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Preface

The idea for this book originated during the workshop “Model order reduction,
coupled problems and optimization” held at the Lorentz Center in Leiden from Sep-
tember 19–23, 2005. During one of the discussion sessions, it became clear that a
book describing the state of the art in model order reduction, starting from the very
basics and containing an overview of all relevant techniques, would be of great use
for students, young researchers starting in the field, and experienced researchers. The
observation that most of the theory on model order reduction is scattered over many
good papers, making it difficult to find a good starting point, was supported by most
of the participants. Moreover, most of the speakers at the workshop were willing to
contribute to the book that is now in front of you.

The goal of this book, as defined during the discussion sessions at the workshop,
is three-fold: first, it should describe the basics of model order reduction. Second,
both general and more specialized model order reduction techniques for linear and
nonlinear systems should be covered, including the use of several related numerical
techniques. Third, the use of model order reduction techniques in practical applica-
tions and current research aspects should be discussed.

We have organized the book according to these goals. In Part I, the rationale
behind model order reduction is explained, and an overview of the most common
methods is described. Furthermore, in the second chapter, an introduction is given
to background material from numerical linear algebra needed to assess the theory
and methods presented later in the book. This is very important and useful informa-
tion, as advances in numerical linear algebra often lead to new results in the area of
model order reduction. Thus, the first two chapters serve as an introduction to readers
who are not familiar with the subject. In Part II, model order reduction techniques
and related numerical problems are described from different points of view: both
frameworks for structure-preserving techniques and more specialized techniques are
presented, while numerical methods for (closely) related problems and approaches
for nonlinear systems are considered as well. This part serves as the theoretical back-
bone of the book, containing an overview of techniques used and areas covered. In
Part III the focus is on research aspects and applications of model order reduction. A
variety of experiments with real-life examples shows that different problems require
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different techniques, while application of the techniques leads to new research topics
that are described as well.

Despite the fact that the workshop was organized already in 2005, this book con-
tains many recent advances in model order reduction. Moreover, it presents several
open problems for which techniques are still in development, related to both linear
systems, which become larger and more complex mainly due to industrial require-
ments, and nonlinear systems, which demand a completely new theory. The latter
illustrates the final and most important goal of this book, namely to serve as a source
of inspiration for its readers, who will discover that model order reduction is a very
exciting and lively field.

At this point we would like to thank all authors of the chapters in this book.
Without the contributions of these experts, it would not be possible to cover the wide
and rapidly developing field of model order reduction in one book.

Leiden, Utrecht, Eindhoven Wil Schilders
September 2005 – May 2008 Henk van der Vorst

Joost Rommes
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Introduction to Model Order Reduction

Wil Schilders1,2

1 NXP Semiconductors, Eindhoven, The Netherlands
wil.schilders@nxp.com

2 Eindhoven University of Technology, Faculty of Mathematics and Computer Science,
Eindhoven, The Netherlands
w.h.a.schilders@tue.nl

1 Introduction

In this first section we present a high level discussion on computational science, and
the need for compact models of phenomena observed in nature and industry. We
argue that much more complex problems can be addressed by making use of current
computing technology and advanced algorithms, but that there is a need for model
order reduction in order to cope with even more complex problems. We also go into
somewhat more detail about the question as to what model order reduction is.

1.1 Virtual Design Environments

Simulation or, more generally, computational science has become an important part
of todays technological world, and it is now generally accepted as the third disci-
pline, besides the classical disciplines of theory and (real) experiment. Physical (and
other) experiments lead to theories that can be validated by performing additional
experiments. Predictions based on the theory can be made by performing virtual ex-
periments, as illustrated by Figure 1.

Computer simulations are now performed routinely for many physical, chemical
and other processes, and virtual design environments have been set up for a variety
of problem classes in order to ease the work of designers and engineers. In this way,
new products can be designed faster, more reliably, and without having to make
costly prototypes.

The ever increasing demand for realistic simulations of complex products places
a heavy burden on the shoulders of mathematicians and, more generally, researchers
working in the area of computational science and engineering (CSE). Realistic sim-
ulations imply that the errors of the virtual models should be small, and that different
aspects of the product must be taken into account. The former implies that care must
be taken in the numerical treatment and that, for example, a relatively fine adap-
tively determined mesh is necessary in the simulations. The latter explains the trend
in coupled simulations, for example combined mechanical and thermal behaviour, or
combined mechanical and electromagnetic behaviour.



4 W. Schilders

Fig. 1. Simulation is the third discipline.

Fig. 2. Moore’s law.

An important factor in enabling the complex simulations carried out today is the
increase in computational power. Computers and chips are getting faster, Moores law
predicting that the speed will double every 18 months (see Figure 2).

This increase in computational power appears to go hand-in-hand with devel-
opments in numerical algorithms. Iterative solution techniques for linear systems
are mainly responsible for this speed-up in algorithms, as is shown in Figure 3.
Important contributions in this area are the conjugate gradient method (Hestenes and
Stiefel [22]), preconditioned conjugate gradient methods (ICCG [25], biCGstab [34])
and multigrid methods (Brandt [4] and [5]).

The combined speed-up achieved by computer chips and algorithms is enormous,
and has enabled computational science to make big steps forward. Many problems
that people did not dream of solving two decades ago are now solved routinely.
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Fig. 3. Numerical version of Moore’s law.

1.2 Compact Model Descriptions

The developments described in the previous section also have a counter side. The
increased power of computers and algorithms reduces the need to develop smart,
sophisticated solution methods that make use of properties of the underlying systems.
For example, whereas in the 1960s and 1970s one often had to construct special basis
functions to solve certain problems, this can be avoided nowadays by using brute
force methods using grids that are refined in the right places.

The question arises whether we could use the knowledge generated by these very
accurate, but time-consuming, simulations to generate the special basis functions that
would have constituted the scientific approach a few decades ago. This is a promising
idea, as many phenomena are described very well by a few dominant modes.

Example: electromagnetic behaviour of interconnect structures in chips
To give an example, consider the electromagnetic behaviour of interconnect structures in a
computer chip, depicted in Figure 4. Such a chip consists of millions of devices, such as
transistors, that need to be connected to each other for correct functioning of the chip. The
individual devices are contained in the semiconductor material, their contacts being located
in a two dimensional domain. Clearly, to connect these contacts in the way designers have
prescribed, a three dimensional structure of wires is needed. This is the so-called intercon-
nect structure of the chip, which nowadays consists of 7-10 layers in which metal wires are
running, with so-called vias between the wires located in different metal layers.

In previous generations of chips, these interconnect structures occupied a relatively large
area, and contained less wires, so that the distance between wires was large enough to justify
discarding mutual influence. In recent years, however, chips have shrunk, and the number of
devices has grown enormously. This means that for modern interconnect structures one needs
to take into account mutual influence of wires, as this can lead to serious delay phenom-
ena and other spurious effects. The problem is complicated even further by the use of higher
frequencies.
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Fig. 4. Interconnect structure.

Clearly, the modelling of the mutual electromagnetic influence of interconnect wires is a
gradual process. A decade ago, one did not have to take this influence into account, and could
consider the wires as individual entities. Nowadays, resistive and capacitive effects are clearly
noticeable, and will become more significant over the years. Because of the gradual character
of this phenomenon, one can imagine that it is not necessary to include all minute detail
of an electromagnetic simulation of interconnect structures. Such a simulation could easily
involve millions of nodes, because of the complicated geometric structure. The simulation will
probably reveal that crosstalk and signal integrity problems are quite localized, at a few places
in the structure where wires are too close together.

Another point of view may be to consider the problem as an input-output model, where a
time-dependent input signal is sent through the interconnect structure, and a resulting time-
dependent output signal is registered. Again, to calculate the output resulting from the given
input is a time-consuming exercise due to the excessive number of nodes necessary for this
simulation, in the spatial and time domain. However, it is expected to be possible to delete
superfluous detail, and calculate a very good approximation to the output in a much more
efficient way.

The foregoing example clearly shows that it may not be necessary to calculate
all details, and nevertheless obtain a good understanding of the phenomena taking
place. There may be many reasons why such detail is not needed. There may be
physical reasons that can be formulated beforehand, and therefore incorporated into
the model before starting calculations. A very nice example is that of simulating
the blood flow in the human body, as described in many publications by the group
of Alfio Quarteroni (see [30], but also work of others). In his work, the blood flow
in the body is split into different parts. In very small arteries, it is assumed that
the flow is one dimensional. In somewhat larger arteries, two dimensional models
are used, whereas in the heart, a three dimensional model is used as these effects
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are very important and must be modelled in full detail. This approach does enable
a simulation of the blood flow in the entire human body; clearly, such simulations
would not be feasible if three dimensional models would be used throughout. This
approach, which is also observed in different application areas, is also termed op-
erational model order reduction. It uses physical (or other) insight to reduce the
complexity of models.

Another example of operational model order reduction is the simulation of elec-
tromagnetic effects in special situations. As is well known, electromagnetic effects
can be fully described by a system of Maxwell equations. Despite the power of
current computers and algorithms, solving the Maxwell equations in 3-dimensional
space and time is still an extremely demanding problem, so that simplifications are
being made whenever possible. An assumption that is made quite often is that of
quasi-statics, which holds whenever the frequencies playing a role are low to moder-
ate. In this case, simpler models can be used, and techniques for solving these models
have been developed (see [32]).

In special situations, the knowledge about the problem and solutions can be so
detailed, that a further reduction of model complexity can be achieved. A promi-
nent and very successful example is the compact modelling [19] of semiconductor
devices. Integrated circuits nowadays consist of millions of semiconductor devices,
such as resistors, capacitors, inductors, diodes and transistors. For resistors, capac-
itors and inductors, simple linear models are available, but diodes and especially
transistors are much more complicated. Their behaviour is not easily described, but
can be calculated accurately using software dedicated to semiconductor device sim-
ulation. However, it is impossible to perform a full simulation of the entire electronic
circuit, by using the results of the device simulation software for each of the millions
of transistors. This would imply coupling of the circuit simulation software to the
device simulation software. Bearing in mind that device simulations are often quite
time consuming (it is an extremely nonlinear problem, described by a system of three
partial differential equations), this is an impossible task.

The solution to the aforementioned problem is to use accurate compact mod-
els for each of the transistors. Such models look quite complicated, and can easily
occupy a number of pages of description, but consist of a set of algebraic relations
that can be evaluated very quickly. The compact models are constructed using a large
amount of measurements and simulations, and, above all, using much human insight.
The models often depend on as many as 40-50 parameters, so that they are widely
applicable for many different types and geometries of transistors. The most promi-
nent model nowadays is the Penn-State-Philips (PSP) model for MOS transistors (see
Figure 5), being chosen as the world standard in 2007 [15]. It is very accurate, in-
cluding also derivatives up to several orders. Similar developments can be observed
at Berkeley [6], where the BSIM suite of models is constructed.

Using these so-called compact models, it is possible to perform simulations of
integrated circuits containing millions of components, both for steady-state and time-
dependent situations. Compact modelling, therefore, plays an extremely important
role in enabling such demanding simulations. The big advantage of this approach is
that the compact models are formulated in a way that is very appealing to designers,
as they are formulated in terms of components they are very familiar with.



8 W. Schilders

Fig. 5. MOS transistor.

Unfortunately, in many cases, it is not possible to a priori simplify the model de-
scribing the behaviour. In such cases, a procedure must be used, in which we rely on
the automatic identification of potential simplifications. Designing such algorithms
is, in essence, the task of the field of model order reduction. In the remainder of this
chapter, we will describe it in more detail.

1.3 Model Order Reduction

There are several definitions of model order reduction, and it depends on the con-
text which one is preferred. Originally, MOR was developed in the area of systems
and control theory, which studies properties of dynamical systems in application for
reducing their complexity, while preserving their input-output behavior as much as
possible. The field has also been taken up by numerical mathematicians, especially
after the publication of methods such as PVL [9]. Nowadays, model order reduction
is a flourishing field of research, both in systems and control theory and in numer-
ical analysis. This has a very healthy effect on MOR as a whole, bringing together
different techniques and different points of view, pushing the field forward rapidly.

So what is model order reduction about? As was mentioned in the foregoing
sections, we need to deal with the simplification of dynamical models that may con-
tain many equations and/or variables (105 − 109). Such simplification is needed in
order to perform simulations within an acceptable amount of time and limited stor-
age capacity, but with reliable outcome. In some cases, we would even like to have
on-line predictions of the behaviour with acceptable computational speed, in order
to be able to perform optimizations of processes and products.

Model Order Reduction tries to quickly capture the essential features of a struc-
ture. This means that in an early stage of the process, the most basic properties of
the original model must already be present in the smaller approximation. At a certain
moment the process of reduction is stopped. At that point all necessary properties of
the original model must be captured with sufficient precision. All of this has to be
done automatically.
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Fig. 6. Graphical illustration of model order reduction.

Figure 6 illustrates the concept in a graphical easy-to-understand way, demon-
strating that sometimes very little information is needed to describe a model. This
example with pictures of the Stanford Bunny shows that, even with only a few facets,
the rabbit can still be recognized as such (Graphics credits: Harvard University, Mi-
crosoft Research). Although this example was constructed for an entirely different
purpose, and does not contain any reference to the way model order reduction is per-
formed mathematically, it can be used to explain (even to lay persons) what model
order reduction is about.

In the history of mathematics we see the desire to approximate a complicated
function with a simpler formulation already very early. In the year 1807 Fourier
(1768-1830) published the idea to approximate a function with a few trigonometric
terms. In linear algebra the first step in the direction of model order reduction came
from Lanczos (1893-1974). He looked for a way to reduce a matrix in tridiagonal
form [64, 65]. W.E. Arnoldi realized that a smaller matrix could be a good approxi-
mation of the original matrix [2]. He is less well-known, although his ideas are used
by many numerical mathematicians. The ideas of Lanczos and Arnoldi were already
based on the fact that a computer was available to do the computations. The ques-
tion, therefore, was how the process of finding a smaller approximation could be
automated.

The fundamental methods in the area of Model Order Reduction were published
in the eighties and nineties of the last century. In 1981 Moore [71] published the
method of Truncated Balanced Realization, in 1984 Glover published his famous
paper on the Hankel-norm reduction [38]. In 1987 the Proper Orthogonal Decom-
position method was proposed by Sirovich [94]. All these methods were developed
in the field of systems and control theory. In 1990 the first method related to Krylov
subspaces was born, in Asymptotic Waveform Evaluation [80]. However, the focus
of this paper was more on finding Padé approximations rather than Krylov spaces.
Then, in 1993, Freund and Feldmann proposed Padé Via Lanczos [28] and showed
the relation between the Padé approximation and Krylov spaces. In 1995 another fun-
damental method was published. The authors of [73] introduced PRIMA, a method
based on the ideas of Arnoldi, instead of those of Lanczos. This method will be
considered in detail in Section 3.3, together with the Laguerre-SVD method [61].

In more recent years much research has been done in the area of the Model Order
Reduction. Consequently a large variety of methods is available. Some are tailored
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to specific applications, others are more general. In the second and third part of this
book, many of these new developments are being discussed. In the remainder of
this chapter, we will discuss some basic methods and properties, as this is essential
knowledge required for the remainder of the book.

1.4 Dynamical Systems

To place model reduction in a mathematical context, we need to realize that many
models developed in computational science consist of a system of partial and/or or-
dinary differential equations, supplemented with boundary conditions. Important ex-
amples are the Navier-Stokes equations in computational fluid dynamics (CFD), and
the Maxwell equations in electromagnetics (EM). When partial differential equa-
tions are used to describe the behaviour, one often encounters the situation that the
independent variables are space and time. Thus, after (semi-)discretising in space, a
system of ordinary differential equations is obtained in time. Therefore, we limit the
discussion to ODE’s and consider the following explicit finite-dimensional dynami-
cal system (following Antoulas, see [2]):

dx
dt

= f(x,u)

y = g(x,u).

Here, u is the input of the system, y the output, and x the so-called state variable.
The dynamical system can thus be viewed as an input-output system, as displayed in
Figure 7.

The complexity of the system is characterized by the number of its state vari-
ables, i.e. the dimension n of the state space vector x. It should be noted that similar
dynamical systems can also be defined in terms of differential algebraic equations,
in which case the first set of equations in (1) is replaced by F(dx

dt ,x,u) = 0.
Model order reduction can now be viewed as the task of reducing the dimension

of the state space vector, while preserving the character of the input-output relations.
In other words, we should find a dynamical system of the form

dx̂
dt

= f̂(x̂,u),

y = ĝ(x̂,u),

⎩
⎨
⎧

Σ :…

⎩
⎨
⎧

Σ :

u1(t)

u2(t)

um(t)

…

y1(t)

y2(t)

ym(t)
y(t) = g(x(t),u(t))

f (x(t),x (t),u (t)) = 0

Fig. 7. Input-output system
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where the dimension of x̂ is much smaller than n. In order to provide a good ap-
proximation of the original input-output system, a number of conditions should be
satisfied:

• the approximation error is small,
• preservation of properties of the original system, such as stability and passivity

(see Sections 2.4-2.6),
• the reduction procedure should be computationally efficient.

A special case is encountered if the functions f and g are linear, in which case
the system reads

dx
dt

= Ax +Bu,

y = CT x +Du.

Here, the matrices A,B,C,D can be time-dependent, in which case we have
a linear time-varying (LTV) system, or time-independent, in which case we speak
about a linear time-invariant (LTI) system. For linear dynamical systems, model or-
der reduction is equivalent to reducing the matrix A, but retaining the number of
columns of B and C.

1.5 Approximation by Projection

Although we will discuss in more detail ways of approximating input-output systems
later in this chapter, there is a unifying feature of the approximation methods that is
worthwhile discussing briefly: projection. Methods based on this concept truncate
the solution of the original system in an appropriate basis. To illustrate the concept,
consider a basis transformation T that maps the original n-dimensional state space
vector x into a vector that we denote by

x̄ =
(

x̂
x̃

)
,

where x̂ is k-dimensional. The basis transformation T can then be written as

T =
(
W ∗

T ∗
2

)
,

and its inverse as
T−1 = (V T1).

Since W ∗V = Ik, we conclude that

Π = VW ∗

is an oblique projection along the kernel of W ∗ onto the k-dimensional subspace that
is spanned by the columns of the matrix V .
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If we substitute the projection into the dynamical system (1), the first part of the
set of equations obtained is

dx̂
dt

= W ∗f̂(V x̂ + T1x̃,u),

y = ĝ(V x̂ + T1x̃,u).

Note that this is an exact expression. The approximation occurs when we would
delete the terms involving x̃, in which case we obtain the reduced system

dx̂
dt

= W ∗f̂(V x̂,u),

y = ĝ(V x̂,u).

For this to produce a good approximation to the original system, the neglected
term T1x̃ must be sufficiently small. This has implications for the choice of the pro-
jection Π . In the following sections, various ways of constructing this projection are
discussed.

2 Transfer Function, Stability and Passivity

Before discussing methods that have been developed in the area of model order
reduction, it is necessary to shed light on several concepts that are being used fre-
quently in the field. Often, model order reduction does not address the reduction
of the entire problem or solution, but merely a number of characteristic functions
that are important for designers and engineers. In addition, it is important to con-
sider a number of specific aspects of the underlying problem, and preserve these
when reducing. Therefore, this section is dedicated to a discussion of these important
concepts.

2.1 Transfer Function

In order to illustrate the various concepts related to model order reduction of input-
output systems as described in the previous section, we consider the linear time-
invariant system

dx
dt

= Ax +Bu,

y = CT x.

The general solution of this problem is

x(t) = exp (A(t− t0))x0 +
∫ t

t0

exp (A(t− τ))Bu(τ)dτ. (1)
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A common way to solve the differential equation is by transforming it from the time
domain to the frequency domain, by means of a Laplace transform defined as

L(f)(s) ≡
∫ ∞

0

f(t) exp (−st)dt.

If we apply this transform to the system, assuming that x(0) = 0, the system is
transformed to a purely algebraic system of equations:

(In − sA)X = BU,

Y = CT X,

where the capital letters indicate the Laplace transforms of the respective lower case
quantities. This immediately leads to the following relation:

Y(s) = CT (In − sA)BX(s). (2)

Now define the transfer function H(s) as

H(s) = CT (In − sA)B. (3)

This transfer function represents the direct relation between input and output in the
frequency domain, and therefore the behavior of the system in frequency domain. For
example, in the case of electronic circuits this function may describe the transfer from
currents to voltages, and is then termed impedance. If the transfer is from voltages to
currents, then the transfer function corresponds to the admittance.

Note that if the system has more than one input or more than one output, then
B and C have more than one column. This makes H(s) a matrix function. The i, j
entry in H(s) then denotes the transfer from input i to output j.

2.2 Moments

The transfer function is a function in s, and can therefore be expanded into a moment
expansion around s = 0:

H(s) = M0 +M1s+M2s
2 + . . . ,

where M0, M1, M2, . . . are the moments of the transfer function. In electronics, M0

corresponds to the DC solution.In that case the inductors are considered as short
circuits, and capacitors as open circuits. The moment M1 then corresponds to the
so-called Elmore delay, which represents the time for a signal at the input port to
reach the output port. The Elmore delay is defined as

telm ≡
∫ ∞

0

th(t)dt,
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where h(t) is the impulse response function, which is the response of the system to
the Dirac delta input. The transfer function in the frequency domain is the Laplace
transform of the impulse response function:

H(s) =
∫ ∞

0

h(t) exp (−st)dt.

Expanding the exponential function in a power series, it is seen that the Elmore delay
indeed corresponds to the first order moment of the transfer function.

Of course, the transfer function can also be expanded around some non-zero s0.
We then obtain a similar expansion in terms of moments. This may be advantageous
in some cases, and truncation of that alternative moment expansion may lead to better
approximations.

2.3 Poles and Residues

The transfer function can also be expanded as follows:

H(s) =
n∑

j=1

Rj

s− pj
, (4)

where the pj are the poles, and Rj are the corresponding residues. The poles are
exactly the eigenvalues of the matrix −A−1. In fact, if the matrix E of eigenvectors
is non-singular, we can write

−A−1 = EΛE−1,

where the diagonal matrix Λ contains the eigenvalues λj . Substituting this into the
expression for the transfer function, we obtain:

H(s) = −CTE(I + sΛ)−1E−1A−1B.

Hence, if B and C contain only one column (which corresponds to the single input,
single output or SISO case), then

H(s) =
n∑

j=1

lTj rj

1 + sλj
,

where the lj and rj are the left and right eigenvectors, respectively.
We see that there is a one-to-one relation between the poles and the eigenvalues of

the system. If the original dynamical system originates from a differential algebraic
system, then a generalized eigenvalue problem needs to be solved. Since the poles
appear directly in the pole-residue formulation of the transfer function, there is also
a strong relation between the transfer function and the poles or, stated differently,
between the behavior of the system and the poles. If one approximates the system,
one should take care to approximate the most important poles. There are several
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methods that do this, which are discussed in later chapters of this book. In general,
we can say that, since the transfer function is usually plotted for imaginary points
s = ωi, the poles that have a small imaginary part dictate the behavior of the transfer
function for small values of the frequency ω. Consequently, the poles with a large
imaginary part are needed for a good approximation at higher frequencies. Therefore,
a successful reduction method aims at capturing the poles with small imaginary part
rather, and leaves out poles with a small residue.

2.4 Stability

Poles and eigenvalues of a system are strongly related to the stability of the system.
Stability is the property of a system that ensures that the output signal of a system is
limited (in the time domain).

Consider again the system (1). The system is stable if and only if, for all eigenval-
ues λj , we have that Re(λj) ≤ 0, and all eigenvalues with Re(λj) = 0 are simple.
In that case, the corresponding matrix A is termed stable.

There are several properties associated with stability. Clearly, if A is stable, then
also A−1 is stable. Stability of A also implies stability of AT and stability of A∗.
Finally, if the product of matrices AB is stable, then also BA can be shown to be
stable. It is also clear that, due to the relation between eigenvalues of A and poles of
the transfer function, stability can also be formulated in terms of the poles of H(s).

The more general linear dynamical system

Q
dx
dt

= Ax +Bu,

y = CT x,

is stable if and only if for all generalized eigenvalues we have that Re(λj(Q,A))≤ 0,
and all generalized eigenvalues for which Re(λj(Q,A)) = 0 are simple. The set of
generalized eigenvalues σ(Q,A) is defined as the collection of eigenvalues of the
generalized eigenvalue problem

Qx = λAx.

In this case, the pair of matrices (Q,A) is termed a matrix pencil. This pencil is said
to be regular if there exists at least one eigenvalue λ for which Q + λA is regular.
Just as for the simpler system discussed in the above, stability can also be formulated
in terms of the poles of the corresponding transfer function.

2.5 Positive Real Matrices

The concept of stability explained in the previous subsection leads us to consider
other properties of matrices. First we have the following theorem.

Theorem 1. If Re(x∗Ax > 0 for all x ∈ Cn, then all eigenvalues of A have a
positive real part.
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The converse of this theorem is not true, as can be seen when we take

A =
(
− 1

3 −1
1 2

)
,

and

x =
(

1
0

)
.

Matrices with the property that Re(x∗Ax > 0 for all x ∈ Cn are termed positive
real. The counter example shows that the class of positive real matrices is smaller
than the class of matrices for which all eigenvalues have positive real part. In the
next section, this new and restricted class will be discussed in more detail. For now,
we remark that a number of properties of positive real matrices are easily derived. If
A is positive real, then this also holds forA−1 (if it exists). Furthermore,A is positive
real if and only if A∗ is positive real. If two matrices A and B are both positive real,
then any linear combination αA+ βB is also positive real provided Re(α) > 0 and
Re(β) > 0.

There is an interesting relation between positive real and positive definite ma-
trices. Evidently, the class of positive definite matrices is a subclass of the set of
positive real matrices. But we also have:

Theorem 2. A matrix A ∈ Cn×n is positive real if and only if the Hermitian part
of A (i.e. 1

2 (A+A∗)) is symmetric positive definite.

Similarly one can prove that a matrix is non-negative real if and only if its
Hermitian part is symmetric positive semi-definite.

2.6 Passivity

Stability is a very natural property of physical structures. However, stability is not
strong enough for electronic structures that contain no sources. A stable structure can
become unstable if non-linear components are connected to it. Therefore, another
property of systems should be defined that is stronger than stability. This property
is called passivity. Being passive means being incapable of generating energy. If a
system is passive and stable, we would like a reduction method to preserve these
properties during reduction. In this section the principle of passivity is discussed and
what is needed to preserve passivity.

To define the concept, we consider a system that has N so-called ports. The total
instantaneous power absorbed by this real N-port is defined by:

winst(t) ≡
N∑

j=1

vj(t)ij(t),

where vj(t) and ij(t) are the real instanteneous voltage and current at the j-th port.
An N -port contains stored energy, say E(t). If the system dissipates energy at rate
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wd(t), and contains sources which provide energy at rate ws(t), then the energy
balance during a time interval [t1, t2] looks like:∫ t2

t1

(winst + ws − wd)dt = E(t2) − E(t1). (5)

An N -port is termed passive if we have∫ t2

t1

winstdt ≥ E(t2) −E(t1), (6)

over any time interval [t1, t2]. This means that the increase in stored energy must
be less than or equal to the energy delivered through the ports. The N-port is called
lossless if (6) holds with equality over any interval. Assume that the port quantities
exhibit purely exponential time-dependence, at a single complex frequency s. We
may then write:

v(t) = v̂ exp(it), i(t) = î exp((it)),

where v̂ and î are the complex amplitudes. We define the total complex power ab-
sorbed to be the inner product of î and v̂,

w = î∗v̂,

and the average or active power as:

< w > =Re(w).

For an N-port defined by an impedance relationship, we may immediately write
< w > in terms of the voltage and current amplitudes:

< w >=
1
2
(̂i∗v̂ + v̂∗î) =

1
2
(̂i∗Zî+ î∗Z∗î) =

1
2
(̂i∗(Z + Z∗)̂i).

For such a real linear time invariant (LTI) N-port, passivity may be defined in the
following way. If the total active power absorbed by an N-port is always greater than
or equal to zero for frequencies s such that Re(s) ≥ 0, then it is called passive. This
implies that Z + Z∗ ≥ 0 for Re(s) ≥ 0. Hence, the matrix Z must be positive real.

Given our discussion and the definition of passivity based on an energy argument,
we can formulate the following theorem.

Theorem 3. The transfer function H(s) of a passive system is positive real, i.e.

H∗(s) +H(s) ≥ 0

for all s with Re(s) ≥ 0.

Sometimes another definition of passivity is used, for instance in [35]. Under certain
assumptions these definitions are equal.
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3 A Short Account of Techniques for Model Order Reduction

Having discussed the need for model order reduction, and several essential prereq-
uisites, this section will now give an overview of the field by discussing the most
important techniques. The methods and new developments discussed in subsequent
chapters of this book build on these basic algorithms. Adequate referencing is pro-
vided, so that readers can go into more detail when desired.

3.1 Asymptotic Waveform Evaluation

One of the basic and earliest methods in Model Order Reduction is Asymptotic
Waveform Evaluation (AWE), proposed by Pillage and Rohrer in 1990 [7, 29]. The
underlying idea of the method is that the transfer function can be well approximated
by a Padé approximation. A Padé approximation is a ratio of two polynomials P (s)
and Q(s). AWE calculates a Padé approximation of finite degree, so the degree of
P (s) and Q(s) is finite and deg(Q(s)) ≥ deg(P (s)). There is a close relation be-
tween the Padé approximations and Krylov subspace methods (see Chapter 2). To
explain this fundamental property, consider the general system:

(sIn −A)X(s) = BU(s).

Expanding X(s) around some expansion point s0 ∈ C we obtain:

(s0In −A+ (s− s0)In)(X0 + (s− s0)X1 + . . .) = BU(s).

Here, the Xi(s) are the moments. Assuming U(s) = 1, and equating like powers of
(s− s0)i, we find:

(s0In −A)X0 = B,

for the term corresponding to i = 0, and for i ≥ 1

(s0In −A)Xi = −Xi−1.

We conclude that, in fact, a Krylov space is built up (see Chapter 2):

K((s0In −A)−1B, (s0In −A)−1).

The process can be terminated after finding a sufficient number of moments, and
the hope is that then a good approximation has been found for the transfer function.
Clearly, this approximation is of the form

H̃(s) =
n∑

k=0

mk(s− s0)k,

for some finite n.
Once the moments have been calculated, a Padé approximation Ĥ(s) of the trans-

fer function H(s) can be determined:
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Ĥ(s) =
P (s− s0)
Q(s− s0)

.

Letting

P (s) =
p∑

k=0

ak(s− s0)k, Q(s) =
p+1∑
k=0

bk(s− s0)k,

we find that the following relation must hold:
p∑

k=0

ak(s− s0)k =

(
n∑

k=0

mk(s− s0)k

)(
p+1∑
k=0

bk(s− s0)k

)
.

Equating like powers of s − s0 (for the higher powers), and setting b0 = 1, we find
the following system to be solved:⎛⎜⎜⎜⎝

m0 m1 . . . mp

m1 m2 . . . mp+1

...
...

. . .
...

mp mp+1 . . . m2p

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
bp+1

bp
...
b1

⎞⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎝
mp+1

mp+2

...
m2p+1

⎞⎟⎟⎟⎠ , (1)

from which we can extract the coefficients bi, i = 1, . . . , p + 1 of Q. A similar step
can be used to subsequently find the coefficients of the polynomial P .

The problem with the above method, and with AWE in general, is that the coeffi-
cient matrix in (1) quickly becomes ill-conditioned as the number of moments used
goes up. In fact, practical experience indicates that applicability of the method stops
once 8 or more moments are used. The method can be made more robust by using
Complex Frequency Hopping [29], meaning that more than one expansion point is
used. However, the method remains computationally demanding and, for that reason,
alternatives as described in the next subsections are much more popular nowadays.

3.2 The PVL Method

Although AWE was initially considered an attractive method for approximating the
transfer function, soon the disadvantages of the method were recognized. Then, in
1993, Roland Freund and Peter Feldmann [9] published their method named Padé-
via-Lanczos or PVL. In this method, the Padé approximation based on the moments
is calculated by means of a two-sided Lanczos algorithm (see also Chapter 2). The
algorithm requires approximately the same computational effort as AWE, but it gen-
erates more poles and is much more robust.

To explain the method, consider the transfer function of a SISO system:

H(s) = cT (sIn −A)−1b.

Let s0 ∈ C be the expansion point for the approximation. Then the transfer function
can be cast into the form

H(s) = cT (In − (s− s0)Â)−1r,
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where
Â = −(s0In −A)−1,

and
r = (s0In −A)−1b.

This transfer function can, just as in the case of AWE, be approximated well by a
rational function in the form of a Padé approximation. In PVL this approximation is
found via the Lanczos algorithm. By running q steps of this algorithm (see Chapter 2
for details on the Lanczos method), an approximation of Â is found in the form of a
tridiagonal matrix Tq, and the approximate transfer function is of the form:

Hq(s) = cT r · eT
1 (In − (s− s0)Tq)−1e1, (2)

where e1 is the first unit vector. The moments can also be found from this expression:

cT Âkr = cT r · eT
1 T

k
q e1.

A proof of these facts can be found in the original paper [9].
Every iteration leads to the preservation of two extra moments. This makes PVL

a very powerful and efficient algorithm. Unfortunately, there are also disadvantages
associated with the algorithm. For example, it is known that PVL does not always
preserve stability. The reason for this is that PVL is based on a two-sided Lanczos
algorithm, and uses non-orthogonal or skew projections. The problem has been stud-
ied by several authors; in [9], it is suggested to simply delete the poles which have a
positive real part. However, such “remedies” are not based upon theory, and should
probably be avoided. In the case of symmetric matrices, the problem can be resolved
by using a one-sided Lanczos process, which would preserve stability.

Another problem associated with PVL is that the inner products wT
n+1vn+1 in

the bi-orthogonal sequence may be zero or near to zero, in which case the Lanczos
algorithm breaks down. To avoid this, a look-ahead version of the Lanczos process
has been suggested in [10].

The PVL method has been very successful since 1993, and many new devel-
opments are based upon it. We mention the matrix PVL method, published by the
inventors of PVL [10]. In [1] a more extensive version of MPVL with look-ahead
and deflation is described. Another method presented by Freund and Feldmann is
SymPVL [12–14], which is an efficient version of PVL for the case of symmetric
matrices. Te method cures the stability problem observed for PVL. A similar (and
earlier) development is SyPVL [11] The main idea of all these methods is to make
use of the fact that the matrix is symmetric, so that it can be decomposed using a
Cholesky decomposition. This then automatically leads to stability of the associated
approximate models.

Another nice development worth mentioning is the two-step Lanczos algorithm.
It splits the problem of reducing the original system into two separate phases. First a
Lanczos process is performed using a Krylov subspace based upon the matrix itself,
rather than its inverse. Clearly, this is much more efficient, and so it is easy to perform
many steps of this procedure. This then leads to a reduction of the original problem
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to a system of size, say, a few thousand. In the second phase, the ‘ordinary’ Lanczos
procedure is used to reduce the problem much further, now using the inverse of the
coefficient matrix. For more details, see [35, 36].

3.3 Arnoldi and PRIMA Method

The Lanczos process is most suitable for symmetric matrices (see Chapter 2), but
for general matrices the Arnoldi method is a better choice. It can also be used as the
basis for a model order reduction method like PVL. Similar to PVL, one can define
an expansion point s0, and work with the shift-and-invert transfer function:

H(s) = CT (sIn −A)−1B = CT (In + (s− s0)Â)−1R,

with
Â = (s0In −A)−1,

and
R = (s0In −A)−1B.

Then, in the Arnoldi process, a Krylov space associated with the matrices Â and R
is generated:

Kq(R, Â) = span{R, ÂR, . . . , ÂqR}.
The main differences with PVL are that only one Krylov space is generated, namely
with the (block) Arnoldi process [31], and that the projections are performed with
orthogonal operators.

The expansion point in the above can be chosen either real or complex, leading
to different approximations of the poles of the system. A real shift may be favorable
over a complex shift, as the convergence of the reduced transfer function towards the
original transfer function is more global.

A very important new development was published in 1998, with a method now
known as PRIMA [26]. Up till then, the methods developed suffered from non-
passivity. Odabasioglu and Celik realized that the Arnoldi method had the poten-
tial to resolve these problems with passivity. The PRIMA method, in full passive
reduced-order interconnect macromodeling algorithm, builds upon the same Krylov
space as in the Arnoldi method and PVL, using the Arnoldi method to generate an
orthogonal basis for the Krylov space. The fundamental difference with preceding
methods is, however, that the projection of the matrices is done explicitly. This is in
contrast with PVL and Arnoldi, where the tridiagonal or the Hessenberg matrix is
used for this purpose. In other words, the following matrix is formed:

Aq = V T
q AVq,

where Vq is the matrix containing an orthonormal basis for the Krylov space.
Although more expensive, the explicit projection onto the Krylov space has

strong advantages. It makes PRIMA more accurate than the Arnoldi method and
it ensures preservation of stability and passivity. As such, it was the first method to
achieve this in a provable way. A slight disadvantage of the method, as compared to
PVL, is that only one moment per iteration is preserved additionally. This is only a
minor disadvantage, if one realizes that PVL requires iterating both with A and its
transpose.
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3.4 Laguerre Methods

The search for provable passive model order reduction techniques continued after the
publication of PRIMA. A new development was the construction of approximations
using the framework of Laguerre functions, as proposed in [23,24]. In these methods,
the transfer function is not shifted-and-inverted, as is the case in the PVL and Arnoldi
methods. Instead, it is expanded in terms of Laguerre functions that are defined as

φα
k (t) ≡

√
2α exp (−αt)�k(2αt),

where α is a positive scaling parameter, and �k(t) is the Laguerre polynomial

�k(t) ≡ exp (t)
k!

dk

dtk
(exp (−t)tk).

The Laplace transform of φα
k (t) is

Φα
k (s) =

√
2α

s+ α

(
s− α

s+ α

)k

.

Furthermore, it can be shown (see [20]) that the Laguerre expansion of the transfer
function is

H(s) =
2α

s+ α
CT

∞∑
k=0

(
(αIn −A)−1(−αIn −A)

)k
(αIn −A)−1B

(
s− α

s+ α

)k

.

Clearly, this expansion gives rise to a Krylov space again. The number of linear
systems that needs to be solved is equivalent to that in PRIMA, so the method is
computationally competitive.

The algorithm presented in [23] then reads:

1. select a value for α and q
2. solve (αIn −A)R1 = B
3. for k=2,...,q, solve (αIn −A)Rk = (−αIn −A)Rk−1

4. define R = [R1, ..., Rq] and calculate the SVD of R: R = V ΣWT

5. Ã = V TAV
6. C̃ = V TCV
7. B̃ = V TBV

In [23] it is argued that the best choice for α is to take it equal to 2πfmax, where
fmax is the maximum frequency for which the reduced order model is to be valid.

As can be seen from the algorithm, the Krylov space is built without intermediate
orthogonalisation. Instead, a singular value decomposition (SVD) is performed after
the process has terminated. Consequently, V is an orthonormal basis of R. SVD is
known to be a very stable and accurate way to perform this orthogonalisation, on the
other hand it is computationally expensive. There are good alternatives, such as the
QR method or Modified Gram-Schmidt. In [21], an alternative to the Laguerre-SVD
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method is presented that makes use of intermediate orthogonalisation, and has been
shown to have certain advantages over using an SVD.

Just as in the PRIMA method, the Laguerre-based methods make use of explicit
projection of the system matrices. Consequently, these methods preserve stability and
passivity. Since α is a real number, the matrices in the Laguerre algorithm remain real
during projection, thereby making it suitable for circuit synthesis (see [21, 24]).

3.5 Truncation Methods

As mentioned before, model order reduction has its roots in the area of systems and
control theory. Within this area, methods have been developed that differ consider-
ably from the Krylov based methods as discussed in subsections 3.1-3.5. The basic
idea is to truncate the dynamical system studied at some point. To illustrate how it
works, consider again the linear dynamical system (1):

dx
dt

= Ax +Bu,

y = CT x +Du.

Applying a state space transformation

T x̃ = x,

does not affect the input-output behavior of the system. This transformation could be
chosen to be based on the eigenvalue decomposition of the matrix A:

AT = TΛ.

When T is non-singular, T−1AT is a diagonal matrix consisting of the eigenvalues
of A, and we could use an ordering such that the eigenvalues on the diagonal occur
in order of decreasing magnitude. The system can then be truncated by restricting
the matrix T to the dominant eigenvalues. This process is termed modal truncation.

Another truncation method is that of balanced truncation, usually known as
Truncated Balanced Realization (TBR). This method is based upon the observation
that only the largest singular values of a system are important. As there is a very
good reference to this method, containing all details, we will only summarize the
main concepts. The reader interested in the details of the method is referred to the
book by Antoulas [2].

The controllability Gramian and the observability Gramian associated to the lin-
ear time-invariant system (A,B,C,D) are defined as follows:

P =
∫ ∞

0

eAtBB∗eA∗tdt, (3a)

and

Q =
∫ ∞

0

eAtC∗CeA∗tdt, (3b)

respectively.
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The matrices P and Q are the unique solutions of two Lyapunov equations:

AP + PA∗ +BB∗ = 0, (4a)

A∗Q+QA+ C∗C = 0. (4b)

The Lyapunov equations for the Gramians arise from a stability assumption of A.
Stability in the matrix A implies that the infinite integral defined in (3) is bounded.
Finding the solution of the Lyapunov equation is quite expensive. There are direct
ways and iterative ways to do this. One of the interesting iterative methods to find a
solution is vector ADI [8,33]. New developments are also in the work of Benner [3].

After finding the Gramians, we look for a state space transformation which bal-
ances the system. A system is called balanced if P = Q = Σ = diag(σi). The
transformation will be applied to the system as follows:

A′ = T−1AT

B′ = T−1B

C ′ = CT

D′ = D.

This transformation also yields transformed Gramians:

P ′ = T−1PT−∗

Q′ = T ∗QT.

Because P and Q are positive definite, a Cholesky factorization of P can be calcu-
lated, P = RTR, with R ∈ R

n×n. Then the Hankel singular values are derived as
the singular values of the matrix RQRT, which are equal to the square root of the
eigenvalues of RQRT and QP . So:

RQRT = UTΣ2U. (5)

Then the transformation T ∈ Rn×n is defined as:

T = RTUTΣ−1/2. (6)

The inverse of this matrix is:

T−1 = Σ1/2UR−1. (7)

This procedure is called balancing. It can be shown that T indeed balances the
system:

Q′ = TTQT = Σ−1/2URQRTUTΣ−1/2 = Σ−1/2Σ2Σ−1/2 = Σ

P ′ = T−1PT−T = Σ1/2UR−TPR−1UTΣ1/2 = Σ1/2Σ1/2 = Σ.

Since a transformation was defined which transforms the system according to the
Hankel singular values [2], now very easily a truncation can be defined.



Introduction to MOR 25

Σ can be partitioned:

Σ =
(
Σ1 0
0 Σ2

)
, (8)

where Σ1 contains the largest Hankel singular values. This is the main advantage of
this method, since now we can manually choose an appropriate value of the size of
the reduction, instead of guessing one.

A′, B′ and C ′ can be partitioned in conformance with Σ:

A′ =
(
A11 A12

A21 A22

)
(9)

B′ =
(
B1

B2

)
(10)

C ′ =
(
C1 C2

)
. (11)

The reduced model is then based on A11, B1 and C1:
˙̃x = A11x̃ +B1u

y = C1x̃.

It is sometimes proposed to apply Balanced Truncation-like methods as a second
reduction step, after having applied a Krylov method. This can be advantageous in
some cases, and has also been done by several authors.

A remark should be made on solving the Lyapunov equation. These equations
are normally solved by first calculating a Schur decomposition for the matrix A.
Therefore, finding the solution of the Lyapunov is quite expensive, the number of
operations is at least O(n3), where n is the size of the original model. Hence, it is
only feasible for small systems. Furthermore, because we arrived at this point using
the inverse of an ill-conditioned matrix we have to be careful. B can have very large
entries, which will introduce tremendous errors in solving the Lyapunov equation.
Dividing both equations by the square of the norm of B spreads the malice a bit,
which makes finding a solution worthwhile. In recent years, however, quite a lot of
progress has been made on solving larger Lyapunov equations. We refer to the work
of Benner [3].

Another remark: since the matrices are projected by a similarity transform,
preservation of passivity is not guaranteed in this method. In [27] a Balanced Trunca-
tion method is presented which is provably passive. Here also Poor Man’s TBR [28]
should be mentioned as a fruitful approach to implement TBR is a more efficient
way. We refer to a later chapter in this book for more information on this topic.

3.6 Optimal Hankel Norm Reduction

Closely related to Balanced Truncation is Optimal Hankel Norm reduction [18]. In
the Balanced Truncation norm it was not clear whether the truncated system of size
say k was an optimal approximation of this size. It is seen that this optimality can be
calculated and reached given a specific norm, the Hankel norm.
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To define the Hankel norm we first have to define the Hankel operator H:

H : u → y =
∫ 0

−∞
h(t− τ)u(τ), (12)

where h(t) is the impulse response in time domain: h(t) = C exp(At)B for t > 0.
This operator considers the past input, the energy that was put into the system before
t = 0, in order to reach this state. The amount of energy to reach a state tells some-
thing about the controllability of that state. If, after t = 0, no energy is put into the
system and the system is stable, then the corresponding output will be bounded as
well. The energy that comes out of a state, gives information about the observability
of a state. The observability and controllability Gramians were defined in (3).

Therefore, the maximal gain of this Hankel operator can be calculated:

‖Σ‖H = sup
u∈L2(−∞,0]

‖y‖2

‖u‖2
. (13)

This norm is called the Hankel norm. Since it can be proved that ‖Σ‖H=λ1/2
max

(PQ)=σ1, the Hankel norm is nothing but the largest Hankel singular value of the
system.

There exists a transfer function and a corresponding linear dynamical system
which minimizes this norm. In [18] an algorithm is given which explicitly generates
this optimal approximation in the Hankel-norm. The algorithm is based on a balanced
realization.

3.7 Selective Node Elimination

Krylov based methods build up the reduced order model by iterating, every iteration
leading to a larger size of the model. Hence, the first few iterations yield extremely
small models that will not be very accurate in general, and only when a sufficient
number of iterations has been performed, the approximate model will be sufficiently
accurate. Hence, characteristic for such methods is that the space in which approx-
imations are being sought is gradually built up. An alternative would be to start ‘at
the other end’, in other words, start with the original model, and reduce in it every
iteration, until we obtain a model that is small and yet has sufficient accuracy. This is
the basic idea behind a method termed selective node elimination. Although it can,
in principle, be applied in many situations, it has been described in literature only for
the reduction of electronic circuits. Therefore, we limit the discussion in this section
to that application.

Reduction of a circuit can be done by explicitly removing components and nodes
from the circuit. If a node in a circuit is removed, the behaviour of the circuit can be
preserved by adjusting the components around this node. Recall that the components
connected to the node that is removed, are also removed. The value of the remaining
components surrounding this node must be changed to preserve the behavior of the
circuit. For circuits with only resistors this elimination can be done exactly.
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We explain the idea for an RC circuit. For this circuit we have the following
circuit equation Y (s)v = (G + sC)v = J. The vector v here consists of the node
voltages, J is some input current term. Suppose the n-th node is eliminated. Then,
we partition the matrix such that the (n, n) entry forms one part:[

Ỹ y
yT γn + sχn

] [
ṽ
vn

]
=
[
J1

jn

]
.

Then the variable vn is eliminated, which leads to:

(Ỹ − E)v̂ = (J1 − F), (14)

with

Eij =
yiyj

γn + sχn
=

(gin + scin)(gjn + scjn)
γn + sχn

(15a)

Fi =
yi

γn + sχn
jn =

gin + scin
γn + sχn

jn. (15b)

If node n is not a terminal node, jn is equal to 0 and therefore F=0 for all i. We see
that the elimination can also be written in matrix notation. Hence, this approach is
analogous to solving the system by Gaussian elimination. This approach can be used
to solve PDE’s in an efficient way.

After the elimination process the matrix is not in the form G+sC anymore, but is
a fraction of polynomials in s. To get an RC-circuit representation an approximation
is needed. Given the approximation method that is applied, removing one node leads
to a larger error than removing the other.

Many others have investigated methods which are strongly related to the ap-
proach described here, for instance a more symbolic approach. The strong attributes
of the methods described above is that an RC circuit is the direct result. The error
made with the reduction is controllable, but can be rather large. A disadvantage is
that reducing an RLC-circuit in this way is more difficult and it is hard to get an
RLC-circuit back after reduction.

3.8 Proper Orthogonal Decomposition

Apart from Krylov subspace methods and Truncation methods, there is Proper
Orthogonal Decomposition (POD), also known as Karhunen-Loeve decomposition.
This method is developed within the area of Computational Fluid Dynamics and
nowadays used frequently in many CFD problems. The method is so common there,
that it should at least be mentioned here as an option to reduce models derived in
an electronic setting. The strong point of POD is that it can be applied to non-linear
partial differential equations and is at the moment state-of-the-art for many of such
problems.

The idea underlying this method is that the time response of a system given
a certain input, contains the essential behavior of the system. The most important
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aspects of this output in time are retrieved to describe the system. Therefore, the set of
outputs serves as a starting-point for POD. The outputs, which are called ‘snapshots’,
must be given or else be computed first.

A snapshot consists of a column vector describing the state at a certain moment.
Let W ∈ R

N×K be the matrix consisting of the snapshots. N is the number of
snapshots, K is the number of elements in every snapshot, say the number of state
variables. Usually we have that N < K.

Let X be a separable Hilbert space with inner product (., .), and with an ortho-
normal basis {ϕi}i∈I . Then, any element T (x, t) ∈ X can be written as:

T (x, t) =
∑

i

ai(t)ϕi(x) =
∑

i

(T (x, t), ϕi(x))ϕi(x). (16)

The time dependent coefficients ai are called Fourier coefficients. We are looking for
an orthonormal basis {ϕi}i∈I such that the averages of the Fourier-coefficients are
ordered:

〈a2
1(t)〉 ≥ 〈a2

2(t)〉 ≥ . . . , (17)

where 〈.〉 is an averaging operator. In many practical applications the first few ele-
ments represent 99% of the content. Incorporating these elements in the approxima-
tion gives a good approximation. The misfit, the part to which the remaining elements
contribute to, is small.

It can be shown that this basis can be found in the first eigenvectors of this
operator:

C = 〈(T (t), ϕ)T (t)〉. (18)

In case we consider a finite dimensional problem, in a discrete and finite set of time
points, this definition of C comes down to:

C =
1
N
WWT. (19)

Because C is self-adjoint, the eigenvectors are real and can be ordered, such that:

λ1 ≥ λ2 ≥ . . . (20)

A basis consisting of the first, say q eigenvectors of this matrix form the optimal
basis for POD of size q.

This leads to the following POD algorithm:

1. Input: the data in the matrix W consisting of the snapshots.
2. Define the correlation matrix C as:

C =
1
N
WWT.

3. Compute the eigenvalue decomposition CΦ = ΦΛ.
4. Output: The basis to project the system on, Φ.
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This algorithm contains an eigenvalue problem of size K × K, which can be
computationally expensive. Therefore the ‘method of snapshots’ is designed. The
reason underlying this different approach is that the eigenvalues of C are the same
as the eigenvalues of K = 1

NWTW but K is smaller, namely N ×N .
Let the eigenvalues of K be Ψi, then the eigenvectors of C are defined as:

ϕi =
1

‖WsnapΨi‖
WsnapΨi. (21)

However, also the singular value decomposition of the snapshot matrix W is a
straightforward way to obtain the eigenvectors and eigenvalues of C.

W = ΦΣΨT, (22)

C =
1
N
WWT =

1
N
ΦΣΨTΨΣΦT =

1
N
ΦΣ2ΦT. (23)

The eigenvectors of C are in Φ:

CΦ =
1
N
ΦΣ2ΦTΦ = Φ

1
N
Σ2. (24)

From which it can be seen that the eigenvalues of C are 1
NΣ2.

Once the optimal orthonormal basis is found, the system is projected onto it. For
this, we will focus on the following formulation of a possibly non-linear model:

C(x)
d

dt
x = f(x,u)

y = h(x,u).

x consists of a part in the space spanned by this basis and a residual:

x = x̂ + r, (25)

where x̂ =
∑Q

k=1 ak(t)wk. When x̂ is taken as state space in (25) an error is made:

C(x̂)
d

dt
x̂ − f(x̂,u) = ρ �= 0. (26)

This error is forced to be perpendicular to the basis W . Forcing this defines the
projection fully. In the following derivation we use that d

dt x̂ =
∑Q

k=1
d
dtak(t)wk:

0 =
(
C(x̂)

d

dt
x̂ − f(x̂,u),wk

)
=

(
C(x̂)

Q∑
k=1

d

dt
ak(t)wk − f(x̂,u),wk

)

=
Q∑

k=1

d

dt
ak(t) (C(x̂)wk,wk) − (f(x̂,u),wk) ,

(27)
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for j = 1, . . . , Q. Therefore the reduced model of order Q can be formulated as:

A(a)
d

dt
a = g(a,u)

y = h

(
Q∑

k=1

akwk,u

)
,

where:

Aij =
(
C(
∑Q

k=1 ak(t)wk)wi,wj

)
aj = aj(t)

g(a(t),u(t)) =
(
f(
∑Q

k=1 ak(t)wk,u(t)),wj

)
Obviously, if the time domain output of a system has yet to be calculated, this method
is far too expensive. Fortunately, the much cheaper to obtain frequency response can
be used. Consider therefore the following linear system:

(G+ jωC)x = Bu

y = LTx.

Calculate a set of frequency states, for certain choices of ω:

xωj
= [jωjC +G]−1B, (29)

where xωj
∈ C

n×1. We can take the real and imaginary part, or linear combinations
of both, for the POD process. We immediately see that the correlation matrix is an
approximation of the controllability Gramian:

K =
1
M

M∑
j=1

[jωjC +G]−1BB∗[−jωjC
∗ +G∗]−1. (30)

This approach solves the problem of chosing which time-simulation is the most ap-
propriate.

3.9 Other Methods

In the foregoing sections, we have reviewed a number of the most important meth-
ods for model order reduction. The discussion is certainly not exhaustive, alternative
methods have been published. For example, we have not mentioned the method of
vector fitting. This method builds rational approximations of the transfer function
in a very clever and efficient way, and can be used to adaptively build reduced or-
der models. The chapter by Deschrijver and Dhaene contains an account of recent
developments in this area.

As model order reduction is a very active area of research, progress in this very
active area may lead to an entirely new class of methods. The development of such
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new methods is often sparked by an industrial need. For example, right now there is
a demand for reducing problems in the electronics industry that contain many inputs
and outputs. It has already become clear that current methods cannot cope with such
problems, as the Krylov spaces very quickly become inhibitively large, even after
a few iterations. Hence, new ways of constructing reduced order models must be
developed.
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the Lanczos process. IEEE Trans. Computer-Aided Design, 14:137-158, 1993.
10. P. Feldmann and R. Freund. Reduced-order modeling of large linear subcircuits via a

block Lanczos algorithm. Proc. 32nd ACM/IEEE Design Automation Conf., June 1995.
11. R.W. Freund and P. Feldmann. Reduced-order modeling of large passive linear circuits by

means of the SyPVL algorithm. Numerical Analysis Manuscript 96-13, Bell Laboratories,
Murray Hill, N.J., May 1996.

12. R.W. Freund and P. Feldmann. Interconnect-Delay Computation and Signal-Integrity Ver-
ification Using the SyMPVL Algorithm. Proc. 1997 European Conf. Circuit Theory and
Design, 408-413, 1997.

13. R.W. Freund and P. Feldmann. The SyMPVL algorithm and its application to interconnect
simulation. Proc. 1997 Int. Conf. Simulation of Semiconductor Processes and Devices,
113-116, 1997.

14. R.W. Freund and P. Feldmann. Reduced-order modeling of large linear passive multi-
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1 Introduction

The development of Model Order Reduction techniques for various problems was
triggered by the success of subspace projection methods for the solution of large
linear systems and for the solution of matrix eigenvalue problems.

The idea behind a subspace projection method for the solution of a large linear
system Ax = b, with A ∈ Rn×n, x, b ∈ Rn, is to identify a subspace Rm, with
m � n. The system Ax = b is projected onto Rm, which yields a (much) smaller
system Hy − c, with y ∈ Rm. The latter system can be solved conveniently by
standard solution techniques. From its solution y it is straightforward to generate an
approximation for the vector x. The problem is now to generate a subspace such that
we obtain acceptable approximations for x for relatively low values of m, in order to
keep computational costs (storage and CPU-time) affordable.

The most well-known approaches in the subspace projection arena are based on
the construction of Krylov subspaces. These subspaces were proposed in 1931 by
Krylov for the explicit construction of the characteristic polynomial of a matrix, so
that the eigenvalues could be computed as the roots of that polynomial. This ini-
tial technique proved to be unpractical for matrices of order larger than, say, 6 or 7.
It failed because of the poor quality of the standard basis vectors for the Krylov
subspace. An orthogonal basis for this subspace appeared to be an essential factor,
as well as the way in which this orthogonal basis is generated. These were break-
throughs initiated by Lanczos [4] and Arnoldi [1], both in the early 1950’s. In this
chapter we will first discuss briefly some standard techniques for solving linear sys-
tems and for matrix eigenvalue problems. We will mention some relevant properties,
but we refer the reader for background and more references to the standard text by
Golub and van Loan [3].

We will then focus our attention on subspace techniques and highlight ideas that
are relevant and can be carried over to Model Order Reduction approaches for other
sorts of problems.
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1.1 Some Basic Properties

We will consider linear systems Ax = b, where A is usually an n by n matrix:

A ∈ Rn×n.

The elements of A will be denoted as ai,j . The vectors x = (x1, x2, . . ., xn)T and b
belong to the linear space Rn. Sometimes we will admit complex matrices A ∈
Cn×n and vectors x, b ∈ Cn, but that will be explicitly mentioned.

Over the space Rn we will use the Euclidean inner product between two vectors
x and y:

xT y =
n∑

i=1

xiyi,

and for v, w ∈ Cn we use the standard complex inner product:

vHw =
n∑

i=1

v̄iwi.

These inner products lead to the 2-norm or Euclidean length of a vector

‖x‖2 =
√
xTx for x ∈ Rn,

‖v‖2 =
√
vHv for v ∈ Cn.

With these norms we associate a 2-norm for matrices: for A ∈ Rn×n, its associated
2-norm ‖A‖2 is defined as

‖A‖2 = sup
y∈Rn,y �=0

‖Ay‖2

‖y‖2
,

and similarly in the complex case, using the complex inner product.
The associated matrix norms are convenient, because they can be used to bound

products. For A ∈ Rn×k, B ∈ Rk×m, we have that

‖AB‖2 ≤ ‖A‖2‖B‖2,

in particular
‖Ax‖2 ≤ ‖A‖2‖x‖2.

The inverse of a nonsingular matrix A is denoted as A−1. Particularly useful is the
condition number of a square nonsingular matrix A, defined as

κ2(A) = ‖A‖2‖A−1‖2.

The condition number is used to characterize the sensitivity of the solution x of
Ax = b with respect to perturbations in b and A. For perturbed systems we have the
following theorem.
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Theorem 1. [3, Theorem 2.7.2] Suppose

Ax = b A ∈ Rn×n, 0 �= b ∈ Rn

(A+∆A)y = b+∆b ∆A ∈ Rn×n,∆b ∈ Rn,

with ‖∆A‖2 ≤ ε‖A‖2 and ‖∆b‖2 ≤ ε‖b‖2.

If εκ2(A) = r < 1, then A+∆A is nonsingular and

‖y − x‖2

‖x‖2
≤ ε

1 − r
κ2(A).

With the superscript T we denote the transpose of a matrix (or vector): for A ∈
Rn×k, the matrix B = AT ∈ Rk×n is defined by

bi,j = aj,i.

IfE ∈ Cn×k then the superscript H is used to denote its complex conjugateF =EH ,
defined as

fi,j = ēj,i.

Sometimes the superscript T is used for complex matrices in order to denote the
transpose of a complex matrix.

The matrix A is symmetric if A = AT , and B ∈ Cn×n is Hermitian if B = BH .
Hermitian matrices have the attractive property that their spectrum is real. In partic-
ular, Hermitian (or symmetric real) matrices that are positive definite are attractive,
because linear systems with such matrices can be solved rather easily by proper iter-
ative methods (the CG method).

A Hermitian matrix A ∈ Cn×n is positive definite if xHAx > 0 for all 0 �=
x ∈ Cn. A positive definite Hermitian matrix has only positive real eigenvalues.

We will encounter some special matrix forms, in particular tridiagonal matrices
and (upper) Hessenberg matrices. The matrix T = (ti,j) ∈ Rn×m will be called
tridiagonal if all elements for which |i−j| > 1 are zero. It is called upper Hessenberg
if all elements for which i > j+1 are zero. In the context of Krylov subspaces, these
matrices are often k + 1 by k and they will then be denoted as Tk+1,k.

For purposes of analysis it is often helpful or instructive to transform a given
matrix to an easier form, for instance, diagonal or upper triangular form.

The easiest situation is the symmetric case: for a real symmetric matrix, there
exists an orthogonal matrix Q ∈ Rn×n, so that QTAQ = D, where D ∈ Rn×n is a
diagonal matrix. The diagonal elements of D are the eigenvalues of A, the columns
of Q are the corresponding eigenvectors of A. Note that the eigenvalues and eigen-
vectors of A are all real.

If A ∈ Cn×n is Hermitian (A = AH ) then there exist Q ∈ Cn×n and a diag-
onal matrix D ∈ Rn×n so that QHQ = I and QHAQ = D. This means that the
eigenvalues of a Hermitian matrix are all real, but its eigenvectors may be complex.

Unsymmetric matrices do not in general have an orthonormal set of eigenvec-
tors, and may not have a complete set of eigenvectors, but they can be transformed
unitarily to Schur form:
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QHAQ = R,

in which R is upper triangular. In fact, the symmetric case is a special case of this
Schur decomposition, since a symmetric triangular matrix is clearly diagonal. Apart
from the ordering of the eigenvalues along the diagonal of R and a factor −1 for
each column of Q, the matrix Q is unique.

If the matrix A is complex, then the matrices Q and R may also be complex.
However, they may be complex even when A is real unsymmetric. It may then be
advantageous to work in real arithmetic. This can be realized because of the existence
of the real Schur decomposition. If A ∈ Rn×n then it can be transformed with an
orthonormal Q ∈ Rn×n as

QTAQ = R̃,

with

R̃ =

⎡⎢⎢⎢⎢⎣
R̃1,1 R̃1,2 · · · R̃1,k

0 R̃2,2 · · · R̃2,k

...
...

. . .
...

0 0 · · · R̃k,k

⎤⎥⎥⎥⎥⎦ ∈ Rn×n.

Each R̃i,i is either 1 by 1 or a 2 by 2 (real) matrix having complex conjugate eigen-
values. For a proof of this see [3, Chapter 7.4.1]. This form of R̃ is referred to as an
upper quasi-triangular matrix.

If all eigenvalues are distinct then there exists a nonsingular matrix X (in general
not orthogonal) that transforms A to diagonal form:

X−1AX = D.

A general matrix can be transformed to Jordan form with a nonsingular X:

X−1AX = diag(J1, J2, . . ., Jk),

where

Ji =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λi 1 0 · · · 0

0 λi
. . .

...
. . . . . . . . .

...
. . . . . . 1

0 · · · 0 λi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If there is a Ji with dimension greater than 1 then the matrix A is called defective. In
this case A does not have a complete set of independent eigenvectors. In numerical
computations we may argue that small perturbations lead to different eigenvalues and
hence that it will be unlikely that A has a true Jordan form in actual computation.
However, if A is close to a matrix with a nontrivial Jordan block, then this is reflected
by a (severely) ill-conditioned eigenvector matrix X .
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Matrices A ∈ Cn×n that satisfy the property AHA = AAH are called normal.
Normal matrices also have a complete orthonormal eigensystem. For such matri-
ces the distribution of the eigenvalues can help to explain (local) phenomena in the
convergence behaviour of some methods. For unsymmetric matrices that are not nor-
mal, the eigenvalues are often insufficient for a detailed analysis. We refer to, e.g.,
Trefethen et al [10] for better alternatives, including the notion of pseudospectra.
We will also encounter eigenvalues that are called Ritz values. For simplicity, we
will introduce them here for the real case. The subspace methods that will be dis-
cussed in this book are based on the identification of good solutions from certain
low-dimensional subspaces Vk ⊂ Rn, where k � n denotes the dimension of
the subspace. If Vk ∈ Rn×k denotes an orthogonal basis of Vk then the operator
Hk = V T

k AVk ∈ Rk×k represents the projection of A onto Vk. Assume that the
eigenvalues and eigenvectors of Hk are represented as

Hks
(k)
j = θ

(k)
j s

(k)
j ,

then θ(k)
j is called a Ritz value of A with respect to Vk and Vks

(k)
j is its correspond-

ing Ritz vector. For a thorough discussion of Ritz values and Ritz vectors see, for
instance, [6, 7, 9, 11].

The importance of the Ritz values is that they can be viewed as approximations
for eigenvalues ofA. Often they represent, even for modest values of k, very accurate
approximations for some eigenvalues.

2 Linear Systems

Inverses of matrices play a role in formulas for important model order reduction
problems. However, in numerical computations the explicit inversion of a matrix has
to be avoided if possible. In most situations, the inverse of a matrix is used to denote
an operator acting on a vector or another matrix. We consider the evaluation of the
vector y defined as

y = A−1b.

Determining the explicit inverse of A is expensive. The classical way is to compute
an LU factorization first and then solve linear systems with L and U for all canonical
basis vectors. After A−1 has been obtained, it has to be multiplied with b in order to
obtain y.

The vector y can be obtained in a much cheaper way. We see that y has to be
solved from

Ay = b.

Again, we use the LU factorization and first solve z from Lz = b, followed by the
solution from Uy = z. These two solution steps require as much computation as the
sole multiplication of A−1 and b, and we have avoided to solve the n systems with
the canonical basis vectors as right-hand sides. Likewise, always when the matrix
A−1 occurs as an operator acting on some vector or some other matrix, then the
expression can be numerically evaluated as we have demonstrated for y.
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For sparse matrices, computational differences may be even much more dramatic. In
relevant cases, A−1 may be dense, while L and U are sparse. For instance, if A is
a positive definite tridiagonal matrix, then solving Ax = b via LU decomposition
requires only in the order of n arithmetic computations. The bottom line is: avoid
explicit inversion.

Direct computation of y via LU requires, for dense matrices, in total in the order
of n3 floating point operations, which may pose practical limits for large values of n.
This is a major motivation for Model Order Reduction: to save computational costs
and computer memory storage.

Eigenvalue computations lead to similar observations. The standard way to com-
pute non-trivial λ and x, satisfying

Ax = λx,

requires the diagonalization of the matrix A. The state of the art technique for this
is to first transform A to a more efficient to handle form by orthogonal transforma-
tions. In particular, A is transformed by a finite number of Householder or Givens
transformations to upper Hessenberg form H: QTAQ = H . The eigenvalues of A
are equal to those of A and the eigenvalues of H are computed with the QR-method.
The operations in QR can efficiently be done on Hessenberg matrices. The eigen-
value computation is essentially an iterative process, but QR converges so fast that in
practice the complete method (reduction to upper Hessenberg plus QR) is viewed as
a direct technique. The whole process requires a few times n3 arithmetic operations,
and again this poses practical problems if n is large.

3 Subspace Methods

3.1 The Krylov Subspace

The main problem in Model Order Reduction is to identify a suitable subspace to
which the given problem can be restricted. For a linear system Ax = b it has been
proven a fruitful idea to start from some convenient iteration method and to collect
successive approximation vectors or residuals as the basis vectors for a subspace. We
will explain this idea in a little more detail.

Suppose that we have an initial guess x0 for x. Obviously, we want the correction
z that satisfies

A(x0 + z) = b,

which leads to the system
Az = b−Ax0 ≡ r0.

This system is just as difficult to solve as the given system, but we are satisfied
for the moment with an approximation z0 for the correction z, which may be ob-
tained from an easier to solve nearby system Kz0 = r0. In the context of iteration
processes, the operator K is usually referred to as the preconditioner. In order to
keep the explanation simple, we select a very simple approximation K for A, namely
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K = I . The inclusion of more practical K is straightforward, for more on this see,
e.g. [12].

With this very simple K, we obtain z0 = r0, which leads to the updated
approximation

x1 = x0 + r0.

Carrying on in this fashion, we obtain the basic iteration method

xi+1 = xi + zi

= xi + ri

= xi + b−Axi. (1)

It is straightforward that with x0 = 0, we have that x1 = b, x2 = 2b− Ab, etcetera,
and in genaral xi for the standard iteration (with x0 = 0) can be written as a special
combination of the vectors b, Ab, . . . , Ai−1b. For x0 �= 0, we obtain a simple shift
of these combinations of vectors (again, see [12] for more details). Since we have to
carry out a matrix vector product with A in each iteration (to compute ri) it seems
to be attractive to forget about the iteration matrix and to generate the vectors Ajb
directly.

These vectors define the so-called Krylov subspace Ki(A; b) of dimension i and
generated by A and b:

Ki(A; b) ≡ span{b, Ab, . . . , Ai−1b}. (2)

The idea is to exploit this subspace for the computation of suitable approximations
for x. The question is how to do this in a numerically stable way. The generation of
the basis vectors Ajb and orthogonalize them afterwards is not a good idea, because
these vectors point more and more in the direction of a dominant eigenvector and,
hence, will form an ill-conditioned set of vectors. Orthogonalization of such a set of
ill-conditioned set of vectors may lead to a correct projection process, but most often
it leads to a loss of information and loss of efficiency. Using the iteration vectors xi

or ri is not a good alternative, because they also may suffer from near dependency. It
is much better to generate an orthogonal basis for the Krylov subspace (or any other
appropriate subspace) right from the start. We will explain later how to do that for
the Krylov subspace.

For standard eigenproblems Ax = λx, the subspace approach is even more ob-
vious. Behind almost all effective eigenproblem solvers there is the Power Method
in some disguise. With a convenient initial guess v for a dominating eigenvector, the
Power Method generates the vectors Av, A2v, . . ., and one observes that Ajv con-
verges to the dominant eigenvector for increasing values of j. From ratios of (norms
of) successive vectors one derives approximations for the corresponding eigenvalue.
We see that the iteration vectors for the Power Method are just the defining vectors
for the Krylov subspace, and again, as above, the idea is to compute a better basis
for this subspace for the reduction of the given problem Ax = λx.

Note that the construction of a better basis was not so obvious as it may seem
now. Krylov used the defining basis vectors and it took almost 20 years before
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Lanczos and Arnoldi, independently, came with the construction of a better basis
(instead of orthogonalizing a set of Krylov vectors). It then took another 20 years be-
fore numerical errors in the generation of the orthogonal basis were well understood.

Before we turn our attention to the computation of an effective orthogonal basis
for the Krylov subspace, we give an overview of some popular reduction techniques,
once the orthogonal basis is available.

3.2 Reduction of the Problem

Reduction of the described linear problems comes down to the selection of a proper
subspace and then solve a related problem over that subspace. To that end we have
to construct an orthonormal basis Yk = {y1, ..., yk} for the k-dimensional subspace.
We have to identify a suitable vector xk in this subspace that approximates y. The
most popular, and in some sense optimal, ways are:

1. The Ritz-Galerkin approach: Construct the xk for which the residual is orthog-
onal to the current subspace: b−Axk ⊥ Yk.

2. The minimum norm residual approach: Identify the xk for which the Euclidean
norm ‖b−Axk‖2 is minimal over Yk.

3. The Petrov-Galerkin approach: Find an xk so that the residual b − Axk is or-
thogonal to some other suitable k-dimensional subspace.

4. The minimum norm error approach: Determine xk in ATYk for which the
Euclidean norm ||xk − x||2 is minimal.

We will now focus our attention to the important aspect of the construction of
an efficient orthogonal basis. This is the key element in any Model Order Reduction
approach. After that we will give an example on how to use the orthogonal basis in
order to obtain a smaller to solve system that replaces the given system Ax = b.

3.3 The Krylov Subspace

We now derive an orthogonal basis that, in exact arithmetic, spans the Krylov sub-
space. For this we follow ideas from [9, Chapter 4.3]. We start with the generic basis
for Ki+1(A; r0) and we denote the basis vectors by uj :

uj = Aj−1r0.

We define the n by j matrix Uj as the matrix with columns u1, . . . , uj . The connec-
tion between A and Ui is as follows:

AUi = UiBi + ui+1e
T
i , (3)

with ei the i-th canonical basis vector in Ri, and Bi an i by i matrix with bj+1,j = 1
and all other elements zero.

The next step is to decompose Ui, still in exact arithmetic, as

Ui = QiRi,
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with QT
i Qi = I and Ri upper triangular. Then, with (3), it follows that

AQiRi = QiRiBi + ui+1e
T
i ,

or

AQi = QiRiBiR
−1
i + ui+1e

T
i R

−1
i

= QiH̃i + ui+1e
T
i R

−1
i (4)

= QiH̃i +
1
ri,i

ui+1e
T
i . (5)

The matrix H̃i is an upper Hessenberg matrix.
We can also decompose Ui+1 as Ui+1 = Qi+1Ri+1, and if we write the last

column of Ri+1 as (r̃, ri+1,i+1)T , that is

Ri+1 =
(
Ri r̃

0 ri+1,i+1

)
,

then it follows that
ui+1 = Qir̃ + ri+1,i+1qi+1.

In combination with (4), this gives

AQi = Qi(H̃i +
1
ri,i

r̃eT
i ) +

ri+1,i+1

ri,i
qi+1e

T
i

= QiHi + αqi+1e
T
i . (6)

From this expression we learn at least two things: first

QT
i AQi = Hi, (7)

with Hi upper Hessenberg, and second

qT
i+1Aqi = α,

which, with QT
i+1AQi+1 = Hi+1, leads to α = hi+1,i.

The implicit Q theorem [3, Theorem 7.4.2] states that the orthogonal Q that re-
duces A to upper Hessenberg form is uniquely determined by q1 = 1

‖r0‖r0, except
for signs (that is, qj may be multiplied by −1). The orthogonality of the qj basis
gives us excellent opportunities to compute this basis in finite precision arithmetic.

Arnoldi [1] proposed to compute the orthogonal basis as follows (in fact, with
Arnoldi’s procedure we compute in a straightforward manner the columns of Qi

and the elements of Hi). Start with v1 ≡ r0/‖r0‖2. Then compute Av1, make it
orthogonal to v1 and normalize the result, which gives v2. The general procedure
is as follows. Assuming that we already have an orthonormal basis v1, . . . , vj for
Kj(A; r0), this basis is expanded by computing t = Avj and by orthonormalizing
this vector t with respect to v1, . . . , vj . In principle, the orthonormalization process
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v1 = r0/‖r0‖2;
for j = 1, . . ., m − 1

t = Avj ;
for i = 1, . . ., j

hi,j = vT
i t;

t = t − hi,jvi;
end;
hj+1,j = ‖t‖2;
vj+1 = t/hj+1,j ;

end

Fig. 1. Arnoldi’s method with modified Gram–Schmidt orthogonalization

can be carried out in different ways, but the most commonly used approach is then
the modified Gram–Schmidt procedure [3].

This leads to an algorithm for the creation of an orthonormal basis forKm(A; r0),
as in Figure 1. It is easily verified that v1, . . . , vm form an orthonormal basis for
Km(A; r0) (that is, if the construction does not terminate at a vector t = 0). The
orthogonalization leads, in exact arithmetic, to the relation that we have seen before
(cf. (6), but now expressed in terms of the vj . Let Vj denote the matrix with columns
v1 up to vj , then it follows that

AVm−1 = VmHm,m−1. (8)

The m by m − 1 matrix Hm,m−1 is upper Hessenberg, and its elements hi,j are
defined by the Arnoldi algorithm.

From a computational point of view, this construction is composed of three basic
elements: a matrix vector product with A, inner products, and vector updates. We see
that this orthogonalization becomes increasingly expensive for increasing dimension
of the subspace, since the computation of each hi,j requires an inner product and a
vector update.

Note that ifA is symmetric, then so isHm−1,m−1 = V T
m−1AVm−1, so that in this

situation Hm−1,m−1 is tridiagonal. This means that in the orthogonalization process,
each new vector has to be orthogonalized with respect to the previous two vectors
only, since all other inner products vanish. The resulting three-term recurrence re-
lation for the basis vectors of Km(A; r0) is known as the Lanczos method [4] and
some very elegant methods are derived from it. In this symmetric case the orthogo-
nalization process involves constant arithmetical costs per iteration step: one matrix
vector product, two inner products, and two vector updates.
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A more accurate basis for the Krylov subspace

A more accurate implementation for the construction of an orthonormal basis,
useful for ill-conditioned matrices A, was suggested by Walker [13]. He suggested
employing Householder reflections instead of the modified Gram–Schmidt orthogo-
nalization procedure.

An alternative is to do two iterations with (modified) Gram–Schmidt if necessary.
This works as follows. If we want to have a set of orthogonal vectors to almost work-
ing precision then we have to check, after the orthogonalization of a new vector with
respect to the existing set, whether the resulting unnormalized vector is significantly
smaller in norm than the new vector at the start of the orthogonalization step, say
more than κ < 1 smaller. In that case we may have had cancellation effects, and
once again we apply modified Gram–Schmidt. This is the basis for the refinement
technique suggested in [2]. It leads to a set of vectors for which the mutual loss of
orthogonality is limited to 1/κ, in a relative sense. In the template in Figure 2, we
incorporate this technique into the Arnoldi algorithm.

Note that, in exact arithmetic, the constants ρ in Figure 2 are equal to zero. It is
easily verified that, in exact arithmetic, the v1, . . . , vm form an orthonormal basis for
K(A; v) (that is, if the construction does not terminate at a vector t = 0).

v is a convenient starting vector
Select a value for κ, e.g., κ = .25
v1 = v/‖v‖2

for j = 1, . . ., m − 1
t = Avj

τin = ||t||2
for i = 1, . . ., j

hi,j = v∗
i t

t = t − hi,jvi

end
if ‖t‖2/τin ≤ κ

for i = 1, . . ., j
ρ = v∗

i t
t = t − ρvi

hi,j = hi,j + ρ
end

endif
hj+1,j = ‖t‖2

vj+1 = t/hj+1,j

end

Fig. 2. The Arnoldi Method with refined modified Gram–Schmidt
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3.4 Example of the Construction of Approximate Solutions

In this section we give one example of the reduction of a problem, in this caseAx=b,
to a smaller problem over the Krylov subspace. For other approaches and more ex-
amples, see, e.g., [12].

The Ritz–Galerkin conditions imply that rk ⊥ Kk(A; r0), and this is equivalent to

V T
k (b−Axk) = 0.

Since b = r0 = ‖r0‖2v1, it follows that V T
k b = ‖r0‖2e1 with e1 the first canonical

unit vector in Rk. With xk = Vky we obtain

V T
k AVky = ‖r0‖2e1.

This system can be interpreted as the system Ax = b projected onto the subspace
Kk(A; r0).

Obviously we have to construct the k× k matrix V T
k AVk, but this is, as we have

seen, readily available from the orthogonalization process:

V T
k AVk = Hk,k,

so that the xk for which rk ⊥ Kk(A; r0) can be easily computed by first solving
Hk,ky = ‖r0‖2e1, and then forming xk = Vky. This algorithm is known as FOM or
GENCG [8].

When A is symmetric, then Hk,k reduces to a tridiagonal matrix Tk,k, and
the resulting method is known as the Lanczos method [5]. When A is in addition
positive definite then we obtain, at least formally, the Conjugate Gradient method.
In commonly used implementations of this method, an LU factorization for Tk,k is
implicitly formed without generating Tk,k itself, and this leads to very elegant short
recurrences for the xj and the corresponding rj .

For eigenvalues and eigenvectors, the Krylov subspace approach can be used in
a similar fashion, for details we refer to [6].
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Summary. In recent years, order-reduction techniques based on Krylov subspaces have be-
come the methods of choice for generating macromodels of large multi-port RCL circuits.
Despite the success of these techniques and the extensive research efforts in this area, for
general RCL circuits, the existing Krylov subspace-based reduction algorithms do not fully
preserve all essential structures of the given large RCL circuit. In this paper, we describe the
problem of structure-preserving model order reduction of general RCL circuits, and we dis-
cuss two state-of-the-art algorithms, PRIMA and SPRIM, for the solution of this problem.
Numerical results are reported that illustrate the higher accuracy of SPRIM vs. PRIMA. We
also mention some open problems.

1 Introduction

Electronic circuits often contain large linear subnetworks of passive components.
Such subnetworks may represent interconnect (IC) automatically extracted from
layout as large RCL networks, models of IC packages, or models of wireless propa-
gation channels. Often these subnetworks are so large that they need to be replaced
by much smaller reduced-order models, before any numerical simulation becomes
feasible. Ideally, these models would produce a good approximation of the input-
output behavior of the original subnetwork, at least in a limited domain of interest,
e.g., a frequency range.

In recent years, reduced-order modeling techniques based on Padé or Padé-type
approximation have been recognized to be powerful tools for various circuit simula-
tion tasks. The first such technique was asymptotic waveform evaluation (AWE) [31],
which uses explicit moment matching. More recently, the attention has moved to
reduced-order models generated by means of Krylov-subspace algorithms, which
avoid the typical numerical instabilities of explicit moment matching; see, e.g., the
survey papers [14–16].

PVL [9, 10] and its multi-port version MPVL [11] use variants of the Lanczos
process [26] to stably compute reduced-order models that represent Padé or matrix-
Padé approximations [5] of the circuit transfer function. SyPVL [21] and its multi-
port version SyMPVL [12,23,24] are versions of PVL and MPVL, respectively, that
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are tailored to RCL circuits. By exploiting the symmetry of RCL transfer functions,
the computational costs of SyPVL and SyMPVL are only half of those of general
PVL and MPVL.

Reduced-order modeling techniques based on the Arnoldi process [3], which is
another popular Krylov-subspace algorithm, were first proposed in [8, 28–30, 33].
Arnoldi-based reduced-order models are defined by a certain Padé-type approxi-
mation property, rather than Padé approximation, and as a result, in general, they
are not as accurate as a Padé-based model of the same size. In fact, Arnoldi-based
models are known to match only half as many moments as Lanczos-based models;
see [15, 28, 29, 33].

In many applications, in particular those related to VLSI interconnect, the re-
duced-order model is used as a substitute for the full-blown original model in higher-
level simulations. In such applications, it is very important for the reduced-order
model to preserve the passivity properties of the original circuit. In [4, 23, 24], it is
shown that SyMPVL is passive for RC, RL, and LC circuits. However, the Padé-
based reduced-order models that characterize SyMPVL cannot be guaranteed to be
passive for general RCL circuits. On the other hand, in [28–30], it was proved that the
Arnoldi-based reduction technique PRIMA produces passive reduced-order for gen-
eral RCL circuits. PRIMA employs a block version of the Arnoldi process and then
obtains reduced-order models by projecting the matrices defining the RCL transfer
function onto the Arnoldi basis vectors. While PRIMA generates provably passive
reduced-order models, it does not preserve other structures, such as reciprocity or the
block structure of the circuit matrices, inherent to RCL circuits. This has motivated
the development of the reduction technique SPRIM [17,18], which overcomes these
disadvantages of PRIMA. In particular, SPRIM generates provably passive and recip-
rocal macromodels of multi-port RCL circuits. Furthermore, SPRIM models match
twice as many moments as the corresponding PRIMA models obtained with identical
computational work. In this paper, we describe the problem of structure-preserving
model order reduction of general RCL circuits, and we discuss the PRIMA and
SPRIM algorithms for the solution of this problem.

The remainder of this article is organized as follows. In Section 2, we review
the formulation of general RCL circuits as systems of integro-differential-algebraic
equations (integro-DAEs). In Section 3, we describe the problem of structure-
preserving model order reduction of systems of integro-DAEs. In Section 4, we
present an equivalent formulation of such systems as time-invariant linear dynami-
cal systems. In Section 5, we review oder reduction based on projection onto Krylov
subspaces and the PRIMA algorithm. In Section 6, we describe the SPRIM algorithm
for order reduction of general RCL circuits, and in Section 7, we present some the-
oretical properties of SPRIM. In Section 8, we report the results of some numerical
experiments with SPRIM and PRIMA. Finally, in Section 9, we mention some open
problems and make some concluding remarks.

Throughout this article the following notation is used. The set of real and com-
plex numbers is denoted by R and C, respectively. Unless stated otherwise, all vec-
tors and matrices are allowed to have real or complex entries. For (real or complex)
matrices M =

[
mjk

]
, we denote by MT =

[
mkj

]
the transpose of M , and by
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M∗ :=
[
mkj

]
the Hermitian (or complex conjugate) of M . The identity matrix is

denoted by I and the zero matrix by 0; the actual dimensions of I and 0 will always
be apparent from the context. The notation M � 0 (M � 0) is used to indicate
that a real or complex square matrix M is Hermitian positive semidefinite (positive
definite). If all entries of the matrix M � 0 (M � 0) are real, then M is said to
be symmetric positive semidefinite (positive definite). The kernel (or null space) of a
matrix M is denoted by ker M .

2 Formulation of General RCL Circuits as Integro-DAEs

In this section, we review the formulation of general RCL circuits as systems of
integro-DAEs.

2.1 Electronic Circuits as Directed Graphs

We use the standard lumped-element approach that models general electronic circuits
as directed graphs; see, e.g., [7, 34]. More precisely, a given circuit is described as
a directed graph G = (N , E) whose edges e ∈ E correspond to the circuit elements
and whose nodes n ∈ N correspond to the interconnections of the circuit elements.
For each element for which the direction of the current flow through the element is
known beforehand, the corresponding edge is oriented in the direction of the current
flow; for example, current sources and voltage sources are elements with known
direction of current flow. For all other elements, arbitrary directions are assigned to
the edges corresponding to these elements. Each edge e ∈ E can be written as an
ordered pair of nodes, e = (n1, n2), where the direction of e is from node n1 to node
n2. We say that the edge e = (n1, n2) leaves node n1 and enters node n2.

The directed graph G = (N , E) can be described by its incidence matrix
A=

[
ajk

]
. The rows and columns of A correspond to the nodes and edges of the

directed graph, respectively, and the entries ajk of A are defined as follows:

ajk =

⎧⎪⎪⎨⎪⎪⎩
1 if edge ek leaves node nj ,

−1 if edge ek enters node nj ,

0 otherwise.

In order to avoid redundancy, any one of the nodes can be selected as the datum (or
ground) node of the circuit. We denote by n0 the datum node, by N0 = N \ {n0 }
the remaining non-datum nodes, and by A0 the matrix obtained by deleting from A
the row corresponding to n0. Note that A0 is called the reduced incidence matrix
of the directed graph G. We remark that A0 has full row rank, i.e.,

rank A0 = |N0| ,

provided the graph G is connected; see, e.g., [7, Theorem 9-6].
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We denote by v = v(t) the vector of nodal voltages at the non-datum nodes N0,
i.e., the k-th entry of v is the voltage at node nk ∈ N0. We denote by vE = vE(t)
and iE = iE(t) the vectors of edge voltages and currents, respectively, i.e., the j-th
entry of vE is the voltage across the circuit element corresponding to edge ej ∈ E ,
and the j-th entry of iE is the current through the circuit element corresponding to
edge ej ∈ E .

Any general electronic circuit is described completely by three types of equa-
tions: Kirchhoff’s current laws (KCLs), Kirchhoff’s voltage laws (KVLs), and the
branch constitutive relations (BCRs); see, e.g., [34]. The KCLs state that at each
node n ∈ N , the currents along all edges leaving and entering the node n sum up to
zero. In terms of the reduced incidence matrix A0 of G and the vector iE , the KCLs
can be expressed in the following compact form:

A0 iE = 0. (1)

Similarly, the KCVs state that for any closed (undirected) loop in the graph G, the
voltages along the edges of the loop sum up to zero. The KCLs can be expressed in
the following compact form:

AT
0 v = vE . (2)

The BCRs are the equations that describe the physical behavior of the circuit
elements.

2.2 RCL Circuit Equations

We now restrict ourselves to general linear RCL circuits. The possible element types
of such circuits are resistors, capacitors, inductors, independent voltage sources, and
independent current sources. We use subscripts r, c, l, v, and i to denote edge quan-
tities corresponding to resistors, capacitors, inductors, voltage sources, and current
sources of the RCL circuit, respectively. Moreover, we assume that the edges E are
ordered such that we have the following partitionings of the reduced incidence matrix
and the vectors of edge voltages and currents:

A0 =
[
Ar Ac Al Av Ai

]
, vE =

⎡⎢⎢⎢⎢⎢⎣
vr

vc

vl

vv

vi

⎤⎥⎥⎥⎥⎥⎦ , iE =

⎡⎢⎢⎢⎢⎢⎣
ir
ic
il
iv
ii

⎤⎥⎥⎥⎥⎥⎦ . (3)

The BCRs for the resistors, capacitors, and inductors can be expressed in the follow-
ing compact form:

vr(t) = R ir(t), ic(t) = C
d

dt
vc(t), vl(t) = L

d

dt
il(t). (4)

Here,
R � 0, C � 0, and L � 0 (5)
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are symmetric positive definite matrices. Furthermore, R and C are diagonal matri-
ces whose diagonal entries are the resistances and capacitances of the resistors and
capacitors, respectively. The diagonal entries of L are the inductances of the induc-
tors. Often L is also diagonal, but in general, when mutual inductances are included,
L is not diagonal. The BCRs for the voltage sources simply state that vv(t) is a given
input vector, the entries of which are the voltages provided by the voltages sources.
Similarly, the BCRs for the current sources state that ii(t) is a given input vector, the
entries of which are the currents provided by the current sources.

The KCLs (1), the KVLs (2), and the BCRs (4), together with initial conditions
for the nodal voltages v(t0) at some initial time t0, describe the behavior of a given
RCL circuit. Without loss of generality, we set t0 = 0. The initial condition then
reads

v(0) = v(0), (6)

where v(0) is a given vector. Moreover, for simplicity, we also assume that

il(0) = 0.

Then, the BCRs for the inductors in (4) can be equivalently stated as follows:

il(t) = L−1

∫ t

0

vl(τ) dτ. (7)

The resulting set of equations describing a given RCL circuit can be simplified con-
siderably by eliminating the edge quantities corresponding to the resistors, capac-
itors, and inductors. To this end, we first use the partitionings (3) to rewrite the
KCLs (1) as follows:

Ar ir + Ac ic + Al il + Av iv + Ai ii = 0. (8)

Similarly, the KCVs (2) can be expressed as follows:

AT
r v = vr, AT

c v = vc, AT
l v = vl, AT

v v = vv, AT
i v = vi. (9)

From (4), (7), and (9), it follows that

ir(t) = R−1AT
r v(t), ic(t) = CAT

c

d

dt
v(t),

il(t) = L−1AT
l

∫ t

0

v(τ) dτ .
(10)

Inserting (10) into (8), and using (9), we obtain

M11
d

dt
v(t) +D11 v(t) + Av iv(t) +K11

∫ t

0

v(τ) dτ = −Ai ii(t),

−AT
v v(t) = −vv(t),

vi(t) = AT
i v(t),

(11)
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where

M11 := Ac CAT
c , D11 := Ar R

−1AT
r , K11 := Al L

−1AT
l . (12)

The equations (11) can be viewed as a linear dynamical system for the unknown
state-space vector

z(t) :=

[
v(t)
iv(t)

]
, (13)

with given input vector and unknown output vector

u(t) :=

[
−ii(t)
vv(t)

]
and y(t) :=

[
vi(t)
−iv(t)

]
, (14)

respectively. Indeed, setting

M :=

[
M11 0
0 0

]
, D :=

[
D11 Av

−AT
v 0

]
,

K :=

[
K11 0
0 0

]
, F :=

[
Ai 0
0 −I

]
, z(0) :=

[
v(0)

iv(0)

]
,

(15)

and using (13), (14), and (9), the equations (11) can be rewritten in the form

M
d

dt
z(t) +Dz(t) +K

∫ t

0

z(τ) dτ = F u(t),

y(t) = FT z(t),
(16)

and the initial conditions (6) can be stated in the form

z(0) = z(0).

Note that, in (16), M , D, and K are N0 ×N0 matrices and F is an N0 ×m matrix.
Here, N0 is the sum of the number of non-datum nodes in the circuit and the number
of voltage sources, and m denotes the number of all voltage and current sources. We
remark that N0 is the state-space dimension of the linear dynamical system (16),
and m is the number of inputs (and outputs) of (16). In general, the matrix M is sin-
gular, and thus the first equation of (16) is a system of integro-differential-algebraic
equations (integro-DAEs). Finally, note that the matrices (15), M , D, K, and F ,
exhibit certain structures. In particular, from (5), (12), and (15), it follows that

M =

[
M11 0
0 0

]
� 0, D +DT =

[
2D11 0

0 0

]
� 0, and K � 0. (17)

3 Structure-Preserving Model Order Reduction

In this section, we formulate the problems of model order reduction and structure
preservation.
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3.1 Model Order Reduction

A reduced-order model of the linear dynamical system (16) is a system of the same
form as (16), but with smaller state-space dimension n0 (<N0). More precisely, a
reduced-order model of (16) with state-space dimension n0 is a system of the form

M̃
d

dt
z̃(t) + D̃ z̃(t) + K̃

∫ t

0

z̃(τ) dτ = F̃ u(t),

ỹ(t) = F̃T z̃(t),
(18)

with initial conditions
z̃(0) = z̃(0),

where
M̃, D̃, K̃ ∈ R

n0×n0 , F̃ ∈ R
n0×m, and z̃(0) ∈ R

n0 . (19)

The general problem of order reduction of a given linear dynamical system (16)
is to determine a reduced state-space dimension n0 and data (19) such that the
corresponding reduced-order model (18) is a ‘sufficiently accurate’ approximation
of (16).

A practical way of assessing the accuracy of reduced-order models is based on
the concept of Laplace-domain transfer functions of linear dynamical systems. The
transfer function of the original linear dynamical system (16) is given by

H(s) = FT
(
sM +D +

1
s
K
)−1

F. (20)

Here, we assume that the matrix sM + D + 1
s K is singular only for finitely many

values of s ∈ C. Conditions that guarantee this assumption are given in Section 4
below.

In analogy to (20), the transfer function of a reduced-order model (18) of (16) is
given by

H̃(s) = F̃T
(
s M̃ + D̃ +

1
s
K̃
)−1

F̃ . (21)

Note that both

H : C �→ (C ∪∞)m×m and H̃ : C �→ (C ∪∞)m×m

are m×m-matrix-valued rational functions.
In terms of transfer functions, the problem of order reduction of the original

system (16) is equivalent to the problem of constructing the matrices M̃ , D̃, K̃,
and F̃ in (18) such that the transfer function (21), H̃(s), is a ‘sufficiently accurate’
approximation to the original transfer function (20), H(s).
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3.2 Structure Preservation

Recall that the linear dynamical system (16) with data matrices given in (15) de-
scribes the behavior of a given RCL circuit. Therefore, the reduced-order model (18)
should be constructed such that it corresponds to an actual RCL circuit. This is the
problem of structure-preserving model order reduction of RCL circuits: Generate
matrices M̃ , D̃, K̃, and F̃ such that the reduced-order model (18) can be synthe-
sized as an RCL circuit. Obviously, (18) corresponds to an actual RCL circuit if the
matrices M̃ , D̃, K̃, and F̃ are constructed such that they have analogous structures
as the matrices M , D, K, and F of the original given RCL circuit. Unfortunately,
for general RCL circuits, no order reduction method is known that is guaranteed
to preserve all these ‘RCL structures’. However, the SPRIM algorithm described in
Section 6 below does generate reduced-order models (18) with matrices M̃ , D̃, K̃,
and F̃ that preserve the block structure (15) of the original matricesM ,D,K, and F ,
as well as the semidefiniteness properties (17) of M , D, and K.

For the special cases of RC, RL, and LC circuits, there are variants of the general
MPVL (Matrix-Padeé Via Lanczos) method [11] that do preserve the RC, RL, and
LC structures, respectively. In particular, the SyPVL and SyMPVL algorithms are
procedures for generating reduced-order models that can be synthesized as RC, RL,
and LC circuits, respectively; see [22–24].

3.3 Passivity

An important property of general RCL circuits is passivity. Roughly speaking, a
system is passive if it does not generate energy. In particular, any RCL circuit is
passive. For linear dynamical systems of the form (16), passivity is equivalent to
positive realness of the associated transfer function (20), H(s); see, e.g., [2,30]. The
general definition of positive realness is as follows.

Definition 1. An m×m-matrix-valued function H : C �→ (C ∪∞)m×m is called
positive real if the following three conditions are satisfied:

(i) H is analytic in C+ := { s ∈ C | Re s > 0 };
(ii) H(s) = H(s) for all s ∈ C;
(iii) H(s) + (H(s))∗ � 0 for all s ∈ C+.

Since any RCL circuit is passive, positive realness of the reduced-order transfer
function (21), H̃(s), is a necessary condition for the associated reduced-order
model (18) to be synthesizable as an actual RCL circuit. However, in general, pos-
itive realness of H̃(s) is not a sufficient condition. Nevertheless, any reduced-order
model (18) with a positive real transfer function (21) can be synthesized as an ac-
tual physical electronic circuit, but it may contain other electronic devices besides
resistors, capacitors, and inductors. We refer the reader to [2] for a discussion of the
problem of synthesis of positive real transfer functions.



Structure-Preserving Model Order Reduction 57

4 Equivalent First-Order Form of Integro-DAEs

The system of integro-DAEs (16) can also be formulated as an equivalent first-order
system. In this section, we discuss such a first-order formulation and some of its
properties.

4.1 First-Order Formulation

Consider equations (11) and their equivalent statement (16) as a system of integro-
DAEs. It turns out that (11) (and thus (16)) can be rewritten as a first-order time-
invariant linear dynamical system of the form

E
d

dt
x(t) = Ax(t) +B u(t),

y(t) = BTx(t),
(22)

with initial conditions
x(0) = x(0).

Indeed, by adding the vector of inductance currents, il(t), to the original state-space
vector (13), z(t), and using the last relation of (10), one readily verifies that the
equations (11) can be stated in the form (22) with data matrices, state-space vector,
and initial vector given by

A := −

⎡⎢⎣ D11 Al Av

−AT
l 0 0

−AT
v 0 0

⎤⎥⎦ , E :=

⎡⎢⎣M11 0 0
0 L 0
0 0 0

⎤⎥⎦ ,

B :=

⎡⎢⎣Ai 0
0 0
0 −I

⎤⎥⎦ , x(t) :=

⎡⎢⎣ v(t)il(t)
iv(t)

⎤⎥⎦ , and x(0) :=

⎡⎢⎣ v
(0)

0
iv(0)

⎤⎥⎦ .
(23)

Here, M11 and D11 are the matrices defined in (12). Moreover, A, E ∈ R
N×N ,

B ∈ R
N×m, and x(0) ∈ R

N×m, where N denotes the state-space dimension of the
system (22). We remark that N is the sum of the state-space dimension N0 of the
equivalent system of integro-DAEs (16) and the number of inductors of the RCL
circuit. Note that, in (22), the input vector u(t) and the output vector y(t) are the
same as in (16), namely the vectors defined in (14). In particular, both systems (16)
and (22) have m inputs and m outputs.

4.2 Regularity of the First-Order Matrix Pencil

Next, we consider the matrix pencil

sE −A, s ∈ C, (24)
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where A and E are the matrices defined in (23). The pencil (24) is said to be regular
if the matrix sE − A is singular only for finitely many values of s ∈ C. In this
subsection, we present conditions for regularity of (24).

In view of the definitions of A and E in (23), we have

sE −A =

⎡⎢⎣sM11 +D11 Al Av

−AT
l sL 0

−AT
v 0 0

⎤⎥⎦ for all s ∈ C. (25)

Now assume that s �= 0, and set

U1(s) =

⎡⎢⎣I −1
s AlL

−1 0
0 I 0
0 0 I

⎤⎥⎦ and U2(s) =

⎡⎢⎣ I 0 0
1
s L

−1AT
l I 0

0 0 I

⎤⎥⎦ . (26)

Then, one readily verifies that, for all s �= 0,

U1(s)
(
sE −A

)
U2(s) =

⎡⎢⎣sM11 +D11 + 1
s K11 0 Av

0 sL 0
−AT

v 0 0

⎤⎥⎦ , (27)

where K11 is the matrix defined in (12).
We now use the relation (27) to establish a necessary and sufficient condition for

regularity of (24). Recall from (3) that Ar, Ac, Al, and Av are the submatrices of
the reduced incidence matrix A0 corresponding to the resistors, capacitors, inductors,
and voltage sources of the RCL circuit, respectively.

