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Preface

Many questions and applications in natural science, engineering, industry or
medical imaging lead to inverse problems, that is: given some measured data
one tries to recover a searched for quantity. These problems are of growing
interest in all these disciplines and thus there is a great need for modern and
stable solvers for these problems. A prominent example of an inverse problem
is the problem of computerized tomography: From measured X-ray attenua-
tion coefficients one has to calculate densities in human tissue. Mathematically
inverse problems often are described as operator equations of first kind

Af = g , (0.1)

where A : X → Y is a bounded operator acting on appropriate topological
spaces X and Y . In case of 2D computerized tomography the mapping A
is given by the Radon transform. Typically these operators have unbounded
inverses A−1, if they are invertible at all. For instance if A is compact with
infinite dimensional range, then A−1 is not continuous. In case of Hilbert
spaces X and Y the generalized inverse A† exists and has a dense domain.
But A† is bounded if and only if the range of A is closed which is not satisfied
for compact A. In applications the exact data g is noise contaminated e.g. by
the measurement process or discretization errors. Noisy data gε lead to an
useless solution fε = A−1gε or fε = A†gε in the sense that the error f − fε
is unacceptably large. Hence, the stable solution of equations like (0.1) with
noisy right-hand side gε require regularization methods Rγ . The mappings Rγ
are bounded operators which converge pointwise to the unbounded generalized
inverse A†. Many regularization techniques have been developed over the last
decades such as the truncated singular value decomposition, the Tikhonov-
Phillips regularization or iterative methods such as the Landweber method
and the method of conjugate gradients (CG-method) to name only the most
popular ones.

A powerful tool which subsumes a whole family of regularization tech-
niques is the method of approximate inverse. This method uses the duality of
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the operator and the spaces where it acts on. It calculates approximations to
the exact solution by smoothing it with mollifiers which are approximations
to Dirac’s delta distribution and attenuate high frequencies contained in the
solution. The method consists then of the evaluation of the measured data
with so called reconstruction kernels. The reconstruction kernels themselves
are solutions of an equation involving the dual operator and the mollifier and
can be precomputed before the measurement process starts. A further feature
of the method is its flexibility: it can be adjusted to the operator and the
underlying spaces to improve the efficiency. The first idea of solving linear
operator equations by mollifier methods arose in 1990 by Louis and Maass

[71] and it was Louis, who published its first fundamental properties [66] and
showed its regularization property [68]. Rieder and Schuster [101, 102] de-
rived a setting of the method for operators between arbitrary Hilbert spaces
and proved convergence with rates and stability. An extension of the method
to spaces of distributions was done by Schuster, Quinto [115]. The article
Schöpfer et al. [107] must be seen as a first step to realize this technique
in Banach spaces.

This monograph contains a comprehensive outline of the theoretical as-
pects of the method of approximate inverse (Part I) as well as applications of
the method to different inverse problems arising in medical imaging and non-
destructive testing (Parts II-IV). Part I gives a brief introduction to inverse
problems and regularization methods and introduces then the approximate
inverse on spaces of square integrable functions, where the Radon transform
serves as a first example. We then go one step further and present the abstract
setup of solving semi-discrete operator equations between arbitrary Hilbert
spaces by the method of approximate inverse. Semi-discrete operator equa-
tions are of wide interest since in practical applications only a finite number
of measured data is available. Part I ends with an extension of the theory to
spaces of distributions. Part II puts life into the theoretical considerations of
Part I and demonstrates their transfer to the problem of 3D Doppler tomog-
raphy. Doppler tomography belongs to the area of medical imaging and means
the problem of recovering the velocity field of a moving fluid from ultrasonic
Doppler measurements. It is outlined how the method of approximate inverse
leads to a solver of filtered backprojection type on the one hand and can be
involved in the construction of defect correction methods on the other hand.
In SONAR (SOund in NAvigation and Radiation) and SAR (Synthetic Aper-
ture Radar) the problem arises of inverting a spherical mean operator. If the
center set consists of a hyperplane this operator can no longer be described
as a bounded mapping between Hilbert or Banach spaces, but it extends
to a linear, continuous mapping between spaces of tempered distributions.
Part III of the book presents the extension of the method to distribution
spaces and shows its performance when being applied to the spherical mean
operator. Further applications such as X-ray diffractometry, which is a sort
of non-destructive testing, thermoacoustic tomography, where the spherical
mean operator is involved, too, but with spheres as center sets, and 3D
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computerized tomography are the contents of Part IV. The book contains
plenty of numerical results which prove that the method is well suited to cope
with inverse problems in practical situations and each part is completed by a
conclusion and future perspectives.

This monograph is an extended version of my habilitation thesis which I
submitted at the Saarland University Saarbrücken (Germany) in 2004. The
mathematical results contained therein would have been impossible to accom-
plish without some important people accompanying my scientific way now
for many years. Thus, the first person I would like to thank is my teacher
Prof. Dr. A.K. Louis who introduced me to the area of approximate inverse
many years ago and who supported me all the time. Part II of the book was
the result of an intensive collaboration with Prof. Dr. A. Rieder between 2000
and 2004 and I am still thankful for conveying his rich experience in approx-
imation theory to me. Part III of the book was the result of an one year stay
at Tufts University in Medford (USA) at the chair of Prof. Dr. E.T. Quinto,
an acclaimed expert in integral geometry and numerical mathematics. I owe
him many useful pointers with respect to the extension of the approximate in-
verse to distribution spaces and I will never forget his hospitality. I am further
indebted to Dr. R. Müller for a very careful review of the manuscript.

Thomas Schuster Hamburg, January 2007
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1

Ill-posed problems and regularization methods

We start by presenting the essential concepts for regularizing ill-posed
operator equations of first kind. We refer the reader who is interested in
a comprehensive treatise of this subject to the standard textbooks of Louis

[65], Engl, Hanke and Neubauer [26], Rieder [99], Tarantola [125]
and Hofmann [46]1.

We only consider the case of linear and bounded operators A between
Hilbert spaces X and Y . The set of linear and bounded operators between X
and Y is denoted by L(X,Y ). Our aim is to investigate the solution of

Af = g , (1.1)

where g ∈ Y is a given set of data and f ∈ X is the quantity we want to
determine. In case that A has a bounded inverse A−1 we obtain f by simply
calculating f = A−1g. In this situation we call (1.1) well-posed. Unfortunately
in many real applications A is not invertible at all. Even if A−1 exists, then
the inverse might not be bounded, e.g. when A is compact with infinite di-
mensional range. Moreover, in real world problems the exact data g might not
be available, but only a noise contaminated set of measurements gε ∈ Y with

‖gε − g‖Y = ε .

The corresponding solution fε = A−1gε then usually does not converge to f
if ε→ 0 and the defect

‖fε − f‖X
can be tremendously large. The solution of equations like (1.1) where A has
no bounded inverse A−1 is called an ill-posed problem due to Hadamard.

Since often A−1 does not exist, the aim is to generalize what we understand
by a solution of an equation like (1.1). To this end consider the defect

d(f) = ‖Af − g‖Y ,
1 References [26], [125] are in English.
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which satisfies

d(f)2 = ‖Af − PR(A)g‖2
Y + ‖PR(A)g − g‖2

Y . (1.2)

In (1.2) PR(A) : Y → Y denotes the orthogonal projection onto R(A), the
closure of the range of A. If g ∈ R(A) ⊕ R(A)⊥2, then the equation

Af = PR(A)g (1.3)

has a solution. From (1.2) we further deduce that every solution from (1.3)
minimizes the defect d(f) in X. If A is not injective and f a solution from
(1.3), then f + f0 also solves (1.3) for all f0 in the null space N(A) of A.
As a consequence there exists a solution of (1.3) with minimal norm. This
minimum norm solution lies in N(A)⊥ and serves as a generalized solution of
Af = g.

After defining the generalized inverse A† of a mapping A we note several
properties of A† (Lemma 1.2). Since A† is only bounded if R(A) is closed, we
need bounded approximations to A† called regularization methods (Definition
1.3).

Definition 1.1. The mapping A† : R(A) ⊕ R(A)⊥ → X, which assigns to
each element g ∈ R(A)⊕R(A)⊥ the unique solution f† of (1.3) in N(A)⊥, is
called generalized inverse (Moore-Penrose inverse) of A.

If A is injective then we obviously have that A−1 and A† coincide on R(A).
The following lemma contains some fundamental properties of the generalized
inverse.

Lemma 1.2. Let A : X → Y be linear and bounded and g ∈ D(A†) :=
R(A) ⊕ R(A)⊥. Then,

1. A† is linear.
2. f† = A†g is the unique solution of

A∗ Af = A∗g (1.4)

in N(A)⊥, that means the unique solution of (1.4) with minimal norm.
3. N(A†) = R(A)⊥, R(A†) = N(A)⊥.
4. The generalized inverse A† is bounded if and only if the renge R(A) of A

is closed.

Lemma 1.2 describes f† as solution of the normal equation which is solvable
whenever g ∈ D(A†). Note that D(A†) = R(A)⊕R(A)⊥ is dense in Y . On the
other hand the bad news are that A† is discontinuous if R(A) is not closed in
Y which is the case if A has infinite dimensional range and is compact. If we
2 For a set M in a Hilbert space the symbol M⊥ always denotes the set of all

vectors that are orthogonal to M with respect to the given inner product.
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accepted f† = A†g as solution of (1.1) we would still run into the problem that
noisy data gε would cause large reconstruction errors in A†gε. To overcome
this difficulty we approximate A† pointwise on its domain D(A†) by a sequence
of bounded operators. This leads us to the concept of regularization methods.

Definition 1.3. Let A : X → Y be bounded. A family of bounded operators
Rγ : Y → X, γ ∈ (0,+∞) is a regularization method for A†, if there exists
a parameter choice rule γ = γ(ε, gε) fulfilling

lim
ε→0

sup{γ(ε, gε) : gε ∈ Y , ‖gε − g‖Y < ε} = 0 ,

such that

lim
ε→0

sup{‖Rγ(ε,gε)gε − A†g‖X : gε ∈ Y , ‖gε − g‖Y < ε} = 0 (1.5)

holds true. The value γ is called regularization parameter.

We have not postulated that the family {Rγ} consists of linear mappings,
thus also non-linear operators are admitted. Furthermore, we only can demand
the pointwise convergence of Rγ since the uniform convergence would imply
the boundedness of the limit A† due to the Banach-Steinhaus theorem. As a
consequence we have that

lim
γ→0

‖Rγ‖Y→X = +∞ .

Example 1.4. a) (Truncated Singular Value Decomposition)
An important tool for constructing regularization methods is the singular
value decomposition (SVD) of a compact operator A. The SVD consists of a
sequence of triples (σn, vn, un)n∈N ⊂ R+ ×X × Y with the property

Avn = σn un , A∗un = σn vn , n ∈ N .

The sets {vn}n ⊂ X and {un}n ⊂ Y further form complete orthonormal
systems of N(A)⊥ = R(A∗) and R(A) = N(A∗), respectively. The sequence
{σn}n has the unique limit point 0. The generalized inverse A† can be repre-
sented with the SVD as

A†g =
∑

σn>0

σ−1
n 〈g, un〉Y vn , g ∈ D(A†) . (1.6)

For a g ∈ Y the truncated SVD is then defined by

Rγg =
∑

σn≥γ
σ−1
n 〈g, un〉Y vn . (1.7)

From (1.7) and (1.6) we easily obtain the pointwise convergence to A†.

b) (Tikhonov-Phillips regularization)
The Tikhonov-Phillips regularization reads as
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Rγg = (A∗ A + γ2 I)−1 A∗g , g ∈ Y ,

and is equivalent to the minimization problem

arg min{‖Af − g‖2
Y + γ2 ‖f‖2

X : f ∈ X}3 , (1.8)

in the sense that Rγg minimizes the functional in (1.8). The penalty term
‖f‖2

X can be alternated. The Tikhonov-Phillips regularization can also be
written by means of the SVD as

Rγg =
∑

σn>0

(σ2
n + γ2)−1 σn 〈g, un〉Y vn , g ∈ Y .

Both, the truncated SVD as well as the Tikhonov-Phillips regularization be-
long to the class of filter methods, since they are generated by introducing a
filter in the representation for A† (1.6) which attenuates the small singular
values causing numerical instabilities. We refer to Louis [65] for more details.

c) We can also see iterative methods like the Landweber method or the con-
jugate gradient method as regularization methods. Here, the regularization
parameter is given by the number of iteration steps. The regularization prop-
erties of these methods have been investigated e.g. in Hanke [40, 41] and
Neubauer [85].

Once we have chosen a specific regularization method, we are interested
in the quality of the method. In other words: What is the convergence rate
of the error ‖Rγgε−A†g‖Y under certain conditions on A†g? To this end we
introduce the spaces

Xν = {f ∈ N(A)⊥ : f ∈ D((A∗ A)−ν/2)} = R((A∗ A)ν/2) , ν ∈ R ,

which in fact turn into Hilbert spaces when we endow them with the inner
product

〈f1, f2〉ν =
∑

σn>0

σ−2 ν
n 〈f1, vn〉X 〈f2, vn〉X .

Moreover, because ofXµ ⊂ Xν for µ > ν, the family {Xν} represents a Hilbert
scale. The requirement f ∈ Xν can be seen as a sort of regularity assumption:
With growing ν the spaces Xν contain ‘smoother’ elements. The worst case
error of a regularization method for solving Af = g with noisy data gε under
the assumption that ‖A†g‖ν ≤ ρ is then given by

Eν(ε, ρ,Rγ) = sup{‖Rγgε − A†g‖X : ‖gε − g‖Y < ε , ‖A†g‖ν ≤ ρ} .

The unavoidable error for solving this problem is

3 For a functional J the symbol arg min is defined as f∗ = arg min{J (f) : f ∈
X} ⇔ J (f∗) = min{J (f) : f ∈ X}.
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Eν(ε, ρ) = inf
T∈L(Y,X)

Eν(ε, ρ, T ) .

One can show the estimate

Eν(ε, ρ) ≤ εν/(ν+1) ρ1/(ν+1) ,

which is sharp. This leads to the definition of optimal and order optimal
regularization methods.

Definition 1.5. A regularization method {Rγ}γ is called optimal for ν, if for
each ε > 0 and ρ > 0 there exists a parameter γ = γ(ε, ρ) such that

Eν(ε, ρ,Rγ) ≤ εν/(ν+1) ρ1/(ν+1)

is valid. The method is called order optimal for ν, if for each ε > 0 and ρ > 0
there exists a parameter γ = γ(ε, ρ) and a constant c ≥ 1 such that

Eν(ε, ρ,Rγ) ≤ c εν/(ν+1) ρ1/(ν+1)

holds true.

The Tikhonov-Phillips regularization is order optimal under certain as-
sumptions on the degree of smoothness ν. Applying a certain parameter choice
rule γ, the truncated SVD turns to a regularization method which is order
optimal for all ν > 0 but which is not optimal. For detailed investigations we
again refer to Louis [65].



2

Approximate inverse in L2-spaces

The method of approximate inverse includes a whole class of regularization
schemes. The concept of these mollifier schemes has been established in a
paper by Louis and Maass [71] in 1990, its essential properties can be
read in Louis [66]. Just as in [71] we confine ourselves to linear, bounded
operators between L2-spaces. Throughout this chapter let X = L2(Ω1, µ1),
Y = L2(Ω2, µ2), where Ωi ⊂ R

ni are open, bounded domains and let µi
be measures defined on Ωi. This chapter is concerned with the solution of
operator equations of first kind

Af = g , (2.1)

applying the method of approximate inverse, where A : L2(Ω1, µ1) →
L2(Ω2, µ2) is supposed to be linear and bounded.

In the first section we introduce the main idea of the method, prove its
regularization property and point out its advantages considering the task of
solving (2.1). One feature of this technique is that the computation of recon-
struction kernels is done independently of the measured data g and thus is
not influenced by noise. The second section demonstrates the performance
of the method in case that A = R is the two-dimensional Radon transform.
The corresponding inverse problem of solving Rf = g serves as mathematical
model of two-dimensional computerized tomography (CT). Applying the ap-
proximate inverse to R leads to an inversion scheme of filtered backprojection
type. This is a standard algorithm used in today’s CT scanners.

2.1 The idea of approximate inverse

The main idea of approximate inverse is to calculate a smoothed version of
the exact solution f of (2.1) or its generalized inverse f† = A†g rather than
f itself. This is done by computing the moments

fγ(y) = 〈f, eγ(·, y)〉X (2.2)
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of f with an explicitly given function eγ(x, y) ∈ L2(Rn1 × R
n1 , µ1 × µ2),

γ ∈ (0,+∞). The function eγ is to be chosen such that eγ(x, y) approximates
Diracs delta distribution1 δ(y−x) in a way being specified in Definition 2.1. In
this situation we obviously have that fγ(y) ≈ f(y), i.e. fγ is an approximation
to the original f . In general we further will choose eγ as a smooth, at least
differentiable, function implying fγ to be smooth, too. For this reason we call
eγ a mollifier, that means a ‘smoother’. We now specify this terminology. Note
that we have L2(Ω1, µ1) ↪→ L2(Rn1 , µ1) putting f(x) = 0 for x �∈ Ω1. We will
use this embedding without stating it explicitly.

Definition 2.1. Let for all y ∈ R
n1 be eγ(·, y) a function in L2(Rn1 , µ1) which

has mean value equal to one for all γ > 0,
∫

Rn1

eγ(x, y) dµ1(x) = 1 , y ∈ R
n1 .

If further

fγ(y) =
∫

Rn1

f(x) eγ(x, y) dµ1(x) , y ∈ R
n1

converges to f in L2(Ω1, µ1) as γ → 0, then we call eγ a mollifier.

Example 2.2. Mollifiers are commonly generated by means of translation (with
respect to y) and dilation (with respect to γ) of a square integrable function
with normalized mean value. More specifically, take a smooth e ∈ L2(Rn1 , µ1)
with

∫
e(x) dx = 1 and set

eγ(x, y) = γ−n1 e((x− y)/γ) . (2.3)

It is readily verified that eγ defined by (2.3) represents a mollifier in the sense
of Definition 2.1. Typical examples for functions e of such type are given by
the Gaussian function

eG(x) = (2π)−n1/2 exp(−‖x‖2/2) , (2.4)

or by

eν(x) = κν

{
(1 − ‖x‖2)ν , ‖x‖ ≤ 1 ,

0 , ‖x‖ > 1 (2.5)

where κν = (
∫
‖x‖≤1

(1−‖x‖2)ν dx)−1. The Gaussian function is arbitrarily dif-
ferentiable, but does not have a compact support. The regularity of eν grows
with ν (see [102]) and generates a mollifier eγ(·, y) having compact support in
{x : ‖x − y‖ ≤ γ}. The radial parts of both functions are displayed in figure
2.1, where we took the Lebesgue measure as µ1 in these examples.
We further mention that scaling functions of wavelets with mean value one
are also suited as mollifiers, see e.g. Louis, Maass and Rieder [72]. Note

1 For continuous f we have δ(f) =
∫
f(t)δ(t) dt = f(0).
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that mollifiers do not need to satisfy any symmetries though both exam-
ples (2.4) as well as (2.5) are radially symmetric. Radial symmetric molli-
fiers are convenient if one does not want to prefer a specific direction when
smoothing f .

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 2.1. Radial parts of the Gaussian function eG (2.4) (solid line) and of the
function eν (2.5) for ν = 2 (dashed line)

The problem of calculating fγ is that the unknown exact solution f appears
in Definition (2.2). To overcome this difficulty we assume for the moment, that
the mollifier eγ(·, y) is in the range of the adjoint A∗ for all y ∈ Ω1. Hence,
equation

A∗υγ(y) = eγ(·, y) , y ∈ Ω1 (2.6)

has a solution υγ(y) ∈ Y and fγ computes as

fγ(y) = 〈f,A∗υγ(y)〉X = 〈Af, υγ(y)〉Y = 〈g, υγ(y)〉Y , y ∈ Ω1 .

That means that the computation of fγ can be done by a simple evaluation
of inner products of the given measured data g ∈ Y and solutions υγ(y) of
(2.6). In general equation (2.6) is not solvable, especially if A is not injective
and hence the range of A∗ is not dense in X. If at least eγ(·, y) ∈ D((A∗)†) =
R(A∗) ⊕ R(A∗)⊥, then the normal equation

AA∗υγ(y) = Aeγ(·, y) , y ∈ Ω1 (2.7)

has a solution which due to Lemma 1.2 minimizes the defect

min{‖A∗v − eγ(·, y)‖X : v ∈ Y } .

The mapping g → 〈g, υγ(y)〉Y is called the approximate inverse of A.

Definition 2.3. Suppose A : L2(Ω1, µ1) → L2(Ω2, µ2) to be linear and
bounded and let eγ be a mollifier satisfying eγ(·, y) ∈ D((A∗)†) for y ∈ Ω1.
The linear mapping Ãγ : L2(Ω2, µ2) → L2(Ω1, µ1) defined by
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Ãγg(y) = 〈g, υγ(y)〉L2(Ω2,µ2) , y ∈ Ω1 , (2.8)

where υγ(y) solves (2.7) is called the (continuous) approximate inverse of A.
A solution υγ(y) of (2.7) is the reconstruction kernel associated to eγ .

Lemma 1.2 tells us that every solution of (2.7) validates

A∗υγ(y) = PR(A∗)eγ(·, y) , y ∈ Ω1 .

Thus, we have that

ÃγAf(y) = 〈f,PR(A∗)eγ(·, y)〉L2(Ω1,µ1) = 〈PR(A∗)f, eγ(·, y)〉L2(Ω1,µ1) (2.9)

proving that the approximate inverse does not depend on the particular solu-
tion of (2.7). Furthermore (2.9) implies that

‖Ãγg‖L2(Ω1,µ1) ≤ ‖f‖L2(Ω1,µ1) ‖eγ‖L2(Rn1×Rn2 ,µ1×µ2) ,

from what we deduce that Ãγg is in L2(Ω1, µ1) and the operator Ãγ is well-
defined. The intention of introducing the approximate inverse was to get a
class of regularization methods. And in fact we can prove pointwise conver-
gence of Ãγg to A†g.

Theorem 2.4. The operator Ãγ : Y → X is continuous, if

lγ :=
(∫

Ω1

‖υγ(y)‖2
L2(Ω2,µ2)

dµ1(y)
)1/2

<∞ . (2.10)

In case that (2.10) is satisfied, then ‖Ãγ‖Y→X ≤ lγ .
Further, if g = Af , g ∈ D(A†), then the convergence

lim
γ→0

Ãγg = A†g , g ∈ D(A†) (2.11)

holds true.

Proof. From (2.8) we immediately deduce for g ∈ Y

‖Ãγg‖2
L2(Ω1,µ1)

=
∫

Ω1

∣∣∣〈g, υ(y)〉L2(Ω2,µ2)

∣∣∣
2

dµ1(y) ≤ l2γ ‖g‖2
L2(Ω2,µ2)

.

To prove (2.11) we use (2.9) and Definition 1.1 to obtain

Ãγg(y) = 〈PR(A∗)f, eγ(·, y)〉L2(Ω1,µ1) = 〈A†g, eγ(·, y)〉L2(Ω1,µ1) .

Since eγ has the mollifier property according to Definition 2.1, the convergence
(2.11) is verified. ��
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Remark 2.5. To prove stability with respect to noise we would have to state a
parameter choice rule for γ depending of the noise level ε in the data gε such
that

lim
ε→0

sup{‖Ãγ(ε,gε)g
ε − A†g‖X : gε ∈ Y , ‖gε − g‖Y < ε} = 0

is guaranteed according to Definition 1.3. An application of the triangle in-
equality yields

‖Ãγg
ε − A†g‖X ≤ ‖Ãγ‖Y→X ‖gε − g‖Y + ‖Ãγg − A†g‖X

≤ lγ ε+ ‖Ãγg − A†g‖X .

Because of (2.11) we obtain convergence to 0 of the second summand for every
sequence {γ} tending to 0. The sequence {lγ} however in general diverges as
γ → 0. Hence, we have to find a parameter choice rule {γ = γ(ε)} tending to
0 in such a way that

lim
ε→0
lγ(ε) ε = 0 .

That procedure, which is typical for regularizing ill-posed problems, will be
outlined in detail in Part II when applying the method to the problem of
Doppler tomography.

So far we did not say anything about how to compute reconstruction
kernels, that means how to solve equation (2.6) or (2.7), respectively. We
point out two possibilities: one by means of an inversion formula for A, the
second with the help of the SVD.

Assume that A is injective, eγ(·, y) ∈ R(A∗) and that we have an inversion
formula

f = BAf (2.12)

at our disposal, where B : Y → X is bounded. Then, a solution of (2.6) is
given by

υγ(y) = B∗eγ(·, y) (2.13)

with B∗ : X → Y the adjoint of B. Since A∗ B∗ = I|R(A∗)
, υγ(y) is in fact a

reconstruction kernel for A.
If A is compact, then there exists a SVD {σn, vn, un}n∈N. The unique

solution of (2.7) in N(A∗)⊥, that is υγ(y) = (A∗)†eγ(·, y), is then represented
according to (1.6) by

υγ(y) =
∑

σn>0

σ−1
n 〈eγ(·, y), vn〉L2(Ω1,µ1) un (2.14a)

=
∑

σn>0

σ−2
n 〈Aeγ(·, y), un〉L2(Ω2,µ2) un . (2.14b)

In practical situations we have to cut off the series (2.14b) after finitely many
steps leading to unwanted artifacts in the reconstructions. That is why the
cut-off index must be chosen carefully.
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A further possibility to get an approximate solution of (2.6) is to use a
projection method. To do so we have to define subspaces Xh ⊂ X and Yh ⊂ Y
of finite dimension and then to seek for a solution υhγ ∈ Yh of

PhA∗υhγ = Pheγ(·, y) . (2.15)

With Ph : X → Xh we denote the orthogonal projection onto Xh. Expanding

υhγ (y) =
dimYh∑

j=1

αj φj

in a basis {φj} of Yh transforms (2.15) into a system of linear equations with
the coefficients {αj} as solution. This is then to be solved by an exact or
iterative inversion scheme. A projection method to get reconstruction kernels
has been applied in [111], where the author has used a collocation method
to compute kernels for the Laplace transform. That was necessary since there
is neither an inversion formula nor the SVD available for the Laplace trans-
form in R. For a thorough study of projection methods we highly recommend
Natterer’s article [79].

The fact that the equation (2.6) does not depend on the set of data gε and
thus the computation of reconstruction kernels is independent of noise must
be seen as a great advantage of the method of approximate inverse. But the
method is not efficient in the present form, since (2.6) has to be solved for all
reconstruction points y ∈ Ω1, i.e. all values y at which we want to recover f .
Even in two dimensions this would be much too time consuming, making the
method not applicable to large scale problems even though the calculating
of the kernels can be done before the measurement process starts. There is a
possibility to overcome that predicament, if the operator A satisfies certain
invariance properties.

Theorem 2.6. Let T y
1 : X → X, T y

2 : Y → Y be bounded operators on X
and Y for y ∈ Ω1, respectively, satisfying

T y
2 AA∗ = AA∗ T y

2 , T y
2 A = A T y

1 , y ∈ Ω1 .

Further assume that the mollifier eγ is generated by T y1 . That means, there
exists a y� ∈ Ω1 with

eγ(·, y) = T y
1 eγ(·, y�) , y ∈ Ω1 .

If υγ(y�) is a solution of AA∗υγ(y�) = Aeγ(·, y�), then

υγ(y) = T y
2 υγ(y

�) (2.16)

solves (2.7) for arbitrary y ∈ Ω1.
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Proof. The assertion follows from

Aeγ(·, y) = A T y
1 eγ(·, y�) = T y

2 Aeγ(·, y�)
= T y

2 AA∗υγ(y�) = AA∗ T y
2 υγ(y

�) .

��

Theorem 2.6 has been taken from Louis [66]. In case of an injective oper-
ator A an invariance property as T y

1 A∗ = A∗ T y
2 for y ∈ Ω1 is sufficient to

verify (2.16). Since the normal equation (2.7) is equivalent to

A∗υγ(y) = PR(A∗)eγ(·, y) ,

the conjecture comes up that an intertwining with respect to A∗ is enough
even in more general situations. Actually, we will prove a theorem with weaker
assumptions in Part II. Note that A might not satisfy any invariance proper-
ties at all. In that case we can not apply Theorem 2.6.

Thanks to the invariance property (2.16) we only have to solve the normal
equation (2.7) for a single reconstruction point, namely y∗. The remaining re-
construction kernels are then produced using υγ = T y

2 υγ(y
�). This procedure

saves a lot of computation time. The method of (continuous) approximate
inverse finally reads

Ãγg(y) = 〈g, T y
2 υγ(y

�)〉L2(Ω2,µ2) , y ∈ Ω1 .

The invariance mappings T yi , i = 1, 2, in most cases rely on symmetry prop-
erties of the underlying measurement geometries.

2.2 A first example: The Radon transform

A norm ‖ · ‖ without subscript always denotes the Euclidean norm in R
n,

‖x‖ = ‖x‖2 =
√

〈x, x〉2. The Radon transform assigns a function f defined on
R

2, or part of it, to its integrals over all lines. We confine to functions defined
on the unit disk in R

2. More explicitly, let Ω2 = B1(0) = {x ∈ R
2 : ‖x‖ < 1}

be the open unit disk in R
2 and Z = [0, π]× [−1, 1]. A line L intersecting Ω2

is determined by the polar angle ϕ ∈ [0, π] of its normal and its distance from
the origin s ∈ [−1, 1],

L(ϕ, s) = {x ∈ R
2 : 〈x, ω(ϕ)〉 = s} , ϕ ∈ [0, π] , s ∈ [−1, 1] .

Here, ω(ϕ) = (cosϕ, sinϕ)� ∈ S1 = ∂Ω2 is the unit normal vector to L(ϕ, s).
Hence, the vector ω(ϕ)⊥ = (− sinϕ, cosϕ), being perpendicular to ω, is
a vector of direction associated to L(ϕ, s). The situation is emphasized in
figure 2.2.

For f ∈ L2(Ω2), the Radon transform is then defined by
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s
ϕ

L

ω(ϕ)

Fig. 2.2. Parameters of the Radon transform

Rf(ϕ, s) =
∫

L(ϕ,s)∩Ω2
f(x) d�(x) . (2.17)

Since the publication of Radon’s [95] fundamental article, where he also
stated an inversion formula for R, the mathematical properties as well as
the development of inversion schemes for that mapping have been object of
thorough research. The reason is that, amongst other applications, the Radon
transform represents the mathematical model of the two-dimensional com-
puterized tomography (CT). The results of this research can e.g. be found
in Natterer [80], Natterer, Wübbeling [84], Kak, Slaney [51], or
Helgason [43]. At first we summarize the essential mathematical properties
of R.

By virtue of the mapping (2.17) R is a linear, bounded operator between
L2(Ω2) and L2(Z). The corresponding adjoint R∗ : L2(Z) → L2(Ω2) has the
representation

R∗g(x) =

π∫

0

g(ω(ϕ), 〈x, ω(ϕ)〉) dϕ (2.18)

and integrates a function g over all lines intersecting x. That is why R is called
backprojection. The Radon transform is injective and an inversion formula is
given by

f =
1
2π

R∗ ΛRf , f ∈ L2(Ω2) , (2.19)

where FΛg(ϕ, σ) = |σ|Fg(ϕ, σ) denotes the Riesz potential and

Fg(ϕ, σ) = (2π)−1/2

∫

R

g(ϕ, s) e−iσ s ds

is the one-dimensional Fourier transform with respect to the variable s.
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We give an outline how to determine reconstruction kernels for R by means
of formula (2.19) and the usage of appropriate invariances due to Theorem
2.6. The kernels are then be used to formulate the method of approximate
inverse from Section 2.1 to solve the inverse problem

Rf = g . (2.20)

Equation (2.20) can be interpreted as the mathematical formulation of the
two-dimensional CT problem: We have to reconstruct the density function f
from measured line integrals g.

Let e ∈ L2(R2) be a function with mean value 1,
∫

R2
e(x) dx = 1 .

We generate a mollifier by translating and dialating e,

eγ(x, y) = T y
1,γe(x) = γ−2 e

(x− y
γ

)
, x, y ∈ R

2 . (2.21)

It is easily verified that

lim
γ→0

〈f, eγ(·, y)〉L2(R2) = f(y)

in L2(R2) and hence that eγ is a mollifier in the sense of Definition (2.1).
Furthermore T y

1,γ : L2(R2) → L2(R2) is linear, continuous and satisfies an
intertwining with the backprojection R∗.

Lemma 2.7. Fix y ∈ R
2 and define

T y
2,γg(ϕ, s) = γ−2 g

(
ϕ,
s− 〈y, ω(ϕ)〉

γ

)
, g ∈ L2((0, π) × R) .

Then, T y
2,γ is linear and bounded on L2((0, π) × R) and obeys the invariance

property
T y

1,γ R∗ = R∗ T y
2,γ . (2.22)

Proof. Since T y
2,γ is a composition of linear, bounded operators, the first part

of Lemma 2.7 is obvious. Assertion (2.22) follows from

R∗ T y
2,γg(x) = γ−2

π∫

0

g
(
ϕ,

〈x, ω(ϕ)〉 − 〈y, ω(ϕ)〉
γ

)
dϕ

= γ−2

π∫

0

g
(
ϕ,

〈x− y, ω(ϕ)〉
γ

)
dϕ

= γ−2R∗g
(x− y
γ

)
= T y

1,γ R∗g(x) .

��
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With the help of (2.22) we can show how to produce an arbitrary kernel
υγ(y) associated to eγ(·, y) from a single one.

Corollary 2.8. Suppose e ∈ R(R∗) and υ to be a solution of

R∗υ = e . (2.23)

Then,
υγ(y) = T y

2,γυ (2.24)

solves R∗υγ(y) = eγ(·, y), where eγ is the mollifier (2.21).

Proof. This corollary is an immediate consequence from (2.22), the injectivity
of R and Theorem 2.6. ��

Corollary 2.8 tells us that we only have to solve (2.23). The kernels υγ(y)
are then generated by applying T y

2,γ to that solution. Note that (2.23) is
equivalent to the normal equation, since R is injective. A solution υ of (2.23)
can be obtained using the inversion formula (2.19). We get

υ =
1

2π
ΛRe . (2.25)

To calculate υ from (2.25) explicitly we use the Fourier slice theorem. For
f ∈ L2(R2) we have, that

FRf(ϕ, σ) = (2π)1/2 f̂(σ ω(ϕ)) , σ ∈ R , ϕ ∈ [0, π] . (2.26)

On the right-hand side of (2.26) we have used the two-dimensional Fourier
transform

Ff(ξ) = f̂(ξ) = (2π)−1

∫

R2
f(x) e−i 〈ξ,x〉 dx .

Since we do not want to prefer a particular direction when filtering f , we
choose a mollifier e which is radially symmetric, e(x) = e(‖x‖).

Lemma 2.9. Let e ∈ L2(R2) be radially symmetric with
∫

R2 e(x) dx = 1.
Then,

υ(s) = π−1

∞∫

0

σ ê(σ ω(0)) cos(s σ) dσ (2.27)

solves (2.23). Particularly, the solution is independent of ϕ.

Proof. Using (2.25) and the Fourier slice Theorem (2.26) we get

υ̂(ϕ, σ) = (2π)−1 FΛRe(ϕ, σ) = (2π)−1 |σ|FRe(ϕ, σ)
= (2π)−1/2 |σ| ê(σ ω(ϕ)) .
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Since e is radially symmetric, its Fourier transform ê also does not depend on
the direction and we may write ê(σ ω(ϕ)) = ê(σ ω(0)). An application of the
inverse Fourier transform finally yields

υ(s) = (2π)−1

∞∫

−∞
|σ| ê(σ ω(0)) ei s σ dσ

= π−1

∞∫

0

σ ê(σ ω(0)) cos(s σ) dσ .

��

Example 2.10. a) The Gaussian (2.4) is radially symmetric with mean value
equal to 1. Taking into account êG(σ) = (2π)−1 exp(−σ2/2), the correspond-
ing reconstruction kernel (for n1 = 2) computes as

υG(s) =
1

2π2

∞∫

0

σ exp(−σ2/2) cos(s σ) dσ

= − 1
2π2

∞∫

0

∂

∂σ

(
exp(−σ2/2)

)
cos(s σ) dσ .

Applying formulae (7.4.7) and (7.1.3) from Abramowitz, Stegun [2] we
obtain

υG(s) =
1

2π2

(
1 + i

√
π

2
s exp(−s2/2) erf(i s/

√
2)
)
, (2.28)

where erf(t) = (2/
√
π)
∫ t
0

exp(−z2) dz denotes the error function. Just as eG
the reconstruction kernel υG does not have a compact support.

b) The function (2.5) represents a radially symmetric mollifier with com-
pact support but without the smoothness of the Gaussian. Let n1 = 2, and
ν ∈ N. Then, eν reads

eν(x) =
ν + 1
π

{
(1 − ‖x‖2)ν , ‖x‖ ≤ 1 ,

0 , ‖x‖ > 1 . (2.29)

The factor (ν + 1)/π was chosen such that
∫
eν(x) dx = 1. The smoothness

of eν increases with ν, we have eν ∈ Hα
0 (Ω2) whenever α < ν + 1/2. We are

interested in the reconstruction kernel υν associated with eν . Using spherical
coordinates we compute

êν(σ ω(0)) =
ν + 1
π

1∫

0

r (1 − r2)ν J0(r σ) dr , (2.30)

where
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Jµ(z) =
(z

2

)µ ∞∑

k=0

(−1)k

k! Γ(µ+ k + 1)

(z
2

)2 k

(2.31)

is the Bessel function of first kind and order µ and Γ denotes Eulers gamma
function. Putting the series expansion (2.31) into (2.30) and switching the
order of summation and integration leads to

êν(σ ω(0)) =
(ν + 1)!

2π

∞∑

k=0

(−1)k
σ2k

4k k! Γ(ν + k + 2)

=
2ν (ν + 1)!
π

σ−(ν+1) Jν+1(σ) . (2.32)

We use again (2.27) together with formula (6.699.2) from Gradshteyn,

Rizhik [32] to find the representation

υν(s) =
2ν (ν + 1)!
π2

∞∫

0

σ−ν Jν+1(σ) cos(s σ) dσ

(2.33)

=
1

2π2

{
2 (ν + 1) 2F1(1,−ν; 1/2; s2) , |s| ≤ 1 ,

−s−2
2F1(1, 3/2; ν + 2; s−2) , |s| > 1 .

Here, 2F1 means the hypergeometric function. Note that the kernel υν does
not have a compact support whereas eν has one, namely Ω2, see (2.29). The
reason is the Riesz potential Λ which occurs in (2.25) and is a non-local
operator. Certainly the smoothness of υν grows with ν just as it does for the
mollifier eν . Figure 2.3 illustrates the reconstruction kernels υG as well as υν

for different values of ν.
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Fig. 2.3. Plot of the reconstruction kernels υG (left picture) and υν for ν = 2, 3, 4
(right picture)

Assume e to be a mollifier and υ the corresponding reconstruction kernel,
that is R∗υ = e, then the method of approximate inverse to solving (2.20) for
given measured data g ∈ L2(Z) reads
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R̃γg(y) = 〈g, T y
2,γυ〉L2(Z)

(2.34)

= γ−2

π∫

0

1∫

−1

g(ϕ, s) υ
(
ϕ,
s− 〈y, ω(ϕ)〉

γ

)
dsdϕ

according to Corollary 2.8. A discretization of (2.34) by applying a trapezoidal
sum leads to the method of filtered backprojection, the most common algorithm
in computerized tomography, see e.g. Natterer [80]. The term ‘filtered back-
projection’ is explained by the fact that the inner integration in (2.34) can
be seen as a filtering of the measured data g followed by the backprojection,
that is the summation over all lines intersecting the reconstruction point y.
Figure 2.4 shows reconstructions of the well known Shepp-Logan head phan-
tom using the kernels υG and υν for ν = 6. We see that the Gaussian
has a large smoothing effect making the boundaries of the ellipses a little
fuzzy, whereas the mollifier e6 yields an image with contoures which are
pretty visible.

One might argue that the application of the approximate inverse to the
Radon inversion does not yield a novel solution scheme for this inverse prob-
lem. But the convergence and stability analysis in Section 3.2 allows for error
estimates with requirements for the solution f which are significantly weaker
then previous ones. Furthermore we did not have any a priori constraints to a
coupling of the discretization step size in s and the regularization parameter
γ as it is the case for the widely used Shepp-Logan filter, see Shepp, Logan

[117] and Natterer [80].

Remark 2.11. If υΛγ (y) solves R∗υΛγ (y) = Λeγ(·, y), then we have

〈Λf, eγ(·, y)〉L2(R2) = 〈Rf, υΛγ 〉

because of the symmetry of Λ. Thus, we get a smoothed version of Λf when
using υΛγ (y) as kernel for the approximate inverse. Since the Λ-operator pre-
serves the singular support of f , computing Λf emphasizes singularities such
as edges and jumps of f . This sort of tomography is called lambda tomogra-
phy. Standard references for lambda and local tomography are Vainberg and

Fangois [127], Faridani et al. [29, 27], and Rashid-Farrokhi et al. [97].
The application of the method of approximate inverse to lambda tomography
is outlined in Rieder, Dietz and Schuster [100].
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Fig. 2.4. Reconstruction of the Shepp-Logan head phantom using the Gaussian eG
as mollifier (top left) and e6 (bottom left). To the right corresponding cross sections
are displayed.
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Approximate inverse in Hilbert spaces

We go one step further and focus at linear and bounded operators

A : X → Y
between real or complex Hilbert spaces X and Y .

The method of continuous approximate inverse introduced in Chapter 2
is not close to reality with respect to two points. On the one hand, in practi-
cal situations we only have a finite number of data available rather than a
function g. On the other hand, we evaluate the inner products 〈g, υγ(y)〉 for
finitely many points y ∈ Ω1 only and not in the whole of Ω1. This predicament
suggests to consider the semi-discrete equation

Anf = gn

instead of Af = g. Here, gn ∈ K
n, K = R,C, is the vector containing the n

measurement data and An emerges from A by a discretization to be specified.
Once we have stated the concept of a mollifier in an arbitrary Hilbert space
and have a bunch of mollifers {ei}di=1 ⊂ X at hand, our aim is to approximate
moments

〈f, ei〉X , i = 1, . . . , d

in a way similar to (2.2) using the finite set of data gn only. Using the mo-
ments 〈f, ei〉X we approximate f by an interpolation operator and show strong
convergence in X.

Thus the idea of this chapter is not only the generalization of the approx-
imate inverse to Hilbert spaces but also to establish a framework well suited
to address real world problems.

