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Foreword

The monograph Computation and Asymptotics is published in the series of
SpringerBriefs in Applied Sciences and Technology—Computational Mechanics,
which features cutting-edge research and practical applications presented and
introduced by leading experts.

The author of this contribution, Professor Rudrapatna V. Ramnath, received a
M.Sc. degree in Electrical Engineering (Flight Control) from Cranfield Institute of
Technology (U.K.), M.S.E., M.A. and Ph.D. degrees in Aerospace and Mechanical
Engineering from Princeton University. He generalized the multiple scales theory
and significantly contributed to the theory and applications of asymptotic analysis.
Using multiple scales theory, he solved a large class of problems in advanced
aircraft and spacecraft dynamics and control including: hover-forward flight
transitions of VTOL aircrafts, analytical theory of high angle-of-attack flight
dynamics (for 1, 2, and 3 degree-of-freedom wing rock), re-entry vehicle
dynamics, stability and parameter sensitivity of time-varying systems applied to
the Generic Hypersonic Aerodynamic Model of NASA, etc. Furthermore, he
developed a new handling quality theory of advanced aircrafts through variable
flight conditions. In spacecraft he developed new and useful approaches for such as
new attitude control design for single spin and dual spin satellites, dynamics,
stability and control of large space structures with deformable reflectors, and mode
shape determination for Heliogyro spacecraft, etc. Professor Ramnath’s work also
includes the development of rapid computational algorithms and reduced order
models which were applied to NASA and Defense Department systems. He
applied his theory to many aerospace systems at The Charles Stark Draper Lab-
oratory and SPARTA, Inc., and also designed guidance laws for tactical missiles at
Raytheon Missile Systems. He founded the company Vimanic Systems for per-
forming research contracts for NASA centers including Dryden Flight Research
Center and U.S. Department of Defense Laboratories.

For many years he taught undergraduate and graduate courses at Massachusetts
Institute of Technology (MIT) on advanced aircraft and spacecraft dynamics and
control and systems modeling. His scientific achievements are highly recognized
through numerous technical papers and books on nonlinear control (published by
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viii Foreword

ASME), Multiple Scales Theory and Aerospace Applications (published by ATAA)
and book chapters. In addition at MIT, Professor Ramnath conceived and devel-
oped the instrumentation, test methodology and procedures for performance
evaluation of sports equipment in tennis and racket sports and golf clubs. He
served as the Technical Editor of Tennis magazine and as Technical Advisor of
ATP (Association of Tennis Professionals).

The monograph Computation and Asymptotics is a state-of-the-art presentation
of the pioneering works of Professor Ramnath in applying and developing
asymptotic analysis and the generalized multiple scales theory for efficient com-
putations. The novelty of the approach is to introduce these two concepts in
demanding computational problems in order to facilitate and to speed-up the
solution procedure while ensuring the required accuracy. This work is well bal-
anced between theoretical concepts and computation-intensive applications from
the aerospace field. It serves as an excellent introduction to the power of com-
bining asymptotic analysis and multiple scales approaches to complex computa-
tional problems to enable the aspiring engineer, interested in applied mathematical
approaches, to achieve greater rewards in enhanced insight and computational
efficiency in dynamic analysis, design and simulation. As such, I would highly
recommend this work as a valuable addition to the technical library of a serious
engineering analyst and practitioner.

December 2011 Professor Dr.-Ing. Andreas Ochsner D.Sc.
University of Technology Malaysia
University of Newcastle, Australia



Preface

In contrast to the traditional technical literature dealing with numerical compu-
tation and analytical asymptotic solution approaches, this book aims at presenting
a methodology and philosophy that combine both aspects in a common synergistic
combination. The purpose is to utilize the best features of each approach in an
effort to facilitate efficient computation and glean insight into the nature of the
system under study. In order to do this, it must be recognized that some degree of
clever insight and understanding of the system behavior is needed in addition to
implementing the optimal computational algorithms. In this sense the philosophy
of this book marks a departure or a variation from the traditional and independent
roles of computation and analytical solutions. The purpose is to combine the power
of each approach and achieve a result that is greater than the sum of the parts. This
is the view pursued and presented in this book.

This book is addressed to the dynamics and control systems analysts and
designers who deal with computational issues of complex problems involving
advanced scientific and engineering systems. In particular, engineers and scientists
working with the computational aspects of sophisticated systems would find it very
useful. Several important applications illustrating the benefits of a unified
approach are presented. In addition, the techniques and methodology should be of
interest to analysts and designers in mechanical, electrical and chemical
engineering, and also some areas of physics, chemistry and biology.

