;n; v2;n; . . . ; vk;n; v1;n�1; v2;n�1; . . . ; vk;n�1; . . .Þ:

14.2 Forward Euler

The most basic finite di¤erence method is the forward Euler method. With the for-

ward Euler method, we approximate the di¤erential equation

dx

dt
¼ f ðxÞ

at successive time steps, using the approximation

xnþ1 ¼ xn þ Dtf ðxnÞ:

Example Suppose we want to approximate the chemical reaction system

Aþ BÐk1
k2

C;

described by the di¤erential equations

d½A�
dt
¼ k2½C� � k1½A�½B�

d½B�
dt
¼ k2½C� � k1½A�½B�

d½C�
dt
¼ k1½A�½B� � k2½C�:

To perform this approximation by forward Euler, we will use the iterators

½A�nþ1 ¼ ½A�n þ Dtðk2½C�n � k1½A�n½B�nÞ

½B�nþ1 ¼ ½B�n þ Dtðk2½C�n � k1½A�n½B�nÞ

½C�nþ1 ¼ ½C�n þ Dtðk1½A�n½B�n � k2½C�nÞ:

We will apply this iterator from our initial state for t=Dt steps to estimate the system

state at time t.

214 14 Numerical Integration 1: Ordinary Differential Equations

For the forward Euler scheme to work, it must be true that xðtÞ þ Dt dx
dt

is an ap-

proximation to xðtþ DtÞ. Why might this be so? We can understand why the scheme

approximates the integral using Taylor series. If we expand the function we are try-

ing to approximate, xðtþ DtÞ, around t we get the following:

xðtþ DtÞ ¼ xðtÞ þ x 0ðtÞDtþ x 00ðxÞ
2!

Dt2:

In other words, xðtþ DtÞ is approximated by xðtÞ þ x 0ðtÞDt with an error that is

OðDt2Þ. Since we add an error of OðDt2Þ on each step of our numerical integration

and we require Oð1=DtÞ steps to integrate to some fixed t, the total error of the inte-

gration is OðDtÞ. A method for which the accumulated error from integrating for any

fixed time t is OðDt1Þ is called a first-order method. The order of accuracy of a

method is one of the most important issues we need to consider in deciding whether

a given method is appropriate for a given problem.

Another property we need to understand in choosing a numerical integration

scheme for a particular problem is the stability of the scheme. Stability describes

whether over large numbers of steps the values will increase, fade away to a constant,

or do something in between. Stability of a scheme is generally classified into one of

three possibilities:

� Stable: values decay to a constant.
� Unstable: values continue to blow up indefinitely.
� Semistable: oscillatory behavior that does not fade away.

The stability of a scheme will depend on both the specific system being examined and

the time step size used. If we want to run a simulation for a long time, then we need

to make sure that the numerical integration scheme’s stability behavior matches that

of the system being simulated.

We can evaluate the conditions under which a given scheme is stable using a tech-

nique called von Neumann analysis:

1. Guess a solution of the form eot.

2. Find some gðoDtÞ for which xnþ1 ¼ gðoDtÞxn.
3. Find the region of the complex plane for which jgðoDtÞj < 1. This is where

the scheme is stable. It is unstable where jgðoDtÞj > 1 and semistable where

jgðoDtÞj ¼ 1.

For example, to apply von Neumann analysis to the forward Euler method, we

first state the basic iterator for the scheme:

xnþ1 ¼ xn þ Dt
dxn

dt
:

14.2 Forward Euler 215

We then guess that xn ¼ eot, and thus dxn
dt
¼ oeot. Therefore,

xnþ1 ¼ eot þ oDteot:

We then rearrange to express xnþ1 in terms of xn:

xnþ1 ¼ ð1þ oDtÞeot

xnþ1 ¼ ð1þ oDtÞxn:

This finally tells us the function gðoDtÞ:

gðoDtÞ ¼ ð1þ oDtÞ:

We then want to know where jgðoDtÞj ¼ jð1þ oDtÞj is less than 1 in the complex

plane. For forward Euler, it happens that jgðoDtÞj < 1 in a circle of radius 1 centered

on �1, as illustrated in figure 14.1(a).

This tells us where the scheme is stable if we happen to be looking at a system

whose solution is an exponential eot. It is stable if oDt falls in the circle of figure

14.1(a). But what if the solution is not an exponential? In fact, everything is an expo-

nential. Whatever the actual solution to our system is, we can always break it into

some Fourier series, expressing it as a sum of exponentials. It may not be easy to

determine the o values, but we know that there are some such os. If all of these o

Figure 14.1
Stability diagrams for some of the finite di¤erence schemes examined here, derived by von Neumann anal-
ysis. Each diagram shows the region of the ot plane for which the method is stable. Semistable solutions
fall in the boundaries of the region. (a) Stability of the forward Euler method. (b) Stability of the backward
Euler method.

216 14 Numerical Integration 1: Ordinary Differential Equations

values have a strictly negative real component, then there is some step size Dt for

which the forward Euler scheme will be stable. If any o is strictly imaginary or has

a positive real component, then there is no step size that makes the scheme stable.

Note that stability is not necessarily a good thing. If o has a positive real compo-

nent, then the actual system really will blow up, so one can argue that a finite di¤er-

ence scheme that fails to increase is not an accurate description of the system. An

unstable scheme is ‘‘correct’’ in that case because it behaves like the real system. If

o is strictly imaginary, then the real system will oscillate, so a semistable scheme is

‘‘correct.’’ It is only when o has a negative real component that our scheme should

actually be stable.

In the case of our chemical example above, it is not obvious what values of Dt will

lead to stability. The real physical system should approach an equilibrium, though,

so we know all of the Fourier components have negative real parts. We can therefore

be confident that if we make the time step small enough, the numerical scheme will

be stable. In practice, we may initially select a step size based on the accuracy analy-

sis so as to give an acceptable error, then adjust it smaller if that step size turns out to

yield instability.

14.3 Backward Euler

Forward Euler is often a serviceable scheme for solving simple problems. But there

are alternatives that may be better for some systems. One similarly simple alternative

scheme is backward Euler. Backward Euler is specified by the iterator:

xnþ1 ¼ xn þ Dt
dxnþ1
dt
¼ xn þ Dtf ðxnþ1Þ:

We can immediately see a problem with this scheme, in that the formula for deter-

mining xnþ1 depends on xnþ1. A scheme for which the iterator depends on the value

it is calculating is called an implicit method, in contrast to an explicit method like for-

ward Euler, in which xnþ1 is computed strictly from earlier iterates. To use an im-

plicit method, we need to solve for xnþ1. For backward Euler, that means we need

to solve

xnþ1 � Dtf ðxnþ1Þ ¼ xn

for xnþ1. In other words, we need to invert x� Dtf ðxÞ.

Example Suppose we want to integrate the equation

dx

dt
¼ �3x ¼ f ðxÞ:

14.3 Backward Euler 217

Then we need to solve

xnþ1 ¼ xn � 3Dtxnþ1:

This equation is solved by

ð3Dtþ 1Þxnþ1 ¼ xn

xnþ1 ¼
xn

3Dtþ 1
:

The preceding formula is then the iterator we will use to compute the approximation

for each successive time step, given the approximation at the previous step.

Note that we do not necessarily need to be able to analytically invert an equation

in order to use an implicit method. If we do not know how to invert x� Dtf ðxÞ, we
can still use backward Euler by numerically inverting the equation. For example, if

we want x satisfying x� Dtf ðxÞ ¼ y, then we can look for a zero of the function

hðxÞ ¼ x� Dtf ðxÞ � y. We can find a zero of hðxÞ using any of the zero-finding

schemes we learned in chapter 5.

Now that we know how to use backward Euler, we can ask how we will expect it

to perform. The first thing we want to know is if it is accurate. The scheme is based

on the assertion that

xðtþ DtÞAxðtÞ þ Dtx 0ðtþ DtÞ;

which is equivalent to saying

xðtÞAxðt� DtÞ þ Dtx 0ðtÞ;

or, with some rearrangement,

xðt� DtÞAxðtÞ � Dtx 0ðtÞ:

From Taylor series, we know that

xðt� DtÞ ¼ xðtÞ � Dtx 0ðtÞ þ x 00ðxÞ
2!

Dt2:

This tells us that the approximation is valid and has an error per step that is OðDt2Þ.
Therefore, the total error accumulated over the t=Dt steps needed to integrate for a

fixed time t is OðDtÞ. Backward Euler is thus a first-order method like forward Euler.

If backward Euler does not give us an accuracy improvement over forward

Euler, we may infer that it must give some advantage in stability behavior. We can

218 14 Numerical Integration 1: Ordinary Differential Equations

assess that by von Neumann analysis. We guess xðtÞ ¼ eot, so x 0ðtÞ ¼ oeot ¼ oxðtÞ.
Then

xnþ1 ¼ xn þ Dtoxnþ1

ð1� DtoÞxnþ1 ¼ xn

xnþ1 ¼
1

1� Dto
xn:

Therefore, our scaling factor per step is

gðDtoÞ ¼ 1

1� Dto
;

and we need to know where

jgðDtoÞj ¼ 1

1� Dto

�
�
�
�

�
�
�
� < 1:

It turns out that this condition is satisfied everywhere except in a circle of radius 1

centered on Dto ¼ 1, as illustrated in figure 14.1(b).

What is particularly useful about this scheme is that it is stable in the entire left

half of the complex plane, RefDtog < 0. Any scheme that is stable whenever the

real part of Dto is negative is called unconditionally stable because it is stable for

every genuinely stable system. Unconditional stability is a general property of implicit

schemes and is the reason we will go to the extra trouble required to use an im-

plicit scheme. Note that the scheme is also stable in some regions where the real

system would be unstable. If we were simulating a genuinely unstable system with

backward Euler, we would need to be careful to choose a small enough step size to

give the correct instability. We would probably not use an implicit method to sim-

ulate an unstable system, though.

14.4 Higher-Order Single-Step Methods

It will often be necessary in practice to use methods that have higher than first-order

accuracy if we want our simulations to run in a reasonable amount of time. There

are two main methods for achieving better than first-order accuracy with finite di¤er-

ence methods. The first involves computing intermediate partial steps between each

of our major time steps. A scheme that does this is known as a single-step method.

One example is the midpoint method. For each time step, the midpoint method first

computes an intermediate estimate xnþ1=2 and then uses xnþ1=2 to compute the ap-

proximation for the full step, xnþ1. It uses the following iterator:

14.4 Higher-Order Single-Step Methods 219

xnþ1=2 ¼ xn þ
Dt

2
f ðxnÞ

xnþ1 ¼ xn þ Dtf ðxnþ1=2Þ:

That is, we take half an Euler step, then use the derivative at this midpoint instead of

at xn to more accurately estimate the di¤erence between xn and xnþ1.

We can analyze the accuracy of the method by again using Taylor series. We first

merge our two iteration steps into a single formula:

xn þ Dtf ðxnþ1=2Þ ¼ xn þ Dtf xn þ
Dt

2
f ðxnÞ

� �

:

We then perform a Taylor expansion of f xn þ Dt
2 f ðxnÞ

� �
to transform our approxi-

mation to the following:

¼ xn þ Dtf ðxnÞ þ
Dt2

2
f ðxnÞ

qf ðxnÞ
qx

þOðDt3Þ:

We can then apply the chain rule of derivation, which says that d 2x
dt2
¼ df

dt
¼ qf

qx
dx
dt
¼

qf
qx
f ðxÞ, to get the following:

¼ xn þ Dtf ðxnÞ þ
Dt2

2

d 2x

dt2
þOðDt3Þ

¼ xðtþ DtÞ þOðDt3Þ:

The error per step is OðDt3Þ, so the midpoint method is second-order accurate.

We can also analyze the stability of the midpoint method by von Neumann analy-

sis. We first use the fact that dx
dt
¼ ox to get

xnþ1=2 ¼ xn þ
Dt

2
oxn

and

xnþ1 ¼ xn þ Dtoxnþ1=2:

Hence

xnþ1 ¼ xn þ Dto xn þ
Dt

2
oxn

� �

¼ 1þ Dtoþ ðDtoÞ
2

2

 !

xn:

220 14 Numerical Integration 1: Ordinary Differential Equations

Therefore, the method is stable where 1þ Dtoþ ðDtoÞ
2

2

�
�
�

�
�
� < 1. This region does not

correspond to a simple shape as those for the Euler methods do. Essentially, though,

it is a slightly expanded and distorted version of the forward Euler stability region,

covering a bit more of the left half of the complex plane.

The midpoint method is the simplest example of a class of single-step methods

called Runge–Kutta methods, which compute a series of intermediate values and use

a combination of them to find an approximation at each step. There is a Runge–

Kutta method for any desired integer order of accuracy, although it is rarely used

beyond about sixth order. In general, the stability regions of Runge–Kutta methods

become slightly larger with each successive increase in order of accuracy. Runge–

Kutta methods with varying levels of accuracy are commonly used by prepackaged

numerical integration schemes, such as we might find in the popular Matlab system.

For example, the fourth-order Runge–Kutta method is defined by the following

iterator:

k1 ¼ f ðxnÞ

k2 ¼ f xn þ
Dt

2
k1

� �

k3 ¼ f xn þ
Dt

2
k2

� �

k4 ¼ f ðxn þ Dtk3Þ

xnþ1 ¼ xn þ
Dt

6
ðk1 þ 2k2 þ 2k3 þ k4Þ:

We will not bother analyzing this method, but it is fourth-order accurate and has a

somewhat larger stability region than does the midpoint method. The fourth-order

Runge–Kutta method is the closest thing there is to a ‘‘default’’ numerical integra-

tion scheme, and is a good practical choice for generic problems in which one has

no reason to favor any particular special-purpose scheme. There are similar schemes

for higher order, but the fourth-order one is the most frequently used.

14.5 Multistep Methods

The major alternatives to single-step methods are multistep methods. Instead of com-

puting several intermediate values for each time step, multistep methods do just one

calculation but use several past time points to make it. The simplest example is the

leapfrog method, defined by the iterator

14.5 Multistep Methods 221

xnþ1 ¼ xn�1 þ 2Dtf ðxnÞ:

This scheme estimates xnþ1 using both xn and xn�1.

We can determine the accuracy of the method by using two Taylor expansions:

xðtþ DtÞ ¼ xðtÞ þ Dtx 0ðtÞ þ Dt2

2
x 00ðtÞ þ Dt3

3!
x 000ðx1Þ

xðt� DtÞ ¼ xðtÞ � Dtx 0ðtÞ þ Dt2

2
x 00ðtÞ � Dt3

3!
x 000ðx2Þ:

Subtracting the second expansion from the first gives us the following:

xðtþ DtÞ � xðt� DtÞ ¼ 2Dtx 0ðtÞ þ Dt3

3!
½x 000ðx1Þ þ x 000ðx2Þ�

xðtþ DtÞ ¼ xðt� DtÞ þ 2Dtx 0ðtÞ þOðDt3Þ:

In other words, xðt� DtÞ þ 2Dtx 0ðtÞ is an approximation to xðtþ DtÞ that has error
OðDt3Þ, making leapfrog a second-order scheme.

There is a small catch in the error analysis here, with which we need to be careful.

We need two initial points to get the leapfrog started (x0 and x1). Our problems are

generally posed so that we have only one initial point, x0. We therefore need to use

some other estimate to get the initial x1 before we can start the leapfrog iterations.

We can use forward or backward Euler to go from x0 to x1, introducing an OðDt2Þ
error for just that one step, then use leapfrog for x2; . . . ; xn for a total accumulated

error of OðDt2Þ. If we were using a higher-order multistep method, we would need to

use a higher-order initial scheme to get it started. For example, if we used a third-

order multistep scheme but used forward Euler to get the initial points needed to

start it, then the second-order error of a fixed number of Euler iterations would over-

whelm the third-order error of the multistep iterations. We would need to initialize

the iterator with the midpoint method or some other second-order single-step scheme

to get the benefit of a third-order multistep scheme.

The stability of leapfrog is a little harder to analyze than the accuracy, using the

tools we have covered. We have to treat it as a linear recurrence relation, a general

term for an iterator in which we compute xnþ1 from a linear combination of prior

iterates. Using the guess xðtÞ ¼ eot gives us

xnþ2 ¼ xn þ 2Dtf ðxnþ1Þ ¼ xn þ 2Dtoxnþ1:

Solutions to a linear recurrence relation usually have the form xn ¼
P

j ajg
n
j for some

sets of constants aj and gj. Therefore, we can try guessing xn ¼ gn. Our iterator then

becomes

222 14 Numerical Integration 1: Ordinary Differential Equations

gnþ2 ¼ gn þ 2Dtognþ1

g2 ¼ 1þ 2Dtog

(or g ¼ 0)

g2 � 2Dtog� 1 ¼ 0

g ¼ DtoG
ffi

ðDtoÞ2 þ 1

q

:

The preceding formula tells us the possible values for the growth factor gðoDtÞ. While

it is a little hard to see what this means, we can learn an important feature of this

gðoDtÞ by assuming oDt ¼
ffiffiffi
b

p
i for some constant b. Making the substitution gives us

g ¼
ffiffiffi
b

p
iG

ffiffiffiffiffiffiffiffiffiffiffi
1� b

p

jgj ¼
ffi
1� b þ b

p
¼ 1; where b < 1:

What does this mean? If o is strictly imaginary (meaning the system is oscillatory)

and Dt < 1
o

�
�
�
�, then the leapfrog method will be semistable. It will produce an oscilla-

tory motion that does not grow or decay over time. This makes leapfrog a good

choice when simulating a system that we know should produce oscillatory motion.

Just as midpoint was an example of the broader class of Runge–Kutta methods, so

leapfrog is an example of a broader class of multistep methods called the Adams–

Bashforthmethods. Adams–Bashforth methods can similarly be found for any desired

order of accuracy. Unlike Runge–Kutta methods, though, Adams–Bashforth meth-

ods have smaller stability regions as we go to higher orders of accuracy. Multistep

methods are less widely used in practice than single-step methods even though they

are superficially more e‰cient, in large part because they do not deal as well with

some practical issues relating to step size selection that we will consider in the next

section.

14.6 Step Size Selection

All of the above discussion assumes we have some fixed Dt. If we know the behavior

of our problem well, we can often choose a good value of Dt that will maintain some

desired error bound. For example, suppose we are using forward Euler and want an

error bounded by some e. We will need t=Dt steps with error x 00ðxÞ
2! Dt2 per step. If we

can bound x 00ðxÞ by some constant C, we can insist that

t

Dt
� C

2!
� Dt2 < e

14.6 Step Size Selection 223

Dt <
2e

tC
:

We can therefore exactly set a time step to guarantee our desired error bound. We

can perform similar analyses for other finite di¤erence schemes.

For many real-world problems, though, we may not have a bound, or at least a

good one, for the derivatives of x. Or it may be that the derivatives of x vary so

much from one domain of the problem to another that a bound that is good for a

few time points is much too conservative for most others. We may then waste an

enormous amount of work using a much smaller step size than we need for most of

our problem. We can get around this issue by using adaptive methods. Adaptive

methods automatically adjust the step size based on empirical estimates of the error

as they run, shrinking the step size in hard problem regions and expanding it in easy

ones.

One simple variant of adaptive step size selection works by computing two di¤er-

ent approximations for each time step. For example, we can compute the following

two approximations:

xnþ1 ¼ xn þ Dtf ðxnÞ

x̂xnþ1=2 ¼ xn þ
Dt

2
f ðxnÞ; x̂xn ¼ x̂xxþ1=2 þ

Dt

2
f ðxnþ1=2Þ:

These are the standard forward Euler approximation and a second forward Euler ap-

proximation with half the step size. We can then use the fact that the error in x̂xnþ1
should be about half of that in xnþ1 to approximately bound the error in the current

step by jxnþ1 � x̂xnþ1j. If jxnþ1 � x̂xnþ1j < eDt
t
, then we use x̂xnþ1 as our approximation

for the current step. Otherwise, we cut the step size in half and try recomputing x̂xnþ1
and xnþ1 with the new step size, repeating until the estimated error is su‰ciently

small. The result will be a method that picks some appropriate step size for each

step, based on a baseline maximum step size Dt.

We can improve on the approach a bit by using the following two approximations:

xnþ1 ¼ xn þ Dtf ðxnÞ

(forward Euler)

x̂xnþ1 ¼ xn þ
Dt

2
ð f ðxnÞ þ f ðxnþ1ÞÞ

(a second-order approximation called Huen’s method.)

Then, if jxnþ1 � x̂xnþ1j < et
Dt
, we use x̂xnþ1 as our approximation; otherwise, we cut

the step size in half and try again. Note that the work we did in computing xnþ1 is

used in computing x̂xnþ1. This adaptive method is an example of an embedded method,

224 14 Numerical Integration 1: Ordinary Differential Equations

so called because we embed the computation of a lower-order accuracy approxi-

mation inside the computation of a higher-order accuracy approximation. We then

compare the solutions at di¤erent orders of accuracy to estimate the error. Many

embedded Runge–Kutta schemes with varying levels of accuracy have been defined

in the literature. References and Further Study provides pointers to references in

which one can find some of these methods. Later on, in chapter 22, we will see a

method called Richardson extrapolation that can be used to create adaptive schemes

mixing any desired orders of accuracy.

There are various other practical tricks we can use to speed up numerical integra-

tion. For example, if our function is reasonably well-behaved, it will usually be more

e‰cient to use a step size only slightly larger than that from the prior step as a best

guess to the next step in an adaptive integrator. We may start with double the prior

step size as our first guess instead of going back to Dt as the first guess at each step,

which allows us to make use of the fact that the problem characteristics are likely to

be similar in local regions while still giving us a way to increase step sizes when we

move out of hard regions.

Developing adaptive methods is much harder to do correctly for multistep

schemes, since changing the time step essentially renders most of the prior points use-

less. It is always possible to combine approximations at variable distances in time to

get a desired order of accuracy using Taylor series. But we are very unlikely to get a

method with good stability properties by combining points at some arbitrary set of

distances from one another. There is a class of multistep schemes called predictor-

corrector schemes that do manage to implement step-size selection within a multistep

scheme without compromising stability. For example, we can combine an Adams–

Bashforth iterator with a kind of implicit multistep scheme called an Adams–Moul-

ton scheme to create an adaptive multistep method called an Adams–Bashforth–

Moulton scheme. In the interests of space, though, we will not study these more

advanced methods here and will recommend sticking with Runge–Kutta methods

when an adaptive scheme is needed.

References and Further Study

Probably the handiest practical reference for using the techniques we have covered

here is the Numerical Recipes series [82], which presents most of the methods exam-

ined above. It also contains a broader selection of Runge–Kutta, Adams–Bashforth,

and Adams–Moulton schemes, including other adaptive, embedded, and predictor-

corrector variations. Greater depth may be found in any of many texts available on

numerical analysis or di¤erential equations. Stoer and Bulirsch [132] is highly recom-

mended for numerical analysis topics in general. It has extensive coverage of numer-

ical integration methods, including many specialized methods and aspects of the

References and Further Study 225

underlying theory we do not have room to cover here. Kythe and Schäferkotter [133]

provides extensive coverage of numerical integration specifically, including many

kinds of techniques we did not cover in this chapter. Readers may also refer to Ham-

ming [134] for some additional schemes and some of the theory behind the methods

we have seen and their analysis.

For biological applications, especially in biophysics, it is often helpful to use more

specialized integration schemes specifically designed so that their errors obey physical

conservation laws. Those with need for greater depth on this topic can refer to

LeVeque [135].

Though we looked only at finite di¤erence schemes, there are some entirely di¤er-

ent ways of doing numerical integration that we did not consider here. After finite

di¤erence schemes, the most widely used methods are the spectral methods, which

use Fourier transforms to perform integration in the frequency domain. The reader

can refer to Gottlieb and Orszag [136] for more information on these methods. Sim-

ilar methods have been developed based on wavelet transforms, for which the reader

can refer to Kythe and Schäferkotter [133].

226 14 Numerical Integration 1: Ordinary Differential Equations

15 Numerical Integration 2: Partial Differential Equations

In the last chapter, we saw a few schemes for numerical integration of systems of dif-

ferential equations. As we saw, it is relatively easy to deal with systems of multiple

dependent variables. In this chapter, we will examine the somewhat harder problem

of systems with multiple independent variables. Typically, time will be one of the in-

dependent variables. The others are likely to be spatial dimensions, although they

can be many other things.

An important example of a problem with multiple independent variables is di¤u-

sion of a chemical in a solution. Imagine we have a solution divided into two parts

by a removable barrier. In one half, we have a high concentration of some solute and

in the other a low concentration, as illustrated in figure 15.1. What will happen to

this solution if we remove the barrier? The answer will be a function of x, y, z, and

t, which we can denote by Cðx; y; z; tÞ, representing the concentration of solute at

point ðx; y; zÞ at time t.

We then want to know how this system behaves. Starting from some initial state

Cðx; y; z; 0Þ, the behavior of a di¤usive system is described by the following partial

di¤erential equation (PDE):

qC

qt
¼ D

q2C

qx2
þ q2C

qy2
þ q2C

qz2

 !

:

This equation says that the partial derivative of concentration with respect to time

varies with the sum of the second partial derivatives with respect to each spatial di-

mension. The equation can be abbreviated

qC

qt
¼ D‘2C:

The operator ‘2 is called a Laplacian. The particular equation above is known as

the heat equation because it was originally formulated to model how heat applied to

the surface of a material will di¤use through the material. It is, however, a good de-

scription of many kinds of di¤usion-related phenomena, including chemical di¤usion

processes. In the remainder of this chapter, we will look at how to numerically inte-

grate systems, like this one, involving partial derivatives with respect to multiple in-

dependent variables.

15.1 Problems of One Spatial Dimension

To begin with, we will simplify a bit and assume we have just one time dimension t

and one spatial dimension x. Then we will examine the problem

qC

qt
¼ D

q2C

qx2
:

Let us further assume that we are looking at a system on the time range t ¼ ½0; 1�
and the spatial range x ¼ ½0; 1�.

Just as we found it useful before to break continuous time into discrete time steps,

so we will find it useful to break continuous space into discrete spatial points. We will

therefore assume that we are evaluating C at specific time points 0;Dt; 2Dt; 3Dt; . . .

and at specific spatial points 0;Dx; 2Dx; 3Dx; Then we can convert our problem

into a system of a finite number of coupled di¤erential equations:

qCð0; tÞ
qt

¼ D
q2Cð0; tÞ

qx2

qCðDx; tÞ
qt

¼ D
q2CðDx; tÞ

qx2

qCð2Dx; tÞ
qt

¼ D
q2Cð2Dx; tÞ

qx2

..

.

Figure 15.1
Setup of a chemical di¤usion problem. Solutions at two concentrations are separated by a barrier. We are
interested in how concentration varies as a function of time and space after we remove the barrier.

228 15 Numerical Integration 2: Partial Differential Equations

That is, we treat the concentration at each discretized point in space as if it were a

di¤erent variable. Then we can integrate the system in time just as we did before for

systems of one independent and multiple dependent variables. For example, suppose

we define xi ¼ iDx and CjðxiÞ to be our approximation to CðiDx; jDtÞ. We can then

numerically integrate this system with forward Euler by the following iterator:

Cnþ1ðxiÞ ¼ CnðxiÞ þ Dt
qCnðxiÞ

qt
¼ CnðxiÞ þ DtD

q2CnðxiÞ
qx2

:

This formula raises a problem, though. Now that we have discretized x, how do

we evaluate q2CnðxiÞ
qx2 ? The answer is that we can estimate spatial derivatives from

spatially discretized values using a numerical derivative formula. We saw some for-

mulas for numerically estimating derivatives in chapter 5. We will now similarly use

combinations of a few adjacent grid points to estimate the second derivative at a

given grid point. One way to perform this estimate is through a centered di¤erence

approximation:

q2f

qx2
A

f ðxþ DxÞ þ f ðx� DxÞ � 2f ðxÞ
Dx2

:

We can analyze the accuracy of this approximation in much the same way as we

analyze the accuracy of a finite di¤erence scheme: Taylor series. Applying the Taylor

series for f ðxþ DxÞ and f ðx� DxÞ gives us the following:

f ðxþ DxÞ ¼ f ðxÞ þ Dxf 0ðxÞ þ Dx2

2!
f 00ðxÞ þ Dx3

3!
f 000ðxÞ þOðDx4Þ

þf ðx� DxÞ ¼ f ðxÞ � Dxf 0ðxÞ þ Dx2

2!
f 00ðxÞ � Dx3

3!
f 000ðxÞ þOðDx4Þ

�2f ðxÞ ¼ �2f ðxÞ
f ðxþ DxÞ þ f ðx� DxÞ � 2f ðxÞ ¼ 0þ 0þ Dx2f 00ðxÞ þ 0þOðDx4Þ

Therefore,

f ðxþ DxÞ þ f ðx� DxÞ � 2f ðxÞ
Dx2

¼ f 00ðxÞ þOðDx2Þ:

That is, f ðxþDxÞþ f ðx�DxÞ�2f ðxÞ
Dx2 is an approximation to q2f

qx2 with error OðDx2Þ. We can

use this approximation to the second derivative to construct an iterator with which

we can numerically integrate our di¤usion system:

15.1 Problems of One Spatial Dimension 229

Cnþ1ðxiÞ ¼ CnðxiÞ þ DtD
Cnðxiþ1Þ þ Cnðxi�1Þ � 2CnðxiÞ

Dx2
:

At each time step, we apply the preceding iterator at all discrete spatial points xi.

Since we calculate Cnþ1ðxiÞ using only CnðxjÞ values, we can compute the new value

at a given grid point xi for time step nþ 1 using only values from time step n.

15.2 Initial Conditions and Boundary Conditions

Our scheme is not yet complete, though. The next thing we need to know is the initial

conditions of the problem. When there is one independent variable, the initial condi-

tion is just a single number. For example, if we are solving dx
dt
¼ f ðxÞ, we need to

know xð0Þ to get started. When we have spatial dimensions to consider, the initial

condition specifies the starting point at time zero for all spatial positions. For our

one-dimensional example, we need to know Cðx; 0Þ for all x. Since x is discretized

into xi A f0;Dx; 2Dx; . . .g, we need to know

Cðx0; 0Þ ¼ Cð0; 0Þ

Cðx1; 0Þ ¼ CðDx; 0Þ

Cðx2; 0Þ ¼ Cð2Dx; 0Þ
..
.

These values will usually be inferred from our model. For example, if we are sim-

ulating di¤usion into a channel that is initially empty of our solute, we will say

Cðxi; 0Þ ¼ 0 for all i.

A trickier issue is the specification of boundary conditions. Boundary conditions de-

scribe the behavior of the model at the edges of the space. For example, our centered

di¤erence scheme for the second derivative of CnðxiÞ with respect to x requires that

we know Cnðxi�1Þ and Cnðxiþ1Þ. We need a way to find these values if xi is at the

edge of our grid.

The simplest form of boundary condition is one where we directly specify the value

of the function at the boundary. That is, we may declare that Cð0; tÞ ¼ C0 and

Cð1; tÞ ¼ C1 for fixed C0 and C1 and for all time. This may be the case if we assume

our tube is a thin capillary connecting two compartments with di¤erent concentra-

tions, as illustrated in figure 15.2(a). Then we may assume that the capillary allows

so little solution to flow that the two compartments essentially remain at constant

concentrations. A boundary condition specifying the value at the boundary is called

a Dirichlet boundary condition. Given this boundary condition, we will run our meth-

230 15 Numerical Integration 2: Partial Differential Equations

ods exactly as before, except that we plug in C0 for Cnþ1ð0Þ and C1 for Cnþ1ð1=DtÞ in
the numerical derivative formula when updating points adjacent to the boundaries.

It is also possible that the boundary condition may itself be a function of time. For

example, we may imagine that we are steadily diluting the solution in one compart-

ment while holding the other fixed. Then we may declare that our boundary condi-

tions are

Cð0; tÞ ¼ C0; Cð1; tÞ ¼ C1

t
;

and therefore

Cnþ1ð0Þ ¼ C0; Cnþ1ð1=DxÞ ¼
C1

ðnþ 1ÞDt :

Often we will have a boundary condition on the derivative of concentration in-

stead of the value of concentration. This is known as a Neumann boundary condition.

Figure 15.2
Boundary conditions for variants of di¤usive system integration. (a) A Dirichlet boundary condition cre-
ated by assuming that we are studying a thin tube whose ends are immersed in large volumes of fixed con-
centration. (b) A Neumann boundary condition created by assuming the ends of the tube are capped. (c) A
more complicated three-dimensional model of di¤usion through a channel where we might assume a com-
bination of constraints on the value and the derivative of the concentration on di¤erent boundaries of the
channel.

15.2 Initial Conditions and Boundary Conditions 231

This kind of condition may occur if we were to cap the ends of our tube, as in figure

15.2(b). In this case, the closed ends of the tube mean that there must be no net dif-

fusion across the boundary. We will impose that constraint on the model with the

boundary conditions

qCð0Þ
qx

¼ qCð1Þ
qx

¼ 0:

This kind of boundary condition raises a small problem for us, since we can no

longer apply our finite di¤erence scheme at the boundaries. For example, if we want

to update the concentration at the leftmost point in the tube, CnðDxÞ, our scheme

requires us to know Cnð0Þ, which is now undefined. We therefore need to replace

our centered di¤erence scheme with a di¤erent approximation for q2CðxiÞ
qx2 :

q2CðxiÞ
qx2

A
Cnð2DxÞ � CnðDxÞ � DxC 0nð0Þ

ð3=2ÞDx2
:

We can understand why this approximation works by again applying Taylor

series:

f ð2DxÞ ¼ f ð0Þ þ 2Dxf 0ð0Þ þ 4Dx2 f 00ð0Þ
2!
þOðDx3Þ

�f ðDxÞ ¼ f ð0Þ þ Dxf 0ð0Þ þ Dx2 f 00ð0Þ
2!
þOðDx3Þ

�Dxf 0ð0Þ ¼ �Dxf 0ð0Þ
f ð2DxÞ � f ðDxÞ � Dxf 0ð0Þ ¼ 0þ 0þ ð3=2ÞDx2f 00ð0Þ þOðDx3Þ

Therefore,
Cnð2DxÞ�CnðDxÞ�DxC 0nð0Þ

ð3=2ÞDx2 is an approximation to f 00ðDxÞ that has error

OðDxÞ. We can, of course, find other schemes that cancel out more error terms and

give us higher accuracy. For example, we may look at a fourth point to get another

equation we can use to cancel out the OðDx3Þ term.

It is also possible to mix boundary conditions. For example, we may have a tube

open at one end and capped at the other, giving boundary conditions such as

Cð0; tÞ ¼ C0;
qCð1; tÞ

qx
¼ 0:

In higher dimensions, a boundary may be a surface rather than a point. In such

cases, we need to specify the boundary condition for every point on each boundary

232 15 Numerical Integration 2: Partial Differential Equations

surface. This condition may itself be a function of space. For example, if one bound-

ary is an x� y plane, then there may be a concentration gradient within the plane

expressed as some function of x and y.

15.3 An Aside on Step Sizes

When choosing step sizes for time and space for a multidimensional scheme, it is im-

portant to consider the accuracy of the approximations in both dimensions. Suppose

we rearrange our finite di¤erence scheme from above as follows:

Cnþ1ðxiÞ � CnðxiÞ
Dt

¼ Cnðxiþ1Þ þ Cnðxi�1Þ � 2CnðxiÞ
Dx2

:

Then we can interpret each side of the equation as an approximation to a

derivative:

qC

qt
þOðDtÞ ¼ q2C

qx2
þOðDx2Þ:

We would say that this is a first-order scheme in time and a second-order scheme

in space.

We can infer from these error terms that an extremely small Dx is unlikely to be

useful with this scheme, since the error from the x discretization will be dominated

by the error from the t discretization. In general, we want Dt@Dx2, so that the two

sources of error will have similar magnitudes. Any decrease of either step size beyond

that will lead to wasted work. Furthermore, if we decide to use a higher-order

scheme in the x dimension, say OðDx3Þ, then we need to increase the spatial step

size or shrink the time step size to bring them back into balance if we want to benefit

from the new scheme.

15.4 Multiple Spatial Dimensions

If we now move back to three dimensions, then our di¤usive system will take the

form

qC

qt
¼ D

q2C

qx2
þ q2C

qy2
þ q2C

qz2

 !

:

To approximately integrate this system, we discretize in time and in all three spa-

tial dimensions, which can give us the following finite di¤erence scheme:

15.4 Multiple Spatial Dimensions 233

Cnþ1ðxi; yj; zkÞ � Cnðxi; yj ; zkÞ
Dt

¼ D
Cnðxiþ1; yj; zkÞ þ Cnðxi�1; yj; zkÞ � 2Cnðxi; yj; zkÞ

Dx2

þD
Cnðxi; yjþ1; zkÞ þ Cnðxi; yj�1; zkÞ � 2Cnðxi; yj; zkÞ

Dy2

þD
Cnðxi; yj; zkþ1Þ þ Cnðxi; yj; zk�1Þ � 2Cnðxi; yj; zkÞ

Dz2
:

Simulating now involves a somewhat more complicated set of iterations because

we must increment over successive time steps, and at each time step must update all

spatial points. Our numerical integration scheme will then be coded as a loop over x,

y, and z dimensions for each time point.

For this three-dimensional version we need initial conditions C0ðxi; yj ; zkÞ for every
discrete point ðxi; yj; zkÞ. We also need boundary conditions for all faces of the space

we are considering. We may again have mixed kinds of boundary conditions. For ex-

ample, we may have some boundaries of our space sealed o¤, in which case we will fix

the derivative to 0 as our boundary condition. We may have others where we assume

we are connecting our space to some compartment of uniform concentration. Figure

15.2(c) illustrates a possible way the boundary conditions may be set for this system.

15.5 Reaction–Diffusion Equations

One particularly useful application of multidimensional integration for biology and

biochemistry is for simulating chemistry in an inhomogeneous solution. For exam-

ple, suppose we have the reaction Aþ BÐ C. Suppose further that we start with a

beaker full of A and add a drop of concentrated B to the top of the beaker. That

drop will begin reacting with the A when it hits the solution and will simultaneously

di¤use outward from where it landed. The time progress of a system like this is

described by a special kind of partial di¤erential equation model called a reaction–

di¤usion equation. The general form of a reaction–di¤usion equation is the following:

q~CC

qt
¼ ~DD‘2~CC þ ~ff ð~CCÞ:

Here, ~CC is a vector of possibly several reactant concentrations. ~DD is a diagonal

matrix describing the di¤usion rate of each reactant. ~DD‘2~CC is collectively called the

di¤usion term. ~ff ð~CCÞ is called the reaction term and is simply our standard system of

mass action di¤erential equations for the reaction neglecting space.

234 15 Numerical Integration 2: Partial Differential Equations

Example Suppose we have a simple dimer system Aþ AÐkþ
k�

B. Further suppose

that A has di¤usion rate DA and B has di¤usion rate DB. Then we will have the fol-

lowing components for our reaction–di¤usion system:

~CC ¼ ½A�
½B�

� �

~DD ¼ DA 0

0 DB

� �

~ff ð~CCÞ ¼ fAð~CCÞ
fBð~CCÞ

" #

¼ �2kþ½A�2 þ 2k�½B�
kþ½A�2 � k�½B�

" #

:

Putting these pieces together, we get the following reaction–di¤usion equations:

q½A�
qt
¼ DA

q2½A�
qx2

þ q2½A�
qy2

þ q2½A�
qz2

 !

þ ð�2kþ½A�2 þ 2k�½B�Þ

q½B�
qt
¼ DB

q2½B�
qx2

þ q2½B�
qy2

þ q2½B�
qz2

 !

þ ðkþ½A�2 � k�½B�Þ:

To convert these equations into a numerical scheme, we have to discretize t, x, y,

and z. Using forward Euler in time and a centered di¤erence in space will give us the

following scheme:

½A�nþ1ðxi; yj; zkÞ � ½A�nðxi; yj; zkÞ
Dt

¼ DA

½A�nðxiþ1;yj ; zkÞþ½A�nðxi�1;yj ; zkÞ�2½A�nðxi ;yj ; zkÞ
Dx2

þ ½A�nðxi ;yjþ1; zkÞþ½A�nðxi ;yj�1; zkÞ�2½A�nðxi ;yj ; zkÞ
Dy2

þ ½A�nðxi ;yj ; zkþ1Þþ½A�nðxi ;yj ; zk�1Þ�2½A�nðxi ;yj ; zkÞ
Dz2

0

BB
B
B
B
@

1

CC
C
C
C
A

þ ð�2kþð½A�nðxi; yj ; zkÞÞ
2 þ 2k�½B�nðxi; yj; zkÞÞ

½B�nþ1ðxi; yj ; zkÞ � ½B�nðxi; yj; zkÞ
Dt

¼ DB

½B�nðxiþ1;yj ; zkÞþ½B�nðxi�1;yj ; zkÞ�2½B�nðxi ;yj ; zkÞ
Dx2

þ ½B�nðxi ;yjþ1; zkÞþ½B�nðxi ;yj�1; zkÞ�2½B�nðxi ;yj ; zkÞ
Dy2

þ ½B�nðxi ;yj ; zkþ1Þþ½B�nðxi ;yj ; zk�1Þ�2½B�nðxi ;yj ; zkÞ
Dz2

0

BB
B
B
B
@

1

CC
C
C
C
A

þ ðkþð½A�nðxi; yj; zkÞÞ
2 � k�½B�nðxi; yj ; zkÞÞ:

15.5 Reaction–Diffusion Equations 235

We can implement this scheme using several nested loops: an outer one iterating over

time steps and three nested inner loops iterating over the three spatial dimensions for

each time step.