Theorem 1. (Regularity of the matrix pencil (24).)

(a) The pencil (24) is regular if, and only if, the matrix-valued function

F (s) :=

[
F11(s) Av

−AT
v 0

]
, where F11(s) := sM11 +D11 +

1
s
K11, (28)

is regular, i.e., the matrix F (s) is singular only for finitely many values of s ∈ C,
s �= 0.

(b) The pencil (24) is regular if, and only if, the matrix Av has full column rank and
the matrix

A1 :=
[
Ar Ac Al Av

]
(29)

has full row rank.

Proof. Part (a) readily follows from (27) and the fact that, in view of (5), the matrix
L � 0 is nonsingular. Indeed, since the matrices (26), U1(s) and U2(s), are nonsin-
gular for all s �= 0, it follows from (27) that the pencil (24) is regular if, and only
if, the matrix-valued function on the right-hand side of (27) is regular. Since L is
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nonsingular, it follows that for the matrix-valued function (27) is regular if, and only
if, F (s), is regular.

To prove part (b), we make use of part (a). and we show that F (s) is regular if,
and only if Av has full column rank and the matrix A1 has full row rank. Suppose
Av does not have full column rank, and let c �= 0 a nontrivial vector in kerAv . Then

F (s)

[
0
c

]
= 0,

[
0
c

]
�= 0,

and thus F (s) is singular for all s. Therefore, we can assume that

kerAv = { 0 }. (30)

Next, note that the function sdet F (s) is a polynomial in s, and thus F (s) is regular
unless det F (s) = 0 for all s. Therefore, it is sufficient to consider the matrix (28),
F (s), for s > 0 only. Using (12) and the definition (29) of A1, the submatrix F11(s)
of F (s) can be expressed as follows:

F11(s) =
[
Ar Ac Al

] ⎡⎢⎣sC 0 0
0 R−1 0
0 0 1

s L
−1

⎤⎥⎦ [Ar Ac Al

]T
. (31)

In view of (5), the 3× 3 block diagonal matrix in (31) is symmetric positive definite
for s > 0. It follows that for all s > 0, we have

F11(s) � 0 and ker
(
F11(s)

)
= ker

([
Ar Ac Al

]T)
. (32)

Finally, we apply Theorem 3.2 from [6], which gives a necessary and sufficient con-
dition for the nonsingularity of 2× 2 block matrices of the form (28) with subblocks
satisfying (30) and the first condition in (32). By [6, Theorem 3.2], it follows that
for s > 0, the matrix F (s) is nonsingular if, and only if,

ker
(
F11(s)

)
∩ ker

(
AT

v

)
= { 0 }. (33)

Using the second relation in (32), we can rewrite (33) as follows:(
ker
(
AT

1

)
=
)

ker
([

Ar Ac Al Av

]T)
= { 0 }.

This condition is equivalent to the matrix (29), A1, having full row rank, and thus
the proof of part (b) is complete. ��
Remark 1. In terms of the given RCL circuit, the rank conditions in part (b) of
Theorem 1 have the following meaning. In view of (3), the matrix (29), A1, is the
reduced incidence matrix of the subcircuit obtained from the given RCL circuit by
deleting all independent current sources. This matrix has full row rank if this sub-
circuit is connected; see, e.g., [7, Theorem 9-6]. The matrix Av is the reduced inci-
dence matrix of the subcircuit consisting of only the independent voltage sources. his
matrix has full column rank if this subcircuit does not contain any closed (undirected)
loop; see, e.g., [7, Section 9-8].
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Since the two circuit conditions in Remark 1 are satisfied for any practical RCL
circuit, from now on, we assume that the matrix pencil (24) is regular.

4.3 First-Order Transfer Function

In analogy to (20), the transfer function of the first-order formulation (22) is the
matrix-valued rational function given by

H : C �→ (C ∪∞)m×m
, H(s) = BT

(
sE −A

)−1
B. (34)

We remark that (34) is a well-defined rational function since the matrix pencil sE−
A is assumed to be regular. Recall that the system of integro-DAEs (16) and its
first-order formulation (22) have the same input and output vectors. Since transfer
functions only depend on the input-output behavior of the system, it follows that the
transfer functions (20) and (34) are identical, i.e.,

H(s) = BT
(
sE −A

)−1
B

= FT
(
sM +D +

1
s
K
)−1

F for all s ∈ C.
(35)

Here, A, E, B and M , D, K, F are the matrices given in (23) and (15), respectively.
In particular, the regularity of the matrix pencil sE−A also guarantees the existence
of the transfer function (20) of the system of integro-DAEs (16).

Remark 2. The relation (35) can also be verified directly using the identity (27),
(26), the definition of the matrix B in (23), and the definitions of the matrices M ,
D, K, and F in (15).

Remark 3. The definitions of A and E in (23), together with (5) and (17), imply that

−A−A∗ � 0 and E � 0. (36)

The matrix properties (36) in turn guarantee that the transfer function (34), H sat-
isfies all conditions of Definition 1, and thus H is positive real.

4.4 Reduced-Order Models

A reduced-order model of the linear dynamical system (22) is a system of the same
form as (22), but with smaller state-space dimension n (< N). More precisely, a
reduced-order model of (22) with state-space dimension n is a system of the form

En
d

dt
x̃(t) = Anx̃(t) +Bnu(t),

ỹ(t) = BT
n x̃(t),

(37)



Structure-Preserving Model Order Reduction 61

with initial conditions
x̃(0) = x̃(0), (38)

where An and En are n×n matrices, Bn is an n×m matrix, and x̃(0) is a vector of
length n.

Provided that the reduced-order matrix pencil

sEn −An, s ∈ C, (39)

is regular, the transfer function of the reduced-order model (37) is given by

Hn : C �→ (C ∪∞)m×m
, Hn(s) = BT

n

(
sEn −An

)−1
Bn. (40)

5 Krylov-Subspace Projection and PRIMA

In this section, we review the generation of reduced-order models (37) via projection,
in particular onto block Krylov subspaces.

5.1 Order Reduction Via Projection

A simple approach to model order reduction is to use projection. Let

Vn ∈ C
N×n, rank Vn = n, (41)

be any given matrix with full column rank. Then, by setting

An := V ∗
nAVn, En := V ∗

nEVn, Bn := V ∗
nB (42)

one obtains reduced data matrices that define a reduced-order model (37). From (36)
and (42), it readily follow that

−An −A∗
n � 0 and En � 0. (43)

If in addition, the matrix Vn is chosen as a real matrix and the matrix pencil (39) is
assumed to be regular, then the reduced-order transfer function (40), Hn, satisfies all
conditions of Definition 1, and thus Hn is positive real; see [15, Theorem 13].

5.2 Block Krylov Subspaces

The simple projection approach (42) yields powerful model-order reduction tech-
niques when the columns of the matrix (41), Vn, are chosen as basis vectors of cer-
tain block Krylov subspaces.

To this end, let s0 ∈ C be a suitably chosen expansion point such that the matrix
s0 E−A is nonsingular. Note that, in view of the regularity of the matrix pencil (24),
there are only finitely many values of s0 for which s0 E−A is singular. We can then
rewrite the transfer function (34), H , as follows:
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H(s) = BT
(
s0 E −A+ (s− s0)E

)−1
B

= BT
(
I + (s− s0)A

)−1
R,

(44)

where
M :=

(
s0 E −A

)−1
E, R :=

(
s0 E −A

)−1
B. (45)

We will use block Krylov subspaces induced by the matrices M and R in (45) to
generate reduced-order models.

Next, we briefly review the notion of block Krylov subspaces; see [1] for a more
detailed discussion. The matrix sequence

R,MR,M2R, . . . ,M j−1R, . . .

is called a block Krylov sequence. The columns of the matrices in this sequence are
vectors of length N , and thus at most N of these columns are linearly independent.
By scanning the columns of the matrices in the block Krylov sequence from left
to right and deleting each column that is linearly dependent on earlier columns, we
obtain the deflated block Krylov sequence

R1,MR2,M
2R3, . . . ,M

j−1R, . . . ,M jmax−1Rjmax . (46)

This process of deleting linearly dependent vectors is called deflation. In (46), each
Rj is a submatrix of Rj−1. Denoting by mj the number of columns of Rj , we thus
have

m ≥ m1 ≥ m2 ≥ · · · ≥ mj ≥ · · · ≥ mjmax ≥ 1. (47)

By construction, the columns of the matrices (46) are linearly independent, and for
each n, the subspace spanned by the first n of these columns is called the n-th block
Krylov subspace (induced by M and R) and denoted by Kn(M,R) in the sequel.

For j = 1, 2, . . . , jmax, we set

n(j) := m1 +m2 + · · · +mj . (48)

For n = n(j), the n-th block Krylov subspace is given by

Kn(M,R) = colspan
[
R1 MR2 M

2R3 · · · M jRj

]
.

Here and in the sequel, we use colspan V to denote the subspace spanned by the
columns of the matrix V . Finally, we remark that, by (47), n(j) ≤ m · j with n(j) =
m · j if no deflation has occurred.

5.3 Projection Onto Block Krylov Subspaces and PRIMA

PRIMA [28–30] combines projection with block Krylov subspaces. More precisely,
the n-th PRIMA reduced-order model is defined by (37) and (42), where the ma-
trix (41), Vn, is chosen such that its columns span the n-th block Krylov subspace
Kn(M,R), i.e., colspan Vn = Kn(M,R). We refer to any such matrix Vn as a basis
matrix of the n-th Krylov subspace Kn(M,R).
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Although the PRIMA reduced-order models are defined by simple projection, the
combination with block Krylov subspaces guarantees that the PRIMA reduced-order
models satisfy a Padé-type approximation property. For the special case s0 = 0 and
basis vectors generated by a block Arnoldi process without deflation, this Padé-type
approximation property was first observed in [28]. In [13], this result was extended
to the most general case where possibly nonzero expansion points s0 are allowed and
where the underlying block Krylov method allows the necessary deflation of linearly
dependent vectors. The result can be stated as follows; for a proof, we refer the reader
to [15, Theorem 7].

Theorem 2. Let n = n(j) be of the form (48) for some 1 ≤ j ≤ jmax, and let
Vn ∈ C

N×n be any matrix such that

colspan Vn = Kn(M,R). (49)

Then the transfer function (40), Hn, of the reduced-order model (37) defined by the
projected data matrices (42) satisfies:

Hn(s) = H(s) + O
(
(s− s0)j

)
. (50)

If in addition, the expansion point s0 is chosen to be real,

s0 ∈ R, (51)

then the matrices (45), M and R, are real and the basis matrix Vn in (49) can be
constructed to be real. In fact, any of the usual Krylov subspace algorithms for con-
structing basis vectors for Kn(M,R), such as the band Lanczos method or the band
Arnoldi process [16], generate a real basis matrix Vn. In this case, as mentioned at
the end of Section 5.1, the transfer function Hn is positive real, and thus the PRIMA
reduced-order models are passive.

On the other hand, the data matrices (42) of the PRIMA reduced-order models
are full in general, and thus, PRIMA does not preserve the special block structure of
the original data matrices (23).

6 The SPRIM Algorithm

In this section, we describe the SPRIM algorithm [17, 20], which unlike PRIMA,
preserves the block structure of the data matrices (23).

6.1 The Projection Theorem

It turns out that in order to guarantee a Padé-type property (50) of the reduced-order
transfer function, the condition (49) on the matrix Vn can be relaxed. In fact, let
V̂ ∈ C

N×n̂ be any matrix with the property

Kn(M,R) ⊆ colspan V̂ . (52)
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Then the statement of Theorem 2 remains correct when (49) is replaced by the
weaker condition (52). This result, which is sometimes referred to as the projec-
tion theorem, was derived by Grimme in [25]. A different proof of the projection
theorem is given in [18, Theorem 8.6.1]. Note that, in view of (52), V̂ must have at
least as many columns as any matrix Vn satisfying (49).

The projection theorem can be used to devise an order reduction algorithm that
in the Padé-type sense (50), is at least as accurate as PRIMA, but unlike PRIMA
preserves the block structure of the original data matrices (23). Indeed, let Vn be any
basis matrix of the n-th Krylov subspace Kn(M,R). Let

Vn =

⎡⎢⎣V̂1

V̂2

V̂3

⎤⎥⎦
be the partitioning of Vn corresponding to the block sizes of the matrices A and E in
(23), and formally set

V̂ =

⎡⎢⎣V̂1 0 0

0 V̂2 0

0 0 V̂3

⎤⎥⎦ . (53)

Since Vn is a basis matrix of Kn(M,R), the matrix (53) satisfies (52). Thus, we can
replace Vn by V̂ in (42) and still obtain a reduced-order model (37) that satisfies a
Padé-type property (50). In view of the block structures of the original data matrices
(23) and of the matrix (53), the reduced-order matrices are of the form

An = −

⎡⎢⎣ D̃11 Ãl Ãv

−ÃT
l 0 0

−ÃT
v 0 0

⎤⎥⎦ , En =

⎡⎢⎣M̃11 0 0

0 L̃ 0
0 0 0

⎤⎥⎦ , Bn =

⎡⎢⎣Ãi 0
0 0

0 −V̂ T
3

⎤⎥⎦ ,
and thus the block structure of the original data matrices (23) is now preserved. The
resulting order reduction procedure is the most basic form of the SPRIM algorithm.

We remark that in this most basic form of SPRIM, the relative sizes of the blocks
in (23) are not preserved. Recall that the sizes of the three diagonal blocks ofA andE
in (23) are the number of interconnections, the number of inductors, and the number
of voltage sources, respectively, of the given RCL circuit. These numbers are very
different in general. Typically, there are only very few voltage sources. Similarly, the
number of inductors is typically significantly smaller than the number of intercon-
nections. Consequently, unless n is smaller than the number of voltage sources, the
subblock V̂3 does not have full column rank. The sizes of the subblocks in the third
block rows and columns of the reduced-order data matrices can thus be reduced fur-
ther by replacing V̂3 with a matrix whose columns span the same subspace as V̂3, but
which has full column rank, before the projection is performed. Similar size reduc-
tions are possible if V̂2 or V̂1 do not have full column rank.
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6.2 SPRIM

The basic form of SPRIM, with possible size reduction of the subblocks V̂l, l =
1, 2, 3, as an optional step, can be summarized as follows.

Algorithm 1. (SPRIM for general RCL circuits)

• Input: matrices of the form

A = −

⎡⎢⎣ D11 Al Av

−AT
l 0 0

−AT
v 0 0

⎤⎥⎦ , E =

⎡⎢⎣M11 0 0
0 L 0
0 0 0

⎤⎥⎦ , B =

⎡⎢⎣Ai 0
0 0
0 −I

⎤⎥⎦ ,
where D11, M11 � 0;
an expansion point s0 ∈ R.

• Formally set

M = (s0 E −A)−1
C, R = (s0 E −A)−1

B.

• Until n is large enough, run your favorite block Krylov subspace method (applied
to M and R) to construct the columns of the basis matrix

Vn =
[
v1 v2 · · · vn

]
of the n-th block Krylov subspace Kn(M,R), i.e.,

colspan Vn = Kn(M,R).

• Let

Vn =

⎡⎢⎣V̂1

V̂2

V̂3

⎤⎥⎦
be the partitioning of Vn corresponding to the block sizes of A and E.

• (Optional step) For l = 1, 2, 3 do:
If rl := rank V̂l < n, determine an N × rl matrix Ṽl with

colspan Ṽl = colspan V̂l, rank Ṽl = rl,

and set V̂l := Ṽl.
• Set

D̃11 = V̂ ∗
1 D11V̂1, Ãl = V̂ ∗

1 AlV̂2, Ãv = V̂ ∗
1 AvV̂3,

M̃11 = V̂ ∗
1 M11V̂1, L̃ = V̂ ∗

2 LV̂2, Ãi = V̂ ∗
1 Ai.
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• Output: the data matrices

An = −

⎡⎢⎣ D̃11 Ãl Ãv

−ÃT
l 0 0

−ÃT
v 0 0

⎤⎥⎦ , En =

⎡⎢⎣M̃11 0 0

0 L̃ 0
0 0 0

⎤⎥⎦ ,

Bn =

⎡⎢⎣Ãi 0
0 0

0 −V̂ T
3

⎤⎥⎦
(54)

of the SPRIM reduced-order model

En
d

dt
x̃(t) = Anx̃(t) +Bnu(t),

ỹ(t) = BT
n x̃(t).

We remark that the main computational cost of the SPRIM algorithm is running
the block Krylov subspace method to obtain V̂n. This is the same as for PRIMA. Thus
generating the PRIMA reduced-order model and the SPRIM reduced-order model
Hn involves the same computational costs. Implementation details of the SPRIM
algorithm can be found in [20].

7 Padé-Type Approximation Property of SPRIM

While PRIMA and SPRIM generate different reduced-order models, the projection
theorem suggests that both models have comparable accuracy in the sense of the
Padé-type approximation property (50). However, as long as the expansion point s0
is chosen to be real, cf. (51), numerical experiments show that SPRIM is significantly
more accurate than PRIMA; see the numerical results in Section 8. This higher accu-
racy is a consequence of the structure preservation of the SPRIM reduced-order data
matrices (54). We stress that the restriction (51) of the expansion point s0 to real
values is needed anyway for both PRIMA and SPRIM, in order to guarantee that the
PRIMA and SPRIM reduced-order models are passive.

For the special case of RCL circuits with current sources only, which means
that the third block rows and columns in (54) are not present, it was proven in [18,
Theorem 8.7.2] that the SPRIM reduced-order transfer function satisfies (50) with j
replaced by 2j.

A recent result [19] shows that the higher accuracy of SPRIM holds true in the
more general context of Padé-type model order reduction of J-Hermitian linear dy-
namical systems. A square matrix A is said to be J-Hermitian with respect to a given
nonsingular matrix J of the same size as A if

JA = A∗J.
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Clearly, for RCL circuits, in view of (23), the original data matrices A and E are
J-Hermitian with respect to the indefinite matrix

J =

⎡⎣I 0 0
0 −I 0
0 0 −I

⎤⎦ .
Furthermore, due to the structure preservation of SPRIM, the reduced-order data
matrices An and En in (54) are Jn-Hermitian with respect to a matrix Jn of the
same form as J , but with correspondingly smaller blocks. Finally, the matrix (53),V̂ ,
which is used to generate the SPRIM models, satisfies the compatibility condition

JV̂ = V̂ Jn.

The result in [19] shows that for J-Hermitian data matrices and Jn-Hermitian
reduced-order data matrices, the compatibility condition implies the higher accu-
racy of Padé-type reduced-order models. In particular, as a special case of this more
general result, we have the following theorem.

Theorem 3. Let n = n(j) be of the form (48) for some 1 ≤ j ≤ jmax, and assume
that s0 ∈ R. Then the transfer function (40), Hn, of the SPRIM reduced-order
model (37) defined by the projected data matrices (54) satisfies:

Hn(s) = H(s) + O
(
(s− s0)2j

)
.

8 Numerical Examples

In this section, we present results of some numerical experiments with the SPRIM al-
gorithm. These results were first reported in [17]. The results in this section illustrate
the higher accuracy of the SPRIM reduced-order models vs. the PRIMA reduced-
order models.

8.1 A PEEC Circuit

The first example is a circuit resulting from the so-called PEEC discretization [32]
of an electromagnetic problem. The circuit is an RCL network consisting of 2100
capacitors, 172 inductors, 6990 inductive couplings, and a single resistive source
that drives the circuit. The circuit is formulated as a 2-port. We compare the PRIMA
and SPRIM models corresponding to the same dimension n of the underlying block
Krylov subspace. The expansion point s0 = 2π × 109 was used. In Figure 1, we
plot the absolute value of the (2, 1) component of the 2 × 2-matrix-valued transfer
function over the frequency range of interest. The dimension n = 120 was sufficient
for SPRIM to match the exact transfer function. The corresponding PRIMA model
of the same dimension, however, has not yet converged to the exact transfer function
in large parts of the frequency range of interest. Figure 1 clearly illustrates the better
approximation properties of SPRIM due to matching of twice as many moments as
PRIMA.
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Fig. 1. |H2,1| for PEEC circuit

8.2 A Package Model

The second example is a 64-pin package model used for an RF integrated circuit.
Only eight of the package pins carry signals, the rest being either unused or carrying
supply voltages. The package is characterized as a 16-port component (8 exterior
and 8 interior terminals). The package model is described by approximately 4000
circuit elements, resistors, capacitors, inductors, and inductive couplings. We again
compare the PRIMA and SPRIM models corresponding to the same dimension n
of the underlying block Krylov subspace. The expansion point s0 = 5π × 109 was
used. In Figure 2, we plot the absolute value of one of the components of the 16×16-
matrix-valued transfer function over the frequency range of interest. The state-space
dimension n = 80 was sufficient for SPRIM to match the exact transfer function.
The corresponding PRIMA model of the same dimension, however, does not match
the exact transfer function very well near the high frequencies; see Figure 3.

8.3 A Mechanical System

Exploiting the equivalence (see, e.g., [27]) between RCL circuits and mechanical
systems, both PRIMA and SPRIM can also be applied to reduced-order modeling of
mechanical systems. Such systems arise for example in the modeling and simulation
of MEMS devices. In Figure 4, we show a comparison of PRIMA and SPRIM for a
finite-element model of a shaft. The expansion point s0 = π × 103 was used. The
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dimension n = 15 was sufficient for SPRIM to match the exact transfer function
in the frequency range of interest. The corresponding PRIMA model of the same
dimension, however, has not converged to the exact transfer function in large parts
of the frequency range of interest. Figure 4 again illustrates the better approximation
properties of SPRIM due to the matching of twice as many moments as PRIMA.

9 Concluding Remarks

In this paper, we reviewed the formulation of general RCL circuits as linear dynam-
ical systems and discussed the problem of structure-preserving model reduction of
such systems. We described the general framework of order reduction via projec-
tion and discussed two state-of-the-art projection algorithms, namely PRIMA and
SPRIM.

While there has been a lot of progress in Krylov subspace-based structure-
preserving model reduction of large-scale linear dynamical systems in recent years,
there are still many open problems. All state-of-the-art structure-preserving methods,
such as SPRIM, first generate a basis matrix of the underlying Krylov subspace and
then employ explicit projection using some suitable partitioning of the basis ma-
trix to obtain a structure-preserving reduced-order model. In particular, there are
two major problems with the use of such explicit projections. First, it requires the
storage of the basis matrix, which becomes prohibitive in the case of truly large-
scale linear dynamical systems. Second, the approximation properties of the result-
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ing structure-preserving reduced-order models are far from optimal, and they show
that the available degrees of freedom are not fully used. It would be highly desirable
to have structure-preserving reduction method that do no involve explicit projection
and would thus be applicable in the truly large-scale case. Other unresolved issues
include the automatic and adaptive choice of suitable expansion points s0 and robust
and reliable stopping criteria and error bounds.
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1 Introduction

Physical systems often have certain characteristics that are critical in determining the
system behavior. Often these characteristics appear in the form of system matrices
that are naturally blocked with each sub-block having its own physical relevance.
For example, the system matrices from linearizing a second order dynamical system
admit a natural 2-by-2 block partitioning. General purpose subspace projection tech-
niques for model order reduction usually destroy any block structure and thus the
reduced systems may not be of the same type as the original system. For similar rea-
sons we would like to preserve the block structure and hence some of the important
characteristics so that the reduced systems are much like the original system but only
at a much smaller scale.

Structure-preserving Krylov subspace projection methods have received much
attention in recent years. In this chapter, we discuss the advance of the structure-
preserving methods under a unified Krylov projection formulation. We shall start by
building a mathematical foundation and a general paradigm to preserve important
block structures under subspace projections. The general paradigm provides a uni-
fied projection formulation. When necessary, the technique can be used to preserve
certain blocks in the system matrices. We then go on to study in detail model order
reductions of RCL and RCS systems.

The remainder of this chapter is organized as follows. In Section 2, we discuss a
unified Krylov subspace projection formulation for model order reduction with prop-
erties of structure-preserving and moment-matching, and present a generic algorithm
for constructing structure-preserving projection matrices. The inherent structural
properties of Krylov subspaces for certain block matrices are presented in Section 3.
Section 4 examines structure-preserving model order reduction of RCL and RCS
equations including the objective to develop synthesized RCL and RCS equations.
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Throughout the chapter, R
k×� is the set of k × � real matrices. I is the identity

matrix and its dimension will be clear from the context. Unless otherwise explicitly
stated, capital letters denote matrices, while lower case letters denote vectors or
scalars. XT is the transpose of the matrix X , span{X} is the subspace spanned by
the columns of X .

Let A be N ×N , and let B be N × p. The kth Krylov subspace generated by A
on B is defined to be

Kk(A,B) = span{B,AB, . . . , Ak−1B}. (1)

For convenience, when k = 0, define K0(A,B) = {0}, the subspace of the zero
vector.

2 A unified Krylov Projection Structure-Preserving Model
Order Reduction Framework

Consider the matrix-valued transfer function of the first-order multi-input multi-
output (MIMO) linear dynamical system

H(s) = LT(sC + G)−1B, (2)

where C and G are N ×N , B is N ×m and L is N × p. Often p � N and
m � N .

Assume that G is nonsingular. The transfer function can be expanded around
s = 0 as

H(s) =
∞∑

�=0

(−1)�s�LT(G−1C)�G−1B

≡
∞∑

�=0

(−1)�s�M�,

where the matrices M�, defined by

M� = LT(G−1C)�G−1B

are referred to as the moments at s = 0. In the case when G is singular or approxi-
mations to H(s) around a selected point s0 �= 0 are sought1, a shift

s = (s− s0) + s0 ≡ σ + s0 (3)

can be carried out and then
1 It is assumed that the matrix pencil sC + G is regular, meaning that there are at most N

values of s at which sC + G is singular.
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sC + G = (s− s0)C + s0C + G ≡ σC + (s0C + G).

Upon substitutions (i.e., renaming)

G ← s0C + G, s ← σ,

the problem of approximating H(s) around s = s0 becomes equivalent to approxi-
mating the substitutedH(σ) around σ = 0. For this reason, without loss of generality
we shall focus mostly on approximations around s = 0 in this chapter, unless some
care has to be taken for computational efficiency, for instance, when a shift like (3)
has to be performed.

Many transfer functions appearing in different forms can be reformulated in first
order form (2).

Example 1. Consider a system of integro-differential-algebraic equations (Integro-
DAEs) arising from the MNA formulation of circuits, such as the ones described in
the chapters by Freund and by Gad, Nakhla, and Achar in this book:⎧⎨⎩C d

dtz(t) +Gz(t) + Γ

∫ t

0

z(τ)dτ = Bu(t),

y(t) = BTz(τ).

The transfer function of the Integro-DAEs is given by

H(s) = BT
(
sC +G+

1
s
Γ

)−1

B. (4)

By defining

C =
[
C 0
0 −W

]
, G =

[
G Γ

W 0

]
, L = B =

[
B

0

]
(5)

for any nonsingular matrix W , the transfer function is of the form (2), namely

H(s) = BT(sC + G)−1B. (6)

In (5), the matrix W is usually taken to be Γ (if it is nonsingular) or simply the
identity matrix.

Alternatively, if one defines

C =
[
G C

W 0

]
, G =

[
Γ 0
0 −W

]
, L = B =

[
B

0

]
(7)

again for any nonsingular matrix W (usually taken to be C if it is nonsingular, or
simply the identity matrix), then the transfer function is turned into the form

H(s) = sBT(sC + G)−1B. (8)
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Leaving out the front factor s, (8) is in the form of (2). In the second linearization (8),
matrix-vector products with the matrices G−1C and G−TCT are much easier to han-
dle than the first linearization (5) and (6). These two types of matrix-vector products
are needed for forming Krylov subspaces for calculating approximations to H(s)
around s = 0. In this respect, the first linearization (5) and (6) favors approxima-
tions around s = ∞. In the case when approximations near a finite point s0 �= 0 are
sought, a shift like (3) must be carried out and then neither linearization has cost ad-
vantage over the other because s0C+G matrix is no longer block diagonal for both
(5) and (7). However, we point out that if the shift is carried out before linearization,
then the same advantage as the second linearization over the first one for approxima-
tions near s = 0 is retained. Details for this shift-before-linearization are discussed
in Section 4. �

Example 2. The interconnected (coupled) system described in [12] and [18] (see also
the chapters by Reis and Stykel and by Vandendorpe and Van Dooren in this book)
gives rise to the following transfer function

H(s) = LT
0 (I −W (s)E)−1

W (s)B0,

where E is the subsystem incidence matrix as a glue for connecting all subsystems
H1(s), . . . , Hk(s) together, and

W (s) = diag( H1(s), . . . , Hk(s) )
= diag( LT

1(sI −A1)−1B1, . . . , L
T
k(sI −Ak)−1Bk ).

Let A = diag(A1, . . . , Ak), B = diag(B1, . . . , Bk), and L = diag(L1, . . . , Lk),
then the transfer function H(s) can be formulated in the form (2), namely

H(s) = LT(sC + G)−1B,

where C = I , G = −A−BEL, B = BB0 and L = LL0. �

Model order reduction of the transfer function H(s) defined by (2) via subspace
projection starts by computing matrices

X ,Y ∈ R
N×n such that YTGX is nonsingular,

which then leads to a reduced-order transfer function

Hr(s) = LT
r (sCr + Gr)−1Br, (9)

where
Cr = YTCX , Gr = YTGX , Br = YTB, Lr = X TL. (10)

Similarly, the reduced transfer function H r(s) can be expanded around s = 0:

Hr(s) =
∞∑

�=0

(−1)�s�LT
r (G−1

r Cr)�G−1
r Br

=
∞∑

�=0

(−1)�s�Mr,�,
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where the matrices
Mr,� = LT

r (G−1
r Cr)�G−1

r Br

are referred to as the moments of the reduced system.
In practice it is often the case that n � N . This makes the reduced system ma-

trices Gr, Cr, Lr, and Br much smaller. By choosing X and Y properly, the reduced
system associated with the reduced transfer function can be forced to resemble the
original system sufficiently well to have practical relevance.

The following theorem dictates how well a reduced transfer function approxi-
mates the original transfer function. For the case when G is the identity matrix, the
result is due to [19]. The general form as stated in the following theorem was proved
by [6]; a new proof in a projection context was given later in [9]. Its implication for
structure-preserving model reduction was also first realized in [9].

Theorem 1. Suppose that G and Gr are nonsingular. If

Kk(G−1C,G−1B) ⊆ span{X}

and
Kj(G−TCT,G−TL) ⊆ span{Y},

then the moments of H(s) and of its reduced function Hr(s) satisfy

M� = Mr,� for 0 ≤ � ≤ k + j − 1,

which imply
Hr(s) = H(s) + O(sk+j).

Remark 1. The conditions suggest that by enforcing span{X} and/or span{Y} to
contain more appropriate Krylov subspaces associated with multiple points, Hr(s)
can be constructed to approximate H(s) sufficiently well near all those points. See
[6] and [13, 14] for more details.

Let us now discuss the objectives of structure-preserving model order reduction.
For simplicity of exposition, consider system matrices G, C, B, and L with the
following 2 × 2 block structure

C =
[ N1 N2

N′
1 C11 0

N′
2 0 C22

]
, G =

[ N1 N2

N′
1 G11 G12

N′
2 G21 0

]
,

B =
[ p

N′
1 B1

N′
2 0

]
, L =

[ m

N1 L1

N2 0

]
,

(11)

where N1 +N2 = N ′
1 +N ′

2 = N . System matrices from the time-domain modified
nodal analysis (MNA) circuit equations take such forms (see Section 4).
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A structure-preserving model order reduction technique generates a reduced-
order system that structurally preserves the block structure with

Cr =
[ n1 n2

n′
1 Cr,11 0

n′
2 0 Cr,22

]
, Gr =

[ n1 n2

n′
1 Gr,11 Gr,12

n′
2 Gr,21 0

]
,

Br =
[ p

n′
1 Br,1

n′
2 0

]
, Lr =

[ m

n1 Lr,1

n2 0

]
,

(12)

where n1 + n2 = n′
1 +n′

2 = n. Furthermore, each sub-block is a direct reduction of
the corresponding sub-block in the original system.

In the formulation of subspace projection, this objective of structure-preserving
model order reduction can be accomplished by picking the projection matrices

X =
[ n1 n2

N1 X1

N2 X2

]
, Y =

[ n′
1 n′

2

N′
1 Y1

N′
2 Y2

]
. (13)

Then

YTCX =
[
Y T

1

Y T
2

] [
C11 0
0 C22

] [
X1

X2

]
=
[
Cr,11 0

0 Cr,22

]
= Cr,

YTGX =
[
Y T

1

Y T
2

] [
G11 G12

G21 0

] [
X1

X2

]
=
[
Gr,11 Gr,12

Gr,21 0

]
= Gr,

YTB =
[
Y T

1

Y T
2

] [
B1

0

]
=
[
Br,1

0

]
= Br,

X TL =
[
XT

1

XT
2

] [
L1

0

]
=
[
Lr,1

0

]
= Lr.

For the case when Y is taken to be the same as X , this idea is exactly the so-called
“split congruence transformations” in [8]. A discussion of this idea in a general
framework was described in [9].

We now discuss a generic algorithm to generate the desired projection matrices
X and Y as in (13). Suppose that we have computed the basis matrices X̃ and Ỹ by,
e.g., a block Arnoldi procedure [15], such that

Kk(G−1C,G−1B) ⊆ span
{
X̃
}

and
Kj(G−TCT,G−TL) ⊆ span

{
Ỹ
}
.
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In general, X̃ and Ỹ generated by an Arnoldi process do not have the form as the
desired X and Y in, e.g., (13). Hence, taking X = X̃ and Y = Ỹ will not preserve
the 2-by-2 block structure presented in the matrices as in (11). So instead of simply
taking X = X̃ and Y = Ỹ , we need to seek X and Y of the form as in (13) and
meanwhile satisfying

span
{
X̃
}
⊆ span {X} and span

{
Ỹ
}
⊆ span {Y} (14)

so that the first k + j moments of H(s) and its reduced function Hr(s) match as
claimed by Theorem 1.

This task can be accomplished by the following algorithm that for a given

Z̃=

[
Z̃1

Z̃2

]
, computes Z =

[
Z1

Z2

]
satisfying

span{Z̃} ⊆ span{Z}.

Algorithm 1
1. Compute Zi having full column rank such that

span{Z̃i} ⊆ span{Zi};

2. Output Z =
[
Z1

Z2

]
.

Remark 2. There are various ways to realize Step 1: Rank revealing QR decompo-
sitions, modified Gram-Schmidt process, or singular value decompositions [3, 4, 7].
For maximum efficiency, one should construct Zi with as few columns as possible.
Note that the smallest possible number is rank(Z̃i), but one may have to add a few
additional columns to ensure the total number of columns in all Xi and those in all
Yi are the same when constructing X and Y below in (15).

For convenience, we introduce the notation � that transforms Z̃ to Z , i.e.,

Z̃ =

[
Z̃1

Z̃2

]
� Z =

[
Z1

Z2

]
satisfying span{Z̃} ⊆ span{Z}.

Returning to the subspace embedding objective (14), by Algorithm 1, we parti-
tion X̃ and Ỹ as

X̃ =

[
X̃1

X̃2

]
and Ỹ =

[
Ỹ1

Ỹ2

]
,

consistently with the block structures in G, C, L, and B, and then transform[
X̃1

X̃2

]
� X =

[
X1

X2

]
and

[
Ỹ1

Ỹ2

]
� Y =

[
Y1

Y2

]
. (15)
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There are numerical more efficient alternatives when further characteristics in
the sub-blocks in G and C are known. For example, when G and C are as in (7)
from linearizing a transfer function like (4), X1 and Y1 can be computed directly via
the Second-Order Arnoldi process (SOAR) [1, 2]. More details are given in the next
section.

3 Structure of Krylov Subspace and Arnoldi Process

The generic Algorithm 1 presents a way to preserve the sub-block structure in the
reduced systems by first computing the bases of the related Krylov subspaces and
then splitting the basis matrices. In this section, we discuss a situation where this
first-computing-then-splitting technique can be combined into one technique to gen-
erate the desired X and Y directly. This is made possible by taking advantage of a
structural property of Krylov subspaces for certain block matrix. The next theorem
was implicitly in [2, 16] (see also [9]).

Theorem 2. Suppose that A and B admit the following partitioning

A =
[ N N

N A11 A12

N αI 0

]
, B =

[ p

N B1

N B2

]
, (16)

where α is a scalar. Let a basis matrix X̃ of the Krylov subspace Kk(A,B) be par-
titioned as

X̃ =

[
N X̃1

N X̃2

]
.

Then
span{X̃2} ⊆ span{B2, X̃1}.

In particular, if also B2 = 0, then span{X̃2} ⊆ span{X̃1}.

This theorem provides a theoretical foundation to simply compute X̃1, then to ex-
pand X̃1 to X1 so that span{X1} = span{B2, X̃1} (by orthogonalizing the columns
ofB2 against those of X̃1), and finally to obtain

X =
[
X1

X1

]
.

In practice, X1 can be computed directly by a structured Arnoldi process, referred to
as the second-order Arnoldi process (SOAR) in [1, 2, 16], as given below.



Unified Krylov Projection Framework 83

Algorithm 2 Structured Arnoldi process (framework)

Input: A and B as in (16).
Output: X̃1 as in Theorem 2 and X1 with span{X1} = span{B2, X̃1}.

1. B1 = Q1R (QR decomposition)
2. P1 = αB2R

−1
2

3. for j = 1, 2, . . . , k do
4. T = A11Qj + A12Pj

5. S = αQj

6. for i = 1, 2, . . . , j do
7. Z = QT

i T
8. T = T − QiZ
9. S = S − PiZ

10. enddo
11. T = QjR (QR decomposition)
12. Pj = SR−1

13. enddo
14. X̃1 = [Q1, Q2, . . . , Qk]
15. T = B2;
16. for j = 1, 2, . . . , k do
17. Z = QT

j T
18. T = T − QjZ
19. enddo
20. T = QR (QR decomposition)
21. X1 = [X̃1, Q]

Remark 3. Algorithm 2 is a simplified version to illustrate the key ingredients. Prac-
tical implementation will have to incorporate the possibility when various QR de-
compositions produce (nearly) singular upper triangular matrices R.

4 RCL and RCS Systems

4.1 Basic Equations

The MNA (modified nodal analysis) formulation [20] of an RCL circuit network in
the frequency domain is of the form⎧⎪⎪⎨⎪⎪⎩

(
s

[
C 0
0 L

]
+
[

G E

−ET 0

])[
v(s)
i(s)

]
=
[
Bv

0

]
u(s),

y(s) =
[
DT

v 0
] [ v(s)

i(s)

]
,

(17)

where v(s) and i(s) denote the N1 nodal voltages and the N2 auxiliary branch cur-
rents, respectively; u and y are the input current sources and output voltages; Bv

and Dv denote the incidence matrices for the input current sources and output node
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voltages; C,L and G represent the contributions of the capacitors, inductors and
resistors, respectively; and E is the incidence matrix for the inductances.

When an RCL network is modeled with a 3-D extraction method for interconnec-
tion analysis, the resulted inductance matrix L is usually very large and dense [10].
This may cause major difficulties for the subsequent simulation process. As an alter-
native approach, we can use the susceptance matrix S = L−1, which is sparse after
dropping small entries [5,22]. The resulting equations are called the RCS equations:⎧⎪⎪⎨⎪⎪⎩

(
s

[
C 0
0 I

]
+
[

G E

−SET 0

])[
v(s)
i(s)

]
=
[
Bv

0

]
u(s),

y(s) =
[
DT

v 0
] [ v(s)

i(s)

]
.

(18)

Accordingly, the equations in (17) are called the RCL equations.
Eliminating the branch current variable i(s) of the RCL and RCS equations in

(17) and (18), we have the so-called second-order form{(
sC +G+ 1

sΓ
)
v(s) = Bvu(s),

y(s) = DT
vv(s),

(19)

with
Γ = EL−1ET = ESET.

The transfer function H(s) of the RCL and RCS equations in (17) and (18) can thus
be rewritten as

H(s) = DT
v

(
sC +G+

1
s
Γ

)−1

Bv. (20)

Perform the shift (3) to obtain

H(s) = sDT
v(s2C + sG+ Γ )−1Bv

= (s0 + σ)DT
v [σ2C + σ(2s0C +G) + (s20C + s0G+ Γ )]−1Bv

= (s0 + σ)LT(σC + G)−1B,

where

C =
[
G0 C

W 0

]
, G =

[
Γ0 0
0 −W

]
, L =

[
Dv

0

]
, B =

[
Bv

0

]
, (21)

and G0 = 2s0C + G, Γ0 = s20C + s0G + Γ and W is a free to chose nonsingular
matrix.

4.2 Model Order Reduction

The SPRIM method described in the chapter by Freund in this book provides a
structure-preserving model order reduction method for the RCL equations in (17).
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In this section, we discuss an alternative structure-preserving method for the RCL
equations in (17) and the the RCS equations in (18) using the framework presented
in Sections 2 and 3. The method is referred to as the SAPOR method, initially pub-
lished in [11, 17]. The SAPOR method exploits the second-order form (19).

For the system matrices C, G and B in (21), we have2

G−1C =
[
Γ−1

0 G0 Γ
−1
0 C

−I 0

]
, G−1B =

[
Γ−1

0 Bv

0

]
.

They have the exact block structures required by Theorem 2. Apply Algorithm 2 to
compute Xr with orthonormal columns such that

Kk(G−1C,G−1B) ⊂ span
{[

Xr

Xr

]}
, (22)

which is required by Theorem 1 for matching the first k moments. The framework of
the projection technique in Section 2 can also be viewed as a change-of-variables

v(s) ≈ Xrvr(s), (23)

where vr(s) is a vector of dimension n. Substituting (23) into (19), and multiplying
the first equation in (19) by XT

r from the left yields the reduced-order model of the
second-order equations in (19):⎧⎨⎩

(
sCr +Gr +

1
s
Γr

)
vr(s) = Br,vu(s),

ỹ(s) = DT
r,vvr(s),

(24)

where
Cr = XT

r CXr, Gr = XT
r GXr, Γr = ET

r ΓEr, Er = XT
r E, (25)

and
Br,v = XT

r Bv, Dr,v = XT
r Dv.

The transfer function of the reduced system (24) is given by

Hr(s) = DT
r,v

(
sCr +Gr +

1
s
Γr

)−1

Br,v. (26)

The reduced second-order form (24) corresponds to a reduced order system of
the original RCS equations in (18). This can be seen by setting

X = Y =
[ n N2

N1 Xr

N2 I

]
,

2 To preserve the symmetry in C, G, and Γ as by (25), we do not need a Krylov subspace of
G−TCT on G−TL.
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and then projecting the original RCS equations in (18) as in Section 2 to obtain the
reduced order equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
s

[
Cr 0
0 I

]
+
[

Gr Er

−SET
r 0

])[
vr(s)
ĩ(s)

]
=
[
Br,v

0

]
u(s),

ỹ(s) =
[
DT

r,v 0
] [ vr(s)

ĩ(s)

]
.

(27)

Note that ĩ(s) is a vector with N2 components, corresponding with the number of
original auxiliary branch currents i(s).

4.3 Towards a Synthesized System

The reduced system (27) preserves the block structures and the symmetry of system
data matrices of the original RCS system (18). However, the matrix Er in the
reduced-order RCS system (27) cannot be interpreted as an incidence matrix.
Towards the objective of synthesis based on the reduced-order model, we shall
reformulate the projection (23) and the reduced-order system (24). This work was
first published in [21]. Here we derive a rigorous mathematical formulation of the
approach.

We begin with the original RCS equations in (18). Let

î(s) = E i(s). (28)

Then the RCS equations in (18) can be written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
s

[
C 0
0 I

]
+
[
G I

−Γ 0

])[
v(s)
î(s)

]
=
[
Bv

0

]
u(s),

y(s) =
[
DT

v 0
] [ v(s)

î(s)

]
.

(29)

With the change-of-variables (28), the incidence matrix E in the original RCS equa-
tions in (18) is now the identity matrix I in (29). The matrix Γ plays the role of
the susceptance matrix. An identity incidence matrix can be interpreted as “self-
inductance”, although the susceptance matrix Γ is not diagonal yet. We will discuss
how to do so later in this subsection.

Note that the new current vector î(s) is of the size N1, typically N1 ≥ N2. The
order of the new RCS equations in (29) is 2N1. The equations in (18) and (29) have
the same voltage variables and the same output. However, they are not equivalent
since the current variables i(s) cannot be recovered from î(s). The reformulated
equations in (29) are referred to as the expanded RCS equations, or RCSe for short.

In first-order form, the transfer function H(s) of the RCSe equations in (29) is
given by

H(s) = LT(sC + G)−1B, (30)
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where G and C are 2N1 × 2N1:

C =
[
C 0
0 I

]
, G =

[
G I

−Γ 0

]
,

and

B =
[
Bv

0

]
, L =

[
Dv

0

]
.

For the reduced-order model of the RCSe equations in (29), we define

X = Y =
[ n n

N1 Xr

N1 Xr

]
. (31)

Then by the change-of-variables

v(s) ≈ Xrvr(s) and î(s) ≈ Xrir(s), (32)

and using the projection procedure in Section 2, we have the reduced-order RCSe
equations ⎧⎪⎪⎨⎪⎪⎩

(
s

[
Cr 0
0 I

]
+
[
Gr I

−Γr 0

])[
vr(s)
ir(s)

]
=
[
Br,v

0

]
u(s),

ỹ(s) =
[
DT

r,v 0
] [ vr(s)

ir(s)

]
.

(33)

Compared with the RCSe equations in (29), the reduced equations in (33) not only
preserve the 2-by-2 block structure of the system data matrices G and C, but also
preserve the identity of the incidence matrix.

For the objective of synthesis of the original RCL and RCS equations in (17)
and (18), let us further consider the structures of the input and output matrices and
the incidence matrix. Without loss of generality, we assume that the sub-blocks Bv

and Dv in the input and output of the RCS equations in (18) are of the form:

Bv =
[ p

p1 Bv1

N1−p1 0

]
, Dv =

[ m

p1 Dv1

N1−p1 0

]
. (34)

This indicates that there are totally p1 different input and output nodes. Alternatively,
we can reorder the nodes in the RLC/RCS circuit network such that Bv and Dv are
in the desired forms.

Furthermore, we assume that the incidence matrix E in (18) has the zero block
on the top, conformal with the partition of the input and output matrices in (34):

E =

[N2

p1 0
N1−p1 Ẽ

]
. (35)
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This assumption means that there is no susceptance (inductor) directly connecting to
the input and output nodes [21].

With the assumptions in (34) and (35), let Xr be an orthonormal basis for the
projection subspace in (22). Using partitioning-and-embedding steps in Algorithm 1
of Section 2, we have that

Xr =

[ n

p1 X
(1)
r

N1−p1 X
(2)
r

]
� X̂r =

[ p1 n

p1 I

N1−p1 X2

]
,

where the columns of X2 form an orthonormal basis for the range of X(2)
r . For sim-

plicity, we assume that there is no deflation, namely, rank(X(2)
r ) = rank(X2) = n.

Similarly to (31) and (32), using the subspace projection with

X = Y =

[ p1+n p1+n

N1 X̂r

N1 X̂r

]
,

we have the reduced-order RCSe equations⎧⎪⎪⎨⎪⎪⎩
(
s

[
Cr 0
0 I

]
+
[
Gr I

−Γr 0

])[
vr(s)
ir(s)

]
=
[
Br,v

0

]
u(s),

ỹ(s) =
[
DT

r,v 0
] [ vr(s)

ir(s)

]
,

(36)

where Cr, Gr, and Γr are (p1 + n) × (p1 + n) matrices:

Cr = X̂T
r CX̂r, Gr = X̂T

r GX̂r, Γr = X̂T
r ΓX̂r.

The input and output sub-block matrices Br,v and Dr,v preserve the structure in (34):

Br,v = X̂T
r

[
Bv1

0

]
=

[ p

p1 Bv1

n 0

]
, Dr,v = X̂T

r

[
Dv1

0

]
=

[ m

p1 Dv1

n 0

]
.

Note that

span
{[

Xr

Xr

]}
⊆ span

{[
X̂r

X̂r

]}
.

The reduced RCSe system (36) also preserves the moment-matching property for the
system (33) by Theorem 1.

Now we turn to the diagonalization of Γ in the RCSe equations in (29) for the
objective of synthesis. The assumption (35) for the incidence matrix E implies that
Γ is of the form
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Γ = EL−1ET =

[ p1 N1−p1

p1 0 0
N1−p1 0 Γ̃

]
.

It can be seen that in the reduced RCSe equations in (36), Γr has the same form

Γr =

[ p1 n

p1 0 0
n 0 Γ̃r

]
,

where Γ̃r = XT
2 Γ̃X2. Note that Γ̃ is symmetric semi-positive definite, and so is Γ̃r.

Let
Γ̃r = Ṽ ΛṼ T

be the eigen-decomposition of Γ̃r, where V is orthogonal and Λ is diagonal. Define

V =

[ p1+n p1+n

p1+n V̂

p1+n V̂

]
,

where

V̂ =

[ p1 n

p1 I

n Ṽ

]
.

Then by a congruence transformation using the matrix V , the reduced-order RCSe
equations in (36) is equivalent to the equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
s

[
Ĉr 0
0 I

]
+

[
Ĝr I

−Γ̂r 0

])[
v̂r(s)
îr(s)

]
=

[
B̂r,v

0

]
u(s),

ŷ(s) =
[
D̂T

r,v 0
] [ v̂r(s)

îr(s)

]
,

(37)

where v̂r(s) = V̂ Tvr(s) and îr(s) = V̂ Tir(s). Ĉr, Ĝr, and Γ̂r are (p1 + n)× (p1 + n)
matrices:

Ĉr = V̂ TCrV̂ , Ĝr = V̂ TGrV̂ , Γ̂r = V̂ TΓrV̂ .

Moreover, with V block diagonal, the input and output structures are preserved too:

B̂r,v = V̂ TBr,v =
[ p

p1 Bv1

n 0

]
, D̂r,v = V̂ TDr,v =

[ p

p1 Dv1

n 0

]
.
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We note that after the congruence transformation, Γ̂r is diagonal

Γ̂r =
[ p1 n

p1 0 0
n 0 Λ

]
Therefore, to avoid large entries in the synthesized inductors for synthesized RCL
equations, we partition the eigenvalue matrix Λ of Γ̃r into

Λ =
[ � n−�

� Λ1

n−� Λ2

]
,

where Λ2 contains the n−� smallest eigenvalues that are smaller than a given thresh-
old ε in magnitude. Setting Λ2 = 0, we derive reduced RCSe equations of the same
form as in (37) with the “susceptance” matrix

Γ̂r =

⎡⎣
p1 � n−�

p1 0
� Λ1

n−� 0

⎤⎦.
Subsequently, we define reduced-order equations to resemble the RCL form (17):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
s

[
Ĉr 0
0 L̂r

]
+

[
Ĝr I

−I 0

])[
v̂r(s)
îr(s)

]
=
[
Br,v

0

]
u(s),

ỹ(s) =
[
DT

r,v 0
] [ v̂r(s)

îr(s)

]
,

(38)

where the inductance matrix L̂r is given by

L̂r =

⎡⎣
p1 � n−�

p1 0
� Λ−1

1

n−� 0

⎤⎦.
Since L̂r is diagonal, there is no inductance loop in the synthesized network. We
refer to the equations in (38) as the synthesized RCL equations of the original RCL
equations in (17). The use of the equation (38) for equivalent RLC circuit synthesis
is discussed in [21].

Example 3. We consider a 64-bit bus circuit network with 8 inputs and 8 outputs.
The order N of the corresponding RCL model is N = 16963. By the structure-
preserving model order reduction described in this section, we obtain a reduced-order
RLC equations of the form (38), with order n = 640.

SPICE transient analysis is performed on the original RLC circuit and on the
synthesized circuit (38) with excitations of pulse current sources at eight inputs.
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The transient simulation results are shown in Figure 1. The transient response of
the synthesized circuit is visually indistinguishable from that of the original RLC
circuit. SPICE AC analysis was also performed on the original RLC circuit and on
the synthesized RLC circuit with current excitation at the near end of the first line.
The voltage at the far end of the first line is considered as the observing point. The
AC simulation results are shown in Figure 2. We see that two curves are visually
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indistinguishable. The CPU elapsed time for the transient and AC analysis are shown
in the following table

Full RCL Synthesized RCL
Dimensionality 16963 640
Transient analysis 5007.59 (sec.) 90.16 (sec.)
AC analysis 29693.02 (sec.) 739.29 (sec.)

From the table, we see that with the reduced RCL equations a factor of 50 of
speedup for the transient analysis and a factor of 40 of speedup for the AC analysis
has been achieved. �
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1 Introduction

In many fields of science and engineering, like fluid or structural mechanics
and electric circuit design, large–scale dynamical systems need to be simulated,
optimized or controlled. They are often given by discretizations of systems of non-
linear partial differential equations yielding high–dimensional discrete phase spaces.
For this reason during the last decades research was mainly focused on the develop-
ment of sophisticated analytical and numerical tools to understand the overall system
behavior. Not surprisingly, the number of degrees of freedom for simulations kept
pace with the increasing computing power. But when it comes to optimal design
or control the problems are in general to large to be tackled with standard tech-
niques. Hence, there is a strong need for model reduction techniques to reduce the
computational costs and storage requirements. They should yield low–dimensional
approximations for the full high–dimensional dynamical system, which reproduce
the characteristic dynamics of the system.

In this work, we present a method known as proper orthogonal decomposition
(POD), which is widely discussed in literature during the last decades. The original
concept goes back to Pearson [28]. The method is also known as Karhunen–Loève
decomposition [15,22] or principal component analysis [13]. Further names are fac-
tor analysis or total least–squares estimation. It provides an optimally ordered, ortho-
normal basis in the least–squares sense for a given set of theoretical, experimental or
computational data [2]. Reduced order models or surrogate models are then obtained
by truncating this optimal basis. Clearly, the choice of the data set plays a crucial
role and relies either on guesswork, intuition or simulations. Most prominent is the
method of snapshots introduced by Sirovich [36]. Here, the data set is chosen as time
snapshots containing the spatial distribution of a numerical simulation at certain time
instances reflecting the system dynamics.

As an a posteriori, data dependent method it does not need a priori knowledge
of the system behavior and can also be used to analyze patterns in data. Due to this
fact, it was intensively used to study turbulence phenomena and coherent structures
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in fluid dynamics [4, 14, 32, 35, 36] as well as in signal analysis and pattern recogni-
tion [9, 33]. More recently, it has been used in optimal control of partial differential
equations [1, 8, 10, 12, 16–19, 31], inverse problems in structural dynamics [6] and
controller design for real–time control [3, 27, 37].

POD falls into the general category of projection methods where the dynamical
system is projected onto a subspace of the original phase space. In combination with
Galerkin projection [12,17,18] it provides a powerful tool to derive surrogate models
for high–dimensional or even infinite dimensional dynamical systems, since the sub-
space is composed of basis functions inheriting already special characteristics of the
overall solution. This is in contrast to standard finite element discretizations where
the choice of the basis functions is in general independent of the system dynamics.

The main advantage of POD lies in the fact that it requires only standard matrix
computations, despite of its application to nonlinear problems. Although projecting
only onto linear or affine subspaces the overall nonlinear dynamics is preserved,
since the surrogate model will still be nonlinear. Nevertheless, it is computationally
more convenient than to reduce the dynamics onto a curved manifold [30], like it is
done in the methods of intrinsic lower–dimensional manifolds (ILDM) for reducing
chemical kinetics [23].

In Section 2 we present the construction of the POD basis which is either based
on data sets or on the method of snapshots. Further, we use Galerkin projections to
reduce the system dimensionality and discuss the connection of POD and singular
value decomposition. Section 3 is dedicated to an numerical test of the POD method
in radiative heat transfer. Finally, we give in Section 4 some conclusions and future
research perspectives.

2 Proper Orthogonal Decomposition

POD can be seen as a model reduction technique or as a method for data represen-
tation. Being a projection method the latter point of view can be translated into the
question [29, 30]:

Find a subspace approximating a given set of data in an optimal least–
squares sense.

This is related to model reduction of dynamical systems by the choice of the data
points, which are either given by samplings from experiments or by trajectories of
the physical system extracted from simulations of the full model.

2.1 Construction of the POD Basis

To put all this into a mathematical framework (see also [30] for a more detailed dis-
cussion) we start with a vector space V of finite or infinite dimension and a given set
of data in V . Considering a dynamical system described by partial differential equa-
tions this resembles the phase space of an ordinary differential system, which one
gets after a spatial discretization via a method of lines, or to the infinite dimensional
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state space in which the solution lies. In the following we will restrict ourself to finite
dimensions and set V = R

n. Then, a set of sampled data Y = {y1(t), . . . , ym(t)} is
given by trajectories yi(t) ∈ R

n, i = 1, . . . ,m and t ∈ [0, T ].
Next, we use a principal component analysis of this data to find a d–dimensional

subspace Vd ⊂ V approximating the data in some optimal least–squares sense, i.e.
we seek an orthogonal projection Πd : V → Vd of fixed rank d that minimizes the
total least–squares distance

||Y −ΠdY ||2 :=
m∑

i=1

∫ T

0

||yi(t) −Πdyi(t)||2 dt.

The solution of this problem relies on the introduction of the correlation matrix
K ∈ R

n×n defined by

K =
m∑

i=1

∫ T

0

yi(t)yi(t)∗ dt, (1)

where the star stands for the transpose (with additional complex conjugation in case
of V = C

n) of a vector or a matrix. By definition, K is a symmetric positive semi-
definite matrix with real, nonnegative ordered eigenvalues λ1 ≥ · · · ≥ λn ≥ 0. Let
uj denote the corresponding eigenvectors given by

Kuj = λjuj , j = 1, . . . , n.

Due to the special structure of the matrix K we can choose them in fact as an ortho-
normal basis of V .

The main result of POD is that the optimal subspace Vd of dimension d repre-
senting the data is given by Vd = span {u1, . . . ,ud}. The vectors uj , j = 1, . . . , d
are then called POD modes. More precisely, we have the following result [20]:

Theorem 1. Let K be the correlation matrix of the data defined by :=correlation
and let λ1 ≥ · · · ≥ λn ≥ 0 be the ordered eigenvalues of K. Then it holds

min
Vd

||Y −ΠdY || =
n∑

j=n−d+1

λj ,

where the minimum is taken over all subspaces Vd of dimension d. Further, the opti-
mal orthogonal projection Πd : V → Vd, with ΠdΠ

∗
d = I , is given by

Πd =
d∑

j=1

uju
∗
j .

Each data vector yi(t) ∈ V can be written as

yi(t) =
n∑

j=1

yij(t)uj ,



98 R. Pinnau

where yij(t) = 〈yi(t), uj〉. Then it holds

Πdyi(t) =
d∑

j=1

uju
∗
j

(
n∑

l=1

yil(t)ul

)
=

d∑
j=1

yij(t)uj ,

since 〈ui, uj〉 = δij .

Remark 1. Often, one is interested in finding rather an approximating affine subspace
than a linear subspace [30]. Consider for example the flow around a cylinder, where
one can observe Karman’s vortex street [12]. Physically speaking, we have then the
superposition of the mean flow, in which we are not interested, and the vortex struc-
tures on which our main focus lies. So, we construct first the mean value of the data
given by

ȳ :=
1
mT

m∑
i=1

∫ T

0

yi(t) dt

and then build–up the covariance matrix K̄ defined by

K̄ :=
m∑

i=1

∫ T

0

(yi(t) − ȳ)(yi(t) − ȳ)∗ dt.

Now, we can proceed in analogy. Let λ1 ≥ · · · ≥ λn ≥ 0 be the ordered eigenvalues
of K̄ and uj the corresponding eigenvectors. We define Vd = span {u1, . . . ,ud}.
Then the optimal affine subspace fixed in ȳ is given by Vd,ȳ = ȳ + Vd and the
optimal orthogonal projection is given by

Πdy := Πd(y − ȳ) + ȳ.

2.2 Choosing the Dimension

Finally, we have to answer the question how to choose the dimension d of the sub-
space Vd such that we get a good approximation of our data set. Here, Theorem 1
can guide us, since it provides the overall least–squares error. Hence, we only have
to study the eigenvalues of K. In terms of a dynamical system, large eigenvalues
correspond to main characteristics of the system, while small eigenvalues give only
small perturbations of the overall dynamics. The goal is to choose d small enough
while the relative information content [1] of the basis for Vd, defined by

I(d) =

∑d
j=1 λj∑n
j=1 λj

,

is near to one. I.e. if the subspace Vd should contain a percentage p of the information
in V , then one should choose d such that

d = argmin
{

I(d) : I(d) ≥ p
100

}
.
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Remark 2. If one wants to significantly reduce the dimension of the problem, i.e.
d � n, one needs clearly that the eigenvalues decrease sufficiently fast. In many ap-
plications like fluid dynamics or heat transfer one observes an exponential decrease
of the eigenvalues, such that one has indeed a good chance to derive low–order ap-
proximate models (see also Section 3).

Remark 3. Note, that the POD modes are optimally approximating a given data set in
the least–squares sense, but they are not constructed to be the modes approximating
the dynamics generating the given the data set. For example, consider a low Mach
number flow where acoustic effects play a crucial role [34]. Due to their small en-
ergy compared to the high energy hydrodynamic pressure fluctuations, they would
be neglected in our reduced model, although being a relevant feature of the full dy-
namical system. Further, although an increase of the number of POD modes leads to
a decrease of the least squares error, it might happen that more POD modes lead to
a worse approximation of the full dynamics. New approaches exploiting the relation
between POD and balanced truncation [21, 34, 37] or dual techniques [24, 25] yield
a way out of this problem.

2.3 POD and Galerkin Projection

To get reduced order models for dynamical systems one uses a Galerkin projection
onto the subspace Vd. This is the standard technique to reduce partial differential
equations with a method of lines to a system of ordinary differential equations. Stan-
dard finite element approaches for the spatial discretization are using basis functions
which are in general not correlated with the overall system dynamics [12, 17]. This
approach holds for any subspace Vd, but having now the POD modes at hand one can
use naturally this optimal approximating subspace. So, let f : V → V be a vector
field and consider the solution y(t) : [0, T ] → V of the dynamical system

ẏ(t) = f(y(t)),

which we e.g. get from a discretization of a partial differential equation via finite el-
ements or finite differences. Further, we construct an approximating d–dimensional
subspace Vd = span {u1, . . . ,ud} via POD. The reduced order model is then
given by

ẏd(t) = Πdf(yd(t)) (2)

with solution yd(t) : [0, T ] → Vd. Here, Πdf(yd(t)) is just the projection of the
original vector field f onto the subspace Vd. To rewrite :=reduced component wise
we use

yd(t) =
d∑

j=1

χj(t)uj

and substitute this into :=reduced. Then, a multiplication with u∗j yields

χ̇j(t) = u∗jf(yd(t)) = u∗jf

⎛⎝ d∑
j=1

χj(t)uj

⎞⎠ , j = 1, . . . , k,
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i.e. we are left with a coupled system of d ordinary differential equations for the
evolution of yd(t). Clearly, also the initial condition has to be projected, i.e.

yd(0) = Πdy(0).

Remark 4. For an affine subspace Vd,ȳ the reduced model for the dynamics of yd :
[0, T ] → Vd,ȳ can be derived in analogy.

2.4 POD and Snapshots

Concerning real world applications like flow problems, one has to encounter many
degrees of freedom, such that the dimension n of the phase space might be very large.
In practical computations this can lead to a phase space with dimension n = 106–
1010. Hence, the calculation of the POD modes would require the solution of a large
eigenvalue problem for a full matrix K ∈ R

n×n, which might be infeasible. To over-
come this problem Sirovich [36] proposed the method of snapshots, which proves
to a powerful tool for the computation of the eigenfunctions. Instead of solving the
eigensystem for the matrixK ∈ R

n×n one only needs to consider a matrix in R
m×m,

where m is the number of snapshots considered (for a more detailed discussion we
refer to [12, 17] and the references therein).

Snapshots are constructed from the trajectories of the dynamical system by eval-
uating them at certain discrete time instances t1, . . . , tm ∈ [0, T ], i.e. they are given
by yi = y(ti) ∈ R

n. Then, we get a new correlation matrix K defined by

K =
m∑

i=1

y(ti)y(ti)∗. (3)

Remark 5. But how many snapshots should one choose? An educated guess would be
to choose less than n, since we cannot expect to get more than n linearly independent
vectors. On the other hand, snapshots should be always taken whenever the dynamics
of the system is changing. Hence, it might happen that m > n. Be aware that the
chosen snapshot vectors might be linearly dependent, such that it is not clear, if one
can reconstruct a suitable basis. Further note that the snapshots depend clearly on the
initial datum and on a given input.

We build the matrix Y = (y(t1), . . . y(tm)) ∈ R
n×m consisting in the columns

of the snapshots. Hence, in each row we find the trajectories of the dynamical system
at discrete time events. Then, the sum (3) can be written as K = Y Y ∗. In the method
of snapshots one considers now instead the matrix Y ∗Y ∈ R

m×m and solves the
eigenvalue problem

Y ∗Y vj = λjvj , j = 1, . . . ,m, vj ∈ R
m.

In the following we will see that the eigenvalues are indeed the same. Again, we can
choose an orthonormal basis of eigenvectors {v1, . . . , vm} and the corresponding
POD modes are given then given by

uj =
1√
λj

Y vj , j = 1, . . . ,m.
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2.5 POD and SVD

The above discussion suggest that there is indeed a strong connection of POD
and singular value decomposition (SVD) for rectangular matrices (for an excellent
overview see [12,16,17]). Consider a matrix Y ∈ R

n×m with rank d. From standard
SVD we know that there exist real numbers σ1 ≥ . . . ≥ σd > 0 and unitary matrices
U ∈ R

n×n and V ∈ R
m×m such that

U∗Y V =
(
Σd 0
0 0

)
= Σ ∈ R

n×m, (4)

where Σd = diag(σ1, . . . , σd) ∈ R
d×d.

The positive numbers σi are called singular values of Y . For U = (u1, . . . , un)
and V = (v1, . . . , vm) we call ui ∈ R

n the left singular vectors and vi ∈ R
m the

right singular vectors, which satisfy

Y vi = σiui and Y ∗ui = σivi, i = 1, . . . , d.

These are eigenvectors of Y Y ∗ and Y ∗Y with eigenvalues σ2
i , i = 1, . . . , d.

The link between POD and SVD lies in the fact that the approximating POD
basis should contain as much information or energy as possible. Mathematically, we
can write the problem of approximating the snapshot vectors yi by a single vector u
as the constrained optimization problem

max
m∑

j=1

| 〈yj , u〉 |2 s.t. |u| = 1. (5)

Using the Lagrangian formalism we derive that a necessary condition for this prob-
lem is given by the eigenvalue problem

Y Y ∗u = σ2u.

The singular value analysis yields that u1 solves this eigenvalue problem and the
functional value is indeed σ2

1 . Now, we iterate this procedure and derive that ui,
i = 1, . . . , d solves

max
m∑

j=1

| 〈yj , u〉 |2 s.t. |u| = 1and 〈u, uj〉 = 0, j = 1 . . . , i− 1 (6)

and the value of the functional is given by σ2
i .

By construction it is clear that for every d ≤ m the approximation of the columns
Y = (y1, . . . , ym) by the first d singular vectors {ui}d

i=1 is optimal in the least–
squares sense among all rank d approximations to the columns of Y .

Altogether, this leads the way to the practical determination of a POD basis of
rank d. If m < n holds, then one can compute the m eigenvectors vi corresponding
to the largest eigenvalues of Y ∗Y ∈ R

n×n. These relate to the POD basis as follows

ui =
1
σi
Y vi, i = 1, . . . d.
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3 POD in Radiative Heat Transfer

In the following we want to test the POD approach for model reduction in a radiative
heat transfer problem given by the so–called Rosseland model [26], which is given
by the nonlinear parabolic partial differential equation

∂ty(x, t) = div
((

kh + kry3(x, t)
)
∇y(x, t)

)
(7)

for the temperature distribution y(x, t). Here, (x, t) is in the space–time cylinder
Q = Ω× (0, T ), where Ω is a bounded domain in R

2. The coefficients kh and kr are
positive constants related to the conductive and radiative heat transfer. This model
has to be supplemented with boundary data

n · ∇y(x, t) = h(b(x, t) − y(x, t)) + α
(
b4(x, t) − y4(x, t)

)
(8)

for (x, t) ∈ ∂Ω × (0, T ) and an initial datum

y(x, 0) = y0(x) (9)

for x ∈ Ω. Here, y0(x) is the initial temperature, b(x, t) a specified boundary temper-
ature, and h and α measure the conductive and radiative heat loss over the boundary,
respectively. For the forthcoming simulations we choose

kh = 1, kr = 10−7, h = 1, α = 5 · 10−7, y0(x) = 500, b(x, t) = 300.

Remark 6. Note, that this model has two nonlinearities: One in the heat conductivity
which models volume radiation and one in the boundary condition which adds addi-
tional surface radiation to the standard Newton cooling law, where the temperature
flux is proportional to the temperature difference. Hence, we can expect that bound-
ary layers will appear in the solution such that the POD modes will significantly
differ from the eigenfunctions of the Laplacian.

This nonlinear partial differential equation is solved using the finite element
package FEMLAB. The computational domain Ω ⊂ R

2 is an ellipse depicted in
Figure 1 with center zero and an aspect ratio of two. There, one also finds the tri-
angular mesh consisting of 1769 degrees of freedom. For the discretization we use
linear finite elements with the nodal basis {ϕi(x)}n

i=1 and write the approximate
solution as

yh(x, t) =
n∑

i=1

yi(t)ϕi(x).

The finite element ansatz for the equation :=RHT yields a dynamical system for
Y (t) = (y1(t), . . . , yn(t))

Ẏ (t) = f(Y (t)),

where the right hand side is computed via the Galerkin projection onto the finite
element space.
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Fig. 1. Computational Domain and Mesh

For the POD analysis we take m = 81 equidistantly distributed snapshots
{Y (tj)}m

j=1 in the interval [0, T ], build up the snapshot matrix

Y =

⎛⎜⎝ y1(t1) · · · y1(tm)
...

...
yn((t1) · · · yn(tm)

⎞⎟⎠ ∈ R
n×m

and introduce the correlation matrix K = Y ∗Y ∈ R
m×m. Using the MATLAB

routine eigs.m one can easily compute the eigenvalues λj and the eigenvectors uj ,
j = 1, . . .m. Despite of the high nonlinearity of our problem, we get exponential
decay of the eigenvalues, which can be seen in Figure 2.

From the eigenvectors we can compute the POD basis {ui}d
i=1 of rank d as

follows

ui =
1√
λi

m∑
j=1

vj
i yj , i = 1, . . . , d,

where vj
i is the j–th component of the eigenvector vi. In the following we will use

the normalized POD basis functions ψi = ui/||ui||. The first eight of these basis
functions can be found in Figure 4. Computing the relative information content for
the first mode yields already I(1) = 99.96%.

To get a reduced POD model we use the POD basis {ψi}d
i=1 in a Galerkin ansatz

yd(x, t) =
d∑

i=1

χi(t)ψi(x),
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Eigenvalues of the POD correlation matrix
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Fig. 2. Eigenvalues of the correlation matrix

plug this into the equation and test with χj , which yields

∂tχi(t) = −
∫

Ω

(
kh + kr

(∑d
k=1 χk(t)ψk(x)

)3
)∑d

i=1 χi(t)∇ψi(x) · ∇ψj(x) dx

+
∫

∂Ω

(
kh + kr

(∑d
k=1 χk(t)ψk(x)

)3
)∑d

i=1 χi(t)n · ∇ψi(x)ψj ds

=: g(χ(t)), i = 1, . . . , d, χ = (χ1, . . . , χd).

This gives the ordinary differential system χ̇(t) = g(χ(t)) of size d × d, which can
be solved with an implicit Euler method for example.

Remark 7. Note that the ordinary differential system can be solved quite fast due to
its small size. Nevertheless, one should be aware that building up the system might
need some time since we have to compute the inner products for global basis func-
tions, in contrast to the finite element basis which has compact support. Alternatively,
one can compute the projections of the finite element matrices onto the reduced
space.

To get an idea how well our reduced model approximates the full model,
we measure the difference of yh(x, t) and yd(x, t) in the norm of the space
L2(0, T ;L2(Ω)), i.e.

||yh − yd||2L2(0,T ;L2(Ω)) =
∫ T

0

∫
Ω

(yh(x, t) − yd(x, t))
2
dx dt.
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This error is plotted in Figure 3 for different sizes d of the reduced model. Most re-
markable is that already three POD modes yield a mean error of 1 in the temperature,
which yields a relative mean error of less than 1%.

Remark 8. It is worth noting that in the context of partial differential equations, it is
also possible to build up the correlation matrix using a different inner product, which
is more related to the Galerkin ansatz, i.e. here one could also use the inner product
of H1(Ω). I.e. one replaces the correlation matrix by K = YMY ∗, where M ∈
R

n×n is a symmetric, problem dependent matrix. This yields a different POD basis
which might give even better results (for the linear case see e.g. [11]). Further, it was
pointed out that one may increase the accuracy of the reduced model by adding finite
differences of the snapshots to the snapshot set, i.e. also considering time derivatives
of the snapshots [12, 17]. Clearly, this does not change the space spanned by the
snapshots since we are only adding linearly dependent vectors. Nevertheless, we get
different weights in the correlation and thus again different modes.

4 Conclusions and Future Perspectives

Being a powerful tool for model reduction of large–scale dynamical systems, POD
is acquiring increasing attention in the mathematics and engineering community.
Presently, there is the tendency to test its performance in more and more fields of
application, like fluid and structural dynamics, reducing models based on partial



106 R. Pinnau

Fig. 4. The first 8 POD modes
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differential equations for devices in electric circuits, frequency averaging in radia-
tive heat transfer, or even tire modeling. These different fields clearly will have
different requirements on the POD method. Either, one wants to have structure
preserving reduced models [5, 7, 20] or estimates on the quality of the surrogate
model [11, 24, 25, 29, 30]. In particular, the derivation of error estimates for POD
models is a field of intensive research which follows two lines: First, the combina-
tion of POD and balanced truncation (c.f. [34, 37] and the references therein) and
second exploiting the special structure of Galerkin approximations to partial differ-
ential equations (c.f. [12, 17] and the references therein).
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sion. IEEE Trans. Information Theory, IT-15:319–320, 1969.

3. Jeanne A. Atwell and Belinda B. King. Reduced order controllers for spatially distrib-
uted systems via proper orthogonal decomposition. SIAM J. Sci. Comput., 26(1):128–151,
2004.

4. Nadine Aubry, Philip Holmes, John L. Lumley, and Emily Stone. The dynamics of
coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech.,
192:115–173, 1988.

5. Nadine Aubry, Wen Yu Lian, and Edriss S. Titi. Preserving symmetries in the proper
orthogonal decomposition. SIAM J. Sci. Comput., 14(2):483–505, 1993.

6. H. T. Banks, Michele L. Joyner, Buzz Wincheski, and William P. Winfree. Nondestruc-
tive evaluation using a reduced-order computational methodology. Inverse Problems,
16(4):929–945, 2000.

7. Gal Berkooz and Edriss S. Titi. Galerkin projections and the proper orthogonal decompo-
sition for equivariant equations. Phys. Lett. A, 174(1-2):94–102, 1993.

8. Marco Fahl and Ekkehard W. Sachs. Reduced order modelling approaches to PDE-
constrained optimization based on proper orthogonal decomposition. In Large-scale
PDE-constrained optimization (Santa Fe, NM, 2001), volume 30 of Lect. Notes Comput.
Sci. Eng., pages 268–280. Springer, Berlin, 2003.

9. Keinosuke Fukunaga. Introduction to statistical pattern recognition. Computer Science
and Scientific Computing. Academic Press Inc., Boston, MA, second edition, 1990.

10. M. Hinze and K. Kunisch. Three control methods for time - dependent fluid flow. Flow,
Turbulence and Combustion, 65:273–298, 2000.



108 R. Pinnau

11. M. Hinze and S. Volkwein. Error estimates for abstract linear-quadratic optimal con-
trol problems using proper orthogonal decomposition. Technical Report IMA02-05, KFU
Graz, 2005.

12. M. Hinze and S. Volkwein. Proper orthogonal decomposition surrogate models for nonlin-
ear dynamical systems: Error estimates and suboptimal control. In D. Sorensen, P. Benner,
V. Mehrmann, editor, Dimension Reduction of Large-Scale Systems, Lecture Notes in
Computational and Applied Mathematics, pages 261–306. 2005.

13. H. Hoetelling. Simplified calculation of principal component analysis. Psychometrica,
1:27–35, 1935.

14. Philip Holmes, John L. Lumley, and Gal Berkooz. Turbulence, coherent structures, dy-
namical systems and symmetry. Cambridge Monographs on Mechanics. Cambridge Uni-
versity Press, Cambridge, 1996.

15. Kari Karhunen. Zur Spektraltheorie stochastischer Prozesse. Ann. Acad. Sci. Fennicae.
Ser. A. I. Math.-Phys., 1946(34):7, 1946.

16. K. Kunisch and S. Volkwein. Control of the Burgers equation by a reduced-order approach
using proper orthogonal decomposition. J. Optim. Theory Appl., 102(2):345–371, 1999.

17. K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for par-
abolic problems. Numer. Math., 90(1):117–148, 2001.

18. K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for a
general equation in fluid dynamics. SIAM J. Numer. Anal., 40(2):492–515, 2002.

19. K. Kunisch, S. Volkwein, and L. Xie. HJB-POD-based feedback design for the optimal
control of evolution problems. SIAM J. Appl. Dyn. Syst., 3(4):701–722, 2004.

20. Sanjay Lall, Petr Krysl, and Jerrold E. Marsden. Structure-preserving model reduction for
mechanical systems. Phys. D, 184(1-4):304–318, 2003.

21. Sanjay Lall, Jerrold E. Marsden, and Sonja Glavaški. A subspace approach to balanced
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Summary. In this chapter we present a family of algorithms that can be considered interme-
diate between frequency domain projection methods and approximation of truncated balanced
realizations. The methods discussed are computationally simple to implement, have good error
properties, and possess simple error estimation and order control procedures. By tailoring the
method to take into account a statistical representation of individual problem characteristics,
more efficient, improved results have been obtained in several situations, meaning models of
small order that retain acceptable accuracy, on problems for which many other methods strug-
gle. Examples are shown to illustrate the algorithms in the contexts of frequency weighting,
circuit simulation with parasitics networks having large numbers of input/output ports, and
interconnect modeling in the presence of parameter change due to process variation.

1 Introduction

Model order reduction methods are now commonly used in the modeling, simulation,
and analysis of integrated circuit (IC) components, particularly circuit interconnect
and packaging. The dominant characteristics of IC and other problems in electronic
design automation (EDA) is the large scale of the problems encountered. In a re-
duction context, both the size of the systems encountered, as well as the number of
systems to be reduced, can be quite large. This necessitates reduction methods which
are efficient in producing very small models, are effective on fairly large systems, and
are very fast in reduction time.

Development of reduction methods in IC EDA has historically proceeded in four
main stages. The first methods to be proposed were more or less geometric in na-
ture, and based on heuristics supported by reasonings from circuit theory. These
methods still exist today, under the guise of “realizable” or graph-based reduction
techniques [1], and can be quite effective in certain applications, and for limited, but
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important, classes of systems like pure resistor-capacitor networks. They are how-
ever hard to generalize and do not perform well on many other relevant problems.
The second reduction family appeared in the late 1980s with the popularization of
“moment-matching”, i.e. Padé approximation [2]. While still used even today, the
numerical disadvantages of these methods were fairly quickly recognized. Next,
the connection to numerically stable Krylov-subspace algorithms [3, 4] and the ad-
vent of general projection techniques [5] opened the era of modern reduction ap-
proaches. Finally, it was inevitable that approaches developed earlier in the systems
and control literature, such as balanced truncation [6–8] and optimal Hankel norm
approximation [9], would be examined in light of this renew interest. Due to the high
computational cost of these techniques, they were usually applied either in conjunc-
tion with the more scalable Krylov-projection techniques, or on very limited problem
sets, though recent work on iterative solution of Lyapunov or Ricatti equations may
make these methods more widely applicable [10–14].

Eventually various questions arose in practical application of the competing
techniques and their relation. It is widely expected that, on average, the balanced
truncation type methods should give better results than the more-or-less heuristic
moment-matching-via-projection approaches. At the same time, many procedures
for computing the controllability/observability Gramians involve computations re-
markably similar to moment-matching, implying a connection between the methods,
and we argue below that it is in fact fairly straightforward to connect the two families,
and interpolate between them. More interestingly, we have empirically observed that
one can often do better (in the sense of smaller model for a given allowable error)
with the seemingly ad-hoc techniques than with e.g. balanced truncation for which
global error bounds are known to exist. While this appears somewhat counternature,
we will argue that this is not the result of pure luck and furthermore, with the in-
sights gained, reduction algorithms can be constructed that are effective on systems
(e.g. some systems with large numbers of inputs and outputs) that appear to be “non-
reducible” by more conventional approaches.

In this chapter we review a simple family of algorithms that are based on
cheap approximations to a principal components analysis, implemented via ran-
dom sampling [15]. These techniques are easy to implement, illustrate rapid con-
vergence on industrial problems, and have several practical advantages. They can
be tailored to gain efficiency on some hard problems that are difficult to treat by
other means [16]. In practical implementations, error/order control is very important,
and in the proposed approaches it can be done in an ‘on-the-fly’ manner, enabling
incremental implentation of the algorithms which is very important for practical im-
plementations. The family of algorithms we discuss in this chapter also general-
izes nicely to some related problems, such as reduction of affinely parameterized
systems [17].

The algorithms we have been working with are relatives of the ‘principal
orthogonal decomposition’ (POD) methods used for some time in [18–20]. However,
the motivation and algorithms in this chapter are somewhat different, in particular
as regards selection of sampling strategies, which is somewhat ad-hoc in other work
we are aware of, but plays a critical role in our analysis.
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The outline of the chapter is as follows. In Section 2 we describe the basics of
the algorithms and discuss some of its advantages over competing techniques. In
Section 3 we present some variants of the algorithm which have proven sucessfull in
specific settings. Then in Section 4 we provide a thourough analysis of the method
and comparisons to existing alternatives. Finally in Section 5 we provide examples
from applications of the techniques to various problems and settings. Conclusions
are drawn in Section 6.

2 Basic Algorithm

2.1 Sampling Approximations

Consider the state-space model

dx

dt
= Ax+Bu(t) (1)

y(t) = Cx+Du(t). (2)

with input u(t) and output y(t), that are described by the matrices A ∈ R
n×n, B ∈

R
n×p, C ∈ R

p×n, where p is the number of inputs and outputs. The goal of Model
Order Reduction is to produce a reduced model

dz

dt
= Âz + B̂u, y = Ĉz (3)

where Â ∈ R
q×q, B̂ ∈ R

q×p, Ĉ ∈ R
p×q , q � n. As was discussed in previ-

ous chapters, there are many different ways to achieve this goal, with projection
schemes perhaps the more common in IC EDA applications. In that context, a pair
of matrices W and V can be constructed, whose columns span a “useful” subspace,
and the original equations can then be projected into those spaces as

Â ≡ WTAV B̂ ≡ WTB Ĉ ≡ CV. (4)

Most common choices are based on picking the columns of W,V to span a Krylov
subspace [4, 21], and a very common scheme is to choose W = V . Of course,
different choices will lead to different algorithms with slightly different properties
but an overall similar “flavour”.

Let us assume that the system (2) is stable which implies the eigenvalues of A to
have negative real part. The controllability Gramian, which can be computed as the
solution of the Lyapunov equation

AX +XAT = −BBT , (5)

can be computed in the time domain as

X =
∫ ∞

0

eAtBBT eAT tdt. (6)
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or in the frequency domain as

X =
∫ ∞

−∞
(jωI −A)−1BBT (jωI −A)−Hdω. (7)

where superscript H denotes Hermitian transpose. Neglecting for the moment the
issue of balancing, a model order reduction procedure can be obtained from the
eigendecomposition

X = VLΣV
T
L . (8)

where V T
L VL = I since X is real symmetric. An obvious candidate for reduction

would be to pick a projection matrix formed from the columns of VL corresponding
to the dominant eigenvalues of X .

As a first step to a simple procedure, consider evaluating X via applying numeri-
cal quadrature to (7). Given a quadrature scheme with nodes ωk and weights wk, and
defining

zk = (jωkI −A)−1B, (9)

an approximation X̂ to X can be computed as

X̂ =
∑

k

wkzkz
H
k . (10)

Letting Z be a matrix whose columns are zk, and W a diagonal matrix with diagonal
entries Wkk =

√
wk, Eqn. (10) can be written as

X̂ = ZW 2ZH = (ZW )(ZW )H . (11)

Given the singular value decomposition of ZW .

ZW = VZSZUZ (12)

with SZ real diagonal, VZ and UZ unitary matrices, clearly

X̂ = VZS
2
ZV

T
Z . (13)

In an appropriately chosen limit, the dominant eigenvectors of X̂ , the dominant sin-
gular vectors in VZ , will converge to the dominant eigenspace of X . As an engineer-
ing approximation, it seems a reasonable strategy to search for some computationally
cheaper approximation to such an eigenspace. With something of a leap of faith, we
thus posit Algorithm 1 for solving the slightly generalized set of parametric model
equations

L(Λ)x = Bu (14)
y = Cx+Du(t). (15)

where Λ = (s, λ1, . . . , λP ) is a vector of parameters, in which we include a fre-
quency variable, that parameterizes the matrix operator L.
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Algorithm 1 : PMTBR: Poor Man’s TBR

1. Do until satisfied:
2. Select a frequency/parameter point Λi.
3. Compute zi = [L(Λi)]

−1B.
4. Form the matrix of columns
5. [real si]: Z(i) = [z1, z2, . . . , zi].

[complex si]: Z(i) = [z1, z
∗
1 , z2, z

∗
2 , . . . , zi, z

∗
i ].

6. Construct the SVD of Z(i).
If the error is satisfactory, set Z = Z(i), go to Step 7.
Otherwise, go to Step 2.

7. Construct the projection space V from the orthogonalized column span of Z,
dropping columns whose associated singular values fall below a desired
tolerance.

Algorithm 1 is based on the idea that appropriately chosen points in the multidi-
mensional frequency and parameter spaces are good quadrature points for approxi-
mating the dominant eigenspace of X . Our empirical experience seems to indicate
that furthermore, on a wide variety of problems of practical relevance, very good
models can be obtained with a fairly small number of sample points. We denote our
method “Poor Man’s” TBR (PMTBR), since the quantities computed are, from a cer-
tain perspective, cheap approximations to those required to perform a full truncated
balanced realizations (TBR) procedure.

Consider first a most restricted case: that the system in study is LTI and in bal-
anced coordinates, and that the samples are chosen via quadrature points placed in a
sufficiently dense manner over the entire imaginary axis as to accurately compute the
true Gramian X . Then, the singular values of Z are simply the Hankel singular val-
ues, and provide error bounds through the usual connection to TBR [6,9]. If samples
Λi are drawn i.i.d from a uniform distribution over a sufficiently wide bandwidth, the
procedure becomes a Monte Carlo estimate for the integral determining the Gramian,
and again in some limit we expect the singular values to provide error estimates. Of
course, it is impractical to take such a large number of samples as to converge these
integrals. Nor is it desirable to sample from a distribution uniform over a wide fre-
quency range. We therefore propose two modifications to the procedure that have
proved effective in engineering applications.

First, we sample with a distribution that is restricted to match the characteristics
of the expect problem inputs as closely as possible. By restricting the allowed range
of inputs, the dimensionality of the associated Gramians, and therefore the size of the
reduced model that is needed to achieve a given error tolerance, is likewise reduced.
Exactly how the weighting is done in fact determines the different possible concrete
algorithms. Section 3 is devoted to a discussion of some possible choices. Obviously,
this changes the nature of the error control strategy since we no longer compute,
even asymptotically, system Gramians. But it is a standard result that for a large
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number of samples, the singular values of Z give a measure of the average error
in reconstructing the space spanned by the zi. However, unlike in TBR, this error
estimate applies only to the specific class of system inputs defined in the probabilistic
model.

Second, we strive to take a fairly limited number of samples. In particular, we
propose to guide the sampling process by analyzing the singular values of the matrix
Z at each iteration, as constructed by the samples themselves. This usually leads us
to terminate the sampling process after a very few samples. Thus, we never converge,
in fact even come close to converging, the relevant Gramian integrals. However, we
usually obtain sufficiently good estimates of the important subspaces early on in the
process. Section 4.3 discusses error analysis in more detail.

2.2 Advantages

The Algorithm proposed in the previous section prescribes the usage of sampling
points in a multidimensional space in order to generate the projection matrix for
reduction. At first sight this introduced a new problem, i.e. where to place the samples
in order to get a good, i.e. small and accurate, model. In fact there are several practical
advantages that come from using the sampling viewpoint.

First, it is simple to incorporate weighting functions that are expressed in a “non-
analytic” manner. For example, it is common in IC interconnect analysis to know
only a “maximum” or “cutoff” frequency of interest. In an attempt to improve the
model in the frequency range of interest, sometimes weighting functions are used
to bias the transfer function. In our algorithm, this can be done in a straightforward
way that fits readily into our computation: samples above the cutoff frequency should
be weighted with zero probability, samples below with equal weight. The weighted
versions of, e.g., balanced truncation, with which we are familiar require analytic
weighting, which introduces additional complexity to the procedure and can interfere
with error estimates. In the worst case, complicated weighting functions can conflict
with demands for very compact (e.g. order 2 or 3) models.

Second, and more importantly, we can build information about input structure (or
other available system structure) into the PMTBR method. Any specific information
about some particular aspect of the structure of the system, or its inputs, can be used
as a guideline when sampling. In some instances this can result in orders of mag-
nitude improvement in performance. Another way of expressing our claim is to say
that the traditional methods contain implicit assumptions about the relationships be-
tween input data or system structure that can often interfere with effective reduction
procedures.

As a result, in many practical applications, PMTBR performs better than TBR in
the sense of giving more accurate models for a given model size or amount of effort.
By connecting our method to multipoint moment matching, we believe we can ex-
plain the instances where these methods also have superior performance. In essence
this links back to the empirical observation previously mentioned that in many ap-
plications, ad-hoc techniques outperformed TBR, a seemingly puzzling fact in view
of the purported close-to-optimal reduction available through TBR-like methods.
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Here we summarize our basic claims surrounding the PMTBR family of
algorithms.

• Efficiency in reduction algorithms is obtained through restricted assumptions on
system inputs.

• Only approximations of relevant subspaces are needed for engineering accuracy.
• Random sampling is a cheap but effective way of estimating the important

subspaces.
• With proper sampling, error control comes as a by-product.

The rest of the chapter is devoted to substantiating these claims. In many cases
we have only empirical evidence to offer.

3 Algorithmic Variants

We stated in Section 2.2 that an important advantage of working from a sampling
viewpoint was that it allowed us to incorporate knowledge about the system struc-
ture or environment into the reduction process, in order to improve the quality of
the model (i.e. to generate more accurate models, or a smaller models of the same
accuracy). In this Section we describe in detail some particular contexts in which we
have applied this philosophy with success [15].

Our philosophy is similar to that in a Bayesian view of statistics: we believe
assumptions in the modeling process, in this case about the system inputs, should be
stated clearly, and that these assumptions should, first, be stated clearly, but second,
taken into account in the modeling procedure, possibly leading to better results in
the process. One way of quantifying uncertainty is via probabilistic models that we
embed in our sampling procedure.

We believe this perspective presents subtle distinction, both with many principal-
components/POD procedures as well as with TBR. In many POD procedures, the
sampling is somewhat ad-hoc, which can lead to pathologies in the algorithms. For
example, as time-domain simulation is expensive, on occasion approaches will be
proposed that consider only a single input trajectory, in other words, a single input
sample, which is too coarse a sampling even by our spartan standards. Likewise,
we believe that the TBR procedure can be interpreted as a special case of our ap-
proach, where all possible inputs are considered equally important. In no practical
context are all possible inputs equally important, so this formulation unnecessarily
over-constraints the model reduction procedure. These assumptions are not typically
explicitly stated, but they are (implicitly) present nonetheless.

Now we will discuss three contexts in which we have exercised the PMTBR
approach: restricted frequency ranges, estimating information about restricted or re-
lations between circuit inputs, and parameter-varying problems.
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3.1 Frequency Selectivity

Consider defining a “frequency-weighted” Gramian as

XFW =
∫ ∞

−∞
(jωE −A)−1BBT (jωE −A)−Hw(ω)dω. (16)

where w(ω) is the “weighting” function. The more appropriate the weighting func-
tion to our problem at hand, the better we expect the performance of the reduction
algorithm to be. Seen from this viewpoint, TBR is a generic, somewhat naive, algo-
rithm as it presumes complete ignorance of frequency content. The weighting func-
tion in “standard” TBR is most appropriate for white noise inputs where nothing is
really known about frequency content. However, it is quite common to have some
knowledge of the actual frequency distribution of the inputs. Often, the inputs are
limited to a known band, for example we may approximate them as zero above a
maximum frequency.1 Therefore, we propose to select the weighting such that we
can truncate the integral in Eqn. (16) to a finite interval, and use the resulting “finite-
bandwidth” Gramian for model reduction. Since the resulting Gramian places more
emphasis on frequencies of relevance, we expect to achieve better performance, for
a given model order, on problems with finite bandwidth inputs.

In a practical implementation, with a finite number of frequency samples, weight-
ing can be accomplished by adjusting the weights wk and/or location of samples ωk.
In fact, every ZW -matrix implicitly defines a frequency weighting scheme. For this
reason, it is better to choose points/weights in PMTBR (perhaps adaptively) accord-
ing to the expected frequency profile of the system and the inputs, than to try to
achieve convergence to the TBR singular values themselves.

This analysis provides another explanation for the empirically observed fact that
multipoint projection can sometimes exhibit better relative error performance than
generic TBR. Unlike TBR, which spreads out the effort in a uniform way, multipoint
projection concentrates its effort on points where the projection is performed, which
in essence is a weighting procedure similar to the one prescribed in (16). By plac-
ing higher weight on specific points and areas, multipoint projection leads to better
relative performance in those areas. In the search for good global error performance,
TBR can over-emphasize areas of the transfer function that are large in magnitude.
When such regions are of interest to the problem at hand, TBR is a nearly optimal
method. However, when such regions lie out of the frequency band of interest, or
lead to excessive sacrifice of relative error for absolute error, TBR may not do as
well as multi-point projection. PMTBR, on the other hand, can always be tailored to
the problem at hand.

The Frequency Selective TBR procedure is shown as Algorithm 2. The similarity
with Algorithm 1 should be fairly obvious, the main distinction being in the point
selection algorithm.

1 No causal system has zero frequency response over an finite interval, but this is a common
engineering approximation.



PMTBR: A Family of Approximate Principal-components-like Algorithms 119
� �

� �

Algorithm 2 : Frequency Selective TBR

/* assuming M bands of interest are previously defined */
1. Define the range corresponding to the frequency bands of interest,

S =
⋃M

k=1 Sk

2. Do until satisfied:
3. Select a frequency point si within S.
4. Compute zi = [siI − A]−1B.
5. Form the matrix of columns Zfs

(i) = [z1, z2, . . . , zi].

6. Construct the SVD of Zfs
(i).

If the error is satisfactory, set Z = Zfs
(i), go to Step 7.

Otherwise, go to Step 3.
7. Construct the projection space V from the orthogonalized column span of Z,

dropping columns whose associated singular values fall below a desired
tolerance.

3.2 Nested Bandlimited Models

In many contexts it is reasonable to enforce a frequency-range limit. The mod-
eling system might provide a series of models, M1,M2,M3 valid to frequencies
f1 < f2 < f3 respectively. The parent application may choose M1, presumably the
most compact model, if it is known in a given context that inputs are bandlimited to
below f1. If the most complex models are needed less often, or with less probability,
than the simple models, then the computational savings in the parent analysis can be
substantial.

Note that by properly ordering the sampling computations, it is possible to com-
pute a single “parent” model from which all the child models M1,M2,M3 can be
simply obtained. There is therefore little overhead introduced into the reduction pro-
cedure, compared to a worst-case analysis, by using this strategy. This idea of in-
cremental model re-construction was exploited in [22]; implementation details are
discussed therein. In fact, there is considerable advantage to performing all the re-
duction computations in such an incremental fashion. In contrast, as far as we know,
it is not easy to build TBR-like models incrementally, nor is it useful to consider
relations among different models implicit in TBR.

3.3 Correlated Inputs

In the previous section, we argued that exploiting knowledge of the frequency
profiles of the inputs can lead to more efficient reduction procedures. This is the
simplest case to illustrate, although the computational gains, though real, are lim-
ited on practical problems. In this section we present one approach for exploiting the
relation between the inputs of a multi-input system.
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Fig. 1. TBR error bounds for 12 × 12 RC mesh as function of number of inputs.

Circuit networks with a large numbers of input/output ports, that is, networks
with many columns in the matrices defining the inputs, are not very “reducible” by
most projection methods. However, such “massively coupled” parasitic networks oc-
cur in many important cases, such as substrate analysis, package modeling, and on
large digital interconnect networks and any technique that is able to compress such
networks is of eminent practical use. To motivate our analysis for this particular
setting, we will use as an example system a simple RC mesh. To gain better under-
standing of such systems, we vary the number of inputs attached to a mesh of fixed
size. Figure 1 shows the TBR error bound obtained from the Hankel singular val-
ues as a function of the number of inputs. We can conclude that the order needed
for good accuracy grows with the number of inputs. Even in this simple RC cir-
cuit case, for the 64-input case, low accuracy (20% error bound) requires at least 40
states in the reduced model. Other available procedures are likewise impractical. The
moment-matching (Krylov-subspace) family of algorithms, such as PRIMA [4] and
PVL [21], lead to models whose size is the number ports multiplied by the number of
moments matched. However, while often it is necessary to retain all the input ports
if the full impact of parasitic effects is to be correctly estimated [23], often there
are relations between the inputs (or outputs) at different network ports that can be
exploited to give a smaller model.

One way to obtain a useful relation between different model inputs is by esti-
mating a relation between representative time-domain waveforms. Consider taking a
set of N samples of input waveforms, uk for input k, k = 1 . . . p [16]. A correlation
matrix [24] K for the inputs can be estimated as

Kij =
1
N

N∑
l=1

ul
iu

l
j (17)
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Algorithm 3 : Input Correlated TBR

1. Construct the SVD of inputs U = VKSKUT
K

2. Do until bored:
3. Draw a vector r ∈ R

p by taking p draws from a normal distribution,
variances given by SK .

4. Select a frequency point si.
5. Compute zi = [siI − A]−1BUKr.
6. Form the matrix of columns Zic

(i) = [z1, z2, . . . , zi].
7. Construct the SVD of Zic

(i).
If the error is satisfactory, set Z = Zic

(i), go to Step 8.
Otherwise, go to Step 3.

8. Construct the projection space V from the orthogonalized column span of Z,
dropping columns whose associated singular values fall below a desired
tolerance.

As is the usual case, the actual correlation matrix need not be formed. Instead, we
can take the SVD of the matrix U whose columns are the input samples uk, i.e.
U = VKSKU

T
K with UK , VK orthonormal.

The key insight is, the closer K is to being a low-rank matrix, the faster the
eigenvalues of the approximation Gramian (the singular values of Z) decay, and
the smaller the model, for a given expected error, that can be tolerated. This will be
the case if the inputs exhibit some correlated behavior. Under the hypothesis that K
is a suitably representative model of the possible inputs, no accuracy will be lost. In
practical problems such fidelity can be guaranteed if we are somewhat conservative
in the specification of the correlation matrix which we can do by being conservative
in the choice of samples to be sure we “over-approximate” K. K = I corresponds
to the ultimate degree of safety, total ignorance about the inputs, but it also usually
leads to overly large models. As in the frequency selective case, though the physical
interpretation as an absolute error bound no longer applies, the eigenvalues of the
Gramian can still be used for error control, as they can be given an interpretation as-
sociated with likelihood of error in the probabilistic input model. The final algorithm
is shown as Algorithm 3.

