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About This Book

Fundamental scientific discoveries have been made with the help of com-
putational methods. For instance, commonalities in the behavior of
chaotic systems, most prominently Feigenbaum universality, had not been
discovered or understood without computers. And only with numerical
computations is it possible to predict the mass of the proton so accurately
that fundamental theories of matter can be put to test. Such examples
highlight the enormous role of numerical calculations for basic science.

The need for numerical calculations has always existed in science. His-
torically, Milutin Milankovitch spent one hundred full days, from morning
until night, with paper and fountain pen calculations on one of his inves-
tigations into ice ages. Today, the same computation could be done in
a fraction of a second with electronic computers. Even small numerical
calculations can solve problems not easily accessible with mathematical
theory or experiment.

Many researchers find themselves spending much time with compu-
tational work. Although they are trained in the theoretical and experi-
mental methods of their field, comparatively little material is currently
available about the computational branch of scientific inquiry. This book
is intended for researchers and students who embark on research involv-
ing numerical computations. It is a collection of concise writings in the
style of summaries, discussions, and lectures. It uses an interdisciplinary
approach, where computer technology, numerical methods and their in-
terconnections are treated with the aim to facilitate scientific research.
The aim was to produce a short manuscript worth reading. Often when
working on the manuscript, it grew shorter, because less relevant mate-
rial was discarded. It is written with an eye on usefulness, longevity, and
breadth.

The book is primarily intended as a resource. It is more of a reader
and reference than a textbook. It may be appropriate as supplementary
reading in upper-level college and graduate courses on computational
physics or scientific computing. Some of the chapters require calculus,
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basic linear algebra, or introductory physics. The last two and a half
chapters involve multivariable calculus and can be omitted by anyone who
does not have this background. Prior knowledge of numerical analysis and
a programming language are optional.

The book can be roughly divided into two parts. The first half deals
with small computations and the second mainly with large computations.
The reader is exposed to a wide range of approaches, conceptional ideas,
and practical issues. Although the book is focused on physicists, all but
a few chapters are accessible to and relevant for a much broader audience
in the physical sciences. Sections with a ∗ symbol are specifially intended
for physicists and chemists.

For better readability, references within the text are entirely omitted.
Figure and table numbers are prefixed with the chapter number, unless
the reference occurs in the text of the same chapter. Bits of entertain-
ment, problems, dialogs, and quotes are used for variety of exposition.
Problems at the end of several of the chapters do not require paper and
pencil, but should stimulate thinking.

Numerical results are commonly viewed with suspicion, and often
rightly so, but it all depends how well they are done. The following
anecdote is appropriate. Five physicists carried out a challenging ana-
lytic calculation and obtained five different results. They discussed their
work with each other to resolve the discrepancies. Three realized mis-
takes in their analysis, but the others still ended up with two different
answers. Soon after, the calculation was done numerically and the result
did not agree with any of the five analytic calculations. The numeric
result turned out to be the only correct answer.

Norbert Schörghofer

Honolulu, Hawaii
August, 2006
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Analytic and Numeric

Solutions; Chaos

Many equations that describe the behavior of physical systems cannot be
solved analytically. In fact, it is said that “most” can not. Numerical
methods enable us to obtain solutions that would otherwise elude us.
The results may be valuable not only because they deliver quantitative
answers; they can also provide new insight.

A pocket calculator or a short computer program suffices for a simple
demonstration. If we repeatedly take the sine function starting with an
arbitrary value, xn+1 = sin(xn), the number will decrease and slowly
approach zero. For example, x = 1.000, 0.841, 0.746, 0.678, 0.628, . . .
(The values are rounded to three digits.) The sequence decreases because
sin(x)/x < 1 for any x 6= 0. Hence, with each iteration the value becomes
smaller and smaller and approaches a constant. But if we try instead
xn+1 = sin(2.5xn) the iteration is no longer driven toward a constant.
For example, x = 1.000, 0.598, 0.997, 0.604, 0.998, 0.602, 0.998, 0.603,
0.998, 0.603, 0.998, 0.603,. . . The iteration settles into a periodic behavior.
There is no reason for the iteration to approach anything at all. For
example, xn+1 = sin(3xn) produces x = 1.000, 0.141, 0.411, 0.943, 0.307,
0.796, 0.685, 0.885, 0.469, 0.986, 0.181, 0.518,. . . One thousand iterations
later x = 0.538, 0.999, 0.144, 0.418, 0.951, 0.286,. . . This sequence does
not approach a constant value, it does not grow indefinitely, and it is not
periodic, even when continued over many more iterations. A behavior of
this kind is called “chaotic.”

Can it be true that the iteration does not settle to a constant or
into a periodic pattern, or is this an artifact of numerical inaccuracies?
Consider the simple iteration yn+1 = 1− |2yn − 1| known as “tent map.”
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2 Third Branch of Physics

For yn ≤ 1/2 the value is doubled, yn+1 = 2yn, and for yn ≥ 1/2 it is
subtracted from 1 and then doubled, yn+1 = 2(1 − yn). The behavior of
the tent map is particularly easy to understand when yn is represented in
the binary number system. As for integers, floating point numbers can
be cast in binary format. For example, the binary number 0.101 is 1 ×
2−1 +0×2−2 +1×2−3 = 0.625. Multiplication by two for binary numbers
corresponds to a shift by one digit, just as multiplication by 10 shifts any
decimal number by one digit. When a binary sequence is subtracted
from 1, zeros and ones are simply interchanged.∗ The iteration goes from
0.011001... to 0.11001... to 0.0110.... After many iterations the
digits from far behind dominate the result. Hence, the leading digits take
on new and new values, making the behavior of the sequence apparently
random. This shows there is no fundamental difference between a chaotic
and a random sequence.

Numerical simulation of the tent map is hampered by roundoff. The
substitution xn = sin2(πyn) transforms it into xn+1 = 4xn(1−xn), widely
known as the “logistic map,” which is more suitable numerically. This
transformation proves that the logistic map is chaotic, because it can
be transformed back to a simple iteration whose chaotic properties are
proven mathematically. (Note, by the way, that a chaotic equation can
have an analytic solution.)

The behavior of the iteration formulae xn+1 = sin(rxn), where r is
a positive parameter, is readily visualized by plotting the value of x for
many iterations. If x approaches a constant, then, after an initial tran-
sient, there is only one point. The initial transient can be eliminated
by discarding the first thousand values or so. If the solution becomes
periodic, there will be several points on the plot. If it is chaotic, there
will be a range of values. Figure 1(a) shows the asymptotic behavior of
xn+1 = sin(rxn), for various values of the parameter r. As we have seen
in the examples above, the asymptotic value for r = 1 is zero, r = 2.5
settles into a period of two, and for r = 3 the behavior is chaotic. With
increasing r the period doubles repeatedly and then the iteration transi-

∗ This is always true as long as the following identity is taken into account. The
value of 0.011111... with infinitely many 1s is 1/2, and is in this sense identical to
0.1.
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Figure 1-1: Asymptotic behavior of two different iterative equations with vary-
ing parameter r. In (a) xn+1 = sin(rxn), the iteration converges to a fixed
value for r . 2.25, exhibits periodic behavior with periods 2, 4, 8, . . ., and
becomes chaotic around r ≈ 2.72. Panel (b) for xn+1 = rxn(1 − xn) is quali-
tatively the same.

tions into chaos. The chaotic parameter region is interrupted by windows
of periodic behavior.

Part (b) of the figure shows a similar iteration, xn+1 = rxn(1 − xn),
which also exhibits period doubling, chaos, and windows in chaos. Many,
many other iterative equations show the same behavior. The generality of
this phenomenon, called Feigenbaum universality, was not realized before
computers came along.

Once aware of this behavior and its pervasiveness, one can set out
to understand, and eventually prove, why period doubling and chaos
often occur in iterative equations. Indeed, Feigenbaum universality was
eventually understood in a profound way, but only after it was discovered
numerically. This is a historical example where numerical calculations
lead to an important insight. (Ironically, even the rigorous proof of period
doubling was computer assisted.)

Problem: We want to be able to distinguish problems that
require numerics from those that do not. As an exercise, can you judge
which of the following can be obtained analytically, in closed form?
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(i) The roots of x5 − 7x4 + 2x3 + 2x2 − 7x+ 1 = 0

(ii) The integral
∫
x2/(2 + x7)dx

(iii) The sum
∑N

k=1 k
4

(iv) The solution to the differential equation y′(x) + y(x) + xy2(x) = 0

(v) exp(A), where A is a 2 × 2 matrix, A = ((2,−1), (0, 2)), and the
exponential of a matrix is defined by its power series.
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Themes of Numerical Analysis

Numerical methods are systematically treated in textbooks and courses.
Certain issues emerge in similar form in many numerical methods, and
the few methods discussed next illustrate such common problems.

2.1 Root Finding: Fast and Impossible

We consider the problem of solving a single equation, where a function
of one variable equals a constant. Suppose a continuous function f(x) is
given and we want to find its root(s) x∗, such that f(x∗) = 0.

A popular method is that of Newton. The tangent at any point can
be used to guess the location of the root. Since by Taylor expansion
f(x∗) = f(x)+f ′(x)(x∗−x)+O(x∗−x)2, the root can be estimated as x∗ ≈
x−f(x)/f ′(x) when x is close to x∗. The procedure is applied iteratively:
xn+1 = xn−f(xn)/f

′(xn). For example, it is possible to solve sin(3x) = x
in this way, by finding the roots of f(x) = sin(3x) − x. Starting with
x0 = 1, the procedure produces the numbers shown in column 2 of table I.
The sequence quickly approaches a root. But Newton’s method can easily
fail to find a root. For instance, with x0 = 2 the iteration never converges,
as indicated in the last column of table I.

xnn
x0 = 1 x0 = 2

0 1 2
1 0.7836... 3.212...
2 0.7602... 2.342...
3 0.7596... 3.719...
4 0.7596... -5.389...

Table 2-I: Newton’s method applied to
sin(3x)−x = 0 with two different starting
values.

5



6 Third Branch of Physics

Is there a method that is certain to find a root? The simplest and
most robust method is bisection, which follows the “divide-and-conquer”
strategy. Suppose we start with two x-values where the function f(x) has
opposite signs. Any continuous function must have a root between these
two values. We then evaluate the function halfway between the two end-
points and check whether it is positive or negative there. This restricts
the root to that half of the interval on whose ends the function has op-
posite signs. Table II shows an example. With the bisection method the
accuracy is only doubled at each step, but the root is found for certain.

n xlower xupper

0 0.1 2
1 0.1 1.05
2 0.575 1.05
3 0.575 0.8125
4 0.6938... 0.8125
5 0.7531... 0.8125
...

...
...

16 0.7596... 0.7596...
Table 2-II: Bisection method applied to
sin(3x)− x = 0.

There are more methods for finding roots than the two just mentioned.
Each method has its strong and weak sides. Bisection is the most general
but is also the slowest method. Newton’s method is less general but
much faster. Such a trade-off between generality and efficiency is often
inevitable. This is so because efficiency is often achieved by exploiting a
specific property of a system. For example, Newton’s method makes use
of the differentiability of the function; the bisection method does not and
works equally well for functions that cannot be differentiated.

The bisection method is guaranteed to succeed only if it brackets
a root to begin with. There is no general method to find appropriate
starting values, nor do we generally know how many roots there are. For
example, a function can reach zero without changing sign; our criterion
for bracketing a root does not work in this case.

The problem becomes even more severe for finding roots in more than
one variable, say under the simultaneous conditions g(x, y) = 0, f(x, y) =
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0. Newton’s method can be extended to several variables, but bisection
cannot. Figure 1 illustrates the situation. How could one be sure all zero
level contours are found? In fact, there is no method that is guaranteed
to find all roots. This is not a deficiency of the numerical methods, but
is due to the intrinsic nature of the problem. Unless a good, educated
initial guess can be made, finding roots in more than a few variables may
be fundamentally and practically impossible.

g(x,y)=0

f(x,y)=0

Figure 2-1: Roots of two functions in two
variables. The roots are where the con-
tours intersect.

Root finding can be a numerically difficult problem, because there is
no method that always succeeds.

2.2 Error Propagation and Numerical Instabilities

Numerical problems can be difficult for other reasons too.
When small errors in the input data, of whatever origin, can lead to

large errors in the resulting output data, the problem is called “numeri-
cally badly-conditioned” or if the situation is especially bad, “numerically
ill-conditioned.” An example is solving the system of linear equations

x− y + z = 1, −x+ 3y + z = 1, y + z = 2.

Suppose there is an error ε in one of the coefficients such that the last
equation becomes (1 + ε)y + z = 2. The solution to these equations is
easily worked out as x = 4/ε, y = 1/ε, z = 1 − 1/ε. Hence, the result
depends extremely strongly on the error ε. The reason is that for ε = 0
the system of equations is linearly dependent: the sum of the left-hand
sides of the first two equations is twice that of the third equation. The
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right-hand side does not follow the same superposition. Consequently the
unperturbed equations (ε = 0) have no solution. The situation can be
visualized geometrically. Each of the equations describes an infinite plane
in a three-dimensional space. For small ε, the planes intersect at a small
angle and the intersection moves to infinity as ε→ 0. This is a property
of the problem itself, not the method used to solve it. No matter what
method is utilized to determine the solution, the uncertainty in the input
data will lead to an uncertainty in the output data. If a linear system of
equations is almost linearly dependent, it is an ill-conditioned problem.

The theme of error propagation has many facets. Errors introduced
during the calculation, namely by roundoff, can also become critical, in
particular when errors are amplified not only once, but repeatedly. Let
me show one such example for the successive propagation of inaccuracies.

Consider the difference equation 3yn+1 = 7yn − 2yn−1 with the two
starting values y0 = 1 and y1 = 1/3. The analytic solution to this
equation is yn = 3n. If we iterate numerically with initial values y0 = 1
and y1 = 0.3333 (which approximates 1/3), then column 2 of table III
shows what happens. For comparison, the last column in the table shows
the numerical value of the exact solution. The numerical iteration breaks
down after a few steps.

The reason for the rapid accumulation of errors can be understood
from the analytic solution of the difference equation with general initial
values: yn = c1(1/3)

n+c22
n. The initial conditions for the above example

are such that c1 = 1 and c2 = 0, so that the growing branch of the solu-
tion vanishes, but any error seeds the exponentially growing contribution.
Indeed, the last few entries in the second column of table III double at
every iteration; they are dominated by the 2n contribution.

Even if y1 is assigned exactly 1/3 in the computer program, using
single-precision numbers, the roundoff errors spoil the solution (third
column in table III). This iteration is “numerically unstable”; the nu-
merical solution quickly grows away from the true solution. Numerical
instabilities are due to the method rather than the mathematical nature
of the equation being solved. For the same problem one method might
be unstable while another method is stable.
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ynn
y1 = 0.3333 y1 = 1./3. yn = 1/3n

0 1 1 1
1 0.3333 0.333333 0.333333
2 0.111033 0.111111 0.111111
3 0.0368778 0.0370371 0.037037
4 0.0120259 0.0123458 0.0123457
5 0.0034752 0.00411542 0.00411523
6 9.15586E-05 0.00137213 0.00137174
7 -0.00210317 0.000458031 0.000457247
8 -0.00496842 0.000153983 0.000152416
9 -0.0101909 5.39401E-05 5.08053E-05

10 -0.0204664 2.32047E-05 1.69351E-05
11 -0.0409611 1.81843E-05 5.64503E-06
12 -0.0819316 2.69602E-05 1.88168E-06
13 -0.163866 5.07843E-05 6.27225E-07
14 -0.327734 0.000100523 2.09075E-07

Table 2-III: Numerical solution of the difference equation 3yn+1 = 7yn− 2yn−1

with initial error (second column) and roundoff errors (third column) compared
to the exact numerical values (last column).

