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Preface

We are pleased to present the refereed proceedings of the Ninth International
Conference on Monte Carlo and Quasi Monte Carlo Methods in Scientific Comput-
ing (MCQMC 2010). The conference was held on the main campus of the University
of Warsaw, Poland, from August 15–20 of 2010.

The program of the conference was arranged and the refereeing of papers
was done with the help of an international committee consisting of: William
Chen (Macquarie University, Australia), Ronald Cools (Katholieke Universiteit
Leuven, Belgium), Josef Dick (University of New South Wales, Australia), Henri
Faure (CNRS Marseille, France), Alan Genz (Washington State University, USA),
Paul Glasserman (Columbia University, USA), Stefan Heinrich (University of
Kaiserslautern, Germany), Fred J. Hickernell (Illinois Institute of Technology,
USA), Stephen Joe (University of Waikato, New Zealand), Aneta Karaivanova
(Bulgarian Academy of Sciences, Bulgaria), Aleksander Keller (NVIDIA Research,
Berlin, Germany), Frances Y. Kuo (University of New South Wales, Australia),
Pierre L’Ecuyer (University of Montreal, Canada), Christiane Lemieux (Univer-
sity of Waterloo, Canada), Gerhard Larcher (University of Linz, Austria), Peter
Mathé (Weierstrass Institute, Berlin, Germany), Makoto Matsumoto (Hiroshima
University, Japan), Thomas Müller-Gronbach (University of Passau, Germany),
Harald Niederreiter (RICAM Linz and University of Salzburg, Austria), Erich
Novak (University of Jena, Germany), Art. B. Owen (Stanford University, USA),
Friedrich Pillichshammer (University of Linz, Austria), Leszek Plaskota (Univer-
sity of Warsaw, Poland), Klaus Ritter (University of Kaiserslautern, Germany),
Wolfgang Ch. Schmid (University of Salzburg, Austria), Nikolai Simonov (Russian
Academy of Sciences, Russia), Ian H. Sloan (University of New South Wales,
Australia), Ilya M. Sobol’ (Russian Academy of Sciences, Russia), Jerome Spanier
(Claremont, California, USA), Shu Tezuka (Kyushu University, Japan), Xiaoqun
Wang (Tsinghua University, China), Grzegorz W. Wasilkowski (University of
Kentucky, USA), Henryk Woźniakowski (chair, Columbia University, USA, and
University of Warsaw, Poland).
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vi Preface

The local organizing committee of MCQMC 2010 consisted of Piotr Krzyżano-
wski (University of Warsaw), Marek Kwas (Warsaw School of Economics), Leszek
Plaskota and Henryk Woźniakowski.

The MCQMC conferences were created by Harald Niederreiter and have become
the world’s major event on both Monte Carlo and Quasi-Monte Carlo methods. The
meeting in Warsaw followed the successful meetings in Las Vegas, USA (1994),
Salzburg, Austria (1996), Claremont, USA (1998), Hong Kong (2000), Singapore
(2002), Juan-Les-Pins, France (2004), Ulm, Germany (2006), and Montreal, Canada
(2008). The next MCQMC conference has already been held in Sydney, Australia,
in February 2012.

The proceedings of the previous MCQMC conferences were all published by
Springer-Verlag under the following titles: Monte Carlo and Quasi-Monte Carlo
Methods in Computing (H. Niederreiter and P.J.-S. Shiue eds.), Monte Carlo
and Quasi-Monte Carlo Methods 1996, (H. Niederreiter, P.Hellekalek, G. Larcher
and P. Zinterhof, eds.), Monte Carlo and Quasi-Monte Carlo Methods 1998
(H. Niederreiter and J. Spanier, eds.), Monte Carlo and Quasi-Monte Carlo Methods
2000 (K.-T. Fang, F. J. Hickernell and H. Niederreiter, eds.), Monte Carlo and
Quasi-Monte Carlo Methods 2002 (H. Niederreiter, ed.), Monte Carlo and Quasi-
Monte Carlo Methods 2004 (H. Niederreiter and D. Talay, eds.), Monte Carlo and
Quasi-Monte Carlo Methods 2006 (A. Keller, S. Heinrich and H. Niederreiter, eds.),
Monte Carlo and Quasi-Monte Carlo Methods 2008 (P. L’Ecuyer and A.B. Owen,
eds.).

The program of the conference in Warsaw consisted of ten 1-h plenary talks and
111 regular talks presented in 17 special sessions and 13 technical sessions. The
invited speakers were: Søren Asmussen (Aarhus University, Denmark), William
Chen (Macquarie University, Australia), Michael Gnewuch (Columbia Univer-
sity, USA), Emmanuel Gobet (Grenoble Institute of Technology, France), Stefan
Heinrich (University of Kaiserslautern, Germany), Pierre L’Ecuyer (University of
Montreal, Canada), Friedrich Pillichshammer (University of Linz, Austria), Gareth
Roberts (University of Warwick, United Kingdom), Ian H. Sloan (University of New
South Wales, Australia), Grzegorz W. Wasilkowski (University of Kentucky, USA),

The proceedings contain a limited selection of papers based on presentations
given at the conference. The papers were carefully screened and they cover both the
recent advances in the theory of MC and QMC methods as well as their numerous
applications in different areas of computing.

We thank all the people who participated in the MCQMC conference in Warsaw
and presented excellent talks, as well as all who contributed to the organization of
the conference and to its proceedings. We appreciate the help of students during
the conference: Piotr Gońda, Mateusz Ła̧cki, Mateusz Obidziński, Kasia Pȩkalska,
Jakub Pȩkalski, Klaudia Plaskota, Ola Plaskota and Marta Stupnicka. Our special
thanks go to Piotr Krzyżanowski who, with the help of Paweł Bechler, Piotr Gońda,
Piotr Kowalczyk, Mateusz Ła̧cki and Leszek Marcinkowski, provided the invaluable
support in editing the proceedings.

We gratefully acknowledge the generous financial support of the University of
Warsaw, the Department of Mathematics, Informatics and Mechanics of the Uni-
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versity of Warsaw, and the Committee of the Polish Academy of Sciences. We are
especially thankful for warm hospitality of the Rector of the University of Warsaw,
Professor Katarzyna Chałasińska-Macukow, and the Vice-Rector, Professor Marcin
Pałys, during the conference.

Finally, we want to express our gratitude to Springer-Verlag for publishing this
volume.

Warsaw, Leszek Plaskota
April 2012 Henryk Woźniakowski
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Markov Bridges, Bisection and Variance
Reduction

Søren Asmussen and Asger Hobolth

Abstract Time-continuous Markov jump processes are popular modeling tools in
disciplines ranging from computational finance and operations research to human
genetics and genomics. The data is often sampled at discrete points in time, and it
can be useful to simulate sample paths between the datapoints. In this paper we
firstly consider the problem of generating sample paths from a continuous-time
Markov chain conditioned on the endpoints using a new algorithm based on the idea
of bisection. Secondly we study the potentials of the bisection algorithm for variance
reduction. In particular, examples are presented where the methods of stratification,
importance sampling and quasi Monte Carlo are investigated.

1 Introduction

Let X D fX.t/ W t � 0g be a Markov process in continuous time with discrete or
general state space E . A Markov bridge with parameters T; a; b is then a stochastic
process with time parameter t 2 Œ0; T � and having the distribution of fX.t/ W 0 �
t � T g conditioned on X.0/ D a and X.T / D b.

Markov bridges occur in a number of disciplines ranging from computational
finance and operations research to human genetics and genomics. In many appli-
cations, it is of relevance to simulate sample paths of such bridges. In particular,
the case of diffusions has received extensive attention. An early reference is [31]

S. Asmussen
Department of Mathematical Sciences, Aarhus University, Aarhus, Denmark
e-mail: asmus@imf.au.dk
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Methods 2010, Springer Proceedings in Mathematics and Statistics 23,
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4 S. Asmussen and A. Hobolth

and later selected ones [5–7], and [9]. Also some special Lévy processes have
been considered, see [4, 24, 29], and [30]. A more theoretical discussion of Markov
bridges can be found in [18].

The present paper is concerned with the CTMC (continuous time Markov chain)
case where the state space E of X is finite. This case is of course much simpler
than diffusions or Lévy processes, but nevertheless, it occurs in some important
applications. With E finite, there is a simple description of the process in terms of
the rate (intensity) matrix Q D .qij/i;j 2E: a jump i ! j ¤ i occurs at rate qij.
Equivalently, state i has an exponential holding time with mean 1=qi where qi D
�qii D P

j ¤i qij, and upon exit, the new state equals j ¤ i with probability �ij D
qij=qi . Cf. [1, Chap. 2]. Note that the assumption of recurrence needs not be imposed
(i.e. absorbing states are allowed).

We focus here on a bisection algorithm first presented in [3]. The details are
surveyed in Sect. 4, but the key is two fundamental observations. Firstly, if the
endpoints are the same and the process does not experience any jumps, the sample
path generation is finished. Secondly, if the endpoints are different and the process
experiences exactly one jump, sample path generation is easy; we must basically
simulate a waiting time before the jump from a truncated exponential distribution.
These two fundamental observations are described in more detail in Sect. 4.1, but
once they are in place they immediately suggest a recursive procedure for sample
path generation: continue splitting the large time interval into smaller time intervals,
and keep splitting until all intervals contain either no jumps or one jump only.

Previous algorithms for bridge sampling from CTMCs include rejection sam-
pling, uniformization and direct simulation and are briefly surveyed in Sect. 3
(also Markov chain Monte Carlo methods have been used, e.g. [31] and [6], but
we do not discuss this aspect here). Reference [20] compares these algorithms,
and a comparison with bisection can be found in [3]. The overall picture is that
no algorithm is universally superior in terms of fast generation of sample paths.
In particular, we do not insist that the bisection idea is a major jump forward
in this respect. Rather, it is our intention to advocate the use of bisection for
variance reduction by looking for some ‘most important’ random variables on which
to concentrate variance reduction ideas. We implement this in examples, and in
addition, we give a detailed description of the bisection algorithm and a survey of
alternative methods.

The idea of using bisection for variance reduction is familiar from the Brownian
bridge, see for example [10, 11, 27] and [2, p. 277–280]. Here the ‘most important’
r.v.’s are first X.0/; X.T /, next X.T=2/, then X.T=4/; X.3T=4/ and so on. How-
ever, in our implementation of CTMC bridges a new aspect occurs since also the
number of jumps in Œ0; T �, Œ0; T=2�, ŒT=2; T � and so on play a role. The variance
reduction techniques we study are stratification, importance sampling and quasi
Monte Carlo.
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2 Examples

2.1 Statistical Inference in Finite State CTMC Models

For statistical purposes, the relevant parameters to estimate are often the elements qij

of the rate matrix Q, or, equivalently, the qi and the �ij D qij=qi , j ¤ i . In the case
of complete observations in Œ0; T � (that is, the whole trajectory fX.t/ W 0 � t � T g
is observed), there is a simple solution: the maximum likelihood estimators bqi , b� ij of
qi and �ij D qij=qi are just the empirical counterparts. That is, the sufficient statistics
are

Ti D time in state i D
Z T

0

I
�
X.t/ D i

�
dt ;

Nij D # .jumps i ! j / D
X

0�t�T

I
�
X.t�/ D i; X.t/ D j

�
;

Ni D
X

j ¤i

Nij ;

and the maximum likelihood estimators are

bqi D Ni

Ti

; b� ij D Nij

Ni

: (1)

In many applications of continuous time Markov chains, the stochastic process
fX.t/ W t � 0g is, however, sampled at equidistant discrete points

t0 D 0 < t1 D h < t2 D 2h < � � � < tn�1 D .n � 1/h < tn D nh D T

in time, while the process itself is a continuous-time process. This situation is a
missing data problem, for which the EM (Expectation-Maximization) algorithm
is a classical tool. This algorithm is iterative, i.e. in step k it has a trial q

.k/
i ; �

.k/
ij

for the parameters. To update to k C 1, one then in (1) replaces the sufficient
statistics by their conditional expectation with parameters q

.k/
i ; �

.k/
ij given the data

X.0/; X.h/; : : : ; X..n � 1/h/; X.T /. That is,

bq
.kC1/
i D N

.k/
i

T
.k/
i

; b�
.kC1/
ij D N

.k/
ij

N
.k/
i

; (2)
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where

T
.k/
i D E

q
.k/
i ; �

.k/
ij

hZ T

0

I
�
X.t/ D i

�
dt

ˇ
ˇ
ˇ X.0/; X.h/; : : : ; X..n � 1/h/; X.T /

i
;

N
.k/
ij D E

q
.k/
i ; �

.k/
ij

h X

0�t�T

I
�
X.t�/ D i; X.t/ D j

� ˇ
ˇ
ˇ

� X.0/; X.h/; : : : ; X..n � 1/h/; X.T /
i

;

N
.k/
i D

X

j ¤i

N
.k/
ij :

The computation of these conditional expectations is the E-step of the algorithm,
whereas (2) is the M-step. The E-step is the computationally demanding one. As
a consequence of the Markov assumption, knowledge of the data partitions the
problem into n D T=h independent problems. For example,

T
.k/
i D

nX

mD1

E
q

.k/
i ; �

.k/
ij

hZ mh

.m�1/h

I
�
X.t/ D i

�
dt

ˇ
ˇ
ˇ X

�
.m � 1/h

�
; X.mh/

i
:

The computations are in principle feasible via deterministic numerical analysis, but
the implementation is somewhat tedious, so it is popular to use simulation instead.
Then independent sample paths fX.t/ W .m � 1/h � t < mhg must be generated
between the timepoints .m�1/h and mh, conditional on the datapoints X

�
.m�1/h

�

and X.mh/. This is how the problem of simulating Markov bridges arises in the
statistical context.

For more information on rate matrix estimation in partially observed finite state
CTMC models we refer to [25] and references therein.

2.2 Applications in Genetics

A DNA string is a word from the alphabet A,G,C,T. When observing two closely
related species like e.g. human and mouse, letters are equal at most sites (more than
80%; see [13]), but differ at a few as in Fig. 1 where the two strings are identical
except at the third site. The lines in the figure are ancestral lineages back to the
common ancestor. At each site, mutations occur, changing for example an A to a G.
One is often interested in the (unobservable) complete history along the ancestral
lines.

For a fixed single site, the common model assumes Markovian mutations at
known exponential holding rates qA; qC; qG; qT and known transition probabilities
(e.g. �AG D qAG=qA for A!G). One further assumes time reversibility and that the
ancestral lines are so long that stationarity has been reached. One can then reverse



Markov Bridges, Bisection and Variance Reduction 7

�����
�����

�����
�����

�����
�����

������
������

������
��

�����
�����

�����
�����

�����
�����

������
������

������
��

� � � AACGTG � � � � � � AATGTG � � �

Fig. 1 Related sites of DNA from human and mouse are identical at most positions. The possible
states are from the DNA alphabet fA,G,C,T g.

human ancestor mouse

C A C G

Fig. 2 Example of evolution from human to mouse at a specific position. Time is reversed at the
human lineage when compared to the previous figure.

time along one of the ancestral lines, say the one starting from the human, to get a
Markov process running from e.g. human to mouse and having known endpoints,
see Fig. 2.

An early popular model is that of [23] where the Q-matrix takes the form

A G C T

A �˛ � 2ˇ ˛ ˇ ˇ

G ˛ �˛ � 2ˇ ˇ ˇ

C ˇ ˇ �˛ � 2ˇ ˛

T ˇ ˇ ˛ �˛ � 2ˇ

One readily computes the stationary distribution � D .1; 1; 1; 1/=4 and checks the
conditions of detailed balance (�GqGT D �TqTG etc.) so that the model is indeed
time reversible. Plugging in specific values of ˛; ˇ and the time horizon T , one can
then simulate the Markov bridge from human to mouse to obtain information on the
ancestral history. One possible application is to put a prior on the length T=2 of the
ancestral lines and use the simulations to compute a posterior.

Endpoint conditioned CTMC’s are thus a crucial modelling tool for the evolution
of DNA sequences. At the nucleotide level the states for the DNA substitution
process state space is 4 as described above. At the amino acid level the state space
size is 20 and at the codon level the size is 61. The ancestry is usually represented by
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QCA QTA QT G QT C

j C 1 A
���
���
���

G
���
���
���

C

j � 1 C ���������

T

j C A C T

Fig. 3 Illustration of neighbour dependence. The Q-matrix at site j depends on the states
at the neighbouring sites. In the figure the neighbouring states at site .j � 1; j C 1/ are
.C;A/I .T;A/I .T;G/ and .T;C/. When simulating site j conditioned on the endpoints one must
take the states of the neighbouring sites into account.

a binary tree where a node corresponds to two DNA sequences finding a common
ancestor.

For a given set of DNA sequences observed at the leaves of a given tree we can
determine the probabilities of the states in the inner nodes using Felsenstein’s tree
peeling algorithm [16], and therefore the basic setup is very similar to an endpoint
conditioned CTMC. For more information on the use of CTMC methodology in
evolutionary models of DNA sequences we refer to [14, 17, Chaps. 13 and 14] and
references therein. Extremely large comparative genomic data sets consisting of
hundreds of sequences of length thousands of sites are currently being generated.
Interestingly, in order to analyze such large trees, approximative methods based
on bisection and uniformization techniques are being devoloped; see [12] for more
information on this line of research.

Single site analysis is not completely satisfactory because there is dependence
among neighboring sites. A simple and popular model assumes that the Q-matrix at
site j only depends on the states at sites j � 1 and j C 1 as in Fig. 3.

Simulation of multiple sites can then be performed by Gibbs sampling, where
one site at a time is updated. For updating of site j , one first simulates X at change
points, i.e. times of state change of either site j � 1 or j C 1. These values form
an inhomogeneous end-point conditioned discrete time Markov chain with easily
computed transition probabilities. Once they are known, the evolution between
change points are Markov bridges. See [19, 21] and [22] for more information on
neighbour-dependent substitution models in molecular evolution.

3 Previous Algorithms

Reference [20] describes and analyses 3 previously suggested algorithms for end-
point conditional simulation from continuous time Markov chains. The algorithms
are called rejection sampling, uniformization and direct simulation. We will only
briefly describe the algorithms here. For a detailed description of the algorithms we
refer to [20].
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Recall that our aim is to simulate a sample path fX.t/ W 0 � t �
T g from a continuous time Markov chain conditional on the end-points
X.0/ D a and X.T / D b. In rejection sampling, a sample path is simulated
forward in time from X.T / D a, and the path is accepted if X.T / D b.
Reference [28] describes an improvement of the naive rejection sampling
approach where it is taken into account that if a ¤ b, at least one jump
must occur. Nielsens improvement is particularly important when the time
interval is short and the beginning and ending states are different. Rejection
sampling is inefficient if the acceptance probability is low, i.e. if it is unlikely
for the forward simulated Markov chain to end up in the desired ending
state.

In uniformization (e.g. [15]), the number of state changes within an interval is
Poisson distributed. The state changes themselves constitute a Markov chain. The
price for the simple description of the number of state transitions is that virtual
state changes (in which the state does not change) are permitted. Sampling from
this related process is equivalent to sampling from the target continuous time
Markov chain when the virtual changes are ignored. When simulating an endpoint
conditioned sample path using uniformization, the number of state transitions is
firstly simulated. This number follows a slightly modified Poisson distribution (the
modification comes from the conditioning on the endpoints). When the number of
jumps is simulated, the Markovian structure of the state transitions is utilized to
simulate the types of changes that occur. Uniformization is usually very efficient,
but can be slow if many virtual state changes are needed in the simulation procedure.

Finally, direct simulation [19] is based on analytical expressions for simulating
the next state and the waiting time before the state change occurs. The expression for
the waiting time distribution and corresponding cumulative distribution function are
analytically available, but unfortunately not very tractable. Therefore the recursive
steps of simulating the new state and corresponding waiting time is a rather time-
consuming process.

All three algorithms for simulating an end-point conditioned CTMC can be
divided into a (1) initialization, (2) recursion and (3) termination step. Denoting
the computational cost for initialization ˛ and a single step in the recursion ˇ,
the full cost of each of the three algorithms can, for moderately large T , be well
approximated by

Rejection sampling Direct sampling Uniformization
.˛R C ˇRT / =pacc ˛D C ˇDT ˛U C ˇU T�:

In these formulas Q is scaled such that one jump is expected per time unit
.
P

c �cQc D 1/, pacc is the probability of accepting a forward sample, and � D
maxc qc is the rate of state changes (including the virtual) in the uniformized
process. The computational costs ˛ and ˇ depend on the size of the rate matrix
and the software.
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4 Bisection Algorithm

The algorithm involves an initialization step and a recursive step. The recursive step
is easy once the initialization step is explained. We divide the discussion of the
initialization into two parts. In the first part, the end-points are the same, and in the
second part the end-points are different.

4.1 The Basic Idea

The bisection algorithm is based on two fundamental observations:

1. If X.0/ D X.T / D a and there are no jumps we are done: X.t/ D a; 0 � t � T .
2. If X.0/ D a and X.T / D b ¤ a and there is precisely one jump we are basically

done: X.t/ D a; 0 � t < � , and X.t/ D b; � � t � T .

In 2, the jump time � is determined by Lemma 3 and Remark 1 below, which show
that intervals with precisely one jump are easy to handle.

The basic idea of the bisection algorithm is to formulate a recursive procedure
where we finish off intervals with zero or one jumps according to the two
fundamental observations above, and keep bisecting intervals with two or more
jumps. The recursion ends when no intervals with two or more jumps are present.

We recall the notation Q D fqabg for the instantaneous rate matrix with off-
diagonal entries qab � 0 and diagonal entries qaa D � P

b¤a qab D �qa < 0. We
make the assumption that the process is irreducible, i.e. it is possible to get from
any state to any state in the jump chain. The algorithm (as well as uniformization
and direct simulation, cf. Sect. 3) require the transition probabilities Pab.t/, i.e. the
elements of the transition matrix P.t/ D eQt . These can easily be computed, for
example, if Q can be written in diagonal form UDU �1 with D D diag.�i /; then
P.t/ D U diag.e�i t /U �1. For different methods, see the classical paper by Moler
and van Loan [26].

Lemma 1. Consider an interval of length T with X.0/ D a, and let b ¤ a. The
probability that X.T / D b and there is only one single jump (necessarily from a to
b) in the interval is given by

Rab.T / D qab

8
<

:

e�qaT � e�qbT

qb � qa

qa ¤ qb

T e�qaT qa D qb:

(3)

The density of the time of state change is

fab.t I T / D qabe�qbT

Rab.T /
e�.qa�qb/t ; 0 � t � T:
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Furthermore, the probability that X.T / D b and there are at least two jumps in the
interval is Pab.T / � Rab.T /.

Proof. Let N.T / denote the number of jumps in the interval Œ0; T �. The first two
parts of the Lemma follow from

Rab.T / D P
�
X.T / D b; N.T / D 1

ˇ
ˇ X.0/ D a

�

D
Z T

0

qae�qat qab

qa

e�qb.T �t / dt D qabe�qbT

Z T

0

e�.qa�qb/t dt; a ¤ b:

The last part is clear since the case of zero jumps is excluded by a ¤ b. ut
Remark 1. If qa > qb , the time of the state change is an exponentially distributed
random variable with rate qa � qb truncated to Œ0; T �. Such a random variable V is
easily simulated by inversion (e.g. [2, p. 39]). If qa < qb , we have by symmetry that
fab.t/ is the density of the random variable T � V , where V is an exponentially
distributed random variable with rate qb �qa truncated to Œ0; T �. Finally, if qa D qb ,
the time of the state change is simply uniform on Œ0; T �. ut

4.2 Initialization When the Endpoints Are Equal

Consider the case X.0/ D X.T / D a. We may write

Paa.T / D Paa.T=2/Paa.T=2/ C
X

c¤a

Pac.T=2/Pca.T=2/: (4)

Here Paa.T=2/ can be further dissected into

Paa.T=2/ D P.X.T=2/ D ajX.0/ D a/

D P.X.T=2/ D a; N.T=2/ D 0jX.0/ D a/

CP.X.T=2/ D a; N.T=2/ � 2jX.0/ D a/

D e�qaT=2 C ŒPaa.T=2/ � e�qaT=2�; (5)

and similarly Pac.T=2/ can be written as

Pac.T=2/ D Rac.T=2/ C ŒPac.T=2/ � Rac.T=2/�: (6)

With the abbreviation ea D e�qaT=2; rab D Rab.T=2/; pab D Pab.T=2/ we obtain
Table 1 when substituting (5) and (6) into (4).

Note that in case 1–4 we have X.T=2/ D a, and in case 5–8 we have X.T=2/ D
c ¤ a. Of course we have
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Table 1 Possible scenarios when the endpoints X.0/ D a and X.T / D a are the same.

Case Number of jumps Number of jumps (Unconditional) Notation
in first interval in second interval Probability

1 0 0 eaea ˛1

2 0 �2 ea.paa � ea/ ˛2

3 �2 0 .paa � ea/ea ˛3

4 �2 �2 .paa � ea/.paa � ea/ ˛4

5 1 1 racrca ˛5;c

6 1 �2 rac.pca � rca/ ˛6;c

7 �2 1 .pac � rac/rca ˛7;c

8 �2 �2 .pac � rac/.pca � rca/ ˛8;c

Paa.T / D
4X

iD1

˛i C
8X

iD5

X

c¤a

˛i;c :

In the initialization step, we select one of the cases with probabilities proportional
to the corresponding ˛-value. In case the algorithm enters case 1 we are done.
In case the algorithm enters case 5 we are almost done; we just need to simulate
two waiting times according to Remark 1: one waiting time in the interval Œ0; T=2�

with beginning state a and ending state c, and another in the interval ŒT=2; T � with
beginning state c and ending state a.

In case the algorithm enters one or more intervals where the number of jumps
are � 2, further simulation is needed (case 2, 3, 4, 6, 7, 8), and we move on to
the recursion step explained below. However, we only need to pass intervals to the
next level of the algorithm if the number of jumps are larger or equal to two. If
the selected case is case 2, for example, we only need to pass the second interval
ŒT=2; T � and the endpoints X.T=2/ D a and X.T / D a. Similarly, if the selected
case is case 6 we use Remark 1 to simulate the waiting time to state c in the first
interval (and keep the type and time of the state change in the memory), but we only
pass on the second interval ŒT=2; T � and the endpoints X.T=2/ D c and X.T / D a

to the next level.

4.3 Initialization When the Endpoints Are Different

Now consider the case when the end-points X.0/ D a and X.T / D b ¤ a are
different. This time we get

Pab.T / D Paa.T=2/Pab.T=2/ C Pab.T=2/Pbb.T=2/ C
X

c62fa;bg
Pac.T=2/Pcb.T=2/:

Using the same notation as previously, we get the 12 cases in Table 2.
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Table 2 Possible scenarios when the endpoints X.0/ D a and X.T / D b ¤ a are different.

Case Number of jumps Number of jumps (Unconditional) Notation
in first interval in second interval Probability

1 0 1 earab ˇ1

2 0 � 2 ea.pab � rab/ ˇ2

3 � 2 1 .paa � ea/rab ˇ3

4 � 2 � 2 .paa � ea/.pab � rab/ ˇ4

5 1 0 rabeb ˇ5

6 1 � 2 rab.pbb � eb/ ˇ6

7 � 2 0 .pab � rab/eb ˇ7

8 � 2 � 2 .pab � rab/.pbb � eb/ ˇ8

9 1 1 racrcb ˇ9;c

10 1 � 2 rac.pcb � rcb/ ˇ10;c

11 � 2 1 .pac � rac/rcb ˇ11;c

12 � 2 � 2 .pac � rac/.pcb � rcb/ ˇ12;c

Note that we can merge case 1 and case 5 (corresponding to one jump):

earab C rabeb D Rab.T /:

It clearly holds that

Pab.T / D
8X

iD1

ˇi C
12X

iD9

X

c¤.a;b/

ˇi;c:

In case 1–4 we have X.T=2/ D a, in case 5–8 we have X.T=2/ D b ¤ a, and in
case 9–12 we have X.T=2/ D c 62 fa; bg.

In the initialization step, we select one of the cases with probabilities proportional
to the corresponding ˇ-value. If the algorithm enters one or more intervals where
the number of jumps are larger than two, further simulation is needed (case
2,3,4,6,7,8,10,11,12). If the algorithm enters a case where the number of jumps is
at most one in both intervals (case 1,5,9), then the construction of the path on the
current subinterval is finished.

Entering an interval with � 2 jumps means that further simulation is needed. In
the next subsection, we discuss this recursive part of the bisection algorithm.

4.4 Recursion and Termination

When an interval with � 2 jumps is entered, further simulation is needed. However,
it is straightforward to calculate the probabilities for the various scenarios; the
(unconditional) probabilities are given by Table 1 with case 1 removed if the end-
points of the interval are the same, and by Table 2 with case 1 and 5 removed if
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the end-points of the interval are different. (The values occurring in Tables 1 and 2
should also be calculated for half as long a time interval.) The algorithm terminates
when no intervals with � 2 jumps are present.

5 Numerical Examples

We now present a collection of results from three experiments where bisection ideas
are used for variance reduction in time-continuous Markov jump processes. The
three experiments are (1) Stratification, (2) Importance sampling and (3) Quasi
Monte Carlo. We consider a N � N rate matrix Q where the rates are given by
q1;2 D �, qn;nC1 D �, n D 2; : : : ; N � 1, qN;1 D �, and all other rates are zero, cf.
Fig. 4. We let � D N .

Our target is to determine the probability p� of exactly one cycle in the time
interval Œ0; 1� conditioned on the initial state X.0/ D 1 and final state X.1/ D 1. We
stress that neither the model nor the problem of estimating p� are chosen because
of their intrinsic interest but in order to investigate the potential of the bisection
algorithm for variance reduction in a simple example. Indeed, the value of p� is
the probability of making exactly N jumps conditional on the end-points X.0/ D
X.1/ D 1. This probability can be calculated using the algorithm of [32] which
for convenience is reproduced in the Appendix. In Table 3 we provide the exact
probabilities of p� in our experiments.

One possibility of estimating p� is of course the crude Monte Carlo method,
to just generate sample paths fX.t/ W 0 � t � 1g conditional on X.0/ D 1 and
X.1/ D 1 (we have previously discussed several algorithms, including bisection,
for obtaining such samples). Let Zr; r D 1; : : : ; R indicate if exactly one cycle

1 �� 2 �� 3 �� 4 �� � � � �� N �1 �� N

�

�

Fig. 4 Transition diagram for the cyclic example.

Table 3 Exact probability p� for one cycle for various state space sizes N and various ratios
�=N .

�=N

N 0.10 0.45 0.80 1.00 1.20 3.10 5.00

4 0.138405 0.567199 0.766990 0.800363 0.803456 0.639064 0.562409
7 0.191982 0.818845 0.946474 0.948949 0.941157 0.857991 0.818518
10 0.253733 0.940944 0.987026 0.984950 0.981193 0.950914 0.935423
15 0.373870 0.992560 0.998395 0.997843 0.997230 0.992588 0.990111
20 0.506338 0.999121 0.999775 0.999687 0.999597 0.998920 0.998555
30 0.745579 0.999988 0.999995 0.999993 0.999992 0.999977 0.999970
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is obtained in the r th sample path where R is the number of replications. Clearly
Zr � Bin.1; p�/ and so the crude Monte Carlo estimator is NZ D PR

rD1 Zr=R with
variance

�2 D Var. NZ/ D p�.1 � p�/

R
:

5.1 Stratification

First consider a proportional stratification procedure [2, V.7] where the R replicates
are allocated according to the probability of the midpoint s; s D 1; : : : ; N of the
process. More precisely, let ps D P.X.1=2/ D sjX.0/ D 1; X.1/ D 1/ be the
probability of the midpoint being s and allocate Rs D Rps (or rather the rounded
value) replicates to this stratum. We use

PN
sD1 ps

NZs as an estimator of p�, where
NZs D PRs

iD1 Zs;i =Rs and Zs;i indicates if the i th sample in the sth stratum contains
exactly one cycle.

Letting

p�;s D P
�
exactly one cycle

ˇ
ˇ X.0/ D 1; X.1=2/ D s; X.1/ D 0

�
;

we obtain the stratum variance

�2
Str D

NX

sD1

p2
s

p�;s.1 � p�;s/

Rs

:

We now see that the ratio between the two variances is given by

�2
Str

�2
D

NX

sD1

ps

p�;s.1 � p�;s/

p�.1 � p�/
; (7)

where we have used Rs D Rps .
In Fig. 5 left we show (using exact calculations) the values of the ratios between

the two variances for several values of � and size of state space N . We see that when
� � N we obtain a major reduction in the variance when stratification is applied.
In the cases � � N and � 	 N; a variance reduction is mainly obtained for large
state spaces.

Instead of only stratifying according to the midpoint, we can include information
about the number of jumps according to Table 1. We thus include not only the
midpoint but also if 0,1 or at least 2 jumps are present. We again apply a proportional
stratification procedure. The variance ratio between the two stratification procedures
are shown in Fig. 5 right. We see that a major variance reduction is obtained for small
values of � and small state spaces.
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Fig. 5 Variance reduction using stratification strategies. Left: Variance ratio (7) between naive
sampling and stratification according to midpoint. The variance ratio is shown as a function of
�=N . The variance reduction is large when � is small and otherwise the variance reduction is
moderate. Right: Variance ratio between stratification according to midpoint and stratification
according to midpoint and information on number of jumps (0,1 or � 2). Again the variance
reduction is large when � is small.

5.2 Importance Sampling

Another variance reduction mechanism is importance sampling. We choose to do
importance sampling on the midpoint and include information that (a) the chain
can only jump from n to .n C 1/ (modulo N ) and (b) one cycle corresponds to
exactly N jumps. Having sampled the midpoint and number of jumps in the two
intervals (0,1 or � 2), we proceed according to the bisection algorithm. In our
proposal mechanism, the N jumps are distributed in the two intervals according to
a multinomial distribution with probability vector .1=2; 1=2/ and number of trials
N , i.e. the number of jumps in the first interval follows a binomial distribution
Bin.N; 1=2/ with parameter 1=2 and N trials. We have outlined the proposal
mechanism in Table 4 (compare to Table 1). The importance sampling weight is
the ratio between the bisection probability (the true distribution) and the importance
sampling probability.

In Fig. 6 we show the ratio between the importance sampling variance (the
variance of the importance weights) and the ‘naive’ sampling scheme. Even though
the importance sampling scheme takes information about the type of CTMC into
account it appears that we only obtain a variance reduction when the state space is
smaller than 15.
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Table 4 Possible number of jumps in the two intervals in the importance sampling scheme. In
case 8, the last case, the value of the number of jumps k is between 2 and N � 2. The importance
sampling weight is the ratio between the bisection probability and sampling probability.

Case Number of jumps Number of jumps Sampling Bisection
in first interval in second interval probability probability

1 0 0 0 Irrelevant
2 0 � 2 Bin.0I N; 1=2/ ˛2=Paa.T /

3 � 2 0 Bin.N I N; 1=2/ ˛3=Paa.T /

4 � 2 � 2 0 Irrelevant
5 1 1 0 Irrelevant
6 1 � 2 Bin.1I N; 1=2/ ˛6=Paa.T /

7 � 2 1 Bin.N � 1I N; 1=2/ ˛7;N �1=Paa.T /

8 � 2 � 2 Bin.kI N; 1=2/ ˛8;k=Paa.T /

Fig. 6 Variance reduction using importance sampling. The variance ratio is the ratio between the
variance from importance sampling and the variance from bisection. The variance ratio is shown
as a function of �=N .

5.3 Quasi Monte Carlo

We finally consider a quasi Monte Carlo approach, cf., e.g. [2, IX.3] . Here quasi-
random numbers replace the pseudo-random numbers in ordinary Monte Carlo.
A difficulty in the implementation is that for the bisection algorithm, the number
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Fig. 7 Quasi Monte Carlo. Left: Raw estimation of the probability for one cycle as a function of
the number of replicates. Right: Log of the absolute value of the relative error (defined as (true-
obs)/true) as a function of the number of replicates.

of random numbers that need to be generated is random rather than fixed, which
may lead to serious problems, cf. [2, item (ii) p. 271]. To avoid this problem, we
choose a hybrid implementation, where only the midpoint and the number of jumps
in the two intervals are generated from quasi-random numbers (for simplicity of
implementation, we used the three-dimensional Halton sequence). The remaining
part of the bisection algorithm is as before. In Fig. 7 we compare the two sampling
schemes. It is quite clear that QMC is a very efficient strategy to improve the
convergence rate for the algorithm.

6 Conclusions and Extensions

1. As mentioned in the Introduction, we do not believe that bisection in itself is
a major improvement of existing methods for simulating CTMC bridges, but
that the justification of the method rather is its potential for variance reduction.
We find this potential well illustrated via the numerical examples, stressing that
these are rather crude by only using variance reduction methods for the midpoint
T=2. A substantial improvement is to be expected if in addition one incorporates
T=4; 3T=4 and so on. For stratification, this is unfeasible for even moderate state
spaces, since the order of strata increases from 4N to .4N /3 by just going from
T=2 to T=2; T=4; 3T=4. However, the situation is much better for importance
sampling and quasi Monte Carlo, and in particular, such an extension could
well dramatically change the somewhat disappointing behavior of importance
sampling.
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2. Another extension not implemented here is hybrid algorithms where the bisection
is only used to generate say X.T=2/; X.1=4/; X.3T=4/ (and possibly the number
of jumps in each of the four intervals), to apply variance reduction techniques
ideas to these r.v.’s only and generate the rest of the sample path by some other
algorithm, say rejection sampling which is much faster (see [3, 20]) when the
endpoint conditioning is not rare.

3. A phase-type distribution is the distribution of the absorption time � of a Markov
process X� on f0; 1; : : : ; M g, where 0 is absorbing and the states in 1; : : : ; M

non-absorbing, and having some specified initial probabilities 	a, a D 1; : : : ; M .
In simulation-based statistical estimation, one needs to generate a sample path
of X� conditioned on � D T . An algorithm is suggested in [8] and uses Gibbs
sampling.

The problem can, however, be translated to endpoint conditioned simulation.
To this end, one simply computes the probability 
b that X�.��/ D b (this
reduces to simple matrix algebra but we omit the details). One then draws a; b

according to the 	a and 
b , and simulates X� conditioned to have endpoints a; b

and no transitions to state 0 in Œ0; T �.
4. Another potential application of the bisection algorithm is in combination with

the uniformization algorithm. To this end, one first notes that since it is not
essential to split intervals into two of exactly equal size, our algorithm applies
with minor changes to discrete time Markov chains, in this case the chain at
Poisson times. Doing so has the potential advantage that a segment of length K

where the Markov chain is constant can be simulated in a single step instead
of K steps. This is appealing in situations where the qi are of different orders of
magnitudes, since then segments with large K are likely to show up in the sample
path.

Appendix

Consider a CTMC fX.t/ W 0 � t � T g with rate matrix Q and endpoints
X.0/ D a and X.T / D b. In this Appendix we provide a recursion for the number
of substitutions using the approach suggested by Siepel et al. [32].

Consider a uniformization of the process. Let

R D I C 1

�
Q;

where � D maxc qc . Furthermore, let J denote the (stochastic) number of jumps
(including virtual) and N the (stochastic) number of substitutions (excluding
the virtual jumps). Siepel, Pollard and Haussler’s formula for the number of
substitutions is based on the following fundamental observation
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P.N.T / D n; X.T / D b j X.0/ D a/ D
1X

j Dn

P.N.T / D n; X.T / D b; J.T / D j jX.0/ D a/ D

1X

j Dn

P.N.T / D n; X.T / D bjJ.T / D j; X.0/ D a/P.J.T / D j jX.0/ D a/ D

1X

j Dn

P.n; bjj; a/Pois.j j�T /: (8)

Here Pois.�j�T / is the Poisson distribution with rate �T . Note that P.n; bjj; a/

does not depend on the time interval. Also note that we can find the transition
probabilities from

Pab.T / D P.bja; T / D
1X

nD0

P.N.T / D n; X.T / D bjX.0/ D a/:

This formula provides a way of calculating the transition probability without using
a diagonalization of the rate matrix.

Having calculated P.N.T / D n; X.T / D bjX.0/ D a/ we can easily find the
distribution for the number of endpoint-conditioned substitutions

P.N.T / D njX.0/ D a; X.T / D b/ D P.N.T / D n; X.T / D bjX.0/ D a/

P.X.T / D bjX.0/ D a/
:

The crucial step for (8) to be useful is a fast way of calculating the quantities
P.n; bjj; a/, and [32] provide a recursion for accomplishing this task.

First note that P.n; bjj; a/ D 0 if n > j .
For j D 0 we have

P.n; bjj D 0; a/ D
�

1 if a D b and n D 0

0 otherwise.
(9)

This provides the basis of the recursion.
For j � 1 we find P.n; bjj; a/ for 0 � n � j using the recursion

P.n; bjj; a/ D P.N D n; Y.j / D bjJ D j; Y.0/ D a/

D P.N D n; Y.j / D b; Y.j � 1/ D bjJ D j; Y.0/ D a/ C
X

c¤b

P.N D n; Y.j / D b; Y.j � 1/ D cjJ D j; Y.0/ D a/

D RbbP.n; bjj � 1; a/ C RcbP.n � 1; cjj � 1; a/; (10)
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where Y is the uniformized (auxiliary) process that includes the virtual jumps.
The actual implementation of the recursion is described in the following

algorithm:

1. Initialization Fix a to the desired value and calculate basis of recursion using
(9). Set j D 1.

2. Recursion Define matrix Mj .b; n/ with number of rows equal to the size of the
state space and .j C 1/ columns. Calculate entries Mj .b; n/ D P.n; bja; j /

using (10).
3. Stopping Criteria If

P
n;b Mj .b; n/ D 1 to machine precision, then stop.

Otherwise set j D j C 1 and go to 2.
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Upper Bounds in Discrepancy Theory

William W.L. Chen

Abstract Through the use of a few examples, we shall illustrate the use of
probability theory, or otherwise, in the study of upper bound questions in the theory
of irregularities of point distribution. Such uses may be Monte Carlo in nature but
the most efficient ones appear to be quasi Monte Carlo in nature. Furthermore, we
shall compare the relative merits of probabilistic and non-probabilistic techniques,
as well as try to understand the actual role that the probability theory plays in some
of these arguments.

1 Introduction

Discrepancy theory concerns the comparison of the discrete, namely an actual point
count, with the continuous, namely the corresponding expectation. Since the former
is always an integer while the latter can take a range of real values, such comparisons
inevitably lead to discrepancies. Lower bound results in discrepancy theory support
the notion that no point set can, in some sense, be too evenly distributed, while upper
bound results give rise to point sets that are as evenly distributed as possible under
such constraints.

Let us look at the problem from a practical viewpoint. Consider an integralZ
Œ0;1�K

f .x/ dx;

where f W Œ0; 1�K ! R is a real valued function in K real variables. Of course, this
integral simply represents the average value of the function f in Œ0; 1�K . If we are
unable to evaluate this integral analytically, we may elect to select a large number
of points p1; : : : ;pN 2 Œ0; 1�K , and use the discrete average
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1

N

NX
jD1

f .pj /

as an approximation, resulting in an error

1

N

NX
jD1

f .pj / �
Z
Œ0;1�K

f .x/ dx:

Suppose next that f D �A, the characteristic function of some measurable set
A � Œ0; 1�K . Then the above error, without the normalization factor N�1, becomes

NX
jD1

�A.pj /�N

Z
Œ0;1�K

�A.x/ dx D #.P \A/ �N�.A/;

the discrepancy of the set P D fp1; : : : ;pN g in A. Often we consider a collection
A of such measurable sets A � Œ0; 1�K ; an often considered example of A is
the collection of all aligned rectangular boxes in Œ0; 1�K which are anchored at the
origin. Upper bound problems in discrepancy theory involve finding point sets that
are good, in some sense, with respect to all the sets in A .

Naturally, we try if possible to construct explicitly a good point set. However,
when this is not possible, then the next best alternative is to show nevertheless that
a good point set exists, by the use of probabilistic techniques. Thus, in upper bound
arguments, we may use probability with great abandon, use probability with careful
control, or not use probability at all. These correspond respectively to the three
approaches, namely Monte Carlo, quasi Monte Carlo or deterministic. We remark
here that the experts may find the use of the term quasi Monte Carlo here a little
unusual.

There are a number of outcomes and questions associated with a probabilistic
approach. First of all, we may end up with a very poor point distribution or a very
good point distribution. It is almost certain that we lose explicitness. However, it is
important to ask whether the probability is necessary, and if so, what it really does.

This brief survey is organized as follows. In Sect. 2, we discuss some basic ideas
by considering a large discrepancy example. In Sect. 3, we take this example a little
further and compare the merits of the three different approaches. We then discuss
in Sect. 4 the classical problem, an example of small discrepancy. We continue with
this example in Sect. 5 to give some insight into what the probability really does.

Notation: Throughout, P denotes a distribution of N points in Œ0; 1�K . For any
measurable subset B � Œ0; 1�K , we letZŒPIB� D #.P \B/ denote the number of
points of P that fall into B , with corresponding expected point count N�.B/. We
then denote the discrepancy by DŒPIB� D ZŒPIB� �N�.B/.
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Also, Q denotes a distribution of points in Œ0; 1/k � Œ0;1/ with a density of one
point per unit volume. For any measurable subset B � Œ0; 1/k � Œ0;1/, we consider
the corresponding discrepancyEŒQIB� D #.Q \ B/ � �.B/.

For any real valued function f and non-negative function g, we write f D O.g/

or f � g to indicate that there exists a positive constant c such that jf j < cg. For
any non-negative functions f and g, we write f � g to indicate that there exists a
positive constant c such that f > cg, and write f � g to denote that f � g and
f � g. The symbols � and � may be endowed with subscripts, and this means
that the implicit constant c may depend on these subscripts.

Remark 1. The author has taken the liberty of omitting unnecessary details and
concentrate mainly on the ideas, occasionally at the expense of accuracy. The reader
will therefore find that some definitions and details in this survey will not stand up
to closer scrutiny.

2 A Large Discrepancy Example

Let A denote the collection of all discs in the unit torus Œ0; 1�2 of diameter less
than 1.

A special case of a result of Beck [3] states that for every distribution P of N
points in Œ0; 1�2, we have the lower bound

sup
A2A

jDŒPIA�j � N
1
4 : (1)

An alternative proof of this result can be found in Montgomery [23].
The lower bound (1) is almost sharp, since for every natural number N � 2,

there exists a distribution P of N points in Œ0; 1�2 such that

sup
A2A

jDŒPIA�j � N
1
4 .logN/

1
2 ; (2)

similar to a special case of an earlier result of Beck [2]. We shall indicate some of
the ideas behind this upper bound.

Let us assume, for simplicity, that N D M2, where M is a natural number, and
partition Œ0; 1�2 into N D M2 little squares in the obvious and natural way to create
the collection S of all the little squares S . We then place one point anywhere in
each little square S 2 S , and let P denote the collection of all these points.

Now take any disc A 2 A , and try to bound the term jDŒPIA�j from above.
Since discrepancy is additive with respect to disjoint unions, we have

DŒPIA� D
X
S2S

DŒPIS \ A�:
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It is easy to see that for any little square S 2 S such that S \A D ; or S � A, we
haveDŒPIS \ A� D 0. Hence

DŒPIA� D
X
S2S

S\@A¤;

DŒPIS \A�;

where @A denotes the boundary of A.

It then follows easily that

jDŒPIA�j 	
X
S2S

S\@A¤;

jDŒPIS \A�j � M D N
1
2 ;

rather weak in comparison to what we hope to obtain.
In order to improve on this rather trivial upper bound, we next adopt a quasi

Monte Carlo approach.
For every little square S 2 S , let the point pS be uniformly distributed within S ,

and independently from those points in the other little squares. In other words,
we have a random point fpS 2 S . Furthermore, we introduce the random vari-
able

�S D
�
1; if fpS 2 A,
0; if fpS 62 A,

with discrepancy �S D �S � E�S . Clearly fP D ffpS W S 2 S g is a random
point set, f�S W S 2 S g is a collection of independent random variables, and we
have

DŒfP IA� D
X
S2S

�S D
X
S2S

S\@A¤;

�S : (3)
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To obtain the desired result, we now simply invoke a large deviation type result
in probability theory, for instance due to Hoeffding; see Pollard [24, Appendix B].
In summary, the probability theory enables us to obtain the square root of the trivial
estimate, as is clear from the upper bound (2). Perhaps, we can think of the extra
factor .logN/

1
2 in (2) as the price of using probability.

In fact, for every distribution P of N points in Œ0; 1�2, the lower bound (1)
follows from the stronger lower bound

Z
A

jDŒPIA�j2 dA � N
1
2 ;

also due to Beck [3]. We next proceed to show that this bound is best possible.
Let us choose A 2 A and keep it fixed. It then follows from (3) that

jDŒfPIA�j2 D
X

S1;S22S

S1\@A¤;
S2\@A¤;

�S1�S2 :

Taking expectation over all N random points, we obtain

E
�jDŒfPIA�j2� D

X
S1;S22S

S1\@A¤;
S2\@A¤;

E.�S1�S2/: (4)

If S1 ¤ S2, then �S1 and �S2 are independent, and so

E.�S1�S2/ D E.�S1/E.�S2 / D 0:

It follows that the only non-zero contributions to the sum in (4) come from those
terms where S1 D S2, and so

E
�jDŒfPIA�j2� 	

X
S2S

S\@A¤;

1 � N
1
2 :

We now integrate over all A 2 A to obtain

E
�Z

A
jDŒfPIA�j2 dA

�
� N

1
2 ;

and the desired result follows immediately.
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3 Monte Carlo, Quasi Monte Carlo, or Not

Let A denote the collection of all discs in the unit torus Œ0; 1�2 of diameter equal
to 1

2
. Consider a distribution P of N D M2 points in Œ0; 1�2, with one point in

each little square S 2 S . We now randomize these points, or otherwise, in one of
the following ways: (1) The point in each S is uniformly distributed in Œ0; 1�2, and
independently of other points. This is the Monte Carlo case. (2) The point in each
S is uniformly distributed in S , and independently of other points. This is the quasi
Monte Carlo case. (3) The point in each S is fixed in the centre of S , so that there is
absolutely no probabilistic machinery. This is the deterministic case.

We can take a different viewpoint, and let � denote a probabilistic measure on
U D Œ0; 1�2. Taking the origin as the reference point for �, for every S 2 S , we let
�S denote the translation of � to the centre of S , and let fpS denote the random point
associated to �S . Repeating this for every S 2 S , we obtain a random point setfP D ffpS W S 2 S g. Now write

D2
�.N / D

Z
U

: : :

Z
U

�Z
A

jDŒfPIA�j2 dA

� Y
S2S

d�S :

We now choose � in one of the following ways, corresponding to cases above: (1)
We take � to be the uniform measure supported by Œ� 1

2
; 1
2
�2. (2) We take � to be the

uniform measure supported by Œ� 1
2M
; 1
2M
�2. (3) We take � to be the Dirac measure

ı0 concentrated at the origin.
Since A is the collection of all discs in the unit torus Œ0; 1�2 of diameter equal

to 1
2
, each A 2 A is a translate of any other, and so

Z
A

dA is essentially
Z
U

dx

and this enables us to use Fourier transform techniques, first used in this area by
Kendall [21].

Let � denote the characteristic function of the disc centred at the origin. Then
one can show that

D2
�.N / D N

X
0¤t2Z2

jb�.t/j2.1 � jb�.t/j2/CN2
X

0¤t2Z2

jb�.M t/j2jb�.M t/j2I (5)

see Chen and Travaglini [13].
Consider first the Monte Carlo case, where the probabilistic measure � is the

uniform measure supported by Œ� 1
2
; 1
2
�2. Then the Fourier transform b� satisfies

b�.0/ D 1 andb�.t/ D 0 whenever 0 ¤ t 2 Z2. In this case, the identity (5) becomes

D2
�.N / D N

X
0¤t2Z2

jb�.t/j2 � N;
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a very poor outcome.
Consider next the quasi Monte Carlo case, where the probabilistic measure � is

the uniform measure supported by Œ� 1
2M
; 1
2M
�2. Then

b�.t/ D N
sin.�M�1t1/

�t1

sin.�M�1t2/
�t2

;

so thatb�.M t/ D 0 whenever 0 ¤ t 2 Z2. In this case, the identity (5) becomes

D2
�.N / D N

X
0¤t2Z2

jb�.t/j2.1 � jb�.t/j2/:

Consider finally the deterministic case, where the probabilistic measure � is the
Dirac measure concentrated at the origin. Thenb�.t/ D 1 identically. In this case,
the identity (5) becomes

D2
�.N / D N2

X
0¤t2Z2

jb�.M t/j2:

Which of these two latter cases is superior?
To answer this question fully, it is necessary to consider all higher dimensional

analogues of this question. Accordingly, in the K-dimensional unit torus Œ0; 1�K ,
whereK � 2, we considerN D MK little cubes, whereM is a natural number. All
the definitions in dimension 2 are extended in the natural way to higher dimensions.
In the quasi Monte Carlo case, the probabilistic measure � is the uniform measure
	 supported by Œ� 1

2M
; 1
2M
�K , whereas in the deterministic case, the probabilistic

measure � is the Dirac measure ı0 at the origin.
We now compare the quantitiesD2

ı0
.MK/ andD2

	.M
K/, and have the following

intriguing results due to Chen and Travaglini [13]:

ı For dimension K D 2, D2
ı0
.MK/ < D2

	.M
K/ for all sufficiently large natural

numbersM . Hence the deterministic model is superior.
ı For all sufficiently large dimensions K 6
 1 mod 4, D2

	.M
K/ < D2

ı0
.MK/ for

all sufficiently large natural numbers M . Hence the quasi Monte Carlo model is
superior.

ı For all sufficiently large dimensions K 
 1 mod 4, D2
	.M

K/ < D2
ı0
.MK/ for

infinitely many natural numbers M , and D2
ı0
.MK/ < D2

	.M
K/ for infinitely

many natural numbersM . Hence neither model is superior.

We comment here that the last case is due to the unusual nature of lattices with
respect to balls in these dimensions. A closer look at the Bessel functions that arise
from the Fourier transforms of their characteristic functions will ultimately remove
any intrigue.
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4 The Classical Problem

The most studied example of small discrepancy concerns the classical problem of
the subject.

Let P be distribution of N points in the unit cube Œ0; 1/K , where the dimension
K � 2 is fixed. For every x D .x1; : : : ; xK/ 2 Œ0; 1�K , we consider the rectangular
box B.x/ D Œ0; x1/ � : : : � Œ0; xK/ anchored at the origin, with discrepancy

DŒPIB.x/� D ZŒPIB.x/� �Nx1 : : : xk:

We are interested in the extreme discrepancy

kDŒP�k1 D sup
x2Œ0;1�K

jDŒPIB.x/�j;

as well as average discrepancies

kDŒP�kW D
�Z

Œ0;1�K
jDŒPIB.x/�jW dx

� 1
W

;

whereW is a positive real number.
The extreme discrepancy gives rise to the most famous open problem in the

subject. First of all, an upper bound result of Halton [19] says that for every natural
numberN � 2, there exists a distribution P of N points in Œ0; 1�K such that

kDŒP�k1 �K .logN/K�1: (6)

Also, it is well known that for every K � 2, there exists a real number �.K/ > 0

such that for every distribution P of N points in Œ0; 1�K , we have the lower bound

kDŒP�k1 �K .logN/
K�1
2 C�.K/: (7)

In dimension K D 2, the inequality (7) holds with �.2/ D 1
2
, and this goes back

to the famous result of Schmidt [27]. The case K � 3 is the subject of very recent
groundbreaking work of Bilyk et al. [6]. However, the constant �.K/ is subject to
the restriction �.K/ 	 1

2
, so there remains a huge gap between the lower bound (7)

and the upper bound (6). This is known as the Great Open Problem. In particular,
there has been no real improvement on the upper bound (6) for over 50 years.

On the other hand, the average discrepancies kDŒP�kW are completely resolved
for every real numberW > 1 in all dimensionsK � 2. The amazing breakthrough
result is due to Roth [25] and says that for every distribution P of N points in
Œ0; 1�K , we have the lower bound

kDŒP�k2 �K .logN/
K�1
2 :
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The generalization to the stronger lower bound

kDŒP�kW �K;W .logN/
K�1
2

for all real numbers W > 1 is due to Schmidt [28], using an extension of Roth’s
technique. These lower bounds are complemented by the upper bound, established
using quasi Monte Carlo techniques, that for every real number W > 0 and every
natural number N � 2, there exists a distribution P of N points such that

kDŒP�kW �K;W .logN/
K�1
2 : (8)

The case W D 2 is due to Roth [26], the father of probabilistic techniques in the
study of discrepancy theory. The general case is due to Chen [7].

4.1 Two Dimensions

We shall discuss some of the ideas behind the upper bounds (6) and (8) by first
concentrating on the special case when the dimensionK D 2.

The van der Corput set Ph of 2h points must satisfy the following requirement:
Suppose that we partition Œ0; 1�2 in the natural way into 2h congruent rectangles of
size 2�h1 �2�h2 , where 0 	 h1; h2 	 h and h1Ch2 D h. Whatever choice of h1 and
h2 we make, any rectangle that arises from any such partition must contain precisely
one point of Ph. For instance, the van der Corput set P5 has 32 points, one in each
rectangle below.

The 2h points of Ph are best given in dyadic expansion. We have
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Ph D f.0:a1 : : : ah; 0:ah : : : a1/ W a1; : : : ; ah 2 f0; 1gg: (9)

Note that the digits of the second coordinates are in reverse order from the digits
of the first coordinates. For instance, the 32 points of P5 are shown in the picture
below on the left.

To describe the periodicity properties of the van der Corput set Ph, we again
look at P5. The picture above on the right shows that for those points with first
coordinates in the dyadic interval Œ4 � 2�3; 5 � 2�3/, the second coordinates have
period 2�2. Periodicity normally suggests the use of classical Fourier series.

Let us choose a real number x1 2 Œ0; 1/ and keep it fixed. For simplicity, let us
assume that x1 is an integer multiple of 2�h, so that x1 D 0:a1 : : : ah for some digits
a1; : : : ; ah 2 f0; 1g. Then

Œ0; x1/ D
h[
iD1
aiD1

Œ0:a1 : : : ai�1; 0:a1 : : : ai /:

Consider now a rectangle of the form B.x1; x2/ D Œ0; x1/ � Œ0; x2/. Then one can
show without too much difficulty that

DŒPhIB.x1; x2/� D
hX
iD1
aiD1

DŒPhI Œ0:a1 : : : ai�1; 0:a1 : : : ai / � Œ0; x2/�

D
hX
iD1
aiD1

�
˛i �  

�
x2 C ˇi

2i�h

��
; (10)

where  .z/ D z � Œz� � 1
2

is the sawtooth function and the numbers ˛i and ˇi are
constants. Note that the summand is periodic in the variable x2 with period 2i�h.

Since the summands are bounded, the inequality jDŒPhIB.x1; x2/�j � h

follows immediately, and we can go on to show that kDŒPh�k1 � h. This is



Upper Bounds in Discrepancy Theory 33

essentially inequality (6) in the case K D 2 and N D 2h. A little elaboration of the
argument will lead to the inequality (6) in the case K D 2 for all N � 2.

Next, let us investigate kDŒPh�k2. Squaring the expression (10) and expanding,
we see clearly that jDŒPhIB.x1; x2/�j2 contains a term of the form

hX
i;jD1

aiDajD1

˛i˛j :

This ultimately leads to the estimate

Z
Œ0;1�2

jDŒPhIB.x/�j2 dx D 2�6h2 CO.h/;

as first observed by Halton and Zaremba [20]. Thus the van der Corput point sets
Ph will not lead to the estimate (8) in the special case K D W D 2.

The periodicity in the x2-direction suggests a quasi Monte Carlo approach. In
Roth [26], we consider translating the set Ph in the x2-direction modulo 1 by a
quantity t to obtain the translated set Ph.t/. Now keep x2 as well as x1 fixed. Then
one can show without too much difficulty that

DŒPh.t/IB.x1; x2/� D
hX
iD1
aiD1

�
 

�
zi C t

2i�h

�
�  

�
wi C t

2i�h

��
; (11)

where the numbers zi and wi are constants. This is a sum of quasi-orthogonal
functions in the probabilistic variable t , and one can show that

Z 1

0

jDŒPh.t/IB.x1; x2/�j2 dt � h: (12)

Integrating trivially over x D .x1; x2/ 2 Œ0; 1�2, we finally conclude that there exists
t� 2 Œ0; 1� such that

Z
Œ0;1�2

jDŒPh.t
�/IB.x1; x2/�j2 dx � h:

We remark that an explicit value for t� can be found; see the recent paper of
Bilyk [5]. This represents an example of derandomization.

Note that the probabilistic technique eschews the effect of the constants ˛i in the
expression (10). This leads us to wonder whether we can superimpose another van
der Corput like point set on the set Ph in order to remove the constants ˛i . If this is
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possible, then it will give rise to a non-probabilistic approach and an explicit point
set. Consider the point set

P�
h D f.p1; 1 � p2/ W .p1; p2/ 2 Phg;

obtained from Ph by a reflection across the horizontal line x2 D 1
2
. Then one can

show without too much difficulty that

DŒP�
h IB.x1; x2/� D

hX
iD1
aiD1

�
�˛i �  

�
x2 C 
i

2i�h

��
;

where the numbers 
i are constants. Combining this with (11), we conclude that

DŒPh [ P�
h IB.x1; x2/� D �

hX
iD1
aiD1

�
 

�
x2 C ˇi

2i�h

�
C  

�
x2 C 
i

2i�h

��
:

This is a sum of quasi-orthogonal functions in the variable x2, and one can show
that for the set Ph [ P�

h of 2hC1 points in Œ0; 1�2,

Z
Œ0;1�

jDŒPh [ P�
h IB.x1; x2/�j2 dx2 � h:

This argument is an example of a reflection principle introduced by Davenport [15].
See also Chen and Skriganov [10].

To summarize, if (10) were a sum of quasi-orthogonal functions with respect to
the variable x2, then we would be able to derive the inequality

Z
Œ0;1�

jDŒPhIB.x1; x2/�j2 dx2 � h: (13)

However, there is no quasi-orthogonality.By introducing the probabilistic variable t ,
we are able to replace the expression (10) with the expression (11) which is a sum
of quasi-orthogonal functions in the probabilistic variable t , and this leads to the
inequality (12) which has the same strength as the inequality (13). In other words,
the probability leads to crucial quasi-orthogonality. On the other hand, some crucial
quasi-orthogonality can also be brought in by the Davenport reflection principle.

Remark 2. The Davenport reflection principle is only valid in dimension K D 2.
The absence of such a principle in higher dimensions contributes greatly to the
difficulty of finding explicit point sets that satisfy the inequality (8), a problem
eventually solved by Chen and Skriganov [11] for the case W D 2 and later by
Skriganov [30] for all positive real numbersW .
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4.2 Higher Dimensions

Many new ideas in the study of upper bounds only come in when we consider the
problem in higher dimensions.

Our first task is to generalize the van der Corput sets. To do this, we first rescale
the second coordinate of every point in the van der Corput set Ph given by (9) by a
factor 2h to obtain the set

Qh D f.0:a1 : : : ah; ah : : : a1/ W a1; : : : ; ah 2 f0; 1gg:

Clearly 0 	 ah : : : a1 < 2h, and so Qh � Œ0; 1/ � Œ0; 2h/. We next extend Qh to an
infinite set as follows. Every non-negative integer n can be written in the form

n D
1X
iD1

2i�1ai D : : : a3a2a1; ai 2 f0; 1g:

Writing the digits in reverse order and placing them behind the decimal point, we
then arrive at the expression

x2.n/ D
1X
iD1

2�iai D 0:a1a2a3 : : : :

We now consider the set

Q D f.x2.n/; n/ W n D 0; 1; 2; : : :g � Œ0; 1/ � Œ0;1/:

Clearly Qh � Q. It is not difficult to show that every rectangle of the form

Œ`2�s ; .`C 1/2�s/ � Œm2s; .mC 1/2s/

in Œ0; 1/ � Œ0;1/, where ` and m are integers, has unit area and contains precisely
one point of Q.

Next we consider van der Corput sets in higher dimensions. We follow the ideas
of Halton [19]. Let p be a prime number. Similar to our earlier considerations, every
non-negative integer n can be written in the form

n D
1X
iD1

pi�1ai D : : : a3a2a1; ai 2 f0; 1; : : : ; p � 1g:

Writing the digits in reverse order and placing them behind the decimal point, we
then arrive at the expression
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xp.n/ D
1X
iD1

p�i ai D 0:a1a2a3 : : : :

Now let p1; : : : ; pk be prime numbers, and consider the set

Q D f.xp1.n/; : : : ; xpk .n/; n/ W n D 0; 1; 2; : : :g � Œ0; 1/k � Œ0;1/:

It can then be shown, using the Chinese remainder theorem, that every rectangular
box of the form

Œ`1p
�s1
1 ; .`1 C 1/p

�s1
1 / � : : : � Œ`kp�sk

k ; .`k C 1/p
�sk
k /

�Œmps11 : : : pskk ; .mC 1/p
s1
1 : : : p

sk
k / (14)

in Œ0; 1/k�Œ0;1/, where `1; : : : ; `k andm are integers, has unit volume and contains
precisely one point of Q, provided that p1; : : : ; pk are distinct.

The inequality (8) for W D 2 can now be established by quasi Monte Carlo
techniques if we consider translations

Q.t/ D f.xp1.n/; : : : ; xpk .n/; nC t/ W n D 0; 1; 2; : : :g

of the set Q using a probabilistic parameter t . We omit the rather messy details.

Remark 3. Strictly speaking, before we consider the translation by t , we should
extend the set Q further to one in Œ0; 1/k � .�1;1/ in a suitable way.

4.3 Good Distributions

The important condition above is that the primesp1; : : : ; pk are distinct. We now ask
the more general question of whether there exist primes p1; : : : ; pk , not necessarily
distinct, and a point set Q � Œ0; 1/k � Œ0;1/ such that every rectangular box of
the form (14), of unit volume and where `1; : : : ; `k and m are integers, contains
precisely one point of Q. For any such instance, we shall say that Q is good with
respect to the primes p1; : : : ; pk .

Halton’s argument shows that good sets Q exist with respect to distinct primes
p1; : : : ; pk . A construction of Faure [18] shows that good sets Q exist with respect
to primes p1; : : : ; pk , provided that p1 D : : : D pk � k. No other good sets Q are
currently known.

The good sets constructed by Halton have good periodicity properties, and thus
permit a quasi Monte Carlo technique using a translation parameter t . However, the
good sets constructed by Faure do not have such periodicity properties, and so do
not permit a similar quasi Monte Carlo technique. The challenge now is to find a
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quasi Monte Carlo technique that works in both instances as well as for any other
good point sets that may arise. The answer lies in digit shifts introduced by Chen [8].

Let us first restrict ourselves to two dimensions, and consider a good set

Q D f.xp.n/; n/ W n D 0; 1; 2; : : :g � Œ0; 1/ � Œ0;1/I

note that here xp.n/ may not be obtained from n by the digit-reversing process we
have described earlier for Halton sets. The number of digits that we shift depends
on the natural number N � 2, the cardinality of the finite point set P we wish
to find. Normally, we choose a non-negative integer h determined uniquely by the
inequalities 2h�1 < N 	 2h, so that h � logN . Suppose that

xp.n/ D
1X
iD1

p�i ai D 0:a1a2a3 : : : :

For every b D .b1; : : : ; bh/, where b1; : : : ; bh 2 f0; 1; : : : ; p � 1g, let

xb
p.n/ D 0:a1a2a3 : : :˚ 0:b1 : : : bh000 : : : ;

where ˚ denotes digit-wise addition modulo p, and write

Qb D f.xb
p.n/; n/ W n D 0; 1; 2; : : :g:

Analogous to (12), we can show that

1

ph

X
b2f0;1;:::;p�1gh

jEŒQbIB.x; y/�j2 �p h:

In higher dimensions, we consider a good set

Q D f.xp1.n/; : : : ; xpk .n/; n/ W n D 0; 1; 2; : : :g � Œ0; 1/k � Œ0;1/;

and choose h as above. For every j D 1; : : : ; k and bj 2 f0; 1; : : : ; pj � 1gh, we

define x
bj
pj .n/ in terms of xpj .n/ as before for every n D 0; 1; 2; : : : ; and write

Qb1;:::;bk D f.xb1
p1
.n/; : : : ; xbk

pk
.n/; n/ W n D 0; 1; 2; : : :g:

We can then show that

1

.p1 : : : pk/h

X
jD1;:::;k

bj2f0;1;:::;pj�1gh

jEŒQb1;:::;bk IB.x1; : : : ; xk; y/�j2 �p1;:::;pk h
k:
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We emphasize that this quasi Monte Carlo approach is independent of choice of
p1; : : : ; pk , so long as Q is good with respect to the primes p1; : : : ; pk .

5 Fourier–Walsh Analysis

Much greater insight on the role of probability theory has been gained recently
through the study of the classical problem via Fourier–Walsh analysis.

The van der Corput set (9) of 2h points, together with coordinate-wise and digit-
wise addition modulo 2, forms a group which is isomorphic to Zh2 . The characters
of these groups are the classical Walsh functions with values ˙1. To study the
discrepancy of these sets, it is therefore natural to appeal to Fourier–Walsh analysis,
in particular Fourier–Walsh series.

The more general van der Corput set

Ph D f.0:a1 : : : ah; 0:ah : : : a1/ W 0 	 a1; : : : ; ak < pg

of ph points, together with coordinate-wise and digit-wise addition modulop, forms
a group which is isomorphic to Zhp . The characters of these groups are the base p
Walsh functions, or Chrestenson–Levy functions, with values p -th roots of unity.
To study the discrepancy of these sets, it is therefore natural to appeal to base p
Fourier–Walsh analysis, in particular base p Fourier–Walsh series.

Suppose that a point set P possesses the structure of vector spaces over Zp . The
work of Skriganov [29] shows that P is a good point distribution with respect to the
norm kDŒP�k1 provided that the corresponding vector spaces have large weights
relative to a special metric. Furthermore, the work of Chen and Skriganov [11]
shows that P is a good point distribution with respect to the norm kDŒP�k2
provided that the corresponding vector spaces have large weights simultaneously
relative to two special metrics, a Hamming metric and a non-Hamming metric
arising from coding theory. Indeed, these large weights are guaranteed by taking
p � 2K2 if we consider the classical problem in Œ0; 1�K . This is sufficient for
dispensing with the quasi Monte Carlo approach.

Suppose now that a distribution P possesses the structure of vector spaces
over Zp , and suppose that P contains N D ph points. Then it can be shown that a
good approximation of the discrepancy functionDŒPIB.x/� is given by

F ŒPIB.x/� D N
X
l2L

�l.x/;

where L is a finite set depending on P and �l.x/ is a product of certain coefficients
of the Fourier–Walsh series of the characteristic functions �Œ0;xi / of the intervals
forming the rectangular box B.x/.

If p � 2K2, then the functions �l.x/ are orthogonal, and so
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Z
Œ0;1�K

jF ŒPIB.x/�j2 dx D N2
X
l2L

Z
Œ0;1�K

j�l.x/j2 dx:

On ther other hand, if p < 2K2, so that we do not know whether the functions �l.x/
are orthogonal, then we consider a suitable group T of digit shifts t, so that

F ŒP ˚ tIB.x/� D N
X
l2L

Wl.t/�l.x/;

where Wl.t/ are K-dimensional base p Walsh functions. This quasi Monte Carlo
argument then leads to

X
t2T

jF ŒP ˚ tIB.x/�j2 D N2
X

l0;l002L

 X
t2T

Wl0.t/Wl00.t/

!
�l0.x/�l00.x/:

Using the orthogonality property

X
t2T

Wl0.t/Wl00.t/ D
�

#T ; if l0 D l00,
0; otherwise,

we conclude immediately that

1

#T

X
t2T

jF ŒP ˚ tIB.x/�j2 D N2
X
l2L

j�l.x/j2:

Integrating with respect to x trivially over Œ0; 1�K , we conclude that

1

#T

X
t2T

Z
Œ0;1�K

jF ŒP ˚ tIB.x/�j2 dx D N2
X
l2L

Z
Œ0;1�K

j�l.x/j2 dx:

Hence the quasi Monte Carlo methods gives rise to orthogonality via the back door.
For more details, see Chen and Skriganov [11, 12].

6 Further Reading

The oldest monograph on discrepancy theory is due to Beck and Chen [4], and
covers the subject from its infancy up to the mid-1980s, with fairly detailed proofs,
but is naturally very out of date. A more recent attempt is the beautifully written
monograph of Matoušek [22].

The comprehensive volume by Drmota and Tichy [17] contains many results
and a very long list of precisely 2,000 references, whereas the recent volume by
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Dick and Pillichshammer [16] concentrates on quasi Monte Carlo methods in both
discrepancy theory and numerical integration.

The survey by Alexander et al. [1] covers the majority of the main results in
discrepancy theory up to the turn of the century, and provides references for the
major developments. Shorter surveys, on selected aspects of the subject, are given
by Chen [9] and by Chen and Travaglini [14].
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Entropy, Randomization, Derandomization,
and Discrepancy

Michael Gnewuch

Abstract The star discrepancy is a measure of how uniformly distributed a finite
point set is in the d -dimensional unit cube. It is related to high-dimensional
numerical integration of certain function classes as expressed by the Koksma-
Hlawka inequality. A sharp version of this inequality states that the worst-case error
of approximating the integral of functions from the unit ball of some Sobolev space
by an equal-weight cubature is exactly the star discrepancy of the set of sample
points. In many applications, as, e.g., in physics, quantum chemistry or finance,
it is essential to approximate high-dimensional integrals. Thus with regard to the
Koksma-Hlawka inequality the following three questions are very important:

1. What are good bounds with explicitly given dependence on the dimension d for
the smallest possible discrepancy of any n-point set for moderate n?

2. How can we construct point sets efficiently that satisfy such bounds?
3. How can we calculate the discrepancy of given point sets efficiently?

We want to discuss these questions and survey and explain some approaches to
tackle them relying on metric entropy, randomization, and derandomization.

1 Introduction

Geometric discrepancy theory studies the uniformity of distribution of finite point
sets. There are many different notions of discrepancies to measure quantitatively
different aspects of “uniformity”, see, e.g., [5, 16, 25, 58, 62, 68].
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1.1 The Star Discrepancy

A particularly relevant measure is the star discrepancy, which is defined in the
following way: Let P � Œ0; 1�d be an n-point set. (We always want to understand
an “n-point set” as a “multi-set”: It consists of n points, but these points are not
necessarily pairwise different.) For x D .x1; : : : ; xd / 2 Œ0; 1�d the local discrepancy
�.x; P / of P in the axis-parallel box anchored at zero Œ0; x/ WD Œ0; x1/�� � ��Œ0; xd /

(which we, likewise, simply want to call test box) is given by

�.x; P / WD �d .Œ0; x// � 1

n
jP \ Œ0; x/jI

here �d denotes the d -dimensional Lebesgue measure and jAj denotes the cardinal-
ity of a multi-set A. The star discrepancy of P is defined as

d �1.P / WD sup
x2Œ0;1�d

j�.x; P /j:

Further quantities of interest are the smallest possible star discrepancy of any
n-point set in Œ0; 1�d

d �1.n; d/ D inf
P �Œ0;1�d I jP jDn

d �1.P /;

and, for " 2 .0; 1/, the inverse of the star discrepancy

n�1."; d / D minfn 2 N j d �1.n; d/ � "g:

Although we mainly focus on the star discrepancy, we will also mention from time
to time the Lp-star discrepancy of P for 1 � p <1, which is defined by

d �
p .P / WD

�Z
Œ0;1�d
j�.x; P /jp dx

�1=p

:

1.2 Relation to Numerical Integration

Discrepancy notions are related to multivariate numerical integration. Such relations
are put in a quantitative form by inequalities of Koksma-Hlawka- or Zaremba-type.
Here we want to state a sharp version of the classical Koksma-Hlawka inequality
[51, 56], which relates the star discrepancy to the worst-case error of quasi-Monte
Carlo integration on certain function spaces. For other relations of discrepancy
notions to numerical integration we refer the reader to the original papers [15,33,46–
48, 67, 82, 93, 94] or the survey in [68, Chap. 9].
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To state a sharp version of the Koksma-Hlawka inequality, let us first define the
normed function spaces we want to consider:

Let H 1;1 be the space of absolutely continuous functions f on Œ0; 1� whose
derivatives f 0 are integrable. A norm on H 1;1 is given by kf k1;1 WD jf .1/j C
kf 0kL1.Œ0;1�/. The (algebraic) tensor product ˝d

iD1H
1;1 consists of linear combina-

tions of functions f of product form f .x/ D f1.x1/ � � �fd .xd /, f1; : : : ; fd 2 H 1;1.
The space H 1;d is then defined as the closure of˝d

iD1H
1;1 with respect to the norm

kf k1;d WD jf .1/j C
X

;¤u�f1;:::;dg
kf 0

u kL1.Œ0;1�juj/; (1)

where 1 denotes the vector .1; : : : ; 1/ and f 0
u is defined by

f 0
u .xu/ D @jujQ

k2u @xk

f .xu; 1/; (2)

with .xu; 1/kDxk if k 2 u, and .xu; 1/kD 1 otherwise. Then the following theorem
holds:

Theorem 1. Let t .1/; : : : ; t .n/ 2 Œ0; 1/d , and let Id be the integration functional and
Qd;n be the quasi-Monte Carlo cubature defined by

Id .f / WD
Z

Œ0;1�d
f .t/ dt and Qd;n.f / WD 1

n

nX
iD1

f .t .i//:

Then the worst-case error ewor.Qn;d / of Qn;d satisfies

ewor.Qn;d / WD sup
f 2H 1;d I kf k1;d D1

jId .f /�Qd;n.f /j D d �1.t .1/; : : : ; t .n//: (3)

In particular, we obtain for all f 2 H 1;d

jId .f / �Qd;n.f /j � kf k1;d d �1.t .1/; : : : ; t .n//: (4)

Theorem 1 is a corollary of a more general theorem proved by Hickernell et al.
in [47]. There the so-called L1-same-quadrant discrepancy, which covers the star
discrepancy as a special case, is related to the worst-case error of quasi-Monte
Carlo approximation of multivariate integrals on anchored L1-Sobolev spaces. In
the special case of the star discrepancy the anchor is the point 1.

Particularly with regard to Theorem 1 the following three questions are very
important.
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Questions:

(i) What are good bounds with explicitly given dependence on the dimension d

for the smallest possible discrepancy of any n-point set for moderate n?
(ii) How can we construct point sets efficiently that satisfy such bounds?

(iii) How can we calculate the discrepancy of given point sets efficiently?

Let us discuss the relevance of these questions for the star discrepancy. If we
intend to approximate high-dimensional integrals of functions from H 1;d by a quasi-
Monte Carlo cubature Qn;d , and if we wish to minimize the corresponding worst-
case error ewor.Qn;d /, then Theorem 1 tells us that we have to minimize the star
discrepancy of the set of integration points we want to use. For this purpose it is
certainly helpful to have upper bounds for the smallest star discrepancy that we can
achieve with n points. In high dimensions cubatures whose number of integration
points n are exponential in the dimension are not feasible. That is why we ask in
question (i) for good bounds for the smallest possible discrepancy of sample sets
of moderate size n. By “moderate” we mean that n does not grow faster than a
polynomial of small degree in the dimension d .

Bounds for the smallest discrepancy achievable are certainly useful, but for
quasi-Monte Carlo integration we need to have explicit integration points. Therefore
question (ii) is essential.

In practice we may have some point sets that are reasonable candidates to use for
quasi-Monte Carlo integration. This may be due to several reasons as, e.g., that in
those points we can easily evaluate the functions we want to integrate or that those
points are in some sense uniformly distributed. Therefore it would be desirable to
be able to calculate the star discrepancy of a given set efficiently.

In fact question (iii) is directly related to question (ii) by the concentration of
measure phenomenon:

Let us assume that we have a class of n-point sets endowed with some probability
measure and the expected discrepancy of a random set is small enough for our needs.
Under suitable conditions the measure of the discrepancy distribution is sharply
concentrated around the expected discrepancy and a large deviation bound ensures
that a randomly chosen set has a sufficiently small discrepancy with high probability.
In this situation we may consider the following randomized algorithm, which is a
semi-construction in the sense of Novak and Woźniakowski [66]:

We choose a point set randomly and calculate its actual discrepancy. If it serves
our needs, we accept the point set and stop; otherwise we make a new random
choice. The large deviation bound guarantees that with high probability we only
have to perform a few random trials to receive an acceptable point set.

Apart from the practical problem of choosing the point set according to the
law induced by the probability measure, we have to think of ways to calculate the
discrepancy of a chosen set efficiently.

In this bookchapter our main goal is to study the bracketing entropy of axis-
parallel boxes anchored at zero and use the results, in particular upper bounds for
the bracketing number and explicit constructions of bracketing covers of small size,
to tackle question (i), (ii), and (iii).
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Before we do so, we want to survey known bounds for the smallest possible
star discrepancy, the problem of constructing small low-discrepancy samples,
and known algorithms to calculate or approximate the star discrepancy of given
point sets.

1.3 Known Bounds for the Star Discrepancy

We may distinguish two kinds of bounds for the smallest possible star discrepancy
d �1.n; d/: Asymptotic bounds which describe the behavior of d �1.n; d/ well in
the asymptotic range, i.e., for fixed dimension d and a large number of points n

(which usually has to be exponential in d , see the discussion in Sect. 1.3.1), and
pre-asymptotic bounds which describe its behavior well in the pre-asymptotic range,
i.e., for moderate values of n (which depend at most polynomially on d ).

Usually asymptotic bounds do not reveal the explicit dependence of d �1.n; d/

on d , while pre-asymptotic bounds exhibit the dependence of d �1.n; d/ on both
parameters n and d . (Thus an alternative terminology might be “dimension-
insensitive bounds” and “dimension-sensitive bounds”.)

1.3.1 Asymptotic Bounds

For fixed dimension d the asymptotically best upper bounds for d �1.n; d/ that have
been proved so far are of the form

d �1.n; d/ � Cd ln.n/d�1n�1 ; n � 2 ; (5)

see, e.g., the original papers [28,40,65] or the monographs [5,16,25,58,62]. These
bounds have been proved constructively, i.e., there are explicit constructions known
that satisfy (5) for suitable constants Cd .

For d D 1 the set T Df1=2n; 3=2n; : : : ; .2n � 1/=2ng establishes (5) with
C1 D 1=2. For d D 2 the bound (5) can be derived from the results of Hardy and
Littlewood [41] and of Ostrowski [72, 73] (the essential ideas can already be found
in Lerch’s paper [57]). For d � 3 the bound (5) was established by Halton, who
showed in [40] that the Hammersley points exhibit this asymptotic behavior. The
Hammersley points can be seen as a generalization of the two-dimensional point
sets obtained in a canonical way from the one-dimensional infinite sequence of van
der Corput from [11, 12]. (In general, if one has an infinite .d � 1/-dimensional
low-discrepancy sequence .t .k//k2N, one canonically gets a d -dimensional low-
discrepancy point set fp.1/; : : : ; p.n/g for every n by putting p.k/ D ..k�1/=n; t .k//,
see also [58, Sect. 1.1, 2.1].)

Looking at the asymptotic bound (5) it is natural to ask whether it is sharp or
not. That it is optimal up to logarithmic factors is clear from the trivial lower bound
1=2n. A better lower bound was shown by Roth in [76]:
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d �1.n; d/ � cd ln.n/
d�1

2 n�1 ; n � 2 : (6)

In fact, Roth proved that the right hand side of (6) is a lower bound for the smallest
possible L2-star discrepancy d �

2 .n; d/, and this bound is best possible as was shown
for d D 2 by Davenport [13], and for d � 3 by Roth himself [77, 78] and
independently by Frolov [30]. Although Roth’s lower bound is sharp for the L2-
star discrepancy, it is not optimal for the L1-star discrepancy. This was shown by
Schmidt in [79]. He established in dimension d D 2 the lower bound

d �1.n; 2/ � c2 ln.n/n�1 ; n � 2 ; (7)

and proved in this way that the upper bound (5) is optimal in dimension 2. In
dimension d � 3 improvements of (6) were achieved by Beck [4], and later by
Bilyk et al. [6, 7]; but although those improvements are deep mathematical results,
their quantitative gain is rather modest. The remaining gap, baptized the “great open
problem” by Beck and Chen in [5], has still not been bridged so far.

Nonetheless, the solution of this intricate problem is not overly significant for
numerical integration in high dimensions. In particular, bounds of the form (5)
give us no helpful information for moderate values of n, since ln.n/d�1n�1 is an
increasing function in n as long as n � ed�1. This means that with respect to d

we have to use at least exponentially many integration points to perceive any rate
of decay of the right hand side of inequality (5). Additionally it is instructive to
compare the convergence rate n�1 ln.n/d�1 and the Monte Carlo convergence rate
n�1=2: For example, in dimension d D 3 we have n�1 ln.n/d�1 < n�1=2 if n � 5504,
but for d D 10 we already have n�1 ln.n/d�1 > n�1=2 for all n � 1:295 � 1034.
Furthermore, point configurations satisfying (5) may lead to constants Cd that
depend critically on d . (Actually, it is known for some constructions that the
constant C 0

d in the representation

d �1.n; d/ � �C 0
d ln.n/d�1 C od .ln.n/d�1/

�
n�1

of (5) tends to zero as d approaches infinity, see, e.g., [2,62,65]. Here the o-notation
with index d should emphasize that the implicit constant may depend on d ; so far
no good bounds for the implicit constant or, respectively, the constant Cd in (5),
have been published.)

1.3.2 Pre-Asymptotic Bounds

A bound more suitable for high-dimensional integration was established by Heinrich
et al. [45], who proved

d �1.n; d/ � cd1=2n�1=2 and n�1.d; "/ � dc2d"�2e ; (8)
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where c does not depend on d , n or ". Here the dependence of the inverse of the star
discrepancy on d is optimal. This was also established in [45] by a lower bound for
n�1.d; "/, which was later improved by Hinrichs [49] to

n�1.d; "/ � c0d"�1 for 0 < " < "0, (9)

where c0; "0 > 0 are suitable constants. The proof of (8) uses a large deviation
bound of Talagrand for empirical processes [86] and an upper bound of Haussler
for covering numbers of Vapnik-Červonenkis classes [42]. In particular, the proof
is not constructive but probabilistic, and the proof approach does not provide an
estimate for the value of c. (Hinrichs presented a more direct approach to prove
(8) with c � 10 at the Dagstuhl Seminar 04401 “Algorithms and Complexity for
Continuous Problems” in 2004, but this result has not been published. Shortly after
the submission of this book chapter Aistleitner gave a proof of (8) with c � 10 [1].
Since it relies on bracketing entropy and the bracketing covers we present in Sect. 2,
we added a discussion of his approach in Sect. 3.2.1.)

In the paper [45] the authors proved also two slightly weaker bounds with
explicitly known constants: The first one relies on upper bounds for the average
Lp-star discrepancy for even p, the fact that the Lp-star discrepancy converges
to the star discrepancy as p tends to infinity, and combinatorial arguments. For a
detailed description of the approach, improvements, and closely related results we
refer to [34, 45, 85].

Here we are more interested in the second bound from [45] with explicitly known
small constants, which is of the form

d �1.n; d/ � kd1=2n�1=2
�

ln.d/C ln.n/
�1=2

; (10)

and leads to
n�1.d; "/ � O.d"�2.ln.d/C ln."�1/// (11)

where essentially k� 2
p

2 and the implicit constant in the big-O-notation is known
and independent of d and ". The proof of (10) is probabilistic and relies on
Hoeffding’s large deviation bound. (A similar probabilistic approach was already
used by Beck in [3] to prove upper bounds for other discrepancies.) From a
conceptional point of view it uses bracketing covers (although in [45] the authors
do not call them that way). As we will see later in Sect. 3.3, the probabilistic proof
approach can actually be derandomized to construct point sets deterministically that
satisfy the discrepancy bound (10).

1.4 Construction of Small Discrepancy Samples

On the one hand there are several construction methods known that provide
point sets satisfying (5), and these constructions can be done quite efficiently.
So one can construct, e.g., Hammersley points of size n in dimension d with at
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most O.dn ln.n// elementary operations. On the other hand it seems to be hard
to construct point sets efficiently that satisfy bounds like (8) or (10), although
random sets should do this with high probability. That it is not trivial to find such
constructions was underlined by Heinrich, who pointed out in [44] that even the
following easier problems are unsolved.

Problems:

(i) For each " > 0 and d 2 N, give a construction of a point set ft .1/; : : : ; t .n/g �
Œ0; 1�d with n � c"d

�" and d �1.t .1/; : : : ; t .n// � ", where c" and �" are positive
constants which may depend on ", but not on d .

(ii) For each n; d 2 N, give a construction of a point set ft .1/; : : : ; t .n/g � Œ0; 1�d

with d �1.t .1/; : : : ; t .n// � cd �n�˛ , where c; � and ˛ are positive constants not
depending on n or d .

Although not stated explicitly in [44], these constructions are required to be
efficiently executable, preferably in polynomial time in d , and "�1 or n, respectively,
see also [66, Open Problem 6]. If our ultimate goal is numerical integration, we
may view the construction of low-discrepancy points as a precomputation. Since
we can use the resulting integration points for the (efficient) evaluation of various
integrands, we may still accept a little bit higher costs for the construction itself.

As stressed by Heinrich, it remains in particular a challenging question whether
any of the various known classical constructions satisfies estimates like in problem
(i) and (ii) or even the bound (8) or (10).

There had been attempts from computer scientists to construct small low-
discrepancy samples [9, 27], but the size of those samples with guaranteed discrep-
ancy at most " in dimension d is not polynomial in d and "�1. The size of the
best construction is polynomial in "�1 and .d= ln."�1//ln."�1/ [9]. Formally, those
constructions solve problem (i) (but not problem (ii)). Obviously, the size of the
samples is a lower bound for the costs of the construction, which are therefore not
polynomial in d and "�1.

We will discuss alternative constructions, based on bracketing covers and
derandomization in Sect. 3.3.

1.5 Calculating the Star Discrepancy

In some applications it is of interest to measure the quality of certain point sets by
calculating their star discrepancy, e.g., to test whether successive pseudo random
numbers are statistically independent [62], or whether sample sets are suitable for
multivariate numerical integration of particular classes of integrands, cf. Theorem 1.
Apart from that, it is particularly interesting with respect to question (ii) that the fast
calculation or approximation of the star discrepancy would allow practicable semi-
constructions of low-discrepancy samples of moderate size.
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It is known that the L2-star discrepancy of a given n-point set in dimension d can
be calculated via Warnock’s formula [91] with O.dn2/ arithmetic operations and
similar formulas hold for weighted versions of the L2-star discrepancy. Heinrich
and Frank developed an asymptotically faster algorithm for the L2-star discrepancy
using only O.n log.n/d�1/ operations for fixed d [29, 43]. (Due to the exponent of
the log-term, the algorithm is only practicable in low dimensions.)

What methods are known to calculate or approximate the star discrepancy of a
given set P ? At the first glance an exact calculation seems to be difficult since the
star discrepancy is defined as the supremum over infinitely many test boxes. But for
calculating the discrepancy of P exactly it suffices to consider only finitely many
test boxes. So if P D fp.1/; : : : ; p.n/g � Œ0; 1/d , let us define

�j .P / D fp.i/
j j i 2 f1; :::; ngg and N�j .P / D �j .P / [ f1g;

and let us put

� .P / D �1.P / � � � � � �d .P / and N� .P / D N�1.P / � � � � � N�d .P /:

Then it is not hard to verify that

d �1.P / D max

�
max

y2 N� .P /

�
�d .Œ0; y// � jP \ Œ0; y/j

n

�
;

max
y2� .P /

� jP \ Œ0; y�j
n

� �d .Œ0; y//

��
; (12)

for a proof see, e.g., [38]. Thus we need to consider at most O.nd / test boxes to
compute d �1.P /. For a random n-point set P we have almost surely j� .P /j D nd ,
resulting in ˝.nd / test boxes that we have to take into account to calculate (12).
This underlines that (12) is in general impractical if n and d are large. There are
some more sophisticated methods known to calculate the star discrepancy, which
are especially helpful in low dimensions. If we have in the one-dimensional case
p.1/ � p.2/ � � � � � p.n/, then (12) simplifies to

d �1.P / D 1

2n
C max

1�i�n

ˇ̌̌
ˇp.i/ � 2i � 1

2n

ˇ̌̌
ˇ ;

a result due to Niederreiter, see [60, 61].
In dimension d D 2 a reduction of the number of steps to calculate (12) was

achieved by de Clerck [10]. In [8] her formula was slightly extended and simplified
by Bundschuh and Zhu. If we assume p

.1/
1 � p

.2/
1 � � � � � p

.n/
1 and rearrange for

each i 2 f1; : : : ; ng the numbers 0; p
.1/
2 ; : : : ; p

.i/
2 ; 1 in increasing order and rewrite

them as 0 D �i;0 � �i;1 � � � � � �i;i � �i;iC1 D 1, then [8, Theorem 1] states that
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d �1.P / D max
0�i�n

max
0�k�i

max

� ˇ̌ˇ̌k
n
� p

.i/
1 �i;k

ˇ̌
ˇ̌ ;
ˇ̌
ˇ̌k
n
� p

.iC1/
1 �i;kC1

ˇ̌
ˇ̌� :

Bundschuh and Zhu provided also a corresponding formula for the three-
dimensional case. The method can be generalized to arbitrary dimension d and
requires roughly O.nd =d Š/ elementary operations. This method was, e.g., used in
[92] to calculate the exact discrepancy of particular point sets, so-called (shifted)
rank-1 lattice rules (cf. [81]), up to size n D 236 in dimension d D 5 and to n D 92

in dimension d D 6. But as pointed out by Winker and Fang in [92], for this method
instances like, e.g., sets of size n � 2; 000 in d D 6 are completely infeasible.

Another method to calculate the star discrepancy in time O.n1Cd=2/ was
proposed by Dobkin et al. in [17]. It uses sophisticated, but complicated data
structures, and the authors implemented only asymptotically slightly slower variants
of the algorithm in dimension d D 2.

The discussion shows that all known methods that calculate the star discrepancy
exactly depend exponentially on the dimension d and are infeasible for large values
of n and d .

Indeed, the problem of calculating the star discrepancy is NP -hard, as was
proved in [38]. We will briefly outline the main proof ideas below in this section.
In [32] Giannopoulos et al. proved a result on the parametrized complexity of the
problem of calculating the star discrepancy, namely they showed that it is W Œ1�-
hard with respect to the parameter d . It follows from [32] that the general problem
cannot be solved in time O.no.d// unless the exponential time hypothesis is false,
which is widely regarded as extremely unlikely.

Notice that the complexity results above are about the exact calculation of the
discrepancy of arbitrary point sets; they do not directly address the complexity of
approximating the discrepancy. So what is known about approximation algorithms?

Since in high dimension no efficient algorithm for the exact calculation of the
star discrepancy is known, some authors tried to tackle the large scale enumeration
problem (12) by using optimization heuristics. In [92] Winker and Fang used
threshold accepting [26], a refined randomized local search algorithm based on a
similar idea as the well-known simulated annealing algorithm [55], to find lower
bounds for the star discrepancy. The algorithm performed well in numerical tests on
(shifted) rank-1 lattice rules.

In [89] Thiémard gave an integer linear programming formulation for the
problem and used techniques as cutting plane generation and branch and bound
to tackle it. With the resulting algorithm Thiémard performed non-trivial star
discrepancy comparisons between low-discrepancy sequences.

The key observation to approach the non-linear expression (12) via linear pro-
gramming is that one can reduce it to at most 2n sub-problems of the type “optimal
volume subintervals with k points”. These sub-problems are the problems of finding
the largest boxes Œ0; y/, y 2 N� .P /, containing k points, k 2 f0; 1; : : : ; n � 1g,
and the smallest boxes Œ0; y�, y 2 � .P /, containing ` points for ` 2 f1; : : : ; ng.
Thiémard conjectured these sub-problems to be NP-hard.
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The conjecture of Thiémard is proved rigorously in [38] by establishing the
NP-hardness of the optimal volume subinterval problems. Recall that NP-hardness
of an optimization problem U is proved by verifying that deciding the so-
called threshold language of U is an NP-hard decision problem (see, e.g., [53,
Sect. 2.3.3]). Thus actually the NP-completeness of decision problems correspond-
ing to the optimization problems mentioned above is verified. The verification is
done by reduction of the problem DOMINATING SET to the maximal volume sub-
interval problems and of BALANCED SUBGRAPH to the minimal volume subinterval
problems, respectively; the graph theoretical decision problems DOMINATING SET

and BALANCED SUBGRAPH are known to be NP-hard, see [31,54]. With the help of
these NP -hardness results for the optimal volume subinterval problems it is shown
that the problem of calculating the star discrepancy itself is NP-hard. (Furthermore,
some minor errors occurring in [89] are listed in [38]. Since those errors may lead
to incorrect solutions of Thiémard’s algorithm for certain instances, it is explained
how to avoid their undesired consequences.)

A genetic algorithm to approximate the star discrepancy was recently proposed
by Shah [80].

In the recent paper [39] a new randomized algorithm to approximate the star
discrepancy based on threshold accepting was presented. Comprehensive numerical
tests indicate that it improves on the algorithms from [80,89,92], especially in higher
dimension 20 � d � 50.

All the approximation algorithms we have mentioned so far have shown their
usefulness in practice, but unfortunately none of them provides an approximation
guarantee.

An approach that approximates the star discrepancy of a given set P up to a user-
specified error ı was presented by Thiémard [87, 88]. It is in principle based on the
generation of small bracketing covers (which were not named this way in [87, 88]).

2 Bracketing Entropy

In this section we want to study the bracketing entropy of axis-parallel boxes
anchored at zero. We start by introducing the necessary notion.

2.1 Basic Definitions

Definition 1. Let x; y 2 Œ0; 1�d with xi � yi for i D 1; : : : ; d . We assign a weight
W.Œx; y�/ to the closed box Œx; y� WD Œx1; y1� � � � � � Œxd ; yd � by

W.Œx; y�/ D �d .Œ0; y�/ � �d .Œ0; x�/:
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Let ı > 0. The box Œx; y� is a ı-bracket if W.Œx; y�/ � ı. A set B of ı-brackets
whose union covers Œ0; 1�d is a ı-bracketing cover of Œ0; 1�d . The bracketing number
NŒ �.d; ı/ denotes the smallest cardinality of any ı-bracketing cover of Œ0; 1�d . Its
logarithm ln.NŒ �.d; ı// is the bracketing entropy (or entropy with bracketing).

The notion of bracketing entropy is well established in empirical process theory,
see, e.g., [86,90]. In some places it will be more convenient for us to use the related
notion of ı-covers from [21] instead of the notion of bracketing covers.

Definition 2. Let ı > 0. A finite set � is a ı-cover of Œ0; 1�d if for all y 2 Œ0; 1�d

there exist x; z 2 � [ f0g such that Œx; z� is a ı-bracket and y 2 Œx; z�. Let N.d; ı/

denote the smallest cardinality of any ı-cover of Œ0; 1�d .

If, on the one hand, we have a ı-bracketing cover B, then it is easy to see that

�B WD fx 2 Œ0; 1�d n f0g j 9y 2 Œ0; 1�d W Œx; y� 2 B or Œy; x� 2 Bg (13)

is a ı-cover. If, on the other hand, � is a ı-cover, then

B� WD fŒx; y� j x; y 2 � [ f0g ; Œx; y� is a ı-bracket ; x ¤ yg

is a ı-bracketing cover. Therefore we have

N.d; ı/C 1 � 2NŒ �.d; ı/ � .N.d; ı/C 1/N.d; ı/: (14)

(The second inequality is obviously a weak one, and it would be nice to have a
tighter bound.) The bracketing number and the quantity N.d; ı/ are related to the
covering and the L1-packing number, see, e.g., [21, Remark 2.10].

2.2 Construction of Bracketing Covers

How large is the bracketing entropy and how does a small ı-bracketing cover look
like? To get some idea, we have a look at some examples of ı-bracketing covers.

2.2.1 Cells of an Equidistant Grid

To prove (10), Heinrich et al. used in [45] a ı-cover in form of an equidistant grid
Eı D f0; 1=m; 2=m; : : : ; 1gd with m D dd=ıe. The grid cells, i.e., all closed boxes
of the form Œx; xC�, where xi 2 f0; 1=m; : : : ; 1 � 1=mg and xC

i D xi C 1=m for
i 2 f1; : : : ; d g, form a ı-bracketing cover Eı. Indeed, the grid cell with the largest
weight is Œ.1 � 1=m/1; 1� with

W.Œ.1 � 1=m/1; 1�/ D 1 � .1 � 1=m/d � d=m � ı:
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y6 y5 y4 y3 y2 y1 y0

z6 z5 z4 z3 z2 z1 z0

γ1

γ0

γ6 γ5 γ4 γ3 γ2 γ1 γ00

Fig. 1 Construction of the
non-equidistant grid �ı for
d D 2 and ı D 0:2. Here,
�.ı; d/ D 6.

The cardinality of the ı-bracketing cover Eı is clearly

jEıj D md � .dı�1 C 1/d : (15)

Although the weight of the grid cell Œ.1� 1=m/1; 1� is nearly ı, the weights of most
of the other grid cells are reasonably smaller than ı. For example, the weight of the
cell Œ0; .1=m/1� is .1=m/d � .ı=d/d , which is for d � 2 much smaller than ı.

2.2.2 Cells of a Non-equidistant Grid

We generate a smaller ı-bracketing cover by using a non-equidistant grid �ı of the
form

�ı D f�0; :::; ��.ı;d/gd ; (16)

where �0; �1; :::; ��.ı;d/ is a decreasing sequence in .0; 1�. We calculate this sequence
recursively in the following way (cf. Fig. 1):

We set �0 WD 1 and choose �1 2 .0; 1/ such that y.0/ WD �11 and z.0/ WD 1 satisfy
W.Œy.0/; z.0/�/ D ı. Obviously, �1 D .1 � ı/1=d . Let �i be calculated. If �i > ı, we
compute the real number �iC1 2 .0; �i / that ensures that y.i/ WD .�iC1; �1; :::; �1/

and z.i/ WD .�i ; 1; :::; 1/ satisfy W.Œy.i/; z.i/�/ D ı. If �i � ı, then we put
�.ı; d/ WD i and stop. From the geometrical setting it is easy to see that �0, �1, ... is
a decreasing sequence with �i � �iC1 � �iC1 � �iC2. Therefore �.ı; d/ is finite.

The following result was proved in [21, Theorem 2.3].

Theorem 2. Let d � 2, and let 0 < ı < 1. Let �ı D f�0; �1; : : : ; ��.ı;d/gd be as in
(16). Then �ı is a ı-cover of Œ0; 1�d , and consequently

N.d; ı/ � j�ıj � .�.ı; d /C 1/d ; (17)



56 M. Gnewuch

where

�.ı; d/ D
l d

d � 1

ln.1 � .1 � ı/1=d /� ln.ı/

ln.1 � ı/

m
: (18)

The inequality �.ı; d/ � ˙ d
d�1

ln.d/

ı

�
holds, and the quotient of the left and the right

hand side of this inequality converges to 1 as ı approaches 0.

From the ı-cover �ı we obtain a ı-bracketing cover Gı by taking the grid cells
of the form Œy; yC�, where yi D �j for some j D j.i/ 2 f1; : : : ; �.ı; d /g and yC

i D
�j �1 for all i 2 f1; : : : ; d g, and the d brackets of the form Œ0; z� with z having d � 1

coordinates equal to 1 and one coordinate equal to ��.ı;d/. Thus

jGıj D �.ı; d/d C d D
�

d

d C 1

�d

ln.d/d ı�d COd

�
ı�dC1

� I (19)

the last identity follows from

�.ı; d/ D d

d � 1
ln.d/ı�1 COd .1/ as ı approaches 0,

see [36, Sect. 2]. Note that . d
d�1

/d is bounded above by 4 and converges to e as d

tends to infinity.

2.2.3 A Layer Construction

By construction the brackets Œy.i/; z.i/�, i D 0; 1; : : : ; �.ı; d /� 1, satisfy
W.Œy.i/; z.i/�/D ı, but it can be shown that the weights of the brackets Œv; w� in
Gı, with wi < 1 for more than one index i 2 f1; : : : ; d g, are strictly smaller than ı.
It seems obvious that a suitable ı-bracketing cover consisting almost exclusively
of brackets with weights exactly ı should exhibit a smaller cardinality than Gı.
We outline here a construction Zı which satisfies this specification. To simplify
the representation, we confine ourselves to the case d D 2 and refer to [35] for
a generalization of the construction to arbitrary dimension d . Let ı be given. The
essential idea is the following:

We define ai D ai .ı/ WD .1 � iı/1=2 for i D 0; : : : ; 	 D 	.ı/ WD dı�1e � 1, and
a	C1 WD 0. We decompose Œ0; 1�2 into layers

L.i/.ı/ WD Œ0; ai 1� n Œ0; aiC11/; i D 0; : : : ; 	;

and cover each layer separately with ı-brackets. To cover L.0/.ı/, we can simply use
the ı-brackets Œy.i/; z.i/�, i D 0; 1; : : : ; �.ı; 2/ � 1, from our previous construction
and the ı-brackets we obtain after permuting the first and second coordinates of y.i/

and z.i/, respectively. To cover the remaining layers, we observe that the brackets
ŒaiC11; ai1�, i D 1; : : : ; 	�1, all have weight ı, and we can cover the layers L.i/.ı/,
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Fig. 2 The layer construction
Zı for ı D 0:075.

i D 1; : : : ; 	 � 1, by a straightforward modification of the procedure we used to
cover L.0/.ı/.

The final layer L.	/.ı/ D Œ0; a	1� is trivially covered by the ı-bracket Œ0; a	1�

itself. Figure 2 shows the resulting bracketing cover Zı for ı D 0:075.
As shown in [36, Proposition 4.1], the two-dimensional ı-bracketing cover Zı

satisfies
jZıj D 2 ln.2/ı�2 CO.ı�1/: (20)

Notice that the coefficient 2 ln.2/ � 1:3863 in front of ı�2 is smaller than the
corresponding coefficient .2 ln.2//2 � 1:9218 in (19).

2.2.4 An Essentially Optimal Construction

The layer construction was generated in a way to guarantee that all ı-brackets have
weight exactly ı (except of maybe those which intersect with the coordinate axes).
To minimize the number of brackets needed to cover Œ0; 1�2, or, more generally,
Œ0; 1�d , it seems to be a good idea to find brackets with weight ı that exhibit
maximum volume. The following lemma [35, Lemma 1.1] shows how such ı-
brackets look like.

Lemma 1. Let d � 2, ı 2 .0; 1�, and let z 2 Œ0; 1�d with �d .Œ0; z�/ D z1 � � � zd � ı.
Put

x D x.z; ı/ WD
�

1 � ı

z1 � � � zd

�1=d

z : (21)

Then Œx; z� is the uniquely determined ı-bracket having maximum volume of all
ı-brackets containing z. Its volume is
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�d .Œx; z�/ D
 

1 �
�

1 � ı

z1 � � � zd

�1=d
!d

� z1 � � � zd :

A positive aspect of the previous construction Zı is that (essentially) all its
brackets have largest possible weight ı and overlap only on sets of Lebesgue
measure zero. But if we look at the brackets in Zı which are close to the first or
the second coordinate axis and away from the main diagonal, then these boxes do
certainly not satisfy the “maximum area criterion” stated in Lemma 1. The idea
of the next construction is to generate a bracketing cover Rı similarly as in the
previous section, but to “re-orientate” the brackets from time to time in the course
of the algorithm to enlarge the area which is covered by a single bracket. Of course
this procedure should not lead to too much overlap of the generated brackets. Let us
explain the underlying geometrical idea of the construction:

Like all the constructions we have discussed so far, our new bracketing cover
should be symmetric with respect to both coordinate axes. Thus we only have to
state explicitly how to cover the subset

H WD f.x; y/ 2 Œ0; 1�2 j x � yg

of Œ0; 1�2. For a certain number p D p.ı/ we subdivide H into sectors

T .h/ WD
(

.x; y/ 2 H n f.0; 0/g
ˇ̌
ˇ̌̌ h � 1

2p
� x

y
� h

2p

)
[ f.0; 0/g; h D 1; : : : ; 2p:

We start with T .2p/ and cover this subset of Œ0; 1�2 in the same way as we
covered it in the construction Zı , i.e., we decompose T .2p/ into horizontal stripes
Œ.0; aiC1/; .ai ; ai /� \ T .2p/, i D 0; 1; : : : ; 	 D dı�1e � 1, and cover each stripe
separately with ı-brackets whose weights are (except of maybe one bracket per
stripe) exactly ı. Notice that the ı-brackets of Zı that cover the main diagonal of
Œ0; 1�2 are volume optimal due to Lemma 1. Hence, if we choose p sufficiently large,
the sector T .2p/ will be thin and all the ı-brackets we use to cover it will have nearly
maximum volume.

If p D 0, then H D T .2p/ and our new construction Rı will actually be equal
to Zı . If p > 0, then we have additional sectors T .1/; : : : ; T .2p�1/. Again, for a
given i 2 f1; : : : ; 2p�1g we decompose T .i/ into horizontal stripes, but the vertical
heights of the stripes increases as i decreases. We essentially choose the heights
of each stripe in a way that the bracket on the right hand side of the stripe having
this heights and weight exactly ı exhibits maximum volume. Thus, if the sector
T .i/ is sufficiently thin, again essentially all ı-brackets that cover it will have nearly
maximum volume. Therefore we should choose p D p.ı/ large enough. On the
other hand, we usually will have overlapping ı-brackets at the common boundary
of two sectors. To minimize the number of brackets needed to cover H (and thus
Œ0; 1�2), we should try to avoid too much overlap of brackets and consequently not
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Fig. 3 The essentially
optimal construction Rı for
ı D 0:075.

Fig. 4 The essentially
optimal construction Rı for
ı D 0:03.

choose p too large. Since T .2p/ has the most horizontal stripes of all sectors T .i/,
namely dı�1e, a choice satisfying 2p.ı/ D o.ı�1/ ensures that the overlap has no
impact on the coefficient in front the most significant term ı�2 in the expansion of
jRıj in terms of ı�1. Figures 3 and 4 show bracketing covers Rı based on this idea
constructed in [36] for ı D 0:075 and ı D 0:03. The parameter p was chosen to be

p D p.ı/ D
	

ln.ı�1/

1:7



:

The figures show the overlapping of brackets at the common boundaries of different
sectors. Note in particular that the 16 squares near the origin in Fig. 4 are not
individual ı-brackets with weight ı—these squares just occur since larger brackets
intersect near the origin.
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For all technical details of the ı-bracketing cover Rı of Œ0; 1�2 we refer to [36].
As shown there in Proposition 5.1, its size is of order

jRıj D ı�2 C o.ı�2/ (22)

as long as p D p.ı/ is a decreasing function on .0; 1/ with limı!0 p.ı/ D 1 and
2p D o.ı�1/ as ı tends to zero.

The construction Rı is (essentially) optimal, as will be shown by a lower bound
in the next section.

2.3 Bounds for the Bracketing Number

Here we state bounds for the bracketing number for arbitrary dimension d .

Theorem 3. Let d be a positive integer and 0 < ı � 1. Then we have the following
two upper bounds on the bracketing number:

NŒ �.d; ı/ � d d

d Š
ı�d COd .ı�dC1/ (23)

and

NŒ �.d; ı/ � 2d�1 d d

d Š

�
ı�1 C 1

�d
: (24)

Both bounds were proved constructively in [35] by a ı-bracketing cover which
can be seen as d -dimensional generalization of the two-dimensional construction
Zı from Sect. 2.2.3. In the same paper the following lower bound for the bracketing
number was shown, see [35, Theorem 1.5].

Theorem 4. For d � 2 and 0 < ı � 1 there exist a constant cd which may depend
on d , but not on ı, with

NŒ �.d; ı/ � ı�d .1 � cd ı/: (25)

The proof of Theorem 4 is based on the fact that the bracketing number NŒ �.d; ı/

is bounded from below by the average of Œ�d .Bı.x//��1 over all x 2 Œ0; 1�d , where
Bı.x/ is a ı-bracket containing x with maximum volume.

The lower bound shows that the upper bound NŒ �.2; ı/ � ı�2Co.ı�2/, resulting
from the bound (22) on the cardinality of Rı from Sect. 2.2.4, is (essentially)
optimal.
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3 Application of Bracketing to Discrepancy

We want to discuss how the results about bracketing covers and bracketing entropy
from the last section can be used to tackle the three questions from Sect. 1.2. We
start with question (iii), where our results are most directly applicable.

3.1 Approximation of the Star Discrepancy

Bracketing covers can be used to approximate the star discrepancy by exploiting the
following approximation property.

Lemma 2. Let B be a bracketing cover of Œ0; 1�d , and let �B as in (13). For finite
subsets P of Œ0; 1�d put

d �
� .P / WD max

x2�B

j�.x; P /j: (26)

Then we have
d �

� .P / � d �1.P / � d �
� .P /C ı:

The proof is straightforward, but can also be found in, e.g., [21, Lemma 3.1].
The essential idea of Thiémard’s algorithm from [87, 88] is to generate for a

given point set P and a user-specified error ı a small ı-bracketing cover B D Bı

of Œ0; 1�d and to approximate d �1.P / by maxx2�B j�.x; P /j.
The costs of generating Bı are of order 
.d jBıj/. If we count the number of

points in Œ0; x/ for each x 2 �B in a naive way, this results in an overall running
time of 
.dnjBıj/ for the whole algorithm. As Thiémard pointed out in [88], this
orthogonal range counting can be done in moderate dimension d more effectively
by employing data structures based on so-called range trees. This approach reduces
the time O.dn/ per test box that is needed for the naive counting to O.log.n/d /.
Since a range tree for n points can be generated in O.C d n log.n/d / time, C > 1

some constant, this results in an overall running time of

O..d C log.n/d /jBıj C C d n log.n/d / :

For the precise details of the implementation we refer to [88].
The upper bounds on the running time of the algorithm show that smaller ı-

bracketing covers Bı will lead to shorter running times. But since the lower bound
(25) implies

jBıj � ı�d .1 � cd ı/;

even the time for generating a ı-bracketing cover Bı is bounded from below by
˝.dı�d /, and this is obviously also a lower bound for the running time of the whole
algorithm. This shows that the approach of Thiémard has practical limitations.
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Fig. 5 Thiémard’s
construction Tı for
ı D 0:075.

Nevertheless, it is useful in moderate dimensions as was reported, e.g., in [23]
or [70].

The smallest bracketing covers used by Thiémard are different from the construc-
tions we presented in the previous section, see [88]. Figure 5 shows his construction
Tı in dimension d D 2 for ı D 0:075.

He proved the upper bound

jTıj �
 

d C h

d

!
; where h D

�
d ln.ı/

ln.1 � ı/

�
:

This leads to

jTıj � ed

�
ln ı�1

ı
C 1

�d

;

a weaker bound than jBıj � ed ı�d C Od .ı�dC1/ and jBıj � 2d�1ed .ı�1 C 1/d

which hold for the construction Bı that established Theorem 3.
For d D 2 the bound jTıj D 2 ln.2/ı�2 C O.ı�1/ was proved in [36], which

shows that in two dimensions the quality of Tı is similar to the one of the layer
construction Zı that we presented in the Sect. 2.2.3.

3.2 Pre-Asymptotic Bounds via Randomization

Here we want discuss question (i) from Sect. 1.2. We distinguish between deter-
ministic discrepancy bounds for n-point samples in Œ0; 1�d and for d -dimensional
projections of infinite sequences of points with infinitely many coordinates. Fur-
thermore, we mention briefly probabilistic discrepancy bounds for hybrid-Monte
Carlo sequences.
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3.2.1 Point Sets in the d-Dimensional Unit Cube

Probabilistic pre-asymptotic bounds on the smallest possible star discrepancy of any
n-point set in Œ0; 1�d can be proved in three steps:

Probabilistic Proof Scheme:

1. We discretize the star discrepancy at the cost of an approximation error at most
ı. More precisely, we use a ı-bracketing cover B and consider for a point set P

instead of d �1.P / its approximation d �
� .P / defined in (26), where � D �B is

as in (13).
2. We perform a random experiment that results in a random n-point set P in

Œ0; 1�d that fails to satisfy the events fj�.x; P /j � ıg, x 2 �B, with small
probability. If the random experiment is subject to the concentration of measure
phenomenon, then these “failing probabilities” can be controlled with the help of
large deviation bounds.

3. Since the event fd �
� .P / > ıg is the union of the events fj�.x; P /j > ıg, x 2 �B,

a simple union bound shows that P satisfies d �
� .P / � ı with positive probability

if Pfj�.x; P /j > ıg < j�Bj�1 for all x 2 �B.

Then for " D 2ı there exists an n-point set P with d �1.P / � d �
� .P / C ı � ".

The aim is to choose " as small as possible.
To keep the loss caused by the union bound small, the size of the ı-bracketing

cover B (or the ı-cover �B, respectively) should be chosen as small as possible. To
receive a bound for the star discrepancy with explicit constants, bounds with explicit
constants are needed for the size of the ı-bracketing cover used.

The bound (10) from [45] was proved in this way: The ı-cover � was chosen to
be the equidistant grid from Sect. 2.2.1 and the random experiment was to distribute
n points uniformly and independently in Œ0; 1�d . The “failing probability” in each
single test box was bounded above by Hoeffding’s large deviation bound [52], which
reads as follows:

Let X1; : : : ; Xn be independent random variables with ai � Xi � bi for all i .
Then for all ı > 0

P

(
1

n

ˇ̌
ˇ̌̌ nX
kD1

.Xi � E.Xi //

ˇ̌
ˇ̌̌ � ı

)
� 2 exp

�
� 2ı2n2Pn

kD1.bi � ai /2

�
:

Using the same probabilistic experiment and again Hoeffding’s large deviation
bound, but instead of the bracketing cover from Sect. 2.2.1 the one that implied the
estimate (24), one obtains the improved discrepancy bound

d �1.n; d/ � k0d 1=2n�1=2 ln

1C n

d

�1=2

(27)
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(here we have essentially k0 � p2, see [35, Theorem 2.1]). Since the inverse of the
star discrepancy depends linearly on the dimension d , the practically most relevant
choice of n seems to be n proportional to d . Note that in this case (27) behaves
asymptotically as the bound (8). In fact, if (8) holds with c D 10 (as claimed by
Hinrichs and recently published by Aistleitner), then the bound [35, (22)], a version
of (27), is still better than (8) for all n � 1:5 � e95d . Actually, we may use the upper
bound in (24) to reprove (8) without using Haussler’s result on covering numbers
of Vapnik-Červonenkis classes—a version of Talagrand’s large deviation bound
for empirical processes holds under the condition that the ı-bracketing number of
the set system under consideration is bounded from above by .Cı�1/d for some
constant C not depending on ı or d , see [86, Theorem 1.1]. (As we discuss at the
end of this subsection, Aistleitner’s approach to prove (8) with a constant c � 10

indeed uses the upper bound (24).)
For other discrepancy notions similar approaches, relying on uniformly and

independently distributed random points, were used to prove pre-asymptotic bounds
with explicitly given constants. This was done, e.g., for the same-quadrant discrep-
ancy [47], discrepancies with respect to ellipsoids, stripes, and spherical caps in R

d

[59], the extreme discrepancy [35], and the weighted star discrepancy [50].
One can modify the probabilistic experiment by using, e.g., the variance reduc-

tion technique stratified sampling. If, e.g., n D �d , then one can subdivide Œ0; 1�d

into n subcubes of the same size and distribute in each subcube one point uniformly
at random (and independently from the other points). This experiment was used in
[20, Theorem 4.3] (a preprint version of [21]) to derive

d �1.n; d/ � k00dn� 1
2 � 1

2d ln.n/1=2: (28)

(Again, we have essentially k00 � p2. The proof used the ı-cover �ı from (16).)
For the discrepancy of tilted boxes and of balls with respect to probability

measures on Œ0; 1�d which are absolutely continuous with respect to �d , a similar
approach relying on a stratified sampling technique was used by Beck in [3] to
prove asymptotic probabilistic upper bounds. But these bounds do not exhibit the
dependence on the dimension; in particular, the involved constants are not explicitly
known.