3.4 Statistical Parameter Variation

Parametric model order reduction has become an area of intense research in the last
few years, owing to increasing variability in process control as technologies con-
tinue to shrink. For the purposes of this chapter we will lump all such variations
into a set of parameters λ1, . . . , λM through which the matrices of the interconnect
model vary. We assume the equations are written in such a way that the variations
are confined to the G,C matrices, so that the parametric model is
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C(λ1, . . . , λM )
dx

dt
+G(λ1, . . . , λM )x = Bu, y = LTx. (18)

The fundamental difficulty in generating reduced models from (18) is that the
number of parameters M (the dimension of the parameter variable space) may be
large. Interconnect modeling in a parameter variation context consists of two main
steps. First, the variation of the unreduced circuit matrices must be modeled in a
tractable form. A typical assumption is of small variation, such that the parameter-
varying matrices can be expressed as linear deviations from some nominal value.
This leads to the affine model [25, 26]

G(λ1, . . . , λM ) = G0 +
∑

k

∆Gkδλk (19)

C(λ1, . . . , λM ) = C0 +
∑

k

∆Ckδλk.

Linearity is often a good assumption for process variation in IC analysis. Our
analysis does not require affine models, in fact the algorithm can be applied to any
model form in which the projected matrices (with possibly nonlinear parameter de-
pendence) can be computed efficiently. However, affine models are a simple form in
which to illustrate the overall strategy, so we restrict the discussion to this form here.

The second question to be addressed is the choice of the projection matrix. As-
suming that a probability density for λ exists on some domain Sλ, a “variational
Gramian” may be defined as

Xλ =
∫

Sλ

∫ ∞

−∞
(jωCλ +Gλ)−1BBT (jωCλ +Gλ)−Hp(ω, λ) dωdλ. (20)

Any sort of explicit manipulation of this quantity is impractical due to the expo-
nential growth in complexity with the number of parameters, each parameter leading
to a new dimension in the integral. For example, it is not practical to compute the
integral via products of 1D quadrature rules. Multi-dimensional moment-matching
algorithms are likewise impractical. However, one could imagine that a Monte Carlo
like approach to integration might be useful. The PMTBR procedure for parameter-
varying systems, shown as Algorithm 4, is precisely such an approach [17].

It is important to understand that the accuracy of the model reduction algorithm
is generally much better than would be expected merely by examining the the con-
vergence of the integral in Eqn. (20). Monte Carlo integration generally incurs an
error that decreases slowly, as (at best) N−1/2 where N is the number of samples,
and irregularly. On examples occuring in integrated circuit analysis, the performance
of the PMTBR approach is vastly better. This is because the accuracy of the re-
duced order model depends on the projection subspaces, not on the accuracy of the
quadratures. For example, a two-state circuit is exactly represented by a model ob-
tained via any projection matrix V with two columns. More generally, the topology
of practical circuits puts strong constraints on the possible interesting subspaces. For
example, RC circuits do not exhibit irregular or oscillatory behavior. Even with pa-
rameter variation, the space of responses “smooth” on a given topology is effectively
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Algorithm 4 : Poor Man’s Variational TBR

1. Select a quadrature rule of N nodes in an M + 1 dimensional space
(s, λ1, . . . , λM ) with weights w.

2. For each node i, compute
zi = [siC(λi

1, . . . , λ
i
M ) + G(λi

1, . . . , λ
i
M )]−1B.

3. Form the matrix of columns Z = [z1, z2, . . . , zN ] and weights Wii = wi.
4. Construct the singular value decomposition of ZW .
5. Construct the projection space V from the orthogonalized column span of Z,

dropping columns whose associated singular values fall below a desired
tolerance.

of small dimension. Thus, even if the number of statistically varying parameters is
large, the projection matrix V may capture the dominant behavior with a small num-
ber of columns, if the columns are chosen wisely. Moment matching schemes cannot
do this because they are keyed to parameter counts.

4 Analysis and Comparisons

4.1 Comparison to Moment-Matching Schemes

Many methods prominent in the integrated circuit analysis literature are projection-
based rational interpolation methods [3–5]. Most popular are “moment-matching”
methods that contruct the projection matrix V from a Krylov subspace thus matching
the transfer function and its derivatives (“moments”, when expressed in time-
domain) at a specified point, typically zero frequency. There are good practical
efficiency reasons for this choice. For a given model order the multipoint approxi-
mants tend to be more accurate, but are usually more expensive to construct. Given
M complex frequency points sk, a projection matrix may be constructed whose kth
column is

zk = (skI −A)−1B. (21)

Clearly, in the limit where all the sampling vectors are retained, the previously dis-
cussed methods degenerate to multipoint rational interpolation.

4.2 Comparison to Balanced Truncation

Model reduction via balanced truncation [6, 27] is based on analysis of the control-
lability and observability Gramians X,Y respectively computed from the Lyapunov
equations

AX +XAT = −BBT , (22)
ATY + Y A = −CTC. (23)
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An obvious tactic for improvement of multipoint rational interpolation is to perform
an SVD on the vectors zk computed as in Eqn. (21). So, in the opposite limit, with
many samples suitably spaced, the PMTBR algorithm, which constructs projection
matrices by multipoint frequency sampling, as in (21), followed by an SVD, in fact
produces the same information as in X,Y . The singular values obtained from such
a procedure approximate the Hankel singular values, and can thus be used for order
and error control. We will argue below that even with the approximations obtained
from small number of samples, these values can be used for reasonably effective
error control.

Two potentially problematic differences arise in our approach when compared
with full balanced truncation. First, in TBR, reduction is performed by projection
onto the invariant subspaces associated with the dominant eigenvalues of the prod-
uct of Gramians XY . In special “balanced” coordinates, X = Y , and it is suf-
ficient to use “one-sided” approximations, i.e., those computed from the matrix
pair (A,B). In integrated circuit analysis, there are important special cases where
A = AT , CT = B, and so X = Y . Therefore we can ignore balancing considera-
tions. It is possible to make our approach ‘two-sided by also working with samples of
(sI−AT )−1CT [8]. However, in fact it is fairly unusual to encounter IC systems that
are “very” unbalanced. The second difference concerns stability. In general, since the
PMTBR procedure does not construct the true system Gramians, the connection to
stability analysis, and stability of models obtained via truncation, is lost. However,
many integrated circuit problems are naturally posed in a coordinate system [4] such
that any system obtained from congruence transform and/or truncation also satisfies
a Lyapunov inequality, which ensures stability of the reduced models.

4.3 Error Analysis

In general in the PMTBR procedure, due to both the selective sampling and the ag-
gressive approximation process, the singular values of the Z-matrix can no longer
be considered estimates of the Hankel singular values, and therefore precise state-
ments about error bounds are lost. However, good models might be obtained well
before convergence to the integral form of the Gramians. A good example is a very
high-Q two-state RLC circuit. Only two sample vectors are required to obtain the
exact model, which PMTBR will correctly predict, but obtaining the exact Gramian
by numerical integration could require a very large number of quadrature points, es-
pecially if the points are placed in a naive manner such as a uniform distribution. We
argue that the singular values from truncated modes can still be interpreted as errors
on the “filtered” system, i.e. finite-bandwidth or weighted errors. The matrix ZZT

is an estimator for the correlation matrix Kxx of the random process obtained from
the mapping of the inputs u to the state x. The eigenanalysis of Kxx reveals which
subspaces are necessary to capture the dominant portion of the variance in x. So we
have found that, again assuming a sampling density consistent with the weighting
w(ω), the singular values usually give a fairly good guide to model order well before
convergence is achieved. Our experiments indicate that when, for a number of sam-
ples in excess (e.g. twice) of the model order, the singular value distribution exhibits
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a small “tail” (that is, for a “small” ε, ∃k : ε >
∑∞

i=k+1 σi), then sufficient order and
point placement has been achieved.

To minimize computational effort, it is desirable to run the algorithm until a
desired accuracy level is obtained, and at that point cease to add points into the
sample space of PMTBR. We would make this decision by looking at a small number
of the trailing singular values of the Z matrix, and stopping when the sum drops
below a given threshold. This means that estimates of the singular values of ZW
must be available each time a sample becomes available. In the previous development
we utilized the SVD decomposition because of its direct connection to eigenvalue
analysis. However, the SVD is not the most appropriate tool for such an adaptive
order control procedure, since no fast update procedure is known. Since in our case,
we do not need the actual singular values themselves, only the ability to estimate the
magnitude of a trailing few, and to obtain a basis for the dominant subspaces, other
rank revealing factorizations that possess better updating properties may be more
appropriate, for example rank-revealing QR factorizations [28, 29]. For additional
work on point selection, see [22].

5 Experimental Results

5.1 Error Control

In the first set of computational examples we examine the empirical properties of
the error control strategy. Several thousand resistor-capacitor (RC) networks were
obtained from parasitic extraction of industrial circuits. We set the PMTBR algorithm
to sample in the interval from DC to 10GHz, and computed the maximum error
between the input admittances of the reduced models and the original models at a set
of discrete frequency points densely spaced in the same interval. Our target accuracy
was two digits.

We will present two sets of statistics collected from a large set (over 25,000 cases)
of RC networks representative of those encountered in timing and signal integrity
analysis. Figure 2 shows a scatterplot of the measured maximum error in the mul-
tiport driving admittance transfer functions plotted vs. the estimated error from the
leading singular value of the sample matrix Z. Figure 3 shows a histogram (number
of examples achieving a given worst-case error value) of the relative error results.

These results are typical in our experience for this problem class. We observe
from Figure 2 that the measured errors are indeed highly correlated to the predicted
errors. This enables an effective error control strategy, as motivated by Figure 3.
Note the “wall” at about two digits of accuracy in the histogram that indicates correct
operation of the strategy.

We need to present several caveats and clarifications about these results. First, in
applications it is typically the maximum error that needs to be controlled, whereas
SVD estimates we might expect to be more closely tied to average errors. We in-
troduce some error margin to account for this. Second, both relative and absolute
error metrics need to be considered, especially for multi-port networks. Often one
error can be artificially inflated. For example, small transfer function entries lead to
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Fig. 2. Error correlation statistics for RC networks. Note log scales on axes.
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Fig. 3. Error statistics for RC networks. Note log scale on x-axis.

artificially inflated relative error metric that can lead to anomalous out-of-spec entries
in plots like the above, for samples which on an absolute basis have perfectly satis-
factory error. Finally, estimates based purely on the singular values, while workable
on many problems, are relatively crude metrics on which we hope to improve in the
future.
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5.2 Frequency Selectivity

Now we begin to investigate the behavior of the different algorithmic variants of
PMTBR. The first algorithm variant we demonstrate illustrates frequency selectivity.
Figure 4 shows a plot of the exact transfer function of an 18 pin shielded connector
structure [30] as well as approximations obtained with TBR and PMTBR. We are in-
terested in testing the ability of the PMTBR algorithm to produce approximations on
a finite bandwidth, in this case the frequency range of of zero to 8 GHz. In PMTBR,
we set the sampling selection mechanism to generate samples uniformly distributed
in the the frequency range from DC to 8GHZ. These samples were used, after SVD,
to generate an order 18 PMTBR approximation. For the TBR model, we found that
30 was the minimum order required for TBR to provide reasonable representation
of any features in the 0-8GHz range, so those results are shown. PMTBR concen-
trates its effort in the desired interval, 0-8GHz, and shows good accuracy there. On
the other hand, TBR concentrates effort around 15GHz because of the relative am-
plitude of the transfer function. Even with the higher order approximation, the TBR
model is not accurate in the frequency range of interest. PMTBR is easily focused
on the 8GHz and below range merely by selection of sampling points, and does not
waste effort with approximation at higher frequencies.

5.3 Input Compression

The next algorithmic variant demonstrates how a two-stage approach to system
approximation can result in dramatic increases in reduction efficiency by first approx-
imately learning, then exploiting in reduction, particular system features. The test
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system is an analog circuit (a data converter) with parasitics from an extracted sub-
strate network. The substrate network considered by itself is for the most part unre-
ducible with standard projection methods.

In the first stage of analysis we perform a simulation of the data converter circuit
without the substrate parasitics. From the MOS transistor bulk current signals we
obtain an estimate of the correlation matrix for the inputs to the substrate network.
In the second stage, we use this correlation matrix to drive sampling in the input-
correlated PMTBR procedure. For a 1000-port segment of the substrate network,
Figure 5 shows the error estimate data obtained from the singular value analysis in
PMTBR. In this case acceptable accuracy can be achieved with a 30-state model.
This is a 30X reduction in model size from the original system, which translates to a
more than 1000X reduction in simulation run time and memory consumption. In fact
it was not practical to complete detailed circuit simulations with the original model.

Due to these constraints on model size, to show that the final models do indeed
produce results, we have examined only a section of the full parasitics network. The
approach described above was applied to a 150-port subsection of the substrate net-
work. Figure 6 shows the results of comparing time-domain simulations with the
full model to simulations with a four- and eight- state reduced models. With the
20X reduction of the eight-state model, comparable to the results shown for the full
1000-port network above, very good match is obtained. We emphasize these results
are dependent on the specific interactions between the substrate network and the cir-
cuit activity. Without the estimates of circuit activity, we could not obtain models
of small size. With poor estimates – in particular, using this model for an entirely
different circuit – the results would likely be inaccurate.
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Fig. 5. Error estimate based on singular value analysis of Z-matrix from input-correlated TBR,
for 1000-port substrate network with inputs from data converter example.
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5.4 Parametric Networks

The final example comes from analysis of parameter-varying systems. Two metrics
are of concern here. First, we are interested in whether the sampling and error control
strategies produce satisfactory worst-case errors over a large collection of networks.
We have performed similar computations as in Figure 3, computing error statistics
for large collections of industrial examples. The results are quite similar to the nom-
inal case, so due to space considerations we omit the detailed results here. A more
interesting question to investigate is the tradeoff of error versus the number of sam-
ples. Therefore, to gain more insight into the behavior of the algorithm, we show the
convergence behavior for a single, moderately large, network, with a large number
of parameters. Due to either the Monte Carlo nature of the sampling, or the large
dimensionality of the parameter space, we might expect convergence to slow consid-
erably when variation is introduced. Figure 7 shows the error of the reduced network
as a function of the model order. As generally the model order is equal to the num-
ber of samples, or one less, the sample number is a good measure of computational
effort. This particular network had about 600 nodes and thirty parameters in the net-
work. The parameter range of variation was typical for a contemporary (65nm) IC
fabrication process. Despite the large number of parameters in the network, the con-
vergence is seen to be very rapid. In our experience this is a fairly typical result for
RC networks with process variation – actually, this example is relatively difficult
among signal net reduction problems. Due to the interaction of network topology
and parameter variation, the subspaces computed by PMTBR are low-dimensional,
and in fact the addition of variation does not affect the dominant subspaces to a great
degree. This is an important experimental observation that is not expected from direct
analogies to interpolation-based methods in multiple dimensions.
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Fig. 7. Error vs. order for parameter-varying RC network.

6 Conclusions

In this work we discussed a connection between truncated balanced realization
(TBR) model reduction methods and multipoint rational approximation/projection
techniques. Building on this connection we presented a family of algorithms, gener-
ically entitled PMTBR, that can be viewed as bridging both type of methods and
leading to useful new techniques that have been shown to have some advantages,
particularly in generating smaller reduced models, and possibly in order control and
error estimation. TBR is a principal components analysis of the functionals defined
by the state-space model, and naturally arises from time-domain theory of state-space
systems. PMTBR arises naturally from a numerical approximation viewpoint of fre-
quency domain data, with the principal components analysis manifested purely in
the SVD of sampled data.

A potentially more important observation is that the existing model order reduc-
tion algorithms contain implicit assumptions about the inputs to the systems being
modeled. To each set of assumptions corresponds an implicit model of the inputs
themselves. When correlated with actual information available from application do-
mains, these “input models” seem unduly restrictive, implying that the assumptions
implicit in the standard model order reduction schemes may be somewhat naive. Our
hope is that increased care in modeling the system inputs themselves can lead to
more powerful modeling schemes.

We have presented technique for model reduction of systems with band-limited
inputs, large number of inputs, as well as systems in the presence of random
model parameter perturbations, and demonstrated their effectiveness on industrial
examples. The proposed methods are computationally simple to implement, have
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good accuracy and error properties, and possess simple error estimation and order
control procedures.

The studies in this chapter also suggest some interesting conclusions about gen-
eral problems of nonlinear modeling. While principal-components type analyses,
such as the TBR and PMTBR [15] algorithms can generate somewhat more compact
models than moment- and point- matching schemes, their utility is much enhanced in
the higher-dimensional spaces induced by problems with multiple parameters. The
performance gap between the “best” linear approximation spaces and the moment-
matching spaces can be huge in high dimensions.
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Summary. In this paper we give an overview of model order reduction techniques for cou-
pled systems. We consider linear time-invariant control systems that are coupled through
input-output relations and discuss model reduction of such systems using moment match-
ing approximation and balanced truncation. Structure-preserving approaches to model order
reduction of coupled systems are also presented. Numerical examples are given.

1 Introduction

Modelling and simulation of complex physical and technical processes yield
coupled systems that consist of ordinary differential equations, differential-algebraic
equations and partial differential equations. Such systems arise in many practical
applications including very large system integrated (VLSI) chip design and micro-
electro-mechanical systems (MEMS), e.g. [10, 14, 21, 52, 58]. As the number and
density of components on a single chip increase and feature sizes decrease, different
physical effects such as thermal interaction, electromagnetic radiation, substrate
noise and crosstalk cannot be ignored anymore. Furthermore, the design of micro-
and nano-structures requires the development of new multi-physical models describ-
ing their complex internal behavior. Another application area of coupled systems
is in subdomain decomposition. Partial differential equations on complicated spa-
tial geometries may be represented as a system of partial differential equations on
simpler domains coupled, for example, through boundary conditions.

As the mathematical models get more detailed and different coupling effects have
to be included, the development of efficient simulation and optimization tools for
large-scale coupled systems is a challenging task. Such systems consist of several
subsystems whose inputs and outputs are coupled via additional algebraic relations.
The subsystems usually have a high number of internal variables that leads to large

∗ Supported by the DFG Research Center MATHEON “Mathematics for key technologies” in
Berlin.
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memory requirements and computational complexity. To handle such large systems
in simulation, control and optimization, their model order reduction (or reduced-
order modelling) is indispensable. A general idea of model order reduction is to
approximate a large-scale system by a reduced model of lower state space dimension
that has the same behavior as the original system.

In the last years, many different model reduction methods have been developed
in computational fluid dynamics, control design and electrical and mechanical engi-
neering, see [4,11,47] for books on this topic. In this paper we review recent progress
in dimension reduction of coupled systems. In structural dynamics, model reduction
methods based on subsystem structuring have been of interest already for a long
time [16, 35, 41]. Here, we will not consider these methods, but will rather focus on
general concepts of model reduction of coupled systems developed in [42, 53, 60].

This paper is organized as follows. In Section 2 we introduce linear time-invariant
coupled systems and give their closed-loop formulation. Section 3 deals with model
order reduction of coupled systems. To make the paper self-contained, we briefly
review model reduction techniques of balanced truncation and moment matching ap-
proximation. Furthermore, we report two approaches for reduced-order modelling
of coupled systems based on the reduction of closed-loop systems (Section 3.1) and
on structure-preserving model reduction (Section 3.2). The discussion of the advan-
tages and disadvantages of these approaches is presented in Section 3.3. Finally, in
Section 4 we consider some numerical examples.

2 Coupled Systems

Consider a system of k coupled linear time-invariant generalized state space subsys-
tems in the first-order form

Ej ẋj(t) = Ajxj(t) +Bjuj(t),
yj(t) = Cjxj(t),

(1)

or in the second-order form

Mj ẍj(t) + Dj ẋj(t) + Sj xj(t) = Bjuj(t),
Cj2ẋj(t) + Cj1xj(t) = yj(t),

(2)

that are coupled through the relations

uj(t) = Kj1y1(t) + . . .+Kjkyk(t) +Hju(t), j = 1, . . . , k, (3)
y(t) = R1 y1(t) + . . .+ Rk yk(t). (4)

Here Ej , Aj , Mj , Dj , Sj ∈ R
nj ,nj , Bj ∈ R

nj ,mj , Cj , Cj1, Cj2 ∈ R
pj ,nj ,

xj(t)∈R
nj are internal state vectors, uj(t) ∈ R

mj are internal inputs and yj(t) ∈
R

pj are internal outputs. Furthermore, Kjl ∈ R
mj ,pl , Hj ∈ R

mj ,m, Rj ∈ R
p,pj ,

u(t) ∈ R
m is an external input and y(t) ∈ R

p is an external output. Coupled sys-
tems of the form (1)–(4) are also known as interconnected or composite systems. The
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first-order systems of the form (1) arise in simulation of linear RLC circuits that con-
sist of resistors, capacitors, inductors, voltage and current sources only [2,34,62]. In
this case the components of the state vector xj(t) are the nodal voltages, the induc-
tor currents and the currents through the voltage sources, uj(t) contains the currents
and voltages of the current and voltage sources, respectively, and yj(t) consists of
the voltages across the current sources and the currents through the voltage sources.
The linear RLC circuits are often used to model the interconnections of VLSI net-
works. They can also be described by the second-order systems (2), where xj(t)
consists of the nodal voltages only. Systems of the form (2) appear also in mechani-
cal and structural dynamics. In this case, xj(t) is the displacement vector and uj(t)
is the acting force. Furthermore, systems (1) and (2) arise from spatial discretization
of instationary linear partial differential equations that describe, for example, heat
transfer, vibrations, electromagnetic radiation or fluid flow.

Since the second-order system (2) can be rewritten as an equivalent first-order
system of the form (1), in the following we will consider the coupled system (1),
(4), (4) only. The matrices Ej in (1) may be singular, but we will assume that the
pencils λEj −Aj are regular, i.e., det(λEj −Aj) �≡ 0 for j = 1, . . . , k. In this case
we can consider the transfer function of (1) given by Gj(s) = Cj(sEj −Aj)−1Bj .
If Ejxj(0) = 0, then applying the Laplace transform to (1), we find that yj(s) =
Gj(s)uj(s), where yj(s) and uj(s) are the Laplace transforms of yj(t) and uj(t),
respectively. Thus, Gj(s) describes the input-output relation of system (1) in the
frequency domain.

The transfer function Gj(s) is called proper if lims→∞ Gj(s) < ∞, and im-
proper, otherwise. System (1) is asymptotically stable if the pencil λEj − Aj is
stable, i.e., all its finite eigenvalues have negative real part. The transfer function
Gj(s) of (1) is called stable if it has no poles in the closed right half-plane. Clearly,
the asymptotically stable system (1) has the stable transfer function Gj(s). Note
that the stability of Gj(s) does not, in general, imply that the pencil λEj − Aj is
stable. However, for any stable transfer function Gj(s) one can find a generalized
state space representation (1) such that Gj(s) = Cj(sEj −Aj)−1Bj and λEj −Aj

is stable, see [36]. Let H∞ be the space of all proper and stable rational transfer
functions. We provide this space with the H∞-norm defined for G ∈ H∞ by

‖G‖H∞ := sup
Ree(s)>0

‖G(s)‖2 = sup
ω∈R

‖G(iω)‖2, (5)

where ‖ · ‖2 denotes the matrix spectral norm.
Let n = n1 + . . .+ nk, p0 = p1 + . . .+ pk and m0 = m1 + . . .+mk. Consider

the coupling block matrices

R = [R1, . . . , Rk ] ∈ R
p,p0 , H = [HT

1 , . . . , H
T
k ]T ∈ R

m0,m, (6)

and K = [Kj,l]kj,l=1 ∈ R
m0,p0 together with the block diagonal matrices

E = diag(E1, . . . , Ek) ∈ R
n,n, A = diag(A1, . . . , Ak) ∈ R

n,n,

B = diag(B1, . . . , Bk) ∈ R
n,m0 , C = diag(C1, . . . , Ck) ∈ R

p0,n.
(7)
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Let G(s) = C(sE−A)−1B = diag
(
G1(s), . . . ,Gk(s)

)
. If I−G(s)K is invertible,

then the input-output relation of the coupled system (1), (4), (4) can be written as
y(s) = G(s)u(s), where y(s) and u(s) are the Laplace transforms of the external
output y(t) and the external input u(t), respectively, and the closed-loop transfer
function G(s) has the form

G(s) = R
(
I − G(s)K

)−1
G(s)H = RG(s)

(
I −KG(s)

)−1
H. (8)

A generalized state space realization of G(s) is given by

E ẋ(t) = Ax(t) + B u(t),
y(t) = C x(t),

(9)

where
E = E ∈ R

n,n, A = A+BKC ∈ R
n,n,

B = BH ∈ R
n,m, C = RC ∈ R

p,n.
(10)

Note that I−G(s)K is invertible if and only if the pencil λE−A−BKC is regular.
Moreover, if G(s) and (I −G(s)K)−1 are proper, then the coupled system (1), (4),
(4) is well-posed in the sense that the closed-loop transfer function G(s) exists and
it is proper. In a schematic way, an example of a coupled system is shown in Fig. 1.

The model reduction problem for the coupled system (1), (4), (4) consists in
an approximation of the global mapping from the external input u(t) to the external
output y(t). In other words, we want to find a reduced-order model

Ẽ ˙̃x(t) = Ã x̃(t) + B̃ u(t),
ỹ(t) = C̃ x̃(t),

(11)

with Ẽ , Ã ∈ R
�,�, B̃ ∈ R

�,m, C̃ ∈ R
�,n and � � n that approximates the closed-

loop system (9). In the frequency domain, the model reduction problem can be
reformulated as follows: for given G(s) = C(s E − A)−1B, find an approximation

G2
G4

G5

G3

G1

y

G

u

Fig. 1. Coupled system.



A Survey on Model Reduction of Coupled Systems 137

G̃(s) = C̃(s Ẽ −Ã)−1B̃ such that Ẽ , Ã ∈ R
�,� and ‖ G̃−G ‖ is small in some system

norm. For instance, the approximation error can be estimated in the H∞-norm. Apart
from having a small state space dimension �, it is also required that the reduced-order
system (11) preserves essential properties of (9) like stability and passivity. Note that
passivity, in general, means that the system does not produce energy and it is an im-
portant system property, especially in circuit design [2].

3 Model Reduction Approaches for Coupled Systems

There exist two main approaches for model order reduction of coupled systems. The
first approach is to consider all subsystems together in the closed-loop form (9) and
to compute the reduced-order system (11) by applying any model reduction method
to (9). The second approach consists in replacing subsystems (1) by reduced-order
models that are coupled then through the same interconnection relations. In this sec-
tion we discuss these two approaches in more detail and mention their advantages
and disadvantages.

3.1 Model Reduction of the Closed-Loop System

Most of the model reduction methods for linear time-invariant dynamical systems
are based on the projection of the system onto lower dimensional subspaces. Using
these methods for the closed-loop system (9), we can compute the reduced-order
model (11) by projection

Ẽ = WTE T , Ã = WTAT , B̃ = WTB, C̃ = C T , (12)

where the projection matrices W , T ∈ R
n,� determine the subspaces of interest.

For example, in modal model reduction the columns of W and T span, respectively,
the left and right deflating subspaces of the pencil λ E − A corresponding to the
dominant eigenvalues [18, 44]. Balanced truncation model reduction is based on the
projection of system (9) onto the subspaces corresponding to the dominant Hankel
singular values of (9), see [46, 54]. In the moment matching approximation, one
chooses the projection matrices W and T whose columns form the bases of certain
Krylov subspaces associated with (9), e.g. [5, 22]. In the next subsections we briefly
describe balanced truncation and moment matching methods.

Balanced Truncation

One of the most studied model reduction techniques is balanced truncation, an
approach first proposed for standard state space systems in [19, 27, 46, 54] and then
extended to generalized state space systems in [45, 50, 56]. An important property
of balanced truncation model reduction methods is that stability is preserved in the
reduced-order system. Moreover, the existence of computable error bounds allows
an adaptive choice of the state space dimension � of the approximate model. A dis-
advantage of these methods is that (generalized) Lyapunov equations have to be
solved. However, recent results on low rank approximations to the solutions of ma-
trix equations [9, 13, 29, 33, 43, 49] make the balanced truncation model reduction
approach attractive for large-scale problems.
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Consider the closed-loop system (9) with the stable pencil λ E − A. For sim-
plicity, we will assume that the matrix E is nonsingular. However, all results of this
subsection can also be extended for systems with singular E , see [45, 56] for details.
The balanced truncation model reduction method is closely related to the controllabi-
lity Gramian P and the observability Gramian Q that are unique symmetric, positive
semidefinite solutions of the generalized Lyapunov equations

E PAT + AP ET = −BBT , (13)
ETQA + ATQE = −CTC . (14)

The matrix P ETQE has nonnegative eigenvalues, and the square roots of these
eigenvalues σj =

√
λj(P ETQE) define the Hankel singular values of system

(9). We will assume that σj are ordered decreasingly. System (9) is called bal-
anced if P = Q = diag(σ1, . . . , σn). The Hankel singular values characterize
the ‘importance’ of state variables in (9). States of the balanced system corre-
sponding to the small Hankel singular values are difficult to reach and to observe
at the same time. Such states are less involved in the energy transfer from in-
puts to outputs, and, therefore, they can be truncated without changing the system
properties significantly [46]. Thus, a general idea of balanced truncation is to trans-
form system (9) into a balanced form and to truncate the states that correspond
to the small Hankel singular values. In practice, balancing and truncation can be
combined by projecting system (9) onto the dominant subspaces of the matrix
P ETQE . This can be done in a numerically efficient way using the following
algorithm that is an obvious generalization of the square root method [39, 59].

Algorithm 1. Generalized square root balanced truncation method.

Given system (9) with the transfer function G(s) = C(s E − A)−1B, compute the
reduced-order system (11).

1. Compute the Cholesky factors LP and LQ of the Gramians P = LPL
T
P and

Q = LQL
T
Q that satisfy the Lyapunov equations (13) and (14).

2. Compute the singular value decomposition

LT
P ETLQ = [U1, U2 ]

[
Σ1 0
0 Σ2

]
[V1, V2 ]T , (15)

where the matrices [U1, U2 ] and [V1, V2 ] have orthonormal columns,
Σ1 = diag(σ1, . . . , σ�), Σ2 = diag(σ�+1, . . . , σr) with r = rank(LT

P ETLQ).
3. Compute the reduced system (11) with

Ẽ = WTE T , Ã = WTAT , B̃ = WTB, C̃ = C T ,

where W = LQV1Σ
−1/2
1 and T = LPU1Σ

−1/2
1 .
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One can show that the reduced-order system G̃(s) = C̃(sẼ − Ã)−1B̃ computed
by this algorithm is stable and the H∞-norm error bound

‖ G̃ − G ‖H∞ ≤ 2(σ�+1 + . . .+ σr) (16)

holds, where σ�+1, . . . , σr are the truncated Hankel singular values of (9), see [19,
27,51]. To solve the large-scale generalized Lyapunov equations (13) and (14) for the
Cholesky factors without forming the Gramians P and Q explicitly, we can use the
ADI method [43, 49], the cyclic Smith method [33, 49] or the sign function method
[9, 13].

Apart from the balanced truncation method considered here, other balancing-
based model reduction techniques have been developed, see [32, 47]. These include
LQG balancing, stochastic balancing, positive real balancing and bounded real bal-
ancing. All these techniques are related to algebraic Riccati equations and aim to
capture specific system properties like closed-loop performance, minimum phase
property, passivity and H∞-gain.

Moment Matching Approximation

An alternative model reduction approach for linear time-invariant systems is a mo-
ment matching approximation based on Krylov subspace methods, see [4, 5, 22] for
recent surveys on these methods. Suppose that s0 ∈ C is not an eigenvalue of the
pencil λ E − A. Then the matrix A − s0E is nonsingular, and the transfer function
G(s) = C(s E −A)−1B of the closed-loop system (9) can be expanded into a Taylor
series at s0 as

G(s) = −C
(
I − (s− s0)(A− s0E)−1E

)−1(A− s0E)−1B
= M0 + M1(s− s0) + M2(s− s0)2 + . . . ,

where the matrices

Mj = −C
(
(A− s0E)−1E

)j
(A− s0E)−1B (17)

are called the moments of system (9) at the expansion point s0. The moment matching
approximation problem consists in determining a reduced-order system (11) whose
transfer function G̃(s) = C̃(s Ẽ − Ã)−1B̃ has the Taylor series expansion at s0 of the
form

G̃(s) = M̃0 + M̃1(s− s0) + M̃2(s− s0)2 + . . . , (18)

where the moments M̃j satisfy the moment matching conditions

Mj = M̃j , j = 0, 1, . . . , q. (19)

For s0 = 0, the approximation (18), (19) is the matrix Padé approximation of G(s),
e.g. [8]. For an arbitrary complex number s0 �= 0, the moment matching approx-
imation is the problem of rational interpolation [1]. Besides a single interpolation
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point, it is also possible to construct a reduced-order system with the transfer func-
tion G̃(s) that matches G(s) at multiple points {s0, s1, . . . , sl}. Such an approxi-
mation is called a multi-point rational interpolant and has been studied in [25, 30].
Furthermore, one can consider the Laurent expansion of G(s) at s0 = ∞ given by

G(s) = M−ds
d + . . .+ M−1s+ M0 + M1s

−1 + M2s
−2 + . . . ,

where the coefficients Mj are known as Markov parameters of system (9). In this
case, computing the approximation

G̃(s) = M̃−ds
d + . . .+ M̃−1s+ M̃0 + M̃1s

−1 + M̃2s
−2 + . . .

with Mj = M̃j for j = −d, . . . ,−1, 0, 1, . . . , q reduces to the partial realization
problem [12, 28].

In order to determine the reduced-order system (11) satisfying the moment
matching condition (19), the explicit computation of the moments can be avoided
by using the following connection between the Padé (or Padé-type) approximation
and the right and left Krylov subspaces

Kqr
(A−1

0 E , A−1
0 B ) = Im [ A−1

0 B , A−1
0 EA−1

0 B , . . . , (A−1
0 E)qr−1A−1

0 B ],

Kql
(A−T

0 ET,A−T
0 CT) = Im [A−T

0 CT, A−T
0 ETA−T

0 CT, . . . , (A−T
0 ET)ql−1A−T

0 CT ],

with A0 = A− s0E and A−T
0 = (A−1

0 )T .

Theorem 1. [26, 30] Consider the closed-loop system (9) and the reduced-order
system (11), (12) with some projection matrices W , T ∈ R

n,�. Let s0 ∈ C be not
an eigenvalue of λE−A and λẼ −Ã, and let Mj and M̃j be the moments of systems
(9) and (11), (12), respectively.

1. If Kqr
(A−1

0 E ,A−1
0 B) ⊆ Im T and W= T , then Mj =M̃j for j=0,. . .,qr−1.

2. If Kqr
(A−1

0 E ,A−1
0 B) ⊆ Im T and Kql

(A−T
0 ET ,A−T

0 CT ) ⊆ ImW , then
Mj =M̃j for j = 0, . . . , qr + ql − 1.

This theorem proposes to take the projection matrices T and W as the bases of
the Krylov subspaces Kqr

(A−1
0 E ,A−1

0 B) and Kql
(A−T

0 ET,A−T
0 CT ), respectively.

Such bases can be efficiently computed by a Lanczos or Arnoldi process [5, 20, 25]
in the single-input single-output case and by Lanczos- or Arnoldi-type methods [22,
24, 30, 48] in the multi-input multi-output case.

While the Krylov-based moment matching methods are efficient for very large
sparse problems, the reduced-order systems computed by these methods have only
locally good approximation properties. So far, no global error bound is known, see
[5,6,31] for recent contributions to this topic. The location of the interpolation points
strongly influences the approximation quality. The optimal choice of these points
remains an open problem. Another drawback of the moment matching methods is
that stability and passivity are not necessarily preserved in the resulting reduced-
order model, so that usually post-processing is needed to realize these properties.
Recently, passivity-preserving model reduction methods based on Krylov subspaces
have been developed for standard state space systems [3, 55] and also for structured
generalized state space systems arising in circuit simulation [23, 24, 38, 48].
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3.2 Structure-Preserving Model Reduction

Model order reduction of the closed-loop system (9) does not preserve the intercon-
nection structure in the approximate system (11). Although many different model
reduction methods have been developed for linear dynamical systems, structure-
preserving reduced-order modelling of coupled systems has received only recently
attention [41,42,53,60]. Instead of reduction of the entire system (9), one can replace
each subsystem (1), or a suitable selection of them, by a reduced-order model

Ẽj
˙̃xj(t) = Ãj x̃j(t) + B̃j ũj(t),
ỹj(t) = C̃j x̃j(t),

(20)

where Ẽj , Ãj ∈ R
�j ,�j , B̃j ∈ R

�j ,mj , C̃j ∈ R
pj ,�j with �j � nj , and then couple

these subsystems through the same interconnection relations

ũj(t) = Kj1ỹ1(t) + . . .+Kjkỹk(t) +Hju(t), j = 1, . . . , k, (21)
ỹ(t) = R1 ỹ1(t) + . . .+ Rk ỹk(t). (22)

Note that since the internal outputs yj(t) are replaced by the approximate outputs
ỹj(t), due to (21), the internal inputs uj(t) in (20) should also be replaced by the
approximate inputs ũj(t). Let

Ẽ = diag(Ẽ1, . . . , Ẽk), Ã = diag(Ã1, . . . , Ãk),

B̃ = diag(B̃1, . . . , B̃k), C̃ = diag(C̃1, . . . , C̃k).
(23)

If the reduced-order pencils λẼ − Ã and λẼ − Ã − B̃KC̃ are regular, then the
reduced-order closed-loop system has the form (11) with

Ẽ = Ẽ, Ã = Ã+ B̃KC̃, B̃ = B̃H, C̃ = RC̃. (24)

The transfer function of this system is given by

G̃(s) = R
(
I − G̃(s)K

)−1
G̃(s)H = R G̃(s)

(
I −KG̃(s)

)−1
H, (25)

where G̃(s) = diag(G̃1(s), . . . , G̃k(s)) with G̃j(s) = C̃j(s Ẽj − Ãj)−1B̃j .
The reduced-order subsystems (20) can be computed by projection

Ẽj = WT
j EjTj , Ãj = WT

j AjTj , B̃j = WT
j Bj , C̃j = CjTj , (26)

where the projection matrices Wj , Tj ∈ R
nj ,�j are determined for every subsystem

either independently or using interconnection structure as it was proposed in [42,60].
Note that in this case the matrix coefficients of the reduced-order system (11) have
the form (12) with the block diagonal projection matrices

W = diag(W1, . . . ,Wk), T = diag(T1, . . . , Tk). (27)

The following theorem gives a bound on the H∞-norm of the error G̃ − G. For
the time being, we assume that all the subsystems are asymptotically stable.
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Theorem 2. Consider the coupled system (1)–(4) with asymptotically stable subsys-
tems and consider the reduced-order coupled system (20)–(22). Let

Πl = diag(ξ1Ip1 , . . . , ξkIpk
), Πr = diag(ξ1Im1 , . . . , ξkImk

), (28)

where ξj = 1 if G̃j �= Gj and ξj = 0, otherwise. Let

g1 = ‖ΠrK(I − GK)−1‖H∞ , g2 = ‖R(I − GK)−1Πl‖H∞ ,

g3 = ‖(I −KG)−1KΠl‖H∞ , g4 = ‖Πr(I −KG)−1H‖H∞ .
(29)

If
2max{g1, g3} max

1≤j≤k
‖G̃j − Gj‖H∞ < 1, (30)

then the absolute error G̃ − G is bounded as

‖ G̃ − G ‖H∞ ≤ min{c1, c2} max
1≤j≤k

‖G̃j − Gj‖H∞ , (31)

where c1 = 2g2(‖H‖2 + g1‖GH‖H∞) and c2 = 2g4(‖R‖2 + g3‖RG‖H∞).

Proof. The result immediately follows from [53, Theorem 3.1]. ��

Note that Theorem 2 provides not only the approximation error bounds but also
gives sufficient criteria for the stability of the reduced-order system. Indeed, if G is
stable, ‖GH‖H∞ or ‖RG‖H∞ is bounded and condition (30) holds, then Theorem 2
implies that G̃ is also stable. Further aspects of stability of coupled systems can be
found in [37, 53].

Subsystem Model Reduction by Balanced Truncation

Now we apply the H∞-norm estimates provided by balanced truncation to the
coupled system (1)–(4), where all subsystems are asymptotically stable. As a con-
sequence of Theorem 2 we obtain the following error bounds for the closed-loop
system (11) computed by the balanced truncation model reduction method applied
to the subsystems.

Corollary 1. Consider the coupled system (1)–(4) with asymptotically stable subsys-
tems and consider the reduced-order coupled system (20)–(22), where subsystems
(20) are computed by Algorithm 1 applied to (1). Let

γ = 2 max
1≤j≤k

(σ(j)
�j+1 + . . .+ σ(j)

nj
),

where σ(j)
�j+1, . . . , σ

(j)
nj denote the truncated Hankel singular values of the jth sub-

system (1). Further, let g1, g3, c1 and c2 be as in Theorem 2. If 2γmax{g1, g3} < 1,
then the H∞-norm of the error G̃ − G can be bounded as

‖ G̃ − G ‖H∞ ≤ γmin{c1, c2}. (32)
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Note that the computation of the a priori error bounds (31) and (32) for large-
scale systems is expensive, since we need to calculate the H∞-norm of the transfer
functions of the state space dimension n1 + . . . + nk. Similar to Theorem 2 and
Corollary 1, we can also obtain the a posteriori error bounds like (31) and (32), with
G replaced by G̃ in the constants gj and cj .

An essential assumption in Theorem 2 and Corollary 1 was the asymptotic
stability of the subsystems (1). However, the asymptotic stability of the involved
subsystems is neither necessary nor sufficient for the asymptotic stability of the
closed-loop system (9). Since unstable subsystems can be artificially represented
as a coupling of stable subsystems, we are then in the situation of Theorem 2 and
Corollary 1. A possibility for the representation of an unstable subsystem (1) as
a coupling of stable ones is based on the coprime factorization.

Consider now the transfer function Gj(s) = Cj(sEj − Aj)−1Bj which is
not necessarily in H∞. Such a transfer function admits a representation Gj(s) =
N j(s)Dj(s)−1, where Dj ∈ H∞ is square and N j ∈ H∞ has the same ma-
trix dimensions as Gj . If, additionally, there exist Xj , Y j ∈ H∞ such that
Xj(s)Dj(s)+Y j(s)N j(s) = I , then Dj and N j are called right coprime factors
of Gj . For system (1) with no unstable and coevally uncontrollable modes, the co-
prime factors can be determined via a state feedback matrix Fj ∈ R

mj ,nj with the
property that the pencil sEj −Aj −BjFj is stable and of index at most one [15,61].
In this case, N j and Dj can be chosen as

N j(s) = Cj(sEj −Aj −BjFj)−1Bj ,

Dj(s) = Fj(sEj −Aj −BjFj)−1Bj + I.
(33)

Then the extended transfer function

Gext,j(s) =
[

N j(s)
Dj(s) − I

]
(34)

is stable and has the generalized state space representation

Ej ẋj(t) = (Aj +BjFj)xj(t) +Bjvj(t),[
y1j(t)
y2j(t)

]
=
[
Cj

Fj

]
xj(t).

(35)

Coupling this system with itself by the relations

vj(t) = −y2j(t) + uj(t) = [ 0, −I ]
[
y1j(t)
y2j(t)

]
+ uj(t),

yj(t) = y1j(t) = [ I, 0 ]
[
y1j(t)
y2j(t)

]
,

(36)

we obtain the coupled system which has the same transfer function Gj(s) as system
(1). Such a coupled system is shown in Fig. 2. Note that the state space dimension of
(35) coincides with that of (1).
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+
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Nj
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vjuj
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I

Fig. 2. Coprime factorization as a coupled system.

In the following, we discuss the benefits of the coprime factorization in the struc-
ture-preserving model reduction of the coupled system (1), (4), (4), where we now
allow some unstable subsystems. Without loss of generality, we may assume that the
first q subsystems are unstable and the corresponding right coprime factorizations
are given by Gj(s) = N j(s)Dj(s)−1 for j = 1, . . . , q. The unstable subsystems
can now be replaced by the asymptotically stable models (35) with the internal inputs
and outputs satisfying (36). In this case, the coupling relations (4) and (4) take the
form

vj(t) = −y2j(t) + uj(t) 1 ≤ j ≤ q,

= Kj1y11(t) + . . .+Kjqy1q(t) − y2j(t)

+ Kj,q+1yq+1(t) + . . .+Kjkyk(t) +Hju(t),

uj(t) = Kj1y11(t) + . . .+Kjqy1q(t) q < j ≤ k,

+ Kj,q+1yq+1(t) + . . .+Kjkyk(t) +Hju(t),

y(t) = R1y11(t) + . . .+Rqy1q(t) +Rq+1yq+1(t) + . . .+Rkyk(t).
(37)

The closed-loop transfer function of the new extended coupled system is given by
Gext(s) = Rext(I − Gext(s)Kext)−1Gext(s)H , where

Kext = Kdiag
(
[Ip1 , 0], . . . , [Ipq

, 0], I
)
−diag

(
[0, Im1 ], . . . , [0, Imq

], 0
)
,

Rext =
[
R1, 0, . . . , Rq, 0, Rq+1, Rq+2, . . . , Rk

]
(38)

and
Gext(s) = diag

(
Gext,1(s), . . . ,Gext,q(s),Gq+1(s), . . . ,Gk(s)

)
(39)

with Gext,j(s) as in (34). It has been shown in [53] that Gext(s) coincides with
the transfer function G(s) of the closed-loop system (9). This allows us to apply
Theorem 2 and Corollary 1 to the extended coupled system with all subsystems be-
ing asymptotically stable in order to obtain the error bounds for the reduced-order
system.

Another structure-preserving balancing-based model reduction method for cou-
pled systems has been considered in [60]. There it has been proposed to project
the subsystems (1) with Ej = I onto the dominant eigenspaces of the matrices
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PjjQjj , where Pjj , Qjj ∈ R
nj ,nj are the diagonal blocks of the controllability and

observability Gramians P = [Pjl]kj,l=1 and Q = [Qjl]kj,l=1 of the closed-loop sys-
tem (9). Clearly, in the generalized state space case we should consider the matrices
PjjE

T
j QjjEj . A drawback of this approach is that stability is not necessarily pre-

served in the reduced-order subsystems (20). Furthermore, we cannot make use of
the error bound (31) since there are no global error estimates on G̃j − Gj .

Krylov Subspace Structure-Preserving Techniques

In this subsection we review structure-preserving model reduction methods based on
Krylov subspaces. These methods have been previously proposed for second-order
systems from structural dynamics, MEMS simulation and electronic circuit design
[7, 23, 57] and then extended to coupled systems in [60]. A general framework for
Krylov-based structure-preserving model reduction methods for partitioned systems
can be found in [40, 42].

As mentioned above, for general projection matrices W and T , the reduced-
order system (11), (12) does not preserve the interconnection structure. This can
be avoided if we take the block diagonal projection matrices W and T as in (27).
However, in order to guarantee the moment matching conditions (19), the diagonal
blocks in W and T have to satisfy certain subspace conditions as specified in the
following theorem.

Theorem 3. Let Ŵ = [ ŴT
1 , . . . , Ŵ

T
k ]T and T̂ = [ T̂T

1 , . . . , T̂
T
k ]T with Ŵj , T̂j ∈

R
nj ,�. Assume that the reduced-order systems (20) are computed by projection (26),

where Wj , Tj ∈ R
nj ,�j have full column rank and satisfy

Im Ŵj ⊆ ImWj , Im T̂j ⊆ ImTj .

Let Mj and M̃j be the moments of the closed-loop systems (9), (10) and (11), (24),
respectively.

1. If Kqr
(A−1

0 E ,A−1
0 B) ⊆ Im T̂ and Wi = Ti for i = 1, . . . , k, then Mj = M̃j

for j = 0, . . . , qr − 1.

2. If Kqr
(A−1

0 E ,A−1
0 B)⊆ Im T̂ and Kql

(A−T
0 ET ,A−T

0 CT )⊆ Im Ŵ , then Mj =
M̃j for j = 0, . . . , qr + ql − 1.

Proof. See [42, Theorem 4.1] and [60, Lemma 7]. ��

A natural way to determine the projection matrices Tj and Wj is to compute
the QR decomposition or the singular value decomposition of the matrices T̂j and
Ŵj such that the columns of T̂ = [ T̂T

1 , . . . , T̂
T
k ]T and Ŵ = [ ŴT

1 , . . . , Ŵ
T
k ]T

span the Krylov subspaces Kqr
(A−1

0 E ,A−1
0 B) and Kql

(A−T
0 ET,A−T

0 CT ), respec-
tively. The matrices T̂j and Ŵj , in turn, can be computed simultaneously by apply-
ing a Lanczos- or Arnoldi-type method to the closed-loop system (9). The following
theorem shows that T̂j and Ŵj can also be generated separately by Krylov subspace
methods applied to (1).
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Theorem 4. Consider the closed-loop system (9), (10). Let s0 ∈ C be neither
an eigenvalue of the pencil λE −A nor an eigenvalue of the pencil λ E − A. Then

Kqr
( A−1

0 E , A−1
0 B ) ⊆ Kqr

((s0E −A)−1E, (s0E −A)−1B ),

Kql
(A−T

0 ET,A−T
0 CT ) ⊆ Kql

((s0E −A)−TET, (s0E −A)−TCT ).

Proof. These inclusions can be proved similarly to the case E = I , see
[60, Lemma 6]. ��

3.3 Comparison of Two Approaches for Model Reduction of Coupled Systems

The computation of the reduced-order model (11) by applying a model reduction
method to the closed-loop system (9) has a couple of disadvantages. First of all
note that the behavior of coupled systems is determined by different interconnected
subsystems that are usually governed by entirely different physical laws and they
often act in different spaces and time scales. There is no general model reduction
technique, which can be considered as optimal, since the reliability, computation
time and approximation quality of reduced-order models strongly depend on sys-
tem properties. In model reduction of the closed-loop system (9), we ignore the
special properties of the subsystems and destroy the coupling structure. Also in
structure-preserving model reduction, where the projection matrices Wj and Tj are
determined from the closed-loop system (9), we do not make use of subsystem
properties. If we slightly change the coupled system, for example, by adding new
subsystems, by replacing some of them by new ones or by changing the coupling
configuration, we have to re-compute the reduced-order model again.

Subsystem model reduction, where the projection matrices Wj and Tj are com-
puted separately from the subsystems (1), is free of these difficulties. In this ap-
proach, every subsystem can be reduced by a most suitable model reduction method
that takes into consideration the structure and properties of the subsystem. If error
estimates for subsystems are available, then using bound (31) we can evaluate how
well the subsystems should be approximated to attain a prescribed accuracy in the
reduced-order closed-loop system (11). Finally, subsystem model reduction is attrac-
tive for parallelization, since all k subsystems may be reduced simultaneously using
k processors.

On the other hand, separate reduction of the subsystems usually yields the ap-
proximate model (11) of larger state space dimension than the system computed by
projection of the closed-loop system (9). Furthermore, subsystem model reduction
is often restricted to coupled systems whose subsystems have a small number of
internal inputs and outputs.

4 Numerical Examples

In this section we present two numerical examples to demonstrate the properties of
the discussed model reduction approaches for coupled systems. The computations
were performed using MATLAB 7.
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Fig. 3. A heated beam with a PI-controller.

Example 1. Consider a heated beam whose temperature is steered by a PI-
controller as shown in Fig. 3. The transfer function of the PI-controller is given by
G1(s) = kP + kIs

−1 and it is realized by the descriptor system[
1 0
0 0

]
ẋ1(t) =

[
0 0
0 1

]
x1(t) +

[
kI

−kP

]
u1(t),

y1(t) = [ 1 1 ]x1(t).
(40)

The heat transfer along the 1D beam of length 1 is described by

∂θ

∂t
(t, z) = κ

∂2θ

∂z2
(t, z), (41)

where t > 0 is the time, z ∈ [0, 1] is the position, θ(t, z) is the temperature dis-
tribution and κ is the heat conductivity of the material. On the left-hand side of the
beam, the temperature flux is controlled by an input u2(t), whereas the beam is as-
sumed to be perfectly isolated on the right-hand side. From this, we get the boundary
conditions

∂θ

∂z
(t, 0) = u2(t),

∂θ

∂z
(t, 1) = 0. (42)

The temperature is measured at z = 1 and it forms the output of the system, i.e.,
y2(t) = θ(t, 1) and y(t) = y2(t). By a spatial discretization of the heat equation
with n2 + 1 equidistant grid points, we obtain the system

E2ẋ2(t) = A2x2(t) +B2u2(t),
y2(t) = C2x2(t),

(43)

where E2 = In2 and

A2 = κ(n2 + 1)2

⎡⎢⎢⎢⎢⎢⎢⎣
−1 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −1

⎤⎥⎥⎥⎥⎥⎥⎦ , B2 =

⎡⎢⎢⎢⎢⎢⎢⎣
κ(n2 + 1)

0
...
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ , C2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎥⎦

T

.

(44)

The interconnection of the PI-controller and the beam is expressed by the
relations
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u1(t) = u(t) − y2(t), u2(t) = y1(t). (45)

Note that both the subsystems (40) and (43) are not asymptotically stable, since their
transfer functions

G1(s) = C1(sE1 −A1)−1B1 and G2(s) = C2(sE2 −A2)−1B2

have a pole at the origin. The stabilizing state feedback matrices can be chosen as
F1 = [ 0, −1 ] and F2 = [−n2 − 1, 0, · · · , 0 ]. In this case, we obtain an extended
coupled system with the stable subsystems Gext,1(s) and Gext,2(s) as in (34) and
the interconnection matrices

Kext =
[

0 −1 −1 0
1 0 0 −1

]
, H =

[
1
0

]
, Rext = [ 0, 0, 1, 0 ].

For our experiments, we chose the numerical values kP = kI = κ = 1 and
n2 = 1000. The second subsystem Gext,2 has been approximated by a reduced
model G̃ext,2 of order �2 = 21 computed by balanced truncation. Figure 4 shows the
absolute error ‖G̃ext,2(iω)−Gext,2(iω)‖2 for the frequency range ω ∈ [ 10−1, 104 ]
and the error bound γ that is twice the sum of the truncated Hankel singular values
of Gext,2. We chose �2 such that γ < 10−6. The resulting approximate closed-loop
system with the transfer function G̃(s) has order � = 23.

Figure 5 shows the absolute error ‖G̃(iω) − G(iω)‖2 and the a posteriori error
bound γext = γmin{c1, c2}, where c1 and c2 are as in Theorem 2 with G, K and R
replaced by G̃ext = diag(Gext,1, G̃ext,2), Kext and Rext, respectively. Comparing
the approximation errors, we see that the error in the closed-loop system is larger
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Fig. 4. Example 1: the absolute error ‖G̃ext,2(iω) − Gext,2(iω)‖2 and the error bound γ.
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Fig. 5. Example 1: the absolute errors ‖G̃(iω) − G(iω)‖2 and the error bounds γext (dashed
line) and γcl (dotted line).

than the error in the subsystem due to the coupling. Furthermore, we applied the
balanced truncation method to the closed-loop system and selected the order of the
reduced model as a minimal integer � such that the error bound γcl = 2(σ�+1 +
. . . + σn) is smaller than γext. We obtained the reduced model of order � = 5 with
the approximation error comparable with the error in subsystem model reduction,
see Fig. 5. Note, however, that if we change the parameters kP , kI and κ, then the
closed-loop system is also changed, and we need to re-compute the reduced model.
On the other hand, the reduced closed-loop system computed by subsystem model
reduction can easily be modified by changing the first subsystem and by re-scaling
the matrix coefficients in the reduced-order second subsystem.

Example 2. Consider the delay-differential system

ẋ(t) = −x(t− 1) + u(t),
y(t) = x(t).

(46)

This system can be represented as an interconnection of

ẋ1(t) = 0 · x1(t) +
[
1, −1

]
u1(t),

y1(t) = x1(t)
(47)

with the system representing the pure unit delay

ŷ2(t) = u2(t− 1). (48)
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The coupling relations are

u1(t) =
[

0
1

]
ŷ2(t) +

[
1
0

]
u(t),

u2(t) = y1(t), y(t) = y1(t).
(49)

The subsystems (47) and (48) have the transfer functions G1(s) = [ 1/s, −1/s ] and
Ĝ2(s) = e−s, respectively. Due to the irrationality of Ĝ2, its system realizations
have an infinite dimensional state space [17, 52]. The delay can be achieved by the
following partial differential equation with boundary control and observation

∂f

∂t
(t, z) = −∂f

∂z
(t, z),

f(t, 0) = u2(t),
f(t, 1) = ŷ2(t).

(50)

A spatial discretization of this equation with n2 equidistant grid points leads to the
subsystem

E2ẋ2(t) = A2x2(t) +B2u2(t),
ŷ2(t) = C2x2(t),

(51)

with E2 = In2 and

A2 = n2

⎡⎢⎢⎢⎢⎢⎢⎣
−1 1

−1 1
. . . . . .

−1 1
−1

⎤⎥⎥⎥⎥⎥⎥⎦ , B2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
...
0
n2

⎤⎥⎥⎥⎥⎥⎥⎦ , C2 =

⎡⎢⎢⎢⎢⎢⎢⎣
1
0
...
0
0

⎤⎥⎥⎥⎥⎥⎥⎦

T

. (52)

The transfer function of this subsystem is given by

G2(s) =
n2

(n2 + s)n2
. (53)

Clearly, G2 ∈ H∞. The coupled system (47), (49) and (51) is a finite dimensional
approximant of the originally infinite dimensional delay-differential system (46). The
estimation of the discretization error in the H∞-norm is treated in [52].

The first subsystem (47) is not asymptotically stable since its transfer function
G1(s) has a pole at the origin. A stabilizing state feedback matrix can be taken as
F1 = [ 0, 2 ]T . Thus, we obtain an extended coupled system with the stable subsys-
tems Gext,1(s) as in (34), G2(s) and the interconnection matrices

Kext =

⎡⎣ 0 −1 0 0
0 0 −1 1
1 0 0 0

⎤⎦ , H =

⎡⎣ 1
0
0

⎤⎦ , Rext = [ 1, 0, 0, 0 ].

The second subsystem (51) of order n2 = 1000 has been approximated by a re-
duced model of order �2 = 41 computed by the balanced truncation method.
The absolute values of the frequency responses G̃2(iω) and G2(iω) of the original
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Fig. 6. Example 2: the absolute values of frequency responses G2(iω) and G̃2(iω).
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Fig. 7. Example 2: the absolute error ‖G̃2(iω) − G2(iω)‖2 and the error bound γ.

and reduced-order subsystems are given in Fig. 6, whereas the absolute error
‖G̃2(iω) − G2(iω)‖2 and the error bound

γ = 2(σ(2)
�2+1 + . . .+ σ(2)

n2
)

are presented in Fig. 7. We see that the reduced-order subsystem approximates (51)
satisfactorily.
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Fig. 9. Example 2: the absolute error ‖G̃(iω) − G(iω)‖2 and the error bound γext.

In Fig. 8 we plotted the absolute values of the frequency responses G(iω) and
G̃(iω) of the original and the reduced-order closed-loop systems. Figure 9 shows the
error ‖G̃(iω) − G(iω)‖2 and the a posteriori error bound

γext = γmin{c1, c2},
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where the constants c1 and c2 are as in Theorem 2 with G, K and R replaced by
G̃ext = diag(Gext,1, G̃2), Kext and Rext, respectively. One can see that over the
frequency range [ 10−1, 103 ] there is no visible difference between the magnitude
plots of G̃ and G and that the absolute error is smaller than 10−2.
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Summary. In this chapter we present the principles of the space-mapping iteration techniques
for the efficient solution of optimization problems. We also show how space-mapping opti-
mization can be understood in the framework of defect correction.

We observe the difference between the solution of the optimization problem and the com-
puted space-mapping solutions. We repair this discrepancy by exploiting the correspondence
with defect correction iteration and we construct the manifold-mapping algorithm, which is as
efficient as the space-mapping algorithm but converges to the true solution.

In the last section we show a simple example from practice, comparing space-mapping
and manifold mapping and illustrating the efficiency of the technique.

1 Introduction

Space mapping is a technique, using simple surrogate models, to reduce the com-
puting time in optimization procedures where time-consuming computer-models are
needed to obtain sufficiently accurate results. Thus, space mapping makes use of
both accurate (and time-consuming) models and less accurate (but cheaper) ones.

In fact, the original space-mapping procedure corresponds with right-
preconditioning the coarse (inaccurate) model in order to accelerate the iterative
procedure for the optimization of the fine (accurate) one. The iterative procedure
used in space mapping for optimization can be seen as a defect correction iteration
and the convergence can be analyzed accordingly. In this paper we show the struc-
ture of space mapping iteration. We also show that right-preconditioning is generally
insufficient and (also) left-preconditioning is needed to obtain the solution for the
accurate model. This leads to the improved space-mapping or ‘manifold-mapping’
procedure. This manifold mapping is shown in some detail in Section 5 and in the
last section a few examples of an application are given.

The space-mapping idea was introduced by Bandler [3] in the context of
microwave filter design and it has developed significantly over the last decade. In the

∗∗ This research was supported by the Dutch Ministry of Economic Affairs through the project
IOP-EMVT-02201 B
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rather complete survey [4] we see that the original idea has gone through a large
number of changes and improvements. The reader is referred to the original litera-
ture [1, 2, 5] for a review of earlier achievements and for a classical introduction for
engineers.

2 Fine and Coarse Models in Optimization

The Optimization Problem.

Let the specifications for the data of an optimization problem be denoted by (t,y) ≡
({ti}, {yi})i=1,...,m. The independent variable t ∈ R

m could be, e.g., time, fre-
quency, space, etc. The dependent variable y ∈ Y ⊂ R

m represents the quantities
that describe the behavior of the phenomena under study or design. The set Y ⊂ R

m

is called the set of possible aims.
The behavior of the variable y not only depends on the independent variable t

but also on an additional set of control/design variables. With x the vector of relevant
control variables, we may write the components of y as yi ≈ y(ti,x). The behavior
of the phenomenon is described by the function y(t,x) and the difference between
the measured data yi and the values y(ti,x) may be the result of, e.g., measurement
errors or the imperfection of the mathematical description.

Models to describe reality appear in several degrees of sophistication. Space
mapping exploits the combination of the simplicity of the less sophisticated methods
with the accuracy of the more complex ones. Therefore, we distinguish two types of
model: fine and coarse.

The Fine Model.

The fine model response is denoted by f(x) ∈ R
m, where x ∈ X ⊂ R

n is the fine
model control variable. The set X of possible control variables is usually a closed
and bounded subset of R

n. The set f(X) ⊂ R
m of all possible fine model responses

is the set of fine model reachable aims. The fine model is assumed to be accurate but
expensive to evaluate. We also assume that f(x) is continuous.

For the optimization problem a fine model cost function, ||| f(x)−y||| , is defined,
which is a measure for the discrepancy between the data and a particular response of
the mathematical model. This cost function should be minimized. So we look for

x∗ = argmin
x∈X

||| f(x) − y||| . (1)

A design problem, characterized by the model f(x), the aim y ∈ Y , and the space
of possible controls X ⊂ R

n, is called a reachable design if the equality f(x∗) = y
can be achieved for some x∗ ∈ X . �
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The Coarse Model.

The coarse model is denoted by c(z) ∈ R
m, with z ∈ Z ⊂ R

n the coarse model
control variable. This model is assumed to be cheap to evaluate but less accurate
than the fine model. The set c(Z) ⊂ R

m is the set of coarse model reachable aims.
For the coarse model we have the coarse model cost function, ||| c(z)−y||| . We denote
its minimizer by z∗,

z∗ = argmin
z∈Z

||| c(z) − y||| . (2)

We assume that the fine and coarse optimization problems, characterized by y,
f(x) and X , respectively y, c(z) and Z, are uniquely solvable and well defined.
If X and Z are closed and bounded non-empty sets in R

n and f and c continuous
functions, the existence of the solutions is guaranteed. Generally, uniqueness can be
achieved by properly reducing the sets X or Z. If the models are non-injective (or
extremely ill-conditioned) in a small neighborhood of a solution, essential difficulties
may arise.

The Space-Mapping Function.

The similarity or discrepancy between the responses of two models used for the same
phenomenon is an important property. It is expressed by the misalignment function

r(z,x) = ||| c(z) − f(x)||| . (3)

For a given x ∈ X it is useful to know which z ∈ Z yields the smallest discrep-
ancy. This information can be used to improve the coarse model. Therefore, the
space-mapping function is introduced. The space-mapping function p : X ⊂ R

n →
Z ⊂ R

n is defined1 by

p(x) = argmin
z∈Z

r(z,x) = argmin
z∈Z

||| c(z) − f(x)||| . (4)

It should be noted that this evaluation of the space-mapping function p(x) re-
quires both an evaluation of f(x) and a minimization process with respect to z
in ||| c(z) − f(x)||| . Hence, in algorithms we should make economic use of space-
mapping function evaluations. In Figure 1 we see an example of a misalignment
function and of a few space mapping functions.

Perfect Mapping.

In order to identify the cases where the accurate solution x∗ is related with the less
accurate solution z∗ by the space mapping function, the following definition is intro-
duced. A space-mapping function p is called a perfect mapping iff

1 The process of finding p(x) for a given x is called parameter extraction or single point
extraction because it finds the best coarse-model parameter that corresponds with a given
fine-model control x.
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Fig. 1. Misalignment and space-mapping function

The left figure shows the misalignment function for a fine and a coarse model. Darker shading
shows a smaller misalignment. The right figure shows the identity function and a few space-
mapping functions for different coarse models (example taken from [9]).

z∗ = p(x∗) . (5)

Using the definition of space mapping we see that (5) can be written as

argmin
z∈Z

||| c(z) − y||| = argmin
z∈Z

||| c(z) − f(x∗)||| , (6)

i.e., a perfect space-mapping function maps x∗, the solution of the fine model
optimization, exactly onto z∗, the minimizer of the coarse model design.

Remark. We notice that perfection is not only a property of the space-mapping func-
tion, but it also depends on the data y considered. A space-mapping function can be
perfect for one set of data but imperfect for a different data set. In this sense ‘perfect
mapping’ can be a confusing notion.

3 Space-Mapping Optimization

In literature many space mapping based algorithms can be found [1, 4], but they
all have the same basis. We first describe the original space-mapping idea and the
resulting two principal approaches (primal and dual).

3.1 Primal and Dual Space-Mapping Solutions

The idea behind space-mapping optimization is the following: if either the fine model
allows for an almost reachable design (i.e., f(x∗) ≈ y) or if both models are similar
near their respective optima (i.e., f(x∗) ≈ c(z∗)), we expect
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p(x∗) = argmin
z∈Z

||| c(z) − f(x∗)||| ≈ argmin
z∈Z

||| c(z) − y||| = z∗ . (7)

Based on this relation, the space-mapping approach assumes p(x∗) ≈ z∗. However,
in general p(x∗) �= z∗ and even z∗ ∈ p(X) is not guaranteed. Therefore the primal
space-mapping approach seeks for a solution of the minimization problem

x∗
p = argmin

x∈X
‖p(x) − z∗‖ . (8)

An alternative approach can be chosen. The idea behind space-mapping opti-
mization is the replacement of the expensive fine model optimization by a surrogate
model. For the surrogate model we can take the coarse model c(z), and improve its
accuracy by the space mapping function p. Now the improved or mapped coarse
model c(p(x)) may serve as the better surrogate model. Because of (4) we expect
c(p(x)) ≈ f(x) and hence ||| f(x) − y||| ≈ ||| c(p(x)) − y||| . Then the minimization
of ||| c(p(x))−y||| will usually give us a value, x∗

d, close to the desired optimum x∗:

x∗
d = argmin

x∈X
||| c(p(x)) − y||| . (9)

This is the dual space-mapping approach.
We will see in Section 3.3 that both approaches coincide when z∗ ∈ p(X) and

p is injective, and if the mapping is perfect both x∗
p and x∗

d are equal to x∗. However,
in general the space-mapping function p will not be perfect, and hence, a space
mapping based algorithm will not yield the solution of the fine model optimization.
The principle of the approach is summarized in Figure 2.

Fig. 2. Diagram showing the main idea of space mapping



162 D. Echeverrı́a et al.

x0 = z∗ = argminz∈Z ||| c(z) − y|||
B0 = I
for k = 0, 1, . . .
while |||p(xk) − z∗||| > tolerance
dohk = −B−1

k (p(xk) − z∗)
xk+1 = xk + hk

Bk+1 = Bk +
(p(xk+1)−z∗)hT

hT h

enddo

Fig. 3. The ASM algorithm

3.2 Space-Mapping Algorithms

Because the evaluation of the space-mapping function is expensive, algorithms to
compute x∗

p or x∗
d are based on iterative approximation of p(x). By the similarity of

f(x) and c(z), a first approximation is the identity, p0 = I .
Linear approximations form the basis for the more popular space-mapping opti-

mization algorithms. An extensive survey of available algorithms can be found in [4].
The most representative example is ASM (the ‘Aggressive Space Mapping’ shown
in Figure 3), where the space-mapping function is approximated by linearisation to
obtain

pk(x) = p(xk) + Bk (x − xk) . (10)

In each space-mapping iteration step the matrix Bk is adapted by a rank-one up-
date. For that purpose a Broyden-type approximation for the Jacobian of the space-
mapping function p(x) is used,

Bk+1 = Bk +
p(xk+1) − p(xk) − Bkh

hT h
hT , (11)

where h = xk+1 − xk. This is combined with original space mapping, so that
xk+1 = xk − B−1

k (p(xk) − z∗).

3.3 Perfect Mapping, Flexibility and Reachability

By its definition, perfect mapping relates the similarity of the models and the specifi-
cations. If the fine model allows for a reachable design, then it is immediate that, in-
dependent of the coarse model used, the mapping is always perfect. Also if the coarse
and the fine model optimal responses are identical, the space-mapping function is
perfect. These two facts are summarized in the following lemma.

Lemma 1. (i) If f(x∗) = y then p(x∗) = z∗;
(ii) If f(x∗) = c(z∗) then p(x∗) = z∗.

The following lemma [9] follows from the definitions (8) and (9).

Lemma 2. (i) If z∗ ∈ p(X), then p(x∗
p) = p(x∗

d) = z∗;
(ii) If, in addition, p is an injective perfect mapping then x∗ = x∗

p = x∗
d.
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In some cases we can expect that the sets of fine and coarse reachable aims
overlap in a region of R

m close to their respective optima. The concept of model flex-
ibility is introduced and from that some results concerning properties of the space-
mapping functions can be derived.

Definition 1. A model is called more flexible than another if the set of its reachable
aims contains the set of reachable aims of the other. Two models are equally flexible
if their sets of reachable aims coincide. �

Thus, a coarse model c is more flexible than the fine one f if c(Z) ⊃ f(X), i.e., if the
coarse model response can reproduce all the fine model reachable aims. Similarly the
fine model is more flexible if f(X) ⊃ c(Z). Model flexibility is closely related to
properties of the space-mapping function. This is shown in the following lemmas,
where p denotes the space-mapping function. Proofs are found in [9].

Lemma 3. If c is more flexible than f then
(i) c(p(x)) = f(x) ∀x ∈ X;
(ii) p : X → Z is a perfect mapping ⇔ c(z∗) = f(x∗);
(iii) if f : X → Y is injective then p : X → Z is injective;
(iv) if c(Z) \ f(X) �= ∅, then p : X → Z cannot be surjective.

Remark. Because of (ii) generally we cannot expect space-mapping functions to be
perfect for flexible coarse models unless the two models are equally flexible near the
optimum. However, we remind that if the design is reachable, the perfect mapping
property holds, even if c(Z) \ f(X) �= ∅.

Lemma 4. If f is more flexible than c then
(i) p : X → Z is surjective;
(ii) if f(X) \ c(Z) �= ∅, then p cannot be injective.

We combine the previous two lemmas in the following.

Lemma 5. If f and c are equally flexible and f : X → Y is injective, then (i) p is a
bijection, and (ii) p is a perfect mapping.

The conclusions in Lemma 2 can now be derived from assumptions about model
flexibility.

Lemma 6. (i) If f is more flexible than c, then p(x∗
p) = p(x∗

d) = z∗. (ii) If f and c
are equally flexible and f is injective, then x∗ = x∗

p = x∗
d.

Remark. It is not really needed for the space-mapping function to be a bijection
over the whole domain in which it is defined. In fact, perfect mapping is a property
that concerns only a point, and it is enough if the function is injective in a (small)
neighborhood. Thus the assumptions for the former lemmas can be relaxed and stated
just locally.
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4 Defect Correction and Space Mapping

The technique underlying space-mapping, i.e. the efficient solution of a complex
problem by the iterative use of a simpler one, is known since long in computational
mathematics. In numerical analysis it is known as defect correction iteration and
studied in a number of papers [6, 7]. Below we first briefly summarize the defect
correction principle for solving operator equations and then we apply the idea to
optimization problems.

4.1 Defect Correction for Operator Equations

We first consider the problem of solving a nonlinear operator equation

F x = y, (12)

where F : D ⊂ E → D̂ ⊂ Ê is a continuous, generally nonlinear operator and
E and Ê are Banach spaces. In general, neither injectivity nor surjectivity of the
mapping is assumed, but in many cases these properties can be achieved by a proper
choice of the subsets D and D̂.

The classical defect correction iteration for the solution of equation (12) with
y ∈ F(D) ⊂ D̂ is based on a sequence of operators F̃k : D → D̂ approximating F .
We assume that each F̃k has an easy-to-calculate inverse G̃k : D̂ → D. Actually, it
is the existence of the easy-to-evaluate operator G̃k, rather than the existence of F̃k,
that is needed for defect correction and we do not need to assume G̃k to be invertible.

Defect correction comes in two brands [6], depending on the space, E or Ê, in
which linear combinations for extrapolation are made. The two basic iterative defect
correction procedures to generate a (hopefully convergent) sequence of approxima-
tions to the solution of (12) are{

x0 = G̃0 y
xk+1 = (I − G̃k+1 F)xk + G̃k+1 y

and

{
l0 = y
lk+1 = (I −F G̃k) lk + y .

(13)

In the second, (13b), we identify the approximate solution as xk ≡ G̃klk. We see that
the two iteration processes are dual in the sense that in the first, (13a), the extrapo-
lation is in the space D, whereas the additions in (13b) are in D̂. If G̃k is injective,
then an operator F̃k exists such that F̃kG̃k = ID̂, i.e., F̃k is the left-inverse of G̃k.
Then F̃kxk = lk and (13b) is equivalent with the iterative procedure{

F̃0x0 = y ,
F̃k+1xk+1 = F̃k xk − FG̃kF̃k xk + y .

(14)

In order to apply (14), the injectivity of G̃k is not really needed and it is immedi-
ately seen that neither (13b) nor (14) converges if y �∈ F(D). However, (14) can be
modified so that it can be used for y �∈ F(D). Then we need injectivity for F̃k and
we take G̃k its left-inverse, i.e., G̃kF̃k = ID. Then (14) leads to
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F not surjective → left-inverse G : GF = ID

Fig. 4. The non-surjective operator in the optimization problem

{
x0 = G̃0 y ,

xk+1 = G̃k+1

(
F̃k xk − F xk + y

)
.

(15)

Because (15) allows for a non-injective G̃k, this iteration can be used for optimization
purposes. In case of an invertible G̃k+1 both (14) and (15) are equivalent with (13b).

For our optimization problems, where the design may be not reachable, y ∈ D̂,
but y /∈ F(D), i.e., F is no surjection so that no solution for (12) exists and (13b)-
(14) cannot converge (Figure 4). Therefore, we drop the idea of finding an x ∈ D
satisfying (12) and we replace the aim by looking for a solution x∗ ∈ D so that the
distance between Fx and y is minimal, i.e., we want to find

x∗ = argminx∈D ‖Fx − y‖Ê . (16)

For a compact non-empty D and a continuous F , at least a solution exists and if
the operators G̃k are such that (13a) or (15) converges, the stationary point x satisfies
G̃F x = G̃y or x = G̃(F̃ x − F x + y) respectively. (We assume that G̃k = G̃ and
F̃k = F̃ for k large enough.)

Now we can associate with each defect correction iteration a process for iterative
optimization by taking E = R

n, Ê = R
m, D = X , D̂ = Y and p : X → Z, and by

substitution of the corresponding operators:

Fx = y ⇔ f(x) = y ,

x = Gy ⇔ x = argmin
ξ

‖f(ξ) − y‖ ,

F̃x = y ⇔ c(p(x)) = y ,

x = G̃y ⇔ x = argmin
ξ

‖c(p(ξ)) − y‖ .

(17)

Remark. Notice that p is not the space mapping function but an arbitrary (easy to
compute) bijection, e.g., the identity.

4.2 Defect Correction for Optimization

With (17) we derive from (13a) and (15) two defect-correction iteration schemes
for optimization. Substitution of (17) yields the initial estimate and two iteration
processes for k = 0, 1, 2, · · · , with pk+1 for p in every step,
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x0 = argmin
x∈X

||| c(p0(x)) − y||| , (18)

xk+1 = xk − argmin
x∈X

||| c(pk+1(x)) − f(xk)|||

+ argmin
x∈X

||| c(pk+1(x)) − y||| , (19)

xk+1 = argmin
x∈X

||| c(pk+1(x)) − c(pk(xk)) + f(xk) − y||| . (20)

The two processes (19) and (20) are still dual in the sense that extrapolation is applied
in the space X for process (19) and in Y for process (20). The operators pk are right-
preconditioners for the coarse model, which may be adapted during the initial steps
of the iteration. We take pk non-singular and for the initial estimate (18), and if
X = Z we usually take p0 = I , the identity.

In the above iterations every minimization involves the surrogate model, c ◦ pk.
However, it is the coarse model that was assumed to be cheaply optimized. Therefore,
it is more convenient to write the procedures such that optimization over the coarse
model becomes obvious. By taking in (13a) and (15) F z = f(q(z)), F̃k z = c(z)
and G̃k y = argminz∈Z ||| c(z)−y||| , with q and qk bijections from Z to X fulfilling
in every iteration qzk = qk zk, we obtain, for k = 0, 1, 2, · · · ,

z0 = z∗ = argmin
z∈Z

||| c(z) − y||| , (21)

zk+1 = zk − argmin
z∈Z

||| c(z) − f(qk(zk))||| + z∗ , (22)

zk+1 = argmin
z∈Z

||| c(z) − c(zk) + f(qk(zk)) − y||| . (23)

As the solution is wanted in terms of fine-model control variables, the procedures are
complemented with xk = qk(zk). The bijections can be interpreted as qk = p−1

k .
For k > k0, we assume the iteration process to be stationary: pk = p and qk = q.
It is a little exercise to see by proper simplifications of (19) and (20) that space-
mapping iteration can be recovered from defect correction [9, Section 4.3.2].

Orthogonality and the Need for Left-preconditioning.

For thestationarypointsof theaboveprocesses,wecanderive the following lemma [9].

Lemma 7. In the case of convergence of (23), with fixed point limk→∞ xk = x we
obtain

f(x) − y ∈ c(Z)⊥(p(x)) . (24)

In case of convergence of (22) with a fixed point x we obtain

f(x) − y ∈ c(Z)⊥(z∗) . (25)

Like the space-mapping methods, the above iterations have the disadvantage
that, in general, the fixed point of the iteration does not coincide with the so-
lution of the fine model minimization problem. This is due to the fact that the



Space Mapping and Defect Correction 167

�
�

�
�

�
�

�
�

�
��

�

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........�

...........
...........

...........
...........

............��f(x∗)

� y

� f(x)

c(z∗)
c(Z)

f(X)

Fig. 5. The relative location of c(z∗), f(x∗) and f(x)

approximate solution x satisfies either (24) or (25). whereas a (local) minimum
x∗ = argminx∈X ‖f(x) − y‖ satisfies (see Figure 5)

f(x∗) − y ∈ f(X)⊥(x∗) . (26)

Hence, differences between x and x∗ will be larger for larger distances between
y and the sets f(X) and c(Z) and for larger angles between the linear manifolds
tangential at c(Z) and f(X) near the optima.

By the orthogonality relations above, we see that it is advantageous, both for the
conditioning of the problem and for the minimization of the residual, if the manifolds
f(X) and c(Z) are found parallel in the neighborhood of the solution. However,
by space mapping or by right-preconditioning the relation between the manifolds
f(X) and c(Z) remains unchanged. This causes that the fixed point of traditional
space mapping does generally not correspond with x∗. This relation, however, can
be improved by the introduction of an additional left-preconditioner. Therefore we
introduce such a preconditioner S so that near f(x∗) ∈ Y the manifold c(Z) ⊂ Y is
mapped onto f(X) ⊂ Y :

f(x) ≈ S(c(p(x))) . (27)

In the next section we propose a new algorithm where an affine operator maps c(Z)
onto f(X) in the neighborhood of the solution. (More precisely: it approximately
maps one tangential linear manifold onto the other.) This restores the orthogonality
relation f(x) − y ⊥ f(X)(x∗). Thus it improves significantly the traditional ap-
proach and makes the solution x∗ a stationary point of the iteration. Details on the
convergence of the processes can be found in [10].

5 Manifold Mapping, the Improved Space Mapping Algorithm

We introduce the affine mapping S : Y → Y such that Sc(z) = f(x∗) for a proper
z ∈ Z, and the linear manifold tangential to c(Z) in c(z) maps onto the one tangen-
tial to f(X) in f(x∗). Because, in the non-degenerate case when m ≥ n, both f(X)
and c(Z) are n-dimensional sets in R

m, the mapping S can be described by
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Sv = f(x∗) + S (v − c(z)) , (28)

where S is an m ×m-matrix S of rank n. This mapping S is not a priori available,
but an approximation to it can be computed iteratively during the optimization. A full
rank m×m-matrix S can be constructed, which has a well-determined part of rank
n, while a remaining part of rank m − n is free to choose. Because of the supposed
similarity between the models f and c we keep the latter part close to the identity.
The meaning of the mapping S is illustrated in the Figures 6 and 7

Fig. 6. Restoring the orthogonality relation by manifold mapping

Better mapping by left and right preconditioning.

Fig. 7. Manifold Mapping
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So we propose the following algorithm (where the optional right-preconditioner
p : X → Z is still an arbitrary non-singular operator. It can be adapted to the
problem. Often we will simply take the identity.)

1. Set k = 0, set S0 = I the m×m identity matrix, and compute

x0 = argminx∈X ||| c(p(x)) − y||| . (29)

2. Compute f(xk) and c(p(xk)).
3. If k > 0, with ∆ci = c(p(xk−i)) − c(p(xk)) and ∆fi = f(xk−i) − f(xk),

i = 1, · · · ,min(n, k), we define ∆C and ∆F to be the rectangu-
lar m × min(n, k)-matrices with respectively ∆ci and ∆fi as columns.
Their singular value decompositions are respectively ∆C = UcΣcV

T
c and

∆F = UfΣfV
T
f .

4. The next iterand is computed as

xk+1 =argmin
x∈X

‖c(p(x)) − c(p(xk)) +
[
∆C∆F †+I−UcU

T
c

]
(f(xk) − y)‖.

(30)
5. Set k := k + 1 and goto 2.

Here, † denotes the pseudo-inverse: ∆F † = VfΣ
−1
f UT

f . It can be shown that (30) is
asymtotically equivalent to

xk+1 = argminx∈X ‖Sk(c(p(x))) − y‖ . (31)

Above, the matrix Sk = ∆F ∆C† + (I −Uf U
T
f ) (I −Uc U

T
c ) and the approximate

affine mapping is

Sk v = f(xk) + Sk(v − c(p(xk)) , ∀v ∈ Y,

which, for l > 0 and l = k − 1, · · · ,max(0, k − n), satisfies

Sk (c(p(xl)) − c(p(xk))) = f(xl) − f(xk) .

In (30), the freedom in making Sk full-rank is used, replacing ∆C ∆F † + (I −
UcU

T
c )(I − UfU

T
f ) by ∆C ∆F † + I − UcU

T
c , in order to stabilize the algorithm.

This does not change the solution.
If the above iteration converges with fixed point x and mappings S and p, we

have
f(x) − y ∈ S(c(p(X)))⊥(x) = f(X)⊥(x) . (32)

From this relation and the fact that Sk(c(p(xk))) = f(xk), it can be concluded
that, under convergence to x, the fixed point is a (local) optimum of the fine model
minimization.

The improved space-mapping scheme

xk+1 = argmin
x

|||Sk(c(pk(x)))) − y||| (33)

can also be recognized as defect correction iteration with either F̃k = Sk ◦ c ◦p and
F = f in (19) or (20), or with F̃k = Sk ◦ c and F = f ◦ p−1 in (22) or (23).



170 D. Echeverrı́a et al.

6 Examples

We illustrate the application of space-mapping and manifold-mapping by a design
problem for a linear actuator. We compare the performance of these algorithms with
that of two classical optimization methods: Nelder-Mead Simplex (NMS) and Se-
quential Quadratic Programming (SQP).

Linear actuators are electromechanical devices that convert electromechanical
power into linear motion. An axi-symmetrical variant, called a voice-coil actuator,
consisting of a permanent magnet, a current-carrying coil and a ferromagnetic core
is shown in Figure 8. The permanent magnet is magnetized in the vertical direction.
The coil, steered by the magnetic force, moves along the z-axis in the gap of the
core, as illustrated in Figure 9. The position of the coil relative to the top of the

Fig. 8. A cylindrical voice-coil actuator consisting of a ferromagnetic core, permanent magnet
and coil

Design Variables. Geometry.

Fig. 9. Geometry and design variables of the cylindrical voice-coil actuator
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core is denoted by D. Due to the axisymmetrical geometry, the force has an axial
component only. It will be denoted by Fz(D).

The design variables [13] are shown in Figure 9: x1 and x2 denote the height and
radius of the magnet, x3 and x4 the height and thickness of the coil and x5, x6 and
x7 the sizes of the core. Two additional linear inequality constraints define feasible
coil positions. The air-gap sizes p1 and p2 to the left and right of the coil are kept
fixed. Remaining details are found in [11].

We allow the coil to move over a 4 mm range, i.e., 0 ≤ D ≤ 4 mm. The force
on the coil is computed at nine equidistant points Di in this interval. Values for the
design variables have to be found such that the force response is flat and as close to
y = 24 N as possible. The cost function is(

9∑
i=1

[Fz(Di) − y(Di)]2/
9∑

i=1

y(Di)2
)1/2

. (34)

The fine model is a second order Lagrangian finite element (FE) model in which
the non-linearBH-curve of the ferromagnetic core is taken into account. The force is
computed by means of the Lorentz Force Law [8]. The number of degrees of freedom
in the FE model is between 8000 and 11000, yielding three digits of accuracy in the
computed force.

The first of two coarse models is a FE model in which the BH-curve of the
actuator core is linearized. Depending on the number of Newton iterations required
in the non-linear case, this model is a factor between 30 and 50 cheaper than the fine
one. The second coarse model is a lumped parameter model. This so-called magnetic
equivalent circuit (MEC) [8] model has a negligible computational cost compared
to the fine one. In both the FE and the MEC coarse models, the relative magnetic
permeability in the core was overestimated and set equal to 1000. This was done for
illustration purposes.

Below we will consider three variants of modelling approaches for this type of
problem. The use of manifold mapping with the linearized finite element, respec-
tively the MEC as coarse model, will be denoted by FE/MM and MEC/MM. Similar
notations FE/SM and MEC/SM are used for space mapping.

6.1 A Variant with One Design Variable

We initially consider a design problem with a single design variable, only varying the
radius of the permanent magnet. We denote the design variable x2 simply by x. As
a starting guess we use the coarse model optimum, i.e., x0 = z∗, as in Section 4.2,
where the choice p0 = I was made. For this one-parameter problem both space
mapping (SM) and manifold mapping (MM), with either the linear FE or the MEC as
coarse model, converge to the unique x∗ in four iterations and both methods deliver
a speed-up with a factor between four and five compared with the NMS or the SQP
algorithm [11].

The cost function associated with the surrogate model that MM builds in the
final iteration step approximates the fine model cost function in a neighbourhood
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x∗ much better than its SM counterpart. We illustrate the convergence of SM and
MM by looking at the cost function of the surrogate models during successive itera-
tions. Figure 10 (top) shows the cost functions of the surrogate model during the first

Space-Mapping (SM).

Manifold-Mapping (MM).

Fig. 10. Convergence history of SM and MM using the MEC as coarse model
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Table 1. Computational efficiency of SM and MM for an example with a single design vari-
able, compared with the NMS and the SQP method

# iters # f evals. # c evals
NMS 10 20 20
SQP 5 18 20

MEC/SM 4 4 80
MEC/MM 4 4 80

MEC/SM iterations, i.e., ‖c(pk(x)) − y‖2/‖y‖2, for k = 1, . . . , 3 as function of x.
The coarse (k = 0) and fine model cost functions are also shown. Figure 10 (bottom)
shows the same for MEC/MM with ‖Sk(c(x)) − y‖2/‖y‖2 for successive k. The
overestimation of the magnetic permeability of the core in the coarse models is such
that for these models a smaller radius is required to reach the design objective, i.e,
z∗ < x∗. The figures also illustrate the convergence of the iterands xk to x∗. They
furthermore show that the mapping of the tangent manifold in MM provides a better
approximation of the fine model cost function in a neighbourhood of x∗

f .
To show the speed-ups that SM and MM-algorithms may yield, in Table 1 we

show the number of fine and coarse model evaluations of MEC/SM and MEC/MM
as well as the number required by NMS and SQP. For the latter two, the coarse model
was used to generate an appropriate initial guess. In the other two algorithms each
iteration requires one fine and twenty coarse model evaluations. From the table the
computational speed-up is obvious. Even though the coarse model was chosen to be
quite inaccurate, the SM based algorithms deliver a significant speed-up.

To quantify the difference between the two coarse models, in Figure 11 we show
the decrease in cost function during SM and MM iteration with both coarse models.
From this figure we conclude that the linear FE coarse model does not accelerate the
converge of SM or MM better than the (much cheaper) MEC model. A linear FE
coarse model can however be advantageous in more complex design problems.

6.2 A Variant with Two Design Variables

We now consider a design problem with two design variables, allowing changes in
height (x1) and radius (x2) of the permanent magnet. Numerical results comparing
the performance of SM and MM with NMS and SQP for this problem are given in
Table 2. The first row in this table gives the total amount of work expressed in number
of equivalent fine model evaluations. These figures are approximately proportional
to the total computing time. As starting guess for the optimization procedures we
used the values obtained by optimizing the MEC model. This design problem is
extremely ill-conditioned and has a manifold of equivalent solutions. To stabilize the
convergence of MM, the Levenberg-Marquardt method is used. The best results in
terms of computational efficiency (speed-up by a factor of six) are obtained using
MM with the MEC as coarse model. Full details about this problem and its solution
by SM or MM are found in [11].
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Fig. 11. Reduction in cost function value in successive iterations of SM and MM

Table 2. Computational efficiency of SM and MM for the example with two design variables.
The total amount of computational work is approximately equal to the cost of the fine model
function evaluations (# f evals.)

NMS SQP FE/SM MEC/SM FE/MM MEC/MM
# f evals. 24 31 9 6 9 4

cost function 0.046 0.046 0.046 0.065 0.046 0.046

6.3 A Variant with Seven Design Variables

In the last example we show the potential of MM and SM in the problem with all
seven design variables and non-linear equality and inequality constraints. This design
problem was introduced in [12] and details can be found in [11]. The total mass of
the actuator has to be minimized, while the mass of the coil is constrained to 10 g.
Thus, the cost function is the total mass of the device. The force at coil position
D = 4.25 mm should be kept at 5 N and the magnetic flux density in three regions
of the core should not exceed 1 T. In the fine model the constraints are evaluated by
the same FE model as used in the two previous design problems. In the coarse model
the constraints are based on a MEC model. Each coarse model related optimization
is solved by SQP. Either MM or SM is applied for the constraints evaluation.

Numerical results for this problem are shown in Table 3. SM and MM show a
similar behaviour: convergence is reached in seven or six fine constraint evaluations
respectively. Having the coarse model optimum z∗ as the initial guess, SQP con-
verges within 56 fine constraint evaluations. MM offers an additional advantage over
SM: the computation of the SM function p(x) is a very delicate issue [4], but MM
replaces it simply by the identity.
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Table 3. Computational efficiency of SM and MM for an example with seven design variables

# evals. total mass final design (mm)
SQP 56 81.86 g [8.543, 9.793, 11.489, 1.876, 3.876, 3.197, 2.524]
SM 7 81.11 g [8.500, 9.786, 11.450, 1.883, 3.838, 3.200, 2.497]
MM 6 81.45 g [8.500, 9.784, 11.452, 1.883, 3.860, 3.202, 2.515]

The initial guess for SQP is the coarse model optimum z∗.
The total amount of work is approximately equal to the cost of the fine model constraint

evaluations (# evals.).

7 Conclusions

The space-mapping technique aims at accelerating expensive optimization proce-
dures by combining problem descriptions with different degrees of accuracy. In nu-
merical analysis, for the solution of operator equations, the same principle is known
as defect correction iteration.

When analyzing the behaviour of space-mapping iteration, it is important to
know the notions of reachability of a design and flexibility of the underlying models.
One can show that if neither the design is reachable nor the models are equally flex-
ible, space mapping iteration does generally not converge to the (accurate) solution
of the optimization problem.

Using the principle of defect correction iteration, we can repair this deficiency
and construct the manifold-mapping iteration, which is as efficient as space mapping,
but converges to the right solution.

Our findings are illustrated by an example from electromagnetics. Here parame-
ters for the design of a voice coil actuator are determined, using a finite element
discretization for the fine model and an equivalent magnetic circuit description for
the coarse one.

References

1. M.H. Bakr, J.W. Bandler, K. Madsen, and J. Søndergaard. Review of the space map-
ping approach to engineering optimization and modeling. Optimization and Engineering,
1(3):241–276, 2000.

2. M.H. Bakr, J.W. Bandler, K. Madsen, and J. Søndergaard. An introduction to the space
mapping technique. Optimization and Engineering, 2(4):369–384, 2001.

3. J.W. Bandler, R.M. Biernacki, S.H. Chen, P.A. Grobelny, and R.H. Hemmers. Space map-
ping technique for electromagnetic optimization. IEEE Trans. Microwave Theory Tech,
42:2536–2544, 1994.

4. J.W. Bandler, Q.S. Cheng, A.S. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen, and
J. Søndergaard. Space mapping: The state of the art. IEEE Transactions on Microwave
Theory and Techniques, 52:337–360, 2004.

5. J.W. Bandler, Q.S. Cheng, D.M. Hailu, and N.K. Nikolova. A space-mapping design
framework. IEEE Trans. Microwave Theory Tech., 52(11):2601–2610, 2004.



176 D. Echeverrı́a et al.
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1 Introduction

A large scale dynamical system can have a large number of modes. Like a general
square matrix can be approximated by its largest eigenvalues, i.e. by projecting it
onto the space spanned by the eigenvalues corresponding to the largest eigenvalues,
a dynamical system can be approximated by its dominant modes: a reduced order
model, called the modal equivalent, can be obtained by projecting the state space on
the subspace spanned by the dominant modes. This technique, modal approximation
or modal model reduction, has been successfully applied to transfer functions of
large-scale power systems, with applications such as stability analysis and controller
design, see [16] and references therein.

The dominant modes, and the corresponding dominant poles of the system
transfer function, are specific eigenvectors and eigenvalues of the state matrix. Be-
cause the systems are very large in practice, it is not feasible to compute all modes
and to select the dominant ones. This chapter is concerned with the efficient com-
putation of these dominant poles and modes specifically, and their use in reduced
order modeling. In Sect. 2 the concept of dominant poles and modal approximation
is explained in more detail. Dominant poles can be computed with specialized eigen-
solution methods, as is described in Sect. 3. Some generalizations of the presented
algorithms are shown in Sect. 4. The theory is illustrated with numerical examples
in Sect. 5 and 6 concludes.

Part of the contents of this chapter is based on [15, 16]. The pseudocode
algorithms presented in this chapter are written using Matlab-like [21] notation.

2 Transfer Functions, Dominant Poles and Modal Equivalents

Throughout this section and the next, only single-input single-output (SISO) transfer
functions are considered. In Sect. 4, the theory is generalized to multi-input multi-
output (MIMO) transfer functions.
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The transfer function of a SISO linear, time invariant system{
ẋ(t) = Ax(t) + bu(t)
y(t) = c∗x(t) + du(t),

where A ∈ R
n×n, x(t),b, c ∈ R

n and u(t), y(t), d ∈ R, is defined as

H(s) = c∗(sI −A)−1b + d, (1)

where I ∈ R
n×n is the identity matrix and s ∈ C.

The eigenvalues λi ∈ C of the matrix A are the poles of transfer function (1). An
eigentriplet (λi,xi,yi) is composed of an eigenvalue λi of A and the corresponding
right and left eigenvectors xi,yi ∈ C

n:

Axi = λixi, xi �= 0,
y∗

iA = λiy∗
i , yi �= 0.

Assuming that A is a nondefective matrix, the right and left eigenvectors can be
scaled so that y∗

i xi = 1. Furthermore, it can be shown that left and right eigenvectors
corresponding to distinct eigenvalues are orthogonal: y∗

i xj = 0 for i �= j. The
transfer function H(s) can be expressed as a sum of residues Ri over first order
poles [10]:

H(s) =
n∑

i=1

Ri

s− λi
+ d, (2)

where the residues Ri are

Ri = (c∗xi)(y∗
i b).

A possible definition of a dominant pole follows from inspection of (2):

Definition 1. A pole λi of H(s) with corresponding right and left eigenvectors xi

and yi (y∗
i xi = 1) is called dominant if R̂i=|Ri|/|Re(λi)|=|(c∗xi)(y∗

i b)|/|Re(λi)|
is relatively large compared to R̂j , j �= i.

The quantity R̂i will be referred to as the dominance index of pole λi. It follows
from this definition that a dominant pole is well observable and controllable. This
can also be observed from the Bode magnitude plot of H(s), where peaks occur at
frequencies close to the imaginary parts of the dominant poles of H(s). If the poles
are ordered to decreasing R̂i, a so called transfer function modal equivalent can be
defined as follows.

Definition 2. A transfer function modal equivalent Hk(s) is an approximation of a
transfer function H(s) that consists of k < n terms:

Hk(s) =
k∑

j=1

Rj

s− λj
+ d. (3)
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A modal equivalent that consists of the most dominant terms determines the effective
transfer function behavior [20]. If X ∈ C

n×k and Y ∈ C
n×k are matrices having

the left and right eigenvectors yi and xi of A as columns, such that Y ∗AX = Λ =
diag(λ1, . . . , λk), with Y ∗X = I , then the corresponding (complex) reduced system
follows by setting x = Xx̃:{

˙̃x(t) = Λx̃(t) + (Y ∗b)u(t)
ỹ(t) = (c∗X)x̃(t) + du(t).

For stable systems, the error in the modal equivalent can be quantified as [7]

‖H −Hk‖∞ = ‖
n∑

j=k+1

Rj

s− λj
‖∞

≤
n∑

j=k+1

|Rj |
|Re(λj)|

,

where ‖H‖∞ is the operator norm induced by the 2-norm in the frequency domain
[2,7]. An advantage of modal approximation is that the poles of the modal equivalent
are also poles of the original system.

It should be stressed that there are more definitions of a dominant pole, see [1,7,
22]. The definition often depends on the application: in stability analysis for instance,
the poles with positive real parts are considered as the dominant poles. Throughout
this chapter, Def. 1 is used.

3 Computing Dominant Poles

3.1 Introduction

The poles of transfer function (1) are the λ ∈ C for which lims→λ |H(s)| = ∞.
Consider now the function

G : C −→ C : s �→ 1
H(s)

. (4)

For a pole λ of H(s), lims→λ G(s) = 0. In other words, the poles are the roots of
G(s) and a good candidate to find these roots is Newton’s method. This idea is the
basis of the Dominant Pole Algorithm (DPA) [11]. Because the direct transmission
term d has no influence on the dominance of a pole, d = 0 unless stated otherwise.