—————–

In summary, we have encountered a number of issues that come up
in numerical computations. There may be no algorithm that succeeds
for certain. The propagation of errors in input data or due to roundoff
can lead to difficulties. Another theme is efficiency, which we have barely
touched on here. Demands on speed, memory, and data transfer are
discussed in chapters 8–10.

Recommended References: Good textbooks frequently used in
courses are Burden & Faires, Numerical Analysis and the more advanced
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and topical Stoer & Bulirsch, Introduction to Numerical Analysis. A
practically oriented classic on scientific computing is Press, Teukolsky,
Vetterling & Flannery, Numerical Recipes. This book describes a broad
and selective collection of methods and also contains a substantial amount
of numerical analysis. It is available online at www.nr.com.

Entertainment: An example of how complicated the domain of
convergence for Newton’s method can be is z3 − 1 = 0 in the complex
plane. The solutions to the equation are the cubic roots of +1. The do-
main of attraction for each of the three roots is a fractal. The boundaries
have an infinitely fine and self-similar structure.

Re(z)

Im
(z

)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Re(z)

Im
(z

)

0.3 0.35 0.4 0.45 0.5
0.6

0.65

0.7

0.75

0.8

Figure 2-2: The domain of convergence for Newton’s method for z3 − 1 = 0 in
the complex plane. Black indicates where the method converges to the root +1
within a few thousand iterations. Everything else is in white.

http://www.nr.com
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Roundoff and Number

Representation

In a computer every real number is represented by a sequence of bits, most
commonly 32 bits (4 bytes). One bit is for the sign, and the distribution
of bits for mantissa and exponent can be platform dependent. Almost
universally however a 32-bit number will have 8 bits for the exponent and
23 bits for the mantissa, leaving one bit for the sign (as illustrated in fig-
ure 1). In the decimal system this corresponds to a maximum/minimum
exponent of ±38 and approximately 7 decimal digits (at least 6 and at
most 9). For a 64-bit number (8 bytes) there are 11 bits for the exponent
(±308) and 52 bits for the mantissa, which gives around 16 decimal digits
of precision (at least 15 and at most 17).

|0|01011110
︸ ︷︷ ︸

|00111000100010110000010
︸ ︷︷ ︸

| +1.23456
︸ ︷︷ ︸

E-6

sign exponent mantissa sign mant. exp.

Figure 3-1: Typical representation of a real number with 32 bits.

Single-precision numbers are typically 4 bytes long. Use of double-
precision variables doubles the length of the representation. On some
machines there is a way to extend beyond double, possibly up to quadru-
ple precision, but that is the end of how far precision can be extended.
Some high-performance computers use 64-bit numbers already at single-
precision, which would correspond to double-precision on most other ma-
chines.

Using double-precision numbers is usually not even half as slow as
single-precision. Some processors always use their highest precision even
for single-precision variables, so that the time to convert between num-

11



12 Third Branch of Physics

ber representations makes single-precision calculations actually slower.
Double-precision numbers do, however, take twice as much memory.

Several general-purpose math packages offer arbitrary-precision arith-
metic. There are also source codes available for multiplication, square
roots, and other common operations in arbitrary precision. In either
case, arbitrary-precision calculations are disproportionally slow.

Many fractions have infinitely many digits in decimal representation,
e.g., 1/6=0.1666666.... The same is true for binary numbers; only that
the exactly represented fractions are fewer. The decimal number 0.5 can
be represented exactly as 0.100000..., but decimal 0.2 is in binary form
0.00110011001100110... and hence not exactly representable with a
finite number of digits. In particular, decimals like 0.1 or 10−3 have an
infinitely long binary representation. For example, if a value of 9.5 is
assigned it will be 9.5 exactly, but 9.1 carries a representation error. In
single-precision 9.1 is 9.100000381....†

Using exactly representable numbers allows us to do calculations that
incur no roundoff at all! Of course every integer, even when defined as a
floating-point number, is exactly representable. For example, addition of
1 or multiplication by 2 do not have to incur any roundoff at all. Factorials
can be calculated, without loss of precision, using floating-point numbers.
Normalizing a number to avoid an overflow is better done by dividing by
a power of 2 than by a power of 10.

Necessarily, there is always a maximum and minimum representable
number; exceeding them means an “overflow” or “underflow.” This ap-
plies to floating-point numbers as well as to integers. Currently the most
common integer length is 4 bytes. Since a byte is 8 bits, that provides
24×8 = 232 ≈ 4 × 109 different integers. The C language allows long
and short integers, but whether they really provide a longer or shorter
range depends on the platform. This is a lot of variability, but at least
for floating-point numbers standardization came along. The computer
arithmetic of floating-point numbers is defined by the IEEE 754 stan-
dard (and later by the basically identical 854 standard). It standardizes

† You can see this for yourself, for example, by using the C commands
float x=9.1; printf("%14.12f\n",x);, which print the single precision variable
x to 12 digits after the comma.
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single double
bytes 4 8
bits for mantissa 23 52
bits for exponent 8 11
significant decimals 6–9 15–17
maximum finite 3.4E38 1.8E308
minimum normal 1.2E-38 2.2E-308
minimum subnormal 1.4E-45 4.9E-324

Table 3-I: Specifications for number representation according to the IEEE 754
standard.

number representation, roundoff behavior, and exception handling, which
are all described in this chapter.

Table I summarizes the number representation, repeating what is de-
scribed above. When the smallest (most negative) exponent is reached,
the mantissa can be gradually filled with zeros, allowing for even smaller
numbers to be represented, albeit at less precision. Underflow is hence
gradual. These numbers are referred to as “subnormals” in Table I.

Figure 2 shows the mathematical constant π to as many digits as we
would ever need in a program. As a curiosity, tan(π/2) does not overflow
with standard IEEE 754 single-precision numbers. In fact the tangent
does not overflow for any argument.

← single →
3.14159265 3589793 23846264338327950288

←− double −→

Figure 3-2: The mathematical constant π up to 36 significant decimal digits,
usually enough for (non-standardized) quadruple precision.

It is helpful to reserve a few bit patterns for “exceptions.” There is a
bit pattern for numbers exceeding the maximum representable number, a
bit pattern for Inf (infinity), -Inf, and NaN (not a number). For example,
1./0. will produce Inf. An overflow is also an Inf. There is a positive and
a negative zero. If a zero is produced as an underflow of a tiny negative
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number it will be −0., and 1./(−0.) produces -Inf. A NaN is produced
by expressions like 0./0.,

√
−2., or Inf-Inf. This is part of the IEEE 754

standard. Exceptions are intended to propagate through the calculation,
without need for any exceptional control, and can turn into well-defined
results in subsequent operations, as in 1./Inf or in if (2.<Inf). If a
program aborts due to exceptions in floating-point arithmetic, which can
be a nuisance, it does not comply to the standard.

Roundoff under the IEEE 754 standard is as good as it can be for
a given precision (but applies more or less only to the elementary op-
erations). The error never exceeds half the gap of the two machine-
representable numbers closest to the ideal result! Halfway cases are
rounded to the nearest even (0 at end) binary number, rather than al-
ways up or always down, to avoid statistical bias in rounding. Statistical
accumulation of roundoff errors is highly unlikely.

Modern platforms can conform to IEEE 754, although possibly with
a penalty on speed. Compilers for most languages provide the option
to enable or disable the roundoff and exception behavior of this IEEE
standard. By default it is usually disabled. Certainly for C and For-
tran, ideal rounding and rigorous handling of exceptions can be enforced
on most machines. The IEEE standard can have a disadvantage when
enabled; it can slow down the program slightly or substantially. Most
general-purpose math packages do not comply to IEEE 754 standard.

The numerical example of a chaotic iteration in chapter 1 was com-
puted with the standard enabled. These numbers, even after one thou-
sand iterations, can be reproduced exactly on a different computer and a
different programming language. Of course, given the sensitivity to the
initial value, the result is quantitatively incorrect on all computers; after
many iterations it is entirely different from a calculation using infinitely
many digits.

—————–

Using the rules of error propagation, or common sense, we recognize
situations that are sensitive to roundoff. If x and y are real numbers
of the same sign, the difference x − y will have increased relative error.
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On the other hand, x + y has a relative error at most as large as the
relative error of x or y. Hence, adding them is insensitive to roundoff.
Multiplication and divisions are also not roundoff sensitive; we only need
to worry about overflows or underflows, in particular division by zero.

A most instructive example is solving a quadratic equation ax2 +
bx + c = 0 numerically. In the familiar solution formula x = (−b ±√
b2 − 4ac)/2a, a cancellation effect will occur for one of the two so-

lutions if ac is small compared to b2. The remedy is to compute the
smaller root from the larger. For a quadratic polynomial the product
of its roots equals x1x2 = c/a. If, say, b is positive then one solution
is obtained by the equation above, but the other solution is obtained as
x2 = c/ax1 = 2c/(−b−

√
b2 − 4ac). The common term in the two expres-

sions could be calculated only once and stored in a temporary variable.
This implementation of the solution of quadratic equations requires no
extra line of code; the sign of b can be accommodated by using the sign
function sgn(b). We usually do not need to bother writing an additional
line to check whether a is zero (despite of what textbooks advise). The
probability of an accidental overflow, when dividing by a, is small and, if
it does happen, a modern computer will either complain or it is properly
taken care of by the IEEE standard, which would produce an Inf and
continue with the calculation in a consistent way.

Sometimes an expression can be recast to avoid cancellations that
lead to increased sensitivity to roundoff. For example,

√
1 + x2 − 1 leads

to cancellations when x is close to zero, but the equivalent expression
x2/(
√

1 + x2 + 1) has no such problem.

An example of unavoidable cancellations are finite-difference formulas,
like f(x+h)−f(x), where the value of a function at point x is subtracted
from the value of a function at a nearby point x + h. An illustration of
the combined effect of discretization and roundoff errors will be given in
figure 6-1.

—————–

Directed roundings can be used for a technique called “interval arith-
metic.” Every result is represented not by one value of unknown accuracy,
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but by two that are guaranteed to straddle the exact result. An upper
and a lower bound are determined at every step of the calculation. Al-
though the interval may vastly overestimate the actual uncertainty, it
provides mathematical rigorous bounds.

Recommended References: The “father” of the IEEE 754
standard is William Kahan, who has a description of the standard and
other roundoff-related notes online at www.cs.berkeley.edu/˜wkahan. A
technical summary is provided by David Goldberg What every computer
scientist should know about floating point arithmetic. It can be found
all over the internet, for example at http://docs-pdf.sun.com/800-7895/
800-7895.pdf.

http://www.cs.berkeley.edu/~wkahan/
http://docs-pdf.sun.com/800-7895/800-7895.pdf


4

Programming Tools

4.1 Choosing a Programming Language

Some people believe fanatically that their own favorite programming lan-
guage is superior to all other languages. In reality, any programming
language one is familiar with can be used for computational work. C and
Fortran, for example, are well suited for scientific computing.

C is the common tongue of programmers and computer scientists.
Fortran is intended as programming language tailored to the needs of
scientists and engineers and as such it will always remain particularly
suited for this purpose. Fortran here means Fortran 90, or a later version,
which greatly extends the capabilities of earlier Fortran standards. Both,
C and Fortran, are fast in execution, quick to program, and widely known.
There exist large program repositories and fast compilers for them. They
both have dynamic memory allocation, that is, the size of an array can be
changed while the program is running (new in Fortran 90), and intrinsic
complex arithmetic (new in C99).

Now to the differences compared to one another. Fortran has fast
integer powers (37 is faster than 36.9), which C lacks. In Fortran, on
some platforms, the precision of calculations can be changed simply at
compilation. It allows unformatted output (which is faster than format-
ted output and exactly preserves the accuracy of numbers). A major
advantage of Fortran are its parallel computing abilities.

Fortran 77, compared to Fortran 90, is missing pointers and the pow-
erful parallel computing features. Because of its simplicity and age, com-
piler optimization for Fortran 77 is the best available for any language.
C++ tends to be a little slower than C, because its more complex code
is harder to understand by the compiler and the speed optimization is
often not as good as for C. For most research purposes C++ is a very

17
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suitable but not a preferable choice. It becomes advantageous when code
gets really large and needs to be maintained.

Program code can be made executable by interpreters, compilers, or
a combination of both. Interpreters read and immediately execute the
source program line by line. Compilers process the entire program before
it is executed, which permits better checking and speed optimization.
Languages that can be compiled hence run much faster than interpreted
ones.

Basic, being an interpreted language, is therefore slow. There are also
compilable versions though. Pascal has fallen out of fashion; it is weaker
than C. Java tends to be slow and in its current implementation (2004)
it has terrible roundoff properties, but it excels in portability. High-
performance dialects of several languages also exist, but are shorter lived
and only marginally better.

In this book Fortran and C are occasionally used. If you know one
of these languages, you are probably also able to quickly understand the
other by analogy. As a quick familiarization exercise, here is a program
in C and in Fortran that demonstrates similarities between the two lan-
guages.

/* C program example */

#include <math.h>

#include <stdio.h>

void main()

{ int i;

const int N=64;

float b,a[N];

b=-2.;

for(i=0;i<N;i++) {

a[i]=sin(i/2.);

if (a[i]>b) b=a[i];

}

b=pow(b,5.); b=b/N;

printf("%10.5f\n",b);

}

! Fortran program example

program demo

implicit none

integer i

integer,parameter :: N=64

real b,a(N)

b=-2.

do i=1,N

a(i)=sin((i-1)/2.)

if (a(i)>b) b=a(i)

enddo

b=b**5; b=b/N

print "(f10.5)",b

end
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Next are listed some features that only look analogous but are differ-
ent: C is case-sensitive, Fortran is not. Array indices begin by default
with 0 for C and with 1 for Fortran. Initializing a variable with a value
is done in C each time the subroutine is called, in Fortran only the first
time the subroutine is called.

Recommended References: The best reference book on C is
Kernighan & Ritchie, The C Programming Language. As an introductory
book it is challenging. A concise but complete coverage of Fortran is given
by Metcalf & Reid, Fortran 90/95 Explained. There is good online For-
tran documentation, for example at www.liv.ac.uk/HPC/F90page.html.

4.2 General-Purpose Mathematical Software Pack-

ages

There are ready-made software packages for numerical calculations. Many
tasks that would otherwise require lengthy programs can be done with
a few keystrokes. For instance, it only takes one command to find a
root, say FindRoot[sin(3 x)==x,{x,1}]. Inverting a matrix may sim-
ply reduce to Inverse[A] or 1/A. Such software tools have become so
convenient and powerful that they are the preferred choice for many com-
putational problems.

General-purpose mathematical software packages can be highly por-
table among computing platforms. For example, in the year 2003 the
exact same Matlab or Mathematica programs can be run on at least five
different operating systems.

Programs can be written for such software packages in their own
application-specific language. Often these do not achieve the speed pos-
sible with languages like Fortran or C. One reason for that is the trade-off
between universality and efficiency—a general method is not going to be
the fastest. Further, we typically do not have access to the source codes
to adjust them. Another reason is that, although individual commands
may be compiled, a succession of commands is interpreted and hence

http://www.liv.ac.uk/HPC/F90page.html
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slow. Such software can be of great help when a calculation takes little
time, but they may be badly suited for time-intensive calculations.

In one popular application, the example program above would be:
% Matlab program example

N=64;

i=[0:N-1];

a=sin(i/2);

b=max(a);

b^5/N

Whether it is better to use a ready-made mathematical software pack-
age or write a program in a lower level language like C or Fortran depends
on the task to be solved. Each has its domain of applicability. We want
to know both so we can choose the tool more appropriate for a particular
task.

Major general-purpose mathematical software packages that are
currently popular (2003): Macsyma, Maple, Matlab, and Mathematica do
symbolic and numerical computations and have graphics abilities. Mat-
lab is particularly strong and efficient for linear algebra tasks. Octave
is open-source software that mimics Matlab, with numerical and graph-
ical capabilities. There are also software packages that focus on data
visualization and data analysis: AVS (Advanced Visual Systems), IDL
(Interactive Data Language), and others.