We can similarly simulate this system with higher-order schemes. For example, if

we want a higher-order multistep scheme in time, we can substitute a higher-order

approximation to qC
qt

on the left-hand side of the iterators above. For example, to do

a leapfrog scheme in time with the same spatial scheme, we can rewrite the leapfrog

iterator

xnþ1 ¼ xn�1 þ 2Dtf ðxnÞ

as

xnþ1 � xn�1
2Dt

¼ f ðxnÞ;

giving us the following reaction–di¤usion scheme:

½A�nþ1ðxi; yj; zkÞ � ½A�n�1ðxi; yj; zkÞ
2Dt

¼ DA

½A�nðxiþ1;yj ; zkÞþ½A�nðxi�1;yj ; zkÞ�2½A�nðxi ;yj ; zkÞ
Dx2

þ ½A�nðxi ;yjþ1; zkÞþ½A�nðxi ;yj�1; zkÞ�2½A�nðxi ;yj ; zkÞ
Dy2

þ ½A�nðxi ;yj ; zkþ1Þþ½A�nðxi ;yj ; zk�1Þ�2½A�nðxi ;yj ; zkÞ
Dz2

0

BB
B
B
B
@

1

CC
C
C
C
A

þ ð�2kþð½A�nðxi; yj; zkÞÞ
2 þ 2k�½B�nðxi; yj; zkÞÞ

½B�nþ1ðxi; yj; zkÞ � ½B�n�1ðxi; yj ; zkÞ
2Dt

¼ DB

½B�nðxiþ1;yj ; zkÞþ½B�nðxi�1;yj ; zkÞ�2½B�nðxi ;yj ; zkÞ
Dx2

þ ½B�nðxi ;yjþ1; zkÞþ½B�nðxi ;yj�1; zkÞ�2½B�nðxi ;yj ; zkÞ
Dy2

þ ½B�nðxi ;yj ; zkþ1Þþ½B�nðxi ;yj ; zk�1Þ�2½B�nðxi ;yj ; zkÞ
Dz2

0

BB
B
B
B
@

1

CC
C
C
C
A

þ ðkþð½A�nðxi; yj; zkÞÞ
2 � k�½B�nðxi; yj; zkÞÞ

Note that it is written in the above form for convenience in separating the temporal

and spatial schemes. We would actually use the scheme to find Anþ1 and Bnþ1 from

the prior time points, as follows:

236 15 Numerical Integration 2: Partial Differential Equations

½A�nþ1ðxi; yj; zkÞ ¼ ½A�n�1ðxi; yj; zkÞ

þ 2DtDA

½A�nðxiþ1;yj ; zkÞþ½A�nðxi�1;yj ; zkÞ�2½A�nðxi ;yj ; zkÞ
Dx2

þ ½A�nðxi ;yjþ1; zkÞþ½A�nðxi ;yj�1; zkÞ�2½A�nðxi ;yj ; zkÞ
Dy2

þ ½A�nðxi ;yj ; zkþ1Þþ½A�nðxi ;yj ; zk�1Þ�2½A�nðxi ;yj ; zkÞ
Dz2

0

BB
B
B
B
@

1

CC
C
C
C
A

þ 2Dtð�2kþð½A�nðxi; yj; zkÞÞ
2 þ 2k�½B�nðxi; yj; zkÞÞ

½B�nþ1ðxi; yj ; zkÞ ¼ ½B�n�1ðxi; yj; zkÞ

þ 2DtDB

½B�nðxiþ1;yj ; zkÞþ½B�nðxi�1;yj ; zkÞ�2½B�nðxi ;yj ; zkÞ
Dx2

þ ½B�nðxi ;yjþ1; zkÞþ½B�nðxi ;yj�1; zkÞ�2½B�nðxi ;yj ; zkÞ
Dy2

þ ½B�nðxi ;yj ; zkþ1Þþ½B�nðxi ;yj ; zk�1Þ�2½B�nðxi ;yj ; zkÞ
Dz2

0

B
B
B
B
@

1

C
C
C
C
A

þ 2Dtðkþð½A�nðxi; yj; zkÞÞ
2 � k�½B�nðxi; yj; zkÞÞ:

If we want a higher-order spatial scheme, we can substitute a di¤erent approxima-

tion scheme for ‘2~CC on the right-hand side. If we want to use a higher-order Runge–

Kutta scheme in time, we can treat the right-hand side as a black box for computing
qC
qt

and plug that into any Runge–Kutta scheme. There is an infinite variety of com-

binations of schemes one can construct, and many specialized versions are known for

these systems to have particularly good stability behavior, to obey conservation laws,

or to exhibit various other useful features for di¤erent sorts of systems. The Refer-

ences and Further Study section at the end of the chapter provides some guidance for

learning more about these well-studied schemes for PDEs.

15.6 Convection

Partial di¤erential equations also provide a means for modeling directed movement

of a solute through a solution, a process known as convection. For example, we may

wish to model the movement of a substance that is being actively transported from

one pole of a cell to the other. The change in local concentration due to convec-

tive motion is described by the first spatial derivative of the system. In the one-

dimensional case, we can describe a solute C being transported in the positive x

direction by the equation

15.6 Convection 237

qC

qt
¼ � qC

qx
:

More generally, we may have components of the x, y, and z dimensions to create

convection in the direction of some arbitrary spatial vector ðvx; vy; vzÞ, as follows:

qC

qt
¼ �vx

qC

qx
� vy

qC

qx
� vz

qC

qx
:

We can numerically integrate a convective system, much like a di¤usive one, by

combining a numerical spatial derivative with a numerical scheme for time integra-

tion. For example, forward Euler with a first-order forward di¤erence approximation

in space will give the following scheme for the preceding convection problem:

Cnþ1ðxi; yi; ziÞ ¼ Cnðxi; yi; ziÞ � Dt

�

vx
Cnðxiþ1; yi; ziÞ � Cnðxi; yi; ziÞ

Dx

þ vy
Cnðxi; yiþ1; ziÞ � Cnðxi; yi; ziÞ

Dy

þ vz
Cnðxi; yi; ziþ1Þ � Cnðxi; yi; ziÞ

Dz

�

:

This scheme will have first-order accuracy in both Dt and Dx.

Just as we can combine reaction and di¤usion terms to get a reaction–di¤usion

equation, so we can combine convection and di¤usion terms to get a convection–

di¤usion equation. Or we can combine convection, reaction, and di¤usion terms for

a model of chemistry in which both passive di¤usion and active transport can occur:

qC

qt
¼ �c qC

qx
þ d

q2C

qx2
þ f ðCÞ:

These terms are additive, so we can evaluate them independently when computing

the right-hand side of a numerical iterator and then add up their individual contribu-

tions to get the estimates for the next time point.

There are many other special cases of partial di¤erential equations important to

biological systems that one may consider. For example, the wave equation

q2C

qt2
¼ a2‘2C

is important to various applications in biophysics, as well as many other contexts in

physics, optics, and fluid dynamics. The principles of working with this or any other

238 15 Numerical Integration 2: Partial Differential Equations

PDE are the same as those we studied above for di¤usive systems, although well-

studied equations like this one will generally have their own special-purpose schemes

in addition to the default ones we can derive.

References and Further Study

Numerical integration of partial di¤erential equations, like numerical integration in

general, is a big field of which we have seen only a brief sample. Although one can

get far with the techniques discussed above for combining standard temporal ODE

methods with simple spatial derivative approximations, advanced work in the field

relies on a large body of specialized schemes developed for particular kinds of sys-

tems. For example, stability questions can get quite complicated with partial di¤eren-

tial equations, and a variety of special-purpose integration schemes are available for

handling di¤erent PDEs in practice. Some of this material is covered in the same

references as we saw for ODEs, such as Stoer and Bulirsch [132], Kythe and Schäfer-

kotter [133], LeVeque [135], and the Numerical Recipes series [82]. More depth

about PDEs specifically can be found in Strickwerda [137]. Just as with ODEs, there

are alternatives to finite di¤erence methods for PDEs. For example, spectral methods

can apply to PDEs just as they do to ODEs, and one can often productively combine

a spectral method in some independent variables with a finite di¤erence method in

others. Readers can refer to Gottlieb and Orszag [136] for more information.

The primary literature on the specific problems covered here is of some curious

historical interest. The heat equation was developed by Fourier in the same paper in

which he first developed the theory of Fourier series, ‘‘Théorie analytique de la cha-

leur.’’ In fact, Fourier theory was originally developed specifically to describe the so-

lutions to the heat equation. The reaction–di¤usion equation was first developed by

Alan Turing, one of the most important figures in the history of computer science but

someone not generally remembered for his contributions to biology, as part of a

mostly forgotten theory of biological morphogenesis [138]. Information on other im-

portant PDEs we have not covered in depth may be found in the references above.

References and Further Study 239

16 Numerical Integration 3: Stochastic Differential Equations

So far, we have seen various kinds of discrete models one can use to represent sto-

chastic or ‘‘noisy’’ systems, and we have seen continuous methods one can use for

smoothly evolving, predictable systems. In some cases, though, we may want to sim-

ulate a system that is both continuous and noisy. The canonical example of this is a

particle acting under the influence of Brownian motion. If we watch one particle of

some sort in a solution undergoing Brownian motion, that particle will clearly have a

continuous path; it occupies some position at any point in time and must transition

between those positions at intermediate times. Its path is also stochastic, however. In

this chapter, we will see how we can model a system that is both continuous and sto-

chastic. We will begin by considering the case of Brownian motion and then show

how to generalize to broader classes of stochastic continuous functions.

16.1 Modeling Brownian Motion

Physically, Brownian motion describes how a particle moves in a solution subject to

random thermal fluctuations within the solution. In order to model the process, how-

ever, we need a more precise mathematical model of Brownian motion. There is a

formal definition of Brownian motion, referred to as a standard Weiner process

WðtÞ, which is a random variable on time t satisfying the following properties:

1. Wð0Þ ¼ 0.

2. For any s and t satisfying 0a s < t, WðtÞ �WðsÞ is a normal random variable

with mean 0 and variance t� s.

3. For any s, t, u, and v satisfying 0a s < t < u < v,WðtÞ �WðsÞ andWðvÞ �WðuÞ
are independent random variables.

This process will describe a continuous motion, but one that is stochastic. Like a dis-

crete Markov model, there is no state except the current position, so we do not need

to know where the particle has been to figure out where it is likely to go next. This

process also has a kind of fractal property in that we can zoom in to any resolution

and the process will still exhibit the same stochastic behavior.

This definition suggests a numerical method for simulating Brownian motion at

any desired degree of resolution. We first discretize time, deciding that we will look

at increments of some size Dt. We then simulate movements between successive steps

of size Dt, using the three properties above. Property 1 tells us our initial conditions

(i.e., that we start at position zero). Property 2 tells us that we can update our parti-

cle positions at successive time points by generating normally distributed random

variables. Property 3 tells us that we can sample the variables for successive time

steps independently from one another. Putting all that together, we get the following

simple pseudocode for simulating a one-dimensional Brownian walk for some time

T :

x 0

for i ¼ 1 to T=Dt

x xþ
ffiffiffiffiffi
Dt
p

Nð0; 1Þ:

Figure 16.1(a) shows a path generated from this procedure for T ¼ 1 and

Dt ¼ 0:001.

We can generalize this model pretty easily to some more complicated Brownian

motion models. For example, if we want a particle moving in three dimensions, we

can use the same procedure for each dimension. If we want to track multiple par-

ticles, then we can keep an array of x variables, as long as the particles do not

collide. Collisions, though, or many other kinds of forces that may act on these par-

ticles, do not clearly follow from the above pseudocode. We therefore will need to

consider a more general approach to stochastic continuous simulation.

16.2 Stochastic Integrals and Differential Equations

We can come up with a more general formulation by recognizing that our procedure

for simulating Brownian motion is very similar to how we numerically integrate a

di¤erential equation. In particular, we are using a sort of finite di¤erence scheme.

When we looked at finite di¤erence schemes, we saw that we can integrate the di¤er-

ential equation

dx

dt
¼ f ðxÞ

using the forward Euler iterator

xnþ1 ¼ xn þ Dtf ðxÞ:

242 16 Numerical Integration 3: Stochastic Differential Equations

We can restate the forward Euler iterator as

xnþ1 ¼ xn þ dx;

where dx is the deterministic instantaneous change in x over one time step, Dtf ðxÞ.
With our Brownian motion simulations, we use a similar iterator:

xnþ1 ¼ xn þ dW ;

where dW is a random variable
ffiffiffiffiffi
Dt
p

Nð0; 1Þ representing the instantaneous change

in position due to stochastic fluctuations from Brownian motion. In the former

case, what we are really doing is using the fundamental theory of calculus to say

that

Figure 16.1
Numerical simulations of Brownian motion models. For each figure, the x axis represents time and the y
axis, o¤set of the Brownian motion process from the origin. (a) Pure one-dimensional Brownian motion
simulated with Dt ¼ 0:001. (b) Simulation of a tethered particle acting under Brownian motion with a
restoring force bringing it back toward the origin. (c) Side-by-side comparison of the two systems revealing
their divergence over long time scales.

16.2 Stochastic Integrals and Differential Equations 243

dx

dt
¼ f ðxÞ

dx ¼ f ðxðtÞÞ dt

x ¼
ð

f ðxðtÞÞ dt:

We can analogously say in the latter case that

dx ¼ dW

x ¼
ð

dW :

Our pseudocode above for simulating Brownian motion is really just applying the

forward Euler method to this latter ‘‘integral,’’ except that we are integrating over a

random variable dW in place of the fixed quantity dt.

This observation introduces the concept of stochastic integrals, in which we per-

form integration with respect to a random process instead of a uniform time. We

can more generally think of integrating an arbitrary function xðtÞ with respect to a

Brownian motion process WðtÞ:

X ðTÞ ¼
ðT

0

xðtÞ dW ðtÞ:

There are di¤erent ways to define exactly what this notation means, though. We will

examine one particular definition of stochastic integration called an Itô integral, in

which the above stochastic integral is defined as

lim
Dt!0

XT=Dt�1

j¼0
xð jDtÞðWðð j þ 1ÞDtÞ �Wð jDtÞÞ

¼
XT=Dt�1

j¼0
xð jDtÞð

ffiffiffiffiffi
Dt
p

Nð0; 1ÞÞ:

There are alternative ways to define a stochastic integral, such as the Stratonovich in-

tegral, in which we use the limit of a slightly di¤erent sum, but it does not really mat-

ter which definition we choose as long as we are consistent about it. We will therefore

somewhat arbitrarily confine ourselves to the Itô integral.

The reason it is worth going to the trouble of defining our Brownian motion pro-

cess with the notation of integrals and di¤erential equations is that this conversion

244 16 Numerical Integration 3: Stochastic Differential Equations

provides a straightforward way to combine stochastic and deterministic components

in the same di¤erential equation. If we want to model a variable X that is a¤ected by

a deterministic force f ðX Þ and a stochastic force gðX Þ, we can describe X as

dX ðtÞ ¼ f ðX ðtÞÞ dtþ gðX ðtÞÞ dW ðtÞ:

Or, equivalently,

X ðtÞ ¼ X0 þ
ð t

0

f ðXðsÞÞ dsþ
ð t

0

gðXðsÞÞ dW ðsÞ:

For example, suppose we want to model the motion of a molecule acting under

Brownian motion, but tethered to some much larger, immobile structure. This situa-

tion may arise if we have a protein anchored into a cell membrane, but one terminus

of that protein is disordered and flops around in solution. If we want to track the

movement of the endpoint of the disordered terminus, we may propose that it acts

as if it were subject to Brownian motion, but with an additional ideal spring restoring

force drawing it back to the point x ¼ 0. Then we can describe its motion with the

following stochastic di¤erential equation (SDE):

dxðtÞ ¼ �kxðtÞ dtþDdW ðtÞ;

where k is a spring constant for the tether and D is a di¤usion constant. We can

equivalently describe the system by the stochastic integral equation

xðtÞ ¼ x0 þ
ð t

0

�kxðsÞ dsþ
ð t

0

DdW ðtÞ:

16.3 Integrating SDEs

The above formulation of stochastic integrals and di¤erential equations gives us a

way of describing continuous stochastic processes, but it does not exactly tell us

how to simulate them. We can derive a stochastic integration method by combining

the stochastic finite di¤erence method we derived for simulating Brownian motion

above with one of our previous deterministic finite di¤erence methods. For example,

suppose we want to integrate our equation for Brownian motion of a tethered mole-

cule. We previously simulated pure Brownian motion with a method analogous to

forward Euler, so we can combine that Euler-like method for the stochastic part of

the equation with standard forward Euler for the deterministic part. That is, given

our equation

dxðtÞ ¼ �kxðtÞ dtþDdW ðtÞ;

16.3 Integrating SDEs 245

we would generate the following pseudocode:

x0 xð0Þ

for i ¼ 1 to T=Dt

xi ¼ xi�1 � kxi�1DtþD
ffiffiffiffiffi
Dt
p

Nð0; 1Þ:

This procedure of using forward Euler for the deterministic part and the Euler-like

stochastic sum for the stochastic part is called the Euler–Maruyama method.

Figure 16.1(b) shows a simulation of the tethered molecule’s position over time,

using k ¼ D ¼ 1. This picture may superficially look similar to figure 16.1(a), which

lacks the restoring force of the tether. When we superimpose simulations of the two

over a su‰ciently long time scale in figure 16.1(c), though, we can see that the tether

substantially changes the long-term behavior.

We can use the same basic Euler–Maruyama method for any SDE

dxðtÞ ¼ f ðxðtÞÞ dtþ gðxðtÞÞ dWðtÞ

by plugging in fi and gi, the current estimates of f ðxÞ and gðxÞ, in the appropriate

places in the formula:

xiþ1 xi þ f ðxiÞDtþ gðxiÞ
ffiffiffiffiffi
Dt
p

Nð0; 1Þ:

Example Suppose we are interested in a noisy model of a chemical reaction system.

We will assume we have a simple one-step reaction, Aþ B!k C, but propose that

there is a certain amount of noise in the system. It may be that molecules get

degraded and new ones get created, or that our reactants participate in other, rarer

reactions that occasionally consume or release copies of them. To model this system

with SDEs, we can start with our standard ODE system of equations, rewritten in

our SDE notation:

dA ¼ �kAB dt

dB ¼ �kAB dt

dC ¼ kABdt:

We then have to add in noise terms. There are many ways one can add noise to this

system by SDEs, and we need a model of the noise just as we develop a model of the

deterministic part of the process. Suppose we decide the noise creates and removes

copies of the three reactants independently of one another. This may be a reasonable

model if the source of the noise is the reactants’ participating in other reactions.

Under that assumption, we may propose that the amount of noise in each reactant

246 16 Numerical Integration 3: Stochastic Differential Equations

should be proportional to its current concentration. Then our full SDEs might look

like the following:

dA ¼ �kAB dtþ kAdW1ðtÞ

dB ¼ �kAB dtþ kBdW2ðtÞ

dC ¼ kAB dtþ kC dW3ðtÞ;

where k is a constant of proportionality for the noise term. We can then simulate this

system by the Euler–Maruyama method with the following pseudocode:

A0 Að0Þ

B0 Bð0Þ

C0 Cð0Þ

for i ¼ 1 to T=Dt

Ai ¼ Ai�1 � kAi�1Bi�1Dtþ kAi�1
ffiffiffiffiffi
Dt
p

Nð0; 1Þ

Bi ¼ Bi�1 � kAi�1Bi�1Dtþ kBi�1
ffiffiffiffiffi
Dt
p

Nð0; 1Þ

Ci ¼ Ci�1 þ kAi�1Bi�1Dtþ kCi�1
ffiffiffiffiffi
Dt
p

Nð0; 1Þ:

Figure 16.2 shows a single trajectory of this system for ten units of time, with the

rate constant set to 1 and the noise constant set to 0.01, and with Að0Þ ¼ Bð0Þ ¼ 1,

Cð0Þ ¼ 0.

Figure 16.2
Stochastic simulation of the reaction system Aþ B! C with rate constant 1, noise constant 0.01, and ini-
tial conditions Að0Þ ¼ 1, Bð0Þ ¼ 1, Cð0Þ ¼ 0.

16.3 Integrating SDEs 247

Note that di¤erent assumptions about the source of the noise may lead to di¤erent

SDEs. For example, if we assume the noise is produced by chance fluctuations in the

number of reaction events rather than by independent changes in reactant counts,

then we need a noise model that conserves molecules in the system. We may, for ex-

ample, instead use the following SDEs:

dA ¼ �kAB dt� kAdW1ðtÞ

dB ¼ �kAB dt� kBdW1ðtÞ

dC ¼ kABdtþ kC dW1ðtÞ:

Here, we have only a single Brownian process, representing excess reaction events

above the expected deterministic reaction rate. To simulate this version of the system,

we will sample only a single Nð0; 1Þ random variable per loop iteration and then

apply it to each of the three reactants, rather than sampling one random variable

per reactant.

16.4 Accuracy of Stochastic Integration Methods

Analyzing accuracy of SDEs is more complicated than for deterministic di¤erential

equations. We still need some understanding of how it is done, though, if we want

to be able to use these methods in practice. With deterministic di¤erential equations,

the error of the scheme is the di¤erence between the answer given by the scheme and

the answer given by the true process. With SDEs, we cannot define error so easily

because the outputs of the scheme and the true process are both random variables.

Even a perfect simulation of the stochastic process will produce di¤erent results

each time we use it. We therefore need to measures errors based on the distribution

of possible outputs rather than any individual output. Just as with deterministic

equations, we will seek to define an ‘‘order of accuracy’’ of a scheme, representing

how its error varies with step size Dt. Two definitions of order of accuracy are widely

used for this purpose.

The more important definition, and the one we usually will want to consider as the

order of accuracy of our method, is known as the strong order of convergence. Sup-

pose we define xn to be the value of the variable we are integrating as of step n, and

xðtnÞ to be the value of the real process at time point n. xn and xðtnÞ are then both

random variables. If the method is a perfect simulation, they will have the same dis-

tribution. We can measure how far apart they are by considering the expectation of

their di¤erence. In particular, we say a method has strong order of convergence g if

Ex½jxn � xðtnÞj�aCDtg

248 16 Numerical Integration 3: Stochastic Differential Equations

for some constant C specific to the problem, su‰ciently large n, and su‰ciently small

Dt.

We can also define a weak order of convergence to be g if

jEx½xn� � Ex½xðtnÞ�jaCDtg

for some constant C specific to the problem, su‰ciently large n, and su‰ciently small

Dt. This is a less stringent definition because it neglects e¤ects from the variances of

the two processes that are captured in the strong order definition.

Even given a precise definition, though, order of convergence for stochastic inte-

gration methods is much harder to analyze than the order of accuracy of determinis-

tic schemes. In practice, one may need to assess the order of convergence empirically

by choosing some test function that is analytically solvable and seeing how the error

of the scheme varies with Dt. It happens that the Euler–Maruyama method has

strong order 1
2 and, with our more specialized definition, weak order 1, but we will

not be able to go into any more depth than stating those results.

There is a stochastic integration method with strong order 1 derivable by adding a

correction term to the Euler–Maruyama approximation:

xnþ1 ¼ xn þ Dtf ðxnÞ þ gðxnÞ
ffiffiffiffiffi
Dt
p

nþ 1

2
gðxnÞg 0ðxnÞðDtn2 � DtÞ;

where n is an Nð0; 1Þ normal random variable. This is called Milstein’s method.

There is even an analogue to the Taylor series for stochastic functions, called the

Itô-Taylor series, that can be used to perform the analyses described here and to de-

rive methods of arbitrarily high order. The Itô-Taylor series does not have a simple

statement like the standard Taylor series, though, and would have little practical

value without a lot more mathematical depth than we can provide here. We will

therefore omit it as well.

16.5 Stability of Stochastic Integration Methods

Stability is also a trickier concept for stochastic versus deterministic finite di¤erence

schemes. Because each dependent variable at any point in time is a random variable,

we need to consider the probable growth of the function over some distribution. It is

not adequate to consider just the expected value of the variable, though. For exam-

ple, pure Brownian motion is an unstable process, since a particle acting under Brow-

nian motion is expected to have moved a net distance Oð
ffiffiffiffi
T
p
Þ in any finite time T .

Yet the expected position of a particle moving under pure Brownian motion is the

origin at all times. We therefore need to define stability in terms of some measure of

expected deviation from zero.

16.5 Stability of Stochastic Integration Methods 249

The simplest definition of stability for us to use is based on the expectation of the

variable squared. That is, if we have a stochastic variable xðtÞ, we want to say that

xðtÞ is stable if limt!y Ex½ðxðtÞÞ2� is a constant. We can perform this test with a

method analogous to the von Neumann analysis we used for deterministic finite dif-

ference schemes. Recall that previously we examined stability behavior by assuming

solutions of the form

xðtÞ ¼ eot:

This is equivalent to saying that our di¤erential equation was

dx

dt
¼ ox:

We will generalize von Neumann analysis to the stochastic case by saying that our

test functions will have the form

dx ¼ ox dtþ m dW ðtÞ:

In the deterministic case, the true system is stable when Refog < 0, unstable when

Refog > 0, and semistable when Refog ¼ 0. For the stochastic situation, there is

an equivalent test for stability:

lim
t!y

Ex½ðxðtÞÞ2� ¼ 0, Refog þ 1

2
jmj2 < 0:

That is, the system should be stable when Refog þ 1
2 jmj

2 < 0 and unstable when

Refog þ 1
2 jmj

2 > 0.

This test tells us how the real system should behave, but what about the finite dif-

ference scheme applied to it? In general, for this definition of stability the calculations

will not be too hard. We need to evaluate limn!y Ex½x2
n �. The Euler–Maruyama

scheme for our test function uses the following iterator:

xnþ1 ¼ xn þ oDtxn þ m
ffiffiffiffiffi
Dt
p

Nð0; 1Þ

¼ ð1þ oDtÞxn þ m
ffiffiffiffiffi
Dt
p

Nð0; 1Þ:

Suppose we have a set of independent Nð0; 1Þ normal random variables, which we

will call N1;N2;N3; Then we can derive the following values for the test function

at successive iterations of the scheme:

x1 ¼ ð1þ oDtÞx0 þ m
ffiffiffiffiffi
Dt
p

N1

x2 ¼ ð1þ oDtÞ2x0 þ ð1þ oDtÞm
ffiffiffiffiffi
Dt
p

N1 þ m
ffiffiffiffiffi
Dt
p

N2

250 16 Numerical Integration 3: Stochastic Differential Equations

x3 ¼ ð1þ oDtÞ3x0 þ ð1þ oDtÞ2m
ffiffiffiffiffi
Dt
p

N1 þ ð1þ oDtÞm
ffiffiffiffiffi
Dt
p

N2 þ m
ffiffiffiffiffi
Dt
p

N3

..

.

xk ¼ ð1þ oDtÞkx0 þ
Xk

j¼1
ð1þ oDtÞ j�1m

ffiffiffiffiffi
Dt
p

Nj:

We really want to know about Ex½x2
k �, but this is actually very easy to evaluate.

When we take the pairwise square of terms from the above function, any term with

the form CNj for constant C or CNiNj for i0 j will have expectation zero and can

be ignored. Ex½N 2
j � ¼ 1, so we can drop N 2

j factors from the expectation. Thus, we

need only the sum of squares of the individual terms of xk:

Ex½x2
k � ¼ ð1þ oDtÞ2kx2

0 þ
Xk

j¼1
ð1þ oDtÞ2j�2m2Dt:

If we look at the growth factor of this function, it is no longer a simple multiplica-

tive factor xkþ1 ¼ gðoDtÞxk, as it was in the deterministic case. Rather:

Ex½x2
kþ1� ¼ ð1þ oDtÞ2xk þ m2Dt:

The expectation is therefore a more complicated linear recurrence of the form

ykþ1 ¼ ayk þ b. Recall that solutions to a linear recurrence relation generally have

the form yk ¼ gk for some g. So to find the stability region, we need to find where

jgj ¼ 1 for

gkþ1 ¼ agk þ b:

This is true only where jaj þ jbj ¼ 1. Thus, our scheme is stable where

j1þ oDtj2 þ m2Dt < 1:

This condition clearly cannot be satisfied if Refog > 0, indicating that our

method will be unstable in the right half of the complex plane no matter what the

noise coe‰cient m is. If the deterministic part is oscillatory (o purely imaginary),

then it will also be impossible to get stability regardless of the noise term. Where

Refog < 0, it is a little harder to characterize. But if the real problem is stable,

then we should be able to get a stable numerical simulation by choosing su‰ciently

small Dt, just as with the deterministic forward Euler method. The same sort of anal-

ysis can be applied to the Milstein scheme or any other stochastic integration scheme,

although the analysis will in general get much messier for the higher-order schemes.

16.5 Stability of Stochastic Integration Methods 251

References and Further Study

Though stochastic di¤erential equations are not a recent invention and have seen

wide use in other fields, they are still not well known in the biological modeling com-

munity. The most lucid description of the topic I have found is a review article on

stochastic di¤erential equations by Higham [139] that was very helpful in preparing

this chapter, and I recommend it to readers still confused by the basic topic. A more

in-depth coverage of the topic may be found in Kloeden and Platen [140]. Those

looking for depth on the theory behind these methods may also refer to Protter

[141]. That text is, unfortunately, likely to be incomprehensible to readers without a

strong mathematics background. I have yet to find a textbook on the topic that gives

a clear explanation aimed at practitioners in the applied sciences. Stochastic di¤eren-

tial equations are probably most widely used today in computational finance, and

readers interested in a text aimed more at the practitioner than the theorist may

therefore look to the mathematical finance literature to find more practical discussion

than appears to be available for scientists. In that regard, readers may consider Lam-

berton and Lapeyre [142] or Øksendal [143].

252 16 Numerical Integration 3: Stochastic Differential Equations

17 Case Study: Simulating Cellular Biochemistry

In the preceding chapters, we have seen several methods for simulating the time evo-

lution of complex systems with many components. Today, many researchers are

working to create predictive simulations of one particular very complex system: a liv-

ing cell. In particular, they are working to describe the complicated chain of coupled

chemical reactions that collectively produce the essential processes of life. Several of

the modeling methods we have seen, for both discrete and continuous simulation, are

today being used in these e¤orts to model biochemistry at the cellular scale. In this

chapter, we will see how the general techniques we covered in the preceding chapters

are contributing to current research practice in whole-cell modeling and get an idea

of some of the added complications one needs to worry about in using them in an

extremely complicated real system. We cannot hope to consider every attempt to

model any biochemical reaction that occurs in a cell; rather, we will examine a few

recent attempts to create a single simulation system that can collectively encompass

the large biochemical networks found in a cell. These examples collectively illustrate

some of the many options available for whole-cell modeling.

17.1 Differential Equation Models

The simplest way to model biochemistry in a cell is to treat it as a very large system

of coupled ordinary di¤erential equations (ODEs). In such a model, one assumes

that the cell can be treated as a homogeneous, well-mixed solution containing all of

the reactants needed for biochemistry. The biochemical pathways in the cell or any

given subsystem of the cell can then be described as a set of coupled reaction equa-

tions, which we can convert into a system of ordinary di¤erential equations, as we

have seen in chapter 14. For example, a Michaelis–Menten enzyme-mediated cataly-

sis reaction might be represented by the following reaction equations:

S þ E Ðk1
k2

I

I !k3 I �

I � !k4 Pþ E:

These reaction equations then imply a set of coupled di¤erential equations:

d½S�
dt
¼ k2½I � � k1½S�½E�

d½E�
dt
¼ k2½I � þ k4½I �� � k1½S�½E�

d½I �
dt
¼ k1½S�½E� � ðk2 þ k3Þ½I �

d½I ��
dt
¼ k3½I � � k4½I ��

d½P�
dt
¼ k4½I ��:

This ODE approach can be expanded to arbitrarily complex reaction networks at the

cost of adding one additional equation per reactant and a small number of additional

terms per reaction. A straightforward ODE model was used in some of the first

attempts at developing whole-cell biochemical simulators. The GEPASI program

[144], one of the first widely used programs for whole-cell modeling, adopted essen-

tially this ODE approach in its initial version. The original version of the popular

E-Cell system [145] likewise used this ODE approach for general biochemical

simulation.

A cell is far from homogeneous, and most recent approaches have incorporated

some means of representing the spatial configuration of a cell. The simplest variant

of a spatial configuration is to represent the cell as a finite set of compartments and

allow transfer between compartments in addition to reaction events. Conceptually, a

compartment model is not di¤erent from a pure ODE model. One can treat each

reactant as a separate species for each localization it takes on, treat transfer between

compartments as a new kind of reaction, and instantiate a separate set of reaction

equations for each compartment. In the enzyme-mediated catalysis reaction above,

for instance, we may imagine that the enzyme is permanently anchored in the Golgi

apparatus, the substrate transitions between Golgi and endoplasmic reticulum (ER),

and the product between Golgi and cytoplasm. If we denote these di¤erent locations

by subscripts G (Golgi), E (ER), and C (cytoplasm), we can create a model of the

compartmented version of the system with the reactions

254 17 Case Study: Simulating Cellular Biochemistry

SG þ EG Ðk1
k2

IG

IG !k3 I �G

I �G !k4 PG þ EG

SE !k5 SG

PG !k6 PC :

We can then convert this system of e¤ectively seven reactants and six reactions into a

mass-action ODE model just as we did with the five-reactant, four-reaction original

model. Figure 17.1 illustrates the model. The GEPASI program evolved in this direc-

tion, adding a compartment model in its version 3 release [146]. Note that one can,

with a bit of e¤ort, implement a compartment model in a standard ODE simulator

by manually adding the compartment labeling and reaction changes in the manner

described above.

Even the compartment approach simplifies quite a bit, though. Distributions of

molecular components can be quite heterogeneous even within a defined compart-

ment because of variations in where these components are created, transported,

sequestered, or degraded. One can take a further step toward realistic modeling of

spatial heterogeneity through a partial di¤erential equation (PDE) model. One exam-

ple of this approach was taken by the Virtual Cell project [147]. The virtual cell

uses a spatial model by which detailed cell geometries can be derived from micros-

copy images, discretized, and divided into compartments. Di¤usion occurs between

Figure 17.1
A compartmented cell model for an enzyme-mediated reaction. In this simple version, the cell is divided
into four compartments, three of which are relevant to the reaction being modeled.

17.1 Differential Equation Models 255

neighboring discrete spatial elements within the same compartment, and models of

membrane transport establish fluxes between elements separated by compartment

boundaries. In addition to reaction equations, this system also includes a detailed

model of electrostatic potential across the cell volume. The global set of PDEs is

numerically integrated using an implicit method called the line-by-line method.

GEPASI also continued to evolve in this direction through an extension called the

Model Extender for GEPASI (MEG) [148], which allowed users to define grids of

many pseudo compartments (essentially a PDE spatial discretization), which would

then be automatically converted into a GEPASI compartment definition.

All of these di¤erential equation approaches share the assumptions that the system

is continuous and that it is deterministic. Neither assumption is exactly true, though,

as cells have finite numbers of any given reactant and undergo reactions randomly as

these individual reactants find one another in the cell. At the cellular scale, then,

reactions exhibit a discretization and stochasticity that would be missing from any

of the above models. One may assume that stochastic di¤erential equations (SDEs)

will provide a natural way to extend ODE models to noisy reaction systems. As far

as I know, though, no attempt at whole-cell modeling has actually gone the SDE

route. Approaches to modeling stochastic reactions on the whole-cell level have so

far favored abandoning the di¤erential equation framework in favor of Markov

models, as we will see in the next section.

17.2 Markov Models Methods

One popular approach to modeling stochastic reaction chemistry uses a variant of

the continuous-time Markov model (CTMM). This approach is known as the sto-

chastic simulation algorithm (SSA) and is commonly called a Gillespie model after

its inventor [149]. In this approach, we keep track of discrete counts of a finite set of

reactants and create transitions between states when those states di¤er from one an-

other by a single reaction event. We saw a special case of this method when looking

at a trimer assembly system in chapter 11. We can generalize this approach to any

arbitrary reaction system. Given a set of reactants X1;X2; . . . ;Xn and a reaction

a1X1 þ a2X2 þ � � � anXn !k b1X1 þ b2X2 þ � � � bnXn;

we can establish a transition from any state with su‰ciently many input reactants to

a corresponding output state. We can define the state of the system by a vector of

counts of all the reactants. Thus, a system with N1 copies of reactant X1, N2 copies

of reactant X2, N3 copies of reactant X3, and so on, will have state

ðN1;N2;N3; . . . ;NnÞ:

256 17 Case Study: Simulating Cellular Biochemistry

Then, provided N1 b a1;N2 b a2; . . . , we can establish the transition

ðN1;N2;N3; . . . ;NnÞ ! ðN1 � a1 þ b1;N2 � a2 þ b2;N3 � a3 þ b3; . . . ;Nn � an þ bnÞ:

The rate of this transition depends on the intrinsic rate of the reaction, k, as well as

on the number of ways of picking the reactants that participate in the reaction. For

example, there are N1

a1

� �
ways to pick the a1 copies of X1 that we need from among

the N1 copies available. The overall rate of the transition, then, is

l ¼ k � N1

a1

� �

� N1

a2

� �

� � � � � Nn

an

� �

:

If the system contains many reactions, we add a set of transitions in this way to cor-

respond to each of the possible reactions. This Gillespie approach was incorporated

into the first release of a program called StochSim [150], although StochSim soon

evolved to a spatial model described below.

When implementing such a method in practice, one must give a considerable

amount of attention to the algorithms one uses to implement it. Unless we are mod-

eling a very small number of copies of just a few reactants, it will not be feasible to

explicitly construct the entire CTMM graph. Our goal usually will be to explicitly

model only the current state of the graph plus a small amount of additional state,

and e‰ciently sample among the possible next states of the system without modeling

any of the graph outside the immediate neighborhood of the current state. When Gil-

lespie originally proposed the use of CTMMs for modeling systems of reactions, he

suggested two algorithms for this purpose. The first approach, called the direct

method, on each simulation step determines the sum of all transition rates out of the

current state, samples an exponential variable representing the time to leave the cur-

rent state, and chooses the reaction by which the state is exited among all possible

next reactions weighted by their individual rates. Figure 17.2(a) provides pseudocode

for the direct method. The second approach, called the first reaction method, on each

event samples a separate waiting time for each possible next reaction and chooses the

one with shortest time as the next reaction event. Figure 17.2(b) provides pseudocode

for the first reaction method. These two methods correspond to the two views of

CTMMs we saw in chapter 11. These have been largely displaced since then by a

technique called the next reaction method [151]. The next reaction method is a

discrete-event implementation of CTMM simulation in which one stores an event

queue containing all possible next events, and on each step implements the event

with shortest time and updates only those pending events that correspond to species

a¤ected by this most recent reaction. The method therefore should require in practice

much less runtime than is needed to sample all possible events, as in the first reaction

method. Figure 17.2(c) provides pseudocode for the next reaction method. Although

17.2 Markov Models Methods 257

the next reaction method is currently the preferred method in practice, the overhead

of the queue can make it less e‰cient than Gillespie’s direct method when the num-

ber of reactants is not too large [152]. Furthermore, there are specialized methods for

more e‰cient modeling of cases where the number of reactants becomes problematic

even for the the next reaction method [153].

Markov models, like ODEs, can be extended to cover spatial e¤ects. The simplest

method for this purpose is to assume that the space is described by a regular lattice

similar to the spatial discretization used in the spatial PDE models we considered

previously. We can then treat ‘‘jumps’’ between neighboring lattice points as a spe-

cial kind of reaction event that can occur side by side with chemical reactions among

the reactants within each lattice point. One way of modeling this e¤ect is to use a

fixed time step and select the probability of a given reactant’s jumping between posi-

tions so as to produce a realistic di¤usion rate for the particle. This approach is used

Figure 17.2
Pseudocode for algorithms for implementing SSA simulations. (a) Direct method. (b) First reaction
method. (c) Next reaction method.

258 17 Case Study: Simulating Cellular Biochemistry

by the MCell simulation system [154] [155], which uses a very fine lattice to represent

cell geometries with high precision. MCell has particularly used this capability for

studies of neuronal signaling, where complex geometries of cells and ion stores within

them make spatial e¤ects critical to realistic models. We can also combine a lattice

model with a CTMM representation.

By assuming a Brownian di¤usion process, we can determine exponential jump

rates that allow us to track particles in continuous time as they move along the grid.

Particle jumps can then occur in continuous time in parallel with reaction events in

continuous time, giving us all the advantages of the Gillespie method without sacri-

ficing spatial detail. This ‘‘spatial Gillespie’’ algorithm was developed by Stundzia

and Lumsden [156] and extended to use the next reaction algorithm [151] by Elf

et al. [157]. A grid-based Gillespie approach was added to the StochSim simulator

[150]. It is also used by the SmartCell [158] whole-cell simulation system, which

allows for highly detailed spatial models of cells similar to those used by the

discrete-time MCell system.

17.3 Hybrid Models

All of the methods described above have advantages and disadvantages for various

kinds of systems. Continuous, deterministic models perform well if there are few

kinds of reactants but many copies of each. They are, however, unrealistic if copy

numbers are low and ine‰cient if numbers of distinct reactant species are large. Gil-

lespie models work well when few copies of any given reactant are available, but are

ine‰cient when many copies of some reactants are available. These sorts of trade-

o¤s present a problem when one wants to model large numbers of coupled bio-

chemical reactions because no one method is likely to be appropriate for all of the

components of the system. E¤orts at whole-cell modeling are therefore largely turn-

ing to hybrid approaches, which typically combine di¤erent algorithms for di¤erent

kinds of reactants or for di¤erent conditions.

One approach to hybrid modeling is to start with an inherently discrete model, but

allow automatic adjustment to continuous models as problem characteristics allow.

This idea is the basis of a method called the Tau leap algorithm [159]. The Tau leap

algorithm is an approximate method for simulating a Gillespie model that automati-

cally substitutes continuous approximations for the discrete ones for well-populated

reaction intermediates. The idea behind the approach is that species with large

copy numbers do not need to be updated one reaction at a time. The small random

fluctuations induced by counting individual reaction events will average out to a

continuous, deterministic change with a relatively small error. One can exploit this

observation to speed up a simulation by taking continuous ‘‘leaps’’ that update

the well-populated species alongside discrete single-reaction events that update the

17.3 Hybrid Models 259

poorly populated species. The complication in such an approach is finding the

amount of time one can leap (a time Gillespie refers to as t) without introducing a

significant error into any species counts. Gillespie suggests a method by which one

examines the distribution of changes as a function of time in each well-populated

species of the reaction system, and chooses t such that the expected change in any

species is a small fraction of its preleap population. The resulting method can be

orders of magnitude faster than the standard SSA when dealing with systems having

many copies of some or all reactants.

The GEPASI program has evolved in the direction of a similar automated hybrid

model, resulting in a new program called COPASI [160]. COPASI allows users to de-

fine a single reaction network model and then simulate that model using ODE inte-

gration, CTMM simulation using the next reaction method, or a hybrid approach

combining the next reaction method with an ODE solver. The COPASI hybrid

method uses a dynamic, automated partitioning of reactants into continuous and dis-

crete sets based on copy numbers. Continuous ODE steps and discrete Gillespie reac-

tion steps are then handled serially by a common discrete event loop. Thus, the

queue on a given step may signal either the next step of a numerical integrator or a

single discrete reaction.

One can, alternatively, allow a user to explicitly separate a model into discrete and

continuous components. For example, a user of one of these systems may note that

the calcium concentration in a cell is so high that it can always be treated as a con-

tinuous variable, whereas a particular calcium channel may occur in such small num-

bers that it must always be treated as a discrete variable. A variant of this manual

approach was developed by Takahashi et al. [161], and has been incorporated into

the E-Cell system since its third release. Like the COPASI hybrid method, the E-

Cell composite approach maintains a single discrete event queue that handles both

discrete reaction events and numerical integration time steps. In the case of numeri-

cal integration, the method chooses a new time step based on an embedded Runge–

Kutta method. On a discrete event, continuous values are inferred between time steps

using an interpolation method, a topic we will consider in chapter 22.

17.4 Handling Very Large Reaction Networks

One of the problems that has emerged from models of more complicated systems is

that some systems may have too many reactions to explicitly represent them all. This

issue is a problem particularly for reactions involving the formation of macromolec-

ular complexes, where an enormous number of possible partially formed structures

may in principle occur in a reaction system, even if few are ever present at any given

time. Figure 17.3 shows an example of a hypothetical hexameric complex with two

kinds of binding interactions, along with the ten partially formed species for which

260 17 Case Study: Simulating Cellular Biochemistry

one would need to account in simulating its assembly. The number of these partially

formed reactants will in general grow exponentially with the size of the complete

complex, making it infeasible to explicitly create a model of the reaction for com-

plexes of tens or hundreds of subunits, such as ribosomes, viral capsids, or cytoskele-

tal structures.