3.2 Dominant Pole Algorithm (DPA)

The derivative of G(s) (4) with respect to s is given by

G′(s) = −H ′(s)
H2(s)

. (5)
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The derivative of H(s) (1) to s is

H ′(s) = −c∗(sI −A)−2b, (6)

where it is used that the derivative of the inverse of a square matrix A(s) is given by
d[A−1(s)]/ds = −A−1(s)A′(s)A−1(s). Equations (5) and (6) lead to the following
Newton scheme:

sk+1 = sk − G(sk)
G′(sk)

= sk +
1

H(sk)
H2(sk)
H ′(sk)

= sk − c∗(skI −A)−1b
c∗(skI −A)−2b

. (7)

The formula (7) was originally derived in [3]. Using x = (skI − A)−1b and y =
(skI − A)−∗c, an implementation of this Newton scheme is Alg. 1, also known as
the Dominant Pole Algorithm (DPA) [11]. The two linear systems that need to be
solved in step 3 and 4 of Alg. 1 can be efficiently solved using one LU -factorization
LU = skI − A, by noting that U∗L∗ = (skI − A)∗. It will be assumed in this
chapter that an exact LU -factorization is available, although this may not always be
the case for real-life examples. If an exact LU -factorization is not available, one has
to use inexact Newton schemes, such as Jacobi-Davidson style methods [9, 19].

For nondefective A, Alg. 1 converges asymptotically quadratically, but the so-
lution depends on the initial estimate and hence is not guaranteed to be the most
dominant pole. For defective A, the algorithm may fail, because the left and right
eigenvector of a defective eigenvalue are orthogonal and hence y∗x → 0 in step 5 of
Alg. 1. The update in step 5 can be written as the two-sided Rayleigh quotient [14]

sk+1 =
y∗Ax
y∗x

. (8)

3.3 Subspace Accelerated Dominant Pole Algorithm

While DPA computes a single dominant pole, in practice usually more dominant
poles are wanted. The Subspace Accelerated Dominant Pole Algorithm (SADPA)
[16] is a generalization of DPA to compute more than one dominant pole. SADPA has
three major improvements compared to DPA. Firstly, it uses subspace acceleration,
a well-known technique for iterative methods. Secondly, a new selection strategy is
used to select the most dominant pole approximation and corresponding right and
left eigenvector approximation every iteration. Thirdly, deflation is used to avoid
convergence to eigentriplets that are already found. The ideas, leading to SADPA
(Alg. 2), are described in the following subsections.
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Algorithm 1: The Dominant Pole Algorithm (DPA)
INPUT: System (A,b, c), initial pole estimate s1 ∈ C, tolerance ε � 1
OUTPUT: Approximate dominant pole λ and corresponding right and left eigenvectors

x and y
1: Set k = 1
2: while not converged do
3: Solve x ∈ C

n from

(skI − A)x = b

4: Solve y ∈ C
n from

(skI − A)∗y = c

5: Compute the new pole estimate

sk+1 = sk − c∗x
y∗x

6: The pole λ = sk+1 has converged if

‖Ax − sk+1x‖2 < ε

7: Set k = k + 1
8: end while

Subspace Acceleration

A drawback of DPA is that information obtained in the current iteration is discarded
at the end of the iteration. The only information that is preserved is contained in
the new pole estimate sk+1. The vectors x and y, however, also contain information
about other dominant eigentriplets (i.e., components in the direction of the corre-
sponding eigenvectors) and the idea is to use this information as well. Reasoning
this way leads to a generalization of DPA.

A global overview of SADPA is shown in Alg. 2. Starting with an estimate s1,
the first iteration is equivalent to the first iteration of DPA, but instead of discarding
the corresponding right and left eigenvector approximations x1 and y1, they are kept
in spaces X and Y . In the next iteration, these spaces are expanded orthogonally
(step 5-6), by modified Gram-Schmidt (MGS) [6], with the approximations x2 and
y2 corresponding to the new estimate s2. In Sect. 3.3 it is explained how this new
pole estimate is computed. The subspaces grow in dimension and may contain better
approximations. This idea is known as subspace acceleration.

In the k-th iteration, k approximations λ̂i of the dominant poles are found by
computing the eigentriplets of the projected matrix pencil (Y ∗AX,Y ∗X) (step 7-8).
The question now is to determine which of these k approximations to use as estimate
sk+1 in the next iteration.
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Algorithm 2: Subspace Accelerated DPA
INPUT: System (A,b, c), initial pole estimate s1 and the number of wanted poles pmax,

tolerance ε � 1
OUTPUT: Approximate dominant pole triplets (λi, ri, li), i = 1, . . . , pmax

1: k = 1, pfound = 0, Λ = [ ]1×0, R = L = X = Y [ ]n×0 ([ ]n×0 denotes an empty
matrix of size n × 0)

2: while pfound < pmax do
3: Solve x ∈ C

n from

(skI − A)x = b

4: Solve y ∈ C
n from

(skI − A)∗y = c

5: X = Expand(X, R, L,x) {Alg. 4}
6: Y = Expand(Y, L, R,y) {Alg. 4}
7: Compute T = Y ∗AX and G = Y ∗X
8: (Λ̂, X̂, Ŷ ) = Sort(T, G, X, Y,b, c) {Alg. 3}
9: if ‖Ax̂1 − λ̂1x̂1‖2 < ε then

10: (Λ, R, L, X, Y ) =

Deflate(λ̂1, x̂1, ŷ1, Λ, R, L, X̂2:k, Ŷ2:k) {Alg. 5}
11: pfound = pfound + 1

12: Set λ̂1 = λ̂2, k = k − 1
13: end if
14: Set k = k + 1
15: Set the new pole estimate sk+1 = λ̂1

16: end while

Selection Strategy

In step 8 of Alg. 2, the new pole estimate sk+1 has to be determined. A possible
choice is to use the two-sided Rayleigh quotient (8) as it is used in DPA, but this
choice does not take full advantage of subspace acceleration. Here, however, also
another choice is possible, that is closer to the goal of computing the dominant poles.

Because in iteration k the interaction matrices T ∈ C
k×k and G ∈ C

k×k

are of low order k � n (see step 7 in Alg. 2), it is relatively cheap to com-
pute the full eigendecomposition of the pencil (T,G). This provides k approximate
eigentriplets (λ̂i, x̂i, ŷi). A natural thing to do is to choose the triplet (λ̂j , x̂j , ŷj)
with the most dominant pole approximation: compute the corresponding residues
R̂i = (c∗x̂i)(ŷ

∗
i b) of the k pairs and use the pole with the largest |R̂j |/|Re(λ̂j)|

as new estimate. Numerically, it is more robust to normalize x̂i and ŷi such that
‖x̂i‖2 = ‖ŷi‖2 = 1. Algorithm 3 orders the k approximate eigentriplets in decreas-
ing dominance. The SADPA then continues with the new estimate sk+1 = λ̂1.
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Algorithm 3: (Λ̂, X̂, Ŷ ) = Sort(T,G,X, Y,b, c)

INPUT: T, G ∈ C
k×k, X, Y ∈ C

n×k, b, c ∈ C
n

OUTPUT: Λ̂ ∈ C
n, X̂, Ŷ ∈ C

n×k with λ̂1 the pole approximation with largest scaled
residue magnitude and x̂1 and ŷ1 the corresponding approximate right and left
eigenvectors

1: Compute eigentriplets of the pair (T, G):

(λ̃i, x̃i, ỹi), i = 1, . . . , k

2: Compute approximate eigentriplets of A as (with ‖x̂i‖2 = ‖ŷi‖2 = 1)

(λ̂i = λ̃i, x̂i = Xx̃i, ŷi = Y ỹi), i = 1, . . . , k

3: Λ̂ = [λ̂1, . . . , λ̂k]

4: X̂ = [x̂1, . . . , x̂k]

5: Ŷ = [ŷ1, . . . , ŷk]

6: Compute residues R̂i = (c∗x̂i)(ŷ
∗
i b)

7: Sort Λ̂, X̂ , Ŷ in decreasing |R̂i|/|Re(λ̂i)| order

Deflation

At the end of every iteration, in step 9, a convergence test is done as in DPA: if for the
selected eigentriplet (λ̂j , x̂j , ŷj) the norm of the residual ‖Ax̂j − λ̂jx̂j‖2 is smaller
than some tolerance ε, it is considered to be converged. In general more dominant
eigentriplets are wanted and during the computation of the next eigentriplets, com-
ponents in the direction of already found eigenvectors may enter the search spaces X
and Y again. This may lead to repeated computation of the same eigentriplet. A well
known technique to avoid repeated computation is deflation [18].

If already the right and left eigenvectors xj and yj are found, then it can be
verified that, if the eigenvectors are exact, the matrix

Ã =
∏
j

(I −
xjv∗

j

v∗
jxj

) ·A ·
∏
j

(I −
xjv∗

j

v∗
jxj

)

has the same eigentriplets as A, but with the found eigenvalues transformed to zero
(see also [5, 9]): let x̂ be one of the k found exact right eigenvectors, i.e. x̂ ∈
{x1, . . . ,xk}. Then it follows from the orthogonality relations (see Sect. 2) that∏

j

(I −
xjy∗

j

y∗
jxj

) · x̂ = x̂ − x̂ = 0,

and hence Ãx̂ = 0. On the other hand, let x̂ /∈ {x1, . . . ,xk} be a right eigenvector
of A with eigenvalue λ̂. Then∏

j

(I −
xjy∗

j

y∗
jxj

) · x̂ = x̂,
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and hence Ãx̂ = λ̂x̂. The result for left eigenvectors follows in a similar way. In
finite arithmetic only approximations to exact eigentriplets are available and hence
the computed eigenvalues are transformed to η ≈ 0 (see also Sect. 3.3).

Using this, the space X needs to be orthogonally expanded with∏
j

(I −
xjy∗

j

y∗
jxj

) · x,

and similarly, the space V needs to be orthogonally expanded with∏
j

(I −
yjx

∗
j

x∗
jyj

) · y.

These projections are implemented with modified Gram-Schmidt (MGS) (see
Alg. 4).

Algorithm 4: X = Expand(X,R,L,x)

INPUT: X ∈ C
n×k with X∗X = I , R, L ∈ C

n×p, x ∈ C
n

OUTPUT: X ∈ C
n×(k+1) with X∗X = I and

xk+1 =
∏p

j=1(I − rj l
∗
j

l∗j rj
) · x

1: x =
∏p

j=1(I − rj l
∗
j

l∗j rj
) · x

2: x = MGS(X,x)
3: X = [X,x/‖x‖2]

If a complex eigenvalue has converged, its complex conjugate is also a pole and
the corresponding complex conjugate right and left eigenvectors can also be deflated.
The complete deflation procedure is shown in Alg. 5.

Further Improvements and Remarks

It may happen that the subspaces X and Y become high-dimensional, especially
when a large number of dominant poles is wanted. A common way to deal with this
is to do an implicit restart [18]: if the subspaces X and Y reach a certain maximum
dimension kmax � n, they are reduced to a dimension kmin < kmax by keeping
the kmin most dominant approximate eigentriplets; the process is restarted with the
reducedX and Y (already converged eigentriplets are not part of the active subspaces
X and Y ). This procedure is repeated until all poles are found.

The approximate residues R̂i can be computed without computing the approx-
imate eigenvectors explicitly (step 2 and step 6 of Alg. 3): if the x̃i and ỹi are
scaled so that ‖ỹi‖2 = ‖x̃i‖ = 1, then it follows that the R̂i can be computed
as R̂i = ((c∗X)x̃i)(ỹ

∗
i (Y

∗b)) (= (c∗x̂i)(ŷ
∗
i b)).



Modal Approximation and Computation of Dominant Poles 185

Algorithm 5:
(Λ,R,L, X̃, Ỹ ) = Deflate(λ,x,v, Λ,R, L,X, Y )
INPUT: λ ∈ C, x,y ∈ C

n, Λ ∈ C
p, R, L ∈ C

n×p,
X, Y ∈ C

n×k

OUTPUT: Λ ∈ C
q , R, L ∈ C

n×q ,X̃, Ỹ ∈ C
n×k, where q = p + 1 if λ has zero imagin-

ary part and q = p + 2 if λ has nonzero imaginary part
1: Λ = [Λ, λ]
2: R = [R,x]
3: L = [L,y]
4: if imag(λ) �= 0 then
5: {Also deflate complex conjugate}
6: Λ = [Λ, λ̄]
7: R = [R, x̄]
8: L = [L, ȳ]

9: end if
10: X̃ = Ỹ = [ ]n×0

11: for j = 1, . . . , k do
12: X̃ = Expand(X̃, R, L, Xj)

13: Ỹ = Expand(Ỹ , L, R, Yj)
14: end for

Furthermore, as more eigentriplets have converged, approximations of new
eigentriplets may become poorer or convergence may be hampered, due to round-
ing errors in the orthogonalization phase and the already converged eigentriplets. It
is therefore advised to take a small tolerance ε < 10−10. Besides that, as the esti-
mate converges to a dominant pole, the right and left eigenvectors computed in step 3
and 4 of algorithm 2 are usually more accurate than the approximations computed in
the selection procedure (although in exact arithmetic they are equal). In the deflation
phase, it is therefore advised to take the most accurate of both.

Deflation can be implemented more efficiently in the following way: let x and y
be right and left eigenvectors for eigenvalue λ and scaled such that y∗x = 1, with
residue R = (c∗x)(y∗b). With bd = (I − xy∗)b and cd = (I − yx∗)c, it follows
that the residue of λ in Hd(s) = cd(sI − A)−1bd is transformed to Rd = 0, while
the residues of the remaining poles are left unchanged. Since (sI − A)−1bd ⊥ y
and (sI − A)−∗cd ⊥ x, the orthogonalizations against found eigenvectors in step 5
and 6 of Alg. 2 are not needed any more (provided b and c are replaced by bd and
cd, respectively).

SADPA requires only one initial estimate. If rather accurate initial estimates are
available, one can take advantage of this in SADPA by setting the next estimate after
deflation to a new initial estimate (step 15 of Alg. 2).

Every iteration, two linear systems are to be solved (step 3 and 4). As was
also mentioned in Sect. 3.2, this can be efficiently done by computing one LU -
factorization and solving the systems by using L and U , and U∗ and L∗, respectively.
Because in practice the system matrixA is often very sparse, computation of theLU -
factorization can be relatively inexpensive.
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The selection criterion can easily be changed to another of the several existing
indices of modal dominance [1, 7, 22]. Furthermore, the strategy can be restricted to
considering only poles in a certain frequency range. Also, instead of providing the
number of wanted poles, the procedure can be automated even further by providing
the desired maximum error |H(s) − Hk(s)| for a certain frequency range: the pro-
cedure continues computing new poles until the error bound is reached. Note that
such an error bound requires that the transfer function of the complete model can be
computed efficiently.

4 Generalizations

In this section, three variants of the dominant pole algorithm presented in the pre-
vious section are briefly discussed. Section 4.1 generalizes the theory to descrip-
tor systems. In Sect. 4.2, the theory is extended to multi-input multi-ouput systems.
A variant of DPA that computes the dominant zeros of a transfer function is described
in Sect. 4.3.

4.1 Descriptor Systems

A more general representation of a dynamical system is{
Eẋ(t) = Ax(t) + bu(t)
y(t) = c∗x(t) + du(t),

(9)

where A,E ∈ R
n×n, x(t),b, c ∈ R

n and u(t), y(t), d ∈ R. The corresponding
transfer function is

H(s) = c∗(sE −A)−1b + d.

The case E = I has been discussed already in Sect. 2. The descriptor system (9)
arises for instance in electrical circuit simulation (A = G, E = C) and the sparse de-
scriptor formulation of power systems (see for instance [15, 16]). The pencil (A,E)
is assumed to be regular, that is, A − λE is singular only for a finite number of
λ ∈ C. If E is singular, system (9) is a system of differential-algebraic equations
(DAE). If E is nonsingular, it is a system of ordinary differential equations (ODE).

The algorithms presented in this chapter can easily be adapted to handle (sparse)
descriptor systems of the form (9). The changes essentially boil down to replacing I
by E on most places and noting that for eigentriplets (λj ,xj ,yj) with distinct finite
λj , the relation y∗

iExj = 0, i �= j holds, and that for nondefective finite eigenvalues,
the eigenvectors can be scaled so that y∗

iExi = 1. The modes corresponding to
eigenvalues at infinity do not contribute to the effective transfer function behavior.
For completeness, the changes are given for each algorithm:

• Algorithm 1:
– Replace I by E in step 3 and 4.
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– Step 5 becomes

sk+1 = sk − c∗x + d

y∗Ex
.

– The criterion in step 6 becomes

‖Ax − sk+1Ex‖2 < ε.

• Algorithm 2:
– Replace I by E in step 3 and 4.
– Replace step 5 and 6 by

X = Expand(X,R,E∗ · L,x),
Y = Expand(Y,L,E ·R,y).

– In step 7, use G = Y ∗EX .
– The criterion in step 9 becomes

‖Ax̂1 − λ̂1Ex̂1‖2 < ε.

• Algorithm 5:
– Replace step 12 and 13 by

X̃ = Expand(X̃, R,E∗ · L,Xj),

Ỹ = Expand(Ỹ , L,E ·R, Yj).

4.2 MIMO Systems

For a multi-input multi-output (MIMO) system{
Eẋ(t) = Ax(t) +Bu(t)
y(t) = C∗x(t) +Du(t),

where A,E ∈ R
n×n, B ∈ R

n×m, C ∈ R
n×p, x(t) ∈ R

n, u(t) ∈ R
m, y(t) ∈ R

p

and D ∈ R
p×m, the transfer function H(s) : C −→ C

p×m is defined as

H(s) = C∗(sE −A)−1B +D. (10)

The dominant poles of (10) are those s ∈ C for which σmax(H(s)) → ∞. For
square transfer functions (m = p), there is an equivalent criterion: the dominant
poles are those s ∈ C for which λmin(H−1(s)) → 0. This leads, for square transfer
functions, to the following Newton scheme:

sk+1 = sk − 1
µmin

1
v∗C∗(skE −A)−2Bu

,

where (µmin,u,v) is the eigentriplet of H−1(sk) corresponding to λmin(H−1(sk)).
An algorithm for computing the dominant poles of a MIMO transfer function can
be readily derived from Alg. 1. The reader is referred to [13] for the initial MIMO
DPA algorithm and to [15] for an algorithm similar to SADPA, generalizations to
non-square MIMO systems and more details.



188 J. Rommes

4.3 Computing Zeros of a Transfer Function

The zeros of a transfer function H(s) = c∗(sE − A)−1b + d are those s ∈ C for
which H(s) = 0. An algorithm, very similar to Alg. 1, can be derived by noting that
a Newton scheme for computing the zeros of a transfer function is given by

sk+1 = sk +
c∗(skE −A)−1b + d

c∗(skE −A)−2b
.

A slightly different formulation can be found in [12].

5 Numerical Examples

5.1 A Small Test System

For illustrational purposes, SADPA was applied to a transfer function of the New
England test system, a model of a power system. This small benchmark system has
66 state variables (for more information, see [11]). The tolerance used was ε =
10−10 and no restarts were used. Every iteration, the pole approximation λ̂j with
largest |R̂j |/|Re(λ̂j)| was selected. Table 1 shows the found dominant poles and the
iteration number in which the pole converged. Bodeplots of two modal equivalents
are shown in Fig. 1 and Fig. 2. The quality of the modal equivalent increases with
the number of found poles, as can be observed from the better match of the exact and
reduced transfer function.

5.2 A Large-Scale Descriptor System

The Brazilian Interconnected Power System (BIPS) is a year 1999 planning model
that has been used in practice (see [16] for more technical details). The size of the
sparse matrices A and E is n = 13, 251 (the number of states in the dense state
space realization is 1, 664). The corresponding transfer function has a non-zero direct
transmission term d. Figure 3 shows the frequency response of the complete model
and the reduced model (41 states) together with the error. Both the magnitude and
the phase plot show good matches of the exact and the reduced transfer functions
(a relative error of approximately ‖H(s) − Hk(s)‖/‖Hk(s)‖ = 0.1, also for the

Table 1. Results for SADPA applied to the New England test system (s1 = 1i).

#poles #states new pole iteration Bodeplot
1 2 −0.4672 ± 8.9644i 13 -
2 4 −0.2968 ± 6.9562i 18 -
3 5 −0.0649 21 Fig. 1
4 7 −0.2491 ± 3.6862i 25 -
5 9 −0.1118 ± 7.0950i 26 -
6 11 −0.3704 ± 8.6111i 27 Fig. 2
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Fig. 1. Bode plot of modal equivalent, complete model and error for the transfer function of
the New England test system (5 states in the modal equivalent, 66 in the complete model).
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Fig. 2. Bode plot of modal equivalent, complete model and error for the transfer function of
the New England test system (11 states in the modal equivalent, 66 in the complete model).
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Fig. 3. Bode plot of modal equivalent, complete model and error for transfer function
Psc(s)/Bsc(s) of BIPS (41 in the modal equivalent, 1664 in the complete model).

DC-gain H(0)). Figure 4 shows the corresponding step response (step u = 0.01)1.
The reduced model nicely captures the system oscillations. The reduced model (30
poles, 56 states) was computed by SADPA in 341 LU -factorizations (kmin = 1,
kmax = 10). This reduced model could be reduced further to 41 states (22 poles) by
removing less dominant contributions, without decreasing the quality of the reduced
model much.

5.3 A PEEC Example

This descriptor model arises from a partial element equivalent circuit (PEEC) of a
patch antenna structure and the dimension of the matrices A and E is n = 480
(see [4, 17, 23] for more details and the model data). The system is known as a diffi-
cult problem, because it has many poles close to each other [8]. Figure 5 shows the
Bodeplot of the complete model and the reduced model (45 poles, 89 states) com-
puted by SADPA (initial estimate s1 = 100i, kmin = 5, kmax = 15). The approxi-
mation is almost exact for the frequency range [0.1, . . . , 102] rad/sec. For frequencies
higher than 102 rad/sec, the quality is less good.

1 If hk(t) is the inverse Laplace transform of Hk(s) (3), the step response for step u(t) = c
of the reduced model is given by y(t) =

∫ t

0
h(t)u(t) = c(

∑k
i=1(

Ri
λi

(exp(λit)− 1))+d).
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Fig. 4. Step responses for transfer function Psc(s)/Bsc(s) of BIPS, complete model and
modal equivalent (41 states in the modal equivalent, 1664 in the complete model, step distur-
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6 Conclusions

The algorithms presented in this chapter are efficient, automatic methods to compute
dominant poles of large-scale transfer functions. It has been shown how the corre-
sponding left and right eigenvectors can be used to construct a reduced order model,
also known as the modal equivalent, of the original system. Although the methods
may not be successful for every system, the numerical results for real-life systems
and benchmarks indicate that the methods are applicable to a large class of systems.
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1 Introduction

Saddle point problems arise frequently in many applications in science and engineer-
ing, including constrained optimization, mixed finite element formulations of partial
differential equations, circuit analysis, and so forth. Indeed the formulation of most
problems with constraints gives rise to saddle point systems. This paper provides a
concise overview of iterative approaches for the solution of such systems which are
of particular importance in the context of large scale computation. In particular we
describe some of the most useful preconditioning techniques for Krylov subspace
solvers applied to saddle point problems, including block and constraint precondi-
tioners.

Many applied problems can be stated in the form of constrained minimization
problems. Frequently, such problems are infinite-dimensional and highly nonlinear.
Discretization results in finite-dimensional problems of large size. These problems
are usually replaced by a sequence of quadratic minimization problems subject to
linear equality constraints:

min J(u) = 1
2u

TAu− fTu (1)
subject to Bu = g . (2)

Here A ∈ R
n×n is symmetric positive semidefinite, and B ∈ R

m×n, with m < n;
f ∈ R

n and g ∈ R
m are given vectors. The first-order optimality conditions are

given by the linear system [
A BT

B O

] [
u

p

]
=
[
f

g

]
. (3)

∗∗ The work of the first author was supported in part by the National Science Foundation grant
DMS-0511336.
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In (3), p ∈ R
m is a vector of Lagrange multipliers . Linear systems of the form (3)

are known as saddle point problems, since any solution (u, p) of (3) is a saddle point
of the Lagrangian function

L(u, p) = 1
2u

TAu− fTu+ (Bu− g)T p .

Large linear systems in saddle point form also arise from inherently discrete physical
models, such as mechanical structures [41] and RCL circuits [17].

More generally, we consider linear systems of the form

Ax =
[
A BT

B −C

] [
u

p

]
=
[
f

g

]
= b , (4)

with A and B as before and C ∈ R
m×m symmetric and positive semidefinite. Sys-

tems of the form (4) with a nonzero (2,2) block arise, for instance, in the context
of interior point methods for constrained optimization [32]. Other examples are pro-
vided by mixed finite elements for incompressible flow problems, when some form
of pressure stabilization is included in the discretization [13], and by the modeling
of slightly compressible materials in linear elasticity theory [7].

Typically, A is large and sparse and (4) must be solved iteratively, usually by
means of Krylov subspace algorithms [42]. Unfortunately, Krylov methods tend to
converge very slowly when applied to saddle point systems, and good precondition-
ers are needed to achieve rapid convergence. In the last few years, much work has
been devoted to developing effective preconditioners for saddle point systems. The
goal of this paper is to provide a concise overview of such techniques. Due to space
limitations, we focus mainly on three widely applicable classes of preconditioning
techniques: block diagonal (or triangular) preconditioners, constraint precondition-
ers, and HSS preconditioning. For a more extensive survey of these and other tech-
niques, see [3]. See further [13] for a thorough discussion of saddle point problems
arising in fluid dynamics.

2 Properties of Saddle Point Systems

If A is nonsingular, the saddle point matrix A admits the following block triangular
factorization:

A =
[
A BT

B −C

]
=
[

I O

BA−1 I

] [
A O

O S

] [
I A−1BT

O I

]
, (5)

where S = −(C+BA−1BT ) is the Schur complement of A in A. Several important
properties of the saddle point matrix A can be derived on the basis of (5). To begin
with, it is clear that A is nonsingular if and only if S is. Furthermore, since (5)
defines a congruence transformation, we see that A is indefinite with n positive and
m negative eigenvalues if A is symmetric positive definite (SPD).
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There are some important applications in which A is symmetric positive semi-
definite and singular, in which case there is no block factorization of the form (5).
If C = O and B has full rank, then A is invertible if and only if the null spaces of
A and B satisfy N (A) ∩ N (B) = {0}. In this case A is, again, indefinite with n
positive and m negative eigenvalues. In some important applications A is SPD and B
is rank deficient and the linear system (4) is singular but consistent. Generally speak-
ing, the singularity of A does not cause any serious problem for iterative solvers;
see [13, Section 5.3] for a discussion.

It is interesting to note that the simple stratagem of changing the sign of the lastm
equations in (4) leads to a linear system with completely different spectral properties.
Indeed, assuming that A is SPD and C is symmetric positive semidefinite, it is easy
to see that the (nonsymmetric) coefficient matrix

Â =
[
A BT

−B C

]
(6)

is positive definite, in the sense that its spectrum is contained in the right half-plane
!(z) > 0. Hence, −Â is a stable matrix, an important property in circuit modeling;
see [17, Section 4.3]. Furthermore, when certain (reasonable) conditions on A, B
and C are met, it can be shown that Â is diagonalizable and has all the eigenvalues
real and positive. In other words, there exists a nonstandard inner product on R

n+m

relative to which Â is SPD; see [5] for details.
Regardless of the formulation of the saddle point system (symmetric indefinite

or nonsymmetric positive definite), the convergence of Krylov subspace methods is
almost always extremely slow unless a good preconditioner is available.

3 Preconditioned Krylov Subspace Methods

The well-known Conjugate Gradient method [25] which is widely used for the
iterative solution of symmetric definite matrix systems is not in general robust for in-
definite matrix systems. The main iterative approaches for indefinite matrix systems
are the MINRES and SYMMLQ algorithms [31] which are based on the Lanczos
procedure [28]. These algorithms (see [14] for a comprehensive and accessible de-
scription) require any preconditioner to be symmetric and positive definite. An al-
ternative, which allows the use of symmetric and indefinite preconditioning (but
has less clear theoretical convergence properties) is the Symmetric QMR (SQMR)
method [19]. Even for indefinite problems, however, Conjugate Gradient methods
can be employed with specific types of preconditioner: see the section on Constraint
Preconditioning below.

The important feature of all of these methods is that at each iteration only one
matrix times vector multiplication and a small number of vector operations (dot prod-
ucts and vector updates) are required. For sparse or structured matrices, the matrix
times vector product may be efficiently computed and so the main issue concerning
the overall computational work in the iterative solution of a linear system with such
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methods is the number of iterations it takes for convergence to an acceptable accu-
racy. Preconditioning is usually vital to ensure that this number is kept acceptably
small. Methods which guarantee some monotonic reduction in a relevant quantity
at each iteration are favoured in a number of situations: the MINRES method has
such a property and so is sometimes regarded as the method of choice, however
the SYMMLQ method has a related ‘Petrov-Galerkin’ property and is favoured for
reasons of numerical stability when many iterations are required (see [40]).

For a generic linear system
Ax = b (7)

where A is symmetric (and either indefinite or definite), the MINRES method com-
putes a sequence of iterates {xk} for which the residual rk = b − Axk minimizes
‖rk‖ over the (shifted or affine) subspace

r0 + span(Ar0, . . . ,Akr0). (8)

The iterates themselves belong to the Krylov subspace

x0 + Kk(A, r0) = x0 + span(r0,Ar0, . . . ,Ak−1r0) (9)

where x0 is the initial iterate (the initial ‘guess’) and r0 the corresponding residual.
This minimization property leads immediately to a description of the convergence
properties of the MINRES method: since any vector, s say, in the space (8) can be
written as s = q(A)r0 where q is a polynomial of degree k with constant term equal
to one (ie. q(z) = 1 + α1z + . . .+ αkz

k for some coefficients αi), we have that

‖rk‖ ≤ ‖q(A)r0‖ ≤ ‖q(A)‖‖r0‖. (10)

Now the diagonalization of the symmetric matrix A as A = XΛXT where Λ is
the diagonal matrix of eigenvalues and the matrix X is the orthogonal matrix of
eigenvectors ensures that

‖q(A)‖ = ‖Xq(Λ)XT ‖ = ‖q(Λ)‖ (11)

because the Euclidean norm is invariant under orthogonal transformations. Further,
since q(Λ) is a diagonal matrix we have that

‖rk‖ ≤ min
q∈Πk,q(0)=1

max
z∈σ(A)

‖q(z)‖‖r0‖. (12)

Here, Πk is the set of (real) polynomials of degree k and σ(A) is the set of eigenval-
ues of A. Thus for a real symmetric matrix, convergence depends only on its eigen-
values: if there are only a few distinct eigenvalues or they are sufficiently clustered
away from the origin then there are polynomials of low degree which will be small
at the eigenvalues. At each additional iteration the degree increases by one and so
reasonable accuracy is quickly achieved in such cases. Various constructions based
on the Chebyshev polynomials can give more explicit convergence bounds, but these
are somewhat less straightforward to write down for indefinite rather than definite
symmetric matrices (see for example [23] or [13]).
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Preconditioning correponds to the application of a matrix (or linear operator), P
to the original linear system to yield a different linear system for which convergence
of the iterative method will be significantly faster. In most situations P must be
constructed so that it is easy/fast to solve linear systems of the form Pz = r for z
when r is given. Conceptually one can think of preconditioned iteration as applying
the original iteration to

P−1Ax = P−1b (13)

however it would in almost all cases be a really bad move to create such a non-
symmetric linear system when A is originally symmetric: the iterative solution of
nonsymmetric linear systems is much less reliable and/or more expensive in general
and most practitioners would believe that preserving symmetry is really valuable.
For MINRES, a symmetric and positive definite preconditioner P must be employed
so that we can write P = LLT for some matrix L (eg. either the Cholesky factor or
the matrix square root). We emphasize that this is only a mathematical artifact used
to derive the method: no such factorization is required in practice—though of course
such a factorization could be used if it were available. Where the preconditioner is
not provided in factored form, the preconditioned MINRES method as given for ex-
ample in [13, page 289] is used. In this way the MINRES iteration is effectively
applied to the symmetric system

L−1AL−T y = L−1b, LTx = y (14)

and convergence will depend on the eigenvalues of the symmetric and indefinite
matrix L−TAL−1. Via the obvious similarity tranformation

L−TL−1AL−TLT = P−1A (15)

it is clear that the important eigenvalues are those of the matrix P−1A, hence the
convergence of the preconditioned MINRES iteration is described via (12) with the
eigenvalue spectrum σ(A) replaced in the preconditioned case by σ(P−1A).

For SYMMLQ, there are similar considerations and good preconditioners should
satisfy similar criteria. SQMR would generally only be used with a symmetric and in-
definite preconditioner and there are no estimates of convergence in this case, though
practical experience in a number of application areas indicates that SQMR conver-
gence can be very good with a suitable indefinite preconditioner (see [18]).

In the next sections we discuss a number of possible approaches to precondition-
ing indefinite symmetric matices of saddle point type.

4 Block Preconditioners

Block preconditioners are based more or less explicitly on the block factor-
ization (5). The performance of such preconditioners depends on whether fast,
approximate solvers for linear systems involving A and the Schur complement S
are available [34].
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Assuming that A and −S = C + BA−1BT are both SPD, the essentially ideal
block diagonal preconditioner (as we shall see below) is

Pd =
[
A O

O −S

]
. (16)

Preconditioning of A with Pd results in the matrix

M = P−1
d A =

[
I A−1BT

−S−1B O

]
. (17)

The matrix M is nonsingular by assumption, is symmetrizable as described above
and, as pointed out for example in [30], it satisfies

(M− I)
(
M− 1

2
(1 +

√
5)I
) (

M− 1
2
(1 −

√
5)I
)

= O.

It follows that M is diagonalizable and has only three distinct eigenvalues,
namely 1, 1

2 (1 +
√

5), and 1
2 (1 −

√
5). Hence for each initial residual r0,

dimKn+m(M, r0) ≤ 3, which means that MINRES applied to the preconditioned
system with preconditioner Pd will terminate after at most three steps.

Similarly, the essentially ideal block triangular preconditioner is

Pt =
[
A BT

O ±S

]
. (18)

Choosing the minus sign in (18) results in a diagonalizable preconditioned ma-
trix with only two distinct eigenvalues equal to ±1. Choosing the plus sign yields
a preconditioned matrix with all the eigenvalues equal to 1; this matrix is non-
diagonalizable, but has minimum polynomial of degree two. For either choice of
the sign in (18), the non-symmetric iterative solver GMRES [37] is guaranteed to
converge in at most two steps in exact arithmetic.

Obviously, the ideal preconditioners Pd and Pt are not practical, since the exact
Schur complement S is generally a dense matrix and is not available. In practice, A
and S are replaced by some approximations, Â ≈ A and Ŝ ≈ S. If these approx-
imations are chosen appropriately, the preconditioned matrices have most of their
eigenvalues clustered around the eigenvalues of the ideally preconditioned matri-
ces P−1

d A and P−1
t A. Clearly, the choice of the approximations Â and Ŝ is highly

problem-dependent. Frequently Â and Ŝ are not explicitly available matrices; rather,
a prescription for computing the action of Â−1 and Ŝ−1 on given vectors is given.
For example, in mixed finite element formulations for incompressible flow problems
the block A represents a discretization of a second-order elliptic operator, and the
action of Â−1 on a vector can be computed by performing a small fixed number of
iterations of some multigrid scheme. A varying number of iterations here would give
a varying preconditioner for which a flexible outer iterative methods such as FGM-
RES [35] would be needed. The construction of good approximations Ŝ to the Schur
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complement S is generally less straightforward and is highly problem-dependent;
see [13, 38] for a detailed treatment in the case of incompressible flow problems.

Application of these techniques to more general saddle point problems arising in
constrained optimization is more problematic. In particular, in the absence of well-
understood elliptic operators it is unclear how to construct suitable approximations
Â ≈ A and Ŝ ≈ S. One possibility is to use incomplete factorizations of A to
build Â, but it is unclear how to construct good approximations to the (typically
dense) Schur complement S. Section 6 describes an alternative approach that has
been applied succesfully in optimization.

We conclude this section with a brief discussion of a possible connection between
block preconditioners based on approximate Schur complements and model order
reduction of time-invariant linear dynamical systems. Following [17, Section 4.3],
the (symmetric) transfer function of certain RCL subcircuits is the m × m matrix-
valued rational function

H(s) = B (sE −A)−1B , where A = AT , E = ET and s ∈ C . (19)

In practice, n can be in the millions while m is of the order of a few hundreds or
smaller. The goal of model order reduction is to find m ×m approximations to the
transfer function (19) of the form

Ĥ(s) = B̂ (sÊ − Â)−1B̂, where Â = ÂT , Ê = ÊT , (20)

where the order n̂ of Â and Ê is now small, typically of the same order
as m. Furthermore, the approximate transfer function Ĥ(s) must preserve certain
properties of the original function H(s) for the reduced-order model to be useful.
A number of techniques have been developed to efficiently construct such approxi-
mations, including matrix Padé and Padé-type approximants. The approximants can
be computed by means of (block) Lanczos methods; we refer the reader to [17] for
a survey. These techniques have proved very effective in practice, and it would be
interesting to investigate their use in constructing approximate Schur complements
Ŝ = B̂Â−1B̂T ≈ BA−1BT . The approximate Schur complement could be used in
turn to construct a block diagonal or block triangular preconditioner.

5 Augmented Lagrangian Formulations

The assumption that A is nonsingular may be too restrictive, and indeed A is singu-
lar in many applications. However, it is often possible to use augmented Lagrangian
techniques [6, 15, 16] to replace the original saddle point system with an equivalent
one having the same solution but in which the (1, 1) block A is now nonsingular.
Thus, block diagonal and block triangular preconditioners based on appproximate
Schur complement techniques may still be applicable. The augmented Lagrangian
idea can also be useful in cases where the (1, 1) block is highly ill-conditioned
and in order to trasform the original saddle point system into one that is easier to
precondition.
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The idea is to replace the original saddle point system (3) with the equivalent one[
A+BTWB BT

B O

] [
u

p

]
=
[
f +BTWg

g

]
. (21)

The m×m matrix W , to be suitably determined, is symmetric positive semidefinite.
The simplest choice is to take W = γIm (γ > 0). In this case the (1, 1) block in
(21) is nonsingular, and indeed positive definite, provided that A is positive definite
on the null space of B. The goal is to choose W so that system (21) is easier to solve
than the original one, particularly when using iterative methods. The choice of W is
highly problem-dependent; see, e.g., [4, 20] for discussions of this issue in different
settings.

It is important to keep in mind that there may be a trade-off between properties of
the (1, 1) block and properties of the augmented system (21). Consider for instance
the case where W = γIm. Then a possible preconditioner for (21) is given by

Pγ =
[
A+ γBTB BT

O −γ−1Im

]
.

It can be shown that the quality of this preconditioner, as measured in terms of
number of iterations only, increases as γ tends to infinity; for large values of γ, how-
ever, the (1, 1) block becomes increasingly ill-conditioned. This is clear when one
observes that for large γ the dominating term in the (1, 1) block becomes γBTB,
a singular matrix with a null space of dimension n −m. In practice, linear systems
involving A+γBTB will be solved inexactly, typically by some inner iteration, and
finding efficient approximate solvers may become very difficult for large values of
γ. The issue of variable preconditioning with an inner iteration would also arise. It is
therefore important to strike a balance between the rate of convergence of the outer
(preconditioned) iteration and the need for efficient approximate solution of linear
systems involving A+ γBTB.

Augmented Lagrangian techniques have been in use for many years in
constrained optimization problems. Recent work indicates that the augmented
Lagrangian approach may lead to powerful preconditioners for challenging prob-
lems in computational fluid mechanics and computational electromagnetics; see in
particular [4] and [24].

6 Constraint Preconditioning

The second main type of preconditioner for saddle point problems are of the general
form

P =
[
H BT

B O

]
(22)

where H ∈ R
n×n ( [27,29]). Since such an indefinite preconditioning matrix is itself

a saddle point matrix which corresponds to a different quadratic energy but the same
constraints as the original problem, it is called a ‘constraint preconditioner’.
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It is not evident that it is any easier to solve systems with this form of precondi-
tioner than with the original matrix A in (3); since one such solution is required at
each iteration this is a real issue. We will come back to this below, but firstly indicate
what is known about the effect on iterative convergence of the use of preconditioners
of the form (22).

The first point to notice is that the use of an indefinite preconditioner precludes
the simple use of MINRES which requires a definite preconditioner. However a key
observation is that by using the same constraint blocks in the preconditioner, the
Hestenes–Stiefel Conjugate Gradient algorithm can be used: this is because solution
of (3) with a preconditioner of the form (22) is equivalent to the solution of the pos-
itive definite symmetric system which would be derived by explicit elimination of
the constraints with a positive definite symmetric preconditioner derived by direct
elimination of these same constraints ([21]). This is a very attractive property since
the Conjugate Gradient method is well known to be a very effective method with
appropriate preconditioning for symmetric and positive definite systems. We empha-
size that a constraint preconditioner is required here—for example it is clear that if
no preconditioning were employed then Conjugate Gradients would not be a robust
method for the indefinite saddle point system. Another consequence is that iterates
for the primal variable u only are computed, so that the stopping criteria must reflect
this. The Lagrange multipliers can be recovered if desired.

Thus the use of a constraint preconditioner with CG ensures (in exact arithmetic)
that all of the iterates satisfy the constraints—only by employing a constraint pre-
conditioner is this guarenteed. This appears to be a very desirable property in the
context of Optimization when linear system solves are usually an inner part of an
outer iterative optimization algorithm.

Given the equivalence to a symmetric positive definite problem, one might
anticipate some special structure in the eigenvalues of the preconditioned matrix
P−1A; what is perhaps not expected is that this matrix should generically be non-
diagonalizable! As shown in [27] this is always the case, but this is only due to a high
multiplicity eigenvalue at 1: this eigenvalue has algebraic multiplicity 2m but only
m independent eigenvectors. In the language of canonical forms, the Jordan form
of this matrix has m 2 × 2 diagonal blocks. This means that P−1A − I has only
an m−dimensional kernel, but (P−1A − I)2 has the full 2m−dimensional kernel
corresponding the the eigenvalue at 1. This is highly attractive from the standpoint
of Krylov subspace iteration since only two iterations will eliminate the error in a
2m−dimensional subspace.

The outcome is that iterative convergence depends on how well H approximates
A in an n−m-dimensional subspace with only an additional two iterations required
for the eigenvalue at 1.

Returning to the solution of systems with a constraint preconditioner, there
are special situations where specific orthogonality properties enable easy solution:
see for example [33]. A general approach, however, involves not preselecting the
block H , but rather choosing it in an implicit fashion. One key approach is that based
on Schilders’ Factorization (see [9, 10, 12]); the idea is as follows. The factorization
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P =

⎡⎣B1
T O L1

B2
T L2 E

O O I

⎤⎦⎡⎣D1 O I

O D2 O

I O O

⎤⎦⎡⎣ B1 B2 O

O L2
T O

L1
T ET I

⎤⎦ , (23)

is exact for

A =
[
A BT

B O

]
=

⎡⎣A1,1 A1,2 B
T
1

A2,1 A2,2 B
T
2

B1 B2 O

⎤⎦
with A1,1, B1 ∈ R

m×m (and other blocks correspondingly) when

D1 = B1
−TA1,1B1

−1 − L1
TB1

−1 −B1
−TL1,

D2 = L2
−1(A2,2 −B2

TD1B2 − EB2 −B2
TET )L2

−T ,

E = A2,1B1
−1 −B2

TD1 −B2
TL1

TB1
−1,

but more importantly in our context, any choice ofD1,L1 andE and any nonsingular
choice of D2, L2 gives rise to a matrix of the form (22), i.e., gives rise to a constraint
preconditioner in a reordered block triangular factored form. In this way by making
choices for the blocks Di, Li and E in the factors in (23) a constraint preconditioner
with an implicitly defined (1, 1) block H is obtained in a form in which solutions to
preconditioner systems can easily be computed. The simplest choice would be⎡⎣ O O BT

1

O I BT
2

B1 B2 O

⎤⎦ =

⎡⎣B1
T O O

B2
T I O

O O I

⎤⎦⎡⎣O O I

O I O

I O O

⎤⎦⎡⎣B1 B2 O

O I O

O O I

⎤⎦ . (24)

It can be seen that it is always necessary to be able to compute the action ofB−1
1 , thus

it is important to be able to find a non-singular m×m leading block of the constraint
matrixB ∈ R

m×n possibly by reordering. A direct method (even for a dense system)
will require O(m3) computer (floating point) operations to achieve this, but sparsity
will reduce this estimate considerably—and then the exact choice of which columns
of B to reorder into B1 also is likely to have an effect. There have been particular
choices suggested for the special but important case of saddle point systems arising
from interior point Optimization algorithms where large penalty parameters arise at
least as convergence is approached (see [8]).

We comment that constraint preconditioners and Schilders-like factorisations for
regularized saddle point systems of the form[

A BT

B −C

]
(25)

where C is symmetric and positive semi-definite have also been described
(see [10, 11]).
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7 Other Techniques

Most preconditioning techniques that have been proposed in the literature on saddle
point problems can be reduced to one of the main classes of methods described in
the three sections above. For instance, the classical Uzawa method can be shown
to be a special type of block triangular preconditioner. Similarly, preconditioning
methods based on null-space (or dual variable) formulations, see for example [1],
are closely related to constraint preconditioning. An exception is represented by the
HSS preconditioner described in [2] and further analyzed in [39]. This preconditioner
is based on the nonsymmetric formulation[

A BT

−B C

] [
u

p

]
=
[
f

−g

]
, or Âx = b̂ . (26)

Here we assume that A and C are symmetric positive semidefinite. We have the
following splitting of Â into its symmetric and skew-symmetric parts:

Â =
[
A BT

−B C

]
=
[
A O

O C

]
+
[
O BT

−B O

]
= H + K . (27)

Note that H, the symmetric part of Â, is symmetric positive semidefinite since both
A and C are. Let α > 0 be a parameter. Similar in spirit to the classical ADI
(Alternating-Direction Implicit) method, we consider the following two splittings
of Â:

Â = (H + αI) − (αI − K) and Â = (K + αI) − (αI −H) .

Here I denotes the identity matrix of order n + m. The stationary HSS iteration is
then

xk+1 = xk + P−1
α rk, rk = b̂− Âxk ,

where the matrix P is given by

P ≡ Pα = 1
2α (H + αI)(K + αI) . (28)

Assuming that A is SPD and B has full rank, it has been shown in [2] that the
iterative process (28) is convergent to the unique solution of (26) for all α > 0.
However, the rate of convergence of the HSS iteration is rather slow, even with the
“optimal” choice of α. For these reasons it was proposed in [2] that GMRES or other
Krylov subspace methods should be used to accelerate the convergence of the HSS
method. In other words, the HSS method is best used as a preconditioner for (say)
GMRES rather than as a stationary iterative method. Note that as a preconditioner
we can use Pα = (H + αI)(K + αI) instead of the expression given in (28), since
the factor 1

2α has no effect on the preconditioned system. The spectral analysis of
HSS preconditioning for general saddle point problems can be found in [39] and [5].
The analysis shows that the eigenvalues of the preconditioned matrix are all real and
positive for all α > 0, and furthermore as α → 0 they all fall within two small
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intervals (0, ε1) and (2 − ε2, 2), with ε1, ε2 > 0 and ε1, ε2 → 0 as α → 0. This
suggests that α should be taken to be small, but not too small; experience suggests
that for a problem scaled so that A and C have unit nonzero diagonal entries, a
value of α between 0.1 and 0.5 is often a good choice. In practice, solves with the
shifted matrices H+αI and K+αI are performed inexactly for efficiency reasons.
Approximately solving linear systems involving H + αI is usually straightforward,
whereas solving linear systems involving the shifted skew-symmetric part K + αI
is slighly more complicated. This step requires the solution of a linear system of the
form {

αuk+1 +BT pk+1 = fk ,

−B uk+1 + αpk+1 = gk .
(29)

This can be accomplished by first eliminating uk+1 from the second equation using
the first one (Schur complement reduction), leading to a smaller (order m) linear
system of the form

(BBT + α2I) pk+1 = B fk + α gk . (30)

This is a linear system with an SPD coefficient matrix which can be approximately
solved by, e.g., a preconditioned Conjugate Gradient method. In this case, it is nec-
essary to use a flexible Krylov subspace method, such as FGMRES, for the outer
iteration; see [36].

8 Numerical Examples

We firstly present an example of block diagonal preconditioning for a problem in
incompressible fluid mechanics.

The underlying problem is the Stokes problem which is the particular case σ = 0
of the generalized Stokes problem:

σu − ν∇2u + ∇ p = f in Ω (31)
div u = 0 in Ω (32)

u = g on ∂Ω . (33)

Here u is the velocity and p the pressure (the Lagrange multiplier in this application).
Ω ⊂ R

d (d = 2, 3) is the domain of the partial differential equation with boundary
∂Ω on which we have assumed simple Dirichlet conditions. The parameter ν is the
kinematic viscosity which is taken to have the value one for the classical Stokes
problem. See [13] for details.

This first example is computed with a common mixed finite element formulation:
the block preconditioner combines a single simple multigrid V-cycle approximation
of A and a diagonal matrix to approximate S and is run using the freely available
IFISS software ( [26]). We include iteration counts (which are seen to be essentially
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Table 1. Block dimensions and number of MINRES iterations needed for 10−6 reduction in
residual for locally stabilized Q1−P0 mixed finite elements for Stokes flow in a cavity. Block
diagonal preconditioner: Â is one multigrid V-cycle with 1,1 relaxed Jacobi smoothing and Ŝ
is the diagonal pressure mass matrix. The cpu time (in seconds) is that required on the same
computer (a Sun sparcv9 502 MHz processor with 1024 Mb of memory). The cpu time is also
given for a sparse direct solve (UMFPACK in MATLAB).

grid n m iterations cpu time sparse direct cpu
64 × 64 8450 4096 38 14.3 6.8

128 × 128 33282 16384 37 37.7 48.0
256 × 256 132098 65536 36 194.6 897
512 × 512 526339 263169 35 6903 out of memory

Table 2. Block dimensions and number of Conjugate Gradient iterations needed for 10−6 re-
duction in the preconditioned residual for the simplest Schilders’ factorization preconditioner
(24).

test problem n m iterations
CVXQP1 S 100 50 44
CVXQP1 M 1000 500 28
CVXQP1 L 10000 5000 10

constant—indeed to reduce slightly—over a range of increasing problem dimension)
and cpu times on the same workstation. Timings for a direct solution are given for
comparison.

We can notice from Table 1 that for the largest-dimensional problem memory
becomes an issue: the sparse direct method runs out of memory completely and fails
for this problem and the timing for the iterative method is much greater than expected
presumably because of slower memory access times for the more remote levels of
cache which are needed for this problem.

To give an example of constraint preconditioning, we turn to problems from Op-
timization, specifically to a family of test problems from the CUTEr test set ([22]).
We present results only for the simplest Schilders’ factorization (24) for three of
the family of CVXQP1 test problems. As indicated in the section above, Conjugate
Gradient iteration is applicable with constraint preconditioning and this is applied
here. The number of Conjugate Gradient iterations to achieve a 10−6 reduction in
the preconditioned residual (defined only on the n−dimensional space of the primal
variable u as described above) are given in Table 2. Note that the three problems
are different: the comparison here is for the same relative reduction which gives the
decreasing iteration counts indicated. For these problems, the iteration counts would
be more similar for an absolute residual tolerance.

Our final numerical example demonstrates the performance of the HSS precon-
ditioner on the generalized Stokes problem.

In Table 3 we report the numerical results for Flexible GMRES with inexact
HSS preconditioning applied to a set of generalized Stokes problems. The discrete
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Table 3. Iteration count for 3D generalized Stokes problem, inexact HSS preconditioning.

σ ν = 0.1 ν = 0.01 ν = 0.001 ν = 10−6

1 45 27 16 13
10 32 19 15 12
20 30 18 14 11
50 28 15 13 11
100 25 14 12 10

Table 4. Results for 3D unsteady Stokes problem, ν = 0.001.

grid n m iterations cpu time
10 × 10 × 10 2700 1000 12 0.42
20 × 20 × 20 22800 8000 12 4.66
30 × 30 × 30 78300 27000 12 20.97
40 × 40 × 40 187200 64000 13 66.02

saddle point problems were generated in this case by the Marker-and-Cell (MAC)
finite difference discretization on a 40 × 40 × 40 grid for different values of σ
(= 1/∆t in the context of implicit solution of time-dependent problems) and ν.
Homogeneous Dirichlet boundary conditions were imposed on the velocities. Here
Ω = [0, 1] × [0, 1] × [0, 1]; the discrete problem has over 250,000 unknowns. The
parameter α was set to 0.5, and a zero initial guess was used. The outer iteration
was stopped when a reduction of the initial residual by six orders of magnitude was
reached. For the inexact inner solves we used Conjugate Gradients with incomplete
Cholesky preconditioning; the inner iterations were stopped as soon as a reduction
of the initial residual by one order of magnitude was attained. This only required 1-2
PCG iterations per inner linear solve. The iteration counts, which can be shown to be
largely independent of the grid size, improve for increasing σ and decreasing ν.

In Table 4 we show timings (in seconds) for an unsteady Stokes problem with
ν = 0.001 for different grids. Denoted by h the grid size, we let σ = h−1. We use
HSS preconditioning with α = 0.5. We also report the dimensions n and m and the
total number of FGMRES iterations. The test runs were done on one processor of a
SunFire V880 workstation with 8 CPUs and 16 GB of memory.

9 Conclusions

Saddle point problems arise naturally in many large scale computations, particularly
in the solution of PDEs by mixed finite elements, interior point methods for con-
strained optimization, weighted least squares, and so forth. The last decade has seen
considerable progress in the development of iterative solvers and preconditioners for
this class of problems. In this paper we have given a concise overview of some of
the most promising preconditioning techniques for linear systems in saddle point
form, in particular block and constraint preconditioning. We have also pointed out a
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possible connection between preconditioners based on approximate Schur comple-
ments and the approximation of matrix-valued transfer functions, an essential com-
ponent of model order reduction for time-invariant linear dynamical systems.
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Coupled Problems and Optimization held in Leiden, The Netherlands, on September
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for suggesting that we write the present overview, and for their careful reading of the
original manuscript.
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Summary. Balancing for linear time varying systems and its application to model reduction
via projection of dynamics (POD) are briefly reviewed. We argue that a generalization for
balancing nonlinear systems may be expected to be based upon three sound principles: 1) Bal-
ancing should be defined with respect to a nominal flow; 2) Only Gramians defined over small
time intervals should be used in order to preserve the accuracy of the linear perturbation model
and; 3) Linearization should commute with balancing, in the sense that the linearization of a
globally balanced model should correspond to the balanced linearized model in the original
coordinates.

The first two principles lead to local balancing, which provides useful information about
the dynamics of the system and the topology of the state space. It is shown that an integrability
condition generically provides an obstruction towards a notion of a globally balanced realiza-
tion in the strict sense. By relaxing the conditions of ”strict balancing” in various ways useful
system approximations may be obtained.

1 Introduction

Reduction techniques are routinely used to replace the relevant discretized PDE’s to
ODE models of much smaller dimension. Most existing methods pertain to linear
models and dynamics and fail to correctly model the nonlinear couplings and dy-
namics. Balancing for linear time invariant systems has been applied to problems
of model reduction (via the Projection of Dynamics (POD), also called “balanced
truncation”), in parameterization, sensitivity analysis and system identification. With
these initial successes, extensions a balanced realization to other classes of sys-
tems soon followed. Balancing for linear time-varying systems [SSV83, VK83,
SR02, VH98], and an alternative form of balancing, suitable for controller reduc-
tion, called LQG-balancing [Ve81a,Ve81b, JS83] were the first generalizations. This
chapter presents a possible approach towards generalizing balanced realizations to
nonlinear systems. In a series of papers [VG00, VG01b, Ve04, VG04] we extended
the linear balancing method to a class of nonlinear systems. While sharing many
similarities with the method first proposed by Scherpen [Sch94], there are some
fundamental differences. Whereas Scherpen took the notions of observability and
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reachability1 functions as a starting point, our method is rooted in earlier work for
linear time-varying systems. In particular, the Sliding-Interval-Balancing (SIB), pro-
posed in [Ve80, VK83], is here used as a stepping stone to the nonlinear case.

In Section 2, the principles behind balancing are motivated. Section 3 reviews
SIB, and some new results are presented. The proposed approach to (local) non-
linear balancing is given in Section 4, which forms the main part of the chapter.
The extension to global balancing is given in Section 5, where also an ‘obstruc-
tion’ is encountered. In Section 6 we introduce Mayer-Lie interpolation as a way
around this obstruction. Application to nonlinear model reduction is briefly dis-
cussed in Section 7. Final comments regarding the proposed solution are formulated
in Section 8.

Some of this work was performed and evolved over many years in collaboration
with Professor W. Steven Gray from the Old Dominion University.

2 Time Varying Linear Systems

2.1 Finite Time Gramians

For general time varying linear systems, we define the reachability and observability
map, and use adjoint operator techniques to solve various problems related to energy,
ambiguity and uncertainty. This sheds light on the role played by the Gramian ma-
trices (reachability and observability Gramian), and their subsequent importance in
model reduction. It is assumed that there are n states, m inputs and p outputs.

ẋ(t) = A(t)x(t) +B(t)u(t) (1)
y(t) = C(t)x(t) (2)

Let Φ(t, τ) be the transition matrix, satisfying for all t and τ , ∂
∂tΦ(t, τ) = A(t)

Φ(t, τ) with Φ(τ, τ) = I. The finite time reachability and observability Gramians
(for an interval of length δ > 0) are defined by

R(t, δ) =
∫ t

t−δ

Φ(t, τ)B(τ)B(τ)TΦ(t, τ)T dτ (3)

O(t, δ) =
∫ t+δ

t

Φ(τ, t)TC(τ)TC(τ)Φ(τ, t) dτ. (4)

In general, these n×n matrices depend explicitly on time t. It is well known that the
system is completely reachable and observable if these Gramians have full rank for
all t. In fact, the following results are standard, and are stated here without proof:

The Gramians are naturally obtained via the definition of adjoint operators. Let
K be an arbitrary operator taking vectors in a Hilbert space H1 to a Hilbert space H2.
Then the adjoint of K, denoted K∗, is a map from H2 to H1 defined via 〈y,Kx〉2 =
〈K∗y, x〉1. In what follows we make use of the finite dimensional vector space R

n

1 This author has a preference for ‘reachability’ over the term ‘controllability’, which appears
in the original work.
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with its standard inner product 〈x, y〉Rn = xT y. We also consider the input space
L2([t− δ, t],Rm) and the output space L2([t, t+ δ],Rp) of square integrable vector
functions.

2.2 Reachability Map

Definition 1. Associated with the system (2) we have the time-indexed family of
reachability maps

Lt : L2([t− δ, t],Rm) → R
n; Lt(u(·)) =

∫ t

t−δ

Φ(t, τ)B(τ)u(τ) dτ. (5)

Let the metric in the input (function) space be

∀u, v ∈ Lm
2 : 〈u(·), v(·)〉Lm

2
=
∫ t

t−δ

u(τ)T v(τ) dτ. (6)

It follows that the adjoint maps are given by

L∗
t : R

n → L2([t− δ, t],Rm); L∗
tx = B(·)TΦ(t, ·)T x. (7)

This gives at once some interpretations for the above defined Gramians. Two ‘energy’
related problems and one ‘uncertainty’ related problem will shed light on the role of
the reachability Gramian. We define an event as a state-time pair: (x, t) means that
at time t the system is in the state x.

Energy Interpretation 1

Reachability: Here we consider the reachability of the event (x, t) from the event
(0, t − δ). The minimum norm solution to Lt(u(·)) = x is given by u(·) = L∗

t (z),
where z is any solution to LtL

∗
t (z) = x. Note that LtL

∗
t : R

n → R
n is precisely

the reachability Gramian R(t, δ), and hence this problem is solvable in general if the
system is reachable (invertibility of the Gramian). In this case, it is easily shown that
this solution is in fact the one minimizing the squared norm (energy) ‖u‖2:

‖u‖2 = ‖x‖2
(LtL∗

t )−1 = xT (LtL
∗
t )

−1x
def= Ei(x). (8)

Interpretation: The cost associated with transfer of event (0, t − δ) ∈ R
n × R to

the event (x, t) is the above quadratic form in x, with weight R−1(t, δ). It relates to
the effort needed to reach x at time t from the origin at t− δ.

Energy Interpretation 2

Let Sn−1 be the unit sphere in n dimensions. Given a direction ν ∈ Sn−1, what is
the maximal distance that can be reached from the past event (0, t − δ) at time t in
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the direction ν with an input of unit energy? This means that we are now looking for
the solution to

max
‖u‖=1

|〈ν, Ltu〉| def= Pi(ν) (9)

It is easily shown that the solution is given by u = kL∗
t ν, with k = 〈L∗

t ν, L
∗
t ν〉−1/2,

and the corresponding excursion in the direction ν has magnitude

Pi(ν) = (νTR(t, δ)ν)1/2. (10)

Interpretation: The Gramian is the weight matrix for the worst case excursion in a
given direction, ν, due to an input disturbance of unit energy. If this were small, the
input has little influence in the direction ν. Hence Pi(ν) measures the influencability
of the dynamics in that direction in the state space.

Uncertainty Interpretation

We now use a result from stochastic system theory. Let a white noise input have zero
mean and unit variance (=standard white noise). If the system starts with the event
(0, t−δ), then the resulting state at time t is a random vector Ltu in the Hilbert space
L2(Ω,Rn). The inner product in this space is 〈x, y〉 = ExT y, where E is the ex-
pectation operator. This random vector defines an additive measure on the subspaces
of R

n by

µi(A) def= ‖PALtu‖2 = Tr (LtL
∗
tP

A) = Tr (R(t, δ)PA), (11)

where PA is the projector onto the subspace A.

Interpretation: The uncertainty of the state reached from the origin by the white
noise process from t− δ to t in the direction ν is given by νTR(t, δ)ν. We conclude
that this uncertainty relates again to the influencability of the subspace spanned by ν.

We now turn to the dual property of observability.

2.3 Observability Map

Definition 2. Associate the observability maps, Mt, defined for all t and fixed δ > 0,
with the system (2):

Mt : R
n → Lp

2([t, t+ δ],R); Mt(x) = C(·)Φ(·, t)x. (12)

With the inner product in the output space Lp
2 defined by

∀u, v ∈ Lp
2 : 〈u(·), v(·)〉Lp

2
=
∫ t+δ

t

uT(τ)v(τ) dτ, (13)

the adjoint maps are,
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M∗
t : L2([t, t+ δ],R) → R

n; M∗
t u(·) =

∫ t+δ

t

Φ(τ, t)TC(τ)T u(τ) dτ. (14)

We now clarify the natural role of the observability Gramian (4) by illustrating
its appearance in some standard problems. Again we have two energy type interpre-
tations and an uncertainty interpretation.

Energy Interpretation-1

We start with a standard result. Given x ∈ R
n, the energy in the output x → y(·) =

Mtx is
Eo(x) def= 〈Mtx,Mtx〉 = 〈M∗

t Mtx, x〉, (15)

where M∗
t Mt = O(t, δ) : R

n → R
n, is the observability Gramian

O(t, δ) =
∫ t+δ

t

Φ(τ, t)TC(τ)TC(τ)Φ(τ, t) dτ. (16)

Interpretation: The cost associated with transfer of event (x, t) ∈ R
n × R to the

event (xf , t + δ), where xf = Φ(t + δ, t)x, is the above quadratic form in x with
O(t, δ) as weight matrix. It relates to the signal energy available to detect the initial
condition x, or the Signal-to-Noise Ratio (SNR) if embedded in unit variance white
noise.

Energy Interpretation-2

Given a direction ν ∈ Sn−1, let an output signal, y = Mtx0, be embedded in a
unit energy disturbance, w, thus giving an observed signal z = y + w. What is the
maximal ambiguity of the initial state component in the direction ν? This problem
may be reformulated as

max
‖w‖=1

|〈ν, (x0 − x̂)〉| def= Po(ν), where x̂ = argmin ‖Mx̂− z‖, z=Mx0 + w.

(17)

This problem has not been discussed often and we shall therefore present all details
of its solution. First obtain minx̂∈Rn ‖Mtx̂−z‖.We use a variational method: assume
that x̂ is the optimal solution. Let x̃ ∈ R

n be an arbitrary perturbation, and consider
the vector x = x̂ + εx̃. By the optimality assumption: ‖Mtx − z‖ ≥ ‖Mtx̂ − z‖.
This inequality is squared, giving

〈Mtx̂+ εMtx̃− z,Mtx̂+ εMtx̃− z〉 ≥ 〈Mtx̂− z,Mtx̂− z〉. (18)

Using the linearity and symmetry of the inner product, it follows that 2ε〈Mtx̃,Mt

x̂ − z〉 + ε2〈Mtx̃,Mtx̃〉 ≥ 0. For |ε| sufficiently small, this implies (since x̃ is
arbitrary) that 〈Mtx̃,Mtx̂ − z〉 = 0. The adjoint relation implies 〈x̃,M∗

t (Mtx̂ −
z)〉 = 0. This can only happen if M∗

t Mtx̂ = M∗
t z. Hence, the best estimate in the
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deterministic least squares sense of the initial condition is x̂ = (M∗
t Mt)−1M∗

t z.
The ambiguity x0 − x̂ in the direction ν is, since z = Mtx+ w, equal to

|νT (x0 − (M∗
t Mt)−1M∗

t z)| = |νTO(t, δ)−1M∗
t w| = |〈ν,O(t, δ)−1M∗

t w〉| (19)

The worst case is obtained for the specific w of unit norm that maximizes (19) or,
equivalently

max
‖w‖=1

|〈MtO(t, δ)−1ν, w〉|. (20)

By the Cauchy-Schwarz inequality, this is maximal if w is proportional to Mtν, say,
w = λMtO(t, δ)−1ν, where λ follows from the normalization condition

‖w‖2 = λ2〈MtO(t, δ)−1ν,MtO(t, δ)−1ν〉 = λ2〈O(t, δ)−1ν, ν〉. (21)

Thus λ = 1/
√
νTO(t, δ)−1ν, and finally

P
(ν) =

∣∣∣∣∣
〈
MtO(t, δ)−1ν,

MtO(t, δ)−1ν√
νTO(t, δ)−1ν

〉∣∣∣∣∣ = {νTO(t, δ)−1ν}1/2. (22)

Interpretation: The induced ambiguity of the initial state (x0, t) in direction ν is the
quadratic form P
(ν) in ν with weight matrix O(t, δ)−1. It relates to the ambiguity
in determining the initial condition x0.

Uncertainty Interpretation

Given y(·) ∈ Lp
2([t, t+ δ],R), the error norm ‖y −Mtx̂‖Lp

2
is minimal for

x̂ = (M∗
t Mt)−1M∗

t y(·). (23)

We now present a stochastic interpretation. The proof is standard in an estimation
course. If y = Mtx + u (signal + standard white noise), the estimate x̂ is a random
vector with covariance O(t, δ) = M∗

t Mt. Hence the uncertainty in the subspace A
is then given by the additive measure

µo(A) def= ‖PA(M∗
t Mt)−1M∗

t u‖2 = Tr ((M∗
t Mt)−1PA) = Tr (O−1(t, δ)PA),

(24)
where PA is the projector onto A.

Interpretation: The residual uncertainty of the state at t in the direction ν after
observation of the output from t to t + δ is νTO−1(t, δ)ν. It relates to the difficulty
of observing the ν-component of the state.

2.4 Summary

As the above interpretations are of quintessential importance in the motivation for
balanced realizations, we reproduce them here (assuming δ is fixed, we drop it now
from the notation):
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• Energy maps - 1 Ei : R
n → R+ : x → x′R−1

t x

Eo : R
n → R+ : x → x′Otx

• Energy maps - 2 Pi : Sn−1 → R+ : ν → (ν′Rtν)1/2

Po : Sn−1 → R+ : ν → (ν′O−1
t ν)1/2

• Uncertainty maps
µi : Proj R

n → R+ : A → Tr (RtP
A)

µo : Proj R
n → R+ : A → Tr (O−1

t PA)

or, for ν ∈ Sn−1, (one dimensional subspaces) respectively

Ui : Sn−1 → R+ : ν → ν′Rtν

Uo : Sn−1 → R+ : ν → ν′O−1
t ν

3 Sliding Interval Balancing

The interpretations in Sect. 2 now lead to the following disparate measures. The
eigenspace of Ot corresponding to the smallest eigenvalue gives a rather unimpor-
tant direction in the state space. If this eigenvalue were zero, it would be an exact
unobservable direction, and consequently decouples the state (hence also the input)
from the output. We may simply discard this component from the model. Hence the
idea is to discard the hard to observe state components as a rationale for model re-
duction. However, this is not quite right as we may now look from the input to state
perspective, and similarly discard states components that are hard to reach. When
looking at the same system with two metrics, conflicts necessarily arise: What to do
with states that are hard to reach but easy to observe, or vice versa? The way around
this is to realize that an invertible state space transformation, similarity transforma-
tion, transforms the Gramians by a congruence:

Rt → T (t)RtT (t)T (25)
Ot → T (t)−TOtT (t)−1. (26)

Based on this fact, an invertible T (t) can always be found, point wise, such
that the transformed Gramians are equal and diagonal. In addition, it was shown
in [Ve80, VK80, VK83] that for an analytic system (i.e., one where the entries
of the matrices A(·), B(·) and C(·) are analytic functions of time), a similar-
ity T (t) exists as a differentiable function of t such that the new realization
(TAT−1 + Ṫ T−1, TB,CT−1) satisfies the property that the Gramians of the
transformed system are equal and diagonal. Such a realization is called a sliding
interval balanced (SIB) realization, and the corresponding (reachability and/or
observability) Gramian is defined as the canonical Gramian, denoted by Λ(t).
Unlike the time invariant case, the elements of the canonical Gramian may cross at
certain times. If one insists on ordering the canonical Gramian elements such that
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λ1(t) ≥ λ2 ≥ · · · ≥ λn(t) then continuity of the resulting balanced realization
may be lost at the crossing points giving umbilic points for the parameterization.
(At an umbilic point we have that λi(t) = λi+1(t) for some i). In the remainder of
this chapter we will restrict SIB to intervals where such crossover does not happen.
Now one has a uniform measure (input and output) for the relative importance of
subspaces of the state space, and model reduction may proceed by discarding these
less important states.

Rationale for Model Reduction: In balanced coordinates, for each coordinate direc-
tion (more generally, for each subspace) the degrees of reachability and observabil-
ity (as determined by the canonical Gramian) are equal. Assume that the elements
of Λ(t) = diag [λ1(t), · · · , λn(t)] are ordered in magnitude, i.e., for all t ∈ [ti, tf ]:
λ1(t) ≥ λ2(t) ≥ · · · ≥ λn(t), then by projection of dynamics (POD) we shall
understand the model reduction as⎛⎜⎜⎝

[
A11 A12

A21 A22

] [
B1

B2

]
[
C1 C2

]
⎞⎟⎟⎠ POD−→

⎛⎜⎜⎝
[
A11 0
0 0

] [
B1

0

]
[
C1 0

]
⎞⎟⎟⎠ (27)

according to [
Λ1

Λ2

]
POD−→

[
Λ1 0
0 0

]
(28)

The resulting reduced order model is then (A11, B1, C1) with canonical GramianΛ1.
Note that it is essential that POD is combined with balancing, otherwise any arbitrary
reduced model may result.

Suppose that the original state variables x have a well defined physical meaning
(e.g., potentials and currents in a VLSI circuit, stresses and strains in mechanical
structures, etc). Then one may want to know what the effect is of the balanced model
reduction in terms of these original coordinates. Once we have the balancing trans-
formation in partitioned form (xb is the state in balanced coordinates)[

T11 T12

T21 T22

] [
x1

x2

]
=
[
xb

1

xb
2

]
(29)

consistent with Λ = diag [Λ1, Λ2], with Λ2 < Λ1, the reduced model via POD sets
all components x̃b

2 equal to zero. This means that in terms of the original coordinate
system the relation

T21x1 + T22x2 = 0 (30)

is induced, and results in a parameterization of these original state variables in terms
of the reduced order state [

x1

x2

]
=
[

(T−1)11
(T−1)21

]
xb

1. (31)
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These states can thus be appended to the reduced order model in balanced form
as output equations. Alternatively, the reduced model may be re-formulated as an
equation in the states x1 (assuming for simplicity the invertibility of the submatrices
T11 and T22),

ẋ1 = [(Ṫ−1)11 + (T−1)11Ab
11][T11 − T12T

−1
22 T21]x1 + (T−1)11Bb

1u. (32)

3.1 SIB: Balanced in the “Sense of Moore”

Originally, Moore [M81] defined a balanced realization for a linear time-invariant
(LTI) system as a realization that is SIB for δ → ∞. Obviously, this only makes
sense for asymptotically stable LTI systems.

The balancing transformation Tbal is obtained by simultaneous diagonalization
of the Gramian matrices which satisfy in this case the algebraic Lyapunov equations.
For continuous time systems these are:

AR + RAT +BBT = 0
ATO + OA+ CTC = 0.

For discrete time systems, the Lyapunov equations read:

ARAT +BBT = R
ATOA+ CTC = O.

It is readily shown that in continuous time, a reduced order model via POD satisfies
the truncated Lyapunov equations. In discrete time this property breaks down, so
that the POD reduced order model for a balanced realization itself is not necessarily
balanced.

For a given (unbalanced ) realization, the Gramians can be computed either
by solving the Lyapunov equations (usually iteratively), or in some simple cases
by explicitly computing the matrix exponential eAt (e.g. by Laplace transform
techniques) and integration. Computation of the balancing transformation T hinges
on the singular value decomposition (SVD). Since the singular value decomposition
is unique modulo a signature matrix, the balanced realizations are not unique.
However, it was shown that in the single-input single-output case all balanced
realizations are sign symmetric. That is, there exists a signature matrix S such that
AT = SAS and Sb = cT .

3.2 Approximate SIB

In the time varying case, computation of the Gramians may be problematic. Indeed,
the transition matrix is a nice representation, usueful in establishing various results,
but its direct computation by integration may be prohibitive. The alternative of com-
puting the solution of the Lyapunov equation is not much better, since these equations
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are now also time varying differential equations (we consider δ as fixed and denote
R(t, δ) and O(t, δ) simply by Rt and Ot respectively):

Ṙt=A(t)Rt + RtA(t)T + B(t)B(t)T − Φ(t, t−δ)B(t−δ)B(t−δ)TΦ(t, t−δ)T (33)

−Ȯt=A(t)TOt + OtA(t) + C(t)TC(t) − Φ(t+δ, t)TC(t+δ)TC(t+δ)Φ(t+δ, t). (34)

However, when δ is sufficiently small, the solution is readily obtained by a series
expansion. Indeed, as observed in Sect. 1, the transfer from (0, t − δ) to (xf , t),
requires an input, u(τ), t− δ < τ < t, satisfying

xf =
∫ t

t−δ

Φ(t, τ)B(τ)u(τ) dτ. (35)

Note that by definition of the transition matrix,

∂

∂τ
Φ(t, τ)B(τ) = Φ(t, τ)

(
d
dτ

−A(τ)
)
B(τ) (36)

and by iteration(
∂

∂τ

)k

Φ(t, τ)B(τ) = Φ(t, τ)
(

d
dτ

−A(τ)
)k

B(τ). (37)

Hence, expanding the factor Φ(t, τ)B(τ) in the integrand of (35) gives

xf =
∞∑

k=0

[(
d
dt

−A(t)
)k

B(t)

](∫ t

t−δ

(τ − t)k

k!
u(τ) dτ

)
. (38)

The term between the square brackets is the (k + 1)-st block column of the infinite
instantaneous reachability matrix of the realization defined as (with D = d

dt )

R(∞)
t (A,B) = [B; (A− D)B; (A− D)2B; · · · ; (A− D)nB; · · · ]t. (39)

Indeed, with a generalized (impulsive) input, u(τ) =
∑

uiδ
(i)(τ − t), the state

jumps instantaneously by the amount ∆x|t = R(∞)
t (A,B) [uT

0 ;uT
1 ; . . . ;uT

n ; · · · ]T .
It follows that the reachability Gramian can be expressed in terms of the reachability
matrix via its expansion around t.

Rt = R(∞)
t (A,B)∆(∞)

δ,m R(∞)
t (A,B)T , (40)

where ∆(∞)
δ,m is the symmetric infinite dimensional matrix with (i, j)-th block entry

[
∆

(∞)
δ,m

]
ij

=
∫ δ

0

θi+j−2

(i− 1)!(j − 1)!
dθ Im =

δi+j−1

(i+ j − 1)(i− 1)!(j − 1)!
Im. (41)
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The first N terms in the series of Rt coincide with the first N terms in the series of

R(N)
t (A,B)∆(N)

δ,mR(N)
t (A,B)T

where we define the finite dimensional reachability matrix as

R(N)
t (A,B) = [B; (A− D)B; (A− D)2B; · · · ; (A− D)N−1B]t. (42)

and the Nm×Nm matrix ∆(N)
δ,m as[

∆
(N)
δ,m

]
ij

=
δi+j−1

(i+ j − 1)(i− 1)!(j − 1)!
Im. (43)

Likewise, for small δ, the observability Gramian is factored as

Ot = O(∞)
t (A,C)T∆

(∞)
δ,p O(∞)

t (A,C), (44)

where

O(∞)
t (A,C) = [CT ; (AT + D)CT ; (AT + D)2CT ; · · · ; (AT + D)NCT ; · · · ]Tt ,

(45)
and subsequently approximated to N -th order by

O(N)
t (A,C) = [CT ; (AT +D)CT ; (AT +D)2CT ; · · · ; (AT +D)N−1CT ]Tt . (46)

The significance of the observability matrix O(N)
t (A,C) lies in the fact that the

successive derivatives of the output at time t, given the state at time t, is indeed

determined by [yT , (y′)T , . . . , (y(N−1))T ] =
[
O(N)

t (A,C)x(t)
]T

.
The above approximations of small time Gramians are accomplished by (sym-

bolic) differentiation and algebraic operations only. This greatly simplifies their com-
putation.

Our early research on balancing for time varying systems is presented in [VK80,
VK83]. Other research on time varying balancing includes [SSV83, LB03, SR04],
and for periodic linear systems [LO99, V00, VH98].

3.3 SIB Time-Weighted Gramians and M -Balancing

The results in Sect. 3.1 can be generalized. In the single input single output (siso)
case it is known that such balanced time varying realizations have an interesting sign
symmetry [VK83]. Moreover, they are also related to the so called time-weighted
balanced realizations [GA89] and the general class of M -weighted balanced realiza-
tions [VG04]. For any positive definite matrix M , consider the M -reachability and
M -observability Gramians defined by

RM (δ) = RMRT (47)
OM (δ) = OTMO. (48)
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Obviously these matrices are positive definite if (A, b, c) is minimal. Define an M -
balanced realization as the realization for which RM (δ) and OM (δ) are equal and
diagonal.

It was shown in [VG04] that any time-invariant siso M -balanced realization is
sign symmetric and that conversely, all minimal sign symmetric realizations of a
Markov parameter sequence areM -balanced for some appropriateM . Summarizing:

SIB Sign Symmetry

R(δ) = O(δ) = Λ(δ) ⇐⇒ AT = SAS

b = ScT

↘↖ ↗↙
M-balanced

RM = RMRT

OM = OTMO

Since for time weighted Gramians the reachability Gramian associated with the
problem of minimizing an energy

Ei =
∫ ∞

0

γ2(t)u2(t) dt, (49)

satisfies Rγ = RMγRT , M -weighted balanced realizations can be interpreted as
time weighted balanced realizations and vice versa. For stable systems, balancing
in the sense of Moore is already well approximated by SIB if δ is about twice the
characteristic time (largest time constant or oscillation period) of the system. This has
interesting repercussions for the numerical methods applicable to obtain the balanced
realization and its subsequent use in model reduction.

4 Nonlinear Balancing

Because of the successes in model reduction via POD of balanced realizations in
the linear case, it is obvious to try to extend the method to nonlinear systems. Since
nonlinearity refers more to the absence of a property rather than to a property, we
shall restrict our analysis in what follows to systems of the form

ẋ = F (x, u)
y = H(x, u)

where F and H are sufficiently smooth, in order to retain some structure. Potential
time variance can be dealt with by augmenting the state with, xtime, for which the
dynamics is ẋtime = 1.

As a starting point we shall assume that some nominal input has been chosen, for
instance by feedback over a nonlinear map u = k(x). Now we consider small input
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perturbations about this nominal solution. In addition, we consider only output maps
that do not depend explicitly on the input u. Thus, the system is in the affine form

ẋ = f(x) + g(x)u (50)
y = h(x). (51)

In this model, the maps f, g and h are considered smooth.

4.1 NLB: Tenets of Nonlinear Balancing

We propose three principles on which we shall base balancing:

1. Nominal Flow
Balancing should be defined for a perturbation system with respect to some
nominal flow, as opposed to a single equilibrium point (for a linear system the
two coincide).

2. Perturbation → short time
Only small perturbations are permitted for the linear variational equation (the
perturbation system) along the nominal trajectory to remain sufficiently accurate.
This motivates the use of short time SIB-like balancing.

3. Commutation: balancing/linearization
It seems reasonable to strive for the following commutative diagram:

(f, g, h)
global balancing−→ (f̂ , ĝ, ĥ)

↓ linearization linearization ↓

(A(t), B(t), C(t))
local balancing−→ (Â(t), B̂(t), Ĉ(t))

(52)

4.2 Linear Variational Model

Since balancing for linear systems is well understood, the approach towards nonlin-
ear balancing should proceed via the balancing of the linear variational system. For
this reason, we shall first develop the equivalent for the small time reachability and
observability Gramians in the nonlinear case.

Let the nonlinear system (51) have the nominal flow (for u = 0), denoted xo(t),
which satisfies

ẋo = f(xo) (53)
yo = h(xo). (54)

With x̃ = x − xo, and a ‘processed’ output ỹ = y − h(xo), the linear variational
equations, evaluated along the nominal trajectory, are

˙̃x =
∂f

∂x

∣∣∣∣
xo

x̃+ g(xo)u (55)

ỹ =
∂h

∂x

∣∣∣∣
xo

x̃, (56)
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and the resulting model is thus the linear time-varying system.

˙̃x = A(t)x̃+B(t)u (57)
ỹ = C(t)x̃, (58)

where (A(t), B(t), C(t)) is the triplet
(

∂f
∂x

∣∣∣
xo(t)

, g(xo(t)), ∂h
∂x

∣∣
xo(t)

)
. The machin-

ery developed in Sect. 3 can now be used. This also explains our second principle.
We cannot let the interval length δ for observation and reaching become too large,
because the linearization might stray too far from the exact result.

What is the meaning of this linear variational system? For the smooth nonlinear
system (51) denote the state space (where x lives) by the manifold M. At each point
x of M, the linear variational state x̃ lives in the tangent space TxM to M at x. The
nominal flow can be envisioned by the flow lines on M. Except at equilibria, these
flow lines do not intersect. If x ∈ M is the nominal state at time t, we shall again
speak of the event (x, t).

Consider a dynamical system evolving with a differentiable manifold as state
space. The nominal (autonomous) system is characterized by the map f : M → TM
where, as usual, TM = {TxM|x ∈ M} denotes the tangent bundle. We assume that
the system is smooth, so that f is differentiable. Thus we get (for x ∈ M)

ẋ = f(x). (59)

Denote by Ψf
t (x) the flow of the vector field f , i.e., the smooth function of t and

x with the property that xo(t) = Ψf
t (x) solves the ordinary differential equation

ẋo = f(xo) with initial condition xo(0) = x. In other words, Ψf
t (x) is a smooth

function of t and x satisfying the evolution equation2, i.e.,

∂

∂t
Ψf

t (x) = f(Ψf
t (x)), Ψf

0 (x) = x. (60)

We point out that since we assumed that the global nonlinear system is time invariant,
all properties that hold for the event (x, t), may be shifted to the event (x, 0).

The vector field f induces another map

f̂ : M → C1
(
[−δ, δ]; L̃(TM,TM)

)
, (61)

defining for each state a map from [−δ, δ] ⊂ R to the set of maps from the tangent
bundle to itself. In particular, with some abuse of notation, by reusing L̃,

f̂ : x �→ f̂(x) ∈ C1
(
[−δ, δ]; L̃(TxM,TM)

)
. (62)

2 Usually this is denoted by Φf
t (x) [I89], but Φ is here reserved for the linear system transi-

tion matrix.
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For each t ∈ [−δ, δ], this defines a linear map

[f̂(x)](t) ∈ L̃(TxM,TΨf
t (x)M), (63)

with its action on the tangent vector (a bound vector) (x, ξ) ∈ TxM defined by[
[f̂(x)](t)

]
(x, ξ) =

(
Ψf

t (x), Φf
x(t, 0)ξ

)
. (64)

In (64), Φf
x(t, τ) is the transition matrix of the linear variational system associated

with the nominal trajectory through x at time t = 0, and thus satisfies

∂

∂t
Φf

x(t, 0) =
∂f

∂x

∣∣∣∣
Ψf

t (x)

Φf
x(t, 0), Φf

x(0, 0) = I. (65)

Observe that L̃ is linear in its second argument. In fact, the maps [f̂(x)](t) de-
pict the natural evolution of the tangent space along the nominal flow with initial
condition at x.

Note that since f is differentiable, its Jacobian exists and is continuous. Hence
Φf

x is differentiable for all x. Also, xo(t) = Ψf
t (x) is twice differentiable with respect

to t. Hence f̂(x) in (62) is differentiable, justifying that the map is indeed in C1.
Since the original nonlinear system is time invariant, with respect to state x ∈ M,

we may shift time and consider the nominal trajectory passing through x at time t =
0. We treat the nonlinear reachability problem as follows: For δ ∈ R and x̃f ∈ R

n

sufficiently small, associate with the event
(
ψf
−δ(x),−δ

)
∈ M × R, the event

(0,−δ) ∈ Tψf
−δ(x)M×R, and with (x, 0) ∈ M×R associate (x̃f , 0) ∈ TxM×R.

We will further on use some standard tools from differential geometry, see [I89].
The first is the Lie-product: [f, g] = ∂g

∂xf − ∂f
∂xg. We set also adfg = [f, g] and

define by iteration,
adk

fg = [f, adk−1
f g]. (66)

The Gradient d of a vector function stands for [df ]ij = ∂fi

∂xj
. The gradient of a map

f : R
n → R

n is referred to as the Jacobian df = ∂f
∂x .

Finally, the Lie-derivative Lfh is the directional derivative ∂h
∂xf .

4.3 Nonlinear Local Reachability

Consider now the transition from the event (0,−δ) ∈ TΨf
−δ(x)M × R to the

event (x̃f , 0) ∈ TxM × R as an approximation of the nonlinear transition from(
ψf
−δ(x),−δ

)
∈ M × R to (x + x̃f , 0) ∈ M × R (the latter notation with some

abuse of notation: addition may not be defined in M). From linear system theory we
know that, with (A(t), B(t)) the variational system associated with (x, 0), an input,
u(τ),−δ < τ < 0 is required that satisfies

x̃f =
∫ 0

−δ

Φf
x(0, τ)B(τ)u(τ) dτ. (67)
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Note that
∂

∂τ
Φf

x(0, τ)B(τ) = Φf
x(0, τ)

(
∂

∂τ
−A(τ)

)
B(τ) (68)

and by iteration(
∂

∂τ

)k

Φf
x(0, τ)B(τ) = Φf

x(0, τ)
(
∂

∂τ
−A(τ)

)k

B(τ). (69)

Hence, expanding the factor Φf
x(0, τ)B(τ) in the integrand about τ = 0 gives

x̃f =
∫ 0

−δ

∞∑
k=0

[(
∂

∂t
−A(t)

)k

B(t)

]
t=0

τk

k!
u(τ) dτ. (70)

In reference to the original nonlinear system we obtain(
∂

∂t
−A(t)

)
B(t) =

∂

∂t
g(Ψf

t (x)) − ∂f

∂x

∣∣∣∣
Ψf

t (x)

g(Ψf
t (x))

=
∂g

∂x

∣∣∣∣
Ψf

t (x)

f(Ψf
t (x)) − ∂f

∂x

∣∣∣∣
Ψf

t (x)

g(Ψf
t (x))

= adfg|Ψf
t (x) .

Likewise, iteration and evaluation at t = 0 gives for all k > 0[(
∂

∂t
−A(t)

)k

B(t)

]
t=0

= adk
fg
∣∣∣
x
. (71)

Substituting (71), the variational equation (70) gives

x̃f =
∫ 0

−δ

∞∑
k=0

τk

k!

[
adk

fg
]

x
u(τ) dτ. (72)

Defining an ad-exponential formally by

et adf g
∣∣
x

=
∞∑

k=0

tk

k!

[
adk

fg
]

x
, (73)

we obtain the simple representation

x̃f =
∫ 0

−δ

eτ adf g
∣∣
x
u(τ) dτ. (74)

Linear system theory, discussed in Sect. 1, tells us that the optimal (in the sense of
minimizing the L2-norm of u) solution is

u∗(τ) =
(
eτ adf g

)T
x

[
R(δ)

f,g(x)
]−1

x̃f , (75)
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where R(δ)
f,g(x) is the δ-Gramian of the nonlinear system (f, g) at the point x in the

state space, and is defined explicitly by

R(δ)
f,g(x) =

∫ 0

−δ

(
eθ adf g

)
x

(
eθ adf g

)T
x
dθ. (76)

Note that the right hand side is indeed independent of t. All that is required is that
the nominal value of the state at the end of the control (when x̃ = x̃f ) is x.

Recall that the response to an impulsive input for a linear system
u(t)=

∑∞
i=0 uiδ

(i−1)(t− τ) is a jump in the state at time τ , given by

∆xτ = R(∞)
f,g (x)u, u =

⎡⎢⎣u1

u2

...

⎤⎥⎦ , (77)

where R(∞)
f,g (x) = [g, ad−fg, . . . , adn−1

−f g. . . .]x is the local infinite dimensional
reachability matrix evaluated at x(τ). This follows from (39) and the fact that

(Ax − D)Bx =
∂f

∂x
g − ∂g

∂x
f = [−f, g]. (78)

Remark 1. What is solved is the reachability problem of the flow linearized equation,
and not the reachability problem for the original nonlinear system. Of course, for
small δ and x̃f this solution may be a relatively good approximation. We refer
to papers by Gilbert [G77], Lesiak and Krener [LK78], Monaco and Normand-
Cyrot [MNC84], and Fliess [FLL83], for Volterra series expressions for the solution
of the nonlinear system. Furthermore, the control input we considered is actually a
perturbation of a nominal input (here considered to be fixed as open or closed loop).
Hence, minimizing the energy of the deviation is also not the same as minimizing
the total energy.

Example 1. Consider the nonlinear system ẋ = x2 +(x+1)u. The nominal flow for
u ≡ 0 is given by ẋo = (xo)2 with solution passing through x at t = 0,

xo(t) =
x

1 − xt
. (79)

If x > 0, the system has a finite escape time tesc = 1
x > 0. The linear variational

system associated with the event (0, x) is

˙̃x(t) = 2xo(t) x̃(t) + (xo(t) + 1)u(t)

=
2x

1 − xt
x̃(t) +

1 + x(1 − t)
1 − xt

u(t).

Thus A(t) = 2x
1−xt and b(t) = 1+x(1−t)

1−xt . The transition matrix is

Φx(t, τ) =
(1 − xτ)2

(1 − xt)2
. (80)
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We find for this system f(x) = x2 and g(x) = x+ 1 and

adfg = x2 − 2x(x+ 1) = −x2 − 2x
ad2

fg = −(2x+ 2)x2 − 2x(−x2 − 2x) = 2x2

ad3
fg = 4x3 − 4x3 = 0.

Hence, et adf g = 1 + x − t(x + 2)x + t2x2, which coincides with Φx(t, τ)b(τ).
The most reachable direction in the state space corresponds to the eigen direction
associated with the largest eigenvalue of the reachability Gramian.

4.4 Nonlinear Local Observability

In this section we consider the observability problem for the system (51), with the
nominal input u = 0. Denote the nominal state by xo(t). The solution of the nominal
system may be expanded in the Lie-exponential [I89]. Hence, for a nominal trajec-
tory passing through x at time t = 0, we get xo(t) = Ψf

t (x) = σxetLf I, where we
denote the identity function I(x) = x by I , and σx is the evaluator functional at x.
This was established in [FLL83, MNC85].

Example 2. The nominal system ẋo = (xo)α is Lipshitz for α ≥ 1. For α = 1, it
simply has linear dynamics. For α > 1, the equation is readily integrated from the
initial condition xo(0) = x, and gives

xo(t) =
[
x1−α + (1 − α)t

]1/1−α
. (81)

Constructing the Lie series, we find LfI = xα, L2
fI = αx2α−1, L3

fI = α(2α−
1)x3α−2. At this point we may conjecture

σxL
k
fI = α(2α− 1)(3α− 2) · · · ((k − 1)α− (k − 2))xkα−(k−1). (82)

This is easily proven with induction. It follows that the Lie-exponential is

etLf I = x

[
1 +

∞∑
k=1

x(α−1)k(k − 1)!
k−2∏
i=0

(
α− i

i+ 1

)]
. (83)

The product can be expressed in closed form as

σxL
k
fI = x

⎡⎣1 +
∞∑

k=1

(txα−1)k(α− 1)k−1
Γ
(
k − 1 + α

α−1

)
Γ (k + 1)Γ

(
α

α−1

)
⎤⎦ . (84)

The latter expression simplifies to the expression for x(t) in (81).

The nominal output is given by h(xo(t)), but this expression is not so useful
because it is not a series expansion in t. We establish the following concise represen-
tation:
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Theorem 1. The output of the autonomous analytic system (f, h) with initial condi-
tion xo(0) = x is given for all t less than some T > 0 (an escape time may exists) by

h(xo(t)) = h
(
Ψf

t (x)
)

= σx etLfh. (85)

Proof: follows from the Fliess series expansion [FLL83]. (
In [KT93], the series representation (85) was applied to sampled data systems. Since
xo(t) = σxetLf I , the left hand side of (85) is σ(σxetLf I)h. By theorem 1 this tele-
scoping series equals σxetLfh. The energy in the output over an interval of duration
δ for the nominal nonlinear system is

Ey(δ, x) =
∫ δ

0

(
σxetLfh

) (
σxetLfh

)T
dt. (86)

Unlike for a linear system, this is not a quadratic form in x, despite the similarity of
(86) to a Gramian.

Consider now the linear variational system (65) for u ≡ 0 along the arbitrary
nominal trajectory associated with the event (x, 0) ∈ M × R. For sufficiently small
δ ∈ R and x̃0 ∈ R

n consider the initial event (x̃0, 0) ∈ TxM × R. Linear system
theory gives that this initial perturbation at time 0 induces the events (x̃(t), t) ∈
Tψf

x(t)M × R, where

x̃(t) = Φf
x(t, 0)x̃0, (87)

and hence

ỹ(t) =
∂h

∂x

∣∣∣∣
xo(t)

Φf
x(t, 0) x̃0. (88)

As discussed in Sect. 1, a measure for the observability is given by a quadratic form
with the (time-varying) observability δ- Gramian as weight. Hence,

O(δ)
f,h(x) =

∫ δ

0

(
∂h

∂x

∣∣∣∣
xo(τ)

Φf
x(τ, 0)

)T (
∂h

∂x

∣∣∣∣
xo(τ)

Φf
x(τ, 0)

)
dτ. (89)

From the properties of the transition matrix,(
∂

∂τ

)
Φf

x(τ, t)TCT (τ) = Φf
x(τ, 0)T

(
d
dτ

+AT (τ)
)
CT (τ). (90)

and by iteration, it follows that(
∂

∂τ

)k

Φf
x(τ, t)TCT (τ) = Φf

x(τ, t)T

(
d
dτ

+AT (τ)
)k

CT (τ). (91)

Hence, a Taylor expansion gives

Φf
x(τ, t)TCT (τ) =

∞∑
k=0

(τ − t)k

k!

(
d
dτ

+AT (τ)
)k

CT (τ)

∣∣∣∣∣
τ=t

. (92)
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Note that since C(t) = ∂h
∂x |x is the gradient of h at x (also denoted as dh) it follows

that, (
d
dt

+AT (t)
)
CT (t) =

(
d
dt

+
(
∂f

∂x

)T
)(

∂h

∂x

)T

= dLfh.

One easily shows by induction that(
d
dτ

+AT

)k

CT

∣∣∣∣∣
t=τ

= dLk
fh, (93)

and defining the Lie-exponential (operator) in an obvious way as

etLf =
∞∑

k=0

tk

k!
Lk

f , (94)

we get finally

Φf
x(τ, 0)TCT (τ) =

∞∑
k=0

τk

k!
σx dLk

fh = σx d eLfh. (95)

This yields the following expression for the observability δ-Gramian, O(δ)
f,h(x),

for the nonlinear system (f, h) at the point x in the state space,

O(δ)
f,h(x) =

∫ δ

0

(
d eθ Lfh

)T
x

(
d eθ Lfh

)
x

dθ. (96)

Note that the right hand side is indeed independent of t. All that is required is that
the nominal value of the state at the onset of the observation (when x̃ = x̃0) is x.

Note also that an initial condition x at τ gives the output and its derivatives

Y(τ) =

⎡⎢⎣ y(τ)ẏ(τ)
...

⎤⎥⎦ = O(∞)(τ)x, (97)

by virtue of (45). Hence, O(∞)
f,h (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

dh
dLfh

...
dLn−1

f h
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
x

is the local infinite dimensional

observability matrix for the nonlinear system.
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4.5 Nonlinear Local Lyapunov Equations

The nonlinear Gramians (76) and (96) derived in Sects. 4.3 and 4.4 are Gramians of
a linear time-varying system. Lyapunov differential equations for them were estab-
lished in [VK83].

For the observability Gramian, we obtain

−LfO(δ)
f,h(x) =

(
∂f

∂x

)T

x

O(δ)
f,h(x) + O(δ)

f,h(x)
(
∂f

∂x

)
x

+

+ dh(x)T dh(x) −
(
d e δ Lfh

)T
x

(
d e δ Lfh

)
x
, (98)

by substituting the time varying perturbational system (87) and (88) in the Lyapunov
equation (34) for a general linear time varying system.

Note that the left hand side is the Lie-derivative along the flow. If x is an equi-
librium point for the flow, then f(xeq) = 0, and consequently the Lie derivative,
LfO(δ)

f,h(xeq), vanishes. The nonlinear observability Gramian at the equilibrium is
determined by the algebraic Lyapunov equation:(

∂f

∂x

)T

xeq

O(δ)
f,h(xeq) + O(δ)

f,h(xeq)
(
∂f

∂x

)
xeq

+ dh(xeq)T dh(xeq) +

−
(
d e δ Lfh

)T
xeq

(
d e δ Lfh

)
xeq

= 0. (99)

Alternatively, the Lyapunov equations may be set up directly from their defini-
tion. We illustrate this route for the reachability Gramian.