4.3 Data Visualization

Graphics is an indispensable tool for data evaluation, program testing,
and scientific analysis. We only want to avoid spending too much time
on learning and coping with graphics software.

Often, data analysis is exploratory. It is thus desirable to be able to
produce a graph quickly and with ease. We will want to take advantage
of existing visualization software rather than write our own graphics rou-
tines, because writing graphics programs would be time consuming and
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such programs are often not portable. In all, simple graphics software
can go a long way.

The interpretation of data formats varies among graphics programs.
The type of line breaks, comment lines, the form of the exponent, or
anomalously many digits can lead to misinterpretations.

Gnuplot is a simple and free graphics plotting program. It is
quick to use and learn. Most graphs in this book are made with Gnuplot.
The official Gnuplot site is www.gnuplot.info. Another, similar tool is
Grace (formerly xmgr), also freely available. A number of commercial
software packages have powerful graphics capabilities, including general-
purpose math packages listed above. It can be advantageous to stick to
mainstream packages, because they are widely available, can be expected
to survive into the future, and tend to be quicker to learn.

http://www.gnuplot.info/
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Physics Sampler

5.1 Chaotic Standard Map

As an example, we study the following simple physical system. A freely
rotating rod is periodically kicked, such that the effect of the kicking
depends on the rod’s position; see figure 1. The equations for the angle
α (measured from the vertical) and the angular velocity ω after each kick
are simply

αn+1 = αn + ωnT

ωn+1 = ωn +K sin(αn+1).

The period of kicking is T and K is its strength. For K = 0, without
kicking, the rod will rotate with constant velocity. For finite K, will the
rod stably position itself along the direction of force or will it rotate full
turns forever? Will it accumulate unlimited amounts of kinetic energy?

α

K
Figure 5-1: Freely rotating rod that is periodi-
cally kicked.

A program to iterate the above formula is only a few lines long. The
angle can be restricted to the range 0 to 2π. This avoids loss of significant

22
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Figure 5-2: Angular velocity ω versus angle α for the standard map for different
kicking strengths, (a) K=0.2, (b) K=0.8, and (c) K=1.4. Since α and ω
are given by an iteration, every continuously appearing line consists of many
discrete points.

digits when α is large, as it will be after many full turns in the same
direction.

For K = 0 the velocity should never change. A simple test run,
ω = 0.2, 0.2, 0.2, ..., confirms this. Without kicking αn+1 = αn + 2πT/Tr,
where Tr = 2π/ω is the rotation period of the rod. Between snapshots
separated by time T , the angle α changes either periodically or, when
Tr/T is not a ratio of integers, the motion is “quasi-periodic,” because
the rod never returns exactly to the same position.

If α = 0 and the rod rotates initially exactly at the kicking frequency
ω = 2π/T , then α should return to the same position after every kick,
no matter how hard the kicking: α = 0, 0, 0, .... Correct. The program
reproduces the correct behavior in cases we understand, so we proceed to
more complex situations.

For K = 0.2 the angular velocity changes quasi-periodically. For
stronger K the motion can be chaotic, for example α ≈ 0, 1, 3.18, 5.31,
6.27, 0.94, 3.01, 5.27, 0.05, .... Plots of ω versus α are shown in figure 2,
where many initial values for ω and α are used. For K = 0, the angular
velocity is constant (not shown). For small K, there is a small perturba-
tion of the unforced behavior, with many quasi-periodic orbits (a). The
behavior for stronger K is shown in panel (b). For some initial condi-
tions the rod bounces back and forth; others make it go around without
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ever changing direction. The two regions are separated by a layer where
the motion is chaotic. The rod can go around several times in the same
direction, and then reverse its sense of rotation. The motion of the rod
is perpetually irregular. For strong kicking there is a “sea” of chaos (c).
Although the motion is erratic for many initial conditions, the chaotic
motion does not cover all possible combinations of velocities and angles.
We see intricate structures in this plot. Simple equations can have com-
plicated solutions.

And, by the way, the rod can indeed accumulate energy without limit.
In the figure ω is renormalized to keep it in the range −π/T to π/T .
Physicist Enrico Fermi used a similar model to show that electrically
charged cosmic particles can acquire large amounts of energy from a driv-
ing field.

5.2 Celestial Mechanics

The motion of two bodies due to their mutual gravitational attraction
leads to orbits with the shape of circles, ellipses, parabolas, or hyperbolas.
For three bodies an analytic solution is no longer possible and their behav-
ior poses one of the major unsolved problems of classical physics, known
as the “three-body problem.” For instance, it is not generally known
under what conditions three gravitationally interacting particles remain
close to each other forever. Nothing keeps us from exploring gravitational
motion numerically. The acceleration of the bodies due to their gravita-
tional interaction is given by d2ri/dt

2 = G
∑

j 6=imj(ri − rj)/(ri − rj)
3.

Here, G is the gravitational constant, the sum is over all bodies, and m
and r(t) are their masses and positions.

The numerical task is to integrate a system of ordinary differential
equations, that describe the positions and velocities of the bodies as a
function of time. Since the velocities can vary tremendously, a method
with adaptive step size is desirable. The problem of a zero denominator
arises only if the bodies fall straight into each other from rest or if the
initial conditions are specially designed to lead to collisions; otherwise
the centrifugal effect will avoid this problem for pointlike objects. In
an astronomical context the masses and radii in units of kilograms and
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meters are large numbers, hence we might want to worry about overflow
in intermediate results. For example, the mass of the sun is 2 × 1030kg
and its distance from Earth is roughly 1.5 × 1011m. We cannot be sure
of the sequence in which the operations in Newton’s formula are carried
out. If the product of mass and distance is formed first, the exponent of a
single precision variable (typically at most +38) would overflow. Double
precision variables would be much saver. Alternatively, we can choose
units that lead to more modest exponents.

Premade routines or a software package are easily capable of solving
a system of ordinary different equations of this kind. For demonstra-
tion, we choose here a general-purpose software package. We enter the
equations to be solved together with sufficiently many initial conditions
and compute the trajectories. The motion of the center of mass can be
subtracted from the initial conditions to reduce the number of equations.

As a first test, we can choose the initial velocity for a circular orbit.
The resulting trajectory is plotted in figure 5(a) and is indeed circular.
In fact, in this plot the trajectory goes around in a circular orbit one
hundred times, but the accuracy of the calculation and the plotting are
so high that it appears to be a single circle. Another case easy to check is
a parabolic orbit (not shown). It can be distinguished from a hyperbolic
one, for example, by checking that the velocity approaches zero as the
body travels toward infinity.

The motion of two bodies with potentials different from 1/r is easily
demonstrated. If the potential is changed to a slightly different exponent,
the orbits are no longer closed, as seen in figure 5(b). Only for certain
potentials are the orbits closed. Indeed, Isaac Newton realized that the
closed orbits of the planets and the moon indicate that the gravitational
potential decays as 1/r.

Finally the three-body situation. We choose a simplified version,
where all three objects lie on a plane and one mass is much larger than
the other two. This is reminiscent of a solar system with the heavy sun at
the center. Figure 5(c) shows an example of a three-body motion, where
one body from far away comes in and is deflected by the orbiting planet
such that it begins orbiting the sun. Its initial conditions are such that
without the influence of the planet the object would escape to infinity.
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(a) (b) (c)

Figure 5-3: Numerical solutions for the gravitational interaction of two or
three bodies. (a) A circular orbit for testing purposes. The orbit has actually
undergone 100 revolutions, demonstrating the accuracy of the numerical solu-
tion. (b) A potential 1/r0.8 whose trajectories are no longer closed. (c) Motion
of three bodies (center point, solid line, dashed line) with very different masses.

Jupiter, the heaviest planet in our solar system, has captured numerous
comets in this manner.



6

Discrete Approximations

of the Continuum

While mathematical functions can be defined on a continuous variable,
any numerical representation is limited to a finite number of values. This
discretization of the continuum is the source of profound issues for nu-
merical interpolation, differentiation, and integration.

6.1 Differentiation

A function can be locally described by its Taylor expansion:

f(x+h) = f(x)+f ′(x)h+f ′′(x)
h2

2
+....+f (n)(x)

hn

n!
+f (n+1)(x+ϑ)

hn+1

(n+ 1)!

The very last term is evaluated at x + ϑ, which lies somewhere between
x and x + h. Since ϑ is unknown, this last term provides a bound on
the error when the series is truncated after n terms. For example, |f(x+
h)− f(x)| ≤Mh, where M = max0≤ϑ≤h |f ′(x+ϑ)|. A function is said to
be “of order p”, O(hp), when for sufficiently small h its absolute value is
smaller than a constant times hp.

The derivative of a function can be approximated by a difference over a
finite distance, f ′(x) = [f(x+h)−f(x)]/h+O(h), the “forward difference”
formula, or f ′(x) = [f(x)−f(x−h)]/h+O(h), the “backward difference”
formula. Another possibility is the “center difference”

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2).

At first sight it may appear awkward that the center point, f(x), is absent
from the difference formula. A parabola passing through two points is

27
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not uniquely determined; it would require f(x + h), f(x), and f(x − h).
However, it is easily shown that the slope at the center of such a parabola
is independent of f(x). Thus, it makes sense that the center point does
not appear in the finite difference formula for the first derivative. The
center difference is accurate to O(h2), not just O(h) as the one-sided
differences are, because the f ′′ terms in the Taylor expansions of f(x+h)
and f(x− h) cancel.

The second derivative can also be approximated with a finite difference
formula, f ′′(x) ≈ c1f(x+ h) + c2f(x) + c3f(x− h), where the coefficients
c1, c2, and c3 can be determined with Taylor expansions. This is a general
method to derive finite difference formulas. We find

f ′′(x) =
f(x− h)− 2f(x) + f(x+ h)

h2
+O(h2).

A mnemonic for this expression is the difference between one-sided first
derivatives: {[f(x + h)− f(x)]/h− [f(x) − f(x− h)]/h}/h. With three
coefficients, c1, c2, and c3, we only expect to match the first three terms
in the Taylor expansions, but the next order, involving f ′′′(x), vanishes
automatically. Hence, the leading error term is O(h4)/h2 = O(h2).

With more points (a larger “stencil”) the accuracy of a finite-difference
approximation can be increased, at least as long as the high-order deriva-
tive that enters the error bound is not outrageously large.

6.2 Verifying the Convergence of a Method

Consider numerical differentiation with a simple finite-difference: u(x) =
[f(x + h)− f(x− h)]/2h. With a Taylor expansion we can immediately
verify that u(x) = f ′(x) + O(h2). For small h, this formula provides
therefore an approximation to the first derivative of f . When the resolu-
tion is doubled, the discretization error, O(h2), decreases by a factor of 4.
Since the error decreases with the square of the interval h, the method is
said to converge with “second order.” In general, when the discretization
error is O(hp) then p is called the “order of convergence” of the method.

The resolution can be expressed in terms of the number of grid points
N , which is simply inversely proportional to h. To verify the convergence
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of a numerical approximation, the error can be defined as some overall
difference between the solution at resolution 2N and at resolution N .
Ideal would be the difference to the exact solution, but the solution at
infinite resolution is usually unavailable, because otherwise we would not
need numerics. “Norms” (denoted by || · ||) provide a general notion of
the magnitude of numbers, vectors, matrices, or functions. One example

of a norm is the root-mean-square ||y|| =
√
∑N

j=1(y(jh))
2/N . Norms of

differences therefore describe the overall difference, deviation, or error.
The ratio of errors, ||uN−uN/2||/||u2N−uN ||, must converge to 2p, where
p is the order of convergence. Table I shows a convergence test for the
center difference formula shown above applied to an example function.
The error E(N) = ||u2N − uN || becomes indeed smaller and smaller with
a ratio closer and closer to 4.

N E(N) E(N/2)/E(N)
20 0.005289
40 0.001292 4.09412
80 0.0003201 4.03556

160 7.978E-05 4.01257

Table 6-I: Convergence test. The error (second column) decreases with increas-
ing resolution and the method therefore converges. Doubling the resolution re-
duces the error by a factor of four (third column), indicating the method is
second order.

The table is all that is needed to verify convergence. For deeper insight
however the errors are plotted for a wider range of resolutions in figure 1.
The line shown has slope −2 on a log-log plot and the convergence is
overwhelming. The bend at the bottom is the roundoff limitation. Be-
yond this resolution the leading error is not discretization but roundoff.
If the resolution is increased further, the result becomes less accurate.
For a method with high-order convergence this roundoff limitation may
be reached already at modest resolution. A calculation at low resolution
can hence be more accurate than a calculation at high resolution!

To understand the plot more completely, we even check for quantita-
tive agreement. In the convergence test shown in the figure, double preci-
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Figure 6-1: Discretization and roundoff
errors for a finite difference formula. The
total error (circles), consisting of dis-
cretization and roundoff errors, decreases
with resolution N until roundoff errors
start to dominate. For comparison, the
solid line shows the theoretical discretiza-
tion error, proportional to 1/N 2 or h2,
with an arbitrary prefactor.

sion numbers are used with an accuracy of about 10−16. The function val-
ues used for figure 1 are around 1, in order of magnitude, so that absolute
and relative errors are approximately the same. The roundoff limitation
occurs in this example at an accuracy of 10−11. Why? In the formation
of the difference f(x + h) − f(x − h) a roundoff error of about 10−16 is
introduced, but to obtain u, it is necessary to divide by 2h, enhancing the
error because h is a small number. In the figure the maximum accuracy
is indeed approximately 10−16/(2× 5× 10−6) = 10−11. The total error is
the sum of discretization error and roundoff error O(h2) +O(ε/h), where
ε ≈ 10−16. The total error is a minimum when h = O(ε1/3) = O(5×10−6).
This agrees perfectly with what is seen in figure 1.

Problem: The convergence test indicates that ||u2N − uN || → 0
as the resolution N goes to infinity (roundoff ignored). Does this mean
limN→∞ ||uN − u|| → 0, where u is the exact, correct answer?

6.3 Integration

The simplest way of numerical integration is to sum up function values.
Rationale can be lent to this procedure by thinking of the function values
fj = f(xj) as connected with straight lines. Let fj denote the function at
xj = x0 + jh. The area of the first trapezoidal segment is, using simple
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geometry, (f0 +f1)/2. The area under the piecewise linear graph from x0

to xN is

∫ xN

x0

f(x)dx ≈ f0 + f1

2
h+

f1 + f2

2
h+. . . =

(
f0

2
+ f1 + . . .+ fN−1 +

fN
2

)

h,

which is indeed the sum of the function values. The boundary points carry
only half the weight. This summation formula is called the “composite
trapezoidal rule.”

Instead of straight lines it is also possible to imagine the function
values are interpolated with quadratic polynomials. Fitting a parabola
through three points and integrating, one obtains

∫ x2

x0

f(x)dx ≈ h

3
(f0 + 4f1 + f2) .

For a parabola the approximate sign becomes an exact equality. This
integration formula is well-known as “Simpson’s rule.” Repeated appli-
cation of Simpson’s rule leads to

∫ xN

x0

f(x)dx ≈ h

3
[f0 + 4f1 + 2f2 + 4f3 + 2f4 + . . .+ 4fN−1 + fN ] .

An awkward feature about this “composite Simpson formula” is that
function values are weighted unequally, although the grid points are
equally spaced.

There is an exact relation between the integral and the sum of a
function, known as “Euler-Maclaurin summation formula”:

∫ b

a

f(x)dx = h

N−1∑

j=1

f(a+ jh) +
h

2
(f(a) + f(b)) +

−
m∑

j=1

h2j B2j

(2j)!

(
f (2j−1)(b)− f (2j−1)(a)

)
+

−h2m+2 B2m+2

(2m+ 2)!
(b− a)f (2m+2)(ϑ),
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where Bk are the Bernoulli numbers, h = (b−a)/N , and ϑ lies somewhere
between a and b. The Bernoulli numbers are mathematical constants; the
first few of them are B2 = 1/6, B4 = −1/30, B6 = 1/42, . . .. (Bernoulli
numbers with odd indices are zero.) For m = 0,

∫ b

a

f(x)dx = h

(
f0

2
+ f1 + . . .+ fN−1 +

fN
2

)

− h2B2

2!
(b− a)f ′′(ϑ).