3.1 Semi-discrete operator equations

Let K be the field of real or complex numbers, respectively. As mentioned
we can not expect to have all data g ∈ Y available. Moreover, we model the
measurement process by a so-called observation operator
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Ψn : Y → K
n (3.1)

and assume that data gn = Ψng ∈ K
n are given. The observation opera-

tor contains all details about the measurement device like the measurement
geometry and the particular discretization. Further we suppose Ψn to be con-
tinuous, e.g. we may consider gn as a finite number of moments of g which
are measured. The task is then to find an element f ∈ X satisfying

Anf = gn , (3.2)

where An = ΨnA. Since problem (3.2) is underdetermined, the minimum-
norm solution f†n = A†

ngn, that is the unique solution of

A∗
nAnf = A∗

ngn (3.3)

in N(An)⊥, is the best we can hope for. Since dim R(An) < ∞ and hence
closed, A†

ngn is well defined for all gn ∈ K
n. Applying the method of approx-

imate inverse we actually compute moments 〈f†, eγ(·, y)〉 of the generalized
inverse with a mollifier as can be seen from equation (2.9). Thus, we might
calculate moments

〈f†n, ei〉X , i = 1, . . . , d (3.4)

of the minimum-norm solution f†n with mollifiers ei, i = 1, . . . , d, if we want
to extend the method to solve problems like (3.2). In case that X = L2(Ω)
such a set of mollifiers {ei} is e.g. given by ei(x) = γ−2 e((x − yi)/γ), where
e is a radial symmetric function having mean value 1 and yi, i = 1, . . . , d
represent the reconstruction points in Ω. In that situation the moments (3.4)
approximate the values f†n(yi) for finitely many yi.

At first, we have to define what we mean by a mollifier in an arbitrary
Hilbert space. The aim is to use an interpolation operator to approximate f†n
with the help of the computed moments (3.4). More explicitly, given 〈f†n, ei〉X
for i = 1, . . . , d, compute

Edf
†
n =

d∑

i=1

〈f†n, ei〉X bi , (3.5)

where {bi}di=1 is a family in X associated to {ei}di=1 and is specified later. The
mapping Ed : X → X assigns values 〈f†n, ei〉X , which are obtained applying
the method of approximate inverse, to elements of X and we want that the
convergence

lim
d→∞

‖Edf†n − f†n‖X = 0

holds true. To this end we postulate the family {bi}di=1 to satisfy

c

d

d∑

i=1

|αi|2 ≤
∥∥∥

d∑

i=1

αi bi

∥∥∥
2

X
≤ C
d

d∑

i=1

|αi|2 , α ∈ K
d , (3.6)
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where C > c > 0 are two constants which are independent of d. A system {bi},
for which (3.6) is valid, is called Riesz system. The estimates (3.6) imply that
the bi are linearly independent. All that gives rise to the following definition.

Definition 3.1. Let {ei}di=1 be a subset of X and {bi}di=1 be a Riesz system
in X. We say that Ed : X → X with

Edf =
d∑

i=1

〈f, ei〉X bi (3.7)

has the mollifier property, if

lim
d→∞

‖Edf − f‖X = 0 , f ∈ X (3.8)

is satisfied.

Note that the convergence property (3.8) implies that the families {ei}
und {bi} are related to each other. The reader might be interested whether
systems fulfilling (3.8) do exist. Hence, we continue by presenting a family
{ei}di=1 which has the mollifier property.

Example 3.2. Suppose Ωm = {x ∈ R
m : ‖x‖ < 1} is the open unit disc in R

m,
X = L2(Ωm) and e to be a radially symmetric function with compact support
and mean value equal to 1. Such a function is e.g. given by (2.29). For d ∈ N

we define a sequence {ed,i}i∈Zm in L2(Rm) by ed,i(x) = dm e(d x − i) where
d ≥ 2 and i ∈ Z

m. If e has the support Ωm = B1(0)1, then ed,i is supported
in Bd−1(d−1 i). The reconstruction points yi are then equal to d−1 i.

Next we have to fix a Riesz system {Bd,i}. Let for t ∈ R the linear B-spline
be given by

b(t) := b(1) =
{

1 − |t| , |t| ≤ 1 ,
0 , |t| > 1

and set bd,k(t) = b(d t− k) for k = 1, . . . , d− 1 and

bd,0(t) = χ[0,d−1](t) b(d t) und bd,d(t) = χ[1−d−1,1](t) b(d t− d) ,

where χI(t) always denotes the characteristic function of an interval I. Let
further B = b⊗ b⊗ . . .⊗ b be the m-fold tensor product of the B-spline b and
Bd,i(x) = B(d x− i). We define a mapping E(m)

d : L2(Rm) → L2(Rm) by

E
(m)
d f(x) =

∑

i∈Zm

〈f, ed,i〉L2(Rm)Bd,i(x) . (3.9)

Note that, since e is compactly supported, we have 〈f, ed,i〉L2(Rm) �= 0 only for
finitely many i ∈ Z

m. Using
∫
e(x) dx = 1 and

∫
xj e(x) dx = 0, j = 1, . . . ,m,

which follows from the radial symmetry of e, we deduce that
1 BR(z) always denotes the open ball {x ∈ R

m : ‖x− z‖ < R}.
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E
(m)
d p(x) = p(x) , x ∈ R

m (3.10)

where p is a polynomial in m variables with degree less than or equal to 1.
Thus, the mapping E(m)

d reproduces polynomials of degree 1. This is essential
to prove the mollifier property of E(m)

d .
The key idea to prove (3.8) is to use an argument from Bramble, Hilbert

[11]. To do so we need the local boundedness of E(m)
d in addition to the

conservation property (3.10). Let � = (0, 1)n be the n-dimensional unit cube
and �d,r = d−m (�+ r) be a translated and dilated version of it. If we denote
Fr = {i ∈ Z

m : supp B(·− i)∩�1,r}, then Fr is finite because of the compact
support of B and we obtain

‖E(m)
d f‖2

L2(�d,r) =
∑

k,i∈Fr
〈f, ed,k〉L2(�d,r) 〈f, ed,i〉L2(�d,r) Kk,i

≤
∑

k∈Fr
|〈f, ed,k〉L2(�d,r)|2 ‖K‖2 , (3.11)

where the real and symmetric matrix K of dimension |Fr| is given by

Kk,i = d−m
∫

�1,r

B(x− k)B(x− i) dx

= d−m
m∏

j=1

∫ rj+1

rj

b(xj − kj) b(x− ij) dxj .

Here, we used the tensor product structure of B. We proceed by estimating
the spectral norm ‖K‖2 of K. Because K is symmetric, ‖K‖2 is equal to the
eigenvalue with greatest absolute value. Gershgorin’s theorem says that all
eigenvalues of a matrix A of dimension n are contained in the set

n⋃

l=1

{
ζ ∈ C : |ζ −All| ≤

n∑

k=1
k �=l

|Alk|
}
,

see e.g. Hanke-Bourgeois [42, Theorem 23.1]. Since |Kk,i| is bounded by a
multiple of d−m, Gershgorin’s theorem implies that

‖K‖2 ≤ CB d−m .

This together with ‖ed,k‖2
L2(Rm) ≤ Ce dm and (3.11) leads to the estimate

‖E(m)
d f‖2

L2(�d,r) ≤ CB d
−m ∑

k∈Fr
‖f‖2

L2(supp ed,k)
‖ed,k‖2

L2(Rm)

≤ CB Ce‖f‖2
L2(Sd,r)

, (3.12)
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where Sd,r =
⋃
k∈Fr supp ed,k. Since E(m)

d reproduces polynomials of degree
1 we have for p ∈ Πm

1
2

‖E(m)
d f − f‖L2(�d,r) ≤ ‖f − p‖L2(�d,r) + ‖E(m)

d (p− f)‖L2(�d,r)

≤ (1 + C1/2
B C1/2

e ) ‖f − p‖L2(Sd,r) ,

and since p was arbitrary we finally get

‖E(m)
d f − f‖L2(�d,r) ≤ c inf

p∈Πm1

‖f − p‖L2(Sd,r) .

Hence, the error ‖E(m)
d f − f‖L2(�d,r) can be estimated by the approximation

power of polynomials of degree 1. Jackson’s theorem characterizes how well a
function can be approximated by polynomials of fixed degree. It can be found
in Schumaker [108, Theorem 3.12]. An application of that theorem yields

inf
p∈Πm1

‖f − p‖L2(Sd,r) ≤ c ωα(f ; d−1)2 ,

where ωα(f ; d−1)2 denotes the αth modulus of smoothness of f in L2(Sd,r).
The moduli of smoothness are described in detail in Section 2.8 in the book
of Schumaker [108]. There, one also finds the estimate

ωα(f ; t)2 ≤ tα |f |Hα(Sd,r)

which finally gives

‖E(m)
d f − f‖L2(�d,r) ≤ c d−α |f |Hα(Sd,r) , 0 ≤ α ≤ 2 .

Here, | · |Hα(Sd,r) denotes the Hα-seminorm on Sd,r. We conclude

‖E(m)
d f − f‖L2(Rm) ≤ c d−min{2,α} |f |Hα(Rm) ,

and obtain for f ∈ Hα
0 (Ωm) ⊂ Hα(Rm)

‖E(m)
d f − f‖L2(Ωm) ≤ ‖E(m)

d f − f‖L2(Rm) ≤ c d−min{2,α} |f |Hα(Ωm) . (3.13)

Since Hα
0 (Ωm) is dense in L2(Ωm) the mollifier property

lim
d→∞

‖E(m)
d f − f‖L2(Ωm) = 0 , f ∈ L2(Ωm) . (3.14)

is verified. ��

2 By Πm
k we always denote the multivariate polynomials in m variables with degree

less than or equal to k.
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We have seen that for X = L2(Ωm) systems {ei}, {bi} which validate
the convergence (3.8) actually do exist. Suppose we have approximations for
〈f†n, ei〉X – in a way to be specified later – then the mollifier property yields
Edf

†
n → f†n as d→ ∞.
So far, we did not specify how we obtain approximations to 〈f†n, ei〉X . To

this end we introduce, analogously to the L2-case in Chapter 2, reconstruction
kernels υni which are to minimize the defect ‖A∗

nw− ei‖X . In other words υni
solves the normal equation

AnA∗
nυ

n
i = Anei , i = 1, . . . ,m . (3.15)

We have an analogue to (2.9) in this semi-discrete setting too.

Lemma 3.3. If An ∈ L(X,Kn) and either g ∈ R(A) or υni the unique solu-
tion of (3.15) in R(An), then

〈f†n, ei〉X = 〈gn, υni 〉Kn , (3.16)

where gn = Ψng.

Proof. From Lemma 1.2 we have A∗
nυ

n
i = PN(An)⊥ei leading to

〈f†n, ei〉X = 〈f†n,PN(An)⊥ei〉X = 〈Anf
†
n, υ

n
i 〉Kn = 〈PR(An)gn, υ

n
i 〉Kn .

If g ∈ R(A), then gn = Ψng = ΨnAu for u ∈ X and we immediately
obtain PR(An)gn = gn. If, on the other hand, υni ∈ R(An), then obviously
PR(An)υ

n
i = υni . In both cases (3.16) is verified. ��

Equation (3.16) motivates the following definition for the approximate
inverse in the semi-discrete setting for Hilbert spaces.

Definition 3.4. Assume An : X → K
n to be linear and bounded. Let

{ei} ⊂ X, {bi} ⊂ X be systems satisfying the mollifier property (3.8). Fur-
ther let υni ∈ K

n, i = 1, . . . , d be solutions of the normal equations (3.15). The
mapping Ãn,d : K

n → X defined as

Ãn,dw =
d∑

i=1

〈w, υni 〉Kn bi (3.17)

is called (semi-discrete) approximate inverse of An.

Because of (3.8) and (3.16) we have the convergence

Ãn,dAnf = Edf†n → f†n = PN(An)⊥f as d→ ∞ . (3.18)

So far, we translated the concepts established in Chapter 2 to the semi-
discrete setting in arbitrary Hilbert spaces. The computation of the recon-
struction kernels however bears two crucial difficulties:
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1.) The matrix AnA∗
n is not sparse and has a large dimension correspond-

ing to the number of data n. This number grows tremendously, if we consider
higher-dimensional problems. Since we furthermore handle the discretization
of an inverse problem we must expect that AnA∗

n is ill-conditioned leading to
unstable solutions even when the right-hand side in (3.15) is not contaminated
by noise. In that case one might use iterative solvers yielding an approximate
solution only.

2.) Even worse is the situation where An : D(An) ⊂ X → K
n is un-

bounded. This situation e.g. appears when A = R is the Radon transform
and Ψn are point evaluations in (ϕk, sl) ∈ ([0, π] × [−1, 1]) = Z. Rieder,

Schuster [101, Appendix A] proved that

R : Hα
0 (Ω2) → Hα+1/2(Z) (3.19)

is continuous for α ≥ 0. Note that in (3.19) the smoothing by the factor 1/2
is to be understood with respect to both variables ϕ and s and thus differs
from known results in Natterer [81, Chap. II, Theorem 5.3], Louis and

Natterer [73] or Hahn and Quinto [36]. Hence, the domain D(Rn) of Rn

is given by D(Rn) = D(ΨnR) = Hα
0 (Ω2) for α > 1/2. In Rieder, Schuster

[102, Theorem 5.1] the authors construct sequences of functions {fk}k∈N in
Hα

0 (Ω2), α > 1/2, satisfying ‖fk‖L2(Ω2) ≤ 1 but ‖Rnfk‖Rn → ∞ as k → ∞.
This proves that D(R∗

n) = {0}3 and hence that the adjoint R∗
n does not exist.

Examples where An is bounded on X are integral operators with sufficiently
smooth kernels.

To include also unbounded An, like the semi-discrete Radon transform
Rn, to the concept of approximate inverse, we assume that there exist Banach
spaces X1, Y1 with continuous and dense embeddings X1 ↪→ X and Y1 ↪→ Y
such that

A : X1 → Y1
is bounded. In case A = R, due to the considerations made before, such
Banach spaces are X1 = Hα

0 (Ω2), Y1 ⊂ Hα+1/2(Z). The observation operator
Ψn : Y1 → K

n is assumed to be given as

(Ψnv)k = 〈ψn,k, v〉Y ∗
1 ×Y1 , k = 1, . . . , n ,

where ψn,k ∈ Y ∗
1 , k = 1, . . . , n, are linear and bounded functionals on Y1,

Y ∗
1 is the topological dual of Y1 and 〈·, ·〉Y ∗

1 ×Y1 denotes the dual pairing for
Y ∗

1 × Y14. Obviously D(An) = X1 and An : X1 → K
n is linear. If An is

bounded, then X1 = X also topologically and the reconstruction kernels υni
are well defined as solutions from (3.15). If An is unbounded, then A∗

n does

3 For unbounded An we have that D(A∗
n) = {v ∈ K

n : f �→
〈Anf, v〉Kn is continuous on D(An)}, see e.g. Rudin [105, Chapter 13].

4 The topological dual Y ∗ of a Banach space Y consists of all linear and bounded
functionals y∗ : Y → K. The dual pairing is given by y∗(y) =: 〈y∗, y〉Y ∗×Y for
y ∈ Y .
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not even need to exist as in case of the Radon transform. In this situation,
the reconstruction kernels are not meaningfully defined by (3.15).

If An : X1 → K
n is unbounded, we suggest the following procedure. Let

εi > 0, i = 1, . . . , d, be given. Then there exist υi in Y1 with

‖PN(A)⊥ei − A∗υi‖X ≤ εi , i = 1, . . . , d (3.20)

because Y1 is dense in Y . Such ‘continuous’ kernels can be computed by means
of the singular value decomposition of A or an inversion formula as outlined
in Section 2.1. If A is injective, then we can even postulate εi = 0 as we have
seen in Section 2.2. As a replacement for the non-existing discrete kernels
υni we essentially take the vectors which arise when applying the observation
operator Ψn to υi. More explicitly,

υni = Gn Ψnυi , i = 1, . . . , d . (3.21)

Here,Gn ∈ K
n×n is the Gramian matrix of a Riesz system {φk}nk=1 ⊂ Y which

is connected with Ψn and will define an interpolation operator Πn : Y1 → Y .
The Gramian matrix Gn then is given as

(Gn)k,l = 〈φk, φl〉Y , 1 ≤ k, l ≤ n .

We will specify the connection of the family {φk} with Ψn as well as the
interpolation operator Πn in Section 3.2. Note, that the application of Ψn to
υi is well defined because of υi ∈ Y1. The kernels (3.21) can then be used to
formulate the method of approximate inverse Ãn,d according to (3.17).

3.2 Convergence and stability

The question arises to what extent the convergence (3.18) is satisfied and, if
it does not longer hold true, which additional constraints we have to include
that it is still valid. Furthermore by now we did not take into consideration
the influence of measurement errors in the data gn. All that is subject of this
section.

As mentioned, we aim to generate kernels with the help of the observation
operator Ψn by (3.21) and use them as replacements to define the semi-discrete
approximate inverse Ãn,d by (3.17). In view of convergence results it is nec-
essary to assign the discrete values Ψnυi to an element of Y . This is done
by means of an interpolation operator Πn : Y1 → Y , which has to obey two
fundamental conditions: one is a boundedness, the other an approximation
condition. To this end let {φk}nk=1 ⊂ Y be a Riesz system in Y . The mapping
Πn : Y1 → Y is defined by

Πnv =
n∑

k=1

(Ψnv)k φk =
n∑

k=1

〈ψn,k, v〉Y ∗
1 ×Y1 φk , v ∈ Y1 . (3.22)
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Just as in the case of the mollifier operator Ed, the choice of {φk}nk=1 is not
arbitrary, either. Moreover the family {φk}nk=1 has to be such that the two
mentioned conditions are satisfied which we will specify now.

On the one hand Πn has to fulfill an approximation property. Assume
{ρn}n ⊂ [0, 1] to be a monotonically decreasing sequence tending to zero such
that

‖Πnv − v‖Y ≤ CΠ ρn ‖v‖Y1 , v ∈ Y1 , n→ ∞ (3.23)

with CΠ > 0 independent from n.
On the other hand we postulate uniform boundedness from Πn

‖Πn‖Y1→Y ≤ Cb for n→ ∞ , (3.24)

where the constant Cb > 0 does not depend on n either.
Postulating the conditions (3.23) and (3.24), it is clear that the choice of

the system {φk} depends on the observation operator Ψn. Imagine that Ψn

represents point evaluations of a function, then Πn in fact is an interpolation
operator.

If we denote by Gn ∈ K
n the Gramian matrix with respect to {φk}, i.e.

(Gn)k,l = 〈φk, φl〉Y , then

〈Ψnv,Gn Ψnw〉Kn = 〈Πnv,Πnw〉Y , v, w ∈ Y1 . (3.25)

Equation (3.25) provides an important relation between Πn and Ψn. Note
that the matrix Gn also appears in the Definition (3.21) of the replacement
kernels υni .

Lemma 3.5. There exists a constant c > 0 which does not depend on n such
that the estimate

|〈v, w〉Y − 〈Πnv,Πnw〉Y | ≤ c ρn ‖v‖Y1 ‖w‖Y1 v, w ∈ Y1 (3.26)

is valid for n→ ∞.

Proof. Using the approximation property (3.23), the boundedness (3.24) and
the triangle inequality we obtain

|〈v, w〉Y − 〈Πnv,Πnw〉Y | ≤ |〈v − Πnv, w〉Y | + |〈Πnv, w − Πnw〉Y |

≤ CΠ CY,Y1 ρn ‖v‖Y1 ‖w‖Y1 + CΠ Cb ρn ‖v‖Y1 ‖w‖Y1 ,

where CY,Y1 is the norm of the continuous embedding Y1 ↪→ Y ,

sup
‖y‖Y1=1

‖y‖Y = CY,Y1 .

The assertion follows then with c := CΠ (CY,Y1 + Cb). ��

We have all ingredients together to formulate the convergence statement
for Ãn,d.
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Theorem 3.6. Let the mappings A, Ed, Ψn and Πn be given as in sections
3.1 and 3.2. Further assume that the triples

{(ei, υi, bi)}di=1 ⊂ X × Y1 ×X

satisfy (3.8), (3.20) and that Ãn,d is defined by (3.17) where υni = Gn Ψnυi,
i = 1, . . . , d. If f ∈ X1, then there exists a constant C > 0 which does not
depend on d and n, such that

‖Ãn,dAnf − PN(A)⊥f‖X ≤ ‖(I − Ed)PN(A)⊥f‖X (3.27)

+C
(1
d

d∑

i=1

(ρ2n ‖υi‖2
Y1

+ ε2i )
)1/2

‖f‖X1 .

If further d−1
∑d
i=1 ε

2
i → 0 for d → ∞ and ρ2n d

−1
∑d
i=1 ‖υi‖2

Y1
→ 0 as

n, d→ ∞, then we have convergence

lim
n→∞
d→∞

‖Ãn,dAnf − PN(A)⊥f‖X = 0 , f ∈ X1 .

Proof. By means of the triangle inequality we estimate

‖Ãn,dAnf−PN(A)⊥f‖X≤‖(I−Ed)PN(A)⊥f‖X+‖Ed PN(A)⊥f−Ãn,dAnf‖X .

Using the identity

〈PN(A)⊥f, ei〉X = 〈f,PN(A)⊥ei〉X = 〈f,PN(A)⊥ei − A∗υi〉X + 〈Af, υi〉X

and applying (3.20) and (3.26) yields

‖Ed PN(A)⊥f − Ãn,dAnf‖2
X

=
∥∥∥

d∑

i=1

(
〈PN(A)⊥f, ei〉X − 〈Anf,Gn Ψnυi〉Kn

)
bi

∥∥∥
2

X

≤ 1
d

d∑

i=1

|〈PN(A)⊥f, ei〉X − 〈ΨnAf,Gn Ψnυi〉Kn |2

≤ 4
d

d∑

i=1

{|〈f,PN(A)⊥ei − A∗υi〉X |2 + |〈Af, υi〉Y − 〈ΠnAf,Πnυi〉Y |2}

≤ 4
d

d∑

i=1

{ε2i ‖f‖2
X + c2 ρ2n ‖Af‖2

Y1
‖υi‖2

Y1
}

≤ 4
d

d∑

i=1

{C2
X,X1

ε2i + c2 ρ2n ‖A‖2
X1→Y1

‖υi‖2
Y1
}‖f‖2

X1
,

where CX,X1 > 0 is the norm of the continuous embedding X1 ↪→ X. Setting
C := max{2CX,X1 , 2 c ‖A‖X1→Y1} with c from (3.26) completes the proof. ��
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Theorem 3.6 shows that convergence of the semi-discrete approximate in-
verse of An to the part of f being perpendicular to the null space of A ac-
tually is possible, if we only have a suitable coupling of ρn and εi. Though in
Theorem 3.6 we let n → ∞ and d → ∞ separately, we will have an appro-
priate intertwining of d and n in concrete situations such that the conditions
of the theorem are satisfied. We will demonstrate this procedure explicitly in
case of Doppler tomography in Part II of the book.

If A is not injective then an unavoidable reconstruction error occurs.

Corollary 3.7. Adopt all assumptions made in Theorem 3.6. Then,

lim
n→∞
d→∞

‖Ãn,dAnf − f‖X = ‖PN(A)f‖X .

Proof. The assertion follows from Theorem 3.6 using the estimate

‖Ãn,dAnf − f‖X ≤ ‖Ãn,dAnf − PN(A)⊥f‖X + ‖f − PN(A)⊥f‖X ,

and the fact that ‖f − PN(A)⊥f‖X = ‖PN(A)f‖X . ��

Corollary 3.7 states that Ãn,dAnf in fact converges to f if A is injec-
tive. The part of f being in the null space N(A) of A is invisible for the
measurement process and cannot be recovered.

We have demonstrated in Section 2.1 how we obtain reconstruction kernels
υi by means of an inversion formula in case of injective operators. We then
even may choose εi = 0, i = 1, . . . , d. An approximation to υi according to
(3.20) can also be obtained with the help of the SVD, if A is compact, see
Section 2.2. This is important, if A is not injective or an inversion formula
not at hand. If we cut off the series (2.14a) after Mi <∞ steps, then we get
an approximation

υi,Mi
=

Mi∑

k=0

σ−1
k 〈ei, vk〉X uk , i = 1, . . . , d , (3.28)

where {(σk, vk, uk)}k∈N0 denotes the singular value decomposition of a com-
pact operator A : X → Y . We easily see, that

lim
Mi→∞

‖A∗υi,Mi
− PN(A)⊥ei‖X = 0 ,

whence (3.20) is satisfied for sufficiently large Mi. We formulate Theorem 3.6
for the special case that υi is given by (3.28). We omit the proof which can
be found in Rieder, Schuster [101, Theorem 3.12.].

Theorem 3.8. Let A : X → Y be compact with SVD {(σk, vk, uk)}k∈N0 .
Further suppose the existence of constants 0 < λ1 < λ2 < ∞ and µ > 0 such
that

λ1 (k + 1)−µ < σk < λ2 (k + 1)−µ as k → ∞ (3.29)
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and let ‖uk‖Y1 ≤ κσ−βk for some κ > 0, β ≥ 0. In addition to the requirements
from Theorem 3.6 let ei ∈ D((A∗ A)−α) = R((A∗ A)α).
If α > (1 + β)/2 + 1/(4µ) and Mi ≥ c ρ−1/(αµ)

n for a constant c > 0 which
does not depend on n, then there exists a C > 0 with

‖Ãn,dAnf − PN(A)⊥f‖X ≤ ‖f − Edf‖X

+C ρn
(1
d

d∑

i=1

‖(A∗ A)−αei‖2
X

)1/2

‖f‖X1 .

In Theorem 3.8 the norms ‖υi‖Y1 are explicitly expressed by

‖(A∗ A)−αei‖X .

Note that (3.29) implies a polynomial decrease of the singular values. Hence,
severely ill-posed operators A, that means operators with exponentially de-
creasing singular values, are excluded by the assumptions in Theorem 3.8.

In Theorem 2.6 we investigated how far invariance properties of the un-
derlying operator A can be used to accelerate the computation of recon-
struction kernels and hence to make the whole algorithm more efficient.
The questions arises, whether this property is transfered to the condition
‖A∗υi − PN(A)⊥ei‖X < εi. Is it sufficient to determine only one single kernel
which satisfies (3.20) to generate the remaining kernels? The answer is ‘yes’, if
we restrict the invariances to be multiples of an isometry. Moreover, we need
an intertwining with respect to A∗ only.

Lemma 3.9. Let A : X → Y , T : X → X and S : Y → Y be linear and
bounded satisfying T A∗ = A∗ S. Further assume that S has dense range and
that T is the multiple of an isometry, that means the existence of a τ > 0 with
‖Tu‖X = τ ‖u‖X for u ∈ X. If ‖A∗υ−PN(A)⊥e‖X ≤ ε for e ∈ X, υ ∈ Y and
ε > 0, then

‖A∗ Sυ − PN(A)⊥ Te‖X ≤ τ ε .

Proof. We only have to show that PN(A)⊥ T = T PN(A)⊥ . Once this is proved,
the assertion follows from

‖A∗ Sυ − PN(A)⊥ Te‖X = ‖T (PN(A)⊥e− A∗υ)‖X ≤ τ ε .

First we prove the inclusions T N(A)⊥ ⊂ N(A)⊥ and T N(A) ⊂ N(A). Let
w ∈ N(A)⊥ = R(A∗). Then, there exists a sequence {zk} in Y with w =
limk→∞ A∗zk. Using the invariance property we get A∗ Szk = T A∗zk and
hence limk→∞ A∗ Szk = Tw. As a consequence we obtain Tw ∈ R(A∗) =
N(A)⊥ which is the first inclusion. Since T/τ is an isometry, we have T ∗ T =
τ2 IX . Using that identity and T A∗ = A∗ S leads to S∗ AT = τ2 A. Because
of R(S) = Y , we furthermore have N(S∗) = {0}. If u ∈ N(A), then by means
of all considerations made before we may deduce that 0 = τ2 Au = S∗ ATu
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whence ATu = 0 follows. This corresponds to the second inclusion.
Finally for x ∈ X we may summarize, that

PN(A)⊥ Tx = PN(A)⊥ T PN(A)x+ PN(A)⊥ T PN(A)⊥x = T PN(A)⊥x ,

which completes the proof. ��

Up to this moment, we only took measured data gn = Anf into con-
sideration which are free of noise. What happens, if we only have a noise
contaminated set of data gηn available? In fact, this is a more realistic assump-
tion than to have exact data. Thus, it remains to investigate the stability of
the method. To prove that Ãn,d actually is a regularization method in the
sense of Definition 1.3, we have to show the existence of a parameter choice
rule for d such that the reconstruction error tends to zero with η → 0.

We specify the mathematical setup by modelling the noise in the data
as a perturbation of the observation operator Ψn. This is motivated by the
fact that the perturbation of the data are mainly caused by the measurement
device. To this end let for η > 0 the operator Ψη

n : Y1 → K
n be defined as

(Ψη
nw)k = (Ψnw)k + ηk ‖w‖Y1 , ηk ≤ η , k = 1, . . . , n , (3.30)

what implies n−1/2‖(Ψη
n − Ψn)w‖2/‖w‖Y1 ≤ η. We outline that Ãn,d has

a regularizing effect using an appropriate coupling of d and the number of
data n. Note that setting (3.30) yields that the relative noise level is bounded
by η, but we did not specify the particular kind of noise.

Theorem 3.10. Beyond the assumptions made in Theorem 3.6 we require
that the triples

{(ei, υi, bi)}di=1 ⊂ X × Y1 ×X
allow for a coupling of d and n such that d = dn → ∞ for n→ ∞ and

lim
n→∞ ρ

2
n d

−1
n

dn∑

i=1

‖υi‖2
Y1

= 0

is valid as well as

lim
n→∞ d

−1
n

dn∑

i=1

ε2i = 0 .

If furthermore n = nη in such a way that nη → ∞ and η/ρnη = O(1) for
η → 0, then

lim
η→0

sup
{
‖Ãnη,dnη

w − PN(A)⊥f‖X : w = Ψη
nη Af , Ψη

nη satisfies (3.30)
}

= 0

for all f ∈ X1.
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Proof. We denote by gn = ΨnAf a set of exact data and by gηn = Ψη
nAf a

set of noisy data according to (3.30). Since the family {bi} is a Riesz system
we can use the second inequality in (3.6) to get

‖Ãn,d (gn − gηn)‖X ≤ C d−1/2
( d∑

i=1

|〈(Ψn − Ψη
n)Af,Gn Ψnυi〉Kn |2

)1/2

= C d−1/2
( d∑

i=1

|〈G1/2
n (Ψn − Ψη

n)Af,G
1/2
n Ψnυi〉Kn |2

)1/2

.

Since {φk} is a Riesz system too, we can estimate the spectral norm of the
Gramian matrix Gn by means of (3.6) as

‖Gn‖2 ≤ κ/n

for some constant κ > 0.
Together with (3.24), (3.25), (3.30) and the continuity of A : X1 → Y1

both estimates lead us to

‖Ãn,d (gn − gηn)‖X ≤ C d−1/2 ‖(Ψn − Ψη
n)Af‖Kn ‖G1/2

n ‖2

×
( d∑

i=1

‖G1/2
n Ψnυi‖2

Kn

)1/2

≤ C d−1/2 η ‖Af‖Y1

√
κ/n
( d∑

i=1

c−1 n ‖Πnυi‖2
Y

)1/2

≤
√
κC Cb√
c
η ‖A‖X1→Y1 ‖f‖X1

(1
d

d∑

i=1

‖υi‖2
Y1

)1/2

.

Using the convergence estimate (3.27) we finally obtain

‖Ãn,dg
η
n − PN(A)⊥f‖X ≤ ‖Ãn,d(gηn − gn)‖X + ‖Ãn,dgn − PN(A)⊥f‖X

≤‖(I − Ed)PN(A)⊥f‖X+c̃
[
(η + ρn)

(1
d

d∑

i=1

‖υi‖2
Y1

)1/2

+
(1
d

d∑

i=1

ε2i

)1/2]
‖f‖X1

with a suitable constant c̃ > 0. The proof is finished replacing n by nη and d
by dnη . ��

In Part II of the book, we consider the problem of vector field tomography
as a specific application and demonstrate the existence of sequences nη and
dnη satisfying the assumptions of Theorem 3.10.
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Approximate inverse in distribution spaces

There exist inverse problems which can no longer be represented by an
operator equation neither on Hilbert nor on Banach spaces. This situation
appears, if an integral operator does not assign smooth functions to smooth
functions again or if the elements contained in the range are not integrable.
An example for such an operator is given by the spherical Radon transform,
when the center set is a hyperplane. In contrast to the classical Radon trans-
form, the spherical Radon transform – which is also known as the spherical
mean operator – maps a function to its integrals over spheres. It serves as a
mathematical model for problems in SAR and SONAR and hence is of great
practical relevance. Even if the function f is rapidly decreasing, the spherical
means Mf are not even integrable. The mathematical properties of M are
outlined in detail in Part III.

Thus, there is motivation to investigate equations

A : V ′ →W ′

and their regularizations thoroughly, where V ′ and W ′ are dual spaces of cer-
tain function spaces. Concrete regularization methods for mappings between
distribution spaces are barely found in literature. This chapter aims to extend
the method of approximate inverse to such mappings. To do so, we have to
give a new definition of what we mean by a mollifier in a distributional sense
and this definition plays a key role in our investigations. We will state such a
definition which turns out to be a weakening compared to its introduction in
Definition 2.1. We show that the method of approximate inverse has all advan-
tages we know from the Hilbert space setting: The reconstruction kernels can
be precomputed independently of the measurement process and hence are not
affected by any noise in the measured data, and invariances of the underlying
operator A can be used to increase the efficiency of the method.

Certainly, we would like to transfer the convergence and stability analy-
sis made in Chapter 3 to the distributional case. But then we run into the
difficulty that the important term of a Riesz basis cannot be translated to
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distribution spaces meaningfully. Nevertheless, we will give a brief sketch on
how to deal with semi-discrete problems.

In this chapter we do not adapt the theory to Sobolev spaces of negative
order which also contain distributions. The reason is that there are integral
operators, as e.g. M, which can not be formulated as continuous mappings
between Sobolev spaces of negative order.

4.1 Mollifier and reconstruction kernels in dual spaces
of smooth functions

At first, we specify the function spaces V andW . LetΩ1 ⊂ K
n1 undΩ2 ⊂ K

n2

be open domains and K the field of real or complex numbers. Assume V ⊂
C∞(Ω1), W ⊂ C∞(Ω2) to be subspaces of smooth functions, which are closed
with respect to their topology. As examples, one can see the space of rapidly
decreasing functions S(Rm) or the Schwartz space D(Rm) = C∞

0 (Rm). Further
suppose that A : V ′ → W ′ is linear, continuous and injective. With V ′, W ′

we denote the dual spaces associated to V , W , that is the spaces consisting of
all linear functionals V → K, W → K which are continuous in the topology of
V and W , respectively. We consider the inverse problem to find a distribution
f ∈ V ′ which for given g ∈W ′ fulfills

Af = g . (4.1)

If we want to construct a regularization method for (4.1), then we have to take
into account that there do not exist any inner products and orthogonal pro-
jections on V ′, W ′. But the orthogonal projection plays a crucial part when
defining regularization schemes in Hilbert spaces. Since a generalized inverse
of A is not defined, it is not entirely clear what we mean by a regularization
method for operators between distribution spaces. Nevertheless, the introduc-
tion of mollifiers makes perfect sense also in that case. We denote by V ′′, W ′′

the double duals of V ,W ; these are the duals of V ′,W ′ if we endow the latter
ones with the weak ∗-topology.

Definition 4.1. Let γ > 0. Assume eγ(y) ∈ V ′′ for all y ∈ Ω1 be given, such
that

λγ(y) := 〈λ, eγ(y)〉V ′×V ′′ ∈ V ′ for all λ ∈ V ′ (4.2)

holds true. We call eγ a mollifier, if in addition to (4.2) the convergence

lim
γ→0

〈λγ , β〉V ′×V = 〈λ, β〉V ′×V for all β ∈ V (4.3)

is valid. For subspaces V1 ⊂ V ′ and V2 ⊂ V we call eγ a (V1, V2)-mollifier, iff
(4.2) is satisfied for all λ ∈ V1 and condition (4.3) holds true for all λ ∈ V1
and β ∈ V2.
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As in Definition 4.1 we always denote dual pairings with 〈·, ·〉V ′×V and
〈·, ·〉V ′×V ′′ .

Hence, if eγ is a mollifier in the sense of Definition 4.1 and f ∈ V ′ a
solution of (4.1), then

fγ(y) := 〈f, eγ(y)〉V ′×V ′′ , y ∈ Ω1

is a distribution in V ′, which converges to f with respect to the weak ∗-
topology given on V ′. Since V ⊂ V ′′ also with respect to the topology (see
Rudin [105, Section 4.5]), we may choose eγ in V yielding a smooth ap-
proximation fγ for f . For this reason, Definition 4.1 is a meaningful and
straightforward extension of the concept of mollifers to distributions.

In accordance with the approximate inverse in L2-spaces the approxi-
mations fγ will be computed with the help of reconstruction kernels also
in the distributional case. The operator A has a linear, continuous adjoint
A∗ :W ′′ → V ′′ defined by

〈A∗w, v〉V ′′×V ′ = 〈w,Av〉W ′′×W ′ , w ∈W ′′ , v ∈ V ′ ,

which has a dense range R(A∗) in V ′′ because of the injectivity of A. Assuming
eγ(y) ∈ R(A∗) for all y ∈ Ω1, then the equation

A∗υγ(y) = eγ(y) , y ∈ Ω1 (4.4)

has a solution υγ(y) and fγ(y) computes as

fγ(y) = 〈f,A∗υγ(y)〉V ′×V ′′ = 〈g, υγ(y)〉W ′×W ′′ , y ∈ Ω1 .

This motivates the following extension of the method of approximate inverse.

Definition 4.2. Assume A : V ′ → W ′ to be linear, continuous and injective
and eγ to be a mollifier according to Definition 4.1. Furthermore let eγ(y) ∈
R(A∗) for all y ∈ Ω1. The mapping Ãγ :W ′ → V ′ defined by

Ãγw(y) = 〈w, υγ(y)〉W ′×W ′′ , w ∈W ′ , y ∈ Ω1 , (4.5)

where υγ(y) solves (4.4), is called (distributional) approximate inverse of A.

Note that Definition 4.1 implies that Ãγ is well-defined: For w ∈ W ′ we
always have Ãγw ∈ V ′.

Remark 4.3. The particular choice of eγ(y) ⊂ V in general does not automat-
ically imply υγ(y) ∈W and hence the reconstruction kernel being smooth (if
it exists at all). Thus, the question arises: When does (4.4) have a solution
contained in W , supposed that the mollifier is in V ? This is likely – but not
guaranteed – if R(A∗) ∩ V is dense in V . This is the case, if
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a) the function spaces V and W are reflexive, that means we have V = V ′′,
W =W ′′, also with respect to the topology. In this situation A∗ :W → V
is linear, continuous with dense range.

b) we have A∗(W ) ⊂ V ⊂ V ′′.

We now show that the name approximate inverse actually is justified
for Ãγ .

Lemma 4.4. If g ∈ R(A), A ∈ L(V ′,W ′) is one-to-one and eγ(y) ∈ R(A∗)
for all y ∈ Ω1, then

lim
γ→0

Ãγg = f in V ′ ,

where Af = g.

Proof. Since A is one-to-one, g ∈ R(A), there is a unique f with Af = g. The
condition for eγ assures that (4.4) is solvable. The convergence finally follows
from (4.5) and the fact that eγ is a mollifier in the sense of Definition 4.1. ��

Condition eγ(y) ∈ R(A∗), y ∈ Ω1, seems to be rather restrictive at first
glance. However, in applications equation (4.4) is to be solved for a finite
number of reconstruction points yi ∈ Ω1 only. Furthermore we are eager again
to use invariances of A so that (4.4) possibly has to be solved only once. To
do so we have to take into account that in the distributional case we rely upon
invariances for the adjoint A∗ since a normal equation is no longer available.

Lemma 4.5. Assume that T y
1 ∈ L(V ′′), T y

2 ∈ L(W ′′) are linear and continu-
ous for y ∈ Ω1 and that there exists a y� ∈ Ω1 with eγ(y) = T y

1 eγ(y
�), where

eγ(y�) ∈ R(A∗). If
T y

1 A∗ = A∗ T y
2 , y ∈ Ω1 , (4.6)

then
υγ(y) = T y

2 υγ(y
�)

are reconstruction kernels associated with eγ(y) whenever υγ(y�) satisfies

A∗υγ(y�) = eγ(y�) .

Proof. Because of eγ(y�) ∈ R(A∗) there is a wγ ∈ W ′′ with A∗wγ = eγ(y�).
Applying (4.6), we obtain

eγ(y) = T y
1 eγ(y

�) = T y
1 A∗wγ = A∗ T y

2 wγ ,

whence eγ(y) ∈ R(A∗) for y ∈ Ω1. Hence, equation (4.4) is solvable and using
(4.6) again we may deduce that

eγ(y) = T y
1 eγ(y

�) = T y
1 A∗υγ(y�) = A∗ T y

2 υγ(y
�) .

��
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Remark 4.6. We summarize that the distributional approximate inverse (4.5)
has all features which we know from the Hilbert spaces setting: The recon-
struction kernels may be precomputed as solutions of (4.4) and hence are
independent from the noise level in the measurement data. Furthermore in-
variance properties can be used to improve the efficiency of the algorithm. If
we had no such invariances for the spherical Radon transform, then an appli-
cation of this method as inversion scheme for M would not pay because of
the large computation time.

It is still an open question what to do when eγ(y) �∈ R(A∗). A normal
equation does not exist and would anyway be equivalent to (4.4) in case that
A is injective. Schöpfer et al. [107] formulated a Landweber-type method
to solve operator equations in Banach spaces, but it is unclear how this method
extends to distribution spaces. Since A∗ has dense range in V ′′, we find to a
finite number of reconstruction points yi ∈ Ω1, i = 1, . . . , d, and given bounds
εi > 0, i = 1, . . . , d, as well as elements υiγ ∈W ′′ satisfying

|〈A∗υiγ − eγ(yi), λ〉V ′′×V ′ | < εi for all λ ∈ V ′ , i = 1, . . . , d . (4.7)

This is an equivalent formulation of (3.20) in the weak ∗-topology of V ′′. By
now, we do not know how condition (4.7) might be checked in a concrete
application.

We complete this section by comparing the concept of a mollifier given
in Definition 4.1 with that for L2-spaces as stated in Definition 2.1. If
V = L2(Ω1), then V ′ = V ′′ = V , since L2(Ω1) is a Hilbert space. Apply-
ing Definition (4.1) to V we obtain the weak L2-convergence

lim
γ→0

〈fγ , v〉L2(Ω1) = 〈f, v〉L2(Ω1) for all v ∈ L2(Ω1) ,

as condition for eγ to be a mollifier, where fγ(y) = 〈f, eγ(·, y)〉L2(Ω1). From
this view Definition 4.1 includes a weakening of the mollifier concept compared
to 2.1 which is due to the weak ∗-topology defined on V ′. This emphasizes
that the idea of a mollifier is always bound to a corresponding topology.