A few attempts have been made to simulate these processes using implicitly speci-

fied reaction networks. In any such model, one establishes a set of components and a

set of rules for how components bind to one another. In figure 17.3, for example, the

rule may specify the particular pattern of neighbors of each copy of protein P, from

which one can derive all of the possible ways of forming a complex of Ps. A simula-

tor will then implicitly model the set of reactions implied by those rules, either by au-

tomatically creating the full reaction network or by sampling reaction trajectories

from the network without ever explicitly creating it. The BioNetGen program [162]

adopted the former approach, establishing a language for specifying interaction pat-

terns and binding constraints for macromolecular complexes, which are then used to

automatically generate reaction equations. This tool has been incorporated into the

Virtual Cell [147] since version 4.3.

The latter approach, where the reaction network is simulated without ever explic-

itly creating it, was used by the Moleculizer program [163]. Moleculizer implements a

CTMM model of the reaction network, using the next reaction method without ever

creating the full set of reaction equations. The DESSA program [164] similarly estab-

lishes implicit stochastic reaction networks from subunit–subunit binding rules, but

Figure 17.3
A hypothetical macromolecular complex and its assembly intermediates. The complex is formed of six pro-
tein copies (P) connected by two types of binding interaction (solid lines and dashed lines). The upper-left
shows the complete complex. The other structures are the various partially assembled species implied by
the complete complex.

17.4 Handling Very Large Reaction Networks 261

with an explicit model of geometries of complexes that allows modeling of systems

where even the final assembled structures may be unknown (e.g., an amorphous ag-

gregate structure or a misassembled complex).

17.5 The Future of Whole-Cell Models

Though whole-cell biochemical modeling has a relatively short history, we can make

some conjectures about the future of the field based on its progress to date. Figure

17.4 breaks down the methods we have examined based on how they handle time

progress (continuous/deterministic, discrete/stochastic, or hybrid) and how they

model space (no spatial model, compartmented, or continuous space). Though this

grid does not capture all the nuances between the models, it does provide a rough

Figure 17.4
Grouping of whole-cell simulators by temporal and spatial models. Filled circles mark individual simula-
tors or di¤erent releases of a single simulator when accompanied by major changes of model. Arrows fol-
low progression of particular research e¤orts.

262 17 Case Study: Simulating Cellular Biochemistry

picture of how the field has been evolving over the past few years. Two general

trends we can observe are movements toward explicit modeling of spatial features in

cells and toward hybrid discrete/continuous models. The shift toward spatial models

is a natural trend toward greater realism as the importance of space to cellular reac-

tion chemistry has become better appreciated. The shift toward hybrids reflects a

compromise between realism and tractability, as much of the field has come to ap-

preciate the importance of stochastic e¤ects for realistic cellular models, but has

found some continuous component necessary for modeling large networks in reason-

able times.

It is worth noting, though, that the field is still quite far from being able to build a

truly comprehensive simulation of biochemistry in even the simplest cells. Papers are

constantly appearing on new advances in methods or extensions to new systems, and

a current literature search is likely to turn them up. There are also numerous exam-

ples of particularly interesting or di‰cult subsystems of cellular biochemistry for

which specialized methods have been developed, which we will not attempt to survey

here. If we had to predict which algorithms will power the successful whole-cell sim-

ulators of the future, we might guess that they will use a hybrid of PDE and spatial

Gillespie models. There are, however, alternative approaches we have not considered

here because they are so far too computationally demanding to be used for complex

reaction networks or long time scales. Examples include Brownian dynamics models

[165], which explicitly model di¤usion of reactants in three-dimensional space, and a

recent approach called Green’s function reaction dynamics (GFRD) [166], which

attempts to speed up Brownian dynamics models by stepping between events with

an event queue. It may be, though, that predictive whole-cell models will eventually

require these sorts of more realistic models or even something wholly di¤erent and as

yet unanticipated.

17.6 An Aside on Standards and Interfaces

One of the major trends in whole-cell modeling has been increased attention to stan-

dardization and interface design. Though this topic is somewhat tangential to our fo-

cus on algorithms and numerical methods, it is worth noting for anyone interested in

working in this area. These standards are aimed at creating a language in which one

can describe any kind of cellular reaction system independently of the methods with

which it has been or will be simulated. Such a standard will facilitate interconnection

of the many kinds of programs now available for creating, simulating, and analyzing

such models. One may, for example, wish to define a model with one tool, fit param-

eters to the model from some experimental data with another, simulate the model

with a third, and analyze the results with a fourth. By building a common language

familiar to every tool builder, one makes it possible to interconnect many sorts of

17.6 An Aside on Standards and Interfaces 263

components. Likewise, common standards make it possible for experimental scien-

tists to publish models in a common format that others can interpret in a uniform

way or use in many kinds of models. Both users of whole-cell modeling and analysis

tools and developers of the tools therefore need to know something about the stan-

dards available.

Unfortunately, as Andrew Tannenbaum once remarked, ‘‘The best thing about

standards is that there are so many to choose from.’’ Though there have been many

attempts to create standards for biochemical modeling, two choices seem to have

emerged as the de facto standard standards of the field: SBML [167] [168] and

CellML [169] [170]. Both create extremely detailed frameworks for modeling reaction

networks and reactant distributions, either in compartments or across heterogeneous

spatial regions. Both also support many extensions beyond reaction networks, for ex-

ample, by allowing electrophysiological or mechanical components in their models.

One or both of these standards are likely to be supported by most recent codes for

reaction network simulation, optimization, or inference, and one is likely to have lit-

tle trouble converting among them. Anyone planning to work in using or developing

such tools would therefore be well advised to familiarize himself or herself with these

e¤orts.

References and Further Study

This chapter has covered several of the leading e¤orts to model biochemistry on a

cellular scale. The various primary references cited in the text provide much more de-

tail than we can cover here on the precise algorithms and numerical methods they

use, other practical implementation details, and further design issues that are beyond

the scope of this text. Several of the programs described are available free of charge

to researchers. Interested users can check out the Web sites for the E-cell [171], Vir-

tual Cell [172], COPASI [173], and MCell [174] projects to get information about

obtaining software. Others may be tracked down through the primary references

cited in the text. Readers may also refer to these Web sites for citations to publica-

tions describing applications of the aforementioned simulation tools to various com-

plex systems in biology. For more information on the general methods used in this

field, as well as much more advanced material on whole-cell modeling, readers may

refer to Wilkinson [110] or to Fall et al. [175]. The references in the preceding chap-

ters of this text on numerical integration and Markov models will also provide more

information on the use of these techniques in general.

264 17 Case Study: Simulating Cellular Biochemistry

III PARAMETER-TUNING

18 Parameter-Tuning as Optimization

We are now starting the third and final segment of this book: parameter-tuning. We

have examined many kinds of models over the course of this text, and almost all of

them have required specifying some unknown parameters. For example, if we want

to simulate a biochemical model

Aþ BÐ C;

we need to know forward and reverse rate constants of the reaction, kþ and k�. If we

want to implement a lattice protein-folding model, like those we saw in chapter 1, we

need to know the contact potentials between di¤erent amino acid types. Sometimes

we can look up the parameters we need in the literature or measure them directly by

experiment, as with the rate constants. In other cases, we can derive parameters from

first principles, such as by using detailed molecular dynamics models to estimate con-

tact energies. Very often, though, we need to infer parameter values more indirectly.

For example, for the biochemistry model, we may have experimental measurements

of the concentrations [A], [B], [C] of the system at various time points in a series of

experiments, and need to infer kþ and k� from those data points. For the lattice pro-

tein model, we may have some solved protein structures, and we need to infer EAL

and ERK from the frequencies of contacts in the structures. Over the course of this

section of the text, we will see several specialized methods for doing this sort of pa-

rameter tuning.

Before we get to those more specialized methods, though, it is worth noting that

we covered some excellent tools for parameter-tuning when we looked at optimiza-

tion problems in the first part of the text. Virtually any sort of parameter-tuning

problem can be posed as an optimization problem. If we can figure out what function

we want to optimize when fitting our parameters and can evaluate that function for

any given choice of parameters, we can often directly apply the kinds of optimization

tools we have already seen to the parameter-tuning problem. There may be other,

better methods we can use for certain problem types, examples of which we will

see later. But if we are not sure what tool to use, we can almost always revert to the

general optimization tools we saw in the first section of the text, and make at least

some progress on fitting our model parameters.

18.1 General Optimization

It may be easiest to see the relationship between parameter-tuning and general opti-

mization by looking at an example. Suppose we are interested in expression of some

protein in a cell. We have created a green fluorescent protein (GFP) construct of

some low-copy-number protein, which allows us to see when copies of that protein

appear in the cell. We then watch a single cell and record each time a new copy of

the protein is formed. We start observing the system at some time t0 and get a set of

time points t1; t2; . . . ; tn at which we observe new proteins appearing. We want to use

these points to build a model of that protein’s expression. We may then use a model

of the protein’s expression events as one component of some more complex model of

the behavior of the cell.

To build a model of the protein’s expression events, we first need to specify a gen-

eral class of models from which it will be constructed. We may, for example, decide

that we believe the times between translation events—t1 � t0; t2 � t1; t3 � t2; . . . ;

tn � tn�1—are described by a gamma distribution, PrfDt ¼ tg ¼ l2te�lt, for some

unknown rate parameter l.

We then need to decide how to judge the quality of our model, which will specify

the objective function for parameter-tuning. For example, we may decide that we

want to maximize the probability of producing all of our observed time points over

all possible l values. That is, we want to find

max
l

Yn

i¼1
PrfDt ¼ ðti � ti�1Þg:

This is called a maximum likelihood model, since we are seeking to find a model M,

given a data set D that maximizes PrfD jMg, the likelihood of M, given D. Such a

model is often optimized relative to some prior distribution on possible parameter

sets M, meaning that we will seek M maximizing PrfD jMgPrfMg. For now,

though, we will assume all ls are equally likely. Our objective is then the following:

CðlÞ ¼
Yn

i¼1
l2ðti � ti�1Þe�lðti�ti�1Þ:

Our goal in the parameter-tuning problem is to maximize this objective function

CðlÞ over l > 0. In practice it is often easier, with this kind of product of probabil-

ities, to perform an equivalent optimization using the log of the objective:

268 18 Parameter-Tuning as Optimization

ln CðlÞ ¼ 2n ln l�
Xn

i¼1
lðti � ti�1Þ2:

We now have a well-defined objective function, for which we can optimize by

any of our general optimization methods. If we want to find the optimal l by the

Newton–Raphson method, for example, we first note that we want to find a zero of

y ¼ dðln CÞ
dl

¼ 2n

l
�
Xn

i¼1
ðti � ti�1Þ2:

In this case, we can in fact analytically solve for l. If we cannot figure out the an-

alytical solution, though, we then proceed to find the second derivative:

y 0 ¼ d 2ðln CÞ
dl2

¼ � 2n

l2
:

We then pick some initial guess for l and make successive updates with the usual

Newton–Raphson formula:

l l� y

y 0
:

The same method generalizes easily to multiparameter optimization. For example,

suppose we want to allow the degree of the gamma distribution to vary as well, max-

imizing likelihood over distributions of the form pðtÞ ¼ hðl; nÞtn�1e�lt for any l > 0

and nb 1. We can simultaneously optimize over l and n by finding the gradient and

hessian of Dðl; nÞ ¼ ln
Qn

i¼1 pðti � ti�1Þ with respect to l and n, and applying multi-

dimensional Newton–Raphson or any of our other multidimensional optimization

methods.

18.2 Constrained Optimization

In many cases, the constrained optimization techniques we have covered will be more

appropriate formulations of parameter tuning problems than the techniques for gen-

eral unconstrained optimization. Imagine, for example, that we want to build a Mar-

kov model to simulate the evolution of a DNA base through successive generations

of an organism. In contrast to chapter 12, though, we will assume there are selective

pressures making some particular bases more likely than others. We decide to model

this evolution with selection by proposing that there is some intrinsic probability p

that the base is preserved from one generation to the next, independent of its current

value. If it changes values, though, it selects the new base from some distribution

ðpA; pC ; pG; pT Þ that is independent of its prior value. So, for example, if it is A in

18.2 Constrained Optimization 269

generation n, then the probability it is still A in generation nþ 1 is ð1� pÞ þ ppA.

That is, either the selective pressures preserve A with probability 1� p or they do

not preserve A with probability p but A is selected anyway by chance, with probabil-

ity pA. The probability that A in generation n is T in generation nþ 1 is ppT , and so

on.

Assume we can observe a string of bases in successive generations, s0; s1; . . . ; sn,

and we count the number of occurrences of each possible transition: nAA, nAT , nAC ,

and so on. We want to fit our model to this data by finding our five parameters: p,

pA, pC , pG, and pT .

As above, we will need to formulate an objective function. A common ‘‘default’’

objective function for this kind of problem is the sum of the squares of the di¤erences

between the observed values and the model predictions of those values. In this case,

that sum-of-squares objective will be the following function:

F ¼ ðnAA � ðð1� pÞ þ ppAÞðnAA þ nAC þ nAG þ nAT ÞÞ2

þ ðnAC � ðppCÞðnAA þ nAC þ nAG þ nATÞÞ2

þ ðnAG � ðppGÞðnAA þ nAC þ nAG þ nAT ÞÞ2

þ ðnAT � ðppTÞðnAA þ nAC þ nAG þ nAT ÞÞ2

þ ðnTT � ðð1� pÞ þ ppT ÞðnTA þ nTC þ nTG þ nTT ÞÞ2 þ � � �

We can try to solve this as a general optimization problem. That method is likely

to fail, though, by fitting to values of the parameters that do not make sense for the

problem. For example, our parameters are all probabilities, so we do not want to fit

any parameter values that are not between zero and 1. We can resolve this problem

by adding the following constraints to the optimization:

pb 0; pa 1

pA b 0; pA a 1

pC b 0; pC a 1

pG b 0; pG a 1

pT b 0; pT a 1:

We can further note that pA, pC , pG, and pT form a multinomial distribution, so

they must sum to 1. We therefore need one additional constraint:

270 18 Parameter-Tuning as Optimization

pA þ pC þ pG þ pT ¼ 1:

Alternatively, we can remove one variable, say pT , and make the substitution

pT ¼ 1� ðpA þ pC þ pGÞ in the objective. Nonetheless, we now have some simple

linear constraints. The objective is not linear, though, so we will want to use an inte-

rior point method. And it apparently is not convex, so we may not be able to get a

globally optimal solution. But we can at least get some locally optimal parameter set

that is likely to do a reasonably good job of fitting the data in practice.

18.3 Evaluating an Implicitly Specified Function

When working on parameter-tuning for simulation problems, we will often be unable

to create a closed-form expression for our optimization objective since our objective

function is likely to depend on the output of a simulation. We can still handle such

cases by using the simulation as a black box to evaluate the objective function, then

apply the black-box techniques we covered in chapter 5.

Suppose, for example, we want to fit parameters to a biochemical reaction model.

Let us imagine we are studying a system in which a set of proteins, A and B, forms a

complex consisting of two copies of A and one copy of B. We can model this as a

single reaction,

2Aþ BÐ C;

with some forward rate k1 and some reverse rate k2. Further suppose we are given

some time points at which we have measured the quantities of the di¤erent reactants,

very likely with some experimental noise:

ðt0;A0;B0;C0Þ

ðt1;A1;B1;C1Þ

ðt2;A2;B2;C2Þ
..
.

ðtn;An;Bn;CnÞ:

If we want to fit k1 and k2 to that data, what can we do?

We first need to specify an error model, just as in the previous examples. We can

again assume that we want to minimize the sum of the squares of the errors in each

of our reactant concentrations for the model relative to the data. That is, we want to

derive k1 and k2 such that we minimize

18.3 Evaluating an Implicitly Specified Function 271

Eðk1; k2Þ ¼
Xn

i¼0
ðAðtiÞ � AiÞ2 þ ðBðtiÞ � BiÞ2 þ ðCðtiÞ � CiÞ2;

where AðtÞ, BðtÞ, and CðtÞ are functions that we cannot explicitly evaluate but that

are implied by our model for any given guess as to our parameters.

We can then create code to evaluate Eðk1; k2Þ, using any of the numerical integra-

tion methods we have already seen. For example, we can evaluate E using forward

Euler by the pseudocode of figure 18.1(a). The pseudocode performs the standard

forward Euler iteration, except that each time it passes some measured time points,

it linearly interpolates back to those points to estimate the reactant concentrations

there. Note that if we were using a higher-order scheme, we would need a more ac-

Figure 18.1
Pseudocodes for fitting rate parameters to an implicitly specified reaction system model. (a) Pseudocode for
using forward Euler integration to evaluate the least-squares error for a given set of rate constants, k1 and
k2, for the example reaction system. (b) Pseudocode for using steepest descent to minimize the least-squares
deviation between the model and the observed data, using the forward Euler evaluation.

272 18 Parameter-Tuning as Optimization

curate interpolation method as well, an issue we will consider in chapter 22. Once we

have code for evaluating Eðk1; k2Þ, we can treat that as a black box for our general

optimization methods. For example, given some initial guess as to k1 and k2, we

could use steepest descent to find improved guesses for the rate constants, with finite

di¤erence approximations to estimate the gradient, as in the pseudocode of figure

18.1(b).

This approach may be very slow if our simulations take a long time, so we proba-

bly want to use an optimization method that keeps evaluations of E to a minimum.

In practice, therefore, Newton–Raphson or Levenberg–Marquardt may be a better

choice than steepest descent. We may also have to come up with problem-specific so-

lutions to some other implementation issues we have seen before, such as how to get

a good starting guess. But here we have at least the core of a workable method to

optimally fit k1 and k2 at least locally for our metric.

The problem is complicated quite a bit if our model is stochastic. Suppose, for ex-

ample, we use the same system but assume the system itself is noisy and is described

by a system of stochastic di¤erential equations, such as

dA ¼ 2ð�k1A2Bþ k2CÞ dtþ 2kABdW ðtÞ

dB ¼ ð�k1A2Bþ k2CÞ dtþ kABdW ðtÞ

dC ¼ ðk1A2B� k2CÞ dt� kABdW ðtÞ:

How do we optimize for E if E is a random variable? One way is to average E

over a su‰ciently large number of runs that the noise is e¤ectively eliminated. This

will slow down the process even more, but may be our only choice in practice. We

need to be very careful with such uses of stochastic models when doing numerical

optimization, however, because the optimization methods require derivatives of E

and derivatives are very sensitive to noise. We can take derivatives from many runs

and average them until they converge, or we may need to apply some kind of

smoothing to our curve to suppress the noise enough to get accurate derivatives. In

this particular case, it may be best to fit to the deterministic version of the model,

even if we are working with the stochastic version, and then treat the noise fitting as

a separate problem.

In same cases, we may be able to solve for the distribution of E even if E is a ran-

dom variable. For example, if we are trying to infer rates for a continuous-time Mar-

kov model, we may numerically integrate the Kolmogorov equations and match the

state distribution as a function of time to some observed data points rather than di-

rectly simulating the model.

18.3 Evaluating an Implicitly Specified Function 273

References and Further Study

The same references we cited when we examined optimization problems will be rele-

vant here, particularly Press et al. [82] and Nash and Sofer [94]. Any of the many

other references we considered for optimization may be relevant to parameter-

tuning, though. For particular well-studied applications, there may be much better

approaches available than the general methods we have considered in this chapter.

For instance, readers looking to fit models of reaction systems can refer to Wilkinson

[110] for a much deeper treatment of the sorts of data generally available for that

problem, e¤ective fitting methods, and practical considerations in their application.

274 18 Parameter-Tuning as Optimization

19 Expectation Maximization

We will now begin to look at more specialized methods for parameter-tuning, start-

ing with a broadly useful and general algorithm design method called expectation

maximization (EM) that is widely used for parameter-tuning problems. The theory

behind EM can be confusing, but the method is generally very easy to use. We will

start out by considering the theory, then see how to apply it in practice. Our goal in a

parameter-tuning problem is generally to take a set of observations x and infer a set

of parameters l that is the ‘‘best fit’’ by some measure. EM is well suited to cases

where the ‘‘best fit’’ is defined in terms of a probability. There are two main variants

of these probability-based parameter-tuning problems, one of which we have seen

before.

Case 1 Find l maximizing Prfx j lg (called maximum likelihood).

Case 2 Find lmaximizingPrfl j xg (calledmaximum a posteriori probability (MAP)).

Maximum likelihood models are more common in practice, mainly because it is

generally easier to develop a formula expressing the probability of the observations,

given the model, than the other way around. We will therefore assume we are solving

a maximum likelihood problem, although it is not too hard to generalize to an MAP

problem, given the MAP objective function.

Suppose, for example, that we have an organism with some set of unknown DNA

base frequencies: pA, pC , pT , and pG. We would like to infer these frequencies based

on observation of some string of DNA. Suppose we observe nA As, nC Cs, nG Gs,

and nT Ts. Then we can cast this as a maximum likelihood problem as follows:

� x is our set of observations: nA, nC , nG, and nT .
� l is our parameter set: pA, pC , pT , and pG.

Our likelihood of making any given observations x from a parameter set l is

Prfx j lg ¼ PrfnA; nC ; nG; nT j pA; pC ; pT ; pGg ¼ pnA
A pnC

C pnG
G pnT

T :

So the solution to our maximum likelihood problem is the set of probabilities

l ¼ fpA; pC ; pT ; pGg maximizing pnA
A pnC

C pnG
G pnT

T .

In this case, we can analytically solve for the maximum likelihood parameter set:

pA ¼
nA

nA þ nC þ nG þ nT

pC ¼
nC

nA þ nC þ nG þ nT

pG ¼
nG

nA þ nC þ nG þ nT

pT ¼
nT

nA þ nC þ nG þ nT
:

Often, though, the likelihood is defined by some more complicated probabilistic

model, and we will not be able to maximize for it directly. For example, suppose we

have some complicated Markov model of gene structure, with di¤erent parameter

distributions for di¤erent sequence types, as in figure 19.1. In such cases, there may

be no way to solve analytically for these problems. EM is an iterative approach to

these hard parameter tuning problems by which we successively refine a guess as to

the parameters, often converging to the true optimal parameter set.

Figure 19.1
Possible Markov model for generating bases for a simulated gene sequence with di¤erential probabilities
for di¤erent sequence types.

276 19 Expectation Maximization

19.1 The ‘‘Expectation Maximization Algorithm’’

EM is often referred to as ‘‘the EM algorithm’’ but it is really an algorithm design

method, not a specific algorithm. The basic principle behind the method is fairly sim-

ple. If we cannot figure out how to solve for l maximizing Prfx j lg, then we will cre-

ate some new variables y, called ‘‘latent variables,’’ that represent a hypothesis about

some unobserved aspect of our system. We can then iteratively improve estimates of

l by finding an expected value of y, given the current guess for l, and then optimiz-

ing l over this distribution of possible values of y. We choose y to make it easy to

evaluate Prfx; y j lg and Prfy j x; lg. If y is well chosen, then both steps of the iter-

ative process will be easy to perform.

From here on, the theory gets a little tougher. We need to understand how the

method works, though, if we are going to be able to pick an appropriate set of latent

variables for any given problem. We will begin by defining a quantity called the

‘‘expected log,’’ Qðl; lÞ:

Qðl; lÞ ¼
X

y

Prfy j x; lg log Prfx; y j lg:

This expected log is the expectation of the log of the likelihood over the distribution

of the latent variables y. In performing the EM optimization, we will implicitly eval-

uate Q for l and l where l is a variable representing an arbitrary parameter set,

which we do not know, and l is our current best guess as to that optimal parameter

set.

EM is an iterative method by which to find a good parameter set by repeatedly

applying two steps. These are generally formally stated as follows:

1. Find Qðl; lÞ in terms of y.

2. Find l maximizing Qðl; lÞ.

Step 1 is called the expectation step (or E-step) since we compute the expectation of

log Prfx; y j lg over the possible values of y, where y has a distribution Prfy j x; lg.
At least, this is how it is usually presented in the literature. I consider this statement

of the problem to be extremely confusing, since we almost never actually compute Q.

Q is a concept that is useful in proving the correctness of the EM method, but it is

not usually something we really need to know. What we really want to know is the

distribution of y, given x and the current guess as to l. And in fact we often really

need only the expected value of y over its distribution, since for many problems,

log Prfx; y j lg evaluated at this expected y will be the same as Q. This whole issue

should be much easier to understand after seeing some examples.

19.1 The ‘‘Expectation Maximization Algorithm’’ 277

Step 2 is called the maximization step (or M-step) since we maximize Q over possi-

ble values of l. We will generally choose our y so as to make sure this is an easy

optimization to perform, given x and y.

Repeatedly cycling between the two steps gives the full expectation-maximization

method.

19.2 EM Theory

In this section we will explore the theory behind why the method works. Since our

goal is to improve Prfx j lg iteratively, we will want to use some Prfx j lig to find

Prfx j liþ1g, such that

Prfx j liþ1g > Prfx j lig

or, equivalently,

log Prfx j liþ1g > log Prfx j lig:

The EM method gives us a guarantee that at least

log Prfx j liþ1gb log Prfx j lig:

To see why this is so, assume that l is some arbitrary parameter set and li is our

current best guess. Then:

Prfx; y j lg ¼ Prfy j x; lgPrfx j lg

Prfx j lg ¼ Prfx; y j lg
Prfy j x; lg

log Prfx j lg ¼ log Prfx; y j lg � log Prfy j x; lg

Prfy j x; lig log Prfx j lg ¼ Prfy j x; lig log Prfx; y j lg

� Prfy j x; lig log Prfy j x; lg

X

y

Prfy j x; lig log Prfx j lg ¼
X

y

Prfy j x; lig log Prfx; y j lg

�
X

y

Prfy j x; lig log Prfy j x; lg

Since log Prfx j lg does not depend on y,
P

y Prfy j x; lig log Prfx j lg¼ log Prfx j lg.
Therefore:

278 19 Expectation Maximization

log Prfx j lg ¼
X

y

Prfy j x; lig log Prfx; y j lg �
X

y

Prfy j x; lig log Prfy j x; lg

log Prfx j lg ¼ Qðl; liÞ �
X

y

Prfy j x; lig log Prfy j x; lg:

Plugging in li for l in the preceding equation gives us

log Prfx j lig ¼ Qðli; liÞ �
X

y

Prfy j x; lig log Prfy j x; lig:

Subtracting the previous equation from the one before it then gives us

log Prfx j lg � log Prfx j lig

¼ Qðl; liÞ �Qðli; liÞ þ
X

y

Prfy j x; ligðlog Prfy j x; lig � log PrfY j x; lgÞ:

P
y Prfy j x; lig log Prfy j x; lg is maximized over l when l ¼ li, so

X

y

Prfy j x; ligðlog Prfy j x; lig � log Prfy j x; lgÞb 0:

Therefore,

log Prfx j lg � log Prfx j ligbQðl; liÞ �Qðli; liÞ:

We find liþ1 by maximizing Qðl; liÞ over possible values of l. Therefore

Qðliþ1; liÞbQðli; liÞ:

Thus,

Qðliþ1; liÞ �Qðli; liÞb 0

log Prfx j liþ1g � log Prfx j ligb 0

log Prfx j liþ1gb log Prfx j lig:

In summary, we have shown that if we follow the EM method, we are guaranteed

to find a new parameter set liþ1 that gives us a log likelihood at least as good as the

log likelihood of li. Furthermore, the likelihoods will be the same only if li maxi-

mizes Prfx j lg. That does not in itself guarantee that we will find the global opti-

mum l, since we could converge toward a local optimum. But for a broad class of

19.2 EM Theory 279

problems, expectation maximization will find the optimal l. And it will often yield

very good answers even when it cannot optimize globally.

I think EM is easiest to understand intuitively if we ignore most of the theory and

just think of it in terms of optimizing a function f . We are given some x and want to

choose l maximizing f ðx; lÞ. We first make up some other variables y whose distri-

butions we can determine from x and l. We then repeatedly do the following:

1. Estimate the distribution of y, given the current x and l.

2. Optimize l, given x and our current guess as to the distribution of y.

One may note from the above theory that we do not actually need an optimum l

in step 2, just a local improvement, for the proof of the EM method to go through.

In some cases, one does in fact use a local optimizer in the M-step, such as steepest

descent, when an analytical maximum likelihood value cannot be found. We refer to

the resulting method as weak EM, as opposed to strong EM, where we globally opti-

mize l in the M-step.

19.3 Examples

We can get a better understanding of EM by examining two examples inspired by

population genetics, derived in part from work by Niu et al. [176].

Example 1 Haplotype frequency estimation. Haplotype frequency estimation is a

problem that arises in population genetics when studying how di¤erent people’s

DNA sequences di¤er. We each have more or less the same DNA, but with slight

variations, as illustrated in the following hypothetical collection of four pieces of the

same DNA region in di¤erent individuals:

* *

A C T T G G A C T G T T A C A

A C T T G G A C T G T T A A A

A C G T G G A C T G T T A A A

A C T T G G A C T G T T A C A

* *

A string of possible bases on a single chromosome in a region is known as a haplo-

type. We want to know how common each possible haplotype is in the population.

A problem arises, though, because the methods for determining someone’s DNA se-

quence cannot distinguish the two versions on the two homologous copies of a chro-

280 19 Expectation Maximization

mosome. For each variable site, we would see a pair of bases but we would not know

how to connect pairs. So if we sequence a particular person’s DNA in this region, we

might see

AA CC TG TT GG GG AA CC TT GG TT TT AA CA AA,

and we would not know if the real pair of sequences was

* *

A C T T G G A C T G T T A C A

A C G T G G A C T G T T A A A

* *

or

* *

A C T T G G A C T G T T A A A

A C G T G G A C T G T T A C A

* *

More generally, if we look at n biallelic sites (sites with two possible base values),

there can be 2n�1 possible resolutions into haplotypes. We want some way to find the

most likely set of frequencies of the possible haplotypes, given a set of observed

sequences. These frequencies can be used in various kinds of models for studying,

for example, the history of this population. This is a hard problem to solve opti-

mally, but we can use EM to estimate these frequency parameters.

To do this, we first need to formalize the problem a bit. We can ignore all sites that

do not vary, since they are not informative. We can also arbitrarily label one version

of each variant site 0 and the other 1. For example, suppose we look at a two-base

version of this problem. We might say that at the first site G¼0 and T¼1, and at the

second site, A¼0 and C¼1. Then our possible resolutions (haplotypes) are 00 (G at

the first site and A at the second), 01 (G at the first site and C at the second), 10 (T at

the first site and A at the second), and 11 (T at the first site and C at the second). The

frequencies of these four haplotypes are the parameters we wish to infer:

l ¼ f f00; f01; f10; f11g.
Our input is the data in which we cannot distinguish 01 and 10 pairs. At each site,

then, we have three possible observable pairs: a pair of 0s, a pair of 1s, or a 0 and a 1.

We can encode this input concisely by denoting a pair of 0s at a given site by the

character 0, a pair of 1s by the character 1, and a 0 and a 1 by the character 2.

19.3 Examples 281

Then we can denote each full input sequence as a string from the alphabet f0; 1; 2g.
We call these f0; 1; 2g strings genotypes. Our input then will consist of the counts of

each of the genotypes in our observed population:

x ¼ fn00; n01; n02; n10; n11; n12; n20; n21; n22g:

We still need a probability model to tell us how to choose among possible outputs.

We will use a maximum likelihood model based on the assumption of Hardy–

Weinberg equilibrium. Hardy–Weinberg equilibrium means that we assume there

is a global fij for each haplotype ij and that each haplotype of each person is sam-

pled independently of the other from this global haplotype distribution. So, for

example:

Prf20g ¼ Pr
0 0

1 0

� �

þ Pr
1 0

0 0

� �

¼ 2f00 f10

Prf01g ¼ Pr
0 1

0 1

� �

¼ f 201:

Then the likelihood of a particular parameter set

l ¼ f f00; f01; f10; f11g

for an input set

x ¼ fn00; n01; n02; n10; n11; n12; n20; n21; n22g

is given by

Prfx j lg ¼ ð f 2
00Þ

n00 � ð f 2
01Þ

n01 � ð f01 f00 þ f00 f01Þn02 � ð f 2
10Þ

n10 � ð f 2
11Þ

n11

� ð f10 f11 þ f11 f10Þn12 � ð f00 f10 þ f10 f00Þn20 � ð f01 f11 þ f11 f01Þn21

� ð f00 f11 þ f01 f10 þ f10 f01 þ f11 f00Þn22 :

Or, more concisely,

Prfx j lg ¼
Y

genotypes gi

X

ðab; cdÞ consistent
with gi

fab fcd

That is, for each observed genotype, we find its likelihood by taking the sum of the

probabilities of all ways of generating it from two haplotypes. We then take the

product of these sums over all genotypes. This full product gives us the total maxi-

282 19 Expectation Maximization

mum likelihood of the observations (genotype counts), given the parameters (esti-

mated haplotype frequencies).

Many of the components of the maximum likelihood parameter set are easy to de-

termine analytically. If we see the genotype 00, we know we have two instances of

haplotype 00. If we see genotype 02, we know we have one haplotype 00 and one

haplotype 01. The complication is the 22 case. We cannot tell how frequent haplo-

types are because we do not know how many 22s are from haplotype pair

0 0

1 1

and how many are from haplotype pair

0 1

1 0
:

More generally, if we had k bases, we would not be able to resolve any genotype with

more than a single 2 in its string. EM gives us a way to work around this problem.

The first thing we need for any EM approach is a set of latent variables y. We try

to choose y to be a piece of information that is not known to us but that will make

our parameter estimation problem easy if we know it. We can accomplish this for the

current example by choosing y to be a guess as to the counts of our haplotype pairs:

y ¼ fg00;00; g01;00; g10;00; g11;00; g00;01; . . .g:

For example, g01;10 is the number of individuals who have the 01 haplotype on the

first chromosome and the 10 haplotype on the second chromosome.

Given our inputs x and some current guess as to our parameters l, we can find an

expectation of y as follows:

g00;00 ¼ n00

g01;00 ¼
1

2
n02

..

.

g01;10 ¼ n22
f01 f10

f00 f11 þ f01 f10 þ f10 f01 þ f11 f00

� �

g00;11 ¼ n22
f00 f11

f00 f11 þ f01 f10 þ f10 f01 þ f11 f00

� �

:

Furthermore, given any x and our expected value of y, we can find an optimal value

of l:

19.3 Examples 283

fijA
gij; ij þ

P
xy gij;xyP

ab nab
:

Normally, we will need to use the distribution over the latent values to estimate the

parameters. In this case, though, the maximum likelihood estimate of each parameter

is a linear function of the latent variables, and we can therefore use the expectations

of the latent variables in place of a sum over their distribution.

And that gives us our EM iteration:

1. Estimate each gij;kl from the inputs nij and the current parameter estimates fij.

2. Optimize the parameter estimates fij from the gij;kls and nijs.

There is a small complication, in that we need a first guess at the f s to get started.

One way to get this is to enumerate over possible resolutions of each genotype and

assume that all are equally likely. We then apportion the contribution from each am-

biguous genotype equally to all of its possible resolutions.

We can see how this method works by running through a few steps with a sample

input:

n00 ¼ 1 n01 ¼ 5 n02 ¼ 4

n10 ¼ 8 n11 ¼ 17 n12 ¼ 22

n20 ¼ 2 n20 ¼ 19 n22 ¼ 22:

Let N be the total count, n00 þ n01 þ n02 þ n10 þ � � � ¼ 100.

We first need to get an initial guess as to our haplotype frequencies li ¼
ð f00; f01; f10; f11Þ:

f00 ¼
2n00 þ n02 þ n20 þ 1

2 n22

2N
¼ 19

200
¼ 0:095

f01 ¼
2n01 þ n02 þ n21 þ 1

2 n22

2N
¼ 44

200
¼ 0:22

f10 ¼
2n10 þ n12 þ n20 þ 1

2 n22

2N
¼ 51

200
¼ 0:255

f11 ¼
2n11 þ n12 þ n21 þ 1

2 n22

2N
¼ 86

200
¼ 0:43:

Now we perform an E-step by estimating y ¼ ðg00;00; g01;00; . . .Þ from x and our

current l. We already know most of these terms. For instance:

284 19 Expectation Maximization

g00;00 ¼ n00 ¼ 1

g00;01 ¼ g01;00 ¼
1

2
n02 ¼ 2

..

.

The only unknowns are g00;11 ¼ g11;00 and g01;10 ¼ g10;01. We estimate these given

our current f values:

g00;11 ¼ g11;00 ¼
f00 f11n22

2ð f00 f11 þ f10 f01Þ
¼ 4:64

g10;01 ¼ g01;10 ¼
f01 f10n22

2ð f00 f11 þ f10 f01Þ
¼ 6:37:

Now we perform an M-step by reestimating our set of f values, l:

f00 ¼
2ðg00;00 þ g00;01 þ g00;10 þ g00;11Þ

2N
¼

2 1þ 1
2 ð4Þ þ 1

2 ð2Þ þ 4:64
� �

200
¼ 0:0864

f01 ¼
2ðg01;01 þ g01;00 þ g01;10 þ g01;11Þ

2N
¼

2 5þ 1
2 ð4Þ þ 6:37þ 1

2 ð19Þ
� �

200
¼ 0:2287

f10 ¼
2ðg10;10 þ g10;00 þ g10;01 þ g10;11Þ

2N
¼

2 8þ 1
2 ð2Þ þ 6:37þ 1

2 ð22Þ
� �

200
¼ 0:2637

f11 ¼
2ðg11;11 þ g11;00 þ g11;01 þ g11;10Þ

2N
¼

2 17þ 4:64þ 1
2 ð19Þ þ 1

2 ð22Þ
� �

200
¼ 0:4214:

We can then perform another E-step by estimating the gs, given x and the new l:

g00;11 ¼ g11;00 ¼
f00 f11n22

2ð f00 f11 þ f10 f01Þ
¼ 4:14

g10;01 ¼ g01;10 ¼
f01 f10n22

2ð f00 f11 þ f10 f01Þ
¼ 6:86:

Then we apply another M-step:

f00 ¼
2ðg00;00 þ g00;01 þ g00;10 þ g00;11Þ

2N
¼ 0:0814

f01 ¼
2ðg01;01 þ g01;00 þ g01;10 þ g01;11Þ

2N
¼ 0:2336

19.3 Examples 285

f10 ¼
2ðg10;10 þ g10;00 þ g10;01 þ g10;11Þ

2N
¼ 0:2686

f11 ¼
2ðg11;11 þ g11;00 þ g11;01 þ g11;10Þ

2N
¼ 0:4164:

Then another E-step:

g00;11 ¼ g11;00 ¼
f00 f11n22

2ð f00 f11 þ f10 f01Þ
¼ 3:86

g10;01 ¼ g01;10 ¼
f01 f10n22

2ð f00 f11 þ f10 f01Þ
¼ 7:14:

Then another M-step:

f00 ¼
2ðg00;00 þ g00;01 þ g00;10 þ g00;11Þ

2N
¼ 0:0786

f01 ¼
2ðg01;01 þ g01;00 þ g01;10 þ g01;11Þ

2N
¼ 0:2364

f10 ¼
2ðg10;10 þ g10;00 þ g10;01 þ g10;11Þ

2N
¼ 0:2714

f11 ¼
2ðg11;11 þ g11;00 þ g11;01 þ g11;10Þ

2N
¼ 0:4136;

and so on. Our estimates seem to be converging, so we could probably stop in a few

steps. Normally, we would need some kind of stopping criterion, such as kliþ1 � lik
< e, to determine when to terminate the iteration.

Example 2 Inferring haplotypes from noisy data. We will look at another example

involving haplotype data that illustrates a common use of EM methods: making

inferences in the presence of missing or erroneous data. To illustrate the problem,

suppose we have the following set of haplotype sequences:

0 1 0� 100 copies

0 1 1� 1 copy

1 1 0� 100 copies

1 � 0� 1 copy;

where � means an unknown value. We may reasonably infer that 1 � 0 should really

be 1 1 0, since we know 1 1 0 is a common haplotype. If we know our methods

286 19 Expectation Maximization

for experimentally determining haplotypes are noisy, we may also infer that 0 1 1 is

likely a mistake, and probably is really supposed to be 0 1 0. EM will give us a for-

mal way to make those sorts of inferences.

We begin by defining our parameters l to be the haplotype frequencies, as in the

prior example:

l ¼ f f000; f001; f010; f011; f100; f101; f110; f111g:

We now assume that our observed data set x contains haplotypes, not genotypes,

which will make our problem easier. However, we also must consider that we might

observe data including missing values:

x ¼ fn000; n001; n00�; n010; n011; n01�; . . .g:

To use EM, we then need to create a probability model to say how likely any given

observation is, given a parameter set. We can deal with missing data by saying we

have some probability m of outputting a � in place of a 0 or 1. Then, for example:

Prfobserve 1 � 0g ¼ ð f100 þ f110Þð1� mÞmð1� mÞ:

We derive this formula from the fact that there are 2 true haplotypes that could

give the observation 1 � 0: 100 and 110. For either one, we have probability 1� m

of observing the first or third base, and probability m of not observing the second

base.

We can similarly handle erroneous data by saying there is a probability e of

flipping 0 to 1 or vice versa. This makes things somewhat more complicated, since

now in theory any observation could derive from any true haplotype with some

probability:

Prfobserve 1 � 0g ¼ p1�0 ¼ ð f100 þ f110Þð1� m� eÞmð1� m� eÞ

þ ð f000 þ f010Þemð1� m� eÞ þ ð f101 þ f111Þð1� m� eÞme

þ ð f001 þ f011Þeme:

For each base in the actual sequence, we now have probability m of observing �, e of
observing the wrong value, and 1� m� e of observing the right value. For simplicity,

we will refer to this function as p1�0, defining other pijk values analogously. Then we

can define the overall likelihood of our parameter set Prfx j lg to be

pn000
000 p

n001
001 p

n00�
00� � � � � ¼

Y

ijk A f0;1;�g3
p
nijk
ijk :

Our goal is then to find l maximizing this likelihood Prfx j lg for the given x.

19.3 Examples 287

We now need to choose our latent data set, y. A reasonable choice for y is the true

count of each possible haplotype (i.e., what the input would be if we had no noise in

the data):

y ¼ fN000;N001;N010;N011;N100;N101;N110;N111g:

We also need a way of establishing an initial guess l0. We can guess that all 0s and

1s are correct, and that all �s are equally likely to be 0 or 1. Then, with our initial

data set given above, we will make the initial guess:

f010 ¼
100

202
A0:495

f011 ¼
1

202
A0:00495

f110 ¼
100:5

202
A0:4975

f100 ¼
0:5

202
A0:00248

fijk ¼ 0 otherwise:

We then perform our EM algorithm. For our E-step, we find the expected values

of our latent variables. The formula for this gets pretty complicated to write down,

but it is not too hard to understand. To estimate the true count for a given haplo-

type, we need to consider all possible observations and then, for each, evaluate the

fraction of times that observation should correspond to the given true haplotype.