The first order of the Euler-Maclaurin summation formula is the trape-
zoidal rule and the error for trapezoidal integration is −h2(b−a)f ′′(ϑ)/12.

The Euler-Maclaurin summation formula for m = 1 is

∫ b

a

f(x)dx = h

(
f0

2
+ f1 + . . .+ fN−1 +

fN
2

)

+

−h2B2

2!
(f ′(b)− f ′(a))− h4B4

4!
(b− a)f (4)(ϑ).

There is no O(h3) error term. It is now apparent that the leading error in
the composite trapezoidal rule arises from the boundaries only, not from
the interior of the domain. If f ′(a) and f ′(b) are known or if they cancel
each other, the integration error is only −h4(b− a)f (4)(ϑ)/720.

The composite Simpson formula can be derived by using the Euler-
Maclaurin summation formula with spacings h and 2h. The integration
error obtained in this way is h4(b−a)

[
1
3
f (4)(ϑ1)− 4

3
f (4)(ϑ2)

]
/180. It can

be sharpened with other methods to −h4(b − a)f (4)(ϑ)/180. Since the
error is proportional to f (4), applying Simpson’s rule to a cubic polynomial
yields the integral exactly, although it is derived by integrating a quadratic
polynomial.

The fourth-order error bound in the Simpson formula is larger than
in the trapezoidal formula. The Simpson formula is only more accurate
than the trapezoidal rule, because it better approximates the boundary
regions. Away from the boundaries, the Simpson formula, the method of
higher order, yields less accurate results than the trapezoidal rule, which
is the penalty for the unequal coefficients. At the end, simple summation
of function values is an excellent way of integration in the interior of the
domain.
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Recommended References: Abramovitz & Stegun, Handbook
of Mathematical Functions includes a chapter on numerical analysis with
finite difference, integration, and interpolation formulas and other helpful
material.
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From Programs

to Data Analysis

“In any field that has significant intellectual content, you don’t
teach methodology.” Noam Chomsky

7.1 Canned Routines

Often there is no need to write subroutines ourselves. For common tasks
there already exist collections of subroutines (see the sources listed be-
low). Their reliability varies, but many good implementations are avail-
able.

Code Sources.

• The Guide to Available Mathematical Software http://math.nist.gov
maintains a directory of subroutines from numerous public and pro-
prietary repositories.

• NETLIB at www.netlib.org offers free sources by various authors
and of varying quality.

• A more specialized, refereed set of routines is available to the public
from the Collected Algorithms of the ACM at www.acm.org/calgo.

• Numerical Recipes, www.nr.com, explains and provides a broad and
selective collection of reliable subroutines. (Sporadic weaknesses in
the first edition are corrected in the second.) Each program is
available in C, C++, Fortran 77, and Fortran 90.

34
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Chapter 7 35

• Major commercial packages are IMSL (International Mathematical
and Statistical Library) and NAG (Numerical Algorithms Group).

• The Gnu Scientific Library is a collection of open-source routines,
www.gnu.org/software/gsl.

Certain tasks call for canned routines more than others. For special
functions, such as the Error function, the Bessel functions, the Gamma
function, and all the others, someone put a lot of thought into how to
evaluate them efficiently. On the other hand, partial differential equation
solvers demand great flexibility and appear in such variety that most of
the time we can better write them on our own (“throw-away codes”).

In addition to subroutines provided by other programmers, there are
also “libraries,” which are repositories of subroutines that are already
compiled and whose source code we may be unable to see. Internal li-
brary functions are optimized for a particular hardware. Therefore, they
are typically faster than portable programs, because they can take advan-
tage of system specific features. A drawback is that the interface to an
internal function can be machine dependent; name, required arguments,
and output variables can vary with the individual library.

An example is the Fast Fourier Transform (FFT), an algorithm for
performing Fourier transforms. An internal FFT is typically multiple
times faster than portable FFT routines. (An exceptional implementa-
tion is FFT-W, the “Fastest Fourier Transform in the West”. It is a
portable source code that first detects what hardware it is running on
and chooses different computational strategies depending on the specific
hardware architecture. This way, it can simultaneously achieve portabil-
ity and efficiency.)

7.2 Programming

To a large extent the same advice applies for scientific programming as for
programming in general. Programs should be clear, robust, general. Only
when performance is critical, and only in the parts where it is critical,
should one compromise these principles. Most programmers find that it

http://www.gnu.org/software/gsl
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is more efficient to write a part, test it, and then code the next part,
rather than to write the whole program first and then start testing.

In other aspects, writing programs for research is different from soft-
ware development. Research programs keep changing and are usually
used only by the programmer herself or a small group of users. Fur-
ther, simulations for research purposes often intend to chart unexplored
territory of knowledge. Under these circumstances there is little reason
to extract the last margin of efficiency, create nice user interfaces, write
extensive documentation, or implement complex algorithms. All of that
can actually be counterproductive.

It is easy to miss a mistake or an inconsistency within many lines of
code. Already one wrong symbol in the program can invalidate the result.
Program validation is a practical necessity. Catching a mistake later or
not at all may lead to a huge waste of effort, and this risk can be reduced
by spending time on checking early on. One will compare with analyt-
ically known solutions, including trivial solutions, isolate pieces of code
for testing, test independence from resolution or other parameters that
should not matter, monitor variables, and use graphics to understand.

Programs undergo evolution. As time passes improvements are made
on a program, bugs fixed, and the program matures. For time-intensive
computations, it is thus never a good idea to make long runs right away.
Moreover, the experience of analyzing the result of a short run might
change which and in what form data are output. Simulations shorter
than a minute allow for interactive improvements.

For lengthy runs one may wish to know how far the program has
proceeded. While a program is running its output is not immediately
written to disk, because this may slow it down. This has the disadvantage
that recent output is unavailable. Immediate output can be forced by
closing the file and reopening it before further output occurs.

7.3 Data Handling

Data can be either evaluated as they are computed (run-time evaluation)
or stored and evaluated afterwards (post-evaluation). Post-evaluation
allows changes and flexibility in the evaluation process, without having
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to repeat the run. Note that numbers can be calculated much faster than
they can be written to any kind of output; it is easy to calculate far more
than can be stored. For this reason, output is selective.

For checking purposes it is advantageous to create human readable
output, that is, plain text.

Data, whether real or from simulations, come in different formats, are
created on different operating systems, have different symbols for com-
ment lines, and come in a different shape from what you may need. Handy
tools for file manipulation are operating system utilities and scripting
languages. Essentially every editor can handle plain text files, and that
includes Notepad, MS Word, vi, and emacs. Sophisticated automated
manipulations can be done with text processing languages such as awk,
perl, and sed.

7.4 Fitting in Modern Times

Fitting straight lines by the least-square method is straightforward. For
linear regression we minimize the quadratic deviations E =

∑

i(yi −
a− bxi)2, where xi and yi are the data and a and b are, respectively, the
intercept and slope of a straight line. The extremum conditions ∂E/∂a =
0 and ∂E/∂b = 0 lead to the linear equations

∑

i(yi − a − bxi) = 0 and
∑

i xi(yi − a − bxi) = 0, which can be explicitly solved for a and b.
The popularity of linear regression has less to do with it being the most
likely fit for Gaussian distributed errors than with the computational
convenience the fit parameters can be obtained.

Some other functions can be reduced to linear regression, e.g., y2 =
exp(x). If errors are distributed Gaussian then linear regression finds the
most likely fit, but a transformation of variables spoils this property. If
the fitting function cannot be reduced to linear regression it is necessary
to minimize the error as a function of the fit parameter(s) nonlinearly.

Fits with quadratically weighted deviations are not particularly ro-
bust, since an outlying point can affect it significantly. Weighting pro-
portional with distance, for instance, improves robustness. In this case,
we seek to minimize

∑

i |yi − a − bxi|, where, again, xi and yi are the
data and a and b are, respectively, the intercept and slope of a straight
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line. Differentiation with respect to a and b yields the following two con-
ditions:

∑

i sgn(yi − a− bxi) = 0 and
∑

i xisgn(yi − a− bxi) = 0. Unlike
for the case where the square of the deviations is minimized, these equa-
tions are not linear in a and b, because of the sign function sgn. They
are however still easier to solve than by nonlinear root finding in two
variables. The first condition says that the number of positive elements
must be equal to the number of negative elements, and hence a is the
median among the set of numbers yi − bxi. Since a is determined as a
function of b in this relatively simple way, the remaining problem is to
solve the second condition, which requires nonlinear root-finding in only
one variable. This type of fitting, minimizing absolute deviations, is still
sort of underutilized—as are a number of other fitting methods that are
computationally more expensive than linear regression.

Recommended References: Valuable articles on computer er-
gonomics can be found in numerous sources, e.g., “Healthy Comput-
ing” at IBM’s www.pcco.ibm.com/ww/healthycomputing or on the er-
gonomics site by the Department of Labor at www.osha.gov/SLTC/etools/
computerworkstations/index.html.

Problem: Stay away from the computer for a while. A major
habitual problem is to not resist the urge to type on the computer.

http://www.pcco.ibm.com/ww/healthycomputing
http://www.osha.gov/SLTC/etools/computerworkstations/index.html
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Performance Basics

8.1 Speed and Limiting Factors of Computations

Basic floating-point operations, like addition and multiplication, are car-
ried out on the central processor. Their speed depends on the hardware.
Elementary functions are implemented on a software level. Table I pro-
vides an overview of the typical execution times for basic mathematical
operations.

integer addition, subtraction, or multiplication <1
integer division 4–10
float addition, subtraction, or multiplication 1
float division 2–5
sqrt 5–20
sin, cos, tan, log, exp 10–40

Table 8-I: The relative speed of integer operations, floating-point operations,
and several elementary functions.

A unit of 1 in this table corresponded to about 1 nanosecond on a
personal computer or workstation in the year 2004, but that number is
rapidly changing. Contemplate however how many multiplications can
be done in one second: 109. One second is enough time to solve a linear
system in about 1000 variables or to take the Fourier Transform of a
million points. Arithmetic is fast!

Even the relative speeds in the above table are much unlike doing
such calculations by hand. On a computer additions are no faster than
multiplications, unlike when done manually. On modern processors mul-
tiplication takes hardly longer than addition and subtraction. In the

39



40 Third Branch of Physics

old days this was not true and it was appropriate to worry more about
the number of multiplications than about the number of additions. If
a transformation would replace a multiplication by several additions, it
was favorable for speed, but this is no longer the case.

It dawns on us here that what the fastest algorithm for a problem
is depends on the technology. Over the last decades the bottlenecks for
programs have been changing. Long ago it was memory. Memory was
expensive compared to floating-point operations, and algorithms tried
to save every byte of memory possible. Even the design of program-
ming languages and compilers was adapted to scarce memory resources.
Later, memory became cheap compared to processors, and the bottleneck
moved to floating-point operations. For example, storing repeatedly used
results in a temporary variable rather than recalculating them each time
increased speed. This paradigm of programming is the basis of classi-
cal numerical analysis, with algorithms designed to minimize the number
of floating-point operations. Today the most severe bottleneck is moving
data from memory to the processor. And the gap between memory access
times and CPU (central processing unit) speed is still widening. In future,
perhaps, the bottleneck will be the parallelizability of an algorithm.

There are basically four limiting factors to simulations: processor
speed, memory, data transfer between memory and processor, and in-
put/output.

Calculating Required Memory. How much memory a number requires
is machine dependent, but standardization has led to increased unifor-
mity. Each data type takes up a fixed number of bytes, usually

• four bytes for an integer,
• four bytes for a single precision number, and
• eight bytes for double precision.

Hence one can precisely count the required memory. For example, an
array of 1024×1024 single-precision numbers takes up exactly four mega-
bytes (210 ≈ 103).

There is one exception to this rule. For a compound data type (what is
called “structure” in C and “derived data type” in Fortran) the alignment
of data can matter. Computers organize their memory usually in “words,”
which are several bytes long. (The exact number of bytes for a word



Chapter 8 41

is platform specific.) One word might accommodate a single-precision
number or two short integers. If we define a data type in C as struct

{short int a; float b} the computer might want both the short int

and the float to start at the beginning of a word. This results in unused
memory.

If the data exceed the available memory, the harddisk is used for
temporary storage. Since reading and writing from and to a harddisk is
comparatively slow, this slows down the calculation substantially.

CPU 2 ns
Memory 10–100 ns
Disk 10 ms=107ns

Table 8-II: Speed of basic computer components.

Table II shows how critical the issue of data transfer is, both between
processor and memory and between memory and hard disk. When a
processor carries out instructions it first needs to fetch necessary data
from memory. This is a slow process, compared to the speed with which
the processor is able to compute.

Reading or writing a few bytes to or from the harddisk takes as long as
millions of floating-point operations. The majority of this time is for the
head, that reads and writes the data, to find and move to the location on
the disk where the data are stored. Consequently data should be read and
written in big junks rather than in small pieces. In fact the computer will
try to do so automatically. You might have noticed that while a program
is running, data written to a file may not appear immediately. The data
are not flushed to the disk until they exceed a certain size or until the
file is closed.

Input and output are slow on any medium (magnetic harddisk, screen,
network, etc.). Writing on the screen is a particularly slow process; ex-
cesses thereof can easily delay the program. A common beginner’s mis-
take is to display vast amounts of output on the screen, so data scroll
down the screen at unreadably high speed, slowing down the calculation.
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8.2 Data Files

File Size. Input/output can be limiting due to the data transfer rate,
but also due to size. It is possible to at least estimate file size. When
data are stored in text format, as they often are, each character takes
up one byte. Delimiters and blank spaces also count as characters. The
number 1.23456E-04 without leading or trailing blanks takes up 11 bytes
on the storage medium. If an invisible carriage return is at the end of the
number, then it consumes an additional byte. A single-precision number,
like 1.23456E-04, typically takes up four bytes of memory. As a rule of
thumb, a set of stored data takes up more disk space than the same set
in memory.

Compression. A large file containing mostly numbers uses only a small
part of the full character set and can hence be substantially compressed
into a file of smaller size. Number-only files typically compress, with
conventional utilities, to around 40% of their original size. If repetitive
patterns are present in the file, the compression will be even stronger.

8.3 Parallel Computing

When a computer has more than one processor it can use them to work on
the same calculation in parallel. The memory can either still be shared
among processors or also be split among processors or small groups of
processors. When the memory is split, it usually requires substantially
more programming work, that explicitly controls the exchange of informa-
tion between memory units. Parallelization of a program can be done by
compilers automatically, but if this does not happen in an efficient way—
and often it does not—the programmer has to provide instructions, by
placing special commands into the source code.

Parallel computing is only efficient if not too much communication is
necessary between the processors. This exchange of information limits the
maximum number of processors that can be used economically. The fewer
data dependencies, the better the “scalability” of the problem, meaning
that the speedup is close to proportional to the number of processors.
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Suppose a subroutine that takes 98% of the run time on a single
processor has been perfectly parallelized, but not the remaining part of
the program, which takes only 2% of the time. A simple commonsense
calculation (its result is called Amdahl’s law) will show that 4 processors
provide a speedup of 3.8, and 128 processors provide a speedup of 36.
No matter how many processors are used, the speedup is always less
than 50, demanded by the 2% fraction of nonparallelized code. For a
highly parallel calculation, small nonparallelized parts of the code create
a bottleneck.

As for a single processor, a parallel calculation may be limited by 1)
the number of floating-point operations, 2) memory, 3) the time to move
data between memory and processor, and 4) input/output. For parallel
as well as for single processors moving data from memory to the processor
is slow compared to floating-point arithmetic. If two processors share a
calculation, but one of them has to wait for a result from the other, it
might take longer than on a single processor. Transposing a matrix, a
simple procedure that requires no floating-point operations but lots of
movement of data, can be particularly slow on parallel processors.