Remark 4.7. Even though we introduced V and W as subspaces of smooth
functions, all the considerations made in this section can be transfered to
other pairings of function spaces and their duals without any difficulties. For
instance such pairings are given by V = C(K), where K ⊂ R

n1 is compact,
with its dual space V ′ consisting of the regular Borel measures on K, or the
pairing V = Lp(Ω1), 1 ≤ p <∞, with V ′ = Lq(Ω1), p−1+q−1 = 1, or Sobolev
spaces V = Hα(Ω1) and V ′ = H−α(Ω1). In all these cases the definitions 4.1
and 4.2 lead to an approximate inverse in the sense of Lemma 4.4, where the
convergence always is to be understood with respect to the weak topology.
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4.2 Dealing with semi-discrete equations

This section is dedicated to establishing a semi-discrete setting similar to
that in Chapter 3. To this end we again introduce an observation operator
Ψn : W ′ → K

n representing the measurement process. Let n linear, bounded
functionals ψn,k ∈W ′′, k = 1, . . . , n be given such that

(Ψnw)k = 〈ψn,k, w〉W ′′×W ′ , k = 1, . . . , n . (4.8)

We seek a distribution f ∈ V ′ satisfying

Anf = gn , (4.9)

where An = ΨnA and gn = Ψng ∈ K
n is the given outcome of the measure-

ment process.
If we tried to carry over the concepts for solving semi-discrete operator

equations in Hilbert spaces outlined in Chapter 3 to distribution spaces, we
would have the problem that the fundamental concept of Riesz systems is not
available in those spaces. Nevertheless, we try to establish a theory of dealing
with equations like (4.9) in distribution spaces. The following investigations
are first steps in this direction.

We start by defining a mollifier operator Ed as we did in (3.5). Let d ∈ N

and {ei}di=1 ⊂ V ′′, {vi}di=1 ⊂ V ′ be sequences. The mapping Ed : V ′ → V ′

Edf =
d∑

i=1

〈f, ei〉V ′×V ′′ vi (4.10)

has the mollifier property, if

lim
d→∞

Edf = f in V ′ for all f ∈ V ′ . (4.11)

The limit (4.11) is to be understood with respect to the weak ∗-topology in
V ′ induced from V , that is

lim
d→∞

〈Edf, β〉V ′×V = 〈f, β〉V ′×V for all f ∈ V ′ , β ∈ V .

Furthermore we assume that ei ∈ R(A∗), i = 1, . . . , d and that hence the
equations

A∗υi = ei , i = 1, . . . , d (4.12)

have solutions in W ′′.
In accordance to Section 3.1, we postulate a coupling of the observation

operator Ψn to an interpolation operator Πn :W ′ →W ′ which has to satisfy
two requirements. More precisely,

Πnw =
n∑

k=1

〈ψn,k, w〉W ′′×W ′ wk ,
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where the sequence {wk}nk=1 ⊂ W ′ is assumed to be defined for arbitrary
n ∈ N. On the one side, the interpolation Πn is required to obey a boundedness
condition

|〈Πnw, z〉W ′×W ′′ | ≤ Cb |〈w, z〉W ′×W ′′ | for all w ∈W ′ , z ∈W ′′ (4.13)

with a constant Cb > 0. On the other side, we postulate the convergence

lim
n→∞ |〈w − Πnw, z〉W ′×W ′′ | = 0 for all w ∈W ′ , z ∈W ′′ . (4.14)

In other words: We have that I − Πn → 0 for n → ∞ in W ′ with respect to
the weak topology induced from W ′′.

The aim is to gain reconstruction kernels υni ∈ K
n with the help of solu-

tions υi of (4.12) and then to define a semi-discrete approximate inverse. In
Section 3.1 we have done this by means of Ψn. That was possible since Hilbert
spaces are reflexive and hence the kernels υi were in Y . The mappings Ψn (4.8),
however, are defined on W ′ and hence are not suited to generate the discrete
kernels υni . Therefore, we introduce a further operator Π′

n : W ′′ → W ′′. Ass-
ume we have functionals ψ′n,k in W ′′′1 as well as some elements w′

k ∈ W ′′,
k = 1, . . . , n, n ∈ N, such that

Π′
nw =

n∑

k=1

〈ψ′n,k, w〉W ′′′×W ′′ w′
k , w ∈W ′′

satisfies the convergence

lim
n→∞ |〈w, z − Π′

nz〉W ′×W ′′ | = 0 for all w ∈W ′ , z ∈W ′′ , (4.15)

that means, I − Π′
n → 0 for n→ ∞ in the weak ∗-topology of W ′′.

Remark 4.8. We virtually have free choice for the functionals ψ′n,k :W ′′ → K.
It is only important that there are sequences {w′

k}nk=1 ∈ W ′′ for n ∈ N

satisfying the convergence (4.15). A possible choice for {ψ′n,k}nk=1 is the dual
basis of {ψn,k}nk=1.

Finally, we denote Ψ′
n :W ′′ → K

n by

(Ψ′
nw)k = 〈ψ′n,k, w〉W ′′′×W ′′ , w ∈W ′′ .

We get the kernels υni ∈ K
n for the semi-discrete problem (4.9) setting

υni := Gn Ψ′
nυi , i = 1, . . . , d .

Here, Gn ∈ K
n×n is the Gramian matrix with respect to the families {wk},

{w′
k},

(Gn)k,l = 〈wk,w′
l〉W ′×W ′′ , 1 ≤ k, l ≤ n .

1 With W ′′′ we denote the dual space of W ′′ with respect to the weak ∗-topology
given in W ′′.
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Theorem 4.9. Let A : V ′ →W ′ be a linear, bounded and one-to-one operator
and let An = ΨnA for a linear and continuous observation operator Ψn :
W ′ → K

n. We further assume the existence of triples

{(ei, υi, vi)}di=1 ⊂ V ′′×W ′′×V ′ und {(wk, ψ′n,k,w′
k)}nk=1 ⊂W ′×W ′′′×W ′′

such that the mappings Ed, Πn and Π′
n satisfy the conditions (4.11), (4.12),

(4.13), (4.14) and (4.15). Then the (distributional) semi-discrete approximate
inverse Ãn,d : K

n → V ′ given by

Ãn,dv =
d∑

i=1

〈v,Gn Ψ′
nυi〉Kn vi

has the convergence property

lim
d→∞

lim
n→∞ Ãn,dAnf = f in V ′ (4.16)

for all f ∈ V ′.

Proof. Let β ∈ V . We may estimate

|〈Ãn,dAnf − f, β〉V ′×V | ≤ |〈Edf − f, β〉V ′×V | + |〈Ãn,dAnf −Edf, β〉V ′×V | .
Note that the first part on the right-hand side does not depend on n. Taking
into consideration (4.11), it is sufficient to prove

lim
n→∞ |〈Ãn,dAnf − Edf, β〉V ′×V | = 0

for arbitrary, fixed d ∈ N. Since

|〈Ãn,dAnf − Edf, β〉V ′×V | (4.17)

≤
d∑

i=1

{
|〈f, ei〉V ′×V ′′ − 〈Anf,Gn Ψ′

nυi〉Kn | |〈vi, β〉V ′×V |
}

we have to show, that

lim
n→∞

{
|〈f, ei〉V ′×V ′′ − 〈Anf,Gn Ψ′

nυi〉Kn |
}

= 0 .

First, we find that

〈Anf,Gn Ψ′
nυi〉Kn = 〈ΠnAf,Π′

nυi〉W ′→W ′′

is valid. Equation (4.12) yields 〈f, ei〉V ′×V ′′ = 〈Af, υi〉W ′×W ′′ which leads
together with (4.13) to

|〈Af, υi〉W ′×W ′′ − 〈ΠnAf,Π′
nυi〉W ′×W ′′ |

≤ |〈(I − Πn)Af, υi〉W ′×W ′′ | + |〈ΠnAf, (I − Π′
n)υi〉W ′×W ′′ |

≤ |〈(I − Πn)Af, υi〉W ′×W ′′ | + Cb |〈Af, (I − Π′
n)υi〉W ′×W ′′ | .

The assertion can then be deduced from the convergence properties (4.14) and
(4.15) of Πn and Π′

n, respectively. ��
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Remark 4.10. The order of limits in (4.16) is essential and must not be
changed. This can be seen from (4.17) and is an important difference com-
pared to the convergence proof of Theorem 3.6. This is the price we have to
pay because there is no analogue to the Riesz property for the systems {vi},
{wk} or {w′

k}.

To finish this section, we consider a particular situation which is of great
importance for the spherical Radon transform M and easily allows for solving
semi-discrete problems.

Let R(A) ⊂ (C(Ω2)∩W ′) and the observation operator Ψn be defined via
point evaluations

(Ψnw)k = 〈ψn,k, w〉W ′′×W ′ = w(θk) , w ∈ R(A) , k = 1, . . . , n ,

where θk ∈ Ω2, k = 1, . . . , n, are given scanning points. Suppose further that
A satisfies an invariance property as in Lemma 4.5. We choose a mollifier
eγ(y�) ∈ R(A∗) and assume that the solution υγ(y�) of A∗υγ(y�) = eγ(y�)
belongs to C(Ω2) ∩W ′′, hence is a continuous function. For arbitrary y ∈ Ω1

we have υγ(y) = T y
2 υγ(y

�) for a certain T y
2 ∈ L(W ′′). The semi-discrete

approximate inverse to solve

ΨnAf = Anf = gn

for given gn ∈ K
n can then be formulated as

Ãn,γgn(y) = 〈gn, Qn Ψn T y
2 υγ(y

�)〉Kn (4.18)

and emerges from the continuous approximate inverse

Ãγg(y) = 〈g, T y
2 υγ(y

�)〉W ′×W ′′ , g ∈ R(A) , (4.19)

by applying a numerical integration rule, as for example the trapezoidal sum
corresponding to the nodes {θk}. This is possible, since the dual pairing on
the right-hand side of (4.19) is the L2-inner product and the convex hull of
the scanning points {θk} is a compact and hence bounded subset of K

n2 . The
matrix entries of Qn ∈ K

n×n are the weights of the applied integration rule.
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Conclusion and perspectives

In this first part of the book, we have introduced the method of approximate
inverse and have shown how it can be used to solve semi-discrete operator
equations in various situations. We have further emphasized the different fea-
tures of the method. Since we have complete freedom in choosing the mollifier,
the approximate inverse represents a flexible tool to solve inverse problems.
Since the reconstruction kernels are computed independently of the measure-
ment process, this method is well suited for large-scale computations.

The mathematical framework of the approximate inverse might offer a
possibility to develop a unified theory for regularization methods. The idea
is to assign each regularization method a mollifer such that the resulting
approximate inverse and the given regularization coincide. A big step in that
direction can be seen in the article Louis [68]. There, filter methods and the
approximate inverse are identified as smoothing the generalized inverse A† on
the one hand and as applying the generalized inverse to smoothed data on
the other hand.

A rigorous extension of the convergence and stability analysis of the ap-
proximate inverse for mappings between distribution spaces will further be
subject of future research. First ideas have been presented in Section 4.2.
The application of the method to the spherical means operator is outlined in
Part III. First numerical results are promising.
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A semi-discrete setup for Doppler tomography

In [50] and [120] the authors describe how ultrasound signals and the Doppler
effect can be used to get informations along lines about a velocity field f of
a moving fluid within a region Ω ⊂ R

3. This region Ω is supposed to be a
bounded domain and represents the object under consideration. We give a
brief summary of the derivation from the measurement setup to the mathe-
matical model.

If we emit a signal τ(t) = eı k0 t with frequency k0 along a line L which
hits a particle of the fluid with velocity ν, then the frequency of the signal
will be increased or decreased by the Doppler shift

∆ =
2 c k0 ν
c2 − ν2 ,

where c denotes the velocity of sound within the medium. Note that it is
necessary that the fluid contains particles causing a Doppler shift for this
measurement procedure. Since usually ν � c the Doppler shift may be ap-
proximated by ∆ ≈ κ ν with κ = 2k0/c, which means that ∆ is approximately
proportional to the velocity ν of the particle causing the Doppler shift. Our
experimental setup must satisfy that essential assumption. The signal σ(t)
which is received at the detector consists then of a superposition of reflections
from particles along L contributing to the signal,

σ(t) =
1

2π

∫

R

eı (k0+κ ν) t dS(f , L, ν) , ∆ = κ ν . (6.1)

Here, dS is a positive Radon measure characterized by

dS(f , L, ν) = meas{x ∈ L : ν ≤ 〈θL, f(x)〉 < ν + dν} , (6.2)

where θL ∈ S2 = {x ∈ R
3 : ‖x‖ = 1} is the vector of direction of L. The

measure dS is called the velocity spectrum of f and can be interpretated as
the number of particles with velocity ν along L. Defining
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S(f , L, ν) = meas{x ∈ L : 〈θL, f(x)〉 < ν}

the velocity spectrum dS has the representation dS = S′dν, where S′ is the
derivative of S with respect to ν. Hence (6.1) essentially is the inverse Fourier
transform of S′ and we obtain the first moment of the velocity spectrum using
Fourier techniques

∫

R

ν dS(f , L, ν) =
∫

L∩Ω
〈θL, f(x)〉d�(x) =: Df(L) . (6.3)

We call the mapping f → Df(L) the Doppler transform.
In principle, L varies over all lines in R

3. However, we confine to lines
being parallel to one of the coordinate planes {xj = 0}, j = 1, 2, 3, which
corresponds to the measurement geometry suggested by Juhlin [50]. This
geometry scans the object slice by slice where the parallel geometry known
from the 2D computerized tomography is applied in each slice. Once the slices
parallel to one coordinate plane are scanned, the measurements device has
to be turned by 90◦ and the procedure is repeated, i.e. the slices parallel
to another coordinate plane are measured. This leads to three sets of data
corresponding to the three planes {xj = 0}, j = 1, 2, 3. The parallel geometry
in two dimensions is illustrated in Figure 6.1.

Fig. 6.1. The parallel geometry in two dimensions. Eight transducer/detector po-
sitions are displayed. The measurement device is shifted along the tangent of the
scanning circle and ultrasound signals are emitted along parallel lines.
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The first step to establish the Doppler transform as continuous operator
between suitable L2-spaces is to parameterize the lines L being parallel to
{xj = 0}. Before doing so, we introduce notations which seem to be awk-
ward but which are necessary. Vectors will be written either horizontally or
vertically depending on covenience. Let w1 = (0, 0, 1), w2 = (1, 0, 0) and
w3 = (0, 1, 0) be a permutation of the standard unit vectors. To each wj we
associate embeddings Pj : R

2 → w⊥
j , j = 1, 2, 3, by P1(x1, x2) = (x1, x2, 0),

P2(x1, x2) = (0, x1, x2) and P3(x1, x2) = (x1, 0, x2). For the parameter-
ization of the lines L we need three quantities: an angle ϕ ∈ [0, 2π] to
define the direction of the line, the distance from the wj-coordinate axis
s ∈ R and the distance a ∈ R of the line L from the coordinate plane
w⊥
j = {x ∈ R

3 : 〈x,wj〉 = 0}. With the help of these quantities, lines be-
ing parallel to w⊥

j can be defined by

Lj(ϕ, s, a) = {x ∈ R
3 : 〈x,Pjω(ϕ)〉 = s , 〈x,wj〉 = a} , (6.4)

where ω(ϕ) = (cosϕ, sinϕ) ∈ S1 is the unit vector in R
2 with polar angle ϕ.

For j = 1 the meaning of the parameters is emphasized in Figure 6.2.

a
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Fig. 6.2. Parameters of the first component of the Doppler transform D1f .

From now on, we assume Ω = Ω3 = {x ∈ R
3 : ‖x‖ < 1} to be the open

unit ball in R
3 if not indicated otherwise. If f is compactly supported, then

this can always be accomplished by a suitable re-scaling of f . In (6.3) the
integration is now to be taken along lines Lj of the form (6.4). The vectors
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of direction θLj of such lines Lj are given by wj × Pjω(ϕ). Applying this
to (6.3), then the 3D-Doppler transform is defined in correspondence to our
special measure geometry as a mapping

D = (D1,D2,D3) : L2(Ω3,R3) → L2(Q)3 , Q = [0, 2π]× [−1, 1]2 , (6.5)

where

Djf(ϕ, s, a) =
∫

Lj(ϕ,s,a)∩Ω3
〈wj × Pjω(ϕ), f(x)〉d�(x) , j = 1, 2, 3 . (6.6)

Here, L2(Ω3,R3) = {f : Ω3 → R
3 :
∫
Ω3 ‖f(x)‖2 dx < ∞} is the Hilbert

space of all square integrable vector fields on Ω3 and L2(Q)3 = L2(Q) ×
L2(Q) × L2(Q) is the three-fold cartesian product of the space L2(Q) with
inner product

〈g, h〉L2(Q)3 =
3∑

i=1

1∫

−1

2π∫

0

1∫

−1

gi(ϕ, s, a)hi(ϕ, s, a) dsdϕda , g, h ∈ L2(Q)3 .

The following continuity result can be found in Schuster [109, Theorem
2.3].

Lemma 6.1. The mappings Dj : L2(Ω3,R3) → L2(Q), j = 1, 2, 3 and D :
L2(Ω3,R3) → L2(Q)3 are linear and bounded. We have

‖Djf‖L2(Q) ≤ 2
√
π ‖f‖L2(Ω3,R3) , j = 1, 2, 3 ,

‖Df‖L2(Q)3 ≤ 6
√
π ‖f‖L2(Ω3,R3) .

To adopt the situation of Chapter 3, we identify A = D, X = L2(Ω3,R3)
und Y = L2(Q)3. The inverse problem of Doppler tomography in Juhlin’s
measurement geometry reads as

Df = g (6.7)

for given data g ∈ L2(Q)3. But problem (6.7) certainly is far from reality, since
we only have a finite number of integrals (6.6) available. The corresponding
semi-discrete operator thus emerges from Df by point evaluations in Q. These
are not meaningfully defined on L2(Q)3. Hence a smoothing property of D
is desired. That means – just as in Chapter 3 – we search spaces X1 ↪→
L2(Ω3,R3) and Y1 ↪→ L2(Q)3 with continuous and dense embeddings such
that D : X1 → Y1 is bounded. Such a smoothing property exists and has
been proven in [109, Theorem 2.10]. Before stating the result (Theorem 6.2)
we continue by defining appropriate function spaces.

For real numbers α, β ≥ 0 and j = 1, 2, 3 we introduce anisotropic Sobolev
spaces Xα,β

j as the closure of the Schwartz space D(Ω3) = C∞
0 (Ω3) with

respect to the norms
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‖v‖Xα,β
j

=
(∫

R3
(1 + ξ21 + ξ22)α (1 + ξ23)β

∣∣∣v̂
(
Pj(ξ1, ξ2) + ξ3 wj

)∣∣∣
2

dξ
)1/2

.

The expression Pj(ξ1, ξ2) + ξ3 wj is a permutation of the entries of ξ =
(ξ1, ξ2, ξ3). E.g. we have

‖v‖Xα,β
1

=
(∫

R3
(1 + ξ21 + ξ22)α (1 + ξ23)β |v̂(ξ)|2 dξ

)1/2

.

The Sobolev spaces Xα,β
j are called anisotropic, since the parameters α and β

allow for different orders of smoothing in the corresponding variables. For
α ≥ 0 and an open domain G ⊂ R

m, let Hα(G) be the Sobolev space of order
α and Hα

0 (G) be the Hα-closure of the set of all tempered distributions that
are compactly supported in G. A detailed outline of the theory of Sobolev
spaces can be found e.g. in the books of Adams [3] and Maz’ja [77].

Theorem 6.2. The Doppler transform D maps the Cartesian product (Xα,β
1 ∩

Xα,β
3 )×(Xα,β

1 ∩Xα,β
2 )×(Xα,β

2 ∩Xα,β
3 ) continuously to the tensor product space(

Hα+1/2(Z)⊗̂Hβ
0 (−1, 1)

)3 with Z = (0, 2π) × (−1, 1). There exist constants
cj > 0, j = 1, 2, 3, validating the estimates

‖Djf‖Hα+1/2(Z)⊗̂Hβ0 (−1,1) ≤ cj
(
‖fj‖Xα,β

j
+ ‖fj+1‖Xα,β

j

)
, j = 1, 2 ,

‖D3f‖Hα+1/2(Z)⊗̂Hβ0 (−1,1) ≤ c3
(
‖f1‖Xα,β

j
+ ‖f3‖Xα,β

j

)
.

Theorem 6.2 says that D smoothes in two variables by the factor 1/2,
whereas it has no smoothing property with respect to the remaining third
variable. This makes perfect sense in view of Definition (6.6), since Djf acts on
one variable as the identity mapping, which is a consequence of our particular
measure geometry.

If we write

Xα,β := (Xα,β
1 ∩ Xα,β

3 ) × (Xα,β
1 ∩ Xα,β

2 ) × (Xα,β
2 ∩ Xα,β

3 )

and
Yα,β := Hα+1/2(Z)⊗̂Hβ

0 (−1, 1) ,

then Theorem 6.2 simply says that

Dj : Xα,β → Yα,β (6.8)

is linear and bounded. In analogy with Chapter 3, we set X1 = Xα,β and
Y1 = Yα,β . We note that X 0,0 = L2(Ω3,R3).

It is now time to define the observation operator, which describes the mea-
surement process. In practical situations only a finite number of measurements
are available. Hence, we set the observation operator to be point evaluations
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of the data sets Djf . One can show that point evaluations are continuous
functionals on Ht(Rm) only for t > m/2. Hence Theorem 6.2 assures that
point evaluations of Djf are well-defined if only α and β are greater than 1/2.
At first we have to specify a sampling scheme (ϕl, si, ak). We choose the
equidistant sampling

ϕl = l · hϕ , hϕ = 2π/p , l = 0, . . . , p− 1 ,
si = i · hs , hs = 1/q , i = −q, . . . , q − 1 ,
ak = k · ha , ha = 1/r , k = −r, . . . , r − 1

with integers p, q, r ∈ N. The observation operator evaluates Djf at
(ϕl, si, ak). For α, β > 1/2 point evaluations are continuous on Hα+1/2(Z)
and Hβ

0 (−1, 1), respectively. Thus, the mappings

Ψp,q : Hα+1/2(Z) → R
2pq , (Ψp,qv)l,i = v(ϕl, si) , (6.9)

and
Ψr : Hβ

0 (−1, 1) → R
2r , (Ψrv)k = v(ak)

represent bounded functionals. The tensor product

Ψp,q,r := Ψp,q ⊗ Ψr : Yα,β → R
2pq ⊗ R

2r = R
n , n = 4 p q r

acts continuously on Yα,β and serves as observation operator for the intro-
duced model of Doppler tomography. The inverse problem now reads as: To
given measurements gp,q,r ∈ R

3n, which are possibly perturbed by noise, find
a vector field f ∈ Xα,β , α, β > 1/2, satisfying

Ψp,q,r Df = gp,q,r , (6.10)

where Ψp,q,r acts on Df as

Ψp,q,r Df = (Ψp,q,r D1f ,Ψp,q,r D2f ,Ψp,q,r D3f) .

Following the lines in the proof of Rieder, Schuster [102, Theorem 5.1] we
deduce that Ψp,q,r D can not be extended continuously on L2(Ω3,R3).

Lemma 6.3. The semi-discrete Doppler transform

Ψp,q,r D : Xα,β ⊂ L2(Ω3,R3) → R
3n

is unbounded with respect to the L2-norm topology for all real numbers
α, β > 1/2. In other words: The mapping Ψp,q,r D has no bounded extension
to L2(Ω3,R3).

The adjoint operator belonging to Ψp,q,r D does not exist due to Lemma
6.3. Moreover, one can show that D((Ψp,q,r D)∗) = {0}. In order to use the
method of approximate inverse for solving (6.10) according to the concepts
presented in Chapter 3, we have to fix the reconstruction kernels by means
of the observation operator Ψp,q,r and an analytic kernel for D in analogy to
(3.21). This process is being specified in Chapter 7.
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Remark 6.4. In contrast to the Radon transform, the Doppler transform (6.3)
is not injective. When we integrate over all lines in R

3, the null space of D
consists of all potential fields with vanishing boundary values, that means
all fields f = ∇v with v ∈ H1

0 (Ω3). Thus, only the solenoidal part of f can
be recovered from Df . A proof of this well-known fact can be found e.g. in
the book of Sharafutdinov [116]. Inversion formulas yielding the solenoidal
part of f have been derived e.g. by Denisjuk [21], Sharafutdinov [116], see
also Natterer, Wübbeling [84, Theorem 2.27]. However, the attenuated
vectorial Radon transform as a matter of fact is injective, see Bukgheim,
Kazantsev [13] and Natterer [82]. The null space of Dj is specified in [110].
E.g. we have

N(D1) =
{

(∂x1v, ∂x2v, w) : v ∈ H1
0 (Ω3) , w ∈ L2(Ω3)

}
.
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Solving the semi-discrete problem

In this chapter we formulate the semi-discrete approximate inverse (3.17) to
solve the inverse problem (6.10). We first have to state concrete representa-
tions for the interpolation operator Πp,q,r associated with Ψp,q,r and a mollifier
operator Ed according to the abstract formulations (3.22) and (3.7) which is
done in Section 7.1. Section 7.1 also contains the proof of certain invariance
properties of the adjoint D∗

j , which we use to improve the efficiency of our al-
gorithm. Section 7.2 includes a scheme for the computation of reconstruction
kernels for the mappings Dj . The last section finally summarizes the inversion
method and shows some reconstructions from synthetic data.

7.1 Definition of the operators Πp,q,r and Ed

We start by constructing an interpolation operator Πp,q,r, which is associated
with the observation operator Ψp,q,r. As Riesz system {φk} ⊂ L2(Q) we take
tensor products of piecewise constant B-splines. More explicitly, let Sϕ, Ss and
Sa be the spaces of piecewise constant B-splines corresponding to the sets of
nodes {ϕl}, {si} and {ak}, respectively. Bases of these spaces are given by

b
(0)
p,l = χ[ϕl,ϕl+1) , 0 ≤ l ≤ p− 1 ,

b
(0)
q,i = χ[si,si+1) , −q ≤ i ≤ q − 1 ,

b
(0)
r,k = χ[ak,ak+1) , −r ≤ k ≤ r − 1 ,

where χI always means the characteristic function of an interval I. Hence, the
tensor products

{b(0)p,j ⊗ b
(0)
q,i ⊗ b

(0)
r,k : 0 ≤ l ≤ p− 1 , −q ≤ i ≤ q − 1 , −r ≤ k ≤ r − 1} (7.1)

form a basis of Vp,q,r = Sϕ ⊗ Ss ⊗ Sa. The Riesz property (3.6) of (7.1) is
proved by simple calculations. In analogy with our abstract concept (3.22),
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we define the interpolation operator Πp,q,r : Yα,β → Vp,q,r ⊂ L2(Q) for real
α, β > 1/2 by

Πp,q,rv :=
p−1∑

l=0

q−1∑

i=−q

r−1∑

k=−r
(Ψp,q,rv)l,i,k b

(0)
p,l ⊗ b

(0)
q,i ⊗ b

(0)
r,k , v ∈ Yα,β . (7.2)

We have to verify the important approximation property (3.23) and bound-
edness property (3.24).

Lemma 7.1. Let α, β > 1/2. The mapping Πp,q,r : Yα,β → Vp,q,r satisfies the
approximation property

‖Πp,q,rv − v‖L2(Q) ≤ CΠ ρ ‖v‖Yα,β , v ∈ Yα,β (7.3)

for a constant CΠ > 0 and

ρ = ρ(β, hϕ, hs, ha) = max{hϕ, hs} + hmin{β,1}
a . (7.4)

Furthermore, we have the uniform boundedness

‖Πp,q,rv‖L2(Q) ≤ Cb ‖v‖Yα,β , v ∈ Yα,β (7.5)

where Cb > 0.

Proof. To a real number κ > 0 we define Πp,q : Hκ+1(Z) → Sϕ ⊗ Ss and
Πr : Hκ+1/2(−1, 1) → Sa by

Πp,qv :=
p−1∑

l=0

q−1∑

i=−q
(Ψp,qv)l,i b

(0)
p,l ⊗ b

(0)
q,i und Πrv :=

r−1∑

k=−r
(Ψrv)k b

(0)
r,k .

The interpolation operator Πp,q,r can then be expressed as the tensor product
Πp,q,r = Πp,q ⊗ Πr. Using results from approximation theory for B-splines,
see e.g. Schumaker [108, Chapter 12], we derive constants c1, c2, C1, C2 > 0
which do not depend on p, q and r such that the estimates

‖Πp,q‖Hκ+1(Z)→L2(Z) ≤ c1 und ‖Πr‖Hκ+1/2(Z)→L2(−1,1) ≤ c2 , (7.6)

as well as
‖I − Πp,q‖Hκ+1(Z)→L2(Z) ≤ C1 max{hϕ, hs} (7.7)

and
‖I − Πr‖Hκ+1/2(−1,1)→L2(−1,1) ≤ C2 h

min{κ+1/2,1}
a (7.8)

are valid. Since Πp,q,r is the tensor product of Πp,q and Πr, its norm is esti-
mated as

‖Πp,q,r‖Yα,β→L2(Q) ≤ ‖Πp,q‖Hα+1/2(Z)→L2(Z) ‖Πr‖Hβ(−1,1)→L2(−1,1) ≤ c1 c2 ,
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according to Aubin [6, Prop. 12.4.1]. This is (7.5) with Cb = c1 c2.
The approximation property (7.3) is obtained from

‖I − Πp,q,r‖Yα,β→L2(Q) = ‖I ⊗ I − Πp,q,r‖Yα,β→L2(Q)

≤ ‖I ⊗ (I − Πp,q)‖Yα,β→L2(Q) + ‖Πp,q ⊗ (I − Πr)‖Yα,β→L2(Q)

≤ CYα,β ,L2(Q) ‖I − Πp,q‖Hα+1/2(Z)→L2(Z) + c1 ‖I − Πr‖Hβ(−1,1)→L2(−1,1)

≤ CYα,β ,L2(Q) C1 max{hϕ, hs} + c1 C2 h
min{κ+1/2,1}
a

where we applied the estimates (7.6), (7.7) and (7.8). The constant CYα,β ,L2(Q)

is equal to the norm of the embedding Yα,β ↪→ L2(Q). Finally we set CΠ =
max{c1 C2, CYα,β ,L2(Q) C1}. ��

Before we state the mollifier operator Ed, we prove the existence of an
intertwining relation for D∗

j which fulfills all conditions of Lemma 3.9. To this
end, we define for d > 0 and k ∈ Z

3 the mappings

T d,k
j f := d3 f(d x− k)

which act on L2(R3) and

Gd,kj g(ϕ, s, a) := d3 g
(
ϕ, d s− 〈P∗

j k, ω(ϕ)〉, d a− 〈k,wj〉
)

acting on L2([0, 2π] × R
2).

Lemma 7.2. Let D∗
j : L2([0, 2π] × R

2) → L2(R3)3 be the adjoint operator of
Dj with respect to the given L2-spaces. Then

D∗
j Gd,kj = T d,k

j D∗
j , d > 0 , k ∈ Z

3 . (7.9)

Proof. The adjoint operator D∗
j : L2([0, 2π] × R

2) → L2(R3)3 has the repre-
sentation

D∗
jg(x) = Pj

(
ιj

2π∫

0

g
(
ϕ, 〈P∗

j x, ω(ϕ)〉, 〈x,wj〉
)

sinϕdϕ ,

−ιj
2π∫

0

g
(
ϕ, 〈P∗

j x, ω(ϕ)〉, 〈x,wj〉
)

cosϕdϕ
)
,

where ι1 = ι2 = −1 und ι3 = 1. This result can be found in [109, Formula
(2.10)]. The invariance property (7.9) is now obtained in the same way as
in the proof of the corresponding Lemma 2.7 for the Radon transform by a
straightforward computation. ��
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The intertwining (7.9) suggests to generate a mollifier for Dj by means of
the mappings T d,k

j . Having functions ej ∈ L2(R3) satisfying
∫
ej(x) dx = 1

for j = 1, 2, 3 at hand, we therefore define mollifiers

ejd,k δj := (T d,k
j ej) δj , (7.10)

where δj ∈ R
3 are the standard unit vectors1. Note that d > 0 represents

the regularization parameter. This fact implies for large values d > 0 the
approximation

〈f , ejd,k δj〉L2(R3)3 = 〈f j , ejd,k〉L2(R3) ≈ f j(d−1 k) , k ∈ Z
3 .

Thus, the reconstruction points are given by d−1 k. These are contained in Ω3

when ‖k‖ < d.
From Lemma 3.9 we deduce that the reconstruction kernels υjd,k associated

with ejd,k can be generated by an application of Gd,kj .

Corollary 7.3. Assume that d ≥ 1 and k ∈ Z
3 with ‖k‖ ≤ d − 1. If υj ∈

L2([0, 2π] × R
2) satisfies

D∗
jυ
j = PN(Dj)⊥e

j δj ,

then
υjd,k = Gd,kj υj (7.11)

is a reconstruction kernel belonging to ejd,k. That means, υjd,k solves

D∗
jυ
j
d,k = PN(Dj)⊥(ejd,k δj) . (7.12)

Proof. A simple calculation shows

‖T d,k
j f‖L2(R3) = d3/2 ‖f‖L2(R3)

and
(
Gd,kj
)−1
g(ϕ, s, a) = d−3 g

(
ϕ, d−1 (s+ 〈P∗

j k, ω(ϕ)〉), d−1 (a+ 〈k,wj〉)
)

proving that T d,k
j is the multiple of an isometry and Gd,kj is invertible and

hence onto. Putting A = Dj , X = L2
Ω3(R3) := {f ∈ L2(R3) : supp f ⊂ Ω3},

Y = L2([0, 2π]×R
2), S = Gd,kj and T = T d,k

j , then (7.11) readily follows from
Lemma 3.9. The conditions for d and k assure that T d,k

j (L2
Ω3(R3)) ⊂ L2

Ω3(R3).
��

Remark 7.4. Note that Theorem 2.6 could not have been applied to prove
(7.11). One reason is that Dj is not one-to-one, another reason is that we do
not have an intertwining relation for Dj D∗

j available.

1 δ1 = (1, 0, 0), δ2 = (0, 1, 0), δ3 = (0, 0, 1).
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The last missing ingredients to define the mollifier operator Ed are spec-
ifications of a Riesz system {Bd,k} ⊂ L2(Ω3,R3) and of the mollifiers
ej ∈ L2(R3). Similar to the setting of Πp,q,r, we define the functions Bd,k
with the help of tensor product-splines. Here, we use piecewise linear splines.
Let B = bl ⊗ bl ⊗ bl be the tensor product of the first order B-spline
bl = χ[−1/2,1/2] ∗ χ[−1/2,1/2]

2, which we have already used in Section 3.1.
Then, Bd,k are defined as translated and dilated versions of B

Bd,k(x) = B(d x− k) , d > 0 , k ∈ Z
3 . (7.13)

The family {Bd,k} forms a Riesz system in L2(Ω3,R3). The mollifier operator
Ed : L2(Ω3,R3) → L2(Ω3,R3) finally reads as

(Ed)jf(x) :=
∑

k∈Z3

〈f j , ejd,k〉L2(Ω3)Bd,k(x)

(7.14)

=
∑

k∈Z3

〈f , ejd,k δj〉L2(Ω3,R3)Bd,k(x) .

In order to prove the mollifier property (3.8) of Ed, we have to specify the
particular choice of ej ∈ L2(R3). When defining ej , we want to pay tribute
to the special structure of Dj as we did it in the definition of the space Yα,β .
For instance, D1 essentially acts as a two-dimensional Radon transform with
respect to the variables (x1, x2) and as the identity with respect to x3. In the
same way, D2 leaves x1 constant and D3 the variable x2. This is to be taken
into account when fixing ej . Correspondingly, we define ej as tensor products

e1(x) := p(x1, x2) q(x3) ,

e2(x) := p(x2, x3) q(x1) ,

e3(x) := p(x1, x3) q(x2) .

⎫
⎪⎬

⎪⎭
(7.15)

The functions p and q are chosen to be the mollifiers with compact support
(2.5). For ν ∈ N let

p(s, t) = pν(s, t) :=
ν + 1
π

{
(1 − s2 − t2)ν , s2 + t2 ≤ 1 ,

0 , else (7.16)

and

q(s) = qν(s) :=
(2 ν + 1)!!
2ν+1 ν!

{
(1 − s2)ν , |s| ≤ 1 ,

0 , else .
3 (7.17)

Setting ej as in (7.15), (7.16) and (7.17) we have that
∫

R3
ej(x) dx = 1 ,

2 The symbol f ∗ g always denotes the convolution of two functions f and g.
3 (2 ν + 1)!! = 1 · 3 · 5 · . . . · (2 ν + 1)
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i.e. the ej have normalized mean values. Unfortunately, the support of ej is
not the closed unit ball Ω3 but the cylinder Ω2 × [−1, 1], which is slightly
larger than Ω3. By the scaling ej(·) := 23/2 ej(

√
2·) we in fact would achieve

that ej is supported in Ω3. Since, in the following, we will scale the ej anyway,
see (7.10), and for the sake of a better readability, we omit the scaling right
now and consider ej being elements of X λ,λ

j as long as λ < ν + 1/2. The
smoothness of ej can be proved by calculating their Fourier transform and
studying the decay behavior. At last, we state the mollifier property of Ed.

Theorem 7.5. Let {ejd,k} be the sequence of mollifiers according to (7.10),
(7.15), (7.16) and (7.17) and {Bd,k} be the Riesz system (7.13). The operator
Ed : L2(Ω3,R3) → L2(Ω3,R3) defined by (7.14) satisfies

lim
d→∞

‖Edf − f‖L2(Ω3,R3) = 0 for all f ∈ L2(Ω3,R3) . (7.18)

If f j ∈ Xα,β
j for j = 1, 2, 3 and α, β > 1/2, then furthermore the estimate

‖(Ed)jf − f j‖L2(Ω3) ≤ Cm

(
d−min{2,α} + d−min{2,β}) ‖f j‖Xα,β

j
(7.19)

holds for a suitable constant Cm > 0.

Proof. Similar to Πp,q,r, we will use the specific tensor product structure of
Ed and apply the results (3.13) and (3.14) from Section 3.1. To this end, we
first introduce two mappings E(i)

d : L2(Ri) → L2(Ri) for i = 1, 2 and d > 0
via

E
(2)
d v :=

∑

k∈Z2

〈v,pd,k〉L2(R2) (bl ⊗ bl)(d · −k)

and
E

(1)
d u :=

∑

l∈Z

〈u, qd,l〉L2(R) bl(d · −l) ,

where bl is again the univariate B-spline of first order with support in [−1, 1]
and

pd,k(s, t) = d2 p(d s− k1, d t− k2) , qd,l(s) = d q(d s− l)
are translations and dilations of p (7.16) and q (7.17). From (3.13) we deduce

‖E(i)
d − I‖Hα(Ri)→L2(Ri) ≤ ci d−min{2,α} , α ≥ 0 , i = 1, 2 (7.20)

with ci > 0, i = 1, 2. In the same way as the local boundedness (3.12), we
prove that E(2)

d is uniformly bounded. That means, there exists a constant
c̃ > 0 which does not depend on d, such that

‖E(2)
d f‖L2(R2) ≤ c̃ ‖f‖Hα(R2) . (7.21)

We notice that Ed can be written as
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(Ed)jf = (E(2)
d ⊗ E(1)

d )(fj ◦ Qj) , j = 1, 2, 3 , (7.22)

with the permutations Qj(x1, x2, x3) := Pj(x1, x2) + x3 wj . Following the
arguments in the proof of Lemma 7.1 together with (7.20) and (7.21) yields

‖E(2)
d ⊗ E(1)

d − I‖Hα(R2)⊗̂Hβ(R)→L2(R3)

≤ c̃ ‖E(1)
d − I‖Hβ(R)→L2(R3) + CHβ ,L2 ‖E(2)

d − I‖Hα(R2)→L2(R3)

≤ c1 c̃ d−min{2,β} + CHβ ,L2 c2 d
−min{2,α}

≤ Cm

(
d−min{2,β} + d−min{2,α}

)
,

where CHβ ,L2 > 0 is the norm of the continuous embedding Hβ(R) ↪→ L2(R)
and Cm := max{c̃ c1, CHβ ,L2 c2}. Let f ∈ D(Ω3,R3). Then, for j = 1, 2, 3, we
have

‖(Ed)jf − fj‖L2(Ω3) ≤ ‖(Ed)jf − fj‖L2(R3)

= ‖(Ed)jf ◦ Qj − fj ◦ Qj‖L2(R3)

= ‖(E(2)
d ⊗ E(1)

d )(fj ◦ Qj) − fj ◦ Qj‖L2(R3)

≤ Cm

(
d−min{2,α} + d−min{2,β}) ‖fj ◦ Qj‖Hα(R2)⊗̂Hβ(R) ,

where we made use of representation (7.22). Taking into account that

‖fj ◦ Qj‖Hα(R2)⊗̂Hβ(R) = ‖fj‖Xα,β
j

and that the Schwartz space D(Ω3) is dense in Xα,β
j , we derive estimate (7.19)

and at last the mollifier property (7.18) by means of a density argument. ��

Provided that we have a solution of

D∗
jυ
j = PN(Dj)⊥e

j δj (7.23)

at hand, we are able to formulate the semi-discrete approximate inverse to Dj

and D according to (3.17). The solution of (7.23) is subject of Section 7.2.

Remark 7.6. We used the fact that Dj acts as a Radon transform with respect
to two variables, whereas it leaves the remaining variable constant to define the
mappings Ψp,q,r, Πp,q,r und Ed. The whole convergence and stability analysis
of the method as well as the computation of reconstruction kernels relies on
this observation. It becomes clear, why we did not set wj = δj in (6.6), because
in that case we would have D∗

jg ⊥ wj for all g ∈ L2(Q) and j = 1, 2, 3. The
equations (7.23) then would only be solved by 0; a reconstruction kernel would
not exist at all.
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7.2 Computation of reconstruction kernels for Dj

We present a recipe to solve the equations (7.23), which is suited for arbitrary
mollifiers ej of type (7.15), though we use the particular representation (7.16),
(7.17). The equations (7.23) are equivalent to the normal equations

Dj D∗
jυ
j = Dj(ej δj) , j = 1, 2, 3 . (7.24)

Using the relation ∂sDj = R (wj · ∇× (ej δj)), which is proved in Str̊ahlén

[124] or Schuster [109, Lemma 2.4], one can show that the solutions υj of
(7.24) satisfy

(R∗ ⊗ I) ∂sυj = wj · ∇ × (ej δj) , j = 1, 2, 3 . (7.25)

We again refer to [109] for a proof. Here, R∗ is the adjoint operator of the
two-dimensional Radon transform (2.17). Let again be Ω2 the open unit disk
in R

2.
We perform the following calculations for j = 1 only, the computation of

υ2, υ3 is done accordingly. Hence, we focus at the solution of

(R∗ ⊗ I) ∂sυ1 = −∂x2e
1 , (7.26)

which is (7.25), if j = 1. Our starting point to solve (7.26) is the inversion
formula (2.19) for the two-dimensional Radon transform R. Applying (2.19),
we deduce for the derivative ∂sυ1 the representation

∂sυ
1 = −(2π)−1 (ΛR ⊗ I) ∂x2e

1 = −(2π)−1 (ΛR ∂x2p) ⊗ q .

By means of the Fourier slice theorem (2.26) ΛR ∂x2p can be calculated
explicitly,

ΛR ∂x2p(ϕ, s) =
∫

R

|σ|F{∂x2p}(σ ω(ϕ)) eı s σ dσ

= ı sinϕ
∫

R

|σ|σ p̂(σ ω(0)) eı s σ dσ (7.27)

= −2 sinϕ

∞∫

0

σ2 p̂(σ, 0) sin(s σ) dσ .

This yields

∂sυ
1(ϕ, s, a) = π−1 sinϕ q(a)

∞∫

0

σ2 p̂(σ, 0) sin(s σ) dσ .