We will discuss a further random experiment in more detail in Sect. 3.3.
Let us finish this subsection with the discussion of the recent result of Aistleitner,

who proved in [1] that the constant c in (8) is smaller than 10. As in the probabilistic
proof scheme stated above, his approach starts by discretizing the star discrepancy
at the cost of an approximation error ı D 2�K , where K � � log2.d=n/=2. The
underlying probabilistic experiment is to distribute n points p.1/; : : : ; p.n/ uniformly
and independently in Œ0; 1�d . An important observation is now that for measurable
subsets A of Œ0; 1�d the variance of the random variables �

.i/
A WD �d .A/�jfp.i/g\Aj,

i D 1; : : : ; n, depends strongly on the volume �d .A/ of A:

Var.�.i/
A / D �d .A/.1 � �d .A//:
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Now Hoeffding’s large deviation bound gives good bounds for the failing proba-
bilities Pfj 1

n

Pn
iD1 �

.i/
A j > ıAg for ıA > 0 if �d .A/ � 1=2. But if �d .A/ is much

smaller or larger than 1=2, then Hoeffding’s bound cannot exploit the fact that the
variance of the random variable �

.i/
A is small. A large deviation bound which can

exploit this fact is Bernstein’s inequality which reads as follows (see, e.g., [90]):
Let X1; : : : ; Xn be independent random variables with zero means and bounded

ranges jXi j �M for all i . Then for all t > 0

P

( ˇ̌ˇ̌̌ nX
kD1

Xi

ˇ̌
ˇ̌̌ � t

)
� 2 exp

�
� t2=2Pn

kD1 Var.Xi/CM t=3

�
:

Aistleitner uses Bernstein’s inequality and the dyadic chaining technique, which
can be seen as a “multi-cover” approach:

For all k D 1; 2; : : : ; K consider a 2�k-cover �2�k , and put x.0/ WD 0. From
the definition of a ı-cover it follows that for any x.K/ 2 �2�K one recursively finds
points x.k/ 2 �2�k , k D K � 1; : : : ; 1, such that x

.K/
j � x

.K�1/
j � � � � � x

.1/
j for

j D 1; : : : ; d , and

Ak D Ak

�
x.K/

� WD �0; x.k/
� n �0; x.k�1/

�

has volume at most 2�.k�1/. We have
�
0; x.K/

� D [K
kD1Ak and, if P denotes the set

fp.1/; : : : ; p.n/g,

ˇ̌
�
�
x.K/; P

�ˇ̌ �
KX

kD1

ˇ̌
ˇ̌�d .Ak/� 1

n
jP \Akj

ˇ̌
ˇ̌ D

KX
kD1

ˇ̌
ˇ̌̌1
n

nX
iD1

�
.i/
Ak

ˇ̌
ˇ̌̌
:

If for k D 1; : : : ; K we define Ak WD
˚
Ak

�
x.K/

� jx.K/ 2 �2�K

�
, then jAkj �

j�2�k j. Using a 2�k-bracketing cover as constructed in [35], we obtain via (13) a
2�k-cover �2�k satisfying j�2�k j � .2e/d .2k C 1/d , see (24) and (14). Choosing a
suitable sequence ck , k D 1; : : : ; K , one essentially obtains with the help of a union
bound, Bernstein’s inequality, and the estimate (24)

P

0
@ [

Ak2Ak

( ˇ̌ˇ̌
ˇ
1

n

nX
iD1

�
.i/
Ak

ˇ̌
ˇ̌
ˇ > ck2�K

)1
A � X

Ak2Ak

P

( ˇ̌ˇ̌
ˇ
1

n

nX
iD1

�
.i/
Ak

ˇ̌
ˇ̌
ˇ > ck2�K

)
� 2�k:

Recall that jAkj � j�2�k j � Od .2kd/ and Var.�.i/
Ak

/ � 2�.k�1/. In particular, jAK j
is of the size of the finest ı-cover �2�K , but, since the variance of all �

.i/
AK

is small
(namely at most 2�.K�1/), Bernstein’s inequality ensures that we can choose a small
cK . If, on the other hand, k D 1, then it may happen that �d .A1/ � 1=2, so
Bernstein’s inequality gives us no advantage over Hoeffding’s bound. But the size
of A1 is relatively small, namely at most Od .2d /. In general, the larger k is, the
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more we can exploit the small variance of all �
.i/
Ak

, but the larger is the size of Ak .
Aistleitner proved that this “trade off” ensures that one can choose .ck/K

kD1 such thatPK
kD1 ck � 8:65 holds. Thus the approximation property (see Lemma 2) leads to

the estimate

P

(
d �1.P / >

 
1C

KX
kD1

ck

!
2�K

)
�P

(
d �

�2�K
.P / >

KX
kD1

ck2�K

)

DP

0
@ [

x.K/2�2�K

( ˇ̌
�
�
x.K/; P

�̌̌
>

KX
kD1

ck2�K

)1
A

�P

0
@ [

x.K/2�2�K

K[
kD1

( ˇ̌̌
ˇ̌ 1
n

nX
iD1

�
.i/
Ak

ˇ̌̌
ˇ̌ > ck2�K

)1
A

�
KX

kD1

P

0
@ [

Ak2Ak

( ˇ̌ˇ̌
ˇ
1

n

nX
iD1

�
.i/
Ak

ˇ̌
ˇ̌
ˇ > ck2�K

)1
A < 1;

showing that there exists an n-point set P in Œ0; 1�d that satisfies the estimate (8)
with c D 9:65. (For the technical details we refer, of course, to [1].)

3.2.2 Infinite Dimensional Infinite Sequences

So far we have discussed the existence of point sets that satisfy reasonably good
discrepancy bounds. In practice it is desirable to have integration points that can be
extended in the number of points, and preferably also in the dimension d . This
allows to achieve higher approximation accuracy while still being able to reuse
earlier calculations.

In [14] the probabilistic bounds stated in the previous subsection were extended
by Dick to infinite sequences of infinite dimensional points. For an infinite sequence
P of points in Œ0; 1/N, let us denote by Pd the sequence of the projections of the
points of P onto their first d components, and by Pn;d the first n points of Pd . Then
in [14] the following results were shown:

There exists an unknown constant C such that for every strictly increasing
sequence .nm/m2N in N there is an infinite sequence P in Œ0; 1/N satisfying

d �1.Pnm;d / � C
p

d=nm

p
ln.mC 1/ for all m; d 2 N.

(We add here that with the help of Aistleitner’s approach in [1] one can derive an
upper bound for C .)
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Furthermore, there exists an explicitly given constant C 0 such that for every
strictly increasing sequence .nm/m2N in N there is an infinite sequence P satisfying

d �1.Pnm;d / � C 0
s�

mC d C d ln

�
1C d

p
nm

mC d

��
=nm for all m; d 2 N.

(29)
The results from [14] show that there exist point sets that can be extended in the
dimension and in the number of points while bounds similar to (10) or (27) remain
valid.

A disadvantage of (29) is nevertheless that in the case where, e.g., nm D m for
all m it is not better than the trivial bound d �1.Pm;d / � 1.

By using the bound (24), another result for infinite sequences P in Œ0; 1/N was
presented in [19]: There exists an explicitly given constant C 00 such that for every
strictly increasing sequence .nm/m2N in N there is an infinite sequence P satisfying

d �1.Pnm;d / � C 00
r

d ln

1C nm

d

�
=nm for all m; d 2 N. (30)

This bound is an improvement of (29), which in particular is still useful in the case
nm D m for all m. Moreover, it establishes the existence of infinite sequences P

in Œ0; 1/N having the following property: To guarantee d �1.Pn;d / � " for a given ",
we only have to take n � c"d , where c" is a constant depending only on ", see [19,
Corollory 2.4]. Note that this result cannot be deduced directly from the results in
[14]. As mentioned above, it is known from [45, 49] that we have to take at least
n � c0

"d if " is sufficiently small. (Here c0
" depends again only on ".) In this sense

[19, Corollory 2.4] shows that the statement “the inverse of the star discrepancy
depends linearly on the dimension” (which is the title of the paper [45]) extends
to the projections of infinite sequences in Œ0; 1/N. To make this more precise, the
notion of the inverse of the star discrepancy of an infinite sequence P is introduced
in [19], given by

N �
P ."; d/ WD minfn W 8m � n W d �1.Pm;d / � "g:

Then Corollary 2.4 of [19] states that there exist sequences P such that

N �
P ."; d/ � O.d"�2 ln.1C "�1// for all d 2 N, " 2 .0; 1�. (31)

In fact even more holds: If we endow the set Œ0; 1/N with the canonical probability
measure �N D ˝1

iD1�1 and allow the implicit constant in the big-O-notation to
depend on the particular sequence P , then inequality (31) holds almost surely for a
random sequence P , see again [19, Corollory 2.4]. In [19, Theorem 2.3] bounds of
the form (30) and (31) with explicitly given constants and estimates for the measure
of the sets of sequences satisfying such bounds are provided.
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3.2.3 Hybrid-Monte Carlo Sequences

A hybrid-Monte Carlo sequence, which is sometimes also called a mixed sequence,
results from extending a low-discrepancy sequence in the dimension by choosing
the additional coordinates randomly. In several applications it has been observed
that hybrid-Monte Carlo sequences perform better than pure Monte Carlo and pure
quasi-Monte Carlo sequences, especially in difficult problems, see, e.g., [69,71,83].

For a mixed d -dimensional sequences m, whose elements are, technically speak-
ing, vectors obtained by concatenating the d 0-dimensional vectors from a low-
discrepancy sequence q with .d � d 0/-dimensional random vectors, probabilistic
upper bounds for its star discrepancy have been provided. If mn and qn denote the
sets of the first n points of the sequences m and q respectively, then Ökten et al.
showed in [71] that

P.d �1.mn/� d �1.qn/ < "/ � 1 � 2 exp

�
�"2n

2

�
for n sufficiently large. (32)

The authors did not study how large n actually has to be and if and how this
actually depends on the parameters d and ". In the note [37] a lower bound for
n is derived, which significantly depends on d and ". Furthermore, with the help of
the probabilistic proof scheme the probabilistic bound

P.d �1.mn/� d �1.qn/ < "/ > 1 � 2N.d; "=2/ exp

�
�"2n

2

�
(33)

was established, which holds without any restriction on n. In this sense it improves
the bound (32) and is more helpful in practice, especially for small samples
sizes n. As we know from (25) and (14), for small " the quantity N.d; "=2/

grows exponentially in d . As pointed out in [37, Remark 3.4] a factor depending
exponentially on d has to appear in front of exp.�"2n=2/ in the bound (33) if we
want it to hold for all n 2 N. Recall that we can use the bound (24) on the bracketing
number to obtain an upper bound for N.d; "=2/ with explicit constants.

Recently, there has been increasing interest in (deterministic) discrepancy bounds
for (deterministic) mixed sequences, see, e.g., [63, 64].

3.3 Small Discrepancy Samples via Derandomization

Here we want to consider question (ii) from Sect. 1.2: How can we construct
point sets that satisfy the probabilistic bounds stated in Sect. 3.2? How can we
derandomize the probabilistic experiments to get deterministic point sets with low
discrepancy? The probabilistic experiment of distributing n points uniformly at
random in Œ0; 1�d was derandomized in [21]. We illustrate the derandomization idea
for a different probabilistic experiment used in [23], which leads to a simpler and
faster algorithm.
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3.3.1 Random Experiment

Let k 2N be given and let ı be the largest value that satisfies kD �.ı; d/, where
�.ı; d/ is as in (18). Let � D�ı be the non-equidistant grid from (16). Put �kC1 WD 0

and let B D Bı the set of all (half-open) grid cells, i.e., all boxes Œy; yC/ with
yi D �j for some j D j.i/ 2 f1; : : : ; k C 1g and yC

i D �j �1 for all i 2 d . Then
obviously j� j D jBj.

Let n 2 N be given. For B 2 B let xB WD n � �d .B/, i.e., xB is the expected
number of points inside B if we distribute n points independently at random in
Œ0; 1�d .

Our aim is now to round randomly for each B 2 B the real number xB to an
integer yB such that the following two constraints are satisfied:

• Weak constraint: Each set Y with yB points in B for all B 2 B should have
small discrepancy with high probability.

• Hard constraint: The equation jY j DPB2B yB DPB2B xB D n should hold.

We saw in Sect. 3.2 that in the previous random experiments the weak constraint
can be satisfied for independent random points with the help of large deviation
inequalities. But if our rounding procedure has to satisfy the hard constraint our
random variables yB , B 2 B, are clearly not independent any more.

Nevertheless, such a randomized rounding that satisfies the weak constraint
with high probability and respects the hard constraint can be done. There are two
approaches known, due to Srinivasan [84] and to Doerr [18]. We present here the
randomized rounding procedure of Srinivasan:

Randomized Rounding Procedure:

• Initialize yB D xB for all B 2 B.
• Repeat the following step until all yB are integral:

Pair Rounding Step: Choose yB , yB0 not integral.
Choose � 2 Œ0; 1� minimal such that yB C � or yB0 � � is integral.
Choose  2 Œ0; 1� minimal such that yB �  or yB0 C  is integral.
Set

.yB; yB0/ WD
(

.yB C �; yB0 � �/ with probability 
�C

;

.yB � ; yB0 C / with probability �
�C

.

• Output: .yB/B2B.

The pair rounding step leaves
P

B2B yB invariant. Hence we have always
X
B2B

yB D
X
B2B

xB D n:

This shows particularly that if there is a variable yB left which is not integral, there
has to be another one yB0 , B ¤ B 0, which is not integral. Thus the algorithm
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terminates and the output set yB , B 2 B, satisfies the hard constraint. Furthermore,
the pair rounding step leaves E.yB/ invariant, hence E.yB/ D xB . Now let Y be a
set with yB points in B for all B 2 B. Then

E.n�.g; Y // D E

� X
B2B I B�Œ0;g/

.xB � yB/

�
D 0 for all g 2 � .

Furthermore, a concentration of measure result holds. The yB , B 2 B, are not
independent, but it can be shown that they satisfy certain negative correlation
properties, cf. [84]. As shown by Panconesi and Srinivasan, Chernoff-Hoeffding-
type bounds hold also in this situation [74]. This result and the earlier observations
yield the following theorem, see [23].

Theorem 5. The randomized rounding procedure generates in time O.jBj/ ran-
domized roundings yB of xB for all B 2 B such that

P
B2B yB DPB2B xB D n

and

Pfj�.g; Y /j > �g < 2 exp

�
� �2n

3

�
for all g 2 � .

If we now choose � Dp3n�1 ln.2j� j/ and ı � pd=n
p

ln ln.d/, then the next
theorem can be proved by following the three steps of the proof sheme in Sect. 3.2.1,
see [23].

Theorem 6. There exists a constant C > 0 such that

P

n
d �1.Y / � C

p
d=n

p
ln.�n/

o
> 0; (34)

where � D �.d/ < 1:03 tends to zero if d !1.

(Essentially we have C � p6.)

3.3.2 Derandomized Construction

Now we want to derandomize the random experiment, i.e., we want to construct
an n-point set Y deterministically that satisfies the bound (34) in Theorem 6. More
precisely, we want to compute a rounding .yB/B2B of .xB/B2B that satisfies

X
B2B

yB D
X
B2B

xB D n (35)

and ˇ̌
ˇ̌̌
ˇ
X

B�Œ0;g/

.xB � yB/

ˇ̌
ˇ̌̌
ˇ � ıg � n � �d .Œ0; g// for all g 2 � , (36)

where the ıgs are error tolerances fixed in the algorithm. If then Y is a set with yB

points in B for all B 2 B, we obtain jY j D n and
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ˇ̌
ˇ̌�d .Œ0; g// � 1

n
jY \ Œ0; g/j

ˇ̌
ˇ̌ � ıg � �d .Œ0; g// for all g 2 � .

To compute such a rounding we follow Raghavan [75] and define pessimistic
estimators P C

g ; P �
g , g 2 � . For B 2 B let pB D fxBg, where fxBg denotes the

fractional part of xB , and for g 2 � let �g WD P
B�Œ0;g/fxBg. The pessimistic

estimators are defined as

P C
g D .1C ıg/�.1Cıg/�g

Y
B�Œ0;g/

�
1C ıgpB

�

P �
g D .1C ıg/.1�ıg/�g

Y
B�Œ0;g/

�
1C

�
1

1C ıg

� 1

�
pB

�
:

With the help of the pessimistic estimators we can see whether (36) is satisfied
or not. This is easily seen by making the following observation: For B 2 B let
qB 2 f0; 1g, and for q 2 � let QC

g , Q�
g be the values of P C

g and P �
g , respectively,

calculated on values qB instead of pB (with �g unchanged). Then it is a simple
observation that QC

g � 1 if and only if
P

B�Œ0;g/ qB � .1C ıg/�g , and Q�
g � 1 if

and only if
P

B�Œ0;g/ qB � .1 � ıg/�g .
By updating the pessimistic estimators for some adjustment pB  x, we shall

mean the operation of replacing the factor .1 C ıgpB/ in P C
g by .1 C ıgx/, and

analogously for P �
g , for each g 2 � such that B 	 Œ0; g/. (Again, �g stays

unchanged.)
The derandomized rounding algorithm proceeds as follows.

Derandomized Rounding Procedure:

1. Initialize pB WD fxBg for all B 2 B.
2. Set the error tolerances ıg such that for each g 2 � we have P C

g ; P �
g <

1=.2j� j/. Let U WDPg2� .P C
g C P �

g /.
3. Let J D fB 2 B jpB … f0; 1gg. While jJ j � 2:

(a) Pick B; B 0 2J .
(b) Let .p

.i/
B ; p

.i/

B0 /, i D 1; 2, be the two possible outcomes of the pair-rounding
step of the randomized rounding procedure with respect to the pair of
variables .pB; pB0/. Let Ui , i D 1; 2, be the sum of the pessimistic estimators
U updated according to the corresponding outcome.

(c) Pick i 2 f1; 2g to minimize Ui . Let pB  p
.i/
B , pB0  p

.i/

B0 and update J ,
the pessimistic estimators, and U .

4. Output: yB D bxBc C pB , B 2 B.

Note that in step 2 we have U < 1. Furthermore, it was shown in [24, Sect. 3.1]
that the minimum Ui of fU1; U2g appearing in step 3.c satisfies Ui � U . After
step 3 we have J D ; and pB 2 f0; 1g for every B 2 B. By our previous
observation,

P
B�Œ0;g/ pB � .1 C ıg/�g if and only if P C

g � 1, and analogously
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for the lower bound. Since U < 1 is maintained throughout the algorithm and
since the pessimistic estimators are non-negative, this cannot occur. The process
thus produces a rounding satisfying equation (36). Note that as in the randomized
rounding, the value of

P
B2B pB is kept constant throughout the process, thus (35)

is satisfied.
Although the order in which variables are picked in step 3.a is not important for

the theoretical bound, numerical tests indicate that it is preferable to use an order in
which the tree formed by the pairings is a balanced binary tree (so that each value
pB is adjusted only O.log j� j/ times), see [24] for details.

Using the bounds on the ıgs derived by Raghavan [75] and choosing ı of order
ı � p

d=n
p

ln ln.d/, the derandomized rounding algorithm leads to the following
theorem, see [23].

Theorem 7. There exists a deterministic algorithm which, on input n and d ,
computes in time O.d ln.dn/.� n/d / an n-point set Y � Œ0; 1�d with discrepancy

d �1.Y / � C
p

d=n
p

ln.�n/I

here C < 2:44, and � D �.d/ < 1:03 tends to zero if d !1.

The output set Y has yB points in each grid cell B 2 B. Although the exact
placement of these points inside the boxes B does not affect the theoretical bound
on d �1.Y / from Theorem 7, numerical experiments indicate that it is a good idea to
place these points independently, uniformly at random in B .

3.3.3 A Component-by-Component Derandomization

Another approach is presented in [19]. There a component-by-component (CBC)
construction of n-point sets via derandomization is proposed. In particular, via this
approach given point sets can be extended in the dimension. Here the underlying
random experiment is as follows: Given an n-point set Pd 0 D fp.1/; : : : ; p.n/g in
dimension d 0, we choose new components x.1/; : : : ; x.n/ randomly from some one-
dimensional grid and receive the n-point set Pd 0C1 D f.p.1/; x.1//; : : : ; .p.n/; x.n//g.
We may repeat this procedure until we obtain an n-point set in the desired
dimension d . This probabilistic experiment can be derandomized with the classical
method of Raghavan [75]. If we start the CBC-construction in dimension one, the
deterministic output set Pd of size n in dimension d satisfies the bound

d �1.Pd / � O.d 3=2n�1=2 ln.1C n=d/1=2/: (37)

and the running time of the algorithm is bounded by

O.cd n.dC3/=2.d ln.1C n=d//�.dC1/=2/;
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c a suitable constant independent of n and d . Certainly the bound (37) is weaker than
the bound in Theorem 7, but the bound on the running time of the CBC algorithm
is a reasonable improvement upon the running time guarantee of the derandomized
algorithm discussed before. The CBC-algorithm has the additional nice feature that
it can calculate the exact discrepancy of the output set without essentially more
effort.

In [22] some more implementation details of the CBC-algorithm are provided
and several numerical tests are performed. In particular, the experiments indicate
that the discrepancies of the output sets of the CBC-algorithm behave in practice
much better than predicted by the theoretical bound (37). They depend rather
linear on the dimension d than proportional to d 3=2. The numerical experiments
reveal that the discrepancies of the output sets, which are subsets of certain full
d -dimensional grids, are almost exactly equal to the discrepancies of the full grids
(for reasons explained in [22] we want to call the latter discrepancies “grid gaps”).
For output sets of size n the corresponding full grid has size larger than nd=2=d Š. We
may interpret this result in a positive way: The CBC-algorithm provides a sparse
sample from a complete d -dimensional grid, which exhibits essentially the same
discrepancy as the full grid.

To overcome the lower bound on the discrepancy given by the “grid gap”, we
also consider a randomized CBC-variant: After receiving an output set Pd , we
randomize its points locally to receive a new output set P �

d . For the randomized set
P �

d the theoretical discrepancy bound (37) still holds, and in all the numerical tests in
dimension d D 10 its discrepancy was always much smaller than the corresponding
grid gap (which, as already said, is a lower bound for d �1.Pd /). (To be more precise,
an estimator for d �1.P �

d /, which majorizes d �1.P �
d / with certainty at least 95%, is

always much smaller than the corresponding grid gap. We use this estimator, since
calculating the actual discrepancy of P �

d is a much harder problem than calculating
the discrepancy of Pd .)

The star discrepancy of the output sets of both derandomized algorithms we
presented here was compared in [23] to the star discrepancy of other low discrepancy
point sets. These experiments took place in dimensions from 5 to 21 and indicate
that the first derandomized algorithm leads to superior results if the dimension
is relatively high and the number of points is rather small. (We use the phrase
“indicate”, since for dimension 10 or more, we are not able to calculate the exact
discrepancy, but can only use upper and lower bounds on it.) For details see [23].

4 Conclusion and Open Problems

In the previous sections we discussed questions (i), (ii), and (iii) and described
in particular how approaches based on bracketing entropy, randomization, and
derandomization lead to improvements on previously achieved results.

The discussion shows that good bounds for the star discrepancy with explicitly
known constants are available. Similar bounds hold also for the star discrepancy of
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point sets that are extensible in the number of points and in the dimension, and the
statement that the inverse of the star discrepancy depends linearly on the dimension
d [45] can be extended to this situation: The inverse of the star discrepancy of
infinite sequences in Œ0; 1/N depends almost surely linearly on the dimension d .

Can we find even better bounds than (27) or (8)? A lower bound for the star dis-
crepancy that follows directly from (9) is of the form d �1.n; d/ � minf"0; c0dn�1g,
c0 and "0 suitable constants [49, Theorem 1], and leaves some room for improve-
ments of (27) or (8). Also the bound (28) shows that some trade-off between the
dependence on the number of points and on the dimension is possible. But instead of
agonizing over this intriguing question, let us state the conjecture of Woźniakowski
(see [44], or [66, Open Problem 7]): If there exist constants C; ˛ > 0 and a
polynomial p such that

d �1.n; d/ � C p.d/n�˛ for all d; n 2 N, (38)

then necessarily ˛ � 1=2.
The construction of point sets satisfying bounds like (8) or (27) can be done with

the help of derandomized algorithms [19, 21–23]. Unfortunately, these algorithms
exhibit running times that are exponential with respect to the dimension d , a fact
prohibiting their use in really high dimensions.

This is maybe not too surprising, since even the seemingly easier problem of
calculating the star discrepancy of an arbitrary point set (or approximating it up to a
user-specified error) can only be solved in exponential time in d so far. And indeed
the problem of calculating the star discrepancy is known to be NP-hard.

Nevertheless, the discussed derandomized algorithms can be used in low and
modestly high dimension d .

In light of the discussion above, it would be of interest to make further progress
in designing algorithms that construct low-discrepancy point sets of small size and
algorithms that approximate the star discrepancy of arbitrary n-point sets (which
would allow “semi-constructions” as described above). Furthermore, it would be
interesting to learn more about the dependence of the star discrepancy of classical
constructions on the dimension d and the complexity of approximating the star
discrepancy of given point sets.
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Asymptotic Equivalence Between Boundary
Perturbations and Discrete Exit Times:
Application to Simulation Schemes

E. Gobet

Abstract We present two problems that are apparently disconnected, and we show
how they are actually related to each other. First, we investigate the sensitivity of the
expectation of functionals of diffusion process stopped at the exit from a domain,
as the boundary is perturbed. Second, we analyze the discrete monitoring bias when
simulating stopped diffusions, emphasizing the role of overshoot asymptotics. Then,
we derive a simple and accurate scheme for simulating stopped diffusions.

1 Introduction

The problem. This work is motivated by a nice boundary shifting result, proved by
Broadie et al. [8], in the context of killed scalar Brownian motion. To introduce the
topic, let us fix few notations. We consider a standard one-dimensional Brownian
motion .Wt /t�0 defined in a standard manner on a filtered probability space
.˝; F ; .Ft /t�0;P/, and we set Xt D x C �t C �Wt ; for parameters � 2 R and
� > 0. Let us fix a terminal time T > 0 and an upper barrier U > x: for a time-step
� D T=m (m 2 N), define the discretization times .ti WD i�/i�0. Consider the
function ˚.y/ D .K � exp.y//C (assuming K < exp.U /), which choice is related
to the pricing of barrier options in financial engineering: then we have [8]

E
�
18ti �T WXti <U ˚.XT /

� D E
�
18t�T WXt <U Cc0�

p
� ˚.XT /

� C o.�1=2/ (1)

where

c0 D ��.1=2/p
2�

D 0:5826 � � � ; (2)
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�.:/ being the Riemann Zeta function. In other words, killing the arithmetic
Brownian motion at discrete times is asymptotically equivalent (as the monitoring
frequency 1=� goes to infinity) to the continuous-time killing, provided that one
appropriately shifts the boundary from a quantity proportional to

p
�.

Actually, even for more general ˚ , it is easy to show that both expectations in (1)
converge to the same limit E

�
18t�T WXt <U ˚.XT /

�
, as � ! 0. The striking feature in

the approximation (1) is the magnitude of the remainder term: it is smaller that �1=2.
Indeed, for years it has been numerically observed (see [2,7] among others) that the
bias due to discrete exit time presumably yields an error of order 1

2
w.r.t. �:

E
�
18ti �T WXti <U ˚.XT /

� DE
�
18t�T WXt <U ˚.XT /

�

C c1.T; X; U; ˚/�1=2 C o.�1=2/: (3)

Since inffti � 0 W Xti � U g � infft � 0 W Xt � U g a.s., the (numerical)
constant c1.T; X; U; ˚/ is positive for non-negative and non-zero function ˚ , which
corresponds to a systematic overestimation of the expectation related to continuous
killing using a discrete killing. On the other hand, it is reasonable (see Sect. 2) to
guess that U 7! E

�
18t�T WXt <U ˚.XT /

�
is smooth, so that

E
�
18t�T WXt <U C" ˚.XT /

� DE
�
18t�T WXt <U ˚.XT /

�

C c2.T; X; U; ˚/" C o."/: (4)

Then, by equating both expansions (3) and (4) when " D c0�
p

�, the result (1) can
be simply reformulated as the equality

c1.T; X; U; ˚/ D c2.T; X; U; ˚/c0�: (5)

In other words, it suggests that discrete killing and boundary perturbation are
asymptotically equivalent. Our aim is to show that such an equivalence can be
generalized far beyond the framework of the scalar arithmetic Brownian motion,
i.e. it holds true for multi-dimensional time-inhomogeneous diffusion processes
in time-dependent domains. Of course, for such a generalization with time and
space dependent � , the previous equality (5) should be modified. However, we will
show (see (13) and Theorem 4) that an adaptation of the identity (1) holds true,
still involving the same universal constant c0 � 0:5826, whatever the model, the
domain or the dimension are. In this sense, from this intriguing result, we claim that
there is a general asymptotic equivalence between discrete killing and boundary
perturbation.

Mathematical tools. To achieve such a level of generality, new results have to
be developed. Indeed, in the original proof of (1), Broadie et al. leverage two fine
properties, mostly known in the Brownian case.
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1. On the one hand, they use previous asymptotic results about Brownian overshoots
by Siegmund [29, 30]. Siegmund shows that the exit time probability of random
walks can be expanded at first order in the diffusion asymptotics. In the limit,
the aforementioned constant c0 comes into play: it is equal to the expectation
of the asymptotic overshoot of the centered Gaussian random walk (it is also
connected to moments of the first ladder height of a Gaussian random walk). We
detail the related statement in Sect. 3. There, we also expose the generalization
to multi-dimensional diffusion processes, recently proved by Gobet et al. in [21].

2. On the other hand, using the explicit joint law of the supremum of drifted
Brownian motion and of its terminal value, it is possible to compute the quantity
E

�
18t�T WXt <U ˚.XT /

�
for ˚.y/ D .K � exp.y//C, and thus to differentiate the

quantity w.r.t. U (in order to obtain the expansion (4)). But it is hopeless to make
the probability laws explicit in the case of general diffusion processes. However,
quite surprisingly, without knowing explicitly the underlying law, it is possible
to differentiate E

�
18t�T WXt <U ˚.XT /

�
w.r.t. U for scalar diffusion and to derive

a probabilistic representation of the derivative for quite arbitrary function ˚ (see
[13]); these computations can be generalized to several dimensions as well. We
will present these results in Sect. 2.

Applications. In the original paper [8], the authors take advantage of the equality
(1) to propose a simple and efficient way to compute the price of discrete barrier
options, which is up to a discounted factor equal to P � D E.18ti �T WXti <U ˚.XT //.
Indeed, for some choices of payoff functions ˚ , owing to the explicit law of the
killed drifted Brownian motion, the expectation E

�
18t�T WXt <U ˚.XT /

�
has closed

forms, from which (using (1)) we may deduce an approximation of P � for small �.
In [9], these ideas have been extended to smooth functionals of the maximum of X .

Another application, which becomes meaningful for general diffusion processes,
is the computation of E

�
18t�T WXt <U ˚.XT /

�
by Monte Carlo simulations. In that

case, the equality (1) should be transformed into

E
�
18ti �T WXti <U �c0�

p
� ˚.XT /

� D E
�
18t�T WXt <U ˚.XT /

� C o.�1=2/: (6)

Since discrete killing yields an overestimation regarding the continuous-time case,
we compensate this bias by making the barrier closer, so that the main error term is
removed. In the same way that we extend (1) to general diffusions, we do so for the
approximation (6).

The interest in this generalization is the simplicity of the resulting numerical
scheme: we only need to monitor the process X at discrete times, in a domain which
boundary has been shifted inwards. We actually prove that the diffusion process can
be approximated using an Euler scheme with time step �, maintaining the same
global accuracy o.�

1
2 /, see Theorem 5.

Regarding the applications in financial engineering, the approximations
potentially apply to general models, with stochastic volatility and stochastic short
rate, or even including Poisson jumps; see numerical evidences from the tests in
[18]. Some jump diffusion models are analyzed in [14] and [15]. There are also
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potential applications in credit risk, regarding the structural credit models where the
default is associated to the exit time of domains by some processes (see [6, Chap.
3] for instance). Here, we are not discussing applications to American options and
optimal stopping problems: see the discussion in [13], or in Labart’s PhD thesis [23]
with partial results. We also refer the reader to the article [24] by Lai et al. about
corrected random walk approximations in free boundary problems.

Few other related references. During the last 15 years, a lot of attention has
been paid to the evaluation of E

�
18t�T WXt 2D ˚.XT /

�
by means of Monte Carlo

simulations, for general diffusion process X and for general domain D � R
d .

Indeed, the functional of interest is very irregular w.r.t. the process path, which
induces large errors when the process is sampled1 at discrete times. By monitoring
the process X at discrete times, one may not detect an exit, although the continuous
path has reached the boundary. Thus, the corner stone is the quantitative study of
the conditional exit probability given two simulated values of the process:

P.9t 2 Œti ; tiC1� W Xt … DjXti ; XtiC1
/: (7)

In [3], Baldi derives an expansion of the exit probability of a pinned Brownian
motion, as time is small. He applies this expansion to the efficient simulation
of a multidimensional Brownian motion killed at its exit from a domain. In [4],
Baldi and Caramellino extend the expansion result to scalar diffusions. In [16], for
elliptic diffusions in R

d , Gobet proves that when X is replaced by its continuous
Euler scheme (meaning that, at each time step, we take into account the exit
probability of a pinned scaled Brownian motion), the resulting numerical scheme
achieves the optimal convergence rate � (optimal in the sense that it coincides
with the convergence rate without domain [5]). To get an easily implementable
scheme for arbitrary domains, it is enough to replace locally the domain by half-
space approximations in the computations of (7), maintaining the same convergence
rate: it is proved in [17]. A different approach is followed by Jansons and Lythe
[22]: the discretization times are given by the random jump times of a Poisson
process with large intensity. The exponential distribution of interarrival time allows
for quite explicit approximations of the exit probability. Another approach is
developed by Shevchenko in [28] when the domain is the intersection of half-
spaces and the process is an arithmetic Brownian motion: relying on the Fréchet
copula inequalities, the author bounds from above and from below the related
exit probability by two explicit quantities. The procedure gives accurate numerical
results. Yet another approach is developed by Roberts and co-authors (see [10] and
references therein), using a smart rejection sampling for exact simulation: it applies
to one-dimensional killed/stopped diffusions but it is hard to generalize to general
multi-dimensional models.

1Exactly or approximatively using an Euler scheme for instance.
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The analysis of the discrete time error (neglecting the possible exit between two
consecutive discretization times) is much more delicate. Upper bounds of magnitude
�1=2 are established in [16], and similar lower bounds for hypoelliptic diffusions in
[19]. Same upper bounds in the case of Itô processes are provided in [20], assessing
that the discrete time error is not related to the underlying Markov structure. The
expansion at order 1

2
w.r.t. � has been established recently by Gobet and Menozzi

[21], this is presented in Sect. 3.

Organization of the paper. In Sect. 2, we analyze the boundary sensitivity
of expectations of killed/stopped diffusion processes: our purpose is to derive
the expansion (4), in the more general framework of diffusion process in time-
dependent domain. In Sect. 3, we derive expansion results related to discretization
error: these results are based on recent asymptotic results of diffusion overshoots.
In Sect. 4, we combine the two previous asymptotic results to design a simple
and efficient numerical scheme for the weak approximation of stopped diffusion
processes. Then, we illustrate its numerical performance.

Notation and assumptions used throughout the paper. Regarding the assump-
tions, we state sufficient conditions that make valid all the following results.
However for some of them, these assumptions are too strong and we refer the reader
to [21] for detailed statements.

Stochastic differential equation. Let us consider a d -dimensional diffusion process
whose dynamics is given by

Xt D x C
Z t

0

b.s; Xs/ds C
Z t

0

�.s; Xs/dWs (8)

where W is a standard d 0-dimensional Brownian motion defined on a filtered prob-
ability space .˝; F ; .Ft /t�0;P/ satisfying the usual conditions. In the following,
we assume that

• (Smoothness) the functions b and � belong to the C 1;2
b -space2;

• (Uniform ellipticity) for some a0 > 0, it holds

��Œ����.t; x/� � a0j�j2

for any .t; x; �/ 2 Œ0; T � � R
d � R

d .

The regularity assumption ensures the existence and uniqueness of a strong solution
to (8). As usual, we freely write ExŒ:� WD EŒ:jX0 D x�.

2The functions are bounded, with bounded partial derivatives @t ; @x; @2
x .
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Time-dependent domain and exit time. We consider .Dt /t�0, a time-dependent
family of smooth bounded domains of R

d , that is also smooth with respect to t .
For a fixed deterministic time T > 0, this defines a time-space domain

D WD f.t; x/ W 0 < t < T; x 2 Dt g ��0; T Œ�Rd :

We require this domain D to be of class C 3 (see [21] for a precise definition).
We write @Dt for the boundary of Dt . Cylindrical domains are specific cases of
time-dependent domains of the form D D�0; T Œ�D0, where D0 is a usual domain
of Rd (Dt D D0 for any t). Time-dependent domains in dimension d D 1 are
typically of the form D D f.t; x/ W 0 < t < T; '1.t/ < x < '2.t/g for two
functions '1 and '2 (the time-varying boundaries).
Now, set

	 WD infft > 0 W Xt 62 Dt g;
then 	 ^ T is the first exit time of .s; Xs/s from the time-space domain D.

Distance function. To appropriately describe the overshoot beyond the boundary,
we will use the signed distance function F defined as follows. Under the assumption
on D, there is a constant r0 > 0 such that3

F.t; x/ WD
( �d.x; @Dt /; for x 2 Dc

t ; d.x; @Dt / � r0; 0 � t � T;

d.x; @Dt /; for x 2 Dt ; d.x; @Dt / � r0; 0 � t � T;
(9)

and F can be extended to the whole space while preserving the sign, i.e. F.t; x/ < 0

(> 0) iif x … NDt (x 2 Dt ); see [25], Sect. X.3. In our case, the extension can be
achieved as a H3-function; moreover, in the r0-neighborhood of the spatial boundary
@Dt , the projection �@Dt .x/ D argminy2@Dt

jy�xj is uniquely defined, and n.t; x/ D
ŒrF ��.t; x/ is the unit inward normal vector to @Dt at �@Dt .x/.

Data. To define the path functional of interest, we are given continuous functions
f; g; k W ND ! R: they are assumed to be in the H1C
 -space4 for some 
 2�0; 1�.
In the following, we study and approximate the quantity

ExŒg.	 ^ T; X	^T /Z	^T C
Z 	^T

0

Zsf .s; Xs/ds�; (10)

Zs D exp.�
Z s

0

k.r; Xr /dr/:

3As usual, d.x; C / D infy2C jx � yj.
4Meaning, as usual, that the functions are .1 C 
/=2-Hölder continuous in time, they are
continuously differentiable in space, the derivatives are 
 -Hölder continuous in space and 
=2-
Hölder continuous in time; for a precise statement, see [21].
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This includes the example presented at the beginning by taking f; k 	 0 and
g.t; x/ D 1tDT ˚.x/. Observe that the smoothness requirement on g implies
in particular that ˚ vanishes at x 2 @DT : this condition is connected to the
condition K < exp.U / imposed in the first example of the introduction. Roughly
speaking, it ensures that the related PDE (defined below) is smooth up the corner
ft D T g � @DT : It is still an open issue to know whether the current analysis on
asymptotic equivalence holds true without this requirement.

Parabolic Partial Differential Equations. The latter expectation in (10) gives a
probabilistic representation of solution to second-order parabolic linear PDE with
Cauchy-Dirichlet boundary conditions

�
@t u C Lu � ku C f D 0 in D;

u D g on ft D T; x 2 NDT g Sf0 < t < T; x 2 @Dt g;
(11)

where L is the infinitesimal generator of X . Under our assumptions, there is a
unique classical C 1;2.D/ solution to (11), which is in the class H1C
 . ND/: in
particular, the gradient rxu exists and is Hölder-continuous up to the boundary.
We have

u.0; x/ D Ex

�
g.	 ^ T; X	^T /Z	^T C

Z 	^T

0

Zsf .s; Xs/ds
�
:

Other values u.t; x/ (0 < t < T ) are obtained by starting the diffusion at time t .

Time discretization and Euler scheme. The time step is denoted by � D T=m > 0

(m 2 N
�) and the discretization times are .ti D i�/i�0 . For t � 0, define '.t/ D ti

for ti � t < tiC1 and introduce

X�
0 D x; X�

tiC1
D X�

ti
C b.ti ; X�

ti
/� C �.ti ; X�

ti
/.WtiC1

� Wti /: (12)

2 Boundary Sensitivity

In this section, we analyse the sensitivity of

ExŒg.	 ^ T; X	^T /Z	^T C
Z 	^T

0

Zsf .s; Xs/ds�

w.r.t. boundary perturbations.

Background results. In the one-dimensional time-homogenous case with f; k 	 0

and g.t; x/ D 1tDT ˚.x/, it corresponds to the investigation of regularity of the
expectation
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Ex.18t�T WXt <U ˚.XT // D
Z U

�1
q.0; xI T; yI U /˚.y/dy

w.r.t. U , assuming for the moment that the density q exists. Let us discuss the
different possible strategies to tackle this regularity issue.

• In the Brownian case, the reflection principle gives access to the explicit form of
the density q of the killed process.

• To allow non-constant coefficients, one could go back to the Brownian motion
using a Lamperti and a Girsanov transform: this approach has been developed by
Pauwels [27]. He obtains a representation of the density q using expectations of
Bessel bridges. However, the differentiation of this representation w.r.t. U seems
to be delicate.

• A direct application of Malliavin calculus [26] is not possible, since the
maximum of a random process is usually not very smooth in Malliavin sense.
In [11], Cattiaux applies specific stochastic perturbations to prove the regularity
of q.t; xI T; yI U / w.r.t. all variables except U .

On the other hand, from the PDE point of view, computing the boundary sensitivity
is a very standard issue which dates back to Hadamard, at the beginning of
the twentieth century. Nowadays, it is motivated by issues in shape optimization
of elastic structures, see [1] for instance. However, in these applications, we
mainly consider stationary problems (elliptic PDEs) or heat equations with constant
coefficients. It has justified in [13] the development of results in a wider framework.

General sensitivity results. We apply spatial perturbations to the domain, as
follows. For " 2 R and � 2 C 1;2.Œ0; T � �R

d ;Rd /, we define the perturbed domain
in the direction � by

D�
t D fx W x C "�.t; x/ 2 Dt g:

We denote the new exit time by

	" WD inffs > 0 W Xs … D�
s g:

The main result is

Theorem 1. [13, Theorem 2.2] For x 2 D0, the mapping

J W " 7! Ex

�
g.	" ^ T ; X	"^T /Z	"^T C

Z 	"^T

0

Zsf .s; Xs/ds
�

is differentiable at " D 0 and

@"J."/
ˇ
ˇ
"D0

D Ex Œ1	�T Z	.@nu � @ng/Œn � ��.	; X	/� ;

where we write @n for the normal derivative.
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Note that the derivative above depends only on the normal component of �. In terms
of approximation, the above differentiation result writes

Ex

�
g.	" ^ T ;X	"^T /Z	"^T C

Z 	"^T

0

Zsf .s; Xs/ds
�

D Ex

�
g.	 ^ T ; X	^T /Z	^T C

Z 	^T

0

Zsf .s; Xs/ds
�

C "Ex Œ1	�T Z	.@nu � @ng/Œn � ��.	; X	 /� C o."/: (13)

SKETCH OF PROOF. Of course, a pathwise differentiation of 	" w.r.t. " is impossible.
The trick is to transfer the domain perturbation to a process perturbation, which is
more convenient for using stochastic tools. Namely, if we define

X�
s WD Xs C ��.s; Xs/; 	� WD inffs > 0 W X�

s … Dsg;

we easily justify that X� converges uniformly to X as � ! 0 and that 	� D 	�

converges a.s. towards 	 (under uniform ellipticity condition).
To complete the proof, assume for simplicity f; k 	 0. Then, decompose the

difference
J."/ � J.0/ D �1;� C �2;� C �3;� C �4;�;

where

�1;" D Ex

�
g.	" ^ T; ŒId C "�.	" ^ T; :/��1X"

	"^T /
� � Ex

�
g.	" ^ T; X"

	"^T /
�
;

�2;" D Ex

�
g.	" ^ T; X"

	"^T / � u.	" ^ 	 ^ T; X"
	"^	^T /

�
;

�3;" D Ex

�
u.	" ^ 	 ^ T; X"

	"^	^T / � u.	" ^ 	 ^ T; X	"^	^T /
�
;

�4;" D Ex

�
u.	" ^ 	 ^ T; X	"^	^T /

� � u.0; x/:

The first term divided by " readily converges to �ExŒ1	�T rg �.	; X	/�. Simply
using the expression of X", we prove that �3;"=" converge to ExŒ1	�T ru �.	; X	/�.
The fourth term is equal to 0, due to the martingale property s 7! u.s; Xs/ up to the
exit time 	 . The second term divided by " does not give any contribution at the limit,
which is more involved to justify. Since u D g coincide on the boundary @Dt , only
the normal component of r.u � g/ remain. ut

Going back to the introduction, the application of this result to (4) gives

c2.T; X; U; ˚/ D �Ex.1	�T u0
x.	; U //: (14)

The boundary sensitivity analysis can be extended also to reflected diffusion
processes (connected to PDE with Neuman conditions). For the applications of these
boundary sensitivities, we refer the reader to [13].
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3 Discretization Error

To the Euler scheme defined in (12), we naturally associate its discrete exit time
	� WD inffti > 0 W X�

ti
… Dti g. We approximate the functional

V	 WD g.	 ^ T; X	^T /Z	^T C
Z 	^T

0

Zsf .s; Xs/ ds

by

V �
	� WD g.	� ^ T; X�

	�^T
/Z�

	�^T
C

Z 	�^T

0

Z�
'.s/f .'.s/; X�

'.s//ds

with
Z�

t D e
� R t

0 k.'.r/;X�
'.r//dr

:

Note that in V �
	� , on f	� � T g g is a.s. not evaluated on the side part

S
0�t�T ftg �

@Dt of the boundary. Although this approximation seems to be coarse, it does not
affect the convergence rate and really reduces the computational cost with respect
to the alternative that would consist in taking the projection on @D.

If the process X can be exactly simulated at times .ti /i , of course we should do
so. However, we can show [21] that the main error term is due to the use of the
discrete exit time: indeed, replacing X by X� yields weak errors of magnitude �

instead of
p

�.
Now we state a first result, regarding the decomposition of the weak error

ExŒV �
	� � V	 �; (15)

using the overshoot when the process exits from D at time 	� � T :

F �.	�; X�
	�/: (16)

Since F.t; x/ > 0 for x 2 Dt , the discrete-time process .F �.ti ; X�
ti

//i�0 is equal
to 0 before time 	�, and then it is equal to d.X�

	�; @D	� / (provided that it is smaller
than r0, which occurs with very high probability): this justifies the label of overshoot
for (16).

Theorem 2. [21, Theorem 6] We have

ExŒV �
	� � V	 � D Ex.1	��T Z�

	� .@nu � @ng/.	�; �@D
	�

.X�
	�//F �.	�; X�

	� // C o.
p

�/:

Because the increments of X� behave like
p

�, we can formally obtain that
F �.	�; X�

	�/ is of order
p

� in Lp . This heuristics is fully justified in [21,
Proposition 2]. The first error decomposition of the above type appears in [16].
It has been leveraged in [19] to prove lower and upper bounds for the above weak
error. But the full first-order expansion requires the additional knowledge of the



Asymptotic Equivalence Between Boundary Perturbations 89

asymptotic distribution of the renormalized overshoot �� 1
2 F �.	�; X�

	�/. This is
the purpose of the following result.

Theorem 3. [21, Theorem 3] Let h be a continuous function with compact support.
For all t 2 Œ0; T �; x 2 D0; y � 0, we have

lim
�!0

ExŒ1	��t Z
�
	�h.X�

	�/1F �.	�;X�

	� /�y
p

�� D

Ex

�
1	�tZ	 h.X	/

�
1 � H.y=jrF�.	; X	/j/��

with
H.y/ WD .E0Œs	C �/�1

Z y

0

P0Œs	C > z�d z;

s0 WD 0 and

8n � 1; sn WD
nX

iD1

Gi ;

the Gi being i.i.d. standard centered normal variables, 	C WD inffn � 0 W sn > 0g.

In other words, .	�; X�
	�; ��1=2F �.	�; X�

	�// weakly converges to
.	; X	 ; jrF�.	; X	/jY / where Y is a random variable independent of .	; X	/,
and which cumulative function is equal to H . This is a non-trivial generalization
of Siegmund results [29]. Actually, Y has the asymptotic law of the renormalized
Brownian overshoot in dimension 1. To complete our discrete time error analysis,
in view of Theorems 2 and 3 we need to compute the mean of Y : we set

c0 WD E.Y / D E0Œs
2
	C �

2E0Œs	C �
:

The value of c0 given in (2) is obtained by [29], see also more recently [12].
The proof of Theorem 3 is very technical: it consists in showing that essentially,

the phenomenon inherits from the Brownian behavior. This follows from two facts:
X� locally behaves like a scaled Brownian motion and the boundary is locally flat.

Using an additional uniform integrability property of the renormalized overshoot,
we can pass to the limit in Theorem 2 to obtain

Theorem 4. [21, Theorem 4] For x 2 D0, the discrete time error can be expanded
at first order w.r.t.

p
�:

ExŒV �
	� � V	 � D c0

p
�Ex.1	�T Z	.@nu � @ng/.	; X	/jrF�.	; X	/j/ C o.

p
�/:

Unfortunately, the remainder term is presumably not uniform in x (some particular
behavior occurs for x that are close to the boundary @D0 at a distance of order

p
�);

this is discussed in [18].
Going back to the introduction, applying this result to (3) gives

c1.T; X; U; ˚/ D �c0Ex.1	�T u0
x.	; X	/�/ D c0�c2.T; X; U; ˚/

by using (14); we have just recovered the identity (5).
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Comparing (13) and Theorem 4, observe that both expansions can be perfectly
matched by adjusting " and � according to � and � : this is the so-called asymptotic
equivalence between boundary perturbation and discrete time error. This is the
starting point to design an improved scheme for simulating stopped diffusion
processes.

4 Boundary Correction for Simulating Stopped Diffusion
Process

Gathering together the main results of two previous sections (and omitting technical
details) leads to the following numerical scheme, which is simple and very efficient
compared to existing methods. We propose to stop the Euler scheme at its exit of
a smaller domain in order to compensate the underestimation of exit time and to
achieve an error of order o.

p
�/. The smaller domain is defined by its time-section

D�
t D fx 2 Dt W d.x; @Dt / > c0

p
�jn��.t; x/jg

where n.t; x/ is the inward normal vector at the closest point to x on the boundary
@Dt .5 Thus, the associated exit time of the Euler scheme is given by

O	� D inffti > 0 W X�
ti

62 D�
ti

g � 	�:

It should be noticed that the simulation of O	� is as easy and as quick as that of 	�,
which is a major advantage. Then, the functional V	 is approximated by

V �
O	� D g. O	� ^ T; X�

O	�^T
/Z�

O	�^T
C

Z O	�^T

0

Z�
'.s/f .'.s/; X�

'.s//ds:

Theorem 5. [21, Theorem 5] For x 2 D0, we have

ExŒV �
O	� � V	 � D o.

p
�/:

Any other boundary correction would have led to an error of magnitude
p

�, instead
of o.

p
�/.

So far, we have exposed the result for problems defined within a finite time
horizon T , but theoretical results extend to stationary problems as well (see
[21, Theorem 18]). We complete this presentation by giving a numerical exam-
ple borrowed to [21], in the infinite horizon situation (elliptic PDE). We take
d D d 0 D 3,

5The closest point to x may not be unique for points x far from @Dt . But since the above definition
of D�

t involves only points close to the boundary, this does not make any difference.
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Table 1 Supremum of the
absolute error for the Euler
scheme (relative error in % in
parenthesis).

� Without correction In the corrected domain

0.1 0.169 (199%) 0.0220 (24.4%)
0.05 0.114 (133%) 0.0115 (13.1%)
0.01 0.0471 (54.7%) 0.0026 (2.98%)

b.x/ D .x2 x3 x1/
�;

�.x/ D

0

BB
@

.1 C jx3j/1=2 0 0

. 1
2
.1 C jx1j/1=2 . 3

4
.1 C jx1j//1=2 0

0 1
2
.1 C jx2j/1=2 . 3

4
.1 C jx2j//1=2

1

CC
A

and D D fx 2 R
3 W jxj < 2g. Taking k 	 0,

g.x/ D x1x2x3

and

�f .x/ Dx2
2x3 C x2

3x1 C x2
1x2 C 1

2
Œx3.1 C jx1j/1=2.1 C jx3j/1=2

C x1

�
3

4

�1=2

.1 C jx1j/1=2.1 C jx2j/1=2�;

we easily check that the solution is u.x/ D x1x2x3. For the initial points x, we
take .xi

0/1�i�3 2 f�0:7; �0:3; 0:3; 0:7g. In Table 1, we report the supremum over
the previous grid points of the absolute value of the absolute and relative errors for
time step � 2 f0:01; 0:05; 0:1g. The number of Monte Carlo simulations are equal
to 106, so that the width of the 95% confidence interval is about 2 � 10�3.

It is clear that appropriately shifting the boundary much reduces the simulation
bias. In [18] other tests related to option pricing are presented: they confirm the
efficiency of this scheme.
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Stochastic Approximation of Functions
and Applications

Stefan Heinrich

Abstract We survey recent results on the approximation of functions from Sobolev
spaces by stochastic linear algorithms based on function values. The error is
measured in various Sobolev norms, including positive and negative degree of
smoothness. We also prove some new, related results concerning integration over
Lipschitz domains, integration with variable weights, and study tractability of
generalized versions of indefinite integration and discrepancy.

1 Introduction and Preliminaries

In this paper we survey and discuss recent results from [5–8] and predecessors
thereof, from a unifying point of view of approximation of functions by linear
algorithms based on function values. The functions belong to a certain Sobolev
space and the error is measured in the norm of another Sobolev space. The emphasis
lies on stochastic approximation, but we also include the deterministic counterparts.
We discuss upper and lower bounds, hence the complexity of approximation, and
compare the deterministic and randomized setting. The algorithms that reach the
optimal rates are explained in detail.

The paper also contains a number of new results which are related to the known
ones surveyed here. This includes the optimal order of the error of randomized inte-
gration of functions from Sobolev classes over general bounded Lipschitz domains,
weighted integration with variable weights from Sobolev classes, approximation in
certain spaces of functions with dominating mixed derivatives, and a result on the
dimension-dependence (tractability) of generalized versions of indefinite integration
and discrepancy.
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Let d 2 N WD f1; 2; : : : g, N0 WD N [ f0g, let K stand for the field of reals R

or complex numbers C. We always consider K-valued functions and linear spaces
over K, with K being the same for all the spaces involved. For a Banach space X
the unit ball fx 2 X W kxk � 1g is denoted by BX and the dual space by X�.
Given another Banach space Y , the space of bounded linear operators from X to
Y is denoted by L .X; Y /. Throughout the paper log means log2. Furthermore, we
often use the same symbol c; c1; : : : for possibly different positive constants, also
when they appear in a sequence of relations.

Let .G;G ; �/ be a measure space. For 1 � p � 1, let Lp.G;�/ be the space of
K-valued p-integrable functions, equipped with the usual norm

kf kLp.G;�/ D
�Z

G

jf .x/jpd�.x/
�1=p

if p < 1, and
kf kL1.G;�/ D ess supx2Gjf .x/j:

Let Q � R
d be a bounded Lipschitz domain, i.e., for d D 1 a finite union of

bounded open intervals with disjoint closure, and for d � 2 a bounded open set with
locally Lipschitz boundary. If � is the Lebesgue measure on Q, we write Lp.Q/
instead of Lp.Q;�/. Let C. NQ/ denote the space of continuous functions on the
closure NQ of Q, equipped with the supremum norm. For r 2 N0 and 1 � p � 1
we introduce the Sobolev space

W r
p .Q/ D ff 2 Lp.Q/ W D˛f 2 Lp.Q/; j˛j � rg;

where ˛ D .˛1; : : : ; ˛d / 2 N
d
0 , j˛j WD Pd

jD1 ˛j , andD˛f is the generalized partial
derivative. The norm on W r

p .Q/ is defined as

kf kW r
p .Q/

D
0
@X

j˛j�r
kD˛f kpLp.Q/

1
A
1=p

if p < 1, and
kf kW r

1
.Q/ D max

j˛j�r
kD˛f kL1.Q/:

Observe that for r D 0, W 0
p .Q/ is just Lp.Q/.

For basic notions concerning the randomized setting of information-based
complexity – the framework we use here – we refer to [4, 14, 20]. The particular
notation applied here can be found in [6].

First we consider deterministic algorithms. Let G be a nonempty set, let F .G/

denote the linear space of all K-valued functions on G and let Y be a Banach space.
Given a nonempty subset F � F .G/, the class of linear deterministic algorithms
A det
n .F; Y / consists of all linear operators from F .G/ to Y of the form
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Af D
nX
iD1

f .xi / i

with xi 2 G and  i 2 Y . Let S W F ! Y be any mapping. The error of A 2
A det
n .F; Y / as an approximation of S is defined as

e.S;A; F; Y / D sup
f 2F

kSf � Af kY

and the deterministic n-th minimal error as

edet
n .S; F; Y / D inf

A2A det
n .F;Y /

e.S;A; F; Y /:

Hence, no deterministic linear algorithm that uses at most n function values can
provide a smaller error than edet

n .S; F; Y /. The quantities edet
n .S; F; Y / were also

called linear sampling numbers [15].
Next we introduce linear randomized sampling algorithms. This is a little more

technical since we want these algorithms to act also on spaces of equivalence classes
of functions, where function values itself may not be defined. Here we let, in
addition to the above, G be a �-algebra of subsets ofG, � a nonnegative,�-additive,
�-finite measure on .G;G / with �.G/ > 0. Let F � L0.G;�/ be a nonempty
subset, where L0.G;�/ is the linear space of equivalence classes of G -measurable
functions on G, with the usual equivalence of being equal except on a set of
�-measure zero.

For n 2 N we consider the following class of randomized linear algorithms from
F to Y . An element

A 2 A ran
n .F; Y /

is a tuple
A D ..˝;˙;P/; .A!/!2˝/;

where .˝;˙;P/ is a probability space,

A! 2 A det
n .F .G/; Y / .! 2 ˝/;

thus

A!f D
nX
iD1

f .xi!/ i! .! 2 ˝/;

and the following two properties hold:

1. (Consistency) If f0 and f1 are representatives of the same class f 2 F , then

A!f0 D A!f1 .P � almost surely/: (1)
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2. (Measurability) For each f 2 F and each representative f0 of f , the mapping

! 2 ˝ ! A!f0 2 Y is ˙-to-Borel measurable (2)

and essentially separably valued, i.e., there is a separable subspace Y0 � Y such
that

A!f0 2 Y0 .P � almost surely/: (3)

Let again S W F ! Y be any mapping. The error of an algorithm A 2 A ran
n .F; Y /

as an approximation to S on F is defined as

e.S;A; F; Y / D sup
f 2F

E kSf � A!f kY :

The randomized n-th minimal error of S is defined as

eran
n .S; F; Y / D inf

A2A ran
n .F;Y /

e.S;A; F; Y /:

It follows that no randomized linear algorithm that uses at most n function values
can have a smaller error than eran

n .S; F; Y /. Note that the definition involves the
first moment. This way lower bounds have the strongest form, because respective
bounds for higher moments follow by Hölder’s inequality. Upper bounds for
concrete algorithms are stated in a form which includes possible estimates of higher
moments.

We need some notions and facts from probability theory in Banach spaces. Let
1 � p � 2. An operator T 2 L .X; Y / is said to be of type p if there is a constant
c > 0 such that for all n 2 N and all sequences .gi /niD1 � X ,

E

���
nX
iD1

"iTgi

���p � cp
nX
iD1

kgikp; (4)

where ."i / is a sequence of independent random variables on some probability space
.˝;˙;P/ with Pf"i D 1g D Pf"i D �1g D 1=2. The type p constant �p.T / of
the operator T is defined to be the smallest c > 0 such that (4) holds. We put
�p.T / D 1 if T is not of type p. Each operator is of type 1. A Banach space
X is of type p iff the identity operator of X is of type p. We write �p.X/ for the
type p constant of the identity operator of X . For 1 � p < 1 the spaces `np are
uniformly of type min.p; 2/, meaning that there is a constant c.p/ > 0 such that for
all n 2 N we have �min.p;2/.`

n
p/ � c.p/. For p D 1 there is a constant c.1/ > 0

such that �2.`n1/ � c.1/.lognC 1/1=2 for all n 2 N. We refer to [12], Chap. 9 for
definitions and basic facts on the type of Banach spaces, from which the operator
analogues easily follow.

We will use the following result, see [8], Lemma 3.2. (the Banach space case of
which with p1 D p is contained in Proposition 9.11 of [12]).
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Lemma 1. Let 1 � p � 2, p � p1 < 1. Then there is a constant
c D c.p; p1/ > 0 such that for all Banach spaces X; Y , each operator T 2
L .X; Y / of type p, each n 2 N and each sequence of independent, mean zero
X -valued random variables .�i /niD1 with E k�ikp1 < 1 .1 � i � n/ the following
holds:  

E

���
nX
iD1

T �i

���p1
!1=p1

� c�p.T /

 
nX
iD1

�
E k�ikp1

�p=p1!1=p
:

2 Approximation of the Embedding J W W r
p .Q/ ! W s

q .Q/

with s � 0

In this section we consider approximation of the embedding J W W r
p .Q/ ! W s

q .Q/.
By the Sobolev embedding theorem, [1], Theorem 5.4, J is continuous if

1 � q < 1 and r�s
d

�
�
1
p

� 1
q

�
C

or
q D 1; 1 < p < 1; and r�s

d
> 1

p

or
q D 1; p 2 f1;1g; and r�s

d
� 1

p
:

9>>>>>>=
>>>>>>;

(5)

We shall study edet
n .J;BW r

p .Q/
;W s

p .Q// and eran
n .J;BW r

p .Q/
;W s

p .Q//, so we want
to approximate functions from W r

p .Q/ in the norm of W s
q .Q/ by deterministic or

randomized linear sampling algorithms based on n function values.
We also need the so-called embedding condition, ensuring that W r

p .Q/ is
continuously embedded into C. NQ/ (meaning that each equivalence class contains
a continuous representative). This holds if and only if

p D 1 and r=d � 1

or
1 < p � 1 and r=d > 1=p;

9=
; (6)

see [1], Chap. 5. In these cases function values at points of Q are well-defined and
deterministic algorithms as introduced in Sect. 1 make sense.

In its full generality, the following was shown in [6], Theorems 3.1 and 4.2.

Theorem 1. Let r; s 2 N0, 1 � p; q � 1, let Q be a bounded Lipschitz domain
and assume that (5) is satisfied. Then there are constants c1�6 > 0 such that for all
n 2 N the following holds. In the deterministic setting, if the embedding condition
(6) is fulfilled, then

c1n
� r�s

d C
�
1
p � 1

q

�
C � edet

n .J;BW r
p .Q/

;W s
q .Q// � c2n

� r�s
d C

�
1
p� 1

q

�
C ;
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and if the embedding condition is not fulfilled, then

c3 � edet
n .J;BW r

p .Q/
\ C. NQ/;W s

q .Q// � c4:

In the randomized setting we have

c5n
� r�s

d C
�
1
p� 1

q

�
C � eran

n .J;BW r
p .Q/

;W s
q .Q// � c6n

� r�s
d C

�
1
p � 1

q

�
C ;

independently of the embedding condition.

To explain the occurring exponent in a few words: we can consider n�.r�s/=d as a
‘reward’ for decay in smoothness by going fromW r

p .Q/ to W s
q .Q/, while n1=p�1=q

is the ‘price’ we have to pay for the improvement of summability from p to q if
p < q.

In various particular aspects and special cases Theorem 1 has many authors.

1. Deterministic setting, the embedding condition (6) holds:
For simple domains as QD .0; 1/d and sD 0, the bounds are classical approxi-
mation theory. For Q D .0; 1/d and s > 0, see Vybı́ral [22]. The general case
of Lipschitz domains for s D 0 is due to Novak and Triebel [15]. The case of
Lipschitz domains for s > 0 was obtained in [6], solving Problem 18 posed by
Novak and Woźniakowski in [16].

2. Deterministic setting, the embedding condition (6) does not hold:
This means, function values are not well-defined, so, formally, deterministic
algorithms make no sense. However, we may just slightly restrict the class by
considering BW r

p .Q/
\C. NQ/ to make function values well-defined. Note that by

considering BW r
p .Q/

\ C. NQ/ we do not impose a C. NQ/ norm restriction, we
only demand that the function is continuous, but it can have an arbitrary large
C. NQ/ norm. Such functions are dense in BW r

p .Q/
in the norm ofW r

p .Q/ (see [1],
Theorem 3.18).

Although function values are now well-defined, the result above shows that
no deterministic algorithm can have an error converging to zero. This result was
already proved in [5] for the cube.

3. Randomized setting, the embedding condition (6) holds:
The upper bound follows from the deterministic setting. The lower bound was
shown by Wasilkowski in [23] (p D q D 1), Novak [14] (1 � p � 1; q D 1),
and Mathé [13] (1 � p; q � 1). It follows that in the case of the embedding
condition deterministic and stochastic algorithms have the same optimal rate,
that is, randomization does not provide a speedup.

4. Randomized setting, the embedding condition (6) does not hold:
This was shown in [6]. Comparing deterministic and randomized setting we see
that in this case randomization can give a speedup of up to n�ˇ for any ˇ with
0 < ˇ < 1. Indeed, for p D q D 1, s D 0, the maximal exponent of the speedup
is r=d , which can be arbitrarily close to 1.
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Let us describe the algorithm behind Theorem 1, following essentially the
exposition in [6]. Fix parameters � 2 N0, � � r � 1, and 0 � ı < 1, let
P� denote the space of polynomials on R

d of degree not exceeding �, and let
P W F .Rd / ! F .Rd / be the d -fold tensor product of Lagrange interpolation
on Œ0; 1 � ı� of degree �, hence

Pf D
�X

jD1
f .yj / j ;

with .yj /�jD1 2 Œ0; 1 � ı�d and . j /�jD1 the respective Lagrange polynomials.
We have

Pg D g .g 2 P�/: (7)

Let 	 D 	.!/ .! 2 ˝/ be a uniformly distributed on Œ0; 1�d random variable
on a complete probability space .˝;˙;P/. For ! 2 ˝ define the operator P! W
F .Œ0; 1�d / ! F .Rd / by setting for f 2 F .Œ0; 1�d /

.P!f / .x/ D
�X

jD1
f .yj C ı	.!//  j .x � ı	.!// .x 2 R

d /: (8)

Note that if ı D 0, then P! is deterministic, i.e., does not depend on !. It follows
from (7) that

P!g D g .g 2 P�; ! 2 ˝/: (9)

We includeQ into any axis-parallel cube QQ,

Q � QQ D x0 C Œ0; b�d ;

and partition QQ into closed subcubes of sidelength b2�l and of disjoint interior

QQ D
2dl[
iD1

Qli :

For l 2 N0 we define the scaling operators Eli ; Rli W F .Rd / ! F .Rd / for
f 2 F .Rd / and x 2 R

d by

.Elif /.x/ D f .xli C b2�lx/

and
.Rlif /.x/ D f .b�12l .x � xli //;

where xli denote the point in Qli with minimal coordinates. Note that Eli scales
functions with support in Qli to functions with support in Œ0; 1�d , and Rli is the
inverse of Eli .
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Define

Il D fi W 1 � i � 2dl ; Qli � Qg;

the set if indices of cubes completely contained in Q, and

Kl D fk W 1 � k � 2dl ; Qlk \Q ¤ ;g;
the set of indices of cubes intersectingQ. So we have

[
i2Il

Qli � Q �
[
k2Kl

Qlk: (10)

Let B.x; �/ denote the closed and B0.x; �/ the open Euclidean ball of radius �
around x 2 R

d . Based on the geometry of the Lipschitz property ofQ the following
was shown in [7], Lemma 3.1, see also [6], Lemma 3.2.

Lemma 2. There are constants a > b
p
d and l0 2 N0 such that for all l � l0

[
k2Kl

Qlk �
[
i2Il

B.xli ; a2
�l /:

Using this lemma one can construct a suitable partition of unity on Q. Let � 2 N0,
� � s, and denote the space of functions possessing continuous, bounded partial
derivatives up to order � onRd byC�.Rd /. Let � 2 C�.Rd / be such that supp .�/ �
B0.0; 2a=b/, � � 0, and � > 0 on B.0; a=b/. We can choose � to be a polynomial
on some ball around 0, for example

�.x/ D

8̂̂
<
ˆ̂:

 
9a2

4b2
�

dX
iD1

x2i

!�C1
if jxj � 3a

2b

0 otherwise.

By Lemma 2, there exists a constant c > 0 such that for l � l0

X
j2Il

Rlj �.x/ � c .x 2 Q/:

Define the functions �li (i 2 Il , l � l0) on Q by

�li .x/ D Rli�.x/P
j2Il

Rlj �.x/
.x 2 Q/:

These functions satisfy

�li .x/ D 0 .x 2 Q n B.xli ; a2�lC1//
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and X
i2Il

�li .x/ D 1 .x 2 Q/:

Now we define for l � l0 and ! 2 ˝ the operator P .0/

l;! W F .Q/ ! C�.Q/ by

P
.0/

l;! f D
X
i2Il

�li .RliP!Elif /jQ .f 2 F .Q//:

Setting for l � l0, i 2 Il , 1 � j � �, and ! 2 ˝

ylij! D xli C b 2�l .yj C ı	.!// (11)

and
 lij!.x/ D  j .b

�12l .x � xli / � ı	.!//; (12)

we can finally write P .0/

l;! f as

P
.0/

l;! f D
X
i2Il

�X
jD1

f .ylij!/�li lij!:

This completes the description of the algorithm leading to the upper bound in
Theorem 1.

The algorithm above uses the partition of unity for smoothing the local
approximations. In the case s D 0 the target space is Lq.Q/ and we do not
need smoothing. In view of the application to integration given in the next section,
we want to discuss this case in more detail and introduce a simpler algorithm. Using
Lemma 2, we choose for l � l0 any partition

Kl D
[
i2Il

Kli (13)

with

i 2 Kli .i 2 Il /; (14)

Qlk � B.xli ; a2
�l / .k 2 Kli /; (15)

Kli \ Klj D ; .i; j 2 Il ; i ¤ j /: (16)

In other words, each cube Qlk which intersects Q is associated with some cube
Qli which is not far fromQlk and lies completely inside Q. The union of all cubes
associated with Qli is denoted by

QQli D
[
k2Kli

Qlk: (17)
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Now we proceed as follows. We apply approximating operators locally to theQli

with i 2 Il and use the result (which is a polynomial defined on all of Rd ) for all
the associated cubes Qlk with k 2 Kli , that is, for the region QQli . For l � l0 and
! 2 ˝ we define P .1/

l;! W F .Q/ ! Lq.Q/ by

P
.1/

l;! f D
X
i2Il


 QQli\QRliP!Elif .f 2 F .Q//; (18)

which we can write as

P
.1/

l;! f D
X
i2Il

�X
jD1

f .ylij!/
 QQli\Q lij!; (19)

with the ylij! and  lij! given by (11) and (12). Consistency (1) of
�
P
.1/

l;!

�
!2˝ is

readily checked. As to measurability, note that we can represent

 lij!.x/ D  j .b
�12l .x � xli /� ı	.!//

D
MX
mD1

ajm.ı	.!//'m.b
�12l .x � xli // (20)

with suitable M 2 N and polynomials ajm; 'm .1 � j � �; 1 � m � M/, from
which (2) and (3) directly follow. So we have

�
P
.1/

l;!

�
!2˝ 2 A ran

nl
.W r

p .Q/;Lq.Q// with nl D �jIl j: (21)

The following result generalizes Proposition 1 of [5] by combining the approach
of Proposition 3.3 in [6] with that of Lemma 3.2 in [7]. It will be used for variance
reduction in Sect. 3.

Proposition 1. Let d 2 N; r 2 N0, 1 � p; q � 1, let Q be a bounded Lipschitz
domain, and assume that (5) is satisfied with s D 0. Let .P .1/

l;! /!2˝ for l � l0 be
given by (19), with parameters � 2 N0, � � r � 1 and 0 � ı < 1. Moreover, if the
embedding condition (6) does not hold, we assume ı > 0. Then there is a constant
c > 0 such that for all l � l0 and f 2 W r

p .Q/ the following hold.
If q < 1, then

.E kf � P .1/

l;! f kqLq.Q//1=q � c 2�rlCmax.1=p�1=q;0/d lkf kW r
p .Q/

; (22)

and if q D 1, then

ess sup!2˝kf � P .1/

l;! f kL1.Q/ � c 2�rlCdl=pkf kW r
p .Q/

: (23)
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Proof. We put B D B0.0; 2a=b/. By assumption, (5) holds for s D 0, so we have

kf kLq.B/ � ckf kW r
p .B/

.f 2 W r
p .B//: (24)

Assume q < 1. First we show that for f 2 W r
p .B/

�
E kP!f kqLq.B/

�1=q � ckf kW r
p .B/

: (25)

Indeed, by (8) we have

�
E kP!f kqLq.B/

�1=q

�
0
@E

 
�X

jD1
jf .yj C ı	.!//jk j . � � ı	.!//kLq.B/

!q1
A
1=q

� c

�X
jD1

.E jf .yj C ı	.!//jq/1=q: (26)

If ı > 0, it follows from (24) that

�X
jD1

.E jf .yj C ı	.!//jq/1=q D
�X

jD1

�
ı�d

Z
Œ0;ı�d

jf .yj C z/jqd z

�1=q

� ckf kLq.B/ � ckf kW r
p .B/

;

which together with (26) gives (25). If ı D 0, which, by assumption, is only
admitted if the embedding condition (6) holds, we have

�X
jD1

.E jf .yj C ı	.!//jq/1=q D
�X

jD1
jf .yj /j � �kf kC. NB/ � ckf kW r

p .B/
;

which combined with (26) again implies (25). Using Theorem 3.1.1 of [2], it follows
that there is a constant c > 0 such that for all f 2 W r

p .B/

inf
g2P�

kf � gkW r
p .B/

� cjf jr;p;B ; (27)

where

jf jr;p;B D
0
@X

j˛jDr
kD˛f kpLp.B/

1
A
1=p
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if p < 1 and
jf jr;1;B D max

j˛jDr
kD˛f kL1.B/:

We get from (9), (24), (25), and (27)

.E kf � P!f kqLq.B//1=q D inf
g2P�

�
E k.f � g/ � P!.f � g/kqLq.B/

�1=q

� c inf
g2P�

kf � gkW r
p .B/

� cjf jr;p;B : (28)

Now let f 2 W r
p .Q/ and let Qf 2 W r

p .R
d / be an extension of f with

k Qf kW r
p .R

d / � ckf kW r
p .Q/

(see [19]). Then (10), (13), (16), and (17) imply

.E kf � P
.1/

l;! f kqLq.Q//1=q

D
0
@E ��� X

i2Il


 QQli\Q.f � RliP!Elif /
���q
Lq.Q/

1
A
1=q

D
0
@X
i2Il

E kf � RliP!Elif kq
Lq. QQli\Q/

1
A
1=q

: (29)

Furthermore, from (15) and (28),

�
E kf �RliP!Elif kq

Lq. QQli\Q/
�1=q

�
�
E k Qf �RliP!Eli Qf kq

Lq.B.xli ;a2�l //

�1=q

D bd=q2�dl=q
�
E kEli Qf � P!Eli Qf kqLq.B/

�1=q

� c 2�dl=qjEli Qf jr;p;B : (30)

Using Hölder’s inequality, we get for p < 1
0
@2�dl X

i2Il

jEli Qf jqr;p;B

1
A
1=q

� c 2max.1=p�1=q;0/d l
0
@2�dl X

i2Il

jEli Qf jpr;p;B

1
A
1=p
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� c 2�rlCmax.1=p�1=q;0/d l
0
@X
i2Il

j Qf jp
r;p;B.xli ;a2�l /

1
A
1=p

� c 2�rlCmax.1=p�1=q;0/d l j Qf jr;p;Rd
� c 2�rlCmax.1=p�1=q;0/d lkf kW r

p .Q/
: (31)

The case p D 1 follows in the same way with the respective changes. Joining
(29)–(31) proves (22). For q D 1, relation (23) follows analogously, with the usual
modifications, replacing everywhere .E k � kq/1=q by ess sup!2˝k � k etc. ut

3 Integration Over Lipschitz Domains

Let Q be a bounded Lipschitz domain as in the previous section and let I W
W r
p .Q/ ! K be the integration operator

If D
Z
Q

f .x/dx:

Theorem 2. Let r 2 N0, d 2 N, 1 � p � 1, Np D min.p; 2/. Then there exist
constants c1�6 > 0 such that in the deterministic setting, if the embedding condition
(6) holds, then

c1n
�r=d � edet

n .I;BW r
p .Q/

;K/ � c2n
�r=d ;

and if the embedding condition does not hold, then

c3 � edet
n .I;BW r

p .Q/
\ C. NQ/;K/ � c4:

In the randomized setting we have, independently of the embedding condition,

c5n
�r=d�1C1= Np � eran

n .I;BW r
p .Q/

;K/ � c6n
�r=d�1C1= Np:

In the deterministic case with the embedding condition the upper bound is a direct
consequence of [15], see also [21], Theorem 5.4. It also follows from Proposition 1
by integrating the deterministic approximation for ı D 0 (see (32) and (33) below,
where this appears as part of the variance reduction). The lower bound for general
Lipschitz domains is easily derived from that for the cube, which is well-known,
see [14]. The lower bound in the deterministic case without the embedding condition
follows from the proof of Theorem 5.2 in [7] (the upper bound is trivial, it is just the
boundedness of I ).
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Let us turn to the randomized case. For the cube, this result is due to Novak for
those r; d; p for which W r

p .Q/ is embedded into L2.Q/ (meaning that p � 2 or
(p < 2 ^ r=d � 1=p � 1=2)), see [14], Sect. 2.2.9. The remaining cases were
settled for the cube in [5]. As in the deterministic case, the lower bound for general
Lipschitz domains follows from the known one for the cube, see [14] and [4]. The
extension of the upper bound to general Lipschitz domains is new and we give a
proof here.

We start by introducing a randomized algorithm. Similar to [5], we use an
approximation for variance reduction by separation of the main part, which we
combine here with stratified sampling. We use P .1/

l;!1
for l � l0, see relations (11),

(12), and (19) for its definition, with l0 the constant from Lemma 2. For the purpose
of the present proof we have changed the notation of the underlying probability
space to .˝1;˙1;P1/. Again we assume ı > 0 if the embedding condition (6) does
not hold. For f 2 F .Q/ we have

IP
.1/

l;!1
f D

X
i2Il

�X
jD1

f .ylij!1 /

Z
QQli\Q

 lij!1 .x/dx

D
X
i2Il

�X
jD1

˛lij!1f .ylij!1/ (32)

with

˛lij!1 D
Z

QQli\Q
 lij!1 .x/dx D

X
k2Kli

Z
Qlk\Q

 lij!1 .x/dx: (33)

Observe that for ı > 0, this is a stochastic quadrature, with the only element of
randomness being 	, while for ı D 0 it is deterministic (compare (11) and (12)).

Now let �k D �k.!2/ .k 2 Kl / be independent, uniformly distributed on Qlk

random variables over a complete probability space .˝2;˙2;P2/. Define a stratified
sampling algorithm A

.2/

l;!2
by setting for g 2 F .Q/ and !2 2 ˝2

A
.2/

l;!2
g D bd2�dl X

k2Kl


Qlk\Q.�k.!2//g.�k.!2//;

where we recall that jQlkj D bd2�dl . It follows readily that (1)–(3) hold, so

�
A
.2/

l;!2

�
!22˝2 2 A ran

ml
.Lp.Q/;K/ with ml D jKl j:

Moreover, for g 2 L1.Q/

EA
.2/

l;!2
g D

X
k2Kl

Z
Qlk


Qlk\Q.x/g.x/dx D
Z
Q

g.x/dx:
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First we show an error estimate for A.2/l;!2 . The case p < 2 seems to be new.
Moreover, in the case p > 2 we estimate higher moments than the usual second
moment.

Lemma 3. Let 1 � p � 1, p1 � p, p1 < 1. Then there is a constant c > 0 such
that for l � l0 and g 2 Lp.Q/

�
E !2 jIg � A

.2/

l;!2
gjp1

�1=p1 � c2�.1�1= Np/dlkgkLp.Q/:

Proof. We can assume Np � p1, the other cases follow from Hölder’s inequality.
Setting for k 2 Kl

�k D bd2�dl
Qlk\Q.�k/g.�k/;

we have
A
.2/

l;!2
g � Ig D

X
k2Kl

.�k � E �k/: (34)

From Lemma 1, taking into account that K is of type 2, hence also of type Np, we get 
E

ˇ̌
ˇ X
k2Kl

.�k � E �k/
ˇ̌
ˇp1
!1=p1

� c

 X
k2Kl

�
E j�k � E �kjp1

� Np=p1
!1= Np

� cjKl j1= Np�1=p1
 X
k2Kl

E j�k � E �kjp1
!1=p1

: (35)

Furthermore,

.E j�k � E �kjp1/1=p1 � 2.E j�kjp1/1=p1

D 2.bd2�dl /1�1=p1
�Z

Qlk\Q
jg.x/jp1dx

�1=p1
: (36)

Combining (34)–(36) and using p1 � p, we obtain 
E jA.2/l;!2g � Igjp1

!1=p1

� cjKl j1= Np�1=p1 .bd2�dl /1�1=p1
 Z

Q

jg.x/jp1dx
!1=p1

� c2�.1�1= Np/dlkgkLp.Q/:

ut



110 S. Heinrich

Now we put

.˝;˙;P/ D .˝1;˙1;P1/ � .˝2;˙2;P2/

and define the final algorithm .Al;!/!2˝ for ! D .!1; !2/ and f 2 F .Q/ by
setting

Al;!f D IP
.1/

l;!1
f C A

.2/

l;!2
.f � P .1/

l;!1
f /; (37)

thus, we separated the main part P .1/

l;!1
f , integrated it exactly and applied stratified

sampling to the remaining function f � P
.1/

l;!1
f . Writing this in more detail, we

obtain

Al;!f D
X
i2Il

�X
jD1

˛lij!1f .ylij!1 /

C bd2�dl X
k2Kl


Qlk\Q .�k/
�
f .�k/ � .P .1/

l;!1
f /.�k/

�
:

We have

.P
.1/

l;!1
f /.�k/ D

X
i12Il

X
k12Kli1

�X
jD1

f .yli1j!1/
Qlk1
\Q.�k/ li1j!1.�k/

D
�X

jD1
f .yl.k/j!1/
Qlk\Q.�k/ l.k/j!1.�k/

for almost all !1 2 ˝1, where .k/ is the unique i 2 Il with k 2 Kli .
Consequently,

Al;!f D
X
i2Il

X
k2Kli

 
�X

jD1
f .ylij!1 /

Z
Qlk\Q

 lij!1 .x/dx

C bd2�dl
Qlk\Q.�k/
�
f .�k/�

�X
jD1

f .ylij!1/ lij!1 .�k/
�!
;

with the ylij!1 and  lij!1 given by (11) and (12) and equality holding P-almost
surely. We have

�
Al;!

�
!2˝ 2 A ran

nl
.W r

p .Q/;K/ with nl D �jIl j C jKl j � c2dl ; (38)

which can be checked in a similar way as (21), using (20).
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Proposition 2. Let 1 � p � 1, p1 � p, p1 < 1. Then there is a constant c > 0

such that for l � l0 and f 2 Wp.Q/

.E jIf � Al;!f jp1/1=p1 � c2�rl�.1�1= Np/dlkf kW r
p .Q/

:

Proof. We have

If � Al;!f D I.f � P
.1/

l;!1
f /� A

.2/

l;!2
.f � P .1/

l;!1
f /:

Using Fubini’s theorem, Lemma 3, and Proposition 1 for q D p, we get for p < 1

.E jIf � Al;!f jp1/1=p1

D
�
E !1E !2

ˇ̌̌
I
�
f � P

.1/

l;!1
f
�

� A
.2/

l;!2

�
f � P

.1/

l;!1
f
�ˇ̌̌p1�1=p1

� c2�.1�1= Np/dl
�
E !1

���f � P .1/

l;!1
f
���p1
Lp.Q/

�1=p1

� c2�.1�1= Np/dl
�
E !1

���f � P .1/

l;!1
f
���p
Lp.Q/

�1=p
(39)

� c2�.1�1= Np/dl�rlkf kW r
p .Q/

:

This also holds for p D 1, if we replace in (39)

�
E !1

���f � P .1/

l;!1
f
���p
Lp.Q/

�1=p
by

ess sup!12˝1kf � P
.1/

l;!1
f kL1.Q/, concluding the proof.

ut
Now the upper bound in the randomized case of Theorem 2 is a direct conse-

quence of Proposition 2 and (38).

4 Approximation of Embeddings into Spaces with Negative
Degree of Smoothness

Let r; s 2 N0, 1 � p; q � 1. Let q� be the dual index to q, given by
1=q C 1=q� D 1. Denote by QW s

q�.Q/ the closure in the norm of W s
q�.Q/ of the set

of C1 functions whose support is contained in Q and let U W QW s
q�.Q/ ! W s

q�.Q/

be the identical embedding. We consider two embedding operators

J W W r
p .Q/ ! W s

q�.Q/
�
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given for f 2 W r
p .Q/ by

.Jf /.g/ D
Z
Q

f .x/g.x/dx .g 2 W s
q�.Q//

and
QJ D U �J W W r

p .Q/
J�! W s

q�.Q/
� U�

��! QW s
q�.Q/

�: (40)

We note that by definition, see [1], Sect. 3.11, for 1 < q � 1 and s > 0

QW s
q�.Q/

� D W �s
q .Q/: (41)

Let us formulate conditions, under which J (and hence QJ ) is well-defined and
continuous. First let us state two auxiliary conditions.

r D 0; p D 1; 1 < q < 1; (42)

s D 0; q D 1; 1 < p < 1: (43)

Now J W W r
p .Q/ ! W s

q�.Q/
� is well-defined and continuous if

(42) holds and s
d
> 1

q�
;

or
(43) holds and r

d
> 1

p
;

or

(42) and (43) do not hold, and rCs
d

�
�
1
p

� 1
q

�
C :

9>>>>>>=
>>>>>>;

(44)

This follows from the Sobolev embedding theorem (5), see also [7], Sect. 4.
Next we want to give some motivation why to consider spaces with negative

degree of smoothnessW �s
q .Q/. The spaceW �s

2 .Q/ plays a central role in the theory
of elliptic partial differential equations, in connection with the weak form. Let m 2
N and consider the bilinear form a on QW m

2 .Q/, defined by

a.u; v/ D
X

j˛j;jˇj�m

Z
Q

a˛ˇ.x/D
˛u.x/Dˇv.x/dx .u; v 2 QW m

2 .Q//;

where a˛ˇ 2 C. NQ/. We assume that a is QW m
2 .Q/-elliptic, meaning that

ja.u; v/j � c1kukW m
2 .Q/

kvkW m
2 .Q/

a.u; u/ � c2kuk2W m
2 .Q/
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for u; v 2 QW m
2 .Q/. The weak elliptic problem associated with a is the following.

Given f 2 W �m
2 .Q/, find u 2 QW m

2 .Q/ such that for all v 2 QW m
2 .Q/

a.u; v/ D f .v/: (45)

By ellipticity, the problem has a unique solution S0f 2 QW m
2 .Q/, and

S0 W W �m
2 .Q/ ! QW m

2 .Q/

is an isomorphism. For r 2 N0 we seek to solve the weak problem for f 2 W r
2 .Q/.

The solution operator, that is, the operator, which maps the problem instance f 2
W r
2 .Q/ to the solution u of (45) is

S ell D S0 QJ W W r
2 .Q/

QJ�! W �m
2 .Q/

S0�! QW m
2 .Q/: (46)

Since S0 is an isomorphism, we immediately derive from (46) the connection to
approximation of QJ :

Corollary 1. Let m 2 N. Then there are constants c1�4 > 0 such that

c1e
det
n .

QJ ;BW r
2 .Q/

;W �m
2 .Q// � edet

n .S
ell;BW r

2 .Q/
; QW m

2 .Q//

� c2e
det
n .

QJ ;BW r
2 .Q/

;W �m
2 .Q//

and

c3e
ran
n .

QJ ;BW r
2 .Q/

;W �m
2 .Q// � eran

n .S
ell;BW r

2 .Q/
; QW m

2 .Q//

� c4e
ran
n .

QJ ;BW r
2 .Q/

;W �m
2 .Q//:

We also consider approximation in the more general space W s
q�.Q/

�, because by
(40) upper bounds are stronger, while the lower bound methods from [7] work
equally for both cases QW s

q�.Q/
� and W s

q�.Q/
�.

Moreover, let us also point out an interesting connection to a problem of weighted
integration, not with a fixed weight, but simultaneous integration over Sobolev
classes of weights. We discuss this only briefly, leaving the detailed exploration
open to future research.

First we consider the deterministic case. Let A 2 A det
n .W r

p .Q/;W
s
q�.Q/

�/,

Af D
nX
iD1

f .xi / i ;

with xi 2 Q and  i 2 W s
q�.Q/

� .i D 1; : : : ; n/. We have
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e.J;A;BW r
p .Q/

;W s
q�.Q/

�/

D sup
f 2BW rp .Q/

kJf �Af kW s
q�
.Q/�

D sup
f 2BW rp .Q/

���Jf �
nX
iD1

f .xi / i

���
W s
q�
.Q/�

D sup
f 2BW rp .Q/

sup
w2BW s

q�
.Q/

ˇ̌
ˇ̌
ˇ
Z
Q

f .x/w.x/dx �
nX
iD1

f .xi /. i ;w/

ˇ̌
ˇ̌
ˇ:

This way we approximate the weighted integral
R
Q
f .x/w.x/dx by a quadraturePn

iD1 . i ;w/f .xi /. The quadrature weights depend on the integration weight
w only through n linear functionals, and the error is taken uniformly over the
integrands f and weights w.

In the randomized case we let A 2 A ran
n .W r

p .Q/;W
s
q�.Q/

�/,

A D ..˝;˙;P/; .A!/!2˝/;

A!f D
nX
iD1

f .xi;!/ i;! .! 2 ˝/;

with xi;! 2 Q and  i;! 2 W s
q�.Q/

� .i D 1; : : : ; n; ! 2 ˝/. Then we have

e.J;A;BW r
p .Q/

;W s
q�.Q/

�/

D sup
f 2BW rp .Q/

E kJf � A!f kW s
q�
.Q/�

D sup
f 2BW rp .Q/

E

���Jf �
nX
iD1

f .xi;!/ i;!

���
W s
q�
.Q/�

D sup
f 2BW rp .Q/

E sup
w2BW s

q�
.Q/

ˇ̌
ˇ̌̌Z
Q

f .x/w.x/dx �
nX
iD1

f .xi;!/. i;!;w/

ˇ̌
ˇ̌̌
:

Thus, similar to the deterministic case, we approximate
R
Q
f .x/w.x/dx by a

quadrature, this time a stochastic one, and the quadrature weights depend on the
integration weight w through n random linear functionals. Moreover, observe that
the error criterion is different from the usual one in the randomized setting, namely,
it is uniform over the class of weights.

After these motivations let us state the main results on approximation. In the
deterministic case, we have the following.
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Theorem 3. Let r; s 2 N0, 1 � p; q � 1 and assume that (44) holds. Then there
are constants c1�4 > 0 such that for all n 2 N with n � 2, if the embedding
condition (6) holds, then

c1n
��1 � edet

n .
QJ ;BW r

p .Q/
; QW s

q�.Q/
�/

� edet
n .J;BW r

p .Q/
;W s

q�.Q/
�/ � c2n

��1 .logn/�1 ;

where

�1 D min

�
r C s

d
�
�
1

p
� 1

q

�
C
;
r

d

�
; (47)

�1 D
8<
:
1 if

s

d
D 1

q� ; p D 1; 1 < q < 1;

0 otherwise,
(48)

and if the embedding condition (6) does not hold, we have

c3 � edet
n .

QJ ;BW r
p .Q/

\ C. NQ/; QW s
q�.Q/

�/

� edet
n .J;BW r

p .Q/
\ C. NQ/;W s

q�.Q/
�/ � c4:

The case of the embedding condition is essentially due to Vybı́ral [22], based on
results of Novak and Triebel [15], with the exception of the case s=d D 1=p � 1=q
with 1 � p < q � 1, which was shown in [7]. The result of Theorem 3, for the
case that the embedding condition does not hold, was proved in [7].

To state the next result put Np D min.p; 2/,

� D s

d
�
�
1

p
� 1

q

�
C
; � D 1 � 1

Np ;

�0
2 D

8̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂:

0 if � > �

1 if � D � and p � q < 1
2 � 1= Np if � D � and p < q D 1
2 if � D � and p D q D 1
1 if � D � and p > q

0 if � < � and min.p; q/ < 1
� if � < � and p D q D 1:

(49)

The main approximation result in the randomized case is
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Theorem 4. Let r; s 2 N0, 1 � p; q � 1 and assume that (44) holds. Then there
are constants c1; c2 > 0 such that for all n 2 N with n � 2

c1n
��2 � eran

n .
QJ ;BW r

p .Q/
; QW s

q�.Q/
�/

� eran
n .J;BW r

p .Q/
;W s

q�.Q/
�/ � c2n

��2 .logn/�2 ;

where

�2 D min

�
r C s

d
�
�
1

p
� 1

q

�
C
;
r

d
C 1 � 1

Np
�
; (50)

�2 D
(
�0
2 if �2 > 0;

0 if �2 D 0;
(51)

and �0
2 is given by (49).

This result is proved in [7]. Together with the randomized case of Theorem 1
it solved a problem posed by Novak and Woźniakowski, see [16], Sect. 4.3.3,
Problem 25. Even the case p D q D 2, Q D .0; 1/ of Theorem 4 was new. The
algorithm realizing the optimal rate is discussed in the next section.

For the weak elliptic problem we conclude (see also [7], Corollary 7.1 for a
slightly more general statement)

Corollary 2. Let r 2 N0, m 2 N. Then there are constants c1�6 > 0 such that for
all n 2 N with n � 2, if the embedding condition (6) holds,

c1n
� r
d � edet

n .S
ell;BW r

2 .Q/
; QW m

2 .Q// � c2n
� r
d ;

if the embedding condition (6) does not hold,

c3 � edet
n .S

ell;BW r
2 .Q/

; QW m
2 .Q// � c4;

and, independently of the embedding condition,

c5n
� r
d �min.md ;

1
2 / � eran

n .S
ell;BW r

2 .Q/
; QW m

2 .Q// � c6n
� r
d �min.md ;

1
2 /.logn/�3

with

�3 D
(
1 if m

d
D 1

2
;

0 otherwise:

For the problem of integration with variable weights we obtain

Corollary 3. Let r; s 2 N0, 1 � p; q � 1 and assume that (44) and the embedding
condition (6) hold. Then there are constants c1; c2 > 0 such that for all n 2 N with
n � 2
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c1n
��1

� inf
.xi ; i /

sup
f 2BW rp .Q/

;w2BW s
q�

.Q/

ˇ̌
ˇ̌
ˇ
Z
Q

f .x/w.x/dx �
nX
iD1

f .xi /. i ;w/

ˇ̌
ˇ̌
ˇ

� c2n
��1 .logn/�1 ;

where �1 and �1 are given by (47) and (48), and the infimum is taken over all families
.xi /1�i�n � Q, . i /1�i�n � W s

q�.Q/
�.

Corollary 4. Let r; s 2 N0, 1 � p; q � 1 and assume that (44) holds. Then there
are constants c1; c2 > 0 such that for all n 2 N with n � 2

c1n
��2

� inf
.xi;! ; i;!/

sup
f 2BW rp .Q/

E sup
w2BW s

q�
.Q/

ˇ̌
ˇ̌̌Z
Q

f .x/w.x/dx �
nX
iD1

f .xi;!/. i;!;w/

ˇ̌
ˇ̌̌

� c2n
��2 .logn/�2 ;

where �2 and �2 are given by (50) and (51), and the infimum is taken over all families
.xi;!/1�i�n;!2˝ � Q and . i;!/1�i�n;!2˝ � W s

q�.Q/
� satisfying conditions

(1)–(3).

Given 1 � p � 1 and r 2 N0, let us put q D p and choose any s 2 N satisfying

s

d
> 1 � 1

Np ;

hence (44) holds, �1 D r
d

, �1 D 0, �2 D r
d

and �2 D 0. Now setting w.x/ 	 1,
we recover from Corollaries 3 and 4 the upper bounds of Theorem 2. However, the
resulting algorithm (see the next section) is more complicated than the one presented
in Sect. 3.

5 Approximation of J W W r
p .Q/ ! W s

q�
.Q/� –

The Algorithm

In this section we want to explain some ideas of the construction of the algorithm
from [7] which gives the upper bound in Theorem 4. If (44) holds, then, as shown
in [7], proof of Proposition 4.1, we can find a number 1 � u � 1 such that both
embeddings

J1 W W r
p .Q/ ! Lu.Q/
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and
J2;0 W W s

q�.Q/ ! Lu�.Q/

are continuous. Let
Vu W Lq.Q/ ! Lq�.Q/�

be the embedding given by

.Vuf; g/ D .f; g/ .f 2 Lq.Q/; g 2 Lq�.Q//; (52)

which, in fact, is just the identity operator on Lq.Q/ for 1 < q � 1 and the
canonical embedding of L1.Q/ into L1.Q/� D L1.Q/

�� for q D 1. Hence with

J2 D J �
2;0Vu W Lu.Q/ ! W s

q�.Q/
�; (53)

the embedding J can be factorized as

J W W r
p .Q/

J1�! Lu.Q/
J2�! W s

q�.Q/
�:

For the approximation of J1 we use the algorithm from Proposition 1, see below.
The key part of the approximation of J is that of J2. We use the duality (53). Let
us note the following to explain the next steps. We want to approximate J �

2;0Vq by
operators based on function values. We know how to do this for J2;0 (Proposition 1),
but this does not help for the dual J �

2;0, because then the delta functionals would
appear at the wrong end. Moreover, we need deterministic error estimates to pass
them to the dual. Thus, we start with a deterministic linear approximation of J2;0.

Let 'j .j D 1; : : : ; �/ be any orthonormal in L2.Œ0; 1�d / basis of the space P�

of polynomials of degree at most � and let P W L1.Œ0; 1�d / ! P� be defined by

Pg D
�X

jD1
.g; 'j /'j .g 2 L1.Œ0; 1�d //:

For l � l0, with l0 the constant from Lemma 2, we define, similarly to (18), an
operator Pl W W s

q�.Q/ ! Lu� .Q/ by setting for g 2 W s
q�.Q/

Plg D
X
i2Il


 QQli\QRliPElig

D b�d2dl
X
i2Il

X
k2Kli

�X
jD1

.g; 
Qli
Rli'j / 
Qlk\QRli'j :

Then the dual operator

P �
l f D b�d2dl

X
i2Il

X
k2Kli

�X
jD1

.f; 
Qlk\QRli'j /
Qli
Rli'j
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approximates J �
2;0. The next idea would be to use simultaneous Monte Carlo

integration for the approximation of the weighted integrals .f; 
Qlk\QRli'j /. This,
however, does not give the optimal rate. So we resort to a multilevel splitting. We
fix L 2 N0, L � l0, and write PL as

PL D
LX
lDl0

.Pl � Pl�1/; Pl0�1 WD 0:

We can represent (see [7], proof of the first part of Lemma 3.3, for details)

.Pl � Pl�1/g D
X
k2Kl

�X
jD1

.g; hlkj / 
Qlk\QRlk'j ; (54)

where the hlkj are defined in the following way. For l � l0 and k 2 Kl let .l; k/
be the unique index i 2 Il with Qlk � QQli , see (13)–(17) for the definitions. Let
˛lkjm be given by


Qlk
Rl;.l;k/'j D

�X
mD1

˛lkjm
Qlk
Rlk'm;

which is a correct definition since .Rlk'j /
�
jD1 is a basis of the polynomials

P�.Qlk/ on Qlk. For the case l D l0 we set for k 2 Kl0 , m D 1; : : : ; �

hl0km D b�d2dl0
Ql0;.l0;k/
Rl0;.l0;k/

�X
jD1

˛l0kjm'j :

Furthermore, for l � l0 C 1 and k 2 Kl let �.l; k/ be the unique i 2 Il�1 with
Qlk � QQl�1;i . Let ˇlkjm 2 K be such that


Qlk
Rl�1;�.l;k/'j D

�X
mD1

ˇlkjm
Qlk
Rlk'm:

We put for l � l0 C 1, k 2 Kl , m D 1; : : : ; �

hlkm D b�d2dl
Ql;.l;k/
Rl;.l;k/

�X
jD1

˛lkjm'j

�b�d2d.l�1/
Ql�1;�.l;k/
Rl�1;�.l;k/

�X
jD1

ˇlkjm'j :
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Passing to the dual, we get from (54)

.Pl � Pl�1/�f D
X
k2Kl

�X
jD1

.f; 
Qlk\QRlk'j /hlkj : (55)

Now fix any numbersNl 2 N .l D l0; : : : ; L/ and let .	li /
L;Nl
lDl0;iD1 be independent

uniformly distributed on Œ0; 1�d random variables on some complete probability
space .˝2;˙2;P2/. Put

	lki D xlk C b2�l 	li ;

where we recall that xlk is the point in Qlk with minimal coordinates, so .	lki /
Nl
iD1

are independent, uniformly distributed on Qlk random variables. We approximate
the scalar products in (55) by the standard Monte Carlo method

.f; 
Qlk\QRlk'j /


 N�1
l jQlkj

NlX
iD1

Qf .	lki / .Rlk'j /.	lki /

D N�1
l bd2�dl

NlX
iD1

Qf .xlk C b2�l 	li /'j .	li /:

Here Qf is defined by

Qf .x/ D
	
f .x/ if x 2 Q
0 if x 2 Ql nQ; (56)

where
Ql D

[
k2Kl

Qlk:

This leads to the following approximations. For f 2 Lu.Q/, !2 2 ˝2,

.Pl � Pl�1/�f 
 A
.2/

l;!2
f

D bd2�dlN�1
l

X
k2Kl

�X
jD1

NlX
iD1

Qf �xlk C b2�l 	li .!2/
�
'j
�
	li .!2/

�
hlkj ; (57)

and, summing over the levels,

J2f 
 P �
Lf


 A.2/!2 f D bd
LX
lDl0

2�dlN�1
l

X
k2Kl

�X
jD1

NlX
iD1

Qf .xlk C b2�l 	li / 'j .	li /hlkj :
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We are ready to define the final algorithm .A!0/!02˝0 for the approximation of
J W W r

p .Q/ ! W s
q�.Q/

�. For L1 2 N0, L1 � l0 let
�
P
.1/
L1;!1

�
!12˝1 be the algorithm

defined in (19) with .˝1;˙1;P1/ the associated probability space. We put

.˝0;˙0;P0/ D .˝1;˙1;P1/ � .˝2;˙2;P2/

and use P .1/
L1;!1

for the approximation of J1 – which is a way of variance reduction

similar to that in the integration algorithm (37) in Sect. 3. ThenA.2/!2 is applied to the
difference f � P .1/

L1;!1
f . Hence we set for !0 D .!1; !2/ and f 2 W r

p .Q/

A!0f D P
.1/
L1;!1

f C A.2/!2 .f � P
.1/
L1;!1

f /:

We refer to [7] for the appropriate choice of the parameters and the error analysis
giving the upper estimate of Theorem 4.

6 Indefinite Integration and Approximation in Spaces
of Functions with Dominating Mixed Derivatives

This chapter is based on [8], where indefinite integration was studied. Here,
however, we mainly explore the connection to approximation in certain Sobolev
spaces of functions with dominating mixed derivatives, which has not been consid-
ered in [8].

In this section we put
Q D Œ0; 1�d :

Let 1 � p � 1, N1 D .1; 1; : : : ; 1/ 2 N
d , and define

OW N1
p .Q/ D

n
f 2 F .Q/ W 9g 2 Lp.Q/; f .x/ D

Z
Œx;N1�

g.t/dt .x 2 Q/
o
;

where for x D .x1; : : : ; ; xd / we put Œx; N1� D Œx1; 1� � : : : � Œxd ; 1�. The space
OW N1
p .Q/ is equipped with the norm

kf k OW N1
p .Q/

D kD N1f kLp.Q/ D kgkLp.Q/:

So OW N1
p .Q/ is a space of functions with dominating mixed smoothness and boundary

conditions (these functions vanish for all x 2 Q with at least one coordinate equal
to 1). Let QW N1

p .Q/ be the closure in OW N1
p .Q/ of the set of infinitely differentiable

functions with support in the interior of Q. Let

Up W QW N1
p .Q/ ! OW N1

p .Q/
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be the identical embedding. We define for 1 < p � 1

W �N1
p .Q/ D QW N1

p� .Q/
�:

Similarly to Sect. 4, our goal is to study stochastic approximation of

J W Lp.Q/ ! OW N1
q�.Q/

�

and
QJ D U �

q�J W Lp.Q/ ! QW N1
q�.Q/

� (58)

for 1 � p; q � 1, where J is defined by

.Jf /.g/ D
Z
Q

f .x/g.x/dx
�
f 2 Lp.Q/; g 2 OW N1

q�.Q/
�
: (59)

It is easily verified that J and QJ are continuous injections. We shall relate the
embedding J to indefinite integration, investigated in [8]. For this purpose we
introduce the operator S W Lp.Q/ ! Lq.Q/ of indefinite integration by setting
for f 2 Lp.Q/ and x D .x1; : : : ; xd / 2 Q

.Sf /.x/ D
Z
Œ0;x�

f .t/dt D
Z x1

0

: : :

Z xd

0

f .t1; : : : ; td /dt:

Clearly, S is continuous for all 1 � p; q � 1. To establish the connection to J we
also introduce a related operator S0 W Lp.Q/ ! Lq.Q/ by

.S0f /.x/ D
Z
Œx;N1�

f .t/dt:

For f; g 2 L1.Q/ we have
.Sf; g/ D .f; S0g/: (60)

Furthermore, the operator S0 is an isometric isomorphism from Lq� .Q/ to OW N1
q�.Q/

(meaning that S0 maps Lq�.Q/ onto OW N1
q�.Q/ with preservation of the norm).

Hence, the dual operator

S�
0 W OW N1

q�.Q/
� ! Lq� .Q/�

and its inverse
.S�
0 /

�1 W Lq�.Q/� ! OW N1
q�.Q/

�
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are isometric isomorphisms, as well. Next we show that J can be represented as

J W Lp.Q/ S�! Lq.Q/
Vq�! Lq�.Q/�

.S�

0 /
�1

����! OW N1
q�.Q/

�; (61)

where Vq is the canonical embedding, see (52). Indeed, let f 2Lp.Q/, g 2 OW N1
q�.Q/.

Then, using (60) and (52),

..S�
0 /

�1VqSf; g/ D .VqSf; S
�1
0 g/ D .Sf; S�1

0 g/ D .f; g/;

from which (61) follows. Since .S�
0 /

�1 is an isometric isomorphism and, for
1<q� 1, Vq is the identity of Lq.Q/, we conclude in this case

eran
n .J; BLp.Q/;

OW N1
q�.Q/

�/ D eran
n .S;BLp.Q/; Lq.Q//: (62)

This relation also holds for q D 1, because then V1 is an isometric embedding of
L1.Q/ into L1.Q/�� such that the range V1.L1.Q// admits a projection of norm
1 from L1.Q/

��, see, e.g., [11], Par. 17, Theorem 3 (in combination with Par. 3,
Theorem 7 and Par. 15, Theorem 3). Taking into account (58) and kUqk D 1, it
follows from (62) that

eran
n .

QJ ; BLp.Q/;
QW N1
q�.Q/

�/ � eran
n .J; BLp.Q/;

OW N1
q�.Q/

�/: (63)

The respective counterparts of (62) and (63) for the deterministic minimal error edet
n

also hold. We are ready to apply the following result from [8].

Theorem 5. Let d 2 N, 1 � p � 1 and Np D min.p; 2/. Then there are constants
c1; c2 > 0 such that

c1n
�1C1= Np � eran

n .S;BLp.Q/; L1.Q// � c2n
�1C1= Np:

Using this theorem, we can derive the respective results for the embedding operators
J and QJ as well as an easy generalization of Theorem 5 itself.

Corollary 5. Let d 2 N, 1 � p; q � 1 and Np D min.p; 2/. Then there are
constants c1�4 > 0 such that

c1n
�1C1= Np � eran

n .S;BLp.Q/; Lq.Q// � c2n
�1C1= Np (64)

c3n
�1C1= Np � eran

n .
QJ ;BLp.Q/;

QW N1
q�.Q/

�/

� eran
n .J;BLp.Q/;

OW N1
q�.Q/

�/ � c4n
�1C1= Np: (65)

Proof. The upper bound in (64) follows from Theorem 5 and the continuity of the
embedding L1.Q/ ! Lq.Q/. The upper bound of (65) is a consequence of (62),
(63), and the upper bound of (64).
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The lower bound of (65) is shown by a reduction to integration. Let  be a
C1-function with support in Q satisfying  � 0 and  6	 0. Define S1 W
Lp.Q/!K as

S1f D
Z
Q

f .x/ .x/dx .f 2 Lp.Q//:

By (59),
. QJf; / D S1f;

thus
eran
n .S1;BLp.Q/;K/ � k k QW N1

q�
.Q/
eran
n .

QJ ;BLp.Q/;
QW N1
q�.Q/

�/;

while it is well-known that

eran
n .S1;BLp.Q/;K/ � cn�1C1= Np;

see [14]. Finally, the lower bound of (64) follows from (62), (63), and the lower
bound of (65). ut

Let us mention that in the deterministic case there is no convergence to zero of
the minimal error. This is easily shown by reduction to integration, in the same way
as in the proof of Corollary 5. Thus, we have

Corollary 6. Let d 2 N, 1 � p; q � 1. Then there are constants c1�4 > 0 such
that

c1 � edet
n .S;BLp.Q/; Lq.Q// � c2

c3 � edet
n .

QJ ;BLp.Q/;
QW N1
q�.Q/

�/ � edet
n .J;BLp.Q/;

OW N1
q�.Q/

�/ � c4:

So far the constants in the estimates could depend in an arbitrary way on
the dimension. Now we take a closer look at the upper bounds with the goal
of establishing polynomial dependence of the constants on the dimension, hence
tractability, see [16, 17] for this notion and the theory thereof. We restrict our
considerations to the case q D 1, since in this case the problems S and J are
normalized, meaning that

kS W Lp.Q/ ! L1.Q/k D kJ W Lp.Q/ ! OW N1
1 .Q/

�k
D k QJ W Lp.Q/ ! W �N11 .Q/k D 1;

so tractability with respect to the absolute and relative error criterion (see [16, 17])
coincide.

Most tractability results were established for weighted problems, that is, with
a decreasing dependence on subsequent dimensions. Here we show tractability for
certain unweighted embedding operators. We again use the connection to indefinite
integration (62) and a respective result from [8]. For this sake we introduce the
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simple sampling algorithm. Let .	i /niD1 be independent, uniformly distributed onQ
random variables on a complete probability space .˝;˙;P/. We approximate the
indefinite integration operator S by

.Sf /.x/ D
Z
Q


Œ0;x�.t/f .t/dt


 .An;!f /.x/ D 1

n

nX
iD1


Œ0;x�.	i .!// f .	i .!// .x 2 Q;! 2 ˝/;

thus

Sf 
 An;!f D 1

n

nX
iD1

f .	i /
Œ	i ;N1�:

We note that this algorithm satisfies consistency (1), but does not possess the
measurability properties (2) and (3). However, for each f 2 Lp.Q/ the mapping

! 2 ˝ ! kSf � An;!f kL1.Q/

is˙-measurable, see [8] for these facts and also for another algorithm with the same
approximation properties, but fulfilling (1)–(3).

The following was shown in [8]. A proof of a generalization of (66) is given in
Sect. 7.

Theorem 6. Let 1 � p � 1, 1 � p1 < 1, p1 � p, and Np D min.p; 2/. Then
there is a constant c > 0 such that for all d; n 2 N, Q D Œ0; 1�d , f 2 Lp.Q/,

�
E kSf � An;!f kp1L1.Q/

�1=p1 � cd1�1= Npn�1C1= Npkf kLp.Q/; (66)

and moreover,

eran
n .S;BLp.Q/; L1.Q// � cd1�1= Npn�1C1= Np: (67)

Let us define a related algorithm on Lp.Q/ with values in OW N1
1 .Q/

� by setting
for f 2 Lp.Q/ and ! 2 ˝

A.1/n;!f D
nX
iD1

f .	i .!//ı	i .!/

with the 	i as above and ıx 2 OW N1
1 .Q/

� given for x 2 Q by

.g; ıx/ D g.x/ .g 2 OW N1
1 .Q//:

A corresponding algorithm QA.1/n;! with values in QW N1
1 .Q/

� D W �N11 .Q/ is defined by
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QA.1/n;!f D U �
1 A

.1/
n;!f D

nX
iD1

f .	i .!// Qı	i .!/; (68)

with Qıx standing for ıx, interpreted as a functional on the subspace QW N1
1 .Q/. We use

Theorem 6 to derive the following error estimates for the algorithms A.1/n and QA.1/n .

Proposition 3. Let 1 � p � 1, 1 � p1 < 1, p1 � p, and Np D min.p; 2/. Then
there is a constant c > 0 such that for all d; n 2 N, Q D Œ0; 1�d , f 2 Lp.Q/,

E

�
k QJf � QA.1/n;!f kp1

W�N1
1 .Q/

�1=p1 � E

�
kJf �A.1/n;!f kp1OW N1

1 .Q/
�

�1=p1
(69)

� cd1�1= Npn�1C1= Npkf kLp.Q/; (70)

and moreover,

eran
n .

QJ ;BLp.Q/;W
�N11 .Q// � eran

n .J;BLp.Q/;
OW N1
1 .Q/

�/

� cd1�1= Npn�1C1= Np: (71)

Proof. Inequality (69) follows from (58) and (68). To show (70), we first note that
for g 2 OW N1

q�.Q/ and x 2 Q we have

.g; .S�
0 /

�1
Œx;N1�/ D .S�1
0 g; 
Œx;N1�/ D .S0.S

�1
0 g//.x/

D g.x/ D .g; ıx/;

thus
.S�
0 /

�1
Œx;N1� D ıx: (72)

Consequently, using (61) (noting that V1 is the identity of L1.Q/), (72), and (66)
of Theorem 6, we get for f 2 Lp.Q/

E

���Jf �A.1/n;!f
��p1OW N1

1 .Q/
�

�1=p1

D E

 ���Jf �
nX
iD1

f .	i /ı	i

���p1OW N1
1 .Q/

�

!1=p1

D E

 ���.S�
0 /

�1Sf �
nX
iD1

f .	i / .S
�
0 /

�1
Œ	i ;N1�
���p1OW N1

1 .Q/
�

!1=p1

D E

 ���Sf �
nX
iD1

f .	i /
Œ	i ;N1�
���p1
L1.Q/

!1=p1
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D E

���Sf � An;!f
��p1
L1.Q/

�1=p1 � cd1�1= Npn�1C1= Np:

Finally, (71) follows from (67), (62), and (63). ut
The results in this section are very specific, leaving much room for further
investigations, e.g., of smoothness different from N1, of other source spaces than
Lp.Q/, and of more general domains Q. In the latter direction a generalization
of the first part of Theorem 6 is given in the next section.

7 A Generalization of Indefinite Integration and Tractability
of Discrepancy

Let .G;G / be a measurable space, that is, G is a nonempty set and G a �-algebra
of subsets of G. Let C � G be a family of measurable subsets of G. Recall that the
Vapnik-Červonenkis dimension v.C / is defined to be the smallest m 2 N0 such that
for each set B � G with mC 1 elements the following holds

jfB \ C W C 2 C gj < 2mC1;

if there is such an m, and v.C / D 1, if there is none. If v.C / < 1, the family C
is called a Vapnik-Červonenkis class. Let � be a probability measure on .G;G / and
define the following generalization of the indefinite integration operator

SC W Lp.G;�/ ! `1.C /

by setting for f 2 Lp.G;�/ and C 2 C

.SCf /.C / D
Z
C

f .t/d�.t/:

Note that here we have again weighted integration. This time the weight is fixed, but
we seek to approximate simultaneously over a family of integration domains.

We shall study randomized approximation of SC for Vapnik-Červonenkis
classes C . For this purpose we define the analogue of the simple sampling algorithm.
Let .	i /niD1 be independent random variables on some probability space .˝;˙;P/
with values in G and distribution �. For f 2 L1.G;�/, C 2 C , and ! 2 ˝ put

.An;!f /.C / D 1

n

nX
iD1


C .	i .!// f .	i .!//:

This algorithm satisfies consistency (1), but may fail the measurability properties
(2) and (3), even for countable C . We refer to [8], Sect. 6.3 for an argument which is
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easily seen to cover also the present situation. On the other hand, it is easy to verify
that for countable C we have again the following weaker measurability property.
For each f 2 Lp.Q/

kSCf �An;!f k`1.C /

is ˙-measurable.
The next result generalizes Theorem 6. We adopt the proof of [8], Lemma 3.3 to

this general setting. How to pass to the uncountable class involved in Theorem 6 is
discussed below.