Some numerical algorithms do not parallelize efficiently. For example,
a single differential equation evolving from an initial condition requires
at every step information from the previous time step and there is little
potential for parallelization. On the other hand, when the very same pro-
gram is run on different processors only with different input parameters,
the scalability is perfect. No intercommunication between processors is
required during the calculation. The input data are sent to each proces-
sor at the beginning and the output data are collected at the end. Such
a computation is “embarrassingly parallel.”

Distributed computing or grid computing involves processors located
far away from each other in separate computers. It is like parallel com-
puting, but the communication cost is even higher and the platforms
are diverse. Distributed computer systems can be realized, for example,
between computers in a computer lab, as a network of workstations on
a university campus, or with idle personal computers from around the
world. Tremendous computational power can be achieved with the sheer
number of available processors. Judged by the total number of floating
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point operations, distributed calculations rank as the largest computa-
tions ever performed. In an innovative attempt, millions of personal
computers are used to analyze data coming from a radio telescope lis-
tening to space. The project, called SETI@home, tries to detect radio
signals from extraterrestrial intelligences and requires intensive data pro-
cessing. Signals from each part of the sky are independent of signals from
everywhere else in the sky, which allows for ideal parallel efficiency.
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Deep inside Computers

9.1 A Programmer’s View of Computer Hardware

In this section we look at how a program is processed by the computer
and follow it from the source code down to the level of individual bits
executed on the hardware.

The lines of written program code are ultimately translated into hard-
ware dependent machine code. For instance, the following simple line of
C code adds two variables: a=i+j. Suppose i and j have earlier been
assigned values and are stored in memory. At a lower level we can look
at the program in terms of its “assembly language,” which is a kind of
symbolic representation of the binary sequences the program is translated
into:

lw $8, i

lw $9, j

add $10, $8, $9

sw $10, a

The values are pulled from main memory to a small memory unit on
the processor, called “register,” and then the addition takes place. In
this example, the first line loads variable i into register 8. The second
line loads variable j into register 9. The next line adds the contents
of registers 8 and 9 and stores the result in register 10. The last line
copies the content of register 10 to memory. There are typically about
32 registers; they store only a few hundred bytes. Arithmetic operations,
in fact most instructions, operate not directly on entries in memory but
on entries in the register.

At the assembly language level there is no distinction between data
of different types. Floating-point numbers, integers, characters, and so
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on are all represented as binary sequences. What number actually cor-
responds to the sequence is a matter of how it is interpreted by the in-
struction. There is a different addition operation for integers and floats,
for example.

When a processor carries out instructions it first needs to fetch nec-
essary data from the memory. This is a slow process. To speed up the
transport of data a “cache” (pronounced “cash”) is used, which is a small
unit of fast memory located on or near the central processor unit. A hi-
erarchy of several levels of caches is possible, and in fact customary. (The
concept of “caching” is familiar also in another context. Web browsers
cache frequently used internet web pages on the local hard disk to avoid
the slow transport over the network.) Frequently used data are stored in
the cache to be quickly accessible for the processor. Data are moved from
main memory to the cache not byte by byte but in larger units of “cache
lines,” assuming that nearby memory entries are likely to be needed by
the processor soon. If the processor requires data not yet in the cache,
one speaks of “cache misses,” which lead to a time delay.

Table I provides an overview of the memory hierarchy and the relative
speed of its components. The large storage media are slow to access. The
small memory units are fast. In the year 2002 a unit of 1 in the table
corresponded to about 1 nanosecond.

Registers 1
Cache 2–3
Main memory 10–100
Magnetic disk 107

Table 9-I: Memory hierarchy and relative
speed. See table 8-II for comparison with
CPU execution speed.

Instructions themselves, like lw and add, are also encoded as binary
sequences. The meaning of these sequences is hardware-encoded on the
processor. When a program is started, it is first loaded into memory. At
every clock cycle a line of instructions is executed.

During consecutive clock cycles the processor needs to fetch the in-
struction, read the registers, perform the operation, and write to the
register. Depending on the actual hardware these steps may be split up
into even more substeps. The idea of “pipelining” is to execute every step
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on a different, dedicated element of the hardware. The next instruction is
already fetched, while the previous instruction is at the stage of reading
registers, and so on. This is ideally like processing several instructions
simultaneously. Hence, even a single processor tries to execute tasks in
parallel!

The program is stalling when the next instruction depends on the
outcome of the previous one, as for a conditional statement. Although
an if instruction itself is no slower than other elementary operations,
it can slow down the program in this way. In addition, an unexpected
jump in the program can lead to cache misses. For the sake of speed, the
programmer should keep the data flow predictable.

A computer’s CPU is extremely complex. The processor uses its own
intelligence to decide what data to move in which register. For conditional
operations it will speculate based on statistical information which of the
possible branches is most likely to occur next. Much of this complexity
is hidden from the user, even at the assembly language level, and taken
care of automatically.

9.2 Code Optimization

To use resources efficiently, the time saved through optimizing code has
to be weighed against the human resources required to implement these
optimizations. If a new numerical method needs to be implemented to
save a factor of two in execution speed it is, under most circumstances,
not worthwhile. But sometimes writing well performing code is no more
work than writing in badly performing style, and it helps to be aware of
a few facts.

Memory addresses are numbered in a linear manner. Even when an
array has two or more indices, its elements are still stored in a one-
dimensional fashion. The fastest accessible index of an array is for For-
tran the first (leftmost) index and for C the last (rightmost) index. For-
tran stores data row-wise, C column-wise. Reading data along any other
index requires jumping between distant memory locations, leading to
cache misses. The second fastest index is next to the fastest and so on.
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Optimization by the Compiler. Almost any compiler provides options
for automatic speed optimization. A speedup by a factor of five is not
unusual, and is very nice since it requires no work on our part. In the
optimization process the compiler might decide to get rid of unused vari-
ables, pull out common subexpressions from loops, rearrange formulas
to reduce the number of required floating-point operations, inline short
subroutines, rearrange the order of a few lines of code, and more. The
compiler optimization cannot be expected to have too large of a scope; it
mainly does local optimizations. There are a few points to note: First,
rearrangements of formulas can spoil roundoff and overflow behavior. If
an expression is potentially sensitive to roundoff or prone to overflow, set-
ting otherwise redundant parenthesis might help. Some compilers honor
them. Second, it can make a difference whether subroutines are in the
same file or not. Compilers usually do not optimize across files or perform
any global optimization. Third, at the time of compilation it is not clear
(to the computer) which parts of the program are most heavily used or
what kind of situations will arise. The optimizer may try to accelerate
execution of the code for all possible inputs and program branches, which
may not be the best possible speedup for the actual input.

Another trick for speedup: If available, try different compilers and
compare the speed of the executable they produce. Different compilers
sometimes see a program in different ways. For example, a commercial
and a free C compiler may be available.

Whenever a new programming language or a major extension of an
existing one appears, the first available compilers tend to have inmature
optimization abilities. Hence it can be a disadvantage to switch to a
new language standard immediately. Over time, compilers become more
and more intelligent, taking away some of the work programmers need
to do to improve performance of the code. The compiler most likely
understands more about the computer’s central processor than we do,
but the programmer understands her code better overall and will want
to assist the compiler in the optimization.

Profiling and Timing. Hidden or unexpected bottlenecks can be iden-
tified and improvements in code performance can be verified by measur-
ing the execution time for the entire run or the fraction of time spent in
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each subroutine. Note that even for a single user the execution time of
a program varies, say by 10%. Thus, a measured improvement by a few
percent might merely be a statistical fluctuation.

“Thinking Parallel.” Summing numbers can obviously take advantage
of parallel processing. But in the serial implementation

s=a[0];

for(i=1;i<N;i++) s=s+a[i];

the dependency of s on the previous step spoils parallelization. The
sequential implementation disguises the natural parallelizability of the
problem. In Fortran and Matlab a special command, s=sum(a), makes
the parallelizability evident to the compiler.

Recommended References: Patterson & Hennessy, Computer
Organization and Design: The Hardware/Software Interface.

Problem: Is reading a two-dimensional array with dimensions
N × 1 or 1×N as fast as reading a one-dimensional array of length N?
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Counting Operations

Many calculations are limited simply by the sheer number of required
additions, multiplications, or function evaluations. If floating-point oper-
ations are the dominant cost then the computation time will be propor-
tional to the number of mathematical operations. Therefore, we should
practice counting. For example, a0 +a1x+a2x

2 involves three multiplica-
tions and two additions, because the square also requires a multiplication,
but the equivalent formula a0 + (a1 + a2x)x involves only two multiplica-
tions and two additions.

Multiplying two N ×N matrices takes obviously for each element N
multiplications and N − 1 additions. Since there are N 2 elements in the
matrix this yields a total of N 2(2N − 1) floating-point operations, or
about 2N 3 for large N , that is, O(N 3). Note that any operation on a full
N ×N matrix requires at least O(N 2) steps, which it takes to visit every
element once, so N 2 is really the least one can expect for any operation
on the full matrix.

The “order of” symbol O means that there is a constant c such that
the function is no larger than cxN for sufficiently large N . For example,
2N2 + 4N + log(N) + 7− 1/N is O(N 2). With this definition, a function
that is O(N 6) is also O(N 7), but it is usually implied that the power
is the lowest possible. The analogous definition is also applicable for
small numbers, as in chapter 6. (Saying a number is of order 109 means
something entirely different.)

An actual comparison of the relative speed of floating-point opera-
tions is given in table 8-I. According to that table, we do not need to
distinguish between addition, subtraction, and multiplication, but divi-
sions take somewhat longer.

—————–
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It is easy to exceed the computational ability of even the most pow-
erful computer. Hence methods are needed that solve a problem quickly.
As a demonstration we calculate the determinant of a matrix. Doing
these calculations by hand gives us a feel for the problem. Although we
are ultimately interested in the N × N case, the following 3 × 3 matrix
serves as an example:

A =





1 1 0
2 1 −1
−1 2 5





One way to evaluate a determinant is Cramer’s rule, according to
which the determinant can be calculated in terms of the determinants
of submatrices. Cramer’s rule using the first row yields det(A) = 1 ×
(5 + 2) − 1 × (10 − 1) + 0 × (4 + 1) = 7 − 9 = −2. For a matrix of
size N this requires calculating N subdeterminants, each of which in
turn requires N − 1 subdeterminants, and so on. Hence the number of
necessary operations is O(N !).

There is another formula for the determinant. It involves the sum over
all permutations of columns. For a 3 × 3 matrix det(A) = a11a22a33 −
a11a23a32 + a12a23a31− a12a21a33 + a13a21a32− a13a22a31. For our example
det(A) = 1× 1× 5− 1× (−1)× 2 + 1× (−1)× (−1)− 1× 2× 5− 0×
2 × 2 + 0 × 1 × (−1) = 5 + 2 + 1 − 10 = −2. For general N , there are
N ! different permutations, so that is about equally slow as the previous
method.

A faster way of evaluating the determinant of a large matrix is to bring
the matrix to upper triangular or lower triangular form by linear trans-
formations. Appropriate linear transformations preserve the value of the
determinant. The determinant is then the product of diagonal elements,
as is clear from either of the two previous definitions. For our example
the transforms (row2−2×row1) → row2 and (row3+row1) → row3 yield
zeros in the first column below the first matrix element. Then the trans-
form (row3+3×row2) → row3 yields zeros below the second element on
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the diagonal:





1 1 0
2 1 −1
−1 2 5



 −→





1 1 0
0 −1 −1
0 3 5



 −→





1 1 0
0 −1 −1
0 0 2





Now, the matrix is in triangular form and det(A) = 1× (−1)× 2 = −2.
For an N × N matrix one needs N such steps; each linear transforma-
tion involves adding a multiple of one row to another row, that is, N or
fewer additions and N or fewer multiplications. Hence this is an O(N 3)
procedure. Therefore bringing it to upper triangular form is far more
efficient than either of the previous two methods. For say N = 10, the
change from N ! to N 3 means a speedup of very roughly a thousand.
This enormous speedup is achieved through a better choice of numerical
method.

—————–

We all know how to solve a linear system of equations by hand, by
extracting one variable at a time and repeatedly substituting it in all re-
maining equations, a method called Gauss elimination. This is essentially
the same as we have done above in eliminating columns. The following
symbolizes the procedure again on a 4× 4 matrix:





****
****
****
****



 −→





****
***
***
***



 −→





****
***
**
**



 −→





****
***
**
*





Stars indicate nonzero elements and blank elements are zero. Eliminating
the first column takes about N 2 floating-point operations, the second
column (N − 1)2, the third column (N − 2)2, and so on. This yields a
total of about N 3/3 floating-point operations. (One way to see that is to
approximate the sum by an integral, and the integral of N 2 is N 3/3.)

Once triangular form is reached, the value of one variable is known
and can be substituted in all other equations, and so on. These substi-
tutions require only O(N 2) operations. A count of N 3/3 is less than the
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Figure 10-1: Execution time of a pro-
gram solving a system of N linear equa-
tions in N variables. For comparison,
the dashed line shows an increase propor-
tional to N3.

approximately 2N 3 operations for matrix multiplication. Solving a linear
system is faster than multiplying two matrices!

During Gauss elimination the right-hand side of a system of linear
equations is transformed along with the matrix. Many right-hand sides
can be transformed simultaneously, but they need to be known in ad-
vance. (Another method, called LU-decomposition, also an O(N 3) al-
gorithm, decomposes the matrix such that any right-hand side can be
accommodated quickly.)

Inversion of a square matrix can be achieved by solving a system with
N different right-hand sides. Since the right-hand side(s) can be carried
along in the transformation process, this is still O(N 3). Given Ax = b,
the solution x = A−1b can be obtained by multiplying the inverse of A
with b, but it is not necessary to invert a matrix to solve a linear system.
Solving a linear system is faster than inverting and inverting a matrix is
faster than multiplying two matrices.

We have only considered efficiency. One may also want to take care
of not dividing by too small a number or optimize roundoff behavior
or introduce parallel efficiency. Since the solution of linear systems is
an important and ubiquitous application, all these issues have received
detailed attention and elaborate routines are available.

Figure 1 shows the actual time of execution for a program that solves
a linear system of N equations in N variables. First of all, note the
tremendous computational power of computers today (2004): Solving a
linear system in 1000 variables, requiring about 300 million floating point
operations, takes only one second. The increase in computation time with
the number of variables is not as ideal as expected from the operation
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count, because time is required not only for arithmetic operations but also
for data movement. For this particular implementation the execution
time is larger when N is a power of two. Other wiggles in the graph
arise because the execution time is not exactly the same every time the
program is run.

—————–

Table I shows the operation count for several important problems.
Operation count also goes under the name of “computational cost” or
“complexity” (of an algorithm).

problem operation count memory count

Solving system of N linear

equations in N variables
O(N 3) O(N 2)

Inversion of N ×N matrix O(N 3) O(N 2)

Inversion of tridiagonal

N ×N matrix
O(N) O(N)

Sorting N real numbers O(N logN) O(N)

Fourier transform of N

equidistant points
O(N logN) O(N)

Table 10-I: Order counts and required memory for several important problems
solved by classical algorithms.

A tridiagonal matrix has the following shape:











∗ ∗
∗ ∗ ∗
∗ ∗ ∗

. . . . . . . . .

∗ ∗ ∗
∗ ∗











A sparse materix, where most elements are zero, can be solved with ap-
propriate algorithms, much faster and with less storage than a full matrix.
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Recommended References: Golub & Van Loan, Matrix Com-
putations is a standard work on numerical linear algebra.