For instance,

N000 ¼

n000
f000ð1� m� eÞ3

f000ð1� m� eÞ3 þ ð f001 þ f010 þ f100Þeð1� m� eÞ2 þ ð f011 þ f110 þ f101Þe2ð1� m� eÞ þ f111e3

þ n001
f000mð1� m� eÞ2

f001ð1� m� eÞ3 þ ð f000 þ f011 þ f101Þeð1� m� eÞ2 þ ð f010 þ f111 þ f100Þe2ð1� m� eÞ þ f110e3

þ � � �

The M-step is easy for this choice of latent variables:

fijk ¼
Nijk

N
;

288 19 Expectation Maximization

where ijk is any true haplotype and N is the total number of data points ob-

served.

If we repeatedly apply these two steps, then we should converge on some estimate

of the parameters l. We will also, as a side benefit, get the most likely assignment for

any missing or possibly incorrect values. EM is often a very good choice for these

kinds of parameter-tuning problems in the presence of noisy data because it is usu-

ally so easy to handle missing or incorrect data: define latent variables corresponding

to the true values of all observed variables. It can also be useful for cleaning up noisy

data to make it more amenable for some other inference algorithm that does not deal

well with noise in the data.

References and Further Study

EM is a topic often covered in statistical contexts, and good coverage is likely to be

found in many introductory-to-intermediate general statistics texts in the context of

statistical inference. Wasserman [112] is one example. The general topic of statistical

inference is also a source of many other methods suitable for parameter tuning of

similar maximum likelihood and MAP models. EM is similarly an important tool

of the field of machine learning, and introductory texts on that topic are likely to

cover EM, as well as other methods for fitting probabilistic models that we will not

cover here. Mitchell [177], for example, provides a good introduction to EM in the

context of machine learning.

The basic EM method is generally credited to two papers: Baum et al. [178], which

first developed the method for the specific application of learning hidden Markov

models (HMMs), and Dempster et al. [179], which first formally described it as a

general method for maximum likelihood problems. Either of these papers also does

a fine job as a tutorial on the method. The method appears to have been indepen-

dently derived many times in the literature with reference to specific problems,

though, and dedicated readers may find earlier examples of its use. The haplotype

examples are derived from a technique for inferring haplotypes from genotypes due

to Niu et al. [176]. EM is widely used in statistical genetics applications, and exam-

ples too numerous to cite can be found throughout that literature.

References and Further Study 289

20 Hidden Markov Models

We will now examine a particularly important use of expectation maximization in

biology: fitting data sets to hidden Markov models (HMMs). HMMs are a special

kind of Markov model widely used in biological sequence analysis problems. Recall

that a standard Markov model is defined by three elements:

� A set of states Q ¼ fq1; q2; . . . ; qng
� An initial state distribution P ¼ fp1; p2; . . . ; png

� A set of transition probabilities P ¼
p11 � � � p1n

..

. . .
. ..

.

pn1 � � � pnn

2

66
4

3

77
5

An HMM is called ‘‘hidden’’ because in an HMM we usually assume that we do

not see the states of the model, but rather a set of outputs influenced by them. Each

time the model makes a state transition, it emits one output chosen from a distribu-

tion that depends on the new state. To make an HMM, we extend our standard Mar-

kov model with the following two features:

� A set of possible outputs S ¼ fs1; s2; . . . ; smg

� A set of output probabilities B ¼
b11 � � � b1m

..

. . .
. ..

.

bn1 � � � bnm

2

6
4

3

7
5, where bij is the probability of

emitting output j in state i.

For example, suppose we define the following HMM:

� Q ¼ fq1; q2; q3g
� P ¼ 1

3 ;
1
3 ;

1
3

� �

� P ¼
0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

2

6
4

3

7
5

� S ¼ fa; b; cg

� B ¼
1 0 0

0:1 0:8 0:1

0:2 0:2 0:6

2

4

3

5

Then, as we run through the model, we will get a sequence of states just as with a

regular Markov model, such as the following:

q1 ! q2 ! q1 ! q3 ! q2 ! q3 ! q2 ! q3:

Simultaneously, though, we will generate a sequence of observations:

a b a c c a b c

Normally, we will assume the outputs are something we actually observe and the

states are something we can only infer. Here, for example, we may guess that when

we see an ‘‘a,’’ it is likely that the state is q1, but it may be in q2 or q3. A ‘‘b’’ means

we are likely to be in state q2, and a ‘‘c’’ means we are likely to be in state q3. From

these rules, we may guess that our states are

q1 ! q2 ! q1 ! q3 ! q3 ! q1 ! q2 ! q3;

which will be mostly, but not completely, correct. In this chapter, we will cover sev-

eral more rigorous methods for making this sort of inference.

20.1 Applications of HMMs

Example 1 Gene structure. As mentioned above, HMMs are often used for problems

in sequence analysis. For example, we may generate a simple gene structure model

such as that of figure 20.1(a). The states will correspond to di¤erent regions within

or near a gene, and the outputs will be DNA bases. Each state will then have a dif-

ferent base distribution to reflect biases for certain bases in certain regions of a gene.

For instance, introns usually start with the bases GT and end with the bases AG, so

we will give high probabilities to those bases in the four intron start and end states.

We can use such a model, for example, to simulate gene sequences to provide test

data for sequence analysis algorithms. More often, our real interest in building the

model is to help us infer the structure of actual genes by figuring out how a given

true DNA sequence is likely to map to the the model states. For instance, if we see

the sequence

C A A T C A G G T G T C C T A G G A T C A G,

we may infer that it is best explained by the states

292 20 Hidden Markov Models

E1E2E3E1E2E3E1E2E3IS1IS2IIIIIIIE1IE2E1E2E3;

which will show us where the introns and exons are likely to occur in the sequence.

Example 2 Transcription factor binding motif. HMMs are also used for identifying

binding motifs and other short but noisy patterns in nucleotide and amino acid

sequences. We may, for example, have some canonical DNA binding motif,

AACACG, for which we wish to search. Usually, such a motif will be only a consen-

sus sequence for a binding protein that can bind not just to that sequence but also to

many similar ones. Some bases are likely to be strongly conserved, and others to be

very flexible. To create an HMM that models DNA containing the motif, we may

Figure 20.1
Examples of hypothetical HMMs for sequence analysis problems. (a) An HMM of gene structure. (b) An
HMM for a DNA binding motif. (c,d) A model of a coiled-coil domain in proteins and an HMM for rec-
ognizing that domain type.

20.1 Applications of HMMs 293

create one state N representing any base outside the motif and then one state for

each position in the motif, as in figure 20.1(b).

The output probability matrix will then tell us how strongly conserved each base

is. If state A1 is highly conserved, then we may have an output distribution where

pAA1 for state A1. If state C3 is weakly conserved, then maybe pC ¼ 0:6 for state

C3. Given this kind of knowledge, we may be able to infer that the DNA sequence

A C A A T A A G A C G G T G A

probably contains the motif and is explained by the state set

NNNNNA1A2C3A4C5G6NNNN;

whereas the sequence

T T C C A C A C G T G

probably does not contain the motif even though it also has a subsequence that

matches in five of six motif positions (CACACG).

Example 3 Protein domain recognition. HMMs are also useful for problems related

to protein sequences, such as detecting conserved domains in proteins. One example

of this application is the detection of coiled-coil domains, which are produced by two

(or more) alpha helices that wrap around one another to produce a helical twist

made of the component alpha helices. Examined end-on, coiled coils have a structure

approximately defined by seven repeating positions around the axis of each helix.

In the case of a two-stranded coiled coil, for instance, we have the structure of fig-

ure 20.1(c). Because the A and B states form the interface packed between the two

helices, those states tend to be hydrophobic. The D, E, and F states are exposed to

the solvent and are therefore more likely to be polar. We can encode the sequence of

states into the HMM of figure 20.1(d).

If we have output probabilities chosen so that the A and B states are likely to emit

hydrophobic residues and the D, E, and F states are likely to emit polar residues,

then this HMM will tend to emit sequences like the following:

LaCaPaDaV aQaRaI aPaKaAaAaHaKaV aMaCaQaF aKaV :

This pattern of hydrophobic residues at alternating 3-residue and 4-residue separa-

tions is the hallmark of coiled coils. We can detect this pattern by fitting the sequence

to the HMM, leading to a state set like the following:

AaCaEaGaBaDaF aAaCaEaGaBaDaF aAaCaEaGaBaDaF :

Although this is a relatively easy pattern to fit to an HMM because of its simple re-

peat structure, HMMs can be used to fit many di¤erent protein domain types. For

294 20 Hidden Markov Models

example, the Pfam [180] protein domain family database uses HMMs to identify a

library of known domains from protein sequences.

20.2 Algorithms for HMMs

Though there are many things we can do with HMMs, there are three specific prob-

lems that are at the core of working with them. These problems, drawn from a

widely read tutorial by Rabiner [181], can be stated as follows:

1. Given an observed set of outputs x and an HMM l ¼ fQ;P;P;S;Bg, find the

best state string S to produce x from l.

2. Given x and l, find the probability of generating x from l. (This is useful for eval-

uating di¤erent possible models as the source of x.)

3. Given the observations x and the geometry (graph structure) of l, find the param-

eters of l (P, B, and P) that maximize the probability of producing x from l (i.e., the

maximum likelihood parameter set for generating x).

We will now proceed through each of these problems in turn. Our presentation of

these methods closely follows that of Rabiner [181].

20.2.1 Problem 1: Optimizing State Assignments

If we have a sequence of observations x ¼ x1; x2; . . . ; xT and an HMM l and we

want to find the best sequence of states S ¼ S1;S2; . . . ;ST to explain x, given l, we

first need to be a bit more precise about what we mean by ‘‘best.’’ There are di¤erent

ways we can specify this, but a good one is to ask for the complete state set S max-

imizing the total likelihood of the outputs and states, given the model

max
S

Prfx;S j lg:

We can make this problem tractable by noting that by the rules of conditional

probability,

Prfx;S j lg ¼ Prfx jS; lg PrfS j lg:

If we know S, then both terms of this conditional probability will be easy to evaluate.

Prfx jS; lg is the product over all states of the probability of emitting the ith output

xi from the ith state Si:

YT

i¼1
bSi ;xi :

PrfS j lg is the probability of transitioning among the consecutive states of S from l:

20.2 Algorithms for HMMs 295

pS1

YT

i¼2
pSi�1;Si

:

We can therefore easily evaluate the probability of the observations, given the model

for any given S.

Choosing S to optimize for these probabilities is not so simple, but it turns out that

we can do it e‰ciently by a dynamic programming algorithm called the Viterbi algo-

rithm. As is usual with dynamic programming algorithms, we can visualize how this

one works by imagining that we are filling in a table. In this case, the table will con-

sist of the state set in one dimension and the sequence of steps during a run of the

model in the other dimension.

1 2 3 j � 1 j T � 2 T � 1 T

1

2

..

. � � � � � �

n� 1

n

Each element of the table, Mij , will record the best possible sequence of states for

the first j observations such that the jth state is qi. That is:

Mij ¼ max
S1;...;Sj

Prfx1; . . . ; xj5S1; . . . ;Sj j l5Sj ¼ qig

Figure 20.2(a) illustrates the overall process of filling in the table. Figure 20.2(b)

provides pseudocode for the full algorithm. Line 1 of figure 20.2(b) is the initializa-

tion step. It fills in the first column of the matrix by defining a probability for each

possible initial state of the model. Line 2 is the induction step. It fills in the remainder

of the matrix by maximizing for each element over all states k the probability of hav-

ing been in state qk at the previous step, times the probability of transitioning from

qk to qi, times the probability of outputting xj from state qi. The A matrix records

which state qk from the prior step led to the maximum for each state qi in the next

step. Lines 3 and 4 are the termination step. This step finds the most likely final state

of the model by maximizing among probabilities in the final column of the matrix.

Line 5, finally, is the backtracking step. It reconstructs the optimal path through the

M matrix, using the A matrix to trace backward from the optimal ending state found

in the termination step. At the end of the backtracking process, q�1 ; . . . ; q
�
T will be our

296 20 Hidden Markov Models

single best explanation of the observations, given the model, where the best sequence

is defined to be the one maximizing the likelihood of the outputs and states, given the

model.

20.2.2 Problem 2: Evaluating Output Probability

Our second problem is to measure the goodness of fit of a given model for a given

output sequence. That is, given x and l, we want to find Prfx j lg. This probability
of the output, given the model, will be computed by summing over all possible

assignments of states to the outputs.

Before we consider how we will do this, it is worth considering why we might do it.

We can illustrate this with a real-world use of HMMs we mentioned briefly above:

protein domain recognition. Suppose we have a hidden Markov model l1 that gener-

ates sequences of residues corresponding to some conserved protein domain D1, and

we also have a second HMM l2 that generates residues corresponding to a di¤erent

domain D2. If we are provided a real amino acid sequence x, having a method for

Figure 20.2
The Viterbi algorithm. (a) Illustration of the algorithm, showing how we fill in table elements during the
dynamic programming process. (b) Pseudocode for the algorithm.

20.2 Algorithms for HMMs 297

evaluating the probability of an output set, given a model, will provide us a way to

say whether our sequence x is more likely to have been generated by l1 or l2, and

thus whether it is more likely to contain D1 or D2. More generally, if we have a li-

brary of D domains, each with its own HMM li, as well as a background HMM lB
representing the lack of any known motif, then we can identify the most likely do-

main for a real sequence by finding

max
li

Prfx j lig Prflig;

where Prflig represents a prior probability of li, essentially a guess as to how fre-

quent that domain is across all protein sequences.

If runtime is not an issue, then problem 2 will be easy to solve. We will just enu-

merate over all possible sequences of states S and add up the likelihoods over all of

these state sequences:

X

S

Prfx;S j lg ¼
X

S

Prfx jS; lg PrfS j lg

¼
X

S

ðbS1x1 � bS2x2 � � � � � bSTxT ÞðpS1
� pS1S2

� pS2S3
� � � � � pST�1ST

Þ:

This generally is not practically possible, though, since the there are NT possible

state sequences, a number which may be quite large. We can do much better with

something called the forward algorithm. The forward algorithm computes a set of

values aij , defined as follows:

aij ¼ Prfx ¼ x1; . . . ; xj5sj ¼ qi j lg:

The definition of aij is very similar to the definition of Mij from problem 1, and it can

be found by a similar dynamic programming algorithm. The forward algorithm,

shown in figure 20.3(a), is basically the same as the Viterbi algorithm, except that

during the induction (step 2) we sum over possible prior states instead of maximizing

over them. We also do not need to backtrack, since we are no longer looking for one

best sequence of states.

One might reasonably guess that if there is a forward algorithm, there is also a

backward algorithm. The backward algorithm solves for the following related

quantities:

bij ¼ Prfxjþ1; xjþ2; . . . ; xT jSj ¼ qi5lg:

That is, it finds the probability of generating the su‰x of x from j þ 1 to T , given

that the model is in state qi at step j. It is also solved by an algorithm similar to the

298 20 Hidden Markov Models

Viterbi and forward algorithms, although it lacks a termination step. Figure 20.3(b)

provides pseudocode for the backward algorithm.

Note that the forward and backward algorithms put together give us an alternative

method for solving problem 1. Instead of finding the one complete sequence that

maximizes the likelihood, we can find the one maximum likelihood state Sj for each

step j. This is not necessarily the same sequence as the Viterbi method would give us.

This new formulation will maximize the expected number of correct states over the

full sequence. Yet the complete sequence of states derived by this definition may

have very low or even zero probability. We solve for this new sequence by filling a

table G with entries gij , where

gij ¼
aijbij

Prfx j lg ¼
aijbijP
k akjbkj

:

gij is then PrfSj ¼ qi j x1; . . . ; xt; lg, the probability of being in state qi at step j, given

the observations and the model. The overall best sequence by this alternative defini-

tion is then the sequence for which each Sj is the state i maximizing gij .

20.2.3 Problem 3: Training the Model

Problem 3 is the problem of inferring the HMM parameters from a set of training

data. Training the model can be relatively easy if we have labeled training data (i.e.,

data in which we know the true assignment of states). For example, if we are train-

ing a gene structure model like that of figure 20.1(a), we may use a data set in which

someone has experimentally determined the true intron–exon structure of some genes

Figure 20.3
Pseudocode for the forward and backward algorithms. (a) Forward algorithm. (b) Backward algorithm.

20.2 Algorithms for HMMs 299

and labeled the state assignment of each base in those genes. In that case, we can di-

rectly formulate a maximum likelihood estimate of each parameter. For example, if

we observe that state I1 outputs A 90 percent of the time, then our best estimate is

that bI1;A ¼ 0:9. If we observe that state E3 is followed by E1 98 percent of the time,

then our best estimate is that pE3;E1
¼ 0:98.

As we have phrased it, though, problem 3 is the hardest of the three problems. We

get to see only the outputs, and have to decide what parameter set would be most

likely to have yielded those outputs, given that we do not know the state assignment.

This problem is generally solved using an EM algorithm called the Baum–Welch al-

gorithm. To show how to do this, we will start by casting our problem in terms of the

formalisms of EM:

1. Observations x Our observables for the EM algorithm are the outputs of the

HMM model, which we have also called x. Often, we will have multiple training

sequences, such as some x1 ¼ fx11; x12; . . .g; x2 ¼ fx21; x22; . . .g; Then our obser-

vation vector is the union of all of these input sequences:

x ¼ x11; x12; . . . ; x1T1
; x21; x22; . . . ; x2T2

; . . .

2. Parameters l We will assume that the structure of the Markov model graph is

given to us, but that we do not know the values of the probability parameters. These

parameters, which we will try to infer, are the following:

l ¼ fP;P;Bg;

where again P is the vector of starting state probabilities, P is the matrix of tran-

sition probabilities, and B is the matrix of output probabilities. Note that in many

cases we may have additional problem-specific constraints on these. For example,

we may assume that some probabilities are known to us and others need to be

inferred. Some of these constraints will be easy to handle within the framework of

the Baum–Welch algorithm, but others will require significant revisions of the algo-

rithm.

3. Latent variables y We want our latent variables to make it easy to infer the

parameters. As the discussion of labeled data above shows us, it is easy to infer the

parameters if we know the state assignments. Therefore, it may make sense to choose

the state assignments as our latent variables. It turns out to be convenient to choose a

slightly di¤erent set of latent variables that give us almost the same information as

the state assignments. Specifically, we will choose the following:
� Ctði; jÞ We define this to be the probability that we go from state qi to state qj
during the transition from step t to step tþ 1.
� git This is the same g we used earlier, the probability we are in state qi at step t.

300 20 Hidden Markov Models

These two quantities in e¤ect define a probability distribution over possible state

assignments. Finding this distribution will constitute the E-step of the Baum–Welch

EM algorithm.

We can compute both of these quantities using the tables constructed by the for-

ward and backward algorithms. First, we can compute the Ctði; jÞ terms by the fol-

lowing formula:

Ctði; jÞ ¼
ait � pij � bj; tþ1 � bj;xtþ1

Prfx j lg ¼
ait � pij � bj; tþ1 � bj;xtþ1Pn

i 0¼1
Pn

j 0¼1 ai 0t � pi 0j � bj 0; tþ1 � bj 0;xtþ1
:

The numerator consists of four components: the probability of generating the prefix

of the observables up to state t, the probability of transitioning from qi to qj at step t,

the probability of generating the su‰x of the observables after state tþ 1, and the

probability of giving the observed output from state tþ 1. Together, these give the

probability of a particular state transition from qi to qj at this one step, given

the complete observed x. The denominator is a scaling factor which normalizes the

whole thing by the probability of getting our observed x from l.

We already know how to compute git, although we can derive a simpler expression

for it once we know the C values:

git ¼
Xn

j¼1
Ctði; jÞ

for t < T , or

git ¼
Xn

j¼1
Ct�1ð j; iÞ

for t > 1. That is, the probability of being in state qi at time t is the sum over all pos-

sible next states qj of the probability of transitioning from qi to qj at step t, or the

sum over prior qjs of the probability of transitioning from qj to qi at step t� 1.

The M-step of the Baum–Welch algorithm will then consist of finding maximum

likelihood estimators for P, P, and B, given the state distribution implied by the C

and g values. Estimating P ¼ fp1; p2; . . . ; png is the easiest:

piAgi1:

That is, the best estimate of the starting probability of state qi is the estimated prob-

ability that we are in qi at step 1.

We can also estimate P by observing that the probability of taking a transition

from qi to qj is best approximated by the fraction of the times the model is in state

qi and next goes to state qj. This fraction is given by

20.2 Algorithms for HMMs 301

pijA
PT�1

t¼1 Ctði; jÞ
PT�1

t¼1 git
:

Finally, we can estimate B by observing that the best estimate of the probability of

emitting output k from state j is the fraction of times that output k is produced by

the model when it is in state j. This fraction is given by

bjkA

PT
t¼1;xt¼sk gjtPT

t¼1 gjt
:

As with any EM algorithm, we have to repeatedly apply our E-step and our M-

step until they converge on some solution. We establish our distributions of state

and transition usages by calculating the Cs and gs (E-step), then estimating P, P,

and B from those distributions (M-step), repeating until convergence. Note that be-

cause EM is a local optimization method, our starting conditions can be important.

Prior knowledge about the system that is helpful in making an initial best guess can

make a big di¤erence in the quality of the final output. For example, if we have

many unlabeled data but few labeled data, we may use the labeled data to get a rea-

sonable best guess as to the parameters, then train by Baum–Welch from there to get

a better fit to the full data set.

An Aside on Fitting to HMMs Baum–Welch is one optimization method that is widely

useful and generally easy to implement for EM problems, but it is not the only one

we may use. In general, we have a well-defined objective function ðPrfx j lgÞ that we
wish to optimize for a set of variables:

� n pi variables
� n2 pij variables
� njSj bjs variables.

We can therefore treat this as a generic multivariate optimization problem and use

any general-purpose optimization method, such as Newton–Raphson, steepest de-

scent, constraint satisfaction, or others we have not covered. For some kinds of con-

straints we might put on our HMMs, Baum–Welch might prove impossible to

implement, and it is therefore useful to be able to conceptualize this kind of parame-

ter tuning as just another optimization problem.

We may also want to use a hybrid approach. For example, some constraints on the

probabilities may allow us to keep the standard Baum–Welch E-step but require us

to substitute a specialized constrained optimizer for the M-step. That kind of com-

plication arises particularly if probabilities from di¤erent states or transitions are pre-

302 20 Hidden Markov Models

sumed to be dependent on one another or to be constrained by some restrictive prior

distribution.

20.3 Parameter-Tuning Example: Motif-Finding by HMM

We can better understand how these methods work by going through a simple exam-

ple in more detail. We will use a simplified variant of the motif-finding HMM we saw

in figure 20.1(b). This variant is illustrated in figure 20.4. Here we have a motif of

four bases, each with one state in the model, and also an extra background state N

representing bases that are not part of the motif. To make the math a bit easier, we

will assume that there are no insertions or deletions possible in the motif, making

most of the transition probabilities either 1 or 0. This is generally a reasonable as-

sumption for a DNA-binding motif, although one might more easily use a position-

specific scoring matrix instead of an HMM in such cases. We will use this system to

see how we may train an HMM model like this in practice.

We will generally need a place to get started, so we will suppose that our real motif

has some general consensus pattern, say ACTG, but that we know it can vary from

this pattern. We will also assume that we have some training data containing exam-

ples of the motif, although we do not know exactly how many examples the training

data contain or where they are. For example, we may have the following sequence

which, unknown to us, contains two real examples of the motif:

GACACTGCCTACGGT :

Initializing The first thing we need to do is set some initial probabilities to get the

EM method started. We would ordinarily set the probability of starting the motif,

pNM1
, to be a prior estimate of the frequency of the motif in the data. So, for exam-

ple, if we believe this motif occurs about once every thousand bases in our data, we

may initially say pNM1
¼ 0:001.

Note that we have to be careful here because the parameter will depend on what

kind of data we are using. If we choose a parameter based on the frequency of the

Figure 20.4
Simple HMM model for finding a motif of four bases. State N represents a background base frequency,
and states M1, M2, M3, and M4 represent four motif positions. We assume here that the motif cannot con-
tain insertions or deletions.

20.3 Parameter-Tuning Example: Motif-Finding by HMM 303

motif in gene regions, the model is unlikely to work well if we use a whole genome as

training data; the model will likely predict far more motifs than are really there.

Likewise, if we choose our prior estimate based on the frequency of the motif in the

whole genome, then the model is likely to perform poorly if we train it using only

data from promoter regions of genes, since the model will expect the motif to be

much less frequent than it actually is in that data set.

For the sake of this example, let us assume that we believe the motif occurs on av-

erage once every five bases in the training data. Then we will guess:

pNM1
¼ 1

5

pNN ¼ 1� pNM1
¼ 4

5
:

All other values of P are fixed in this model.

We also need to set P, which we can also do using our prior estimate of the motif

frequency. If the motif occurs once every five bases, then each motif state should

have probability 1
5 . That means the background state N also has probability 1

5 .

Therefore, we guess

pi ¼
1

5
Ei:

Finally, we need some initial values for the elements of the B matrix. We need a

reasonable guess here if we are to have any hope of solving the problem. If we guess

that the consensus is perfectly preserved, then we have no hope of learning noncon-

sensus motifs. If we do not use an initial guess that approximately matches the con-

sensus, we are unlikely to be able to detect the motif at all. And if we allow too much

flexibility in the definition, the model may converge to some di¤erent but more fre-

quent motif. We can try to avoid all of these possible problems by using a starting

distribution which represents a noisy guess that the consensus is correct. We will sup-

pose that all bases are equally likely in state N and that the consensus base has prob-

ability 0.7, and the others 0.1 each, in the motif states. Then our initial estimate of B

will be

B ¼

N

M1

M2

M3

M4

:25 :25 :25 :25

:7 :1 :1 :1

:1 :7 :1 :1

:1 :1 :7 :1

:1 :1 :1 :7

2

6
6
6
6
6
4

3

7
7
7
7
7
5

A C G T

304 20 Hidden Markov Models

E-Step Once we have our initial values, we have to perform our first E-step. We ul-

timately need the C and g values required by Baum–Welch. To get those, though, we

first need to run the forward and backward algorithms to get the a and b tables.

Suppose our training data is the sequence GACACGTCCTACGCT. We begin by

filling in the first column of the a table by the formula

ai1 ¼ biG � pi:

We then fill in subsequent columns by the formula

aij ¼
X

k

ak; j�1pki

 !

bixj :

This should be fairly easy for this example, since most of the pij values are either 0 or

1. We will get something like the following:

a G A C A C G � � �

N 0.05 0.015 0.0065 0.00135 0.000275 6:725� 10�5

M1 0.02 0.0070 0.0003 0.00091 0.00027 5:5� 10�6

M2 0.02 0.002 0.0049 0.00003 0.000637 2:7� 10�6 � � �

M3 0.14 0.002 0.0002 0.00049 3:0� 10�6 4:459� 10�4

M4 0.02 0.014 0.0002 0.00002 4:9� 10�5 3� 10�7

The columns of the matrix containing the substring ACGT, which is a match to

our consensus motif, show high probabilities for the corresponding motif states.

This observation suggests that our initial guess is pretty good at finding the consensus

motif.

We next need to find the bij values by the backward algorithm. We now initialize

the rightmost column to all 1s and fill in toward the left, using the formula

bij ¼
Xn

k¼1
pikbkxjþ1bk; jþ1:

We will see something like the following:

20.3 Parameter-Tuning Example: Motif-Finding by HMM 305

b � � � A C G C T

N .0178 .084 .07 .3 1

M1 .0049 .001 .07 .1 1

M2 � � � .00075 .007 .01 .1 1

M3 .00175 .0075 .01 .1 1

M4 .021 .0175 .075 .1 1

Once we have the a and b tables, we can compute the C values. For example:

CT�1ð1; 1Þ ¼
a1;T�1p11b1;Tb1T

Prfx j lg :

Most of the C values will be zero for this example, since most transitions are pre-

sumed to have zero probability. We can also get the g values using our formulas from

above. For example:

gTð1Þ ¼
Xn

j¼1
CT ð j; 1Þ:

We will not go through all of the math in detail. Filling in the rest should be an

easy, if tedious, exercise for the reader.

M-Step One we have computed the C and g values, we need to reestimate the P, P,

and B values. We can easily estimate P values as follows:

ðpN ; pM1
; pM2

; pM3
; pM4

Þ ¼ ðg1N ; g1M1
; g1M2

; g1M3
; g1M4

Þ:

We get the B values by finding all occurrences of a given output and then counting

the fraction of times the model is predicted to be in a given state and emit the given

output. For example, if we want to find bNA, we will first note that the data show

output A at steps 2, 4, and 11. Therefore, the probability of emitting A from state

N will be estimated by

bNA ¼
gN;2 þ gN;4 þ gN;11

gN;1 þ gN;2 þ gN;3 þ � � � þ gN;14 þ gN;15

;

that is, the expected number of occurrences of state N that coincide with output A,

divided by the total expected number of occurrences of state N.

306 20 Hidden Markov Models

Finally, to get maximum likelihood estimates of the transition probabilities, we

can use the C values to estimate how often the model transitions from state qi to qj
as a fraction of how often it transitions from state qi to any state. For this example,

we only need to estimate pNN , since pNM1
¼ 1� pNN and all other probabilities are

fixed at 0 or 1. We can estimate pNN as follows:

pNNAðC1ðN;NÞ þ C2ðN;NÞ þ C3ðN;NÞ þ � � � þ CT�1ðN;NÞÞ=

C1ðN;NÞ þ C1ðN;M1Þ þ C1ðN;M2Þ þ C1ðN;M3Þ þ C1ðN;M4Þ
þC2ðN;NÞ þ C2ðN;M1Þ þ C2ðN;M2Þ þ C2ðN;M3Þ þ C2ðN;M4Þ þ � � �
þCT�1ðN;NÞ þ CT�1ðN;M1Þ þ CT�1ðN;M2Þ þ CT�1ðN;M3Þ

þCT�1ðN;M4Þ

0

B
B
B
@

1

C
C
C
A
:

That completes our M-step. If we repeatedly apply the E-step and M-step above,

we should eventually converge on some final model fit. If the initial estimates were

well chosen, the final fit is likely to be a good model for the motif that one can then

use to detect occurrences of the motif in new data sets.

References and Further Study

Hidden Markov models have become such a widely used technique in computa-

tional molecular biology that one can find coverage of them in many introduc-

tory and intermediate-level computational biology or bioinformatics texts. One

may refer, for example, to Durbin et al. [182] or Mount [183] for additional mate-

rial on HMMs in the context of various biological problems. HMMs are also

widely used in other fields, such as language analysis and speech recognition, and

readers looking for more extensive coverage may turn to those fields for texts

on the topic. The most comprehensible tutorial on the topic of which I am aware

is the review article by Rabiner [181], which focuses on speech-recognition applica-

tions.

Those interested in referring to the primary literature on HMMs can look up the

first descriptions of the Viterbi [184], forward-backward [185], and Baum–Welch

[178] algorithms. Baum et al. [178] is also one of our primary references for expecta-

tion maximization in general. There are many applications of HMMs in the compu-

tational biology literature. One particularly influential example is the Genscan gene

finder [186], the first reasonably accurate gene prediction method for eukaryotic

DNA. Genscan is at its heart based on HMMs, but with some nonstandard modifi-

cations that make it worth a look for those interested in more depth on practical

matters in adapting HMMs to real-world data sources. Interested readers may also

want to look up Delorenzi and Speed [187] to read about HMMs in the context of

References and Further Study 307

coiled-coil recognition, Sonnhammer et al. [180] for information about the use of

HMMs for more general domain recognition by the Pfam database, or Krogh et al.

[188] for the earliest application of HMMs to protein-fold recognition. For a more

general survey of the use of HMMs in biological applications, readers may refer to

several review and tutorial articles by Eddy on the topic [189] [190] [191]. These

reviews also provide several examples of the use of HMMs for various forms of

motif-finding.

308 20 Hidden Markov Models

21 Linear System-Solving

In this chapter, we will cover some basic tools for solving linear systems. Recall that

a linear system is described by the equation

A~xx ¼~bb;

where A is an m� n matrix, x is an n� 1 vector, and b is an m� 1 vector. Usually,

when we talk about solving linear systems, we assume that A and b are known to us

and we want to solve for x. We have already referred to linear system-solving in the

context of solving various other problems. For example, solving linear systems is a

key step in multidimensional Newton–Raphson optimization, as we saw in chapter

5, and also comes up in linear programming (chapter 6), state distributions of Mar-

kov models (chapters 8 and 11), integrating systems of di¤erential equations (chap-

ters 14 and 15), and many other topics in numerical optimization and simulation.

As we will see, linear system-solving is also a core part of many parameter tuning

problems. Linear system-solving is therefore one of those topics about which one

needs to know in order to be prepared to work in any kind of scientific computing.

In simpler applications, we do not really need to know much about how linear sys-

tems are solved because there are highly optimized solvers freely available for work

in the area. When one deals with harder linear systems, though, an understanding of

the underlying algorithms can be critical in achieving reasonable performance in

practice. Readers planning to go on to more advanced numerical computing would

therefore be well advised to learn this topic, and numerical linear algebra in general,

in much greater depth than we have room for here.

For now, we will look at linear systems specifically in the context of parameter-

tuning. For example, suppose we want to know the expression level of a gene X ,

which we know is regulated by genes A1;A2; . . . ;Ak. Figure 21.1 illustrates this sys-

tem. We can measure the expression of X in response to di¤erent levels of the regu-

lating genes, and want to be able to predict how X will respond under unobserved

conditions. One way we can approach this problem is to assume there is a linear

relationship between X and the Ai genes. Suppose we conduct a series of k þ 1

experiments. We will define the following variables:

� Aij is the concentration of Ai in experiment j.
� Xj is the concentration of X in experiment j.
� ci is the inferred contribution of ½Ai� to ½X �.
� c is an extra inferred ‘‘baseline’’ value of ½X �.

Then we can pose our inference problem, using the following linear system:

A11 A21 � � � Ak1 1

A12 A22 � � � Ak2 1

..

. . .
.

A1k A2k � � � Akk 1

A1;kþ1 A2;kþ1 � � � Ak;kþ1 1

2

66
6
6
6
6
6
4

3

77
7
7
7
7
7
5

c1

c2

..

.

ck

c

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

X1

X2

..

.

Xk

Xkþ1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

To find the ci parameters, we can perform the experiment k þ 1 times and then

solve for c1; . . . ; ck; c. Then, if we want to estimate the value of ½X � for some new

½A1�; . . . ; ½Ak�, we can guess that it is

c1½A1� þ c2½A2� þ � � � þ ck½Ak� þ c:

This process is called linear regression. To fit our linear model, we need to know how

to solve A~xx ¼~bb. Solving this problem is what we mean by solving a linear system.

We will initially assume we have an n� n matrix of full rank, and therefore the sys-

tems will have a unique solution, but later we will see how we may deal with over-

determined and underdetermined systems.

21.1 Gaussian Elimination

The classic method for solving linear systems is Gaussian elimination. The basic idea

behind the method is to repeatedly subtract multiples of one row of the matrix A

from another row until we transform the system into something equivalent but easy

to solve. Specifically, we will use a series of transformations to try to create an equiv-

Figure 21.1
A gene X regulated by three transcription factors—A1, A2, and A3—that bind to its promoter.

310 21 Linear System-Solving

alent linear system where the matrix is the identity matrix. To see how the method

works, we can take an example system

2 4 2

3 2 3

�1 0 2

2

6
4

3

7
5x ¼

16

16

5

2

6
4

3

7
5

To make it a little more readable, we will write A~xx ¼~bb as ½A j~bb�, so our system

becomes

2 4 2 j 8

3 2 3 j 16

�1 0 2 j 5

2

6
4

3

7
5

To transform the system into one with the identity matrix, we will first try to fix

the lower triangular portion by filling the diagonal with ones and everything below

it with zeros. The first step is fixing the upper-left entry to 1. We accomplish this by

scaling the first row of the matrix by 1/2, yielding the following:

1 2 1 j 8

3 2 3 j 16

�1 0 2 j 5

2

6
4

3

7
5

We then will then use the first row to try to put zeros in the first column of the

second and third rows. We do this by subtracting 3 times the first row from the sec-

ond row and �1 times the first row from the third:

1 2 1 j 8

0 �4 0 j �8
0 2 3 j 13

2

6
4

3

7
5

We will then normalize the second row to try to put a 1 in the second diagonal en-

try. We do this by dividing the second row by its diagonal entry, �4:

1 2 1 j 8

0 1 0 j 2

0 2 3 j 13

2

6
4

3

7
5

We will then use the second row to eliminate the second column entry from the

third row. We do this by subtracting twice the second row from the third row:

1 2 1 j 8

0 1 0 j 2

0 0 3 j 9

2

6
4

3

7
5

21.1 Gaussian Elimination 311

We will then put a 1 on the diagonal in the third row by dividing it by its diagonal

entry, 3:

1 2 1 j 8

0 1 0 j 2

0 0 1 j 3

2

6
4

3

7
5

We will now reverse direction and try to place zeros in the upper triangular por-

tion of the matrix. We first use the bottom row to eliminate entries in the third col-

umn above the diagonal. We do this by subtracting the third row from the first:

1 2 0 j 5

0 1 0 j 2

0 0 1 j 3

2

6
4

3

7
5

We then use the second row to eliminate entries above the diagonal in the second

column by subtracting twice the second row from the first:

1 0 0 j 1

0 1 0 j 2

0 0 1 j 3

2

6
4

3

7
5

We have, finally, reduced this to an easy system to solve. We have converted A to

the identity matrix, so the solution to A~xx ¼~bb is ~xx ¼~bb, giving us

x ¼
1

2

3

2

6
4

3

7
5

Figure 21.2(a) provides pseudocode summarizing the basic Gaussian elimination

algorithm for transforming an arbitrary linear system A~xx ¼~bb into an equivalent sys-

tem I~xx ¼ b. When we are done running it, A should be the identity matrix and~bb will

contain the solution vector ~xx to the original system.

21.1.1 Pivoting

There is a problem with the preceding pseudocode, though. What if, as we are run-

ning through the algorithm, we end up with an aii entry that is zero? Because we have

to divide by aii, the algorithm will fail with a division by zero error. Even a nonzero

but small aii is a problem, since aii close to zero can lead to large numerical errors or,

if it occurs repeatedly, to numerical overflows.

This problem is generally solved in practice by a method called pivoting. When we

want to subtract out all elements below the diagonal in some column i, we ordinarily

subtract multiples of row i from the rows below i. With pivoting, we instead first find

312 21 Linear System-Solving

the row k A ½i; n� that has the largest absolute value in column i. We then permute the

rows to swap rows i and k. Then we use the new row i (the old row k) to eliminate all

entries below the diagonal in column i.

To illustrate pivoting, we can use our example matrix from above:

1 2 1 j 8

3 2 3 j 16

�1 0 2 j 5

2

6
4

3

7
5

Instead of using row 1 to zero out lower triangular elements in column 1, we will

instead begin with a pivoting step. We look for the element with largest absolute

value in column 1, which occurs in row 2. We then pivot to swap rows 1 and 2:

3 2 3 j 16

1 2 1 j 8

�1 0 2 j 5

2

6
4

3

7
5

Figure 21.2
Pseudocodes for the Gaussian elimination algorithm. (a) Standard Gaussian elimination. (b) Gaussian
elimination with partial pivoting.

21.1 Gaussian Elimination 313

Note that this transformation is equivalent to multiplying both sides of the equa-

tion by a permutation matrix:

P12 ¼
0 1 0

1 0 0

0 0 1

2

6
4

3

7
5

That is, we convert the problem A~xx ¼~bb into the equivalent problem P12A~xx ¼
P12

~bb.

We can now proceed with the Gaussian elimination by scaling the first row to put

a 1 on the diagonal:

1 2=3 1 j 16=3

1 2 1 j 8

�1 0 2 j 5

2

6
4

3

7
5

We then subtract out multiples of the first row from the others to place zeros be-

low the diagonal:

1 2=3 1 j 16=3

0 4=3 0 j 8=3

0 2=3 3 j 31=3

2

4

3

5

We do not need to pivot again for the second step, since the largest value in col-

umn 2 is already in row 2, so we normalize the second row:

1 2=3 1 j 16=3

0 1 0 j 2

0 2=3 3 j 31=3

2

6
4

3

7
5

From this point on, the algorithm will proceed exactly as in the nonpivoting

version.

The swapping of rows to keep small values o¤ the diagonal is technically known as

partial pivoting. Partial pivoting generally works very well at controlling numerical

errors, but there are cases where it performs poorly. We can avoid these by using

full pivoting. With full pivoting, when we are trying to put a 1 on the jth diagonal

entry, we find the largest element in the submatrix below and to the right of ð j; jÞ,
then permute both rows and columns to swap that largest entry with the one initially

in position ð j; jÞ. Full pivoting can handle some pathological cases for which partial

pivoting fails, but full pivoting is not usually done in practice.

We can amend the pseudocode in figure 21.2(a) to incorporate partial pivoting by

adding a step 1.a to find the row with largest absolute value in a given column and

314 21 Linear System-Solving

swap it into the diagonal position. Figure 21.2(b) shows the amended pseudocode for

Gaussian elimination with partial pivoting. It should be straightforward to see how

to amend the code to incorporate full pivoting if that is desired.

Note Gaussian elimination itself is not generally used for demanding problems in

practice, since it is ine‰cient (OðN 3Þ for an N �N matrix). In some cases, it can be

made e‰cient for sparse matrices, defined as those that are mostly zeros. The tech-

niques for e‰cient solution of large, sparse matrices are more advanced than we can

cover here. Gaussian elimination can still be useful as an easy-to-code method if one

ever needs to write a basic linear system solver. Gaussian elimination is also still im-

portant in scientific computing practice because it is equivalent to a widely useful

method called LU decomposition. In LU decomposition, we convert a matrix A into

a product of two matrices L and U , where L is lower triangular and U is upper

triangular.

Although it may not be obvious, the Gaussian elimination process actually com-

putes L and U for us. To see how this works, we can note that every step of Gaussian

elimination can be rewritten as a matrix multiplication. When we scale a row to place

a 1 in its diagonal entry aii, what we are doing is equivalent to transforming the sys-

tem A~xx ¼~bb into the system

1 0 0

. .
.

0 ðaiiÞ�1 0

. .
.

0 0 1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

A~xx ¼

1 0 0

. .
.

0 ðaiiÞ�1 0

. .
.

0 0 1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

~bb

Similarly, eliminating the entries below a diagonal entry aii that has already been

scaled to 1 can be represented as the matrix multiplication

1 0 0

. .
.

0 1 0

0 �aiþ1; i 0

. .
.

0 �an; i 1

2

66
6
6
6
6
6
6
6
6
4

3

77
7
7
7
7
7
7
7
7
5

A~xx ¼

1 0 0

. .
.

0 1 0

0 �aiþ1; i 0

. .
.