The aim of this work is to present the powerful concepts and techniques of
asymptotics and multiple scales approach in the context of computations of the
dynamics of modern high performance scientific and engineering systems.
Although the presentation is intended to be systematic and rigorous, the emphasis
is on the concept, applicability and usefulness of these methods rather than on deep
mathematical rigor. Reflecting my own interests, I have attempted to motivate the
reader and appeal to a need for completeness, connectedness and philosophical
abstraction in developing the theoretical framework. Recent research has culmi-
nated in a wealth of useful information and techniques which are generally
unfamiliar to the practising engineer. I feel that substantial rewards are to be
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X Preface

gained by applying these techniques. The book intended to be used as a mono-
graph reflecting the above spirit and philosophy.

Approximate solutions to complex physical and mathematical problems have
been in use for a long time. This work concerns an area of approximations in
applied mathematics known as asymptotic analysis and perturbation theory which
deal with the study of applied mathematical systems in limiting cases. There are a
number of good books on asymptotic analysis and perturbation theory, which form
the basis upon which the multiple scales method rests. They are cited in the
references and the reader would benefit by consulting them. In the technical
literature the treatment has ranged from simple constructs to highly theoretical
topics. However, the subject of multiple scales has been only briefly outlined in
some books until recently. This powerful technique is relatively recent in its
development, which is still continuing. It has led to a number of general and useful
results which have been applied to a large number of diverse advanced engineering
systems. Much of this body of knowledge, however, resides in research papers or
is only partially treated in a small number of specialized mathematical books.
A full and general development of the technique in available books appears to be
lacking. Consequently, the power and usefulness of the technique is not well
known among practising engineers. The value of this approach is being appreci-
ated more and more with time as new applications are seen. A comprehensive
development of this technique in its own right seems to be warranted by the rapid
growth of the theory and the range of it applications covering a rather broad
spectrum of engineering and scientific disciplines. It is in this spirit that this book
is written. Engineering analysts and designers should derive much benefit from the
simplicity of the concept and the general applicability of the method. The book is
aimed at filling this gap and covering the middle ground between an entirely
heuristic treatment and one of deep rigor and sophistication. It is intended as a
bridge between esoteric mathematical theory and practical applications in the “real
world”.

The early chapters present the basic concept, foundations and the techniques of
asymptotic analysis, perturbation theory, multiple scales and an outline of standard
numerical methods. As the basic ideas and concepts of asymptotic analysis are
essential to a proper development of the multiple scales theory, a brief discussion
of asymptotic analysis is first presented. Next, elements of perturbation theory are
discussed, mainly as relevant to multiple scaling. Deeper insight into perturbation
theory may be gained by the interested reader by consulting many well known
works on the subject cited in the references.

The computational advantages of asymptotics is illustrated through applica-
tions. First, a classical problem of computing the effective nuclear charge near a
singularity in the Thomas-Fermi problem in atomic physics is solved by multiple
scales approach (Chap. 6). Next the problem of computational speed-up is dem-
onstrated in the case of the satellite attitude prediction (Chap. 7) with gravity
gradient and geomagnetic torques for earth satellites. Chapter 8 presents the
satellite attitude control problem for which the multiple scales approach facilitates
the task of control design and computational efficiency by enabling the use of large



Preface xi

step sizes without loss of accuracy. All these problems utilize the multiple scales
technique, which leads to solutions which are easily calculable and are accurate
when compared to the conventional numerical solutions. Also included is an
appendix on earth’s environmental gravity gradient torque and geomagnetic tor-
ques and Floquet theory which is mainly of reference value.

The selection and presentation of the subjects reflects my own interests and
experience. The material is an outgrowth of the lectures and courses taught by me
at Princeton University and Massachusetts Institute of Technology and includes
much of the research carried out by me with my students.

It is with pleasure that I record here that the original motivation, interest and
inspiration came through meetings with Professor M.J. Lighthill first in India and
later in the U.K. when I was a student. Later as a student at Princeton University,
I was initiated into the subject by my Professors W.D. Hayes and M.D. Kruskal,
my friend Dr. G.V. Ramanathan and by Dr. G. Sandri. I wish to record the interest
and insight into engineering applications that I received from Professor D. Graham
and Professor D. Seckel at Princeton and Dr. D.C. Fraser and Dr. R.H. Battin at the
C.S. Draper Laboratory. Further, I wish to recognize the vigorous interaction and
participation by my students in this research leading to many useful and important
results.