Defining the Lie derivative of a matrix as the matrix of its Lie derivatives, we get
(ei is the i-th column of the identity matrix):

[LfR(δ)
f,g(x)]ij =

∫ 0

−δ

e′i
[
Lf

(
e θ adf g

)
x

]
e′j
(
e θ adf g

)
x

dθ +

+
∫ 0

−δ

e′i
(
e θ adf g

)
x
e′j
[
Lf

(
e θ adf g

)
x

]
dθ

=
∫ 0

−δ

e′i

[(
adf +

∂f

∂x

)(
e θ adf g

)
x

]
e′j
(
e θ adf g

)
x

dθ +

+
∫ 0

−δ

e′i
(
e θ adf g

)
x
e′j

[(
adf +

∂f

∂x

)(
e θ adf g

)
x

]
dθ

= e′i

{∫ 0

−δ

d

dθ

[(
e θ adf g

)
x

(
e θ adf g

)T
x

]
dθ
}

ej +

+e′i

{(
∂f

∂x

)
R(δ)

f,g(x) + R(δ)
f,g(x)

(
∂f

∂x

)T
}
ej ,
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and hence:

LfR(δ)
f,g(x) =

(
∂f

∂x

)
R(δ)

f,g(x) + R(δ)
f,g(x)

(
∂f

∂x

)T

+

+ g(x)g(x)T −
(
e−δ adf g

)
x

(
e−δ adf g

)T
x
. (100)

We used the properties that for any scalar functions g and h,

Lf (gh) = (Lfg)h+ g(Lfh) (101)

and for any vector fields f and g

adf

(
e θ adf g

)
x

=
d
dθ
(
e θ adf g

)
x

(102)

and for any vector fields f and k

Lf kx =
(

adf +
∂f

∂x

)
kx. (103)

At an an equilibrium point, xeq, for the nominal flow, the Lie derivative,
LfR(δ)

f,g(xeq), vanishes and the nonlinear reachability Gramian is determined by the
solution of an algebraic Lyapunov equation

(
∂f

∂x

)
xeq

R(δ)
f,g(xeq) + R(δ)

f,g(xeq)
(
∂f

∂x

)T

xeq

+ g(xeq)g(xeq)T +

−
(
e−δ adf g

)
xeq

(
e−δ adf g

)T
xeq

= 0. (104)

4.6 Local Balancing

Let x be a point in the state space where the local reachability and ob-
servability matrices have full rank. The nonlinear Gramians, R(δ)

f,g(x)=
∫ δ

0(
eθ ad−f g

)
x

(
eθ ad−f g

)T
x
dθ, and O(δ)

f,h(x)=
∫ δ

0

(
d eθ Lfh

)T
x

(
d eθ Lfh

)
x

dθ, trans-
form under similarity in the state space by a pointwise congruence. Hence a non-
singular T (x) exists at x such that the transformed Gramians, at x,

T (x)R(δ)
f,g(x)TT (x), and T (x)−TO(δ)

f,h(x)T−1(x)

are equal and diagonal. In general this T will depend on x. Note that we expressed
the reachability Gramian in a slightly different form, for reasons that will become
clear in Sect. 4.7.

Thus, we arrive at a map T : M → GLn(IR). At this point, this prompts three
questions:
1. Can T (x) be computed in an efficient way?
2. Can the pointwise defined transformation T (x), which is a similarity transforma-
tion on TxM (hence local), be extended to a global transformation on M?
3. What can be inferred from local balancing?
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We note that in answer to the first question, balancing proceeds via computation
of the Gramians. This involves either explicit computation through integration of the
Lie-series and the ad-series. If these series are computed symbolically, then only in
exceptional cases the series terminate or have a nice explicit form. In a general sym-
bolic computation, the number of terms soon becomes excessive. Alternatively, the
Lyapunov equations may be used to derive the solution. This however also requires
the solution of a PDE. In the next section we propose a simple approximation to the
problem, which allows for simple computations as only differentiations and matrix
algebra are involved.

We defer the second problem to Sect. 5.
As to the third question, we note that the information comprised in the local

balancing transformation T (x), is already very useful. Indeed from the nature of the
problem, the local balancing tells us which directions in the tangent space, TxM, are
important from a natural point of view (the balanced point of view, symmetrizing lo-
cal reachability and observability). In the locally balanced coordinates, the canonical
Gramian Λ(x) is therefore an importance measure for the directions in the tangent
space, as illustrated in Sect. 1. But by nature of the problem, this corresponds to the
directions in the state space M at the nominal point x ∈ M under consideration. The
input-output properties of the nonlinear system may therefore neglect this unimpor-
tant state component, at least locally in space (neighborhood of x, and time balanced
reduction only justified for times less than δ). The canonical Gramian Λ(x) shows
this importance for each principal direction at x. Furthermore, points and directions
on the tangent space are mapped back to the controlled trajectories on the manifold.

In order to illustrate the method, let us consider the two-dimensional torus as ex-
ample. Assume that the coordinate lines on the torus are the ones following the lines
of curvature. Toroidal surfaces are the only ones for which a single global coordinate
patch exists [M67]. Assume that the nominal flow is such that the trajectories wind
around the torus. Assume also, for simplicity, that the canonical Gramian at each
point coincides with the coordinate direction in the meridian plane, but shows neg-
ligible dynamics in the plane spanned by the symmetry axis and the radial direction
(imagine the spoke of a bicycle wheel). Obviously, in this case the local balancing is
trivially extendable in a consistent way to the global state space. Furthermore, the 1-
D reduced model would then essentially model the motion in the plane of the spokes
but neglect dynamics winding around the tube, even though he nominal trajectory
winds around in the full order model. A problem requiring several coordinate charts
is given in [GV06a].

4.7 Approximate Local Reachability and Observability

We defined the infinite reachability matrix by

R(∞)
f,g (x) =

[
g, ad−f g, ad2

−f g, . . . , adk
−f g, . . .

]
x
, (105)
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and the reachability Gramian for the linear variational system may be expressed via
the series expansion of the integrand. Thus,

R(δ)
f,g(x) =

∫ 0

−δ

[ ∞∑
k=0

θk

k!

(
adk

f g
)

x

][ ∞∑
k=0

θk

k!

(
adk

f g
)

x

]T

dθ (106)

=
∞∑

k=0

∞∑
�=0

(
adk

−f g
)

x

[∫ δ

0

θk

k!
θ�

�!
dθ

](
ad�

−f g
)T

x
. (107)

Defining the symmetric infinite-dimensional block matrix with (i, j)-th block
entry[
∆

(∞)
δ,m

]
ij

=
∫ δ

0

θi+j−2

(i− 1)!(j − 1)!
dθ Im =

δi+j−1

(i+ j − 1)(i− 1)!(j − 1)!
Im, (108)

we obtain a symmetric factorization of the reachability Gramian in terms of the
reachability matrix

R(δ)
f,g(x) = R(∞)

f,g (x)∆(∞)
δ,m R(∞)

f,g (x)T . (109)

Note that for a linear time invariant system with f(x) = Ax and g(x) = b we get
ad−f g = Ab and by iteration adk

−f g = Akb so that the reachability matrix reduces
to the known (but extended) reachability matrix for the pair (A, b)

R(δ)
f,g(x) = [b, Ab,A2b, · · · , Akb, · · · ] = R(∞)(A, b). (110)

It follows from

R(δ)
f,g(x) =

∞∑
k=0

∞∑
�=0

(
adk

−f g
)

x

(
ad�

−f g
)T

x

δk+�+1

(k + �+ 1)k!�!
(111)

=
∞∑

n=0

[ ∞∑
k=0

(
n

k

)(
adk

−f g
)

x

(
adn−k

−f g
)T

x

]
δn+1

(n+ 1)!
(112)

that the first N terms in the series of R(δ)
f,g(x) coincide with the first N terms in

the series of R(N)
f,g (x)∆(N)

δ,mR(N)
f,g (x)T , where we introduced the finite dimensional

reachability matrix

R(N)
f,g (x) =

[
g, ad−f g, ad2

−f g, . . . , adN−1
−f g

]
x

(113)

and the N ×N block matrix ∆(N)(δ)[
∆

(N)
δ,m

]
ij

=
δi+j−1

(i+ j − 1)(i− 1)!(j − 1)!
Im. (114)
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Hence,
R(δ)

f,g(x) = R(N)
f,g (x)∆(N)

δ,m(R(N)
f,g )T (x) + o(δN ), (115)

which defines the N -th degree approximation of the reachability Gramian,
R(δ)

f,g(x), as

R(δ,N)
f,g (x) def= R(N)

f,g (x)∆(N)
δ,m(R(N)

f,g )T (x). (116)

It is precisely this property that makes the approximation interesting. Whereas
the infinite Gramians must indeed be computed either by doing the explicit inte-
gration (requiring first computation of the adf -exponential), or by solving a par-
tial differential equation (the Lyapunov equation), the approximation only requires a
computation of a finite reachability matrix. This is much simpler as it only involves
differential operations. We may get an idea of the quality of the approximation by
investigating the LTI case (ei denotes the i-th column of the identity matrix).

Theorem 2. The exact reachability Gramian for the LTI system ẋ = Ax + bu is
given by ∫ δ

0

eAθbb′eA′θ dθ = R(A, b)RδRT (A, b), (117)

where

Rδ =
∫ δ

0

eAreθe1e
T
1 eAT

reθ dθ (118)

is the reachability Gramian of the similar reachability canonical form, and only de-
pends on the coefficients of the characteristic polynomial of A.

Proof: First consider eAtb. This may be expressed as R(A, b)ψ(t). Taking the
time derivative of both expressions, we find AR(A, b)ψ(t) = R(A, b)ψ̇(t). Hence
ψ̇(t) = R−1(A, b)AR(A, b)ψ(t). But R−1(A, b) is the similarity transformation
that maps the pair (A, b) to the reachability canonical form (Are, bre). Since also
ψ(0) = bre = e1, we find by uniqueness of the solution of a linear ODE that
ψ(t) = eArete1 and the theorem follows. (

Hence it suffices to compare Rδ to the approximation ∆(n)
δ .

Theorem 3. The integrand of the reachability Gramian for a single input LTI system
in the reachability canonical form is given by the the outer product of the inverse
Laplace transform of its Leverrier polynomials.

Before we prove this theorem, we first establish a lemma.

Lemma 1. The adjunct matrix Adj (sI −Are), with Are a companion matrix in the
reachability canonical form, is[

l1(s), l2(s), . . . , ln(s)
]T [ 1, s, s2, . . . , sn−1 ] − l0(s)Tupper(s). (119)

The terms li(s) denote the Leverrier polynomials, associated with a(s) =
det(sI −Are)



238 E.I. Verriest

l1(s) = sn−1 + a1s
n−2 + a2s

n−3 + · · · + an−1

l2(s) = sn−2 + a1s
n−3 + a2s

n−4 + · · · + an−2

...

ln−1(s) = s+ a1

ln(s) = 1

Proof: Multiplication of (119) with sI −Are gives the right hand side a(s)I . (

Note that l0(s) = a(s), the characteristic polynomial of Are, and Tupper(s) is
an upper triangular Toeplitz matrix with first row [0, 1, s, s2, . . . , sn−1]. The vector
l(s) = [l1(s), . . . , ln(s)]T is expressible as l(s) = Tupper(a)

[
sn−1, . . . , 1

]T
, with

Tupper(a) upper triangular Toeplitz matrix with first row [1, a1, . . . , an−1].

Proof of Theorem 3: It follows from the lemma 1 that the first column of
(sI − Are)−1 is 1

a(s) [l1(s), l2(s), . . . , ln(s)]T . Let its inverse Laplace transform be

L(t). The result now follows from eArete1e
T
1 eAT

ret = L(t)L(t)T . (
The comparison is thus between Rδ =

∫ δ

0
L(t)LT (t) dt and ∆

(n)
δ . Therefore it

is conceivable to improve the approximation by determining a matrix Ω(δ) perhaps
itself approximated as

∫ δ

0
L(t)LT (t) dt from the frozen LTI system by replacing

R(δ,n)
f,g (x) in (116) by R(n)

f,g(x)Ω(n)
δ R(n)

f,g (x)T .

4.8 Approximate Local Nonlinear Balancing

The approximation for the local nonlinear balanced realization is based upon simulta-
neous diagonalization of the approximate Gramians. By construction, the realization
is balanced and is much simpler to compute (only a finite number of differentiations
are required). This offers a tremendous advantage over other nonlinear balancing
methods.

Define the pseudo-Hankel matrix H = O1/2R1/2, where O1/2 and R1/2 are
the symmetric positive definite square root matrices of the local Gramians or their
approximations. Note that the spectrum Spec (HHT ) = Spec (OR) = Spec (Λ4).
The following was shown in [VG04]:

Theorem 4. The dominant direction of (f, g, h) at x maximizes the form

ξ′(HHT )1/2ξ

ξ′(HHT )−1/2ξ
. (120)

4.9 Local Balancing - Discrete Case

The above ideas have also been worked out for discrete time affine systems of the
form
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xk+1 = f(xk) + g(xk)uk (121)
yk = h(xk). (122)

If we consider again the nominal system to be the one for u ≡ 0, then the finite
nonlinear local reachability and observability matrices are

Rn(f, g) = [ g|−(n−1), it1fg|−(n−2), . . . , itn−1
f g|0 ], (123)

On(f, g) =

⎡⎢⎢⎢⎣
dh|0

dh|1 df |0
...

dh|n−2 df |n−1 · · · df |0

⎤⎥⎥⎥⎦ , (124)

where
itk

fg|� = df |� · · · df |�−k+1g|�−k. (125)

The nonlinear Gramians are then computed as in the continuous case, but with
∆ = I . This was presented in [VG01a] and applied to nonlinear discrete periodic
systems in [Ve01].

5 Global Balancing

In Sect. 4 we derived at each point of the state space a local balanced realization
obtained by a local transformation of the linear variational system. Now we want to
find a global coordinate transformation so that the corresponding linear variational
systems coincide with the local balanced form. Note that by local we mean pointwise,
whereas global may still refer to some proper subset D of the state manifold. Thus
we want to find a diffeomorphism ξ such that

∂ξ

∂x
= T (x), x ∈ D. (126)

This step corresponds exactly with our third requirement that global balancing fol-
lowed by linearization matches linearization followed by (linear) local balancing,
i.e., the postulated commutation of balancing with linearization. This is the Jacobian
Problem. The set (126) is a Mayer-Lie system of PDE’s, and it is known not to be
generically solvable. In fact, necessary and sufficient conditions for its solvability are

∂Tij(x)
∂xk

− ∂Tik(x)
∂xj

= 0, (127)

for all i, j, k = 1, . . . , n and x ∈ D. These conditions are also known as the Frobe-
nius conditions.

We proceed in two ways. If the Frobenius conditions are satisfied, we show in
Sect. 5.1 how to solve the Jacobian problem, and hence obtain a solution to the global
nonlinear balancing problem. We refer to this as Mayer-Lie integration. In Sect. 6
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we relax the problem. Suppose we only have a finite set of points xi; i = 1, . . . , N ,
in the state space where the Jacobian matrix T (xi) is defined. Then we derive an
approximate global balancing transformation by starting with a sufficiently large pa-
rameterized class of diffeomorphisms and identify the parameters by matching these
N Jacobians. We refer to this problem as the Mayer-Lie interpolation problem.

5.1 Mayer-Lie Integration

When the Frobenius conditions hold, a diffeomorphism can be found on some do-
main D1 ⊂ D by the method of characteristics: Transform the Mayer-Lie system
to a system of nonlinear equations. It is somewhat easier to work with the inverse
of the Jacobian, since if G(x) = T−1(x), where G(x) : R

n → R
n is an element

of L(Rn,Rn), then G : R
n → L(Rn,Rn), and the Frobenius conditions imply the

existence of a vector field Fx : R
n → R

n, such that

∂Fx(ξ)
∂ξ

= G(Fx(ξ)) (128)

Fx(0) = x0. (129)

If Fx is an invertible map, define hx : R
n → R

n by hx(z) = F−1
x (z), i.e., hx(z) = ξ

iff Fx(ξ) = z, then
∂hx(z)
∂z

= T (z), (130)

so that hx(z) is a solution for ξ with hx(x0) = 0.
The Frobenius condition can be expressed in an alternative form: The derivative

DG of G is a map DG(x) : R
n → L(Rn, L(Rn,Rn)). i.e., this is ‘unravelled’ as

follows: (DG(x))[u] is a linear map in L(Rn,Rn), so that ((DG(x))[u])[v] ∈ R
n.

Choose u = G(x)w.
The Frobenius condition is now a symmetry condition. For all v, w ∈ R

n:

((DG(x))[G(x)w])[v] = ((DG(x))[G(x)v])[w]. (131)

Example 3. Frobenius Condition: Let

G(x) =
[

1 0
x2

1 1

]
(132)

then, G(x)w = [w1, x
2
1w1 + w2]T , and

(DG(x)) [G(x)w] =
[

0 0
2x1w1 0

]
, (133)

giving the form ((DG(x)) [G(x)w])[v] = [0, 2x1w1v1]T , which is symmetric upon
permutation of v and w, so that G is integrable.
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Example 4. Mayer-Lie Integration: In order to illustrate the Mayer-Lie integration,
we give a simple planar example. Assume the local balancing transformation on
R

2 is:

T (x, y) =
[

cos y −x sin y
sin y x cos y

]
. (134)

Note that this transformation is singular along the y-axis (x = 0). Inversion yields

G(x, y) =
[

cos y sin y
− 1

x sin y 1
x cos y

]
. (135)

Solve by the method of characteristics (taking two steps: first along the path (0, 0) →
(ξ, 0), then along (ξ, 0) → (ξ, η). The integration along the first segment proceeds
as follows: {

dF1
dξ = cosF2

dF2
dξ = − 1

F1
sinF2

{
F1(0, 0) = x0

F2(0, 0) = y0
. (136)

Noting that F1F
′′
1 + (F ′

1)
2 = 1, The solution is readily found to be{

F1(ξ, 0) =
√

(ξ + x0 cos y0)2 + x2
0 sin2 y0

F2(ξ, 0) = arctan x0 sin y0
ξ+x0 cos y0

. (137)

Next we solve along the second path

{
dF1
dη = sinF2
dF2
dη = 1

F1
cosF2

,with the initial conditions

F1(ξ, 0) and F2(ξ, 0) obtained at the end of the first path. Thus,{
F1(ξ, 0) =

√
(ξ + x0 cos y0)2 + (η + x0 sin y0)2

F2(ξ, 0) = arctan η+x0 sin y0
ξ+x0 cos y0

. (138)

Finally, inversion gives, upon resetting the original variables F1 = x and F2 = y,{
ξ = x cos y − x0 cos y0

η = x sin y − x0 sin y0
, (139)

satisfying (ξ, η) = (0, 0) if (x, y) = (x0, y0).

We conclude with the following observations:
For scalar systems, there is no obstruction to global balancing.
For second order (planar) systems, generically the Mayer-Lie conditions do not

hold. However, integrating factors S(x) = diag {S1(x), S2(x)} can be defined such
that S(x)T (x) is integrable. Whereas equality of the Gramians is destroyed in this
form, note that such a non-uniform scaling retains the diagonality of the Gramians.
Moreover, the product of the Gramians specifies the canonical Gramian and there-
fore the relative importance of the balanced local state components. Since this is the
required information for model reduction such a scaled global balanced realization is
still useful. We referred to such a realization, which is still useful for model reduction
via POD, as an uncorrelated realization [VG00].
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Balanced Realizations ⊂ Uncorrelated Realizations

For order three and higher also the set of uncorrelated realizations is not sufficiently
rich. There is a real topological obstruction. This however, is not the end of our story.

6 Mayer-Lie Interpolation

Generically, the Mayer-Lie conditions form an obstruction to the application of the
third principle, the commutation of balancing and linearization. To get around this,
we propose an approximate solution via a special interpolation.

Thus motivated, suppose one is given a distinct set of points {x1, . . . , xN} ⊂ D,
with the corresponding matrices T (xi). We want to find a diffeomorphism, η defined
on D such that

∂ η

∂ x

∣∣∣∣
xi

= T (xi), for i = 1, . . . , N. (140)

For the special case of a discrete periodic or chain recurrent orbit, the proposed
interpolation approach is easily justified. Only the neighborhoods of the successive
points in the nominal orbit are important, hence the true form in between is rather
immaterial [Ve01].

One potential solution is to start from a parameterized set of diffeomorphisms,
and identify the necessary parameters in order to satisfy the N point constraints
(140). We follow [Ve02].

For instance, for a planar system consider a class of transformations of the form

ξ(x, y) =
2N−1∑
i=0

c
(ξ)
i x2N−1−iyi (141)

η(x, y) =
2N−1∑
i=0

c
(η)
i x2N−1−iyi. (142)

These are homogeneous polynomials in x and y of degree 2N − 1, parameterized by
the coefficients c{ξ}

j and c{η}
j . The interpolation constraints imply⎡⎢⎣ TT (x0, y0)

...
TT (xN−1, yN−1)

⎤⎥⎦ =

⎡⎢⎣ Z(x0, y0)
...

Z(xN−1, yN−1)

⎤⎥⎦C. (143)

where C = [c(ξ), c(η)] ∈ IR(2N−1)×2. and Z(x, y) is

[
(2N − 1)x2N−2 (2N − 2)x2N−3y · · · y2N−2 0

0 x2N−2 · · · (2N − 2)xy2N−3 (2N − 1)y2N−2

]
.
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In a more compact form we rewrite this as T T = Z(x0, y0, . . . xN−1, yN−1)C.
If the matrix Z(x0, y0, . . . xN−1, yN−1) is invertible, then C =Z(x0, y0, . . . xN−1,
yN−1)−1T T , and a candidate diffeomorphism is

[
ξ(x, y)
η(x, y)

]
= T Z−T (x0, y0, . . . , xN−1, yN−1)

⎡⎢⎣x
2N−1

...
y2N−1

⎤⎥⎦ . (144)

Since Z is homogeneous of degree 2N − 2, the Jacobian determinant has degree
4(N−1). Consequently, there are at most 4(N−1) lines through the origin where the
full rank property will fail. These lines define wedges in the original state space
coordinates. Hence, if all interpolation states x0, . . . , xN−1 fall inside a wedge, D, a
globally defined balanced realization can be defined in D. The following theorem is
proven in [Ve04].

Theorem 5. If no two states are collinear with the origin, then the matrix
Z(x0, y0, . . . , xN−1, yN−1) is an invertible matrix.

Example 5. Delayed Logistic Equation [Ve02]: Consider the discrete time delayed
system with observation of x.

Let the control be the deviation of µ from a nominal value 2.1.

xk+1 = µxk(1 − yk)
yk+1 = xk.

For µ = 2.1, the system exhibits an attracting limit cycle enclosed in [0, 1]2. Starting
at a point on the limit cycle, the seventh iterate overtakes it (Fig. 1).

The approximate (two-step) local reachability Gramian and observability
Gramian for this discrete system are

iterates

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 1. Limit cycle for delayed logistic equation
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Fig. 2. Dominant λ and corresponding direction.

R(x, y) =

[
2 x2

µ2
xy
µ2

xy
µ2

y2

u2

]

O(x, y) =
[

1 + µ2(1 − y)2 −µ2(1 − y)x
−µ2(1 − y)x µ2x2

]
,

respectively. With interpolation points {(0.2, 0.2), (0.5, 0.2)(0.2, 0.5)}, which are close
to but not on the limit cycle, the transformation is found to be

ξ(x, y) = 2115x5 − 13823x4y + 31269x3y2 − 29100x2y3 + 11596xy4 − 1649y5

η(x, y) = 1048x5 − 7187x4y + 17472x3y2 − 18101x2y3 + 7821xy4 − 1180y5.

As this is not the balancing transformation in the strict sense of Sect. 5, we refer
to this as a pseudo-balancing transformation. The resulting system is then like-
wise pseudo-balanced. The dominant value λ1(x, y) of the canonical Gramian is
displayed in Fig. 2. The height of the plot indicates the value, the coloring is mod-
ulated by the angle of the dominant direction (mapped back to the original (x, y)
coordinates). Note that on the x-axis, this angle is zero, while on the y-axis it reaches
90 degrees. If Tloc is the local balancing transformation, this is the direction of the
first column of T−1

loc , i.e., the ‘jointly most observable and reachable’ direction. As
expected, the dynamics is almost one dimensional along the limit cycle.

7 Nonlinear Model Reduction

What is a reduced model for a nonlinear system? As shown earlier, a local balancing
transformation exists at each point of M. The canonical Gramian contains important
information suitable for approximating the topological structure of the system. It is
the information one needs for model reduction.
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Once we have the local balancing transformation in partitioned form[
T11(x) T12(x)
T21(x) T22(x)

] [
x̃1

x̃2

]
=
[
x̃b

1

x̃b
2

]
, (145)

consistent with Λ(x) = diag [Λ1(x), Λ2(x)], with Λ2 < Λ1, the reduced model via
POD sets all components x̃b

2 equal to zero. This means that in terms of the original
coordinate system, the equality

T21x̃1 + T22x̃2 = 0 (146)

is acquired. The local reduced dynamical equations (equations for the perturbation
system) are

˙̃x1 =
∂f1

∂x1
x̃1 + g1x̃1

ỹ =
∂h1

∂x1
x̃1.

Reconstituting the equations in the original coordinates gives

ẋ1 = f1(x1, x2) + g1(x1, x2)u (147)
ẋ2 = f2(x1, x2) (148)
y = h(x1, x2). (149)

The nonlinear dynamics of x2 is only specified by its behavior under the nominal
condition, hence it can be precomputed (off line), giving the vector function x2(t),
which is fixed once and for all. Hence the reduced order nonlinear model is in fact a
nonautonomous system of the form

ẋ1 = F1(x1, t) + g1(x1, t)u (150)
y = H(x1, t), (151)

where F (z, t) = f1(z, x2(t)) and H(z, t) = h(z, x2(t)).
Should one be interested in the model near an equilibrium point, then x2 is con-

stant, and an autonomous reduced model results. It should be pointed out that differ-
ent subdomains in M may suggest the use of different dimensions for the lower order
approximations. This is explored in more detail in [VG06]. In this case the domain
boundaries are characterized by umbilic points.

8 How Far Can You Go?

One of the crucial problems in the above is the management of the two approxima-
tions. First there is the interval length δ, then there is the truncation of the Lie(f)-and
the ad(f)-series to N terms. Here simulation and analysis in the LTI case may suggest
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some heuristics. For instance, it was found in the LTI case that for asymptotically sta-
ble systems the δ Gramians where δ is at least twice the largest characteristic time
(time-constant or oscillation period) of the system, pretty much captures the same
behavior as δ → ∞, which was the original set up by Moore.

We suggest the following heuristic for the nonlinear system. The nominal system
ẋ = f(x) has exact solution, given by the Lie-series, x(t) = σx etLf I . If this series is
truncated after N terms (degree N−1 in t), then denote this time function by x(N)(t).
Note that the superscript N does not refer to the N -th derivative of x(t) here. The
error is then x(t) − x(N)(t). The norm of this error should be small compared to
either norm of the difference, x(t) − x, between initial and final (nominal) state, or
the length of the path traveled,∫ t

0

‖ẋ(θ)‖dθ =
∫ t

0

‖f(x(θ))‖dθ =
∫ t

0

‖σxeθLf f‖dθ. (152)

But having an error bound criterion in terms of the exact solution is not practical,
as we would then need the exact instead of the approximation in the first place. The
following theorem shows how this can be overcome.

Theorem 6. Given 0 < ε < 1, if for all θ ∈ (0, t) it holds that

tN+1

(N + 1)!

∥∥∥σx(θ)

(
LN+1

f I
)∥∥∥ < ε

1 + ε
‖x(N)(t) − x‖, (153)

then
‖x(N)(t) − x(t)‖ < ε‖x(t) − x‖. (154)

Proof: By Taylor’s remainder theorem, for some θ0 in (0, t)

‖x(t) − xN)(t)‖ =

∥∥∥∥∥ tN+1

(N + 1)!

(
d
dt

)N+1

x(θ0)

∥∥∥∥∥ =
tN+1

(N + 1)!

∥∥∥σx(θ0)

(
LN+1

f I
)∥∥∥

(155)
By the assumption, this yields

‖x(t) − xN)(t)‖ < ε

1 + ε
‖x(N)(t) − x(t)‖ +

ε

1 + ε
‖x(t) − x‖,

from which the assertion follows. (
If N is fixed a priori, then the criterion in Theorem 8.1 provides a reasonable

heuristic to choose δ.
Does one really need global balancing? From a point of view of sensitivity analy-

sis and model reduction, all information (e.g., the approximate dimension for the dy-
namics in the neighborhood of that point, and the dominant subspace) that one would
like to have from a globally balanced form is already contained in the local (or point-
wise) balanced form. So why bother with this difficult and unnecessary step? In fact,
it is shown that global model reduction may not be possible at all on the grounds that
different patches of the state space may suggest different reduced order dimensions, a
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phenomenon that is nonexistent in linear balancing (which is necessarily global over
the entire state space). The argument is simple: we always consider two metrics as-
sociated with a realization: the reachability metric and the observability metric. Each
one separately gives the state space the structure of a Riemann manifold. Balancing
bends and stretches these two Riemann spaces locally without tearing. In fact, bal-
ancing consists in transforming both Riemann spaces until they coalesce. But there
may never exist a transformation that makes the two spaces coincide everywhere: a
sphere cannot be bend into a torus! This is the essence of the topological obstruction
to global balancing.

9 Conclusions

In this chapter we presented some old and new results on balancing for time vary-
ing systems. For nonlinear systems, a reasonable set of principles for general NL
balancing was suggested, and partially implemented based on the approach for the
linear time-varying case. The results is partial because of the obstruction in the form
of the Mayer-Lie conditions. When the conditions hold, integration of the Jacobian
is possible and a global balanced or uncorrelated balanced realization exists. Alter-
natively, we showed how an approximation via Mayer-Lie interpolation may be ob-
tained, leading to a pseudo-balanced realization. The advantage of the given method
for balancing lies in its computational feasibility: only differentiation is involved in
obtaining a local balanced form (as opposed to the solution of a PDE). It is further
consistent with the linear theory, and it is also not restricted to stable systems. Other
approaches to NL balancing exist: The proper orthogonal decomposition based ap-
proach [Lal02] is restricted to asymptotically stable nonlinear systems. The approach
by Scherpen et al. [Sch94] requires the solution of nonlinear PDE’s, and is also re-
stricted to stable nonlinear systems. The RKHS approach in [Ve84] seems quite con-
servative in its approximation. See also [GV06b].

We have not documented past and ongoing research on extensions and
applications such as LQG-balancing [Ve81b, Ve81a, Ve86a, Ve86b, JS83, OC04] and
balanced completion with applications in robust control and uncertainty equiva-
lence [Ve85, VP92, Ve94, SR02, Ve06]. The latter topic seeks to quantify the un-
certainty associated with the reduction of a given system via projection of dynamics
of the balanced form. Indeed, if the full order system provides the complete infor-
mation about the system, then necessarily a reduced model overlooks some of this
information in one form or other. Discarding information means that uncertainty is
introduced in the model. Traditionally, reduced order models have not been cast with
associated uncertainty bounds. Maximum likelihood techniques and stochastic sys-
tem theory are used to specify uncertainty bounds for the balanced reduced order
models.
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1 Introduction

For linear control systems minimal realization theory and the related model reduction
methods play a crucial role in understanding and handling the system. These methods
are well established and have proved to be very successful, e.g., [Antoulas05,OA01,
ZDG96]. In particular the method called balanced truncation gives a good reduced
order model with respect to the input-output behavior, [Moore81, Glover84]. This
method relies on the relation with the system Hankel operator, which plays a central
role in minimal realization theory. Specifically, the Hankel operator supplies a set of
similarity invariants, the so called Hankel singular values, which can be used to quan-
tify the importance of each state in the corresponding input-output system [JS82].
The Hankel operator can also be factored into a composition of observability and
controllability operators, from which Gramian matrices can be defined and the no-
tion of balanced realization follows, first introduced in [Moore81] and further studied
by many authors, e.g. [JS82, ZDG96]. This linear theory is rather complete and the
relations between and interpretations in the state-space and input-output settings are
fully understood.

A nonlinear extension of the state-space concept of balanced realizations has
been introduced in [Scherpen93], mainly based on studying the past input nenergy
and the future output energy. Since then, many results on state-space balancing,
modifications, computational issues for model reduction and related minimality con-
siderations for nonlinear systems have appeared in the literature, e.g., [GS01, HE02,
LMG02, NK00, NK98, SG00, VG00]. In particular, singular value functions which
are a nonlinear state-space extension of the Hankel singular values for linear systems
play an important role for nonlinear balanced realizations. However, the original
characterization in [Scherpen93] was incomplete in a sense that the defined singular
value functions are not unique, the relation with the nonlinear Hankel operator was
not clarified, and the resulting model reduction procedure gives different reduced
order models depending on the choice of different set of singular value functions,
e.g. [GS01].
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Balanced realization and the related model order reduction technique rely on
singular value analysis. This analysis investigates the singular values and the cor-
responding singular vectors for a given operator. The analysis is important since it
extracts the gain structure of the operator, that is, it characterizes the largest input-
output ratio and the corresponding input [Stewart93]. Since linear singular values
are defined as eigenvalues of the composition of the given operator and its adjoint, it
is natural to introduce a nonlinear version of adjoint operators to obtain a nonlinear
counterpart of a singular value. There has been done quite some research on the non-
linear extension of adjoint operators, e.g. [Batt70, SG02, FSG02] and the references
therein. Here we do not explicitly use these definitions of nonlinear adjoint opera-
tors. We rely on a characterization of singular values for nonlinear operators based on
the gain structure as studied in [Fujimoto04]. The balanced realization based on this
analysis yields a realization that is based on the singular values of the corresponding
Hankel operator, and results in a method which can be viewed as a complete ex-
tension of the linear methods, both from an input-output and a state-space point of
view, [FS05].

The related model order reduction technique, nonlinear balanced truncation,
preserves several important properties of the original system and corresponding
input-output operator, such as stability, controllability, observability and the gain
structure [FS03].

This paper gives an overview of the series of research on balanced realization and
the related model order reduction method based on nonlinear singular value analysis.
Section 2 explains the taken point of view on singular value analysis for nonlinear
operators. Section 3 briefly reviews the linear balancing method and balanced trun-
cation in order to show the way of thinking for the nonlinear case. Section 4 treats
the state-space balancing method stemming from [Scherpen93]. Then, in Section 5
we continue with balanced realizations based on the singular value analysis of the
nonlinear Hankel operator. Furthermore, in Section 6 balanced truncation based on
the method of Section 5 is presented. Finally, in Section 7 a numerical simulation
illustrates how the proposed model order reduction method works for real-world
systems.

2 Singular Value Analysis of Nonlinear Operators

Singular value analysis plays an important role in the characterizations of the prin-
cipal behavior of linear operators. Here we formulate a nonlinear counterpart of sin-
gular value analysis. It is a basic ingredient for considering balanced realizations for
nonlinear systems explained further on in this paper.

Let us consider a linear operator A : U → Y with Hilbert spaces U and Y . Then

A∗A v = σ2v (1)

holds with σ(≥ 0) ∈ R and v ∈ U where σ and v are called a singular value and a
(right) singular vector of the operator A. Here A∗ is the adjoint of A satisfying
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〈y,A u〉Y = 〈A∗y, u〉U (2)

for all u ∈ U and y ∈ Y where 〈·, ·〉X denotes the the inner product of the space X .
For a finite dimensional signal space U , the operator A can be described by

A =
n∑

i=1

σi wi v
∗
i

with the singular values σ1 ≥ σ2 ≥ . . . ≥ σn, the corresponding right singular
vectors vi’s. and the left singular vectors wi’s. Then we can obtain an approximation
of A with rank m < n by

Aa :=
m∑

i=1

σi wi v
∗
i .

We can easily observe that this approximation preserves the gain of the original
operator A

‖Aa‖ = σ1 = ‖A‖.

Furthermore, the error bound is obtained by

‖A−Aa‖ = σm+1.

For the generalization to nonlinear systems, we consider the following interpretation
of singular values for linear operators. The largest singular value of the operator A
characterizes the gain of the operator and the corresponding singular vector vmax

represents the input maximizing the input-output ratio. Namely, the following equa-
tions hold.

σmax = sup
u�=0

‖A u‖
‖u‖ , vmax = arg sup

u�=0

‖A u‖
‖u‖ (3)

Now, let us consider a smooth nonlinear operator f : U → Y with Hilbert spaces
U and Y . How to define singular values of the nonlinear operator f(u) is not imme-
diately clear because there does not exist an operator f∗(y) such that Equation (2)
holds with A = f . Several papers define a nonlinear counterpart of an adjoint opera-
tor, e.g., [Batt70, SG02, FSG02]. For our nonlinear balancing purpose we generalize
the linear way of thinking given by Equation (3). More precisely we consider the
following definitions

σc
max = sup

‖u‖=c

‖f(u)‖
‖u‖ , vc

max = arg sup
‖u‖=c

‖f(u)‖
‖u‖ (4)

where the gain of the operator f is characterized for each input magnitude c. The
property that the gain of a nonlinear operator depends on the magnitude of its input
is quite natural in the nonlinear setting and, for instance, this idea can be found in the
input-to-state stability literature, e.g., [JTP94, SW96]. If σc

max is obtained, then we
can calculate the largest singular value σmax and the corresponding singular vector
vmax of f by
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f u(u)

u* u0

Fig. 1. Maximizing input u = u� of f(u)

σmax = sup
c>0

σc
max, vmax = vc

max|c=arg supc�=0 σc
max

. (5)

In the linear case, the largest singular value σmax coincides with σc
max for all c > 0.

Now we are ready to define the singular value σ and the corresponding singular
vector v for the operator f fulfilling the relationship (4). This is obtained by simply
differentiating the condition in Equation (4). Figure 1 depicts the (locally) largest
singular vector u� when f is a mapping of R → R. At the point u = u� where the
input-output takes its maximum value, the derivative of the input-output ratio has to
be 0. Therefore the following equation has to hold for all u satisfying ‖u‖ = c.

d
(
‖f(u)‖
‖u‖

)
(du) = 0 (6)

Here the Fréchet derivative1 is adopted to describe the problem. This equation is
equivalent to

〈(df(u))∗f(u) − ‖f(u)‖2

‖u‖2
u, du〉 = 0. (7)

On the other hand, the derivative of ‖u‖ = c yields

〈u, du〉 = 0. (8)

Combining Equations (7) and (8), we obtain the condition for the singular vector v.

Theorem 1. [Fujimoto04] Consider a nonlinear operator f : U → Y with Hilbert
spaces U and Y . Then the input-output ratio of ‖f(u)‖/‖u‖ has a critical value for
an arbitrary input magnitude ‖u‖ = c if and only if

(df(v))∗f(v) = λ v (9)

with a scalar λ ∈ R and v ∈ U .

1 The Fréchet derivative of an operator T : U → Y is an operator T : U×U → Y satisfying
f(u + v) = f(u) + df(u)(v) + o(‖v‖) such that f(u)(v) depends linearly on v.
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We now define v as a singular vector for a nonlinear operator f if it fulfills
Equation (9). Immediate extension of the linear case by defining the singular value
of f by σ :=

√
λ is not appropriate. This can be seen from the fact that, e.g., λ can

be negative. A better extension is given by using the singular vector v, and defining
the corresponding singular value by

σ =
‖f(v)‖
‖v‖ . (10)

In the remainder of this paper, investigating the solutions of the pair of Equations
(9) and (10) is called singular value analysis of the nonlinear operator f . Here σ is
called a singular value of f , and v is called the corresponding singular vector. It can
be readily observed that

λ = σ2

holds in the linear case. However, this equation does not hold in the nonlinear
case. Although the scalar λ is always real, it can be negative in the nonlinear
case [Fujimoto04].

A more detailed discussion on nonlinear singular value analysis is given
in [Fujimoto04].

3 Balanced Realization for Linear Systems

This section briefly reviews balanced realizations in the linear systems case in order
to show the way of thinking in the nonlinear case. See standard textbooks for the
detail, e.g., [OA01, ZDG96]. Consider the following controllable, observable, and
asymptotically stable linear system

Σ :
{
ẋ = Ax+Bu x(0) = 0
y = Cx

(11)

where x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
p. The controllability Gramian P and

the observability Gramian Q of the system Σ in Equation (11) are obtained by the
solutions to the Lyapunov equations

AP + PAT +BBT = 0 (12)
ATQ+QA+ CTC = 0. (13)

It is known that the positive definiteness of the Gramians P and Q is equivalent
to controllability and observability of the system Σ in Equation (11), respectively.
Furthermore, the matrices P and Q themselves are quantitative indicators of the
controllability and observability, that is, P and Q describe the behavior of input-to-
state and that of state-to-output, respectively.

A balanced realization of Σ is a state-space realization which has the following
Gramians



256 K. Fujimoto and J.M.A. Scherpen

P = Q = diag(σ1, σ2, . . . , σn) (14)

where σ1 ≥ σ2 ≥ . . . ≥ σn > 0 are called Hankel singular values. Here the system
is balanced because P = Q implies that relation between input-to-state and state-
to-output is balanced and diagonalized P and Q implies that the importance of each
coordinate axis is balanced. There is another realization called an input-normal form
which has the following Gramians

P = I, Q = diag(σ2
1 , σ

2
2 , . . . , σ

2
n) (15)

where only the balancing between the coordinate axes is achieved.
If σi > σj then the coordinate axis xi is more important to the input-output

behavior, i.e., better controllable and observable, than the axis xj . Therefore if
σk ) σk+1 holds for a certain k (1 ≤ k < n), then we can obtain a k-dimensional
reduced order model by neglecting the dynamics of xk+1, . . . , xn. This model reduc-
tion procedure is called balanced truncation. More precisely, balanced truncation is
executed as follows. Suppose that the system is in a balanced realization and divide
the coordinate as follows

x = (xa, xb)
xa = (x1, . . . , xk)
xb = (xk+1, . . . , xn).

Further divide the state-space system(
ẋa

ẋb

)
=
(
Aa Aab

Aba Ab

)(
xa

xb

)
+
(
Ba

Bb

)
u

y =
(
Ca, Cb

)(xa

xb

)
.

Then the reduced order model is obtained by

Σa :
{
ẋa = Aaxa +Bau

y = Caxa .

By balanced truncation it is readily obtained that several properties are preserved.
This can be seen by studying the Lyapunov equations (12) and (13), and their trun-
cated versions, e.g.,

Theorem 2. [Moore81] The controllability Gramian P a and the observability
Gramian Qa of the reduced order model Σa are given by

P a = Qa = diag(σ1, . . . , σk).

The controllability operator C and the observability operator O of the system Σ
as in (11) are given by
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C : u �→ x0 :=
∫ ∞

0

eτABu(τ)dτ

O : x0 �→ y := CetAx0.

Furthermore, their composition is defined as the Hankel operator H of the original
system Σ.

H = O C (16)

These operators are closely related to the Gramians, i.e.,

P = C C∗

Q = O∗O

Now consider a linear system given by Equation (11), which is not necessarily ob-
servable and/or controllable. The relation between the Gramians and the observabil-
ity and controllability operator allows one to prove the following theorem.

Theorem 3. [ZDG96] The operator H∗H and the matrix PQ have the same
nonzero eigenvalues.

Proof: The proof of this theorem is easily obtained and instructive for the nonlinear
extension case. We first prove the ‘⇒’ part. Due to (16), the eigenvalue problem of
H∗H reduces to

C∗O∗O C v = λ v, v ∈ U, λ ∈ R

with λ = σ2. Defining ξ := C v ∈ R
n and premultiplying C to the above equation,

we obtain
C C∗O∗O C v = C λ v

which reduces to
PQ ξ = λ ξ (17)

characterizing the eigenvalues of PQ. Furthermore, the ‘⇐’ part can be proved in a
similar way. Suppose that we have the above equation. Then premultiplying C∗O O∗

and defining v̄ := C∗O O∗ξ we obtain

H∗H v̄ = λ v̄

which coincides with the eigenvalue problem of H∗H. �

Thus the singular value problem of the operator H is closely related to the eigen-
value problem of the matrix PQ, and a singular vector v of H is characterized by an
eigenvector ξ of PQ.

Due to this property, the constants σi’s in Equation (14) are called Hankel singu-
lar values. Furthermore, the Hankel norm ‖Σ‖H of the operator Σ is defined by the
L2 gain of the corresponding Hankel operator as

‖Σ‖H := sup
u∈L2[0,∞)

u�=0

‖H(u)‖L2

‖u‖L2

= σ1. (18)
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Theorem 2 implies that the balanced truncation procedure preserves the Hankel norm
of the original system, that is,

‖Σa‖H = ‖Σ‖H . (19)

It is also known that the error bound of this model order reduction procedure is
given by

‖Σ −Σa‖∞ ≤ 2
n∑

i=k+1

σi. (20)

The relation between the Gramians and the Hankel, controllability and observ-
ability operators gives rise to both input-output operator interpretations as well as
state-space interpretations of Hankel singular values and balanced truncation. These
interpretations are crucial for the extension to nonlinear systems.

4 Basics of Nonlinear Balanced Realizations

This section gives a nonlinear extension of balanced realization introduced in the
previous section. Let us consider the following asymptotically stable input-affine
nonlinear system

Σ :
{
ẋ = f(x) + g(x)u x(0) = x0

y = h(x)
(21)

where x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
p. The controllability operator C : U →

X with X = R
n and U = Lm

2 [0,∞), and the observability operator O : X → Y
with Y = Lp

2[0,∞) for this system are defined by

C : u �→ x0 :
{
ẋ = −f(x) − g(x)u x(∞) = 0
x0 = x(0)

O : x0 �→ y :
{
ẋ = f(x) x(0) = x0

y = h(x)
.

This definition implies that the observability operator O is a map from the initial
condition x(0) = x0 to the output L2 signal when no input is applied. To interpret
the meaning of C, let us consider a time-reversal behavior of the C operator as

C : u �→ x0 :
{
ẋ = f(x) + g(x)u(−t) x(−∞) = 0
x0 = x(0)

. (22)

Then the controllability operator C can be regarded as a mapping from the input
L2 signal to the terminal state x(0) = x0 when the initial state is x(−∞) = 0.
Therefore, as in the linear case, C and O represent the input-to-state behavior and the
state-to-output behavior, respectively. As in the linear case, the Hankel operator for
the nonlinear operator Σ in (16) is given by the composition of C and O
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f lipping

S

truncation

Fig. 2. Hankel operator H of Σ

H := O ◦ C. (23)

The input-output mapping of a Hankel operator is explained in Figure 2. The
lower side of the figure depicts the input-output behavior of the original operator
Σ in Equation (21). The upper side depicts the input-output behavior of the Hankel
operator of Σ, where the signal in the upper left side is the time-flipped signal of the
lower left side signal. The flipping operator is defined by

F(u(t)) := u(−t).

The upper right side signal is the truncated signal (to the space L2[0,∞)) of the
lower left side signal. The corresponding truncation operator is given by

T (y(t)) :=
{

0 (t < 0)
y(t) (t ≥ 0)

.

The definition of a Hankel operator implies that it describes the mapping from the
input to the output generated by the state at t = 0. Hence we can analyze the rela-
tionship between the state and the input-output behavior of the original operator Σ
by investigating its Hankel operator.

To this end, we need to define certain operators and functions related to Gramians
in the linear case. First a norm-minimizing inverse C† : X → U of C is introduced.

C† : x0 �→ u := arg min
C(u)=x0

‖u‖

The operators C† and O yield the definitions of the controllability function Lc(x)
and the observability function Lo(x) that are generalization of the controllability
and observability Gramians, respectively.
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Lc(x0) :=
1
2
‖C†(x0)‖2 = min

u∈L2(−∞,0]

x(−∞)=0,x(0)=x0

1
2

∫ 0

−∞
‖ u(t) ‖2 dt (24)

Lo(x0) :=
1
2
‖O(x0)‖2 =

1
2

∫ ∞

0

‖ y(t) ‖2 dt, x(0)=x0, u(t)≡0, 0≤t<∞. (25)

These definitions imply that the controllability functionLc(x0) is the minimum input
energy (in the L2 norm sense) required to move from the initial state x(−∞) = 0 to
the terminal state x(0) = x0, and that the observability function Lo(x0) is the output
energy generated by the initial state x(0) = x0 with zero input, respectively. If the
system Σ is linear as in (11), then those functions are described by

Lc(x) =
1
2
xTP−1x, Lo(x) =

1
2
xTQx (26)

with the controllability Gramian P and the observability Gramian Q the solutions of
the Lyapunov equations (12) and (13). Here the inverse of P appears in the above
equation because C† appears in the definition (24), whereas C can be used in the
linear case. In order to obtain those functions Lc(x) and Lo(x), we need to solve a
Hamilton-Jacobi equation and a Lyapunov equation.

Theorem 4. [Scherpen93] Consider the system (21). Suppose that 0 is an asymptot-
ically stable equilibrium point and that a smooth observability function Lo(x) exists.
Then Lo(x) is the unique smooth solution of

∂Lo(x)
∂x

f(x) +
1
2
h(x)Th(x) = 0

with Lo(0) = 0. Furthermore, assume that a smooth controllability function Lc(x)
exists. Then Lc(x) is the unique smooth solution of

∂Lc(x)
∂x

f(x) +
1
2
∂Lc(x)
∂x

g(x)g(x)T
∂Lc(x)
∂x

T

= 0

with Lc(0) = 0 such that 0 is an asymptotically stable equilibrium point of ẋ =
−f(x) − g(x)g(x)T(∂Lc(x)/∂x)T.

Similar to the linear case, the positive definiteness of the controllability and ob-
servability functions implies strong reachability and zero-state observability of the
system Σ in (21), respectively. Combining these two properties, we can obtain the
following result on the minimality of the system.

Theorem 5. [SG00] Consider the system (21). Suppose that

0 < Lc(x) < ∞
0 < Lo(x) < ∞

hold for all x �= 0. Then the system is a minimal realization as defined in [Isidori95].
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Similar to the linear case, Lc(x) and Lo(x) can be used to “measure the minimal-
ity” of a nonlinear dynamical system. Furthermore, a basis for nonlinear balanced
realization is obtained as a nonlinear generalization of the relationship (15) in the
linear case. For that, a factorization of Lo(x) into a semi-quadratic form needs to be
done, i.e., in a convex neighborhood of the equilibrium point 0 we can write

Lo(x) =
1
2
xTM(x)x, with M(0) =

∂2Lo

∂x2
(0). (27)

Now, an input-normal/output-diagonal form can be obtained.

Theorem 6. [Scherpen93] Consider the system (21) on a neighborhood W of 0.
Suppose that 0 is an asymptotically stable equilibrium point, that it is zero-
state observable, that smooth controllability and observability functions Lc(x) and
Lo(x) exist on W , and that (∂2Lc/∂x

2)(0) > 0 and (∂2Lo/∂x
2)(0) > 0 hold.

Furthermore, assume that the number of distinct eigenvalues of M(x) is constant
on W . Then there exists coordinates such that the controllability and observability
functions Lc(x) and Lo(x) satisfy

Lc(x) =
1
2

n∑
i=1

x2
i (28)

Lo(x) =
1
2

n∑
i=1

x2
i τi(x) (29)

where τ1(x) ≥ τ2(x) ≥ . . . ≥ τn(x).

A state-space realization satisfying the conditions (28) and (29) is called an input-
normal form, and the functions τi(x), i = 1, 2, . . . , n are called singular value func-
tions. We refer to [Scherpen93] for the construction of the coordinate transformation
that brings the system in the form of Theorem 6. If a singular value function τi(x) is
larger than τj(x), then the coordinate axis xi plays more important role than the coor-
dinate axis xj does. Thus this realization is similar to the linear input-normal/output-
diagonal realization (15), and it directly yields a tool for model order reduction of
a nonlinear systems. However, a drawback of the above realization is that the the
singular value functions τi(x)’s and consequently, the corresponding realization are
not unique, e.g. [GS01]. For example, if the observability function is given by

Lo(x) =
1
2
(x2

1τ1(x) + x2
2τ2(x)) =

1
2
(2x2

1 + x2
2 + x2

1x
2
2),

with the state-space x = (x1, x2), then the corresponding singular value func-
tions are

τ1(x) = 2 + kx2
2

τ2(x) = 1 + (1 − k)x2
1

with an arbitrary scalar constant k. This example reveals that the singular value func-
tion are not uniquely determined by this characterization. To overcome these prob-
lems, balanced realization based on nonlinear singular value analysis introduced in
Section 2 is investigated in the following section.
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5 Balanced Realizations Based on Singular Value Analysis
of Hankel Operators

In this section, application of singular value analysis to nonlinear Hankel operators
determines a balanced realization with a direct input-output interpretation whereas
the balanced realization of Theorem 6 is completely determined based on state-space
considerations only. To this end, we consider the Hankel operator H : U → Y as
defined in (23) with U = Lm

2 [0,∞) and Y = Lp
2[0,∞). Then Equation (9) yields

(dH(v))∗ H(v) = λ v, λ ∈ R, v ∈ U. (30)

Since we consider a singular value analysis problem on L2 spaces, we need to find
state trajectories of certain Hamiltonian dynamics, see e.g., [FS05]. In the linear case,
Theorem 3 shows that we only need to solve an eigenvalue problem (17) on a finite
dimensional space X = R

n to obtain the singular values and singular vectors of the
Hankel operator H. Here we provide its nonlinear counterpart as follows.

Theorem 7. [FS05] Consider the Hankel operator defined by Equation (23). Sup-
pose that the operators C† and O exist and are smooth. Suppose moreover that λ ∈ R

and ξ ∈ X satisfy the following equation

∂Lo(ξ)
∂ξ

= λ
∂Lc(ξ)
∂ξ

, λ ∈ R, ξ ∈ X. (31)

Then λ and
v := C†(ξ) (32)

satisfy Equation (9). That is, v defined above is a singular vector of H.

Though the original singular value analysis problem (9) is a nonlinear prob-
lem on an infinite dimensional signal space U = Lm

2 [0,∞), the problem to be
solved in the above theorem is a nonlinear algebraic equation on a finite dimen-
sional space X = R

n which is also related to a nonlinear eigenvalue problem on X ,
see [Fujimoto04].

In the linear case, where Lc(x) and Lo(x) are given by (26), Equation (31) re-
duces to

ξTQ = λ ξTP−1

where P and Q are the controllability and observability Gramians. This equation is
equivalent to (17), i.e., λ and ξ are an eigenvalue and an eigenvector of PQ. Fur-
thermore, Equation (32) characterizes the relationship between a singular vector v of
H and an eigenvector ξ of PQ as in the linear case result. Thus Theorem 7 can be
regarded as a nonlinear counterpart of Theorem 3.

In the linear case, there always exist n independent pairs of eigenvalues and
eigenvectors of PQ. What happens in the nonlinear case? The answer is provided
in the following theorem.
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x2 

x1 

ξ1

ξ2

0

Fig. 3. Configuration of ξ1(s) and ξ2(s) in the case n = 2

Theorem 8. [FS05] Consider the system Σ in (21) and the Hankel operator H in
Equation (23) with X = R

n. Suppose that the Jacobian linearization of the system
has n distinct Hankel singular values. Then Equation (31) has n independent solu-
tion curves ξ = ξi(s), s ∈ R, i = 1, 2, . . . , n intersecting to each other at the origin
and satisfying the condition

‖ξi(s)‖ = |s|.

In the linear case, the solutions of Equation (31) are the lines (orthogonally)
intersecting to each other at the origin. The above theorem shows that instead of
these lines, in the nonlinear case n independent curves x = ξi(s), i = 1, 2, . . . , n
exist. For instance, if the dimension of the state is n = 2, the solution of Equation
(31) is illustrated in Figure 3.

We can relate the solutions ξi(s) to the singular values of the Hankel operator H.
Let vi(s) and σi(s) denote the singular vector and the singular value parameterized
by s corresponding to ξi(s). Then we have

vi(s) := C†(ξi(s))

σi(s) :=
‖H(vi(s))‖L2

‖vi(s)‖L2

=
‖O(ξi(s))‖L2

‖C†(ξi(s))‖L2

=

√
Lo(ξi(s))
Lc(ξi(s))

.

By this equation, we can obtain an explicit expression of the singular values σi(s)’s
of the Hankel operator H. These functions σi(s)’s are called Hankel singular val-
ues. Without loss of generality we assume that the following equation holds for
i = 1, 2, . . . , n in a neighborhood of the origin

min{σi(s), σi(−s)} > max{σi+1(s), σi+1(−s)}. (33)
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As in the linear case, the solution curves ξi(s)’s play the roles of the coordinate
axes of balanced realization. By applying an isometric coordinate transformation
which maps the solution curves ξi(s)’s into the coordinate axes, we obtain a realiza-
tion whose (new) coordinate axes xi are the solution of Equation (31), i.e.,

∂Lo(x)
∂x

∣∣∣∣
x=(0,...,0,xi,0,...,0)

= λ
∂Lc(x)
∂x

∣∣∣∣
x=(0,...,0,xi,0,...,0)

(34)

σi(xi) =

√
Lo(0, . . . , 0, xi, 0, . . . , 0)
Lc(0, . . . , 0, xi, 0, . . . , 0)

. (35)

Equation (35) implies that the new coordinate axes xi, i = 1, . . . , n are the so-
lutions of Equation (31) for Hankel singular value analysis. Therefore the Hankel
norm defined in (18) can be obtained by

‖Σ‖H = sup
u�=0

‖H(u)‖L2

‖u‖L2

= sup
s∈R

max
i

σi(s)

= sup
x1∈R

√
Lo(x1, 0, . . . , 0)
Lc(x1, 0, . . . , 0)

provided the ordering condition (33) holds for all s ∈ R. Furthermore, apply this
coordinate transformation recursively to all lower dimensional subspaces such as
(x1, x2, . . . , xk, 0, . . . , 0), then we can obtain a state-space realization satisfying
Equation (35) and

xi = 0 ⇐⇒ ∂Lo(x)
∂xi

= 0 ⇐⇒ ∂Lc(x)
∂xi

= 0. (36)

This property is crucial for balanced realization and model order reduction. Using
tools from differential topology, e.g. [Milnor65], we can prove that this realization is
diffeomorphic to the following precise input-normal/output-diagonal realization.

Theorem 9. [FS03] Consider the system Σ in (21). Suppose that the assumptions in
Theorem 8 hold. Then the there exists a coordinates in a neighborhood of the origin
such that the system is in input-normal/output-diagonal form satisfying

Lc(x) =
1
2

n∑
i=1

x2
i

Lo(x) =
1
2

n∑
i=1

x2
i σi(xi)2

This realization is much more precise than that in Theorem 6 in the following
senses: (a) The solutions of Equation (31) coincide with the coordinate axes, that is,
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Equation (34) holds. (b) The ratio of the observability function Lo to the controlla-
bility function Lc equals the singular values σi(xi)’s on the coordinate axes, that is
Equation (35) holds. (c) Furthermore, an exact balanced realization can be obtained
by a coordinate transformation

zi = φi(xi) := xi

√
σi(xi) (37)

which is well-defined in a neighborhood of the origin.

Corollary 1. [FS03] The coordinate change (37) transforms the input-normal real-
ization in Theorem 9 into the following form

Lc(z) =
1
2

n∑
i=1

z2
i

σi(zi)

Lo(z) =
1
2

n∑
i=1

z2
i σi(zi).

Since we only use the coordinate transformation (37) preserving the coordinate
axes, the realization obtained here also satisfies the properties (a) and (b) explained
above. The controllability and observability functions can be written as

Lc(z) =
1
2
zT diag(σ1(z1), . . . , σn(zn))︸ ︷︷ ︸

P (z)

−1
z

Lo(z) =
1
2
zT diag(σ1(z1), . . . , σn(zn))︸ ︷︷ ︸

Q(z)

z

Here P (z) and Q(z) can be regarded as nonlinear counterparts of the controllability
and observability Gramians as observed in Equation (14) with the relation (26) since

P (z) = Q(z) = diag(σ1(z1), σ2(z2), . . . , σn(zn)). (38)

The axes of this realization are uniquely determined. We call this state-space real-
ization a balanced realization of the nonlinear system Σ in Equation (21). As in
the linear case, both the relationship between the input-to-state and state-to-output
behavior and that among the coordinate axes are balanced.

6 Model Order Reduction

An important application of balanced realizations is that it is a tool for model or-
der reduction called balanced truncation. Here, a model order reduction method
preserving the Hankel norm of the original system is proposed. Suppose that the
system (21) is balanced in the sense that it satisfies Equations (35) and (36). Note
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that the realizations in Theorem 9 and Corollary 1 satisfy these conditions. Suppose
moreover that

min{σk(s), σk(−s)} ) max{σk+1(s), σk+1(−s)}

holds with a certain k (1 ≤ k < n). Divide the state into two vectors x = (xa, xb)

xa := (x1, . . . , xk) ∈ R
k

xb := (xk+1, . . . , xn) ∈ R
n−k,

and the vector field into two vector fields accordingly

f(x) =
(
fa(x)
f b(x)

)
g(x) =

(
ga(x)
gb(x)

)
,

and truncate the state by substituting xb = 0. Then we obtain a k-dimensional state-
space model Σa with the state xa (with a (n − k)-dimensional residual model Σb

with the state xb).

Σa :
{
ẋa = fa(xa, 0) + ga(xa, 0)ua

ya = h(xa, 0)
(39)

Σb :
{
ẋb = f b(0, xb) + gb(0, xb)ub

yb = h(0, xb)
(40)

This procedure is called balanced truncation. The obtained reduced order models
have preserved the following properties.

Theorem 10. [FS01, FS06] Suppose that the system Σ satisfies Equations (35) and
(36) and apply the balanced truncation procedure explained above. Then the control-
lability and observability functions of the reduced order models Σa and Σb denoted
by La

c , Lb
c, La

o and Lb
o, respectively, satisfy the following equations

La
c (xa) = Lc(xa, 0), La

o(xa) = Lo(xa, 0)
Lb

c(x
b) = Lc(0, xb), Lb

o(x
b) = Lo(0, xb)

which implies

σa
i (xa

i ) = σi(xa
i ), i = 1, 2, . . . , k

σb
i (x

b
i ) = σi+k(xb

i ), i = 1, 2, . . . , n− k

with the singular values σa’s of the system Σa and the singular values σb of the
system Σb. In particular, if σ1 is defined globally, then

‖Σa‖H = ‖Σ‖H . (41)
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Theorem 10 states that the important characteristics of the original system such
as represented by the controllability and observability functions and Hankel singular
values are preserved. Moreover, by Theorem 5, this implies that the controllabil-
ity, observability, minimality and the gain property is preserved under the model
reduction. These preservation properties hold for truncation of any realization sat-
isfying the conditions (35) and (36), such as the realizations in Theorem 9 and
Corollary 1 [FS01]. Furthermore, concerning the stability, (global) Lyapunov sta-
bility and local asymptotic stability are preserved with this procedure as well. Note
that this theorem is a natural nonlinear counterpart of Theorem 2 and Equation (19).
However, a nonlinear counterpart of the error bound of the reduced order model as
in (20) has not been found yet.

7 Numerical Example

In this section, we apply the proposed model order reduction procedure to a double
pendulum (an underactuated two degrees of freedom robot manipulator) as depicted
in Figure 4.

Here mi denotes the mass located at the end of the i-th link, li denotes the length
of the i-th link, µi denotes the friction coefficient of the i-th link, and xi denotes
the angle of the i-th link. We select the physical parameters as l1 = l2 = 1, m1 =
m2 = 1, µ1 = µ2 = 1, g0 = 9.8 with g0 the gravity coefficient. The dynamics of
this system can be described by an input-affine nonlinear system model (21) with 4
dimensional state-space

x = (x1, x2, x3, x4) := (x1, x2, ẋ1, ẋ2). (42)

The input u denotes the torque applied to the first link at the first joint and the output
y denotes the horizontal and the vertical coordinates of the position of the mass
m2. The potential energy V (x) and the kinetic energy T (x) for this system are de-
scribed by

x1 

x2 

m1

m2

l2

l1

m1

m2

u

Fig. 4. The double pendulum
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V (x) = −m1g0l1 cosx1 −m2g0l1 cosx1 −m2g0l2 cos(x1 + x2)

T (x) =
1
2

(ẋ1, ẋ2)M(x)
(
ẋ1

ẋ2

)
M(x) =(

m1l
2
1 + m2l

2
1 + m2l

2
2 + 2m2l1l2 cos x2 m2l

2
2 + m2l1l2 cos x2

m2l
2
2 + m2l1l2 cos x2 m2l

2
2

)
(43)

where M(x) denotes the inertia matrix. Then the dynamics of this system is obtained
by the Lagrange’s method as follows

d
dt

∂L(x)
∂(ẋ1, ẋ2)

T

− ∂L(x)
∂(x1, x2)

T

=
(
u− µ1ẋ1

−µ2ẋ2

)
(44)

with the Lagrangian L(x) := T (x)−V (x). This equation reduces to the system (21)
with

f(x) =

⎛⎜⎜⎝
x3

x4

M−1

(
∂(T−V )
∂(x1,x2)

T
− Ṁ

(
ẋ1

ẋ2

)
−
(
µ1ẋ1

µ2ẋ2

))
⎞⎟⎟⎠

g(x) =

⎛⎜⎜⎝
0
0

M−1

(
1
0

)
⎞⎟⎟⎠

h(x) =
(

l1 sinx1 + l2 sin(x1 + x2)
l1(1 − cosx1) + l2(1 − cos(x1 + x2))

)
.

See [FT06] for the details of the model.
For computing Lo and Lc, we use the method based on Taylor series expansion

proposed in [Lukes69]. Then we need to solve the nonlinear algebraic equation (31).
Although it is much easier to be solved compared with the original singular value
analysis problem in (30), it is still difficult to obtain a closed form solution. Again
using Taylor series expansion we can prove that the computation of Equation (31)
reduces to solving linear algebraic equations recursively. Applying this procedure
and calculating the balancing coordinate transformation up to the 4-th order terms of
the Taylor series expansion, results in the following Hankel singular value functions.

σ1(x1)2 = 1.98 × 10−1 + 4.14 × 10−4x2
1 + o(|x1|3)

σ2(x2)2 = 1.72 × 10−1 + 3.28 × 10−4x2
2 + o(|x2|3)

σ3(x3)2 = 5.83 × 10−5 + 1.51 × 10−4x2
3 + o(|x3|3)

σ4(x4)2 = 9.37 × 10−6 + 9.22 × 10−6x2
4 + o(|x4|3)

These functions are depicted in Figure 5 where the solid line denotes σ1, the dotted
line denotes σ2, the dashed line denotes σ3 and the dashed and dotted line denotes σ4.
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Fig. 5. Hankel singular value functions σi(s), i = 1, . . . , 4

From this figure, we conclude that in a neighborhood of 0 σ2(x2) ) σ3(x3), and
thus that an appropriate dimension of the reduced order model is 2. We can now
apply the balanced truncation procedure as presented in the previous section.

We have executed some simulations of the original and reduced models to
evaluate the effectiveness of the proposed model order reduction method. Here the
time responses for impulsive inputs are depicted in the figures, i.e., Figure 6 de-
scribes the response of the horizontal movement and Figure 7 describes the response
of the vertical movement. In the figures, the solid line denotes the response of the
original system, the dashed line denotes the response of the linearized reduced or-
der model, and the dashed/dotted line denotes the response of the nonlinear reduced
order model.

In Figure 6, all trajectories are identical which indicates that both linear and non-
linear reduced order models can approximate the behavior of the original model well.
However, in Figure 7, one can observe that the trajectory of the linear reduced order
model is quite different from the original whereas the trajectory of the nonlinear re-
duced order model is almost identical with that of the original system. This is due
to the fact that the linearization of the vertical displacement of the mass m2 is 0
since it consists of a cosine function of the state. These simulations demonstrate the
effectiveness of our nonlinear balanced truncation method. It is noted that the pro-
posed computation algorithm is currently only applicable to systems whose size is
relatively small. A big progress on computation of nonlinear balanced realization is
required to make it be applicable to real-world large scale systems.
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8 Conclusion

In this paper, we have presented an overview of singular value analysis of nonlin-
ear operators and its application to balanced realizations and model order reduction
methods for nonlinear systems. Recent development in this area of research provides
a precise and complete basis for model oder reduction of nonlinear dynamical sys-
tems. A reduced order model derived by this technique preserves many important
properties of the original system such as controllability, observability, stability and
the Hankel norm. Compared with the theoretical results, however, computational de-
velopments are still in their infancy, meaning that large scale nonlinear systems are
still difficult to handle. Future research should thus include a strong focus on the
computational algorithms for making nonlinear balanced truncation a useful tool in
large scale applications.
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1 Introduction

In this chapter, we give an overview on methods to compute functions of a (usually
square) matrix A with particular emphasis on the matrix exponential and the matrix
sign function. We will distinguish between methods which indeed compute the entire
matrix function, i.e. they compute a matrix, and those which compute the action
of the matrix function on a vector. The latter task is particularly important in the
case where we have to deal with a very large (and possibly sparse) matrix A or in
situations, where A is not available as a matrix but just as a function which returns
Ax for any input vector x. Computing the action of a matrix function on a vector
is a typical model reduction problem, since the resulting techniques usually rely on
approximations from small-dimensional subspaces.

This chapter is organized as follows: In section 2 we introduce the concept of a
matrix function f(A) in detail, essentially following [38] and [27]. Section 3 gives
an assessment of various general computational approaches for either obtaining the
whole matrix f(A) or its action f(A)v on a vector v. Sections 4 and 5 then give much
more details for two specific functions, the exponential and the sign functions, which,
as we will show, are particularly important in many areas like control theory, simula-
tion of physical systems and other application fields involving the solution of certain
ordinary or partial differential equations. The applicability of matrix functions in
general, and of the exponential and the sign functions in particular, is vast. However,
we will limit our discussion to characterizations and to application problems that are
mostly related to Model Order Reduction. For a comprehensive analysis of matrix
functions and their computation we refer to the recent book by Nick Higham [34].

2 Matrix Functions

In this section we address the following general question: Given a function
f : C → C, is there a canonical way to extend this function to square matrices, i.e.
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to extend f to a mapping from C
n×n to C

n×n? If f is a polynomial p of degree d,
f(z) = p(z) =

∑d
k=0 akz

k, the canonical extension is certainly given by

p : C
n×n → C

n×n, p(A) =
d∑

k=0

akA
k. (1)

If f(z) can be expressed by a power series, f(z) =
∑∞

k=0 akz
k, a natural next step

is to put

f(A) =
∞∑

k=0

akA
k, (2)

but for (2) to make sense we must now discuss convergence issues. The main re-
sult is given in the following theorem, the proof of which gives us valuable further
information on matrix functions. Recall that the spectrum spec(A) is the set of all
eigenvalues of A.

Theorem 1. Assume that the power series f(z) =
∑∞

k=0 akz
k is convergent for

|z| < ρ with ρ > 0 and assume that spec(A) ⊂ {z ∈ C : |z| < ρ}. Then the series
(2) converges.

Proof. Let T be the transformation matrix occuring in the Jordan decomposition

A = TJT−1, (3)

with

J =

⎡⎢⎣Jm1(λ1) 0
. . .

0 Jm�
(λ�)

⎤⎥⎦ =: diag(Jm1(λ1), . . . , Jm�
(λ�) ). (4)

Here, λ1, . . . , λ� are the (not necessarily distinct) eigenvalues of A and mj is the size
of the jth Jordan block associated with λj , i.e.

Jmj
(λj) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

λj 1 0 · · · 0

0 λj 1
. . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 · · · · · · 0 λj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=: λjI + Smj

∈ C
mj×mj , (5)

and
∑�

j=1 mj = n. For each λj , the powers of Jmj
(λj) are given by

Jm(λj)k =
k∑

ν=0

(
k

ν

)
λk−ν

j · Sν
mj
.

Note that Sν
mj

has zero entries everywhere except for the ν-th upper diagonal, whose
entries are equal to 1. In particular, Sν

mj
= 0 for ν ≥ mj . Therefore,
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f(Jmj
(λj)) =

∞∑
k=0

ak

k∑
ν=0

(
k

ν

)
λk−ν

j · Sν
mj
,

and for ν and j fixed we have

∞∑
k=0

ak

(
k

ν

)
λk−ν

j =
∞∑

k=0

1
ν!

· ak · (k · . . . · (k − ν + 1))λk−ν
j =

1
ν!
f (ν)(λj).

Note that the last equality holds in the sense of absolute convergence because λj

lies within the convergence disk of the series. This shows that the series f(Jmj
(λj))

converges. Plugging these expressions into the series from (2) we obtain the value of
the original (now convergent) series,

f(A) = Tdiag (f(Jm1(λ1)), . . . , f(Jm�
(λ�))))T−1

= Tdiag

(
m1−1∑
ν=0

1
ν!
f (ν)(λ1) · Sν

m1
, . . . ,

m�−1∑
ν=0

1
ν!
f (ν)(λ�) · Sν

m�

)
T−1. (6)

It may happen that a function f cannot be expressed by a series converging in a
large enough disk. If f is sufficiently often differentiable at the eigenvalues ofA, then
the right-hand side of (6) is still defined. We make it the basis of our final definition
of a matrix function.

Definition 1. Let A ∈ C
n×n be a matrix with spec(A) = {λ1, . . . , λ�} and Jordan

normal form
J = T−1AT = diag(Jm1(λ1), . . . , Jm�

(λ�) ). (7)

Assume that the function f : C → C is mj − 1 times differentiable at λj for j =
1, . . . , �. Then the matrix function f(A) is defined as f(A) = Tf(J)T−1 where

f(J) = diag(f(Jm1(λ1)), . . . , f(Jm�
(λ�))),

with

f(Jmj
(λj)) =

mj−1∑
ν=0

1
ν!
f (ν)(λj) · Sν

mj
.

This definition makes explicit use of the Jordan canonical form and of the asso-
ciated transformation matrix T . Neither T nor J are unique, but it can be shown – as
is already motivated by (2) – that f(A) as introduced in Definition 1 does not depend
on the particular choice of T or J .

As a first consequence of Definition 1 we note the following important property.

Proposition 1. With the notation above, it holds f(A) = p(A), where p is the poly-
nomial of degree not greater than n − 1 which interpolates the eigenvalues λj of A
in the Hermite sense (i.e. f (ν)(λj) = p(ν)(λj) for all relevant ν’s and j’s).
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The polynomial p in Proposition 1 will not only depend on f , but also on A
or, more precisely, on the minimal polynomial of A (of which the multiplicity of
an eigenvalue λ determines the maximal block size mj for the Jordan blocks corre-
sponding to this eigenvalue). When A is normal, T is an orthogonal matrix and all
Jordan blocks have size one, i.e. we have

J = diag(λ1, . . . , λn). (8)

So, in this particular case, we do not need any differentiability assumption on f .
A further representation of f(A) can be derived in the case when f is analytic

in a simply connected region Ω containing spec(A). Let γ be a curve in Ω with
winding number +1 w.r.t. a point z ∈ Ω. The Residue Theorem tells us

f (ν)(z)
ν!

=
1

2πi

∮
γ

f(t)
(t− z)ν+1

dt. (9)

Let Jmj
(λj) be a Jordan block associated with λj and let z �= λj . Then

(zI − Jmj
)−1 = ((z − λj)I − Smj

)−1 =
1

z − λj
·

mj−1∑
ν=0

(
1

z − λj
· Smj

)ν

, (10)

from which we get

1
2πi

∮
γ

f(z)(zI − Jmj
)−1dz =

mj−1∑
ν=0

1
2πi

∮
γ

f(z)
(z − λj)ν+1

Sν
mj
dz

=
mj−1∑
ν=0

f (ν)(λj)
ν!

· Sν
mj
,

the second line holding due to (9). Using this for each Jordan block in Definition 1
and recombining terms we obtain the following integral representation of f(A),

f(A) =
1

2πi

∮
γ

f(t)(tI −A)−1dt. (11)

3 Computational Aspects

It is not necessarily a good idea to stick to one of the definitions of matrix func-
tion given in the previous section when it comes to numerically compute a matrix
function f(A). In this section we will discuss such computational issues, describing
several numerical approaches having their advantages in different situations, basi-
cally depending on spectral properties of A, on the dimension and sparsity of A and
on whether we really want to obtain the matrix f(A) rather than “just” its action
f(A)v on a vector v.
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3.1 Normal Matrices

A matrix A ∈ C
n×n is said to be normal if it commutes with its adjoint, AAH =

AHA. Normal matrices may also be characterized as being unitarily diagonalizable,
i.e. we have the representation

A = QΛQH with Q−1 = QH, Λ = diag(λ1, . . . , λn), spec(A) = {λ1, . . . , λn}.
(12)

This representation is also the Jordan decomposition of A from (3), so that

f(A) = Qf(Λ)QH, f(Λ) = diag(f(λ1), . . . , f(λn)). (13)

Normal matrices have the very attractive property that their eigenvalues λi and the
corresponding invariant subspaces are well conditioned (see [16], for example), i.e.
small changes in A yield only small changes in Λ and Q. Therefore, if we use a
numerically (backward) stable algorithm to compute Λ and Q, like, for example,
the standard Householder reduction to upper Hessenberg form followed by the QR-
iteration, we may safely use the so computed Λ and Q to finally compute f(A) via
(13). The computational cost of this approach is O(n3) due to the various matrix-
matrix multiplications and to the cost for computing the eigendecomposition.

If A is not normal, its eigenvalues are not necessarily well conditioned, the con-
dition number being related to ‖T‖2 ·‖T−1‖2 with T from the Jordan decomposition
(3). It is also important to realize that the size of the Jordan blocks may widely vary
under infinitesimal perturbations in A. Therefore, if A is not normal, Definition 1
does not provide a numerically stable means for computing f(A).

3.2 Quadrature Rules

Assume that f is analytic in Ω and that γ and Ω are as in (11) so that we have

f(A) =
1

2πi

∮
γ

f(t)(tI −A)−1dt. (14)

We apply a quadrature rule withm nodes tj ∈ γ and weights ωj to the right-hand
side to get

1
2πi

∮
γ

f(t)
t− z

dt =
m∑

j=1

ωj
f(tj)
tj − z

+ r. (15)

This shows that we can approximate

f(A) ≈
m∑

j=1

ωjf(tj) · (tjI −A)−1. (16)

For such quadrature rules, the approximation error r can be expressed or bounded
using higher derivatives of f . Actually, since we integrate over a closed curve, taking
the right nodes the quadrature error is usually much smaller than what one would
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expect from quadrature formulas over finite (real) intervals, and the accuracy often
increases exponentially with the number of nodes, see [14, 15]. In principle, this can
then be used to obtain bounds on the approximation error in (16), but to do so we
usually need some knowledge about the norms of T and T−1 in (3), as well as on the
size of the eigenvalues of A. See also section 3.6.

For specific functions, other integral representations may be used. For example,
for z ∈ C, z not on the non-positive real line, we have (see [14])

log(z) =
∫ 1

0

(z − 1)[t(z − 1) + 1]−1dt, (17)

so that using a quadrature rule for the interval [0, 1], we can use the approximation

log(A) ≈
m∑

j=1

ωj · (A− I)[tj(A− I) + I]−1. (18)

As another example, for z > 0 we can write

z−1/2 =
2
π
·
∫ ∞

0

1
t2 + z

dt, (19)

and use a quadrature rule on [0,∞] to approximate A−1/2 when spec(A) ⊂ (0,∞].
Similar approaches have been proposed for various other functions like the p-th

root or the sign function, see [6], [58], for example.
Within this quadrature framework, the major computational cost will usually be

due to the inversion of several matrices. As is explained in [14], this cost can often
be reduced if we first compute a unitary reduction to upper Hessenberg form (which
can be done in a numerically stable manner using Householder transformations), i.e.

A = QHQH, Q unitary , H zero below the first subdiagonal. (20)

Then, for example,

(tjI −A)−1 = Q · (tjI −H)−1 ·QH for all j, (21)

with the inversion of the matrix tjI −H having cost O(n2) rather than O(n3).

3.3 Matrix Iterations

Sometimes, it is convenient to regard f(z) as the solution of a fixed point equation
gz(f) = f with gz being contractive in a neighbourhood of the fixed point f(z). The
method of successive approximations

fk+1 = gz(fk) (22)

can then be turned into a corresponding matrix iteration
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Fk+1 = gA(Fk). (23)

Approaches of this kind have, for example, been proposed for the matrix square
root [31], [32], where Newton’s method

fk+1 =
1
2
·
(
fk +

z

fk

)
(24)

to compute
√
z results in the iteration

Fk+1 =
1
2
·
(
Fk +A · F−1

k

)
. (25)

Similar other iterations, not always necessarily derived from Newton’s method, have
been proposed for the matrix p-th root [6] or for the matrix sign function [41]. A ma-
jor catch with these approaches is that numerical stability of the matrix iteration
(23) is not always guaranteed, even when the scalar iteration (22) is perfectly stable.
Then, some quite subtle modifications, like e.g. the coupled two-term iteration for
the square root analyzed in [31] must be used in order to achieve numerical stability.
The iteration (23) is usually also quite costly. For example, (25) requires the inver-
sion of Fk at every step, so that each step has complexity O(n3). Therefore, for these
methods to be efficient, convergence should be fast, at least superlinear.

3.4 Rational Approximations

Polynomial approximations for a function f often require a quite high degree of the
approximating polynomial in order to achieve a reasonable quality of approximation.
Rational approximations typically obtain the same quality with substantially fewer
degrees of freedom.

Assume that we have the rational approximation

f(z) ≈ Nµν(z)
Dµν(z)

, (26)

where Nµν ,Dµν are polynomials of degree µ and ν, respectively. (The use of the
two indices µ and ν in both polynomials may appear abusive at this point, but it
will be very convenient when discussing Padé approximations to the exponential in
section 4.2). Then

f(A) ≈ Nµν(A) · (Dµν(A))−1
. (27)

Assume that A is diagonalizable. If we know∣∣∣∣f(z) − Nµν(z)
Dµν(z)

∣∣∣∣ ≤ ε for z ∈ spec(A), (28)

for some ε > 0, we get

‖f(A) −Nµν(A) · (Dµν(A))−1 ‖2 ≤ ε · ‖T‖2 · ‖T−1‖2 (29)
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which further simplifies when A is normal, since then T is unitary so that ‖T‖2 ·
‖T−1‖2 = 1. Rational functions can be expressed as partial fraction expansions.
Simplifying our discussion to the case of single poles, this means that we can expand

Nµν(z)
Dµν(z)

= p(z) +
ν∑

j=1

ωj

z − τj
, (30)

with p(z) being a polynomial of degree µ − ν if µ ≥ ν and p ≡ 0 if µ < ν.
This representation is particularly useful if we are interested only in f(A)v for some
vector v, as we will discuss later in section 3.6. Note also that the quadrature rules
from (16) immediately give a partial fraction expansion, so that the two approaches
are very closely related. For a recent investigation, see [66].

3.5 Krylov Subspace Approaches

When A has large dimension, the action of f(A) on a vector v, namely f(A)v, may
be effectively approximated by projecting the problem onto a subspace of possibly
much smaller dimension. The Krylov subspace

Kk(A, v) = span{v,Av, . . . , Ak−1v}

has been extensively used to this purpose, due to its favourable computational and
approximation properties, see, e.g., van der Vorst [68], [69] for a discussion for gen-
eral f . Let Vk be a full column rank n × k matrix whose columns span Kk(A, v),
and assume the following Arnoldi type recurrence holds for Vk,

AVk = Vk+1Hk+1,k = VkHk + hk+1,kvk+1e
T
k . (31)

An approximation to x = f(A)v may be obtained as

xk = Vkf(Hk)e1‖v‖. (32)

The procedure amounts to projecting the matrix onto the much smaller subspace
Kk(A, v), by means of the representation matrix Hk and v = Vke1‖v‖. If Vk has
orthonormal columns then Hk = V H

k AVk. If in addition A is Hermitian, the iteration
(31) reduces to the Lanczos three-term recurrence, in which case Hk is tridiagonal
and Hermitian.

The functional evaluation is carried out within this reduced space, and the ob-
tained solution is expanded back to the original large space. Assume now that k = n
iterations can be carried out, so that the square matrix Vn is orthogonal. Then (31)
gives AVn = VnHn and thus A = VnHnV

H
n . Using this relation, for k < n, the

approximation in Kk(A, v) may be viewed as a problem order reduction to the first
k columns of Vn and corresponding portion of Hn as

x = f(A)v = Vnf(Hn)V H
n v ≈ Vkf(Hk)V H

k v.
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For k small compared to n, the quality of the approximation strongly depends on the
spectral properties of A and on the capability of Kk(A, v) to capture them. A first
characterization in this sense is given by the following result, which can be deduced
from Proposition 1 applied to the matrix Hk and the fact that p(A)v = Vkp(Hk)v
for all polyomials of degree less than or equal to k − 1; see [61, Proposition 6.3].
This is a generalization of [60, Theorem 3.3].

Proposition 2. Let the columns of Vk, with V H
k Vk = Ik span Kk(A, v) and let

Hk = V H
k AVk. Then, the approximation Vkf(Hk)e1‖v‖ represents a polynomial

approximation p(A)v to f(A)v, in which the polynomial p of degree k − 1 interpo-
lates the function f in the Hermite sense on the set of eigenvalues of Hk.

Other polynomial approximations have been explored, see, e.g., [18]; approaches
that interpolate over different sets have been proposed for the exponential function
[53]. Note that the projection nature of the approach allows one to derive estimates
for ‖f(A)‖ as ‖f(A)‖ ≈ ‖f(Hk)‖ which may be accurate even for small k when A
is Hermitian.

All these results assume exact precision arithmetic. We refer to [17] for an analy-
sis of finite precision computation of matrix functions with Krylov subspace methods
when A is Hermitian.

It should be mentioned that the projection onto a Krylov subspace does not re-
quire A to be stored explicitly, but it only necessitates a function that given v, returns
the action ofA, namely y = Av. This operational feature is of paramount importance
in applications where, for instance, A is the (dense) product or other combination of
sparse matrices, so that the operation y = Av may be carried out by a careful appli-
cation of the given matrix combination.

Another practical aspect concerns the situation where k, the dimension of the
Krylov subspace, becomes large. Computing f(Hk) with one of the methods pre-
sented in the previous sections can then become non-negligible. Moreover, we may
run into memory problems, since approximating f(A)v via (32) requires the whole
matrix Vk to be stored. This is needed even when, for istance, A is Hermitian,
in which case (31) is the Lanczos recurrence and Hk is tridiagonal. In such a
situation, however, we can resort to a “two–pass” procedure which crucially reduces
the amount of memory needed: In the first pass, we run the short-term recurrence
Lanczos process. Here, older columns from Vk can be discarded, yet the whole (tridi-
agonal) matrix Hk can be built column by column. Once f(Hk) has been generated,
we compute yk = f(Hk)e1 · ‖v‖. Then we run the short-term recurrence Lanczos
process once again to recompute the columns of Vk and use them one at a time to
sum up Vkf(Hk)e1 = Vkyk. Of course, this two-stage approach essentially doubles
the computational work for generating the Lanczos basis.

For a general matrix A the Arnoldi process cannot be turned into a short-term
recurrence, so one must search for alternatives in the case that k gets too large. Re-
cently, Eiermann and Ernst [20] have developed an interesting scheme that allows
one to restart Krylov subspace methods for computing f(A)v, in the same flavour as
with linear system solvers; in fact, the two approaches are tightly related; see [47].
Having computed a not yet sufficiently good approximation xk via (32), the idea
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is to start again a Krylov subspace approximation based on the error xk − f(A)v
which is expressed as a new matrix function of A. The algorithmic formulation is
non-trivial, particularly since special care has to be taken with regard to numerical
stability, see [20].

Other alternatives include acceleration procedures, that aim at improving the
convergence rate of the approximation as the Krylov subspace dimension increases.
Promising approaches have been recently proposed in the Hermitian case by Druskin
and Knizhnerman [19], by Moret and Novati [52] and by Hochbruck and van den
Eshof [37].

3.6 Krylov Subspaces and Rational Approximations

As a last contribution to this section, let us turn back to rational approximations for f
which we assume to be given in the form of a partial fraction expansion (no multiple
poles for simplicity)

f(z) ≈ p(z) +
ν∑

j=1

ωj

z − τj
. (33)

Then f(A)v can be approximated as

f(A)v ≈ p(A)v +
ν∑

j=1

ωj(A− τjI)−1v. (34)

Since evaluating p(A)v is straightforward, let us assume p ≡ 0 in the sequel.
The computation of (A−τjI)−1v means that we have to solve a linear system for

each j, where all linear systems have the same right-hand side, while the coefficient
matrix only differs for the shift τj . In general, shifts may be complex even for real and
symmetric A, although they appear in conjugate pairs. Interestingly, the particular
“shifted” structure of these systems can be exploited in practical computation. If we
solve each system iteratively using a Krylov subspace method with initial zero guess
for all j, the kth iterate for each system lies in Kk(A− τjI, v) which is identical to
Kk(A, v). The fact that Krylov subspaces are invariant with respect to shifts can now
be exploited in various Krylov subspace solvers like CG, BiCG, FOM and QMR (and
also with modifications in BiCGStab and restarted GMRES) to yield very efficient
procedures which require only one matrix-vector multiplication with A, and possibly
with AH, in order to update the iterates for all m systems simultaneously; see [63]
for a survey of these methods for shifted systems and also [21–24]. Denote by x(j)

k

the iterate of the Krylov solver at step k for system j. Then the linear combination

xk =
ν∑

j=1

ωjx
(j)
k ∈ Kk(A, v) (35)

is an approximation to f(A)v. In fact, it is an approximation to the action of the
rational function approximating f(A). Therefore, what we obtained in (35) is an
approximation to f(A)v in Kk(A, v),which is different from (32) presented before.
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A special case is when f is itself a rational function. In such a situation, the two
approaches may coincide if, for instance, a Galerkin method is used to obtain the
approximate solutions x(j)

k . Indeed, for f = Rµν = Nµν/Dµν ,

f(A)v = Nµν(A)(Dµν(A))−1v =
ν∑

j=1

ωj(A− τjI)−1v (36)

≈
ν∑

j=1

ωjVk(Hk − τjI)−1e1‖v‖ = Vkf(Hk)e1‖v‖.

The approach outlined above has several attractive features for a general function f .
Firstly, if we have a bound for the error between x(j)

k and the solution (A − τj)−1v
for each j, we can combine these bounds with the approximation error of the rational
approximation to get an overall a posteriori bound for ‖f(A)v − x(k)‖. Sometimes,
such bounds might be obtained quite easily. For example, if A is Hermitian and
positive definite and all shifts τj are real and negative, the norm of the inverse (A−
τjI)−1 is bounded by 1/|τj |. Since the residuals r(j)k = (A−τjI)x

(j)
k −v are usually

available in the Krylov solver in use, we can use the bound

‖x(j)
k − (A− τjI)−1v‖2 ≤ 1

|τj |
‖r(j)k ‖2. (37)

Similar bounds that require estimates of the spectrum of A may be obtained also for
complex poles τj , see [47].

Secondly, in the Hermitian case, the memory requirements of this approach only
depend on m, the number of poles in the rational approximation, but not on k, the
dimension of the Krylov subspace. Indeed, the symmetry of the problem can be
exploited to devise a short-term recurrence which dynamically updates the solution
xk without storing the whole Krylov subspace basis. So even if k has to be sensibly
large in order to get a good approximation, we will not run into memory problems.
This is in contrast to the approach from section 3.5, although the two approaches are
strictly related. Indeed, using xk in (35), by the triangle inequality we have

| ‖f(A)v − xk‖ − ‖f(A)v − Vkf(Hk)e1‖v‖ ‖ | ≤ ‖Vkf(Hk)e1‖v‖ − xk‖
= ‖ (f(Hk) −Rµν(Hk)) e1‖‖v‖ .

Therefore, whenever the chosen rational function Rµν accurately approximates f ,
the two approaches evolve similarly as the Krylov subspace dimension increases.

4 The Exponential Function

We next focus our attention on methods specifically designed to approximate the
matrix exponential, exp(A), and its action on a vector v. We start by briefly
discussing the role of this function within Model Order Reduction applications. De-
pending on the setting, we shall use either of the two equivalent notations exp(A)
and eA. We explicitly observe that Definition 1 ensures that exp(A) is nonsingular
for any matrix A.
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4.1 The Exponential Matrix in Model Order Reduction Applications

In this section we briefly review some application problems whose numerical solu-
tion benefits from the approximate computation of the exponential.

Numerical solution of time-dependent differential equations. The numerical solu-
tion of ordinary and time-dependent partial differential equations (ODEs and PDEs,
respectively) may involve methods that effectively employ the matrix exponential.
Recent developments in the efficient approximation of exp(A)v have increased the
use of numerical “exponential-based” (or just “exponential”) techniques that allow
one to take larger time steps. More precisely, consider the system of ODEs of the
form

u′(t) = Au(t) + b(t), u(0) = u0,

where A is a negative semidefinite matrix. The analytic solution is given by

u(t) = etAu0 +
∫ t

0

e(τ−t)Ab(τ)dτ.

Whenever a good approximation to the propagation operator esA is available, it is
possible to approximate the analytic solution by simply approximating the integral
above with convenient quadrature formulas, leading to stable solution approxima-
tions. The generalization of this approach to the numerical solution of partial differ-
ential equations can be obtained, for instance, by employing a semidiscretization (in
space) of the given problem. Consider the following self-adjoint parabolic equation

∂u(x, t)
∂t

= div(a(x)∇u(x, t)) − b(x)u(x, t) + c(x),

with x ∈ Ω, Dirichlet boundary conditions and b(x) ≥ 0, a(x) > 0 in Ω, with a, b, c
sufficiently regular functions. A continuous time – discrete space discretization leads
to the ordinary differential equation

E
du(t)
dt

= −Au(t) + c, t ≥ 0,

where A,E are positive definite Hermitian matrices, so that the procedure discussed
above can be applied; see, e.g., [11,25,51,65,70]. Further attempts to generalize this
procedure to non-selfadjoint PDEs can be found in [25, section 6.2], although the
theory behind the numerical behavior of the ODE solver in this case is not completely
understood yet.

The use of exponential integrators is particularly effective in the case of certain
stiff systems of nonlinear equations. Consider, e.g., the initial value problem

du(t)
dt

= f(u), u(t0) = u0.

If the problem is stiff, standard integrators perform very poorly. A simple example
of an exponential method for this system is the exponentially fitted Euler scheme,
given by
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u1 = u0 + hφ(hA)f(u0),

where h is the step size, φ(z) = ez−1
z , and A = f ′(u0). The recurrence {uk}k=0,1,...

requires the evaluation of φ(hA)v at each iteration, for some vector v; see, e.g., [36].
An application that has witnessed a dramatic increase in the use of the matrix

exponential is Geometric Integration. This research area includes the derivation of
numerical methods for differential equations whose solutions are constrained to be-
long to certain manifolds equipped with a group structure. One such example is given
by linear Hamiltonian problems of the form{

Ẏ (t) = JA(t)Y (t),
Y (t0) = Y0,

where J is the matrix [0, I;−I, 0], A is a continuous, bounded, symmetric matrix
function, and Y0 ∈ R

N×p is symplectic, that is it satisfies Y H
0 J Y0 = J . The solution

Y (t) is symplectic for any t ≥ t0. Using the fact that JA is Hamiltonian, it can
be shown that exp(JA(t)) is symplectic as well. Numerical methods that aim at
approximating Y (t) should also preserve its symplecticity property. This is achieved
for instance by the numerical scheme Yk+1 = exp(hJA(tk))Yk, tk+1 = tk+h, k =
0, 1, . . .. Structure preserving methods associated with small dimensional problems
have received considerable attention, see, e.g., [10,29,39,71] and references therein.
For large problems where order reduction is mandatory, approximations obtained
by specific variants of Krylov subspace methods can be shown to maintain these
geometric properties; see, e.g., [48].

Analysis of dynamical systems. The exponential operator has a significant role in
the analysis of linear time-invariant systems of the form{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(38)

where A,B and C are real matrices of size n × n, n ×m and p × n, respectively.
In the following we assume that A is stable, that is its eigenvalues are in the left half
plane C

−, and that the system is controllable and observable; see, e.g., [1].
The matrix of the states of the system for impulsive inputs is x(t) = etAB,

whereas in general, for an initial state x0 at time t0, the resulting state at time t ≥ t0
is given by

x(t) = e(t−t0)Ax0 +
∫ t

t0

e(t−τ)ABu(τ)dτ.

Therefore, an approximation to the state involves the approximation of the matrix
exponential. Moreover, the state function is used to define the first of the following
two matrices which are called the controllability and the observability Gramians,
respectively,

P =
∫ ∞

0

etABBHetAH

dt, Q =
∫ ∞

0

etAH

CHCetAdt. (39)

The following result shows that these are solutions to Lyapunov equations.
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Theorem 2. Given the linear time-invariant system (38), let P,Q be as defined in
(39). Then they satisfy

AP + PAH +BBH = 0, AHQ+QA+ CHC = 0.

Proof. The proof follows from substituting the definition of P and Q into the corre-
sponding expressionsAP+PAH,AHQ+QA. By using the fact that etAA = d

dt (e
tA)

and integrating, we obtain, e.g., for Q,

QA+AHQ =
∫ ∞

0

(
etAH

CHCetAA+AHetAH

CHCetA
)
dt

=
∫ ∞

0

(
etAH

CHC
detA

dt
+
detAH

dt
CHCetA

)
dt

=
∫ ∞

0

d(etAH

CHCetA)
dt

dt = lim
τ→∞

(etAH

CHCetA)
∣∣∣τ
0

= −CHC.

It can also be shown that the solution to each Lyapunov equation is unique. In
a more general setting, the matrix M := −(AHQ + QA) is not commonly given in
factored form. In this case, if it can be shown that M is positive semidefinite and
that the pair (A,M) is observable, then Q is positive definite (a corresponding result
holds for P ); see, e.g., [1, 4, 13].

The Lyapunov equation may be used to compute estimates for ‖etA‖, which in
turn provides information on the stability of the original system in the case of CHC
full rank; see, e.g., [13, Th. 3.2.2] for a proof.

Theorem 3. Let A be stable and CHC full rank. Then the unique solution Q to the
Lyapunov equation AHQ+QA+ CHC = 0 satisfies

‖etA‖ ≤
(
λmax(Q)
λmin(Q)

) 1
2

e−αt,

where α = λmin(Q−1CHC)/2 > 0.

For large problems, other devices can be used to directly approximate ‖etA‖
without first resorting to the solution of a Lyapunov equation; cf. section 3.5. We
also refer to [46] for a general discussion on the norm ‖etA‖ and some of its bounds.

4.2 Computing the Exponential of a Matrix

Over the years, several methods have been devised and tested for the computation
of the matrix exponential; we refer to [50] for a recent survey of several approaches
and for a more complete bibliographic account. The algorithmic characteristics may
be very different depending on whether the matrix has small or large dimension, or
whether it is dense or sparse; the structural and symmetry properties also play a cru-
cial role; see, e.g., the discussion in [62]. In this section we discuss the case of small
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matrices. When A is normal, the spectral decomposition discussed in section 3.1 can
be employed, namely A = TJT H with T unitary. This gives exp(A) = T exp(J)T H,
once the decomposition of A is computed.

In the non-normal case, one method has emerged in the last decade, for its ro-
bustness and efficiency: Padé approximation with scaling and squaring. The basic
method employs a rational function approximation to the exponential function as

exp(λ) ≈ Rµν(λ) =
Nµν(λ)
Dµν(λ)

,

where Nµν ,Dµν are polynomials of degree µ and ν, respectively. One attractive fea-
ture of the [µ/ν] Padé approximation is that the coefficients of the two polynomials
are explicitly known, that is

Nµν(λ) =
µ∑

j=0

(µ+ ν − j)!µ!
(µ+ ν)!(µ− j)!j!

λj , Dµν(λ) =
ν∑

j=0

(µ+ ν − j)!ν!
(µ+ ν)!(ν − j)!j!

(−λ)j .

These two polynomials have a rich structure. For example, one has the relation
Nµν(λ) = Dνµ(−λ) as well as several other important properties which can be
found, e.g., in [26, section 5.2].

Diagonal Padé approximation (µ = ν), is usually preferred because computing
Rµν with say, µ > ν, is not cheaper than computing the more accurate Rν∗ν∗ where
ν∗ = max{µ, ν}. Nonetheless, because of their stability properties, Padé [ν + 1/ν]
approximations are used, together with [ν/ν] approximations, in the numerical so-
lution of initial value problems with one-step methods. Another attractive property
of the diagonal Padé approximation is that if A has eigenvalues with negative real
part, then the spectral radius of Rνν(A) is less than one, for any ν. In the following,
diagonal rational approximation will be denoted by Rνν = Rν . The accuracy of the
approximation can be established by using the following result.

Theorem 4. [26, Theorem 5.5.1] Let the previous notation hold. Then

eλ −Rµν(λ) = (−1)ν µ! ν!
(µ+ ν)! (µ+ ν + 1)!

λµ+ν+1 +O(λµ+ν+2).

This error estimate shows that the approximation degrades as λ gets away from
the origin. This serious limitation motivated the introduction of the scaling and squar-
ing procedure. By exploiting the property eA = (eA/k)k, for any square matrix A
and scalar k, the idea is to determine k so that the scaled matrix A/k has norm close
to one, and then employ the approximation

eA/k ≈ Rν(A/k).

The approximation to the original matrix eA is thus recovered as eA ≈ Rν(A/k)k.
The use of powers of two in the scaling factor is particularly appealing. Indeed,
by writing k = 2s, the final approximation Rν(A/2s)2

s

is obtained by repeated
squaring. The scalar s is determined by requiring that ‖A‖∞/2s is bounded by some
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small constant, say 1/2. In fact, this constant could be allowed to be significantly
larger with no loss in stability and accuracy; see [33]. The approach oulined here is
used in Matlab 7.1. [49].