0 �an; i 1

2

66
6
6
6
6
6
6
6
6
4

3

77
7
7
7
7
7
7
7
7
5

~bb

Eliminating entries above the diagonal has a similar interpretation as matrix

multiplication:

21.1 Gaussian Elimination 315

1 �a1; i 0

. .
.

0 �ai�1;i 0

0 1 0

. .
.

0 0 1

2

66
6
6
6
6
6
6
6
6
4

3

77
7
7
7
7
7
7
7
7
5

A~xx ¼

1 �a1; i 0

. .
.

0 �ai�1;i 0

0 1 0

. .
.

0 0 1

2

66
6
6
6
6
6
6
6
6
4

3

77
7
7
7
7
7
7
7
7
5

~bb

Furthermore, the first phase of Gaussian elimination produces only lower trian-

gular matrices (including the diagonal scaling matrices), whereas the second phase

produces only upper triangular matrices. The result is that as we go through the

Gaussian elimination process, we are really accumulating a series of transformations

of the form

UnUn�1 � � �U1LnLn�1 � � �L1A~xx ¼ UnUn�1 � � �U1LnLn�1 � � �L1
~bb;

where UnUn�1 � � �U1LnLn�1 � � �L1 ¼ A�1. The product of all of the upper triangular

matrices will itself be an upper triangular matrix whose inverse is lower triangular.

The product of the lower triangular matrices is a lower triangular matrix whose in-

verse is upper triangular. By accumulating the two upper triangular and lower trian-

gular products and inverting them, which can be done e‰ciently for an upper or

lower triangular matrix, we end up with the L and U matrices for the decomposition.

Note that we can also accumulate the permutation matrices used for pivoting in the

course of this transformation if necessary.

Once we find the L and U matrices by Gaussian elimination, we can e‰ciently

solve A~xx ¼~bb by solving two linear systems, L~yy ¼~bb and U~xx ¼ ~yy, each of which

requires only OðN 2Þ time. Therefore, LU decomposition can be very useful if we

have to repeatedly solve linear systems for one A matrix but di¤erent ~bb vectors.

That kind of situation can come up in many practical contexts. For example, imple-

mentation of an implicit numerical integration method for a linear system of ODEs

is likely to lead to repeated solution of A~xx ¼~bb for one A but many~bbs.

21.2 Iterative Methods

Historically, Gaussian elimination was largely displaced in practice by a set of meth-

ods known as iterative methods. With an iterative method, we guess an initial solu-

tion and then apply an iterator that will successively improve the solution, as long

as it is close enough to the right answer to begin with. Iterative methods are generally

superior to Gaussian elimination in practice once we have a good initial guess. Typ-

ically, they require quadratic time per iteration (equivalent to a matrix multiplica-

tion) and potentially linear time for sparse matrices. They will therefore outperform

316 21 Linear System-Solving

Gaussian elimination, provided they converge to their solution in a sublinear number

of steps, something that is generally achieved in practice. There are three principal

iterative methods:

� Jacobi
� Gauss–Seidel
� Successive overrelaxation.

Each method has a simple intuition behind it. In the Jacobi method, we improve

our guess as to the value of ~xx by solving for each variable in ~xx in turn as if all of the

other xi values are fixed. Once we have a complete set of new xi values, we repeat the

process, solving for each xi and again assuming all the others are correct in the new

estimate. Suppose we denote the upper triangular portion of A by U , the lower trian-

gular portion by L, and the diagonal portion by D. (Note that these are not the same

L and U as in LU decomposition.) Then we can represent the Jacobi iteration by the

linear operation

~xxiþ1 D�1ððLþUÞ~xxi þ~bbÞ:

Gauss–Seidel follows nearly the same process, except that entries are updated one at

a time, using the most recent updates when computing the next one rather than the

entries from the prior round. This is equivalent to the update operation

~xxiþ1 ðD� LÞ�1ðU~xxi þ bÞ:

Successive overrelaxation is the same as Gauss–Seidel except that it deliberately

‘‘overcorrects’’ when doing updates. This practice can often accelerate the conver-

gence rate beyond that of Gauss–Seidel. It is described by the iteration

~xxiþ1 ðD� oLÞ�1ððoU þ ð1� oÞDÞ~xxi þ o~bbÞ

for some o > 0. Though these methods were historically significant, and are still im-

portant in some contexts, such as parallel linear system-solving, they have largely

been superseded in practice by the next class of methods we will examine. We will

therefore skip any detailed coverage of these classic iterative methods.

21.3 Krylov Subspace Methods

Large linear systems are generally solved today by a class of methods known as Kry-

lov subspace methods. A Krylov subspace method depends on having a matrix M and

a vector ~vv, which may be the A and ~bb from our A~xx ¼~bb linear system. The method

iteratively solves the linear system by repeatedly finding a best-fit solution within a

21.3 Krylov Subspace Methods 317

restricted solution space. It initially finds the best solution to A~xx ¼~bb such that ~xx is a

linear multiple of~vv. It then finds the best solution in the plane defined by~vv and M~vv.

Next, it finds the best solution in the three-dimensional space defined by~vv, M~vv, and

M 2~vv; and so on. Eventually, the method will find the optimal solution in the space

defined by ~vv;M~vv; . . . ;Mn�1~vv, which is the full space of an n� n matrix A and thus

contains the true solution to the problem. In practice, though, the method usually

will have an almost exact answer in just a few steps. If the method is well designed,

each new step requires only a small amount of additional work beyond that already

performed for the previous step. Krylov subspace methods can thus be far more e‰-

cient in practice than Gaussian elimination or the classic iterative methods. Di¤erent

Krylov subspace methods are distinguished by how we choose M and~vv and how we

define the ‘‘best’’ solution.

We briefly saw one Krylov subspace method, the conjugate gradient method, in

the context of nonlinear optimization. We will reconsider the method here in its orig-

inal context, linear system-solving. The conjugate gradient method was the first Kry-

lov subspace method, and is still widely used in practice. It requires that the matrix A

is symmetric and positive definite. Recall that positive definite matrices are matrices

in which all eigenvalues are positive. An alternative definition of positive definite is

that if we run Gaussian elimination without pivoting, the aii values by which we di-

vide (the pivots) will always be positive. Here we will see a slightly less general for-

mulation of the method than we saw in its general optimization guise. Figure 21.3(a)

provides the pseudocode.

Figure 21.3
Pseudocode for Krylov subspace methods for linear system-solving. (a) Conjugate gradient method. (b)
Generalized minimal residual (GMRES) method.

318 21 Linear System-Solving

For the most part, the method should remind us of steepest descent. At each step,

we pick a vector ~ppi by which we will improve~xxi, find a distance on ~ppi along which to

move, and make the update. Here, however, ~ppi is essentially a ‘‘corrected’’ version of

the gradient, which we create by subtracting o¤ components of the previous ~pp vector

from the gradient. This correction prevents ~ppi from undoing work done by ~ppi�1 on

the prior step. Lines 4.B.iii–v identify a ~ppi that is conjugate to the previous ones

with respect to A, meaning that ~ppiA~ppj ¼ 0 for i0 j. This choice has the e¤ect of

choosing movement vectors that are all at right angles to each other, guaranteeing

that work which is done in one step is not undone in subsequent steps.

If we need a method that works for matrices that are not positive definite, a simple

one is biconjugate gradient. To solve A~xx ¼~bb by the biconjugate gradient method, we

first convert it to the problem ATA~xx ¼ AT~bb. ATA is symmetric positive definite for

any matrix A, so we can run conjugate gradient on ATA. In other words, biconjugate

gradient means solving ATA~xx ¼ AT~bb by conjugate gradient. The method tends not

to work as well as standard conjugate gradient if the matrix is symmetric positive

definite to begin with, for reasons that are too advanced for this text. The technical

explanation is that the runtime of any of these methods depends on a quantity called

the condition number of the matrix A, defined as ðkAkÞðkA�1kÞ, which is always at

least 1. Converting from A to ATA squares the condition number, so it will roughly

square the number of steps needed to achieve convergence.

Another Krylov subspace method is called generalized minimal residual

(GMRES), which works by successively minimizing the residual vector~rrn ¼~bb� A~xxn
over the nth Krylov subspace of A and~bb. Figure 21.3(b) provides pseudocode for the

method. This method is slower than conjugate gradient because it has to orthogon-

alize the update vector by all prior update vectors rather than just the most recent

one. This added work allows it to drop the requirement for a symmetric positive def-

inite input matrix.

21.3.1 Preconditioners

In practice, we are rarely likely to need to implement a Krylov subspace method be-

cause there are highly optimized implementations already available for almost any

computer. Therefore, we do not really need to know how to implement them. We

only strictly need to be aware that they exist and understand the restrictions on dif-

ferent Krylov subspace methods. But there are some additional things we do need to

know in order to use Krylov subspace methods e¤ectively. Most important, we need

to be aware of something called a preconditioner.

We generally do not run our linear system-solving methods directly on the system

A~xx ¼~bb that we are interested in solving. Instead, we solve the system ðM�1AÞx ¼
ðM�1~bbÞ, where M is a matrix called the preconditioner. A good M is one that satis-

fies two properties:

21.3 Krylov Subspace Methods 319

� It is easy to compute M�1y for any vector y.
� M�1A is ‘‘well-behaved.’’

A well-behaved matrix M�1A is intuitively ‘‘close’’ to the identity matrix, and

ðM�1AÞ~xx ¼ ðM�1~bbÞ is therefore easy to solve. This concept again relates to the con-

dition number mentioned above. The identity matrix has condition number 1, and a

well-behaved matrix is really any matrix with a condition number close to 1.

Picking a good preconditioner is not trivial. If we choose M ¼ A, we satisfy our

condition that M�1AAI , but solving M�1~yy is as hard as solving our original system.

If we choose M ¼ I , then solving M�1~yy is easy, but M�1A is just A and is therefore

probably not close to I . Choosing a really good preconditioner is a di‰cult engi-

neering issue that requires more knowledge than we can cover in a single chapter.

A reasonable general-purpose choice is M ¼ diagðAÞ, the matrix that has the same

diagonal as A but has zeros everywhere else. There will usually be better choices,

though, depending on the specific A under consideration.

21.4 Overdetermined and Underdetermined Systems

So far we have been considering how to solve systems defined by full-rank n� n ma-

trices. Very often, though, we will overdetermine or underdetermine matrices. Recall

that an overdetermined system is one in which the number of rows of the matrix

exceeds its rank, essentially meaning that there are more constraints than variables.

An underdetermined system is one in which the number of columns exceeds the rank,

meaning that there are more variables than constraints. We will close with a consid-

eration of what to do with these kinds of systems.

There is generally no exact solution to an overdetermined system. Such systems

come up very often in practice, though. For example, in our regulated gene example

at the beginning of the chapter, we will get an overdetermined system if we do more

than k þ 1 experiments. Very often, we want to gather more data points (constraints)

than we need to get a full-rank system because experiments can be noisy and having

an excess of data lets us reduce the e¤ects of the noise. The noise also means, though,

that we will almost certainly have no parameter set that exactly fits all experiments.

A widely used way of dealing with the problem of overdetermined systems is to

find an ~xx that is ‘‘close’’ to a solution to A~xx ¼~bb. ‘‘Close’’ is often defined in terms

of the least-squares measure. This means that if we call row i of our matrix ~aai, then

we want to find ~xx minimizing

X
ð~aai �~xx� biÞ2:

An alternative way of saying that is in terms of the residual~rr ¼ A~xx� b. We want to

find ~xx minimizing ~rrT~rr ¼ ðA~xx�~bbÞTðA~xx�~bbÞ. Given an m� n matrix A, the least-

320 21 Linear System-Solving

squares solution to A~xx ¼~bb is the solution to

ATA~xx ¼ AT~bb;

which will never be overdetermined, since ATA is n� n. So to find the least-squares

solution to A~xx ¼~bb, we solve the linear system

ðATAÞ~xx ¼ ðAT~bbÞ:

Note that in the GMRES algorithm that we saw earlier, we had one step for which

we needed to find ~yy minimizing kAQn~yy�~bbk. This is a least-squares problem, which

we now know how to solve.

When our system is underdetermined, how we handle it is somewhat arbitrary,

since an underdetermined system usually has an infinite number of solutions. We

can in principle select any of these as the answer. One possibility is to define an ob-

jective function on possible solutions and then solve for the solution with optimal

objective value. If our objective function is linear or convex, then this becomes a lin-

ear programming or convex programming problem, which we already know how to

solve. One other common solution is to use something called a pseudoinverse. To find

the pseudoinverse, we first find the singular value decomposition of matrix A, a com-

mon linear algebra operation that transforms A into the product

A ¼ Q1SQ
T
2 ;

where S is a diagonal matrix of the singular values of A (i.e., the eigenvalues of

ATA). We then find a new matrix S, which is S with the nonzero values inverted. In

other words, we perform the following transformation:

S ¼

s1 0 � � � 0 0

0 s2 � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � 0 0

0 0 � � � 0 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

, S ¼

s�11 0 � � � 0 0

0 s�12 � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � 0 0

0 0 � � � 0 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

Then the pseudoinverse of A is defined as

A ¼ Q2SQ
T
1 :

The vector A~bb will give us a solution to A~xx ¼~bb that sets as many values as possi-

ble to zero, which can be a very good choice from a modeling point of view. E¤ec-

tively, the pseudoinverse gives us the simplest possible linear model satisfying all of

21.4 Overdetermined and Underdetermined Systems 321

our constraints. It thus is a good option when we have no other basis on which to set

an objective function for the solution.

References and Further Study

Linear system-solving is one of the core problems of numerical linear algebra, and

any general numerical linear algebra text is likely to cover the methods we have

seen here. Trefethen and Bau [86] is a highly regarded text for this topic. The Numer-

ical Recipes books [82] and Stoer and Bulirsch [132] also provide coverage. A general

introductory linear algebra text, such as Strang [192], will often have more basic cov-

erage of at least some of these methods in the context of general linear algebra, and

may therefore be a more suitable reference for beginners.

Many of the matrices one will encounter in practice will be sparse, and it is there-

fore well worth learning special methods for sparse systems. Often, the advantages of

a sparse matrix will come for free because one generally uses a linear system solver to

solve A~xx ¼~bb by supplying it with a function for multiplying by A rather than the

actual matrix A. If A~xx can be evaluated quickly, then the linear system solver will

run quickly. It can nonetheless be quite helpful to learn about some specialized meth-

ods for sparse systems. Saad [192] provides coverage of this topic.

As mentioned above, readers interested in doing more advanced work in scientific

computing would do well to learn about some of the other core numerical linear al-

gebra problems, such as finding eigenvalues and eigenvectors. The references covered

above will serve one well in beginning more advanced study on these topics.

322 21 Linear System-Solving

22 Interpolation and Extrapolation

A common problem when dealing with real-world data sources is translating discrete

samples into a continuous model. Raw experimental data are almost always discre-

tized at some level, yet many of our models assume continuous data. Furthermore,

we often are required to impute values that fall between our discrete observed data

points. We therefore need methods for fitting broad classes of continuous functions

to discrete data sets. Variants of this basic problem come up in many guises in the

context of modeling and simulation in biology. We can begin by considering some

examples.

Example 1 We may be interested in creating a model of a reaction network in which

we know that the activity a of one reactant is a¤ected by some external signal s, such

as a sensory stimulus. We want to a create a di¤erential equation model of the full

reaction network so we can see how it will respond to di¤erent patterns of stimulus,

but we do not know how the external signal a¤ects the reactant activity. We may ad-

dress this problem by observing a few discrete data points of reactant activity versus

signal strength. We can then fit a continuous function aðsÞ to the observations, as in

figure 22.1(a), and plug aðsÞ into our di¤erential equation model. We then have a

model of the network on which we can test the e¤ects of di¤erent driving stimuli sðtÞ.

Example 2 We may want to predict the behavior of a model at a limit we cannot

simulate. For example, suppose we monitor a protein expression model at several

discrete time points and observe the data in figure 22.1(b). We may wish to know

from this model the equilibrium to which it is converging. If the simulation is compu-

tationally demanding, there may be no way to reach that limit directly. We can, how-

ever, try to infer the limit from the points already seen.

Example 3 Biological data sets are often very noisy, and we may wish to fit a curve

to a set of data points as a way of smoothing the noisy data. For example, suppose

we are interested in monitoring the expression of some gene in a microorganism

throughout its cell cycle. We can in principle accomplish this by synchronizing the

Figure 22.1
Possible applications of interpolation and extrapolation in biological modeling. (a) Model of an enzyme
system for which we require a continuous input (solid line) for our numerical methods, but must infer it
from discrete experimental data (x’s). (b) Discrete data points (x’s) from which we wish to infer a long-
term limit (dashed line). (c) A model of noisy gene expression data we wish to denoise by fitting a contin-
uous curve. (d) Two possible curve classes, linear and exponential, that we might fit to a set of reaction
data to evaluate possible reaction mechanisms. (e) A random walk on a lattice (solid arrows) from which
we wish to infer a continuous trajectory (dashed arrows). (f) A continuous chemical gradient that we need
to discretize for use in a numerical model. (g) Two grids between which we may need to translate in imple-
menting a multigrid optimization method.

324 22 Interpolation and Extrapolation

cell cycles of a set of the microorganisms and then measuring gene expression in sub-

sets of the organisms at various time points. In practice, the process of synchronizing

cell cycles will be imperfect and the measurements somewhat inaccurate, so we may

observe something like the set of xs in figure 22.1(c). By fitting a curve with only a

few degrees of freedom to the data, we are likely to get a relatively smooth represen-

tation of the data, such as the line in the figure, that may be more amenable to model

computation.

Example 4 We may want to infer what general kind of model best describes a partic-

ular data set by fitting various kinds of curves to the model. For instance, suppose

we observe that the activity of an enzyme depends on its concentration according

to a set of data points, as in figure 22.1(d). We may want to know if those points

are better described by a linear function or an exponential function, since that is

likely to tell us something about the activity of the enzyme. We can attempt to fit

the data to both curve types and observe which provides a more reliable fit.

Example 5 We may want to create a continuous model of a system using an inher-

ently discrete modeling method. For example, suppose we want to create a model of

a particle di¤using in a two-dimensional space. We may choose to use a lattice model

for high e‰ciency. We can then create a continuous model of the particle’s move-

ment by inferring smooth paths between the discrete steps, as in figure 22.1(e).

Example 6 We sometimes need to convert between di¤erent discretizations of a

problem. For example, if we are trying to find the spatial equilibrium of a chemical

di¤usion system starting at some initial state, we may begin by converting the input

into a set of discrete points such as we might use for the spatial grid of a reaction–

di¤usion model, as in figure 22.1(f). Even if our input is already discrete, we may

need to change its discretization to one more suitable for our numerical methods.

Furthermore, some advanced numerical methods we have not seen can solve such

problems more quickly by jumping between di¤erent grid spacings during the solu-

tion of the problem. Such methods are known as multigrid methods. To use a multi-

grid method, we generally need a way to take a discretized state, convert it to a

continuous model, and then convert that continuous model back into a discretized

model on a di¤erent grid, as in figure 22.1(g). Similar problems may arise in applica-

tions related to image analysis, as we need to move between di¤erent levels of resolu-

tion of an image.

What all of these problems have in common is that they can be described in terms

of two basic operations:

� Interpolation: inferring missing data within the range of a set of known data points
� Extrapolation: inferring missing data outside the range of the observed data points.

22 Interpolation and Extrapolation 325

In this chapter, we will learn some methods for performing interpolation and extrap-

olation from discrete data sets.

22.1 Polynomial Interpolation

The most common kind of interpolation is polynomial interpolation: fitting data

points to a polynomial, or possibly several polynomials stitched together. The sim-

plest way to specify a polynomial interpolant is to require one passing through all

of our observed data points. Given n data points ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxn; ynÞ, we
can uniquely specify an n� 1 degree polynomial passing through all of those points

as follows:

PðxÞ ¼ ðx� x2Þðx� x3Þ � � � ðx� xnÞ
ðx1 � x2Þðx1 � x3Þ � � � ðx1 � xnÞ

y1 þ
ðx� x1Þðx� x2Þ � � � ðx� xnÞ
ðx2 � x1Þðx2 � x3Þ � � � ðx2 � xnÞ

y2 þ � � �

þ ðx� x1Þðx� x2Þ � � � ðx� xn�1Þ
ðxn � x1Þðxn � x2Þ � � � ðxn � xn�1Þ

yn:

To understand why this works, try plugging in any xi for x. The coe‰cient of yi
will have the same numerator and denominator, and will therefore be 1. The coe‰-

cients of all yj for j 6¼ i have ðx� xiÞ terms in their numerators and will therefore be

zero. The polynomial thus passes through each of the ðxi; yiÞ input points.

22.1.1 Neville’s Algorithm

The formulation above is correct for a polynomial fitting a set of points, but is also

cumbersome. There is a better way to compute a polynomial fitting a set of points,

called Neville’s algorithm. Neville’s algorithm hierarchically constructs a solution by

merging solutions to subsets of the points. Given four points

ðx1; y1Þ; ðx2; y2Þ; ðx3; y3Þ; ðx4; y4Þ;

the method will first construct a zero-order polynomial fitting each individual point:

P11ðxÞ ¼ y1; P22ðxÞ ¼ y2; P33ðxÞ ¼ y3; P44ðxÞ ¼ y4:

It will then merge pairs of points to produce three first-order curves: P1;2 fitting

points ðx1; y1Þ and ðx2; y2Þ, P2;3 fitting points ðx2; y2Þ and ðx3; y3Þ, and P3;4 fitting

points ðx3; y3Þ and ðx4; y4Þ. From there, it will construct second-order polynomials

P1;3 and P2;4 matching triplets of points, and finally a third-order polynomial P1;4

fitting all four points. Each polynomial of higher order is generated by combining

two polynomials of the next lower order, as in figure 22.2.

326 22 Interpolation and Extrapolation

These merging steps are accomplished by the following formula for deriving Pi; iþm
from Pi; iþm�1 and Piþ1; iþm:

Pi; iþmðxÞ ¼
ðx� xiþmÞPi; iþm�1 þ ðxi � xÞPiþ1; iþm

xi � xiþm
:

We can show that the formula works correctly by induction, assuming as our in-

ductive hypothesis that Pi; iþm�1 gives correct values for data points xi . . . xiþm�1 and

that Piþ1; iþm gives correct values for data points xiþ1 . . . xiþm. We then need to show

that Pi; iþm gives correct values for all data points xi . . . xiþm. We can consider first

how it behaves for those points covered by both parent functions. If we evaluate the

new function at some j A ½i þ 1; i þm� 1�, we will get the following:

ðxj � xiþmÞyj þ ðxi � xjÞyj
xi � xiþm

¼ xi � xiþm
xi � xiþm

yj ¼ yj:

In other words, the formula will give us the correct value at any point that is included

in both parent polynomials.

We can then look at the point xi, which is covered by Pi; iþm�1 but not by Piþ1; iþm.

At xi, the formula will yield the following value:

ðxi � xiþmÞPi; iþm�1ðxiÞ þ ðxi � xiÞPiþ1; iþmðxiÞ
xi � xiþm

¼ ðxi � xiþmÞPi; iþm�1ðxiÞ þ 0� Piþ1; iþmðxiÞ
xi � xiþm

¼ xi � xiþm
xi � xiþm

Pi; iþm�1ðxiÞ

Figure 22.2
Data dependence in Neville’s algorithm for polynomial interpolation. Each polynomial Pi; jðxÞ is con-
structed using two lower-order polynomials Piþ1; jðxÞ and Pi; j�1ðxÞ.

22.1 Polynomial Interpolation 327

¼ Pi; iþm�1ðxiÞ

¼ yi:

Similarly, if we plug in xiþm, we get

ðxiþm � xiþmÞPi; iþm�1ðxiþmÞ þ ðxi � xiþmÞPiþ1; iþmðxiþmÞ
xi � xiþm

¼ 0� Pi; iþm�1ðxiþmÞ þ ðxi � xiþmÞPiþ1; iþmðxiþmÞ
xi � xiþm

¼ xi � xiþm
xi � xiþm

Piþ1; iþmðxiþmÞ

¼ Piþ1; iþmðxiþmÞ

¼ yiþm

Therefore, if the parent functions of degree m� 1 are correct, the child function of

degree m will be correct. We then only need to consider the base case, which is the

set of degree zero functions Pi; i. These are correct by design, since Pi; iðxÞ ¼ yi. This

completes a proof by induction that Neville’s method will produce a polynomial

matching all of the input points.

To look at a concrete example, consider the points ð0;�4Þ, ð1;�2Þ, ð2; 2Þ, and
ð3; 14Þ. We first get a zero-order approximation for each point:

P11ðxÞ ¼ �4

P22ðxÞ ¼ �2

P33ðxÞ ¼ 2

P44ðxÞ ¼ 14:

We then get the first-order approximations

P12 ¼
ðx� 1Þð�4Þ þ ð0� xÞð�2Þ

ð0� 1Þ ¼ �2xþ 4

�1 ¼ 2x� 4

P23 ¼
ðx� 2Þð�2Þ þ ð1� xÞð2Þ

ð1� 2Þ ¼ �4xþ 6

�1 ¼ 4x� 6

P34 ¼
ðx� 3Þð2Þ þ ð2� xÞð14Þ

ð2� 3Þ ¼ �12xþ 22

�1 ¼ 12x� 22:

328 22 Interpolation and Extrapolation

Next we get the second-order approximations

P13 ¼
ðx� 2Þð2x� 4Þ þ ð0� xÞð4x� 6Þ

ð0� 2Þ ¼ �2x
2 � 2xþ 8

�2 ¼ x2 þ x� 4

P24 ¼
ðx� 3Þð4x� 6Þ þ ð1� xÞð12x� 22Þ

ð1� 3Þ ¼ �8x
2 þ 16x� 4

�2 ¼ 4x2 � 8xþ 2:

Finally, we get a third-order approximation that fits all four points:

P14 ¼
ðx� 3Þðx2 þ x� 4Þ þ ð0� xÞð4x2 � 8xþ 2Þ

ð0� 3Þ

¼ �3x
3 þ 6x2 � 9xþ 2

�3 ¼ x3 � 2x2 þ 3x� 4:

We can try plugging in any of the four data points to verify that this cubic polyno-

mial does in fact pass through all four points.

22.2 Fitting to Lower-Order Polynomials

Although we can always fit n data points to a polynomial of degree n� 1, it is often

better to fit to a lower order. Choosing a lower order can be a good way to smooth

out noise in the data and make the fit less sensitive to outliers. Figure 22.3 shows a

hypothetical noisy data set for which we may prefer a low-order fit to a high-order

fit.

Figure 22.3
A noisy data set, shown with xs, for which a more strictly accurate high-order fit (a) may be inferior in
practice to a less accurate low-order fit (b).

22.2 Fitting to Lower-Order Polynomials 329

In general, using a lower-order polynomial means that we will not fit every point

exactly. We therefore need to find a best fit by some metric. To see how we may do

this, let us pretend at first that we can solve exactly for a kth-order polynomial:

c0 þ c1xþ c2x
2 þ � � � þ ckx

k

for n data points, where k < n� 1. Solving this is equivalent to finding the set of

coe‰cients c0; . . . ; ck satisfying the following set of equations:

y1 ¼ c0 þ c1x1 þ � � � þ ckx
k
1

y2 ¼ c0 þ c1x2 þ � � � þ ckx
k
2

..

.

yn ¼ c0 þ c1xn þ � � � þ ckx
k
n :

These equations are linear in the coe‰cients we want to determine, so we can rep-

resent this as a linear system-solving problem:

1 x1 x2
1 � � � xk

1

1 x2 x2
2 � � � xk

2

..

.

1 xn x2
n � � � xk

n

2

66
6
6
6
4

3

77
7
7
7
5

c0

c1

c2

..

.

ck

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

y0

y1

y2

..

.

yk

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

If we denote the matrix of x values X , the vector of coe‰cient values as ~cc, and

the vector of yi values as ~yy, then we want to solve the linear system X~cc ¼ ~yy. If

k < n� 1, the system is overdetermined and we will not be able to solve for it ex-

actly. In chapter 21 we saw one good way to deal with overdetermined systems:

least-squares. We can find the least-squares best fit for~cc by solving for the full-rank

linear system

ðX TX Þ~cc ¼ X T~yy:

22.3 Rational Function Interpolation

Though polynomial interpolation is the most commonly used interpolation method,

there are others that may be more appropriate for some problem types. Interpolating

by Fourier components is one important example that we will omit here since most

scientifically educated readers will cover it elsewhere in their studies. Another kind of

330 22 Interpolation and Extrapolation

interpolation one is less likely to see elsewhere is rational interpolation. A rational

function is a ratio between two polynomials:

RðxÞ ¼ PðxÞ
QðxÞ ¼

p0 þ p1xþ p2x
2 þ � � � þ pmx

m

q0 þ q1xþ q2x2 þ � � � þ qnxn
:

Rational functions may give a better match than polynomials for functions that go

toGy for finite x or approach a constant as x goes toGy. There is an algorithm

due to Bulirsch and Stoer [132] to fit data points to a rational function that is similar

to the Neville method for polynomials. The Bulirsch–Stoer method uses the fol-

lowing iterator formula to derive a higher-order rational interpolant Ri; iþm from the

lower-order approximations Riþ1; iþm and Ri; iþm�1:

Ri; iþm ¼ Riþ1; iþm

þ Riþ1; iþm � Ri; iþm�1
ðx� xiÞ=ðx� xiþmÞð1� ðRiþ1; iþm � Ri; iþm�1Þ=ðRiþ1; iþm � Riþ1; iþm�1ÞÞ � 1

:

22.4 Splines

Very often, if we have a lot of data points, we want a function that is a good match

locally to every small region of our data points. We therefore do not want to fit a

low-order function that will give a good global fit at the expense of poor local fits.

At the same time, though, we do not want to have a huge number of parameters in

our function because the fit is likely to be too sensitive to noisy data, as well as costly

to compute. We can often solve this dilemma by solving the problem with a di¤erent

simple function in the neighborhood of each data point. We then get a good local fit

in each neighborhood as well as a relatively smooth fit overall. One trivial variant of

this approach is a piecewise linear approximation, as illustrated in figure 22.4(a),

which performs linear interpolation between each pair of consecutive points. A piece-

wise linear fit provides a match at each observed data point and ensures continuity of

the whole curve. It has discontinuities in the derivative of the curve, though, making

it poorly suited for use in many kinds of numerical algorithms.

Splines are a generalization of this concept of local approximation, using higher-

order polynomials to fit local regions. For example, suppose we want to put a curve

between each pair of points in our data set so that we match all of the endpoints, just

as we would with piecewise linear functions. But we further want to smooth out the

discontinuities we get from the piecewise linear functions by insisting that the deriva-

tives also match where we cross between distinct piecewise polynomial regions. We

need piecewise interpolants of higher than first order to accomplish this, and may

end up with an approximation like that of figure 22.4(b).

22.4 Splines 331

A set of local polynomial interpolants S12, S23, and S34 meeting our conditions

above would have to satisfy the following constraints:

S12ðx1Þ ¼ y1

S12ðx2Þ ¼ y2

dS12

dx
ðx2Þ ¼

dS23

dx
ðx2Þ

S23ðx2Þ ¼ y2

S23ðx3Þ ¼ y3

dS23

dx
ðx3Þ ¼

dS34

dx
ðx3Þ

S34ðx3Þ ¼ y3

S34ðx4Þ ¼ y4:

Suppose we want to satisfy these constraints using some set of piecewise quadratic

interpolants

Si; iþ1 1 ci;0 þ ci;1xþ ci;2x
2:

These interpolants will have derivatives of the form

dSi; iþ1
dx

1 ci;1 þ 2ci;2x:

Figure 22.4
Splines for providing piecewise interpolation for a set of data points. (a) A piecewise linear fit, which can
be considered a first-order spline. (b) A piecewise quadratic fit to the same data points.

332 22 Interpolation and Extrapolation

We can then represent the problem of finding the coe‰cients ci; j to satisfy the

above constraints as a linear system-solving problem:

1 x1 x2
1

1 x2 x2
2

0 1 2x2 0 �1 �2x2
1 x2 x2

2

1 x3 x2
3

0 1 2x3 0 �1 �2x3
1 x3 x2

3

1 x4 x2
4

2

66
6
6
6
6
6
6
6
6
6
6
6
4

3

77
7
7
7
7
7
7
7
7
7
7
7
5

c1;0

c1;1

c1;2

c2;0

c2;1

c2;2

c3;0

c3;1

c3;2

2

66
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

77
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

y1

y2

0

y2

y3

0

y3

y4

2

66
6
6
6
6
6
6
6
6
6
6
6
4

3

77
7
7
7
7
7
7
7
7
7
7
7
5

There is a slight problem here in that the system as specified is underdetermined

(eight equations for nine unknowns). If we had n points instead of four, then we

would have 3ðn� 1Þ � 1 constraints in 3ðn� 1Þ unknowns. We therefore need to

add one additional constraint in order to fix a unique solution. We may accomplish

this by insisting that the derivative is zero at point x1, adding a row to our linear sys-

tem and making it full rank.

This system of equations can be solved very e‰ciently in practice, even if we have

a large number of data points, because the matrix is block diagonal. This means

that entries more than a small distance from the matrix diagonal are all zero. We

can solve this sort of matrix in approximately OðnÞ time, using a Krylov subspace

method. For commonly used splines, there are also often analytical formulas into

which we can plug any observed data points.

We can easily generalize this spline-fitting procedure to more sophisticated kinds

of interpolants. For example, we can use higher-order polynomials and require that

more derivatives match at the known data points. Probably the most widely used

variant is the cubic spline, in which we fit the data to a piecewise cubic function with

the constraints that the curves pass through all observed points and that consecutive

interpolants match in the first and second derivatives at each of the points. We then

need to impose two additional arbitrary boundary conditions to give the system full

rank, such as insisting that the first derivatives are zero at both ends of the interval

modeled.

In addition to their relevance to biological modeling, splines are commonly used in

computer graphics and animation because they allow one to generate curves that are

complicated but ‘‘smooth-looking.’’ So, for instance, if we wish to show an object

moving in space, we can specify a few discrete points the object passes through, fit a

spline through those points, and end up with a smooth trajectory through those

points.

22.4 Splines 333

22.5 Multidimensional Interpolation

Most of the methods we have seen have generalizations into multiple dimensions.

They generally require some additional assumptions, though. For example, there is

a two-dimensional version of linear interpolation called bilinear interpolation. Sup-

pose we have a function of two variables, f ðx; yÞ, that is evaluated at a grid of points

in the x–y plane, defined by the x coordinates x1; x2; . . . and the y coordinates

y1; y2; With bilinear interpolation, we estimate the value of the function at

some unobserved point ðx; yÞ by interpolating from the four corners of the grid box

in which ðx; yÞ lies. Figure 22.5 illustrates this problem.

Given the values at the four corners, we can compute two quantities measuring the

relative distance of ðx; yÞ from the corners of its grid box:

t ¼ x� xi

xiþ1 � xi
; u ¼ y� yj

yjþ1 � yj
:

We then estimate the value of the unobserved point as an average of the values at the

corners, weighted to favor the closer corners, as follows:

f ðx; yÞ ¼ ð1� tÞð1� uÞf ðxi; yjÞ þ tð1� uÞf ðxiþ1; yjÞ

þ ð1� tÞuf ðxi; yjþ1Þ þ tuf ðxiþ1; yjþ1Þ:

We can come up with all sorts of other ways to define the fit on a grid box, but this

one is likely to work well if the function is smooth enough and the grid spacing small

enough that we can treat the function as locally linear within each grid box.

22.6 Interpolation with Arbitrary Families of Curves

We have looked at some basic kinds of interpolants which are widely used and for

which we have well-developed computational tools, but we may know some other

Figure 22.5
A two-dimensional interpolation problem. We are given values on a regular grid, shown by circles, and
wish to infer the value at some arbitrary point within the grid, labeled by x.

334 22 Interpolation and Extrapolation

class of curves that is appropriate for a particular problem. For example, many bio-

chemical processes are described by decaying exponentials as a system approaches

equilibrium. If we want to interpolate between measured data points for biochemical

reactions, we may therefore want to insist on exponential interpolants:

yðxÞ ¼ aþ be�cx;

where we must fit a, b, and c to our data. We may not even be able to explicitly state

an analytic formula for the curves we are fitting. If we are looking at genetic regula-

tory networks, for example, we may know that we want systems described by ordi-

nary di¤erential equations, but have no analytical description of the curves those

equations will produce. The parameters we are fitting may then be simply rate con-

stants of the ODE model. For example, we may have a system of the form

dA

dt
¼ a1Aþ b1Bþ c1ABþ d1

dB

dt
¼ a2Aþ b2Bþ c2ABþ d2;

where we want to find a1, a2, b1, b2, c1, c2, d1, and d2 to match some observed data

set.

In such cases, we often will not have any convenient exact method to find an opti-

mal parameter set. But we can still pose the interpolation problem as a form of

optimization problem and then solve it with the continuous optimization tools

we have learned about in previous chapters. This is essentially the same idea we

saw when we first looked at parameter-tuning as a form of optimization in chapter

18.

Example Suppose we take our exponential from above,

yðxÞ ¼ aþ be�cx;

and further suppose we have a set of points to fit to that exponential, ðx1; y1Þ; . . . ;
ðxn; ynÞ. Then we can set up a metric of solution quality by declaring, for example,

that we want a least-squares fit to the data. Then, given initial guesses as to a, b, and

c, we can evaluate our current solution at each of our observed x values to get the

points

ŷy1 ¼ yðx1Þ; ŷy2 ¼ yðx2Þ; . . . ; ŷyn ¼ yðxnÞ:

Then our objective function will be

22.6 Interpolation with Arbitrary Families of Curves 335

min
a;b; c
fðy1 � ŷy1Þ

2 þ ðy2 � ŷy2Þ
2 þ � � � þ ðyn � ŷynÞ

2g

¼ min
a;b; c
fðy1 � a� be�cx1Þ2 þ ðy2 � a� be�cx2Þ2 þ � � � þ ðyn � a� be�cxnÞ2g:

We now have a function we can evaluate and di¤erentiate with respect to any of

our parameters, so we can treat this as a multidimensional Newton–Raphson or

Levenberg–Marquardt optimization problem. We will need to get a reasonable first

guess as to the parameters, but if we can do that, it is likely we can get a nearly opti-

mal parameter set, whatever our data points are.

If we have a function we cannot explicitly represent, such as the di¤erential equa-

tion model above, we can still apply a similar approach by treating our function as a

black box. That is, if we want to generate the points ðx1; ŷy1Þ; . . . ; ðxn; ŷynÞ from our

current parameter set a1; a2; b1; b2; . . . , we can integrate the system from x ¼ 0 to

x ¼ xn, using the methods we learned for numerical integration. We can then solve

for our objective function, say

min
a1;a2;...

fðy1 � ŷy1Þ
2 þ ðy2 � ŷy2Þ

2 þ � � � þ ðyn � ŷynÞ
2g;

if we want a least-squares fit again. If we want to find derivatives of the system with

respect to various parameters, we can use any of the numerical derivative formulas

we have covered. Suppose we call the objective function Fða1; a2; b1; b2; . . .Þ. Then,
to find, for example, the second derivative of the objective function with respect to

a1, we can evaluate the objective function at a1; a2; . . . , evaluate it again at a1 þ Da,

and again at a1 � Da, and use the estimate

q2F

qa21
A

Fða1 þ Da; a2; b1; b2; . . .Þ þFða1 � Da; a2; b1; b2; . . .Þ � 2Fða1; a2; b1; b2; . . .Þ
Da2

Repeating this for all of the first and second derivatives will give us approximations

for the gradient and the hessian, so we can again apply Newton–Raphson to find an

optimal parameter set. Once again, the method may fail if we do not have a reason-

able starting point. But once we get it started well, it is likely to converge very

quickly to the optimal parameter set. There are excellent programs available for do-

ing this kind of fitting in certain domains, such as the Dynafit program [194] for fit-

ting rate constants to curves of chemical reactants over time. We should be able to

write our own program for any arbitrary family of functions, though.

Once we have a best fit to whatever family of curves we want by whatever metric

we want, we can interpolate by evaluating the best-fit curve at any unobserved point.

This generic approach will generalize easily to the case of multidimensional curve-

336 22 Interpolation and Extrapolation

fitting, since that just involves expanding the dimensions of what is already a multi-

dimensional optimization problem.

22.7 Extrapolation

Extrapolation is similar to interpolation, but with the assumption that we are trying

to look beyond our own observed data points to infer values outside their range. In

some cases, extrapolation problems can be solved by the same methods as interpola-

tion problems: fit the observed points to a curve and use the curve to predict the

function at new data points. Often, though, extrapolation is used to approximate

the limit of an infinite series. In such cases, we cannot trust polynomial approxima-

tions. Rational approximations may work better, but it is sometimes useful to take a

more direct approach to the problem.

22.7.1 Richardson Extrapolation

We mentioned one example of extrapolation very briefly in the context of numerical

integration: a technique called Richardson extrapolation. Richardson extrapolation

is useful when we have a function g of some variable h where gðhÞ takes the form

gðhÞ ¼ c0 þ c1hþ c2h
2 þ c3h

3 þ � � � :

We generally require that the cis themselves converge to zero with increasing i, so

that low-order terms are dominant for small h. Our goal with Richardson extrapola-

tion is to determine c0, which is the limit of g as h goes to zero. This may seem like

a very specialized kind of function, but it actually is not. The reason is that this is a

description of the error term of a Taylor series for a function gðxÞ evaluated at the

point xþ h. It therefore describes pretty much any function with well-behaved deriv-

atives if we approximate it in terms of some step size h. Numerical integrals com-

puted with decreasing step sizes are just one example of a class of functions that

commonly takes this gðhÞ form.

With Richardson extrapolation, we use approximations at di¤erent step sizes to

eliminate low-order terms of gðhÞ. For example, using the two equations

gðhÞ ¼ c0 þ c1hþ c2h
2 þ c3h

3 þ � � �

gðh=2Þ ¼ c0 þ c1h=2þ c2ðh=2Þ2 þ c3ðh=2Þ3 þ � � � ;

we can construct a second-order accurate approximation to c0:

ĝgðhÞ ¼ 2gðh=2Þ � gðhÞ ¼ c0 þ 0� c2ðh2=2Þ � c3ð7h2=8Þ þ � � � :

22.7 Extrapolation 337

We similarly can use gðh=2Þ and gðh=4Þ to construct another second-order

approximation:

ĝgðh=2Þ ¼ 2gðh=4Þ � gðh=2Þ ¼ c0 þ 0� c2ðh2=8Þ � c3ð7h2=64Þ þ � � � :

We can then combine these two second-order approximations to get a third-order

approximation:

^̂gĝggðhÞ ¼ 4

3
ĝgðh=2Þ � 1

3
ĝgðhÞ ¼ c0 þ 0þ 0þ c3ð7h3=48Þ þ � � � :

By repeatedly applying these kinds of linear combinations to cancel out low-order

error terms, we can compute successively higher-order approximations to c0. As long

as the higher-order c values do not blow up, this procedure will converge rapidly on

the limit:

lim
h!0

gðhÞ ¼ c0:

If h is a step size, then this limit will correspond to the value of the function if

approximated with infinitely small steps. If our scheme is correctly designed (or,

more formally, if it is consistent), then this limit will be exactly the value we want to

approximate. Note that the practice is not always as clean as the theory. The ci
values may blow up with larger i, especially if there are any discontinuities in the

functions we are computing. Even if they do not blow up, using Richardson ex-

trapolation can hurt the stability properties of a numerical method in ways that

are di‰cult to analyze. Nonetheless, Richardson extrapolation can be a powerful

technique for accelerating convergence of a broad class of functions.