Representation (2.32) implies
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p̂(σ, 0) =
(ν + 1)!

2π

(
2
σ

)ν+1

Jν+1(σ) . (7.28)

We may conclude that

∂sυ
1(ϕ, s, a)

=
1
π2

(ν + 1)! 2ν sinϕ q(a)

∞∫

0

σ1−ν Jν+1(σ) sin(s σ) dσ

(7.29)

=
1
π2

sinϕ q(a)

{
4 ν (ν + 1) s 2F1(2, 1 − ν; 3

2 ; s2) , |s| < 1 ,

−s−3
2F1(2, 32 ; ν + 2; s−2) , |s| ≥ 1 ,

where we further applied formula (6.699.1) from Gradshteyn, Rizhik [32].
So far, we know the derivative with respect to s of the searched for reconstruc-
tion kernel υ1. According to the fundamental theorem of calculus, υ1 can be
written as

υ1(ϕ, s, a) = I(ϕ, s, a) + h(ϕ, a) , (7.30)

where

I(ϕ, s, a) :=

s∫

−1

∂sυ
1(ϕ, t, a) dt (7.31)

is an antiderivative of ∂sυ1 and h is a function which does not depend
on s. We seek explicit expressions for I and h. To this end, we determine
υ1 to be the unique solution of the normal equation (7.24) in R(D1). This
is an essential assumption. Theorem 3.9 from [109] proves that the function
system

M := {sin(k ϕ) , cos(k ϕ) : k ∈ N ∪ {0} , k �= 1}
is orthogonal to R(D1). This implies

2π∫

0

υ1(ϕ, s, a) sin(k ϕ) dϕ =

2π∫

0

υ1(ϕ, s, a) cos(k ϕ) dϕ = 0

if k �= 1. From (7.29) we immediately read that

2π∫

0

I(ϕ, s, a) sin(k ϕ) dϕ =

2π∫

0

I(ϕ, s, a) cos(k ϕ) dϕ = 0

if k �= 1. In view of (7.30), this yields

2π∫

0

h(ϕ, a) sin(k ϕ) dϕ =

2π∫

0

h(ϕ, a) cos(k ϕ) dϕ = 0



72 7 Solving the semi-discrete problem

if k �= 1. Setting ϕ = 0 and s = 0 in (7.24) (for j = 1) and taking into account
the symmetry I(−ϕ,−s, a) = −I(ϕ, s, a) lead to

2π∫

0

h(ϕ, a) cosϕdϕ = 0 .

Assume for the moment the Fourier coefficient
∫ 2π

0
h(ϑ, a) sinϑ dϑ to be

known, then h could be expressed by

h(ϕ, a) =
1
π

{ 2π∫

0

h(ϑ, a) sinϑ dϑ
}

sinϕ ,

since M∪ {sinϕ, cosϕ} builds a complete orthogonal system in L2(0, 2π).
To calculate this very coefficient we again consider the normal equation (7.24)
and evaluate it for j = 1 at ϕ = π/2 and s = 0. The right-hand side of (7.24)
then turns to

D1(e1 δ1)(π/2, 0, a) = −q(a)

1∫

−1

(1 − t2)ν dt = − 2ν+1 ν!
(2 ν + 1)!!

q(a)

whereas the left-hand side reads as

D1 D∗
1υ

1(π/2, 0, a) = D1 D∗
1I(π/2, 0, a) + D1 D∗

1h(π/2, 0, a)

=

2π∫

0

1∫

−1

I(ϑ, t cosϑ, a) sinϑdt dϑ+ 2

2π∫

0

h(ϑ, a) sinϑ dϑ .

Hence, we get

h(ϕ, a) = − 1
2π

sinϕ (7.32)

×
(

2ν+1 ν!
(2 ν + 1)!!

q(a) +

2π∫

0

1∫

−1

I(ϑ, t cosϑ, a) dt sinϑdϑ
)
.

To continue our calculations we need an analytic expression of I. We do
not outline the derivation in detail since this would be very intricate. The
interested reader is refered to Rieder, Schuster [103] where every single
step of the proof is described. The expression of I is obtained by using the
series representation of the hypergeometric function 2F1 and several technical
transformations. At last one gets

I(ϕ, s, a) =
1
π2

sinϕ q(a) (7.33)

×

⎧
⎨

⎩
2 ν (ν + 1)

(
s2 2F1(1, 1 − ν; 3

2 ; s2) − 1/(2 ν − 1)
)
, |s| < 1 ,

1
2

(
s−2

2F1(1, 32 ; ν + 2; s−2) − (2 ν + 2)/(2 ν − 1)
)
, |s| ≥ 1 .
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It remains to evaluate the double integration over I which occurs on the right-
hand side of (7.32). The hypergeometric function 2F1 is given as

2F1(u, v;w; z) =
∞∑

k=0

(u)k (v)k
(w)k k!

zk ,

where the Pochhammer symbols are defined via (u)k = u·(u+1)·. . .·(u+k−1)
when k > 0 and (u)k = 1 else. A simple calculation proves

z∫

0

t2 2F1(1, 1 − ν; 3
2
; t2) dt =

ν−1∑

k=0

(1 − ν)k
(3/2)k

z∫

0

t2 k+2 dt

=
ν−1∑

k=0

(1 − ν)k
(3/2)k (2 k + 3)

z2 k+3 .

This identity together with (7.33) leads to
1∫

−1

I(ϑ, t cosϑ, a) dt =
4
π2
ν (ν + 1) sinϑ q(a)

×
( ν−1∑

k=0

(1 − ν)k
(3/2)k (2 k + 3)

(cosϑ)2 k+2 − (2 ν − 1)−1
)
.

By applying an integration by parts and formula (3.631.17) from
Gradshteyn, Rizhik [32] we arrive at

2π∫

0

1∫

−1

sin2 ϑ (cosϑ)2 k+2 dϑ =
π

(2 k + 3) 22k+3

(
2 k + 4
k + 2

)
,

which finally yields
2π∫

0

1∫

−1

I(ϑ, t cosϑ, a) dt sinϑ dϑ =

(7.34)

4
π
ν (ν + 1) q(a)

( ν−1∑

k=0

(1 − ν)k
(
2k+4
k+2

)

(3/2)k (2 k + 3)2 22k+3
− 1

2 ν − 1

)
.

Putting together (7.30), (7.32), (7.33) and (7.34) we obtain as representation
for the unique solution υ1 of (7.24) in R(D1):

υ1(ϕ, s, a) =
1
π2

sinϕ q(a) (7.35)

×

⎧
⎨

⎩
2 ν (ν + 1)

(
s2 2F1(1, 1 − ν; 3

2 ; s2) − 1
2ν−1

)
− cν , |s| < 1 ,

1
2

(
s−2

2F1(1, 32 ; ν + 2; s−2) − 2ν+2
2ν−1

)
− cν , |s| ≥ 1 ,
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where the constants cν are defined by

cν = 2 ν (ν + 1)
( ν−1∑

k=0

(1 − ν)k
(
2k+4
k+2

)

(3/2)k (2 k + 3)2 22k+3
− 1

2 ν − 1

)
+ π

2ν ν!
(2 ν + 1)!!

.

By the same arguments we get υ2 = υ1 and υ3 emerges from υ1 replacing sinϕ
in (7.35) by cosϕ. Figures 7.1, 7.2 show graphic illustrations of the kernel υ1.
Note that the plot in figure 7.1 is very similar to the well-known filter of
Shepp, Logan from [117], when the graph is reflected about the x-axis.

−2 −1 0 1 2

−0.2

−0.1

0

0.1

s

ν=4
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Fig. 7.1. One-dimensional cross section of the reconstruction kernel υ1(π/2, s, 0)
(7.35) for ν = 2 (solid curve), ν = 3 (dashed curve) and ν = 4 (dashed-dotted
curve). The kernels shape emphasizes that a derivative with respect to s is involved,
see equation (7.26).

Remark 7.7. In analogy to the three-dimensional Doppler transform (6.5),
(6.6), the two-dimensional Doppler transform D : L2(Ω2,R2) → L2(Z),
Z = [0, 2π] × [−1, 1], is defined by

Df(ϕ, s) =
∫

L(ϕ,s)∩Ω2
〈ω⊥(ϕ), f(x)〉d�(x) , (7.36)

where ω⊥(ϕ) = (− sinϕ, cosϕ) ∈ S1 is the vector of direction of L(ϕ, s). The
transform (7.36) appears as mathematical model when we consider only a two-
dimensional cross section through the object. Reconstruction kernels for (7.36)
associated with the mollifier e(x1, x2) = p(x1, x2) with p from (7.16) are ob-
tained from (7.35) by simply setting q(a) ≡ 1. The method of (semi-discrete)
approximate inverse can be formulated according to the three-dimensional
case and is outlined in more details in Section 9.2.2. Numerical results are
shown in Section 7.3. A measurement device for two-dimensional Doppler to-
mography was constructed at the Lund Institute of Technology (Sweden) and
is described in Jansson et al. [47].
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Fig. 7.2. Two-dimensional plot of the reconstruction kernel υ1(ϕ, s, 0) (7.35) for
ν = 2, s ∈ [−2, 2] and ϕ ∈ [0, π]. On clearly sees the differentiation in s-direction
and the sin-curve in ϕ-direction, compare representation (7.35).

In view of the convergence theorem 3.6, it is important to have Sobolev
norm estimates for the kernels υj .

Lemma 7.8. Let ej be the mollifier according to (7.15) and υj be the corre-
sponding reconstruction kernel, i.e. the unique solution of (7.24) in R(Dj).
Then υj can be decomposed to

υj(ϕ, s, a) = υj1(ϕ, s, a) + υj2(ϕ, a) ,

where

υj1 ∈ Hκ((0, 2π) × R)⊗̂Ht
0(−1, 1) for κ < ν , t < ν + 1/2

and
υj2 ∈ Hκ(0, 2π)⊗̂Ht

0(−1, 1) for κ ≥ 0 , t < ν + 1/2 .

Proof. Again we only consider the case j = 1. The decomposition of υ1 essen-
tially relies on representation (7.30). Function I may be written as

I(ϕ, s, a) = � sinϕ q(a)W (s)

with a constant � and

W (s) :=

s∫

−1

w(t) dt , w(t) =

∞∫

0

σ1−ν Jν+1(σ) sin(t σ) dσ ,

what becomes obvious when we have a closer look at (7.29) and (7.31). From
(7.27) and (7.28) it follows that

w(t) sinϕ = cΛR ∂x2p(ϕ, t)
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with an appropriate constant c. We further have that R : Hκ
0 (Ω2) →

L2(0, 2π)⊗̂Hκ+1/2(R), as well as Λ : Hκ(R) → Hκ−1(R) are continuous for
any real κ ≥ 0, see Louis, Natterer [73, Theorem 3.1]. Since p is in Hβ

0 (Ω2)
whenever β < ν + 1/2, we have

w ∈ Hκ(R) for all κ < ν − 1 .

From (7.33) we deduce that

W̃ (·) :=W (·) +
1
2

2 ν + 2
2 ν − 1

∈ L2(R)

is valid. Summarizing ∂sW̃ = w ∈ Hκ(R), κ < ν − 1 and W̃ ∈ L2(R) we
conclude that W̃ ∈ Hκ(R) for any real κ < ν. We define

υ11 = � sinϕ q(a) W̃ and υ12 = h(ϕ, a) − �
2

2 ν + 2
2 ν − 1

sinϕ q(a) .

Since h(ϕ, a) = c̃ sinϕ q(a) for a constant c̃, see (7.32), (7.33), the proof is
complete. ��

Remark 7.9. In Natterer, Wübbeling [84, Theorem 2.27] we find the inver-
sion formula

f =
m− 1

2π |Sm−2| Λ−αD∗
p Λα−1 Dpf , α < m , (7.37)

where

Dpf(ω, x) =

∞∫

−∞
ω · f(x+ t ω) dt , x ∈ {ω⊥} ,

which is valid for solenoidal f ∈ S(Rm,Rm). In case that we consider all lines
in (6.3), Dp and the Doppler transform D coincide. In that case reconstruc-
tion kernels can also be computed by means of (7.37) for solenoidal mollifiers
ejd,k δj . Our specific mollifier (7.15) is not solenoidal and the lines of integra-
tion in (6.5), (6.6) are restricted due to the special measurement geometry.
That is why we have considered the normal equations (7.24).

7.3 The method of approximate inverse for Ψp,q,r D

Suppose we have a solution υj of (7.23) available. According to Corollary 7.3
we put

υjd,k = Gd,kj υj , d ≥ 1 , k ∈ Z
3 , ‖k‖ ≤ d− 1 .

Due to the notations and investigations made in Section 7.1, we are now
able to state the semi-discrete approximate inverse D̃j,n,d : R

n → L2(Ω3)
associated with the mapping Ψp,q,r Dj by
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D̃j,n,dv(x) :=
∑

k∈Z3
‖k‖≤d−1

〈v,Gp,q,r Ψp,q,r Gd,kj υj〉Rn Bd,k(x) , x ∈ Ω3 . (7.38)

The definition is due to the abstract setting (3.17). Here, {Bd,k} denotes the
Riesz system (7.13) and Gp,q,r ∈ R

n×n is the Gramian matrix corresponding
to the splines (7.1)

(Gp,q,r)(lµ,iµ,kµ), (lλ,iλ,kλ) = 〈b(0)p,lµ ⊗ b(0)q,iµ ⊗ b(0)r,kµ , b
(0)
p,lλ

⊗ b(0)q,iλ ⊗ b(0)r,kλ〉L2(Q) .

A simple calculation shows that Gp,q,r is a multiple of the identity matrix

Gp,q,r =
2π
p q r

In,n .

Putting the measured data v = Ψp,q,r Djf in (7.38) for a vector field
f ∈ Xα,β , α, β > 1/2, then the inner products in (7.38) compute as

〈Ψp,q,r Djf , Gp,q,r Ψp,q,r Gd,kj υj〉Rn =

2π d3

p q r

r−1∑

m=−r

p−1∑

l=0

q−1∑

i=−q
Djf(ϕl, si, am)υj

(
ϕl, d si−〈P∗

j k, ω(ϕl)〉, d am−〈k,wj〉
)
.

Thus the scalar products in (7.38) can be evaluated very efficiently by a
method of filtered backprojection type, a distinguished method well-known
in computerized tomography. We refer the reader to Natterer [80, Chapter
V.1] for a comprehensive study of the filtered backprojection algorithm. If we
use the particular representation (7.35) and the fact that q(d a − 〈k,wj〉) ≈
q(d−1 〈k,wj〉) for large d, then we can cancel the outer summation saving one
order of time complexity. The details of that efficiency increase as well as hints
for the implementation of the method are outlined in [110].

The semi-discrete approximate inverse D̃n,d : R
3n → L2(Ω3,R3) of

Ψp,q,r D is finally defined as

(D̃n,dv)j(x) := D̃j,n,dvj(x) , v = (v1, v2, v3) , vj ∈ R
n , x ∈ Ω3 . (7.39)

Figures 7.3, 7.4 show reconstructions of solenoidal vector fields. In [110]
the author emphasizes that it is also possible to recover the curl of the field
∇ × f by a simple change of the reconstruction kernel. This is an additional
feature of this method. Figure 7.4 displays a reconstruction of the curl of a
solenoidal field.

Chapter 8 aims to prove the limits

lim
n→∞
d→∞

D̃j,n,d Ψp,q,r Djf = (PN(Dj)⊥f)j , j = 1, 2, 3 (7.40)

and
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Fig. 7.3. Reconstruction of f(x1, x2) = 2 exp(−x2
1 − x2

2) (−x2, x1) from discrete
Doppler data. Left column: Original vector field f and first component f1. Right
column: Reconstruction of f and of its first component.

‘The picture is taken from T. Schuster, Defect correction in vector field tomog-
raphy: detecting the potential part using BEM and implementation of the method,
Inverse Problems, 21 (2005), pp. 75–91. Copyright c©2005 IOP Publishing Limited.
Reprinted with permission.’

Fig. 7.4. Reconstruction of the vector field f(x1, x2, x3) = (1 − x2
2 − x2

3, 0, 0) which
describes a horizontal, solenoidal flow through a cylinder centered about the x3-axis
using the method of approximate inverse (left picture). The right picture shows a re-
construction of the curl of the field ∇× f . The curl ∇× f(x1, x2, x3) = (0,−2x3, 2x2)
consists of a vortex which is clearly visible in the picture to the right.

‘The picture is taken from T. Schuster, An efficient mollifier method for three-
dimensional vector tomography: convergence analysis and implementation, Inverse
Problems, 17 (2001), pp. 739–766. Copyright c©2001 IOP Publishing Limited.
Reprinted with permission.’
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lim
n→∞
d→∞

D̃n,d Ψp,q,r Df = Pf , (Pf)j := (PN(Dj)⊥f)j , j = 1, 2, 3 . (7.41)

Note that P : L2(Ω3,R3) → L2(Ω3,R3) actually is a projection which is not
orthogonal. The convergences (7.40) and (7.41) are the best we can accomplish
since Dj and D are not one-to-one. However, we have explicit representations
for the null spaces N(Dj), N(D), see Remark 6.4.



8

Convergence and stability

This chapter is concerned with the application of convergence Theorem 3.6 to
the inversion method (7.39). To this end, we will need not only the estimates
(7.3), (7.5) and (7.19) of the operators Πp,q,r and Ed, respectively, but we
have also to investigate the behavior of the kernels υjd,k in Sobolev norms.
The following lemma is a first step into this direction. Much of this chapter
is subject of the article [103] of Rieder and Schuster.

Lemma 8.1. We put Z = (0, 2π) × (−1, 1), Zd,kj = {(ϕ, d s − 〈P∗
j k, ω(ϕ)〉) :

(ϕ, s) ∈ Z} and Id,kj = {d a − 〈k,wj〉 : a ∈ (−1, 1)}. If ‖k‖ ≤ d, then there
exists a constant CG > 0 with

‖Gd,kj g‖Hκ(Z)⊗̂Hτ (−1,1) ≤ CG dκ+τ+2 ‖g‖Hκ(Zd,k
j

)⊗̂Hτ (Id,k
j

) , (8.1)

whenever the right-hand side is bounded for κ, τ ≥ 0.

Proof. Let ‖k‖ ≤ d. We have Gd,kj = T d,kj ⊗Kd,k
j , where

T d,kj v(ϕ, s) := d2 v(ϕ, d s− 〈P∗
j k, ω(ϕ)〉) (8.2)

and
Kd,k
j u(a) := d u(d a− 〈k,wj〉) .

First, we prove

‖T d,kj v‖Hκ(Z) ≤ CT dκ+3/2 ‖v‖Hκ(Zd,k
j

) (8.3)

for a constant CT > 0.
The transform Φj(ϕ, s) := (ϕ, d s − 〈P∗

j k, ω(ϕ)〉) represents a C∞-diffeomor-
phism between Z and Zd,kj , such that T d,kj v = d2 v ◦ Φj . The Jacobian of Φj
satisfies det JΦj(ϕ, s) = d. We prove by complete induction that

|v ◦ Φj |Hκ(Z) ≤ c̃T dκ−1/2 |v|Hκ(Zd,k
j

) (8.4)
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for a c̃T > 0. Here, |v|2Hκ(Z) =
∑

|α|=κ ‖Dαv‖L2(Z), α ∈ N
2
0, denotes the

Sobolev seminorm on Hκ(Z).
For κ = 0 estimate (8.4) is obtained by simple integral transformations. Sup-
pose that (8.4) is valid for an arbitrary κ ∈ N. We have

|v ◦ Φj |2Hκ+1(Z) ≤ |D(1,0)(v ◦ Φj)|2Hκ(Z) + |D(0,1)(v ◦ Φj)|2Hκ(Z) .

A closer look to the different differential operators yields

D(0,1)(v ◦ Φj) = d (D(0,1)v) ◦ Φj ,
D(1,0)(v ◦ Φj) = 〈P∗

j k, ω
⊥(ϕ)〉 (D(0,1)v) ◦ Φj + (D(1,0)v) ◦ Φj .

From the induction hypothesis, we deduce

|D(0,1)(v ◦ Φj)|2Hκ(Z) = d2 |(D(0,1)v) ◦ Φj |2Hκ(Z)

≤ c̃T d2κ+1 |D(0,1)v|2Hκ(Z) ≤ c̃T,1 d2κ+1 |v|2Hκ+1(Z) .

If we take into account that |〈P∗
j k, ω

⊥(ϕ)〉| ≤ d, then the same argumentation
gives

|D(1,0)(v ◦ Φj)|2Hκ(Z) ≤ c̃T,2 d2κ+1 |g|2
Hκ+1(Zd,k

j
)

with an additional constant c̃T,2 > 0, which completes the proof of (8.4). We
finally get

‖T d,kj v‖2
Hκ(Z) = d4 ‖v ◦Φj‖2

Hκ(Z) = d4
κ∑

i=0

|v ◦Φj |2Hi(Z) ≤ c̃T d2κ+3 ‖v‖2
Hκ(Zd,k

j
)

yielding (8.3) for κ ∈ N0 with CT =
√
c̃T . Estimate (8.3) is obtained for any

real κ ≥ 0 by an application of the interpolation inequality for Sobolev spaces,
see e.g. Lions, Magenes [64, Chapter 5.1].
In the same way

‖Kd,k
j u‖Hτ (−1,1) ≤ CK dτ+1/2 ‖u‖Hτ (Id,k

j
)

is verified for a constant CK > 0. Using the tensor product structure of Gd,kj
finishes the proof. ��

From (8.1) we deduce the necessary Sobolev norm estimates of ‖υd,kj ‖Yα,β .

Corollary 8.2. Let the mollifiers ej, j = 1, 2, 3 be defined according to (7.15),
(7.16), (7.17). If ν > max{α + 1/2, β − 1/2} and d ≥ 1, then there exists a
constant Cυ > 0 with

‖υjd,k‖Yα,β ≤ Cυ dα+β+5/2 , j = 1, 2, 3 . (8.5)

The boundedness is uniform in k for ‖k‖ ≤ d− 1.
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Proof. Due to Lemma 7.8 υj allows for the splitting

υj(ϕ, s, a) = υj1(ϕ, s, a) + υj2(ϕ, a) ,

where υj1 ∈ Hα+1/2((0, 2π) × R)⊗̂Hβ(R) and υj2 ∈ Hα+1/2(0, 2π)⊗̂Hβ(R).
Applying (8.1) leads to

‖υjd,k‖Yα,β ≤ ‖Gd,kj υ
j
1‖Yα,β + ‖Gd,kj υ

j
2‖Yα,β

≤ CG
(
dα+β+5/2 ‖υj1‖Hα+1/2((0,2π)×R)⊗̂Hβ(R)

+dβ+5/2 ‖υj2‖Hα+1/2(0,2π)⊗̂Hβ(R)

)
≤ Cυ dα+β+5/2 ,

where we have defined

Cυ := CG (‖υj1‖Hα+1/2((0,2π)×R)⊗̂Hβ(R) + ‖υj2‖Hα+1/2(0,2π)⊗̂Hβ(R)) .

��

We have now all ingredients together to prove the convergence (7.40).

Theorem 8.3. Let α, β > 1/2 and f ∈ Xα,β having support in Ω3. Suppose
the mollifiers ej, j = 1, 2, 3, to be defined by (7.15), (7.16) and (7.17), where
ν > max{α+1/2, β−1/2}. We further denote by d̃ = d̃(f) the smallest positive
integer such that supp f ⊂ B1−1/d̃(0)1. If d ≥ d̃, then we have for j = 1, 2, 3
the estimate

‖D̃j,n,d Ψp,q,r Djf − (PN(Dj)⊥f)j‖L2(Ω3) (8.6)

≤ C
(
d−min{2,α} + d−min{2,β} + ρ dα+β+5/2

)

with a constant C > 0.

Proof. Because of 〈f , ejd,k δj〉L2(Ω3,R3) = 0 for d ≥ d̃ and ‖k‖ ≥ d, the mollifier
operator (Ed)j has the representation

(Ed)jf(x) =
∑

k∈Z3
‖k‖≤d−1

〈f , ejd,k δj〉L2(Ω3,R3) bd,k(x) .

As a consequence of Theorem 3.6 and Corollary 8.2, we obtain

‖D̃j,n,d Ψp,q,r Djf − (PN(Dj)⊥f)j‖L2(Ω3)

≤ C ρdα+β+5/2 ‖f‖Xα,β +
∥∥∥
(
(I − Ed)PN(Dj)⊥f

)

j

∥∥∥
L2(Ω3)

.

Since f ∈ Xα,β we either have PN(Dj)⊥f ∈ Xα,β in which case (8.6) follows
directly from (7.19), or PN(Dj)f ∈ Xα,β . In the latter case, we use

1 BR(z) is the open ball with radius R > 0 centered about z, e.g. B1(0) = Ω3.
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∥∥∥
(
(I − Ed)PN(Dj)⊥f

)

j

∥∥∥
L2(Ω3)

=
∥∥∥
(
(I − Ed) (I − PN(Dj))f

)

j

∥∥∥
L2(Ω3)

and prove (8.6) after an application of the triangle inequality together with
(7.19). ��

The estimate (8.6) helps us to find a relation between the data sampling
which is characterized by the discretizations p, q and r and the regularization
parameter d, such that we are able to prove convergence with rates.

Corollary 8.4. Adopt all assumptions made in Theorem 8.3. Let further
sequences {pµ}µ∈N ⊂ N, {qµ}µ∈N ⊂ N, {rµ}µ∈N ⊂ N and a sequence
{dµ}µ∈N ⊂ R

+ be given in such a way, that all the sequences diverge to infinity
as µ→ ∞ and that the relations

lim
µ→∞ d

α+β+5/2
µ /min{pµ, qµ} = lim

µ→∞ d
α+β+5/2
µ /rmin{β,1}

µ = 0

are valid. Then we have the convergences

lim
µ→∞ ‖D̃j,nµ,dµ Ψpµ,qµ,rµ Djf − (PN(Dj)⊥f)j‖L2(Ω3) = 0 , j = 1, 2, 3 , (8.7)

and
lim
µ→∞ ‖D̃nµ,dµ Ψpµ,qµ,rµ Df − Pf‖L2(Ω3,R3) = 0 .

If the quantities p, q, r and d further allow for a coupling2 p � q, r �
q1/min{β,1} und d � qλ, where

λ = λ(α, β) =
1

α+ β + 5/2 + min{2, α, β} , (8.8)

then for q → ∞ we get the convergences with rates

‖D̃j,n,d Ψp,q,r Djf − (PN(Dj)⊥f)j‖L2(Ω3) ≤ C1 q
−λ min{2,α,β}

as well as

‖D̃n,d Ψp,q,r Df − Pf‖L2(Ω3,R3) ≤ C2 q
−λ min{2,α,β}

with constants C1, C2 > 0.

Proof. At first, we prove the convergence statements for D̃j,n,d. Convergence
(8.7) is an immediate consequence from (8.6) and the requirements to {pµ},
{qµ}, {rµ} and {dµ}. By the assumptions made for p, q and r, we learn from
(7.4) that ρ � q−1. This implies

2 By A � B we mean the existence of generic constants c1, c2 > 0 validating
c1A ≤ B ≤ c2A.
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‖D̃j,n,d Ψp,q,r Djf − (PN(Dj)⊥f)j‖L2(Ω3)

≤ C
(
q−λ min{2,α} + q−λ min{2,β} + q−1+λ (α+β+5/2)

)
.

Because of
−1 + λ (α+ β + 5/2) = −λ min{2, α, β}

this gives the convergence rate for D̃j,n,d with C1 = C. The corresponding
results for D̃n,d follow from those for D̃j,n,d taking into account that the norm
on L2(Ω3,R3) is given as ‖f‖2

L2(Ω3,R3) =
∑3
j=1 ‖f j‖2

L2(Ω3). ��

From Corollary 8.4 it is easy to derive convergence in the 2D case. In
contrast to the three-dimensional Doppler transform, we even get exact con-
vergence as d, n→ ∞ in a suitable manner, if only the field f is solenoidal. The
semi-discrete approximate inverse for the two-dimensional Doppler transform
is described in more detail in section 9.2.2.

Corollary 8.5. Let D : L2(Ω2,R2) → L2(Z) be the two-dimensional Doppler
transform (7.36), Ψp,q (6.9) the corresponding observation operator of the
semi-discrete problem and the mollifier be defined by e(x1, x2) = p(x1, x2)
with p as in (7.16). Assume further that f ∈ Hα(Ω2,R2) for α > 1/2 and that
sequences {pµ}µ∈N ⊂ N, {qµ}µ∈N ⊂ N and {dµ}µ∈N ⊂ R

+ are given in such a
way that all the sequences diverge to infinity as µ→ ∞ and that the relation

lim
µ→∞ d

α+5/2
µ /min{pµ, qµ} = 0

is valid. Then

lim
µ→∞ ‖D̃nµ,dµ Ψpµ,qµ Df − PN(D)⊥f‖L2(Ω2,R2) = 0 .

Since f = PN(D)⊥f if ∇·f = 0 in Ω2, we have exact convergence for solenoidal
fields

lim
µ→∞ ‖D̃nµ,dµ Ψpµ,qµ Df − f‖L2(Ω2,R2) = 0 . (8.9)

Proof. The convergence can be deduced from Corollary 8.4 with β = 0. To
get the exact convergence (7.41) we only have to show that f = PN(D)⊥f for
solenoidal fields. To this end, assume ∇ · f = 0 and take h ∈ N(D). We have
h = ∇p with p = 0 at ∂Ω2, compare Remark 6.4. Hence,
∫

Ω2
f(x) · h(x) dx =

∫

∂Ω2
(νx · f(x)) p(x) dsx −

∫

Ω2
∇ · f(x) p(x) dx = 0

by the Gauss-Ostrogradsky theorem. Here, νx denotes the unit outer normal
vector of ∂Ω2. This shows f ⊥ N(D), which completes the proof. ��

We conclude this chapter by having a closer look at the regularization
properties of the approximate inverses D̃j,n,d, D̃n,d, respectively, where our
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investigations rely on the abstract framework set in Theorem 3.10. Compared
to the definitions of optimality made in Definition 1.5 we will realize that the
presented inversion method represents a regularization which is sub-optimal.

We assume the measured data Ψp,q,r Djf to be contaminated by
noise, where the perturbation again is interpretated as error in the
observation operator Ψp,q,r. Hence, let Ψη

p,q,r : Yα,β → R
n for α, β > 1/2 be

a contamination of Ψp,q,r with noise level η > 0
∣∣∣(Ψη

p,q,rv)l,i,m − (Ψp,q,rv)l,i,m
∣∣∣ ≤ η ‖v‖Yα,β , v ∈ Yα,β (8.10)

for all 0 ≤ l ≤ p − 1, −q ≤ i ≤ q − 1 and −r ≤ m ≤ r − 1. Corollary 8.6
tells how to choose the number of data scanning points and the regularization
parameter d subject to the noise level η to yield convergence as η → 0, see
also Remark 2.5.

Corollary 8.6. Adopt again all assumptions made in Theorem 8.3. Let fur-
ther p � q, r � q and d � qλ with λ as in (8.8). The noise perturbed obser-
vation operator Ψη

p,q,r is supposed to satisfy (8.10). If q � η−1, then there are
constants C̃1, C̃2 > 0 validating

‖D̃j,n,d Ψη
p,q,r Djf − (PN(Dj)⊥f)j‖L2(Ω3) ≤ C̃1 η

min{2,α,β}
α+β+5/2+min{2,α,β}

as well as

‖D̃n,d Ψη
p,q,r Df − Pf‖L2(Ω3,R3) ≤ C̃2 η

min{2,α,β}
α+β+5/2+min{2,α,β}

for η → 0.

Proof. We split the reconstruction error into data and approximation error
which is a usual procedure in the theory of regularization methods,

‖D̃j,n,d Ψη
p,q,r Djf − (PN(Dj)⊥f)j‖L2(Ω3) ≤

‖D̃j,n,d (Ψη
p,q,r − Ψp,q,r)Djf‖L2(Ω3) +

‖D̃j,n,d Ψp,q,r Djf − (PN(Dj)⊥f)j‖L2(Ω3) .

From the proofs of Theorem 3.10 and (8.5) we see that the data error can be
estimated as

‖D̃j,n,d (Ψη
p,q,r − Ψp,q,r)Djf‖L2(Ω3) ≤ c η

(
d−1

d∑

i=1

‖υjd,k‖2
Yα,β
)1/2

‖f‖Xα,β

≤ cCυ η dα+β+5/2 ‖f‖Xα,β

for suitable c > 0. The approximation error is obtained from Corollary 8.4,

‖D̃j,n,d Ψp,q,r Djf − (PN(Dj)⊥f)j‖L2(Ω3) ≤ C1 q
−λ min{2,α,β} .
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The total error is then given as

‖D̃j,n,d Ψη
p,q,r Djf − (PN(Dj)⊥f)j‖L2(Ω3) ≤ C̄1

(
η qλ (α+β+5/2)+q−λ min{2,α,β}

)

≤ 2 C̄1 η
min{2,α,β}

α+β+5/2+min{2,α,β} ,

where C̄1 := max{cCυ ‖f‖Xα,β , C1}. This yields also the reconstruction error
in D̃n,d Ψη

p,q,r Df after applying the triangle inequality. ��

Remark 8.7. In view of Definition 1.5, Corollary 8.6 tells us that the inversion
scheme D̃n,d represents a regularization which is sub-optimal. More explicitly,
if 1/2 < α = β ≤ 2, then

‖D̃n,d Ψη
p,q,r Df − Pf‖L2(Ω3,R3) ≤ C̃2 η

α
3α+5/2 ,

which is obviously worse than the optimal rate η
α
α+1 . In Faridani and

Rieder [28] the authors prove that the algorithm of semi-discrete filtered
backprojection applied to the two-dimensional Radon transform is optimal.
Since that algorithm is contained in the framework of approximate inverse, as
we have seen in section 2.2, see also Rieder, Schuster [102], we have the
conjecture that D̃n,d represents a regularization which actually is optimal.
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Approaches for defect correction

We conclude this part by demonstrating how defect correction methods can
be developed, which are adjusted to the method of approximate inverse. By
the defect we mean the approximation error ‖f − fapp‖L2(Ω,R3) of the exact
solution f and the calculated solution fapp. These methods are supposed to
improve the accuracy of the reconstruction procedure outlined in the previous
chapters. As we pointed out in Remark 6.4 the Doppler transform has a non-
trivial null space. When we look at the convergence Theorem 8.3 we moreover
see that the reconstruction error depends on how large the parts of the sought
solution f are, which lie in the kernel of Dj . Hence, each approximate solution
fapp of problem (6.10) contains unwished parts from the null spaces of Dj .
Since these parts might cause great approximation errors ‖f − fapp‖L2(Ω,R3),
we are interested in approximating the error fdef = f − fapp and computing a
defect correction via

fnew = fapp + fdef .

Over the last few years different approaches for defect correction methods
have been developed. References are Derevtsov et al. [23], Schuster [112]
und Andersson [4]. Starting point of the first two articles is the Helmholtz-
decomposition

f = f s + ∇v , ∇ · f s = 0 ,

where the exact flow is supposed to be incompressible ∇·f = 0. Direct methods
compute projections fapp of f onto a subspace spanned by solenoidal fields,
see Derevtsov, Kashina [22]. Kazantsev and Bukgheim [57] derived
the singular value decomposition in two dimensions which also can be used to
establish direct methods of defect correction. Indirect methods calculate the
potential v as solution of a boundary value problem. Yet, in 1992 Juhlin [50]
showed that the exact field f can be obtained by solving a boundary value
problem, if only the curl and divergence of f as well as the normal component
at the boundary are known. These are the methods to be described in this
chapter.
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Andersson [4] suggests another approach. He gains more information of
f by calculating higher order moments of the velocity spectrum dS (6.2).
Remember that the first moment of dS is the Doppler transform. If we had
all moments of dS available, f would be uniquely determined up to a small
ambiguity, see Sparr et al. [120].

In section 9.1 we introduce elliptic Dirichlet and Neumann problems which
have potentials v as unique solution and show that the gradient ∇v can be
used to calculate a better approximation fnew. We further compare the two
arising methods relying on the Dirichlet problem on the one hand and on
the Neumann problem on the other hand. A concrete method to solve the
Neumann problem is suggested in section 9.2, where fapp is the approxi-
mate inverse for the two-dimensional inversion problem. In that case we need
the measured data Ψp,q Df only and not the reconstruction fapp itself to com-
pute fdef . A brief treatise of the Dirichlet problem is subject of section 9.3.
We note that all considerations are done for two-dimensional Doppler tomog-
raphy, though they apply also for the three-dimensional case.

9.1 Potentials as solutions of elliptic boundary value
problems

We assume Ω ⊂ R
N , N = 2, 3 to be a bounded domain with piecewise smooth

boundary ∂Ω, e.g. Ω = B1(0) with ∂Ω = SN−1. Further suppose that the
flux f ∈ L2(Ω,RN ) is incompressible with normal flow ξ ∈ L2(∂Ω) at the
boundary, i.e.

∇ · f = 0 , νx · f |∂Ω = ξ , (9.1)

where νx is the unit outer normal vector at ∂Ω. By means of the Gauss
theorem, this implies ∫

∂Ω

ξ(x) dsx = 0 . (9.2)

E.g. ξ = 0 physically means that we have a tangential flow at the boundary
and that there is no flux through ∂Ω. Furthermore, we assume that an app-
roximate solution fapp ∈ L2(Ω,RN ) of (6.10) is given. E.g. fapp could be the
approximate inverse

fapp = D̃n,d Ψp,q,r Df . (9.3)

Our starting point is the Helmholtz decomposition, which has been deduced
by Helmholtz [44], see also Weyl [130]. According to this decomposition,
the approximate solution fapp ∈ L2(Ω,RN ) can be written as a sum of a
solenoidal part f s and an irrotational part ∇v

fapp = f s + ∇v , ∇ · f s = 0 . (9.4)

The splitting (9.4) becomes unique, if v = 0 on ∂Ω what we presume whenever
using (9.4).
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The two approaches for defect correction methods outlined in [23] consist
of first solving corresponding boundary value problems to obtain a potential
v and then subtracting ∇v from fapp, that is fdef = −∇v. The first approach
calculates the potential v of the decomposition (9.4). To distinguish the two
potentials of the methods, we denote v by v(1). Applying the divergence oper-
ator to (9.4) and taking into account that v vanishes at the boundary, yields

{
∆v(1) = ∇ · fapp in Ω ,

v(1) = 0 on ∂Ω .
(9.5)

The unique solution v(1) of (9.5), which coincides with v from (9.4), is used
to compute the corrected field

f (1)
new := fapp −∇v(1) . (9.6)

Since ∇v(1) ∈ N(D), one hopes for a better result f (1)
new.

The second approach relies on the solution of the Neumann problem
{

∆v(2) = ∇ · fapp in Ω ,

∂νxv
(2) = νx · fapp − ξ on ∂Ω .

(9.7)

The solution v(2) is unique up to a constant since
∫

∂Ω

(
(νx · fapp)(x) − ξ(x)

)
dsx =

∫

Ω

(∇ · fapp)(x) dx

by the Gauss theorem and (9.2). Thus ∇v(2) is uniquely determined and the
field

f (2)
new := fapp −∇v(2) (9.8)

well-defined. Since νx · f (2)
new equals ξ on ∂Ω and ∇ · f (2)

new = 0, this method
promises an improvement in accuracy too.

First, we state that both methods in fact lead to better reconstruction
results.

Lemma 9.1. If ∇v(�) �= 0, � = 1, 2, then

‖f−f (�)
new‖2

L2(Ω,RN ) =‖f−fapp‖2
L2(Ω,RN )−‖∇v(�)‖2

L2(Ω,RN )<‖f−fapp‖2
L2(Ω,RN ) .

Proof. We outline the proof for � = 2. The case � = 1 is handled accordingly
and can be found as Lemma 2.2 in [23].
A straightforward calculation shows

‖f − fapp‖2
L2(Ω,RN ) = ‖f − f (2)

new −∇v(2)‖2
L2(Ω,RN )

= ‖f − f (2)
new‖2

L2(Ω,RN ) − 2 〈f − f (2)
new,∇v(2)〉L2(Ω,RN ) + ‖∇v(2)‖2

L2(Ω,RN ) .
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Taking into account that ∇ · (f − f (2)
new) = 0 in Ω as well as νx · (f − f (2)

new) =
ξ − ξ = 0 on ∂Ω, an application of the theorem of Gauss-Ostrogradsky yields

〈f − f (2)
new,∇v(2)〉L2(Ω,RN ) =

∫

Ω

(f − f (2)
new)(x) · ∇v(2)(x) dx

=
∫

∂Ω

νx · (f − f (2)
new)(x) dsx −

∫

Ω

(∇ · (f − f (2)
new))(x) v(2)(x) dx = 0 .

Thus, we have

‖f − fapp‖2
L2(Ω,RN ) = ‖f − f (2)

new‖2
L2(Ω,RN ) + ‖∇v(2)‖2

L2(Ω,RN ) .

��

So far, Lemma 9.1 proves that we found two possibilities to enhance the
reconstruction accuracy. But what is the differnce between the two methods
and which one is to prefer? To analyze the methods, we introduce the errors

e(�) = f − f (�)
new , � = 1, 2

and denote the difference by ē = e(2) − e(1). Lemma 9.2 states that ē is a
harmonic field being L2-orthogonal to e(2).

Lemma 9.2. a) We have that ē = ∇h̄ for a harmonic function h̄.
b) The fields ē and e(2) are L2-orthogonal to each other,

〈ē, e(2)〉L2(Ω,RN ) = 0 .

c) We have

‖e(2)‖2
L2(Ω,RN ) = ‖e(1)‖2

L2(Ω,RN ) − ‖ē‖2
L2(Ω,RN ) ≤ ‖e(1)‖2

L2(Ω,RN ) .

Proof. From the settings (9.6), (9.8) and the boundary value problems (9.5),
(9.7), it follows that ∇× ē = 0 = ∇· ē in Ω. The first identity implies ē = ∇h̄
for h̄ ∈ H1(Ω), the latter one yields ∆h̄ = 0.
Using part a) and the Gauss-Ostrogradsky theorem implies

〈ē, e(2)〉L2(Ω,RN ) =
∫

∂Ω

(νx · e(2))(x) h̄(x) dsx −
∫

Ω

(∇ · e(2))(x) h̄(x) dx = 0

because of (9.7). This gives part b).
Part c) is a simple consequence from part b), since e(1) = e(2) − ē. ��

From Lemma 9.2, we read that f (2)
new represents a better correction than

f (1)
new. But note that the boundary values ξ = νx ·f must be known to apply this

method. A more detailed analysis of the two approaches is found in Schuster

[113].
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9.2 The Neumann problem

We show in this section an adept algorithm to solve the Neumann prob-
lem (9.7) by means of a boundary element method. We deal with the two-
dimensional case (N = 2) using a slight modification of the approximate
inverse as approximate solution fapp. As a special feature, the algorithm of
defect correction uses the measured data Ψp,q Df only and hence can be per-
formed in parallel to the reconstruction process. For the sake of a better
readability, we write v = v(2). We essentially follow the outlines of [112]1.

