
Lecture Notes in Computer Science 5045
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Peter Hertling Christoph M. Hoffmann
Wolfram Luther Nathalie Revol (Eds.)

Reliable Implementation
of Real NumberAlgorithms:
Theory and Practice

International Seminar
Dagstuhl Castle, Germany, January 8-13, 2006
Revised Papers

13

Volume Editors

Peter Hertling
Universität der Bundeswehr München
Fakultät für Informatik
85577 Neubiberg, Germany
E-mail: peter.hertling@unibw.de

Christoph M. Hoffmann
Purdue University
Department of Computer Science
West Lafayette, IN 47907-1398, USA
E-mail: cmh@cs.purdue.edu

Wolfram Luther
Universität Duisburg–Essen
Fakultät für Ingenieurwissenschaften
Abteilung Informatik und Angewandte Kognitionswissenschaft
47048 Duisburg, Germany
E-mail: luther@inf.uni-due.de

Nathalie Revol
École Normale Supérieure de Lyon
Laboratoire de l’Informatique du Parallélisme
Projet Arenaire
46, allée d’Italie, 69364 Lyon CEDEX 07, France
E-mail: Nathalie.Revol@ens-lyon.fr

Library of Congress Control Number: 2008932924

CR Subject Classification (1998): G.1, B.2, B.8, F.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-85520-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85520-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12513802 06/3180 5 4 3 2 1 0

Preface

A large amount of the capacity of today’s computers is used for computations
that can be described as computations involving real numbers. In this book,
the focus is on a problem arising particularly in real number computations: the
problem of verified or reliable computations. Since real numbers are objects con-
taining an infinite amount of information, they cannot be represented precisely
on a computer. This leads to the well-known problems caused by unverified im-
plementations of real number algorithms using finite precision. While this is tra-
ditionally seen to be a problem in numerical mathematics, there are also several
scientific communities in computer science that are dealing with this problem.

This book is a follow-up of the Dagstuhl Seminar 06021 on “Reliable Imple-
mentation of Real Number Algorithms: Theory and Practice,” which took place
January 8–13, 2006. It was intended to stimulate an exchange of ideas between
the different communities that deal with the problem of reliable implementation
of real number algorithms either from a theoretical or from a practical point of
view. Forty-eight researchers from many different countries and many different
disciplines gathered in the castle of Dagstuhl to exchange views and ideas, in a
relaxed atmosphere. The program consisted of 35 talks of 30 minutes each, and
of three evening sessions with additional presentations and discussions. There
were also lively discussions about different theoretical models and practical ap-
proaches for reliable real number computations. For a short description of the
full program of the seminar including a complete list of presentations at the
seminar the reader is referred to the Web page of the seminar on the website
http://www.dagstuhl.de/ of Schloss Dagstuhl. During the seminar, theories
and results concerning computability over the real numbers or just over the real
algebraic numbers were presented and discussed. Topics also included formal
proofs to gain an extra level of confidence in the quality of computed results,
be they computed with effective real numbers or with floating-point arithmetic.
Other discussions concerned software libraries, systems, and platforms: exploit-
ing the well-defined specifications of floating-point arithmetic to get accurate and
provable results, using interval arithmetic to obtain reliable results, or assessing
the quality of floating-point results. Another theme was computational geom-
etry and solid modeling, mainly as far as robustness is concerned, along with
proposed solutions. Note that in computational geometry the special problem
of implementing real number algorithms reliably is complicated by the interplay
of numerical predicates and hidden dependencies between them that arise from
geometry theorems that may not be known. This creates opportunities for in-
consistent decisions that lead to faulty data structures and, ultimately, to failure
of the computation.

We will now introduce the topics and results presented in the 12 articles in
this book. They are written by participants of the seminar, and most of them are

VI Preface

based on presentations at the Dagstuhl Seminar. They represent a cross-section
through the topics of the seminar. First, we describe two papers presenting
computability notions specially suited for geometric computations and results
concerning effective computations involving real algebraic numbers. These two
papers lead to computational geometry and solid modelling, which is treated in
five papers, one of them containing an overview and a critical discussion, and one
of them considering scientific visualization. Then we discuss three papers dealing
with software systems for reliable computations and with implementation issues.
They involve floating-point arithmetic or interval arithmetic or both. Finally, two
papers are concerned with applications. They present methods and algorithms
for solving real-world problems.

Computability and Complexity over Real Numbers and Real

Algebraic Numbers

One approach in computable analysis is to represent objects by bit streams
and to perform computations by Turing machines on such bit streams. Thus,
real numbers are represented in an approximating way. This leads to a notion
of computation which is quite closely related to constructive mathematics and
corresponds to reliable computation on a digital computer. An entirely different,
algebraic theory of computability and complexity over the real numbers is based
on the real random access machine model. The fundamental assumption in this
model is that elementary arithmetic operations as well as comparisons over the
real numbers can be performed in one step. In his contribution, C. Yap presents
a variant of the first approach in which it is possible to decide whether a given
number is equal to zero or not. This approach is based on the so-called Exact
Geometric Computation mode, which is encoded in several well-known libraries
for geometric computation such as LEDA, CGAL, and the Core library. C. Yap’s
paper addresses the problem to provide a theoretical foundation for the Exact
Geometric Computation mode of computation.

In the implementation of the Exact Geometric Computation mode and in
the implementation of algorithms in computational geometry in general, effec-
tive operations on real algebraic numbers play an important role. I.Z. Emiris,
B. Mourrain, and E.P. Tsigaridas analyze the bit complexity, that is, the com-
plexity in the Turing machine model, of several operations involving real al-
gebraic numbers. In particular, they consider real root isolation of univariate
integer polynomials, sign evaluation and comparison of real algebraic numbers,
and the problem of simultaneous inequalities. They give an overview of exist-
ing approaches and unify, simplify and improve them. In addition, they present
results of numerical experimentations using these algorithms.

Computational Geometry and Solid Modeling, Robustness Problems

D. Michelucci, J.M. Moreau, and S. Foufou give a critical survey of a number
of approaches for dealing with the robustness and inaccuracy problem in com-
putational geometry. Specifically, they compare the approach based on the idea

Preface VII

of Exact Geometric Computation, as explained in the paper by C. Yap, the use
of interval arithmetic, and either arithmetic or geometric probabilistic methods.
Their conclusion is that geometric probabilistic approaches, such as the sampling
of a surface or of a configuration space (for the motion planning problem) or
Monte-Carlo and ray-tracing methods prove to be simple, tractable with the
increasing power of computers, and robust.

Computational geometry is closely related to solid modeling. Geometric ob-
jects are often described by geometric data and by combinatorial data. Due to
imprecise geometric embeddings these data may become inconsistent. V. Shapiro
uses “inflated” representations, e.g., a segment is “thickened.” He argues that
usually it is assumed that the intended exact set is homotopy equivalent to a set
corresponding to the given approximate geometric data. He shows how sufficient
conditions for such a homotopy equivalence can be derived systematically from
the Nerve Theorem.

When the problem deals with boundaries of patches of a trimmed surface,
the inconsistency usually resides in the disjointness of the boundaries of the
representations of theoretically adjacent patches. Then, one aims at changing
the inconsistent boundaries to close and consistent boundaries. This is called
transfinite interpolation. N.F. Stewart and M. Zidani show how in the case of
sets defined by combined subdivision surfaces, one can use the Whitney extension
theorem for transfinite interpolation. They also give a bound on the deviation of
the normal vectors of the newly defined surface from the corresponding normal
vectors of patches contained in the original description of the surface.

The last two papers dealing with geometric or solid modeling address relia-
bility and accuracy issues. E. Dyllong uses a representation of objects by octrees,
using intervals for reliability. She presents an algorithm for the determination of
polyhedral convex enclosures of such objects, which is both fast and accurate.
Accuracy is obtained via the use of the accurate dot-product for the tests of
orientation and visibility.

The difficulties caused by imprecise computations due to finite precision
floating-point arithmetic increase when one switches from geometric modeling to
animations and scientific visualizations. L.E. Miller, E.L.F. Moore, T.J. Peters,
and A. Russell consider the problem of computing the minimal distance between
two curves. They propose an algorithm that is fast enough for interactive visu-
alization purposes. Their algorithm consists in sampling couples of points on
these two curves, in discarding quickly points that are not good candidates, and
in performing Newton’s method on the remaining pairs. For reliability reasons,
they also provide an algorithm that determines a lower bound on this minimal
distance, along with a guarantee on the quality of this lower bound.

Software Systems for Reliable Computations, Implementation Issues

The finite precision of floating-point arithmetic has been described repeatedly as
one of the reasons for the difficulties in numerical and geometric computation.
At least one wishes to have an implementation of floating-point arithmetic with

VIII Preface

correct rounding. In fact, in the IEEE 754-1985 standard for binary floating-
point arithmetic it is required that all four arithmetic operations and the square
root function are correctly rounded. In order to be able to round correctly f(x)
where f is an elementary function and x is a floating-point value, one needs to
evaluate f(x) with extra precision. V. Lefèvre, D. Stehlé, and P. Zimmermann
looked for the worst cases for correct rounding of the exponential function in the
IEEE 754r decimal64 format. In their contribution they describe this search and
their findings.

The subtleties of implementations of floating-point arithmetic are also impor-
tant in the contribution of B. Lambov. He is the author of the package RealLib
for fast computations over the real numbers with arbitrary precision. In his con-
tribution he presents an implementation of double precision interval arithmetic,
which is part of this package. The implementation makes efficient use of the
single-instruction-multiple-data SSE-2 instruction and register set extensions.
He describes the ideas needed to fit interval arithmetic to this set of instruc-
tions, compares the performance of this implementation with the performance
of other interval arithmetic packages, and discusses possible hardware extensions
that might significantly increase the performance of interval arithmetic.

G.F. Corliss, R.B. Kearfott, N. Nedialkov, J.D. Pryce, and S. Smith have
given themselves the mission to “gather, organize and make available” interval
software and libraries for developers that are not experts in interval arithmetic.
Their goal is to offer a library of interval tools that are seamlessly integrated
and that can solve a large variety of problems. Their paper gives an overview of
different aspects of this project. They discuss the planned overall structure of the
library, the planned mathematical basis of the library (containment sets), how
they plan to collect, organize, and integrate already existing work and to ask for
new contributions, and the software engineering methodologies they want to use
in order to ensure and improve the quality of the library. We wish them success!

Applications

The last two papers present methods and algorithms which have been developed
in order to solve real-life problems.

E. Auer, A. Rauh, E. P. Hofer, and W. Luther present a new method for
the integration of ODEs with initial value conditions, which yields a reliable
enclosure of the trajectory. This method is implemented in the ValEncIA-IVP

solver. This solver has been integrated into MOBILE, yielding the template-
based tool SmartMobile. The tool MOBILE enables the user to model me-
chanical systems by building them out of predefined components such as joints,
balls, etc. directly as executable programs that can simulate the behavior of
these systems. This behavior is governed by ODEs. The paper also discusses
possible strategies for reducing the overestimation which is due to the wrapping
effect in interval arithmetic.

Theproblemaddressed in the paper byS.Kempken andW.Luther is themodel-
ing of traffic in queuing and service networks. Usually a stochastic modeling

Preface IX

is used, based on semi-Markov processes. The goal is to determine characteristic
values for the considered network: probabilities and autocorrelation parameters.
The authors express the autocorrelation parameters as a sum of exponential terms
and then propose a method to obtain reliable and tight enclosures of the sought
parameters, via linear programming techniques to obtain the lower and upper end-
points of intervals, when applicable. They use these enclosures to study the tran-
sient and steady states and to compute the time required to reach the steady state,
i.e., the time where the transient state intersects the steady state.

The articles show that there are already many connections between the vari-
ous disciplines concerned with the reliable implementation of real number algo-
rithms. We believe that further cooperation and discussions between the different
communities will be fruitful for the reliable solution of numerical and geometric
problems.

Finally, we thank the participants of the Dagstuhl seminar for their talks and
discussions, the authors of the papers in this book for their contributions and
their cooperation in making this volume as accurate and readable as possible,
and the referees for their careful work. We thank also Alfred Hofmann, the
editor of the LNCS series of Springer, for making it possible to publish this
post-seminar volume in the LNCS series, and the people at Schloss Dagstuhl for
their hospitality and their great efficiency in organizing this seminar.

March 2008 Peter Hertling
Christoph M. Hoffmann

Wolfram Luther
Nathalie Revol

Table of Contents

Validated Modeling of Mechanical Systems with SmartMOBILE:
Improvement of Performance by ValEncIA-IVP . 1

Ekaterina Auer, Andreas Rauh, Eberhard P. Hofer, and

Wolfram Luther

Interval Subroutine Library Mission . 28
George F. Corliss, R. Baker Kearfott, Ned Nedialkov,

John D. Pryce, and Spencer Smith

Convex Polyhedral Enclosures of Interval-Based Hierarchical Object
Representations . 44

Eva Dyllong

Real Algebraic Numbers: Complexity Analysis and Experimentation 57
Ioannis Z. Emiris, Bernard Mourrain, and Elias P. Tsigaridas

Verified Methods in Stochastic Traffic Modelling . 83
Sebastian Kempken and Wolfram Luther

Interval Arithmetic Using SSE-2 . 102
Branimir Lambov

Worst Cases for the Exponential Function in the IEEE 754r decimal64
Format . 114

Vincent Lefèvre, Damien Stehlé, and Paul Zimmermann

Robustness and Randomness . 127
Dominique Michelucci, Jean Michel Moreau, and Sebti Foufou

Topological Neighborhoods for Spline Curves: Practice & Theory 149
Lance Edward Miller, Edward L.F. Moore, Thomas J. Peters, and

Alexander Russell

Homotopy Conditions for Tolerant Geometric Queries 162
Vadim Shapiro

Transfinite Interpolation for Well-Definition in Error Analysis in Solid
Modelling . 181

Neil F. Stewart and Malika Zidani

Theory of Real Computation According to EGC . 193
Chee Yap

Author Index . 239

Validated Modeling of Mechanical Systems with

SMARTMOBILE: Improvement of Performance by

VALENCIA-IVP

Ekaterina Auer1, Andreas Rauh2, Eberhard P. Hofer2, and Wolfram Luther1

1 Faculty of Engineering, IIIS
University of Duisburg-Essen
D-47048 Duisburg, Germany

{Auer, Luther}@inf.uni-due.de
2 Institute of Measurement, Control, and Microtechnology

University of Ulm
D-89069 Ulm, Germany

{Andreas.Rauh, EP.Hofer}@uni-ulm.de

Abstract. Computer simulations of real life processes can generate erroneous
results, in many cases due to the use of finite precision arithmetic. To ensure
correctness of the results obtained with the help of a computer, various kinds of
validating arithmetic and algorithms were developed. Their purpose is to provide
bounds in which the exact result is guaranteed to be contained. Verified modeling
of kinematics and dynamics of multibody systems is a challenging application
field for such methods, largely because of possible overestimation of the guaran-
teed bounds, leading to meaningless results.

In this paper, we discuss approaches to validated modeling of multibody sys-
tems and present a template-based tool SMARTMOBILE, which features the
possibility to choose an appropriate kind of arithmetic according to the model-
ing task. We consider different strategies for obtaining tight state enclosures in
SMARTMOBILE including improvements in the underlying data types (Taylor
models), modeling elements (rotation error reduction), and focus on enhancement
through the choice of initial value problem solvers (VALENCIA-IVP).

1 Introduction

Modeling and simulation of kinematics and dynamics of mechanical systems is un-
avoidable in many branches of modern industry and applied science, whether in a crane
manufacturing firm, where the behavior of a new crane has to be simulated, or at a space
exploration institute, where parameters of planets have to be obtained. During the last
decades, computer assisted solutions gained in importance. Computers help to reduce
the design and development time for new products and to substitute low cost "virtual"
tests for expensive experiments on real life prototypes. Besides, various types of mod-
eling and simulation software (MSS) have found a market in industry owing to their
ability to generate models from systems’ descriptions automatically.

P. Hertling et al. (Eds.): Real Number Algorithms, LNCS 5045, pp. 1–27, 2008.
© Springer-Verlag Berlin Heidelberg 2008

2 E. Auer et al.

In this article, we restrict the discussion to computer generated models that consist
of systems of differential or algebraic equations (or, in more complicated cases, both).
Modern modeling tools solve these equations with the help of floating point algorithms
implementing explicit or implicit methods, such as Runge–Kutta methods. However,
the computed results can be unreliable due to errors that are unavoidably generated
by numerical solvers of differential and algebraic systems. Furthermore, inaccuracy is
induced by idealization and order reduction of system models and not exactly known
parameters. This forces developers of modeling software to look for more reliable op-
tions, one of which is the use of validated1 algorithms. Examples are interval and Tay-
lor model arithmetics. The main reasons for choosing a validated approach are, first,
the guaranteed correctness of results and, second, the ability to allow for uncertainty in
parameters, which helps to provide more realistic models or take into account measure-
ment errors.

In [AKTT04, Aue07], we have already reported on an integrated tool for validated
modeling and simulation of kinematics and dynamics of mechanical systems, namely
SMARTMOBILE (Simulation and modeling of dynamics in MOBILE: reliable and
template-based) based on the open source non-validated MSS MOBILE. The former
program is able to verify the properties of different kinds of systems including explicitly
time-dependent and closed-loop ones by using interval arithmetic from PROFIL/BIAS
and an interval IVP solver based on VNODE [Ned02]. Both tools will be described
later. However, SMARTMOBILE is affected by certain disadvantages of validated arith-
metic. First, validated computations are characterized by higher computational effort
than their floating point counterparts. Second, the "naive" use can lead to considerable
overestimation, making the results unusable. In this paper, we focus on possible strate-
gies to cope with the latter difficulty.

One of the possible approaches to reducing overestimation might be the use of
another initial value problem (IVP) solver, which performs better in the context of
SMARTMOBILE, instead of VNODE. The recently developed solver VALENCIA-
IVP2 (VALidation of state ENClosures using Interval Arithmetic for Initial Value
Problems) [RHA06] provides such an opportunity. Therefore, the second focus of this
paper is the description of this solver and its implementation in SMARTMOBILE.

The paper is structured as follows. First, the validated methods employed in SMART-
MOBILE are reviewed in Section 2. The algorithm of the newly developed solver
VALENCIA-IVP is presented in detail. In Section 3, we consider general approaches
to validation of MSS and the example of validating MOBILE. For this purpose, the de-
scription of the main features of MOBILE and its verifying version SMARTMOBILE
is necessary. In Section 4, we discuss strategies for overestimation reduction in the lat-
ter tool including rotation error elimination, employment of Taylor models, and the use
of the above mentioned VALENCIA-IVP. Finally, the main results are summarized in
Section 5.

1 In this article, the commonly used terms validated, guaranteed, verified, and reliable are used
interchangeably to denote the fact that the results are mathematically (and not empirically)
proven to be correct.

2 Further information about VALENCIA-IVP and free software are available at http://www.
valencia-ivp.com

http://www.
valencia-ivp.com

Validated Modeling of Mechanical Systems with SMARTMOBILE 3

2 Validated Methods to Solve Initial Value Problems

In this Section, we describe several techniques for validated simulation of continuous-
time systems used in SMARTMOBILE for modeling and analysis of multibody sys-
tems. First, the class of the considered problems is defined. Then, fundamentals such as
validated arithmetics and algorithmic differentiation are referenced. Finally, we concen-
trate on interval IVP solvers, and especially on the newly developed VALENCIA-IVP.

2.1 Considered Initial Value Problems

Throughout this Section, IVPs given by sets of nonlinear ordinary differential equations
(ODEs)

ẋs (t) = fs

(
xs (t) , p(t) ,t

)
(1)

are studied. These nonlinear ODEs (1) are assumed to be given in state-space repre-
sentation, where xs ∈ Rns is the state vector, and p ∈ Rnp is a vector of uncertain and
possibly time-varying system parameters.

Exact initial values of the state variables xs are assumed to be unknown. However,
guaranteed bounds for these initial states are given according to

xs (t0) ∈
[
x0

s

]
, (2)

where t0 = 0 without loss of generality. The uncertainties of the initial states are denoted
by

[
x0

s

]
=

[
x0

s ; x0
s

]
; the parameter uncertainties are denoted by [p(t)] =

[
p(t) ; p(t)

]
,

resp. In this notation, underlined variables denote lower interval bounds (infima) of all
components of the corresponding vector, while overlined variables denote upper bounds
(suprema).

In the case of time-varying parameters p(t), their dynamics is assumed to be given
in state-space representation

ṗ(t) = ∆ p(t) , (3)

where both p(t) and ∆ p(t) might be bounded. If the variation rates ∆ p(t) of the system
parameters are unknown, inf([∆ p(t)]) and sup([∆ p(t)]) are infinite. For time-invariant
parameters, i.e., if p(t) = const, the relation ∆ p(t) = 0 holds.

Since both dynamical models for ẋs (t) and ṗ(t) can be combined to a single set of
ODEs

ẋ(t) = f (x(t) , t) , (4)

the discussion is restricted to the case of uncertain initial states after definition of an
extended state vector x(t) =

[
xT

s (t) ; pT (t)
]T

with x(t) ∈ Rn, n = ns + np. Extension
to interval uncertainties of the system parameters is straightforward and therefore is
omitted here. In the case of time-invariant state equations, the notation (4) is abbreviated
by ẋ(t) = f (x(t)).

Note that the structure of the considered dynamical systems may be explicitly time-
varying. Such time-varying system models are of great importance in engineering. Typ-
ical applications are switchings between different control strategies for the transient
behavior after setting a system into operation, for controlling the system near its steady
state operating conditions, and modeling of mechanical systems with variable degrees
of freedom. Since switching points are often state-dependent and therefore unknown

4 E. Auer et al.

a priori, these models might violate the assumptions for applicability of the validated
solvers which are used to determine enclosures [x(t)] containing all reachable states for
t ∈ [0 ; T], T ≥ 0. Extensions of the simulation techniques which are applicable for sys-
tems with state-dependent switchings are described in [NvM02, Rih93, RKAH06] and
the citations therein.

2.2 Interval and Taylor Model Arithmetics

Most validated techniques for solving IVPs rely on interval arithmetic [JKDW01]. In-
tervals describe real numbers, in general not exactly representable by floating point
values, by defining the lower and upper bounds of the exact number in floating point
arithmetic. Employing the concept of directed rounding [Soc85], one can obtain a ver-
ified enclosure of the exact result on a computer. A summary of the basic properties
and definitions of interval arithmetic can be found in [JKDW01]. Numerous pack-
ages implement interval arithmetic, for example, PROFIL/BIAS [Knü94] or INT-
LAB [Rum99a, Rum99b]. These packages provide validated evaluation of algebraic
expressions, basic functions such as trigonometric, exponential, or logarithmic ones,
and matrix-vector-computations.

Another example of a validated arithmetic is a Taylor model-based one [RMB05]. A
Taylor model of a function according to Berz is a high order polynomial approximation
to its Taylor series expansion with floating point polynomial coefficients and an interval
remainder term. This arithmetic is also called remainder-enhanced differential algebra
(RDA). The idea is implemented in the package COSY INFINITY [BM02]. A detailed
survey of Taylor forms and models can be found in [Neu02].

2.3 Algorithmic Differentiation

Since computation of derivatives is essential in many interval arithmetic algorithms
such as those implemented in the validated IVP solvers VNODE or VALENCIA-IVP,
automatic differentiation is extremely important. The task of algorithmic differentia-
tion [Gri00], a variant of automatic differentiation, consists in finding derivatives of
first and higher orders of a function f under the assumption that an analytic formula or
a closed-form expression for f are unknown, but that the inner structure of f is made
available through a computer program.

With the help of the operator overloading technique for algorithmic differentiation,
which is for example implemented in FADBAD/TADIFF [BS96, BS97], derivatives
of arithmetic expressions can be computed directly from their source code. In general,
forward and backward approaches as well as the computation of Taylor coefficients can
be distinguished [BS96].

2.4 Interval Solvers for Initial Value Problems: VNODE and VALENCIA-IVP

In the following, algorithmic details of the two selected validated IVP solvers
VNODE and VALENCIA-IVP are summarized. In this description, the focus is on
VALENCIA-IVP.

VNODE. The IVP solver VNODE uses PROFIL/BIAS to handle elementary rou-
tines for interval arithmetic computations. As most other solvers relying on interval

Validated Modeling of Mechanical Systems with SMARTMOBILE 5

arithmetic, VNODE is based on discretization of the time span, which is considered
for simulation of the dynamical system.

Denote the solution with the initial condition x(tk−1) = xk−1 by x(t; tk−1,xk−1) and
the set of solutions {x(t;tk−1,xk−1) | xk−1 ∈ [xk−1]} by x(t;tk−1, [xk−1]). The goal of
VNODE is to find interval vectors [xk] for which the relation x(tk; t0, [x0]) ⊆ [xk], k =
1, . . . ,L, holds.

The kth time step consists of two stages [Ned99] (simplified):

1. Proof of existence and uniqueness. Compute a step size hk−1 and an a priori enclo-
sure [x̃k−1] of the solution such that
(i) x(t; tk−1,xk−1) is guaranteed to exist for all t ∈ [tk−1;tk] and all xk−1 ∈ [xk−1],

(ii) the set of solutions x(t;tk−1, [xk−1]) is a subset of [x̃k−1] for all t ∈ [tk−1; tk].
In the first stage of VNODE, Banach’s fixed-point theorem is applied to the Pi-
card iteration. (The Picard iteration is discussed in more detail in the description of
VALENCIA-IVP in formula (7).)

2. Computation of the solution. Compute a tight enclosure [xk] ⊆ [x̃k−1] of the solution
of the IVP such that x(tk; t0, [x0]) ⊆ [xk]. The usual approach here is to compute the
enclosure [xk] from the enclosure [xk−1] at the previous step, accurately taking into
account the discretization error. The prevailing algorithm is as follows.

2.1. Choose a one-step method

x(t; tk,xk) = x(t;tk−1,xk−1)+ hk−1ϕ(x(t;tk−1,xk−1))+ zk ,

where ϕ (·) is an appropriate method function, and zk is the local error which takes
into account discretization effects. The usual choice for ϕ (·) is a Taylor series
expansion.

2.2. Find an enclosure for the local error zk. For the Taylor series expansion of order
q − 1, this enclosure is obtained as [zk] = h

q

k−1 f [q]([x̃k−1]), where f [q]([x̃k−1]) is
an enclosure of the q-th Taylor coefficient of the solution over the state enclosure
[x̃k−1] determined by the Picard iteration in Stage One. Usually q > 1 is chosen.

2.3. Compute a tight enclosure of the solution. If mean-value evaluation for comput-
ing the enclosures of the ranges of f [i]([xk]), i = 1, ...,q − 1, instead of the direct
evaluation of f [i]([xk]) is used, tighter enclosures can be obtained.
The so-called direct Taylor series method naively implements this idea, which over-
estimates the enclosure considerably in most cases. To reduce the overestimation,
non-orthogonal (parallelepiped) or orthogonal (QR-factorization) coordinate trans-
formations can be used [Loh01].

This approach to validated integration requires computation of Taylor coefficients
and Jacobians. For this purpose, VNODE uses the algorithmic differentiation libraries
FADBAD and TADIFF mentioned earlier. This solver validates the existence and unique-
ness of the solution by the Taylor series method at Stage One and offers a choice
between the interval Taylor series method with QR-factorization and the interval Hermite-
Obreschkoff method [Ned99] at Stage Two. The user can select either a constant or a
variable step size control strategy; only the constant order control strategy is supplied by
VNODE so far. Note that further algorithms for Stages One and Two as well as further
step size and order control strategies can be easily added to the core of this object oriented
solver.

6 E. Auer et al.

ValEncIA-IVP. In contrast to other validated techniques such as VNODE or COSY VI
(cf. Subsection 2.5), VALENCIA-IVP [RHA06] aims at calculation of validated
enclosures

[xencl (t)] = xapp (t)+ [R(t)] (5)

of the solution x(t) of IVPs (4). As already mentioned in Subsection 2.1, the consid-
ered system models can contain both uncertain parameters and uncertain initial condi-
tions. The enclosures (5) are assumed to consist of a non-validated approximate solution
xapp (t) and guaranteed error bounds [R(t)].

In general, two practically relevant possibilities for computation of the approximate
solution xapp (t) exist. First, xapp (t) can be calculated analytically using an appropriate
easy-to-solve reference system. Usually, such reference systems are obtained by lin-
earization of the considered nonlinear state equations and can be further improved by
suitable perturbation techniques [RHA06]. Second, arbitrary non-validated numerical
techniques for the solution of IVPs can be applied to compute approximate solutions
xapp (t). Since the approximation quality and the effort for obtaining the approximate
solutions strongly depend upon the dimension, complexity, and structure of the consid-
ered system, there are no general recommendations which of these two procedures is
to be preferred. However, numerical reference solutions are advantageous if solvers for
IVPs given by algorithmic representations — as they are considered in this paper, cf.
Section 3 — are desired.

The term [R(t)] in definition (5) is a vector of unknown interval enclosures of the ap-
proximation error for each component of the state vector. Tight bounds of this additive
correction term are obtained by an iteration scheme based on applying Banach’s fixed-
point theorem to the ODE (4) after substituting (5) for x(t) on both sides. Advanced
interval techniques such as mean-value rule evaluation and monotonicity tests are used
to reduce the influence of overestimation during calculation of the error bounds. The ex-
act procedure and the C++ implementation of VALENCIA-IVP using PROFIL/BIAS
and FADBAD are discussed below.

In contrast to the previously summarized techniques, existence and continuity of only
the first derivative of the state equation f with respect to all states, parameters, and the
time variable t is required, i.e., f : D �→ Rn, D ⊂ Rn × R1 open,
f ∈ C1(D,Rn). Hence, application of VALENCIA-IVP is generally advantageous if
the state equations are not highly differentiable.

Iteration Scheme and Proof for Conservativeness of the Resulting Enclosures. A con-
stituent of most interval techniques to enclose the solution of IVPs is the integration of
a set of ODEs ẋ(t) = f (x(t) , t) on a finite time interval [0 ; T] according to

x(t) = x(0)+

t∫

0

f (x(τ) ,τ)dτ ⊆ x(0)+[0 ; t] · f ([B] , [0 ; t]) with t ∈ [0 ; T] . (6)

In (6), the interval [B] is a bounding box enclosing all reachable states in the considered
time interval [0 ; t], which is usually computed by the Picard iteration

[
B(κ+1)

]
=

[
x0]+[0 ; t] · f

([
B(κ)

]
, [0 ; t]

)
. (7)

Validated Modeling of Mechanical Systems with SMARTMOBILE 7

Here, the superscript (κ) denotes the number of the iteration step. The iteration for

computation of the bounding box is initialized with
[
B(0)

]
=

[
x0

]
. If the complete time

interval is considered as a special case, t has to be replaced by T in (7). The interval of

the initial guess for
[
B(0)

]
is widened as long as

[
B(1)

]
�⊆

[
B(0)

]
. If

[
B(1)

]
⊆

[
B(0)

]
,

(7) is evaluated until
[
B(κ+1)

]
≈

[
B(κ)

]
. If this iteration does not converge, or if the

resulting bounding box is inacceptably large, the width of the considered time interval
has to be reduced [DJvH02]. The maximum possible step size in the calculation of the
bounding box is limited by the step size for which validated explicit Euler techniques
converge. Almost all information about the dynamical behavior of the considered sys-
tem is neglected by the assumption of constant interval bounds [B].

In VALENCIA-IVP, the bounding box [B] is no longer assumed to be constant as in
the above-mentioned basic idea. The bounding box is replaced by a time-varying state
enclosure (5) with unknown error terms [R(t)].

Theorem 1. Let ẋ(t) = f (x(t) ,t) be an IVP with x(0) ∈
[
x0

]
and t ∈ [0 ; T], where

f : D �→ Rn, D ⊂ Rn ×R1 open, f ∈ C1(D,Rn). Then, all states which are reachable at

the point of time t are enclosed by [xencl (t)] = xapp (t)+ [R(t)] as defined in (5), where

[R(t)] is computed by the two-step procedure given below.

First, an interval enclosure of all possible time derivatives
[
Ṙ(t)

]
of the error term

is computed by the iteration formula
[
Ṙ(κ+1) (t)

]
= −ẋapp (t)+ f

([
x
(κ)
encl (t)

]
,t

)

= −ẋapp (t)+ f
(

xapp (t)+
[
R(κ) (t)

]
,t

)

=: r

([
R(κ) (t)

]
,t

)
.

(8)

This iteration converges to a verified enclosure of
[
Ṙ(t)

]
if

[
Ṙ(κ+1) (t)

]
⊆

[
Ṙ(κ) (t)

]
.

The iteration (8) is continued until
[
Ṙ(κ+1) (t)

]
≈

[
Ṙ(κ) (t)

]
.

Second, verified integration of

[
Ṙ(κ+1) (t)

]
with respect to time according to

[
R(κ+1) (t)

]
⊆

[
R(κ+1) (0)

]
+

t∫

0

[
Ṙ(κ+1) (τ)

]
dτ

=
[
R(κ+1) (0)

]
+

t∫

0

r
([

R(κ) (τ)
]
,τ

)
dτ , or

[
R(κ+1) (t)

]
⊆

[
R(κ+1) (0)

]
+ t · r

([
R(κ) ([0 ; t])

]
, [0 ; t]

)
, 0 ≤ t ≤ T ,

(9)

is performed to determine the interval bounds of
[
R(κ+1) (t)

]
. In the iteration for-

mula (8), the right hand side of the set of differential equations is evaluated for the

validated state enclosure
[
x
(κ)
encl (t)

]
of the considered IVP in each iteration step κ which

is obtained by

8 E. Auer et al.

[
x
(κ)
encl (t)

]
= xapp (t)+

[
R(κ) (t)

]
. (10)

�

Proof. Using the Picard iteration (7), a bounding box [B] of all states which are reach-
able in the time interval t ∈ [0 ; T] can be determined according to Banach’s fixed-point
theorem. Substituting [xencl] for the bounding box [B] on both sides of (7) leads to

[
x
(κ+1)
encl ([0 ; T])

]
=

[
x0]+[0 ; T] · f

([
x
(κ)
encl ([0 ; T])

]
, [0 ; T]

)
. (11)

Let the approximation error in (5) be defined by

[R([0 ; T])] := [R(0)]+ [0 ; T] ·
[
Ṙ([0 ; T])

]
, (12)

where
[
Ṙ([0 ; T])

]
is a conservative interval enclosure of all possible time derivatives

in the considered time interval. Then, the iteration formula (11) is equivalent to

xapp ([0 ; T])+
[
R(κ+1) ([0 ; T])

]
=

[
x0]+[0 ; T] · f

([
x
(κ)
encl ([0 ; T])

]
, [0 ; T]

)
. (13)

According to definition (12),
[
Ṙ(κ+1) ([0 ; T])

]
is a guaranteed interval enclosure of

all possible time derivatives of
[
R(κ+1) ([0 ; T])

]
in the time interval [0 ; T]. Analo-

gously, f
([

x
(κ)
encl ([0 ; T])

]
, [0 ; T]

)
includes the time derivative of the right hand side

of (13). Therefore, differentiation with respect to time on both sides of (13) gives

ẋapp ([0 ; T])+
[
Ṙ(κ+1) ([0 ; T])

]
= f

([
x
(κ)
encl ([0 ; T])

]
, [0 ; T]

)
. (14)

Solving for
[
Ṙ(κ+1)

]
leads directly to the iteration formula (8). Finally, evaluation of

the sum of the approximate solution xapp (t) and the bounds of the approximation error
using outward rounding of the resulting interval provides a verified state enclosure of
the solution of the considered IVP. �

The quality of the interval enclosures is influenced by two factors.

1. The initial approximation xapp (t) in the complete time interval. Smaller deviations
between the unknown exact solution and its initial approximation lead to tighter
enclosures of the solution over a longer time span with less computational effort.

2. The time span. Tighter bounds can be obtained by subdivision of the time span
[0 ; T]. This improves convergence of the iteration formula (8) and additionally
leads to smaller interval bounds; see also Step 3 in the following description of the
algorithm.

In contrast to other validated techniques, we do not perform series expansions of
the solution of the IVP, for which guaranteed error bounds of the discretization errors
have to be determined; cf. interval Taylor series or interval Hermite-Obreschkoff meth-
ods implemented in VNODE. Hence, calculation of discretization error bounds via the

Validated Modeling of Mechanical Systems with SMARTMOBILE 9

local errors mentioned in the description of VNODE is not necessary in VALENCIA-
IVP. The interval enclosure of [R] can be obtained by applying the iteration formula (8).
Note that it could also be obtained by applying any other validated ODE solver to the
differential equation

Ṙ(t) = −ẋapp (t)+ f
(
xapp (t)+ R(t) ,t

)
(15)

for the approximation errors which can be obtained by substituting (5) for x(t) in (4).

Algorithm. In the following, the key components of VALENCIA-IVP are discussed.

Step 1: Calculation of Reference Solutions

As already pointed out, two possibilities for computation of reference solutions
are implemented in VALENCIA-IVP, namely both calculation of analytical and
numerical approximations of the solution of the considered IVP.

Analytical Reference Solution: An approximate reference solution of an appropriate
linear IVP

ẋapp (t) = flin (xapp (t)) with x0
app = xapp (0) = mid

([
x0]) =

1
2

(
x0 + x0) (16)

with the same dimension as the original system is calculated. Usually, linearization
of the original system and replacement or neglection of nonlinear terms are used to
solve the resulting system analytically. The reference solution can be improved by
perturbation techniques, for which the state equation (4) is rewritten as a perturbed
linear system

ẋ(t) = (1 − ε) · flin (x(t))+ ε · f (x(t) ,t) = fε (x(t) ,t,ε) with ε ∈ [0 ; 1] .
(17)

The system (17) is linear for ε = 0 and is equal to the original nonlinear system
for ε = 1 [Kha02]. For appropriately chosen, but yet unknown function vectors
[R(t)] ∈ Rn for the approximation error, the solution of the IVP is enclosed by

[xencl (t)] =
m

∑
j=0

(
ε jyapp, j (t)

)
+[R(t)] = xapp (t)+ [R(t)] with

[ẋencl (t)] =
m

∑
j=0

(
ε j ẏapp, j (t)

)
+

[
Ṙ(t)

]
= ẋapp (t)+

[
Ṙ(t)

]
.

(18)

The vectors x(t) and ẋ(t) in (17) are replaced by [xencl (t)] and [ẋencl (t)] as defined
in (18), where [R(t)] and

[
Ṙ(t)

]
are set to zero while calculating the improved ini-

tial approximation. Then, sorting for identical powers of ε is performed on both
sides of the expression. The resulting set of ODEs for yapp, j (t) is solved analyti-
cally for the initial conditions y0

app,0 = x0
app and y0

app, j = 0, for all j ≥ 1 — again
after linearization or replacement of nonlinear terms — in order to obtain an im-
proved initial approximation xapp (t) for ε = 1.

Numerical Reference Solution: Alternatively, a non-validated numerical approxima-
tion

{
xN

i

}
, i = 0, . . . ,L for the original IVP with the point interval xN

0 = mid
([

x0
])

10 E. Auer et al.

as the initial condition can be calculated over the grid {ti} with tL = T by arbi-
trary non-validated IVP solvers. Since analytic expressions for xapp (t) and its time
derivative ẋapp (t) are required in the iteration scheme (8), analytical approxima-
tions should be calculated. This can be done by minimization of a distance measure

D =
L

∑
i=1

d
(
xN

i − xapp (ti)
) e.g.

=
L

∑
i=1

∥∥xN
i − xapp (ti)

∥∥2
2 , (19)

for all numerically determined points of the solution of the IVP.
A simple approximate solution determined by numerical methods is linear interpo-
lation between grid points according to

xapp (t) = xN
i +

xN
i+1 − xN

i

ti+1 − ti
· (t − ti) with

ẋapp (t) =
xN

i+1 − xN
i

ti+1 − ti
for t ∈ [ti ; ti+1] , i = 0, . . . ,L− 1 .

(20)

The advantage of this method is that xapp (t) is obtained with small computational
effort. In the current C++ version of VALENCIA-IVP, this linear interpolation
scheme is implemented together with computation of the numerical approxima-
tion

{
xN

i

}
by an explicit Euler method with constant step size.

However, arbitrary ODE solvers — also those using techniques for automatic
step size control as well as solvers with embedded interpolants — can be ap-
plied to determine the numerical reference solutions after minor modifications of
VALENCIA-IVP.

Analogously, higher-order interpolations between the numerically calculated
grid-points expressed by parameterizable functions xapp (t) can be included in the
source code of this solver instead of linear interpolation. On the one hand, the de-
viation between the approximate and exact solutions of the IVP is reduced by these
improved approximations. On the other hand, the dependency upon time of these
higher-order interpolations is always nonlinear. Since the iteration formula (8),
which is based on the nonlinear state equations, has to be evaluated for time inter-
vals and not only for infinitesimally short points of time in the following Steps 2–4,
the influence of overestimation is growing, if such interpolations are used. Due to
these two effects, a compromise has to be found between improvement of the ini-
tial approximation and the computational effort, which is necessary to reduce the
arising overestimation. For techniques aiming at the reduction of overestimation,
see the discussion of advanced interval methods in Step 4.

Step 2: Initialization of the Iteration Scheme

To start the iteration (8), initial interval approximations for [R(t)] and
[
Ṙ(t)

]
are

required. If possible, nonlinear terms originating from the state equation (4) are re-
placed by rough but still conservative bounds, e.g. sin (·) and cos(·) can be replaced

by the interval [−1 ; 1]. Afterwards, in the first iteration step κ = 0,
[
Ṙ(1) (t)

]
is cal-

culated. The iteration is continued, if
[
Ṙ(1) (t)

]
⊆

[
Ṙ(0) (t)

]
. Otherwise, the initial

guesses for [R(t)] and
[
Ṙ(t)

]
have to be modified. Note that the interval enclosure

Validated Modeling of Mechanical Systems with SMARTMOBILE 11

[R(0)] for the initial point of time has to be chosen such that all possible initial
states are included, i.e.,

[
x0

]
⊆ xapp (0)+ [R(0)].

Step 3: Subdivision of the Time Span into Several Time Intervals

If the time span [0 ; T] is split into several shorter time intervals to improve conver-
gence of the iteration and to reduce the width of the error bounds, again validated

integration of
[
Ṙ(κ+1)

]
is necessary to obtain a guaranteed enclosure for the er-

ror term. As follows directly from (9), for both analytical and numerical reference
solutions, the integration with respect to time is performed by
[
R(κ+1) (ti+1)

]
=

[
R(κ+1) (0)

]
+

i

∑
j=0

(
t j+1 − t j

)
· r

([
R(κ)

([
t j ; t j+1

])]
,
[
t j ; t j+1

])

(21)
for all {ti}, i = 0, . . . ,L − 1. For numerical reference solutions with linear interpo-
lation (20) between the grid points, {ti} is determined by the non-validated ODE
solver which has been applied in Step 1. Note that the grid on the time axis does
not have to be equally spaced.

Step 4: Calculation of the State Enclosures

The state enclosure [x(t)] ⊆ xapp (t)+ [R(t)] determines whether improved initial
approximations in Step 1 and smaller time intervals in Step 3 are necessary to re-
duce overestimation in the interval enclosures.
In the evaluation of (8), overestimation results from multiple occurrence of identi-
cal interval variables. This overestimation is reduced by mean-value rule evaluation
of the right hand side of the iteration formula (8) as well as iterative improve-
ment of the range of the expression on the right hand side including monotonic-
ity tests [RKAH04, Kra05]. In VALENCIA-IVP, all partial derivatives required
for these interval techniques are determined by algorithmic differentiation using
FADBAD.

a) Mean-Value Rule Evaluation of Iteration Formula

Since natural interval evaluation of nonlinear expressions often leads to overesti-
mation, the iteration formula (8) is evaluated using the mean-value rule

r (z) ∈ r (zm)+
∂ r

∂ z

∣∣∣∣∣
z=[z]

· ([z]− zm) for all z ∈ [z] (22)

with the vector

[z] =

[
[R(ti)]

[ti ; ti+1]

]
and zm = mid([z]) (23)

containing all interval arguments of the right hand side of (8). These are the ap-
proximation errors R, the considered time interval, and all time-invariant uncertain
parameters, if defined in the system model. To obtain the tightest possible enclo-
sures, we use the intersection of the results of both natural interval extension and
mean-value rule evaluation in all further computations.

b) Monotonicity Test

Additionally, VALENCIA-IVP performs a monotonicity test for further reduction
of overestimation. In case of monotonicity of the component ri, i = 1, . . . ,n, w.r.t. at

12 E. Auer et al.

least one z j, j = 1, . . . ,n + 1, i.e., if the lower bound of the interval evaluation of
∂ ri

∂ z j
is strictly positive or if its upper bound is strictly negative, the interval [z j] can

be replaced by one of the interval bounds as summarized in Tab. 1. For example,

if inf
(

∂ ri

∂ z j

)
> 0, [z j] can be replaced by z j to compute the infimum of the range of

ri over [z] and by z j to compute its supremum. The range of ri is then given by the
interval hull of the results of both rows in Tab. 1.

Table 1. Replacement of arguments of the iteration formula in case of monotonicity

inf
(

∂ ri

∂ z j

)
> 0 sup

(
∂ ri

∂ z j

)
< 0

inf

{
ri (z)

∣∣∣
z j=ξ j

}
ξ j = z j ξ j = z j

sup

{
ri (z)

∣∣∣
z j=ξ j

}
ξ j = z j ξ j = z j

c) Iterative Calculation of the Range

If the monotonicity test is not successful in at least one argument of ri, all arguments
of ri with interval diameters which are significantly larger than zero can be split
into several subintervals for which mean-value rule evaluation and monotonicity
tests are applied again. Splitting is done at the interval midpoint of the component
j∗i of [z] determined by

j∗i = argmax
j=1,...,n+1

⎧
⎨

⎩diag

⎧
⎨

⎩diam

⎧
⎨

⎩
∂ ri

∂ z

∣∣∣∣∣
z=[z]

⎫
⎬

⎭

⎫
⎬

⎭ ·diam{[z]}

⎫
⎬

⎭ . (24)

This corresponds to the component of [z] for which maximum reduction of overes-
timation is expected. Since only tight upper and lower bounds of ri are desired, the
splitting procedure is continued with the input intervals which lead to the small-
est infimum/ largest supremum to improve the lower/ upper bounds of ri. Split-
ting in VALENCIA-IVP is continued until a user-defined number of subintervals
is reached or until ri is monotonic for all input arguments. Finally, the union of all
subintervals for ri is determined to compute the improved enclosure of its range. For
numerous practically relevant dynamical systems, only a small number of splittings
is required to obtain good enclosures of the range if monotonicity is checked for
each subinterval. Thus, compared to methods employing derivatives of high orders,
the advantages of this procedure are the simplicity of implementation and often a
smaller computational effort. Finally, no specific assumptions about differentiabil-
ity of the state equations are necessary. After minor modifications of the selection
criterion (24), iterative range computation is also applicable to systems with discon-
tinuities and not highly differentiable state equations as e.g. idealization of friction
in mechanical systems [RKAH06].

In [RHA06], the authors have demonstrated the applicability of VALENCIA-IVP to
simulation of dynamical systems with both uncertain parameters and uncertain initial

Validated Modeling of Mechanical Systems with SMARTMOBILE 13

states. For a double pendulum with uncertainties in the initial angles, it has been shown
that the achievable simulation quality is better than the results obtained by VNODE
under the same conditions. Furthermore, the simulation quality of VALENCIA-IVP is
comparable to COSY VI. However, the simulation times of the C++ implementation
of VALENCIA-IVP are significantly smaller than the times required by COSY VI.

2.5 Other Validated IVP Solvers

COSY VI. The IVP solver COSY VI that is based on Taylor models has been pre-
sented in [BM98, MB04]. COSY VI seeks to improve conventional validated solvers
with respect to modeling of the local functional behavior and control of the long-term
growth of integration errors. The first task is performed using the Picard iteration (7)
in combination with a fixed-point theorem. The long-term growth of integration errors
is controlled by the so-called shrink wrapping method, which can be considered as a
modified nonlinear version of the parallelepiped method.

VSPODE. This recently developed solver [LS06] is based on VNODE, but uses Taylor
models as the underlying validated data type. It helps to obtain validated solutions of
IVPs for ODEs with interval-valued parameters and initial values. The dependence of
the solution on time is handled using interval Taylor series methods, as in VNODE,
the dependence on the parameter vector and the initial state using Taylor models. This
approach is reported to provide an efficient way to obtain a tight enclosure of all possible
solutions to a parametric ODE system under uncertain conditions.

3 Strategies for Verification of MSS: A Case Study for MOBILE

To validate the dynamics of a mechanical system in the framework of an integrated
tool, it is necessary to interface MSS and libraries implementing algorithms of vali-
dated analysis described in the previous Section. The realization of such an interface
depends largely on the type of MSS we choose. From this point of view, all MSS can
be roughly divided into "symbolic" and "numerical". The difference is that the former
produces explicit expressions for the system model, and the latter does not. However,
the results of the simulation for this model are as "exact" as those obtained by solving
the expressions from the symbolic software on a computer.

The approaches to validation of both types of MSS are represented in Fig. 1. The
common feature is the presence of a verification block consisting of a library for val-
idated arithmetic such as PROFIL/BIAS or COSY INFINITY, optionally a tool
for algorithmic (in the symbolic case, additionally automatic) differentiation such as
FADBAD/TADIFF, and, finally, different solvers of (non)linear algebraic or differen-
tial systems of equations such as VNODE. In the symbolic case, the expressions for
the model are produced using a computer algebra package (e.g. MAPLE) and solved
directly by the tools from the verification block delivering the guaranteed results. In the
numerical case, libraries have to be first adjusted3 and then fused with the target MSS
into its reliable version to guarantee the correctness of simulations.

3 Here, "adjusted" means, for example, that IVP solvers which rely on symbolic representations
of the state equations have to be adapted such that they work with representations provided by
the numerical software.

14 E. Auer et al.

Sm
ar

tM
O

BIL
E

verification

numeric MSS symbolic MSS

CA systems
(Maple, ...)

expressions for
models

verifying version

verified results

Legend:

required by

produces

arithmetic
(PROFIL, COSY,...)

alg. differentiation
(FADBAD/TADIFF, ...)

solvers: IVP, ...
(VNODE, COSY VI,

ValEncIA, ...)

automatic differentiation

Fig. 1. Approaches to verification of "symbolic" and "numerical" MSS

In this Section, we focus on SMARTMOBILE, the validated MOBILE version de-
scribed in more detail in [AKTT04, Aue07]. At first, the main features of MOBILE,
the MSS of interest in this paper belonging to the numerical type in the above classi-
fication, are summarized. Then, we discuss the functionality and performance of the
reliable version. Note that MOBILE is an open source tool. Since it is necessary to
integrate the verification block from Fig. 1 into MSS in the numerical case, free access
to the code of the modeling tool is crucial.

3.1 MOBILE

Let us consider the logical structure of MOBILE [Kec99]. Its central idea is the con-
cept of a transmission element, which maps motion and loads between state objects
(coordinate frames or variables) according to the formulas

q′ = φ(q)

q̇′ = Jφ q̇ with Jφ =
∂φ

∂q
q̈′ = Jφ q̈+ J̇φ q̇

Q = JT
φ Q′ .

(25)

All of the characteristics above are vectors, the dimension of which depends on the
degrees of freedom of a multibody system. Here, q and q′ are the generalized positions,
q̇ and q̇′ the velocities, q̈ and q̈′ the accelerations, as well as Q and Q′ the forces of the
corresponding transmission element. The transmission of force is assumed to be ideal,
i.e., power is neither generated nor consumed, for the sake of simplicity. The function φ
is the mapping according to which motion is transmitted, and Jφ is the corresponding
Jacobian. Force is transmitted in the direction opposite to that of position, velocity, and
acceleration.

Validated Modeling of Mechanical Systems with SMARTMOBILE 15

Models in MOBILE are concatenations of transmission elements. The overall map-
ping of this concatenation from the original state into the final one is obtained by the
composition of the corresponding mappings of the intermediate states. Concatenated el-
ements can be considered as a single transmission element. This helps to solve the task
of the global kinematics, that is, to obtain the positions, the orientations, the velocities,
and the accelerations of all bodies of a mechanical system from the given generalized
coordinates q and their time derivatives q̇ and q̈.

All transmission elements are derived from the abstract class MoMap, which supplies
their main functionality including the services doMotion() and doForce() for
transmission of motion and force. Examples of transmission elements in MOBILE are
such classes as MoRigidLink for modeling of rigid bodies or MoElementary-
Joint for revolute and prismatic joints. Besides, there exist elements for modeling
mass properties and applied forces. Special representations of the mapping (25) for
these elements are to be found in [Kec93].

Transmission elements are assembled to chains implemented by the class MoMap-
Chain. The methods doMotion() and doForce() can be used for a chain repre-
senting the system to determine the corresponding composite transmission function.

To model dynamics of a mechanical system, the equations of motion have to be
built and solved. Their minimal form is given (based on the d’Alembert principle in the
Lagrange form) by

M(q; t) q̈+ b(q, q̇;t) = Q(q, q̇;t) , (26)

where M(q;t) is the generalized mass matrix, b(q, q̇;t) the vector of generalized Coriolis
and centrifugal forces, and Q(q, q̇;t) the vector of applied forces.

In MOBILE, the kinetostatic method [Kec93] is employed to obtain the unknown
mass matrix M(q;t) and the force vector Q̂(q, q̇;t) = b(q, q̇;t)− Q(q, q̇;t). Using the
concatenation of motion and force transmission functions, one obtains the generalized
forces of a multibody system in dependency on the motion and applied forces defined
by q, q̇, q̈. This process is called inverse dynamics ϕD−1

S of the system. The kinetostatic

method is based on the knowledge that the transmission function ϕD−1

S produces the
residue Q at the joints of the generalized coordinates which equal zero if the "real"
derivatives q̈ of the mechanical state variables q, q̇ are used as inputs of the inverse
dynamics. That is, the relation (27) holds for the residue

−ϕD−1

S = −Q = M(q; t) q̈+ Q̂(q, q̇;t) , (27)

whereas the equations of motion themselves have the form

M q̈+ Q̂ = 0 . (28)

This fact provides an algorithm for the computation of M and Q̂.
After the introduction of a state vector x =

[
qT , q̇T

]T
, the state-space form of the

state equations is obtained as

ẋ =

[
q̇

q̈

]
=

[
q̇

−M−1Q̂

]
. (29)

16 E. Auer et al.

Finally, an IVP corresponding to (29) is solved by an appropriate integrator algorithm,
e.g., Adams-Moulton-Bashforth’s or Runge–Kutta’s.

Equations of motion are generated by the class MoEqmBuilder which imple-
ments the kinetostatic method. The state-space form of these equations is obtained
with the help of the class MoMechanicalSystem and subsequently solved by a
MoIntegrator-derived class implementing one of the common algorithms for solv-
ing IVPs, e.g. MoRungeKuttaIntegrator.

One of the main features of MOBILE is the ability to model mechanical systems
directly as executable programs. This allows the user to embed the resulting modules in
existing libraries easily. Besides, the core of MOBILE is extendable owing to its open
system design.

3.2 SMARTMOBILE

SMARTMOBILE produces guaranteed results by combining the theory from Section 2
with the modeling concepts from Section 3.1. Here, the numerical approach from Fig. 1
is implemented with the help of an interface based mainly on overloading: to bring
validated arithmetics and algorithmic differentiation into MOBILE, we replace all the
relevant occurrences of floating point data types with those of an appropriate validated
one. Then, the validated algorithms, e.g. for solving linear systems of equations, are
reimplemented to work with the new data type. The last and technically the most sub-
stantial step is the integration of a validated IVP solver, which has to use the same
software for algorithmic differentiation and, as a rule, needs a thorough adjustment to
MOBILE.

Before the actual reimplementation of MOBILE, we have to answer two fundamen-
tal designing questions: how to choose the basic validated data type and how to make
the resulting tool independent of this basic data type. SMARTMOBILE solves the latter
problem with the help of the template technique provided by C++ [VJ05]. The general
idea is to systematically replace each MOBILE class containing a relevant member of
the type double with its template equivalent. During this process, a type parameter is
substituted for the floating point data type. Then, the so obtained template equivalent is
substituted for all occurrences of the original class inside the other classes. The type pa-
rameter itself is specified by the user at the final stage of the system assembly according
to the modeling task.

Some MOBILE classes along with their corresponding methods are data type in-

dependent and therefore easily convertible to templates. Data type independent means
that no special validation algorithms aside from those overloaded by the basic data type
are necessary for verification. In this case, a template equivalent can be implemented
by simple data type substitution. Basic state objects and transmission elements from
MOBILE fall into this category. However, there also exist data type dependent classes.
These are, for example, MoEqmBuilder and MoAdamsIntegrator, classes for
generating and solving equations of motion, respectively. They need a specialized
treatment.

The proposed strategy was therefore to use pairs of classes in SMARTMOBILE: the
first one represented the basic validated data type and was used instead of the place-
holder of all the templates, and the second one implemented the simulation algorithm

Validated Modeling of Mechanical Systems with SMARTMOBILE 17

for this data type, for example, an IVP solver. This led us to the first question about
the choice of the appropriate basic data type. In SMARTMOBILE, we provide the
pair TMoInterval based on the data type INTERVAL from PROFIL/BIAS and
TMoAWAIntegrator, an IVP solver based on VNODE.

INTERVAL alone is not sufficient for validation. It does not yet possess the facilities
for obtaining Taylor coefficients of the solution to an IVP and the corresponding Jaco-
bians of these coefficients necessary to solve the equations of motion in a validated way
(cf. Section 2.4). Consequently, the next step is the introduction of algorithmic differ-
entiation. It was decided to use the generic libraries FADBAD and TADIFF for that
purpose. First, the data type TINTERVAL, which helps to automatically obtain Taylor
coefficients of the algorithmic representation of a function f , is generated by TADIFF
from the data type INTERVAL. Then, the forward mode of algorithmic differentiation
is employed to get the Jacobian of f with the help of the data type FINTERVAL gen-
erated by FADBAD. At last, the library TADIFF is used once again to acquire the
Jacobians of the Taylor coefficients with the help of the data type TFINTERVAL built
on the basis of FINTERVAL.

FADBAD and TADIFF implement algorithmic differentiation through overload-
ing. The general difficulty in solving IVPs (and consequently, simulating dynamics)
with this implementation technique is as follows. Given a function to compute the right
hand side of an ODE, we need two further functions, which differ from the first one
in data types only, to obtain the Taylor coefficients and their Jacobians. Unfortunately,
the common template solution to this problem cannot be employed in the context of
MOBILE. Our solution is the class TMoInterval, containing members of all three
types and overloading operators and elementary functions accordingly. A side effect of
such code organization is that all required values can be obtained through a single call of
the function responsible for the computation of the right hand side of the corresponding
ODE.

The conversion to SMARTMOBILE is easy for the MOBILE user. The program
for modeling and simulation of a multibody problem has to be altered only slightly
for the user to obtain the corresponding validated one. First, the names of the trans-
mission elements and state objects are changed from MoXXX to TMoXXX. Then, the
template placeholder is defined and template syntax used as, for example, in TMoXXX
<TMoInterval>. Finally, the appropriate IVP solver is called, for example, the sup-
plied TMoAWAIntegrator instead of a non-validated integrator from MOBILE.

SMARTMOBILE successfully verifies the kinematics and dynamics for various
classes of mechanical systems including non-autonomous and closed-loop ones (cur-
rently, with only one constraint). Its strength is the automatization and the generality
of verified options for modeling and simulation (inside the class of systems allowed in
MOBILE). However, depending on the considered system model, CPU times of the
validated version are higher compared to the floating point one due to the use of vali-
dated arithmetic as well as inclusion of validated solvers for algebraic and ODE systems.
Also, further strategies to improve the tightness of the result enclosures for complicated
systems can be introduced. Nonetheless, a comparison of our approach to the symbolic
one showed that although the symbolic strategy was better for obtaining dynamics of
small systems, the numerical one proved to be either faster or less influenced by over-

18 E. Auer et al.

estimation (but not both at the same time, cf. [Aue07]) for at least several complicated
systems. Therefore, we feel encouraged to continue working on our tool and to further
reduce overestimation and CPU time rather than to change to the symbolic approach.

4 Reducing the Overestimation in SMARTMOBILE

A primitive replacement of floating point computations by interval ones usually results
in too wide intervals due to the dependency problem and especially the wrapping effect,
which cannot be adequately handled by interval arithmetic alone. The treatment of the
wrapping effect, which occurs when rotations are performed, is a key task in verification
of mechanical systems (at least, in case of the numerical approach) since rotations are
present in most models. This Section discusses several possible strategies which help to
handle this problem.

4.1 Rotation Error Elimination

The wrapping effect can be minimized by using the rotation error elimination technique.
The main idea of this technique presented in [Tra06] is that unnecessary rotations of
interval values induced by the use of local coordinate systems during system’s modeling
are avoided with the help of an appropriate global coordinate system.

r ig id lin k

K0

K K ′

∆r

r r′

∆R

R R′

Fig. 2. Structure of a rigid link (dashed lines) in MOBILE

Consider this idea using the example of a rigid link connecting two bodies in the
coordinate systems K and K ′ (cf. Fig. 2). For this transmission element, the transfor-
mation matrix R′ and the translation vector r′ between a reference coordinate system
K0 and the new coordinate system K ′ are calculated according to

R′ = R ·∆R ,

r′ = ∆RT · r + ∆r ,
(30)

where R is the transformation matrix, and r is the translation vector between the ref-
erence coordinate system K0 and the old coordinate system K . Further, ∆R is the
constant rotation matrix, and ∆r is the constant translation vector between K and
K ′ [Kec93].

Validated Modeling of Mechanical Systems with SMARTMOBILE 19

If the floating point values in this formula are naively replaced by their interval en-
closures, the wrapping effect occurs inevitably with each coordinate transformation,
because [r] is multiplied by the transformation matrix [∆RT]. To reduce the wrapping
effect, the interval translation vector [r] is split into a floating point part r f p and the cor-
rection interval [ε] containing the information on the diameter of the interval enclosure
in the global coordinate system, which is chosen to coincide with K0.

Let p : IRn �→ Rn map an interval vector [v] to a floating point vector (e.g. the mid-
point) and c : IRn �→ IRn be defined as c([v]) = [v]− p([v]). Then the validated enclo-
sure of R′ as well as the new translation vector r′

f p and the new correction interval [εnext]
are computed according to

[R′] = [R] · [∆R] ,

r′
f p = p([∆RT]r f p +[∆r]) ,

[εnext] = [ε]+ [R] · [∆R]︸ ︷︷ ︸
=[R′]

·c([∆RT]r f p +[∆r]) .
(31)

That is, the rotation is applied only to the (floating point) value r f p. All floating point
errors are accounted for in [εnext]. The overestimation that would arise from directly
substituting an interval for r in the second part of (30) is avoided. Since r f p is a floating
point value, the term c([∆RT]r f p +[∆r]) is small (assuming the matrices do not contain
wide intervals). The position of K ′ can now be computed as

[R′] · r′
f p +[εnext] . (32)

The mapping p([v]) can be chosen arbitrarily. Here, the option p([v]) ≡ 0 seems to be
the most advantageous as it eliminates one more rotation (cf. formulas (31) and (32)).
In terms of implementation, the added information about the parameter error — the cor-
rection interval — in global coordinates requires a special treatment in all transmission
elements of MOBILE, so that substantial changes are necessary to be able to use the
rotation error elimination there.

Analogously to [Tra06], this technique was successfully applied to modeling of kine-
matics in SMARTMOBILE. However, it cannot be employed for modeling of dynamics
just as easily, at least, not with the basic data type TMoInterval and the correspond-
ing IVP solver TMoAWAIntegrator. The reason for this is the necessity to use mid-
points of intervals inside MOBILE’s transmission elements. These midpoints would
have to be included into the algorithmic representation of the right side of the equa-
tions of motion in state-space form. That means that in order to "record" the program
for algorithmic differentiation, the basic data type would have to support operations
between graphs based on validated and non-validated data types and provide facilities
for extracting a (non-validated) graph of midpoints from a given interval graph. These
options are not supplied by FADBAD and TADIFF developers. It is possible, how-
ever, to do so in COSY INFINITY for RDA data types. The implementation of this
error elimination technique in SMARTMOBILE for dynamics is an interesting topic for
future research.

20 E. Auer et al.

4.2 Uses and Limitations of Taylor Models in SMARTMOBILE: RDAInterval

Another possibility to deal with the dependency problem in SMARTMOBILE is to use
a different kind of validated arithmetic as a basis for verified modeling. One of the
options is the arithmetic based on Taylor models mentioned in Subsection 2.2. In order
to use it in SMARTMOBILE, a new data type wrapper RDAInterval shown in Fig. 3
was introduced.

At first, several auxiliary members which serve as an interface to the C++ version
of the Taylor model library COSY INFINITY are defined. It is necessary to introduce
the number of monomials nm, the order of the Taylor model no, the maximal number
of variables nv, the amount of memory space len required for this COSY INFINITY
element, and the current number of variables varnum as static members of the class
RDAInterval. The first three of them specify the parameters of a differential algebra
which should be defined exactly once throughout the whole program. Furthermore, the
amount of memory len for each instance should also remain the same. The member
varnum is a counter of RDAInterval instances in the program which is not to ex-
ceed nv. The static method init(int, int, int) allows to set the parameters
nm, no, and nv and to define the corresponding differential algebra with the help of the
COSY INFINITY procedure daini(...).

The boolean member var shows whether the current instance of RDAInterval is
really a Taylor model. Sometimes, if there are many variables in a program, several of
them have to be defined as constant Taylor models, i.e., simple intervals. This is done
partly to speed up Taylor model-based programs and partly to comply with memory
restrictions imposed by COSY INFINITY (cf. page 21). The member Enclosure is
a pointer at the Taylor model.

The constructor RDAInterval(...) helps to obtain a COSY INFINITY Tay-
lor model from a given PROFIL/BIAS interval. If the Taylor model to be constructed
is supposed to be a variable, the corresponding member Enclosure is defined as
the midpoint of the given interval cons(mi) (the reference point) plus a standard
COSY INFINITY Taylor model determined by the function rda(...) with the do-
main scaled to the diameter of the interval width(mi). The number of the variable
should be specified while defining the standard Taylor model and incremented after-
wards. If the current Taylor model is to be a constant, COSY INFINITY developers
recommend the definition shown in the last non-empty line of the Fig. 3.

Consider the kinematics of a double pendulum (cf. Subsection 4.3) modeled in
SMARTMOBILE first with the basic data type TMoInterval and then with
RDAInterval. The respective positions of the pendulum’s tip in a cartesian coordi-
nate system are shown below up to the fourth digit after the decimal point (TMoInter-
val on the left, RDAInterval bounded by an interval on the right):

Position = [
[0 , 0];
[1.1993 , 1.3853];
[-0.1947 ,-0.0086]
]

Position = [
[-0.19E-305,0.19E-305];
[1.2859 , 1.2987];
[-0.1830 , -0.0204]
].

Validated Modeling of Mechanical Systems with SMARTMOBILE 21

class RDAInterval {

private:

static Cosy nm; // the number of monomials

static Cosy no; // the order of TM

static Cosy nv; // the number of variables

static int len; // the length of the element

static int varnum;// the number of the current variable

bool var; // do we have to use RDA?

Cosy *Enclosure; // the Taylor model

public:

static void init(int, int, int);

RDAInterval(const INTERVAL& x, bool var){

if (this->var){

*Enclosure=cons(x)+0.5*width(x)*rda(varnum,0,0,2);

varnum++;

} else *Enclosure=cons(x)+(0*rda(1,0,0,2)+(x-cons(x)));

}

...

};

Fig. 3. RDAInterval — the Taylor model-based data type in SMARTMOBILE

The bounding algorithm for Taylor models specifies the smallest possible enclosure of
zero for the first coordinate in case of Taylor models. The enclosures of the second and
third coordinates are of about 93% and 13% tighter than for intervals.

As already mentioned, it is not always necessary to declare all variables in a program
to be Taylor models. Rather, a "healthy" mixture of simple and RDA-enhanced intervals
(united in the same data type RDAInterval) has to be deduced heuristically. At this
point a question might arise why not simply declare all program variables as RDA
intervals, which certainly cannot produce worse results. Aside from efficiency reasons,
there is a more serious aspect to consider: memory restrictions imposed by the C++
version of the underlying library COSY INFINITY.

The version available to the authors can handle at most the differential algebra with
twelve variables and the fifth order of Taylor series assuming that the maximum length
of an RDA element equals 400. While it is relatively simple to increase the preset mem-
ory parameters controlling these characteristics in the FORTRAN version of COSY
INFINITY, it cannot be as easily done in C++, which is confirmed by the COSY IN-
FINITY developers. One reason is probably that the C++ version is an automatized
translation from FORTRAN. Besides, COSY INFINITY programs with increased
capacity are often slower both at compilation and running stages. Obviously, such a big
tool as SMARTMOBILE is prone to use hundreds of variables, primary, auxiliary, or
intermediate, so that these memory restrictions set back the development of programs
based on RDAInterval there.

Until now we examined only the Taylor model-based simulation of kinematics, which
was made possible by the data type RDAInterval. For dynamics, it is necessary to
implement a specialized solver based on COSY VI that would work with this data

22 E. Auer et al.

type. This is still work in progress now, partly because of the above mentioned mem-
ory restrictions in COSY INFINITY. Another reason is that C++ implementations
of COSY VI are still under development. To implement a version of COSY INFIN-
ITY and COSY VI more suitable for SMARTMOBILE is a demanding task which is
nevertheless worth pursuing as the comparison for kinematics shows.

4.3 VALENCIA-IVP in SMARTMOBILE

To improve the quality of simulations, we have considered adjustments in MOBILE
classes (Subsection 4.1) and alteration of the underlying validated arithmetics in
SMARTMOBILE (Subsection 4.2) so far. Alternatively, other interval IVP solvers can
be used, e.g., VALENCIA-IVP from Subsection 2.4. One of the advantages of this
solver is that Taylor coefficients of the solution and their Jacobians do not need to be
computed. Merely the Jacobian of the right hand side of the ODE is necessary.

To introduce VALENCIA-IVP into SMARTMOBILE, we implement a new basic
data type which helps to obtain the numerical reference solution and the required Jaco-
bian. It contains members of the types double (the reference solution), INTERVAL
(the solution), and FINTERVAL (the Jacobian). Note that the Jacobian is always evalu-
ated even if only double or INTERVAL values are required. Besides, we cannot avoid
multiple function evaluations with the help of this new data type TMoFInterval as
it was done in VNODE with TMoInterval.

The adjustment of VALENCIA-IVP to SMARTMOBILE resulted in the class
TMoValenciaIntegrator. However, we are still working on transferring certain
CPU time optimization strategies from the original version of VALENCIA-IVP into
the SMARTMOBILE-compatible one at the moment. For example, the trick of evaluat-
ing only the necessary components of the set of state equations (and not all of them as
usual) seems to be difficult to implement in TMoValenciaIntegrator because of
the algorithmic form in which MOBILE produces the IVP to be solved.

Let us consider the example of the double pendulum with an uncertain initial angle
of the first joint from [RHA06], where the authors modeled the dynamics with the help
of the symbolic approach. Now, we study the dynamics of the double pendulum using
a SMARTMOBILE model for the special case in which the lengths of both weightless
arms of the pendulum are equal to 1 m and the two point masses amount to 1 kg each
with the gravitational constant g = 9.81 m

s2 (cf. Fig. 4). The initial values for angles

(specified in rad) and angular velocities (in rad
s) are given as

ψ0 =

[
0.99

3π

4
−

11π

20
0.43 0.67

]T

,

ψ0 =

[
1.01

3π

4
−

11π

20
0.43 0.67

]T

,

where the initial angle of the first joint has an uncertainty of ±1% of its nominal value.
The results are summarized in Tab. 2. VALENCIA-IVP and VNODE denote here

and in the following the VALENCIA-based and VNODE-based solvers in SMART-
MOBILE, TMoValenciaIntegrator and TMoAWAIntegrator, resp. The ab-
breviations MVR and AIM indicate whether mean-value rule evaluation alone (MVR)

Validated Modeling of Mechanical Systems with SMARTMOBILE 23

m2

m1 l2

xl1

y

ψ1

ψ2

(a) A scheme.

#define TMoInterval t;

TMoFrame<t> K0, K1, K2, K3, K4;

TMoAngularVariable<t> psi1, psi2;

// transmission elements

TMoVector<t> l1(0,0,-1), l2(0,0,-1) ;

TMoElementaryJoint<t> R1(K0,K1,psi1,xAxis) ;

TMoElementaryJoint<t> R2(K2,K3,psi2,xAxis) ;

TMoRigidLink<t> rod1(K1,K2,l1),rod2(K3,K4,l2) ;

t m1(1),m2(1) ;

TMoMassElement<t> Tip1(K2,m1),Tip2(K4,m2) ;

// the complete system

TMoMapChain<t> Pend;

Pend << R1<<rod1<<Tip1<<R2<<rod2<<Tip2 ;

// dynamics

TMoVariableList<t> q; q << psi1<<psi2 ;

TMoMechanicalSystem<t> S(q,Pend,K0,zAxis) ;

TMoAWAIntegrator I(S,0.0001,ITS_QR,15) ;

I.doMotion();

(b) A model in SMARTMOBILE (abridged).

Fig. 4. The double pendulum

Table 2. Performance of TMoValenciaIntegrator in comparison to TMoAWAInte-
grator for the double pendulum over the time interval [0;0.4]

Solver Break-down CPU time in s
VALENCIA-IVP (MVR) 0.504 294
VALENCIA-IVP (AIM) 0.505 389
VNODE 0.424 1248

or in combination with monotonicity test and iterative calculation of range (AIM) as de-
scribed in Step 4, Section 2.4, is used. The step size equals 10−4 in all cases. In case of
TMoAWAIntegrator the QR-factorization algorithm with Taylor series of order 15
is chosen. We replace all floating point values of initial states, parameters, and the grid
width on the time axis that are not exactly representable by machine numbers by their
smallest possible interval enclosures in all computations.

The column "Break-down" of Tab. 2 contains the time after which the corresponding
method no longer works. The last column indicates the CPU time (in seconds) which the
solvers take to obtain the solution over the integration interval [0;0.4] on a Pentium 4,
3.0 GHz PC using CYGWIN. Additionally, the interval enclosures of the two angles ψ1

and ψ2 of the double pendulum are shown for identical time intervals in Fig. 5.
The state enclosures obtained with TMoValenciaIntegrator are tighter than

those of TMoAWAIntegrator towards the end of the integration interval. Actually,
the use of the former integrator reduces overestimation of the resulting interval boxes
up to 839 times for this example, cf. Tab. 3. Here, the ratio between the pseudo vol-
umes (product of the interval diameters of all components of a state vector) of the
VNODE-based solver and the VALENCIA-based integrators is given for several refer-
ence points. However, the last row of Tab. 3 indicates that the use of the AIM strategies
does not significantly improve the enclosures in the numerical case, in contrast to the
symbolic approach from [RHA06]. Note also that even though the implementation of

24 E. Auer et al.

ψ1
VALENCIA-IVP

(AIM)
VNODE

0 0.40.20.1 0.3
1.8

2.0

2.2

2.4

t

(a) Enclosure of the first state variable.