22.7.2 Aitken’s d2 Process

There is another general extrapolation technique, called Aitken’s d2 process, that is

appropriate for finding the limit of a function that can be expressed as the partial

sum of a geometric series:

Si ¼ S0ð1þ gþ g2 þ g3 þ � � � þ g iÞ:

Again, this may seem to be a very specialized class of function, but it is actually a

format that occurs often, at least approximately, in practice. This formula describes

the sum of any sequence in which the change from step i to i þ 1 is a constant frac-

tion smaller than the change from i � 1 to i. This will be a good approximation to

many kinds of convergent processes, such as the behavior of a stable finite di¤erence

iteration or the convergence of the bisection method or a similar binary search-type

method.

338 22 Interpolation and Extrapolation

Given a series of these approximations, S1;S2; . . . ;Sn, we want to infer the limit,

limi!y Si. We can find this by constructing a new series

ŜS1; ŜS2; . . . ; ŜSn;

where

ŜSi ¼ Siþ1 �
ðSiþ1 � SiÞ2

Siþ1 � 2Si þ Si�1
:

If the geometric series approximation is good, then the new sequence ŜSi will converge

to the same value as Si but at a faster rate. We can then find
^̂
SŜSSi to get a series that

converges even faster on the same limit, and another, and so on, until we get one that

converges within just a few steps.

To understand why this process works, we can imagine that the limit of our series

is some value S. Then, proposing that the error term is a convergent geometric series

times a constant is equivalent to claiming

SiAS þ g ie

for some unknown g and an error term e, where e is

e ¼ Sð1þ gþ g2 þ g3 þ � � �Þ ¼ S
Xy

i¼0
g i:

Then

ŜSi ¼ S þ g iþ1e� ðS þ g iþ1e� S � g ieÞ2

S þ g iþ1e� 2S � 2g ieþ S þ g i�1e

¼ S þ g iþ1e� g2ie2ðg� 1Þ2

g i�1eðg2 � 2gþ 1Þ

¼ S þ g iþ1e� g iþ1e
ðg� 1Þ2

ðg� 1Þ2

¼ S þ g iþ1e� g iþ1e

¼ S:

So if the error term is truly exactly geometric, then one step of this method will

convert every term of the sequence into the limit of the original sequence. If the error

22.7 Extrapolation 339

term is even close to geometric, the method may still work very well in producing a

series whose terms are close to the original limit.

References and Further Study

Most of the methods covered in this chapter can be found in the Numerical Recipes

books [82], along with others for which we do not have space here. Several other

texts on numerical algorithms or numerical analysis also are good references for this

topic. Stoer and Bulirsch [132] and Hamming [134] are good choices, covering some

of the topics seen here as well as various interpolation and extrapolation methods we

have not covered.

The coverage in this chapter is far from exhaustive, and there are several key

classes of interpolants we did not cover that are of broad practical use. The most im-

portant class of interpolants we did not cover is the Fourier interpolants. Fourier

interpolation is a broad enough topic that we cannot hope to do justice to it here.

There is also a special class of fitting polynomials called Chebyshev polynomials,

which have a variety of very useful mathematical properties. One can refer to Press

et al. [82] or to Hamming [134] for the fundamentals and key numerical methods for

working with Fourier or Chebyshev approximations. Finally, there is a broad class

of functions called wavelets that have come into widespread use in recent years, par-

ticularly in image- and signal-processing applications. Press et al. [82] provides an in-

troductory coverage of wavelet methods, but they are a broad topic for which one

might desire greater depth. For an introductory text on wavelets, one may refer to

Walnut [195] or Walker [196], among many others.

Those interested in seeing how data-fitting of the types examined in this chapter

applies in a real-world biological context can look at Kuzmic [194] for an example

of fitting di¤erential equation models to reaction kinetic data. Wilkinson [110] pro-

vides in-depth coverage of issues of data-fitting specific to systems biology reaction

models, with much greater depth on the peculiarities of those models and data types,

and the specifics of handling them in practice, than we can cover here. I am not

aware of any in-depth treatment of the broader topic of interpolation and extrapola-

tion specifically for biological applications.

340 22 Interpolation and Extrapolation

23 Case Study: Inferring Gene Regulatory Networks

This chapter will cover the last of our case studies, in which we look at how some of

the techniques we have seen in the previous chapters have been applied to a real-

world biological problem. We will examine the problem of inferring gene regulatory

networks from expression data. This is a very active area of research in biology at

present, with a rapidly accumulating literature. It is also an excellent subject for the

present study because it has been approached with a variety of methods we have seen

for parameter-tuning, as well as several others covered in the context of optimization

and simulation and sampling.

For the purposes of our discussion, we will assume that our input is a matrix

of data representing expression measurements from a series of gene expression

microarrays:

A ¼

a11 a12 � � � a1n

a21
. .
.

..

. ..
.

am1 am2 � � � amn

2

6
6
6
6
6
4

3

7
7
7
7
7
5

Element aij refers to the expression level of gene i under some condition j. Normally,

these are not raw expression values, but rather the logarithm of the ratio of expres-

sion between the condition and some control. It is further common to normalize

these log ratios for each gene, for example, by translating and scaling them so that

each gene has mean zero and standard deviation 1 across conditions. The conditions

may correspond to di¤erent time points if one is studying time-dependent gene ex-

pression, to di¤erent experimental conditions if one is studying condition-dependent

gene regulatory networks, to di¤erent patients if one is studying expression changes

distinguishing healthy from diseased individuals or distinguishing di¤erent disease

subtypes, or to many other sets of data. We will typically have many more distinct

genes than distinct conditions. A typical experiment, for example, may contain one

expression measurement for each known gene in the organism being examined, on

the order of 20,000 genes for humans. In some cases, multiple measurements may be

available for a given gene, perhaps corresponding to di¤erent splice forms, and some

noncoding RNA may also be included. The number of distinct experiments may vary

from the order of 10 for time-series data, to on the order of a few hundred for clinical

studies of individual people.

Our output will be a graph identifying pairs of genes that are presumed to be

involved in a regulatory relationship. Many di¤erent models have been proposed

for gene expression networks, and we will focus on three di¤erent levels of abstrac-

tion that lend themselves to di¤erent kinds of inference techniques: coexpression

models, static network models, and kinetic models. Depending on the specific model

we are using, the graphs may be directed (implying that the source gene is a regulator

of the destination gene) or undirected (implying that the endpoints are correlated

with one another). Di¤erent variants may also have additional outputs correspond-

ing to the nature or strength of each interaction.

23.1 Coexpression Models

Gene network inference at first glance generally seems to be an impossible problem.

The number of edges that may be present in the graph is on the order of the square

of the number of genes, and the number of graphs we can potentially choose from is

exponential in that number. The number of distinct expression measurements from

which to fit the graph, though, is only a few tens or hundreds of times the number

of genes. It therefore seems that we cannot hope to distinguish the best among the

universe of possible graph models. One approach to the problem, then, is to drasti-

cally restrict the space of models we will consider, reducing it to a universe from

which we can tractably find the ‘‘right’’ model. Coexpression follows this idea, essen-

tially lowering our sights from trying to find the full network to trying to find a very

restricted subclass of the network.

In a coexpression model, we seek to group our genes into ‘‘clusters’’ such that the

members of a cluster approximately follow the same expression pattern across the

samples. The goal is to figure out how to partition the genes into clusters so as to

have a small error by some measure. Coexpression is, then, a degenerate form of net-

work inference in which we are trying to infer an unweighted, undirected graph that

consists of a union of cliques. A clique, we may recall from chapter 3, is a subgraph

in which there are edges between all pairs of nodes.

23.1.1 Measures of Similarity

One way we may approach this problem is to start with some trivially computable

graph identifying pairs of genes with similar expression, then find some ‘‘union-of-

cliques’’ graph that is close to this pairwise graph. Several approaches in the litera-

342 23 Case Study: Inferring Gene Regulatory Networks

ture start by creating a weighted, complete graph on all genes reflecting pairwise

similarities. There are many measures one can use to decide how similar di¤erent

pairs of genes are. Consider two rows of input,~aai and~aaj , representing expression lev-

els of genes Xi and Xj across all conditions in the matrix. These two rows will define

a set of paired expression values ðai1; aj1Þ; ðai2; aj2Þ; . . . ; ðain; ajnÞ. Our goal is to find

some metric by which to say how far apart the vectors~aai and~aaj are.

One simple measure we have seen in several prior contexts is the Euclidean dis-

tance between the vectors. That is, we compute the length of the di¤erence between

the two vectors:

ffi

ðai1 � aj1Þ2 þ ðai2 � aj2Þ2 þ � � � þ ðain � ajnÞ2
q

¼
Xn

k¼1
ðaik � ajkÞ2:

This is a simple, intuitive measure that is easy to compute, making it a popular

choice.

An alternative is the use of correlation coe‰cients, defined as follows:

r ¼ COVð~aai;~aajÞ
ffi
VARð~aaiÞVARð~aajÞ

p

¼
1
n

P
k aikajk

� �
� 1

n

P
k aik

� �2 1
n

P
k ajk

� �2

ffi�
1
n

P
k a

2
ik � 1

n

P
k aik

� �2��1
n

P
k a

2
jk � 1

n

P
k ajk

� �2�
q :

Correlation coe‰cients have the advantage that we can distinguish statistically sig-

nificant and insignificant correlations, given an assumption that the relationship be-

tween the two genes in question is linear. P-value calculators, programs that allow

one to find the value of r needed to give us a particular level of confidence in an as-

sociation, are now freely available online. The above formula defines what is called a

Pearson correlation coe‰cient. One can also use the Spearman correlation coe‰cient,

in which one ranks the expression levels of the conditions for each gene and substi-

tutes the ranks for the raw values in the formula above. So, for example, if we have

the rows~aai ¼ ½ 0:1 �0:2 1:3 �2:5 � and~aaj ¼ ½ 2:7 1:8 0:2 �0:1 �, then we will

convert them to the rank vectors~rri ¼ ½ 3 2 4 1 � and~rrj ¼ ½ 4 3 2 1 �. We will

then use~rri and~rrj in the formula for r above.

A third class of approach is based on information theoretic measures. Information

theory is based on the concept of entropy, the amount of information carried by a

signal. In an information theoretic context, two genes are said to be related to one

another if the information they carry collectively is not much di¤erent from the infor-

mation they carry individually. Entropy, which literally measures the number of bits

of information carried by a signal~aai, is measured as follows:

23.1 Coexpression Models 343

Hð~aaiÞ ¼ �
X

k

Prfa ¼ aikg log Prfa ¼ aikg;

where a is a probability distribution from which we presume elements of ~aai are

drawn. If we are working with continuous, normalized expression values, then we

will commonly assume that they are drawn from a unit normal distribution, and

therefore

Prfa ¼ aikg ¼
1
ffiffiffiffiffiffi
2p
p e�ðaikÞ

2=2:

We can also discretize expression values and establish a discrete distribution by

counting how often each discrete expression level occurs in ~aai. Whatever definition

we use, we can further calculate a joint entropy for the pair of vectors ~aai and ~aaj as

follows:

Hð~aai;~aajÞ ¼ �
X

k

Prfa ¼ aik5b ¼ ajkg log Prfa ¼ aij5b ¼ ajkg;

where we may assume that distributions a and b are independent unit normals:

Prfa ¼ aik X b ¼ ajkg ¼
1

2p
e�ðaikþajkÞ

2=2:

We can, finally, define the mutual information to be

Mð~aai;~aajÞ ¼ Hð~aaiÞ þHð~aajÞ �Hð~aai;~aajÞ:

Intuitively, mutual information measures how much of the information contained in

the pair of genes is shared by both of them. It therefore provides a third good alter-

native for establishing edge weights between genes.

23.1.2 Finding a Union-of-Cliques Graph

Once we have an initial graph of pairwise gene similarity, we still have various

options for finding a union-of-cliques graph, or clustering, from that complete graph.

Nearly any meaningful, rigorous definition of the ‘‘closest’’ union-of-cliques graph to

the similarity graph will, unfortunately, result in an NP-hard problem. For example,

we may propose to split the graph into a set of k subsets that maximize the sum of

pairwise similarities within the subsets. We should recognize this as a max-k-cut prob-

lem from chapter 3. A variety of heuristics are therefore actually used in practice.

One alternative is to use simple graph heuristics to find some reasonably good set

of clusters. An example of this approach is the guilt by association method [196]. In

this method, we pick some test gene and then pull out every gene whose similarity to

344 23 Case Study: Inferring Gene Regulatory Networks

the test gene is above some threshold. These genes form a clique. We can then repeat

the process with the unassigned genes and a new test gene. Because measures of sim-

ilarity are not necessarily transitive, we may end up incorporating into a clique some

pairs of genes that are not very similar to one another even if they are both similar to

some common third gene. It is easy to come up with various heuristic modifications

one may use with this method to make an approach more or less tolerant of some

poor pairwise similarity within clusters.

A second heuristic approach is known as ‘‘hierarchical clustering,’’ a technique

adopted by Eisen et al. [197] for some of the earliest microarray analysis. With hier-

archical clustering, we build a tree of similar groups such that the leaves of the tree

correspond to individual genes, and the root to the whole data set. The trees are

assembled through some greedy operation of either merging or splitting a gene set

to produce a parent and usually two children. For example, if we are using a Eucli-

dean distance measure, then we can define the distance between two clusters as the

mean distance between their members. We can then create a hierarchical clustering

by placing each gene into its own cluster and next repeatedly merging the two closest

clusters. Although one would normally continue the approach until all genes are

merged into the root, we can arbitrarily halt the approach at any desired distance

cuto¤ to produce a discrete set of clusters. Figure 23.1 provides an illustration of a

hierarchical clustering solution. In addition to this ‘‘bottom-up’’ approach to hierar-

chical clustering, we can use a ‘‘top-down’’ approach in which we start with the clus-

ter of all genes and successively split it into pairs of child clusters [198].

A third broad class of approaches treats cluster assignment as a kind of missing-

data inference problem, in which the cluster assignments are latent variables we

must infer. As we might expect, expectation maximization provides one way to solve

this problem [199]. In an EM approach to the problem, we treat the expression levels,

A, as the observed data and create a matrix of cluster assignment variables, C, where

cik is the probability that gene i is assigned to cluster k. The model l is then described

in terms of a set of variables expressing the distribution of values in each cluster. For

example, we can define gjk to be the mean expression of cluster k in condition j. We

can also optionally consider standard deviations to be part of the model. If we as-

sume unit standard deviations for simplicity, though, we can calculate the likelihood

of the model as follows:

PrfA jC; lg ¼
Y

i

X

k

cij
Y

j

1
ffiffiffiffiffiffi
2p
p eðaij�gkjÞ

2=2:

That is, the probability is the product over all genes of the weighted probability

over all possible cluster assignments of generating the expression of that gene for a

given cluster assignment. In the E-stage of the algorithm, we evaluate PrfA jC; lg

23.1 Coexpression Models 345

for each possible cluster assignment of a given gene, and normalize to create a new

vector of cik values for that gene. In the M-stage, we find maximum likelihood values

of gjk by averaging all expression values for condition j weighted by the probability

that gene i is in cluster k:

gjk
X

i

aijcik:

Several other popular approaches use a similar iterative inference algorithm, al-

though they are not formally EM algorithms. With k-means clustering [200], we per-

Figure 23.1
Hierarchical clustering. Dashed circles and lines mark the cluster graph. Within each cluster are subsets of
the full expression graph (shown in the root node), where thicker edges correspond to stronger similarity.
The cluster graph is formed by successively accumulating the two most similar expression subgraphs into a
larger subgraph until the complete expression graph is formed at the root.

346 23 Case Study: Inferring Gene Regulatory Networks

form essentially the same iterations as with the EM approach, except that in the

E-phase we assign each gene entirely to its one most plausible cluster rather than

establishing a distribution of cluster assignments. That gene then contributes only

to the mean of that one cluster in the M-phase. Several other methods use similar

EM-like approaches, of which the most popular for expression clustering is the self-

organizing map [201] [202].

23.2 Bayesian Graphical Models

Coexpression models provide one possible balance between models too rich to learn

robustly and those too simple to be of any practical value, but those models are too

crude to capture many kinds of expression patterns of interest to us. For example, if

we examine three genes A, B, and C, knowing that they have similar expression does

not tell us whether A regulates B and C, or A regulates B and B in turn regulates C,

or if all three are regulated by some common fourth factor. Yet this kind of inference

about chains of expression is one of the main reasons we are interested in expression.

If, for instance, our goal is to find a drug to shut down these genes, then it will help

to know which genes lie earliest in the network. It will therefore be very useful in

some cases to be able to identify more general classes of networks. Bayesian models

have proved to be a powerful approach for learning general graph models from ex-

pression data [203], and we will therefore consider them next.

Bayesian models are a broadly used class of models in statistics and machine-

learning contexts, and have many uses in computational biology beyond gene expres-

sion analysis. These other applications include motif inference and various problems

related to comparative genomics. They tend to deal very well with ‘‘messy’’ data of

any form, and thus are often useful for inference in which one must work with real-

world biological data sets. In a Bayesian model, we must generally separate the infer-

ence of graph structure from the inference of probability distributions describing

dependence within the graph. We will begin by considering inference of the probabil-

istic component of the model and then discuss graph inference of the model.

23.2.1 Defining a Probability Function

The basic idea behind a Bayesian model is to assume that each variable in the model

is drawn from a probability distribution based on a small set of other variables. In

the simplest version, each variable represents one observed gene. Figure 23.2 shows

an example of a hypothetical simple network linking four genes. This network

implies that gene X1’s expression is drawn from some distribution PrfX1g indepen-
dent of the other genes. Genes X2 and X3 then have their expression drawn from dis-

tributions PrfX2 jX1g and PrfX3 jX1g that depend on the previously drawn value

of X1. Finally, X4’s expression level is presumed to be drawn from a distribution

23.2 Bayesian Graphical Models 347

PrfX4 jX1;X2g that is conditional on the values of both X1 and X2. Given these

assumptions, we can define the likelihood of the complete network model, given the

data, as the product over all conditions of the probabilities of the observed expres-

sion levels for each condition, given the model:

PrfA j lg ¼
Y

j

Y

i

PrfXi ¼ aijg

¼
Y

j

PrfX1 ¼ a1jg � PrfX2 ¼ a2j jX1 ¼ a1jg

� PrfX3 ¼ a3j jX1 ¼ a1jg � PrfX4 ¼ a4j jX1 ¼ a1j;X2 ¼ a2jg:

We can then in principle find the best model by evaluating this function for every

possible model and choosing the one that maximizes likelihood.

Before we get to the optimization, though, we need to be a bit more precise about

what these probability functions look like. In the simplest case, we can discretize our

expression values, in which case the probability functions become discrete binomial

or multinomial distributions. We may, for example, declare that each gene is either

‘‘on’’ or ‘‘o¤ ’’; ‘‘overexpressed’’ or ‘‘underexpressed’’; or ‘‘(H)igh,’’ ‘‘(M)edium,’’ or

‘‘(L)ow,’’ based on various cuto¤s. If we assume the H/M/L labeling, we can empir-

ically estimate the probability distributions by counting how often each label is used.

For instance, if we observe that X1 has medium expression in ten conditions and that

in three of those conditions X2 has low expression, then we can estimate

PrfX2 ¼ L jX1 ¼Mg ¼ 3

10
:

More often, we want to maintain our use of continuous expression values, in

which case we need to presume some class of continuous distributions. A typical

class of distribution for gene expression inference is a Gaussian linear model, in which

we assume that each expression value is drawn from a Gaussian distribution that is a

Figure 23.2
A hypothetical regulatory network among four genes.

348 23 Case Study: Inferring Gene Regulatory Networks

linear function of its input values. For example, we will assume that the distribution

for gene X4 from figure 23.2 takes the form

PrfX4 ¼ a4j jX1 ¼ a1j;X2 ¼ a2jg ¼
1
ffiffiffiffiffiffiffiffi
2ps
p eða4j�ða0þa1a1jþa2a2jÞÞ

2=2s2

:

The a values are regression coe‰cients we will normally estimate by finding a least-

squares best fit model for the observed expression values of X1, X2, and X4, as we

saw in chapter 21. s may be empirically measured for each gene, presumed to be 1,

or fit by some other inference procedure. Regardless of the model we assume, we end

up with a likelihood function we can evaluate to test the quality of a given network.

It is usually a little more complicated than this, though, because we will we want

to assume prior probabilities on various parameters that will bias the model in the

direction of our previous expectations. For example, we may wish to penalize com-

plicated models by assuming that an edge is prima facie unlikely to be present. We

may then say that a given network structure G has its own prior probability PrfGg ¼
pjEj, where jEj is the number of edges in G and p is some small per-edge prior prob-

ability. If the genes have been studied before, we may have more specific ideas about

exactly how likely each possible edge will be. We may also attach prior distributions

to regression parameters or any other model parameter, in which case we may need a

more complicated inference procedure to find those parameters optimally. We can

even assume that the priors themselves are described by unknown parameters with

their own priors, or that those priors have priors, and so on. For the purposes of

the rest of this discussion, we will assume that there is some overall graph prior

PrfGg and that we know how to evaluate it.

23.2.2 Finding the Network

Our goal from this point on, then, is to find the network structure G, assuming that

we can evaluate PrfA jGgPrfGg (i.e., the likelihood of the observed expression data,

given the network times the probability of the network). There are several ways to do

this that draw on many of the techniques we have seen. We will consider some

approaches in turn.

A straightforward approach to the problem is to treat the inference as an optimi-

zation problem. The input to the problem is the expression matrix A, the output is

the graph G, and the metric is the likelihood function PrfA jGgPrfGg. We therefore

have a well-defined discrete optimization problem that we can in principle solve with

the tools we covered in chapters 2 and 3. Unfortunately, the objective function is so

complicated, and the search space so large, that we can really hope to solve the prob-

lem only heuristically. Many standard heuristics have been attempted for this

problem. For instance, simulated annealing and genetic algorithms, two techniques

23.2 Bayesian Graphical Models 349

we have seen previously, have been applied to heuristic inference of Bayesian expres-

sion models [204].

An alternative approach is to treat network inference as a sampling problem. In

the sampling approach, we assume that we have a distribution of possible networks

rather than a single network, and that our goal is to estimate that distribution. The

probability of any given network in the distribution is assumed to be proportional to

the likelihood function. In principle, one can evaluate every possible network, com-

pute the likelihood of each, and then directly identify the probability of any given

network Gi in the distribution as follows:

pi ¼
PrfA jGigPrfGigP
j PrfA jGjgPrfGjg

:

We cannot actually hope to perform this calculation, though, so we have to use

somewhat more sophisticated samplers. One popular approach is the use of Markov

chain Monte Carlo (MCMC) samplers [205]. Since it is easy to compute a small

number of likelihood evaluations, we can determine the relative probabilities of two

similar states. Thus, for instance, we can evaluate the likelihood PrfA jGigPrfGig
for some graph Gi, try adding or removing a single edge to get a modified graph Gj,

and evaluate PrfA jGjgPrfGjg. Although we do not know the absolute probability

of either graph, we do know the ratio

pi

pj
¼ PrfA jGigPrfGig

PrfA jGjgPrfGjg
:

We can therefore construct a Metropolis sampler that will sample among graphs

with the correct stationary distribution. We can similarly construct a Gibbs sampler

that will sample from the same distribution. Once we have a sampler, we can see how

often each edge is present in the complete Markov chain and infer that those edges

often present in the chain should be present in the inferred network.

This sampling approach has the advantage of giving us not just a graph of well-

supported edges but also a confidence estimate on each edge. For example, if we ob-

serve that the edge from X1 to X3 is present 90 percent of the time, then we can say

that we are 90 percent confident that that edge is found in the real network. One can

also use a hybrid of the optimization and sampling approaches with a statistical

method called bootstrapping [206]. In the bootstrapping approach, we infer the net-

work by any method, but use only a random subset of the input data. We then repeat

the process for many other random subsets of the data. The result is a sampling of

networks generated by the solutions to the optimization problem. We can then keep

those edges that show up in a large fraction of the sampled network. Bootstrapping

provides an alternative to MCMC methods for generating confidence estimates for

edges in gene expression graphs [207].

350 23 Case Study: Inferring Gene Regulatory Networks

As is often the case, real-world complications make the actual inference problem

more complex than we can cover here. First, as we mentioned when considering

coexpression models, the inference problem we have described above is likely to be

hopeless if we apply these methods naı̈vely. The model space is simply too large for

the data. One way around this problem is to trim the model space quite a bit. It turns

out that the coexpression approaches can help us accomplish that trimming by a

method called the sparse candidate algorithm [208]. With the sparse candidate algo-

rithm, we first perform a coexpression clustering to identify possible regulatory rela-

tionships. When we then infer the full network, we consider only subgraphs of the

union-of-cliques graph from the clustering. This will generally reduce the edge set

from approximately quadratic in the number of genes to approximately linear. The

alternative to reducing the space of models is expanding the data. Most current

applications of genetic network inference merge several other possible sources of

data about likely regulatory relationships into the inference. Other sources of data

may include sequence-based predictions of nearby transcription-factor binding site

motifs, experimental evidence of transcription-factor binding, protein–protein inter-

action data, or comparative genomic data (see, for example, Tavazoie et al. [209],

Ideker et al. [210], and Tu et al. [211]). Adding in these other sources makes for a

more complicated inference problem. The Bayesian graphical framework tends to

be well suited to these sorts of heterogeneous inferences, though, as it is easy to throw

in new kinds of nodes and edges based on the possible dependencies among the var-

ious data types.

23.3 Kinetic Models

A third class of models occasionally used for gene network inference applications is

kinetic models describing the time progress of a set of genes. These kinetic models are

generally represented by systems of ordinary di¤erential equations (ODEs). This ap-

proach was first developed under the name network identification by multiple regres-

sion (NIR) [212], and was generalized with an approach called mode-of-action by

network identification (MNI) [213]. These and similar models assume that expression

is approximately described by a system of linear di¤erential equations. That is, each

gene Xi is presumed to obey a rate law of the form

dXi

dt
¼ ai1X1 þ ai2X2 þ � � � þ ainXn

for some unknown rate constants aij . We will further generally assume that there is

some perturbing factor specific to each experimental condition, yielding the modified

equations

23.3 Kinetic Models 351

dXi

dt
¼ ai1X1 þ ai2X2 þ � � � þ ainXn þ bik;

where bik is the amount of perturbation presumed on gene i in condition k. For ex-

ample, if we are interested in comparing wild-type cells to those in which a given

gene has been selectively knocked down with RNAi, then bik will be a negative value

for those conditions k in which gene i was suppressed and zero for all other genes

and conditions.

We have already seen examples of how one can fit an ODE model to a simple re-

action network in chapter 18. Gene network models tend to be much harder to fit,

though, because we must generally infer them from sparser data sets relative to the

number of parameters. We may have just a few conditions from which to infer con-

nections between many thousands of genes.

Inference in these models is generally accomplished by assuming that the observed

expression levels represent steady-state expression values (i.e., stable values over long

time periods). By definition, a steady-state expression is one at which the rate of

change is zero. Thus,

dXi

dt
¼ 0

for all Xi and the ODEs above take the form

ai1X1 þ ai2X2 þ � � � þ ainXn þ bik ¼ 0:

Since the Xis are known values and the aijs and biks are unknowns, we can treat

this equation as the linear system A~xx ¼~bb, where~bb is the all-zeros vector,~xx is a vector

of all of the unknowns,

~xxT ¼ ½ a11 a12 � � � a1n b11 � � � b1k a21 � � � a2n b21 � � � b2k � � � �;

and A is a block matrix in which each row corresponds to one of the above equality

constraints. We can therefore in principle learn the model by solving a linear system.

Since this is an even richer model than the general Bayesian network models, one

might reasonably infer that it will be impossible to learn for a large number of genes.

Indeed, if we assume naı̈ve application of this method to whole-genome expression

microarray data, we will likely have millions of variables but only thousands of equa-

tions, and thus will have a highly underdetermined linear system to solve. For us to

have any hope of solving it, we must reduce the number of variables quite a bit. One

will normally apply this technique only to much smaller gene sets, on the order of

tens of genes, than one might expect for the preceding methods. One may also im-

prove the tractability a bit by using an approach like the sparse candidate algorithm

352 23 Case Study: Inferring Gene Regulatory Networks

discussed above [208]. It is worth noting that it is possible to combine Bayesian net-

work inference with fitting kinetic ODE models to network data [214] and get some

of the advantages of each approach. We will not attempt to cover such hybrid mod-

els here, though.

References and Further Study

Analysis of expression microarrays is an active field right now, and there are many

sources of information beyond the primary references cited above. There have been

several excellent review articles in the scientific literature on this topic. This chapter

was heavily influenced by reviews by D’haeseleer et al. [215], De Jong [216], and

Bansal et al. [217]. There are also several textbooks on computational analysis of

gene expression microarrays that will provide much greater breadth on the analysis

problems we consider and the underlying technologies. Interested readers may con-

sult Causton et al. [218], Berrar et al. [219], or Zhang [220].

The three individual approaches to network inference we considered above draw

on much broader literatures than we have considered here. The clustering field was

an enormously active area for a number of years, and we have considered just a few

of the most popular approaches. Those looking for a concise review of clustering for

gene expression in particular can refer to D’haeseleer [221], and those interested in a

more in-depth review of clustering methodologies in general can refer to Jain et al.

[222].

Bayesian graphical models of the kind we saw above are a widely used tool in sta-

tistics and machine learning. While the reviews above will provide a good grounding

in their use in expression-modeling specifically, there is much more to know about

the field that is likely to be of use to those who plan to work extensively with these

models. A general text on statistics, such as Wasserman [112], or on machine learn-

ing, such as Mitchell [177], will provide greater depth on Bayesian models and Baye-

sian inference in general. A number of good texts specifically on Bayesian models,

such as Congdon [223], Gelman et al. [224], and Neapolitan [225], are available.

References and Further Study 353

24 Model Validation

In this final chapter, we will examine the problem of how to judge a model we have

built. We may imagine that we have taken an imprecise description of some biologi-

cal system, have made various assumptions and abstractions to end up with a precise

mathematical model, and have fitted that model to some data to fill in any unknown

parameters. We now want to ask, ‘‘Is this model good?’’ Of course, every model is

imperfect in some ways, so we need to be more precise about what we are asking.

That is, we need to ask, ‘‘Good for what?’’ and ‘‘Compared to what?’’ The answers

to these questions will depend on why we built the model in the first place and what

we hope to get out of it. There are some general techniques that are often useful for

this task, and we will briefly examine some of them. The goodness of a model is in

large measure a philosophical question, however. We will therefore return now to

some issues, on which we touched in chapter 1, on reasoning about and evaluating

models. We will conclude with a discussion of the broader role of modeling in scien-

tific inquiry.

24.1 Measures of Goodness

One of the first issues we need to consider in more precisely assessing the quality of a

model is deciding how we will measure its goodness. This issue is not much di¤erent

from the issue of defining an objective function for fitting parameters to the model.

Almost any function that captures correspondence between a model and some empir-

ical data or our prior expectations may su‰ce as a measure of goodness. A few kinds

of measures show up repeatedly for many di¤erent model types, though, and are

therefore worth considering here. We have already seen several of these measures in

other contexts because a measure of goodness of fit is often useful as an optimization

metric and not just an after-the-fact test of fit. Nonetheless, it is worth revisiting them

in the present context.

In many cases, we explicitly build a measure of model goodness into the optimiza-

tion we perform to fit to the model. For example, in a maximum likelihood model,

we will often be quite explicit about the universe of possible models from which our

model will be drawn and how likely any given model is to be drawn from that uni-

verse. We saw examples of how this might work in our coverage of Bayesian models

for gene networks, as well as in various applications of expectation maximization. For

the gene network inference problem, for example, we can assign a probability PrfGg
to any possible network graph G, perhaps favoring simpler graphs. We can also assign

a prior probability to possible values of the parameters of the model, l, perhaps

favoring parameter sets close to our previous expectations. Then, when we optimize

the other parameters of our model l, given our input x, we explicitly solve for

max
l;G

Prfx j l;Gg Prflg PrfGg:

We can use the same general objective to subsequently validate the model, for exam-

ple, by comparing it to a data set di¤erent from the one used to learn the model. But

this process does assume that we have properly constrained the possible universe of

models and properly set our prior probabilities. Likelihood can be a good metric, but

we need to be careful about its use. In particular, it is generally a mistake to validate

a model based on the same criterion used to fit it to the data.

Very often, the success of our modeling problem will be judged in terms of the

ability of a set of model predictions to fit a set of data points. We can then judge

the goodness of the model at least in part by some metric on the quality of the fit

between the observations and the predictions. We have already seen some ways we

may measure this fit. We may judge the model by the sum of squares of the di¤er-

ences between the observed data points and the corresponding points predicted by

the model. That is, given the observed points ðx1; y1Þ; . . . ; ðxn; ynÞ and the corre-

sponding modeled points ðx1; ŷy1Þ; . . . ; ðxn; ŷynÞ, we measure the goodness of our

model by the metric

Xn

i¼1
ðyi � ŷyiÞ

2:

We can generalize this approach to multiple independent variables by asking for a

sum over all observed data points across all independent variables. Similarly, we

can generalize to multiple dependent variables by summing least-squares contribu-

tions across all variables, perhaps following some normalization.

Another measure of fit we have seen before is the correlation coe‰cient, which, we

may recall, is defined in terms of the variances of two series, Y and ŶY , and the cova-

riance of both, by

r ¼ CovðY ; ŶYÞ
ffi

VarðY ÞVarðŶY Þ
q :

356 24 Model Validation

The correlation coe‰cient, like least-squares, is a generally useful measure of the fit

of a model to an observed data set (or in general of any data set to any other). The

correlation coe‰cient essentially measures for the two series Y and ŶY how close to

linear the relationship between them is. Figure 24.1 shows examples of point sets that

may yield varying amounts of correlation.

When using the correlation coe‰cient to measure goodness of fit, we have to be

careful that we are using it in a way that makes sense for our application. Two data

sets can be closely related to one another and yet be completely uncorrelated. For

example, suppose we have created a model of di¤usion of a particle, as in figure

24.2. If we measure the correlation of the x and y coordinates of the particle over

time between the model output and the data, we may conclude that this is a very

bad model since the model and the data pursue very di¤erent paths. For a model of

Figure 24.1
Four point sets (*, o, x, and þ) showing varying degrees of correlation between their x and y coordinates.

Figure 24.2
A data set and model that may exhibit no corelation even if the model is a very good representation of the
data.

24.1 Measures of Goodness 357

di¤usion, though, we may only care about whether the distribution of particle dis-

tances from the origin as a function of time matches between the data and the model.

If we measure the correlation between the distances from the starting point of the

model and the observation as functions of time, we may conclude that the above is

a very good model of particle di¤usion. Again, it all depends on what we want the

model to capture about our system and how we plan to use the model.

Another alternative that we likewise saw in the context of identifying gene net-

works is the use of information theoretic measures, such as mutual information. In-

formation theoretic measures provide a more general test of similarity between

model predictions and data than does the correlation coe‰cient, which depends on

the relationship being approximately linear. We can use mutual information mea-

sures just as we use correlation measures: to test fit between two data streams by fit-

ting each to a common probability model, as we saw with genetic network models.

Alternatively, we can use entropy as a direct measure of the goodness of a probabil-

ity model rather than a particular set of model outputs. If we have a probability

model, the entropy of the observed data relative to that model directly provides a

measure of the fit of the full model distribution to those data. If the model fits the

data well, then the data will have a small amount of information, and thus a low en-

tropy, for that model.

24.2 Accuracy, Sensitivity, and Specificity

When a model is used to predict or classify, several other measures of goodness of fit

are frequently used. For instance, suppose we want to predict whether a particular

person has a particular disease. We may construct a model for how disease likelihood

varies with some symptoms or the outputs of some laboratory assay. We will then

want to know how accurate the model is at predicting who has the disease. One sim-

ple way to do that is literally to judge our model by its accuracy: What fraction of the

predictions it makes are correct?

This is likely to be a very poor measure for cases such as disease diagnosis, in

which one answer (healthy) is much more common than the other (sick). For exam-

ple, suppose we have a disease that occurs in 1 percent of people, and we develop two

models to predict whether a given person has the disease. Model 1 correctly predicts

the disease whenever it is present, but also in an additional 1 percent of the healthy

population. Model 2 says that everyone is free of the disease. Which is the better

model? Both are equally good by the accuracy measure, since each is right 99 percent

of the time and wrong 1 percent of the time. Yet intuitively we are likely to believe

that model 1 is the better model. We can formalize this sort of intuition by consider-

ing four classes of predictions the model may make:

358 24 Model Validation

1. True positives the model says the person is sick, and the person is sick.

2. True negatives the model says the person is healthy, and the person is healthy.

3. False negatives (or type I errors) the model says the person is healthy, but the

person is sick.

4. False positives (or type II errors) the model says the person is sick, but the person

is healthy.

The accuracy of the model is then the fraction of answers that are either true posi-

tives or true negatives. For our two hypothetical models above, we will have the rates

shown in table 24.1.

Adding true positives and true negatives tells us that each model has 99 percent

accuracy. Though that suggests the models are equally good by the accuracy metric,

we would generally say the first is much more useful. Of course there may be cases

where the second is a better model. If the consequences of being falsely identified as

having the disease are worse than actually having the disease, then it may be prefer-

able to use the second, ‘‘useless’’ model. Again, it all depends on what we are trying

to do.

Similar issues come up in problems such as motif detection, in which we look for a

rare event and cannot consider a single accuracy score a reasonable measure of good-

ness of a model. If we have a motif that is relatively rare in a genetic sequence, we

can create a highly accurate predictor by predicting that there are no motifs, regard-

less of the data set given. In the case of motif-finding, we may be willing to tolerate

some false identifications but really want to get all the true motifs. We will then

want a model that has few false negatives, even if that means tolerating many false

positives.

In such cases, we can apply two other common measures of goodness. The first is

sensitivity:

sensitivity ¼ jtrue positivesj
jtrue positivesj þ jfalse negativesj :

Sensitivity measures how often the model identifies what it is supposed to identify.

And the second is specificity:

Table 24.1
Measures of accuracy for two hypothetical disease prediction models

Model 1 Model 2

True positives 1% 0%

True negatives 98% 99%

False negatives 0% 1%

False positives 1% 0%

24.2 Accuracy, Sensitivity, and Specificity 359

specificity ¼ jtrue positivesj
jtrue positivesj þ jfalse positivesj :

Specificity asks how often the things the model does identify should have been

identified.

For disease diagnosis, we generally want a model with very high specificity. We

cannot tolerate many false positives, or else they will overwhelm the true positives.

For motif-finding, we may instead want to insist on very high sensitivity; we will tol-

erate extra motifs but do not want to miss any real ones.

We will often have the option of trading o¤ sensitivity for specificity in a model.

For instance, if we construct a hidden Markov model for motif-finding, we can often

bias the prior probability of observing a motif to make positive predictions more fre-

quent. We may then increase our rate of true positives at the cost of increasing our

rate of false positives. For a Bayesian disease model, we may similarly lower the

prior probability of the disease to increase the specificity of the model at the cost of

some loss of sensitivity. These trade-o¤s are captured in a receiver operating charac-

teristic (ROC) curve, which shows how sensitivity and specificity of a model vary

with some tunable parameter. Figure 24.3(a) shows an example of a hypothetical

ROC curve. ROC curves can allow us to distinguish among di¤erent models,

depending on what model characteristics we need, and to determine which parameter

values will give us the best performance for a given application. Figure 24.3(b) shows

some hypothetical ROC curves for competing models of a system. The ROC curves

Figure 24.3
Receiver operating characteristic (ROC) curves, which plot the trade-o¤ between sensitivity and specificity
of a model as a function of some tunable parameter. (a) A hypothetical ROC curve. (b) Three hypothetical
curves representing di¤erent models for a single application. Our choice of model depends on the needs of
a specific application.

360 24 Model Validation

provide guidance for selecting which model and which model parameters are most

suitable for any given application.

24.3 Cross-Validation

No matter what measure of goodness we use, one problem we have to worry about is

overfitting. Overfitting means coming up with a model that is too closely tuned to our

specific training data, rather than to the full distribution of data the model will en-

counter in real practice. Overfitting tends to be a problem particularly for overly

complex models. For example, if we sample n data points from some distribution

and we want to fit a polynomial to them, we can always fit an n� 1 degree polyno-

mial and get a perfect fit. But if we then pick one more data point, it is quite likely

that our model will fit that extra data point very poorly. If we have chosen instead to

use a k-degree polynomial for kW n and found a good fit to our n points, then it is

likely that same polynomial will also be a good fit to a new point chosen from the

same distribution. And if the k-degree polynomial is a poor fit, we will probably re-

alize that from testing on our n points.

There are ways to design protections against overfitting into our modeling proce-

dure. For example, if we are designing a probability model and finding the best fit by

a maximum likelihood method, we can build a penalty against complexity into the

prior probabilities for the model. One useful version of this strategy is minimum de-

scription length (MDL) modeling. In an MDL model, we specify a universe of pos-

sible models and then seek a model for which we can concisely explain the observed

data with the model and the model within its universe. These kinds of methods do

not guarantee that we will avoid overfitting, but they do o¤er some protection

against it.

No matter what protections we use, though, it is important to test if our model is

overfitting by performing adequate cross-validation. Cross-validation means that we

train our model using data di¤erent from what we use to test the goodness of the

model. There are many ways to cross-validate:

� Twofold Split the data into separate testing and training sets, train the model on

the training set, then validate on the testing set.
� k-fold Split the data into k sets and perform k tests, each training on k � 1 sets

and validating on the missing set.
� Leave-one-out a special case of k-fold for k ¼ n.
� Bootstrapping Like k-fold, except that for each test we randomly choose n=k ele-

ments for testing and train on the remaining n� n=k, repeating for multiple random

sets.

24.3 Cross-Validation 361

Which cross-validation method is appropriate mostly depends on the amount of data

we have available and how di‰cult it is to run the tests. If we have very few data

points to work with, we want to use as many as possible in each test and may favor

leave-one-out validation. If the computations are very costly, we may need to do

twofold cross-validation because we cannot a¤ord to train and test our model

repeatedly.