Finally, I recognize with great appreciation the encouragement and support
from my wife Vijaya, in motivating and helping me greatly in preparing many
figures and the final manuscript. I also acknowledge the considerable joy that filled
me from my wife and my children,—my son Venktesh, and daughters Seetha and
Leela.

Lexington, MA, December 2011 Rudrapatna V. Ramnath
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Chapter 1
Introduction

Recognizing the important role of computation in scientific and engineering investi-
gations, we will address, in this work, the topic of quantitative approaches required
in the simulation and computation of the dynamics of engineering systems. For this
purpose, we will consider a novel look at utilizing a class of classical methods of
asymptotic analysis. Thus, we will make use of asymptotic solutions in order to
calculate the dynamics of systems, as an alternative to their conventional use of
representing the qualitative behavior of systems. This book represents a special
viewpoint in which asymptotic solutions are sought for computational purposes.
This is in contrast to the traditional approach in which asymptotic methods are
used to generate analytical solutions describing the qualitative features of a physical
phenomenon. However, a good case can be made to utilize asymptotic solutions for
computational purposes. We note that in order to do this, a good deal of cleverness and
intuition are required and are not, in general, as straightforward as numerical methods.
A comparison of asymptotic and numerical approaches is presented later.

It is well known that mathematical analysis of scientific and engineering systems
is usually in terms of differential equations which are derived by invoking
Newton’s laws. The next step is to try to solve them by some means. If they can
be solved analytically, the computation becomes straightforward. Generally, the
governing equations do not lend themselves to analytical solutions. The main
recourse then, is to develop quasi-analytical approximate solutions or numerical
solutions. Historically, these two approaches have been treated somewhat indepen-
dently. Each approach has been developed in great breadth and depth leading to a
large number of applications.

At the outset, it is of interest to consider each approach in its own right, with
its own advantages and drawbacks. Later it may be worthwhile to combine the
power of each approach for a common purpose. Approximations are usually gener-
ated by making some assumption in the mathematical model about the solution or
by neglecting terms in the governing equation. The simpler model is then solved,
resulting in partial information about the true solution. While numerical solutions are
also a form of approximation, we make a clear distinction between purely numerical

R. V. Ramnath, Computation and Asymptotics, SpringerBriefs in Computational Mechanics, 3
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4 1 Introduction

solutions and other analytical approximations. For example, in a numerical approach
the mathematical operation of differentiation is replaced by a finite difference model,
thus bypassing the limiting process of the latter to yield the former. The numerical
approaches are well suited to digital computer implementation and provide specific
answers to specific questions.

Analytical approximations are usually obtained, not by brute force, but involve
some degree of clever and subtle insight into the nature of the system dynamics. Such
solutions are useful in qualitative studies of complex systems and enable us to delve
into such issues as the trend and behavior of the system, instead of providing specific
and definitive answers to facilitate quantitative calculation on particular mathematical
models. The numerical and analytical approaches will be treated separately.

There are several kinds of analytical approximations. Of these, mention can be
made of techniques such as Fourier series in periodic functions and generalizations in
terms of the Fourier integral and orthonormal functions, asymptotic analysis and per-
turbation theory, and so on. In this book, we are particularly interested in asymptotic
analysis and multiple scales approach, to be discussed later in detail.

Most of the problems commonly encountered in the mathematical analysis of
dynamic systems are not amenable to exact solutions. Often the only recourse is to
develop methods to approximate the behavior of the system under study. Indeed, it
matters little whether an exact problem is solved approximately, or an approximate
problem solved exactly. it is seldom that one finds a technique perfectly suited to a
problem. Even on the rare occasion when there is an exactly solvable situation, the
problem must somehow be brought into a form which is suitable to the methods of
analysis. For a large class of systems such a modification is usually not easy. While
particular methods are successful on specific problems, a unified approach is highly
desirable.

Historically, numerical and asymptotic methods have been developed relatively
independently. Traditionally, analytical solutions have enabled the analyst to pre-
dict the qualitative features of the phenomenon being studied. This is the classical
approach, usually addressed by asymptotic solutions. On the other hand, numerical
methods, by means of computer implementation, have been used to obtain solutions
to specific problems which may be analytically intractable. All through history, there
has been great interest in the development of computational methods. Many mathe-
maticians have expended much effort on this class of problems. This underscores the
fact that the lack of high-speed computational capability spurred mathematicians to
resort to clever approximations in order to analyze the complex dynamics of physical
systems. One great advantage is that these highly efficient methods, in conjunction
with high-speed computers, lead to useful approaches for solving complex problems.
In general, approximations yield qualitative insight and shed light on such questions
as system stability, response, parameter sensitivity, etc. However, when one wishes
to obtain a solution to a specific problem which is analytically intractable, then one
usually resorts to the use of a computer. A great wealth of technical literature exists
in both areas. The recent growth in high-speed computer technology suggests that a
combination of these two approaches might be better than either one in enhancing the
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power of computation. Ideally, the result might be the development of highly efficient
computational capability and also provide great insight into system behavior.