ψ2

VALENCIA-IVP
(AIM)

VNODE

0 0.40.20.1 0.3

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

t

(b) Enclosure of the second state variable.

Fig. 5. Interval enclosures for the first and second state variable of the double pendulum

Table 3. Performance of TMoValenciaIntegrator in comparison to TMoAWAInte-
grator for the double pendulum (cont’d)

Reduction factorCompared solvers
t = 0.1 t = 0.2 t = 0.3 t = 0.4

VNODE vs. ValEncIA (AIM, MVR) 1.0817 1.7638 10.2574 839.564
ValEncIA: MVR vs. AIM 1+8.2 ·10−10 1+5.0 ·10−10 1+4.2 ·10−9 1+2.8 ·10−8

VALENCIA-IVP in SMARTMOBILE has not been optimized, the reduction of com-
puting time in comparison to the VNODE-based integrator is considerable.

Here, we used constant step sizes in VNODE to free the comparison from the in-
fluence of the step size control strategy on the solution. If variable step sizes are al-
lowed, the break-down time improves slightly to t = 0.427. However, the global error
at t = 0.424 (the break-down time with the constant step size) amounts to 19.865 which
is still larger than the error computed by VALENCIA-IVP at the same point. The real
advantage of VNODE with variable step size is the reduction of CPU time. In this ex-
ample, only 17 seconds are required to reach t = 0.4. In the following, we consider the
constant step size strategy again.

Tab. 4 shows the results obtained for two further, more complex examples, a triple
pendulum [AKTT04] (12 significant modeling elements, the resulting IVP has six state
variables, initial uncertainty of order 10−2 in the first angle) and a one axis manipulator
[ADL+05] (a closed-loop system with one constraint, 18 elements, two state variables,
initial uncertainty of order 10−5 in the first state variable). Besides break-down and
CPU times, Tab. 4 contains the column "Reduction factor" which indicates the reduction

Table 4. Performance of TMoValenciaIntegrator in comparison to TMoAWAInte-
grator for the triple pendulum and the one axis manipulator

Break-down Reduction factor CPU time in sExample
VALENCIA-IVP VNODE VALENCIA-IVP VNODE

Triple pendulum 0.851 0.687 6604.977 386 1849
One axis manipulator 0.712 0.252 20.252 948 8854

Validated Modeling of Mechanical Systems with SMARTMOBILE 25

ratio of the pseudo volumes between VNODE and VALENCIA-IVP (MVR) defined
analogously to Tab. 3 at the reference points t = 0.2 for the one axis manipulator and
t = 0.6 for the triple pendulum. For both examples, the CPU times are given over the
integration interval [0;0.2].

The results for these examples confirm the general tendency: the use of TMoValen-
ciaIntegrator in SMARTMOBILE reduces both overestimation and CPU times.
However, the comparison of the break-down times of both solvers suggests that con-
vergence of the iteration formula from VALENCIA-IVP should be further improved
for state intervals with large diameters. Besides, we plan to improve the strategies for
reduction of overestimation in VALENCIA-IVP.

5 Summary and Outlook

In this article, we explored the applicability of various validated concepts to modeling
and simulation of mechanical systems in SMARTMOBILE with a special focus on over-
estimation reduction. For kinematics, the rotation error elimination technique and the
employment of Taylor models were described. For dynamics, we showed by means of
three characteristic examples with uncertain initial conditions that the use of the solver
TMoValenciaIntegrator based on the newly developed solver VALENCIA-IVP
in SMARTMOBILE reduced the pseudo volume of the state enclosures up to fac-
tors of 103 compared to the VNODE-based solver TMoAWAIntegrator with the
constant step size strategy. Besides, under the same conditions, the former was four
times faster than the latter for the considered tree-type multibody systems and even
nine times faster for the closed-loop one.

The main direction for future development of SMARTMOBILE will be the imple-
mentation of Taylor model-based methods (e.g. COSY VI or VSPODE) and of the
elimination technique for dynamic modeling. Both approaches will also be studied with
respect to their performance on different modeling problems. This would help to pro-
vide users with the best solvers for their needs. Besides, an interesting point would
be to study the influence of modeling on the solution, that is, how the performance of
SMARTMOBILE depends on the number of transmission elements and variables for
the same mechanical system.

As a further improvement of the efficiency of VALENCIA-IVP, an exclusion strat-
egy for subintervals resulting from overestimation will be implemented which is based
on a consistency test by backward integration of parts of the validated state enclosures
determined by the present version of this program [RAH06]. Since these techniques
involve simulation with several instead of only one interval box, efficient strategies for
splitting and merging of interval boxes are required to achieve a good compromise be-
tween the increase of computational effort and the possible reduction of overestimation.
These strategies have already been applied successfully outside of VALENCIA-IVP,
see e.g. [RKAH07]. Furthermore, it will be explored how VALENCIA-IVP and other
validated ODE solvers can be combined in order to benefit from the advantages of each
technique, for example by the inclusion of an implicit integration technique to prevent
unnecessary growth of interval bounds.

26 E. Auer et al.

References

[ADL+05] Auer, E., Dyllong, E., Luther, W., Stankovic, D., Traczinski, H.: Integration of Ac-
curate Distance Algorithms into a Modeling Tool for Multibody Systems. In: Proc.
of IMACS (2005)

[AKTT04] Auer, E., Kecskeméthy, A., Tändl, M., Traczinski, H.: Interval Algorithms in Mod-
eling of Multibody Systems. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W.
(eds.) Dagstuhl Seminar 2003. LNCS, vol. 2991, pp. 132–159. Springer, Heidel-
berg (2004)

[Aue07] Auer, E.: Interval Modeling of Dynamics for Multibody Systems. Journal of Com-
putational and Applied Mathematics 199(2), 251–256 (2007)

[BM98] Berz, M., Makino, K.: Verified Integration of ODEs and Flows Using Differential
Algebraic Methods on High-Order Taylor Models. Reliable Computing 4, 361–369
(1998)

[BM02] Berz, M., Makino, K.: COSY INFINITY Version 8.1. User’s Guide and Reference
Manual. Technical Report MSU HEP 20704, Michigan State University (2002)

[BS96] Bendsten, C., Stauning, O.: FADBAD, a Flexible C++ Package for Automatic Dif-
ferentiation Using the Forward and Backward Methods. Technical Report 1996-x5-
94, Technical University of Denmark, Lyngby (1996)

[BS97] Bendsten, C., Stauning, O.: TADIFF, a Flexible C++ Package for Automatic Differ-
entiation Using Taylor Series. Technical Report 1997-x5-94, Technical University
of Denmark, Lyngby (1997)

[DJvH02] Deville, Y., Janssen, M., van Hentenryck, P.: Consistency Techniques for Ordinary
Differential Equations. Constraint 7(3–4), 289–315 (2002)

[Gri00] Griewank, A.: Evaluating derivatives: principles and techniques of algorithmic dif-
ferentiation. SIAM, Philadelphia (2000)

[JKDW01] Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer,
London (2001)

[Kec93] Kecskeméthy, A.: Objektorientierte Modellierung der Dynamik von Mehrkör-
persystemen mit Hilfe von Übertragungselementen (in German). In: Fortschritt-
berichte VDI, Reihe 20 Nr. 88, VDI-Verlag, Düsseldorf (1993)

[Kec99] Kecskeméthy, A.: MOBILE Version 1.3. User’s Guide (1999)
[Kha02] Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs (2002)
[Knü94] Knüppel, O.: PROFIL/BIAS—A Fast Interval Library. Computing 53, 277–287

(1994)
[Kra05] Krasnochtanova, I.: Optimized Interval Algorithms for Simulation and Controller

Design for Nonlinear Uncertain Systems Applied to Processes in Biological Waste-
water Treatment, Master Thesis, University of Ulm (2005)

[Loh01] Lohner, R.: On the Ubiquity of the Wrapping Effect in the Computation of the Error
Bounds. In: Kulisch, U., Lohner, R., Facius, A. (eds.) Perspectives on Enclosure
Methods, pp. 201–217. Springer, Wien, New York (2001)

[LS06] Lin, Y., Stadtherr, M.A.: Validated Solution of Initial Value Problems for ODEs
with Interval Parameters. In: NSF Workshop Proceeding on Reliable Engineering
Computing, Savannah GA, February 22-24 (2006)

[MB04] Makino, K., Berz, M.: Suppression of the Wrapping Effect by Taylor Model-Based
Validated Integrators. Technical Report MSU HEP 40910, Michigan State Univer-
sity (2004)

[Ned99] Nedialkov, N.S.: Computing Rigorous Bounds on the Solution of an Initial Value
Problem for an Ordinary Differential Equation. PhD thesis, University of Toronto
(1999)

Validated Modeling of Mechanical Systems with SMARTMOBILE 27

[Ned02] Nedialkov, N.S.: The Design and Implementation of an Object-Oriented Validated
ODE Solver. Kluwer Academic Publishers, Dordrecht (2002)

[Neu02] Neumaier, A.: Taylor Forms — Use and Limits. Reliable Computing 9, 43–79
(2002)

[NvM02] Nedialkov, N.S., Mohrenschildt, M.v.: Rigorous Simulation of Hybrid Dynamic
Systems with Symbolic and Interval Methods. In: Proc. of American Control Con-
ference ACC, Anchorage, USA, pp. 140–147 (2002)

[RAH06] Rauh, A., Auer, E., Hofer, E.P.: VALENCIA-IVP: A Comparison with Other Ini-
tial Value Problem Solvers. In: CD-Proc. of the 12th GAMM-IMACS International
Symposium on Scientific Computing, Computer Arithmetic, and Validated Numer-
ics SCAN 2006, Duisburg, Germany, IEEE Computer Society, Los Alamitos (2007)

[RHA06] Rauh, A., Auer, E., Hofer, E.P.: A Novel Interval Method for Validating State En-
closures of the Solution of Initial Value Problems, Technical Report (2005), avail-
able online: http://vts.uni-ulm.de/doc.asp?id=6321

[Rih93] Rihm, R.: Über Einschließungsverfahren für gewöhnliche Anfangswertprobleme
und ihre Anwendung auf Differentialgleichungen mit unstetiger rechter Seite (in
German). PhD thesis, University of Karlsruhe, Germany (1993)

[RKAH04] Rauh, A., Kletting, M., Aschemann, H., Hofer, E.P.: Application of Interval Arith-
metic Simulation Techniques to Wastewater Treatment Processes. In: Proc. of Mod-
elling, Identification, and Control MIC 2004, Grindelwald, Switzerland, pp. 287–
293 (2004)

[RKAH06] Rauh, A., Kletting, M., Aschemann, H., Hofer, E.P.: Interval Methods for Simu-
lation of Dynamical Systems with State-Dependent Switching Characteristics. In:
Proc. of IEEE International Conference on Control Applications CCA 2006, Mu-
nich, Germany, pp. 355–360 (2006)

[RKAH07] Rauh, A., Kletting, M., Aschemann, H., Hofer, E.P.: Reduction of Overestimation
in Interval Arithmetic Simulation of Biological Wastewater Treatment Processes.
Journal of Computational and Applied Mathematics 199(2), 207–212 (2007)

[RMB05] Revol, N., Makino, K., Berz, M.: Taylor Models and Floating-Point Arithmetic:
Proof that Arithmetic Operations are Validated in COSY. Journal of Logic and
Algebraic Programming 64, 135–154 (2005)

[Rum99a] Rump, S.M.: Interval Computations with INTLAB. Brazilian Electronic Journal on
Mathematics of Computation 1 (1999)

[Rum99b] Rump, S.M.: INTLAB — INTerval LABoratory. In: Csendes, T. (ed.) Develop-
ments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht
(1999)

[Soc85] IEEE Computer Society. IEEE Standard for Binary Floating-Point Arithmetic.
Technical Report IEEE Std. 754-1985, American National Standards Institute
(1985), http://standards.ieee.org

[Tra06] Traczinski, H.: Integration von Algorithmen und Datentypen zur validierten
Mehrkörpersimulation in MOBILE (in German). PhD thesis, University of
Duisburg-Essen (2006)

[VJ05] Vandevoorde, D., Josuttis, N.: C++ Templates. The Complete Guide. Addison-
Wesley, Reading (2005)

http://vts.uni-ulm.de/doc.asp?id=6321
http://standards.ieee.org

Interval Subroutine Library Mission⋆

George F. Corliss1, R. Baker Kearfott2, Ned Nedialkov3, John D. Pryce4,
and Spencer Smith5

1 Marquette University
2 University of Louisiana at Lafayette

3 McMaster University and Lawrence Livermore National Laboratory
4 Cranfield University, RMCS Shrivenham

5 McMaster University

Abstract. We propose the collection, standardization, and distribution
of a full-featured, production quality library for reliable scientific comput-
ing with routines using interval techniques for use by the wide community
of applications developers.

1 Vision – Why Are We Doing This?

The interval/reliable computing research community has long worked to attract
practicing scientists and engineers to use its results. We use any of the terms
interval, reliable, verified computation in the sense of producing rigorous bounds
on true results [1,2]. The Interval Subroutine Library (ISL) is a project to place
interval tools into the hands of people we believe will benefit from their use by
gathering and refining existing tools from many interval authors. We acknowl-
edge that intervals carry a steep learning curve, and that they sometimes have
been over-promised. The winning strategy for widespread adoption of interval
technologies is the development of “killer applications” that are so much better
(in some sense) than current practice that practicing scientists and engineers
have no choice but to adopt the new technology.

The ISL team wants to see such killer applications appear, but producing
them is not our mission. The routine use of interval techniques by practicing
scientists and engineers is hampered by a lack of widely-used, comprehensive,
quality interval software that is available on all major platforms (Linux, Mac
OS, Unix, Windows). Once such software is available, use of interval techniques
is likely to grow along at least three paths: small-scale applications by scien-
tists/engineers in the course of their daily work; professionally built applications
in a specific area, such as global optimization or curve graphing; and the almost
invisible embedding of verified computing as a tool in commodity software such
as spreadsheets or scientific data analysis and document preparation.

ISL can provide the infrastructure for such developments. ISL targets applica-
tion developers, those who are developing the significant applications. Interval-
based tools tailored for specific end-practitioner applications are developed by

⋆ This work was supported in part by EPSRC Grant D033373/1.

P. Hertling et al. (Eds.): Real Number Algorithms, LNCS 5045, pp. 28–43, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Interval Subroutine Library Mission 29

applications developers with expertise in applications areas, but those developers
are not finding interval tools they perceive as attractive for their applications.
Currently, if we talk to a group of scientists or engineers about intervals and
convince them of the value of interval techniques, when they ask, “Great! What
software can I use?” there is a long, painful pause. We have many tools, pack-
ages, and research codes, but we have no CD that solves their problems with
rigorous bounds.

Major obstacles to widespread adoption of interval techniques by developers
of main-stream scientific and engineering applications include lack of speed and
hardware support, lack of customer demand, lack of interoperability of interval
tools, a steep learning curve, and many others. ISL, by itself, can solve none
of those. ISL can help unify the work of the world-wide interval research com-
munity to ease the learning curve with easier to use, more portable software
that interoperates better with other interval tools and with other common tools
used in scientific computation. A central repository containing much of the high-
quality work of the community helps attract customers, who, in turn, drive a
broad-based demand for improved hardware support.

The ISL project itself does not author software; contributing authors do that.
The goal of the ISL project is to gather and disseminate a library of high quality
interval-based tools. The fundamental requirements is “Preserve containment.”
Routines are expected to return an enclosure of the correct mathematical result
or provide a suitable indication of failure. The qualities of interest for the ISL
project include

• correctness, • comprehensiveness,
• reliability, • performance,
• robustness, • maintainability, and
• usability, • portability.

To achieve these qualities, the ISL project encourages its contributing authors to
use sound software engineering principles, including documentation, good archi-
tecture, thorough testing, and coding standards. The documentation produced
and the process of assembling the library also support the goal of achieving high
quality. Documentation should be complete, consistent, correct, usable, veri-
fiable, maintainable, and reusable. The development process should have the
qualities of productivity, timeliness, and transparency.

The authors are embarking upon a plan for the cooperative development of
such a library. This paper lays out the broad scope of the project.

1.1 Short-Term Goals

By the end of 2007, we expect to offer interval Basic Linear Algebra Subroutines
(BLAS) levels 1 and 2 and a collection of problem-solving packages, mostly cho-
sen from existing software, including linear systems, optimization, and differen-
tial equations. The collection may include utilities for automatic differentiation,
Taylor models, and constraint propagation. For our plan to achieve this, see §3.1.

30 G.F. Corliss et al.

1.2 Long-Term Goals

In perhaps 6 to 8 years, we hope to offer a library of interval tools with coverage
comparable to early releases of the IMSL or NAG libraries, SLATEC [3], the
popular Numerical Recipes books [4,5], the GNU Scientific Library(GSL) [6], or
other comparable libraries. The library will be freely available, and we shall also
encourage its appearance in commercial products. The library should be used
by a significant number of applications widely used in their respective domains.
For our plan to achieve this, see §3.2.

1.3 History

To provide a comprehensive interval problem-solving library is an old idea,
much of whose history in this section was kindly provided by an anonymous
referee. In 1976, Ulrich Kulisch and H.W. Wippermann proposed developing lan-
guage support and problem-solving routines in interval arithmetic. They raised
funds and jointly with Nixdorf developed what finally became PASCAL–XSC.
The language, the compiler, and the subroutine library are still available from
www.xsc.de. The Russian translation of the language and the corresponding
toolbox volume just appeared in its third edition.

When IBM became aware of this development, a close cooperation with the
Kulisch institute at Karlsruhe was started in 1980. They jointly developed and
implemented a Fortran extension called ACRITH–XSC, together with a large
number of problem-solving routines with automatic result verification corre-
sponding to the PASCAL–XSC development.

As a next step, a C++ class library called C–XSC was developed at the
Kulisch institute at Karlsruhe in the early 1990s, with books [7] and a toolbox
volume with problem-solving routines [8]. The software was recently updated,
extended, and adapted to new versions of C and C++ at the institute of W.
Krämer at Wuppertal. The software is publicly available, including source code,
from www.math.uni-wuppertal.de/wrswt/xsc/cxsc_new.html. C–XSC runs
on many platforms, and comes with a large number of elementary and spe-
cial functions for real, complex, real interval, and complex interval data. They
all come with proven error bounds. The problem-solving routines that come
with C–XSC cover much of the problem space envisioned by the present ISL
project.

The filib++ package [9,10], from Wuppertal, offers fast computation of guar-
anteed bounds for interval versions of a comprehensive set of elementary func-
tions, and it adds an extended mode for exception-free computation mode relying
on containment sets [11]. Filib++ uses templates and traits classes to obtain an
efficient, easily extendable, and portable C++ library. Filib++ also comes with
an extensive set of problem-solving routines. It is available from www.math.uni-

wuppertal.de/wrswt/software/filib.html.
Another library providing guaranteed bounds is INTLAB [12] (based on Mat-

lab) from the institute of S.M. Rump at Hamburg. Other, Fortran based libraries
are offered by R.B. Kearfott in Louisiana and W. Walter at Dresden.

www.xsc.de
www.math.uni-wuppertal.de/wrswt/xsc/cxsc_new.html
www.math.uni-
wuppertal.de/wrswt/software/filib.html

Interval Subroutine Library Mission 31

The development of killer applications to promote interval technologies is
surely possible with existing interval environments, but they have not yet hap-
pened. By building on the work of our predecessors, ISL, if successful, will in-
crease the penetration of interval techniques into the mainstream of scientific
and engineering computation and lowering the barriers to the development of
that killer application.

2 Product – What Will We Deliver?

To meet the needs of a wide community of applications developers in a broad
cross-section of applications areas, we need a portable, comprehensive, produc-
tion-quality library of interval tools solving most of the standard problems of
scientific computation. The library should be available in a downloadable or
CD form. The library should also have a clear licensing structure that protects
authors, while still encouraging commercialization.

2.1 Contents

We envision a hierarchical library, with units organized into chapters roughly as
suggested by Figure 1:

Interval arithmetic and extended interval arithmetic based on csets (BIAS)

Interval standard functions (level 0 BLAS) Levels 1, 2, and 3 BLAS (vector, matrix-vector, and matrix-matrix operations)

Validated enclosure to systems of linear equations

low-level routines

applications

Global Optimization and
solution of nonlinear systems

Quadrature

ODE's PDE's

robust graphics chemical engineering

artificial intelligence mathematical proofs

stability analysis of dynamical systems
(particle accelerator beams, asteroid
 orbits, etc.)

etc.

Taylor arith.?

Many others
 (?)

Constraint Propagation Support

problem-solving routines

AD

Fig. 1. A tentative hierarchical structure

Level 0 – Basic Interval Arithmetic: Interval arithmetic including
1. Constructors,
2. Arithmetic operations,
3. Comparison operators,
4. Input/output, and
5. Elementary functions.

32 G.F. Corliss et al.

Level 0 should be consistent with a C++ interval arithmetic standard,
such as that proposed by proposed by Brönnimann, Melquiond, and Pion
(BMP) [13], should a suitable standard be adopted. Level 0 should have a
large overlap with the functionality provided by many current interval arith-
metic packages, including PROFIL/BIAS [14,15], filib++ [9,10], Boost [16],
Gaol [17], C–XSC [7,8,18,19,20], and the Sun C++ compiler [21].

Level 1 – Utilities: Level 1 units are called by several units in Level 2 to
provide capabilities including

1. Error handler,
2. Additional (non-basic) interval arithmetic features,
3. Vectors and matrix classes,
4. Level 1 and level 2 BLAS,
5. Automatic differentiation,
6. Taylor model arithmetic, and
7. Constraint propagation.

Level 2 – Problem-solving routines: Chapter contents will initially mirror
the contents of many numerical analysis texts, and will grow with time.

1. Linear systems, eventually including sparse and eigensystems,
2. Nonlinear systems,
3. Optimization,
4. Quadrature,
5. Statistics,
6. Ordinary differential equations, and
7. Partial differential equations.

Level 3 – Applications: Not in the scope of ISL, but we strongly encourage
applications developers to build on ISL.

Capabilities not listed here are by no means left out. For example, Level 1 may
include multiple precision interval arithmetic with an API close to that of Level
0, so that Level 2 and Level 3 units can easily switch from double precision inter-
vals to intervals of higher precision, or vector and matrix classes using elliptical
representations for multi-dimensional intervals. Eventually, each chapter should
contain a variety of general- and special-purpose routines. Categorizing inter-
val software in a structure roughly paralleling widely-used approximate libraries
encourages interval researchers to consider gaps in interval coverage.

3 Plan – How Will We Accomplish That?

We have both short-term (two years) and long-term (3–10 years) plans.

3.1 Short-Term Plan: Gather, Organize, and Disseminate

For perhaps two years, this is primarily a library project in the sense of identi-
fying, collecting, organizing, and making available work that already exists.

Interval Subroutine Library Mission 33

Step 1 – Language standardization. ISL is a C++ library. Brönnimann
et al. have proposed to add intervals to the C++ language standard [13].
The ISL team is working for the strengthening and the adoption of this pro-
posal. The BMP proposal can become the basis for our ISL Level 0 BIAS
well before it is approved. Several existing implementations of intervals in
C++ are reasonably close to the proposed standard, so multiple (almost)
reference implementations are available.

Step 2 – Pilot inclusion into ISL. Select about three existing packages for
initial inclusion into ISL. This gives us a chance to prototype policies, pro-
cedures, and practices for incorporating existing work. See the discussion of
some issues in §3.3–3.9. In particular, this paper is not a call for participa-
tion, as we are still working to refine how ISL will work.

Step 3 – Invite participation. Once some of the issues of policies, proce-
dures, and practices for incorporating existing work have been refined, we
will invite 6–10 researchers to submit their work for inclusion in ISL. At this
stage, the number of packages we will invite remains modest, as we develop
experience, participation, and visibility.

We hope for a very preliminary release including parts of Steps 1 and 2 by
the end of 2006 and a release including about five ISL Level 2 problem-solving
routines by the end of 2007.

3.2 Long-Term Plan

After we gain experience and visibility from the short-term “gather, organize,
and make available” activities, we expect to expand the scope of the library by
inviting contributions from the interval community. Work will be managed along
the model of many successful open source projects. We anticipate releases each
1–2 years. We will continue development of a free version of ISL, while seeking
a commercial partner such as NAG, Sun, IBM, Intel, or Microsoft.

Next, we turn our attention in subsections 3.3–3.9 to some of the issues that
must be settled to ensure the success of ISL.

3.3 Language and Environment

We do not wish to ignite religious warfare, but we must choose an appropriate
computer language for ISL. In the short-term “gather, organize, and make avail-
able” activities, we can include packages in any language. Most existing interval
software is in Matlab or some dialect of Fortran or C++. It is attractive to sup-
pose we can support all languages, but with finite resources, our goals are served
better by focusing on one language. ISL is in C++ because there appears to be
more existing interval software in C++ than in other candidates. Inter-language
interoperability depends on support from the languages themselves.

34 G.F. Corliss et al.

3.4 Organizational Structure

Quality, comprehensive libraries are not compiled by a single person or small
group of people over a short time. There are many models we can follow of soft-
ware development by large, loosely-coupled teams over several years, including
the LAPACK project [22], PETSc [23,24,25], and many open source projects
such as the GSL [6].

The ISL project is coordinated by a steering committee, currently, the authors
of this paper. We meet occasionally as a group, and subsets meet as possible at
conferences. The steering committee sets directions and policies, such as those
outlined in this paper. In the long-term steady state, the role of the steering com-
mittee is somewhat like that of the editorial board of a major journal, overseeing
the work of authors, referees, and the publication process.

3.5 Adding Value

There are several good packages for interval arithmetic corresponding to our
proposed Level 0 BIAS, there are many interval-based problem-solving routines
corresponding to our Levels 1 and 2, and there are a few comprehensive projects
such as Karlsruhe XSC Toolbox books [8] and Neumaier’s COCONUT [26].
Kreinovich does an admirable job of capturing and maintaining pointers to many
interval projects at [27]. What value does ISL add?

We return to our initial premise. Although many interval tools are available,
there is no single source, a web site or a CD offering a standardized, portable,
peer-reviewed suite of tools that install and work together. In the long term, we
envision a comprehensive, universally used library. This is in contrast to offering
general languages, such as in the COCONUT project or General Algebraic Mod-
eling System (GAMS), or offering graphical user interfaces, such as in commer-
cial packages such as Maple. We view the effort as promoting standardization,
portability, and reuse. In the short term, ISL works with contributing authors
to gather existing interval tools, standardize their installation and interfaces,
perform peer review acceptance and comparative testing, provide examples, and
make these tools available from a single source.

3.6 Quality Assurance

All interval code has to have the quality of correctness. The code must obey the
rule “Preserve containment.”

Contributions are peer refereed. To be considered for inclusion in ISL, nor-
mally we expect the algorithm to have been the subject of at least one peer
refereed journal paper. Codes, testing, and documentation are also refereed,
similar to the standards for an Association for Computing Machinery (ACM)
Algorithm. We intend that publications and programs associated with ISL be
held to the highest academic and software engineering standards.

We strongly recommend that contributing authors follow modern software engi-
neering practices, where this term encompasses methods proposed by Parnas [28],
Literate Programming [29,30], agile methods such as Extreme Programming [31]

Interval Subroutine Library Mission 35

and Test-Driven Development [32], and others. Generally, we favor the more formal
methods because specifications for, say, a linear equation solver, are not expected
to change significantly while development is being done.

The ideal contribution to ISL consists of the following parts.

A specification of the software requirements, including the mathematical
statement of the problem and information on the required inputs and possible
output values. With respect to the inputs, the specification indicates clearly any
constraints that exist on the data. Where necessary, a flag shall be specified
whose values indicate the reason for failure when a solution cannot be deter-
mined. All contributions to ISL share the goal of achieving the qualities listed in
the introduction, especially the requirement, “Containment is preserved.” How-
ever, it is difficult to write validatable specifications of non-functional require-
ments. For instance, validating correctness is challenging for scientific computing
problems, because formal proofs of correctness are difficult and often overly con-
servative, although non-formal proofs with rigor comparable to proofs in the
mathematical literature are often appropriate. Therefore, rather than specify
the requirements, the approach is taken of describing the final software product,
typically including statements of the form, “It finds an enclosure of correct solu-
tion if the input lies in set Y .” This description is given in the software validation
report, discussed below.

A design specification. The ideal specification includes an API or function
signature plus semantics, often modeled on specifications for corresponding pack-
ages for approximate solutions.

A software validation report. The software validation report is about a com-
bination of observed scope, tightness and speed (plus maybe memory load), and
the observed interplay among them. It characterizes the problems that are suc-
cessfully solved.

The contributing authors are asked to provide the evidence that the software
meets the stated requirements and to describe the level to which the softwaremeets
the software quality goals. The software validation can consist of informal and for-
mal analysis, testing and a summary of important softwaremetrics. Techniques for
informal and formal analysis include code walkthroughs, code reviews, and inspec-
tion. Techniques such as literate programming can be employed so that confidence
can be built on the correctness of the code, in a similar sense to how confidence is
built by mathematicians inspecting a mathematical proof. The summary of testing
also builds confidence by showing the test cases that were passed and that any user
can download and run for themselves. The descriptions set expectations for the be-
havior of the program in similar situations. The descriptions can be tested for lies;
for instance, the validation report might assert, “the software was run over a given
range of inputs on machines x and y and the program terminated in 5 seconds or
less with an enclosure of the correct answer in 87% of cases, terminated in 5 seconds
or less with a failure indicator in 10% of cases, and had not terminated in 5 seconds
in the remaining 3% of cases.”

36 G.F. Corliss et al.

More detailed quality assurance policies and procedures are being developed
based on our experiences in Step 2 of the Short Term Plan outlined in §3.1.

3.7 Licensing

Especially in view of Sun being granted several interval-related patent appli-
cations, the interval community is increasingly aware of the importance of the
protection of intellectual property. ISL needs a carefully considered license which

– protects rights and reputations of authors,
– provides for free distribution, and
– encourages commercialization.

To help us in that, we are gathering and evaluating examples including

– GNU Lesser General Public License (LGPL), Modified Berkeley, Boost, MIT,
and other Open Source licenses;

– licenses of various interval packages; and
– intellectual property policies of some (possibly) participating universities.

3.8 Publications

Since many potential participants in the ISL project are academics, the project
will not succeed without clear publication opportunities:

– Continuing publication of incremental and innovative development of interval
software;

– Identification of omissions in coverage (holes) as development targets;
– Comparative testing of similar packages in the spirit of Enright and Hull [33]

or Mazzia, Iavernaro, and Magherini [34] for approximate ODE solvers or
Pryce [35,36] for Sturm-Liouville solvers; and

– Suites of test problems for interval problem-solving routines, e.g., Corliss
and Yu for interval arithmetic operations and elementary functions [37].
Interval test suites should include many problems from existing test suites
for approximate solvers and also problems intended to test existence and
containment properties.

– Software engineering publications related to the development of scientific
software with respect to appropriate process models, methodologies and doc-
umentation. Software engineering has mostly ignored scientific software and
placed most of the emphasis on research on safety critical systems and in-
formation systems. There is room to make contributions by looking at the
issues that are specific to scientific software.

For academic researchers, release of software to ISL in addition to journal pub-
lications offers an external, peer-reviewed process for recognizing research con-
tributions and wider dissemination than links from the authors’ web site.

While valuing the role of Reliable Computing as the core journal in this
research field, we encourage contributing authors to publish in a wide variety
of journals, especially journals in applications areas, to help bring the message

Interval Subroutine Library Mission 37

of intervals to as wide an audience as possible. Intervals are much closer to the
main stream of scientific computing than many of us realize, as new applications
and researchers using interval techniques are published regularly. We help more
people learn about intervals by publishing in the outlets they read.

In the long-term steady state, having code accepted for inclusion in ISL may
be viewed as equivalent to a journal paper, probably contributing more to the
overall advance of the infrastructure of science than many journal papers.

3.9 Funding

While it would be welcome if someone wanted to provide large funding, that
is unlikely. If we look at the models of LAPACK or most open source projects,
there may be modest funding somewhere for overall leadership and organization,
but the developers are on their own to secure their own funding. One would hope
that contributing to a large, well-organized, well-publicized international effort
might help many interval researchers get our own work funded.

Similarly, it would be welcome if a large software company provided the lead-
ership and modest funding for the champion to lead an open source project.
In other fields of study, with more obvious customers, several firms have made
significant contributions to various open source projects.

4 Partners – How Can You Help?

Clearly, the long-term goal is ambitious, requiring the work of many people
over many years. This section outlines our vision of an ideal partnership of
contributing authors, chapter architects, referees, and ISL steering committee.

4.1 Contributing Author

A contributing author contributes any of

– Code unit for the library to solve some well-defined problem of scientific
computing, e.g., constraint propagation, linear systems, optimization;

– Functionality or performance improvements, corrections, or extensions to an
existing unit of the library;

– Test suites;
– Documentation; and
– API architecture for a chapter of the library.

For a new unit for the library, a contributing author should submit

– User Guide: installation, requirements, examples;
– Maintenance documentation: system architecture, detailed design, test plan

and report;
– Source code; and
– Journal article (with quality of TOMS article and algorithm).

38 G.F. Corliss et al.

A typical interaction might be

1. Contributing author contacts (or is contacted by) the steering committee.
2. They discuss a suitable problem of scientific computing, specifications,

licensing, etc.
3. Contributing author submits a suitable research publication to a journal.
4. Contributing author submits to ISL source; installation instructions; docu-

mentation of the problem, description of algorithms, examples of use, refer-
ences, etc.; acceptance and other tests; copies of journal papers, etc.

5. ISL or chapter editor sends submitted materials to referees.
6. Usual iterations with editors, referees, and authors.
7. ISL accepts or declines the submission.
8. After acceptance, ISL maintains discussions with the contributing author to

ensure that updates to the original work are reflected in the library.

ISL should be more than a listing of web links to contributing authors’ pages.
That requires some process, at least semi-formal. The short-term “gather, orga-
nize, and make available” phase of the project will be used to find an appropriate
balance of a formal process to ensure quality and a light-weight process all can
use effectively. For example, there is no need to duplicate refereeing work already
performed for journal publication.

4.2 Chapter Architect/Editor

In the short term, the ISL steering committee are the architects of the library
and the editors for contributed units. As the scope grows, each chapter of the
library (see §2.1) has an architect/editor responsible for

– External architecture of the chapter, problem coverage, consistent API;
– Internal architecture, shared utilities; and
– Collaboration with contributing authors for this chapter.

4.3 Referee

The referee contributes to the overall quality of the library by providing an
external assessment. The referee reviews materials submitted by contributing
authors including source, installation instructions, documentation of the prob-
lem, description of algorithms, examples of use, references, acceptance and other
tests. The referee is assessing the library materials as they affect application
developers who use the library, rather than the more academic concerns of a
traditional journal referee. We anticipate that some referees are anonymous, and
some are collegial.

The ISL refereeing process may be modeled on the process for refereeing
Association for Computing Machinery (ACM) Algorithms. We encourage ISL
contributing authors to submit their work as ACM Algorithms, in which case,
the ISL refereeing is sharply truncated.

We anticipate that some refereeing work leads to publishable careful compara-
tive testing of similar packages and compilation of sets of standard test problems
for interval problem-solving routines.

Interval Subroutine Library Mission 39

4.4 Applications Development

The goal of the ISL project is to get quality, portable, uniform, comprehensive
interval tools into use by developers of applications used by practicing scientists
and engineers. Our target audience includes

– Developers in the interval community, our contributing authors. For example,
authors of interval differential equations or optimization solvers benefit from
automatic differentiation, constraint propagation, and linear solvers in ISL.

– Scientists from applications areas developing more reliable software than
that currently available.

– Small commercial companies seeking the competitive advantage of high re-
liability software in their market niche.

– Large commercial companies who develop market-leading software packages
in industry segments, such as chemical engineering, structural engineering,
financial modeling, chip and circuit design, supply chain planning, industrial
process engineering, etc.

ISL targets the developers of software for use in these areas.

5 Will ISL Succeed?

It is natural to ask why this ISL project might be more successful than its
predecessors described in §1.3. We seek not to disparage the work of others but
to highlight opportunities open to the community as a whole to increase the
penetration of interval techniques into the common practice of scientific and
engineering computation.

Stand on the shoulders of giants – ISL should incorporate as much as
possible existing work in the underlying packages for interval arithmetic and
the higher-level problem-solving routines.

C++ Standard – If intervals are standardized in C++, intervals become avail-
able in the daily software toolbox of most developers of scientific and engineering
software, without even a need to download. A standard makes it much easier
for several packages to inter-operate, removing the current impediments of slight
inconsistencies in the interval arithmetic provided by for example by C–XSC,
filib++, PROFIL/BIAS, and Sun.

Interoperability – Interval problem-solving routines available with C–XSC,
filib++, PROFIL/BIAS, and Sun each have strengths. If we can leverage a C++
interval standard for the underlying interval operations and migrate existing
problem-solving routines toward more consistent interfaces, it becomes easier
for developers to use the best routines from several authors.

Hardware support – Broader adoption of interval software is much more at-
tractive if interval arithmetic is supported directly by hardware, a position ad-
vanced by Professor Kulisch for many years, most recently in [38].

Customers – Major hardware vendors will support intervals when there is cus-
tomer demand, and customers do not demand what they cannot experience.

40 G.F. Corliss et al.

More widely available, portable, easy to use interval software facilitates experi-
encing the certainty afforded by interval techniques by a broader audience.

Open source – The success of many broad-based open source software devel-
opment projects demonstrates an alternative to the Not Invented Here model of
development in single institutes by leveraging the strengths of many researchers,
rather than putting the resources of the research community into competing
projects.

World-wide – ISL should involve researchers from Japan, China, India, Brazil,
and others as well as traditional seats in Europe, Canada, and US.

Connections with point-based algorithms – Approximate algorithms using
pure floating-point arithmetic are becoming more reliable, e.g., Baron for global
optimization. A wider network of developers can leverage connections with point
numerical analysis and applications developers. Advances from approximate al-
gorithms can improve the speed of interval algorithms, and interval insights can
improve the reliability of approximate algorithms at critical steps.

Ease the steep learning curve – Compared with approximate algorithms,
most interval algorithms require a deeper understanding of the problem, of the
method of solution being used, and of the coding of the problem. We reduce that
gap by very careful attention to ease of use and by promoting more consistent
interfaces across a wider variety of problem-solving routines.

“Deeper” analysis – We have problem-solving routines covering a wide variety
of problems, but there are opportunities to improve the set of problems each can
handle and their scalability to larger problems.

“Broader” analysis – We have solved the general case for linear and nonlin-
ear systems, differential equations, and optimization repeatedly. A centralized
repository makes it easier to recognize the need for special-purpose solvers, e.g.,
sparse systems, linear ordinary differential equations, linear programming prob-
lems, and many more.

Structure for academic recognition for software development – Most
members of the interval community are academic researchers, rewarded for pub-
lishing, not for coding. ISL may come to provide in the long term a structure for
recognition of peer-reviewed software development, leading to increased funding
opportunities.

It will take a long time. It will take lots of people. And it will take money.

6 Conclusions

Initially, ISL intends to be a single source for as large a body of existing interval
routines as resources allow. In the longer term, ISL offers a quality, portable,
uniform, comprehensive, problem-solving library. Eventually, we aspire to be
seamlessly integrated with tools and libraries for approximate computation.

Interval Subroutine Library Mission 41

Acknowledgement

An initial draft of this paper was prepared during a visit of the first author to
Tibor Csendes at the Department of Applied Informatics, University of Szeged,
Hungary, January 16 - 20, 2006. We thank Tibor for his kind hospitality.

We thank anonymous referees for contributing significantly, especially for pro-
viding much of the content of §1.3.

References

1. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia
(1979)

2. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge (1990)

3. Fong, K., Jefferson, T., Suyehiro, T., Walton, L.: Guide to the SLATEC common
mathematical library. Technical report (1990),
netlib.org, http://www.netlib.org/slatec/

4. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes
in Fortran: The Art of Scientific Computing, 2nd edn. Cambridge University Press,
Cambridge (1992); Also available for Fortran 90, C, and C++

5. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C++: The Art of Scientific Computing, 2nd edn. Cambridge University Press,
Cambridge (2002)

6. GSL: GNU Scientific Library (1996 - June 2004),
http://www.gnu.org/software/gsl/

7. Klatte, R., Kulisch, U., Wiethoff, A., Lawo, C., Rauch, M.: C–XSC – A C++
Library for Extended Scientific Computing. Springer, Heidelberg (1993)

8. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbox for Verified
Computing I — Basic Numerical Problems. Springer, Heidelberg (1993)

9. Lerch, M., Tischler, G., von Gudenberg, J.W., Hofschuster, W., Krämer, W.:
filib++, a fast interval library supporting containment computations. ACM Trans-
actions on Mathematical Software 32(2) (2006)

10. Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschuster, W., Krämer, W.:
The interval library filib++ 2.0 - design, features and sample programs (preprint
2001/4), Universität Wuppertal, Wuppertal, Germany (2001)

11. Pryce, J.D., Corliss, G.F.: Interval arithmetic with containment sets. Comput-
ing 78(3), 251–276 (2006)

12. Rump, S.M.: INTLAB interval toolbox, version 5.2 (1999–2006),
http://www.ti3.tu-harburg.de/intlab.ps.gz

13. Brönnimann, H., Melquiond, G., Pion, S.: A proposal to add interval arithmetic
to the C++ standard library. Technical Report N1843-05-0103, CIS Department,
Polytechnic University, New York, and Laboratoire de l’Informatique du Par-
allélisme, École Normale Supérieure de Lyon, and INRIA Sophia Antipolis (2005–
2006)

14. Knüppel, O.: PROFIL/BIAS – A fast interval library. Computing 53(3–4), 277–287
(1994), http://www.ti3.tu-harburg.de/profil_e

15. Knüppel, O.: PROFIL/BIAS v 2.0. Bericht 99.1, Technische Universität Hamburg-
Harburg, Harburg, Germany (1999)

netlib.org
http://www.netlib.org/slatec/
http://www.gnu.org/software/gsl/
http://www.ti3.tu-harburg.de/intlab.ps.gz
http://www.ti3.tu-harburg.de/profil_e

42 G.F. Corliss et al.

16. Brönnimann, H., Melquiond, G., Pion, S.: The Boost interval arithmetic library
(2006), http://www.cs.utep.edu/interval-comp/main.html

17. Goualard, F.: Gaol, not just another interval library (2006),
http://www.sourceforge.net/projects/gaol/

18. Hofschuster, W.: C–XSC – A C++ Class Library web page (2004)
http://www.math.uni-wuppertal.de/wrswt/xsc/cxsc.html

19. Hofschuster, W., Krämer, W.: C–XSC 2.0: A C++ library for extended scientific
computing. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Dagstuhl
Seminar 2003. LNCS, vol. 2991, pp. 15–35. Springer, Heidelberg (2004)

20. Hofschuster, W., Krämer, W., Wedner, S., Wiethoff, A.: C–XSC 2.0: A C++ library
for extended scientific computing. Preprint BUGHW–WRSWT 2001/1, Universität
Wuppertal (2001)

21. Sun Microsystems.: C++ interval arithmetic programming reference (2004–2006)
http://docs.sun.com/db/doc/806-7998

22. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du
Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LA-
PACK User’s Guide, 3rd edn. SIAM, Philadelphia (1999); Certain derivative
work portions have been copyrighted by the Numerical Algorithms Group Ltd.
http://www.netlib.org/lapack/, http://www.nacse.org/demos/lapack/ .

23. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G.,
McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Technical Report
ANL-95/11 - Revision 2.1.5, Argonne National Laboratory (2004)

24. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes,
L.C., Smith, B.F., Zhang, H.: PETSc Web page
(2001), http://www.mcs.anl.gov/petsc

25. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of par-
allelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M.,
Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–
202. Birkhäuser Press (1997)

26. Neumaier, A.: COCONUT Web page (2001-2003),
http://www.mat.univie.ac.at/~neum/glopt/coconut

27. Kreinovich, V.: Interval Computations (2006),
http://www.cs.utep.edu/interval-comp/main.html

28. Parnas, D.L.: Software Fundamentals: Collected Papers by David L. Parnas.
Addison-Wesley, Reading (2001)

29. Knuth, D.E.: Literate programming. The Computer Journal 27(2), 97–111 (1984)
30. LiterateProgramming: Literate Programming Web page (2000–2005),

http://www.literateprogramming.com/

31. Burke, E.M., Coyner, B.M.: Java Extreme Programming Cookbook. O’Reilly, Se-
bastopol (2003)

32. Beck, K.: Test-Driven Development: By Example. Addison-Wesley, Reading (2003)
33. Hull, T., Enright, W., Fellen, B., Sedgwick, A.: Comparing numerical methods for

ordinary differential equations. SIAM J. Numer. Anal. 9, 603–637 (1972)
34. Mazzia, F., Iavernaro, F., Magherini, C.: Test set for IVP solvers, release 2.2 (2003),

http://pitagora.dm.uniba.it/~testset/

35. Pryce, J.D.: A test package for Sturm-Liouville solvers. ACM Trans. Math. Soft-
ware 25(1), 21–57 (1999)

http://www.cs.utep.edu/interval-comp/main.html
http://www.sourceforge.net/projects/gaol/
http://www.math.uni-wuppertal.de/wrswt/xsc/cxsc.html
http://docs.sun.com/db/doc/806-7998
http://www.netlib.org/lapack/
http://www.nacse.org/demos/lapack/
http://www.mcs.anl.gov/petsc
http://www.mat.univie.ac.at/~neum/glopt/coconut
http://www.cs.utep.edu/interval-comp/main.html
http://www.literateprogramming.com/
http://pitagora.dm.uniba.it/~testset/

Interval Subroutine Library Mission 43

36. Pryce, J.D.: Algorithm 789: SLTSTPAK, a test package for Sturm-Liouville solvers.
ACM Trans. Math. Software 25(1), 58–69 (1999)

37. Corliss, G.F., Yu, J.: Testing COSY’s interval and Taylor model arithmetic. In: Alt,
R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) EDBT 2004. LNCS, vol. 2992,
pp. 91–105. Springer, Heidelberg (2004)

38. Kirchner, R., Kulisch, U.W.: Hardware support for interval arithmetic. Reliable
Computing 12(3), 225–237 (2006)

Convex Polyhedral Enclosures of Interval-Based

Hierarchical Object Representations

Eva Dyllong

University of Duisburg-Essen, Faculty of Engineering, Department of Computer
Science, Lotharstrasse 65, D-47048 Duisburg, Germany

Abstract. In this paper, we discuss approaches to constructing convex
polyhedral enclosures of interval-based hierarchical structures. Hierarchi-
cal object representations are the data structures most frequently used
for reconstructing real scenes. This object modelling does not depend on
the nature of a real solid but only on the chosen maximum level of the
hierarchical structure. This is a useful property for objects with complex
shapes that are difficult to describe via exact mathematical formulas.
We focus on reliable object modeling using an interval-based octree data
structure. To obtain a convex polyhedral enclosure of an octree, we seek
feasible ways to limit the number of considered points. For this purpose,
we use the concept of extreme vertices of the tree nodes. Accurate algo-
rithms for constructing the convex hull of these vertices yield a convex
polyhedron as an adaptive and reliable object enclosure at each level of
the tree.

1 Introduction

The three major approaches to modeling a solid object suitable for computer
processing are boundary representations (B-Rep), constructive solid geometry
(CSG) and spatial enumeration methods. Octrees fall in the third category. They
provide a common technique for reconstructing a scene relying on a hierarchical
representation of objects using axis-aligned bounding boxes.

1.1 Relevant Properties of Hierarchical Object Representation

The octree-based object representation does not depend on the nature of the
real solid. This is a useful property for objects with complex structures that
are difficult to describe using exact mathematical expressions, including those
with internal cavities. An adaptive enclosure of a real solid that depends only
on the chosen maximum level of the tree and an efficient execution of Boolean
operations are additional advantages of the octree data structure. Because of
their adaptive depth, octrees offer a faithful enclosure of a real object and can
be used to describe a virtual environment constructed from camera data.

On the other hand, the applicability of this data structure to objects in the
context of robotic simulation has its limits. One of the reasons for this is that
in a dynamically changing environment a lot of arbitrary rigid motion transfor-
mations are needed, which are in general computationally difficult to realize for

P. Hertling et al. (Eds.): Real Number Algorithms, LNCS 5045, pp. 44–56, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Convex Polyhedral Enclosures 45

octrees. That is because, whenever an octree moves, it must be recalculated to
reflect its new position. This update is not as straightforward as for other object
representations, such as boundary representations. Otherwise, unaligned octrees
could be applied to model moving objects. Moreover, to prevent accumulation
errors and to avoid the wrapping effect, the input octree should always be used,
and only the motion matrix should be changed.

Furthermore, thedistance computationsbetween twoobjects in the scene,which
are frequently used in many applications, become difficult and slow for unaligned
octrees during the simulation. Using convex hull of an octree allows one to apply
algorithms for computing the distance between convex polyhedra and to speed up
the distance computation as well as to reduce the wrapping effect which occurs
due to rotated boxes which are covered by axis-aligned ones. This beneficial effect
has been shown in a recent diploma thesis [Grim06] that compares the efficiency of
distance algorithms for octrees and their polyhedral enclosures.

1.2 Purpose and Outline of This Paper

As mentioned above, for a moving object it is advantageous to use a polyhedral
instead of hierarchical representation. However the second one is the preferred
underlying data structure subsequent to the reconstruction of a scene. For this
reason, we focus on computing adaptive and reliable polyhedral enclosures at
each level of the tree. This approach yields a form of a polyhedral hierarchi-
cal object representation as a result. Moreover, using interval-based hierarchical
structures we make sure that all object points are enclosed, which is an impor-
tant premise in the field of motion planning, particularly in regard to collision
testing. To obtain a convex polyhedral enclosure of an octree, we conveniently
determinate the extreme vertices of the tree nodes and afterwards construct the
convex hull of these vertices.

This paper is organized as follows: Section 2 gives the underlying definition
of an interval-based hierarchical object representation. The concept of extreme
vertices is presented in Section 3. Section 4 deals with our reliable algorithm for
computing convex polyhedral enclosures of hierarchical structures. Details on
the reliable implementation of the algorithms presented are given in Section 5.
Section 6 offers some concluding remarks.

2 Interval-Based Hierarchical Object Representation

An octree is an efficient data structure used to represent spatial data hierarchi-
cally in a tree-based structure with eight child nodes. The idea is to recursively
subdivide a cube including objects of three-dimensional space into eight mutu-
ally disjoint voxels until the required closeness to the object is reached [Same90].
Each node is checked to see whether it is full (black), partially empty (gray) or
empty (white) of solid material. If the nodes are empty or full, they do not need
to be subdivided any further. In the case of partial emptiness, the nodes need
to be subdivided to create a higher level of the octree. The subdivision process

46 E. Dyllong

Fig. 1. An object representation using the octree data structure

is repeated until all the nodes are either full or empty or until the maximum
resolution level has been reached. To obtain an outer or an inner hierarchically
structured approximation of the object, partially occupied leaves are filled or
emptied. An object representation using the octree data structure is illustrated
in Figure 1.

Since an explicit pointer-based octree storage is expensive in terms of memory
requirements, we use a more compact linear encoding, the depth-first (DF-)
representation of an octree. In this representation an octree is stored by listing
consecutively the octree nodes encountered on performing a preorder traversal
of the octree. The symbols used are G (gray node), B (black node), and W (white
node). Since there are only three different characters, two bits per node are
sufficient for storing the octree. As an example, the octree in Figure 1 yields the
DF-representation: GGBWBBBWBBBBBGBWBWWWWWWBB.

An octree node belonging to an arbitrary hierarchy level geometrically defines
an axis-aligned cube. In the case of an axis-aligned octree, all cubes have as ver-
tices machine numbers that are multiples of powers of two. But this needn’t to
be true after a rotation. Due to rounding errors, the vertices must be replaced
by small intervals with machine numbers, or each side of the cube has to be
stored as an interval to obtain a reliable enclosure of a given real object. Fur-
thermore, interval arithmetic is used to carry out elementary operations on the
cubes [Moor66].

Interval arithmetic is the most common technique providing reliable solu-
tions for many numerical problems. In interval arithmetic numbers are replaced
by intervals, representing the imprecision associated with each number. Basic
arithmetical operations, such as the sum, difference, product or inverse of in-
tervals, or even elementary functions, like sine, cosine, etc. are well defined in
interval arithmetic. Unfortunately, the loss of dependencies between variables is
an often criticized drawback of this arithmetic. It results in an overestimation
of intervals that increases with the number of interval evaluations.

Convex Polyhedral Enclosures 47

We reduce the problem of overestimation by isolating the basic arithmetical
expressions that have to be implemented in such a way that they yield a result
that is as close as it can be to the best possible machine representation. Since
scalar products occur frequently and are important basic operations in many
geometric computations, it is advantageous to perform the scalar product calcu-
lation with the same precision as the basic arithmetical operations. By using the
exact scalar product, we can delay the onset of qualitative errors and improve
the robustness of the implementation [Dyll04].

3 Concept of Extreme Points

The convex hull of a geometric object is the smallest convex set containing the
object. In the case of a finite set of points, the convex hull can be identified with
the smallest polyhedron that contains the points. The vertices of this polyhedron
are called the extreme points of the convex hull.

A simple and straightforward way of determining the convex hull of an octree
is to build the set of all vertices of cubes that define the octree nodes containing
the object and to construct the convex hull from these points. However, this is
not an efficient method. If the maximum hierarchy level of the octree changes,
the points defining the vertices vary, and a completely new set of points has to
be investigated. Furthermore, there are several vertices in the tested set that
belong to the interior of the object and thus are not relevant to the computation
of the convex hull.

Since only points on the boundary are relevant to the computation of the
convex hull, we can reduce the number of the points by investigating only those
vertices that belong to exactly one of the black or gray cubes. In the following,
a vertex is said to be an extreme vertex of cubes if none of the adjacent cubes
belong to the object. We use the extreme vertices on the boundary to obtain a
convex polyhedral enclosure of the given octree-based object representation. Fur-
thermore, a suitable update of the extreme vertices contributes to performance
enhancement of this approach whenever the maximum level has changed.

While the level increases, only gray cubes containing extreme vertices take
part in the update process. Figure 2 shows examples of how the update process
is performed. For the sake of clarity, a two-dimensional case has been chosen.
The rectangle with the black mark on the left shows a gray node of a quadtree
at level k containing an extreme vertex. On the opposite side are listed twenty
of the sixty-two conceivable cases of the four subrectangles at level k + 1. The
arrows illustrate the update of the extreme vertices.

Extreme vertices that belong to black nodes have been retained unchanged
at all higher levels. The updates of a gray rectangle with an extreme vertex in
the upper right, upper left or bottom left corner work in an analogous way. In
the case of an octree, we use a transformation of the octree into a bintree and
perform the update of the black marks successively in x-, y- and z-direction.

48 E. Dyllong

...

level k

level 1k+

update

Fig. 2. Update of extreme vertices in 2D

4 Convex Polyhedral Enclosures

The paradigm of our algorithm for constructing the hull in three dimensions
is the same as in two dimensions (cf. [DyLu06]). This is because of the nat-
ural correspondence between the underlying nodes: rectangles to cubes, and the
portability of the concept of extreme vertices to higher dimensions. Hence, to
make clear the idea, we first describe in detail the determination of the convex
hull of a hierarchical data structure by considering a quadtree Q and afterwards
examine an octree in order to explain some apparent differences.

4.1 Accurate Convex Hull Algorithm for a Quadtree

Let us consider an axis-aligned quadtree Q at level k. In the preprocessing phase
of the algorithm, all rectangles that cannot contain an extreme vertex point will

be removed. For this purpose the rectangle hull [x
(k)
min, x

(k)
max] × [y

(k)
min, y

(k)
max] of Q

at level k, k = 0, 1, . . ., is constructed, that is, the smallest axis-aligned rectangle
that covers Q at level k, with the left-, right-, bottom- and topmost corners of
Q (see Figure 3).

Let S
(i)
k = [x

(i)
L , x

(i)
R] × [y

(i)
L , y

(i)
R], i = 1, . . . , n(n ≤ 4k) be the black or gray

nodes at level k with machine-representable corners. If Pmin
R and Pmax

R both

belong to gray nodes at level k − 1 (see Figure 3), we update x
(k)
max as follows:

x(k)
max = max{x

(i)
R |i = 1, . . . , n ∧ S

(i)
k ∈ S

(j)
k−1 with x

(j)
R = x(k−1)

max }.

The values x
(k)
min, y

(k)
min and y

(k)
max are updated respectively. We consider the axis-

aligned subrectangle R1 spanned by Pmax
B = (xmax

B , ymax
B) and Pmin

R =(xmin
R , ymin

R)
at level k and repeat the following update process:

1. Update Pmin
R by searching all S

(i)
k ∈ S

(j)
k−1 with x

(j)
R = x

(k−1)
max and Pmax

B by

searching all S
(i)
k ∈ S

(j)
k−1 with y

(j)
L = y

(k−1)
min ; i ∈ {1, . . . , n}. This phase takes

time O(d · 2(d−1)k), where d denotes the dimension.

Convex Polyhedral Enclosures 49

P
L

max

P
L

min

P
T

min
P

T

max

P
R

max

P
R

min

P
B

min
P

B

max

R
1

Fig. 3. Rectangle hull of Q

2. Update the list L1 of extreme vertices of the subrectangle R1 at level k by

searching all S
(i)
k ∈ S

(j)
k−1 with S

(j)
k−1 containing extreme vertices at level k−1

(see Figure 2 for details). The nodes with the black marks are nodes with the
(possible) extreme points of the convex hull at levels k−1 and k respectively.
Thus the time complexity is bounded by 2d · dk.

3. Sort the list L1 with respect to yL, i.e. L1 = {(x
(j)
R , y

(j)
L), j = 1, . . . , m, m ≤

n} with y
(j)
L ≤ y

(j+1)
L (cp. the modified Graham scan algorithm in [RaRo03]).

Set xcurr = xmax
B , M1 = {Pmax

B }. For j = 1, . . . , m do: if xcurr < x
(j)
R , put

xcurr := x
(j)
R and insert (x

(j)
R , y

(j)
L) into the list M1. Finally, insert Pmin

R into
M1 (see Figure 3). Sorting the list has time complexity O(m log m).

4. Eliminate the points of M1 that are not extreme points at level k by using the
left-turn test together with interval arithmetic and the exact scalar product
(see Section 5.3). This can be done in linear time.

The remaining subrectangles R2 spanned by Pmax
R and Pmax

T , R3 spanned
by Pmax

L and Pmin
T , and R4 spanned by Pmin

L and Pmin
B are handled similarly

and yield lists M2, M3 and M4. The composite list M with the sublists M1,
M2, M3 and M4 results in the convex hull of Q at level k. If all corners are
machine numbers, the computation is rounding-error free. The computed hull is
the smallest possible machine-representable convex hull of the given quadtree.
Note that for the update of the convex hull at level k, instead of the list M the
sublists L1, L2, L3 and L4 of (possible) extreme points at level k − 1 are used.
That is because the list M at level k − 1 does not necessarily contain all black
marks relevant for the convex hull at level k.

Apart from the smallest possible machine-representable convex polyhedral
enclosure of the given object, this approach yields as a by-product the convex

50 E. Dyllong

Fig. 4. A quadtree at level 5 and its convex hulls at levels 2, 3, 4 and 5

hulls at all approximation levels of the underlying quadtree from the first to the
maximum level (see Figure 4).

4.2 Accurate Convex Hull Algorithm for an Octree

In case of an octree the preprocessing phase can be done analogously starting
with the smallest axis-aligned parallelepiped covering the octree and finishing
with a set M of the extreme points of the convex hull we are searching for.

At the start of the update process, instead of the four rectangular regions
R1, . . . , R4 eight box regions located with respect to each of the eight corners of

the three dimensional extension [x
(k)
min, x

(k)
max] × [y

(k)
min, y

(k)
max] × [z

(k)
min, z

(k)
max] of the

rectangle hull at level k, k = 0, 1, . . ., have to be investigated.
Step 2 of this process can be provided by transforming the octree into a

bintree and updating the black marks successively in the three directions. While
performing the update, each black mark at level k may create at most three
extreme vertices at level k + 1.

To eliminate the extreme vertices that are not extreme points of the convex
hull in step 4, the QuickHull algorithm was used. QuickHull is a variation on the
incremental algorithm and can be generalized like the incremental algorithm to
a higher number of dimensions. At each step of the algorithm, one triangle of
the current hull is selected and an associated point that is furthest away from
the triangle is found and added to the hull as follows: We delete the selected
triangle and any other triangles that can see this point. Then we add all the
triangles that connect the new point and an edge of the hole in the hull that
results from the deleted triangles. We repeat this step for each edge of the hole
to finish connecting the new point to the remainder of the old hull. Points that
can not see any of the new triangle are inside the hull and can be discarded. We
select a new triangle and repeat the steps above until there are no points outside

Convex Polyhedral Enclosures 51

Fig. 5. The octree described in Figure 1 and its convex hull

the hull, that is, points that are visible to at least one triangle of the new hull;
for details see [BDH96]. In the worst case the QuickHull algorithm is O(n2),
but in practice it is not worse than O(n log n), where n denotes the number of
points.

We use the orientation test described in Section 5 to test the visibility of a
point. The furthest points can also be found by evaluating an arithmetic expres-
sion that can be implemented in such a way that the exact scalar product is
used, thereby delivering highly accurate results.

Figure 5 shows as an example of an octree and its convex hull at level 2.

5 Reliable Implementation

In this section we show how our algorithm for constructiong convex polyhe-
dral enclosures can be implemented to perform the construction reliably. An
octree after a rotation has vertices which are interval values. This provides for
an interval-based implementation. The algorithm itself is not interval-based but
the realization makes it that. Due to the fact that the special features of interval
arithmetics have been considered while developing the algorithm, the processing
of the implementation appears nearly straightforward.

Furthermore, it is to mention that owing to several import filters and inclusion
tests like the interval version of the criterion from Walach and Zeheb a number
of reliable construction feasibilities for the user are available.

5.1 Software Environment

We have implemented the hull algorithms described above in C++ program-
ming language using the interval arithmetic of C-XSC (a C++ class library for
eXtended Scientific Computation) together with the C++ toolbox for verified
computing [HHKR95], [Zhan05].

Its wide range of tools for scientific computation such as interval and multiple-
precision arithmetics, rounding control or the exact scalar product makes C-XSC

52 E. Dyllong

Fig. 6. A surface defined by equation (1)
and plotted with Maple

Fig. 7. An octree at level 5 defined
by (2)

well suited for reliable programming with result verification. Furthermore, the
C++ toolbox contains several problem-solving methods for some standard prob-
lems of numerical analysis, such as evaluations of polynomials or arithmetic ex-
pressions, and nonlinear systems of equations, which are used as problem solvers
in our implementation.

We used the library OpenGL and the graphical widget toolkit Qt for
visualization.

5.2 Constructions of an Octree

Our implementation provides several ways of constructing a quadtree or an oc-
tree. A hierarchical object representation can be imported from a ASCII file
containing the DF-representation of the tree or containing another type of hier-
archical representations, e.g. subpavings from SIVIA (Set Inversion Via Interval
Analysis) [JKDW01]. Moreover, an axis-aligned tree can be created manually
node by node. An interval polynomial expression can be put as input, too.

Let us consider as an example an object whose surface can be described by
points fulfilling the following multivariate polynomial equation

x2 − y3 + z2 − 1 = 0, (1)

where x ∈ [−2, 2] and y ∈ [−2, 2]. Figure 6 shows the surface plotted with the
computer algebra system Maple.

To model inaccuracies of the input data coming for instance from measuring
sensors during the reconstruction the interval data type can be used. An octree
at level 5 computed for the interval polynomial expression

x2 − y3 + z2 = [0.95, 1.01] (2)

if using our implementation is illustrated in Figure 7.
To reliably decide which parts of the scene belong to an object a common

inclusion test applying interval arithmetic is used. Alternatively, it is possible to

Convex Polyhedral Enclosures 53

test the sign of the polynomial in the interval examined. For our example the
sign of the following multivariate polynomial

P (x, y, z) = −x2 + y3 − z2 + [0.95, 1.01]

can be investigated.
For this purpose an interval version of the criterion from Walach and Ze-

heb [WaZe80] for testing the sign of a multivariate polynomial in a box is im-
plemented. This positivity test has the advantage that the procedure can be
iterated in such a way that in each step the dimension decreases. For details of
the transformation of this criterion to interval valued polynomials see [FaLu00].

Theorem 1 (Walach-Zeheb Test). Let Q = [x1, x1] × . . . × [xn, xn] ⊂ ℜn be
a box and P : Q → ℜ a multivariate polynomial. Then P (x) > 0 for all x ∈ Q,
if and only if the following conditions hold:

(i) it holds P |xi=x
i

> 0 on the whole hyperplane xi = xi and P |xi=xi
> 0 on

the whole hyperplane xi = xi for all i = 1, . . . , n.
(ii) the system of n equation in n variables,

P (x) = 0

∂P (x)

∂xi
= 0 for all i = 1, . . . , n − 1

does not have any solution in Q.

The implementation of the sign test for polynomials uses a solver from the
C++ toolbox to compute enclosures for all solutions of systems of nonlinear
equations given by continuously differentiable functions based on Hansen and
Sengupta’s method and a modification of Ratz’s method [HHKR95].

5.3 Orientation Tests

For a reliable implementation of our hull algorithm, the computation of geomet-
ric predicates – in particular orientation tests – are required with guaranteed
accuracy. However, a common floating point implementation of these tests in
two or three dimensions may lead to inconsistent results due to an accumulation
of roundoff errors. This occurs because the result of both predicates frequently
depends on the sign of a small determinant.

Let a = (a1, a2), b = (b1, b2) and c = (c1, c2) be three points in the plane. If
l�ab is the line through a and b, then c is on the left side of l�ab as long as the
determinant D holds (see Figure 8)

D =

∣

∣

∣

∣

∣

∣

a1 a2 1
b1 b2 1
c1 c2 1

∣

∣

∣

∣

∣

∣

> 0.

54 E. Dyllong

Expanding the determinant, we obtain the sum

D = a1b2 + a2c1 + b1c2 − a1c2 − a2b1 − b2c1.

In case the points are vertices of an axis-aligned quadtree, the coordinates of the
points are exactly represented machine numbers and the sum can be computed as
the scalar product of v = (a1, a2, b1, a1, a2, b2) and w=(b2, c1, c2, −c2, −b1, −c1).
Hence, we can implement the sign of D = x · y exactly using the exact scalar
product in C-SXC.

(,)a a1 2

(,)c c1 2

(,)b b1 2

Fig. 8. The left-turn test

(,)a a1 2, a3

(,)d d1 2, d3

(,)b b1 2, b3

(,)c c1 2, c3

Fig. 9. The visibility test

Let a, b, c and d be four points in three dimensions. The orientation or
visibility test yields a positive value if d lies below the oriented plane passing
through the points a, b, and c. Oriented plane means that the points appear in
counterclockwise order when viewed from above the plane (see Figure 9). The
test may be done using the sign of the following determinant

D =

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3 1
b1 b2 b3 1
c1 c2 c3 1
d1 d2 d3 1

∣

∣

∣

∣

∣

∣

∣

∣

.

D can be computed as a sum of 24 monomials of the form ±x1y2z3. In order to
get the sign correctly, we need to evaluate the determinant with relative error less
than one. An evaluation of this dot product expression can be carried out with
maximum accuracy using multiple-precision arithmetics provided in C-XSC.

5.4 Time Comparison of Distance Routines

The implemented tool has been upgraded with accurate distance routines for
interval-based hierarchical structures. In addition, the computing time required
for the distance computation between two hierarchical structures with the time
needed for distance computation between their polyhedral enclosures has been
compared [Grim06]. Owing to the reduction of points that define the object, a
noticeable saving of the computing time as a result of building its polyhedral
enclosure was expected. In case of the octree described in Figure 1 for example,
there are 13 cube nodes each with 8 vertices and 12 rectangle facets to be con-
sidered during the distance computation instead of 11 vertices and 17 triangular

Convex Polyhedral Enclosures 55

facets in case of its convex enclosure. For the quadtree shown in Figure 4 there
are 33 square nodes each with four vertices which would be relevant to the com-
putation in comparision to 12 vertices of the corresponding polygon. Hence, the
time reduction in case of moving objects is all the more significant and could be
detected on several examples as a speed up of the computation by a factor of
ten or greater es reported in [Grim06] .

6 Summary and Future Works

In this paper an adaptive algorithm for reliable computation of convex polyhedral
enclosures of an interval-based hierarchical object representation is discussed. An
efficiently construction of convex polyhedral enclosures affects advantageously
further treatment or processing of the scene. Our approach uses the concept of
extreme vertices of the nodes on the boundary and yields the smallest possible
machine-representable convex polyhedron containing the octree representation
of the given object at each level of the tree. Details of the reliable implementation
of the convex hull algorithm are provided.

For the future we plan to transform the paradigm of our hull algorithm to
higher dimensions. For this reason we seek feasible ways of combining the concept
of extreme points with a method based on an interval linear solver to obtain a
reliable polyhedral enclosure for higher dimensional hierarchical structures. The
experimental data presented in [KrLa04] suggest that Gaussian elimination with
total pivoting can be used as a solver that is robust to the dimension involved
and to uncertainties in the coordinates of the points.

References

[BDH96] Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The Quickhull algorithm for
convex hull. ACM Transactions on Mathematical Software 22(4), 469–483
(1996)

[Dyll04] Dyllong, E.: Akkurate Abstandsalgorithmen mit Ergebnisverifikation.
Ph.D. thesis, University of Duisburg-Essen, VDI Reihe 20, Nr. 390,
Düsseldorf (2004)

[DyLu06] Dyllong, E., Luther, W.: Verified convex hull and distance computation
for octree-encoded objects. Journal of Computational and Applied Math-
ematics (2006)

[FaLu00] Fausten, D., Luther, W.: Verifizierte Lösungen von nichtlinearen polyno-
mialen Gleichungssystemen. Technical Report SM-DU-477, University of
Duisburg (2000)

[Grim06] Grimm, C.: Verläßliche Abstandsalgorithmen für intervallbasierte Oc-
treemodelle und ihre konvexen Einschlüsse – Ein Effizienzvergleich.
Diploma thesis, University of Duisburg (2006)

[HHKR95] Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: C++ Toolbox for Verified
Computing. Basic Numerical Problems. Springer, Berlin (1995)

[KrLa04] Krivsky, S., Lang, B.: Using Interval Arithmetic for Determining the
Structure of Convex Hulls. Numerical Algorithms 37, 233–240 (2004)

56 E. Dyllong

[Moor66] Moore, R.: Interval Analysis. Prentice Hall, Englewood Cliffs (1966)
[RaRo03] Ratschek, H., Rokne, J.: Geometric Computations with Interval and New

Robust Methods. Horwood Publishing, Chichester (2003)
[Same90] Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-

Wesley Publishing Company, Reading (1990)
[Zhan05] Zhang, Min.: Konvexe Einschlüsse von hierarchischen intervallbasierten

Modellen. Diploma thesis, University of Duisburg-Essen (2005)
[WaZe80] Walach, E., Zeheb, E.: Sign Test of Multivariate Real Polynomials. IEEE

Trans. on Circuits and Systems 27(7), 619–625 (1980)
[JKDW01] Jaulin, J., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis.

Springer, London (2001)

Real Algebraic Numbers:

Complexity Analysis and Experimentation

Ioannis Z. Emiris1, Bernard Mourrain2, and Elias P. Tsigaridas1

1 Department of Informatics and Telecommunications
National Kapodistrian University of Athens, Hellas

{emiris,et}@di.uoa.gr
2 GALAAD, Inria

Sophia-Antipolis, France
mourrain@sophia.inria.fr

Abstract. We present algorithmic, complexity and implementation re-
sults concerning real root isolation of a polynomial of degree d, with
integer coefficients of bit size ≤ τ , using Sturm (-Habicht) sequences and
the Bernstein subdivision solver. In particular, we unify and simplify the
analysis of both methods and we give an asymptotic complexity bound of
�OB(d4τ 2). This matches the best known bounds for binary subdivision
solvers. Moreover, we generalize this to cover the non square-free polyno-
mials and show that within the same complexity we can also compute the
multiplicities of the roots. We also consider algorithms for sign evalua-
tion, comparison of real algebraic numbers and simultaneous inequalities,
and we improve the known bounds at least by a factor of d.

Finally, we present our C++ implementation in synaps and some pre-
liminary experiments on various data sets.

1 Introduction

The representation and manipulation of shapes is important in many applica-
tions, e.g. CAGD, non linear computational geometry, robotics and molecular
biology. The usual underlying models for these shapes are parametrized patches
of rational surfaces, BSplines, natural quadrics and implicit algebraic curves or
surfaces. Geometric processing on these objects, e.g. computing boundary rep-
resentations [8], arrangements [18, 38], Voronoi diagram of curved objects [21],
requires the intensive use of polynomial solvers and computations with algebraic
numbers. In such applications, a geometric model may involve several thousands
of algebraic primitives. Their manipulations involve the computation of intersec-
tion points, of predicates on these intersection points (such as the comparison of
coordinates), of the sign of polynomial expressions at these points (such as the
sign of a polynomial which defines the boundary of an object). The coordinates
of these intersection points, which are the solutions of polynomial equations, are
real algebraic numbers that we need to manipulate efficiently.

The objective of this paper is to give an overview of effective computations with
real algebraic numbers, which unify, simplify and improve previous approaches.

P. Hertling et al. (Eds.): Real Number Algorithms, LNCS 5045, pp. 57–82, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

58 I.Z. Emiris, B. Mourrain, and E.P. Tsigaridas

We will tackle both complexity analysis and practical issues. We consider two algo-
rithms for real root isolation of univariate integer polynomials, one based on Sturm
sequences and one based on Descartes’ rule of sign and we will put both under the
general concept of a subdivision solver. We will also analyse algorithms for sign
evaluation, comparison of real algebraic numbers and the problem of simultaneous
inequalities.

Our aim is to provide better insights on these algorithms and better bounds
on their complexity. For the analysis we consider the bit complexity model which
is more realistic than the arithmetic one in the problems we are interested in.
Our algorithms are essentially output sensitive, since they depend not only on
the input bit size, but also on the actual separation bound, as we will see.