Theorem 7. Let 1 � p � 1, 1 � p1 < 1, p1 � p, and Np D min.p; 2/. Then
there is a constant c > 0 such that the following holds. For any .G;G ; �/ and
.	i /

n
iD1 as above, any countable family C � G and any f 2 Lp.G;�/
�
E kSCf �An;!f kp1`1.C /

�1=p1 � cv.C /1�1= Npn�1C1= Npkf kLp.G;�/: (73)

Proof. We fix f 2 Lp.G;�/. Let C0 � C be any finite nonempty subset and let G0
be the algebra of subsets of G generated by C0. Let M .G;G0/ denote the Banach
space of signed measures on G0, equipped with the total variation norm. Introduce
an operator JC W M .G;G0/ ! `1.C0/ defined by

JC0� D .�.C //C2C0 :

According to a result of Pisier [18], Theorem 1 and Remark 6, there is a constant
c > 0 depending only on Np such that the type Np constant of JC0 , recall the definition
(4), satisfies

� Np.JC0 / � cv.C0/
1�1= Np � cv.C /1�1= Np: (74)

Define independent, zero mean, M .G;G0/-valued random variables .�i /niD1 as
follows. For B 2 G0 we set

�i .B/ D
Z
B

f .t/d�.t/ � 
B.	i /f .	i /:

We have

�
E k�ikp1M .G;G0/

�1=p1 �
�
E

� Z
G

jf .t/jd�.t/C jf .	i /j
�p1�1=p1

� 2kf kLp1 .G;�/: (75)

Next we apply Lemma 1. We assume that p1 � Np, the other case then follows from
Hölder’s inequality. Using (74) and (75), we get
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E max

C2C0

ˇ̌
ˇ̌
ˇ
Z
C

f .t/d�.t/ � 1

n

nX
iD1


C .	i /f .	i /

ˇ̌
ˇ̌
ˇ
p1
!1=p1

D n�1
 
E

���
nX
iD1

JC0�i

���p1
`1.C0/

!1=p1

� c� Np.JC0 /n
�1
 

nX
iD1

�
E k�ikp1M .G;G0/

� Np=p1
!1= Np

� cv.C /1�1= Npn�1C1= Npkf kLp.G;�/;

from which (73) follows by Fatou’s lemma. ut
For G D Œ0; 1�d , G the �-algebra of Lebesgue measurable sets, � the Lebesgue
measure, and

C D C .0/ D fŒ0; x� W x 2 Œ0; 1�d \ Q
d g;

where Q denotes the set of rationals, we have v.C .0// D d , see, e.g., [3],
Corollary 9.2.15. Moreover, for f 2 L1.Œ0; 1�d / and t1; : : : ; tn 2 Œ0; 1�d

sup
x2Œ0;1�d\Qd

ˇ̌̌
ˇ̌
Z
Œ0;x�

f .t/dt � 1

n

nX
iD1


Œ0;x�.ti /f .ti /

ˇ̌̌
ˇ̌

D sup
x2Œ0;1�d

ˇ̌
ˇ̌̌Z
Œ0;x�

f .t/dt � 1

n

nX
iD1


Œ0;x�.ti /f .ti /

ˇ̌
ˇ̌̌
: (76)

This is an immediate consequence of ‘right’-continuity

lim
y!x; y�x 
Œ0;y�.t/ D 
Œ0;x�.t/ .t 2 Œ0; 1�d /: (77)

Now Theorem 6 follows from Theorem 7.
Given a point set ft1; : : : ; tng � Œ0; 1�d , the star discrepancy is defined as

d�1.t1; : : : ; tn/ D sup
x2Œ0;1�d

ˇ̌
ˇ̌̌jŒ0; x/j � 1

n

nX
iD1


Œ0;x/.ti /

ˇ̌
ˇ̌̌
:

The main result of [9] established tractability of the star-discrepancy, meaning
an estimate which has a negative power in n and a constant which depends
polynomially on d :

Theorem 8. There is a constant c > 0 such that for all d; n 2 N there exist
t1; : : : ; tn 2 Œ0; 1�d with

d�1.t1; : : : ; tn/ � cd1=2n�1=2:



130 S. Heinrich

It turns out that we can recover this result – even in a much more general form – as
a direct consequence of Theorem 7. For this purpose, let us introduce the following
generalization of the star-discrepancy. Let .G;G ; �/ be a probability space, C � G
any subfamily, let f 2 L1.G;�/ be a function (not an equivalence class) and set for
ft1; : : : ; tng � G

d C ;�;f1 .t1; : : : ; tn/ D sup
C2C

ˇ̌̌
ˇ̌
Z
C

f .t/d�.t/ � 1

n

nX
iD1

f .ti /
C .ti /

ˇ̌̌
ˇ̌ :

So this discrepancy measures how well the quasi-Monte Carlo method defined by
the point set ft1; : : : ; tng approximates the integral of a function f with respect to a
distribution �, uniformly over all sets C of a given family C . From Theorem 7 we
obtain

Corollary 7. Let 1 < p � 1 and Np D min.p; 2/. Then there is a constant
c > 0 such that for for any probability space .G;G ; �/, countable C � G , and
any function f 2 Lp.G;�/ there exist t1; : : : ; tn 2 G with

d C ;�;f1 .t1; : : : ; tn/ � cv.C /1�1= Npn�1C1= Npkf kLp.G;�/:

If we choose f 	 1 and write d C ;�1 instead of d C ;�;11 , we have

d C ;�1 .t1; : : : ; tn/ D sup
C2C

ˇ̌̌
ˇ̌�.C /� 1

n

nX
iD1


C .ti /

ˇ̌̌
ˇ̌ :

Corollary 7 with p D 1 implies

Corollary 8. There is a constant c > 0 such that for any probability space
.G;G ; �/ and countable C � G there exist t1; : : : ; tn 2 G with

d C ;�1 .t1; : : : ; tn/ � cv.C /1=2n�1=2:

Note that this result was also obtained in [9], Theorem 4, by slightly different
tools. Theorem 8 follows from Corollary 8 by taking G D Œ0; 1�d , � the Lebesgue
measure, and

C D C .1/ D fŒ0; x/ W x 2 Œ0; 1�d \ Q
d g:

Then we have again v.C .1// D d and the analogue of (76) holds, which follows
from ‘left’-continuity in place of (77).

In this section we only considered upper bounds. For results on d -dependent
lower bounds we refer to [8–10].
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On Figures of Merit for Randomly-Shifted
Lattice Rules

Pierre L’Ecuyer and David Munger

Abstract Randomized quasi-Monte Carlo (RQMC) can be seen as a variance
reduction method that provides an unbiased estimator of the integral of a function f

over the s-dimensional unit hypercube, with smaller variance than standard Monte
Carlo (MC) under certain conditions on f and on the RQMC point set. When f is
smooth enough, the variance converges faster, asymptotically, as a function of the
number of points n, than the MC rate of O.1=n/. The RQMC point sets are typically
constructed to minimize a given parameterized measure of discrepancy between
their empirical distribution and the uniform distribution. These parameters can
give different weights to the different subsets of coordinates (or lower-dimensional
projections) of the points, for example. The ideal parameter values (to minimize the
variance) depend very much on the integrand f and their choice (or estimation) is
far from obvious in practice. In this paper, we survey this question for randomly-
shifted lattice rules, an important class of RQMC point sets, and we explore the
practical issues that arise when we want to use the theory to construct lattices
for applications. We discuss various ways of selecting figures of merit and for
estimating their ideal parameters (including the weights), we examine how they
can be implemented in practice, and we compare their performance on examples
inspired from real-life problems. In particular, we look at how much improvement
(variance reduction) can be obtained, on some examples, by constructing the points
based on function-specific figures of merit compared with more traditional general-
purpose lattice-rule constructions.
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1 Introduction: Monte Carlo and Randomized
Quasi-Monte Carlo

We are concerned with the problem of estimating the integral of a function f W
Œ0; 1/s ! R over the s-dimensional unit hypercube Œ0; 1/s D fu D .u1; : : : ; us/ W
0 � uj < 1 for all j g, by evaluating f at n points in this hypercube and taking the
average. The integral can be written as

� D �.f / D
Z

Œ0;1/s

f .u/ du D EŒf .U/� (1)

where E denotes the mathematical expectation and U D .U1; : : : ; Us/ � U.0; 1/s (a
random vector uniformly distributed over .0; 1/s). A large class of applications fit
this framework [14, 18, 19].

The standard Monte Carlo (MC) method generates n independent realizations of
U, say U0; : : : ; Un�1, and estimates � by

O�n D 1

n

n�1X
iD0

f .Ui /:

This estimator is unbiased and its variance converges as O.n�1/ when n ! 1.
Randomized quasi-Monte Carlo (RQMC) employs an estimator of the same

form,

O�n;rqmc D 1

n

n�1X
iD0

f .Ui / (2)

where Ui � U Œ0; 1/s for each i , so EŒ O�n;rqmc� D � (the estimator is unbiased),
but the Ui ’s are no longer independent. The aim is to have VarŒ O�n;rqmc� < VarŒ O�n�.
For this, the randomized points are constructed so that Pn D fU0; : : : ; Un�1g �
Œ0; 1/s covers Œ0; 1/s more evenly than typical independent random points, in the
sense that some selected (expected) measure of discrepancy between the empirical
distribution of Pn and the uniform distribution over Œ0; 1/s is smaller. Two popular
classes of RQMC point sets are randomly-shifted lattices and digitally-shifted nets.
For background on RQMC methods, including lattice rules, see [14, 16, 18–21] and
the references given there.

In this paper, we focus on randomly-shifted lattice rules, where Pn is the intersec-
tion of a randomly-shifted lattice with Œ0; 1/s [21]. For any given square-integrable
f (that is, for which VarŒf .Ui /� < 1), VarŒ O�n;rqmc� can be written explicitly in
terms of the square Fourier coefficients of f and on the lattice. Conceptually, one
could compute the optimal lattice for f by solving an optimization problem that
minimizes this variance expression with respect to the lattice parameters. However,
this is impractical because these Fourier coefficients are usually unknown, and
there are infinitely many, so we have to rely on suboptimal strategies. The variance
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expression is usually replaced by a figure of merit with fewer parameters, and those
parameters are selected by heuristic methods that take into account the class of
functions f to be considered.

The aim of this paper is twofold. First, we give a partial overview of current
knowledge on randomly-shifted lattice rules from a practical viewpoint. Then, we
examine the issues that arise when we want to exploit this theoretical knowledge in
applications. In particular, we explore the impact of the choice of figure of merit,
the choice of weights given to the different subsets of coordinates in discrepancy
measures, we compare empirical performances of these choices in terms of the
RQMC variance, we compare the convergence rate for the variance that are typically
observed empirically (for reasonable values of n) to the theoretical asymptotic rates
(when n goes to infinity) which are based on bounds that are usually not tight,
and see what can be observed in the common situation where the integrand is
discontinuous or unbounded. We always assume that s is fixed. We do not consider
complexity and tractability issues.

The remainder is organized as follows. In Sect. 2, we recall basic definitions
and known results on randomly-shifted lattice rules and the corresponding explicit
variance expressions. In Sect. 3, we discuss how we could conceivably select a
lattice adaptively to reduce the variance expression if the Fourier coefficients of
f were known, or could be estimated easily when needed. The main purpose is to
show the difficulty of doing this. We describe and implement a selection method
that starts with a large set of lattices and eliminates them one by one, by visiting a
sequence of important terms in the variance expression and by keeping, at each step,
only the lattices that eliminate those large variance terms. The procedure is very
effective on the small examples on which we try it, where the Fourier coefficients
are known. But for typical real-life problems, the Fourier coefficients are unknown
and estimating them would be too time-consuming, so we need other heuristics. In
Sect. 4, we examine previously-proposed figures of merit defined as discrepancies
that assign a weight to each subset of coordinates (or projection), using a functional
ANOVA decomposition of f, and we suggest ways of specifying the weights as
functions of the ANOVA variance components, for Sobolev classes of integrands
with square integrable partial derivatives up a given order. When s is large, having
a different weight for each projection may give a model with too many parameters.
Parameterized choices of weights with fewer parameters are discussed in Sect. 5.
They include order-dependent weights and product weights, in particular, and we
examine ways of setting those weights. In Sect. 6, we discuss figures of merit defined
in terms of the lengths of shortest nonzero vectors in dual lattices. In Sect. 7, we
briefly recall the algorithms we have used to search for good lattices with respect to
the selected figures of merit. Then, in the following sections, we perform empirical
experiments with some examples. Our goal is to estimate the convergence rate of
the RQMC variance as a function of n and the variance reduction compared with
standard MC, in the practical range of values of n, and to assess the impact of the
choice of figure of merit (and weights) on this variance, at least for our selected
examples. Motivated by the fact that discontinuous integrands are very frequent in
applications, we start in Sect. 9 with simple indicator functions. We give examples



136 P. L’Ecuyer and D. Munger

where lattice rules are still effective, but where a standard measure of discrepancy
can be (sometimes) a very bad predictor of the performance. This illustrates the
difficulty of defining good and robust figures of merit in general. In one case, we
make the integrand continuous by taking a conditional expectation with respect to
one random variable (after generating the other ones) and we examine the effect of
this. In Sect. 10, we consider a stochastic activity network example inspired from a
real-life application, where the integrand is also an indicator function, and we extend
the study made in Sect. 9 to this slightly more complicated setting. The examples
of Sect. 9 were constructed as simplifications of that of Sect. 10, to try to better
understand the behavior of randomly-shifted lattice rules in those situations. Finally,
in Sect. 11, we consider the pricing of Asian-style options, with and without a
barrier. Our examples have been inspired from real-life problems, and as it turns out,
none of them satisfies the smoothness conditions that guarantee a fast convergence
of the variance (such as O.n�4/) with the best lattice constructions. This seems to
correspond to many typical real-life problems. An online appendix provides detailed
results of our experiments.

The good news is that in the great majority of cases, most reasonable choices of
figures of merit and weights provide lattices that perform well, for those examples,
provided that none of the relevant weights is zero and the irrelevant weights do
not dominate too much. This means that there is no need to work hard to estimate
the ANOVA variances accurately. Faced with an important application, one may
want to spend a small fraction of the available computing budget at the beginning
to estimate ANOVA components very roughly, or to just explore a few choices of
weights and compare the variances in pilot runs. Also, the convergence rate of the
variance observed empirically for reasonable values of n (up to a few millions) is
slower than the asymptotic rates proved theoretically for smooth functions. On the
other hand, this observed rate is always better than O.1=n/, even for discontinuous
and unbounded integrands, in our examples.

2 Randomly-Shifted Lattice Rules

An integration lattice is a discrete vector space defined by

Ls D
8<
:v D

sX
jD1

zj vj such that each zj 2 Z

9=
; ;

where v1; : : : ; vs 2 R
s are linearly independent over R and Ls contains Z

s , the
integer vectors. A lattice rule approximates � by the average of f .u0/; : : : ; f .un�1/,
where P 0

n D fu0; : : : ; un�1g D Ls \ Œ0; 1/s . Almost all lattice rules used in
practice have rank 1, which means that the points of P 0

n can be enumerated as
ui D iv1 mod 1 for i D 0; : : : ; n � 1, where nv1 D a1 D .a1; : : : ; as/ 2
f0; 1; : : : ; n � 1g is the generating vector. We have a Korobov rule if a1 has the
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form a1 D .1; a; a2 mod n; : : : / for some integer a 2 Zn. For more details on
lattice rules, see [4, 11, 19, 21]. For any subset of coordinates u � f1; : : : ; sg, the
projection Ls.u/ of Ls over the subspace determined by u is also a lattice, in juj
dimensions. In this paper, we assume that all lattices are of rank 1 and that the
coordinates a1; : : : ; as of the generating vector are all relatively prime to n (when
n is prime, this is automatic). When the latter holds for the first coordinate, the
lattice rule is called a rank-1 simple rule [4]. Here we are assuming more: our
assumption implies that the projection of P 0

n over the subspace determined by any
nonempty subset of coordinates contains exactly n points and this projection is
always f0; 1=n; : : : ; .n � 1/=ng in the case of a single coordinate. Therefore, there
is no need to measure the uniformity of these one-dimensional projections.

The point set P 0
n can be turned into an RQMC point set Pn by a random

shift modulo 1, defined as follows [5, 21]: Generate a single random point U
uniformly over .0; 1/s and add it to each point of P 0

n , modulo 1, coordinate-wise:
Ui D .ui CU/ mod 1. Then, each Ui is uniformly distributed over Œ0; 1/s and O�n;rqmc

is an unbiased estimator of �, while Pn inherits the lattice structure of P 0
n .

A key issue is whether (and when) O�n;rqmc has smaller variance than the MC
estimator O�n. An exact expression for the variance can be obtained in terms of the
Fourier coefficients of the integrand f, as follows. If f has Fourier expansion

f .u/ D
X
h2Zs

Of .h/e2�
p�1htu;

then (see [15])
VarŒ O�n;rqmc� D

X
06Dh2L�

s

j Of .h/j2; (3)

where L�s D fh 2 R
s W htv 2 Z for all v 2 Lsg � Z

s is the dual lattice to Ls .
This variance depends on f and on Ls . For any given f, an optimal lattice Ls from
the viewpoint of variance reduction would minimize D2.P 0

n / D VarŒ O�n;rqmc�. This
suggests a figure of merit of the general form

Mw.P 0
n / D

X
06Dh2L�

s

w.h/; (4)

with weights w.h/ that mimic the anticipated behavior of the j Of .h/j2. It may be
tempting to refer to (4) as a measure of discrepancy. However it does not necessarily
measure a departure from the uniform distribution. For certain functions f, the best
lattice does not necessarily cover the space very evenly.

It is known [21] that if f has square-integrable mixed partial derivatives up to
order ˛ (an integer), and the periodic continuations of its derivatives up to order
˛ � 2 are continuous across the unit cube boundaries, then

j Of .h/j2 D O..max.1; h1/; : : : ; max.1; hs//
�2˛/: (5)



138 P. L’Ecuyer and D. Munger

Moreover, there is a rank-1 lattice with v1 D v1.n/ such that

P2˛ D
X

06Dh2L�

s

.max.1; h1/; : : : ; max.1; hs//
�2˛ D O.n�2˛Cı/ (6)

for any ı > 0. Note that P2˛ in (6) is the RQMC variance for a worst-case f having

j Of .h/j2 D .max.1; h1/; : : : ; max.1; hs//
�2˛;

so the convergence order in (6) applies when (5) holds. This worst-case f is not
necessarily representative of functions encountered in applications, and therefore,
P2˛ is not necessarily the most appropriate figure of merit.

For the preceding bound to hold with ˛ � 2, the periodic continuation of f must
be continuous. When it is not, which is often the case, f can be transformed into
a function Qf having the same integral and a continuous periodic continuation, by
compressing the graph of f horizontally along each coordinate and then making a
mirror copy with respect to 1/2. This gives Qf .u1; : : : ; us/ D f .v1; : : : ; vs/ where
vj D 2uj for uj < 1=2 and vj D 2.1 � uj / for uj � 1=2. In practice, instead of
changing f, we would stretch the (randomized) points by a factor of 2 along each
coordinate, and fold them back. This is equivalent. That is, each coordinate Ui;j of
Ui is replaced by 2Ui;j if Ui;j < 1=2 and by 2.1 � Ui;j / otherwise. This is the
baker’s transformation. When f is sufficiently smooth, this can reduce the RQMC
variance from O.n�2Cı/ to O.n�4Cı/ [12].

3 Adaptive Search for Lattices that Avoid the Large Fourier
Coefficients

Searching for a lattice that minimizes the variance expression (3) for each f that we
want to integrate is certainly impractical, because the Fourier coefficients are usually
unknown and there are infinitely many. If we estimate them, we would have to do it
for each f and this is likely to take more time than applying RQMC to estimate �.
We nevertheless explore empirically, in this section, what we could do if we knew
(or could estimate on-demand, at low cost) those Fourier coefficients and how much
we could gain by exploiting this knowledge (or by finding the optimal lattice for the
problem at hand in any other way). In situations where the gain can be significant,
it may be worthwhile to investigate ways of identifying the most important Fourier
coefficients.

We start with a simple function for which we know the Fourier expansion. But
even in that case, the figure of merit (the variance) in (3) involves an infinite number
of terms. Heuristic ways of handling this could be to truncate the sum to a finite
subset B � Z

s , X
06Dh2L�

s \B

j Of .h/j2;
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Algorithm 1 : Dual-Space Exploration
Require: a set of lattices L and a weight function w

Q N .0/ // vectors h to be visited, sorted by decreasing weight w.h/

M  N .0/ // vectors h that have already entered Q
while jL j > 1 do

h remove first vector from Q
for all lattices Ls 2 L such that h 2 L�

s do
remove Ls from L
if jL j D 1 then

return the single lattice Ls 2 L and exit
end if

end for
for all h0 2 N .h/ nM do

add h0 to M and to Q with priority (weight) w.h0/

end for
end while

or to the largest q square coefficients j Of .h/j2. But this is hard to implement.
The following heuristic truncates the sum adaptively by exploring the dual space.
It makes sense in the situation where the j Of .h/j2 tend to decrease with each
jhj j. It starts with a large set L of lattices (or a large set of generating vectors
v1, for a given n). Then the method searches for vectors h with large weights
w.h/ D j Of .h/j2, via a neighborhood search starting at h D 0, keeping a sorted
list (as in Dijkstra’s shortest path algorithm), and eliminates successively from L
the lattices whose dual contains h for the next largest w.h/ found so far, until a
single lattice remains. It is stated as Algorithm 1 (the scope of the while and for
statements are specified by the indentation). The ordered set Q can be implemented
as a priority queue. This algorithm requires a definition of neighborhood in the space
Z

s of vectors h. For example, one can define the neighborhood of h, N .h/, as the set
of vectors that differ from h by only one coordinate, and by one unit only. When the
j Of .h/j2 are unknown, we may think of estimating them whenever they are needed
in the algorithm, dynamically.

One can also define a component-by-component (CBC) version of this construc-
tion algorithm, as follows. For each coordinate j , j D 1; : : : ; s, we apply the
algorithm for a set L of j -dimensional lattices with common (fixed) j � 1 first
coordinates, determined in the previous steps, and we select the j th coordinate
by visiting all j -dimensional vectors h having nonzero j th coordinate, as in
Algorithm 1.

Example 1. To experiment with this algorithm, we consider the product V-shaped
function

f .u/ D
sY

jD1

j4uj � 2j C cj

1 C cj

;
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Fig. 1 Estimated variance vs. n, for s D 5, in log-log scale, with cj D 1 (left) and cj D j (right),
using lattices constructed with the dual-space exploration algorithm (�), and the CBC algorithm
with the P�;2 criterion (�).

for which
Of .h/ D

Y
fj Whj is oddg

4

.1 C cj /�2h2
j

:

We take s D 5 dimensions, first with cj D 1 and then with cj D j . We applied the
CBC version of the dual-space exploration algorithm for prime values of n ranging
from 25 �1 D 31 to 219 �1 D 524; 287, to construct a 5-dimensional lattice for each
n, then we estimated the RQMC variance for this lattice by the empirical variance
with 100 independent random shifts.

Figure 1 shows the empirical variance as a function of n, in the lower (dark)
line. The upper line represents the RQMC variance with lattices obtained by a CBC
construction using the criteria P�;2 defined in (9), with weights selected based on
estimated ANOVA variance components as explained in Sect. 4. This is arguably
the best available construction method for general applications among those that
we have tried in our experiments. The figure shows that for this small example, our
dual-space exploration method does much better. The reason is that by constructing
the lattice in terms of a figure of merit that takes into account the individual Fourier
coefficients, we can be more accurate in selecting the vectors h that we want to
eliminate from the dual lattice, and thus kick out more of the important terms from
the variance expression (3), than if we use a criterion such as P�;2 that just put
weights on subsets of coordinates.

For the dual-space exploration, with n D 216 C 1, the variance was reduced by
a factor of 1:7 � 1014 for cj D 1 and 3:0 � 1016 for cj D j , compared with MC.
Empirically, the variance decreases approximately as O.n�3:46/ for cj D 1 and
O.n�3:61/ for cj D j . (There is one outlying value, for n D 217 � 1 D 131; 071,
where the algorithm did poorly for cj D 1, as can be seen in Fig. 1.) For the lattice
constructions based on P�;2, on the other hand, the variance was reduced by only
1:8 � 1012 in the best case, and decreased empirically (approximately) as O.n�3:24/.

We also tried with the M 0
�;2 criterion defined in (14), and the results were worse

than with P�;2.
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The dual-space exploration algorithm performs much better, for this small
example, than the other methods discussed in forthcoming sections. However, in
typical situations, the Fourier coefficients are unknown, not always monotonously
decreasing with the components of h, have to be estimated during the exploration,
and the dimension can be much larger than 5. Then, this search approach is unlikely
to remain practical and effective. We will discuss alternatives in the following.

4 ANOVA Decomposition and Projection-Dependent Weights

Given that the Fourier expansion and the sum (3) have too many terms to be
convenient figures of merit for selecting the lattice parameters, one could seek
decompositions of f into a smaller number of terms than in (3), and define measures
that take into account the relative importance of those terms. A popular one is
the functional ANOVA decomposition [8, 18, 20], where f .u/ D f .u1; : : : ; us/ is
written as

f .u/ D
X

u�f1;:::;sg
fu.u/ D � C

sX
iD1

ffig.ui / C
sX

i;jD1Wj¤i

ffi;j g.ui ; uj / C 	 	 	

where

fu.u/ D
Z

Œ0;1/j Nuj

f .u/ du Nu �
X
v�u

fv.uv/

Nu is the complement of u, and uv refers to the projection of u on the subspace
determined by v. The MC variance then decomposes as

�2 D
X

u�f1;:::;sg
�2
u; where �2

u D VarŒfu.U/�:

The variance components �2
u can be estimated by the algorithm given in [25], using

either MC or (preferably) RQMC to estimate the integrals.
For any h 2 Z

s , let

u.h/ D u.h1; : : : ; hs/ D fj 2 f1; : : : ; sg W hj ¤ 0g:

The RQMC variance with a randomly-shifted lattice rule decomposes as:

VarŒ O�n;rqmc� D
X

;6Du�f1;:::;sg

X
h2L�

s Wu.h/Du

j Of .h/j2 D
X

u�f1;:::;sg
VarŒ O�n;rqmc.fu/�: (7)

The idea here is to adopt a criterion as in (4), but with weights w.h/ that depend on
a smaller number of parameters, namely one parameter per projection u. For this,
following [7] and others, we take
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w.h/ D �u.h/

Y
j2u

h�2˛
j (8)

for all h 2 Z
s , where ˛ is a positive integer to be selected, and the �u are arbitrary

positive real numbers which we call projection-dependent weights. Some authors
call them general weights [6, 7], although their form is much less general than the
arbitrary weights w.h/ in (4). With the weights (8), the figure of merit (4) becomes
the weighted P2˛ criterion [7]:

P�;2˛.P 0
n / D

X
06Dh2L�

s

�u.h/.max.1; h1/; : : : ; max.1; hs//
�2˛

D
X

;¤u�f1;:::;sg

1

n

n�1X
iD0

�u

��.�4�2/˛

.2˛/Š

�jujY
j2u

B2˛.ui;j /; (9)

where ui D .ui;1; : : : ; ui;s/ D iv1 mod 1 is the i th lattice point before the shift, juj
is the cardinality of u, and B2˛ is the Bernoulli polynomial of order 2˛.

This criterion comes naturally in the following setting. Let F˛ be the class of
functions f W Œ0; 1/s ! R for which for each u � f1; : : : ; sg, the partial derivative
of order ˛ with respect to u is square integrable, and (if ˛ � 2) the partial derivatives
of orders 0 to ˛ �2 of the periodic continuation of f over Rs are continuous. Define
the square variation of f 2 F˛ by

V 2
� .f / D

X
u�f1;:::;sg

V 2
� .fu/ D

X
;¤u�f1;:::;sg

1

�u.4�2/˛juj

Z
Œ0;1�juj

ˇ̌
ˇ̌
ˇ
@˛juj

@u˛
fu.u/

ˇ̌
ˇ̌
ˇ
2

du

(10)

(which depends on the �u’s). Then, for any constant K > 0, the largest RQMC
variance over the class of functions f 2 F˛ for which V 2

� .f / � K is equal to
KP�;2˛.P 0

n /, and the maximum is reached for a worst-case function whose square
Fourier coefficients are

j Of .h/j2 D K�u.h/.max.1; h1/; : : : ; max.1; hs//
�2˛:

See [6, 14] for the details. The constant K is just a scale factor that can be
incorporated in the weights �u, so we can assume that K D 1. The worst-case
function can then be written as

f �̨.u/ D
X

u�f1;:::;sg

p
�u
Y
j2u

.2�/˛

˛Š
B˛.uj /:
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The ANOVA variance components for this function are

�2
u D �u

�
VarŒB˛.U /�

.4�2/˛

.˛Š/2

�juj
D �u

�
jB2˛.0/j .4�2/˛

.2˛/Š

�juj
defD �u.�.˛//�juj

(11)
where �.˛/ is a constant that depends on ˛. In particular, we have

�.1/ D 3

�2

 0:30396; �.2/ D 45

�4

 0:46197; �.3/ 
 0:49148;

and �.˛/ increases with ˛ for ˛ � 1 and converges to 1=2 when ˛ ! 1.
To be consistent with our choice of P�;2˛ as a criterion, we can select the weights

�u as if the function f that we want to integrate has the same form as f �̨. That is,
we take the weights given by the formula

�u D �2
u.�.˛//juj;

in which the variance components �2
u are replaced by estimates. These estimates can

be obtained with the algorithm of [25], for example. This formula can be generalized
slightly to

�u D �2
u�juj; (12)

where 0 < � � 1 is a constant to be selected. In view of the behavior of �.˛/, it
makes sense to take � � 0:5, and smaller when we think that f is less smooth.

It is known that for any ˛ > 1, any ı > 0, and any choices of weights �u,
there are rank-1 lattices for which P�;2˛.P 0

n / D O.n�2˛Cı/, and the corresponding
vectors v1 can be constructed explicitly one coordinate at a time, by a component-
by-component construction method [6].

5 Further Heuristics for Choosing the Weights

In (9), there are 2s � 1 parameters �u to specify, which is too many when s is
large. It is also hard to estimate these �2

u with reasonable relative error when they
are small compared with �2 and this typically occurs for most subsets u when juj
increases. This motivates the introduction of more parsimonious models for the
weights, with fewer parameters. As mentioned in the first paragraph of Sect. 2,
the one-dimensional projections are all the same under our assumptions, so the
weights of the one-dimensional subsets juj are irrelevant and we can set them to
zero in the selection criterion; that is, restrict the sum in (9) to the subsets u of
cardinality juj � 2. We always do that in our experiments when searching for good
lattices. Note that multiplying all weights by the same constant has no impact on the
selection of v1, since it does not change the relative importance of the projections,
so we can fix one of them (the largest one, for example) to 1. But there still remains
2s � s � 2 projections weights to specify.
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One way to reduce the number of parameters in (9) (and the likelihood of
overfitting) is to bundle (partition) the subsets u in subgroups, and force the same
�u within each subgroup. A well-known example of this is to take order-dependent
weights, where �u depends only on the cardinality of u, say �u D �r when juj D r ,
for r D 2; : : : ; s. To specify those �r , we can estimate each �2

r D P
fuWjujDrg �2

u,
which represents the total variance captured by the

�
s
r

�
projections of order r , and

plug it in the formula

�r D C�r�2
r

 
s

r

!�1

;

where C > 0 is an arbitrary scaling constant. This gives s�1 parameters to estimate.
In one special case, we can simply assume that �r D �r�2 for all r � 2, for some

constant � , and estimate � by least-squares fitting of the linear regression model

ln C C r ln � C 2 ln �r � ln

 
s

r

!
D .r � 2/ ln � C "r

(for example), by finding ln C and ln � that minimize
P1

rD2 "2
r . The resulting

weights are geometric order-dependent weights. With constant order-truncated
weights, one simply takes �u D 1 for juj � d and �u D 0 otherwise, for a given
integer d � 2. Wang [26] suggests this with d D 2.

A different type of parameterization, used in [10, 11, 24], assigns a weight �j

to each coordinate j and uses the product weights �u D Q
j2u �j . Again, we can

estimate the parameters �j by matching the ANOVA variances, ignoring the one-
dimensional projections. One way of doing this is to fit the weights (12) where
the variance components are estimated, over all two-dimensional projections, via
a least-squares procedure. Then we rescale all the weights by a constant factor
to match the ratio of average estimated weights (12) over the three-dimensional
projections to that over the two-dimensional projections.

More specifically, we first minimize

R D
sX

kD1

k�1X
jD1

�
	j 	k � �2�2

fj;kg
�2

with respect to 	1; : : : ; 	s , where 	j can be viewed as the unscaled weight for
projection j , and where the variance components �2

u for juj D 2 are replaced by
their estimates. Differentiating this expression with respect to 	j and equaling to 0,
we obtain, for each j ,

	j

sX
kD1; k6Dj

	2
k D

sX
kD1; k6Dj

	k�2�2
fj;kg:
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We solve this (heuristically) by an iterative fixed-point algorithm:

	
.0/
j D max

k;lD1;:::;s
��fk;lg; 	

.iC1/
j D

Ps
kD1; k¤j 	

.i/

k �2�2
fj;kgPs

kD1; k¤j

�
	

.i/

k

�2
;

for i D 1; 2; : : : . We then rescale the weights via �j D c	j where the constant c

satisfies

Ps
kD1

Pk�1
jD1 	j 	kPs

kD1

Pk�1
jD1

Pj�1

lD1 	j 	k	l

D c

Ps
kD1

Pk�1
jD1 �2�2

fj;kgPs
kD1

Pk�1
jD1

Pj�1

lD1 �3�2
fj;k;lg

in which the sum of weights of order 3 is again replaced by an estimate.

6 Figures of Merit Based on the Spectral Test

In view of the variance expression (3) and its decomposition (7), and because we
normally expect the square Fourier coefficients j Of .h/j2 to decrease with the size of
h (when f is smooth, we know from (5) that these coefficients must converge at
the given rate), it seems to make sense to define a criterion that penalizes the short
non-zero vectors h in the dual lattice L�s , as well as in the dual lattices .Ls.u//�
to the projections Ls.u/. Note that .Ls.u//� is the projection over u of fh 2 L�s W
u.h/ � ug, but not the projection of L�s over u.

For each u, one can compute the Euclidean length `u of a shortest nonzero
vector in .Ls.u//�. There is a known tight theoretical upper bound `�r .n/ on the
length of a shortest nonzero vector in a lattice with n points per unit of volume in r

dimensions [3,15], and we can divide `u by `�juj.n/ to obtain a standardized measure
between 0 and 1, and raise it to some power ˇ > 0, for each u, or take the reciprocal
to obtain a measure of non-uniformity larger or equal to 1. To give more weight to
more important projections, this measure can in turn be multiplied by some weight
�u, for each u. Then we can take either the sum or the minimum (worst case) over
a selected class J of nonempty subsets u of f1; : : : ; sg. The role of ˇ is to amplify
or reduce the relative importance of bad projections (those having a small value of
`u=`�juj.n/) in the criterion. This gives the following figures of merit

M�;ˇ.P 0
n / D

X
u2J

�u

 
`u

`�juj.n/

!ˇ

; (13)

M 0
�;ˇ.P 0

n / D
X
u2J

�u

 
`�juj.n/

`u

!ˇ

; (14)
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fM �;ˇ.P 0
n / D min

u2J �u

 
`u

`�juj.n/

!ˇ

; and (15)

fM 0
�;ˇ.P 0

n / D max
u2J �u

 
`�juj.n/

`u

!ˇ

: (16)

The criteria (13) and (15) are to be maximized, whereas (14) and (16) are to be
minimized. In (15) and (16), only the quality of the worst-case projections matters,
and we do not care about the quality of the other ones, whereas in (13) and (14),
the quality of all the projections contributes to the sum, so these criteria encourage
improvements on all projections, not only the worst ones. The two variants (15)
and (16) are equivalent in terms of which lattice maximizes or minimizes them, if
we invert the weights (although we do not invert the weights in our examples). On
the other hand, (13) and (14) are really different. For a fixed ˇ and fixed weights,
in (13) the bad projections have a small importance in the sum (they only “fail to
score high”) whereas in (14) they have more importance because they bring a large
penalty.

The computing time of `u increases only very slowly with n (roughly at a
logarithmic rate), in contrast to that of P�;2˛ , but on the other hand it is exponential
in s in the worst case. In practice, it can be computed reasonably quickly for s up
to 30 or so, and n as large as we want. A computational advantage of the criteria
(15) and (16) is that poor lattices can be eliminated quickly (on average) without
having to compute all the `u’s. For example, in (15), the lattice can be eliminated as
soon as we have a small enough upper bound on �u`u=`�juj.n/ for some u (for this,
we do not even need to know `u exactly). For all the criteria based on a sum to be
minimized, we can also stop and eliminate the lattice whenever the sum exceeds a
given value (e.g., if it exceeds the best value found so far).

A special case of (15) was used in [15], with ˇ D 1 and

J D J .t1; : : : ; td /

D fu D f1; : : : ; rg for 2 � r � t1g
[fu D fj1; : : : ; jrg such that 1 D j1 < 	 	 	 < jr � tr and 2 � r � d g:

This was inspired by criteria used for random number generators having a lattice
structure [13]. The main drawback of this criterion is that many projections are not
considered at all; they can be very bad and this is not reflected by the figure of merit.

All these criteria can also be defined based on the lengths of the shortest
vectors in the primal lattices Ls.u/, instead of their dual lattices .Ls.u//�, and
permuting minimization for maximization. This makes little difference in terms
of the uniformity of retained lattices. The length of the shortest vector in Ls.u/

represents the minimal distance between any two lattice points, and we want this
distance to be as large as possible.
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7 Searching for Lattice Parameters

Once we have selected a discrepancy measure (or figure of merit) and specified the
weights, the next step is to search for lattices that minimize this measure, for a given
n. In our experiments, we will use (and compare) the following strategies.

In the case of Korobov lattices, there is a single parameter that can take at most
n � 1 values, so we will simply make an exhaustive search for the best vector a1 D
.1; a; a2; : : : ; : : :/ over all admissible integers a.

For general rank-1 lattices, under our assumptions, there could be up to .n�1/s�1

combinations and an exhaustive search is usually out of the question (for example,
this happens as soon as s exceeds a few units if n is around a million, which is
not unusual). A standard construction method in this context is the component by
component (CBC) construction algorithm, which works as follows [22, 23]:

Let a1 D 1;
For j D 2; : : : ; s, find aj 2 f1; : : : ; n � 1g, gcd.aj ; n/ D 1, such that

.a1; : : : ; aj�1; aj / minimizes the selected figure of merit for the first j

dimensions.

We will also use the following streamlined search method, which replaces the
exhaustive search over aj at each step by a search over a small number of different
random candidates aj (the number r of candidates can be from 20 to 100, for
example, depending on the computing budget that we are willing to devote to this).

Let a1 D 1;
For j D 2; : : : ; s, try r random aj 2 f1; : : : ; n � 1g, gcd.aj ; n/ D 1,

and retain the one for which .a1; : : : ; aj�1; aj / minimizes the selected
figure of merit for the first j dimensions.

8 Experimental Methodology

We summarize our experimental setting for the empirical results reported in the
following sections. For each example where this is relevant, we first estimate the
ANOVA variance components of the integrand by the method of [25], using RQMC
with 220�3 D 1; 048; 573 lattice points and 1,000 independent replications (random
shifts). The lattice used for this (for all examples) was constructed by a randomized
CBC search with r D 50 using geometric order-dependent weights with � D 0:5.
Next, we select the criteria among (9) or (13)–(16) and the types of weights that we
want to consider. The weights are selected as functions of the estimated ANOVA
variances, using the strategies described in Sects. 4 and 5. Occasionally, the ANOVA
variance estimators are zero or take a smaller value than their precision. Then, we
give these projections a weight equal to 1/100 of the smallest nonzero computed
weight. For each selected criterion and type of weight, we construct lattices using
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random CBC searches with r D min.50; n � 1/, for 86 different prime values of n

ranging from 25 � 1 D 31 to 222 � 3 D 4; 194; 301. Then, for each retained lattice,
we estimate the RQMC variance with 100 independent replications.

When constructing lattices with the P�;2˛ criterion for use with the baker’s
transformation, we set ˛ D 2; otherwise, we set ˛ D 1. The weights for the criteria
based on the spectral test are taken simply as �u D �2

u, where the latter is estimated,
and we take J D fu W ; ¤ u � f1; : : : ; sgg, unless indicated otherwise.

In most cases, the variance behaves approximately linearly in logarithmic scale
for n � 103. Then we fit a linear model of the form

ln VarŒ�n;rqmc� D ln a0 � 
 ln n C " (17)

for positive constants a0 and 
, where " represents a noise term. We do this by
computing the values Oa0 and O
 of a0 and 
 that minimize the sum of squares of
the values of " for the 61 (out of 86) values of n that are greater than 103. Our
estimated (or empirical) convergence rate is then O.n�O
/. We report the precision
on our estimates of O
 via 95% confidence intervals, assuming that " is normally
distributed with mean 0 and variance S2

" (we have checked empirically that this is
indeed a reasonable assumption).

In (17), the parameters a0 and 
 tell us how the log-variance decreases “on
average” as a function of n, for a given lattice construction procedure and a given
example. They are the primary quality indicators for the procedure. The parameter "

represents the departure of the log-variance from the linear model for the particular
lattice selected at a given n, together with the estimation error in the RQMC log-
variance because it is based on a finite number of replications. The latter error can
be made arbitrarily small by making more independent replicates of the RQMC
estimator. The departure of the true log-variance from the linear model typically
has a larger contribution to " in our examples. This departure depends on the lattice
parameters that are retained by the selection algorithm for the given n; it is intrinsic
to the lattice construction procedure and it generally depends on the criterion and
type of weights. A small standard deviation S" means that the linear model is a
better predictor of the performance for a given n, and that the returned lattices tend
to be more robust and reliable in terms of RQMC variance. When the linear models
for two or more criteria predict similar RQMC variances, we should prefer the one
with the smallest S".

We define the variance reduction factor (VRF) for a specific n-point randomly-
shifted lattice rule as the variance �2 of the MC estimator divided by n times the
variance of the RQMC estimator. We estimate �2 by the empirical variance S2

n . In
some cases, we replace the RQMC variance of the specific lattice at a given value
of n by the variance Oa0n�O
 interpolated from our linear model in log scale, and we
report the corresponding interpolated VRF, bVRF.n/ D nO
�1S2

n= Oa0, usually with
n D 220. This interpolation is more stable than the actual variance at a given n.

Detailed results of our experiments are given in the online appendix. In the
following sections, we only summarize these results.
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9 An Indicator Function

In our first set of experiments, we consider a simple discontinuous integrand
defined as the indicator that a sum of s independent random variables exceeds
a given threshold. We assume that Y1; : : : ; Ys are independent random variables,
and that Yj is exponential with rate �j , for each j . We estimate the probability
� D PŒY1 C 	 	 	 C Ys > x� by MC or RQMC, for some constant x. The basic
estimator is X D IŒY1 C 	 	 	 C Ys > x�, where I denotes the indicator function.
It corresponds to the discontinuous s-dimensional integrand

f .u1; : : : ; us/ D IŒF �1
1 .u1/ C 	 	 	 C F �1

s .us/ > x�;

where F �1
j .uj / D � ln.1 � uj /=�j is the inverse cdf of Yj evaluated at uj .

We also consider the conditional MC (CMC) estimator

Xcmc D PŒY1 C 	 	 	 C Ys > x j Y1 C 	 	 	 C Ys�1�

D expŒ��s.x � Y1 � 	 	 	 � Ys�1/� 	 IŒx � Y1 � 	 	 	 � Ys�1 � 0�:

The associated integrand,

f .u1; : : : ; us�1/ D 1 � Fs.x � F�1
1 .u1/ � 	 	 	 � F�1

s�1.us�1//;

has dimension s � 1 and is continuous, but has a discontinuity in its first-order
derivatives, because the cdf of Ys , Fs.y/ D Œ1 � exp.��sy/� 	 IŒy > 0�, has a
discontinuous derivative at y D 0.

For the one-dimensional case, it is known (see [17]) that the basic RQMC
estimator can take only two values and its variance converges as O.n�2/ regardless
of the choice of lattice. Using the dual-space exploration algorithm here does not
work well because the Fourier coefficients do not decrease monotonously with khk.

We simulated these estimators for s D 2; : : : ; 6, for the following four cases:
�j D 1, �j D j�1, and �j D j�2, with x chosen so that the probability � to be
estimated is close to 0:5, and �j D j�1 with x chosen so that � is near 0:1.

To select the lattice parameters, we tried the criterion (9) with ˛ D 1 for both
the basic and CMC estimators, with ˛ D 2 for the CMC estimator with the baker
transformation, and the criteria (13)–(16) with ˇ D 1 and 2, with projection-
dependent, product, order-dependent and geometric order-dependent weights in
all cases. In general, the observed convergence rates (reported in the online
appendix) do not vary too much when only �j or x changes. Although none of
the integrands here meets the smoothness requirements that justify using the P�;2˛

criterion, in the sense that we have no guaranteed convergence rate for the variance
of the corresponding RQMC estimators, lattices constructed with that criterion
and projection-dependent weights gave slightly higher values of bVRF.220/ and O

together with smaller values of OS" on average, compared to those obtained with
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criteria based on the spectral test. They give empirical convergence rates exponents
of approximately O
 
 .s C 1/=s for the basic estimator. For the CMC estimator, the
best convergence rates, of O.n�2/ without the baker’s transformation and of O.n�4/

with the baker’s transformation, are obtained at s D 2 and degrade as a function of
s down to around O.n�1:5/ and O.n�1:6/, respectively, at s D 6. The improvement
on the convergence rate due to the baker’s transformation is clear at s D 2 or 3 but
seems marginal for s � 4. The observed convergence rates for the CMC estimator
for s D 2 were expected, because in that case the integrand is one-dimensional, is
continuous in .0; 1/ but its periodic continuation is not, and these are the known
convergence rates for such an integrand [12].

Regarding the choices of weights, our estimations of the ANOVA variances
suggested that product and order-dependent weights were not justified, yet we
found no clearly observable best choice of weights for the basic estimator. For the
CMC estimator, however, projection-dependent weights, when used with the P�;2˛

criterion, consistently offer good performance.
We also examined a simpler case with s D 2 where Y1 � U Œ0; m/ for some

m 2 Œ0; 1/ and Y2 � U Œ0; 1/. Our experiments with m D 0:375 and x D 0:8

revealed that some lattices with excellent values of standard figures of merit, such
as P2˛ and those based on the spectral test, are not among the best in terms of
variance reduction. These criteria, introduced earlier, are not really appropriate in
this situation, because they do not take into account the alignment between the
lattice points and the discontinuity, which turns out to be a key factor here. On
the other hand, even for this specific artificial example, by examining all lattices for
a given n, we found a clear positive correlation between the RQMC variance and
P2˛ . Here, the choice of weights is not an issue, because there is a single projection
in more than one dimension.

10 Example: A Stochastic Activity Network

We consider the stochastic activity network example taken from [9] and represented
in Fig. 2, where the lengths V1; : : : ; V13 of edges 1; : : : ; 13 are independent random
variables with distribution functions F1; : : : ; F13, respectively. We take the same
cdf’s Fj as in [2, Sect. 4.1]. For the activities j D 1; 2; 4; 11; 12, we have
Vj D max.0; QVj / where QVj is a normally distributed random variable with mean
�j and variance �2

j =16. The other Vj ’s are exponential with mean �j . The values
of �1; : : : ; �13 are 13.0, 5.5, 7.0, 5.2, 16.5, 14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2,
16.5, respectively. See [1, 2, 15] for a complete description of the problem. We are
interested in estimating the probability that the longest path from source (node 1)
to sink (node 9) has a length T larger than some constant x with the estimator
X D IŒT > x�. We also consider the CMC estimator obtained by simulating the
Vj ’s only for the edges that are not in the cut set L D f5; 6; 7; 9; 10g, and taking
the probability that T > x conditional on those Vj ’s, as in [1]. This CMC estimator
can be written as
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Fig. 2 Graph of the
stochastic activity network
with 9 nodes and 13 links.
The dashed links are not
simulated in the CMC variant.

XCMC D P
�
T > x j fVj W j 62 L g	 D 1 �

Y
j2L

PŒVj � x � Pj � (18)

where Pj is the length of the longest path that goes through edge j when we put
Vj D 0 (i.e., we exclude edge j ). The main motivation for considering this estimator
is that it is continuous as a function of the Vj ’s that are generated (and therefore as
a function of the underlying uniform random numbers), in contrast to the original
estimator X , and it is also easy to compute. This example generalizes the problems
and the CMC estimators considered in the previous section. This integrand has
dimension s D 13 with the basic estimator X , and dimension s D 8 with the
CMC estimator XCMC. We also estimated EŒT � by simulation; the corresponding
integrand has dimension s D 13.

For all types of estimators, we have estimated the ANOVA variances and
observed that they vary a lot across projections of a given order, so we do not
expect order-dependent or geometric weights to work well. In our experiments,
we found that the P�;2˛ criterion (with ˛ D 1 for the standard estimator and
˛ D 2 for the CMC estimator) performed well in all cases, with relatively high
values of bVRF.220/ and O
, together with low values of OS", with slightly better
performance for projection-dependent and product weights. We also found that
using the inappropriate order-dependent or geometric weights does not guarantee
poor performance—in some cases the VRF’s were even slightly higher than with
the more appropriate projection-dependent and product weights—but it makes it
more unpredictable, with VRFs as low as half of the best ones in some cases. The
criteria based on the spectral test did not perform as well as P�;2˛ , at least for
projection-dependent and product weights. The standard and CMC estimators had
similar qualitative behavior, but the observed VRFs were much larger for the CMC
estimator. For example, the best VRF for x D 60 interpolated at n D 220 is 27 with
an empirical convergence rate of 1:20 for the standard estimator, obtained with the
P�;2˛ criterion with projection-dependent weights and ˛ D 1. For the same case
but with CMC estimator and ˛ D 2, we observed a fitted VRF of 4:4 � 103 with
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an empirical convergence rate of 1:51. The baker’s transformation offered very little
improvement on the CMC estimator. All these results are in the online appendix.

11 Example: Asian Call Option

We consider an Asian call option based on the price S.t/ of single asset at times
t0 D 0; t1; : : : ; ts , with payoff:

Y D e�Qrts max

2
40;

1

s

sX
jD1

S.tj / � K

3
5 ;

where Qr is the risk-free interest rate and K is the strike price. The asset price is a
geometric Brownian motion:

S.t/ D S.0/ expŒ.Qr � �2=2/t C �B.t/�;

where fB.t/ W t � 0g is a standard Brownian motion, and � it the volatility. We also
consider a down-and-in variant of the Asian option with payoff

Y 0 D Y 	 I
�

min
jD1;:::;s

S.tj / � K 0
�

;

where K 0 is a barrier. We estimate EŒY � and EŒY 0� with MC and RQMC. For
our experiments, we set S.0/ D 100, K D 100, K 0 D 80, Qr D 0:05, � D
0:5, tj D j=s for j D 0; : : : ; s, and s D 6. To simulate S.t1/; : : : ; S.ts/, Y

and Y 0, we sample a standard normal vector Z D .Z1; : : : ; Zs/ with Zj D
˚�1.Uj /, where ˚ is the standard normal distribution function. Then we generate
B D .B.t1/; : : : ; B.ts// D AZ, where C D AAt is the covariance matrix of
B with elements cj;k D �2 min.tj ; tk/ We consider two standard choices for the
decomposition AAt. The first is the Cholesky factorization where A is a lower
triangular matrix. The second, based on principal component analysis (PCA), is
A D PD1=2, where P is the matrix of right eigenvectors of C and D is a diagonal
matrix that contains the eigenvalues of C sorted by increasing order so that the
components of B depend more on the first components of Z than on the others.

For the Asian option with PCA, our estimations of the ANOVA variances showed
that projection f1g itself accounts for nearly 99% of the total variance for the Asian
option, whereas with Cholesky all projections of order 1 together account for only
73% of the total variance. For the down-and-in option, the largest part of the variance
is contributed by projections of order 2 and more, and PCA barely improves the
situation with respect to Cholesky by raising from 9% to 14% the percentage of
variance contributed by projections of order 1. Note that there is only one projection
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Table 1 Fitted variance reduction factors at n D 220 and empirical convergence rates for the
Asian and down-and-in options. The baker’s transformation was applied for the Asian option, but
not for the down-and-in option. When CBC is followed by a value of r , it refers to random CBC,
otherwise it refers to exhaustive CBC, and similarly for Korobov. Order-dependent of order 2 is
abbreviated as order 2.

Criterion Construction r Weight type bVRF.220/ O
 OS"

Asian option (PCA), s D 6

P�;4

CBC
50

Proj.-dep. 3:1 � 105 1:846˙ 0:004 0:325

Product 3:1 � 105 1:840˙ 0:005 0:335

Order-dep. 1:6 � 105 1:707˙ 0:008 0:632

Geometric 2:4� 105 1:784˙ 0:005 0:399

Order 2 1:4 � 105 1:710˙ 0:010 0:852

– Proj.-dep. 3:5 � 105 1:870˙ 0:020 0:317

Korobov
50 Proj.-dep. 2:6� 105 1:825˙ 0:005 0:354

– Proj.-dep. 3:0 � 105 1:850˙ 0:010 0:333

M�;2 CBC 50 Proj.-dep. 1:7 � 105 1:751˙ 0:007 0:545

M 0

�;2 CBC 50 Proj.-dep. 2:2� 105 1:807˙ 0:007 0:492

Down-and-in option (PCA), s D 6

P�;4

CBC
50

Geometric 7:8 1:180˙ 0:003 0:238

Product 7:5 1:212˙ 0:004 0:332

Proj.-dep. 7:5 1:169˙ 0:004 0:267

Order-dep. 7:1 1:149˙ 0:005 0:372

Order 2 4:0 1:160˙ 0:010 0:793

– Proj.-dep. 9:0 1:193˙ 0:009 0:227

Korobov
50 Proj.-dep. 7:1 1:195˙ 0:005 0:341

– Proj.-dep. 7:6 1:181˙ 0:008 0:217

M�;2 CBC 50 Proj.-dep. 6:0 1:160˙ 0:004 0:313

M 0

�;2 CBC 50 Proj.-dep. 6:2 1:183˙ 0:007 0:500

of order 6 and it accounts for 9.4% and 13% of the total variance for Cholesky and
PCA, respectively.

The Asian option payoff function is continuous with respect with to the uniforms,
but the down-and-in variant is not, so we use the baker’s transformation for the
former but not for the latter. For the PCA case, we show in Table 1 the fitted
VRF’s and empirical convergence rates for various types of weights with the P�;2˛

criterion using random CBC construction, and for projection-dependent weights for
the M�;2 and M 0

�;2 criteria. The error on ln Oa0 (not shown in the table) is in general

of the order of one tenth of the value of OS" or less. Besides constant order-truncated
weights at order 2, which yield poor performance as confirmed in Fig. 3, the other
types of weights all seem to offer comparable performance. With PCA, compared
to Cholesky, the VRF’s are much higher, the convergence with n is faster, and there
is less noise in the observed variances (see the appendix).

We compared the relative performance of the criteria M�;ˇ, M 0
�;ˇ , fM �;ˇ and

fM 0
�;ˇ , for ˇ D 1 and 2, and for projection-dependent, product, order-dependent

and geometric order-dependent weights. With Cholesky factorization, fM �;ˇ and



154 P. L’Ecuyer and D. Munger

10−4

10−8

101 103 105 107 101 103 105 107

100

10−4

10−7

10−1

n

va
ri
an
ce

Asian option

n

va
ri
an
ce

down-and-in option

Fig. 3 Estimated and fitted variance of the RQMC estimator, using lattices constructed with the
P�;2˛ criterion, for the Asian option with ˛ D 2 and the baker’s transformation (left) and for
the down-and-in option with ˛ D 1 without the baker’s transformation (right), using Cholesky
factorization, with projection-dependent weights (ı) and with constant order-dependent weights
truncated at order 2 (�).
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Fig. 4 Estimated and fitted variance of the RQMC estimator for the Asian option (Cholesky) with
the baker transformation, using lattices constructed with the M 0

�;ˇ (ı) and eM 0

�;ˇ (�) criteria, with
ˇ D 1 (left) and ˇ D 2 (right) and with product weights.

fM 0
�;ˇ , based on the worst projection, generally yield faster convergence and larger

VRF than their counterparts M�;ˇ and M 0
�;ˇ based on a weighted sum over all

projections. Besides this, it is hard to discriminate between criteria and weight types.
We illustrate part of these observations in Fig. 4, where we compare (14)–(16) for
ˇ D 1 and 2 and product weights. The observed variances are more noisy on average
when using (16), but the convergence seems faster. When using PCA, on the other
hand, we did not observe any significant difference in the results across different
criteria. The easy explanation is that for integrands where only a small part of the
variance lies in projections of order 2 or more, all criteria and weight types under
consideration here are practically equivalent in terms of the variance of the RQMC
estimator.

In Table 1, we also give some results for exhaustive CBC and Korobov con-
structions for projection-dependent weights, for the Asian option. Random Korobov
means that we tried r random values of a. The exhaustive CBC construction
generally provides a slightly better variance reduction than random CBC, and the
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Fig. 5 Estimated and fitted variance of the RQMC estimator, using lattices constructed with the
P�;2˛ criterion and projection-dependent weights, for the Asian option with ˛ D 2 and the
baker’s transformation (left) and for the down-and-in option with ˛ D 1 without the baker’s
transformation (right), using Cholesky factorization, with random CBC construction with r D 50

(—–), exhaustive CBC construction (���) or exhaustive Korobov construction ( ) .

Korobov construction is slightly worse than CBC, but the difference is thin, as can
be seen in Fig. 5. Note that because the cost of exhaustive CBC increases with n

(there are .s � 1/.n � 1/ vectors to examine) we have results only for n � 105 in
this case.

We also constructed lattices using values of n that are powers of 2. In some
cases, they clearly produced larger RQMC variances than lattices with prime n, as
illustrated in Fig. 6. But in most cases, the variances for n prime or a power-of-two
are comparable. For instance, this occurs for the example of Fig. 6, but with product
weights instead of projection-dependent weights. Note that in order to have each aj

relatively prime with n for j D 2; : : : ; s when n is a power of 2, aj has to be an odd
number, which means that for each component of the generating vector a except the
first which is fixed at a1 D 1, there is only half the number of possible values to
consider. In other words, the space of lattice parameters is 2s�1 times smaller for
values of n that are powers of 2 than for prime values of n. This could be part of the
explanation.

We also did a few experiments with the fM �;1 criterion as in (15), with J D
J .32; 24; 16; 12/, as proposed in [15]. As shown in Fig. 7, this criterion does not
perform well. It does not appear appropriate for the problems at hand, because too
many coordinates (up to 32) are considered by the criterion whereas projections of
order 5 and 6 are ignored.

Finally, to show a situation where projection-dependent weights perform clearly
better than other types of weights, we give some results for an (artificial) example
where we have two independent Asian options, each with s D 3 and the same
parameters, and the payoff is the sum of the payoffs of the two options. Of course,
we could estimate the expected payoff of each of the two options by RQMC
separately and add up, but here, for the purpose of the illustration, we simulate
the first option using the first three coordinates of the six-dimensional point set and
the second option, using the last three coordinates. Then, the ANOVA variances are
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Fig. 6 Estimated and fitted variance of the RQMC estimator for lattices constructed with the P�;2˛

criterion with projection-dependent weights, for the Asian option with the baker’s transformation
and ˛ D 2 (left) and the down-and-in option without the baker’s transformation with ˛ D 1 (right),
for with prime values of n (ı) and for values of n that are powers of 2 (�).
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Fig. 7 Fitted variance of the RQMC estimator for the Asian option with the baker’s transformation
(left) and the down-and-in option without the baker’s transformation (right) with Cholesky
factorization, for lattices constructed using the P�;2˛ criterion with random CBC with r D 50

(ı) and the eM �;1 criterion as in (15) with J DJ .32; 24; 16; 12/ (�) and Korobov construction.

non-zero only for projections u such that ; ¤ u � f1; 2; 3g or ; ¤ u � f4; 5; 6g.
There are thus only 14 out of 63 total projections that are relevant to the problem.
This way, order-dependent weights are unlikely to perform well, because they give
significant weight to the 9 irrelevant projections of order 2 and to the 18 irrelevant
projections of order 3, rather than concentrate the weights over the important
projections. We expect product weights to do even worse, because they waste their
weights to these and on the 22 other irrelevant projections of order 4–6. This is
confirmed in Fig. 8 and Table 2. Interestingly, the lattices obtained using ˛ D 1

appear more robust than those with ˛ D 2, even if the baker’s transformation was
used in both cases.

In summary, other choices of weights frequently perform almost as well as (more
general) projection-dependent weights even when they are not really justified, which
is good news, but there are situations where the projection-dependent weights really
perform much better.
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Fig. 8 Fitted variance of the RQMC estimator for the sum of 2 Asian payoffs, with Cholesky
factorization, using the baker’s transformation and criterion P�;2˛ with ˛ D 1 (left) and ˛ D
2 (right), using projection-dependent weights (—–), product weights (� � �), order-dependent
weights ( ), and geometric weights ( ).

Table 2 Estimated bVRF, O
 and OS" for the RQMC estimator of the sum of 2 Asian options for the
criterion P�;2˛ with ˛ D 1 and 2 with the baker’s transformation in both cases.

Weight type P�;2 P�;4

bVRF.220/ O
 OS" bVRF.220/ O
 OS"

Proj.-dep. 1:9 � 105 1:829˙ 0:005 0:351 1:7 � 105 1:800˙ 0:004 0:328

Product 7:2� 103 1:85˙ 0:03 1:88 1:5 � 104 1:88˙ 0:02 1:35

Order-dep. 1:1 � 105 1:80˙ 0:01 0:669 7:2� 104 1:72˙ 0:01 0:738

Geometric 5:6 � 104 1:75˙ 0:01 1:10 2:6� 104 1:59˙ 0:01 1:00

12 Conclusion

The optimal lattice, which minimizes the variance when estimating an integral by a
randomly shifted lattice rule, depends on the integrand f, and optimizing this lattice
is harder in general than computing the integral itself. The idea of constructing
efficient adaptive algorithms by estimating the Fourier coefficients or the variance
components, for general applications, is attractive at first sight, but estimating
those quantities with reasonable accuracy usually too costly. Fortunately, crude
estimates of the variance components are generally sufficient to identify the subsets
of coordinates on which to put more weight when constructing the lattice, and doing
this with a weighted P�;2˛ figure of merit with projection-dependent weights is a
robust approach that gives very good results in most examples that we have tried.
In fact, lattices constructed based on a weighted P�;2˛ with reasonable choices of
weights, such as order-dependent weights that decrease geometrically (but not too
fast) with the cardinality of coordinate subsets, perform well enough in most cases.
Such lattices could be provided in general-purpose RQMC software. On the other
hand, lattices constructed with lousy choices of weights, that give too little weight
to some important projections (for example, giving weight only to the projections
of order 2), or too much weight to several irrelevant projections, often perform



158 P. L’Ecuyer and D. Munger

poorly. We also saw counterexamples (indicator functions in two dimensions) where
a lattice having the best P�;2˛ performs very poorly, not because of a poor choice of
weights, but because P2˛ is not always a relevant measure in these examples. Thus,
all the practical methods that we can propose to define a figure of merit for general
applications are heuristic and none is foolproof. However, these counterexamples
were constructed on purpose and such cases are rarely encountered in applications.

The theoretical asymptotic convergence rate of O.n�2˛Cı/ for P�;2˛ and for the
RQMC variance for certain classes of smooth functions is rarely observed in the
practical range of values of n, say up to a few millions. The rates we have observed
empirically, with the best lattices we found, are typically somewhere between
O.n�2/ and O.n�1/. Interestingly, this applies not only to smooth functions f, but
also to non-smooth integrands, and even to discontinuous and unbounded ones.

An ongoing project related to this study is to build integrated software tools that
can construct lattices based on a variety of parameterized figures of merit, with
flexibility for the choices of weights (or parameters), and feed them to simulation
software for arbitrary RQMC applications. This will include lattices extensible in
both the dimension s and the number of points n. Hopefully, this will put these
RQMC methods closer to the hands of practitioners and promote their utilization in
a large variety of applications.

The online appendix to this paper can be found at http://www.iro.umontreal.ca/
	lecuyer/myftp/papers/mcqmc-plenary-app.pdf.
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A Study of the Efficiency of Exact Methods
for Diffusion Simulation

Stefano Peluchetti, and Gareth O. Roberts

Abstract In this paper we investigate the efficiency of some simulation schemes for
the numerical solution of uni- and multi-dimensional stochastic differential equation
(SDE) with particular interest in a recently developed technique for diffusion
simulation [5] which avoids the need for any time-discretisation approximation (the
so-called exact algorithm for diffusion simulation). The schemes considered are: the
Exact Algorithm, the Euler, the Predictor-Corrector and the Ozaki-Shoji schemes.
The analysis is carried out via a simulation study using some test SDEs. We also
consider efficiency issues arising by the extension of EA to the multi-dimensional
setting.

1 Introduction

A general methodology for the simulation of uni- and multi-dimensional diffusions
was recently introduced in a series of papers [5–7]. The unique feature of these
methods is that they permit the simulation of analytically intractable diffusions
without recourse to time-discretisation. The methods can therefore claim to be exact
(at least up to the precision limits of the computer used to perform the simulation)
and we shall call the general method the exact algorithm (EA).

Numerical schemes for the simulation of diffusion processes have been around
for some time, the first contribution probably being that of [13]. Theoretical work
has largely focused on strong and weak approximation results, see for example [2,9,
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12] and the references therein. However before the work of [7], exact simulation was
confined to a very small class of diffusion processes whose stochastic differential
equations yielded explicit solutions (see for example [4]).

It is natural to expect there to be a price to pay for the exactness, and this is
the question we address here. Thus the purpose of this paper is to consider the
efficiency of EA, and to compare it with other off-the-shelf methods for diffusion
simulation. In our experiments we find that in most cases, EA methods are at least as
computationally efficient as the Euler, Predictor Corrector or Ozaki-Shoji schemes.
Thus, surprisingly, there appears to be no price to pay for exactness, at least in
general.

Some preliminary results on the efficiency of EA, in a Monte Carlo scenario,
can be found in [8]. However this paper gives a substantially more extensive
investigation of EA. We initially consider a class of test models that synthesise a
range of one-dimensional diffusive dynamics that are encountered in a range of
applications. We thus simulate them using three well known discretisation schemes
and EA and we compare the results obtained. We also give a detailed simulation
study of the efficiency of EA in multi-dimensional settings.

1.1 Broad Conclusions, Comparisons, Restrictions
and the Value of Exactness

Of course any comparison between methods depends on the diffusion functional
expectation we wish to estimate. Here we focus on finite-dimensional distribu-
tions and sample path maxima. The comparison also depends on the level of
accuracy required and/or the available computing resource. Therefore any compar-
ison between methods has to lead to cautious conclusions. We have however tried
to consider a range of examples which focus on known efficiency properties (both
weak and strong) of EA methods.

It is well-known that the computational complexity of approximating a diffusion
functional moment to an accuracy (root mean square error) of � is typically ��3
for routine application of (say) the Euler-Maruyama scheme on a diffusion with
suitable smooth (e.g. Lipschitz) coefficients. Multi-scale methods can improve this
complexity to .log �/2��2 [1]. However it is intrinsically impossible to improve this
complexity to ��2 using discretisation methods.

On the other hand, calculations for EA methods are much more straightforward
since there is no requirement to trade off approximation bias with computational
time. Given computing resource T , the weak error of estimating any functional with
finite variance is justO.T �1=2/ by the central limit theorem Thus the computational
complexity of approximating to accuracy � is automatically ��2. This means that
EA methods will always outperform any discretisation methods for all sufficiently
highly prescribed precision.

In this paper, the comparisons we make do not involve very high accuracy
requirements. We consider instead the non-asymptotic regime where moderate
accuracy is required or limited computing resource is available.
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It is not always possible to apply EA methods. Whilst the literature strong
and weak approximation results for discretisation schemes often uses Lipschitz (or
somewhat weaker) conditions on diffusion and drift functions, current EA methods
require both to be C1 functions. Furthermore, for multi-dimensional diffusions,
a major restriction is that the diffusions must be transformable to unit-diffusion
coefficient diffusions, and then must have drifts given as potential gradients. Whilst
the differentiability conditions can (and are being) weakened, the unit-diffusion,
gradient drift condition is fundamentally essential for EA methods.

Even where EA methods turn out to be inefficient (rare in our comparison) one
important role for EA methods is to be able to quantify approximation errors for
faster discretisation methods.

We do not claim that the numerical comparison we carry out is exhaustive in any
sense. Clearly that would not be possible. In particular, we have chosen only three
from the vast array of possible discretisation methods; we have only considered a
relatively small collection of diffusions to simulate; and our comparison criteria are
necessarily somewhat arbitrary. However, we do expect that the broad conclusions
borne from this study will apply much more generally, and this is supported by our
numerical experience in other examples of the use of EA and discretisation methods.

1.2 The Structure of the Paper

This paper is organised as follows. In Sect. 2, EA and the three discretisation
schemes are briefly introduced. Section 3 consists of the simulation study where
the efficiency of the four schemes is studied. The main difficulty is comparing a
scheme that returns the exact result with schemes that return approximated results.
Consequently it is necessary to introduce a comparison criterion that measures a
“distance” between the true and the approximated result. We are interested in both
the sensitivity of the schemes to the parameters of the test SDEs and the ratio of
efficiency between EA and the other schemes. In Sect. 4 the efficiency of the multi-
dimensional extension of EA is investigated, without any comparison with the other
discretisation schemes. Section 5 concludes the paper.

2 The Simulation Schemes

2.1 The Exact Algorithm

We begin considering a generic one-dimensional and time homogeneous Stochastic
Differential Equation (SDE)

dYt D b .Yt / dt C � .Yt/ dBt 0 � t � T (1)

Y0 D y
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whereB is the scalar Brownian Motion (BM) and y is the initial condition. The drift
coefficient b and the diffusion coefficient � are assumed to satisfy the proper
conditions for the existence and uniqueness of a strong solution of (1). Let Y be
the diffusion process strong solution of (1).

Under the additional requirement that � is continuously differentiable and strictly
positive let

� .u/ WD
Z u

��1 .z/ d z (2)

be the anti-derivative of ��1. It follows that Xt WD � .Yt / satisfies the unit diffusion
coefficient SDE

dXt D ˛ .Xt/ dt C dBt 0 � t � T (3)

X0 D x WD � .y/

with drift coefficient

˛ .u/ WD b
˚
��1 .u/

�
� f��1 .u/g � � 0 ˚

��1 .u/
�

2
(4)

SDE (3) is assumed to admit a unique strong solution and we denote by X the
state space of X . The map (2), also known as the Lamperti transform, allows us
to consider the simpler problem of simulating from (3) for a vast class of one-
dimensional SDEs.

In what follows the laws of stochastic processes are defined on the measur-
able space of continuous functions C .Œ0; T � ;R/ with its cylinder sigma algebra
C .Œ0; T � ;R/, or on the obvious restrictions of this space. Let Qx

T and W
x
T denote

the law of the diffusionX and the law of a BM respectively on Œ0; T � both started at
x. From now on the following hypotheses are assumed to hold

• .C1/ 8x 2 X Q
x
T � W

x
T and the Radon-Nikodym derivative is given by

Girsanov’s formula

dQx
T

dWx
T

.!/ D exp

�Z T

0

˛ .!s/ dXs � 1

2

Z T

0

˛2 .!s/ ds

�
(5)

where ! 2 C .Œ0; T � ;X/
• .C2/ ˛ 2 C1 .X;R/;
• .C3/ ˛2 C ˛0 is bounded below on X.

An application of Ito’s formula to the functionA .u/ D R u
0
˛ .z/ d z results in a more

tractable form of (5)

dQx
T

dWx
T

.!/ D exp fA .!T / �A .x/g exp

�
�

Z T

0

˛2 C ˛0

2
.!s/ ds

�
(6)
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Under the integrability assumption

• .C4/ 8x 2 X �x;T WD EW
x
T

�
eA.!T /

�
< 1

it is possible to get rid of the (possibly unbounded) term A .!T / of (6) introducing
a new process Z with law Z

x
T by the Radon-Nikodym derivative

dZxT
dWx

T

.!/ D eA.!T /=�x;T (7)

�x;T D EW
x
T

h
eA.!T /

i
(8)

We refer to Z as the Biased Brownian Motion (BBM). This process can be
alternatively defined as a BM with initial value x conditioned on having its terminal
value ZT distributed according to the density

hx;T .u/ WD �x;T � exp

(
A .u/� .u � x/2

2T

)
(9)

It follows that

dQx
T

dZxT
.!/ D �x;T exp f�A .x/g exp

�
�

Z T

0

˛2 C ˛0

2
.!s/ ds

�
(10)

/ exp

�
�

Z T

0

� .!s/ ds

�
� 1 (11)

where � .u/ WD �
˛2 .u/C ˛0 .u/

�
=2 � l and l WD infr2X

�
˛2 .r/C ˛0 .r/

�
=2 <

1. Equation 11 suggests the use of a rejection sampling algorithm to generate
realisations from Q

x
T . However it is not possible to generate a sample from Z,

being Z an infinite-dimensional variate, and moreover it is not possible to compute
analytically the value of the integral in (11).

Let L denote the law of a unit rate Poisson Point Process (PPP) on Œ0; T ��Œ0;1/,
and let ˚ D f�; g be distributed according to L. We define the event � as

� WD
\
j�1

�
�
Z�j

� �  j (12)

that is the event that all the Poisson points fall into the epigraph of s 7! � .Zs/. The
following theorem is proven in [6]

Theorem 1 (Wiener-Poisson factorisation). If .Z;˚/ � Z
x
T ˝ L j � then

Z � Q
x
T

At this stage the result is a purely theoretical, as it is not possible to simulate from
the law L. However, in the specific case of � bounded above by m < 1 it suffices
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to consider ˚ as a PPP on Œ0; T � � Œ0;m�. The reason is that for the determination
of the event � , only the points of ˚ below m matter. The algorithm resulting from
this restrictive boundedness condition on � is called EA1.

The hypothesis of bounded � can be weakened or even removed, successively
generalised and leading to EA2 [5] and to EA3 [6] respectively. Both extensions
involves the simulation of some functional of Z or of an event depending on Z
which restrict the range of Z, and by continuity the range of � .Z/.

EA1 and EA3 are used in the simulation study. Details of EA3 are described in
the appendix. We also give there some important implementational details which
are relevant to both EA1 and EA3.

2.2 The Discretisation Schemes

We now briefly introduce the three discretisation schemes (DS) whose efficiency,
with that of EA, is investigated in the simulation study. All the DSs are assumed
to have an equi-spaced discretisation interval of length 	 D T=n, where n is the
number of steps and Y 	 denotes a corresponding generic DS. In the following i D
1; � � � ; n and Y0 D x implicitly.

The Euler scheme is the simplest DS that can be used to approximate the solution
of (1). It can be defined by the recursion

W i
	

iid� N .0;	/ (13)

Yi	 D Y.i�1/	 C b
�
Y.i�1/	

�
	C �

�
Y.i�1/	

�
W i
	 (14)

The Predictor-Corrector scheme is defined by

W i
	

iid� N .0;	/ (15)

Y i	 D Y.i�1/	 C b
�
Y.i�1/	

�
	C �

�
Y.i�1/	

�
W i
	 (16)

Yi	 D Y.i�1/	 C 1

2

˚
b

�
Y.i�1/	

� C b
�
Y i	

��
	C �

�
Y.i�1/	

�
W i
	 (17)

The idea behind this DS is to make a Euler prediction NYi	 by using (16) and adjust
NYi	 by computing an average of the drift’s value over the time step ..i � 1/	; i	�

using the trapezoid quadrature formula. This approach results in the correction (17).
It is fundamental to use the same W i

	 in (16) and (17). For more details about the
Euler and the Predictor-Corrector schemes see [12].

Finally we introduce the Ozaki-Shoji scheme. This DS uses a completely
different approach that is only applicable to diffusion process with constant diffusion
coefficient and, without loss of generality, to (3). This DS belongs to the family
of “linearisation schemes” which approximates the drift ˛ of (3) by some sort of
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linear approximation. The specific version here presented it the one of [15]. The idea
behind this DS is to approximate the behaviour of ˛ .Xt / in a neighbourhood of Xt
using Ito’s Lemma

d˛ .Xt/ D ˛0 .Xt/ dXt C 1

2
˛00 .Xt/ dt (18)

˛ .XtCh/ � ˛ .Xt /C ˛0 .Xt/ .XtCh � Xt/C 1

2
˛00 .Xt/ h (19)

The law of the Ozaki-Shoji scheme on the time interval .0;	� is given by the
solution of the linear SDE

dXt D
�
˛ .x/C ˛0 .x/ .Xt � x/C 1

2
˛00 .x/ t

�
dt C dBt (20)

i.e. an Ornstein-Uhlenbeck process. By the time-homogeneity this DS under time-
discretisation	 is termed X	 and defined by the iterative formulae

QW i
	

iid� N

0
@0; exp

n
2˛0

	
X	
.i�1/	



	

o
� 1

2˛0
	
X	
.i�1/	



1
A (21)

X	
i	 D X	

.i�1/	 C
˛

	
X	
.i�1/	




˛0
	
X	
.i�1/	


 	
exp

n
˛0

	
X	
.i�1/	



	

o
� 1



(22)

C
˛00

	
X	
.i�1/	




2
	
˛0

	
X	
.i�1/	



2
n
exp

n
˛0 	

X	
.i�1/	



	

o
� 1 � ˛0 	

X	
.i�1/	



	

o
C QW i

	

(23)

3 Some Uni-dimensional Simulation Studies

A standard way to compare DSs is related to the concepts of weak and strong
convergence.
X	 is said to be a strong approximation of (1) if 9	�; k;S > 0 W 8	 � 	�

E
ˇ̌
XT �X	

T

ˇ̌ � k	S (24)

where S is the rate of convergence. This strong convergence criterion basically
states the L1 convergence of the last simulated point X	

T to XT . As such, the rate
S is an indicator of how well X	 approximates the paths of X (for a fixed !).
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However is important to remember that the leading order constant k depends on (1).
Of course other more stringent path dependent comparisons could be considered.
However our aim here is to show that even for this criterion, DS methods are often
computationally less efficient than EA alternatives.
X	 is said to be a weak approximation of (1) if 9	�; k;W > 0 W 8	 � 	�;

g 2 G ˇ̌
E Œg .XT /� � E

�
g

�
X	
T

��ˇ̌ � k	W (25)

where W is the rate of weak convergence and G is a class of test functions. Here the
rate W is an indicator of how accurately the distribution of X	 approximates the
distribution of X . Hence this convergence criterion is more obviously relevant if we
are interested in Monte Carlo simulations based on X	. As in (24) the constant k
of (25) depends on the SDE (1), limiting the practical appeal of these criteria. Our
empirical results shows that DSs with the same W can perform very differently.

The framework of the simulation study is very simple: we consider a unit
diffusion coefficient SDE X (3) and a functional F , possibly path-dependent, of
interest. In this framework we compare the efficiency of EA and the three DSs
previously introduced.

As EA does not clearly involves any discretisation error, its efficiency is
inversely proportional to the average computational cost required to sample a single
realisation of the functional F .X/.

For a given X	, the smallest computational cost, i.e. the biggest 	, required
for F

�
X	

�
to be an accurate approximation of F .X/ is then computed. More

precisely, we are interested in how similar the distribution of F
�
X	

�
is to the

distribution of F .X/. Our test of choice is the two-sided two-sample Kolmogorov-
Smirnov (KS) test. EA is used to sample F .X/ exactly. Let ˛ 2 .0; 1/ be a
fixed threshold and 	� be the biggest value of 	 such that the p-value of the KS
test of

˚
F .X/ ; F

�
X	

��
is higher then the threshold ˛. The efficiency of X	 is

then defined as inversely proportional to the computational cost required for the

simulation of a single realisation of the functional F
	
X	�



.

To compute the KS test of
˚
F .X/ ; F

�
X	

��
we choose to sample N 2 N

skeletons from X using EA and N discretisation using X	. For each one of these
samples the value of the functionalF is computed resulting in 2N samples:N exact
and N approximated observations. Finally the p-value of the KS statistic calculated
over these 2N samples. Moreover to decrease the variance of the KS test (that in
this framework is just stochastic noise) we average its value overM 2 N repetitions.
All these simulations needs to be repeated until we find the right	� for each of the
three DSs considered in the comparison, i.e. the smallest	 so that we accept the null
hypothesis according to the KS test. Finally we repeat all these steps for a reasonable
number of combinations of the parameters of the SDE, to obtain computational cost
surfaces (as a function of the parameters) for EA and the DSs.

In our simulation study the following arbitrary values are considered: ˛ D
0:05;N D 105;M D 103: The choice of the KS test is arbitrary too, but there
are a number of reasons why we opted for the this test. First of all, it has an intuitive
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meaning. More importantly, it is possible to obtain the limiting distribution of the
KS statistic under the null hypothesis. Lastly we want to be cautious about our
conclusions. The use of a more powerful goodness of fit test would pose questions
about the robustness of our results to the choice of the test statistic considered.
This would be especially true for tests that give more importance to the tails of the
distribution, as preliminary examination of the histograms of the densities involved
reveals that the biggest differences are usually in the tails.

The aim of this simulation study is to obtain useful indication about the efficiency
of EA and the three DSs. The choice of the diffusion models that we take into
account reflects this objective, they are “toy examples”.

3.1 The Case of EA1

The class of parametric diffusion models that can be considered is limited by the
assumptions of EA1. We focus on the following three models:

• The PSINE SDE

dXt D 
 sin .�Xt/ dt C dBt 
 > 0; � > 0 (26)

• The NSINE SDE

dXt D 
 sin .�Xt/ dt C dBt 
 < 0; � > 0 (27)

• The PTANH SDE

dXt D 
 tanh .�Xt/ dt C dBt 
 > 0; � > 0 (28)

• The NTANH SDE

dXt D 
 tanh .�Xt/ dt C dBt 
 < 0; � > 0 (29)

We take into account these models because they summarise a good range of
diffusion dynamics. In every model the starting point x and the terminal time T
are fixed to 0 and 1 respectively.

The functionals considered are the last point L.X/ D XT and the maximum of
the path M .X/ D sup0�s�T Xs . For M .X/ we simulate the maximum of a BB
between each discretized value even when dealing with DSs.

In Figs. 1, 2, 3, 4, 5 and 6 the four plots on the top of each figure represents on
the Z-axis the computational time required by EA and by the three DSs to complete
the simulation (with the required level of accuracy) as function of the values of the
SDE’s parameters.
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dXt=θsin(γXt)dt +dBt
functional: XT, scheme: EA1 
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Fig. 1 Model: PSINE, functional: L .X/.
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Fig. 2 Model: NSINE, functional: L .X/.
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dXt=θtanh(γXt)dt +dBt
functional: XT, scheme: EA1 
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Fig. 3 Model: PTANH, functional L .X/. Ozaki-Shoji scheme does not converge if �
 D � D 4.
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Fig. 4 Model: PTANH, functional: M .X/. Ozaki-Shoji scheme does not converge if 
 D � D 4.
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dXt=θtanh(γXt)dt +dBt
functional: XT, scheme: EA1
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Fig. 5 Model: NTANH, functional: L .X/.
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Fig. 6 Model: NTANH, functional: M .X/.
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In the remaining three plots of each figure, the ratio of the computational time
of a DS over the computational time of EA is represented on the Z-axis, again as a
function of the SDE’s parameters. Whenever possible, the white colour represents a
unitary ratio, the red colour a ratio lower than 1 and the blue colour a ratio higher
than 1. We remark that these ratios are the results of our arbitrary choices. For
example comparing a higher number of observations would increase the power of
the test and this would result in a lower efficiency of the DSs.

Moreover the shape of these surfaces is of interest on its own, as it says how
the DSs behave with respect to parametric classes of drift and diffusion coefficients.
From this point of view EA is a valuable validation tool.

The two main goals of this simulation are: commenting the efficiency of EA with
respect to other DSs and study the behaviour of EA and of the DSs with respect
to qualitative characteristics of the diffusion model X . Regarding the first of these
points, we note that:

1. EA1 has a computational cost that is comparable to that of good DSs such as
the Predictor-Corrector scheme. This means that there is generally not a huge
difference between simulating from the approximated or the exact law of the
process.

2. EA1 is favoured when we consider the functional M .X/. One possible expla-
nation for this is that while simulating L.X/ the discretisation errors of every
step are likely to cancel, but when simulating M .X/ the errors are likely
to accumulate. Moreover, we are using two levels of approximations: we
approximate the discretized path and also the maximum of the path conditionally
on the discretisation.

3. While all DSs share a very good performance when � is very low, independently
of the value of 
 , this is not the case with EA1. While the computational cost in
EA1 remains very contained it increases with j
 j more rapidly. Conversely, EA1
has better efficiency than DSs when j
 j is low.

4. There are situations where EA1 performs much better, for instance for the
PTANH model. This happens because if ˛2 D ˛0 in (3) it follows that EA always
accept the proposed skeleton. In this case we actually know the transition density
of X . This is the case when � D 
 in the PTANH. When we move away from
the diagonal the range of ˛2 C ˛0 increases and so does the rejection rate.

Concerning the second of these points, we note that:

1. Euler scheme is clearly the least efficient DS. In some situation it can be 20 times
more inefficient than the other two DSs. Moreover the implementation difficulty
off all these DSs is comparable.

2. Predictor-Corrector and Ozaki-Shoji scheme shares more or less the same
efficiency, even if in the same situations the former can be two times more
efficient than the latter. Furthermore, the Ozaki-Shoji scheme exhibits numerical
instabilities every time ˛0 �

X.i�1/	
� � 0. Hence it is necessary to introduce an
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extra check for the algorithm that would slow down the simulation even more.
All this suggests that the Predictor-Corrector scheme should be the first choice in
most situations.

3. As already stated, the weak convergence criterion is not very useful from a
practitioner point of view. In fact both the Euler DS and the Predictor-Corrector
DS share the same unit-order of weak convergence.

4. It is very difficult from this limited study to infer any link between the efficiency
of the DSs and the qualitative behaviour of the target diffusion modelX . We just
remark that the computational time surface has more or less the same shape in
all the DSs. The difference is in the multiplicative factor.

3.2 The Case of EA3

We consider the following diffusion models

• The LANG SDE

dXt D �ksign .Xt/ jXt jˇ dt C dBt k > 0; ˇ 2 N (30)

• The XXCUBE SDE

dXt D ˚�˛X3
t C ˇXt

�
dt C dBt ˛ > 0; ˇ > 0 (31)

In the case of EA3, we can no longer easily and exactly simulate from the law of
M .X/, hence the comparison is only limited to the L.X/ functional. As the results
of Sect. 3.1 suggests that Shoji-Ozaki scheme does not offer any clear advantage
against Predictor-Corrector scheme, while showing numerical instabilities, we
decide to include the Euler DS and the Predictor-Corrector DS in the comparison
only.

Regarding the efficiency of EA3 with respect to Predictor-Corrector scheme
(Figs. 7 and 8), we notice that the former is always less efficient then the the latter.
The most obvious reason is that EA3 is much more complicated from an algorithmic
point of view than EA1, and this results in a higher computational time. However,
everything is relative to the choice of the specific comparison criterion considered.
As a rule of thumb we can say that EA3 is a factor of 10 slower than EA1.

Given these results, there is no obvious link between qualitative behaviour of the
diffusion model X and the expected efficiency of the DSs. The relative efficiency
of Euler with respect to Predictor-Corrector is confirmed. But for the first time we
observe a difference in the shape of the computational time surfaces of the Euler
and the Predictor-Corrector schemes. This is the case of the LANG model. More
investigation is needed to find the reasons of this result.
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Fig. 7 Model: LANG, functional: L .X/.
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Fig. 8 Model: XXCUBE, functional: L .X/.
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4 The Multi-dimensional Setting

We now concentrate on the unit-diffusion d -dimensional SDE

dXt D ˛ .Xt / dt C dBt t 2 Œ0; T � (32)

X0 D x

where Bt is the d -dimensional BM. The drift coefficient ˛ is assumed to satisfy
proper conditions that guarantee the existence of a unique non-explosive strong
solution of (32). In this sectionQx

T andWx
T represent the law of the diffusion process

X solution of (32) and the d -dimensional Wiener measure for the initial condition
B0 D x respectively. Let X be the state space of X.

It is possible to find equivalent conditions to (C1)–(C4) for the d -dimensional
framework and we refer to [6] for a formal development of EA in this setting. The
main theoretical limitations of EA in the d -dimensional setting are:

1. The necessary and sufficient condition for the existence of a transformation from
a generic d -dimensional SDE to the unit diffusion coefficient SDE (32) is quite
demanding (see [3]);

2. We require the existence of a potential function A W Rd ! R such that ˛ .u/ D
rA .u/.

EA then generalises to this setting in a simple way. We define the d -dimensional
BBM Z as a d -dimensional BM with initial value x conditioned on having its final
value ZT distributed according to hx;t .u/ where

hx;t .u/ / exp

�
A .u/� k u � x k2

2T

�
(33)

and denote with Z
x
T its law. Let � W X ! R, assumed to be bounded below,

be defined as � .u/ WD �k ˛ .u/ k2 Cdiv˛ .u/
�
=2 � l and l WD infr2X � .r/ <

1. As before L denote the law of a unit rate Poisson Point Process (PPP) on
Œ0; T �� Œ0;1/, and let ˚ D f�; g be distributed according to L. We define the
event � as

� WD
\
j�1

�
�
Z�j

� �  j (34)

The following extension of Theorem 1 holds

Theorem 2 (Multivariate Wiener-Poisson factorisation). If .Z; ˚/ � Z
x
T ˝

L j � then Z � Q
x
T

Proof. see [6]

Using Theorem 2, the extension of EA1 to the d -dimensional setting is imme-
diate. The only difficulty is finding the global maximum of � over the domain X.
The extension of EA3 to the d -dimensional setting is similarly immediate, with the
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Table 1 The multi-dimensional EA1.

Dimension 1 2 4 8 16

EA1 comp.cost 0.48 0.92 1.85 5.56 27.51

Table 2 The multi-dimensional EA3.

Dimension 1 2 3 4 5 6 7 8 9 10 11

LPS acceptance 83.9 71.3 61.3 52.3 44.4 37.4 32.5 27.2 23.3 19.3 17.2
EA3 comp. cost 0.39 0.31 0.40 0.46 0.75 1.21 2.15 5.87 15.9 45.9 129.9

added difficulty that we now have to compute the maximum of � over a bounded
d -dimensional hyper-rectangle in X.

As in the case of the one-dimensional EA the simulation of Z requires to sample
from fhx;T .u/gx2X. Unfortunately the high dimensionality of the problem makes
any adaptive approach, such as the ones in [14], infeasible. However, if we can find
a d -dimensional matrix K , a vector v and a constant k such that

1. 8u 2 XA .u/ � .u � v/0K .u � v/C k

2.
R
X

exp
n
.u � v/0 K .u � v/ � ku�xk2

2T

o
< 1

it is possible to implement a simple accept-reject sampler using a multivariate
Gaussian variate as proposal (the LPS from now on). In most diffusion models of
interest it is possible to find such K; v; k that satisfies these conditions (at least for
T small enough) indeed.

To see how the computation cost of EA scales as d increases we considered two
test d -dimensional SDEs defined by their potential function A:

• The d -dimensional SINE, A .u/ D � cos
	Pd

iD1 ui



• The d -dimensional LANG, A .u/ D � Pn
iD1 u4i

The initial value x is the origin of R
d and T D 1. Theoretical consideration

suggests that partitioning Œ0; T � in sub-intervals of length T=d (and applying EA
sequentially) would keep the acceptance rate of EA stable as d changes. Our
simulation study suggests that this intuition is correct and we adopt this strategy.

In Table 1 we report the computational cost (in seconds) required to sample 1;000
observations from the d -dimensional SINE SDE using EA1. We see that, apart from
variations due to the implementation, the computational cost increases linearly with
d . Due to the bounded nature of this example the acceptance rate of the LPS is
stable.

In Table 2 we report the computational cost of the d -dimensional EA3 required
to sample 100 observations from the d -dimensional LANG SDE. While the
acceptance rate of the LPS decreases with d (as expected) this is not the reason
of the explosive behaviour of the d -dimensional EA3’s computational cost. The
problem is the computation of the maximum of over a bounded d -dimensional
hyper-rectangle that requires at least 2d computations.
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5 Conclusions

In this paper we have performed a simulation study of EA’s efficiency. We have
investigated the computational time required by EA1 and EA3 in different scenarios,
both in the one and d -dimensional setting. In the one-dimensional case the results
of this simulation are compared with the computational time required by three other
numerical schemes too. The results are encouraging: EA1 is proved to be very
competitive with respect to the other DSs as the computational time required for
an accurate approximation using traditional DSs is comparable to that necessary
for an exact simulation of the SDE. Thus our opinion is that the exact nature of
EA1 makes it the preferred discretisation scheme. Additionally, knowing the true
distribution of the path of the process conditioned on the returned skeleton makes
the exact simulation of some path-dependent functionals possible.

In the case of EA3, the added complexity of the algorithm has inevitable
consequences for computing cost. The choice of suggested discretisation schemes
thus depends on the particular application. When a very precise simulation is
needed, EA3 still presents a reasonable efficiency, being roughly a factor of 10
slower then EA1.

In the d -dimensional case EA1 scales quadratically with the dimension d , while
in most cases EA3 scales exponentially. However, in practice EA methods remain
feasible in reasonable dimensional models.

Moreover, the exact nature of EA is of great importance when efficiency is not
the first concern. Thanks to EA we have been able to analyse the efficiency of
other discretisation schemes with a high degree of accuracy. This was achieved by
considering diffusion models for which the exact solution is not available in a closed
form.

One aim of this work was to obtain heuristics for the quality of approximations
for DSs as a function of characteristic of the diffusion and drift coefficients
themselves. In our study however, we drew no clear conclusions on this issue.
However it is clear that EA methods will have a role to play in addressing these
questions in future research.

Appendix

We briefly consider the algorithm EA3. Full details can be found in [6].
The probability that the BBZ stays in an arbitrary interval can be expressed as an

infinite series only. As a consequence the direct simulation of the minimum and the
maximum of Z is not feasible. However, we can rearrange the terms of this series
so that the sequence of the partial sums sn satisfies the relations:

sn�1 � l ) sn 	 l (35)

sn�1 	 l ) sn � l (36)
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where l is the limit value of the series. As explained in [6] we can consider an
increasing collection of nested intervals fIngn�1 which contains the starting and
ending values of Z. Due to the behaviour of the partial sums sn we can simulate the
value n so that both the maximum and the minimum of Z are included in a specific
In and at least one of them is included in In \ ICn�1. Conditional on this event Rn
the range of Z is bounded.

It remains to implement an algorithm to sample from Z j Rn, as we have to
compute the value of this process at the time instances given by the PPP ˚ . It is
not sensible to use Z as a trivial RS proposal, the reason being that the number
of proposed paths before the first acceptance has infinite expectation. A better RS
algorithm proposes from a mixture of two probability measures with equal weight.
One of them is the law of Z conditioned on achieving its minimum in In \ ICn�1.
The other one is the law of Z conditioned on achieving its maximum in In \ ICn�1.
Crucially, it is possible to sample the constrained minimum (or maximum) m of Z
and the time � at which Z hits this minimum (or maximum). Moreover Z j m; �
gets factorised in the product measure of two 3-dimensional Bessel bridges, whose
simulation is trivial. As the Radon-Nikodym derivative of this proposal with respect
to Z j Rn is available in closed form we are done.

Implementational Issues for EA

The following material applies both to EA1 and EA3 implementation. From a
practical point of view, every version of EA requires simulation from the density
(9). This is not a trivial problem as the functional form of (9) depends on the
drift coefficient ˛ in (3). Moreover, theoretical results (see [5]) suggest that the
acceptance rate of EA typically decreases exponentially with T . It turns out that
it is usually more efficient to partition the time interval Œ0; T � into smaller sub-
intervals of length t and apply EA sequentially. This in turn implies that we have to
sample from a parametric family of densities fhx;t .u/gx2X, as the starting value x is
different on every sub-interval.

Furthermore the time spent in the simulation from fhx;t .u/gx2X is not negligible
in EA. In the particular case of EA1 roughly half of the time is spent in simulating
from fhx;t .u/gx2X. Thus an efficient sampler results in a significantly lower
computational cost for the EA. We briefly introduce two adaptive accept-reject
samplers that we have developed to sample efficiently from fhx;t .u/gx2X and we
refer to [14] for a more detailed exposition.

We begin considering the case of a single hx;t for a fixed x 2 X (t is always
fixed). The first sampler, ARS1 from now on, requires the following semi sub-linear
condition to hold

• .E1/ 9nC; NC; m�;M�;2 R; c 2 X W

˛ .u/ � nC CNCu c � u (37)

m� CM�u � ˛ .u/ u < c (38)
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Fig. 9 The test kernel hx;t and the proposal q constructed from condition .E1/ for a test function
hx;t . Starting from quadrant IV going clockwise we have the envelope constructed from 1, 2, 3
points and the envelope that satisfies an acceptance rate of 95%.

The monotonicity of the integral and of the exponential function thus implies the
following bounds on hx;t

hx;t .u/ � q
u0C .u/ WD e� .u�x/2

2t CA.u0/CnC.u�u0/CNC

2 .u
2�u20/ c � u0 < u (39)

hx;t .u/ � qu0� .u/ WD e� .u�x/2

2t CA.u0/Cm�.u�u0/CM�

2 .u
2�u20/ u < u0 < c (40)

To construct the envelope, we start by considering the point u0 D c (c is required to
be a point of the envelope in this algorithm). Then, the initial envelope is given by

q .u/ D qc� .u/ 1Œu<c� C qcC .u/ 1Œc�u� (41)

We have successfully bounded hx;t from above with a piece-wise function formed
by the kernels of a Gaussian density times finite constants. Using the bounds (39)
and (40) it is possible to refine q .u/ by adding more points to it too. We illustrate
the results of this procedure in Fig. 9. If ˛ is sub-linear, a different construction of q
results in a tighter envelope for the same number of points.

Considerable attention has been put in the implementation of an efficient
algorithm to sample from ARS1:
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Fig. 10 The initial construction of the ARS2 on a single interval (left) and on the test density
(right).

Fig. 11 The refined construction of the ARS2 on a single interval (left) and on the test density
(right).

1. A binary search is performed (instead of a sequential one) to sample the interval
of the piece-wise proposal q;

2. The same uniform variate used to sample the interval is used to sample from the
proper truncated Gaussian distribution by the cdf inversion method;

3. All the values relevant to the algorithm are cached for re-use.

The second sampler, ARS2 from now on, has much weaker requirements than ARS1
and is of independent interest. We basically require the functionhx;t to be piece-wise
twice differentiable and to exhibit an exponential decay in the tails. This sampler is
a generalisation of the adaptive accept-reject sampler introduced in [10, 11]. We
partition the state space X into intervals where hx;t is convex/concave and use the
geometric interpretation of convexity to construct linear bounds above and below
hx;t . We illustrate the results of this procedure in Figs. 10 and 11.

Similarly to the case of ARS1, considerable attention has been put in the
implementation of an efficient algorithm to sample from ARS2. A brief simulation
study in [14] reveals that the efficiency of ARS2 is comparable to that of the Gnu
Scientific Library’s ad-hoc samplers. ARS1, while somewhat less efficient, is a more
robust sampler as it targets a very specific family of densities.
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We now consider the more general problem of sampling from fhx;t .u/gx2X. Our
idea is to slice the subset D 
 X where the diffusion X is most likely to stay, to
be found by a preliminary simulation, into a finite number of equi-spaced intervals.
For each interval, we construct an envelope that uniformly bounds all the hx;t whose
x is a point of this interval. To find this uniform bound we notice that for l < r 2 X

sup
l�x�r

hx;t D sup
l�x�r

eA.u/�
.u�x/2

2t
˚
1Œu<l� C 1Œl�u�r� C 1Œr<u�

�
(42)

� eA.u/�
.u�l/2

2t 1Œu<l� C eA.u/1Œl�u�r� C eA.u/�
.u�r/2

2t 1Œr<u� (43)

� eA.u/�
.u�l/2

2t 1Œu<l� C eAmax1Œl�u�r� C eA.u/�
.u�r/2

2t 1Œr<u� (44)

where Amax D supl�u�r A .u/ < 1 as A is a continuous function on a bounded
interval, hence A is bounded. The first and the last term of (44) can be easily
bounded by envelopes resulting from ARS1 or ARS2. Regarding the central term of
(44) we propose the trivial accept-reject sampling algorithm whose acceptance rate
is high if the length of the intervals is reasonably short. We thus pre-compute and
cache all these uniform envelopes, one for each intervals in which we split D. During
the simulation according to EA, if x 2 D we select the right envelope, otherwise (an
event whose probability can be arbitrarily small increasingD) we create an envelope
accordingly. As the intervals are equi-spaced there is virtually no efficiency penalty
in searching for the right envelope.
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Polynomial Lattice Point Sets

Friedrich Pillichshammer

Abstract Polynomial lattice point sets are special types of .t; m; s/-nets as intro-
duced by H. Niederreiter in the 1980s. Quasi-Monte Carlo rules using them as
underlying nodes are called polynomial lattice rules. In their overall structure
polynomial lattice rules are very similar to usual lattice rules due to E. Hlawka and
N. M. Korobov. The main difference is that here one uses polynomial arithmetic
over a finite field instead of the usual integer arithmetic. In this overview paper
we give a comprehensive review of the research on polynomial lattice rules during
the last decade. We touch on topics like extensible polynomial lattice rules, higher
order polynomial lattice rules and the weighted discrepancy of polynomial lattice
point sets. Furthermore we compare polynomial lattice rules with lattice rules and
show what results for polynomial lattice rules also have an analog for usual lattice
rules and vice versa.

1 Introduction

Assume we are interested in the approximation of multivariate integrals of the
form Is.f / D R

Œ0;1�s f .x/ dx using a quasi-Monte Carlo (QMC) rule of the form

QN;s.f / D .1=N /
PN �1

nD0 f .xn/ where x0; : : : ; xN �1 are fixed sample nodes from
the unit cube Œ0; 1/s . On first sight this approach looks quite simple but the crux of
this method is the choice of underlying nodes to obtain good approximations for
large classes of functions.

Generally speaking, point sets with good uniform distribution properties yield
a small absolute integration error. This is, for example, reflected in the Koksma-
Hlawka inequality which states that

F. Pillichshammer
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L. Plaskota and H. Woźniakowski (eds.), Monte Carlo and Quasi-Monte Carlo
Methods 2010, Springer Proceedings in Mathematics and Statistics 23,
DOI 10.1007/978-3-642-27440-4 8, © Springer-Verlag Berlin Heidelberg 2012

189



190 F. Pillichshammer

jIs.f / � QN;s.f /j � V.f /D�
N .P/

where V.f / is the variation of f in the sense of Hardy and Krause and where
D�

N denotes the star discrepancy of the point set P D fx0; : : : ; xN �1g. The star
discrepancy can be defined as follows: given a point set P D fx0; : : : ; xN �1g of N

elements in Œ0; 1/s the discrepancy function of P is defined by

�P.z/ WD #f0 � n < N W xn 2 Œ0; z/g
N

� �s.Œ0; z// for z 2 .0; 1�s;

where �s is the s-dimensional Lebesgue measure. The star discrepancy of P is then
the L1-norm of �P , i.e.,

D�
N .P/ D sup

z2.0;1�s
j�P.z/j:

This is a quantitative measure for the deviation of P from uniform distribution
modulo one. For more information on the Koksma-Hlawka inequality and the star
discrepancy we refer to the books [22, 26, 44, 58].

For any point set P consisting of N points in Œ0; 1/s it is known that

D�
N .P/ � cs.log N /�s =N

with a positive cs independent of P and where �2 D 1 (see [5, 71]) and �s �
.s � 1/=2 for s � 3 which follows from a result of Roth [68]. (For s � 3 the lower
bound on �s has recently been improved to �s � .s � 1/=2 C ıs for some unknown
0 < ıs < 1=2; see [6].)

On the other hand, a point set P whose star discrepancy satisfies an upper bound
of the form D�

N .P/ � Cs.log N /˛s =N with a positive Cs independent of P and
where ˛s � 0, is informally called a low discrepancy point set. There are several
methods to construct low discrepancy point sets:

• Hammersley point sets which are based on the infinite van der Corput sequence
(see, e.g., [22, 58]);

• Lattice point sets (or, more general, integration lattices) which were introduced
independently by Korobov [38] and Hlawka [36] and which are well explained
in the books of Niederreiter [58] and of Sloan and Joe [72];

• .t; m; s/-nets in base b which were introduced by Niederreiter [56,58] and which
are the main topic of the recent book [22]. Very special examples of such nets go
back to constructions of Sobol’ [77] and Faure [27].

In this article we are concerned with a sub-class of .t; m; s/-nets which has
a close relation to lattice point sets. Before we give its definition we recall the
definition of .t; m; s/-nets in base b according to Niederreiter [56].

Definition 1. Let b; s; m; t be integers such that s � 1, b � 2 and 0 � t � m.
A point set P consisting of bm points in Œ0; 1/s is called .t; m; s/-net in base b if
every so-called b-adic elementary interval of the form
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sY

iD1

�
ai

bdi
;

ai C 1

bdi

�

� Œ0; 1/s; where ai ; di 2 N0 for 1 � i � s;

of volume bt�m contains exactly bt points of P .

Some remarks on the definition of .t; m; s/-nets in base b are in order (for more
information see [22, 58]).

Remark 1. 1. Definition 1 states that for every b-adic elementary interval J volume
bt�m we have #fx 2 P W x 2 J g � bm�s.J / D 0:

2. The uniform distribution quality depends on the so-called quality parameter t 2
f0; : : : ; mg. A small t implies good uniform distribution. This is also reflected in
Niederreiter’s bound on the star discrepancy of a .t; m; s/-net P in base b which
states that

D�
N .P/ D Os;b.bt .log N /s�1=N / (1)

where N D bm; see [22,56,58], and where Os;b indicates that the implied constant
depends on s and b.

3. The optimal value t D 0 is only possible if the parameters b and s satisfy s �
b C 1. On the other hand, any point set consisting of bm elements in Œ0; 1/s is an
.m; m; s/-net in base b since this choice of parameters makes Definition 1 trivial
(and also the discrepancy bound (1)).

As already mentioned we are concerned with a sub-class of .t; m; s/-nets.
Introduced by Niederreiter [57, 58], today this sub-class is known as polynomial
lattice point sets. This name has its origin in a close relation to ordinary lattice point
sets. In fact, the research on polynomial lattice point sets and on ordinary lattice
point sets often follows two parallel tracks and bears a lot of similarities. It is the
aim of this overview to review the, in the author’s opinion, most important results on
polynomial lattice point sets during the last decade and to point out which of these
results have counterparts for lattice point sets.

In the following two sections the basic definitions of (polynomial) lattice point
sets and their duals are provided. In Sects. 4–9 we present the results on polynomial
lattice point sets and point out their analogs for lattice point sets. The paper closes
with a short summary and further remarks in Sect. 10.

Notation: Throughout the paper we assume that b is a prime number. By Zb we
denote the finite field with b elements and by ZbŒx� the set of polynomials over Zb .
Define Gb;m WD fh 2 ZbŒx� W deg.h/ < mg and G�

b;m D Gb;m n f0g. We have
jGb;mj D bm.

The field of formal Laurent series over Zb is denoted by Zb..x�1//. Elements of
Zb..x�1// are of the form
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L D
1X

`Dw

t`x
�`; where w 2 Z and all t` 2 Zb:

For n 2 N let �n W Zb..x�1// ! Œ0; 1/ be defined by �n.L/ D Pn
`Dmax.1;w/ t`b

�`.
For x 2 R let fxg denote the fractional part of x, and by fxg for x 2 R

s we mean
that the fractional part is applied component-wise.

In many results which we are going to present in the following sections there
appear constants c which are assumed to be different from case to case. Optionally
these constants may depend on the dimension s, on b or on other quantities which
are then indicated as sub-scripts. In most cases these constants could be given
explicitly.

2 Polynomial Lattice Point Sets

On account of their close relation to polynomial lattice point sets we first recall the
possibly more familiar concept of lattice point sets:

Definition 2. For an integer N � 2 and for g 2 Z
s the point set P.g; N /

consisting of the N elements

xn D
n n

N
g
o

for all 0 � n < N

is called a lattice point set (LPS). A QMC rule using P.g; N / as underlying node
set is called a lattice rule.

Polynomial lattice point sets are in their overall structure very similar to LPSs.
The main difference is that LPSs are based on number theoretic concepts whereas
polynomial lattice point sets are based on algebraic methods (polynomial arithmetic
over a finite field). For simplicity we only discuss polynomial lattice point sets in
prime base b. For the more general case of prime-power bases we refer to [22, 58].

Definition 3. For s; m 2 N, p 2 ZbŒx�, with deg.p/ D m, and q 2 ZbŒx�s the point
set P.q; p/ consisting of the bm elements

xh D �m

�
h.x/

p.x/
q.x/

�

for all h 2 Gb;m

is called a polynomial lattice point set (PLPS). A QMC rule using P.q; p/ as
underlying node set is called a polynomial lattice rule.

Note that we obtain an LPS when we choose b D N , m D 1 and p.x/ D x. The
structural similarity between Definitions 2 and 3 is evident. Hence let us compare
the two concepts by means of some pictures.
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Fig. 1 left: P.g; N / with N D 13 and g D .1; 8/; right: P.q; p/ with p.x/ D x4 C x2 C 1

and q D .1; x3/ over Z2.

Fig. 2 P.q; p/ from Fig. 1 as .0; 4; 2/-net in base 2; every 2-adic elementary interval of area 2�4

contains exactly one point.

The LPS P.g; N / shown in the left part of Fig. 1 shows a very regular lattice
structure. Such a geometric structure cannot be observed for the PLPS P.q; p/

shown in the right part of Fig. 1. However, also this point set has some inherent
structure, namely the .t; m; s/-net structure. In fact, for this example every 2-
adic elementary interval of area 2�4 contains exactly one element of the point set
P.q; p/ and hence we have a .0; 4; 2/-net in base 2; cf. Fig. 2.

A further example of an LPS and a PLPS is shown in Fig. 3.
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Fig. 3 left: P.g; N / with N D 987 and g D .1;610/; right: P.q; p/ with p.x/ D x10 C x8 C
x4 C x2 C 1 and q D .1; x9 C x5 C x/ over Z2.

3 The Dual Net

For LPSs one has the notion of a dual lattice which plays a crucial role in the quality
analysis of such point sets.

Definition 4. The dual lattice of the LPS P.g; N / from Definition 2 is defined as

Lg;N D fh 2 Z
s W h � g � 0 .mod N /g:

An important property of LPSs is that

X

x2P.g;N /

ek.x/ D
�

N if k 2 Lg;N ;

0 otherwise;

where ek.x/ D exp.2�ik � x/: This relation is the reason why for the analysis of
the integration error of lattice rules it is most convenient to consider one-periodic
functions; see [58, 72].

The corresponding definition for PLPSs leads to the notion of a dual net.

Definition 5. The dual net of the PLPS P.q; p/ from Definition 3 is defined as

Dq;p D fk 2 Gs
b;m W k � q � 0 .mod p/g:

An important property of PLPSs is that (see [22, Lemmas 4.75 and 10.6])

X

x2P.q;p/

bwalk.x/ D
�

bm if k 2 Dq;p;

0 otherwise;
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where bwalk.x/ is the kth b-adic Walsh function defined by bwalk.x/ WDQs
iD1 bwalki .xi / for k D .k1; : : : ; ks/ 2 N

s
0 and x D .x1; : : : ; xs/ 2 Œ0; 1/s .

The one-dimensional kth b-adic Walsh function is defined by bwalk.x/ WD
exp.2�i.�1�0 C � � � C �aC1�a/=b/ for k D �0 C �1b C � � � C �aba with �i 2
f0; : : : ; b � 1g and x D �1b

�1 C �2b�2 C � � � with infinitely many digits �i 6D b � 1.
Many properties of Walsh functions are summarized in [22, Appendix A].

The above relation is the reason why for the analysis of the integration error of
polynomial lattice rules it is most convenient to consider Walsh series. We will come
back to this issue in Sect. 6.

4 Quality Measures and Existence Results

Based on the dual net one can introduce two quality measures for PLPSs (see [58,
Chap. 4] or [22, Chap. 10]): for p 2 ZbŒx� and q 2 ZbŒx�s define

	.q; p/ D s � 1 C min
h2Dq;pnf0g

sX

iD1

deg.hi /

and

Rb.q; p/ D
X

h2Dq;pnf0g

sY

iD1

rb.hi /;

where rb.0/ D 1 and rb.h/ D b�r�1 sin�2.��r =b/ for h 2 Gb;m of the form h D
�0 C �1b C � � � C �rx

r , �r 6D 0.
We remark here that analogous quality measures also exist for LPSs; see [58,

Chap. 5]. Based on these quality measures Niederreiter [58] proved the following
results:

Theorem 1. The PLPS P.q; p/ is a .t; m; s/-net in base b with m D deg.p/,
t D m � 	.q; p/ and

D�
bm.P.q; p// � s

bm
C Rb.q; p/:

For example for p D x4 Cx2 C1 and q D .1; x3/ over Z2 the “minimal” element
of Dq;p is .h1; h2/ D .x2 C 1; x/ and hence 	.q; p/ D 4 in this case. Theorem 1
then shows that P.q; p/ is a .0; 4; 2/-net in base 2; cf. Fig. 2. Theorem 1 also gives
a bound on the star discrepancy of PLPSs which is easier to handle than D�

bm itself
(note that the exact computation of the star discrepancy of a given point set is an NP-
hard problem, see [28]). For an analogous discrepancy bound for LPSs we refer to
[58, Chap. 5] or [22, Proposition 3.49]. Based on Theorem 1 one can use averaging
arguments to obtain the following existence results:

Theorem 2. Let p 2 ZbŒx� with deg.p/ D m.



196 F. Pillichshammer

1. If p is irreducible, then there exists q 2 Gs
b;m such that

t � .s � 1/ logb m � .s � 2/ � logb

.s � 1/Š

.b � 1/s�1
:

Hence D�
bm.P.q; p// D Os;b

�
m2s�2b�m

�
.

2. For 0 � " < 1 there are more than "jGs
b;mj vectors q 2 Gs

b;m with

D�
bm.P.q; p// � s

bm
C Rb.q; p/ D Os;b;"

�
ms

bm

�

:

Part 1 of Theorem 2 for b D 2 has been shown by Larcher et al. [51]; see also
[70] or [22, Chap. 10] for general b. Part 2 has been shown by Niederreiter [58,
Chap. 4] and also by Dick et al. [14] and [18]. For an analogous discrepancy bound
for LPSs we refer to [58, Chap. 5] or [22, Theorem 3.51].

The bound on Rb in Theorem 2 is best possible in the order of magnitude in m.
This was shown recently by Kritzer and the author in [42]. A corresponding result
for LPSs has been shown by Larcher [49].

Theorem 3. There exists cs;b > 0 such that for any p 2 ZbŒx� with deg.p/ D m

and any q 2 Gs
b;m, qi ¤ 0, 1 � i � s, we have

Rb.q; p/ � cs;bbdeg.ıs / .m � deg.ıs//
s

bm
where ıs WD gcd.q1; : : : ; qs; p/:

On the other hand, the bound on D�
bm in Theorem 2 is not best possible in the

order of magnitude in m. For example, in dimension s D 2 the so-called Fibonacci
PLPS has a star discrepancy of order Ob.mb�m/; see [58, Chap. 4] or [22, Chap. 10].
For arbitrary dimension s it was shown by Larcher [50] that for any m � 2 there
exists q 2 Gs

b;m with

D�
bm .P.q; xm// D Os;b

�
ms�1.log m/b�m

� I

see also [43] for an extension of this result to more general polynomials p. A
counterpart of Larcher’s result for LPSs is known for dimension s D 2 only; see
[48, Corollary 3].

5 CBC Construction of Polynomial Lattice Point Sets

According to Theorem 2, for any given irreducible polynomial p 2 ZbŒx� there
exist a sufficiently large number of “good” vectors q of polynomials which yield
PLPSs with reasonably low star discrepancy. Now one aims at finding such vectors
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by computer search. Unfortunately a full search is not possible (except maybe for
small values of m; s) since one has to check bms vectors of polynomials.

At this point one gets a cue from the analogy between PLPSs and LPSs where
the component-by-component (CBC) construction approach works very well. This
approach was introduced by Korobov [39] for LPSs and later it was re-invented by
Sloan and Reztsov [73]. The same idea applies to PLPSs. Here we use the more
general weighted star discrepancy as introduced by Sloan and Woźniakowski [74]
as underlying quality criterion: let � D .
1; 
2; : : :/ be a sequence of weights in R

C.
Let Is D f1; : : : ; sg and for u � Is let 
u D Q

i2u 
i . For an s-dimensional vector
z D .z1; : : : ; zs/ and for u � Is the s-dimensional vector whose i th component is
zi if i 2 u and 1 if i 62 u is denoted by .zu; 1/. The weighted star discrepancy of an
N -element point set P in Œ0; 1/s is given by

D�
N;� .P/ D sup

z2.0;1�s
max

;6Du�Is


uj�P..zu; 1//j:

The weights � are additional parameters which model the importance of the
different coordinate projections. For the weights � D 1 WD .1; 1; : : :/ one has
D�

N;� .P/ D D�
N .P/ for any point set P . In the weighted setting the CBC

construction has the advantage that the quadrature points P can be optimized with
respect to � .

The weighted Koksma-Hlawka inequality then states that

jIs.f / � QN;s.f /j � D�
N;� .P/kf ks;�

with a certain norm k � ks;� ; see [37, 74] or [22, Chap. 2] for details.
Let p 2 ZbŒx� with deg.p/ D m and let q 2 Gs

b;m. Then it can be shown (see
[22, Corollary 10.16]) that

D�
bm;�.P.q; p// �

X

;6Du�Is


u

 

1 �
�

1 � 1

bm

�juj!
C Rb;� .q; p/;

where

Rb;� .q; p/ D
X

h2Dq;pnf0g

sY

iD1

rb.hi ; 
i /

and where for h 2 Gb;m we put rb.0; 
/ D 1 C 
 and rb.h; 
/ D 
rb.h/ if h 6D 0,
where rb.h/ is as in Sect. 4. An analogous bound for the weighted star discrepancy
of LPSs can be found in [37].

Now we deal with the quantity Rb;� .q; p/ which can be computed in O.bms/

operations (see [22, Proposition 10.20]).

Theorem 4. Let p be irreducible. If q 2 Gs
b;m is constructed with Algorithm 2, then

Rb;� .q; p/ � 1

bm � 1

sY

iD1

�

1 C 
i

�

1 C m
b2 � 1

3b

��

;
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Algorithm 2 CBC-algorithm for PLPSs
Require: b a prime, s; m 2 N, p 2 Zb Œx�, with deg.p/ D m, and weights � D .
i /i�1.
1: Choose q1 D 1.
2: for d D 2 to s do
3: find qd 2 G�

b;m which minimises the quantity Rb;�..q1; : : : ; qd�1; z/; p/ as a function of z.
4: end for
5: return q D .q1; : : : ; qs/.

A proof can be found in [18]. A similar result for not necessarily irreducible p

has been shown in [14] and a corresponding result for LPSs is [37, Theorem 3].
Using an argument from [19, Sect. 7] one can deduce the following result from

Theorem 4; see also [22, Corollary 10.30].

Corollary 1. Let p be irreducible. If
P1

iD0 
i < 1, then for any ı > 0 there exists
c� ;ı > 0, such that for q 2 Gs

b;m constructed with Algorithm 2 we have

D�
bm;�.P.q; p// � c� ;ıb

�m.1�ı/:

Let N 2 N with 2-adic expansion N D 2m1 C � � � C 2mk , where 0 � m1 < m2 <

: : : < mk. For 1 � j � k choose p.j / 2 Z2Œx� irreducible with deg.p.j // D mj and
construct P.q.j /; p.j // with Algorithm 2. Then set PN D P.q.1/; p.1// [ : : : [
P.q.k/; p.k//. In [35] the following is shown:

Corollary 2. If
P1

iD0 
i < 1, then for any ı > 0 there exists C� ;ı > 0, such that

D�
N;� .PN / � C�;ıN

�1Cı for any N 2 N:

The weighted star discrepancy is strongly polynomial tractable with "-exponent
equal to one.

The cost of the CBC-algorithm is of O.b2ms2/ operations. This is comparable
with the CBC construction cost of LPSs; cf. [37, Sect. 3]. However, in this form the
CBC-algorithm can only be used for not too large cardinality bm. A breakthrough for
this problem was obtained by Nuyens and Cools [64, 65] when they introduced—
first for LPSs and then for PLPSs—the fast CBC construction with a significant
reduction of cost to O.smbm/ operations using O.bm/ memory space. Only through
this reduction of the construction cost does the CBC-algorithm become applicable
for the generation of PLPSs (and of LPSs) with reasonably large cardinality. See
also [22, Sect. 10.3].