The complexity of modern engineering systems necessitates the use of sophisti-
cated techniques in order to solve the various problems. For example, in the field
of flight vehicles, the development of high performance systems such as aircraft
with large flight envelopes, vertical and short take-off and landing (V/STOL) vehi-
cles and space vehicles requires elaborate and detailed study to meet the performance
requirements. Physical intuition and experience as well as computer simulations usu-
ally provide answers to many of the questions. However, in order to glean physical
insight and understand the system behavior, one needs to simplify the mathematical
representation of the system so that conventional methods are applicable.

Note that in general, it is impossible to develop exact analytical solutions even
for a first order nonlinear or a second order linear differential equation with vari-
able coefficients. In contrast, it is generally agreed that linear differential equations
with constant coefficients of any order are solvable. Actually, this only means that
the problem of solving a linear differential equation with constant coefficients can
be reduced to the problem of solving an algebraic equation of the polynomial type.
In fact, in a strict mathematical sense, such an algebraic equation is not analytically
solvable exactly in general, when the degree of the equation is greater than four.
It is well known that such equations of degree no greater than four can be solved
in general, in terms of radicals. However, a fact that is not well known is that the
French mathematician, Hermite [1] solved exactly the generic algebraic equation of
degree five [1]. Here there is no contradiction because Hermite’s ingenious solution
is not in terms of radicals, but requires modular functions. These issues are mainly
of mathematical interest. In practical cases, there are well known numerical algo-
rithms (eg. Newton-Raphson method, discussed later) which can be used to obtain
accurate approximate numerical solutions to polynomial type algebraic equations of
high degree. Therefore, it is generally agreed that linear differential equations with
constant coefficients are solvable exactly. In order to settle the question of exact
mathematical solvability of these equations of any order, one has to invoke the math-
ematical theories of Galois [2] and Abel [2] on the theory of groups. These issues
are beyond the current scope.

Approximations are universally resorted to, though implicitly in many cases. How-
ever, a systematic use of rigorous approximation theory offers much greater rewards
in general, than ad hoc approaches (which may sometimes be called ad hoaxes).
A systematic approach to approximation theory can be found in the subject of asymp-
totics, -the branch of mathematics that deals with the study of applied mathematical
systems in limiting cases. A substantial body of knowledge exists in this field, in
both the rigorous and applied sense.

Asymptotic methods have been successfully applied to many problems in fluid
mechanics, astrodynamics, physics etc. It is the purpose of this work to present the
general concept and technique of asymptotic analysis in the context of simulation and
computation on various problems of modern engineering. The subject of asymptotics
has a vast literature, rich in results, both in the classical problems of mathematical
physics and in the more applied problems of science and advanced engineering.
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There are many examples of asymptotic phenomena which cover a wide range
of problems, from the very practical to the highly theoretical analysis. We may now
consider some examples of problems in the analysis of dynamic systems which
are amenable to approximation theory. In linear time-invariant (LTI) systems an
important problem is that of widely separated eigenvalues (i.e., stiff systems). The
motion of flight vehicles is a combination of the different aspects of rigid body
modes, actuator dynamics, structural modes, etc., all of which are well separated in
frequency. Such a frequency separation could itself be the basis of approximation
in an asymptotic sense. It would show at what level and to what extent the different
modes would begin to contribute to the total motion.

The earliest systematic approach using asymptotic analysis was motivated by
the motion of heavenly bodies. Indeed, Poincaré’s les Methodes Nouvelles de la
Mecanique Celeste [3] established the firm foundations of asymptotic analysis and
demonstrated its success on problems in celestial mechanics. In astrodynamics, there
are many dynamic phenomena which exhibit a mixture of rapid and slow variations.
For example, the motion of an earth satellite under the influence of gravity of an
oblate earth shows a fast variation of the coordinates around the orbit, while the orbit
itself shows a slow rotation. Other perturbations such as gravity due to the moon and
sun, atmospheric drag or geomagnetic field, occur at different rates. These effects
must be included in computing the orbits accurately.