A rational function that is commonly used in the case of symmetric negative
semidefinite matrices, is given by the Chebychev rational function. The Chebychev
approximation R�

µν determines the best rational function approximation in [0,+∞)
to e−λ by solving the problem

min
Rµν

max
λ∈[0,+∞)

∣∣e−λ −Rµν(λ)
∣∣ ,

where the minimum is taken over all rational functions. In particular, the cases µ = 0
and µ = ν have been investigated in greater detail, and the coefficients of the polyno-
mials of R�

ν have been tabulated first by Cody, Meinardus and Varga in [12] for ν ≤
14 and then in [9] for degree up to 30. Setting Eν = maxλ∈[0,+∞)

∣∣e−λ −R�
ν(λ)

∣∣,
great efforts in the approximation theory community have been devoted to show the
following elegant result on the error asymptotic behavior,

lim
ν→∞

E1/ν
ν =

1
9.28903...

,

disproving the so-called “1/9” conjecture. From the result above it follows that
supλ∈[0,+∞)

∣∣e−λ −Rν(λ)
∣∣ ≈ 10−ν .

Other rational function approximations that have recently received renewed in-
terest are given by rational functions with real poles, such as Rµν(λ) = Nµ(λ)/(1+
hλ)ν ; see, e.g., [7], [52], [55]. An advantage of these functions is that they avoid
dealing with complex conjugate poles.

4.3 Reduction Methods for Large Matrices

In many application problems where A is large, the action of exp(A)v is required,
rather than exp(A) itself, so that the methods of section 3.5 and of section 3.6 can
be used. We first discuss some general convergence properties, and then show the
role of the Krylov subspace approximation to exp(A)v in various circumstances.
Note that time dependence can, in principle, be easily acommodated in the Krylov
approximation as, for instance, exp(tA)v ≈ Vk exp(tHk)e1‖v‖. In the following,
we shall assume thatA already incorporates time dependence. In particular, estimates
involving spectral information on the matrix will be affected by possible large values
of t.

An analysis of the Krylov subspace approximation Vk exp(Hk)e1‖v‖ to
exp(A)v was given by Saad [60], where the easily computable quantity

hk+1,k ·
∣∣eT

k exp(Hk)e1‖v‖
∣∣

was proposed as stopping criterion for the iterative Arnoldi process; a higher or-
der estimate was also introduced in [60]. Further study showed that the convergence
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rate of the approximation is often superlinear. In the Hermitian negative semidef-
inite case, a complete characterization of this superlinear behavior can be derived
using the following bounds. We refer to [18, 65] for qualitatively similar, although
asymptotic bounds.

Theorem 5 (see Hochbruck and Lubich [35]). LetA be a Hermitian negative semi-
definite matrix with eigenvalues in the interval [−4ρ, 0], with ρ > 0. Then the error
in the approximation (32) of exp(A)v is bounded as follows:

‖ exp(A)v − Vk exp(Hk)e1‖ ≤ 10e−k2/(5ρ),
√

4ρ ≤ k ≤ 2ρ,

‖ exp(A)v − Vk exp(Hk)e1‖ ≤ 10
ρ
e−ρ
(eρ
k

)k

, k ≥ 2ρ.

Other bounds that emphasize the superlinear character of the approximation have
also been proposed in [64], and earlier in [25]. Similar results also hold in the case
when A is skew-symmetric, or when A is non-symmetric, under certain hypotheses
on the location of its spectrum, see [18, 35].

A typical convergence curve of the error together with the bounds of Theorem 5
(called HL bound) are shown in Figure 1, for a diagonal 1001 × 1001 matrix A
with entries uniformly distributed in [−40, 0] and a random vector v with uniformly
distributed values in [0, 1] and unit norm; this example is taken from [35].
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Fig. 1. Typical convergence of Krylov subspace approximation to exp(A)v and upper bounds
of Theorem 5.
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Rational approximation and partial fraction expansion. When A is large, the
methods of the previous sections can be employed to approximate exp(A)v. In par-
ticular, using diagonal Padé or Chebyshev rational functions and their partial fraction
expansion, one gets

exp(A)v ≈ Nν(A)Dν(A)−1v = ω0v +
ν∑

j=1

ωj(A− τjI)−1v,

where the coefficients and the poles are pairwise complex conjugates. A recent dis-
cussion on the main properties of this approximation and on related references can
be found in [47].

Application to the solution of Lyapunov matrix equations. The approximate solu-
tion of the Lyapunov matrix equation has been addressed in a large body of literature,
in which both the sign function and the exponential function have played a leading
role over the years. Here we focus on low-rank approximations, assuming that B has
few columns and that it is full column rank.

The dependence of P (and Q) on the exponential has classically motivated the
use of quadrature formulas for the approximation of the integral defining P (cf. (39)),
together with the use of low degree polynomial or rational function approximations
to exp(tλ). More precisely, setting X(t) = exp(tA)B, P could be approximated as

P (τ) =
∫ τ

0

X(t)X(t)Hdt,

for some τ ≥ 0. Then, by using a quadrature formula with discretization points ti and
weights δi, the integral in [0, τ ] is approximated as P (τ) ≈

∑k
i=1 X(ti)δiX(ti)H.

The practical effectiveness of the approach depends on the value of τ , but most no-
tably on the quadrature formula used, under the constraint that all δi be positive,
to ensure that P (τ) is positive semidefinite; see [59] for some experiments using
different quadrature formulas.

The procedure above determines a low-rank approximation to the corresponding
Gramian since the number of columns of B is small. An alternative approach that
bypasses the integral formulation within the low-rank framework, is obtained by
reducing the problem dimension. If an approximation to exp(tA)B is available as
xk = Vk exp(tHk)E, where E and Vk are defined so that B = VkE, then

Pk = Vk

∫ ∞

0

exp(tHk)EET exp(tHH
k)dt V H

k =: VkGkV
H
k .

If Hk is stable, Theorem 2 ensures that Gk is the solution to the following small
dimensional Lyapunov equation:

HkG+GHH
k + EET = 0. (40)

This derivation highlights the theoretical role of the exponential in the approxima-
tion procedure. However, one can obtain Gk by directly solving the small matrix
equation, by means of methods that exploit matrix factorizations [3, 30].



Matrix Functions 293

The following result sheds light onto the reduction process performed by this
approximation; see, e.g., [40, 59].

Proposition 3. Let the columns of Vk, with V H
k Vk = Ik, span Kk(A,B) =

span{B,AB, . . . , Ak−1B}. The approximate solution Pk = VkGkV
H
k where Gk

solves (40) is the result of a Galerkin process onto the space Kk(A,B).

Proof. Let Vk be a matrix whose orthonormal columns spanKk(A,B). LetRk =
APk +PkA

H+BBH be the residual associated with Pk = VkGkV
H
k for some Gk and

let Hk = V H
k AVk. A Galerkin process imposes the following orthogonality condition

on the residual1

V H
k RkVk = 0.

Expanding Rk and using V H
k Vk = I , we obtain

V H
k AVkGkV

H
k +GkV

H
k A

HVk + V H
k BB

HVk = 0
HkGk +GkHk + V H

k BB
HVk = 0.

Recalling that B = VkE, the result follows.
Other methods have been proposed to approximately solve large-scale Lyapunov

equations; see [28, 45, 56] and references therein.

5 The Matrix Sign Function

In this section we discuss methods for the matrix sign function, with the sign function
on C defined as

sign(z) =
{

+1 if !(z) > 0,
−1 if !(z) < 0.

(41)

We do not define sign(z) on the imaginary axis where, anyway, it is not continuous.
Outside the imaginary axis, sign is infinitely often differentiable, so that sign(A)
is defined as long as the matrix A ∈ C

n×n has no eigenvalues on the imaginary
axis. We first recall a few application problems where the sign function is commonly
employed.

5.1 Motivation

The algebraic Riccati equation arises in control theory as a very fundamental system
to be solved in order to compute, for example, certain observers or stabilizers, see
[4], [44]. It is a quadratic matrix equation of the form

G+AHX +XA−XFX = 0, (42)

1 This “two–sided” condition can be derived by first defining the matrix inner product
〈X, Y 〉 = tr(XY H) and then imposing 〈Rk, Pk〉 = 0 for any Pk = VkGV H

k with
G ∈ R

k×k.
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where A,F,G ∈ R
n×n and F and G are symmetric and positive definite. One aims

at finding a symmetric positive definite and stabilizing solution X , i.e. the spectrum
ofA−FX should lie in C

−. The quadratic equation (42) can be linearized by turning
it into a system of doubled size as

K :=
[
AH G

F −A

]
=
[
X −I
I 0

]
·
[
−(A− FX) −F

0 (A− FX)H

]
·
[
X −I
I 0

]−1

. (43)

If we assume that X is a stabilizing solution (such a solution exists under mild con-
ditions, see [4,44]), a standard approach is to use the matrix sign function to compute
X . We have sign(−(A− FX)) = I and sign(A− FX) = −I . Therefore,

sign
[
−(A− FX) −F

0 (A− FX)H

]
=
[
I Z

0 −I

]
, Z ∈ R

n×n (44)

and we see that

sign(K) − I =
[
X −I
I 0

]
·
[

0 Z

0 −2I

]
·
[
X −I
I 0

]−1

. (45)

Split sign(K) − I vertically in its middle as [M |N ], move the inverse matrix to the
left-hand side in (45) and then equate the first halves, to get

MX = −N. (46)

This is an overdetermined, but consistent linear system for X , and by working with
the second half blocks, it can be shown that M is full column rank. Therefore, the
procedure above outlines a method to derive a stabilizing solution X to (42) by
means of the sign function.

As discussed in section 4.3, the Lyapunov equation

AHX +XA+ CHC = 0, where A,C ∈ R
n×n (47)

also arises in control theory. It was already shown in [58] that the (Hermitian) so-
lution X is the (2,1) block of the sign-function of a matrix of twice the dimension,
that is [

0 0
X I

]
=

1
2

(
I + sign

([
A 0

CHC −AH

]))
. (48)

This follows in a way similar to what we presented for the algebraic Riccati equation;
see also [5] for a generalization.

The matrix sign function also appears in the modelling (and subsequent simula-
tion) of complex physical systems. One example is given by the so-called overlap
fermions of lattice quantum chromodynamics [54], where one has to solve linear
systems of the form

(I + Γ5sign(Q))x = b. (49)



Matrix Functions 295

Here Γ5 is a simple permutation matrix and Q is a huge, sparse, complex Hermitian
matrix representing a nearest neighbour coupling on a regular 4-dimensional grid
with 12 variables per grid point. Note that here we may situate ourselves in an order
reduction context, since if we solve (49) with some iterative method, the basic op-
eration will be to compute matrix-vector products, i.e. we need the action sign(Q)v
rather than sign(Q) itself.

5.2 Matrix Methods

A detailed survey on methods to compute the whole matrix sign(A) is given in [43],
see also [2]. We shortly describe the most important ones.

The Newton iteration to solve z2 − 1 = 0 converges to +1 for all starting values
in the right half plane, and to −1 for all those from C

−. According to (24), the
corresponding matrix iteration reads

Sk+1 =
1
2
(
Sk + S−1

k

)
, where S0 = A. (50)

Although the convergence is global and asymptotically quadratic, it can be quite slow
in the presence of large eigenvalues or eigenvalues with a small real part. Therefore,
several accelerating scaling strategies have been proposed [42], for example by using
the determinant [8], i.e.

Sk+1 =
1
2

(
(ckSk) +

1
ck
S−1

k

)
, with ck = det(Sk). (51)

Note that det(Sk) is easily available if Sk is inverted using the LU -factorization. An
alternative which avoids the computation of inverses is the Schulz iteration, obtained
as Newton’s method for z−2 − 1 = 0, which yields

Sk+1 =
1
2
· Sk ·

(
3I − S2

k

)
, S0 = A. (52)

This iteration is guaranteed to converge only if ‖I−A2‖ < 1 (in an arbitrary operator
norm).

In [41], several other iterations were derived, based on Padé approximations of
the function (1 − z)−1/2. They have the form

Sk+1 = Sk · Nµν(S2
k) · Dµν(S2

k)−1, S0 = A. (53)

For µ = 2p, ν = 2p− 1, an alternative representation is

Sk+1 =
(
(I + Sk)2p + (I − Sk)2p

)
·
(
(I + Sk)2p − (I − Sk)2p

)−1
. (54)

In this case, the coefficients of the partial fraction expansion are explicitly known,
giving the equivalent representation
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Sk+1 =
1
p
· Sk ·

p∑
i=1

1
ξi

(
S2

k + αiI
)−1

, S0 = A, (55)

with ξi =
1
2

(
1 + cos

(2i− 1)π
2p

)
, α2

i =
1
ξi

− 1, i = 1, . . . , p.

Interestingly, � steps of the iteration for parameter p are equivalent to one step
with parameter p�. The following global convergence result on these iterations was
proved in [41].

Theorem 6. If A has no eigenvalues on the imaginary axis, the iteration (54) con-
verges to sign(A). Moreover, one has

(sign(A)−Sk)(sign(A)+Sk)−1 =
(
(sign(A) −A)(sign(A) +A)−1

)(2p)k

, (56)

which, in the case that A is diagonalizable, gives

‖(sign(A)−Sk)(sign(A)+Sk)−1‖ ≤ ‖T‖ ·‖T−1‖ ·
(

max
λ∈spec(A)

sign(λ) − λ

sign(λ) + λ

)2pk

.

(57)

5.3 Krylov Subspace Approximations

We now look at Krylov subspace approximations for

sign(A)v, v ∈ C
n (58)

with special emphasis on A Hermitian. The Krylov subspace projection approach
from (32) gives

sign(A)v ≈ Vksign(Hk)e1 · ‖v‖. (59)

If one monitors the approximation error in this approach as a function of k, the
dimension of the Krylov subspace, one usually observes a non-monotone, jig-saw
like behaviour. This is particularly so for Hermitian indefinite matrices, where the
real eigenvalues lie to the left and to the right of the origin. This can be explained
by the fact, formulated in Proposition 2, that the Krylov subspace approximation is
given as pk−1(A)v where pk−1 is the degree k − 1 polynomial interpolating at the
Ritz values. But the Ritz values can get arbitrarily close to 0 (or even vanish), even
though the spectrum ofAmay be well separated from 0, then producing a (relatively)
large error in the computed approximation. A Ritz value close to 0 is likely to occur
if k − 1 is odd, so the approximation has a tendency to degrade every other step.
A remedy to this phenomenon is to use the polynomial that interpolates A at the
harmonic Ritz values, since these can be shown to be as well separated from zero as
spec(A). Computationally, this can be done using the same Arnoldi recurrence (31)
as before, but applying a simple rank-one modification to Hk before computing its
sign function. Details are given in [67].
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An alternative is to use the identity

sign(z) = z · (z2)−
1
2 , (60)

then use the Krylov subspace approach on the squared matrix A2 to approximate(
A2
)− 1

2 v ≈ Vk(Hk)−
1
2 e1 · ‖v‖ =: yk,

sign(A)v ≈ xk = Ayk.

}
(61)

Note that in (61) the matrix Hk represents the projection of A2 (not of A !), onto
the Krylov subspace Kk(A2, b). Interestingly, this is one of the special cases when
explicitly generating the space Kk(A2, b) is more effective than using Kk(A, b);
see [68] for a general analysis of cases when using the latter is computationally more
advantageous.

It is also remarkable that, in case that A is Hermitian, it is possible to give a
posteriori error bounds on the quality of the approximation xk as formulated in the
following theorem taken from [67].

Theorem 7. Let A be Hermitian and non-singular. Then xk from (61) satisfies

‖sign(A)v − xk‖2 ≤ ‖rk‖2 ≤ 2κ
(
κ− 1
κ+ 1

)k

· ‖v‖2, (62)

where κ ≡ ‖A‖2‖A−1‖2 and rk is the residual in the k-th step of the CG method
applied to the system A2x = v (with initial residual v, i.e. initial zero guess).

The residual norms ‖rk‖ need not be computed via the CG method since they
can be obtained at almost no cost from the entries of the matrix Hk in the Lanczos
recursion (31). This can be seen as follows: Since A2 is Hermitian, Hk is Hermitian
and tridiagonal. If pk−1 is the degree k − 1 polynomial expressing the k-th Lanczos
vector vk as vk = pk−1(A2)v, the Lanczos recursion gives hk+1,kpk(z) = (z −
hk,k) · pk−1(z) − hk−1,kpk−2(z). On the other hand, it can be shown that rk =
σvk+1 with ‖vk+1‖ = 1 for some scalar σ (see [61, Proposition 6.20]), and since
rk = qk(A2)v for some polynomial qk of degree k satisfying qk(0) = 1, it must
be qk = pk/pk(0), so that rk = pk(A2)v/pk(0) = vk+1/pk(0). Therefore, along
with the Lanczos process we just have to evaluate the recursion pk(0) = −[hk,k ·
pk−1(0) + hk−1,kpk−2(0)]/hk+1,k to obtain ‖rk‖ = 1/|pk(0)|.

We do not know of comparable error bounds for the other two approaches out-
lined earlier ((59) and its variant using harmonic Ritz values). Note also that xk from
(61) satisfies xk = Apk−1(A2)v, where q(z) = z · pk−1(z2) is an odd polynomial,
that is q(−z) = −q(z), of degree 2k−1 in z. This is a restriction as compared to the
other two approaches where we do not enforce any symmetry on the interpolating
polynomials. However, this restriction will most probably have an effect only if the
spectrum of A is very unsymmetric with respect to the origin. Our computational
experience in simulations from lattice QCD indicates that xk is actually the best of
the three approximations discussed so far. Since, in addition, xk comes with a bound
of the true error norm, we definitely favor this approach.
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5.4 Partial Fraction Expansions

If we have sufficient information on the eigensystem of A available, we can use (57)
to estimate a number p ∈ N such that the first iterate from (55) already gives a
sufficiently good approximation to the sign function. As discussed in section 3.6, we
can then approximate

sign(A)v ≈ A ·
p∑

i=1

1
pξi

x̃(j), (63)

with x̃(j) an approximate solution of the linear system

(A2 + αjI)x(j) = v, j = 1, . . . , p. (64)

We already discussed in section 3.6 how we can make efficient use of the shifted
nature of these systems when solving them with standard Krylov subspace methods.

A particularly important situation arises when A is Hermitian and the intervals
[−b,−a] ∪ [c, d], with 0 < a ≤ b, 0 < c ≤ d, containing the eigenvalues of A
are available. Under these hypotheses, Zolotarev explicitly derived the best rational
approximation in the Chebyshev sense; see [57]. The next theorem states this result
for [−b,−a] = −[c, d]. The key point is that for fixed µ = 2p − 1, ν = 2p, finding
the optimal rational approximation Rµν(z) = Nµν(z)/Dµν(z) to the sign function
on [−b,−a] ∪ [a, b] is equivalent to finding the best such rational approximation
Sp−1,p(z) = Np−1,p(z)/Dp−1,p(z) in relative sense to the inverse square root on
[1, (b/a)2]. The two functions are then related via R2p−1,2p(z) = az · Sp−1,p(az).

Proposition 4. Let R2p−1,2p(z) = N2p−1,2p(z)/D2p−1,2p(z) be the Chebyshev best
approximation to sign(z) on the set [−b,−a]∪[a, b], i.e. the function which minimizes

max
a<|z|<b

|sign(z) − R̃2p−1,2p(z)| (65)

over all rational functions R̃2p−1,2p(z) = Ñ2p−1,2p(z)/D̃2p−1,2p(z). Then the fac-
tored form of R2p−1,2p is given by

R2p−1,2p(z) = az · Sp−1,p((az)2) with Sp−1,p(z) = D

∏p−1
i=1 (z + c2i)∏p

i=1(z + c2i−1)
, (66)

where

ci =
sn2
(
iK/(2p);

√
1 − (b/a)2

)
1 − sn2

(
iK/(2p);

√
1 − (b/a)2

) ,
K is the complete elliptic integral, sn is the Jacobi elliptic function, andD is uniquely
determined by the condition

max
z∈[1,(b/a)2]

(
1 −

√
zSp−1,p(z)

)
= − min

z∈[1,(b/a)2]

(
1 −

√
zSp−1,p(z)

)
.
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Table 1. Number of poles necessary to achieve accuracy of 0.01

b/a (55) Zolotarev
200 19 5

1000 42 6

For a given number of poles, the Zolotarev approximation is much more accurate
than that of the rational approximation (55) and is therefore to be preferred. This is
illustrated in Table 1, taken form [67]. However, the use of the Zolotarev approxima-
tion is restricted to Hermitian matrices for which lower and upper bounds (a and b,
resp.) on the moduli of the eigenvalues are known.

As a final point, let us again assume that A is Hermitian and that we approximate
sign(A) by some rational approximation R(A) with R having a partial fraction ex-
pansion of the form

R(z) =
p∑

j=1

ωj
z

z2 + αj
, ωj ≥ 0, αj ≥ 0, j = 1, . . . , p. (67)

Note that this is the case for the Zolotarev approximation from Proposition 4 as well
as for the Padé approximations from (55). In order to compute R(A)v, let us assume
that we use the (shifted) CG-method to simultaneously solve (A2 + αjI)x(j) = v

for all j of interest, so that we get CG-iterates x(j)
k with residual r(j)k = v − (A2 +

αjI)x
(j)
k . Then the following estimate holds [67].

Proposition 5. Let gj > 0 be such that
∑p

j=1 gj = 1 and ε > 0. If the CG iteration
for system j is stopped at step kj in which the residual satisfies

‖r(j)kj
‖2 ≤ εgj

√
αj

ωj
, (68)

then

‖R(A)v −
p∑

j=1

ωjx
(j)
kj

‖2 ≤ ε. (69)

This proposition formulates a computationally feasible stopping criterion. If we
also know the approximation accuracy of the rational approximation, i.e. if we have
an information of the kind

max
z∈spec(A)

|R(z) − sign(z)| ≤ ε2, (70)

then we know that

‖ sign(A)v −
p∑

j=1

ωjx
(j)
kj

‖2 ≤ ε+ ε2. (71)

This fact is in agreement with the discussion on rational approximation of section 3.6.
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Summary. We consider a particular class of structured systems that can be modelled as a
set of input/output subsystems that interconnect to each other, in the sense that outputs of
some subsystems are inputs of other subsystems. Sometimes, it is important to preserve this
structure in the reduced order system. Instead of reducing the entire system, it makes sense to
reduce each subsystem (or a few of them) by taking into account its interconnection with the
other subsystems in order to approximate the entire system in a so-called structured manner.
The purpose of this paper is to present both Krylov-based and Gramian-based model reduction
techniques that preserve the structure of the interconnections. Several structured model reduc-
tion techniques existing in the literature appear as special cases of our approach, permitting to
unify and generalize the theory to some extent.

1 Introduction

Specialized model reduction techniques have been developed for various types of
structured problems such as weighted model reduction, controller reduction and
second order model reduction. Interconnected systems, also called aggregated sys-
tems, have been studied in the eighties [FB87] in the model reduction framework,
but they have not received a lot of attention lately. This is in contrast with controller
and weighted SVD-based model reduction techniques, which have been extensively
studied [AL89, Enn84]. Controller reduction Krylov techniques have also been con-
sidered recently in [GBAG04]. It turns out that many structured systems can be mod-
elled as particular cases of more general interconnected systems defined below (the
behavioral approach [PW98] for interconnected systems is not considered here).

In this paper, we define an interconnected system as a linear system G(s) com-
posed of an interconnection of k sub-systems Ti(s). Each subsystem is assumed to
be a linear MIMO transfer function. Subsystem Ti(s) has αi inputs denoted by the
vector ai and βi outputs denoted by the vector bi:

bi(s) = Ti(s)ai(s). (1)

Note that these inputs and outputs can also be viewed as internal variables of the
interconnected system. The input ai(s) of each subsystem is a linear combination of
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F y(s)
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u(s)
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b3(s)
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 a3(s)

b2(s)
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H1u(s)

H2u(s)

Fig. 1. Example of interconnected system

the outputs of all subsystems and of the external input u(s) ∈ R
m(s):

ai(s) = Hiu(s) +
k∑

j=1

Ki,jbj(s), (2)

where Hi ∈ R
αi×m. The output y(s) ∈ R

p(s) of G(s) is a linear function of the
outputs of the subsystems:

y(s) =
k∑

i=1

Fibi(s), (3)

with Fi ∈ R
p×βi . Figure 1 gives an example of an interconnected system G(s)

composed of three subsystems.
We now introduce some notation in order to rewrite this in a block form. The ma-

trix In denotes the identity matrix of size n and the matrix 0p,q the p×q zero matrix.
If M1, . . .Mk is a set of matrices, then the matrix diag{M1, . . . ,Mk} denotes the
block diagonal matrix ⎡⎢⎣M1

. . .
Mk

⎤⎥⎦ .
We also define α :=

∑k
i=1 αi and β :=

∑k
i=1 βi. If the transfer functions

Ti(s) ∈ R
βi×αi(s) are rational matrix function with real coefficients, then (1) can

be rewritten as b(s) = T (s)a(s), where

b(s) :=

⎡⎢⎣ b1(s)...
bk(s)

⎤⎥⎦ , T (s) := diag{T1(s), . . . , Tk(s)}, a(s) :=

⎡⎢⎣ a1(s)
...

ak(s)

⎤⎥⎦ , (4)
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are respectively in R
β(s), R

β×α(s) and R
α(s). If we also define F ∈ R

p×β , K ∈
R

α×β and H ∈ R
α×m, as follows:

F :=
[
F1 . . . Fk

]
, K :=

⎡⎢⎣K1,1 . . . K1,k

...
. . .

...
Kk,1 . . . Kk,k

⎤⎥⎦ , H :=

⎡⎢⎣H1

...
Hk

⎤⎥⎦ , (5)

then (2), (3) can then be rewritten as follows:

a(s) = Hu(s) +Kb(s), y(s) = Fb(s), (6)

from which it easily follows that

y(s) = F (Iβ − T (s)K)−1T (s)Hu(s). (7)

We assume that the Mc Millan degree of Ti(s) is ni and that (Ai, Bi, Ci, Di)
is a minimal state space realization of Ti(s). If we define n :=

∑k
i=1 ni, then a

realization for T (s) is given by C(sIn −A)−1B +D with

A := diag{A1, . . . , Ak} , B := diag{B1, . . . , Bk},
C := diag{C1, . . . , Ck} , D := diag{D1, . . . , Dk}. (8)

In others words, G(s) = F (Iβ − T (s)K)−1T (s)H and a state space realization of
G(s) is given by (AG, BG, CG, DG) (see for instance [ZDG96]), where

AG := A+BK(Iβ −DK)−1C , BG := B(Iα −KD)−1H,

CG := F (Iβ −DK)−1C , DG := FD(Iα −KD)−1H. (9)

If all the transfer functions are strictly proper, i.e. D = 0, the state space realization
(9) of G(s) reduces to:

AG = A+BKC, BG = BH, CG = FC, DG = 0.

Let us finally remark that if all systems are connected in parallel, i.e. K = 0, then
G(s) = FT (s)H .

The problem of interconnected systems model reduction proposed here consists
in reducing some (e.g. one) of the subsystems Ti(s) in order to approximate the
global mapping from u(s) to y(s) and not the internal mappings from ai(s) to bi(s).

This paper is organized as follows. After some preliminary results, a Balanced
Truncation framework for interconnected systems is derived in Section 2. Krylov
model reduction techniques for interconnected systems are presented in Section 3.
In Section 4, several connections with existing model reduction techniques for struc-
tured systems are given, and Section 5 contains some concluding remarks.



308 A. Vandendorpe and P.V. Dooren

2 Interconnected Systems Balanced Truncation

We first recall the well-known Balanced Truncation method and emphasize their
energetic interpretation. We then show how to extend Balanced Truncation to the
so-called Interconnected System Balanced Truncation.

We consider a general transfer function T (s) := C(sIn − A)−1B + D which
corresponds to the linear system

S
{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t).

(10)

If the matrix A is Hurwitz, the controllability and observability Gramians, denoted
respectively by P and Q are the unique solutions of the following equations

AP + PAT +BBT = 0 , ATQ+QA+ CTC = 0.

If we apply an input u(.) ∈ L2[−∞, 0] to the system (10) for t < 0, the position
of the state at time t = 0 (by assuming the zero initial condition x(−∞) = 0) is a
linear function of u(t) given by the convolution

x(0) = Co(u(t)) :=
∫ 0

−∞
e−AtBu(t)dt.

By assuming that a zero input is applied to the system for t > 0, then for all t ≥ 0,
the output y(.) ∈ L2[0,+∞] of the system (10) is a linear function of x(0), given by

y(t) = Ob(x(0)) := CeAtx(0).

The so-called controllability operator Co : L2[−∞, 0] �→ R
n (mapping past inputs

u(.) to the present state) and observability operator Ob : R
n �→ L2[0,+∞] (mapping

the present state to future outputs y(.)) have dual operators, respectively denoted by
C∗

o and O∗
b (see [Ant05]).

A physical interpretation of the Gramians is the following. The controllability
matrix arises from the following optimization problem. Let

J(v(t), a, b) :=
∫ b

a

v(t)T v(t)dt

be the energy of the vector function v(t) in the interval [a, b]. Then [Glo84]

min
C0u(t)=x0

J(u(t),−∞, 0) = xT
0 P

−1x0, (11)

and, by duality, we have that

min
O∗

b y(t)=x0

J(y(t),−∞, 0) = xT
0 Q

−1x0. (12)

Essential properties of the Gramians P andQ are as follows. First, under a coordinate
transformation x(t) = Sx̄(t), the new Gramians P̄ and Q̄ corresponding to the
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state-space realization (Ā, B̄, C̄) = (S−1AS, S−1B,CS) undergo the following
(so-called contragradient) transformation:

P̄ = S−1PS−T , Q̄ = STQS. (13)

This implies that there exists a state-space realization (Abal, Bbal, Cbal) of T (s) such
that the corresponding Gramians are equal and diagonal P̄ = Q̄ = Σ [ZDG96]. Sec-
ondly, because these Gramians appear in the solutions of the optimization problems
(11) and (12), they tell something about the energy that goes through the system,
and more specifically, about the distribution of this energy among the state variables.
The idea of the Balanced Truncation model reduction framework is to perform a state
space transformation that yields equal and diagonal Gramians and to keep only the
most controllable and observable states. If the original transfer function is stable, the
reduced order transfer function is guaranteed to be stable and an a priori global error
bound between both systems is available [Ant05].

If the standard balanced truncation technique is applied to the state space real-
ization (A,B,C) (8) of an interconnected system, the structure of the subsystems is
lost in the resulting reduced order transfer function. We show then how to preserve
the structure in the balancing process. We first recall a basic lemma that will be used
in the sequel.

Lemma 1. Let xi ∈ R
ni and Mi,j ∈ R

ni×nj for 1 ≤ i ≤ k and define

x :=

⎡⎢⎣x1

...
xk

⎤⎥⎦ , M :=

⎡⎢⎣M1,1 . . . M1,k

...
. . .

...
Mk,1 . . . Mk,k

⎤⎥⎦ .
Assume M to be positive definite and consider the product

J(x,M) := xTM−1x.

Then, for any fixed xi ∈ R
ni×ni ,

J(x,M)xj=0,j �=i = xT
i

(
Mi,i −Mi,jM

−1
j,j Mj,i

)−1
xi, (14)

and
min

xj ,j �=i
J(x,M) = xT

i M
−1
i,i xi. (15)

Proof. Without loss of generality, let us assume that i = 1. For ease of notation,

define y :=
[
xT

2 . . . xT
k

]T
and
[
N1,1 N1,2

NT
1,2 N2,2

]
= N := M−1 with N1,1 ∈ R

n1×n1 .

We obtain the following expression

J(x,M) = xT
1 N1,1x1 + 2xT

1 N1,2y + yTN2,2y. (16)

For y = 0 and using the Schur complement formula for the inverse of a matrix, we
retrieve (14). In order to prove (15) we note that N is positive definite since M is
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positive definite. This implies that N1,1 and N2,2 are positive definite. J(x,M) is a
quadratic form and the Hessian of J(x,M) with respect to y is equal to N2,2. The
minimum is then obtained by annihilating the gradient:

tialJ(x,M)
tialy

= 2NT
1,2x1 + 2N2,2y,

which is obtained for y = −N−1
2,2N

T
1,2x1 and yields

min
y

J(x,M) = xT
1 N1,1x1 − xT

1 N1,2N
−1
2,2N

T
1,2x1 = xT

1 M
−1
1,1x1.

The last equality is again obtained by using the Schur complement formula. �

Let us now consider the controllability and observability Gramians of G(s):

AGPG + PGA
T
G +BGB

T
G = 0, AT

GQG +QGAG + CT
GCG = 0, (17)

and let us partition them as follows:

PG =

⎡⎢⎣P1,1 . . . P1,k

...
. . .

...
Pk,1 . . . Pk,k

⎤⎥⎦ , QG =

⎡⎢⎣Q1,1 . . . Q1,k

...
. . .

...
Qk,1 . . . Qk,k

⎤⎥⎦ , (18)

where Pi,j ∈ R
ni×nj . If we perform a state space transformation Si to the state

xi(t) = Six̄i(t) of each interconnected transfer function Ti(s), we actually perform
a state space transformation

S := diag{S1, . . . , Sk}

to the realization (Ā, B̄, C̄, D̄) = (S−1AS, S−1B,CS,D) of T (s). This, in turn,
implies that (ĀG, B̄G, C̄G, D̄G) = (S−1AGS, S

−1BG, CGS,DG) and

(P̄G, Q̄G) = (S−1PGS
−T , STQGS),

i.e. they undergo a contragradient transformation. This implies that (P̄i,i, Q̄i,i) =
(S−1

i Pi,iS
−T
i , ST

i Qi,iSi), which is a contra-gradient transformation that only de-
pends on the state space transformation on xi, i.e. on the state space associated
to Ti(s).

Let us recall that the minimal past energy necessary to reach xi(0) = xi for each
1 ≤ i ≤ k with the pair (AG, BG) is given by the expression

[
xT

1 . . . xT
k

]
P−1

G

⎡⎢⎣x1

...
xk

⎤⎥⎦ . (19)

The following result is then a consequence of Lemma 1.
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Lemma 2. With the preceding notation, the minimal past input energy

J :=
∫ 0

−∞
u(t)Tu(t)dt

needed to apply to the interconnected transfer function G(s) in order that for sub-
system i at time t = 0, xi(0) = xi over all initial input condition xj(0), j �= i, is
given by

xT
i P

−1
i,i xi.

Moreover, the minimal input needed in order that for subsystem i at time t = 0,
xi(0) = xi and that for all the other subsystems, xj(0) = 0, j �= i, is given by

xT
i (P−1

G )i,ixi,

where (P−1
G )i,i is the i, i block of the inverse of PG, and this block is equal to the

inverse of the Schur complement of Pi,i.
Finally,

0 < P−1
i,i ≤ (P−1

G )i,i. (20)

Proof. The two first results are direct consequences of Lemma 1. Let us prove (20).
For any nonzero vector xi, the minimum energy necessary for subsystem i at time
t = 0 to reach xi(0) = xi over all initial input conditions xj(0), j �= i, cannot be
larger than by imposing xj(0) = 0, j �= i. This implies that for any nonzero vector v,

vT
(
(P−1

G )i,i − P−1
i,i

)
v ≥ 0.

�

Similar energy interpretations hold for the diagonal blocks of the observability
matrix QG and of its inverse.

Because of Lemma 2, it makes sense to truncate the part of the state xi of each
subsystem Ti(s) corresponding to the smallest eigenvalues of the product Pi,iQi,i.
We can thus perform a block diagonal transformation in order to make the Gramians
Pi,i and Qi,i both equal and diagonal: Pi,i = Qi,i = Σi. Then, we can truncate each
subsystem Ti(s) by deleting the states corresponding to the smallest eigenvalues of
Σi. This is resumed in the following Interconnected Systems Balanced Truncation
(ISBT) Algorithm. Let (AG, BG, CG, DG) ∼ G(s), where G(s) is an interconnec-
tion of k subsystems

(Ai, Bi, Ci, Di) ∼ Ti(s),

of order ni. In order to construct a reduced order system Ĝ(s) while preserving the
interconnections, proceed as follows.

ISBT Algorithm

1. Compute the Gramians PG and QG satisfying (17).
2. For each subsystem Ti(s) requiring an order reduction, perform the contragra-

dient transformation Si in order to make the Gramians Pi,i and Qi,i equal and
diagonal.
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3. For each subsystem (Ai, Bi, Ci, Di), keep only the space of states corresponding
to the largest eigenvalues of Pi,i = Qi,i = Σi, giving the reduced subsystems
T̂i(s).

4. Define
Ĝ(s) = F (Iβ − T̂ (s)K)−1T̂ (s)H,

with T̂ (s) := diag{T̂i(s)}.

Remark 1. A variant of the ISBT Algorithm consists in performing a balance and
truncate procedure for each subsystem Ti(s) with respect to the Schur complements
of Pi,i and Qi,i instead of Pi,i and Qi,i. From Lemma 2, this corresponds to sorting
the state-space of each system (Ai, Bi, Ci) with respect to the optimization problem
minu allelu(t)allel2 such that xi(0) = xi and xj(0) = 0 for j �= i. Mixed strate-
gies are also possible (see for instance [VA03] in the Controller Order Reduction
framework).

It should be mentioned that a related balanced truncation approach for second order
systems can be found in [MS96, CLVV06].

A main criticism concerning the ISBT Algorithm is that the reduced order system
is not guaranteed to be stable. If all the subsystems Ti(s) are stable, it is possible to
impose all the subsystems T̂i(s) to remain stable by following a technique similar to
that described in [WSL99]. Let us consider the (1, 1) block of PG and QG, i.e. P1,1

and Q1,1. These Gramians are positive definite because PG and QG are assumed
to be positive definite (here, G(s) is assumed stable and (AG, BG, CG, DG) is a
minimal realization). From (17), P1,1 and Q1,1 satisfy the Lyapunov equation

A1P1,1 + P1,1A1 +X = 0, AT
1 Q1,1 +Q1,1A1 + Y = 0

where the symmetric matrices X and Y are not necessary positive definite. If one
modifies X and Y to positive semi-definite matrices B̄B̄T and C̄T C̄, one is guaran-
teed to obtain a stable reduced system T̂1(s). The main criticism about this technique
is that the energetic interpretation of the modified Gramians is lost.

3 Krylov Techniques for Interconnected Systems

Krylov subspaces appear naturally in interpolation-based model reduction tech-
niques. Let us recall that for any matrix M , Im(X) is the space spanned by the
columns of M .

Definition 1. Let A ∈ R
n×n and B ∈ R

n×m. The Krylov matrix Kk(A,B) ∈
R

n×km is defined as follows

Kk(A,B) :=
[
B AB . . . Ak−1B

]
.

The subspace spanned by the columns of Kk(A,B) is denoted by Kk(A,B).
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Krylov techniques have already been considered in the literature for particular cases
of structured systems. See for instance [SA86] in the controller reduction framework,
or [SC91] in the second-order model reduction framework. This last case has been
revisited recently in [Fre05] and [VV04]. But, to our knowledge, it is the first time
they are studied in the general framework of Interconnected Systems.

The problem is the following. If one projects the state-space realizations (Ai,
Bi, Ci) of the interconnected transfer functions Ti(s) with projecting matrices Zi, Vi

derived from Krylov subspaces, this yields reduced-order transfer functions T̂i(s)
that satisfy interpolation conditions with respect to Ti(s); what are then the resulting
relations between Ĝ(s) and G(s)?

If one imposes the same interpolation conditions for every pair of subsystems
Ti(s) and T̂i(s), then the same interpolation conditions hold between the block di-
agonal transfer functions T (s) and T̂ (s) as well. Let us investigate what this implies
for G(s) and Ĝ(s). Assume that

(Â, B̂, Ĉ) = (ZTAV,ZTB,CV )

such that ZTV = I and

Kk

(
(λI −A)−1, (λI −A)−1B

)
⊆ Im(V ).

In such a case, it is well known that [VS87, Gri97] T̂ (s) := Ĉ(sI − Â)−1B̂ + D
interpolates T (s) := C(sI − A)−1B + D at s = λ up to the k first derivatives.
Concerning G(s), the matrices F,K,D and H are unchanged, from which it easily
follows that

Ĝ(s) = CGV (sI − ZTAGV )−1ZTBG +DG.

It can easily be proved recursively that

Kk (AG, BG) = Kk

(
A+BK(I −DK)−1C,B(I −KD)−1H

)
⊆ Kk (A,B) ,

and it turns out that such a result holds for arbitrary interpolation points in the com-
plex plane, as shown in the following lemma.

Lemma 3. Let λ ∈ C be a point that is neither an eigenvalue of A nor an eigenvalue
of AG (defined in (9)). Then

Kk

(
(λI −AG)−1, (λI −AG)−1BG

)
⊆ Kk

(
(λI −A)−1, (λI −A)−1B

)
, (21)

Kk

(
(λI −AG)−T , (λI −AG)−TCT

G

)
⊆ Kk

(
(λI −A)−T , (λI −A)−TCT

)
.

(22)

Proof. Only (21) will be proved. An analog proof can be given for (22). First, let us
prove that the column space of (λI − AG)−1BG is included in the column space of
(λI −A)−1B. In order to simplify the notation, let us define the following matrices

M := (λIn −A)−1B, X := K(Iβ −DK)−1C, G := (Iα −KD)−1H. (23)
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From the identity (I −MX)−1M = M(I −XM)−1, it then follows that

(λI −AG)−1BG = (λI −A−BX)−1

BG = (I −MX)−1

MG = M (I −XM)−1
G.

This clearly implies that the column space of (λI − AG)−1BG is included in the
column space of M = (λI −A)−1B. Let us assume that

Kk−1

(
(λI −AG)−1, (λI −AG)−1BG

)
⊆ Kk−1

(
(λI −A)−1, (λI −A)−1B

)
,

and prove that this implies that

Kk

(
(λI −AG)−1, (λI −AG)−1BG

)
⊆ Kk

(
(λI −A)−1, (λI −A)−1B

)
. (24)

Since the image of (λI−AG)−k+1BG belongs to Kk−1

(
(λI−A)−1(λI−A)−1B

)
,

there exists a matrix Y such that

(λI −AG)−k+1BG = Kk−1

(
(λI −A)−1, (λI −A)−1B

)
Y.

One obtains then that (λI −AG)−kBG equals

(λI−AG)−1(λI−AG)−k+1BG =
∞∑

i=0

(MX)i (λI−A)−1Kk−1

(
(λI−A)−1,M

)
Y.

Note that

Im
(
(λI −A)−1Kk−1

(
(λI −A)−1,M

))
⊆ Kk

(
(λI −A)−1,M

)
.

Moreover, for any integer i > 0, it is clear that

Im
(
(MX)i

)
∈ Im(M).

This proves that (24) is satisfied. �

Thanks to the preceding lemma, there are at least two ways to project the subsys-
tems Ti(s) in order to satisfy a set of interpolation conditions using Krylov subspaces
as follows.

Lemma 4. Let λ ∈ C be neither a pole of T (s) nor a pole of G(s). Define

V :=

⎡⎢⎣ V1

...
Vk

⎤⎥⎦ ∈ C
n×r,

such that Vi ∈ C
ni×r. Assume that either



Model Reduction of Interconnected Systems 315

Kk

(
(λI −AG)−1, (λI −AG)−1BG

)
⊆ Im(V ). (25)

or
Kk

(
(λI −A)−1, (λI −A)−1B

)
⊆ Im(V ). (26)

Construct matrices Zi ∈ C
ni×r such that ZT

i Vi = Ir. Project each subsystem as
follows:

(Âi, B̂i, Ĉi) := (ZT
i AiVi, Z

T
i Bi, CiVi). (27)

Then, Ĝ(s) interpolates G(s) at λ up to the first k derivatives.

Proof. First note that (26) implies (25) because of Lemma 3, and that (27) amounts
to projecting (A,B,C) to (Â, B̂, Ĉ) := (ZTAV,ZTB,CV) with

Z := diag{Z1, . . . , Zk}, V := diag{V1, . . . , Vk} (28)

and hence also (AG, BG, CG) to (ÂG, B̂G, ĈG) := (ZTAGV,ZTBG, CGV). The
interpolation property then follows from ZTV = I and

Kk

(
(λI −AG)−1, (λI −AG)−1BG

)
⊆ Im(V ) ⊆ Im(V), (29)

which concludes the proof. �

In some contexts, such as controller reduction or weighted model reduction,
one does not construct a reduced order transfer function Ĝ(s) by projecting the state
spaces of all the subsystems (Ai, Bi, Ci) but one may choose to project only some
or one of the subsystems. Let us consider this last possibility.

Corollary 1. Under the assumptions (26) or (25) of Lemma 4, Ĝ(s) interpolates
G(s) at λ up to the first k derivatives even if only one subsystem i is projected
according to (27) and all the other subsystems are kept unchanged.

Proof. This corresponds to (ÂG, B̂G, ĈG) := (ZTAGV,ZTBG, CGV) with

Z := diag{I∑i−1
j=1 nj

, Zi, I∑k
j=i+1 nj

}, V := diag{I∑i−1
j=1 nj

, Vi, I∑k
j=i+1 nj

}
(30)

Again we have ZTV = I and Im(V ) ⊆ Im(V), which concludes the proof. �

Remark 2. Krylov techniques have recently been generalized for MIMO systems
with the tangential interpolation framework [GVV04]. It is also possible to project
the subsystems Ti(s) in such a way that the reduced interconnected transfer function
Ĝ(s) satisfies a set of tangential interpolation conditions with respect to the origi-
nal interconnected transfer function G(s), but special care must be taken. Indeed,
Lemma 3 is generically not true anymore for generalized Krylov subspaces corre-
sponding to tangential interpolation conditions. In other words, the column space of
the matrix
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Kk

(
(λI −AG)−1BG, (λI −AG)−1, Y

)
:=

[
(λI −AG)−1BG . . . (λI −AG)−kBG

] ⎡⎢⎣ y0 . . . yk−1

. . .
...
y0

⎤⎥⎦
is in general not contained in the column space of the matrix

Kk

(
(λI −A)−1B, (λI −A)−1, Y

)
:=

[
(λI −A)−1B . . . (λI −A)−kB

] ⎡⎢⎣ y0 . . . yk−1

. . .
...
y0

⎤⎥⎦ .
In such a case, interchanging matrices (AG, BG, CG) by (A,B,C), as done
in Lemma 4 and Corollary 1 is not always permitted. Nevertheless, Lemma 4
and Corollary 1 can be extended to the tangential interpolation framework by
projecting the state space realizations (Ai, Bi, Ci) with generalized Krylov sub-
spaces of the form Kk

(
(λI −AG)−1BG, (λI −AG)−1, Y

)
and not of the form

Kk

(
(λI −A)−1B, (λI −A)−1, Y

)
.

4 Examples of Structured Model Reduction Problems

As we will see in this section, many structured systems can be modelled as in-
terconnected systems. Three well known structured systems are presented, namely
weighted systems, second-order systems and controlled systems. For each of these
specific cases one recovers well-known formulas. It turns out that several existing
model reduction techniques for structured systems are particular cases of our ISBT
Algorithm.

The preceding list is by no means exhaustive. For instance, because linear
fractional transforms correspond to making a constant feedback to a part of the state,
this can also be described by an interconnected system. Periodic systems are also a
typical example of interconnected system that is not considered below.

Weighted Model Reduction

As a first example, let us consider the following weighted transfer function:

y(s) = Wout(s)T (s)Win(s)u(s) := G(s)u(s).

Let (Ao, Bo, Co, Do), (A,B,C,D) and (Ai, Bi, Ci, Di) be the state space realiza-
tions of respectively Wout(s), T (s) and Win(s), of respective order no, n and ni.
A state space realization (AG, BG, CG, DG) of G(s) is given by
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[
AG BG

CG DG

]
:=

⎡⎢⎢⎢⎣
Ao BoC BoDCi BoDDi

0 A BCi BDi

0 0 Ai Bi

Co DoC DoDCi DoDDi

⎤⎥⎥⎥⎦ . (31)

The transfer function G(s) corresponds to the interconnected system S with

S :

⎧⎨⎩
b1(s) = Wo(s)a1(s), b2(s) = T (s)a2(s),
b3(s) = Wi(s)a3(s), y(s) = b1(s),
a1(s) = b2(s), a2(s) = b3(s), a3 = u(s)

,

and

H =

⎡⎣ 0
0
I

⎤⎦ , K =

⎡⎣ 0 I 0
0 0 I

0 0 0

⎤⎦ , F =
[
I 0 0

]
.

A frequency weighted balanced reduction method was first introduced by Enns
[Enn84, ZDG96]. Its strategy is the following. Note that Enns assumes that D = 0
(otherwise D can be added to T̂ (s)).

ENNS Algorithm
1. Compute the Gramians PG and QG satisfying (17) with (AG, BG, CG, DG)

defined in (31).
2. Perform a state space transformation on (A,B,C) in order to obtain P = Q =

Σ diagonal, where P and Q are the diagonal blocs of PG and QG corresponding to
the T (s):

P =
[
0n,no

In 0n,ni

]
PG

⎡⎣ 0no,n

In

0ni,n

⎤⎦ , Q =
[
0n,no

In 0n,ni

]
QG

⎡⎣0no,n

In

0ni,n

⎤⎦ .
(32)

3. Truncate (A,B,C) by keeping only the part of the state space corresponding
to the largest eigenvalues of Σ.

It is clear the ENNS Algorithm is exactly the same as the ISBT Algorithm applied
to weighted systems. As for the ISBT Algorithm, there is generally no known a
priori error bound for the approximation error and the reduced order model is not
guaranteed to be stable either.

There exists other weighted model reduction techniques. See for instance
[WSL99] where an elegant error bound is derived.

A generalization of weighted systems are cascaded systems. If we assume that
the interconnected systems are such that the input of Ti(s) is the output of Ti+1(s),
we obtain a structure similar than for the weighted case. The matrix K has then the
form
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K =

⎡⎢⎢⎢⎢⎣
0 Iβ1

. . . . . .
. . . Iβk−1

0

⎤⎥⎥⎥⎥⎦ .

Second-Order systems

Second order systems arise naturally in many areas of engineering (see, for example,
[Pre97, Rub70, WJ87]) with the following form:{

Mq̈(t) +Dq̇(t) + Sq(t) = Fin u(t),
y(t) = Fout q(t).

(33)

We assume that u(t) ∈ R
m, y(t) ∈ R

p, q(t) ∈ R
n, Fin ∈ R

n×m, Fout ∈ R
p×n, and

M,D,S ∈ R
n×n with M invertible. For mechanical systems the matrices M , D and

S represent, respectively, the mass (or inertia), damping and stiffness matrices, u(t)
corresponds to the vector of external forces, Fin is the input distribution matrix, y(·)
is the output measurement vector, Fout is the output measurement matrix, and q(t)
to the vector of internal generalized coordinates.

Second-Order systems can be seen as an interconnection of two subsystems as
follows. For simplicity, the mass matrix M is assumed equal to the identity matrix.
Define T1(s) and T2(s) corresponding to the following system:{

ẋ1(t) = −Dx1(t) − Sy2(t) + Finu(t)
y1(t) = x1(t)

,{
ẋ2(t) = 0x2(t) + y1(t)
y2(t) = x2(t)

. (34)

From this, y1(s) := T1(s)a1(s) = (sIn +D)−1a1(s) with a1(s) := u1(t)−Sy2(s)
(with the convention u1(t) = Finu(t)) and y2(s) = Fouts

−1a2(s) := T2(s)a2 with
a2(s) = y1(s). Matrices F,H,K are given by

F :=
[

0 Fout

]
, H :=

[
Fin

0

]
, K :=

[
0 −S
I 0

]
.

From the preceding definitions, one obtains

C =
[
I 0
0 I

]
, A =

[
−D 0

0 0

]
, B =

[
I 0
0 I

]
,

CG =
[
0 Fout

]
, AG =

[
−D −K
I 0

]
, BG =

[
Fin

0

]
.

The matrices (AG, BG, CG) are clearly a state space realization of Fout(s2In +
Ds + S)−1Fin. It turns out that the Second-Order Balanced Truncation technique
proposed in [CLVV06] is exactly the same as the Interconnected Balanced Trunca-
tion technique applied to T1(s) and T2(s). In general, systems of order k can be
rewritten as an interconnection of k subsystems by generalizing the preceding ideas.
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� �
�u(·) y(·)

T (·)

K(·)

� �
�u(·) ŷ(·)

T̂ (·)

K(·)

Fig. 2. Controller Order Reduction

Controller Order Reduction

The Controller Reduction problem (see Figure 2) introduced by Anderson and Liu
[AL89] is the following. Most high-order linear plants T (s) are controlled with a
high order linear system K(s). In order to model such structured systems by satisfy-
ing the computational constraints, it is sometimes needed to approximate either the
plant, or the controller, or both systems by reduced order systems, denoted respec-
tively by T̂ (s) and K̂(s).

The objective of Controller Order Reduction is to find T̂ (s) and/or K̂(s) that
minimize the structured error ‖G(s) − Ĝ(s)‖ with

G(s) := (I − T (s)K(s))−1T (s), Ĝ(s) := (I − T̂ (s)K̂(s))−1T̂ (s). (35)

Balanced Truncation model reduction techniques have also been developed for this
problem. Again, most of these techniques are very similar to the ISBT Algorithm.
See for instance [VA03] for recent results. Depending on the choice of the pair of
Gramians, it is possible to develop balancing strategies that ensure the stability of
the reduced system, under certain assumptions [LC92].

5 Concluding Remarks

In this paper, general structure preserving model reduction techniques have been
developed for interconnected systems, and this for both SVD-based and Krylov-
based techniques. Of particular interest, the ISBT Algorithm is a generic tool for
performing structured preserving balanced truncation. The advantage of studying
model reduction techniques for general interconnected systems is twofold. Firstly,
this permits to unify several model reduction techniques developed for weighted
systems, controlled systems and second order systems in the same framework. Sec-
ondly, our approach permits to extend existing model reduction techniques for a large
class of structured systems, namely those that can fit our definition of interconnected
systems.
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Quadratic Inverse Eigenvalue Problem
and Its Applications to Model Updating —
An Overview

Moody T. Chu∗∗

Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205
chu@math.ncsu.edu

1 Introduction

Modeling is one of the most fundamental tools that we use to simulate the complex
world. The goal of modeling is to come up with a representation that is simple enough
for mathematical manipulation yet powerful enough for describing, inducing, and
reasoning complicated phenomena. When modeling physical systems, the resulting
mathematical models are sometimes of a very high order too expensive for simula-
tion. One remedy is the notion of model reduction that assists in approximating very
high order mathematical models with lower order models. As is evidenced in this
collection, model reduction has been under extensive study and rapid development
over the past few years with many physical and engineering applications. On the
other hand, precise mathematical models of physical systems are hardly available in
practice. Many factors, including inevitable disturbances to the measurement and im-
perfect characterization of the model, attribute to the inexactitude. Since the model
reduction process begets only a partial effect of the original model, it is reasonable
to expect that the reduced model might not be consonant with realistic data either.
For various reasons, it often becomes necessary to update a primitive model to attain
consistency with empirical results. This procedure of updating or revising an exist-
ing model is another essential ingredient for establishing an effective model. The
emphasis of the following discussion is on the model updating of quadratic pencils.

The second order differential system

M ẍ + Cẋ +Kx = f(t), (1)

where x ∈ R
n and M , C, K ∈ R

n×n, arises frequently in a wide scope of impor-
tant applications, including applied mechanics, electrical oscillation, vibro-acoustics,

∗∗ This research was supported in part by the National Science Foundation under grants CCR-
0204157 and DMS-0505880.
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fluid mechanics, signal processing, and finite element discretization of PDEs. In most
applications involving (1), specifications of the underlying physical system are em-
bedded in the matrix coefficients M , C and K. It is well known that if

x(t) = veλt (2)

represents a fundamental solution to (1), then the scalar λ and the vector v must
solve the quadratic eigenvalue problem (QEP)

(λ2M + λC +K)v = 0. (3)

That is, characteristic behavior of the system (1) usually can be interpreted via the
eigenvalues and eigenvectors of the system (3). Because of this connection, consid-
erable efforts have be devoted to the QEP in the literature. Readers are referred to
the treatise by Tisseur and Meerbergen [25] for a good survey of many applications,
mathematical properties, and a variety of numerical techniques for the QEP.

Two aspects of the quadratic pencil associated with the model (1) deserve consid-
eration. The process of analyzing and deriving the spectral information and, hence,
inducing the dynamical behavior of a system from a priori known physical parame-
ters such as mass, length, elasticity, inductance, capacitance, and so on is referred
to as a direct problem. The inverse problem, in contrast, is to validate, determine, or
estimate the parameters of the system according to its observed or expected behavior.
The concern in the direct problem is to express the behavior in terms of the parame-
ters whereas in the inverse problem the concern is to express the parameters in term
of the behavior. The inverse problem is just as important as the direct problem in
applications. The model updating problem can be regarded as a special case of the
inverse eigenvalue problem.

The inverse eigenvalue problem is a diverse area full of research interests and
activities. See the newly revised book by Gladwell [17], the review article [5], and
the recently completed monograph by Chu and Golub [7] in which more than 460
references are collected. Among current development, the quadratic inverse eigen-
value problem (QIEP) is particularly more important and challenging with many
unanswered questions. Depending on the applications, the term QIEP has been used
in the literature to mean a rather wide range of diverse formulations. For instance,
the QIEP studied by Ram and Elhay in [22] involves only symmetric tridiagonal
matrix coefficients where two sets of eigenvalues are given. The QIEP studied by
Starek and Inman in [24] is associated with nonproportional underdamped systems.
Lancaster and Prells [20] considered the QIEP with symmetric and positive semi-
definite damping C where complete information on eigenvalues and eigenvectors is
given and all eigenvalues are simple and non-real. There are also works which utilize
notions of feedback control to reassign the eigenstructure [10, 21]. The list goes on
and on and can hardly be exhaustive.

In this article, we shall consider the QIEP under one common scenario, that
is, the spectral information furnished is obtained from empirical data. In vibration
industries, including aerospace, automobile, and manufacturing, through vibration
tests where the excitation and the response of the structure at selected points are
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measured experimentally, there are identification techniques to extract a portion of
eigenpair information from the measurements. However, the size of the system can
be so large and complicated that it is not always possible to attain knowledge of the
entire spectrum. While there is no reasonable analytical tool available to evaluate the
entire spectral information, it is simply unwise to use experimental values of high
natural frequencies to reconstruct a model. Additionally, it is often demanded, espe-
cially in structural design, that certain eigenvectors should also satisfy some specific
conditions. A finite-element generated symmetric model therefore needs to be up-
dated using only a few measured eigenvalues and eigenvectors [13,14]. Furthermore,
quantities related to high frequency terms in a finite model generally are susceptible
to measurement errors due to the finite bandwidth of measuring devices. Spectral in-
formation, therefore, should not be used at its full extent. For these reasons, it might
be more sensible to consider an inverse eigenvalue problem where only a portion of
eigenvalues and eigenvectors is prescribed. Under these circumstances, the quadratic
model updating problem (MUP) therefore can be formulated as follows:

(MUP) Given a structured quadratic pencil (M0, C0,K0) and a few of its as-
sociated eigenpairs {(λi,ui)}k

i=1 with k < 2n, assume that new measured
eigenpairs {(σi,yi)}k

i=1 have been obtained. Update the pencil (M0, C0,K0)
to (M,C,K) of the same structure such that the subset {(λi,ui)}k

i=1 is re-
placed by {(σi,yi)}k

i=1 as k eigenpairs of (M,C,K).

2 Challenges

The MUP as stated above is of immense practical importance. However, there are
considerable difficulties when solving a model updating problem. Many issues re-
main open for further research. We briefly outline three challenges below. We shall
comment on current status of development for facing these challenges in later
sections.

Structural Constraint. The structure imposed on a MUP depends inherently on
the connectivity of the underlying physical system. The typical structure for a gen-
eral mass-spring system, for example, is that the mass matrix M is diagonal, both
the damping matrix C and the stiffness matrix K are symmetric and banded, M is
positive definite (M > 0) and K is positive semi-definite (K ≥ 0). As an illustra-
tion, the structure corresponding to the four-degree-of-freedom mass-spring system
depicted in Figure 1 should be of the form where,

M =

⎡⎢⎢⎣
m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4

⎤⎥⎥⎦ , C =

⎡⎢⎢⎣
c1 + c2 0 −c2 0

0 0 0 0
−c2 0 c2 + c3 −c3
0 0 −c3 c3

⎤⎥⎥⎦ , (4)
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Fig. 1. A four-degree-of-freedom mass-spring system.
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Fig. 2. An RLC electronic network.

K =

⎡⎢⎢⎣
k1 + k2 + k5 −k2 −k5 0

−k2 k2 + k3 −k3 0
−k5 −k3 k3 + k4 + k5 −k4

0 0 −k4 k4

⎤⎥⎥⎦ . (5)

In contrast, the structure associated with an electronic circuit may not be definite
or even symmetric. As another illustration, the matrix coefficients in the differen-
tial system associated with the RLC network depicted in Figure 2 should have the
following structure:

M =

⎡⎢⎢⎣
−L2 L2 0 0
L2 −L2 0 0
0 0 L3 0
0 0 0 L4

⎤⎥⎥⎦ , C =

⎡⎢⎢⎣
0 R2 −R2 0

R1 +R4 0 0 −R4

0 −R2 R2 +R3 0
−R4 0 0 R4

⎤⎥⎥⎦ , (6)
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K =

⎡⎢⎢⎢⎣
0 1

C2
0 0

0 0 0 0
0 0 1

C3
− 1

C3

0 0 − 1
C3

1
C3

+ 1
C4

⎤⎥⎥⎥⎦ , (7)

For the sake of physical feasibility, the updated model usually is required to inherit
the same connectivity as the original model. Since structured problems often re-
sults in special interrelationship within its eigenstructure, the observed measurement
which often is contaminated with random noise may not be consistent with that in-
nate structure. In other words, the structural constraint often severely limits whether
a model could be updated.

Spurious Eigeninformation. An added challenge, known as the no spill-over phe-
nomenon in the engineering literature, is that in updating an existing model it is
often desirable that the current vibration parameters not related to the newly mea-
sured parameters should remain invariant. No spill-over is desirable either because
these parameters have already been proven to be acceptable in the previous model
and engineers do not wish to introduce new vibrations via updating or because en-
gineers simply do not know of any information about these parameters. The MUP
under such a circumstance therefore should be formulated as finding the updated
model (M,C,K) so that not only he subset {(λi,ui)}k

i=1 of the original model is
replaced by newly measured {(σi,yi)}k

i=1 as k eigenpairs of (M,C,K), but also
the remaining 2n − k eigenpairs of (M,C,K), which often are unmeasurable and
stay unknown, are the same as those of the original (M0, C0,K0).

Minimal or Robust Modification. The solution to an MUP is not unique. The
notion of optimizing the adjustment or the robustness therefore is highly plausi-
ble. Earlier work by Friswell, Inman and Pilkey [15] considers model updating
by minimal changes of only the damping and the stiffness matrices. The work by
Baruch [1], Bermann and Nagy [2], and Wei [26] concentrates only on undamped
systems. More recently, the feedback control techniques have also been employed
by Nichols and Kautsky [21] and Datta, Elhay, Ram, and Sarkissian [10–12] to man-
age the robustness.

Despite much effort, there does not seem to exist adequate theory or techniques
thus far that can solve the MUP while addressing the aforementioned concerns. Ex-
isting methods have severe computational and engineering limitations, which restrict
their usefulness in real applications. The purpose of this article is to provide an
overview of this interesting topic with the hope of stimulating further studies toward
its solution.

3 Quadratic Inverse Eigenvalue Problem

To answer whether a quadratic pencil can be updated, a more fundamental question
is whether a quadratic pencil can have arbitrary k prescribed eigenpairs. For con-
venience, we adopt the notation that the diagonal matrix Λ ∈ R

k×k represents the
“eigenvalue matrix” of the quadratic pencil (3) in the sense that Λ is in real diagonal
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form with 2 × 2 blocks along the diagonal replacing the complex-conjugate pairs
of eigenvalues originally there. Similarly, let X ∈ R

n×k represent the “eigenvec-
tor matrix” in the sense that each pair of column vectors associated with a 2 × 2
block in Λ holds the real and the imaginary part of the original complex eigenvector.
For the quadratic pencil (M,C,K) to have eigenstructure (Λ,X), it is clear that the
relationship

MXΛ2 + CXΛ+KX = 0n×k (8)

must hold.

3.1 Self-Adjoint Pencils

At first glance, the relationship (8) is only a homogeneous linear system of nk
algebraic equations. If there are no other constraints, the triplet (M,C,K) constitutes
3n2 unknowns. Since k is bounded above by 2n, the system is well under-
determined. It is intuitively true that the system should be solvable in general. The
challenge is to characterize the solution in terms of the given (Λ,X). In this section,
we discuss how a parametric representation can be obtained for (M,C,K) when
these matrix coefficients are required to be symmetric.

To derive the parametric representation, observe that the matrix

Ω := [Ik, Λ
�, Λ2�] ∈ R

k×3k (9)

has a null space of dimension 2k. Let columns of the matrix⎡⎣UT
S

⎤⎦ ∈ R
3k×2k, (10)

where S, T and U are matrices in R
k×2k, denote a basis of the null space of Ω. It is

clear that once S and T are specified, then

U = −Λ�T − Λ2�S (11)

is determined. Note that the system (8) can be written as

Ω

⎡⎣X�K

X�C

X�M

⎤⎦ = 0k×n, (12)

implying that there must exist a matrix Ψ ∈ R
2k×n such that⎡⎣UT

S

⎤⎦Ψ =

⎡⎣X�K

X�C

X�M

⎤⎦ . (13)
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Since M , C and K are symmetric, the three matrices

A := SΨX, (14)
B := TΨX, (15)
F := UΨX (16)

must also be symmetric in R
k×k. From (11) we know that F is specified once A and

B are given. We shall use A and B to characterize the solution (M,C,K) to the
QIEP associated with (Λ,X). It is important to note a critical relationship between
A and B. Upon substituting (11) into (16) and using the fact that F = F�, we find
that A and B are related by the equation:

Λ�B −BΛ = AΛ2 − Λ2�A. (17)

That is to say, not all entries in A or B are free. We shall exploit those entries which
are free and establish a parametric representation of (M,C,K). Observe that each
side of (17) represents a skew-symmetric matrix.

We begin with the case when k = n and formulate the following result [8].

Theorem 1. Given n distinct eigenvalues Λ and n linearly independent eigenvec-
tors X both of which are closed under conjugation, let A ∈ R

n×n be an arbitrary
symmetric matrix and let B be a solution to the equation (17). Then the self-adjoint
quadratic pencil with coefficients defined by

M = X−�AX−1, (18)
C = X−�BX−1, (19)
K = −X−�Λ�(B + Λ�A)X−1. (20)

has the prescribed pair (X,Λ) as part of its eigenstructure.

Proof. The proof is straightforward. The relationship (13) implies that M =
X−�SΨ for some Ψ ∈ R

2n×n. We also know from (14) that A = SΨX . Together,
we can express M as M = X−�AX−1. Similar arguments can be applied to C
and K.

The choice of A gives rise to n(n+1)
2 free parameters. For each given A ∈ R

n×n,
we need to see how B can be determined from the equation (17). Without loss of
generality, we may assume that Λ is the diagonal matrix with �× � blocks,

Λ = diag{λ[2]
1 , . . . , λ[2]

ν , λν+1, . . . , λ�}, (21)

where λ[2]
j =

[
αj βj

−βj αj

]
∈ R

2×2, βj �= 0, if j = 1, . . . , ν; λj ∈ R if j = ν +

1, . . . , �; and �+ ν = n. Partition B into �× � blocks in such a way that, if the (i, j)-
block is denoted by Bij , then diag{B11, . . . , B��} has exactly the same structure as
Λ. It is not difficult to see that the (i, j)-block of Λ�B −BΛ is given by
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λ�

i Bij −Bijλj , if ν + 1 ≤ i, j ≤ �,

(λ[2]
i )�Bij −Bijλj , if 1 ≤ i ≤ ν and ν + 1 ≤ j ≤ �,

(λ[2]
i )�Bij −Bij(λ

[2]
j ), if 1 ≤ i, j ≤ ν.

(22)

From a comparison with the corresponding blocks in AΛ2 − Λ2�A (cf. (17)), we
draw the following conclusion. In the first case, Bij is a scalar and is uniquely deter-
mined except that Bii is free. In the second case, Bij is a 2× 1 block with all entries
being uniquely determined. In the third case, if we write

Bij =
[
x y

y z

]
, (23)

then

(λ[2]
i )�Bij −Bij(λ

[2]
j ) =

[
x(αi − αj) − y(βi − βj) −zβi − xβj

xβi + y(αi − αj) + zβj y(βi − βj)

]
. (24)

It is clear that if i = j, then y is free and x+ z = 0, still giving rise to two degrees of
freedom. If i �= j, the all entries of Bij are uniquely determined. We conclude that
A ∈ R

n×n can be totally arbitrary and B is determined up to n free parameters. We
thus have proved the following theorem.

Corollary 1. The solutions (M,C,K) to the quadratic inverse eigenvalue problem
with eigenstructure (X,Λ) as described in Theorem 1 form a subspace of dimension-
ality n(n+3)

2 in the product space R
n×n × R

n×n × R
n×n.

It is worth mentioning that if A is selected to be symmetric and positive definite,
then so is the leading coefficient M . Indeed, the above construction parameterizes
all possible solutions.

We point out in passing that, in contrast to the construction described in
Theorem 1, Kuo, Lin and Xu [18] have developed independently another parame-
trization for the solution (M,C,K). Let

Ω := diag
{[

ξ1 η1

η1 −ξ1

]
, . . . ,

[
ξν ην

ην −ξν

]
, ξν+1, . . . , ξκ

}
. (25)

where ξ1, . . . , ξν , ξν+1, . . . , ξκ and η1, . . . , ην are arbitrary real numbers. Then the
matrices defined by

M := an arbitrary symmetric matrix, (26)
C := −

(
MXΛX−1 + (XΛX−1)�M +X−�ΩX−1

)
, (27)

K := (XΛX−1)�M(XΛX−1) +X−�ΩΛX−1, (28)

also solves the QIEP associated with (Λ,X). It can been checked that these two ways
of parametrization are equivalent, except that our approach is also able to handle the
case k > n which we now explore.
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The case k > n is a little bit more involved. It remains true from the relationships
(13), (14), (15) and (16) that

A = SΨX = X�MX, (29)
B = TΨX = X�CX, (30)
F = UΨX = X�KX, (31)

are symmetric even in the case k > n, but we cannot obtain a parametric representa-
tion of (M,C,K) fromA andB directly becauseX ∈ R

n×k with k > n is no longer
an injection transformation. To retrieve (M,C,K), we rewrite the eigenvectors as

X = [Z1, Z2], (32)

where Z1 ∈ R
n×n and Z2 ∈ R

n×(k−n). Then we see that

A =
[
A11 A12

A�
12 A22

]
=
[
Z�

1 MZ1 Z
�
1 MZ2

Z�
2 MZ1 Z

�
2 MZ2

]
, (33)

where Aij , i, j = 1, 2, are blocks with appropriate sizes. Thus, instead of using
the matrix A as parameter, we should select a symmetric submatrix A11 ∈ R

n×n

arbitrarily and define
M = Z−�

1 A11Z
−1
1 . (34)

Once M ∈ R
n×n is determined, the matrix A ∈ R

k×k is completely specified. This
selection gives rise to n(n+1)

2 degrees of freedom. There is no additional freedom in
the choice of A.

With A ∈ R
k×k specified, we next want to determine the matrix B ∈ R

k×k

based on the necessary condition (17). Write

B =
[
B11 B12

B�
12 B22

]
=
[
Z�

1 CZ1 Z
�
1 CZ2

Z�
2 CZ1 Z

�
2 CZ2

]
. (35)

Consider the B11 block first. Partition the given eigenvalues as

Λ = diag{Υ1, Υ2} (36)

where Υ ∈ R
n×n and Υ2 ∈ R

(k−n)×(k−n). We note that B11 and A11 satisfy a
relationship

Υ�
1 B11 −B11Υ1 = A11Υ

2
1 − Υ 2�

1 A11, (37)

that is similar to (17). The same argument used earlier for the case when k = n can
be applied and we conclude that the submatrix B11 can be completely determined up
to n free parameters. It follows that a symmetric matrix

C = Z−�
1 B11Z

−1
1 (38)

can be determined and, hence, it appears that the matrix B is completely determined
up to n free parameters.
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The point is that there are additional limitations on the choice of A and B in the
case k > n. The very same C defined by (38) should also equate the two sides of
equation (17) for the (1, 2) and (2, 2) blocks, respectively. These blocks involve more
than n equations to be satisfied. Thus,B11 and consequentlyA11 must be special. We
have to go back to modify the selection of A11. In other words, the n free parameters
in B11 and the matrix A11 must be further restricted so that the remaining part of B
also satisfies (17). To that end, we observe that if we define

W := Z−1
1 Z2, (39)

then it follows that

A =
[

A11 A11W

W�A11 W
�A11W

]
,

B =
[

B11 B11W

W�B11 W
�B11W

]
.

Expressing the equation (17) in block form, we obtain (37) and the following two
equations:

Υ�
1 B11W −B11WΥ2 = A11WΥ 2

2 − Υ 2�
1 A11W, (40)

Υ�
2 W�B11W −W�B11WΥ1 = W�A11WΥ 2

2 − Υ 2�
2 W�A11W. (41)

Post-multiplying (37) by W and subtracting (40), we obtain an equivalent
relationship:

A11Υ
2
1W +B11Υ1W = A11WΥ 2

2 +B11WΥ2. (42)

It follows that

W�(A11WΥ 2
2 +B11WΥ2) = W�(A11Υ

2
1W +B11Υ1W )

= (W�A11Υ
2
1 +W�B11Υ1)W

= (Υ�
2 W�B11 + Υ 2�

2 W�A11)W,

which is precisely (41). The final equality follows from taking the transpose of
equation (40). We have just proved that if we can solve the two equations (37) and
(40), then the third equation (41) is automatically solved. We have indicated earlier
that any given A11 will determine B11 through (37) up to n free parameters. Thus, it
only remains to choose the n free parameters in B11 and the n×n symmetric matrix
A11 to satisfy the n(k − n) linear equations imposed by (40). In total there are

n(n+ 1)
2

+ n− n(k − n) =
3n(n+ 1)

2
− nk (43)

degrees of freedom. For nontrivial solutions, it is clear that we need k < 3(n+1)
2 .

Finally, we discuss the case when k < n. If less than n eigenpairs (X,Λ) are
given, we can solve the inverse eigenvalue problem by embedding this eigeninfor-
mation in a larger set of n eigenpairs. In particular, we expand X ∈ R

n×k to
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X̂ := [X, X̃] ∈ R
n×n, (44)

where X̃ ∈ R
n×(n−k) is arbitrary under the condition that X̂ is nonsingular. Cau-

tion should be taken when counting the degrees of freedom. We should consider the
columns in X̃ as being normalized since, otherwise, a normalization factor would
have been added to the arbitrariness of A. With this normalization in mind, the ex-
pansion of eigenvectors involves additional (n− 1)(n− k) degrees of freedom. We
then expand Λ ∈ R

k×k to
Λ̂ := diag{Λ, Λ̃}, (45)

where Λ̂ is a diagonal matrix with distinct eigenvalues. This expansion of eigenvalues
gives rise to another n−k degrees of freedom. With (X̂, Λ̂) playing the role of (X,Λ)
in Theorem 1, we can now construct the coefficient matrices M , C and K according
to the formulas (18), (19) and (20), respectively. Recall that A is taken as an arbitrary
symmetric matrix in R

n×n and B, though depending on Λ̂ through the relationship
(17), maintains n degrees of freedom. We conclude that the solutions to the QIEP
with k < n form a subspace of dimensionality n(n+3)

2 + n(n − k). Note that this
embedding approach characterizes the solution (M,C,K) via the parametrization
(18), (19) and (20) which in nonlinear in terms of A, B, X̃ and Λ̃.

We end this section with the following summarizing theorem.

Theorem 2. Assume 1 ≤ k < 3(n+1)
2 . Let (Λ,X) represent k arbitrarily prescribed

eigenpairs (Λ,X) which are closed under conjugation. The self-adjoint quadratic
inverse eigenvalue problem associated with (Λ,X) is generally solvable. The solu-
tions form a subspace of dimension 3n(n+1)

2 − nk. The maximal allowable number
of prescribed eigenpairs is given by (50).

3.2 Structured Pencils

Thus far, the only structure laid upon the QIEP is the symmetry, in which case we
have shown its solvability. However, it is important to note that algebraic solvabil-
ity does not necessarily imply physical feasibility. Physical feasibility means, for

k1

m1 m2 mn

k2 k3 kn

xn
x2x1

Fig. 3. An undamped mass-spring system.
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example, that the special matrix structure resulting from the underlying connectiv-
ity must hold or that the physical parameters must be nonnegative. These additional
constraints make the QIEP much more interesting but harder to solve. There does not
seem to exist reported research in this direction. We believe that the issue of solv-
ability probably is problem dependent and will have to be analyzed case by case. For
demonstration purpose, we shall discuss only one setting in this section.

Consider the serially linked, undamped mass-spring system depicted in Figure 3,
which can be used to model many other physical systems, including a vibrating
beam, a composite pendulum, or a string with beads. The corresponding quadratic
pencil λ2M +K has the structure

M =

⎡⎢⎢⎢⎣
m1 0 . . . 0
0 m2

...
. . .

0 mn

⎤⎥⎥⎥⎦ , K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 0 . . . 0 0
−k2 k2 + k3 −k3 0
0 −k3 k3 + k4

...
. . .

...
0 kn−1 + kn −kn

0 −kn kn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (46)

The inverse eigenvalue problem would imply to find positive values for the masses
m1, . . . ,mn and spring constants k1, . . . , kn from prescribed eigeninformation.
A typical approach in the literature has been to recast the quadratic pencil as a lin-
ear pencil µI + J with a Jacobi matrix J = M−1/2KM−1/2. A classical theory
has been that two sets of eigenvalues can uniquely solve the corresponding Jacobi
inverse eigenvalue problem [7, Section 4.2]. What can be said if the system is to be
reconstructed from eigenpairs?

Each eigenpair provides n equations. Imposing two eigenpairs generally will lead
to the trivial algebraic solution in such a system, unless the prescribed eigenpairs
satisfy some additional internal relationship. So we ask the even more fundamental
question of constructing the system with one prescribed eigenpair (iβ,x) where i =√
−1, β ∈ R and x ∈ R

n.
Denote x = [x1, . . . , xn]� and x0 = 0. It is not difficult to see that the recursive

relationship,

kn =
β2mnxn

xn − xn−1
, (47)

ki =
β2mixi + ki+1(xi+1 − xi)

xi − xi−1
, i = n− 1, . . . , 1, (48)

must hold. Our goal is to find a positive approximation for mi, which then de-
fines a positive value for ki. The following is a make-or-break algorithm for the
construction [4].

The above algorithm appears naive since it only checks a few signs, but its sim-
plicity is in fact closely related to the classical Courant Nodal Line Theorem [27].
Roughly speaking, it is known in the literature that critical information about a vibra-
tion system can be recovered from places where nothing happens. These places are
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Given an arbitrary eigenpair (iβ,x), assume the normalization xn = 1 and mn = 1.
The following steps either construct the masses m1, . . . , mn−1 and spring constants
k1, . . . , kn, all positive, for the pencil λ2M + K, or determine that such a system with
the prescribed eigenpair does not exist.

1. initialization:
sn = 0.9; (mass decreasing factor)
sp = 1.1; (mass increasing factor)
η = β2;

2. if xn−1 < 1,

kn = β2

1−xn−1
; (use formula (47))

else
return (inconsistent eigenvector)

end
3. for i from n − 1 to 2, do

a) ρ = η
xi

;
b) if xi−1 < xi,

if ρ > 0,
if xi < 0,

return (inconsistent eigenvector)
else

mi = 1; (any mi > 0 will be fine)
end

else
if xi < 0,

mi = − snρ
β2 ; (need 0 < mi < − ρ

β2 )
else

mi = − spρ

β2 ; (need mi > − ρ
β2 )

end
end

else
if ρ > 0,

if xi < 0,
mi = 1;

else
return (inconsistent eigenvector)

end
else

if xi < 0,
mi = − pnρ

β2 ;
else

mi = − snρ
β2 ;

end
end

end
c) η = η + β2mixi;
d) ki = η

xi−xi−1
; (use formula (48))

4. finale:
a) rho = η

x1
;

b) if ρ > 0,
m1 = 1;

else
m1 = − spρ

β2 ;
end

c) η = η + β2m1x1;
d) k1 = η

x1
; (use formula (48))
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referred to as the nodal lines. Courant’s theorem gives a right count of the number
of nodal lines. We shall not elaborate the particulars here. Readers are referred to
the paper [9, 27] for more detailed discussion. In short, the effect of the algorithm is
based on the following result, whose proof can be found in [4]. We believe that the
necessary and sufficient conditions on the specified eigenvector is lucid but elegant.

Theorem 3. A given vector x = [x1, . . . , xn]� ∈ R
n with distinct entries is an

eigenvector of a quadratic pencil λ2M+K with the structure specified in (46) if and
only if xn(xn − xn−1) > 0 and the signs of the triplets (xi+1 − xi, xi, xi − xi−1)
for i = 2, . . . , n − 1 are not (+,+,−) nor (−,−,+). Furthermore, if x is feasible
and if there are τ changes of signs when going through x1 to xn, then x is the τ -th
eigenvector of the pencil regardless how the masses mi are defined.

For damped systems and other types of connectivity or RLC configurations, the
resulting pencil structure will be different. It is likely that the conditions for solvabil-
ity will also vary. This is a wide open area for further research.

4 Spill-Over Phenomenon

Recall that a model updating with no spill-over is mathematically equivalent to a
QIEP with a complete set of prescribed eigenpairs (Λ,X) where we partition Λ and
X as

Λ = diag{Σ,Λ2}, X = [Y,X2], (49)

with the pair (Σ,Y ) ∈ R
k×k ×R

n×k representing the portion of eigenstructure that
has been modified and (Λ2, X2) corresponding to the inert portion of eigenstruc-
ture in the original model which should not been changed (and perhaps is even not
known). Ideally, we prefer to see no spill-over in the model updating. But can this
be achieved? If not, to what extent do we know about the spurious eigenstructure
brought in by the updating?

In the case when symmetry is required, we have seen that the additional con-
straint of symmetry imposes an upper bound on the number k of prescribed eigenpair.
The maximal allowable number kmax of prescribed eigenpairs is given by

kmax =

{
3�+ 1, if n = 2�,
3�+ 2, if n = 2�+ 1.

(50)

As a consequence, the remaining 2n− kmax eigenpairs of a quadratic pencil cannot
be arbitrarily assigned anymore. That is to say, if n ≥ 3 and if the updating intends
to replace kmax original eigenpairs by newly measured data, then with probabil-
ity one the phenomenon of spill-over will occur. The following example from [8]
illustrates this.

Consider the case when n = 3. A quadratic pencil generally allows six eigen-
pairs. Suppose that five of them are prescribed by
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Σ = diag{1, 2, 3, 5, 8}, Y =

⎡⎣ 1 0 0 2 −1
0 1 0 −2 0
0 0 1 2 2

⎤⎦ . (51)

This is a case where k = kmax = 5. By Theorem 2, the solution has three degrees
of freedom. We find that the solution to the QIEP can be represented as

M =

⎡⎢⎢⎣
s −s+ 4u u

−s+ 4u t − 7
10s+ 14

5 u

u − 7
10s+ 14

5 u − 3
10u+ 7

10s

⎤⎥⎥⎦ ,

C =

⎡⎢⎢⎣
−9s+ 10u 3s− 12u −4u

3s− 12u −27
5 s+ 108

5 u− 7t 7
2s− 14u

−4u 7
2s− 14u 34

5 u− 77
10s

⎤⎥⎥⎦ ,

K = −

⎡⎢⎢⎣
−8s+ 10u 2s− 8u −3u
2s− 8u −54

5 s+ 216
5 u− 10t 21

5 s−
84
5 u

−3u 21
5 s−

84
5 u

177
10 u− 84

5 s

⎤⎥⎥⎦ .
It can be shown that

det(M) = − 1
100

(7s− 10u)
(
272u2 − 136su− 10tu− 10ts+ 17s2

)
. (52)

Obviously, we can choose s, t and u so that det(M) > 0. Indeed, the three parame-
ters can be chosen to make the other two principal minors of M positive so that M
is positive definite. We also find that the sixth eigenvalue is given by

λ6 = −2
52u2 + 37s2 − 161su+ 40st− 35tu
17s2 − 136su− 10tu+ 272u2 − 10st

(53)

while its corresponding eigenvector is given by

x6 =
[
2
5

9s− 36u+ 5t
7s− 10u

, 1,
2
5

9s− 36u+ 5t
7s− 10u

]�
. (54)

It is clear that the sixth eigenvector x6 cannot be arbitrarily assigned and, hence, no
spill-over cannot be guaranteed.

On the other hand, suppose k = n eigenpairs have been modified. Then accord-
ing to the construction specified in Theorem 1, we can derive the following result.

Theorem 4. Given n distinct eigenvalues Σ and n linearly independent eigenvectors
Y both of which are closed under conjugation, construct (M,C,K) as in Theorem 1
with A and B as parameters. Then the corresponding self-adjoint quadratic pencil
can be factorized as

λ2M +ΣC +K = Y −� (λIn −Σ�) (B + (λIn +Σ�)A
)
Y −1

= Y −� (B +A(λIn +Σ)) (λIn −Σ)Y −1. (55)
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It is interesting to note from Theorem 4 that the remaining eigenvalues are the
same as the eigenvalues of the linear pencil λA + B + AΣ. Since the entire matrix
A and (diagonal) part of B are free, there is room to impose additional eigenin-
formation to the pencil. In [18], for instance, it has been argued that additional n
eigenvalues could be arbitrarily specified. This fulfills only partially the no spill-over
phenomenon. In our context where we require that eigenvalues and eigenvectors are
prescribed in pairs, we believe that spill-over phenomenon is inevitable except in
the undamped case. In undamped case, note that the quadratic pencil λ2M +K can
be reduced to a linear pencil µM + K with µ = λ2. The following result for a
self-adjoint linear pencil is proved in [8].

Theorem 5. A self-adjoint linear pencil µM +K can have arbitrary eigenstructure
with n distinct eigenvalues and linearly independent eigenvectors. Indeed, given an
eigenstructure (Λ,X) in R

n×n × R
n×n, the solutions (M,K) form a subspace of

dimensionality n in the product space R
n×n × R

n×n and can be parameterized by
the diagonal matrix Γ via the relationships,

M = X−�ΓX−1, (56)
K = −X−�ΓΛX−1. (57)

5 Least Squares Update

Inverse eigenvalue problems generally are ill-posed. Any measure of sensitivity or
robustness of a solution to perturbations must be designed by taking several factors
into consideration [21]. One such attempt is to require that the updating is made with
minimal changes [15]. The model updating problem can then be formulated as an
optimization problem:

minimize
1
2
(
‖M −M0‖2

F + ‖C − C0‖2
F + ‖K −K0‖2

F

)
, (58)

subject to MYΣ2 + CY Σ +KY = 0, M , C and K symmetric, (59)

where (Σ,Y ) ∈ R
k×k × R

n×k are the newly measured eigenpairs. Note that the
above formulation is actually a quadratic programming problem for which many
techniques are available. See, for example, [16]. In principle, the least squares model
updating problem can be handled by standard optimization procedures, provided the
feasible set is known to be nonempty.

Of course, advantage can be taken of the special features of the problem so that
the quantities needed for numerical computation are calculated with minimal effort.
For example, since the problem involves only linear equality constraints, the pro-
jected gradient and the projected Hessian can be calculated formally in terms of the
null space of the k × 3n matrix [X�, Λ�X�, Λ2�X�]. Another approach is to uti-
lize the parametric representation of (M,C,K) and rewrite the objective function
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as an unconstrained optimization in terms of the free parameters. Readers are re-
ferred to [19] for an implementation that uses a similar but different parametrization
specified in [18].

Structured model updating problems can be formulated in a similar way except
that the matrices (M,C,K) in (59) are restricted to the specified structures. If the
matrices are further required to be nonnegative, then we also have bounded con-
straints. As we have indicated, we can solve currently only a few structured QIEPs,
if they are solvable at all, by numerical algorithms. That is to say, when solving
a structured least squares model updating problem, a feasible candidate (M,C,K)
can be identified only through point-to-point calculation. This would make it very
hard to find the optimal solution. Again, we believe that this is an area open for
further research.

6 Conclusions

Model updating so as to attain consistent spectral property with empirical data is an
essential ingredient for establishing an effective model. In this chapter, we presented
an overview on this subject by briefly addressing three important issues involved in
model updating — that we have to satisfy the structural constraint for physical fea-
sibility, that we prefer to see that no spurious modes are introduced into the range of
the frequency range of interest, and that we want to keep the modifications minimal.
Before we are able to determine whether some updating can be achieved, a more fun-
damental question is to solve the quadratic inverse eigenvalue problem when a set of
eigenpairs is prescribed. For this problem we are able to provide a parametric rep-
resentation of the solution to the QIEP if only symmetry is required of the matrices
involved. We demonstrated an algorithmic approach for an undamped QIEP when
the structure and nonnegativity are to be maintained, but a general solution proce-
dure is not available yet. From inspection of the dimension of the solution space of
the QIEP, we conclude that the spill-over phenomenon is unavoidable. We pointed
out many open questions that deserve further study.
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Accurate frequency-domain macromodels are becoming increasingly important for
the design, study and optimization of complex physical systems. These macromodels
approximate the complex frequency-dependent input-output behaviour of broadband
multi-port systems in the frequency domain by rational functions [28]. Unfortunately,
due to the complexity of the physical systems under study and the dense discretiza-
tion required for accurately modelling their behaviour, the rational or state-space
macromodels may lead to unmanageable levels of storage and computational re-
quirements. Therefore, Model Order Reduction (MOR) methods can be applied to
build a model of reduced size, which captures the dynamics of the larger model as
closely as possible.

Orthonormal Vector Fitting (OVF) [5, 9] is an identification method, which is
typically used to approximate simulated or measured frequency responses by an an-
alytic function. In this chapter, it is shown that the OVF method can also be seen as
a data-driven MOR method. Rather than reducing the dimensions of the state-space
matrices of a model directly (model-based MOR), this technique is used to build a
new state-space model with a reduced model complexity based on input-output data.
The goal of this algorithm is to parameterize a rational transfer function, such that its
spectral behaviour matches the response of the larger model in a least-squares sense.

Most available identification methods suffer poor numerical conditioning for
large state-space dimensions or broad frequency ranges. The OVF method tackles
these issues by combining the benefits of a Sanathanan-Koerner iteration [32] and a
well-chosen set of orthonormal rational basis functions. It is shown that the method
is applicable to reduce systems with a large amount of poles. The method does not
preserve passivity by default, however several techniques are available to enforce a
desired physical behaviour in a post-processing step [12, 14].
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1 Identification Problem

1.1 Goal

The major goal of the algorithm is to identify the mapping between the inputs and
outputs of a complex system by an analytic model of reduced size. For continuous-
time linear-time-invariant (LTI) systems in the frequency domain, this reduces to
finding a rational transfer function

R(s) =
N(s)
D(s)

=
∑N

n=0 Nnφn(s)∑D
d=0 Ddφd(s)

s = i2πf (1)

which approximates the spectral response of a system over some predefined fre-
quency range of interest [fmin,fmax]. The spectral behaviour is characterized by a
set of frequency-domain data samples (sk,H(sk)), ∀k = 0, ...,K, which are ob-
tained by evaluating the state-space matrices of the large model. Nn and Dd are the
real-valued system parameters which need to be estimated, and N and D represent
the order of numerator and denominator respectively. In practice, N and D are cho-
sen to be much smaller than the order of the large model. A dense frequency sweep is
required in many situations, so the amount of available data samples can be quite nu-
merous. Therefore, numerically stable fitting techniques are required which estimate
the model coefficients in a least-squares sense [10].

1.2 Non-linearity of the Estimator

Rational least-squares approximation is essentially a non-linear problem, and corre-
sponds to minimizing the following cost function [29]

arg min
Nn,Dd

K∑
k=0

∣∣∣∣H(sk) − N(sk)
D(sk)

∣∣∣∣2 = arg min
Nn,Dd

K∑
k=0

|D(sk)H(sk) −N(sk)|2

|D(sk)|2
.

(2)

Due to its non-linear nature, it can be hard to estimate the system parameters in a fast
and accurate way. In many papers, e.g. [34], this difficulty is avoided by assuming
that a-priori knowledge about the poles is available. In this case, the non-linear prob-
lem reduces to a linear problem since the denominator parameters are assumed to be
known. In practice, however, this situation is often not a realistic one. Another pos-
sible option is the use of non-linear optimization techniques, such as Newton-Gauss
type algorithms, in order to minimize (2). A known drawback of these methods, is
that the solutions may converge to local minima, even when Levenberg-Marquardt
algorithms are used to extend the region of convergence [22, 25].

In [2], it was proposed to minimize Levi’s linearized cost function [19, 23]

arg min
Nn,Dd

K∑
k=0

|D(sk)H(sk) −N(sk)|2 . (3)
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This formulation basically reduces to (2), if the weighting factor 1/ |D(sk)|2 is set
equal to one for all frequencies sk. Clearly, this weighting will bias the fitted trans-
fer function, and this often results in poor low-frequency fits, due to an undesired
overemphasis of high-frequency errors.

In this chapter, the use of a Sanathanan-Koerner iteration is advocated [32]. First,
an estimate of the poles is obtained by minimizing Levi’s linearized cost function.
Given this initial (iteration step 0) or previous (iteration step t − 1) estimate of the
poles, the model parameters of the next iteration step are calculated by minimizing
the weighted linear cost function

arg min
N

(t)
n ,D

(t)
d

(
K∑

k=0

∣∣D(t)(sk)H(sk) −N (t)(sk)
∣∣2∣∣D(t−1)(sk)

∣∣2
)
. (4)

By analyzing the gradients of the error criterion, it is straightforward to show that this
method generates solutions that don’t converge asymptotically to the solution of (2)
either, even though the error criterion itself tends asymptotically to the fundamental
least squares criterion [35]. In practice, however, this approach often gives favor-
able results for sufficiently small modelling errors. The interested reader is hereby
referred to an excellent survey [29].

1.3 Choice of Basisfunctions

To solve the identification problem, (4) reduces naturally to a linear set of least-
squares equations, which needs to be solved with sufficient accuracy.

Suppose that H = diag(H(s0), ...,H(sK)), wk = [D(t−1)(sk)]−1, and Φ0:X is
defined as

Φ0:X =

⎛⎝ w0φ0(s0) ... w0φX(s0)
... ... ...

wKφ0(sK) ... wKφX(sK)

⎞⎠ , (5)

then the least-squares solution of Vx = b can be calculated to estimate the parame-
ter vector x, provided that V, x and b are defined as (D0 = 1)

V =

(
!e
(
Φ0:N −HΦ1:D

)
+m
(
Φ0:N −HΦ1:D

)) , b =
(

!e(HΦ0)
+m(HΦ0)

)
(6)

x = (N (t)
0

... N
(t)
N D

(t)
1 ... D

(t)
D )T . (7)

Each equation is split in its real and imaginary part to enforce the poles and zeros
to be real, or to occur in complex conjugate pairs (under the assumption that the
basis functions φ(s) are real-valued as well). This ensures that the coefficients of the
transfer function are real, and that no imaginary terms occur in the time-domain.

It becomes clear that the accuracy of the parameter vector x, and the numer-
ical conditioning of this problem is highly dependent on the structure of the sys-
tem equations. If the basisfunctions φ(s) are chosen to be a monomial power series
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basis (1,s,s2,...), the matrix Φ will be a Vandermonde matrix which is notoriously
ill-conditioned. Adcock and Potter [1] suggested the use of polynomials which are
orthogonal with respect to a continuous inner product, such as Chebyshev polyno-
mials, as basis functions. The large variation of the Chebyshev polynomials with
increase in order makes it possible to downsize the effects of ill-conditioning. On the
other hand, Richardson and Formenti [30] proposed the use of Forsythe polynomials
which are orthonormal with respect to a discrete inner product, defined by the nor-
mal equations of the estimator. This implies that a different set of basis functions is
used for numerator and denominator. Rolain et al. [31] have shown that a basis trans-
formation from the Forsythe polynomials to a different, arbitrary polynomial basis
results in an inferior conditioning of VT V. Hence, the Forsythe polynomial basis is
optimal in a sense that there doesn’t exist any other polynomial basis resulting in a
better conditioned form of the normal equations.

2 Vector Fitting

2.1 Model Representation

Quite recently, Gustavsen and Semlyen [13] proposed the use of partial fractions as
basis functions for the numerator and denominator

R(s) =
N(s)
D(s)

=

∑P
p=1 cpφp(s)

1 +
∑P

p=1 c̃pφp(s)
=

∑P
p=1

cp

s+ap

1 +
∑P

p=1
c̃p

s+ap

, (8)

provided that cp and c̃p represent the residues, and −ap are a set of prescribed poles.
The denominator has an additional basisfunction which equals the constant value 1.
Its coefficient can be fixed to one, since numerator and denominator can be divided
by the same constant value without loss of generality. Other non-triviality constraints
are also possible [16]. Given the constraint that the poles of the numerator and de-
nominator expression of (8) are the same, it’s easy to see that these basis functions are
complete, in a sense that they can approximate any strictly proper transfer function
with distinct poles arbitrarily well. To approximate systems which require a proper
or improper transfer function, an optional constant and linear term can be added to
the numerator expression.

2.2 Parameterization of the Transfer Function

In the first iteration, Levi’s cost function is applied, which results that V becomes

V =

(
!e
(
Φ1:P −HΦ1:P

)
+m
(
Φ1:P −HΦ1:P

)) (9)
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and that the parameter vector consist of unknown residues

x = (c1 ... cP c̃1 ... c̃P )T . (10)

The Φ matrix is then a Cauchy matrix, which makes the system equations often well-
conditioned if the prescribed poles are well-chosen. To make sure that the transfer
function has real-valued coefficients, a linear combination of φp(s) and φp+1(s) is
formed to make the residues cp+1 = c∗p complex conjugate if the poles −ap+1 =
−a∗p. This way, two basis functions of the following form are obtained

φp(s) =
1

(s+ ap)
+

1
(s+ ap+1)

(11)

φp+1(s) =
i

(s+ ap)
− i

(s+ ap+1)
. (12)

This causes the corresponding elements in the solution vector to become equal to
!e(cp) , +m(cp) and !e(c̃p) , +m(c̃p).

In successive iterations, a Sanathanan-Koerner iteration can be applied. In theory,
one could use the denominator of the previous iteration as an inverse weighting to the
system equations. The Vector Fitting technique is different, in a sense that weighting
is performed implicitly by pole-relocation without weighting. The implicit weighting
was found to be more robust if poles need to be relocated over long distances [8].
More details about this procedure are described in Appendix A.

As suggested in [13] and [17], the poles of the basis functions are optimally se-
lected as complex conjugate pairs on a vertical or skew line, close to the imaginary
axis. Due to the iterative behaviour of the SK-iteration, the prescribed poles are re-
located until the poles converge in such way that the minimization of the SK cost
function is converged. In general, this happens quite fast (i.e. <3 iterations). When
poles are chosen too far to the left in the complex plane, the real part of the poles
dominates the matrix entries, which deteriorates the numerical conditioning. How-
ever, even when the initial poles are inappropriately chosen, the algorithm succeeds
in minimizing (4), at the expense of additional iterations.

After parameterization of x, (8) can be simplified by cancelling out common
poles. This means that the zeros of the denominator expression become the poles of
the final transfer function. Calculating the zeros can easily be done, as shown in the
following section.