Cross-validating adequately is much harder in practice than it may seem. It is not

unusual in practice for computational biologists conducting a research project to set

aside some training and testing data at the beginning of a study, design and train a

model, test it, then go back and tweak the model after the cross-validation, repeating

until the method works well. For instance, if we are designing an HMM motif finder,

we may get a set of labeled data, design an HMM structure, train the HMM param-

eters on some of the data, then validate on the rest. If we find the HMM works

poorly, we may try adding a new state to our model and repeat the procedure. If

this new model does better in fitting the testing data, we may then report the accu-

racy of this new model on the testing data as a cross-validated assessment of the

goodness of the model. Though this practice is common, it is not correct, because

we no longer have independence between the model design process and the testing

data. As modelers, we must be careful of this danger not only in our own work, but

also when reading the work of others. Insu‰cient cross-validation is one of the most

consistent problems one will find when reading computational biology literature crit-

ically. This is especially true for problems for which there are widely accepted bench-

mark data sets available.

24.4 Sensitivity Analysis

When we are dealing with models of many parameters, it is often not enough to say

whether a single best-fit parameter set is good or bad. We also need to know whether

that parameter set is robust. If our measurements or calculations have a slight bias to

them, will the predictions of our model also have a slight bias, or will they be drasti-

cally o¤? We want to know how confident we can be in particular parameter choices

and how much the model’s behavior depends on the accuracy of those choices. The

problem of establishing these properties of a model is called sensitivity analysis. Like

all of the topics in this final chapter, sensitivity analysis is a broad subject for which

many theoretical tools and analysis methods have been developed. Here, we will

touch on only the basic principles behind some of the major approaches.

For some model types, sensitivity analysis is something one can perform with em-

pirical experiments or even analytically. For example, suppose we fit a rate constant

k to a kinetic rate equation

362 24 Model Validation

d½A�
dt
¼ �k½A�;

and ask how well this model predicts the concentration of [A] at some time t. We can

analytically solve for the model as follows:

½A�ðtÞ ¼ ½A�ð0Þe�kt:

We can then directly determine the e¤ects of a perturbation Dk to the inferred rate

constant:

½A�ðt; k þ DkÞ � ½A�ðt; kÞ
½A�ðt; kÞ ¼ ½A�ð0Þðe

�ðkþDkÞt � e�ktÞ
½A�ð0Þe�kt

¼ ðe�Dkt � 1Þ:

For small t, the fractional error in the model will be very small. If t is large,

though, the model may be very sensitive to errors. More often, one must do such an

analysis empirically, simulating the system with various parameter changes to esti-

mate how much each a¤ects the outputs of the model.

As we saw when looking at gene network inference, we can sometimes use sam-

pling methods to study parameter sensitivity. If we are using a probabilistic class of

models for which we can assign some likelihood to each model, then we can create a

sampler for the distribution of possible models weighted by their posterior probabil-

ities. The distribution of a given parameter over the full posterior distribution then

allows us to establish a best guess and a confidence interval for that parameter. We

can similarly use a variant of the bootstrapping method, mentioned above, to estab-

lish ranges of parameter values by refitting the model to many random subsets of the

data. Parameters that fit in a narrow range under repeated samples are likely to be

robust, whereas those that vary widely are likely to be sensitive to input values. Con-

versely, parameters that fit nonspecifically are likely to be parameters to which the

model is not very sensitive, and those that fit to a narrow range are likely to be

parameters to which the model is sensitive.

24.5 Modeling and the Scientific Method

We started this text with a discussion about the philosophy of modeling, so it is fit-

ting that we end it by coming back to some more philosophical questions about what

a modeler does and how we can think about the problem of modeling. There is an

entire field of study devoted to the philosophy of science which is concerned with

asking many related questions. There has not traditionally been much practical feed-

back between philosophers of science and scientists. But a lot of what philosophers of

science discuss as an intellectual exercise is actually useful to those of us who practice

24.5 Modeling and the Scientific Method 363

science, especially when working on problems of model-building. It is therefore

worth closing with some considerations of basic issues in the philosophy of science.

Most readers have probably at some point seen the scientific method:

1. Observe

2. Hypothesize

3. Test

4. Theorize.

Philosophers of science have declared the scientific method to be overly simplistic,

though. To understand why, let us consider a famous problem of science: under-

standing the laws of gravity. At one point, various scientists formulated models of

di¤erent systems we now know to be guided by gravity. For example, Galileo devel-

oped models for predicting the motion of falling bodies near the Earth, and Kepler

developed rules to describe the motion of objects in space. Later, Newton showed

that Galileo’s and Kepler’s models were special cases of a universal gravitational

law. Still later, Einstein showed that Newton’s laws were only an approximation to

some even more general laws that apply under conditions we cannot easily observe.

And most physicists think that there is some more general theory waiting to be dis-

covered that will reconcile theories of gravity with quantum mechanics.

This history can lead us to pose some questions:

� If Newton’s unified law of gravity made the same predictions as Galileo’s and Kep-

ler’s laws collectively, then was Newton’s model an improvement over the prior

work?
� Did contradictions between Einstein’s predictions and Newton’s show that New-

ton’s model was wrong?
� Will we ever be able to conclude that Einstein’s model, or the quantum gravity

model that replaces it, is in any objective sense good?

Thinking of science in terms of the traditional scientific method provides us no way

of answering the above questions. For example, the scientific method gives us no way

to decide between two theories that make the same predictions (e.g., GalileoþKepler

vs. Newton). Philosophers have proposed a principle called Ockham’s Razor for this

problem, which essentially says that the simpler model is the better one. This princi-

ple provides a rationale for favoring Newton’s model over the collective work of Gali-

leo and Kepler. Yet it is not clear why we should accept Ockham’s Razor in the first

place. The scientific method also does not give us a way to conclude that a model is

right. We can say that Einstein’s model has led to the rejection of Newton’s, but we

do not know if Einstein’s model will also be rejected when quantum gravity comes

along. This notion that we can falsify models but not validate them is associated

with the philosopher of science Karl Popper.

364 24 Model Validation

And even that is considered simplistic by more modern philosophers of science.

We live in an imperfect world, and can never really be completely sure of our data

or our analysis of them. According to legend, Galileo showed that all objects fall at

the same rate by dropping two di¤erent sizes of cannonballs from a tower and

observing that they hit the ground at the same time. Historians doubt whether Gali-

leo actually conducted the experiment. If he had, we would actually expect it to have

failed, since air resistance will have di¤erent e¤ects on two cannonballs unless the ex-

periment is conducted in a vacuum. But suppose we ignore that, and imagine Galileo

did conduct this experiment. If he found that the time for the first cannonball to fall

was 10 seconds and for the second was 11 seconds, should he have rejected the

theory? What if it had been 10.0 seconds versus 10.1? Or 10.0000 vs. 10.0001? And

even if he had conducted the experiment and found the same time, could anyone

else be sure that his procedure was sound and that he was reporting his results

accurately?

Some philosophers of science have concluded from this kind of reasoning that all

scientific progress is an illusion, simply an agreement among people who call them-

selves scientists to support one theory independent of any ground truth. This is

known as social constructivism. Most adopt a more measured view, saying that

science approximates some ground truth, but it is seen through a lens of measure-

ment errors and unconscious biases. In this conception, science generally gets better

over time at describing reality. It never exactly gets there, though, and we can never

know how close it is. This kind of theory is most closely associated with the philoso-

phers Ludwig Fleck and Thomas Kuhn.

Model-building is all about trying to ask these kinds of philosophical questions in

a more rigorous way. We observe some system and want to create a model describing

it, just as any scientist observes phenomena and wants to develop a theory describing

them. In modeling, though, we explicitly recognize that we are not finding the truth,

but rather an imperfect approximation to it. We just want our answer to be ‘‘good.’’

We then have to ask:

� In what domains does our answer need to be good?
� By what metrics?
� Compared to what alternatives?

And we need to develop precise formalisms by which we can answer these questions.

We can use these intuitions to try to formulate a ‘‘modeler’s method,’’ a sort of

corrected scientific method in which we explicitly recognize the limits of modeling:

1. Observe process X in domain S.

2. Build a model l of X in S.

24.5 Modeling and the Scientific Method 365

3. Compare l to reality (or other models) over samples from S, using metric M.

4. Identify those domains S 0JS in which l is the superior model by metric M.

We can then conclude that l is the best model available to us when we are working in

domains S 0 and when M is an appropriate metric of goodness. We do not need to

have any pretense that l is the ‘‘truth,’’ or even the right model in all circumstances.

All this really is the scientific method, but with more precision about our assump-

tions. Thus, there is really no distinction between doing modeling and doing science,

except that a modeler needs to be more aware of the limits of his or her theories. In

short, all of science is model-building. And that, I think, is a good observation on

which to end this discussion.

References and Further Study

This chapter, like chapter 1, is more general philosophy than detailed technical meth-

ods. References for the subject matter are therefore hard to come by. Though we

considered a few common measures of goodness of fit, there is much more one can

learn about that topic. The entire field of statistics is essentially the study of how to

judge the goodness of fit of models. A general grounding in statistics, particularly

with regard to statistics in experimental sciences, is therefore essential for pursuing

advanced work in biological modeling. One may look to Wasserman [112] for an in-

troductory treatment of general statistics. Campbell [226] provides a treatment of sta-

tistics specifically for biologists.

The concluding discussion on the philosophy of modeling is, to my knowledge,

novel to this text. Related issues are, however, broadly discussed in the history and

philosophy of science. Interested readers may refer to the classic texts by Fleck [227]

and Kuhn [228] for historical treatment of these issues. Those looking to dig deeper

may start with Kosso [229] or Rosenberg [230] for a general introduction to the his-

tory and philosophy of science.

366 24 Model Validation

References

[1] J. Felsenstein. Inferring Phylogenies. Sinauer, Sunderland, MA, 2004.

[2] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, New York,
1997.

[3] C. Semple and M. Steel. Phylogenetics. Oxford University Press, New York, 2003.

[4] A. W. F. Edwards and L. L. Cavalli-Sforza. The reconstruction of evolution. Annals of Human Genet-
ics, 27 : 105–106 (1963).

[5] H. Taketomi, Y. Ueda, and N. Gō. Studies on protein folding, unfolding and fluctuations by computer
simulation. International Journal of Peptide and Protein Research, 7 : 445–459 (1975).

[6] H. S. Chan and K. A. Dill. Energy landscape and the collapse dynamics of homopolymers. Journal of
Chemical Physics, 99 : 2116–2127 (1993).

[7] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state
calculation by fast computing machines. Journal of Chemical Physics, 21 : 1087–1092 (1953).

[8] R. J. Folz and J. I. Gordon. Computer-assisted predictions of signal peptidase processing sites. Bio-
chemistry and Biophysics Research Communications, 146 : 870–877 (1987).

[9] K.-C. Chou. Review: Prediction of HIV protease cleavage sites in proteins. Analytical Biochemistry,
233 : 1–14 (1996).

[10] P. Saxová, S. Buus, S. Brunak, and C. Keşmir. Predicting proteasomal cleavage sites: A comparison
of available methods. International Immunology, 15(7) : 781–787 (July 2003).

[11] L. Exco‰er and P. E. Smouse. Using allele frequencies and geographic subdivision to reconstruct
gene trees within a species: Molecular variance parsiomony. Genetics, 136 : 343–359 (1994).

[12] H.-J. Bandelt, P. Forster, B. C. Sykes, and M. B. Richards. Mitochondrial portraits of human popu-
lations using median networks. Genetics, 141 : 743–753 (1995).

[13] H.-J. Bandelt, P. Forster, and A. Röhl. Median-joining networks for inferring intraspecific phyloge-
nies. Molecular Biology and Evolution, 16(1) : 37–48 (1999).

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, 2nd ed. MIT
Press, Cambridge, MA, 2001.

[15] A. V. Aho, J. E. Hopcroft, J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-
Wesley, Reading, MA, 1974.

[16] D. Knuth. The Art of Computer Programming, vol. 1, Fundamental Algorithms, 3rd ed. Addison-
Wesley, Reading, MA, 1997.

[17] D. Kozen. The Design and Analysis of Algorithms. Springer, New York, 1992.

[18] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Pro-
ceedings of the American Mathematical Society, 7 : 48–50 (1956).

[19] R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal,
36 : 1389–1401 (1957).

[20] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1 : 269–
271 (1959).

[21] R. Bellman. On a routine problem. Quarterly Journal of Applied Mathematics, 16 : 87–90 (1958).

[22] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, Princeton, NJ, 1962.

[23] R. W. Floyd. Algorithm 97 (shortest path). Communications of the ACM, 5(6) : 345 (1962).

[24] D. B. Johnson. E‰cient algorithms for shortest paths in sparse networks. Journal of the ACM,
24(1) : 1–13 (1977).

[25] J. Edmonds and R. M. Karp. Theoretical improvements in the algorithmic e‰ciency for network flow
problems. Journal of the ACM, 19 : 248–264 (1972).

[26] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quar-
terly, 2 : 83–97 (1955).

[27] H. N. Gabow. Implementation of Algorithms for Maximum Matching on Non-bipartite Graphs. Ph.D.
thesis, Department of Computer Science, Stanford University, 1974.

[28] S. Needleman and C. Wunsch. A general method applicable to the search for similarities in the amino
acid sequences of two proteins. Journal of Molecular Biology, 48 : 443–453 (1970).

[29] T. Smith and M. Waterman. Identification of common molecular subsequences. Journal of Molecular
Biology, 147(1) : 195–197 (1981).

[30] P. Weiner. Linear pattern matching algorithms. Proceedings of the 14th IEEE Symposium on Switch-
ing and Automata Theory, pp. 1–11. IEEE Computer Society Press, Silver Spring, MD, 1973.

[31] E. Ukkonen. On-line construction of su‰x trees. Algorithmica, 14(3) : 249–260 (1995).

[32] G. C. L. Johnson, L. Esposito, B. J. Barratt, A. Smith, J. Heward, G. Di Genova, H. Ueda, H. Cor-
dell, I. Eaves, F. Dudbridge, R. C. Twells, F. Payne, W. Hughes, S. Nutland, H. Stevens, P. Carr, E.
Tuomilehto-Wolf, J. Tuomilehto, S. C. Gough, D. G. Clayton, and J. A. Todd. Haplotype tagging for
the identification of common disease genes. Nature Genetics, 29 : 233–237 (2001).

[33] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, San Francisco, 1979.

[34] P. Crescenzi and V. Kann, eds. A compendium of NP optimization problems. 1998. http://www.nada
.kth.se/~viggo/problemlist/compendium.html.

[35] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi. Com-
plexity and Approximation. Springer, New York, 1999.

[36] S. Cook. The complexity of theorem-proving procedures. Journal of the ACM, 18 : 4–18 (1971).

[37] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations:
Proceedings, R. E. Miller anda J. W. Thatcher, eds., pp. 85–103. Plenum Press, New York, 1972.

[38] G. B. Dantzig, W. O. Blattner, and M. R. Rao. All shortest routes from a fixed origin in a graph. In
Theory of Graphs: International Symposium, pp. 85–90. Gordon and Breach, New York, 1967.

[39] O. Goldschmidt and D. S. Hochbaum. Polynomial algorithm for the k-cut problem. In Proceedings of
the 29th Annual Symposium on the Foundations of Computer Science, pp. 444–451. Association for Com-
puting Machinery, White Plains, NY, 1988.

[40] M. Yannakakis. The Node Deletion Problem for Hereditary Properties. Technical report. Princeton
University, Princeton, NJ: 1978.

[41] M. Yannakakis. Node- and edge-deletion NP-complete problems. In Proceedings of the 10th Annual
ACM Symposium on the Theory of Computing, pp. 253–264. Association for Computing Machinery, San
Diego, CA, 1978.

[42] J. M. Lewis. On the complexity of the maximum subgraph problem. In Proceedings of the 10th An-
nual ACM Symposium on the Theory of Computing, pp. 265–274. 1978.

[43] D. Maier. The complexity of some problems on subsequences and supersequences. Journal of the
ACM, 25 : 322–336 (1978).

[44] D. Maier and J. A. Storer. A Note on the Complexity of the Superstring Problem. Technical report.
Princeton University, Princeton, NJ: 1977.

368 References

[45] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis. An analysis of several heuristics for the traveling
salesman problem. SIAM Journal on Computing, 6 : 563–581 (1977).

[46] N. Christofides. Worst-Case Analysis of a New Heuristic for the Traveling Salesman Problem. Techni-
cal report. Carnegie Mellon University, Pittsburgh, PA, 1976.

[47] S. Arora. Polynomial time approximation scheme for Euclidean TSP and other geometric problems.
In Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science, pp. 2–11. IEEE
Computer Society, Burlington, VT, 1996.

[48] B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation algorithm for the vertex
cover problem. Acta Informatica, 22 : 115–123 (1985).

[49] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted vertex cover prob-
lem. In Analysis and Design of Algorithms for Combinatorial Problems, G. Ausiello and M. Lucertiori, eds.,
pp. 27–46. North-Holland, Amsterdam, 1985.

[50] E. Halperin. Improved approximation algorithms for the vertex cover problem in graphs and hyper-
graphs. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms. Association for
Computing Machinery, San Francisco, CA, 2000.

[51] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
4598 : 671–680 (May 13, 1983).

[52] V. Cerny. A thermodynamical approach to the travelling salesman problem: An e‰cient simulation
algorithm. Journal of Optimization Theory and Applications, 45 : 41–51 (1985).

[53] N. A. Barricelli. Esempi numerici di processi di evoluzione. Methodos, 6 : 45–68 (1954).

[54] M. Sipser. Introduction to the Theory of Computation, 2nd ed. Thompson Course Technology, Boston,
2005.

[55] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.

[56] D. S. Hochbaum, ed. Approximation Algorithms for NP-Hard Problems. PWS, Boston, 1997.

[57] L. Stryer. Biochemistry, 4th ed. W. H. Freeman, New York, 1995.

[58] A. M. Maxam and W. Gilbert. A new method for sequencing DNA. Proceedings of the National
Academy of Sciences USA, 74(2) : 560–564 (1977).

[59] F. Sanger and A. R. Coulson. A rapid method for determining sequences in DNA by primed synthe-
sis with DNA polymerase. Journal of Molecular Biology, 94 : 441–448 (1975).

[60] L. M. Smith, J. Z. Sanders, R. J. Kaiser, P. Hughes, C. Dodd, C. R. Connell, C. Heiner, S. B. H.
Kent, and L. E. Hood. Fluorescence detection in automated DNA sequence analysis. Nature, 321 : 674–
679 (June 12, 1986).

[61] H. Drossman, J. A. Luckey, A. J. Kostichka, J. D’Cunha, and L. M. Smith. High-speed separations
of DNA sequencing reactions by capillary electrophoresis. Analytical Chemistry, 62 : 900–903 (1990).

[62] W. Bender, P. Spierer, and D. S. Hogness. Chromosomal walking and jumping to isolate DNA from
the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. Journal of Molecular Biology,
168(1) : 17–33 (July 1983).

[63] International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human
genome. Nature, 409 : 860–921 (2001).

[64] P. Pevzner. Computational Molecular Biology: An Algorithmic Approach. MIT Press, Cambridge,
MA, 2000.

[65] N. C. Jones and P. Pevzner. An Introduction to Bioinformatics Algorithms. MIT Press, Cambridge,
MA, 2004.

[66] W. Bains and G. C. Smith. A novel method for nucleic acid sequence determination. Journal of The-
oretical Biology, 135 : 303–307 (1988).

[67] E. Southern. United Kingdom Patent Application GB8810400. 1988.

[68] I. P. Lysov, V. L. Florent’ev, A. A. Khorlin, K. R. Khrapko, and V. V. Shik. Determination of the
nucleotide sequence of DNA using hybridization with oligonucleotides. A new method. Doklady Akademii
Nauk SSSR, Ser. Biol., 303 : 1508–1511 (1988).

References 369

[69] R. Drmanac, I. Labat, I. Brukner, and R. Crkvenjakov. Sequencing of megabase plus DNA by hy-
bridization: Theory of the method. Genomics, 4 : 114–128 (1989).

[70] R. Drmanac et al. DNA sequence determination by hybridization: A strategy for e‰cient large-scale
sequencing. Science, 260(5114) : 1649–1652 (1993).

[71] P. A. Pevzner, l-tuple sequencing: Computer analysis. Journal of Biomolecular Structure and Dynam-
ics, 7(1) : 63–73 (1989).

[72] R. M. Idury and M. S. Waterman. A new algorithm for DNA sequence assembly. Journal of Compu-
tational Biology, 2(2) : 291–306 (1995).

[73] R. D. Fleischmann et al. Whole-genome random sequencing and assembly of Haemophilus influenzae
rd. Science, 269(5223) : 496–498, 507–512 (1995).

[74] A. Edwards, H. Voss, P. Rice, A. Civitello, J. Stegemann, C. Schwager, J. Zimmerman, H. Erfle, C. T.
Caskey, and W. Ansorge. Automated DNA sequencing of the human HPRT locus. Genomics, 6 : 593–608
(1990).

[75] J. L. Weber and E. W. Myers. Whole-genome shotgun sequencing. Genome Research, 7(5) : 401–409
(May 1997).

[76] E. W. Myers et al. A whole-genome assembly of Drosophila. Science, 287(5461) : 2196–2204 (March
24, 2000).

[77] D. Huson et al. Design of a compartmentalized shotgun assembler for the human genome. Bioinfor-
matics, 17, S1 : S132–S139 (2001).

[78] S. Batzoglou et al. ARACHNE: A whole-genome shotgun assembler. Genome Research, 12 : 177–189
(2002).

[79] M. Akeson, D. Branton, J. J. Kasianowicz, E. Brandin, and D. W. Deamer. Microsecond time-scale
discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as
segments within single RNA molecules. Biophysical Journal, 77(6) : 3227–3233 (1999).

[80] D. W. Deamer and M. Akeson. Nanopores and nucleic acids: Prospects for ultrarapid sequencing.
Trends in Biotechnology, 18(4) : 147–151 (2000).

[81] J. Shendure, R. D. Mitra, C. Varma, and G. M. Church. Advanced sequencing technologies: Meth-
ods and goals. Nature Reviews Genetics, 5 : 335–344 (May 2004).

[82] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The Art
of Scientific Computing. Cambridge University Press, Cambridge, 1992.

[83] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear
Equations. Society for Industrial and Applied Mathematics, Philadelphia, 2006.

[84] A. P. Ruszczyński. Nonlinear Optimization. Princeton University Press, Princeton, NJ, 2006.

[85] R. Fletcher. Practical Methods of Optimization. Wiley, New York, 2000.

[86] L. N. Trefethen and D. Bau. Numerical Linear Algebra. Society for Industrial and Applied Mathe-
matics, Philadelphia, 1997.

[87] Wikipedia: The Free Encyclopedia. http://www.wikipedia.org.

[88] I. Newton. De Analysi per Aequationes Numero Terminorum Infinitas. William Jones, London, 1711.

[89] J. Wallis. A Treatise of Algebra Both Historical and Practical. J. Playford for R. Davis, London,
1685.

[90] J. Raphson. Analysis Aequationum Universalis. A. and I. Churchill, London, 1690.

[91] M. R. Hestenes and E. Stiefel. Method of conjugate gradients for solving linear systems. Journal of
Research of the National Bureau of Standards, 49 : 409–436 (1952).

[92] K. Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly of
Applied Mathematics, 2 : 164–168 (1944).

[93] D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal of
Applied Mathematics, 11 : 431–441 (1963).

[94] S. G. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill, New York, 1996.

370 References

[95] G. Dantzig. Maximization of a linear function of variables subject to linear inequalities. In Cowles
Commission for Research in Economics, Activity Analysis of Production and Allocation. Wiley, New
York, 1951.

[96] L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademiia Nauk SSSR,
244 : 1093–1096 (1979).

[97] A. S. Nemirovskii and D. B. Iudin. Optimization methods adapting to the ‘‘significant’’ dimension of
the problem. Automatika i Telemekhanika, 38 : 75–87 (1977).

[98] N. Karmarkar. A new polynomial time algorithm for linear programming. Combinatorica, 4 : 373–
395 (1984).

[99] COmputational INfrastructure for Operations Research (COIN-OR). http://www.coin-or.org/.

[100] M. Berkelaar, J. Dirks, K. Eikland, and P. Notebaert. lp_solve. http://lpsolve.sourceforge.net.

[101] A. Makhorin. GLPK (GNU Linear Programming Kit). http://www.gnu.org/software/glpk.

[102] S. M. Ross. Introduction to Probability Models, 8th ed. Academic Press, San Diego, 2003.

[103] S. M. Ross. Simulation, 3rd ed. Academic Press, San Diego, 2002.

[104] D. Knuth. The Art of Computer Programming. Addison-Wesley, Reading, MA, 1981.

[105] R. Eckhardt. Stan Ulam, John von Neumann, and the Monte Carlo method. Los Alamos Science,
15 : 131–137 (1987).

[106] J. von Neumann. Various techniques used in connection with random digits. In Monte Carlo Meth-
ods, pp. 36–38. Applied Math Series, 12. National Bureau of Standards, Washington, DC, 1951.

[107] G. E. P. Box and M. E. Müller. A note on the generation of random normal deviates. Annals of
Mathematical Statistics, 29 : 610–611 (1958).

[108] Y. A. Rozanov. Probability Theory: A Concise Course. Dover, New York, 1977.

[109] D. T. Gillespie. Markov Processes. Academic Press, Boston, 1992.

[110] D. J. Wilkinson. Stochastic Modelling for Systems Biology, Chapman & Hall/CRC, Boca Raton,
FL, 2006.

[111] A. A. Markov. Extension of the law of large numbers to dependent quantities. Izvestia Fiziko-
Matematicheskikh Obschestva Kazan University, 15 : 135–136 (1906).

[112] L. Wasserman. All of Statistics. Springer, New York, 2004.

[113] S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of
images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6 : 721–741 (1984).

[114] G. M. Torrie and J. P. Valleau. Monte-Carlo free energy estimates using non-Boltzmann sampling.
Chemical Physics Letters, 28 : 578–581 (1974).

[115] A. J. Sinclair and M. R. Jerrum. Approximate counting, uniform generation and rapidly mixing
Markov chains. Information and Computation, 82(1) : 93–133 (1989).

[116] A. Sinclair. Improved bounds for mixing rates of Markov chains and multicommodity flow. Combi-
natorics, Probability and Computing, 1 : 351–370 (1992).

[117] S. M. Ross. Stochastic Processes. Wiley, New York, 1983.

[118] J. L. Doob. Stochastic Processes. Wiley, New York, 1953.

[119] D. R. Cox and H. D. Miller. The Theory of Stochastic Processes. Wiley, New York, 1965.

[120] S. Karlin. A First Course in Stochastic Processes. Academic Press, New York, 1968.

[121] S. I. Resnick. Adventures in Stochastic Processes. Birkhäuser, Boston, 1992.

[122] N. G. van Kampen. Stochastic Processes in Physics and Chemistry. North-Holland, New York,
1981.

[123] G. B. Benedek and F. M. H. Villars. Physics with Illustrative Examples from Medicine and Biology:
Statistical Physics, 2nd ed. Springer, New York, 2000.

[124] D. Graur and W.-H. Li. Fundamentals of Molecular Evolution, 2nd ed. Sinauer, Sunderland, MA,
2000.

References 371

[125] M. Nordborg. Coalescent theory. In Handbook of Statistical Genetics, pp. 179–212. Wiley, Chiches-
ter, UK, 2001.

[126] D. L. Hartl and A. G. Clark. Principles of Population Genetics, 3rd ed. Sinauer, Sunderland, MA,
1997.

[127] T. H. Jukes and C. R. Cantor. Evolution of protein molecules. In Mammalian Protein Metabolism,
vol. 3, pp. 21–123. Academic Press, New York, 1969.

[128] M. Kimura. A simple method for estimating evolutionary rate of base substitutions through compar-
ative studies of nucleotide sequences. Journal of Molecular Evolution, 16 : 111–120 (1980).

[129] J. F. C. Kingman. The coalescent. Stochastic Processes and Applications, 13 : 235–248 (1982).

[130] D. C. Rapaport. The event scheduling problem in molecular dynamics simulation. Journal of Com-
putational Physics, 32 : 184–201 (1980).

[131] R. Brown. Calendar queues: A fast O(1) priority queue implementation for the simulation event set
problem. Communications of the ACM, 31(10) : 1220–1227 (1998).

[132] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis, 2nd ed. Springer, New York, 1996.

[133] P. K. Kythe and M. R. Schäferkotter. Handbook of Computational Methods for Integration. Chap-
man & Hall/CRC, Boca Raton, FL, 2004.

[134] R. W. Hamming. Numerical Methods for Scientists and Engineers, 2nd ed. Dover, New York, 1986.

[135] R. J. LeVeque. Numerical Methods for Conservation Laws, 2nd ed. Birkhäuser Boston, 1992.

[136] D. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral Methods: Theory and Applications. So-
ciety for Industrial and Applied Mathematics, Philadelphia, 1977.

[137] J. Strickwerda. Finite Di¤erence Schemes and Partial Di¤erential Equations. Wordsworth & Brooks,
Pacific Grove, CA, 1989.

[138] A. Turing. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of
London, B237 : 37–72 (1952).

[139] D. J. Higham. An algorithmic introduction to numerical simulation of stochastic di¤erential equa-
tions. SIAM Review, 43(3) : 525–546 (2001).

[140] P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Di¤erential Equations. Springer, Ber-
lin, 1999.

[141] P. E. Protter. Stochastic Integration and Di¤erential Equations. Springer, New York, 2004.

[142] D. Lamberton and B. Lapeyre. Introduction to Stochastic Calculus Applied to Finance. CRC Press,
Boca Raton, FL, 2000.

[143] B. Øksendal. Stochastic Di¤erential Equations: An Introduction with Applications, 6th ed. Springer,
New York, 2005.

[144] P. Mendes. GEPASI: A software package for modeling the dynamics, steady states and control of
biochemical and other systems. Computer Applications in the Biosciences [now Bioinformatics], 9 : 563–
571 (1993).

[145] M. Tomita, K. Hashimoto, K. Takahashi, T. Simon Shimizu, Y. Matsuzaki, F. Miyoshi, K. Saito,
S. Tanida, K. Yugi, J. C. Venter, and C. A. Hutchinson. E-cell: Software environment for whole-cell sim-
ulation. Bioinformatics, 15 : 72–84 (1999).

[146] P. Mendes. Biochemistry by numbers: Simulation of biochemical pathways with Gepasi 3. Trends in
Biochemical Sciences, 22 : 361–363 (1997).

[147] J. Scha¤, C. C. Fink, B. Slepcheckno, J. H. Carson, and L. M. Loew. A general computational
framework for modeling cellular structure and function. Biophysical Journal, 73 : 1135–1146 (September
1997).

[148] P. Mendes and D. B. Kell. MEG (Model Extender for GEPASI): A program for the modelling of
complex, heterogeneous, cellular systems. Bioinformatics, 17(3) : 288–289 (2001).

[149] D. T. Gillespie. A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions. Journal of Computational Physics, 22(4) : 403–434 (1976).

372 References

[150] N. Le Novère and T. S. Shimizu. StochSim: Modelling of stochastic biomolecular processes. Bio-
informatics, 17(6) : 575–576 (2001).

[151] M. A. Gibson and J. Bruck. E‰cient exact stochastic simulation of chemical systems with many spe-
cies and channels. Journal of Physical Chemistry, A104 : 1876–1889 (2000).

[152] Y. Cao, H. Li, and L. Petzold. E‰cient formulation of the stochastic simulation algorithm for chem-
ically reacting systems. Journal of Chemical Physics, 121(9) : 4059–4067 (September 2004).

[153] F. Jamalyaria, R. Rohlfs, and R. Schwartz. Queue-based method for e‰cient simulation of biologi-
cal self-assembly systems. Journal of Computational Physics, 204 : 100–120 (2005).

[154] J. R. Stiles, D. Van Helden, T. M. Bartol, Jr., E. E. Salpeter, and M. M. Salpeter. Miniature end-
plate current rise times < 100 ms from improved dual recordings can be modeled with passive acetylcholine
di¤usion from a synaptic vesicle. Proceedings of the National Academy of Sciences USA, 93 : 5747–5752
(June 1996).

[155] J. R. Stiles and T. M. Bartol, Jr. Monte Carlo methods for simulating realistic synaptic microphysi-
ology using MCell. In Computational Neuroscience: Realistic Modeling for Experimentalists, pp. 87–127.
CRC Press, Boca Raton, FL, 2001.

[156] A. B. Stundzia and C. J. Lumsden. Stochastic simulation of coupled reaction-di¤usion processes.
Journal of Computational Physics, 127 : 196–207 (1996).

[157] J. Elf, A. Dončić, M. Ehrenberg. Mesoscopic reaction-di¤usion in intracellular signaling. Proceed-
ings of SPIE, 5510 : 114–124 (2003).

[158] M. Ander, P. Beltrao, B. Di Ventura, J. Ferkingho¤-Borg, M. Foglierini, A. Kaplan, C. Lemerle, I.
Tomas-Oliveira, and L. Serrano. SmartCell, a framework to simulate cellular processes that combines sto-
chastic approximation with di¤usion and localisation: Analysis of simple networks. IEEE Systems Biology,
1 : 129–138 (2004).

[159] D. T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems. Jour-
nal of Chemical Physics, 115(4) : 1716–1733 (July 22, 2001).

[160] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, and U.
Kummer. COPASI—a COmplex PAthway SImulator. Bioinformatics, 22 : 3067–3074 (2006).

[161] K. Takahashi, K. Kaizu, B. Hu, M. Tomita. A multi-algorithm, multi-timescale method for cell sim-
ulation. Bioinformatics, 20(4) : 538–546 (2004).

[162] M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek. BioNetGen: Software for rule-based
modeling of signal transduction based on the interaction of molecular domains. Bioinformatics, 20 : 3289–
3291 (June 24, 2004).

[163] L. Lok and R. Brent. Automatic generation of cellular reaction networks with Moleculizer 1.0. Na-
ture Biotechnology, 23 : 131–136 (2005).

[164] T. Zhang, R. Rohlfs, and R. Schwartz. Implementation of a discrete event simulator for biological
self-assembly. In Proceedings of the Winter Simulation Conference, pp. 2223–2231. Institute for Operations
Research and the Management Sciences, Orlando, FL, 2005.

[165] D. L. Ermak. A computer simulation of charged particles in solution. I. Technique and equilibrium
properties. Journal of Chemical Physics, 62(10) : 4189–4196 (1975).

[166] J. S. van Zon and P. R. ten Wolde. Simulating biochemical networks at the particle level and in time
and space: Green’s function reaction dynamics. Physical Review Letters, 94 : 128103 (2005).

[167] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, et al. The Systems Biology
Markup Language (SBML): A medium for representation and exchange of biochemical network models.
Bioinformatics, 19(4) : 524–531 (2003).

[168] M. Hucka, A. Finney, S. Hoops, S. Keating, and N. Le Novère. Systems Biology Markup Language
(SBML) level 2: Structures and facilities for model definitions. 2007. http://www.sbml.org.

[169] A. A. Cuellar, P. F. Nielsen, D. P. Bullivant, D. Nickerson, W. Hedley, M. Nelson, and C. M.
Lloyd. CellML specification 1.1. draft. 2003. http://www.cellml.org.

[170] C. N. Lloyd, M. D. B. Halstead, and P. F. Nielsen. CellML: Its future, present, and past. Progress in
Biophysics and Molecular Biology, 85(2–3) : 433–450 (June–July 2004).

References 373

[171] E-cell. 2007. http://www.e-cell.org.

[172] National Resource for Cell Analysis and Modeling. 2007. http://www.vcell.org.

[173] COPASI: Complex Pathway Simulator. 2007. http://www.copasi.org/tiki-index.php.

[174] Center for Quantitative Biological Simulation. Microphysiology Gateway. 2007. http://www.mcell
.psc.edu.

[175] C. P. Fall, E. S. Marland, J. M. Wagner, and J. T. Tyson, eds. Computational Cell Biology. Springer,
New York, 2002.

[176] T. Niu, Z. S. Qin, X. Xu, and J. S. Liu. Bayesian haplotype inference for multiple linked single-
nucleotide polymorphisms. American Journal of Human Genetics, 70 : 157–169 (2002).

[177] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[178] L. E. Baum, T. Petries, G. Soules, and N. Weiss. A maximization technique occurring in the statis-
tical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics, 41 : 164–171
(1970).

[179] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society, B39 : 1–38 (1977).

[180] E. L. L. Sonnhammer, S. R. Eddy, and R. Durbin. Pfam: A comprehensive database of protein do-
main families based on seed alignments. Proteins, 28 : 405–420 (1997).

[181] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77 : 257–286 (February 1989).

[182] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis. Cambridge Univer-
sity Press, Cambridge, 2003.

[183] D. W. Mount. Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Laboratory
Press, Cold Spring Harbor, NY, 2001.

[184] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding algo-
rithm. IEEE Transactions on Information Theory, 13(2) : 260–269 (1967).

[185] L. E. Baum and J. A. Eagon. An inequality with applications to statistical estimation for probabilis-
tic functions of Markov processes and to a model for ecology. Bulletin of the American Meterological So-
ciety, 73 : 360–363 (1967).

[186] C. Burge and S. Karlin. Prediction of complete gene structures in human genomic DNA. Journal of
Molecular Biology, 268 : 78–94 (1997).

[187] M. Delorenzi and T. Speed. An HMM model for coiled-coil domains and a comparison with PSSM-
based predictions. Bioinformatics, 8(4) : 617–625 (2002).

[188] A. Krogh, M. Brown, I. S. Mian, K. Sjølander, and D. Haussler. Hidden Markov models in compu-
tational biology: Applications to protein modeling. Journal of Molecular Biology, 235 : 1501–1531 (1994).

[189] S. R. Eddy. Hidden Markov models. Current Opinion in Structural Biology, 6 : 361–365 (1996).

[190] S. R. Eddy. Profile hidden Markov models. Bioinformatics, 14 : 755–763 (1998).

[191] S. R. Eddy. What is a hidden Markov model? Nature Biotechnology, 22 : 1315–1316 (2004).

[192] G. Strang. Linear Algebra and Its Applications, 3rd ed. Harcourt Brace Jovanovich, San Diego,
1988.

[193] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS, Boston, 1996.

[194] P. Kuzmic. Program DYNAFIT for the analysis of enzyme kinetic data: Application to HIV pro-
tease. Analytical Biochemistry, 237 : 260–273 (1996).

[195] D. F. Walnut. An Introduction to Wavelet Analysis. Birkhäuser, Boston, 2004.

[196] J. S. Walker. A Primer on Wavelets and Their Scientific Applications. Chapman & Hall/CRC, Boca
Raton, FL, 1999.

[197] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and display of genome-
wide expression patterns. Proceedings of the National Academy of Sciences USA, 95(25) : 14863–14868
(December 8, 1998).

374 References

[198] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine. Broad pat-
terns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligo-
nucleotide arrays. Proceedings of the National Academy of Sciences USA, 96 : 6745–6750 (June 1999).

[199] E. Mjolsness, T. Mann, R. Castaño, and B. Wold. From Coexpression to Coregulation: An Approach
to Inferring Transcriptional Regulation Among Gene Classes from Large-Scale Expression Data. Technical
report. Jet Propulsion Laboratory, Pasadena, CA, 1999.

[200] J. MacQueen. Some methods for classification and analysis of multivariate observation. In Proceed-
ings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. Uni-
versity of California Press, Berkeley, 1967.

[201] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78 : 1464–1480 (1990).

[202] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S. Lander, and T. R.
Golub. Interpreting patterns of gene expression with self-organizing maps: Methods and application to
hematopoietic di¤erentiation. Proceedings of the National Academy of Sciences USA, 96 : 2907–2912
(March 16, 1999).

[203] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze expression
data. Journal of Computational Biology, 7 : 601–620 (2000).

[204] J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis. Advances to Bayesian network
inference for generating causal networks from observational biological data. Bioinformatics, 20 : 3594–
3603 (2004).

[205] D. Madigan and J. York. Bayesian graphical models for discrete data. International Statistical Re-
view, 63 : 215–232 (1995).

[206] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, New York, 1993.

[207] N. Friedman, M. Goldszmidt, and A. Wyner. Data analysis with Bayesian networks: A bootstrap
approach. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI), pp.
206–215. Morgan Kaufmann, San Francisco, 1999.

[208] N. Friedman, I. Nachman, and D. Pe’er. Learning Bayesian network structure from massive data-
sets: The ‘‘sparse candidate’’ algorithm. In Proceedings of the Fifteenth Conference on Uncertainty in Arti-
ficial Intelligence (UAI), pp. 196–205. Morgan Kaufmann, San Francisco, 1999.

[209] S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church. Systematic determination
of genetic network architecture. Nature Genetics, 22 : 281–285 (1999).

[210] T. Ideker, O. Ozier, B. Schwikowski, and A. F. Siegel. Discovering regulatory and signalling circuits
in molecular interaction networks. Bioinformatics, 18(supp. 12002) : S233–S240 (2002).

[211] Z. Tu, L. Wang, M. N. Arbeitman, T. Chen, and F. Sun. An integrative approach for causal gene
identification and gene regulatory pathway inference. Bioinformatics, 22(142006) : e489–e496 (2006).

[212] T. S. Gardner, D. di Bernardo, D. Lorenz, and J. J. Collins. Inferring genetic networks and identify-
ing compound mode of action via expression profiling. Science, 301(5629) : 102–105 (July 4, 2003).

[213] D. di Bernardo, M. J. Thompson, T. S. Gardner, S. E. Chobot, E. L. Eastwood, A. P. Wojtovich,
S. J. Elliott, S. E. Schaus, and J. J. Collins. Chemogenomic profiling on a genome-wide scale using
reverse-engineered gene networks. Nature Biotechnology, 23(3) : 377–383 (March 3, 2005).

[214] I. Nachman, A. Regev, and N. Friedman. Inferring quantitative models of regulatory networks from
expression data. Bioinformatics, 20(supp. 1) : i248–i256 (2004).

[215] P. D’haeseleer, S. Liang, and R. Somogyi. Genetic network inference: From co-expression clustering
to reverse engineering. Bioinformatics, 16(8) : 707–726 (2000).

[216] H. De Jong. Modeling and simulation of genetic regulatory systems: A review. Journal of Computa-
tional Biology, 9 : 67–103 (2002).

[217] M. Bansal, V. Belcastro, A. Ambesi-Impiombato, and D. di Bernardo. How to infer gene networks
from expression profiles. Molecular Systems Biology, 3(78) : 1–10 (2007).

[218] H. Causton, J. Quackenbush, and A. Brazma. Microarray Gene Expressions Data Analysis: A Begin-
ner’s Guide. Blackwell Science, Malden, MA, 2003.

References 375

[219] D. P. Berrar, W. Dubitzky, and M. Granzow, eds. A Practical Approach to Microarray Data Analy-
sis. Kluwer Academic, Boston, 2003.

[220] A. Zhang. Advanced Analysis of Gene Expression Microarray Data. World Scientific, Singapore,
2006.

[221] P. D’haeseleer. How does gene expression clustering work? Nature Biotechnology, 23 : 1499–1501
(2005).

[222] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing Surveys,
31(3) : 264–323 (1999).

[223] P. Congdon. Applied Bayesian Modelling. Wiley, Chichester, UK, 2003.