6 Integration of Walsh Series

As already mentioned in Sect. 3 it is most convenient for the error analysis of
polynomial lattice rules to consider Walsh series. Let ˛ > 1 and let Hwal;s;˛;� be
the weighted Hilbert function space with reproducing kernel given by
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Kwal;s;˛;� .x; y/ D
X

k2Ns
0

	˛.k; �/ bwalk.x/ bwalk.y/;

where for k D .k1; : : : ; ks/ 2 N
s
0 we put 	˛.k; �/ D Qs

j D1 	˛.kj ; 
j / with
	˛.0; 
/ D 1 and 	˛.k; 
/ D 
b�˛v if bv � k < bvC1 for v 2 N0. The norm
in this function space is given by

kf kHwal;s;˛;� D
X

k2Ns
0

	˛.k; �/�1jbf wal.k/j2

where bf wal.k/ D R
Œ0;1�s

f .x/ bwalk.x/ dx: For more information on Hwal;s;˛;� we
refer to [20]. The counterpart to the function space Hwal;s;˛;� for the analysis of
LPSs is the so-called Korobov space ([25, 63, 75] or [62, Appendix A.1]) whose
reproducing kernel looks similar to Kwal;s;˛;� but with the main difference that the
Walsh function system is replaced by the trigonometric function system and Walsh
coefficients are replaced by Fourier coefficients.

The worst-case integration error of a QMC rule is defined as the worst per-
formance of the QMC algorithm over the unit ball of the function space under
consideration, i.e., in our case e.Hwal;s;˛;� ; P/ WD supkf kHwal;s;˛;� �1 jIs.f / �
Qbm;s.f /j. For PLPSs it can be shown that

e2.q; p/ WD e2.Hwal;s;˛;� ; P.q; p// D
X

k2N
s
0nf0g

trum.k/.x/2Dq;p

	˛.k; �/

where trum.k/ W� k .mod bm/ (component-wise) and where

k D �0 C �1b C � � � C �m�1b
m�1 2 N0

is identified with

k.x/ D �0 C �1x C � � � C �m�1x
m�1 2 ZbŒx�:

For the worst-case integration error of a polynomial lattice rule for integration in
Hwal;s;˛;� we have the following result which was first proved in [16] for irreducible
p and later generalized in [41] to not necessarily irreducible p. The corresponding
result for LPSs was shown by Korobov [39] for � D 1 and by Kuo [45] for general
weights (see also [10]).

Theorem 5. For any p 2 ZbŒx� with deg.p/ D m one can construct q 2 Gs
b;m

using a CBC algorithm such that (with N D bm)

e.q; p/ � cs;˛;� ;ıN
�˛=2Cı for all 0 < ı � ˛�1

2
:
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If
P1

iD1 

1=.˛�2ı/
i < 1, then cs;˛;� ;ı � c1;˛;� ;ı < 1, i.e., the above bound can be

made independent of the dimension s.

7 Extensible Polynomial Lattice Point Sets

A disadvantage of the CBC algorithm as used so far is that the generated vectors q

depend on p and hence on N D bdeg.p/. If one changes p, then one has to construct
a new vector q 2 ZbŒx�s . The same problem appears for the CBC construction of
LPSs. For this reason several authors have independently from each other introduced
the concept of extensible LPSs, see [32–34, 40, 55]. Niederreiter [59] was the first
who considered extensible PLPSs. A special case will be explained below.

For p 2 ZbŒx� with m D deg.p/ � 1, let Yp be the set of all p-adic polynomialsP1
kD0 akpk with deg.ak/ < m. Any Q 2 Yp reduced modulo pn gives a polynomial

in ZbŒx� of degree less than nm, i.e., Yp=.pn/ D Gb;nm: Let Q 2 Y s
p and for n 2 N

let qn � Q .mod pn/. Then

P.q1; p/ � P.q2; p2/ � P.q3; p3/ � : : : :

Definition 6. An extensible PLPS is defined as the formal union P.Q; p/ WDS
k�1 P.qk; pk/:

For P.qn; pn/ only the first n “digits” in the p-adic expansion of each com-
ponent of Q are important. This observation is used in the following construction
algorithm which uses ideas from Korobov [40] for LPSs.

Algorithm 3 Construction of extensible PLPSs
Require: b a prime, s; m 2 N, p 2 ZbŒx� monic and irreducible with deg.p/ D m, and weights

� D .
i /i�1.
1: Find q1 WD q by minimizing e2.q; p/ over all q 2 Gs

b;m.
2: for n D 2; 3; : : : do
3: find qn WD qn�1 C pn�1q by minimizing e2.qn�1 C pn�1q; pn/ over all q 2 Gs

b;m.
4: return qn.
5: end for

Theorem 6. If qn 2 Gs
b;m is constructed according to Algorithm 3, then

e2.qn; pn/ � cs;b;� ;˛b�nm:

If
P1

iD1 
i < 1, then cs;˛;� ;ı � c1;˛;� ;ı < 1, i.e., the above bound can be made
independent of the dimension s.
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A proof of this result and also a corresponding result for LPSs can be found
in [61]; see also [22]. A disadvantage of the above error bound is that the worst-
case error converges only with order O.N �1=2/ compared to O.N �˛=2Cı/ from
Theorem 5 for not necessarily extensible PLPSs.

There exists another algorithm—first introduced for LPSs in [23] and then for
PLPSs in [11]—which is called CBC sieve algorithm (see [22, Sect. 10.4]) and
which yields better error bounds, but with the disadvantage that the generated PLPSs
(and LPSs respectively) are only finitely extensible. In this context one also speaks
about embedded PLPSs (and embedded LPSs respectively). For embedded LPSs
we also refer to [7]. A pure existence result for extensible PLPSs with small star
discrepancy is due to Niederreiter [59]. For existence results for extensible LPSs we
refer to Hickernell and Niederreiter [34].

8 Integration in Sobolev Spaces

For x D x1b�1 C x2b�2 C � � � and � D �1b
�1 C �2b

�2 C � � � with xi ; �i 2
f0; : : : ; b � 1g the digitally shifted point y D x ˚ � is given by y D y1b

�1 C
y2b

�2 C � � � , where yi D xi C �i .mod b/. For vectors x and � we define the
digitally shifted point y D x ˚ � component-wise. This digital shift can be used to
randomize a PLPS.

Definition 7. For � 2 Œ0; 1/s the point set P� .q; p/ WD P.q; p/ ˚ � is called a
digitally shifted PLPS.

In the context of LPSs one often uses a “geometric” shift instead of the digital
shift to randomize the point set and speaks then about shifted LPSs.

Similar results to those from Sect. 6 hold for the mean square worst-case error
of digitally shifted polynomial lattices for integration in the Sobolev space H

.1/

sob;s;�

with reproducing kernel

K
.1/
sob;s;� .x; y/ D

sY

iD1

�
1 C 
i B1.xi /B1.yi / C 
i

2
B2.jxi � yi j/

	
;

where Bi is the i th Bernoulli polynomial. The function space H
.1/

sob;s;� contains
all functions f W Œ0; 1�s ! R whose mixed partial derivatives up to order one in
each variable are square integrable. See [24,76] and [62, Appendix A.2.3.] for more
information on H .1/

sob;s;� .
The mean square worst-case error of digitally shifted PLPSs for integration in

H
.1/

sob;s;� is defined by

be2.q; p/ D
Z

Œ0;1�s
e2.H

.1/

sob;s;� ; P� .q; p// d� :
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We have the following result the proof of which can be found in [22, Theo-
rem 12.14]; see also [16]. The corresponding result for shifted LPSs was shown by
Kuo [45] (and follows in the case � D 1 also from [39]).

Theorem 7. For any p 2 ZbŒx� with deg.p/ D m we can construct q 2 Gs
b;m using

a CBC algorithm such that (with N D bm)

be.q; p/ � cs;b;� ;"N
�1C" for all 0 < " � 1=2:

If
Ps

iD1 

1=.2.1�"//
i < 1, then cs;b;� ;" � c1;b;� ;" < 1, i.e., the above bound can be

made independent of the dimension s.

Remark 2. Baldeaux and Dick [1] showed that in the randomized setting one can
obtain an improved error bound by using Owen’s scrambling (see [66] or [22,
Chap. 13]). For scrambled PLPSs one has

E

jIs.f / � QN;s.f /j2� � cs;b;� ;"N

�3C" for " > 0

where N D bm and where the expectation is with respect to all random scramblings
of a PLPS. Such a result is not known for LPSs.

Now we assume more smoothness for integrands. Consider the Sobolev space
H

.2/

sob;s;� with reproducing kernel

K
.2/
sob;s;�.x; y/ D
sY

iD1

�

1 C 
iB1.xi /B1.yi / C 
2
i

4
B2.xi /B2.yi / � 
2

i

24
B4.jxi � yi j/

�

;

where Bi is the i th Bernoulli polynomial. The function space H
.2/

sob;s;� contains all
functions f W Œ0; 1�s ! R whose mixed partial derivatives up to order two in each
variable are square integrable. See [22, Sect. 14.6] for more information.

Using an idea from Hickernell [31] we use the tent transformation �.x/ D 1 �
j2x � 1j. For vectors x we apply � component-wise and for a point set P , �.P/

means that the tent transformation is applied to every element of P . We call �.P/

the folded point set P . Define the mean square worst-case error of folded digitally
shifted PLPSs by

be2
�.q; p/ D

Z

Œ0;1�s
e2.H

.2/

sob;s;� ; �.P� .q; p/// d� :

The following result, proved in [9], shows that one can obtain an improved
convergence rate for the mean square worst-case error of folded digitally shifted
PLPSs for functions f 2 H .2/

sob;s;� as integrands. A corresponding result for LPSs
has been shown by Hickernell [31].
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Theorem 8. For any p 2 Z2Œx� with deg.p/ D m we can construct q 2 Gs
2;m using

a CBC algorithm such that (with N D 2m)

be�.q; p/ � cs;� ;"N
�2C" for all 0 < " � 3=2:

If
Ps

iD1 

1=.2.2�"//
i < 1, then cs;� ;" � c1;� ;" < 1, i.e., the above bound can be

made independent of the dimension s.

9 Higher Order Polynomial Lattice Rules

Now we go a step further and consider functions with arbitrary smoothness as
integrands. For a more detailed definition of the function spaces under consideration
we need some notation:

For k D �1b
a1�1 C �2b

a2�1 C � � � C �vb
av�1, where 1 � av < � � � < a1, v 2 N

and �1; : : : ; �v 2 f1; : : : ; b � 1g, and for ˛ � 1 define

˛.k/ WD a1 C � � � C amin.v;˛/:

Furthermore, for 
 > 0 put r˛.0; 
/ D 1 and r˛.k; 
/ D 
b�˛.k/ for k 2 N. For
k D .k1; : : : ; ks/ 2 N

s
0 and � D .
1; 
2; : : :/, set r˛.k; �/ WD Qs

iD1 r˛.ki ; 
i /.
Let W˛;s;� � L2.Œ0; 1�s/ be the space consisting of all Walsh series f D

P
k2Ns

0

bf wal.k/ bwalk for which

kf kW˛;s;� WD sup
k2Ns

0

jbf wal.k/j
r˛.k; �/

< 1:

For ˛ � 2 the function space W˛;s;� contains all functions f W Œ0; 1�s ! R whose
mixed partial derivatives up to order ˛ in each variable are square integrable; see
[12]. We call ˛ the smoothness parameter of the function space.

Of course one would expect that the higher smoothness of integrands is reflected
in the convergence rate of the integration error. Higher smoothness should lead to
improved convergence rates. However, it turns out that this is not the case when
the concept of (digitally shifted) PLPSs, as introduced in Definition 3, is used as
underlying nodes. For this reason the following suitable generalization has been
introduced in [21]; see also [22, Sect. 15.7].

Definition 8. For s; m; n 2 N, m � n, p 2 ZbŒx�, with deg.p/ D n, and q 2
ZbŒx�s the point set Pm;n.q; p/ consisting of the bm points

xh D �n

�
h.x/

p.x/
q.x/

�

for all h 2 Gb;m



204 F. Pillichshammer

is called a higher order polynomial lattice point set (HOPLPS). A QMC rule using
Pm;n.q; p/ is called a higher order polynomial lattice rule.

Remark 3. For m D n we have Pm;m.q; p/ D P.q; p/.

Definition 9. The dual net of the HOPLPS Pm;n.q; p/ from Definition 8 is defined
as

Dq;p D fk 2 Gs
b;n W k � q � u .mod p/ with deg.u/ < n � mg:

Similar as in Sect. 4 one can introduce a generalization of the quality measure
	 for HOPLPSs which can then be related to the worst-case integration error of
HOPLPSs. This was done in [15] (see also [22, Definition 15.27]). Instead of
following this track here we study the worst-case error of HOPLPSs in W˛;s;� more
directly.

For ˛ � 2 the worst-case error for integration in W˛;s;� using Pm;n.q; p/ is given
by (see [2, Proposition 2.1])

e2
˛.q; p/ WD e2

˛.W˛;s;� ; Pm;n.q; p// D
X

k2N
s
0nf0g

trun.k/.x/2Dq;p

r˛.k; �/:

The following result has been shown in [2].

Theorem 9. For any irreducible p 2 ZbŒx� with deg.p/ D n we can construct
q 2 Gs

b;n using a CBC algorithm such that

e˛.q; p/ � cs;˛;� ;� b� min.� m;n/ for all 1 � � < ˛:

If
P1

iD1 

1=�
i < 1 then cs;˛;� ;� � c1;˛;� ;� < 1, i.e., the above bound can be made

independent of the dimension s.

Remark 4. Choosing n large we obtain a convergence order of N �˛C" for " > 0

where N D bm. By a result of Šarygin [69] this convergence rate is essentially best
possible. For a fast version of the CBC algorithm mentioned in Theorem 9 we refer
to [4].

The result from Theorem 9 holds for a fixed smoothness parameter ˛ � 2.
However, in practical applications the smoothness parameter is in general not known
a priori. Hence it is reasonable to ask for constructions of HOPLPSs which achieve
almost optimal convergence rates for a range of smoothness parameters and which
adjust themselves to the smoothness of a given integrand.

The basic idea in [2] can be roughly explained as follows. Assume that p 2 ZbŒx�

is given. If there exists a large enough amount of HOPLPSs P.q; p/ which perform
well for the smoothness parameter ˛ and if there exists a large enough amount of
HOPLPSs P.q; p/ which perform well for the smoothness parameter ˛0, then there
must be a HOPLPS P.q; p/ which performs well for both smoothness parameters
˛ and ˛0. The underlying mathematical argument is the following “sieve principle”:
let X be some finite set and A; B � X . If jAj; jBj > jX j=2, then jA \ Bj > 0.
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Algorithm 4 Sieve Algorithm for HOPLPSs
Require: b a prime, s; m; ˇ 2 N, ˇ � 2, p 2 ZbŒx� irreducible with deg.p/ D m, weights

� D .
i /i�1,
1: Set n D ˇm.
2: Find b.1 � ˇ�1/bˇmsc C 1 vectors q in Gs

b;ˇm which satisfy

e2.q; p/ � cs;b;�;m;ˇ;2;�2b
��2m for all 1 � �2 < 2;

and label this set T2.
3: for ˛ D 3; : : : ; ˇ do
4: find b.1 � .˛ � 1/ˇ�1/bˇmsc C 1 vectors q in T˛�1 which satisfy

e˛.q; p/ � cs;b;�;m;ˇ;˛;�˛ b��˛ m for all 1 � �˛ < ˛

and label this set T˛ .
5: end for
6: return Select q� to be any vector from Tˇ.

Algorithm 4 only presents the basic idea of a construction for HOPLPS which
perform well for a range of smoothness parameters. In practice this algorithm would
not be applicable since it is much too time consuming. However, in [2, Algorithm 2]
it has been show how Algorithm 4 can be combined with the CBC approach. This
leads then to the following result which is [2, Theorem 4.2]:

Theorem 10. Let s; m; ˇ 2 N, ˇ � 2, then one can construct a vector q 2 Gs
b;ˇm

such that
e˛.q; p/ � cs;b;˛;ˇ;� ;�˛ b��˛m for all 1 � �˛ < ˛

and for all 2 � ˛ � ˇ.
If
P1

iD1 

1=�˛

i < 1, then cs;b;˛;ˇ;� ;�˛ � c1;b;˛;ˇ;� ;�˛ < 1, i.e., the above bound
can be made independent of the dimension s.

There exists no counterpart of the results from this section for LPSs.

10 Summary and Further Comments

In this paper we have reviewed the main progress in the analysis of PLPSs over the
last decade and we pointed out several connections to the theory of LPSs.

For both concepts we have comparable discrepancy bounds and tractability
properties, and the worst-case error analysis in several reproducing kernel Hilbert
spaces follows parallel tracks. PLPSs and LPSs can both be constructed with the
(fast) CBC approach and both can be made extensible in the number of elements.
The tent transformation together with a suitable randomization leads in both cases
to improved error bounds for smoother integrands.
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However, there are also some differences. For example, with a slight general-
ization of the concept of PLPSs one can achieve almost optimal convergence rates
for smooth integrands (even with varying smoothness from a finite range) together
with strong tractability, which means that the error bound is independent of the
dimension. Such a result is not known for LPSs until now. (But it is known that
with LPSs one can obtain almost optimal convergence rates together with strong
tractability for smooth periodic functions from a Korobov space.)

A further difference is that for PLPSs it makes sense to apply Owen’s scrambling
scheme since this preserves the .t; m; s/-net structure of a point set but not the
geometric lattice structure. This leads to an improved error bound in the randomized
setting, a result which is not known for LPSs.

Also the consideration of the quality parameter t of LPSs makes in general little
sense since these point sets are not constructed to have a good .t; m; s/-net structure.
Nevertheless, the analog of the quality measure 	.q; p/ D m � t from Sect. 4 has
some interpretation, namely it is the enhanced trigonometric degree of a lattice rule
[8, 54]. A cubature rule of enhanced trigonometric degree ı is one that integrates
all trigonometric polynomials of degree less then ı exactly. However, in this vein
	.q; p/ D m � t from Sect. 4 can also be interpreted as the enhanced Walsh degree
of a polynomial lattice rule since any .t; m; s/-net in base b integrates all Walsh
polynomials of degree � m � t exactly (this follows from [30, Lemma 1]).

A further point which was not discussed so far but which is worth to be mentioned
is that with LPSs one can even obtain exponential convergence for the worst-case
error of infinitely times differentiable periodic functions; see [17]. This should also
be possible with PLPSs.

LPSs and PLPSs can also be applied for the problem of function approximation.
More information in this direction can be found in [46, 47] for LPSs and in [3, 13]
for PLPSs.

We close this paper with an outlook to more general constructions: a more
general form of LPSs as given in Definition 2 is the concept of integration lattices
which are presented in [58, Sect. 5.3] and in [72]. An integration lattice is a discrete
subset of Rs which is closed under addition and subtraction, and which contains
Z

s as a subset. In the same vein Lemieux and L’Ecuyer [52, 53] introduced so-
called polynomial integration lattices which generalize the concept of PLPSs from
Definition 3. Results on the star discrepancy and the t-parameter of such point sets
can be found in [29].

A very general construction of point sets in Œ0; 1/s for which PLPSs serve as
special cases is the concept of cyclic nets due to Niederreiter [60] and, even more
general, of hyperplane nets due to Pirsic et al. [67]. Cyclic and hyperplane nets
are constructions of digital .t; m; s/-nets which are inspired by a close connection
between coding theory and the theory of digital nets. In fact, the cyclic net
construction is the analog to the construction of so-called cyclic codes which are
well known in coding theory. For more information we refer to [22, Chap. 11] and
the references therein.
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tractability of multivariate integration for Korobov spaces. Math. Comp. 80: 905–930, 2011.

18. Dick, J., Leobacher, G. and Pillichshammer, F.: Construction algorithms for digital nets with
low weighted star discrepancy. SIAM J. Numer. Anal. 43: 76–95, 2005.

19. Dick, J., Niederreiter, H. and Pillichshammer, F.: Weighted star discrepancy of digital nets in
prime bases. In: Monte Carlo and Quasi-Monte Carlo Methods 2004, pages 77–96, Springer,
Berlin, 2006.

20. Dick, J. and Pillichshammer, F.: Multivariate integration in weighted Hilbert spaces based on
Walsh functions and weighted Sobolev spaces. J. Complexity 21: 149–195, 2005.



208 F. Pillichshammer

21. Dick, J. and Pillichshammer, F.: Strong tractability of multivariate integration of arbitrary high
order using digitally shifted polynomial lattices rules. J. Complexity 23: 436–453, 2007.

22. Dick, J. and Pillichshammer, F.: Digital Nets and Sequences. Discrepancy Theory and Quasi-
Monte Carlo Integration. Cambridge University Press, Cambridge, 2010.

23. Dick, J., Pillichshammer, F. and Waterhouse, B.J.: The construction of good extensible rank-1
lattices. Math. Comp. 77: 2345–2373, 2008.
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Liberating the Dimension for Function
Approximation and Integration

G.W. Wasilkowski

Abstract We discuss recent results on the complexity and tractability of problems
dealing with 1-variate functions. Such problems, especially path integrals, arise
in many areas including mathematical finance, quantum physics and chemistry, and
stochastic differential equations. It is possible to replace the 1-variate problem by
one that has only d variables since the difference between the two problems dimin-
ishes with d approaching infinity. Therefore, one could use algorithms obtained
in the Information-Based Complexity study, where problems with arbitrarily large
but fixed d have been analyzed. However, to get the optimal results, the choice
of a specific value of d should be a part of an efficient algorithm. This is why
the approach discussed in the present paper is called liberating the dimension.
Such a choice should depend on the cost of sampling d -variate functions and
on the error demand ". Actually, as recently observed for a specific class of
problems, optimal algorithms are from a family of changing dimension algorithms
which approximate 1-variate functions by a combination of special functions, each
depending on a different set of variables. Moreover, each such set contains no more
than d."/ D O.ln.1="/= ln.ln.1="/// variables. This is why the new algorithms
have the total cost polynomial in 1=" even if the cost of sampling a d -variate
function is exponential in d .

1 Introduction

We discuss some recent results on computational problems dealing with functions
of infinitely many variables, which are called 1-variate functions. Such problems
arise in many areas including mathematical finance, quantum physics and chemistry,
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and in solving deterministic and stochastic differential equations. The main source
of such problems is probably given by path integrals. A partial list of references
include [3–7, 12–14, 17, 36]. Actually, all problems involving expectations of
stochastic processes X.t/ can be viewed as integration problems for 1-variate
functions, i.e., path integration. Indeed, consider the expectation E.V .X.t/// for a
function V and a Gaussian process X, e.g., Brownian motion. Due to the Karhunen-
Loéve expansion, X.t/ D P1

j D1 xj � gj .t/ for i.i.d. N .0; 1/ random variables xj

and some functions gj , the expectation is the integral of the 1-variate function

f .x1; x2; : : : / WD V

� 1X

j D1

xj � gj .t/

�

with respect to the probability density functions �.xi / D e�x2
i =2=

p
2� .

One of the main tools used so far in practice is a variant of the Monte Carlo
algorithm; however, it may be slow. Since typical 1-variate functions could be
approximated by functions with finite but sufficiently large number d of variables,
the volume of results from Information-Based Complexity (IBC for short) could be
applied, see, e.g., [21]. However, we believe that such an approach to 1-variate
problems would not yield the most efficient algorithms.

Indeed, the majority of IBC papers on the complexity of multivariate problems
consider spaces of functions with d variables for finite yet arbitrarily large d , see
again [21] and papers cited there. A typical question addressed in these papers is:
How does the cost depend on the error demand " and d? There are many positive
results. However, since d may be arbitrarily large independently of ", there are also
many negative results.

We are convinced that when dealing with 1-variate problems
the selection of d should be a part of efficient algorithms

and, in particular, should depend on the cost of sampling d -variate functions which
is is denoted here by $.d/. For instance, sampling a d -variate polynomial of degree
2 requires $.d/ D O.d 2/ arithmetic operations, whereas sampling polynomials of
degree 10 is more expensive, $.d/ D O.d 10/. When simulating the Brownian path
X.t/, the Karhunen-Loéve expansion is usually truncated. For instance, we may
have

X.t I x1; x2; : : : / �
p

2=�

dX

j D1

xj

sin..j � 1=2/ � t=T /

j � 1=2
:

Hence, again, the cost depends on d and it would be reasonable to take $.d/ D
O.d/ in this case.

Equally importantly,
the value of d should depend on the error demand ".

More precisely, d D d."/ should be a function of " so that the cost of com-
puting an "-approximation to the original 1-variate problem is minimized.
As we shall see later, for some problems, d."/ increases surprisingly slowly with
decreasing ".
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This point is important and shows the difference between the study of 1-variate
problems and the study of tractability of multivariate problems. For 1-variate
problems, we are interested in algorithms that have good properties (e.g., small cost)
only for the pairs

."; d."// for " 2 .0; 1/;

whereas for multivariate problems, good properties should hold for all the pairs

."; d / for " 2 .0; 1/ and d D 1; 2; : : : :

This is why there are problems with negative tractability results if all pairs ."; d / are
considered and positive results if only pairs ."; d."// are of interest.

Such an approach for 1-variate functions was considered in [24, 31] for
approximating Feynman-Kac type of integrals, and more recently in [2, 8–10, 16,
18, 19, 23] for approximating more general integrals, as well as in [33, 34] for
function approximation. The presentation of this paper is based on results from
[16, 23, 33, 34].

As in the four papers mentioned above, the functions to be integrated or
approximated belong to a quasi-reproducing kernel Hilbert space (or Q-RKH
space for short). This means that function evaluation may be a discontinuous
functional for some sampling points. We restrict the attention to the changing
dimension algorithms (or CD algorithms for short) introduced in [16] since they
provide optimal results, modulo logarithmic terms, with sharp bounds on the
tractability exponents. The CD-algorithms approximate only the most important
terms from a special Fourier expansion of the function being approximated. Each
term depends on a different set of variables. Quite surprisingly, each set contains
at most

O.ln.1="/= ln.ln.1="///

variables. This allows efficient algorithms even when the cost function $.d/ is
exponential in d .

The approach of using optimal algorithms for approximating the original
1-variate problem without pre-specifying the value of d is what we call

liberating the dimension.

2 Basic Concepts

In this section, we recall basic definitions/concepts used in the paper. For more
detailed discussions, we refer to [16, 23, 33, 34].
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2.1 Quasi-reproducing Kernel Hilbert Spaces

We follow here the model introduced in [16] and extended in [33]. The spaces F�

of 1-variate functions are defined as weighted sums of tensor products of a space
of univariate real functions. More precisely, for a Borel measurable set D � R, let
F be a separable reproducing kernel Hilbert space (or RKH space for short) of real
functions with the domain D whose kernel is denoted by K .1 To omit the trivial
case, we always assume that K 6D 0. To stress that F is generated by K , we will
often write

F D H.K/:

We will assume throughout the paper that

1 … F; (1)

where 1 denotes the constant function f � 1. When the information used by
algorithms is restricted to function values, we will additionally assume that

K.a; a/ D 0 (2)

for a point a 2 D called an anchor.
We are ready to define the class F� . Let D be the set of infinite sequences x D

Œx1; x2; : : : � with xi 2 D. For a finite subset u of NC D f1; 2; : : : g, define the
reproducing kernel

Ku W D � D ! R by Ku.x; y/ WD
Y

j 2u
K.xj ; yj /

for all x; y 2 D ; with K; � 1:

The RKH space generated by Ku is denoted by

Hu D H.Ku/;

where H; is the space of constant functions. Although, formally, the functions from
Hu have D as their domain, they depend only on the variables whose indices are
listed in u. Such variables are referred to as active variables.

In a number of important applications, consecutive variables of the functions
have diminishing importance and/or the spaces of functions have small effective
dimension, see e.g., [1, 27, 28]. Such function spaces can be modeled by using

1The results of [33] hold for general Hilbert spaces F . We restrict the attention to RKH spaces to
simplify the presentation.
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weights � D f�ugu, where �u is a non-negative number. The role of �u is to quantify
the importance of the group of variables with indices in u; the larger �u the more
important the group. In particular, �u D 0 means that the corresponding group of
variables does not contribute to the functions. For example, when �u D 0 if juj � 3

then f is a sum of functions with each term depending on at most two variables.
Although results of [33, 34] hold for general weights, for simplicity of presenta-

tion we will restrict the attention to the product weights of the form

�u D
Y

j 2u
�j and �; D 1;

where �j are positive numbers. Without loss of generality, we assume that they are
ordered,

�j � �j C1 for j � 1:

Consider next H� as the pre-Hilbert space spanned by the spaces Hu and
equipped with the inner-product

*
X

u�NC

fu;
X

u�NC

gu

+

WD
X

u�NC

��1
u � hfu; guiHu

for
P

u�NC
��1
u � kfuk2

Hu
< 1 and

P
u�NC

��1
u � kguk2

Hu
< 1. Finally, the space

F� is the completion of H� with respect to the inner-product introduced above.
Since 1 62 Hu for all u 6D ;, the subspaces Hu are mutually orthogonal and any

function f 2 F� has the unique representation

f D
X

u�NC

fu with fu 2 Hu: (3)

Clearly, F� is also separable. Moreover, it is a RKH space iff

X

u�NC

�u � Ku.x; x/ < 1 for all x 2 D : (4)

Since
P

u�NC
�u � Ku.x; x/ D Q1

j D1.1 C�j � K.xj ; xj //, the condition (4) holds iff

sup
x2D

K.x; x/ < 1 and
1X

j D1

�j < 1;

and then

K�.x; y/ WD
X

u

�u � Ku.x; y/ D
1Y

j D1

.1 C �j � K.xj ; yj //

is well defined and it is the reproducing kernel of F� .
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If (4) does not hold then function sampling, Lx.f / WD f .x/, is a discontinuous or
ill-defined functional for some x 2 D . However, even then, Lx is continuous when
x has only finitely many components different from the anchor a. Indeed, for given
x 2 D and u, let ŒxI u� be a short hand notation for the point with active variables
listed in u, i.e.,

ŒxI u� WD y D Œy1; y2; : : : � with yj WD
�

xj if j 2 u;

a if j … u:
(5)

Then

f .ŒxI u�/ D
X

v�u

fv.x/ and kLŒxIu�k2 D
X

v�u

�v � Kv.x; x/ < 1:

Of course, ŒxI ;� D a D Œa; a; : : : � and f .ŒxI ;�/ D f; for any x 2 D and any
f 2 F� .

If (4) does not hold then we refer to such spaces as quasi-reproducing kernel
Hilbert spaces (Q-RKH spaces for short). Important examples of such spaces are
provided by those generated by Wiener kernel discussed in the following example.

Example 1. Consider

K.x; y/ D min.x; y/ with D D Œ0; 1� or D D Œ0; 1/:

In this case, F consists of (locally) absolutely continuous functions with f .0/ D 0

and f 0 2 L2.D/, and the anchor equals a D 0. Clearly, if
P1

j D1 �j < 1, then F�

is a RKH space when D D Œ0; 1�, and it is only a Q-RKH space when D D Œ0; 1/

since supx2Œ0;1/ K.x; x/ D 1.

2.2 Integration Problem

Let � be a given probability density (p. d.) function on D. We are interested in
approximating integrals

INT.f / WD lim
d!1

Z

Dd

f .x1; : : : ; xd ; a; a; : : : / �
dY

j D1

�.xj / d.x1; : : : ; xd /

for f 2 F� . We assume that INT is a well defined and continuous functional on F� .
Then

kINTk2 D
X

u�NC

�u � C
juj
0 D

1Y

j D1

.1 C �j � C0/ < 1; (6)
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where

C0 WD
Z

D

�.x/

Z

D

K.x; y/ � �.y/ dy dx:

Thus kINTk < 1 iff

C0 < 1 and
1X

j D1

�j < 1 (7)

This is why we will assume that (7) holds whenever the integration problem is
considered. Moreover, we will also assume that

C0 > 0

since, otherwise, INT.f / D f .a/ for all functions from F� which makes the
integration problem trivial.

2.3 Function Approximation Problem

As in the previous section, � is a given probability density on D. Without loss of
generality, we assume that it is positive almost everywhere on D. Then L2.D; �/

endowed with the norm

kf k2
L2.D;�/ WD

Z

D

jf .x/j2 � �.x/ d.x/;

is a well defined Hilbert space.
Following [33,34], we assume that H.K/ is continuously imbedded in L2.D; �/,

i.e., H.K/ � L2.D; �/ and

C1 WD sup
f 2H.K/

kf k2
L2.D;�/

kf k2
H.K/

< 1 with the convention
0

0
D 0:

Next, consider the space G consisting of functions from F� with the norm
defined by

�
�
�
�

X

u�NC

fu

�
�
�
�

2

G

WD
X

u�NC

kfuk2
L2.�u;Djuj/

: (8)

Note that the last norm is always finite.
We are interested in approximating the imbedding operator

APP W F� ! G given by APP.f / D f:

The problem is well defined if APP is continuous, and this holds iff
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kAPPk2 D sup
u�NC

�u � C
juj
1 < 1:

It is well known that C1 is the largest eigenvalue of the integral operator

W W H.K/ ! H.K/ given by W.f /.x/ WD
Z

D

f .t/ � K.t; x/ � �.t/ dt: (9)

We want to stress that the space G is very special and, perhaps, not always
interesting from a practical point of view. In particular, it can happen that the
approximation problem is easier than the integration problem, and that

sup
f 2F

jINT.f /j
kf kG

< 1 does not hold in general: (10)

Indeed, take the reproducing kernel K such that C0 > 0 and C1 < 1. Note thatR
D

K.x; x/ � �.x/ d.x/ < 1 implies that C1 < 1. For �j D j �ˇ with ˇ 2 .0; 1�,
we then have

kINTk D 1 while kAPPk D max
k2N C k

1 =.kŠ/ˇ < 1

We chose such a space G in [33, 34] as the first step in the study of approximation
for 1-variate functions. The results obtained there will be used in a forthcoming
paper [35], see also Sect. 4.3, where function approximation is considered with G
replaced by the Hilbert space L2.D ; �1/ whose norm is given by

kf k2
L2.D ;�1/ D lim

d!1

Z

Dd

jf .x1; : : : ; xd ; a; a; : : : /j2 �
dY

j D1

�.xj / d.x1; : : : ; xd /:

(11)
Of course, we will need stronger assumptions on F� for kf kL2.D ;�1/ to be well
defined for all f 2 F� . However, then

jINT.f /j 	 kf kL2.D ;�1/ for all f 2 F� ;

and integration is no harder than approximation.

2.4 Algorithms

Let T be the solution operator whose values T .f / we want to approximate; T D
INT for the integration problem, and T D APP for the approximation problem.
Since F� is a Hilbert space, we may restrict the attention to linear algorithms, see
e.g., [26],
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An.f / D
nX

iD1

Li .f / � gi (12)

Here the Li ’s are continuous linear functionals and their values fLi .f /gn
iD1 provide

information about the specific function f. The elements gi ’s are numbers for
integration and functions from G for approximation.

If Li ’s may be arbitrary continuous linear functionals, then we deal with
unrestricted linear information. In many applications, including integration, only
function samplings Li .f / D f .ti / are allowed. Then

An.f / D
nX

iD1

f .ti / � gi with ti 2 D

and this corresponds to standard information. Since in general, F� is only a Q-RKH
space, the sampling points ti used by the algorithms have to be restricted to those
that have only finitely many active variables, see (5), i.e.,

ti D Œxi ; ui �

for some xi 2 D and ui . That is, the algorithms using standard information are of
the form

An.f / D
nX

iD1

f .Œxi ; ui �/ � gi : (13)

We believe that the cost of evaluating f at ti D Œxi ; ui � should depend on the
number jui j of active variables in ti . That is why we assume that the cost equals
$.jui j/ for a given cost function

$ W N ! Œ1; 1�:

At this moment, we only require that $ is monotonically non-decreasing. Examples
of $ include

$.d/ D .1 C d/˛; $.d/ D ed˛

; and $.d/ D eed˛

for ˛ � 0:

The (information) cost of An is defined as the total cost of sampling f at the points
ti D Œxi ; ui �, i.e.,

cost.An/ WD
nX

iD1

$.jui j/:

For algorithms that use linear functionals Li .f /, the definition of the cost is
extended in a natural way with the cost of evaluating Li given as follows. Let
Li .f / D hf; hi iF�

, where hi 2 F� is the generator of Li . For any h 2 F� , let
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Var.h/ WD fu W hu 6D 0g for h D
X

u�NC

hu:

Then jVar.h/j is the number of active variables in h and the cost of Li .f / is defined
as $.jVar.hi /j/.

We say that an algorithm An of the form (12) with Lf .f / D hf; hi iF�
, is of a

fixed dimension (FD), if there is a finite set V of NC such that

Var.hi / D V for all i D 1; 2; : : : ; n:

For example, we may have Var.hi / D f1; : : : ; d g, for all i . Otherwise, the algorithm
is of a changing dimension (CD). As observed in [16], CD algorithms may be
significantly superior to FD algorithms.

In the worst case setting, the error of An is defined by

errorwor.An/ D errorwor.AnI F� ; T / WD sup
kf kF� �1

kT .f / � An.f /kG :

In the randomized setting, the choice of the functionals Li or function sample
points Œxi I ui � may be random. Then the error of a randomized algorithm is defined
by

errorran.An/ D errorran.AnI F� ; T / WD sup
kf kF� �1

�
E kT .f / � An.f /k2

G

�1=2

;

where E denotes the expectation with respect to all random parameters in the
randomized algorithm An.

2.5 Complexity and Tractability

For a given error demand " > 0, let

compsett."/ D compsett."I F� ; T / WD inf
˚
cost.An/ W errorsett.An/ 	 "

�

be the minimal cost among algorithms with errors not exceeding ". Here and
elsewhere, sett 2 fwor; rang denotes the setting.

When only standard information is allowed, we consider of course only algo-
rithms that use function values. To distinguish the complexities with standard and
unrestricted linear information, we will sometimes write

compsett."I �/ or compsett."I �; F� ; T /
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with � D �std for standard information and � D �all for unrestricted linear
information.

We say that the problem is weakly tractable if the complexity is not exponential
in 1=", i.e.,

lim
"!0

" � ln
	
compsett."/


 D 0:

A stronger notion is polynomial tractability which means that there are some non-
negative C and p such that

compsett."/ 	 C � "�p for all " > 0:

The smallest (or more precisely, infimum of) such p is called the exponent of
polynomial tractability, i.e.,

psett WD lim sup
"!0

ln.compsett."//

ln.1="/
:

We sometimes write psett D psett.�/ or psett.�; F� ; T / with � 2 f�all; �stdg to
stress what type of information is used.

3 Results for Integration

We present in this section selected results from [23] for CD algorithms. Recall that
these algorithms were defined for the first time in [16] and have the following form

An.f / D
nX

iD1

f .Œxi I ui �/ � gi

for some points xi , sets of active variables ui , and the numbers gi which may depend
on n. Moreover, in the randomized setting, all parameters xi ; ui ; and gi may be
chosen randomly.

In what follows, the operator I is the integration operator for functions from
H.K/,

I.f / D
Z

D

f .x/ � �.x/ dx:

Theorem 1. Let sett 2 fwor; rang. Suppose that

• The product weights satisfy

�j D O.j �ˇ/ for ˇ > 1; (14)
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• There exists a sequence of algorithms fAngn for the univariate problem and
positive constants ˛; c such that An uses at most n function evaluations and the
error of An for the univariate integration problem over the space H.K/ satisfies

errorsett.AnI H.K/; I / 	 c � n�˛ for all n 2 N: (15)

Then there are algorithms fA"g" for the 1-variate integration problem such that

errorsett.A"I F� ; INT/ 	 " for all " > 0

with the following bounds on their cost.

• If $.d/ D O
	
ek�d 


for some k � 0, then for all p > max
�

1
˛
; 2

ˇ�1

�
there exists a

number C depending, in particular, on p such that

cost.A"/ 	 C � "�p for all " > 0:

This means that the 1-variate integration problem is polynomially tractable with
the exponent at most

max

�
1

˛
;

2

ˇ � 1

�

:

Furthermore, in the worst case setting, the exponent is equal to the maximum
above if ˛ and ˇ are sharp, and $.d/ D ˝.d/.

• If $.d/ D O
�
e e k�d

�
for some k � 0, then

lim
"!0

" � ln.cost.A"// D 0:

This means that the 1-variate integration problem is weakly tractable.

We now comment on this theorem. As shown in [16] for the integration problem
in the worst case setting for the Wiener kernel and D D Œ0; 1�, the assumption (14)
is necessary for polynomial tractability. If the algorithms An are deterministic then
so are the algorithms A". The proof is constructive. Algorithms A" are based on
Smolyak’s construction from [25] and results from [30]. Moreover, the algorithms
A" use function values at points that have at most

d."/ D o .ln.1="// active variables:

This is why the problem is polynomially tractable even when the cost function $
is exponential, and is weakly tractable even when the cost function $ is doubly
exponential.

Assume now that the complexity of the univariate integration problem over
H.K/ is �."�p/. Then we can find algorithms An for which (15) holds with
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˛ D 1=p and this value of ˛ is the largest one. Then the exponent of polynomial
tractability equals

psett D ˛�1 D p whenever ˇ � 1 C 2=p: (16)

In this case, the 1-variate problem is roughly of the same complexity as the
univariate problem.

If ˇ 2 .1; 1 C 2=p/ then the 1-variate problem is harder than the univariate
problem but still we have polynomial tractability. In this case, however, the exponent
can be arbitrarily large. The proof that the exponent is sharp also in this case is based
on a lower bound from [16] for the 1-integration problem in the worst case setting.

We illustrate the theorem for the Wiener kernel.

Example 1 (continued). For

K.x; y/ D min.x; y/; D D Œ0; 1�; and � � 1;

the condition (15) holds with ˛ D 1 in the worst case setting and with ˛ D 3=2 in
the randomized setting, and both values are sharp. Hence

pwor D max

�

1;
2

ˇ � 1

�

and
2

3
	 pran 	 max

�
2

3
;

2

ˇ � 1

�

:

Note that the exponent in the randomized setting is smaller then the exponent in the
worst case setting if ˇ > 3. It is open what is the actual value of pran for ˇ 2 .1; 4/.

4 Results for Approximation

We present in this section selected results from [33] for unrestricted linear infor-
mation and from [34] for standard information. All of them are for the worst
case setting and for the range space G . We next discuss extensions of the results
to the randomized setting and to the range space L2.D ; �1/. Recall that for the
approximation problem, APP is the imbedding operator from F� to G . We will also
use S to denote the imbedding from H.K/ to L2.D; �/.

4.1 Unrestricted Linear Information

Consider the operator W defined by (9). It is well known, see e.g., [26], that a
necessary condition for polynomial tractability of the approximation problem is a
polynomial dependence of the eigenvalues �j of W , i.e.,
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�j D O
	
j �2�˛


for some ˛ > 0: (17)

This is because the errors of optimal algorithms A�
n for the univariate approximation

over H.K/ are equal to

errorwor.A�
n I H.K/; S/ D p

�nC1 D O .n�˛/ ;

or equivalently,

compwor."I �all; H.K/; S/ D $.1/ � inf
˚
n W �nC1 	 "2

�
:

One of the results in [33] is the construction of optimal algorithms for the 1-
variate problem which allows to get a necessary and sufficient condition on the
polynomial tractability for general weights �u. Here we state one special result for
the product weights.

Theorem 2. Consider the worst case setting. Suppose that the product weights
satisfy

�j D O
	
j �ˇ



for ˇ > 0 (18)

and the eigenvalues satisfy (17). Then there are algorithms fA"g" for the 1-variate
approximation problem such that

errorwor.A"I F� ; APP/ 	 "

with the following bounds on their cost.

• If $.d/ D O
	
e k�d 


for some k � 0, then for all p > max
�

1
˛

; 2
ˇ

�
there exists a

number C depending, in particular, on p such that

cost.A"/ 	 C � "�p for all " > 0:

This means that the 1-variate problem is polynomially tractable with the
exponent at most

max

�
1

˛
;

2

ˇ

�

:

Furthermore, the exponent is equal to the maximum above if ˛ and ˇ are sharp,
and $.d/ D ˝.d/.

• If $.d/ D O
�
e e k�d

�
for some k � 0, then

lim
"!0

" � ln .cost.A"// D 0:

This means that the problem is weakly tractable.
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As before, the proof is constructive. Moreover, A" uses inner products with
generators having at most d."/ active variables, where now

d."/ D O

�
ln.1="/

ln.ln.="//

�

:

Example 1 (continued). For the Wiener kernel, D D Œ0; 1�, and � � 1, we have
˛ D 1 and, hence,

pwor.�all/ D max

�

1;
2

ˇ

�

:

4.2 Standard Information

We have a similar result for algorithms using standard information, see [34,
Theorem 7].

Theorem 3. Consider the worst case setting. Suppose that the product weights
satisfy (18) and there exists a sequence of algorithms fAngn, each using at most
n function evaluations, such that their errors for the univariate approximation
problem over the space H.K/ satisfy

errorwor.AnI H.K/; S/ 	 c � n�˛ for ˛ > 0: (19)

Then there are algorithms fA"g" for the 1-variate approximation problem using
standard information such that

errorwor.A"I F� ; APP/ 	 "

with the following bounds on their cost.

• If $.d/ D O
	
ek�d 


for some k � 0, then for all p > max
�

1
˛

; 2
ˇ

�
there exists a

number C depending, in particular, on p such that

cost.A"/ 	 C � "�p for all " 2 .0; 1/:

This means that the problem is polynomially tractable with the exponent at most

max

�
1

˛
;

2

ˇ

�

:

Furthermore, the exponent is equal to the maximum above if ˛ and ˇ are sharp,
and $.d/ D ˝.d/.
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• If $.d/ D O
�
e e k�d

�
for some k � 0, then

lim
"!0

" � ln .cost.A"// D 0:

This means that the 1-variate problem is weakly tractable.

Again, the proof is constructive and the sampling points used by A" have at most
d."/ active variables with

d."/ D O

�
ln.1="/

ln.ln.1="//

�

:

We stress that the parameters ˛ in (17) and (19) are not necessarily the same. The
parameter ˛ in (17) describes the power of unrestricted linear information given by
the decay of the eigenvalues �j . The parameter ˛ in (19) describes the power of
standard information given by the best speed of convergence of algorithms using
n function evaluations. There are examples of spaces H.K/ for which the values
of ˛ for unrestricted linear and standard information are different, see [11]. There
is still an open problem whether they are the same if we assume that ˛ > 1=2 for
unrestricted linear information, see [22] for more details.

Example 1 (continued). For the Wiener kernel, D D Œ0; 1�, and � � 1, the
conditions (17) and (19) hold with the same ˛ D 1. Therefore, the exponent of
polynomial tractability for standard information is the same as for unrestricted linear
information,

pwor.�std/ D pwor.�all/ D max

�

1;
2

ˇ

�

:

For this particular space, standard and unrestricted linear information are equally
powerful. Note that for ˇ 2 .0; 3/, the exponent for the approximation problem is
smaller than the corresponding exponent for the integration problem. This is due to
the special form of the space G , see Sect. 4.3.

4.3 L2-Approximation

As already mentioned, the space G was chosen for the approximation problem
since it has a relatively simple structure of the eigenpairs of the operator W D
APP� ı APP. In the forthcoming paper [35], we will present results for the L2-
approximation problem with the space G replaced by the L2 D L2.D ; �1/ space
whose norm is given by (11). Here are some results for product weights.

It is easy to see that L2 D G if C0 D 0. This is why we assume that

C0 > 0

also for the L2-approximation problem.
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The first result of [35] is for $.d/ D 	
e k�d 


. Then the L2-approximation problem
is polynomially tractable iff the exponent ˇ satisfies

ˇ > 1:

Recall that for the G -approximation problem, we only need ˇ > 0.
Next, if ˇ > 1 then the exponent of polynomial tractability of the L2-

approximation problem is bounded by

pwor.�/ 	 max

�
1

˛
;

2

ˇ � 1

�

;

where ˛ is from Theorem 2 for � D �all and from Theorem 3 for � D �std.
Moreover, if ˛ and ˇ are sharp and ˝.d/ D $.d/ D O

	
e k�d 


then

pwor.�std/ D max

�
1

˛
;

2

ˇ � 1

�

:

Furthermore, if $.d/ D O
�
e e k�d

�
then the L2-approximation problem is weakly

tractable. In another words, we have similar results for L2-approximation as for
G -approximation with ˇ replaced by ˇ � 1.

4.4 Randomized Setting

It has been known for quite some time, see [20, 29], that randomization does not
help for multivariate approximation defined over Hilbert spaces when unrestricted
linear information is allowed. More precisely, for a Hilbert space Fd of d -variate
functions and the the space Gd with norm

kf k2
Gd

D
Z

Dd

jf .x/j2 � �d .x/ dx;

consider the problem of approximating the corresponding imbedding operator Sd W
Fd ! Gd .

Let sett 2 fwor; rang. Denote by 	sett.�all; Sd / the order of convergence of
optimal algorithms in the worst case and randomized settings, respectively. That
is, 	sett.�all; Sd / is the supremum of ˛ for which the worst case (or randomized)
error of an optimal algorithm using n linear functionals is of order n�˛ . Then the
results of [20, 29] imply that

	ran.�all; Sd / D 	wor.�all; Sd /:
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More recently, it has been constructively proved in [32] that the standard information
is as powerful as �all in the randomized setting. That is, if 	sett.�std; Sd / denotes
the order of convergence of optimal algorithms using standard information then

	ran.�std; Sd / D 	ran.�all; Sd / D 	wor.�all; Sd /:

As already mentioned, the power of standard information in the worst case setting
is not yet completely known. In terms of the orders of convergence, it was recently
shown, see [11], that there exist reproducing kernel Hilbert spaces Fd for which

	wor.�std; Sd / D 0 and 	wor.�all; Sd / D 1

2
:

However, it is still open whether

	wor.�std; Sd / D 	wor.�all; Sd / if 	wor.�all; Sd / >
1

2
;

see [22] for more details.
Since in the study of multivariate problems the cost is measured by the number

of linear functional or function values used by an algorithm, these and further
results translate into complexity and tractability results. Namely, the complexity and
tractability of fSd g in the worst case setting with �all are equivalent to complexity
and tractability in the randomized setting with �all and/or �std.

It turns out that similar results hold for 1-variate approximation problem with
the cost depending on the number of active variables. More precisely, we have the
following theorem.

Theorem 4. Assume that

• The cost function $.d/ D O
	
e k�d 


for some k � 0,

• The eigenvalues �j D O
	
j �2�˛


for some ˛ > 0,
• The product weights are �j D O.j �ˇ/ with the exponent ˇ > 0 for the

G -approximation problem, and ˇ > 1 for the L2-approximation problem.

Then
pran.�std/ D pran.�all/ D pwor.�all/:

We now outline the proof of this theorem. We will do it only for the G -approxi-
mation problem since similar arguments and arguments similar to those in [34] can
be used for the L2-approximation. For this purpose, we need to recall some facts
about the optimal algorithms for G -approximation in the worst case setting with
�all. The optimal algorithm A" whose error is at most " has the form

A".f / D
X

u2U."/

Au;n.u;"/.fu/ for f D
X

u2U�

fu;



Liberating the Dimension for Function Approximation and Integration 229

where Au;n.u;"/ are special projections into Hu and they use n.u; "/ linear functional
evaluations. The set U."/ is a special finite subset of U� . In particular, A".fv/ D 0

for fv with v … U."/. Furthermore, for all u 2 U."/ we have juj 	 d."/, where d."/

is the maximal number of active variables. As already mentioned, we have

d."/ D max
u2U."/

juj D O

�
ln.1="/

ln.ln.1="//

�

:

The cost of A" is given by

cost.A"/ D
X

u2U."/

$.juj/ � n.u; "/ 	 $.d."// �
X

u2U."/

n.u; "/:

Each algorithm Au;" can be replaced by the corresponding randomized algorithm
that uses standard information due to the already cited result from [32]. However,
these randomized algorithms need to evaluate functions fu for u 2 U."/ instead of
the whole function f . As shown in [15], a value of fu can be obtained by computing
at most 2juj values of f at points with at most juj active variables. Note that

2juj 	 2d."/ and
ln

	
2d."/




ln.1="/
	 .ln.1="//c= ln.ln.1="//�1

for a positive constant c. This implies that

pran.�stdI APP/ 	 pwor.�allI APP/:

To show the opposite inequality, i.e.,

pwor.�allI APP/ 	 pran.�allI APP/;

note that

lim sup
"!0

ln.cost.A"//

ln.1="/
	 lim sup

"!0

ln
�P

u2U."/ n.u; "/
�

C ln
	
$.d."// � 2d."/




ln.1="/

D lim sup
"!0

ln
�P

u2U."/ n.u; "/
�

ln.1="/

since

lim sup
"!0

ln
	
$.d."// � 2d."/




ln.1="/
	 lim

"!0
.ln.1="//c0= ln.ln.1="//�1 D 0:

This means that the cost function $ does not contribute to the tractability exponents
psett.�allI APP/ and we can replace it by $.d/ � 1. For such a constant cost
function, the worst case "-complexity is the same as the complexity with respect
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the space Fd given by the span of Hu for u 2 U."=2/ as follows from the proof in
[33]. Moreover, the complexity in the randomized setting is bounded from below if
F� is replaced by Fd . Hence the results from [20, 29] complete the proof for the
G -approximation.

Acknowledgements I would like to thank Henryk Woźniakowski for valuable comments and
suggestions to this paper.
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26. Traub, J. F., Wasilkowski, G. W., Woźniakowski, H.: Information-Based Complexity, Aca-
demic Press, New York (1988)

27. Wang, X., Fang, K. -T.: Effective dimensions and quasi-Monte Carlo integration. J. Complexity
19, 101–124 (2003)

28. Wang, X., Sloan, I. H.: Why are high-dimensional finance problems often of low effective
dimension? SIAM J. Sci. Comput. 27, 159–183 (2005)

29. Wasilkowski, G. W.: Randomization for continuous problems, J. Complexity 5, 195–218
(1989)
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A Component-by-Component Construction
for the Trigonometric Degree

Nico Achtsis and Dirk Nuyens

— In memory of James Lyness (1932–2010) —

Abstract We propose an alternative to the algorithm from Cools, Kuo, Nuyens
(Computing 87(1–2):63–89, 2010), for constructing lattice rules with good
trigonometric degree. The original algorithm has construction cost O.jAd .m/j C
dN log N / for an N -point lattice rule in d dimensions having trigonometric
degree m, where the set Ad .m/ has exponential size in both d and m (in the
“unweighted degree” case, which is what we consider here). We reduce the cost to
O.dN.log N /2/ with an implicit constant governing the needed precision (which is
dependent on N and d ).

1 Introduction

Consider d -dimensional integrand functions f having absolutely convergent
Fourier series representation

f .x/ D
X

h2Zd

Of .h/ e2� i h�x;

then the error of integration by means of a rank-1 lattice rule [19, 24] is given by
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Q.f I z; N / � I.f / D 1

N

N �1X

kD0

f

�
kz mod N

N

�
�
Z

Œ0;1/d

f .x/ dx

D
X

h2Zd nf0g
h�z�0 .mod N /

Of .h/ ; (1)

where I.f / is the integral of f and Q.f I z; N / its approximation by an N -point
(rank-1) lattice rule with integer generating vector z. The set �? WD fh 2 Z

d W
h � z � 0 .mod N /g, appearing in (1), is called the dual lattice (for the lattice �

with generator z=N CZ
d ). We want to construct lattice rules which integrate exactly

all Fourier coefficients which are at most a distance m from the origin measured by
the 1-norm. The largest such m, for a fixed rule Q, then denotes the trigonometric
degree of the lattice rule. Figure 1 shows the Fourier space for the trigonometric
degree, as well as for the product trigonometric degree, which measures the distance
in the 1-norm, to be used in the next section. The trigonometric degree and similar
quantities, originating in the Russian literature, have been studied in many Western
publications, some of them by Lyness [6, 16–18]; other references are [1–3, 5, 7–
11, 23].

One is able to easily write down the reproducing kernel of such a (finite)
dimensional reproducing kernel Hilbert space (RKHS) in terms of an orthonormal
basis. For a space of functions of trigonometric degree at most m we get

Km.x; y/ D
X

h2Zd

khk1�m

exp.2�i h � x/ exp.2�i h � y/ D
X

h2Zd

khk1�m

exp.2�i h � .x � y//:

(2)

The squared worst-case error using a rank-1 lattice rule in this RKHS is then given
by

e2.z; N I Km/ D �1 C 1

N

N �1X

kD0

X

h2Zd

khk1�m

exp.2�i h � .kz/=N /; (3)

see, e.g., [15] for expressing worst-case errors in a RKHS. The worst-case error for
a quadrature/cubature rule Q in a Banach space H is defined as

e.QI H / WD sup
f 2H

kf kH �1

jI.f / � Q.f /j:

If the rank-1 rule specified by z and N has trigonometric degree m, then its worst-
case error in the RKHS with kernel Km will be zero. The latter form for the squared
worst-case error (3) is, for d � 1, far from convenient for construction purposes as
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the sum over the Fourier indices h cannot be written in a “product form”. A kernel
which can be written in a product form (or a small sum of product forms) is a
necessary condition for the current fast component-by-component algorithms, see,
e.g., [4, 21] for some example kernels.

For comparison, the classical infinite dimensional function space which takes
all Fourier coefficients into account, the so-called Korobov space, has reproducing
kernel, for ˛ > 1,

K˛.x; y/ D
X

h2Zd

exp.2�i h � .x � y//
Qd

j D1 max.1; jhj j˛/
D

dY

j D1

0

@1C
X

0¤h2Z

exp.2�i h.xj � yj //

jhj˛

1

A ;

where the infinite sum reduces to a Bernoulli polynomial B˛ in case ˛ is even. The
squared worst-case error using a rank-1 lattice rule is then

e2.z; N I K˛/ D �1 C 1

N

N �1X

kD0

dY

j D1

�
1 C c˛ B˛

�
kz mod N

N

��
; (4)

for some easily determined constant c˛.
The kernels we consider here are all in terms of Fourier series, therefore they are

what is called shift-invariant or periodic, i.e., K.x; y/ D K.x � y ; 0/. In general
the squared worst-case error for a shift-invariant space with kernel K using a lattice
rule is given by

e2.z; N I K/ D �
Z

Œ0;1/d

K.x; 0/ dx C 1

N

N �1X

kD0

K.z k=N; 0/: (5)

Using the Fourier expansion of K.x; 0/ D K0.x/, i.e., the kernel with one leg fixed,
we arrive at

e2.z; N I K/ D �bK0.0/ C
X

h2Zd

bK0.h/
1

N

N �1X

kD0

exp.2�i h � z k=N / D
X

0¤h2Zd

h�z�0 .mod N /

bK0.h/;

where the latter sum is over the dual lattice. If one compares with (1) then it is
clear that (5) is the integration error of the function K0.x/ using the lattice rule
Q.�I z; N /. In other words: the squared worst-case error of a lattice rule (in a shift-
invariant space) is given as the sum of the Fourier coefficients of the kernel (with
one leg fixed to 0) over the dual lattice. Therefore, the Fourier coefficients attach
a weight to the dual lattice points in the squared worst-case error; this will be the
point of view we will use in the following.
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2 Embedding by a Tensor Product Function Space

In [5] a new algorithm was introduced to construct rank-1 lattice rules using a
component-by-component procedure that obtains a prescribed weighted degree of
exactness and, at the same time, achieve the near optimal worst-case error in a
Korobov space. (The algorithm in [5] is presented for N prime, but can be modified
for composite N as well. Also, the algorithm there is presented for different kinds
of degrees of exactness, here we are only concerned with the trigonometric degree.)
This algorithm explicitly constructs a set of Fourier indices Ad .m/ associated with
the degree of exactness, i.e., all integer points at a distance smaller than or equal to m

to the origin. The construction cost of that algorithm is O.jAd .m/j C dN log N /.
To make this algorithm feasible the degree of exactness is weighted by weights
ˇj w.r.t. the different coordinate axes j D 1; : : : ; d . If all these weights are put
equal to 1 then one obtains the classical trigonometric degree and the size of the
set Ad .m/ increases exponentially in d and m, making the construction intractable.
More precisely, it can be shown, see, e.g., [11], that

jAd .m/j D jAm.d/j D
X

s�0

2s

 
d

s

! 
m

s

!
�
8
<

:
.1C2m/d D O..2m/d /; if d � m;

.1C2d/m D O..2d/m/; if m � d;

(6)

where we used the Binomial theorem and the easy estimate
�

n

k

� � nk=kŠ � nk .
(Note that the sum in (6) always has a finite summation range as both d and m are
finite positive integers and

�
n

k

� D 0 for k 62 f0; : : : ; ng, k; n 2 Z, n � 0.)
In [5] the theoretical basis starts off by modifying the classical Korobov space

to incorporate the kernel of the finite dimensional space, which is (2) for the
trigonometric degree. The unfortunate form of this kernel plays no part there as
one constructs the set Ad .m/ explicitly and thus no calculations have to be done
using this kernel. Here we propose to walk the other way: we will not build the
(exponentially growing) set Ad .m/, but will try to calculate the worst-case error for
a modified trigonometric space.

Incorporating an idea from [13] we build a function space with exponentially
decaying Fourier coefficients, and, extending what is studied in [13], make it finite
dimensional. Our first attempt at an efficient kernel is

Km;p.x; y/ D
X

h2Zd

khk1�m

pkhk1 exp.2�i h � .x � y//; (7)

for 0 < p < 1. Note that the part inside the sum is now of “product form”, however
the multiple sums are a dependent chain. If one strives for exactness, i.e., integrate
all these Fourier coefficients exactly, then there is no difference in using kernel (2)
or (7). A rule which is exact for all trigonometric polynomials up to degree m will
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have a squared worst-case error equal to zero for both of these choices. Moreover, as
the sum still involves the 1-norm, we still fail to have an efficient computable form.

Now we enlarge the index set of Fourier coefficients to take a tensor product
form. Again for 0 < p < 1, now consider the kernel

K 0
m;p.x; y/ D

X

h2Zd

khk1�m

pkhk1 exp.2�i h � .x � y//

D
dY

j D1

mX

hD�m

pjhj exp.2�i h.xj � yj //

D
dY

j D1

 
1 C 2

mX

hD1

ph cos.2� h.xj � yj //

!
: (8)

The last form is suitable to be directly used in the fast component-by-component
algorithm [20–22].

The problem with (8) however is that we are now in fact looking at a product
trigonometric degree (i.e., a tensor product form degree) instead of the plain
trigonometric degree: that is, if the squared worst-case error for this kernel is
zero, then the rule has product trigonometric degree at least m (and by extension
also trigonometric degree at least m), if it is non-zero however, then we could still
have trigonometric degree at least m. This simple embedding can be seen in Fig. 1.
We want to obtain bounds on the value for the squared worst-case error such that we
can determine, when it is non-zero, if the Fourier coefficients for khk1 � m, which
we don’t integrate exactly (i.e., the dual lattice points), actually have khk1 > m,
i.e., all in the shaded area in Fig. 1 (but not on the border of the inner diamond).
If so, then the rule has trigonometric degree at least m (right image; with actual
trigonometric degree m), if not, then the rule has smaller degree (left image).

For ease of presentation one often uses the concept of the enhanced trigonometric
degree [6] which is defined as the trigonometric degree plus one. In other words, the
enhanced trigonometric degree is the distance of the closest non-zero point to the
origin of the dual lattice measured in the 1-norm.

We can rewrite kernel (8), getting rid of the sum, using

1 C 2

mX

hD1

ph cos.2�ht/ D 1 � p2�2pmC1 cos.2�.mC1/t/ C 2pmC2 cos.2�mt/

1 C p2�2p cos.2�t/

which can be obtained by tedious calculations starting from the exponential form or
using easy manipulations starting from [14, 1.353/3]. However, care must be taken
to evaluate this function (in whatever form), especially as p will be chosen small. In
Fig. 2 one can see what the one-dimensional kernel looks like. (A similar remark is
also in place for the kernel used in [13] which has m D 1.)
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h2

h1m

h2

h1m

Fig. 1 The trigonometric degree iso-lines (1-norm: diamond shaped iso-lines) versus the product
trigonometric degree iso-lines (1-norm: iso-lines parallel to the axes). Note that, in contrast to
what this 2-dimensional figures suggest, the difference in volume for the enclosing product degree
shape increases exponentially with the dimension. Left view: dual lattice points h ¤ 0 on the
1-norm iso-line of distance m, i.e., khk1 D m; the picture shows an enhanced trigonometric
degree of m, i.e., a trigonometric degree of m � 1. Right view: no dual lattice points h ¤ 0 with
khk1 � m, i.e., having trigonometric degree at least m; in the picture the enhanced trigonometric
degree is m C 1 and thus the trigonometric degree is m.
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0.99985
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Fig. 2 The one-dimensional kernel K 0

m;p.x; 0/, see (8), of the finite dimensional product space
which weights Fourier coefficients by the 1-norm. Left: the kernel for p D 2=3 and m D 5. Right:
the kernel for p D 10�4 and m D 5.

3 Distinguishing Dual Lattice Points

Kernel (8) can be analyzed for the trigonometric degree by looking at the different
cases where the squared worst-case error for kernel K 0

m;p is non-zero. We analyze
the cases under the premise that the rule has trigonometric degree m.

First assume the rule really has trigonometric degree at least m, i.e., khk1 > m

for all dual lattice points h ¤ 0, and also has dual lattice points for which khk1 �
m, i.e., dual lattice points in the shaded area of Fig. 1. The first 1-norm iso-line on
which these points could fall is the one where the 1-norm equals mC1 (right image).
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All points on this iso-line account for a weight of pmC1 in the squared worst-case
error. Naturally, if there are 1=p dual lattice points on this line, then the squared
worst-case error will be at least 1=p � pmC1 D pm, which is the weight of the
iso-line khk1 D m.

Conversely, assume the rule actually has degree less than m. If there are no dual
lattice points on the mth iso-line then the worst-case error is at least pm�1. On the
other hand, if there would be any dual lattice points on the mth iso-line then the
squared worst-case error would as well have a value of order pm. Further, note that
if there is one dual lattice point at distance m, then there is a second one as well
as trivially khk1 D k � hk1, thus the squared worst-case error would at least be
2 pm. So, in the case above, where we have trigonometric degree at least m, we
would need at least 2=p dual lattice points on the iso-line of weight m C 1 to have
a squared worst-case error of at least 2 pm.

Unsurprisingly, this shows that the contribution of the dual lattice points with
khk1 > m and khk1 � m could raise above the level of the dual lattice points
with 0 ¤ khk1 � m. This problem can be avoided by choosing p small enough
since there is a maximum of integer points which can fall inside the shaded region
in Fig. 1. A naive but straightforward way is by weighting all points in fh 2 Z

d W
khk1 > m and khk1 � mg by the same factor pmC1 which then have a combined
weight smaller than two points on the edge of the cross-polytope.

Lemma 1. Given integer m; d > 1, if one chooses p such that

1

p
> 2d�1

�
.m C 1/d � .d C 1/ � � � .d C m/

mŠ

�

then

X

h2Zd

khk1>m
khk1�m

pmC1 < 2 pm:

Proof. We will count the integer points by subtracting the points with khk1 � m

from the points with khk1 � m. As we are counting all integer points (instead
of only the dual lattice points) we can simplify the count to h with non-negative
coordinates and then multiply by a factor of 2d . Doing so we count all points on the
interface between adjacent hypercubes twice, so this is just an approximation.

The number of integer points in Œ0; m�d is trivially .mC1/d . To find the number of
integer points in the simplex with vertices .0; 0; : : : ; 0/, .m; 0; : : : ; 0/, .0; m; : : : ; 0/,
. . . , .0; 0; : : : ; m/ we can use the theory of Ehrhart polynomials, see, e.g., [12], from
which we find the generating function

X

m�0

am xm D 1

.1 � x/dC1
:

The mth Maclaurin coefficient is given by
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.d C 1/ � � � .d C m/

mŠ
;

which is the number of integer points inside the simplex. It follows that

#fh 2 Z
d W khk1 > m and khk1 � mg � 2d

�
.m C 1/d � .d C 1/ � � � .d C m/

mŠ

�
;

which is sharp for d D 2. We now want

2d

�
.m C 1/d � .d C 1/ � � � .d C m/

mŠ

�
pmC1 < 2 pm;

from which the stated result follows. ut
Given such a choice of p we show that the squared worst-case error in the RKHS

with kernel K 0
m;p gives us information on the trigonometric degree.

Lemma 2. Given an N -point rank-1 lattice rule Q.f I z; N / with generating vector
z then for integer m > 1 and 0 < p < 1 chosen as in Lemma 1 we have

0. e2.z; N I K 0
m;p/ D 0 if Q has (product) trigonometric degree at least m;

and if e2.z; N I K 0
m;p/ ¤ 0

1.

�
logp

e2.z;N IK0

m;p/

2

�
� m if Q has trigonometric degree less than m;

2.

�
logp

e2.z;N IK0

m;p/

2

�
> m if Q has trigonometric degree at least m.

Proof. The case of e2.z; N I K 0
m;p/ D 0 is trivial.

Now assume there are no non-zero dual lattice points for which khk1 � m then

e2.z; N I K 0
m;p/ D

X

h�z�0 .mod N /
khk1>m

khk1�m

pkhk1 �
X

h2Zd

khk1>m
khk1�m

pmC1 < 2 pm

due to Lemma 1.
On the other hand if there are non-zero dual lattice points with khk1 � m then

e2.z; N I K 0
m;p/ D

X

h�z�0 .mod N /
0<khk1�m

pkhk1 C
X

h�z�0 .mod N /
khk1>m

khk1�m

pkhk1

�
X

h�z�0 .mod N /
0<khk1�m

pkhk1

� 2 pm:
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From these the result follows. ut
Note that generally it will not be possible to check what the trigonometric degree
is when it is larger than m. There is always the possibility of a h 2 �? such that
khk1 D m C ` but khk1 > m for some 0 < ` < m: a dual lattice point outside of
Œ�m; m�d but on a 1-norm iso-line through this hypercube. However, by modifying
the choice of p we can determine what the trigonometric degree is when it is smaller
than m, as stated in the following corollary.

Corollary 1. Given an N -point rank-1 lattice rule Q with generating vector z then
for integer m > 1 and 0 < p < 1 chosen as

1

p
> 2d�1

�
.m C 1/d � .d C 1/

�
;

we have the additional property that

$
logp

e2.z; N I K 0
m;p/

2

%
D m � ` C 1

if Q has trigonometric degree m � ` where 0 < ` < m.

Proof. Following the same reasoning as in the proof of Lemma 1, we find that for
` > 0

#fh 2Z
d W khk1 > m � ` and khk1 � mg

� 2d

�
.m C 1/d � .d C 1/ � � � .d C m � `/

.m � `/Š

�
:

We now want for all possible 0 < ` < m

2d

�
.m C 1/d � .d C 1/ � � � .d C m � `/

.m � `/Š

�
pmC1�` < 2 pm�`;

from which the stated condition on p follows.
Using this condition, suppose the trigonometric degree is m � ` for some 0 <

` < m. Then we find

e2.z; N I K 0
m;p/ D

X

h�z�0 .mod N /
khk1>m�`
khk1�m

pkhk1 �
X

h2Zd

khk1>m�`
khk1�m

pm�`C1 < 2 pm�`

and
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e2.z; N I K 0
m;p/ �

X

h�z�0 .mod N /
khk1Dm�`C1

khk1�m

pkhk1 � 2 pm�`C1:

ut
Above we have always lumped together the points to get weighted all by the same

weight of pmC1. A more careful analysis is possible if we weight each h exactly.
This is possible, but we were unable to get such a nice expression as in Lemma 1.
The following result could however be used in an algorithmic way to find a p greater
than or equal to the one obtained by Lemma 1.

Lemma 3. Given integer m; d > 1, if one chooses p such that

dX

sD1

2s

 
d

s

! �
pmC1 � p

p � 1

�s

�
mX

kD1

pk

 
k � 1

s � 1

!!
< 2 pm

then

X

h2Zd

khk1>m
khk1�m

pkhk1 < 2 pm:

Proof. In similar spirit as the previous results we need

X

h2Zd

khk1�m

pkhk1 �
X

h2Zd

khk1�m

pkhk1 < 2 pm:

The weighted integer points inside the hypercube are easy to express as all sums are
independent:

X

h2Zd

khk1�m

pkhk1 D
 

mX

hD�m

pjhj
!d

D
 

1 C 2

mX

hD1

ph

!d

D
�

1 C 2
pmC1 � p

p � 1

�d

:

This can also be written as

�
1 C 2

pmC1 � p

p � 1

�d

D
dX

sD0

 
d

s

!�
2

pmC1 � p

p � 1

�s

D 1 C
dX

sD1

2s

 
d

s

!�
pmC1 � p

p � 1

�s

:
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For the weighted points inside the cross-polytope we have the number of points at
distance k to be

X

h2Zd

khk1Dk

1 D
X

h2Zd

khk1�k

1 �
X

h2Zd

khk1�k�1

1

D
X

s�0

2s

 
d

s

!  
k

s

!
�
 

k � 1

s

!!

D
X

s�1

2s

 
d

s

! 
k � 1

s � 1

!

for k � 1, cf. (6). As such, the weighted integer points inside the cross-polytope are
given by

1 C
mX

kD1

pk
X

s�1

2s

 
d

s

! 
k � 1

s � 1

!
D 1 C

dX

sD1

2s

 
d

s

! 
mX

kD1

pk

 
k � 1

s � 1

!!
:

(Depending on the choice of d and m the sum over k might vanish partly or even
completely because of the properties of the binomial coefficient, cf. (6).) From here
the result follows. ut

4 A Modification of the CKN Weighted-Degree Algorithm

The algorithm in [5] is a component-by-component algorithm, see, e.g., [25]. This
means that one constructs the generating vector z one component at a time, first
generating a one dimensional vector, then a two dimensional, etc, always keeping
the previous choices fixed.

Using the results from the previous section, we can modify the algorithm from
[5] as follows. Starting from a d -dimensional generating vector with trigonometric
degree md , we “guess” (as explained below) the trigonometric degree QmdC1 that
can be achieved in d C 1 dimensions. We then use kernel K 0

QmdC1;p
, given in (8),

with an appropriate choice for p, e.g., given by Lemma 1, to calculate the squared
worst-case error for each possible choice of zdC1. For this we consider all z 2 Z

�
N

(where Z
�
N are all positive integers relatively prime to N and smaller than N ,

i.e., the multiplicative group modulo N ). This step might possibly be repeated for
different choices of QmdC1 if our initial guess turned out to be incorrect, making use
of Lemma 2. As we have chosen a tensor product form kernel, the calculation of
the worst-case error for all possible choices z 2 Z

�
N can be done using Fast Fourier

Transformations (FFTs) using the techniques from [20–22] in time O.N log N / for
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each guess of QmdC1. The final trigonometric degree that we settle on will be denoted
by mdC1.

As in [5] we try to achieve a good trigonometric degree and at the same time
obtain an almost optimal worst-case error in a Korobov space. For this we also
calculate the worst-case error using kernel K˛, see (4), and find the z 2 Z

�
N which

minimizes this worst-case error and at the same time achieves the trigonometric
degree mdC1 (found by the calculations based on K 0

mdC1;p). The final choice of z
is then fixed as zdC1. The calculation of the worst-case error in the Korobov space
might also be done using FFTs in time O.N log N /.

When the number of points is sufficiently large, then [5, Theorem 3] shows that
such lattice rules exist and can be found in a component by component way. For
completeness we repeat that result here (which is stated for a prime number of
points due to technicalities), slightly adjusted to the context of the (unweighted)
trigonometric degree here. (The subsequent theorem also uses “product weights”
�j to build a weighted function space. Such weighted spaces are a standard tool
in tractability analysis but are of no real concern in this paper and can be safely
ignored. Further information can be found in, e.g., [26].)

Theorem 1 (From [5, Theorem 3]). Let c > 1 be fixed, m be given, and let N be
a prime number satisfying

N > max

�
m; 1 C c

c � 1

jAdC1.m/j � jAd .m/j � 2m

2

�
:

Suppose we already have a z 2 .Z�
N /d for which

e2.z; N I Km/ D 0;

i.e., the rule has trigonometric degree at least m, and

e2.z; N I K˛/ �
0

@ c

N � 1

dY

j D1

�
1 C 2 ��

j �.˛�/
	
1

A
1=�

for all � 2 .1=˛; 1�;

i.e., the rule has near optimal worst-case error in the Korobov space with smooth-
ness ˛. Then there is “at least one” zdC1 2 Z

�
N such that we achieve trigonometric

degree m

e2..z; zdC1/; N I Km/ D 0;

and near optimal worst-case error

e2..z; zdC1/; N I K˛/ �
0

@ c

N � 1

dC1Y

j D1

�
1 C 2 ��

j �.˛�/
	
1

A
1=�

for all � 2 .1=˛; 1�:
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This choice of N however was argued to be much higher than necessary, so in
the practical implementation the condition was omitted. Here we will follow the
same argument: we omit the condition on N and try to achieve the highest possible
trigonometric degree possible. From [11] we note the known minimum number of
points needed to achieve a prescribed trigonometric degree m in d dimensions:

Nmin.m; d/ �
ˇ̌
ˇAd

�jm

2

k	ˇ̌
ˇ D

(
O.md /; if d � m;

O..2d/m=2/; if m � d:
(9)

More specifically, the attainable lower bound in 2 dimensions, again, see [11], is
given by

Nmin.m; 2/ D
(

2k2 C 2k C 1; for m D 2k;

2k2 C 4k C 2; for m D 2k C 1:

This brings us back to the “guessing” of the trigonometric degree. First note that
the range of possible trigonometric degrees is quite limited. As an estimate in two
dimensions we could use m <

p
2N . It follows that for a fixed N and increasing d

(as in a component-by-component algorithm) the achievable trigonometric degree
will decrease exponentially, see (9). This enables us to guess the trigonometric
degree rather easily. To start off the process we use that the trigonometric degree
in the first dimension always equals N � 1 (under the condition that z1 is relatively
prime to N ), for the second dimension we can start from the explicit lower bound,
i.e., guess m <

p
2N , and from then on we can assume exponential decrease.

Moreover, if we never underestimate m, then by choosing p as in Corollary 1
we can determine the trigonometric degree from the squared worst-case error.
Summarizing, we have the following algorithm:

Algorithm 1. For given dmax, wanted degree Omdmax � 1 in dmax dimensions, ˛ > 1

and choosing N � jAdmax .b Omdmax=2c/j, then:

1. Set z1 D 1.
2. For each d D 1; : : : ; dmax � 1 with z D .z1; : : : ; zd / already fixed do the

following:

(a) Guess the trigonometric degree mdC1 (preferably do not underestimate), and
choose a p small enough, e.g., as in Lemma 1 or Corollary 1.

(b) For each possible component z 2 Z
�
N , calculate e2..z; zdC1/; N I K 0

mdC1;p/.
If there is no choice with trigonometric degree mdC1 then guess again and
repeat this step, otherwise set the trigonometric degree mdC1.

(c) Set zdC1 to be the z 2 Z
�
N that minimizes e2..z; zdC1/; N I K˛/ and has

degree mdC1.

Corollary 2. Given Algorithm 1, we have that the complexity of construction up to
d dimensions is O.dN.log N /2/.
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Proof. Assuming we need to repeat the guess T times, the cost per iteration is
O.TN log N /. As the relation between the number of points N and the achievable
trigonometric degree is exponential for increasing d , see (9), we can assume T D
O.log N / worst case. Consequently the cost is O.N.log N /2/ and the complexity
of construction up to d dimensions is O.dN.log N /2/. ut

We remark that the construction cost given assumes unit cost for all basic
arithmetic operations on the computing device. Based on the smallness of p this
will almost always mean arbitrary precision calculations for which this assumption
is not quite correct (depending on the needed precision the deviation will become
larger). An analysis of the practical implications for an actual implementation of
this algorithm is therefore left for future research; but we make some developments
in this area in the remainder of the paper. (We note that the full study of this
would imply a numerical analysis of the computation of the worst-case error. As
far as we know, this has not been studied yet.) To give an example of the technical
complications: if the needed precision is very high, then it will become necessary to
use FFTs which minimize the number of multiplications; or to use other algorithms
to execute the underlying circular convolution.

We remark as well that in each iteration of the algorithm, we are in fact more or
less computing the shortest vector in circa N 	 jZ�

N j dual lattices. So somewhere
we expect to get bitten by the exponential complexity in d of the general problem
of shortest vector computations. In that respect, the proposed algorithm looks quite
good and it seems we can reduce the complexity by exploiting the specifics of our
problem.

5 An Improvement on p

It is clear that our choice of p is far too conservative; it was a very crude
underestimate based on a worst case argument. We simulated 103 random numbers
N between 100 and 4,001, together with 5-dimensional integer vectors z with
elements between 1 and N . Then, for each dimension between 2 and 5 we calculated
the enhanced trigonometric degree explicitly (which we denote in this section by m

for ease of notation), after which we checked for all h in fh W khk1 � m and khk1 >

mg whether they satisfy h � z � 0 .mod N /. This gave us 103 trigonometric
degrees and the corresponding number of dual lattice points in �?

m WD fh W h 2
�?; khk1 � m and khk1 > mg for each dimension. In Table 1, the maximum
j�?

m j that was found for each trigonometric degree encountered is reported. We also
calculated the theoretical bound

˝m D 2d

�
.m C 1/d � .d C 1/ � � � .d C m/

mŠ

�
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used in Lemma 1 for constructing p to compare against the numerical experiment.
It seems that ˝m greatly overestimates the possible number of dual lattice points.
More specifically, we have the following lemma for the two-dimensional case.

Lemma 4. For d D 2, the maximum number of points in �?
m is bounded by 6 for

any m.

Proof. This lemma can be proven by noticing that for rank-1 lattice rules all dual
lattice points lie equidistantly on equidistant parallel hyperplanes. ut
This lemma illustrates, at least for d D 2, that the number of possible dual
lattice points is fixed regardless of the trigonometric degree, whereas ˝m, used for
calculating p in our algorithm, increases with m. From Table 1 there seems to be
some evidence that the maximum number of points in �?

m is much smaller than ˝m

also in higher dimensions.
Lemma 1 has been written in a general sense, without using any information on

the actual underlying point set. If we specialize to rank-1 rules we can get a better
estimate. We start from the following easy result.

Lemma 5. Given an N -point rank-1 lattice rule with generating vector z 2 .Z�
N /d

modulo N, then there are N d�1 dual lattice points modulo N (i.e., in Œ0; N /d ).

Proof. An integer point h 2 Z
d is part of the dual lattice if

h1z1 C h2z2 C � � � C hd zd � 0 .mod N /:

Now fix any choice of hj 2 ZN except one, say h1, then for a D .h2z2 C� � �Chd zd /

there is a unique solution, since z1 2 Z
�
N , for h1 in

h1z1 C a � 0 .mod N /:

The same conclusion could be drawn if fixing any other d �1 components. As there
were N d�1 choices for the other hj the dual lattice has N d�1 points in Œ0; N /d . ut

Similarly to the previous lemma we obtain an estimate for the dual lattice points
inside Œ�m; m�d .

Corollary 3. Under the same conditions as for Lemma 5, there are .2m C 1/d�1

dual lattice points in Œ�m; m�d for m < N .

Note that this seems always smaller than ˝m. However, this result is only valid for
rank-1 lattice rules, whereas Lemma 1 remains valid for higher rank lattice rules.
Therefore, we opted to keep Lemma 1 as a guideline although this estimate will get
us a smaller p. A practical implementation for rank-1 rules could however make use
of Corollary 3.

In closing this section we want to remark that, apart from making p larger by
using a more careful analysis, we can also make p larger by sorting out bad cases as
we go. E.g., the following lemma shows that as soon as we have fixed a component
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Table 1 The enhanced trigonometric degrees found in a sample of random generating vectors up
to 5 dimensions, together with the corresponding maximum number of dual lattice points j�?

m j
found and the theoretical bound ˝m, used for constructing p in Lemma 1.

d D 2 d D 3 d D 4 d D 5

m j�?

m j ˝m j�?

m j ˝m j�?

m j ˝m j�?

m j ˝m

2 2 12 10 136 14 1,056 62 7,104
3 0 24 8 352 88 3,536 312 30,976
4 4 40 20 720 122 8,880 630 95,968
5 4 60 22 1,280 136 18,720 1,416 240,768
6 4 84 20 2,072 174 35,056 1,350 523,040
7 4 112 32 3,136 202 60,256 1,298 1,023,232
8 4 144 36 4,512 250 97,056 1,346 1,848,384
9 4 180 28 6,240 222 148,560 1,560 3,135,936

10 4 220 32 8,360 210 218,240 1,508 5,057,536
11 4 264 36 10,912 222 309,936 1,660 7,822,848
12 4 312 34 13,936 222 427,856
13 4 364 32 17,472 220 576,576
14 6 420 30 21,560 210 761,040
15 4 480 32 26,240
16 6 544 32 31,552
17 4 612 36 37,536
18 6 684 38 44,232
19 4 760 34 51,680
20 4 840 32 59,920
21 4 924 34 68,992
22 4 1,012 34 78,936
23 4 1,104 36 89,792
24 4 1,200 36 101,600
25 4 1,300 34 114,400
26 4 1,404
27 4 1,512
28 4 1,624
29 4 1,740
30 4 1,860
31 4 1,984
32 4 2,112
33 4 2,244
34 6 2,380
35 4 2,520
36 6 2,664
37 4 2,812
38 6 2,964
39 4 3,120
40 4 3,280
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of z, then several multiples modulo N must not be considered again as valid choices
in the next dimensions; as such we should not care about the actual p value we
would need for these very bad rules.

Lemma 6. Given an N -point rank-1 lattice rule with generating vector z 2 Z
d
N in

d � 2 dimensions, then as soon as there is a repeated component (modulo N ) in z,
the trigonometric degree is just 1. Moreover, if one component, say zj , is �t times a
multiple of another (modulo N=.zi ; N /), say zi , and t 6� 0 .mod N=.zi ; N //, then
the trigonometric degree is at most t .

Proof. We just prove the most general case. Consider the vector h which is zero
everywhere except for the two components where zi � a .mod N / and zj � �t a

.mod N=.a; N //. We get the equation

hi zi C hj zj � 0 .mod N /

which, with .a; N / the greatest common divisor of a and N , is equivalent to

a

.a; N /
hi � t a

.a; N /
hj � 0 .mod N=.a; n//;

where we have to assert that t 6� 0 .mod N=.a; n// such that the problem still
involves hi and hj . Multiplying by the multiplicative inverse of a=.a; N / we obtain

hi � t hj � 0 .mod N=.a; n//

which clearly has a non-trivial solution hi D t and hj D 1. It follows that the
enhanced trigonometric degree is at most khk1 D t C 1 and thus the trigonometric
degree can be at most t . ut

As a consequence of this last lemma we note that in Algorithm 1 as the
algorithm progresses from dimension to dimension and as we have fixed N from the
beginning—thus limiting the achievable trigonometric degree—the possible choices
for the next zdC1 are much less than the elements of Z

�
N . We would hope that

exploiting this knowledge would enable us to take much larger choices of p, as
the bad choices will be the ones with the most points close to 0.

6 Conclusion and Future Work

We proposed a component-by-component algorithm to construct rules of good
trigonometric degree by making use of a finite dimensional, exponentially decaying,
reproducing kernel Hilbert space. The analysis of the algorithm has been tackled
from an “existence” point of view, that is, we have proven that such an algorithm
exist, and even explicitly given the algorithm outline, but we did not consider
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practical implementation aspects. Working out the technical details of the algorithm
is of considerable complexity and left for future work. Some initial results in that
direction have been included.
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Scrambled Polynomial Lattice Rules
for Infinite-Dimensional Integration

Jan Baldeaux

Abstract In the random case setting, scrambled polynomial lattice rules, as
discussed in Baldeaux and Dick (Numer. Math. 119:271–297, 2011), enjoy more
favorable strong tractability properties than scrambled digital nets. This short
note discusses the application of scrambled polynomial lattice rules to infinite-
dimensional integration. In Hickernell et al. (J Complex 26:229–254, 2010), infinite-
dimensional integration in the random case setting was examined in detail, and
results based on scrambled digital nets were presented. Exploiting these improved
strong tractability properties of scrambled polynomial lattice rules and making use
of the analysis presented in Hickernell et al. (J Complex 26:229–254, 2010), we
improve on the results that were achieved using scrambled digital nets.

1 Introduction

In a recent series of papers, [2, 4, 6, 7, 9, 11, 13], the problem of infinite-dimensional
quadrature has been studied. Such problems have many applications, e.g. in
mathematical finance, see [8, 10], where series expansions are used to represent
particular random variables.

This short note focuses on the random case setting, which was addressed in [4].
In the latter paper, a complete and general analysis was presented, clearly showing
the reader how to employ a given quadrature rule. Furthermore, results based on
the scrambled Niederreiter sequence were presented. Recently, [1], it was shown
that for multivariate integration in the random case setting, scrambled polynomial
lattice rules possess more favorable strong tractability properties than any scrambled
digital sequence.
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This raises the natural question, whether the results based on the scrambled
Niederreiter sequence can be improved on using scrambled polynomial lattice rules.
In this short note, we give an affirmative answer to this question. In particular,
the contribution of this note is the following: Using the analysis presented in
[4], we employ the multivariate integration result from [1] to improve on the
results presented in [4]. Finally, regarding lattice rules, we remark that results
on multivariate integration using lattice rules in the random case setting have not
appeared in the literature.

We place ourselves in the same setting as discussed in [4], use the same
algorithms, but employ a different quadrature rule, in particular one with better
strong tractability properties. In the interest of giving due credit to the authors of
[4] and also of saving space, we have decided to proceed as follows: We very briefly
recall the function space introduced in [4] and the sampling regimes, but introduce
cost and worst-case errors under the premise that algorithms are based on scrambled
polynomial lattice rules. The interested reader is referred to [4] for a complete and
general treatment of the problem studied in this note.

2 The Setting

In this section, we briefly recall the function space and the sampling regimes, cost
and errors as introduced in [4]. Regarding notation, as in [4], v is used to denote finite
subsets of N, the set f1; : : : ; sg is denoted by 1 W s, and lastly, we write xk � yk for
sequences of positive real numbers xk and yk , if xk � cyk is valid for k 2 N and
some constant c > 0.

2.1 The Function Space

We briefly remind the reader how to construct functions of infinitely many variables,
as presented in [4]. Essentially, we start with a one-dimensional reproducing kernel
Hilbert space, construct spaces of finitely many variables as tensor product spaces
and take limits to allow for infinitely many variables. Coordinate weights �v DQ

j 2v �j , v � N, which indicate the importance of the variables xj , j 2 v, ensure
convergence of the relevant quantities.

In particular, we consider the reproducing kernel

k.x; y/ D 1

3
C .x2 C y2/=2 � max.x; y/;

x; y 2 Œ0; 1�, and consider the Hilbert space H.1 C �k/, for a weight � > 0, whose
norm satisfies
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kf k2 D
�Z 1

0

f .y/dy

�2

C ��1

Z 1

0

.f 0/2.y/dy:

To allow for functions of finitely many variables, we consider the reproducing kernel

Kv.x; y/ D
Y

j 2v

.1 C �j k.xj ; yj //

and of course the associated Hilbert space H.Kv/ is of tensor product form

H.Kv/ D
O

j 2v

H.1 C �j k/: (1)

To define functions of infinitely many variables, we define the measurable kernel K

on Œ0; 1�N � Œ0; 1�N

K.x; y/ D
X

v

�vKv.x; y/ D
X

v

�v

Y

j 2v

k.xj ; yj /;

for x; y 2 Œ0; 1�N and denote the associated space by H.K/, which, see [4,
Lemma 6], consists of all functions

f D
X

v

fv; fv 2 Hv;

for which X

v

��1
v kfvk2

kv
< 1;

and, in case of convergence,

kf k2
K D

X

v

��1
v kf k2

kv
:

2.2 Sampling Regimes, Cost, and Worst-Case Error

In this subsection, we introduce randomized algorithms for the integration of
functions f W Œ0; 1�N ! R; the reader is referred to [2,15] for a detailed discussion.
For the remainder of the note, we assume that �j � j �˛ , ˛ > 1. Following [2, 4],
two sampling regimes, which specify the domains from which the integration nodes
can be chosen, are introduced.

Fixed subspace sampling restricts this domain to a finite-dimensional affine
subspace
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Xv;a D ˚
x 2 Œ0; 1�N W xj D a for j 2 N n v

�

for a finite set ; ¤ v � N and a 2 Œ0; 1�. Since we will employ scrambled
polynomial lattice rules, we will deal with the case v D 1 W s. We remind the reader
that essentially one only specifies those coordinates included in v, the remaining
ones are specified via the anchor point a.

Variable subspace sampling generalizes this idea to a sequence of finite-
dimensional affine subspaces

Xv1;a � Xv2;a � : : : ;

where v D .vi /i2N is a given increasing sequence, vi � N, and a 2 Œ0; 1�; again, the
case vi D 1 W si will turn out to be relevant when dealing with scrambled polynomial
lattice rules. This sampling scheme allows us to choose integration nodes from
subspaces of different dimensionality. To be able to compare algorithms, we want
to be able to quantify how costly it is to evaluate the integrand f at the integration
nodes. Following [2, 4], we formulate the cost of evaluating f at the integration
node x in terms of the dimension of the finite-dimensional subspace from which the
integration node is chosen. This means for fixed subspace sampling we obtain the
cost

cv;a D
� jvj; if x 2 Xv;a

1; otherwise.
(2)

For variable subspace sampling, which allows for the integration nodes to be chosen
from a sequence of finite-dimensional subspaces, we choose the subspace with the
smallest dimension in which the node lies, to obtain the cost

cv;a.x/ D inf fdim.Xvi ;a/ W x 2 Xvi ;ag (3)

and set inf ; D 1.
The randomized quadrature formulas employed in this note are based on

scrambled polynomial lattice rules,

Qm;b;1Ws.f / D 1

bm

bm
X

iD1

f .xi /; (4)

where xi 2 Œ0; 1/s are obtained by scrambling a polynomial lattice rule, see [1].
Defining

.�v;af /.x/ D f .xv; a/; (5)

we denote the randomized quadrature formulas of interest in this note by

Qn;s;a D Qblogb .n/c;b;1Ws ı �1Ws;a; (6)
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where n denotes the number of points the quadrature rule is comprised of. Intuitively
speaking, we carefully specify dimensions 1 to s via scrambled polynomial lattice
rules and employ the anchor a 2 Œ0; 1� for the subsequent dimensions. It is
clear from the previous discussion, that for fixed subspace sampling, the notation
introduced in Eq. 6 is sufficient. For variable subspace sampling, however, we allow
our integration nodes to be chosen from subspaces of different dimensions, in this
sense the letter s is not sufficient. We remark that this is addressed in Sect. 4.

Next, we wish to discuss the cost of the randomized algorithms. As we only
discuss randomized algorithms based on scrambled polynomial lattice rules in this
note, we define the cost of fixed and variable subspace sampling under the premise
that the randomized algorithm is based on a scrambled polynomial lattice rule. This
simplifies the discussion, the cost model employed in [4], which stems from [2],
allows for a much more general class of algorithms, see also [9] for an even more
general cost model.

Essentially, the cost of evaluating a randomized algorithm Q is given by the
sum of the costs of evaluating the function at the integration nodes chosen from the
finite-dimensional subspaces. For fixed subspace sampling, assuming that nodes are
chosen from X1Ws;a

costfix.Q/ D ns:

For variable subspace sampling, we choose our integration nodes from a
sequence of finite-dimensional affine subspaces, indexed by .vi /

m
iD1, where m � n,

as we use an n-point quadrature rule, where vi D 1 W si , i D 1; : : : ; m. For the
subspace indexed by vi , the integration nodes would be based on scrambled
polynomial lattice rules whose integration nodes lie in Œ0; 1/si , and we denote
the number of those integration nodes by nvi , where of course

Pm
iD1 nvi D n.

Consequently, we have

costvar .Q/ D
mX

iD1

si nvi : (7)

We use B.K/ to denote the unit ball in H.K/, and remark that all integrands
considered in this note lie in B.K/. For f 2 B.K/, we use the notation

I.f / D
Z

X
f .x/dx;

where X � Œ0; 1�N, and denote the worst-case error of a randomized algorithm Q,
used to approximate integrands f in B.K/, by

e.Q; B.K// D sup
f 2B.K/

�
E .I.f / � Q.f //2

�1=2

:

Lastly, minimal errors, which are of great importance in information-based
complexity, [12, 14, 15], are defined by
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eN;fix.B.K// D inf
˚
e.Q; B.K// W cost f ix.Q; B.K// � N

�

and
eN;var .B.K// D inf fe.Q; B.K// W cost var .Q; B.K// � N g :

The following result on numerical integration in H.K1Ws/, see Eq. 1, stems
from [1].

Theorem 1. Assume
P1

j D1 �
1

3�2"

j < 1, for 0 < " � 1, then

e .Qb;m;1Ws ; H.K1Ws// � c"n
�.3=2�"/;

where n D bm and Qb;m;1Ws is a scrambled polynomial lattice rule as defined in
Eq. 4.

Proof. From the proof of [16, Lemma 7], it is clear that the function space H.K1Ws/
can be embedded in the space V1;s;� , as defined in [1], from which the result follows
immediately.

3 Results on Fixed Subspace Sampling

To fully specify the fixed subspace sampling algorithm, we only need to specify
the dimension of the finite-dimensional subspace employed for sampling, and the
number of integration nodes, which are based on a scrambled polynomial lattice
rule. As we wish to minimize worst-case errors for a fixed bound on the cost, say
N , both, the dimension and the number of integration nodes, are functions of N .

Corollary 1 (Corollary 1, [4]). Let 0 < " � 1, �j � j �˛ , ˛ � 3, and a 2 Œ0; 1�.
Choose

n � N
˛�1

˛C2�"

and
s � N

3�"
˛C2�"

for N 2 N. Then, for QN D Qn;s;a

e .QN ; B.K// � N � .3�"/=2.˛�1/
˛C2�"

and
costf ix.QN ; B.K// � N:

Proof. The result follows immediately from [4, Theorem 1], where we set ˛ � 3.

Remark 1. In [4], the same result was established under the stronger assumption on
the weights �j � j �˛ , ˛ > 4. The result presented in Corollary 1 is optimal for
˛ � 3, see [4, Corollary 3].
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4 Results on Variable Subspace Sampling

We carry out variable subspace sampling using the so-called multi-level approach,
which was first introduced in [3], see also [5]. The idea underlying the multi-level
approach is the following: We fix a sequence of sets

v1 � 	 	 	 � vL

and the associated finite-dimensional affine subspaces

Xv1 � 	 	 	 � XvL :

We use the integral associated with the finite-dimensional subspace of the largest
dimension, I.�vL;af / to approximate I.f /. However, we rewrite I.�vL;af / as
follows

I.�vL;af / D
LX

lD1

I
�
�vl ;af � �vl�1;af

	

setting �v0;af D 0. Each of the integrals I.�vl ;af ��vl�1;af / is now approximated
using an independent randomized algorithm, based on a scrambled polynomial
lattice rule, in particular, we use a randomized algorithm

Q.f / D
LX

lD1

Qnl ;sl ;a.f � �1Wsl�1;af /; (8)

so at level l , we use an algorithm based on a scrambled polynomial lattice rule
consisting of bblogb.nl /c points, which lie in Œ0; 1/sl . The error associated with this
algorithm can be split into bias and variance,

E .I.f / � Q.f //2 D .I.f / � I.�1WsL;af //2 C Var.Q.f //;

in particular

Var.Q.f // D
LX

lD1

Var
�
Qnl ;sl ;a.f � �1Wsl�1;af /

	
;

see [4]. Regarding the cost, from Eq. 7,

cost var .Q; B.K// D
LX

lD1

slnl :
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By definition of variable subspace sampling, the dimension sl increases with l ,
but one would expect the variances Var

�
Qnl ;sl ;a.f � �1Wsl�1;af /

	
to decrease as

l increases; the challenge is to trade off these effects well.

Corollary 2 (Corollary 4, [4]). Assume that �j � j �˛ , for ˛ > 3, let 0 < " <

min.1; ˛ � 3/ and put

�1 D ˛ � 1

3 � "=2
; �2 D ˛ � 4 � "

3 � "=2
:

Choose L, sl , nl according to Eqs. 26–28 in [4], and let a 2 Œ0; 1�. Take the
corresponding multi-level algorithm QN according to Eq. 8 based on the scrambled
polynomial lattice rule. Then

e.QN ; B.K// �
(

N �.3�"/=2; if ˛ � 10;

N �.3�"/=2 ˛�1
9 ; if ˛ < 10;

and
costvar .QN ; B.K// � N:

Proof. The proof follows immediately from [4, Theorem 4], with ˛0 D 3 C ".

Remark 2. The same error bounds were established in [4], but the rate N .3�"/=2

was only established for ˛ � 11, whereas here it is achieved for ˛ � 10, due to
an improved strong tractability result. Of course, for ˛ � 10, this result is optimal.
Furthermore, we conclude that for (at least) ˛ > 7, variable subspace sampling
improves on fixed subspace sampling.

Remark 3. We alert the reader to [6, 11], where infinite-dimensional integration in
the worst-case setting is studied. In [6, 11], rank-1 lattice rules are employed as a
basis for the algorithms, and we remark that in the worst-case setting, polynomial
lattice rules have not been shown to improve on rank-1 lattice rules.

Remark 4. For both, fixed subspace and variable subspace sampling, this note
provided optimal convergence rates assuming that ˛ � 3 and ˛ � 10, respectively.
It is not known if these assumptions on ˛ are optimal in general, it is not even
known if these assumptions on ˛ are optimal for scrambled polynomial lattice rules.
Furthermore, since we construct polynomial lattice rules using the component-by-
component algorithm, the resulting subspaces for the variable subspace sampling
regime are necessarily nested and satisfy vi D 1 W si . Whereas the model presented
in [2, 4] requires the subspaces to be nested, it would be interesting to check if one
could weaken the assumption on ˛ by choosing different vi .



Scrambled Polynomial Lattice Rules for Infinite-Dimensional Integration 263

References

1. Baldeaux, J., Dick, J., A construction of polynomial lattice rules with small gain coefficients,
Numerische Mathematik, 119, 271–297, 2011.

2. Creutzig, J., Dereich, S., Müller-Gronbach, T., Ritter, K., Infinite-dimensional quadrature and
approximation of distributions, Foundations of Computational Mathematics, 9, 391–429, 2009.

3. Heinrich, S., Monte Carlo complexity of global solution of integral equations, Journal of
Complexity, 14, 151–175, 1998.

4. Hickernell, F.J., Müller-Gronbach, T., Niu, B., Ritter, K., Multi-level Monte Carlo Algorithms
for Infinite-Dimensional Integration on R

N, Journal of Complexity, 26, 229–254, 2010.
5. Giles, M.B., Multilevel Monte Carlo path simulation, Operations Research, 56, 607–617, 2008.
6. Gnewuch, M., Infinite-dimensional Integration on Weighted Hilbert Spaces, Mathematics of

Computation, 2012.
7. Gnewuch, M., Weighted geometric discrepancies and numerical integration on reproducing

kernel Hilbert spaces, Journal of Complexity 28, 2–17, 2012.
8. Imai, J., Kawai, R., Quasi-Monte Carlo Method for Infinitely Divisible Random Vectors via

Series Representations, SIAM Journal on Scientific Computing, 32, 1879–1897, 2010.
9. Kuo, F.Y., Sloan, I.H., Wasilkowski, G.W., Woźniakowski, H., Liberating the dimension,
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15. Traub, J., Wasilkowski, G.W., Woźniakowski, H., Information-based Complexity, Academic

Press, New York, 1988.
16. Yue, R.-X., Hickernell, F.J., Strong tractability of integration using scrambled Niederreiter

points, Mathematics of Computation, 74, 1871–1893, 2005.



Geometric and Statistical Properties
of Pseudorandom Number Generators Based
on Multiple Recursive Transformations

L.Yu. Barash

Abstract The equidistribution property is studied for the generators of the MRG
type. A new algorithm for generating uniform pseudorandom numbers is proposed.
The theory of the generator, including detailed study of its geometric and statistical
properties, in particular, proofs of periodic properties and of statistical independence
of bits at distances up to logarithm of mesh size, is presented. Extensive statistical
testing using available test packages demonstrates excellent results, while the speed
of the generator is comparable to other modern generators.

1 Introduction

Pseudorandom number generation is an important component of any stochastic sim-
ulations such as molecular dynamics and Monte Carlo simulations [4, 5, 15, 23, 27].
The problem of design of reliable and fast generators is of great importance and
attracts much attention [14].

The present approach extends the method of pseudorandom number generation
of Ref. [1, 2], which is based on evolution of the ensemble of dynamical systems
(see Sect. 2). Several generalizations are carried out. The connection between the
statistical properties of a generator and geometric properties of the corresponding
map is uncovered. New pseudorandom number generators are proposed. Using
SSE2 technology, which is supported by all Intel and AMD processors fabricated
later than in 2003 [13, 32], effective implementations are developed.

Among several statistical test suites available in the literature, TestU01 is known
to contain very stringent batteries of tests for empirical testing of pseudorandom
numbers. At present there are not so many pseudorandom number generators
that pass all the tests even in the sense that no p-value is outside the interval
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Œ10�10; 1 � 10�10� [22]. In Sect. 3 it is shown that statistical testing with TestU01
confirms excellent statistical properties of the proposed realizations.

One of the most important properties that characterize the quality of pseudoran-
dom sequence of numbers, is high-dimensional uniformity and the corresponding
equidistribution property [7,9,17,33,34]. In contrast to other important characteris-
tics of pseudorandom number generators such as the period length, which is studied
in detail for almost all known generators, there are only a few examples when high-
dimensional equidistribution property was proved [7, 9, 17, 19, 24, 26, 33, 34].

In this paper the proper choice of parameters is established, which results in the
validity of the equidistribution property for the proposed generator. In particular, it
is shown that the determinant of the transformation has to be an even integer in order
for the property to hold. This signifies that applying dissipative dynamical systems
to pseudorandom number generation can result in substantially preferable statistical
behavior of the corresponding pseudorandom number sequences, compared to
applying conservative dynamical systems. The equidistribution is established on
length up to a characteristic length `: for n � `, each combination of successive
n bits taken from the RNG output occurs exactly the same number of times and has
a corresponding probability 1=2n. The length ` turns out to depend linearly on t ,
where the mesh size g (i.e. the modulus of the basic recurrence) is equal to p � 2t

and p is an odd prime (see Propositions 7 and 8 in Sect. 5). In other words, for given
p, one has ` / log g. Numerical results show that the equidistribution property still
approximately holds with high accuracy beyond the region of its strict validity under
the condition n < 6:8 log p.

I have constructed several realizations for the proposed generator (see Table 1).
It is shown in Sect. 5 that for the realizations either ` D 2t � 1 or ` D .t � 1/=2

takes place. The speed and statistical properties of the constructed generators are
compared with those of other modern generators (see Tables 1 and 2). Practically,
the generators with smaller values of t (e.g. with prime g) also have very good
properties for a particular choice of parameters, while the generator period is not
less than p2 � 1 and increases significantly with increasing p. For this reason two
realizations with small t are also thoroughly tested.

The paper is organized as follows. The generator is introduced in Sect. 2. In
Sect. 3, the results of speed tests and statistical tests are presented. In Sect. 4 the
geometric and statistical properties of transformations with unitary determinant
associated with hyperbolic automorphisms of two-dimensional torus, are studied.
The five-dimensional equidistribution never takes place in this case. In Sect. 5
the choice of parameters is established for the high-dimensional equidistribution
property to hold for the proposed generator. The main new results of the present
paper are contained in Sects. 4 and 5. They complement the results of the short
letter [3].
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2 The Generator, Its Initialization and Period

It is suggested in [1, 2] to construct RNGs based on an ensemble of sequences
generated by multiple recursive method. The state of the generator consists of the
values x

.n�1/
i ; x

.n�2/
i 2 Zg , i D 0; 1; : : : ; s � 1. The transition function of the

generator is defined by the recurrence relation

x
.n/
i D kx.n�1/

i � qx.n�2/
i .mod g/; (1)

where i D 0; 1; : : : ; s�1. The values x
.n�1/
i , i D 0; 1; : : : ; s�1 can be considered as

x-coordinates of s points .x
.n�1/
i ; y

.n�1/
i /T , i D 0; 1; : : : ; s �1 of the g�g lattice on

the two-dimensional torus, then each recurrence relation (1) describes the dynamics
of x-coordinate of a point on the two-dimensional torus:

 
x

.n/
i

y
.n/
i

!
D M

 
x

.n�1/
i

y
.n�1/
i

!
.mod g/; (2)

where matrix M D �
m1 m2

m3 m4

�
is a matrix with integer elements, and k D Tr M ,

q D det M , where Tr M is a trace of matrix M [1, 12, 16]. Indeed, it follows from
(2) that kx.n�1/

i � qx.n�2/
i D .m1 C m4/x

.n�1/
i � .m1m4 � m2m3/x

.n�2/
i D .x

.n/
i �

m2y
.n�1/
i /Cm4x

.n�1/
i �m1m4x

.n�2/
i Cm2m3x

.n�2/
i D x

.n/
i �m2.y

.n�1/
i �m3x

.n�2/
i /C

m4.x
.n�1/
i � m1x

.n�2/
i / D x

.n/
i � m2m4y

.n�2/
i C m2m4y

.n�2/
i D x

.n/
i .mod g/.

The basic recurrence (1) is therefore closely related to so-called matrix generator
of pseudorandom numbers studied in [12, 14, 25].

The output function is defined as follows:

a.n/ D
s�1X
iD0

b2x
.n/
i =gc � 2i ; (3)

where i D 0; 1; : : : ; s � 1, i.e. each bit of the output corresponds to its own
recurrence, and s D 32 recurrences are calculated in parallel.

For g D p � 2t , where p is an odd prime, the characteristic polynomial f .x/ D
x2 � kx C q is chosen to be primitive over Zp . Primitivity of the characteristic
polynomial guarantees maximal possible period p2 � 1 of the output sequence for
g D p. It is straightforward to prove that taking g D p � 2t instead of g D p does
not reduce the value of the period.

There is an easy algorithm to calculate x.n/ in (1) very quickly from x.0/ and
x.1/ for any large n. Indeed, if x.2n/ D knx.n/ � qnx.0/ .mod g/, then x.4n/ D
.k2

n � 2qn/x.2n/ � q2
nx.0/ .mod g/. As was mentioned already in [1], this helps to

initialize the generator. To initialize all s recurrences, the following initial conditions
are used: x

.0/
i D x.iA/, x

.1/
i D x.iAC1/; i D 0; 1; : : : ; s � 1. Here A is a value of the

order of .p2�1/=s. The author has tested realizations with various values of A of
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the order of .p2�1/=s and found in all cases that the specific choice of A was not
of importance for the properties studied in the next sections. Short cycles and, in
particular, the cycle consisting of zeroes, are avoided if at least one of x.0/ and x.1/

is not divisible by p. As a result of the initialization, all s initial points belong to the
same orbit on the torus of the period p2 � 1, while the minimal distance A between
the initial points along the orbit is chosen to be very large.

In addition to the realizations based on the output function (3) that takes a single
bit from each linear recurrence, I have also constructed realizations based on a more
general output function

a.n/ D
s�1X
iD0

b2vx
.n/
i =gc � 2iv; (4)

where v bits are taken from each recurrence at each step and i D 0; 1; : : : ; s � 1.
For example, GM55.4-SSE realization calculates only s D 8 recurrence relations
in parallel and takes v D 4 bits from each number. Pseudorandom 32-bit numbers
can be generated if sv � 32. The sequence of bits fb2vx

.n/
i =gcg, where i is fixed

and fx.n/
i g is generated with relation (2) will be designated below as a stream of

v-bit blocks generated with matrix M . The pairs x
.0/
i ; x

.1/
i 2 Zg for the recurrence

(1) and x
.0/
i ; y

.0/
i 2 Zg for the recurrence (2) represent seeds for the streams of v-bit

blocks generated with (1) and (2) respectively. Consider the set of admissible seeds
containing all seeds such that at least one of the two values is not divisible by p.
Selecting the seed at random from a uniform distribution over the set of admissible
seeds determines the probability measure for output subsequences of a stream of
v-bit blocks. Such probabilities are considered below in Sects. 4 and 5.

The parameters for the particular constructed realizations of the generator are
shown in Table 1. The parameters are chosen in order for the characteristic
polynomial x2 �kxCq to be primitive overZp . In addition, as is shown in Sect. 5, q

must be divisible by 2v in order for the high-dimensional equidistribution property
to hold. Also the value of .k C q/g should not exceed either 232 or 264 in order
to effectively calculate four 32-bit recurrences or two 64-bit recurrences in parallel
within SIMD arithmetic. In the particular case t D 0 and v D 1 the method reduces
to that studied earlier in [1, 2]. Program codes for the new generators and proper
initializations are available in [6].

3 Statistical Testing and Speed of the Generator

Table 1 shows the results of applying the SmallCrush, PseudoDiehard, Crush
and BigCrush batteries of tests taken from [21], to the generators. For each
battery of tests, Table 1 displays three characteristics: the number of statistical
tests with p-values outside the interval Œ10�3; 1 � 10�3�, number of tests with
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p-values outside the interval Œ10�5; 1 � 10�5�, and number of tests with p-values
outside the interval Œ10�10; 1 � 10�10�. Table 1 also contains the results of sta-
tistical tests for Mersenne Twister generator of Matsumoto and Nishimira [24],
combined Tausworthe generator of L’Ecuyer [19] and combined multiple recursive
generator proposed in [20]. These generators are modern examples of fast RNG
implementations with good statistical properties (see Sect. 4.5.4 and 4.6.1 in [18]).
Both LFSR113 and MT19937 fail the test scomp_LinearComp that is a linear
complexity test for the binary sequences (see [21]), because the bits of LFSR113
and MT19937 have a linear structure by construction. Also LFSR113 fails the
test smarsa_MatrixRank (see [21]). The period lengths for the generators
MRG32K3A, LFSR113 and MT19937 are 3:1 � 1057, 1:0 � 1034 and 4:3 � 106001

respectively.
Libraries SmallCrush, PseudoDiehard, Crush and BigCrush contain 15, 126, 144

and 160 tests respectively.
The usefulness of a RNG for a specific application in physics depends on,

possibly dangerous interferences of the correlations in the specific problem and
those of the RNG. Modern statistical test suites contain tests that reveal known
types of correlations for the RNGs, in particular, the types that are known to result in
systematic errors in Monte-Carlo simulations and that were studied in [8,11,28–31].
One concludes that the new realizations described in this paper possess excellent
statistical properties.

I have tested the CPU times needed for generating 109 random numbers. The
results are shown in Table 2 for Intel Core i7-940 and AMD Turion X2 RM-70
processors respectively. The results are presented for different compilers and opti-
mization options. The compilers in use are GNU C compiler gcc version 4.3.3 and
Intel C compiler icc version 11.0. The CPU times for the realizations GM29.1-SSE,
GM55.4-SSE, GQ58.1-SSE, GQ58.3-SSE and GQ58.4-SSE introduced in Table 1
are compared with those for Mersenne Twister generator of Matsumoto and
Nishimira [24], combined Tausworthe generator of L’Ecuyer [19] and combined
multiple recursive generator proposed in [20].

4 Geometric and Statistical Properties for Matrices
with Unitary Determinant

Let X D f.x; y/T 2 R
2j0 � .x=g/ < 1=2; 0 � .y=g/ < 1g, Y D f.x; y/T 2

R
2j1=2 � .x=g/ < 1; 0 � .y=g/ < 1g, i.e. X is the left half of the torus and Y is

the right half of the torus. Let the initial point be .x
.0/
0 ; y

.0/
0 /T . For the first bits of the

first five outputs of the generator to be 10011, it is necessary and sufficient to have
.x

.0/
0 ; y

.0/
0 /T 2 Z10011 D Y \ R�1.X/ \ R�2.X/ \ R�3.Y / \ R�4.Y /. Here, R is

the action of the cat map. Therefore, the set Z10011 is a subset of Œ0; g/2 and consists
of filled polygons. Below S.D/ will designate the area of any set D � Œ0; g/2 after
division by g2, i.e., the area of a set D is equal to g2S.D/. It will be demonstrated



272 L.Yu. Barash

g/4 g/2 3g/4 g

g/4

g/2

g/4

gFig. 1 The regions on the
torus obtained in [1] for the
third points of sequences of
length 5 for the matrix

�
1 1
1 2

�
.

These regions correspond to
the sequences of length 5 of
the first bits generated by the
corresponding RNG. Each
region is drawn with its own
color.

that the nature of the correlations is connected with the geometric properties of the
transformation.

Figure 1 represents the polygons corresponding to the subsequences of length
five for the cat map with M D �

1 1
1 2

�
. Each set of polygons represents the regions on

the torus for the third point of the generator, e.g., QZ01001 D R�2.X/\R�1.Y /\X \
R.X/ \ R2.Y /, and is drawn with its own color. Of course, S. QZ01001/ D S.Z01001/

because the cat maps are area preserving. The geometric structures in Fig. 1 show
the regions QZ00000; : : : ; QZ11111 and illustrate the geometric approach to calculating
the probabilities. The exact areas S.Z00000/; : : : ; S.Z11111/ can be calculated.

The image of the lattice g � g of the torus with the transformation M D �
m1 m2

m3 m4

�
,

where det M D 1, is the same lattice g � g on the torus, because in this case the
inverse matrix M �1 D �

m4 g�m2

g�m3 m1

�
.mod g/ is also a matrix with integer elements.

If g is even and q D 1, then the numbers of points of the lattice inside X and Y are
equal.

Proposition 1. If M D �
m1 m2

m3 m4

�
is a matrix with integer elements m1, m2, m3, m4,

q D det M D 1, then S.Zi1i2 / D 1=4, for all i1; i2 2 f0; 1g.

Proof. S.Z00/ D S.Z10/ because the corresponding areas pass into each other with
the shift .x=g; y=g/T ! .x=g; fy=g C 1=.2m2/g/T , where fy=g C 1=.2m2/g is a
fractional part of y=g C 1=.2m2/. On the other hand, S.Z00/ D S.Z11/ because
the corresponding areas pass into each other with the 180-degree turn with respect
to the point .xR=g; yR=g/T D .1=2; 1=2/T . Proposition 1 is proved.

Figure 2 illustrates the structure of the set R�1.X/ for odd m1 (left panel) and
for even m1 (right panel). If m1 is even then the areas Z00 and Z10 also pass into
each other with the 180-degree turn with respect to the point .x0

R=g; y0
R=g/T D

.1=4; 1=2/T .
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g
2 m1

g
2

g

g

g
2 m1

g
2

g

g

Fig. 2 Left: The set R�1.X/ for matrix M D �
5 12
2 5

�
. This set is similar for an arbitrary cat

map with positive entries. The torus is divided into two halves for convenience. Right: The set
R�1.X/ \ X for matrix M D �

2 3
3 5

�
.

Proposition 2. If M is a matrix with integer elements, q D det M D 1, then
S.Zi1i2i3 / D 1=8, for all i1; i2; i3 2 f0; 1g.