11

Random Numbers

and Stochastic Methods

11.1 Generation of Probabilistic Distributions

Random number generators are not truly random, but use determin-
istic rules to generate “pseudorandom” numbers, for example xi+1 =
(23xi)mod(108+1), meaning the remainder of 23xi/100000001. The start-
ing value x0 is called the “seed.” Pseudorandom number generators can
never ideally satisfy all desired statistical properties. For example, since
there are only finitely many computer representable numbers they will
ultimately always be periodic, though the period can be extremely long.
Random number generators are said to be responsible for many wrong
computational results. Particular choices of the seed can lead to short
periods. Likewise, the coefficients in formulas like the one above need
to be chosen carefully. Many implementations of pseudorandom number
generators were simply badly chosen or faulty. The situation has however
improved and current random number generators suffice for almost any
practical purpose. Source code routines seem to be universally better
than built-in random number generators provided by libraries.

Pseudorandom number generators produce a uniform distribution of
numbers in an interval, typically either integers or real numbers in the
interval from 0 to 1 (without perhaps one or both of the endpoints).
How do we obtain a different distribution? A new probability distri-
bution, p(x), can be related to a given one, q(y), by a transformation
y = y(x). The probability to be between x and x+dx is p(x)dx. By con-
struction, this equals the probability to be between y and y+ dy. Hence,
|p(x)dx| = |q(y)dy|, where the absolute values are needed because y could

56
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decrease with x, while probabilities are always positive. If q(y) is uni-
formly distributed between 0 and 1, then p(x) = |dy/dx| for 0 < y < 1
and otherwise p(x) = 0. Integration with respect to x and inverting
yields the desired transformation. For example, an exponential distribu-
tion p(x ≥ 0) = exp(−x) requires y(x) =

∫
p(x)dx = − exp(−x) +C and

therefore x(y) = − ln(C−y). With C = 1 the distribution has the proper
bounds. This transforms uniformly distributed numbers to exponentially
distributed numbers. In general, it is necessary to invert the integral
of the desired distribution function p(x). That can be computationally
expensive, particularly when the inverse cannot be obtained analytically.

Alternatively the desired distribution p(x) can be enforced by rejecting
numbers with a probability 1− p(x), using a second randomly generated
number. These two methods are called “transformation method” and
“rejection method,” respectively.

Recommended References: For generation and testing of ran-
dom numbers see Knuth, The Art of Computer Programming, Vol. 2.
Methods for generating probability distributions are found in Devroye,
Non-Uniform Random Variate Generation, which is also available on the
web at http://cg.scs.carleton.ca/˜luc/rnbookindex.html.

11.2 Monte Carlo Integration: Accuracy through

Randomness

Besides obvious uses of random numbers there are numerical methods
that intrinsically rely on probabilistic means. A representative example
is the Monte Carlo algorithm for multi-dimensional integration.

Consider the following method for one-dimensional integration. We
choose random coordinates x and y, evaluate the function at x, and see
whether y is below or above the graph of the function; see figure 1. If
this is repeated with many more points over a region, then the fraction
of points that fall below the graph is an estimate for the area under

http://cg.scs.carleton.ca/~luc/rnbookindex.html
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y

x

Figure 11-1: Randomly distributed points
are used to estimate the area below the
graph.

the graph relative to the area of the entire region. This is Monte Carlo
integration.

Suppose we choose N randomly distributed points, requiring N func-
tion evaluations. How fast does the integration error decrease with N?
The probability of a random point to be below the graph is proportional
to the area a under the graph. Without loss of the generality, the con-
stant of proportionality can be set to one. The probability P of having
m points below the graph and N − m points above the graph is given
by a binomial distribution, P (m) =

(
n
m

)
am(1 − a)N−m. An error E can

be defined as the root mean square difference between the exact area a
and the estimated area m/N : E2 =

∑N
m=0(m/N − a)2P (m). This sum is

E2 = (1− a)a/N . When the integral is estimated from N sample points,
the error E is proportional to 1/

√
N . For integration in two or more

rather than one variable, the exact same calculation applies.

A conventional summation technique to evaluate the integral has an
error too, due to discretization. With a step size of h, the error would
be typically O(h2) or O(h4), depending on the integration scheme. In
one dimension, h is proportional to 1/N and it makes no sense to use
Monte Carlo integration instead of conventional numerical integration
techniques.

In more than one variable, conventional integration requires more
function evaluations to achieve a sufficient resolution in all directions.
For N function evaluations and d variables the grid spacing h is pro-
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portional to N−1/d. Hence, in many dimensions, the error decreases ex-
tremely slowly with the number of function evaluations. With, say, a
million function evaluations for an integral over six variables, there will
only be 10 grid points along each axis. The accuracy of Monte Carlo
integration, on the other hand, is the same for any number of integra-
tion variables. It is more efficient to distribute the one million points
randomly and measure the integral in this way.

Statistical methods can be used efficiently to solve deterministic prob-
lems!

11.3 Ising Model∗

The Ising model consists of a regular lattice where each site has a “spin”
which points up or down. The spins are thought of as magnets that
interact with each other. The energy E at each site is in this model
determined by the nearest neighbors (n.n.) only: Ei = −J∑(n.n.) sisj,
where the spin s is +1 or −1, and J is a positive constant. The lattice
can be in one, two, or more dimensions. In one dimension there are
two nearest neighbors, on a two-dimensional square lattice, four nearest
neighbors, and so on. There is no real physical system that behaves
exactly this way, but it is a simple model for the thermodynamics of an
interacting system. Ferromagnetism is the closest physical analog.‡

The spins have the tendency to align with each other to minimize
energy, but this is counteracted by thermal fluctuations. At zero tem-
perature all spins will align in the same orientation to reach minimum
energy (either all up or all down, depending on the initial state). At
nonzero temperatures will there be relatively few spins opposite to the
overall orientation of spins, or will there be a roughly equal number of up
and down spins? In the former case there is macroscopic magnetization;
in the latter case the average magnetization vanishes.

‡ Like magnetic poles repel each other, and the energy is lowest when neighboring
magnets have opposite orientations. Hence, it would appear we should choose J < 0 in
our model. However, electrons in metals interact in several ways and in ferromagnetic
materials the energies sum up to align electron dipoles. For this reason we consider
J > 0.
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According to the laws of statistical mechanics the probability to oc-
cupy a state with energy E is proportional to exp(−E/kT ), where k
is the Boltzmann constant and T the temperature. In equilibrium the
number of transitions from up to down equals the number of transi-
tions from down to up. Let W (+ → −) denote the probability for
a flip from spin up to spin down. Since in steady state the probabil-
ity P of an individual spin to be in one state is proportional to the
number of sites in that state, the equilibrium condition translates into
P (+)W (+→ −) = P (−)W (− → +). For a simulation to reproduce the
correct thermodynamic behavior, we hence need W (+ → −)/W (− →
+) = P (−)/P (+) = exp[−(E(−) − E(+))/kT ]. For the Ising model
this ratio is exp(2bJ/kT ), where b is an integer that depends on the ori-
entations of the nearest neighbors. There is more than one possibility
to choose the transition probabilities W (+ → −) and W (− → +) to
achieve the required ratio. Any of them will lead to the same equilibrium
properties. Call the energy difference between before and after a spin
flip ∆E, defined to be positive when the energy increases. One possible
choice is to flip from the lower-energy state to the higher-energy state
with probability exp(−∆E/kT ) and to flip from the higher-energy state
to the lower-energy state with probability one. If ∆E = 0, when there
are equally many neighbors pointing in the up and down direction, then
the transition probability is taken to be one, because this is the limit
for both of the preceding two rules. Ideas have names and this method,
which transitions with probability min(1, exp(−∆E/kT )), is known as
the “Metropolis algorithm.”

Such a simulation requires only a short program, which uses a random
number generator. As intended the program produces the following flips
for the one-dimensional model (considering the middle one of three spins):
+ − + → + + +, + + − → + − −, and either + + + → + + + or
+ + +→ +−+. The last transition never occurs at zero temperature.

Figure 3 shows the magnetization as a function of temperature ob-
tained with such a program. Part (a) is for the one-dimensional Ising
model and the spins are initialized in random orientations. The scatter
of points at low temperatures arises from insufficient equilibration and
averaging times. In one dimension the magnetization vanishes for any
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Figure 11-2: Magnetization versus temperature from simulations of the Ising
model in (a) one dimension (squares) and (b) two dimensions (diamonds). The
dashed line shows the analytic solution for an infinitely large two-dimensional
system, [1− 1/ sinh4(2J/kT )]1/8.

(a) (b) (c)

Figure 11-3: Snapshot of spin configurations for the Ising model (a) below, (b)
close to, and (c) above the critical temperature. Black indicates positive spins,
white negative spins.

temperature larger than zero.

But in two dimensions there are two phases. Part (b) of figure 3
shows the magnetization for the two-dimensional Ising model, where ini-
tially all spins point up. At low temperatures there is magnetization,
but at high temperatures the magnetization vanishes. The two phases
are separated by a continuous, not a discontinuous, change in magneti-
zation. As the system size increases this transition becomes more and
more sharply defined. For an infinite system, the magnetization vanishes
beyond a specific temperature Tc ≈ 2.269J/k, the “critical temperature.”

Figure 4 shows snapshots of the spin configuration in the two-dimen-
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sional Ising model, at temperatures below, close to, and above the phase
transition. At low temperatures, panel (a), most spins are aligned in the
same direction, with a few exceptions. Occasionally there are individ-
ual spins that flip. In this regime, spins correlate over long distances,
although the interactions include only nearest neighbors. At higher tem-
peratures there are more fluctuations and more spins of the opposite ori-
entation. Above the phase transition, panel (c), there are a roughly equal
number of spins up and down, clustered in small groups. The fluctuations
dominate and there is no macroscopic magnetization.

For the Ising model the total energy of the system can change with
time. Call Ω(E) the number of spin configurations with total energy
E, where E is the sum of the energies of all individual spins, E =
∑

j Ej. The probability to find the system in energy E is proportional to
Ω(E)

∏

j exp(−Ej/kT ) = Ω(E) exp(−E/kT ). This expression can also
be written as exp(−F/kT ) with F = E − kT ln Ω(E). For a given tem-
perature, the system is thus most often in a configuration that minimizes
F , because it makes the exponential largest.

The thermodynamic properties of the Ising model can be obtained
analytically if one manages to explicitly count the number of possible
configurations as a function energy. This can be done in one dimension,
but in two dimensions it is much, much, much harder. The dashed line
in figure 3(b) shows this exact solution, first obtained by Lars Onsager.
In three dimensions no one has achieved it, and hence we believe that
it is impossible to do so. The historical significance of the Ising model
stems largely from its analytic solution. Hence, our numerical attempts in
one and two dimensions have had a merely illustrative nature. But even
simple variations of the model (e.g., the Ising model in three dimensions
or extending the interaction beyond nearest neighbors) are not solved
analytically. In these cases numerics is valuable and no more difficult
than the simulations we have gone through here.

Entertainment: One good example of an online applet that
demonstrates the spin fluctuations in the two-dimensional Ising model
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is at www2.truman.edu/˜velasco/ising.html. The temperature can be
changed interactively.

http://www2.truman.edu/~velasco/ising.html


12

Algorithms, Data Structures,

and Complexity

12.1 An Example Algorithm and Data Structures

Heapsort is a general-purpose sorting algorithm, which is fast even in the
worst case scenario. It exploits data arrangement and demonstrates that
a good algorithm does not have to be straightforward. Suppose we need
to order N real numbers. We start by taking three numbers and select
the largest among them. We do the same with the next three numbers,
and so on, but do not use up all of the elements. Remaining elements are
compared with the largest numbers among previous triplets to produce
a heap of numbers as illustrated in figure 1(a). If the upper number in
any triplet is not the largest, it is swapped with the larger of the two
numbers beneath it. At the end, the largest element is on top, but the
remainder is not yet sorted. The final arrangement of data is shown in
the rightmost tree of figure 1(a).

The next stage of the algorithm starts with the largest element, on
top, and replaces it with the largest element on the level below, which is
in turn replaced with its largest element on the level below, and so on.
In this way the largest element is pulled off first, then the second largest,
third largest, and so on, and all numbers are eventually sorted according
to their size; see figure 1(b).

Take N ′ to be the smallest integer power of 2 larger than N . The
number of levels in the heap is log2N

′. The first stage of the algorithm,
building the heap, requires up to O(N logN ′) = O(N logN) work. In
the second stage, comparing and swapping is necessary up to N times for
each level of the tree. Hence the algorithm is 2O(N logN), which is the

64
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(a)

finished heap

9 9

/ \ / \

7 7 9 7 2 7 8

/ \ / \ / \ / \ / \ / \ / \

1 4.1 5 9 8 2 1 4.1 5 8 2 1 4.1 5 8 1 4.1 5 2

(b)

9 8 7 5

/ \ / \ / \ / \

7 8 7 5 4.1 5 4.1 2 ...

/ \ / \ / \ \ / \ /

1 4.1 5 2 1 4.1 2 1 2 1

Figure 12-1: Example of heapsort algorithm applied to the unsorted sequence 7,
1, 4.1, 5, 9, 8, 2. (a) construction of the heap; (b) extraction of the maximum.

same as O(N logN). Considering that merely going through N numbers
is O(N) and that logN is usually a small number, sorting is “fast.”

A binary tree as in figure 2 can simply be stored as a one-dimensional
array. The index in the array for the i-th element in the b-th level of the
tree can be chosen as 2b−1 + i− 1.

a1»»»»
XXXX

a2 a3
©© HH ©© HH

a4 a5 a6 a7

¢¢ AA ¢¢ AA ¢¢ AA ¢¢ AA
a8 a9 a10 a11 a12 a13 a14 a15

Figure 12-2: A binary tree indexed
as one-dimensional array with elements
a1, ..., a15.

Trees, which we have encountered in the heapsort algorithm, are a
“data structure.” Arrays are another, simple data structure. A further
possibility is to store pointers to data, that is, every data entry includes
a reference to where the next entry is stored. Such a storage arrangement
is called “list.” Inserting an element in a sequence of data is faster when
the data are stored as a list rather than as an array. On the other hand,
accessing the last element is faster in an array than in a list. Lists cause
cache misses (described in chapter 9), because sequential elements are
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not stored sequentially in memory, in contrast to the cache’s locality
assumption.

12.2 Computational Complexity; Intractable Prob-

lems

It is rarely possible to prove it takes at least a certain number of steps to
solve a problem, no matter what algorithm one can come up with. For
sorting it is possible, but that is an exception. Hence one can rarely avoid
thinking “Isn’t there a faster way to do this?” A famous example of this
kind is multiplication of two N ×N matrices in O(N log2 7) steps, log2 7 =
2.8..., which is less than O(N 3). (Unfortunately, the prefactor of the
operation count for this asymptotically faster algorithm is impractically
large.) The operation count of the fastest possible algorithm is called the
“computational complexity” of the problem.

The number of necessary steps can increase very rapidly with problem
size. Not only like a power as N 3, but as N ! or exp(N). These are compu-
tationally unfeasible problems, because even for moderate N they cannot
be solved on any existing computer, e.g. 100! ≈ 10158; even 109 a second
cannot sum up to this. A problem is called computationally “intractable”
when the required number of steps to solve it increases faster than any
power of N . For example, combinatorial problems can be intractable
when it is necessary to try more or less all possible combinations.

A concrete example of an intractable problem is finding the longest
common subsequence among several strings. A subsequence is the string
with elements deleted. For example, ATG is a subsequence of CATAGC. The
elements have the same order but do not have to be contiguous. This
problem arises in spell checking and genome comparisons. (Genomes
contain sequences of nucleotide bases and these bases are abbreviated
with single letters.) Finding the longest common subsequence requires
an algorithm which is exponential in the number of sequences; see figure 3.