9.2.1 A boundary element method for the Neumann problem

First, we apply a boundary element method (BEM) to the Neumann problem
(9.7) which results in an integral equation of second kind. Denoting with u∗

the fundamental solution of the Laplacian

∆u∗(x, y) = −δ(x− y) , x, y ∈ Ω

with Dirac’s delta distribution δ(x), we can identify v|∂Ω as solution of an
integral equation of second kind
(

1

2
I+K

)
v(y) =

∫

∂Ω

u∗(x, y) (νx ·fapp)(x) dsx−
∫

Ω

u∗(x, y) (∇·fapp)(x) dx (9.9)

for y ∈ ∂Ω, see e.g. Chen, Zhou [14]. The integral operator K is the double
layer potential

Kv(y) =
∫

∂Ω

∂u∗

∂νx
(x, y) v(x) dsx . (9.10)

To eliminate the differentiation of fapp in (9.9) we apply an integration by
parts and get

(1
2
I + K

)
v(y) =

∫

Ω

fapp(x) · ∇xu
∗(x, y) dx =: z(y) . (9.11)

From (9.11), we get the Dirichlet data v(y), y ∈ ∂Ω. The solution v of (9.7)
is then given by

v(y) = z(y) −
∫

∂Ω

∂u∗

∂νx
(x, y) v(x) dsx (9.12)

for y ∈ Ω, where v|∂Ω comes from solving (9.11).
The defect correction method reads then as follows:

• Solve the integral equation (9.11) to get the Dirichlet data of v.
• Compute v(y) for y ∈ Ω by (9.12).
1 The figures in this section were reproduced from T. Schuster, Defect correction

in vector field tomography: detecting the potential part using BEM and implemen-
tation of the method, Inverse Problems, 21 (2005), pp. 75–91. Copyright c©2005
IOP Publishing Limited. Reprinted with permission.’
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• Compute the corrected field

f (2)
new = fapp −∇v .

Unfortunately, the Newton potential

z(y) =
∫

Ω

fapp(x) · ∇xu
∗(x, y) dx (9.13)

reduces the efficiency of the BEM, since the evaluation of (9.13) is of higher
order than those of integrals over the boundary ∂Ω. Thus, we aim to calcu-
late approximations of (9.13) analytically using the special structure of our
reconstruction fapp.

9.2.2 The computation of the Newton potentials

As we only dealt with the three-dimensional case since Chapter 7, we start
with a brief re-formulation of the semi-discrete approximate inverse for the
2D Doppler transform Ψp,qD with Ψp,q as in (6.9). We further consider the
case Ω = Ω2 with ∂Ω2 = S1.

The semi-discrete approximate inverse D̃n,d : R
n → L2(Ω2,R2), n = 2pq,

is defined via

(D̃n,dw)j(x) =
∑

k∈Z2
‖k‖≤d−1

〈w,Gp,q Ψp,q T
d,k
j υ

j〉Rn Bd,k(x) .

Here,
Bd,k(x) = B(d x− k) , d > 0 , k ∈ Z

2

with the tensor product splines B = b⊗ b according to (7.13), T d,kj from (8.2)
and the Gramian matrix Gp,q ∈ R

n×n with respect to the splines (7.1)

Gp,q =
2π
pq
In,n .

For w = Ψp,q Df , f ∈ Hα(Ω2,R2) and α > 1/2, the inner products compute
as

〈Ψp,q Df , Gp,q Ψp,q T
d,k
j υ

j〉Rn (9.14)

=
2π d2

pq

p−1∑

l=0

q−1∑

i=−q
Df(ϕl, si) υj

(
ϕl, d si − 〈k, ω(ϕl)〉

)
.

The reconstruction kernel υj is assumed to be associated with the mollifier
e(x1, x2) = p(x1, x2) with p as in (7.16) for ν = 2. This gives

υj(ϕ, s) = −π−2 ω⊥j (ϕ) φ̃(s) , j = 1, 2 (9.15)
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with

φ̃(s) =
{

s2 (6 − 4s2) + κ1 : |s| < 1 ,
s−2

2F1(1, 3/2; 4; s−2) + κ2 : |s| ≥ 1 ,

where κ1 = −(6+8π)/15 and κ2 = (33−16π)/30. This in fact is representation
(7.35) with q(a) = 1 and ν = 2.

In order to get approximations to the Newton potentials z(y) in an explicit
form, we slightly simplify the operator D̃n,d. Observing that

〈w,Gp,q Ψp,q T
d,k
j υ

j〉Rn = (D̃n,dw)j(d−1 k) , d > 0 , k ∈ Z
2

we deduce that Bj
n,d : R

n → L2(Ω2) with

Bj
n,dw(x) =

2π d2

pq

p−1∑

l=0

q−1∑

i=−q
wl,i υ

j
(
ϕl, d (si − 〈x, ω(ϕl))〉

)

is a reasonable replacement for (D̃n,dw)j(x). Actually (D̃n,dw)j(x) emerges
from Bj

n,dw(x) using piecewise linear interpolation with respect to the nodes
{d−1 k}. In contrast to (D̃n,dw)j , the functions Bj

n,dw have a continuous deriv-
ative due to the smoothness of υj . For the remainder of this section, we put

(fapp)j = Bj
n,d Ψp,q Df . (9.16)

We focus now on the Newton potentials z(y). A simple calculation shows

z(y) =
∫

Ω2
fapp(x) · ∇xu

∗(x, y) dx =
2∑

j=1

∫

Ω2
(Bj

n,d Ψp,q Df)(x)
∂u∗

∂xj
(x, y) dx

=
2∑

j=1

〈Bj
n,d Ψp,q Df ,

∂u∗

∂xj
(·, y)〉L2(Ω2) (9.17)

=
2∑

j=1

〈Ψp,q Df , (Bj
n,d)

∗
{∂u∗
∂xj

(·, y)
}
〉Rn ,

where the adjoint operator (Bj
n,d)

∗ : L2(Ω2) → R
n of Bj

n,d reads

[(Bj
n,d)

∗f ]l,i =
2π d2

pq

∫

Ω2
f(x) υj

(
ϕl, d (si − 〈x, ω(ϕl)〉)

)
dx . (9.18)

The fundamental solution u∗ of the two-dimensional Laplacian is given by

u∗(x, y) = − 1
2π

log(‖x− y‖) (9.19)

yielding
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∂u∗

∂xj
(x, y) = − 1

2π
xj − yj
‖x− y‖2

.

To calculate z(y), we use not only the special form of fapp (9.16), but also the
special structure of the kernel υj . Obviously the integrals

(Bj
n,d)

∗
{∂u∗
∂xj

(·, y)
}

= −d
2

pq

∫

Ω2

xj − yj
‖x− y‖2

υj
(
ϕ, d (s− 〈x, ω(ϕ)〉)

)
dx , (9.20)

which appear in (9.17), are singular.
To approximate integrals as in (9.20), we use representation (9.15) and

investigate the integrals

Υj
df(ϕ, s) := − d

2

π2
ω⊥j (ϕ)

∫

Ω2
f(x) φ̃

(
d (s− 〈x, ω(ϕ)〉)

)
dx (9.21)

for arbitrary f ∈ C∞(Ω2) with ϕ ∈ [0, 2π], s ∈ [−1, 1] and φ̃ from (9.15). In
order to analyze the behavior of Υj

df for large values d, we define the functions

Fd(s) = d φ̃(d s) , s ∈ [−2, 2] , d > 0 . (9.22)

Figure 9.1 shows a plot of d−1 · Fd for different values of d. We notice that
d−1 ·Fd has three extreme values and is almost constant (= κ2) for s large. If
d is increased, the graph consists almost only of the three extreme values and
is constant everywhere else. This observation is important for our searched
for approximation of (9.21).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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−1

Fig. 9.1. Plot of d−1 · Fd for d = 2 (solid curve), d = 4 (dashed-dotted curve) and
d = 20 (dashed curve).

At first, we localize the three extreme values of d−1 · Fd.

Lemma 9.3. The functions d−1 · Fd have two global maximum points at
P1,2

(
±

√
3

2 d
−1 , (κ1 + 9

4 )
)

and a global minimum at B(0 , κ1).



9.2 The Neumann problem 97

Proof. Differentiating Fd gives F ′
d(s) = d2 φ̃′(d s) where

φ̃′(s) =
{

12 s− 16 s3 , |s| ≤ 1 ,
− 1

2 s
−3

2F1(1, 3/2; 4; s−2) − 1
2 s

−5
2F′

1(1, 3/2; 4; s−2) , |s| > 1 .
(9.23)

From (9.23) we see that φ̃′ has the zeros s = 0 and s = ±
√

3/2 in [−1, 1] and
that φ̃ is monotone decreasing, if s > 1, and increasing, if s < 1. Thus, there
are only critical points in [−1, 1]. A little bit of analysis shows that we have a
minimum point at s = 0 and maximum points at s = ±

√
3/2. ��

Lemma 9.3 tells us that the three extreme points of Fd lie in the Interval
Id = [−

√
3

2 d
−1,

√
3

2 d
−1] which is concentrated about 0 as d → ∞. Because of

|s− 〈x, ω(ϕ)〉| ≤ 2 we are interested in the behavior of Fd in [−2, 2] for large
values of d. To this end, we take an arbitrary Schwartz function v ∈ D(−2, 2)
with compact support in [−2, 2] and compute

2∫

−2

λ(s)Fd(s) ds

for large d. Note, that for sufficiently large d we have that Id ⊂ [−2, 2]. Thus,
we can divide [−2, 2] into subintervals Id and [−2, 2]\Id, apply the trapezoidal
sum corresponding to the nodes sd− = −

√
3d−1/2, s = 0 and sd+ = +

√
3d−1/2

and obtain

2∫

−2

λ(s)Fd(s) ds =
∫

Id
λ(s)Fd(s) ds+

∫

[−2,2]\Id
λ(s)Fd(s) ds

≈
√

3
2
d−1
{κ1 + 9/4
d−1

λ(sd−) +
κ1
d−1
λ(0) +

κ1 + 9/4
d−1

λ(sd+)
}

+
∫

[−2,2]\Id
λ(s)Fd(s) ds

≈
√

3
2
d−1
{κ1 + 9/4
d−1

λ(sd−) +
κ1
d−1
λ(0) +

κ1 + 9/4
d−1

λ(sd+)
}

+
κ2
d−1

2∫

−2

λ(s) ds .

Note that for d → ∞ the approximation error in the calculation above gets
arbitrarily small. We used also the fact that Fd is almost constant equal
to d κ2 outside Id and that [−2, 2]\Id ≈ [−2, 2] for large values of d. The
considerations above inspire for large d > 0 the approximation

Fd(s) ≈ F 0
d (s) :=

√
3

2

(
κ1 δ(s)+

4κ1 + 9
4

(δ(s−sd−)+δ(s+sd+))
)
+d κ2 , (9.24)
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where δ denotes Dirac’s delta distribution. Thus, we may replace Fd(s) by
F 0
d (s) as d→ ∞ and get a nice relationship to the Radon transform R.

Lemma 9.4. Let f ∈ C∞(Ω2), s ∈ [−1, 1] and ϕ ∈ [0, 2π]. Then
∫

Ω2
f(x)F 0

d (s− 〈x, ω(ϕ)〉) dx = Rdf(ϕ, s) , (9.25)

where the integral operator Rd is defined via

Rdf(ϕ, s) =
√

3
2

(
κ1 Rf(ϕ, s) +

4κ1 + 9
4

(Rf(ϕ, s− sd−) + Rf(ϕ, s+ sd+))
)

+d κ2Ω2(f)

and Ω2(f) =
∫
Ω2 f(x) dx.

Proof. Assertion (9.25) is an immediate consequence of (9.24) and the defin-
ition of the Radon transform (2.17). ��

With the help of Lemma 9.4 we get an approximation of Υj
df (9.21).

Corollary 9.5. For large d→ ∞ and f ∈ C∞(Ω2) we get the approximation

Υj
df(ϕ, s) = − d

π2
ω⊥j (ϕ)Rdf(ϕ, s) . (9.26)

Proof. From (9.21), (9.24) and (9.25) we deduce

Υj
df(ϕ, s) = − d

π2
ω⊥j (ϕ)

∫

Ω2
f(x)Fd(s− 〈x, ω(ϕ)〉) dx

= − d
π2
ω⊥j (ϕ)

∫

Ω2
f(x)F 0

d (s− 〈x, ω(ϕ)〉) dx

= − d
π2
ω⊥j (ϕ)Rdf(ϕ, s)

as d→ ∞. ��

Remark 9.6. Statement (9.26) in Corollary 9.5 is to be meant in the sense that

lim
d→∞

|Υj
df(ϕ, s)+

d

π2
ω⊥j (ϕ)Rdf(ϕ, s)| = 0 for all ϕ ∈ [0, 2π] , s ∈ [−1, 1] .

Using the approximation (9.26), we reduce the dimension of the domain
of integration. Instead of the two-dimensional domain Ω2, we only need to
integrate over lines. Moreover, if we are able to calculate the Radon transform
of the function f explicitly, we get also an explicit representation of Υj

df . Since

[(Bj
n,d)

∗f ]l,i =
2π
pq

Υj
df(ϕl, si) , 0 ≤ l ≤ p− 1 , −q ≤ i ≤ q − 1 ,

we get an expression for the Newton potential z(y) as d→ ∞.
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Theorem 9.7. Let (fapp)j = Bj
n,d Ψp,q Df be the approximate inverse (9.16)

of Ψp,q Df and f ∈ Hα(Ω2,R2) for α > 1/2. Then, the Newton potential z(y)
has the representation

z(y) =
∫

Ω2
fapp(x) · ∇xu

∗(x, y) dx

(9.27)

= − 2 d
πpq

2∑

j=1

p−1∑

l=0

q−1∑

i=−q
Df(ϕl, si)ω⊥j (ϕl)Rd{∂xj u∗(·, y)}(ϕl, si)

as d→ ∞.

Proof. The proof of Theorem 9.7 follows readily from (9.13), (9.17) and (9.26).
��

A short calculation shows

Ω2{∂xju∗(·, y)} =
1
2
yj , (9.28)

see [23, Lemma 4.2], where the integral is to be understood in the principal
value sense. In that very paper an alternative approach is presented to approx-
imate z(y), replacing the integrand in (9.20) by a function which is bounded
in Ω2. Analytic expressions for

R{∂xju∗(·, y)}(ϕ, s) (9.29)

have been computed in [112, Lemma A.1], when ‖y‖ < 1.

Remark 9.8. The calculation of z(y) with the help of Theorem 9.7 requires the
measured data Ψp,q Df only, not the reconstruction fapp itself, which occurs
in (9.13). Thus, the computation of the defect correction term ∇v can be done
without knowledge of fapp. Moreover, both processes, the reconstruction and
the defect correction, can be performed in parallel.
Furthermore we mention that the condition f ∈ C∞(Ω2) in Lemma 9.4 and
Corollary 9.5 is meaningful since ∂xju

∗(·, y) ∈ C∞(Ω2\{y}). The singularity
in (9.27) appears only, if one of the finitely many lines L(ϕk, sl) contains y
and is a weak singularity, see (9.28). In case that y ∈ L(ϕk, sl) the expressions
(9.29) still are finite for ‖y‖ < 1, see [112, Lemma A.1].
The (large) factor d in (9.27) comes from the fact that we have a two-
dimensional dilation of the mollifier d2 e(d (y − x)) · δj , but only a one-
dimensional dilation in φ̃(s), see (9.22).

Thus, we may conclude, that we have a possibility to evaluate z(y) for an
arbitrary y ∈ Ω2. But note that (9.27) is only valid in the special case when
we use fapp = Bj

n,d Ψp,q Df to reconstruct f and the special reconstruction
kernel (7.16). But obviously all the calculations and investigations can be done
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accordingly, if we use another reconstruction kernel. Unfortunately, formula
(9.27) is not of filtered backprojection type and thus more time consuming
than the reconstruction process. But since we will use the defect correction
method only in case of a small number of data, this drawback is justified by
the better reconstruction result.

9.2.3 Numerical results

We use the technique of evaluating z(y) outlined in section 9.2.2 to test the
algorithm of defect correction. Hereby, we solve the integral equation (9.9),
applying a collocation method approximating the boundary Γ = ∂Ω2 = S1 by
a polygon Γh and making a piecewise constant ansatz for v on Γh, see figure
9.2. Since the collocation points are inner points of Ω2, we only need a stable
evaluation of z(y) for ‖y‖ < 1 which is given by (9.27). The details of this
method are drawn from Bebendorf, Rjasanow [7, 8].

Fig. 9.2. The unit circle Γ = S1 with the polygon Γh and vertices xj and xj+1.
The collocation points yj are defined as the center points of an edge Γh,j and hence
satisfy ‖y‖ < 1. We make the piecewise constant ansatz p|Γh,j = cj .

Vector fields which fulfill (9.1) on Ω2 with ξ = 0 have the form

f = ∇×⊥ w(x1, x2) = (−∂x2w, ∂x1w) , w ∈ H1(Ω2) (9.30)

with −x1 ∂x2w + x2 ∂x1w = 0 on S1. Furthermore, we set f = 0 in R
2\Ω2.

Setting
w(x1, x2) = − exp(−x21 − x22) , (9.31)

we obtain the vector field plotted in figure 7.3. The method of defect correction
is of large interest, especially if the amount of data is rather small. Data
acquisition might be time consuming, thus only few data can be measured.
To adapt this situation, we choose p = 10 and q = 15. We calculate fapp



9.3 The Dirichlet problem 101

applying the method of approximate inverse (9.16) with d = 4.54, leading to
a relative error

( 2∑

j=1

‖Bj
n,d Ψp,q Df − f j‖2

L2(Ω2)/

2∑

j=1

‖f j‖2
L2(Ω2)

)
= 0.165 = 16.5% .

A plot of fapp can be seen in figure 9.3 (left picture). The choice of d might
not be optimal, but often it is not possible to determine the optimal value
for d, causing further inaccuracies. To compute the defect correction f (2)

new, we
first solve the integral equation (9.11) by the mentioned collocation method
using 500 collocation points and obtain the Dirichlet data for the searched for
potential v. With (9.12) we compute then v and ∇v analytically. Finally, we
determine f (2)

new = fapp −∇v resulting in the relative error

( 2∑

j=1

‖(f (2)
new)j − f j‖2

L2(Ω2)/

2∑

j=1

‖f j‖2
L2(Ω2)

)
= 0.1292 = 12.92% ,

which means an improvement by about 4%. The potential field ∇v is displayed
in figure 9.3 (right picture).

Figure 9.4 contains the approximate inverse fapp of the vector field f cor-
responding to

w(x1, x2) = (1 − ‖x‖2)2 cos(x1 + x2) (9.32)

in (9.30) as well as the potential field ∇v, where we used noise contaminated
data with a noise level of 7%. Here, the original error

( 2∑

j=1

‖Bj
n,d Ψp,q Df − f j‖2

L2(Ω2)/
2∑

j=1

‖f j‖2
L2(Ω2)

)
= 0.1 = 10%

could be improved to

( 2∑

j=1

‖(f (2)
new)j − f j‖2

L2(Ω2)/

2∑

j=1

‖f j‖2
L2(Ω2)

)
= 0.0833 = 8.33% .

Note that the improvement is only small, since fields ∇×⊥w are solenoidal
and hence we have exact convergence for d, n→ ∞ as pointed out in Corollary
8.5.

9.3 The Dirichlet problem

There are several ways to solve the Dirichlet problem (9.5). Certainly, we may
apply a BEM also in that case after a reformulation of (9.5) as an integral
equation. The Neumann data of v = v(1) are obtained by solving
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Fig. 9.3. The approximate inverse fapp of f(x1, x2) = ∇×⊥w(x1, x2) = 2 exp(−x2
1−

x2
2)(−x2, x1) with w from (9.31) (left picture) and the corresponding potential part

∇v (right picture). The structure of f is illuminated well by the picture to the left.
But the plot of the potential part ∇v also shows reconstruction errors near the
boundary.
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Fig. 9.4. The approximate inverse fapp of f = ∇ ×⊥ w with w as in (9.32) (left
picture) and the corresponding potential part ∇v (right picture). Again the potential
part reveals boundary errors.

(1
2
I + K̃

)
v(y) = −

∫

Ω

u∗(x, y)∆p(x) dx (9.33)

=
∫

Ω

fapp(x) · ∇xu
∗(x, y) dx−

∫

∂Ω

u∗(x, y) (νx · fapp)(x) dsx =: z̃(y) ,

where K̃ is the single layer potential

K̃v(y) =
∫

∂Ω

u∗(x, y)
∂p

∂νx
(x) dsx .

The evaluation of z̃(y) can be done as follows. The first integral in (9.33)
∫

Ω

fapp(x) · ∇xu
∗(x, y) dx ,

is exactly the function z(y), which we considered in section 9.2.2 and is eval-
uated as indicated in Theorem 9.7. Assuming again that Ω = Ω2, the second
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integral may be treated in the following way. We write the boundary integral
in (9.33) first in spherical coordinates

∫

S1
u∗(x, y) (νx · fapp)(x) dsx =

2π∫

0

u∗(ω(ϑ), y)
(
ω(ϑ) · fapp(ω(ϑ))

)
dϑ

(9.34)

=
d2

π2pq

2∑

j=1

p−1∑

l=0

q−1∑

i=−q
Df(ϕl, si)ω⊥j (ϕl) ×

×
2π∫

0

ln ‖ω(ϑ) − y‖ωj(ϑ) φ̃
(
d (si − 〈θ(ϕl), ω(ϑ)〉)

)
dϑ ,

where ω(ϑ) = (cosϑ, sinϑ) ∈ S1. Note, that νx = x, x ∈ S1. Since we evaluate
(9.34) for values y ∈ Ω2 only, there is no singularity in (9.34). Thus, we may
apply the trapezoidal rule to get an appropriate approximation. Let

ϑµ = µ
2π
M
, µ = 0, . . . ,M ,

be an equispaced discretization in ϑ. Then

2π∫

0

ln ‖ω(ϑ) − y‖ωj(ϑ) φ̃
(
d (si − 〈θ(ϕl), ω(ϑ)〉)

)
dϑ

≈ 2π
M

M∑

µ=0

ln ‖ω(ϑµ) − y‖ωj(ϑµ) φ̃
(
d (si − 〈θ(ϕl), ω(ϑµ)〉)

)
.

To solve (9.33) we can use a collocation method again.
Another approach is described in [23, section 3]. There, the authors suggest

a method which uses a conformal mapping P : Ω2 → [−2, 2]2 to transform
the Dirichlet problem (9.5) to an equivalent boundary value problem on the
square [−2, 2]2 which is then solved by means of a finite difference scheme.
The drawback of this method is that the mapping P changes the metric in
[−2, 2]2 to a non-Euclidean one.



10

Conclusion and perspectives

We transfered the abstract framework done in Part I to the problem of Doppler
tomography. The result is a stable inversion scheme of filtered backprojection
type which emphasizes all amenities being characteristic for the method of
approximate inverse. These are:

• The reconstruction kernels can be pre-computed before the measurement
process starts.

• Invariances of the underlying operator help to improve the efficiency of the
method. Here we used dilation and translation invariances of the adjoint
of the Doppler transform.

• These invariances are further the reason that we have to compute the
reconstruction kernel only once. Thus the method is well suited, if one
needs to repeat the reconstruction process very often.

The measurement geometry described in Chapter 6 is very time consuming,
since the body has to be scanned slice by slice and in three different direc-
tions. Hence, from a practical point of view, cone beam data would be more
convenient. The application of the method of approximate inverse to the cone
beam transform

Df(a, ω) =

∞∫

0

〈ω, f(a+ tω)〉dt , ω ∈ S2 ,

where a ∈ Γ ⊂ (R3\Ω) is a source point on a given scanning curve, is subject
of current research as well as the general development of inversion schemes
for the cone beam geometry.

In chapter 9, we emphasized that defect correction methods are necessary
to improve the reconstruction accuracy and outlined a method in 2D which
relies on the approximate inverse as reconstruction scheme and needs the
measured data only to compute the defect correction term. The aim is to
extend the presented method to the three-dimensional case, since in that
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situation we do not have exact convergence for d, n → ∞ in contrast to the
two-dimensional case, compare (8.7), (8.9). To solve the according boundary
value problems in 3D, fast boundary element methods such as the adaptive
cross approximation (Bebendorf, Rjasanow [8]) could be useful.
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The spherical mean operator

After a short treatise about SONAR and SAR, we summarize in Section
11.2 the essential mathematical properties of the spherical mean operator
M. Though there are some similarities to the Radon transform R with
respect to its definition and inversion formula, we point out crucial differences
when the center set is given by {xn+1 = 0} ⊂ R

n+1, which causes difficulties
in the numerical treatment of that mapping. The most important difference
between the two transforms is the fact that M can neither be formulated as
continuous mapping between L2- nor between Sobolev spaces. Moreover, M is
meaningfully defined on certain spaces of tempered distributions only. Hence
to solve the inverse problem

Mf = g ,

we need the concepts presented in Chapter 4.

11.1 Spherical means in SONAR and SAR

To detect and visualize objects in the water, one emits ultrasound signals
from an antenna and measures reflections. In shallow water the assumption of
a constant speed of sound c(x) = c0 is reasonable. A signal U = U(t, x) being
emitted from a source a0 in a domain A ⊂ R

3 at time t = 0 hence generates a
spherical wave front. The reflected signal which is received at time t in a0 thus
contains information of all reflections located at a sphere with radius (t/2) c0
and center a0, see Figure 11.1. In Figure 11.1 the center set consists of the
line {x2 = 0}.

The measured signal is

Mf(a0, r) =
∫

S(a0,r)

f(x) dSrn(x) , r = (t/2) c0 , (11.1)

where S(a0, r) := {x ∈ R
3 : ‖x − a0‖ = r} and f(x) is the reflectivity. Here

dSrn denotes the n−1-dimensional surface measure on S(a0, r). The reflectivity
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f(x)

Fig. 11.1. Measurement geometry of SONAR in two dimensions. The x1- and x2-
axes are switched to be consistent with the definitions in Section 11.2.

essentially depends on the speed of sound c(x), which gives information about
objects in the water. The problem to recover objects in water from ultra-
sound measurements is called SONAR (SOund NAvigation and Radiation).
In SONAR the centers a0 usually are located at the hyperplane {x3 = 0}. As
can be read in Louis, Quinto [74] the signal U(t, x) propagates according to
the acoustic wave equation

k2(x)Utt = ∆U + δ(t) δ(x− a0) , a0 ∈ A . (11.2)

Provided that there is no multiple scattering (Born approximation) which
means a linearization, then the determination of k2 from the back-scattered
signal is equivalent to the reconstruction of k2 from M(k2)(a0, r), see
Lavrientiev et al. [62] and Romanov [104]. Here, the refraction index k2

corresponds to the reflectivity f in (11.1).
We have a similar situation in SAR. Here, the aim is to determine objects

at the earth’s surface by ultrasound signals, where the antenna usually is
attached to the wing of an aircraft. To be exact, we would have to consider
Maxwell’s equations as mathematical model. But for the sake of simplicity,
one investigates equation (11.2) or the similar equation

Utt = ∆U + q(x)U + δ(t) δ(x− a0) , a0 ∈ A ,

where q(x) denotes the scatterer. Hellsten, Andersson [45] show, how the
measured data in SAR can be interpretated as spherical means of the ground
reflectivity. Cheney [15] explains how the signals which are measured at the
antenna can be expressed by spherical means of c−1(x) − c−1

0 when we take
equation (11.2) with k2(x) = −1/c2(x) as a starting point.
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11.2 Properties of the spherical mean operator

Let S(Rn) be the space of rapidly decreasing functions in R
n, i.e. the space

of all functions f ∈ C∞(Rn) for which the seminorms

pm(v) = sup
|α|≤m

sup
x∈Rn

(1 + ‖x‖2)m |Dαv(x)| <∞

are finite for all m ∈ N0. Here, α ∈ N
n
0 is a multiindex and Dα := ∂α1

x1
· . . . ·∂αnxn

is the differential operator of order |α| = α1 + . . . + αn. The system {pm}
induces a local convex topology which turns S(Rn) to a Fréchet space. Its
dual S ′(Rn) consists of all functionals which are linear and bounded on S(Rn).
That means that to each λ ∈ S ′(Rn) there exists a m ∈ N0 and a constant
Cm > 0 satisfying

|〈λ, v〉S′(Rn)×S(Rn)| ≤ Cm pm(v) for all v ∈ S(Rn) .

Thus, each λ ∈ S ′(Rn) is of finite order. The space S ′(Rn) is called the space
of tempered distributions. The following theorem, which can be found e.g. in
Constantinescu [17, Theorem 7.4], characterizes tempered distributions as
(weak) derivatives of slowly increasing functions.

Theorem 11.1. To each λ ∈ S ′(Rn) there exists a multiindex α ∈ N
n
0 and a

continuous function Pλ of at most polynomial growth, such that

〈λ, v〉S′(Rn)×S(Rn) = (−1)|α|
∫

Rn

Pλ(x)Dαv(x) dx (11.3)

for all v ∈ S(Rn).

Obviously, S(Rn) ⊂ S ′(Rn) and the embedding is dense. As a consequence,
the Fourier transform F can be extended continuously to an isomorphism on
S ′(Rn).

Following the lines in [5] we investigate the particular case where the cen-
ters a0 in (11.1) are located on the hyperplane {z ∈ R

n+1 : zn+1 = 0}. To
adapt this very situation we re-define M. The spherical mean operator M
now particularly assigns a function f ∈ S(Rn+1) to its mean values over all
spheres with radius r ≥ 0 centered about (z, 0)� ∈ R

n+1, z ∈ R
n,

Mf(z, r) =
1

|Sn|

∫

Sn
f(z + r ξ, r η) dSn(ξ, η) = g(z, r) . (11.4)

By |Sn| we denote the surface area of the n-dimensional unit sphere Sn =
{(ξ, η)� ∈ R

n+1 : ξ ∈ R
n , η ∈ R , ‖ξ‖2 + η2 = 1} ∈ R

n+1, dSn is the
surface measure on Sn. In contrast to the Radon transform R, the spherical
mean operator integrates over n-dimensional hyperspheres Sn instead of n-
dimensional planes. We often will use the notation x = (x′, xn+1)� for x ∈
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R
n+1, where x′ = (x1, . . . , xn)� contains the first n components of x and xn+1

is the (n+ 1)-st component.
Obviously, M is not injective, since Mf = 0 for each f ∈ S(Rn+1) being

odd with respect to the last variable. Courant and Hilbert [18] proved
that the null space of M consists of all those functions which are odd in
xn+1. Thus, it is reasonable to restrict the domain of M to the subspace
Se(Rn+1) ⊂ S(Rn+1) of all rapidly decreasing functions being even in xn+1,

Se(Rn+1) := {f ∈ S(Rn+1) : f(x′,−xn+1) = f(x′, xn+1)} .

Unfortunately, f ∈ Se(Rn+1) does not imply that Mf is again a rapidly de-
creasing function. Even worse: the image Mf in general is neither in L2(Rn+1),
nor in L1(Rn+1). This fact is emphasized in Example 11.2 in two dimesnions
(n = 1). The image of the characteristic function of two circles under M, that
means of a function with compact support, is not even integrable.

Example 11.2. Let n = 1 and χC ∈ L2(R2) be the characteristic function of
two disks which are reflected about the x2-axis

χC(x) = χC(x1, x2) =
{

2 , if ‖x− (4, 4)‖ ≤ 1 or ‖x− (4,−4)‖ ≤ 1 ,
0 , else .

(11.5)
Note that χC is even with respect to x2. The picture to the left in Figure
11.2 shows a plot of χC for x2 > 0. After some geometric considerations we
compute for z ∈ R and r > 0

MχC(z, r) =

{
8π−1 r arccos

(
r2+d2−1

2 r d

)
, d− 1 ≤ r ≤ d+ 1 ,

0 , else ,

where d = ‖(z, 0) − (4, 4)‖. We integrate over spheres with radius r > 0; the
center set is the line {(z, 0) : z ∈ R}. The picture to the right in Figure 11.2
displays MχC for (z, r) in [−35, 35] × [0, 50]. Obviously the support of MχC
is not bounded in R

2.

This is a crucial difference compared to the Radon transform. The question
arises on which spaces M can be defined meaningfully as a bounded operator.
To answer this question, we first introduce a subspace of S(R2n+1). Let

Sr(Rn × R
n+1) :={f ∈ S(R2n+1) : f(z, w) = f̌(z, ‖w‖) for f̌ ∈ Se(Rn+1)}.

The space Sr(Rn × R
n+1) contains all functions of S(R2n+1) being radially

symmetric in the last n+1 variables. Thus we will always understand functions
from Sr(Rn × R

n+1) as functions on R
n × R in virtue of the setting f(z, r) =

f(z, w), r = ‖w‖. The reason to use R
n+1 for the radial variable rather than R

is that we may apply the Fourier transform to a function from Sr(Rn×R
n+1).

This is important in view of Theorem 11.3. Of course the Fourier transform
again is radial in the last n+1 variables. In analogy to (S(Rn),S ′(Rn)) we may
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Fig. 11.2. Left picture: Plot of the object function χC consisting of two disks
reflected about the x2-axis. Only the part for x2 > 0 is shown. Right picture: Plot
of MχC in [−35, 35] × [0, 50].

also consider the dual pairings (Se(Rn+1),S ′
e(R

n+1)), (Sr(Rn×R
n+1),S ′

r(R
n×

R
n+1)). For the sake of a better readability, we set Se := Se(Rn+1) and Sr :=

Sr(Rn×R
n+1), the notations S ′

e, S ′
r are respectively. As a consequence of the

considerations made before, we cannot expect that Mf ∈ Sr, when f ∈ Se.
But it is easy to show that Mf ∈ S ′

r for all f ∈ Se. Since Se ↪→ S ′
e is dense,

we even have Mf ∈ S ′
r whenever f ∈ S ′

e. Further properties are summarized
in the following theorem whose proof can be found in Andersson [5] and
Klein [59].

Theorem 11.3. The spherical mean operator M : S ′
e → S ′

r is a linear, con-
tinuous mapping which is one-to-one. The range R(M) can be characterized
by

R(M) = S ′
r,cone :=

{
g ∈ S ′

r : supp ĝ ⊂ {(σ, �) ∈ R
n× [0,∞) : � ≥ ‖σ‖}

}
⊂ S ′

r.

(11.6)
If the Fourier transform of f ∈ S ′

e is equal to an integrable function f̂(σ, �),
then the inversion formula

f̂(σ, �) = cn |�| (‖σ‖2 + �2)(n−1)/2 ĝ(σ,
√

‖σ‖2 + �2) (11.7)

holds true with cn = |Sn|/(2 (2π)n) and g = Mf .
The adjoint operator M∗ : Sr → Se has dense range and is given by

M∗g(x′, xn+1) =
∫

Rn

g
(
z,
√

‖z − x′‖2 + x2n+1

)
dz . (11.8)

We further have
FM∗g(σ, �) = ĝ(σ,

√
‖σ‖2 + �2) . (11.9)

Note that the function ĝ on the right-hand side of equation (11.7) is a
Fourier transform of a function on R

2n+1, which is radially symmetric with
respect to the last n + 1 variables, and so is ĝ. In the entire Part III, we
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define the Fourier transform without the normalizing factor (2π)−n/2 to be
consistent with Andersson’s article [5].

Remark 11.4. The adjoint operator M∗ integrates a function g ∈ Sr over all
spheres containing the point x = (x′, xn+1)�. That is why M∗ is called back-
projection just as in case of the Radon transform R. But in contrast to R∗,
the adjoint M∗ maps rapidly decreasing functions to rapidly decreasing func-
tions.
We further remark that it is not possible to formulate the spherical mean
operator as linear, bounded mapping between Sobolev spaces of negative or-
der. This becomes clear by Figure 11.2 showing that a function, which is not
continuous, has a range of large local smoothness or by the estimate

‖f‖Hα(Rn+1) ≤
√

|Sn|
2

‖Mf‖Hα+1/2(R2n+1) (11.10)

and its proof which can be read in [5, Theorem 3.1]. Note that the Sobolev
norm at the right-hand side of the estimate does not need to be finite.
Defining the operator K : Hα(Rn+1) ∩ S ′

r,cone → Hα+n(R2n+1) ∩ S ′
r via

FKg(σ, �) =
√
�2 − ‖σ‖2 �n−1 ĝ(σ, �), the inversion formula (11.7) has the

representation
f = cnM∗ KMf

and hence a structure which is according to the inversion formula (2.19) of R.

We aim to transfer the concepts of Chapter 4 to the problem of solving

Mf = g . (11.11)

To compute reconstruction kernels, we need a solution of

M∗υγ(y) = eγ(y) , eγ(y) ∈ Se . (11.12)

Theorem 11.3 tells us that we have the situation described in part b) of
Remark 4.3: if eγ(y) ∈ R(M∗), then υγ(y) lies in Sr. Against this background,
the extension lemma [5, Lemma 2.4] is of great importance.

Lemma 11.5. There exists a linear and continuous mapping E : Se → Sr

satisfying
M∗ E = 1Se , (11.13)

where 1Se denotes the identity on Se, 1Se(f) = f , f ∈ Se. For � ≥ ‖σ‖ the
mapping E is characterized by the Fourier transform

FEf(σ, �) = f̂(σ,
√
�2 − ‖σ‖2) , σ ∈ R

n , � ≥ 0 . (11.14)

Identity (11.13) can easily be deduced from (11.14) with the help of rep-
resentation (11.9). The crucial difficulty of proving Lemma 11.5 is to extend
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FE for � < ‖σ‖. Andersson uses in [5] an extension theorem contained in
the book of Stein [123]. Since this theorem does not provide an explicit rep-
resentation of FE, we will use another technique to obtain an extension in
Chapter 12.

To increase the efficiency of the inversion method, we used the existence of
invariances in case of an operator between Hilbert spaces. Lemma 4.5 promises
an improvement in efficiency in the distributional case, too, as long as an
intertwining property applies to the adjoint M∗, since M is one-to-one on S ′

e.
Lemma 11.6 will show that such an intertwining in fact does exist. But first,
we introduce some notations.

For real M > 1 we distinguish certain open subsets of R
n+1. We define

HM := HM (Rn+1) = {y = (y′, yn+1)� ∈ R
n+1 : 1/M < |yn+1|} ,

HM,M := HM,M (Rn+1) = {y = (y′, yn+1)� ∈ R
n+1 : 1/M < |yn+1| < M} .

Since the invariances in (11.15), (11.16) use dilations in yn+1, the reconstruc-
tion points y must be contained in the complement of the hyperplane yn+1 = 0.
That is why we introduced the set HM . To state convergence results as in
Corollary 11.7 we even have to postulate that yn+1 is bounded. That is the
reason to define HM,M . For an open subset U ⊂ R

n+1 we denote

Se(U) := {v ∈ Se : supp v ⊂ U} ,
S ′

e(U) := {λ ∈ S ′
e : supp λ ⊂ U} ,

E ′
e(U) := {λ ∈ S ′

e : supp λ ⊂ U is compact} .

Note that in general S ′
e(U) represents a proper subspace of Se(U)′. Finally,

let mappings T y
e,M : Se → Se and Gyr,M : Sr → Sr be defined by

T y
e,Mv(x) =

{
|yn+1|−n−1 v

(
x′−y′
|yn+1| ,

xn+1
|yn+1|

)
, y ∈ HM (Rn+1) ,

0 , y �∈ HM (Rn+1) ,
(11.15)

Gyr,Mw(z, r) =

{
|yn+1|−2n−1 w

(
z−y′
|yn+1| ,

r
|yn+1|

)
, y ∈ HM (Rn+1) ,

0 , y �∈ HM (Rn+1) .
(11.16)

Obviously, T y
e,M and Gyr,M are linear and bounded as compositions of transla-

tions and dilations. But nevertheless T y
e,Mv as well as Gyr,Mw may be discon-

tinuous in y for yn+1 = ±1/M . Both mappings fulfill the desired intertwining
property with respect to M∗.

Lemma 11.6. Let T y
e,M : Se → Se and Gyr,M : Sr → Sr be given as in (11.15),

(11.16) respectively. Then

T y
e,M M∗ = M∗ Gyr,M , y ∈ R

n+1 . (11.17)

Proof. When y �∈ HM (Rn+1), then there is nothing to show, since both sides
of (11.17) are equal to zero.
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Let y ∈ HM (Rn+1). Using representation (11.8) and appropriate substitutions
yield

M∗ Gyr,Mw(x′, xn+1) =

= |yn+1|−2n−1

∫

Rn

w
( z − y′
|yn+1|

, |yn+1|−1
√

‖z − x′‖2 + x2n+1

)
dz

= |yn+1|−n−1

∫

Rn

w
(
z − |yn+1|−1 y′,

√
‖z − |yn+1|−1 x′‖2 + |yn+1|−2 x2n+1

)
dz

= |yn+1|−n−1

∫

Rn

w
(
z,
√
‖z − |yn+1|−1 (x′ − y′)‖2 + |yn+1|−2 x2n+1

)
dz

= T y
e,M M∗w(x′, xn+1) ,

where w ∈ Sr. This completes the proof. ��

Lemma 11.6 allows for solving equation (11.12) for a single y ∈ R
n+1 only.

We conclude this section by remarking that the transform T y
e,∞ :=

limM→∞ T y
e,M is a representation of the group (Rn,+) × ((0,+∞), ·). The

identity element of that group is (0, . . . , 0, 1)� which is exactly that point for
which equation (11.12) is to be solved. Thus, the invariances are adjusted to
the given measurement geometry.

11.3 Approximate inverse for M

We give an outline how to transfer the abstract framework of distributional
approximate inverse from Chapter 4 to the spherical mean operator M. We
identify A = M, V = Se, W = Sr, T y

1 = T y
e,M and T y

2 = Gyr,M and consider
first the continuous problem (11.11). At the end of this section, we briefly
deal with the semi-discrete setting which is necessary for the implementation
of the method in Chapter 14.

Assume that we have an eγ(y) at hand which is in Se for every y ∈ R
n+1

and satisfies the requirements to be a mollifier according to Definition 4.1.
The reconstruction kernel υγ(y) associated with eγ(y) solves equation (11.12)
and is an element of Sr for every y ∈ R

n+1 due to part b) from Remark 4.3
and Theorem 11.3. Applying Lemma 11.5, we immediately see that

υγ(y) = Eeγ(y) (11.18)

fulfills (11.12). The intertwining property (11.17) enables us to solve equation
(11.18) for y = (0, . . . , 0, 1) ∈ R

n+1 only.

Corollary 11.7. For all γ > 0 let ēγ ∈ Se(Rn+1) and eγ(y) ∈ Se(Rn+1) be
generated for fixed M > 1 by the transform T y

e,M ,

eγ(y) = T y
e,M ēγ , y ∈ R

n+1 . (11.19)
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Assume that eγ is a mollifier for M according to Definition 4.1. Then all
corresponding reconstruction kernels υγ(y) are obtained by

ῡγ = Eēγ (11.20)

and
υγ(y) = υγ(y)(z, r) = Gyr,M ῡγ(z, r) . (11.21)

If eγ is a (E ′
e(HM,M ),Se(HM,M ))-mollifier according to Definition 4.1, then

M̃γ Mf := 〈Mf, υγ(·)〉S′
r×Sr → f as γ → 0

for all f ∈ E ′
e(HM,M ). That means

lim
γ→0

〈〈Mf, υγ(·)〉S′
r×Sr , β〉E′

e(HM,M )×Se(HM,M ) = 〈f, β〉E′
e(HM,M )×Se(HM,M )

whenever β ∈ Se(HM,M ).