Proof. Let S.Z000/ D ˛ and S.Z001/ D ˇ. Then ˛ C ˇ D S.Z00/ D 1=4.
Consequently, S.Z011/ D 1=4 � S.Z001/ D ˛ and S.Z111/ D 1=4 � S.Z011/ D ˇ.
On the other hand, S.Z111/ D S.Z000/ D ˛ because R�2.Y / \ R�1.Y / \ Y passes
into R�2.X/ \ R�1.X/ \ X with the 180-degree rotation with respect to the point
.xR=g; yR=g/T D .1=2; 1=2/T . Therefore, ˛ D ˇ D 1=8. Proposition 2 is proved.

Proposition 3. If M is a matrix with integer elements, q D det M D 1, k D Tr M

is an odd integer, then S.Zi1i2i3i4 / D 1=16, for all i1; i2; i3; i4 2 f0; 1g.

Proof. Let M D �
a1 b1

c1 d1

�
, M 2 D �

a2 b2

c2 d2

�
, and M 3 D �

a3 b3

c3 d3

�
. Here k D TrM D a1 C d1.

Let S.Z0000/ D ˛ and S.Z0001/ D ˇ. Then ˛ C ˇ D S.Z000/ D 1=8. Because
q D 1, we have a2 D ka1 � 1 and a3 D ka2 � a1 D a1.k

2 � 1/ � k. Hence, there
are two possibilities.

1. If a1 is even, then a2 and a3 are odd. Taking the 180-degree rotations with respect
to the points .1=2; 1=2/T , .1=4; 1=2/T , and Proposition 2 into account, we have
S.Z0100/ D S.Z0000/ D S.Z1111/ D S.Z1011/ D ˛, S.Z0101/ D S.Z0001/ D
S.Z1110/ D S.Z1010/ D ˇ, S.Z1010/ D S.Z1000/ D 1=8 � S.Z0000/ D ˇ,
S.Z0110/ D S.Z0010/ D 1=8 � S.Z1010/ D ˛. Therefore, 1=4 D S.Z00/ D
S.Z0000/ C S.Z0010/ C S.Z0100/ C S.Z0110/ D 4˛, i.e., ˛ D ˇ D 1=16.

2. If a1 is odd, then a2 is even and a3 is odd. Taking the 180-degree rotations with
respect to the points .1=2; 1=2/T , .1=4; 1=2/T and Proposition 2 into account,
we have S.Z0010/ D S.Z0000/ D S.Z1111/ D S.Z1101/ D ˛, S.Z0011/ D
S.Z0001/ D S.Z1110/ D S.Z1100/ D ˇ, S.Z0100/ D 1=8 � S.Z1100/ D ˛,
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S.Z0110/ D 1=8 � S.Z1110/ D ˛. Therefore, 1=4 D S.Z00/ D S.Z0000/ C
S.Z0010/ C S.Z0100/ C S.Z0110/ D 4˛, i.e., ˛ D ˇ D 1=16.

Proposition 3 is proved.

The notion of probability of subsequences of a stream of v-bit blocks, that will
be used in the Propositions below, is introduced in the end of Sect. 2.

Proposition 4. If M D �
m1 m2

m3 m4

�
is a matrix with integer elements, q D det M D 1,

m1 and g are divisible by 2v, then every sequence of length two in a stream of v-bit
blocks generated with matrix M , has the same probability 1=22v.

Proof. Let Xi D f.x; y/T 2 R
2ji=2v � x=g < .i C1/=2v; 0 � .y=g/ < 1g, i.e. the

torus is divided into 2v vertical stripes X0; X1; : : : ; X2v�1 of equal area. Consider the
shift S W .x; y/T ! .x C g=2v; y/T .mod g/, i.e. S.Xi/ D X.iC1/ . mod 2v/. Then
MS.x; y/T D M.x C g=2v; y/T D M.x; y/ C .0; m3g=2v/ .mod g/. Therefore,
the set of points A of the g�g-lattice, such that A 2 Xi and M.A/ 2 Xj passes with
the shift S into the set of points A of the same lattice such that A 2 X.iC1/ . mod 2v/

and M.A/ 2 Xj . Let P.i; j / be the probability of the sequence .i; j / of length
two, where i; j 2 f0; 1; : : : ; 2v � 1g. Then P.0; j / D P.1; j / D � � � D P.2v � 1; j /

and
P2v�1

iD0 P.i; j / D 1=2v, because each point of the lattice has a single preimage.
Proposition 4 is proved.

Proposition 5. If M D �
m1 m2

m3 m4

�
is a matrix with integer elements, m2 D 2u � w,

where w is odd, g is divisible by 2uCv, then every sequence of length two in a stream
of v-bit blocks generated with matrix M , has the same probability 1=22v.

Proof. Let Xi D f.x; y/T 2 R
2ji=2v � x=g < .i C 1/=2v; 0 � .y=g/ < 1g, i.e.

the torus is divided into 2v vertical stripes X0; X1; : : : ; X2v�1 of equal area. Consider
the shift S W .x; y/T ! .x; y C g=2uCv .mod g//T , in this case S.Xi/ D Xi . Then
MS.x; y/T D M.x; y C g=2uCv/T D M.x; y/ C .gw=2v; m4g=2uCv/ .mod g/.
Therefore, the set of points A of the g �g-lattice, such that A 2 Xi and M.A/ 2 Xj

passes with the shift S into the set of points A of the same lattice such that A 2 Xi

and M.A/ 2 X.j Cw/ . mod 2v/ . Therefore P.i; 0/ D P.i; 1/ D � � � D P.i; 2v � 1/

and
P2v�1

j D0 P.i; j / D 1=2v. Proposition 5 is proved.

Proposition 6. If M D �
m1 m2

m3 m4

�
is a matrix with integer elements, k D 2m � r ,

m2 D 2u � w, where r; w are odd, q D 1 and g is divisible by 2uCmCv, then (i) every
sequence of length three in a stream of bits generated with matrix M has the same
probability 1=8; (ii) if m D 0, then every sequence of length four in a stream of bits
generated with matrix M has the same probability 1=16.

Proof. (i) It follows from Proposition 5 that every subsequence of length two is
equiprobable because g is divisible by 2uCmCv and m

.2/
2 D km2 where M 2 D�m.2/

1 m
.2/
2

m
.2/
3 m

.2/
4

�
.mod g/. The rest of proof is essentially the same as the proof of

Proposition 2, where the numbers of points of the g�g-lattice inside each region
are considered at each step instead of considering the areas of the regions.
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(ii) It follows from above that every subsequence of length three is equiprobable in
this case. The rest of proof is essentially the same as the proof of Proposition 3,
where the numbers of points of the g � g-lattice inside each region are consid-
ered at each step instead of considering the areas of the regions. Proposition 6
is proved.

The following statements are also valid for q D 1 (see [1]): (i) if k is odd, then
S.Z00000/ depends only on the trace k of matrix M of the cat map and equals S D
S0.1C1=.3k2 �6//, where S0 D 1=32; (ii) if k is even, then S.Z0000/ depends only
on the trace k of matrix M of the cat map and equals S D S0 � k2=.k2 � 1/, where
S0 D 1=16. The condition S > S0 signifies that the 5-dimensional equidistribution
never takes place for q D 1, i.e. for conservative hyperbolic automorphisms of the
torus.

5 Geometric and Statistical Properties for q ¤ 1

In [1] the connection between statistical properties, results of the random walk test,
and geometric properties of the cat maps is established. Cat maps are simple chaotic
dynamical systems that correspond to transformations (2) for q D det M D 1, i.e.
hyperbolic automorphisms of the two-dimensional torus. In particular, it is discussed
in [1] and in the end of the previous section that the 5-dimensional equidistribution
never takes place for q D 1, i.e. for conservative hyperbolic automorphisms of the
torus. In this section another case q ¤ 1 involving dissipative dynamical systems is
studied.

Let Xi D f.x; y/T 2 R
2ji=2v � x=g < .i C 1/=2v; 0 � .y=g/ < 1g, i.e. the

torus is divided into 2v vertical stripes X0; X1; : : : ; X2v�1 of equal area. Suppose that
g is divisible by 2v and consider the shift S W .x; y/T ! .xCg=2v; y/ . mod g/, i.e.
S.Xi/ D X.iC1/ . mod 2v/. The shift S is a superposition of two rotations: S D R2R1,
where R1 is a 180-degree rotation with respect to the point .1=2vC1; 1=2/T and R2

a 180-degree rotation with respect to the point .1=2v; 1=2/T .

Proposition 7. If (i) M D �
m1 m2

m3 m4

�
is a matrix with integer values m1, m2, m3, m4,

(ii) m1, q D det M and g are divisible by 2v, (iii) the image of the lattice g � g with
the transformation M j is invariant with respect to the shift S for j D 0; 1; : : : ; n,
then all the sequences of length n in a stream of v-bit blocks generated with matrix
M are equiprobable.

Proof. In this case the element m
.n/
1 of matrix

M n D
 

m
.n/
1 m

.n/
2

m
.n/
3 m

.n/
4

!
.mod g/ (5)
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Fig. 3 The set of points A such that A 2 X0 and M 2.A/ 2 X0 (left panel) and the set of points A

such that A 2 X1 and M 2.A/ 2 X0 (right panel) for M D �
2 2
1 2

�
and v D 1.

satisfies the recurrence relation m
.n/
1 D km.n�1/

1 � qm.n�2/
1 .mod g/. Hence m

.n/
1 is

divisible by 2v for any integer n � 1.
Since m

.n/
1 is divisible by 2v, one has M nS.x; y/T D M n.x C g=2v

.mod g/; y/T D M n.x; y/T C .0; m
.n/
3 g=2v/T . Hence, the set of points A such

that A 2 Xi and M n.A/ 2 Xj passes with the shift S into the set of points A such
that A 2 X.iC1/ . mod 2v/ and M n.A/ 2 Xj .

Let’s now prove by induction that all sequences of length n are equiprobable.
Obviously, if g is divisible by 2v, sequences of length 1 are equiprobable: P.0/ D
P.1/ D � � � D P.2v � 1/ D 1=2v. Assume that all sequences of length n � 1 are
equiprobable. Let ˛i D P.ix1 : : : xn�1/, i D 0; 1; : : : ; 2v � 1 be probabilities of
sequences of length n. Then ˛i D ˛iC1, i D 0; 1; : : : ; 2v � 2 because the set of
points A of the lattice g � g such that A 2 Xi , M.A/ 2 Xx1 ,. . . , M n�1.A/ 2 Xxn�1

passes with the shift S into the set of points A of the lattice g � g such that
A 2 X.iC1/ . mod 2v/, M.A/ 2 Xx1 ,. . . , M n�1.A/ 2 Xxn�1 . On the other hand,P2v�1

iD0 ˛i is the probability of sequence x1 : : : xn�1 of length n � 1 and equals
1=2v.n�1/. Therefore, ˛i D 1=2vn; i D 0; 1; : : : ; 2v � 1, and all sequences of length
n are equiprobable. Proposition 7 is proved.

The condition that the image of the lattice g � g with the transformation M j

is invariant with respect to the shift S for j D 0; 1; : : : ; n, is used in the above
consideration and is necessary for the Proposition 7. For j D 0 the invariance means
that g is divisible by 2v. If g and m

.n/
1 are divisible by 2v, then the number of points

A of the lattice g � g such that A 2 X0 and M n.A/ 2 X0 is equal to the number of
points A of the same lattice such that A 2 X1 and M n.A/ 2 X0. If g is not divisible
by 2v then these numbers are approximately equal because the corresponding areas
are equal and g is a large number, and the exact equality holds only if g is
divisible by 2v. Figure 3 shows the sets of points fAjA 2 X0; M 2.A/ 2 X0g and
fAjA 2 X1; M 2.A/ 2 X0g for M D �

2 2
1 2

�
and v D 1.

Example 1. For M D �
2 2
1 2

�
, M D �

10 17
�4 �2

�
and M D �

244 43
32 12

�
the sequences of length

1; 2; : : : ; ` in a stream of bits generated with matrix M are equiprobable, where ` D
2t �1, ` D .t �1/=2 and ` D .t �1/=2 respectively. Here g D p �2t , where p is an
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odd prime, and the matrices correspond to the realizations GM29-SSE, GM58-SSE
and GM55-SSE respectively.

Let’s now prove this statement, i.e., let’s check that the image of the lattice g � g

with the transformation M j is invariant with respect to the shift for j D 0; 1; : : : ; n

and n � `. In particular, the invariance takes place if there are integers r; l < t

such that the distance between integer vectors .x C g=2rC1; y C g=2lC1/T and
.x; y/T after applying transformation M j is equal to .g=2; 0/T modulo g. This
results in .m

.j /
1 =2r C m

.j /
2 =2l ; m

.j /
3 =2r C m

.j /
4 =2l/T � .1; 0/T .mod 2/. For the

matrix M D �
2 2

1 2

�
the condition is satisfied when r D j=2, l D j=2 � 1 for even

j and r D .j � 1/=2, l D .j C 1/=2 for odd j . Thus ` D jmax C 1 D 2t � 1.
Similarly, for each of the matrices M D �

10 17

�4 �2

�
and M D �

244 43

32 12

�
the condition is

satisfied for ` D .t � 1/=2.

Proposition 8. Consider a matrix M with integer elements and the following
integer quantities: g D p � 2t , q D det M D 2uw .mod g/, k D Tr M D 2mr .mod
g/, u � 1, t � v, m � 0. Here w; r are odd integers and p is an odd prime. Then (i)
all 2vj sequences of length j in a stream of v-bit blocks generated with recurrence
relation (1) are equiprobable for j D 1; 2; : : : ; `. Here ` D d.t � v/=du=2ee for
u � 2m and ` D d.t � v/=.u � m/e for u > 2m; (ii) if k is even, then the image of
the lattice g � g with the transformation M 2t is the lattice p � p on the torus; (iii)
if k is odd, then the image of the lattice g � g with the transformation M dt=ue is not
invariant with respect to the shift S .

Proof. (i) Let X 0
i D fxjig=2v � x < .i C1/g=2vg, i D 0; 1; : : : ; 2v � 1. Let k0 D

1, k1 D k .mod g/, kiC1 D kki � qki�1 .mod g/, i D 1; 2; : : : . Consider the
expressions

�.h�i / D p � 2t�iu�vwh�i ki .mod g/: (6)

Let the expressions define integer values of �.h�i / for i D 0; 1; 2; : : : ; imax for
some imax. Then it is straightforward to ascertain that the following relations
are satisfied: �.j / D k�.j �1/�q�.j �2/ . mod g/, j D h; h�1; : : : ; h�imax C2.
Also, it is easy to check that �.hCi / D 0 for i D 1; 2; : : : , where �.hCi / is
defined as k�.hCi�1/ � q�.hCi�2/.

It is easy to show by induction the following: if u � 2m then ki is
divisible by 2min.fi;t /, where f D bu=2c; if u > 2m then ki is divisible
by 2min.mi;t/. Therefore, expressions (6) define integer values of �.h�i / for
i D 0; 1; 2; : : : ; ` � 1, where ` D d.t � v/=du=2ee for u � 2m and ` D
d.t � v/=.u � m/e for u > 2m.

Let’s now prove that every sequence of length n � ` has the same
probability 1=2vn. Obviously, since g is divisible by 2v, sequences of length 1

are equiprobable and P.i/ D 1=2v for i D 0; 1; : : : ; 2v � 1. Let P.xh : : : xn�1/

be a probability that last n � h elements of a sequence of length n are
xh; : : : ; xn�1, where xi 2 f0; 1; : : : ; 2v � 1g, h < n, i D h; : : : ; n � 1. Then
P.xh : : : xn�1/ D jBj=g2, where B D f.x.0/; x.1//T jx.h/ 2 X 0

xh
; : : : ; x.n�1/ 2

X 0
xn�1

g, x.i/ is defined as kx.i�1/ � qx.i�2/ .mod g/ for i � 2, and jBj is the
number of elements of the set B .
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Therefore, if h � ` � 1 then P.xhxhC1 : : : xn�1/ D P.x0
hxhC1 : : : xn�1/

where x0
h D xh C wh .mod g/. Indeed, f.x.0/ C �.0/; x.1/ C �.1//T jx.h/ 2

X 0
xh

; x.hC1/ 2 X 0
xhC1

; : : : ; x.n�1/ 2 X 0
xn�1

g D f.x.0/; x.1//T jx.h/ 2
X 0

x0

h

; x.hC1/ 2 X 0
xhC1

; : : : ; x.n�1/ 2 X 0
xn�1

g, where �.0/ and �.1/ are defined

in (6) and are integer values for h � `. Because wh is an odd integer,
one obtains ˇ0 D ˇ1 D � � � D ˇ2v�1 where ˇi D P.ixhC1 : : : xn�1/,
i D 0; 1; : : : ; 2v � 1.

In particular, for h D n � 1 and n � ` one has P.i/ D 1=2v,
i D 0; 1; : : : ; 2v � 1, and one obtains by induction that P.ixhC1 : : : xn�1/ D
1=2v.n�h/, i D 0; 1; : : : ; 2v � 1 for h � ` � 1. In particular, if
n � `, P.ix1 : : : xn�1/ D 1=2vn, i D 0; 1; : : : ; 2v � 1, and, therefore,
P.x0x1 : : : xn�1/ D 1=2vn.

(ii) In this case x.nC2/ D kx.nC1/ � qx.n/ .mod g/, n D 0; 1; 2; : : : . Therefore if
.x.0/; y.0//T belongs to the g � g lattice, then x.2/ and y.2/ are even integers,
x.4/ and y.4/ are divisible by 4, etc. x.2t/ and y.2t/ are divisible by 2t and
therefore .x.2t/; y.2t//T belongs to the lattice p � p on the torus.

(iii) Let L be the image of the g�g-lattice with the transformation M n, where n D
dt=ue. Then .0; 0/T 2 L because M n.0; 0/T D .0; 0/T . If L is invariant with
respect to the shift, then .g=2v; 0/T 2 L. Therefore there exists a point .x; y/T

of the g � g-lattice such that M n.x; y/T D .g=2v; 0/T .mod g/. Because
m

.n/
1 is divisible by 2v, one has M n.g=2v; 0/T D .0; m

.n/
3 g=2v/T .mod g/.

Therefore, 0 D k0
ng=2v � qnx .mod g/ where k0

n D Tr M n is an odd
integer for n � 1. This is impossible because qn D 0 .mod 2t /, k0

ng=2v ¤
0 .mod 2t /.

Proposition 8 is proved.

Although the exact equidistribution property does not hold when distance
between some points of the sequence � 2t , numerical results demonstrate that the
equidistribution holds approximately with high accuracy for the sequences of bits of
length n, where n < 6:8 log p. Also, one can take n points with arbitrary distances
(not exceeding p2 � 1) between them along the orbit (i.e. not necessarily successive
points of the orbit), where n < 6:8 log p, and still the approximate equidistribution
will hold with a high accuracy. The output value a.n/ in (3) consists of high-order
bits of s successive points along the orbit of matrix M A, where A is introduced
in Sect. 2, therefore, according to the numerical results, the output value a.n/ has a
uniform distribution with a very high accuracy.

In most cases the image of the lattice g � g on the torus with M j where j � 2t

is the p � p-lattice, therefore it is most interesting to study the deviations from
the equidistribution for the p � p-lattice. I have calculated the exact areas on the
torus which correspond to each of the sequences for M D �

1 1
1 3

�
. The calculations

were carried out on a PC using Class Library for Numbers [10] for exact rational
arithmetics. For each of the 2n sequences of length n D 1; 2; : : : , the corresponding
set of points on the unit two-dimensional torus consists of filled polygons. Exact
rational coordinates of all the vertices of each filled polygon were found. Also, the
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n

log(σ2)Fig. 4 Variance of the
numbers of points of the
p � p-lattice corresponding
to sequences of length n

versus n. The values are
normalized such that
hAni D 1.

exact number of points of the p � p lattice inside each polygon was calculated.
The total area of the polygons for each of the 2n sequences of length n was found
to equal 1=.2n/. Such equality of the areas for different sequences of the same
length was observed for matrices with even determinant and was not observed
for matrices with odd determinant. Let An;0; An;1; : : : ; An;2n�1 be the numbers of
points of the p � p-lattice inside the sets of filled polygons which correspond to
the sequences of length n. Then

P2n�1
iD0 An;i D p2. Therefore, if An is the set of

numbers An D f2nAn;0=p2; 2nAn;1=p2; : : : ; 2nAn;2n�1=p2g, then hAni D 1, where
hAni is the average value of An. The dependence of logarithm of variance of An on
n is shown in Fig. 4 for p D 229 � 3. The calculations for smaller values of p and
larger values of n demonstrate that the dependence of log.�2/ on n is almost linear.
Calculations show that the deviations from equidistribution are negligibly small in
the sense that �.An/ is much smaller than hAni D 1, for n < 6:8 log p. In particular,
for p D 229 � 3 the deviations are small for n < 130.

The variance for the several points of the orbit of matrix M on the p�p-lattice on
the torus, is found to substantially depend on the number of points and on the value
of p, and only weakly depend (within several percent) on the distances between the
points along the orbit.

This work was supported by Russian Foundation for Basic Research.
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1 Introduction

In mathematical finance, Monte Carlo methods are used to compute the price of an
option by estimating the expected value E.P /. P is the payoff function that depends
on an underlying asset’s scalar price S.t/ which satisfies an evolution SDE of the
form

dS.t/ D a.S; t/ dt C b.S; t/ dWt; 0 � t � T; S.0/ given: (1)

This is just one use of Monte Carlo in finance. In practice the prices are often
quoted and used to calibrate our market models; the option’s sensitivities to
market parameters, the so-called Greeks, reflect the exposure to different sources
of risk. Computing these is essential to hedge portfolios and is therefore even more
important than pricing the option itself. This is why our research focuses on getting
fast and accurate estimates of Greeks through Monte Carlo simulations.

1.1 Multilevel Monte Carlo

Let us first recall important results from [4] and [5]. We consider a standard Monte
Carlo method using a discretisation with first order weak convergence (e.g. the
Milstein scheme). Achieving a root-mean square error of O."/ requires a variance of
order O."2/, hence O."�2/ independent paths. It also requires a discretisation bias
of order O."/, thus O."�1/ timesteps, giving a total computational cost O."�3/.

Giles’ multilevel Monte Carlo technique reduces this cost to O."�2/ under
certain conditions. The idea is to write the expected payoff with a fine discretisation
using 2L uniform timesteps as a telescopic sum. Let bP ` be the simulated payoff with
a discretisation using 2` uniform timesteps,

E.bP L/ D E.bP 0/ C
L
X

`D1

E.bP ` � bP `�1/ (2)

We then use Monte Carlo estimators using N` independent samples

E.bP ` � bP `�1/ � bY ` D 1

N`

N
X̀

iD1

�

bP
.i/

` � bP
.i/

`�1

�

(3)

The small corrective term bP
.i/

` �bP .i/

`�1 comes from the difference between a fine and
a coarse discretisation of the same driving Brownian motion. Its magnitude depends
on the strong convergence properties of the scheme used. Let V` be the variance
of a single sample bP .i/

` � bP
.i/

`�1. The next theorem shows that what determines the
efficiency of the multilevel approach is the convergence rate of V` as ` ! 1.

To ensure a better efficiency we may modify (3) and use different estimators of
bP on the fine and coarse levels of bY `,
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E.bP L/ D E.bP 0/ C
L
X

`D1

E

�

bP
f

` � bP c
`�1

�

(4)

bP
f

` , bP c
`�1 are the estimators using respectively 2` and 2`�1 steps in the computation

of bY `. The telescoping sum property is maintained provided that

E

�

bP
f

`

�

D E

�

bP c
`

�

: (5)

Theorem 1. Let P be a function of a solution to (1) for a given Brownian path
W.t/; let bP ` be the corresponding approximation using the discretisation at level
`, i.e. with 2` steps of width h` D 2�` T .

If there exist independent estimators bY ` of computational complexity C` based
on N` samples and there are positive constants ˛ � 1

2
; ˇ; c1; c2; c3 such that

1. E.bY `/ D
(

E.bP 0/ if l D 0

E.bP ` � bP `�1/ if ` > 0

2. jE.bP ` � P /j � c1h
˛
`

3. V.bY `/ � c2h
ˇ

` N �1
`

4. C` � c3N` h�1
`

Then there is a constant c4 such that for any " < e�1, there are values for L

and N` resulting in a multilevel estimator bY D
L
X

`D0

bY ` with a mean-square-error

MSE D E..bY � E.P //2/ < "2 with a complexity C bounded by

C �
8

<

:

c4"�2 if ˇ > 1

c4"�2 .log "/2 if ˇ D 1

c4"�2�.1�ˇ/=˛ if 0 < ˇ < 1

(6)

Proof. See [5].

We usually know ˛ thanks to the literature on weak convergence. Results in [9]
give ˛ D 1 for the Milstein scheme, even in the case of discontinuous payoffs. ˇ is
related to strong convergence and is in practice what determines the efficiency of the
multilevel approach. Its value depends on the payoff and may not be known a priori.

1.2 Monte Carlo Greeks

Let us briefly recall two classic methods used to compute Greeks in a Monte Carlo
setting: the pathwise sensitivities and the Likelihood Ratio Method. More details
can be found in [2, 3] and [8].



284 S. Burgos and M.B. Giles

1.2.1 Pathwise Sensitivities

Let bS D .bSk/k2Œ0;N � be the simulated values of the asset at the discretisation
times and bW D .bW k/k2Œ1;N � be the corresponding set of independent Brownian
increments. The value of the option V is estimated by bV defined as

V D E ŒP.S/� � bV D E

h

P.bS/
i

D
Z

P.bS/p.�;bS/ dbS

Assuming that the payoff P.bS/ is Lipschitz, we can use the chain rule and write

@bV

@�
D @

@�

Z

P
�

bS.�; bW /
�

p.bW /dbW D
Z

@P.bS/

@bS

@bS.�; bW /

@�
p.bW /dbW

where dbW D
N
Q

kD1

dbW k and p.bW / D
N
Q

kD1

p.bW k/ is the joint probability density

function of the normally distributed independent increments .bW k/k2Œ1;N �.

We obtain
@bS

@�
by differentiating the discretisation of (1) with respect to � and

iterating the resulting formula.The limitation of this technique is that it requires the
payoff to be Lipschitz and piecewise differentiable.

1.2.2 Likelihood Ratio Method

The Likelihood Ratio Method starts from

bV D E

h

P.bS/
i

D
Z

P.bS/p.�;bS/ dbS (7)

The dependence on � comes through the probability density function p.�;bS/;
assuming some conditions discussed in [3] and in Sect. 7 of [8], we can write

@bV

@�
D
Z

P.bS/
@p.bS/

@�
dbS D

Z

P.bS/
@ log p.bS/

@�
p.bS/ dbS

D E

"

P.bS/
@ log p.bS/

@�

#

(8)

with dbS D
N
Y

kD1

dbSk and p.bS/ D
N
Y

kD1

p
�

bSk
bSk�1

�

The main limitation of the method is that the estimator’s variance is O.N /,
increasing without limit as we refine the discretisation.
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1.3 Multilevel Monte Carlo Greeks

By combining the elements of Sects. 1.1 and 1.2 together, we write

@V

@�
D @E.P /

@�
� @E.bPL/

@�
D @E.bP 0/

@�
C

L
X

`D1

@E.bP ` � bP `�1/

@�
(9)

As in (3), we define the multilevel estimators

bY 0 D N �1
0

M
X

iD1

@bP
.i/
0

@�
and bY ` D N �1

`

N
X̀

iD1

 

@bP
.i/

`

@�
� @bP

.i/

`�1

@�

!

(10)

where
@bP 0

@�
,

@bP `�1

@�
,

@bP `

@�
are computed with the techniques presented in Sect. 1.2.

2 European Call

We consider the Black-Scholes model: the asset’s evolution is modelled by a
geometric Brownian motion dS.t/ D r S.t/dt C � S.t/dWt . We use the Milstein
scheme for its good strong convergence properties. For timesteps of width h,

bSnC1 D bSn �
�

1 C r h C � �Wn C �2

2
.�W 2

n � h/

�

WD bSn � Dn (11)

The payoff of the European call is P D .ST �K/C D max.0; ST �K/. We illustrate
the techniques by computing Delta and Vega, the sensitivities to the asset’s initial
value S0 and to its volatility � . We take a time to maturity T D 1.

2.1 Pathwise Sensitivities

Since the payoff is Lipschitz, we can use pathwise sensitivities. The differentiation
of (11) gives

@bS0

@S0

D 1;
@bSnC1

@S0

D @bSn

@S0

� Dn

@bS0

@�
D 0;

@bSnC1

@�
D @bSn

@�
� Dn CbSn

�

�Wn C �.�W 2
n � h/

�

To compute bY ` we use a fine and a coarse discretisation with Nf D 2` and Nc D
2`�1 uniform timesteps respectively.
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bY ` D 1

N`

N
X̀

iD1

2

6

4

0

@

@P

@SNf

@bS
.i/
Nf

@�

1

A

.`/

�
 

@P

@SNc

@bS
.i/
Nc

@�

!.`�1/
3

7

5 (12)

We use the same driving Brownian motion for the fine and coarse discretisations:
we first generate the fine Brownian increments bW D .�W0; �W2; : : : ; �WNf �1/

and then use bW c D .�W0 C �W1; : : : ; �WNf �2 C �WNf �1/ as the coarse level’s
increments.

To assess the order of convergence of V.bY L/, we take a sufficient number of
samples so that the Monte Carlo error of our simulations will not influence the
results. We plot log .V.bY `// as a function of log .h`/ and use a linear regression to
measure the slope for the different estimators. The theoretical results on convergence
are asymptotic ones, therefore the coarsest levels are not relevant: hence we perform
the linear regression on levels ` 2 Œ3; 8�. This gives a numerical estimate of the
parameter ˇ in Theorem 1. Combining this with the theorem, we get an estimated
complexity of the multilevel algorithm. This gives the following results :

Estimator ˇ MLMC complexity

Value � 2:0 O."�2/

Delta � 0:8 O."�2:2/

Vega � 1:0 O."�2 log "2/

Giles has shown in [4] that ˇ D 2 for the value’s estimator. For Greeks, the
convergence is degraded by the discontinuity of @P

@S
D 1S>K : a fraction O.h`/ of the

paths has a final valuebS which is O.h`/ from the discontinuity K . For these paths,
there is a O.1/ probability thatbS.`/

Nf
andbS.`�1/

Nc
are on different sides of the strike K ,

implying

�

@P
@SNf

@bSNf

@�

�.`/

�
�

@P
@SNc

@bSNc

@�

�.`�1/

is O.1/. Thus V.bY `/ D O.h`/, and

ˇ D 1 for the Greeks.

2.2 Pathwise Sensitivities and Conditional Expectations

We have seen that the payoff’s lack of smoothness prevents the variance of
Greeks’ estimators bY ` from decaying quickly and limits the potential benefits of
the multilevel approach. To improve the convergence speed, we can use conditional
expectations as explained in Sect. 7.2 of [8]. Instead of simulating the whole path,
we stop at the penultimate step and then for every fixed set bW D .�Wk/k2Œ0;N �2�,

we consider the full distribution of
�

bSN jbW
�

. With an D a
�

bSN �1.bW /; .N � 1/h
�

and bn D b
�

bSN �1.bW /; .N � 1/h
�

, we can write
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bSN .bW ; �WN �1/ D bSN �1.bW / C an.bW /h C bn.bW / �WN �1 (13)

We hence get a normal distribution for
�

bSN jbW
�

.

p.bSN jbW / D 1

�
bW

p
2�

exp

0

B

@�
�

bSN � �
bW

�2

2�2

bW

1

C

A (14)

with
�
bW

D bSN �1 C a
�

bSN �1; .N � 1/h
�

h

�
bW

D b
�

bSN �1; .N � 1/h
�p

h

If the payoff function is sufficiently simple, we can evaluate analytically

E

h

P
�

bSN

�

jbW
i

. Using the tower property, we get

bV D E

h

P.bSN /
i

D E
bW

h

E�WN

h

P.bSN / bW
ii

� 1

M

M
X

mD1

E

h

P
�

bS
.m/
N

�

bW .m/
i

(15)
In the particular case of geometric Brownian motion and a European call option,

we get (16) where � is the normal probability density function, ˚ the normal
cumulative distribution function, ˛ D .1Crh/bSN �1.bW / and ˇ D �

p
hbSN �1.bW /.

E.P.bSN /jbW / D ˇ �

�

˛ � K

ˇ

�

C .˛ � K/ ˚

�

˛ � K

ˇ

�

(16)

This expected payoff is infinitely differentiable with respect to the input parameters.
We can apply the pathwise sensitivities technique to this smooth function at time
.N � 1/ h. The multilevel estimator for the Greek is then

bY ` D 1

N`

N
X̀

1

2

4

 

@bP
.i/

f

@�

!.`/

�
 

@bP
.i/
c

@�

!.`�1/
3

5 (17)

At the fine level we use (16) with h D hf and bW f D .�W0; �W2; : : : ; �WNf �2/

to get E.P.bSNf
/jbW f / . We then use

 

@bP f

@�

!.`/

D @bSNf �1

@�

@E.P.bSNf
/jbW f /

@SNf �1

C @E.P.bSNf
/jbW f /

@�
(18)
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At the coarse level, directly using E.P.bSNc /jbW c/ leads to an unsatisfactorily
low convergence rate of V.bY `/. As explained in (4) we use a modified estimator.
The idea is to include the final fine Brownian increment in the computation of the
expectation over the last coarse timestep. This guarantees that the two paths will be
close to one another and helps achieve better variance convergence rates.
bS still follows a simple Brownian motion with constant drift and volatility on all

coarse steps. With bW c D .�W0 C �W1; : : : ; �WNf �4 C �WNf �3/ and given that
the Brownian increment on the first half of the final step is �WNf �2 , we get

p.bSNc jbWc; �WNf �2/ D 1

�
bW c

p
2�

exp

0

B

@�
�

bSNc � �
bW c

�2

2�2

bW c

1

C

A (19)

with

�
bW c

D bSNc�1.bW c/Ca
�

bSNc �1; .Nc � 1/hc

�

hc Cb
�

bSNc�1; .Nc � 1/hc

�

�WNf �2

�
bW c

D b
�

bSNc�1; .Nc � 1/hc

�
p

hc=2

From this distribution we derive E

h

P.bSNc /
ˇ

ˇ bW c; �WNf �2

i

, which for the partic-

ular application being considered, leads to the same payoff formula as before with
˛c D .1 C r hc C ��WNf �2/bSNc�1.bW c/ and ˇc D �

p

hc
bSNc �1.bW c/. Using it as

the coarse level’s payoff does not introduce any bias. Using the tower property we
check that it satisfies condition (5),

E�WNf �1

h

E

h

P.bSNc /
bW c; �WNf �2

i

bW c

i

D E

h

P.bSNc /
bW c

i

Our numerical experiments show the benefits of the conditional expectation
technique on the European call:

Estimator ˇ MLMC complexity

Value � 2:0 O."�2/

Delta � 1:5 O."�2/

Vega � 2:0 O."�2/

A fraction O.
p

h`/ of the paths arrive in the area around the strike where the

conditional expectation
@E.P.bSN /jbW /

@bSNf �1

is neither close to 0 nor 1. In this area,

its slope is O.h
�1=2

` /. The coarse and fine paths differ by O.h`/, we thus have
O.

p
h`/ difference between the coarse and fine Greeks’ estimates. Reasoning as

in [4] we get V
bW

.E�WN �1 .: : : jbW // D O.h
3=2

` / for the Greeks’ estimators. This is



Computing Greeks Using Multilevel Path Simulation 289

the convergence rate observed for Delta; the higher convergence rate of Vega is not
explained yet by this rough analysis and will be investigated in our future research.

The main limitation of this approach is that in many situations it leads to com-
plicated integral computations. Path splitting, to be discussed next, may represent a
useful numerical approximation to this technique.

2.3 Split Pathwise Sensitivities

This technique is based on the previous one. The idea is to avoid the tricky com-

putation of E
h

P.bSNf
/jbW f

i

and E

h

P.bSNc /jbW c; �WNf �2

i

. Instead, as detailed in

Sect. 5.5 of [1], we get numerical estimates of these values by “splitting” every path
simulation on the final timestep.

At the fine level: for every simulated path bW f D .�W0; �W2; : : : ; �WNf �2/,

we simulate a set of d final increments .�W
.i/

Nf �1/i2Œ1;d � which we average to get

E

h

P.bSNf
/ bW f

i

� 1

d

d
X

iD1

P.bSNf
.bW f ; �W

.i/
Nf �1// (20)

At the coarse level we use bW c D .�W0 C �W1; : : : ; �WNf �4 C �WNf �3/.
As before (still assuming a constant drift and volatility on the final coarse step),
we improve the convergence rate of V.bY `/ by reusing �WNf �2 in our estimation

of E
h

P.bSNc /
ˇ

ˇ bW c

i

. We can do so by constructing the final coarse increments as

.�W
.i/

Nc�1/i2Œ1;d � D .�WNf �2 C .�W
.i/

Nf �1//i2Œ1;d � and using these to estimate

E.P.bSNc /jbW c/ D E

h

P.bSNc /
bW c; �WNf �2

i

� 1

d

d
X

iD1

P
�

bSNc .
bW c; �W

.i/
Nc�1/

�

To get the Greeks, we simply compute the corresponding pathwise sensitivities.

We now examine the influence of d the number of splittings on the estimated
complexity.

Estimator d ˇ MLMC complexity

Value 10 � 2:0 O."�2/

500 � 2:0 O."�2/

Delta 10 � 1:0 O."�2.log "/2/

500 � 1:5 O."�2/

Vega 10 � 1:6 O."�2/

500 � 2:0 O."�2/
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As expected this method yields higher values of ˇ than simple pathwise sensitiv-
ities: the convergence rates increase and tend to the rates offered by conditional
expectations as d increases and the approximation gets more precise.

Taking a constant number of splittings d for all levels is actually not optimal; for
Greeks we can write the variance of the estimator as

V.bY `/ D 1

N`

V
bW f

2

4E

2

4

 

@bP f

@�

!.`/

�
 

@bP c

@�

!.`�1/

bW f

3

5

3

5

C 1

N` d
E
bW f

2

4V

2

4

 

@bP f

@�

!.`/

�
 

@bP c

@�

!.`�1/

bW f

3

5

3

5 (21)

As explained in Sect. 2.2 we have V
bW f

.E.: : : jbW f // D O.h
3=2

` / for the Greeks. We

also have E
bW f

.V.: : : jbW f // D O.h`/ for similar reasons. We optimise the variance

at a fixed computational cost by choosing d such that the two terms of the sum are
of similar order. Taking d D O.h

�1=2

` / is therefore optimal.

2.4 Vibrato Monte Carlo

Since the previous method uses pathwise sensitivity analysis, it is not applicable
when payoffs are discontinuous. To address this limitation, we use the Vibrato
Monte Carlo method introduced by Giles [6]. This hybrid method combines
pathwise sensitivities and the Likelihood Ratio Method.

We consider again (15). We now use the Likelihood Ratio Method on the last
timestep and with the notations of Sect. 2.2 we get

@bV

@�
D E

bW

"

E�WN �1

"

P
�

bSN

� @.log p.bSN jbW //

@�

ˇ

ˇ

ˇ

ˇ

bW

##

(22)

We can write p.bSN jbW // as p.�
bW

; �
bW

/. This leads to the estimator

@bV

@�
� 1

N`

N
X̀

mD1

�

@�
bW .m/

@�
E�WN �1

"

P
�

bSN

� @.log p/

@�
bW

ˇ

ˇ

ˇ

ˇ

bW .m/

#

C@�
bW .m/

@�
E�WN �1

"

P
�

bSN

� @.log p/

@�
bW

ˇ

ˇ

ˇ

ˇ

bW .m/

#!

(23)
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We compute
@�
bW .m/

@�
and

@�
bW .m/

@�
with pathwise sensitivities.

With bS.m;i/
N D bSN .bW .m/; �W

.i/
N �1/, we substitute the following estimators into (23)

E�WN �1

"

P
�

bSN

� @.log p/

@�
bW

ˇ

ˇ

ˇ

ˇ

bW .m/

#

� 1

d

d
X

iD1

 

P
�

bS
.m;i/
N

� bS
.m;i/
N � �

bW .m/

�2

bW .m/

!

E�WN �1

"

P
�

bSN

� @.log p/

@�
bW

ˇ

ˇ

ˇ

ˇ

bW .m/

#

� 1

d

d
X

iD1

P
�

bS
.m;i/
N

�

�
 
�

bS
.m;i/
N ��

bW .m/

�2

�3

bW .m/

� 1
�
bW .m/

!

In a multilevel setting: at the fine level we can use (23) directly. At the coarse
level, for the same reasons as in Sect. 2.3, we reuse the fine brownian increments to
get efficient estimators. We take

bW c D .�W0 C �W1; : : : ; �WNf �4 C �WNf �3/

.�W
.i/

Nc�1/i2Œ1;d � D .�WNf �2 C .�W
.i/

Nf �1//i2Œ1;d �

(24)

We use the tower property to verify that condition (5) is verified on the last coarse
step. With the notations of (19) we derive the following estimators

E�WNc �1

"

P
�

bSNc

� @.log pc/

@�
bW c

ˇ

ˇ

ˇ

ˇ

bW .m/
c

#

D E

"

E

"

P
�

bSNc

� @.log pc/

@�
bW c

ˇ

ˇ

ˇ

ˇ

bW .m/
c ; �WNf �2

#

ˇ

ˇ

ˇ

ˇ

bW .m/
c

#

� 1

d

d
X

iD1

0

@P
�

bS
.m;i/
Nc

� bS
.m;i/
Nc

� �
bW

.m/
c

�2

bWc
.m/

1

A

E�WNc �1

"

P
�

bSNc

� @.log p/

@�
bW

ˇ

ˇ

ˇ

ˇ

bW .m/
c

#

D E

"

E

"

P
�

bSNc

� @.log p/

@�
bW

ˇ

ˇ

ˇ

ˇ

bW .m/
c ; �WNf �2

#

ˇ

ˇ

ˇ

ˇ

bW .m/
c

#

� 1

d

d
X

iD1

P
�

bS
.m;i/
Nc

�

0

B

@� 1

�
bW

.m/
c

C
�

bS
.m;i/
Nc

� �
bW

.m/
c

�2

�3

bW
.m/
c

1

C

A

(25)
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Our numerical experiments show the following convergence rates for d D 10:

Estimator ˇ MLMC complexity

Value � 2:0 O."�2/

Delta � 1:5 O."�2/

Vega � 2:0 O."�2/

As in Sect. 2.3, this is an approximation of the conditional expectation technique,
and so the same convergence rates was expected.

3 European Digital Call

The European digital call’s payoff is P D 1ST >K . The discontinuity of the payoff
makes the computation of Greeks more challenging. We cannot apply pathwise
sensitivities, and so we use conditional expectations or Vibrato Monte Carlo.

With the same notation as in Sect. 2.2 we compute the conditional expectations
of the digital call’s payoff.

E.P.bSNf
/jbW / D ˚

�

˛ � K

ˇ

�

E.P.bSNc /jbW c; �WNf �2/ D ˚

�

˛c � K

ˇc

�

The simulations give

Estimator ˇ MLMC complexity

Value � 1:4 O."�2/

Delta � 0:5 O."�2:5/

Vega � 0:6 O."�2:4/

The Vibrato technique can be applied in the same way as with the European call.
We get

Estimator ˇ MLMC complexity

Value � 1:3 O."�2/

Delta � 0:3 O."�2:7/

Vega � 0:5 O."�2:5/

The analysis presented in Sect. 2.2 explains why we expected ˇ D 3=2 for the
value’s estimator. A fraction O.

p
h/ of all paths arrive in the area around the payoff

where .@E.P.bSN /jbW /=@bSN �1/ is not close to 0; there its derivative is O.h�1
` /

and we have jbSNf
�bSNc j D O.h`/. For these paths, we thus have O.1/ difference

between the fine and coarse Greeks’ estimates. This explains the experimental
ˇ � 1=2.
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4 European Lookback Call

The lookback call’s value depends on the values that the asset takes before expiry.
Its payoff is P.T / D .ST � min

t2Œ0;T �
.St //.

As explained in [4], the natural discretisation bP D .bSN � min
n

bSn/ is not

satisfactory. To regain good convergence rates, we approximate the behaviour within
each fine timestep Œtn; tnC1� of width hf as a simple Brownian motion with constant

drift a
f
n and volatility b

f
n conditional on the simulated values bSf

n and bSf
nC1. As

shown in [8] we can then simulate the local minimum

bS
f
n;min D 1

2

 

bSf
n CbS

f
nC1 �

r

�

bS
f
nC1 �bSf

n

�2 � 2.b
f
n /2hf log Un

!

(26)

with Un a uniform random variable on Œ0; 1�. We define the fine level’s payoff this
way choosing b

f
n D b.bS

f
n ; tn/ and considering the minimum over all timesteps to

get the global minimum of the path.
At the coarse level we still consider a simple Brownian motion on each timestep

of width hc D 2hf . To get high strong convergence rates, we reuse the fine
increments by defining a midpoint value for each step

bSc
nC1=2 D 1

2

�

bSc
n CbSc

nC1 � bc
n.�WnC1=2 � �Wn/

�

; (27)

where .�WnC1=2 � �Wn/ is the difference of the corresponding fine Brownian
increments on ŒtnC1=2; tnC1� and Œtn; tnC1=2�. Conditional on this value, we then
define the minimum over the whole step as the minimum of the minimum over
each half step, that is

bSc
n;min D min

"

1

2

 

bSc
n CbSc

nC1=2 �
r

�

bSc
nC1=2 �bSc

n

�2 � .bc
n/2hc log U1;n

!

;

1

2

 

bSc
nC1=2 CbSc

nC1 �
r

�

bSc
nC1 �bSc

nC1=2

�2 � .bc
n/2hc log U2;n

!#

(28)

where U1;n and U2;n are the values we sampled to compute the minima of the
corresponding timesteps at the fine level. Once again we use the tower property to
check that condition (5) is verified and that this coarse-level estimator is adequate.

Using the treatment described above, we can then apply straighforward pathwise
sensitivities to compute the multilevel estimator. This gives the following results:
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Estimator ˇ MLMC complexity

Value � 1:9 O."�2/

Delta � 1:9 O."�2/

Vega � 1:3 O."�2/

For the value’s estimator, Giles et al. [7] have proved that V.bYl/ D O.h2�ı
` / for all

ı > 0, thus we expected ˇ � 2. In the Black and Scholes model, we can prove
that Delta D .V=S0/. We therefore expected ˇ � 2 for Delta too. The strong
convergence speed of Vega’s estimator cannot be derived that easily and will be
analysed in our future research.

Unlike the regular call option, the payoff of the lookback call is perfectly
smooth and so therefore there is no benefit from using conditional expectations and
associated methods.

5 European Barrier Call

Barrier options are contracts which are activated or deactivated when the underlying
asset S reaches a certain barrier value B . We consider here the down-and-out call
for which the payoff can be written as

P D .ST � K/C 1 min
t2Œ0;T �

.St / > K (29)

Both the naive estimators and the approach used with the lookback call are
unsatisfactory here: the discontinuity induced by the barrier results in a higher
variance than before. Therefore we use the approach developed in [4] where
we compute the probability pn that the minimum of the interpolant crosses the
barrier within each timestep. This gives the conditional expectation of the payoff
conditional on the Brownian increments of the fine path:

bP f D .bS
f
Nf

� K/C
Nf �1
Y

nD0

�

1 �bpf
n

�

(30)

with

bpf
n D exp

 

�2.bS
f
n � B/C.bS

f
nC1 � B/C

.b
f
n /2 hf

!

At the coarse level we define the payoff similarly: we first simulate a midpoint value
bSc

nC1=2 as before and then definebpc
n the probability of not hitting B in Œtn; tnC1�, that

is the probability of not hitting B in Œtn; tnC1=2� and ŒtnC1=2; tnC1�. Thus
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bP c D .bSc
Nc

�K/C
Nc�1
Y

nD0

�

1 �bpc
n

� D .bSc
Nc

�K/C
Nc�1
Y

nD0

..1 �bpn;1/.1 �bpn;2// (31)

with

bpn;1 D exp

 �2.bSc
n � B/C.bSc

nC1=2 � B/C

.bc
n/2 hf

!

bpn;2 D exp

 �2.bSc
nC1=2 � B/C.bSc

nC1 � B/C

.bc
n/2 hf

!

5.1 Pathwise Sensitivities

The multilevel estimators bY` D
�

bP f
�.`/ �

�

bP c
�.`�1/

are Lipschitz with respect to

all .bSf
n /nD1:::Nf

and .bSc
n/nD1:::Nc , so we can use pathwise sensitivities to compute

the Greeks. Our numerical simulations give

Estimator ˇ MLMC complexity

Value � 1:6 O."�2/

Delta � 0:6 O."�2:4/

Vega � 0:6 O."�2:4/

Giles proved ˇ D 3
2

� ı (ı > 0) for the value’s estimator. We are currently working
on a numerical analysis supporting the observed convergence rates for the Greeks.

5.2 Conditional Expectations

The low convergence rates observed in the previous section come from both the
discontinuity at the barrier and from the lack of smoothness of the call around K . To
address the latter, we can use the techniques described in Sect. 1. Since path splitting
and Vibrato Monte Carlo offer rates that are at best equal to those of conditional
expectations, we have therefore implemented conditional expectations and obtained
the following results:

Estimator ˇ MLMC complexity

Value � 1:7 O."�2/

Delta � 0:7 O."�2:3/

Vega � 0:7 O."�2:3/
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We see that the maximum benefits of these techniques are only marginal. The barrier
appears to be responsible for most of the variance of the multilevel estimators.

6 Conclusion and Future Work

In this paper we have shown for a range of cases how multilevel techniques can be
used to reduce the computational complexity of Monte Carlo Greeks.

Smoothing a Lipschitz payoff with conditional expectations reduces the com-
plexity to O."�2/. From this technique we derive the Path splitting and Vibrato
methods: they offer the same efficiency and avoid intricate integral computations.
Payoff smoothing and Vibrato also enable us to extend the computation of Greeks
to discontinuous payoffs where the pathwise sensitivity approach is not applicable.
Numerical evidence shows that with well-constructed estimators these techniques
provide computational savings even with exotic payoffs.

So far we have mostly relied on numerical estimates of ˇ to estimate the
complexity of the algorithms. Our current analysis is somewhat crude; this is why
our current research now focuses on a rigorous numerical analysis of the algorithms’
complexity.
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Weight Monte Carlo Method Applied
to Acceleration Oriented Traffic Flow Model

Aleksandr Burmistrov and Mariya Korotchenko

Abstract We consider acceleration oriented vehicular traffic flow (VTF) model and
study evolution of the N -particle systems, which are governed by a homogeneous
Boltzmann-like equation. For this model we obtain a linear integral equation of the
second kind and suggest to solve it by the weight Monte Carlo algorithms. The
numerical results show that the approach to simulation suggested by the authors is
reasonable to apply to the vehicular traffic problems. Moreover, this modification
enabled us to study parametric dependencies of our functionals of interest.

1 Introduction

This paper is devoted to the study and simulation of the vehicular traffic flow (VTF).
This study appears to be significant due to the constant growth of traffic in most
parts of the world nowadays. It results in the necessity for improvement of the
transportation network, considering the principles of its growth and distribution of
load on its sections.

There are two main approaches to the VTF simulation – a deterministic and a
stochastic ones. A functional relation between some parameters, such as, for exam-
ple, velocity and distance between the cars in the flow, underlies the deterministic
type of models. On the other hand, in the frame of stochastic models, VTF is
considered as a random process. Moreover, the models describing the VTF can be
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further classified into three categories: micro-, macro-, and mesoscopic ones (for
more details see [1, 6]).

Mesoscopic (or kinetic) models, a type of models we use in our paper, consider
the VTF as a random process. Moreover, these models regard the VTF as a gas,
which consists of interacting particles and every particle in this gas corresponds to
a car. By an interaction of two cars we understand an event when their state, deter-
mined by a number of parameters, is changed. There are two main types of interac-
tions in the kinetic models between the cars in the system, depending on velocity of
the leading car: acceleration and breaking. The possibility of overtaking is usually
introduced into the model by means of a probability, depending on the density of
cars on the road. The equations describing kinetic models are similar to the gas
kinetic equations, in particular, to the Boltzmann equation. However, unlike the lat-
ter one, the momentum and energy conservation laws do not hold in case of the VTF.

In this paper we develop our methods in the frame of the kinetic VTF model
suggested in [9]. A distinctive feature of this model consists in introducing the
acceleration variable into the set of phase coordinates along with the space and
velocity coordinates of the car. Such a modification of the phase space allowed
in [9] to apply this acceleration oriented model to a wider range of the VTF types.
This model adequately describes not only a constrained traffic but also a higher car
density regimes.

In order to verify approach to the study and simulation of the VTF suggested in
this paper further we will consider a single-lane traffic in a spatially homogeneous
case without overtaking. Note that the obtained results will be compared with
a known analytical solution in case of stochastic equilibrium (i.e. stationary
distribution). We would like to underline that information about the equilibrium
velocity can be of a great importance, for example, in planning the road capacity.

In the framework of [9], distribution of a single car with acceleration a and
velocity v has the probability density f .a; v; t/, which solves the integro-differential
equation of Boltzmann type:

@f

@t
.a; v; t/ C a

@f

@v
.a; v; t/ D

Z

Na;Nv;a0

�
˙.aja0; v; Na; Nv; mf .t//f .a0; v; t/� (1)

� ˙.a0ja; v; Na; Nv; mf .t//f .a; v; t/
�

f . Na; Nv; t/ d Na dNv da0;

with the initial distribution f .a; v; 0/ D f0.a; v/. Here Na and Nv are the acceleration
and the velocity of the leading car (leader), correspondingly. By a leader here and
further on we understand the car situated straight ahead to the current car, which we
will call the follower. It is the leader and the follower who interact. The function
˙.aja0; v; Na; Nv; mf .t// D ˙.a0 ! ajv; Na; Nv; mf .t// is a weighted interaction rate
function and it has the following form

˙.aja0; v; Na; Nv; mf .t// D
1Z

hmin

�.ajh; a0; v; Na; Nv/Q.h; a0; v; Na; Nv/D.hja0; v; mf .t//dh:

(2)
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Here we used the notations:

• hmin is the minimal distance between two cars at rest, i.e. the mean length of a
car;

• Q.�/ is the interaction rate, it depends on a current microscopic state of the
interacting car pair and the distance h between them;

• �.�/ is the probability density of the follower’s acceleration in case the interaction
between the cars with states .a0; v/ and . Na; Nv/ takes place at distance h;

• D.�/ is a conditioned probability density of the distance h. It depends on the
follower’s state .a0; v/ and a vector mf .t/, which value is determined by some
moments of the solution f (such as mean velocity, velocity scattering, mean
acceleration etc.). Further on the function D.�/ will also depend on the car
density K .

We should note that in this model, suggested in [9], the car acceleration a is
added to the phase coordinates as an independent variable in contrast to the gas
dynamics. As a result of this modification there are only acceleration jumps (no
velocity jumps as in other kinetic models) produced by the pairwise interactions in
the system. Moreover, after the interaction takes place the leader does not change its
acceleration. Therefore the function ˙.�/ is not symmetric. We suggest to designate
the interacting cars as ordered pairs .i; j /, where the first number stands for the
follower and the second one stands for the leader.

This paper aims at constructing the basic integral equation of the second kind.
The latter equation will enable us to use well-developed techniques of the weight
statistical modelling (see e.g. [5]) for estimating the functionals of solution to
the Eq. 1.

2 Basic Integral Equation of the Second Kind

The simulation process of stochastic kinetics of the N -particle system is a homo-
geneous Markov chain in which transitions are due to elementary pair interactions.
Note that we deliberately do not use a gas dynamic term collision because it has
evidently a confusing meaning in case of the vehicular traffic flow.

The integral equation, which describes evolution of the particle (car in this case)
ensemble, uniquely defines all the transition densities in the Markov chain. It means
that the distribution density of time intervals between elementary interactions in the
system can also be determined using this integral equation.

In order to construct the required basic integral equation of the second kind
we introduce a phase space � of velocities and accelerations for the ensemble of
N cars:

.A; V / D .a1; v1; : : : ; aN ; vN / 2 �:

Let us consider the distribution density of the N -particle system P.A; V; t/. Further
we omit the dependence of the function ˙.�/ on the vector mf .t/ without loss of
generality. In this case the function P.A; V; t/ satisfies a master equation (see [4])
of the form
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@P

@t
.A; V; t/ C A

@P

@V
.A; V; t/ D 1

N � 1

X
i¤j

Z
Œ ˙.ai ja0

i ; vi ; aj ; vj /P.A0
i ; V; t/ � (3)

�˙.a0
i jai ; vi ; aj ; vj /P.A; V; t/ � da0

i ;

here A0
i D .a1; : : : ; ai�1; ai

0; aiC1; : : : ; aN /. To complete the problem statement
we add an initial condition P.A; V; 0/ D P0.A; V / as well as boundary conditions
to the Eq. 3. The latter conditions should eliminate both negative velocities and ones
exceeding some maximum value Vmax: P.A; V; t/ D 0 if there is such a number i

that either condition (vi D 0 and ai < 0) or condition (vi D Vmax and ai > 0) is
fulfilled. It is a well-known fact that under “vehicular chaos” assumption (see [10]),
saying that the pair state density for two cars decouples into a product of two single
car densities, solution to Eq. 3 turns into solution to Eq. 1 when N ! 1 [4].

2.1 From Master Equation to Basic Integral Equation

Let us rewrite the Eq. 3 in the form

@P

@t
.A; V; t/ C A

@P

@V
.A; V; t/ C �.A; V /P.A; V; t/ D JN .A; V; t/; (4)

here we used the following notations: JN .A; V; t/ D R
F.A0 ! AjV /P.A0; V; t/

dA0,

F.A0 ! AjV / D 1

N � 1

X
i¤j

˙.a0

i ! ai jvi ; aj ; vj /�i .A/I �i .A/ D
NY

m¤i;mD1

ı.a0

m � am/I

�.A; V / D 1

N � 1

X
i¤j

�.i;j /I �.i;j / D
Z

˙.ai ! a00

i jvi ; aj ; vj / da00

i :

Here ı.�/ is a Dirac delta function. Taking into account the initial conditions and
parametric dependence between velocity, acceleration and time V D V 0 CA.t � t 0/,
we can integrate the Eq. 4 with respect to time. As a result, we obtain the integral
equation for P :

P.A; V; t/ D
tZ

0

ı.t 0/ dt 0
Z

P0.A; V 0/ıV .A; V 0; t; t 0/E�.A; V 0; t; t 0/ dV 0 C

tZ

0

E�.A; V 0; t; t 0/ dt 0
Z

ıV .A; V 0; t; t 0/ dV 0
Z

F.A0 ! AjV 0/P.A0; V 0; t 0/ dA0;

here we used the following notations: ıV .A; V 0; t; t 0/ D
NQ

mD1

ı.vm�v0
m�am.t �t 0//,
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E�.A; V 0; t; t 0/ D exp

8<
:�

tZ

t 0

�.A; V 0 C A.� � t 0// d�

9=
; :

Let us consider in our system the interaction density ˚.A; V; t/ D �.A; V /

P.A; V; t/ and the function �.A; V; t/, for which the following integral relation
holds

˚.A; V; t/ D
tZ

0

Z
Kt .t

0 ! t jA; V 0/KV .V 0 ! V jA; t � t 0/�.A; V 0; t 0/ dV 0 dt 0:

(5)
Then �.A; V; t/ satisfies the equation � D K1� C �0:

�.A; V; t/ D
Z

��.0;1/

K1.A; V; t jA0; V 0; t 0/�.A0; V 0; t 0/ dA0 dt 0 dV 0 C �0.A; V; t/

(6)
with a free term �0.A; V; t/ D ı.t/P0.A; V / and the kernel

K1.A; V; t jA0; V 0; t 0/ D Kt.t
0 ! t jA0; V 0/KV .V 0 ! V jA0; t � t 0/KA.A0 ! AjV /:

Note that the kernel K1 is a product of distribution densities of new values t , V and
A correspondingly:

Kt.t
0 ! t jA0; V 0/ D 	.t � t 0/�.A0; V 0 C A0.t � t 0//E�.A0; V 0; t; t 0/;

KV .V 0 ! V jA0; t � t 0/ D ıV .A0; V 0; t; t 0/; KA.A0 ! AjV / D F.A0 ! AjV /

�.A0; V /
;

here 	.�/ is a Heaviside step function.
Thus, the transition in our Markov chain consists of several elementary transi-

tions in the following order: .A0; V 0; t 0/ ! .A0; V 0; t/ ! .A0; V; t/ ! f$g !
.A; V; t/. Note, the interacting pair number $ D .i; j / is chosen according to the
probabilities

p.$/ D p.i; j / D 1

N � 1
� �.i;j /

�.A0; V /
: (7)

2.2 Decomposition of the Distribution Density

Let us denote

˚.A; V; t/ D �.A; V /P.A; V; t/ D
X
$

�.$/

N � 1
P.A; V; t/ D

X
$

F˚ .$; A; V; t/;
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here the summation is performed over indices $ D .i; j / of all possible ordered
pairs of cars in the system. Let the function F� .$; A; V; t/ is related to the function
�.A; V; t/ in the same way as the function F˚ .$; A; V; t/ is related to the function
˚.A; V; t/.

Let us now include the variable $ to the set of phase coordinates .A; V; t/ of
our system (see [8] for more details). Further we will consider Markov chain in this
modified phase space Z � Œ0; T � 3 .Z; t/ D .$; A; V; t/.

The initial state Z0 D .$0; A0; V0/ (i.e. the point of the first interaction in
the system at t0 D 0) in our modified phase space is simulated according to the
distribution density P0.A; V / � ı.$0/. Note, that $0 can be chosen arbitrary since
it does not affect the distribution of the next interaction. The density function of the
point .Z0; t0/ is denoted by F0.Z; t/ D ı.t/ � P0.A; V / � ı.$0/.

The modification mentioned above results in decomposition of the phase space
according to the pair number $ and makes it possible to derive a new basic integral
equation of the second kind for the function F.Z; t/ D F� .Z; t/: F D KF C F0.
We can rewrite the latter equation as follows

F.Z; t/ D
tZ

0

Z

Z

F.Z0; t 0/K.Z0; t 0 ! Z; t/ dZ0 dt 0 C F0.Z; t/: (8)

Here dZ D dV dAd
.$/ and integration with respect to 
 means the summation
over all possible ordered pairs .i; j /. The kernel K.Z0; t 0 ! Z; t/ of the Eq. 8 is a
product of transitional densities

K D Kt .t
0 ! t jA0; V 0/ � KV .V 0 ! V jA0; t � t 0/ � K$ .$/ � Ka.ai

0 ! ai j$; V / � �i .A/;

i.e. it contains ı-functions as factors only.
Despite the presence of generalized functions, it is possible to treat K as an

operator from L1.Z � Œ0; T �/ to L1.Z � Œ0; T �/ (see [7]). Moreover, due to the
finiteness of the time interval, the norm kKkL1

< 1. Therefore, the Neumann series

F.Z; t/ D
1X

nD0

KnF0.Z; t/ D
1X

nD0

Fn.Z; t/

for the integral Eq. 8 converges with respect to the L1 norm. Note, that Fn.Z; t/ is a
distribution density of the nth interaction in the system. This fact makes it possible
to construct weight estimates using the integral Eq. 8 rather than the Eq. 6 for the
function � .

The transition of the system from the state Z0 to the state Z is performed as
follows:

1. The instant t of the next interaction in the system is chosen according to the
exponential transition density Kt .t

0 ! t jA0; V 0/;
2. The velocities of all cars are calculated at time t according to the transition

density KV .V 0 ! V jA0; t � t 0/;
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3. The pair number $ D .i; j / of the interacting cars is chosen by the probabili-
ties Eq. 7;

4. New accelerations of all cars are determined according to the distribution density
KA.A0 ! Aj$; V / as follows:

• For the car with number i (the follower in the pair $ D .i; j /) its acceleration
ai is changed according to the transition density
Ka.ai

0 ! ai j$; V / D ˙.ai
0 ! ai jvi ; aj ; vj /=�.i;j /;

• The accelerations of other cars do not change.

3 Estimation of Functionals

Usually when solving the Eq. 1, following functionals of one-particle distribution
function f

Ih.T / D
Z Z

h.a1; v1/f .a1; v1; T / da1 dv1 D
Z

�

h.a1; v1/P.A; V; T / dA dV

are of interest. Let us denote

H.A; V / D 1

N

NX
iD1

h.ai ; vi /; QH.A; V; T � t 0/ D H.A; V C A.T � t 0//E�.A; V; T; t 0/:

Then, by analogy with [8], we use the relation between the functions P , � , F and
obtain a formula for the functional Ih.T / of solution to the Eq. 8:

Ih.T / D
Z

Z

TZ

0

QH.A; V; T � t 0/F.Z; t 0/ dZ dt 0:

Since we have at our disposal an integral equation of the second kind and
a Markov chain corresponding to it, we can apply well-developed techniques of
weight statistical simulation (see [7], e.g.). This enables us to study dependence
of our model on various parameters, estimate parametric derivatives and reduce
computational costs of statistical methods (e.g. with the help of the value modelling
algorithms).

3.1 Majorant Frequency Principle

The majorant frequency principle discussed in this subsection was suggested in the
study [3] for simulation of collisional relaxation in rarified gas flows. This principle
makes it possible not to compute the value of �.A; V / on every step of our process.
As a result, the computational cost of the majorant frequency principle is linearly
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dependent on the number of particles in the system. Such a computational cost is
similar to the simplest case of simulation of the maxwellian particles.

Suppose there exists such a constant �max that for all possible pairs $ D .i; j /

in the system holds �max � �.$/. Denote

�� D
X
i¤j

�max

.N � 1/
D N � �max � �.A; V /:

Then we can rewrite the Eq. 4 in an equivalent form

@P

@t
C A

@P

@V
C ��P.A; V; t/ D ��

Z
K�.A0 ! AjV /P.A0; V; t/ dA0;

here

K�.A0 ! AjV / D
X

$D.i;j /

K�
$ � �i .A/ �

�
��

1 � � 0.$/

�max

�
ı.a0

i � ai / C � 0.$/

�max

˙.a0
i ! ai jvi ; vj ; aj

0/
� 0.$/

�
;

K�
$ D fN.N � 1/g�1 is equal probability to choose a pair number,

� 0.$/ D �.ai
0; vi ; aj

0; vj /;

p D � 0.$/=�max is the probability that an interaction takes place in the chosen
pair of cars,

.1 � p/ is the probability of a “fictitious” interaction in the chosen pair of cars
(if an interaction of this kind takes place, then no change in acceleration in the
chosen pair is made).

The function F �.Z; t/, which is related to � �.A; V; t/ and ˚�.A; V; t/ D
��P.A; V; t/ in a similar way as it was described in Sect. 2.2, satisfies the Eq. 8
with kernel

K�.Z0; t 0 ! Z; t/ D K�
t .t 0 ! t/KV .V 0 ! V jA0; t � t 0/K�

$ Ka.ai
0 ! ai j$; V /�i .A/;

here K�
t .t 0 ! t/ D 	.t � t 0/�� exp f���.t � t 0/g. The functionals Ih.T / of our

interest can be also expressed using the equation F � D K�F � C F0 as follows

Ih.T / D
Z

Z

TZ

0

H.A; V C A.T � t 0// exp
˚���.T � t 0/

�
F �.Z; t 0/ dZ dt 0:

3.2 Weight Algorithms and Parametric Estimators

We introduce a Markov chain fZn; tng, n D 0; 1 : : : ; �, where � is the number of
interaction preceding the passage of the system beyond the time boundary T , with
the normalized transition density
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P.Z0; t 0 ! Z; t/ D P1.t jA0; V 0; t 0/P2.V jA0; V 0; t /P3.$ jA0; V; t /P4.ai j$; A0; V; t /�i.A/;

and the normalized distribution density P .0/.A; V /ı.t/ı.$0/ of the initial state
.Z0; t0/. We define random weights Qn by the formulas

Q0 D P0.A0; V0/

P .0/.A0; V0/
; Qn D Qn�1Q.Zn�1; tn�1I Zn; tn/; (9)

Q.Z0; t 0I Z; t/ D
	

Kt .t
0 ! t jA0; V 0/

P1.t jA0; V 0; t 0/


 	
KV .V 0 ! V jA0; t � t 0/

P2.V jA0; V 0; t/



�

�
	

K$.$/

P3.$ jA0; V; t/


 	
Ka.ai

0 ! ai j$ D .i; j /; V

P4.ai j$; A0; V; t/



:

For numerical estimation of the functional Ih.T / we can use the collision estimator
� or absorption estimator , which are functionals of the Markov chain trajectory.
These estimators are well known in the theory of the Monte Carlo methods (see,
e.g., [7, 8]):

� D
�X

nD0

Qn
QH.An; Vn; T � tn/;  D Q�

QH.A�; V�; T � t�/

q.A�; V�; t�/
:

here q.A; V; t 0/ D 1 �
T �t 0Z

0

P1.� jA; V; t 0/ d�: Using the inequalities K � 0,

kKkL1
< 1 and theoretical results of [7] we can obtain the following theorem.

Theorem 1. If P .0/.A; V / ¤ 0 whenever P0.A; V / ¤ 0; and Q.Z0; t 0I Z; t/ <

C1 for Z0; Z 2 Z, t 0; t < T , then E� D Ih.T /. If, additionally, q.A; V; t 0/ > 0

for .A; V / 2 � and t 0 < T , then E D Ih.T /. Moreover, if the weights Eq. 9 are
uniformly bounded and H 2 L1, then there exists such T � that V� < C1 and
V < C1 for T < T �. ut

It was noted in [8] that the estimators’ variances remain finite if a direct
simulation of P.Z0; t 0 ! Z; t/ � K.Z0; t 0 ! Z; t/ is performed for T > T �.

The weight method can be effectively used to analyze the dependence of results
on the problem parameters. By using standard techniques from the theory of
weight methods (see, e.g., [7]), we can construct estimators for the corresponding
parametric derivatives. Namely, if �.K/ < 1, �.Kp/ < 1, P0=P .0/ 2 L1 and norms
jjK 0

cjj, jjH0
cjjL1

are uniformly bounded in some range of c: ck � " � c � ck C ",
then, under the assumptions of Theorem 1, we have (according to [7])

E
�

@

@c

�
D @Ih.T; c/

@c
; V

�
@

@c

�
< C1:

Analogous expressions hold in case of the collision estimator �.
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4 Numerical Results

As a test for the algorithm described at the end of the Sect. 2 we took three
problems, which have a known analytical solution in case of stochastic equilibrium
(see [9, 10]). In the first two examples we consider a spatially homogeneous nearly
free stationary VTF. In this VTF all cars have velocities around the mean velocity
V � 0.

4.1 Estimation of Velocity Distribution

In this section we choose functions h.a; v/ equal to indicators of some partitioning
of the velocity interval 0 � vi � Vmax D 40 m/s.

4.1.1 Maxwellian Interaction

The type of interaction in this test problem is called maxwellian because the rate Q

is a constant value: Q D 1=T , and T is a constant time threshold [9]. The function
� here is a probability density of a new acceleration with the values ˙a0:

�.ajh; a0; v; Na; Nv/ D �.ajNv � v/ D 	.Nv � v/ı.a � a0/ C 	.v � Nv/ı.a C a0/:

For such coefficients we have �.$/ D 1=T and �� D N=T . As an initial velocity
distribution we use a normal density with the mean V D 20 m/s and the variance
�2

0 D 0:1 m2/s2. Initial accelerations are equal to 0.
The solution to the Eq. 1 in stochastic equilibrium is given by (see [9]):

f .v; a/ D �

4
p

3�v

cosh�2

	
�

2
p

3

.v � V/

�v



ı.a � a0/ C ı.a C a0/

2
; (10)

with the mean V and the variance �2
v D .�T a0/2=3. The numerical estimate of the

velocity distribution is shown in Fig. 1a (T D 2 s, �v D 1:088 m/s). We simulated
M D 103 trajectories of our system consisting of N D 103 cars.

4.1.2 Hard Sphere Interaction

The only difference from the previous paragraph is in the rate Q.v; Nv/ D r0jNv � vj.
In this case we apply the majorant frequency principle, described in Sect. 3.1, with
the following parameters: �.$/ D r0jvi � vj j, �max D r0Vmax , �� D N Vmaxr0.
The solution to the Eq. 1 is given by (see [9]):
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Fig. 1 Numerical estimate of the velocity distribution f .v/: 1 – exact solution Eq. 10 for a, Eq. 11
for b; 2 – numerical estimate; 3 – confidence interval ˙3�.

f .v; a/ D 1p
2��v

exp

	
� .v � V/2

2�2
v



ı.a � a0/ C ı.a C a0/

2
; (11)

with the mean V and the variance �2
v D a0=r0. The numerical estimate of the

velocity distribution is shown in Fig. 1b (r0 D 0:25 m�1, �v D 1:095 m/s).

4.1.3 Distance Threshold Interaction

Here a distance oriented interaction model [10] is considered with the following
parameters: Q D 1=T ,

D.h/ D 1

NH � hmin
exp

	
� h � hmin

NH � hmin



	.h � hmin/; NH D 1=K ;

�.ajh; v/ D 	.h � H.v// � ı.a � a0/ C 	.H.v/ � h/ � ı.a C a0/

and a simple distance interaction threshold H.v/ D ˛ � v C hmin. Taking these
functions into account we find the form of the weighted interaction density Eq. 2

˙.ai
0 ! ai jvi ; aj ; vj / D p

T
ı.a C a0/ C .1 � p/

T
ı.a � a0/; p D

H.vi /Z

hmin

D.h/ dh:

For such coefficient ˙.�/ the solution to the Eq. 1 is given by (see [10]):

f .v/ D
exp

n
� v

a0T
� 2ˇe� v

a0T ˇ

o

a0T
�
e�2ˇ C ˇ.2ˇ/�ˇ�.ˇ; 2ˇ/

� ; ˇ D
NH � hmin

˛a0T
:
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Fig. 2 Numerical estimate of the velocity distribution evolution f .v/.

here �.ˇ; 2ˇ/ is an incomplete gamma function. The values of �.$/ and ��
are equal to those for the case of maxwellian interaction. As an initial velocity
distribution we use a mixture of two normal distributions with the means V1 D
15 m/s, V2 D 25 m/s and the variance �0 D 1 m/s. Initial accelerations are equal
to 0. The numerical estimate of the velocity distribution evolution is shown in Fig. 2
(T D 2:5 s, hmin D 6:5 m, K D 0:025 m�1, a0 D 0:3 m/s2, ˛ D 1:2 s).

4.2 Fundamental Diagram

In this section we consider a numerical estimation of the traffic density K V
dependence (here V is the mean velocity which is estimated with the help of
corresponding function h.a; v/ D v) on the car density K which is called a
fundamental diagram. Figure 3 shows a typical shape of this curve for the following
parameters: T D 2:5 s, hmin D 6:5 m, a0 D 0:1 m/s2, ˛1 D 1:2 s, ˛2 D 1:5 s,
˛3 D 1:8 s. For some value of K there is a change from a free flow (with no
dependence on ˛) to an interaction oriented flow (with strong dependence on ˛).
For the latter flow cars can not drive in their own way, but they should agree their
velocity with the flow velocity.

In the general case each driver in the flow has its own threshold parameter
value ˛. Note that low values of ˛ correspond to a more aggressive driver, while
high values of this parameter stand for a more conservative driving manner. Taking
into account the numerical results, we can summarize the following remark.
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Fig. 3 Fundamental diagram (M D 102, N D 102): 1 – ˛1 , 2 – ˛2, 3 – ˛3.

Remark 1. Let the i th driver has its own parameter ˛i 2 Œ˛min; ˛max�, i D 1; : : : ; N:

Then the fundamental diagram of this VTF will be in the area between two curves
corresponding to ˛min and ˛max.

4.3 Parametric Analysis

As an example of parametric dependence study here we consider the case of the
maxwellian interaction described above. Therefore in this section we consider the
coefficient ˙c D c � ˙1 D c=T . The value of the constant c influences the
simulation of the time interval � between interactions since ��

c D c � �� is included
into the distribution density Kt . As a result, the functionals Ih.T; c/ depend on the
value of c. In order to study this parametric dependence we will use the weight
method with respect to c.

Define the random weights according to the algorithm described in the Sect. 3.2.
As a distribution density Kt for simulation we will consider the density with
parameter �� corresponding to the value of c D 1. In this case the random weights
have the following form:

Q0 D 1; Qn D Qn�1

˙c

˙1

expf�N˙c�ng
expf�N˙1�ng ; n D 1; : : : ; �;

Q.T / D Q�

exp f�N˙c .T � t�/g
exp f�N˙1 .T � t�/g D expf� ln c � NT˙1.c � 1/g;
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Fig. 4 The estimation of @f .v; c/=@c when c D 1: 1 – exact derivative Eq. 13; 2 – derivative
estimation Eq. 12; 3 – confidence interval ˙3�.

here �n is the time interval between .n � 1/th and nth interactions in the system
of N cars. In order to estimate the functionals Ih.T; c/ we can use an absorption
weight estimator, which has in this particular case the following form .c/ D
Q.T /.c/.1/. As a result, when simulating a Markov chain corresponding to the
value of c D 1, we can simultaneously estimate the functionals Ih.T; c/ for other
values of parameter c (analogous algorithm for Boltzmann equation is described
in [2]).

Moreover, for the purpose of studying the dependence of the functionals Ih.T; c/

on the parameter c, we can estimate the value of @Ih.T; c/=@c using a corresponding
derivative of the estimator .c/:

@

@c
.c/ D Q.T /.c/

h�

c
� NT˙1

i
H.A�; V� C A�.T � t�// D QQ.c/.1/: (12)

With the help of analytical solution Eq. 10, we obtain the derivative @f =@c:

@f

@c
.v; a; c/ D f .v; a; c/ �

�
1

c
� tanh

�
c˙1.v � V/

2a0

�
� ˙1.v � V/

a0

�
: (13)

The estimation of @f .v; c/=@c when c D 1 is shown in Fig. 4. We simulated
M D 105 trajectories of our system consisting of N D 500 cars.
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5 Conclusion

The results of Sect. 4 show the efficiency of transition to the basic integral equation
and Markov chain simulation in VTF problems. Moreover, this transition enables us
to study parametric dependencies of our functionals of interest and apply various
techniques to reduce computational costs. Note also, that we do not use in the
simulation procedure an external (to the initial model) discrete time parameter �t

which was used in [9] for splitting the movement and the interaction process. (It
resulted in a simpler simulation process.)

Possible directions for future studies should take into account various aspects
such as more realistic interaction profiles (including random parameters); mixture
of both driver behaviors and vehicle classes; multilane traffic with overtaking;
cluster formation on the road (according to kinetic Smoluchowski equation); spatial
inhomogeneity (off- and on-ramps).
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New Inputs and Methods for Markov Chain
Quasi-Monte Carlo

Su Chen, Makoto Matsumoto, Takuji Nishimura, and Art B. Owen

Abstract We present some new results on incorporating quasi-Monte Carlo rules
into Markov chain Monte Carlo. First, we present some new constructions of points,
fully equidistributed LFSRs, which are small enough that the entire point set can be
used in a Monte Carlo calculation. Second, we introduce some antithetic and round
trip sampling constructions and show that they preserve the completely uniformly
distributed property necessary for QMC in MCMC. Finally, we also give some
new empirical results. We see large improvements in sampling some GARCH and
stochastic volatility models.

1 Introduction

Simple Monte Carlo sampling has two limitations when used in practice. First, it
converges only at a slow rate, with root mean squared error O.n�1=2/. Second, on
many challenging problems there is no known way to generate independent samples
from the desired target distribution. Quasi-Monte Carlo (QMC) methods have been
developed to address the first problem, yielding greater accuracy, while Markov
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chain Monte Carlo (MCMC) methods have been developed for the second problem
yielding wider applicability.

It is natural then to seek to combine these two approaches. There were some
early attempts by Chentsov [2] and Sobol’ [15] around 1970. The problem has
been revisited more recently. See for example [11] and [13]. For a survey of recent
combinations of QMC and MCMC see [1].

QMC uses n points in Œ0; 1/d , where typically n � d . MCMC uses one long
stream of IID U Œ0; 1/ inputs, which we call the ‘driving sequence’. It has effectively
n D 1 with d ! 1, quite unlike QMC. Chentsov’s key insight was to use
completely uniformly distributed points to drive the MCMC. That is the approach
taken in [13].

The contributions of this paper are as follows. First, we present some new point
sets, small fully equidistributed LFSRs, to use as driving sequences for MCMC.
Second, we show how some antithetic sampling strategies within the driving
sequence still give rise to valid driving sequences. Third, we present some new
empirical findings.

The outline of the paper is as follows. Section 2 defines some key notions that we
need. Section 3 describes the LFSRs that we use. Section 4 presents our antithetic
extensions of the driving sequence. We give new empirical results in Section 5. Our
conclusions are in Section 6.

2 Background

In this section we describe completely uniformly distributed points and some
generalizations that we need. We also give a sketch of MCMC. For more details
on the latter, the reader may consult [12, 14].

2.1 Completely Uniformly Distributed Sequences

Here we define some notions of completely uniformly distributed sequences.
We assume that the reader is familiar with the star discrepancy D�d

n .
Let ui 2 Œ0; 1� for i � 1. For integer d � 1, define

Nu.d/
i D .ui ; uiC1; : : : ; uiCd�1/; and, (1)

u.d/
i D .ui.d�1/C1; ui.d�1/C2; : : : ; uid/: (2)

Both Nu.d/
i and u.d/

i are made up of consecutive d -tuples from ui , but the former are
overlapping while the latter are non-overlapping.
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Definition 1. The infinite sequence ui is completely uniformly distributed (CUD), if

lim
n!1 D�d

n .Nu.d/
1 ; : : : ; Nu.d/

n / D 0 (3)

for all integer d � 1.

If ui are CUD, then

lim
n!1 D�d

n .u.d/
1 ; : : : ; u.d/

n / D 0 (4)

holds for all d � 1. Conversely (see [2]), if (4) holds for all d � 1 then ui are CUD.
For randomized points ui it is useful to have the following definition.

Definition 2. The infinite sequence ui is weakly completely uniformly distributed
(WCUD), if

lim
n!1 Pr

�
D�d

n .Nu.d/
1 ; : : : ; Nu.d/

n / > �
� D 0 (5)

for all � > 0 and integer d � 1.

To better model driving sequences of finite length, there are also triangular
array versions of these definitions. A triangular array has elements un;i 2 Œ0; 1�

for i D 1; : : : ; n and n 2 N where N is an infinite set of nonnegative integers.
This triangular array is CUD if limn!1 D�d

n .Nu.d/
n;1; : : : ; Nu.d/

n;n�dC1/ D 0 for all integer
d � 1 as n ! 1 through values in N . There is a similar definition for weakly
CUD triangular arrays.

For further background on CUD sequences see [10]. For triangular arrays and
sufficient conditions for weak CUD see [18]. The usual construction for WCUD
sequences applies Cranley-Patterson [4] rotation to a CUD sequence [18].

2.2 Markov Chain Monte Carlo

A typical MCMC run begins with a starting point X0. Then, for i � 1

Xi D �.Xi�1; u.m/
i / (6)

where u.m/
i is defined at (2) in terms of an IID driving sequence ui � U Œ0; 1�.

This version of MCMC assumes that each update consumes exactly m elements of
the driving sequence. MCMC sometimes uses more general schemes, and its QMC
version can too. See [18]. In this paper we will suppose that (6) holds. The CUD
property for a driving sequence has to apply to all integer values d � 1, not just
d D m.
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The update function �.�; �/ is chosen so that as n ! 1, the distribution of Xn

approaches a desired distribution � . If we are interested in the quantity

� D
Z

f .x/�.x/ dx

we estimate it by

O� D 1

n

bCnX

iDbC1

f .Xi /

where b � 0 is a burn-in parameter. For simplicity, we take b D 0.
The typical behavior of MCMC is that f .Xi / and f .XiCk/ have a correlation

that decreases as �k , where j�j < 1. As a result O� ordinarily approaches � with
an RMSE of O.1=

p
n/. There are however pathologies in which the chain can get

stuck. Such failure to mix can result in lack of convergence. Considerable creativity
goes into constructing the update function �, to obtain a rapidly mixing Markov
chain. The details are beyond the scope of this article. See [12, 14]. Our focus is
on replacing IID driving sequences by CUD ones in chains that do mix well. CUD
driving sequences do not repair faulty choices of �./.

2.3 QMC in MCMC Results

Much of the literature combining QMC with MCMC is empirical. Here we provide
a short summary of the theoretical results that underpin the work described in this
paper.

Running an MCMC algorithm with deterministic inputs gives output that is not
Markovian. As a result, there is potential for error. There is however a safe harbor
in replacing IID points by (W)CUD points.

Suppose first that Xi 2 ˝ D f!1; : : : ; !M g. Such finite state spaces are
technically simpler. If Xi is sampled by inversion and min1�j;k�M Pr.Xi D !j j
Xi�1 D !k/ > 0 then Chentsov [2] shows that a CUD driving sequence gives
consistency, i.e.,

lim
n!1

1

n

nX

iD1

1Xi D!j D �.!j / (7)

for j D 1; : : : ; M . Chentsov [2] also gives a converse. Given a non-CUD sequence,
he constructs a Markov chain for which (7) will fail to hold. For random driving
sequences, the consistency condition is

lim
n!1 Pr

�
j 1

n

nX

iD1

1Xi D!j � �.!j /j > �
�

D 0; 8� > 0: (8)
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It is seldom possible to sample the transitions by inversion. The Metropolis-
Hastings update [8] is usually used instead. For the Metropolis-Hastings update,
consistency (7) still holds (see [13]) under three conditions. First, the driving
sequence must be CUD. Second, the function � must be one for which an IID
U.0; 1/ driving sequence achieves weak consistency (8). (It could include some
zero transition probabilities.) Finally, there is a technical condition that pre-images
in Œ0; 1�m for transitions from one state to another must all give Jordan measurable
sets of u.m/

i . To summarize, if Metropolis-Hastings sampling on a finite state space
is weakly consistent with IID sampling, then it is consistent with CUD sampling.
It is then also weakly consistent with weakly CUD sampling.

The case of continuous state spaces was taken up by Chen et al. [1]. The
same conclusion holds. If an MCMC algorithm, either Metropolis-Hastings (their
Theorem 2) or Gibbs sampling (Theorem 3), is weakly consistent when driven by
IID U.0; 1/ inputs, then it is consistent when driven by CUD inputs and is weakly
consistent when driven by WCUD inputs. In the continuous state space setting
consistency means having the empirical probability of hyperrectangles match their
probability under � . The dimension of these hyperrectangles equals that of the point
Xi , which is not necessarily m. The technical conditions for Metropolis-Hastings
involve Jordan measurability of pre-images for multistage transitions, while those
for Gibbs sampling require a kind of contraction mapping.

3 New Small LFSR Constructions

Constructions for CUD points are surveyed in [10], but the ones there are not
convenient to implement. Tribble [17] used small versions of multiple congruential
generators and linear feedback shift registers (LFSRs). His best results were for
LFSRs but he had only a limited number of them.

In this section we present some new LFSR type sequences with lengths 2d � 1

for all integers 10 � d � 32. Their consecutive blocks of various lengths obey an
equidistribution property. That makes them suitable for applications which require
low discrepancy for vectors formed by taking overlapping consecutive points.

Let P be an integer and ui for i D 0; 1; 2; : : : be a sequence of real numbers in
the half-open interval Œ0; 1/ with period P . Let

ui D
1X

j D1

bi;j 2�j (9)

be 2-adic expansion of ui .
We associate to the sequence .ui / a multi-set (namely, a set with multiplicity of

each element counted) �k as follows:

�k WD fNu.k/
i j 0 � i � P � 1g:
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The multi-set �k consists of k-dimensional points obtained as overlapping k-tuples
in the sequence for one period. For some positive integer v, we divide the interval
Œ0; 1/ into 2v equal pieces. This yields a partition of the unit hypercube Œ0; 1/k into
2kv cubic cells of equal size. Following [16] (cf. [9]), we say that the sequence .xi /

is k-dimensionally equidistributed with v-bit accuracy if each cell contains exactly
same number of points of �k , except for the cell at the origin that contains one less.
The largest value of such k is called the dimension of equidistribution with v-bit
accuracy and denoted by k.v/.

Let M.k; v/ denote the set of k � v binary matrices. The above condition is
equivalent to that the multiset of k � v matrices

˚k;v WD f.biCr;j /rD0;:::;k�1Ij D1;:::;v j 0 � i � P � 1g (10)

contains every element of M.k; v/ with the same multiplicity, except the 0 matrix
with one less multiplicity. Since there are 2kv � 1 nonzero such matrices, we have
an inequality 2kv � 1 � P . In the following examples, P D 2d � 1, and hence
k.v/ � bd=vc. A sequence .xi / of period 2d � 1 is said to be fully equidistributed
(FE) if the equality holds for all 1 � v � d . When d is equal to the number
of binary digits of the elements of the sequence, this property is equivalent to the
maximal equidistribution property [9, 16].

Definition 3. (GF.2/-linear sequence generators)
Let S WD GF.2/d be the state space, F W S ! S be a d � d GF.2/-matrix F

(multiplication from left) representing the state transition, and o W S ! GF.2/d be
another d�d -matrix for the output function. Choose an initial state s0 ¤ 0. The state
transition is given by si D F.si�1/ for i � 1. The i -th output o.si / D .bi;1; : : : ; bi;d /

is regarded as a real number ui by

ui D
dX

j D1

bi;j 2�j : (11)

This generator of the real number sequence ui .i � 0/ is called GF(2)-linear
generator.

We discuss below a method to search for such generators with the FE property. Note
that we could add random digits beyond the d ’th in (11), but they would not affect
the FE property.

Assume that F has the maximal period P D 2d �1. Then, every nonzero element
of S is on one orbit; namely, S D fsi D F i.s0/ j 1 � i � P � 1g [ f0g for any
nonzero s0. Now we define a mapping

ok;v W S ! M.k; v/I si 7! .biCr;j /0�r�k�1;1�j �v; 0 7! 0;

where bi:j is the j -th bit in o.si / as in Definition 3. This mapping maps si to
the k � v-matrix consisting of the most significant v-bits of the k consecutive
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Table 1 Parameters sd for LFSRs of length P D 2d � 1.

d sd d sd d sd d sd

10 115 16 283 22 1,336 28 2,573
11 291 17 514 23 1,236 29 2,633
12 172 18 698 24 1,511 30 2,423
13 267 19 706 25 1,445 31 3,573
14 332 20 1,304 26 1,906 32 3,632
15 388 21 920 27 1875

Table 2 Primitive polynomials fd for LFSRs of length P D 2d � 1. The lead monomials are t d .

t 10 C t 3 C 1 t16 C t 5 C t 3 C t 2 C 1 t22 C t C 1 t28 C t 3 C 1

t11 C t 2 C 1 t17 C t 3 C 1 t23 C t 5 C 1 t29 C t 2 C 1

t12 C t 6 C t 4 C t C 1 t18 C t 7 C 1 t24 C t 4 C t 3 C t C 1 t30 C t 6 C t 4 C t C 1

t13 C t 4 C t 3 C t C 1 t19 C t 5 C t 2 C t C 1 t25 C t 3 C 1 t31 C t 3 C 1

t14 C t 5 C t 3 C t C 1 t20 C t 3 C 1 t26 C t 6 C t 2 C t C 1 t32 C t 7 C t 6 C t 2 C 1

t15 C t C 1 t21 C t 2 C 1 t27 C t 5 C t 2 C t C 1

outputs from the state si . Thus, the multiset ˚k;v [ f0g defined by (10) is the image
of S by the mapping ok;v. The mapping inherits GF(2)-linearity from F and o.
Consequently, k-dimensional equidistribution with v-bit accuracy is equivalent to
the surjectivity of ok;v (since the inverse image of any element is an affine space of
the same dimension), and hence is easy to check for small d such as d < 100.

A linear feedback shift register (LFSR) is an example of a GF(2)-linear generator
as follows: Let .ad�1; ad�2; : : : ; a0/ 2 GF.2/d . Choose the state transition matrix
f W S ! S to be f W .b0; b1; : : : ; bd�1/ 7! .b1; b2; : : : ; bd�1;

Pd�1
iD0 ai bi /: Take o as

an identity matrix. Thus, si D .bi ; : : : ; biCd�1/ and bi satisfies the linear recurrence

biCd D ad�1biCd�1 C � � � C a0bi :

The characteristic polynomial of f is td Cad�1td�1 C� � �Ca1t Ca0, and f attains
the maximal period 2d � 1 if and only if the polynomial is primitive.

By modifying such LFSRs, we obtain FE generators as follows. For each d D
10; 11; : : : ; 32, we take a primitive polynomial of degree d from a list in [7] and let
fd be the associated transition function as above. Let F WD f s

d for some integer s.
Then F has the maximal period 2d � 1 if and only if s and 2d � 1 are coprime.
We have a GF(2)-linear generator with transition matrix F and the identity output
function o. We search for s in ascending order among the integers coprime to 2d �1

such that the corresponding generator satisfies the FE condition. For each d , we
found such s in the range 1 < s < 4;000. We select one s for each d , and call it
sd . See Table 1 for the values we used. We compute Fd D f

sd

d as a d � d matrix,
and then implement the FE GF.2/-linear generator with transition function Fd and
identity output function. The corresponding polynomials themselves are in Table 2.
Although we found a suitable sd for 10 � d � 32, we have no proof of the existence
of sd for general d .
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The FE condition gives stratification over congruent subcubes. Because any
rectangle in Œ0; 1�d can be closely approximated by subcubes, the d dimensional
discrepancy tends to 0 for points formed from an LFSR satisfying the FE condition.
Thus an infinite sequence of FE-LFSRs provides a triangular array that is CUD.

4 Antithetic and Round Trip Sampling

Some Markov chains are closely connected to random walks. For example,
Metropolis samplers accept or reject proposals made by a random walk process.
For a random walk with increments of mean zero, the expected value of Xn is X0.
Similarly, for an autoregressive process such as Xi D �Xi�1 C p

1 � �2Zi for
Gaussian Zi , we have E.Xn j X0/ D X0.

We can sample an autoregression by taking

Xi D �Xi�1 C
p

1 � �2˚�1.ui / (12)

where the driving sequence ui are IID U.0; 1/.
In an antithetic driving sequence, we take

u1; u2; : : : ; un; 1 � u1; 1 � u2; : : : ; 1 � un:

That is, the second half of the sequence simply replays the ones complement of the
first half. In a round trip driving sequence, we take

u1; u2; : : : ; un; 1 � un; 1 � un�1; : : : ; 1 � u1:

The sequence steps backwards the way it came.
With either of these driving sequences, an autoregression (12) would satisfy

X2n D X0 	 E.X2n j X0/. A random walk would also end where it started.
A Markov chain driven by symmetric random walk proposals would be expected
to end up close to where it started if most of its proposals were accepted.

Inducing the chain to end up at or near to its expected value should bring
a variance reduction. To ensure that the points asymptotically cover the space
properly, we require the driving sequence to be (W)CUD. The sampling methods
we use are similar to antithetic sampling. The antithetic sampling here differs from
that of [6] who sample two chains. A related method in [3] also runs two chains,
the second time-reversed one driven by un; : : : ; u1. The second half of the round trip
sequence is time reversed and antithetic to the first half.

When the updates to the Markov chain consume m > 1 uniform numbers each,
we may write the input to the i ’th step as the tuple u.m/

i D .u.m�1/iC1; : : : ; umi/ 2
.0; 1/m for i D 1; : : : ; bn=mc. Then a reasonable variant of antithetic and round-trip
sampling methods is to use the 2bn=mc tuples
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u.m/
1 ; u.m/

2 ; : : : ; u.m/

bn=mc; 1 � u.m/
1 ; 1 � u.m/

2 ; : : : ; 1 � u.m/

bn=mc; or;

u.m/
1 ; u.m/

2 ; : : : ; u.m/

bn=mc; 1 � u.m/

bn=mc; 1 � u.m/

bn=mc�1
; : : : ; 1 � u.m/

1

in the simulation, in the orders given above. The corresponding driving sequences
in Œ0; 1� are of length 2mbn=mc, formed by concatenating these m-tuples. We call
them m-fold antithetic and m-fold round trip driving sequences, respectively. The
subtraction in 1 � u.m/

i is interpreted componentwise. When an m-fold method is
used, we update the Markov chain 2bn=mc times using

eu.m/
i D

(
u.m/

i 1 � i � n

1 � u.m/
i�n n < i � 2n

for m-fold antithetic sampling or

bu.m/
i D

(
u.m/

i 1 � i � n

1 � u.m/
2n�iC1 n < i � 2n

for round trip sampling.
For round trip and antithetic sequences, we will use some results about discrep-

ancies. If v1; : : : ; vn and w1; : : : ; wn are points in Œ0; 1�d then

D�d
2n .v1; : : : ; vn; w1; : : : ; wn/ � 1

2

�
D�d

n .v1; : : : ; vn/ C D�d
n .w1; : : : ; wn/

�
; (13)

D�d
n .1 � v1; : : : ; 1 � vn/ � 2d D�d

n .v1; : : : ; vn/; and (14)
ˇ
ˇ
ˇD�d

nCk.v1; : : : ; vnCk/ � D�d
n .v1; : : : ; vn/

ˇ
ˇ
ˇ � k

n C k
: (15)

Equation (13) is simple to prove, (14) follows from the well known bound relating
discrepancy to star discrepancy and (15) is Lemma 4.2.2 of [17].

For m-fold versions we need another result. In the case m D 3 the second half of
the driving sequence has entries

1�u3; 1�u2; 1�u1; 1�u6; 1�u5; 1�u4; � � � ; 1�ubn=mc; 1�ubn=mc�1; 1�ubn=mc�2:

In addition to the one’s complement operation, we have reversed the sequence
order in blocks of m but preserved order within each block. The bn=mc entries
are grouped into blocks of size m and a fixed permutation (here a simple reversal)
is applied Lemma within each such block. If ui are CUD then so are the block per-
muted points. The reasoning is as follows. Consider integers d that are multiples of
m. The discrepancy of (nonoverlapping) points u.d/

i is preserved by the permutation.
Therefore it vanishes for all such d . Because there are infinitely many such d , the
permuted points are CUD by Theorem 3 of [13].
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Theorem 1. Suppose that un;1; : : : ; un;n are from a triangular array that is CUD or
weakly CUD. Then the points of an antithetic sequence or a round trip sequence in
either original or m-fold versions are CUD (respectively, weakly CUD).

Proof. First consider the antithetic construction. Pick any integer d � 1 and let
un;nCj D 1 � un;j for n � d and j D 1; : : : ; n. Then using uj for un;j ,

D�d
2n�dC1.Nu.d/

1 ; : : : ; Nu.d/

2n�dC1/

� D�d
2n�2dC2.Nu.d/

1 ; : : : ; Nu.d/

n�dC1; Nu.d/
nC1; : : : ; Nu.d/

2n�dC1/ C d � 1

2n � d C 1

D D�d
2n�2dC2.Nu.d/

1 ; : : : ; Nu.d/

n�dC1; 1 � Nu.d/
1 ; : : : ; 1 � Nu.d/

n�dC1/ C d � 1

2n � d C 1

� 2d C 1

2
D�d

n�dC1.Nu.d/
1 ; : : : ; Nu.d/

n�dC1/ C d � 1

2n � d C 1

! 0;

using (15) at the first inequality and (13) and (14) at the second. The proof for
the round trip construction is similar. For the m-fold versions, we apply Theorem 3
of [13] as described above, to show that the second half of the sequence is CUD. ut

5 Empirical Results

We tried four methods on each of four problems. The methods used are IID,
CUD, ANT and RND. In these, the driving sequences are IID, CUD based on
the construction from Section 3, CUD with antithetics, and CUD with round trip
sampling, respectively.

The four problems we tried were: bivariate Gaussian Gibbs sampling using
various correlations and tracking the estimated mean, the same but tracking the
estimated correlation, a Garch model, and a stochastic volatility model. We label
these GMU, GRHO, GARCH and SV respectively.

What we report are root mean square errors based on 100 independent replica-
tions generated by Cranley-Patterson rotations. In the Gaussian-Gibbs problem we
used twofold versions of ANT and RND. For GARCH and SV we used ordinary
(onefold) ANT and RND.

The bivariate Gaussian Gibbs sampler is a simple test case for algorithms. It has
Xi 2 R

2. The sampling proceeds via

Xi;1 D �Xi�1;2 C
p

1 � �2˚�1.u2i�1/; and (16)

Xi;2 D �Xi;1 C
p

1 � �2˚�1.u2i /; (17)
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Fig. 1 Numerical results for bivariate Gaussian Gibbs sampling. CUD D solid and IID D dashed.
The goal is to estimate the mean. The correlation is marked at the right. For � D 0 the ANT and
RND methods had no error due to symmetry. For � D 0:9 they were essentially equal and much
better than CUD, lying below even the CUD � D 0 curve. For � D 0:9, ANT is shown in dotted
lines and RND in dot-dash lines.

starting with X0 D .0; 0/T . We then use 2n driving variables to generate X1; : : : ; Xn.
We varied the true correlation � over the range from �0:9 to 0:9.

For problem GMU, we studied estimation of E.X1;1/ . This is somewhat of a toy
problem. In the case � D 0, the round trip and antithetic sampling algorithms got
the answer exactly. The CUD method seemed to attain a better rate than did IID
sampling. For � D 0:9, we also saw an apparently better rate for CUD than IID,
while the ANT and RND methods seem to have a better constant than the CUD
method. See Fig. 1.

The mean under Gibbs sampling is much easier than most problems we will face.
To make it a bit more difficult we considered estimating the correlation itself from
the data. This GRHO problem is artificial because we have to know that correlation
in order to do the sampling. But a badly mixing chain would not allow us to properly
estimate the correlation and so this is a reasonable test. In IID sampling the closer
j�j is to 1, the easier � is to estimate. In Gibbs sampling large j�j makes the data
values more dependent, but we will see � D 0:9 is still easier than � D 0.
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Fig. 2 Numerical results for bivariate Gaussian Gibbs sampling. CUD D solid and IID D dashed.
The goal is to estimate the correlation, which is marked at the right. There was little difference
between CUD and its balanced alternatives ANT and RND (not shown).

We found that CUD outperformed IID on this case. The ANT and RND methods
did about the same as CUD for most correlations but seemed to be worse than CUD
for the most extreme values ˙0:9. The results comparing CUD to IID are shown in
Fig. 2.

The next two models are more challenging. They are stochastic volatility
and Garch models. We apply them to a European call option. Under geometric
Brownian motion that problem requires one dimensional quadrature and has a closed
form solution due to Black and Scholes. For these models the value is a higher
dimensional integral.

The SV model we used, from Zhu [19], is generated as follows:

dS D rs dt C p
V S dW1; 0 < t < T (18)

dV D 	.
 � V / dt C �
p

V dW2; (19)

for parameters T D 6 (years), r D 0:04, 
 D 0:04, 	 D 2 and � D 0:3. The initial
conditions were S.0/ D 100 and V.0/ D 0:025. The processes W1 and W2 to the
price and volatility were correlated Brownian motions with �. dW1; dW2/ D �0:5.
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Table 3 Log (base 10) of root mean squared error in the Heston stochastic volatility
model for the four sampling methods and sample sizes 211 to 217.
log2.n/ IID CUD ANT RND
11 0.287 �0:089 �0:511 �0:545

12 �0:137 �0:534 �0:311 �0:327

13 0.112 �0:697 �1:017 �0:973

14 �0:594 �0:954 �1:013 �1:085

15 �0:611 �1:245 �1:099 �1:118

16 �1:150 �1:704 �1:770 �1:749

17 �0:643 �1:760 �1:892 �1:927

We priced a European call option, the discounted value of E..S.T / � K/C/ where
the strike price K was 100. That is, the option starts at the money. Each sample path
was generated by discretizing time into 28 equispaced intervals. It required requiring
29 elements ui to generate both of the required Brownian motions. The results are
in Table 3.

The GARCH.1; 1/ model we used had

log
� Xt

Xt�1

�
D r C �

p
ht � 1

2
ht C "t ; 1 � t � T; where (20)

"t � N.0; ht /; and (21)

ht D ˛0 C ˛1"2
t�1 C ˇ1ht�1: (22)

The parameter values, from Duan [5] were r D 0, � D 7:452�10�3, T D 30, ˛0 D
1:525 � 10�5, ˛1 D 0:1883 and ˇ1 D 0:7162. The process starts with h D 0:64�2

where �2 D 0:2413 is the stationary variance of Xt .
Once again, the quantity we simulated was the value of a European call

option. The strike price was K D 1. We started the process at values of X0 2
f0:8; 0:9; 1:0; 1:2g.

In this example there was little difference between CUD sampling and either
ANT or RND. Plain CUD sampling did better at sample sizes 211 � n � 218.
It seemed to do slightly worse at sample sizes 219 and 220. The CUD points
outperformed IID sampling by a large margin and because the Garch model is
interesting and important we show that result in Fig. 3.

6 Conclusions

We have presented some new LFSRs and seen that they yield improved Markov
chain quasi-Monte Carlo algorithms on some problems. Other problems do not show
much improvement with the introduction of QMC ideas. This pattern is already
familiar in finite dimensional applications.
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Fig. 3 Numerical results for the Garch.1; 1/ model described in the text. The initial price is
marked on each trajectory, with the CUD trajectories for X0 D 0:9 and 1:0 getting overlapping
labels.

We have also developed some ways to construct new (W)CUD sequences from
old ones. The new sequences have a reflection property that we find is sometimes
helpful and sometimes not, just as antithetic sampling is sometimes helpful and
sometimes not in IID sampling.

The (W)CUD constructions sometimes appear to be achieving a better con-
vergence rate than the IID ones do. There is therefore a need for a theoretical
understanding of these rates of convergence.
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Average Case Approximation: Convergence
and Tractability of Gaussian Kernels

G.E. Fasshauer, F.J. Hickernell, and H. Woźniakowski

Abstract We study the problem of approximating functions of d variables in the
average case setting for a separable Banach space Fd equipped with a zero-mean
Gaussian measure. The covariance kernel of this Gaussian measure takes the form of
a Gaussian that depends on shape parameters �`. We stress that d can be arbitrarily
large. Our approximation error is defined in the L2 norm, and we study the minimal
average case error e

avg
d .n/ of algorithms that use at most n linear functionals or

function values. For �` D `�˛ with ˛ � 0, we prove that e
avg
d .n/ has a polynomial

bound of roughly order n�.˛�1=2/ independent of d iff ˛ > 1=2. This property is
equivalent to strong polynomial tractability and says that the minimal number of
linear functionals or function values needed to achieve an average case error "

has a bound independent of d proportional roughly to "�1=.˛�1=2/. In the case of
algorithms that use only function values the proof is non-constructive. In order
to compare the average case with the worst case studied in our earlier paper we
specialize the function space Fd to a reproducing kernel Hilbert space whose kernel
is a Gaussian kernel with shape parameters �

rep
` . To allow for a fair comparison

we further equip this space with a zero-mean Gaussian measure whose covariance
operator has eigenvalues that depend on a positive parameter q. We prove that the
average cases for the whole space and for the unit ball of Fd are roughly the same
provided the �

rep
` decay quickly enough. Furthermore, for a particular choice of q
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the dimension-independent convergence for the worst and average case settings are
essentially the same.

1 Introduction

Function approximation based on a symmetric, positive definite kernel is popular
in practice. One may encounter these methods under various names, including
(smoothing) splines [19], kriging [17], radial basis function methods [1], scattered
data approximation [24], Gaussian process modeling [12], meshfree methods [2],
and surrogate modeling [5]. Because of their popularity and practical success, it is
important to understand the accuracy of such methods.

Wendland [24] provides error bounds, but without careful attention to their
dependence on the number of input or independent variables, d . Taking that point
of view is acceptable as long as one is only concerned with solving problems
formulated in our low-dimensional (d � 3) physical world. However, many
applications of kernel methods such as problems in finance, statistical learning
or computer experiments take place in much higher-dimensional spaces. In the
past two decades there has been a broad and deep investigation of the tractability
of multivariate numerical problems, i.e., determining whether the errors for the
best algorithms increase slower than exponentially in d . The volumes of [9, 10]
summarize this extensive effort.

The kernels employed in practice, Kd W R
d � R

d ! R, are often assumed to
depend on the difference of their arguments or even on the norm of the difference
of their arguments:

Kd .x; t/ D eKd .x � t/; stationary or translation invariant,

Kd .x; t/ D �.kx � tk2/; isotropic or radially symmetric.

There are few tractability results for these kinds of kernels, which motivates us to
study a popular choice of kernel that is amenable to analysis:

Kd .x; t/ D exp
� � �2

1 .x1 � t1/
2 � � � � � �2

d .xd � td /2
�

for all x; t 2 R
d : (1)

This Gaussian kernel is used, for example, in the JMP software Gaussian Process
Modeling module [15]. Here, � D f�`g`2\ is a sequence of positive weights that are
called the shape parameters. The isotropic (or radial) case corresponds to constant
shape parameters, �` D � > 0 for all `, whereas the anisotropic case corresponds
to varying shape parameters �`. We study general �`, however, it will be easier to
explain the results for specific shape parameters given by �` D `�˛ for ˛ � 0.

The functions to be approximated are assumed to lie in a Banach or Hilbert
space, Fd , which is assumed to be continuously embedded in the space L2 D
L2.R

d ; �d / of square Lebesgue integrable functions, where �d is the probability
density function
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�d .t/ D 1

�d=2
exp

��.t2
1 C t2

2 C � � � C t2
d /
�

for all t 2 R
d ;

Z

Rd

�d .t/ dt D 1:

(2)

The weighted L2 inner product is defined by

hf; giL2
D
Z

Rd

f .t/g.t/ �d .t/ dt:

The approximation error for a function, f , approximated by an algorithm, A W
Fd ! R, is defined as kId f � Af kL2 , where Id W Fd ! L2 is the embedding
operator defined by Id f D f . This choice of the weight �d reflects a requirement
for greater approximation accuracy near the origin.

The worst case error of an algorithm is defined by its worst behavior over the unit
ball in Fd . Worst case convergence and tractability of approximation for functions
in the Hilbert space with reproducing kernel (1) has recently been studied in [3]. We
will later summarize the results obtained in that paper.

An alternative to the worst case setting is the average case setting, where
functions to be approximated are assumed to be realizations of a stochastic (often
Gaussian) process. In addition to the aforementioned monographs, [9, 10], the
work of [6, 8, 13, 14, 21], and [22, 23] addresses average case convergence and
tractability. The purpose of this article is to investigate the average case error
convergence and tractability for function approximation (or recovery) defined over
a separable Banach space, Fd , of real-valued functions equipped with a zero-mean
Gaussian measure, �d , with a covariance kernel Kd , i.e.,

Z

Fd

L.f / �d .df / D 0 for all L 2 F�
d ; Kd .x; t/ D

Z

Fd

f .x/f .t/ �d .df /:

(3)

Although we need to present known results for general kernels Kd , our main focus
and new results will be presented for the Gaussian covariance kernel (1).

Two types of algorithms, A, are investigated: those that may use function data
based on arbitrary continuous linear functionals, the class �all D F�

d , and those
that use only function values, the class �std. In the average case setting it is seen
that the convergence and tractability for the two classes are the same, whereas in the
worst case they may be different.

The average case L2 function approximation error for a measurable algorithm A

is defined by

e
avg
d .A/ WD

�Z

Fd

kId f � Af k2
L2

�d .df /

�1=2

;
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It is important to know how small the average case error can be when A.f / is based
on n pieces of function information generated by Li 2 �. Let the minimal average
case error of all algorithms that use at most n linear functionals be denoted by

e
avg
d .nI �/ D inf

fLi gn
iD1

Li 2�

inf
A based

on fLi gn
iD1

e
avg
d .A/; � 2 f�all; �stdg: (4)

We define a covariance kernel such that the initial error is e
avg
d .0; �/ D 1. The aim

is to find out how quickly e
avg
d .nI �/ decays with n.

In the case of the Gaussian covariance kernel, (1), and the Gaussian weight, (2),
we will show that for an arbitrary (large) positive p there exists Cd;p depending on
d and p such that

e
avg
d .nI �/ � Cd;pn�p for all n 2 \: (5)

This means that the convergence of the L2 average case approximation error is
as fast as any polynomial in n�1. Unfortunately, the dimension dependence of the
leading factor Cd;p might prove to be disastrous. We define a dimension-independent
convergence exponent as

pcnv.�/ D sup
˚

p > 0 W sup
d;n2\

npe
avg
d .nI �/ < 1�

: (6)

The supremum of the empty set is taken to be zero. This means that e
avg
d .nI �/ �

Cpn�p for all p < pcnv, but perhaps not for p D pcnv. We say that dimension-
independent convergence holds iff pcnv.�/ > 0. We want to find conditions on the
shape parameters �` that bound pcnv above and below.

This notion is equivalent to strong polynomial tractability, which says that the
minimal number, navg."I d; �/, of linear functionals or function values needed to
achieve an average case error " can be bounded by M� "�� , for some positive M�

and � , and this holds for all d . The exponent of strong polynomial tractability is
defined as

pstr.�/ D inf
˚

p � 0 W sup
d2\; "2.0;1/

"pnavg."I d; �/ < 1� D 1

pcnv.�/
: (7)

The infimum of the empty set is taken to be infinity.
The main result of this paper for �` D `�˛ is that dimension-independent

convergence and strong tractability hold iff ˛ > 1=2, and then the exponents for
the two classes �all and �std are the same and equal to

pcnv D p�1
str D ˛ � 1=2:

It is worth noting that for the isotropic case, �` D � , we have ˛ D 0. Therefore there
is no dimension-independent convergence and no strong polynomial tractability.
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Even a modest decay of �` D `�˛ , 0 < ˛ � 1=2, is insufficient to yield dimension-
independent convergence and strong polynomial tractability.

In fact, for constant shape parameters, �` D � > 0, the number of data based on
linear functionals, navg."I d; �all/, required to guarantee an error no larger than " in
the average case setting is bounded below as follows:

navg."I d; �all/ � .1�"2/

 

1 C 2�2

1 Cp

1 C 4�2

!d

for all " 2 .0; 1/; d 2 \: (8)

Hence, the minimal number of linear functionals is exponential in d , and this is
called the curse of dimensionality. For � D 1, the lower bound above is .1 �
"2/.1:618033 : : : /d , whereas for � D 0:1, it is .1 � "2/.1:009901 : : : /d . This means
that for small positive � , the curse of dimensionality is delayed. However, in the �std

case, small values of � give rise to ill-conditioned Gram matrices K given in (12).
The recent work of [4] uses the same eigen-decomposition (13) of the Gaussian
kernel employed here to avoid forming the matrix K and to compute Gaussian kernel
approximants in a numerically stable manner with small � . Furthermore, it is known
that in the “flat” limit, � ! 0, isotropic Gaussian kernel interpolants converge
to a polynomial interpolant, and thus isotropic Gaussian interpolation generalizes
multivariate polynomial interpolation [16].

We now comment on the constructiveness of our convergence results. For
the class �all, optimal error algorithms in the average case are known. Hence,
for ˛ > 1=2 we know how to construct algorithms for which we can achieve
dimension-independent convergence and strong polynomial tractability with the
exponents pcnv and pstr. For the class �std, we use the result from [7] that states
the equality of the exponents for the classes �all and �std for a much more general
case. Unfortunately, this result is non-constructive and we only know the existence
of such algorithms. It would be of a practical interest to find an explicit construction
of such algorithms.

In the final section of this paper we compare the worst case and average case
results for the function space Fd studied in [3]. This is the reproducing kernel
Hilbert space whose kernel is a Gaussian kernel with �` replaced by a possibly
different sequence of shape parameters �

rep
` . For simplicity of presentation, we

assume that �
rep

` D `�ˇ for some ˇ � 0. It turns out that dimension-independent
convergence and strong polynomial tractability, both in the worst case setting, hold
for the class �all iff ˇ > 0, and for the class �std if ˇ > 1=2. For the class �all, the
exponents are

pcnv D p�1
str D ˇ;

whereas for the class �std, we only have estimates of pcnv, namely,

ˇ

1 C 1
2ˇ

� pcnv D p�1
str � ˇ:
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To allow for a fair comparison between the worst case and average case results we
equip the function space Fd with a zero-mean Gaussian measure with a covariance
kernel Kd that depends on a positive parameter q, but is not of the form (1).
For ˇ > 1=2 and q > 1=.2ˇ/, we show that dimension-independent convergence
and strong polynomial tractability, both in the average case setting, hold and the
exponents for the classes �all and �std are the same and equal to

pcnv D p�1
str D .q C 1/ˇ � 1=2 > ˇ:

For q � 1=.2ˇ/, the exponents in the worst and average case settings for the class
�all are almost the same. In fact, we present conditions when they are the same. For
instance, this holds for �

rep
` D .` ln2.` C 1//�ˇ .

It is interesting that for some cases we have the same exponents in the worst case
and average case settings. We stress that this holds for the space of functions that
are analytic and for the exponents that are independent of d . If one wants to find the
exponents for a fixed d and is ready to accept factors in the error bounds that may
arbitrarily depend on d , our analysis does not apply.

We finish the introduction by indicating a number of open problems. We have
already mentioned one problem concerning a construction of an algorithm that
uses only function values and achieves the dimension-independent convergence
exponent. Another problem would be to address different types of tractability. We
restrict ourselves in this paper to strong polynomial tractability. It would be of
interest to extend the analysis to polynomial, quasi-polynomial, T -tractability as
well as to weak tractability, see [9,10] for the definition of these tractability notions
and survey of the results. Finally, it would be of interest to study the approximation
for the function spaces with error measured not necessarily in the L2 norm as done
here. The case of the L1 norm seems especially challenging.

2 Assumptions and Background

The problem formulation and results that are outlined in the introduction require
some assumptions that are stated here for clarity and completeness. Moreover, some
known results on the convergence and tractability of function approximation are
reviewed.

It is assumed that function evaluation at any point is a continuous linear
functional on Fd , the Banach space of functions to be approximated. This implies
the existence of the covariance kernel, Kd W Rd � R

d ! R, defined above in (3).
The kernel Kd is symmetric and positive semi-definite, i.e.,

Kd .x; t/ D Kd .t; x/ 8x; t 2 R
d ; (9a)

n
X

i;j D1

Kd .xi ; xj /ci cj � 0 8n 2 \; x1; : : : ; xn 2 R
d ; c1; : : : ; cn 2 R: (9b)
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We assume that Kd .x; �/; Kd .�; t/ as well as Kd .�; �/ are in L2 for all x; t 2 R
d .

In addition, we assume for convenience that Fd and �d in (3) are chosen such that

Z

Rd

Kd .x; x/ �d .x/ dx D 1: (10)

This guarantees that the minimal average case error using no function information is
unity. Assumption (10) of course holds for the Gaussian covariance kernel defined
in (1), as well as for any stationary kernel where eK.x; x/ D 1. Since Kd .x; t/ �
p

Kd .x; x/
p

Kd .t; t/ for all x; t 2 R
d , we have

Z

Rd

K2
d .x; t/ �d .x/ dx � Kd .t; t/ and

Z

R2d

K2
d .x; t/ �d .x/ �d .t/ dx dy � 1:

The approximations, Af , considered here use partial information about f ,
namely, n continuous linear functional evaluations denoted L1.f /; L2.f /; : : : ;

Ln .f /, where the Li belong to �all or �std. It is known that nonlinear algorithms
and adaptive choice of Li do not essentially help for the L2 approximation problem,
see [18, 20]. That is why we can restrict our attention to linear algorithms, i.e.,
algorithms of the form

Af D
n
X

iD1

Li .f / gi ; (11)

where gi 2 L2. The number n is called the cardinality of A and characterizes the
cost of the algorithm A. The case of n D 0, i.e., no information about the function
is used, leads to the zero algorithm, Af D 0.