[224] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Chapman & Hall/
CRC Press, Boca Raton, FL, 2003.

[225] R. E. Neapolitan. Learning Bayesian Networks. Pearson Prentice-Hall, Upper Saddle River, NJ,
2004.

[226] R. C. Campbell. Statistics for Biologists, 3rd ed. Cambridge University Press, New York, 1989.

[227] L. Fleck. Genesis and Development of a Scientific Fact. University of Chicago Press, Chicago, 1979.

[228] T. Kuhn. The Structure of Scientific Revolutions. University of Chicago Press, Chicago, 1962.

[229] P. Kosso. Reading the Book of Nature: An Introduction to the Philosophy of Science. Cambridge Uni-
versity Press, New York, 1992.

[230] A. Rosenberg. The Philosophy of Science: A Contemporary Introduction. Routledge, New York,
2000.

376 References

Index

Acceleration, 211
Accuracy. See also Errors
in Adams-Bashforth methods, 223
adaptive methods, 224
centered di¤erence, 84–85, 229–232, 235
first and second order, 157, 215, 218, 233, 238
and forward/backward Euler, 218, 222
in model validation, 358
of Neville’s algorithm, 327
and Newton-Raphson, 84–85
and partial di¤erential equations, 233
and Runge-Kutta methods, 221, 225, 237
of secant versus bisection, 79
and stability, 221, 223, 251
and stochastic di¤erential equations, 248–
249

and time, 219, 233
Adams-Bashforth methods, 221–223, 225
Adams-Moulton scheme, 225
Adaptive methods, 224–225
A‰ne method, 104–107, 110
Aitken’s d2 process, 338–340
Alleles, 28–33, 280–289
All-pairs shortest path, 21
Amino acids. See also Protein folding
contact energies, 5–7
and HMMs, 297–299
and Metropolis method, 145
proline cis-trains isomerization, 180–182
and proteases, 9
Animation, 333
Annealing. See Simulated annealing
Antibiotics, 45
Approximation
centered di¤erence, 84–85, 89, 229–232, 235
and extrapolation, 337–340
forward di¤erence, 84
and forward Euler, 214, 224
and interpolation, 327–337
and reaction-di¤usion equations, 237
for step size, 224
with Taylor series, 80–81, 85, 232

Approximation algorithms. See also Traveling
salesman
and branch-and-bound algorithm, 50
description, 47–59
and intractability, 47–49, 50, 55
reference, 55
traveling salesman, 36, 48, 54
and vertex cover, 47, 50–51
Approximation schemes, 48
Automated sequencing, 61–63

Backward algorithm, 298–299
Backward error, 77
Backward Euler, 217–219, 222
Bacteria
antibiotic sensitivity, 45
bacterial artificial chromosome (BAC), 64
Barrier methods, 104
Baum-Welch algorithm, 300–307
Bayesian models, 347–350, 353, 356
additional sources, 353
Bellman-Ford algorithm, 20–21
background, 33
Best-fit
in interpolation, 336
and least-squares, 356
in parameter-tuning, 275
Bias. See also Model validation
and gene network, 349
and HMMs, 360
and importance sampling, 154
and parameter choices, 362
unintended, 365
Biconjugate gradient, 319
Bilinear interpolation, 334
Billiard ball model, 206–209
Binary search, 338
Biochemical processes. See also Evolution; Reac-
tion networks
decaying exponentials, 335
parameters, 267
whole-cell models, 253–264

BioNetGen, 261
Biophysics, 226
Bipartiteness, 23, 42
Bisection, 76–78, 338
Black-box, 75, 84, 237, 336
Block diagonals, 333
Boltzmann distribution, 7, 142–144, 146
Boltzmann’s constant, 7, 142
Bootstrapping, 350, 361, 363
Boundary conditions
Dirichlet, 230–231
for multiple dimensions, 234
Neumann, 231
and PDEs, 230–233
and solute di¤usion, 230–233

Box-Müller method, 120
background, 127

Branch-and-bound methods, 49–52
Branching process, 199
Brownian motion, 167, 241–249, 263
Brownian noise, 157
Brute force, 47, 50, 53

Calcium, 260
Calendar queue, 205t, 209
Canonical path, 161–166, 169
background, 171

Capillary sequencing, 61
Catalysts. See Enzymes
CellML, 264
Cells
and biochemical networks, 253–264
cycle synchronization, 323–325

Cell simulation
and CTMM, 256–259
electrophysiological components, 264
hybrid models, 259, 263
and PDEs, 253–256, 263
protein expression, 268
standards and software, 263
trends, 262
as very large reaction network, 260–262

Centered di¤erence, 84–85, 229–232, 235
Chain rule, 220
Channel protein, 201–203
Chapman-Kolmogorov equations, 133
Chebyshev polynomials, 340
Chemical reaction. See also Reaction networks
and interpolation, 336
and law of mass action, 211
with noise, 246–248
and stability, 215–217

Chemical solutions. See Solutions
Chromatic number, 40
Chromosomes
diploid, 198
haploid, 192
haplotypes, 280–286
tagging SNP selection, 44, 47

Chromosome walking, 63
cis isomer, proline, 180–182
Cliques, 39, 342
union of, 344–345
Clone-by-clone strategy, 63
Clustering, 342–347, 351
additional sources, 353
Coalescent
background, 200
coalescent simulation, 195
definition, 193f, 194
and migration, 198
and recombinations, 198
separate populations, 197
variable population sizes, 196
Coexpression models, 342–347, 351
Collisions, 141, 206–209
Coloring
in automated sequencing, 61
in graph problems, 39, 49–50
Compartments, 253–256
Complexity, computational, 55, 260–262, 361. See

also Intractability; NP-completeness
Computer graphics, 333
Concave functions, 108
Conditional probability, 295
Condition number, of matrix, 319
Conductance method, 166
background, 171
bounded random walk, 167–170
Conjugate gradient, 91, 92, 318, 319
Consensus sequence, 32
Constraint satisfaction
linear program, 96–108
nonlinear program, 108–110
parameter-tuning, 269–271
primal-dual methods, 107
Contact potentials, 5, 267
Continuous distributions
and importance/umbrella sampling, 154–156
joint distributions, 119–121, 151–152
rejection method, 121–124
transformation method, 116–121, 124f
Continuous optimization. See also Newton-

Raphson method
bisection, 76–78, 338
description, 75
local versus global optima, 76
multivariate functions, 85–88
secant method, 78–80
Continuous systems
applications, 211–213
backward Euler, 217–219
definition, 211
di¤erential equations, 212
with discrete event tracking, 206–209, 263
from discrete points, 323–326 (see also Extrapola-
tion; Interpolation)

finite di¤erence, 213, 226

378 Index

forward Euler (see Forward Euler)
leapfrog, 221–223, 225, 236
single-step methods, 219–221, 223–225
Continuous time Markov models (CTMMs)
additional reading, 183
branching process, 199
cell simulation, 256–260
channel protein example, 201–203
and coalescence, 195
description, 173–178
versus discrete event models, 201–204
and DNA base evolution, 187
Kolmogorov equations, 178–182
Moleculizer program, 261
and population dynamics, 212
and protein folding, 180–182
rate inference, 273
and self-transition, 181
waiting time, 173–175
Convection, 237–239
Convection-di¤usion, 238
Convergence, 338
order of, 248–249
Convex functions, 108–110
Cooling schedule, 148
COPASI, 260, 264
Correlation coe‰cients, 343, 356–358
Cross-validation, 361–362
CTMM. See Continuous time Markov models
Cubic formula polynomials, 76
Cubic formulas, 76, 329, 333
Curve, receiver operating characteristic (ROC),

360
Curve families, 334–337
Curve generation, 333
Curve linearization, 81, 86, 89, 91
Cut problems
k-cut, 38, 54, 344
maximum cut, 37, 344
minimum cut, 21–23

Data. See also Noisy data
ambiguity loss, 30
and Bayesian model, 347
and continuous optimization, 75
fitting, 329–336, 340, 361
gene expression microarray, 341
gene network inference, 352
for HMMs, 299–302
input and output format, 2–3
for intraspecies phylogeny, 29–30
posting time, 205
set relationships, 357
Decision problems, 36
Density
joint, 119
probability, 116–118, 121–122, 154
detailed balance, 143–145, 164, 169
Diagnostics, 358, 360

Di¤erential equations. See Finite di¤erence;
Ordinary di¤erential equations; Partial
di¤erential equations; Stochastic di¤erential
equations

Di¤usion
and boundaries, 230–233
and cell simulation, 259
convection-di¤usion equation, 238
of particles, in two dimensions, 325
PDE example, 227
reaction-di¤usion equations, 234–237, 325
Di¤usion term, 234
Dijkstra’s algorithm, 20, 21
background, 33
Diploid organisms, 198
Dirichlet boundary, 230–231
Discrete distributions. See also Transformation
method
and continuous models, 323–326
and Metropolis method, 146
rejection method, 124–126
and transformation method, 124
Discrete event models
artificial event, 208
background, 210
and cell simulation, 260
channel protein case, 201–203
and continuous systems, 206–209, 263, 325
versus CTMMs, 201–204
description, 203
e‰ciency, 204–206, 208–210
event loop, 204, 207
molecular collisions, 206–209
queuing, 205, 209–210
without queue, 208
Discretization
conversions (multigrid), 325
and gene coexpression, 344
of space, 229, 233, 235, 255, 258
of time, 242
Disease, diagnosis of, 358, 360
Distributions. See also Continuous distributions;
Discrete distributions
Boltzmann, 142–144, 146
exponential, 118
gamma, 268
Gaussian, 348
joint, 119–121, 149–152
modified, 156
normal, 120, 123–124
Poisson, 191
prior, 153, 349
probability, 347–349
stationary, 134–138, 149, 153–155, 159, 161
uniform, 115–116
DNA. See also String and sequence problems
diploid and haploid, 198
exact set matching, 27
intraspecies phylogeny, 28–33

Index 379

DNA (cont.)
motif detection, 152–154, 303–307, 347, 359–360,
362
random strings, 129–133
repetitive, 63
simulation, 191–195
tagging SNP selection, 44, 47

DNA bases
and CTMMs, 187
evolution, 185–191, 269–271
frequency analysis, 275–277, 280–286
and HMMs, 291–293, 303–307
parameter-tuning, 269–271

DNA microarrays, 64–66, 71, 341
DNA sequencing
big sequences, 61–63
computational methods, 64–72
Eulerian path, 66, 73
hybridization method, 64–66, 71, 73
Maxam-Gilbert, 57–59, 61
nanopore method, 74
overview, 73–74
Sanger dideoxy method, 59–61
shotgun methods, 67–69, 73
single molecule, 72, 74

Domain recognition, 294, 297
Double-barrel shotgun, 69
background, 73

Drosophila melanogaster, 74
Duals, 39, 46, 107
Dynafit program, 336

E-Cell system, 260, 264
Edges, graph
and Bayesian model, 349
and bipartiteness, 42
cliques, 39, 342, 344–345
and CTMMs, 174
and gene network, 349–351
in hierarchical clusters, 345
in intraspecies phylogeny, 29–31, 41
in Markov model, 143
and maximum flow, 21
and mixing, 161–166, 170
negative weights, 20
in network structure, 349
in Steiner trees, 41
transition probabilities, 160
in vertex cover, 38, 45, 47, 53

Edit distance, 3–4
Edmonds-Karp algorithm, 22–23, 33
Eigenvalues
definition, 136
of Markov models, 136–139, 159, 186
and matrices, 318, 321, 322

Eigenvectors, 136–139, 186
Einstein, A., 364
Ellipsoid method, 104, 110

Embedded methods, 224
Energy. See also Force field
and amino acids, 5–7
and Metropolis method, 143, 147
potential, 142
and simulated annealing, 52, 148
and umbrella sampling, 157
Entropy, 343–344, 358
Enzymatic reactions, 253–256, 324f
Enzymes
concentration, 325
and ODEs, 212
protease, 8–11
Expectation maximization, 345–347
Equilibrium
and Boltzmann distribution, 142
in chemical di¤usion, 325
Hardy-Weinberg, 282
Ergodicity
and canonical path, 164
definition, 136
and Markov models, 136, 148, 159, 164, 167, 169
and Metropolis method, 143
Errors. See also Accuracy
in di¤erential equation types, 248
and expectation maximization, 286–287
and extrapolation, 337–339
false positives/negatives, 359, 360
forward and backward, 77, 90
and intraspecies phylogeny, 30
in leapfrog method, 222
Newton-Raphson algorithm, 83–85
in noisy data, 287
and physical conservation laws, 226
and sensitivity analysis, 363
and steepest descent, 89–90
and step size, 223
Euclidian distance, 343, 345
Euclidian traveling salesman, 48–49, 54
Eukaryotic genomes
assembly, 69–70, 73
DNA sequencing, 63, 67, 73
gene prediction, 307
sequence problems, 26
Eulerian path, 66, 73. Euler-Maruyama method,

246, 249, 250
Event loop, 204, 207
Evolution. See also Continuous time Markov

models; Molecular evolution
coalescent model, 193–199
and data ambiguity, 30
description, 2–4
DNA base evolution, 185–191, 269–271
DNA strand simulation, 191
genetic algorithms, 52–53
graph problems, 16–18
intraspecies phylogeny, 28–33, 41
Jukes-Cantor model, 185–188

380 Index

Kimura model, 188–191
and Kolmogorov equations, 187, 190
parameter-tuning, 269–271
tree model, 2–4
Wright-Fisher neutral model, 192
Exact set matching, 27
Exon
and gene structure models, 292–293
length distribution, 129
Expectation maximization
background, 289
and clustering, 345
and goodness of model, 356
haplotype examples, 280–289
and HMMs, 300–307
noisy data, 286–289
reference sources, 289
steps, 277–278, 288–289, 300–302, 305–307
theory, 275, 277–280
weak versus strong, 280
Exponential random variables, 118, 175–178, 191
Extrapolation
Aitken’s d2 process, 337–340
definition, 325
infinite series, 337–340
Richardson method, 225, 337
uses, 323–326, 337

False positives/negatives, 359, 360
Feasible points, 97
Fibonacci heap, 205t, 209
Finite di¤erence iteration, 338
Finite di¤erence methods. See also Adams-

Bashforth methods; Runge-Kutta methods
alternatives to, 226
backward Euler, 217–219
definition, 213
forward Euler, 214–217
and independent variables, 239
multistep methods, 221–223
single-step methods, 219–221
stability, 215–217, 218–219, 221
First-order Markov model, 130
First reaction method, 257
Flow problems, 20–22
Floyd-Warshall algorithm, 21
background, 33
Fluorescence, 61–63, 268
Force field, 211
Ford-Fulkerson method, 22–23, 33
Forward algorithm, 298–299
Forward di¤erence, 84
Forward error, 77, 90
Forward Euler. See also Euler-Maruyama method
and Brownian motion, 241–246
in convection problem, 238
and coupled di¤erential equations, 229
description, 214–217

and implicitly specified function, 272
with multistep method, 222
reaction-di¤usion equations, 235
and step size, 223, 224
Fourier interpolants, 340
Fourier series, 216, 217
Fourier transforms, 226

Galileo, 365
Gamma distribution, 268
Gaussian elimination, 103, 310–316, 318
Gaussian linear model, 348–349
Gauss-Seidel method, 317
Gene expression
additional sources, 353
Bayesian models, 347–350, 353, 356
and cell cycles, 323–325
coexpression models, 342–347, 349, 351
and Gaussian distribution, 348
microarray data, 341
network inference, 341, 347–353, 358
prediction, 309
RNAi, 352
and sampling, 350, 363
General continuous optimization. See Continuous
optimization

Generalized minimal residual (GMRES), 319
Gene sequences
Markov models, 129–133
motif detection, 303–307, 347, 359, 362
parameter-tuning, 276
Genetic algorithms, 52
background, 55
Genetic networks. See Gene expression
Genetics. See also Chromosomes; DNA
gene structure, 276, 292, 299–302
haplotype frequency, 280–286
haplotype inference, 287–289
molecular evolution, 185–192
population genetics, 192–199
tagging SNP selection, 44, 47
Genscan, 307
Geometric series, 337–340
GEPASI program, 253–256, 260
Gibbs sampling, 149–156, 350
background, 158
Gillespie model, 256–260, 263
Global optimum, 52
Gō models, 10
Goodness, measures of, 355–358
Gradient descent, 89
Gradient of objective, 106
Gradient (‘F), 86, 89
Graphing constraints, 96
Graph problems
coloring, 39–40, 49–50
Eulerian path, 66, 73
Hamiltonian path, 37, 65

Index 381

Graph problems (cont.)
independent set, 38, 42
matching, 23
maximum clique, 39
maximum cut, 37, 344
maximum flow/minimum cut, 21–23
minimum spanning trees, 16–18, 20, 29–31
multigraphs, 16
NP-completeness, 4, 36–42, 47, 344
phylogeny example, 28–33
and set problems, 44
shortest path, 19–21
Steiner trees, 40–41
subgraphs, 42, 54
traveling salesman, 36, 48, 54
and union-of-cliques, 344
vertex cover, 38, 45, 47, 53, 54

Graph properties, 42
Green’s function reaction dynamics (GFRD), 263
Grid box, 334
Growth factor, 223
Guilt by association method, 344

Haemophilus influenzae, 73
Hamiltonian path, 36–37, 65
Hamming distance, 41
Haploidy, 198
Haplotypes
frequency estimation, 280–286
inference from noisy data, 286–289

Hard sphere model, 206–209
Hardy-Weinberg equilibrium, 282
Hastings-Metropolis method, 160. See also

Metropolis method
Heat equation, 227
background, 239

Hessian, 86–89, 109
Heuristic methods. See also Simulated annealing
background, 53, 158
clustering methods, 344–347
definition, 52
and gene (co)expression, 344–347
genetic algorithms, 52
and Gibbs sampling, 152–154
and intractability, 52
kitchen sink approach, 53
and Metropolis model, 52, 147
and network inference, 349

Hexamers, 260–262
Hidden Markov models (HMMs)
and amino acids, 297–299
background and sources, 289, 307
and DNA bases, 291–293, 303–307
and expectation maximization, 300–307
gene structure, 292, 299–302
motif-finding, 303–307, 359–362
and Newton-Raphson method, 302
and output probability, 297–299

and protein domain, 294
and protein folding, 308
special features, 291
state assignment, 295–297
training, 299–302
transcription factor binding, 293
Hierarchical clustering, 345
HIV, 10
HMM. See Hidden Markov models
Huen’s method, 224
Hungarian method, 24, 33
Hybridization, sequencing by, 64–66, 71
background, 73
Hydrogen bonds, 158
Hyperplanes, 97

Identity matrix, 310–312, 320
Image analysis, 325, 340
Imino acid, 180
Implicitly specified functions, 271–273
Importance sampling, 154–156, 170
umbrella sampling, 155, 158
Independent set problems, 38–39, 42, 46, 54
Independent variables
and finite di¤erence, 239
multiple, 356
Infeasible points, 97
Infinite series, 337–340
Infinite sites model, 191–192
Information, mutual, 344
Information theory, 343, 358
Inheritable properties, 42
Integer linear programs, 51
Interior point methods, 104–107, 108
Interpolation
best-fit, 336
bilinear, 334
in biochemical reactions, 335
curve families, 334–337
definition, 325
examples, 323–326
Fourier interpolants, 340
Levenberg-Marquardt method, 336
linear, 272
multidimensional, 334
and Newton-Raphson method, 81, 336
and optimization, 335–337
polynomial type, 326–330
rational function, 330
and secant method, 79
splines, 331–334
and steepest descent, 90
Intractability. See also NP-completeness
approximation algorithms, 47–49, 50, 55
branch-and-bound methods, 49–52
brute force approach, 47, 53
coping with, 30–32, 35, 46, 49, 53
definition, 24–26, 35

382 Index

heuristic approaches, 52
trade-o¤s, 30–32, 46, 49
Isomerization, 180–182
Iterative methods
finite di¤erence, 338
Gauss-Seidel method, 317
Jacobi method, 317
Krylov subspace, 317–320
and Newton-Raphson, 82, 88
Itô integral, 244. See also Stochastic integrals;

Stochastic di¤erential equations
Itô-Taylor series, 249

Jacobian, 86–89, 92
Jacobi method, 317
Johnson’s algorithm, 21
background, 33
Joint distributions, 119–121, 149–152
Joint entropy, 344
Jukes-Cantor model, 185–189, 191
background, 200

Karmarkar’s method, 104, 108, 110
k-coloring, 40
k-cut problems, 38, 54, 344
k-fold cross validation, 361
Kimura model, 188–191
background, 200
Kinetic models, 351–353
Kolmogorov criterion, 160, 164, 168
Kolmogorov equations
Chapman-Kolmogorov, 133
and CTMMs, 178–182
and discrete event simulation, 201
and evolutionary processes, 187, 190
and implicitly specified functions, 273
Kruskal’s algorithm, 17, 31
background, 33
Krylov subspace, 91, 317–320, 333
kth-order Markov model, 130–131

Laplacian, 227
Latent variables, 277, 284, 288–289, 300, 345
Lattice models
background, 10
description, 5–7
and discretized states, 324f, 325
and heuristics, 52
in Markov example, 145
move sets, 10
parameters, 267
and protein folding, 5–6, 145–146
for spatial discretization of PDEs, 258–259
Law of mass action, 211
Lazy queuing, 205
Leapfrog method, 221–223, 225, 236
Least-squares, 320, 336, 349, 356
Leave-one-out cross validation, 361

Levenberg-Marquardt method, 90, 273, 336
background, 93
Likelihood, maximum. See Maximum likelihood
Linear congruential generators, 116
Linear interpolation, 272
Linearization, of curve, 81, 86, 89, 91
Linear programming
barrier methods, 104
cost factors, 108
definition, 96
ellipsoid method, 104, 110
primals and duals, 107
relaxation, 51
simplex method, 97–103, 108, 110
software, 107, 111
standard form, 98–99
Linear recurrence, 222
Linear regression, 310
Linear systems
definition, 309
and di¤erential equations, 213
Gaussian elimination, 310–316, 318
and gene networks, 352
and interpolation, 330–334
iterative methods, 316–321
Krylov subspace methods, 317–319
linear regression, 310
and multivariate functions, 87
optimization in, 92
over- and under determined, 320
pivoting, 312–316
preconditioners, 319–320
pseudoinverse, 321
references, 93
and Taylor expansions, 85
Line-by-line method, 256
Local linearizing, 81, 86, 89, 91
Local optimum, 52
LU decomposition, 315

Macromolecular complexes, 260–262, 264
Markov chain Monte Carlo (MCMC), 141–158,
350

Markov chains
background, 139
definition, 129
and gene network, 350
irreducibility, 136
and mixing times, 163, 166–170
in molecular evolution, 185–188
Markov models
background, 139
branching process, 199
components, 129, 291
conductance, 166–170
continuous time (see Continuous time Markov
models)
and DNA bases, 185–188, 269–271, 291–293

Index 383

Markov models (cont.)
and DNA motifs, 153
eigenvectors, 136–139, 186
ergodicity, 136, 148, 159, 164, 169
gene sequence types, 276
and Gibbs sampling, 149–156
hidden, 291 (see also Hidden Markov models)
and Metropolis method, 142–148 (see also
Metropolis method)
mixing time, 138, 159–160, 166, 170
and molecular evolution, 185–191
nonergodic, 137
order, 130–131
and prior distribution, 153
with random walk, 167
and spatial e¤ects, 258
stationary distribution, 134–138, 149, 153–155,
159, 161
and waiting time (see Continuous time Markov
models)

Mass action, law of, 211
Matching problems
exact set, 27
unweighted, 23
weighted, 24

Mating, 53
Matrices. See also Transition matrix
condition number, 319
inversion, 87
over/underdetermined, 310, 320, 330, 333
permutations, 314
positive (semi)definite, 92, 318, 319

Maxam-Gilbert method, 57–59, 61
Maximal matching, 47
Maximum a posteriori probability (MAP), 275
Maximum clique problems, 39
Maximum cut problems, 37, 344
Maximum edge loading, 161–166, 170
Maximum flow problems, 21
Maximum likelihood
background, 289
and clustering, 345–346
description, 268
and expectation maximization, 275, 277–280 (see
also Expectation maximization)
in haplotype error correction, 286–287
in haplotype frequency estimation, 282–283
and Hardy-Weinberg equilibrium, 282
and latent variables, 284
and network inference, 347–351
and parameter-tuning, 8–10, 268, 275–277, 283

MCell, 258–259, 264
Metropolis criterion, 6–7, 10
Metropolis method
background, 158
caveats on use, 146
e‰ciency, 154–156
generalized, 146–147

and mixing time, 146, 154, 170
for optimization, 147, 350
and protein folding, 142, 145, 154
and simulated annealing, 52, 148
and thermodynamics, 141–143, 146
and traveling salesman, 147
Michaelis-Menten reaction, 253–256
Microarrays, 64, 71, 341
Microreversibility, 143–145, 164, 169. See also

Detailed balance
Midpoint method, 219–222
Migration, 198
Milstein’s method, 249, 251
Minimum cut, 21–23
Minimum description length (MDL), 361
Minimum set cover, 45. See also Vertex cover
Minimum spanning network, 31
Minimum spanning tree, 16–18, 20, 29–31
Minimum test set, 44
Mixing time
canonical path method, 161–166, 169, 171
conductance method, 166–170, 171
definition, 138, 159–160
and eigenvalues, 138–139
and importance sampling, 170
and Metropolis method, 146, 154
monomer-dimer systems, 171
Model space, reduction, 351
Model validation
accuracy, 358 (see also Accuracy)
cross-validation, 362
goodness measures, 355–358
overfitting avoidance, 361
receiver operating characteristic (ROC) curve,
360

scientific method, 363–366
sensitivity, 359, 360, 362
specificity, 359–361
Mode-of-action by network identification (MNI),

351
Modified distribution, 156
Molecular evolution
coalescent model, 192–198
DNA strand, 191
Jukes-Cantor model, 185–188
Kimura model, 188–191
and Kolmogorov equations, 187, 190
one-parameter, 185–188
and self-transition, 163–164
two-parameter, 185–188
Molecular modeling
and continuous optimization, 75
lattice models, 5–7, 145–146
macromolecular complexes, 260–262, 264
and numerical integration, 211
and stochastic di¤erential equations, 245
and umbrella sampling, 156–158
Moleculizer program, 261

384 Index

Monomer-dimer systems, 170–171
Monte Carlo samplers, 350
Motifs
alignment of, 152
detection of, 152, 303–307, 347, 359–362
transcription factor binding, 293
Move sets, for lattice models, 6
Multicommodity flows, 23
Multidimensional curve, 336–337
Multigraphs, 16
Multigrid methods, 324f, 325
Multiple independent variables, 356 (see also

Partial di¤erential equations)
Multiple regression, 351
Multivariate functions, 85–88
Mutations
in genetic algorithm, 53
infinite sites model, 191–192
and Jukes-Cantor model, 187, 191
and Kimura model, 186f, 188–189
random, 163–166
simulation, 4–7, 191
transitions/transversions, 189
and Wright-Fisher neutral model, 192
Mutual information, 344

Needleman-Wunsch algorithm, 33
Network identification by multiple regression

(NIR), 351
Networks
gene regulatory, 341–353
inference of, 349–353, 363
minimum spanning, 31
reaction networks, 260–264, 323–325, 340
reduced median, 33
Neumann boundary condition, 231–232
Neville’s algorithm, 326–329
Newton-Raphson method
background, 93
black-box functions, 84
and HMMs, 302
and implicitly specified function, 273
and interpolation, 336
and Levenberg-Marquardt method, 90
multidimentional, 85–88
and parameter-tuning, 80–84, 269
and steepest descent, 90
Newton’s second law, 211
Next reaction method, 257
Noisy data, 286–289, 323–325, 329, 347
Nonlinear programming, 108–110
Nonlinear systems, 91–92
Nontrivial graph properties, 42
Normal distributions, 120, 123–124
NP-completeness
background, 53–55
coping with, 35, 46–53
and DNA sequencing, 65

linear programming relaxation, 51
in Steiner tree, 41
and union-of-cliques graph, 344
NP-hardness. See NP-completeness
Numerical integration. See also Partial di¤erential
equations; Stochastic di¤erential equations
additional readings, 225
backward Euler, 217–219
and black box functions, 336
definition, 213
and extrapolation, 337
finite di¤erence method, defined, 213
forward Euler, 214–217, 222, 223, 224
implicit, 316
and interpolation, 336
and Kolmogorov equations, 273
leapfrog method, 221–223, 225, 236
line-by-line method, 256
midpoint method, 219–221
multistep methods, 221–223
and parameter-tuning, 272
single-step methods, 214–221
spectral methods, 226
speed and e‰ciency, 223–225
step size selection, 223–225, 233–234
and transformation method, 118

Objective function, 96, 268–271, 336
ODEs. See Ordinary di¤erential equations
Optimization. See also Continuous optimization;
Gibbs sampling; Metropolis method; Parameter-
tuning
background, 92
in bootstrapping, 350, 363
conjugate gradient, 91, 318
constrained (see Constraint satisfaction)
and decision problems, 36
description, 1–4
discrete, 15
and gene networks, 349
and Gibbs sampling, 152–154, 350
and interpolation, 335–337
lattice models, 5–7
Levenberg-Marquardt method, 90, 93
and Metropolis method, 147–148, 350
and model goodness, 356
(non)linear systems, 91–92, 318
and parameter-tuning, 8, 267–271
of state assignments, in HMM, 295–297
steepest descent, 89–90
without zero-finding, 89–92
Order of convergence, 248
Ordinary di¤erential equations (ODEs)
backward Euler, 217–219
and curve fitting, 335
and errors, 248
examples, 211–213
forward Euler, 214–217, 222, 223, 224

Index 385

Ordinary di¤erential equations (cont.)
and gene networks, 351–353
leapfrog method, 221–223, 225, 236
line-by-line method, 256
living cell simulation, 253–256
midpoint method, 219–221
and reaction network, 323, 352
step size selection, 223–225

Overdetermined systems, 310, 320, 330
Overfitting, 361

Parameter selection, 267, 362
Parameter-tuning. See also Expectation

maximization; Hidden Markov models;
Optimization
and biochemical reactions, 267
description, 8–10, 267, 275
DNA base evolution, 269–271
and gene sequences, 276
haplotype frequency, 280–286
haplotype inference, 286–289
implicitly specified functions, 271–273
and linear systems, 309 (see also Linear systems)
maximum likelihood, 8–10, 268, 275–277, 283
motif-finding, 303–307
and Newton-Raphson method, 80–84, 269
and noisy data, 286–289
protease example, 8–10
and protein expression, 268
protein folding example, 267
and sensitivity, 363

Parsimony, 3, 29–33
background, 10

Partial di¤erential equations (PDEs). See also
Reaction-di¤usion equations.
additional information, 239
boundary conditions, 230–233
convection, 237–239
coupled one-dimension, 228–230
di¤usion example, 227
initial conditions, 230
line-by-line method, 256
cell simulation, 253–256, 263
multiple spatial dimensions, 233–234
one spatial dimension, 228–230
step size, 233

Particle collisions, 141, 206–209
Particle di¤usion, 325
Particle interactions, 177
PDEs. See Partial di¤erential equations
Pearson correlation coe‰cient, 343
Permutation matrix, 314
Pfam protein database, 295
Philosophy of science, 363–366
Phylogeny, intraspecies, 28–33
Pivoting, 312–316
Poisson process, 191
Poisson random variable, 191

Polymerization, 61
Polynomial reduction, 46
Polynomials
Chebyshev, 340
cubic formula, 76, 329, 333
fitting to lower order, 329–331, 340
Neville’s algorithm, 326–329
quadratic formula, 76
quartic formula, 76
splines, 331–334
Polytope, 97
Popper, Karl, 364
Population dynamics, 29, 212
Population genetics, 280–286
Posting time, 205
Prediction
cut site, in proteases, 8–11
gene expression, 307, 309
protein expression, 323
Predictor-corrector schemes, 225
Primals and duals, 107
Prim’s algorithm, 18, 20
background, 33
Prior distribution. See Prior probability
Prior estimate, 303
Priority queue, 18, 205, 209–210
Prior probability, 153, 298, 349
Probability. See also Sampling
of best-fit, 275
conditional, and transitioning, 295
distribution, 347–349
fundamental transformation law, 117
maximum a posteriori (MAP), 275
maximum likelihood, 8–10, 268, 275–277, 283,
356

of migration, 198
prior, 298
Proline, 180–182
Proteases
cut site prediction, 8–11
and HIV, 10
and parameter-tuning, 8–10
Proteasomes, 11
Protein expression, 268, 323
Protein folding
and CTMMs, 180–182
and HMMs, 308
importance sampling, 154–156
lattice models, 5–7, 10 (see also Lattice models)
Markov model example, 145
Metropolis model, 142, 145, 154
parameters, 267
umbrella sampling, 155–158
Proteins
and Brownian motion, 157
channel protein, 201–203
coiled-coil, 293–295
complexes, 177, 260–262

386 Index

database, 295
domain recognition, 294, 297
exact set matching, 27
growth rate example, 95
hydrogen bonds, 158
ligand binding, 75
longest common subsequence, 25, 42–43
longest common substring, 26
sampling programs, 261
string and sequence problems, 24–27
structure simulation, 4–7
translation, 268
Pseudoinverse, 321
Pseudorandom numbers, 115
P-value calculators, 343

Quadratic formula, 76
Quadratic programming, 109
Quartic polynomials, 76
Queues, 18, 205, 207–210. See also Priority

queues

Random DNA strings, 129–133
Random mutations, 163–166
Random number generation
pseudorandom numbers, 115
rejection method, 121–124
transformation method, 115–121
Random variables. See Distributions
Random walk, 167–170, 324f
Rational function, 330
Rational interpolation, 330
Reaction-di¤usion equations, 234–237, 325
background, 239
Reaction networks, 211, 217, 260–264, 264, 271,

323–325, 335, 340
cell simulation, 260–262
data-fitting, 340
Reaction term, 234
Receiver operating characteristic (ROC) curve,

360
Recombination, 198
Reduced median network, 33
Rejection method, 121–126
background, 127
Relaxation, 51
Reversibility, 143–145
Reweighting, 21
Richardson extrapolation, 225, 337
RNAi, 352
Runge-Kutta methods
and accuracy, 221, 225, 237
with black box, 237
and cell simulation, 260
embedded, 225
fourth order, 221
midpoint method, 219–221
and stability, 221

Run time. See also Optimization; Simulation
and accuracy, 219, 233
and boundary conditions, 231
coalescent, 195–197
and CTMMs, 173–175, 273
and discrete event models, 204–206, 208–210
and importance sampling, 155
and intraspecies phylogeny, 29
and Krylov subspace methods, 319
and Metropolis method, 146, 154
and numerical integration, 225
and stability, 215
and step size selection, 217, 233
and umbrella sampling, 156–158

Sampling. See also Gibbs sampling; Importance
sampling; Markov models; Metropolis method;
Umbrella sampling
continuous distributions, 116–124, 156
discrete distributions, 124–126, 146
e‰ciency, 154
exponential random variable, 118–119
geometric random variable, 125–126
joint distributions, 119–121, 149–152
modified distribution, 156
and network inference, 350, 363
normal distributions, 120
with optimization, 350
at point in time, 182
(pseudo)random numbers, 115
rejection method, 121–124
and simulation, 7, 115
transformation method, 116–121
uniform random variable, 116
Sanger dideoxy method, 59–61
Scaled variables, 105
Science, philosophy of, 363–366
Scientific method, 363–366
Secant method, 78–80
Selfing, 198
Self-transitions
conversion to, 168
and CTMMs, 181
and mixing time bounds, 159
and molecular evolution, 163–164
Semidefinite programming, 108–110
Sensitivity, 359, 360, 362
Sequences. See DNA sequencing; String and
sequence problems

Set problems
independent set, 38, 42, 46, 54
minimum set cover, 45
minimum test set, 44
Shortest common supersequence, 43
Shortest common superstring, 44
Shortest path, 19–21
Shotgun methods, 67–71
background, 73

Index 387

Signal processing, 340
Similarity measures, 342–344
Simplex method, 97–103, 108, 110
Simulated annealing
background, 54
and Bayesian models, 349–350
description, 52
and Metropolis method, 52, 148

Simulation
Brownian motion, 241–249
chemical, in inhomogeneous solution, 234–
237
continuous systems, 211–213 (see also Contin-
uous systems)
of CTMM (pseudocode), 175f
of discrete events (see Discrete event models)
DNA, haploid, 198
DNA random string, 129–133
DNA strand, 191
DNA whole population, 192–195
implicit functions, 271–273
of macromolecular reactions, 260–262
of mutation, 4–7, 191
parameter-tuning, 267–271
of particle collisions, 141, 206–209
protein structure example, 4–7
reaction networks, 253–264
of recombination, 198
and sampling, 7, 115

Single-molecule sequencing, 72, 74
Single-pair shortest path, 19–21
Single-step methods, 219–221, 223–225
Smith-Waterman algorithm, 33
SNP selection, 44, 47
Social constructivism, 365
Solutions
convection, 237–239
di¤usion, 227, 230–237, 259, 325
inhomogeneous, 234

Sparse candidate algorithm, 351, 352
Sparse graphs, 18, 21
Sparse matrices, 315, 316, 322
Spatial models
discretization, 229, 233, 235, 255, 258
multidimentional, 85–89, 233, 325
one dimension, 228–230
reaction-di¤usion equations, 234–236
three-dimensional, 234
and time, 233
two-dimensional, 325

Spearman correlation coe‰cient, 343
Species tree, 28–33
Specificity, 359–361
Spectral methods. See also Eigenvalues; Fourier

transforms
interpolation, 340
numerical integration, 226, 239

Splines, 331–334

Stability
and accuracy, 221, 223, 251
of Adams-Bashforth methods, 223
additional information, 239
of backward Euler, 218
classifications, 215
disadvantages, 217
of forward Euler, 215–216
of leapfrog method, 222
and mutations, 4–7
references, 239
and Runge-Kutta methods, 221
and step size, 217
and stochastic di¤erential equations, 249–251
unconditional, 219
von Neumann analysis, 215–217
Standards, 264
Standard Weiner process, 241
Stationary distribution, 134–138, 149, 153–155,

159, 161
Steepest descent, 89
Steiner nodes, 32, 41
Steiner trees, 31–32, 40–41
Step sizes, 233, 337
adaptive methods, 223–225
predictor-corrector schemes, 225
and stability, 217
Stochastic di¤erential equations
accuracy, 248
additional information, 252
for Brownian motion, 241–248
and cell simulation, 256
Euler-Maruyama method, 246, 249, 250
and implicit function, 273
for protein-folding, 157
stability, 249–251
Stochastic integrals, 244
Stochastic simulation algorithm (SSA), 256–260,

263
StochSim, 256–259
Stratonovich integral, 244
String and sequence problems
applications, 24
exact set matching, 27
haplotype frequency, 280–286
haplotype inference, 286–289
HMM, 292
hybridization, 64–66, 71, 73
longest common subsequence, 25, 42–43
longest common substring, 26
Markov model example, 276
noisy data, 286–289
NP completeness, 42–44, 47
random DNA strings, 129–133
sequence alignment, 33
shortest common supersequence, 43
shortest common superstring, 44
su‰x trees, 26, 27, 33

388 Index

Subgraphs, 42, 54
Subsequences, 25, 42–43
Subspace. See Krylov subspace
Substrings, 26
Successive squaring, 133
Su‰x trees, 26, 27, 33
Sum-of-squares. See Least-squares
Supersequences, 43
Superstrings, 44
Systems Biology Markup Language (SBML), 264

Tagging SNP selection, 44, 47
Tau leap algorithm, 259
Taylor series
approximation with, 80–82, 85, 232
and backward Euler, 218
and finite di¤erence approximations, 229, 232
and forward Euler, 215
and midpoint method, 220
and multistep methods, 222, 225
and Newton-Raphson method, 80–82, 84–85
and Richardson extrapolation, 337
stochastic. See Itô-Taylor series
Temperature. See Simulated annealing
Terminal nodes. See Steiner trees
Terminator base, 59–61
Thermodynamics
and CTMMs, 180–182
and Metropolis method, 141–143, 146
Time. See Evolution; Mixing time; Run time
Tractability, 24–26, 35. See also Intractability
Transcription factor binding, 293
Transformation method, 116–121, 124
background, 127
trans isomer, proline, 180–182
Transition, Markov model, 130
Transition matrix
for CTMMs, 173
in Jukes-Cantor model, 186
in Kimura model, 189
of Markov models, 132, 134–137
Traveling salesman problem (TSP), 36, 48, 54, 147
Trees
minimum spanning, 16–18, 20, 29–31
and optimization, 2–4
Steiner, 31–32, 40–41
su‰x, 26, 27, 33
and traveling salesman, 48
Triangle traveling salesman, 48–49, 54
True negatives, 359
True positives, 359, 360
Truth, 365
Twofold cross-validation, 361

Umbrella sampling
background, 158
and Gibbs sampler, 156–158
and Metropolis sampler, 155

Unconditional stability, 219
Underdetermined system, 310, 321, 333
Union-of-cliques, 344–347

Variation distance, 160
Vertex cover
approximation algorithms, 47, 50–51
description, 38
and genetic algorithm, 53
hardness testing, 46
and independent set, 39
and minimum set cover, 45
reference, 54
Virtual Cell, 255, 261, 264
Viterbi algorithm, 296, 299
von Neumann analysis, 215, 219, 220, 250

Waiting time, 173–175
and coalescence, 198
and CTMMs, 201–204
and Poisson process, 191
and recombination, 199
Wave equation, 238
Wavelets, 223, 226, 340
Weiner process, 241
Whole population sampling, 192–195. See also
Coalescent

Wikipedia, 93, 110
Wright-Fisher neutral model, 192

Zero, avoiding, 105–107
Zero-finding
alternative approaches, 89–92
bisection method, 76–78
multivariate functions, 85–88
Newton-Raphson methods, 80–88, 90, 269
secant method, 78–80
0–1 integer programming, 51

Index 389

	Contents
	Preface
	1 Introduction
	I MODELS FOR OPTIMIZATION
	2 Classic Discrete Optimization Problems
	3 Hard Discrete Optimization Problems
	4 Case Study: Sequence Assembly
	5 General Continuous Optimization
	6 Constrained Optimization

	II SIMULATION AND SAMPLING
	7 Sampling from Probability Distributions
	8 Markov Models
	9 Markov Chain Monte Carlo Sampling
	10 Mixing Times of Markov Models
	11 Continuous-Time Markov Models
	12 Case Study: Molecular Evolution
	13 Discrete Event Simulation
	14 Numerical Integration 1: Ordinary Differential Equations
	15 Numerical Integration 2: Partial Differential Equations
	16 Numerical Integration 3: Stochastic Differential Equations
	17 Case Study: Simulating Cellular Biochemistry

	III PARAMETER-TUNING
	18 Parameter-Tuning as Optimization
	19 Expectation Maximization
	20 Hidden Markov Models
	21 Linear System-Solving
	22 Interpolation and Extrapolation
	23 Case Study: Inferring Gene Regulatory Networks
	24 Model Validation

	References
	Index