Proof. Obviously, ῡ = Eēγ satisfies M∗ῡ = ēγ . Lemma 11.6 then gives the
identities

eγ(x, y) = T y
e,M ēγ(x) = T y

e,M M∗ῡγ = M∗ Gyr,M ῡγ(x) = M∗{υγ(y)}(x) .

Taking into account that M∗υγ(y) = eγ(y), the convergences are conclusions
from Definition 4.1. ��

Remark 11.8. The fact that eγ(y) is generated by T y
e,M implies that

supp M̃γ Mf ⊂ HM .

As a consequence we can only recover objects f(y) whose support has a dis-
tance greater than 1/M from the plane {yn+1 = 0}. This is not a restriction
for applications in SONAR and SAR, since the objects to be detected always
have a positive distance from the measure plane {yn+1 = 0}. Thus, the objects
always are supported in HM (Rn+1) for sufficiently large M .
We will present a criterion for ēγ which guarantees that (11.19) generates
a (E ′

e(HM,M ),Se(HM,M ))-mollifier in Chapter 12. Essentially, it is sufficient
for ēγ to have mean value 1. Note that Corollary 11.7 says that using a
(E ′

e(HM,M ),Se(HM,M ))-mollifier we have (weak) convergence of M̃γ Mf for
distributions f with support in HM,M (Rn+1) only. But again, M may be
arbitrarily large.

Besides the translation invariance M has a dilation invariance, too. We
have

M∗ Dγg(x) = γ−n−1 M∗g(γ−1 x)

with Dγg(z, r) = γ−2n−1 g(z/γ, r/γ). Thus, it would preferable to transfer
this property to the mollifier eγ(y) by eγ(x, y) := γ−n−1 T y

e,M ē1(x/γ). But
unfortunately, such an eγ does not fulfill the mollifier property of Definition
4.1 anymore.
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We summarize the method of approximate inverse for solving Mf = g,
f ∈ E ′

e(HM,M ).

• Choose ēγ ∈ Se(Rn+1) such that

eγ(x, y) = T y
e,M ēγ(x)

is a mollifier.
• Compute ῡγ = Eēγ .
• Evaluate

M̃γg(y) = 〈g,Gyr,M ῡγ〉S′
r×Sr (11.22)

for y ∈ HM,M (Rn+1).

The crucial task in applying this algorithm is the computation of ῡγ = Eēγ .
Representation (11.14) of FEg is valid only for � ≥ ‖σ‖. To calculate ῡγ , we
need FEēγ for all � ≥ 0. This fact has to be taken into account when designing
an appropriate mollifier.

Remark 11.9. By means of Parseval’s identity M̃γg can be expressed by

M̃γg(y) = (2π)−2n−1 〈Fg,FGyr,M ῡγ〉S′
r×Sr .

From (11.6) we see that

supp Fg = supp FMf ⊂ {(σ, �) ∈ R
n × [0,∞) : � ≥ ‖σ‖} .

Hence, it seems sufficient to have knowledge of ῡγ for � ≥ ‖σ‖ only. But then
it would be necessary to calculate the Fourier transform of the measured data,
which ought to be avoided for two reasons. A discrete Fourier transform would
extend the data periodically, which are known in a bounded domain only,
leading to artifacts. On the other hand, we would have to calculate a three-
dimensional Fourier transform in the 2D case (n = 1) and a Fourier transform
in five dimensions for the 3D case (n = 2) which would decrease efficiency of
the method significantly, since we could not use the radial symmetry in the
last n+ 1 variables of Mf .

We conclude the chapter by dealing with the semi-discrete setting which
is of great importance from a practical point of view. To this end, let f ∈
E ′
e(HM,M ) be such that Mf can be identified with a continuous function

which does not need to be integrable. If the measured data Mf are given for
p+ 1 centers zk ∈ R

n, k = 0, . . . , p and for q + 1 radii rl, r0 < r1 < . . . < rq,
then we have to solve

ΨN Mf = gN , gN ∈ R
N , N = (p+ 1)(q + 1) . (11.23)

The observation operator ΨN : C(Rn × R
+
0 ) → R

N is defined by

(ΨNw)k,l = w(zk, rl) , k = 0, . . . , p , l = 0, . . . , q .
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As we do not have a rigorous convergence theory as in the case of Hilbert
spaces, we have to define the semi-discrete approximate inverse in another way.
Since we have only a finite number of data and Mf is a continuous function,
the dual pairing on the right-hand side of (11.22) is a double integral with
a bounded domain of integration. This suggests the application of numerical
integration leading to

M̃N,γgN (y) := 〈gN ,QN ΨN Gyr,M ῡγ〉RN . (11.24)

The weights from numerical integration are contained in the matrix QN ∈
R
N×N . The continuity of Mf(z, r)Gyr,M ῡγ(z, r) yields pointwise convergence

lim
N→∞

M̃N,γΨN Mf(y) = 〈Mf,Gyr,M , ῡγ〉L2(ch∞×[0,r∞)) , (11.25)

where ch∞ and r∞ are defined via

ch∞ :=
∞⋃

p=1

ch
(
{zk}pk=0

)
, r∞ := lim

q→∞ rq

and ch({zk}) denotes the convex hull of the centers {zk}, k = 0, . . . , p, in
R
n. The right-hand side of (11.25) equals 〈f, eγ(y)〉S′

e×Se , if ch∞ = R
n and

r∞ = +∞. For γ → 0, we obtain then (weak) convergence to f .
It is an open question, whether this is possible or not, and how the three

parameters γ → 0, p, q → ∞ must be coupled to get convergence as in
Corollary 8.4.
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Design of a mollifier

This chapter is dedicated to the development of a (E ′
e(HM,M ),Se(HM,M ))-

mollifier eγ(y) which fulfills the requirements of Corollary 11.7 and hence is
generated by T y

e,M . Hence, let

eγ(x, y) = T y
e,M ēγ(x) =

{
|yn+1|−n−1 ēγ

(
x′−y′
|yn+1| ,

xn+1
|yn+1|

)
, y ∈ HM (Rn+1) ,

0 , y �∈ HM (Rn+1)
(12.1)

for ēγ ∈ Se(Rn+1), x = (x′, xn+1)�, y = (y′, yn+1)�. Equation (12.1) implies
eγ(x, y) = 0 for y �∈ HM (Rn+1) and

eγ(x, y′,−yn+1) = eγ(x, y′, yn+1) , (12.2)

what shows that eγ(x, ·) is even in yn+1 and thus 〈f, eγ(·, y)〉E′
e×Se is even

in yn+1, too. Since we need Eēγ to compute the reconstruction kernel, it is
important that the Fourier transform of ēγ can be easily calculated in view of
representation (11.14). For this reason, we assume ēγ to have a tensor product
structure

ēγ(x) = ē1γ(x
′) ⊗ ē2γ(xn+1) , (12.3)

where ē1γ ∈ S(Rn) and ē2γ is an even function in S(R). Conditions (12.1),
(12.3) imply that eγ(·, y) ∈ Se(Rn+1) for all y ∈ R

n+1.
To make sure that eγ in fact is a mollifier and to get rid of the difficulties

which come from extending FEēγ(σ, �) for � ≥ ‖σ‖, we postulate ē1γ and ē2γ
to satisfy

1.
∫

Rn
ē1γ(z) dz =

∫
R
ē2γ(t) dt = 1,

2. Fē1γ is easily to calculate,

3. Fē2γ(
√
ξ) has a nice extension for ξ < 0,

see Schuster and Quinto [115, Section 4].
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Theorem 12.1 will state that the first property suffices to turn eγ into
a mollifier. The requirements 2. and 3. have only the sense to facilitate the
computation of the corresponding reconstruction kernels and to avoid the
extension lemma from the book of Stein [123]. This is why we will construct
ē2γ in such a way that the extension can easily be deduced.

We proceed as in Section 4 of [115]. By now, we omitted a specific choice
of ē1γ and ē2γ . Before proving the main theorem of this chapter, we have to be
more precise. Let ē1γ be generated by dilations of a function e1

ē1γ(x
′) = γ−n e1(x′/γ) for e1 ∈ S(Rn) with

∫

Rn

e1(z) dz = 1 . (12.4)

Thus, ē1γ is defined in the same way as in case of the Radon or Doppler
transform, that means by spatial translations and a dilation in γ, see (2.3).
We have to be more careful with respect to ē2γ . If F ∈ Se(R) is an even
function with mean value equal to 1, then F (·/γ) is not an appropriate choice
for ē2γ . Since T y

e,M involves a dilation with respect to |yn+1|, too, the mollifier
property is violated when setting ē2γ in such a way. Therefore we define ē2γ via

ē2γ(t) =
1

2 γ

{
F
( t+ 1
γ

)
+ F
( t− 1
γ

)}
for F ∈ Se(R) with

∫

R

F (t) dt = 1.

(12.5)
Functions ē1γ and ē2γ defined by (12.4), (12.5) satisfy requirement 1. and ē2γ is
an even function. The desired extension property 3. is guaranteed, when there
exists to ē2γ a function g such that

Fē2γ(
√
ξ) = g(ξ2) . (12.6)

Equation (12.6) is the starting point for the specification of F and hence of
ē2γ .

Defining eγ by (12.1), (12.3), (12.4) and (12.5) we get a mollifier. This is
subject of Theorem 12.1. In case of L2-spaces this fact is shown with the help
of suitable substitutions and Lebesgue’s dominated convergence theorem. In
case of distributions the proof is more sophisticated, since we have to show
the weak convergence λγ ⇀ λ for all distributions λ ∈ E ′

e(HM,M ).

Theorem 12.1. LetM > 1 and functions ē1γ , ē
2
γ be given by (12.4) and (12.5).

Then eγ(y) defined via (12.1), (12.3) represents a (E ′
e(HM,M ),Se(HM,M ))-

mollifier.

Proof. We follow the lines of the proof of Theorem 4.1 in Schuster and

Quinto [115]. Let M > 1 be fixed. The proof consists of three parts. First,
Lemma 12.2 shows that λγ(y) := 〈λ, eγ(·, y)〉S′

e×Se for every λ ∈ S ′
e is again

a distribution in S ′
e. After that, we prove a variant of Fubini’s theorem for

distributions (Lemma 12.3). The third part finally deals with the convergence
λγ ⇀ λ in E ′

e(HM,M ) × Se(HM,M ). To show this convergence, we need a
further, technical Lemma 12.4.
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Lemma 12.2. Let γ > 0 be fixed, eγ be defined by (12.1), (12.3), (12.4), (12.5)
and λ ∈ S ′

e(R
n+1). Then λγ(y) := 〈λ, eγ(·, y)〉S′

e×Se represents a continuous
function of polynomial growth for y ∈ HM (Rn+1) which is identical to 0 when
y �∈ HM (Rn+1). We conclude that λγ ∈ S ′

e(R
n+1).

Proof. (of Lemma 12.2)
Obviously y → eγ(·, y) represents a continuous mapping between HM and Se.
Hence, λγ is continuous when y ∈ HM and 0 else.
To show the polynomial increase of λγ , we apply Theorem 11.1 which allows
a confinement to functions. Let Pλ be the function associated to the tempered
distribution λ according to (11.3). For y ∈ HM , we obtain

λγ(y) := 〈λ, eγ(·, y)〉S′
e×Se = (−1)|α|

∫

Rn+1
Pλ(x)Dαx eγ(x, y) dx

=
(−1)|α|

2
(γ |yn+1|)−n−1

∫

Rn

∫

R

Pλ(x)Dα
′

x′

{
e1
( x′ − y′
γ |yn+1|

)}

×Dαn+1
xn+1

{
F
( xn+1

γ |yn+1|
− 1
γ

)
+ F
( xn+1

γ |yn+1|
+

1
γ

)}
dxn+1 dx′ (12.7)

=
1

2(−γ |yn+1|)|α|
∫

Rn

∫

R

{[
Pλ(γ |yn+1| z′ + y′, γ |yn+1| zn+1 + |yn+1|) +

+Pλ(γ |yn+1| z′ + y′, γ |yn+1| zn+1 − |yn+1|)
]

×Dα′
e1(z′)Dαn+1F (zn+1) dzn+1 dz′

}
,

where we used the substitutions z′ = (x′ − y′)/(γ |yn+1|) and zn+1 =
(xn+1/|yn+1|± 1)/γ as well as the symmetry of F . Since Pλ has a polynomial
increase there exist constants Cλ > 0 and κ > 0 such that

|Pλ(x)| ≤ Cλ (1 + ‖x‖2)κ , ‖x‖ → ∞ , x ∈ R
n+1 . (12.8)

Using (12.8) to estimate the integrand in (12.7) yields
∣∣∣Pλ(γ |yn+1| z′ + y′, γ |yn+1| zn+1 ± |yn+1|)

∣∣∣

≤ Cλ
(
1 + ‖γ |yn+1| z′ + y′‖2 +

(
γ |yn+1| zn+1 ± |yn+1|

)2)κ

≤ Cλ 2κ (1 + γ2 |yn+1|2 ‖z‖2)κ (1 + ‖y‖2)κ

≤ Cλ 2κ (M−2 + γ2 ‖z‖2)κ |yn+1|2κ (1 + ‖y‖2)κ .

Here, we made use of the triangle inequality and of the estimates (1+a+b) ≤
(1+a) (1+ b) and (a+ b)2 ≤ 2 (a2 + b2) which are valid when a, b ≥ 0. Finally,
we get for (12.7) a bound

|λγ(y)| ≤ Cλ 2κ sγ |yn+1|2κ (γ |yn+1|)−|α| (1 + ‖y‖2)κ , y ∈ HM
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with

sγ :=
∫

Rn

∫

R

(M−2 + γ2 ‖z‖2)κDα
′
e1(z′)Dαn+1F (zn+1) dzn+1 dz′ <∞

finishing the proof of Lemma 12.2. ��

The main idea for continuing the proof of Theorem 12.1 is as follows: to prove
the convergence λγ ⇀ λ, we would like to investigate the convergence of the
dual pairing 〈λ, 〈eγ(x, ·), β〉〉S′

e×Se for γ → 0 rather than that of 〈λγ , β〉S′
e×Se .

In case of (measurable) functions, this can be done with the help of Fubini’s
theorem (see e.g Rudin [106, Theorem 8.8]). In case of distributions, we again
will use Theorem 11.1 to pull back to functions.

Lemma 12.3. Let γ > 0 be fixed, eγ be defined by (12.1), (12.3), (12.4),
(12.5), λ ∈ S ′

e(R
n+1) and β ∈ Se(Rn+1) be an even, rapidly decreasing func-

tion. If furthermore

βγ(x) := 〈eγ(x, ·), β〉S′
e(R

n+1)×Se(HM ) , (12.9)

then we have βγ ∈ Se(Rn+1) and the intertwining

〈λγ , β〉S′
e(R

n+1)×Se(HM ) = 〈λ, βγ〉S′
e(R

n+1)×Se(Rn+1) . (12.10)

Note that βγ is a function in x, whereas λγ varies in y.

Proof. (of Lemma 12.3)
We again use representation (12.7) and write

〈λγ , β〉S′
e(R

n+1)×Se(HM ) =
∫

HM

∫

Rn+1
Iγλ (y, x) dxdy , (12.11)

where

Iγλ (y′, yn+1, x
′, xn+1) :=

(−1)|α|

2
(γ |yn+1|)−n−1−|α| β(y′, yn+1)Pλ(x′, xn+1)

×(Dα
′
e1)
( x′ − y′
γ |yn+1|

){
(Dαn+1F )

(xn+1−|yn+1|
γ |yn+1|

)
+(Dαn+1F )

(xn+1+|yn+1|
γ |yn+1|

)}
.

The application of (12.8), y ∈ HM , and the fact that F , β, e1 are functions
in Se as well as the estimates

1 + (a/b)2 ≥ (1 + a2)/(1 + b2) , a ∈ R , b ∈ R\{0} ,

(1 + ‖a− b‖2)−k ≤ 2k (1 + ‖b‖2)k (1 + ‖a‖2)−k , a, b ∈ R
n , k ∈ N ,

leads to
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|Iγλ (y′, yn+1, x
′, xn+1)|

≤ (Cλ/2) (1 + ‖x‖2)κ (γ/M)−n−1−|α| |β(y′, yn+1)|
(
1 +

‖x′ − y′‖2

γ2 y2n+1

)−µ1

×
{(

1 +
(xn+1 − |yn+1|)2
γ2 y2n+1

)−µ2

+
(
1 +

(xn+1 + |yn+1|)2
γ2 y2n+1

)−µ2
}

≤ Cλ
2

(1 + ‖x‖2)κ

(1 + ‖y‖2)µ3

(
γ

M

)−n−1−|α|

× (1 + ‖y′‖2)µ1

(1 + ‖x′‖2)µ1

(1 + |yn+1|2)µ2

(1 + |xn+1|2)µ2
[2(1 + γ2 y2n+1)]

µ1+µ2

for any µj ∈ N, j = 1, 2, 3. The latter estimate implies that for µ1, µ2,
µ3 sufficiently large, Iγλ in (12.11) is dominated by a function which is inte-
grable in (x, y) ∈ R

n+1 ×HM . Hence, the classical Fubini theorem applies to
〈λγ , β〉S′

e×Se and we may change the order of integration in (12.11). Since the
integrand is arbitrarily smooth for y ∈ HM , we further may pull the differ-
ential operator Dα in front of the inner integral. Representation (11.3) then
proves (12.10).
It remains to show that βγ from (12.9) actually lies in Se(Rn+1). To this
end, let α ∈ N

n+1
0 be an arbitrary multiindex. We will prove that Dαβγ(x)

decreases more rapidly than any polynomial as ‖x‖ → ∞. From (12.9) we
deduce

Dαβγ(x) =
∫

y∈HM

(−1)|α|

2
|yn+1γ|−n−1−|α|(Dα

′
e1)((x′ − y′)/(|yn+1|γ))

×
{

(Dαn+1F )
(
(
xn+1

yn+1
− 1)/γ

)
+ (Dαn+1F )

(
(
xn+1

yn+1
+ 1)/γ

)}
β(y) dy .

We find a constant c̃γ > 0 such that

|Dαβγ(y)| ≤ c̃γ (1 + ‖y′‖2)−µ1 (1 + y2n+1)
−µ2 , (y′, yn+1) ∈ R

n+1

holds true for any integers µ1, µ2 ∈ N, since β ∈ Se(HM ) and γ > 0 is fixed.
Applying similar arguments as in the estimate of |Iγλ | it finally follows that
βγ ∈ Se(Rn+1) and the proof of Lemma 12.3 is complete. ��

Lemma 12.3 helps us to relocate the investigations of convergence from λγ ⇀ λ
to βγ → β in Se(HM,M ). If βγ tends to β in Se(HM,M ), then this would be
equivalent to the convergence λγ ⇀ λ in E ′

e(HM,M ) because of (12.10). The
following lemma thus plays a key role in the proof of Theorem 12.1.

Lemma 12.4. We again assume eγ to be defined by (12.1), (12.3), (12.4),
(12.5), β ∈ Se(HM,M ), α ∈ N

n+1
0 to be a multiindex and βγ as in (12.9). Then

Dαβγ(x) → Dαβ(x) pointwise in HM,M as γ → 0 and Dαβγ is uniformly
bounded in (x, γ) ∈ HM,M × (0, 1).
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Proof. (of Lemma 12.4)
We use again the symmetry of F and write

βγ(x) =
∫

HM,M

1
(γ |yn+1|)n+1

e1
(
x′ − y′
γ |yn+1|

)
F

((xn+1

yn+1
−1
)
/γ

)
β(y) dyn+1 dy′.

(12.12)
Provided that (x, y) ∈ HM,M ×HM,M , we perform the substitutions

z′ = (x′ − y′)/(|yn+1|γ) , zn+1 =
(xn+1

yn+1
− 1
)
/γ . (12.13)

We have

yn+1

xn+1
=

1
γzn+1 + 1

and
yn+1 dzn+1

xn+1
=
dyn+1

yn+1γ

and the domain of integration with respect to zn+1 satisfies

1
M2
<

1
M |xn+1|

<
1

|γzn+1 + 1| <
M

|xn+1|
< M2 . (12.14)

The integral in (12.12) then turns into

βγ(x) =
∫

Rn

∫

1/|γzn+1+1|<M2
e1(z′)F (zn+1) × (12.15)

×β
(
x′ − γ|xn+1|

|γzn+1 + 1| z
′,
xn+1

γzn+1 + 1

) 1
|γzn+1 + 1| dz′dzn+1 ,

where the integration limits of the inner integral are bounded independently
from xn+1 since 1/M < |yn+1| < M and the support of β is contained in
R
n × [1/M,M ].

We aim to subtract β(x) inside of the integral (12.15) and then letting γ → 0.
At first, we set

bγ(x) = β(x)
∫

Rn

∫

1/|γzn+1+1|<M2
e1(z′)F (zn+1)

1
|γzn+1 + 1| dzn+1 dz′

and prove that βγ − bγ tends to 0 in Se(HM,M ). Considering the derivative
Dα[βγ − bγ ], we get

Dα[βγ(x) − bγ(x)] =
∫

Rn

∫

1/|γzn+1+1|<M2
e1(z′)F (zn+1) (12.16)

×Dαx
{
β
(
x′ − γ|xn+1|

|γzn+1 + 1|z
′,
xn+1

γzn+1 + 1

)
− β(x)

}
1

|γzn+1 + 1| dz′ dzn+1 .

For applying Lebesgue’s dominated convergence theorem to (12.16), we have
to show that the integrand is dominated by an integrable function for every
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x ∈ HM,M uniformly in γ ∈ (0, 1). To this end, we explicitly calculate the
derivative which appears in the right-hande side of (12.16).
The differential operator Dαx can be split into Dαx = Dαn+1

xn+1 D
α′
x′ . The differ-

entiation with respect to x′ can be easily handled since x′ occurs in the first
argument of β only. We may compute

Dαx

{
β
(
x′ − γ |xn+1|

|γ zn+1 + 1| z
′,

xn+1

γ zn+1 + 1

)
− β(x)

}
= (12.17)

Dαn+1
xn+1

{
(Dα

′
x′ β)
(
x′ − γ |xn+1|

|γ zn+1 + 1| z
′,
xn+1

γzn+1 + 1

)}
−Dαxβ(x) .

The differentiation with respect to xn+1 addresses both arguments of Dα
′

x′ β.
If δ′ = (δ1, . . . , δn) ∈ N

n
0 denotes a multiindex, then we prove for xn+1 >

1/M > 0 the following representation of the integrand in (12.16) by means of
complete induction:

e1(z′)F (zn+1)
|γ zn+1 + 1|

[ ∑

0<|δ′|≤αn+1

{
γ|δ

′| (−z)δ′

|γ zn+1 + 1||δ′| (γ zn+1 + 1)αn+1−|δ′|

×
(
Dαn+1−|δ′|
xn+1

Dδ
′+α′
x′ β

)(
x′ − γ |xn+1|

|γ zn+1 + 1|z
′,

xn+1

γ zn+1 + 1

)}
(12.18)

+(γ zn+1 + 1)−αn+1 (Dαβ)
(
x′ − γ |xn+1|

|γ zn+1 + 1|z
′,

xn+1

γ zn+1 + 1

)
−Dαβ(x)

]
.

A similar formula can be obtained for xn+1 < −1/M < 0.
From (12.14) we read that 1/|γ zn+1+1| < M2. From (12.18) we then conclude
that the integrand in (12.16) is bounded above by an integrable function
uniformly in γ ∈ (0, 1). Lebesgue’s dominated convergence theorem gives that
Dα[βγ − bγ ] → 0 pointwise in Se(HM,M ) as γ → 0. Note that the terms
appearing as arguments in the sum of (12.18) are multiples of γ.
The convergence bγ → β in Se(HM,M ) is obvious since e1 and F have mean
value 1. Thus, we may summarize

lim
γ→0

(βγ − β) = lim
γ→0

(βγ − bγ) + lim
γ→0

(bγ − β) = 0

in Se(HM,M ).
The uniform boundedness of Dαβγ in γ ∈ (0, 1) is shown using similar argu-
ments. ��

We are now able to complete the proof of Theorem 12.1. We remember that
λ ∈ E ′

e(HM,M ) is assumed to have compact support in HM,M . According to
Theorem 11.1, we have λ = DαPλ with a continuous, slowly increasing func-
tion Pλ. Unfortunately, in contrast to λ, the function Pλ does not need to have
compact support. Hence, we define a cut-off function ψ(x) = ψ1(x′)ψ2(xn+1)
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from Se(Rn+1) which is supposed to be identically 1 on supp λ and compactly
supported. More specifically, we assume that the support of ψ2 is contained
in [−2M,−1/2M ]∪ [1/2M, 2M ]. Then we have λ = ψDαPλ and from Lemma
12.3 it follows that

〈ϕγ , β〉S′
e(R

n+1)×Se(HM,M ) = 〈ϕ, βγ〉S′
e(HM,M )×Se(Rn+1) (12.19)

= (−1)|α|
∫

HM,M

Pϕ(x)Dα
{
ψ(x)βγ(x)

}
dx .

With the help of the product rule for derivatives and the convergence result
from Lemma 12.4, we see that the derivative on the right-hand side of (12.19)
converges pointwise in x on any compact set and is uniformly bounded. A last
application of Lebesgue’s dominated convergence theorem finally finishes the
proof of Theorem 12.1. ��

Remark 12.5. To get the estimates in the proof of Theorem 12.1, we had to
postulate that the distributions λ which satisfy the mollifier property have
compact support in HM,M . It is unclear which requirements have to be fulfilled
that T y

e,M ēγ generates a (S ′
e(R

n+1),Se(Rn+1))-mollifier.

To conclude this chapter, we present two functions ēγ satisfying the con-
ditions of Theorem 12.1. First, we set

ē1γ(x
′) = γ−n e1(x′/γ), e1(x′) = (2π)−n/2 exp(−‖x′‖2/2) , x′ ∈ R

n .
(12.20)

Hence, ē1γ has a structure as in (12.4), is a function in S(Rn) and has mean
value

∫
Rn
ē1γ(x

′) dx′ = 1. The function F defining ē2γ via (12.5) is supposed to
be defined as

F (t) := 2F−1{exp(−|ξ|4)}(2t) . (12.21)

Obviously, this function satisfies relation (12.6) with g(ξ) = exp(−|ξ|2). Fur-
thermore, we have F ∈ Se(R) and

∫
R
F (t) dt = F̂ (0) = 1.

The Fourier transform of ēγ = ē1γ⊗ ē2γ is not compactly supported when we
choose ē1γ and ē2γ as in (12.20), (12.21). For this reason we consider a further
mollifier. Let

h(ξ) =

{
e1− 1

1−|ξ|2 , |ξ| < 1 ,
0 , |ξ| ≥ 1

(12.22)

and

e1(x′) = F−1{h(‖ · ‖)}(‖x′‖) , F (t) = F−1{h(ξ2)}(t) . (12.23)

The functions ē1γ and ē2γ again are defined by (12.4), (12.5), respectively. With
the help of Theorem 12.1, the mollifier property of both settings for eγ can
easily be verified.

Corollary 12.6. Let M > 1 and ēγ = ē1γ ⊗ ē2γ be defined by (12.20), (12.21),
or (12.22), (12.23), respectively. Then the requirements of Theorem 12.1 are
satisfied and eγ(y) = T y

e,M ēγ is a (E ′
e(HM,M ),Se(HM,M ))-mollifier.
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Figure 12.1 displays ēγ for n = 1 – the two-dimensional case – and γ =
0.06. The global maximum is attained at (0, 1)� which is the identity element
of the group (R,+) × ((0,+∞), ·) and the single point for which equation
(11.12) is to be solved.
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Fig. 12.1. Mollifier ēγ = ē1γ ⊗ ē2γ defined by (12.5), (12.20) and (12.21) for γ =
0.06 (upper picture). Below, the graphs of ē1γ (bottom) and ē2γ (middle picture) are
plotted. The width of the peak is about 0.5 units in each case (note the different
scales), which is achieved by the dilation in (12.21). In contrast to the mollifiers
considered in Part II, the function ēγ takes on negative values.
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Computation of reconstruction kernels

This chapter is concerned with the computation of a reconstruction kernel
associated with ēγ , where the calculations are performed in detail for the
mollifier given by (12.3), (12.5), (12.20) and (12.21). Our aim is to find a
representation of

ῡγ = Eēγ . (13.1)

The reconstruction kernel corresponding to eγ(x, y) = T y
e,M ēγ(x) is then

υγ(y) = Gyr,M ῡγ according to Corollary 11.7. From Lemma 11.5, we read that

Fῡγ(σ, �) = FEēγ(σ, �) = Fēγ(σ,
√
�2 − ‖σ‖2) , (13.2)

when � ≥ ‖σ‖, � ≥ 0 and σ ∈ R
n. First, we have to calculate the Fourier

transform of ēγ .

Lemma 13.1. We have

Fēγ(σ, �) = ˆ̄eγ(σ, �) = ˆ̄e1γ(σ) ˆ̄e2γ(�) = cos(�) e−γ
2 ‖σ‖2/2 e−γ

4 �4 (13.3)

for σ ∈ R
n, � ∈ R.

Proof. Because of ˆ̄e1γ(σ) = e−γ
2 ‖σ‖2/2 equation (13.3) follows from

ˆ̄e2γ(�) =
1

2 γ

∫

R

{
F
(q + 1
γ

)
+ F
(q − 1
γ

)}
e−ı q � dq

=
1
2

(eı � + e−ı �)
∫

R

F (q) e−ı γ q � dq

= cos(�) e−(γ �/2)4 .

��

For � ≥ ‖σ‖, we deduce

Fῡγ(σ, �) = cos(
√
�2 − ‖σ‖2) e−γ

2 ‖σ‖2/2 e−γ
4 (�2−‖σ‖2)2/16 . (13.4)
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from Lemma 13.1 and (13.2). With the help of (13.4), we see that an extension
of ˆ̄υγ to the whole of R

n×[0,∞) as a function from Sr requires an extension of
cos(

√
ξ) for ξ < 0. Thus, we need a function G ∈ C∞(R) with G(ξ) = cos(

√
ξ),

if ξ ≥ 0, such that

Fῡγ(σ, �) = G(�2 − ‖σ‖2) e−γ
2 ‖σ‖2/2e−γ

4 (�2−‖σ‖2)2/16 (13.5)

is meaningfully defined for all σ ∈ R
n, � ≥ 0 and additionally is a function in

Sr. The latter one implies that ῡγ ∈ Sr.
The first idea to extend cos(

√
ξ) is to use its power series expansion. For

ξ ≥ 0 we have

cos(
√
ξ) =

∞∑

k=0

(−1)k

2 k!
ξk . (13.6)

Using the power series (13.6) to extend cos(
√
ξ) on ξ < 0 we obtain the

function

G(ξ) =

{
cos(

√
ξ) , ξ ≥ 0 ,

cosh(
√

|ξ|) , ξ < 0

which obviously is in C∞(R), but unbounded. If we take into account that
G(ξ) = O(exp(

√
|ξ|)) for ξ → −∞, then in fact we have that Fῡγ ∈ Sr.

As outlined in Remark 11.9 the particular choice of the extension for Fῡγ
on 0 ≤ � < ‖σ‖ has no impact to M̃γ Mf , since supp FMf ⊂ {(σ, �) : � ≥
‖σ‖}. In applications, we only have a finite number of data available as it
was expressed by equation (11.23). This implies that the data are given on a
bounded domain (z, r) ∈ ZN × [0, R] only, where ZN ⊂ R

n is bounded and
R > 0. As a consequence, the specific extension of G actually has an influence
to M̃N,γ Mf . Numerical tests have shown that a bounded G(ξ) ∈ C(R) is
desirable. To this end, we introduce a cut-off function χ ∈ C∞(R) which is
supposed to have the properties

χ(ξ) = 1 , if ξ ≥ 0 ,
χ(ξ) = 0 , if ξ < −1 ,

χ(k)(−1) = χ(k)(0) = 0 , for all k ≥ 1 .

Such a function is explicitly given by

χ(ξ) =
u(ξ + 1)

u(ξ + 1) + u(−ξ) ,

where

u(ξ) =
{

e−1/ξ , ξ > 0 ,
0 , ξ ≤ 0

The bounded extension G̃ of cos(
√
ξ) finally reads as
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G̃(ξ) =

{
cos(

√
ξ) , ξ ≥ 0 ,

χ(ξ) cosh(
√

|ξ|) , ξ < 0
(13.7)

and is a bounded function in C∞(R). Plots of χ as well as of the extension G̃
are displayed in Figure 13.1.
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Fig. 13.1. Plots of the cut-off function χ (left picture) and the extension G̃ (right

picture). We have displayed G̃(ξ) only in the interval ξ ∈ [−1, 1] to emphasize the
smoothness of the extension.

The reconstruction kernel ῡγ is now computed applying the inverse Fourier
transform to (13.5).

Lemma 13.2. Let ēγ = ē1γ ⊗ ē2γ be given by (12.5), (12.20) and (12.21). Then
a solution of

M∗ῡγ = ēγ

is represented by

ῡγ(z, r) =
1

2π2

∞∫

0

∞∫

0

{
G̃(�2 − σ2) e−γ

2 (σ
2
2 +γ2 (�2−σ2)2/16)

×� J0(� r) cos(σ z)
}

d�dσ for n = 1 , (13.8a)

ῡγ(z, r) = (2π)−n−
1
2 r(1−n)/2 t(2−n)/2

×
∞∫

0

∞∫

0

{
G̃(�2 − τ2) e−γ

2 ( τ
2
2 +γ2 (�2−τ2)2/16) (13.8b)

×�(n+1)/2 τ (2−n)/2 J(n−1)/2(� r) J(n−2)/2(τ t)
}

d�dτ for n > 1 .

Here r, t > 0, Jν denotes the Bessel function of first kind of order ν and G̃ is
defined as in (13.7). In (13.8b) we have t = ‖z‖ and τ = ‖σ‖.
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Proof. Formulas (13.8a), (13.8b) follow from (13.5) by an application of the
(2n+ 1)-dimensional inverse Fourier transform and using identity (13.3) and
spherical coordinates. The proof is completed with the help of

∫

Sn
eı � r 〈ω,θ〉 dSn(ω) = (2π)(n+1)/2 (� r)(1−n)/2 J(n−1)/2(� r) ,

which is found e.g. in Fawcett [30]. ��

Since the σ-variable is in R if n = 1, the introduction of spherical coordi-
nates for the integration with respect to σ does not make sense in that case.
That is why we wrote down the representation of ῡγ(z, r) for n = 1 separately.
The kernel ῡγ is illustrated in Figure 13.2 for γ = 0.06 and n = 1, i.e. the
two-dimensional setting. The integrals in (13.8a) were computed by numeri-
cal integration where we confined to values (σ, �) for which the integrand is
greater than or equal to 10−12. The reconstruction kernel plotted in Figure
13.2 is associated with the mollifier ēγ and also reaches its global maximum
at (0, 1). This again is compatible with the group structure which underlies
the operators Gyr,M .
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Fig. 13.2. The reconstruction kernel ῡγ given as in (13.8a) for γ = 0.06 and n = 1.
A cross section through the z-axis again would show the similarity to the Shepp-
Logan filter just as in Doppler tomography, compare Figure 7.35, whereas we have
a smoothing with respect to the radius variable r.

The computation of the reconstruction kernel corresponding to the molli-
fier with compactly supported Fourier transform is done accordingly.
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Corollary 13.3. If the mollifier ēγ = ē1γ ⊗ ē2γ is defined by (12.4), (12.5),
(12.22) and (12.23), then a corresponding reconstruction kernel can be written
as

ῡγ(z, r) =

1
2π2

{ γ−1∫

0

γ−1∫

0

η J0(
√
η2 + σ2 r) cos η e2− γ2 (σ2−γ2 η4)

(1−γ2 σ2) (1−γ4 σ4) cos(σ z) dη dσ

+

γ−1∫

0

σ∫

0

η J0(
√
σ2 − η2 r)χ(−η2) cosh η e2− γ2 (σ2−γ2 η4)

(1−γ2 σ2) (1−γ4 σ4) cos(σ z) dη dσ
}

for n = 1, z ∈ R, r ≥ 0 and

ῡγ(z, r) = (2π)−n−
1
2 r(1−n)/2 t(2−n)/2

×
{ γ−1∫

0

γ−1∫

0

η Jn−1
2

(
√
η2 + τ2 r) cos η e2− γ2 (τ2−γ2 η4)

(1−γ2 τ2) (1−γ4 τ4) Jn−2
2

(τ t) dη dτ +

+

γ−1∫

0

τ∫

0

η Jn−1
2

(
√
τ2 − η2 r)χ(−η2) cosh η e2− γ2 (τ2−γ2 η4)

(1−γ2 τ2) (1−γ4 τ4) Jn−2
2

(τ t) dη dτ
}

for n > 1, t = ‖z‖, τ = ‖σ‖, and r ≥ 0.

In Corollary 13.3, we additionally applied substitutions � =
√
η2 + σ2 and

� =
√
σ2 − η2. Note that we do not need to restrict the integration limits in

order to apply numerical integration since they are finite.
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Numerical experiments

Over the last three chapters, we provided all tools for the implementation of
the method of semi-discrete approximate inverse applied to ΨN Mf ,

M̃N,γ ΨN Mf(y) = 〈ΨN Mf,QN ΨN Gyr,M ῡγ〉RN . (14.1)

We will test the performance of the method with the help of synthetic data
in two dimensions (n = 1). Since n = 1, the measured data ΨN Mf consist of
a finite number of integrals over circles

Mf(z, r) =
1

2π

∫

S1
f(z + r ξ, r η) dS1(ξ, η)

=
1

2π

2π∫

0

f(z + r cos θ, r sin θ) dθ ,

where z ∈ R, r ≥ 0. Applying the substitutions � =
√
η2 + σ2 und � =√

σ2 − η2, respectively, the reconstruction kernel ῡγ (13.8a) turns into

ῡγ(z, r) = (14.2)

2
(2π)2

{ ∞∫

0

∞∫

0

η J0(
√
η2 + σ2 r) cos η e−γ

2 (σ
2
2 + γ2 η4

16 ) cos(σ z) dη dσ

+

∞∫

0

σ∫

0

η J0(
√
σ2 − η2 r)χ(−η2) cosh η e−γ

2 (σ
2
2 + γ2 η4

16 ) cos(σ z) dη dσ
}
.

Since we proved the mollifier property for eγ for distributions with compact
support in HM,M (Rn) only, see Theorem 12.1, we assume f ∈ HM,M (R2) for
a certain M > 1. The method of approximate inverse (11.22) for solving the
continuous problem Mf = g in two dimensions reads
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M̃γ Mf(y) = 〈Mf,Gyr,M ῡγ〉S′
r×Sr (14.3)

=
2π
|y2|3

∞∫

−∞

∞∫

0

rMf(z, r) ῡγ
(z − y1

|y2|
,
r

|y2|
)

dr dz

with reconstruction points y ∈ HM,M (R2), y = (y1, y2)�. Note that the right-
hand side of (14.3) is not of filtered backprojection type due to the dilation
by |y2|−1.

We show how the semi-discrete algorithm M̃N,γ emerges from (14.3). In
practical situations, we only have a finite number of data Mf(z, r) at hand.
These are spherical means for finitely many centers (zk, 0)� with zk ∈ [Λ1,Λ2],
Λ1 < Λ2, and radii rl ∈ [0, R] with R > 0. Assume that the sampling scheme
is given as

zk = Λ1 + k · hz , hz =
Λ2 − Λ1

p
, k = 0, . . . , p ,

(14.4)

rl = l · hr , hr =
R

q
, l = 0, . . . , q .

Hence, we have N = (p+ 1) (q+ 1) spherical means available. Instead of Mf ,
the measured data are given by the vector ΨN Mf , where the functionals
ΨN : C(R × [0,∞)) → R

N are point evaluations at (zk, rl)

(ΨNv)k,l = v(zk, rl) , 0 ≤ k ≤ p , 0 ≤ l ≤ q , v ∈ C(R × [0,∞)) .

Remark 14.1. The observation operator ΨN is well-defined only if Mf can be
represented by a continuous function. Since we only know Mf ∈ S ′

r, we have
to require – just as in Section 11.3 – that f ∈ E ′

e(HM,M (R2)) is such that
Mf ∈ C(R × [0,∞)) holds. This does not mean a large restriction, since M
smoothes by a factor of 1/2 in Sobolev scales, see estimate (11.10). If, e.g., f is
a sum of characteristic functions of convex sets with smooth boundaries, then
actually Mf is continuous. Note that we do not assume that Mf is integrable
over R × [0,∞) which in general does not hold true, see Figure 11.2.

To recover f from ΨN Mf , we apply the trapezoidal sum corresponding
to the nodes {(zk, rl)} to (14.3) and get

M̃N,γ ΨN Mf = 〈ΨN Mf,QN ΨN Gyr,M ῡγ〉RN (14.5)

=
2π
|y2|3

hz hr

p∑

k=0

q∑

l=0

rl ῡγ

(zk − y1
|y2|

,
rl
|y2|
)
Mf(zk, rl)

for y ∈ HM,M (R2). In that case, we have QN = hz hr IN,N . The specific
sampling scheme yields the convergence
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lim
N→∞

M̃N,γ ΨN Mf(y) = 〈Mf,Gyr,M ῡγ〉L2([Λ1,Λ2]×[0,R]) .

according to (11.25). Formula (14.5) was applied to get the reconstructions in
figures 14.1 and 14.2.

The kernel ῡγ has been pre-computed by applying numerical integration
to (14.2) choosing convenient integration boundaries. Moreover, we determine
ῡγ(z, r) on the square [0, 10]2 on a equidistant mesh grid consisting of 128×128
grid points. Since the kernel is rapidly decreasing, the absolute value of Ψ̄γ

outside the square [0, 10]2 is rather small, so we may extend the kernel by 0
there. Using the symmetry ῡγ(z, r) = ῡγ(−z, r) and linear interpolation, we
get ῡγ(z, r) for every z ∈ R, r ≥ 0. To check the performance of the above
algorithm, we implemented it to reconstruct several objects. All reconstruc-
tions were computed for (y1, y2) ∈ [0, 7]× [1, 8] using an equidistant mesh grid
with 128 × 128 grid points. The objects are assumed to have their support
in H1(R2). The data are given according to the sampling scheme (14.4) with
Λ1 = −36, Λ2 = 36, p = 384, R = 25 and q = 400. Please note, that in all
pictures the y2-axis is the horizontal one, whereas the y1-axis (the SONAR
sources, circle centers) is the vertical one.

1.) First, we recovered the function χC (11.5), the characteristic function of
two disks reflected about the y1-axis. Hence, χC is even in y2 and a tempered
distribution yielding χC ∈ S ′

e(R
2). The picture at the top of Figure 14.1

shows the original function χC in [0, 7] × [1, 8] as well as the approximate
inverse M̃N,γ ΨN MχC . Cross sections of the reconstruction along with the
exact object function χC are plotted in the bottom picture in Figure 14.1.
The horizontal and vertical cross sections displayed in Figure 14.1 emphasize
that the singularities of f(y1, y2) for y1 = const can be better recovered than
those for y2 = const as predicted by the microlocal analysis, see Remark 14.2.