For a fixed design, L1; : : : ; Ln, one may choose g D .gi /
n
iD1 to minimize e

avg
d .A/

as follows: g.x/ D K�1z.x/, where

K WD
�Z

Fd

Li .f /Lj .f / �d .df /

�n

i;j D1

; z.x/ WD
�Z

Fd

Li .f /f .x/ �d .df //

�n

iD1

:

(12)

This is the spline algorithm, which was mentioned in the introduction. Note that
depending on the choice of Li the matrix K may be singular. In this case, the solution
g.x/ D K�1z.x/ is well defined as the vector with minimal Euclidean norm that
satisfies the equation Kg.x/ D z.x/, which always has at least one solution. The
average case error of the spline algorithm is

e
avg
d

�fLi gn
iD1

� WD inf
A based

on fLi gn
iD1

e
avg
d .A/ D

�

1 �
Z

Rd

zT .x/K�1z.x/ �d .x/ dx
�1=2

:

We stress that (10) has been exploited to simplify the expression for e
avg
d .A/.
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When one is able to draw data from the class of all continuous linear functionals,
the optimal design or sampling scheme, fLi gn

iD1, is known, see [11, 18, 20].
More precisely, consider the probability measure 	d D �d I �1

d on L2. Due to
the assumptions on Kd , the measure 	d is also a zero-mean Gaussian with the
covariance operator C	d

W L �
2 D L2 ! L2 given by

C	d
g D

Z

Rd

Kd .x; �/g.x/ �d .x/ dx for all g 2 L2;

where Kd is the covariance kernel of �d . The operator C	d
is compact and self-

adjoint. The eigenpairs .
d;j ; 'd;j / of C	d
satisfy the integral equation

Z

Rd

Kd .x; t/ 'd;j .t/ �d .t/ dt D 
d;j 'd;j .x/: (13a)

The eigenfunctions 'd;j can be chosen to be L2 orthonormal, and the eigenvalues

d;j are ordered, 
d;1 � 
d;2 � � � � . If only k eigenvalues are positive, then to
simplify the notation we formally set 
d;j D 0 for all j > k. Then

Kd .x; t/ D
1
X

j D1


d;j 'd;j .x/ 'd;j .t/ for all x; t 2 R
d : (13b)

Note that due to (10) we have

1 D
Z

Rd

Kd .x; x/ �d .x/ dx D
1
X

j D1


d;j : (13c)

The optimal sampling scheme for the class �all is to choose Li .f / D hf; 'd;i iL2
,

for which the linear algorithm which minimizes the average case error corresponds
to projecting the function f into the vector space spanned by the eigenfunctions
corresponding to the n largest eigenvalues. This algorithm is of the form

Aallf D
n
X

iD1

hf; 'd;i iL2
'd;i : (14)

The square of the average case error of Aall is the tail sum of the eigenvalues so that

e
avg
d .nI �all/ D

0

@

1
X

j DnC1


d;j

1

A

1=2

: (15)

Before delving into the detailed derivations of pcnv.�/ and pstr.�/ defined in (6)
and (7), respectively, it is important to be clear about what they depend on. They
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do not depend on n, d , or " since they are defined in terms of a supremum/infimum
over these quantities. The exponents pcnv=str may depend on the class of available
function information, �. They also depend on the spaces Fd , the measures �d

through the covariance kernels Kd and the weights �d . If we choose Kd to be a
Gaussian kernel then, as we shall see, pcnv=str strongly depend on the sequence of
shape parameters � D f�`g`2\ appearing in (1). More precisely, they depend on how
quickly �` decays as ` ! 1. The decay of � D f�`g`2\ is measured by the rate
r.�/ defined as

r.�/ D sup
˚

ˇ > 0 W
1
X

`D1

�
1=ˇ

` < 1�

(16)

with the convention that the supremum of the empty set is taken to be zero. For
example, if �` D `�r for r � 0 then r.�/ D r .

3 Convergence and Tractability for �all and �std

We now specify the average case results for the Gaussian kernel given by (1) and
the Gaussian function �d given by (2). The eigenpairs of C	d

are known in this case.
More precisely, for the univariate case, d D 1, and the covariance kernel

K1.x; t/ D e��2.x�t /2

for all x; t 2 R;

the eigenpairs
�


1;j ; '1;j

� D
� Q
�;j ; Q'�;j

�

are given by

Q
�;j D .1 � !�/ !j �1
� ; where !� D �2

1
2
.1 Cp

1 C 4�2/ C �2
; (17)

Q'�;j .x/ D
s

.1 C 4�2/1=4

2j �1.j � 1/Š
exp

 

� �2x2

1
2
.1 Cp

1 C 4�2/

!

Hj �1

�

.1 C 4�2/1=4x
�

;

where Hj �1 is the Hermite polynomial of degree j � 1,

Hj �1.x/ D .�1/j �1ex2 dj �1

dxj �1
e�x2

for all x 2 R;

see e.g., [3, 12].
Since the multivariate (d > 1) anisotropic Gaussian kernel, (1), is a product of

univariate Gaussian kernels, the eigenpairs for the multivariate case are products
of those for the univariate case. Specifically, for d > 1, let � D f�`g`2\, j D
.j1; j2; : : : ; jd / 2 \d and x D .x1; x2; : : : ; xd / 2 R

d . Then the eigenpairs
� Q
d;� ;j; Q'd;� ;j

�

are given by the products
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Q
d;� ;j D
d
Y

`D1

Q
�`;j`
D

d
Y

`D1

.1 � !�`
/ ! j`�1

�`
; Q'd;�;j.x/ D

d
Y

`D1

Q'�`;j`
.x`/: (18)

The notations
� Q
�;j ; Q'�;j

�

for d D 1 and
� Q
d;� ;j; Q'd;�;j

�

for d > 1 have been

introduced to emphasize the dependence of the eigenpairs on � . Note that while
the eigenvalues Q
�;j are ordered in decreasing magnitude, the Q
d;�;j are not. The
Q
d;�;j, for which we have an explicit expression in (18), are, however, the same as
the ordered 
d;j referred to above in (13), where the � dependence is hidden.

Since the tail sum of the ordered eigenvalues in (15) is often not directly
accessible, we show that it can be related to the sums of the powers of all
eigenvalues. Let

Md;� WD
� 1
X

j D1



1=�

d;j

��

for all � � 1: (19)

Note that Md;1 D 1 and by Jensen’s inequality Md;� � Md;1 D 1. Furthermore,

Md;� D 1 for � > 1 iff 
d;1 D 1 and 
d;j D 0 for all j � 2:

This sum of powers of all eigenvalues bounds the tail sum as follows:

1
X

j DnC1


d;j �
1
X

j DnC1

�



1=�

d;j

�� �
1
X

j DnC1

 

1

j

j
X

kD1



1=�

d;k

!�

� Md;�

1
X

j DnC1

j �� � Md;�

.1 � �/n1��

Another argument gives bounds in the opposite direction, see [6, Corollary 1] and
[7, Lemmas 1 and 2]. Thus, the convergence rate for average case approximation
depends on the finiteness of Md;� , and strong tractability or dimension-independent
convergence rates depends on the boundedness of Md;� over all d . This is embodied
in the following lemma, which is a special case of Theorems 6.1 and 6.2 in [9] for
� D �all and utilizes [7] for the case � D �std.

Lemma 1. Consider L2 function approximation for the class �all or �std in the
average case setting with any symmetric, positive definite covariance kernel, Kd W
R

d � R
d ! R satisfying (9) and having an eigen-decomposition (13). Then L2

function approximation has a dimension-dependent convergence rate of O.n�p/

provided that Md;2pC1 is finite. There is dimension-independent convergence and
strong polynomially tractability iff there exists a positive � such that

sup
d2\

Md;2�C1 < 1:
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In this case the exponents are

pcnv D p�1
str D sup

˚

� 2 .0; 1/ W sup
d2\

Md;2�C1 < 1�

: ut

It is easy to see that dimension-independent convergence and strong polynomial
tractability do not hold for non-trivial product covariance kernels of the form

Kd .x; t/ D
d
Y

`D1

K1.x`; t`/ for all x; t 2 R
d ;

In this case, the eigenvalues 
d;j are the products of the eigenvalues, 
j , of K1, and

Md;2�C1 D
� 1
X

j D1



1=.2�C1/
j

�d.2�C1/

:

Unless, 
1 D 1 and 0 D 
2 D 
3 D � � � , it follows that
P1

j D1 

1=.2�C1/
j > 1

and Md;2�C1 goes to infinity for all � > 0. In fact, we can say more and show that
the minimal number navg."I d; �all/ depends exponentially on d . Indeed, from (15),
note that

�

e
avg
d .nI �all/

�2 D
1
X

j DnC1


d;j D
1
X

j D1


d;j �
n
X

j D1


d;j � 1 � n
d;1 D 1 � 
d
1 :

If 
2 > 0 then
P1

j D1 
j D 1 implies that 
1 < 1, which then yields

navg."I d; �all/ � .1 � "2/

�

1


1

�d

for all " 2 .0; 1/; d 2 \: (20)

This is called the curse of dimensionality.
We now specify Lemma 1 for the Gaussian anisotropic kernel, (1). The analysis

in [3, Lemma 1] shows that

Md;� D
0

@

X

j2\d

Q
1=�

d;� ;j

1

A

�

D
d
Y

`D1

1 � !�`
�

1 � !
1=�
�`

�� D
(

D 1; � D 1;

> 1; 1 < � < 1;

where !� was defined above in (17). Noting that !� D �2.1 C o.1// as � ! 0, it is
further shown that for all � > 1,

� < 2r.�/ H) sup
d2\

Md;� D
1
Y

`D1

1 � !�`
�

1 � !
1=�
�`

�� < 1 H) � � 2r.�/; (21)
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where r.�/ is defined above in (16). Combining this equation with Lemma 1
determines dimension-independent convergence and strong polynomial tractability
as well as their exponents.

Theorem 1. Consider L2 approximation for the class �all or �std in the average
case setting with the Gaussian kernel, (1), and shape parameters � D f�`g`2\.
Then L2 function approximation has a dimension-dependent convergence rate of
O.n�p/ for all p > 0. Moreover, L2 approximation has dimension-independent
convergence exponent and is strongly polynomially tractable iff r.�/ > 1=2. In this
case the exponents are

pcnv D p�1
str D r.�/ � 1=2:

For the class �all, the algorithm, (14), which attains these exponents is given by
projecting the function into the first n eigenfunctions of the kernel. For the class
�std, the algorithm that attains these exponents is not known explicitly.

The isotropic Gaussian kernel, i.e., constant shape parameters, �` D � > 0, has
r.�/ D 0, which implies no dimension-independent convergence rate in the average
case setting. Furthermore, we can apply (20), with 1=
1 D 1=.1�!�/ to obtain (8).

4 Comparison of the Worst and Average Case Settings

We compare the results in the worst and average case settings for the function space
Fd D H.K

rep
d /. This is the Hilbert space whose reproducing kernel is

K
rep
d .x; t/ D exp

�

� Œ�
rep

1 �2.x1 � t1/
2 � � � � � Œ�

rep
d �2.xd � td /2

�

for all x; t 2 R
d :

(22)

That is, K
rep
d has the same form as the covariance Gaussian kernel, (1), for possibly

different shape parameters or coordinate weights � rep D f� rep
` g`2\.

The L2 approximation problem for this space and the Gaussian function �d given
by (2) was studied in [3] for the worst case setting. We now briefly recall some of
the results from this paper. For simplicity, we only consider the normalized error
criterion for which we want to decrease the initial error by ". For the class �all,
we have dimension-independent convergence and strong polynomial tractability iff
r.� rep/ > 0. If so, then the exponents are

pcnv D p�1
str D r.� rep/:

For the class �std, the results are less satisfactory because we only have upper and
lower bounds on the exponents. We have dimension-independent convergence and
strong polynomial tractability if r.� rep/ > 1=2 and then
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r.� rep/

1 C 1
2r.� rep/

� pcnv D p�1
str � r.� rep/:

We turn to the average case setting. As already mentioned, to get a fair
comparison between the worst and average settings, we must guarantee that the
average case setting over the unit ball is roughly the same as for the whole space.
We will do this by constructing a covariance kernel with the same eigenfunctions
as those for K

rep
d , but with different eigenvalues. Since the dimension-independent

convergence and tractability depend only on the eigenvalues, the arguments used in
the previous sections may then be applied. However, the resulting covariance kernel
will no longer be of Gaussian form (1).

Let . Q
d;� rep;j; Q'd;� rep;j/ be the eigenpairs for the reproducing kernel (22) as defined
in (18). Then

�d;j WD �d;� rep;j D
q

Q
d;� rep ;j Q'd;� rep ;j; j 2 \d

is the complete orthonormal basis of Fd . We equip the space Fd with a zero-mean
Gaussian measure �d whose covariance is defined in such a way that

Z

Fd

h�d;i; f iFd

˝

�d;j; f
˛

Fd
�d .df / D ˇd;iıi;j for all i; j 2 \d :

Here the ˇd;j are positive, and for convenience of calculation are chosen to be of
product form:

ˇd;j D
d
Y

`D1

ˇ`;j`
; ˇ`;j`

D
1 �

h

!�
rep

`

iqC1

1 � !�
rep

`

h

!�
rep
`

iq.j �1/

for j D 1; 2; : : : ;

(23)
where q > 0. For Gaussian measures we must assume that

1 >
X

j2\d

ˇd;j D
d
Y

`D1

1
X

j D1

ˇ`;j D
d
Y

`D1

1 � Œ!�
rep

`
�qC1

.1 � !�
rep

`
/.1 � Œ!�

rep
`

�q/
; (24)

which holds automatically.
Next, we find the covariance kernel Kd . Since f D P

j2\d

˝

f; �d;j
˛

Fd
�d;j it

follows that

Kd .x; t/ D
Z

Fd

f .x/f .t/ �d .df /

D
X

j2\d

ˇd;j �d;j.x/ �d;j.t/ D
X

j2\d

ˇd;j
Q
d;� rep;j Q'd;� rep;j.x/ Q'd;� rep ;j.t/: (25)
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Thus, the eigenvalues for the covariance kernel are

Q
d;�;j D ˇd;j
Q
d;� rep ;j D

d
Y

`D1

ˇ`;j`
Q
�

rep
` ;j`

D
d
Y

`D1

�

1 �
h

!�
rep

`

iqC1
�

h

!�
rep
`

i.qC1/.j`�1/

:

The covariance kernel, Kd , can be compared with the formula for the reproducing
kernel,

K
rep
d .x; t/ D

X

j2\d

�d;j.x/ �d;j.t/ D
X

j2\d

Q
d;� rep ;j Q'd;� rep ;j.x/ Q'd;� rep;j.t/:

It would be tempting to have Kd D K
rep
d , which holds for ˇd;j D 1, for all j 2 \d ,

i.e., q D 0 in (23). This is, however, not allowed since the sum of ˇd;j must be finite.
Note that for this choice of ˇd;j the covariance kernel, Kd , is of product form, but no
longer a Gaussian. This is because while the eigenfunctions in the expansion (25)
are Q'd;� rep;j, the eigenvalues are not those corresponding to the Gaussian kernel.
Note that (10) is naturally satisfied because

X

j2\d

Q
d;�;j D
X

j2\d

ˇd;j Q
d;� rep;j D
d
Y

`D1

1
X

j D1

ˇ`;j
Q
�

rep
` ;j D

d
Y

`D1

1 D 1: (26)

We stress that the worst case setting is studied for the unit ball of Fd whereas the
average case setting is defined for the whole space Fd . However, it is known that the
average case setting for the unit ball is roughly the same as the average case setting
for the whole space if the sum of the eigenvalues is of order one, see Theorem 5.8.1
of Chap. 6 and Lemma 2.9.3 of the Appendix in [18]. For our purpose we need to
assume that this holds uniformly in dimension, namely, that the ˇd;j are chosen to
satisfy

sup
d2\

X

j2\d

ˇd;j < 1: (27)

From (24) we easily conclude that (27) holds iff the sum
P1

`D1

h

!�
rep

`

imin.q;1/

converges. Since !� � �2, this implies that
P1

`D1

	

�
rep

`


2 min.q;1/
< 1 is needed to

guarantee that the average case for the whole function space Fd is roughly the same
as the average case setting for the unit ball of Fd , and this makes the comparison
between the worst and average case settings fair. Note that the convergence of the
last series implies that r.� rep/ � 1=.2 min.q; 1// � 1=2. That is why we need to
assume that

P1
`D1Œ�

rep
` �2 < 1, and q � 1=.2r.� rep//.

Inspecting the formula for Q
d;� ;j above and following the arguments leading
to Theorem 1, we obtain the corresponding exponents for dimension-independent



Average Case Approximation: Convergence and Tractability of Gaussian Kernels 343

convergence and strong tractability for the average case setting over the unit ball in
Fd D H.K

rep
d /. These results are summarized in the theorem below.

Theorem 2. Consider L2 approximation for the function space H.K
rep
d /.

• Consider the worst case setting for the normalized error criterion.

– For the class �all, dimension-independent convergence and strong polynomial
tractability hold iff r.� rep/ > 0. If so, their exponents are

pcnv D p�1
str D r.� rep/:

– For the class �std, assume that r.� rep/ > 1=2. Then dimension-independent
convergence and strong polynomial tractability hold and their exponents
satisfy

r.� rep/

1 C 1
2r.� rep/

� pcnv D p�1
str � r.� rep/:

• Consider the average case setting defined as in this section for weights satisfy-
ing (23), and for

P1
`D1Œ�

rep
` �2 < 1 so that r.� rep/ � 1=2.

– The average case setting over the whole space and the unit ball of the function
space H.K

rep
d / are roughly the same.

– For both classes �all and �std, dimension-independent convergence and
strong polynomial tractability hold and their exponents are

pcnv D p�1
str D .q C 1/r.� rep/ � 1=2 for all q � 1=.2r.� rep//:

– If q D 1=.2r.� rep// then dimension-independent convergence and strong
polynomial tractability exponents are the same in the worst and average case
setting for the class �all.
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Extensions of Atanassov’s Methods for Halton
Sequences

Henri Faure, Christiane Lemieux, and Xiaoheng Wang

Abstract We extend Atanassov’s methods for Halton sequences in two differ-
ent directions: (1) in the direction of Niederreiter .t; s/�sequences, (2) in the
direction of generating matrices for Halton sequences. It is quite remarkable that
Atanassov’s method for classical Halton sequences applies almost “word for word”
to .t; s/�sequences and gives an upper bound quite comparable to those of Sobol’,
Faure, and Niederreiter. But Atanassov also found a way to improve further his
bound for classical Halton sequences by means of a clever scrambling producing
sequences which he named modified Halton sequences. We generalize his method
to nonsingular lower triangular matrices in the last part of this article.

1 Introduction

Halton sequences and their generalizations are a popular class of low-discrepancy
sequences. Their relevance in practical settings has been enhanced by various
improvements that have been proposed over the years (see [8] for a survey). But
it is the remarkable result published by E. Atanassov in 2004 [1] that has increased
their appeal from a theoretical point of view. In Theorem 2.1 of this paper, Atanassov
reduced by a factor of sŠ the value of the hidden constant cs in the discrepancy bound
of these sequences. His proof relies on a result from diophantine geometry, and as
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such, provides a new approach to study the behavior of low-discrepancy sequences.
The purpose of this paper is to explore how this approach can be extended to other
constructions.

Our contribution is to first extend Atanassov’s methods to .t; s/�sequences,
including Sobol’ and Faure sequences, and then to a more general class of Halton
sequences which makes use of generating matrices.

It is quite remarkable that Atanassov’s method for the original Halton sequences
applies almost “word for word” to .t; s/�sequences in the narrow sense (as defined
in [16]) and gives an upper bound that is comparable to those of Sobol’, Faure,
and Niederreiter, with the same leading term. The details are provided Sect. 3, after
first reviewing Halton and .t; s/-sequences in Sect. 2. This method also applies to
extensions of these sequences introduced by Tezuka [17,18]) and Niederreiter–Xing
[16] as shown in our recently submitted work [9].

In [1], Atanassov also introduces a family of sequences called modified Halton
sequences, and proves that an even better behavior for the constant cs holds in
that case. So far, this approach has no equivalent for .t; s/�sequences. In fact, this
method works for Halton sequences and gives asymptotic improvements thanks to
the structure of these sequences, which is completely different from the structure of
.t; s/�sequences.

However, what we propose to do here is to extend these modified Halton
sequences, which rely on so-called admissible integers, by using what we call
admissible matrices. As shown later in Sect. 4, the same improved behavior holds
for this more general construction.

Another direction for generalizations would be to consider a larger family
including both Halton and .t; s/�sequences. Until now, attempts in this direction
have been disappointing, except in the almost trivial case of .0; s/�sequences in
variable base which, in fact, are very close to original Halton sequences (see [7] and
[11] more recently, where many other references are given).

We end the introduction with a review of the notion of discrepancy, which will be
used throughout the paper. Various types exist but here, for short, we only consider
the so-called extreme discrepancy, which corresponds to the worst case error in the
domain of complexity of multivariate problems. Assume we have a point set PN D
fX1; : : : ; XN g � I s D Œ0; 1�s and denote J (resp J �) the set of intervals J of I s

of the form J D Qs
j D1Œyj ; zj /, where 0 � yj < zj � 1 (resp. J D Qs

j D1Œ0; zj /).
Then the discrepancy function of PN on J is the difference

E.J I N / D A.J I PN / � N V.J /;

where A.J I PN / D #fnI 1 � n � N; Xn 2 J g is the number of points in PN that
fall in the subinterval J , and V.J / D Qs

j D1.zj � yj / is the volume of J .
Then, the star (extreme) discrepancy D� and the (extreme) discrepancy D of

PN are defined by

D�.PN / D sup
J 2J �

jE.J I N /j and D.PN / D sup
J 2J

jE.J I N /j:
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It is well known that D�.PN / � D.PN / � 2sD�.PN /. For an infinite sequence X ,
we denote by D.N; X/ and D�.N; X/ the discrepancies of its first N points. Note
that several authors have a 1=N factor when defining the above quantities.

A sequence satisfying D�.N; X/ 2 O..log N /s/ is typically considered to be a
low-discrepancy sequence. But the constant hidden in the O notation needs to be
made explicit to make comparisons possible across sequences. This is achieved in
many papers with an inequality of the form

D�.N; X/ � cs.log N /s C O..log N /s�1/: (1)

As mentioned before, the constant cs in this inequality is the main object of study in
[1], as well as in the present paper.

2 Review of Halton and .t; s/�Sequences

2.1 Generalized Halton Sequences

Halton sequences are s-dimensional sequences, with values in the hypercube I s .
They are obtained using one-dimensional van der Corput sequences Sb in base b for
each coordinate, defined as follows: For any integer n � 1

Sb.n/ D
1X

rD0

ar .n/

brC1
; where n � 1 D

1X

rD0

ar .n/ br .b-adic expansion of n � 1/:

An s-dimensional Halton sequence [10] X1; X2; : : : in I s is defined as

Xn D .Sb1.n/; : : : ; Sbs .n//; n � 1; (2)

where the bj ’s, for j D 1; : : : ; s, are pairwise coprime.
A generalized van der Corput sequence [4] is obtained by scrambling the digits

with a sequence ˙ D .�r /r�0 of permutations of Zb D f0; 1; : : : ; b � 1g:

S˙
b .n/ D

1X

rD0

�r

�
ar.n/

�

brC1
: (3)

If the same permutation � is used for all digits, (i.e., if �r D � for all r � 0),
then we use the notation S�

b to denote S˙
b . The van der Corput sequence Sb is

obtained by taking �r D id for all r � 0, where id stands for the identity permutation
over Zb .

A generalized Halton sequence [6] X1; X2; : : : in I s is defined by choosing s

generalized van der Corput sequences:
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Xn D .S
˙1

b1
.n/; : : : ; S

˙s

bs
.n//; n � 1; (4)

where the bj ’s are pairwise coprime bases. In applications, these bj ’s are usually
chosen as the first s prime numbers. In this case, we denote the j th base as pj .

Throughout the paper, we denote respectively by H and GH the Halton and
generalized Halton sequence defined by (2) and (4), in which case, to avoid some
difficulties, for 1 � j � s, the sequence ˙j D .�j;r /r�0 satisfies �j;r .0/ 6D bj � 1
for infinitely many r . Various bounds for the discrepancy of Halton sequences have
been obtained since their introduction by Halton—by Meijer, Faure, Niederreiter—
all of them by refinements of the same idea. But the major theoretical improvement
goes back to Atanassov [1, Theorem 2.1], with a completely different proof using
an argument of diophantine geometry:

D�.N; GH/ � 1

sŠ

sY

j D1

�
.bj � 1/ log N

2 log bj
C s

�

C
s�1X

kD0

bkC1

kŠ

kY

j D1

��
bj

2

�
log N

log bj
C k

�

C u;

(5)

where u D 0 when all bases bj are odd, and

u D bj

2.s � 1/Š

Y

1�i�s;i¤j

�
.bi � 1/ log N

2 log bi

C s � 1

�

if bj is the even number among them. Therefore estimate (1) holds with constant

cs D 1

sŠ

sY

j D1

bj � 1

2 log bj

: (6)

By making the constant cs smaller by a factor sŠ compared to previously established
bounds, it is going to 0, instead of infinity, as s goes to infinity!

2.2 .t; s/�Sequences

The concept of .t; s/�sequences has been introduced by Niederreiter to give a
general framework for various constructions including Sobol’ and Faure sequences.

Definition 1. Given an integer b � 2, an elementary interval in I s is an interval
of the form

Qs
iD1Œai b

�di ; .ai C 1/b�di / where ai ; di are nonnegative integers with
0 � ai < bdi for 1 � i � s.
Given integers t; m with 0 � t � m, a .t; m; s/�net in base b is an s-dimensional
set with bm points such that any elementary interval in base b with volume bt�m

contains exactly bt points of the set.
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An s-dimensional sequence X1; X2; : : : in I s is a .t; s/�sequence if the subset fXn W
kbm < n � .k C1/bmg is a .t; m; s/�net in base b for all integers k � 0 and m � t:

Further generalizations by Niederreiter and Xing would require an extension of
that definition with the so-called truncation operator. To avoid the additional
developments required to explain these, we leave them out. Issues related to the
construction of these sequences and the optimization of the quality parameter t are
not relevant for our purpose in Sect. 3. But since we will use the digital method
with generating matrices for Halton sequences in Sect. 4, we now briefly recall that
method for constructing .t; s/�sequences in base b.

A linearly scrambled van der Corput sequence is obtained by choosing an 1�1
matrix C D .Cr;l /r�0;l�0 with elements in Zb , and then defining the nth term of this
one-dimensional sequence as

SC
b .n/ D

1X

rD0

yn;rb
�.rC1/ with yn;r D

1X

lD0

Cr;lal .n/ mod b; (7)

where ar .n/ is the r-th digit of the b-adic expansion of n � 1 D P1
rD0 ar .n/ br :

Then, in arbitrary dimension s, one has to choose s linearly scrambled van
der Corput sequences with generating matrices C1; : : : ; Cs to define the so-called
digital sequence .S

C1

b ; : : : ; S
Cs

b / as proposed by Niederreiter in [14]. Of course
the generating matrices must satisfy strong properties to produce low-discrepancy
sequences. Special cases are the Sobol’ sequences—defined in base b D 2 and
making use of primitive polynomials to construct the non-singular upper triangular
(NUT) Ci recursively—and the Faure sequences—defined in a prime base b � s

and taking Ci as the NUT Pascal matrix in Zb raised to the power i � 1.
As to bounds for the star discrepancy, .t; s/�sequences satisfy estimate (1) with

constant cs (see for instance [3, 14])

cs D bt

sŠ

b � 1

2b b
2
c

 
b b

2
c

log b

!s

: (8)

Note that Kritzer [12] recently improved constants cs in (8) by a factor 1=2 for odd
b � 3 and s � 2, and by a factor 1=3 for b D 2 and s � 5 (a similar result holds for
even b).

3 Atanassov’s Method Applied to .t; s/�Sequences

In this section, we apply Atanassov’s method to .t; s/�sequences and obtain a
new proof for estimate (1) and constant (8). To do so, we need to recall an
important property of .t; s/�sequences and lemmas used in [1], reformulated
here for convenience with base b instead of bases pi (in brackets we recall the
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corresponding lemmas in [1] with label A). In what follows, PN denotes the set
containing the first N points of a sequence X .

Property 1. (Lemma A.3.1.) Let X be a .t; s/�sequence. Let J D
sY

iD1

Œbi b
�di ;

ci b
�di / where bi ; ci are integers satisfying 0 � bi < ci � bdi : Then

A.J I PN / D kbt.c1 � b1/ � � � .cs � bs/ where N D kbtbd1 � � � bds .k � 0/ and

jA.J I PN / � N V.J /j � bt

sY

iD1

.ci � bi /, for any integer N � 1:

This property directly follows from the definition of .t; s/�sequences and is left for
the reader to verify.

Lemma 1. (Lemma A.3.3.) Let N � 1; k � 1 and b � 2 be integers. For integers
j � 0; 1 � i � k, let some numbers c

.i/
j � 0 be given, satisfying c

.i/
0 � 1 and

c
.i/
j � c for j � 1, for some fixed number c: Then

X

.j1;:::;jk/jbj1 ���bjk �N

kY

iD1

c
.i/
ji

� 1

kŠ

�

c
log N

log b
C k

�k

: (9)

For convenience, all the ji ’s are nonnegative unless otherwise stated.

Proof. The proof proceeds very closely to the one given for Lemma 3.3 in [1],
except that here we work with a single base b rather than with s different bases.
For each m 2 f0; 1; : : : ; kg, fix a subset L D fi1; : : : ; img of f1; : : : ; kg and consider
the contributions of all the k-tuples j with jr > 0 for r 2 L; and jr D 0 for r … L;

with
Qk

iD1 bji D Q
i2L bji � N . One can verify as in [1, Lemma A.3.2] that there

are 1
mŠ

�
log N

log b

	m

such k-tuples, each having a contribution of

kY

iD1

c
.i/
ji

D
Y

i2L

c
.i/
ji

Y

i…L

c
.i/
ji

�
Y

i2L

c
Y

i…L

1 D cm:

Expanding both sides of (9), the result now follows since 1
mŠ

� 1
kŠ

kk�m. ut
Definition 2. (Definition A.3.2.) Consider an interval J � I s . We call a signed
splitting of J any collection of intervals J1; : : : ; Jn and respective signs �1; : : : ; �n

equal to ˙1, such that for any (finitely) additive function � on the intervals in I s ,
we have �.J / D Pn

iD1 �i �.Ji /:

The following lemma is taken from [1], in a slightly modified form.
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Lemma 2. (Lemma A.3.5.) Let J D Qs
iD1Œ0; z.i// be an s-dimensional interval

and, for each 1 � i � s, let ni � 0 be given integers. Set z.i/
0 D 0, z.i/

ni C1 D
z.i/ and, if ni � 1, let z.i/

j 2 Œ0; 1� be arbitrary given numbers for 1 � j � ni .

Then the collection of intervals
Qs

iD1Œmin.z.i/
ji

; z.i/
ji C1/; max.z.i/

ji
; z.i/

ji C1//; with signs

�.j1; : : : ; js/ D Qs
iD1 sgn.z.i/

ji C1 � z.i/
ji

/, for 0 � ji � ni , is a signed splitting of J .

Now we have all the ingredients to prove the following theorem:

Theorem 1. The discrepancy bound for a .t; s/�sequence X in base b satisfies

D�.N; X/ � bt

sŠ

��
b

2

�
log N

log b
C s

�s

C bt

s�1X

kD0

b

kŠ

��
b

2

�
log N

log b
C k

�k

: (10)

Proof. As in [5] and [1], we will use special numeration systems in base b—using
signed digits aj bounded by



b
2

˘
—to expand reals in Œ0; 1/. That is, we write z 2

Œ0; 1/ as

z D
1X

j D0

aj b�j

(
with jaj j � b�1

2
if b is odd

with jaj j � b
2

and jaj j C jaj C1j � b � 1 if b is even.
(11)

The existence and unicity of such expansions are obtained by induction, see
[1, p. 21–22] or [19, p. 12–13] where more details are given. For later use, it is
worth pointing out that the expansion starts at b0 and as a result, it is easy to see that
a0 is either 0 or 1.

Now we can begin the proof: Pick any z D .z.1/; : : : ; z.s// 2 Œ0; 1/s . Expand each
z.i/ as

P1
j D0 a

.i/
j b�j according to our numeration systems (11) above.

Let n WD
j

log N

log b

k
and define z.i/

0 D 0 and z.i/
nC1 D z.i/. Consider the numbers

z.i/

k D Pk�1
j D0 a

.i/
j b�j for k D 1; : : : ; n. Applying Lemma 2 with ni D n, we expand

J D Qs
iD1Œ0; z.i// using .z.i/

j /nC1
j D1, obtaining a signed splitting

I.j/ D
sY

iD1

Œmin.z.i/
ji

; z.i/
ji C1/; max.z.i/

ji
; z.i/

ji C1//; 0 � ji � n; (12)

and signs �.j1; : : : ; js/ D Qs
iD1 sgn.z.i/

ji C1 � z.i/
ji

/, where j D .j1; : : : ; js/.
Since V and A. : I PN / are both additive, so is any scalar linear combination of
them, and hence A.J I PN / � N V.J / may be expanded as

A.J I PN / � N V.J / D
nX

j1D0

� � �
nX

jsD0

�.j/ .A.I.j/I PN / � N V.I.j/// DW ˙1 C ˙2

(13)
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where we rearrange the terms so that in ˙1 we put the terms j such that
bj1 � � � bjs � N (that is j1 C � � � C js � n) and in ˙2 the rest. Notice that in ˙1,
the ji ’s are small, so the corresponding I.j/ is bigger. Hence, ˙1 deals with the
coarser part whereas ˙2 deals with the finer part.

It is easy to deal with ˙1: from Property 1 and since z.i/

kC1 � z.i/

k D a
.i/

k b�k, we
have that

j A.I.j/I PN / � N V.I.j//j � bt

sY

iD1

j z.i/
ji C1 � z.i/

ji
j bji D bt

sY

iD1

j a
.i/
ji

j: (14)

Hence, applying Lemma 1 with k D s, c
.i/
j D ja.i/

j j and c D 

b
2

˘
, we obtain

j˙1j �
X

jjbj1 ���bjs �N

jA.I.j/I PN / � N V.I.j//j � bt

sŠ

��
b

2

�
log N

log b
C s

�s

which is the first part of the bound of Theorem 1.
The terms gathered in ˙2 give the second part of the bound of Theorem 1, i.e.,

the part in O..log N /s�1/. The idea of Atanassov for his proof of Theorem 2.1 for
Halton sequences is to divide the set of s-tuples j in ˙2 into s disjoint sets included
in larger ones for which Lemma 1 applies and gives the desired upper bound. His
proof is very terse. It has been rewritten in detail in [19] and we refer the reader to
this note for further information. Following the same approach, we can adapt the
proof to .t; s/�sequences and get the second part of the bound of Theorem 1. ut

From Theorem 1 we can derive the constant cs , which for the case where b is
odd is the same as in the known bound (8), and for b even is larger than (8) by a
factor b=.b � 1/ (this has recently been improved, together with the extension to
Niederreiter–Xing sequences suggested in Sect. 1, in our submitted work [9]).

Corollary 1. The discrepancy of a .t; s/�sequence X in base b satisfies (1) with

cs D
8
<

:

bt

sŠ

�
b�1

2 log b

	s

if b is odd

bt

sŠ

�
b

2 log b

	s

if b is even.

4 Scrambling Halton Sequences with Matrices

In this section, we generalize Atanassov’s methods from [1] to Halton sequences
scrambled with matrices, especially the method where he uses admissible integers
to get a smaller constant cs . We start by the simplest case of Theorem 2.1 from [1]
extended with matrices.
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4.1 Halton Sequences Scrambled with Lower Triangular
Matrices

Our idea of scrambling Halton sequences with matrices goes back to the scrambling
of Faure .0; s/-sequences in [18]: to improve the initial portions of these sequences
that tend to not spread uniformly over Œ0; 1/s , Tezuka suggested to apply linear
transformations to the generating matrices of the original sequences by mean of
non-singular lower triangular (NLT) matrices A1; : : : ; As . That is, he introduced the
idea of generalized Faure sequences, which are based on generating matrices of the
form Ci D Ai Pi ; where Pi is the NUT Pascal matrix in Zb raised to the power
i � 1. Now, going back to Halton sequences, it seems natural to use similar ideas to
scramble Halton sequences, as described in the following definition (see also [13,
App. B]).

Definition 3. The linearly scrambled Halton (LSH) sequence .Xn/n�1, based on
NLT matrices A1; : : : ; As , where Ai has entries in Zpi , is obtained as

Xn D .SA1
p1

.n/; : : : ; SAs
ps

.n//; n � 1;

where SC
b .n/ was defined in (7).

Theorem 2. An LSH sequence satisfies the discrepancy bound (1) with cs given by
(6) (the same constant as for GH sequences).

This theorem results from an analog of [1, Lemma 3.1]. But here, the use of NLT
matrices Ai implies that there might be infinitely many yn;r D b � 1 in (7). This
introduces disruptions in the proof (when using elementary intervals), as it does for
.t; s/�sequences generalized with linear scramblings [18] or with global function
fields [16]. Hence, as in [16, 18], we must introduce the truncation operator to
overcome this difficulty.
Truncation: Let x D P1

rD0 xr b�.rC1/ be a b–adic expansion of x 2 Œ0; 1�, with the
possibility that xr D b � 1 for all but finitely many r . For every integer m � 1, we
define the m-truncation of x by Œx�b;m D Pm

rD0 xr b�.rC1/ (depending on x via its
expansion). In the multi-dimensional case, the truncation is defined coordinate-wise.
Next, we define an elementary interval in bases p1; : : : ; ps , i. e., an interval of the
form

sY

iD1

Œli p
�di
i ; .li C1/p

�di
i /; where di � 0 and 0 � li < p

di
i are given integers: (15)

In order to establish our discrepancy bound for an LSH sequence, we first need
to work with the truncated version of the sequence, and to do so the following
definition is useful.
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Definition 4. Let .SA1
p1

; : : : ; SAs
ps

/ be an LSH sequence. We define

ŒPN � D f.ŒSA1
p1

.n/�p1;D1 ; : : : ; ŒSAs
ps

.n/�ps ;Ds /; 1 � n � N g; where Di D dlog N= log pi e:

We refer to ŒPN � as the first N points of a truncated version of the sequence.

The next result, about A.J I ŒPN �/ viewed as a function of N , would be trivial
without the truncation operator.

Lemma 3. Let .SA1
p1

; : : : ; SAs
ps

/ be an LSH sequence and J be an interval of the

form
Qs

iD1Œbi p
�di

i ; ci p
�di

i / with integers bi , ci satisfying 0 � bi < ci � p
di

i . Then
for N � p

d1

1 � � � pds
s , A.J I ŒPN �/ is an increasing function of N .

Proof. Let Di D dlog N= log pi e. If N � p
d1

1 � � � pds
s , then Di � di for all i .

Therefore as N increases, there can only be more points (from the truncated
sequence) inside a particular interval J . The reason why we have to make sure
Di � di for all i is that otherwise, as N increases some points could leave
the interval J as more precision is added on their digital expansion, but once
the precision Di is greater than the precision di used to define the interval, then
this can no longer happen. ut
We then establish the following lemma, analog of [1, Lemma 3.1] and Property 1.

Lemma 4. Let .SA1
p1

; : : : ; SAs
ps

/ be an LSH sequence. Then for any integer k � 0,
any elementary interval as in (15) contains exactly one point of the point set

n�
ŒSA1

p1
.n/�p1;d1 ; : : : ; ŒSAs

ps
.n/�ps ;ds

	
I kp

d1

1 � � � pds
s C 1 � n � .k C 1/p

d1

1 � � � pds
s

o
:

Moreover, for all intervals of the form J D Qs
iD1Œbi p

�di
i ; ci p

�di
i / with integers

bi ; ci satisfying 0 � bi < ci � p
di

i , we have for all k � 0

A.J I ŒPN �/ D k.c1 � b1/ � � � .cs � bs/; where N D kp
d1

1 � � � pds
s :

Proof. For short, write X
.i/
n WD SAi

pi
.n/ for all 1 � i � s. First, the condition on n

implies that the digits ar .n/ from the expansion of n � 1 are uniquely determined
for r � p

d1

1 � � � pds
s .

Then, it is easy to see that the digits y
.i/
n;r (0 � r < di ) defining ŒX

.i/
n �pi ;di are

uniquely determined by the integers di ; li describing a given elementary interval.
Now, since Ai is an NLT matrix, the di � di linear system in the unknowns ar.n/

(0 � r < di ) given by

Ai .a0.n/; : : : ; adi �1.n//T D .y
.i/
n;0; : : : ; y

.i/

n;di �1/
T ;
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also has a unique solution and hence the digits ar.n/ (0 � r < di ) are uniquely
determined, which means that n is unique modulo p

di

i for all 1 � i � s.
Finally, applying the Chinese remainder theorem, we obtain that n is unique modulo
p

d1

1 � � � pds
s . Together with the condition kp

d1

1 � � � pds
s C 1 � n � .k C 1/p

d1

1 � � � pds
s ,

all digits ar .n/ (r � 0) are unique and so is n, which ends the proof of the first
part of Lemma 4. The second part simply results from the fact that J splits into
.c1 � b1/ � � � .cs � bs/ disjoint elementary intervals. ut
We also need the following lemma, another result that would be trivial without the
truncation.

Lemma 5. Let .SA1
p1

; : : : ; SAs
ps

/ be an LSH sequence and J be an interval of the

form J D Qs
iD1Œbi p

�di
i ; ci p

�di
i / with integers bi ; ci satisfying 0 � bi < ci � p

di
i .

If N < p
d1

1 � � � pds
s then A.J I ŒPN �/ � .c1 � b1/ � � � .cs � bs/.

Proof. Define Qdi D min.Di ; di /. Let ŒJ � be defined as the smallest interval of the

form
Qs

iD1Œ
Qbi p

� Qdi

i ; Qci p
� Qdi

i / with 0 � Qbi < Qci � p
Qdi

i and such that J � ŒJ �. We can

see that ŒJ � is obtained by using Qci D dci =p
Qdi �di
i e and Qbi D bbi=p

Qdi �di
i c. Using the

same arguments as in the proof of the previous lemma, we have that each interval of

the form
Qs

iD1Œli p
� Qdi

i ; .li C 1/p
� Qdi

i / has at most one point from ŒPN �. Hence

A.J I ŒPN �/ � A.ŒJ �I ŒPN �/ �
sY

iD1

. Qci � Qbi / �
sY

iD1

.ci � bi/;

where the last inequality follows from the definition of Qbi and Qci . ut
Now, we can give the proof of Theorem 2.

Proof. From Lemma 3 and the second part of Lemma 4, we obtain that for every
N � p

d1

1 � � � pds
s and J D Qs

iD1Œbi p
�di
i ; ci p

�di
i /

jA.J I ŒPN �/ � N V.J /j � .c1 � b1/ � � � .cs � bs/: (16)

Further, Lemma 5 proves that (16) also holds when N < p
d1

1 � � � pds
s .

The inequality (16) is similar to the result stated in Lemma A.3.1 from [1],
but note that here it applies to the truncated sequence. From that point, we can
proceed as in Atanassov’s proof of his Theorem 2.1, which consists in breaking
down A.J I ŒPN �/ � N V.J / into a sum ˙1 C ˙2 as done in (13), and then bound
each term separately. Note however that in our case, the obtained bound applies to
the truncated version of the sequence. But as discussed in [15,16], it is easy to show
that if a bound of the form (1) applies to the truncated version of a sequence, it
applies to the untruncated version as well (with the same constant cs). ut
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4.2 Scrambling Halton Sequences with Admissible Matrices

In this section, we show that by using admissible integers to construct the matrices
Ai of an LSH sequence, we obtain sequences satisfying the same improved
discrepancy bound as in [1, Theorem 2.3], obtained there for modified Halton
sequences, which use permutations based on admissible integers. We first need a
few definitions, including that of admissible integers and the “generating–matrices”
analog of these integers, which we call “admissible matrices”.

Definition 5. Given non-negative integers ˛1; : : : ; ˛s; ˇ1; : : : ; ˇs and k1; : : : ; ks ,
we define the quantity

P
.ˇi /
i .ki I .˛1; : : : ; ˛s// WD k

˛i Cˇi

i

Y

1�j �s;j ¤i

p
˛j

j mod pi ; i D 1; : : : ; s: (17)

Definition 6. We say that k1; : : : ; ks are admissible for the primes p1; : : : ; ps if
pi6j ki and for each set of integers .b1; : : : ; bs/, pi6j bi , there exists a set of integers
.˛1; : : : ; ˛s/ such that

P
.0/
i .ki I .˛1; : : : ; ˛s// � bi mod pi ; i D 1; : : : ; s:

Lemma A.4.1. Let p1; : : : ; ps be distinct primes. Then there exist admissible
integers k1; : : : ; ks .

Definition 7. Let A1; : : : ; As be NLT matrices in distinct prime bases p1; : : : ; ps

and let k1; : : : ; ks be admissible integers for these bases. Then the matrices Ai ; i D
1; : : : ; s are admissible if the j th entry on their diagonal has the form k

ˇi Cj
i ,

j � 1, where ˇ1; : : : ; ˇs are non-negative integers. An LSH sequence based on
admissible matrices A1; : : : ; As is called a modified linearly scrambled Halton
(MLSH) sequence.

Atanassov’s modified Halton sequence corresponds to the case where Ai is
diagonal and ˇi D 0 for all i , while if we take Ai diagonal and ˇi D 1, then we
obtain the sequences used in the experiments in [2] (where the authors also apply
digital shifts chosen independently .mod pi /). It is important to take ˇi � 1 for
applications in QMC methods, otherwise the sequences behave like original Halton
sequences in the usual ranges of sample sizes [8, Sect. 3, Paragraph 2].

We can now state the main result of this section.

Theorem 3. The discrepancy of an MLSH sequence based on distinct primes bases
p1; : : : ; ps , non-negative integers ˇ1; : : : ; ˇs and admissible integers k1; : : : ; ks

satisfies the bound (1) with constant

cs.p1; : : : ; ps/ D 1

sŠ

sX

iD1

log pi

sY

iD1

pi .1 C log pi /

.pi � 1/ log pi

:
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The proof of Theorem 3 follows closely that of [1, Theorem 2.3], which in turn
essentially proceeds through an intermediate result called Proposition 4.1 in [1].
Here this result must be adapted to the more general setting of admissible matrices,
and is described in a slightly different version in the following proposition.

Proposition 1. For an MLSH sequence based on distinct primes p1; : : : ; ps , non-
negative integers ˇ1; : : : ; ˇs and admissible integers k1; : : : ; ks , we have that

X

j2T .N /

jA.I.j/I ŒPN �/ � N V.I.j//j �
X

j2T .N /

0

@1 C
X

l2M.p/

kPs
iD1.li =pi /P

.ˇi /
i .ki I j/k�1

2R.l/

1

A

C O..log N /s�1/;

where T .N / D fjjpj1

1 � � � pjs
s � N; j1; : : : ; js � 0g, M.p/ D fjj 0 �ji � pi � 1; j1 C

� � � C js > 0g, R.j/ D Qs
iD1 ri .ji /; with ri .m/ D max.1; min.2m; 2.pi � m/// and

k � k denotes the “distance to the nearest integer” function.

Before presenting the proof of this result, we first need to recall a technical lemma
from [1] and an adapted version of a key lemma used in the proof of [1, Prop. 4.1].
Lemma A.4.2. Let p D .p1; : : : ; ps/ and let ! D .!

.1/
n ; : : : ; !

.s/
n /1

nD0 be a sequence
in Z

s . Let b; c be fixed elements in Z
s , such that 0 � bi < ci � pi , for 1 � i � s.

For C � 1, denote by aC .b; c/ the number of terms of ! among the first C such
that for all 1 � i � s, we have bi � !

.i/
n mod pi < ci . Then

sup
b;c

ˇ
ˇ
ˇ
ˇ
ˇ
aC .b; c/ � C

sY

iD1

ci � bi

pi

ˇ
ˇ
ˇ
ˇ
ˇ

�
X

j2M.p/

jSC .j; !/j
R.j/

; (18)

where SC .j; !/ D PC �1
nD0 e

�
Ps

kD1
jk!

.k/
n

pk

�

and e.x/ D exp.2i�x/.

This result is applied in Lemma 6 below, but to the counting function A.J I ŒPN �/

in place of aC .b; c/. Hence, the discrepancy function will be estimated by means of
a trigonometrical sum, which in turn will give the part kPs

iD1.li =pi/P
.ˇi /
i .ki I j/k�1

in the upper bound of Proposition 1.

Lemma 6. Let X be an MLSH sequence in bases p1; : : : ; ps as in Definition 7. Fix
some elementary interval I D Qs

iD1Œai p
�˛i

i ; .ai C1/p
�˛i

i / with 0 � ai < p
˛i

i ; and
a subinterval J D Qs

iD1Œai p
�˛i

i C bi p
�˛i �1
i ; ai p

�˛i

i C ci p
�˛i �1
i / with 0 � bi <

ci � pi :

Let N >
Qs

iD1 p
˛i

i and let n0 (whose existence will be proved) be the smallest

integer such that ŒXn0 � 2 I (the notation ŒXn� D .ŒX
.1/
n �p1;D1 ; : : : ; ŒX

.s/
n �ps ;Ds / has

been introduced in Definition 4). Suppose that ŒXn0 � belongs to

sY

iD1

Œai p
�˛i

i C di p
�˛i �1
i ; ai p

�˛i

i C .di C 1/p
�˛i �1
i /;
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and let ! D f!t g1
tD0 in Z

s be defined by !
.i/
t D di C tP

.ˇi /
i .ki I .˛1; : : : ; ˛s//:

Then

1. We have that n0 <
Qs

iD1 p
˛i

i and the indices n of the terms ŒXn� of ŒPN � that
belong to I are of the form n D n0 C t

Qs
iD1 p

˛i

i .
2. For these n, ŒXn� 2 J if and only if for some integers .l1; : : : ; ls/, li 2

fbi ; : : : ; ci � 1g, the following system of congruences is satisfied by t:

!
.i/
t D di C tP

.ˇi /
i .ki I .˛1; : : : ; ˛s// � li mod pi ; i D 1; : : : ; s: (19)

3. If C is the largest integer with n0 C .C � 1/
Qs

iD1 p
˛i
i < N , then

jA.J I ŒPN �/ � N V.J /j < 1 C
X

l2M.p/

jSC .l; !/j
R.l/

:

Proof. We consider each of the three claims one by one.

1. This has been dealt with in the proof of Lemma 4 (first part with k D t), which
applies here since an MLSH sequence is a special case of an LSH sequence.

2. We first note that for ŒXn� to be in J , for each fixed i the .˛i C 1/st digit of
ŒX

.i/
n � must be in fbi ; : : : ; ci � 1g. Hence we need to show that this digit is given

by (19). By the definition of n0; we know that Ai .a0.n0/; : : : ; adi �1.n0//T D
.	; : : : ; 	; di ; 	; : : :/T (where di is the .˛i C 1/st digit), .a0.n0/; : : : ; adi �1.n0//
coming from the expansion of n0 � 1 in base pi . For brevity, let Pi WDQs

j D1;j ¤i p
˛j

j mod pi . Since the .˛i C 1/st digit of
Qs

j D1 p
˛j

j in base pi

is tPi , we have that .a0.n/; : : : ; adi �1.n// D .a0.n0/; : : : ; adi �1.n0// C
.0; : : : ; 0; tPi ; 	; : : :/. Note that possible carries to higher order digits are
absorbed in the stars 	. Now,

Ai.a0.n/; : : : ; adi �1.n//T D Ai .a0.n0/; : : : ; adi �1.n0//T C Ai .0; : : : ; 0; tPi ; 	; : : :/T

D .	; : : : ; 	; di ; 	; : : :/T C .0; : : : ; 0; tk
˛i Cˇi

i Pi ; 	; : : :/

by definition of Ai . Therefore, the first ˛i digits of ŒX
.i/
n � and ŒX

.i/
n0 � are equal

and the .˛i C1/st digit of ŒX
.i/
n � is di C tk

˛i Cˇi

i Pi � di C tP
.ˇi /
i .ki I ˛/ mod pi ;

as desired.
3. We apply Lemma A.4.2 with aC .b; c/ D A.J I ŒPN �/ and use the inequalities

C

sY

iD1

ci � bi

pi

� 1 � NV.J / � .1 C C /

sY

iD1

ci � bi

pi

� 1 C C

sY

iD1

ci � bi

pi

resulting from the hypothesis of item 3. ut
Proof. (Proposition 1) As in [19] we first consider the case where ji � 1 for all
i , as this allows use to use Lemma 6 The interval I.j/ is contained inside some
elementary interval G D Qs

iD1Œci p
�ji

i ; .ci C 1/p
�ji

i /. We define a sequence ! as in
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Lemma 6, where the integers di are determined by the condition that the first term
of the sequence � that falls in G fits into the interval

sY

iD1

Œci p
�ji

i C di p
�ji �1
i ; ci p

�ji

i C .di C 1/p
�ji �1
i /: (20)

Hence !
.i/
n D di C nP

.ˇi /
i .ki ; j/. From part (3) of Lemma 6, it follows that

jA.I.j/I ŒPN �/ � N V.I.j//j < 1 C
X

l2M.p/

jSK.l; !/j
R.l/

; (21)

where K is the number of terms of the MLSH sequence among the first N terms that
fall into G: Since the pi ’s are coprime, we see that P

.ˇi /
i .ki ; j/ ¤ 0; in particular,

it is not divisible by pi and hence coprime to pi : For any l 2 M.p/; by definition,
there is an lt , with 1 � t � s such that lt ¤ 0; and so pt6j lt : These properties imply
that ˛ D Ps

iD1
li
pi

P
.ˇi /
i .ki I j/ is not an integer. Thus we have

jSK.l; !/j D
ˇ
ˇ
ˇ
ˇ
ˇ

K�1X

nD0

e

 
sX

iD1

li

pi

.di C nP
.ˇi /
i .ki I j//

!ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

K�1X

nD0

e.n˛ C
sX

iD1

lidi =pi/

ˇ
ˇ
ˇ
ˇ
ˇ

D je.K˛/ � 1j
je.˛/ � 1j � 1

2

�
�
�
�
�

sX

iD1

li

pi

P
.ˇi /
i .ki I j/

�
�
�
�
�

�1

;

where the last inequality is obtained by noticing that je.˛/�1j � 2�j˛j2=� D 4j˛j
for �1=2 � ˛ � 1=2. Combining this result with (21), we obtain

X

j2T .N /;
ji �1

j.A.I.j/I ŒPN �/ � N V.I.j//j �
X

j2T .N /;
ji �1

0

@1 C
X

l2M.p/

kPs
iD1

li
pi

P
.ˇi /
i .ki I j/k�1

2R.l/

1

A :

(22)

In the second case, the fact that at least one ji is 0 implies that we can use
a similar approach to the one used to bound ˙1 in Theorem 1, and the obtained
bound in O.logs�1 N / as we are essentially working in at most s � 1 dimensions.
Observing that T .N / contains the vectors j such that ji � 1 for all i completes the
proof.

We still need two more technical lemmas before proceeding to the proof of
Theorem 2.3. The first one is directly from [1], and is useful to bound the upper
bound derived in Proposition 1.
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Lemma A.4.4. Let p D .p1; : : : ; ps/, then

X

j2M.p/

p1�1X

m1D1

� � �
ps�1X

msD1

k j1m1

p1
C : : : C jsms

ps
k�1

2R.j/
�

sX

iD1

log pi

sY

iD1

pi

0

@
sY

j D1

.1 C log pj / � 1

1

A :

The next one is useful to count the vectors j 2 T .N /, over which the sum that is
bounded in Proposition 1 is defined. In [1, p. 30–31], this is achieved in the text of
the proof but, for the sake of clarity, we prefer to state it as a last lemma.

Lemma 7. Let a 2 Z
s be a vector of non-negative integers and let U.a/ WD

fj I ai K � ji < .ai C 1/K for all 1 � i � sg, where K D Qs
iD1.pi � 1/. The s

functions P
.ˇi /
i .ki I j/, 1 � i � s, are such that for each b D .b1; : : : ; bs/ 2 Z

s , with
1 � bi � pi � 1 for all 1 � i � s, there are exactly Ks�1 s-tuples j 2 U.a/ such
that P

.ˇi /
i .ki I j/ � bi mod pi for all 1 � i � s:

Proof. The proof essentially follows from the fact that the s functions P
.0/
i .ki I j/

satisfy the property described in this Lemma 7 (see [1, p. 30]), and then the
observation that P

.ˇi /
i .ki I j/ � bi mod pi if and only if P

.0/
i .ki I j/ � k

�ˇi

i bi

mod pi . ut
We are now ready to prove Theorem 3.

Proof. As in the proof of Theorems 1 and 2, we first write the discrepancy function
of ŒPN � on J using (13) and similarly get

A.J I ŒPN �/ � N V.J / D ˙1 C ˙2:

The terms gathered in ˙2 are still in O..log N /s�1/ and those in ˙1 are divided in
two sums bounded separately as follows:

ˇ
ˇ
ˇ
X

1

ˇ
ˇ
ˇ �

X

j2T .N /
ji >0

t.j/ C
X

j2T .N /
some ji D0

t.j/: (23)

Now, using Proposition 1 and the fact that each j 2 T .N / is inside a box U.a/ such
that the s-tuples a satisfy

Qs
iD1 p

ai K
i � Qs

iD1 p
ji

i � N , we get that the first term on
the right-hand side of (23) is bounded by

X

ajQs
iD1 p

ai �K
i �N

X

j2U.a/

0

@1 C
X

l2M.p/

kPs
iD1

li
pi

P
.ˇi /
i .ki I j/k�1

2R.l/

1

A : (24)

We also note that the second term on the right-hand side of (23) is in O.logs�1 N /.
We then apply Lemma A.3.3 (whose base b version is given in Lemma 1) with

c D 1 and p0
i D pK

i and get the bound 1
sŠ

Qs
iD1

�
log N

K log pi
C s

	
for the number of
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s-tuples a enumerated in the first sum of (24). Next we use Lemma 7 to enumerate
and count the number of vectors j in U.a/ considered in the inner sum of (24). These
two results together with Lemma A.4.4 give us the bound

1

sŠ

sY

iD1

�
log N

K log pi

C s

�

Ks�1

 

K C
sX

iD1

log pi

sY

iD1

pi

 

�1 C
sY

iD1

.1 C log pi/

!!

for ˙1. The final result can then be obtained after a few further simplifications
and using the fact that, as explained in [15], a discrepancy bound holding for the
truncated version of the sequence also applies to the untruncated version. ut
Remark 1. The reader interested in the unfolding of the original proof by Atanassov
has the choice between the text in [1, Theorem 2.3] (very terse) and its careful
analysis in [19] (very detailed). With our proof of Theorem 3 in hand, we now
have the opportunity to present an overview of Atanassov’s proof and thus make it
accessible to readers who do not wish to go over [1] or [19].

Atanassov’s modified Halton sequences in bases p1; : : : ; ps , with admissible
integers k1; : : : ; ks , are generalized Halton sequences in which the sequences of
permutations ˙i D .�i;r /r�0 are defined by

�i;r .a/ WD akr
i mod pi for all 0 � a < pi ; r � 0; i D 1; : : : ; s:

Of course they are a special case of MLSH sequences (see definitions and comments
just before Theorem 3).

The basis of the proof of Theorem A.2.3 is Proposition A.4.1 which essentially
reads as Proposition 1 where ˇi D 0.

Lemma A.4.1, which establishes the existence of admissible integers (using
primitive roots modulo pi ), and Lemma A.4.2 have already been stated.

Lemma A.4.3 is the core of the proof. It reads as Lemma 6 where brackets have
been removed, i.e., where the truncation is unnecessary, since Atanassov deals with
diagonal matrices only.

Now, Lemma A.4.2 is applied in Lemma A.4.3 to the counting function
A.J I PN / in place of aC .b; c/. Hence, as already noted, the discrepancy
function is estimated by means of a trigonometrical sum, which gives the part
kPs

iD1.li =pi/P
.0/
i .ki I j/k�1 in the upper bound of Proposition A.4.1. The end of

the proof of Proposition A.4.1 together with the proof of Theorem A.2.3 are mainly
the same as that of Proposition 1 and Theorem 3, respectively, where the brackets
have to be removed and where ˇi D 0. The only subtle difference is in the split
into two cases, ji � 1 for all i or not. This distinction was ignored by Atanassov
whereas it appears crucial at a stage of the proof (see [19] for complete details).
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Applicability of Subsampling Bootstrap
Methods in Markov Chain Monte Carlo

James M. Flegal

Abstract Markov chain Monte Carlo (MCMC) methods allow exploration of
intractable probability distributions by constructing a Markov chain whose station-
ary distribution equals the desired distribution. The output from the Markov chain
is typically used to estimate several features of the stationary distribution such
as mean and variance parameters along with quantiles and so on. Unfortunately,
most reported MCMC estimates do not include a clear notion of the associated
uncertainty. For expectations one can assess the uncertainty by estimating the
variance in an asymptotic normal distribution of the Monte Carlo error. For general
functionals there is no such clear path. This article studies the applicability of
subsampling bootstrap methods to assess the uncertainty in estimating general
functionals from MCMC simulations.

1 Introduction

This article develops methods to evaluate the reliability of estimators constructed
from Markov chain Monte Carlo (MCMC) simulations. MCMC uses computer-
generated data to estimate some functional �� , where � is a probability distribution
with support X. It has become a standard technique, especially for Bayesian
inference, and the reliability of MCMC estimators has already been studied for
cases where we are estimating an expected value [9, 13, 19]. Here, we investigate
the applicability of subsampling bootstrap methods (SBM) for output analysis of
an MCMC simulation. This work is appropriate for general functionals including
expectations, quantiles and modes.
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The basic MCMC method entails constructing a Harris ergodic Markov chain
X D fX0; X1; X2; : : :g on X having invariant distribution � . The popularity of
MCMC methods result from the ease with which an appropriate X can be simulated
[4, 20, 23]. Suppose we simulate X for a finite number of steps, say n, and use the
observed values to estimate �� with O�n.

In practice the simulation is run sufficiently long until we have obtained an
accurate estimate of �� . Unfortunately, we have no certain way to know when to
terminate the simulation. At present, most analysts use convergence diagnostics for
this purpose (for a review see [5]); although it is easily implemented, this method
is mute about the quality of O�n as an estimate of �� . Moreover, diagnostics can
introduce bias directly in to the estimates [6].

The approach advocated here will directly analyze output from an MCMC
simulation to establish non-parametric or parametric confidence intervals for �� .
There is already substantial research when �� is an expectation, but very little for
general quantities.

Calculating and reporting an uncertainty estimate, or confidence interval, allows
everyone to judge the reliability of the estimates. The main point is an uncertainty
estimate should be reported along with the point estimate obtained from an MCMC
experiment. This may seem obvious to most statisticians but this is not currently
standard practice in MCMC [9, 13, 19].

Outside of toy examples, no matter how long our simulation, there will be an
unknown Monte Carlo error, O�n � �� . While it is impossible to assess this error
directly, we can estimate the error via a sampling distribution. That is, we need an
asymptotic distribution for O�n obtained from a Markov chain simulation. Assume
O�n, properly normalized, has a limiting distribution J� , specifically as n ! 1

�n

� O�n � ��

�
d! J� (1)

where �n ! 1.
For general dependent sequences, there is a substantial amount of research about

obtaining asymptotic distributions for a large variety of �� . These results are often
applicable since the Markov chains in MCMC are special cases of strong mixing
processes.

This article addresses how to estimate the uncertainty of O�n given a limiting
distribution as at (1). Bootstrap methods may be appropriate for this task. Indeed,
there is already sentiment that bootstrap methods used in stationary time series are
appropriate for MCMC [1, 2, 7, 21]. However, my preliminary work [8] suggests
that the SBM has superior computational and finite-sample properties.

The basic SBM provides a general approach to constructing asymptotically
valid confidence intervals [22]. In short, SBM calculates the desired statistic over
subsamples of the chain and then use these values to approximate the sampling
distribution of �� . From the subsample values, one can construct a non-parametric
confidence interval directly or estimate the unknown asymptotic variance of J� and
construct a parametric confidence interval.
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The rest of this article is organized as follows. Section 2 overviews construction
of non-parametric and parametric confidence intervals for general quantities �� via
SBM. Section 3 examines the finite sample properties in a toy example and Sect. 4
illustrates the use of SBM in a realistic example to obtain uncertainty estimates for
estimating quantiles.

2 Subsampling Bootstrap Methods

This section overviews SBM for constructing asymptotically valid confidence
intervals of �� . Aside from a proposed diagnostic [14] and a brief summary for
quantiles [11], there has been little investigation of SBM in MCMC. Nonetheless,
SBM is widely applicable with only limited assumptions. The main requirement is
that O�n, properly normalized, has a limiting distribution as at (1).

SBM divides the simulation into overlapping subsamples of length b from the
first n observations of X . In general, there are n � b C 1 subsamples for which we
calculate the statistics over each subsample. Procedurally, we select a batch size b

such that b=n ! 0, �b=�n ! 0, �b ! 1 and b ! 1 as n ! 1. If we let O��
i for

i D 1; : : : ; n � b C 1 denote the value of the statistic calculated from the i th batch,
the assumptions on b imply as n ! 1

�b

� O��
i � ��

�
d! J� for i D 1; : : : ; n � b C 1:

We can then use the values of O��
i to approximate J� and construct asymptotically

valid inference procedures. Specifically, define the empirical distribution of the
standardized O��

i s as

Ln;b.y/ D 1

n � b C 1

n�bC1X
iD1

I
n
�b

� O��
i � O�n

�
� y

o
:

Further for ˛ 2 .0; 1/ define

L�1
n;b.1 � ˛/ D inf fy W Ln;b.y/ � 1 � ˛g

and
J �1

� .1 � ˛/ D inf fy W J�.y/ � 1 � ˛g :

Theorem 1. Let X be a Harris ergodic Markov chain. Assume (1) and that b=n !
0, �b=�n ! 0, �b ! 1 and b ! 1 as n ! 1.

1. If y is a continuity point of J�.�/, then Ln;b.y/ ! J� .y/ in probability.
2. If J�.�/ is continuous at J �1

� .1 � ˛/, then as n ! 1
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Pr
n
�n

� O�n � ��

�
� L�1

n;b.1 � ˛/
o

! 1 � ˛:

Proof. Note that Assumption 4.2.1 of [22] holds under (1) and the fact that X

possesses a unique invariant distribution. Then the proof is a direct result of
Theorem 4.2.1 of [22] and the fact that Harris ergodic Markov chains are strongly
mixing [18].

Theorem 1 provides a consistent estimate of the limiting law J� for Harris
ergodic Markov chains through the empirical distribution of O��

i . Hence a theoret-
ically valid .1 � ˛/100% non-parametric interval can be expressed as

h O�n � ��1
n L�1

n;b.1 � ˛=2/; O�n � ��1
n L�1

n;b.˛=2/
i

: (2)

Alternatively, one can also estimate the asymptotic variance [3, 22] using

O�2
SBM D �2

b

n � b C 1

n�bC1X
iD1

� O��
i � O�n

�2

: (3)

If J� is Normal then a .1 � ˛/100% level parametric confidence interval can be
obtained as

h O�n � tn�b;˛=2��1
n O�SBM ; O�n C tn�b;˛=2��1

n O�SBM

i
: (4)

SBM is applicable for any O�n such that (1) holds and the rate of convergence �n is
known as required in (2)–(4). Implementation requires selection of b, the subsample
size. We will use the naive choice of bn D bn1=2c in later examples. The following
sections consider two common quantities where SBM is appropriate, expectations
and quantiles.

2.1 Expectations

Consider estimating an expectation of � , that is

�� D E�g D
Z

X
g.x/�.dx/:

Suppose we use the observed values to estimate E�g with a sample average

Ngn D 1

n

n�1X
iD0

g.xi /:
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The use of this estimator is justified through the Markov chain strong law of large
numbers. Further assume a Markov chain CLT holds [18, 26], that is

p
n. Ngn � E�g/

d! N.0; �21/ (5)

as n ! 1 where �21 2 .0; 1/. Then we can use (2) or (4) to form non-parametric
or parametric confidence intervals, respectively.

Alternatively, one can consider the overlapping batch means (OLBM) variance
estimator [10]. As the name suggests, OLBM divides the simulation into over-
lapping batches of length b resulting in n � b C 1 batches for which NYj .b/ D
b�1

Pb�1
iD0 g.Xj Ci / for j D 0; : : : ; n � b. Then the OLBM estimator of �21 is

O�2
OLBM D nb

.n � b/.n � b C 1/

n�bX
j D0

. NYj .b/ � Ngn/2: (6)

It is easy to show that (3) is asymptotically equivalent to (6).

2.2 Quantiles

It is routine when summarizing an MCMC experiment to include sample quantiles,
especially in Bayesian applications. These are based on quantiles of the univariate
marginal distributions associated with � . Let F be the marginal cumulative
distribution function, then consider estimating the quantile function of F , i.e. the
generalized inverse F �1 W .0; 1/ 7! R given by

�� D F �1.q/ D inffy W F.y/ � qg:

We will say a sequence of quantile functions converges weakly to a limit quantile
function, denoted F �1

n Ý F �1, if and only if F �1
n .t/ ! F �1.t/ at every t where

F �1 is continuous. Lemma 21.2 of [28] shows F �1
n Ý F �1 if and only if Fn Ý F .

Thus we consider estimating F with the empirical distribution function defined as

Fn.y/ D 1

n

nX
iD1

I fYi � yg;

where Y D fY1; : : : ; Yng is the observed univariate sample from F and I is the
usual indicator function on ZC. The ergodic theorem gives pointwise convergence
(Fn.y/ ! F.y/ for every y almost surely as n ! 1) and the Glivenko-Cantelli
theorem extends this to uniform convergence (supy2R jFn.y/ � F.y/j ! 0 almost
surely as n ! 1).
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Letting Yn.1/; : : : ; Yn.n/ be the order statistics of the sample, the empirical quantile
function is given by:

F
�1
n D Yn.j / for q 2

�
j � 1

n
;

j

n

�
:

Often the empirical distribution function Fn and the empirical quantile function F
�1
n

are directly used to estimate F and F �1.
Construction of interval estimate of F �1 requires existence of a limiting distri-

bution as at (1). We will assume a CLT exists for the Monte Carlo error [12], that
is p

n
�
F

�1
n .q/ � F �1.q/

� d! N.0; �21/ (7)

as n ! 1 where �21 2 .0; 1/. Then we can use (2) or (4) to form non-
parametric or parametric confidence intervals respectively by setting O��

i to the
estimated quantile from the i th subsample.

3 Toy Example

Consider estimating the quantiles of an Exp(1) distribution, i.e. f .x/ D e�xI.x >

0/, using the methods outlined above. It is easy to show that F �1.q/ D log.1�q/�1,
and simulation methods are not necessary; accordingly, we use the true values to
evaluate the resulting coverage probability of the parametric and non-parametric
intervals.

Monte Carlo sampling. SBM is also valid using i.i.d. draws from � , that is
for Monte Carlo simulations. Here the subsamples need not be overlapping,
hence there are N W D �

n
b

�
subsamples. Calculation over N subsamples will often

be computational extensive. Instead, a suitably large N <<
�

n
b

�
can be selected

resulting in a estimate based on a large number of subsamples rather than all the
subsamples.

Consider sampling from � using i.i.d. draws. For each simulation, with
n D 1e4 iterations, CIs were calculated for q 2 f:025; :1; :5; :9; :975g based on
b 2 f100; 4000g. For both values of b, calculation of O�2

SBM was based on N D 1; 000

random subsamples rather than
�

n
b

�
subsamples. This procedure was repeated 2,000

times to evaluate the resulting confidence intervals, see Table 1 for a summary of
the simulation results.

For b D 100, the mean values of O�SBM =�21 are close to 1 for all values of q

implying there is no systematic bias in the variance estimates. When q 2 f:1; :5; :9g,
the coverage probabilities are close to the nominal value of 0.95. For more extreme
values of q 2 f:025; :975g, the results are worse, which should not be surprising
given b D 100. The use of non-parametric CIs at (2) show a similar trend, though
the overall results are considerably worse.
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Table 1 Coverage probabilities for Exp(1) example using i.i.d. sampler. Coverage probabilities
reported have 0.95 nominal level with standard errors equal to

p Op.1 � Op/=2;000 � 0:0082.

q 0.025 0.1 0.5 0.9 0.975

b D100
SBM 0.9705 0.9490 0.9480 0.9485 0.9400
NP SBM 0.8595 0.9260 0.9415 0.9410 0.9210

b D4e3
SBM 0.8660 0.8690 0.8700 0.8715 0.8670
NP SBM 0.8375 0.8575 0.8600 0.8575 0.8395

Table 2 Coverage probabilities for Exp(1) example using independence Metropolis sam-
pler. Coverage probabilities reported have 0.95 nominal level with standard errors equal top Op.1 � Op/=2;000 � 0:0109.

q 0.025 0.1 0.5 0.9 0.975

� D 1=4
SBM 0.9790 0.9530 0.9370 0.9380 0.9360
NP SBM 0.7305 0.8795 0.9305 0.9425 0.9450

� D 1=2
SBM 0.9710 0.9495 0.9445 0.9385 0.9470
NP SBM 0.8125 0.9215 0.9465 0.9415 0.9520

� D 2
SBM 0.9930 0.9905 0.9885 0.6145 0.1720
NP SBM 0.8630 0.9120 0.8765 0.6295 0.1695

One may consider increasing b to improve the results for q 2 f:025; :975g.
However, if b D 4; 000 without increasing n, the resulting coverage probabilities are
significantly worse for both types of CIs (see Table 1). The simulations also show
the mean value of O�SBM =�21 is less that 1, hence the variance estimates are biased
down. Instead, as b increases, the overall simulation effort should also increase.

Rather than increasing b, it may be useful to consider different quantile estimates
including continuous estimators [16] or a finite sampler correction [22]. Given our
interest in MCMC, these were not considered here.

MCMC sampling. Consider sampling from � using an independence Metropolis
sampler with an Exp(�) proposal [19, 25, 27]. If � D 1 the sampler simply provides
i.i.d. draws from � . The chain is geometrically ergodic if 0 < � < 1 and sub-
geometric (slower than geometric) if � > 1.

We calculated intervals for q 2 f:025; :1; :5; :9; :975g; each chain contained
n D 1e4 iterations and the procedure was repeated 2,000 times. The simulations
began at X0 D 1, with � 2 f1=4; 1=2; 2g, and b D 100. Table 2 summarizes the
results. For � 2 f1=4; 1=2g and q 2 f:1; :5; :9; :975g, the coverage probabilities are
close to the nominal value of 0.95. Increasing b would likely improve the results,
but with a concurrent requirement for larger n. These limited results for parametric
confidence intervals are very encouraging. In contrast, non-parametric CIs derived
from (2) perform worse, especially for q 2 f:025; :1g.

When � D 2, the chain is sub-geometric and it is unclear if
p

n-CLT holds as at
(7). In fact, the independence sampler fails to have a

p
n-CLT at (5) for all suitably

non-trial functions g when � > 2 [24,27]. However, it is possible via SBM to obtain
parametric and non-parametric CIs at (2) or (4) if one assumes a CLT with rate of
convergence �n D p

n. The results from this simulation are also contained in Table 2.
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We can see the coverage probabilities are close to the 0.95 nominal level for small
quantiles, but this is likely because 0.95 is close to 1. In the case of large quantiles,
the results are terrible, as low as 0.17. This example highlights the importance of
obtaining a Markov chain CLT.

4 A Realistic Example

In this section, we consider the analysis of US government HMO data [15] under
the following proposed model [17]. Let yi denote the individual monthly premium
of the i th HMO plan for i D 1; : : : ; 341 and consider a Bayesian version of the
following frequentist model

yi D ˇ0 C ˇ1xi1 C ˇ2xi2 C �i (8)

where �i are i.i.d. N
�
0; ��1

�
, xi1 denotes the centered and scaled average expenses

per admission in the state in which the i th HMO operates, and xi2 is an indicator
for New England. (Specifically, if Qxi1 are the original values and Nx1 is the overall
average per admission then xi1 D . Qxi1 � Nx1/ =1; 000.)

Our analysis is based on the following Bayesian version of (8)

yjˇ; � � NN

�
Xˇ; ��1IN

�

ˇj� � N3

�
b; B�1

�

� � Gamma .r1; r2/

where N D 341, y is the 341�1 vector of individual premiums, ˇ D .ˇ0; ˇ1; ˇ2/ is
the vector of regression coefficients, and X is the 341 � 3 design matrix whose
i th row is xT

i D .1; xi1; xi2/. (We will say W � Gamma.a; b/ if it has density
proportional to wa�1e�bw for w > 0.) This model requires specification of the
hyper-parameters .r1; r2; b; B/ which we assign based on estimates from the usual
frequentist model [17]. Specifically, r1 D 3:122e � 06, r2 D 1:77e � 03,

b D
0
@

164:989

3:910

32:799

1
A , and B�1 D

0
@

2 0 0

0 3 0

0 0 36

1
A :

We will sample from � .ˇ; �jy/ using a two-component block Gibbs sampler
requiring the following full conditionals

�jˇ � Gamma

�
r1 C N

2
; r2 C 1

2
V.ˇ/

�

ˇj� � N3

��
�XT X C B

��1 �
�XT y C Bb

�
;
�
�XT X C B

��1
�
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Table 3 HMO parameter estimates with MCSEs.

q Estimate MCSE

ˇ0

0.05 163.40 1.05e�2
0.5 164.99 5.86e�3
0.95 166.56 9.72e�3

ˇ1

0.05 2.06 1.28e�2
0.5 3.92 7.24e�3
0.95 5.79 1.19e�2

ˇ2

0.05 25.86 4.61e�2
0.5 32.78 2.50e�2
0.95 39.69 4.37e�2

where V.ˇ/ D .y � Xˇ/T .y � Xˇ/ and we have suppressed the dependency on
y. We consider the sampler which updates � followed by ˇ in each iteration, i.e.
.ˇ0; �0/ ! .ˇ0; �/ ! .ˇ; �/.

Our goal is estimating the median and reporting a 90% Bayesian credible region
for each of the three marginal distributions. Denote the qth quantile associated with
the marginal for ˇj as �

.i/
q for j D 0; 1; 2. Then the vector of parameters to be

estimated is

˚ D
�
�

.0/
:05; �

.0/
:5 ; �

.0/
:95; �

.1/
:05 ; �

.1/
:5 ; �

.1/
:95 ; �

.2/
:05; �

.2/
:5 ; �

.2/
:95

�
:

Along with estimating ˚ , we calculated the associated MCSEs using SBM. Table 3
summarizes estimates for ˚ and MCSEs from 40,000 total iterations (bn D
b40; 0001=2c D 200).
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QMC Computation of Confidence Intervals
for a Sleep Performance Model

Alan Genz and Amber Smith

Abstract A five-dimensional Bayesian forecasting model for cognitive perfor-
mance impairment during sleep deprivation is used to approximately determine
confidence intervals for psychomotor vigilance task (PVT) prediction. Simulation
is required to locate the boundary of a confidence region for the model pdf surface.
Further simulation is then used to determine PVT lapse confidence intervals as
a function of sleep deprivation time. Quasi-Monte Carlo simulation methods are
constructed for the two types of simulations. The results from these simulations are
compared with results from previous methods, which have used various combina-
tions of grid-search, numerical optimization and simple Monte Carlo methods.

1 Introduction

A Bayesian forecasting model for cognitive performance impairment during sleep
deprivation has been developed by Van Dongen and collaborators (see Van Dongen
et al. [13, 15] and Van Dongen and Dinges [14]). This model uses an individual
performance impairment function P.� ; t/ D P.�; �; �; �; �; t/ in the form

P.�; �; �; �; �; t/ D �e��e� .t�t0/ C �e�

5X

qD1

aq sin.
2q	

24
.t � �// C 
 C �;

where t denotes time (in hours) and t0 is the start time (i.e., time of awakening). The
model contains several fixed parameters: � is the population-average buildup rate of
sleep pressure across time awake; � is the population-average amplitude of the circa-
dian oscillation; 
 determines the population-average basal performance capability;
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and the coefficients aq are the relative amplitudes of harmonics of the circadian
oscillation (see Borbély and Achermann [1]). These fixed parameters were obtained
from experimental data using many individuals (see Van Dongen et al. [15]), with
.t0; �; �; 
/ D .7:5; 0:0350; 4:3; 29:7/ and a D .0:97; 0:22; 0:07; 0:03; 0:001/.
There are five unknown model parameters �; �; �; �, and �. The parameter �

represents the specific individual’s initial sleep pressure from prior sleep loss;
� determines the temporal alignment of the individual’s circadian oscillation; �

is the buildup rate of sleep pressure across time awake for the individual; � is
the amplitude of the circadian oscillation for the individual; and � is the basal
performance capability of the individual. The values of P for this model express
cognitive performance in terms of the number of lapses (reaction times exceeding
500 ms) on a 10-min psychomotor vigilance task (PVT) [3].

If PVT performance measurements yl at time points tl for l D 1; 2; : : : ; m are
given for an individual, the likelihood function for this data is assumed to have the
form

L.�; �; �; �; �/ D
mY

lD1

pN .yl ; P.�; �; �; �; �; tl /; �2
L/;

where pN .y; �; �2/ denotes the standard univariate normal pdf with mean � and
standard deviation � . The model also uses zero mean univariate normal priors for
the variables �; �, and � with respective variances �2

� , �2
� and �2

� . The variance
values �2

L; �2
� ; �2

� ; �2
� D .77:6; 1:15; 0:294; 36:2/ that we use in this paper were also

determined using averages from many individuals (see Van Dongen et al. [15]). The
posterior probability density function for the individual performance impairment
model is then given by

f .�/ � f .�; �; �; �; �/ D cL.�; �; �; �; �/pN .�; 0; �2
� /pN .�; 0; �2

� /pN .�; 0; �2
�/;

where c is a normalization constant.
The primary computational task when using the model is to find the smallest

region in the multidimensional parameter space

S D f� D .�; �; �; �; �/j.�; �; �; �; �/ 2 .�1; 0 � .�1; 1/3 � Œ0; 24g

that captures a required percentage (e.g., 95%) of the (hyper)volume under the
posterior pdf. To be more precise, given an ˛ with 0 � ˛ � 1, we define the
confidence region R˛ to be the smallest (in a sense to be specified later) subset of S

satisfying

1 � ˛ D
Z

R˛

f .�/d�:

After the determination of R˛, the future performance of the individual can be
estimated by evaluating the performance function P.�; t/ over R˛ at a selected
future time t . The purpose of this paper is to compare the use of Monte Carlo (MC)
and Quasi-Monte Carlo (QMC) methods for these computational tasks.
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2 Determination of the Confidence Region

2.1 Safe Height Approximation

The first step in our algorithm for the determination of R˛ is the computation of
the normalization constant c. This requires the evaluation of the five-dimensional
integral

1=c � C D
Z 0

�1

Z 1

�1

Z 1

�1

Z 1

�1

Z 24

0

L.�; �; �; �; �/pN .�; 0; �2
� /pN .�; 0; �2

� /pN .�; 0; �2
�/d�d�d�d�d�;

which has the explicit form

C D 1

.2	/
mC3

2 .�������L/

Z 0

�1

Z 1

�1

Z 1

�1

Z 1

�1

Z 24

0

e
� �2

2�2
�

� �2

2�2
�

� �2

2�2
� (1)

e
�

Pm
lD1

�
�e��e� .t�t0/C�e� P5

qD1 aq sin.
2q	
24 .t��//C
C��yl

�2

2�2
L d�d�d�d�d�

The boundary delineating the smallest confidence region for a multidimensional,
continuous pdf always projects to a level (i.e., fixed-height) contour on the surface
of the pdf (see Box and Tiao [2]; Tanner [12]). We define the safe height, denoted
by h˛ , to be the value of the pdf f .�/ along this level this contour, so that the
confidence region R˛ is implicitly defined by the condition f .�/ � h˛ .

We will consider the use of several numerical integration methods to estimate
C . If C is approximated using an equal-weight numerical integration method in the
form

C � OC D W

N

NX

iD1

H.� i /;

where

H.�/ � H.�; �; �; �; �/ D L.�; �; �; �; �/pN .�; 0; �2
� /pN .�; 0; �2

� /pN .�; 0; �2
�/

is the unnormalized posterior pdf and W is the integration domain volume, then an
approximate value for h˛ can be determined by selecting the smallest H.� i / value
in the set which contains the largest 100.1 � ˛/% of the H.� i / values. To be more
precise, if we let H.�.i// be the H.� i / values sorted in ascending order and define

H˛ D H.� .i�//; with i� D d˛N e;

then we can approximate the safe height h˛ using
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h˛ � Oh˛;N � WH˛=N: (2)

Given Oh˛;N , we can also (approximately) determine a set of points from the
confidence region R˛ . We denote these confidence sets by OR˛;N , with

OR˛;N D f� .i/ j i � i�g:

This set contains the points which determine 100.1 � ˛/% of the volume for the
value of OCN . These points can be saved and used for future performance prediction.

2.2 MC and QMC Integration Methods

The simplest numerical integration method for estimating C uses a crude Monte-
Carlo method on a truncated integration domain. This was considered in Smith et al.
[10], where domains in the form

OS D Œc1; d1 � Œc2; d2 � Œc3; d3 � Œc5; d4 � Œc5; d5;

with all limits finite, and d1 D 0, Œc5; d5 D Œ0; 24, were used. The unspecified
limits were determined after investigating the decay of H.�/ for large values of ��,
˙�, ˙� and ˙�. Then

C �
Z

�2 OS
H.�/d� D W

Z 1

0

Z 1

0

Z 1

0

Z 1

0

Z 1

0

H.c C .d � c/ � x/dx;

with W D Q5
kD1.dk �ck/, and “�” denotes componentwise multiplication. A Monte

Carlo (MC) estimate for C is

OCN D W

N

NX

i1

H.c C .d � c/ � xi /; (3)

given xi ’s with uniform random [0,1] components (xki 	 U.0; 1/). Associated with
these approximations are error estimates which can be obtained using the standard
errors (see Fishman [6])

EN D
� 1

N.N � 1/

NX

iD1

.WH.c C .d � c/ � xi / � OCN /2
� 1

2
:

These quantities are typically scaled by 3 to give approximate 99% confidence.
MC methods using N points have errors that are typically O.1=N

1
2 /, a con-

vergence rate which is too slow for many problems. An alternative is to use
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quasi-Monte Carlo (QMC) methods (see Fox [7]), with asymptotic errors which
can be approximately O.1=N / for N points.

A typical N -point QMC approximation has the same form as (3), but the QMC
points x1; x2; : : : ; xN are selected to provide a more uniform distribution than MC
points. The simplest QMC sequences have the form

xi D fi Zg;

where Z is an appropriately chosen generating vector, and fTg denotes the vector
obtained from T by taking, for each component, the fractional part belonging to
Œ0; 1. Two important classes of these QMC point sets are Kronecker and lattice
sequences. Kronecker sequences (see Drmota and Tichy, [4], and also Fang and
Wang, [5]) are point sets where the components of Z are irrational and linearly
independent over the rational numbers. One simple Kronecker sequence choice
for Z has Zi D p

pi , with pi D i th prime (often referred to as the “Richtmyer”
sequence). Lattice sequence generating vectors are vectors where N Z is an integer
vector with (“good lattice”) components chosen to minimize an appropriately
chosen error measure for specified classes of integrands (see, for example Sloan and
Joe [11] for more details). The paper by Nuyens and Cools [9] describes a method
for the efficient determination of a good lattice vector, given N and the number
of dimensions for x. Many other QMC point sequences (e.g., Halton, Hammersley,
Sobol and other digital-net sequences, see Drmota and Tichy, [4]) have also been
studied, with similar asymptotic convergence properties.

Error estimates for a QMC OCN estimate can be computed if the QMC method is
randomized. A simple method for randomization uses random shifts of a selected
set (or batch) of QMC points to provide the QMC approximations in the form

OCN .u/ D W

N

NX

iD1

H.c C .d � c/ � .fxi C ug//;

where u has independent random U.0; 1/ components. An unbiased randomized
QMC (RQMC) approximation for C is then given by

OCN;K D 1

K

KX

kD1

OCN .uk/ (4)

with standard error

EN;K D
� 1

K.K � 1/

KX

kD1

. OCN .uk/ � OCN;K/2
� 1

2
: (5)
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For these approximations, K is usually chosen to be small (e.g., K D 10) relative
to N , and N is increased to most efficiently reduce the error in OCK;N . The EK;N

quantities are typically scaled by 3 to give approximate 99% confidence.
If we use Oh˛;N .u/ to denote the approximate safe height determined (from (2))

using a u randomly shifted QMC point set, then averages of these values in the form

Oh˛;N;K D 1

K

KX

kD1

Oh˛;N .uk/

are RQMC estimates for h˛ , and standard errors can also be computed for these
estimates. The associated confidence sets, denoted by OR˛;N .uk/, can be saved and
used for future performance prediction.

2.3 Some Numerical Tests

The data for the tests described in this section is taken from [15] (for individual C)
where 24 past performance measurements f.tl ; yl /jl D 1; : : : ; 24g were given for
48 h of total sleep deprivation. For the particular individual that we consider,
tl D 5:5 C 2l; l D 1; : : : ; 24, and

y D .8 17 19 19 13 15 11 22 9 33 24 27 34 36 25 31 39 31 38 46 39 34 27 46/:

With this data, the maximum (mode) for the posterior H.�/ occurs approximately
(using the Matlab constrained minimization function fmincon, applied to � log.H/)
at � � � D .�32:725; 8:2011; �:15275; :48695; 4:4711/. We first considered
the truncated domain

OS D Œ�60; 0 � Œ�20; 40 � Œ�4; 4 � Œ�3; 3 � Œ0; 24

which was used by Smith et al. [10], based on investigation of the rates of decrease
in H.�/ for large values of ��, ˙�, ˙� and ˙�. Table 1 shows some results
for MC and two RQMC methods RQMCK and RQMCL, (using (4) and (5) with
K D 10, and 3 � EN;K used for the Error columns). For the MC results, the same
K D 10, batching strategy was used to compute the OC and Oh approximations and
errors. The RQMCK method used Richtmyer (square roots of primes) generators
and the RQMCL method used lattice rule generators computed using the Nuyens-
Cools CBC algorithm ([9], with all weights D 1). These results show the superiority
of the QMC methods, particularly the lattice rules. Note: the OC approximations (and

errors) in Table 1 and the other Tables in this paper have all been scaled by .2	/
mC3

2

(from the posterior pdf denominator) to avoid tiny values in the Tables.
We also studied several reparameterizations based on standardizing transfor-

mations in the form �.x/ D � C; Ly, where � is posterior mode, L is the lower



QMC Computation of Confidence Intervals 379

Table 1 Computation of OC using MC and RQMC methods.

NK MC Error RQMCK Error RQMCL Error

100,000 .30389 .121680 .31763 .036703 .30878 .016796
200,000 .31481 .074530 .31050 .036681 .29962 .036017
400,000 .28589 .041518 .29384 .030151 .29163 .026106
800,000 .29615 .027958 .29406 .017439 .30077 .001658
Oh˛;80000;10 1.67e-6 2.9e-7 1.64e-6 1.1e-7 1.74e-6 6e-8

triangular Cholesky factor for the posterior covariance matrix ˙ (˙ D LLt ), given
by ˙ D G�1, when G is the Hessian matrix for � log.H.�// at � D �. Note:
G can easily be approximated with sufficient accuracy using standard second
difference approximations to the second order partial derivatives for G. This type
of reparameterization is often used with Bayesian analysis of posterior densities
which have a dominant peak [8], and then a multivariate normal model for H.�.y//

with H.�.y// 	 e�yt y=2 is often used as a basis for importance sampling or related
integration methods. However, H.�/ is (slowly varying) periodic (not decaying)
in the � variable, so a full 5-variable model of this type is not directly applicable.
We further studied the behavior of H by computing the mode and ˙ for several
different fixed values of � 2 Œ0; 24, and found that the .�; �; �; �/ components
of the mode and the corresponding 4 � 4 ˙ ’s did not change significantly as �

varies 2 Œ0; 24. So we focused on the reparameterization �.y/ D � C Ly where L

is the lower triangular Cholesky factor for the ˙ determined from the Hessian of
� log.H.�// with � D 4:4711 fixed; then

L �

2
666664

6:3834 0 0 0 0

�2:1172 3:1661 0 0 0

�:092616 �:03576 :40832 0 0

�:000407 �:27182 :01002 :17602 0

0 0 0 0 1

3
777775

:

With this reparameterization C is given by

C D jLj
Z ��1=l11

�1

Z 1

�1

Z 1

�1

Z 1

�1

Z 24

0

H.� C Ly/dy

� jLj
Z ��1=l11

�D

Z D

�D

Z D

�D

Z D

�D

Z 24

0

H.� C Ly/dy

where jLj D det.L/ D Q5
kD1 lkk , D is a selected cutoff value, and dy D Q1

kD5 dyi .
The upper y1 limit �1=l11 corresponds to � D �1 C l11y1 D 0.

Table 2 shows some results for the MC, RQMCK and RQMCL methods, with
this reparameterization, followed by the transformation y D Dx to x 2 Œ0; 15
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Table 2 Standardized OC computation with MC and RQMC methods.

NK MC Error RQMCK Error RQMCL Error

100,000 .28809 .028872 .29858 .0489840 .30135 .0066589
200,000 .30396 .026594 .30069 .0029917 .29955 .0021110
400,000 .29539 .022879 .30215 .0022066 .30275 .0035099
800,000 .29797 .010646 .30025 .0009061 .30035 .0000884
Oh˛;80000;10 1.69e-6 9e-8 1.74e-6 4e-8 1.73e-6 3e-8

variables, with D D 6. These results are generally much more accurate than the
unstandardized results and also show the superiority of the QMC methods.

We also studied the use of further transformations of the .�; �; �; �/ variables
based on the multivariate normal model H.�.y// 	 e�yt y=2 (and other related
statistical distribution models) with, for example, xi D 1p

2	

R yi

�1 e�t 2
i =2dt; i D

1; 2; 3; 4. Results using these models as a basis for transforming the .�; �; �; �/

variables resulted in less accurate OC approximations, given the same amount of
computational work (NK values), so we do not report the details for those results
here.

We studied one additional transformation. With this transformation, we first
transform � to a w 2 .�1; 1/ variable using � D �ew, followed by a standardizing
transformation computed for H.�ew; �; �; �; �/ew, with � free to determine �, and
fixed at �5 to determine ˙ and L. The extra ew factor multiplying the original
posterior is needed because the integration of the transformed posterior uses d� D
�ewdw. After the standardizing transformation, we can then use a “spherical-radial”
transformation, with only one unbounded variable.

The standardizing transformation parameters were determined to be

� � .3:5261; 8:6272; �:13415; :48632; 4:5866/;

(note �e�1 � �34 corresponding to previous �1), and

L �

2

666664

:18491 0 0 0 0

2:0887 3:2427 0 0 0

:094273 �:037663 :40780 0 0

:000021 �:27323 :00993 :17107 0

0 0 0 0 1

3

777775
:

Then

C D jLj
Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1

Z 24

0

H.�.w.y///ew1.y1/dy

with �.w/ D .�ew1 ; w2; w3; w4; w5/, and w.y/ D � C Ly. The new transformation
is completed with a spherical-radial (SR) transformation for the first four y
components .y1; y2; y3; y4/ D r.z1; z2; z3; z4/ with r 2 Œ0; 1/ and z 2 U4, the
surface of the unit 4-sphere,
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Table 3 Standardized SR OC Computation with MC and RQMC Methods.

NK MC Error RQMCK Error RQMCL Error

100,000 .30330 .007941 .30023 .0006252 .30013 .0002710
200,000 .29894 .005011 .29993 .0003043 .29995 .0001891
400,000 .29991 .002590 .30003 .0003585 .30003 .0000604
800,000 .29973 .002574 .29999 .0001324 .30002 .0000358
Oh˛;80000;10 .19878 .00240 .19917 .00148 .20020 .00084

U4 D f z j z2
1 C z2

2 C z2
3 C z2

4 D 1 g:

Now

C D jLj
Z 1

0

Z

jjzjj2D1

Z 24

0

H.�.w.y.z////ew1.y1.z//r3drdzdy5

� jLj
Z D

0

Z

jjzjj2D1

Z 24

0

H.�.w.y.z////ew1.y1.z//r3drdzdy5;

where dz is the U4 surface measure, the r3 term comes from the Jacobian of the
transformation from .y1; y2; y3; y4/ to rz and the final approximation uses a cutoff
value of D to replace the 1 upper r limit.

MC and QMC methods require x 2 Œ0; 15 variables, so we used the transforma-
tion (see [5])

.z1; z2; z3; z4/ D �p
x1.sin.2	x2/; cos.2	x2//;

p
1 � x1.sin.2	x3/; cos.2	x3//

�
;

with constant Jacobian 2	2, r D Dx4 and y5 D 24x5, so that

OCN D 24D4jLj2	2

N

NX

iD1

H.�.w.y.z.xi /////e
w1.y1.z.xi ///x3

4 ;

can be used to provide MC or QMC approximations to C , as determined by the
choice of the xi points.

Table 3 shows some results for the MC, RQMCK and RQMCL methods, with
this reparameterization, followed by a transformation to x 2 Œ0; 15 variables, for
D D 6. These results are even more accurate than the previous standardized results
and also show the superiority of the QMC methods. The h˛ approximations here
differ from the ones in the previous two Tables because the standardized SR
transformed posterior density, including Jacobian factors, results in a different set
of values for the 100.1 � ˛/ percentile computation. These R˛ confidence sets,
associated with h˛’s, can still be used for performance prediction. The Table 3
accuracy levels obtained using the spherical-radial transformed lattice-rule QMC
combination are not typically needed for practical performance prediction. Further
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Fig. 1 Predicted Cognitive Performance (PVT Lapse) with Confidence Intervals: ‘o’ points denote
individual data values; ‘*’ points denote predicted values.

tests with this combination have shown that sufficient accuracy is obtained with
values for NK � 10; 000, allowing these computations to be completed in less than
a second using Matlab on a laptop computing platform.

3 Performance Prediction Results

The predicted performance can be computed from the data collected during the
computation of C , where we also compute K OR˛;N sets, the sets of � points used for
OCN that are inside the approximate safe height region. Given a set OR˛;N containing

M � i points, and a future time t , we compute predicted average OPN .t/, minimum
P
¯ N .t/, and maximum P N .t/ performance, using

OPN .t/ D 1

M

X

� i 2 OR˛;N

P.� i ; t/; P N .t/ D min
� i 2 OR˛;N

P.� i ; t/; P N .t/ D max
� i 2 OR˛;N

P.� i ; t/:

In Fig. 1 we show the PVT lapse data values for individual C from [15] followed by
the average (over K OR˛;N sets) predicted OPN .t/ values every hour for 24 additional
hours; for each OPN .t/ value, the error bars computed using P N .t/ and P N .t/ values
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provide confidence intervals. The data for the ( OPN .t/, confidence interval) values in
Fig. 1 were collected during computations for the NK D 100;000 for Table 3. These
results are similar to those shown in [10].

4 Concluding Remarks

In this paper we considered a two-part algorithm to efficiently estimate confidence
intervals for a Bayesian model for sleep performance predictions that can be
formulated in terms of a performance model P.�; t/ for a 5-dimensional parameter
space � described by a continuous posterior pdf f .�/ constructed using past
performance data from a particular individual. The major part of the algorithm
deals with finding the smallest region R˛ that captures the 100.1 � ˛/ percentage
of the (hyper)area under the pdf surface. This boundary projects to a level contour
on the surface of the pdf, with height h˛ , which can be approximated during the
computation for the normalizing constant c for f .�/. The simulation points, used
for the computation of c, which are inside R˛ can then be used to compute average
P.�; t/ values at future times, with associated confidence intervals.

We have shown that the use of QMC simulation points combined with an
appropriate transformation of the parameter space can significantly increase the
accuracy of the computations for c, h˛ and future performance predictions. The
methods described here some of the more computationally intensive methods
considered previously for this problem involving spline approximations, numerical
optimization and grid searches [10, 15]. These new methods make it possible to
provide confidence intervals for Bayesian model predictions in real time.
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Options Pricing for Several Maturities
in a Jump-Diffusion Model

Anatoly Gormin and Yuri Kashtanov

Abstract Estimators for options prices with different maturities are constructed on
the same trajectories of the underlying asset price process. The weighted sum of
their variances (the weighted variance) is chosen as a criterion of minimization.
Optimal estimators with minimal weighted variance are pointed out in the case of a
jump-diffusion model. The efficiency of the constructed estimators is discussed and
illustrated on particular examples.

1 Introduction

Monte Carlo calculations are useful for options pricing, especially in multidi-
mensional models since the rate of convergence is independent of the dimension.
Variance reduction for such calculations has been examined in many works; for
example, in [3, 4, 11, 12] the authors use the methods of importance sampling and
control variates to reduce the variance of particular option estimators.

It is often necessary to calculate option prices for different contract parameters
such as strike, maturity, etc. In our previous articles, we already considered the
problem of effective estimation of several option prices in a diffusion model [7, 8]
and a model with jumps [9]. It was noticed in [7] that the case of several maturities
dates has some specific features; in the present paper we concentrate on this
problem.

Model description. Let .�; F ;P/ be a probability space, p.dt; dy/ is a Poisson
measure on Œ0; T / � E , E � R

d with intensity measure �.dt; dy/ D �m.dy/dt ,
where � is a constant, m.dy/ is a probability measure on a measurable space .E; E /,
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m.E/ D 1. Denote by Qp.dt; dy/ D p.dt; dy/��.dt; dy/ the compensated version
of p.dt; dy/. Let the underlying asset price process Xt D .X1

t ; : : : ; Xd
t / satisfies

the following SDE

dXt D a.t; Xt/dt C b.t; Xt/dWt C
Z

E

�.t; Xt�; y/p.dt; dy/; (1)

where Wt is a d -dimensional standard Brownian motion. Let a filtration F D
.Ft /06t6T be a natural filtration generated by the process Wt and the Poisson
measure p.dt; dy/. Suppose that the coefficient functions a W Œ0; T � � R

d ! R
d ,

b W Œ0; T � � R
d ! R

d�d , � W Œ0; T � � R
d � E ! R

d satisfy sufficient conditions
for the existence and uniqueness of the strong solution of (1) (see [13], Chap. 3).

We denote by f� D f� ..Xt/t6T / a discounted payoff function of an option with
parameter � 2 � � R

n and assume that constants c1, c2 exist such that

f� .X/ 6 c1 sup
06t6T

jXt j C c2: (2)

We also assume that the discounted asset price process is a P-martingale and the
option price is given by the formula C� D Ef� .

In Sect. 2 we consider a combination of importance sampling and control variate
methods. More precisely, we define a measure Q absolutely continuous with respect
to the measure P, and assume

bC � D 	f� C 
; (3)

where 	 D dP=dQ and E
Q
 D 0. Note that bC � are unbiased estimators for C� :

E
QbC � D C� . We solve the problem

min
	;


Z
�

VarQ.bC � /Q.d�/ (4)

under different assumptions on Q. Maybe it is more natural to solve the minimax

problem min
	;


max
�2�

q
VarQ.bC � /q� , because it determines the best accuracy of the

worst estimator. But it is a much harder problem and we do not consider it.
In Sect. 3, the results of Sect. 2 are specified for the case when the payoff function

depends only on the prices of the underlying assets at maturity. The issue of optimal
function approximation and other aspects of the constructed estimators application
are considered. The results of simulation are shown in Sect. 4.

2 Theoretical Results

Consider the problem of option price valuation with different maturities t 2 T D
.0; T � and parameters k 2 K � R

n. Let � D fk; tg, � D K � T and f� D
fk;t ..Xs/06s6t /. Consider some approaches to the options valuation.
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2.1 The First Approach

First, we can simply apply the general results developed in [9]. Let �t be an
F-adapted d -dimensional process, ~t .y/ be a one-dimensional F-predictable E-
marked process and ~t .y/ > �1. Denote by ı the pair f�; ~g. Let the process
.Lı

t /06t6T has the form

Lı
t D exp

�Z t

0

�sdWs � 1

2

Z t

0

j�sj2ds �
Z t

0

Z
E

~s.y/�.ds; dy/C

C
Z t

0

Z
E

log .1 C ~t .y// p.dt; dy/

�
: (5)

If for each t 2 Œ0; T �

j�t j2 C
Z

E

j~t .y/j2m.dy/ 6 c.t/ P � a.s.; (6)

where c.t/ > 0 is non-random such that
R T

0
c.t/dt < 1, then Lı

t is a P-martingale
and ELı

T D 1 (see [13], Chap. 3). Therefore, we can define the measure P
ı by

dPı D Lı
T dP. Under the measure P

ı the process W �
t D Wt � R t

0
�sds is a Wiener

process and p.dt; dy/ has the intensity measure .1 C ~t .y//�.dt; dy/ (see [13],
Chap. 3). Let us denote byEı the expectation underPı . Define 	ı

t D �
Lı

t

��1
. Denote

by ' the pair fz; �g, where .zt /06t6T is an F-adapted d -dimensional process and
.�t .y//06t6T is a one-dimensional F-predictable E-marked process such that

E

Z T

0

jzt j2dt < 1; E

Z T

0

Z
E

j�t .y/j2�.dt; dy/ < 1:

Define

M
ı;'
t D

Z t

0

zsdW �
s C

Z t

0

Z
E

�s.y/ Qp.ds; dy/; (7)

where Qp.ds; dy/ D p.ds; dy/�.1C~t.y//�.dt; dy/. The martingale M
ı;'
t is square

integrable with respect to the measure P
ı (see [1], Chap. 8). Consider estimators of

the from eC � .ı; '/ D f� 	ı
T C M

ı;'
T : (8)

Since the estimator is unbiased, the problem of the weighted variance minimization
is reduced to the weighted second moment minimization

min
ı;'

Z
�

E
ıeC 2

� .ı; '/Q.d�/: (9)

Denote
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NG D
Z

�

f� Q.d�/; eG D
s�Z

�

f 2
� Q.d�/

�
� NG2: (10)

As shown in [6], the minimum (9) equals
�
EeG�2 C �

E NG�2 and is attained when

�t D Q̨ t

Qt

; ~t .y/ D
Q̌
t .y/

Qt�
; zt D �	ı

t . N̨ t � �t Nt /;

�t .y/ D �	ı
t�
�

Ň
t .y/ � Nt�

~t .y/

1 C ~t .y/

�
; (11)

where
Nt D E. NGjFt /; Qt D E.eGjFt /: (12)

Processes Q̨ t , N̨ t , Q̌
t .y/, Ň

t .y/ are defined by representations

d Qt D Q̨ t dWt C
Z

E

Q̌
t .y/ Qp.dt; dy/;

d Nt D N̨ t dWt C
Z

E

Ň
t .y/ Qp.dt; dy/:

The efficiency of estimator (8) can be improved by incorporating additional
weights which depend on the parameter � . Fix ı D f�; ~g, ' D fz; �g and consider
estimators of the form

eC � .a/ D eC � .aI ı; '/ D f� 	ı
T C a.�/M

ı;'
T ; (13)

where M
ı;'
T is defined in (7) and the function a W � ! R solves the problem

min
a

Z
�

E
ıeC 2

� .a/Q.dk/: (14)

Since EM
ı;'
T D 0, we get from ([5], Chap. 4) that the optimal function a�.�/ which

minimizes (14) has the form

a�.�/ D � E.f� M
ı;'
T /

Eı

�
M

ı;'
T

�2
:

The minimum equals

Z
�

E
ı.f� 	ı

T /2Q.d�/ �
Z

�

a�2
.�/Q.d�/Eı

�
M

ı;'
T

�2

:
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The function a�.�/ is constructed such that Var
�eC �.a�I ı; '/

�
6 Var

�eC �.ı; '/
�

for any � 2 �. In practice, a�.�/ is replaced by its sample counterpart calculated
on realizations of the Xt trajectory. This introduce some bias, which is typically
O .1=n/ (see [5], Chap. 4), whereas the standard error of Monte Carlo estimators is
O
�
1=

p
n
�
.

2.2 The Second Approach

The second approach is represented by estimators of the form

bC � .ı/ D 	ı
t f� : (15)

These estimators were examined in [7] in the case of a diffusion model and � D t .
Under additional condition on Q and ft , the problem of the weighted variance
minimization was reduced to solving a nonlinear partial differential equation (see
Theorem 2.3 in [7]). For the jump-diffusion model, we can deduce a similar nonlin-
ear partial integro-differential equation such that the optimal estimator is expressed
by its solution. But this approach has evident disadvantages: the approximation
of the nonlinear PIDE solution is quite complicated; the payoff function may
depend only on the underlying asset price at maturity; additional conditions (like
Hölder continuity) should be imposed on the coefficients of SDE (1) and the payoff
function; the measure Q is assumed to be absolutely continuous.

We consider more realistic and less restrictive case when Q is a discrete measure.
Let T D fti gn

iD1, where 0 D t0 < t1 < : : : < tn D T . Since the estimator bC � .ı/

is unbiased, the problem of the weighted variance minimization is reduced to the
problem of the second moment minimization

min
ı

Z
�

E
ıbC 2

� .ı/Q.�/: (16)

Assume that the measure Q.dk; dt/ D P.dk/Q.dt/, P.K / D 1, Q.T / D 1.
Denote by qi the weights Qftig. Define sequences

Hti D
sZ

K

f 2
k;ti

P.dk/qi ; Gti D
q�

E.GtiC1
jFti /

�2 C H 2
ti /; Gtn D Htn;

then

Z
�

E
ıbC 2

� .ı/Q.dk; dt/ D
nX

iD1

qiE
ı

Z
K

�
fk;ti 	

ı
ti

�2
P.dk/ D

nX
iD1

E
ı
�
Hti 	

ı
ti

�2
:
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Theorem 1. There exist an F-adapted processes Ǫ .i/
t , and an F-predictable

E-marked processes Ǒ.i/
t .y/, i = 1, . . . , n such that

d O.i/
t D Ǫ .i/

t dWt C
Z

E

Ǒ.i/
t .y/ Qp.dt; dy/; (17)

where O.i/
t D E.Gti jFt /. Minimum (16) equals

min
ı

nX
iD1

E
ı
�
Hti 	

ı
ti

�2 D .EGt1 /
2 ;

and is attained when

O�t D
nX

iD1

1.ti�1;ti �.t/
Ǫ .i/

t

O.i/
t

; O~t .y/ D
nX

iD1

1.ti�1;ti �.t/
Ǒ.i/
t .y/

O.i/
t�

; (18)

if the condition (6) for O�, O~ holds.

Proof. Prove that the martingale O.i/
t on Œ0; ti � is square integrable for i D 1; : : : ; n.

We have

E

�
O.i/

t

�2

6 EG2
ti

6 E

�
G2

tiC1
C H 2

ti

�
6 : : : 6 E

0
@ nX

j Di

H 2
tj

1
A :

From (2) and the inequality E

�
sup

06t6T

jXt j2
�

< 1 (see [13], Chap. 3) it follows that

EH 2
ti

6 E

�
c1 sup

06t6T

jXt j C c2

�2

6 C < 1 and therefore, E
�

O.i/
t

�2

< C for any i

and t 2 Œ0; ti �. Applying the martingale representation theorem (see [13], Chap. 2)
we get that there exist processes Ǫ .i/

t , Ǒ.i/
t .y/ such that the differential for O.i/

t has
the form (17). Define O�t , O~t .y/ as in (18), then from Itô’s lemma we have that

ln O.i/
ti D ln O.i/

ti�1
C
Z ti

ti�1

Ǫ .i/
t

O.i/
t

dWt � 1

2

Z ti

ti�1

j Ǫ .i/
t j2

. O.i/
t /2

dt �
Z ti

ti�1

Z
E

Ǒ
t .y/.i/

O.i/
t�

�.dt; dy/

C
Z ti

ti�1

Z
E

ln

 
1 C

Ǒ.i/
t .y/

O.i/
t�

!
p.dt; dy/ D ln O.i/

ti�1
C
Z ti

ti�1

O�t dWt� (19)

� 1

2

Z ti

ti�1

j O�t j2dt �
Z ti

ti�1

Z
E

O~t .y/�.dt; dy/

C
Z ti

ti�1

Z
E

ln .1 C O~t .y// p.dt; dy/:
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Since O� , O~ satisfy (6), EL
O�; O~
T D 1 and we can construct the probability measure

P
O�; O~ D P

Oı with the density L
Oı
T D dP

Oı=dP. From (5) and (19) it follows that

L
Oı
ti

L
Oı
ti�1

D exp
�

ln O.i/
ti � ln O.i/

ti�1

�
D Gti

E .Gti jFti�1 /
:

Define 	ı
ti�1;ti

D 	ı
ti
=	ı

ti�1
. From Jensen’s inequality it follows that for any ı

E
ı
��

Gti 	
ı
ti

�2 jFti�1

�
D �

	ı
ti�1

�2
E

ı
��

Gti 	
ı
ti�1;ti

�2 jFti�1

�
>
�
	ı

ti�1
E .Gti jFti�1 /

�2

for i D 1; : : : ; n. Since

	ı
ti�1;ti

D L
Oı
ti�1

L
Oı
ti

D E .Gti jFti�1 /

Gti

; (20)

we have

E
Oı
��

Gti 	
Oı
ti

�2 jFti�1

�
D
�
	

Oı
ti�1

E .Gti jFti�1 /
�2

(21)

for i D 1; : : : ; n.
Denote An.ı/ D Pn

i D 1.Hti 	
ı
ti
/2 and recall that Gtn D Htn . From Jensen’s

inequality it follows that for any ı

E
ıAn.ı/ D E

ı
�
An�1.ı/ C E

ı
��

Gtn	ı
tn

	2ˇ̌ˇFtn�1

��
>

> E
ı
�
An�1.ı/ C �

	ı
tn�1

E .Gtn j Ftn�1 /
	2� D

D E
ı
�
An�2.ı/ C �

	ı
tn�1

�2 �
H 2

tn�1
C ŒE .Gtn j Ftn�1 /�

2
��

D

D E
ı
�
An�2.ı/ C E

ı
��

Gtn�1	
ı
tn�1

	2ˇ̌ˇFtn�2

��
> : : :

: : : > E
ı
��

Gt1	
ı
t1

	2� > .EGt1 /
2 :

From (21) it follows that for Oı D f O�; O~g
nX

iD1

E
Oı �Hti 	

Oı
ti

�2 D .EGt1/
2 : ut
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Note that in the case M
ı;'
T D 0 the minimal weighted variance of estimator (15) is

not greater than the minimal weighted variance of estimator (8). It follows from the
following inequality

E
ı
�
f� 	ı

T

�2 D Ef 2
� 	ı

T > Ef 2
� 	ı

t D E
ı
�
f� 	ı

t

�2
:

3 Application to Options Pricing

In this section the results of Sect. 2 are applied for options pricing. We construct
approximation for optimal functionals Gti defined in Theorem 1. This approxima-
tion is applied in simulations. After that we consider options with payoff functions
which depend on the underlying asset price at maturity and specify the theoretical
results in this case.

In practice we approximate the optimal functionals Gti D
q
E2.GtiC1

jFti / C H 2
ti

defined in Theorem 1 by eGti

eGti D E

0
@
vuut nX

j Di

H 2
tj

ˇ̌
ˇ̌
ˇ̌Fti

1
A : (22)

Now we specify the results of Sect. 2 for rainbow options for which the
payoff depends only on the prices of underlying assets at maturity. A rainbow
option is an option whose payoff function depends on more than one underlying
asset. For example, a call-on-max option has a payoff function of the form
max.max.S1

T ; : : : ; Sn
T / � K; 0/. For other types of rainbow options see [10].

We assume for simplicity that the interest rate is constant and the discounted
payoff function has the form f� D fk;t .Xt /, where Xt is the solution of SDE (1).
Note that not all components of Xt are prices of underlying assets. One of them
could be a stochastic volatility, for example. We estimate option prices Ck;t D Efk;t .

3.1 The Case of Estimator (13)

Recall that the functional NG is defined in (10). Let Z1.s; t/ D R t

s

R
K fk;� Q.dk; d�/,

then we have

Nt D E. NGjFt / D Z1.0; t/ C E .Z1.t; T /j Xt / D Z1.0; t/ C Nu .t; Xt / ;

where Nu.t; x/ DE.Z1.t; T /jXt D x/. Assume that the function Nu.t; x/ is smooth
enough, then using Itô’s lemma for Nu.t; Xt/, we get the differential of the
P-martingale Nt in the form
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d Nt D bT .t; Xt/r Nu.t; Xt/dWt (23)

C
Z

E

.Nu .t; Xt� C �.t; Xt�; y// � Nu.t; Xt�// Qp.dt; dy/:

Consider Qt defined in (12). Let Z2.s; t/ D R t

s

R
K f 2

k;�Q.dk; d�/, denote by Zt the
pair .Z1.0; t/; Z2.0; t//, then we have

Qt D E.eGjFt / D E

�q
Z2.0; T / � Z2

1.0; T /

ˇ̌
ˇ̌Ft

�
D

D E

�q
Z2.0; t/ C Z2.t; T / � .Z1.0; t/ C Z1.t; T //2

ˇ̌
ˇ̌Xt ; Z1.0; t/; Z2.0; t/

�
D

Deu.t; Xt ; Zt /;

where Qu.t; x; z/ D E

�p
z2 C Z2 .t; T / � .z1 C Z1 .t; T //2

ˇ̌
ˇXt D x; Zt D z

�
.

Denote by rx Qu the vector of derivatives of Qu.t; x; z/ with respect to xi , i = 1,. . . ,
d. Applying Itô’s lemma for Qu.t; Xt ; Zt /, we get the differential of the P-martingale
Qt in the form

d Qt D bT .t; Xt/rx Qu.t; Xt ; Zt /dWt

C
Z

E

.Qu .t; Xt� C �.t; Xt�; y/; Zt�/ � Qu.t; Xt�; Zt�// Qp.dt; dy/:

Thus, we obtain the representations for � , ~, z, � defined in (11):

�t D bT .t; Xt/rx Qu.t; Xt ; Zt /

Qu.t; Xt ; Zt /
; ~t .y/ D Qu.t; Xt� C �.t; Xt�; y/; Zt�/

Qu.t; Xt�; Zt�/
� 1;

zt D �	ı
t b

T .t; Xt /

�
r Nu.t; Xt/ � rx Qu.t; Xt ; Zt /

Qu.t; Xt ; Zt /
.Nu.t; Xt / C Z1.0; t//

�
(24)

�t .y/ D �	ı
t� .Nu.t; Xt� C �.t; Xt�; y// � 2Nu.t; Xt�/ � Z1.0; t/

C .Z1.0; t/ C Nu.t; Xt�//
Qu.t; Xt�; Zt�/

Qu.t; Xt� C �.t; Xt�; y/; Zt�/

�
:

3.2 The Case of Estimator (15)

The martingale O.i/
t defined in the statement of Theorem 1 has the differential of the

form (23), where Nu.t; x/ should be replaced by Ou.i/.t; x/ D E .Gti j Xt D x/, t 6 ti .
Thus, the optimal � , ~ defined in (18) have the representation
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�t D bT .t; Xt /r Ou.t; Xt /

Ou.t; Xt /
; ~t .y/ D Ou.t; Xt� C �.t; Xt�; y//

Ou.t; Xt�/
� 1;

where Ou.t; x/ D Pn
iD1 1.ti�1;ti �.t/Ou.i/.t; x/.