Notation. In what follows OB means bit complexity and the ÕB-notation
means that we are ignoring logarithmic factors. For a polynomial f ∈ Z[X],
deg (f) denotes its degree. By L (f) we denote an upper bound on the bit size
of the coefficients of f (including a bit for the sign). For a ∈ Q, L (a) is the max-
imum bit size of the numerator and the denominator. Let M (τ) denote the bit
complexity of multiplying two integers of bit size at most τ and M (d, τ) denote
the bit complexity of multiplying two univariate polynomials of degrees bounded
by d and coefficient bit size at most τ . Using FFT, M (τ) = OB(τ logc1τ) and
M (d, τ) = OB(dτ logc2(dτ)) for suitable constants c1, c2.

Prior Works. Various algorithms exist for polynomial real root isolation, but
most of them focus on square-free polynomials. There is a huge bibliography on
the problem and the references cited in this paper are only the tip of the iceberg
of the existing bibliography.

Collins and Akritas [10] introduced a subdivision-based real root isolation al-
gorithm that relies on Descartes’ rule of sign (we call it Descartes solver from

now on) and derived a bound of ÕB(d6τ2). Johnson [27] improved the bound

to ÕB(d5τ2) without using fast Taylor shifts [48], whereas a gap in his proof
was corrected by Krandick [29]. The latter also presented a different way of tra-
versing the subdivision tree. Rouillier and Zimmermann (c.f. [43] and references
therein) presented a unified approach with optimal memory management for
various variants of the Descartes solver.

An algorithm (we call it Bernstein solver from now on) that is based on a
combination of Descartes’ rule and on the properties of the Bernstein basis was
first introduced by Lane and Riesenfeld [31] and a bound on its complexity
was first obtained by Mourrain et al [39]. The interested reader may also refer
to Mourrain et al [37] for a variant with optimal memory management and
the connection to Descartes solver. In the same context, Eigenwillig et al [15]
proposed a randomized algorithm for square-free polynomials with bit stream
coefficients. The complexity of all these algorithms was bounded by ÕB(d6τ2).
Recently, it was proven that the number of steps of both Descartes and Bernstein
solver is ÕB(dτ) [16,46], which is the crucial step for obtaining a ÕB(d4τ2) bound
for both solvers [16], provided the polynomials are square-free.

Real Algebraic Numbers: Complexity Analysis and Experimentation 59

Another algorithm, also based on Descartes’ rule of sign but which does not
rely on subdivision schemes, is the CF algorithm [1,47]. It exploits the continued
fraction expansion of the real roots of a polynomial in order to isolate them. The
expected bit complexity of this algorithm is ÕB(d4τ2) [47].

If we restrict ourselves to real root isolation using Sturm (or Sturm-Habicht)
sequences (we call it Sturm solver from now on) the first complete complexity
analysis is probably due to Heindel [26]; see also [11], who obtained a complexity

of ÕB(d7τ3). Du et al [14], giving an amortized-like argument for the number of

subdivisions, obtained a complexity of ÕB(d4τ2), for square-free polynomials.
Another family of solvers (that we call numerical), compute an approximation

of all the roots (real and complex) of a polynomial up to a desired accuracy (see
e.g. [45,40]). They are based on the construction of balanced splitting circles in

the complex plane and achieve the quasi-optimal complexity bound ÕB(d3τ), if
we want to isolate the roots. However, performance in practice does not always
agree with that predicted by asymptotic analysis. Let us also mention the Aberth
solver [5,6], which has unknown (bit) complexity, but is very efficient in practice.

For sign evaluation and comparison as well as computations with real algebraic
numbers the reader may refer to [42]. In [19] for degree ≤ 4, it is proved that these

operations can be performed in O(1), or ÕB(τ). For the problem of simultane-
ous inequalities (SI), we are interested in computing the (number of) real roots
of a polynomial f , such that n other polynomials achieve specific sign conditions,
where the degree of all the polynomials is bounded by d and their bit size by τ .
Ben-Or, Kozen and Reif [3] presented the BKR algorithm for SI and Canny [7] im-
proved it in the univariate case (by a factor) achieving O(n(m d log(m) log2(d) +
m2.376)) arithmetic complexity, where m is the number of real roots of f . Coste
and Roy [12] introduced Thom’s encoding for the real roots of a polynomial and SI
in this encoding (see also [44]). Their approach is purely symbolic and works over

arbitrary real closed fields. They state a complexity of ÕB(N8), using fast multi-
plication algorithms but not fast computations and evaluation of polynomial se-
quences, where N ≥ n, d, τ . Basu, Pollack and Roy [2] presented an algorithm for
SI where the real algebraic numbers are in isolating interval representation, with
complexity ÕB(nd6τ2) or ÕB(N9), that uses repeated refinements of the isolating
intervals and does not assume fast multiplication algorithms.

Results. For the problem of real root isolation of a univariate polynomial, we
consider the general concept of a subdivision solver, Fig. 1, that mimics the bi-
nary search algorithm. The Sturm and Bernstein solvers count differently the
number of real roots of a polynomial in an interval; see Cor. 2.1 and Prop. 3.1,
respectively. Moreover, the Sturm solver counts exactly the number of real roots
while the Bernstein solver provides an overestimation. However, exploiting the
fact that Descartes’ rule of sign (Prop. 3.1) can not overestimate the number
of real roots by more than the degree of the polynomial, both solvers can be
put under the general concept of the subdivision solver of Fig. 1. With exactly
the same arguments we can prove that they perform the same number of steps.

60 I.Z. Emiris, B. Mourrain, and E.P. Tsigaridas

The analysis that we present, Prop. 5.2, unifies and simplifies significantly the
previous approaches and applies as is to the Descartes solver, as well.

For the Sturm solver we present an algorithm with complexity ÕB(d4τ2), that
improves the result of Du et al [14], see also [13], by extending it to non square-
free polynomials. We simplify significantly the proof (Th. 5.1) and unify it with
the Bernstein approach. We also show that computing the multiplicities of the
roots can be achieved within the same complexity bound.

For the Bernstein solver, we simplify the proof of Eigenwillig et al [16, 46]
for the number of subdivisions by considering the subdivision tree at an earlier
level and by using Th. 4.1 exactly as stated in [27, 30]. Thus, we arrive at the
same bound for the Bernstein subdivision method (Th. 5.1) as in [16], but for
polynomials which are not necessarily square-free.

Real root isolation is an important ingredient for the construction of alge-
braic numbers represented in isolating interval representation, see Def. 6.1. We
analyze the complexity of comparison, sign evaluation and simultaneous in-
equalities (Sec. 6). Even though the algorithms for these operations are not
new [2,19,42,51], the results from real solving and optimal algorithms for poly-
nomial remainder sequences, allow us to improve the complexity of all the al-
gorithms, at least by a factor of d (Cor. 6.1, 6.2). For SI we prove a bound

(Cor. 6.3) of ÕB(d4τ max{n, τ}).
These algebraic operations ought to have efficient and generic implementations

so that they can be used by other scientific communities. We present a package
of synaps [36] that provides these functionalities on real algebraic numbers
and exploits various algorithmic and implementation techniques. Experimental
results (Sec. 7) illustrate the advantages of the software and our implementation
of various algorithms for real root isolation.

Our results extend directly to the bivariate case, i.e. real solving a polynomial
system, sign evaluation of a bivariate polynomial evaluated over two algebraic
numbers and SI in two variables. However, due to reasons of space, we cannot
present these results here. The reader may refer to [22, 20].

Outline. In Sec. 2, we recall the main ingredients of the Sturm solver and
analyse them in detail. Sec. 3 presents the ingredients of the Bernstein solver
and their complexity. In Sec. 4, we present the general scheme for two subdivi-
sion algorithms based on Sturm-Habicht sequences and on the Bernstein basis
representation, for real root isolation and computation of the multiplicities. The
following section is devoted to the complexity analysis of both methods. Sec. 6
is devoted to operations with real algebraic numbers, i.e. comparison, sign eval-
uation and SI. Sec. 7 illustrates our implementation in synaps and experiments
concerning real root isolation on various data sets. Finally, we sketch our current
and future work in Sec. 8.

2 Preliminaries for Sturm–Habicht Sequences

We recall here the main ingredients related to Sturm(-Habicht) sequence com-
putations and their bit complexity.

Real Algebraic Numbers: Complexity Analysis and Experimentation 61

Let f =
∑p

k=0 fkxk, g =
∑q

k=0 gkxk ∈ Z[x] where deg(f) = p ≥ q = deg(g)
and L (f) = L (g) = τ . We denote by rem (f, g) and quo (f, g) the remainder and
the quotient, respectively, of the Euclidean division of f by g, in Q[x].

Definition 2.1. [32] The signed polynomial remainder sequence of f and g,
denoted by SPRS (f, g), is the polynomial sequence

R0 = f, R1 = g, R2 = − rem (f, g) , . . . , Rk = − rem (Rk−2, Rk−1) ,

with k the minimum index such that rem (Rk−1, Rk) = 0. The quotient sequence
of f and g is the polynomial sequence {Qi}0≤i≤k−1, where Qi = quo (Ri, Ri+1)
and the quotient boot is (Q0, Q1, . . . , Qk−1, Rk).

There is a huge bibliography on signed polynomial remainder sequences (c.f. [2,
49, 51] and references therein). Gathen and Lucking [50] presented a unified
approach to subresultants, while El Kahoui [17] studied the subresultants in
arbitrary commutative rings. For the Sturm-Habicht (or Sylvester-Habicht) se-
quences the reader may refer to González-Vega et al [24], see also [2, 32, 33].

In this paper we consider the Sturm-Habicht sequence of f and g, i.e.
StHa(f, g), which contains polynomials proportional to the polynomials in
SPRS (f, g). Sturm-Habicht sequences achieve better bounds on the bit size
of the coefficients.

Let Mj be the matrix which has as rows the coefficient vectors of the poly-
nomials fxq−1−j , fxq−2−j , . . . , fx, f , g, gx, . . . , gxp−2−j , gxp−1−j with respect
to the monomial basis xp+q−1−j , xp+q−2−j , . . . , x, 1. The dimension of Mj is
(p+ q − 2j)× (p+ q− j). For l = 0, . . . , p+ q − 1− j let M l

j be the square matrix
of dimension (p+ q −2j)× (p+ q −2j) obtained by taking the first p+ q −1−2j
columns and the l + (p + q − 2j) column of Mj .

Definition 2.2. The Sturm-Habicht sequence of f and g, is the sequence

StHa(f, g) = (Hp = Hp(f, g), . . . , H0 = H0(f, g)),

where Hp =f ,Hp−1 =g, Hj =δj

∑j
l=0 det (M l

j)x
l and δj =(−1)(p+q−j)(p+q−j−1)/2.

The sequence of principal Sturm-Habicht coefficients (hp = hp(f, g), . . . , h0(f, g))
is defined as hp = 1 and hj is the coefficient of xj in the polynomial Hj, for
0 ≤ j ≤ p. When hj = 0 for some j then the sequence is called defective,
otherwise non-defective.

If StHa(f, g) is non-defective then it coincides up to sign with the classical
subresultant sequence introduced by Collins [9], see also [51]. However, in the
defective case, one can have better control on the bit size of the coefficients in
the sequence, see e.g. [32, 33].

Theorem 2.1. [2, 41, 33, 49] There is an algorithm that computes StHa(f, g)

in OB(pq M (pτ)), or ÕB(p2qτ). Moreover, L (Hj(f, g)) = O(pτ).

Let the quotient boot that corresponds to StHa(f, g), be StHaQ(f, g) =
(Q0, Q1, . . . , Qk−1, Hk). The number of coefficients in StHaQ(f, g) is O(q) and
their bit size is O(pτ) [2, 41].

62 I.Z. Emiris, B. Mourrain, and E.P. Tsigaridas

Theorem 2.2. [2, 32, 41, 49] The quotient boot, the resultant and the gcd of f

and g, can be computed in OB(q log(q)M (pτ)) or ÕB(p q τ).

Theorem 2.3. [32, 41] There is an algorithm that computes the evaluation of
StHa(f, g) over a number a, where a ∈ Q ∪ {±∞} and L (a) = σ with com-
plexity OB(q log(q)M (max{pτ, qσ})) or OB(qM (max (pτ, qσ))) if StHaQ(f, g)

is already computed. In both cases the complexity is ÕB(q max{pτ, qσ}).

In many cases, e.g. real root isolation, sign evaluation, comparison of real alge-
braic numbers, we need the evaluation of StHa(f, f

′

) over a rational number
of bit size O(pτ). If we perform the evaluation by Horner’s rule then for every
polynomial in sequence, we must perform Ω(p) multiplications between numbers
of bit size O(pτ) and O(p2τ), thus the overall complexity is OB(p3

M (pτ)).
However, when we compute the complete StHa(f, f

′

) in OB(p2
M (pτ))

(Th. 2.1), the quotient boot is computed implicitly [41, 2]. Thus, we can use
the quotient boot in order to perform the evaluation even if we have already
computed all the polynomials in the sequence. Notice also that the computation
should be started by the last element of the quotient boot so as to avoid the
costly evaluation of the first two polynomials in the sequence using Horner’s
scheme.

Even though this approach is optimal, it involves big constants in its com-
plexity, thus it is not efficient in practice when the length of the sequence is not
sufficiently big or when the sequence is defective, see e.g. [13]. Moreover, special
techniques should be used for its implementation to avoid costly operations with
rational numbers. So, as it is always the case with optimal algebraic algorithms,
the implementation is far from a trivial task.

Theorem 2.4. [2] The square-free part of f , i.e. fred, can be computed from

StHa(f, f
′

), in OB(p log(p)M (pτ)) or ÕB(p2τ), and L (fred) = O(p + τ).

Let W(f,g)(a) denote the number of modified sign changes of the evaluation of
StHa(f, g) over a. Notice that W(f,g)(a) does not refer to the usual counting of
sign variations, since special care should be taken for the presence of consecutive
zeros [2, 24, 32].

Theorem 2.5. [2,51,42] Let f, g ∈ Z[x] be relatively prime polynomials, where
f is square-free and f

′

is the derivative of f and its leading coefficient fd > 0.
If a < b are both non-roots of f and γ ranges over the roots of f in (a, b), then
W(f,g)(a) − W(f,g)(b) =

∑
γ sign (f

′

(γ)g(γ)).

Corollary 2.1. If g = f
′

then StHa(f, f
′

) is a Sturm sequence and Th. 2.5
counts the number of distinct real roots of f in (a, b).

For the Sturm solver V (f, [a, b]) will denote V (f, [a, b]) = W(f,f ′)(a)−W(f,f ′)(b).

3 Preliminaries for the Bernstein Basis Representation

In this section we present the main ingredients needed for the representation of
polynomials in the Bernstein basis.

Real Algebraic Numbers: Complexity Analysis and Experimentation 63

Let R[x]d be the set of real polynomials of degree d. For a < b ∈ R, we denote

by Bi
d(x; a, b) =

(

d
i

) (x−a)i(b−x)d−i

(b−a)d (i = 0, . . . , d) the Bernstein basis of R[x]d on

an interval [a, b].

For any polynomial f =
∑d

i=0 biB
i
d(x; a, b) ∈ R[x]d represented in the Bern-

stein basis, the coefficients b = (bi)i=0,...,d are called control coefficients of f .
We denote by V (f, [a, b]) ≡ V (b), the number of sign changes in this sequence b

(after removing zero coefficients).
The following theorem, which is a direct consequence of Descartes’ rule, allows

us to bound the number of real roots of f on the interval [a, b]

Proposition 3.1. [2] The number N of real roots of f on (a, b) is bounded by
V (f, [a, b]). Moreover N ≡ V (f, [a, b]) mod 2.

Given a polynomial f represented in the Bernstein basis on an interval [a, b], de
Casteljau’s algorithm (see e.g. [2,37]), allows us to compute its representation in
the Bernstein bases on the two sub-intervals, IL = [a, (1−t)a+tb] and IR = [(1−
t)a+ tb, b], where 0 ≤ t ≤ 1. Namely, bL = (bi

0)i=0,...,d (resp. bR = (bd−i
i)i=0,...,d)

are the control coefficients of f on IL (resp. IR), where b0
i = bi, i = 0, . . . , d, and

br
i = (1 − t) br−1

i + t br−1
i+1 (t), 0 ≤ i ≤ d − r, 0 ≤ r ≤ d. (1)

In order to analyse the complexity of the de Casteljau algorithm we recall some
polynomial transformations related to the Bernstein representation, see [37] for
more details. Let R[x, y][d] be the set of homogeneous polynomials of degree d in

(x, y). For any f ∈ R[x]d, we denote by f the homogenisation of f in degree d.
For λ �= 0, µ ∈ R, consider the following maps, R2 → R2:

– ρ : (x, y)
→ (y, x),
– Hλ : (x, y)
→ (λx, y), H ′

λ : (x, y)
→ (x, λy),
– Tµ : (x, y)
→ (x − µy, y), T ′

µ : (x, y)
→ (x, y − µx).

The composition of the previous maps with f induces invertible transforma-
tions on the set of polynomials of degree d. The corresponding maps for non-
homogeneous polynomials, which we denote using the same names, are: ∀f ∈
R[x]d, ρ(f) = xdf(1/x), Hλ(f) = f(λx), H ′

λ(f) = f(λ−1x), Tµ(f) = f(x − µ)
and T ′

µ(f) = (1 − µ x)df(x
1−µ x

).

For any polynomial, f(x) =
∑d

i=0 biB
i
d(x; a, b), we have

ρ ◦ T1 ◦ ρ ◦ Hb−a ◦ T−a(f) =

d
∑

i=0

(

d

i

)

bix
i.

Now consider another interval [c, e]. The representation of f in the Bernstein

basis on [c, e] is f(x) =
∑d

i=0 b′iB
i
d(x; c, e). The map which transforms f from

its Bernstein representation on [a, b] to its Bernstein representation on [c, e], i.e.

from
∑d

i=0

(

d
i

)

bix
i to

∑d
i=0

(

d
i

)

b′ix
i is

ρ◦T1 ◦ρ◦He−c ◦T−c ◦Ta ◦H 1
b−a

◦ρ◦T−1 ◦ρ = T ′
1 ◦He−c ◦Ta−c ◦H 1

b−a
◦T ′

−1. (2)

64 I.Z. Emiris, B. Mourrain, and E.P. Tsigaridas

If we consider [a, b] = [0, 1] and [c, e] = [0, 1
2] then map (2) becomes: ρ ◦ T−1 ◦

ρ ◦ H 1
2

◦ ρ ◦ T1 ◦ ρ. And after simplifications, we obtain

∆L : f
→ f(x +
y

2
,
y

2
) = f ◦ T−1 ◦ H ′

1
2

. (3)

If we consider the symmetric case, i.e. [a, b] = [0, 1] and [c, e] = [12 , 1], then
map (2) becomes: ρ◦T−1◦ρ◦H 1

2
◦T− 1

2
◦ρ◦T1◦ρ. It corresponds to the following

map on the homogeneous polynomials:

∆R : f
→ f(
x

2
,
x

2
+ y) = f ◦ T ′

−1 ◦ H 1
2
.

In both cases, multiplication by 2d yields the maps

∆R : f
→ f(x, x + 2 y) and ∆L : f
→ f(2 x + y, y), (4)

that operate operate on polynomials with integer coefficients.

Proposition 3.2. Let (bi)i=0,...,d ∈ Zd+1 be the coefficients of a polynomial f
in the Bernstein basis on the interval [a, b], and let ν be a bound on the bit size
of coefficients. The complexity of computing the Bernstein coefficients of f on
the two sub-intervals [a, a+b

2] and [a+b
2 , b] is bounded by ÕB(d(d + ν)) and their

bit size is bounded by d + ν.

Proof. Using the de Casteljau scheme, Eq. (1) using t = 1
2 , we prove by induction

that the coefficients br
i =

(br−1

i
+b

r−1

i+1
)

2 are of the form
b

r

i

2i , where b
r

i ∈ Z is of bit
size ≤ ν+r. Reducing to the same denominator 2d, we obtain integer coefficients
of bit size ≤ ν + d.

We denote by ν′ the bit size of the coefficients (
(
d
i

)
bi)i=0,...,d where (bi)i=0,...,d

are the coefficients of f in the Bernstein basis (Bi
d(x; a, b))i=0,...,d. Notice that

ν′ ≤ ν + d.
In order to compute the coefficients of f on [a, a+b

2] and [a+b
2 , b], we apply

the same operations as when we compute the coefficients of a polynomial in the
Bernstein basis on [0, 1

2] and [12 , 1], given its coefficients in the Bernstein basis
on [0, 1].

According to (3), applying de Casteljau’s algorithm corresponds first to mul-
tiply by the binomial coefficients, then to shift, y
→ x + y, then to scale one
variable of the homogeneous polynomial f by 1

2 , and finally to divide by the
binomial coefficients1.

Since the bit size of the binomial coefficients is bounded by d (their sum is

2d), multiplying the bi by them costs at most ÕB(d(ν + d)). Shifting by 1 a

polynomial of degree d with coefficients of bit size ≤ ν +d requires ÕB(d(d+ν))
bit operations [49, 48] and the resulting polynomial has (coefficient) bit size
O(ν + d). Consequently, scaling the variable of the (resulting) polynomial by 1

2

and computing the quotient by the binomial coefficients costs ÕB(d(ν + d)).

1 There is no need for the division step if we have to apply repeatedly the shift operation.

Real Algebraic Numbers: Complexity Analysis and Experimentation 65

Therefore, the complexity of computing the Bernstein coefficients of f on the
sub-interval [a, a+b

2] is bounded by ÕB(d(ν + d)). By symmetry, inverting the
order of the coefficients of f , we obtain the same bound for the coefficients of f
on [a+b

2 , b], which ends the proof. ⊓⊔

4 Subdivision Solver

Let f =
∑d

i=0 aix
i ∈ Z[x], such that deg(f) = d and L (f) = τ , and let fred

be its square-free part. We want to isolate the real roots of f , i.e. to compute
intervals with rational endpoints that contain one and only one root of f , as well
as the multiplicity of every real root.

In Fig. 1, we present the general scheme of the subdivision solver that we
consider, augmented appropriately so that it also outputs the multiplicities. It
uses an external function V (f, I), which bounds the number of roots of f in
the interval I. A real root isolation algorithm can be put under the subdivision
solver concept of Fig. 1 if it can provide the V (f, I) function. In the case of the
Sturm solver, V (f, I) returns the exact number (counted without multiplicities)
of the real roots of f in I (Cor. 2.1). In the case of Bernstein solver, V (f, I) is
equal to the number of real roots of f in I (counted with multiplicities) modulo
2 (Prop. 3.1).

Separation Bounds. An important quantity for the analysis of the subdivi-
sion solvers is a bound on the minimal distance, sep(f), between the roots of
a univariate polynomial f (also called separation bound), or more generally on
the product of distances between roots. We recall here classical results, slightly
adapted to our context. For the separation bound it is known, e.g. [2,34,51], that

ALGORITHM: Real Root Isolation

Input: A polynomial f ∈ Z[x], such that deg(f) = d and
L (f) = τ .
Output: A list of intervals with rational endpoints, which
contain one and only one real root of f and the multiplicity
of every real root.

1. Compute the square-free part of f , i.e. fred

2. Compute an interval I0 = (−B, B) with rational endpoints
that contains all the real roots. Initialize a queue Q with I0.
3. While Q is not empty do

a) Pop an interval I from Q and compute v := V (f, I).
b) If v = 0, discard I .
c) If v = 1, output I .
d) If v ≥ 2, split I into IL and IR and push them to Q.

4. Determine the multiplicities of the real roots, using the
square-free factorization of f .

Fig. 1. Real root isolation subdivision algorithm

66 I.Z. Emiris, B. Mourrain, and E.P. Tsigaridas

sep(f) ≥ d−
d+2

2 (d+1)
1−d
2 2τ(1−d), thus log(sep(f)) = O(dτ). The latter provides

a bound on the bit size of the endpoints of the isolating intervals.
Recall, that Mahler’s measure, see e.g. [34,51,2], of a polynomial f is M(f) =

|ad|
∏d

i=1 max{1, |γi|}, where ad is the leading coefficient and γi are all the roots
of f . We know that M(f) < 2τ

√
d + 1 [2,34]. Thus, the following inequality [2,34]

holds:
M(fred) ≤ M(f) < 2τ

√
d + 1. (5)

For the minimum distance between two consecutive real roots of a square-
free polynomial, Davenport-Mahler bound is known [13] (see also [27, 30]). The
conditions for this bound to hold were generalized by Du et al [14]. A similar
bound, with less strict hypotheses, also appeared in [35]. Using (5) we can provide
a bound similar to [27] for non square-free polynomials.

Theorem 4.1 (Davenport-Mahler bound revisited). Let A={α1, . . . , αk}
and B = {β1, . . . , βk} be subsets of distinct (complex) roots of f (not necessarily
square-free) such that βi /∈ {α1, . . . , αi} and |βi| ≤ |αi|, for all i ∈ {1, . . . , k}.
Then

k
∏

i=1

|αi − βi| ≥ M(f)−d+1d−
d
2 (

√
3

d
)k.

The bound also holds when α1 > β1 = α2 > β2 = . . . αk > βk := αk+1, are
distinct real roots of f .

Proof. Use [27] and (5). ⊓⊔

5 Complexity Analysis of Real Root Isolation

In this section, we bound the number of bit operations for isolating the real roots
of a polynomial using the Sturm and the Bernstein solver. In what follows we
present in detail the complexity of each step of the subdivision algorithm (see
Fig. 1).

We consider the tree associated with a run of the subdivision algorithm on a
polynomial f . Each node represents an interval. The root of the tree corresponds
to the initial interval I0 = [a, b]. The algorithm splits every interval which is
not a leaf of the tree to two equal sub-intervals. The depth of a node of the
tree (associated with an interval I) is log2(|I0|/|I|). This is also the number
of subdivisions performed to obtain the sub-interval I from I0. The number
of steps (subdivisions) that the algorithm performs equals the total number of
nodes of the subdivision tree, or in other words equals the number of intervals
(sub-intervals of I0) that are tested. Notice that the arguments are independent
of the subdivision solver, Sturm or Bernstein in this paper, that we use.

5.1 Square-Free Factorisation [Step 1]

The computation of fred can be done in ÕB(d2τ) (Th. 2.4). Notice that
L (fred)=O(d+τ). In order to simplify notation, we assume that d = O(τ), thus

Real Algebraic Numbers: Complexity Analysis and Experimentation 67

L (fred) = O(τ). Notice also that after this computation, the Sturm-Habicht se-
quence StHa(f) is available. We do not need the complete sequence but only the

quotient boot, thus this computation can be done in ÕB(d2τ) (Th. 2.2). However,
we may also assume that the complete sequence is computed, with complexity
ÕB(d3τ) (Th. 2.1), since this step is not the bottleneck of the algorithm.

5.2 Root Bounds and Initialization [Step 2]

The Cauchy bound states that if α is a real root of f then |α| ≤ B = 1 +

max
(∣∣∣ad−1

ad

∣∣∣ , . . . ,
∣∣∣a0

ad

∣∣∣
)

≤ 2τ . Various upper bounds are known for the absolute

value of the real roots [2, 51, 49]. However, asymptotically the bit size of all the
bounds is the same, i.e. B ≤ 2τ . Thus, we can take I0 = [a, b], with a ≤ −2τ

and b ≥ 2τ .
For the Sturm solver, before starting the main loop, we may have to compute

the Sturm-Habicht sequence of f , which costs ÕB(d3τ) (Th. 2.1).
For the Bernstein solver, we have to represent fred in the Bernstein basis

on [a, b]. This can be done in O(d2) arithmetic operations and it produces co-
efficients of size O(d(d + τ)). The cost of this transformation is bounded by

ÕB(d3(d + τ)).

In both methods, the initialization step can be done in ÕB(d3(d + τ)).

5.3 Computing V (f, I) and Splitting [Steps 3.a-d]

Suppose that the algorithm is at depth h of the subdivision tree. The tested
interval, say I, has endpoints of bit size bounded by τ +h, since each subdivision
step increases the bit size by one.

Using the Sturm solver, we compute V (f, I), Cor. 2.1, by evaluating StHa(f)

over the endpoints of I. The cost of the evaluation is ÕB(d2(τ + h)) (Th. 2.3).
Then we split I, i.e. compute the middle point of it, in OB(τ + h).

Using the Bernstein solver, we compute V (f, I) by counting the number of
sign variations in the control coefficients of f in I. This can be done in O(d)
operations. We denote by τ0 = O(d(d + τ)) (Sec. 5.2) a bound on the bit size of
the coefficients of f in the Bernstein basis on the interval I0. By Prop. 3.2, since
we performed h subdivisions so far, starting from a polynomial with coefficients
of bit size τ0, the coefficients of f on I are of bit size τ0 + dh and the complexity
of the splitting operation is in ÕB(d(d + τ0 + d h)) = ÕB(d2(d + τ + h)) (Sec.
5.2).

Consequently, for both solvers, steps 3.a-d can be performed with complexity
ÕB(d2(d + τ + h)).

5.4 Subdivision Tree Analysis [Step 3]

In this section, we analyse the total number of subdivisions.
A bound on the number of the subdivision steps was derived in [30, Th. 5.5,

5.6], where in Rem. 5.7 the authors state: “The theorem (5.6) implies the dom-
inance relations hk � n log (nd) and h � n log (nd) which can be used in an

68 I.Z. Emiris, B. Mourrain, and E.P. Tsigaridas

asymptotic analysis of Algorithm 1 when the ring S of the coefficients is Z”,
where k is the number of internal nodes of depth h in the recursion tree of the
subdivision algorithm based on Descartes’ rule, n is the degree and d is the
Euclidean norm of the polynomial. In [46, Th. 5], a O(dτ + d logd) bound is
derived and, later on, [16] proved optimality under the mild assumption that
τ = Ω(logd).

Our arguments for bounding the number of the subdivision steps are a combi-
nation and/or simplification of the arguments in [30,14,46]. Our proof (prop. 5.2)
is simpler than the one in [16,46] since the handling of the subdivision tree stops
at an earlier level and we use Th. 4.1 (as stated in [27] and [30]) without any
modifications. We also simplify substantially the proof of [14], for Sturm solver.

We denote by I the set of intervals which are the parents of two leaves in the
subdivision tree in Sturm (resp. Bernstein) solver. By construction, for I ∈ I,
V (f, I) ≥ 2 but for the two sub-intervals IL, IR of I, V (f, IL) and V (f, IR) are
in {0, 1}, since these intervals are leaves of the subdivision tree. Moreover, for
the Sturm solver, it holds that V (f, I) = 2 and V (f, IL) = V (f, IR) = 1.

Notice that |I| is less than V (f, I0), since at each subdivision the sum of the
variations of f on all the intervals cannot increase, for both methods (see [39,37]
for the Bernstein solver). In particular, we have |I| ≤ d.

Let αI (or βI) be a, possibly complex, root of f whose real part is in I.

Proposition 5.1. If I ∈ I then there exist two distinct (complex) roots αI �= βI

of f such that |αI − βI | < 2|I|.
Proof. Consider an interval I ∈ I which contains two leaves IL, IR of the subdi-
vision tree. We have the following possibilities for the sign variation of f on the
two sub-intervals IL, IR:

(1, 1) : for both solvers, there are two distinct real roots α ∈ IL, β ∈ IR in I and
|α − β| ≤ |I|. This is the only case, which can happen in Sturm’s solver.

(0, 0) : this may happen only in the Bernstein solver. Since the sign variations
are V (f, I) ≥ 2, the first circle theorem [37,2,30] implies that there exist two

complex conjugate roots β, β in the disc D(m(I), |I |
2). Therefore, |β−β| ≤ |I|.

(1, 0) or (0, 1) : this may also happen only in the Bernstein solver. There is
a real root α in I. Since V (f, I) ≥ 2, the second circle theorem [37, 2, 30]
implies that there exists two complex conjugate roots β, β in the union of
the discs D(m(I) ± 1

2
√

3
i|I|, 1√

3
|I|), which is contained in a disc of diameter

2 |I|. Therefore |β − α| < 2|I|.
Thus the proposition holds. ⊓⊔
In addition, we can prove the following result.

Lemma 5.1. Let {αI , βI} ∩ {αI′ , βI′} �= ∅, then I ∩ I ′ �= ∅.
Proof. For the Sturm solver, this property is clear since αI , βI ∈ I.

Let us consider the Bernstein subdivision method. We suppose that I∩I ′ = ∅.
Without loss of generality, we can assume in the proof that I �= I ′ , |I| ≥ |I ′ |,
and that ∀x ∈ I, ∀y ∈ I ′ , x ≤ y.

Real Algebraic Numbers: Complexity Analysis and Experimentation 69

I I ′1

αI

βI

αI′

βI′

Fig. 2. Two disjoint intervals I and I ′ and the associated two circles to each of them

Since the intervals are obtained by binary subdivision, we can assume that
the distance between I and I ′ is at least |I ′|. Using scaling and translation, we
can assume that the right endpoint of I is 0 and that I ′ = [1 + u, 2+ u] (u ≥ 0).
The tangents to the larger circles, containing I and the roots αI and βI at (0, 0),

are
√

3
2 x ± y

2 = 0 (see Fig. 2). We denote by RI the union of the corresponding
discs, so that αI , βI ∈ RI .

The center of the discs, whose union RI′ contains the roots αI′ and βI′ , are

(3
2 + u, ±

√
3

6) and their radius is
√

3
3 (see Fig. 2). A direct computation of the

distance between these centers and the two tangent lines shows that RI∩RI′ = ∅.
Consequently, if I ∩ I ′ = ∅, then we conclude that {αI , βI} ∩ {αI′ , βI′} = ∅. ⊓⊔
Let us number the intervals of I in increasing order and denote by I′ the subset
with an even index and by I ′′ the subset with an odd index. By Lem. 5.1, the
pairs {αI , βI} for I ∈ I′ (resp. I ′′) are disjoint. Thus, by Th. 4.1 (exchanging
the role of αI and βI if necessary), we have

∏

I∈J
|αI − βI | ≥ M(f)−d+1d−

d
2
−|J |√3

|J |
, (6)

for J = I ′ or J = I ′′. This is the key argument for the following result:

Proposition 5.2. The number of subdivisions in both methods is in
O (dτ + d log(d)) .

Proof. The number N of subdivisions equals the number of internal nodes in the
subdivision tree. It is less than the sum of the depth of I, for I ∈ I:

N ≤ ∑

I∈I log |b−a|
|I|

≤ |I| log|b − a| − ∑

I∈I log|I|
≤ |I| log|b − a| + |I| − ∑

I∈I log|αI − βI | (Prop. 5.1).

By (6), we have − ∑

I∈I′ log|αI − βI | ≤ (d − 1)log(M(f)) + (d
2 + |I′|)logd −

|I′|log
√

3. A similar bound applies for I ′′.

70 I.Z. Emiris, B. Mourrain, and E.P. Tsigaridas

As we can take a = −2τ , b = 2τ (by Cauchy bound), logM(f) ≤ τ +
1
2 log(d + 1) (Eq. 5) and |I′| + |I′′| = |I| ≤ d, the number of internal nodes,
N , in the subdivision tree is bounded by

N < |I| + |I|log|b − a| − ∑

I∈I log|αI − βI |
≤ d + d(τ + 1) + (d − 1)(2τ + log(d + 1)) + 2 d logd
= O (dτ + d logd) .

⊓⊔

Remark 5.1. The constant in this bound on the number of subdivisions can be
divided by 2, in Sturm method, by applying directly Th. 4.1 to αI , βI for I ∈ I.

5.5 Multiplicities [Step 4]

In order to compute the multiplicities of the roots, we compute the square-free
factorization, i.e. a sequence of square-free coprime polynomials (g1, g2, . . . , gm)
with f = g1g

2
2 · · · gm

m and gm �= 1. The algorithm of Yun [49] computes the

square-free factorization in ÕB(d2τ). To be more specific the cost is twice the
cost of the computation of StHa(f, f

′

) [23]. Moreover, deg(gi) = δi ≤ d and
L (gi) = O(dτ) by Mignotte’s bound [34], where 1 ≤ i ≤ m.

At every isolating interval, one and only one gi must have opposite signs at
its endpoints, since gi are square-free and pairwise coprime. If a gi changes sign
at an interval then the multiplicity of the real root that the interval contains is
i. Each gi can be evaluated over an isolating point in ÕB(δ2

i dτ), using Horner’s
rule. We can evaluate it over all the isolating points (there are at most d + 1),

in ÕB(δid
2τ) [49, 51]. Since

∑m
i=1 δi ≤ d the overall cost is ÕB(d3τ).

5.6 Complexity of Real Root Isolation

In this section we prove that the bit complexity bound for the two subdivision
solvers is ÕB(d4τ2):

Theorem 5.1. Let f ∈ Z[x], with deg(f) = d and L (f) = τ , not necessarily
square-free. We can isolate the real roots of f and determine their multiplicities
using Sturm or Bernstein solver in ÕB(d4 τ2). Moreover, the endpoints of the
isolating intervals have bit size bounded by O(d τ).

Proof. In order to isolate the real roots of f , we first compute its square-free
part (step 1). This can be done in ÕB(d2τ) arithmetic operations and yields
a polynomial fred, which coefficients are of bit size bounded by O(d + τ) (see
Sec. 5.1). This step is not necessary for the Sturm solver.

The initialisation step costs ÕB(d3(d + τ)) (Sec. 5.2).
Then we run the main loop of the subdivision algorithm. The cost of a sub-

division step at level h is ÕB(d2(d + τ + h)) (Sec. 5.3).
By Prop. 5.2, the number of subdivisions and the depth h of any node of the

subdivision tree is Õ(d τ). Therefore, the overall complexity of both subdivision

solvers is ÕB(d2(d + τ + d τ) d τ) = ÕB(d4τ2). ⊓⊔

Real Algebraic Numbers: Complexity Analysis and Experimentation 71

Remark 5.2. In Sec. 5.1 we assumed that d = O(τ). If we drop this assump-

tion then the complexity of real root isolation is ÕB(d6 + d5τ + d4τ2). If N =

max{d, τ} then in both cases the complexity bound is ÕB(N6).

6 Real Algebraic Numbers

The real algebraic numbers, i.e. those real numbers that satisfy a polynomial
equation with integer coefficients, form a real closed field denoted by Ralg = Q.
From all integer polynomials that have an algebraic number α as root, the prim-
itive one (the gcd of the coefficients is 1) with the minimum degree is called
minimal. The minimal polynomial is unique (up to a sign), primitive and ir-
reducible [51]. Since we use Sturm-Habicht sequences, it suffices to deal with
algebraic numbers, as roots of any square-free polynomial and not as roots of
their minimal ones. In order to represent a real algebraic number we choose the
isolating interval representation.

Definition 6.1. The isolating-interval representation of real algebraic number
α ∈ Ralg is α ∼= (f(x), I), where f(x) ∈ Z[x] is square-free and f(α) = 0,
I = [a, b], a, b, ∈ Q, α ∈ I and f has no other root in I.

Using the results of Sec. 2 and 3 we can compute the isolating interval represen-
tation of all the real roots of a polynomial f , with deg(f) = d and L (f) = τ , in

ÕB(d4τ2) and the endpoints of the isolating intervals have bit size O(dτ).

Comparison and sign evaluation. We can use Sturm-Habicht sequences in
order to find the sign of a univariate polynomial, evaluated over a real algebraic
number and to compare two algebraic numbers. We improve existing bounds by
one factor.

Corollary 6.1. Let g(x) ∈ Z[x], where deg(g) ≤ d and L (g) = τ , and a real

algebraic number α ∼= (f, [a, b]). We can compute sign(g(α)) in ÕB(d3τ).

Proof. By Th. 2.5

W(f,g)(a) − W(f,g)(b) = sign(g(α)) · sign(f
′

(α)),

and thus
sign(g(α)) =

(
W(f,g)(a) − W(f,g)(b)

)
· sign(f

′

(α)).

Thus we need to perform two evaluations of StHa(f, g) over the endpoints of

the isolating interval of α. The complexity of each is ÕB(d3τ) (Th. 2.3). The
sign of f

′

(α) can be computed as

sign(f
′

(α)) = sign(f(b)) − sign(f(a)).

Notice that f(a)f(b) < 0, since γ is the unique real root of f in [a, b]. It reason-
able to assume that the signs of f over the endpoints of the isolating interval are

72 I.Z. Emiris, B. Mourrain, and E.P. Tsigaridas

known. If this is not the case then we can evaluate f over them, using Horner’s
rule, with complexity ÕB(d3τ), since we need d multiplications of numbers of
bit size O(d2τ).

We conclude that the overall complexity of the operation is ÕB(d3τ). ⊓⊔
Corollary 6.2. We can compare two real algebraic numbers in isolating interval
representation in ÕB(d3τ).

Proof. Let two algebraic numbers γ1
∼= (f1(x), I1) and γ2

∼= (f2(x), I2) where
I1 = [a1, b1], I2 = [a2, b2]. Let J = I1 ∩ I2. When J = ∅, or only one of γ1 and
γ2 belong to J , we can easily order the 2 algebraic numbers. If γ1, γ2 ∈ J , then
γ1 ≥ γ2 ⇔ f2(γ1) · f ′

2(γ2) ≥ 0. We obtain the sign of f2(γ2), using Cor. 6.1, thus

the complexity of comparison is ÕB(d3τ). ⊓⊔

Simultaneous inequalities Let f , A1, . . . , An1
, B1, . . . , Bn2

, C1, . . . , Cn3
∈

Z[x], with degree bounded by d and coefficient bit size bounded by τ . We wish
to compute the number of and the real roots, γ, of f such that Ai(γ) > 0,
Bj(γ) < 0 and Ck(γ) = 0 and 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n3. Let
n = n1 + n2 + n3.

Corollary 6.3. There is an algorithm that solves the problem of simultaneous
inequalities (SI) in ÕB(d4τ max{n, τ}).

Proof. First we compute the isolating interval representation of all the real
roots of f in ÕB(d4τ2) (Th. 5.1). There are at most d. For every real root γ
of f , for every polynomial Ai, Bj , Ck we compute sign (Ai(γ)), sign (Bj(γ)) and

sign (Ck(γ)). Sign determination costs ÕB(d3τ) (Cor. 6.1) and in the worst case

we must compute n of them. Thus the overall cost is ÕB(max{nd4τ, d4τ2}).

This improves the known bounds by one or two factors in the bit complexity
model.

7 Implementation and Experiments

In this section, we describe the package for algebraic numbers available in the
library synaps [36]. The purpose of this package is to provide a set of tools, for
the manipulation of algebraic numbers, needed in applications such as Geometric
modeling, and non linear computational geometry. In the problems encountered
in these domains, the degree of the involved polynomials is not necessarily very
high (≤ 100), but geometric operations require an intensive use of algebraic
solvers.

For this reason, in this section we focus on univariate equations of small de-
gree in opposition with the first sections, but the input bit size may be beyond
machine precision. We analyse the behavior of our solvers, in this range of prob-
lems which appear in our geometric applications and for which the asymptotic
bounds may not be pertinent indicators. We do not consider large degree prob-
lems, where memory management issues might influence the solving strategy.

In synaps, there are several solver classes; their interface is as follows:

Real Algebraic Numbers: Complexity Analysis and Experimentation 73

template < class T > struct SOLVER {

typedef NumberTraits<T>::RT RT;

typedef NumberTraits<T>::FT FT;

typedef NumberTraits<T>::FIT FIT;

typedef UPolDse<T> Poly;

typedef root_of<T, Poly> RO_t;

... };

where RT is the ring number type (typically Z), FT is the field number type
(typically Q), FIT is the interval type, Poly is the univariate polynomial, RO t

is the type for real algebraic numbers, etc.
Algebraic numbers are of the form:

template <class T, class UPOL=UPolDse<T> >

struct root_of {

NumberTraits<T>::Interval_t interval_;

UPOL polynomial_;

... };

parametrized by the type of coefficients and univariate polynomials. This allows
flexibility and an easy parametrisation of the code.

In order to construct a real algebraic number the user may select from several
different univariate solvers, that we are going to describe hereafter. The other
functionalities that we provide are the comparison, bool compare(const RO t&

a, const RO t& b) and the evaluation of signs int sign at(const Poly& P,

const RO t& a), based on interval evaluation and if necessary on the computa-
tion of Sturm-Habicht sequences. This involves several additional functions for
computing subresultant sequences with various methods (Euclidean, Subresul-
tants, Sturm-Habicht, etc), for computing the GCD, the square-free part, etc.
We also provide the four operations, i.e. {+, −, ∗, /}, of RO t with RT’s (integer
type) and FT’s (rational type).

Perhaps the most important operation is the construction of real algebraic
numbers, i.e. real root isolation of univariate polynomials. Several subdivision
solvers have been tested for the construction of these algebraic numbers. We
report here on the following solvers:

(S1) solve(f,IslSturm<ZZ>());

(S2) solve(f,IslBzInteger<QQ>());

(S3) solve(f,IslBzBdgSturm<QQ>());

These solvers take as input, polynomials with integer or rational coefficients
and output intervals with rational endpoints. All use the same initial interval.

S1 (IslSturmQQ in the plots) is based on the construction of the Sturm-
Habicht sequence and subdivisions, using rational numbers or large integers
provided by the library gmp.

S2 (IslBzIntegerZZ in the plots) is an implementation of the Bernstein sub-
division solver, using integer coefficients. The polynomial is converted to the

74 I.Z. Emiris, B. Mourrain, and E.P. Tsigaridas

1

03
D

0 20 40 60 80 100

degree

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
 t

im
e
 (

s
)

IslSturmQQ
IslBzIntegerZZ

IslBzBdgSturmQQ

SlvAberthQQ
SturmSeq
CORE

1

05
D

0 20 40 60 80 100

degree

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
 t

im
e
 (

s
)

IslSturmQQ
IslBzIntegerZZ

IslBzBdgSturmQQ

SlvAberthQQ
SturmSeq
CORE

Fig. 3. Random polynomials of bit size 30 (top) and 50 (bottom) bits

Bernstein representation on the initial interval, using rational arithmetic. Then,
the coefficients are reduced to the same denominator, and the numerators are
taken. Finally, the integer version of de Casteljau’s algorithm, see Eq. (4), is
applied at each subdivision step.

S3 (IslBzBdgSturmQQ in the plots) is a combination of two solvers. In a first
part, the polynomial is converted to the Bernstein representation on the initial
interval, using rational arithmetic and its coefficients are rounded to double

intervals. The Bernstein subdivision solver is applied on this interval representa-
tion and stops when it certifies the isolation of a root or when it is not possible
to decide the existence and uniqueness of a root from the “sign” (−, +, ?) of the
interval coefficients. In this case, in order to complete the isolation process, the
solver S2 is used on the intervals which are suspect.

We also compare with the time needed for computing the square-free factor-
ization of the tested polynomial (SturmSeq in the plots). Our implementation is
based on Yun’s algorithm and Sturm-Habicht sequences.

We test against core [28] (CORE in the plots), and mpsolve, a numerical
solver based on Aberth’s method [5] and implemented by G. Fiorentino and D.

Real Algebraic Numbers: Complexity Analysis and Experimentation 75

2

03
D

0 20 40 60 80 100

degree

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
 t

im
e
 (

s
)

IslSturmQQ
IslBzIntegerZZ

IslBzBdgSturmQQ

SlvAberthQQ
SturmSeq
CORE

2

05
D

0 20 40 60 80 100

degree

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
 t

im
e
 (

s
)

IslSturmQQ
IslBzIntegerZZ

IslBzBdgSturmQQ

SlvAberthQQ
SturmSeq
CORE

Fig. 4. Random polynomials with multiple roots of bit size 30 (top) and 50 (bottom)
bits

Bini [6] (SlvAberthQQ in the plots), that are open source tools with real solving
capabilities. core implements the Sturm solver. In order to isolate the real
roots of a polynomial first it computes its square-free part and then performs
isolation. mpsolve implements an iterative method for approximating the roots
of a polynomial and the implementation is based on multiprecision floats. We
set the output precision of the algorithm to 30 digits. The code of mpsolve is
integrated in synaps and called similarly to the other solver (S1, S2 and S3), i.e
solve(f, Aberth<RR>()).

Other libraries such as [25], or Exacus with Leda [4], or RS [43], have not
been tested, due to accessibility obstacles. Namely Leda is a commercial software
and RS, neither open source, is accessible as a binary code through its maple

(v. 9.5) interface, which we did not have at the time of the experiments. For
experiments against these libraries and the package of Rioboo [42] in Axiom,
for degree ≤ 4, the reader may refer to [19].

Our data are polynomials of degree d ∈ {5, . . . , 100} and coefficient bit size τ ∈
{10, 20, 30, 40, 50} with various attributes. Namely Dτ

1 denotes random

76 I.Z. Emiris, B. Mourrain, and E.P. Tsigaridas

5

03
D

0 20 40 60 80 100

degree

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
 t

im
e
 (

s
)

IslSturmQQ
IslBzIntegerZZ

IslBzBdgSturmQQ

SlvAberthQQ
SturmSeq
CORE

5

05
D

0 20 40 60 80 100

degree

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
 t

im
e
 (

s
)

IslSturmQQ
IslBzIntegerZZ

IslBzBdgSturmQQ

SlvAberthQQ
SturmSeq
CORE

Fig. 5. Mignotte polynomials of bit size 30 (top) and 50 (bottom) bits

polynomials with few real roots and Dτ
2 random polynomials with multiple real

roots. Dτ
3 denotes polynomials with d (multiple) integer real roots and Dτ

4 polyno-
mials with d (multiple) rational real roots. Dτ

5 denotes Mignotte polynomials, i.e.
a

(

xd − 2(Kx − 1)2
)

, where K ∈ [5..30], Dτ
6 polynomials that are the product of

two Mignotte polynomials and Dτ
7 Mignotte polynomials with multiple roots.

For reasons of space, we present timings, which are the average of 100 runs,
only for D30

1 , D50
1 , D30

2 , D50
2 , D30

5 , D50
5 , D30

7 and D50
7 . The experiments were

performed on an Pentium (2.6 GHz), using g++ 3.4.4 (Suse 10). We have to
emphasize that we do not consider experimentation as a competition, but rather
as a starting point for improving existing implementations.

For polynomials with few, distinct and well separated real roots, this is the
case for D1 and D2 (see Fig. 3 and 4), S1 is clearly the worst choice, since the
huge time for the computation of the Sturm sequence dominates the time for its
evaluation. In such data sets, S2 or even approximate solvers are the solvers of
choice, since not much output precision is needed in order to isolate the roots.

When there are roots that are very close and/or there are multiple roots, this
is the case for D5 and D7 (see Fig. 5 and 6), then the computation time of the

Real Algebraic Numbers: Complexity Analysis and Experimentation 77

7

03
D

0 20 40 60 80 100

degree

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
 t

im
e
 (

s
)

IslSturmQQ
IslBzIntegerZZ

IslBzBdgSturmQQ

SlvAberthQQ
SturmSeq
CORE

7

05
D

0 20 40 60 80 100

degree

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
 t

im
e
 (

s
)

IslSturmQQ
IslBzIntegerZZ

IslBzBdgSturmQQ

SlvAberthQQ
SturmSeq
CORE

Fig. 6. Mignotte-like polynomials with multiple roots of bit size 30 (top) and 50 (bot-
tom) bits

Sturm-Habicht sequence is negligible (for the experiments that we performed).
In such cases a combined solver is the solver of choice, since it isolates the well
separated roots and also provides good initial intervals for S2, if needed. Special
notice should be given to the bad behavior of the Bernstein solver (S2) in the
presence of multiple roots. The expected similar asymptotic behavior of Sturm
and Bernstein subdivision solvers can be guessed on these experimentations,
though the degree is not very high (≤ 100). This applies in the worst case
(Mignotte-like polynomials), whereas for random polynomials, the asymptotics
of the two solvers seem to be different.

We have to mention that CORE does not compute the multiplicities of the
real roots. In addition, for the Aberth solver (SlvAberthQQ in the plots), even
though we specified its parameters in order to search for real roots only and
detect multiplicities, since it is a numerical solver it must be given an output
precision. In order to be sure in advance that we isolate all real roots, the output
precision should be equal to the (theoretical) separation bound. In almost all
cases, mpsolve is the fastest implementation.

78 I.Z. Emiris, B. Mourrain, and E.P. Tsigaridas

Fig. 7. Left: Approximation using doubles. Right: Approximation using Bernstein
solver and interval arithmetic.

For the exact solvers, we consider solver S3, which is a combination of solvers,
as the most promising option. It is the fastest on random instances and compara-
ble to S2 on all other instances. However, more theoretical work is needed so that
we can provide some guarantee for the approximations. Another important issue
is the implementation of the square-free factorization, which seems to be the bot-
tleneck for all the exact algorithms. As we mentioned before, our implementation
depends on the arithmetic with integers of arbitrary precision, provided by gmp.
This implementation approach does not seem the right choice for the square-free
factorization algorithms. We believe that an implementation based on machine
arithmetic combined with modular techniques will give much better results.

In some geometric problems, it is more important to have controlled approx-
imation of the roots than to isolated them. This is the case in the following
example where we want to draw a curve defined by an implicit equation. In this
specific problem, the polynomial f(x, y) is of degree 43 in each variable with co-
efficients of bit size 50 [8]. In order to get a picture of the implicit curve in the

box [a, b] × [c, d], we solve the univariate polynomials f(a + k (b−a)
N

, y)k=0,...,N−1

(N = 200) and then exchange the role of x and y. The subdivision is stopped,
when the precision of 10−4 is reached, without checking the existence and unique-
ness of the roots in the computed intervals.

Two types of solvers have been tested:

– The first one (SlvBzStd<double>) is a direct implementation of the Bern-
stein solver with double arithmetic. It produces the left part of Fig. 7. We
see that in some regions, the solver is more sensible to numerical errors, and
behaves almost “like a random generator of points”.

– The second solver (SlvBzBdg<QQ>), similar to S3, uses exact (rational) arith-
metic to convert the input polynomial to its Bernstein representation. Then
it normalises the coefficients and rounds up and down the rational numbers
to the closest double numbers2. Then the main subdivision loop is performed

2 For that purpose, one can use for instance the function get double of mpfr

(http://www.mpfr.org/) with correct rounding mode.

Real Algebraic Numbers: Complexity Analysis and Experimentation 79

on double interval arithmetic, extending the sign count to this context. If all
the interval coefficients contain 0, we recompute the representation of the
initial polynomial (using exact rational arithmetic) and run again the round-
ing and subdivision steps with double arithmetic, until we get the required
precision. This produces the right part of Fig. 7.

The Bernstein solver based on interval arithmetic and using this symbolic-
numeric strategy can be applied efficiently (even for input polynomials with large
coefficient size) to geometric problems, where (controlled) approximate results
are sufficient. Its main advantage is that it exploits the performance of machine
precision arithmetic for the main loop of the algorithm and the approximation
properties of the Bernstein representation. Notice that the size of the problem
is prohibitive for exact subdivision based solvers.

8 Current and Future Work

Our experiments imply that the combination of symbolic and numeric tech-
niques leads to very promising implementations. Along these lines, we plan to
improve the existing implementation of solvers, so that we can approximate with
guarantees the roots of a polynomial with exact coefficients. The applications
of Bernstein methods to polynomials with approximate coefficients is also under
investigation. We are also extending our package in synaps so that it can handle
computations in an extension field.

There are a lot of open questions concerning exact algorithms for real root iso-
lation. Just to mention few of them: Is there any class of polynomials, with few
real roots, such that the Bernstein solver performs O(dτ) subdivision steps but

the Sturm solver performs only a constant number? Does the ÕB(d4τ2) hold for
complex root isolation? What is the expected complexity of the exact subdivision
solvers?

The most important open problem for a theoretical and hopefully practical
point of view is the following: Is there any exact (subdivision based) solver with

complexity ÕB(d3τ), similar to the numerical solvers?

Acknowledgments

All authors acknowledge partial support by IST Programme of the EU as a
Shared-cost RTD (FET Open) Project under Contract No IST-006413-2 (ACS
- Algorithms for Complex Shapes).

References

1. Akritas, A.: An implementation of Vincent’s theorem. Numerische Mathematik 36,
53–62 (1980)

2. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Algo-
rithms and Computation in Mathematics, vol. 10. Springer, Heidelberg (2003)

80 I.Z. Emiris, B. Mourrain, and E.P. Tsigaridas

3. Ben-Or, M., Kozen, D., Reif, J.H.: The complexity of elementary algebra and
geometry. J. Comput. Syst. Sci. 32, 251–264 (1986)

4. Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Kettner, L., Mehlhorn, K.,
Reichel, J., Schmitt, S., Schömer, E., Wolpert, N.: EXACUS: Efficient and Exact
Algorithms for Curves and Surfaces. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005.
LNCS, vol. 3669, pp. 155–166. Springer, Heidelberg (2005)

5. Bini, D.: Numerical computation of polynomial zeros by means of Aberth’s method.
Numerical Algorithms 13(3–4), 179–200 (1996)

6. Bini, D., Fiorentino, G.: Design, analysis, and implementation of a multiprecision
polynomial rootfinder. Numerical Algorithms, 127–173 (2000)

7. Canny, J.: Improved algorithms for sign determination and existential quantifier
elimination. The Computer Journal 36(5), 409–418 (1993)

8. Cazals, F., Faugère, J.-C., Pouget, M., Rouillier, F.: The implicit structure of ridges
of a smooth parametric surface. Technical Report 5608, INRIA (2005)

9. Collins, G.: Subresultants and reduced polynomial remainder sequences.
J. ACM 14, 128–142 (1967)

10. Collins, G., Akritas, A.: Polynomial real root isolation using Descartes’ rule of
signs. In: SYMSAC 1976, pp. 272–275. ACM Press, New York (1976)

11. Collins, G., Loos, R.: Real zeros of polynomials. In: Buchberger, B., Collins, G.,
Loos, R. (eds.) Computer Algebra: Symbolic and Algebraic Computation, 2nd edn.,
pp. 83–94. Springer, Wien (1982)

12. Coste, M., Roy, M.F.: Thom’s lemma, the coding of real algebraic numbers and
the computation of the topology of semi-algebraic sets. J. Symb. Comput. 5(1/2),
121–129 (1988)

13. Davenport, J.H.: Cylindrical algebraic decomposition. Technical Report 88–
10, School of Mathematical Sciences, University of Bath, England (1988),
http://www.bath.ac.uk/masjhd/

14. Du, Z., Sharma, V., Yap, C.K.: Amortized bound for root isolation via Sturm
sequences. In: Wang, D., Zhi, L. (eds.) Int. Workshop on Symbolic Numeric Com-
puting, School of Science, Beihang University, Beijing, China, pp. 81–93 (2005)

15. Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.:
A Descartes Algorithm for Polynomials with Bit-Stream Coefficients. In: Ganzha,
V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 138–
149. Springer, Heidelberg (2005)

16. Eigenwillig, A., Sharma, V., Yap, C.K.: Almost tight recursion tree bounds for the
Descartes method. In: ISSAC 2006: Proceedings of the 2006 International Sympo-
sium on Symbolic and Algebraic Computation, pp. 71–78. ACM Press, New York
(2006)

17. El Kahoui, M.: An elementary approach to subresultants theory. J. Symb. Com-
put. 35(3), 281–292 (2003)

18. Emiris, I., Kakargias, A., Teillaud, M., Tsigaridas, E., Pion, S.: Towards an open
curved kernel. In: Proc. Annual ACM Symp. on Computational Geometry, pp.
438–446. ACM Press, New York (2004)

19. Emiris, I., Tsigaridas, E.: Computing with real algebraic numbers of small degree.
In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 652–663. Springer,
Heidelberg (2004)

20. Emiris, I., Tsigaridas, E.: Real solving of bivariate polynomial systems. In: Ganzha,
V., Mayr, E., Vorozhtsov, E. (eds.) Proc. Computer Algebra in Scientific Comput-
ing (CASC), pp. 150–161. Springer, Heidelberg (2005)

http://www.bath.ac.uk/masjhd/

Real Algebraic Numbers: Complexity Analysis and Experimentation 81

21. Emiris, I., Tsigaridas, E., Tzoumas, G.: The predicates for the Voronoi diagram of
ellipses. In: Proc. 22th Annual ACM Symp. on Computational Geometry, Sedona,
USA, pp. 227–236 (2006)

22. Emiris, I., Tsigaridas, E.P.: Computations with one and two algebraic numbers.
Technical report, ArXiv (Dec 2005)

23. Geddes, K., Czapor, S., Labahn, G.: Algorithms of Computer Algebra. Kluwer
Academic Publishers, Boston (1992)

24. González-Vega, L., Lombardi, H., Recio, T., Roy, M.-F.: Sturm-Habicht Sequence.
In: ISSAC, pp. 136–146 (1989)

25. Guibas, L., Karavelas, M., Russel, D.: A computational framework for handling
motion. In: Proc. 6th Workshop Algor. Engin. & Experim. (ALENEX), January
2004, pp. 129–141 (2004)

26. Heindel, L.E.: Integer arithmetic algorithms for polynomial real zero determination.
Journal of the Association for Computing Machinery 18(4), 533–548 (1971)

27. Johnson, J.: Algorithms for polynomial real root isolation. In: Caviness, B., John-
son, J. (eds.) Quantifier elimination and cylindrical algebraic decomposition, pp.
269–299. Springer, Heidelberg (1998)

28. Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A CORE library for robust nu-
meric and geometric computation. In: 15th ACM Symp. on Computational Geom-
etry (1999)

29. Krandick, W.: Isolierung reeller Nullstellen von Polynomen. In: Herzberger, J. (ed.)
Wissenschaftliches Rechnen, pp. 105–154. Akademie-Verlag, Berlin (1995)

30. Krandick, W., Mehlhorn, K.: New bounds for the Descartes method. JSC 41(1),
49–66 (2006)

31. Lane, J.M., Riesenfeld, R.F.: Bounds on a polynomial. BIT 21, 112–117 (1981)
32. Lickteig, T., Roy, M.-F.: Sylvester-Habicht Sequences and Fast Cauchy Index Com-

putation. J. Symb. Comput. 31(3), 315–341 (2001)
33. Lombardi, H., Roy, M.-F., Safey El Din, M.: New Structure Theorem for Subre-

sultants. J. Symb. Comput. 29(4-5), 663–689 (2000)
34. Mignotte, M.: Mathematics for Computer Algebra. Springer, Heidelberg (1992)
35. Mignotte, M.: On the Distance Between the Roots of a Polynomial. Appl. Algebra

Eng. Commun. Comput. 6(6), 327–332 (1995)
36. Mourrain, B., Pavone, J.P., Trébuchet, P., Tsigaridas, E.: SYNAPS, a library for

symbolic-numeric computation. In: 8th Int. Symposium on Effective Methods in Al-
gebraic Geometry, MEGA, Sardinia, Italy, May 2005. Software presentation (2005)

37. Mourrain, B., Rouillier, F., Roy, M.-F.: Bernstein’s basis and real root isolation.
Mathematical Sciences Research Institute Publications, pp. 459–478. Cambridge
University Press, Cambridge (2005)

38. Mourrain, B., Técourt, J., Teillaud, M.: On the computation of an arrangement of
quadrics in 3d. Comput. Geom. 30(2), 145–164 (2005)

39. Mourrain, B., Vrahatis, M., Yakoubsohn, J.: On the complexity of isolating real
roots and computing with certainty the topological degree. J. Complexity 18(2)
(2002)

40. Pan, V.: Univariate polynomials: Nearly optimal algorithms for numerical factor-
ization and rootfinding. J. Symbolic Computation 33(5), 701–733 (2002)

41. Reischert, D.: Asymptotically fast computation of subresultants. In: ISSAC, pp.
233–240 (1997)

42. Rioboo, R.: Towards faster real algebraic numbers. In: Proc. ACM Intern. Symp.
on Symbolic & Algebraic Comput, Lille, France, pp. 221–228 (2002)

43. Rouillier, F., Zimmermann, Z.: Efficient isolation of polynomial’s real roots. J. of
Computational and Applied Mathematics 162(1), 33–50 (2004)

82 I.Z. Emiris, B. Mourrain, and E.P. Tsigaridas

44. Roy, M.-F., Szpirglas, A.: Complexity of the Computation on Real Algebraic Num-
bers. J. Symb. Comput. 10(1), 39–52 (1990)

45. Schönhage, A.: The fundamental theorem of algebra in terms of computational
complexity. Univ. of Tübingen, Germany (manuscript, 1982)

46. Sharma, V., Yap, C.: Sharp Amortized Bounds for Descartes and de Casteljau’s
Methods for Real Root Isolation (October 2005) (unpublished manuscript)

47. Tsigaridas, E.P., Emiris, I.Z.: Univariate polynomial real root isolation: Continued
fractions revisited. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168,
pp. 817–828. Springer, Heidelberg (2006)

48. von zur Gathen, J., Gerhard, J.: Fast Algorithms for Taylor Shifts and Certain
Difference Equations. In: ISSAC, pp. 40–47 (1997)

49. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge
Univ. Press, Cambridge (2003)

50. von zur Gathen, J., Lücking, T.: Subresultants revisited. Theor. Comput. Sci. 1-
3(297), 199–239 (2003)

51. Yap, C.: Fundamental Problems of Algorithmic Algebra. Oxford University Press,
New York (2000)

Verified Methods in Stochastic

Traffic Modelling

Sebastian Kempken and Wolfram Luther

Universität Duisburg-Essen,
47048 Duisburg, Germany

{kempken, luther}@informatik.uni-duisburg.de,
http://www.informatik.uni-duisburg.de

Abstract. In this paper, we present two validated methods from differ-
ent application fields in stochastic traffic modelling. First, we show how
the autocorrelation of a semi-Markov arrival process can be described
as a sum of exponential terms using validated numerics. Next, we use
interval arithmetic as a reliable method to analyse the transient states
of simple GI/G/1 queueing systems and compute the time required for
the system to reach the equilibrium.

1 Introduction

The classical approach in queueing and service systems is to consider random
variables for the interarrival times of events corresponding to the arrivals of
packets, flows, connections or other units relevant for network elements. Two
basic characteristics of the stochastic behavior of traffic are the distribution
function of considered random variables and the autocorrelation of the process.
To model the distribution function of arriving data as well as the autocorrelation
function, semi-Markov processes (SMPs) are well suited [1].

Special emphasis is given to the computation of workload distributions of
service systems and the modelling of the autocorrelation function of a SMP (m)
with m states as a superposition of m − 1 geometrical terms including complex
coefficients. We use traffic data to recover the coefficients of the exponential
sums. Interval arithmetic is applied to validate the parameter estimation and to
guarantee the results of the analysis. Our goal is to apply an interval version
of Prony’s algorithm and to analyse its relation to other approaches in order to
solve the parameter estimation problem.

Recently, we have proposed an algorithm to compute the verified stationary
workload distributions of GI/GI/1 and SMP/GI/1 service systems accurately
using factorisation approaches [2]. Therefore, another interesting task is to study
the transient behavior of the queue and to compute the time required for the
system to reach the equilibrium. In order to handle rounding errors, we use
interval arithmetic to provide reliable results.

P. Hertling et al. (Eds.): Real Number Algorithms, LNCS 5045, pp. 83–101, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.informatik.uni-duisburg.de

84 S. Kempken and W. Luther

2 Verified Parameter Estimation in Stochastic Traffic
Modelling

2.1 Stochastic Traffic Modelling

The nature of traffic in telecommunication networks is unpredictable from a va-
riety of viewpoints. On the one hand, service providers do not exactly know the
transmission time and volume when transmission demands are created by the
users and applications. On the other hand, sender and receiver cannot predict
the amount of network resources they will require at the start of their communi-
cation. Randomly changing workload, routes and system parameters are relevant
under normal operating conditions, failure events are unpredictable as well.

Therefore, stochastic traffic models represent an appropriate basis for describ-
ing the traffic flow over time. The usual stochastic traffic models in telecommu-
nication consider random variables for

– the interarrival times of events corresponding to such things as arrivals of
packets, flows, connections or other units relevant to network elements like
the classical approach in queueing and service systems,

– the counting function of the number of arrivals in predefined intervals, for
instance in time-slotted multiplexer models.

The two basic characteristics of the stochastic behavior of traffic are the distri-
bution function of the random variables considered and, especially for workload
analysis, the autocorrelation of the process.

The distribution of the amount of arriving data for a transmission line is
essential to estimate overload situations leading to data loss. Autocorrelation
is a measure for the dependency of values observed in a process between two
different points in time as a function of their time distance.

Open queueing networks provide a typical approach for the analysis of tele-
communication systems being decomposed into nodes representing switches and
routers and edges as transmission links (cf. Figure 1). The main items of this
approach are

– traffic flows on the edges of a network topology being characterized by sto-
chastic processes,

– server systems for switching and forwarding traffic with the help of buffers
to store data in phases of temporary overload and

– sources and destinations, which generate and terminate traffic flows in the
network.

In order to model the arrival and service behavior at a network node in terms
of arrival distribution and autocorrelation, we introduce a discrete-time homo-
geneous semi-Markov process as a special case of a general semi-Markov process
(cf. [3]). A family of random variables {(Rt, σt)|t ∈ N} denotes such a process if

Pr (Rt+1 = a, σt+1 = j|Rk = ak, σk = ik, 1 ≤ k ≤ t) =

Verified Methods in Stochastic Traffic Modelling 85

Traffic flow
 aggregation

Buffering and
forwarding
to network
components

Traffic modeling as
stochastic process

Telecommunication network

as queueing and service system

Splitting into
subflows

Sources
Sinks

Fig. 1. A network with sources, sinks, buffering and forwarding components

Pr (Rt+1 = a, σt+1 = j|σt = it)

holds for all t ∈ N and {σt} is a Markov chain. Rt denotes the t-th sojourn
time. In the following, we restrict ourselves to the case of a finite Markov chain.
If the underlying chain {σt} has M states, the semi-Markov process is called
SMP (M).

To define a semi-Markov process completely, the transition matrix P :=
(pij) of the underlying chain {σt} with M2 distribution functions fij(t), i, j =
1, . . . , M must be known.

A simplification of the transition is achieved using a special case of a semi-
Markov process (SSMP): We have

P {Rt+1 = a, σt+1 = j|Rk = ak, σk = ik, 1 ≤ k ≤ t} =

P {Rt+1 = a, σt+1 = j|σt = it} =

pitjP {Rt+1 = a|σt = it}
fitj(t) = pitjfit

(t)

Please note that every SMP with M states can always be described as an SSMP
with M2 states. To do so, we identify each transition from state i to state j of
the SMP with a state (i, j) of the SSMP (cf. [4]).

The main advantage of this notation is that a closed formula for the auto-
correlation of the process can now be given. We assume the underlying Markov
chain to be aperiodic and irreducible and introduce the n−step transition matrix
P (n) = P ◦ ... ◦ P

︸ ︷︷ ︸

n times

with

p
(n)
ij (t) = P (σt+n = j|σt = i) , ∀n ∈ N.

86 S. Kempken and W. Luther

The stationary probabilities of the underlying chain

pj := lim
n→∞

P{σt+n = j|σt = i}∀i, t

exist and fulfill the following equations with Z = {1, . . . , M} and can therefore
be calculated by solving this system of equations:

∑

k∈Z

pkpk,j = pj for all j ∈ Z (1)

∑

j∈Z

pj = 1 (2)

Then we have a closed form of the autocorrelation function depending only
on the characteristic parameters of the random variables {(Rt, σt)|t ∈ N}

AR(n) =

⎛

⎝

M∑

i=1

M∑

j=1

piEi(R)p
(n)
ij Ej(R) − E2(R)

⎞

⎠ /σ2
R

AR(0) = 1 (3)

The Ei(R), i = 1, ..., M, here denote the state dependent expectation values

of the random process R, E(R) =
∑M

i=1 piEi, σ
2
R =

∑M

i=1 pi(Ei − E(R))2 the
mean value and variance of the whole process R.

This formula contrasts with the standard estimation of the autocorrelation of
sample data Ri with time-averaging of a given time interval i ∈ [1, . . . , N]

AR(n) =
1

σ2
R (N − n)

N−n∑

j=1

(Rj − E(R)) (Rj+n − E(R)) (4)

2.2 Parameter Estimation for the Autocorrelation

Parameter estimation via eigenvalues of the transition matrix. If the
transition matrix is diagonalizable and the stochastic process {σj} is aperiodic
and irreducible, the autocorrelation function of an SSMP (M) is also an expo-
nential sum

AR(n) =

M∑

j=2

αjλ
n
j (5)

This can be proven using the fact that the transition matrix P has M eigen-
values λj with λ1 = 1, and left eigenvector p1 = (p1, p2, ..., pM) and |λj | < 1 for
j = 2, ..., M .

Proof. Equation 1 holds for the stationary probabilities, hence p1 is left eigen-
vector for the eigenvalue λ1 = 1.

Verified Methods in Stochastic Traffic Modelling 87

Let λ denote an eigenvalue of P with corresponding right eigenvector x =
(x1, . . . , xM)T , x �= 0. If i is chosen in such a way that

|xi| = max
1≤ j≤ M

|xj |

holds, then the following inequation holds in conjunction with λxi =
∑M

j=1 pijxj :

|λ| =

∣

∣

∣

∣

∣

∣

M
∑

j=1

pij

xj

xi

∣

∣

∣

∣

∣

∣

≤

M
∑

j=1

pij

∣

∣

∣

∣

xj

xi

∣

∣

∣

∣

≤

M
∑

j=1

pij .

As P is a stochastic matrix, it follows that

|λ| ≤

M
∑

j=1

pij = 1.

The strict inequality |λ| < 1 is obtained by the Perron-Frobenius theorem for
primitive matrices [5, theorem 1.1], as the acyclic irreducible matrix P is also
primitive [5, theorem 1.4].

The matrix P is assumed to be diagonalizable. Therefore, a matrix Q with
QP = diag(λ1, ..., λM)Q can be given:

⎛

⎜
⎜
⎜
⎝

p1 p2 · · · pM

q2,1 q2,2 · · · q2,M

...
...

...
...

qM,1 qM,2 · · · qM,M

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

Q

P =

⎛

⎜
⎜
⎜
⎝

1 0 · · · 0
0 λ2 · · · 0
...

...
...

...
0 0 · · · λM

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

Λ

⎛

⎜
⎜
⎜
⎝

p1 p2 · · · pM

q2,1 q2,2 · · · q2,M

...
...