For some problems it has been proven that it is impossible to solve
them in polynomial time; others are merely believed to be intractable
since nobody has found a way to do them in polynomial time. (By the
way, proving that finding the longest common subsequence, or any equiv-
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AGTGGACTTTGACAGA

AGTGGACTTAGATTTA

TGGATCTTGACAGATT

AGTTGACTTACGTGCA

ATCGATCTATTCACCG

Figure 12-3: Five sequences consisting of
letters A, C, G, and T. The longest com-
mon subsequence is TGACTTAG.

alent problem, cannot be solved in polynomial time is one of the major
outstanding questions in present-day mathematics.) Since intractable
problems do arise in practice, remedies have been looked for. For exam-
ple, it might be possible to obtain a solution that is probably optimal in
less time and the probability of error can be smaller than the chance that
a cosmic ray particle hits the CPU and causes an error in the calculation.

12.3 Complexity for Finite Precision

Dialog on complexity and precision between a raccoon and its teacher:

Raccoon: Why can one not do the integral of exp(−x2)?
Teacher: What do you mean by it cannot be “done”?
Raccoon: I mean, it cannot be expressed in terms of elementary functions,

or at least not by a finite number of elementary functions.
Teacher (impressed): Yes, but the integral is simply the Error function,

a special function.
Raccoon: Special functions are hard to evaluate. It’s really the same

problem.
Teacher: Are they? How would you evaluate a special function?
Raccoon: Expand it in a series that converges fast or find some kind of

interpolating function.
Teacher: And how would you evaluate an elementary function, like sine?
Raccoon (smiling): With a calculator or computer.
Teacher: How does the computer evaluate it? It uses an approximation

algorithm, a rapidly converging series for instance. At the end, the
hardware only adds, subtracts, multiplies, and divides. Computing
an Error function or a sine function are really the same process. Do
you know of any definition of “elementary functions”?
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Raccoon (pausing): Not that I remember.
Teacher: It’s because there is no fundamental definition of elementary

function other than convention. Elementary functions are the ones
frequently available on calculators and within programming lan-
guages. They are most likely to have ready-made, highly efficient
implementations. Calculating an elementary function, a special
function, or a function with no name at all to 16-digit precision
is fundamentally the same kind of problem. For example, the Error
function can be calculated to six digits of precision with only 23
floating point operations. (She takes Abramovitz & Stegun, “Hand-
book of Mathematical Functions” off the bookshelf and, after a brief
search, points at the following formula:)

erf(x) =
2√
π

Z x

0

e−t2dt ≈ 1 − 1

(1 + a1x+ a2x2 + a3x3 + a4x4 + a5x5 + a6x6)16

a1=0.0705230784, a2=0.0422820123, a3=0.0092705272, a4=0.0001520143, a5=0.0002765672,

and a6=0.0000430638. For x < 0 use −erf(|x|). Rearranging the polynomial
can decrease the number of floating point operations to 18, but
may worsen roundoff.

Raccoon: Actually the new C math library includes an erf function,
which can be called the same way as sin.

Teacher: Here we go.
Raccoon: But how come one cannot solve a fifth degree polynomial?
Teacher: There is a fundamental distinction here. Surely even high de-

gree polynomials have solutions, only these solutions can generally
no longer be expressed in closed form. They can be computed to
any desired accuracy using numerical methods such as the Newton
method. The solution formulas for second, third, and fourth degree
polynomials involve roots, and computing a root, too, lasts longer
the more accuracy is required.

Raccoon: You mean unlike divisions which after a certain number of steps
stop or the digits become periodic?

Teacher: Yes. Either case, fifth degree or second degree polynomial, the
solution is essentially computed using an open-ended procedure.

Raccoon (impressed): I see.
Teacher: And that’s only from a theoretical point of view. The symbolic

solution for fourth degree polynomials is usually too cumbersome
to be of practical use anyway.
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Recommended References: Cormen, Leiserson, Rivest & Stein,
Introduction to Algorithms—everyone uses it. Knuth, The Art of Com-
puter Programming, Vol. 3 is the classic reference on sorting and search-
ing.
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Symbolic Computation

13.1 Computer Algebra Systems

Symbolic computation can reduce an expression like ab/b2 to a/b or eval-
uate the integral of x2 as x3/3+C. This can be very time-saving. For ex-
ample, integration of rational functions would require one to sit down and
work out a partial fraction decomposition—a tedious procedure. Instead,
we can get answers immediately using symbolic computation software.

A sample session with the program Mathematica:

/* simple indefinite integral */

In[1]:= Integrate[x^2,x]

Out[1]= x^3/3

/* integration of rational function */

In[2]:= Integrate[(1-3*x^2+x^5)/(1+x+x^2),x]

1 + 2 x

3 4 4 ArcTan[-------]

x x Sqrt[3] 2

Out[2]= -2 x - -- + -- + ----------------- + Log[1 + x + x ]

3 4 Sqrt[3]

/* roots of a 4th-degree polynomial */

In[3]:= Solve[-48-80*x+20*x^3+3*x^4==0,x]

70
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Out[3]= {{x -> -6}, {x -> -2}, {x -> -2/3}, {x -> 2}}

/* Taylor expansion around 0 up to 5th order */

In[4]:= Series[f[h] - 2 f[0] + f[-h],{h,0,5}]

Out[4]= f’’[0] h^2 + (1/12) f^(4)[0] h^4 + O[h]^6

Symbolic computation software is efficient for certain tasks, but worse
than the human mind for others. Solving a system of linear equations
symbolically on a computer is slow, taking into account the additional
time it takes to input the data, to carry out automatic simplification of
the resulting expression, and to read the output (not to mention the time
it takes to figure out how to use the software). With the current state of
the software, it is usually much faster to do it by hand. If we cannot man-
age by hand, neither will the computer. Simplifying expressions is also
something humans seem to be far better in than computers. Especially
when the same calculation is carried out by hand over and over again,
the human brain recognizes simplifications that elude current symbolic
algebra packages.

Software packages can have bugs and mathematical handbooks can
have typos. Fortunately, bugs tend to get corrected over time, in books
as well as in software. And there are still explicitly solvable integrals, even
simple ones, that current symbolic computation programs are unable to
recognize. Can we trust results from computer algebra systems? The
answer is that neither can we trust manual symbolic manipulations (as
illustrated by the anecdote on page iv). The reliability of any result
depends on thoughtfulness.

Currently available comprehensive packages with symbolic com-
putation abilities are Axiom, Macsyma, Maple, Mathematica, and Re-
duce. For more information try SymbolicNet at www.symbolicnet.org.

A special purpose data base is the On-Line Encylopedia of Integer Se-
quences by Neil J. A. Sloane at www.research.att.com/˜njas/sequences/.

http://www.symbolicnet.org/
http://www.research.att.com/~njas/sequences/
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13.2 Diagrammatic Techniques∗

One kind of symbolic computation, used by humans and for computers,
are diagrammatic perturbation expansions. Consider a classical gas at
temperature T . The partition function is the sum of exponential factors
exp(−E/kT ), where E is kinetic plus potential energy and k the Boltz-
mann constant. Denote β = 1/kT for brevity. The kinetic energy of a
particle is its momentum squared divided by two times its mass, p2/2m.
The potential energy is given by the distance r between particles via the
pairwise potential u(|r|), whose form we keep general.

For one particle there is no potential energy and the partition function
is Z(β, V,m) = C

∫
dp
∫
dre−βp

2/2m, where V is the volume and C a
physical constant. (That constant contains information about how many
elements the sum has within a continuous interval.) For two particles the
partition function is

Z(β, V,m) = C

∫

dp1dp2

∫

dr1dr2e
−β

»

p2
1

2m
+

p2
2

2m
+u(r1−r2)

–

.

The integrals over momentum could be easily carried out since they are
Gaussian integrals. However, a gas without interactions is an ideal gas
and hence we simply write Z = Zideal

∫
dr1dr2e

−βu(r1−r2), which also ab-
sorbs the constant C. An expansion for small β, that is, high temperature,
yields Z = Zideal

∫
dr1dr2[1 − βu12 + β2

2
u2

12 + ...]. Here, we abbreviated
u12 = u(|r1 − r2|). For three particles,

Z

Zideal

=

∫

dr1dr2dr3e
−β(u12+u13+u23)

=

∫

dr1dr2dr3[1− β(u12 + u13 + u23) +

+
β2

2!
(u2

12 + u2
13 + u2

23 + 2u12u13 + 2u12u23 + 2u13u23) + ...]

=

∫

dr1dr2dr3

[

1− 3βu12 + 3
β2

2!
(u2

12 + 2u12u13) + ...

]

To keep track of the terms, they can be represented by diagrams. For
example,
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∫
dr1dr2dr3u12 =

u1¢
¢
¢
u2

u3

Since u12, u13, and u23 yield the same contribution, one diagram suffices
to represent all three terms. The full perturbation expansion for Z/Zideal

in diagrammatic form is

u

u

u

−3β×
u¢
¢
¢
u

u

+ 3
2!
β2×

u

u

u

+3β2×
u¢
¢
¢
u

u

+ ...

The number of dots is the number of particles. The number of lines cor-
responds to the power of β, that is, the order of the expansion. Every
diagram has a multiplication factor corresponding to the number of dis-
tinct possibilities it can be drawn. In addition, it has a factorial and
a binomial prefactor from the coefficients in the expansion. Using the
diagrams, it is straightforward to write down the perturbation expansion
for more particles or to higher order.

Not every diagram requires to calculate a new integral. For example,
the four-particle term

∫
dr1dr2dr3dr4u12u34 =

(∫
dr1dr2u12

) ∫
dr3dr4u34.

Hence, this diagram can be reduced to the product of simpler diagrams:

u

u

u

u

=
u

u

×
u

u

Disconnected parts of diagrams always multiply each other.
For the series expansion to converge, integrals of u and of powers

of u need to converge. Unfortunately, the integrals diverge for many
potentials. For example, for a one-dimensional gas of charged particles, u
is proportional to 1/r, and

∫
u(r)dr diverges when the particles are very

close to each other and when they are very far from each other. Despite
divergent integrals, power series expansions of exponentials are common
in quantum field theory.



14

A Crash Course on

Partial Differential Equations

Partial differential equations (PDEs) are differential equations in two or
more variables, and because they involve several dimensions, solving them
numerically is often computationally intensive. Moreover, they come in
such a variety that they often require tailoring for individual situations.
Usually very little can be found out about a PDE analytically, so they
often require numerical methods. Hence, something should be said about
them here.

There are two major distinct types of PDEs. One type describes the
evolution over time, or any other variable, starting from an initial con-
figuration. Physical examples are the propagation of sound waves (wave
equation) and the spread of heat in a medium (diffusion equation or heat
equation). These are “initial value problems.” The other group are static
solutions constrained by boundary conditions. Examples are the electric
field of charges at rest (Poisson equation) and the charge distribution
of electrons in an atom (time-independent Schrödinger equation). These
are “boundary value problems.” The same distinction can already be
made for ordinary differential equations. For example, −f ′′(x) = f(x)
with f(0) = 1 and f ′(0) = −1 is an initial value problem, while the same
equation with f(0) = 1 and f ′(1) = −1 is a boundary value problem.

74
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14.1 Initial Value Problems by Finite Differences

As an example of an initial value problem, consider the advection equation
in one-dimensional space x and time t:

∂f(x, t)

∂t
+ v

∂f(x, t)

∂x
= 0.

This describes, for example, the transport of a substance with concentra-
tion f in a fluid with velocity v. When a quantity is conserved, changes
with time are due to stuff moving in from one side or out the other side.
The flux at any point is vf and the amount of “stuff” in an interval of
length 2h is 2hf , hence ∂(2fh)/∂t = vf(x− h)− vf(x+ h). In the limit
h→ 0, this leads to the local conservation law ∂f/∂t+ ∂(vf)/∂x = 0.

If v is constant, then the solution is simply f(x, t) = g(x− vt), where
g can be any function in one variable; its form is determined by the
initial condition f(x, 0). In an infinite domain or for periodic boundary
conditions, the average of f and the maximum of f never change.

A simple numerical scheme would be to replace the time derivative
with [f(x, t+k)− f(x, t)]/k and the spatial derivative with [f(x+h, t)−
f(x − h, t)]/2h, where k is a small time interval and h a short distance.
The advection equation then becomes

f(x, t+ k)− f(x, t)

k
+O(k) + v

f(x+ h, t)− f(x− h, t)
2h

+O(h2) = 0.

This discretization is accurate to first order in time and to second order
in space. With this choice we arrive at the scheme f(x, t+ k) = f(x, t)−
kv[f(x+ h, t)− f(x− h, t)]/2h.

Instead of the forward difference for the time discretization we can use
the backward difference [f(x, t) − f(x, t − k)]/k or the center difference
[f(x, t+ k)− f(x, t− k)]/2k. Or, f(x, t) in the forward difference can be
eliminated by replacing it with [f(x + h, t) + f(x − h, t)]/2. There are
further possibilities, but let us consider only these four. Table I lists the
resulting difference schemes and some of their properties.

For purely historical reasons some of these schemes have names. The
second scheme is called Lax-Wendroff, the third Leapfrog (a look at its
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stencil scheme stability

e e e

e

fn+1
j = fnj − v k

2h
(fnj+1 − fnj−1)

unconditionally
unstable

e e e

e fn+1
j + v k

2h
(fn+1
j+1 − fn+1

j−1 ) = fnj
unconditionally
stable

e

e

e

e
fn+1
j = fn−1

j − v k
h
(fnj+1 − fnj−1)

conditionally stable
k/h < 1/|v|

e

e

e fn+1
j = 1

2
(1− v k

h
)fnj+1 + 1

2
(1 + v k

h
)fnj−1

conditionally stable
k/h < 1/|v|

Table 14-I: A few finite-difference schemes for the advection equation. The
first column illustrates the space and time coordinates that appear in the finite-
difference formulae, where the horizontal is the spatial coordinate and the ver-
tical the time coordinate, up being the future. Subscripts indicate the spatial
index and superscripts the time step, fnj = f(jh, nk).

stencil in table I explains why), and the last Lax-Friedrichs. But there
are so many possible schemes that this nomenclature is not practical.

The first scheme does not work at all, even for constant velocity. Fig-
ure 1(a) shows the appearance of large, growing oscillations that cannot
be correct, since the exact solution is the initial conditions shifted. This
is a numerical instability.

Since the advection equation is linear in f , we can consider a sin-
gle mode f(x, t) = f(t) exp(imx), where f(t) is the amplitude and m
the wave number. The general solution is a superposition (sum) of such
modes. (Alternatively, we could take the Fourier transform of the dis-
cretized scheme with respect to x.) For the first scheme in table I this
leads to f(t+ k) = f(t)− vkf(t)[exp(imh)− exp(−imh)]/2h and further
to f(t + k)/f(t) = 1 − ikv sin(mh)/h. Hence, the amplification factor
|A|2 = |f(t + k)/f(t)|2 = 1 + (kv/h)2 sin2(mh), which is larger than 1.
Modes grow with time, no matter how fine the resolution. Modes with
shorter wavelength (larger m) grow faster, therefore the instability.
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Figure 14-1: Numerical solution of the advection equation (solid line) compared
to the exact solution (dashed line) for four different numerical methods. All
four schemes are integrated over the same time period and from the same initial
condition.

The same analysis applied, for instance, to the last of the four schemes
yields |A|2 = cos2(mh) + (vk/h)2 sin2(mh). As long as |vk/h| ≤ 1, the
amplification factor |A| ≤ 1, even for the worst m. Hence, the time step k
must be chosen such that k ≤ h/|v|. This is a requirement for numerical
stability.

The second scheme in table I contains fn+1, the solution at a future
time, simultaneously at several grid points and hence leads only to an
implicit equation for fn+1. It is therefore called an “implicit” scheme.
For all other discretizations shown in the table, fn+1 is given explicitly
in terms of fn. The system of linear equations can be represented by a
matrix that multiplies the vector fn+1 and yields fn at the right-hand
side:
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fN−1
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n

Stars stand for plus or minus vk/2h and all blank entries are zeros. The
elements in the upper right and lower left corner arise from periodic
boundary conditions. (If we were to solve the advection equation in more
than one spatial dimension, the matrix would become more complicated.)
The implicit scheme leads to a tridiagonal system of equations that needs
to be solved at every time step, if the velocity depends on time. With
or without corner elements, the system can be solved in O(N) steps and
requires only O(N) storage. Hence, the computational cost is not at all
prohibitive. The scheme is stable for any step size. It becomes less and
less accurate as the step size increases, but is never unstable.