To simplify the calculations, the function Ou.i/.t; x/ is approximated by
Qu.i/.t; x/ DE

�eGti

ˇ̌
Xt D x

�
, where eGti is defined in (22). Since Hti DqR

K f 2
k .ti ; Xti /P.dk/qi , we have for t 6 ti

Qu.i/.t; x/ D E

0
@
vuut nX

j Di

H 2
tj

ˇ̌
ˇ̌
ˇ̌Xt D x

1
A (25)

D E

0
@
vuut nX

j Di

qj e�2
R tj

t rsds

Z
K

f 2
k .tj ; Xtj /P.dk/

ˇ̌
ˇ̌
ˇ̌Xt D x

1
A :

3.3 Application to Simulation

Optimal processes � , ~, z, � for the estimator (13), which minimize the weighted
variance (9), are given in (24). In order to simplify the computations, we calculate
� , ~, z, � as the solution of the problem

min
�;~;z;�

Z
K

E
�;~eC 2

k;T .�; ~; z; �/P.dk/:

Then in formulas (24) we have Z1.0; t/ D 0, Z2.0; t/ D 0 for t < T and

Nu.t; x/ D E

�Z
K

fk;T P.dk/jXt D x

�
; Qu.t; Xt ; 0; 0/ D Qu.t; Xt /;

where

Qu.t; x/ D E

0
@
sZ

K
f 2

k;T P.dk/ �
�Z

K
fk;T P.dk/

�2

ˇ̌
ˇ̌
ˇ̌Xt D x

1
A :

There are some difficulties in application of the constructed estimator. First, we
need to approximate the functions Nu.t; x/, Qu.t; x/. In order to do this, we simplify
the original model for Xt . Approximate the process Xt by the process eXt , which
satisfies SDE (1) with coefficient functions Qa.t; x/, Qb.t; x/, Q�.t; x; y/ such that

eXt D h

�
t; Wt ;

Z t

0

Z
E

ˇ.t; y/p.dt; dy/

�
(26)
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for some deterministic functions h, ˇ. The form of the process eXt allows us
to reduce significantly the quantity of pseudo-random numbers generated for eXt

simulation. The function Qu.t; x/ is approximated by

Qv.t; x/ D E

0
@
sZ

K
f 2

k;T .eXT /P.dk/ �
�Z

K
fk;T .eXT /P.dk/

�2

ˇ̌
ˇ̌
ˇ̌ eXt D x

1
A :

The standard Monte carlo estimator is applied for Qv.t; x/ calculation on a grid, and
then we use interpolation for Qv.t; x/ calculation at particular points. The gradient
r Qu.t; x/ is approximated by rQv.t; x/. In the same way Nu.t; x/ and r Nu.t; x/ can be
approximated. Computation of the approximations of Nu.t; x/ and Qu.t; x/ on the grid
is performed before the main simulations of the trajectories of Xt .

The same method is applied for approximation of the function Qu.i/.t; x/ defined
in (25). It is approximated by

Qv.i/.t; x/ D E

0
@
vuut nX

j Di

qj e�2
R tj

t rsds

Z
K

f 2
k .tj ;eXtj /P.dk/

ˇ̌
ˇ̌
ˇ̌ eXt D x

1
A ;

where eXt has the form (26). For example, if Xt follows the Heston model (the
volatility is stochastic), then we can chose eXt such that it follows the Black–Scholes
model (the volatility is constant). The function Qu.t; x/ D Pn

iD1 1.ti�1;ti �.t/Qu.i/.t; x/

is approximated by Qv.t; x/ D Pn
iD1 1.ti�1;ti �.t/Qv.i/.t; x/. The standard Monte carlo

estimator is applied for Qv.t; x/ calculation on a grid.
The other difficulty in application of the estimators (13) and (15) is that we also

need to calculate the following integrals

Z T

0

Z
E

~t .y/m.dy/dt;

Z T

0

Z
E

�t .y/m.dy/dt;

which lead to computation of the integrals of the type It D R
E

Qv.t; x C
�.t; x; y//m.dy/. If m.dy/ is a discrete distribution, then It could be easily
calculated. If not, then It can be calculated by Monte Carlo method, which
introduces additional error and reduces the efficiency of the constructed estimators.
So, in applications we consider only the case when m.dy/ is a discrete distribution.

3.4 Computational Time

Below we introduce the formula for the total time of options prices estimation with
parameters � 2 �. Denote by �� the standard error of the estimator bC � . Let N be

a number of simulated trajectories of Xt , �� D
q

Var.bC � /, then �� D c˛�� =
p

N ,
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where c˛ is a constant dependent on the confidence level ˛. Define the weighted
error of the estimators as

� D
sZ

�

�2
� Q.d�/;

then � D c˛

p
D=N , where D is the weighted variance of the estimators bC � . Thus,

the total computational time T� , which is necessary to reach the accuracy � is
expressed in the form

T� D t0 C c2
˛

D

�2
.t1 C t2/; (27)

where t0 is the time of preliminary computations, t1 is the time of one trajectory
simulation, t2 is the time of the estimators bC � computation on one trajectory for
different � 2 �. In comparison with the standard Monte Carlo estimator the times
t1, t2 increase insignificantly due to preliminary computations of optimal functions
approximations on a grid and calculation of the intermediate values between the
grid points by interpolation. Thus, if we are interested in option prices calculation
with high accuracy, it is more efficient to apply estimators with smaller weighted
variance however big t0 is.

4 Simulation Results

Here we apply the constructed estimators in simulations. As a rate of efficiency
we use the ratio E introduced in [9] as a ratio of computational times T

.1/
" =T

.0/
" ,

where T
.i/
" is defined in (27) and T

.0/
" corresponds to the standard Monte Carlo

estimator. Since t
.0/
0 D 0 for the standard Monte Carlo estimator, we have the

following formula for E:

E D t
.1/
0

T
.0/
"

C D.1/

D.0/

t
.1/
1 C t

.1/
2

t
.0/
1 C t

.0/
2

:

We will use the following notations to present the results of simulations: D D D.1/

D.0/ ,

T D t
.1/
0

T
.0/
"

, � D t
.1/
1 Ct

.1/
2

t
.0/
1 Ct

.0/
2

. Consider the process Xt D
�
.S

.1/
t ; V

.1/
t /; : : : ; .S

.d/
t ; V

.d/
t /

�
,

where S
.i/
t is a price process of the i -th underlying asset, V

.i/
t is a volatility process.

We assume that for i D 1; : : : ; d

dS
.i/
t D i .t/S

.i/
t dt C S

.i/
t

q
V

.i/
t dW

.i/
t C d

NtX
nD1

�
eY

.i/
n � 1

�
S

.i/
Tn�;

dV
.i/

t D �i .
i � V
.i/

t /dt C ˛i

q
V

.i/
t

�
	i dW

.i/
t C

q
1 � 	2

i d eW .i/
t

�
;
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t = 0.5

t = 1.5

Fig. 1 Confidence limits for the option price.

where eW t D
�eW .1/

t ; : : : ; eW .d/
t

�T

is the d -dimensional standard Brownian motion;

Wt D
�
W

.1/
t ; : : : ; W

.d/
t

�T

is the Brownian motion with correlation matrix ˙ ; Wt

and eW t are independent; Nt is a Poisson process with intensity �; relative jumps

Yn D
�
Y

.1/
n ; : : : ; Y

.d/
n

�T

have the following distribution:

Yn D
(

Uc; with prob. �c

�
pc;

Dc; with prob. �c

�
.1 � pc/;

Y .i/
n D

(
Ui ; with prob. �i

�
pi ;

Di ; with prob. �i

�
.1 � pi/;

where Uc; Dc 2 R
d , Ui; Di 2 R, � D �1 C : : : C �d C �c . This model can be

considered as a multivariate Heston model (see [2]) with jumps. We consider three
underlying assets, i.e. d D 3 with S

.i/
0 D 100. Let the confidence level ˛ D 0:99.

Example 1. We estimate call-on-max options with maturities t 2 f0:5 C 0:25ig4
iD0

and strikes K 2 f90 C ig21
iD0. We apply the estimator defined in (15). For 104

simulated trajectories we have E D 1:17, � D 1:4, T D 1:08, D D 0:065. The
weighted variance was reduced 1=D D 15:43 times. For 106 simulations E D 0:1.
The confidence limits of the option prices are shown in Fig. 1. The dashed lines
“Standard MC” correspond to the standard Monte Carlo estimator, the solid lines
“IS” correspond to the importance sampling estimator.

Applying the estimator defined in (13) without changing measure (i.e. 	ı
T � 1),

we get that for 104 simulations E D 0:69, � D 1:36, T D 0:26, D D 0:31. The
weighted variance was reduced 1=D D 3:18 times. For 106 simulations E D 0:43.
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Example 2. We estimate call-on-max options with two maturities t 2 f0:75; 1g and
strikes K 2 f100 C ig5

iD1. Applying the estimator defined in (15) we get for 106

simulated trajectories that the weighted variance was reduced 1=D D 30:59 times,
E D 0:058.
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Enumerating Quasi-Monte Carlo Point
Sequences in Elementary Intervals

Leonhard Grünschloß, Matthias Raab, and Alexander Keller

Abstract Low discrepancy sequences, which are based on radical inversion, expose
an intrinsic stratification. New algorithms are presented to efficiently enumerate the
points of the Halton and .t; s/-sequences per stratum. This allows for consistent and
adaptive integro-approximation as for example in image synthesis.

1 Introduction

Similar to real world digital cameras, pixel colors can be modeled as sensor
response to the radiance function. The discrete, pixel-based image thus results from
projecting the radiance function onto a regular lattice of sensor functions.

These functionals can be computed by applying the Monte Carlo method on a per
pixel basis, which allows one to adaptively choose the number of samples per pixel.
The straightforward application of quasi-Monte Carlo methods per pixel in order to
improve convergence reveals correlation artifacts, which can be removed by giving
up determinism, for example by random scrambling [12, 15].

These issues can be avoided by interpreting image synthesis as a parametric
integration problem, i.e., by estimating multiple functionals using a single quasi-
Monte Carlo point sequence over the whole image plane: In [10] the stratification
properties of the (finite) Hammersley point set have been used to efficiently map
pixels to samples. This approach has been generalized for the Halton sequence in
order to allow for pixel adaptive sampling [11]: As illustrated in Fig. 1, a large
table of the size of the number of pixels has been used to look up the index of
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Fig. 1 A plot of the first 12 points of the scaled two-dimensional Halton sequence
.2˚2.i/; 3˚3.i// labeled with their index i . While the point sequence jumps across the domain,
it can be seen that points inside each of the depicted 2 � 3 strata can be enumerated using a stride
of 6, which is the number of strata.

the first Halton sequence point in a pixel, while the subsequent samples have been
enumerated using a fixed stride.

In the following we improve these approaches for low discrepancy sequences,
whose intrinsic stratification is based on radical inversion: Algorithms, which only
require a lookup table size linear in dimension, are derived for the Halton and .t; s/-
sequences.

The results are applied to image synthesis, where by using the first two dimen-
sions of the Sobol’ sequence for parametric quasi-Monte Carlo integration over the
whole image plane the good uniformity properties across pixels are maintained.
In particular, the consistent and deterministic framework allows one to adaptively
determine the number of samples per pixel according to an arbitrary density as
illustrated in Fig. 4.

2 Radical Inversion and Stratification

Many low discrepancy sequences are based on the principle of radical inversion

˚b W N0 ! Q \ Œ0; 1/

i D
1X

kD0

ak.i/bk 7!
1X

kD0

ak.i/b�k�1; (1)

where ak.i/ denotes the .k C 1/st digit of the integer i 2 N0 in base b. In fact, the
radical inverse (also known as van der Corput sequence [2, 13]) mirrors the digits
at the decimal point. Using permutations �b .ak.i// of f0; : : : ; b � 1g instead of the
original digits can improve discrepancy [5,10]. Note that this generalization as well
as the original construction are bijections.

Inserting i D bd � h C l with l 2 f0; : : : ; bd � 1g yields

˚b.i/ D ˚b.bd � h C l/ D b�d � ˚b.h/ C ˚b.l/; (2)
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revealing that

• The d least significant digits l select an interval bd � ˚b.l/ 2 f0; : : : ; bd � 1g,
while

• The most significant digits h determine the point inside that interval.

Therefore any subsequence of the van der Corput sequence at a step size of bd falls
into the same interval of width b�d .

3 Enumerating the Halton Sequence per Stratum

The s-dimensional points

xi WD .˚b1 .i/; ˚b2.i/; : : : ; ˚bs .i// 2 Œ0; 1/s

constitute the Halton sequence [7], where typically bj is the j -th prime number,
although for low discrepancy it is sufficient that the bj are relatively prime.

As illustrated in Fig. 1, the stratification properties of radical inversion (2) allude
to an s-dimensional stratification, where each dimension 1 � j � s is partitioned

into b
dj

j uniform intervals for fixed dj 2 N0. Now, given coordinates .p1; : : : ; ps/

of such a resulting interval, where 0 � pj < b
dj

j , the indices

lj WD ˚�1
bj

0

@ pj

b
dj

j

1

A 2 f0; : : : ; b
dj

j g

uniquely identify an index i 2 f0; : : : ;
Qs

j D1 b
dj

j � 1g specified by

lj � i mod b
dj

j ; (3)

because the bases b1; : : : ; bs have been chosen relatively prime. Consequently the

prime powers b
dj

j are relatively prime as well and therefore the simultaneous
solution of the Eq. 3 is provided by the Chinese remainder theorem [1, Sect. 31.5].

With mj WD
�Qs

kD1 b
dk

k

�
=b

dj

j and the multiplicative inverse
�
m�1

j mod b
dj

j

�

the index

i D
0

@
sX

j D1

lj � mj

�
m�1

j mod b
dj

j

�
1

A mod
sY

j D1

b
dj

j (4)

can be computed efficiently by means of the extended Euclidean algorithm [1,
Sect. 31.2]. Immediate consequences are that

1. The first
Qs

j D1 b
dj

j points are stratified such that there is exactly one point in each
stratum and that
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2. All Halton sequence points with indices i C t � Qs
j D1 b

dj

j , t 2 N0, fall into the
same stratum.

Storing a lookup table for the offsets i per stratum [11] is simple, however, the

size
Qs

j D1 b
dj

j of the lookup table can be prohibitive even in s D 2 dimensions. It
is much more efficient to compute the subsequence offset i by Eq. 4 for a selected
stratum, because only s multiplicative inverses need to be stored once.

4 Enumerating Digital .t; s/-Sequences per Elementary
Interval

Opposite to Halton’s construction, the components

x
.j /
i D

0

B@
b�1

b�2

:::

1

CA

T 2

64C .j /

0

B@
a0.i/

a1.i/
:::

1

CA

3

75 2 Œ0; 1/; (5)

of digital .t; s/-sequences [13] are all generated in the same base b, while the matrix-
vector multiplication takes place in a finite field. For finite fields other than Zb ,
the digits need to be mapped to the finite field and the resulting vector needs to
be mapped back [13], which has been omitted for the sake of clarity. Eq. 1 is an
illustrative example, where the generator matrix C .j / is the infinite unit matrix.

The stratification properties resulting from such a construction are illustrated in
Fig. 2 and are formalized by

Definition 1 (see [13, p. 48]). An interval of the form

E.p1; : : : ; ps/ WD
sY

j D1

�
pj b�dj ; .pj C 1/b�dj

� � Œ0; 1/s

for 0 � pj < bdj and integers dj � 0 is called an elementary interval in base b.

Given the numbers dj of digits that determine the number of intervals bdj in
dimension j and the elementary interval E.p1; : : : ; ps/, we have

0
BBB@

C
.1/

Œ.1;1/;.d1;
Ps

j D1 dj Ce/�

:::

C
.s/

Œ.1;1/;.ds;
Ps

j D1 dj Ce/�

1
CCCA �

0

BBBBBBBBB@

a0.i/
:::

aPs
j D1 dj �1.i/

a0.q/
:::

ae�1.q/

1

CCCCCCCCCA

D

0
BBBBBBBBBBBB@

ad1�1.p1/
:::

a0.p1/
:::

ads�1.ps/
:::

a0.ps/

1
CCCCCCCCCCCCA

(6)
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Fig. 2 All kinds of elementary intervals with area 1
16

for s D b D 2. In this case the set of
elementary intervals in the middle consists of square strata. The first 24 D 16 points of Sobol’s
.0; 2/-sequence, which form a .0; 4; 2/-net in base b D 2, are superimposed over each set of
elementary intervals.

for the .q C 1/st point in that elementary interval, where q constitutes the e most
significant digits of the index i of that point and the shorthand

C
.j /

Œ.u;v/;.u0;v0/� WD
c

.j /
u;v c

.j /
u;vC1 : : : c

.j /

u;v0

:::
:::

: : :
:::

c
.j /

u0;v c
.j /

u0;vC1 : : : c
.j /

u0;v0

is used to select a block from the first dj rows of C .j /. As a0.q/; : : : ; ae�1.q/ are
specified by q, rearranging yields

0

BBB@

C
.1/

Œ.1;1/;.d1;
Ps

j D1 dj /�

:::

C
.s/

Œ.1;1/;.ds ;
Ps

j D1 dj /�

1

CCCA

„ ƒ‚ …
A

�

0
B@

a0.i/
:::

aPs
j D1 dj �1.i/

1
CA

D

0

BBBBBBBBBBBB@

ad1�1.p1/
:::

a0.p1/
:::

ads�1.ps/
:::

a0.ps/

1

CCCCCCCCCCCCA

�

0

BBB@

C
.1/

Œ.1;
Ps

j D1 dj C1/;.d1;
Ps

j D1 dj Ce/�

:::

C
.s/

Œ.1;
Ps

j D1 dj C1/;.ds;
Ps

j D1 dj Ce/�

1

CCCA �

0

B@
a0.q/

:::

ae�1.q/

1

CA ; (7)

which can be solved uniquely for the index digits a0.i/; : : : ; aPs
j D1 dj �1.i/ if

det.A/ ¤ 0.
Upon existence, the inverse A�1 is computed once and stored for computing

the indices of all samples, which in fact just costs about as much as evaluating an
additional component of the sequence.
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4.1 .0; s/-Sequences

The general definitions of .t; m; s/-nets and .t; s/-sequences in base b are based on
the concept of elementary intervals (for a profound introduction see [13, Chap. 4]):

Definition 2 (see [13, Definition 4.1]). For integers 0 � t � m, a .t; m; s/-net in
base b is a point set of bm points in Œ0; 1/s such that there are exactly bt points in
each elementary interval E with volume bt�m.

Definition 3 (see [13, Definition 4.2]). For an integer t � 0, a sequence x0; x1; : : :

of points in Œ0; 1/s is a .t; s/-sequence in base b if, for all integers k � 0 and m > t ,
the point set xkbm; : : : ; x.kC1/bm�1 is a .t; m; s/-net in base b.

According to these definitions, a .0; s/-sequence is a sequence of .0; m; s/-
nets as illustrated in Fig. 3. This especially includes .0; ms; s/-nets, where in each
hypercube shaped elementary intervals of side length b�m, there is exactly one point.

For the case of digital constructions, as for example the construction by Faure [4],
the generator matrices C .j / of .0; s/-sequences in base b thus yield a unique solution
of Eq. 7. Note that .0; s/-sequences can only exist for s � b [13, Corollary 4.24,
p. 62].

Often integro-approximation problems expose a structure that matches uniform
hypercubes like for example pixels of an image. Out of the elementary interval there-
fore hypercubes with dj D m are most interesting for applications. Enumerating be

points per elementary interval thus results in .bm/s � be D bmsCe points requiring
ms C e digits in total.

4.2 Sobol’ Sequence

As opposed to Faure’s construction, Sobol’s construction [16] is restricted to base
b D 2, which allows for t D 0 only up to s D 2 dimensions. However, the restriction
to base b D 2 enables the use of efficient bit-vector operations [6, 18], which is not
possible for b > 2.

The sequence can be constructed for any dimension and in fact each component
is a .0; 1/-sequence in base 2 itself. A description of how to compute the binary
generator matrices can be found in [8, 9].

In addition, the first two components form a .0; 2/-sequence in base 2 (for an
efficient implementation see [12]). As a consequence the first 22m two-dimensional
points are stratified such that there is exactly one point in each voxel of a 2m � 2m

regular grid over Œ0; 1/2 as illustrated in Fig. 3.



Enumerating Quasi-Monte Carlo Point Sequences in Elementary Intervals 405

Fig. 3 Since the Sobol’ sequence is a .0; 2/-sequence, each block of points xk�28 ; : : : ; x.kC1/28
�1

constitutes a .0; 8; 2/-net in base 2 for k � 0. Consequently exactly one sample falls into each
of the 16 � 16 pixels shown here. When the four consecutive sample blocks shown here are
superimposed, there are four samples in each pixel. Our algorithm allows for directly enumerating
these samples based on the pixel-coordinates. Note that while in this two-dimensional projection of
the Sobol’ sequence there are clearly some very regular patterns, the sequence is highly uniformly
distributed when more dimensions are considered.

5 Consistent Image Synthesis

Partitioning the unit cube into uniform, axis-aligned intervals results in a number
of strata that is exponential in the dimension s. Hence an implementation requires
special attention in order to avoid overflows in standard integer arithmetic. We
therefore provide illustrative source code [17] in the Python programming language,
which transparently handles arbitrarily long integers.

In practice, the enumeration algorithms for both the Halton sequence and the
.t; s/-sequences are useful only in small dimensions, as for example computing the
average color of pixels for image synthesis. For that purpose the numbers dj of

digits are chosen such that the resulting numbers b
dj

j or bdj , respectively, of strata
are larger or equal to the number of pixels along each dimension. While square
pixels directly match the square elementary intervals of .0; 2m; 2/-nets from .0; 2/-
sequences (see Fig. 3), the components of the Halton sequence need to be scaled
individually per dimension [11] as illustrated in Fig. 1.

Similar to [11], the entire image plane now can be sampled using only one
quasi-Monte Carlo sequence, while still being able to control the sampling rate
per pixel. Aside from the first two dimensions, further components are used for
sampling the remaining dimensions of the integrand. This includes depth of field,
area light sampling, BSDF sampling, etc. [15]. Therefore the quasi-Monte Carlo
sequence needs to be extensible in the dimension like for example the Halton or
Sobol’ sequence.
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Fig. 4 On the left, five samples (depicted by filled circles) have been generated in each of the
9� 7 pixels. Note that both the sample distributions inside each of the pixels and also across pixels
is very uniform (in fact of low discrepancy). On the right, samples (depicted by stroked circles)
have been added according to the underlying density proportional to the intensity level of a pixel,
depicted by its gray coloring. Note that these additional samples naturally fill the remaining space.
The overall distribution globally remains well distributed although additional samples have been
added locally.

In contrast to [3, 11] sampling per pixel is not terminated by an error threshold.
Instead pixel-adaptive sampling is realized by determining a number of samples
per pixel based on an error estimate, sampling each pixel according to that speed,
and repeating this procedure, which results in a consistent integro-approximation
algorithm as illustrated in Fig. 4. In particular, this progressive algorithm enables
strictly deterministic pixel-adaptive sampling in parallel computing environments at
the cost of storing only the current number of samples per pixel.

In addition and at any point of the progressive computation a user can define pixel
regions of high importance. More samples will be placed in those regions. Even with
this user interaction, the determinism is not lost, i.e., if the image is accumulated up
to a certain number of samples for all pixels afterwards, the user interaction does
not change the result.

5.1 Enumerating the Sobol’ Sequence in Pixels

The Sobol’ sequence can be enumerated much more efficiently, if whole .0; 2m; 2/-
nets (see Fig. 3) are generated instead of single points. In order to explain the
optimization, the index

i D
1X

lD0

al .i/ � 2l D
1X

lD2m

al .i/ � 2l C
2m�1X

lDm

al .i/ � 2l

„ ƒ‚ …
MSB

C
m�1X

lD0

al .i/ � 2l

„ ƒ‚ …
LSB
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is partitioned into three parts: The m least significant bits (LSB), the m most
significant bits, and the remaining bits.

Now the points can be determined as follows: For each component (5) of each
.0; 2m; 2/-net, two tables with 2m entries each are computed: The first table stores
the results of the matrix-vector multiplications for 0 � i � 2m �1, while the second
stores the results for i D k � 2m for 0 � k � 2m � 1. A component for an arbitrary
value of i then is found by looking up the entry from the first table using the LSB
of i , looking up the entry from the second table using the MSB of i , and the result
of the matrix-vector multiplication using the remaining bits, all combined using an
exclusive-or operation. As compared to evaluating Eq. 5 for each single component,
the lookup tables save a lot of operations and can be considered an extension of the
initial ideas in [11, Sect. 2.1].

Before applying this optimization to efficiently determine the index i of each
point of a .0; 2m; 2/-net of the Sobol’s sequence (see Fig. 3), the solution of Eq. 6
for the first two components needs to be established:

Given integer pixel coordinates .p1; p2/, with 0 � p1; p2 < 2m, the m least
significant bits a0.i/; : : : ; am�1.i/ of the index i are determined by applying
the inverse of C .1/ to the bits of p1. Then the bits of p2 are combined with
C .2/ multiplied by the just computed least significant bits using an exclusive-or
operation. Applying the inverse of C .2/ to the result yields the most significant bits
am.i/; : : : ; a2m�1.i/ of the index i .

By Sobol’s construction, C .1/ is a unit matrix, while C .2/ is not, which is the
reason for correcting the bits of p2 by subtracting the contribution of the least
significant bits to the most significant bits.

The optimization now consists in replacing all matrix-vector multiplications by
table lookups. This requires to compute the lookup tables of size 2m for each of the
.0; 2m; 2/-nets.

The resulting implementation [17] in fact is very simple. Note that special care
has to be taken in order to avoid overflows due to insufficient word width.

6 Conclusion

We derived efficient algorithms to enumerate low discrepancy sequences in elemen-
tary intervals resulting from radical inversion. These algorithms can be used for
consistent deterministic parallel quasi-Monte Carlo integro-approximation.

Instead of considering all elementary intervals, it is interesting to restrict
observations to .M ; �/-uniform point sets as introduced in [14], which includes the
interesting question, whether rank-1 lattice sequences can be efficiently enumerated
inside the sets of M [11].
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Importance Sampling Estimation of Joint
Default Probability under Structural-Form
Models with Stochastic Correlation

Chuan-Hsiang Han

Abstract This paper aims to estimate joint default probabilities under the
structural-form model with a random environment; namely stochastic correlation.
By means of a singular perturbation method, we obtain an asymptotic expansion of a
two-name joint default probability under a fast mean-reverting stochastic correlation
model. The leading order term in the expansion is a joint default probability with an
effective constant correlation. Then we incorporate an efficient importance sampling
method used to solve a first passage time problem. This procedure constitutes a
homogenized importance sampling to solve the full problem of estimating the joint
default probability with stochastic correlation models.

1 Introduction

Estimation of a joint default probability under the structural-form model typically
requires solving a first passage time problem. Black and Cox [1] and Zhou [17]
provided financial motivations and technical details on the first passage time
approach for one and two dimensional cases, respectively.

A high-dimensional setup of the first passage time problem is as follows. Assume
that a credit portfolio includes n reference defaultable assets or names. Each asset
value, Sit 1 � i � n, is governed by

dSit D �i Sitdt C �i SitdWit; (1)

where �i denotes a constant drift rate, �i denotes a constant volatility and the
driving innovation dWit is an infinitesimal increment of a Brownian motion (Wiener
process) Wi with the instantaneous constant correlation
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d
˝
Wi ; Wj

˛
t

D �ij dt:

Each name also has a barrier, Bi , 1 � i � n, and default happens at the first time
Sit falls below the barrier level. That is, the i th default time �i is defined by the first
hitting time

�i D infft � 0 W Sit � Bi g: (2)

Let the filtration Ft�0 be generated by all Sit; i D 1; � � � ; n under a probability
measure IP . At time 0, the joint default probability with a terminal time T is defined
by

DP D IE f˘n
iD1I.�i � T /jF0g : (3)

Due to the high dimensional nature of this problem (n D 125 in a standard
credit derivative [3], for example), Monte Carlo methods are very useful tools
for computation. However, the basic Monte Carlo method converges slowly to
the probability of multiple defaults defined in (3). We will review an efficient
importance sampling scheme discussed in Han [10] to speed up the computation.
This method is asymptotically optimal in reducing variance of the new estimator.

Engle [6] revealed the impact of correlation between multiple asset dynamics. A
family of discrete-time correlation models called dynamic conditional correlation
(DCC) has been widely applied in theory and practice. Hull et al. [15] examined the
effect of random correlation in continuous time and suggested stochastic correlation
for the structural-form model. This current paper studies the joint default probability
estimation problem under the structural-form model with stochastic correlation. For
simplicity, we consider a two-dimensional case, n D 2. This problem generalizes
Zhou’s study [17] with constant correlation.

Note that under stochastic correlation models, there exists no closed-form
solution for the two-name joint default probability. A two-step approach is proposed
to solve this estimation problem. First, we apply a singular perturbation technique
[4] and derive an asymptotic expansion of the joint default probability. Its leading
order term is a default probability with an effective constant correlation so that the
limiting problem becomes the standard setup of the first passage time problem.
Second, given the accuracy of this asymptotic approximation, we develop a
homogenized likelihood function for measure change. It allows that the efficient
importance sampling method [7, 10] can be applied for estimation of the two-name
joint default probability under stochastic correlation models. Results of numerical
simulation show that estimated joint default probabilities are sensitive to the change
in correlation and our proposed method is efficient and robust even when the mean-
reverting speed is not in a small regime.

The organization of this paper is as follows. Section 2 presents an asymptotic
expansion of the joint default probability under a fast mean-reverting correlation
by means of the singular perturbation analysis. Section 3 reviews the efficient
importance sampling method to estimate joint default probabilities under the
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classical structural-form model with constant correlation. Section 4 constructs a
homogenized importance sampling method to solve the full problem.

2 Stochastic Correlation Model: Two Dimensional Case

The closed-form solution of a two-name joint default probability under a constant
correlation model is given in [2]. Assume that asset prices .S1t ; S2t / driven by
two geometric Brownian motions with a constant correlation �; �1 � � � 1 are
governed by

dS1t D �1 S1t dt C �1S1tdW1t

dS2t D �2 S2t dt C �2S2t .�dW1t C
p

1 � �2dW2t /;

following the usual setup in (1). When the default boundary is deterministic of an
exponential type Be�t , each default time �i can be defined as

�i D infft � 0I Sit � Bi e
�i t g (4)

for i 2 f1; 2g: This setup is slightly more general than our constant barriers (2) but it
causes no extra difficulty when log-transformation is applied. No initial default, i.e.,
Si0 > Bi for each i , is assumed to avoid the trivial case. The joint default probability
defined by

P.0; x1; x2/ D IP .�1 � T; �2 � T /

can be expressed as

P.0; x1; x2/ D P1.0; x1/ C P2.0; x2/ � Q1;2.0; x1; x2/ (5)

where Pi WD IP .�i � T / denotes the i th marginal default probability and Q1;2 WD
IP .�1 � T or �2 � T / denotes the probability that at least one default happens. The
closed-form formula for each Pi , i 2 f1; 2g, is

Pi D N

�
� dip

T
� �i � �i

�i

p
T

�
C e

2.�i ��i /di
�i N

�
� dip

T
C �i � �i

�i

p
T

�
;

where di D ln.Si
0=Ki /

�i
. The last term Q1;2 can be expressed as a series of modified

Bessel functions (see [2] for details) and we skip it here.
Hull et al. [15] proposed a mean-reverting stochastic correlation for the

structural-form model, and they found empirically a better fit to spreads of credit
derivatives. We assume that the correlation process �t D �.Yt/ is driven by a
mean-reverting process Yt such as the Ornstein-Uhlenbeck process. A small time
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scale parameter " is incorporated into the driving correlation process Yt so that the
correlation changes rapidly compared with the asset dynamics of S . The two-name
dynamic system with a fast mean-reverting stochastic correlation is described by

dS1t D �1S1t dt C �1S1tdW1t (6)

dS2t D �2S2t dt C �2S2t

�
�.Yt/dW1t C

p
1 � �2.Yt /dW2t

�

dYt D 1

"
.m � Yt/dt C

p
2ˇp
"

dZt ;

where the correlation function �.�/ is assumed smooth and bounded in Œ�1; 1�; and
the driving Brownian motions W ’s and Z are assumed to be independent of each
other. The joint default probability under a fast mean-reverting stochastic correlation
model is defined as

P ".t; x1; x2; y/ WD IE

�
˘2

iD1 If min
t�u�T

Siu � Bi gjS1t D x1; S2t D x2; Yt D y

�
;

(7)

provided no default before time t .
From the modeling point of view, the assumption of a mean-reverting correlation

is consistent with DCC model, see Engle [6], in which a quasi-correlation is often
assumed mean-reverting. From the statistical point of view, a Fourier transform
method developed by Malliavin and Mancino [16] provides a nonparametric way to
estimate dynamic volatility matrix in the context of a continuous semi-martingale.
Our setup of the stochastic correlation model (6) satisfies assumptions in [16]. This
implies that model parameters of volatility and correlation defined in (6) can be
estimated via the Fourier transform method. Moreover, from the computational
point of view, stochastic correlation introduces a random environment into the
classical first passage time problem in dynamic models. This situation is similar
to Student-t distribution over the Gaussian distribution in static copula models
[5] arising from reduced-form models in credit risk. Han and Wu [13] have
recently solved this static Gaussian copula problem with a random environment;
namely, Student-t copula. In contrast, the stochastic correlation estimation problem
considered in this paper fills a gap of research work for a random environment in
dynamic models.

2.1 Formal Expansion of The Perturbed Joint Default
Probability

By an application of Feynman-Kac formula, P ".t; x1; x2; y/ solves a three-
dimensional partial differential equation (PDE)
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�
1

"
L0 C L1

�
P ".t; x1; x2; y/ D 0; (8)

where partial differential operators are

L0 D ˇ2 @2

@y2
C .m � y/

@

@y

L1.�.y// D L1;0 C �.y/L1;1

L1;0 D @

@t
C

2X

iD1

�2
i x2

i

2

@2

@x2
i

C
2X

iD1

�i xi

@

@xi

L1;1 D �1�2x1x2

@2

@x1@x2

:

The terminal condition is P ".T; x1; x2; y/ D Ifx1�B1g Ifx2�B2g and two boundary
conditions are P ".t; B1; x2; y/ D P ".t; x1; B2; y/ D 0.

Suppose that the perturbed joint default probability admits the following
expansion

P ".t; x1; x2; y/ D
1X

iD0

"i Pi .t; x1; x2; y/:

Substituting this into (8),

0 D
�

1

"
L0 C L1

� �
P0 C "P1 C "2P2 C � � � 	

D 1

"
.L0 P0/ C .L0 P1 C L1 P0/ C " .L0 P2 C L1 P1/

C"2 .L0 P3 C L1 P2/ C � � �
is obtained. By equating each term in order of " to zero, a sequence of PDEs must
be solved.

For the O. 1
"
/ term, L0 P0.t; x1; x2; y/ D 0. One can choose P0 as variable

y�independent. For the O.1/ term, .L0 P1 C L1 P0/ .t; x1; x2; y/ D 0; which is a
Poisson equation. Because L0 is the generator of an ergodic process Yt , by centering
condition we can obtain < L1 > P0 D 0: The notation < � > means the averaging
with respect to the invariance measure of the ergodic process Y . Thus the leading
order term P0 solves the homogenized PDE:

.L1;0 C N�L1;1/ P0.t; x1; x2/ D 0;

where N� D< �.y/ >OU D R
�.y/ 1p

2�	
e

� .y�m/2

2	2 dy with the terminal condition is

P0.T; x1; x2/ D Ifx1�B1g Ifx2�B2g and two boundary conditions are P0.t; B1; x2/ D
P0.t; x1; B2/ D 0. The closed-form solution of P0.t; x1; x2/ exists with a similar
formulation presented in (5).
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Combining L0 P1 C L1 P0 D 0 with < L1 > P0 D 0, we obtain L0 P1 D
� .L1 P0� < L1 > P0/ such that

P1.t; x1; x2; y/ D �L �1
0 .L1� < L1 >/ P0.t; x1; x2/

D �L �1
0 .�.y/ � N�/ L1;1P0.t; x1; x2/

D �'.y/�1�2x1x2

@2

@x1@x2

P0.t; x1; x2/;

where '.y/ is assumed to solve the Poisson equation L0 '.y/ D �.y/ � N�:

Similar argument goes through successive expansion terms. We skip the lengthy
derivation but simply summarize each successive term for n � 0

PnC1.t; x1; x2; y/ D
iCj DnC1X

i�0;j �1

'
.nC1/
i;j .y/ L i

1;0 L
j
1;1 Pn;

where a sequence of Poisson equations must be solved from

L0 '
.nC1/
iC1;j .y/ D

�
'

.n/
i;j .y/� < '

.n/
i;j .y/ >

�

L0 '
.nC1/
i;j C1 .y/ D

�
�.y/ '

.n/
i;j .y/� < � '

.n/
i;j >

�
:

Hence, a recursive formula for calculating the joint default probability P " D P0 C
"P1 C "2P2 C � � � is derived.

In summary, we have formally derived that

P ".t; x1; x2; y/ D P0.t; x1; x2I N�/ C O."/; (9)

where the accuracy result can be obtained by a regularization technique presented
in [14].

Remark 1. The asymptotic expansion presented in this section can be generalized
to multi-dimensional cases.

3 Efficient Importance Sampling for the First Passage Time
Problem

In this section, we review the efficient importance sampling scheme proposed in
[10] for the first passage time problem (3) in order to improve the convergence of
Monte Carlo simulation. The basic Monte Carlo simulation approximates the joint
default probability defined in (3) by the following estimator
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DP � 1

N

NX

kD1

˘n
iD1I

�
�

.k/
i � T

�
; (10)

where �
.k/
i denotes the kth i.i.d. sample of the i th default time defined in (4) and N

denotes the total number of simulations.
By Girsanov theorem, one can construct an equivalent probability measure QP

defined by the following Radon-Nikodym derivative

dP

d QP D QT .h�/ D exp

�Z T

0

h.s; Ss/ � d QWs � 1

2

Z T

0

jjh.s; Ss/jj2ds

�
; (11)

where we denote by Ss D .S1s; � � � ; Sns/ the state variable (asset value process)
vector and QWs D � QW1s; � � � ; QWns

	
the vector of standard Brownian motions,

respectively. The function h.s; Ss/ is assumed to satisfy Novikov’s condition such
that QWt D Wt C R t

0
h.s; Ss/ds is a vector of Brownian motions under QP .

The importance sampling scheme proposed in [10] selects a constant vector h D
.h1; � � � ; hn/ which satisfies the following n conditions

QE fSiT jF0g D Bi ; i D 1; � � � ; n: (12)

These equations can be simplified by using the explicit log-normal density of SiT ,
so the following sequence of linear equations for hi ’s:

˙i
j D1�ij hj D �i

�i

� ln Bi =Si0

�i T
; i D 1; � � � ; n; (13)

can be considered. If the covariance matrix ˙ D .�ij /1�i;j;�n is non-singular,
the vector h exists uniquely and the equivalent probability measure QP is uniquely
determined. The joint default probability defined from the first passage time problem
(see (3)) can be estimated from

DP D QE f˘n
iD1I .�i � T / QT .h/jF0g (14)

by simulation.

4 Homogenized Importance Sampling Under Stochastic
Correlation

The objective of this paper is to estimate the joint default probability defined in (7)
under a class of stochastic correlation models. A direct application of the efficient
importance sampling described in Sect. 3 is impossible because it requires a constant
correlation � to solve for the unique h in (13). Fortunately, this hurdle can be
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overcome by the asymptotic approximation of the joint default probability (see
(9)) because its leading-order approximation term has a constant correlation N�. As
a result, our methodology to estimate the two-name joint default probability with
stochastic correlation is simply to apply the efficient importance sampling scheme
associated with the effective correlation, derived from the singular perturbation
analysis. Detailed variance analysis for this methodology is left as a future work.
A recent large deviation theory derived in Feng et al. [8] can be a valuable source to
provide a guideline for solving this theoretical problem.
Table 1 illustrates estimations of default probabilities of two names under stochastic
correlation models by means of the basic Monte Carlo method and the homogenized
importance sampling method. It is observed that the two-name joint default
probabilities are of order 10�2 or 10�3. Though these estimated probabilities are not
considered very small, the homogenized importance sampling can still improve the
variance reduction ration by 6.25 times at least. Note also that the performance of
homogenized importance sampling is very robust to the time scale "; even it is not
in a small regime (for example " D 10) as the singular perturbation method required.

Next, small probability estimations are illustrated in Table 2. The homogenized
importance sampling method provides fairly accurate estimations, say in the 95%
confidence interval. The variance reduction rations can raise up to 2,500 times for
these small probability estimations. In addition, we observe again the robustness of
this importance sampling to time scale parameter ".
It is also interesting to observe the effect of time scale from these numerical
estimation results. When the stochastic correlation is more volatile (small "), the
probability of joint default increases as well. This is consistent with what observed
under stochastic volatility models for option pricing [12]. It shows that these
estimations from variance reduction methods are sensitive to changes in correlation
and volatility. Hence, it is possible to develop a Monte Carlo calibration method
[11] allowing model parameters to fit the implied volatility surface [9] or spreads of
credit derivatives [3].

Table 1 Two-name joint default probability estimations under a
stochastic correlation model are calculated by the basic Monte
Carlo (BMC) and the homogenized importance sampling (HIS),
respectively. Several time scales " are given to compare the effect
of stochastic correlation. The total number of simulations is 104

and an Euler discretization scheme is used by taking time step
size T=400, where T is 1 year. Other parameters include S10 D
S20 D 100; �1 D 0:4; �2 D 0:4; B1 D 50; B2 D 40; Y0 D m D
�=4; ˇ D 0:5; �.y/ D jsin.y/j. Standard errors are shown in
parenthesis.

˛ D 1
"

BMC HIS

0.1 0:0037.6 � 10�4/ 0:0032.1 � 10�4/

1 0:0074.9 � 10�4/ 0:0065.2 � 10�4/

10 0:011.1 � 10�3/ 0:0116.4 � 10�4/

50 0:016.1 � 10�3/ 0:0137.5 � 10�4/

100 0:016.1 � 10�3/ 0:0132.4 � 10�4/
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Table 2 Two-name joint default probability estimations under a stochas-
tic correlation model are calculated by the basic Monte Carlo (BMC) and
the homogenized importance sampling (HIS), respectively. Several time
scales " are given to compare the effect of stochastic correlation. The total
number of simulations is 104 and an Euler discretization scheme is used by
taking time step size T=400, where T is 1 year. Other parameters include
S10 D S20 D 100; �1 D 0:4; �2 D 0:4; B1 D 30; B2 D 20; Y0 D m D
�=4; ˇ D 0:5; �.y/ D jsin.y/j. Standard errors are shown in parenthesis.

˛ D 1
"

BMC HIS

0.1 �.�/ 9:1 � 10�7.7 � 10�8/

1 �.�/ 7:5 � 10�6.6 � 10�7/

10 �.�/ 2:4 � 10�5.2 � 10�6/

50 1 � 10�4.1 � 10�4/ 2:9 � 10�5.3 � 10�6/

100 1 � 10�4.1 � 10�4/ 2:7 � 10�5.2 � 10�6/

Table 3 Four-name joint default probability estimations under a stochastic correlation
model are calculated by the basic Monte Carlo (BMC) and the homogenized importance
sampling (HIS), respectively. The time scale " appearing in the stochastic correlation
process is fixed as 10. Other parameters are Si0 D 100; i 2 f1; 2; 3; 4g; �1 D 0:5; �2 D
0:4; �3 D 0:3; �4 D 0:2; Y0 D m D 0; ˇ D 0:5; �.y/ D sin.y/. Standard errors are
shown in parenthesis. Two sets of default thresholds B’s are chosen to reflect a bigger
and a smaller probability of joint defaults, respectively. The total number of simulations
is 104 and an Euler discretization scheme is used by taking time step size T=400, where
T is 1 year.

Default thresholds BMC HIS

B1 D B2 D B3 D B4 D 70 0:0019.4 � 10�4/ 0:0021.1 � 10�4/

B1 D 30; B2 D 40; B3 D 50; B4 D 60 �.�/ 1:1 � 10�7.2 � 10�8/

Model parameters within Tables 1 and 2 are homogeneous. That is, dynamics (6)
of these two firms are indistinguishable because their model parameters are chosen
as the same. Here we consider an inhomogeneous case in a higher dimension, say 4,
to illustrate the efficiency of our proposed importance sampling method in Table 3.
For simplicity, we fix the time scale " but use varying firm specific model param-
eters. A factor structure that generalizes dynamics (6) is chosen as dS1t=S1t D
�1dt C �1dW1t and dSit=Sit D �i dt C �i

�
�.Yt/ dW1t C p

1 � �2.Yt /dWit

�
for

i 2 f2; 3; 4g:

5 Conclusion

Estimation of joint default probabilities under the structural-form model with
stochastic correlation is considered as a variance reduction problem under a random
environment. We resolve this problem by proposing a homogenized importance
sampling method. It comprises (1) derivation of an asymptotic result by means of the
singular perturbation analysis given a fast mean-reverting correlation assumption,
and (2) incorporating the efficient importance sampling method from solving the
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classical first passage time problem. Numerical results show the efficiency and
robustness of this homogenized importance sampling method even when the time
scale parameter is not in a small regime.
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Spatial/Angular Contributon Maps
for Improved Adaptive Monte Carlo Algorithms

Carole Kay Hayakawa, Rong Kong, and Jerome Spanier

Abstract In the field of biomedical optics, use of light to detect cancerous tissue
transformations often involves a low probability detector response because tissue
is very turbid and scattering is highly forward-peaked. In these applications, we
use a contributon map to extend the geometric learning of adaptive Monte Carlo
algorithms. The contributon function provides a phase space map of the lossless flow
of “contributon particles” that necessarily are transported from source to detector.
This map is utilized within an adaptive sequential correlated sampling algorithm
to lower the variance systematically and provide improved convergence rates over
conventional Monte Carlo.

1 Introduction

Diagnostic optical probes often are comprised of a fiber source and detector placed
on the surface of the tissue being investigated. Such probes are used to explore
whether dysplastic transformations are taking place within the tissue. To obtain
estimates of detected reflected light that can account for the complexity of biological
tissue, Monte Carlo methods applied to the radiative transport equation (RTE) often
provide the only viable solutions.
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However, due to the small size of the detector (in terms of probability),
conventional Monte Carlo methods produce small signal to noise ratios there and
can often therefore require large amounts of computation. A similar problem exists
for adjoint simulations because the source presents a probabilistically small target
for adjoint “photons” launched from the detector. In addition, tissue is very turbid
and scattering is very forward-peaked. A typical mean scattering length (1/�s;

where �s D scattering coefficient) is 0.1 mm and source-detector separations can
range up to 3 cm, so thousands of scattering events can occur between source and
detector. These aspects of the problem create a small efficiency factor:

EffŒ�� D Œ�2
rel t �

�1

where � is the random variable estimating detection, �rel is the relative standard
deviation of the detected signal and t is the computer run time. Sometimes EffŒ�� is
referred to as the Figure of Merit [9].

Using conventional Monte Carlo methods, the only way to improve efficiency
is to increase the sample size. However, this only reduces the error at the rate 1p

N

forecast by the central limit theorem (CLT) [2], where N is the number of photons
executed. In order to achieve a gain over CLT rates, sequential correlated sampling
(SCS) methods, initially introduced to solve matrix problems by Halton [3] and
later extended to continuous transport problems [5–7], can be used to reduce the
statistical error geometrically. However, when the problem complexity requires a
solution in 5, 6 or 7 independent variables, or when the physical problem being
modeled is highly heterogeneous, the computational efficiency degrades. Ultimately
such problems can be traced to the need for an efficient representation of the
transport solution at every point and in every direction in the phase space. These
limitations prompted the development of improved methods [4] that require only
the efficient estimation of a small number of linear functionals of the solution (these
correspond to estimates of the photons detected) rather than achieving arbitrarily
high precision at every point in phase space.

In averaged sequential correlated sampling (ASCS), we relax the requirement
of a pointwise global solution and instead acquire regionwise constant averages of
the radiative transport equation (RTE) solution throughout phase space. Of course,
the accuracy of the detected signal is then heavily dependent on the phase space
decomposition imposed to obtain these averages. To address this issue, our strategy
starts with a crude decomposition and then uses the contributon function [11]
to refine the decomposition intelligently, adding refinement where transport from
source to detector is important and leaving a coarse decomposition of regions less
important.

These ideas were applied in [4] in which the combined ASCS and spatial con-
tributon maps were used to increase the computational efficiency of 1-dimensional
model problem solutions. Here we show that the angular contributon map plays an
essential role in the phase space refinement.
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target region

source detectorFig. 1 Optical probe
problem consists of a source,
a detector and a target region.

2 Problem Description

To diagnose a region of interest in tissue an optical probe is placed on the
surface of the tissue. The probe consists of a source of light and a detector
measuring the amount of reflected or transmitted light. The goal is to identify tissue
transformations that may be taking place below the tissue surface in some region
of interest which we call the target region. The description of the probe along with
the tissue geometry thus defines a problem with three components: (1) source, (2)
detector, and (3) target region (Fig. 1).

The tissue model normally represents the tissue as decomposed into non-
overlapping spatial/angular components, or elements, each element representing a
tissue type with averaged optical properties. On this physical model we superimpose
a crude subdivision of the entire phase space for the purpose of defining a
computational model to produce an initial histogram representation of the RTE
solution. For example, to start with, the computational model could be the same as
the physical model, which would then define a minimal phase space decomposition
that would capture the intrinsic heterogeneity of the tissue being probed. Our
solution method aims to address the following questions:

• Is a global solution at every location and in every direction in phase space
necessary for the accurate estimate of detection?

• How coarse/fine must the tissue definition be in various regions to ensure
accuracy in the estimates of the detected signal?

• How much can we improve on conventional Monte Carlo estimates of detection
in terms of computational efficiency by applying adaptive methods?

We answer these questions using an algorithm that combines averaged sequential
correlated sampling with information from a contributon map.
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target region target region target region

detectorsource source detector

a b c

Fig. 2 Solution consists of Part I: (a) forward simulation applying ASCS to a crude spatial/angular
mesh; Part II: (b) adjoint ASCS solution using same mesh, and (c) contributon map formed from
forward and adjoint solutions to refine mesh.

3 Solution Method

The solution is segmented into two parts (Fig. 2). In Part I, a very crude spa-
tial/angular mesh is imposed on the phase space � and averaged sequential
correlated sampling (ASCS) is used to obtain regionwise constant averages of the
spatial/angular flux throughout the tissue. In Part II, the adjoint ASCS solution is
then obtained using the same mesh. Using coupled forward/adjoint estimates of the
averaged fluxes, a contributon map is formed and identifies those regions/angles
needing more refinement. By coupling forward and adjoint RTE solutions, the
contributon accounts for phase space regions that incorporate both significant light
intensity and likelihood that the light will eventually be detected. A refined mesh
based on relative values of the contributon map is then used to improve estimates of
the detected signal by applying ASCS to the refined mesh. A detailed description of
the estimators and computational strategy employed to implement these ideas can
be found in [4].

3.1 Background

A brief description of Monte Carlo solutions to the transport equation is given and
provides the background needed to understand our solution method. The integro-
differential form of the radiative transport equation (RTE) is

r � ˝ �.r; ˝/ C �t .r/�.r; ˝/

D �s.r/

Z
4�

f .˝ 0 ! ˝/�.r; ˝ 0/ d˝ 0 C Q.r; ˝/ (1)

where �.r; ˝/ is the flux (or radiance) as a function of position r and direction
˝ , �t D �s C �a is the total attenuation, �a is the absorption coefficient, �s is
the scattering coefficient, f .˝ 0 ! ˝/ is the scattering phase function, and Q
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represents internal (volumetric) source(s). The integral on the right hand side of
Eq. 1 is taken over 4� steradians of the unit sphere. Our interest is in estimating
reflected (or transmitted) light at the detector location, which is determined by

R D
Z

�

Q�.r; ˝/�.r; ˝/ dr d˝

where Q� is the detector (adjoint source) function, typically the characteristic
function for physical detection, and � is the phase space.

An equivalent formulation of the integro-differential form of the RTE can be
derived by integrating along characteristics [1] to obtain the integral form of the
RTE. The integral form of the RTE for the collision density ˚ D �t � is

˚.r; ˝/ D K ˚.r; ˝/ C S.r; ˝/ (2)

where K Œ�� D R
KŒ�� is the transport kernel, and S is the density of first collisions.

The integral form of the RTE provides a more direct link between the physical model
and the probabilistic model on which the Monte Carlo formulations are based. It is
also useful because existence and uniqueness of the RTE solution can be established
using the fact that the integral operator K is a contractive map [10]. The classical
solution to Eq. 2 is given by the Neumann series

˚ D .I C K C K 2 C K 3 � � � /S

provided the L1 norm of K is less than 1, jjK jj < 1, (or the weaker condition
jjK njj < 1 for some n � 1 [10]) to ensure convergence of this series and existence
of a unique solution. Making use of reciprocity [10], we can also represent reflected
light at the detector location by

R D
Z

�

S�.r; ˝/˚.r; ˝/ dr d˝

where S� is the detector (adjoint source) function.

3.2 Part I: Averaged Sequential Correlated Sampling (ASCS)

Sequential correlated sampling (SCS) is a technique introduced by Halton in
1962 [3] to solve matrix problems. Generally, the technique subtracts an approxi-
mate solution from the governing equation at each stage and uses the random walks
generated by Monte Carlo in the next stage to identify an additive correction to
the solution obtained from the earlier stages. The SCS idea can be illustrated by
subtracting an approximate solution Q̊ from the integral RTE:
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˚ � Q̊ D K ˚ C S � Q̊
D K ˚ � K Q̊ C K Q̊ C S � Q̊
D K Œ˚ � Q̊ � C .K Q̊ C S � Q̊ /:

The term in parenthesis, .K Q̊ C S � Q̊ /, forms a “reduced source” for an RTE
whose solution is Œ˚ � Q̊ �. Random walks are initiated at each stage n using the
reduced source determined from the previous stage n � 1

Sn.r; ˝/ D K Q̊ n�1.r; ˝/ C Sn�1.r; ˝/ � Q̊ n�1.r; ˝/

S0.r; ˝/ D S.r; ˝/:

This algorithm is self-correcting; that is, each stage produces an additive correction
to the previous representation of ˚ as a sum over previous stages. The additive term
tends to 0 as the stages increase and the variance in the correction also tends to 0.
The solution ˚ D ˚0C˚1C� � � is then used to estimate detected light R D R

S�˚ .
The question that underlies the averaged sequential correlated sampling (ASCS)

approach is: Can we estimate R with sufficient accuracy using only averaged
values of ˚ throughout phase space � and save a lot of time when compared
with conventional Monte Carlo? Beginning with a crude initial decomposition of
� we would like to understand how to improve this crude mesh so that the ASCS
algorithm assigns computational resources in regions and directions that matter most
in estimating detection. Note that we cannot avoid the need for an approximate
RTE solution everywhere (because the RTE couples every two phase space states
nontrivially through the transport kernel). However, we want our algorithm to take
advantage of the possibility that the mesh over which the approximate solution of
regionwise averages is defined can be adjusted recursively to account for varying
relative accuracy needed throughout the phase space.

To implement the algorithm, we decompose � into space-angle bins �ij D ıi �
	ij . Spatial mesh elements, ıi , are defined and then for each of these spatial bins,
angular mesh elements, 	ij , are defined so that

� D
[

i

[
j

�ij : (3)

Then average values of ˚ are determined for each bin by Monte Carlo

N̊
ij D 1

jıi jj	ij j
Z

	ij

Z
ıi

˚.r; ˝/ dr d˝:

To initiate the algorithm in stage 1, the first stage averages N̊ 1
ij are determined using

conventional Monte Carlo based on the physical source S.r; ˝/ of initial collisions.
A new “reduced source” is then found from the formula
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NS2
ij D K N̊ 1

ij C NS1
ij � N̊ 1

ij

where
NS1
ij D 1

jıi jj	ij j
Z

	ij

Z
ıi

S.r; ˝/ dr d˝:

The ASCS algorithm then makes use of the adaptive process defined by

NSnC1
ij D K N̊ n

ij C NSn
ij � N̊ n

ij

to identify a reduced source for stage n C 1 from the reduced source for stage n

together with the histogram increments N̊ n
ij that are generated by the source NSn

ij :

The sum over all adaptive stages, N̊
ij D N̊ 1 C N̊ 2 C� � � has been shown to converge

geometrically to a histogram solution of ˚ [8] that can then be used to compute the
detected light signal R D R

S�˚ . However, the accuracy of the solution obtained
in this way is limited by the selected mesh. This leads us to the idea of an intelligent
mesh refinement determined using the contributon map.

3.3 Part II: Contributon Map and Mesh Refinement

To form the contributon map we need an adjoint RTE solution. The RTE that is
adjoint to Eq. 1 in integro-differential form is:

�r � ˝� �.r; ˝/ C �t .r/� �.r; ˝/ D

�s.r/

Z
4�

f .˝ ! ˝ 0/� �.r; ˝ 0/ d˝ 0 C Q�.r; ˝/ (4)

where � � is the adjoint flux (or radiance).
The contributon equation is formed by multiplying Eq. 1 by � � and Eq. 4 by �

and subtracting, which produces a new transport equation:

r � ˝� � � D � �.r; ˝/�s.r/

Z
4�

f .˝ 0 ! ˝/�.r; ˝ 0/ d˝ 0

� �.r; ˝/�s.r/

Z
4�

f .˝ ! ˝ 0/� �.r; ˝ 0/ d˝ 0 C Q� � � Q��: (5)

When the new dependent variable, called the contributon function, is introduced

C.r; ˝/ D �.r; ˝/� �.r; ˝/;

Eq. 5 becomes
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r � ˝C.r; ˝/ C ˙s.r; ˝/C.r; ˝/ D
Z

4�

˙.r; ˝ 0 ! ˝/C.r; ˝ 0/ d˝ 0

C Q� � � Q��

where

˙s.r; ˝/ D
Z

4�

˙.r; ˝ ! ˝ 0/ d˝ 0

and

˙.r; ˝ ! ˝ 0/ D �s.r/f .r; ˝ ! ˝ 0/
� �.r; ˝ 0/
� �.r; ˝/

:

Provided that the adjoint solution, � �.r; ˝/, satisfies boundary conditions that are
dual to those satisfied by �.r; ˝/ (which is a natural constraint for most RTE
problems), this contributon transport equation describes an information density
function, C , that captures the flow of “contributons” from the source through the
tissue to the detector [11]. Notice that there is no absorption in the equation, only
scattering. Thus, there is a lossless flow of “particles” (i.e., contributons) in this
system that necessarily describe transport from source to detector.

Instead of solving the contributon equation directly, we estimate

Z Z
C.r; ˝/ dr d˝ D

Z Z
�.r; ˝/� �.r; ˝/ dr d˝

by matching � and � � solutions, both spatially and angularly, over decompositions
of the phase space � . Because the function C is the product of �.r; ˝/ (the photon
intensity per unit source) and � �.r; ˝/ (which can be regarded as the probability
that a unit weight particle initiated at .r; ˝/ will be detected), the value of C.r; ˝/

provides a relative measure of the importance of the phase space vector .r; ˝/ in
transmitting light from source to detector in the given transport problem. Therefore
we expect that a map of C.r; ˝/ throughout the phase space � encodes critical
information about the specific locations and directions that are most important in
computing accurate estimates of detected light. Our algorithm uses this information
in the way we now describe.

The theory of geometric convergence for ASCS [8] suggests that performing
ASCS iterations on any fixed mesh converges geometrically to an estimate of
detected light whose accuracy is limited by the maximal difference between
the exact and approximate RTE solutions: sup.r;˝/

ˇ̌
�.r; ˝/ � N�.r; ˝/

ˇ̌
, where

N�.r; ˝/ is the regionwise constant approximation determined from our algorithm.
From this we deduce that refining the mesh will produce more accurate ASCS
estimates. Therefore, we have chosen to use the contributon map as the basis for
deciding which subregions should be further subdivided, and by how much. In our
implementation we subdivide subregions with large

R
C values until all subregions

have roughly equal such values. That is, our algorithm goal is to uniformize
R

C

over the remeshed phase space.



Spatial/Angular Contributon Maps for Improved Adaptive Monte Carlo Algorithms 427

Initial Mesh
Define coarse
spatial/angular mesh
over phase space

Remesh
Refine

angular and spatial 
mesh 

Phase

Ψ *
Stage 0: CMC 

Stage 1+: ASCS 

Adjoint RTE ASCS
of         

Ψ
Forward RTE ASCS 

Stage 0: CMC 
Stage 1+: ASCS 

of       and detection

Contributon Map

angular

Generation
spatial

Fig. 3 Flowchart of our algorithm.

The steps of our algorithm follow the flow chart shown in Fig. 3. We first define
an initial coarse spatial/angular mesh over the phase space � as defined in Eq. 3.
Using this mesh we execute ASCS and obtain regionwise constant values of the
forward RTE solution, N�ij , over each space-angle bin. These are incorporated in
an estimator that estimates detection at the optical probe detector site. Our initial
stage of ASCS uses conventional Monte Carlo to obtain the initial estimates of N�ij .
We next execute n adaptive stages of the ASCS algorithm without refining the mesh.
Using the same mesh, an approximate adjoint solution N� �

ij is obtained for each mesh
element using n stages. The forward and adjoint solutions are then combined to form
spatial contributon maps with elements
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NCi D
Z

4�

Z
ıi

C.r; ˝/ dr d˝ (6)

and angular contributon maps with elements

NCij D
Z

	ij

Z
ıi

C.r; ˝/ dr d˝: (7)

Note that the spatial contributon for spatial mesh element ıi , Eq. 6, is the sum
of the NCij [Eq. 7] over j . The spatial contributon map is considered first and the
relative magnitudes of its values over the entire phase space are compared. This is
accomplished by linearly ordering the f NCigI

iD1 W NCi1 � NCi2 � � � � � NCiI and then
using the ratios NCik = NCi1 to decompose the mesh element ıik into

� NCik = NCi1

˘
equal

subelements, where the notation bXc means “greatest integer”. Depending on the
RTE problem and the geometry, there may be a variety of ways of performing this
subdivision, but here we are only concerned with describing the general ideas that
underlie our current mesh refinement strategy.

Once the spatial subdivision has been determined, the angular contributon maps
are analyzed. Within a particular spatial bin ıi , the angular contributon map over
the unit sphere of directions “attached to” ıi is considered. Again with the intent
to uniformize the information density across all spatial/angular bins, in a fashion
similar to that used for the spatial subdivision, the smallest angular magnitude
within the unit sphere of directions is used to subdivide the angular bins. With a
new spatial/angular mesh thus defined, the ASCS algorithm steps are repeated.

A “phase” consists of the steps contained within the dashed line in Fig. 3.
Using the initial coarse mesh, Phase I is executed. After the new mesh is defined,
Phase II is executed, with additional remeshing and phases employed if needed.
These iterations cease when the resulting phase space refinement exhibits minimal
contributon variation across the mesh elements.

Previous results have illustrated the benefit in using spatial contributon maps in
1-dimensional model problems [4]. Our current goal is to illustrate how the angular
contributon map can further improve results (even in 1D!) and to move towards
implementation in higher dimensional problems.

4 Application: Model Problem Analysis

We have developed a code that uses the algorithm strategy described in this paper to
solve five dimensional (three spatial coordinates, two angular coordinates) tissue
transport problems. For this initial test we applied the code to the simple slab
represented in Fig. 4. For this test we estimated transmitted photons rather than
reflected ones as our measurement of detection. A source injects photons into the
top of a tissue slab normal to the surface. A detector is placed on the bottom
of the slab and captures all photons transmitted through the slab. The slab is
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Δ

Fig. 4 Schematic of the 3-dimensional model transport problem.

modeled with optical properties characteristic of tissue, with absorption coefficient
�a D 0:01/mm, scattering coefficient �s D 0:99/mm and anisotropy coefficient
(average cosine of the scattering angle) g D 0:9. The slab thickness is 10 optical
mean free paths, T D 10 mm. For this model problem, only bidirectional scattering
is allowed so that we can compare our results to an analytic 1D solution which is
available. Our initial coarse mesh divides the slab into 100 uniform spatial bins
along the z�axis and 2 angular hemispheres defined by �1 < cos 
 < 0 and
0 < cos 
 < 1 with 0 < � < 2� , where 
 D polar angle and � D azimuthal angle.
Thirty random walks were launched uniformly distributed in each mesh element to
provide estimates of N� , and an additional 105 random walks were used to estimate
detection,

R
� S�� .

As described in Sect. 3.3 we evaluate integrals of the contributon function
C.r; ˝/ using our approximations to the forward and adjoint solutions ( N� and
N� �) over the mesh elements. In this bidirectional model problem, photon movement

within the the angular bins degenerates to movement solely up and down along the
z�axis; i.e., along ˝ and �˝ directions. The evaluation of the contributon integral
over each spatial bin for this 1D model problem becomes

Z
4�

Z
ıi

C.r; ˝/drd˝ D
Z

4�

Z
ıi

�.r; ˝/� �.r; ˝/ dri d˝

� Œ N�iC N� �
iC C N�i� N� �

i��jıi j D NCi jıi j

where the C subscript designates downward-pointing directions and the � subscript
designates the upward pointing ones. Figure 5 plots the spatial contributon values
for each spatial bin (shown by the histogram) against the analytic solution (shown
by the thick solid line). The spatial contributon values range from 0.058 to 0.066,
on the basis of which no spatial subdivision is performed.

We next examine the angular contributon integrals. Because we have chosen
to model scattering directly up or down, there are two angular maps describing
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Fig. 5 Spatial contributon value ( NCi ) as a function of the spatial bin.
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Fig. 6 Angular contributon value as a function of spatial bin for the (a) downward ( NCiC), and
(b) upward ( NCi�/ moving flux.

flow downward (exiting the lower hemisphere) and flow upward (exiting the upper
hemisphere). Again, these are approximated using our coupled forward/adjoint
estimates of N� and N� �. If we define NCiC D N�iC N� �

iC and NCi� D N�i� N� �
i�; then

we can write
Z

4�

Z
ıi

C.r; ˝/ dr d˝D
Z

C

Z
ıi

C.r; ˝/ dr d˝ C
Z

�

Z
ıi

C.r; ˝/ dr d˝

� Œ NCiC C NCi��jıi j

where the lower limit C on the integral designates the lower hemisphere of
directions while � designates the upper hemisphere. Figure 6 plots the angular
contributon values for each spatial bin against the analytic solution. Figure 6a, b
display the downward and upward angular components, respectively. Although
the variation of the magnitude of the angular contributon values across spatial
bins is not large, comparison of the magnitudes between the downward and
upward hemispheres in each spatial bin is large and indicates that downward
(i.e., towards the detector) directions provide more “contributon information” than
upward directions.
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Fig. 7 Number of random walks executed in each spatial bin for Phase I in (a) downward (˝),
and (b) upward (�˝) directions, and for Phase II in (c) downward (˝), and (d) upward (�˝)
directions.

For this bidirectional model problem with only two discrete scattering directions,
no angular subdivision is possible. Instead, we modify the number of random walks
in each direction based on the ratios Œ NCiC= NCi��. Figure 7a, b plot the number of
random walks executed in each mesh bin using the initial coarse mesh (Phase I).
For the initial mesh we generated 30 random walks per mesh element in both the
downward (Fig. 7a) and upward (Fig. 7b) directions. Figure 7c, d plot the number of
random walks to be executed for Phase II as designated by the angular contributon
maps. Figure 7c shows that for the downward hemisphere (towards the detector),
an increase in the number of random walks is needed throughout the slab, in
particular close to the source and detector. For the upward hemisphere (Fig. 7d)
no redistribution in the number of random walks is needed.

Table 1 shows our comparative efficiencies for this model problem. The exact
analytic value for detection is shown on the first line of the table. Our estimate at
various stages, standard deviation, time to execute in seconds and relative efficiency
are displayed. The relative efficiency is the efficiency relative to that of conventional
Monte Carlo (CMC). As stated in the introduction of this paper, our goal in devising
this solution method is to produce estimates of detection with efficiency improved
beyond central limit theorem rates. So the relative efficiency factor indicates how
much our method improves upon CMC (i.e., by just running more photons).
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Table 1 Detection estimates for the 3-dimensional model problem showing the exact
value and estimates based on conventional Monte Carlo (CMC), and our solution
method for an initial coarse mesh (Mesh Phase I) and from a refined mesh designated
by the spatial/angular contributon maps (Mesh Phase II). The standard deviation (SD)
of our estimates, time in seconds, and efficiency relative to CMC (Rel. Eff.) are shown
in the final three columns.

Method Stages Estimate SD Time [sec] Rel. Eff.

Exact – 0.602096 – – 1
CMC 1 0.601018 0.002254 6.69 1
Mesh Phase I 4 0.602136 0.000145 26.70 60
Mesh Phase II 7 0.602103 0.000011 106.93 2,808
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Fig. 8 Variance reduction as a function of stage.

Using the initial coarse mesh, we ran four stages of the forward ASCS solution
to obtain convergence. With this coarse mesh alone we were able to obtain a relative
efficiency gain by a factor of 60. Then four stages of the adjoint ASCS solution
were executed and the spatial/angular contributon maps shown in Figs. 5 and 6
were generated. The angular contributon analysis produced a reallocation of random
walks as shown in Fig. 7c, d and this produced a relative efficiency gain of 2,808 for
the combined Phase I/Phase II strategy. Figure 8 plots the reduction of the base
10 log of the variance in the estimates of detection as a function of the number
of adaptive stages using the two meshes. Because each phase employs an adaptive
algorithm using a fixed mesh, the geometric convergence will cease when accuracy
consistent with the mesh is reached. The break observed at stage 6 exhibits this
behavior.

This model problem analysis utilized 100 spatial bins and 2 angular bins for
the forward and adjoint simulations resulting in 400 double-precision numbers to
be stored. If spatial subdivisions along the x- and y-axes and angular subdivisions
azimuthally were added, the storage requirements could become unmanageable. To
avoid an unruly memory utilization we have, in other problems, only refined the
mesh in the region of interest (e.g., near the source/detector).
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5 Summary

We have described our most recent work with adaptive, geometrically convergent
Monte Carlo algorithms based on sequential correlated sampling error reduction
ideas. Our algorithm constructs histogram estimates of general RTE solutions,
including heterogeneity, as well as estimates of reflected/transmitted light. It
employs contributon maps to refine an initial phase space decomposition to extend
the geometric learning. We have presented results that reveal the importance of
the angular dependence of the contributon map and how, in addition to the spatial
information it contains, it can determine an appropriate remeshing of the phase
space for improved computational efficiency.

The angular information contained in the contributon map is important not only
for physical systems with high anisotropy (like tissue) but for isotropic problems
(nuclear, global illumination) as well. In problems not described here, we generated
results for model problems similar to the one discussed in Sect. 4 with isotropic
scattering (g D 0) and found that the angular dependence is needed there too for
optimal remeshing. This is because, although the particle scattering is isotropic,
there are phase space regions in which the flux is not isotropic (near sources and
boundaries), and also because the placement of the detector relative to the source
will always have an effect on the directional importance of the flow of the radiation,
whether the radiation is photons of light, neutrons or electrons.

An extension of our current ASCS solution method based on simple histogram
estimates of averaged RTE solutions would be to replace the regionwise con-
stant approximation by other locally defined approximations; e.g., ones that are
regionwise polynomial. We also plan to examine the effect of alternate spatial and
angular subdivisions, such as those useful in finite element method applications.
While the phase space descriptions may change, we anticipate that contributon map
information will provide the appropriate tool for deciding how crude phase space
decompositions are to be refined to optimize computational efficiency in Monte
Carlo simulations.
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Hybrid Function Systems in the Theory
of Uniform Distribution of Sequences

Peter Hellekalek

Abstract A hybrid sequence in the multidimensional unit cube is a combination
of two or more lower-dimensional sequences of different types. In this paper, we
present tools to analyze the uniform distribution of such sequences. In particular,
we introduce hybrid function systems, which are classes of functions that are
composed of the trigonometric functions, the Walsh functions in base b, and the
p-adic functions. The latter are related to the dual group of the p-adic integers, p

a prime. We prove the Weyl criterion for hybrid function systems and define a new
notion of diaphony, the hybrid diaphony. Our approach generalizes several known
concepts and results.

1 Introduction

This work is motivated by recent advances of Niederreiter [15–17] in the analysis of
certain hybrid sequences. In this series of papers, the first deterministic discrepancy
bounds for such high-dimensional point sets were established.

Hybrid sequences are sequences of points in the multidimensional unit cube
Œ0; 1Œs where certain coordinates of the points stem from one lower-dimensional
sequence and the remaining coordinates from a second lower-dimensional sequence.
Of course, this idea of “mixing” two sequences to obtain a new sequence in higher
dimensions may be extended to more than two components.

While of considerable theoretical interest, there is also an applied aspect to this
construction principle. As first proposed by Spanier [19], with a hybrid sequence
composed of a low-discrepancy sequence and a pseudorandom number sequence,

P. Hellekalek
Department of Mathematics, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg,
Austria
e-mail: peter.hellekalek@sbg.ac.at
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one may combine the advantages of quasi-Monte Carlo methods and Monte Carlo
methods for multidimensional numerical integration.

In this paper, we present new tools for the analysis of hybrid sequences. For
this task, we introduce hybrid function systems on Œ0; 1Œs , by which we denote
orthonormal bases of L2.Œ0; 1Œs/ that are obtained by mixing lower-dimensional
bases, in analogy to the construction principle of hybrid sequences. Our components
will be the trigonometric, the Walsh, and the p-adic function system (for this choice,
see Remark 7).

As a qualitative result, we prove a hybrid version of the Weyl criterion. Further,
we introduce the hybrid diaphony as a figure of merit that allows to measure
the uniform distribution of hybrid sequences, and show its basic properties. This
concept generalizes several of the current notions of diaphony (see Remark 6). In
addition, we prove an inequality of the Erdös-Turán-Koksma type, i.e., an upper
bound for the hybrid diaphony in terms of certain exponential sums.

2 Preliminaries

Throughout this paper, b denotes a positive integer, b � 2, and b D .b1; : : : ; bs/

stands for a vector of not necessarily distinct integers bi � 2, 1 � i � s. Further, p

denotes a prime, and p D .p1; : : : ; ps/ represents a vector of not necessarily distinct
primes pi , 1 � i � s. N stands for the positive integers, and we put N0 D N [ f0g:

The underlying space is the s-dimensional torus Rs=Zs , which will be identified
with the half-open interval Œ0; 1Œs . Haar measure on the s-torus Œ0; 1Œs will be denoted
by �s . We put e.y/ D e2� iy for y 2 R, where i is the imaginary unit.

We will use the standard convention that empty sums have value 0 and empty
products value 1.

Definition 1. Let k 2 Z. The kth trigonometric function ek is defined as ek W
Œ0; 1Œ! C, ek.x/ D e.kx/. For k D .k1; : : : ; ks/ 2 Z

s , the kth trigonometric
function ek is defined as ek W Œ0; 1Œs! C, ek.x/ D Qs

iD1 e.kixi /, x D .x1; : : : ; xs/ 2
Œ0; 1Œs . The trigonometric function system in dimension s is denoted by T .s/ D
fek W k 2 Z

sg.

For a nonnegative integer k, let k D P
j �0 kj bj ; kj 2 f0; 1; : : : ; b � 1g; be the

unique b-adic representation of k in base b. With the exception of at most finitely
many indices j , the digits kj are equal to 0.

Every real number x 2 Œ0; 1Œ has a b-adic representation x D P
j �0 xj b�j �1;

xj 2 f0; 1; : : : ; b � 1g: If x is a b-adic rational, which means that x D ab�g ,
a and g integers, 0 � a < bg, g 2 N, and if x ¤ 0, then there exist two such
representations.

The b-adic representation of x is uniquely determined under the condition that
xj ¤ b � 1 for infinitely many j . In the following, we will call this particular
representation the regular (b-adic) representation of x.
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Definition 2. For k 2 N0, k D P
j �0 kj bj , and x 2 Œ0; 1Œ, with regular b-adic

representation x D P
j �0 xj b�j �1, the kth Walsh function in base b is defined

by wk.x/ D e..
P

j �0 kj xj /=b/. For k 2 N
s
0, k D .k1; : : : ; ks/, and x 2 Œ0; 1Œs ,

x D .x1; : : : ; xs/, we define the kth Walsh function wk in base b D .b1; : : : ; bs/

on Œ0; 1Œs as the following product: wk.x/ D Qs
iD1 wki .xi /, where wki denotes the

ki th Walsh function in base bi , 1 � i � s. The Walsh function system in base b, in
dimension s, is denoted by W

.s/
b D fwk W k 2 N

s
0g.

We refer the reader to [1, 4, 5] for elementary properties of the Walsh functions
and to [18] for the background in harmonic analysis.

Let Zb denote the compact group of the b-adic integers (see [9] and [13] for
details). An element z of Zb will be written as z D P

j �0 zj bj ; with digits zj 2
f0; 1; : : : ; b � 1g. Two such elements are added by addition with carry.

The set of integers Z is embedded in Zb . If z 2 N0, then at most finitely many
digits zj are different from 0. If z 2 Z, z < 0, then at most finitely many digits zj

are different from b � 1. In particular, �1 D P
j �0.b � 1/ bj :

We recall the following concepts from Hellekalek [7].

Definition 3. The map 'b WZb ! Œ0; 1Œ, given by 'b.
P

j �0 zj bj / D P
j �0 zj b�j �1

.mod 1/, will be called the b-adic Monna map.

The restriction of 'b to N0 is often called the radical-inverse function in base b.
The Monna map is surjective, but not injective. It may be inverted in the following
sense.

Definition 4. We define the pseudoinverse 'C
b of the b-adic Monna map 'b by

'C
b W Œ0; 1Œ! Zb; 'C

b .
X

j �0

xj b�j �1/ D
X

j �0

xj bj ;

where
P

j �0 xj b�j �1 stands for the regular b-adic representation of the element
x 2 Œ0; 1Œ.

The image of Œ0; 1Œ under 'C
b is the set Zb n .�N/. Furthermore, 'b ı 'C

b is
the identity map on Œ0; 1Œ, and 'C

b ı 'b the identity on N0 � Zb . In general, z ¤
'C

b .'b.z//, for z 2 Zb . For example, if z D �1, then 'C
b .'b.�1// D 'C

b .0/ D
0 ¤ �1.

If b D p is a prime, 'p gives a bijection between the subset N of Zp of positive
integers and the set fap�g W 0 < a < pg; g 2 N; .a; pg/ D .a; p/ D 1g of all
reduced p-adic fractions. It was shown in [6] that, as a consequence, the dual group
OZp of Zp (for this notion, see [9]) can be written in the form OZp D f�k W k 2 N0g;
where �k W Zp ! fc 2 C W jcj D 1g, �k.

P
j �0 zj pj / D e.'p.k/.z0 C z1p C � � � //.

We may “lift” the characters �k to the torus, as follows.

Definition 5. For a nonnegative integer k, let �k W Œ0; 1Œ! C, �k.x/ D �k.'C
p .x//,

denote the kth p-adic function. We put �p D f�k W k 2 N0g.
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Remark 1. The functions �k are step functions on Œ0; 1Œ. For details and also for the
higher-dimensional case, we refer the reader to [7, Lemma 3.5].

There is an obvious generalization of the preceding notions to the higher-
dimensional case. Let b D .b1; : : : ; bs/ be a vector of not necessarily distinct
integers bi � 2, let x D .x1; : : : ; xs/ 2 Œ0; 1Œs , let z D .z1; : : : ; zs/ denote an element
of the compact product group Zb D Zb1 � � � � � Zbs , and let k D .k1; : : : ; ks/ 2 N

s
0.

We define 'b.z/ D .'b1.z1/; : : : ; 'bs .zs//, and 'C
b .x/ D .'C

b1
.x1/; : : : ; 'C

bs
.xs//.

If p D .p1; : : : ; ps/ is a vector of not necessarily distinct primes pi , then let
�k.z/ D Qs

iD1 �ki .zi /, where �ki 2 OZpi , and define �k.x/ D Qs
iD1 �ki .xi /, where

�ki 2 �pi , 1 � i � s. That is, �k D �k ı 'C
p . Let �

.s/
p D f�k W k 2 N

s
0g denote the

p-adic function system in dimension s. It was shown in [7] that �
.s/

p is an
orthonormal basis of L2.Œ0; 1Œs/.

3 The Hybrid Weyl Criterion

In what follows, let s D s1 C s2 C s3, sj 2 N0, and s � 1. We call the numbers sj

the subdimensions and we will consider sequences ! D .xn/n�0 in Œ0; 1Œs where the
first s1 coordinates of the point xn stem from the nth element x.1/

n of a sequence !.1/

on the s1-torus, the following s2 coordinates from the nth element x.2/
n of a sequence

!.2/ on the s2-torus, and so on. If one of the subdimensions sj is 0, then only the
other component sequences come into play.

Remark 2. Of course, a more general selection principle could have been used to
construct the sequence ! from the component sequences !.j /, by partitioning the
set of coordinates f1; : : : ; sg into disjoint sets Mj , with card Mj D sj . One would
then choose the i th coordinate of xn according to which set Mj the index i belongs
to, 1 � i � s. The results below also hold in this more general setting but we have
preferred not to enter this notational nightmare.

For y D .y1; : : : ; ys/ 2 R
s , let y.1/ D .y1; : : : ; ys1 /, y.2/ D .ys1C1; : : : ; ys1Cs2 /,

and y.3/ D .ys1Cs2C1; : : : ; ys/. We will concatenate these vectors and write the
vector y in the form

y D .y.1/; y.2/; y.3//;

by a slight abuse of notation. In the following, we will sometimes have to
distinguish between zero vectors in different dimensions. With 0.s/, we denote the
s-dimensional zero vector, if necessary.

Let us fix the bases b D .b1; : : : ; bs2/, and p D .p1; : : : ; ps3/. Suppose that
k D .k.1/; k.2/; k.3//, with components k.1/ 2 Z

s1 , k.2/ 2 N
s2

0 , and k.3/ 2 N
s3

0 . The

tensor product �k D ek.1/ ˝ wk.2/ ˝ �k.3/ , where ek.1/ 2 T .s1/, wk.2/ 2 W .s2/
b , and

�k.3/ 2 �
.s3/

p , defines a function �k on the s-dimensional unit cube,
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�k W Œ0; 1Œs! C; �k.x/ D ek.1/ .x.1//wk.2/ .x.2//�k.3/ .x.3//;

where x D .x.1/; x.2/; x.3// 2 Œ0; 1Œs .

Definition 6. Let s D s1 C s2 C s3, si 2 N0, s � 1, and let b D .b1; : : : ; bs2/, and
p D .p1; : : : ; ps3/ denote the bases of the associated representations of real numbers
in subdimensions s2 and s3. We define the hybrid function system associated with
this set of subdimensions sj and this set of bases as the class of functions

F D f�k W �k D ek.1/ ˝ wk.2/ ˝ �k.3/ ; k.1/ 2 Z
s1 ; k.2/ 2 N

s2

0 ; k.3/ 2 N
s3

0 g:

We write F in the form F D T .s1/ ˝ W
.s2/

b ˝ �
.s3/

p .

Remark 3. All of the following results remain valid if we change the order of the
factors in the hybrid function system F , as it will become apparent from the proofs
below.

For an integrable function f on Œ0; 1Œs , the kth Fourier coefficient of f with
respect to the function system F is defined as

Of .k/ D
Z

Œ0;1Œs
f .x/�k.x/ dx:

The reader should notice that this definition encompasses the cases of Walsh and
p-adic Fourier coefficients, by putting s D s2 or s D s3.

Definition 7. Let b D .b1; : : : ; bs/. A b-adic elementary interval, or b-adic elint
for short, is a subinterval Ic;g of Œ0; 1Œs of the form

Ic;g D
sY

iD1

�
'bi .ci /; 'bi .ci / C b

�gi

i

�
;

where the parameters are subject to the conditions g D .g1; : : : ; gs/ 2 N
s
0, c D

.c1; : : : ; cs/ 2 N
s
0, and 0 � ci < b

gi

i , 1 � i � s. We say that Ic;g belongs to the
resolution class defined by g or that it has resolution g.

A b-adic interval in the resolution class defined by g (or with resolution g) is a
subinterval of Œ0; 1Œs of the form

sY

iD1

�
ai b

�gi

i ; di b
�gi

i

�
; 0 � ai < di � b

gi

i ; ai ; di ; gi 2 N0; 1 � i � s:

For a given base b and for a given resolution g 2 N
s
0, we define the following

summation domains:
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�b.g/ D ˚
k D .k1; : : : ; ks/ 2 N

s
0 W 0 � ki < b

gi

i ; 1 � i � s
�

;

��
b.g/ D �b.g/ n f0g:

We note that �b.0/ D f0g.
In the following two lemmas, we recall the important fact that the Walsh and the

p-adic Fourier series of the indicator functions 1I of elints I are finite and represent
the function 1I pointwise (see Hellekalek [4, 6, 7]). In Lemma 2 below we have
corrected the typo in the statement of Lemma 3.4 of [7, p. 277], where it should
read ‘p’-adic elint.

Lemma 1. Let Ic;g be an arbitrary b-adic elint in Œ0; 1Œs and put f D 1Ic;g �
�s.Ic;g/. Then, with respect to W

.s/
b , for all x 2 Œ0; 1Œs ,

f .x/ D
X

k2��

b .g/

O1Ic;g.k/wk.x/:

Lemma 2. Let Id;h be an arbitrary p-adic elint in Œ0; 1Œs and put f D 1Id;h �
�s.Id;h/. Then, with respect to �

.s/
p , for all x 2 Œ0; 1Œs ,

f .x/ D
X

k2��

p .h/

O1Id;h.k/�k.x/:

For k D .k1; : : : ; ks/ 2 Z
s , let

M.k/ D max
1�i�s

j ki j :

For a positive integer t , we define the following weight function on Z
s:

rt .ki / D
(

1 if ki D 0;

j ki j�t if ki ¤ 0;
rt .k/ D

sY

iD1

rt .ki /: (1)

Let H 2 N be arbitrary and define, for parameters t > 1,

Rt D
X

k2Zs

rt .k/; Rt .H/ D
X

k2Zs W 0�M.k/�H

rt .k/:

In the definition of the hybrid diaphony in Sect. 4 below, we will make use of the
fact that R2 D .1 C 2	.2//s D .1 C �2=3/s.

For the Fourier series of indicator functions, Niederreiter [17, Lemma 2] has
established the following result for the trigonometric function system.

Lemma 3. Let J be an arbitrary subinterval of Œ0; 1Œ. For every H 2 N, there
exists a trigonometric polynomial
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PJ .x/ D
HX

kD�H

cJ .k/ek.x/; x 2 Œ0; 1Œ;

with complex coefficients cJ .k/, where cJ .0/ D �1.J / and j cJ .k/ j< r1.k/ for
k ¤ 0, such that, for all x 2 Œ0; 1Œ,

j1J .x/ � PJ .x/j � 1

H C 1

HX

kD�H

uJ .k/ek.x/;

with complex numbers uJ .k/ satisfying j uJ .k/ j� 1 for all k and uJ .0/ D 1.

Corollary 1. Let s � 1 and let J be an arbitrary subinterval of Œ0; 1Œs . For every
positive integer H , there exists a trigonometric polynomial PJ ,

PJ .x/ D
X

k2Zs W
0�M.k/�H

cJ .k/ek.x/; x 2 Œ0; 1Œs ;

with complex coefficients cJ .k/, where cJ .0/ D �s.J / and j cJ .k/ j< r1.k/ for
k ¤ 0, such that, for all points x 2 Œ0; 1Œs ,

j 1J .x/ � PJ .x/ j�

�1 C
X

k2Zs W
0�M.k/�H

�

1 C 1

H C 1

�s�wt.k/
1

.H C 1/wt.k/
uJ .k/ek.x/; (2)

with complex numbers uJ .k/ satisfying j uJ .k/ j� 1 for all k and uJ .0/ D 1. Here,
wt.k/ denotes the Hamming weight of the vector k, which is to say, the number of
nonzero coordinates of k.

Proof. Let Ji , 1 � i � s, denote the one-dimensional intervals such that J D
J1 � � � � � Js , and put PJ .x/ D Qs

iD1 PJi .xi /, where the trigonometric polynomials
PJi are given by Lemma 3. We then proceed in the very same manner as in the proof
of Theorem 1 in [17]. This yields (2). ut

If ! D .xn/n�0 is a (possibly finite) sequence in Œ0; 1Œs with at least N elements,
and if f W Œ0; 1Œs ! C, we define

SN .f; !/ D 1

N

N �1X

nD0

f .xn/:

Note that SN .�; !/ is a linear operator in the following sense: SN .f C g; !/ D
SN .f; !/ C SN .g; !/, and SN .cf; !/ D cSN .f; !/, for all c 2 C.
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We recall that a sequence ! is uniformly distributed in Œ0; 1Œs if and only if
limN !1 SN .1J ; !/ D �s.J /, for all subintervals J of Œ0; 1Œs , and that this limit
relation extends to all Riemann integrable functions (see the monographs [12, 14]).

Theorem 1 (Hybrid Weyl Criterion). Let s � 1, s D s1 C s2 C s3, sj 2 N0,
let b D .b1; : : : ; bs2/ be a vector of s2 not necessarily distinct integers bi � 2,
and let p D .p1; : : : ; ps3/ be a vector of s3 not necessarily distinct primes pi . Put
F D T .s1/ ˝W

.s2/
b ˝�

.s3/
p . Then, a sequence ! D .xn/n�0 is uniformly distributed

in Œ0; 1Œs if and only if for all functions �k 2 F , k ¤ 0,

lim
N !1 SN .�k; !/ D 0: (3)

Proof. Suppose first that ! is uniformly distributed in Œ0; 1Œs . Each function �k is
Riemann-integrable. Further, for k ¤ 0, the integral of �k is 0. Hence, in this case.
the uniform distribution of ! implies that the sum SN .�k; !/ tends to 0 as N tends
to infinity. This implies (3).

For the reverse direction, assume that (3) holds. In order to prove the uniform
distribution of the sequence !, it is enough to show limN !1 SN .1J ��s.J /; !/ D 0

for subintervals J of Œ0; 1Œs of the special form J D J .1/ � J .2/ � J .3/, where
J .1/ is an arbitrary subinterval of Œ0; 1Œs1 , J .2/ is an arbitrary b-adic subinterval of
Œ0; 1Œs2 with resolution g 2 N

s2 , and J .3/ is an arbitrary p-adic subinterval of Œ0; 1Œs3

with resolution h 2 N
s3 . This follows easily from Lemma 3.9 and its proof in [7],

when we apply the technique presented there to approximate arbitrary subintervals
of Œ0; 1Œs by subintervals J of the special form above.

Hence, choose an arbitrary H 2 N and arbitrary vectors g 2 N
s2 , and h 2 N

s3 ,
and let J be a subinterval of Œ0; 1Œs of the special form J D J .1/ � J .2/ � J .3/

introduced above. We have

SN .1J � �s.J /; !/ D 1

N

N �1X

nD0

1J .1/ .x.1/
n /1J .2/ .x.2/

n /1J .3/ .x.3/
n / � �s.J /

D 1

N

N �1X

nD0

�
1J .1/ .x.1/

n / � PJ .1/ .x.1/
n /

�
1J .2/ .x.2/

n /1J .3/ .x.3/
n /

C 1

N

N �1X

nD0

PJ .1/ .x.1/
n /1J .2/ .x.2/

n /1J .3/ .x.3/
n / � �s.J / (4)

D ˙1 C ˙2;

where PJ .1/ is a trigonometric polynomial which is given by Corollary 1, and ˙1

and ˙2 denote the two sums in (4).
In the estimate of ˙1 below, we use the convention that the parameters on

which the implied constant in a Landau symbol O depends are written in the
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subscript of O . Let !.j / denote the component sequence .x.j /
n /n�0, j D 1; 2; 3.

From (2) and from the proof of Theorem 1 in [17] we obtain the following bound:

j ˙1 j � 1

N

N �1X

nD0

ˇ
ˇ1J .1/ .x.1/

n / � PJ .1/ .x.1/
n /

ˇ
ˇ

D Os1

0

B
B
@

1

H
C

X

k.1/2Zs1 W
0<M.k.1//�H

r1.k.1//
ˇ
ˇSN .ek.1/ ; !.1//

ˇ
ˇ

1

C
C
A :

Condition (3) implies that ˙1 tends to 0 if N tends to infinity.
In order to estimate ˙2, we observe that Lemmas 1 and 2 and Corollary 1 imply

the following pointwise Fourier series representations:

PJ .1/ .x.1// D
X

0�M.k.1//�H

cJ .1/ .k.1//ek.1/ .x.1//; (5)

1J .2/ .x.2// D
X

k.2/2�b.g/

O1J .2/ .k.2//wk.2/ .x.2//; (6)

1J .3/ .x.3// D
X

k.3/2�p.h/

O1J .3/ .k.3//�k.3/ .x.3//: (7)

We note that cJ .1/ .0.s1// D �s1.J
.1//, O1J .2/ .0.s2// D �s2 .J

.2//, and O1J .3/ .0.s3// D
�s3.J

.3//. The linearity of the operator SN .�; !/ and identities (5)–(7) give

SN .PJ .1/ 1J .2/ 1J .3/ ; !/ D
X

0�M.k.1//�H

X

k.2/2�b.g/

X

k.3/2�p.h/

(8)

cJ .1/ .k.1//O1J .2/ .k.2//O1J .3/ .k.3//SN .�k; !/:

Relation (3) implies

lim
N !1 SN .PJ .1/ 1J .2/1J .3/ ; !/ D cJ .1/ .0.s1//O1J .2/ .0.s2//O1J .3/ .0.s3// D �s.J /:

Hence, ˙2 tends to 0 if N increases to infinity. This finishes the proof. ut
Corollary 2. Theorem 1 implies the classical Weyl criterion (see [12, Chap. 1.6,
Theorem 6.2]), its Walsh version (see [5, Theorem 4.2]), and the p-adic Weyl
criterion (see [7, Theorem 3.11]).

Corollary 3. Let s D s1 C s2, s1; s2 � 1, let ˛ D .˛1; : : : ; ˛s1 / 2 R
s1 , and let

p D .p1; : : : ; ps2 /, pi prime, 1 � i � s2. For n 2 N0, let x.1/
n D n˛ .mod 1/, and

x.2/
n D 'p.n/, where we write 'p.n/ D .'p1.n/; : : : ; 'ps2

.n//.
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If ! D
�
.x.1/

n ; x.2/
n /

	

n�0
, then this hybrid sequence is uniformly distributed in

Œ0; 1Œs if and only if the following two conditions are satisfied:

(i) 1; ˛1; : : : ; ˛s1 are linearly independent over Q, and
(ii) The primes pi are distinct, 1 � i � s2.

Proof. In the hybrid Weyl criterion, put F D T .s1/ ˝ �
.s2/

p .

If ! is uniformly distributed in Œ0; 1Œs , then the two projection sequences .x.1/
n /n�0

and .x.2/
n /n�0 will be uniformly distributed in Œ0; 1Œs1 and Œ0; 1Œs2 , respectively. This

implies conditions (i), as is well known (see [12, Chap. 1.6]), and (ii) above. The
latter is elementary to verify.

If we assume conditions (i) and (ii), then, for arbitrary k ¤ 0, SN .�k; !/ D
.1=N /.C N � 1/=.C � 1/, where C D e.k1˛1 C � � � C ks1 ˛s1 C 'p1.ks1C1/ C � � � C
'ps2

.ks1Cs2 //. We have C ¤ 1, because otherwise a contradiction to condition (i)
would arise. This implies limN !1 SN .�k; !/ D 0. From the hybrid Weyl criterion,
the uniform distribution of ! in Œ0; 1Œs follows. ut
Remark 4. We note that Corollary 3 can also be derived from the proofs of
Theorems 1 and 2 in Niederreiter [15], thus by a different approach. For related
results, we refer the reader to Hofer and Kritzer [10] and Hofer and Larcher
[11].

Corollary 4. The hybrid function system F is an orthonormal basis of the space
L2.Œ0; 1Œs/.

Proof. It is elementary to see that F is an orthonormal system in L2.Œ0; 1Œs/. The
idea of the proof is to show that the set of finite linear combinations of elements of
F is dense in the set of functions 1J , J an arbitrary subinterval of Œ0; 1Œs , in the
Hilbert space L2.Œ0; 1Œs/. From this, it follows by a standard argument that F is an
orthonormal basis.

Hence, let J be an arbitrary subinterval of Œ0; 1Œs . We have J D J .1/ �J .2/�J .3/,
where J .j / is a subinterval of Œ0; 1Œsj , j D 1; 2; 3. As T .s1/ is an orthonormal
basis of L2.Œ0; 1Œs1 /, we may approximate 1J .1/ arbitrarily closely in L2.Œ0; 1Œs1/ by
trigonometric polynomials. From the proof of Lemma 3.9 in [7] it follows that we
may approximate 1J .2/ arbitrarily closely in L2.Œ0; 1Œs2/ by functions of the form 1I ,
where I is a b-adic interval in Œ0; 1Œs2 . As Identity (6) above shows, every function
1I is a Walsh polynomial, that is to say, a finite linear combination of elements of
W

.s2/
b . The same reasoning may be applied to 1J .3/ , with respect to the function

system �
.s3/

p , see Identity (7). Altogether, this implies that 1J can be approxi-
mated arbitrarily closely in L2.Œ0; 1Œs/ by finite linear combinations of elements
of F . ut
Remark 5. Corollary 4 generalizes Theorem A.11 in Dick and Pillichshammer [1,
p. 562] and, in addition, presents a different method of proof.
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4 Hybrid Diaphony

For a given base b, and a vector k D .k1; : : : ; ks/ 2 N
s
0, let


bi .ki / D
(

1 if k D 0;

b
�2.ti �1/
i if b

ti �1
i � ki < b

ti
i ; ti 2 N;


b.k/ D
sY

iD1


bi .ki /:

It is elementary to prove that, for g D .g1; : : : ; gs/ 2 N
s
0, the sum �b of all

weights 
b.k/ and the truncated sum �b.g/ are given by the formulas

�b D
X

k2Ns
0


b.k/ D
sY

iD1

.bi C 1/; (9)

�b.g/ D
X

k2�b.g/


b.k/ D
sY

iD1

�
bi C 1 � b

�gi C1
i

	
: (10)

Definition 8. Let s � 1, s D s1 Cs2 Cs3, sj 2 N0, 1 � j � 3, let b D .b1; : : : ; bs2 /

be a vector of s2 not necessarily distinct integers bi � 2, and let p D .p1; : : : ; ps3 /

be a vector of s3 not necessarily distinct primes pi . Put F D T .s1/ ˝W
.s2/

b ˝�
.s3/

p .
The hybrid diaphony FN .!/ of the first N elements of a sequence ! D .xn/n�0

in Œ0; 1Œs with respect to the function system F and the weight function 
 is
defined by

FN .!/ D
0

@ 1

� � 1

X

k¤0


.k/ jSN .�k; !/j2
1

A

1=2

;

where 
 is given by the product of weights


.k/ D r2.k.1//
b.k.2//
p.k.3//;

k D .k.1/; k.2/; k.3// 2 Z
s1 � N

s2

0 � N
s3

0 . The normalizing constant � is defined as
� D R2�b�p, where R2 D .1 C �2=3/s1 (see (1)), and �b and �p are given by (9).

Remark 6. Definition 8 generalizes the classical diaphony of Zinterhof [20], see
also Kuipers and Niederreiter [12, Exercise 5.27, p. 162], the dyadic diaphony of
Hellekalek and Leeb [8], its generalizations to the b-adic case by Grozdanov et al.
[2,3], and also the recent version of diaphony based on p-adic arithmetic introduced
by Hellekalek [7].

In the following theorem, we prove that FN is a measure of uniform distribution
of sequences in Œ0; 1Œs .
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Theorem 2. Let ! be a sequence in Œ0; 1Œs . Then the hybrid diaphony FN defined
by the hybrid function system F D T .s1/ ˝ W

.s2/
b ˝ �

.s3/
p and the weight function


 has the following properties:

(i) FN is normalized: 0 � FN .!/ � 1,
(ii) ! is uniformly distributed in Œ0; 1Œs if and only if limN !1 FN .!/ D 0:

Proof. For every k, jSN .�k; !/j � 1. We have the identity � � 1 D P
k¤0 
.k/,

which implies (i).
In (ii), let limN !1 FN .!/ D 0. As a consequence, limN !1 SN .�k; !/ D 0 for

all k ¤ 0. The hybrid Weyl criterion implies the uniform distribution of !.
For the reverse direction, let ! be uniformly distributed in Œ0; 1Œs . Let H 2 N,

g 2 N
s2 , and h 2 N

s3 be arbitrary and define the summation domains

�.H; g; h/ D ˚
k D .k.1/; k.2/; k.3// 2 Z

s1 � N
s2

0 � N
s3

0 W
0 � M.k.1// � H; k.2/ 2 �b.g/; k.3/ 2 �p.h/

�
;

��.H; g; h/ D �.H; g; h/ n f0g;
�.H; g; h/c D Z

s1 � N
s2

0 � N
s3

0 n �.H; g; h/:

Then we have the following upper bound:

F 2
N .!/ � 1

� � 1

X

k2��.H;g;h/


.k/ jSN .�k; !/j2 C 1

� � 1

X

k2�.H;g;h/c


.k/:

If we put
�.H; g; h/ D

X

k2�.H;g;h/


.k/;

then we obtain the inequality

F 2
N .!/ � 1

� � 1

X

k2��.H;g;h/


.k/ jSN .�k; !/j2 C � � �.H; g; h/

� � 1
: (11)

From the uniform distribution of ! it follows, by an application of the hybrid Weyl
criterion, that limN !1 SN .�k; !/ D 0; for all k ¤ 0. The summation domain
��.H; g; h/ is finite, hence

lim sup
N !1

F 2
N .!/ � � � �.H; g; h/

� � 1
:

The difference � � �.H; g; h/ can be made arbitrarily small, by increasing H

and every component of the vectors g and h. This implies the existence of
limN !1 F 2

N .!/ and yields limN !1 F 2
N .!/ D 0. ut
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Inequalities of the Erdös-Turán-Koksma type provide an upper bound for the
given measure of uniform distribution, like discrepancy or diaphony, in terms of
certain exponential sums. For the hybrid diaphony, we obtain the following result.

Corollary 5. Let H 2 N, g D .g1; : : : ; gs2 / 2 N
s2 , and h D .h1; : : : ; hs3 / 2 N

s3

be arbitrary. Then the inequality of Erdös-Turán-Koksma for the hybrid diaphony is
given by

F 2
N .!/ � �

� � 1
sı C 1

� � 1

X

k2��.H;g;h/


.k/ jSN .�k; !/j2 ; (12)

where

ı D max



2

.1 C �2=3/H
; max

1�i�s2

.bi C 1/�1b
�gi C1
i ; max

1�i�s3

.pi C 1/�1p
�hi C1
i

�

:

Proof. We estimate the error term in (11) as follows. We have

� � �.H; g; h/

� � 1
D �

� � 1

�

1 � �.H; g; h/

�

�

;

and
�.H; g; h/

�
D R2.H/

R2

�b.g/

�b

�p.h/

�p
:

Hence, by an elementary estimate for the quotient R2.H/=R2 and by applying
Identity (10),

�.H; g; h/

�
>

�

1 � 2

R2H

�s1 s2Y

iD1

.1 � .bi C 1/�1b
�gi C1
i /

�
s3Y

iD1

.1 � .pi C 1/�1p
�hi C1
i /:

An application of Lemma 3.9 of [14] yields the estimate

1 � �.H; g; h/

�
� 1 � .1 � ı/s;

which is easily seen to be bounded by sı. ut
Remark 7. Our choice of components in a hybrid function system is motivated
as follows. Concerning the first component, the trigonometric function system
is the system of choice when it comes to analyzing the uniform distribution of
sequences that are based on addition modulo one, like .n˛/n�0 sequences or good
lattice points. Concerning the remaining components, we observe that important
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construction methods for sequences with good uniform distribution on the s-torus
employ the representation of real numbers in some integer base b. The resulting
(finite and infinite) digital sequences in base b are constructed by arithmetic
operations applied to digit vectors. We refer the reader to Niederreiter [14] and to
the recent monograph Dick and Pillichshammer [1] for details.

In the analysis of these digital sequences, addition of digit vectors plays a central
role. This leads to the following question: what are the different possibilities to add
digit vectors and which are the function systems associated with different types of
addition? We will address this question in a forthcoming paper, where we show that,
essentially, Walsh and p-adic function systems cover all possible cases.

As a consequence, if a hybrid sequence employs construction principles like
addition modulo one or if digital sequences come into play, the appropriate function
systems for analysis will be of the form introduced in Sect. 3.

Remark 8. It is a natural question to study how to extend the p-adic concepts
introduced in this paper and in Hellekalek [7] from the case of a prime base p

to a general integer base b � 2. This will be a theme of future research, in which
some technical problems that arise in this context will have to be overcome.

Acknowledgements The author would like to thank Markus Neuhauser, NUHAG, University of
Vienna, Austria, and RWTH Aachen, Germany, and Harald Niederreiter, University of Salzburg,
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An Intermediate Bound on the Star Discrepancy

Stephen Joe

Abstract Let Pn.z/ denote the point set of an n-point rank-1 lattice rule with
generating vector z. A criterion used to assess the ‘goodness’ of the point set Pn.z/
is the star discrepancy, D�.Pn.z//. As calculating the star discrepancy is an NP-hard
problem, then it is usual to work with bounds on it. In particular, it is known that the
following two bounds hold:

D�.Pn.z// � 1 � .1 � 1=n/d C T .z; n/ � 1 � .1 � 1=n/d C R.z; n/=2;

where d is the dimension and the quantities T .z; n/ and R.z; n/ are defined in
the paper. Here we provide an intermediate bound on the star discrepancy by
introducing a new quantity W.z; n/ which satisfies

T .z; n/ � W.z; n/ � R.z; n/=2:

Like R.z; n/, the quantity W.z; n/ may be calculated to a fixed precision in O.nd/

operations. A component-by-component construction based on W.z; n/ is analysed.
We present the results of numerical calculations which indicate that values of
W.z; n/ are much closer to T .z; n/ than to R.z; n/=2.

1 Introduction

We wish to approximate the d -dimensional integral given by

Id .f / D
Z

Œ0;1�d
f .x/ dx:

S. Joe
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A well-known method is to use an n-point rank-1 lattice rule given by

Qn;d .f / D 1

n

n�1X
kD0

f

��
kz
n

��
;

where z 2 Z
d has no factor in common with n and the braces around a vector

indicate that we take the fractional part of each component.
A criterion used to assess the ‘goodness’ of the point set Pn.z/ WD ffkz=ng; 0 �

k � n � 1g is the star discrepancy defined by

D�.Pn.z// WD sup
x2Œ0;1/d

jdiscr.x; Pn/j ;

where discr.x; Pn/ is the ‘local discrepancy’ defined by

discr.x; Pn/ WD jPn.z/ \ Œ0; x/j
n

� Vol.Œ0; x//:

The star discrepancy occurs in the well-known Koksma-Hlawka inequality given by

jId .f / � Qn;d .f /j � D�.Pn.z//V .f /;

where V.f / is the variation of f in the sense of Hardy and Krause. Further details
may be found in [5] and [11] or in more general works such as [9]. For simplicity,
we shall work with the star discrepancy defined above although the results presented
here can be generalized to the weighted star discrepancy.

Though there exist algorithms which calculate the star discrepancy or approx-
imate it to a user-specified error, these have running times which are exponential
in d as pointed out in [3]. In fact, the paper [3] shows that calculation of the star
discrepancy is an NP-hard problem. These computational difficulties make it hard
to work with the star discrepancy directly in computations. Instead, we work with
bounds on the star discrepancy such as those given by the quantities R.z; n/ and
T .z; n/, which we define shortly. So, for example, the component-by-component
construction given in [6] to find rank-1 lattice rules with O.n�1.ln.n//d / star
discrepancy is based on a search using R.z; n/.

Following [9], suppose n � 2 and let C.n/ D .�n=2; n=2� \ Z with C �.n/ D
C.n/nf0g. Moreover, let Cd .n/ be the Cartesian product of d copies of C.n/ with
C �

d .n/ D Cd .n/nf0g. For h 2 C.n/, set

r.h/ D max.1; jhj/ and t.h; n/ D
�

n sin.�jhj=n/ for h 2 C �.n/;

1 for h D 0:
(1)

For h D .h1; : : : ; hd / 2 Cd .n/, we then set
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r.h/ D
dY

iD1

r.hi / and t.h; n/ D
dY

iD1

t.hi ; n/:

With

R.z; n/ D
X

h

1

r.h/
and T .z; n/ D

X
h

1

t.h; n/
;

where the sums are over all h 2 C �
d .n/ satisfying h � z � 0 mod n, Theorem 5.6 of

[9] yields

D�.Pn.z// � 1 �
�

1 � 1

n

�d

C T .z; n/ � 1 �
�

1 � 1

n

�d

C 1

2
R.z; n/: (2)

Previous papers such as [6] have used the bound on the star discrepancy based
on the quantity R.z; n/=2 (see (2)). By writing R.z; n/ as a quadrature error (see
(10) in Sect. 3), one observes that the calculation of R.z; n/ for a given z requires
O.n2d/ operations. However, the asymptotic expansion in [7] allows this quantity
to be calculated to a fixed precision in O.nd/ operations.

In the next section, we introduce a quantity W.z; n/ such that

T .z; n/ � W.z; n/ � 1

2
R.z; n/: (3)

In Sect. 5 we give numerical values of these three quantities. These numerical results
suggest that the bounds on the star discrepancy obtained from W.z; n/ can be
significantly better than those obtained from R.z; n/=2. Of course, the bound on
the star discrepancy based on T .z; n/ would be even better. However, we shall see
in Sect. 3 that, as for R.z; n/, W.z; n/ may be calculated to a fixed precision for a
given z in O.nd/ operations. Attempts to calculate T .z; n/ to a fixed precision also
in O.nd/ operations did not prove fruitful.

A component-by-component construction based on W.z; n/ is analysed
in Sect. 4. As in [6], the construction yields a z for which D�.Pn.z// D
O.n�1.ln.n//d /. However, the implied constant is smaller.

The definition of the star discrepancy means that it is bounded above by one.
It should be pointed out that the numerical results in Sect. 5 and [10] indicate that
the values of the bounds on the star discrepancy given in (2) or based on W.z; n/

can be much greater than one, even in moderate dimensions. Hence there is a large
gap between the true values of the star discrepancy and the bounds. This is not too
surprising since the bounds obtained are essentially O.n�1.ln.n//d /. However, the
function n�1.ln.n//d considered as a function of n is increasing for n � ed as
discussed, for example, in [2, p. 88].
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2 An Intermediate Bound on the Star Discrepancy

Since 1= sin.�x/ � 1=.2x/ for x 2 .0; 1=2�, it follows from the definition of r.h/

and t.h; n/ in (1) that 1=t.h; n/ � 1=.2r.h// for h 2 C �.n/. Moreover, 1=t.0; n/ D
1=r.0/ D 1. Since h 2 C �

d .n/ has at least one non-zero component, this then leads
to the inequality T .z; n/ � R.z; n/=2 seen in (2).

In order to find a quantity W.z; n/ such that T .z; n/ � W.z; n/ � R.z; n/=2, we
will find a quantity w.h; n/ such that 1=w.0; n/ D 1 and 1=t.h; n/ � 1=w.h; n/ �
1=.2r.h// for h 2 C �.n/. This last requirement is equivalent to

1

sin.�jhj=n/
� 1

w.h; n/=n
� 1

2jhj=n
: (4)

For h 2 C �.n/, we have 0 < jhj=n � 1=2. So if we can find a function G such that
1= sin.�x/ � G.x/ � 1=.2x/ for x 2 .0; 1=2� and take w.h; n/ D n=G.jhj=n/, we
then see that (4) is satisfied.

We shall construct such a function G. The function that is constructed is
piecewise on .0; 1=2� and consists of two ‘pieces’. In particular, let � D 0:46,
�1 � 1:102449, and �2 � �0:204898. Then G is defined by

G.x/ WD
�

1=.�x/ C �x=6 C 7�3=2880 for x 2 .0; ��;

�1 C �2x for x 2 .�; 1=2�:
(5)

Exact expressions for �1 and �2 are given later in (8) and these values are such that
G is continuous at x D � and G.1=2/ D 1.

We now prove that this G satisfies the required bounds. We start by showing that
the first ‘piece’ on .0; �� is bounded below by 1= sin.�x/ for x in this interval.

Lemma 1. Let g1.x/ D 1= sin.�x/�1=.�x/��x=6�7�3=2880 and let � D 0:46.
Then g1.x/ < 0 for x 2 .0; ��.

Proof. We first show that the function g1 is an increasing function on the interval
.0; 1=2�. Straight-forward differentiation leads to

g0
1.x/ D �� cos.�x/

sin2.�x/
C 1

�x2
� �

6
D .1 � �2x2=6/ sin2.�x/ � �2x2 cos.�x/

�x2 sin2.�x/
:

This derivative clearly exists for x 2 .0; 1=2� and we now show that g0
1.x/ > 0 on

this interval.
Elementary calculus shows that

sin.�x/ � �x � .�x/3

6
; x 2 .0; 1=2�;

and
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cos.�x/ � 1 � .�x/2

2
C .�x/4

24
; x 2 .0; 1=2�:

For x 2 .0; 1=2�, we have 1 � �2x2=6 > 0. It then follows that

g0
1.x/ D .1 � �2x2=6/ sin2.�x/ � �2x2 cos.�x/

�x2 sin2.�x/

� .1 � �2x2=6/.�x � .�x/3=6/2 � �2x2.1 � .�x/2=2 C .�x/4=24/

�x2 sin2.�x/

D .�x/6Œ9 � .�x/2�

216�x2 sin2.�x/
:

We have 0 < .�x/2 < 3 < 9 for x 2 .0; 1=2�. Hence g0
1.x/ > 0 for x in this

interval and so g1 is an increasing function on the interval.
Now g1.x/ D 0 for x D 0:4604264347 (to ten decimal places). For our purposes,

it is enough to use the approximation � D 0:46 which is just slightly less than this
value. As expected, a direct calculation shows that g1.�/ < 0. Since g0

1.x/ > 0 for
x 2 .0; 1=2�, we must have g1.x/ � g1.�/ < 0 for x 2 .0; ��. This then completes
the proof. ut
Corollary 1. The G defined in (5) satisfies

1

sin.�x/
< G.x/ D 1

�x
C �x

6
C 7�3

2880
; x 2 .0; ��: (6)

Remark 1. The approximation G.x/ to 1= sin.�x/ for x 2 .0; �� arises from the
Laurent series of 1= sin.�x/ given by (for example, see [4, p. 43])

1

sin.�x/
D 1

�x
C �x

6
C 7�3x3

360
C

1X
iD3

2.22i�1 � 1/jB2i j
.2i/Š

.�x/2i�1; 0 < jxj < 1;

where B2i is the .2i/-th Bernoulli number. The function G that we construct is
piecewise. It would be possible to use the function eG for the whole interval .0; 1=2�,
where eG.x/ WD 1

�x
C �x

6
C 1 � 2

�
� �

12
: (7)

This function satisfies eG.1=2/ D 1. However, the bounds obtained on the star
discrepancy with the G we construct are slightly better since G.x/ � eG.x/ for
all x 2 .0; 1=2�. A proof of this inequality is given later in Sect. 4.

To obtain an appropriate G.x/ for x 2 .�; 1=2�, let p.x/ D �1 C�2x be the linear
interpolating function on Œ�; 1=2� such that p.�/ D G.�/ D 1=.��/ C ��=6 C
7�3=2880 � 1:008196 and p.1=2/ D 1. (This choice of p.�/ ensures that G is
continuous at x D � and hence continuous on the whole interval .0; 1=2�.) Then
setting up the linear equations and solving, we find that
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�1 D p.�/ � 2�

1 � 2�
� 1:102449 and �2 D 2.1 � p.�//

1 � 2�
� �0:204898: (8)

Lemma 2. With � D 0:46 and �1 and �2 given in (8), let p.x/ D �1 C �2x and
g2.x/ D 1= sin.�x/ � p.x/ for x 2 Œ�; 1=2�. Then g2.x/ � 0 for x in this interval.

Proof. We have

g0
2.x/ D �� cos.�x/

sin2.�x/
� �2 D ��2 sin2.�x/ � � cos.�x/

sin2.�x/
:

By substituting sin2.�x/ D 1 � cos2.�x/ into the numerator of this last expression,
we see that with v.x/ D cos.�x/, then g0

2.x/ D 0 when �2.v.x//2��v.x/��2 D 0.
The quadratic formula yields

v.x/ D
� ˙

q
�2 C 4�2

2

2�2

� �15:397402; 0:064946:

Since v.x/ D cos.�x/, there is just one value of x 2 Œ�; 1=2� such that g0
2.x/ D 0,

namely x � cos�1.0:064946/=� � 0:479312. We denote the exact value of this x

by �. Also, the quotient rule yields

g00
2 .x/ D �2 sin3.�x/ C 2�2 sin.�x/ cos2.�x/

sin4.�x/
D �2

sin.�x/
C 2�2 cos2.�x/

sin3.�x/
:

Then g00
2 .x/ is clearly positive for x 2 .�; 1=2/, so that g0

2 is an increasing function
on Œ�; 1=2�. As a result, g0

2.x/ is negative for x 2 Œ�; �/, zero at x D �, and positive
for x 2 .�; 1=2�.

By taking x D � in (6), we have

1

sin.��/
<

1

��
C ��

6
C 7�3

2880
D p.�/;

and hence g2.�/ < 0. Because of the behavior of g0
2.x/ described above, we see

that g2.x/ decreases from x D � onwards until x reaches the turning point at x D
�. Then g2.x/ increases from x D � onwards until x D 1=2 is reached. Since
g2.1=2/ D 1 � p.1=2/ D 0, we then conclude that g2.x/ � 0 for x 2 Œ�; 1=2�. ut

The previous corollary and lemma then lead to the following theorem.

Theorem 1. Let � D 0:46 and let G be defined by (5) with �1 and �2 given in (8).
Then G satisfies 1= sin.�x/ � G.x/ for x 2 .0; 1=2�.

The previous theorem gives the required lower bound on G. We now give the
upper bound that we require.
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Theorem 2. Let G be defined by (5). Then G.x/ � 1=.2x/ for x 2 .0; 1=2�.