...
...

qM,1 qM,2 · · · qM,M

⎞

⎟
⎟
⎟
⎠

It can be shown [6] that with Q−1 = (q′
1, . . . ,q

′
M),q′

1 = (1, . . . , 1)T :

AR(n)V ar(R) + E2(R) = (p1E1, . . . , pMEM)Q−1ΛnQ
︸ ︷︷ ︸

P n

(E1, . . . , EM)T

=

(
M∑

i=1

piEi

)2

+ λn
2

M∑

i=1

piEiq
′
i,2

M∑

j=1

Ejq2,j + . . . + λn
M

M∑

i=1

piEiq
′
i,M

M∑

j=1

EjqM,j

Using
∑M

i=1 piEi = E(R), we get

AR(n) = λn
2

∑M

i=1 piEiq
′
i,2

∑M

j=1 Ejq2,j

V ar(R)
︸ ︷︷ ︸

α2

+ . . .+λn
M

∑M

i=1 piEiq
′
i,M

∑M

j=1 EjqM,j

V ar(R)
︸ ︷︷ ︸

αM

.

(6)
Therefore, the autocorrelation has the form described in Equation 5.

88 S. Kempken and W. Luther

Using the Cardano formulae, the eigenvalues can be computed explicitly in
the case M ≤ 5. For higher values of M the values can be found via numeric
eigenvalue problem techniques.

Parameter estimation via Prony approximation. Another way to find a
description for the autocorrelation function in the form of an exponential sum
is via a polynomial equation solver using Prony’s method (cf. [7]), which dates
back to the 18th century [8]:

For arbitrary real constants α1, . . . , αm and distinct constants β1, . . . , βm and
equidistant points j = 1, . . . , N and values

µj = α1 exp(β1j) + . . . + αm exp(βmj)

there exist constants g0, . . . , gm, such that

⎛

⎜
⎝

µ1 · · · µm+1

...
...

...
µN−m · · · µN

⎞

⎟
⎠

⎛

⎜
⎝

g0

...
gm

⎞

⎟
⎠ =

⎛

⎜
⎝

0
...
0

⎞

⎟
⎠ (7)

and a further condition on gj, e.g. gm = 1 can be imposed. To recover the
αk, βk, k = 1, . . . , m from given µj , j = 1, . . . , N (N ≥ 2m), we first solve the
equation system above to determine g0, . . . , gm. As the roots of the polynomial
equation

g0 + g1z + . . . + gmzm = 0

are exp(β1), . . . , exp(βm), the values βk can be calculated. The coefficients αk

are obtained by solving a linear equation system with the Vandermonde matrix
X:

µ = Xα

with µ = (µ1, . . . , µn)T and α = (α1, . . . , αm)T and

X =

⎛

⎜
⎝

exp(β1) · · · exp(βm)
...

...
...

exp(β1N) · · · exp(βmN)

⎞

⎟
⎠ .

In our case, we compute at least 2(M−1) values of the autocorrelation function
using formula 3 for the description of a SSMP (M). The coefficients αl and the
values βl, j = 1, . . . , M − 1, can be calculated using the method described. In
this way, we obtain a realization for the autocorrelation as a weighted sum of
M − 1 exponential terms.

Estimation of parameter intervals. The presented Prony approach can be
applied to estimate the autocorrelation function of a given SSMP as well as to
approximate the autocorrelation function of a given data set. It has been noticed
that the original Prony method is very sensitive to noise in the given data. Some
improvements have been suggested, for example by Osborne and Smyth [9].

Verified Methods in Stochastic Traffic Modelling 89

As an enhancement to the presented Prony approach, we considered the ques-
tion of how to expand the parameter intervals to include short-term fluctuations
in the approximation of a given data series. We assume a given autocorrelation
function a0(x), x = 0, . . . , N computed up to N from a given data set using
equation 4. The idea is to find m interval parameters [αj] = [αj ; αj] and m

parameters [λj] = [λj ; λj] so that

a0(x) ∈ a(x) =

m
∑

j=1

[αj][λj]
x, x = 0, . . . , N. (8)

Even harsher restrictions are given by

a0(x) ≤
m

∑

j=1

αj λj
x
, a0(x) ≥

m
∑

j=1

αj λj
x. (9)

As further criteria, the enclosure should be as tight as possible. In order to
find these parameter intervals, we start with an ordinary Prony approximation
with a chosen m of the given function a0(x) and yield the parameters αj and
λj = exp(βj). For the steps to come, it is irrelevant whether the traditional
Prony method or the modifications of Osborne and Smyth have been used.

Our idea now is to enclose both types of parameters in tight intervals and
to keep the original parameters [λj] while expanding the intervals of [αj]. We
do so by finding the upper and lower bounds of [αj] separately using linear
optimization techniques.

The autocorrelation function is limited to a codomain of [−1; 1]. Therefore, all
coefficients λj that are found by approximation must be inside the unit disc. Oth-
erwise, any resulting exponential sum would yield values outside the codomain
of the autocorrelation function.

The interval approximation we are looking for must also be limited to this
codomain. Hence, we introduce another constraint:

a(0) =

m
∑

j=1

[αj] ⊆ [−1; 1]

Because all [λj] are within the unit disc, subsequent function values are also
included in this interval.

We define the following linear objective function, which is to be minimized, as
another parameter of the optimization process in order to find the upper bound:

u(α1, . . . , αm) :=

m
∑

j=1

mid([λj])
2 · αj .

λi denotes the midpoints of the intervals [λj], which are considered constant
in the optimization process. For the calculation of the lower bound, we use

l(α1, . . . , αm) := −
m

∑

j=1

mid([λj])
2 · αj

90 S. Kempken and W. Luther

accordingly. The lower bounds for the optimization process are set to −1, as
upper bounds we choose the computed values αj . Hence,

αj ∈ [−1; αj] ⇒ αj ≤ αj .

Negative parameters [λj] require further consideration: If the coefficients αj

and αj are approximately 0 for these negative parameters [λj], which is the case
for a variety of video traces analysed in our experiments, the corresponding terms
may be neglected. This is because the minimal value of the objective function
u(. . .) is achieved for the lower bound of the optimization process αj = 0, if this
is a valid solution. For the lower bound of the enclosure, this applies accordingly.

In the case described, the lower bound of the enclosure of the given auto-
correlation function is defined by the lower bound of the parameter intervals,
and upper bounds are given accordingly. Therefore, restriction 9 holds. If the
coefficients [αj] are not negligible, only relation 8 is satisfied.

Some numeric results of this approach are given in the following section. How-
ever, the approach presented is not always feasible: If, for instance,

a0(x) >

m
∑

j=0

λj
x

for any x ∈ {0, . . . , N}, it is not possible to compute upper bounds for the
intervals [αj] that satisfy the mentioned constraints. For the lower bound, similar
restrictions apply accordingly.

Discussion. Whereas the computation of Equation 3 has O(nM3)-complexity,
the evaluation of Formula 5 is possible in linear time. Thus, it is much more effi-
cient to use the latter equation to calculate AR(n) for larger n as the additional
effort for the determination of the exponential parameters can be neglected.

Another advantage of the exponential sum form is numeric stability. The
computation of Equation 3 requires an n-fold multiplication of the matrix P . As
the first eigenvalue λ1 equals one and the other eigenvalues have an absolute value
smaller than one, the multiplications may lead to extinction of the eigenvalues
other than λ1, especially for larger n.

We have implemented the verified parameter estimation using the eigenvalue
approach in INTLAB [10]. We use the method by Rump [11] included in this
library to determine verified enclosures for the eigenvalues λ2, . . . , λM of a given
transition matrix P . As the transition probabilities are computed by division
from given integer data, we start with tight enclosures and obtain verified eigen-
value intervals. Using interval arithmetic also yields tight enclosures for the co-
efficients of the exponential sum. An example is given in the following section.

The main advantage of the interval parameter estimation is that the parame-
ters [λj] are kept very tight, whereas the coefficients [αj] are expanded. As this
notation corresponds to the autocorrelation of a SSMP, we hope to model given
data traces with a SSMP by solving the inverse eigenvalue problem to compute a
stochastic transition matrix that has eigenvalues within [λj]. The intervals [αj]

Verified Methods in Stochastic Traffic Modelling 91

are furthermore dependent on the mean values of the particular states of the
SSMP. By choosing mean values that result in coefficients within the parameter
intervals [αj], it is guaranteed that the autocorrelation function of the resulting
SSMP is also within the bounds derived from the given data trace.

2.3 Analysis of Video Data

As an example, we model video data as a semi-Markov process and calculate the
resulting autocorrelation of both the model and the actual data in short- and
long-term respectively. The same approach has been taken by Rose to analyse
MPEG-1 data [12]. We consider several MPEG-4 encoded video traces with 25
frames per second and duration between one and two hours. The trace data is
provided by Fitzek and Reisslein [13].

Let Fj denotes the frame size at time j. The frame sizes typically vary between
a few hundred and 20 thousand bytes. For the example clip presented here, which
is taken from Silence of the lambs, we find E(F) = 2876.3 as mean value and
standard deviation σF = 2291.0 for the frame sizes.

The encoding process produces sequences of frames compressed via different
methods (so-called I-, P- and B-Frames). Thus, the MPEG4 standard provides
pictures of three different types within a well-defined sequence leading to corre-
sponding groups of pictures (GoP) - in our case, size 12. The periodic structure
of the GoP, however, results in an important variation of the autocorrelation
function, as can be seen in Figure 2. This can be avoided if the frame sizes are

0 50 100 150 200
0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Autocorrelation of frames, Silence... sequence

92 S. Kempken and W. Luther

0 50 100 150 200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Autocorrelation of groups of pictures, Silence... sequence

combined to GoP sizes Rj (Figure 3). In the following, we therefore consider
groups of pictures.

To model a SSMP, the range of the function R denoting the size of the GoP is
divided into M equally ranged parts. These ranges correspond to the M states
of the SSMP (M). The number of states M is given by the heuristic formula

M =

⌊

maxj∈{1,...,jmax}(Rj)

σR

⌋

(10)

Each frame is then assigned to one of the M ranges according to its size which
gives the sequence of the states. We count the number of transitions between
the states and determine the transition matrix P . The steady state probabilities,
however, can not be approximated by counting the given data. Instead, they
have to be determined by solving the equations 1 and 2, which would not be met
exactly otherwise.

For our sample clip, we chose M = 8 states in accordance with Equation 10. As
the values are results of a division, the numbers cannot be represented accurately
using floating point arithmetic. The lower bounds of the resulting enclosures,
which are exact up to one unit in the last place (ulp), for the transition matrix
and the stationary probabilities are given in Tables 1 and 2 respectively.

Next, we determine the eigenvalues for the transition matrix using Rump’s
algorithm [11]. The α-coefficients for the exponential sum can be calculated

Verified Methods in Stochastic Traffic Modelling 93

Table 1. Transition matrix for SSMP(8) for Silence... clip

Columns 1 through 4

0.94176413255360. . . 0.05604288499025. . . 0.00170565302144. . . 0.00048732943469. . .
0.09881255301102. . . 0.85156912637828. . . 0.04834605597964. . . 0.00084817642069. . .
0.00859598853868. . . 0.16762177650429. . . 0.76790830945558. . . 0.05300859598853. . .
0.00520833333333. . . 0.01041666666666. . . 0.20833333333333. . . 0.64062500000000. . .
0.00000000000000. . . 0.01149425287356. . . 0.01149425287356. . . 0.29885057471264. . .
0.00000000000000. . . 0.00000000000000. . . 0.00000000000000. . . 0.04166666666666. . .
0.00000000000000. . . 0.00000000000000. . . 0.00000000000000. . . 0.00000000000000. . .
0.00000000000000. . . 0.00000000000000. . . 0.00000000000000. . . 0.00000000000000. . .

Columns 5 through 8

0.00000000000000. . . 0.00000000000000. . . 0.00000000000000. . . 0.00000000000000. . .
0.00042408821034. . . 0.00000000000000. . . 0.00000000000000. . . 0.00000000000000. . .
0.00143266475644. . . 0.00143266475644. . . 0.00000000000000. . . 0.00000000000000. . .
0.13541666666666. . . 0.00000000000000. . . 0.00000000000000. . . 0.00000000000000. . .
0.64367816091954. . . 0.03448275862069. . . 0.00000000000000. . . 0.00000000000000. . .
0.08333333333333. . . 0.66666666666666. . . 0.16666666666666. . . 0.04166666666666. . .
0.05555555555555. . . 0.22222222222222. . . 0.61111111111111. . . 0.11111111111111. . .
0.00000000000000. . . 0.00000000000000. . . 0.16666666666666. . . 0.83333333333333. . .

Table 2. Stationary probabilities for SSMP(8) for Silence... clip

Columns 1 through 4

0.54924240609103. . . 0.31435009675894. . . 0.09240540377074. . . 0.02487486054065. . .

Columns 5 through 8

0.01129776948681. . . 0.00313178534072. . . 0.00234883900554. . . 0.00234883900554. . .

according to equation 6 from the parameters of the SSMP. The resulting enclo-
sures for the exponential sum parameters are given in Table 3.

Because the values for [λj] are complex-valued, we may also yield complex
results for the evaluation of the exponential sum. The small imaginary values
for parameters [αj], [λj], j = 2, . . . , 6 result from the usage of interval input data
with corresponding diameter. However, if the coefficent intervals [αj] were exact
point values, the imaginary parts would be erased. But due to the expansion
of the coefficients into intervals, the imaginary interval values of the resulting
exponential sum are now symmetric around zero. For the approximation of a
real-valued function, we therefore consider only the real part of the results.

The resulting traces of the autocorrelation function of both the data and the
SSMP(8) model are displayed in Figure 4. As the interval values remain very
tight, we draw only their midpoints.

We also include an approximation of the autocorrelation function of the model
as an exponential sum, which was calculated using a floating-point implementa-
tion of Prony’s method from the first 2(M −1) = 14 values of the autocorrelation

94 S. Kempken and W. Luther

Table 3. Enclosures for exponential sum parameters

j αj λj

2 0.57846064414553

44 ± 0.00000000000004i 0.95681387186392

1 ± 0.00000000000001i
3 0.41609083340533

23 ± 0.00000000000005i 0.90370834110721

0 ± 0.00000000000001i
4 0.00383187037703

695 ± 0.00000000000004i 0.82576558668348

7 ± 0.00000000000001i
5 0.00133587753885

77 ± 0.00000000000004i 0.73471751804575

4 ± 0.00000000000001i
6 0.00008937289417

08 ± 0.00000000000004i 0.68741343017842

1 ± 0.00000000000001i
7 0.00009570081971

60 − 0.00098030122573

84i 0.42411854626969

8 − 0.00584080042991

2i
8 0.00009570081971

60 + 0.00098030122584

73i 0.42411854626969

8 + 0.00584080042992

1i

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Autocorrelation of actual data
SSMP(8), eigenvalue approach
Prony approximation

Fig. 4. Autocorrelation of given data and SSMP model

determined according to equation 3. An interval-based version of this approach
is part of our current research (cf. [14]).

As we can see, the SSMP approach seems adequate for short-term modelling
of actual video data, but the autocorrelation is still significantly different in the
long term. A slight improvement, however, can be achieved by increasing the
number of states of the SSMP [6].

Another result of the parameter estimation is that some of the coefficients αj

are almost zero, that is, negligible. This indicates that a more accurate modelling
of a given video trace by semi-Markov processes may be achieved with a smaller
number of states if the other parameters like mean values or the transition matrix
are chosen more carefully.

Therefore, it is an interesting question how the parameters of a SSMP model
can be modified to increase its quality. For example, how can the states of the

Verified Methods in Stochastic Traffic Modelling 95

0 20 40 60 80 100 120 140 160 180 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Actual autocorrelation
Lower bound
Upper bound
Standard Prony approximation

Fig. 5. Autocorrelation function bounded by exponential sums

Table 4. Bounds for exponential sum parameters - enclosure of original data

j αj λj

1 0.50371451646391, 0.90938513991036 0.99492207546157

16295

2 0.02327227858326, 0.02327227858327 0.83561616151959

02726

3 0.06734258150621, 0.06734258150623 0.59591132216477

195195

4 −0.00000000000004, 0.00000000000001 −0.31693241893635

4284

5 −0.00000000000009, 0.00000000000016 0.13245120515922

4122

SSMP (M) be modified in such a way that the eigenvalues of the transition ma-
trix P perfectly match with the parameters obtained via a Prony approximation
of the original data (Inverse eigenvalue problem, cf. [15])?

An example of the estimation of parameter intervals to include the autocorre-
lation of a given data series is given in Figure 5. We chose a number of 5 terms
for the enclosing exponential sums. The coefficients we have determined using
our approach are listed in Table 4. Please note that the indexing here begins
at 1, as the parameters are not derived by the eigenvalue approach but by a
Prony approximation. The values [λi] are determined by a verified root-finding
algorithm according to Prony’s method, which is feasible in this case because
the original floating-point autocorrelation data is enclosed in tight intervals. The
parameters [αi] are determined using the approach described in this paper.

The coefficients [αj] of a standard Prony approximation carried out in interval
arithmetic are given in Table 5 and the resulting exponential sum is also depicted
in Figure 5 for comparison.

We see that in the given example the actual autocorrelation of a given data set
can be enclosed in tight bounds given by exponential sums. Also, the coefficient
[αj] for the negative [λj] is a tight enclosure of zero.

96 S. Kempken and W. Luther

Table 5. Bounds for exponential sum parameters - standard verified Prony approxi-
mation

j αj λj

1 0.61547162039956

0350666 0.99492207546157

16295

2 0.54944898569680

89171306 0.83561616151959

02726

3 −0.21502374580986

90372194 0.59591132216477

195195

4 −0.02899855148103

9626237 −0.31693241893635

4284

5 0.07935963230209

50683209 0.13245120515922

4122

3 Verified Transient Analysis of a GI/G/1 Queue

3.1 Transient Analysis

The analysis of transient states of stochastic systems is a basic method related
to both steady state analysis and simulation. The first is included in the tran-
sient analysis as its eventual result, but the computation effort is often much
greater than for direct steady state solutions. Compared to simulation, tran-
sient analysis has the advantage of providing complete distribution functions of
system states, whereas simulation yields results subject to statistical deviations
within confidence levels.

Breuer [16] provides a means for the transient analysis of queue sizes of
GI/G/1 queues, but one of the main challenges in transient analysis is the ef-
fective limitation of the state space considered. Haßlinger and Kempken [17]
describe a way to analyse the queue size in a compact state space. The transient
workload of a queueing system can be analysed in a similar way. We consider
the case of a discrete time GI/G/1 queue.

Let {An|n ∈ N} be a family of independent and identically distributed (i.i.d.)
random variables, where An denotes the n-th interarrival time with

ak := Pr(An = k) (independent of n).

Correspondingly, let {Sn|n ∈ N} be a family of i.i.d. random variables, where Sn

denotes the n-th service time with

sk := Pr(Sn = k) (again independent of n).

We assume the arrival function is limited by g and the service distribution by h
respectively. Hence, a difference distribution Un is given by Un = Sn − An and
u(k) = Pr(Un = Sn − An = k) with range −g ≤ Un ≤ h. The mean service time
is assumed to be smaller than the mean interarrival time as a stability condition
for a system with unlimited queue size. The service discipline is non-preemptive
and the order of service is independent of the required service time (for example,
first come, first served). Then the workload Wn immediately after the arrival of
the n-th customer can be computed according to Lindley’s equation [18]:

Wn+1 = max(Wn + Un, 0), n ∈ N0 (11)

Verified Methods in Stochastic Traffic Modelling 97

Using our given distributions, the workload distribution can be calculated
iteratively by convolutions:

Pr(Wn+1 = k) =

g
∑

j=−h

Pr(Wn = k + j)Pr(Un = −j), k ∈ N, n ∈ N0

Pr(Wn+1 = 0) =

0
∑

k=−g

g
∑

j=−h

Pr(Wn = k + j)Pr(Un = −j), n ∈ N0

Pr(Wn = −k) = 0, n ∈ N0, k ∈ N (12)

The workload cannot be negative; therefore the probabilities for the corre-
sponding states have to be added to Pr(Wn+1 = 0). If we assume E(A) > E(S),
that is E(U) < 0, as a stability condition, the workload distribution converges
to a steady state for all starting distributions. This has been shown by Lindley
[18].

Therefore, for given ǫ and k with

wn(k) = Pr(Wn = k), w(k) = lim
n→∞

wn(k),

a point n can be given such that |w(k) − wn(k)| ≤ ǫ.
In terms of interval arithmetic this implies that for arbitrary precision (limited

by the implementation) there is a point n at which the intervals of the stationary
and transient distributions intersect, which means that the difference between
the actual probabilities and the stationary ones is smaller than the inaccuracy
of the computation. In the following section, we compute the point n for two
examples for standard IEEE intervals. Additionally, we are able to perform a
verified “worst case” analysis for the number of iterations required to satisfy the
mentioned constraint for different values of ǫ, which are limited by the diameter
of the intervals involved. To do so, we determine the maximum difference be-
tween the interval bounds of the current transient state wn(k) and the stationary
distribution w(k) calculated by Wiener-Hopf analysis (cf. [2] [19]).

3.2 Examples

Two examples will illustrate our approach. The first is rather simple, considering
the limited support of the arrival and service distributions. Let the arrival and
service distributions be given by a(1) = a(5) = 0.5 and s(1) = s(4) = 0.5 with
mean E(A) = 3, E(S) = 2.5 and E(U) = −0.5 (cf. [17]). For our observations,
we assume an empty queue at the beginning and start in the instant of the
first arrival. This state is described by Pr(W = 0) = 1, Pr(W = k) = 0, k ∈
N. We computed the steady state probabilities with the tool InterVerdiKom,
which yields validated enclosures [2] [19]. The sequences {wn(k)} of the transient
states are calculated using an implementation in MATLAB with the INTLAB
extension.

98 S. Kempken and W. Luther

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
w(0)
w(1)
w(2)
w(3)

Fig. 6. Transient analysis of the workload for the first example

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
w(0)
w(5)
w(10)
w(15)
w(20)

Fig. 7. Transient analysis of the workload for the Chaudhry example

The results of the transient analysis are shown in Figure 6, displaying the
convergence of the empty system to the steady state probability distribution. The
required number of iterations for different values of ǫ are given in Table 6. After
1135 iterations, the enclosures for the transient and steady state probabilities
start to intersect.

The second example is taken from Chaudhry [20, example 4]. The arrival and
service distributions are given by

Verified Methods in Stochastic Traffic Modelling 99

Table 6. Required number of iterations for different ǫ

ǫ Number of iterations (simple ex.) Number of iterations (Chaudhry ex.)

10−1 8 5
10−2 45 21
10−3 110 48
10−4 191 80
10−5 280 115
10−6 375 151
10−7 474 190
10−8 575 229
10−9 679 269
10−10 783 309

Pr(A = 15) = 2/5 Pr(A = 30) = 3/5
Pr(S = 10) = 4/5 Pr(S = 50) = 1/5

As in the first example, we assume an empty system as the starting point.
The results for this case are displayed in Figure 7 and Table 6 respectively. The
intervals intersect after 444 iterations. In this special case, the probability of a
specific workload i is only larger than zero if i is zero or a multiple of 5.

4 Conclusions and Further Work

We have presented two approaches on how interval arithmetic can be used to yield
validated results in different application settings for stochastic traffic analysis.

It was shown how reliable parameters for the representation of the autocorrela-
tion function of a SSMP as an exponential sum can be determined using eigen-
value decomposition. This features favorable numerical properties and yields
reliable results for the parameters of this notation. As an alternative approach,
these values can also be calculated using Prony’s method.

The calculated coefficient intervals can be expanded in order to include short
term oscillation of the autocorrelation evidenced in Figures 2 and 3. Presently
we study alternative approaches to the root-finding in Prony’s algorithm to
implement an interval version of Prony’s method.

We also focus on the verified computation in the field of transient analysis in
a compact state space. Apart from yielding reliable and consistent results, an
interval-based description of system states may allow a further reduction of the
number of states considered, as, for instance, adjacent unlikely states (that is,
very high workload) may be aggregated by extension of the describing intervals.

Acknowledgements

This research and software development for algorithms with result verification
has been carried out by the authors in a recent project funded by the German

100 S. Kempken and W. Luther

Research Council (DFG). We also thank the anonymous reviewers for their valu-
able comments which have improved this paper and its readability.

References

1. Fausten, D., Haßlinger, G.: Verified numerical analysis of the performance of
switching systems in telecommunication. In: Alt, R., Frommer, A., Kearfott, R.B.,
Luther, W. (eds.) Dagstuhl Seminar 2003. LNCS, vol. 2991, pp. 209–228. Springer,
Heidelberg (2004)

2. Traczinski, D., Luther, W., Haßlinger, G.: Polynomial factorization for servers with
semi-Markovian workload: Performance and numerical aspects of a verified solution
technique. Stochastic Models 21, 643–668 (2005)

3. Kleinrock, L.: Queueing Systems, vol. 1/2. Wiley, Chichester (1975)
4. Haßlinger, G.: Semi-Markovian modelling and performance analysis of variable rate

traffic in ATM networks. Telecommunication Systems 7, 281–298 (1997)
5. Seneta, E.: Non-negative matrices and Markov chains. Springer, Heidelberg (1981)
6. Takes, P.: Modellierung von Datenverkehr mittels stochastischer Prozesse

angewendet auf Video-Übertragungen in IP-basierten Netzen unter besonderer
Berücksichtigung autokorrelierter und semi-Markov-prozesse. Master’s thesis,
Gerhard-Mercator-Universität Duisburg (2002)

7. Hildebrand, F.B.: Introduction to numerical analysis. McGraw-Hill Book Co., New
York (1974)

8. de Prony, G.: Essai experimental et analytique sur les lois de la dilatabilité des flu-
ides élastiques et sur celles de la force expansive de la vapeur de l’eau et de la vapeur
de l’alkool, à différentes températures. Journal de l’Ecole Polytechnique 1(2), 24–76
(1975)

9. Osborne, M., Smyth, G.: A modified Prony algorithm for fitting sums of exponential
functions. SIAM Journal of Scientific Computing 16, 119–138 (1995)

10. Rump, S.: INTLAB-Interval laboratory. Developments in Reliable Computing, 77–
104 (1999)

11. Rump, S.: Computational error bounds for multiple or nearly multiple eigenvalues.
Linear Algebra and its Applications 324, 209–226 (2001)

12. Rose, O.: Simple and efficient models for variable bit rate MPEG video traffic.
Performance Evaluation 30(69-85) (1997)

13. Fitzek, F.H., Reisslein, M.: MPEG-4 and H.263 video traces for network perfor-
mance evaluation (extended version). Technical Report TKN-00-06, TU Berlin,
Dept. of Electrical Engineering, Telecommunication Networks Group (2000)

14. Garloff, J., Granvilliers, L., Smith, A.P.: Accelerating consistency techniques and
Prony’s method for reliable parameter estimation of exponential sums. In: Jer-
mann, C., Neumaier, A., Sam, D. (eds.) COCOS 2003. LNCS, vol. 3478, pp. 31–45.
Springer, Heidelberg (2005)

15. Chu, M.: Inverse eigenvalue problems. SIAM Review 40(1), 1–39 (1998)
16. Breuer, L.: Numerical results for the transient distribution of the GI/G/1 queue

in discrete time. In: Proceedings of the 13th GI/ITG Conference on Measuring,
Modelling and Evaluation of Computer and Communication Systems (MMB), pp.
209–218 (2006)

17. Haßlinger, G., Kempken, S.: Transient analysis of a single server system in a com-
pact state space. In: Proceedings of the 13th International Conference on Analytical
and Stochastic Modelling Techniques and Applications, pp. 91–96 (2006)

Verified Methods in Stochastic Traffic Modelling 101

18. Lindley, D.: The theory of queues with a single server. In: Proc. Cambridge Philos.
Soc., vol. 48, pp. 277–289 (1952)

19. Kempken, S., Luther, W., Traczinski, D.: Reliable computation of workload dis-
tributions using semi-Markov processes. In: Proceedings of the 13th International
Conference on Analytical and Stochastic Modelling Techniques and Applications,
pp. 111–117 (2006)

20. Chaudhry, M.: Alternative numerical solutions of stationary queueing-time dis-
tributions in discrete-time queues: GI/G/1. Journal of the Operational Research
Society 44(10), 1035–1051 (1993)

Interval Arithmetic Using SSE-2

Branimir Lambov

BRICS⋆, University of Aarhus
IT Parken, 8200 Aarhus N

Denmark
barnie@brics.dk

Abstract. We present an implementation of double precision interval arithmetic
using the single-instruction-multiple-data SSE-2 instruction and register set ex-
tensions. The implementation is part of a package for exact real arithmetic, which
defines the interval arithmetic variation that must be used: incorrect operations
such as division by zero cause exceptions and loose evaluation of the operations
is in effect. The SSE-2 extensions are suitable for the job, because they can be
used to operate on a pair of double precision numbers and include separate round-
ing mode control and detection of the exceptional conditions. The paper describes
the ideas we use to fit interval arithmetic to this set of instructions, shows a perfor-
mance comparison with other freely available interval arithmetic packages, and
discusses possible very simple hardware extensions that can significantly increase
the performance of interval arithmetic.

1 Introduction

Numerical computations on a computer are plagued by the problem of roundoff error
and its accumulation. Very often we trust results obtained using floating point compu-
tations, although we do not know anything about the quality of these results. Verifying
their correctness may be a very difficult task, to solve which various mathematical or
programming tools may be used.

In this paper we will describe a package which implements interval arithmetic, one
of the methods that can be used as one of the steps towards solving the problem, in a
very efficient way. The package itself is part of a bigger library for exact real computa-
tion, which can be used to solve the roundoff error problems completely by providing
certified accuracy.

Interval arithmetic is a method of finding lower and upper bounds for the possi-
ble values of a result by performing a computation in a manner which preserves these
bounds (for an introduction, see [4]). The IEEE-754 standard for floating point arith-
metic [7] has useful features to aid fast interval arithmetic, namely the directed round-
ing modes that should be present with every IEEE-754 implementation. Unfortunately,
in some processor architectures, notably Intel’s x86, it is non-trivial to effectively use
them, as switching the rounding mode for an operation requires significantly more time

⋆ Basic Research in Computer Science (www.brics.dk), funded by the Danish National Re-
search Foundation.

P. Hertling et al. (Eds.): Real Number Algorithms, LNCS 5045, pp. 102–113, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Interval Arithmetic Using SSE-2 103

than the operation itself. Even when one takes into account the fact that one of the di-
rected rounding modes can be emulated by operations on negated values rounded in the
other direction, an interval arithmetic package has to be aware that users may mix inter-
val with standard floating point arithmetic and would still require repeatedly switching
the rounding modes.

Fortunately, the newer generations of the x86 architecture provide an additional set
of registers with its own rounding control, the SSE-2 double-precision floating point
registers [8]. They can coexist with the old x87-style floating point, which is still the
register and instruction set used most widely. Thus, to serve all purposes, we can reserve
the SSE-2 register and operation set for interval arithmetic and leave x87-style floating
point for any standard floating point operations that the user may be performing.

The SSE-2 instruction set can also work on packed data, as every SSE-2 register
can contain and operate on a pair of double-precision floating point numbers. Since an
interval is in fact a pair of bounds, one SSE-2 register can be used to hold an interval,
which nullifies the additional register pressure that interval arithmetic would normally
exert.

The package described in this paper is part of the RealLib library for exact real num-
ber computations [5] and makes use of this register and instruction set to implement
very fast machine precision interval arithmetic.

Often an interval arithmetic package would be expected to continue computations
even if it reaches exceptional conditions, such as division by an interval that contains
zero. This does not make sense for interval arithmetic within exact arithmetic, as in the
latter one assumes that in any such case the bad interval will improve in subsequent
reiterations at higher precision and ultimately one can reach a precision which avoids
the exceptional condition. Thus, contrary to the modern trends of interval arithmetics,
for us actually throwing an exception in such a case is the desirable action, so that
computations can restart at higher precision as soon as possible.

Additionally, the package implements loose interval arithmetic, i.e. it ignores the
portions of the argument of an operation that are outside its domain, e.g. the negative
parts of the argument to a square root, meaning for example that

√

[−1, 4] = [0, 2]. This
is the proper mode of operation to ensure that

√
0 is computable in exact real arithmetic.

2 Key Ideas

Normally, interval arithmetic based on floating point would use two rounding oper-
ations, ∆ (rounding towards +∞) and ∇ (rounding towards −∞). By default IEEE
floating point uses rounding to nearest, which is not useful for our purposes.

We already mentioned that switching the rounding mode has a detrimental effect on
the performance of floating point operations, thus we would want to avoid all rounding
mode switches. We will only do this once, at the beginning of a computation1, setting
the rounding mode to rounding towards −∞. To compute lower bounds of the results,
we will directly use the floating point operation. To compute upper bounds, we will

1 This is accomplished by the construction of a special object that also takes care of restoring
the previous rounding mode after the interval computation has completed.

104 B. Lambov

make sure that the result of the floating point operation is negated, thus making use of
the identity

∆(x) = −∇(−x).

Seeing operations in the form above, compilers are usually overzealous2 to fold the
pair of negations and destroy the effect we want to achieve. To avoid this, at the same
time keeping down the number of required operations, we make sure that we always
keep the high bound of the interval negated, i.e. our representation of the interval x =
[x, x] is the pair 〈x, −x〉. (in the rest of this chapter we will assume every interval is
represented in this fashion and will simply write x to mean [x, x] and 〈x, −x〉)

Three observations can be made directly from this:

– in this setting, the sum of x and y is evaluated by
〈

∇(x + y), −∇(−x − y)
〉

which
is achieved by a single instruction, mm add pd .

– changing the sign of an interval x is achieved by simply swapping the two bounds,
i.e. 〈−x, x〉, achieved by a single instruction, mm shuffle pd ,

– joining two intervals (i.e. finding an interval containing all numbers in both, or find-
ing the minimum of the lower bounds and the maximum of the higher bounds) is
performed as

〈

min(x, y), − min((−x), (−y))
〉

in a single instruction, mm min pd .

The latter is used extensively in the computation of multiplication, division and other
operations.

3 Operations

In this section we will give short remarks on our implementation of the basic operations
on intervals. The operations include the arithmetic operators, including the special cases
−x, 1

x
, and x2, absolute value and square root.

All the operations give tight bounds (i.e. the best possible enclosures after rounding).

3.1 Addition

Definition:

x + y = [x + y, x + y] ⊆
〈

∇(x + y), −∇((−x) + (−y))
〉

Addition is implemented as a single mm add pd instruction. The negated sign of
the higher bound ensures the proper direction of the rounding.

3.2 Sign Change

Definition:
−x = [−x, −x] = 〈−x, x〉

This is a single swap of the two values, implemented as a mm shuffle pd instruction.
No rounding is performed here.

2 The two negations have no effect on the rounding-to-nearest mode which is normally in place
in C/C++ code, and on which many standard functions rely, thus this optimization is perfectly
legal. Only our specific (non-standard) use of floating point makes it unwanted.

Interval Arithmetic Using SSE-2 105

3.3 Subtraction

Definition:

x − y = [x − y, x − y] ⊆
〈

∇(x + (−y)), −∇((−x) + y)
〉

Subtraction is implemented as x+(−y), which corresponds to two processor instruc-
tions. This is the best that can be achieved with packed SSE-2 instructions, because the
formula requires a combination of the high bound of one of the arguments with the low
bound of the other.

3.4 Multiplication

Definition:
xy = [min(xy, xy, xy, xy), max(xy, xy, xy, xy)] (1)

Unfortunately, the rounding steps are inseparable parts of the operations, hence the
equation above requires 8 multiplications. Using the fact that ∆(∇(r)+ ǫ) ≥ ∆(r) (for
ǫ being the smallest representable positive number), one can do with 4 multiplications
at the expense of some accuracy.

A widely used alternative examines the signs of both factors to choose one of 9
possible execution paths of different complexity. One of the paths involves taking the
minimum and maximum of the result of two pairs of multiplications. Implementing
this idea requires branching, which is one of the main performance problems in current
processor architectures.

In our implementation we chose an approach where we perform the same amount of
work as in the worst case scenario of the case distinction, but we avoid the branching
by using boolean arithmetic to select one of the arguments of each multiplication based
on the signs of x and x. More specifically, we use these observations:

xy =

⎧

⎨

⎩

[min(xy, xy), max(xy, xy)], if 0 ≤ x ≤ x
[min(xy, xy), max(xy, xy)], if x < 0 ≤ x
[min(xy, xy), max(xy, xy)], if x ≤ x < 0

(2)

to conclude that the formula

xy ⊆ 〈min(∇(ax), ∇(b(−x))), − min(∇(c(−x)), ∇(dx))〉 ,

where

a =

{

y if 0 ≤ x
−(−y) otherwise

b =

{

−y if (−x) ≤ 0
(−y) otherwise

c =

{

−(−y) if (−x) ≤ 0
y otherwise

d =

{

(−y) if 0 ≤ x
−y otherwise

computes the rounded results of the multiplication formula in (1). It uses more in-
structions than the direct implementation with 8 multiplications, but achieves better
performance.

106 B. Lambov

3.5 Multiplication by a Positive Number

When one of the numbers is known to be positive (e.g. a known constant), one can use
one of the cases in (2) directly:

xy
x≥0
= [min(xy, xy), max(xy, xy)]

This is significantly faster than the general case multiplication, involving only 5 in-
structions (4 for constants).

3.6 Multiplication of Two Positive Numbers

If both multiples are known to be positive, multiplication can be achieved by simply
changing the sign of the higher bound of one of the arguments followed by mm mul pd .
If one of the numbers is a constant, one can prepare it in a suitable way to avoid the sign
change and implement the multiplication as a single instruction.

3.7 Division

Definition:
x

y
=

[
min

(
x

y
,
x

y
,
x

y
,
x

y

)

, max

(

x

y
,
x

y
,
x

y
,
x

y

)]

,

undefined if 0 ∈ y.
Again, this computation would require 8 divisions. Unfortunately, division is a rather

slow operation, that is why we would prefer to use as few divisions as possible. One
way to do this is to use x

y
= x 1

y
, using the definition of reciprocal below, which uses

only two divisions but quite a few other operations.
A more efficient (as well as more precise) approach turns out to be the use of case

distinction similar to (2). By examining the divisor, we end up with fewer possible cases
and easy recognition of the exceptional cases. More specifically, the operation becomes:

x

y
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

min
(

x

y
, x

y

)

, max
(

x
y
, x

y

)]

, if 0 < y ≤ y

exception, if y ≤ 0 ≤ y
[

min
(

x
y
, x

y

)

, max
(

x

y
, x

y

)]

, if y ≤ y < 0

(3)

The final formula we use is

x

y
⊆

〈

min

(

∇
(

a

y

)

, ∇
(−a

(−y)

))

, − min

(

∇
(−b

(−y)

)

, ∇
(

b

y

))〉

,

where

a =

{

x if (−y) ≤ 0
−(−x) otherwise

b =

{

(−x) if 0 ≤ y
−x otherwise

with an additional check to throw an exception if y ≤ 0 ≤ y.

Interval Arithmetic Using SSE-2 107

3.8 Reciprocal

Definition:

1

x
=

[
1

x
,
1

x

]

⊆
〈

∇
(−1

(−x)

)

, ∇
(−1

x

)〉

,

undefined if 0 ∈ x.
This is implemented as a check if the argument contains zero, followed by division

of −1 by the argument and swapping the two components.

3.9 Absolute Value

Definition:

|x| = [max(x, −x, 0), max(−x, x)] = 〈max(0, x, (−x))), − min(x, (−x))〉 .

3.10 Square

Implemented as x2 = |x||x|, using multiplication of positive numbers.

3.11 Square Root

Definition:

√
x =

[√
x,

√
x
]

only defined if 0 ≤ x.
Since the rounding is an integral part of the square root operation, and in this case we

cannot achieve a negated result, we need to use another method to ensure rounding in the
correct direction. We use the fact already mentioned in the subsection on multiplication,
∆(r) ≤ −∇(−ǫ − ∇(r)).

The formula we use is:

√
x ⊆

⎧

⎨

⎩

〈

∇
(√

x
)

, −∇
(

√

−(−x)
)〉

, if ∇
(

∇
(

√

−(−x)
))2

= −(−x)
〈

∇
(√

x
)

, ∇
(

∇
(

−ǫ −
√

−(−x)
))〉

, otherwise

(where ǫ is the smallest representable positive number).
The condition for making the first choice in this formula is only satisfied if the result

of
√

−(−x) is exactly representable, in which case ∇
(

√

−(−x)
)

= ∆
(

√

−(−x)
)

.

Otherwise the second choice adjusts the high bound to the next representable number.
Note that if we don’t require tight bounds, using only the second choice in the equa-

tion above is sufficient to implement interval square root.
If the argument is entirely negative, the implementation will raise an exception. If it

contains a negative part, the implementation will crop it to only its non-negative part,
to allow that computations such as

√
0 can be carried out in exact real arithmetic.

108 B. Lambov

4 Performance

We compare the performance of this implementation to the performance of two other
packages for interval arithmetic freely available on the internet: the interval part of
the Boost project (version 1.33.0, [6]) and the library filib++ (version 2.0, [2]). For the
latter, we tried the macro version as well as two of the available rounding policies,
multiplicative and native onesided global , the latter corresponding most closely to our
method of rounding.

The results of the benchmark are summarized in the following table, showing the
ratio between the performance of the respective library and double precision floating
point:

Table 1. Performance comparison (Pentium-M 1.8GHz, Windows XP + Cygwin, GCC 3.4.4)

operation filib++, filib++, filib++, Boost RealLib
macro onesided mult.

+ 6.12 2.45 6.22 9.90 1.05
* 6.78 3.57 6.97 124.27 6.35
/ 12.33 3.63 9.24 8.62 3.72√· 27.06 62.23 61.79 15.77 1.73
| · | 30.71 23.76 23.76 2.03 3.16
�1000000

i=1

1

i
3.67 1.74 2.33 4.90 1.70

dot product 12.11 6.28 13.19 148.86 3.72

RealLib is faster almost everywhere, with the notable exception of multiplication in
filib++’s native onesided global mode. In this case filib++ uses a case distinction, which
in our test only reaches the shortest of the 9 possible paths, giving only the best case per-
formance of filib++’s multiplication code. In contrast, our implementation uses only one
execution path for all multiplications, thus the ratio given in the table is both best and
worst case performance. In the dot product operation the reader can see the effect that
varying signs of the argument has on the performance of multiplication. The time spent
in evaluating a dot product is dominated by the time spent in multiplications, but since
our implementation has constant performance while filib++’s efficiency deteriorates, our
SSE-2 code turns out to be significantly faster.

5 Intel’s SSE-3

The latest multimedia extension set introduced by Intel, the SSE-3 [10], aimed at im-
proving complex number computations, does not provide any benefit for interval com-
putations. Intel chose to improve complex multiplications and divisions by introducing
the instruction mm addsub pd , which combines two packed registers by adding one of
the two components and subtracting the other [9]. Unfortunately, the use of this instruc-
tion in complex multiplications leads to incorrect results if a directed rounding mode
is in effect, because the multiplication that precedes the subtraction is rounded in the
wrong direction.

Interval Arithmetic Using SSE-2 109

A better handling of complex multiplications would have been the introduction of
a multiplication instruction “mulpn” (for multiply positive negative) that changes the
sign of one of the components of one of the arguments. This would require the same
effort that the instruction mm addsub pd required, but would have the correct behavior
in directed rounding modes, i.e. complex multiplication code using mulpn would yield
upper bounds for the result of the multiplication if rounding towards +∞ is in effect,
and lower bounds in the case of rounding towards −∞.

Unlike mm addsub pd , a mulpn instruction would have been useful and advanta-
geous for interval arithmetic. Multiplication of two positive numbers could be imple-
mented as a single mulpn, which would also speed up the implementations of transcen-
dental interval functions.

6 Suggestions for a Hardware Implementation

We hope that the presentation until this point has convinced the reader that the use of
the storage 〈x, −x〉 for intervals in SSE-2 registers is clearly superior to the traditional
method of storing intervals as simply the pair of the two bounds. This mode of storage
avoids the need for special rounding modes in a hardware implementation, and even
turns some existing instructions into meaningful interval operations.

We propose this storage to be adopted as the preferred storage format for intervals in
hardware implementations.

To further speed up computations on intervals, we propose the introduction of a
special selection instruction we call ivchoice (for interval choice) that can be used to
prepare the arguments for multiplication and division. The action of this instruction
should correspond to the following function:

ivchoice (〈a0, a1〉 , 〈b0, b1〉) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

〈a1, a1〉 , if b0 ≥ +0 ∧ b1 ≥ +0
〈a1, −a0〉 , if b0 ≥ +0 ∧ b1 ≤ −0
〈−a0, a1〉 , if b0 ≤ −0 ∧ b1 ≥ +0

〈−a0, −a0〉 , if b0 ≤ −0 ∧ b1 ≤ −0

.

This can also be given as the following C++ function:

__m128d ivchoice(__m128d a, __m128d b)
{

a = _mm_xor_pd(a, _mm_set_pd(0.0, -0.0));
a = _mm_shuffle_pd(a, a, _mm_movemask_pd(b));
return a;

}

This code does not compile, because mm shuffle pd cannot be performed based on
a non-const integer. A software implementation of the above requires a switch state-
ment, which slows the execution considerably, especially in cases where the signs of
the multiples cannot be predicted.

If such an instruction is available, the multiplication code becomes:

110 B. Lambov

__m128d IntervalMul(__m128d x, __m128d y)
{

__m128d a, b;
a = _mm_shuffle_pd(x, x, 1); // 1
b = _mm_shuffle_pd(y, y, 1); // 2
y = ivchoice(y, a); // 3
b = ivchoice(b, x); // 4
y = _mm_mul_pd(y, a); // 5
b = _mm_mul_pd(b, x); // 6
y = _mm_min_pd(b, y); // 7
return y;

}

The following is a pseudocode translation of the function for the readers that are not
familiar with the SSE-2 instructions:

1. Swap the two components of x and store the result in a.
2. Swap the two components of y and store the result in b.
3. Apply ivchoice to y and a and store the result in y.
4. Apply ivchoice to b and x and store the result in b.
5. Multiply y and a componentwise and store the result in y.
6. Multiply b and x componentwise and store the result in b.
7. Return the componentwise minimum of b and y.

If the latency of the proposed instruction can be the same as the latency of the in-
struction mm shuffle pd , this sequence of instructions will run about 30% faster than
the current implementation.

Moreover, since the multiplications above only use the results of ivchoice with the
same second argument, it is even possible to fuse ivchoice with the multiplication that
is applied to the result:

__m128d ivmul(__m128d a, __m128d b)
{

a = _mm_xor_pd(a, _mm_set_pd(0.0, -0.0));
a = _mm_shuffle_pd(a, a, _mm_movemask_pd(b));
a = _mm_mul_pd(a, b);
return a;

}

Correspondingly, the IntervalMul function will in this case change to:

__m128d IntervalMul(__m128d x, __m128d y)
{

__m128d a, b;
a = _mm_shuffle_pd(x, x, 1);
b = _mm_shuffle_pd(y, y, 1);
y = ivmul(y, a);
b = ivmul(b, x);
y = _mm_min_pd(b, y);
return y;

}

Interval Arithmetic Using SSE-2 111

The extent to which such fusion can be beneficial depends on the actual hardware
implementation. If the latency of ivchoice can be folded completely (which seems pos-
sible) or partially, interval multiplication using the fused ivmul could reach a latency
close to the latency of two dependant double precision multiplications.

Apart from an additional test if the divisor contains zero and the use of mm div pd
instead of mm mul pd , the division code is identical to the multiplication one:

__m128d IntervalDiv(__m128d y, __m128d x)
{

__m128d a, b;
if (_mm_movemask_pd(x)==3)

throw exception;
a = _mm_shuffle_pd(x, x, 1);
b = _mm_shuffle_pd(y, y, 1);
y = ivchoice(y, a);
b = ivchoice(b, x);
y = _mm_div_pd(y, a);
b = _mm_div_pd(b, x);
y = _mm_min_pd(y, b);
return y;

}

Fused ivchoice and division (“ivdiv”) is also possible, and the changes to the division
code are exactly as above.

Of course, one would prefer to have a complete hardware implementation of in-
terval arithmetic that provides instructions for the four basic operations on intervals.
In our mode of operation addition already has a hardware implementation as a sin-
gle instruction. Subtraction would require a fusion of swapping and addition (“ivsub”)
which should be easy to accomplish in hardware without extra latency compared to
addition.

On the other hand, multiplication and division seem too complex to be directly im-
plemented. A pure hardware implementation of multiplication may be able to choose
execution paths without the delays associated with incorrect branch predictions, thus
probably the preferable hardware design would examine the signs of the four compo-
nents to choose one of 9 possible combinations and perform a single pair of multiplica-
tions in 8 of the possible cases. In the 9’th case, however, the operation would require
the same amount of work as the function IntervalMul above.

Since the worst-case latency would be the same as the algorithm above, the latter
should not be ignored as a possible basis for a pure hardware implementation of interval
multiplication.

To conclude, we suggest that hardware assistance for interval computations should
be provided as the adoption of the 〈x, −x〉 storage format and the introduction of the
instructions of one of the following three levels:

basic mulpn, ivsub, ivchoice

advanced mulpn, ivsub, ivmul , ivdiv

full ivsub, IntervalMul , IntervalDiv

The advanced level seems to be the best combination of feasibility and performance.

112 B. Lambov

7 Related Work

In [1], von Gudenberg discusses the efficiency of implementations of interval arithmetic
using the multimedia extensions Intel’s SSE, AMD’s 3DNow! and Motorola’s AltiVec.
The paper concludes that the use of multimedia extensions only leads to a very mod-
est improvement in multiplication with Intel’s SSE in comparison to standard floating
point, and only due to the fact that four single-precision operations can be executed in
parallel.

Unlike SSE, the double precision second version of the extensions, SSE-2, is a nat-
ural candidate for interval arithmetic because the packed registers hold two double pre-
cision values.

Von Gudenberg used a variety of rounding policies, the fastest of which is global
onesided rounding, the method we use, but did not store one of the components negated
in memory. Consequently, handling the negations required to perform rounding in the
proper direction increases the number of instructions needed for every operation. If we
were to use SSE-2 in a similar mode of operation, the required number of instructions
for addition would be four instead of one, for sign change – two instead of one, for
subtraction – five instead of two, and for multiplication of positive intervals – three
instead of two.

Additionally, instead of 9-case branching on the signs of the 4 components, we prefer
to use 4 multiplications with selected arguments (the selection is branch-free), which
gives us stable performance that is not affected by branch mispredictions or longer
latency execution paths, although with a worse best-case performance.

In [3], Kolla, Vodopivec and von Gudenberg discuss the possibility of hardware ex-
tensions supporting interval arithmetic similar to the multimedia extensions 3DNow!,
via packed storage of single precision numbers in a double precision register. For addi-
tion and subtraction they require special instructions that round each component of the
pair in the appropriate direction, and for multiplication they describe a case selection
method that can easily be implemented and be very efficient for 8 of the 9 possible cases
and requires a sequence of operations and longer latency for the (rare) 9’th case.

We are quite skeptical about the chances of such a complicated multiplication in-
struction ever being implemented in hardware. Instead, we give a much more modest
proposal that can also lead to very good performance at the cost of little extra hard-
ware. It also has the benefit that one of the operations, addition, already has a hardware
implementation.

References

1. von Gudenberg, J.W.: Interval Arithmetic on Multimedia Architectures. Reliable Comput-
ing 8(4) (2002)

2. Hofschuster, W., Krämer, W., Lerch, M., Tischler G., von Gudenberg, J.W.: The Interval
Library fi lib++ 2.0 Design, Features and Sample Programs. Preprint 2001/4,Universität
Wuppertal (2001),
http://www.math.uni-wuppertal.de/wrswt/preprints/prep 01 4.pdf

http://www.math.uni-wuppertal.de/wrswt/preprints/prep_01_4.pdf

Interval Arithmetic Using SSE-2 113

3. Kolla, R., Vodopivec, A., von Gudenberg, J.W.: The IAX Architecture – Interval Arith-
metic Extension. Universität Würzburg, Institut für Informatik, Techn. Report TR225
(1999), http://www2.informatik.uni-wuerzburg.de/mitarbeiter/wvg/
Public/iax.ps.gz

4. Kearfott, R.B.: Interval Computations: Introduction, Uses, and Resources. Euromath Bul-
letin 2(1), 95–112 (1996)

5. Lambov, B.: RealLib: An Efficient Implementation Exact Real Arithmetic. Mathematical
Structures in Computer Science (to appear),
http://www.brics.dk/∼barnie/RealLib/

6. Boost Interval Arithmetic Library,
http://www.boost.org/libs/numeric/interval/doc/interval.htm

7. IEEE Standards Committee 754, IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Standard 754-1985. Institute of Electrical and Electronics Engineers, New York
(1985); reprinted in SIGPLAN Notices, 22(2), 9–25 (1987)

8. Intel Corp. IA-32 Intel Architecture Software Developer’s Manual, Volumes 1-3, http://
developer.intel.com/design/pentium4/manuals/index new.htm

9. Intel Corp. Using SSE3 Technology in Algorithms with Complex Arithmetic,
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/
pentium4/optimization/66717.htm

10. Intel Corp. Next Generation Intel Processor: Software Developers Guide,
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/
pentium4/optimization/66756.htm

http://www2.informatik.uni-wuerzburg.de/mitarbeiter/wvg/Public/iax.ps.gz
http://www2.informatik.uni-wuerzburg.de/mitarbeiter/wvg/Public/iax.ps.gz
http://www.brics.dk/~barnie/RealLib/
http://www.boost.org/libs/numeric/interval/doc/interval.htm
http://developer.intel.com/design/pentium4/manuals/index_new.htm
http://developer.intel.com/design/pentium4/manuals/index_new.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/pentium4/optimization/66717.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/pentium4/optimization/66717.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/pentium4/optimization/66756.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/pentium4/optimization/66756.htm

Worst Cases for the Exponential Function in the

IEEE 754r decimal64 Format

Vincent Lefèvre1, Damien Stehlé2,⋆, and Paul Zimmermann3

1 INRIA/ÉNS Lyon/Université de Lyon/LIP,
46 allée d’Italie, F-69364 Lyon Cedex 07, France

Vincent.Lefevre@inria.fr
2 CNRS/ÉNS Lyon/Université de Lyon/LIP/INRIA Arenaire,

46 allée d’Italie, F-69364 Lyon Cedex 07, France
damien.stehle@gmail.com

3 LORIA/INRIA Lorraine, Bâtiment A, Technopôle de Nancy-Brabois,
615 rue du jardin botanique, F-54602 Villers-lès-Nancy Cedex, France

Paul.Zimmermann@loria.fr

Abstract. We searched for the worst cases for correct rounding of the
exponential function in the IEEE 754r decimal64 format, and computed
all the bad cases whose distance from a breakpoint (for all rounding
modes) is less than 10−15 ulp, and we give the worst ones. In partic-
ular, the worst case for |x| ≥ 3 × 10−11 is exp(9.407822313572878 ×
10−2) = 1.098645682066338 5 0000000000000000 278 This work can
be extended to other elementary functions in the decimal64 format and
allows the design of reasonably fast routines that will evaluate these
functions with correct rounding, at least in some domains.

1 Introduction

Most computers nowadays support the IEEE 754-1985 standard for binary
floating-point arithmetic [1], which requires that all four arithmetic operations
(+, −, ×, ÷) and the square root are correctly rounded. However radix 10 is
more suited to some applications, such as financial and commercial ones, and
there have been propositions to normalize it as well and also design hardware
implementations. The IEEE 854-1987 standard for radix-independent floating-
point arithmetic [2] has been a first step in this direction, but this standard just
gives some constraints on the value sets and is not even specific to radix 10. The
article [3] describes a first specification of a decimal floating-point arithmetic; it
has been improved and the specification included in the current working draft
of the revision of the IEEE 754 standard (754r) is described in [4].

One also seeks to extend the IEEE 754 standard to elementary functions, such
as the exponential, logarithm and trigonometric functions, by requiring correct
rounding on these functions too. Unfortunately fulfilling this requirement is much
more complicated than with the basic operations. Indeed, while efficient algo-
rithms to guarantee the correct rounding are known for the basic operations, the

⋆ Hosted and partially funded by the MAGMA group (University of Sydney) during
the completion of this work.

P. Hertling et al. (Eds.): Real Number Algorithms, LNCS 5045, pp. 114–126, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Worst Cases for the Exponential Function 115

only known way to evaluate f(x), where f is an elementary function and x is a
machine number1, is to compute an approximation to f(x) without any useful
knowledge except an error bound; and the exact result f(x) may be very close to
a machine number or to the middle of two consecutive machine numbers (which are
the discontinuity points of the rounding functions), in which case correct round-
ing can be guaranteed only if the error on the approximation is small enough. This
problem is known as the Table Maker’s Dilemma (TMD). Some cases can be de-
cided easily, but the only known way to obtain a bound on the acceptable error
for any input value is to perform an exhaustive search (with a 64-bit format, as
considered below, there are at most 264 possible input values). The arguments x
for which the values f(x) are the hardest to round are called worst cases.

Systematic work on the TMD in radix 2 was first done by Lefèvre and
Muller [5], who published worst cases for many elementary functions in double
precision, over the full IEEE 754 range for some functions. And correct round-
ing requirements for some functions in some domains have been added to the
754r working draft. Improved algorithms to deal with higher precisions are given
in [6], and in the present paper, the practical feasibility of the method for decimal
formats is demonstrated. Indeed the worst cases depend on the representation
(radix and precision) and the mathematical function.

Section 2 describes the decimal formats, how worst cases are expressed and
briefly recalls the algorithms (in the decimal context) to search for these worst
cases. Section 3 gives all worst cases of the exponential function in the 64-bit
decimal format. These results allow us to give Theorem 1.

Theorem 1. In the IEEE 754r decimal64 format, among all the finite values |x| ≥
3×10−11 such that exp(x)does not yield an exception, the inputx such that exp(x) is
nearest fromabreakpoint, both for rounding-to-nearest anddirectedroundingmodes,
is 9.407822313572878× 10−2, and for this input, the exact value of exp(x) is:

1.098645682066338
︸ ︷︷ ︸

16 digits

50000000000000000
︸ ︷︷ ︸

17 digits

278

Among all finite values x such that exp(x) does not yield an exception and
exp(x) /∈ [1 − 10−16/2, 1 + 10−15/2], the input x such that exp(x) is nearest
from a breakpoint is 9.999999999999995 × 10−16, and for this input, the exact
value of exp(x) is:

1.000000000000000
︸ ︷︷ ︸

16 digits

99999 . . .99999
︸ ︷︷ ︸

30 digits

666

2 The Table Maker’s Dilemma in Decimal

In this section, the decimal formats are described in Section 2.1, then the general
form of worst cases is given, along with a few illustrating examples (Section 2.2).
Finally, the algorithms to search for these worst cases are briefly recalled and
applied to radix 10 (Section 2.3).
1 A number that is exactly representable in the floating-point system.

116 V. Lefèvre, D. Stehlé, and P. Zimmermann

2.1 The Decimal Formats

As specified by the IEEE 854 standard [2], a non-special2 decimal floating-point
number x in precision n has the form:

x = (−1)s 10E d0.d1d2 . . . dn−1

where s ∈ {0, 1}, the exponent E is an integer between two given integers Emin

and Emax, and the mantissa d0.d1d2 . . . dn−1 is a fixed-point number written in
radix 10; i.e., for i between 0 and n − 1, one has: 0 ≤ di ≤ 9.

As d0 may be equal to 0, some numbers have several representations and the
standard does not distinguish them. Without changing the value set, one can re-
quire that if E �= Emin, then d0 �= 0, and this will be done in the following for the
sake of simplicity. A number such that d0 �= 0 is called a normal number, and a
number such that d0 = 0 (in which case E = Emin) is called a subnormal number.
In this way, the representation of a floating-point number is uniquely defined.

Below ulp(x) denotes the weight of the digit dn−1 in this unique representa-
tion; i.e., ulp(x) = 10E−n+1.

The document [4], based on the IEEE 854 standard, defines three decimal
formats, whose parameters are given in Table 2.1: decimal32, decimal64 and
decimal128, with an encoding on 32, 64 and 128 bits respectively. This specifi-
cation has been included in the 754r working draft.

Table 1. The parameters of the three 754r decimal formats

Format decimal32 decimal64 decimal128

Precision n (digits) 7 16 34

Emin −95 −383 −6143

Emax 96 384 6144

2.2 The Bad and Worst Cases

Given a floating-point format, let us call a breakpoint a value where the roun-
ding changes in one of the rounding modes, i.e., a discontinuity point of the
rounding functions. A breakpoint is either a machine number (for the directed
rounding modes) or the middle of two consecutive machine numbers (for the
rounding-to-nearest mode).

For a given function f and a “small” positive number ε, a machine number x
is a bad case when the distance between the exact value of f(x) and the nearest
breakpoint(s) is less than ε · ulp(f(x)). For instance, if f is the exponential
function in the decimal64 format (n = 16 digits), then the machine numbers
0.5091077534282133 and 0.7906867968553504 are bad cases for ε = 10−16, since

2 The special floating-point numbers are not-a-number (NaN), the positive and nega-
tive infinities, and the positive and negative zeros.

Worst Cases for the Exponential Function 117

for these values, exp(x) is close enough to the middle of two consecutive machine
numbers:

exp(0.5091077534282133) = 1.663806007261509
︸ ︷︷ ︸

16 digits

5000000000000000
︸ ︷︷ ︸

16 digits

49 . . .

and

exp(0.7906867968553504) = 2.204910231771509
︸ ︷︷ ︸

16 digits

4999999999999999
︸ ︷︷ ︸

16 digits

16 . . . ,

i.e., rounding exp(x) in the rounding-to-nearest mode requires to evaluate exp(x)
in a precision significantly higher than the target precision. Similarly, with the
following bad cases, exp(x) is very close to a machine number, so that rounding it
in directed rounding modes also requires to evaluate it in a precision significantly
higher than the target precision:

exp(0.001548443067391468) = 1.001549642524374
︸ ︷︷ ︸

16 digits

9999999999999999
︸ ︷︷ ︸

16 digits

26 . . .

and

exp(0.2953379504777270) = 1.343580345589067
︸ ︷︷ ︸

16 digits

0000000000000000
︸ ︷︷ ︸

16 digits

86

2.3 Searching for Bad and Worst Cases

Searching for bad cases in decimal is very similar to the search in binary. First
the domain of the tested function is selected: arguments that give an underflow
or an overflow are not tested, and some other arguments do not need to be
tested either when a simple reasoning can be carried out (see Section 3.1 as an
example). And like in binary [7,8,9], probabilistic hypotheses allow us to guess
that the smallest distance amongst all the arguments to be tested is of the order
of 10−n ulp (divided by the number of exponents E), so that we can choose
ε ∼ 10−n to get only a few bad cases3; i.e., we search for bad cases with at least
n (or n − 1) identical digits 0 or 9 (possibly except the first one, which may be
respectively 5 or 4) after the n-digit mantissa.

In the decimal32 format, the number of arguments to be tested is small enough
for a naive algorithm to be sufficient: for each argument x, one computes f(x)
in a higher precision to eliminate the values x for which the distance between
f(x) and the nearest breakpoint(s) is larger than ε · ulp(f(x)). Since finding

3 This may not be true in some domains, for instance when the function can be approx-
imated accurately by a simple degree-2 polynomial, such as exp(x) ≃ 1+x+x2/2 for
x sufficiently close to 0; in this case, one can get bad cases which are much closer to
breakpoints and more numerous than what can be estimated with the probabilistic
hypotheses. This is not a problem in practice: A simple reasoning is usually sufficient
instead of an exhaustive search in this domain.

118 V. Lefèvre, D. Stehlé, and P. Zimmermann

bad cases is rather easy for the decimal32 format, this paper will not focus on
this format; the reader may find some results for the exponential function at
http://www.loria.fr/~zimmerma/wc/decimal32.html.

In the decimal64 format, the number of remaining arguments after reducing
the domain is still very large (say, around 1017 to 1019, depending on the func-
tion), and a naive algorithm would require several centuries of computations.
Like in the binary double precision, one needs specific algorithms, and since the
decimal arithmetic has the same important properties as the binary one (the
machine numbers are in arithmetic progression except at exponent changes, the
breakpoints have a similar form. . .), the same methods can be applied.

In radix 2, bad cases for precision n and any rounding mode are the same as
bad cases for precision n+1 and directed rounding modes4, so that the problem
was restricted to directed rounding modes in [6]. This property is no longer true
in radix 10, but the breakpoints are still in an arithmetic progression (except
when the exponent changes, just like in radix 2), which is the only important
property used by our algorithms. Indeed in each domain where the exponent
of f(x) does not change, one needs to search for the solutions of:

|f(x) mod (u/2)| < εu ,

where u = ulp(f(x)), which is a constant in the considered domain.
To solve this problem, one splits the domain into subintervals, and in each

subinterval, one approximates the function f by a polynomial P of small degree
and scales/translates the input and output values to reduce the problem to the
following (as in the binary case [6]):

Real Small Value Problem (Real SValP). Given positive integers M and
T , and a polynomial P with real coefficients, find all integers |t| < T such that:

|P (t) mod 1| <
1

M
. (1)

The coefficients of the polynomial are computed using the MPFR library [10]
in order to obtain guaranteed error bounds.

Then several fast algorithms can be used to solve the Real SValP. Lefèvre’s al-
gorithm needs degree-1 polynomial approximations; as these approximations are
valid on very small intervals, one also needs a way to determine these approxima-
tions very quickly [11]. The Stehlé-Lefèvre-Zimmermann (SLZ) algorithm allows
to have polynomials of higher degrees and has a smaller asymptotic complex-
ity [6], but with a high constant factor. It is based on Coppersmith’s technique to
find the small roots of multivariate polynomials modulo an integer: informally,
in our situation, we look for small roots of P (x) + y modulo 1. Coppersmith’s
technique was first introduced in a cryptographic context [12], and heavily relies
on the LLL algorithm for reducing Euclidean lattice bases [13]. Heuristically,
LLL takes as input a basis derived from the multivariate polynomial and its

4 Said otherwise, in radix 2, the breakpoints for precision n and all rounding modes
are the machine numbers in precision n + 1.

http://www.loria.fr/~zimmerma/wc/decimal32.html

Worst Cases for the Exponential Function 119

powers: this basis contains the information we are interested in (the roots of the
initial polynomial), but in an inconvenient way (there is no known way to effi-
ciently compute roots modulo an arbitrary integer). LLL outputs a basis made of
shorter vectors. In particular, if all the various parameters are chosen adequately,
the first output vectors will be short enough to ensure that the corresponding
polynomials contain among their roots (over the integers, without the modulus)
the roots of the initial polynomial.

In order to make the implementation of the SLZ algorithm as efficient as
possible, it is crucial to use an efficient LLL code. For instance, one should avoid
using the text-book LLL algorithm making use of a rational arithmetic. In the
implementation of the SLZ algorithm, it is better to use variants of the LLL
algorithm relying on floating-point arithmetic rather than rational arithmetic
within the Gram-Schmidt computations (central in LLL).

In his PhD thesis [14], Stehlé describes three floating-point variants of LLL,
respectively called “fast”, “heuristic” and “proved”. The corresponding codes are
available at http://perso.ens-lyon.fr/damien.stehle. The proved variant
implements the algorithm described in [15], whereas the other two can fail5 but
are usually more efficient.

Remark 1. The above methods may no longer work well for the smallest subnor-
mals, due to the loss of precision for these numbers. For instance, a low-degree
polynomial approximation may be valid on an interval that contains only very
few machine numbers. Nevertheless these few values may be tested separately
with a naive algorithm, if need be.

3 The Exponential Function

We now show the feasibility of our method on the exponential function, denoted
exp, in the decimal64 format. This is just an example: a similar work can be car-
ried out for other functions. After a simple analysis of the function (Section 3.1),
we search for bad cases (Section 3.2).

3.1 Correctly Rounding the Exponential Function

Let us first recall the parameters of the decimal64 format, with a few more
details. A non-special floating-point number x has the form:

x = (−1)s 10E d0.d1d2 . . . d15

where s ∈ {0, 1} and −383 ≤ E ≤ 384. So, the largest finite machine number is
10385 − 10369, the smallest positive normal machine number is 10−383 and the
smallest positive machine number is 10−398.

Now let us briefly analyze the exponential function, assuming that the argu-
ment is a finite number, to eliminate the special cases. The exponential function

5 In practice, when they fail, they loop forever; they may also return a badly-reduced
basis. But in both situations, no bad case will be missed.

http://perso.ens-lyon.fr/damien.stehle

120 V. Lefèvre, D. Stehlé, and P. Zimmermann

is mathematically defined on the whole domain of real numbers, so that the value
will never be a NaN. It is increasing, with exp(x) → +∞ when x → +∞, and
exp(x) → 0 when x → −∞. And the mathematical properties of the exponential
function are such that there will be an overflow when x is larger than some value
and an underflow when x is smaller than some value. Moreover, exp(0) = 1,
meaning that for values of x close to 0, the rounding of exp(x) is determined
only by the rounding mode and the sign of x.

So, there are four couples of consecutive machine numbers (a−, a+), (b−, b+),
(c−, c+) and (d−, d+) that determine the following five intervals:

−∞ . . . a−
︸ ︷︷ ︸

+0

a+ . . . b−
︸ ︷︷ ︸

search

b+ . . . c−
︸ ︷︷ ︸

1

c+ . . . d−
︸ ︷︷ ︸

search

d+ . . . + ∞
︸ ︷︷ ︸

+ ∞

where in intervals 1, 3 and 5, the rounded values in the rounding-to-nearest mode
are respectively +0, 1 and +∞ (the rounded values in the directed rounding
modes can also be determined, keeping the same interval bounds for the sake
of simplicity), and in intervals 2 and 4, a search for bad cases is needed. These
interval bounds are determined below.

An argument x generates an overflow when the rounded result obtained as-
suming an unbounded exponent range exceeds the largest finite machine number
10385 − 10369. One has:

log(10385 − 10369/2) = 886.4952608027075
︸ ︷︷ ︸

16 digits

882469 . . . ,

so that one gets an overflow if and only if x ≥ d+, with d+ = 886.4952608027076
(x being a machine number).

Concerning a−, one has:

log(10−398/2) = − 917.1220141921901
︸ ︷︷ ︸

16 digits

2 . . . ,

so that in any rounding mode, exp(x) is rounded to the same value for any
x ≤ a−, with a− = −917.1220141921902: It is rounded to 10−398 in the rounding
to +∞ mode, and +0 in the other rounding modes.

Concerning b+ and c−, one has:

log(1 − 10−16/2) = − 5.000000000000000
︸ ︷︷ ︸

16 digits

125 . . . × 10−17

and
log(1 + 10−15/2) = 4.999999999999998

︸ ︷︷ ︸

16 digits

750 . . . × 10−16 ,

so that one chooses b+ = −5 × 10−17 and c− = 4.999999999999998× 10−16.
Finally, in the other domains, that is for x in

[a+, b−] = [−917.1220141921901, −5.000000000000001× 10−17]

Worst Cases for the Exponential Function 121

and in

[c+, d−] = [4.999999999999999× 10−16, 886.4952608027075] ,

a search for bad cases needs to be done to be able to round exp(x) correctly in
any rounding mode.

Remark 2. When x is close enough to 0, one could use the approximation
exp(x) ≃ 1 + x + x2/2 to find bad cases with much less computing time in
this domain. But globally, one would gain very little since this is an easy domain
(as the error on a polynomial approximation is very small compared to higher
values of x, and the algorithms work much better).

3.2 Searching for Bad and Worst Cases of the Exponential Function

To search for bad cases, one first splits the tested domain into intervals in which
both the argument x and the result exp(x) have a constant (possibly different)
exponent. This has been done with a small Maple program.

Table 2. All worst cases of the decimal64 exponential function for x ≥ 10−9, whose
distance from a breakpoint is less than 5 × 10−17 ulp. The notation dk means that the
digit d is repeated k times.

x exp(x)

6.581539478341669 × 10−9 1.000000006581539 5 015 177 . . .

2.662858264545929 × 10−8 1.000000026628583 0 015 318 . . .

3.639588333766983 × 10−8 1.000000036395884 0 015 240 . . .

6.036998017773271 × 10−8 1.000000060369982 0 015 379 . . .

6.638670361402304 × 10−7 1.000000663867256 4 915 569 . . .

9.366572213364879 × 10−7 1.000000936657659 9 915 883 . . .

7.970613003079781 × 10−6 1.000007970644768 5 015 362 . . .

3.089765552852523 × 10−5 1.000030898132866 0 015 241 . . .

1.302531956641873 × 10−4 1.000130261678980 0 016 798 . . .

2.241856702421245 × 10−4 1.000224210801727 5 015 118 . . .

7.230293679121590 × 10−4 1.000723290816653 4 916 127 . . .

5.259640428979129 × 10−3 1.005273496619909 4 915 739 . . .

9.407822313572878 × 10−2 1.098645682066338 5 016 278 . . .

1.267914924960933 × 10−1 1.135180299492843 0 016 706 . . .

5.091077534282133 × 10−1 1.663806007261509 5 015 492 . . .

3.359104074009002 28.76340944572687 5 016 904 . . .

19.10511686234796 1.982653538414981 9 915 735 . . . × 108

294.9551257293143 1.251363586659789 5 015 108 . . . × 10128

587.9131381356093 2.125356221825522 4 915 594 . . . × 10255

122 V. Lefèvre, D. Stehlé, and P. Zimmermann

Table 3. All worst cases of the decimal64 exponential function for x ≤ −10−10, whose
distance from a breakpoint is less than 5 × 10−17 ulp. The notation dk means that the
digit d is repeated k times.

x exp(x)

− 2.090862502185853 × 10−9 0.9999999979091375 0 015 371 . . .

− 3.803619857233762 × 10−9 0.9999999961963801 4 915 841 . . .

− 7.170496225708008 × 10−9 0.9999999928295038 0 015 252 . . .

− 9.362256793825926 × 10−9 0.9999999906377432 4 915 580 . . .

− 4.024416580979643 × 10−8 0.9999999597558350 0 015 308 . . .

− 6.306378165019860 × 10−7 0.9999993693623823 5 015 301 . . .

− 7.720146779532548 × 10−7 0.9999992279856200 4 915 612 . . .

− 9.753167969712726 × 10−7 0.9999990246836786 4 916 120 . . .

− 5.911964024384330 × 10−5 0.9999408821072876 5 015 384 . . .

− 8.232272117182855 × 10−5 0.9999176806672504 0 015 312 . . .

− 8.232461306131942 × 10−5 0.9999176787755166 4 915 555 . . .

− 8.496743395712491 × 10−2 0.9185421971989605 4 915 843 . . .

− 9.250971335383380 × 10−2 0.9116403558361098 9 915 563 . . .

− 9.337621398029658 × 10−2 0.9108507610382665 0 015 400 . . .

− 9.341228128742237 × 10−2 0.9108179096965556 4 916 587 . . .

− 9.998733949173545 × 10−2 0.9048488738100865 0 015 330 . . .

− 1.452866822458144 0.2338987797314129 0 015 413 . . .