The third, center-difference scheme is explicit and second-order ac-
curate in time, but requires three instead of two storage levels, because
it simultaneously involves fn+1, fn, and fn−1. It is just like taking half
a time step and evaluating the spatial derivative there, then using this
information to take the whole step. Starting the scheme requires a single-
differenced step initially.

Of course, we would like to solve the advection equation with a vary-
ing, rather than a constant, velocity. Over small time and space steps the
velocity can be linearized, so that the conclusions we have drawn remain
practically valid. If the equation is supposed to express a conservation
law, the velocity should be inside the spatial derivative and should be
discretized correspondingly.

This lesson demonstrates that choosing finite differences is somewhat
of an art. Not only is one discretization a little better than another, but
some work and others do not. Many of the properties of such schemes
are not obvious, like stability; it takes some analysis or insight to see it.
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14.2 Making Sense of Numerical Stability

Calculating the amplification of individual modes can reveal the stability
of a scheme, but there are also other methods. Series expansion of the
last scheme in table I leads to f(x, t) + k∂f/∂t = f(x, t) − vk∂f/∂x +
(h2/2)∂2f/∂x2, and further to

∂f

∂t
+ v

∂f

∂x
=
h2

2k

∂2f

∂x2
.

This is closer to what we are actually solving than the advection equa-
tion itself. The right-hand side, not present in the original equation, is
a dissipation term that arises from the discretization. The dissipation
constant is h2/2k, so the “constant” depends on the resolution. This is
called “numerical dissipation.” The scheme damps modes, compared to
the exact solution. Indeed, in figure 1(d) a decay of the numeric solution
relative to the exact solution is discernible. The higher the spatial res-
olution (the smaller h), the smaller is the dissipation constant, because
a suitable k is proportional to h to the first power, and the less is the
damping.

There is the intuitive notion that the time step must be small enough
to include the region the solution depends on—for any numerical inte-
grator of PDEs. For the advection equation, the solution shifts propor-
tionally with time and therefore this causality criterion is |v| < h/k for
explicit schemes. This correctly reproduces the stability criterion of the
last two schemes in table I. (In fact, the solution depends only on the “up-
wind” direction, and it is possible to construct a stable finite-difference
scheme that only uses f(x, t+k) and f(x, t) when the velocity is negative,
and f(x, t − k) and f(x, t) when the velocity is positive.) In the second
scheme of table I, the implicit scheme, every point in the future depends
on every point in the past, so that the causality criterion is satisfied for
any time step, corresponding to unconditional stability. The criterion is
not sufficient, as the first scheme shows, which is unstable for any step
size. In summary, the causality criterion works, as a necessary condition,
for all the schemes we have considered.

The causality criterion does not always need to be fully satisfied for
numerically stable schemes. Explicit schemes for the diffusion equation,
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∂f/∂t = D∂2f/∂x2, are such an example. In an infinite domain, the
solution at time t+ k is given by

f(x, t+ k) =
1√

4πDk

∫ ∞

−∞
e−(x−x′)2/(4Dk)f(x′, t)dx′.

Hence, the solution depends on the entire domain even after an arbitrarily
short time. The information travels with infinite speed. A simple explicit
forward-difference scheme turns out to have the stability requirement
k < h2/(2D). Therefore, a scheme can be numerically stable even when
it uses information from part of the domain only. However, the integral
from x′ = x − h to x′ = x + h does include most of the dependence as
long as h2 ≥ O(kD), so that most of the causal dependence is satisfied
for numerically stable schemes.

14.3 Methods for PDEs

The major types of methods for solving PDEs are

• Finite-difference methods

• Spectral methods

• Finite-element methods

• Particle methods

In finite-difference methods all derivatives are approximated by finite
differences. The four examples in table I are all of this type.

For spectral methods at least one of the variables is treated in spec-
tral space, say, Fourier space. For example, the advection equation
with a time-dependent but space-independent velocity would become
∂f̂(κ, t)/∂t = −iκv(t)f̂(κ, t), where κ is the wave number and f̂ the
Fourier transform of f with respect to x. In this simple case, each Fourier
mode can be integrated as an ordinary differential equation.

For finite-element methods the domain is decomposed into a mesh
other than a rectangular grid, perhaps triangles with varying shapes and
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mesh density. Such grids can accommodate boundaries of any shape and
solutions that vary rapidly in a small part of the domain.

Particle methods represent the solution in terms of fields generated by
localized objects. The idea is exemplified by the electric field produced by
point charges. The electric potential obeys a PDE, the Poisson equation,
but it can also be expressed by Coulomb’s law. To calculate the force
exerted by a collection of point charges, or a continuous patch of charges,
it is possible to sum the Coulomb forces, or integrate them over a patch,
instead of solving the Poisson equation in all of space.



15

Reformulated

Boundary-Value Problems

15.1 Three Formulations of Electrostatics

The electric field in a static situation obeys the equations,

∇ · E = ρ/ε0

∇× E = 0 (formulation 1)

Here, ρ is the charge density and ε0 a universal physical constant. These
are four coupled partial differential equations. But it is easier to introduce
the electric potential Φ, and then obtain the electric field as the derivative
of the potential E = −∇Φ.

∇2Φ = − ρ
ε0

(formulation 2)

The potential is only a scalar function, and hence easier to deal with
than the three component vector E. This simple reformulation leads to
a single equation, and hence simplifies the problem tremendously.

In empty space, the potential obeys ∇2Φ = 0; when the right-hand
side vanishes it is called the Laplace equation; when there is a source
term it is called Poisson equation.

There is a another formulation of electrostatics. It is well known that
the electric potential of a point charge is given by Φ = 1/(4πε0)q/r, where
r is the distance between the point charge and the point where the po-
tential is evaluated, and q is the electric charge. The Laplacian of this
expression is zero everywhere except at the origin, ∇2Φ = 0. For a collec-
tion of point charges the potentials add up, Φ(r) = 1/(4πε0)

∑

j qj/|r−rj|,

82
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where the sum is over point charges with charge qj at position rj. Gener-
alizing further, for a continuous charge distribution the potential can be
expressed by integrating over all sources,

Φ(r) =
1

4πε0

∫
ρ(r′)

|r − r′|dr
′. (formulation 3)

This was a physically guided derivation; with a bit of calculus it could
be verified that this integral indeed satisfies the Poisson equation. Each
of the three formulations describes the same physics. The integral is an
alternative to solving the partial differential equation.

Such methods can be constructed whenever a PDE can be reformu-
lated as an integral over sources. (Another example is the integral solu-
tion to the diffusion equation given in section 14.2.) When the charge
density is localized in small spatially restricted patches, the integral only
extends over this volume, and the solution can be expressed in terms of
these “particles”.

15.2 Schrödinger Equation∗

The spatial behavior of microscopic matter, of atoms and electrons, is de-
scribed by the Schrödinger equation, which is a partial differential equa-
tion for the complex-valued wavefunction ψ(r) in a potential V (r). Both
are functions of the three-dimensional position vector r. In its time-
independent form

−1

2
∇2ψ(r) + V (r)ψ(r) = Eψ(r)

and the wavefunction must be normalized such that the integral of |ψ(r)|2
over all space yields 1,

∫
|ψ(r)|2dr = 1. This is a boundary value problem,

which may have solutions only for certain values of energy E (which is
how energy quantization comes about).

The energy is obtained by multiplying the above expression with the
complex conjugate ψ∗ and integrating both sides of the equation. For
the ground state, the energy E is a minimum (Rayleigh-Ritz variational
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principle). An expression for the ground state energy is

Egs = min
ψ

∫ [

−1

2
ψ∗∇2ψ + V |ψ|2

]

dr

where the minimum is over all normalized complex functions. The princi-
ple implies that we can try out various wavefunctions, even some that do
not satisfy the Schrödinger equation, but the one with minimum energy
is also a solution to the Schrödinger equation.

Here is one way of solving the Schrödinger equation. The wavefunction
is written as a sum of functions ϕn(r): ψ(r) =

∑

n anϕn(r). If the ϕ’s
are well chosen then the first few terms in the series approximate the
wavefunction and more and more terms can make the approximation
arbitrarily accurate. Adjusting the coefficients an to minimize the energy,
analytically or numerically, will provide an approximate ground state.

For two electrons, rather than one, the wavefunction ψ becomes a
function of the position of both electrons, but ψ still obeys the Schröding-
er equation. There is one additional property that comes out of a deeper
physical theory, namely that the wavefunction must obey ψ(r1, r2) =
−ψ(r2, r1). This is called the “Pauli exclusion principle,” because it was
discovered by physicist Wolfang Pauli and it implies that the wavefunc-
tion for two electrons at the same location vanishes, ψ(r, r) = 0. For
more than two electrons the wavefunction is antisymmetric with respect
to exchange of any pair of electrons.

Suppose we wish to determine the ground state of the helium atom.
Since nuclei are much heavier than electrons we neglect their motion, as
we neglect all magnetic interactions. The potential due to the electric
field of the nucleus is V (r) = −2e2/r, where e is the charge of a proton.
In addition, there is also electrostatic repulsion between the two electrons.
The Schrödinger equation for the helium atom is

[

−1

2
∇2

1 −
1

2
∇2

2
︸ ︷︷ ︸

T

+
e2

|r1 − r2|
︸ ︷︷ ︸

Vee

−2
e2

r1
− 2

e2

r2
︸ ︷︷ ︸

Vext

]

ψ(r1, r2) = Eψ(r1, r2)

The symbol ∇1 means the gradient is with respect to the first argument,
here the coordinate vector r1. The expressions are grouped into terms
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that give rise to the kinetic energy T , electron-electron interaction Vee,
and the external potential due to the attraction of the nucleus—external
from the electron’s point of view, Vext. The Schrödinger equation with this
potential cannot be solved analytically, but the aforementioned method
of approximation is still applicable.

A helium atom has only two electrons. A large molecule, say a pro-
tein, can easily have tens of thousands of electrons. Since ψ becomes
a function of many variables, three for each additional electron, an in-
creasing number of parameters is required to describe the solution in that
many variables to a given accuracy. The number of necessary parameters
for N electrons is (a few)3N , where “a few” is the number of parame-
ters desired to describe the wavefunction along a single dimension. The
computational cost increases exponentially with the number of electrons.
Calculating the ground state of a quantum system with many electrons
is computationally unfeasible with the method described.

15.3 Outline of Density Functional Method∗

Energies in the N -electron Schrödinger equation can also be written in
terms of the charge density n(r),

n(r) = N

∫

...

∫

ψ∗(r, r2, ..., rN )ψ(r, r2, ..., rN )dr2...drN .

The integrals are over all but one of the coordinate vectors, and because
of the antisymmetries of the wavefunction it does not matter which co-
ordinate vector is left out. For brevity the integrals over all r’s can be
denoted by

〈ψ| (anything) |ψ〉 =

∫

...

∫

ψ∗(r1, r2, ...)(anything)ψ(r1, r2, ...)dr1dr2...drN .

This notation is independent of the number of electrons. We then have
〈ψ|Vext |ψ〉 =

∫
V (r)n(r)dr for the energy of nuclear attraction.

The expression for the total energy is

E = 〈ψ|T + Vee + Vext |ψ〉 = 〈ψ|T + Vee |ψ〉+
∫

V (r)n(r)dr,



86 Third Branch of Physics

where ψ is a solution to the time-independent Schrödinger equation. The
ground state can be obtained by minimization over all normalized wave-
functions with the necessary antisymmetry properties. Such trial wave-
functions do not need to satisfy the Schrödinger equation. Of course, the
minimization can be restricted to trial wavefunctions with ground state
charge density ngs.

Egs = min
ψ|ngs

〈ψ|T + Vee |ψ〉+
∫

V (r)ngs(r)dr

The problem splits into two parts

Egs = min
n

{

F [n] +

∫

V (r)n(r)dr

}

and F [n] = min
ψ|n
〈ψ|T + Vee |ψ〉

Hence, the energy E is a function purely of the charge density n(r) and
does not need to be expressed in terms of ψ(r1, r2, ...), which would be a
function of many more variables. This is known as the Kohn-Hohenberg
formulation. The above equations do not tell us specifically how E de-
pends on n, but at least the reduction is possible in principle.

The kinetic energy and self-interaction of the electrons expressed in
terms of the charge density, F [n], is called a “density functional,” since
functional is the name for a function that takes a function, here the elec-
tron density, as an argument. The functional F [n] is independent of the
external potential Vext. Once an expression, or approximation, for F [n] is
found, it is possible to determine the ground state energy and charge den-
sity by minimizing E with respect to n for a specific external potential.
Since n is a function in 3 rather than 3N variables, the computational
cost of this method no longer increases exponentially with the number of
electrons. (It is essential that good approximations to F [n] can found at a
reasonable computational cost, but we will not deal with this here. Note
however that F [n] only describes how electrons interact with themselves.)

The wavefunction is not determined by this method, but E provides
the energy, n the size and shape of the molecule, changes of E with respect
to displacements the electrostatic forces, such that physically interesting
quantities really are described in terms of the charge density alone.
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This chapter described two different approaches for the same prob-
lem, one using the many-electron wavefunction, the other the electron
density. With a large number of electrons only the latter method is com-
putationally feasible. The problem was split into an expensive part that
describes the electrons by themselves and a computationally cheap part
that describes the interaction of the electrons with the external poten-
tial. Molecules and solids are built by electronic interactions, and the
density functional method is one of the most consequential achievements
of computational physics. The key progress has been achieved not by
improvements in numerical methods or computing power, but by a so-
phisticated mathematical reformulation of the equations to be solved.

—————–

In chapter 1 we have encountered examples of simple equations with
complicated solutions. More sophisticated equations can be even more
difficult to understand. Deriving the consequences of laws poses a chal-
lenge as crucial as finding the laws themselves. Although the Schrödinger
equation describes in principle all properties of molecules and solids, and
therefore virtually all of chemistry and solid state physics,—granted the
constituents are known—, it is a far way from writing down the equa-
tion to understanding its consequences. Numerical methods enable us to
bridge part of this complexity.



Appendix

Answers to Problems

Chapter 1. All of them can be solved analytically.

(i) In general only polynomials up to and including fourth degree can
be solved in closed form, but this fifth degree polynomial has sym-
metric coefficients; divide by x5/2 and substitute y = x1/2 + x−1/2,
which yields an equation of lower order.

(ii) Any rational function can be integrated. The result of this partic-
ular integral is not simple.

(iii)
∑n

k=1 k
4 = n(n + 1)(2n + 1)(3n2 + 3n− 1)/30. In fact, the sum of

kq can be expressed in closed form for any positive integer power q.

(iv) Substitute y = 1/z to obtain a linear differential equation and in-
tegrate.

(v) The exponential of any 2×2 matrix can be obtained analytically.
This particular matrix can be decomposed into the sum of a diago-
nal matrix D = ((2, 0), (0, 2)) and a remainder R = ((0,−1), (0, 0))
whose powers vanish. Powers of the matrix are of the simple form
(D+R)n = Dn+nDn−1R. The terms of the power expansion form
a series that can be summed.

Chapter 6. We recognize ||u2N − uN || as a Cauchy sequence, which has
a limit when the space is complete. In practice this means our method
must be able to represent the solution u. When this is the case, uN
converges to a u that no longer depends on the resolution, uN → u. But
it is not guaranteed that u is the exact solution to the analytic equation
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we set out to solve. It is possible, though rare, that a method converges
to a spurious result.

Chapter 7. Did you manage?

Chapter 9. For a 1×N or N ×1 array the entries will be stored in more
or less consecutive locations in memory. Hence reading it is equally fast
as accessing an one-dimensional array.
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