2.) Second, we applied the algorithm to the sum of two functions where
each one has a representation as χC and thus is in S ′

e(R
2). The function to

be recovered consists of four disks alltogether having radius 1. One disk is
centered about (4, 4) and has density 2, the second is centered about (2, 3)
with density 1 and both of them are reflected about the y1-axis to obtain
again a function which is even in y2. The reconstruction, the original object
as well as corresponding cross sections can be seen in Figure 14.2 for (y1, y2) ∈
[0, 7] × [1, 8], the parameters are the same as in Figure 14.1.

These tests show that the method of approximate inverse works fine, and
the reconstructions would be comparable to those in Denisjuk [20] if the op-
timal regularization parameter was found (see Remark 14.2 for that problem).
Some blurring in the reconstructions is caused by the numerical calculation of
the reconstruction kernel and truncation errors. However, some ill-posedness
is inherent in the problem.

Remark 14.2. Some of the fuzzy reconstruction boundaries in figures 14.1 and
14.2 are intrinsic to the problem. As shown in Louis, Quinto [74], Palam-

odov [91], the object boundaries that are most difficult to reconstruct are
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Fig. 14.1. Top: Reconstruction of χC as in (11.5), (left picture) and original object
function (right picture), γ = 0.04. The y1- and y2-axes are switched. The sources are
located at the vertical (y1-) axis. Bottom: Cross sections through the reconstructions
(dashed line) and the original object function χC (solid line). We have displayed

M̃N,γ ΨN MχC(y1, y2) for y2 = 4 (left picture) and for y1 = 4 (right picture). One
sees that the reconstruction is smooth and recovers the jumps of χC but the peak is
attenuated. This is an indicator that we have not chosen the optimal regularization
parameter γ which is difficult to determine. The jumps in the left-hand cross section
furthermore belong to edges which are hard to recover according to the microlocal
analysis, see Figure 14.3. This is the reason why the left jump is located more exactly
in the right-hand picture.

those not tangent to circles in the data set. This means that horizontal bound-
aries in figures 14.1 and 14.2 will be intrinsically hardest to reconstruct, since
the set of circle centers is the vertical axis. Since more-or-less vertical bound-
aries are tangent to spheres in the data set, the microlocal analysis predicts
they will be easiest to reconstruct. This is analogous to limited angle X-ray
tomography in which some boundaries are invisible in the data, see Quinto

[94]. We emphasized the situation in Figure 14.3.
We furthermore mention that the numerical computation of the reconstruc-
tion kernel breaks down for very small values of γ, since then the integrand in
(14.2) has dramatic oscillations which are almost impossible to handle. That
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Fig. 14.2. Top: Reconstruction of the sum of two functions of type (11.5), (left
picture) and original object function in [0, 7]×[1, 8] (right picture), γ = 0.04. The y1-
and y2 axes are switched. The sources are located at the vertical (y1-) axis. Bottom:
Reconstruction profiles (dashed lines) y2 = 3.5 (left picture) and y1 = 4 (right
picture) and corresponding profiles of the exact function (solid lines). Although the
cross section for y2 = 3.5 seems to be smoother, the location of the singularities are
determined better in the profile y1 = 4. This coincides with the moicrolocal analysis,
see Remark 14.2.

makes it impossible to compute reconstructions with the optimal γ since the
results in Figures 14.1, 14.2 suggest that the optimal γ is distinctly smaller
than 0.04. Thus, analytic expressions for reconstruction kernels are of large
interest.



144 14 Numerical experiments

Fig. 14.3. The letter ‘V’ marks the parts of the boundary we expect to recover well
from the spherical means Mf . As in Figures 14.1 and 14.2 the sources are located
at the vertical (y1-) axis, the y2-axis is the horizontal one.
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Conclusion and perspectives

The spherical mean operator M with hyperplanes as center sets is a typical
example of a linear operator which cannot be formulated as a bounded map-
ping between Hilbert spaces. It has important applications in SONAR and
SAR. The method of approximate inverse proved to be a powerful tool to
construct an inversion scheme for this operator for the semi-discrete setting,
too. Note that the computation of reconstruction kernels in three dimensions
(n = 2) can be done with the same complexity as in the 2D case, since we use
radial symmetric mollifiers, see (13.8b) and Corollary 13.3. Numerical exper-
iments in 3D will be subject of further investigations. Questions concerning
resolution of synthetic-aperture imaging have been answered by Natterer

et al. [83] and Borden and Cheney [10].
Current research deals furthermore with adapting ideas from local tomog-

raphy (see Faridani et al. [29, 27], Vainberg and Faingois [127]) to M.
Instead of reconstructing the original object f , one might be interested in
getting information about discontinuities of f , that means one reconstructs a
function Λf having the same singular support as the original f . In case of M
this could be done computing a pseudodifferential operator

Λf := ∆M∗ ΓεMf ,

where ∆ is the Laplacian and Γε denotes the multiplication with a cut-off
function which is necessary since the adjoint M∗ can not be applied to M in
the first place. The support of the cut-off function is controlled by a parameter
ε. Certainly, the Laplacian ∆ can be replaced by another appropriate elliptic
pseudodifferential operator.
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Approximate inverse and X-ray diffractometry

16.1 X-ray diffractometry

The aim of X-ray diffractometry is to recover the stress tensor σ = σij in a
probe, which has a crystalline structure, with the help of X-rays. A comprehen-
sive treatise of this kind of non-destructive testing along with some solution
schemes can be found in Kämpfe [52]. We give here a short description of the
measurement setting.

Mechanical stresses and elastic strains in solids are connected by Hook’s
law

εij =
ν + 1
E
σij − δij

ν

E

3∑

k=1

σkk , (16.1)

where εij denotes the strain tensor, E is the modulus of elasticity and ν is
the Poisson number. We introduce a laboratory coordinate system by rotating
the probe about the x3-axis by an angle ϕ and tilting the probe about the
x2-axis by an angle ψ which transforms the strain tensor to

εLij =
3∑

k,l=1

Tϕψik εkl T
ϕψ
jl (16.2)

with

Tϕψ =

⎛

⎝
cosϕ cosψ sinϕ cosψ − sinψ
− sinϕ cosϕ 0

cosϕ sinψ sinϕ sinψ cosψ

⎞

⎠ .

In X-ray diffractometry, it is only possible to measure the component

εϕψ := εL33 .

Putting Hook’s law (16.1) into (16.2) gives an explicit expression for εϕψ
depending on the stress tensor σij . To describe diffraction of X-rays at a
crystal lattice, we use Bragg’s reflection model, which explains deflections as
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reflections on parallel lattice planes, see Figure 16.1. According to Bragg’s
condition, the angle of the interference peak θ is related to the distance d of
the lattice planes as

2 d sin θ = nλ , (16.3)

where λ means the wavelength of the applied X-rays and n is an integer.

Fig. 16.1. Bragg’s reflection model. W denotes the axis of rotation.

Stresses cause a shift of the peak position θ away from θ0, the interference
maximum of the unstressed probe. Differentiating (16.3) gives

∂d

∂θ
= −n λ cos θ

2 sin2 θ
= −d cot θ

and thus dd/d = − cot θ dθ. A linearization finally identifies the measured
strain component εϕ,ψ as a peak shift

εϕψ =
dd
d

≈ dϕψ − d0
d0

= − cot θ0 (θϕψ − θ0) , (16.4)

where θϕψ, dϕψ means the peak position and lattice plane distance of the
stressed probe corresponding to rotation angle ϕ and tilt angle ψ, d0 is the
distance of lattice planes in the unstressed specimen. Putting together (16.2),
(16.4) and Hook’s law (16.1) we get the formula

εϕψ = − cot θ0 (θϕψ − θ0) =
3∑

k,l=1

Tϕψ3k

(ν + 1
E
σkl − δkl

ν

E

3∑

m=1

σmm

)
Tϕψ3l ,

(16.5)
which is valid for isotropic material and is the fundamental equation of X-ray
based stress detection. The peak positions θ are also called Bragg angles.

So far, we did not take into account that the intensity I(z) of the X-rays
is attenuated within the probe according to Lambert-Beer’s law

I(z) = I0 e−µ z ,
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where I0 is the intensity of the emitted rays, z denotes the penetration depth
and µ is the attenuation coefficient. Hence, we obtain the fundamental equa-
tion of X-ray diffractometry from (16.5), when we replace the tensor entries
σij by their reciprocal Laplace transforms σ̌ij , where

σ̌ij(τψ) =
1
τψ

∞∫

0

σij(z) e−z/τψ dz . (16.6)

Here, τψ = cosψ sin θ0/(2µ) denotes the maximal penetration depth of the
X-ray beam, which depends on the tilt angle ψ. Thus, a method for X-ray
diffractometry has to overcome two difficulties: decoupling the transformed
tensor entries σ̌ij from (16.5) followed by a solver for the reciprocal Laplace
transform (16.6).

One of the most popular and oldest method for X-ray diffractometry is
the sin2 ψ-method, see Macherauch, Müller [76]. Here, one assumes the
stresses to be near the surface and parallel to it, which leads to σ13 = σ23 =
σ33 = 0. The basic formula then reads

εϕψ = − cot θ0 (θϕψ − θ0) =
ν + 1
E
σϕ sin2 ψ − ν

E
(σ11 + σ22). (16.7)

with σϕ = σ11 cos2 ϕ + σ12 sin 2ϕ + σ22 sin2 ϕ. Equation (16.7) represents a
line depending on sin2 ψ. The sin2 ψ-method recovers stress σϕ, which acts
in parallel to the surface, by identifying the slope of the best fit straight line
from (16.7). Other methods rely on a least squares parameter fitting of certain
functions (e.g. polynomials, splines) to the searched for stress tensor σij , see
e.g. Eigenmann et al. [25], Leverenz et al. [63].

We describe a method published in Schuster et al. [114] which gains
the transformed tensor entries σ̌ij from (16.5) applying a least squares method
followed by inverting the reciprocal Laplace transforms with the help of the
approximate inverse. The next section is concerned with this very step: ap-
plying the approximate inverse to the Laplace transform.

16.2 Approximate inverse for the Laplace transform

In this section we subsume results from Schuster [111] where a stable inver-
sion scheme for the Laplace transform

Lf(t) =

∞∫

0

f(z) e−t z dz (16.8)

was developed. We consider L as a mapping which acts on L2(R+). Thus, L
is a linear, self-adjoint, but unbounded operator. In practical situations, Lf
is given only for finitely many scanning points tj in an interval [a, b], where
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tj �= ti, if j �= i. In our setting the scanning points tj do not need to be
equidistant. E.g. in X-ray diffractometry, we have

tj = 2µ/(sin θ0 cosψj) . (16.9)

That means we evaluate L at the points tj and obtain the semi-discrete map-
ping

(Lmf)j = (Ψm Lf)j =

∞∫

0

f(z) e−tj z dz , j = 1, . . . ,m , (16.10)

where Ψm : C(R+) → R
m denotes the point evaluations in tj ,

(Ψmg)j = g(tj) , j = 1, . . . ,m . (16.11)

Note that Lf is in C∞(R+) for all f ∈ L2(R+) since

exp(−t z) ∈ C∞(R+ × R
+) .

Hence the semi-discrete Laplace transform Lm is well defined and the inequal-
ity

‖Lmf‖2
2 ≤
( m∑

j=1

1
2 tj

)
‖f‖2

L2(R+)

shows that Lm is a continuous, compact operator between the spaces L2(R+)
and R

m, whenever tj �= 0 for j = 1, . . . ,m. To get convergence results, we
endow R

m with a weighted Euclidean scalar product

(x, y)w :=
m∑

j=1

wj xj yj ,

where the weights wj are given as

wj =

⎧
⎪⎨

⎪⎩

h1/2 , if j = 1 ,

(hj−1 + hj)/2 , if 1 < j < m ,

hm−1/2 , if j = m

(16.12)

with hj = tj+1 − tj . If the scanning points tj are equidistant, this means tj =
a+(j−1) b/(m−1), we have wj = (b−a)/(m−1). Defining Lm as a mapping
between L2(R+) and R̂

m := (Rm, (·, ·)w), the adjoint L∗
m : R̂

m → L2(R+)
computes as

L∗
mv(z) =

m∑

j=1

wj vj e−tj z . (16.13)

Thus, applying the trapezoidal sum corresponding to the nodes {tj} to L∗g
gives L∗

m Ψmg, when g ∈ C(R+) ∩ L2(R+).
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The problem which we investigate, reads: for given data gm ∈ R̂
m we have

to find f ∈ L2(R+) satisfying

Lmf = gm . (16.14)

Because of the smoothing property of L, it is obvious that (16.14) is a severely
ill-posed problem in the sense, that any discretization of (16.14) leads to a
matrix whose condition number grows exponentially in m.

We briefly formulate the concept of approximate inverse to solve (16.14).
Let eγ ∈ L2(R+ × R

+) be a mollifier, that means the mean value of eγ(·, y)
is equal to 1 for all y ∈ R

+ and limγ→0

∫
f(z) eγ(z, y) dz = f(y) a.e. Further-

more, suppose that eγ(·, y) lies in the range R(L∗
m)1 of L∗

m. This implies the
existence of a υγ(y) with

L∗
mυγ(y) = eγ(·, y) . (16.15)

for fixed y ∈ R
+. The moments fγ(y) := 〈f, eγ(·, y)〉L2 are then computed by

the semi-discrete approximate inverse L̃m,γ : R̂
m → L2(R+),

L̃m,γgm(y) = (gm, υγ(y))w .

In general, equation (16.15) is not solvable. The range R(L∗
m) has finite

dimension and is given by

R(L∗
m) = span {exp(−tj ·) : j = 1, . . . ,m} ,

see (16.13). All elements in R(L∗
m) have exponential decay and (16.15) has

a solution, only if eγ(·, y) is a linear combination of functions of the type
exp(−tj ·). Moreover neither an inversion formula, nor a singular value de-
composition is available for Lm. Thus, we have to take a more careful choice
of the mollifier than in the applications of Part II and III. We want to design
a mollifier of exponential decay, which is adjusted to R(L∗

m). To do so, we take
an element φmv from R(L∗

m),

φmv (z) = L∗
mv(z) =

m∑

j=1

wj vj e−tj z (16.16)

with v ∈ R̂
m and wj as in (16.12). Obviously φmv in general does not fulfill the

mollifier properties. So, we look for a bounded, linear mapping Ay,γ , which
acts on L2(R+) and forces φmv to be a mollifier.

Lemma 16.1. Let Ay,γ : L2(R+) → L2(R+) be a bounded, linear mapping,
y > 0, with

lim
γ→0

A∗
y,γf(z) = f(y) for almost every z ∈ R

+ , (16.17)

1 That means for fixed y ∈ R
+ we postulate eγ(x, y) ∈ R(L∗

m) as a function of x.
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and assume, that φmv with (16.16) fulfills the standardization
m∑

j=1

wj vj t
−1
j = 1 . (16.18)

Then
lim
γ→0

〈Ay,γφ
m
v , f〉L2(R+) = f(y) a.e. (16.19)

Remark 16.2. Standardization (16.18) is satisfied e.g., if vj = tj w−1
j /m. Note

that wj �= 0, since tj �= tk whenever j �= k.

Proof. A quick calculation using (16.17) shows

lim
γ→0

〈Ay,γφ
m
v , f〉L2(R+) = lim

γ→0
〈φmv ,A∗

y,γf〉L2(R+) = f(y)

∞∫

0

φmv (z) dz = f(y) ,

since ∞∫

0

φmv (z) dz =
m∑

j=1

wj vj

∞∫

0

e−tj z dz =
m∑

j=1

wj vj t
−1
j = 1 .

The last identity follows from (16.18). ��

Thus, every mapping Ay,γ with (16.17) and (16.18) leads to a mollifier.
Theorem 16.3 presents a special choice of Ay,γ .

Theorem 16.3. Assume that A∗
y,γf(z) = f(γ y z+y) for γ, y > 0 and (16.18)

holds. Then emγ (z, y) := Ay,γφ
m
v (z) is a mollifier. Furthermore, defining for

y > 0 a dilation Dy on L2(R+) by

Dyf(z) = y−1 f(y−1 z) ,

we get emγ (z, y) = Dyemγ (z, 1).

Proof. Obviously, (16.17) is valid, if we put A∗
y,γf(z) = f(γ y z + y). Thus,

because of Lemma 16.1, we only have to prove the normalization property.
We first compute Ay,γ explicitly. With f , g ∈ L2(R+), we have

〈A∗
y,γf, g〉L2(R+) =

∞∫

0

f(γ y z + y) g(z) dz

= γ−1 y−1

∞∫

0

f(z + y) g(γ−1 y−1 z) dz

= γ−1 y−1

∞∫

y

f(z) g(γ−1 y−1 (z − y)) dz

= 〈f,Ay,γg〉L2(R+) ,
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and thus Ay,γg(z) = γ−1 y−1 (1 − χ[0,y)(z)) g(γ−1 y−1 z − γ−1) , where χ[0,y)

means the characteristic function of the interval [0, y). This yields

∞∫

0

emγ (z, y) dz =

∞∫

0

Ay,γφ
m
v (z) dz

= (γ y)−1

∞∫

y

φmv

(
(γ y)−1 (z − y)

)
dz =

∞∫

0

φmv (z) dz = 1 .

To show the dilation property, we use once more the representation of Ay,γ

and get

Ay,γg(z) = Dy{γ−1 (1 − χ[0,1)) g(γ−1 · −γ−1)}(z) = Dy A1,γg(z) ,

which completes the proof. ��

Remark 16.4. Note that in Theorem 16.3 we designed a mollifier by forcing
an element from R(L∗

m) to be a mollifier. The resulting mollifier eγ , however,
is not an element from R(L∗

m), but has the same exponential decay promising
a good approximation by a function L∗

mυγ(y).

The dilation property of the mollfier emγ is associated with the dilation
invariance of the Laplace transform L. It is easy to check, that

LDyf = (Dy)∗ Lf with (Dy)∗g(z) = g(y z) .

Figure 16.2 displays the mollifier emγ from Theorem 16.3 for three different
values of y.

To solve (16.15) numerically, we apply a collocation method. The pos-
sibility of using projection methods to compute reconstruction kernels was
mentioned in Section 2.1. We choose collocation points zk, k = 1, . . . ,m and
postulate (16.15) to hold in zk,

L∗
mυγ(y)(zk) = emγ (zk, y) , k = 1, . . . ,m . (16.20)

The system of linear equations (16.20) can be reformulated as

Cmυγ(y) = dmγ (y) , (16.21)

where {Cm}k,j = wj exp(−tj zk) ∈ R
m×m and dmγ (y) ∈ R

m with

dmγ (y)k = emγ (zk, y) = γ−1 y−1 (1 − χ[0,y)(zk))φv(γ−1 y−1 zk − γ−1) .

Theorem 16.5. Setting

zk = �1 + (k − 1)hm , k = 1, . . . ,m , hm = (�2 − �1)/(m− 1) (16.22)

uniformly in some interval [�1, �2] leads to an invertible matrix Cm.
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Proof. To show the non-singularity of Cm, it suffices to prove the injectivity
of the transpose C�

m. Let v ∈ R
m be an element from the kernel of C�

m, that
means C�

mv = 0. Then

m∑

k=1

wj e−tj zk vk = wj e−tj �1
m∑

k=1

(
e−tj hm

)k−1

vk = 0

yielding
m∑

k=1

(
e−tj hm

)k−1

vk = 0 , for j = 1, . . . ,m . (16.23)

System (16.23) is a Vandermonde system and hence regular, which gives v = 0.
��

For the remainder of this section we suppose that the collocation points are
equidistant according to Theorem 16.5, which implies that Cm has an inverse
C−1
m . Since system (16.21) is the discretization of a severely ill-posed problem,

we expect Cm to be extremely ill-conditioned. So, to get a stable solution,
regularization is necessary, even though the right hand side of (16.21) contains
no noise. Thus, instead of (16.21) we consider the system

(Cm + ρ Im) υργ(y) = dmγ (y) , (16.24)

which arises from (16.21) applying Lavrentiev’s method. Here, Im denotes the
identity matrix in R

m. Since in general Cm is indefinite, we have to find a
criterion for ρ resulting in a stably invertible matrix

Cρ
m := Cm + ρ Im .

Theorem 16.6. Let ‖ · ‖ be a matrix norm and ρ ∈ R with |ρ| < ‖C−1
m ‖−1/2.

Then Cρ
m is invertible and

‖(Cρ
m)−1‖ < |ρ|−1 . (16.25)

Proof. Because of |ρ| ‖C−1
m ‖ < 1/2, we have from Neumann’s series

‖(Im + ρC−1
m )−1‖ =

∥∥∥
∞∑

k=0

(−ρC−1
m )k
∥∥∥ =

1
1 − |ρ| ‖C−1

m ‖
≤ 2 .

Assertion (16.25) follows from

‖(Cρ
m)−1‖ = ‖(Im + ρC−1

m )−1 C−1
m ‖ ≤ 2 ‖C−1

m ‖ < |ρ|−1 .

��

Condition
|ρ| < ‖C−1

m ‖−1/2 (16.26)
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guarantees the solvability of (16.24), but means a very strong restriction on ρ,
because commonly ‖C−1

m ‖ is very large. Since condition (16.26) is not neces-
sary, but only sufficient, and det(Cρ

m) = 0 for finitely many ρ only, we expect
that Cρ

m has an inverse even for some |ρ| ≥ ‖C−1
m ‖−1/2. Figure 16.3 shows

the three reconstruction kernels υργ(y) associated with the mollifiers emγ (·, y)
in Figure 16.2. The kernels were computed as solutions from (16.24) with
ρ = 10−15. Note that the reconstruction kernels have the same dilation prop-
erty as the mollifiers emγ mentioned in Theorem 16.3. The mollifier emγ (·, y) for
y = 0.5 is plotted in Figure 16.4 together with its approximation L∗

mυ
ρ
γ(y) in

R(L∗
m). We see that L∗

mυ
ρ
γ(y) also has its global maximum at z = 0.5 and that

the approximation becomes worse as z → 0. This comes from the exponential
increase of exp(−tj z) for z → −∞.

Our inversion scheme for Lm now reads as follows: for given data gm ∈ R
m

compute L̃ρm,γgm
L̃ρm,γgm(y) = (gm, υργ(y))w . (16.27)

In [111, Section 4], the author presented an error estimate for (16.27). We
will state the most important results. Let f having compact support in some
interval [�1, �2]. Without loss of generality we may assume that 0 < �1 < �2
what always can be achieved using

Lf(t) = er t L{f(· − r)}(t) .

As was done to show convergence in case of the Doppler transform, see Corol-
lary 8.5 in Chapter 8, we have to couple the data scanning in t and the
regularization parameters γ and ρ. With

δm := max{tj − tj−1 : j = 2, . . . ,m} ,

we denote the maximal discretization step size. First, we estimate

|fγ(y) − L̃ρm,γ Lmf(y)| .

As a result of our investigations we will see that the error essentially is a
sum of three parts: A regularization error, a discretization error and the error
coming from applying Lavrentiev’s method (16.21). The proof of Theorem
16.7 is omitted; it can be found in [111].

Theorem 16.7. Let f ∈ Hα(�1, �2), 1/2 < α ≤ 1 with supp f ⊂ [�1, �2], y ∈
(�1, �2) be a reconstruction point, emγ be the mollifier designed in Theorem 16.3
and γ > 0 be a fixed regularization parameter. Furthermore, we assume {ρm}
to be a sequence with limm→∞ ρm = 0 and 0 < ρm < ‖(Cm)−1‖−1/(m + 1).
Then

|fγ(y) − 〈Lmf, υρmγ (y)〉
R̂m

| ≤
(
Cυ γ

−1 y−1m−1 (16.28)

+hαm {C1,α γ
−α+1

2 y−
α+1

2 + C2,α γ
−1 y−1 δm ρ

−1
m }
)
‖f‖Hα(�1,�2)
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for m → ∞. If δm satisfies δm ≤ c hλm ρm with λ < α, c > 0 for m → ∞, we
get for a fixed γ > 0 the convergence result

lim
m→∞ |fγ(y) − 〈Lmf, υρmγ (y)〉

R̂m
| = 0 . (16.29)

Since we know from Theorem 16.3 that

|f(y) − fγ(y)| ≤ κγ(y) (16.30)

for a function κγ with limγ→0 κγ(y) = 0 for almost every y, we get the follow-
ing convergence estimate from Theorem 16.7.

Corollary 16.8. Adopt all assumptions from Theorem 16.7 and assume the
sampling condition δm ≤ c hλm ρm with λ < α for m→ ∞. Then

lim
m→∞ |f(y) − fρmγ (y)| ≤ κγ(y)

for almost every y ∈ (�1, �2).

Proof. The proof follows from Theorem 16.7, (16.30) and an application of
the triangle inequality

|f(y) − fρmγ (y)| ≤ |f(y) − fγ(y)| + |fγ(y) − fρmγ (y)| .

Note that by (16.27) fρmγ (y) = (Lmf, υρmγ (y))w = 〈f,L∗
mυ

ρm
γ (y)〉L2(�1,�2) holds

true. ��

Remark 16.9. Condition δm ≤ c hλm ρm, λ < α implies that the maximal scan-
ning step size converges to zero as m grows to infinity. Convergence estimate
(16.29) is valid only if there exists a sampling δm fulfilling that condition.

So far, we have proved a limit estimate for a fixed regularization parameter
γ > 0. Now we present conditions on a sequence of parameters {γm} leading
to point-wise convergence of the approximate inverse to the exact solution f .

Theorem 16.10. Adopt all assumptions made in Theorem 16.7. Let {γm} be
a sequence of positive numbers with limm→∞ γm = 0 such that

lim
m→∞ γ

−1
m m

−1 = lim
m→∞h

α
m γ

−α+1
2

m = lim
m→∞h

α
m γ

−1
m δm ρ

−1
m = 0 . (16.31)

Then we have for almost every y ∈ (�1, �2) the convergence

lim
m→∞ |f(y) − fρmγm (y)| = 0 . (16.32)

A sequence {γm} satisfying (16.31) is given by

γm =
1

(lnm)τ
, τ > 0

where δm fulfills δm ≤ cmλ ρm for a constant c > 0 and λ < α.
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Proof. Condition (16.31) guarantees the convergence of the right-hand side
of (16.28) to 0 for m → ∞. Furthermore, limm→∞ κγm(y) = 0, since γm
converges to 0. Thus, convergence (16.32) becomes clear from Corollary 16.8.
Defining γm = 1/(lnm)τ for τ > 0 and constraining δm by δm ≤ cmλ ρm for
a constant c > 0 and λ < α obviously satisfies the conditions (16.31). ��

Remark 16.11. In view of Theorem 16.7 and Corollary 16.8, the reconstruc-
tion error consists of several parts: a regularization error depending only on
γ, discretization errors depending on hm and δm and a further regularization
error which comes from applying Lavrentiev’s method to (16.21). The dis-
cretization errors are the crucial ones, since they vanish for m → ∞ only if
we have a sampling condition as stated in Theorem 16.7.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

Fig. 16.2. Plot of em
γ (·, y) = Ay,γφ

m
v from Theorem 16.3 for γ = 0.04, y = 0.5 (solid

line), y = 1.0 (dashed line) and y = 1.5 (dashed-dotted line). The vector v is chosen
according to Remark 16.2, where the scanning points tj are equally distributed in
[0.3, 2], m = 300.

16.3 A solution scheme for the X-ray diffractometry
problem

The solution scheme for X-ray diffractometry published in [114] consists of
two steps: The computation of σ̌ij from (16.5) (with σij replaced by σ̌ij) and
an inversion of the Laplace transform to get σij . Let measured peak shifts

εϕlψk = − cot θ0 (θϕlψk − θ0) (16.33)

be given for a finite number of tilt angles ψk and rotation angles ϕl. We use
a two-step method to regain the stress tensor from (16.33).
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Fig. 16.3. Plot of υρ
γ(y) for y = 0.5 (solid line), y = 1.0 (dashed line), y = 1.5

(dashed-dotted line), γ = 0.04, m = 300 and ρ = 10−15. The collocation points
zk = tk are equally distributed in [0.3, 2].
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Fig. 16.4. Mollifier em
γ (·, y) for y = 0.5, γ = 0.04 (solid curve) and its approximation

L∗
mυ

ρ
γ(y) in R(L∗

m) (dashed curve). Here, υρ
γ(y) solves (16.24) with ρ = 10−15, m =

300.

‘Figures 16.2 – 16.4 have been reproduced from Schuster [111] with kind permission
of de Gruyter GmbH & Co. KG.’

Step 1: Solve (16.5) by the method of least squares and get σ̌ij .

Step 2: Calculate

σij(z) =
(
σ̌ij(τψk), τψk υ

ρ
γ(z;ϕl, ψk)

)
w

according to (16.27). Here ψk, ϕl are the angles for which measured data are
acquired and the reconstruction kernel υργ is a solution of (16.24). The addi-
tional factor τψk comes from the reciprocal Laplace transform (16.6).
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The method was used to recover the stress profile of a ground corundum
(Al2O3) specimen. The measurement used 44 tilt angles ψk and the two
rotation angles ϕ1 = 0◦, ϕ = 90◦ which gives a total number of 88 data
values. The maximum tilt angle was ψmax = 87◦ and the measure process was
carried out with synchroton radiation at HASYLAB (DESY), Hamburg (Ger-
many). The wave length of the applied X-ray beams was λ = 179 pm and the
Bragg angle of the unstressed probe θ0 = 37.1◦ was determined by averaging
the measured Bragg angles θϕlψk . Figure 16.5 shows the measured reflection
angles at the different tilt angles and the recovered stress tensor components
σ11 and σ22. The regularization parameters were γ = 0.035, ρ = 0.1. Hence,
the method of approximate inverse led to a stable solver in the bad situation
of a severely ill-posed problem with only a few number of (noisy) data.
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Fig. 16.5. Upper picture: Measured Bragg angles at different tilt angles varying
from 0◦ to 87◦ for the two rotations ϕ1 = 0◦ and ϕ2 = 90◦. Lower picture: Cal-
culated stress profile of the components σ11 (dashed-dotted line) and σ22 (dashed
line) depending on depth. The method of approximate inverse was applied using the
parameters γ = 0.035, ρ = 0.1.
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A filtered backprojection algorithm
for thermoacoustic computerized tomography
(TCT)

Thermoacoustic computerized tomography (TCT) is a novel imaging tech-
nique for non-destructive testing and medical imaging, which combines both
the advantages of purely optical imaging (high contrast) and ultrasound
imaging (high resolution). TCT uses electromagnetic energy as input and
the induced thermoacoustic pressure field as measurement output. The
determination of the unknown energy deposition function is equivalent to
the reconstruction of a function from its integrals over spheres. In TCT the
center sets are spheres whereas the SONAR and SAR problems usually use
hyperplanes as center sets. This leads to a spherical mean operator with dif-
ferent mathematical properties. We apply the method of approximate inverse
to derive a reconstruction algorithm of filtered backprojection type.

17.1 Thermoacoustic computerized tomography (TCT)

The aim of TCT is the reconstruction of spatial inhomogeneities in human
tissue or some specimen. To this end, one illuminates the sample by a pulsed
electromagnetic energy resulting in a non-uniform energy deposition within
the sample followed by a thermoelastic expansion which causes an acoustic
pressure wave, see Gusev and Karabutov [35], and Liu [93]. Measuring
the induced thermoacoustic pressure wave with the help of acoustic detectors
which surround the object, TCT tries to recover the energy deposition func-
tion. A scheme of the scanning system is sketched in Figure 17.1. The energy
deposition itself depends on the absorptivity which in return offers clues to the
searched inhomogeneities. Haltmeier et al. [37] developed a measurement
setup and reconstruction method which is based on the Radon transform us-
ing large planar receivers. In [92] Patch delivers consistency conditions which
are useful when part of the data is unknown. The articles of Kruger et al.

[60] and XU et al. [133, 132, 134] also contain basics of TCT. An inver-
sion formula for TCT using a series expansion was presented by Norton

and Linzer [89]. Inversion formulas for the spherical mean operator in odd
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dimensions as well as uniqueness results are found in Finch, Patch, and

Rakesh [31]. We follow the outlines of Haltmeier et al. [38] and present
an inversion scheme based on the method of approximate inverse.

Fig. 17.1. Thermoacoustic scanning system. The examined object is illuminated
by a short electromagnetic pulse. The thermoelastic effect (c.f. Figure 17.2) causes
an evolving pressure wave that is measured with several acoustic detectors enclosing
the imaged object.

‘The picture was reprinted from M. Haltmeier, T. Schuster, and O. Scherzer,
Filtered backprojection for thermoacoustic computed tomography in spherical geome-
try, Math. Meth. Appl. Sci., 28 (2005), pp. 1919–1937. Copyright c©2005 John Wiley
& Sons Limited. Reproduced with permission.’

The specimen under consideration is illuminated by a pulsed electromag-
netic signal j(t). The temporal shape of that signal is assumed to have small
support [0, τ ], where τ � 1. In fact, that pulse lasts a few picoseconds only.
The signal j is furthermore supposed to be non-negative, smooth (at least
j ∈ C1(R)) and to satisfy ∫

R

j(t) dt = 1 .

That means, j has the shape of a delta peak. The absorbed energy per unit
volume and unit time r(x, t) is given as

r(x, t) = Iem(x) j(t)ψ(x) ,

where Iem denotes the radiation intensity and ψ(x) is the absorption density
inside the fluid which surrounds the object under investigation. The heating
caused by the absorbed energy leads to an expansion of the volume. The rate
of change of the volume depends on the thermal expansion coefficient β, the
adiabatic speed of sound vs, the specific heat capacity cp of the material and
is related with the rate of change of pressure p(x, t) and the absorbed energy
r(x, t) as

∂�

∂t
=

1
v2s

∂p

∂t
− β
cp
r . (17.1)
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Equation (17.1) is called the expansion equation. The thermoelastic effect is
described by this very equation: the absorbed energy causes a thermal expan-
sion ∂t� and a pressure field p. Figure 17.2 emphasizes that issue.

Fig. 17.2. Thermoelastic effect. The absorbed electromagnetic energy within the
illuminated part of the fluid causes thermal expansion and a subsequent pressure
field. The dependance between the thermoelastic expansion and the pressure on the
received electromagnetic energy is given by the expansion equation (17.1).

‘The picture was reprinted from M. Haltmeier, T. Schuster, and O. Scherzer,
Filtered backprojection for thermoacoustic computed tomography in spherical geome-
try, Math. Meth. Appl. Sci., 28 (2005), pp. 1919–1937. Copyright c©2005 John Wiley
& Sons Limited. Reproduced with permission.’

Together with some fundamental equations of fluid dynamics like the lin-
earized continuity equation and Euler equation, see e.g. Chorin, Marsden

[16], Landau, Lifschitz [61], equation (17.1) results in
( ∂2

∂t2
− ∆
)
p = f(x) j′(t) , (17.2)

where
f(x) :=

β vs
cp
Iem(x)ψ(x)

is the energy deposition function. A very detailed proof of relation (17.2) is
found in [38]. The inverse problem of TCT consists of recovering the energy de-
position function f(x) from the measured pressure field p(x, t) at the detectors.

Endowed with appropriate initial conditions, equation (17.2) has a unique
solution. We use

p(x, 0) = 0 ,
∂p

∂t
(x, 0) = 0 , (17.3)

taking into account that there is no acoustic pressure before the experiment
starts. The unique solution of (17.2), (17.3) is given by

p = j′(t) ∗t (tMf) , (17.4)

where ∗t means the Laplace-convolution with respect to t
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(g1 ∗t g2)(x, t) :=

t∫

0

g1(x, t− s) g2(x, s) ds

and Mf again is the spherical mean operator

(Mf)(x, t) :=
1
4π

∫

S2
f(x+ tω)dS2(ω) . (17.5)

We refer to the well-known book of John [48] for a comprehensive investiga-
tion of the wave equation. Hence, the inverse problem of calculating the energy
deposition f from the pressure field p boils down to inverting the spherical
mean operator M where the center set is a surface S outside the illuminated
fluid.

17.2 An inversion method for the spherical geometry

In order to apply the method of approximate inverse to (17.5), we first prove
some important results of the spherical mean operator as well as of some
related operators. Note that the spherical mean operator in case of TCT differs
from that of SONAR and SAR problems, because the center sets are different.
In TCT we have the (comfortable) situation of a linear and bounded operator
between Hilbert spaces and we need not to consider distribution spaces.

We explicitly deal with the case where the energy deposition function f
is supported in a closed ball Bρ := Bρ(0) with center 0 and radius ρ and in
which the thermoacoustic pressure field is measured on Sρ := ∂Bρ. Let

Xρ := L2(Bρ) = {f ∈ L2(R3) : f(x) = 0 for a.e. x ∈ R
3 \Bρ}

be the Hilbert space of all square integrable functions supported in Bρ with
inner product

〈f1, f2〉ρ :=
∫

Bρ

f1(x) f2(x) dx

and norm ‖ · ‖ρ. For all T ≥ 0, let

Yρ,T := L2(Sρ × [0, T ])

denote the Hilbert space of all square integrable functions f : Sρ× [0,∞) → R

supported in Sρ × [0, T ] with inner product

〈g1, g2〉ρ,T :=
∫

Sρ

∫ T

0

g1(σ, t) g2(σ, t) dtdSρ2 (σ)

and associated norm ‖ ·‖ρ,T . Here dSρ2 denotes the surface measure on Sρ. We
furthermore write Dt for the operator that maps ϕ ∈ C1(Sρ× [0,∞)) onto its
derivative with respect to the second variable
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Dtϕ(y, t) = ϕt(y, t) , y ∈ Sρ , t ∈ [0,∞) .

Finally, we introduce operators

N : C0(Bρ) ⊂ Xρ → Yρ,2ρ , (Nf)(σ, t) := tMf(σ, t) ,
P : C0(Bρ) ⊂ Xρ → Yρ,2ρ+τ , Pf = Dtj ∗t Nf .

From (17.4) we see that the operator P maps an unknown energy deposition
function f onto the thermoacoustic pressure field restricted to the recording
surface Sρ. Particularily, if f is a C1-function and the pulse duration τ tends to
0, then Pf tends to DtNf . Furthermore N, P are linear bounded operators
between L2-spaces.

Lemma 17.1. Let f ∈ C0(Bρ). Then ‖Nf‖2
ρ,2ρ ≤ ρ2 ‖f‖2

ρ and

‖Pf‖2
ρ,2ρ+τ ≤ (2ρ+ τ) τ ρ2‖Dtj‖2

∞ ‖f‖2
ρ . (17.6)

Here, ‖Dtj‖∞ := sup{|Dtj(t)| : 0 ≤ t ≤ τ} denotes the supremum norm of
Dtj.

Proof. Let σ ∈ Sρ. Since supp f ⊂ Bρ, an application of the Cauchy-Schwartz
inequality shows

‖Nf(σ, ·)‖2
L2[0,2ρ] =

2ρ∫

0

(
t

4π

∫

S2
f(σ + t ω) dS2(ω)

)2

dt

≤ 1
4π

2ρ∫

0

∫

S2
f(σ + t ω)2 dS2(ω) t2 dt =

1
4π

‖f‖2
ρ ,

whence
‖Nf‖2

ρ,2ρ =
∫

Sρ

‖Nf(σ, ·)‖2
L2[0,2ρ] dS

ρ
2 (σ) ≤ ρ2 ‖f‖2

ρ . (17.7)

Next we verify (17.6). Assume σ ∈ Sρ and t ∈ [0, 2ρ + τ ]. Again, we use the
Cauchy-Schwartz inequality to obtain

|Dtj ∗t Nf(σ, t)|2 =

⎡

⎣
t∫

0

Nf(σ, t− s)(Dtj)(s) ds

⎤

⎦
2

≤ ‖Nf(σ, ·)‖2
L2[0,2ρ]

τ∫

0

(Dtj)(s)2 ds ≤ τ ‖Dtj‖2
∞ ‖Nf(σ, ·)‖2

L2[0,2ρ] .

From the last inequality and (17.7) we conclude that
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‖Pf‖2
ρ,2ρ+τ =

∫

Sρ

2ρ+τ∫

0

|Dtj ∗t Nf(σ, t)|2 dtdS2(σ)

≤ (2ρ+ τ) τ ‖Dtj‖2
∞

∫

Sρ

‖Nf(σ, ·)‖2
L2[0,τ ]

≤ (2ρ+ τ) τ ‖Dtj‖2
∞ ρ

2 ‖f‖2
ρ ,

proving (17.6).

As a consequence of Lemma 17.1, the operators N and P extend in a
unique way to bounded linear operators N : Xρ → Yρ,2ρ and P : Xρ →
Yρ,2ρ+τ , respectively. In particular, they have bounded adjoints. The proof of
Lemma 17.2 is found in [38].

Lemma 17.2. Let g ∈ C0(Sρ × [0, 2ρ]) and p ∈ C0(Sρ × [0, 2ρ+ τ ]). Then

(N∗g)(x) =
1
4π

∫

Sρ

g(x, ‖x− σ‖)
‖x− σ‖ dSρ2 (σ) , x ∈ Bρ , (17.8a)

(P∗p)(x) = − 1
4π

∫

Sρ

(Dtj̄ ! p)(x, ‖x− σ‖)
‖x− σ‖ dSρ2 (σ) , x ∈ Bρ . (17.8b)

Here j̄ is defined by j̄(s) := j(−s) and

(Dtj̄ ! p)(x, s) :=
∫ s+τ

s

Dtj̄(s− t)p(x, t) dt .

Remark 17.3. The duration τ of the electromagnetic pulse is typically in the
range of picoseconds. Hence, the temporal part of the electromagnetic pulse
can be approximated by the delta distribution. Therefore we can regardDtNf
as measurement data instead of Pf . From Lemma 17.2, it follows that an
appropriate approximation to the adjoint P∗ of P is given by −N∗Dt.

Finch et al. [31] proved the injectivity of the operator N on the space
of smooth (i.e. C∞-) functions which are supported in Bρ and stated several
inversion formulas for it.

Theorem 17.4. [31, Theorem 3] Let f ∈ C∞
0 (Bρ). Then

f = −2
ρ

N∗Dt tDtNf . (17.9)

Formula (17.9) even is valid, if we have weaker smoothness assumptions.

Corollary 17.5. Let f ∈ C1
0(Bρ) and assume DtNf ∈ C1

0(Sρ× [0, 2ρ]). Then
(17.9) holds true.
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Proof. Let ϕ ∈ C∞
0 (Bρ). Equation (17.9) holds true for ϕ and thus

−ρ/2 〈f, ϕ〉ρ = 〈f,N∗Dt tDtNϕ〉ρ .

Since f and hence N∗f is a C1 function the right-hand side of this equa-
tion equals to −〈tDtNf,DtNϕ〉ρ,2ρ. Together with the assumption DtNf ∈
C1
0(Sρ × [0, 2ρ]), this yields

−ρ
2
〈f, ϕ〉ρ = 〈N∗Dt tDtNf, ϕ〉ρ .

Since this equation is valid for all ϕ ∈ C∞
0 (Bρ), we may conclude that −ρ/2f =

N∗Dt tDtNf .

After these preliminaries, we proceed to apply the method of approximate
inverse to the problem of TCT, i.e. the solution of

Pf = p .