2.3 Calculation of Transfer Function Poles

The minimal LTI state-space realization

sX(s) = AX(s) + BU(s) (13)
Y (s) = CX(s) + DU(s)
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of the denominator

D(s) =
P∑

p=1

c̃p
s+ ap

+ 1 (14)

can be obtained by a parallel connection (initially A,B,C = ∅ and D = 0)

A =
(

A 0
0 Ap

)
,B =

(
B
Bp

)
(15)

C =
(
C Cp

)
,D = D + Dp (16)

of the minimal state space realizations (Ap,Bp,Cp,Dp) of each simple fraction, with

Ap = −ap, Bp = 1, Cp = c̃p, Dp = 0 (17)

provided that −ap is real. If −ap and −ap+1 constitute a complex conjugate pair
of poles (i.e. −ap+1 = −a∗p), the corresponding state space realization of the linear
combination is given as

Ap =
(

!e(−ap) +m(−ap)
−+m(−ap) !e(−ap)

)
,Bp =

(
2
0

)
Cp =

(
!e(c̃p) +m(c̃p)

)
,Dp = 0 . (18)

Afterwards, the constant term 1 of (14) can simply be added to the scalar D. This
transformation makes the state-space realization of D(s)

D(s) = C(sI − A)−1B + D (19)

real-valued, such that the poles and zeros occur as complex conjugate pairs. The
zeros of (19) can then be solved by calculating the eigenvalues of A-BC. After
simplification of (8), these eigenvalues will become the relocated poles of the transfer
function

−ap = eig(A − BC) (20)

and this procedure can be repeated iteratively (t = 1, ..., T ) until the minimization
of the SK-cost function is converged.

2.4 Identification of the Residues

Once the final poles −a(T )
p are identified, the corresponding residues θp can be solved

as a linear problem

arg min
θp

K∑
k=0

∣∣∣∣∣H(sk) −
(

P∑
p=1

θp

sk + a
(T )
p

)∣∣∣∣∣
2

. (21)

This technique was called “Vector Fitting” [13], and it has been widely applied to
many modelling problems within power systems, high-speed interconnection struc-
tures, electronic packages and microwave systems.
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3 Orthonormal Vector Fitting

3.1 Orthonormalization of Partial Fraction Basis

Instead of using the partial fractions as rational basis functions, it was shown that or-
thonormal rational basis functions can lead to significant improvements in numerical
conditioning [6, 7, 26]. A straightforward way to calculate an orthonormal basis, is
to apply a Gram-Schmidt procedure on the partial fractions [2,21,27]. Hence, ortho-
normal rational functions φp(s) are obtained, which are in fact linear combinations
of the partial fractions, of the form

φp(s) =
Qp(s)∏p

j=1(s+ aj)
(22)

for p = 1, ..., P and Qp(s) an arbitrary polynomial of order p− 1, such that

〈φm(s), φn(s)〉 = δmn (23)

with 1 ≤ m,n ≤ P . If the inner product is defined as

〈φm(s), φn(s)〉 =
1

2πi

∫
iR

φm(s)φ∗
n(s)ds (24)

then the Qp(s) polynomial can be determined by imposing the orthonormality con-
ditions on the basis functions. As an example, consider the construction of the first
function φ1(s).

〈φ1(s), φ1(s)〉 =
1

2πi

∫
iR

φ1(s)φ∗
1(s)ds (25)

=
1

2πi

∫
iR

|γ1|2
(s+ a1)(−s+ a∗1)

ds (26)

=
|γ1|2

a1 + a∗1
(27)

To normalize φ1(s), Q1(s) = γ1 must equal κ1

√
2!e(a1), where κ1 is an arbitrary

unimodular complex number. φ1(s) is then obtained as

φ1(s) = κ1

√
2!e(a1)

1
s+ a1

. (28)

Now consider the construction of the second function φ2(s). First of all, φ2(s) must
be orthogonal to φ1(s)

〈φ1(s), φ2(s)〉 =
1

2πi

∫
iR

φ1(s)φ∗
2(s)ds = 0 (29)
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which implies that φ∗
2(s) must vanish for s = −a1. Therefore Q2(s) = γ2(s− a∗1).

This constant γ2 is determined by imposing the normalization condition

〈φ2(s), φ2(s)〉

=
1

2πi

∫
iR

γ2(s− a∗1)
(s+ a1)(s+ a2)

γ∗2 (−s− a1)
(−s+ a∗1)(−s+ a∗2)

ds (30)

=
1

2πi

∫
iR

|γ2|2
(s+ a2)(−s+ a∗2)

ds =
|γ2|2

a2 + a∗2
. (31)

Clearly, it follows that γ2 = κ2

√
2!e(a2), where κ2 is an arbitrary unimodular

complex number. So, φ2(s) is then given by

φ2(s) = κ2

√
2!e(a2)

s− a∗1
(s+ a1)(s+ a2)

. (32)

Similarly continuing this approach, the general polynomials are obtained

φp(s) = κp

√
2!e(ap)

⎛⎝p−1∏
j=1

s− a∗j
s+ aj

⎞⎠ 1
s+ ap

. (33)

This basis originates from the discrete-time Takenaka-Malmquist basis [24, 33], and
has later been transformed to the continuous time domain. It is a generalization of
the Laguerre basis [4], where all poles {−ap} are the same real number, and the
2-parameter Kautz bases [20] where all poles {−ap,−ap+1} are the same complex
conjugate pair with −a∗p = −ap+1. A theoretical analysis of these basis functions is
well-described in literature. The interested reader is referred to [18] which gives an
excellent survey.

To make sure that the transfer function has real-valued coefficients, a linear com-
bination of φp(s) and φp+1(s) is formed which can be made real-valued if the poles
are real or occur in a complex conjugate pair. This way, two orthonormal functions
of the following form are obtained

φp(s) = γp

⎛⎝p−1∏
j=1

s− a∗j
s+ aj

⎞⎠ s− x

(s+ ap)(s+ ap+1)
(34)

φp+1(s) = γp+1

⎛⎝p−1∏
j=1

s− a∗j
s+ aj

⎞⎠ s− y

(s+ ap)(s+ ap+1)
(35)

with real γp, γp+1, x and y. To impose the orthogonality,

〈φp(s), φp+1(s)〉 = γpγp+1
xy + apap+1

2(ap + ap+1)apap+1
= 0 (36)
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x and y are set to be √
apap+1 = |ap| and −√

apap+1 = −|ap| respectively. Simi-
larly, γp and γp+1 are set to

√
ap + ap+1 =

√
2!e(ap). Note that this choice is not

unique, and that other possibilities exist. Note also that the orthonormalization of the
basis functions is done analytically instead of numerically, so it doesn’t require any
additional computation time.

3.2 Calculation of Transfer Function Poles

The minimal continuous-time LTI state-space realization

sX(s) = AX(s) + BU(s) (37)
Y (s) = CX(s) + DU(s) (38)

of the denominator

D(s) = 1 +
P∑

p=1

c̃pφp(s) (39)

can then be calculated, by cascading the minimal state-space realization of smaller,
first and second order sections [11]

s− a∗1
s+ a1

→ s− a∗2
s+ a2

→ ... →
s− a∗P−1

s+ aP−1
→ 1

s+ aP
. (40)

The minimal state-space realization (Ap,Bp,Cp,Dp) of the all-pass function

Yp(s)
Up(s)

=
s− a∗p
s+ ap

(41)

for p = 1, ..., P − 1 is given as

Ap = −ap, Bp = 1, Cp = 2!e(−ap), Dp = 1 (42)

and the minimal state-space realization (Ap,Bp,Cp,Dp) of the low-pass function

Yp(s)
Up(s)

=
1

s+ ap
(43)

is given as
Ap = −ap, Bp = 1, Cp = 1, Dp = 0 (44)

for p = P . Then the minimal state-space realization of the compound system (40) is
obtained as the cascade construction
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 ... 0
B2C1 A2 ... 0

B3D2C1 B3C2 ... 0
B4D3D2C1 B4D3C2 ... 0

... ... ... ...

BP DP−1...D2C1 BP DP−1...D3C2 ... AP

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1

B2D1

B3D2D1

B4D3D2D1

...

BP DP−1...D1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, C =

⎡⎢⎢⎢⎣
DP ...D2C1

DP ...D3C2

...

CP

⎤⎥⎥⎥⎦
T

(45)

D = DP ...D1

of the smaller state space models, with yp(t) = up+1(t).
The state matrix A and the input vector B are build such that the states contain

exactly the unnormalized basis functions. The output vector C and scalar D are cho-
sen to obtain the denominator expression (39), by compensating for the coefficients
c̃p and normalization constant

√
2!e(ap) in the vector C, and setting the scalar D

equal to the constant value 1. The following real-valued state space realization is
obtained

AP×P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 0 0 ... 0
2!e(−a1) −a2 0 ... 0
2!e(−a1) 2!e(−a2) −a3 ... 0
2!e(−a1) 2!e(−a2) 2!e(−a3) ... 0

... ... ... ... ...

2!e(−a1) 2!e(−a2) 2!e(−a3) ... −aP

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

B1×P =

⎡⎢⎢⎢⎣
1
1
...

1

⎤⎥⎥⎥⎦ , CP×1 =

⎡⎢⎢⎢⎣
c̃1
√

2!e(a1)
c̃2
√

2!e(a2)
...

c̃P
√

2!e(aP )

⎤⎥⎥⎥⎦
T

(46)

D1×1 = 1

provided that the poles −ap are real.
If −ap and −ap+1 constitute a complex conjugate pair of poles (i.e. −ap+1 =

−a∗p), a real-valued state-space realization is obtained by replacing

s− a∗p
s+ ap

→
s− a∗p+1

s+ ap+1
(47)
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in the cascade scheme (40) by

(s− a∗p)(s− a∗p+1)
(s+ ap)(s+ ap+1)

= 1 +
4!e(−ap)s

(s+ ap)(s+ a∗p)
. (48)

This corresponds to replacing (
−ap 0

2!e(−ap) −ap+1

)
(49)

in the state matrix A, by(
!e(−ap) !e(−ap) − |ap|

!e(−ap) + |ap| !e(−ap)

)
. (50)

The other state space matrices remain unchanged. Appendix B describes this trans-
formation in more detail. Again, the zeros of the denominator are calculated by solv-
ing the eigenvalues of A-BC. These eigenvalues replace the set of prescribed poles,
and the procedure is repeated iteratively (t = 1, ..., T ) until the minimization of the
SK-cost function is converged.

Once the final poles are identified, the residues can be solved as a linear problem
using the partial fraction basis (21). The orthonormal basis functions can also be ap-
plied if stability of the poles is enforced. Both representations can easily be realized
to state-space as was shown before.

4 Example

As an example, the technique is illustrated on a dense model of an atmospheric storm
track (eady), which is obtained from the NICONET benchmark dataset collection
[3]. Based on the state-space matrices of the large model (598×598), the frequency
response is densely calculated over the frequency range of interest [10−1,102] and
shown in Fig. 1.

First, a prescribed set of complex conjugate starting poles is chosen as was pro-
posed by [13]

−ap = −α+ βi,−ap+1 = −α− βi (51)
α = β/100 (52)

with imaginary parts β logarithmically spaced over the frequency range of interest.
The amount of poles is chosen in terms of the desired reduction. In this example, it
was chosen to be 54, in order to have an RMS error which corresponds to the order
of 10−8.

The weighted linear cost function (4) is solved using the orthonormal rational
basis functions (33), (34), (35) and an estimate for the residues cp and c̃p is ob-
tained. Using the residues c̃p and the poles −ap, the minimal state-space realiza-
tion (A,B,C,D) of the denominator D(s) (39) is calculated. From this state-space
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model, the poles of the transfer function are calculated by solving the eigenvalues
of A-BC. These poles are chosen as new starting poles, and the method iterates
until the poles are converged to their optimal location. Once the poles are known,
the residues of the transfer function can be estimated as a linear problem. The final
accuracy of the model in terms of RMS error is 5.61×10−8.

As is shown in Fig. 1, no visual difference can be observed between the frequency
response of the original and reduced system. The poles of the original model and the
reduced model are shown in Fig. 2. The OVF method can also be extended to fit
systems with multiple ports. It is noted that the extension is completely analogous to
the Matrix Fitting algorithm [15].

5 Conclusion

This paper shows that Orthonormal Vector Fitting can be useful to reduce the state
space dimensions of large circuit models. First, the spectral response of the large
model is calculated, and then the OVF algorithm is used to approximate the data with
a model of reduced size. It was shown that the method is quite robust, even when the
original system has a large amount of poles. The method extends in a natural way to
multi-port systems (not shown in this paper). The reduced model is represented as
state-space realization, which can easily be converted e.g. to an RLCG circuit.
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A Sanathanan-Koerner Iteration

The least-squares SK-cost function is defined as

arg min
N

(t)
n ,D

(t)
d

(
K∑

k=0

∣∣∣∣ 1
D(t−1)(sk)

∣∣∣∣2 ∣∣∣D(t)(sk)H(sk) −N (t)(sk)
∣∣∣2) . (53)

If the basis functions are chosen as partial fractions, based on a prescribed set of
poles −a1, ...,−aP , then it follows that

N (t)(s) =
P∑

p=1

c
(t)
p

s+ ap
=

∏P−1
p=1 (s+ z

(t)
p,n)∏P

p=1(s+ ap)
(54)

D(t)(s) =
P∑

p=1

c̃
(t)
p

s+ ap
+ c̃

(t)
0 =

∏P
p=1(s+ z

(t)
p,d)∏P

p=1(s+ ap)
. (55)
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The denominator has an additional basisfunction, which equals the constant value 1.
In the first iteration step (t = 0), Levi’s linearization is applied to obtain a first guess
of the denominator (D(−1)(s) = 1)

arg min
N

(t)
n ,D

(t)
d

(
K∑

k=0

∣∣∣∣ 1
D(t−1)(sk)

∣∣∣∣2 ∣∣∣D(t)(sk)H(sk) −N (t)(sk)
∣∣∣2) (56)

= arg min
c̃

(0)
p ,c

(0)
p

⎛⎝ K∑
k=0

∣∣∣∣∣
(

P∑
p=1

c̃
(0)
p

sk + ap
+ c̃

(0)
0

)
H(sk) −

P∑
p=1

c
(0)
p

sk + ap

∣∣∣∣∣
2
⎞⎠ . (57)

This reduces to solving the following set of least-squares equations, for all complex
frequencies s (

P∑
p=1

c̃
(0)
p

s+ ap
+ c̃

(0)
0

)
H(s) −

P∑
p=1

c
(0)
p

s+ ap
= 0 . (58)

One coefficient of the rational function, e.g. c̃ (0)
0 , can be fixed to unity, since nu-

merator and denominator can be divided by the same complex value without loss of
generality. So, (58) is equivalent to

P∑
p=1

c
(0)
p

s+ ap
−

P∑
p=1

c̃
(0)
p

s+ ap
H(s) = H(s) . (59)

Once the parameters c(0)p and c̃
(0)
p are estimated, N (0)(s) and D(0)(s) are known

(54-55). It’s straightforward to calculate z(0)
p,n and z(0)

p,d in a robust way, by solving the

eigenvalue problem (20). In practice, only z(0)
p,d is needed.

Now, the Sanathanan-Koerner linearization can be applied for iteration step t =
1, ..., T

arg min
N

(t)
n ,D

(t)
d

(
K∑

k=0

∣∣∣∣ 1
D(t−1)(sk)

∣∣∣∣2 ∣∣∣D(t)(sk)H(sk) −N (t)(sk)
∣∣∣2) (60)

= arg min
c̃

(t)
p ,c

(t)
p

⎛⎝ K∑
k=0

∣∣∣∣∣
∏P

p=1(sk + ap)∏P
p=1(sk + z

(t−1)
p,d )

∣∣∣∣∣
2 ∣∣∣∣∣
(

P∑
p=1

c̃
(t)
p

sk + ap
+ c̃

(t)
0

)

× H(sk) −
P∑

p=1

c
(t)
p

sk + ap

∣∣∣∣∣
2
⎞⎠ (61)
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= arg min
z
(t)
p,d,z

(t)
p,n

⎛⎝ K∑
k=0

∣∣∣∣∣
∏P

p=1(sk + ap)∏P
p=1(sk + z

(t−1)
p,d )

∣∣∣∣∣
2 ∣∣∣∣∣
(∏P

p=1(sk + z
(t)
p,d)∏P

p=1(sk + ap)

)

× H(sk) −
∏P−1

p=1 (sk + z
(t)
p,n)∏P

p=1(sk + ap)

∣∣∣∣∣
2
⎞⎠ (62)

= arg min
z
(t)
p,d,z

(t)
p,n

(
K∑

k=0

∣∣∣∣∣
( ∏P

p=1(sk + z
(t)
p,d)∏P

p=1(sk + z
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× H(sk) −
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∣∣∣∣∣
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⎞⎠ (63)

= arg min
d̃

(t)
p ,d

(t)
p

(
K∑

k=0

∣∣∣∣∣
(

P∑
p=1

d̃
(t)
p

sk + z
(t−1)
p,d

+ d̃
(t)
0

)

× H(sk) −
P∑

p=1

d
(t)
p

sk + z
(t−1)
p,d

∣∣∣∣∣
2
⎞⎠ . (64)

When the classical SK-iteration is used, one can solve the coefficients c(t)p and c̃ (t)
p of

N (t) and D(t) if a weighting is applied to each row of the system equations (explicit
weighting). The Vector Fitting performs this weighting implicitly, by calculating
the coefficients d(t)

p and d̃
(t)
p of N (t)/D(t−1) and D(t)(s)/D(t−1) instead (with-

out an explicit weighting). In successive iterations (t > 0), the coefficients d̃ (t)
p of

D(t)/D(t−1) are then used to calculate the poles, which does not pose a problem, as
the zeros of D(t) and D(t)/D(t−1) are the same. It is noted, however, that the poles
of the basis functions of N (t)(s) and D(t)(s) remain unchanged, and cancel out in
each iteration (62).

B Real-Valued State Space

This appendix describes how the real-valued state-space realization of

(s− a∗p)(s− a∗p+1)
(s+ ap)(s+ ap+1)

= 1 +
4!e(−ap)s

(s+ ap)(s+ a∗p)
(65)

can be obtained.
Define the state matrix A and input vector B as

A =
(

A11 A12

A21 A22

)
,B =

(
B1

B2

)
(66)

where Aij and Bi are the scalar elements of the matrix and the vector respectively.
Capitals are used to avoid notational confusion between the poles and the entries of
the state matrix.
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A first constraint on the entries, is that the poles of (65), {−ap,−a∗p}, must equal
the eigenvalues of A. More specifically, the transfer function from the input U1(s)
and U2(s) to the states X1(s) and X2(s) respectively, must satisfy

X1(s)
U1(s)

=
s− |ap|

(s+ ap)(s+ a∗p)
(67)

X2(s)
U2(s)

=
s+ |ap|

(s+ ap)(s+ a∗p)
. (68)

The input-to-state transfer function is given by

X(s)
U(s)

= (sI − A)−1B (69)

=

(
s− A22 A12

A21 s− A11

)
(s− A11)(s− A22) − A12A21

B , (70)

so
X1(s)
U1(s)

=
(s− A22)B1 + A12B2

(s− A11)(s− A22) − A12A21
(71)

and
X2(s)
U2(s)

=
A21B1 + (s− A11)B2

(s− A11)(s− A22) − A12A21
(72)

By equating the numerators of (67) to (71), (68) to (72), and applying some basic
linear algebra, the following constraints are easily obtained

B1 = 1 (73)

B2 = 1 (74)

−A22 + A12 = −|ap| (75)

A21 − A11 = |ap| (76)

which determine the input vector B completely. Unfortunately, the elements of the
state matrix A are still ambiguous.

By equating the denominators, it follows that

s2 − (A11 + A22)s+ (A11A22 + A12A21) (77)

= s2 + (ap + a∗p)s+ apa
∗
p (78)

so

A11 + A22 = −2!e(ap) (79)

A11A22 − A12A21 = |ap|2 . (80)
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Combining (80) with (75) and (76) gives

A11 − A12 = |ap| . (81)

Using (75) and (81)

A11 − A22 = 0 (82)
A11 = A22 . (83)

Obviously from (79) and (83), it results that

A11 = !e(−ap) (84)
A22 = !e(−ap) . (85)

Combining this with (75) and (76), it follows that

A12 = !e(−ap) − |ap| (86)
A21 = !e(−ap) + |ap| (87)

which determines A uniquely.
Verifying that the eigenvalues of A are actually equal to −ap and −a∗p is trivial.

Now, C and D can easily be formed to obtain (65)

C =
(
2!e(−ap) 2!e(−ap)

)
,D = 1 . (88)
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1 High-Speed Interconnects and Its Effects on Signal Propagation

With the rapid developments in Very Large Scale Integration (VLSI) technology at
both the chip and package level, the operating frequencies are quickly reaching the
vicinity of GHz and switching times are getting to the sub-nano second levels. The
ever increasing quest for high-speed applications has placed higher demands on in-
terconnect performance and highlighted the previously negligible effects of intercon-
nects such as ringing, signal delay, distortion, reflections and crosstalk. As depicted
by Figure 1, interconnects can exist at various levels of design hierarchy such as
on-chip, packaging structures, multichip modules, printed circuit boards and back-
planes. In addition, the trend in the VLSI industry towards miniature designs, low
power consumption and increased integration of analog circuits with digital blocks
has further complicated the issue of signal integrity analysis. It is predicted that in-
terconnects will be responsible for majority of signal degradation in high-speed sys-
tems [1]. High-speed interconnect problems are not always handled appropriately by
the conventional circuit simulators, such as SPICE [2]. If not considered during the
design stage, these interconnect effects can cause logic glitches which render a fab-
ricated digital circuit inoperable, or they can distort an analog signal such that it fails
to meet specifications. Since extra iterations in the design cycle are costly, accurate
prediction of these effects is a necessity in high-speed designs. Hence it becomes ex-
tremely important for designers to simulate the entire design along with interconnect
subcircuits as efficiently as possible while retaining the accuracy of simulation.

Speaking on a broader perspective, a “high-speed interconnect” is the one in
which the time taken by the propagating signal to travel between its end points can
not be neglected. An obvious factor which influences this definition is the physi-
cal extent of the interconnect, where the longer the interconnect, the more time the
signal takes to travel between its end points. Smoothness of signal propagation suf-
fers once the line becomes long enough for signals rise/fall times to roughly match
its propagation time through the line. Then the interconnect electrically isolates the
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Fig. 1. Electrical interconnects are encountered at all levels of design hierarchy.

driver from the receivers, which no longer function directly as loads to the driver.
Instead, within the time of signals transition between its high and low voltage levels,
the impedance of interconnect becomes the load for the driver and also the input im-
pedance to the receivers [1]. This leads to various transmission line effects, such as
reflections, overshoot, undershoot, crosstalk and modeling of these effects needs the
blending of EM and circuit theory.

Alternatively, the term ‘high-speed’ can be defined in terms of the frequency
content of the signal. At low frequencies an ordinary wire, in other words, an inter-
connect, will effectively short two connected circuits. However, this is not the case
at higher frequencies. The same wire, which is so effective at lower frequencies for
connection purposes, has too many inductive/capacitive effects to function as a short
at higher frequencies. Faster clock speeds and sharper slew rates tend to add more
and more high-frequency contents. An important criterion used for classifying inter-
connects is the electrical length of an interconnect. An interconnect is considered
to be “electrically short”, if at the highest operating frequency of interest, the inter-
connect length is physically shorter than approximately one-tenth of the wave-length
(i.e., length of interconnect/λ ≈ 0.1, λ = v/f ). Else the interconnect is referred to
as “electrically long” [1]. In most digital applications, the desired highest operating
frequency (which corresponds to the minimum wavelength) of interest is governed
by the rise/fall time of the propagating signal. For example, the energy spectrum of
a trapezoidal pulse is spread over an infinite frequency range, however, most of the
signal energy is concentrated near the low frequency region and decreases rapidly
with increase in frequency. Hence ignoring the high-frequency components of the
spectrum above a maximum frequency, fmax, will not seriously alter the overall sig-
nal shape. Consequently, for all practical purposes, the width of the spectrum can be
assumed to be finite. In other words, the signal energy of interest is assumed to be
contained in the major lobes of the spectrum and the relationship between the desired
fmax and 1/fr, the rise/fall time of the signal, can be expressed as [3, 4]

fmax ≈ 0.35/fr (1)

This implies that, for example, for a rise time of 0.1ns, the maximum frequency
of interest is approximately 3GHz or the minimum wave-length of interest is 10cms.
In some cases the limit can be more conservatively set as fmax ≈ 1/fr [5].
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In summary, the primary factors which influence the decision that, “whether
high-speed signal distortion effects should be considered”, are interconnect length,
cross-sectional dimensions, signal slew rate and the clock-speed. Other factors which
also should be considered are logic levels, dielectric material and conductor resis-
tance. Electrically short interconnects can be represented by lumped models where
as electrically long interconnects need distributed or full-wave models.

High-speed effects influencing a signal propagating on an interconnect could be
multifold, such as delay, rise time degradation, attenuation, crosstalk, skin effect,
overshoots, undershoots, ringing, and reflection. The following list presents a more
detailed account of these high-speed effects (which are also known as transmission
line effects).

• Propagation Delay. A signal traversing from one end of a transmission line to
the other end takes a finite amount of time; in other words, it experiences a certain
amount of delay (Td). In addition, the signal may encounter rise time degradation,
where the rise time at the receiver end (tR) is larger than the rise time at the source
end (tr). Rise-time degradation further adds to the overall delay experienced by
the signal, as it influences the maximum and minimum attainable logic levels
between the switching intervals.

• Attenuation. The signal through an interconnect may suffer attenuation, due to
ohmic or conductance losses. Ohmic losses are more pronounced at higher fre-
quencies due to the uneven current distributions. Conductance losses are propor-
tional to the dielectric loss factor of the dielectric material and are also a function
of the frequency. If the losses are high, the signals may not retain the specified
logic levels during the transit through an interconnect and may result in false
switching of digital circuitry.

• Signal Reflection and Ringing. Signal reflection and the associated ringing
can severely distort signal propagation at higher frequencies. The prime cause
of reflection-related signal degradation is the discontinuity in characteristic im-
pedance of the transmitting line. Such a discontinuity can be either distributed or
lumped in nature. In the case of distributed discontinuity, the impedance varia-
tion on a line takes place over a certain length. For example, this can occur due
to the change in the medium along the length of the signal trace, which may have
to traverse several layers on a printed circuit board (impedance may not be well
controlled from layer to layer). Following are some common causes of discon-
tinuities: connectors between card-to-board, cable-to-card, leads between chip
and chip carriers, or between card wiring and chip carriers, long vias, orthogonal
wiring, flip-chip soldier balls, wire bonds, and redistribution lines, etc.
Another major contributor to the reflection related signal degradation is the
impedance mismatch between the line characteristic impedance and source/ ter-
minating impedances. In general, undershoots occur when the terminating im-
pedance is less than the characteristic impedance of the interconnect. Overshoots
occur when the terminating impedance is larger than the characteristic impedance
of the line. As described earlier, the undershoots, overshoots, and the ringing
experienced by the signal increases with the delay of the interconnect.
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• Crosstalk. Crosstalk refers to the interaction between signals that are propagat-
ing on various lines in the system. An analogy of crosstalk could be the interfer-
ence from other lines while talking on the phone. Crosstalk is mainly due to the
dense wiring required by compact and high-performance systems. High-density
and closely laid interconnects result in electromagnetic coupling between signal
lines. The active signal energy is coupled to the quiet line through both mu-
tual capacitance and inductances, resulting in noise voltages and currents. This
may lead to inadvertent switching and system malfunctioning. Crosstalk is a ma-
jor constraint while routing in high-speed designs. By its very nature, crosstalk
analysis involves systems of two or more conductors. Such systems are studied
on the basis of dominant propagating modes. System behavior in response to any
general excitation is then a linear combination of modal responses.

2 Time-Domain Macromodeling of High-Speed Interconnects

In the context of high-speed interconnects, the term “Time-Domain Macromodel-
ing” typically refers to the task of incorporating interconnects in commercial circuit
simulators to simulate the effect of the aforementioned phenomena on signal propa-
gation. A typical circuit simulator works by representing the circuit, which is usually
described in a text file, in a concise mathematical form, whereupon a number of
appropriate numerical analysis techniques can be invoked to simulate its behavior
under different stimulus conditions. The next subsection presents a brief background
on the techniques adopted by commercial simulators to represent general circuits in
the mathematical domain.

2.1 Formulation of Circuits with Lumped Elements

The presence of nonlinear elements in virtually all circuit designs mandates that the
natural domain for mathematically describing general circuits is the time-domain. A
widely adopted time-domain formulation is known as the Modified Nodal Analysis
or MNA approach [6]. Using the MNA formulation, a general circuit with lumped
elements, such as resistors, inductors, capacitors, etc., can be described by the fol-
lowing system of Differential Algebraic Equations (DAEs),

C
dx(t)

dt
+ Gx(t) + f(x(t)) = b(t) (2)

where

• C,G ∈ R
N×N are real matrices describing the memory and memoryless ele-

ments in the network, respectively;
• x(t) ∈ R

N is a vector of node voltage waveforms appended by waveforms of
currents in independent-voltage sources and inductors currents;

• b(t) ∈ R
N is a vector of voltage and current waveforms of independent voltage

and current sources representing the external stimulus in the circuits;
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• f(x(t)) ∈ R
N is a vector whose entries are scalar nonlinear functions N → 1

that represent the nonlinear elements in the circuit, and
• N is the total number of variables in the MNA formulation.

To simulate the time-domain behavior of the circuit variables in x(t), various time
marching techniques can be used. Examples of these techniques are the Trape-
zoidal rule (TR) or its high-order variants such as the Back-Differentiation Formulas
(BDF) [7].

Constructing the MNA formulation is usually done on elements basis, where
each element contributes in a prescribed manner to a specific set of entries in the
matrices C or G, or to the vectors f(x(t)) or b(t). For example, a capacitor with
capacitance of C1 Farads connected between nodes i and j is represented in the
MNA formulation by adding C1 to the (i, i) and (j, j) entries and subtracting C1

from the (i, j) and (j, i) entries. Representation of each lumped circuit element in
the MNA formulation is best described by the notion of stamp or stencil, where
an element stamp defines precisely the contribution that this element leaves on the
MNA formulation. A compiled list of stamps for different circuit elements as well as
the method by which these stamps have been derived can be found in [7]. Figure 2
shows a sample of stencils used for some lumped passive elements and independent
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Fig. 2. Component Stamps in MNA formulation.
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Fig. 3. A linear circuit used as an example to illustrate the MNA approach.

sources. To further illustrate the idea of using elements stamps to construct the MNA
matrices, we consider the circuit shown in Figure 3.

Using the MNA formulation, we get

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1 −G1 0 0
−G1 G1 +G2 −G2 0

0 −G2 G2 0
0 0 0 G3

0 0 −1 1
−1 0 0 0
0 0 0 −1

0 1 0
0 0 0
1 0 0
−1 0 1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 Cc + C1 −Cc 0
0 −Cc C2 + Cc 0
0 0 0 0

0

0
L1 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

b(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 0
−1 0
0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
u1(t)
u2(t)

]
, x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1(t)
v2(t)
v3(t)
v4(t)
iL(t)
iS1(t)
iS2(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Notice that this circuit does not have nonlinear elements and therefore the vector
mapping f(x(t)) is not present in this circuit formulation.

2.2 Incorporating High-Speed Interconnects in Circuit Formulation

In order to be included in a general circuit simulator, a high-speed interconnect sub-
circuit must have a well defined systematic approach that enables such a subcircuit to
be included in the MNA time-domain formulation. This section describes briefly the
main bottleneck that makes deriving such an approach a challenging task. Figure 4



MOR of High-Speed Interconnects Using ICT 367

Ground Plane

Conductors

Substrate

d

Fig. 4. A physical representation for a high-speed interconnect structure.
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ip2m(t) = −im(d,t)

Fig. 5. A physical representation for a high-speed interconnect structure.

shows a physical description of an interconnect structure. A schematic representation
of the interconnect as a Multi-conductor Transmission Line (MTL) with distributed
voltages and currents is presented in Figure 5. In this figure, notice that an intercon-
nect with m conductors can be viewed as multiport network with 2m ports.

Including a high-speed interconnect in the circuit formulation presents a
particular difficulty. The main difficulty that arises thereof stems from the fact that
interconnects in general are distributed structures (as opposed to lumped)I whose

I In the current context, the term “distributed structure” typically refers to an electrical de-
vice, in which the relation between its electrical parameters (e.g., voltage, current, charge,
etc.) involves one or more spatial variables such as the (x, y, z) space coordinates.
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underlying physics are naturally derived in the frequency- or the Laplace-domain.
Furthermore, this description always comes with a complex dependence on the
Laplace variable s which makes obtaining the equivalent time-domain form a cum-
bersome task. In fact, to obtain a straightforward time-domain representation for
interconnects, one would have to use a set of Partial Differential Equations (PDEs),
which involves derivatives with respect to the spatial variable, z, that represents the
point of observation along the interconnect. Unfortunately, using PDEs to derive a
stamp for the interconnect is not a feasible solution.

One possible way to overcome this difficulty is based on direct computation
of a time-domain representation from the frequency-domain using convolution [8].
This approach usually requires amending the MNA formulation with an additional
convolution-based term. In that case the MNA formulation takes on the following
form,

C
dx(t)

dt
+ Gx(t) + f(x(t)) +

K∑
k=1

Dk

∫ t

0

Yk(t− τ)DT
k x(τ)dτ︸ ︷︷ ︸

Convolution term

= b(t) (6)

where

• Yk(t) ∈ R
2mk×2mk is a matrix whose (i, j) entry represents the current wave-

form at port i in response to an impulse voltage δ(t) applied at port j for the k-th
interconnect, while maintaining the voltages at all other ports at zero;

• Dk ∈ R
N×2mk is a selector mapping, with elements in {0,±1} that maps the

currents at the ports of the k-th interconnect subnetwork to the variables space of
the rest of the circuit;

• mk is the number of conductors in the k-th interconnect subnetwork, and
• K is the total number of interconnect subnetworks in the circuit.

Nonetheless, numerical solution of DAEs systems with a recursive convolution
term, such as (6), is not an easy task. The main goal of this chapter is to present
advanced approaches that rely on the concept of Model-Order Reduction (MOR) to
represent the high-speed interconnects in general circuit formulation while maintain-
ing the numerically desirable format of (2).

The next subsection shows that high-speed interconnects are best represented
by Multi-conductor Transmission Lines (MTL). This presentation will further clar-
ify the hurdles encountered in trying to include high-speed interconnects in circuit
simulators.

2.3 High-Speed Interconnects as MTLs

transmission line characteristics are in general described by Telegraphers equations
(TE). TE is usually derived by discretizing the line into infinitesimal sections of
length∆z and assuming uniform per-unit length (p.u.l.) parameters of resistance (R),
inductance (L), conductance (G) and capacitance (C). Each section then includes a
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resistance R∆z, inductance L∆z, conductance G∆z and capacitance C∆z. Using
Kirchoffs current and voltage laws, one can write [9]

v(z +∆z, t) = v(z, t) −R∆zi(z, t) − L∆z
∂

∂t
i(z, t) (7)

or
y(z +∆z, t) − v(z, t)

∆z
= −Ri(z, t) − L

∂

∂t
i(z, t) (8)

Taking the limit ∆z → 0, one gets

∂

∂z
v(z, t) = −Ri(z, t) − L

∂

∂t
i(z, t) (9)

Similarly, we can obtain the second transmission line equation in the form:

∂

∂z
i(z, t) = −Gv(z, t) − C

∂

∂t
v(z, t) (10)

Equations (9) and (10) can be generalized to a Multiconductor Transmission Line
(MTL), with m conductors as follows,

∂

∂z

(
v(z, t)
i(z, t)

)
= −

(
0 R
G 0

)(
i(z, t)
v(z, t)

)
−
(

0 L
C 0

)
∂

∂t

(
i(z, t)
v(z, t)

)
(11)

where i(z, t) and v(z, t) ∈ R
N represent the currents and voltages at a given point

along the MTL, and R,G,L and C ∈ R
N×N are p.u.l. parameter matrices of the

MTL. In the Laplace- (frequency-) domain, (11) takes the following form,

∂

∂z

[
V(z, s)
I(z, s)

]
= −

[
0 R + sL

G + sC 0

] [
V(z, s)
I(z, s)

]
(12)

The above derivations for MTL’s assumes that the currents in the conductors are
distributed uniformly throughout the cross section of the conductors. This assump-
tion, however, is valid for low frequencies, and results in having the p.u.l. matrices
constant and independent of the frequency variable s. However, as the operating
frequency increases, the current distribution gets uneven and it starts getting concen-
trated more and more near the surface or edges of the conductor. This phenomenon
can be categorized as follows: skin, edge and proximity effects [9]. The skin effect
causes the current to concentrate in a thin layer near the conductor surface and this
reduces the effective cross-section available for signal propagation. This leads to an
increase in the resistance to signal propagation and other related effects [10]. The
edge effect causes the current to concentrate near the sharp edges of the conduc-
tor. The proximity effect causes the current to concentrate in the sections of ground
plane that are close to the signal conductor. To account for these effects, modelling
based on frequency-dependent p.u.l. parameters may be necessary, and hence matri-
ces R,L,G and C will be functions of s. Under this condition, restoring the TE to
a set of time-domain PDEs of the form (11) becomes a difficult task.
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Nonuniformity of the MTL is also one more aspect that should be taken into
account to describe more general interconnect structures. For example, if the spacing
between the conductors or their cross sectional areas are not constant, but vary along
the spatial variable z, the p.u.l parameters can not be considered as z-independent,
and the TE will have to be modified to account for this nonuniformity. The MTL is
referred to in this case as Nonuniform MTL (NMTL).

To take into account nonuniformity and the frequency-dependence of the MTL,
the TE would have to be written in the following form

∂

∂z

[
V(z, s)
I(z, s)

]
= −

[
0 R(s, z) + sL(s, z)

G(s, z) + sC(s, z) 0

] [
V(z, s)
I(z, s)

]
(13)

The above formulation shows clearly the difficulties involved in trying to de-
duce a stamp for the MTL (or the NMTL in general), relating terminal voltages
(v(0, t),v(d, t)) and terminal currents (i(0, t), i(d, t)), which can be incorporated in
the MNA time-domain formulation of a general circuit, in a similar manner to other
lumped elements. One possible approach that may be used to overcome this diffi-
culty is based on finding a closed-form solution for the TE. This is achievable only
in the case of uniform MTL, where a frequency-domain stamp relating the terminal
voltages and currents is obtained as follows,[

V(d, s)
I(d, s)

]
= e(D(s)+sE(s))

[
V(0, s)
I(0, s)

]
(14)

with

D(s) =
[

0 R(s)
G(s) 0

]
, E(s) =

[
0 L(s)

G(s) 0

]
, (15)

and e(D(s)+sE(s)) is the matrix exponential function. Nonetheless, this stamp does
not have a direct representation in the time-domain, and its incorporation in the
time-domain formulation will necessitate introducing the convolution term. To avoid
using convolution in the time-domain, special techniques have been introduced in
the literature. Examples of these techniques are the Matrix Rational Approximation
(MRA) [11, 12] of the exponential function, and delay-based approaches such as
Method of Characteristics (MoC) [13] and the DEPACT algorithm [14]. This ap-
proach, however, still does not address the general case of NMTL.

2.4 Time-Domain Macromodeling Based on Discretization

Discretization techniques represent a very straightforward approach to overcome the
above difficulties and incorporate high-speed interconnects in circuit simulators. The
basic idea in these techniques is to divide the line into segments of length∆z, chosen
to be small fraction of the smallest wavelength in the driving signal. If each of these
segments is electrically small, and the p.u.l. remains constant in z1 < z < z1 +∆z,
then each segment can be replaced by a model with lumped circuit elements. Gen-
erally, the lumped structures used to discretize an MTL contain the series elements
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Fig. 6. Modeling a segment of single-conductor transmission line using lumped circuit ele-
ments.

L∆z and R∆z, and the shunt elements G∆z and C∆z, where, for simplicity, we
assumed that interconnect has only one conductor m = 1, in which case the p.u.l.
parameter matrices reduce to scalar values. A schematic representation for the model
of such a segment is shown in Figure 6.

It is of practical interest to know how many of these segments are required to
reasonably approximate the MTL. For illustration consider a lossless line, i.e. R =
G = 0, with only LC elements which can be viewed as a low pass filter. For a
reasonable approximation, this filter must pass at least some multiples of the highest
frequency fmax of the propagating signal (say ten times, f0 ≥ 10fmax). In order to
relate these parameters, we make use of the 3-dB passband frequency of the LC filter
given by [3]

f0 =
1

π
√
LdCd

=
1

πτd
(16)

where d is the length of the line and τ =
√
LC represents the delay p.u.l. From (1),

we have fmax = 0.35/tr, and using (16), we can express the relation f0 ≥ 10fmax

in terms of the delay of the line and the rise time as 1/(πτd) ≥ 10×0.35/tr or tr ≥
3.5(πτd) ≈ 10τd. In other words, the delay allowed per segment is approximately
tr/10. Hence the total number of segments (P ) needed to represent the a total delay
of τd is given by,

P = τd/(tr/10) = 10τd/tr (17)

In the case of RLC segments, in addition to satisfying (16), the series resistance of
each segment must also be accounted for. As an example, consider a digital signal
with rise time tr = 0.2ns propagating on a lossless wire of length 10 cm with a
p.u.l. delay of 70.7 ps, which can be represented by a distributed model with p.u.l
parameters of L = 5nH/cm and C = 1pF/cm. If the same transmission line were to
be represented by lumped segments, one needs P ≈ 35 sections.

One of the major drawbacks of the above approach is that it requires a large
number of sections especially for circuits with high operating speeds and sharper rise
times. This leads to large circuit sizes and the simulation becomes CPU inefficient.
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The next section presents an approach for handling this problem based on the concept
of Model-Order Reduction (MOR).

3 Time-Domain Macromodeling Through MOR

Interest in MOR techniques for circuit simulation grew out of the difficulties en-
countered in handling the large lumped circuits arising upon discretization of high-
speed interconnects. Application of MOR in circuit simulation can be classified
into two main categories: explicit moment matching MOR [15, 16] and projection-
based MOR techniques [17, 18]. The latter category enjoys an important advantage
over the former one, namely, it can guarantee the passivity of the resulting macro-
model. Passivity of the macromodel is a crucial requirement for guaranteeing the
numerical stability of the time-domain simulation of the whole circuit since a non-
passive macromodel can cause the circuit to become unstable when formulated in the
time-domain. We consider here two projection-based approaches. The first approach,
discussed in Section 3.1, is used to reduce the large circuits that arise from the dis-
cretization. The second approach, discussed in Section 3.2, is a projection technique
that reduces the high-speed interconnect without going through the discretization
step.

3.1 MOR based on Congruence Transform (MOR-CT)

Given that large circuits resulting from the discretization contain only linear lumped
elements, the MNA formulation for these circuits is given by,

Ck
dxk(t)

dt
+ Gkxk(t) = Bku(t) (18)

where the matrices Ck and Gk contain the memory and memoryless elements, re-
spectively, and are similar to the ones introduced earlier in Section 2.1, while the
subscript k is only used to emphasize that these matrices contain only the lumped
circuit elements arising from discretizing the k-th interconnect subnetworkII. The
left-side of (18), which represents the driving stimulus at the ports of the subnet-
work, is described here by a matrix Bk ∈ R

Nk×2mk and vector of driving voltages
u(t) ∈ R

2mk , were Nk is the number of variables in the MNA formulation of the
k-th subnetwork, and mk is its number of conductors. One can show that the currents
at the 2mk ports can be given by [19]

ik(t) = BT
k xk(t) (19)

The matrix of Y-parameters for the network is given by

Y(s) = BT
k (Gk + sCk)−1 Bk (20)

II As before, k = 1, 2, · · · , K.
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The main objective in projection-based MOR algorithm is to construct a reduced
model whose Y-parameters matrix approximates the Y-parameters matrix of the orig-
inal system, but with matrices (Ĉk and Ĝk) that have smaller sizes than that of the
original ones (Ck and Gk). This approximation is carried out by ensuring the first
derivatives of the Y-parameters matrix for the reduced model, denoted here by Ŷ(s),
match the same first derivatives of Y(s) at certain points in the Laplace-domain.

Before explaining how that part is performed, it would beneficial to highlight the
physical interpretation of the Y-parameters matrix, which can be stated as follows.
The r-th column of the Y-parameters matrix of a 2mk-port network represents the
currents at the port of this subnetwork, when an impulse voltage is applied at the r-th
port, while keeping all other ports voltages at zero value. In other words, obtaining
the r-th column of the Y-parameters matrix is carried out by substituting for Uk(s),
the Laplace-domain version of the port voltages uk(t), with the r-th column of the
identity matrix er and solving the system in (18) in the Laplace-domain,

(sCk + Gk)Xk,r(s) = Bker (21)

for Xk,r(s) at all possible values of s ∈ C. The r-th column is then obtained from
the product BT

k Xk,r(s). For the purpose of later usage we define the matrix X k

as a matrix in C
Nk×2mk , whose 2mk columns are the solutions of (21) for r =

1, · · · , 2mk. Hence,
(sCk + Gk) X k(s) = Bk (22)

The following theorem states succinctly how to form the reduced system and its
approximative relation to the original system.

Theorem 1. Consider the system defined as follows,

Ĉk
x̂(t)
dt

+ Ĝx̂(t) = B̂ku(t) (23)

where
Ĉk = QT

k CkQk, Ĝk = QT
k GkQk, B̂k = QT

k Bk (24)

and Q is a matrix in R
Nk×h. Then the Y-parameters matrix for the above system

(referred to, henceforth, as the reduced system) which is given by

Ŷ(s) = B̂T
(
sĈk + Ĝk

)−1

B̂ (25)

will have its first, say q0, · · · , qH , “matrix-valued” derivatives computed, respec-
tively, at points s0, · · · , sH identical to those derivatives of the original system (20)
at the same points if the columns of the matrix Q are orthonormal and span the sub-
space of the first q0, · · · , qH matrix-valued derivatives of X k(s) at s = s0, · · · , sH .

A proof of the above theorem can be found in [19]. Theorem 1 prescribes precisely
how to construct the reduced system. According to this theorem, the central step to
be performed here is the computation of an orthonormal basis for the subspace of
the first q derivatives of X k(s) at s = s0, · · · , sH . The derivatives of X k(s), at say
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s = s0 can be computed by first writing X k(s) in a Taylor series expansion around
s = s0,

X (s) =
∞∑

i=0

U (i)(s− s0)i (26)

then substituting from (26) in (22) and equating similar powers of s to obtain the
following recursive relation for U (i)

A(s0)U (0)
k = Bk (27)

A(s0)U (i)
k = −CkU

(i−1)
k (28)

where A(s0) = Gk + s0Ck. Note here that U (i)
k represent the i-th moment of X (s)

at s = s0. Given that moments are only a scaled version of the derivatives, i.e.,

U (i)
k =

1
i!

dX k(s)
ds

∣∣∣∣
s=s0

(29)

then an orthonormal basis for the moments will also span the subspace of the deriv-
atives. Once such an orthonormal basis has been made available, then obtaining
the reduced-order system is done through the matrix projection operations shown
by (24).

There are various ways to construct an orthonormal basis for a set of vectors [20].
Perhaps the simplest method is that based on the Modified-Gram Schmidt (MGS)
process. Unfortunately, a direct application of the MGS process here on the matri-
ces U (i), i = 0, · · · , q usually leads to numerical problems that degrade the accu-
racy of the reduced-order system. A direct application here means that the moments
U (i), i = 0, · · · , q are first computed recursively through (27) and (28), then MGS is
invoked to compute a spanning orthonormal basis for them. The numerical difficulty
that arises from that approach is a result from getting the roundoff errorIII, which is
inadvertently incurred while computing low order moments, amplified in computing
higher-order moments. Such an error causes the high-order moments to be totally
inaccurate which makes their contributions in matching higher-order derivatives of
the original system practically unnoticeable.

Such a problem is addressed using the block form of the Arnoldi algorithm [20].
The Arnoldi algorithm is essentially an adaptation of the MGS for obtaining an or-
thonormal basis for a set of vectors related recursively as shown in (28), however, its
basic numerical advantage is that it does not require computing the moments explic-
itly to construct the spanning orthonormal basis.

A test example is given here to illustrate the numerical advantage of using the
Arnoldi algorithm over the explicit approach based on the direct application of MGS
to U (i). In this test, a transmission line network of 3 conductors has been approxi-
mated using a suitable number of lumped RLC sections. However, instead of using
the Arnoldi algorithm to compute the orthonormal basis Q, the moments U (i) were

III This is a very small error that results from using a machine finite-precision storage.
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Fig. 7. MOR-CT using with explicit moment computation.

first computed explicitly and then the Householder algorithmIV [20] was used to gen-
erate a spanning orthonormal basis for them. Figure 7 shows the performance of the
reduced system under these conditions for reduced systems of sizes 20, 30, and 300,
respectively. As can be seen from Figure 7, using high-order moments could not help
in enhancing the accuracy of the reduced system. On the other hand, Figure 8 shows
the results obtained from using the Arnoldi algorithm to construct a reduced system
of size 35. It is evident here that implicit usage of the higher order moments via the
Arnoldi algorithm has succeeded in capturing the entire frequency range of interest
with better accuracy.

Figures 9 and 10 depict a pseudo-code representation for the Arnoldi algorithm.
The main algorithm in Figure 9 runs the block version of the Arnoldi process which
calls the ORTHOGONALIZE procedure (shown in Figure 10) to perform an orthog-
onalization using the Modified Gram Schmidt (MGS) process on the input vectors.
Note that the mappings used in the pseudocode, 〈·, ·〉 and ‖ · ‖, denote the classical
inner-product and norm mappings of vectors, i.e.,

〈u,v〉 = uT v (30)
‖u‖ = uT u (31)

It is to be noted that the pseudocode given here constructs an orthonormal basis
for the derivatives of X k(s) at s = s0, and therefore the reduced system matches the
first r derivatives of the original system at s = s0 only. Nonetheless, generalization
IV The Householder algorithm was adopted here since it has better orthogonalization prop-

erties than the MGS.
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Fig. 8. MOR-CT with implicit moments usage matching, where the orthonormal basis Q was
constructed via the Arnoldi algorithm.

Algorithm 6: Computing Qk

input: Gk, Ck, Bk, h, mk

output: Qk

r ←  h
2mk

�1

Solve: GkQ̃0 = Bk2

Q0 ← ORTHOGONALIZE(Q̃0)3
begin4

for m ← 1 to r − 1 do5

Solve: GkQ̃m = −CkQm−16
for v = 0 ← to m − 1 do7

Q̃m ← Q̃m − Qv

〈
Qv, Q̃m

〉
8

Qm ←ORTHOGONALIZE(Q̃m)9

Qk ← [Q0, · · · ,Qr−1]10
Truncate: Qk to h columns only.11
return Qk12

end13

Fig. 9. Pseudocode description for the Arnoldi process.

of this pseudocode to make it produce a basis that can be used in matching derivatives
at other points should be straightforward.
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Procedure : ORTHOGONALIZE

input: A set of vectors Ui ∈ R
L, i = 0, · · · , l − 1

output: An orthogonal basis Q for Ui

q0 ← U0/‖U0‖1
begin2

for k ← 1 to l − 1 do3
q̃k ← Uk4
for h ← 0 to k − 1 do5

q̃k ← q̃k − 〈q̃k,qh〉qh6

qk ← q̃k/‖q̃k‖7

Q ← [q0, · · ·ql−1]8
return Q9

end10

Fig. 10. Pseudocode description for the Arnoldi process (Cont.). The ORTHOGONALIZE is
given based on the Modified Gram Schmidt process.

3.2 MOR based on Integrated Congruence Transform (MOR-ICT)

The main objective in using the ICT approach is to carry the idea of MOR directly
to the interconnect structure in its original distributed form represented by the TE
without going through the discretization step. There are a number of advantages to
using the ICT approach. The first advantage is that an MTL is a distributed structure
by nature, and a discretization into lumped circuit remains only an approximation.
Another drawback in the discretization-based MOR-CT, which is handled naturally
in MOR-ICT, is the underlying assumption that the p.u.l. parameter matrices are
independent of the spatial variable z within each segment. As noted earlier, this as-
sumption does not take into account the case of NMTL in which the p.u.l parameter
matrices are continuous functions of z. The idea of using the MOR-ICT was first
pioneered in [21] and further developed later in [22] to handle NMTL with an im-
proved numerical accuracy. It was also used in [23] to address the issue of sensitivity
analysis. The concept of MOR-ICT was employed in [24] to obtain reduced-order
models for linear periodically time-varying systems.

Describing MOR-ICT is best approached through highlighting its main similar-
ities and differences with MOR-CT. In the description of MOR-CT, it was obvious
that the pivotal operation in constructing the reduced-order system is the computa-
tion of an orthonormal basis for the moments of the internal system states, X k(s).
In MOR-ICT, a similar operation is also carried out. The only difference in this situ-
ation is that the distributed voltages and currents, v(z, t) and i(z, t), 0 ≤ z ≤ d play
the role of internal system states, where an orthonormal basis for their derivatives
subspace is being sought. To state this idea more precisely, we put (13) in the follow-
ing form,

T
∂X(z, s)

∂z
= − (N(z) + sM(z))X(z, s) (32)
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whereV,

N(z) =
[
R(z) 0

0 G(z)

]
, M(z) =

[
L(z) 0
0 C(z)

]
T =

[
0 Jm

Jm 0

]
, X(z, s) =

[
I(z, s)
V(z, s)

]
(33)

and Jm is an m×m identity matrix. Notice that in the above formulation of TE, the
dependence of the p.u.l. matrices on the Laplace variable s was omitted to simplify
presenting the basic approach. This issue will be later revisited once the main ideas
have been established.

The moments of X(z, s) are in fact the coefficients of a Taylor series expansion
around an arbitrary point, s0, in the Laplace-domain,

X(z, s) =
∞∑

i=0

U(i)(z) (s− s0)
i (34)

It is obvious here that the moments in this case, U(i)(z), are z-dependent vectors,
where 0 ≤ z ≤ d. This is to be contrasted with the moments encountered in MOR-
CT which were constant vectors. Therefore, MOR-ICT moments can not be consid-
ered as elements in an Euclidian space but should be treated as elements belonging
to Hilbert space [25]. In fact, this seemingly slight departure from MOR-CT impacts
various issues in constructing the reduced-order model. More specifically, we will
have to revisit the following three issues.

• Computing the moments,
• computing the orthonormal basis, and
• constructing the reduced-order system.

The remainder of this subsection is dedicated to examining these issues in more depth.

Computation of Moments in Hilbert Space

Computing the moments U(i)(z) is typically approached by substituting (34) into
(32) and equating like powers of s. This leads to the following recursive system of
differential equations,

T
dU(0)(z)

dz
= − (N(z) + s0M(z))U(0)(z) (35)

T
dU(i)(z)

dz
= − (N(z) + s0M(z))U(i)(z) − M(z)U(i−1)(z) (36)

Thus moments computations can proceed by first solving (35) for U(0)(z) and then
using (36) to solve for high-order moments U(i)(z), i > 0. The above equations,

V To simplify the mathematical notations, the subscript k is dropped here.
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however, are differential equations and their solutions can be only approached as
either an Initial Value Problem (IVP) or a (BVP). In fact, these equations are treated
here as BVP. The immediate question that arises here is “What are the appropriate
Boundary Conditions (BC) that need to be imposed?”. To address this point, it is
important here to recall that in MOR-CT, the moments of the internal state variables
were computed under excitation conditions corresponding to computing the columns
of the Y-parameters matrix. The same rationale is also used in MOR-ICT, where the
BC are utilized to enforce these same excitations conditions. To further elaborate on
this point, we partition the vectors U(0)(z) and U(i)(z) as follows,

U(0)(z) =

[
U(0)

I (z)
U(0)

V (z)

]
, U(i)(z) =

[
U(i)

I (z)
U(i)

V (z)

]
, (37)

where U(0)
I (z) ∈ C

m and U(0)
V (z) ∈ C

m (or U(i)
I (z) ∈ C

m and U(i)
V (z) ∈ C

m)
correspond to the zero-orderVI (or high-order) moment of the currents and voltages
at s = s0, respectively. A BC for U(0)(z) that enforces an excitation condition
corresponding to the first column of the Y-Parameters matrix would have to satisfy,

U(0)
V (0) =

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦ , U(0)
V (d) =

⎡⎢⎢⎢⎣
0
0
...
0

⎤⎥⎥⎥⎦ (38)

where the unity in the first entry in U(0)
V (0) represents the Laplace-domain version

of the impulse voltage applied at port 1, while the rest of the zeros in U(0)(0) and
U(0)(d) reflect the fact that all other ports are kept at zero voltages (i.e., short-
circuited). The BC that enforce excitation conditions corresponding to other columns
of the Y-Parameters matrix can be deduced in an analogous manner. Hence, if we
use U (0)(z) ∈ C

2m×2m to denote the set of 2m solutions of (37) under 2m BC that
enforce the excitation conditions corresponding to all columns of the Y-parameters
matrix, then U (0)(z) is the solution of the following BVP,

(
T d

dz + N(z) + s0M(z)
)

U(0)(z)︷ ︸︸ ︷[
U (0)

I (z)
U (0)

V (z)

]
= 0,

U (0)
V (0) =

[
Jm 0

]︸ ︷︷ ︸
2m BC at z=0

U (0)
V (d) =

[
0 Jm

]︸ ︷︷ ︸
2m BC at z=d

(39)

VI Note that the zero-order moment of u(x) at x = x0 is actually u(x0).
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The set of BC for higher-order moments may be found by noting that all higher-
order derivatives of the Laplace-domain of an impulse function are identical to zero.
Therefore, U (i)(z) result as a solution to the following BVP,

(
T d

dz + N(z) + s0M(z)
)

U(i)(z)︷ ︸︸ ︷[
U (i)

I (z)
U (i)

V (z)

]
= −M(z)

U(i−1)(z)︷ ︸︸ ︷[
U (i−1)

I (z)
U (i−1)

V (z)

]
,

U (i)
V (0) =

[
0 0
]︸ ︷︷ ︸

2m BC at z=0

U (i)
V (d) =

[
0 0
]︸ ︷︷ ︸

2m BC at z=d

(40)

Note here that the above BVPs do not specify the boundary values for the derivatives
of the currents. In fact, that issue as well as prescribing an efficient solution mech-
anism for (39) and (40) will be expounded later when the focus shifts to addressing
NMTL.

Computing the Orthonormal Basis

The problem of computing an orthonormal basis for the first q moments U (i)(z),
0 ≤ i < q is easily addressed once those moments are treated as elements of a
Hilbert space, which is denoted in the context of this chapter by L(0, d). A typical
method to generate an orthonormal basis for a set of elements in a general linear
space is the MGS process [20]. Using MGS to generate the orthonormal basis for
U(i)(z), however, requires adopting the proper definitions for the “inner-product”
and “norm” mappings on the space L(0, d). For this purpose, the following two
mappings have been adopted

〈u(z)|v(z)〉 =
∫ d

0

u(z)T v(z)dz (41)

‖u(z)‖ =
∫ d

0

u(z)T u(z)dz (42)

where u(z) and v(z) ∈ L(0, d). Once U (i)(z), 0 ≤ i < q have been computed with
the proper boundary conditions, the above two mappings can be used to construct a
spanning orthonormal basis, denoted here by Q(z).

Constructing the Reduced Order System

Given that an orthonormal basis for the first q moments U (i)(z) has been computed
as shown above, we can now proceed to construct the reduced-order system. To this
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end, X(z, s) in (32) is replaced by another set of variables through the following
change of variables

X(z, s) ← Q(z)X̂(s) (43)

where X̂(s) : C → C
q×2m is a vector-valued mapping, and q is the number of

columns in Q(z).VII (32) is then premultiplied by Q(z)T and then integrated to
yield (

T̂ + N̂1 + sM̂
)
X̂(s) = 0 (44)

where

M̂ =
∫ d

0

Q(z)T M(z)Q(z)dz

N̂1 =
∫ d

0

Q(z)T N(z)Q(z)dz

T̂ =
∫ d

0

Q(z)T T
dQ(z)

dz
dz (45)

The goal of the following steps is to derive a relation between the terminal voltages
V(0, s),V(d, s) and terminal currents I(0, s), I(d, s). The voltages at the terminals
of the TL network are obtained from,

V(s) =
[
V(0, s)
V(d, s)

]
=
[

QV (0, s)
QV (d, s)

]
X̂(s) (46)

where the subscript V above denotes only that portion of the orthonormal basis cor-
responding to the voltage variables. Defining the matrix P as

P = (QI(d))
T QV (d) − (QI(0))T QV (0) (47)

where the subscript i in (47) means that only the portion of Q(z) corresponding to
the current variables is considered. V(s) can then be obtained using

−PX̂(s) = b̂V(s) (48)

where

b̂ =
[

QI(0)
−QI(d)

]T

(49)

and the currents at the terminals of the network can be described using Q(z)

I(s) =
[

QI(0)
−QI(d)

]
X̂(s) = b̂T X̂(s) (50)

Let N̂2 = T̂ − P, and substitute in (44) using (48),
VII In fact, if Q(z) is constructed from M moments at s = s0 then q = 2mM , if s0 is real

and q = 4mM if s0 is complex.
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(N̂1 + N̂2︸ ︷︷ ︸
N̂

+sM̂)X̂(s) = b̂V(s) (51)

Hence the relation between the terminal voltages and currents of the TL network in
the frequency-domain are obtained from(

N̂ + sM̂
)
X̂(s) = b̂V(s) (52)

I(s) = b̂T X̂(s) (53)

A key advantage of the above constitutive relation for the MTL is that it can be
represented in the time-domain as a set of ODEs. Thus it enables general nonlinear
circuits with MTL to be formulated in the desirable form of DAEs. Consider for
example the circuit shown in Figure 11. Using the reduced-order system constructed
as described above, this circuit can be represented in the time-domain using (MNA)
formulation as follows,

[
G Ab̂T

−b̂AT N̂

]⎡⎣ v1

v2

x̂(t)

⎤⎦+

[
C 0
0 M̂

]⎡⎢⎣ dv1
dt

dv2
dt

dx̂(t)
dt

⎤⎥⎦
+

⎡⎣ 0
Io (exp (v2/VT ) − 1)

0

⎤⎦ =

⎡⎣J(t)
0
0

⎤⎦
(54)

where the matrices G and C ∈ R
2×2 are given by

G =

[
1

R1
0

0 1
R2

]
, C =

[
C 0
0 0

]
(55)

and N̂, M̂ ∈ R
q×q, b̂ ∈ R

q×2 are obtained using the MOR-ICT as shown above,
with q being the size of the reduced system. A in (54) is an incidence matrix that
maps the currents at the terminals of the TL to the nodes of the network. In the case
of the above example, A is a 2 × 2 identity matrix.

v1 v2

R1

Io(exp (v2 / VT) − 1)

R2
C

J (t)

Fig. 11. An example of a circuit containing a TL with nonlinear termination.
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Equivalence between the Reduced System and High-Speed Interconnect

Let Yj(s) be a column vector defined by

Yj(s) =
[
I1(0, s) I2(0, s) · · · Im(0, s) −I1(d, s) −I2(d, s) · · · −Im(d, s)

]T
(56)

where Ik(0, s) and Ik(d, s) are, in respective order, the near- and far-end currents at
the k-th conductor when the terminal voltages, V(s),

V(s) =
[
V1(0, s) V2(0, s) · · · Vm(0, s) V (d, s) V2(d, s) · · · Vm(d, s)

]T
(57)

are equal to ej . Thus the Y-parameters matrix for the distributed high-speed inter-
connect is given, column-wise, by

Y(s) =
[
Y1(s) Y2(s) · · · Y2m(s)

]
(58)

The following theorem describes the relation between the reduced system and the
high-speed interconnect represented by the TE.

Theorem 2. Denote by U (i)(z, sh) where 0 ≤ i ≤ qh, 0 ≤ h ≤ H the moments
of the matrix-valued distributed voltages and currents on the high-speed intercon-
nect, computed at s = sh, and let Q(z) be an orthonormal basis for their Hilbert
subspace. Then

Y(m)(sh) =
(
Ĝ + shĈ

)−m (
Ĝ
)−1

b̂, 0 ≤ m ≤ qh, 0 ≤ h ≤ H (59)

where Y(m)(sh) is the mth moment of Y(s) computed at s = sh.

Handling Frequency-Dependent p.u.l. Parameter Matrices

The analysis presented here is focused on the treatment of a single-conductor TLs.
However, generalization to MTL is straightforward and will be outlined briefly at
the end of this section. For the case of a single-conductor TL, the p.u.l parameter
matrices reduce to scalar functions of s, and can be modelled using scalar rational
function approximations,

Z(s) ≡ R(s) + sL(s) ≈ Z̃(s) =
fks

k + · · · + f0

bk−1sk−1 + · · · + b0
(60)

Y (s) ≡ G(s) + sC(s) ≈ Ỹ (s) =
g�s

� + · · · + g0
c�−1s�−1 + · · · + c0

(61)

However, to guarantee that the reduced system is passive, the fitting rational func-
tion needs to be a positive-real function. Several approaches have been proposed to
achieve that through synthesizing the rational function into a network of passive cir-
cuit components such as RLCK elements [26–28]. For the case of a single-conductor
TL, the synthesized network is a single-port network whose driving point impedance
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Z̃(s) (or admittance, Ỹ (s)) approximates Z(s) (or Y (s)). This fact enables applying
circuit formulation techniques, such as the MNA approach described earlier, to write
Z̃(s) in the following form,

Z̃(s) = bT
Z (GZ + sCZ)−1 bZ (62)

where bZ is a vector that contains “1” in its first component and “0” otherwise.
GZ and CZ are matrices composed from the “stamps” contributed by the RLCK
components. In general, these matrices have the following structures

GZ =
[

N Z EZ

−ET
Z 0

]
, CZ =

[
QZ 0
0 PZ

]
(63)

where N Z , QZ , and PZ are symmetric nonnegative definite matrices that contain,
in respective order, the stamps of resistive, capacitive and inductive elements. EZ

serves as a mapping operator with elements Ez,ij ∈ {±1, 0}.
An analogous argument is made to show that Ỹ (s) can be put in a similar form

as follows,
Ỹ (s) = bT

Y (GY + sCY )−1 bY (64)

where the matrices GY and CY have the same structure as that of GZ and CZ , and
bY is a vector with a single unity entry and “0” otherwise entries. We illustrate the
nature of the constituent matrices using a simple example.

As an example, assume that the s-dependency of Z̃(s) and Ỹ (s) can be captured
by two networks as shown in Fig. 12. For that particular case and using the MNA
formulation, we can reduce the matrices in (62) and (64) to be,

GZ =

⎡⎢⎢⎣
1/R1 −1/R1 0 0
−1/R1 1/R1 0 1

0 0 1/R2 −1
0 −1 1 0

⎤⎥⎥⎦ , CZ =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 C1 0
0 0 0 L1

⎤⎥⎥⎦

GY =

⎡⎣ 1/R1 0 −1
0 1/R2 0
1 0 0

⎤⎦ , CY =

⎡⎣ C1 −C1 0
−C1 C1 + C2 0

0 0 0

⎤⎦

R1
L

CR2V(s)

Z(s)

I(s)

~

(a) An example of a FD-PUL impedance
network

R2 C2

C1

R1V(s)

Y(s)I(s)
~

(b) An example of a FD-PUL admit-
tance network

Fig. 12. Illustration of MNA formulation for equivalent Z̃(s) and Ỹ (s) networks.
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while the vectors bZ and bY would be given by,

bZ = [1 0 0 0]T , bY = [0 0 1]T

Thus far we have established that R(s) + sL(s) and G(s) + sC(s) can be ap-
proximated through Z̃(s) and Ỹ (s), whose structures are shown in (62) and (64),
respectively. The rationale used to represent both Z̃(s) and Ỹ (s) for single conduc-
tor TLs can be generalized and carried to the case of multi-conductor TLs. In that
case, bZ and bY will become rectangular matrices having a number of columns
equal to the number of conductors in the TL, with a single identity entry in each
column and “0” entry otherwise.

Assuming that the dimensions of the corresponding GZ (and CZ) and GY (and
CY ) are given respectively by nZ , nY , we then proceed to show how to incorporate
these approximate network functions into the TEs. To this end, we introduce the set
of auxiliary variables VZ(z, s) and IY (z, s) which are defined as follows,

(GZ + sCZ)VZ(z, s) = bZI(z, s) (65)
(GY + sCY ) IY (z, s) = bY V(z, s) (66)

where I(z, s) and V(z, s) are, respectively, the currents and voltages at any point z
on the line, as introduced earlier in (12). Substituting in the Telegraphers equations
in (32) for R(s) + sL(s) and G(s) + sC(s) using the approximate Z̃(s) and Ỹ(s)
given, respectively, by (62) and (64) yields the following set of mixed DAEs,

T̃
∂

∂z
X̃(z, s) = −

(
Ñ + sM̃

)
X̃(z, s) (67)

where,

T̃ =

⎡⎢⎢⎣
0 Jm 0 0

Jm 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , Ñ =

⎡⎢⎢⎣
0 0 bT

Z 0
0 0 0 bT

Y

−bZ 0 GZ 0
0 −bY 0 GY

⎤⎥⎥⎦ , M̃ =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 CZ 0
0 0 0 CY

⎤⎥⎥⎦ ,

X̃(z, s) =

⎡⎢⎢⎣
I(z, s)
V(z, s)
VZ(z, s)
IY (z, s)

⎤⎥⎥⎦ (68)

It is important to highlight that the new equations relating the currents and voltages
in (67) form a mixed set of DAEs. It is easy to see here that the new formulation
enables adapting the basic ideas of MOR-ICT developed previously for the frequency
independent case to the frequency-dependent p.u.l.

3.3 MOR-ICT for Nonuniform MTL

This subsection sheds more light on further implementation issues that improve the
accuracy of MOR-ICT and make it more practically applicable to Nonuniform MTL
(NMTL).
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Basis Construction without Explicit Moments Computations

Similar to the case of MOR-CT, the approach used in MOR-ICT to construct Q(z)
is of great importance in maintaining robust numerical performance for the reduced
system. The approach based on MGS described earlier in Section 3.2, however, re-
quires computing the block moments U (i)(z) explicitly before constructing their
spanning orthonormal basis. As with the case of MOR-CT, this process involves
a recursive computation which introduces a mechanism by which small roundoff er-
ror in low-order moments gets amplified in computing high-order moments. It would
therefore be desirable to have an algorithm similar to the Arnoldi algorithm to gen-
erate Q(z) but without computing the underlying moments explicitly.

Fortunately, this is possible since the block moments U (i)(z) are related through
a linear operator. This may be observed through putting (39) and (40) in the following
form,

DU (i)(z) = 0 (69)
DU (i)(z) = −M(z)U (i−1)(z) (70)

where D = T d
dz + N(z) + s0M(z). This fact enables adapting the MGS presented

earlier to an Arnoldi-like algorithm [22]. Figure 13 describes a general pseudocode
representation for the required procedure.

Solution of BVPs

We now turn to the issue of solving the BVPs in (39) and (40), which are needed in
Steps 4 and 14, respectively. For conciseness, these BVP are reproduced next,(

T
d

dz
+ N(z) + s0M(z)

)
Ũ (0)(z) = 0 (71)

subject to BC,

Ũ (0)
V (0) =

[
Jm 0

]
(72)

Ũ (0)
V (d) =

[
0 Jm

]
(73)

and (
T

d
dz

+ N(z) + s0M(z)
)

Ũ (i)(z) = −M(z)V i−1(z) (74)

subject to BC,

Ũ (i)
V (0) =

[
0 0
]

(75)

Ũ (i)
V (d) =

[
0 0
]

(76)

where we note that both of Ũ (0)(z) and Ũ (i)(z), are given by
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Algorithm 8: Implicit-Basis-Computation Q(z)
Inputs: {M(z), N(z)}, {λ1, · · · , λH}, {q1, · · · , qH}
{{M(z) and N(z)} are matrices constructed using p.u.l.matrices by (33).1
{λ1, · · · , λH}, {q1, · · · , qH} define frequency points and # of moments at each point.
}
Output: Q(z)
Q(z) ← φ{Initialize to an empty set.} begin2

for h ← 1 to H do3
R(z) ← φ{Initialize to the empty set.} Solve:4 (
T d

dz
+ N(z) + λhM(z)

)
Ũ(0)(z) = 0, BC Ũ(0)

V (0) = [Jm 0],

Ũ(0)
V (d) = [0 Jm]

if λh is real then5
R0(z) ← HILBERTSPACEORTHO(Ũ(0)(z),1)6

else7

R�
0 (z) ← HILBERTSPACEORTHO(�

{
Ũ(0)(z)

}
,1)8

R̃�
0 (z) ← �

{
Ũ(0)(z)

}
− R�

0 (z)
〈
R�

0 (z)|�
{

Ũ(0)(z)
}〉

9

R�
0 (z) ← HILBERTSPACEORTHO(R̃�

0 (z),1)10
R0(z) ← {

R�
0 (z)

⋃
R�

0 (z)
}

11

for l = 1 ← to qh − 1 do12

if (λh is real) then
{

Vl−1(z) ← Rl−1(z)
}

else
{

Vl−1(z) ← R�
l−1(z)

}
13

Solve:
(
T d

dz
+ N(z) + λhM(z)

)
Ũ(l)(z) = −M(z)Vl−1(z), BC14

Ũ(l)
V (0) = [0 0] , Ũ(l)

V (d) = [0 0]
if λh is real then15

R̃l(z) ← Ũ(l)(z)16
for p = 0 ← to l − 1 do17

R̃l(z) ← R̃l(z) − Rp(z)
〈
R̃l(z)|Rp(z)

〉
;18

Rl(z) ← HILBERTSPACEORTHO(R̃l(z),1)19

else20

R̃�
l (z) ← �

{
Ũ(l)(z)

}
; R̃�

l (z) ← �
{

Ũ(l)(z)
}

21
for p = 0 ← to l − 1 do22

R̃�
l (z) ← R̃�

l (z) − R�
p (z)

〈
R̃�

l (z)|R�
p (z)

〉
;23

R̃�
l (z) ← R̃�

l (z) − R�
p (z)

〈
R̃�

l (z)|R�
p (z)

〉
R̃�

l (z) ← R̃�
l (z) − R�

p (z)
〈
R̃�

l (z)|R�
p (z)

〉
;24

R̃�
l (z) ← R̃�

l (z) − R�
p (z)

〈
R̃�

l (z)|R�
p (z)

〉
R�

l (z) ← HILBERTSPACEORTHO(R̃�
l (z),1)25

R̃�
l (z) ← R̃�

l (z) − R�
l (z)

〈
R̃�

l (z)|R�
l (z)

〉
26

R�
l (z) ← HILBERTSPACEORTHO(R̃�

l (z),1)27
Rl(z) ← {

R�
l (z)

⋃
R�

l (z)
}

28

R(z) ← {R(z)
⋃

Rl(z)}29

Q(z) ← {Q(z)
⋃

R(z)}30

end31
return Q(z)32

Fig. 13. Pseudocode for Arnoldi-like algorithm to construct a basis for the Hilbert subspace
of U (i)(z).
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Ũ (0)(z) =

[
Ũ (0)

I (z)
Ũ (0)

V (z)

]
, Ũ (i)(z) =

[
Ũ (i)

I (z)
Ũ (i)

V (z)

]
, (77)

It should be stressed here that the BC shown above are given only partially, where
the portions corresponding to the moments of currents variables are left unspecified.
The basic idea used to solve (74) hinges upon using the partial BC and the concept
of State-Transition Matrix (STM) to compute the corresponding full set of Initial
Conditions (IC), and subsequently enabling both problems to be approached as IVP.

Computation of IC. Consider first the BVP (71). This problem is a homogenous
ODE, whose solution at any z can be obtained from,

Ũ (0)(z) = Φ(0, z)Ũ (0)(0) (78)

where Φ(0, z) ∈ C
2m×2m is the STM of the system [29]. Partitioning Φ(0, z) into

four equally-sized block matrices in C
m×m, and substituting z = d in (78) yields,

Ũ (0)(d) =
[
Φ11(0, d) Φ12(0, d)
Φ21(0, d) Φ22(0, d)

] [
Ũ (0)

I (0)
Ũ (0)

V (0)

]
(79)

Using the BC given in (72) and (73), (79) becomes[
Ũ (0)

I (d)
0 Jm

]
=
[
Φ11(0, d) Φ12(0, d)
Φ21(0, d) Φ22(0, d)

] [
Ũ (0)

I (0)
Jm 0

]
(80)

Solving for Ũ (0)
I (0) results in,

Ũ (0)
I (0) = (Φ21(0, d))

−1 [−Φ22(0, d) Jm

]
(81)

Computing the IC for the currents portion in BVP (74) is approached in a similar
manner. The complete solution for this BVP can be written in terms of STM and the
product integral [29],

Ũ (i)(z) = Φ(0, z)Ũ (i)(0) +
∫ z

0

−Φ(0, τ )M(τ)V i−1(τ)dτ︸ ︷︷ ︸
W̃i(z)

(82)

Note that the integral term represents a matrix-shaped solution in C
2m×2m for (74)

under zero IC. We denote that term by W̃i(z), and assume that it is readily available.
Substituting z = d in (82) and using the BC specified in (75) and (76) yield the
following equation[

Ũ (i)(d)
0 0

]
=
[
Φ11(0, d) Φ12(0, d)
Φ21(0, d) Φ22(0, d)

] [
Ũ (i)

I (0)
0 0

]
+

[
W̃i,1(d)
W̃i,2(d)

]
(83)

Solving for Ũ (i)
I (0) gives,
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Ũ (i)
I (0) = − (Φ21(0, d))

−1 W̃i,2(d) (84)

Hence, from the IC (81) and (84), and using (78) and (82), one can construct solutions
for the BVPs (71) and (74), provided that the zero IC response for (74), W̃i(z)
and the STM, Φ(0, z) can be easily computed. While computing these terms can be
easily obtained in the case of uniform MTL due to the availability of closed-form
solution [12], it becomes significantly challenging for the case of nonuniform MTL
since numerical solution becomes the sole option. For example, it is well known that
solving the system of ODE in (71) or (74) suffers an ill-conditioning problem [30].
This ill-conditioning results from the existence of a dichotomy between a dominant
and dominated solutions. The existence and characterization of such spaces have
been reported in [31,32]. The result of having such a dichotomy is that the dominant
solution leads to instability during the course of numerical integration resulting in
numerical “singularities” [33], especially for long lines. We present next a robust
technique to obtain these two terms without running into these difficulties.

Computing zero IC response of (74), W̃ i(z). Notice that the presence of a non-
zero IC for Ũ (i)(z) can be always taken into account by adding a forcing term on the
right side of (74) as follows,(

T
d

dz
+ N(z) + s0M(z)

)
Ũ (i)(z) = −M(z)V i−1(z) + U (i)(0)︸ ︷︷ ︸

IC

δ(z) (85)

and treating the resulting problem as a zero IC problem. Since we are interested in
the solution W̃i(z) under zero IC, then the second term on the right side vanishes,
and W̃i(z) results as solution to the following problem(

T
d

dz
+ N(z) + s0M(z)

)
W̃i(z) = −M(z)V i−1(z) (86)

with zero IC. Assuming that both N(z) and M(z) are smooth functions of z, then
computing W̃i(z) in (86) proceeds by first representing all the z-dependent quan-
tities in (86) as a summation of H + 1 Chebyshev polynomials, Th(z̄), of the first
kind [34],

N(z) =
H∑

h=0

NhTh(z̄)

M(z) =
H∑

h=0

MhTh(z̄)

W̃i(z) =
H∑

h=0

ΞW̃,h
Th(z̄)

Vi−1(z) =
H∑

h=0

ΞV,hTh(¯̄z) (87)
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where z̄ = 2
dz − 1. Substituting from (87) into (86), taking the integral of both sides

from −1 to z̄, while employing the following relations,

Tm(z̄)Tn(z̄) =
1
2
(Tm+n(z̄) + T|m−n|(z̄))∫ z̄

−1

T0(ξ)dξ = T0(z̄) + T1(z̄)∫ z̄

−1

T1(ξ)dξ =
1
4
(T2(z̄) − T0(z̄))∫ z̄

−1

Th(ξ)dξ =
1
2

(
Th+1(z̄)
h+ 1

+
Th−1(z̄)
h− 1

)
+

(−1)h+1

h2 − 1

along with the orthonormality property of Chebyshev polynomials yields,[
A +

2
d

(JH+1 ⊗ T)
]
Λ̃i = −AMΛi−1 (88)

where

A =
1
2
(T 1 + T 2 + T 3)

AM =
1
2
(T M1 + T M2 + T M3)

Λi−1 =
[
ΞV,H

T · · ·ΞV,0
T
]T

Λ̃i =
[
ΞW̃,H

T · · ·ΞW̃,0
T
]T

JH+1 → (H + 1) × (H + 1) identity matrix. (89)

Matrices T 1, T 2 and T 3 are defined in (90)-(92), with Dh = Nh+s0Mh. Matrices
T M1, T M2 and T M3 have a similar structures to T 1, T 2 and T 3 except that Dh

is substituted by Mh.

T 1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 1
2H

DH
1

2H
DH−1

0 · · · 1
2(H−1)

DH
1

2(H−1)
DH−1

1
2(H−1)

(DH−2 − DH)

...
. . .

...
...

...
...

. . . D2 − 1
2
D4 D1 − 1

2
D3 D0 − 1

2
D2

DH · · · · · ·
(

D1 − 1
4
D2+∑H−1

h=2 Dh
(−1)h+1

h2−1

) (
D0 − 1

4
D1+∑H

h=2 Dh
(−1)h+1

h2−1

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(90)
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T 2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2H

D1 0 · · · · · · 0 0
1

2(H−1)
(D2 − D0)

1
2(H−1)

D1 0 · · · 0 0

... · · · · · · . . .
...

...
1
4
(DH−1 − DH−3) · · · 1

4
D1

1
4
D0 0

− 1
2
DH−2 · · · − 1

2
D1 − 1

2
D0 0 0(

− 1
4
DH−1+∑H

h=2 DH−h
(−1)(h+1)

h2−1

)
· · · · · · − 1

4
D1 − 1

3
D0 − 1

4
D0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(91)

T 3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 1
2H

(DH−2 − DH) 1
2H

DH−1

0
. . .

. . . · · ·
...

... − 1
4
D0 − 1

4
D1

1
4
(D0 − D2) 1

4
(D1 − D3)

0 0 − 1
2
D0 − 1

2
D1 D0 − 1

2
D2

D0 · · · ∑H
h=2 Dh−2

(−1)h+1

h2−1

( − 1
4
D0+∑H

h=2 Dh−1
(−1)h+1

h2−1

) (
D0 − 1

4
D1+∑H

h=2 Dh
(−1)h+1

h2−1

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(92)

The operator ⊗ in (88) denotes the Kronecker product.
Computing the STM, Φ(0, z). Given that the STM, Φ(0, z), is the matrix-

valued solution of the homogeneous differential equations, i.e. the solution obtained
in the absence of any forcing terms, with an IC given by a unity matrix of the
same size [29], then considering (86), Φ(0, z) becomes the solution of the following
system (

T
d

dz
+ N(z) + s0M(z)

)
Φ(0, z) = J2mδ(z) (93)

Expressing Φ(0, z) in Chebyshev series with H + 1 polynomials,

Φ(0, z) =
H∑

h=0

ΞΦ,hTh(z̄) (94)

and using the identities given above yields, upon integration, the following linear
system in the coefficients ΞΦ,h[

A +
2
d

(JH+1 ⊗ T)
]
Λ̃Φ = Υ0 (95)

where
Λ̃Φ =

[
ΞT

Φ,H ΞT
Φ,H−1 · · · ΞT

Φ,0

]T
(96)

and

Υ0 =

⎡⎢⎣0 0 · · · 0︸ ︷︷ ︸
Hmatrices

J2m

⎤⎥⎦
T

(97)
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Hence, by solving (88) and (95) one can represent W̃i(z) and the STM Φ(0, z)
as a series of Chebyshev polynomials. This result enables expressing the solutions to
the BVP (71) and (74) in the same form. More specifically, Ũ (0)(z) and Ũ (i)(z) can
be written as,

Ũ (0)(z) =
H∑

h=0

(
ΞΦ,hŨ (0)(0)

)
Th(z̄) (98)

and

Ũ (i)(z) =
H∑

h=0

(
ΞΦ,hŨ (0)(0) + Ξ̃W̃,i

)
Th(z̄) (99)

Modified Inner-Product and Norm Mappings

It is possible to take advantage of the fact that solutions to the BVPs (71) and (74) are
represented a Chebyshev series through adopting a slightly different version of the
inner-product and norm mappings in (41) and (42), respectively. More specifically,
we choose 〈·|·〉w and 〈·〉w to be obtained via a weighted integration given by

〈u(z)|v(z)〉 =
∫ 1

−1

u(z)T v(z)w(z̄)dz̄ (100)

〈u(z)〉 =
∫ 1

−1

u(z)T u(z)w(z̄)dz̄ (101)

to define the inner-product and norm mappings for any u(z) and v(z) ∈ L(0, d),
respectively, where z̄ = (2/d)z−1 and w(z̄) = 1/

√
1 − z̄2). Under these mappings,

if u(z) and v(z) happen to be represented by a series of Chebyshev polynomials of
the first kind,

u(z) =
H∑

h=0

UhTh(2z/d− 1) v(z) =
H∑

h=0

VhTh(2z/d− 1) (102)

then (100) and (101) reduce to

〈u(z)|v(z)〉 = πV0
T U0 +

π

2

H∑
h=1

Vh
T Uh (103)

〈u(z)〉 = πU0
T U0 +

π

2

H∑
h=1

Uh
T Uh (104)

In other words, the inner-product (norm) mappings defined over the Hilbert space
L(0, d) become equivalent to a series of H + 1 classical inner-products defined over
Euclidian spaces. This is a result of the orthonormality property of the Chebyshev
polynomials [34], which is expressed as follows,∫ 1

−1

Ti(z̄)Tj(z̄)dz̄ =

⎧⎨⎩
π i = j = 0
π
2 i = j �= 0
0 i �= j

(105)
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4 Numerical Computations

4.1 Example 1

The objective of this example is to show a numerical comparison between using
the moments explicitly [21] and implicitly (through the algorithm of Section 3.3) in
constructing the orthogonal basis Q(z) used in obtaining the reduced-order model.
For that purpose, the proposed algorithm was implemented to obtain a reduced-order
model for a uniform 3-conductor TL network of length d = 10cm. Figure 14 shows a
graphical comparison between the exact response and the response obtained from the
proposed algorithm after running it for k = 65 iterations. The exact response for Y11

was computed by first using the exponential matrix expression [12] to deduce the
H-parameters. The H-parameters were then converted to the Y -parameters. Also
shown on the same graph, the response obtained by using 65 moments explicitly to
construct the basis. It is clear that for the same size of the reduced system, the one
based on the proposed algorithm could match up double the frequency range matched
through using the moments explicitly.

4.2 Example 2

A 2-conductor tapered TL, as shown in Figure 15, has been considered for this ex-
ample. The line p.u.l parameters are listed in Table 1. Figure 16 shows the |Y11|

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Frequency

Exact via ODE solver
Proposed (size 65)
Explicit (size 65)

x 109

|Y
11

|

Fig. 14. A comparison for the |Y11| parameter between the proposed algorithm the algorithm
in [21] using explicit moments computation.
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1cm 1cm 1cm

30 mils

30 mils 10 mils

40 mils

10 mils

8 mils

0.2 mils

Fig. 15. Prototype chip interconnect.

Table 1. Parameters for the prototype chip interconnect (Example 2)

x(cm) C11 = C12 C12 = C21 L11 = L22 L12 = L21

(pF/cm) (pF/cm) (nF/cm) (nF/cm)

0.0-1.0 1.84 -0.090 1.96 0.23
1.14 1.76 -0.073 2.04 0.22
1.29 1.60 -0.050 2.22 0.20
1.43 1.44 -0.035 2.43 0.19
1.57 1.28 -0.024 2.69 0.17
1.71 1.12 -0.017 3.01 0.17
1.86 0.96 -0.012 3.44 0.16

2.0-3.0 0.880 -0.009 3.71 0.16

parameter as computed by the ICT algorithm and compares it with the exact solution
obtained from a Matlab ODE solver used to solve the Telegraphers equations. The
TL network was then embedded in a circuit as shown in Figure 17. Figure 18 shows
the transient time-domain response due to an input signal of rise/fall time of 0.1 nSec
at the active and quiescent lines, respectively. The results obtained are found to be in
a very good agreement with those obtained using Fast Fourier Transform FFT.

4.3 Example 3

The MOR-ICT algorithm was used to simulate a nonuniform TL network (with
d = 50cm) consisting of 3 conductors. First the exact frequency-domain response of
the TL network was obtained by solving the Telegraphers ODEs in (32). The results
obtained from that solution were then used to deduce the Y -parameters of the TL
network. These results were then compared with those obtained via a reduced-order
system representation for the TL network. Here the reduced-order system was con-
structed by first choosing a single expansion point at s0 = i2∗π(1.75 GHz), and the
proposed orthogonalization procedure described in Section 3.3 was run for a total
of 35 iterations to generate the orthogonal basis Q(z). Figure 19 shows the com-
parison between the exact approach resulting from solving the Telegraphers ODE
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Fig. 16. A comparison between the exact and the proposed approach in computing the Y1,1

for the TL network of Figure 15. Note that the two results are almost indistinguishable.

+
-

Fig. 17. Schematic representation for the circuit of Example 2.

system directly and the reduced-order system constructed using the orthogonal ba-
sis. Figure 20 depicts the relative error in percent.

Figure 21 demonstrates a comparison for the time-domain response due to an
input pulse of rise/fall time of 0.1 ns and a pulse-width of 8 ns. The comparison is
between a lumped RLC approximation of the line and the proposed algorithm. The
lumped RLC model is obtained by dividing the nonuniform line into 50 sections and
considering each section as a uniform line. Each uniform section is then represented
by a number of lumped RLC sections according to its p.u.l. delay. Simulating the
lumped model required 693 sec of CPU time on a Pentium III machine, while sim-
ulating the reduced system lasted for only 5.9 Sec, resulting in a speed-up ratio of
about 117 times.



396 E. Gad et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

V
ou

t

FFT
Proposed

x 10−8

(a) Active line.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time

V

FFT
Proposed

x 10−8

(b) Quiescent line.

Fig. 18. Time-domain Response for Example 2.
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(b) Frequency Response at Y1,6

Fig. 19. Numerical results for a 50 cm nonuniform transmission line
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Fig. 20. Relative percentage error in the a sample of the Y-paremeters of a 50 cm nonuniform
transmission line
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Fig. 21. Numerical results for a 50 cm nonuniform transmission line

5 Conclusion

This chapter described the application of Hilbert space-based MOR in the tran-
sient time-domain analysis of distributed MTL networks in circuit simulation
environments. The basic idea relies on projecting the Telegraphers equations de-
scribing the line on the subspace of the system moments which are defined as the
z-dependent scaled derivatives of the voltages and currents along the line. The ba-
sic algorithm was further refined numerically through employing the idea of implicit
moment computation. Also a special procedure based on using the Chebyshev poly-
nomials was described to gear the spectrum of potential applications more towards
the general case of NMTL. Several numerical experiments were presented to validate
the described techniques.
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We present a methodology and computational environment for applying
mathematical model order reduction (MOR) to electro-thermal MEMSI. MOR can
successfully create dynamic compact thermal models of MEMS devices. It is cur-
rently possible to use software tool “MOR for ANSYS” (pronounced “more for AN-
SYS”) to automatically create reduced order thermal models directly from ANSYS
models with more than 500 000 degrees of freedom. Model order reduction is auto-
matic and based on the implicit Pad approximation of the transfer function via the
Arnoldi algorithm. After model reduction, one can visualize simulation results of the
reduced model in Mathematica and can call the SLICOT library via the Mathlink in-
terface in order to obtain mathematically optimal reduced models. Reduced models
are easily convertible into hardware description language (HDL) form, and can be
directly used for system-level simulation.

1 Introduction

The modeling of electro-thermal processes, e.g., Joule heating, becomes increasingly
important during microsystems development [1]. With the decreasing size and grow-
ing complexity of micro-electronic systems, the power dissipation of integrated cir-
cuits has become a critical concern. The thermal influence upon the device caused
by each transistor’s self-heating and the thermal interaction with tightly placed
neighboring devices cannot be neglected because excessive temperatures may cause

∗∗ The results presented here were performed at IMTEK, Freiburg
I MEMS traditionally stays for micro-electromechanical systems, although the term is in-

creasingly being used even if different functionalities are employed models
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Fig. 1. Motivation for model order reduction.

the malfunction or even destruction of the device. Whereas Joule heating in mi-
croelectronics is a “parasitic” effect, some other devices like microsensors and
microactuators use it (directly or indirectly) as a functioning principle [3]. In both
cases, the engineer’s task is to predict the temperature distribution for the given
electrical input and the impact of the temperature on the device electronics in turn,
i.e. to run an electro-thermal simulation. To go a step further, in each sequence of
joint electro-thermal simulation the temperature field is computed on a discrete grid
whose size easily exceeds 100 000 degrees of freedom (DOF), i.e. ordinary differ-
ential equations. Even though modern computers are able to handle this size of en-
gineering problems, system-level simulation would become prohibitive if the full
models were directly used. Hence, an efficient computational technique is needed.
An alternative to “classical compact modeling”, which is based on parametrization of
equivalent thermal networks is mathematical model order reduction (MOR), which
is formal, robust and can be made fully automated [4–7]. It is based on the formal
conversion of the physical model, that is, governing partial differential equation to
a low-dimensional ordinary differential equation (ODE) system. The intermediate
level is a device level, which is a high dimensional ODE system (see Fig. 1). The
first conversion of the physical to the device model is done via the finite element
discretization. A second step, that is a conversion from the device to the system level
simulation, can be efficiently performed via model order reduction.

2 Applications

Thermal simulation is an important issue in many engineering areas. In our work, we
have focused on several hotplate-based MEMS devices (see Fig. 2). The pyrotechnic
microthruster is based on the integration of solid fuel with a silicon micromachined
structure [8]. The thermally tunable optical filter is a Fabry-Perot interferometer fab-
ricated as a free-standing membrane [9]. The microhotplate gas sensor is supported
by glass pillars emanating from a glass cap above the silicon wafer, which assures ro-
bust design and thermal isolation of the membrane from the surrounding wafer [10].
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Fig. 2. MEMS case studies: microthruster (top left), gas sensor (top right), optical filter
(bottom).

The heat transfer within each hotplate is described through the following
equations:

∇ • (κ∇T ) +Q− ρCp
∂T

∂t
= 0, Q = j2R (1)

where κ(r) is the thermal conductivity in W/mK at the position r, Cp(r) is the spe-
cific heat capacity (a material property that indicates the amount of energy a body
stores for each degree increase in temperature, on a per unit mass basis) in J/kgK,
ρ(r, t) is the mass density in kg/m3, is the temperature distribution and Q(r, t) is
the heat generation rate per unit volume in W/m3. The engineer’s task is to solve 1
for a thermal problem in question. Assuming that the heat generation is uniformly
distributed within the heater, and that the system matrices are temperature indepen-
dent around the working point, the finite element based spatial discretization of (1)
leads to a large linear ODE system of the form:

C · Ṫ +K · T = FI2(t)R(T)
y = LT · T (2)

where C and K are the global heat capacity and heat conductivity matrices, F is the
load vector (matrix) and L is the output vector (matrix).

3 Model Order Reduction: Method and Numerical Results

As the number of equations in (2) is usually too high for a system-level simulation,
MOR is performed and a new, reduced system of equations (of the same form as
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(2)) is used to generate a system-level model. We use an Arnoldi reduction algorithm
(with explicit projection of both system matrices as in [11]), which can be viewed as
a projection, from the full space to the reduced Krylov-subspace:

Kr(A, b) := span(b, Ab,A2b, . . . , Ar−1b) (3)

where A = −K−1C and b = −K−1F . This projection is based on the transfor-
mation of the state vector T to the vector of generalized coordinates z, subjected to
some small error ε:

T = V · z + ε (4)

and the subsequent left hand side multiplication of (2) with V T :

V TCV · ż + V TKV · z = V TFI2(t)R(T)
y = LTV · z (5)

The transformation matrix V ∈ R
n×r, where r <<n are the dimensions of the re-

duced and the full system, respectively, is a direct output of the Arnoldi algorithm.
The property of the Krylov-subspace (3) is such that the transfer function of (2) and
the transfer function of (5) match the first r coefficients of their Taylor series around
an arbitrarily chosen frequency. For our case studies the expansion frequency was
set to zero in order to preserve the steady-state. The Taylor coefficients around zero
frequency are called moments. The fact that neither input term nor the output ma-
trix L take part in the order reduction, brings along two important properties of the
Arnoldi algorithm, which distinguish it from other MOR methods: the approximation
of the full output and the reduction of systems with the temperature dependent input
power, both described in [12]. Using Arnoldi-based MOR we have reduced a gas sen-
sor model with 73 955 ODEs to 10 ODEs and have implemented the reduced model
in MAST, the hardware description language of the behavioral simulator SABER.
Fig. 3 and Fig. 4 show the schematic structure of the implemented HDL model for
the gas sensor and numerical simulation results of the full-scale model integrated in
ANSYS, the reduced order model integrated in Mathematica and the MAST model
integrated in SABER.
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Fig. 3. HDL model structure containing back coupled temperature dependent heater.
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Our results show, that although the Arnoldi algorithm is presently limited to linear
systems (see section 8 for the state-of-the-art on nonlinear MOR) and has no global
error estimate (see section 5) it can already be used for highly effective modeling and
simulation of electro-thermal MEMS devices. It works extremely well for heat trans-
fer in 2D and 3D, which is consistent with observations of other researchers [13,15].

4 Computational Environment

In order to use model reduction in practical work, it is necessary to develop a suit-
able computational environment. At present there is a number of tools that imple-
ment model reduction methods developed in control theory, e.g. MATLAB Control
System Toolbox, MATCONTROL, MATRIXX, SLICOT etc. A good description of
these packages can be found in [4]. Unfortunately, the computational complexity of
theses methods is of O(n3) and their use is limited to at most a few thousand degrees
of freedom. The software tool ROM Workbench, which has been developed within
the EU project CODESTAR (see http://www.imek.be/codestar) is a MATLAB imple-
mentation of different MOR methods including Krylov and Laguerre based methods,
asymptotic waveform evaluation and vector fitting. These methods are of an iterative
nature and they can be used for higher dimensional systems. Still, the MATLAB im-
plementation puts the limits to the dimensionality of the problem to solve. Another
problem is to obtain system matrices for a particular engineering task. This turns out
to be difficult, as the access to the system matrices is not considered important by
software developers of commercial products.

Our solution was to employ the iterative Krylov-subspace method based on the
Arnoldi process [11] and rely on C++ implementation to allow us to treat high di-
mensional problems. We have decided to target an ANSYS audience as many MEMS
engineers use this commercial finite element software in practice. The result was a
software tool “MOR for ANSYS” [16].
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The block-scheme of “MOR for ANSYS” is presented in Fig. 5. It is a command
line tool that performs model reduction of ANSYS models directly, while allowing
different options to construct a reduced model. Additionally, “MOR for ANSYS”
can read the original dynamic system in the Matrix Market format specified in [15]
that allows us to use it with other software packages than ANSYS as well. Speci-
fying Matrix Market format to be the external format for the dynamic systems (2)
and (5) offers large flexibility because the matrices in the Matrix Market format are
written as an ASCII file and can be freely exchanged between different computer
platforms. Furthermore, the software to read and write matrices in the Matrix Mar-
ket format in C, Fortran and MATLAB is freely available at the Matrix Market site
(http://math.nist.gov/MatrixMarket/ ). Mathematica supports it natively. “MOR for
ANSYS” uses direct solvers TAUCS and UMPFACK based on the optimized BLAS
made by ATLAS for efficient linear algebra. In our experience, on a computer with
4 Gb of RAM these solvers allow us to perform model reduction for finite element
models up to 500 000 degrees of freedom.

The source code in C++ contains about 4000 lines (the half of it is for reading
ANSYS binary files file.emat and file.full) and is available at http://www.imtek.uni-
freiburg.de/simulation/“MOR for ANSYS”/ under the GNU Public license.