− 5.085363904672046 6.186635335115975 4 915 774 . . . × 10−3

− 5.815903811599861 2.979785944945804 5 015 173 . . . × 10−3

− 11.93382527979436 6.564558652611456 9 915 658 . . . × 10−6

− 46.84177248885496 4.538127418220535 9 915 769 . . . × 10−21

− 84.88822783213444 1.359912838893469 5 015 266 . . . × 10−37

− 495.9839910528425 3.952661043031169 5 015 371 . . . × 10−216

− 524.2585830842744 2.076778963867845 0 015 287 . . . × 10−228

As said in [11] and [5], one could test the inverse function, i.e., the logarithm,
instead of the exponential when x is small enough (say, |x| < 1). The reason
is that there are fewer machine numbers to test in this domain for the inverse
function. However this domain requires very little computation time compared
to those with high values of x.

The search for bad cases was performed with BaCSeL6, running on a few
machines. The chosen parameters were: a working precision of 200 bits, m = 14.6
(the quality of the bad cases, i.e., − log10(2ε), to get all bad cases for ε = 10−15),
t = 5.5 (a parameter that fixes the size of the sub-intervals), d = 3 (the degree

6 Available on http://perso.ens-lyon.fr/damien.stehle

http://perso.ens-lyon.fr/damien.stehle

Worst Cases for the Exponential Function 123

of the polynomials) and α = 2 (a parameter for Coppersmith’s technique). For
values of x close enough to 0, the fast LLL variant fails, so that the proved
variant is used in this domain.

Tables 2 and 3 present all the bad cases for x ≥ 10−9 and for x ≤ −10−10

respectively, whose distance from a breakpoint is less than 5 × 10−17 ulp.
For −10−9 < x < 10−8 (and in particular for the smaller domain −10−10 <

x < 10−9), many bad cases have some patterns in their mantissa. For instance,
one has the following bad cases with ε = 3 × 10−15 (look at the 8th, 9th and
10th digits):

3.897940992403028× 10−9 ,
4.230932991049603× 10−9 ,
4.291382990792016× 10−9 ,
4.581289989505891× 10−9 .

This comes from the fact that exp(x) can be approximated by 1+x+x2/2+x3/6
in these domains, and even by 1 + x + x2/2 for smaller values of x. Tables 4
and 5 give some other bad cases for c+ ≤ x < 10−9 and −10−10 < x ≤ b−

respectively.
The complete list of all worst cases which are at a distance less than 10−15 ulp

from a breakpoint is available at http://www.loria.fr/~zimmerma/wc/

decimal64.html.

Table 4. Some bad cases of the exponential function in the decimal64 format, for
c+ = 4.999999999999999 × 10−16 ≤ x < 10−9. At most two bad cases (the worst ones)
are given per exponent.

x exp(x)

6.000119998199928 × 10−10 1.000000000600011 9 916 567 . . .

5.999879998200072 × 10−10 1.000000000599988 0 016 431 . . .

1.039999999994592 × 10−11 1.000000000010399 9 917 625 . . .

1.019999999994798 × 10−11 1.000000000010199 9 917 646 . . .

1.199999999999280 × 10−12 1.000000000001199 9 920 423 . . .

1.099999999999395 × 10−12 1.000000000001099 9 920 556 . . .

1.399999999999902 × 10−13 1.000000000000139 9 923 085 . . .

1.199999999999928 × 10−13 1.000000000000119 9 923 423 . . .

2.999999999999955 × 10−14 1.000000000000029 9 925 099 . . .

1.999999999999980 × 10−14 1.000000000000019 9 925 733 . . .

3.999999999999992 × 10−15 1.000000000000003 9 927 786 . . .

1.999999999999998 × 10−15 1.000000000000001 9 928 733 . . .

9.999999999999995 × 10−16 1.000000000000000 9 929 666 . . .

http://www.loria.fr/~zimmerma/wc/decimal64.html
http://www.loria.fr/~zimmerma/wc/decimal64.html

124 V. Lefèvre, D. Stehlé, and P. Zimmermann

Table 5. Some bad cases of the exponential function in the decimal64 format, for
−10−10 < x ≤ b− = −5.000000000000001 × 10−17. At most two bad cases (the worst
ones) are given per exponent.

x exp(x)

− 1.020000000005202 × 10−11 0.9999999999898000 0 016 353 . . .

− 1.000000000005000 × 10−11 0.9999999999900000 0 016 333 . . .

− 1.100000000000605 × 10−12 0.9999999999989000 0 019 443 . . .

− 1.000000000000500 × 10−12 0.9999999999990000 0 019 333 . . .

− 1.200000000000072 × 10−13 0.9999999999998800 0 022 575 . . .

− 1.000000000000050 × 10−13 0.9999999999999000 0 022 333 . . .

− 2.000000000000020 × 10−14 0.9999999999999800 0 024 266 . . .

− 1.000000000000005 × 10−14 0.9999999999999900 0 025 333 . . .

− 4.000000000000008 × 10−15 0.9999999999999960 0 026 213 . . .

− 2.000000000000002 × 10−15 0.9999999999999980 0 027 266 . . .

4 Conclusion

Like in binary arithmetic, correct rounding can be guaranteed in decimal arith-
metic at a reasonable cost if the upper bound on the necessary precision for
the intermediate computations is determined. This requires exhaustive tests on
the whole input domain. While some subdomains can easily be handled, a large
number of input values need to be tested.

For the 754r decimal32 format, the tests can be carried out with naive algo-
rithms. However, for the 754r decimal64 format, specific algorithms needed to
be designed and implemented. The complete results for the exponential function
have been given in this paper. The worst case for |x| ≥ 3 × 10−11 (i.e., if we
disregard very small values) is

exp(9.407822313572878× 10−2)

= 1.098645682066338
︸ ︷︷ ︸

16 digits

50000000000000000
︸ ︷︷ ︸

17 digits

278 . . . ,

meaning that a faithful approximation to 34 digits, which corresponds to the
decimal128 format, would be enough to guarantee correct rounding for the ex-
ponential in the decimal64 format in this domain. For the smaller values of x,
the worst case is

exp(9.999999999999995× 10−16) = 1.000000000000000
︸ ︷︷ ︸

16 digits

999 . . .999
︸ ︷︷ ︸

30 digits

666 . . . ,

so that a faithful approximation to exp(x) − 1, also known as expm1(x), in
the decimal128 format would be enough to guarantee correct rounding for the
exponential in the decimal64 format in this domain.

Worst Cases for the Exponential Function 125

Ziv’s strategy [16] can be used to evaluate the decimal64 exponential function;
it consists in carrying out the computations in a small precision (e.g., 22 digits)
first, and increasing the precision only in the very unlikely case where the correct
rounding cannot be decided. The results presented in this paper can be used
to implement Ziv’s strategy in an efficient way and prove that the algorithm
terminates within limited time and memory.

Other elementary functions could be tested as well, with the same algorithms.
As a consequence, standards could recommend (or even require) correct rounding
for these functions in these formats.

Acknowledgements

The writing of this paper was completed while the second author was visiting the
University of Sydney, whose hospitality is gratefully acknowledged. In particular,
part of the computations described in the present article was performed on the
machines of the MAGMA team.

The computations were also partly performed on machines of the Laboratoire
de l’Informatique du Parallélisme (at the École Normale Supérieure de Lyon,
France).

The third author acknowledges the support from the Schloss Dagstuhl Interna-
tional Conference and Research Center for Computer Science, in particular the
Dagstuhl Seminar 06021 Reliable Implementation of Real Number Algorithms:
Theory and Practice, which stimulated the writing of this article.

The authors also thank the anonymous reviewers for their helpful comments.

References

1. IEEE: IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard
754-1985. Institute of Electrical and Electronics Engineers, New York (1985)

2. IEEE: IEEE Standard for Radix-Independent Floating-Point Arithmetic,
ANSI/IEEE Standard 854-1987. Institute of Electrical and Electronics Engineers,
New York (1987)

3. Cowlishaw, M., Schwarz, E.M., Smith, R.M., Webb, C.F.: A decimal floating-point
specification. In: Burgess, N., Ciminiera, L. (eds.) Proceedings of the 15th IEEE
Symposium on Computer Arithmetic, Vail, Colorado, USA, pp. 147–154. IEEE
Computer Society Press, Los Alamitos (2001)

4. Cowlishaw, M.: Decimal arithmetic encoding strawman 4d, draft version 0.96. Re-
port, IBM UK Laboratories, Hursley, UK (2003)

5. Lefèvre, V., Muller, J.M.: Worst cases for correct rounding of the elementary func-
tions in double precision. In: Burgess, N., Ciminiera, L. (eds.) Proceedings of the
15th IEEE Symposium on Computer Arithmetic, Vail, Colorado, pp. 111–118.
IEEE Computer Society Press, Los Alamitos (2001)

6. Stehlé, D., Lefèvre, V., Zimmermann, P.: Searching worst cases of a one-variable
function using lattice reduction. IEEE Transactions on Computers 54(3), 340–346
(2005)

7. Dunham, C.B.: Feasibility of “perfect” function evaluation. ACM Sigum Newslet-
ter 25(4), 25–26 (1990)

126 V. Lefèvre, D. Stehlé, and P. Zimmermann

8. Gal, S., Bachelis, B.: An accurate elementary mathematical library for the IEEE
floating point standard. ACM Transactions on Mathematical Software 17(1), 26–45
(1991)

9. Muller, J.M.: Elementary Functions, Algorithms and Implementation. Birkhauser,
Boston (1997)

10. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A
multiple-precision binary floating-point library with correct rounding. Research
report RR-5753, INRIA (2005)

11. Lefèvre, V.: Moyens arithmétiques pour un calcul fiable. PhD thesis, École Normale
Supérieure de Lyon, Lyon, France (2000)

12. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

13. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261, 513–534 (1982)

14. Stehlé, D.: Algorithmique de la réduction de réseaux et application à la recherche
de pires cas pour l’arrondi de fonctions mathématiques. PhD thesis, Université
Henri Poincaré – Nancy 1, Nancy, France (2005)

15. Nguyen, P., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R.J.F. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)

16. Ziv, A.: Fast evaluation of elementary mathematical functions with correctly
rounded last bit. ACM Transactions on Mathematical Software 17(3), 410–423
(1991)

Robustness and Randomness

Dominique Michelucci1, Jean Michel Moreau2, and Sebti Foufou1

1 LE2I UMR CNRS 5158, UFR Sciences, Université de Bourgogne,
BP 47870, 21078 Dijon Cedex, France

dmichel@u-bourgogne.fr, sfoufou@u-bourgogne.fr
2 LIRIS UMR 5205, Nautibus, Université Claude Bernard Lyon 1,

46 Bd du 11 Nov. 1918, 69622, Villeurbanne, France
Jean-Michel.Moreau@liris.univ-lyon1.fr

Abstract. The study of robustness problems for computational geome-
try algorithms is a topic that has been subject to intensive research efforts
from both computer science and mathematics communities. Robustness
problems are caused by the lack of precision in computations involving
floating-point instead of real numbers. This paper reviews methods deal-
ing with robustness and inaccuracy problems. It discusses approaches
based on exact arithmetic, interval arithmetic and probabilistic meth-
ods. The paper investigates the possibility to use randomness at certain
levels of reasoning to make geometric constructions more robust.

1 Introduction

Mastering the robustness of computational geometry algorithms (algorithms in-
tended to solve geometric computing problems such as surfaces intersections,
shortest paths on surfaces, planification of trajectories, etc.) is a topic that has
attracted big attention from both computer science and mathematics communi-
ties. Robustness problems are caused by the lack of precision in computations
involving floating-point instead of real numbers, in that case robust implemen-
tation of geometric algorithms is highly nontrivial and the strange behaviors
(crashes, infinite loops, inconsistent outputs, etc.) of these algorithms are due to
their inaccurate computations. Although a lot of work has been done to solve
this problem, it is still impossible to find a systematic, simple and fast method
that eliminates the sources of all these robustness problems.

Robustness and non-robustness issues in geometric computations have impor-
tant scientific and economic impact (barrier to full automation, programmers’
productivity, failure of critical missions, etc.). This impact has motivated inten-
sive research on the subject during the last twenty years, which generated a large
literature and surveys [1,2,3,4]. We refer the reader to the excellent recent sur-
vey by C. Yap in the Handbook of Discrete and Computational Geometry [4].
In another good survey J. Keyser classified robustness problems in two main
categories: problems due to precision and problems due to degeneracies [5]. He
presented the issues involved with each of these classes and discussed some of

P. Hertling et al. (Eds.): Real Number Algorithms, LNCS 5045, pp. 127–148, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

128 D. Michelucci, J.M. Moreau, and S. Foufou

the solutions that have been proposed for dealing with them. In an earlier pa-
per, D. Goldberg presented a tutorial on the aspects of floating-point that have
a direct impact on designers of computer systems [1]. The paper begins with a
background on floating-point representation and rounding error and continues
with a discussion of the IEEE floating-point standard. Robustness problems in
computer aided design and geometric modelling have been studied by C. Hoff-
mann in [3] where exact arithmetic, symbolic reasoning, and reliable calculations
(interval arithmetic) was identified as possible strategies to address this problem.
Sugihara and Iri introduced the topology-based approach which avoids failure
by using floating-point arithmetic, but places higher priority on topological con-
sistency than on numerical values [6]. So decisions by this approach ensure that
the result is always coherent from the topology point of view. But, there is no
guarantee that any other software that works with such a result will give co-
herent outputs from it. Topology-oriented implementations have been applied
to a number of geometric problems such as Voronoi diagram computations and
convex polyhedra intersections [7,8].

In this paper we survey some inaccuracy issues in computational geometry,
we discuss some of the classical solutions that have been suggested in the last
twenty years and emphasize on interval analysis and the probabilistic approach.
We show how randomness may sometimes be used in order to help reduce the im-
pact of inaccuracy in geometric computations. The probabilistic approach has
received less attention than other robustness tackling methods, our intention
here is to highlight the positive role probabilistic algorithms can play. The use
of randomness is not intended to solve all robustness problems of geometric al-
gorithms, but to provide probabilistic algorithms as an alternative for geometric
computations. These algorithms are costly in time, but tolerant and can resist
to inaccuracies. They operate using weak oracles that very often converge to the
true decision, but can also say ”I do not know” when the right decision is out of
reach.

The paper is organized as follow: Section 2 describes some of the problems
caused by inaccuracy. Section 3 reviews the classical solutions that were designed
to help prevent these inaccuracy problems. Section 4 explores new methods,
based on probabilistic approaches already used in various unrelated domains.

2 Consequences of Inaccuracy on Geometric Algorithms

The inaccuracy of floating-point arithmetic has dramatic consequences on geo-
metric computations. Inaccuracy causes inconsistencies both in geometric pro-
grams and their data structures, so that geometric programs may crash or yield
inconsistent results.

As a first illustration, let Sn be a set of n ≥ 4 points in the Euclidian plane,
with no more than two on the same line. The convex hull C of Sn is the small-
est convex polygon enclosing all its elements. A simple method to construct the
edges of C by enumeration is to identify all pairs (a, b) in S2

n such that all points

Robustness and Randomness 129

in Sn\{a, b} lie on the same side of infinite line (ab) (note that imposing no more
than two aligned points in S removes special cases here). Although this method
is correct from a theoretical point of view, it may fail to yield consistent results in
practice: to see this, consider applying it to n = 4 nearly aligned points. Because
the points may be arbitrarily close to being aligned without being exactly so,
the previous test may easily fail on any pair of points, due to inaccuracy in
the computations! This failure may seem striking at first glance, but is it really
more striking than the impossibility to verify identities such as: (

√
2)2 = 2 or

(1/3) × 3 = 1 or (cos θ)2 + (sin θ)2 = 1 with floating-point arithmetic?
To get more insight on what goes wrong in this example, consider a, b, c to be

3 distinct points in the Euclidian plane. The “orientation” of the three points,
O(a, b, c) is defined as the sign of the determinant:

∣

∣

∣

∣

∣

∣

xa ya 1
xb yb 1
xc yc 1

∣

∣

∣

∣

∣

∣

,

which represents the signed volume of the parallelepiped generated by the vectors
(a, 1), (b, 1), (c, 1). Intuitively, the three points form a left, right, or null “turn”
depending on whether O(a, b, c) is positive, negative or null. Obviously, O(a, b, c)
and O(c, b, a) must have opposite signs, but one may easily generate three almost
(but not exactly) aligned distinct points a, b, c with floating-point coordinates,
which contradict this property. To help solve such inconsistencies, D.E. Knuth
[9] suggested a set of axioms fulfilled by the orientation predicates, assuming for
the simplicity of proofs that no more than two data points may lie on the same
line. He later realized that he had set up the axioms for oriented matroids with
rank 3. All his axioms and resulting theorems are contradicted by floating-point
configurations, due to inaccuracy.

Inaccuracy introduces inconsistencies in geometric data structures. Among the
most basic geometric data structures, some represent point/line or point/plane
incidences. Typically a 2D point is described by its cartesian coordinates (x, y),
and a line with equation ax + by + c = 0 by the triple (a, b, c). The intersection
point between 2 lines (a, b, c) and (a′, b′, c′) is easily computed with standard
linear algebra. Due to inaccuracy, Ω(xΩ , yΩ), the computed intersection point
will not lie on these lines (i.e., axΩ + byΩ + c �= 0 and a′xΩ + b′yΩ + c′ �= 0):
a contradiction between a numerical test and the incidence fact stored in the
data structure. Of course, most geometry programmers are aware of this dif-
ficulty, and hence, to find out the position of a vertex v relatively to a line
D, they first check whether the data structure does not explicitly hold the in-
formation “v lies on D”; if not, a numerical orientation test is performed. This
two-stage procedure eliminates the more obvious inconsistencies. However, many
geometric theorems of projective geometry—or even geometric constructions—
imply non-trivial incidences, which such simple ”precautions” cannot detect, as
we shall now see through five well-known theorems from the field of classical
geometry.

130 D. Michelucci, J.M. Moreau, and S. Foufou

Theorem 1 (Harmonic conjugate, Fig. 1, left). Let A, B, X be 3 distinct
aligned points. Let L be any line through X, s any point outside L and ABX.
Then the point X ′ defined by the construction: a = sA ∩ L, b = sB ∩ L, s′ =
aB ∩ Ab, X ′ = ss′ ∩ AB, depends neither on L nor on s.

X ′ is called the harmonic conjugate of X relatively to A, B. The harmonic con-
jugate of X ′ is X .

Theorem 2 (Desargues theorem, Fig. 1, right). In 2D or 3D, if two tri-
angles abc and ABC are such that aA, bB, cC concur (the two triangles are
said to be “perspective”), then homologous sides meet in 3 aligned points, i.e.,
ab ∩ AB, bc ∩ BC, ca ∩ CA are collinear. The converse is true as well.

Theorem 3 (Pappus theorem, Fig. 2, left). In 2D (i.e., in the projective
plane), if p1, p2, p3 are three distinct aligned points, and if q1, q2, q3 are three
distinct aligned points, then the three intersection points p1q2 ∩ p2q1, p1q3 ∩ p3q1

and p2q3 ∩ p3q2 are aligned as well.

Theorem 4 (Pascal, Fig. 2, right). 6 coplanar points belong to the same
conic if and only if the 3 opposite sides (in any order) meet in 3 aligned points.

L

A X

s

a
b

BX’

s’

����������
����������
����������

����������
����������
����������

aA

b

B

c

C

O

Fig. 1. Left (harmonic conjugates): for 3 given aligned points A, B, X, the point X ′

does not depend on L nor s. Right: Desargues theorem.

p2
p1

q1
q2 q3

p3 p1

p2

p3

q3

q2
q1

Fig. 2. Pappus’ and Pascal’s theorems

Robustness and Randomness 131

Theorem 5 (Pouzergues (hexamys)). In the projective plane, an hexamys
is a (possibly concave and self-intersecting) hexagon such that its three opposite
sides meet in three aligned points. Then every permutation of an hexamys is also
one.

Pouzergues’ theorem may be seen as a particular case of Pascal’s theorem with
no conic involved. All those geometric theorems are “wrong” when using the
floating-point arithmetic, and “true” when using an exact arithmetic. An ex-
act rational arithmetic is sufficient to prove the harmonic conjugate theorem,
Pouzergues’, Pappus’ and Desargues’ theorems, assuming the initial coordinates
are rational. An algebraic arithmetic is required for Pascal’s theorem, if the
points on the conic are intersection points between general conics.

3 Classical Methods

3.1 The Epsilon Heuristic

To overcome inaccuracy, the most popular trick used in geometric modelers is
the ǫ heuristic. When two floating-point numbers differ by less than a given
threshold traditionally called ǫ, they are considered to be equal. The test may
be made in an absolute (|a − b| < ǫ) or relative (|a − b| < ǫ × max(|a|, |b|))
manner. Some modelers use several ǫ values, say one for lengths, another for
areas, another for angles, etc.

This heuristic loses the equality transitivity: it is easy to find a, b and c so
that a =ǫ b, b =ǫ c, but a �=ǫ c, with =ǫ meaning ”equal for the ǫ heuristic”:
thus inconsistencies remain possible.

Moreover, finding the relevant value(s) for ǫ(s) is much of a difficult task,
depending on the usual range of numbers (itself depending on the applications),
and on the format of floating-point numbers: it is common folklore in the CAD-
CAM community that the conversion from 32-bits floating-point numbers to
64-bits has required a not so easy ǫ’s updating. Of course the ǫ heuristic may
fail, and sometimes it does. In practice, it seems to work not so bad and to
improve the geometric modelers’ robustness.

3.2 The Exact Computation Paradigm

In geometric computations, a lot of effort has been put to design theoretically
fast methods, assuming that an exact arithmetic is available for free. These so-
phisticated methods do not resist to inaccuracy and the induced inconsistencies.
They require consistency to work.

Exact rational arithmetics: In the presence of alternatives and tests, geo-
metric methods branch according to the (positive, negative or null) sign of ex-
pressions, called predicates: the orientation test of three points in the plane is
a typical example. One method to prevent inconsistencies in computations is to
take “exact” decisions in the branching tests, by means of an exact arithmetic.

132 D. Michelucci, J.M. Moreau, and S. Foufou

Systematically using such an arithmetic consumes too much time and space re-
sources, and hence various authors have advocated for the use of some sort of
‘filtering” (also known as “laziness”):

– First compute guaranteed bounds on the expressions to be tested. Most of
the time, those are sufficient to determine the sign of the expression.

– Whenever they are not (i.e., 0 lies within the bounds), use an exact arith-
metic to determine the sign of the expression.

An example of such a method is the lazy rational arithmetic [10]: a lazy
number is represented by an enclosing interval, and by a definition (either an
initial rational number, or the sum, product, opposite, inverse of other lazy
numbers). The interval is systematically computed. When it is not sufficient
to decide the sign of a number, the definition associated with the number is
evaluated using an exact rational arithmetic.

All filter-based solutions use the same basic scheme, they may differ by the way
they define aspects such as:

– the exact arithmetic used (remainder number system, i.e., modular arith-
metic; strings of digits, ...),

– the evaluation strategy,
– the method for storing the exact values or the definition itself,
– the method for evaluating the bounds (statically at compile time, or dynam-

ically at run time).

Such techniques, routinely used in major geometric applications, for instance
CGAL [11], XSC [12], LOOK [13] or LEDA [14] libraries, are, unfortunately,
limited to computations in the field of rational numbers. However, it is possi-
ble to generalize the lazy (or filter) paradigm if an exact algebraic arithmetic
is available, as the ”gap arithmetic” used in LEDA::real, CORE and CGAL
[15,16,11].

Gap arithmetics: Canny’s gap theorem gives a way to numerically prove that
a number is zero: compute a (guaranteed) interval containing it, with width
smaller than ǫc [17]. As soon as the interval does not contain 0, the number is
clearly not 0 and its sign is known. Otherwise, if the interval contains 0 and has
width less than ǫc, the number can only be 0.

Theorem 6 (Canny’s gap theorem). Let x1, x2 . . . xn be the solutions of
an algebraic system of n equations and n unknowns, having a finite number of
solutions, with maximal total degree d, with relative integer coefficients smaller
or equal to M in absolute value. Then, for all i ∈ [1, n], either xi = 0 or |xi| > ǫc

where ǫc = (3Md)−(ndn).

Unfortunately, there are several problems. First, ǫc is far much smaller than the ǫ

used in geometric modelers; actually ǫc is generally much smaller than the small-
est positive floating-point number, even in simple examples, hence the need for
some “big-float” arithmetic. Second, given such an arithmetic, the computational

Robustness and Randomness 133

scheme described here has an exponential cost: an exponential number of digits
is needed to prove the nullity of a number because of the ndn term in Canny’s
theorem. There is no hope to significantly widen Canny’s gap in the worst case,
because it is almost reached in the following simple instance: x1(Mx1 − 1) = 0,
Mx2 − x2

1 = 0 . . . Mxn − x2
n−1 = 0. See [18,19,20] for implementations of gap

arithmetics or gap theorems, and [21,22] for related root separation bounds.

Pros and cons of the exact computation paradigm: CGAL geometric
library relies on filters and lazy rational arithmetic to achieve robustness [11].
CGAL is well-known for its reliability and speed; its Delaunay routine is often
used in industry for surface reconstruction from a set of sampling points. This
alone stands as a good point of the paradigm. However, the exact approach has
important limitations:

– Exact algebraic arithmetics are too slow to be practical. Unfortunately, alge-
braic numbers are ubiquitous in geometric computations: rotating an object
by an angle kπ, k ∈ Q, intersecting conics or other algebraic curves, inter-
secting quadrics or other algebraic (parametric or implicit) surfaces, all those
”primitives” introduce algebraic numbers. [23] implemented robust boolean
operations between 3D algebraic shapes, but the corresponding program is
an order of magnitude too slow.

– In applications such as CAD-CAM, computer graphics and GIS, data are in-
accurate; it does not make sense to compute results which are more accurate
than data itself; the only justification could be the attempt to make the most
fragile algorithms ”work”; moreover the exact results are typically rounded
to communicate with the rest of the world, which uses only floating-point
arithmetics.

– Industrial applications use the floating-point arithmetic to represent geomet-
ric objects. Translations from exact representations to floating-point repre-
sentations and vice-versa are thus essential. Another reason for such ”round-
ing” is that geometric modelers are shape editors, and the algebraic com-
plexity of the edited shape increases with each editing operation. Rounding
floating-point geometries to exact (and consistent) geometries is as much
difficult as “repairing” inconsistent geometric objects (a situation known as
the “polygon soup”).

When the cost of exact arithmetics is taken into account, some of these algo-
rithms may become unpracticable, or slower than more rudimentary methods
(see section 4), which are more robust and still work with inaccuracy, because
they do not propagate inaccurate results.

3.3 Interval Computations

A natural idea to rid geometrical computations of inconsistencies is to resort to
some kind of interval computations.

134 D. Michelucci, J.M. Moreau, and S. Foufou

Basic interval arithmetic: The first and most basic interval arithmetic is
due to R. Moore [24]. Basically, numbers are represented with intervals, which
stand for the uncertainty associated with each one, a notion which was obvi-
ously borrowed from the everyday practice of physicists. Interval computations
are defined for the sum, difference, product and inverse of intervals. Hence, it
is possible to maintain intervals for combinations of, and even simple functions
on, elementary data. It is also possible to define interval variants for the expo-
nential (exp([a, b]) = [exp(a), exp(b)]), logarithm, sine, cosine functions, etc. For
non-monotonous functions, the interval argument is usually decomposed into
subintervals on which the function is monotonous.

Following the basic theory, the width of the sum or the difference of two
intervals is the sum of the widths of the two added or subtracted intervals.
Thus, X−X is not equal to 0: interval arithmetic “loses the dependence between
variables”. A consequence of this is the wrapping effect: the overestimation of
intervals increases with the number of operations.

To restrict such a wrapping effect when evaluating polynomials, a possibility
is to use the central evaluation form, as follows: f(X) ⊂ f(Xc)+(X −Xc)f

′(X),
where Xc is the center of the interval X ; X − Xc is the halfwidth of X ; f ′(X) is
an interval enclosing the derivative of f inside X ; it is computed either with the
naive arithmetic, or recursively with the central evaluation form. This extends
to multivariate polynomials. The analytical definition of f is explicitly required,
and may not be considered as an ”oracle” or a black box by itself.

Affine interval arithmetic: As mentioned just above, the naive interval arith-
metic “loses the dependence between variables”; the affine interval arithmetic
was intended to fix this flaw [25,26]. It is designed as a model for “self-validated
computations”, that keeps track of the first-order correlations between computed
and input quantities. Quantities manipulated by the arithmetic are represented
by affine expressions of the form:

x̂ = x0 + x1ε1 + . . . + xnεn,

where the εi are called the “noise symbols”, and the xi are real numbers. Eachnoise
symbol stands for an independent component of the total uncertainty of the ideal
quantity it is associated with. Standard operations are defined over those forms,
and affine interval arithmetic may be seen as a generalization of interval arithmetic
with richer properties. In particular, it is possible to use the noise symbols to iden-
tify thedependencybetweenvariables (or evenonevariable appearing inmore com-
plex algebraic expressions, as in (1+x)(1−x)), and hence to prevent the dynamic
interval bounds on expressions from growing as rapidly as they would if a basic in-
terval arithmetic is used. This technique requires good approximations of higher
degree expressions with affine forms in the appropriate noise components. This of
course is fairly more time-consuming than standard interval arithmetic.

Bernstein-based intervals: In the CAD-CAM and computer graphics commu-
nities, since the pioneering works by Bézier and de Casteljau, it is well-known that
the properties of the Bernstein basis yield sharp enclosing intervals for polynomials

Robustness and Randomness 135

Fig. 3. The naive interval arithmetic is used in the top row, and the Bernstein-based in-
terval arithmetic in the bottom row, for displaying the same three curves. Left column:
the curve has equation: f(x, y) = 15/4 + 8x − 16x2 + 8y − 112xy + 128x2y − 16y2 +
128xy2 − 128x2y2 = 0 and is displayed in the square [0, 1] × [0, 1]. Middle column:
Cassini’s oval. Right column: a random curve with degree 14.

[27,28,29], asFig. 3gives visual evidence.This knowledgefinallypercolated to other
communities [30,31,32]. ABernstein basis solver for polynomial systemswritten by
Mourrain and Pavone is available in GALAAD [33].

The canonical basis for degree d polynomials in t is: T = (1, t, t2 . . . td). The

Bernstein basis is: B = (B
(d)
0 (t), B

(d)
1 (t), . . . B

(d)
d (t)) where B

(d)
i (t) =

(

d
i

)

ti(1 − t)d−i.
The conversion between the Bernstein and the canonical bases is a linear

mapping, representable by a (d+1)×(d+1) square matrix M such that: B = TM .
For instance, for d = 3:

(B0, B1, B2, B3) = (1, t, t2, t3)

⎛

⎜

⎜

⎝

1 0 0 0
−3 3 0 0

3 −6 3 0
−1 3 −3 1

⎞

⎟

⎟

⎠

Some remarkable properties of the Bernstein basis are:

– The polynomial lies inside the convex hull of its coefficients zij in the Bern-
stein basis. Thus z = f([0, 1], [0, 1]) lies in [mini,j zij , maxi,j zij]. This prop-
erty extends to all dimensions.

136 D. Michelucci, J.M. Moreau, and S. Foufou

– The de Casteljau method computes the coefficients in the Bernstein ba-
sis of the polynomials f(2x) and f(2x − 1) without having to refer to the
canonical basis; it allows to subdivide the studied interval [0, 1] into two
subintervals [0, 1/2] and [1/2, 1]. This method extends to multivariate
polynomials.

– The control points of the image of a curve (or surface) by some affine trans-
form T are the images by T of the control points of the curve (or surface). i.e.,
T (CtrPts(Surface)) = CtrPts(T (Surface)), where T is any affine transform.
This extends to all dimensions.

What interval analysis can do: In this paragraph we discuss five applications
of interval analysis:

a. tracing implicit curves and surfaces
b. displaying strange sets
c. solving non-linear systems of equations using Newton method
d. solving non-linear systems of equations using Bernstein basis
e. representing boundaries of geometric objects (interval geometry).

a. Tracing implicit curves and surfaces:
Interval analysis is used in computer graphics to display semi-algebraic sets
defined by boolean combinations of polynomial inequalities, in 2D (such as
f(x, y) ≥ 0 and g(x, y) ≥ 0) or 3D (such as f(x, y, z) ≥ 0 and g(x, y, z) ≥ 0).
See Fig. 3 for an illustration. Without loss of generality, we present the classical
subdivision method used to display 2D curves defined by an implicit equation
f(x, y) = 0 as follows:

Subdivide(f: function, X : interval, Y: interval, depth: int) {

interval F = f(X, Y);

draw_rectangle(X, Y);

if (F contains 0)

{ if (depth==0) fill_rectangle(X, Y)

else

{

interval X1 = [min(X), middle(X)];

interval X2 = [middle(X), max(X)];

interval Y1 = [min(Y), middle(Y)];

interval Y2 = [middle(Y), max(Y)];

Subdivide(f, X1, Y1, depth-1);

Subdivide(f, X1, Y2, depth-1);

Subdivide(f, X2, Y1, depth-1);

Subdivide(f, X2, Y2, depth-1);

}

}

}

Robustness and Randomness 137

b. Displaying strange sets:
Interval analysis methods may also be used to compute guaranteed covers of
fractals or strange sets such as Julia sets or the Hénon attractor (see Fig. 4), a
process that we now sketch rapidly:

– The “Hénon mapping” sends the point (x, y) ∈ R2 onto (x′, y′) = (y + 1 −
ax2, bx), where a, b are two parameters; classically, a = 1.4 and b = 0.3.

– The Hénon set is the set of points whose orbit (set of H-iterates) remains
bounded.

– Assume, for the sake of simplicity, that a square bounding box B of the
Hénon set is known:

• Subdivide B in 16 × 16 square cells;
• For every cell C, compute an enclosure of H(C), using an interval arith-

metic;
• Each time H(C) overlaps a cell Ci, add an arc C → Ci in a graph HG,

whose vertices are cells partitioning B.
• Compute the strongly connected components of HG: a strongly con-

nected component is transient if and only if it contains only one cell C
and there is no loop C → C in HG; then this cell cannot contain any
point in the Hénon set.

• For non-transient cells C, the graph HG contains at least one loop C → C
or C → C1 → . . . C, thus C may contain points of the Hénon set.
Non-transient cells are subdivided, and the method is applied again.

– The recursion stops when an accurate picture is obtained.

This method guarantees a sharp cover of the Hénon set, and shows that the
classical orbit method used to display strange sets may yield erroneous results
(for some values of a, b). Even the need of an initial bounding box may be relaxed,
since the projective plane is bounded (it may be mapped to a sphere). Refer to
[34] for more details.

Fig. 4. The Hénon set with increasing 82, 162, 322, 642, 10242 resolutions

c. Solving non-linear systems of equations using interval Newton methods:
Let F (x) = 0 be a system of n equations in n unknowns. The classical Newton-
Raphson method iterates: xn+1 ← xn + F (xn)F ′(xn)−1 until convergence. A
variant is the secant method which does not update the inverse of the derivative
F ′ at each step, and iterates: xn+1 ← S(xn) = xn + F (xn)J−1, where J is the
Jacobian of F at x0.

138 D. Michelucci, J.M. Moreau, and S. Foufou

To find roots of F inside a prescribed initial box X , a natural idea is to
compute S(X) for an interval X . Since S(X) = X+ something, the width of
S(X) is always greater than the width of X , if evaluated with the naive interval
arithmetic, which prevents convergence. A solution is to use the central form
evaluation to compute S(X), which leads directly to the Krawczyk (or Krawczyk-
Moore) operator.

The interval secant method may be described as follows: if S(X) ⊂ X , then
S is contractant inside X , thus X contains an isolated root of F , and the secant
method will converge to this root starting from any point of X . If X ∩S(X) = ∅,
then X contains no root of F . Otherwise possible roots of F in X can only be
in X ∩ S(X); if X ∩ S(X) is significantly smaller than X , then the method is
resumed on X ∩S(X), i.e., S(X ∩S(X)) is computed, etc. Otherwise, the former
is likely to contain several roots of F , and is bisected: eventually, these bisections
separate roots. The combinatorial complexity of the method is due of course to
the bisection steps.

The computation of

X ∩ S(X) = (X1 ∩ S1(X1, . . .Xn), . . . Xn ∩ Sn(X1, . . .Xn)),

can be optimized using the most recent value of Xi, i = 0, . . . k when computing
Sk(X), and hence by cascading the computations:

X1 ← X1 ∩ S1(X1, . . . Xn), X2 ← X2 ∩ S2(X1, . . .Xn),

and so, see [35,36] for more details.
d. Solving non-linear systems of equations using Bernstein basis:

The Bernstein-based subdivision method may also be used to solve polynomial
systems of equations, as it was done by Patrikalakis [29] and Garloff [30]. These
authors use the tensorial Bernstein basis, which has limitations: it is a dense
representation (even if the polynomial is sparse in the canonical basis), and has
an exponential number of coordinates.

A typical solution is likely to use the simplicial Bernstein basis, as obtained
from the development of: (x0 + x1 + x2 + . . . xn)d, where d is the total degree,
and x0 + x1 + x2 + . . . xn = 1. The simplicial basis only has O(nd) coefficients,
it has the same convex hull property as the tensorial basis, and the de Casteljau
method also allows to divide a Bernstein simplex into two, along one of its edge.
Recently, Nataraj et al. [31,32] combine tensorial Bernstein basis and Taylor
expansions to achieve superconvergence of inclusion functions, and to account
for non polynomial functions.

e. Representing boundaries of geometric objects:
Quite recently also, several authors (e.g., [37]) suggested to extend the prin-
ciple of intervals, which enclose boundaries in 1D, to geometric objects in 3D
(interval geometry). A boundary surface is thus enclosed inside two polyhedra
(typically with rational coordinates). The inside and outside polyhedra may have
different topologies, for instance a different number of connected components.
Computable Analysis extends to such objects, i.e., it is possible to compute
(using increasing computing resource) closer and closer nested approximations.

Robustness and Randomness 139

This approach does not suffer from the incompatibility between, on the one
hand, classical boundary representations or geometric algorithms which require
to compute the exact sign of numbers: 0, +, −, and on the other hand interval
arithmetics which are intrinsically unable to compute the sign of 0 from an
enclosing interval. However interval geometry suffers from the same intrinsic
restriction as interval arithmetics: interval arithmetics cannot compute the sign
of 0, and interval geometry cannot detect if two shapes are tangent: it can only
detect whether they are disjoint or intersect.

In another effort similar to the one of interval geometry, Foufou et al. intro-
duced the fuzzy geometry and proposed to use it to classify surfaces against
their intersection status [38]. Geometric entities are replaced by thicken entities.
The associated fuzzy intersection algorithm provides a three-state classification
of surfaces couples: certainly intersecting, certainly non intersecting and poten-
tially intersecting.

What interval computations cannot do: All interval-based solutions have
the intrinsic limitation of being only “half deterministic” in the following sense:
if a number is zero, no interval computation can detect it (in finite-time); if a
number is either strictly positive or strictly negative, a tight enough interval will
find its sign. Thus interval analysis cannot decide nullity. For the same reason, it
cannot decide equality (i.e., the nullity of the difference of two equal numbers).
This argumentation has been formalized by Computable Analysis [39] as follows:
By definition, a number is computable if a finite-time algorithm provides an ar-
bitrarily tight interval enclosing it. For instance, the interval arithmetic provides
a stream of (nested) Cauchy intervals. Interval arithmetics which are capable of
computing such arbitrarily tight enclosures are called Real Arithmetics. Several
implementations have been suggested (and sometimes proven) [40,41].

By definition, a real function f is computable if there is an algorithm which,
when given the input numbers x1, . . . , xn (a stream of nested Cauchy intervals),
is able to compute a stream of nested Cauchy intervals describing f(x1, . . . , xn).

No interval arithmetic may be more powerful than the Real Arithmetic, an
ideal interval arithmetic which does not suffer from practical limitations (e.g.,
restricted memory). But even Real Arithmetic is intrinsically restricted:

Theorem 7 (Computable Analysis). Only continuous functions are
computable.

This theorem has considerable implications, which even today have not been
fully realized. For instance let us just consider that the sign function is equal
to +1 for positive numbers, to -1 for negative numbers, and to (say) 0 for zero.
This function is discontinuous in 0; since no interval computation may establish
that a number is zero, the sign of zero is not computable.

There is a quantitative variant of this theorem: the greater |f ′
xi

|, the sharper
the interval for xi so as to compute f(x1, . . . xn) with a prescribed precision.
For a discontinuous function, its slope is infinite at the discontinuity, thus the
argument has to be known with infinite precision to compute the function at
that point.

140 D. Michelucci, J.M. Moreau, and S. Foufou

In practice, an arbitrarily tight interval cannot be computed, because of stor-
age limitations (and the patience limitation of the user). But the theorem holds
even without taking this common-sense argument into account. This theorem
has dramatic consequences on geometric computing.

The most basic geometric algorithms typically require to compute
non-continuous functions, such as: do two geometric objects intersect or not?
does this point lie on the left, on the right, or just on a boundary surface? does
this triple of 2D points turn left, right, or are they aligned?

As we have seen, geometric algorithms use ”predicates” for branching; the
branch is chosen according to the sign of a predicate, such as the orientation
predicate. Predicates being discontinuous functions, they are not computable
with Real Analysis. Hence, interval computations (which seem to be the only
realistic guaranteed way of computing) are not compatible with the most basic
geometric algorithms of Computational Geometry, and not compatible with the
most basic geometric data structures used to represent incidence between points,
curves and surfaces. Nearly all geometric modelers use these data structures.

Stated crudely: no geometric programs computing non-continuous functions,
and using floating-point arithmetic, or using interval computations or even Real
Arithmetic, may be proven. Actually, they all are wrong. The best they can achieve
is to work most of the time (i.e., not fail more often than their competitors).

This limitation of interval arithmetic is the main argument to promote discrete
geometry, and stochastic or probabilistic approaches.

4 Probabilistic Approaches

4.1 Solutions at the Arithmetic Level

Probabilistic gap arithmetics: A practicable but only probabilistic method
is to compute with some “big-float” library, and to use the ǫ heuristic (see section
3.1) with a small ǫ, e.g., ǫ = 10−200, and hope that life will not be so bad as
to produce a counterexample. We are not aware of any report on this kind of
experiment.

Thestochasticarithmetic: Thestochasticarithmetic, implemented inCADNA
[42], estimates and limits the propagation of round-off errors of the floating-point
arithmetic in scientific software (e.g., simulation of fluid mechanics), and may de-
tect the source of numerical instabilities. A stochastic number is represented by a
meanvalue (afloating-pointnumber) andavariance.Eachfloating-pointoperation
isperformedwithn (typicallyn = 3)samplesof the stochasticnumber.Astochastic
zero is a number with no significant bits.

While the wrapping effect of interval arithmetics overestimates the interval
widths, the stochastic arithmetic gives more realistic confidence intervals, which
accounts for the fact that round-off errors often compensate. The stochastic
arithmetic is well-adapted to programs with few branchings, where tests are
used mainly to detect the convergence of a numerical algorithm.

Robustness and Randomness 141

For geometric computations, the stochastic method will decide the sign of
numbers equal to 0 or close to 0 only randomly, thus it takes neither exact
nor consistent decisions and it does not seem to make sense to use a stochastic
arithmetic for geometric algorithms (e.g., computing a convex hull or a Delaunay
triangulation). However, it does make sense to use the stochastic scheme at the
geometric level, as we shall soon see.

Zero free arithmetic: There are 2 kinds of exact arithmetics: those (e.g., ra-
tional arithmetics) which provide a test against zero (i.e., is a number equal,
superior or inferior to 0?), and those that do not (e.g., real computable arith-
metics). In the latter class, real numbers are typically represented by streams
(potentially infinite lists) of nested Cauchy intervals.

In geometric methods, programmers usually round data to integers or ratio-
nals, and then use the first kind of arithmetics. This precludes Computational
Geometry from addressing algebraic non-rational problems (e.g., intersection
between algebraic curves and surfaces).

The idea of the zero-free exact arithmetic [43] is to round data numbers to
algebraically independent, transcendental numbers, by perturbing them with a
stream of random digits. Assume that all the tests in geometric programs in-
volve the signs of polynomials: f(u1, u2 . . . un) where u1, . . . un are initial data
numbers; if the latter are rounded on algebraically independent numbers, then
the only polynomial f which can vanish is the identically zero polynomial. It
makes no sense to ask for the sign of this polynomial in an instruction such
as if(0==0) then In consequence, tests never evaluate to zero, and it is
possible to use real computable arithmetics. Moreover this method also solves
the problem of degeneracies (the zero-free arithmetic may be seen as a gener-
alization of the so-called “simulation of simplicity” (SoS) technique suggested
by Edelsbrunner and Mücker [44], with the major difference that SoS requires
an arithmetic capable of exactly testing the sign of numbers.): three points will
never be aligned, four points will never be coplanar nor cocyclic, etc. Finally, this
solution allows geometric methods to address problems requiring non-rational
arithmetics: algebraic arithmetics, or even transcendental numbers. It becomes
possible to use numbers defined by a convergent algorithm, which computes roots
of polynomial systems for instance, as long as we are sure that all tests involve
algebraically independent numbers.

This assumption is the cornerstone of the zero-free arithmetic, and its main
weakness: some geometric programs allow to derive geometric objects or numbers
(coordinates for intersection points) from the initial (perturbed) ones, with some
geometric constructions. Clearly, the former algebraically depend on the latter.
For instance, cutting one (perturbed) initial line with three other (perturbed) ini-
tial lines produces three aligned points; the orientation test for these three points
will not terminate: the related determinant is zero. A lot of geometric theorems
(Pappus, Desargues) allow to construct less trivial alignments, and occurrences of
zero. At the other end of the spectrum, computing x−x, where the two instances
arise from different computation contexts (e.g., the dependance of the variables
has been lost as in interval arithmetic), is null but not “identically null”.

142 D. Michelucci, J.M. Moreau, and S. Foufou

Combining intervals and randomized nullity tests: The previous method
does not terminate in case of a null number. In order to circumvent this problem,
it is possible to combine it with a randomized nullity test [45,46,47,48]. For
instance, assuming all numbers involved are rational, a number is probably null
if its interval is sharp enough and contains zero, and the number’s hashed value
(result of a modular computation modulo a large prime) is zero. This method
is efficient and simple in the rational case, but is less appealing in the algebraic
case [47,49,47,50].

Probabilistic tests can also be used for polynomials and not only for num-
bers. J.T. Schwartz [45] introduced this method to test algebraic identities: if a
polynomial (e.g., the determinant of a square matrix with polynomial entries)
vanishes when evaluated at random values of its variables, it is likely identically
null. This test is only probabilistic, but extremely fast. This probabilistic prin-
ciple, called proof by example, is also used for probabilistic proofs of geometric
theorems [51,52,53]. It has been extended beyond polynomials [49,47,50], e.g.,
Tulone et al. [49] extend it to radical expressions which occur in ruler and com-
pass geometric constructions and related geometric theorems, such as Pascal’s
for a circle.

This probabilistic test may be made deterministic in several ways. For the sake
of simplicity, consider a polynomial in one variable: if an upper bound d of the
degree is known, and if the polynomial vanishes in d + 1 distinct sample values,
then it may only be the zero polynomial; or, if we have an upper bound for the
magnitude of the coefficients, we can also use some formula [20] to compute an
upper bound for the magnitude of the root module, or a lower bound for the
magnitude of the root inverse, so if the polynomial vanishes for a number outside
these bounds, then it can only be the zero polynomial [51]. This principle for
univariate polynomials may be extended to the multivariate case, and always
with an exponential cost.

Clarkson and Shor used random sampling for several geometric algorithms
and showed that random subsets can be used optimally for divide-and-conquer
algorithms and for bounds computations for incremental building of geometric
structures [54,55].

4.2 Solutions at the Geometric Level

The motion planning problem: In robotics, the motion planning problem
(also called the piano mover’s problem) consists in finding a trajectory for a
robot, which moves from a starting position to a final one in an environment
cluttered with obstacles. The robot is represented by a point in a configuration
space; the configuration space is the usual Euclidean space (which allows to
describe the location of some origin point of the robot), augmented with all
parameters which describe the spatial orientation (3 angles for a rigid body in
3D) and the configuration (one angle for each articulation of the robot, one
length for each jack) of the robot. Obstacles – and the constraints of avoiding
self-intersection of the robot – forbid some areas of the configuration space.
There is a trajectory for the robot if its initial and final configurations lie in the

Robustness and Randomness 143

same connected component of the configuration space. Typically, the routine
that decides whether a given point in the configuration space is collision-free or
not, returns in fact a signed “interpenetration depth” or some kind of signed
minimal distance to the closest obstacle. In the first stages of the algorithm,
interpenetration is tolerated in order to find a coarse path rapidly. In the final
stages, the acceptable tolerance is gradually reduced.

This problem is decidable, and exact and deterministic algorithms from com-
puter algebra (say the Collin’s Cylindrical Algebraic Decomposition, and its
variants and optimizations) solve it by computing an explicit representation of
the feasible part (the part not forbidden by obstacles and self-avoidance con-
straints of the robot) of the configuration space. However, such approaches turn
out to be definitively not practical due to their high combinatorial costs, to their
lack of robustness (these methods do not resist inaccuracy and degeneracy), and
also to the high dimension of the configuration space (≈ 200 for a human body,
≈ 50 after simplification; from 10 to 20 for a simple robot) occurring in industrial
problems.

By the end of the 1980’s some roboticians broke away from this exact and
deterministic approach. They no more compute an explicit representation of the
feasible configuration space. Instead, they randomly sample the configuration
space, keeping only collision-free samples; they build a graph, called the road
map, where close collision-free samples of the configuration space are linked if
the line segment (in configuration space) connecting the two samples is collision-
free, or, more precisely, if all samples are collision-free when sampling regularly
the line segment (the detection of collision for a point in the configuration space
is simpler than for a segment). In this approach, finding a trajectory reduces to
finding a path in the road map graph, with a standard algorithm like Dijkstra’s.
Once a path has been found, it may be refined in several ways, for instance
by trying to connect two non-contiguous vertices of the path by a segment and
resampling more densely a neighborhood of the path.

This method is neither deterministic nor exact; it may fail to find complicated
paths in very cluttered environments. Its completeness is probabilistic: it will find
a solution (when there is one) with probability one if it runs indefinitely; the
probability of failure decreases exponentially with the running time.

This approach is a technological breakthrough as it solves in interactive run-
ning times problems of industrial size which are completely out of reach of the
deterministic exact methods; moreover it is extremely robust against inaccu-
racy or degeneracy: for deciding if a sample point of the configuration space is
collision-free or not, it uses the standard floating-point arithmetic. We refer the
reader to Laumond’s book for more details [56].

Roadmap and topological computations: A similar approach is used in
[57] to compute (approximated) shortest circuits with a prescribed topology
(≈ shape) on a given surface. Actually, the authors started by trying to use
mesh representations provided by some industrial software; but these meshes
turned out to be inconsistent, containing self intersecting triangles, and gaps
(holes between triangles), which means that some sections of the meshes were

144 D. Michelucci, J.M. Moreau, and S. Foufou

not even connected. They then decided to sample the mesh, and build a graph
(a roadmap) where each edge connects two close enough samples. They also
assume that each triangle (three pairwise-connected vertices) in this roadmap
corresponds to a triangular patch on the sampled surface: this assumption is
sufficient for roadmaps to allow the topological computations required to decide
the equivalence of two circuits on a surface with holes.

Topological computations are usually done from some simplicial complexes
such as triangulated meshes; these sophisticated data structures are terribly
fragile – it is the reason why CGAL requires exact computations. Roadmaps
are not triangulations, and they are sufficient to perform topological computa-
tions. Moreover, roadmaps are rudimentary and robust: they use floating-point
computations without problems.

No motion planning algorithm uses topological computations yet, as far as
we know. Such computations can detect several kinds of paths or circuits (e.g.,
passing at the left or at the right of an obstacle) in the configuration space.

Note: the length of a line through rational vertices is a sum of square roots of
rational numbers [58]; this length is an algebraic number with degree 2n−1 if there
are n vertices. A truly exact algorithm, which exactly computes these lengths
(in order to compare them when they are very close) has thus an exponential
running time. For this reason, even proclaimed “exact” methods do not use exact
computations of lengths.

The radiosity problem: The radiosity problem [59,60] consists in comput-
ing photo-realistic images of virtual scenes. Monte Carlo methods simulate the
propagation of light by following samples of photons, from the light sources
and their reflections or refractions in the scene, until they are absorbed by a
surface. Counting the number of absorbed or reflected photons on each surface
patch of the scene gives an estimation of the radiosity. Monte Carlo methods
do not require an explicit representation of surfaces bounding the objects in the
scene, but only a procedure capable of computing the intersection between a line
and geometric objects (and the normal to the surface at the intersection point);
computing this intersection is an easily to solve one-dimensional problem. Monte
Carlo methods are extremely robust: they never fail because of inaccuracy.

Ray tracing [59] is another method used for scene rendering; it follows light
rays, i.e., photons, but starts from the (virtual) eye. Like Monte Carlo methods,
ray tracing does not need an explicit representation of the scene (similarly the
roadmap method for the motion planning problem does not need an explicit geo-
metric representation of the configuration space). It uses the same intersection
procedure as Monte Carlo methods. Actually, ray tracing and Monte Carlo meth-
ods are combined: the former accounts for specular (mirror-like) light reflections,
and the latter accounts for diffusion and scattering of light.

Numerous deterministic methods were proposed to compute more or less re-
alistic images of virtual scenes. They rely on an explicit representation of the
boundary of objects in the scene, typically approximating meshes (so they were
not even exact). As these deterministic methods use sophisticated data structures
(e.g., boundary representations, visibility graphs), they are terribly complicated

Robustness and Randomness 145

to implement, and fragile. Note that ray tracing and Monte Carlo radiosity are
roughly as old as the deterministic methods; the increasing power of computers
has made them practical over the last ten years.

5 Conclusion: Is Randomness the Problem or the
Solution?

The inaccuracy of the floating-point arithmetic is often considered as a source of
random noise. The latter perturbs computations, introduces inconsistencies in
deterministic geometric algorithms and causes strange behaviors such as crashes
or infinite loops. Thus randomness is a problem for deterministic algorithms.

Worse even, exact computations turn out to be intractable, and not relevant
for real-world applications (except in some very restricted cases). Randomness
kills deterministic geometric algorithms.

Probabilistic geometric methods are simpler, very robust, and become relevant
and tractable with the increasing power of computers: randomness may very well
be the solution to randomness.

References

1. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys 23, 5–48 (1991)

2. Schirra, S.: Precision and robustness in geometric computations. In: van Krev-
eld, M., Nievergelt, J., Roos, T., Widmayer, P. (eds.) CISM School 1996. LNCS,
vol. 1340, Springer, Heidelberg (1997)

3. Hoffmann, C.M.: Robustness in geometric computations. Journal of Computing
and Information Science in Engineering 1, 143–156 (2001)

4. Yap, C.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry, pp. 927–952. CRC Press,
Boca Raton (2004)

5. Keyser, J.: Robustness issues in computational geometry. Technical report, Comp.
234 Final Paper, Duke University (1997)

6. Sugihara, K., Iri, M.: A solid modelling system free from topological inconsistency.
Journal of Information Processing 12, 380–393 (1989)

7. Sugihara, K., Iri, M.: A robust topology-oriented incremental algorithm for
voronoi diagrams. IJCGA 4, 179–228 (1994)

8. Sugihara, K.: A robust and consistent algorithm for intersecting convex polyhedra.
Computer Graphics Forum 13, 45–54 (1994)

9. Knuth, D.E.: Axioms and Hulls. LNCS, vol. 606. Springer, Heidelberg (1992)
10. Michelucci, D., Moreau, J.M.: Lazy arithmetic. IEEE Transactions on Comput-

ers 46, 961–975 (1997)
11. Fabri, A., Giezeman, G.J., Kettner, L., Schirra, S., Schönherr, S.: The CGAL

kernel: A basis for geometric computation. In: Lin, M.C., Manocha, D. (eds.)
FCRC-WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 191–202. Springer, Hei-
delberg (1996)

12. Klatte, K., Kulisch, U., Lawo, C., Rausch, M., Wiethoff, A.: C-XSC, A C++ class
library for extended scientific computing. Springer, Heidelberg (1993)

146 D. Michelucci, J.M. Moreau, and S. Foufou

13. Funke, S., Mehlhorn, K.: LOOK – a lazy object-oriented kernel for geometric
computations. In: Proceedings 16th Annual ACM Symposium on Computational
Geometry, Hong-Kong, pp. 156–165. ACM Press, New York (2000)

14. Mehlorn, K., Naher, S.: LEDA: A platform for combinatorial and geometric com-
puting. Communications of the ACM 38, 96–102 (1995)

15. Mehlhorn, K., Naher, S.: The LEDA Platform for Combinatorial and Geometric
Computing, 1018 pages. Cambridge University Press, Cambridge (1999)

16. Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A core library for robust numeric
and geometric computation. In: Proceedings 15th Annual ACM Symposium on
Computational Geometry, pp. 351–359. ACM Press, New York (1999)

17. Canny, J.: The complexity of robot motion planning. M.I.T. Press, Cambridge
(1988)

18. Pion, S., Yap, C.: Constructive root bound method for k-ary rational input num-
bers. In: Proc. 18th ACM Symp. on Computational Geometry, ACM Press, San
Diego, California (2003)

19. Li, C., Yap, C.: A new constructive root bound for algebraic expressions. In: 12th
ACM-SIAM Symposium on Discrete Algorithms (SODA) (2001)

20. Mignotte, M., Stefanescu, D.: Polynomials: An algorithmic approach. Discrete
Mathematics and Theoretical Computer Science Series, vol. XI. Springer, Heidel-
berg (1999)

21. Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: A strong and easily com-
putable separation bound for arithmetic expressions involving square roots. In:
Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms
table of contents, New Orleans, Louisiana, United States, pp. 702–709 (1997)

22. Scheinerman, E.R.: When close enough is close enough. American Mathematical
Monthly 107, 489–499 (2000)

23. Keyser, J., Culver, T., Foskey, M., Krishnan, S., Manocha, D.: ESOLID - a system
for exact boundary evaluation. Computer-Aided Design (Special Issue on Solid
Modeling) 36, 175–193 (2004)

24. Moore, R.: Interval Analysis. Prentice Hall, Englewood Cliffs (1966)
25. Andrade, M.V.A., Comba, J.L.D., Stolfi, J.: Affine arithmetic. In: Abstracts of the

International Conference on Interval and Computer-Algebraic Methods in Science
and Engineering (INTERVAL 1994), St. Petersburg (Russia), pp. 36–40 (1994)

26. de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: Concepts and applications. Nu-
merical Algorithms 37, 147–158 (2004)

27. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. Academic
Press, London (1990)

28. Hu, C.Y., Patrikalakis, N., Ye, X.: Robust interval solid modelling. part 1: Rep-
resentations. Part 2: Boundary evaluation. CAD 28, 807–817, 819–830 (1996)

29. Sherbrooke, E.C., Patrikalakis, N.: Computation of the solutions of nonlinear
polynomial systems. Computer Aided Geometric Design 10, 379–405 (1993)

30. Garloff, J., Smith, A.P.: Investigation of a subdivision based algorithm for solving
systems of polynomial equations. Journal of nonlinear analysis: Series A Theory
and Methods 47, 167–178 (2001)

31. Nataraj, P.S.V., Kotecha, K.: Global optimization with higher order inclusion
function forms part 1: A combined Taylor-Bernstein form. Reliable Computing 10,
27–44 (2004)

32. Nataraj, P.S.V., Kotecha, K.: Higher order convergence for multidimensional func-
tions with a new Taylor-Bernstein form as inclusion function. Reliable Comput-
ing 9, 185–203 (2003)

Robustness and Randomness 147

33. Mourrain, B., Rouillier, F., Roy, M.F.: Bernstein’s basis and real root isolation.
Technical Report 5149, INRIA Rocquencourt (2004)

34. Michelucci, D., Foufou, S.: Interval based tracing of strange attractors. Interna-
tional Journal of Computational Geometry and Applications 16, 27–39 (2006)

35. Kearfott, R.: Rigorous Global Search: Continuous Problems. Kluwer Academic
Publishers, Dordrecht (1996)

36. Hansen, E.R., Walster, G.W.: Global Optimization Using Interval Analysis. Mar-
cel Dekker, New York (2003)

37. Edalat, A., Lieutier, A.: Foundation of a computable solid modelling. Theoretical
Computer Science 2, 319–345 (2002)

38. Foufou, S., Brun, J., Bouras, A.: Surfaces intersection for solid algebra: A classi-
fication algorithm. In: Strasser, W., Klein, R., Rau, R. (eds.) Proc. Theory and
Practice of Geometric Modeling 1996, Tubingen, Germany, Springer, Heidelberg
(1996)

39. Weihrauch, K.: Computable Analysis An Introduction. Springer, Heidelberg
(2000)

40. Boehm, H.J., Cartwright, R., Riggle, M., O’Donnell, M.: Exact real arithmetic: a
case study in higher order programming. In: Proc. ACM Conference on Lisp and
Functional Programming, pp. 162–173 (1986)

41. Lester, D., Gowland, P.: Using pvs to validate the algorithms of an exact arith-
metic. Theoretical Computer Science 291, 203–218 (2003)

42. Vignes, J., Alt, R.: An efficient stochastic method for round-off error analysis. In:
Accurate Scientific Computations, pp. 183–205 (1985)

43. Michelucci, D., Moreau, J.M.: ZEA – a zero-free exact arithmetic. In: Proceed-
ings 12th Canadian Conference on Computational Geometry, Fredericton, New
Brunswick, pp. 153–157 (2000)

44. Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: a technique to cope with
degenerate cases in geometric algorithms. ACM Trans. Graph 9, 66–104 (1990)

45. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities.
J. ACM 4, 701–717 (1980)

46. Agrawal, A., Requicha, A.G.: A paradigm for the robust design of algorithms for
geometric modeling. In: Computer Graphics Forum (EUROGRAPHICS 1994),
vol. 13, pp. C–33–C–44 (1994)

47. Monagan, M., Gonnet, G.: Signature functions for algebraic numbers. In: Proc.
ISSAC, pp. 291–296. ACM Press, New York (1994)

48. Benouamer, M., Jaillon, P., Michelucci, D., Moreau, J.: Hashing lazy numbers.
Computing 53, 205–217 (1994)

49. Tulone, D., Yap, C., Li, C.: Randomized zero testing of radical expressions and
elementary geometry theorem proving. In: International Workshop on Automated
Deduction in Geometry (ADG 2000) (2000)

50. Gonnet, G.H.: New results for random determination of equivalence of expressions.
In: SYMSAC 1986: Proceedings of the fifth ACM symposium on Symbolic and
algebraic computation, pp. 127–131. ACM Press, New York (1986)

51. Hong, J.: Proving by example and gap theorem. In: I.C.S. (ed.): 27th symposium
on Foundations of computer science, Toronto, Ontario, 107–116 (in press,1986)

52. Kortenkamp, U.: Foundations of Dynamic Geometry. PhD thesis, ETH Zurich,
Institut fur Theoretische Informatik (1999)

53. Foufou, S., Jurzak, J.P., Michelucci, D.: Numerical decomposition of geometric
constraints. In: Proc. ACM Conference on Solid and Physical Modeling, pp. 143–
151 (2005)

148 D. Michelucci, J.M. Moreau, and S. Foufou

54. Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational
geometry, II. Discrete and Computational Geometry 4, 387–421 (1989)

55. Clarkson, K.L.: New applications of random sampling in computational geometry.
Discrete and Computational Geometry 2, 195–222 (1987)

56. Laumond, J.P. (ed.): Robot Motion Planning and Control. Lecture Notes in Con-
trol and Information Science. Springer, Heidelberg (1998)

57. Michelucci, D., Neveu, M.: Shortest circuits with given homotopy in a constella-
tion. In: 9th ACM Symp. Solid Modeling and Applications, pp. 297–302 (2004)

58. Choi, J., Sellen, J., Yap, C.: Approximate Euclidean shortest path in 3-space. Int’l.
J. Computational Geometry and Applications 271–295 (1997); Journal special
issue. Also in 10th ACM Symposium on Computational Geometry (1994)

59. Glassner, A.: An Introduction to Ray Tracing. In: Glassner, A. (ed.), Academic
Press, London (1989) ISBN 0-12-286160-4

60. Glassner, A.S.: Principles of Digital Image Synthesis. Morgan Kaufmann Publish-
ers Inc., San Francisco (1994)

Topological Neighborhoods for Spline Curves:

Practice & Theory

Lance Edward Miller, Edward L.F. Moore, Thomas J. Peters,
and Alexander Russell

Department of Computer Science & Engineering,
University of Connecticut,

Storrs, CT 06269-2155
tpeters@cse.uconn.edu

Abstract. The unresolved subtleties of floating point computations in
geometric modeling become considerably more difficult in animations
and scientific visualizations. Some emerging solutions based upon topo-
logical considerations for curves will be presented. A novel geometric
seeding algorithm for Newton’s method was used in experiments to de-
termine feasible support for these visualization applications.

1 Computing the Pipe Surface Radius

Parametric curves have been shown to have a particular neighborhood whose
boundary is non-self-intersecting [9]. It has also been shown that specified move-
ments of the curve within this neighborhood preserve the topology of the curve
[12, 13], as is desired in visualization. This neighborhood is defined by a single
value, which is the radius of a pipe surface, where that radius depends on curva-
ture and the minimum length over those line segments which are normal to the
curve at both endpoints of the line segment [9]. Since computation of curvature
is a well-treated problem, the focus of this paper is efficient and accurate floating
point techniques to compute the other dependency for that radius.

Definition 1. For a non-self-intersecting, parametric curve c, where

c : [0, 1] → R3,

and for distinct1 values s, t ∈ [0, 1], then the line segment [c(s), c(t)] is doubly
normal if it is normal to c at both of the points c(s) and c(t).

To avoid unnecessary complications with computing derivatives, only curves
with regular parameterization [7] are considered.

Definition 2. The global separation is the minimum over the lengths of all
doubly normal segments. (For compact curves, this minimum has been shown in
be positive [10].)

1 If the curve is closed, the s and t should be distinct values in [0, 1).

P. Hertling et al. (Eds.): Real Number Algorithms, LNCS 5045, pp. 149–161, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

150 L.E. Miller et al.

Fig. 1. Many doubly normal segments exist on this curve

An example cubic B-splines curve is given in Figure 1, with

1. control points: (0.0 0.0 0.0) (-1.0 1.0 0.0) (4.5 5.5 2.0) (5.0 -1.0 8.5)
(-1.5 2.5 -4.5) (4.5 6.0 8.5) (3.5 -3.5 0.0) (0.0 0.0 0.0), and

2. knot vector: {0 0 0 0 0.2 0.4 0.6 0.8 1 1 1 1}

For this curve, there exist many doubly normal segments, as shown in Figure 1.
The problem is how to efficiently find all these doubly normal segments, and
then find the pair which represents the global separation distance, denoted as σ.
A pair of distinct points at parametric values s and t on a curve will be endpoints
of a doubly normal segment if they satisfy the two equations [9] for s, t ∈ [0, 1] :

[c(s) − c(t)] · c′(s) = 0 (1)

[c(s) − c(t)] · c′(t) = 0. (2)

In principle, the system given by Equations 1 and 2 could be solved alge-
braically by writing them in their power basis form, but this approach results
in well-known algorithmic difficulties [14]. Hence, alternative techniques will be
presented. For the software infrastructure available to these authors, it was con-
venient to convert the B-spline curve into a composite Bézier curve by the usual
technique of increasing the multiplicity of each interior knot to 3. This produces
5 subcurves (depicted in Figure 2 by differing line fonts), with control points:

– (0 0 0) (-1 1 0) (1.75 3.25 1) (3.21 3.29 2.58),
– (3.20 3.29 2.58) (4.67 3.33 4.17) (4.83 1.17 6.33) (3.83 0.67 5.25),
– (3.83 0.67 5.25) (2.83 0.17 4.17) (0.67 1.33 -0.17) (0.58 2.5 -0.17),
– (0.58 2.5 -0.17) (0.5 3.67 -0.17) (2.5 4.83 4.17) (3.25 3.04 4.21),
– (3.25 3.04 4.21) (4 1.25 4.25) (3.5 -3.5 0) (0 0 0).

Topological Neighborhoods for Spline Curves: Practice & Theory 151

Fig. 2. Newton’s method

Newton’s method for two variables [11] was applied to Equations 1 and 2. The
numerical experiments reported on prototype code suggest that this approach
could be sufficiently rapid to support scientific visualization. These experiments
were performed on a 64-bit AMD processor with Red Hat Linux Fedora Core 2
and OpenGL with double buffering. As always, the integration with a specific
graphics subsystem is highly dependent upon the underlying architecture, and
incorporation of this code on any platform would require further development
and experimentation.

As is typical, the ‘art’ required for the successful use of Newton’s method is
highly dependent upon the determination of reasonable initial estimates, within
the following standard formulation

[

sn+1

tn+1

]

=

[

sn

tn

]

− J−1(sn, tn)

[

f(sn, tn)
g(sn, tn)

]

, n = 0, 1, ... (3)

until |J−1(sn, tn)[f(sn, tn) g(sn, tn)]T | is less than some ǫ > 0, where J−1(sn, tn)
is the inverse Jacobian matrix.

A viable approach to this art is presented and verified on an illustrative ex-
ample. The general idea is to take finitely many points on each subcurve and
consider all line segments between each pair of points as a candidate for being
doubly normal. Many of these segments can be excluded from further consider-
ation by an easy culling technique based upon a lack of normality at one end
point or the other.

Let 〈c(s), c(t)〉 denote the vector of unit length, formed by taking the vector
between c(s) and c(t) and dividing that vector by its norm. Let c′(s) and c′(t)

152 L.E. Miller et al.

denote the unit tangent vectors at points c(s) and c(t), respectively. Let ǫ1 and
ǫ2 be positive. The following modifications of Equations 1 and 2 are used

〈c(s), c(t)〉 · c′(s) < ǫ1, (4)

and

〈c(s), c(t)〉 · c′(t) < ǫ2. (5)

If the result of the preceding comparisons2 are false, then this segment is rejected.
Otherwise, it is sufficiently close to being doubly normal to serve as an initial
estimate for Newton’s method.

These candidate double normal points are shown graphically in Figure 2 with
line segments connecting the pairs of candidate points from Bézier segments.
When Bézier segments are shown with no connecting line segment, that means
that no candidate doubly normal points were found. When only one connecting
line segment is depicted, that indicates that Newton’s method did not converge
for those particular points. When two pairs of connecting line segments are
shown, that indicates that Newton’s method did converge, and the resulting pair
of minimum double normal points is one of the two line segments from each pair.
Typically, convergence with ǫ = 0.0001 occurred after 3 or 4 iterations, where
similar behavior was corroborated in independently implemented code [2]. Note
that Figure 2 depicts the same curve as in Figure 1, but now the curve is rotated
about the y-axis to get a better view of doubly normal points, with σ illustrated
in the zoomed-in section of Figure 2.

Table 1 summarizes experimental work completed. Tests 1 - 3 report on a
naive, direct approach. This relies purely upon the limiting notion that suffi-
ciently many approximation pairs will produce a list that contains a reasonable
estimate for σ. This produces the reliable estimates shown in both Tests 1 and
2, but at prohibitively slow performance for visualization applications. Further-
more, Test 3 shows that further coarsening on the partition results in both poor
estimates for σ and unacceptable performance. Alternatively, Test 4 shows that
Newton’s method produces a reliable estimate of σ with acceptable performance
over a very coarse partition 3. It should also be noted that the timing for the
Newton’s implementation is a very rough estimate and that the prototype code
is not fully optimized, so further efficiencies could be expected. Even with these
disclaimers, the time reported is encouraging for scientific visualization purposes.

2 Guaranteeing a Lower Bound

The estimate of σ produced by Newton’s Method can be done quickly, but it
could easily be an overestimate of σ. In this section we show how to efficiently

2 The possibility of choosing different values for ǫ1 and ǫ2 is left as a user-option and
is fully permissible within the theory presented. In practice, these values may often
be chosen to be the same.

3 As a verification of the Newton’s code implemented, the value of σ for this experi-
mental curve was corroborated by an independently created code [2].

Topological Neighborhoods for Spline Curves: Practice & Theory 153

Table 1. Estimating σ

Test # Method Partition Size, n Time(s) σ

1 Direct 10,000 85 0.44268

2 Direct 2,000 6 0.44268

3 Direct 1,000 2 0.91921

4 Newton 10 .0004 0.44268

determine a guaranteed approximation to the length of the shortest ǫ-nearly
doubly normal line segment, a quantity we call σ(ǫ). (This is defined precisely
below.) Note that σ(ǫ) ≤ σ(0) = σ, and that in order for this to be a guaran-
teed approximation of σ, one would have to establish a relationship between σ
and σ(ǫ). However, if s is a good multiplicative approximation to σ(ǫ) in the
sense that α−1 ≤ s/σ(ǫ) ≤ α (for some small α > 1), then certainly α−1s is a
guaranteed lower bound on σ.

2.1 Partitioning by Taylor’s Theorem

Given ǫ > 0, the algorithm presented in this section depends on a subroutine
Pipe(δ) that returns a PL approximation to c. Specifically, Pipe is called with
a parameter δ and computes a PL approximation of c for which

– the Hausdorff distance between c and the PL approximation is bounded
above by δ/2, and

– the PL edges “ǫ-approximate” the tangents of c associated with this edge.

To do this for the curve c, the subroutine Pipe will determine a uniform
partition of the parametric interval [0, 1] by the increasing sequence of points

0 = s0, s1, . . . , sℓ = 1.

Then a PL approximation to the c is created by connecting the interpolant points

c(s0), c(s1), . . . c(sℓ).

Both conditions can be met by invoking Taylor’s Theorem [6]. Taylor’s The-
orem is stated as follows. For f : R → R and n > 0, suppose that f (n+1) exists
for each x in a non-empty open interval I ⊂ R containing a. For each x �= a in
I, there exists tx strictly between a and x such that

f(x) = f(a) + f ′(a)(x − a) + . . . +
fn(a)

n!
(x − a)

n
+ rn(x),

where

rn(x) =
f (n+1)(tx)

(n + 1)!
(x − a)

n+1
.

Note that this statement of Taylor’s Theorem is for the univariate case into R,
whereas the present application is to the map c : [0, 1] → R3, a univariate func-
tion into R3. However, the x, y and z components can be treated independently
as functions into R.

154 L.E. Miller et al.

Definition 3. For any compact set K ⊂ [0, 1] and any continuous function
f : K → R3, and any t ∈ K, denote the components of f as fx(t), fy(t) and
fz(t). Then the max norm of f(t) is denoted as ‖f(t)‖max, with

‖f(t)‖max = max{fx(t), fy(t), fz(t)}.