Hence, instead of solving Pf = p we search for smoothed approximations
(fγ,ν)γ>0 with

fγ,ν(y) := 〈f, eγ,ν(·, y)〉ρ , y ∈ R
3 ,

where we again consider radially symmetric mollifiers eγ,ν(·, y), γ > 0, of the
form (2.3)

eγ,ν(x, y) =
1
Iνγ3

Rν

(
‖y − x‖2

γ2

)
, x, y ∈ R

3 . (17.10)

Here, ν > 0 is a real number, Iν := π3/2 Γ(ν+1)/Γ(ν+5/2) is a scaling factor
and Rν denotes a function on [0,∞), defined by

Rν(s) :=
{

(1 − s)ν , if 0 ≤ s ≤ 1 ,
0 , if s ≥ 1 . (17.11)

A plot of the radial part of eγ,ν(·, y) can be seen in the picture to the left in
Figure 17.3.

Remark 17.6. We have chosen a shift invariant mollifier eγ,ν (17.10) though
the operators P and N are not translation invariant. The reason is simple:
A mollifier generated by translations is associated to a reconstruction kernel
which is also shift invariant, see representation (17.18).

Since supp Rν = [0, 1], the mollifier eγ,ν(·, y) has support Bγ(y) and the
chain rule guarantees that eγ,ν(·, y) ∈ Ck(R3) for all integer numbers k < ν.
Furthermore, the scaling factor Iν has been chosen such that

∫

Bγ(y)

eγ,ν(x, y) dx = 1 , y ∈ R
3 , (17.12)
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which can be shown by a quick calculation. Hence, eγ,ν as in (17.10) is a
mollifier according to definition 2.1.

From Corollary 17.5, we deduce that if eγ,ν(·, y) as well as tDtNeγ,ν(·, y)
are functions in C1, then

υγ,ν(y) :=
2
ρ
tDtNeγ,ν(·, y) (17.13)

is a solution of −N∗Dtυγ,ν(y) = eγ,ν(·, y). As mentioned in Remark 17.3,
we may approximate P∗υγ,ν(y) by −N∗Dtυγ,ν(y) if τ � 1 and thus can
consider υγ,ν(y) as a reconstruction kernel for the operator P associated with
the mollifier eγ,ν(·, y).

In order to compute (17.13), we have to calculate DtNf for a function f
which is a translation of a rotationally symmetric function. The steps of that
calculation are outlined in Lemma 17.7 and Theorem 17.8.

Lemma 17.7. Let ϕ : [0,∞) → R be continuous and Φ be an antiderivative
of ϕ. Assume y ∈ R

3 and define fϕ ∈ C(R3) by fϕ(x) := ϕ(‖x− y‖2). Then

(Mfϕ)(x, t) =

{
Φ((‖x−y‖+t)2)−Φ((‖x−y‖−t)2)

4 t ‖x−y‖ , if x �= y ,
ϕ(t2) , if x = y .

(17.14)

for positive t, x ∈ R
3 and Mfϕ(x, 0) = ϕ(‖x− y‖2) = fϕ(x).

Proof. The identity Mfϕ(x, 0) = ϕ(‖x − y‖2) immediately follows from the
definitions of fϕ and M, see (17.5). Let t > 0 and x ∈ R

3. If x = y, then
fϕ(x+ tω) is constant on ω ∈ S2 and hence Mfϕ(x, t) = ϕ(t2). If x �= y, then

Mfϕ(x, t) =
1
4π

∫

S2
ϕ(‖x+ tω − y‖2) dS2(ω)

=
1
4π

∫

S2
ϕ

(
‖x− y‖2 + t2 + 2 t ‖x− y‖

〈 x− y
‖x− y‖ , ω

〉)
dS2(ω) .

To evaluate the last integral, we apply the Funck-Hecke theorem for n = 3,
see e.g. [78, p. 20], leading to

Mfϕ(x, t) =
1
2

1∫

−1

ϕ(‖x− y‖2 + t2 + 2 t ‖x− y‖ s) ds .

Since Φ is an antiderivative of ϕ we find

Mfϕ(x, t) =
Φ(‖x− y‖2 + t2 + 2 t ‖x− y‖ s)

∣∣1
−1

4 t ‖x− y‖

=
Φ
(
(‖x− y‖ + t)2

)
− Φ
(
(‖x− y‖ − t)2

)

4 t ‖x− y‖ ,

which proves (17.14). ��
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Theorem 17.8. Let ϕ, Φ, and fϕ be as in Lemma 17.7 and assume ϕ to
be a C1-function such that there is some 0 < γ < 1 with supp ϕ ⊂ [0, γ2].
Furthermore, assume that y ∈ Bρ−γ . Then fϕ ∈ C1

0(Bρ),

DtNfϕ ∈ C1
0(Sρ × [0, 2ρ])

and

(DtNfϕ)(σ, t) = pϕ(‖σ − y‖, t) , σ ∈ Sρ , t ∈ [0, 2ρ] , (17.15)

where

pϕ(s, t) :=
(s− t)ϕ

(
(s− t)2

)

2 s
, s > 0 , t ∈ [0, 2ρ] . (17.16)

Proof. Since ‖ · ‖2 ∈ C∞(Rn), we have that fϕ = ϕ ◦ ‖ · ‖2 ∈ C1(R3). To show
that supp fϕ ⊂⊂ Bρ let η := (‖y‖+γ+ρ)/2 and x ∈ R

3\Bη. From ‖y‖ < ρ−γ
we see that 0 < η < ρ and thus Bη ⊂⊂ Bρ. An application of the triangle
inequality yields ‖x − y‖ ≥ ‖x‖ − ‖y‖ ≥ η − ‖y‖ = (ρ + γ − ‖y‖)/2 > 0 and
hence fϕ(x) = 0 which implies fϕ ∈ C1

0(Bρ).
We aim now to prove (17.15). Let t > 0 and σ ∈ Sρ. Since (Nfϕ)(σ, t) =
(tMfϕ)(σ, t) and ‖σ − y‖ > γ > 0, we deduce from Lemma 17.7

(DtNfϕ)(σ, t) =
∂

∂t

(
Φ
(
(‖σ − y‖ + t)2

)
− Φ
(
(‖σ − y‖ − t)2

)

4 ‖σ − y‖

)
. (17.17)

Since ‖σ−y‖+t > γ, the first term at the right-hand side vanishes. Moreover,
since Φ′ = ϕ, equation (17.17) implies (17.15). For t = 0 equation (17.15) holds
true anyway, since both sides are equal to 0.
Finally, assertion DtNfϕ ∈ C1

0(Sρ × [0, 2ρ]) is an immediate consequence of
(17.15) and (17.16). ��

We are now able to compute an explicit representation of υγ,ν(y).

Corollary 17.9. Let υγ,ν(y) be defined by (17.13) with eγ,ν(·, y) as in (17.10),
(17.11) and let ν > 1. Furthermore, assume y ∈ Bρ−γ and 0 < γ < 1. Then
we have the representation

υγ,ν(y)(σ, t) =
kγ,ν(‖σ − y‖, t)

4π ‖σ − y‖ , σ ∈ Sρ , t ∈ [0, 2ρ] , (17.18)

where

kγ,ν(s, t) :=
4π t (s− t) ρ
γ3 Iν

Rν
(
(s− t)2/γ2

)
(17.19)

and Rν is defined as in (17.11).
Particularly, if ‖σ − y‖ �∈ [t− γ, t+ γ], then υγ,ν(y)(σ, t) = 0.
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Proof. The assumption ν > 1 guarantees that ϕ(r2) = Rν(r2/γ2)/(Iν γ3) and
hence fϕ = eγ,ν(·, y) satisfies the requirements of Theorem 17.8. Hence, from
(17.13), we deduce

υγ,ν(y)(σ, t) =
2
ρ

t

γ3 Iν

(‖σ − y‖ − t)Rν
(
(‖σ − y‖ − t)2/γ2

)

2 ‖σ − y‖

=
1

4π ‖σ − y‖
4π t (‖σ − y‖ − t)

ρ γ3 Iν
Rν
(
(‖σ − y‖ − t)2/γ2

)
,

whence (17.18), (17.19) follow. From the fact that supp Rν = [0, 1], we find
υγ,ν(y)(σ, t) = 0 for ‖σ − y‖ �∈ [t− γ, t+ γ]. ��

A plot of υγ,ν(0)(σ, t) for ρ = 1 can be found in the picture to the right in
Figure 17.3.
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Fig. 17.3. Plots of the radial part eγ,ν(t, 0), t = ‖x‖, of the mollifier eγ,ν(·, 0)
(17.10, left picture) and of the associated reconstruction kernel υγ,ν(0)(‖σ‖ = 1, t)
(17.18, right picture) for γ = 1, ν = 2 and ρ = 1. Both functions are compactly
supported. The support of eγ,ν(t, 0) is [−γ, γ] = [−1, 1] whereas the support of
υγ,ν(0)(‖σ‖ = 1, t) is given by the closed interval [−γ + 1, γ + 1] = [0, 2]. The graph
of the reconstruction kernel υγ,ν clearly illuminates the differentiation Dt involved
in (17.17) as well as the shift by ‖σ‖ = 1, see representation (17.18).

Let γ > 0, ν > 1 be fixed and assume y ∈ Bρ−γ and define p := Pf .
Taking into account that P∗υγ(y) = −NDtυγ(y), if j is replaced by the delta
distribution, we may consider (17.18) as an appropriate choice for the recon-
struction kernel associated with the mollifier eγ,ν . Note that in this case we set
τ = 0. Hence, assuming a delta function pulse j, the method of approximate
inverse applied to Pf = p then reads as

fγ,ν(y) = P̃γ,ν Pf = 〈Pf, υγ,ν(y)〉ρ,2ρ

=
∫

Sρ

2ρ∫

0

p(σ, t)
kγ,ν(‖σ − y‖, t)

4π ‖σ − y‖ dtdSρ2 (σ)



17.3 Numerical results 175

=
∫

Sρ

1
4π ‖σ − y‖

⎛

⎝
2ρ∫

0

p(σ, t) kγ,ν(‖σ − y‖, t) dt

⎞

⎠ dSρ2 (σ)

= (N∗qγ,ν)(y)

with

qγ,ν(σ, s) :=

s+γ∫

s−γ
p(σ, t) kγ,ν(s, t) dt (17.20)

which represents an inversion scheme of filtered backprojection type.

Remark 17.10. The assumption y ∈ Bρ−γ is not a significant restriction with
respect to applications, since 0 < γ � 1 and the support of f has in fact a
positive distance from ∂Bρ = Sρ in practical experiments.

17.3 Numerical results

We conclude this chapter to show the performance of the method by some
numerical experiments where we again use a semi-discrete setting. We want to
recover a function f from measurement data p = Pf . Let γ > 0 and ν > 1 be
fixed positive numbers. The approximations fγ,ν(y) := 〈p, υγ,ν(y)〉ρ,2ρ consist
of first computing the filtered signal qγ,ν defined by (17.20) followed by the
evaluation of the backprojection

fγ,ν(y) = (N∗qγ,ν)(y) =
1
4π

∫

Sρ

qγ,ν(σ, ‖y − σ‖)
‖y − σ‖ dSρ2 (σ)

in every reconstruction point y ∈ Bρ. Hence, the algorithm consists of two
steps: First we perform a filtering step and then we integrate over all spheres
with center on Sρ intersecting y. For our numerical tests we set ρ = 1, that is
Sρ = S2. We furthermore assume that the data are merely known for a finite
number of NθNϕ detector points

σk,l =

⎛

⎝
cos(θk) cos(φl)
cos(θk) sin(φl)

sin(θk)

⎞

⎠ ∈ S2 = Sρ , k = 1, . . . , Nθ , l = 1, . . . , Nφ ,

with θk := −π/2+π (k−1)/(Nθ−1) and φl := 2π(l−1)/Nφ, and the pressure
signal at each detector point is sampled at Nt time steps

tm = 2 (m− 1)/Nt , m = 1, . . . , Nt .

The aim is to evaluate fγ,ν at N := N3
y points yi, i = 1, . . . , N , located at an

equidistant mesh grid. This requires the computation of qγ,ν(σk,l, ‖σk,l−yi‖) in
every reconstruction point yi. To reduce the computational effort, we evaluate
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qγ,ν(σk,l, ·) for tm with m = 1, . . . , Nt only and use linear interpolation to
approximately find the value at ‖σk,l − yi‖. As quadrature rule on S2 for a
function F on the sphere, we use the trapezoidal rule in θ and φ applied to
the coordinate representation cos(θ)F (θ, φ).

Let us assume that O(Nθ) = O(Nφ) = O(Nt) = O(Ny). The total number
Nop of operations needed to perform this algorithm computes as

Nop = O(N2
t ) +O(NθNφ)

(
O(N2

t ) +O(N3
y )
)

= O(N5
y ) = O(N5/3) .

We show reconstruction results for two different examples.

1. Let us consider an energy deposition function f ∈ C1
0(Bρ) of the form

f(y) =
M∑

α=1

Fα(‖y − yα‖) ,

consisting ofM radially symmetric absorbers Fα(‖y−yα‖) with centers yα
and radial profiles Fα. From Theorem 17.8, we compute data p =

∑
α pα

with

pα(σ, t) =
‖σ − yα‖ − t
2 ‖σ − yα‖

Fα

(
|‖σ − yα‖ − t|

)

for σ ∈ S2 and t ≥ 0. To produce the results of Figure 17.5, we used an
object consisting of M = 8 balls of different radii, centers and densities.
Hence, Fα(z) = dα χ[0,rα](z) are characteristic functions of closed intervals
[0, rα] where rα denotes the radius and dα the density of ball α. The centers
are given by yα. The table of Figure 17.4 shows the parameters which were
used in the reconstructions of Figure 17.5.

α rα dα yα

1 0.8 4 (-0.1, 0, 0)
2 0.7 -4 (-0.1, 0, 0)
3 0.2 2 (-0.4, 0, 0)
4 0.1 2 (-0.4, 0, 0)
5 0.1 2.5 (-0.05, 0, 0)
6 0.25 2 (0.4, 0, 0)
7 0.2 -2 (0.4, 0, 0)
8 0.1 4.5 (0.4, 0, 0)

Fig. 17.4. Parameters of the phantom used for the reconstructions in Figure 17.5.

We have displayed a cross section through the plane {y3 = 0} and com-
puted reconstructions on the grid (ym1 , y

m′
2 , 0) ⊂ [−1, 1] × {0}, where

ym1 = −1+2 (m−1)/Ny , ym
′

2 = −1+2 (m′−1)/Ny , 1 ≤ m,m′ ≤ Ny .
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The algorithm has been performed with Ny = Nt = Nφ = 120 and Nθ =
60. Figure 17.5 shows both the reconstruction of the exact data as well
as of noisy data with a random perturbation of 20% additive Gaussian
noise. The regularization parameter γ has been chosen to be 0.05 and the
exponent in the mollifier was ν = 2.
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Fig. 17.5. Cross section y3 = 0 of the object from which the thermoacoustic pres-
sure is calculated analytically (upper left picture). Vertical centerline of the original
and the reconstruction from exact data (upper right picture). Reconstruction from
exact data (lower left picture). Reconstruction from noisy data perturbed with 20%
Gaussian white noise (lower right picture). The reconstructions were computed on
(y1, y2) ∈ [−1, 1]2 using an equidistant mesh grid with N2

y grid points, Ny = 120.

‘The picture was reprinted from M. Haltmeier, T. Schuster, and O. Scherzer,
Filtered backprojection for thermoacoustic computed tomography in spherical geome-
try, Math. Meth. Appl. Sci., 28 (2005), pp. 1919–1937. Copyright c©2005 John Wiley
& Sons Limited. Reproduced with permission.’

2. Consider an arbitrary energy deposition function f ∈ C1
0(Bρ). To simulate

the measurement data, we have to find p(σ, t) for σ ∈ S2 and t ∈ [0, 2]
numerically. To this end, we use Fourier series expansions

f(y) =
1
8

∑

k∈Z3

fk e−iπ 〈k,y〉/2 (17.21)

and
p(y, t) =

1
8

∑

k∈Z3

pk(t) e−iπ 〈k,y〉/2 (17.22)

for y ∈ [−2, 2]3 and t ≥ 0. Defining
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pk(t) = cos(π ‖k‖ t/2) fk , (17.23)

then p agrees with the unique solution of (17.2), (17.3) on S2 × [0, 2] (for
τ → 0). By means of (17.21), (17.22), (17.23), we compute approximations
to p = DtNf using the fast Fourier transform.
In that way, we simulated the thermoacoustic measurement data for a
three-dimensional head phantom. Figure 17.6 shows the Shepp-Logan
phantom and its reconstruction fγ,ν . The parameters were Ny = Nt =
Nφ = 100, Nθ = 80, γ = 0.05 and ν = 2.

Thus, the method of approximate inverse delivers a stable inversion
algorithm for TCT. Choosing a shift invariant mollifier eγ,ν saves one order
regarding the number of operations Nop to be performed in the resulting
reconstruction algorithm.



17.3 Numerical results 179

Fig. 17.6. Upper picture: original head phantom. Lower picture: Reconstruction
from simulated data with γ = 0.05 and ν = 2. The reconstructions were computed
in an equidistant mesh grid in [−2, 2]3.

‘The picture was reprinted from M. Haltmeier, T. Schuster, and O. Scherzer,
Filtered backprojection for thermoacoustic computed tomography in spherical geome-
try, Math. Meth. Appl. Sci., 28 (2005), pp. 1919–1937. Copyright c©2005 John Wiley
& Sons Limited. Reproduced with permission.’
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Computation of reconstruction kernels in 3D
computerized tomography

The material of this chapter is based on Louis [70]. We already dealt with
the problem of 2D computerized tomography (CT) in Section 2.2. 3D - CT
is concerned with the problem of recovering a three-dimensional quantity f
from X-ray measurements where the X-ray sources are located on a curve
Γ ⊂ (R3\Ω) and Ω ⊂ R

3 denotes the object under consideration. The problem
is described by the cone beam transform

Xf(a, ω) =

∞∫

0

f(a+ t ω) dt , 1 (18.1)

where a ∈ Γ is the source from which the X-rays are emitted and ω ∈ S2

means a normalized vector of direction of the X-ray beam. Common source
curves are e.g. a circle, two circles which are perpendicular to each other or a
helix. We always assume that the function f to be recovered has its support in
a bounded domain Ω ⊂ R

3 and make all further considerations for Ω = Ω3,
the open unit ball in R

3. Figure 18.1 illustrates the situation where Γ consists
of two perpendicular circles surrounding the object Ω3.

We first show that X is a bounded mapping between appropriate L2-
spaces, if the scanning curve Γ satisfies a certain requirement.

Theorem 18.1. Let a ∈ Γ. The mappings Xa : L2(Ω3) → L2(S2) defined by
Xaf(ω) = Xf(a, ω) and X : L2(Ω3) → L2(Γ × S2) are bounded, if

∫

Γ

(‖a‖ − 1)−2 da <∞ . (18.2)

Proof. For f ∈ L2(Ω3) and a source point a ∈ Γ we have

1 Although in relevant literature the cone beam transform usually is denoted by
D, we are using X to avoid confusions with the Doppler transform.



182 18 Computation of reconstruction kernels in 3D - CT

detector plane

Fig. 18.1. Scanning geometry using two circles which are perpendicular to each
other as scanning curve Γ.

∫

S2
|Xaf(ω)|2 dω =

∫

S2

∣∣∣
∞∫

0

f(a+ t ω) dt
∣∣∣
2

dω ≤ 2
∫

S2

∞∫

0

|f(a+ t ω)|2 dtdω

= 2
∫

Ω3
|f(x)|2 ‖x− a‖−2 dx ≤ 2 (‖a‖ − 1)−2 ‖f‖2

L2(Ω3) ,

where we used the substitution x = a + t ω and the fact that f(x) = 0 in
R

3\Ω3. This shows the continuity of Xa. The continuity of X follows then by
using X(a, ω) = Xa(ω) and

∫

Γ

∫

S2
|Xf(a, ω)|2 dω da ≤ 2 ‖f‖2

L2(Ω3)

∫

Γ

(‖a‖ − 1)−2 da .

��

Theorem 18.1 implies that Xa and X have linear and bounded adjoints
X∗
a, X∗.

Lemma 18.2. The adjoints X∗
a : L2(S2) → L2(Ω3) and X∗ : L2(Γ × S2) →

L2(Ω3) have representations

X∗
ag(x) = ‖x− a‖−2 g

( x− a
‖x− a‖

)
, (18.3a)

X∗g(x) =
∫

Γ

‖x− a‖−2 g
( x− a
‖x− a‖

)
da . (18.3b)
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Proof. Let f ∈ L2(Ω3), g ∈ L2(S2). Then

∫

S2
Xaf(ω) g(ω) dω =

∫

S2

∞∫

0

f(a+ t ω) g(ω) dtdω

=
∫

Ω3
‖x− a‖−2 f(x) g((x− a)/‖x− a‖) dx

= 〈f,X∗
ag〉L2(Ω3) .

Here again, we substituted x = a + t ω. This shows (18.3a). Representation
(18.3b) follows easily from (18.3a) by an integration over Γ. ��

To compute reconstruction kernels for X we have to solve equations

X∗υγ(x) = eγ(x, ·) , (18.4)

where eγ(x, y) is a mollifier in the sense of definition 2.1. To cope with equa-
tions as (18.4), an appropriate inversion formula for X might be useful. Louis

outlines in [69, 70] how to deduce such an inversion formula and how to get
reconstruction kernels using the formula of Grangeat. Grangeat’s formula is
based on a more general identity obtained by Hamaker et al. [39] and states
a connection between the cone beam transform X and the three-dimensional
Radon transform R. We have

∂

∂s
Rf(ω, s = 〈a, ω〉) = −

∫

S2
Xf(a, θ) δ′(〈θ, ω〉) dθ (18.5a)

=
∫

S2∩{〈θ,ω〉=0}
∇y Xf(a, y = θ) dS1(θ) . (18.5b)

Formula (18.5a) has been proven by Grangeat, see [33, 34]. Simple proofs
can be found in Louis [70] and Natterer, Wübbeling [84]. Identity (18.5b)
explains how the derivative of the delta distribution δ′ is to be understood.
Note that the Radon transform R in (18.5a) integrates over planes in R

3.
Louis [70] takes the inversion formula of the 3D Radon transform as starting
point

f(x) = − 1
8π2

∫

S2

∂2

∂s2
Rf(ω, 〈x, ω〉) dω ,

which can be written also as

f(x) =
1

8π2

∫

S2

∫

R

∂

∂s
Rf(ω, s) δ′(s− 〈x, ω〉) dsdω . (18.6)

Kirillov [58] and Tuy [126] showed that full reconstruction from cone-beam
data is possible, if the source curve Γ intersects each plane which passes the
support of f transversally. Assume a = a(α) : I → R

3 to be a parameterization
of the scanning curve Γ = R(a), then this condition means that for each
x ∈ supp f and direction ω ∈ S2 there exists an α = α(x, ω) satisfying
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〈a(α), x〉 = 〈ω, x〉 , 〈a′(α), ω〉 �= 0 . (18.7)

Condition (18.7) is known as Tuy-Kirillov condition . If we further denote by
n = n(ω, s) the number of source points a ∈ Γ with s = 〈a, ω〉 = 〈x, ω〉 and
m = 1/n, which is possible since n ≥ 1 by the Tuy-Kirillov condition, then
we may substitute s = 〈a, ω〉 in (18.6) and apply Grangeat’s formula (18.5a)
to obtain

f(x) =
1

8π2

∫

S2

∫

Γ

∂

∂s
Rf(ω, 〈a, ω〉) δ′(〈a− x, ω〉) |〈a′, ω〉|m(ω, 〈a, ω〉) dadω

= − 1
8π2

∫

S2

∫

Γ

(∫

S2
Xf(a, θ) δ′(〈θ, ω〉) dθ

×δ′(〈a− x, ω〉) |〈a′, ω〉|m(ω, 〈a, ω〉)
)

dadω

= − 1
8π2

∫

Γ

‖x− a‖−2

∫

S2

(∫

S2
Xf(a, θ) δ′(〈θ, ω〉) dθ

×δ′(〈(x− a)/‖x− a‖, ω〉) |〈a′, ω〉|m(ω, 〈a, ω〉)
)

dω da .

In the last step, we used that δ′ is homogeneous of degree −2. The number
m(ω, s) ∈ N∪{0} is called Crofton symbol and equals the number of intersec-
tion points of the plane {x ∈ R

3 : 〈x, ω〉 = s} with the source trajectory Γ.
Introducing operators

Tg(a, ω) =
∫

S2
g(a, θ) δ′(〈θ, ω〉) dθ , a ∈ Γ , ω ∈ S2

and

MΓ,ah(a, ω) = |〈a′, ω〉|m(ω, 〈a, ω〉)h(a, ω) , a ∈ Γ , ω ∈ S2

we may summarize the results as stated in the following theorem.

Theorem 18.3 (Louis [70]). Assume that the Tuy-Kirillov condition and
(18.2) are satisfied. Then the inversion formula for the cone beam transform
has a representation

f = − 1
8π2

X∗ T MΓ,a T Xf . (18.8)

Relying on formula (18.8), we are able to compute reconstruction kernels
for X. If a mollifier eγ(x, y) ∈ L2(R3,R3) is given, then an associated recon-
struction kernel υγ(x) ∈ L2(Γ × S2) can be computed as

υγ(x) = − 1
8π2
T MΓ,a T Xeγ(x, ·) , x ∈ Ω3 . (18.9)
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Fig. 18.2. Reconstruction kernel for the cone beam transform X.

A reconstruction kernel which has been computed according to formula (18.9)
is displayed in Figure 18.2.2

Remark 18.4. The operators X∗ and MΓ,a depend on the scanning curve Γ
and so do any invariance properties which might decrease the cost of com-
puting reconstruction kernels. A detailed analysis of the usage of invariances
in practical applications of the approximate inverse in 3D X-ray tomogra-
phy with a circular scanning geometry can be found in Louis [69]. A further
inversion formula for the special case when Γ equals a spiral was found by
Katsevich [53], see also Noo, Pack, and Heuscher [87]. The possibility
of calculating reconstruction kernels using Katsevich’s formula is subject of
current research. We also refer to Katsevich [54, 55], Noo, Defrise, and

Kudo [86], Wang et al. [128] for more general trajectories, and Katsevich

[56] for cone beam local tomography.

2 Courtesy of Prof. Dr. A.K Louis, Department of Mathematics, Saarland Univer-
sity, 66041 Saarbrücken, Germany. This picture has been taken from his article
Filter design in three-dimensional cone beam tomography: circular scanning geom-
etry, Inverse Problems, 19 (2003), pp. S31–S40. Copyright c©2003 IOP Publishing
Limited. Reprinted with permission.’



19

Conclusion and perspectives

We outlined in the last part of the book that there are various possible appli-
cations of the method of approximate inverse in industry and medical imaging.
In some cases the method did not only lead to novel and very efficient solvers
but allowed also for a detailed convergence analysis. Nevertheless, there are
still more applications which have not been discussed in this book at all. A
large area of current research are scattering problems. The first publication
concerning a reconstruction method for inverse scattering using the method
of approximate inverse is Abdullah, Louis [1]. Here, the authors considered
the Lippmann-Schwinger equation

u(α, x) = uinc(α, x) − k2
∫

‖y‖<R
G(k ‖x− y‖) f(y)u(α, y) dy , (19.1)

where the entire field u is the sum of the scattered field and the incident field,
u = usc + uinc, k is the wave number, f(x) = n2(x) − 1 with the refractive
index n and

G(k ‖x− y‖) =
i
4
H

(1)
0 (k ‖x− y‖) , x �= y

denotes the Green function, H(1)
0 is the Hankel function of first kind and order

0. Solving equation (19.1) is equivalent to the inverse problem of recovering
the refractive index n from measurements of the scattered field usc. In [1] this
problem is solved by computing reconstruction kernels with the help of the
singular value decomposition of the integral operator in (19.1). Improvements
and extensions of the method, e.g. for solving three-dimensional problems
related to Maxwell’s equations, are still under consideration.

Inverse problems will play a role of increasing importance when deal-
ing with questions in industry, natural science and medical imaging and the
method of approximate inverse might be a powerful and important tool for
finding new ways to cope with these problems.
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52. A. Kämpfe, Röntgenographische Bestimmung von Texturen, Makro- und
Mikroeigenspannungen an einphasigen Werkstoffen mit kubischer Kristallstruk-
tur nach Kaltverformung, Shaker Verlag, Aachen, 2001.

53. A. Katsevich, Theoretically exact Filtered Back Projection-type inversion al-
gorithm for spiral CT, SIAM J. Appl. Math., 62 (2002), pp. 2012–2026.

54. , A general scheme for constructing inversion algorithms for cone beam
CT, Int. J. Math. Sci., 21 (2003), pp. 1305–1321.

55. , Image reconstruction for the circle and line trajectory, Phys. Med. Biol.,
49 (2004), pp. 5059–5072.

56. , Improved cone beam local tomography, Inverse Problems, 22 (2006),
pp. 627–643.

57. S. Kazantsev and A. Bukgheim, Singular value decomposition for the 2D
fan-beam Radon transform of tensor fields, J. Inv. Ill-Posed Prob., 12 (2004),
pp. 245–278.



192 References

58. A. Kirillov, On a problem of I.M. Gel’fand, Soviet. Math. Dokl., 2 (1961),
pp. 268–269.

59. J. Klein, Rekonstruktionsverfahren für SAR: Inversion sphärischer Durch-
schnitte, master’s thesis, Westfälische Wilhelms - Universität, Institut für Nu-
merische und Instrumentelle Mathematik, Münster, Germany, 2003.

60. R. Kruger, D. Reinecke, and G. Kruger, Thermoacoustic Computed To-
mography, Medical Physics, 26 (1999), pp. 1832–1837.

61. L. Landau and E. Lifschitz, Lehrbuch der theoretischen Physik, Band VI:
Hydrodynamik, Akademie Verlag, Berlin, 1991.

62. M. Lavrentiev, V. Romanov, and V. Vasiliev, Multidimensiaonal inverse
problems for differential equations, vol. 167 of Lecture Notes in Mathematics,
Springer Verlag, New York, 1970.

63. T. Leverenz, B. Eigenmann, and E. Macherauch, Das Abschnitt -
Polynom - Verfahren zur zerstörungsfreien Ermittlung gradientenbehafteter
Eigenspannungszustände in den Randschichten bearbeiteter Keramiken, Z. Met-
allkd., 87 (1996), pp. 616–625.

64. J. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and
Applications, vol. 1, Springer, New York, 1972.

65. A. Louis, Inverse und schlecht gestellte Probleme, Teubner, Stuttgart, 1989.
66. , Approximate inverse for linear and some nonlinear problems, Inverse

Problems, 12 (1996), pp. 175–190.
67. , Application of the approximate inverse to 3D X-ray CT and ultrasound

tomography, in Inverse Problems in Medical Imaging and Nondestructive Test-
ing, H. Engl, A. Louis, and W. Rundell, eds., Springer, Wien, New York, 1997,
pp. 120–133.

68. , A unified approach to regularization methods for linear ill-posed prob-
lems, Inverse Problems, 15 (1999), pp. 489–498.

69. , Filter design in three-dimensional cone beam tomography: circular scan-
ning geometry, Inverse Problems, 19 (2003), pp. S31–S40.

70. , Development of algorithms in computerized tomography, in The Radon
Transform, Inverse Problems, and Tomography, G. Ólafsson and E. Quinto,
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Vol. 1836: C. Nǎstǎsescu, F. Van Oystaeyen, Methods of
Graded Rings. XIII, 304 p, 2004.

Vol. 1837: S. Tavaré, O. Zeitouni, Lectures on Probabil-
ity Theory and Statistics. Ecole d’Eté de Probabilités de
Saint-Flour XXXI-2001. Editor: J. Picard (2004)
Vol. 1838: A.J. Ganesh, N.W. O’Connell, D.J. Wischik,
Big Queues. XII, 254 p, 2004.
Vol. 1839: R. Gohm, Noncommutative Stationary
Processes. VIII, 170 p, 2004.
Vol. 1840: B. Tsirelson, W. Werner, Lectures on Probabil-
ity Theory and Statistics. Ecole d’Eté de Probabilités de
Saint-Flour XXXII-2002. Editor: J. Picard (2004)
Vol. 1841: W. Reichel, Uniqueness Theorems for Vari-
ational Problems by the Method of Transformation
Groups (2004)
Vol. 1842: T. Johnsen, A. L. Knutsen, K3 Projective Mod-
els in Scrolls (2004)
Vol. 1843: B. Jefferies, Spectral Properties of Noncom-
muting Operators (2004)
Vol. 1844: K.F. Siburg, The Principle of Least Action in
Geometry and Dynamics (2004)
Vol. 1845: Min Ho Lee, Mixed Automorphic Forms, Torus
Bundles, and Jacobi Forms (2004)
Vol. 1846: H. Ammari, H. Kang, Reconstruction of Small
Inhomogeneities from Boundary Measurements (2004)
Vol. 1847: T.R. Bielecki, T. Björk, M. Jeanblanc, M.
Rutkowski, J.A. Scheinkman, W. Xiong, Paris-Princeton
Lectures on Mathematical Finance 2003 (2004)
Vol. 1848: M. Abate, J. E. Fornaess, X. Huang, J. P. Rosay,
A. Tumanov, Real Methods in Complex and CR Geom-
etry, Martina Franca, Italy 2002. Editors: D. Zaitsev, G.
Zampieri (2004)
Vol. 1849: Martin L. Brown, Heegner Modules and Ellip-
tic Curves (2004)
Vol. 1850: V. D. Milman, G. Schechtman (Eds.), Geomet-
ric Aspects of Functional Analysis. Israel Seminar 2002-
2003 (2004)
Vol. 1851: O. Catoni, Statistical Learning Theory and
Stochastic Optimization (2004)
Vol. 1852: A.S. Kechris, B.D. Miller, Topics in Orbit
Equivalence (2004)
Vol. 1853: Ch. Favre, M. Jonsson, The Valuative Tree
(2004)
Vol. 1854: O. Saeki, Topology of Singular Fibers of Dif-
ferential Maps (2004)
Vol. 1855: G. Da Prato, P.C. Kunstmann, I. Lasiecka,
A. Lunardi, R. Schnaubelt, L. Weis, Functional Analytic
Methods for Evolution Equations. Editors: M. Iannelli,
R. Nagel, S. Piazzera (2004)
Vol. 1856: K. Back, T.R. Bielecki, C. Hipp, S. Peng,
W. Schachermayer, Stochastic Methods in Finance, Bres-
sanone/Brixen, Italy, 2003. Editors: M. Fritelli, W. Rung-
galdier (2004)
Vol. 1857: M. Émery, M. Ledoux, M. Yor (Eds.), Sémi-
naire de Probabilités XXXVIII (2005)
Vol. 1858: A.S. Cherny, H.-J. Engelbert, Singular Stochas-
tic Differential Equations (2005)
Vol. 1859: E. Letellier, Fourier Transforms of Invariant
Functions on Finite Reductive Lie Algebras (2005)
Vol. 1860: A. Borisyuk, G.B. Ermentrout, A. Friedman,
D. Terman, Tutorials in Mathematical Biosciences I.
Mathematical Neurosciences (2005)
Vol. 1861: G. Benettin, J. Henrard, S. Kuksin, Hamil-
tonian Dynamics – Theory and Applications, Cetraro,
Italy, 1999. Editor: A. Giorgilli (2005)
Vol. 1862: B. Helffer, F. Nier, Hypoelliptic Estimates and
Spectral Theory for Fokker-Planck Operators and Witten
Laplacians (2005)



Vol. 1863: H. Führ, Abstract Harmonic Analysis of Con-
tinuous Wavelet Transforms (2005)
Vol. 1864: K. Efstathiou, Metamorphoses of Hamiltonian
Systems with Symmetries (2005)
Vol. 1865: D. Applebaum, B.V. R. Bhat, J. Kustermans,
J. M. Lindsay, Quantum Independent Increment Processes
I. From Classical Probability to Quantum Stochastic Cal-
culus. Editors: M. Schürmann, U. Franz (2005)
Vol. 1866: O.E. Barndorff-Nielsen, U. Franz, R. Gohm,
B. Kümmerer, S. Thorbjønsen, Quantum Independent
Increment Processes II. Structure of Quantum Lévy
Processes, Classical Probability, and Physics. Editors: M.
Schürmann, U. Franz, (2005)
Vol. 1867: J. Sneyd (Ed.), Tutorials in Mathematical Bio-
sciences II. Mathematical Modeling of Calcium Dynamics
and Signal Transduction. (2005)
Vol. 1868: J. Jorgenson, S. Lang, Posn(R) and Eisenstein
Series. (2005)
Vol. 1869: A. Dembo, T. Funaki, Lectures on Probabil-
ity Theory and Statistics. Ecole d’Eté de Probabilités de
Saint-Flour XXXIII-2003. Editor: J. Picard (2005)
Vol. 1870: V.I. Gurariy, W. Lusky, Geometry of Müntz
Spaces and Related Questions. (2005)
Vol. 1871: P. Constantin, G. Gallavotti, A.V. Kazhikhov,
Y. Meyer, S. Ukai, Mathematical Foundation of Turbu-
lent Viscous Flows, Martina Franca, Italy, 2003. Editors:
M. Cannone, T. Miyakawa (2006)
Vol. 1872: A. Friedman (Ed.), Tutorials in Mathemati-
cal Biosciences III. Cell Cycle, Proliferation, and Cancer
(2006)
Vol. 1873: R. Mansuy, M. Yor, Random Times and En-
largements of Filtrations in a Brownian Setting (2006)
Vol. 1874: M. Yor, M. Émery (Eds.), In Memoriam Paul-
André Meyer - Séminaire de probabilités XXXIX (2006)
Vol. 1875: J. Pitman, Combinatorial Stochastic Processes.
Ecole d’Eté de Probabilités de Saint-Flour XXXII-2002.
Editor: J. Picard (2006)
Vol. 1876: H. Herrlich, Axiom of Choice (2006)
Vol. 1877: J. Steuding, Value Distributions of L-Functions
(2007)
Vol. 1878: R. Cerf, The Wulff Crystal in Ising and Percol-
ation Models, Ecole d’Eté de Probabilités de Saint-Flour
XXXIV-2004. Editor: Jean Picard (2006)
Vol. 1879: G. Slade, The Lace Expansion and its Applica-
tions, Ecole d’Eté de Probabilités de Saint-Flour XXXIV-
2004. Editor: Jean Picard (2006)
Vol. 1880: S. Attal, A. Joye, C.-A. Pillet, Open Quantum
Systems I, The Hamiltonian Approach (2006)
Vol. 1881: S. Attal, A. Joye, C.-A. Pillet, Open Quantum
Systems II, The Markovian Approach (2006)
Vol. 1882: S. Attal, A. Joye, C.-A. Pillet, Open Quantum
Systems III, Recent Developments (2006)
Vol. 1883: W. Van Assche, F. Marcellàn (Eds.), Orthogo-
nal Polynomials and Special Functions, Computation and
Application (2006)
Vol. 1884: N. Hayashi, E.I. Kaikina, P.I. Naumkin,
I.A. Shishmarev, Asymptotics for Dissipative Nonlinear
Equations (2006)
Vol. 1885: A. Telcs, The Art of Random Walks (2006)
Vol. 1886: S. Takamura, Splitting Deformations of Dege-
nerations of Complex Curves (2006)
Vol. 1887: K. Habermann, L. Habermann, Introduction to
Symplectic Dirac Operators (2006)
Vol. 1888: J. van der Hoeven, Transseries and Real Differ-
ential Algebra (2006)
Vol. 1889: G. Osipenko, Dynamical Systems, Graphs, and
Algorithms (2006)

Vol. 1890: M. Bunge, J. Funk, Singular Coverings of
Toposes (2006)
Vol. 1891: J.B. Friedlander, D.R. Heath-Brown,
H. Iwaniec, J. Kaczorowski, Analytic Number Theory,
Cetraro, Italy, 2002. Editors: A. Perelli, C. Viola (2006)
Vol. 1892: A. Baddeley, I. Bárány, R. Schneider, W. Weil,
Stochastic Geometry, Martina Franca, Italy, 2004. Editor:
W. Weil (2007)
Vol. 1893: H. Hanßmann, Local and Semi-Local Bifur-
cations in Hamiltonian Dynamical Systems, Results and
Examples (2007)
Vol. 1894: C.W. Groetsch, Stable Approximate Evaluation
of Unbounded Operators (2007)
Vol. 1895: L. Molnár, Selected Preserver Problems on
Algebraic Structures of Linear Operators and on Function
Spaces (2007)
Vol. 1896: P. Massart, Concentration Inequalities and
Model Selection, Ecole d’Eté de Probabilités de Saint-
Flour XXXIII-2003. Editor: J. Picard (2007)
Vol. 1897: R. Doney, Fluctuation Theory for Lévy
Processes, Ecole d’Eté de Probabilités de Saint-Flour
XXXV-2005. Editor: J. Picard (2007)
Vol. 1898: H.R. Beyer, Beyond Partial Differential Equa-
tions, On linear and Quasi-Linear Abstract Hyperbolic
Evolution Equations (2007)
Vol. 1899: Séminaire de Probabilités XL. Editors:
C. Donati-Martin, M. Émery, A. Rouault, C. Stricker
(2007)
Vol. 1900: E. Bolthausen, A. Bovier (Eds.), Spin Glasses
(2007)
Vol. 1901: O. Wittenberg, Intersections de deux
quadriques et pinceaux de courbes de genre 1, Inter-
sections of Two Quadrics and Pencils of Curves of Genus
1 (2007)
Vol. 1902: A. Isaev, Lectures on the Automorphism
Groups of Kobayashi-Hyperbolic Manifolds (2007)
Vol. 1903: G. Kresin, V. Maz’ya, Sharp Real-Part Theo-
rems (2007)
Vol. 1904: P. Giesl, Construction of Global Lyapunov
Functions Using Radial Basis Functions (2007)
Vol. 1905: C. Prévôt, M. Röckner, A Concise Course on
Stochastic Partial Differential Equations (2007)
Vol. 1906: T. Schuster, The Method of Approximate
Inverse: Theory and Applications (2007)

Recent Reprints and New Editions
Vol. 1618: G. Pisier, Similarity Problems and Completely
Bounded Maps. 1995 – 2nd exp. edition (2001)
Vol. 1629: J.D. Moore, Lectures on Seiberg-Witten
Invariants. 1997 – 2nd edition (2001)
Vol. 1638: P. Vanhaecke, Integrable Systems in the realm
of Algebraic Geometry. 1996 – 2nd edition (2001)
Vol. 1702: J. Ma, J. Yong, Forward-Backward Stochas-
tic Differential Equations and their Applications. 1999 –
Corr. 3rd printing (2007)
Vol. 830: J.A. Green, Polynomial Representations of
GLn, with an Appendix on Schensted Correspondence
and Littelmann Paths by K. Erdmann, J.A. Green and
M. Schocker 1980 – 2nd corr. and augmented edition
(2007)


	00_front-matter
	01_fulltext
	02_fulltext
	03_fulltext
	04_fulltext
	05_fulltext
	06_fulltext
	07_fulltext
	08_fulltext
	09_fulltext
	10_fulltext
	11_fulltext
	12_fulltext
	13_fulltext
	14_fulltext
	15_fulltext
	16_fulltext
	17_fulltext
	18_fulltext
	19_fulltext
	20_back-matter