As already mentioned, MATLAB can read matrices in the Matrix Market format
and hence, one can read the reduced model into MATLAB/Simulink and postprocess
it further. However, we have also developed a set of Mathematica functions within
a package called Post4MOR (follow the link from “MOR for ANSYS” site), which
enables the user to simulate the reduced model, visualize the results etc. Additionally,
we have written a Mathlink interface to the SLICOT library in order to be able to use
methods like the balanced truncation approximation for either direct reduction of
smaller models or for consecutive MOR of the models already reduced with “MOR
for ANSYS”.

Our software environment allows an engineer to use model reduction for electro-
thermal MEMS models as follows. After an ANSYS model is ready (the user must
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supply the meshed geometry), the dimension of the reduced system should be chosen
in order to run “MOR for ANSYS”. As already mentioned, afterwards it is possible
to reduce the dimension of the reduced model even further by using the SLICOT
library.

A tutorial to make model reduction for a thermal model of described mi-
crothruster device is available at the “MOR for ANSYS” site. It describes the MOR
procedure step-by-step starting with an ANSYS model, performing reduction with
“MOR for ANSYS” and then using Mathematica functions for postprocessing of the
reduced model.

5 Error Estimation

As already mentioned, in order to apply Arnoldi-based model order reduction, the
MEMS designer has to provide a discretized model (e.g. a finite element (FE) model)
of the device and to specify which frequency band should be well approximated
by the compact model. This is done by choosing one or more expansion points in
the frequency domain. The next important step is to specify the desired order of
the target reduced system. A key question is: which order of the reduced system
do we need to select in order to achieve a desired accuracy. A reduced model is
an approximation of the original large-scale model. Hence, the difference between
the two can be characterized by some error norm. In order to automate the MOR
process completely, one should be able to estimate this error as a function of the
reduced model.s dimension. The automatic procedure from device-level to system-
level modeling is schematically shown in Fig. 6.

Based on our numerical results, we propose three heuristic error indicators for
the iterative model order reduction of electro-thermal MEMS models via the Arnoldi
algorithm [12]. We first suggest a convergence criterion between two successive
reduced models of order r and r + 1. We further propose to approximate a global
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Fig. 6. Compact model extraction. Eliminating the need for user iteration makes the process
fully automatic.
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error bound provided by the exact control-theory methods and alternatively to em-
ploy sequential model order reduction, which is based on consecutively applying
Arnoldi and control-theory methods (e.g. via calling SLICOT library). Fig. 7 shows
the convergence of the relative error for the microthruster model for two different
frequencies. The system order necessary to reach the convergence increases towards
higher frequencies, as may be expected for the expansion around zero. It should be
noted that for the frequencies far away from the expansion point oscillations may
occur. Our observation is that the error indicator approximates the true error with
high accuracy. The same observation has been recently made in [17].

6 Coupling of the Reduced Models

As MEMS are often composed of identical devices that are interconnected, array
structures for example, it is desirable, especially with a large number of subsystems,
to reduce each subsystem on its own and then to couple them back together. Hence,
we seek a kind of compact thermal multiport representation which allows thermal
fluxes to cross the boundaries and enables straightforward coupling to the next ther-
mal multiport. The main problem thereby is that the thermal flow is not lumped by
nature as, for example, the electrical flow is along metallic wire interconnects. The
ratio of electrical conductivity of metals and that of insulators is of the order of 108.
Hence, the electrical current flow takes place almost solely in metal paths. This is
not the case with heat flow because the ratio of thermal conductivities in microtech-
nology is only of the order of 102. Therefore, it is unclear how to lump the thermal
fluxes at shared surfaces between two finite element (FE) models in order to form the
thermal ports (Fig. 8) which would serve to couple together several compact mod-
els. Indeed, very few works [18, 19] on how to couple compact thermal models are
known to date.

Presently it is possible to use two methods for model order reduction of ther-
mal MEMS arrays, Block Arnoldi and Guyan-based substructuring (available in



Model Order Reduction for MEMS 411

thermal multiports

Fig. 8. Continuous thermal flux through the shared interface of two FE models. The goal is to
model the “FE cubes” as thermal multiports i. e. to lump a flux.
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Fig. 9. Single output step responses of the full-scale and reduced order models created by
block Arnoldi and Guyan-based substructuring.

ANSYS). The application of the block Arnoldi algorithm (classical Arnoldi which
is suitable for multiple-input-multiple-output systems [11]) is straightforward. It
reduces the entire array model and results in a much smaller reduced model than
the substructuring. Its main disadvantage is that it does not scale well to a large num-
ber of devices within an array. Substructuring decouples the array model and phys-
ically preserves the shared nodes. This allows easy back-coupling of the reduced
models, but results in unnecessarily large array model sizes. Both methods are de-
scribed in [12]. Fig. 9 compares the step response of the substructured microhotplate
test array with the step responses of the full-scale model and of the block Arnoldi
reduced model.
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In [12] we have also described a general technique of coupling two reduced ther-
mal models gained by projection (e.g. when the Arnoldi algorithm is used). In such
case the coupling is done via surface fluxes.

Another very promising approach is the structure preserving model order reduc-
tion [20–23], which seems to offer the possibility of directly reducing a device array
without decoupling.

7 Model Order Reduction as a Fast Solver

An important engineering task is to build a validated model for each characterized
novel MEMS device. It is possible to fit an RC-ladder network to the measured re-
sults [24], but in this way we don.t obtain a complete physical picture of the device.
As in most MEMS applications the whole temperature field has to be known, so a
more detailed FE model is required. Unfortunately, a common problem here is that
the material properties of the employed thin film materials, like e.g. thermal con-
ductivity κ and heat capacity cp, strongly depend on fabrication conditions and may
also be specific for the device under the test. In such case, it is possible to extract
the material properties by fitting a parametrized FE model to a measured transient
curve. However, the conventional optimization process is highly time consuming,
because in each iteration a time integration of a full-scale model must be performed
(see Fig. 10)

We suggest an alternative approach based on using model order reduction as a
“fast solver”. The right path in Fig. 10 shows that in each iteration of optimization
loop, the suggested approach requires only the time integration of the reduced model
(with less than 50 ODEs) and hence brings along an enormous saving in computa-
tional time, as the model reduction time is comparable with that for a static solution.
By defining an objective function, which characterizes the difference between simu-
lated and measured results, a data fitting cycle is performed.

Fig. 11 shows the flexible optimization environment coupled to MOR process.
Mathematica is used for scripting, visualization and small size computations. Its
function eval takes as arguments the fitting parameters κ and cp · ρ and calls the ex-
ternal programs ANSYS (for rebuilding the FE model with changed material proper-
ties) and “MOR for ANSYS” (for creating a reduced model). It further integrates the
reduced model and evaluates the objective function, which is defined as a quadratic
error between the measured and the computed curves. Its value is transferred back to
the DOT optimizer [26] which communicates with Mathematica via Mathlink (our
implementation can be found at http://evgenii.rudnyi.ru/soft/dot/ ).

Fig. 12 shows the measured temperature response and the simulated temperature
response for the reduced order 10 model of the optical filter device before the opti-
mization. Fig. 13 shows further the measured and the simulated temperature response
after 35 cycles of optimization.
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8 Advanced Development

In its original form model reduction does not allow us to preserve parameters within
the system matrices that naturally arise in many applications. For example, heat
transfer (film) coefficients that are often used within convection boundary conditions
for thermal MEMS models are within the heat conductivity matrix K and if they are
to change, one has to repeat conventional model reduction again. Fortunately, a new
development, called parametric model reduction, allows us to overcome this limit.
Parametric model reduction is based on generalization of moment matching. From
a numerical point of view, a parameter within the system matrix is “similar” to the
Laplace variable in the transfer function. If the transfer function of (2) is (without
parameters) defined as:

G(s) = LT (sC +K)−1F (6)

then, assuming linear dependence of K on the heat transfer coefficient h:
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K(h) = K0 +K1h (7)

where K0 is a constant part (see the definition of convection boundary condition for
(1) in [27]), the transfer function (6) changes into:

G(s, h) = LT (sC +K0 +K1h)−1F (8)

As a result, the idea explored by several groups was to make multivariate expansions
of the transfer function with respect to the Laplace variable s and parameters (e.g. h)
which would be simultaneously preserved in symbolic form.
The problem of preserving film coefficients in symbolic form was approached by
several groups [29, 30, 33, 34]. The numerical results showed that this problem can
be solved in principle, i. e. one can change film coefficients in the reduced model
over a very wide range of numerical values while approximating well the transient
behavior of the original system.

In [28] and [35] the algorithm, which generates recursively all multivariate mo-
ments of G up to a chosen order, is described. However, the explicit computation
of moments is numerically unstable and hence, in order to employ the method in
practice, one has to perform orthogonalization. A novel method to do it in the case
of a single parameter was presented in [29].The comparison with existing methods
is given in [31]. In 2004 Codecasa et al [30] presented the algorithm with internal
orthogonalization. In our view however, the most elegant solution for this problem
was found recently in [32].

Of course, the main practical problem of parametric model reduction is that the
number of mixed moments grows very rapidly. For example, if we choose to pre-
serve four parameters then a reduced model, which contains all the first derivatives,
has the dimension 6, a reduced model, which contains all second derivatives has
the dimension 21, and a reduced model, which contains all third derivatives already
has the dimension 56 (see Appendix F in [35]). At the same time, we may need
derivatives of higher order than three to describe accurately transient behavior of the
original model. A possible solution to ignore mixed moments is presented in [33,36]
and [34]. Additionally in [34], the local error control has been employed to automat-
ically choose the number of moments to include into reduced model. The tutorial
on parametric model reduction in respect to film coefficients is also available at the
“MOR for ANSYS” site.

Another important aspect in model order reduction is to be able to deal with
physically more realistic, nonlinear systems. At present, a leader among methods for
nonlinear model reduction is proper orthogonal decomposition (POD) [37]. It uses
simulation results of the original system (“snapshots”) to build a low-dimensional
subspace. It has been originally developed for fluid dynamics [38] but has recently
been used for nonlinear heat transfer [39] as well. In [40] the application of the
missing point estimation technique for speeding up the POD is presented.

There are recent results to generalize moment matching for weakly nonlinear sys-
tems [41, 42]. Under weakly nonlinear systems, one understands a system in which
the nonlinear effects are limited to polynomial terms: quadratic, cubic, etc. The gen-
eralized moment matching has recently been used for the heat transfer with nonlinear
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film coefficient [43]. The difference with proper orthogonal decomposition is that a
model reduction here employs system matrices directly.

An interesting idea to split a nonlinear trajectory into pieces, to build a linear
reduced model for each piece and then to merge all reduced model has been explored
in [44] and [45] (trajectory piecewise-linear approach). It has been already used in
order to reduce a nonlinear thermal problem in [46].

9 Summary

We have developed a methodology and a software tool for applying mathematical
model order reduction to the automatic generation of dynamic compact thermal mod-
els for MEMS. We have shown that with the Arnoldi algorithm it is possible to reduce
linear thermal ODE systems of around 105 equations to orders between 20 and 50
with only a minimal loss of accuracy. This increases computational efficiency by
more than 10 times in the case of a microhotplate gas sensor and in general reduces
computational time to the time comparable with a single stationary solution of the
original system.

Further advantages of Arnoldi-based reduction are the approximation of the com-
plete output and the reduction of models with temperature dependent heating power.
Its main disadvantage was the fact that no error estimate between the original and
the reduced models exists. We have suggested three heuristic strategies for error esti-
mation. At the present stage, the convergence of relative error and sequential model
order reduction can be recommended for practical use. They are both straightforward
to implement.

We have researched the possibilities for model order reduction of MEMS array
structures. Presently, we are able to apply block Arnoldi and Guyan-based substruc-
turing. Block Arnoldi can be recommended in cases of a moderate number of devices
within an array. However, when the number of interconnected devices grows, both
methods need alternatives.

We have further demonstrated the usability of model order reduction as a fast
solver within an optimization loop. In electro-thermal MEMS design this can be
used for the inverse thermal problem, i. e., the extraction of the material thermal
parameters.

Computational environment “MOR for ANSYS”, which has been developed at
the university of Freiburg, Germany, offers the possibility for the efficient Krylov-
based model order reduction of large scale (up to 500000 ODEs) MEMS models. It
can be used either for ANSYS models directly or for the system matrices in Matrix
Market format.

References

[1] M. N. Sabry, 11Dynamic Compact Thermal Models Used for Electronic design: A
Review of Recent Progress”, Proc. IPACK, pp. 1-17, (2003).

[2] S. D. Senturia, “Microsystem Design”, Kluwer Academic Publishers, (2001).



Model Order Reduction for MEMS 417

[3] A. C. Antoulas, “Approximation of Large-Scale Dynamical Systems”, Society for
Industrial and Applied Mathematic, (2005).

[4] B. N. Datta, “Numerical Methods for Linear Control systems”, Elsevier Incorpo-
ration, (2004).

[5] G. Obinata, B. D. O. Anderson, “Model Reduction for Control System Design”,
Springer, (2004).

[6] Z. Q. Qu, “Model Order Reduction Techniques with applications in finite element
analysis”, Springer, (2005).

[7] A. Varga, “Model reduction software in the SLICOT library”, In: Applied and
Computational Control, Signals and Circuits, Ed. B. Datta, KluwerAcademic Pub-
lishers, (2001).

[8] C. Rossi, “Micropropulsion for Space”, Sensors Update, vol. 10, pp. 257-292,
(2002).

[9] D. Hohlfeld, “Silicon based tunable optical filters”, PhD Thesis, University of
Freiburg, (2005).

[10] J. Wllenstein, H. Bttner, J. A. Plaza, C. Cane, Y. Min, H. L. Tuller, “A novel single
chip thin film metal oxide array”, Sensors and Actuators B: Chemical, 93(1-3), pp.
350-355, (2003).

[11] R. W. Freund, “Krylov-subspace methods for reduced-order modeling in circuit
simulation”, Journal of Computational and Applied Mathematics, Vol. 123, pp.
395-421, (2000).

[12] T. Bechtold, “Model Order Reduction of Electro-Thermal MEMS”, PhD thesis,
University of Freiburg, (2005).

[13] Y. J. Yang, C. Yu, “Extraction of heat-transfer macromodels for MEMS device”,
Journal of Micromechanics and Microengineering, vol. 14, pp. 587-596, (2004).

[14] L. Codecasa, D. D.Amore, P. Maffezzoni, “An Arnoldi Based Thermal Network
Reduction Method for Electro-Thermal analysis”, IEEE Transactions on Compo-
nents and Packaging Technologies, 26(1), pp. 186 -192, (2003).

[15] J. G. Korvink, E. B. Rudnyi, “Oberwolfach Benchmark Collection”, In: Benner, P.,
Mehrmann, V., Sorensen, D. (eds) Dimension Reduction of Large-Scale Systems,
Lecture Notes in Computational Science and Engineering (LNCSE). Springer-
Verlag, Berlin/Heidelberg, Germany, v. 45, p. 311-315, (2005).

[16] E. B. Rudnyi and J. G. Korvink, “Model Order Reduction for Large Scale Engi-
neering Models Developed in ANSYS”, Lecture Notes in Computer Science, v.
3732, pp. 349-356, (2005).

[17] P. Heres, “Robust and Efficient Krylov Subspace Methods for Model order Reduc-
tion”, PhD thesis, Technical University of Eindhoven, (2005).

[18] D. Petit, R. Hachette, “Model Reduction in Linear Heat Conduction: Use of Inter-
face Fluxes for the Numerical Coupling”, International Journal of Heat and Mass
Transfer, vol. 41, pp. 3177-3189, (1998).

[19] X. Guo, D. Celo, D. J. Walkey, T. Smy, “The Use of Constant Heat FlowPorts for
Thermal Macro-Models”, Proc. THERMICNIC, pp. 323-328, (2004).

[20] R. W. Freund, “SPRIM: Structure-preserving reduced-order interconnect macro-
modeling”, IEEE/ACM ICCAD, (2004).

[21] H. Yu, L. He and S.X.D. Tan, “Block Structure Preserving Model Order Reduc-
tion”, IEEE Behavioral Modeling and Simulation Wokshop pp. 1-6, (2005).

[22] A. Vanderdorpe, P. Van Dooren, “Model Rdeuction of Interconnected Systems”,
submitted to Automatica, 2005

[23] R. C. li, Z. Bai, “Structure-Preserving Model Reduction Using a Krylov Subspace
Projection Formulation”, Comm. Math. Sci., vol. 3(2), pp. 179-199, (2005).



418 T. Bechtold et al.

[24] V. Szkely, M. Renz, “Thermal dynamics and the time constant domain”, IEEE
Trans. on Comp. Pack. Techn., 23(3), pp. 587-594, (2000).

[25] J. S. Han, E. B. Rudnyi, J. G. Korvink, “Efficient optimization of transient dy-
namic problems in MEMS devices using model order reduction”, J. Micromech.
Microeng., 15(4), pp. 822-832, (2005).

[26] DOT Users Manual version 4.20 (Colorado Springs, CO: Vanderplaats Research
and Development), at http://www.vrand.com/DOT.html

[27] T. Bechtold, “Dynamic electro-thermal simulation of microsystems - a review”,
J. Micromech. Microeng., vol. 15, R17-R31, (2005).

[28] D. S. Weile and E. Michielssen, “Analysis of frequency selective surfaces using
two-parameter generalized rational Krylov model-order reduction”, IEEE Trans-
actions on Antennas and Propagation, vol. 49, pp. 1539-1549, (2001).

[29] L. H. Feng, E. B. Rudnyi, J. G. Korvink, “Preserving the film coefficient as a pa-
rameter in the compact thermal model for fast electro-thermal simulation”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, v. 24,
N 12, pp. 1838-1847, (2005).

[30] L. Codecasa, D. D’Amore, and P. Maffezzoni, “A novel approach for generating
boundary condition independent compact dynamic thermal networks of packages”,
Proc. 10th International Workshop on Thermal Investigations of ICs and Systems
(THERMINIC), pp. 305-310, (2004).

[31] L. H. Feng, “Parameter independent model order reduction”, Mathematics and
Computers in Simulation, v. 68, N 3, pp. 221-234, (2005).

[32] O. Farle, V. Hill, P. Ingelstrm, R. Dyczij-Edlinger, “Multi-parameter Polynomial
Model Reduction Of Linear Finite Element Equation Systems”, Proc. 5th MATH-
MOD, (2006).

[33] D. Celo, P. K. Gunupudi, R. Khazaka, D. J. Walkey, T. Smy, M. S. Nakhla, “Fast
Simulation of Steady-State Temperature Distributions in Electronic Components
Using Multidimensional Model Reduction”, IEEE Transactions on Components
and Packaging Technologies, vol. 28(1), pp. 70-79, (2005).

[34] E. B. Rudnyi, L. H. Feng, M. Salleras, S. Marco, J. G. Korvink, “Error Indicator
to Automatically Generate Dynamic Compact Parametric Thermal Models”, Proc.
THERMINIC, (2005).

[35] L. Daniel, O. C. Siong, L. S. Chay, K. H. Lee, and J. White, “A Multiparameter
Moment-Matching Model-Reduction Approach for Generating Geometrically Pa-
rameterized Interconnect Performance Models”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 23, pp. 678-693, (2004).

[36] P. K. Gunupudi, R. Khazaka, and M. Nakhla, “Analysis of transmissionline cir-
cuits using multidimensional model reduction techniques,” IEEE Transactions on
Advanced Packaging, vol. 25, pp. 174-180, (2002).

[37] P. Holmes, J. L. Lumley, and G. Berkooz, “Turbulence, coherent structures, dy-
namical systems, and symmetry”, Cambridge University Press, (1996).

[38] D. J. Lucia, P. S. Beran, and W. A. Silva, “Reduced-order modeling: new ap-
proaches for computational physics”, Progress in Aerospace Sciences, vol. 40, pp.
51-117, (2004).

[39] M. E. Kowalski and H. M. Jin, “Model-order reduction of nonlinear models of elec-
tromagnetic phased-array hyperthermia,” IEEE Transactions on Biomedical Engi-
neering, vol. 50, pp. 1243-1254, (2003).

[40] P. Astrid, A. Verhoeven, “Application of Least Squares MPE technique in the re-
duced order modeling of electrical circuits”, Proc. MTNS, (2006).



Model Order Reduction for MEMS 419

[41] L. H. Feng, .Review of model order reduction methods for numerical simulation
of nonlinear circuits”, Applied Mathematics and Computation, vol. 167, N 1, pp.
576-591, (2005).

[42] J. R. Phillips, “Projection-based approaches for model reduction of weakly non-
linear, time-varying systems”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 22, pp. 171-187, (2003).

[43] L. H. Feng, E. B. Rudnyi, J. G. Korvink, C. Bohm, T. Hauck, “Compact Electro-
thermal Model of Semiconductor Device with Nonlinear Convection Coefficient”,
Proc. EuroSimE, pp. 372-375, (2005).

[44] M. Rewienski, J. White, “A trajectory piecewise-linear approach to model order
reduction and fast simulation of nonlinear circuits and micromachined devices”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 22, pp. 155-170, (2003).

[45] D. Vasilyev, M. Rewienski, and J. White, “Macromodel generation for bio MEMS
components using a stabilized balanced truncation plus trajectory piecewise-linear
approach”, IEEE Transactions on Computer- Aided Design of Integrated Circuits
and Systems, vol. 25, pp. 285-293, 2006.

[46] Y.-J. Yang, K.-Y. Shen, .Nonlinear heat-transfer macromodeling for MEMS ther-
mal devices”, “Journal of Micromechanics and Microengineering”, vol. 15, pp.
408-418, (2005).



Model Order Reduction of Large RC Circuits

Nick P. van der Meijs

Delft University of Technology, Faculty of EEMCS, Delft, The Netherlands
N.P.vanderMeijs@tudelft.nl

1 Introduction

In this chapter, we will focus on direct techniques for reduction of RC circuits.
Compared to iterative techniques, which are frequently (usually) based on subspace
projection techniques, direct techniques are based on Gaussian Elimination or equiv-
alent techniques.

Actually, Gaussian Elimination in linear algebra is the same as Y∆ transforma-
tion in circuit theory. The technique can be described in both ways, and we will
switch between these frameworks as appropriate to gain an improved understanding,
and to obtain further insights that can e.g. lead to more efficient implementations.

In this chapter, we will focus on the reduction of RC circuits. Formally, given
a linear RC (sub-)circuit, let us define port nodes as a input or output nodes of the
circuit. Typically, these are connected to the real inputs and outputs of the circuit
or to the terminals of the active devices. Also, internal nodes are all the remaining
nodes. Then, reduction aims at removing internal nodes and (resistive or capacitive)
branches connecting them such that the result is simpler but still accurate enough.
Port nodes typically should be preserved, although sometimes they can be merged
without a large accuracy penalty.

While generalizations to circuits including inductance are sometimes possible,
these may not always be very effective. This depends on the underlying method.
Techniques which capitalize e.g. on a low-pass behavior of typical (parasitic) RC
networks in integrated circuits are especially cumbersome to generalize. We will
briefly mention such aspects when appropriate, but we will not go into details.

The close relationship between Gaussian Elimination and Y∆ transformation
actually makes the so-called realization problem, which is certainly non-trivial with
projection based MOR, less of an issue. This realization problem relates to the rep-
resentation of the reduced circuit in the form of another, smaller, circuit rather than
in the abstract form of merely one or more matrices that would describe the be-
havior of the reduced model but are not compatible with existing circuit simulators.
Indeed, some straight-forward simplifications of Gaussian Elimination can actually
be viewed as an RC-in RC-out technique. However, in other variations still some
realization is required.
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In this chapter, we will first present some background information on Gaussian
elimination in Section 2. While this is exact for resistive circuits, the result can
only be approximate for RC circuits (unless complex arithmetic is employed for a
frequency-domain results with a fixed frequency). Therefore, we will study these
approximation properties in Section 3, in the context of RC-in-RC-out techniques.
In particular, we will show in Section 3.2 how Y∆ transformation can preserve the
Elmore delay between all remaining nodes in the circuit, and in Section 3.3 how a
selective node elimination procedure can maintain accuracy of the result in a user-
specified frequency range 0 . . . fs.

Subsequently, we will study in Section 4 two techniques for reduction that en-
able complete elimination of all internal (non-port) nodes while carrying some higher
order information in the resulting admittances, which require a synthesis based re-
alization procedure. Fortunately, this synthesis procedure is simpler than a standard
synthesis procedure for arbitrary transfer functions, as it only needs to work on two-
port admittances. Nevertheless, many of the same issues that normally arise in con-
junction with the realizability issue, such as stability and passivity, also surface in this
case. We will, however, only briefly touch upon this subject. Finally, we will study
some issues related to actual efficient implementation of the proposed techniques in
Section 5 and we conclude in Section 6.

2 Gaussian Elimination Background

2.1 Introduction

As noted in the introduction, we will first describe Gaussian Elimination for resistive
networks, and illustrate the connection to Y∆ transformation. This is mainly for in-
troductory purposes, on which the developments in subsequent sections are partially
built. Also, we will present some high-level computational techniques that could
be useful for matrix-based implementations. Furthermore, we will generalize these
techniques to RC networks by representing these networks in the s domain.

2.2 Gaussian Elimination for Resistive Networks

In this section we will introduce the technique of Gaussian elimination, with only a
limited view on model order reduction. In fact, in this section we will only consider
resistive networks for which model reduction amounts to removing internal nodes
(but the number of resistors can possibly increase). The result, however, is exact in
the sense that the networks before and after the reduction when measured from the
port nodes can’t be distinguished. In the following sections, we will consider RC
circuits and this exactness property will not hold anymore in general, although it can
hold for a fixed frequency.

Gaussian elimination typically works on the (modified) admittance matrix
formulation, where the lower triangular part of the matrix is made zero in a column-
by-column fashion. It is equivalent to Y∆ transformations in a circuit, where the
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‘hub’ node in a star network of resistances is removed and the resistances are re-
placed by a full graph of resistances (a clique) on the ‘spoke’ nodes of the star.

Understanding the relation between Gaussian elimination and Y∆ transformation
allows to switch between representations as convenient. For example, Y∆ transfor-
mations are defined in the circuit theory domain, allowing very natural and efficient
handling of sparsity and fill-in and of course good integration in circuit analysis
tools. On the other hand, Gaussian elimination and matrix based approaches gener-
ally allow a different tool set for analysis and understanding. In particular, we will
show that Gaussian elimination allows an easy generalization towards elimination
of groups of nodes using the so called Schur complement technique. This will offer
some notational convenience, and also opens a route towards so-called ‘sparse ap-
proximations’. In general, matrix based approaches also allow for more elegant but
not necessarily computationally efficient prototype implementations in e.g. Matlab.

Usually, Y∆ transformations are explained as eliminating the common node in an
Y (or star) circuit with 3 admittances, and replacing these 3 admittances by 3 others
connecting the remaining nodes. Nevertheless, it is straightforward to generalize it
to admittance structures of any degree. Consider Figure 1 where the circuit in (a)
is replaced by the circuit in (b) with an admittance between each pair of remaining
nodes. Such a circuit is called a clique circuit, it forms a full subgraph.

In (a), we have for the voltage of the star node, node x,

vx =
∑

i viyi∑
i yi

which can be derived by writing the KCL equation for node x. Subsequently, we can
write for the current entering node k, iYk = (vk − vx)yk,

iYk =
∑

i(vk − vi)ykyi∑
i yi

. (1)

In (b), we have for the current entering node k

i∆k =
∑

i

iki =
∑

i

(vk − vi)yki (2)
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Fig. 1. Illustration of Y∆ transformation.
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and we can identify iYk and i∆k by letting

ykj =
ykyj∑

i yi
. (3)

That is, Equation (3) gives the admittance values of the ∆ network in Figure 1(b)
such that the currents entering the nodes in (b) are identical to those entering the
corresponding nodes in (a). Thus, circuit (a) and (b) show exactly identical current-
voltage relations and are indistinguishable from the outside. Circuit (b) has one node
less compared to (a), and is in this sense a reduced circuit although the number of
admittances generally has increased.

Note that in the above equations we have, for reasons of ease of notation and
simplicity, adopted a single subscript notation (e.g. yi) for resistances/admittances
that are connected to the node to be deleted in the original network, while we have
a double subscript notation (e.g. ykj) for those that are to be connected to the former
neighbors of the victim node after deletion. We will adhere to this notation through-
out this chapter.

The equivalence of Y∆ transformation and Gaussian elimination can be illus-
trated with the following example. Consider the circuit in Figure 1 with n = 3. If
we assume that node x is numbered first, the admittance matrix formulation looks as
follows: ⎡⎢⎢⎣

y1 + y2 + y3 −y1 −y2 −y3

−y1 y1

−y2 y2

−y3 y3

⎤⎥⎥⎦
⎡⎢⎢⎣
vx

v1

v2

v3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
i1
i2
i3

⎤⎥⎥⎦ (4)

Eliminating vx from the system to obtain a smaller system not depending on vx (one
step of Gaussian elimination) amounts to adding y2/(y1 + y2 + y3) times the first
row to the second row, and y3/(y1 + y2 + y3) times the first row to the third row and
similarly for row 4. Subsequently, the following system results:⎡⎢⎢⎢⎢⎣

y1 + y2 + y3 −y1 −y2 −y3

0 y1 − y2
1

y1+y2+y3

−y1y2
y1+y2+y3

−y1y4
y1+y2+y3

0 −y1y2
y1+y2+y3

y2 − y2
2

y1+y2+y3

−y2y3
y1+y2+y3

0 −y1y3
y1+y2+y3

−y2y3
y1+y2+y3

y4 − y2
4

y1+y2+y3

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣
vx

v1

v2

v3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
i1
i2
i3

⎤⎥⎥⎦
(5)

The (3,2), (4,2) and (4,3) elements and their symmetrical counterparts precisely cor-
respond to Equation (3), indeed confirming the equivalence between Gaussian elim-
ination and Y∆ transformations.

It has to be noted that the right-hand side (RHS) in Equation (5) is identical to
the RHS in Equation (4), since i1 = 0 and adding multiples of i1 as per the recipe of
Gaussian elimination is not changing the RHS. Also, it is evident that so-called fill-in
occurs in the matrix. The (i, j) entry of the matrix after elimination of, in this case,
the first variable remains unchanged if and only if yi or yj is zero. Otherwise, an
entry on position (i, j) and (j, i) is added if it was not already there. This illustrates
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that if in the original circuit the nodes i and j are both connected to the node to be
eliminated, they are directly connected in the circuit after elimination. Thus, a clique
(full subgraph) on the remaining nodes emerges.

The Schur complement technique for Gaussian elimination basically works as
Gaussian elimination but then for block matrices. Consider the following partitioning
of a system equivalent to Equation (4):[

Y11 Y12

Y21 Y22

] [
V1

V2

]
=
[

0
I2

]
. (6)

Here, the part to be eliminated corresponds to the Y11 block and is again put first in
the matrix. The corresponding source-term in the RHS is zero, since we eliminate
only nodes that are not connected to external sources. The elements in the Y22 block
correspond to nodes to be preserved and the elements in the Y12 and Y21 blocks
correspond to the admittances in the circuit connecting a node to be preserved to a
node to be eliminated.

Now, we can write
Y11V1 + Y12V2 = 0

or
V1 = −Y −1

11 Y12V2.

Using this equation for the second row in Equation (6) leads to(
Y22 − Y21Y

−1
11 Y12

)
V2 = I2. (7)

This equation represents a reduced system with only the nodes in the (2, 2) block
remaining and trivially reduces to Y∆ transformation if there is only a single node
in the (1, 1) block. The quantity between parenthesis in Equation (7) is called the
Schur complement of Y11 in Y [5, 12]. A seminal presentation of this technique for
admittance matrices is reference [14].

In general, Y is a sparse matrix. Also, the blocks Y12 and Y21 = Y T
12 are

sparse, since these blocks collect the admittances from the port nodes to the internal
nodes, but generally by far not every internal node is incident to a port node. Upon
appropriate re-ordering, the Y21Y

−1
11 Y12 system looks as follows:

0

*

0
(8)

Hereby it follows that only the ∗ part of Y −1
11 is actually necssary. The other entries

of Y −1
11 are unnecessary to compute.
An elegant way to exploit the fact that not all entries of Y −1

11 are necessary and
thereby actually reducing the amount of computation was given by Clément [4].
Using the symmetry and positive definiteness of the system, Y11 can be Choleski
decomposed as Y11 = L11L

T
11 where L11 is lower-triangular. Hence, it follows that
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Y21Y
−1
11 Y12 = Y21

(
L11L

T
11

) −1
Y12

= Y21

(
LT

11

)−1
L−1

11 Y12

= Y21

(
L−1

11

)T
L−1

11 Y12

=
(
L−1

11 Y12

)T
L−1

11 Y12

= PTP with P = L−1
11 Y12.

(9)

Since L−1
11 has the same shape as L11, the system for P = L−1

11 Y12 has the following
shape:

�p columns

�
�

�
�

�
�

0

� p× p

(10)

It is clear that now only the first p columns of L−1
11 are actually necssary, since the

others are multiplied with the zero part of Y12. Given L11, the first columns of L−1
11

follow directly and efficiently from forward substitution.
Finally, let us show how the Schur complement can be computed from the LU

factors of the blocks. This was shown recently in [2] but it can also be found in [11]
which rephrases a result by [22]. Begin with partitioning the LU-decomposition of
Y as

Y =
[
Y11 Y12

Y21 Y22

]
=
[
L11 0
L21 L22

] [
U11 U12

0 U22

]
(11)

(but note that L11 in this equation is not the same as L11 in (9)). By multiplication
of the terms in the RHS we get

Y =
[
L11U11 L11U12

L21U11 L21U12 + L22U22.

]
Now,

Y22 − Y21Y
−1
11 Y12 = L21U12 + L22U22 − L21U11(L11U11)

−1
L11U12

= L21U12 + L22U22 − L21U11U
−1
11 L

−1
11 L11U12

= L22U22.

Since Y −1
11 has lost sparsity compared to Y11, using (7) directly is not efficient. How-

ever, the triangular factors in (9) and (11) are still sparse (although in general not as
sparse as Y or Y11) and these alternative formulations offer higher efficiency.

2.3 s-Domain Models for RC Networks

RC networks can be represented in the frequency or s domain using admittances.
A resistor with value R will become an admittance y(s) = 1/R and a capaci-
tor with value C will become an admittance y(s) = sC. When the frequency is
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fixed, Gaussian elimination can produce an exact reduced model for that frequency
by using complex arithmetic. Here, exact means that the reduced order model shows
exactly accurate magnitude and phase behavior, but this is only the case for the fixed,
a-priori specified, frequency. While this can sometimes be useful, it is often more in-
teresting instead to investigate Gaussian elimination for a wider frequency range;
typically we will be interested in the accuracy from DC to a pre-specified maximum
frequency of interest.

When we leave s as a parameter, Gaussian elimination can generate admittances
which are a rational function of s. Although theoretically such rational functions are
still exact, it is cumbersome to work with them as their order typically becomes very
high. However, truncation not only makes the result inexact but generally leads to
issues w.r.t. stability and passivity. Also, such rational functions can not be directly
represented using resistors and capacitors and are generally unsuitable for direct sim-
ulation. In that case, an RC network that approximately matches the reduced admit-
tance model may be synthesized. Nevertheless, this is not a well-behaved procedure
and actually introduces an approximation (of the synthesis) to an approximation (of
the truncated reduced admittance model) and as such is less elegant.

While Gaussian elimination of y(s) matrices produces rational functions of s,
an alternative point of view is using moment expansions of y(s) and such expan-
sions can also be generated during Gaussian elimination. Again, truncation of these
expansions leads to approximate reduced order representations. We will present
and compare rational-function based and moment based elimination approaches in
Section 4. Here we introduce an alternative moments-based point of view that we
will use in Section 3 to show some of the properties of elimination. We thus take
y(s) = y0 + y1s + y2s

2 + ... where y0 is a DC admittance, y1 is a capacitance and
the higher order terms do not have a direct physical equivalent. Also, for direct phys-
ical relevance y0 and y1 should both be > 0. This is not guaranteed in general by
Gaussian elimination but we will find that it is guaranteed for a number of important
special cases.

Thus, we consider the moment expansion of the transfer function. We will
only consider the single-input multiple-output case but because of linearity this can
be easily generalized (superposition). For a single input, the transfer function can be
expressed as a vector for the response of each (output) node. We will consider the
impulse response, that is, the node voltages V in response to a unit source vector E
being the Laplace transform of a Dirac impulse.

Hence, when considering the MNA formulation of an RC network, we would
have

[G+ sC]V = E (12)

where E is independent of s as indicated above. Then, with a Taylor expansion of V
around s = 0, we get

[G+ sC]
[
V0 + V1s+ V2s

2 + ...
]

= E (13)

and identifying like powers of s in the LHS and RHS [3] leads to

GV0 = E (14)
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and
sCV0 + sGV1 = 0. (15)

Equation (14) shows that V0 is the DC solution obtained by solving the network
while the capacitances have been removed. Rewriting Equation (15) as

GV1 = −CV0 (16)

shows that the V1 term of the expansion of V can be obtained by solving the same DC
system as in Equation (14) but with the source term E replaced by a term depending
on the circuit capacitances and the DC solution. Continuing the scheme as started
with Equation (14) actually leads to a recursion for Vi, i = 0...∞ [3].

Furthermore, if instead of Equation (12) we would start with a general, moment-
expanded admittance matrix,[

Y0 + Y1s+ Y2s
2 + ...

]
V = E, (17)

a similar analysis as above will show that Vm is completely determined by Y0...Ym.

3 RC-in RC-out Reduction

3.1 Introduction

In this section, we will introduce Gaussian elimination of RC networks in such a way
that the realization problem is trivial or actually non-existent since all the manipula-
tions are done using resistances and capacitances. Thus, the result is an RC circuit
similar to the input, and these methods are called RC-in RC-out reduction methods.
Such methods are highly appreciated in practice, because they fit very well in a typ-
ical chip design flow, relates to a designer’s intuition and are easy for other tools to
handle. Obviously, there are no problems with passivity and stability.

The results can of course only be approximate in general. Nevertheless, we will
see that for an important class of RC networks it is easy to preserve the so-called
Elmore delay mutually between all port nodes upon complete elimination of all in-
ternal nodes. The Elmore delay [10] actually is the 1st moment of the impulse re-
sponse, and is definitely the most often used metric for analysis and synthesis of
RC interconnect networks [13]. Since we took E in (12) as an impulse source, the
Elmore delay is given by V1 in (16).

Alternatively, the elimination process may be carried out incompletely, in such a
way that some strategic internal nodes of the circuit are preserved. Thus, the remain-
ing, partially reduced, RC network is considered the final result of the procedure.
Of course, such a network can offer a better approximation to the transfer properties
or frequency response of the original, unreduced, network at the cost of a greater
number of nodes.

Below, we will first discuss reduction of all internal nodes, and subsequently we
will discuss methods for incomplete elimination.
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3.2 Complete Reduction

In this section we will show that for a mildly restricted class of RC networks,
Gaussian elimination can be developed into a procedure that produces a reduced
RC network, in the sense that it has fewer or no internal nodes, with unchanged DC
and Elmore delay properties between each pair of nodes that remains after the elim-
ination. For the restricted class of RC networks considered, we will show that we
do not need to match the first moment of each entry of the Y (s) matrix completely
and that we can use this extra freedom to have the reduced Y (s) matrix correspond
exactly to a realizable reduced RC circuit. This means that all elements have posi-
tive real values. We refer to this method of complete reduction while preserving the
Elmore delay properties as Elmore Preserving Reduction (EPR). This method was
introduced (using a different approach and proof strategy) in [27] and [28].

We begin with so-called non-leaky RC circuits, which are RC circuits without
grounded resistors, which in practice covers almost all interesting cases. We will
call DC-connected components of such a circuit a conductor. A circuit can consist
of multiple conductors, but the Elmore delay is only defined between two nodes on
the same conductor. (Cross-talk is defined between multiple conductors.) We allow
grounded and non-grounded (floating) capacitors, but for purposes of Elmore delay
modeling we distinguish between floating capacitors between 2 conductors (cross-
coupled capacitors) and floating capacitors on the same conductor (self-coupled ca-
pacitors). We now have the following lemma:

Lemma 1. For computing the Elmore delay between any two nodes on the same
conductor, self-coupled capacitors have no effect and cross-coupled capacitors are
invariant from grounded capacitors.

Proof. First consider self-coupled capacitors. Consider the contribution of a single
self-coupled capacitor cij to the RHS of (16). We can write

−CV0 = −

⎡⎢⎢⎢⎢⎢⎣
· · · · · · · · · · · · · · ·
· · · +cij · · · −cij · · ·
· · · · · · · · · · · · · · ·
· · · −cij · · · +cij · · ·
· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
· · ·
v0,i

· · ·
v0,j

· · ·

⎤⎥⎥⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎢⎢⎣
· · ·

cij(v0,i − v0,j)
· · ·

cij(v0,j − v0,i)
· · ·

⎤⎥⎥⎥⎥⎥⎦
where v0,i is the ith component of V0, which is the DC solution at node i. Clearly,
this contribution to the RHS vanishes if v0,i = v0,j , which above is the case for the
non-leaky RC networks considered here. Hence, in such networks, self-coupled ca-
pacitors don’t contribute to the Elmore delay since they don’t generate source terms
in the RHS of Equation (16).

Now consider cross-coupled capacitors. Without loss of generality we take node
i on the switching conductor and node j on the quiet conductor. Similar arguments
as above lead to
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−CV0 = −

⎡⎢⎢⎢⎢⎢⎣
· · · · · · · · · · · · · · ·
· · · +cij · · · −cij · · ·
· · · · · · · · · · · · · · ·
· · · −cij · · · +cij · · ·
· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
· · ·
v0,i

· · ·
v0,j

· · ·

⎤⎥⎥⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎢⎢⎣
· · ·

cijv0,i

· · ·
−cijv0,i

· · ·

⎤⎥⎥⎥⎥⎥⎦ (18)

since v0,j is 0 because node j is on the quiet conductor. Furthermore, the matrix G
in Equation (16) may be partitioned as

G =
[
G11 0
0 G22

]
where the 0 blocks originate from the conductors being DC-isolated. Trivially, the
inverse of G has the same structure. Now, upon formally solving (16) by application
of G−1 to the RHS given by (18) it follows that for the first moments of the voltages
on the switching conductor, cij is playing the same role as a grounded capacitor. �

Note that, in general, the non-switching side of a cross-coupled capacitor is not
grounded but connected to a (quiet) voltage source through some path with non-
zero resistance. Conveniently, the second part of the lemma makes clear that the
resistance in this path has no influence on the Elmore delay of the switching con-
ductor. Actually, this observation is consistent with the fact that in an RC-tree, only
the resistances on the path between input and output node contribute to the Elmore
delay, all off-path resistances can be shorted [9].

Lemma 1 implies that any MOR procedure for preserving the Elmore delay can
allow general non-leaky RC circuits, but can start by just removing self-coupled
capacitors and can also ignore any (positive or negative) self-coupled capacitors that
are generated during the elimination procedure. Also, cross-coupled capacitors don’t
need any special treatment. Thus, without loss of generality, we can consider non-
leaky RC-networks with only grounded capacitors to develop our Elmore-preserving
elimination technique below.

For that purpose, consider a node x in a circuit as in Figure 1 where all the
branches are conductances gi but add a ground node and a capacitor with value c
between node x and ground, which has index 0. This grounded capacitor has an
admittance sc. This situation is sketched in Figure 2.

Upon performing Y∆ transformation of node x using such frequency-domain
admittances, we get

ykj =
gkgj∑

i gi + sc

yk0 =
gksc∑

i gi + sc

where i, k, j ∈ 1 · · ·n. Neither ykj nor yk0 is directly realizable—these quantities
don’t correspond to a resistor or capacitor. However, upon expanding them about
s = 0 and retaining only the terms until first order, we get
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21 v1

x
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j
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Fig. 2. Resistive node with a grounded capacitor.

ykj =
gkgj∑

i gi
− scgkgj

(
∑

i gi)
2 +O(s2) (19)

yk0 =
scgk∑

i gi
+O(s2). (20)

This result preserves the DC response and the first moment of the impulse response,
V0 and V1 in (13). In fact, we can recognize yk0 as a capacitor, a fraction of c in
proportion to the ratio of gk to the sum of all conductances connected to node x.
Also, we can recognize the first term in the RHS of ykj as a conductor, allowing
trivial realization. However, the second term in this RHS corresponds to a negative
capacitor. Nevertheless, because of Lemma 1 this capacitor does not contribute to
the Elmore delay V1 (although in the notation of (17) it contributes to Y1). Thus it
can be dropped and it doesn’t need realization to preserve the Elmore delay. As such,
we actually have an RC-in, RC-out procedure for Y∆ transformation that preserves
the Elmore delay. We call this the EPR method for Elmore Preserving Reduction.
See Figure 3 for an illustration of all the steps for a circuit with 2 resistors and a
grounded capacitor.

From a circuit point of view, the EPR method can be described as follows. For
a non-leaky RC circuit the EPR method first drops all self-coupling capacitors and
redistributes the ground capacitance of a node to be deleted to its neighboring nodes
using a weight factor being the ratio of the conductance to the neighbor node and
the sum of all conductances connected to the victim node. As such, the largest frac-
tion of the capacitance to be distributed moves to the node that is most strongly
coupled to the victim node, and so that the sum of all ground capacitances before
and after redistribution is the same. The same algorithm is also used for coupling ca-
pacitances to other conductors. The ‘other’ end of a coupling capacitor is preserved,
and this step thus actually splits and distributes coupling capacitors. Subsequently,
the node (which is then free of any capacitors) is eliminated using Gaussian elimi-
nation. This elimination step is repeated for all internal nodes, until only port nodes
remain. The final result is a smaller circuit where the DC resistance as well as the
Elmore delay between each (directed) pair of remaining nodes is unchanged. More-
over, the total capacitance to ground as well as between each pair of conductors is
also preserved. Consequently, the reduced model is accurate for DC up to a frequency
roughly corresponding to the first pole of the system, since only the first dominant
time constant is matched.



432 N.P. van der Meijs

(a) (b)

(c) (d)

g1 g2 g1+g2+sc

g1g2

g1+g2+sc
scg2

c g1+g2+sc
scg1

g1+g2

g1g2

g1+g2

g1g2

g1+g2

cg1

g1+g2

cg2

g1+g2

scg1

(g1+g2)2
O (s2)

O (s2)
g1+g2

scg2 O (s2)

scg1g2

Fig. 3. Example circuit for Elmore preserving reduction (a), its frequency domain represen-
tation with node 1 eliminated (b), the same form with a series expansion of the admittance
terms (c), its reduced form (c) and its realizable reduced form that preserves the Elmore delay
properties (d).

The next subsection will present a way to maintain accuracy until higher frequen-
cies by preserving some internal nodes of the network.

3.3 Partial Elimination

EPR preserves the first moment of the impulse response, which is in fact sufficient
for many applications, mostly in RC interconnections in digital circuits. This is of
course related to the essentially low-pass behavior of such interconnections. Rather
than trying to preserve more moments while still doing a complete elimination (this
will be investigated in the next section), we will now consider partial elimination
procedures. The idea is that the original, unreduced, circuit is completely accurate,
and that inaccuracies are introduced and grow with each node that is eliminated. By
not eliminating all nodes but only a judiciously chosen subset of them, the original
circuit behavior can be better preserved while hopefully the amount of reduction is
not hampered too much.

Such a procedure was first proposed in [7]. It operates by recognizing that, since
EPR preserves the first moment of the impulse response, any error is in the 2nd and
higher moments. This error grows with increasing frequency f , since f is squared
in the contribution of the 2nd order terms. Hence, by having a user-specified highest
frequency of interest (fs) and evaluating the magnitude of the 2nd moment at fs if
the node would be eliminated, its actual elimination can be prevented if the resulting
error would exceed a threshold.

As such, the amount of reduction is controllable by fs. At low values, all error
weights are low and all nodes can be eliminated—in the limit the DC behavior is
always accurate since the 2nd moment (actually, all moments from order 1 and up)
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are inconsequential. At growing values of fs, more and more nodes of the circuit
need to be preserved for maintaining accuracy of the reduced network at frequencies
from DC to fs.

More specifically, the error weight is calculated for all nodes before elimination
of any node. Then, the error weights are ranked and the node with the smallest er-
ror weight is reduced first. Subsequently, some error weights (those of the original
neighbors of the node that was deleted) have to be recalculated, and again the node
with the smallest error weight is reduced, etc., until the smallest error weight exceeds
a threshold in which case the reduction stops. The remaining nodes are apparently
essential for an accurate model from DC to fs.

Actually, the above Selective Node Elimination (SNE) procedure is heuristic in
nature, and the precise definition of the error weight can be done in different ways.
This issue was investigated in [9], the result being that almost the simplest definition
is generally very effective. As such, the error weight is the maximum of all shunt
errors for a node, the latter being defined as:

δkj = lim
s→2jπfs

∣∣∣∣∣ s2y
(2)
kj

y
(0)
kj + sy

(1)
kj

∣∣∣∣∣
where y(l)

kj is the l-th moment of ykj after (supposed) elimination of a node x which
is a common neighbor of nodes k and j before elimination. Here, the name shunt
error relates to the fact that in general, there can already be a resistor and/or a ca-
pacitor between node k and j before elimination of node x, and after elimination an
error is made since y(2)

kj can not be represented using Rs and Cs. Furthermore, we
note that a further simplification by only looking at the shunt errors to ground (i.e.
index j = 0) is typically also effective and further reduces the calculation time for
the error weight from being quadratic in the degree of a node to only linear.

By way of example, consider a series RC circuit. The physical (IC layout)
implementation is shown in Figure 4(a). While the ideal behavior of this device is

A

B

(a)

A
9.1 kΩ

3.7 kΩ5.4 kΩ

202.1 fF 16.9 fF 16.9 fF130.7 fF71.4 fF

AB B
62.1 fF

0.1 fF

0.1 fF

62.2 fF

16.9 fF43.2 fF 69.3 fF 89.5 fF

A B62.1 fF

(b)

Fig. 4. (a) Layout of a poly resistor (light) on top of which a metal plate capacitor (dark). (b)
Circuits extracted from layout of RC network, in order of increasing complexity: EPR model,
fs = 100 MHz, fs = 200 MHz
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Fig. 5. Magnitude of the transadmittance of the RC structure.

showing an impedance of r + 1/sc, with r and c the nominal values, its physical re-
alization shows far more complicated behavior. To analyze this behavior, a detailed
model was computed using the SPACE layout to circuit extractor [25], employing
the boundary element method for the parasitic capacitances among all segments, and
a finite element method for the resistance. In this way, a discretized model with 109
nodes, 164 resistances and 734 capacitances was extracted.

This detailed circuit was reduced using both the EPR method, as well as using the
SNE method. Figure 4(b) shows some resulting networks, in particular for the EPR
method and for 2 different frequency settings of the SNE method. Also, Figure 5
shows the magnitude of its transadmittance for the full (unreduced) network, the re-
sult of the EPR procedure and for three different SNE frequencies. (Actually, note
that when the fs setting is low enough, the SNE method reduces to the EPR method.)
Clearly, the SNE method preserves the accuracy of the transadmittance until frequen-
cies at least as high as the specified fs. The phase response was not plotted since it
does not offer any additional insights over the magnitude response.

While the SNE method [7] aims at controlling the order and extend of node
elimination by quantification of the error associated with the second moment of the
impulse response, another technique called TICER was developed later in [21]. This
method does not directly refer to any moments, rather it defines for each node a
so called nodal time constant being the ratio of the total capacitance to the total
admittance attached to a node. While its original derivation was different, the method
can be understood by noting that the reactive term (the 1st order term) in Equation
(19) is negligible compared to the resistive term when sc<<

∑
i gi. Generalizing

for the case with multiple capacitors attached to the node and defining
∑

i ci as their
sum, we have the so-called quick node elimination rule of TICER: a node can be
eliminated when s

∑
i ci∑
i gi

<< 1, and the result is exactly the same network as implied
by the SNE method and as illustrated for a simple T-network in Figure 3.
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However, [21] does not mention any ordering of the elimination except for giving
preference to nodes of low degree. This would be advantageous from a CPU-time
perspective, but may not allow the largest reduction.

4 Elimination for Synthesis

Rather than complete or selective elimination while still requiring that the result
should be maintained as an RC circuit, it is also feasible to work with higher-order
expansions and have a subsequent realization step. Here, the requirements for real-
ization are a slightly relaxed as compared to the general realization problem, since
only 1-port admittances need to be synthesized with magnitude and phase behavior
specified as a function of s. Historically, the first of such techniques was presented
in [8], it represented the admittances as moment series in s. Later, reference [18]
presented a technique that uses rational functions for the higher order admittances,
which avoids the well known ill-conditioning problem of moment series. As such, it
would also be better suited for reduction of RLC circuits.

4.1 Reduction Using Moment Series

First, assume a single conductor in an RC network. Thus, all nodes are connected via
one or more resistances. Some nodes will be eliminated such that the result is exact
up to a user-specified order where each admittance is presented as a Taylor series
expression around s = 0. As in Figure 1 and Equation (3), Gaussian elimination
again produces admittances in the reduced network as

ykj =
ykyj∑

i yi
. (21)

However, now we take the admittances to be expressed as

y(s) = y(0) + y(1)s+ . . . =
∞∑

l=0

y(l)sl

where we use the superscript (i) notation rather than the subscript notation for con-
sistency with the other moment series expressions. Trivially, resistors and capacitors
in the original network correspond to such a series with respectively only the first
and second moment being non-zero. With (21) we get

∞∑
l=0

y
(l)
kj s

l =

∑∞
l=0

(∑l
p=0 y

(l)
i y

(l−p)
j

)
sl∑∞

l=0

(∑
i y

l
i

)
sl
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or
∞∑

l=0

(
l∑

p=0

y
(l)
i y

(l−p)
j

)
sl =

( ∞∑
l=0

y
(l)
kj s

l

)( ∞∑
l=0

(∑
i

yl
i

)
sl

)

=
∞∑

l=0

(
l∑

p=0

(
y
(p)
kj

∑
i

y
(p−l)
i

))
sl

(22)

The lth moment can be easily extracted, which is itself a sum over p running from 0
to l. This gives rise to a recursive procedure for y(l)

kj by separating-off the lth term in
the RHS. In this way, Equation (22) leads to

l∑
p=0

y
(l)
i y

(l−p)
j =

l−1∑
p=0

(
y
(p)
kj

∑
i

y
(p−l)
i

)
+ y

(l)
kj

∑
i

y
(0)
i

and reordering gives the following recursive expression for y(l)
kj :

y
(l)
kj =

l∑
p=0

y
(l)
i y

(l−p)
j −

l−1∑
p=0

(
y
(p)
kj

∑
i

y
(p−l)
i

)
∑

i y
(0)
i

(23)

Because we assumed that all nodes were resistively coupled, the denominator never
becomes zero. In fact, it is only required that each node to be deleted is connected
to at least one resistor. If that would not be the case, the recursion can be rewritten
to start at the first moment and the denominator would sum all capacitors attached to
the node [8].

Hence, the recursive procedure from Equation (23) can be used to eliminate all
internal nodes in a circuit, resulting in a reduced netlist where all connections are
generalized admittances expressed as a Taylor expansion of y(s). For practical pur-
poses, this expression is usually truncated at an order β as follows:

ykj =
β∑

l=0

y
(l)
kj s

l (24)

The zero and first order moments correspond to a parallel connection of a resis-
tor (of value 1/y(0)

kj ) and a capacitor (of value y(1)
kj ) respectively. The higher order

moments are non-physical. Therefore, it was proposed in [8] to subsequently trans-
form such admittances into a rational function using Padé matching. Then, time do-
main analysis would be possible after network synthesis, or using the inverse Laplace
transform.

However, moments based expressions are not well conditioned, and in fact
this method is suffering from disadvantages similar to those of the AWE method
[3, 17]. In particular, only a very small number of moments carry significant infor-
mation. Moreover, note that truncation of such a series, in general, may render it
unstable. In conclusion, this method is less interesting from a practical point of view.
See the next subsection for a more viable alternative.
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4.2 Reduction Using Rational Functions

In this subsection, an alternative method will be presented that is more difficult to
implement, but gives better results. This method was recently published in [18]. The
method processes the admittance functions in rational polynomial form:

y(s) =
∑α

i=0 nis
i∑α

j=0 djsj
(25)

This method performs model order reduction by truncating the numerator and
denominator polynomials at a certain degree, indicated by α in the equation above.
This is actually a proper truncation, in the sense that upon increasing α to α′ > α,
a more complex model will arise, but with the first α terms identical to that of the
order α model.

During the elimination, care has to be taken to cancel common factors in the nu-
merators and denominators from (25). This is necessary in order to avoid numerical
explosion of the coefficients. Such common factors between numerator and denom-
inator arise directly upon elimination of a node where all the admittances connected
to it have the same (common factor in the) denominator. These are referred to as Type
I common factors, and are relatively easy to detect and correct.

Furthermore, the method takes into account that there are also hidden common
factors between rational functions resulting from the elimination of neighboring
nodes. These are more difficult to detect, because they result in common factors
which appear explicitly in the denominator, but only implicitly in the numerator. The
method also identifies these common factors (referred to as Type II common factors)
and cancels them to keep the relevant data as clean as possible.

In [20], the common factor mechanism was illustrated with a simple example that
starts with an RC network as in Figure 1 with n = 3. The demonstration proceeds
by performing the elimination of node x as follows

y12 = y1y2
y1+y2+y3

= y1y2
Σ

y13 = y1y3
y1+y2+y3

= y1y3
Σ

y23 = y2y3
y1+y2+y3

= y2y3
Σ

(26)

We observe that y12, y13 and y23 share a common denominator y1 + y2 + y3, which
we will indicate withΣ for more convenient notation later on. The result of this elim-
ination step being a circuit with 3 nodes, we can, w.o.l.g., continue by eliminating
node 3 as well and we proceed in 2 steps. First, we calculate the elimination formula
for node 3:

y′12 =
y13y23

y13 + y23

Writing it out in full

y′12 =
y1y3

Σ · y2y3
Σ

y1y3
Σ + y2y3

Σ
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we observe that Σ is a common factor in both numerator and denominator, which
allows it to be canceled. In [18], this common factor is referred to as a Type I common
factor. After cancellation, the result is

y′12 =
y1y2y

2
3

Σ · (y1y3 + y2y3)

This result is then placed in parallel with the already existing admittance y12

y′′12 = y12 + y′12 =
y1y2

Σ
+

y1y2y
2
3

Σ · (y1y3 + y2y3)
(27)

Evaluating this expression, we arrive at

y′′12 =
y2
1y2y3 + y1y

2
2y3 + y1y2y

2
3

Σ · (y1y3 + y2y3)

which can then be rewritten as

y′′12 =
(y1 + y2 + y3) · (y1y2y3)

Σ · (y1y3 + y2y3)

Recall that y1 + y2 + y3 = Σ, which results in

y′′12 =
Σ · (y1y2y3)

Σ · (y1y3 + y2y3)
=

y1y2y3

y1y3 + y2y3
(28)

Here we observe that Σ also appears as a factor in the numerator, but only implicitly.
In [18], this common factor is referred to as a Type II common factor.

The fact that the Type II common factor occurs only implicitly in the numerator,
makes it harder to detect. Fortunately, it is known under which conditions it appears:
when 2 admittances connected to a node that is being eliminated share factors in
their denominator (viz. y13 and y23 in Equation (26)) and these same factors are
also present in the numerator of the existing admittance (viz. y12) with which the
resulting admittance will be placed in parallel (viz. Equation (27)), then these factors
will implicitly appear in the numerator of the final result (viz. y′′12 in Equation (28)).

When the elimination procedure has finished, the resulting rational function can-
not immediately be processed by a regular circuit simulator. Therefore, the method
synthesizes a network from the rational function through Brune synthesis [1] after
stabilization [19], because truncation does in general not preserve stability. Subse-
quently, the resulting network can be simulated with a circuit simulator.

4.3 Example

In this subsection, taken from [20], we will perform a frequency domain com-
parison of the methods from [8] and [18]. Consider the RC circuit of Figure 6,
representative for an integrated resistor. While a pure resistive behavior would be
the design goal, it actually suffers from capacitive parasitics that influence its high-
frequency characteristics.
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1kΩ
100fF

100aF

100aF

a b

Fig. 6. RC circuit with terminals a and b. Only 2 internal nodes are drawn, but the actual
circuit has 7 internal nodes; it contains 6 additional sections of the type drawn in dotted lines.
All resistors are 1kΩ, ground capacitances are 100fF and coupling capacitances are 100aF.
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Fig. 7. Magnitude of the transmittance between nodes a and b from Figure 6. Legend: Qi =
Qin ith order, EPi = Elias-Padé ith order, EM8 = Elias-Moment series 8th order

Figure 7 shows the magnitude of yab as a function of the frequency, obtained
by using the different methods. Here, the curve labeled Exact is obtained using a
Spice frequency domain sweep of the network in Figure 6. The curves labeled Qi

are obtained using the method from Qin and Cheng [18], with order (α in (25)) i.
The curve labeled EM8 is obtained by using the 8th order moments expansion in
Equation (24) (i.e. β = 8). The curves labeled EPi are from the i-th order Padé
approximations based on the EM8 result.

A discussion of these results is as follows.
It is clear that the moment expansion EM8 only has a limited range of accuracy.

Furthermore, it is only marginally better than a 6th order moments expansion (not
shown). This can actually be expected from the properties of moment representations
[3]. On the other hand, the good matching properties of the Padé technique for elec-
trical circuits, and RC circuits in particular, are obvious from the EP2 and EP3 curves.
While they are actually derived from the EM8 result, they match the exact result over
a greater frequency range. However, Q2 and Q3 are still better, while they actually
are of the same complexity as the EP2 and EP3 results, respectively.
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Fig. 8. Phase of the transmittance between nodes a and b from Figure 6. Legend: Qi = Qin ith
order, EPi = Elias-Padé ith order, EM8 = Elias-Moment series 8th order

Figure 8 shows the phase behavior. Here, the result is not so clear. The global
shape of the phase plot is better matched by the Qi curves than by the EPi curves,
while the latter actually follow the exact curve over a greater range.

4.4 Conclusion

In this section, we have compared two methods of producing higher order inter-
connect models using complete Gaussian elimination of all non-terminal nodes, and
using rational or moment based approximations (in s) of the resulting admittances.
In the frequency domain, the rational approximation approach seems to work bet-
ter. Furthermore, since the moments-based approach is in fact an expansion around
s = 0, it actually presupposes a low-pass character of the networks. However, as was
actually demonstrated in [18], reduction using rational functions is also capable of
reducing RLC networks rather than RC networks.

5 Computational Aspects

One of the most striking issues related to the performance of direct methods for solv-
ing systems of equations is that of elimination ordering. Consider Figure 9, where
the small dots are internal nodes to be eliminated and the large dots are port nodes
to be preserved. This figure illustrates 2 sequences of elimination, a partial sequence
where the center node with the highest degree is eliminated first, and a full sequence
where each time a node with the lowest degree is chosen to be eliminated. Clearly,
the latter sequence is better than the first one, because of the so-called fill-in cre-
ated from eliminating a high-degree node. When elimination of a high-degree node
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Fig. 9. Illustration of the effect of different elimination orderings.

produces fill-in, the subsequent steps also become more expensive. In general, the
elimination of a node with degree d takes O(d2) time and can produce O(d2) fill-in
branches.

Since the problem of computing an optimal elimination order is NP-complete
[30], heuristic methods are necessary. Indeed, many heuristics have been suggested
(see [6] for a summary and comparison) and one of the best heuristics for the type
of problems considered (i.e. symmetric, sparse and positive definite) is the minimum
degree heuristic [16,23]. With this heuristic, nodes are eliminated in order of ascend-
ing elimination degree d. Ties are broken arbitrarily.

In this respect, it can be noted that the EPR method from Section 3.2 as well as the
moment-based and rational-function based methods from Sections 4.1 and 4.2 would
allow optimized elimination orderings. However, the Selective Node Elimination
technique from Section 3.3 (or TICER [21], for that matter) does not allow such
ordering since the main ordering is on the error weight: nodes with a high error
weight should be eliminated before other nodes.

While some techniques indeed allow optimizing the elimination order, it would
be even more advantageous if these could be combined with the process of actually
computing the initial circuit. In fact, as soon as for a node all its neighbors are known,
a node can be eliminated. Doing so, a process which is called ‘on-the-fly’ reduction,
would be optimal in the number of nodes that resides in the core memory of the
computer. However, because of the fill-in associated with eliminating nodes of a
high degree, the actual memory requirements as well as CPU time could be much
higher than would be the case for the optimal elimination ordering. In general, the
order in which the nodes become available for elimination is not the same as their
optimal or near-optimal elimination ordering.
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For example, the SPACE layout to circuit extractor [25], generates the nodes
in an order that is determined by the scanline algorithm that processes the layout.
This scanline moves from left to right over the layout, and at each scanline stop the
scanline is traversed from bottom to top. During this scanline processing, all relevant
calculations are performed using as much as possible only the spatially localized
layout data.

With respect to optimizing the elimination order during on-the-fly generation and
reduction, reference [24] shows that a relatively short, fixed-length priority queue
of nodes ordered by their degree is sufficient to practically get the performance of
elimination in minimum-degree order. Each time when, during the build-up of the
detailed RC network, a node becomes ready for elimination (because it is an internal
node and all its neighbors are known), it is only inserted into the priority queue. If
the queue, which has a fixed size, would be full prior to insertion, first a node with
the lowest degree is removed from the queue and subjected to Gaussian elimination.
At the end, all remaining nodes in the queue are eliminated. This technique is called
Delayed Frontal Solution.

Figure 10(a) shows the effect of the length of the priority queue on the elimina-
tion degree d, a queue length of 0 means immediate elimination as soon as a node
becomes ready, increasing the queue size clearly reduces the average value of d. The
net effect of this on the total memory and CPU time is illustrated in Figure 10(b).
Evidently, a small queue size can already give a significant speedup and a slightly
reduced amount of total memory, while a large queue can give more than an order of
magnitude speedup at the cost of extra memory.

Additional techniques for speeding-up elimination-based MOR have been
presented in [29]. These techniques basically partition a problem into a number of
smaller problems to be solved independently, but another view on this is that they
eliminate fill-in between nodes from different sections. The technique is illustrated
in Figure 11; (a) shows a section of a layout while (b) shows the corresponding com-
bined rectangular/triangular mesh for resistance extraction using the Finite Element
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Fig. 10. Elimination degree frequency for a 1753 transistor chip while extracting all resistances
including well resistances for three different values of Qmax (a) and normalized computation
time and memory as a function of Qmax (b) [24].
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Fig. 11. Illustration of using equipotential lines to introduce articulation nodes in the resistance
network obtained from a FEM discretization.

method. A linear finite element mesh for the Laplace/Poison equation is actually
equivalent to a resistance network [15, 26], which can consequently be solved using
Gaussian Elimination.

The nodes of the resistance network are given by the bullets, while the thick
bullets are special and are called articulation nodes. These are not in the discretiza-
tion by nature, but are obtained from contracting two nodes that are on opposite
sides of this articulation node along the long side of a square conducting region. The
rationale for this is that the potential along a cross-section of the layout that is per-
pendicular to the current flow is constant. Such a situation is depicted in Figure 11(a).
If the ratio L/W is large enough, the current flow is perpendicular to the dotted line
joining the crosses. While a valid and accurate resistance network can be created by
putting mesh nodes at the location of the crosses with an edge (resistor) joining them,
these two nodes can be contracted without losing accuracy. Applying this technique
for each ‘long’ rectangle in Figure 11(a) would result in the articulation nodes of
Figure 11(b).

The significance of such articulation nodes lies in the fact that they can be elim-
inated after all the other nodes. (This can be nicely combined with the ordering by
degree by giving articulation nodes the lowest priority.) In that case, no fill-in can
be generated that spans two articulation groups or, from another viewpoint, each ar-
ticulation group can be solved independently with a very low cost of combining the
partial solutions. Hence, a O(Np) problem with p > 1 is replaced by m problems
of size O(N/m) for a complexity gain of O(m(p−1)). Also, if the maximum size of
each articulation group is bounded from above, the solution becomes linear in m and
hence in N (the problem size). This boundedness of the group size is actually very
often achieved or nearly achieved by nature of the typical IC interconnect geome-
tries. Additional articulation nodes can furthermore be generated if there is a large
difference between conductivity of connected interconnect segments [29].

Please note that Delayed Frontal Solution and Articulation Node Partitioning
ideally are combined. The result is shown in Figure 12, which clearly illustrates that
the elimination degree d is typically much lower when these techniques are applied.
The lower elimination degree causes a significant reduction in CPU time (more than
proportional) and memory.
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Fig. 12. Elimination degree frequency for a 1467 transistor design without using articulation
nodes (a) and when using equipotential lines and equipotential areas for introducing articula-
tion nodes (b) [29].

6 Conclusion

This chapter has focused on direct techniques for Model Order Reduction of RC
circuits. In particular, Gaussian Elimination, or equivalently, Y transformation, was
discussed.

One of the main strong points of direct techniques relates to what is called ‘on-
the-fly’ reduction as has been discussed in Section 5. In practice, such a technique
can drastically reduce the amount of circuit data to be stored for layout to circuit
extraction as compared to outputting a full, unreduced, netlist, enabling the handling
of much bigger designs using the same amount of disk storage. In many cases, the
amount of reduction achievable by direct techniques is sufficient for subsequent sim-
ulation, while the computation time for performing the reduction is

Additional advantages of direct (elimination-based) techniques for MOR include
performance - these techniques can exhibit linear or close to linear CPU time and
sub-linear memory requirements, as has been explained in Section 5. Also, in con-
trast to the projection-based techniques, these techniques do not have problems with
networks with many ports while simultaneously the realization problem is non-
existent or trivial.

In some cases, particularly when using the articulation node technique, the re-
sulting models preserve sparsity of the input. In other cases, sparsity is lost in theory
(e.g. the EPR technique produces a full graph network on the port nodes), but can be
easily restored using a heuristic simplification procedure. Such a procedure was not
discussed in this chapter, but it is implemented in the SPACE layout to circuit extrac-
tor [25]. Such heuristic procedures work by dropping or combining large shunt paths
or small series paths.

While the techniques that were developed in this chapter do seem to be very
useful on their own, please note that they can also work in combination with iterative,
projection based, techniques, for example as a pre-processing step.
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1 Extraction of the EM-FW State Models for Passive
Components

The models of passive components have to describe all relevant electromagnetic field
effects at high frequency encountered inside these devices. These effects are quanti-
fied by the Maxwell equations of the electromagnetic field in full wave (FW) regime.
Therefore, at the first level of approximation, the model of a passive device is defined
by an electromagnetic (EM) field problem, formulated by Maxwell partial differen-
tial equations with appropriate boundary and initial conditions. This problem defines
a consistent I/O system which has a unique response, described by the output signals,
for any input signal applied as terminal excitations. This system with distributed pa-
rameters has an infinite dimension state space, but a finite number of inputs and
outputs related to the device terminals.

The next level of approximation in the modeling process (Fig. 1) results by
applying a numerical method to discretize the continuous model defined above. This
step associates a simpler ODE to the original PDE model, actually a system of DAE.
It is an important step ahead, reducing the infinite dimensional state-space which is
specific to distributed systems to a finite one. However, the size of the state-space is
still too large for the designers needs. It has an order similar to the number of DOFs
associated to the cells, finite elements used to discretize the computational domain.
That is why a third step is necessary (Fig. 1), aiming to reduce this order, and to gen-
erate a “compact” model, e.g. a small SPICE circuit, which preserves the behaviour
of the passive component, from terminals point of view, for instance the input-output
relationship.

The basic equations used to model the electromagnetic field effects in any de-
vice without movement, including the integrated passive devices are the Maxwell
equations:
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Fig. 1. Three levels of abstraction for a component model and its corresponding equations.

curl H = J +
∂D
∂t

, (1)

curl E = −∂B
∂t

, (2)

div D = ρ, (3)
div B = 0. (4)

These equations have to be complemented with the constitutive equations, which
describe the material behaviour, from electromagnetic point of view. In the linear
and isotropic materials, these constitutive equations have the simplest form:

D = εE, (5)
B = µH, (6)
J = σE. (7)

The three material “constants” have nonnegative values, dependent on position:
ε(M), µ(M) and σ(M). Usually, these functions are constant on sub-domains, sep-
arated by discontinuity interfaces between homogeneous materials. The solutions of
these equations are the following “fields”: E(M, t), D(M, t), B(M, t), H(M, t),
J(M, t), ρ(M, t), vector or scalar functions of position (M ) and time (t). The cor-
rect formulation of the continuous field problem (1)÷(7) consists of the identification
of the appropriate boundary conditions able to allow the consistent field-circuit cou-
pling. To conclude, the extraction of reduced order models for passive components
requires the solution of the correct formulated EM field problem, particularly asso-
ciated to the concept of Electric Circuit Element defined below [IM99].

An Electric Circuit Element (ECE) is a simply connected domain bounded by a
fixed surface Σ comprising n′ disjoint parts S′

1, S
′
2, . . . S

′
n, called electric terminals

on which:

n · curl E(P, t) = 0 for (∀)P ∈ Σ, (8)
n · curl H(P, t) = 0 for (∀)P ∈ Σ − ∪S′

k, (9)
n × E(P, t) = 0 for (∀)P ∈ ∪S′

k, (10)

where n is the normal unitary vector of Σ in the point P (Fig. 2).
Condition (8) interdicts the inductive couplings through the device boundary,

between the domain and its environment. Condition (9) interdicts the conductive
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Fig. 2. ECE - Electric Circuit Element with multiple terminals.

and capacitive couplings through the device boundary, excepting for the electric
terminals. Condition (10) interdicts the variation of the electric potential over
every electric terminal, allowing the connection of the ECE terminals to the nodes
of any external electric circuit. With these boundary conditions, the interaction be-
tween ECE and the environment is completely described by 2n′ scalar variables, two
for each terminal: one current and one voltage.

• For each electric terminal k, its current is defined as the total current (conduc-
tion and displacement) flowing through it:

ik(t) =
∫

Γk

H · dr, (11)

where Γk = ∂S′
k is a closed curve, the boundary of the terminal surface S′

k. We
assume that Γk are oriented so that associated normal n of S′

k is inwards oriented.
Due to (9), the sum of all terminal currents is zero and KCL is a consequence.

• For each electric terminal k, its voltage is defined as the integral

vk(t) =
∫

Ck

E · dr (12)

along an arbitrary curve Ck, included in Σ which is a path between a point on S′
k and

a point on a reference terminal, let’s say S′
n. The condition (8) ensures the consistent

definition of the terminal voltage, its independence from the shape of Ck and KVL
as a consequence. The following uniqueness theorem is fundamental for the correct
formulation of the EM field problem with appropriate boundary conditions for the
models extraction [RTT66].

The electromagnetic power transferred by any ECE through its boundary from
outside to inside of it is given by the expression

P =
n′−1∑
k=1

vkik. (13)
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As a consequence, the EM field problem associated to an ECE with equations (1) ÷
(7), boundary conditions (8) ÷ (10), zero initial conditions, having some terminals
excited by known voltages and the rest by known currents has a unique field solution:
E(M, t), D(M, t), B(M, t), H(M, t), J(M, t), ρ(M, t), for (∀)M ∈ D, t > 0, and
therefore ECE has a unique response for a given arbitrary terminal excitations.

2 Finite States Representation by Finite Integrals Technique

The Manhattan geometry, characteristic to IC layout makes the Finite Integration
Technique (FIT) a suitable numerical method for electromagnetic field computation
in that kind of structures. FIT is a numerical method able to solve field problems
based on spatial discretization “without shape functions”. Two staggered orthogonal
(Yee type) grids are used as discretization mesh [CW01]. The centers of the primary
cells are the nodes of the secondary cells and the secondary grid is not extended
outside the primary grid. The degrees of freedom used by FIT are not local field
components as in FEM or in FDTD, but the global variables i.e. electric and mag-
netic voltages ue, um and magnetic and electric fluxes ϕ, ψ assigned to the grid
elements: edges and faces, respectively. They are associated to these grids elements
in a coherent manner (Fig. 3). Applying the global form of electromagnetic field
equations on the mesh elements (elementary faces and their borders), a system of
DAE, called Maxwell Grid Equations (MGE) is obtained:

curl E = −∂B
∂t

⇒
∫

Γ

E · dr = −
∫∫

SΓ

∂B
∂t

· dA ⇒ Cue = −dϕ

dt
(14)

↪→ div B = 0 ⇒
∫∫

Σ

B · dA = 0 ⇒ D′ϕ = 0 (15)

curl H = J+
∂D
∂t

⇒
∫

Γ

H ·dr =
∫∫

SΓ

(
J +

∂D
∂t

)
·dA ⇒ C′um = i+

dψ

dt
(16)

↪→ div D = ρ ⇒
∫∫

Σ

D · dA =
∫∫∫

DΣ

ρ dv ⇒ Dψ = q (17)

Fig. 3. Dofs for FIT numerical method in the two dual grids cells.
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↪→ div J = −∂ρ

∂t
⇒

∫∫
Σ

J · dA = −
∫∫∫

DΣ

∂ρ

∂t
dv ⇒ Di = −dq

dt
(18)

FIT combines MGE with the Hodge’s operators, which describe the material
behavior

B = µH, D = εE, J = σE ⇒
⇒ ϕ = Mµum = M−1

ν um, ψ = Mεue, i = Mσue. (19)

The main characteristics of the FIT method are:

• There is no discretization error in the MGE fundamental equations. All numerical
errors are hold by the discrete Hodge operators.

• An equivalent FIT circuit (Fig. 4), having MGE+Hodge as equations may be
easily build. The graphs of the two constituent mutually coupled sub-circuits are
exactly the two dual discretization grids; therefore the complexity of the equiva-
lent circuit has a linear order with respect to the number of grid-cells [ICR06a].

• MGE are:
– sparse, having maxim 6 non-zero entries per row,
– metric-free: C - the discrete-curl and D - the discrete-div operators have

only 0, +1 and -1 as entries,
– mimetic: in Maxwell equations curl and div operators are replaced by their

discrete counterparts C and D, and
– conservative: the discrete form of the discrete charge conservation equation

is a direct consequence of both Maxwell and as well as of the MGE equations.

Due to these characteristics the numerical solutions have no spurious modes.
The size of DOF vectors are:

• electric voltages ue equal to the number of branches in the primary grid Nb;

Fig. 4. Electric (left) and magnetic (right) equivalent FIT circuits.
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• magnetic voltages um equal to the number of branches in the secondary grid N ′
b;

• magnetic fluxes ϕ equal to the number of faces in the primary grid Nf ;
• electric fluxes ψ equal to the number of faces in the secondary grid N ′

f .

In order to avoid confusions with the capacitance matrix C for the circuit in Fig. 4, in
the rest of the paper the discrete-curl operator will be denoted by B. Actually, it is the
topological matrix of branches-loops incidence in the equivalent FIT electrical cir-
cuit, while the B′ matrix is branches-loops incidence in the equivalent FIT magnetic
circuit.

Details about how the elements of the matrices within MGE and Hodge operators
can be computed and stored are presented for instance in [ICR06a]. As an example,
typical expressions of Hodge operators are

Mσjk
=

1
lk

4∑
j=1

σjAj , (20)

Mνjk
=

1
Ak

2∑
j=1

lj
µj
, (21)

Mεjk
=

1
lk

4∑
j=1

εjAj , (22)

where A is the area and l is the length, as they are represented in Fig. 5.
Due to the fact that the elements of Hodge operators Mσ , Mν , Mε have di-

mensions of electric conductance, magnetic reluctance and electric capacitance, they
will be denoted by Ge, Rm = G−1

m , and Ce, respectively. With these notations, the
constitutive relationships become:

ϕ = Gmum, (23)

ψ = Ceue, (24)

i = Geue. (25)

Fig. 5. Discretization of the Hodge operators.
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With these new notations, the MGE relationships (14) and (16) become:

dϕ

dt
+ Bue = 0, (26)

dψ

dt
+ i − B′um = 0. (27)

By eliminating the flux vectors, similar equations to the equations of an electric cir-
cuit are obtained:

Gm
dum

dt
+ Bue = 0, (28)

Ce
due

dt
+ Geue − B′um = 0, (29)

with the following matrix representation:

C
dx
dt

+ Gx = 0,

where (30)

C =
[
Gm 0
0 Ce

]
, G =

[
0 B

−B′ Ge

]
, x =

[
um

ue

]
.

The system (30) is very sparse, each row of the matrix C containing no more
than one nonzero entry. By a suitable ordering of equations, the non-zero elements
may be placed on the diagonal position of matrix, all non-diagonal elements being
zero. The matrix G contains in each row no more than five nonzero elements: four
with integer values (two +1 and two -1) and a real non-negative number.

The system (30) of DAE is far to be the complete I/O state-representation of
our passive device, first of all, because the number of equations (E) is not equal to
the number of variables (V ). As a consequence, C and G are non-square matrices.
The number of equations in (30) E = Nf + N ′

f is equal to the total number of
elementary faces in both primary and secondary grids, while the number of variables
V = Nb +N ′

b is equal to the total number of branches in both primary and secondary
grids, therefore the size of both C and G matrices is (Nf +N ′

f ) × (Nb +N ′
b) with

E < V .
From the total number of electrical branches Nb, a number of NbB branches

are removed, corresponding to the branches placed on the boundary. The remaining
number of (Nb − NbB) branches is equal to the total number of the elementary
magnetic faces. Meanwhile, to each magnetic branch corresponds an electric face,
therefore without the electric boundary faces and branches, the number of equations
E′ = (Nf − NfB + N ′

f ) is equal to the number of state variables V ′ = (Nb −
NbB + N ′

b). Consequently, in this case, the deficit of equations in the system (30)
is equal to the number of border branches NbB . According to the Euler relation
NbB = (NnB − 1) + (NfB − 1) is equal to the number of the boundary nodes
excepting one plus the number of the boundary faces, excepting one. This deficit of
equations V ′ − E′ = NbB will be covered by the discrete form of the boundary
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conditions. The FIT discretization of the Maxwell equations frequently described in
literature does not explain the most difficult part of the algorithm, namely the set-up
of the appropriate boundary conditions and their discretization, without which it is
not possible to obtain a state space representation of the device, compatible with an
external electric circuit, to which the device is connected.

3 State Representation of the Boundary Conditions

The first ECE boundary condition (8):

n · curl E(P, t) =
dBn

dt
= 0 for (∀)P ∈ Σ, (31)

is automatically satisfied when the normal component of the magnetic flux density
is zero on the boundary. This happens naturally, because in our version of FIT there
are no branches of the secondary (magnetic) grid crossing the boundary of the com-
putational domain covered by the primary-electric grid. The discrete form of (31) is
represented by the KVL written on the (NfB − 1) boundary faces excepting one,
where the KVL is a consequence. Therefore (30) keeps its form with both C and
G matrices of size (Nf + N ′

f ) × (Nb + N ′
b), but with zero values for (NfB − 1)

diagonal entries of Gm.
The second ECE boundary condition (9):

n · curl H(P, t) = Jt = 0 for (∀)P ∈ Se = Σ − ∪S′
k, (32)

is satisfied when the normal component of the total current density (conduction plus
displacement) is zero on the device boundary Se, excepting on the device terminals.
As a consequence, no current will be injected from outside:

ik = 0, for any node k on Se. (33)

The third ECE boundary condition (10):

n × E(P, t) = 0 for (∀)P ∈ S′
1, S

′
2, . . . , S

′
n (34)

is satisfied if the electric voltages along any terminal branches is zero:

ueb = 0, for any branch b belonging to any terminal S′
k. (35)

All equations associated to the faces placed on terminals can be eliminated, re-
ducing the number of rows of matrices C and G. The voltages ueb (and the corre-
sponding columns of matrices C and G) can be eliminated from the set of the state
variables as well.

For terminals excited in current, the non-homogeneous boundary condition can
be expressed by means of Hodge operators as:
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iT k(t) =
∑

m∈S′
k

im =
∑

m∈S′
k

(
Cem

duem

dt
+Gem

uem

)
, (36)

where iT k(t) is the total current injected in the terminal k. The sum is done over all
electrical branches (belonging to the boundary or orthogonal to it) directly connected
to the terminal k. The matrix representation of (36) is:

SC
due

dt
+ SGue = iT , (37)

where iT is the vector of the excitation currents injected in terminals. Denoting by
S, the branch-terminal connexion matrix (each row, associated to a terminal has ele-
ments of values +1 or -1 in the columns corresponding to branches connected to that
terminal), we can write:

SC = SC′
e, SG = SG′

e, (38)

where C′
e and G′

e are square diagonal matrices of Hodge operators, with the size
equal to the total number of primary branches including those on boundary (size
of ue).

The boundary condition (33), can be written as (36) with zero left hand side. This
is equivalent to the extension of the matrix S, by adding a row for any node on the
boundary surface (excepting for the terminals). In this manner, the Kirchhoff current
law on all boundary nodes is imposed, excepting for the reference node, for which
KCL is a consequence. 0 By combining (30) with the boundary conditions (37) the
semi-state descriptor representation of the system associated to the passive integrated
component is obtained:

C
dx
dt

+ Gx = w, (39)

where

C =

⎡⎣Gm 0
0 Ce

0 SC

⎤⎦ , G =

⎡⎣ 0 B
−B′ Ge

0 SG

⎤⎦ , w =

⎡⎣ 0
0
iT

⎤⎦ = BiiT , (40)

with C and G square matrices and iT as the input vector of terminal excitation
currents. If instead of KCL (36) for the boundary nodes, the nodal equations (or the
equations of the tree voltages) are used, then the C matrix becomes a symmetric
positive definite one (and the state space becomes a minimal one).

In this final form of state equations, the following relaionships are also embedded
as it expected: the constitutive relations of all electric and magnetic branches,
Faraday and Ampere-Maxwell laws over all mesh-grid, Kirchhoff voltage and cur-
rent/flux laws in all nodes (in internal nodes as a consequence) and finally, the
terminal excitation conditions.

If all floating terminals of the device are current-excited, then the output sig-
nals are the electrical voltages of terminals:
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uT k =
∑

m∈Ck

uem
, (41)

where Ck is a set of branches which compose a path from the current terminal k to
the reference terminal. The matrix form of (41) is

uT = Suue, (42)

where uT is the system response and Su is the branch-to-path connection matrix
(+1 or -1 for boundary branches comprising the path). In conclusion, in the current-
excitation case, the complete LTI system is defined by semi-state equations (39) and
the output relations (42):

C
dx
dt

+ Gx = BiiT , (43)

uT = Suue,

with C and G given by (40). The transfer function of the MIMO system (43) is the
impedance matrix Z of the passive component.

In the case of voltage-excited components, (37) may describe the output and
(41) may describe the input relationships. However, there is still another representa-
tion of the voltage-excited device, as a standard LTI system, without time derivative
in the output equations. It is generated by the definition (11) of the terminal current.
The discrete form of this relationship is:

iT k(t) =
∑

m∈Γk

uem (44)

where Γk is a set of branches defining the contour of the terminal k. The matrix form
of (44) is

iT = Siue, (45)

where iT is the vector of response currents and Si is the branch-to-contours
connection matrix (+1 or -1 for boundary branches comprising the contour). In con-
clusion, when all device terminals are voltage-controlled, the complete LTI system
can be defined alternatively by the semi-state equations (39) with w = BuuT and
the output relations (45):

C
dx
dt

+ Gx = BuuT , (46)

iT = Siue,

with C and G given by (40), uT the vector of excitation voltages and iT the response
vector of terminal currents. The transfer function of the MIMO system (46) is the
admittance matrix Y of the device.

If the component is hybrid excited, the associated LTI system is defined by:

C
dx
dt

+ Gx = B′w, (47)

y = Lx,
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with

x =
[
um

ue

]
,w =

[
uT

′

iT ′′

]
,B′ =

[
B′

u 0
0 B′

i

]
,y =

[
i′T

uT
′′

]
,L =

[
Si 0
0 Sv

]
, (48)

where the matrices C, G, B′, L, input vector w and output vector y are defined
accordingly, by combining (43) and (46). Regardless the excitation mode, the state
variables are the voltages along the all electric and magnetic grid branches, excepting
those on terminals. The transfer function of the MIMO system (47) is the hybrid
matrix H of the passive component:

y = Hw = Lx = L (sC + G)−1 B′w ⇒
⇒ H = L (sC + G)−1 B′. (49)

If the first m out of total n terminals are controlled in voltage and the rest n−m are
controlled in current, the hybrid matrix has the following block structure:

H =
[
H11 H12

H21 H22

]
,y = Hw =

[
iT ′

uT
′′

]
=
[
H11 H12

H21 H22

] [
uT

′

iT ′′

]
(50)

where H11 = Y is the square admittance matrix of size m, H22 = Z the square
impedance matrix of size (n−m− 1), while H12 is the voltage transfer coefficient
and H21 is the current transfer coefficient. In the degenerate case, when m = 0, the
matrix H becomes the impedance matrix, and when m = n−1, then H becomes the
admittance matrix of the component. The number of inputs is equal to the number of
outputs. Each device terminal, excepting the reference terminal has either its voltage
or its current as an input scalar signal, and its current and respectively its voltage as
an output.

4 ROM WorkBench

The next step after the extraction of the state space model for passive components
is the order reduction. In order to decide which ROM technique is the most appro-
priate for this type of model, a new tool called ROM Workbench was conceived in
the frame of the FP6/IST/CODESTAR project [webb]. Its aim is to allow the user
to reduce models by means of as many ROM techniques as possible, and to com-
pare the results. The ROM Workbench consists of a set of benchmark problems, a
set of model order reduction methods and criteria for results evaluation and com-
parison. Fig. 6 shows the main blocks of the ROM Workbench. The models that
can be read in are of various types: linear time invariant systems given by state (or
semi-state) space matrices, frequency responses described by the variation of im-
pedance, admittance or scattering parameters with respect to the frequency, circuits
given as net-lists or transfer functions given by poles and residues. Once read into
the database of models, different actions can be carried out. The most important is
the reduction but other actions are also useful, such as conversions between different
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Fig. 6. Main blocks of the ROM Workbench.

types of representations, characterization/visualization of a system (plots or compu-
tation of lumped or line parameters, etc), or synthesis of the equivalent circuit. A
very important facility is that the systems can be compared, the comparison between
the original model and reduced models obtained from different reduction techniques
allowing one to decide which method performs best for a given problem.

The reduction can be carried out by means of various methods. These methods
include: explicit moment matching, Krylov subspace techniques [CPO02], Laguerre
techniques [KZ99], combined techniques (such as two step Lanczos, or Krylov based
followed by a truncated balanced reduction), and truncated balanced realization pro-
cedures [webc]. The vector fitting method proposed in [GS99], which finds the
transfer function matching a given frequency characteristic is included in the ROM
Workbench as an order reduction method.

The workbench is able to compare responses obtained for different systems. The
comparison can be carried out either on the time responses (step, impulse, etc.) or
on the frequency responses (Bode, Nyquist, Smith, etc). Lumped parameters, quality
factors or line parameters can also be compared.

The available measurements data for the tested devices are usually the scatter-
ing (S) parameters. That is why, in the results that follows the criteria used for
comparison is an error estimator based on the Frobenius norm ‖.‖F , computed as
rms‖Sref − San‖F /maxf‖Sref‖F , where Sref are the scattering parameters for the
reference system (for instance the measured data), and San are the scattering para-
meters of the analyzed system, for instance the reduced order model.

The first implementation of the ROM workbench was under Matlab, with GUI.
This implementation proved to be very useful, as a prototyping tool in the re-
search as well as for the educational purposes (see for instance the MOR course
http://www.win.tue.nl/casa/meetings/special/mor/). Other im-
plementations do not use any graphical interface at all, being appropriate for linking
the reduction step to the EM simulator, especially in the case of large scale problems
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that need high computational resources. For instance, in the CODESTAR project var-
ious tools of the ROM Workbench became stand alone programs using the MATLAB
Compiler Toolbox. Future versions of the ROM Workbench will include features re-
lated to parameterization, its further development being supported in the frame of the
CHAMELEON-RF project [weba].

5 All Levels Reduced Order Modelling

The ROM WorkBench procedures were applied to a series of test structures, relevant
to the Codestar project, which will be described in the next section. The reduced
order method which behaved best in these study cases was the one based on Vec-
tor Fitting [GS99]. Another important conclusion of the numerical experiments was
that a-posteriori order reduction is not enough effective, if it is not accompanied by
a-priori and on-the-fly reduced order techniques. The idea to apply any reduction as
soon as possible in the model extraction process lead to a strategy called ALROM -
All Levels Reduced Order Modeling [ICRS06], which basically uses the following
steps to model the passive components and interconnects:

A) Grid calibration. The minimal orthogonal grid necessary to define the ma-
terial sub-domains is successively refined, until the equivalent capacitances of the
passive component are accurate enough. The dual Finite Integration Technique
(dFIT) used to solve the electrostatic field equations and to extract the capacitances
provides lower and upper bounds of the exact solution [IRC04]. These bounds are
used to control the accuracy of the numerical solution by means of a multi-grid
approach.

B) Virtual boundary calibration. The computational domain is successively ex-
tended, until the inductance extracted by averaging the dual Neumann and Dirichlet
boundary conditions is accurate enough [ICR06b]. Actually, an Equivalent Layer
on the boundary of the computational domain is used to model the Open Boundary
of the magneto-static field. Choosing for the material constant of ELOB (Equivalent
Layer of Open Boundary) the magnetic relative permeability µr � 1, the scalar mag-
netic potential satisfies the Neumann boundary condition, while for µr = M ) 1
the potential satisfies the Dirichlet boundary condition. These two dual boundary
conditions are used to control the accuracy of the numerical solution because they
provide lower and upper bounds of the inductances extracted from the exact field
solution in the un-bounded domain.

C) Frequency analysis. By using the grid resulted in previous steps, after re-
fining and extension process, the frequency dependent matrix of the component is
computed in a minimal set of frequency samples, solving the linear complex system
(49), a FIT consequence of Maxwell equations. To build numerical scissors for the
exact solution, a practical approach we propose is to use the dual (complementary)
solutions, solving the Maxwell Grid Equations two times, and computing the admit-
tance matrix using the two dual-staggered grids and two type of boundary conditions,
for a sequence of frequency samples ω:
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• Yp(ω) is computed by FIT on the primary grid with ELOB parameters εr =
M ) 1, µr = 1;

• Ys(ω) is computed by FIT on the secondary grid with ELOB parameters εr = 1,
µr = M ) 1.

By averaging the two admittance, a numerical solution Ya(ω) = (Yp(ω) +
Ys(ω))/2 is generated, which provides a better accuracy than any of the two direct
extracted admittances Yp(ω) or Ys(ω), at least at low frequencies. In the case of in-
terconnects, the p.u.l. frequency dependent line parameters Zl(ω) = Rl(ω)+jLl(ω)
and Yl(ω) = Gl(ω) + jCl(ω) are extracted using a similar technique, but solving
the 2D EMQS equation of the TM field [ICRS06].

D) Length extension. This is an optional step, applied in the case of the TL
model for interconnects. The frequency characteristic Y(ω) of the real length line
is computed by transmission line equations in an extended set of adaptive frequency
samples, using an appropriate interpolation of p.u.l. parameters.

E) Optimal order of the compact model. In this algorithm step, the frequency
characteristic Y(ω) of the analyzed component is approximated by rational func-
tions using the Vector Fitting procedure [GS99] and then a SPICE equivalent cir-
cuit is synthesized by the Differential Equation Macromodel [PR04]. The couple of
these procedures is iterated, successively increasing the order of the extracted model.
Compact models of increasing order and their equivalent circuits are extracted and
simulated in the frequency domain with SPICE, until the result is close to Y(ω),
on the frequency range of interest. In this way, the compact model and its SPICE
equivalent circuit for the given components having an optimal order are generated.

F) Validation. Based on the results of the SPICE simulation in frequency
domain, the scattering parameters S(ω) are computed and compared with the
measurements, for a series of test structures, of practical interest - the Codestar
benchmarks, presented below.

The control of the solution accuracy plays a crucial role in a-priori order
reduction. Use of an optimal grid minimizes the number of required DOFs. By ex-
tending or refining more the optimal grid, the order of the macro-model generated by
discretization is increased, whereas by reducing the grid size the solution accuracy
becomes too low to be acceptable.

6 Test Structures

6.1 Meander Resistor (RPOLY2 ME Benchmark)

A semi-state space model for the meander on-chip resistor depicted in Fig. 7 has been
computed using the finite integration technique described above. For a grid having
368200 nodes, a macro-model having 19510 degrees of freedom has been obtained
using a-priori order reduction techniques.

After the computation of its frequency response on the range 1-20 GHz, a reduced
order model of order four was obtained using the vector fitting algorithm. This re-
duced model was then synthesized and the equivalent circuit thus obtained has been
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Fig. 7. Meander resistor benchmark.

Fig. 8. Relative error versus the order of the reduced system.

simulated with SPICE. The relative error of S parameters between the simulation of
the initial model and the reduced one is very low, about 0.16 %. The reduction time
was also very low, less than 1 second. Fig. 8 shows the relative error between the
macromodel and the reduced model for increasing order of the reduced system. Even
for very low orders, vector fitting was able to find accurate reduced models.

Fig. 9 shows the comparison between the measurements (real part of parameter
S11) and the simulation of the reduced order model. Fig. 10 shows the same compar-
ison for the extracted resistance.

6.2 Capacitor (CMIM Benchmark))

Another benchmark tested was a metal-insulator-metal capacitor (Fig. 11). A grid
having 833280 nodes have been used, conducing to a macro-model of order 29925.
The macro-model has been reduced to a model of order four, using the vector-fitting
algorithm. The relative error between the initial model and the reduced one is 0.2 %,
obtained in less than 1 second. The relative error between the measurements and the
reduced model is 3.75 %.
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Fig. 11. Capacitor benchmark.

Figs. 13 and 14 show the comparison between measurements (S12 real and imag-
inary parts) and simulation of reduced model. Fig. 12 shows the variation of the ex-
tracted capacitance with respect to the frequency.
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Fig. 12. Capacitance extracted from the simulation of initial model and of reduced model.
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6.3 SP-SMALL Benchmark

In the case of an inductor benchmark (Fig. 15), a grid having 596068 nodes generates
a macro-model of order 9614. This has been reduced also to a model of order four,
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Fig. 15. Inductor benchmark.
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Fig. 16. Extracted inductance: simulation of macromodel and reduced model.

using the vector-fitting algorithm. The relative error between the initial model and
the reduced one is 0.5 %, obtained in less than 1 second. Figs. 17 and 18 show the
comparison between the macro-model frequency response (S11 real and imaginary
parts) and simulation of reduced model. Fig. 16 shows the variation of the extracted
inductance with respect to the frequency.

6.4 Coplanar Line

A coplanar line discretized with a grid having 2866441 nodes generates a macro-
model of order 19972. The vector-fitting procedure was also the most successful
reduction procedure for this case, generating a reduced order model with ten degrees
of freedom, in less than 1 second. The error between the initial macro-model and
the reduced model is 1.3 %, for a frequency range 1-30 GHz. This corresponds to
a relative error between measurements and reduced order model of 5.5 %. Fig. 19
shows how the order increasing improves frequency response of the reduced order
model.
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Fig. 18. Parameter S11 - imaginary part.

Files corresponding to these four benchmarks (macromodels, reduced or-
der models and the measured frequency characteristics) may be found at
www.lmn.pub.ro/BookMOR.

7 Conclusions

The proposed strategy proved to be an efficient methodology for modeling and sim-
ulation of on-chip passive components.

An important step in the modeling process is represented by the correct formula-
tion of the EM field problem in mathematical terms. The proper boundary conditions
and the solution uniqueness theorem allow the consistent definition of a dynamical
system with distributed parameters. The next step is to reduce the system space-state
at a finite dimension, applying a numerical method. FIT was the numerical method
suitable for the class of integrated passive components. In order to extract the models
for these components as state-space representations the discrete form of the boundary
conditions plays a crucial role. The electric and magnetic voltages along the edges
of the dual FIT grids are the state variables of the model.
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Fig. 19. Comparison between measurements (admittance) and reduced order model: left fig-
ures: real parts for measurements and reduced models of order (from top to bottom) 2, 6, 10;
right figures - similar for imaginary parts.

When applying reduction procedures for a given model, an environment such as
the ROM Workbench is very useful due to its flexibility. It allowed us to conclude
that the vector fitting procedure is the best method to reduce electromagnetic full-
wave models of passive components considered as Codestar benchmarks. For this
class of problems, the reduction conduces to very low orders (less than 10) with an
extremely low computational effort (less than 1 sec), the relative error between the
simulation result and its reduced order model being less than 1.
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