Condition 1. PL Approximation within δ/2: This part discusses the cre-
ation of a PL approximant of c that is within δ/2 of c.

Since only C2 functions defined on the compact set [0, 1] are considered, there
is a maximum positive value for ‖c′(t)‖max, denoted as M0. Recall that c′(t)
is non-zero. Then for any t ∈ [t0, t1], (when |t1 − t0| is sufficiently small), a
straightforward application of Taylor’s Theorem to the x component of c(t),
denoted as cx(t) would give,

cx(t) = cx(t0) + Ex(t∗)

for some t∗ ∈ [t0, t], where

Ex(t∗) = (t − t0)c
′
x(t∗),

with Ex(t∗) playing the role of r1(x) above. Clearly, this can be done in each
component. Then, since the final intent is to use the Euclidean norm on the
vector-valued c, denoted as ‖c(t) − c(t0)‖, an elementary algebraic argument
shows that the component-wise inequalities can be combined to yield

‖c(t) − c(t0)‖ ≤ (t1 − t0)
√

3M0.

Observe then that if |si+1 − si| ≤ δ/(2
√

3M0) for each i, the curve c and this PL
approximation are nowhere more than δ/2 apart, as desired.

Note that this analysis only applies to a single curve, and recall that a curve
c can be composed of many Bézier sub-curves. Suppose there are j many sub-
curves. Then, the Taylor’s theorem analysis must be applied to each of the
j-many sub-curves.

Condition 2. Guaranteeing Good Local Tangent Approximations: This
is analogous to the preceding argument. Suppose the curvature is positive some-
where. If not, the curve is the trivial case of a straight line. Let M1 denote
the maximum value of ‖c′′(t)‖max, and let μ0 denote the minimum value of
‖c′(t)‖max. A similar application of Taylor’s Theorem yields,

‖c′(t) − c′(t0)‖ ≤ |t1 − t0|‖c′′(t∗)‖ ≤ (t1 − t0)
√

3M1.

Let θt denote the angle between c′(t0) and c′(t). Then,

|sin(θt)| ≤ ‖c′(t) − c′(t0)‖
‖c′(t)‖ .

Topological Neighborhoods for Spline Curves: Practice & Theory 155

For a sufficiently small value of ǫ chosen to be greater than 0, the arcsine function
is monotonically increasing on [−ǫ/4, ǫ/4]. Therefore, to show that sin(θt) <
sin(ǫ/4) over that interval, it is sufficient to have |θt| < ǫ/4, yielding

|sin(θt)| ≤ ‖c′(t) − c′(t0)‖
‖c′(t)‖ ≤ (t1 − t0)

M1

μ0
.

Observe then that if |si+1−si| ≤ sin(ǫ/4)μ0/M1 for each i, the angular deviation
along the curve will be bounded as desired.

The subroutine Pipe(δ), then, returns the PL approximation obtained by
uniformly dividing the interval so that each

|si+1 − si| ≤ min

(

sin(ǫ/4)μ0

M1
,

δ

2
√

3M0

)

.

2.2 Lower Bound for σ(ǫ)

The introduction, here, of the terminology “ǫ-nearly doubly normal” is similar
to the conditions previously set forth for the seeds for Newton’s Method, as
expressed in Equations 1 and 2 in Section 1.

Let c(sσ) and c(tσ) be two distinct points of c such that d(c(sσ), c(tσ)) = σ.
Consider those circumstances, where for sufficiently small positive ǫ there exist
s̃σ, t̃σ ∈ [0, 1] such that the the normal planes P1 and P2 at c(s̃σ) and c(t̃σ),
respectively, are distinct and intersect in a line near to the segment connecting
c(sσ) and c(tσ) such that ν is a point on P1 ∩ P2 which minimizes the sum
d(c(s̃σ), ν) + d(c(t̃σ), ν) and such that the angle φ formed between the segments
connecting c(s̃σ) to ν and ν to c(t̃σ) is between π − ǫ and π. An illustration is
shown in Figure 3, where a = d(c(s̃σ), ν) and b = d(c(t̃σ), ν) denote the lengths
along the indicated line segments.

Any two points c(s) and c(t) are said to be ǫ-nearly doubly normal if

(c(s) − c(t)) · c′(s) = 0 & (c(s) − c(t)) · c′(t) = 0,

or
π − ǫ < φ < π.

The triangle inequality gives d(c(s̃σ), c(t̃σ)) ≤ a + b, and that a + b ≤ σ. The
algorithm described will estimate the global separation distance using approx-
imations of d(c(s̃σ), c(t̃σ)). Since d(c(s̃σ), c(t̃σ)) ≤ σ, the estimate produced,
denoted as σ(ǫ) (defined immediately, below) will also be shown be no more
than σ. The value σ(ǫ) (See Figure 4) is defined over any two ǫ-nearly normal
points c(t), c(s) with t �= s,

σ(ǫ) = min{c(t),c(s)}{d(c(t), c(s)).}

The transition to providing an estimate of the more conservative value σ(ǫ)
rather than trying to directly approximate σ is motivated by the following ex-
ample. Let α be a planar C∞ curve containing an arc of the unit circle with

156 L.E. Miller et al.

Fig. 3. The points c(s̃σ) and c(t̃σ) are ǫ-nearly doubly normal

Fig. 4. The points c(s) and c(t) on the curve segments inside each cylinder are ǫ-nearly
doubly normal, and D is the distance between the PL segments that approximates the
curve segments

arc-length strictly less than π, but where α has its minimum separation dis-
tance being much greater than 2 and found elsewhere on the curve. For any
algorithm that attempts to approximate σ by focusing upon pairs of points
that were nearly normal within some fixed tolerance, there would always be

Topological Neighborhoods for Spline Curves: Practice & Theory 157

Global Separation Distance Estimate Algorithm

Input: A spline curve c & ǫ.
0. Initialize δ = 1 and ω for upper precision bound.
1. Initialize A(ǫ) = 0.
2. Apply Pipe(δ) to create a PL approximation.
3. Find pw-distances, d(ei, ej)

with points p, q that realize d(ei, ej).
4. If p and q are ǫ-nearly doubly normal

retain d(ei, ej) for further consideration,
Else discard.
Let D = min(d(ei, ej)) over the remaining points.

5. If D ≥ 4δ
A(ǫ) = D − 2δ

Else δ = δ/2, and Go to Step 1.
Output: A(ǫ) = estimate for global separation distance.

Fig. 5. General algorithm for estimating the global separation distance

some input curve like α which would return some value near 2, since this arc-
length can be made arbitrarily close to π.

The value σ(ǫ) is now accepted as a good estimate of σ, and the focus shifts
to approximating σ(ǫ), recalling that σ(ǫ) ≤ σ. Then, the algorithm below in
Figure 5 will return an approximation A(ǫ) of σ(ǫ), with the following two guar-
antees:

– A(ǫ) ≤ σ(ǫ) ≤ σ, and
– A(ǫ) > (σ(ǫ))/2.

Recall that the previous Taylor analyses guarantees that the result of Pipe(δ)
satisfies the following three conditions:

– the length of each cylinder is strictly less than δ/2,
– the radius of each cylinder is strictly less than δ/2, and
– the angular deviation between tangents on the curve segments in each cylin-

der is strictly less than ǫ/4.

The value for δ is initialized to 1. (It can be assumed that the curve has been
normalized so that it lies in a sphere of radius 1 (Note that this also makes
σ(ǫ) < 1 for all ǫ > 0, which is invoked later).) The resultant estimate A(ǫ) is
then tested for validity (See algorithm in Figure 5), and failure results in halving
the value of δ, repeating the iterations until a valid value is obtained. In this
way, the overall algorithm is logarithmic in 1/σ(ǫ).

158 L.E. Miller et al.

2.3 Termination and Satisfactory Value

A termination, let Ď be defined as the distance between two PL segments that
approximate the curve segments in which σ(ǫ) is actually realized. Note that
D ≤ Ď ≤ σ(ǫ)+ δ, since the radius of the cylinders shown in Figure 4 is at most
δ/2, as given previously by Taylor’s analysis.

The algorithm will terminate when 2δ < σ(ǫ). Several applications of the
triangle inequality in Figure 4 show that D ≥ σ(ǫ)−2δ, or equivalently D+2δ ≥
σ(ǫ), yielding

D

σ(ǫ)
≥ D

D + 2δ
=

1

1 +
2δ

D

≥ 1

1 +
2δ

4δ

= 2/3.

Hence, D ≥ (2/3)σ(ǫ) and D ≤ σ(ǫ) ≤ σ, as desired.
The global separation distance algorithm in Figure 5 assumes the existence

of a geometric distance predicate d(ei, ej) between two line segments, ei and ej ,
which returns:

– the distance d(ei, ej) between the two line segments, and
– the points p and q on ei and ej , respectively, where that distance is realized.

2.4 Asymptotic Time Bound

The time taken to approximate the global separation distance by this algorithm
is quadratic in the bounds derived earlier for the Taylor’s analysis. The final
bound σ(ǫ) is computed within an a priori upper bound on the total number of
subdivisions required as is standard practice [8]. As the algorithm is guaranteed
to terminate when δ < σ(ǫ)/2 and δ is halved during each iteration, no more than
O(log σ(ǫ)−1) calls to Pipe are invoked. In the worst case, checking validity for a
given PL approximation produced by Pipe takes quadratic time in the number
of edges. The total time is thus no more than

O

(

log(1/σ(ǫ))max{ (
M0

δ
)2, (

M1

μ0
)2 }

)

.

2.5 Example Analysis

For the curve already used, the values for the indicated parameters, above, were
computed using the Maple computer algebra system as

– M0 = 14.9,
– μ0 = 3.4,
– M1 = 21.9.

Then an easy analysis shows that the number of subintervals generated for
each sub-curve is 2048, which is consistent with the empirical findings in Ta-
ble 1, where approximately 2000 sampled points per sub-curve produced an ac-
ceptable approximation. However, this algorithm for σ(ǫ) provides the additional

Topological Neighborhoods for Spline Curves: Practice & Theory 159

information that σ(ǫ) is a lower estimate and is truly close in the precisely defined
sense given in Section 2.3. Of course, the input numerical parameters between
the two algorithms would cause slight variances, but the agreement within this
order of magnitude comparison is of interest.

2.6 Open Issues for Future Work

Within the Taylor’s analysis performed, a well-defined lower estimate is estab-
lished. Neither of the two algorithms presented (based upon Newton’s Method
or Taylor’s Theorem) can effectively preclude output of a value that might be
generated due purely to local properties of the curve. In practice, though, this
is not quite as problematic as it may first appear. Recall that the purpose in
estimating σ was to find the global factor that contributed to determining the
radius of the neighborhood around the curve, while the local factor was in terms
of curvature. A minimization is taken over those two factors to determine the
radius. So, if either of the algorithms presented here returns a minimum value
that is reflective of local properties, then this may suggest that the curvature
is the determining factor for the radius. In those cases where curvature is the
determining factor, then one need not even estimate σ, but these authors know
of no a priori way to discriminate these cases, in order to avoid unnecessary com-
putations. Resolving this issue remains beyond the scope of the present article
but it is of interest for future investigation, both

– experimentally, with the algorithms discussed on more examples, and
– theoretically, by examination of adaptive skeletal structures, such as the me-

dial axis [1], but also inclusive of more recent alternatives [3, 4, 5].

Extensions to higher dimensional geometric elements appear to be possible, but
remain the subject of future work.

3 Experimental Observations

The curves here were assumed to be C2. While this is sufficient for Newton’s
method, it is clearly not necessary to have the curve be C2 globally . Clearly,
Newton’s method is local, so it it will be sufficient to have the C2 condition locally
within neighborhoods of the seeds. This is shown in Figure 6. This composite
cubic Bézier curve has a point of non-differentiability at the top, where the
three segments are shown in differing line fonts. Yet Newton’s method easily
and quickly estimates σ as 1.52, using only 10 partitioning points per sub-curve.
This value of 1.52 was verified by the direct method discussed in Section 1. In
Figure 6, two line segments are shown, with the thinner font indicating the seed
and the thicker font denoting the converged value from Newton’s method.

This composite Bézier curve has three segments and its control points are

– (0, 0.5, 0), (0.75, -1, 0), (0.83, -1.67, 0), (0.72, -2.11, 0),
– (0.72, -2.11, 0), (0.5, -3, 0), (-0.5, -3, 0),
– (-0.72, -2.11, 0), (0.83, -1.67, 0), (0.75, -1, 0), (0, 0.5, 0).

160 L.E. Miller et al.

Fig. 6. A composite Bézier curve with a non-differentiable point

Fig. 7. A Bézier curve with a cusp

When the bound on the angular deviation of Condition 2 of Subsection 2.1
is ǫ = 0.1 (as done Subsection 2.5), the Taylor’s analysis yields a value of ℓ = 10,
indicating 2ℓ = 1024 partition points, far in excess of the 10 used here for
Newton’s method.

Of course, care must still be exercised in using Newton’s method, as shown
in Figure 7. Here there is a cusp at the top and the control polygon is shown.
Using a very fine sampling relative to Inequalities 4 and 5, results in accepting
a seed that is far into the cusp. Under Newton’s method such a seed converges
to an estimate of zero for σ. For the particular curve σ does equal zero, but the
curve shown could be merely a subset of a much larger closed curve having a
non-zero value for σ, meaning that this zero estimate would be inappropriate.
Note that the algorithm for σ(ǫ) would specifically detect this difficulty by its
check on the magnitude of the derivatives, thereby identifying this unbounded
derivative and terminating the algorithm. Similar checks should also be incor-
porated into any practical code for Newton’s method in this application. This

Topological Neighborhoods for Spline Curves: Practice & Theory 161

example provides further motivation for studying the trade-offs regarding local
and global properties, as mentioned in Subsection 2.6.

4 Conclusion

Newton’s method in two variables, when implemented with some novel geometric
seeding techniques, provides an approach that is promising for preservation of
topological characteristics during scientific visualization. Experiments and an
alternative theoretical analysis, based upon Taylor’s Theorem, are presented.

Acknowledgements. The authors were partially supported by NSF grants
DMS-9985802, DMS-0138098, CCR-022654, CCR-0429477 and/or by an IBM
Faculty Award. All statements here are the responsibility of the authors, not of
the National Science Foundation nor of IBM. The authors thank the Dagstuhl
Seminar organizers and the Dagstuhl staff for providing the intellectually stimu-
lating environment for refinement of these ideas, which were initially based upon
the dissertation of E. L. F. Moore.

References

1. Amenta, N., Peters, T.J., Russell, A.C.: Computational topology: ambient isotopic
approximation of 2-manifolds. Theoretical Computer Science 305, 3–15 (2003)

2. Bisceglio, J.: Personal communication. justin.bisceglio@gmail.com (October 2005)
3. Damon, J.: On the smoothness and geometry of boundaries associated to skeletal

structures, i: sufficient conditions for smoothness. Annales Inst. Fourier 53, 1941–
1985 (2003)

4. J. Damon.: Determining the geometry of boundaries of objects from medial data
(pre-print, 2004)

5. J. Damon.: Smoothness and geometry of boundaries associated to skeletal struc-
tures, II: geometry in the Blum case (pre-print, 2004)

6. Ellis, R., Gullick, D.: Calculus with Analytic Geometry, 3rd edn., Harcourt Brace
Jovanovich (1986)

7. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design: A Practicle
Guide, 2nd edn. Academic Press, San Diego (1990)

8. Lutterkort, D., Peters, J.: Linear envelopes for uniform B–spline curves. In: Curves
and Surfaces, St Malo, pp. 239–246 (2000)

9. Maekawa, T., Patrikalakis, N.M.: Shape Interrogation for Computer Aided Design
and Manufacturing. Springer, New York (2002)

10. Maekawa, T., Patrikalakis, N.M., Sakkalis, T., Yu, G.: Analysis and applications
of pipe surfaces. Computer Aided Geometric Design 15, 437–458 (1998)

11. Mathews, J.H.: Numerical Methods for Computer Science, Engineering and Math-
ematics. Prentice-Hall, Inc., Englewood Cliffs (1987)

12. Moore, E.L.F.: Computational Topology of Spline Curves for Geometric and Mole-
cular Approximations. PhD thesis, The University of Connecticut (2006)

13. Moore, E.L.F., Peters, T.J., Roulier, J.A.: Preserving computatational topology
by subdivision of quadratic and cubic Bézier curves (to appear)

14. Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, Heidelberg (1997)

Homotopy Conditions

for Tolerant Geometric Queries⋆

Vadim Shapiro

Mechanical Engineering and Computer Sciences
University of Wisconsin – Madison, Wisconsin 53706 USA

vshapiro@engr.wisc.edu

Abstract. Algorithms for many geometric queries rely on representa-
tions that are comprised of combinatorial (logical, incidence) informa-
tion, usually in a form of a graph or a cell complex, and geometric data
that represents embeddings of the cells in the Euclidean space Ed. When-
ever geometric embeddings are imprecise, their incidence relationships
may become inconsistent with the associated combinatorial model. Tol-
erant algorithms strive to compute on such representations despite the
inconsistencies, but the meaning and correctness of such computations
have been a subject of some controversy.

This paper argues that a tolerant algorithm usually assumes that the
approximate geometric representation corresponds to a subset of Ed that
is homotopy equivalent to the intended exact set. We show that the Nerve
Theorem provides systematic means for identifying sufficient conditions
for the required homotopy equivalence, and explain how these conditions
are used in the context of geometric and solid modeling.

1 Queries on Combinatorial Representations

1.1 Queries on Combinatorial Data Structures

Shapes, configurations, and other geometric objects in computational geometry
and geometric modeling may be represented implicitly by a system of predicates,
or combinatorially. A distinguishing feature of a combinatorial representation is
that it includes an explicit data structure to represent logical incidence between
a finite collection of simpler ‘primitive’ objects. In geometric applications, a
combinatorial representation also includes some representation of geometry that
embeds these primitive objects into (typically) Euclidean space Ed. Practitioners
often refer to the two parts of such a representation as ‘topology’ and ‘geometry’
respectively. Examples of combinatorial representations include arrangements of
hyperplanes, triangulations, polyhedra, boundary representations in solid mod-
eling, Voronoi diagrams, and many others.

This paper deals exclusively with combinatorial representations. Without loss
of generality, we will assume that logical incidence relationships in a combinator-
ial representation are stored as an abstract cell complex K, which is essentially a

⋆ Based on the talk at the Dagstuhl Seminar on Reliable Implementation of Real
Number Algorithms: Theory and Practice, January 8-13, 2006.

P. Hertling et al. (Eds.): Real Number Algorithms, LNCS 5045, pp. 162–180, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Homotopy Conditions for Tolerant Geometric Queries 163

Fig. 1. Combinatorial representation for a quadrilateral: (a) graph representation of
an abstract complex K; (b) geometric realization |K| is a union of embedded cells;
(c) geometric representation of the abstract complex K in (a); (d) nerve NK of the
complex K consists of four solid tetrahedra

partial ordering on a collection of k-cells (vertices, edges, faces, etc.). For conve-
nience, the ordering may be defined in terms of subsets of 0-cells and represented
by a graph, with arcs indicating the containment relation. Thus, a 1-cell is a collec-
tion (usually a pair) of 0-cells; 2-cell is a collection of (bounding) 1-cells, and so on.
Figure 1(a) shows a typical abstract cell complex for a combinatorial representa-
tion of a quadrilateral, consisting of four vertices (0-cells) vi, four edges (1-cells) ei,
and one face (2-cell) f1. Since higher dimensional cells contain all incident lower-
dimensional cells, by definition, all cells are closed. Additional conditions on K
may be imposed depending on specific use, such as in triangulations, Voronoi dia-
grams, and boundary representations in solid modeling. For example, a boundary
representation in solid modeling requires that the abstract complex is an orientable
k-cycle[1,2]. Thus, topology of the boundary representation for the quadrilateral
would be the abstract cell complex in Figure 1, but without the 2-cell f1.

Each p-cell σp ∈ K is embedded (or realized) geometrically as a set |σp|
in Ed either explicitly (for example, vertex coordinates, curve or surface para-
meterization), implicitly (for example, as the intersection of embedded higher
dimensional cells |σp+1|), or procedurally (for example, as the interpolation of
lower-dimensional cells |σp−1|). The union of all embedded cells of K is usually
called a geometric realization or underlying space of K and is denoted by |K|.
A (non-unique) geometric realizations of the abstract complex for quadrilateral
is shown in Figure 1(b). Geometric realizations can be used to represent the

164 V. Shapiro

abstract cell complex pictorially, as we have done in Figure 1(c) and throughout
the paper, but the two should not be confused.

We will not be concerned with how such combinatorial representations are
created, but instead consider the question of what it means to query such a
representation. Arguably, the most common and most important of all queries
on a geometric representation is the point membership test

ΠS : R3 → {in, out}

to determine whether a given point p ∈ R3 belongs to a represented set S of
points or not[3]. This test essentially implements the set charateristic function,
thus defining the induced set S itself [4]. When a set S is represented combinato-
rially as a subset of some |K|, the point membership test reduces to testing the
candidate point p against individual embedded cells, |σ|, in the cell complex K.
For example, to test whether a point belongs to the boundary of a solid (or a tri-
angle or a convex polygon), we test to see if the point belongs to one of its faces;
the latter may require testing the point against its edges and/or vertices. Many
other geometric queries either reduce to or rely on point membership tests [2].1

1.2 Imprecise Reality

The above description of a combinatorial structure is typical in literature but is
often misleading for practical applications, because embeddings of cells in the cell
complex K are usually known only with some degree of uncertainty. The reasons
for this vary, but there are several well known generic causes that are summarized
below and illustrated in Figure 2 for the combinatorial representation of the
quadrilateral boundary:

– Geometric data for scientific and engineering models comes from a variety
of sources and is intrinsically imprecise; this is obviously true for measured
and reconstructed models, but is also the case for models that are transferred
between various systems using some neutral exchange format [6]. Figure 2(a)
shows a typical geometric data obtained from an inexact source.

– Embedding may be exact, but point membership test requires computation
of quantities that are computed only approximately, for example, because of
round-off errors in floating point computations. Even the simplest and the
most common point membership test against a linear halfplane is guaranteed
to be correct only for points that are at least some distance δ away from the
line segment bounding the halfspace [7]. Figure 2(b) illustrates typical ‘safe’
zones where the point membership is guaranteed to be correct.

– Geometric representations are often based on incomplete spaces – by design.
For example, rational parametric curves and surfaces are standard in most

1 The point membership test as used in this paper should not be confused with the
point membership classification (PMC) function. PMC also requires distinguishing
the points on the boundary from those in the interior of the set[5]; however, most
PMC implementations rely on point membership testing in one form or another[2].

Homotopy Conditions for Tolerant Geometric Queries 165

Fig. 2. Well known causes of imprecision: (a) data comes from imprecise source; (b)
point membership is limited by finite resolution; (c) incomplete representation spaces
lead to redundant representations; (d) containment sets in multi-resolution and subdi-
vision methods

computer-aided design systems, but their transformations and intersections
may not admit rational parameterizations and must be approximated by
independent embeddings that are logically redundant[8]. For example, in
Figure 2(c), both vertices and edges (with their end points) are embedded
independently.

– Multi-resolution and subdivision methods for representing curves, surfaces,
and shapes are increasingly popular in geometric modeling due to their at-
tractive computational properties. By their very nature, such methods repre-
sent the geometry only approximately, even when the exact point set is well
defined in the limit [9]. For example, the edges in Figure 2(d) are contained
inside a hierarchy of convex regions. See [10] for many additional examples.

Regardless of the source of the imprecision, we are faced with an undeniable
reality: point membership testing against embedded cells |σ| or embedding of
their complex |K| is usually not computable exactly. What is the meaning of
such a combinatorial representation? Without proper semantics, correctness of
most geometric queries, and point membership queries in particular, on such
combinatorial representations are compromised. Two difficulties are immediately
apparent. First, it is not clear what it means to test a point against an imprecise
embedding of a cell σ. Secondly, depending on the answer to the first question,
the union of |σ| may or may not (and usually does not) form a valid realization
of the cell complex K. Then, under what conditions point membership testing
against |K| make sense and reduces to tests against individual cells |σ|?

166 V. Shapiro

1.3 What This Paper Is About

This paper attempts to provide partial answers to the above questions, in the
case of point membership queries against imprecise combinatorial representa-
tions. But it should be emphasized that the proposed answers are not a panacea,
and indeed there is no single “correct solution” to the above difficulties. Rather,
the proposed answers are based on postulated assumptions about such repre-
sentations that are, in turn, based on common sense and accumulated practical
experience.

The rest of the paper is as follows. In section 2, we argue that most impre-
cision problems may be formulated by replacing exact geometric embeddings
in combinatorial representations by corresponding tolerant zones. We postulate
properties for these tolerant zones, including the requirement that a tolerant
zone and the corresponding exact embedding should be of the same homotopy
type. Section 3 summarizes the classical notion of nerve and the Nerve Theorem,
that are applied in Section 4 to specific problems of tolerant modeling. Section
5 concludes with summary, extensions, and open problems.

2 Tolerant Zones in a Complex

2.1 To Tolerate Imprecision

The difficulty in proposing a standard notion of tolerant point membership query
on imprecise representations lies in the ambiguity of the term “imprecision” and
the diversity of its sources. But let us consider the hypothetical task of classifying
a point against any one of the imprecise representations illustrated in Figure 2.

When the data comes from an imprecise source as in Figure 2(a), or is known
to be redundantly approximated as in Figure 2(c), it makes little sense to test
points against the given embeddings because the union of the embedded cells |σ|
is clearly not a valid complex K. Two approaches have been proposed in such
situations[4]: either perturbing the original embeddings slightly to obtain a valid
cell complex, or classifying points within some small but finite distance δ of |σ|
as being in |σ|. The latter approach would have an effect of “thickening” the
individual cell embeddings by δ in a hope that the adjacent cells connect to each
other as intended. In situations illustrated in Figure 2(b) and (d), perturbations
are not helpful at all, since the cause of imprecision is the resolution of the point
membership algorithm itself. But in these cases too, points in the vicinity of the
embedding |σ|, which may or may not be known, are considered to belong to the
embedded set.

We conclude that in most cases, to tolerate imprecision means that a candidate
point p is tested not against the set |σ|, but against some enlarged set Zδ

σ associ-
ated with the cell in question. We will refer to this set Zδ

σ as a tolerant zone2 of
cell σ of “size” δ. In general, δ can be a function of the embedding and vary spa-
tially, but in practice δ is often used as an upper bound on the distance from the

2 Since the zone is associated with a set |σ| and not an abstract cell σ, it would be more
accurate (and more awkward) to use Z

δ
|σ| to denote the zone.

Homotopy Conditions for Tolerant Geometric Queries 167

Fig. 3. Tolerant zones Zδ
σ for individual cells σ ∈ K. Note that a tolerant zone may

not contain the exact embedding |σ|, which may or may not be known.

embedding |σ|, which may or may not be known. Throughout the paper, we may
drop either δ or σ from Zδ

σ when their meaning is clear from the context. Typical
tolerant zones for point, edges, and faces are illustrated in Figure 3.

The notion of a tolerant zone appears explicitly in many proposed approaches to
dealing with imprecision, for example, in [11,12,13,14]. The zones are also implied
by epsilon predicates in [15], box and ball covers of boundaries [16,4], and surface
thickening[17]. Zones that are defined by maximum distances to the correspond-
ing cells can be constructed in terms of offsets or sweeps (Minkowski sums); for
B-splines, the zones are naturally associated with their control nets and polyhe-
dral enclosures [9,10]. The notion of a tolerant zone is also present implicitly even
when the embeddings are known exactly and may be perturbed to create a valid
cell complex K. Different perturbation techniques are described in [18,19] and in
[20], but all such techniques share the assumptions that the perturbed embeddings
(usually curves and/or surfaces) lie in the vicinity of the original embeddings and
preserve their topological form in some well defined sense.

We could now say that a point membership query against set X is δ-tolerant
iff it returns in for every point in the tolerant zone Zδ

X , and out for all other
points. For this definition to make sense, we have to be clear about the assumed
properties of the tolerant zones. Based on the above discussion, it is clear that
a tolerant zone must satisfy some metric condition: the size of zone Zδ

X is
bounded by δ. It may be interpreted to mean that every point in the zone is
at most δ away from X , or that the zone Zδ

X may be covered by an infinite
family of balls of radius δ, or perhaps in another way depending on a specific
situation. A second condition becomes apparent when we consider what happens
to the tolerant zone with increased precision. As δ → 0, the tolerant zone Zδ

X

must gradually shrink and deform onto the exact set X = Z0
X , if that exact set

168 V. Shapiro

were known. If this were not the case, small changes in precision could produce
drastic changes in the topological properties of the sets induced under the point
membership queries. Thus, it is reasonable to postulate that the tolerant zone
Zδ

X must also satisfy the topological condition: at the very least, it must be of
the same homotopy type as the exact set X for all values of δ.

These principles are rarely articulated, probably because the concept of toler-
ant zones appears to be straightforward for simple point sets. If all cells σ ∈ K
are embedded homeomorphically to p-dimensional balls,3 the topological condi-
tion implies that their corresponding zones Zδ

σ must be contractible.4 The metric
conditions are often chosen to imply that the zones are either (unions of) convex
sets or Minkowski sums (a sweep) of a ball and some known geometry. That is
not to say that the general problem of constructing a tight tolerant zone is trivial,
even for a simple cell embedded as a line segment [7]. A principal challenge in the
surface-surface intersection problem, one of the most studied in computer-aided
geometric design, has been to construct an approximate intersection curve that
is isotopic to the true intersection curve (studied in [22,16,23] and elsewhere).
Requiring that the tolerant zone of a curve segment is of the same homotopy
type is a weaker condition that is easier to obtain and is often used to establish
the isotopy condition [17,23].

2.2 Collection of Tolerant Zones

Let us now suppose that an implemented point membership test is δ-tolerant
against each embedded cell σ corresponding to a collection of cells {σ} that
form a cell complex K. A usual implementation of the point membership query
against the embedded complex |K| returns in if and only if the point in question
classifies in with respect to one of the embedded cells |σ|, σ ∈ K. This seems
reasonable since the union of all tolerant zones

⋃
Zσ is an approximation of some

exact realization |K| =
⋃ |σ| (which may or may not be known). But is such a

query δ-tolerant for some δ determined from the tolerant zones of the individual
cells? In particular, is it true that the union of the tolerant zones

⋃
Zσ for

the cells in the complex is a combined tolerant zone Zδ
K for the complex? The

examples in Figure 4 easily show that this is not the case. The metric condition
is satisfied trivially, but the topological condition is problematic. Both examples
in Figure 4 fail the topological condition, each for different reasons, because the
union of the cell zones is not homotopy equivalent to the embedding |K| of the
original cell complex K. In this case, K is the abstract cell complex associated
with a quadrilateral’s boundary |K|. Indeed, we usually do not know what |K|
is, but its intended topological properties are completely defined by the abstract
cell complex K.

Intuitively, the solution to the difficulty appears to be straightforward: if
⋃

Zσ

were to form a tolerant zone ZK for the whole complex, then the tolerant zones

3 This is not always the case. For example, computer-aided design systems often rely
on geometric cell complexes built from submanifold cells of arbitrary genus [21].

4 By definition, contractible spaces are homotopy equivalent to a point; in particular,
they must be connected and contain no holes.

Homotopy Conditions for Tolerant Geometric Queries 169

Fig. 4. The unions of tolerant zones
�

Zσ (shown above) and the corresponding nerves
N{Zσ} (shown below) associated with vertices and edges in a quadrilateral’s boundary.
(a) The intersections of zones {Zσ} in three out of four corners do not correspond to
incidence of cells in the quadrilateral’s boundary; (b) Zones intersections are in one-
to-one correspondence with incidences in the boundary, but the union of the zones is
not homotopy equivalent to the quadrilateral’s boundary.

Zσ must maintain the same incidence relationships as the corresponding cells σ
have in K. In other words, this requires that for any two cells σi, σj ∈ K, the
tolerant zones Zσi

∩ Zσj
�= ∅ if and only if σi ∩ σj �= ∅. Indeed, this is one of the

conditions proposed in [12] as a requirement for “consistency” of a polyhedral
boundary representation model. Note that this condition is satisfied by the col-
lection of zones in Figure 4(b), but is not sufficient because tolerant zones are not
convex and their intersections are not contractible. A different set of conditions
on the tolerant zones proposed in [13] suggests that only some of these intersec-
tions are required, but connected components of all such intersections must be
contractible. Both authors proposed additional metric and containment condi-
tions on the zones, without formal justification. Consider the example in Figure
5. Clearly the union of shown tolerant zones

⋃
Zσ is homotopy equivalent to the

boundary of the rectangle, even though the relationships between the zones fail
the previously proposed conditions. Specifically, the conditions proposed in [12]
are violated in the upper left corner, where the zones Ze1

and Ze2
of the incident

edges do not intersect; the conditions proposed in [13] are violated in the lower
left corner where the vertex zone Zv1

is not large enough to contain the inter-
section of the two incident edge zones. These and other proposals for the notion
of topological consistency rely on heuristic arguments and seemingly contradic-
tory conditions, largely because the notion itself is not well defined [14,24,25].

170 V. Shapiro

Fig. 5. (a) The union of tolerant zones
�

Zσ is homotopy equivalent to the boundary of
a rectangle, but fails the conditions proposed in [12] (upper left corner) and [13] (lower
left corner); (b) Full nerve (left) and inclusion-reduced nerve (right) for the collection
of zones in (a)

However, if the notion of homotopy equivalence is accepted as a guiding prin-
ciple for topological consistency, then it becomes possible to derive sufficient
conditions for consistency and to establish a formal relationship between various
heuristic arguments. The rest of this paper shows how this can be accomplished
using the Nerve Theorem[26].

3 Homotopy Via Nerves

3.1 Nerve of Collection of Sets

The differences between various examples in Figures 4 and 5 can be understood
in terms of intersections between the tolerant zones Zσ for various cells σ ∈ K.
The example in Figure 4(a) does not satisfy the homotopy condition because
some zones of incident edges do not intersect. All required zone intersections are
present in Figure 4(b), but the intersections themselves are problematic, and it
may not be clear how to differentiate this case from the example in Figure 5.
Intuitively, we want to know which zones intersect and how they intersect, so
that the union of zones

⋃
Zσ is homotopy equivalent to |K|. We will use the

concept of nerve to order all possible intersections between the zones, and use
the Nerve Theorem to enforce the required homotopy.

Given a finite collection of (closed) sets {X}, the nerve N{X} is an ab-
stract simplicial complex constructed as follows. Let 0-simplex 〈Xi〉 be a vertex

Homotopy Conditions for Tolerant Geometric Queries 171

Fig. 6. Collections of closed sets and their corresponding nerves: (a) The nerve
N{A, B, C, D} is a two-dimensional complex determined by which sets intersect each
other, but says nothing about the topological properties of intersections; (b) a nerve
of a typical two-dimensional “corner” is a solid tetrahedron

corresponding to the set Xi in the collection. A 1-simplex 〈Xi, Xj〉 is associated
with every pair of sets Xi, Xj whose intersection is non-empty. More generally,
k-simplices in the nerve N{X} are defined by collections of k + 1 vertices cor-
responding to k + 1 sets {Xj} such that

⋂
j Xj �= ∅. It is easy to see that the

collection of such simplices is a complex, since every sub-collection of intersect-
ing sets is non-empty. Two examples of nerves are shown in Figure 6. Figure
6(a) shows the nerve for the collection of four sets. Observe that the dimension
of the nerve corresponds to the maximum number of sets in the collection with
non-empty intersection, which is three in both of these examples. In a cell com-
plex K, the maximum number of intersections occurs at the vertices, where all
higher dimensional cell intersect. For example, consider a typical vertex neigh-
borhood in Figure 6(b) where a vertex, two edges, and one face intersect. The
corresponding nerve will contain a 3-simplex which can be visualized as a tetra-
hedron. The nerve of the abstract complex K for quadrilateral (with interior) is
shown in Figure 1(d). Nerves for collections of tolerant zones in Figures 4 and 5
are shown next to them.

3.2 Nerve Theorem

The concept of a nerve is apparently due to Alexandrov[27], and has become a
standard tool in algebraic topology[28], combinatorics [26], and computational
topology [29]. We will use nerves to enumerate, represent, and analyze the in-
tersections between the tolerant zones Zσ, and to compare them to the inter-
sections implied by the corresponding abstract cell complex K. The main tool

172 V. Shapiro

in our analysis is the Nerve Theorem. Various versions of the Nerve Theorem
correlate the topological properties of the union

⋃
X of sets in the collection

and those of its nerve N{X} [26]. In particular, the Nerve Theorem states that,
if every non-empty intersection

⋂
j Xj is contractible, then

⋃
X and N{X} are

homotopy equivalent, or
⋃

X ≃ N{X} for short.
Let us now assume that embeddings of all k-cells σ ∈ K are homeomorphic

to k-dimensional balls in Euclidean space.5 Then the conditions of the Nerve
Theorem are trivially satisfied by the cells in any cell abstract complex, since
the intersection between any two cells in the complex is either empty or another
cell. It is easy to see that the nerve of Figure 1(d) can be continuously deformed
onto the quadrilaterals in Figure 1(b), and the tetrahedron in Figure 6(b) can
be collapsed on the corresponding vertex.

Applying the Nerve Theorem to a collection of zones {Zσ} is more interesting.
By assumed topological properties, every zone is contractible, but their intersec-
tions do not have to be. For example, the nerve Theorem does not apply to the
example in Figure 6(a), because intersection of the two sets A ∩ B is a discon-
nected set with two components. In this case, the nerve N{A, B, C, D} is not
homotopy equivalent to A∪B ∪C ∪D. Similarly, the Nerve Theorem cannot be
applied to the collection of zones in Figure 5, because the intersection of zones
Ze2

∩ Ze3
is not contractible. Nevertheless in this particular case, the nerve is

homotopy equivalent to the union of zones, by inspection. On the other hand,
the conditions of the Nerve Theorem are satisfied by every collection of zones in
Figure 4(a), and indeed it is easy to see that in each case, the nerve is homotopy
equivalent to the corresponding union of zones.

4 Tolerant Complex from Tolerant Zones

We are now ready to tackle the original question posed in Section 2.2, namely
under what conditions the union of tolerant zones

⋃
Zσ is in fact a tolerant zone

ZK for the embedding of the abstract complex |K|? There are two apparent
difficulties. First, we do not really know the embedding |K| but only the abstract
complex K. Secondly, as we saw above on the examples in Figure 4 and 5, it
is not clear that the Nerve theorem actually helps to distinguish the tolerant
embedding of K. We address both of these difficulties below.

4.1 Sufficient (and Almost Necessary) Conditions

The first of the above difficulties is resolved by applying the Nerve theorem twice:
once to the abstract cell complex K and second time to the collection of the tol-
erant zones Zσ, σ ∈ K. The key observation is that we really do not need to
know the embedding |K|, because by definition, any exact embedding must be
homotopy equivalent to the abstract complex K. Therefore, by the Nerve theo-
rem, |K| ≃ NK, where NK stands for the nerve of the abstract complex K.

5 For more general embeddings, other versions of the Nerve Theorem relate k-
connectedness of the nerve to that of the union of the sets in the collection [26].

Homotopy Conditions for Tolerant Geometric Queries 173

Applying the Nerve theorem to the collection of tolerant zones {Zσ}, we
observe that contractibility of all non-empty intersections between the tolerant
zones is a sufficient condition for homotopy equivalency between the union of
all zones and their nerve, i.e.

⋃
Zσ ≃ N{Zσ}. Combining the two observations

together, we arrive at sufficient conditions for a complex of zones to be tolerant.

Theorem 1 (Twin-Nerve). Let {Zσ} be a collection of tolerant zones associ-
ated with abstract cells σ ∈ K, such that every non-empty intersection

⋂
Zσi

is
contractible. Then

⋃
Zσ is a tolerant zone ZK for the complex K if and only if

NK ≃ N{Zσ}.

To show that the theorem is true, we only need to show that the homotopy
equivalence of the two nerves implies that |K| and

⋃
Zσ are of the same ho-

motopy type as well, and vice versa. This follows immediately by applying the
Nerve theorem twice as discussed above:

|K| ≃ NK ≃ N{Zσ} ≃
⋃

Zσ

Note that the Twin-Nerve Theorem establishes only sufficient conditions because
it hinges on the assumption that all intersection of tolerant zones are contractible.
This is not the case, for example, in Figure 5, where

⋃
Zσ is clearly homotopy

equivalent to the rectangle’s boundary, but Ze2
∩ Ze3

includes two connected
components.

It is instructive to compare our conclusions with the topological consistency
conditions proposed by others. Segal[12] requires that the tolerant zones intersect
if and only if the corresponding abstract cells are incident on each other in
the boundary representation of a polyhedron. This amounts to requiring an
isomorphism between the two nerves, NK ∼= N{Zσ}, which is also sufficient
but unnecessarily too strong. He makes no mention of contractibility, but many
(not all) of tolerant zones are convex sets by construction. By contrast, Jackson
[13] makes no assumptions on the shape of the zones and explicitly requires that
connected components of zone intersections are contractible. He indicates that
vertex, edge, and face zones may intersect if the corresponding abstract cells are
incident, implying that the two nerves do not have to be isomorphic, but without
further elaboration. It should be clear from the examples in Figure 4 that these
conditions are neither necessary nor sufficient. Additional metric conditions are
imposed (such as vertex tolerance should be greater than edge tolerance, etc.),
but these are not enough to ensure the required homotopy equivalence in general.
Below we analyze a number of special cases, including those proposed in [13], and
explain how they can be derived systematically from the Twin-Nerve Theorem.

4.2 Collapsed Intersections

The main utility of the Twin-Nerve Theorem is that it provides a starting point
for systematic analysis and derivation of sufficient conditions under which a
union of tolerant zones

⋃
Zσ can be used as a tolerant replacement for the exact

embedding |K|.

174 V. Shapiro

Fig. 7. Collapses in the nerve N{Zσ} preserve its homotopy type. The nerve in (a)
can be collapsed to the nerve in (b) or (c), but not to (d). The nerve in (d) cannot be
collapsed.

A nerve of a collection of tolerant zones {Zσ} is simply a means to impose an
ordering on their intersections. The Twin-Nerve Theorem requires this ordering
to be “compatible” with the incidence of the corresponding cells σ ∈ K. One way
to assure this compatibility is to require that the two nerves NK and N{Zσ} are
isomorphic, i.e. are identical under relabeling. But this requirement would rule
out many practical solutions, including those proposed in [13], where the zones
of some incident cells do not intersect, but their union preserves the homotopy
type of K.

Consider, for example, possible intersections between the tolerant zones in
the corner of rectangle’s boundary representation shown in Figure 7. If all three
incident zones of the two edges and a vertex intersect, the nerves N{Zv, Ze1

, Ze2
}

and N{v, e1, e2} are simplicial complexes of a single triangle (one 2-simplex,
three 1-simplices, and one 0-simplex), as shown in Figure 7(a). It is obvious
that the unions of the three zones shown in Figure 7(b) and (c) also preserve
the homotopy type of the corner, and this is reflected by the fact that the
N{Zv, Ze1

, Ze2
} is an elementary collapse6 of the nerve N{v, e1, e2}. In this

case, the collapse is achieved by removing the 2-simplex 〈Zv, Ze1
, Ze2

〉 and one
of its bounding 1-simplices – either 〈Zv, Ze1

〉 or 〈Ze1
, Ze2

〉. Geometrically, the
collapse corresponds to the fact that Zv∩Ze1

∩Ze2
= ∅, and either Zv∩Ze1

= ∅ or
Ze1

∩Ze2
= ∅. In contrast, all pairwise intersections of zones shown in Figure 7(d)

are contractible, but the nerve N{Zv, Ze1
, Ze2

} is not a collapse of N{v, e1, e2},
and the union of the three zones does not preserve the homotopy type of K.

4.3 Included Intersections

In order to apply the Twin-Nerve Theorem, we had to assume that all non-empty
intersections of tolerant zones were contractible (to a point). This is a common

6 An elementary collapse of a complex is obtained by simultaneously removing a k-
simplex σ and one of its free faces τ (i.e. τ is not also a face of another simplex)[30].
More general collapses can be defined as sequences of elementary collapses.

Homotopy Conditions for Tolerant Geometric Queries 175

Fig. 8. Reduction of N{Zσ} based on inclusion relationships preserves the homotopy
type of the union of zones

�
Zσ

and a reasonable assumption in many practical situations, for example, when all
zones and their intersections are (locally) convex and therefore are contractible.
This argument applies to zones constructed as offsets of convex embeddings and
to control polygons of Bezier curves, among others. However, contractibility of
intersections cannot be assumed in general, and we have two options: either to
disallow such intersections altogether and declare the union of zones

⋃
Zσ to

be non-tolerant, or to identify the conditions under which such intersections are
permitted.

Consider the union of four zones in Figure 8. The union is contractible, but
this cannot be deduced from the Nerve Theorem, because the intersection Z1∩Z2

is a disconnected set that is not contractible. The nerve N{Zi} accounts for all
intersections and does not take into account the fact that Z1 ∩ Z2 is included
(contained) in Z3. Thus, the topological properties of Z1 ∩ Z2 are irrelevant to
the homotopy type of the union Z1 ∪ Z2 ∪ Z3 ∪ Z4. This suggest that use of
the full nerve leads to overly conservative results. Instead we should look at a
reduced nerve that accounts only for those intersections that are not included
in other zones. In the example of Figure 8, the full nerve is a tetrahedron. We
already observed that 〈Z1, Z2〉 has no bearing and can be removed, as can be
all higher-dimensional simplices that contain 〈Z1, Z2〉 as a face. In this case,
the simplices 〈Z1, Z2, Z3〉, 〈Z1, Z2, Z4〉, and 〈Z1, Z2, Z3, Z4〉 do not affect the
homotopy type of the union. The resulting simplicial complex is the reduced
nerve NR{Z1, Z2, Z3, Z4}.

176 V. Shapiro

Generalizing the reduction process to an arbitrary collection of tolerant zones
{Zσ}, let us assume that for some subcollection of zones a containment relation-
ship holds:

(Zσ1
∩ Zσ2

∩ . . . ∩ Zσk
) ⊆ Zγ

Then, we remove from the full nerve N{Zσ} the simplex 〈Zσ1
, Zσ2

, . . . , Zσk
〉,

and all other higher dimensional simplices containing it as a face, including the
simplex 〈Zσ1

, Zσ2
, . . . , Zσk

, Zγ〉. Repeating the removal process for every known
containment relationship (in any order), we obtain a new simplicial complex that
we will call the inclusion-reduced nerve NR{Zi}.

It is easy to show that the reduction process does not necessarily preserve
the homotopy type of the nerve, so that the full nerve N{Zσ} and the inclusion-
reduced nerve NR{Zσ} may not be homotopy equivalent. However, the reduction
process guarantees that the intersection terms corresponding to the removed
simplices do not affect the homotopy type of the union of the tolerant zones⋃

Zσ. Hence, the Twin-Nerve Theorem may be restated in a stronger form as
follows.

Theorem 2 (Reduced Twin-Nerve). Let {Zσ} be a collection of tolerant
zones associated with abstract cells σ ∈ K, such that every non-empty intersec-
tion

⋂
Zσi

is either contractible or is contained in another zone Zσj
, j �= i. Then⋃

Zσ is a tolerant zone ZK for the complex K if and only if NK ≃ NR{Zσ}.

The Reduced Twin-Nerve Theorem allows verifying homotopy type in some com-
mon situations where the zone intersections may not be always contractible. For
example, it can be applied directly to the example in Figure 5, where a non-
contractible edge intersection Ze2

∩Ze3
is contained within the vertex zone Zv2

.
The theorem also provides at least a partial explanation of why solid boundary
representations often assume that a tolerance value δ at a vertex should be equal
to or greater than that of the incident edge, which in turn should be equal to or
greater than the tolerance associated with the incident face [13].

5 Conclusions

5.1 Summary

This paper is an attempt to formulate the notion of topological consistency for
geometric queries that must tolerate inherently imprecise geometric data and rely
on approximate numerical computations. We argued that the notion of topolog-
ical consistency depends (explicitly or implicitly) on the notion of tolerant zones
and, at the very minimum, on the requirement that the union of tolerant zones is
homotopy equivalent to the combinatorial model of a geometric representation.
Sufficient conditions for homotopy equivalence may be derived systematically us-
ing the Nerve Theorem. We showed that this approach to topological consistency
applies in several important and practical situations, formally justifying earlier
heuristic algorithms and identifying several flawed and incomplete arguments.

Homotopy Conditions for Tolerant Geometric Queries 177

In the context of this paper, the nerve N{Zσ} of a collection of tolerant zones
represents an ordering of all possible (and therefore most stringent) intersection
conditions. We have also seen that useful subsets of these intersections may be
identified by homotopy preserving transformations of the full nerve (collapses
in particular) or of the union

⋃
Zσ of zones themselves (based on known con-

tainment relationships). Additional homotopy preserving transformations may
apply to other practical situations that are yet to be studied. These observations
become particularly important in higher dimensions, because the number of all
contractible intersection conditions required by the Nerve Theorem grows expo-
nentially in the total number of incident cells. A typical corner in a boundary
representation of a three-dimensional solid includes at least seven different inci-
dent cells: one vertex, three edges, and three faces. But based on our analysis in
section 4, a much smaller number of intersection conditions may be sufficient to
establish the homotopy between the union of the tolerant zones and the corner
in a typical solid boundary representation.

The proposed formulation can be applied to a number of practical problems
in geometric data translation, validation, and repair. All four hypothetical situa-
tions identified in Figure 2 commonly arise in solid modeling, and our formulation
suggests a systematic approach for validating any proposed solutions to dealing
with imprecision. In practical terms, this requires identifying the tolerance zones
implied by known geometric errors, approximations, or algorithms, enumerating
all relevant intersection conditions, and verifying that all relevant intersections
are contractible — either algorithmically or based on additional a priori infor-
mation. Beyond solid modeling, the proposed homotopy conditions appear to be
applicable to a broad range of computational topological consistency problems,
from computational geometry [25,31] and geographic information systems and
spatial databases[32,33], and mechanical design[34].

5.2 Extensions and Open Issues

Enforcement of homotopy equivalence between the exact and imprecise embed-
dings in a combinatorial representation is a relatively weak condition, and is
only an initial step towards solving a variety of tolerant modeling problem. Ad-
ditional requirements on the collection of tolerant zones are often needed for
specific applications. For example, we would like to refer to the collection {Zσ}
as a “zone complex,” but without additional assumptions this is only a wishful
thinking. We would also need to define a boundary operator, and perhaps make
sure that the boundary of a tolerant zone is a union of other tolerant zones.
However, based on the analysis in this paper, we already know how to make sure
that this union is homotopy equivalent to the corresponding boundary in the
abstract cell complex.

This research was originally motivated by the need to define a notion of solid
boundary representation that can tolerate geometric errors and limited accu-
racy of algorithms. A set theoretic model for such tolerant solids is described in
[6,35]. It is clear that the union of tolerant zones associated with vertices, edges,
and faces in the boundary representation must be homotopy equivalent to the

178 V. Shapiro

intended exact embedding (which may not be known), and this paper shows how
this condition may be checked and enforced. However, the homotopy condition
alone is not sufficient. A valid boundary representation is also an orientable 2-
cycle that separates the Euclidean space into the interior and the exterior of a
solid, following the Jordan-Brouwer Theorem. It is not immediately clear how to
extend these notions to the union of tolerant zones associated with the bound-
ary representation, but it is likely that the notion of separation used to establish
conditions for curve and surface isotopy [36,23,17] will be useful.

The separation property as used in the above references requires that the
tolerant zone also contains the exact sets it represents. This condition would
have to hold for every cell σ ∈ K, |σ| ⊆ Zσ, and for the whole cell complex |K| ⊆⋃

Zσ. Satisfaction of the latter condition is not guaranteed even if the homotopy
condition |K| ≃

⋃
Zσ is satisfied. For example, the union of zones in Figure 7(b)

is homotopy equivalent to the corner of a quadrilateral’s boundary. But notice
that Ze2

∩ Zv = ∅, which means that the union Ze2
∪ Zv does not contain

the union of exact embeddings |e1| ∪ |v|. Adding the containment requirement
to the homotopy condition studied in this paper would imply a much more
stringent demand that every exact embedding must be a deformation retract
of the corresponding tolerant zone. This condition seems to be implied but not
explicitly enforced in [13], and no formal arguments either for or against it have
been put forward as of now.

Acknowledgements

This research is supported in part by the National Science Foundation grants
DMI-0500380 and DMI-0323514. The author is grateful to Prem Mansukhani
and Tom Peters for numerous suggestions on improving the presentation in the
paper. Responsibility for errors and omissions lies solely with the author.

References

1. Requicha, A.A.G.: Representations for rigid solids: Theory, methods and systems.
ACM Computing Surveys 12(4), 437–464 (1980)

2. Shapiro, V.: Solid modeling. In: Farin, G., Hoschek, J., Kim, M.S. (eds.) Handbook
of Computer Aided Geometric Design, pp. 473–518. Elsevier Science Publishers,
Amsterdam (2002)

3. Shapiro, V.: Maintenance of geometric representations through space decomposi-
tions. International Journal of Computational Geometry and Applications 7(4),
383–418 (1997)

4. Qi, J., Shapiro, V., Stewart, N.F.: Single-set and class-of-sets semantics for geomet-
ric models. Technical Report 2005-1, Spatial Automation Laborotary, University
of Wisconsin - Madison (2005)

5. Tilove, R.B.: Set membership classification: A unified approach to geometric inter-
section problems. IEEE Transactions on Computer C-29(10) (1980)

6. Qi, J., Shapiro, V.: Epsilon-solidity in geometric data translation. Technical report,
SAL 2004-2, Spatial Automation Laboratory, University of Wisconsin-Madison
(2004)

Homotopy Conditions for Tolerant Geometric Queries 179

7. Kettner, L., Pion, K.M., Schirra, S., Yap, S.: Classroom examples of robustness
problems in geometric computations. In: Albers, S., Radzik, T. (eds.) ESA 2004.
LNCS, vol. 3221, pp. 702–713. Springer, Heidelberg (2004)

8. Patrikalakis, N.M., Maekawa, T.: Shape Interrogation for Computer Aided Design
and Manufacturing. Springer, Heidelberg (2002)

9. Sabin, M.: Subdivision surfaces. In: Farin, G., Hoschek, J., Kim, M.S. (eds.) Hand-
book of Computer Aided Geometric Design, pp. 309–341. Elsevier Science Pub-
lishers, Amsterdam (2002)

10. Peters, J., Wu, X.: SLEVEs for planar spline curves. Computer Aided Geometric
Design 21, 615–635 (2004)

11. Segal, M., Sequin, C.: Consistent calculations for solids modeling. In: SCG 1985:
Proceedings of the first annual symposium on Computational geometry, pp. 29–38.
ACM Press, New York (1985)

12. Segal, M.: Using tolerances to guarantee valid polyhedral modeling results. In:
Computer Graphics (Proceedings of ACM SIGGRAPH 1990), pp. 105–114 (1990)

13. Jackson, D.J.: Boundary representation modelling with local tolerancing. In: Pro-
ceedings of the 3rd ACM Symposium on Solid Modeling and Applications, Salt
Lake City, Utah, pp. 247–253 (1995)

14. Fang, S., Bruderlin, B., Zhu, X.: Robustness in solid modeling: A tolerance-based
intuitionistic approach. Computer-Aided Design 25(9), 567–576 (1993)

15. Guibas, L., Salesin, D., Stolfi, J.: Epsilon geometry: Building robust algorithms
from imprecise computations. In: Proceedings of the fifth ACM Symposium on
Computational Geometry, Saarbruchen, West, Germany, pp. 208–217 (1989)

16. Shen, G., Sakkalis, T., Patrikalakis, N.M.: Analysis of boundary representation
model rectification. In: Proceedings of the 6th ACM Symposium on Solid Modeling
and Applications, Ann Arbor, Michigan, pp. 149–158 (2001)

17. Chazal, F., Cohen-Steiner, D.: A condition for isotopic approximation. In: Proceed-
ings of the 2004 ACM Symposium on Solid Modeling and Applications, Genova,
Italy (2004)

18. Andersson, L.E., Stewart, N.F., Zidani, M.: Error analysis for operations in solid
modeling (2004), www.iro.umontreal.ca/∼stewart

19. Hoffmann, C.M., Stewart, N.F.: Accuracy and semantics in shape-interrogation
applications. Graphical Models (to appear, 2005)

20. Song, X., Sederberg, T.W., Zheng, J., Farouki, R.T., Hass, J.: Linear perturbation
methods for topologically consistent representations of free-form surface intersec-
tions. Computer Aided Geometric Design 21(3), 303–319 (2004)

21. O’Connor, M.A., Rossignac, J.R.: SGC: A dimension independent model for
pointsets with internal structures and incomplete boundaries. In: IFIP/NSF Work-
shop on Geometric Modeling, Rensselaerville, NY, 1988, North-Holland, Amster-
dam (1990)

22. Grandine, T.A., Frederick, W., Klein, I.: A new approach to the surface intersection
problem. Comput. Aided Geom. Des. 14(2), 111–134 (1997)

23. Sakkalis, T., Peters, T.J., Bisceglio, J.: Isotopic approximations and interval solids.
Computer-Aided Design 36, 1089–1100 (2004)

24. Yap, C.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry, CRC Press, Boca Raton
(1997)

25. Sugihara, K., Iri, M., Inagaki, H., Imai, T.: Topology-oriented implementation - an
approach to robust geometric algorithms. Algorithmica 27(1), 5–20 (2000)

www.iro.umontreal.ca/~stewart

180 V. Shapiro

26. Bjorner, A.: Topological methods. In: Graham, R., Grotschel, M., Lovacz, L. (eds.)
Handbook of Combinatorics, pp. 1819–1872. Elsevier Science B.V, Amsterdam
(1995)

27. Alexandrov, P.: Gestalt u. lage abgeschlossener menge. The Annals of Mathemat-
ics 30, 101–187 (1928)

28. Hocking, J.G., Young, G.S.: Topology. Dover Publications, New York (1961)
29. Dey, T., Edelsbrunner, H., Guha, S.: Computational topology. In: Chazelle, B.,

Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geom-
etry (Contemporary mathematics 223), pp. 109–143. American Mathematical So-
ciety (1999)

30. Maunder, C.R.F.: Algebraic Topology. Dover Publications, New York (1996)
31. Mehlhorn, K., Yap, C.: Robust Geometric Computation (tentative). Book draft,

under preparation (2004), http://www.cs.nyu.edu/∼yap/book/egc/

32. Egenhofer, M., Clementini, E., di Felice, P.: Evaluating inconsistencies among mul-
tiple representations. In: Sixth International Symposium on Spatial Data Handling,
Edinburgh, Scotland, pp. 901–920 (1994)

33. Kang, H.K., Kim, T.W., Li, K.J.: Topological consistency for collapse operation
in multi-scale databases. In: Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan,
J., Yang, D.-q., Grandi, F., Mangina, E.E., Song, I.-Y., Mayr, H.C. (eds.) ER
Workshops 2004. LNCS, vol. 3289, pp. 91–102. Springer, Heidelberg (2004)

34. Armstrong, C.G.: Integrating analysis and design - thoughts for the future. In:
State of the Art in CAD/FE Integration - NAFEMS Awareness Seminar, Chester,
UK (2002),
http://sog1.me.qub.ac.uk/Resources/publications/publications.php

35. Qi, J., Shapiro, V.: Epsilon-topological formulation of tolerant solid modeling.
Computer-Aided Design 38(4), 367–377 (2006)

36. Sakkalis, T., Shen, G., Patrikalakis, N.M.: Topological and geometric properties of
interval solid models. Graphical Models 63(3), 163–175 (2001)

http://www.cs.nyu.edu/~yap/book/egc/
http://sog1.me.qub.ac.uk/Resources/publications/publications.php

Transfinite Interpolation for Well-Definition

in Error Analysis in Solid Modelling

Neil F. Stewart⋆ and Malika Zidani

Département IRO, Université de Montréal,
C.P. 6128, Succ. CentreVille, Montréal, Qc, H3C 3J7, Canada

{stewart, zidanima}@iro.umontreal.ca

Abstract. An overall approach to the problem of error analysis in the
context of solid modelling, analogous to the standard forward/backward
error analysis of Numerical Analysis, was described in a recent paper
by Hoffmann and Stewart. An important subproblem within this over-
all approach is the well-definition of the sets specified by inconsistent
data. These inconsistencies may come from the use of finite-precision
real-number arithmetic, from the use of low-degree curves to approxi-
mate boundaries, or from terminating an infinite convergent (subdivi-
sion) process after only a finite number of steps.

An earlier paper, by Andersson and the present authors, showed how
to resolve this problem of well-definition, in the context of standard
trimmed-NURBS representations, by using the Whitney Extension The-
orem. In this paper we will show how an analogous approach can be
used in the context of trimmed surfaces based on combined-subdivision
representations, such as those proposed by Litke, Levin and Schröder.

A further component of the problem of well-definition is ensuring that
adjacent patches in a representation do not have extraneous intersec-
tions. (Here, ‘extraneous intersections’ refers to intersections, between
two patches forming part of the boundary, other than prescribed inter-
sections along a common edge or at a common vertex.) The paper also
describes the derivation of a bound for normal vectors that can be used
for this purpose. This bound is relevant both in the case of trimmed-
NURBS representations, and in the case of combined subdivision with
trimming.

1 Introduction

One of the fundamental problems in proving rigorous theorems in the area of
robustness of numerical methods, in the field of solid modelling, is that the
data normally provided to the algorithm is not only in error, it may be fun-
damentally inconsistent. These inconsistencies, in the data purportedly defining
a set to be manipulated by a solid-modelling algorithm, come from the use of
finite-precision real-number arithmetic, from the use of low-degree curves to ap-
proximate boundaries, or from terminating an infinite convergent (subdivision)

⋆ The research of the first author was supported in part by a grant from the Natural
Sciences and Engineering Research Council of Canada.

P. Hertling et al. (Eds.): Real Number Algorithms, LNCS 5045, pp. 181–192, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

182 N.F. Stewart and M. Zidani

process after only a finite number of steps. Representations often have both a
topological component and a geometric component; the geometric component
may itself be internally inconsistent, and it may be inconsistent with the topo-
logical component. One approach to resolving these inconsistencies is to propose
a definition of a set, satisfying strong guarantees of proximity to the given in-
consistent input data, and to take this as specifying the input set. This approach
permits subsequent rigorous proof, of theorems concerning algorithms that ma-
nipulate sets, in terms of well-defined input sets.

It should be noted that we are concerned with the case when the input data
is uncertain and, as mentioned above, possibly inconsistent.

In [1] it was shown how the Whitney Extension Theorem [2] can be used
to perform transfinite interpolation in order to realize the above goal of well-
definition of a given input set, in the context of standard trimmed-NURBS rep-
resentations. In this paper we will show how it can be used in an analogous
way for the well-definition of sets defined by combined subdivision surfaces [3].
Then, later in the paper, we will consider a more general setting, including both
of the special cases just mentioned, and provide a result for bounding normal
vectors. This result can be used to ensure that adjacent patches in a representa-
tion do not have extraneous intersections. (Here, ‘extraneous intersections’ refers
to intersections, between two patches forming part of the boundary, other than
prescribed intersections along a common edge or at a common vertex.)

Assuring the well-definition of input sets is an important subproblem within
the forward/backward error analysis described by Hoffmann and Stewart [4].

2 Transfinite Interpolation

A transfinite interpolant is a surface that matches data on the entire boundary
of a two-dimensional domain, rather than just at a finite number of points. Such
surfaces can be obtained, for example, as solutions of the Dirichlet problem,
minimizing the functional

∫∫

D

(f2
x + f2

y)dxdy /

∫∫

D

‖f‖2dxdy

under the Dirichlet boundary conditions [5, p. 110], or by finding area-minimizing
solutions. The shape of such solutions is illustrated by a soap-film stretched over
a wire-frame (see for example [6, frontispiece]).

Transfinite interpolation has been used since the earliest days of geometric and
solid modelling. For example, the Coons patch [7] is a C1-continuous transfinite
interpolant; see also [8]. More recently this kind of interpolation has been used
by Gross and Farin to generalize Sibson’s interpolant to the case of boundary
interpolation [9], and by Shapiro and his students [10] in the context of mod-
elling heterogeneous materials on a point-by-point basis. As mentioned in the
Introduction, it has also been used in quite a different way, to provide a defini-
tion of a well-formed set in the study of robustness [1,4]. In this last-mentioned

Transfinite Interpolation for Well-Definition in Error Analysis 183

context, the transfinite interpolant is not actually computed, but is introduced
only to permit proof of rigorous theorems about a single well-defined set that can
be viewed as the one specified by the inconsistent data provided to a numerical
method. This approach will be described in the following section.

3 Whitney Extension to Provide Transfinite Interpolation
in the Context of Solid Modelling

We begin this section by stating a version [1] of the Whitney Extension Theorem
[2] that is appropriate for our purposes.

Suppose that we have a mapping

ǫ : C → R3, (1)

where C is a compact subset of R2, and suppose that each component ǫ of ǫ

satisfies a Lipschitz condition

|ǫ(p1) − ǫ(p2)| ≤ L · ‖p1 − p2‖, p1, p2 ∈ C

where

L = sup
p1,p2∈C, p1 �=p2

|ǫ(p1) − ǫ(p2)|

‖p1 − p2‖
(2)

is finite. Then [2] we can extend ǫ to a continuous function on all of R2 that
satisfies a Lipschitz condition with the same Lipschitz constant L.

In fact, let
l(p) = sup

q∈C

{ǫ(q) − L · ‖p − q‖}, p ∈ R2, (3)

u(p) = inf
q∈C

{ǫ(q) + L · ‖p − q‖}, p ∈ R2, (4)

and

ǫ(p) =
1

2
[l(p) + u(p)], p ∈ R2. (5)

It is easy to show [11] that any continuous function satisfying the Lipschitz
condition on R2 is bracketed by the lower function, l(p), and the upper function,
u(p), and [12] that l(p) and u(p) are themselves solutions to the extension
problem. Furthermore [1], ǫ(p) is a solution to the extension problem satisfying

|ǫ(p)| ≤ sup
q∈C

|ǫ(q)|, p ∈ R2.

Theorem 1. (Whitney, 1934) The mapping ǫ(p) given in (5) is a continuous
function on R2 that coincides with the mapping (1) given on C. Furthermore,
the mapping given in (5) satisfies a Lipschitz condition everywhere in R2, with
Lipschitz constant L defined as in (2), and it satisfies the inequality

|ǫ(p)| ≤ sup
q∈C

|ǫ(q)|, p ∈ R2.

The Lipschitz constants for each of the components of ǫ can be used to define a
Lipschitz constant for the vector-valued function ǫ.

184 N.F. Stewart and M. Zidani

3.1 The Trimmed-NURBS Case

In this subsection we give a summary of the use of Whitney Extension to define
well-formed sets in the case of the standard trimmed-NURBS representation
[1,4].

The data Δ in the trimmed-NURBS representation of a solid S is in two parts,
the geometric data and the topological data. The geometric data in Δ comprises
a finite set of compact oriented 2-manifolds-with-boundary, and corresponding
sets of explicit boundary curves and corner vertices. The underlying surface for
each 2-manifold is represented by a spline function over a parametric domain
D0, with range in R3. The spline function is then restricted to a subset D

of D0, as delineated by certain curves in the parametric domain, yielding a
trimmed NURBS patch. (Such trimming may arise, for example, as the result of
the intersection of two surfaces for representing the boundary of the solid.) Thus,
each 2-manifold-with-boundary is represented by a trimmed NURBS patch.

Figure 1 illustrates two trimmed patches which join (approximately) along the
intersection of two surfaces F and F ′, restricted respectively to D and D′. The
part of the representation of the solid corresponding to the intended intersection

v

b

D

p

D′

p′

F F ′

Fig. 1. Two adjoining trimmed NURBS patches

comprises two (almost certainly inconsistent) pre-images, defined by p-curves,
which are parametric curves p and p′ with ranges in the respective parametric
domains. In addition, there is often a third representation, usually inconsistent
with the other two, which is a parametric curve b, with range in R3, and which
follows closely the images of the p-curves p and p′. Finally, there may also be an

Transfinite Interpolation for Well-Definition in Error Analysis 185

explicit representation of each endpoint v ∈ R3 of the parametric curve b = b(t),
as illustrated in Figure 1. Here, however, we consider the more usual case where
v always coincides with an endpoint of b.

The representation Δ also contains symbolic information, or topological data,
describing how the faces, edges and vertices of the cellular decomposition of the
boundary ∂S of S fit together. This data defines a topological 2-cycle. Ideally,
the geometric and topological data are consistent: for example, corresponding to
each 2-cell in the topological data is a trimmed surface patch in R3 (two of these,
F [D] = {F (u, v) : (u, v) ∈ D ⊆ D0} and F ′[D′] = {F ′(u, v) : (u, v) ∈ D′ ⊆ D0},
are shown in Figure 1).

Unfortunately, as illustrated in Figure 1, the curve b(t) does not usually co-
incide exactly with the corresponding edge of F [D], nor with the corresponding
edge of F ′[D′], and the question therefore arises, which subset of R3 should be
considered to be represented by the given inconsistent data?

In [1], the set considered to actually be represented by Δ, i.e., the realization
S of Δ, is defined by its boundary ∂S. This boundary is made up of slightly
perturbed trimmed-NURBS patches from Δ, where the perturbation is defined
by the Whitney Extension Theorem. The slightly perturbed patches are not
necessarily NURBS patches, but they are mutually consistent with the explicit
boundary curves b(t), and they all fit together in a way that is exactly consistent
with the topological data. This is done by taking C = ∂D and

ǫ(p) = bk([pk]−1(p)) − F (p), p ∈ ∂D

in Theorem 1, where [pk]−1 is the inverse of the particular p-curve pk for which
pk(t) = p for some t ∈ [0, 1]. Thus, ǫ is the difference between the edge of
the trimmed patch F [D], and the boundary curves b

k, viewed as a function of
p ∈ ∂D. (It is assumed that each bk and each pk is injective, and that distinct
p-curves do not intersect, except at appropriate endpoints.) Then, the Whitney
theorem can be used to extend the patch to all of D.

The meaning of the words ‘slightly perturbed’, in the previous paragraph, is
thus quite satisfactory. The perturbation of the trimmed patch, denoted ǫ(p), is
continuous, and the magnitude of the perturbation nowhere exceeds the magni-
tude of the largest discrepancy between the edge of the given patch and the given
neighbouring explicit boundary curves b(t). (In other words, the perturbation
is nowhere larger than the largest discrepancy already in the given data, along
the edges of the given patch.) In addition, the perturbation satisfies a Lipschitz
condition throughout the patch, with a Lipschitz constant for each component
ǫ of ǫ equal to

L = sup
q1,q2∈∂D, q1 �=q2

|ǫ(q1) − ǫ(q2)|

‖q1 − q2‖
.

(In other words, the perturbation satisfies a Lipschitz condition over the entire
patch, with a constant equal to the constant in the Lipschitz condition cor-
responding to the discrepancy present, along the edges of the given patch, in
the given data.) This Lipschitz condition is important, because it allows us to
bound the change in the normal vector of the perturbed patch, relative to the

186 N.F. Stewart and M. Zidani

normal vector n of the given trimmed patch. Such a bound will be necessary
when we want to preclude the possibility that adjacent patches have extraneous
intersections. This question will be discussed in Section 4, below.

3.2 Combined-Subdivision-with-Trimming Case

A representation permitting trimming of subdivision surfaces was proposed in [3],
as an alternative to the classical NURBS representation. The representation is
based on the combined subdivision schemes proposed by Levin [13], which permit
the construction of subdivision surfaces having arbitrary boundary curves (any
piecewise-smooth parametric curve possessing an evaluation procedure). Such
schemes modify the subdivision stencils (for example, the Loop or Catmull-
Clark stencils) near the boundary, using data from a boundary curve c = c(u)
supplied as part of the input [3].

We will refer to the representation of [3] as Combined Subdivision with Trim-
ming (CST). Comparing it with the trimmed-NURBS representation of Subsec-
tion 3.1, the supplied boundary curve c : [0, 1] → R3 corresponds to the combined
closed curve made up from the m given boundary segments b1(t), . . . , bm(t),
joined end to end to form a simple closed curve embedded in R3. Since c is re-
quired only to be piecewise smooth, it is possible to have corner points like those
occurring at a join such as bl−1(1) = bl(0) in the trimmed-NURBS representa-
tion. Beyond this, however, the representations are quite different. The surface
patch in the CST representation is the limit of a modified combined-subdivision
scheme which approximates an initially given input surface, and which, in the
absence of roundoff error, interpolates the boundary curve c = c(u) exactly.
Note that the transfinite interpolation implied by this limiting process forms
part of the actual representation. This is in contrast to the Whitney-Extension
transfinite interpolation used in Subsection 3.1 for the purpose of defining a
theoretical set determined by inconsistent data in a representation. We will,
however, also apply Whitney-Extension transfinite interpolation in the case of
CST representations.

Following [3], a general subdivision-surface control point i, at level j in the
subdivision hierarchy, is denoted p

j
i , and the breakpoint values in the parametric

domain of c are denoted uj
i . A surface called the original surface [3], denoted

here by Σ, is defined by the (given) control points p0
i [3], along with a given

subdivision scheme such as the Loop scheme [3,13]. The subsequent trimming
algorithm, which produces the actual trimmed-surface ΣT , involves, first, a local
remeshing of the control polyhedron to accommodate the trim curves, together
with a sampling of Σ to choose control points for the trimmed surface. This
information is used in an approximation stage that modifies the surface shape
near the trim curve, in order to ensure proximity to the surface Σ.

The local remeshing will normally cause the assigned initial parameter values
u0

i to be modified. Again following [3], we will continue to denote these modified
values by u0

i . The surface Σ is then sampled to find points corresponding to the
control points of the original mesh.

Transfinite Interpolation for Well-Definition in Error Analysis 187

The approximation stage of the trimming algorithm fits the trimmed surface
ΣT to Σ. This operation is only required near the trim curve, where the control
mesh was generated by the remeshing algorithm. Away from this region, the
trimmed surface is identical to Σ; within the region, the approximation of Σ is
generated as a hierarchy of detail coefficients d

j
i , which are (additive) modifica-

tions of the control points p
j
i . The depth of the subdivision hierarchy is limited

by the introduction of a finite convergence threshold [3, Sec. 3.3].
The final trimmed-surface representation is therefore defined by a hierarchy

of u-domain control points u
j
i , which depends on (the possibly modified versions

of) the original breakpoints u0
i , and a hierarchy of control points p

j
i with asso-

ciated detail vectors d
j
i , which depends on the original p0

i . As observed in [3],
the above trimming algorithm guarantees exact transfinite interpolation of the
desired trimmed curve. This statement assumes that the subdivision process is
continued until convergence, and without roundoff error. In practice, however,
the actual representation will be the result of only a finite number of steps of
the combined-subdivision process, and it will be the result of calculations using
finite-precision floating-point arithmetic.