In the motion of conventional aircraft one can see that symmetric motions are
characterized by the fast short period mode and the slower phugoid mode. In aero-
dynamics, the boundary layer theory of Prandtl [4] is a well-known example of
multiple scale behavior. Fast changes in the fluid velocity occur inside the boundary
layer, while slow changes occur outside it.

Recognition of the existence of different rates in a dynamic system is often useful
in computation. For example, in the computation of highly elliptic orbits of an earth
satellite, the integration step size has to be small enough to describe fast changes
near the perigee, while larger steps would suffice at other parts of the orbit, leading
to a nonuniform step size situation.

These are but a few examples of the presence of mixed dynamics at different
rates. Most dynamic phenomena exhibit such a mixture and have been so recognized
in many fields such as chemical reactor kinetics, economic systems, and so on. In
these systems, it would be highly desirable to make use of the presence of fast and
slow variations in order to separate them. The rewards to be gained are many, includ-
ing enhanced insight and computational facility in addition to the development of
constructive solutions for many important problems of analysis and design in engi-
neering. The Multiple Time Scales (MTS) method is naturally suited to exploit the
different time scales inherent in the system dynamics. In Chap. 5, the MTS method
is extended into the Generalized Multiple Scales (GMS) method. It has been devel-
oped and applied to many problems involving linear time-varying and nonlinear
differential equations in aerospace systems.

In this book a general approach to the analysis and computation of the dynamics
of complex systems is presented. It incorporates the Method of Multiple Scales [5, 6],
and related techniques of asymptotic analysis. In the Multiple Scales method, the
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independent variable, usually time, is extended into a higher dimensional space. We
consider new time scales, i.e., fast time, slow time, etc., as generated from the original
time variable, i.e., real time. The different aspects of the dynamic phenomena are
now described with respect to each of the new time scales, resulting in a composite
description of the complex dynamics. The primary advantage is that the descrip-
tion with respect to each new time scale is obtained more easily than the complete
description in the original time. However, the success of the approach is predicated
on approximation theory and, in particular, on the concept of asymptotic analysis. It
is, therefore, useful to present an introduction to the ideas and methods of asymptotic
analysis. Such a brief outline is presented next.
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Chapter 2
Computation

2.1 Introduction

Very often, the ability to generate quantitative information on specific systems is
central to the analysis and design in the investigation of science and engineering
systems. Applied analysts and designers of complex systems rely heavily on numer-
ical solutions to the mathematical models representing a given physical system under
study. This leads to the task of computation, which must be accurate and efficient.

It is well known that there are many problems in the analysis of dynamic systems
which are not amenable to exact solutions. Indeed, this is the usual case, and one
seldom finds a real problem to be exactly solvable. Thus the only recourse is to
develop methods to approximate the behavior of the system under study. Even this
relatively modest goal is often found to be elusive.

The mathematical models are usually in terms of differential equations, and there
is a great need to solve them in order to investigate the dynamic behavior of the
systems. However, these equations are not, in general, exactly solvable, and there-
fore, it is necessary to resort to approximations. For example, the notion of a deriv-
ative of a function, which involves the concept of a mathematical limit, is replaced
by a finite difference operation as an approximation. The differential equation is
thus replaced by an equation involving finite differences. This latter model is solved
with the expectation that its solution represents the solution of the original differ-
ential equation as the differential step size becomes smaller and smaller. While this
expectation is not fulfilled with absolute rigor in all cases, this approach works well
for the most part and forms the backbone of quantitative analysis of engineering
systems. In particular, it does not matter whether an approximate problem is solved
exactly or an exact problem is solved approximately.

As we go deeper into this task, we soon realize that the ease and success of
computation is influenced strongly by the nature of the phenomenon being studied.
In particular, the rate at which the system behavior unfolds has a crucial bearing
on the ability to compute. There are many dynamic phenomena in which the sys-
tem behavior is nonuniform, i.e., varies in different parts of the domain of interest.
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For example, the velocity of a fluid changes rapidly near a solid boundary because
of viscosity, resulting in a boundary layer and slowly in a region far away from the
boundary. Another classic example is that of the motion of a smaller planet orbiting
around a larger body in a highly elliptic orbit. The coordinates of the orbiting planet
change rapidly near the periapsis (eg. the perigee) and slowly in the other parts of
the orbit. In such cases, the computational step size needs to be small in regions
of rapid changes and larger in other regions in order to describe the behavior accu-
rately. Such a behavior is characterized as a multiple scale system or a stiff s