It follows from this last remark that if we place ourselves in the context of
Subsection 3.1, and seek to prove rigorous mathematical theorems stating that
the representation defines a well-formed subset of R3 which has a boundary that
is in some sense close to a given collection of input surfaces {Σk}k=1,..., then we
must agree on the definition of this subset. One possibility is to define the set in
terms of the exactly defined limiting surfaces specifying its boundary patches.
To do this, however, it would be necessary to preclude extraneous intersections,
as defined at the end of Section 1: intersections between two boundary patches
other than prescribed intersections along a common edge or at a common vertex.
This, in turn, would require bounds on the normals of the limit surface ΣT , which
is defined in terms of the (rather complicated) process described in [3]. It is not
clear whether this approach is feasible.

In this paper we propose an alternative approach, analogous to Subsection 3.1.
The situation is illustrated in Figure 2, where two CST patches are intended to
meet along a common edge. We assume, of course, that ck(u) and ck′

(u) coincide
along this common edge, but in practice, as already mentioned, the trimming
algorithm will terminate after a finite number of steps and, furthermore, ck(u)
will be evaluated using finite-precision floating-point arithmetic; consequently,
the edge of Σk

∗ , the computed approximation of Σk
T , will not coincide exactly

with ck(u). On the other hand (and this is implicit in [3]), it will be possible
to obtain very satisfactory bounds for the difference, which we denote by ǫ(p),
where p is a point on the boundary of the final control polyhedron produced by
the combined subdivision process. Assuming such bounds have been found, the
Whitney Extension Theorem can be applied exactly as in Subsection 3.1 (the set
C in Theorem 1 is now taken to be the boundary of the final control polyhedron)
to provide a definition of the boundary of the actual subset of R3 specified by
the inconsistent data that specified each of Σk

∗ and Σk′

∗ separately.

188 N.F. Stewart and M. Zidani

Σk′

T
Σk

T

ck′

(u)
ց

ck(u)
ւ

Fig. 2. Two adjoining CST patches

The only remaining issue is the possibility of self-intersection of the combined
patches: the patches provided by Whitney Extension guarantee that adjoining
patches will meet properly at a common edge, but we must exclude the possibility
that there are other intersections (see Figure 3, where the CST patches are
shown in cross-section). In the case of CST patches based on Loop or Catmull-
Clark subdivision, it has been shown [14] that Σk

∗ (respectively Σk′

∗) and its
derivatives can be evaluated directly, which means that the normal vector nk

(respectively nk′

) can be estimated, and, say, the method of Volino-Thalmann
[15,16,17] applied. This is the subject of Section 4, where an analysis will be
presented in a setting that includes both the trimmed-NURBS and CST cases.

4 Bounds on Normal Vectors

The fundamental step required, in order to apply the Volino-Thalmann method
for detection of self-intersection of the boundary of the set defined by Whitney
Extension, is to bound the normal vector of the perturbed surface in terms of
the normal of the original surface. The well-formed set that we are attempting
to define is specified in terms of the perturbed surface provided by Whitney
Extension, but it is only the normal vector of the original surface that is available
to us.

The following analysis is an extension of that found in [1, Sec. 5].
Denote the original patch by F , and the perturbed patch defined by Whitney

Extension by G = F + ǫ. (In the trimmed-NURBS case, the notation F here

Transfinite Interpolation for Well-Definition in Error Analysis 189

nk′nk

Approximate patches

Whitney Extension

ck(u) = ck′

(u)

Fig. 3. Extraneous intersection of adjoining CST patches

refers to F [D], the restriction of the NURBS mapping F (u, v) to the trimming
domain D, as in Subsection 3.1. In the CST case, Subsection 3.2, F refers to a
CST patch such as Σk

T .) Also, denote by nF and nG the normal vectors at an
arbitrary parameter point (U, V). (In the trimmed-NURBS case, see [18]; in the
Loop or Catmull-Clark case, see [14].) In order to use a variational argument,
we will write U = uo + δu, V = vo + δv, and consider the case when U → uo,
V → vo. In the limit, the projection of F (uo + δu, vo + δv) on the tangent plane
of F at (uo, vo) is equal to F (uo, vo), and the normal nF (uo + δu, vo + δv) is
equal to n(uo, vo).

We will now give a bound for the angle φ, between the two normals nF and
nG, expressed in terms of the coefficients

E = ∇uF · ∇uF

F = ∇uF · ∇vF

G = ∇vF · ∇vF

of the first fundamental form:

I(du, dv) = Edu2 + 2Fdudv + Gdv2

(see for example [19]).

190 N.F. Stewart and M. Zidani

Let f = ∇uF (uo, vo) and s = n(uo, vo) × ∇uF (uo, vo). In the orthogonal co-

ordinate system
(

f
‖f‖ , s

‖s‖

)

of the tangent plane of F at (uo, vo), the coordinates

of F (uo + δu, vo + δv) are:

u = F (uo + δu, vo + δv) ·
f

‖f‖
v = F (uo + δu, vo + δv) · s

‖s‖ .

We take u and v as new parameters, and, using the Implicit Function Theorem,
define

m(u, v) =

(

uo + δu

vo + δv

)

.

Then, using Taylor’s theorem, it is easy to show that

m(u, v) =

(

1

‖∇uF ‖
− cos θ

sin θ·‖∇uF ‖
0 1

sin θ·‖∇vF ‖

) (

u − F (uo, vo) ·
f

‖f‖
v − F (uo, vo) · s

‖s‖

)

+

(

uo

vo

)

(6)

where
θ = � (∇uF (uo, vo), ∇vF (uo, vo)) (7)

and

G(u, v) = (u, v, 0)T +(ǫ(m(u, v))·
f

‖f‖
, ǫ(m(u, v))·

s

‖s‖
, ǫ(m(u, v))·

n

‖n‖
)T . (8)

The second term on the right is the perturbation vector expressed in the local

coordinate system
(

f
‖f‖

, s
‖s‖ , n

‖n‖

)

.

To simplify the notation (and to emphasize the correspondence with the
derivation in [1]), let (e1, e2, e3)

T denote the components of ǫ in the parametric
domain (u, v). Then, from (8),

G(u, v) =

⎛

⎝

u + e1

v + e2

e3

⎞

⎠ ,

and in the limit as δu, δv → 0,

nF (u, v) = (0, 0, 1)T .

It follows that if φ is the angle between nF and nG, then in the limit

cosφ =
(Gu × Gv) · (0, 0, 1)T

‖Gu × Gv‖

where

Gu × Gv =

⎛

⎝

1 + e1u

e2u

e3u

⎞

⎠ ×

⎛

⎝

e1v

1 + e2v

e3v

⎞

⎠ =

⎛

⎝

e2ue3v − e3ue2v − e3u

e3ue1v − e3ve1u − e3v

1 + e1u + e2v + e1ue2v − e2ue1v

⎞

⎠ .

Transfinite Interpolation for Well-Definition in Error Analysis 191

It can then be shown, using the same analysis as that in [1], that

cosφ ∼= 1 −
(e3u)2

2
−

(e3v)2

2
. (9)

In order to bound the derivatives e3u and e3v, we use (6) and the fact that
from the Whitney Extension Theorem, if ǫ satisfies a Lipschitz condition with
constant L on the boundary of the patch, then it satisfies the same Lipschitz
condition everywhere, and consequently

∣

∣

∣

∣

∂e3

∂mi

∣

∣

∣

∣

≤ L, i = 1, 2.

Using this inequality, and (7) and (9), it follows (after some algebra) that

cosφ ≥ 1 −
L2

2

[

E + 2F + G

EG − F 2

]

where E, F and G are the coefficients of the first fundamental form, given above.

Note that if θ = π
2 , then F = 0, and this lower bound becomes 1− L2

2

[

E+G
EG

]
.

If in addition we have ‖∇uF ‖2 = ‖∇vF ‖2 = 1, so that E = G = 1, then the
lower bound becomes 1 − L2. This was the special case treated in [1, Sec. 5].

It would be worthwhile, also, to study the variation of the normals (between
the surfaces Σ and ΣT) induced by the CST scheme, and to modify the scheme, if
necessary, to reduce this variation. The additional variation introduced by Whit-
ney Extension will normally be small. Indeed, the value of L used for Whitney
Extension will be small provided that the curvature of c is bounded below, and
provided that the spacing u

j
i is fine enough, relative to this lower bound. (We

are assuming here, however, that the spacing of the u
j
i is still coarse enough so

that roundoff error does not play a major role in the variation of ǫ.)

5 Conclusion

In this paper we have shown how Whitney Extension can be used in the well-
definition of objects defined by approximate surface patches, in conjunction with
the bounds derived here on the variation of normal vectors. These bounds depend
on the Lipschitz constant defined by the error in the approximate surface patch
along its boundary, and by the (first-normal-form) parameters of the surface.

Acknowledgment

The authors are grateful to Ian Stewart, and to an anonymous referee, for several
useful comments. Responsibility for errors or omissions rests solely with the
authors.

192 N.F. Stewart and M. Zidani

References

1. Andersson, L.-E., Stewart, N.F., Zidani, M.: Error analysis for operations in solid
modeling in the presence of uncertainty. SIAM J. Scientific Computing 29(2), 811–
826 (2007)

2. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets.
Trans. Amer. Math. Soc. (36), 63–89 (1934)

3. Litke, N., Levin, A., Schröder, P.: Trimming for subdivision surfaces. Computer
Aided Geometric Design (18), 463–481 (2001)

4. Hoffmann, C.M., Stewart, N.F.: Accuracy and semantics in shape-interrogation
applications. Graphical Models 67(5), 373–389 (2005)

5. Gould, S.H.: Variational Methods for Eigenvalue Problems. University of Toronto
Press (1957)

6. Sewell, M.J.: Maximum and Minimum Principles, Cambridge (1987)
7. Coons, S.A.: Surfaces for Computer Aided Design of Space Forms. MIT Project

Mac, TR-41, MIT, Cambridge, MA (June 1967)
8. Nielson, G.M.: A transfinite, visually continuous, triangular interpolant. In: Farin,

G.E. (ed.) Geometric Modeling: Algorithms and New Trends. SIAM, Philadelphia
(1987)

9. Gross, L., Farin, G.: A transfinite form of Sibson’s interpolant. Discrete Applied
Mathematics (93), 33–50 (1999)

10. Biswas, A., Shapiro, V., Tsukanov, I.: Heterogeneous material modeling with dis-
tance fields. Computer Aided Geometric Design (21), 215–242 (2004)

11. Aronsson, G.: Extension of functions satisfying Lipschitz conditions. Arkiv för
Matematik, Stockholm (6)(28) (1967)

12. McShane, E.J.: Extension of range of functions. Bull. Amer. Math. Soc. (40), 837–
842 (1934)

13. Levin, A.: Combined subdivision schemes for the design of surfaces satisfying
boundary conditions. Computer Aided Geometric Design (16), 345–354 (1999)

14. Stam, J.: Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary pa-
rameter values. In: Proc. ACM SIGGRAPH, pp. 395–404 (1998)

15. Volino, P., Thalmann, N.M.: Efficient self-collision detection on smoothly dis-
cretized surface animations using geometrical shape regularity. In: Daehlen, M.,
Kjelldahl, K. (eds.) Eurographics 1994, (13)(3), pp. 155–164. Blackwell Publishers,
Malden (1994)

16. Grinspun, E., Schröder, P.: Normal bounds for subdivision-surface interference
detection. In: Proceedings of the IEEE Conference on Visualization, pp. 333–340
(2001)

17. Andersson, L.-E., Stewart, N.F., Zidani, M.: Proof of a non-selfintersection conjec-
ture. Computer Aided Geometric Design 23, 599–611 (2006)

18. Piegl, L., Tiller, W.: The NURBS Book. Springer, Heidelberg (1997)
19. Pressley, H.: Elementary Differential Geometry. Springer, Heidelberg (2001)

Theory of Real Computation According to EGC⋆

Chee Yap

Courant Institute of Mathematical Sciences
Department of Computer Science

New York University

Abstract. The Exact Geometric Computation (EGC) mode of compu-
tation has been developed over the last decade in response to the wide-
spread problem of numerical non-robustness in geometric algorithms.
Its technology has been encoded in libraries such as LEDA, CGAL and
Core Library. The key feature of EGC is the necessity to decide zero in
its computation. This paper addresses the problem of providing a foun-
dation for the EGC mode of computation. This requires a theory of real
computation that properly addresses the Zero Problem. The two current
approaches to real computation are represented by the analytic school
and algebraic school. We propose a variant of the analytic approach based
on real approximation.

– To capture the issues of representation, we begin with a reworking
of van der Waerden’s idea of explicit rings and fields. We introduce
explicit sets and explicit algebraic structures.

– Explicit rings serve as the foundation for real approximation: our
starting point here is not R, but F ⊆ R, an explicit ordered ring
extension of Z that is dense in R. We develop the approximability of
real functions within standard Turing machine computability, and
show its connection to the analytic approach.

– Current discussions of real computation fail to address issues at the
intersection of continuous and discrete computation. An appropri-
ate computational model for this purpose is obtained by extending
Schönhage’s pointer machines to support both algebraic and numer-
ical computation.

– Finally, we propose a synthesis wherein both the algebraic and the
analytic models coexist to play complementary roles. Many funda-
mental questions can now be posed in this setting, including transfer
theorems connecting algebraic computability with approximability.

1 Introduction

Software breaks down due to numerical errors. We know that such breakdown
has a numerical origin because when you tweak the input numbers, the problem

⋆ Expansion of a talk by the same title at Dagstuhl Seminar on “Reliable Implemen-
tation of Real Number Algorithms: Theory and Practice”, Jan 7-11, 2006. This work
is supported by NSF Grant No. 043086.

P. Hertling et al. (Eds.): Real Number Algorithms, LNCS 5045, pp. 193–237, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

194 C. Yap

goes away. Such breakdown may take the dramatic form of crashing or loop-
ing. But more insidiously, it may silently produce qualitatively wrong results.
Such qualitative errors are costly to catch further down the data stream. The
economic consequences of general software errors have been documented1 in a
US government study [32]. Such problems of geometric nonrobustness are also
well-known to practitioners, and to users of geometric software. See [22] for the
anatomy of such breakdowns in simple geometric algorithms.

In the last decade, an approach called Exact Geometric Computation
(EGC) has been shown to be highly effective in eliminating nonrobustness in a
large class of basic geometric problems. The fundamental analysis and prescrip-
tion of EGC may be succinctly stated as follows:

“Geometry is concerned with relations among geometric objects. Basic
geometric objects (e.g., points, half-spaces) are parametrized by numbers.
Geometric algorithms (a) construct geometric objects and (b) determine
geometric relations. In real geometry, these relations are determined by
evaluating the signs of real functions, typically polynomials. Algorithms
use these signs to branch into different computation paths. Each path cor-
responds to a particular output geometry. So the EGC prescription says
that, in order to compute the correct geometry, it is sufficient to ensure
that the correct path is taken. This reduces to error-free sign computa-
tions in algorithms.”

How do algorithms determine the sign of a real quantity x? Typically, we
compute approximations x̃ with increasing precision until the error |x − x̃| is
known to be less than |x̃|; then we conclude sign(x) = sign(x̃). Note that this
requires interval arithmetic, to bound the error |x − x̃|. But in case x = 0,
interval arithmetic does not help – we may reduce the error as much as we like,
but the stopping condition (i.e., |x − x̃| < |x̃|) will never show up. This goes to
the heart of EGC computation: how to decide if x = 0 [43]. This zero problem
has been extensively studied by Richardson [33,34]. Numerical computation in
this EGC mode2 has far reaching implications for software and algorithms.
Currently software such as LEDA [11,27], CGAL [17] and the Core Library [21]
supports this EGC mode. We note that EGC assumes that the numerical input
is exact (see discussion in [43]).

In this paper, we address the problem of providing a computability theory
for the EGC mode of computation. Clearly, EGC requires arbitrary precision
computation and falls under the scope of the theory of real computation. While
the theory of computation for discrete domains (natural numbers N or strings
Σ∗) has a widely accepted foundation, and possesses a highly developed com-
plexity theory, the same cannot be said for computation over an uncountable

1 A large part of the report focused on the aerospace and automobile industries. Both
industries are major users of geometric software such as CAD modelers and simula-
tion systems. The numerical errors in such software are well-known and so we infer
that part of the cost comes from the kind of error of interest to us.

2 Likewise, one may speak of the “numerical analysis mode”, the “computer algebra
mode”, or the “interval arithmetic mode” of computing. See [42].

Theory of Real Computation According to EGC 195

and continuous domain such as R. Currently, there are two distinct approaches
to the theory of real computation. We will call them the analytic school and
the algebraic school respectively.

The analytic school goes back to Turing (1936), Grzegorczyk (1955) and La-
combe (1955) (see [40]). Modern proponents of this theory include Weihrauch
[40], Ko [23], Pour-El and Richards [31] and others. In fact, there are at least
six equivalent versions of analytic computability, depending on one’s preferred
starting point (metric spaces, domain-theory, etc) [20, p. 330]. In addition, there
are complementary logical or descriptive approaches, based on algebraic spec-
ifications or equations. (e.g., [20]). But approaches based on Turing machines
are most congenial to our interest in complexity theory. Here, real numbers are
represented by rapidly converging Cauchy sequences. But an essential extension
of Turing machines is needed to handle such inputs. In Weihrauch’s TTE ap-
proach [40], Turing machines are allowed to compute forever to handle infinite
input/output sequences. For the purposes of defining complexity, we prefer Ko’s
variant [23], using oracle Turing machines that compute in finite time. There is
an important branch of the analytic school, sometimes known3 as the Russian
Approach [40, Chap. 9]. Below, we will note the close connections between the
Russian Approach (Kolmogorov, Uspenskǐi, Mal’cev) and our work.

The algebraic school goes back to the study of algebraic complexity [7,10].
The original computational model here is non-uniform (e.g., straightline pro-
grams). The uniform version of this theory has been advocated as a theory of
real computation by Blum, Shub and Smale [6]. Note that this uniform algebraic
model is also the de facto computational model of theoretical computer science
and algorithms. Here, the preferred model is the Real RAM [2], which is clearly
equivalent to the BSS model. In the algebraic school, real numbers are directly
represented as atomic objects. The model allows the primitive operations to be
carried out in a single step, without error. We can also compare real numbers
without error. Although the BSS computational model [6] emphasizes ring op-
erations (+, −, ×), in the following, we will allow our algebraic model to use any
chosen set Ω of real operations.

We have noted that the zero problem is central to EGC: sign determination
implies zero determination. Conversely, if we can determine zero, we can also
determine sign under mild assumptions (though the complexity can be very dif-
ferent). A natural hierarchy of zero problems can be posed [43]. This hierarchy
can be used to give a natural complexity classification of geometric problems.
But these distinctions are lost in the analytic and algebraic approaches: the zero
problem is undecidable in analytic approach ([23, Theorem 2.5, p. 44]); it is
trivial in the algebraic computational model. We need a theory where the com-
plexity of the zero problems is more subtly portrayed, consistent with practical
experience in EGC computation.

In numerical analysis, it is almost axiomatic that input numbers are inexact. In
particular, this justifies the backward analysis formulation of solving problems.
On the other hand, the EGC approach and the zero problem makes sense only if

3 We might say the main branch practices the Polish Approach.

196 C. Yap

numerical inputs are exact. Hence, we must reject the oft-suggested notion that
all real inputs are inherently inexact. In support of this notion, it is correctly
noted that all physical constants are inherently inexact. Nevertheless, there are
many applications of numerical computing for which such a view is untenable,
in areas such as computer algebra, computational number theory, geometric
theorem proving, computational geometry, and geometric modeling. The exact
input assumption is also the dominant view in the field of algorithmics [13]. We
also refute a related suggestion, that the backward analysis solution is inevitable
for real input problems. A common argument to support this view says that “even
if the input is exact, computers can only compute real quantities with limited
precision”. But the success of EGC, and existence of software such as LEDA,
CGAL and Core Library, provides a wealth of counter examples. Nevertheless,
the backward analysis problem formulation has an important advantage over
EGC: it does not require a model of computation that must be able to decide
zero. But the point of this paper is to shed some light on those computational
problems for which we must decide zero.

The goal of this paper is three-fold: First, we propose a variant of the analytic
approach that is suitable for studying the zero problem and for modeling con-
temporary practice in computation. Second, we propose a computational model
suitable for “semi-numeric problems” – these are problems such as in computa-
tional geometry or topology where the input and output comprise a combination
of numeric and discrete data. This is necessary to formalize what we mean by
computation in the EGC mode. Finally, we propose a framework whereby the
algebraic approach can be discussed in its natural relation to the analytic ap-
proach. Basic questions such as “transfer theorems” can be asked here.

2 Explicit Set Theory

Any theory of computation ought to address the representation of the underlying
mathematical domains, especially with a view to their computation on machines.
Thus Turing’s 1936 analysis of the concept of computability began with a dis-
cussion of representation of real numbers. But the issue of representation usually
is de-emphasized in discrete computability theory because we usually define our
problems directly4 on a canonical universe such as strings (Σ∗ in Turing com-
putability) or natural numbers (N in recursive function theory). Other domains
(e.g., finite graphs) must be suitably encoded in this canonical universe. The en-
coding of such discrete domains does not offer conceptual difficulties, although
it may have significant complexity theoretic implications. But for continuous or
uncountable domains such as R, choice of representation may be critical (e.g.,
representing reals by its binary expansion is limiting [40]). See Weihrauch and
Kreitz [24,40] for topological investigations of representations (or “naming sys-
tems”) for such sets.

4 I.e., we simply say that our problems are functions or relations on this canonical uni-
verse, thereby skipping the translation from the canonical universe to our intended
domain of application.

Theory of Real Computation According to EGC 197

The concept of representation is implicit (sic) in van der Waerden’s notion of
“explicit rings and fields” (see Fröhlich and Shepherdson [18]). To bring represen-
tation into algebraic structures, we must first begin with the more basic concept
of “explicit sets”. These ideas were extensively developed by the Russian school
of computability. Especially relevant is Mal’cev’s theory of numbered alge-
braic systems [26, Chapters 18,25,27]. A numbering of an arbitrary set S
is an onto, total function α : D → S where D ⊆ N. The pair (S, α) is called
a numbered set. A numbered algebraic system, then, is an algebraic system
(see below) whose carrier set S has a numbering α, and whose functions and
predicates are represented by functions on N that are compatible with α in the
natural way.

Intuitively, an explicit set is one in which we can recognize the identity of its
elements through its names or representation elements. This need for recognizing
elements of a set is well-motivated by EGC’s need to decide zero “explicitly”, and
to perform exact operations. Explicitness is a form of effectivity. Traditionally,
one investigates effectivity of subsets of N, and such sets can be studied via
Kleene or Gödel numberings. But the issues are more subtle when we treat
arbitrary sets. Unlike N, which has a canonical representation, general sets which
arise in algebra or analysis may be specified in a highly abstract (prescriptive)
manner that gives no hint as to their representation. A central motivation of
Mal’cev [26, p. 287] is to study numberings of arbitrary sets. His theorems are
inevitably about numbered sets, not just the underlying sets (cf. [26, Chapter
25]). Our point of departure is the desire to have a numbering-independent notion
of explicitness. We expect that in a suitable formulation of explicit sets, certain
basic axioms in naive set theory [19] will become theorems in explicit set theory.
E.g., the well-ordering principle for sets.

Partial functions. If S, T are sets, we shall denote5 a partial function from T to S
by f : T ≻S (dashed arrow). If f(x) is undefined, we write f(x) =↑; otherwise
we write f(x) =↓. Call T the nominal domain of f ; the proper domain of
f is domain(f) := {x ∈ T : f(x) =↓}. Relative to f , we may refer to x ∈ T as
proper if f(x) =↓; otherwise x is improper. If domain(f) = T , then f is total,
and we indicate total functions in the usual way, f : T → S. Similarly, the sets
S and range(f) := {f(s) : s ∈ domain(f)} are (resp.) the nominal and proper
ranges of f . We say f is onto if range(f) = S, and f is 1-1 if f(x) = f(y) �=↑
implies x = y.

In composing partial functions, we use the standard rule that a function value
is undefined if any input argument is undefined. We often encounter predicates
such as “f(x) = g(y)”. We interpret such equalities in the “strong sense”, mean-
ing that the left side f(x) is defined iff the right side g(y) is defined. To indicate
this strong equality, we write “f(x) ≡ g(y)”.

Partial recursive partial functions. Partial functions on strings, f : Σ∗ ≻Σ∗

have a special status in computability theory: we say f is partial recursive

5 This notation is used, e.g., by Weihrauch [24] and Mueller [29]. We thank Norbert
Mueller for his contribution of this partial function symbol. An alternative notation
is f :⊆ T → S [40].

198 C. Yap

if there is a (deterministic) Turing machine that, on input w ∈ Σ∗, halts with
the string f(w) in the output tape if f(w) =↓, and does not halt (i.e., loops)
if f(w) =↑. If f is a total function, and f is partial recursive, then we say
that f is total recursive. Both these definitions are standard. We need an
intermediate version of these two concepts: assume that our Turing machines
have two special states, q↓ (proper state) and q↑ (improper state). A Turing
machine is halting if it halts on all input strings. We say6 that f is recursive if
there is a halting Turing machine M that, for all w ∈ Σ∗, if f(w) =↑, M halts in
the improper state q↑; if f(w) =↓, then M halts in the proper state q↓ with the
output tape containing f(w). If TOT -REC (resp., PART -REC, REC) denote
the set of total recursive (resp., partial recursive, recursive) functions, then we
have TOT -REC ⊆ REC ⊆ PART -REC. These inclusions are all strict.

Let S ⊆ Σ∗. For our purposes, we define the characteristic function of S
to be χS : Σ∗ ≻{1} where χS(w) = 1 if w ∈ S, and χS(w) =↑ otherwise. A
closely related function is the partial identity function, ιS : Σ∗ ≻S where
ιS(w) = w iff w ∈ S and ιS(w) =↑ otherwise. We say7 S is (partial) recursive
if χS (equivalently ιS) is (partial) recursive.

Notes on Terminology. In conventional computability, it would be redundant to
say “partial recursive partial function”. Likewise, it would be an oxymoron to
call a partial function “recursive”. Note that a recursive function f in our sense
is equivalent to “f is partial recursive with a recursive domain” in standard ter-
minology. Our notion of recursive function anticipates its use in various concepts
of “explicitness”. In our applications, we are not directly computing over Σ∗,
but are computing over some abstract domain S that is represented through Σ∗.
Thus, our Turing machine computation over Σ∗ is interpreted via this represen-
tation. We use the explicitness terminology in association with such concepts of
“interpreted computations” – explicitness is a form of “interpreted effectivity”.
In recursive function theory, we know that the treatment of partial functions is
an essential feature. In algebraic computations, we have a different but equally
important reason for treating of partial functions: algebraic operations (e.g., di-
vision, squareroot, logarithm) are generally partial functions. The standard def-
initions would classify division as “partial recursive” (more accurately, partially
explicit). But all common understanding of recursiveness dictates that division
be regarded as “recursive” (more accurately, explicit). Thus, we see that our
terminology is more natural.

In standard computability theory (e.g., [35]), the terms “computable” and
“recursive” are often interchangeable. In this paper, the terms “recursive” and
“partial recursive” are only applied to computing over strings (Σ∗), “explicit”
refer to computing over some abstract domain (S). Further, we reserve the term

6 In the literature, “total recursive” is normally shortened to “recursive”; so our defi-
nition of “recursive” forbids such an abbreviation.

7 It is more common to say that S is recursively enumerable if χS is partial recursive.
But note that Mal’cev [26, p.164–5] also calls S partial recursive when χS is partial
recursive.

Theory of Real Computation According to EGC 199

“computability” for real numbers and real functions (see Section 4), in the sense
used by the analytic school [40,23].

Representation of sets. We now consider arbitrary sets S, T . Call ρ : T ≻S a
representation of S (with representing set T) if ρ is an onto function. If
ρ(t) = s, we call t a representation element of s. More precisely, t is called
a ρ-name of s. Relative to ρ, we say t, t

�
are equivalent, denoted t ≡ t

�
if

ρ(t) ≡ ρ(t
�
) (recall ≡ means equality is in the strong sense). In case T = Σ∗ for

some alphabet Σ, we call ρ a notation. It is often convenient to identify Σ∗

with N, under some bijection that takes n ∈ N to n ∈ Σ∗. Hence a representation
of the form ρ : N ≻S is also called a notation.

We generally use ‘ν’ instead of ‘ρ’ for notations. For computational pur-
poses (according to Turing), we need notations. Our concept of notation ν and
Mal’cev’s numbering α are closely related: the fact that domain(α) ⊆ N while
domain(ν) ⊆ Σ∗ is not consequential since we may identify N with Σ∗. But it
is significant that ν is partial, while α is total. Unless otherwise noted, we may
(wlog) assume Σ = {0, 1}. Note that if a set has a notation then it is countable.

A notation ν is recursive if the set8 Eν := {(w, w′) ∈ (Σ∗)2 : ν(w) ≡ ν(w′)}
is recursive. In this case, we say S is ν-recursive. If S is ν-recursive then the
set Dν := {w ∈ Σ∗ : ν(w) =↓} (= domain(ν)) is recursive: to see this, note that
w ∈ Dν iff (w, w↑) �∈ Eν where w↑ is any word such that ν(w↑) =↑.

It is important to note that “recursiveness of ν” does not say that the function
ν is a recursive function. Indeed, such a definition would not make sense unless
S is a set of strings. The difficulty of defining explicit sets amounts to providing
a substitute for defining “recursiveness of ν” as a function. Tentatively, suppose
we say S is “explicit” (in quotes) if there “exists” a recursive notation ν for S.
Clearly, the “existence” here cannot have the standard understanding – otherwise
we have the trivial consequence that a set S is “explicit” iff it is countable. One
possibility is to understand it in some intuitionistic sense of “explicit existence”
(e.g., [4, p. 5]). But we prefer to proceed classically.

To illustrate some issues, consider the case where S ⊆ N. There are two natural
notations for S: the canonical notation of S is νS : N ≻S where νS(n) = n
if n ∈ S, and otherwise νS(n) =↑. The ordered notation of S is ν′

S : N ≻S
where ν′

S(n) = i if i ∈ S and the set {j ∈ S : j < i} has n elements. Let S be
the halting set K ⊆ N where n ∈ K iff the nth Turing machine on input string
n halts. The canonical notation νK is not “explicit” since EνK

is not recursive.
But the ordered notation ν′

K is “explicit” since Eν′

K
is the trivial diagonal set

{(n, n) : n ∈ N}. On the other hand, ν′
K does not seem to be a “legitimate” way

of specifying notations (for instance, it is even not a computable function). The
problem we face is to distinguish between notations such as νK and ν′

K .
Our first task is to distinguish a legitimate set of notations. We consider three

natural ways to construct notations: let νi : Σ∗
i ≻Si (i = 1, 2) be notations and

is a symbol not in Σ1 ∪ Σ2.

8 The alphabet for the set Eν may be taken to be Σ ∪ {#} where # is a new symbol,
and we write “(w, w′)” as a conventional rendering of the string w#w′.

200 C. Yap

1. (Cartesian product) The notation ν1 × ν2 for the set S1 × S2 is given by:

ν1 × ν2 : (Σ∗
1 ∪ Σ∗

2 ∪ {#})∗ ≻S1 × S2

where (ν1 × ν2)(w1#w2) = (ν1(w1), ν2(w2)) provided νi(wi) =↓ (i = 1, 2);
for all other w, we have (ν1 × ν2)(w) =↑.

2. (Kleene star) The notation ν∗
1 for finite strings over S1 is given by:

ν∗
1 : (Σ∗

1 ∪ {#})∗ ≻S∗
1

where ν∗
1 (w1#w2# · · · #wn) = ν1(w1)ν1(w2) · · · ν1(wn) provided ν1(wj) =↓

for all j; for all other w, we have (ν∗
1)(w) =↑.

3. (Restriction) For an arbitrary function f : Σ∗
1 ≻Σ∗

2 , we obtain the following
notation

ν2|f : Σ∗
1 ≻T

where ν2|f (w) = ν2(f(w)) and T = range(ν2 ◦ f) ⊆ S2. Thus ν2|f is essen-
tially the function composition, ν2◦f , except that the nominal range of ν2◦f
is S2 instead of T . If f is a recursive function, then we call this operation
recursive restriction.

We now define “explicitness” by induction: a notation ν : Σ∗ ≻S where ν is
1 − 1 and S is finite is called a base notation. a notation ν is explicit if ν is
a base notation or (inductively) there exist explicit notations ν1, ν2 such that ν
is one of the notations

ν1 × ν2, ν∗
1 , ν1|f

where f is recursive. A set S is explicit if there exists an explicit notation for S.
Informally, an explicit set is obtained by repeated application of Cartesian

product, Kleene star and recursive restriction, starting from base notations. Note
that Cartesian product, Kleene star and restriction are analogues (respectively)
of the Axiom of pairing, Axiom of powers and Axiom of Specification in standard
set theory ([19, pp. 9,6,19]). Let us note some applications of recursive restriction:
suppose ν : Σ∗ ≻S is an explicit notation.

– (Change of alphabet) Notations can be based on any alphabet Γ : we can
find a suitable recursive function f such that ν|f : Γ ∗ ≻S is an explicit
notation. We can further make ν|f a 1-1 function.

– (Identity) The identity function ν : Σ∗ → Σ∗ is explicit: to see this, begin
with ν0 : Σ∗ ≻Σ where ν0(a) = a if a ∈ Σ and ν0(w) =↑ otherwise. Then ν
can be obtained as a recursive restriction of ν∗

0 . Thus, Σ∗ is an explicit set.
– (Subset) Let T be a subset of S such that D = {w : ν(w) ∈ T } is recursive.

If ιD is the partial identity function of D, then ν|ιD
is an explicit notation

for T . We denote ν|ιD
more simply by ν|T .

– (Quotient) Let ∼ be an equivalence relation on S, we want a notation for
S/∼ (the set of equivalence classes of ∼). Consider the set E = {(w, w′) :
ν(w) ∼ ν(w′) or ν(w) = ν(w′) =↑}. We say ∼ is recursive relative to ν
if E is a recursive set. Define the function f : Σ∗ → Σ∗ via f(w) = min{w′ :
(w, w′) ∈ E}(where min is based on any lexicographic order ≤LEX on Σ∗). If

Theory of Real Computation According to EGC 201

E is recursive then f is clearly a recursive function. Then the notation ν|f ,
which we denote by

ν/∼ (1)

can be viewed as a notation for S/∼, provided we identify S/∼ with a subset
of S (namely, each equivalence class of S/∼ is identified with a representative
from the class). This identification device will be often used below.

We introduce a normal form for explicit notations. Define a simple notation
to be one obtained by applications of the Cartesian product and Kleene-star
operator to a base case (i.e., to a notation ν : Σ∗ ≻S that is 1 − 1 and S is
finite). A simple set is one with a simple notation. In other words, simple sets
do not need recursive restriction for their definition. A normal form notation
νS for a set S is one obtained as the recursive restriction of a simple notation:
νS = ν|f for some simple notation ν and recursive function f .

Lemma 1 (Normal form). If S is explicit, then it has a normal form notation
νS.

Proof. Let ν0 : Σ∗ ≻S be an explicit notation for S.
(0) If S is a finite set, then the result is trivial.
(1) If ν0 = ν1 × ν2 then inductively assume the normal form notations νi = ν′

i|f ′

i

(i = 1, 2). Let ν = ν′
1 × ν′

2 and for wi ∈ domain(ν′
i), define f by f(w1#w2) =

f1(w1)#f2(w2) ∈ S. Clearly f is recursive and ν|f is an explicit notation for S.
(2) If ν0 = ν∗

1 then inductively assume a normal form notation ν1 = ν′
1|f ′

1
.

Let ν = (ν′
1)

∗ and for all wj ∈ domain(ν′
1), define f(w1#w2# · · · #wn) =

f1(w1)#f1(w2)# · · · #f1(wn) ∈ S. So ν|f is an explicit notation for S.
(3) If ν0 = ν1|f1

, then inductively assume the normal form notation ν1 = ν′
1|f ′

1
.

Let ν = ν1 and f = f ′
1 ◦ f1. Clearly, ν|f is an explicit notation for S. Q.E.D.

The following is easily shown using normal form notations:

Lemma 2. If ν is explicit, then the sets Eν and Dν are recursive.

In the special case where S ⊆ N or S ⊆ Σ∗, we obtain:

Lemma 3. A subset of S ⊆ N is explicit iff S is partial recursive (i.e., recur-
sively enumerable).

Proof. If S is explicit, then any normal form notation ν : Σ∗ ≻S has the
property that ν is a recursive function, and hence S is recursively enumerable.
Conversely, if S is recursively enumerable, it is well-known that there is a total
recursive function f : N → N whose range is S. We can use f as our explicit
notation for S. Q.E.D.

We thus have the interesting conclusion that the halting set K is an explicit
set, but not by virtue of the canonical (νK) or ordered (ν′

K) notations discussed
above. Moreover, the complement of K is not an explicit set, confirming that
our concept of explicitness is non-trivial (i.e., not every countable set is explicit).

202 C. Yap

Our lemma suggests that explicit sets are analogues of recursively enumerable
sets. We could similarly obtain analogues of recursive sets, and a complexity
theory of explicit sets can be developed.

The following data structure will be useful for describing computational struc-
tures. Let L be any set of symbols. To motivate the definition, think of L as a
set of labels for numerical expressions. E.g., L = Z ∪ {+, −, ×}, and we want to
define arithmetic expressions labeled by L.

An ordered L-digraph G = (V, E; λ) is a directed graph (V, E) with vertex
set V = {1, . . . , n} (for some n ∈ N) and edge set E ⊆ V × V , and a labeling
function λ : V → L such that the set of outgoing edges from any vertex v ∈ V is
totally ordered. Such a graph may be represented by a set {Lv : v ∈ V } where
each Lv is the adjacency list for v, having the form Lv = (v, λ(v); u1, . . . , uk)
where k is the outdegree of v, and each (v, ui) is an edge. The total order on
the set of outgoing edges from v is specified by this adjacency list. We deem
two such graphs G = (V, E; λ) and G

�
= (V

�
, E

�
; λ

�
) to be the same if, up to

a renaming of the vertices, they have the same set of adjacency lists (so the
identity of vertices is unimportant, but their labels are). Let DG(L) be the set
of all ordered L-digraphs.

Convention for Representation Elements. In normal discourse, we prefer to focus
on a set S rather than on its representing set T (under some representation
ρ : T ≻S). We introduce an “underbar-convention” to facilitate this. If x ∈ S,
we shall write x (x-underbar) to denote some representing element for x (so x ∈ T
is an “underlying representation” of x). This convention makes sense when the
representation ρ is understood or fixed. Writing “x” allows us to acknowledge
that it is the representation of x in an unobtrusive way. The fact that “x” is
under-specified (non-unique) is usually harmless. We use this convention in the
proof of the next lemma:

Lemma 4. Let S, T be explicit sets. Then the following sets are explicit:
(i) Disjoint union S ⊎ T ,
(ii) Finite power set 2̂S (set of finite subsets of S),
(iii) The set of ordered S-digraphs DG(S).

Proof. Let ν1 : Σ∗ ≻S and ν2 : Σ∗ ≻T be explicit notations. We use the above
convention that s denotes a representation element for s ∈ S (i.e., ν1(s) = s).
(i) Let ν0 be a base notation for the set {0, 1}, and fix s0 ∈ S and t0 ∈ T (we
may assume S, T to be non-empty). So the Cartesian product ν0 × ν1 × ν2 is an
explicit notation for {0, 1} × S × T . Consider the restriction f for ν0 × ν1 × ν2

where

f(b#s#t) =

{
b#s0#t if b = 0
b#s#t0 if b = 1

.

Also f is undefined in all other cases. We can regard (ν0 × ν1 × ν2)|f as an

explicit notation for S ⊎ T . (ii) For finite power set 2̂S, we use the fact that S

Theory of Real Computation According to EGC 203

is well-ordered by an ν1-explicit total ordering <ν1
(see Lemma 10 below). We

apply recursive restriction to the notation ν∗ for S∗: define f(x1# · · ·#xn) =
xπ(1)# · · · #xπ(m) where xπ(1) <ν1

· · · <ν1
xπ(m), assuming that {x1, . . . , xn} =

{xπ(1), . . . , xπ(m)} ⊆ S. Also f is undefined in other cases. Then ν∗
1 |f is a nota-

tion for 2̂S, assuming that we identify 2̂S with a suitable subset of S∗.
(iii) Recall the representation of an ordered S-digraph above, as a set of adja-
cency lists, {Lv : v ∈ V } and V = {1, . . . , n}. Vertices v ∈ N are represented by
binary numbers. The set of all adjacency lists Lv can be represented via Carte-
sian product, Kleene star and recursive restriction. Finite sets of adjacency lists
can be represented by the finite power set method of (ii). We further need re-
striction on the sets of adjacency lists, to ensure that each set has the form
{Lv : v ∈ V } and each vertex in list Lv belongs to V . Q.E.D.

Example: Dyadic numbers. Let D := Z[12] = {m2n : m, n ∈ Z} denote the
set of dyadic numbers (or bigfloats, in programming contexts). Let Σ2 =
{0, 1, •, +, −}. A string

w = σbn−1bn−2 · · · bk • bk−1 · · · b0 (2)

in Σ∗
2 is proper if σ ∈ {+, −}, n ≥ 0, k = 0, . . . , n and each bj ∈ {0, 1}. The

dyadic notation
ν2 : Σ∗

2 ≻D (3)

takes the proper string w in (2) to the number ν2(w) = σ2−k
∑n−1

i=0 bi2
i ∈ D;

otherwise ν2(w) =↑. In order to consider ν2 as an explicit notation, we will
identify D with a suitable subset D ⊆ Σ∗

2 . D comprises the proper strings (2)
with additional properties: (n > k ⇒ bn−1 = 1), (k ≥ 1 ⇒ b0 = 1) and
(n = k = 0 ⇒ σ = +). Thus the strings +•, −1•, +10•, −11•, + • 1, −1 • 01,
etc, are identified with the numbers 0, −1, 2, −3, 0.5, −1.25, etc. We can identify
N and Z as suitable subsets of D, and thus obtain notations for N, Z by recursive
restrictions of ν2. All these are explicit notations. We also extend ν2 to a notation
for Q: consider the representation of rational numbers by pairs of integers, ρQ :
Z2 ≻Q where ρQ(m, n) = m/n if n �= 0, and ρQ(m, 0) =↑. This induces an
equivalence relation ∼ on Z2 where (m, n) ∼ (m′, n′) iff ρQ(m, n) ≡ ρQ(m′, n′).
We then obtain a notation for Q by the composition ρQ ◦ (ν2 ×ν2). This example
illustrates the usual way in which representations ρ of mathematical domains
are built up by successive composition of representations, ρ = ρ1 ◦ ρ2 ◦ · · · ◦ ρk

(k ≥ 1). If ρk is a notation, then ρ is also a notation. Although ρ may not be
an explicit notation, it can be converted into an explicit notation by a natural
device. E.g., ρQ ◦ (ν2 ×ν2) is not an explicit notation for Q. To obtain an explicit
notation for Q, we use the quotient notation (ν2 × ν2)/ ∼, as described in (1).
This required an identification of Q with a subset of Z2. In fact, we typically
identify Q with the subset of Z2 comprising relatively prime pairs (p, q) ∈ Z2

where q > 0. We next formalize this procedure.

204 C. Yap

Suppose we want to show the explicitness of a set S, and we have a “natural”
representation ρ : T ≻S. For instance, ρQ is surely a “natural” representation
of Q. We proceed by choosing an explicit notation ν : Σ∗ ≻T for T . Then

ρ ◦ ν

is a notation for S, but not necessarily explicit. Relative to ρ, we say that the
set S is naturally identified in T if we identify each x ∈ S as some element
of the set ρ−1(x). Under this identification, we have S ⊆ T . Moreover, the
representation ρ is the identity function when its nominal domain is restricted
to S. The following lemma then provides the condition for concluding that S is
an explicit set.

Lemma 5. Let ρ : T ≻S be a representation of S. Suppose ν : Σ∗ ≻T is an
explicit notation such that ρ ◦ ν : Σ∗ ≻S is a recursive notation. Then the set
S is an explicit set under some natural identification of S in T . In fact, there is
recursive function f : Σ∗ ≻Σ∗ such that ν|f : Σ∗ ≻S is an explicit notation.

Explicit Subsets. So far, set intersection S ∩ T and union S ∪ T are not among
the operations we considered. To discuss these operations, we need a “universal
set”, taken to be another explicit set U .

Let U be a ν-explicit set where ν : Σ∗ ≻U . We call9 S ⊆ U a (partially)
ν-explicit subset of U if the set {w ∈ Σ∗ : ν(w) ∈ S} is (partially) recursive.
By definition, S is an explicit subset of U iff U is an explicit superset of S.

Lemma 6. Let U be ν-explicit, and S and T are ν-explicit subsets of U .
(i) The sets S, U \ S, S ∪ T and S ∩ T are all explicit sets.
(ii) The set of ν-explicit subsets of U is closed under the Boolean operations
(union, intersection, complement).
(iii) The set of partially ν-explicit subsets of U is closed under union.
(iv) There exists U and a partially ν-explicit subset S ⊆ U such that U \ S is
not an explicit set.

Proof. To show (iv), we let U = Σ∗, where ν is the identity function, and let S
be the halting set. Q.E.D.

Abstract and Concrete Sets. Before concluding this section, we make two remarks
on the interplay between abstract and concrete sets. For this discussion, let us
agree to call a set concrete if it is a subset of some Σ∗; other kinds of set are said
to be abstract. Following Turing, algorithms can only treat concrete sets; but
in mathematics, we normally treat abstract sets like Q, R, Hom(A, B), SO(3),
etc. It is seen from the above development that if we want explicit notations for
abstract sets, we must ultimately identify them with a suitable subset of a simple
set (cf. (1)). Thus, the set of all subsets of strings is our “canonical universe” for

9 In this paper, any appearance of the parenthetical “(partially)” conveys two parallel
statements: one with all occurrences of “(partially)” removed, and another with
“partially” inserted.

Theory of Real Computation According to EGC 205

abstract sets. In practice, making such identifications of abstract sets is not an
arbitrary process (it is not enough to obtain just any bijection). Abstract sets
in reality have considerable structure and relation with other abstract sets, and
these must be preserved and made available for computation. Our explicit sets
can encode such information, but this is is not formalized. In other words, our
sets are conceptually “flat”. Exploring structured sets is a topic for future work.
Without formalizing these requirements, we must exercise judgment in making
such identifications on a case by case basis, but typically they are non-issues as
in, e.g., Q (above), ideals IDn (Lemma 9) and real closure F (Theorem 13).
The second remark concerns the manipulation of an abstract set S through its
notation ν. Strictly speaking, all our development could have been carried out
by referring only to the equivalence relation Eν , and never mentioning S. But
this approach would be tedious and unnatural for normal human comprehension.
Being able to talk directly about S is more efficient. For this practical10 reason
we prefer to talk about S, and (like the underbar-convention) only allude to the
contingent Eν .

3 Explicit Algebraic Structures

In this section, we extend explicit sets to explicit algebraic structures such as
rings and fields. To do this, we need to introduce explicit functions.

Function representations. To represent functions, we assume a representation
of its underlying sets. Let ρ : T ≻S be a representation. If f : S2 ≻S is a
function, then the function f : T × T ≻T is called a ρ-representation of f if
for all x, y ∈ T ,

ρ(f(x, y)) ≡ f(ρ(x), ρ(y)).

In case ρ is a notation, we call f a ρ-notation for f .

We say f : S2 ≻S is ν-explicit (or simply “explicit”) if S is ν-explicit and
there exists a recursive ν-notation f for f . Although we never need to discuss
“partially explicit sets”, we will need “partially explicit functions”: we say f is
partially ν-explicit (or simply “partially explicit”) if S is ν-explicit and there
is a ν-notation f for f which is partial recursive.

These concepts are naturally extended to general k-ary functions, and to
functions whose range and domain involve different sets. E.g., if f : S ≻T
where S is ν-explicit and T is ν

�
-explicit, we can talk about f being (ν, ν

�
)-

explicit. These concepts also apply to the special case of predicates: we define
a predicate on S to be any partial function R : S ≻V where V is any finite
set. Usually |V | = 2, but geometric predicates often have |V | = 3 (e.g., V =
{IN, OUT, ON}).

An (algebraic) structure is a pair (S, Ω) where S is a set (the carrier set)
and Ω is a set of predicates and algebraic operations on S. By an (algebraic)

10 If not for some deeper epistemological reason.

206 C. Yap

operation on S we mean any partial function f : Sk ≻S, for some k ≥ 0
(called the arity of f).

As an example, and one that is used extensively below, an ordered ring S is
an algebraic structure with Ω = {+, −, ×, 0, 1, ≤} such that (S, +, −, ×, 0, 1) is
a ring11 and ≤ is a total order on S with the following properties: the ordering
defines a positive set P = {x ∈ R : x > 0} that is closed under + and ×, and
for all x ∈ S, exactly one of the following conditions is true: x = 0 or x ∈ P or
−x ∈ P . See [41, p. 129].

Ordered rings are closely related to another concept: a ring R is formally real
if 0 �∈ R(2) where R(2) is the set of all sums of non-zero squares. When the rings
are fields or domains, etc, we may speak of ordered fields, formally real domains,
etc. Note that ordered rings are formally real, and formally real rings must be
domains and can be extended into formally real fields. Conversely, formally real
fields can be extended into an ordered field (its real constructible closure) [41,
Theorem 5.6, p. 134]. Clearly, formally real fields have characteristic 0.

The key definition is this: an algebraic structure (S, Ω) is ν-explicit if its
carrier set is ν-explicit, and each f ∈ Ω is ν-explicit. Thus we may speak of
explicit rings, explicit ordered fields, etc.

We must discuss substructures. By a substructure of (S, Ω) we mean (S
�
, Ω

�
)

such that S
� ⊆ S, there is a bijection between Ω

�
and Ω, and each f

� ∈ Ω
�

is
the restriction to S

�
of the corresponding operation or predicate f ∈ Ω. Thus,

we may speak of subfields, subrings, etc. If (S, Ω) is ν-explicit, then (S
�
, Ω

�
) is a

ν-explicit substructure of (S, Ω) if S
�
is a ν-explicit subset of S and (S

�
, Ω

�
)

is a substructure of (S, Ω). Thus, we have explicit subrings, explicit subfields,
etc. If (S

�
, Ω

�
) is an explicit substructure of (S, Ω), we call (S, Ω) an explicit

extension of (S
�
, Ω

�
).

The following shows the explicitness of some standard algebraic constructions:

Lemma 7. Let ν2 be the normal form notation for D = Z[12] in (3).
(i) D is a ν2-explicit ordered ring.
(ii) N ⊆ Z ⊆ D are ν2-explicit ordered subrings.
(iii-a) If D is an ν-explicit domain, then the quotient field Q(D) is explicit.
(iii-b) Moreover, the divides relation a|b is ν-explicit in D iff D is an explicit
subring of Q(D).
(iv) If R is an explicit ring, and W is an explicit set of indeterminates, then the
polynomial ring R[W] is an explicit ring extension of R.
(v) If F is an explicit field, then any simple algebraic extension F (θ) is an explicit
field extension of F .

Proof. (i)-(ii) are obvious. The constructions (iii)-(v) are standard algebraic con-
structions; these constructions can be implemented using operations of explicit
sets. Briefly:
(iii-a) The explicit notation νQ(D) for Q(D) is a standard generalization of the
construction of Q from Z, illustrated above. In fact, νQ(D) is a recursive re-
striction of ν × ν, after an identification of Q(D) with a subset of D × D (see

11 All our rings are commutative with unit 1.

Theory of Real Computation According to EGC 207

Lemma 5). To conclude that Q(D) is an explicit field, we verify that the field
operations of Q(D) are νQ(D)-explicit.
(iii-b) Recall that a divides b, written a|b, iff there is some c ∈ D such that
ac = b. In addition to identifying Q(D) with a subset of D × D, we may assume
this subset includes D × {1}. If we further identify D with D × {1}, we see that
D is a subset of Q(D). Now D is an explicit subring of Q(D) iff D is an explicit
subset of Q(D). So it suffices to show that a|b is ν-explicit iff we can explicitly
decide if any a/b ∈ Q(D) belongs to D. [Pf: (⇒) Given a/b, we can compute

a
�
, b

�
for some a

�
, b

� ∈ D such that a
�
/b

�
= a/b. Then we conclude that a/b ∈ D

iff a
� |b�

. By assumption, we know how to check a
�|b�

in D. (⇐) Given a, b, we
first compute a/b. Then a|b iff a/b denotes an element of D. By assumption, we
know how to check membership in D.]
(iv) First consider the case where W = {X} with just one indeterminate.
The standard representation of R[X] uses R∗ (Kleene star) as representing set:
ρ : R∗ ≻R[X]. Since R is explicit, so is R∗, and hence R[X]. All the polynomial
ring operations are also recursive relative to this notation for R[X]. It is now
easy to see that the argument extends to any explicit set W of indeterminates.
(v) Assume θ is the root of an irreducible polynomial p(X) ∈ F [X] of degree
n. The elements of F (θ) can be directly represented by elements of Fn (n-fold
Cartesian product): thus, if ν is an explicit notation for F , then νn is an explicit
notation of Fn = F (θ). The ring operations of F (θ) are reduced to polynomial
operations modulo p(X), and division is reduced to computing inverses using the
Euclidean algorithm. It is easy to check that these operations are νn-explicit.

Q.E.D.

This lemma is essentially a restatement of corresponding results in [18]. In par-
ticular (iii-a, iii-b) may be found in [18, Theorem 3.3]. It is interesting to point
out12 the following counterpart of (iii-b):

Proposition 8 (Volker Bosserhoff). There is an ν-explicit domain D such
that the divides predicate a|b is not ν-explicit.

Proof. Define the domains

D′ := Z[Y, Xi : i ∈ N], D := Z[Y, Xj , Y Xi : j ∈ H, i ∈ N]

where H ⊆ N is the halting set. So D is a subring of D′. Clearly, D′ has a explicit
notation ν′ in which the function i �→ Xi is ν′-explicit. There is a standard
recursive function f : N → H which is a bijection. Using f , we can construct
a 1 − 1 recursive function F : Σ∗ → Σ∗ whose range is the set of all ν′-names
of elements of D. Thus ν := ν′|F is an explicit notation for D. If a ∈ D, write
a ∈ Σ∗ for the ν-name of a. The ring operations of D are ν-explicit: say we
want to ν-compute a + b for a, b ∈ D. Given a, b, we first compute F (a), F (b).
These are just the ν′-names of a, b. Since D′ is ν′-explicit, we can perform the
ring operation a + b in D′ using their ν′-names F (a) and Fb). The result is the

12 See also [39, Example 4.3.9].

208 C. Yap

ν
�
-name z of a+ b. By exhaustive search, we find the w such that F (w) = z. We

output w since w = a + b. This establishes D
�
as a ν-explicit domain.

Now suppose the predicate a|b is ν-explicit. We derive a contradiction by
showing how to decide the halting problem: given i ∈ N, we want to decide if
i ∈ H . From i, we can compute the ν

�
-name of Xi, as noted above. Using a

fixed ν
�
-name of Y , we can compute a ν

�
-name of XiY . If the ν

�
-name is ui,

we can use exhaustive search to find the ν-name of XiY , i.e., the wi such that
F (wi) = ui. As usual, we write XiY for wi. Since the divides predicate in D is
ν-explicit, we can decide whether Y |XiY in D by applying a ν-algorithm for the
divides predicate to XiY and a ν-name Y of Y . But Y |XiY iff Xi ∈ D iff i ∈ H .

Q.E.D.

It follows from Lemma 7 that standard algebraic structures such as the structure
Q[X1, . . . , Xn] or algebraic number fields are explicit. Clearly, many more stan-
dard constructions can be shown explicit (e.g., matrix rings). The next lemma
uses constructions whose explicitness are less obvious: let IDn(F) denote the set
of all ideals of F [X1, . . . , Xn] where F is a field. For ideals I, J ∈ IDn(F), we
have the ideal operations of sum I + J , product IJ , intersection I ∩ J , quotient
I : J , and radical

√
I [41, p. 25]. These operations are all effective, for instance,

using Gröbner basis algorithms [41, chap. 12].

Lemma 9. Let F be an explicit field. Then the set IDn(F) of ideals has an ex-
plicit notation ν, and the ideal operations of sum, product, intersection, quotient
and radical are ν-explicit.

Proof. From Lemma 7(iv), F [X1, . . . , Xn] is explicit. From Lemma 4(ii), the set S
of finite subsets of F [X1, . . . , Xn] is explicit. Consider the map ρ : S → IDn(F)
where ρ({g1, . . . , gm}) is the ideal generated by g1, . . . , gm ∈ F [X1, . . . , Xn].
By Hilbert’s basis theorem [41, p. 302], ρ is an onto function, and hence a
representation. If ν : Σ∗ ≻S is an explicit notation for S, then ρ ◦ ν is a
notation for IDn(F). To show that this notation is explicit, it is enough to
show that the equivalence relation Eρ is decidable (cf. (1)). This amounts to
checking if two finite sets {f1, . . . , fℓ} and {g1, . . . , gm} of polynomials generate
the same ideal. This can be done by computing their Gröbner bases (since such
operations are all rational and thus effective in an explicit field), and seeing
each reduces the other set of polynomials to 0. Let S/Eρ denote the equivalence
classes of S; by identifying S/Eρ with the set IDn(F), we obtain an explicit
notation for IDn(F), ν/Eρ : Σ∗ ≻S/Eρ. The (ν/Eρ)-explicitness of the various
ideal operations now follows from known algorithms, using the notation (ν/Eρ).

Q.E.D.

Well-ordered sets. Many algebraic constructions (e.g., [38, chap. 10]) are trans-
finite constructions, e.g., the algebraic closure of fields. The usual approach for
showing closure properties of such constructions depends on the well-ordering
of sets (Zermelo’s theorem), which in turn depends on the Axiom of Choice
(e.g., [19] or [38, chap. 9]). Recall that a strict total ordering < of a set S is a
well-ordering if every non-empty subset of S has a least element. In explicit set

Theory of Real Computation According to EGC 209

theory, we can replace such axioms by theorems, and replace non-constructive
constructions by explicit ones.

Lemma 10. A ν-explicit set is well-ordered. This well-ordering is ν-explicit.

Proof. Let ν : Σ∗ ≻S be an explicit notation for S. Now Σ∗ is well-ordered by
any lexicographical order ≤LEX on strings. This induces a well-ordering ≤ν on
the elements x, y ∈ S as follows: let wx := min{w ∈ Σ∗ : ν(w) = x}. Define
x ≤ν y if wx ≤LEX wy. The predicate ≤ν is clearly ν-explicit. Moreover it is a
well-ordering. Q.E.D.

The proof of Theorem 13 below depends on such a well-ordering.

Expressions. Expressions are basically “universal objects” in the representation
of algebraic constructions.

Let Ω̂ be a (possibly infinite) set of symbols for algebraic operations, and

k : Ω̂ → N assigns an “arity” to each symbol in Ω̂. The pair (Ω̂, k) is also called
a signature. Suppose Ω is a set of operations defined on a set S. To prove the
closure of S under the operations in Ω, we consider “expressions” over Ω̂, where
each ĝ ∈ Ω̂ is interpreted by a corresponding g ∈ Ω and k(ĝ) is the arity of g.

To construct the closure of S under Ω, we will use “expressions over Ω̂” as the
representing set for this closure.

Let Ω̂(k) denote the subset of Ω̂ comprising symbols with arity k. Recall the
definition of the set DG(Ω̂) of ordered Ω̂-digraphs. An expression over Ω̂ is a

digraph G ∈ DG(Ω̂) with the property that (i) the underlying graph is acyclic
and has a unique source node (the root), and (ii) the outdegree of a node v is

equal to the arity of its label λ(v) ∈ Ω̂. Let Expr(Ω̂, k) (or simply, Expr(Ω̂))

denote the set of expressions over Ω̂.

Lemma 11. Suppose Ω̂ is a ν-explicit set and the function k : Ω̂ → N is13

ν-explicit. Then the set Expr(Ω̂) of expressions is an explicit subset of DG(Ω̂).

Proof. The set DG(Ω̂) is explicit by Lemma 4(iii). Given a digraph G = (V, E; λ) ∈
DG(Ω̂), it is easy to algorithmically check properties (i) and (ii) above in our
definition of expressions. Q.E.D.

Universal Real Construction. A fundamental result of field theory is Steinitz’s
theorem on the existence and uniqueness of algebraic closures of a field F [38,
chap. 10]. In standard proofs, we only need the well-ordering principle. To obtain
the “explicit version” of Steinitz’s theorem, it is clear that we also need F to
be explicit. But van der Waerden pointed out that this may be insufficient: in
general, we need another explicitness assumption, namely the ability to factor
over F [X] (see [18]). Factorization in an explicit UFD (unique factorization
domain) such as F [X] is equivalent to checking irreducibility [18, Theorem 4.2].

If F is a formally real field, then a real algebraic closure F of F is an
algebraic extension of F that is formally real, and such that no proper algebraic

13 Strictly speaking, k is (ν, ν′)-explicit where ν′ is the notation for N.

210 C. Yap

extension is formally real. Again F exists [41, chap. 5], and is unique up to
isomorphism. Our goal here is to give the explicit analogue of Steinitz’s theorem
for real algebraic closure.

If p, q ∈ F [X] are polynomials, then we consider the operations of computing
their remainder pmod q, their quotient pquo q, their gcd GCD(p, q), their re-
sultant resultant(p, q), the derivative dp

dX
of p, the square-free part sqfree(p)

of p, and the Sturm sequence Sturm(p) of p. Thus Sturm(p) is the sequence
(p0, p1, . . . , pk) where p0 = p, p1 = dp

dX
, and pi+1 = pi−1 modpi (i = 1, . . . , k),

and pk+1 = 0. These are all explicit in an explicit field:

Lemma 12. If F is a ν-explicit field, and p(X), q(X) ∈ F [X], then the following
operations are14 ν-explicit:

pmod q, pquo q, GCD(p, q),
dp

dX
, resultant(p, q), sqfree(p), Sturm(p).

Proof. Let prem(p, q) and pquo(p, q) denote the pseudo-remainder and pseudo-
quotient of p(X), q(X) [41, Lemmas 3.5, 3.8]. Both are polynomials whose coef-
ficients are determinants in the coefficients of p(X) and q(X). Hence prem(p, q)
and pquo(p, q) are explicit operations. The leading coefficients of prem(p, q) and
pquo(p, q) can be detected in an explicit field. Dividing out by the leading coeffi-
cient, we can obtain pmod q and pquo q from their pseudo-analogues. Similarly,
GCD(p, q) and resultant(p, q) can be obtained via subresultant computations
[41, p. 90ff]. Clearly, differentiation dp

dX
is a ν-explicit operation. We can com-

pute sqfree(p) as p/GCD(p, dp/dX). Finally, we can compute the Sturm sequence
Sturm(p) because we can differentiate and compute pmod q, and can test when
a polynomial is zero. Q.E.D.

Some common predicates are easily derived from these operations, and they are
therefore also explicit predicates: (a) p|q (p divides q) iff pmod q = 0. (b) p is
squarefree iff sqfree(p) = p.

Let F be an ordered field. Given p ∈ F [X], an interval I is an isolating
interval of p in one of the following two cases: (i) I = [a, a] and p(a) = 0 for
some a ∈ F , (ii) I = (a, b) where a, b ∈ F , a < b, p(a)p(b) < 0, and the Sturm
sequence of p evaluated at a has one more sign variation than the Sturm sequence
of p evaluated at b. It is clear that an isolating interval uniquely identifies a root
α in the real algebraic closure of F . Such an α is called a real root of p. In case
p is square-free, we call the pair (p, I) an isolating interval representation
for α. We may now define the operation Rootk(a0, . . . , an) (k ≥ 1, ai ∈ F) that
extracts the kth largest real root of the polynomial p(X) =

∑n
i=0 aiX

i. This
operation is undefined in case p(X) has less than k real roots. For the purposes
of this paper, we shall define the real algebraic closure of F , denoted F , to be
the smallest ordered field that is an algebraic extension of F and that is closed
under the operation Rootk(a0, . . . , an) for all a0, . . . , an ∈ F and k ∈ N. For
other characterizations of real algebraic closures, see e.g., [41, Theorem 5.11].

14 Technically, these operations are ν′-explicit where F [X] is an ν′-explicit set, and ν′

is derived from ν using the above standard operators.

Theory of Real Computation According to EGC 211

Theorem 13. Let F be an explicit ordered field. Then the real algebraic closure
F of F is explicit. This field is unique up to F -isomorphism (isomorphism that
leaves F fixed).

Unlike Steinitz’s theorem [38, chap. 10], this result does not need the Axiom of
Choice; and unlike the explicit version of Steinitz’s theorem [18], it does do not
need factorization in F [X]. But the ordering in F must be explicit.

Proof. For simplicity in this proof, we will assume the existence of F (see [41]). So
our goal is to show its explicitness, i.e., we must show an explicit notation ν for
F , and show that the field operations as well as Rootk(a0, . . . , an) are ν-explicit.
Consider the set

Ω̂ := F ∪ {+, −, ×, ÷} ∪ {Rootk : n ∈ N, 1 ≤ k ≤ n}

of operation symbols. The arity of these operations are defined as follows: the
arity of x ∈ F is 0, arity of g ∈ {+, −, ×, ÷} is 2, and arity of Rootk is n + 1. It

is easy to see that Ω̂ is explicit, and hence Expr(Ω̂) is explicit. Define a natural
evaluation function,

Eval : Expr(Ω̂) ≻F . (4)

Let e be an expression. We assign val(u) ∈ F to each node u of the underlying
DAG of e, in bottom-up fashion. Then Eval(e) is just the value of the root. If any
node has an undefined value, then Eval(e) =↑. The leaves are assigned constants
val(u) ∈ F . At an internal node u labeled by a field operation (+, −, ×, ÷), we
obtain val(u) as the result of the corresponding field operation on elements of
F . Note that a division by 0 results in val(u) =↑. Similarly, if the label of u is
Rootk and its children are u0, . . . , un (in this order), then val(u) is equal to the
kth largest real root (if defined) of the polynomial

∑n
j=0 val(uj)X

j. We notice
that the evaluation function (4) is onto, and hence is a representation of the real

algebraic closure F . Since Expr(Ω̂) is an explicit set, Eval is a notation of F . It
remains to show that Eval is an explicit notation.

To conclude that F is an explicit set via the notation (4), we must be able to
decide if two expressions e, e

�
represent the same value. By forming the expression

e − e
�
, this is reduced to deciding if the value of a proper expression e is 0. To

do this, assume that for each expression e, we can either determine that it is
improper or else we can compute an isolating interval representation (Pe(X), Ie)
for its value val(e). To determine if val(e) = 0, we first compute the isolating
interval representation (Pe, Ie). If Pe(X) =

∑n

i=0 aiX
i, and if val(e) �= 0, then

Cauchy’s lower bound [41, Lem. 6.7] holds: |val(e)| > |a0|/(|a0| + max{|ai| :
i = 1, . . . , n}). Let w(I) = b − a denote the width of an interval I = (a, b) or
I = [a, b]. Therefore, if

w(Ie) < B0 :=
|a0|

|a0| + max{|ai| : i = 1, . . . , n} , (5)

we can decide whether val(e) = 0 as follows: val(e) = 0 iff 0 ∈ Ie. To ensure
(5), we first compute B0 and then we use binary search to narrow the width of

212 C. Yap

Ie: each binary step on the current interval I
�
= (a

�
, b

�
) amounts to computing

m = (a
�
+b

�
)/2 and testing if Pe(m) = 0 (which is effective in F). If so, val(e) =

m and we can tell if m = 0. Otherwise, we can replace I
�

by (a
�
, m) or (m, b

�
).

Specifically, we choose (a
�
, m) if Pe(a

�
)P (m) < 0 and otherwise choose (m, b

�
).

Thus the width of the interval is halved. We repeat this until the width is less
than B0.

Given P (X) ∈ F [X], we need to compute a complete set of isolating intervals
for all the real roots of P (X) using Sturm sequences. This is well known if
F ⊆ R, but it is not hard to see that everything extends to explicit ordered
fields. Briefly, three ingredients are needed: (i) The Sturm sequence SturmP (X)
of P (X) is SturmP (X) := (P0, P1, . . . , Ph) where P0 = P (X), P1 = dP (X)/dX ,
and Pi+1 = Pi−1 modPi (i = 1, . . . , h), and Ph+1 = 0. To compute SturmP (X),
we need to compute polynomial remainders for polynomials in F [X], and be
able to detect zero coefficients (so that we know the leading coefficients). (ii) We
need an upper bound B1 on the magnitude of all roots. The Cauchy bound may
be used: choose B1 = 1 + (maxn−1

i=0 |ai|)/|an| where a0, . . . , an are coefficients of
the polynomial [41, p. 148]. (iii) Let VP (a) denote the number of sign variations
of the Sturm sequence of P evaluated at a. The usual theory assumes that
P (a)P (b) �= 0. In this case, the number of distinct real roots of P (X) in an
interval (a, b) is given by VP (a) − VP (b). But in case P (a) = 0 and/or P (b) = 0,
we need to compute VP (a+) and/or VP (b−). As noted in [16], if P is square-free,
then for all a, b ∈ F , we have VP (a+) = VP (a) and VP (b−) = δ(P (b)) + VP (b)
where δ(x) = 1 if x = 0 and δ(x) = 0 otherwise. This computation uses only
ring operations and sign determination.

We now return to our main problem, which is to compute, for given expression
e, an isolating interval representation of val(e) or determine that e is improper.
The algorithm imitates the preceding bottom-up assignment of values val(u) to
each node u, except that we now compute an isolating interval representation of
val(u) at each u. Let this isolating interval representation be (Pu(X), Iu). If u
is a leaf, Pu = X − val(u), and Iu = [val(u), val(u)]. Inductively, we have two
possibilities:

(I) Suppose λ(u) is a field operation ⋄ ∈ {+, −, ×, ÷} and the children of u
are v, w. Recursively, assume val(v), val(w) are defined and we have computed
the isolating interval representations (Pv, Iv) and (Pw , Iw). In case ⋄ is division,
we next check if val(w) = 0. If so, val(u) is undefined. If not, then Pu(X) may
be given by the square-free part of the following resultants (respectively):

v ± w : resY (Pv(Y), Pw(X ∓ Y))

v × w : resY (Pv(Y), Y deg(Pw)Pw(X/Y))

v/w : resY (Pv(Y), Xdeg(Pw)Pw(Y/X)).

See [41, p. 158]; the last case can be deduced from the reciprocal formula there.
If the operation is division, we first use the binary search procedure above to
narrow the width of Iw until either 0 �∈ Iw or we detect that val(w) = 0 i.e.,
w(Iw) < B0 and 0 ∈ Iw . In the latter case, v/w is not defined. Next, tentatively
set Iu = Iv ⋄ Iw (using interval arithmetic) and test if it is an isolating interval

Theory of Real Computation According to EGC 213

of Pu(X). This is done by using Sturm sequences: by evaluating the Sturm
sequence at the endpoints of Iu, we can tell if Iu is isolating. If not, we will half
the intervals Iv and Iw using bisection search as above, and repeat the test. It
is clear that this process terminates.

(II) Suppose λ(u) is Rooti(u0, . . . , un). To compute Pu(X) ∈ F [X], we recall
that by the theory of elementary symmetric functions, there is a polynomial
P (X) ∈ F [X] of degree at most D =

∏n

j=0 deg(Puj
) such that Q(X)|P (X)

and Q(X) =
∑n

j=0 val(uj)X
j [41, Proof of Theorem 6.24]. We can construct

an expression over the ring F [X] to represent Q(X) (since the coefficient of
Q(X) are elements of F). Moreover, F [X] is an explicit polynomial ring, so
we can systematically search for a P (X) ∈ F [X] ⊆ F [X] that is divisible by
Q(X). We must show that the predicate Q(X)|P (X) is effective. This is equiv-
alent to checking if P (X)modQ(X) = 0. As noted in the proof of Lemma 12,
R(X) := P (X)modQ(X) is a polynomial whose coefficients are determinants
in the coefficients of P (X), Q(X). Using the resultant techniques in (I), we can
therefore compute isolating interval representations of the coefficients of R(X).
Thus R(X) = 0 iff all the coefficients of R(X) vanishes, a test that is effective.
(Note: this test is a kind of “bootstrap” since we are using isolating interval
representations to determine the isolating interval representation of u.) Finally,
from P (X), we compute its square-free part Pu.

Next, we must compute an isolating interval Iu of Pu for the ith largest root
of the polynomial Q(X). Although we can isolate the real roots of Pu, we must
somehow identify the root that corresponds to the ith largest root of Q(X). The
problem is that Q(X) ∈ F [X] \ F [X], and so we cannot directly use the Sturm
method of (I) above. Nevertheless, it is possible to use the Sturm method in
a bootstrap manner, by exploiting the isolating interval representation (similar
to checking if Q(X)|P (X) above). Indeed, all the operations in Lemma 12 can
be implemented in this bootstrap manner. Once we have isolated these roots of
Q(X), we can continue to narrow the intervals as much as we like. In particular,
we must narrow the ith largest root of Q(X) until it is also an isolating interval
for Pu(X). This completes our proof. Q.E.D.

REMARK: An alternative method to isolate all the real roots of Q(X) ∈ F [X]
may be based on a recent result of Eigenwillig et al [1]. They showed an algorithm
to isolate the real roots of square-free polynomials with real coefficients where the
coefficients are given as potentially infinite bit streams. To apply this algorithm
we must first make Q(X) square-free, but this can be achieved using the boot-
strap method.

4 Real Approximation

We now address the problem of real computation. Our approach is a further
elaboration of [42].

All realizable computations over abstract mathematical domains S are ulti-
mately reduced to manipulation of their representations. If we accept Turings’

214 C. Yap

general analysis of computation, then these representations of S are necessarily
notations. But it is impossible to provide notations if S is an uncountable set
such as R. There are two fundamental positions to take with respect to this
dilemma.

(A) One position insists that a theory of real computation must be able to
compute with all of R from the start. Both the (Polish) analytic school and
the algebraic school adopt this line. The analytic school proceeds to general-
ize the concept of computation to handle representations (of real number, real
functions, real operators, etc). So we must generalize Turing machines to han-
dle such non-notation representations: two examples of such generalizations are
oracle machines [23] and TTE machines [40]. The algebraic school chooses an
abstract computational model that directly manipulates the real numbers, in
effect ignoring all representation issues. The decision to embrace all of R from
the start exacts a heavy toll. We believe that the standard criticisms of both
schools stem from this fundamental decision: the theory is either unrealizable
(algebraic school) or too weak (analytic school, which treats only continuous
functions). The resulting complexity theory is also highly distorted unless it is
restricted in some strong way. In the algebraic school, one approach is to focus on
the “Boolean part” (e.g., [3]). Another is to analyze complexity as a function of
condition number [6]. In the analytic school, one focuses15 mainly on “precision
complexity”, which is essentially local complexity or complexity at a point.

(B) The alternative position is to accept that there will be real numbers that
are simply “inaccessible” for computation. This phenomenon seems inevitable.
Once we accept this principle, there is no reason to abandon or generalize Tur-
ing’s fundamental analysis – for the “accessible reals”, we can stick to computa-
tions over notations (using standard Turing machines). The Russian branch of
the analytic school [40, Chap. 9] takes this approach, by identifying the accessi-
ble reals with the computable reals (see below; also Spreen [37]). A real number
is now represented by its Gödel numbers (names of programs for computing its
Cauchy sequences). Alas, this view also swallows too much in one gulp, again
leading to a distorted complexity theory. Our approach [42] takes position (B),
but adopts a more constructive view about which real numbers ought to be ad-
mitted from the start. Nevertheless, the set of reals that can be studied by our
approach is not fixed in advance (see below).

15 That is, the only useful parameter in complexity functions is the precision parameter
p. E.g., for f : R → R, the main complexity function we can associate with f is T (p),
giving the worst number of steps of an oracle Turing machine for approximating
p-bits of f(x) for all x ∈ R. There is no natural way to use the real value x (or
|x|) as a complexity in computing f(x). Thus Ko [23, p. 57] defines the complexity
function T (x, p) as the time to compute f(x) to p-bits of absolute accuracy. But
the x parameter is instantly factored out by considering uniform time complexity,
and never used in actual complexity results. The real parameter x fails to behave
properly as a complexity parameter: the function T (x, p) is not monotonic in x
(for x > 0). Even if x is rational, the monotonicity property fails. To be concrete,
suppose T (x, p) be the time to compute a p-bit approximation to

√
x. The inequality

T (x, p) ≤ T (2, p) fails as badly as we like, by choosing x = (n + 1)/n as n → ∞.

Theory of Real Computation According to EGC 215

Base Reals. We begin with a set of “base reals” that is suitable for approximating
other real numbers. Using the theory of explicit algebraic structures, we can now
give a succinct definition (cf. [42]): a subset F ⊆ R is called a ring of base reals
if F is an explicit ordered ring extension of the integers Z, such that F is dense
in R. Elements of F are called base reals.

The rational numbers Q, or the dyadic (or bigfloat) numbers D = Z[12], or
even the real algebraic numbers, can serve as the ring of base reals. Since F is
an explicit ring, we can perform all the ring operations and decide if two base
reals are equal. Being dense, we can use F to approximate any real number to
any desired precision. We insist that all inputs and outputs of our algorithms
are base reals. This approach reflects very well the actual world of computing:
in computing systems, floating point numbers are often called “reals”. Basic
foundation for this form of real computation goes back to Brent [8,9]. It is also
clear that all practical development of real computation (e.g., [28,30,25]), as in
our work in EGC, also ultimately depend on approximations via base reals. The
choice of D as the base reals is the simplest: assuming that F is closed under the
map x �→ x/2, then D ⊆ F. In the following, we shall assume this property. Then
we can do standard binary searches (divide by 2), work with dyadic notations,
and all the results in [42] extends to our new setting.

Error Notation. We consider both absolute and relative errors: given x, x̃, p ∈ R,
we say that x̃ is an absolute p-bit approximation of x if |x̃ − x| ≤ 2−p. We
say x̃ is a relative p-bit approximation of x if |x̃ − x| ≤ 2−p|x|.

The inequality |x̃ − x| ≤ 2−p is equivalent to x̃ = x + θ2−p where |θ| ≤ 1. To
avoid introducing an explicit variable θ, we will write this in the suggestive form
“x̃ = x ± 2−p”. More generally, whenever we use the symbol ‘±’ in a numerical
expression, the symbol ± in the expression should be replaced by the sequence
“+θ” where θ is a real variable satisfying |θ| ≤ 1. Like the big-Oh notations, we
think of the ±-convention as a variable hiding device. As further example, the
expression “x(1 ± 2−p)” denotes a relative p-bit approximation of x. Also, write
(x ± ε) and [x ± ε] (resp.) for the intervals (x − ε, x + ε) and [x − ε, x + ε].

Absolute and Relative Approximation. The ring F of base reals is used for ap-
proximation purposes. So all approximation concepts will depend on this choice.
If f : S ⊆ Rn ≻R is16 a real function, we call a function

f̃ : (S ∩ Fn) × F ≻F (6)

an absolute approximation of f if for all d ∈ S ∩ Fn and p ∈ F, we have
f̃(d, p) =↓ iff f(d) =↓. Furthermore, when f(d) =↓ then f̃(d, p) = f(d) ± 2−p.

We can similarly define what it means for f̃ to be a relative approximation
of f . Let

Af , Rf

16 This is just a short hand for “f : S ≻R and S ⊆ Rn”. Similarly, f : S ⊆ Rn ≻T ⊆
R is shorthand for f : S ≻T with the indicated containments for S and T .

216 C. Yap

denote the set of all absolute, respectively relative, approximations of f . If f̃ ∈
Af ∪Rf , we also write “f̃(d)[p]” instead of f̃(d, p) to distinguish the precision
parameter p. We remark that this parameter p could also be restricted to N

for our purposes; we often use this below.
We say f is absolutely approximable (or A-approximable) if some f̃ ∈ Af

is explicit. Likewise, f is partially absolutely approximable (or partially

A-approximable) if some f̃ ∈ Af is partially explicit. Analogous definitions
hold for f being relatively approximable (or R-approximable) and partially
relatively approximable (or partially R-approximable). The concept of ap-
proximability (in the four variants here) is the starting point of our approach to
real computation. Notice that “real approximation” amounts to “explicit com-
putation on the base reals”.

Remark on nominal domains of partial functions. It may appear redundant to
consider a function f that is a partial function and whose nominal domain S is
a proper subset of Rn. In other words, by specifying S = Rn or S = domain(f),
we can either avoid partial functions, or avoid S �= Rn. This attitude is implicit
in recursive function theory, for instance. It is clear that the choice of S affects
the computability of f since S determines the input to be fed to our computing
devices. In the next section, the generic function f(x) =

√
x is used to illustrate

this fact. Intuitively, the definability of f at any point x is intrinsic to the function
f , but its points of undefinability is only incidental to f (an artifact of the choice
of S). Unfortunately, this intuition can be wrong: the points of undefinability of
f can tell us much about the global nature of f . To see this, consider the fact
that the choice of S is less flexible in algebra than in analysis. In algebra, we are
not free to turn the division operation in a field into a total function, by defining
it only over non-zero elements. In analysis, it is common to choose S so that f
behaves nicely: e.g., f has no singularity, f is convergent under Newton iteration,
etc. But even here, this choice is often not the best and may hide some essential
difficulties. So in general, we do not have the option of specifying S = Rn or
S = domain(f) for a given problem.

Much of what we say in this and the next section are echos of themes found
in [23,40]. Our two main goals are (i) to develop the computability of f in
the setting of a general nominal domain S, and (ii) to expose the connection
between computability of f with its approximability. A practical theory of real
computability in our view should be largely about approximability.

Regular Functions. Let f : S ⊆ R ≻R. In [23] and [40], the real functions are
usually restricted to S = [a, b], (a, b) or S = R; this choice is often essential to
the computability of f . To admit S which goes beyond the standard choices, we
run into pathological examples such as S = R \ F. This example suggests that
we need an ample supply of base reals in S. We say that a set S ⊆ R is regular
if for all x ∈ S and n ∈ N, there exists y ∈ S ∩ F such that y = x ± 2−n. Thus,
S contains base reals arbitrarily close to any member. We say f is regular if
domain(f) is regular. Note that regularity, like all our approximability concepts,
is defined relative to F.

Theory of Real Computation According to EGC 217

Cauchy Functions. The case n = 0 in (6) is rather special: in this case, f is
regarded as a constant function, representing some real number x ∈ R. An
absolute approximation of x is any function f̃ : F → F where f̃(p) = x ± 2−p for

all p ∈ F. We call f̃ a Cauchy function for x. The sequence (f̃(0), f̃(1), f̃(2), . . .)
is sometimes called a rapidly converging Cauchy sequence for x; relative
to f̃ , the p-th Cauchy convergent of x is f̃(p).

Extending the above notation, we may write Ax for the set of all Cauchy
functions for x. But note that f̃ is not just an approximation of x, but it uniquely
identifies x. Thus f̃ is a representation of x. So by our underbar convention, we
prefer to write “x” for any Cauchy function of x. Also write “x[p]” (instead of
x(p)) for the pth convergent of x.

We can also let Rx denote the set of relative approximations of x. If some
x ∈ Ax (x ∈ Rx) is explicit, we say x is A-approximable (R-approximable).
Below we show that x is R-approximable iff x is A-approximable. Hence we
may simply speak of “approximable reals” without specifying whether we are
concerned with absolute or relative errors.

Among the Cauchy functions in Ax, we identify one with nice monotonicity
properties: every real number x can be written as

n + 0.b1b2 · · ·

where n ∈ Z and bi ∈ {0, 1}. The bi’s are uniquely determined by x when x �∈ D.
Otherwise, all bi’s are eventually 0 or eventually 1. For uniqueness, we require
all bi’s to be eventually 0. Using this unique sequence, we define the standard
Cauchy function of x via

βx[p] = n +

p∑

i=1

bi2
−i.

For instance, −5/3 is written −2+0.01010101 · · ·. This defines the Cauchy func-
tion βx[p] for all p ∈ N. Technically, we need to define βx[p] for all p ∈ F: when
p < 0, we simply let βx[p] = βx[0]; when p > 0 and is not an integer, we let
βx[p] = βx[⌈p⌉]. We note some useful facts about this standard function:

Lemma 14. Let x ∈ R and p ∈ N.
(i) βx[p] ≤ βx[p + 1] ≤ x.
(ii) x − βx[p] < 2−p.
(iii) If y = βx[p] ± 2−p, then for all n ≤ p, we also have y = βx[n] ± 2−n. In
particular, there exists y ∈ Ay such y[n] = βx[n] for all n ≤ p.
(iv) There is a recursive procedure B : F × N → F such that for all x ∈ F, p ∈ N,
B(x, p) = βx[p]. In particular, for each x ∈ F, the standard Cauchy function of
x is recursive.

To see (iii), it is sufficient to verify that if y = βx[p]±2−p then y = βx[p−1]±21−p.
Now βx[p] = βx[p − 1] + δ2−p where δ = 0 or 1. Hence y = βx[p] ± 2−p =
(βx[p − 1] ± 2−p) ± 2−p = βx[p − 1] ± 21−p.

218 C. Yap

Explicit computation with one real transcendental. In general, it is not known
how to carry out explicit computations (e.g., decide zero) in transcendental ex-
tensions of Q (but see [12] for a recent positive result). However, consider the
field F (α) where α is transcendental over F . If F is ordered, then the field F (α)
can also be ordered using an ordering where a <

�
α for all a ∈ F . Further, if F

is explicit, then F (α) is also an explicit ordered field with this ordering <
�
. But

the ordering <
�
is clearly non-Archimedean (i.e., there are elements a, x ∈ F (α)

such that for all n ∈ N, n|a| < |x|). Now suppose F ⊆ R and α ∈ R (for instance,
F = Q and α = π). Then F (α) ⊆ R can be given the standard (Archimedean)
ordering < of the reals.

Theorem 15. If F ⊆ R is an explicit ordered field, and α ∈ R is an approximable
real that is transcendental over F , then the field F (α) with the Archimedean order
< is an explicit ordered field.

Proof. The field F (α) is isomorphic to the quotient field of F [X], and this field
is explicit by Lemma 7(iii,iv). It remains to show that the Archimedean order <
is explicit. Let P (α)/Q(α) ∈ F (α) where P (X), Q(X) ∈ F [X] and Q(X) �= 0.
It is enough to show that we can recognize the set of positive elements of F (α).
Now P (α)/Q(α) > 0 iff P (α)Q(α) > 0. So it is enough to recognize whether
P (α) > 0 for any P (α) ∈ F [α]. First, we can verify that P (α) �= 0 (this is
true iff some coefficient of P (α) is nonzero). Next, since α is approximable, we
find increasingly better approximations α[p] ∈ F of α, and evaluate P (α[p]) for
p = 0, 1, 2, To estimate the error, we derive from Taylor’s expansion the
bound P (α) = P (α[p]) ± δp where δp =

∑
i≥1 2−ip|P (i)(α[p])|. We can easily

compute an upper bound βp ≥ |δp|, and stop when |P (α[p])| > βp. Since δp → 0
as p → ∞, we can also ensure that βp → 0. Hence termination is assured. Upon
termination, we know that P (α) has the sign of P (α[p]). Q.E.D.

In particular, this implies that D(π) or Q(e) can serve as the set F of base
reals. The choice D(π) may be appropriate in computations involving trigono-
metric functions, as it allows exact representation of the zeros of such functions,
and thus the possibility to investigate the neighborhoods of such zeros com-
putationally. Moreover, we can extend the above technique to any number of
transcendentals, provided they are algebraically independent. For instance, π
and Γ (1/3) = 2.678938 . . . are algebraically independent and so D(π, Γ (1/3))
would be an explicit ordered field.

Real predicates. Given f : S ⊆ R ≻R, define the predicate Signf : S ≻{−1, 0, 1}
given by

Signf (x) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if f(x) = 0,
+1 if f(x) > 0,
−1 if f(x) < 0,
↑ else.

Define the related predicate Zerof : S ≻{0, 1} where Zerof (x) ≡ |Signf (x)| (so
range(Zerof) ⊆ {0, 1}). By the fundamental analysis of EGC (see Introduction),
Signf is the critical predicate for geometric algorithms. We usually prefer to

Theory of Real Computation According to EGC 219

focus on the simpler Zerof predicate because the approximability of these two
predicates are easily seen to be equivalent in our setting of base reals (cf. [42]).

In general, a real predicate is a function P : S ⊆ Rn ≻R where range(P)
is a finite set. The approximation of real predicates is somewhat simpler than
that of general real functions.

To treat the next result, we need some new definitions. Let S ⊆ D ⊆ Σ∗. We
say S is recursive modulo D if there is a Turing machine that, on input x
taken from the set D, halts in the state q↓ if x ∈ S, and in the state q↑ if x �∈ S.
Similarly, S is partial recursive modulo D if there is a Turing machine that,
on input x taken from D, halts iff x ∈ S. Let S ⊆ D ⊆ U where U is a ν-
explicit set and ν : Σ∗ ≻U . We say S is a (partially) ν-explicit subset of
U modulo D if the set {w ∈ Σ∗ : ν(w) ∈ S} is (partial) recursive modulo
{w ∈ Σ∗ : ν(w) ∈ D}. Also, denote by rangeF(f) := {f(x) : x ∈ F ∩ S}, the
range of f when its domain is restricted to base real inputs.

Lemma 16. For a real predicate P : S ⊆ R ≻R, the following are equivalent:
(i) P is partially R-approximable
(ii) P is partially A-approximable
(iii) Each a ∈ rangeF(P) is a computable real number and the set P−1(a) ∩ F is
partially explicit modulo S.

Proof. (i) implies (ii): Let P̂ ∈ RP be a partially explicit function. Our goal

is to compute some P̃ ∈ AP . Let the input for P̃ be (x, p) ∈ S × N. First,

compute y = P̂ (x)[1]. If y =↑, then we do not halt. So let y =↓. We know

that P (x) = 0 iff P̂ (x)[1] = 0 ([42]). Hence we can define P̃ (x)[p] = 0 when
y = 0. Now assume y �= 0. Then |y| ≥ |P (x)|/2, and we may compute and

output z := P̂ (x)[p + 1 + ⌈log2 |y|⌉]. This output is correct since z = P (x)(1 ±
2−p−1−⌈log2 |y|⌉) = P (x) ± 2−p.

(ii) implies (iii): Let P̃ ∈ AP be a partially explicit function. Fix any a ∈
rangeF(P). To see that a is a computable real, for all p, we can compute a[p]

as P̃ (x)[p] (for some fixed x ∈ P−1(a) ∩ F). To show that P−1(a) ∩ F is a
partially explicit subset of F modulo S, note that there is a p′ such that for
all b, b′ ∈ rangeF(P), b �= b′ implies |b − b′| ≥ 2−p′

. We then choose an ã ∈ F

such that ã is a (p′ + 3)-bit absolute approximation of a. Then we verify that
P−1(a) ∩ F is equal to

{x ∈ S : |P̃ (x)[p′ + 3] − ã| ≤ 2−p′−1}.

Thus, given x ∈ S, we can partially decide if x ∈ P−1(a) by first computing

P̃ (x)[p′ + 3]. If this computation halts, then x ∈ P−1(a) iff |ã − P̃ (x)[p′ + 3]| ≤
2−p′−1. Thus P−1(a) ∩ F is a partially explicit subset of F modulo S.

(iii) implies (i): Given x ∈ S and p ∈ N, we want to compute some z =
P (x)(1 ± 2−p). We first determine the a ∈ rangeF(P) such that P (x) = a. We
can effectively find a by enumerating the elements of P−1(b) ∩ F ∩ S for each
b ∈ rangeF(P) until x appears (this process does not halt iff P (x) =↑). Assume
a is found. If a = 0, then we simply output 0. Otherwise, we compute a[i] for

220 C. Yap

i = 0, 1, 2, . . . until |a[i]| > 2−i. Let i0 be the index when this happens. Then we
have |a| > b := |a[i0]| − 2−i0 . Set q := p − ⌊log2 b⌋ and output z := a[q]. As for
correctness, note that z = a ± 2−q = a ± 2−pb = a(1 ± 2−p). Q.E.D.

There is an analogous result where we remove the “partially” qualifications in
the statement of this lemma. However in (iii), we need to add the requirement
that the set S \ domain(f) must be explicit relative to S. In view of this lemma,
we can simply say that a real predicate is “(partially) approximable” instead of
(partially) A-approximable or R-approximable. This lemma could be extended
to “generalized predicates” P : S ⊆ Rn ≻R whose range is discrete in the sense
that for some ε > 0, for all x, y ∈ Rn, P (x) = P (y) ± ε implies P (x) = P (y).

On relative versus absolute approximability. In [42], we proved that a partial
function f : R ≻R is R-approximable iff it is A-approximable and Zerof is
explicit. The proof extends to:

Theorem 17. Let f : S ⊆ R ≻R. Then f is (partially) R-approximable iff f
is (partially) A-approximable, and Zerof is (partially) approximable.

Relative approximation is dominant in numerical analysis: machine floating sys-
tems are all based on relative precision (for example, the IEEE Standard). See
Demmel et al [15,14] for recent work in this connection. Yet the analytic school
exclusively discusses absolute approximations. This theorem shows why: relative
approximation requires solving the zero problem, which is undecidable in the
analytic approach.

5 Computable Real Functions

We now study computable real functions following the analytic school. Our main
goal is to show the exact relationship between the approximation approach and
the analytic school.

Let f : S ⊆ R ≻R be a partial real function. Following Ko [23], we will use
oracle Turing machines (OTM) as devices for computing f . A real input x
is represented by any Cauchy function x ∈ Ax. An OTM M has, in addition
to the usual tape(s) of a standard Turing machine, two special tapes, called the
oracle tape and the precision tape. It also has two special states,

q?, q! (7)

called the query state and the answer state. We view M as computing a
function (still denoted) M : R × F → R. A real input x is represented by an
arbitrary x ∈ Ax, which serves as an oracle. The input p ∈ F is placed on the
precision tape. Whenever the computation of M enters the query state q?, we
require the oracle tape to contain a binary number k. In the next instant, M
will enter the answer state q!, and simultaneously the string k is replaced by a
representation of the kth convergent x[k]. Then M continues computing, using
this oracle answer. Eventually, there are two possible outcomes: either M loops

Theory of Real Computation According to EGC 221

and we write M(x, p) =↑, or it halts and its output tape holds a representation
d for some d ∈ F, and this defines the output, M(x, p) = d. Equivalently, we
write17 “Mx[p] = d”. We say M computes a function f : S ⊆ R ≻R, if for all
x ∈ S and p ∈ F, we have that for all x ∈ Ax,

Mx[p] =

{
↑ if f(x) =↑
f(x) ± 2−p if f(x) =↓ .

This definition extends to computation of multivariate partial functions of the
form f : S ⊆ Rn ≻R. Then the OTM M takes as input n oracles (corresponding
to the n real arguments). Each query on the oracle tape (when we enter state
q?) consists of a pair (i, k) indicating that we want the kth convergent of the ith
oracle. Since such an extension will be trivial to do in most of our results, we
will generally stay with the univariate case.

Our main definition is this: a real function f : S ⊆ Rn ≻R is computable
if there is a OTM that computes f . When f is total on S, we also say that it is
total computable. In case n = 0, f denotes a real number x; the corresponding
OTM is actually an ordinary Turing machine since we never use the oracle tape.
In the analytic approach, x is known as a computable real. But it is easy to
see that it is equivalent to x being an approximable real.

Example: consider f(x) =
√

x where f(x) =↓ iff x ≥ 0. If S = R, then it is
easy to show that f is not computable by oracle Turing machines (the singularity
at x = 0 cannot be decided in finite time). If we choose S = [0, ∞), then f can be
shown to be computable by oracle Turing machines even though the singularity
at x = 0 remains. But we might prefer S = [1, 4) in implementations since

√
x

can be reduced to
√

y where y ∈ [1, 4), by first computing y = x · 4n, n ∈ Z.
Notice that our definition of “computable functions” includes18 partial func-

tions. In this case, improper inputs for OTM’s are handled in the conventional
way of computability theory, with the machine looping. This follows Ko [23,
p. 62]. We do not require OTM’s to be halting because it would result in there
being only trivial examples of computable real functions that are not total.

Lemma 18. If f : S ⊆ Rn ≻R is computable then f is partially A-approximable.

Proof. There is nothing to show if n = 0. To simplify notations, assume n = 1
(the case n > 1 is similar). Let M be an OTM that computes f . We define a

function f̃ ∈ Af where f̃ : F2 ≻F. To compute f̃ , we use an ordinary Turing
machine N that, on input d, p ∈ F, simulates M on the oracle βd (the standard
Cauchy function of d) and p. Note that by Lemma 14(iv), we can compute
βd[k] for any k ∈ N. If Mβd [p] outputs z, N will output z. Clearly, the choice

f̃(d)[p] = z is correct. If d �∈ domain(f), the computation loops. Q.E.D.

17 This follows the convention of putting the oracle argument in the superscript posi-
tion, and our convention of putting the precision parameter in square brackets.

18 So alternatively, we could say that “f is partial computable” instead of “f is
computable”.

222 C. Yap

Recursively open sets. Let φ : N → F. This function defines a sequence (I0, I1,
I2, . . .) of open intervals where In = (φ(2n), φ(2n + 1)). We say φ is an interval
representation of the open set S =

⋃

n≥0 In. A set S ⊆ R is recursively open
if S has an interval representation φ that is explicit. We say S is recursively
closed if its complement R \ S is recursively open.

Note that if φ(2n) ≥ φ(2n + 1) then the open interval (φ(2n), φ(2n + 1)) is
empty. In particular, the empty set S = ∅ is recursively open. So is S = R.

The following result is from Ko [23, Theorem 2.31].

Proposition 19. A set T ⊆ R is recursively open iff there is a computable
function f : R ≻R with T = domain(f).

Modulus of continuity. Consider a partial function f : S ⊆ R ≻R. We say f
is continuous if for all x ∈ domain(f) and δ > 0, there is an ǫ = ǫ(x, δ) > 0
such that if y ∈ domain(f) and y = x ± ǫ then f(y) = f(x) ± δ. We say f is
uniformly continuous if for all δ > 0, there is an ǫ = ǫ(δ) > 0 such that for
all x, y ∈ domain(f), y = x ± ǫ implies f(y) = f(x) ± δ.

Let m : S×N ≻N. We call m a modulus function if for all x ∈ S, p ∈ N, we
have m(x, p) =↑ iff m(x, 0) =↑. We define domain(m) := {x ∈ S : m(x, 0) =↓}.
Such a function m is called a modulus of continuity (or simply, modulus
function) for f if domain(f) = domain(m) and for all x, y ∈ domain(f), p ∈ N, if
y = x ± 2−m(x,p) then f(y) = f(x) ± 2−p.

Call a function m : N → N a uniform modulus of continuity (or simply,
a uniform modulus function) for f if for all x, y ∈ domain(f), p ∈ N, if y =
x±2−m(p) then f(y) = f(x)±2−p. To emphasize the distinction between uniform
modulus function and the non-uniform version, we might describe the latter as
“local modulus functions”. The following is immediate:

Lemma 20. Let f : S ⊆ R ≻R. Then f is continuous iff it has a modulus
of continuity. Then f is uniformly continuous iff it has a uniform modulus of
continuity.

Ko [23] uses uniform19 continuity to characterize computable total real functions
of the form f : [a, b] → R. Our goal is to generalize his characterization to capture
real functions with non-compact domains, as well as those that are partial. Our
results will characterize computable real functions f : S ≻R where S ⊆ Rn is
regular. Use of local continuity simplifies proofs, and avoids any appeal to the
Heine-Borel theorem.

Multivalued Modulus function of an OTM. We now show how modulus func-
tions can be computed, but they must be generalized to multivalued functions.
Such functions are treated in Weihrauch [40]; in particular, computable modulus
functions are multivalued [40, Cor. 6.2.8]. Let us begin with the usual (single-
valued) modulus function m : S × N ≻N. It is computed by OTMs since one

19 Indeed, uniform modulus functions are simply called “modulus functions” in Ko. He
has a notion of “generalized modulus function” that is similar to our local modulus
functions.

Theory of Real Computation According to EGC 223

of m’s arguments is a real number. If (x, p) is the input to an OTM N which
computes m, we still write “Nx[p]” for the computation of N on (x, p). Notice
that, since the output of N comes from the discrete set N, we do not need an
extra “precision parameter” to specify the precision of the output (unlike the
general situation when the output is a real number).

Let M be an OTM that computes some function f : S ⊆ R ≻R. Consider
the Cauchy function β+

x ∈ Ax where β+
x [n] = βx[n + 1] for all n ∈ N. (Thus β+

x

is a “sped up” form of the standard Cauchy function βx.) Consider the function
kM : S × N ≻N where

k(x, p) = kM (x, p) := the largest k such that the

computation of Mβ+
x [p] queries β+

x [k].

(8)

This definition depends on M using β+
x as oracle. If Mβ+

x [p] =↑ then k(x, p) =↑; if

Mβ+
x [p] =↓ but the oracle was never queried, define k(x, p) = 0. Some variant of

k(x, p) was used by Ko to serve as a modulus function for f . Unfortunately, we do
not know how to compute k(x, p) as that seems to require simulating the oracle
β+

x using an arbitrary oracle x ∈ Ax. Instead, we proceed as follows. For any
x ∈ Ax, let x+ denote the oracle in Ax where x+[n] = x[n + 1] for all n. Define,
in analogy to (8), the function kM : AS × N ≻N where AS = ∪{Ax : x ∈ S}
and

k(x, p) = kM (x, p) := the largest k such that the

computation of Mx+

[p] queries x+[k].

(9)

As before, if Mx+

[p] =↑ (resp., if the oracle was never queried), then k(x, p) =↑
(resp., k(x, p) = 0). The first argument of k is an oracle, not a real number. For
different oracles from the set Ax, we might get different results; such functions
k are20 called intensional functions. Computability of intensional functions is
defined using OTM’s, just as for real functions. We can naturally interpret kM

as representing a multivalued function (see [40, Section 1.4]) which may be
denoted21 kM : S × N → 2N with kM (x, p) = {kM (x, p) : x ∈ Ax}. Statements
about kM can be suitably interpreted as statements about kM (see below).

The following lemma is key:

Lemma 21. Let f : S ⊆ R ≻R be computed by an OTM M , and p ∈ N.
(i) If x ∈ domain(f) and x ∈ Ax, then (x ± 2−kM (x,p)−1) ∩ S ⊆ domain(f).
(ii) If, in addition, y = x ± 2−k

M
(x,p)−1 and y ∈ S then f(y) = f(x) ± 21−p.

Proof. Let y = x ± 2−k
M

(x,p)−1 where x ∈ domain(f) and y ∈ S.
(i) We must show that y ∈ domain(f). For this, it suffices to show that M halts

20 Intensionality is viewed as the (possible) lack of “extensionality”. We say k is ex-
tensional if for all a, b ∈ Ax and p ∈ N, k(a, 0) =↓ iff k(a, p) =↓; moreover,
k(a, p) ≡ k(b, p). Extensional functions can be interpreted as (single-valued) par-
tial functions on real arguments.

21 Or, kM : S × N
→→ N.

224 C. Yap

on the input (y, p) for some y ∈ Ay. Consider the modified Cauchy function y
	

given by

y
	
[n] =

{
x+[n] if n ≤ kM (x, p)
y[n] else.

To see that y
	 ∈ Ay, we only need to verify that y = y

	
[n]±2−n for n ≤ kM (x, p).

This follows from

y = x±2−kM (x,p)−1 = (x[n+1]±2−n−1)±2−kM (x,p)−1 = x+[n]±2−n =y
	
[n]±2−n.

Since the computation of Mx+

[p] does not query x+[n] for n > kM (x, p), it fol-

lows that this computation is indistinguishable from the computation of My′

[p].

In particular, both Mx+

[p] and My′

[p] halt. Thus y ∈ domain(f).
(ii) We further show

|f(y) − f(x)| ≤ |f(y) − My′

[p]| + |Mx+

[p] − f(x)|
≤ 2−p + 2−p = 21−p.

Q.E.D.

Let M be an OTM. Define the intensional function m : AS × N ≻N by

m(x, p) := kM (x, p + 1) + 1. (10)

We call m an (intensional) modulus of continuity for f : S ⊆ R ≻R if22 for
all x ∈ S and p ∈ N, we have m(x, p) =↓ iff x ∈ domain(f). In addition, for all
x, y ∈ domain(f), if y = x ± 2−m(x,p) then f(y) = f(x) ± 2−p. The multivalued
function m : S × N → 2N corresponding to m will be called a multivalued
modulus of continuity of f . In this case, define domain(m) = domain(m) to
be domain(f). It is easy to see that f has a multivalued modulus of continuity iff
it has a (single-valued) modulus of continuity. The next result may be compared
to [40, Corollary 6.2.8].

Lemma 22. If f : S ⊆ R ≻R is computed by an OTM M then the function
m(x, p) of (10) is a modulus of continuity for f . Moreover, m is computable.

Proof. To show that m is a modulus of continuity for f , we may assume x ∈
S. Consider two cases: if x �∈ domain(f) then k(x, p + 1) is undefined. Hence
m(x, p) is undefined as expected. So assume x ∈ domain(f). Suppose y = x ±
2−m(x,p) = x ± 2−kM (x,p+1)−1 and y ∈ S. By the previous lemma, we know that
y ∈ domain(f) and f(y) = f(x) ± 2−p. Thus m(x, p) is a modulus of continuity
for f .

22 In discussing intensional functions, it is convenient to assume that whenever we in-
troduce a quantified real variable x, we simultaneously introduce a corresponding
universally-quantified Cauchy function variable x ∈ Ax. These two variables are con-
nected by our under-bar convention. That is, “(Qx ∈ S ⊆ R)” should be translated
“(Qx ∈ S ⊆ R)(∀x ∈ Ax)” where Q ∈ {∀, ∃}.

Theory of Real Computation According to EGC 225

To show that m is computable, we construct an OTM N which, on input
x ∈ Ax and p ∈ F, simulates the computation of Mx+

[p + 1]. Whenever the
machine M queries x[n] for some n, the machine N queries x+[n] = x[n + 1]
instead. When the simulation halts, N outputs the largest k +1 such that x+[k]
was queried (or k = 0 if there were no oracle queries). Q.E.D.

The above proof shows that m(x, p) := kM (x, p+1)+1 is a modulus of continuity
in the following “strong” sense: a multivalued modulus function m for f : S ≻R

is said to be strong if x ∈ domain(f) implies [x ± 2−m(x,p)] ∩ S ⊆ domain(f).
Note that if m is strong then S is regular implies domain(m) is regular. Thus:

Corollary 23. If f : S ⊆ R ≻R is computable, then it has a strong multivalued
modulus function that is computable. In particular, f is continuous.

Modulus cover. We introduce an alternative formulation of strong modulus of
continuity: let

F := {(a, b) : a < b, a, b ∈ F}
denote the set of open intervals over F. A modulus cover refers to any subset
G ⊆ F × N. For simplicity, the typical element in G is written (a, b, p) instead
of the more correct ((a, b), p). We call G a modulus cover of continuity (or
simply, a modulus cover) for f : S ⊆ R ≻R if the following two conditions hold:

(a) For each p ∈ N and x ∈ domain(f), there exists (a, b, p) ∈ G with x ∈ (a, b).
(b) For all (a, b, p) ∈ G, we have (a, b)∩S ⊆ domain(f). Moreover, x, y ∈ (a, b)∩S

implies f(x) = f(y) ± 2−p.

If the characteristic function χG : F×N ≻{1} of G is (resp., partially) explicit
then we say G is (resp., partially) explicit.

The advantage of using G over a modulus function m is that we avoid multi-
valued functions, and the triples of G are parametrized by base reals. Thus we
compute the characteristic function of G using ordinary Turing machines while
m must be computed by OTMs. We next show that we could interchange the
roles of G and m.

Lemma 24. For f : S ⊆ R ≻R, the following statements are equivalent:
(i) f has a modulus cover G that is partially explicit.
(ii) f has a strong multivalued modulus function m that is computable.

Proof. (i) implies (ii): If G is available, we can define m(x, p) via the following dove-
tailing process: let the input be a Cauchy function x. For each (a, b, p) ∈ F × N,
we initiate a (dovetailed) computation to do three steps:
(1) Check that (a, b, p) ∈ G.
(2) Find the first i = 0, 1, . . . such that [x[i] ± 2−i] ⊆ (a, b).
(3) Output k = −

⌊

log2 min{x[i] − 2−i − a, b − 2−i − x[i]}
⌋

.
Correctness of this procedure: since G is partially explicit, step (1) will halt

if (a, b, p) ∈ G. Step (2) amounts to checking the predicate a < x < b. If
x ∈ domain(f) then steps (1) and (2) will halt for some (a, b, p) ∈ G. The
output k in step (3) has the property that if y = x ± 2−k and y ∈ S then

226 C. Yap

y ∈ domain(f) and f(y) = f(x)±2−p. Thus m is a strong modulus of continuity
of f , and our procedure shows m to be computable.

(ii) implies23 (i): Suppose f has a modulus function m that is computed by
the OTM M . A finite sequence σ = (x0, x1, . . . , xk) is called a Cauchy prefix
if there exists a Cauchy function x such that x[i] = xi for i = 0, . . . , k. We say
x extends σ in this case. Call σ a witness for a triple (a, b, p) ∈ F × F × N

provided the following conditions hold:
(4) [a, b] ⊆ ⋂k

i=0[xi ± 2−i].
(5) If x extends σ then the computation Mx[p] halts and does not query the
oracle for x[n] for any n > k.
(6) If Mx[p] outputs ℓ = m(x, p), then we have 0 < b − a < 2−ℓ.

Let G comprise all (a, b, p) that have a witness. The set G is partially explicit
since, on input (a, b, p), we can dovetail through all sequences σ = (x0, . . . , xk),
checking if σ is a witness for (a, b, p). This amounts to checking conditions (4)-
(6). To see that G is a modulus cover for f , we first note that if (a, b, p) ∈ G then
(a, b)∩S ⊆ domain(M) = domain(f). Moreover, for all p ∈ N and x ∈ domain(f),
we claim that there is some (a, b) ∈ F where (a, b, p) ∈ G and x ∈ (a, b). To
see this, consider the computation of Mβx [p] where βx is the standard Cauchy
function of x. If the largest query made by this computation to the oracle βx

is k, then consider the sequence σ = (βx[0], . . . , βx[k]). Note that x is in the

interior of [βx[k] ± 2−k] =
⋂k

i=0[βx[i] ± 2−i]. If Mβx [p] = ℓ, then we can choose
(a, b) ⊆ (βx[k] ± 2−k) such that b − a ≤ 2−ℓ and a < x < b. Also for all
y, y

 ∈ (a, b), we have y

= y ± 2m(y,p) and hence |f(y

)− f(y)| ≤ 2−p. Q.E.D.

Corollary 25. If the function f : S ≻R is computable then it has a partially
explicit modulus cover G. Moreover, if S is regular then f is regular.

Proof. By Corollary 23 and Lemma 24, we see that such a G exists. Let S
be regular. To see that f is regular, note that x ∈ domain(f) implies that for
all p ∈ N, we have x ∈ (a, b) for some (a, b, p) ∈ G. So (x ± ε) ⊆ (a, b) for
sufficiently small ε > 0. Regularity of S implies (x ± ε) ∩ S ∩ F is non-empty.
But (a, b) ∩ S ⊆ domain(f) implies (x ± ε) ∩ domain(f) ∩ F = (x ± ε) ∩ S ∩ F.
The non-emptiness of (x ± ε) ∩ domain(f) ∩ F proves that domain(f) is regular.

Q.E.D.

Main Result. We now characterize computability of real functions in terms of
two explicitness concepts (A-approximability and explicit modulus cover). In
one direction, we also need a regularity condition.

Theorem 26 (Characterization of computable functions). Let f : S ⊆
R ≻R. If f is computable then the following two conditions hold:
(i) f is partially A-approximable.
(ii) f has a partially explicit modulus cover.
Conversely, if S is regular then (i) and (ii) implies f is computable.

23 This proof is kindly provided by V.Bosserhoff and another referee. My original ar-
gument required S to be regular.

Theory of Real Computation According to EGC 227

Proof. If f is computable, then conditions (i) and (ii) hold by Lemma 18 and
Corollary 25 (resp.). Conversely, suppose (i) f is partially A-approximable via

a partially explicit f̃ ∈ Af , and (ii) f has a modulus cover G ⊆ F × N that is
partially explicit. Consider the following OTM M to compute f : given a Cauchy
function x ∈ Ax and precision p ∈ N:
STEP 1: Perform a dovetailed computation over all (k, a, b) ∈ N × F. For each
(k, a, b), check if [x[k] ± 2−k] ⊆ (a, b) and (a, b, p + 1) ∈ G.
STEP 2: Suppose (k, a, b) passes the test in STEP 1. Perform a dovetailed com-

putation over all c ∈ F ∩ (a, b): for each c, compute f̃(c, p + 1). If any such
computation halts, output its result.

First we show partial correctness: if M outputs z = f̃(c, p + 1), then z =
f(c) ± 2−p−1. Since f(c) = f(x) ± 2−p−1, we conclude that z = f(x) ± 2−p, as
desired. Now we show conditional termination of M : for x ∈ S, we show that
x ∈ domain(f) iff M halts on x, p. But x ∈ domain(f) iff x ∈ (a, b) for some
(a, b, p + 1) ∈ G. Then for k large enough, [x[k] ± 2−k] ⊆ (a, b), and so STEP 1
will halt. Conversely, if x �∈ domain(f) then STEP 1 does not halt. We finally
show the halting of STEP 2, assuming x ∈ domain(f). The regularity of S and
x ∈ (a, b) implies there exists c ∈ (a, b) ∩ S ∩ F. By definition of modulus cover,
c ∈ (a, b)∩ S ⊆ domain(f). Hence STEP 2 will halt at such a value c. Q.E.D.

This theorem is important because it tells us exactly what we are giving up when
we abandon computability for absolute approximability: we give up precisely one
thing, continuity. That is exactly the effect we want in EGC, since continuous
functions are too restrictive in our applications. We obtain a stronger charac-
terization of f in the important case where S = [a, b] (essentially [23, Corollary
2.14] in Ko). Now we need to invoke the Heine-Borel theorem:

Theorem 27 (Ko). Let a, b be computable reals. A total function f : [a, b] → R

is computable iff it is A-approximable and it has an explicit uniform modulus
function.

Proof. By the characterization theorem, computability of f is equivalent to (i) the
partial A-approximability of f , and (ii) existence of a partially explicit modulus
cover G. Since f is a total function, it is A-approximable. It remains to show
that the existence of G is equivalent to f having an explicit uniform modulus
function m : N → N.

One direction is easy: if m : N → N is an explicit uniform modulus function for
f , then we can define G to comprise all (c, d, p) such that c, d ∈ F, c < d < c + 1
and p ∈ N satisfies d−c ≤ 2−m(p). Conversely, suppose G exists. From part(a) in
the definition of modulus cover of f , for any p ∈ N, the set {(c, d) : (c, d, p) ∈ G}
of open intervals is a cover for [a, b]. By Heine-Borel, there is a finite subcover
C = {Ij : j = 0, . . . , k}. Wlog, C is a minimal cover. Then the intervals have a
uniquely ordering I0 < I1 < . . . < Ik induced by sorting their left (equivalently,
right) endpoints. Let Ji = Ii−1 ∩ Ii (i = 1, . . . , k). By minimality of C, we see
that the Ji’s are pairwise disjoint. Let w(C) = min{w(Ji) : i = 1, . . . , k} where
w(I) = d − c is the width of an interval I = (c, d). It follows that if x, y ∈ [a, b]
and |x − y| < w(C) then {x, y} ⊆ Ij for some j = 0, . . . , k. This would imply

228 C. Yap

f(x) = f(y) ± 2−p. Therefore if we define m(p) := − ⌊log2 w(C)⌋ then m would
be a uniform modulus function for f .

To show that m is explicit, we convert the preceding outline into an effective
procedure. To compute m(p), we first search for a cover as follows: we dovetail
all the computations to search for triples (c, d, p) in G (for all c, d ∈ F). We
maintain a current minimal set C of intervals, initially C is empty. Inductively,
assume

⋃

C is equal to the union of all intervals found so far. For each triple
(c, d, p) ∈ G, we discard (c, d) if (c, d) ⊆ ⋃

C. Otherwise, we add (c, d) to C, and
remove any resulting redundancies in C. Next, we check if [a, b] ⊆ ⋃

C, and if so
we can compute m(p) := − ⌊log2 w(C)⌋, as described above. If not, we continue
the search for more intervals (c, d). We note that checking if [a, b] ⊆ ⋃

C is
possible since a, b are24 computable. Q.E.D.

6 Unified Framework for Algebraic-Numeric
Computation

We have seen that our real approximability approach is a modified form of the
analytic approach. We now address the algebraic approach. The main proponent
of this approach is Blum, Cucker, Shub and Smale [6]. For an articulate state-
ment of their vision, we refer to their manifesto [5], reproduced in [6, Chap. 1].
Many researchers have tried to refine and extend the algebraic model, by con-
sidering the Boolean part of its complexity classes, by introducing non-unit cost
measures, by injecting an error parameter into complexity functions, etc. These
refinements can be viewed as attempting to recover some measure of represen-
tational complexity into the algebraic model. We do not propose to refine the
algebraic approach. Instead, we believe a different role is reserved for the alge-
braic approach.

To motivate this role, consider the following highly simplified two-stage
scheme of how computational scientists goes about solving a practical numerical
problem (e.g., solving a PDE model or a numerical optimization problem).

STEP A: First, we determine the abstract algorithmic Problem P to be
solved: in the simplest form, this amounts to specifying the input and output
in mathematical terms. We then design an Ideal Algorithm A. This algo-
rithm assumes certain real operations such as +, −, ×, exp(), etc. Algorithm
A may also use standard computational primitives for discrete computation
such as found in programming languages, and abstract data types such as
queues or heaps. We then show that Algorithm A solves the problem P in
this ideal setting.

STEP B: We proceed to implement Algorithm A as a Numerical Algo-
rithm B in some actual programming language. Algorithm B must now
address concrete representation issues: concrete data structures that imple-
ment abstract data types, possible error in the input data, approximation

24 A referee pointed out that it suffices that a be a left-computable, and b a right-
computable, real number.

Theory of Real Computation According to EGC 229

of the operations +, −, ×, exp(), etc. We also define the sense in which an
implementation constitutes an acceptable approximation of algorithm A, for
example, in the sense of backwards analysis, or in the EGC sense (below).
Finally, we prove that Algorithm B satisfies this requirement.

What is the conceptual view of these two steps? Basically, we are asking for
computational models for Algorithms A and B. It seems evident that Algorithm
A is a program in some algebraic model like the BSS model [6] or the Real RAM.
Since Algorithm A uses the primitives +, −, ×, exp(), . . ., we say that its com-
putational basis is the set Ω = {+, −, ×, exp(), . . .}. What about Algorithm
B? If we accept the Church-Turing Thesis, then we could say that Algorithm
B belongs to the Turing model. This suggestion is appropriate if we are only
interested in computability issues. But for finer complexity distinctions, we want
a computational model that better reflects how numerical analysts design algo-
rithms, a “numerical computational model” that is more structured than Turing
machines. We outline such a model below.

Suppose we now have two computational models: an algebraic model α for
Algorithm A, and a numerical model β for Algorithm B. We ask a critical ques-
tion: can Algorithm A be implemented by some Program B? In other words,
we want “Transfer Theorems” that assure us that every program of α can be
successfully implemented as a program in β.

There is much (psychological) validity in this 2-stage scheme: certainly, theo-
retical computer scientists and computational geometers design algorithms this
way, using the Real RAM model. But even numerical analysts proceed in this
manner. Indeed, most numerical analysis books take STEP A only, and rarely
discuss the issues in taking STEP B. From a purely practical viewpoint, the alge-
braic model provides a useful level of abstraction that guide the eventual transfer
of algorithmic ideas into actual executable programs. We thus see that on the
one hand, the algebraic model is widely used, and on the other hand, severe criti-
cisms arise when it is proposed as the computational model of numerical analysis
(and indeed of all scientific computation). This tension is resolved through our
scheme where the algebraic model takes its proper place.

Pointer Machines. We now face the problem of constructing a computational
framework in which the algebraic and numerical worlds can co-exist and com-
plement each other. We wish to ensure from the outset that both discrete com-
binatorial computation and continuous numerical computation can be naturally
expressed in this framework. Following Knuth, we may describe such computa-
tion as “semi-numerical”. Current theories of computation (algebraic or analytic
or standard complexity theories) do not adequately address such problems. For
instance, real computation is usually studied as the problem of computing a real
function f : R ≻R even though this is a very special case with no elements of
combinatorial computing. In Sections 4 and 5 we followed this tradition. On the
other hand, algorithms of computational geometry are invariably semi-numerical
[43]. Following [42], we will extend Schönhage’s elegant Pointer Machine Model
[36] to provide such a framework.

230 C. Yap

We briefly recall the concept of a pointer machine (or storage modification
machine). Let Δ be any set of symbols, which we call tags. Pointer machines
manipulates graphs whose edges are labeled by tags. More precisely, a tagged
graph (or Δ-graph) is a finite directed graph G = (V, E) with a distinguished
node s ∈ V called the origin and a label function that assigns tags to edges
such that outgoing edges from any node have distinct tags. We can concisely
write G = (V, s, τ) where s ∈ V and τ : V × Δ ≻V is the tag function. Note
that τ is a partial function, and it implicitly defines E, the edge set: (u, v) ∈ E

iff τ(u, a) = v for some a ∈ Δ. Write u
a→ v if τ(u, a) = v. The edge (u, v)

is also called a pointer, written u → v, and its tag is a. Each word w ∈ Δ∗

defines at most one path in G that starts at the origin and follows a sequence
of edges whose tags appear in the order specified by w. Let [w]G (or [w] if G
is understood) denote the last node in this path. If no such path exists, then
[w] =↑. It is also useful to let w− denote the word where the last tag a in w is
removed: so w−a = w. In case w = ǫ (empty word), then let w− denote ǫ. Thus,
if w �= ǫ then the last edge in the path is [w−] → [w]. This is the edge that will be
modified in an assignment statement of the form w ← w′ (see (11) next). A node
u is accessible if there is a w such that [w] = u; otherwise, it is inaccessible. If
we prune all inaccessible nodes and edges issuing from them, we get a reduced
tagged graph. We distinguish tagged graphs only up to equivalence, defined
as isomorphism on reduced tagged graphs. For any Δ-graph G, let G|w denote
the Δ-graph that is identical to G except that the origin of G is replaced by [w]G.

Let GΔ denote the set of all Δ-graphs. Pointer machines manipulate Δ-graphs.
Thus, the Δ-graphs play the role of strings in Turing machines, and GΔ is the
analogue of Σ∗ as the universal representation set. The key operation25 of pointer
machines is the pointer assignment instruction: if w, w′ ∈ Δ∗, then the
assignment

w ← w′ (11)

modifies the current Δ-graph G by redirecting or creating a single pointer. This
operation is defined iff [w−] and [w′] are both defined. We have two possibilities:
if w = ǫ, then this amounts to changing the origin to [w′]. Else, if w = w−a
then the pointer from [w−] with tag a will be redirected to point to [w′]. If there
was no previous pointer with tag a, then this operation creates the new pointer
[w−]

a→ [w′]. If G′ denotes the Δ-graph after the assignment, we generally have
the effect that [w]G′ = [w′]G. But this equation fails in general.

E.g., let w = abaa and w′ = ab where [ǫ]G, [a]G, [ab]G are three distinct nodes
but [aba]G = [ǫ]G = [abb]G. Then we have [w]G′ �= [w′]G.

Assignment, plus three other instructions of the pointer machines, are summa-
rized in rows (i)-(iv) of Table 1. A pointer machine, then, is a finite sequence
of these four types of pointer instructions, possibly with labels. With suitable
conventions for input, output, halting in state q↑ or q↓, etc, which the reader may
readily supply (see [42] for details), we now see that each pointer machine com-
putes a partial function f : GΔ ≻GΔ. It is easy to see that pointer machines can

25 The description here is a generalization of the one in [42], which also made the
egregious error of describing the result of w ← w′ by the equation [w]G′ = [w′]G.

Theory of Real Computation According to EGC 231

Table 1. Instruction Set of Pointer Models

Type Name Instruction Effect (G is transformed to G′)

(i) Pointer Assignment w ← w′ [w′]G is new origin of G′ if w = ǫ; else

w = w−a and [w−]G
a→ [w′]G holds in G′.

(ii) Node Creation w ← new [w−]G
a→ u holds in G′ where u is a

new node

(iii) Node Comparison if w ≡ w′ goto L Branch to L if [w]G = [w′]G,
but G′ = G

(iv) Halt and Output HALT(w) Output G′ = G|w
(v) Value Comparison if (w ⋄ w′) goto L Branch to L if V alG(w) ⋄ V alG(w′)

where ⋄ ∈ {=, <, ≤} but G′ = G.

(vi) Value Assignment w := o(w1, . . . , wm) V alG′(w) = o(V alG(w1), . . . , V alG(wn))
where o ∈ Ω and
w, wi ∈ Δ∗

simulate Turing machines. The converse simulation is also possible. The merit of
pointer machines lies in their naturalness in modeling combinatorial computing
– in particular, it can directly represent graphs, in contrast to Turing machines
that must “linearize” graphs into strings.

Semi-numerical Problems and Real Pointer Machines. Real RAM’s and BSS-
machines have the advantage of being natural for numerical and algebraic com-
putation. We propose to marry these features with the combinatorial elegance
of pointer machines.

We extend tagged graphs to support real computation by associating a real
val(u) ∈ R with each node u ∈ V . Thus a real Δ-graph is given by G =
(V, s, τ, val). Let GΔ(R) (or simply G(R)) denote the set of such real Δ-graphs.
For a real pointer machine to manipulate such graphs, we augment the in-
struction set with two instructions, as specified by rows (v)-(vi) in Table 1.
Instruction (v) compares the values of two nodes and branches accordingly; in-
struction (vi) applies an algebraic operation g to the values specified by nodes.
The set of algebraic operations g comes from a set Ω of algebraic operations
which we call the computational basis of the model. The simplest computa-
tional basis is Ω0 = {+, −, ×} ∪ Z, resulting in nodes with only integer values.
Each real pointer machine computes a partial function

f : G(R) ≻G(R) (12)

For simplicity, we define26 a semi-numerical problem to also be a partial
function of the form (12). The objects of computational geometry can be rep-
resented by real tagged graphs (see [43]). Thus, the problems of computational
geometry can be regarded as semi-numerical problems. A semi-numerical prob-
lem (12) is Ω-solvable if there is a halting real pointer machine over the basis Ω

26 That is analogous to defining problems in discrete complexity to be a function f :
Σ∗ ≻Σ∗. So we side-step the issues of representation.

232 C. Yap

that solves it. Another example of a semi-numerical problem is the evaluation
function EvalΩ : Expr(Ω) ≻R (cf. (4)) where the set Expr(Ω) of expressions
is directly represented by tagged graphs.

Real pointer machines constitute our idealized algebraic model for STEP A
in our 2-stage scheme. Since real pointer machines are equivalent in power to
real RAMs or BSS machines, the true merit of real pointer machines lies in their
naturalness for capturing semi-numerical problems. For STEP B, the Turing
model is adequate27 but not natural. For instance, numerical analysts do not
think of their algorithms as pushing bits on a tape, but as manipulating higher-
level objects such as numbers or matrices with appropriate representations.

To provide a model closer to this view, we introduce numerical Δ-graphs
which is similar to real Δ-graphs except that the value at each node is a base
real from F. The instructions for modifying numerical tagged graphs are specified
by rows (i)-(v) in Table 1, plus a modified row (vi). The modification is that
each g ∈ Ω is replaced by a relative approximation g̃ which takes an extra
precision argument (a value in F). So a numerical pointer machine N is
defined by a sequence of these instructions; we assume a fixed convention for
specifying a precision parameter p for such machines. N computes a partial
function f̃ : G(F) × F ≻G(F). Let X = A or R. We say that f̃ is an X-

approximation of f if, for all G ∈ G(F) and p ∈ F, the graph f̃(G, p) (if defined)
is a p-bit X-approximation of f(G) in this sense: their underlying reduced graphs

are isomorphic, and each numerical value in f̃(G, p) is a p-bit X-approximation
of the corresponding real value in f(G). We say f is X-approximable if there is
a halting numerical machine that computes an X-approximation of f . This is
the EGC notion of approximation.

Transfer Theorems. Let SN Ω denote the class of semi-numerical problems that
are Ω-solvable by real pointer machines. For instance, EvalΩ ∈ SN Ω. Similarly,
S̃N Ω is the class of semi-numerical problems that can be R-approximated by
numerical pointer machines. (Note that we use the relative approximation here.)
What is the relationship between these two classes? We reformulate a basic result
from [42, Theorem 23]:

Proposition 28. Let Ω be any set of real operators. Then SN Ω ⊆ S̃N Ω iff
EvalΩ ∈ S̃N Ω.

This can be viewed as a completeness result about EvalΩ, or a transfer the-
orem that tells when the transition from STEP A to STEP B in our 2-stage
scheme has guaranteed success. In numerical computation, we have a “transfer
process” that is widely used: suppose M is a real pointer machine that Ω-solves
some semi-numerical problem f : G(R) ≻G(R). Then we can define a numer-

ical pointer machine M̃ that computes f̃ : G(F) × F ≻G(F), where M̃ simply
replaces each algebraic operation o(w1, . . . , wm) by its approximate counterpart

27 We might also say that recursive functions are an adequate basis for semi-numerical
problems. But it is even less natural.

Theory of Real Computation According to EGC 233

õ(w1, . . . , wm, p) where p specifies the precision argument for f̃(G, p). In fact, it
is often assumed in numerical analysis that STEP B consists of applying this
transformation to the ideal algorithm M from STEP A. We can now formulate
a basic question: under what conditions does limp f̃(G, p) = f(G) as p → ∞?

The framework in this section makes it clear that our investigation of real
approximation is predicated upon two choices: base reals F, and computational
basis Ω. Therefore, the set of “inaccessible reals” is not a fixed concept, but
relative to these choices. When a real pointer machine uses primitive operations
g, h ∈ Ω, we face the problem of approximating g(h(x)) in the numerical pointer
machine that simulates it. Thus, it is no longer sufficient to only know how to ap-
proximate g at base reals, since h(x) may no longer be a base real even if x ∈ F.
Indeed, function composition becomes our central focus. In the analytic and al-
gebraic approaches, the composition of computable functions is computable. But
closure under composition is not longer automatic for approximable functions.
This fact might be initially unsettling, but we believe it confirms the centrality
of the EvalΩ problem, which is about closure of composition in Ω.

7 Conclusion: Essential Duality

Our main objective was to construct a suitable foundation for the EGC approach
to real computation. Eventually, we modified the analytic approach, and incor-
porated the algebraic approach into a larger synthesis. In this conclusion, we
remark on a recurring theme involving the duality between the algebraic and
analytic world views, and between the abstract and the concrete sets.

Thefirst idea in our approach is thatwemust use explicit computations.This fol-
lows Weihrauch’s [40] insistence that machines can only manipulate names, which
must be interpreted. Our intrinsic approach to explicit sets formally justifies the
direct discussion of abstract mathematical objects, without the encumbrance of
representations. This has the same beneficial effect as our underbar-convention
(Section 2). Now, interpreting names is just the flip-side of the coin that says math-
ematical objects must be represented. In Tarski’s theory of truth, we have an analo-
gous situation of syntax and semantics. These live in complementary worlds which
must not be conflated if they are to each play their roles successfully. Thus, se-
mantics in “explicit real computation” comes from the world of analysis where we
can freely define and prove properties of R without asking for their effectivity. Syn-
tax comes from the world of representation elements and their manipulation under
strong constraints. Interpretation, which connects these two worlds, comes from
notations.

A similar duality is reflected in our algebraic-numeric framework of Section
6: STEP A occurs in the ideal world of algebraic computation, STEP B takes
place in the constructive world of numerical computation. A natural connection
between them is the transfer process from ideal programs to implementable
programs. The BCSS manifesto [5] argues cogently for having the ideal world.
We fully agree, only adding that we must not forget the constructive complement
to this ideal world.

234 C. Yap

The second idea concerns how to build the constructive world for real com-
putation: it is that we must not take the “obvious first step” of incorporating
all real numbers. Any computational model that incorporates this uncountable
set R must suffer major negative consequences: it may lead to non-realizability
(as in the algebraic approach) or a weak theory (as in the analytic approach
that handles only continuous functions). The restriction to continuous functions
is unacceptable in our applications to computational geometry, where all the
interesting geometric phenomena occurs at discontinuities. In any case, the cor-
responding complexity theory is necessarily distorted. We must not even try to
embrace so large a set as the computable reals: the Russian school did and paid
the tremendous price of not being able to decide zero. Instead, we propose to
only compute “approximations” in which all algorithmic input and output are
restricted to well-behaved base reals. A natural and realistic complexity theory
can now be developed. This complexity theory promises to be considerably more
intricate than anything we have seen in discrete complexity. It is future work.

Consider the following natural reaction to our approximation approach: al-
though we talk about real functions f : R ≻R, our computational model only
allows approximations, f̃ : F × F ≻F. Why not simply identify “real functions”
with the partially explicit functions of the form f̃? This suggestion (“it would be
more honest”) is wrong for a simple reason: we really do wish to study the real

functions f . All the properties we hold important are about f , not f̃ . Indeed, the
analytic properties of f̃ seems rather meager, and dependent on F. If we discard
f , and f̃ is all we have, then whenever F changes we would be studying new
functions, which is not our intention. Or again, consider our transfer theorem
concerning the inclusion SN ⊆ S̃N . Such an inclusion can only be considered
because S̃N is defined to comprise semi-numerical problems f : G(R) ≻G(R)

that are approximable. The “honesty” suggestion would be to equate S̃N with
the set of approximations f̃ : G(F) ≻G(F).

We must avoid the intuitionistic (or formalists’) impulse to discard the ideal
world, and say that only the constructive world is meaningful. Nor must we
believe that, with proper tweaking in the ideal world alone, we can recapture
the properties of the world of computational machines and limited resources.
No, we need both these complementary worlds of real computation, and fully
embrace the essential gap between them. We can never exhaust the inaccessible
reals, even though new advances in transcendental number theory continually
make more reals accessible. This gap and tension is good and important: real
mathematical progress is achieved at this interface.

Acknowledgments

I thank Andrej Brauer, Klaus Weihrauch and Martin Ziegler for discussions
in Dagstuhl about real computation. Also, thanks to Vikram Sharma, Sung-il
Pae and Sungwoo Choi for feedback on the matter of this paper. One referee
pointed out the connection of Mal’cev’s work on numbering of sets and algebraic
systems. My deepest gratitude goes to Volker Bosserhoff and another anonymous

Theory of Real Computation According to EGC 235

referee, for their numerous insightful comments and catching many errors. They
both caught a serious error in my original characterization of computable real
functions.

References

1. Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.:
A Descartes algorithm for polynomials with bit stream coefficients. In: Ganzha,
V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 138–
149. Springer, Heidelberg (2005)

2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

3. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the com-
plexity of numerical analysis. In: Proc. 21st IEEE Conf. on Computational Com-
plexity (to appear, 2006)

4. Beeson, M.J.: Foundations of Constructive Mathematics. Springer, Berlin (1985)
5. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation: A

manifesto. Int. J. of Bifurcation and Chaos 6(1), 3–26 (1996)
6. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.

Springer, New York (1998)
7. Borodin, A., Munro, I.: The Computational Complexity of Algebraic and Numeric

Problems. American Elsevier Publishing Company, Inc., New York (1975)
8. Brent, R.P.: Fast multiple-precision evaluation of elementary functions. J. of the

ACM 23, 242–251 (1976)
9. Brent, R.P.: Multiple-precision zero-finding methods and the complexity of elemen-

tary function evaluation. In: Traub, J.F. (ed.) Proc. Symp. on Analytic Computa-
tional Complexity, pp. 151–176. Academic Press, London (1976)

10. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Series
of Comprehensive Studies in Mathematics, vol. 315. Springer, Berlin (1997)

11. Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: Exact efficient geometric
computation made easy. In: Proc. 15th ACM Symp. Comp. Geom., pp. 341–450.
ACM Press, New York (1999)

12. Chang, E.-C., Choi, S.W., Kwon, D., Park, H., Yap, C.: Shortest paths for disc
obstacles is computable. Int’l. J. Comput. Geometry and Appl. 16(5-6), 567–590
(2006); Special Issue of IJCGA on Geometric Constraints. (Gao, X.S., Michelucci,
D (eds.))

13. Corman, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press and McGraw-Hill Book Company, Cambridge, Massa-
chusetts and New York (2001)

14. Demmel, J.: The complexity of accurate floating point computation. In: Proc. of
the ICM, Beijing, vol. 3, pp. 697–706 (2002)

15. Demmel, J., Dumitriu, I., Holtz, O.: Toward accurate polynomial evaluation
in rounded arithmetic (2005) Paper ArXiv:math.NA/0508350, download from
http://lanl.arxiv.org/

16. Du, Z., Sharma, V., Yap, C.: Amortized bounds for root isolation via Sturm
sequences. In: Wang, D., Zhi, L. (eds.) Proc. Internat. Workshop on Symbolic-
Numeric Computation. School of Science, Beihang University, Beijing, China, pp.
81–93 (2005); Int’l Workshop on Symbolic-Numeric Computation, Xi’an, China,
July 19–21 (2005)

http://lanl.arxiv.org/

236 C. Yap

17. Fabri, A., Fogel, E., Gärtner, B., Hoffmann, M., Kettner, L., Pion, S., Teillaud,
M., Veltkamp, R., Yvinec, M.: The CGAL manual, Release 3.0 (2003)

18. Fröhlich, A., Shepherdson, J.: Effective procedures in field theory. Philosoph-
ical Trans. Royal Soc. of London. Series A, Mathematical and Physical Sci-
ences 248(950), 407–432 (1956)

19. Halmos, P.R.: Naive Set Theory. Van Nostrand Reinhold Company, New York
(1960)

20. Tucker, J.V., Zucker, J.I.: Abstract computability and algebraic specification. ACM
Trans. on Computational Logic 3(2), 279–333 (2002)

21. Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A Core library for robust numer-
ical and geometric computation. In: 15th ACM Symp. Computational Geometry,
pp. 351–359 (1999)

22. Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.: Classroom examples of
robustness problems in geometric computation. In: Albers, S., Radzik, T. (eds.)
ESA 2004. LNCS, vol. 3221, pp. 702–713. Springer, Heidelberg (2004)

23. Ko, K.-I.: Complexity Theory of Real Functions. Progress in Theoretical Computer
Science. Birkhäuser, Boston (1991)

24. Kreitz, C., Weihrauch, K.: Theory of representations. Theoretical Computer Sci-
ence 38, 35–53 (1985)

25. Lambov, B.: Topics in the Theory and Practice of Computable Analysis. Phd thesis,
University of Aarhus, Denmark (2005)

26. Mal’cev, A.I.: The Metamethematics of Algebraic Systems. Collected papers: 1937–
1967. North-Holland, Amsterdam (1971); Translated and edited by Wells, III, B.F

27. Mehlhorn, K., Schirra, S.: Exact computation with leda real – theory and geomet-
ric applications. In: Alefeld, G., Rohn, J., Rump, S., Yamamoto, T. (eds.) Symbolic
Algebraic Methods and Verification Methods, Vienna, pp. 163–172. Springer, Hei-
delberg (2001)

28. Mueller, N., Escardo, M., Zimmermann, P.: Guest editor’s introduction: Practical
development of exact real number computation. J. of Logic and Algebraic Pro-
gramming 64(1) (2004) (special Issue)

29. Müler, N.T.: Subpolynomial complexity classes of real functions and real numbers.
In: Kott, L. (ed.) Proc. 13th Int’l Colloq. on Automata, Languages and Program-
ming. LNCS, vol. 226, pp. 284–293. Springer, Berlin (1986); I cite this paper for
Weihrauch’s broken arrow notation for partial functions... apparently, it is the older
of the two notation from Weihrauch!

30. Müller, N.T.: The iRRAM: Exact arithmetic in C++. In: Blank, J., Brattka, V.,
Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg
(2001)

31. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Perspectives
in Mathematical Logic. Springer, Berlin (1989)

32. Research Triangle Park (RTI). Planning Report 02-3: The economic impacts of
inadequate infrastructure for software testing. Technical report, National Institute
of Standards and Technology (NIST), U.S. Department of Commerce (May 2002)

33. Richardson, D.: How to recognize zero. J. of Symbolic Computation 24, 627–645
(1997)

34. Richardson, D., El-Sonbaty, A.: Counterexamples to the uniformity conjecture.
Comput. Geometry: Theory and Appl. 33(1 & 2), 58–64 (2006); Special Issue on
Robust Geometric Algorithms and its Implementations, Yap , C., Pion, S. (eds.)
(to appear)

35. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-
Hill, New York (1967)

Theory of Real Computation According to EGC 237

36. Schönhage, A.: Storage modification machines. SIAM J. Computing 9, 490–508
(1980)

37. Spreen, D.: On some problems in computational topology. Schriften zur Theoretis-
chen Informatik Bericht Nr.05-03, Fachberich Mathematik, Universitaet Siegen,
Siegen, Germany (submitted, 2003)

38. van der Waerden, B.L.: Algebra, vol. 1. Frederick Ungar Publishing Co., New York
(1970)

39. Stoltenberg-Hansen, V., Tucker, J.V.: Computable rings and fields. In: Griffor, E.
(ed.) Handbook of Computability Theory. Elsevier, Amsterdam (1999)

40. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)
41. Yap, C.K.: Fundamental Problems of Algorithmic Algebra. Oxford University

Press, Oxford (2000)
42. Yap, C.K.: On guaranteed accuracy computation. In: Chen, F., Wang, D. (eds.)

Geometric Computation, ch. 12, pp. 322–373. World Scientific Publishing Co.,
Singapore (2004)

43. Yap, C.K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry, ch. 41, 2nd edn., pp. 927–952.
Chapman & Hall/CRC, Boca Raton (2004)

Author Index

Auer, Ekaterina 1

Corliss, George F. 28

Dyllong, Eva 44

Emiris, Ioannis Z. 57

Foufou, Sebti 127

Hofer, Eberhard P. 1

Kearfott, R. Baker 28

Kempken, Sebastian 83

Lambov, Branimir 102

Lefèvre, Vincent 114

Luther, Wolfram 1, 83

Michelucci, Dominique 127

Miller, Lance Edward 149

Moore, Edward L.F. 149

Moreau, Jean Michel 127

Mourrain, Bernard 57

Nedialkov, Ned 28

Peters, Thomas J. 149

Pryce, John D. 28

Rauh, Andreas 1

Russell, Alexander 149

Shapiro, Vadim 162

Smith, Spencer 28

Stehlé, Damien 114

Stewart, Neil F. 181

Tsigaridas, Elias P. 57

Yap, Chee 193

Zidani, Malika 181

Zimmermann, Paul 114

	Validated Modeling of Mechanical Systems with ${\sc SmartMOBILE}$: Improvement of Performance by ${\sc ValEncIA-IVP}$
	Introduction
	Validated Methods to Solve Initial Value Problems
	Considered Initial Value Problems
	Interval and Taylor Model Arithmetics
	Algorithmic Differentiation
	Interval Solvers for Initial Value Problems: ${\sc VNODE}$ and ${\sc ValEncIA-IVP}$
	Other Validated IVP Solvers

	Strategies for Verification of MSS: A Case Study for MOBILE
	MOBILE
	${\sc Smart}$MOBILE

	Reducing the Overestimation in ${\sc Smart}$MOBILE
	Rotation Error Elimination
	Uses and Limitations of Taylor Models in ${\sc Smart}$MOBILE: ${\tt RDAInterval}$
	${\sc ValEncIA-IVP}$ in ${\scSmart}$MOBILE

	Summary and Outlook
	References

	Interval Subroutine Library Mission
	Vision -- Why Are We Doing This?
	Short-Term Goals
	Long-Term Goals
	History

	Product -- What Will We Deliver?
	Contents

	Plan -- How Will We Accomplish That?
	Short-Term Plan: Gather, Organize, and Disseminate
	Long-Term Plan
	Language and Environment
	Organizational Structure
	Adding Value
	Quality Assurance
	Licensing
	Publications
	Funding

	Partners -- How Can You Help?
	Contributing Author
	Chapter Architect/Editor
	Referee
	Applications Development

	Will ISL Succeed?
	Conclusions
	References

	Convex Polyhedral Enclosures of Interval-Based Hierarchical Object Representations
	Introduction
	Relevant Properties of Hierarchical Object Representation
	Purpose and Outline of This Paper

	Interval-Based Hierarchical Object Representation
	Concept of Extreme Points
	Convex Polyhedral Enclosures
	Accurate Convex Hull Algorithm for a Quadtree
	Accurate Convex Hull Algorithm for an Octree

	Reliable Implementation
	Software Environment
	Constructions of an Octree
	Orientation Tests
	Time Comparison of Distance Routines

	Summary and Future Works
	References

	Real Algebraic Numbers: Complexity Analysis and Experimentation
	Introduction
	Preliminaries for Sturm--Habicht Sequences
	Preliminaries for the Bernstein Basis Representation
	Subdivision Solver
	Complexity Analysis of Real Root Isolation
	Square-Free Factorisation [Step 1]
	Root Bounds and Initialization [Step 2]
	Computing {\it V(f, I)} and Splitting [Steps 3.a-d]
	Subdivision Tree Analysis [Step 3]
	Multiplicities [Step 4]
	Complexity of Real Root Isolation

	Real Algebraic Numbers
	Implementation and Experiments
	Current and Future Work
	References

	Verified Methods in Stochastic Traffic Modelling
	Introduction
	Verified Parameter Estimation in Stochastic Traffic Modelling
	Stochastic Traffic Modelling
	Parameter Estimation for the Autocorrelation
	Analysis of Video Data

	Verified Transient Analysis of a GI/G/1 Queue
	Transient Analysis
	Examples

	Conclusions and Further Work
	References

	Interval Arithmetic Using SSE-2
	Introduction
	Key Ideas
	Operations
	Addition
	Sign Change
	Subtraction
	Multiplication
	Multiplication by a Positive Number
	Multiplication of Two Positive Numbers
	Division
	Reciprocal
	Absolute Value
	Square
	Square Root

	Performance
	Intel's SSE-3
	Suggestions for a Hardware Implementation
	Related Work
	References

	Worst Cases for the Exponential Function in the IEEE 754r decimal64 Format
	Introduction
	The Table Maker's Dilemma in Decimal
	The Decimal Formats
	The Bad and Worst Cases
	Searching for Bad and Worst Cases

	The Exponential Function
	Correctly Rounding the Exponential Function
	Searching for Bad and Worst Cases of the Exponential Function

	Conclusion
	References

	Robustness and Randomness
	Introduction
	Consequences of Inaccuracy on Geometric Algorithms
	Classical Methods
	The Epsilon Heuristic
	The Exact Computation Paradigm
	Interval Computations

	Probabilistic Approaches
	Solutions at the Arithmetic Level
	Solutions at the Geometric Level

	Conclusion: Is Randomness the Problem or the Solution?
	References

	Topological Neighborhoods for Spline Curves: Practice & Theory
	Computing the Pipe Surface Radius
	Guaranteeing a Lower Bound
	Partitioning by Taylor's Theorem
	Lower Bound for $\sigma(\epsilon)$
	Termination and Satisfactory Value
	Asymptotic Time Bound
	Example Analysis
	Open Issues for Future Work

	Experimental Observations
	Conclusion
	References

	Homotopy Conditions for Tolerant Geometric Queries
	Queries on Combinatorial Representations
	Queries on Combinatorial Data Structures
	Imprecise Reality
	What This Paper Is About

	Tolerant Zones in a Complex
	To Tolerate Imprecision
	Collection of Tolerant Zones

	Homotopy Via Nerves
	Nerve of Collection of Sets
	Nerve Theorem

	Tolerant Complex from Tolerant Zones
	Sufficient (and Almost Necessary) Conditions
	Collapsed Intersections
	Included Intersections

	Conclusions
	Summary
	Extensions and Open Issues

	References

	Transfinite Interpolation for Well-Definition in Error Analysis in Solid Modelling
	Introduction
	Transfinite Interpolation
	Whitney Extension to Provide Transfinite Interpolation in the Context of Solid Modelling
	The Trimmed-NURBS Case
	Combined-Subdivision-with-Trimming Case

	Bounds on Normal Vectors
	Conclusion
	References

	Theory of Real Computation According to EGC
	Introduction
	Explicit Set Theory
	Explicit Algebraic Structures
	Real Approximation
	Computable Real Functions
	Unified Framework for Algebraic-Numeric Computation
	Conclusion: Essential Duality
	References