Proof. Let g3.x/ D G.x/ � 1=.2x/. Then for x 2 .0; �� we have

g3.x/ D 1

�x
C �x

6
C 7�3

2880
� 1

2x
D
�

1

�
� 1

2

�
1

x
C �x

6
C 7�3

2880
:

The derivative of g3 is given by

g0
3.x/ D �

�
1

�
� 1

2

�
1

x2
C �

6
:

Since 1=� � 1=2 < 0, we conclude that g0
3.x/ is positive on .0; �/ and hence g3

is an increasing function on this interval. A direct calculation shows that g3.�/ �
�0:078761. So for x 2 .0; �� we have g3.x/ � g3.�/ < 0, that is, G.x/ < 1=.2x/

on this interval.
For x 2 .�; 1=2�, we have g3.x/ D �1 C �2x � 1=.2x/. Then for x 2 .�; 1=2/,

g0
3.x/ is given by

g0
3.x/ D �2 C 1

2x2
> �2 C 1

2.1=2/2
D �2 C 2 � 1:795102 > 0:

Hence g3 is an increasing function on .�; 1=2�. By the construction of the linear
function p.x/ D �1 C �2x, we had p.1=2/ D 1. So �1 C �2=2 D 1 and hence
g3.1=2/ D 0. This means that G.x/ � 1=.2x/ for x 2 .�; 1=2�. So, overall, we
conclude that G.x/ � 1=.2x/ for x 2 .0; 1=2�. ut

For h 2 Z, let

w.h; n/ D
�

n=G.jhj=n/ for h 2 C �.n/;

1 for h D 0;

and for h 2 Z
d , set

w.h; n/ D
dY

iD1

w.hi ; n/:

Since, by construction, we have 1=t.h; n/ � 1=w.h; n/ � 1=.2r.h/ for h 2 C �.n/

while 1=t.0; n/ D 1=w.0; n/ D 1=r.0/ D 1, it follows that

1

t.h; n/
� 1

w.h; n/
� 1

2r.h/
for h 2 C �

d .n/:
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Setting

W.z; n/ D
X

h

1

w.h; n/
;

where the sum is over all h 2 C �
d .n/ satisfying h � z � 0 mod n, we then have

(3) holding, that is, T .z; n/ � W.z; n/ � R.z; n/=2. This leads to the intermediate
bound on the star discrepancy given by

D�.Pn.z// � 1 � .1 � 1=n/d C W.z; n/: (9)

3 Calculating W.z; n/

From the error expression for lattice rules, one may write

R.z; n/ D �1 C 1

n

n�1X
kD0

X
h2Cd .n/

e2� ikh�z=n

r.h/

D �1 C 1

n

n�1X
kD0

dY
j D1

0
@1 C

X
h2C �.n/

e2� ikhzj =n

jhj

1
A (10)

and

W.z; n/ D �1 C 1

n

n�1X
kD0

X
h2Cd .n/

1

w.h; n/
e2� ikh�z=n

D �1 C 1

n

n�1X
kD0

dY
j D1

0
@1 C 1

n

X
h2C �.n/

G.jhj=n/e2� ikhzj =n

1
A : (11)

Then we see that the calculation of W.z; n/ for a given z by using this last formula
would require O.n2d/ operations.

This formula may be written as W.z; n/ D Qn;d .fn/ � 1, where

fn.x/ D
dY

iD1

Fn.xi /

and

Fn.x/ D 1 C 1

n

X
h2C �.n/

G.jhj=n/e2� ihx; x 2 Œ0; 1/:
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With the notation

�.n/ D
(

.n C 1/=2 for n odd;

n=2; for n even;

and

S.x; �.n// D 1

n

�.n/�1X
hD1

G.h=n/ cos.2�hx/;

we have

Fn.x/ D

8̂
<
:̂

1 C 2S.x; �.n// for n odd;

1 C 2S.x; �.n// C e� inx

n
for n even;

where we have used G.1=2/ D 1 in the case when n is even.
For 1 � h � �.n/ � 1, we have

G.h=n/

n
D
�

1=.�h/ C �h=.6n2/ C 7�3=.2880n/ for 0 < h=n � �;

�1=n C �2h=n2 for � < h=n � 1=2:

Now let ˛.n/ D b�nc C 1. Then it follows that 0 < h=n � � for 1 � h � ˛.n/ � 1

and � < h=n � 1=2 for ˛.n/ � h � �.n/ � 1. Hence

S.x; �.n// D 1

�

˛.n/�1X
hD1

cos.2�hx/

h
C �

6n2

˛.n/�1X
hD1

h cos.2�hx/

C 7�3

2880n

˛.n/�1X
hD1

cos.2�hx/

C
�.n/�1X
hD˛.n/

�
�1

n
C �2h

n2

�
cos.2�hx/:

(This last sum is taken to be an empty sum of zero when n is odd and less than 13

or when n is even and less than 26 as then ˛.n/ > �.n/ � 1.)
For integer m � 2 and x 2 .0; 1/, it follows from [4, p. 37] that

m�1X
hD1

cos.2�hx/ D sin.m�x/ cos..m � 1/�x/

sin.�x/
� 1 WD �1.x; m/:

For the case x D 0, we set �1.0; m/ D m � 1. Moreover, [4, p. 38] yields for integer
m � 2 and x 2 .0; 1/,
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m�1X
hD1

h cos.2�hx/ D m sin..2m � 1/�x/

2 sin.�x/
� 1 � cos.2m�x/

4 sin2.�x/
WD �2.x; m/:

For the case x D 0, we set �2.0; m/ D .m � 1/m=2. We may then write

S.x; �.n// D 1

�

˛.n/�1X
hD1

cos.2�hx/

h
C �

6n2
�2.x; ˛.n// C 7�3

2880n
�1.x; ˛.n//

C�1

n

�
�1.x; �.n// � �1.x; ˛.n//

�

C �2

n2

�
�2.x; �.n// � �2.x; ˛.n//

�
: (12)

As all the components of the points in an n-point rank-1 lattice are of the form
j=n for 0 � j � n � 1 and since cos.2�h.1 � x// D cos.2�hx/ for x 2 Œ0; 1�, we
see that calculation of W.z; n/ requires the values of F.j=n/ and hence the values
of S.j=n; �.n// for j satisfying 0 � j � bn=2c.

It is clear from (12) that the time-consuming part of the calculation of
S.j=n; �.n// is in calculating the values

˛.n/�1X
hD1

cos.2�hj=n/

h
; 0 � j � bn=2c:

The Appendix gives details of how the results in [7] may be used to approximate
all these values accurately enough in O.n/ operations so that the values of F.j=n/

have absolute error no more than some specified " > 0. These bn=2c C 1 values of
F.j=n/ are then stored and allow, for a given z, W.z; n/ to be calculated to a fixed
precision in O.nd/ operations.

4 Component-by-Component Construction

In this section, we show that for n prime we can construct z component-by-
component (CBC) such that the bound given in (13) below holds. The result and
proof is very similar to Theorem 1 and its proof found in [6].

Theorem 3. Let n be a prime number and let Zn D fz W 1 � z � n � 1g. Suppose
there exists a z 2 Z d

n such that

W.z; n/ � 1

n � 1
.1 C Un/d ; (13)
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where

Un D 1

n

X
h2C �.n/

G.jhj=n/:

Then there exists zdC1 2 Zn such that

W..z; zdC1/; n/ � 1

n � 1
.1 C Un/dC1 :

Such a zdC1 can be found by minimizing W..z; zdC1/; n/ over the set Zn.

Proof. For any zdC1 2 Zn, we have from (11) that W..z; zdC1/; n/ may be expressed
as

W..z; zdC1/; n/

D W.z; n/ C 1

n

n�1X
kD0

dY
j D1

0
@1 C 1

n

X
h2C �.n/

G.jhj=n/e2� ikhzj =n

1
A

�
0
@ 1

n

X
h2C �.n/

G.jhj=n/e2� ikhzdC1=n

1
A : (14)

Next, we average over the possible n � 1 values of zdC1 in the last term to form for
0 � k � n � 1,

Vn.k/ D 1

n � 1

n�1X
zdC1D1

1

n

X
h2C �.n/

G.jhj=n/e2� ikhzdC1=n

D 1

.n � 1/n

X
h2C �.n/

n�1X
zD1

G.jhj=n/e2� ikhz=n

D 1

.n � 1/n

X
h2C �.n/

G.jhj=n/

 
n�1X
zD0

�
e2� ikh=n

	z � 1

!
:

When k D 0, Vn.0/ is simply Un. For 1 � k � n � 1 and h 2 C �.n/, it is clear that
k and h are relatively prime with n. It then follows that kh 6� 0 .mod n/ so that

n�1X
zD0

�
e2� ikh=n

	z � 1 D �1:

Hence for 1 � k � n � 1, we have

Vn.k/ D �Un

n � 1
: (15)
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From the expression for W..z; zdC1/; n/ given in (14), it follows by separating
out the k D 0 term that there exists a zdC1 2 Zn such that

W..z; zdC1/; n/

� W.z; n/ C 1

n
.1 C Un/d Un

C 1

n

n�1X
kD1

dY
j D1

0
@1 C 1

n

X
h2C �.n/

G.jhj=n/e2� ikhzj =n

1
AVn.k/

D W.z; n/ C 1

n
.1 C Un/d Un

C 1

n

n�1X
kD1

dY
j D1

0
@1 C 1

n

X
h2C �.n/

G.jhj=n/e2� ikhzj =n

1
A
� �Un

n � 1

�
; (16)

where we have made use of (15). By subtracting and adding in the k D 0 term, we
see that the last term in (16) may be written as

Un

n � 1

0
@� 1

n

n�1X
kD0

dY
j D1

0
@1 C 1

n

X
h2C �.n/

G.jhj=n/e2� ikhzj =n

1
AC .1 C Un/d

n

1
A :

Equation 11 shows that this last expression is simply

Un

n � 1

�
�W.z; n/ � 1 C .1 C Un/d

n

�
:

Hence it follows from (16) that there exists a zdC1 2 Zn such that

W..z; zdC1/; n/

� W.z; n/ C 1

n
.1 C Un/d Un C Un

n � 1

�
�W.z; n/ � 1 C .1 C Un/d

n

�

� W.z; n/ C 1

n
.1 C Un/d Un

�
1 C 1

n � 1

�

D W.z; n/ C 1

n � 1
.1 C Un/d Un

� 1

n � 1
.1 C Un/d C 1

n � 1
.1 C Un/d Un D 1

n � 1
.1 C Un/dC1;

where we have made use of the fact that W.z; n/ satisfies the assumed bound. This
completes the proof. ut
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In the case when d D 1, we can set z1 D 1. Then we have from (11) that

W.z1; n/ D �1 C 1

n

n�1X
kD0

0
@1 C 1

n

X
h2C �.n/

G.jhj=n/e2� ikh=n

1
A

D 1

n2

n�1X
kD0

X
h2C �.n/

G.jhj=n/e2� ikh=n

D 1

n2

X
h2C �.n/

G.jhj=n/

n�1X
kD0

�
e2� ih=n

	k D 0:

This result together with the previous theorem leads to the following corollary.

Corollary 2. Let n be a prime number. We can construct z 2 Z d
n component-by-

component such that for all s D 1; : : : ; d ,

W..z1; : : : ; zs/; n/ � 1

n � 1
.1 C Un/s :

We can set z1 D 1, and for 2 � s � d , each zs can be found by minimizing
W..z1; : : : ; zs/; n/ over the set Zn.

To obtain bounds on the star discrepancy resulting from the CBC construction
based on W.z; n/, we now consider

Un D 1

n

X
h2C �.n/

G.jhj=n/

in more detail. By construction, we have G.jhj=n/ � 1=.2jhj=n/ and hence

Un � 1

2

X
h2C �.n/

1

jhj DW 1

2
Sn < ln.n/ C � � ln.2/ C 1

2n2
; (17)

where � � 0:57722 is Euler’s constant and the last step follows from
[8, Lemmas 1 and 2]. For n an odd prime, we have 1=n2 � 1=9. Then the previous
corollary, the intermediate bound from (9), and calculation of the constant in (17)
show that the z from the CBC construction results in a point set for which

D�.Pn.z// � 1 �
�

1 � 1

n

�d

C .0:9397 C ln.n//d

n � 1

� d

n
C .0:9397 C ln.n//d

n � 1
: (18)
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When d � 2 and n � 3, this bound is an improvement on the bound of

D�.Pn.z// � d

n
C .0:8793 C 2 ln.n//d

2.n � 1/
(19)

found in [6, Sect. 3].
To get a bound on the star discrepancy better than the one in (18), we could work

with Un directly. However, the piecewise nature of G complicates the analysis. For
simplicity, we shall work with the function eG defined in (7).

Since a direct calculation shows that 7�3=2880 < 1�2=� ��=12, then we have
G.x/ � eG.x/ for x 2 .0; ��. For x 2 .�; 1=2�, the function g4.x/ D eG.x/ � .�1 C
�2x/ has derivative given by

g0
4.x/ D � 1

�x2
C �

6
� �2 � � 1

�.1=2/2
C �

6
� �2 � �0:544743 < 0:

So g4 is a decreasing function on .�; 1=2/ meaning that on this interval, g4.x/ �
g4.1=2/ D 0. Hence we conclude overall that

G.x/ � eG.x/; x 2 .0; 1=2�:

Though not needed here, the first part of the proof of Theorem 2 showing that
G.x/ � 1=.2x/ for x 2 .0; �� may be modified to show that eG.x/ � 1=.2x/

for x 2 .0; 1=2�.
We then have

Un D 1

n

X
h2C �.n/

G.jhj=n/ � 1

n

X
h2C �.n/

eG.jhj=n/

D 1

n

X
h2C �.n/

�
n

�jhj C �jhj
6n

C 1 � 2

�
� �

12

�

D Sn

�
C �

6n2

X
h2C �.n/

jhj C n � 1

n

�
1 � 2

�
� �

12

�
:

In the case when n is odd, the sum in this last equation is simply .n � 1/.n C 1/=4.
So for n odd, we obtain

Un � Sn

�
C �.n2 � 1/

24n2
C n � 1

n

�
1 � 2

�
� �

12

�

� Sn

�
C �

24
C 1 � 2

�
� �

12

� 1

�

�
2 ln.n/ C 2� � ln.4/ C 1

n2

�
C 1 � 2

�
� �

24
;
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where we have made use of (17). So for n an odd prime, we use the previous
corollary, (9), 1=n2 � 1=9, and calculation of the constant in this last expression
to conclude that the CBC construction leads to a z for which

D�.Pn.z// � d

n
C .1:1941 C 2 ln.n/=�/d

n � 1
: (20)

Like the bounds given in (18) and (19), this bound shows that the CBC construction
leads to a z for which D�.Pn.z// D O.n�1.ln.n//d /. However, this bound has a
smaller implied constant than in the two earlier bounds.

5 Numerical Results and Summary

Here we present numerical values of the three quantities T .z; n/, W.z; n/, and
R.z; n/=2 to see how they compare against each other. The z that were used in the
calculations came from the CBC algorithm given in Corollary 2. We present results
for d D 2, d D 3, d D 10, and d D 20. In the case when d D 2 and d D 3, we
provide (when it was computationally feasible to do so) the values of E.z; n/, where

E.z; n/ WD D�.Pn.z// � �
1 � .1 � 1=n/d

�
:

Then

E.z; n/ � T .z; n/ � W.z; n/ � 1

2
R.z; n/:

The calculation of the star discrepancy required for E.z; n/ (Tables 1 and 2) was
done using the formulas given in [1].

Also presented are upper bounds on W.z; n/ that arise from Corollary 2 and (20),
namely,

ˇ1.n; d/ WD .1 C Un/d

n � 1
and ˇ2.n; d/ WD .1:1941 C 2 ln.n/=�/d

n � 1
:

Table 1 Results for d D 2.

n E.z; n/ T .z; n/ W.z; n/ R.z; n/=2 ˇ1.n; 2/ ˇ2.n; 2/

157 5:92.�3/ 5:10.�2/ 5:32.�2/ 2:18.�1/ 1:21.�1/ 1:25.�1/

313 3:88.�3/ 3:14.�2/ 3:27.�2/ 1:36.�1/ 7:36.�2/ 7:55.�2/

619 2:33.�3/ 1:93.�2/ 2:00.�2/ 8:44.�2/ 4:42.�2/ 4:52.�2/

1,249 1:30.�3/ 1:15.�2/ 1:18.�2/ 5:06.�2/ 2:58.�2/ 2:63.�2/

2,503 6:66.�4/ 6:70.�3/ 6:92.�3/ 2:99.�2/ 1:49.�2/ 1:52.�2/

5,003 3:86.�4/ 3:87.�3/ 3:98.�3/ 1:73.�2/ 8:59.�3/ 8:75.�3/

10,007 2:15.�4/ 2:23.�3/ 2:29.�3/ 1:00.�2/ 4:89.�3/ 4:98.�3/

20,011 1:27.�3/ 1:30.�3/ 5:76.�3/ 2:77.�3/ 2:81.�3/
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Table 2 Results for d D 3.

n E.z; n/ T .z; n/ W.z; n/ R.z; n/=2 ˇ1.n; 3/ ˇ2.n; 3/

157 1:54.�2/ 3:86.�1/ 4:03.�1/ 3:79.0/ 5:28.�1/ 5:51.�1/

313 1:37.�2/ 2:63.�1/ 2:74.�1/ 2:68.0/ 3:53.�1/ 3:66.�1/

619 9:34.�3/ 1:75.�1/ 1:81.�1/ 1:85.0/ 2:31.�1/ 2:39.�1/

1,249 1:12.�1/ 1:16.�1/ 1:22.0/ 1:46.�1/ 1:51.�1/

2,503 7:05.�2/ 7:28.�2/ 7:95.�1/ 9:14.�2/ 9:41.�2/

5,003 4:37.�2/ 4:50.�2/ 5:02.�1/ 5:63.�2/ 5:79.�2/

10,007 2:68.�2/ 2:75.�2/ 3:16.�1/ 3:42.�2/ 3:51.�2/

20,011 1:62.�2/ 1:66.�2/ 1:94.�1/ 2:06.�2/ 2:11.�2/

Table 3 Results for d D 10.

n T .z; n/ W.z; n/ R.z; n/=2 ˇ1.n; 10/ ˇ2.n; 10/

10,007 2:60.4/ 2:81.4/ 3:38.8/ 2:81.4/ 3:07.4/

20,011 2:41.4/ 2:59.4/ 3:40.8/ 2:59.4/ 2:81.4/

40,009 2:15.4/ 2:31.4/ 3:26.8/ 2:31.4/ 2:49.4/

80,021 1:86.4/ 1:99.4/ 3:01.8/ 1:99.4/ 2:14.4/

160,001 1:57.4/ 1:67.4/ 2:68.8/ 1:67.4/ 1:79.4/

320,009 1:29.4/ 1:36.4/ 2:31.8/ 1:36.4/ 1:45.4/

Table 4 Results for d D 20.

n T .z; n/ W.z; n/ R.z; n/=2 ˇ1.n; 20/ ˇ2.n; 20/

10,007 6:79.12/ 7:92.12/ 2:29.21/ 7:92.12/ 9:41.12/

20,011 1:16.13/ 1:34.13/ 4:62.21/ 1:34.13/ 1:58.13/

40,009 1:86.13/ 2:13.13/ 8:52.21/ 2:13.13/ 2:48.13/

80,021 2:78.13/ 3:16.13/ 1:45.22/ 3:16.13/ 3:66.13/

160,001 3:93.13/ 4:45.13/ 2:29.22/ 4:45.13/ 5:10.13/

320,009 5:29.13/ 5:94.13/ 3:41.22/ 5:94.13/ 6:77.13/

Obviously, the upper bounds on W.z; n/ from ˇ1.n; d/ will be better than the ones
from ˇ2.n; d/. The numerical results suggest that the values of ˇ2.n; d/ still provide
reasonable bounds. For given d and n, this quantity requires O.1/ operations to
calculate compared to O.n/ operations for ˇ1.n; d/.

For d D 10 and d D 20, the results in Tables 3 and 4 show that the quantities
W.z; n/ and ˇ1.n; d/ are close, though not equal.

From these numerical results and the work described in the previous sections, we
summarize this paper as follows:

1. A quantity W.z; n/ has been introduced which leads to an intermediate bound on
the star discrepancy.

2. The values of W.z; n/ are closer to T .z; n/ than to R.z; n/=2.
3. Even for moderate dimensions, the values of W.z; n/ are magnitudes of order

smaller than R.z; n/=2. Nevertheless, since the star discrepancy is less than one,
there is a large gap between the true values and the O.n�1.ln.n//d / bounds on
the star discrepancy obtained from W.z; n/.
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4. For a given z, W.z; n/ may be calculated to a fixed precision in O.nd/ operations.
The author was not able to reduce the O.n2d/ operations required to calculate
T .z; n/ to O.nd/ operations.

5. A CBC construction of z based on W.z; n/ has been analyzed and an
O.n�1.ln.n//d / bound on the star discrepancy obtained with a smaller implied
constant than the bound found in [6].

Appendix: Calculation of Fn.x/

We recall from Sect. 3 that the calculation of W.z; n/ requires the values of Fn.j=n/

for j satisfying 0 � j � bn=2c, where

Fn.x/ D

8̂
<
:̂

1 C 2S.x; �.n// for n odd;

1 C 2S.x; �.n// C e� inx

n
for n even;

with S.x; �.n// given by (12). This last equation shows that with ˛.n/ D b�nc C
1 D b0:46nc C 1, we need the values

Y.j; ˛.n// WD
˛.n/�1X

hD1

cos.2�hj=n/

h
; 0 � j � bn=2c: (21)

Now suppose we want approximations to the values Fn.j=n/, 0 � j � bn=2c,
such that they have absolute error no more than " and that they may be calculated in
O.n/ operations. This may be done by making use of the results in [7]. In particular,
to apply those results here, the parameter �.N / in that paper should be taken to be
˛.n/. Moreover, (3.4) in Theorem 4 of that paper given by

4.T C 1/Š

.� � 1/T C2�T C2
� "

should be replaced by

4.L C 1/Š

.2�/LC2.` � 1/LC2�LC3
� ";

where we have used ` and L here instead of � and T , respectively, to avoid
confusion with the notation used earlier. (This change in (3.4) of [7] arises because
the proof of Theorem 4 there makes use of �.N / � N=2 D 0:5N while here the
corresponding inequality is ˛.n/ > �n D 0:46n. Moreover, the values Fn.j=n/

here require Y.j; ˛.n//=� .)
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With the changes described in the previous paragraph, the results in [7] show that
if ` and L are positive integers satisfying

2 � ` �
�

6n2

�2

�1=3

and
4.L C 1/Š

.2�/LC2.` � 1/LC2�LC3
� "; (22)

then to approximate F.j=n/ to the required accuracy, Y.j; ˛.n// should be
calculated directly using (21) for 0 � j < `. When ` � j � bn=2c, Y.j; ˛.n//

should be approximated by K.j=n/, where

K.x/ D � ln.2j sin.�x/j/ �
LX

iD0

bi .x/ cos.�Œ.2˛.n/ C i � 1/x C .i C 1/=2�/:

In this expression, b0.x/ D 1= .2˛.n/j sin.�x/j/ and

biC1.x/ D �.i C 1/

2.˛.n/ C i C 1/j sin.�x/jbi .x/:

As an example of a possible choice for `, the first equation in (22) is satisfied
with ` D 20 when n � 115. Then the second equation in (22) is satisfied for
" D 10�16 when L D 15. If " D 10�18, then we can take L D 19. So we see that
approximations to all the values F.j=n/, 0 � j � bn=2c, may be obtained with
an absolute error of at most " using O.`n/ C O.L/ � .bn=2c C 1 � `/ D O.n/

operations. This means that even if n is large, W.z; n/ may be calculated to a fixed
precision in O.nd/ operations.
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On Monte Carlo and Quasi-Monte Carlo
Methods for Series Representation
of Infinitely Divisible Laws

Reiichiro Kawai and Junichi Imai

Abstract Infinitely divisible random vectors and Lévy processes without Gaussian
component admit representations with shot noise series. To enhance efficiency of
the series representation in Monte Carlo simulations, we discuss variance reduction
methods, such as stratified sampling, control variates and importance sampling,
applied to exponential interarrival times forming the shot noise series. We also
investigate the applicability of the generalized linear transformation method in the
quasi-Monte Carlo framework to random elements of the series representation.
Although implementation of the proposed techniques requires a small amount of
initial work, the techniques have the potential to yield substantial improvements in
estimator efficiency, as the plain use of the series representation in those frameworks
is often expensive. Numerical results are provided to illustrate the effectiveness of
our approaches.

1 Introduction

An infinitely divisible random vector without Gaussian component admits represen-
tations of shot noise series. Such series representations have played an important
role in theories such as the tail probability of stable laws and have also been
studied in the applied literature, known as “shot noise.” Series representation
provides perfect and often easy simulation of infinitely divisible laws and associated
Lévy processes. Series representations involving Poisson arrival times are given
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for the first time by Ferguson and Klass [5] for real independent increment
processes without Gaussian component and with positive jumps. The theory of
stable processes and their applications are expanded, due to LePage [19] on series
representation of stable random vectors. The simulation of nonnegative infinitely
divisible random variables is considered and their series representations as a special
form of generalized shot noise is developed in Bondesson [3]. The same approach is
used in Rosiński [24] as a general pattern for series representations of Banach space
valued infinitely divisible random vectors.

A disadvantage in simulation comes from the fact that the series representation
for infinite Lévy measure is necessarily infinite as well. If the series converges
at an extremely slow rate, a huge number of terms will be required to achieve
a desired accuracy of the approximation. (We refer the reader to [11, 21] for
examples of simulation use.) With ever increasing computational speed, however,
a slow convergence may no longer cause a serious practical issue. The authors have
recently achieved in [6–8] various improvements in implementation of the series
representation. In this paper, we discuss some other possibilities of improvement
in Monte Carlo and quasi-Monte Carlo methods. Although implementation of the
proposed techniques requires a small amount of initial work, the techniques have
the potential to yield substantial improvements in estimator efficiency, in particular
as the plain use of the series representation in those frameworks is often expensive.
In order to illustrate the effectiveness of the proposed techniques, we provide some
numerical results for test examples (and do not present an exhaustive numerical
study to avoid overloading the paper).

Let us begin with generalities on the series representation of infinitely divisible
laws and Lévy processes. Consider a Lévy process fXt W t � 0g in R

d , without
Gaussian component, that is, its characteristic function is given by

E

h
eihy;Xt i

i
D exp

"
t

 
ihy; �i C

Z

R
d
0

�
eihy;zi � 1 � ihy; zi�.0;1� .kzk/

�
�.dz/

!#
;

(1)
where � 2Rd and � is a Lévy measure on R

d
0 .WD R

dnf0g/, that is, a �-finite
measure satisfying

R
R

d
0
.kzk2 ^ 1/�.dz/ < C1: Let us start with construction of

the series representation, based on the simulation of an inhomogeneous Poisson
process. (See Asmussen and Glynn [1].) For the sake of simplicity, we restrict to
the unilateral and univariate marginal (at unit time), that is, the infinitely divisible
distribution on RC, rather than the multivariate Lévy process in R

d . Denote by
f�kgk2N arrival times of a standard Poisson process, and let fEkgk2N be a sequence
of iid exponential random variables with unit mean. Notice first that the random
variable

PC1
kD1 �k�.�k 2 Œ0; T �/ is infinitely divisible with Lévy measure �.dz/ D

dz defined on .0; T �. Recall also that the epochs of an inhomogeneous Poisson
process on Œ0; T � with intensity h.t/ can be generated by H.�1/, H.�2/, : : :,
where H.t/ WD inffu 2 Œ0; T � W R u

0
h.s/ds > tg, provided that

R T

0
h.s/ds < C1.

Therefore, by regarding the intensity h.t/ as a Lévy measure (“on state space”
rather than on time), we deduce that

PC1
kD1 H.�k/�.�k 2 Œ0; T �/ is an infinitely
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divisible random variable with Lévy measure �.dz/ D h.z/dz defined on .0; T �.
The definition of H.t/ implicitly assumes that the Lévy measure � has a compact
support. Moreover, the condition

R T

0
h.s/ds <C1 implies that Lévy measure is

finite. The above argument can be extended to an infinite Lévy measure on RC,
simply by redefining the inverse function H as running down from the infinity rather
than up the other way, that is,

H.r/ WD inf

�
u > 0 W

Z C1

u
h.s/ds > r

�
;

and compute
PC1

kD1 H.�k/, where f�kgk2N is no longer restricted to lie in Œ0; T �.
This formulation is the so-called inverse Lévy measure method [5, 19].

In most cases, however, the above tail inverse H.r/ of the Lévy measure is
not available in closed form even in the one-dimensional setting. (See [7] for a
numerical approach to the inverse Lévy measure method.) To obtain a closed form in
general multi-dimensional settings, some alternative methods have been proposed,
for example, the thinning method and the rejection method of [24], while each of
those methods can be considered as a special case of the so-called generalized shot
noise method of [3, 24], which we describe in brief as follows. Suppose that the
Lévy measure � in (1) can be decomposed as

�.B/ D
Z C1

0

P .H.r; U / 2 B/ dr; B 2 B.Rd
0 /; (2)

where U is a random variable taking values in a suitable space U , and where
H W RC � U 7! R

d
0 here is such that for each u 2 U , r 7! kH.r; u/k is non-

increasing. Then, the Lévy process fXt W t 2 Œ0; 1�g in (1) admits the shot noise
series representation

fXt W t 2 Œ0; 1�g LD
(

t� C
C1X
kD1

ŒH .�k; Uk/� .Tk 2 Œ0; t �/ � tck� W t 2 Œ0; 1�

)
;

(3)
where fUkgk2N is a sequence of iid copies of the random variable U , fTkgk2N is
a sequence of iid uniform random variables on Œ0; 1�, and fckgk2N is a sequence
of constants defined by ck WD EŒH.�k; U /�.kH.�k; U /k � 1/�: The random
sequences f�kgk2N, fUkgk2N and fTkgk2N are mutually independent. Here, regard-
less of the structure of the function H , the common key building block is the
epochs f�kgk2N of a standard Poisson process. They can be generated iteratively
as a successive summation of iid exponential random variables

f�1; �2; �3; : : :g LD
(

1X
kD1

Ek;

2X
kD1

Ek;

3X
kD1

Ek; : : :

)
; (4)

where the exponential random variables fEkgk2N act as interarrival times of a
standard Poisson process and can be generated through the standard inversion
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method, namely, Ek  � ln.1� Jk/ (or � ln Jk , identically in law), where fJkgk2N
is a sequence of iid uniform random variables on Œ0; 1�. It is worth emphasizing
here that the argument r in H.r; u/ in (3), corresponding to the sequence f�kgk2N,
is univariate, no matter what dimension the Lévy process fXt W t 2 Œ0; 1�g is
defined in.

2 Variance Reduction Methods to Exponential
Interarrival Times

In this section, we discuss variance reduction methods applied to exponential
interarrival times fEkgk2N in (4). To illustrate our methods, suppose we are
interested in estimation of the �-th moment of an one-sided stable random variable,
that is,

F WD
2
4

C1X
kD1

 
˛

kX
lD1

El

!�1=˛
3
5

�

LD
"C1X

kD1

.˛�k/�1=˛

#�

; (5)

for ˛ 2 .0; 1/ and � 2 .�1; ˛/. This is a simple yet very good example for our
purpose, as the moment of arbitrary order is known in closed form;

EP ŒF � D
�

� .1 � ˛/

˛

��=˛
� .1 � �=˛/

� .1 � �/
; � 2 .�1; ˛/:

(See Examples 25.10 and 24.12 of Sato [25].) To guarantee that the variance
VarP.F / is well defined, we need to impose � 2 .�1; ˛=2/. Throughout this
section, we truncate the infinite sum to 100 terms, with which we have confirmed a
sufficient convergence of the series.

We first consider stratified sampling. For simplicity, we apply the method only
to the first (inter)arrival exponential time E1. We divide the support .0;C1/

of the standard exponential distribution into M disjoint strata fBmgm2M, where
M WD f1; : : : ; M g and B1 D .0; b1�, B2 D .b1; b2�; : : :, BM D .bM�1;C1/ for
0 < b1 < b2 < � � � in such a way that all the strata have the equal probability
pm WD P.E1 2 Bm/ D 1=M , for m 2 M. (We will use the general notation pm

below, while they are independent of m in our setting.) Define the stratum mean
�m WD EPŒF jE1 2 Bm� and the stratum variance �2

m WD VarP.F jE1 2 Bm/.
For each stratum m, let fFm;kgk2N be a sequence of iid random variables such that
each Fm;k has the distribution of F conditional on the event fG 2 Bmg, and let
.n1; : : : ; nM /0 be the number of samples allocated to strata such that nm � 1 andP

m2M nm D n. Then, the random variable

X
m2M

pm

1

nm

nmX
kD1

Fm;k



On Monte Carlo and Quasi-Monte Carlo Methods 475

is an unbiased estimator of EŒF �. Its variance is given by

VarP

 X
m2M

pm

1

nm

nmX
kD1

Fm;k

!
D
X
m2M

p2
m

˛2
m

nm

D 1

n

X
m2M

p2
m

˛2
m

qm

;

where qm WD nm=n indicates the fraction of observations drawn from the stratum m.
This Monte Carlo variance is controllable through the allocation ratio fqmgm2M. For
example, the proportional allocation, that is qm D pm, yields the variance

X
m2M

pm�2
m; (6)

which, by the Jensen inequality, is smaller than, or at most equal to, the variance of
the plain Monte Carlo method (M D 1),

VarP.F / D
X
m2M

pm�2
m C

X
m2M

pm�2
m �

 X
m2M

pm�m

!2

: (7)

Moreover, the allocation qmDpm�m=.
P

m2M pm�m/ achieves the minimal variance

 X
m2M

pm�m

!2

; (8)

which is further smaller than, or at most equal to, the variance (6), again due to the
Jensen inequality. We report in Table 1 variance ratios achieved through stratified
sampling for ˛ D f0:3; 0:5; 0:7g and � D �0:2. The displayed quantities (vratio1)
and (vratio2) indicate ratio of variances “(7)/(6)” and “(7)/(8)”, respectively. The
observed reductions in variance are remarkable. This fact confirms the importance
of the first (inter)arrival exponential time E1 in series representations of infinitely
divisible laws for estimation purpose. Further reduction in variance through the
optimal allocation qm D pm�m=.

P
m2M pm�m/ varies for different settings. Note

that this further improvement requires a pilot run for estimation of the stratum
variance �2

m to find the optimal allocation, while stratified sampling with the
proportional allocation qm D pm is free of a pilot run.

Before proceeding to different variance reduction methods, let us remark that the
method of stratified sampling can be in principle multi-dimensional, that is, Latin
hypercube sampling. In our context, the method is also applied to exponential times
E2 and so on, not only to E1. This extension is however usually not computationally
effective. First, as discussed in [6], a first few exponential times often account for
most of variation. Moreover, in a d -dimensional Latin hypercube sampling problem,
the total number of strata increases to the product M1 � � �Md , where Mk denotes the
number of strata of the k-th coordinate. Note that for successful variance reduction,
each Mk must be fairly large. (We discuss the quasi-Monte Carlo method that are
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Table 1 Variance ratios achieved through stratified sampling for � D �0:2.

˛ M 2 5 10 50 200

0.3 vratio1 2.7 9.1 20.1 63.1 83.9
vratio2 3.0 13.3 35.9 117.7 143.6

0.5 vratio1 2.9 10.0 20.5 39.6 42.7
vratio2 2.9 11.0 23.0 46.3 51.6

0.7 vratio1 2.4 6.8 12.4 23.2 25.0
vratio2 2.6 8.0 14.1 24.4 26.8

better suited to higher dimensional problems in Sect. 3. See, for example, Owen [22]
for details.)

Let us turn to variance reduction methods of control variates and importance
sampling applied again to moment estimation of the one-sided stable random vari-
able (5). We begin with some notations. Fix n 2 N and define E.n/ D ŒE1; : : : ; En�>
and 	 WD Œ	1; : : : ; 	n�> 2 .�1; C1/n. Here, we add a parametrization to the first
n exponential random variables fEkgkD1;:::;n in (5) as fEk=.1 � 	k/gkD1;:::;n, and
also parametrize the random variable F of interest as F.	/ accordingly. Clearly,
F.0/ reduces to the original form (5). Define a family fQ	g	2.�1;C1/n of probability
measures by

dQ	

dP

ˇ̌
�.E.n//

WD eh	;E.n/i

EPŒeh	;E.n/i�
D

nY
kD1

e	kEk

EPŒe	kEk �
D

nY
kD1

.1 � 	k/ e	kEk ; P-a:s:

It holds that

dP

dQ	

ˇ̌
�.E.n//

D
�

dQ	

dP
j�.E.n//

��1

D
nY

kD1

e�	k Ek

1 � 	k

; Q	-a:s:

We can show that under Q	, fEkgk2N is a sequence of independent (not necessarily
identically distributed) exponential random variables. Note also that Q	.Ek 2 B/ D
P.Ek=.1 � 	k/ 2 B/ and Q	.F.0/ 2 B/ D P.F.	/ 2 B/ for B 2 B.R/. We
are now in a position to formulate variance reduction methods as; for each 	 2
.�1;C1/n and 
 WD Œ
1; : : : ; 
n�> 2 R

n,

EP ŒF .0/� D EP

�
F.0/ � ˝
; E.n/ � EP

�
E.n/

	˛	
(9)

D EQ	



dP

dQ	

j�.E.n//

�
F.0/ � ˝
; E.n/ � EP

�
E.n/

	˛�
(10)

D EP

2
4
0
@

nY
kD1

e
� 	k

1�	k
Ek

1 � 	k

1
A
 

F.	/ �
nX

kD1


k

�
Ek

1 � 	k

� 1

�!3
5: (11)

The subtraction term inside the expectation (9) corresponds to the method of
control variates, while the change of measure in (10) acts as the method of
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Table 2 Variance ratio (vratio) for � D �0:2 when either control variates alone .
�; 0/ or
importance sampling alone .0; 	�/ is applied.

˛ 0.3 0.5 0.7

.
; 	/ (0.223, 0) (0, 0.368) (0.180, 0) (0, 0.232) (0.117, 0) (0, 0.147)
vratio 12.7 3.5 4.0 2.5 2.6 2.1

importance sampling. The equality (11) holds by the so-called scaling property
of the exponential (more generally, gamma) distribution. (See [13, 16] for its
applications.) Within this framework, it is most ideal to find the joint parameter
.	; 
/ minimizing the variance

V.	; 
/ WD VarQ	

�
dP

dQ	

j�.E.n//

�
F.0/ � ˝
; E.n/ � EP

�
E.n/

	˛��

D EP

" 
nY

kD1

e�	kEk

1 � 	k

!
�
F.0/ � ˝
; E.n/ � �n

˛�2
#
� .EP ŒF .0/�/2 ;

where �n WD Œ1; : : : ; 1�> 2 R
n. We however do not discuss this joint framework,

as it entails various complex techniques, such as adaptive variance reduction and
stochastic approximation. (See, for example, [12, 13] for details.) For the sake of
simplicity, we instead apply either control variates alone (	 D 0) or importance
sampling alone (
 D 0) to the first arrival time E1, that is, n D 1 in (10). In
particular, as the function V.	; 
/ is quadratic in 
 , the optimal parameter 
� for
control variates (with 	 D 0) can be easily derived as


� D CovP
�
F.0/; E.n/

�
;

which is to be estimated through a pilot run. It is known that there exists a unique 	�
which attains the global minimum of the function V.0; 	/, while searching 	� is not
a trivial problem and requires some techniques such as stochastic approximation
algorithm. (See [14] for details.) In order to illustrate the effectiveness of the
above variance reduction methods, we present in Table 2 optimal variance ratios
for the same parameter set as in Table 1. The variance ratio should be read as
either V.0; 0/=V.
�; 0/ or V.0; 0/=V.0; 	�/. The formulation (11) has achieved a
reduction in variance by roughly factors between 2 and 13. (In this specific example,
unfortunately, it is not quite competitive against the aforementioned method of
stratified sampling.) It is worth emphasizing that as can be seen in (11), it requires
little amount of initial work to apply the variance reduction methods. There remains
an issue of pilot run for finding optimal parameter 
� or 	�. Taking into account
the gained variance ratios, a pilot run seems worthwhile, as Monte Carlo methods
with series representation is computationally demanding by nature even with ever
increasing computing speed.
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We close this section with discussion on some extensions. First, as mentioned
in the introductory, the exponential interarrival times fEkgk2N are univariate,
regardless of dimension. Hence, the proposed techniques on fEkgk2N are directly
applicable to general multi-dimensional setting. It might also be beneficial

1. To apply variance reduction methods to the further interarrival times fEkgkD2;:::,
2. To combine the discussed variance reduction methods, such as [13, 15],
3. To employ yet different variance reduction methods,
4. To apply variance reduction methods to the random element fUkgk2N in (3),

to mention just a few. Such different approaches would certainly entail different
types of initial work and yield different improvements in estimator efficiency. In any
case, we will need to look closely at both gained efficiency and additional computing
effort required for the pilot run and implementation.

3 Generalized Linear Transformation

As we mentioned in the previous section, the stratified sampling is not effective in
applying high-dimensional problems due to a rapid growth of strata as the Monte
Carlo dimension increases. We examine in this section the effectiveness of quasi-
Monte Carlo (QMC) method on the series representation. As mentioned in Sect. 2,
latin hypercube sampling may avoid increasing the number of strata, while we do
not compare this method as the QMC method is known to have superior properties
in dealing with multiple dimensions.

By relying on a specially constructed sequence known as the low discrepancy
sequence, QMC achieves a convergence rate of O.N �1 logd N /, in dimension d

and sample size N . Asymptotically, this rate is far more superior than that of the
classical MC and Latin hypercube sampling. Furthermore, it is known that the
success of QMC is intricately related to the notion of effective dimension. Therefore,
in practical applications, the superior rate of QMC could be attained when the
effective dimension of the integrand is small, even if its nominal dimension is of
several hundreds or thousands. This suggests that an effective way of enhancing the
efficiency of QMC is performed via dimension reduction techniques. In this section,
we investigate one of the dimension reduction techniques, called the generalized
linear transformation (GLT, for short) method, proposed in Imai and Tan [10], to
enhance the QMC method applied to the series representations.

Let g WRd!R and let X WD ŒX1; : : : ; Xd �> be a random vector in R
d with

independent components where each Xk has the (univariate) law Fk on R. We
assume that for every k D 1; : : : ; d , the inverse F �1

k is well defined and each law
Fk admits a probability density function fk . We are concerned with evaluation of
the expectation

E Œg .X/� D
Z

Rd

g.x/f1 .x1/ � � �fd .xd / dx DW Id .fFkgIg/ ; (12)
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where x WD Œx1; : : : ; xd �>. Using standard transformation, this can be reformu-
lated as

Id .fFkgIg/ D
Z

Œ0;1�d
g
�
F �1

1 .u1/ ; : : : ; F �1
d .ud /

�
du;

D E
�
g
�
F �1

1 .U1/; : : : ; F �1
d .Ud /

�	
;

where u WD Œu1; : : : ; ud �> and fUkgkD1;:::;d is a sequence of iid uniform random
variables on Œ0; 1�. Next, let ˚ and � be cumulative distribution and density of the
standard normal respectively. Note that ˚.Z/ � U.0; 1/ with Z � N .0; 1/ due to
the standard inversion method ˚�1.U / � N .0; 1/ with U � U.0; 1/. Also, recall
that the normal law is closed under linear transformation, that is, L .AZ/ D L .Z/

whenever A is an orthogonal matrix in R
d�d , with Z WD ŒZ1; : : : ; Zd �> being a

standard d -dimensional normal random vector. To sum up, it holds that for each
orthogonal matrix A in R

d�d with Ak;� denoting its k-th row,

Id .fFkgIg/ D E
�
g
�
F �1

1 .˚ .Z1// ; : : : ; F �1
d .˚ .Zd //

�	

D E
�
g
�
F �1

1 .˚ .A1;�Z// ; : : : ; F �1
d .˚ .Ad;�Z//

�	
:

The GLT method provides us a systematic way to determine the optimal matrix
A� to enhance the computational efficiency of the QMC method. Suppose that
g 2C 2.Rd IR/ and F �1

k 2 C 1.Œ0; 1�IR/, k D 1; : : : ; d . It holds by the Taylor
theorem that for z 2 R

d and � 2 R
d ,

g
�
F �1

1 .˚ .A1;�.zC �/// ; : : : ; F �1
d .˚ .Ad;�.zC �///

�

D g
�
F �1

1 .˚ .A1;�z// ; : : : ; F �1
d .˚ .Ad;�z//

�C hG.z/; �i CO.k�k2/; (13)

where

G.z/ WD rz
�
g
�
F �1

1 .˚ .A1;�z// ; : : : ; F �1
d .˚ .Ad;�z//

��
;

and the asymptotics holds as k�k # 0. The n-th component of G.z/ is given by

@

@zn

g
�
F �1

1 .˚ .A1;�z// ; : : : ; F �1
d .˚ .Ad;�z//

�

D
dX

kD1

�
@kg

�
F �1

1 .˚ .A1;�z// ; : : : ; F �1
d .˚ .Ad;�z//

�	 �.Ak;�z/
fk.F �1

k .˚.Ak;�z///
ak;n;

where ak1;k2 being the .k1; k2/-element of the orthogonal matrix A and where we
have used .d=dx/F �1

k .x/ D 1=fk.F �1
k .x//. In particular, we have
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@

@zn

g
�
F �1

1 .˚ .A1;�z// ; : : : ; F �1
d .˚ .Ad;�z//

� ˇ̌ˇ
zD0

D
dX

kD1

@kg.F �1
1 .1=2/; : : : ; F �1

d .1=2//p
2fk.F �1

k .1=2//
ak;n;

In order to extract large variance contribution from the first dimension of the low
discrepancy sequence, we first maximize the first component of the coefficient G.z/
at the origin z D 0 based upon the following optimization problem

.P1/
max

A
�;12Rd

�
@

@z1
g
�
F �1

1 .˚ .A1;�z// ; : : : ; F �1
d .˚ .Ad;�z//

� ˇ̌ˇ
zD0

�2

s:t: kA�;1k D 1:

We can show that the optimal vector A��;1 is given by

A��;1 D
rg.F �1

1 .1=2/; : : : ; F �1
d .1=2//

krg.F �1
1 .1=2/; : : : ; F �1

d .1=2//k :

The optimal column vectors A��;k are determined iteratively for k D 2; : : : ; d: One
possible approach is to go further into higher order terms of the above Taylor
expansion. This implies that finding optimal A��;k requires the k-th order Taylor
expansion, which can be very complex and time-consuming. A more logical and yet
simpler solution is to rely on the Taylor approximation (13) except with expansion
at different points. In the k-th optimization step, we derive the k-th column A��;k
to ensure the orthogonality against the earlier columns fA��;lglD1;:::;k�1, which have
already been determined in the previous iterations. Formally, the optimization
problem .Pk/ is formulated as

.Pk/

max
A

�;k2Rd

�
@

@zk
g
�
F �1

1 .˚ .A1;�z// ; : : : ; F �1
d .˚ .Ad;�z//

� ˇ̌ˇ
zD0

�2

s:t: kA�;kk D 1;

hA�;k; A�;l i D 0; l D 1; : : : ; k � 1:

This problem .Pk/ can be derived by first solving it without the orthogonality
constraint, and then orthogonalize the rustling solution using the algorithms, such
as the Gram-Schmidt method. (See [9] for the theoretical and technical details.)
This complete iterative procedure, however, can be time-consuming, in particular for
problems with large nominal dimensions d . In practice, the computational burden
can be reduced by only seeking a sub-optimal orthogonal matrix with optimum
columns up to some dimension m.<d/. The remaining columns are then randomly
assigned as long as the orthogonality conditions are satisfied. This translates to a
significant reduction in computational time when m� d .
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The effectiveness of the QMC method can be practically assessed by the effective
dimension. The effective dimension of function f in the truncation sense of Caflisch
et al. [4] is defined as the smallest integer d such that

X
u2f1;2;:::;dg

�2.fu/ � p�2.f /; (14)

where �2.f / denotes the total variance of the function f , where �2.fu/ represents
the variance attributes to the set u and where p is a quantile of the variance which is
closely to 1, such as p D 0:95. The inequality (14) reads that the first d dimensions
capture more than p of the total variance, even though its nominal dimension of
f can be very large. In short, a problem with small effective dimension can use
the greater uniformity in the lower-dimensional structure of the low discrepancy
sequence. Accordingly, it is expected that the QMC method can estimate more
accurate expectations with small number of iterations than the MC method. To
investigate the effect of GLT method to decrease the effective dimension, we
introduce a cumulative explanatory ratio (CER, for short), which is defined by

CER .d/ D
P

u2f1;2;:::;dg �2.fu/

�2.f /
:

In short, this quantity represents the proportion of the variance captured by the first
d dimensions. (See [6] for a further explanation of CER.) In view of the inequality
(14), it is clear that the effective dimension is given by the smallest integer d such
that the cumulative explanatory ratio exceeds p. Although it is in general difficult
to provide an explicit expression for �2.fu/, this can be estimated numerically, as
shown in Sobol’ [26] and Wang and Fang [27].

For a numerical example, let us take option pricing problems under the exponen-
tial variance gamma Lévy process of Madan and Seneta [20]. The variance gamma
process fXt W t � 0g can be characterized by its characteristic function

E
�
eiyXt

	 D eiy�t

�
1 � iy
� C 1

2
�2�y2

��t=�

; y 2 R;

with .�; 
; �; �/ 2 R � R � RC � RC. It is well known that the variance gamma
process can be expressed in two ways as

Xt
LD �t C 
Yt C �WYt

LD �t C Yt;p � Yt;n:

In the first expression, fWt W t � 0g is a standard Brownian motion in R and
fYt W t � 0g is a gamma process, independent of fWt W t � 0g, with marginal density

fYt .x/ D bat

� .at/
xat�1e�bx; x > 0; (15)
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with a D b DW ��1 > 0. In the second expression, fYt;p W t � 0g and fYt;n W t � 0g
are independent gamma processes, each of which can be characterized based on
(15) with .ap; bp/ D .��1; .�p�/�1/ and .an; bn/ D .��1; .�n�/�1/, where �p D
1
2

p

2 C 2�2=� C 
=2 and �n D 1

2

p

2 C 2�2=� � 
=2; respectively. The QMC

methods are applied in Ribeiro and Webber [23] and Avramidis and L’Ecuyer [2]
to the gamma processes, respectively, based on the above two different expressions.
In this paper, we examine the GLT method applied to the second expression. Due to
[3], the two independent gamma processes admit series representations

Yt;p
LD

C1X
kD1

e
� �k;p

Tap
Vk;p

bp

�
�
Tk;p 2 Œ0; t �

�
; Yt;n

LD
C1X
kD1

e� �k;n
Tan

Vk;n

bn

� .Tk;n 2 Œ0; t �/;

where f�k;pgk2N and f�k;ngk2N are arrival times of a standard Poisson process,
fVk;pgk2N and fVk;ngk2N are sequences of iid exponential random variables with
unit mean, fTk;pgk2N and fTk;ngk2N are sequences of iid uniform random variables
on Œ0; T �. Here, all the six random sequences are mutually independent and can
easily be generated from the uniform distribution due to (4). In the both expressions,
we truncate the infinite sum to N D 100 terms, as in Sect. 2. Now, we define the
discrete time average of asset price dynamics

BM WD 1

M

MX
mD1

S0 exp
h
X m

M T

i
; (16)

and its payoff max.BM � K; 0/, where M indicates the number of equidistant
monitoring points in time and K denotes the strike price. In our framework, it is
difficult to determine the orthogonal matrix A with respect to the entire function, as
max.��K; 0/ is not strictly differentiable and the series representations here involve
the non-differentiable function �.Tk 2 Œ0; t �/. Instead, we determine the orthogonal
matrix A with respect to the terminal value B1 where B1 represents a terminal value
of the underlying asset price. In other words, we solve the optimization problems
.Pk/ as though we wished to optimize estimation of EŒB1�, no matter what the
averaging frequency M is. (Hence, the dimension d in (12) is 4N .)

Although this choice of the target function is not optimal for evaluating Asian
options, we will show in the numerical example that this dimension reduction
method can increase the CER even in pricing Asian options. In addition, it is
worth noting that other dimension reduction techniques such as Brownian bridge
construction and principal component construction to generate B1 do not improve
the accuracy of the QMC because XT is expressed as a difference between YT;p

and YT;n, which are nonlinear functions of Vk;p , Vk;n, �k;p and �k;n. In other words,
we cannot generate B1 with a single random number, hence Brownian bridge does
not work to increase the CER. In fact, we confirm that the naive application of
Brownian bridge construction decreases CERs, although we do not report those
to avoid overloading the paper. We can expect the obtained orthogonal matrix
A to enhance estimator efficiency for EŒmax.B1 � K; 0/�, as M D 1 and the
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function max.x � K; 0/ has a structure fairly close to x itself. We will shortly
provide numerical results to illustrate whether or not this approach is sensible for
the complex settings with M � 2 as well. Next, it is well known that the assignment
of the low discrepancy sequence is very important because earlier coordinates of the
low discrepancy point set is more evenly (uniformly) scattered in the unit hypercube.
We examine the GLT method with two ways of the allocation to reflect [6].

Scheme I (Separate Assignment) Every six coordinate of the 6N -dimensional
low discrepancy sequence fLDkgkD1;:::;6N is assigned in the order; for k D
1; 2; : : : ; N

2
4

Ek;p

Vk;p

Tk;p

3
5 

2
4
� ln.1 � LDk/

� ln.1 � LDN Ck/

T � LD2N Ck

3
5 ;

2
4

Ek;n

Vk;n

Tk;n

3
5 

2
4
� ln.1 � LD3N Ck/

� ln.1 � LD4N Ck/

T � LD5N Ck

3
5:

Scheme II (Alternate Assignment) Every six coordinate of the 6N -dimensional
low discrepancy sequence fLDkgkD1;:::;6N is assigned alternately;

2
4

Ek;p

Vk;p

Tk;p

3
5 

2
4
� ln.1 � LD6k�5/

� ln.1 � LD6k�3/

T � LD6k�1

3
5 ;

2
4

Ek;n

Vk;n

Tk;n

3
5 

2
4
� ln.1 � LD6k�4/

� ln.1 � LD6k�2/

T � LD6k

3
5:

Scheme III (Suboptimal GLT) Set the 6N -dimensional low discrepancy sequence
fLDkgkD1;:::;6N as

Wk  ˚�1 .LDk/ ; k D 1; : : : ; 2N;

W2N Ck  ˚�1 .LD3N Ck/ ; k D 1; : : : ; 2N:

Let A be an orthogonal matrix in R
4N �4N , define W WD ŒW1; : : : ; W4N �> and

W 0 WD ŒW 0
1 ; : : : ; W 0

4N �> WD AW , and set

LD0
k  ˚

�
W 0

k

�
; k D 1; : : : ; 4N;

and for k D 1; : : : ; N ,

2
4

Ek;p

Vk;p

Tk;p

3
5 

2
4
� ln.1 � LD0

k/

� ln.1 � LD0
N Ck/

T � LD2N Ck

3
5 ;

2
4

Ek;n

Vk;n

Tk;n

3
5 

2
4
� ln.1 � LD0

2N Ck/

� ln.1 � LD0
3N Ck/

T � LD5N Ck

3
5:

Under this allocation, we implement the optimization problems .Pk/ to deter-
mine the orthogonal matrix A.

Although we have described the GLT method here based on Scheme I, it is certainly
possible to start with Scheme II or any other assignments instead. In fact, the choice
of the original assignment has no effect on the result because the assignment can
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Table 3 Cumulative explanatory ratio (CER) in percentile up to 30 dimension.

M 1 4 12 50 256

Scheme I II III I II III I II III I II III I II III

6 10 37 85 9 35 72 9 35 67 8 35 65 8 35 64
12 10 61 89 9 60 75 9 59 70 9 59 67 8 59 67
18 10 76 90 9 74 76 9 74 71 9 73 68 8 73 68
24 10 85 92 9 84 77 9 83 71 9 83 69 9 83 68
30 11 90 95 10 90 79 9 89 73 9 89 71 9 89 70

be rearranged by a permutation matrix, that is orthogonal. In other words, the
GLT method can be carried out in a consistent manner, regardless of the original
assignment.

In our experiments, we fix parameter values

.�; �; 
; T; r; S0; K/ D .�0:1436; 0:12136; 0:3; 1:0; 0:1; 100; 101/ ;

which we draw from [23]. We use a scrambled version of Sobol’ low discrepancy
sequences and employ the Latin supercube sampling method to reduce the dimen-
sion of the Sobol’ sequence. (See [6] and references therein for details.) We examine
the effectiveness of the proposed method through CER. In Table 3, we report CERs
of every six dimensions up to 30, since then nominal dimension is 6N . Recall that
we fix N D 100. We have confirmed that this truncation level is sufficient in our
preliminary numerical experiences. The numbers (6, 12, 18, 24, 30) in the leftmost
column indicate the dimension. Note that the nominal dimension here is not affected
by the averaging frequency M . In particular, with Euler discretization methods, the
nominal dimension increases in proportion to M .

The CERs in Scheme II are much larger than those in Scheme I. This is consistent
with the results reported by [6] and ensures the importance of assignment of the low
discrepancy sequence. Scheme III proves most efficient in terms of CER. It achieves
the highest CER with the first six dimensions, while the effectiveness decreases as
M increases. This is so because the optimality gained in Scheme III is derived for
the terminal value B1 (not even its function maxŒB1 � K; 0�). Although Scheme II
captures less CER than Scheme III with the first six dimension, it succeeds to
capture as many as almost 90% with the first thirty dimensions in all the settings.
This is also consistent with [6], indicating the advantage of applying the low
discrepancy sequences to the series representation. Generally speaking, compared
to the other dimension reduction methods in the QMC framework, the GLT method
seems to work efficiently in a broader range of simulation problems as it looks
closely at the structure of the integrands. The method is applicable, in principle,
if probability density functions are available (or computable), while discontinuity
of the integrand needs to be avoided. Finally, it is worth mentioning that direct
applications of other dimension reduction methods, such as generalized principal
component construction (L’Ecuyer et al. [17]) and generalized Brownian bridge
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construction (Leobacher [18]), seem to fail, as they do not take the structure of
the integrands into consideration, unlike in the GLT method.

4 Concluding Remarks

In this article, we have proposed various ways of enhancing efficiency of the series
representation of infinitely divisible laws and Lévy processes in Monte Carlo and
quasi-Monte Carlo methods. The variance reduction methods, such as stratified sam-
pling, control variates and importance sampling, applied to exponential interarrival
times forming the shot noise series, have proved their significance in estimator
accuracy. We have also observed that the GLT method in the QMC framework is
well applicable in the series representation. We expect that the proposed techniques,
together with [6, 7], contribute to wider use and the dissemination of the series
representation for numerical purposes in various potential fields of application.
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Parallel Quasi-Monte Carlo Integration
by Partitioning Low Discrepancy Sequences

Alexander Keller and Leonhard Grünschloß

Abstract A general concept for parallelizing quasi-Monte Carlo methods is intro-
duced. By considering the distribution of computing jobs across a multiprocessor
as an additional problem dimension, the straightforward application of quasi-Monte
Carlo methods implies parallelization. The approach in fact partitions a single low-
discrepancy sequence into multiple low-discrepancy sequences. This allows for
adaptive parallel processing without synchronization, i.e. communication is required
only once for the final reduction of the partial results. Independent of the number of
processors, the resulting algorithms are deterministic, and generalize and improve
upon previous approaches.

1 Introduction

The performance of many algorithms can be increased by parallelization and in
fact parallel processors are ubiquitous. A recent survey [9, Sect. 6.4] identifies three
approaches to parallel quasi-Monte Carlo integration [16]: Besides leapfrogging
along a low discrepancy sequence or enumerating blocks of a low discrepancy
sequence, low discrepancy sequences can be randomized. While randomization is
simple, it requires a sacrifice of some convergence speed and enumerating blocks
is not necessarily deterministic due to race conditions [18, Sect. 3.1]. The most
desirable scheme would be deterministic for exact reproducibility and avoid any
compromises on convergence.
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Finance and computer graphics are among the domains that would benefit from
such an approach. In the latter domain, a method for the parallel generation of
photon maps [1] has been introduced (see [8] for a solid introduction to photon
mapping and [11] in this volume for a compact summary). Core of the method
was a number theoretic argument similar to [12] that allowed for partitioning
one Halton sequence into a number of sequences. Since all of these sequences
were of low discrepancy, too, each job using such a subsequence consumed about
a similar number of samples when independently adaptively terminated without
communication for synchronization. The resulting union of samples is a complete
initial segment of the Halton sequence followed by a comparatively small segment
of samples, where the Halton sequence is used only partially.

As summarized in the survey [9, Sect. 6.4] and reported in [2, 9, 12, 18],
transferring the approach to .t; s/-sequences in a straightforward way has defects
and rank-1 lattice sequences [7] have not yet been considered.

In the following a strictly deterministic scheme is introduced: Based on a
generalized and simplified argument on how to partition quadrature rules for parallel
processing, efficient algorithms for generating the stream of samples inside each
parallel job are derived.

2 Parallelization as an Additional Problem Dimension

The distribution of jobs over multiple processors working in parallel can be
considered as one additional problem dimension.

For the example of the integration problem this means that in addition to the
integrand dimensions we also integrate over the maximum number N of possibly
parallel jobs. A job j 2 f0; : : : ; N � 1g � N0 will be selected by the characteristic
function

�j .x0/ WD
(

1 j � x0 < j C 1

0 otherwise,

that simply assigns the interval Œj; j C 1/ to the j -th job. Exploiting the fact that

1 D
N �1X
j D0

�j .x0/ for 0 � x0 < N; (1)

we rewrite the s-dimensional integral of a function f over the unit cube asZ
Œ0;1/s

f .x/dx D 1

N

Z N

0

1 �
Z

Œ0;1/s

f .x/dxdx0

D
N �1X
j D0

Z
Œ0;1/

Z
Œ0;1/s

�j .N � x0/ � f .x/dxdx0

„ ƒ‚ …
DWSj

;
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where we first added an integral over the number of jobs N , inserted the partition
of one from Eq. 1, and finally transformed everything to the s C 1-dimensional unit
cube.

Selecting one s C 1-dimensional low-discrepancy sequence [16] of points xi D
.xi;0; : : : ; xi;s/ to simultaneously approximate all summands

Sj � 1

n

n�1X
iD0

�j .N � xi;c/ � f .xi;0; : : : ; xi;c�1; xi;cC1; : : : ; xi;s/ (2)

lends itself to a parallelization scheme: Due to the above property from Eq. 1 the
characteristic function1 �j partitions the set of samples by job number j . In fact an
arbitrarily chosen dimension c is partitioned into N equally sized intervals (see the
illustration in Fig. 1) and each job only consumes the points of the sequence which
fall into its interval.2

3 Algorithms for Partitioning Low Discrepancy Sequences

Given a low discrepancy sequence xi , the point sets

Pj WD ˚
xi W �j .N � xi;c/ D 1; i 2 N0

� D fxi W j � N � xi;c < j C 1; i 2 N0g

are low discrepancy sequences, too, because they result from a partitioning by
planes perpendicular to the axis c, which does not change the order of discrepancy
[16]. Similarly, any subsequence .xi;0; : : : ; xi;c�1; xi;cC1; : : : ; xi;s/ resulting from
the omission of the component c, is of low discrepancy. In fact this can be interpreted
as a simple way to partition a low discrepancy sequence into low discrepancy
sequences (see the illustration in Fig. 1).

For the common number theoretic constructions of quasi-Monte Carlo point
sequences and a suitable choice of N , the integer part of N �xi;c results in successive
permutations of f0; : : : ; N � 1g. Based on this observation we derive efficient
algorithms to enumerate the set

1Actually, any quadrature rule could be chosen.
2The partitions can also be scaled to fill the .s C 1/-dimensional unit cube again. In other words,
one could reuse the component chosen for selecting samples for each job, which is more efficient
since one component less must be generated. Reformulating Eq. 2 accordingly, requires only the
generation of s-dimensional samples:

Sj � 1

n

n�1X
iD0

�j .N � xi;c/ � f .xi;1; : : : ; xi;c�1; N � xi;c � j; xi;cC1; : : : ; xi;s/

However, this variant is not recommended, because the resulting ensemble of samples may not be
well-stratified in the dimension c.
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Fig. 1 The points of the three-dimensional Sobol’ sequence in the first row are partitioned along
the vertical axis. The resulting partitions are shown in the following four rows. Each row shows two
three-dimensional plots of the same points from two perspectives that can be viewed cross-eyed,
resulting in a stereoscopic impression. The rightmost plot in each row shows the two-dimensional
projection of the corresponding points along the vertical axis.
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Pj D ˚
xij;l

W l 2 N0

�
(3)

for the j -th job using an index of the form ij;l WD lN C kj;l , where kj;l 2 f0; : : : ;

N � 1g.

3.1 Preliminaries on Digits and Digital Radical Inverses

We introduce some notation and facts that are used throughout the derivations.
For any number r 2 R

C
0 , we define the k-th digit ak.r/ 2 f0; : : : ; b � 1g in

integer base b by

r D
1X

kD�1
ak.r/bk:

Note that this definition includes fractional digits for k < 0.
Digital radical inverses

�b;C W N0 ! Q \ Œ0; 1/

i 7! �
b�1 � � � b�M

�
2
64C

0
B@

a0.i/
:::

aM�1.i/

1
CA
3
75 (4)

in base b are computed using a generator matrix C , where the inverse mapping ��1
b;C

exists, if C is regular. While in theory these matrices are infinite-dimensional, in
practice they are finite due to the finite precision of computer arithmetic. M is the
number of digits, which allows for generating up to N D bM points. Note that the
matrix-vector multiplications are performed in the finite field Fb (for the theory and
mappings from and to Fb see [16]) and are additive in Fb in the sense that, for any
0 � M 0 � M ,

C

0
BB@

a0.i/

:::

aM�1.i/

1
CCA D C

0
BBBBBBBBBB@

a0.i/

:::

aM 0�1.i/

0

:::

0

1
CCCCCCCCCCA

C C

0
BBBBBBBBBB@

0

:::

0

aM 0.i/

:::

aM�1.i/

1
CCCCCCCCCCA

: (5)
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3.2 Halton-Type Sequences

The components

�b W N0 ! Q \ Œ0; 1/

i D
1X

kD0

ak.i/bk 7!
1X

kD0

ak.i/b�k�1 (6)

of the Halton sequence [16] are the radical inverses in integer base b, where all bases
are relatively prime. In fact, �b D �b;C for C D I the identity matrix.

While originally the digit ak.i/ has been the k-th digit of the index i represented
in base b, the uniformity of the points has been improved by applying permutations
to the digits before computing the radical inverse: Zaremba [23] was successful
with the simple permutation �b.ak.i// WD ak.i/ C k mod b, while later on Faure
[5] developed a more general set of permutations improving upon Zaremba’s results.

For xi;c D �b.i/ choosing the number of jobs as N D bm, m 2 N, yields

bN � xi;cc D bbm � �b.i/c D
$

bm �
1X

kD0

ak.i/b�k�1

%
;

whose integer part is a permutation of f0; : : : ; N � 1g, which is repeated every N

points. Each job j thus is assigned the set

Pj D
n
xl �N C��1

b .j=N / W l 2 N0

o
, P��1

b .j=N / D ˚
xl �N Cj W l 2 N0

�
which is known as leapfrogging and coincides with previous findings in [1,12]. Note
that the offset ��1

b .j=N / is constant per job, and for the ease of implementation we
can simply permute the assignment of low-discrepancy subsequences to the jobs,
i.e. assign the j -th job the set

Pj D ˚
xl �N Cj W l 2 N0

�
:

Compared to the previous derivations [1, 12], our argument is simpler and more
general as it includes scrambled radical inverses, too: The condition from [1] that N

must be relatively prime to the bases of the radical inverses used for actual sampling
just follows from the definition of the Halton sequence.

3.3 Digital .t; s/-Sequences in Base b

The d -th component xi;d D �b;Cd
.i/ of a digital .t; s/-sequence in base b is

computed using a generator matrix Cd , where �b;Cd
is defined in Eq. 4. Since we
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are considering only the algorithmic part, we refer to [16] for a more profound
introduction.

The Sobol’ sequence [21] is a common .t; s/-sequence in base b D 2. Its
generator matrix for the first dimension is the identity matrix I , and thus the first
component coincides with the van der Corput radical inverse in base b D 2 from
Eq. 6. As a consequence all results from the previous section apply (see the illus-
tration in Fig. 1), however, compared to the Halton sequence, the Sobol’ sequence
in base 2 can be computed much faster: Efficient implementations of the first two
components can be found in [13] and in [6, 22] for the remaining components.

While N D bm remains a natural choice for an arbitrary Cc , determining the set
Pj might not result in a simple leapfrogging scheme, because each column of the
generator matrix can influence the final result.

However, if Cc is required to generate a .0; 1/-sequence, it is known that Cc

is invertible [16]. A remark in [14] states that multiplying a regular matrix to the
right of all generator matrices generates the same .t; s/-sequence, except for the
numbering of the points. Therefore we propose to use

C0C
�1
c ; : : : ; Cc�1C �1

c ; I; CcC1C
�1
c ; : : : ; CsC

�1
c

as generator matrices for the sequence. The component c then is generated by the
identity matrix I D CcC

�1
c , which allows one to efficiently determine the set Pj in

analogy with the previous section.
If Cc is a regular upper triangular matrix, it is possible to compute the indices

ij;l for every job without reordering: Due to the upper triangular structure, the m

least significant digits of the index can only influence the first m digits of the radical
inverse, however, the remaining index digits can influence all digits of the radical
inverse, especially its first m digits. Given l and the job number j , we thus can
compute

kj;l D ij;l � lbm D ��1
b;Cc

 
m�1X
kD0

.ak.j / � a�k�1.yl //b
�mCk

!
; (7)

where the subtraction of digits has to be performed in Fb and yl D �b;Cc .lbm/. This
formula is best understood by first looking at the case l D 0, i.e. the first N D bm

points, where

kj;0 D ij;0 D ��1
b;Cc

 
m�1X
kD0

ak.j /b�mCk

!
D ��1

b;Cc
.j=N / 2 f0; : : : ; bm � 1g

just is the inverse permutation generated by Cc that maps the job number to an
index. For l > 0, the contribution of yl D �b;Cc .lbm/ to the m least significant
digits of the index has to be compensated. This is accomplished by subtracting the
digits a�k�1.yl / as in Eq. 7 based on the additive property (5).
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3.4 Rank-1 Lattice Sequences

For a suitable generator vector h 2 N
sC1, the points of a rank-1 lattice sequence [7]

are computed by

xi WD f�b;C .i/ � h C �g 2 Œ0; 1/sC1;

where f�g denotes the fractional part. The radical inverse �b;C has been defined in
Eq. 4 and � 2 Œ0; 1/sC1 is an arbitrary shift vector.

Restricting C 2 F
M�M
b to upper triangular, invertible matrices, the l-th run of

bm points consists of the first bm points shifted by

�l WD .�l;0; : : : ; �l;s/ D �b;C .lbm/ � h:

We therefore choose the number of jobs to be N D bm and enumerate the points
of Pj using an index ij;l WD lbm C kj;l with kj;l 2 f0; : : : ; bm � 1g of the form
introduced in Eq. 3. Note that under the above restriction bm�b;C .kj;l / is integer.

Given j and l , kj;l is found by solving the following congruence resulting from
taking the integer part b�c of the component xi;c D f�b;C .lbm C kj;l /hc C �cg used
for job selection multiplied by the number of jobs:

bN � xi;cc � j mod bm

bbmf�b;C .lbm/hc C �b;C .kj;l /hc C �cgc � j mod bm

, bbm.�b;C .lbm/hc C �b;C .kj;l /hc C �c/c � j mod bm

, bbm�b;C .lbm/hc C .bm�b;C .kj;l //hc C bm�cc � j mod bm

, .bm�b;C .kj;l //hc C bbm�b;C .lbm/hc C bm�cc � j mod bm

and hence

kj;l D ��1
b;C

0
B@�.j � bbm�b;C .lbm/hc C bm�cc/ .hc/�1 mod bm

�
„ ƒ‚ …

2f0;:::;bm�1g

b�m

1
CA ;

where .hc/
�1 is the modular multiplicative inverse of hc , which can be computed

by using the extended form of Euclid’s algorithm [3, Sect. 31.2, p. 937]. Note that
this inverse exists if and only if b and hc are relatively prime. For this last equation,
a mod bm denotes the common residue, i.e. the nonnegative integer x < bm, such
that a � x mod bm.

If now C is the identity matrix I , the inverse permutation ��1
b;I � ��1

b can be
omitted, which is more efficient to compute and only reorders the jobs similar to
Sect. 3.2. In addition bm�b.lbm/ D �b.l/. An alternative and simplifying approach
to the case, where the order of the points does not matter, is to multiply the generator
matrix C by its inverse C �1 (see the aforementioned remark in [14]).
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4 Parallel Quasi-Monte Carlo Integration

Considering parallelization as an additional problem dimension leads to a partition
of low discrepancy sequences, where all subsequences (as described in Sect. 2) are
of low discrepancy, too. For radical inversion based sequences, the subsequences Pj

can be efficiently enumerated as derived in Sect. 3. In the following, more practical
aspects are discussed.

4.1 Previous Issues with Leapfrogging

In literature (see the survey [9, Sect. 6.4]), leapfrogging for parallelizing quasi-
Monte Carlo integration has been discussed in a controversial way. The technique
has been introduced in [2], where the Sobol’ low discrepancy sequence has been
partitioned by leaping along the sequence in equidistant steps of size 2m. The
resulting algorithm allows for the very efficient enumeration of the subsequences,
however, it “may lead to dramatic defects” [18] in parallel computation.

The underlying issue can be understood based on a simple example: The
subsequences

�b.l � bm C j / D b�m � �b.l/„ ƒ‚ …
2Œ0;b�m/

C�b.j / 2 Œ�b.j /; �b.j / C b�m/ 6D Œ0; 1/ for m > 0

(8)
of the radical inverse (6) resulting from leapfrogging using steps of length bm are
not of low discrepancy and not even uniform over Œ0; 1/ as they reside in strata [10,
Sect. 3.4] not covering the whole unit interval.

In fact �2 is the first component of the Sobol’ sequence, which is a .t; s/-sequence
in base b D 2. As the first component of the subsequence identified by j D 0 is
completely contained in Œ0; 2�m/, this subsequence is neither of low discrepancy
nor uniform over the unit cube. In fact Lemma 8 and Remarks 9 and 10 in [19]
coincide with the above explanation. As a conclusion, leaping along the sequence
in equidistant steps does not guarantee that the subsequences are uniform or of low
discrepancy as illustrated by the numerical experiments in [4, Fig. 3].

Obviously, these defects will not show up, if the same number of samples from all
subsequences is used, but this would not allow for adaptive sampling, as discussed
in the next section.

Although not aimed at parallel computation but at improving the uniformity
of low discrepancy sequences, leapfrogging applied to the Halton-sequence and
.t; s/-sequences has been investigated in [12], too. Similar to [1], subsequences of
the Halton sequence were generated by leapfrogging with a constant step size of
a prime, which is relatively prime to all bases used in the Halton sequence [12,
Sect. 2.4]. While this coincides with our results, the derivation in Sect. 3.2 is more
general, as it includes scrambled radical inverses [15] (see Sect. 3.3), which do not
result in equidistant step size for leapfrogging.
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A short investigation of the effect of leapfrogging on the Sobol’ sequence in
[12, Sect. 3.2] yields that for leapfrogging with step size of a power of b D 2,
components need to be either omitted or scaled. The requirement of scaling (see
also Footnote 2) can be explained with the stratification properties (8), while the
omission is included in the more general results of Sect. 3.3.

In summary, leapfrogging works whenever one component of the sequence is
used to determine the leapfrogging pattern, while the same component is excluded
from sampling as discussed in Sect. 2.

4.2 Adaptive Sampling

In adaptive algorithms the total number of samples depends on the input and
although adaptive sampling can arbitrarily fail [20], it has proved very useful in
practice. Parallel adaptive sampling involves the cost of communicating termination
among the processing units, load balancing to equalize for differences in perfor-
mance, and potentially random elements due to race conditions.

As explained in the previous section, the defects observed in [18] will not show
up with algorithms developed in Sect. 3, because now all subsequences are of low
discrepancy. In addition, communication cost can be restricted to the minimum of
the inevitable final parallel reduction operation, which sums up the partial sums of
Eq. 2: Running a copy of the adaptive algorithm for each subsequence, in practice
each job will use about the same number of samples, because each subsequence is of
low discrepancy. Using all partial sequences, the result is computed by a contiguous
beginning block of samples of the underlying partitioned sequence followed by a
usually quite short segment of partial samples from the underlying sequence.

Straightforward load balancing for a number P of heterogenous processors can
be achieved by selecting the number of jobs N � P . Then a simple job queue can be
used to distribute jobs among the processors. If the number of jobs is not excessive,
the queue synchronization overhead is negligible.

The scheme is strictly deterministic, because the total number of samples of each
job is independent of the processor on which the job is executed and therefore race
conditions cannot occur. Computations are even independent of the number P of
processors used: Executing all jobs sequentially results in exactly the same result as
obtained by the parallel execution.

4.3 Selecting the Number of Jobs

Halton, .t; s/-, and lattice sequences are all based on radical inversion, which results
in a number of jobs of the form N D bm.

For the Halton sequence the base b is determined by the choice of the dimension
c used for partitioning the sequence. Identical to [1], c and thus b should be chosen
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as large as possible in order to benefit from the better discrepancy and stratification
properties of the first dimensions of the Halton sequence.

For .t; s/- and lattice sequences the base b is identical for all dimensions. Instead
of considering which dimension to use for partitioning, it is much more interesting
to choose b D 2, which allows for very efficient sample enumeration by using bit
vector arithmetic [6, 13, 22].

Choosing the number n of samples in Eq. 2 as a multiple of N D bm, allows one
to use finite point sets like the Hammersley points, .t; m; s/-nets, and rank-1 lattices.
In this case convergence can benefit from the better discrepancy of finite point sets.

The algorithms remain consistent even for a number of jobs N < bm, because
each set of the partition is of low discrepancy (see Sect. 3). However, omitting
bm � N sets of the partition is likely to sacrifice some convergence speed.

5 Conclusion

We introduced a method to partition number theoretic point sequences into sub-
sequences that preserve the properties of the original sequence. The resulting
algorithms can be classified as generalized leapfrogging [2, 9, 18]. Instead of
multiplying the number of problem dimensions with the processor count [17],
adding only one dimension is sufficient for our approach, which in addition allows
one to benefit from lower discrepancy.

The presented algorithms are deterministic and run without races in any parallel
computing environment, i.e. the computation is identical for a fixed number N of
jobs no matter how many processors are used.

As a practical consequence, photon maps now can be generated adaptively in
parallel similar to [1], however, taking full advantage of the much faster generation
of .t; s/-sequences in base 2 [6, 13, 22], which had not been possible before.
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thank Matthias Raab for discussion.
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Quasi-Monte Carlo Progressive Photon Mapping

Alexander Keller, Leonhard Grünschloß, and Marc Droske

Abstract The simulation of light transport often involves specular and transmissive
surfaces, which are modeled by functions that are not square integrable. However,
in many practical cases unbiased Monte Carlo methods are not able to handle
such functions efficiently and consistent Monte Carlo methods are applied. Based
on quasi-Monte Carlo integration, a deterministic alternative to the stochastic
approaches is introduced. The new method for deterministic consistent functional
approximation uses deterministic consistent density estimation.

1 Introduction

Photorealistic image synthesis aims at simulating the process of taking photographs.
In principle, such simulations sum up the contributions of all transport paths which
connect light sources with sensors.

An obvious approach to numerical simulation are bidirectional path tracing
algorithms, where random walk methods are used to generate paths from the sensors
and lights in order to connect them (as illustrated in Fig. 1). However, there are
common situations, where establishing such connections by checking visibility
using so-called shadow rays can be arbitrarily inefficient.

As an example, one might think of light entering a car through a window,
hitting the interior, and being transported back through the window to an outside
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Fig. 1 Bidirectional generation of light transport paths: a path started from the eye (dashed rays)
and a path started from a light source (solid rays) can be connected by a shadow ray (dotted line),
which checks whether the vertices to connect are mutually visible. Alternatively, the basic idea of
photon mapping is to relax the precise visibility check by allowing for a connection of both paths
if their end points are sufficiently close as indicated by the circle.

observer. A similarly difficult situation is the observation of a room through a mirror
(see Fig. 2), where substantial illumination of the room is due to a small light source
through the mirror, too. Such light transport paths cannot be established efficiently,
because the direction of the connecting shadow ray has to coincide with the direction
of a reflection on the mirror, which in fact happens with probability zero. In the
context of bidirectional path tracing this problem has been characterized as the
problem of “insufficient techniques” [13, Fig. 2].

Key to efficiency is a shift of paradigm: Instead of considering unbiased Monte
Carlo algorithms, allowing for a certain bias that vanishes in the limit opens up a
new class of more efficient algorithms. Such algorithms are called consistent.

In computer graphics, photon mapping [7] has been developed in order to
deal with the problem of “insufficient techniques”. While in its first formulation,
the technique was consistent only within infinite memory, progressive photon
mapping [4] was introduced as an algorithm that converges pointwise within finite
memory. In a follow-up article [3], a stochastic algorithm was derived that converges
globally. Both latter publications provide example implementations. In [12] the
stochastic arguments have been simplified, resulting in a simplified algorithm as
well.

In contrast to previous work, which we detail in the next section, we introduce a
deterministic photon mapping algorithm and prove its convergence. The method is
based on sampling path space using quasi-Monte Carlo methods [14], which on
the average allow for faster convergence as compared to Monte Carlo methods
[20]. As a consequence of the deterministic nature, parallelization is simplified
and results can be exactly reproduced even in a heterogeneous computing environ-
ment [11].
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= +

Fig. 2 The complete simulation of light transport (left) is the sum of light transported by square
integrable surface properties (middle) and light transported by surfaces, whose physical properties
are described by Dirac distributions (right). Unbiased Monte Carlo algorithms fail in robustly
simulating the light transport path from the point light source in the center of the ceiling to the
mirror onto the floor back to mirror into the camera. Consistent photon mapping efficiently can
handle such paths. Caustics, i.e., the focal pattern underneath the glass ball, are another example
of such paths.

2 Background on Photon Mapping

The principles of light transport simulation by tracing light transport paths are
depicted in Fig. 1. The basic idea of bidirectional path tracing [18] is to start paths
from both the eye and the light source in order to connect them. Connecting the end
points of both paths requires to check their mutual visibility using a shadow ray.
As mentioned in the introduction, this technique can be arbitrarily inefficient if the
reflection properties of at least one of the end points are not square integrable.

In this quite common situation, it is helpful to give up on precise visibility.
Instead of tracing a shadow ray, end points are connected unless they are too distant.
Photon mapping algorithms implement this principle by first tracing the trajectories
of photons p that are emitted from the light sources and storing the incident energy,
direction, and location, whenever a photon interacts with a surface. In a second step,
paths are traced from the eye, whose contribution is determined by estimating the
radiance [7, Sect. 7.2, Eq. 7.6]

L.x; !/ � 1

�r2

X

p2Bx

fs.!; x; !p/�˚p (1)

in the end point x of each eye path. The approximation is computed as an average
over the area of a disk of radius r (see the circle in Fig. 1), where the incident flux
�˚p attenuated by the bidirectional scattering distribution function (BSDF) fs of
all photons p in the ball Bx with respect to the query point x is summed up. The
direction ! is the direction from which x is observed, while !p is the direction of
incidence of the photon p.

Originally, the radius r had been selected as the radius of the ball enclosing the
k closest photons around the query point x, which formed the set Bx [7]. Thus the
radius was large in sparsely populated regions and small in regions of high photon
density. In practice, this choice can result in numerical problems, because in high
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photon density regions the radius can approach zero arbitrarily close and thus the
term 1

�r2 cannot be bounded. The resulting overmodulation usually is not perceived,
as it appears in bright regions anyhow.

A new class of algorithms that progressively refine the solution has been
introduced in [4]. While the radius remains related to photon density in the
aforementioned sense, each query location has its own radius, which is decreased
upon photon interaction. As a consequence the radius decreases faster in brighter
regions and may remain unchanged if shadowed, which, however, does not affect
convergence. This approach has been reformulated in [12, Sect. 4.3] such that no
longer local statistics are required.

Since effects like perfect mirror reflection or refraction are modeled by Dirac-ı
distributions, which are not square-integrable, they should not be part of the
numerical evaluation of the reflective or refractive surface properties fs . Instead,
whenever such a component is encountered during tracing a path, Russian roulette
is used to either terminate or prolong the path by simulating the perfect reflection or
refraction, respectively [15]. Thus in practice the unbounded parts of fs are never
evaluated.

3 Pointwise Consistent Density Estimation

Photon mapping is strongly related to density estimation, where the radius is called
smoothing parameter or smoothing length [16, Sect. 3.4]. Proofs of the consistency
of density estimation [16, Sects. 3.7.1 and 3.7.2] are based on choosing the radius in
reciprocal dependence on a polynomial in the number n of emitted particles. Early
work on photon mapping did not establish this reciprocal relationship and therefore
only allowed for plausibility arguments [7, Sect. 7.2, Eq. 7.7]. Recent work [3,4,12]
implicitly includes the reciprocal relationship, which allowed for more profound
derivations.

In the following, a simpler and more general argument to prove

L.x; !/ D lim
n!1

1

� � r2.x; n/

X

p2B.x;r.x;n//

fs.!; x; !p/�˚p; (2)

where B.x; r.x; n// is the set of all photons in the ball of radius r.x; n/ around the
point x, is derived by explicitly choosing a squared radius

r2.x; n/ WD r2
0 .x/

n˛
for 0 < ˛ < 1 (3)

that includes the reciprocal dependence on a power of the number n of emitted
photons. The explicit dependence on the query location x allows for choosing an
initial radius r0.x/ > 0 in dependence of an initial photon distribution, similar to
[12, Sect. 4.3] and early photon mapping work.
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The radiance estimator

Ln.x; !/ WD n˛

n � � � r2
0 .x/

X

p2B.x;r.x;n//

fs.!; x; !p/�p (4)

results from including the number n of emitted photons in the photon flux �˚p WD
�p

n
and inserting it into Eq. 2.
The radiance estimator can be generalized by using any other kernel that in the

limit results in a Dirac-ı distribution [12]. Such kernels, other than the characteristic
function of the set B.x; r.x; n//, are found in [16] or in the domain of smoothed
particles hydrodynamics (SPH). In analogy with the SPH approach, using the
derivative of such a kernel allows one to compute irradiance gradients.

3.1 Choice of the Parameter ˛

For n > 1 we have n˛

n
< 1 due to the postulate 0 < ˛ < 1. As a consequence Ln

will always be bounded, because the evaluation of fs is bounded as established at
the end of Sect. 2.

Since light transport is a linear problem, the number of photons in B.x; r.x; n//

asymptotically must be linear in n: For ˛ D 1 doubling the number n of emitted
photons results in half the squared radius, meaning half the area, while the number
of photons in B.x; r.x; n// remains the same. For 0 < ˛ < 1 the squared radius
decreases slower than the increase in number of photons. As a consequence, more
and more photons are collected with increasing n, which guarantees L.x; !/ D
limn!1Ln.x; !/.

Note that Eq. 2 does neither converge for ˛ D 0, because the initial radius will
not be decreased, nor for ˛ D 1 as the noise level does not decrease. This can
be easily verified by running the algorithm with either one of the extremal values.
Comparing the graphs of n˛

n
for the two extreme cases reveals that ˛ D 1

2
in fact

best balances the two interests of fast convergence and noise reduction. However,
this choice is not crucial at all as shown in the next section.

3.2 Choice of the Initial Radius r0

The limit of the ratio of the .nC1/-st and n-th squared radius reveals that the squared
radius is vanishing arbitrarily slowly:

lim
n!1

r2.x; n C 1/

r2.x; n/
D lim

n!1
n˛

.n C 1/˛
D lim

n!1

�
n

n C 1

�˛

D 1
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As a consequence, a larger value of ˛ is only effective for smaller n and therefore
the initial radius r0 becomes most influential. However, competing goals need to be
satisfied: In favor of efficiency, a smaller radius requires less photons to be averaged,
while on the other hand a larger radius allows for more efficient high frequency noise
reduction by averaging more photons.

While a local initial radius allows for adapting to the photon density and thus
a better trade-off between noise and smoothing, it requires the retrieval of r0.x/

[12, Sect. 4.3]. For example r0.x/ can be obtained from an initial set of photons
in analogy to the original photon mapping algorithm. Alternatively, an individual
radius can be stored for each functional, for example for each pixel to be computed.
If in addition r0.x/ can be bounded efficiently, for example by determining its
maximum, the efficiency of nearest neighbor search can be improved.

Of course the simplest choice is a global initial radius r0, which we prefer to
choose rather smaller than larger, as the human visual system is more comfortable
with high frequency noise than blotchy low-frequency averaging artifacts.

4 Consistent Functional Approximation

In fact, Eq. 4 can be considered an integro-approximation problem: Given one set of
photons generated by n paths started at the light sources, the radiance Ln is defined
for any location x and any direction !.

This allows one to compute the color

LP WD lim
m!1

jP j
m

m�1X

qD0

�P .xq/W.xq/L.h.xq/; !.xq//

D lim
m!1

jP j
m

m�1X

qD0

�P .xq/W.xq/ lim
n!1Ln.h.xq/; !.xq// (5)

� jP j
mn

m�1X

qD0

�P .xq/W.xq/
n˛

� � r2
0 .h.xq//

(6)

�
X

p2B.h.xq/;r.h.xq/;n//

fs.!.xq/; h.xq/; !p/�p

of a pixel P using an infinite sequence of uniform samples xq to determine query
locations h.xq/: The xq define eye paths, where W.xq/ is the accumulated weight
along the path, which is multiplied by the radiance L.h.xq/; !.xq//. The paths
associated with the pixel P are selected by the characteristic function �P , while
jP j is the area of pixel P .

Computing the functional (5) requires the enumeration of all pairs of indices
.q; p/ of query paths and photons (see Fig. 3). This way each query location h.xq/
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Fig. 3 Just taking two deterministic point sequences to enumerate all eye and light paths in passes
can fail: in the illustration, the photons of the second pass would interact with the query locations
of the first pass, however, these interactions never become enumerated as pairs. A black image
results, although light is transported to the eye. While such illustrative situations can be constructed
artificially, they occur in a practical setting as well.

can interact with all photons, which guarantees the pointwise convergence of Eq. 4
and consequently the approximation (6) is consistent.

4.1 Algorithm

As derived in the previous section, each query location must interact with all
photons, which requires the enumeration of all pairs of query path and light path
indices. ThereforeN0�N0 is partitioned into contiguous blocks of mb query location
indices times nb light path indices. The ratio mb

nb
allows for balancing pixel anti-

aliasing and photon density. The blocks are enumerated using the index i along the
dimension of query paths and j along the dimension of light paths.

Obviously it is most efficient to keep as many query locations and photons as pos-
sible in memory. However, as an unavoidable consequence of finite memory, both
query locations and photons need to be recomputed. This excess amount of compu-
tation depends on the order of how the blocks are enumerated. While the diagonal
order in Fig. 4a requires permanent recomputation, the rectangular order in Fig. 4b
allows for frequent reuse of either the set of query locations or the set of photons.
Such space filling curves are easily implemented, even with direct block access,
which allows for parallelization without communication or synchronization [11].

The rigid partition into blocks of equal size can be avoided by generating
query locations and photons until a given block of memory is filled. The resulting
starting indices mi and nj for the query locations and light paths, respectively, are
stored in an array each in order to allow for the direct retrieval of the i -th range
mi; : : : ; miC1 � 1 of query paths and the j -th range nj ; : : : ; njC1 � 1 of light paths.
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(a) (b)

"
.0; 4/ .1; 4/ .2; 4/ .3; 4/ .4; 4/

- & -
.0; 3/ .1; 3/ .2; 3/ .3; 3/ .4; 3/

" & - & -
.0; 2/ .1; 2/ .2; 2/ .3; 2/ .4; 2/

- & - &
.0; 1/ .1; 1/ .2; 1/ .3; 1/ .4; 1/

" & - & -
.0; 0/ .1; 0/ ! .2; 0/ .3; 0/ ! .4; 0/

"
.0; 4/  .1; 4/  .2; 4/  .3; 4/  .4; 4/

"
.0; 3/ ! .1; 3/ ! .2; 3/ ! .3; 3/ .4; 3/

" # "
.0; 2/  .1; 2/  .2; 2/ .3; 2/ .4; 2/

" # "
.0; 1/ ! .1; 1/ .2; 1/ .3; 1/ .4; 1/

" # " # "
.0; 0/ .1; 0/ ! .2; 0/ .3; 0/ ! .4; 0/

Fig. 4 Enumerating all combinations of integers in the (a) classic diagonal order used for
enumerating the rational numbers and (b) an order that results in much better data coherence and
caching.

4.2 Consistency of Block-Wise Computation

If the number n of light paths can be fixed in advance, the radius r.x; n/ will be
used throughout the computation and the sums will be weighted by 1

mn as shown in
approximation (6).

If the ultimate value of n is unknown, the computation will have to be conducted
in a progressive way. The weight for the intermediate results then amounts to the
reciprocal of the number of currently processed blocks multiplied by mbnb , which
is the number processed pairs of query points and light paths.

A block with light path block index j is processed using the radius r.x; j � nb/.
Note that the algorithm (5) remains consistent, because the weight of each single
summand decreases with increasing number of blocks. As j increases, less photons
interact with the query locations, since the query radius decreases (see Fig. 5). This
can be interpreted as slight blur that sharpens with the progress of the computation.
As the radius decreases arbitrarily slow (see Sect. 3.2), this effect is hardly visible,
which again emphasizes that the choice of the initial radius is much more important
than the overall progression of the radius.

4.3 Deterministic Sampling using Quasi-Monte Carlo Points

Pseudo-random number generators in fact are deterministic algorithms that try
to mimic random numbers. However, the approximate independence of pseudo-
random numbers is no longer visible once the samples are averaged. More impor-
tant, the speed of convergence depends on the uniformity of the samples. In that
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Fig. 5 The radius shrinks with the number of photons blocks enumerated, while at the same time
the contribution of the individual photons that were collected with larger radius fades out.

respect deterministic low discrepancy sequences are preferable, as they are more
uniform as compared to random samples and therefore improve the speed of con-
vergence [6,8,10,14]. Finally, such deterministic algorithms are simple to parallelize
in heterogeneous computing environments and results are exactly reproducible [11].

Interpreting the radiance estimator (4) as an integro-approximation problem
allows for applying the results of [10, Theorem 1], which guarantee that gener-
ating the photons using deterministic low discrepancy sequences [14] results in a
consistent deterministic estimation with all the aforementioned advantages.

With the point-wise convergence of the radiance estimate established, any
consistent quadrature rule can be used for sampling the query location paths.
Especially, the same low discrepancy sequence as used for photon generation can
be applied, which simplifies implementations.

Constructions of low discrepancy sequences are found in [14]. The images in
Fig. 2 have been computed using the Halton sequence. We also verified the theoret-
ical results using fast implementations of .t; s/-sequences in base b, especially the
Sobol’ sequence [17, 19], and rank-1 lattices sequences [5].

Note that the point sequences must be dimension extensible in order to account
for potentially infinite length transport paths, which in theory would rule out rank-1
lattices and constructions similar to the Faure sequences [1]. However, due to finite
precision, path length cannot be infinite on a computer and it is reasonable and
acceptable to limit path length by a sufficiently large bound. While in theory this
leads to inconsistent results, in practice the resulting bias is not observable in most
cases.

For the sake of completeness, we note that the algorithms derived in this article
work with any point sequence that is uniform, i.e., has vanishing discrepancy.
This includes random, pseudo-random, or randomized point sequences such as for
example randomized low discrepancy sequences.

Samples of uniform sequences can be transformed to path space samples using
approaches explained in detail in [18]. We therefore only point out that the paths
resulting in the query points are generated by sampling the whole image plane or
tiles thereof instead of sampling on a pixel-by-pixel basis. While it is possible to
simply map the image plane or tiles thereof to the unit square, it may be preferable
to directly map pixels to sample indices [2, 9, 10].
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5 Results and Discussion

Figure 2 shows a classic test scene, where the algorithm was used to simulate light
transport completely and only in parts, especially caustics. The derived method has
been proven to unconditionally converge and can be used as an efficient substitute
for other photon mapping implementations.

Other than in Eq. 5, the derivation of stochastic progressive photon mapping
[3] does not allow all query locations to interact with all photons. While it is still
possible to argue that stochastic progressive photon mapping is converging as long
as random sampling is used, the algorithm cannot be derandomized by just using
deterministic samples, because then it is possible to construct scenarios that do not
converge (see Fig. 3). If for example the camera is used as light source at the same
time, query paths and light paths are identical and therefore perfectly correlated.
As path space is not uniformly sampled, visible illumination reconstruction artifacts,
like for example overmodulation, become visible.

6 Conclusion

We introduced quasi-Monte Carlo progressive photon mapping. Based on the
principles of enumerating all pairs of non-negative integers, convergence has been
proven for the deterministic case.

The simple derivation and algorithmic principle enable the deterministic and
consistent computation of many more linear problems as for example all kinds
of (bidirectional) path tracing, in which query and light paths are connected by
shadow rays. If path space sampling is extended to consider participating media,
the proposed schemes generalize to volume scattering as well [12, Sect. 4.2].

Acknowledgements This work has been dedicated to Jerry Spanier’s 80th birthday.
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Value Monte Carlo Algorithms for Estimating
the Solution to the Coagulation Equation

Mariya Korotchenko

Abstract The pure coagulation Smoluchowski equation with additive coefficients
is considered. We construct the weight value algorithms and analyze their efficiency
for estimating total monomer concentration as well as total monomer and dimer
concentration in ensemble governed by the equation under study. We managed to
achieve considerable gain in computational costs via approximate value modeling
of the time between collisions in the ensemble combined with the value modeling
of the interacting pair number.

1 Introduction

In this paper we develop value modifications of statistical simulation for the
approximate solution to the Smoluchowski equation, which describes a wide class
of coagulation processes in physical systems. In spatially homogeneous case it has
the following form:

@nl .t/

@t
D 1

2

X

iCj Dl

Kij ni .t/nj .t/ �
X

i�1

Kilni .t/nl .t/; (1)

where

• nl .t/ is an average number of l-sized particles at the instant t ;
• Particle size l is a positive integer;
• Kij are the coagulation coefficients, which are supposed to be given.
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Adding to (1) the initial data

nl .0/ D n0.l/; l > 0; (2)

we obtain a Cauchy problem for the nonlinear Smoluchowski equation. In this
article we will estimate linear functionals of the function nl .t/.

Solution to a kinetic equation can be numerically estimated using simulation
of a homogeneous Markov chain, which describes the evolution of the N -particle
system [2, 5]. Note, that transitions in this Markov chain are due to elementary pair
interactions (collisions).

Let us introduce the following notations:

• N0 is the initial number of particles in the system, be given at time t D 0;
• li is the size of the particle with number i ;
• k.li ; lj ! l/ D N �1

0 Kli ;lj ıli Clj ;l I
• N � N0 is the current number of particles in the system;
• $ D .i; j / is the interacting pair number responsible for a collision in the

system;

• AS.X/ D
N �1P
iD1

NP
j DiC1

a.N; li ; lj /, where a.1; li ; lj / � 0, while for N > 1 we

have a.$/ � a.N; li ; lj / D
1P

lD1

k.li ; lj ! l/;

• X D .N; LN / D .N; l1; : : : ; lN / describes the phase state of the system;
• P.X; t/ is set of probabilities, which determines the state distribution of the

system at the instant t .

Note that under the molecular chaos assumption one can obtain in the limit (see [7]
for details)

n�
l .t/ � 1

N0

1X

N D1

1X

l2D1

� � �
1X

lN D1

NP.N; l; l2 � � � ; lN ; t/ ! nl.t/; when N0 ! 1:

The interaction density of the system �.X; t/ D AS.X/P.X; t/ satisfies the
integral N -particle Kolmogorov-type equation, as it is shown in [7]. However,
it is impossible to construct the standard weight modifications of the statistical
simulation using this equation, because its kernel is the sum of mutually singular
terms.

The weight modifications developed further are based on the technique suggested
in [6]. The authors of that paper suggest to modify the phase space by introducing
the pair number $ to the set of the phase coordinates. This allowed to derive
a special integral equation for the function F.X; $; t/ D a.$/P.X; t/ in the
transformed phase space Z � Œ0; T �:

F.Z; t/ D
tZ

0

Z

Z

F.Z0; t 0/K.Z0; t 0 ! Z; t/ dZ0 dt 0 C F0.Z/ı.t/:
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Here the following notations are used: Z D .X; $/, dZ D dXd�0.$/. Integration
with respect to the measure �0 implies summation over all various pairs $ D .i; j /,
and integration over dX means summation over all the values of N and LN .
The latter equation can be used to construct standard weight modifications of
statistical simulation for the many-particle system due to multiplicative structure
of its kernel K.Z0; t 0 ! Z; t/ D K1.t

0 ! t jX 0/K2.$ jX 0/K3.X
0 ! X j$/. Here

the distribution density of the time between elementary interactions (collisions) is
exponential:

K1.t
0 ! t jX 0/ D AS.X 0/ expf�AS.X 0/.t � t 0/g:

The probability that a pair of particles $ D .i; j / is responsible for a collision in the
N -particle system is K2.$ jX 0/ D a0.$/=AS.X 0/. Finally, the function K3.X

0 !
X j$/ defines the transformation of the system after a collision of the pair $ , which
results in replacement of interacting particles i and j by a single particle of the size
l D li C lj , so N D N 0 � 1.

The following functionals of the particle flux A�1
S .X/�.X; T / are usually of

interest:

JH .T / D
Z

H.X/A�1
S .X/�.X; t/ dX:

For QH.X; t/ D H.X/ expf�AS.X/tg, H.X/ 2 L1, the following equality was
derived [6]:

JH .T / D
TZ

0

Z

Z

QH.X; T � t 0/F.Z; t 0/ dZ dt 0 D .F; QH/;

which we will make use of later. In this paper we are interested in estimating the
monomer concentration, i.e. the functional JH1 .T / with

H1.X/ D H.N; l1; : : : ; lN / D
NX

iD1

ı.li � 1/=N0;

as well as the monomer and dimer concentration, i.e. the functional JH12.T / with

H12.X/ D
NX

iD1

Œı.li � 1/ C ı.li � 2/�=N0:

2 Value Simulation for Smoluchowski Equation

In the following section we suggest the value simulation algorithms applied to
estimation of the functionals JH1 .T / and JH12 .T /.
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Define another Markov chain fZn; tng, n D 0; 1; : : : ; �; � D max
n

fn W tn < T g
with a transition density P �.Z0; t 0 ! Z; t/ D P1.t

0 ! t jX 0/P2.$ jX 0/P3.X 0 !
X j$/ and a distribution density P0.Z/ı.t/ of the initial state .Z0; t0/.

Let us define random weights by the formulas [8]

Q0 D F0.Z/

P0.Z/
; Qn D Qn�1Q.Zn�1; tn�1I Zn; tn/I

Q.Z0; t 0I Z; t/ D Qt � Q$ � QX D K1.t
0 ! t jX 0/

P1.t 0 ! t jX 0/
K2.$ jX 0/
P2.$ jX 0/

K3.X
0 ! X j$/

P3.X 0 ! X j$/
:

In order to estimate the functional JH .T /, the “weight” collision estimator � can
be used (see [8]):

� D
�X

iD0

Qn
QH.Xn; T � tn/:

Further we will use the following theorem.

Theorem 1 ([6]). If P0.Z/ ¤ 0 for F0.Z/ ¤ 0 and Q.Z0; t 0I Z; t/ < C1 for
Z0; Z 2 Z and t 0; t < T; then E� D JH .T /. Moreover, if the weights are uniformly
bounded and H 2 L1, then there exists such T � that V� < C1 whenever
T < T �. ut

To minimize the variance of the estimator �, we suggest to use a “value”
simulation, i.e. to choose a better transition density P �.Z0; t 0 ! Z; t/ with the
help of the value function. Value function F � is the solution of the conjugate
integral equation F � D K�F � C H . Moreover, it is known (see e.g. [8]) that if we
simulate the Markov chain according to the probability densities, proportional to the
value function, i.e. P � � K � F � and P0 � F0 � F �, then V� D 0. Since the value
function is usually unknown, we should use an approximation of it. To construct
this approximation, we can take into account any a priori information about the
form of the value function and use it to improve our simulation. For the problem
under consideration we can use the following theorem.

Theorem 2 ([3]). Let N 0
1 and N1 be the number of monomers in ensemble before

the next collision and after one, respectively. If the mean value of N1 is proportional
to N 0

1, then the value function is proportional to N1.

This theorem is valid for constant coefficients Kij D 1, as well as for additive
ones Kij D .i C j /=2. Note, that for N1 C N2 (where N2 stands for the number
of dimers in the system) the hypothesis of the theorem is approximately true, i.e.
E.N1 CN2/ D A � .N 0

1 CN 0
2/ C ı with ı D O.N �1

0 /. In this case we will also apply
the theorem and use an approximation of the value function, which is proportional
to N1 CN2. The formula for E.N1 CN2/ for the coagulation coefficients considered
in the paper is given in Sect. 2.3.
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In the sequel we describe the construction of the value algorithm for the case of
additive coefficients Kij D .i C j /=2. In this case

a.N; li ; lj / D li C lj

2N0

; AS.X/ D N � 1

2
:

The simulation process of the next collision in the Markov chain includes two
successive elementary transitions:

1. The choice of the next instant of collision (the time interval between collisions);
2. The choice of the next interacting pair number in the system.

In the same order we construct the value simulation algorithm. For the first
elementary transition we use a value probability density P1.t 0 ! t jX 0/ to simulate
the time between collisions. Then we calculate value probabilities P2.$ jX 0/ to
choose two particles for collision. Let us now describe each of these transitions in
detail.

2.1 Modeling of the Time Between Collisions

For the first elementary transition we use the “value” modeling of the time interval
between collisions. We suggest to use an exponential approximation to the time
value function, which was obtained in [4] for a simpler problem (1) with the constant
coagulation coefficients. For estimating the functionals of interest we have

P1.t 0 ! t jX 0/ D I".t/
.AS.X 0/ � A1/ expf�.AS.X 0/ � A1/.t � t 0/g

1 � expf�.AS.X 0/ � A1/.T" � t 0/g ;

where

• T" D T C ", " is the extension length of the time interval in which our Markov
chain is constructed;

• I".t/ is the indicator of the time interval Œ0; T"�.

This extension of the time interval is necessary in case of the value simulation to
terminate the Markov chain. In the value algorithm, theoretically we sample t within
the interval .t 0; T /, but it is impossible numerically: we will never stop since the
probability to reach T in a finite number of steps is equal to zero. That is why we
extend the time interval Œ0; T � by a small value " (to show this fact we introduce
the indicator function I".t/), and stop simulation when t > T , i.e. we assume that
QH.X; T � t/ � 0 for t > T . This extension does not make the functional estimator

biased, but it insignificantly affects the variance and computation time.
The random weight Qt has the following form:

Qt D SAS.X 0/
AS.X 0/ � A1

expf�A1.t � t 0/g; S D 1 � expf�.AS.X 0/ � A1/.T" � t 0/g:
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For the case of estimating the monomer concentration we have

A1 D 2

2 C T"

;

for the case of estimating the monomer and dimer concentration we have

A1 D 2T" C 1

.2 C T"/.1 C T"/
:

Next elementary transition in simulation process is the Value Modeling of
the Interacting Pair Number (VMIPN). This stage depends on the type of the
functional and is described below.

2.2 VMIPN to Estimate the Monomer Concentration

Let us denote N 0 to be the total number of particles, and N 0
1 to be the number of

monomers in the ensemble at the end of the free path of the system (before the
choice of $). In this case H.X/ D N1=N0.

The VMIPN algorithm suggested below aims at preservation of the monomers
in the simulated ensemble. It results in a better estimation of the average amount of
monomers at the time instant T .

Each of all possible interacting pairs falls into one of the non-overlapping
subsets. The choice of the subset depends on the change in the number of monomers,
which will take place after the collision: $1 [ $2 [ $0. The number of monomers
may decrease by 1 as a result of the ‘minus-1-pairs’ collision, by 2 – which results
from collision of ‘minus-2-pairs’, or it may not change in case of interaction of
‘minus-0-pairs’ from the subset $0:

$1 contains ‘minus-1-pairs’ of the form fmonomer, multimerg; there are N1 pairs
of this type:

N1 D N 0
1.N 0 � N 0

1/I
$2 contains ‘minus-2-pairs’ of the form fmonomer, monomerg; there are N2 pairs

of this type:

N2 D N 0
1.N

0
1 � 1/=2I

$0 contains ‘minus-0-pairs’ of the form fmultimer, multimerg; there are N0 pairs
of this type:

N0 D .N 0 � N 0
1/.N 0 � N 0

1 � 1/=2:

Note, here by a multimer we understand an l-sized particle, where l � 2.
Further, we introduce a representation of the “physical” distribution density

P0.i; j / D a.li ; lj /

AS.X 0/
of the interacting pair number in the following randomized

form:
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1 �
X

$

P0.i; j / D p1

X

$1

f1 .i; j / C p2

X

$2

f2 .i; j / C p0

X

$0

f0 .i; j /: (3)

Here pm is the probability to choose the subset $m, and fm.i; j / is the probability
to choose the pair .i; j / from the subset $m, m D 0; 1; 2:

p2 D N 0
1.N 0

1 � 1/

N0.N 0 � 1/
; p1 D N 0

1.N
0 � 2N 0

1 C N0/

N0.N 0 � 1/
; p0 D 1 � p1 � p2: (4)

The monomers are chosen uniformly within the subsets $1 and $2. Multimers
are chosen within subsets $0 and $1 by their “physical” probabilities Pj , j D
N 0

1 C 1; : : : ; N 0, having the following form:

• For pairs from $1: Pj D 1 C lj

N 0 � 2N 0
1 C N0

I

• For pairs from $0: Pj D .N0 � N 0
1/ C lj .N 0 � N 0

1 � 2/

2.N0 � N 0
1/.N 0 � N 0

1 � 1/
:

In order to “preserve” the monomers, let us carry out the simulation according to
(3) by replacing probabilities pm from (4) by the probabilities qm, proportional to
the number of monomers left in the system:

q1 D p1

�
N 0

1 � 1
�

Cm

; q2 D p2

�
N 0

1 � 2
�

Cm

; q0 D p0N
0
1

Cm

;

Cm D E.N1/ D N 0
1

N0 � 1

N0

N 0 � 2

N 0 � 1
:

Such modification is taken into account, when the weight is calculated:

Q$ D pm

qm
:

2.3 VMIPN to Estimate the Monomer and Dimer
Concentration

Let us denote N 0
2 to be the number of dimers in the ensemble at the end of the

free path of the system. In this case H.X/ D .N1 C N2/=N0. We introduce
the distribution density proportional to the quantity N1.X/ C N2.X/ in order to
introduce VMIPN. Further on we will refer to the l-sized particle with l � 3 as a
multimer.

Taking this into account, let us split the set of all possible interacting pairs into six
non-overlapping subsets. The choice of the subset is related to the change in the total
number of monomers and dimers, which results from the collision (this quantity may
decrease by 1, 2, or not change): $11 [ $1k [ $2k [ $22 [ $12 [ $kk , where
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$11 contains ‘minus-1-pairs’ of the form fmonomer, monomerg; there are N11

pairs of this type:

N11 D N 0
1.N 0

1 � 1/=2I
$1k contains ‘minus-1-pairs’ of the form fmonomer, multimerg; there are N1k

pairs of this type:

N1k D N 0
1.N 0 � .N 0

1 C N 0
2//I

$2k contains ‘minus-1-pairs’ of the form fdimer, multimerg; there are N2k pairs
of this type:

N2k D N 0
2.N 0 � .N 0

1 C N 0
2//I

$22 contains ‘minus-2-pairs’ of the form fdimer, dimerg; there are N22 pairs of
this type:

N22 D N 0
2.N 0

2 � 1/=2I
$12 contains ‘minus-2-pairs’ of the form fmonomer, dimerg; there are N12 pairs

of this type:

N12 D N 0
1N

0
2I

$kk contains ‘minus-0-pairs’ of the form fmultimer, multimerg; there are Nkk

pairs of this type:

Nkk D .N 0 � .N 0
1 C N 0

2//.N
0 � .N 0

1 C N 0
2/ � 1/

2
:

Let us represent the “physical” distribution density P0 of the interacting pair
number in the form, similar to (3)

1 �
X

$

P0.i; j / D p11

X

$11

f11.i; j / C p1k

X

$1k

f1k.i; j / C p2k

X

$2k

f2k.i; j /C

C p12

X

$12

f12.i; j / C p22

X

$22

f22.i; j / C pkk

X

$kk

fkk.i; j /;

(5)

where pmn is the probability to choose the subset $mn, and fmn.i; j / is the
probability to choose the pair .i; j / from the subset $mn, m; n 2 f1; 2; kg.

Note that

p12 D 3N 0
1N

0
2

N0.N 0 � 1/
; p1k D N 0

1.N
0 � 2N 0

1 � 3N 0
2 C N0/

N0.N 0 � 1/
;

p22 D 2N 0
2.N

0
2 � 1/

N0.N 0 � 1/
; p2k D N 0

2.2N 0 � 3N 0
1 � 4N 0

2 C N0/

N0.N 0 � 1/
; (6)

p11 D N 0
1.N 0

1 � 1/

N0.N 0 � 1/
; pkk D .N0 � N 0

1 � 2N 0
2/.N

0 � N 0
1 � N 0

2 � 1/

N0.N 0 � 1/
:
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Monomers and dimers are chosen uniformly within the subsets $11, $1k , $2k , $22

and $12. The multimers are chosen within the subsets $1k , $2k and $kk according
to “physical” probabilities Pj , j D N 0

1 CN 0
2 C1; : : : ; N 0, which have the following

form:

• For a pair from the subset $1k : Pj D 1 C lj

N 0 � 2N 0
1 � 3N 0

2 C N0

I

• For a pair from the subset $2k : Pj D 2 C lj

2N 0 � 3N 0
1 � 4N 0

2 C N0

I

• For a pair from the subset $kk : Pj D .N0 � N 0
1 � 2N 0

2/ C lj .N 0 � N 0
1 � N 0

2 � 2/

2.N0 � N 0
1 � 2N 0

2/.N
0 � N 0

1 � N 0
2 � 1/

:

In order to “preserve” the monomers and dimers, we will choose the interacting
pair according to (5) with the probabilities (6) replaced by qmn, proportional to the
sum of the monomers and dimers left in the system:

q11 D .N 0
1 C N 0

2 � 1/
p11

Cmd

I q1k D .N 0
1 C N 0

2 � 1/
p1k

Cmd

I q2k D .N 0
1 C N 0

2 � 1/
p2k

Cmd

I

q12 D .N 0
1 C N 0

2 � 2/
p12

Cmd

I q22 D .N 0
1 C N 0

2 � 2/
p22

Cmd

I qkk D .N 0
1 C N 0

2 � 0/
pkk

Cmd

;

where

Cmd D E.N1 C N2/ D .N 0
1 C N 0

2/
.N0 � 2/.N 0 � 2/

N0.N 0 � 1/
C N 0

1.N 0 C N 0
1 � 3/

N0.N 0 � 1/
:

This modification is taken into consideration, when the weight is calculated:

Q$ D pmn

qmn
:

2.4 Direct Method Vs. Value Algorithm

In this section we give a description of direct and value simulation algorithms, which
were used to perform numerical experiments.
The direct simulation method

1. For t0 D 0 we sample the initial state Z0 according to the probability density
F0.Z/; N D N0.

2. Then for a given state .Zn�1; tn�1/ we choose the next state .Zn; tn/ in the
following manner:

a. We choose tn according to the density K1.tn�1 ! t jXn�1/;
b. We sample two particles $ D .i; j / for collision according to K2.$ jXn�1/;
c. We modify the ensemble: lj D li C lj , li D 0; Nn D Nn�1 � 1.
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3. If tn < T then we repeat step 2, otherwise we calculate H.Xn/ and terminate the
chain.

The value simulation algorithm

1. For t0 D 0 we sample the initial state Z0 according to the probability density
P0.Z/; Q0 D F0.Z0/=P0.Z0/; N D N0.

2. Then for a given state .Zn�1; tn�1/ we choose the next state .Zn; tn/ in the
following manner:

a. We choose tn according to the density P1.tn�1 ! t jXn�1/;
b. We sample two particles $ D .i; j / for collision according to P2.$ jXn�1/;
c. We modify the ensemble: lj D li C lj , li D 0; Nn D Nn�1 � 1.

3. If tn < T then the summand Qn�1 � Qt � Q$ � QH.Xn; T � tn/ is calculated,
otherwise the chain terminates.

It appears that the value algorithm uses information about the trajectory for
the whole interval Œ0; T �, while the direct method uses only one value H.X/ per
trajectory.

3 Results of the Numerical Experiments

In this section the results of simulation according to the suggested algorithms are
presented and compared to the analytic solution for the test problem. As a test
problem for implementation of the algorithms described above, we take the Cauchy
problem (1)–(2) with Kij D .i C j /=2, n0.l/ D ıl;1. This problem has an exact
solution of the form (see [1])

nl .t/ D e�0:5t B
�
1 � e�0:5t ; l

�
; B .x; l/ D .lx/l�1e�lx

lŠ
; l � 1:

In numerical experiments parameter " D 10�5 is used. It leads to an almost
minimal variance (with respect to ") and does not increase the average number
of interactions in the system much, as compared to the direct simulation method.
We used the following notations in the tables:

• N� is the mean square error (square root of the corresponding variance, which is
estimated simultaneously with the functional);

• PE (%) is the percent error;
• t .c/ is the computation time;
• M is the number of simulated trajectories;
• Sd D N�2

d t
.c/

d and Sv D N�2
v t

.c/
v are the computational costs for the direct and value

simulations respectively.

When analyzing the numerical results we should mention, that the deterministic
error of order O.N �1

0 / occurs due to the finiteness of the initial number of
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Table 1 Estimation of JH1 .T / (T D 1I 5I 10I 15; M D 103; N0 D 103).

Simulation QJH1 .T / N� PE (%) tc Sd =Sv

T D 1; n1.1/ D 4:09234 � 10�1

Direct 4:09075 � 10�1 6:2 � 10�4 0:04 1:5 –
Value 4:09627 � 10�1 9:1 � 10�5 0:10 1:7 41:4

T D 5; n1.5/ D 3:27807 � 10�2

Direct 3:28220 � 10�2 1:8 � 10�4 0:13 3:3 –
Value 3:28776 � 10�2 5:4 � 10�5 0:30 3:7 9:76

T D 10; n1.10/ D 2:49551 � 10�3

Direct 2:45300 � 10�3 4:9 � 10�5 1:70 3:4 –
Value 2:51194 � 10�3 1:7 � 10�5 0:65 3:8 6:96

T D 15; n1.15/ D 2:03581 � 10�4

Direct 2:26000 � 10�4 1:5 � 10�5 11:0 3:4 –
Value 2:07266 � 10�4 3:9 � 10�6 1:81 3:9 12:7

Table 2 Estimation of JH12 .T / (T D 1I 5I 10I 15; M D 103; N0 D 103).

Simulation QJH12 .T / N� PE (%) tc Sd =Sv

T D 1; n1.1/ C n2.1/ D 5:17876 � 10�1

Direct 5:18496 � 10�1 6:1 � 10�4 0:12 1:2 –
Value 5:18513 � 10�1 2:1 � 10�4 0:12 1:6 6:81

T D 5; n1.5/ C n2.5/ D 4:47971 � 10�2

Direct 4:46120 � 10�2 2:2 � 10�4 0:41 2:3 –
Value 4:48527 � 10�2 9:2 � 10�5 0:12 2:9 4:27

T D 10; n1.10/ C n2.10/ D 3:41354 � 10�3

Direct 3:43000 � 10�3 5:9 � 10�5 0:48 2:4 –
Value 3:42655 � 10�3 2:6 � 10�5 0:38 3:1 4:10

T D 15; n1.15/ C n2.15/ D 2:78474 � 10�4

Direct 2:55000 � 10�4 1:6 � 10�5 8:43 2:4 –
Value 2:84914 � 10�4 5:3 � 10�6 2:31 3:1 7:01

particles N0, e.g. for the monomer concentration we have: jn1.T / � JH1 .T /j D
O.N �1

0 / (see [7] for details). The statistical error has the following form jJH1 .T / �
QJH1 .T /j D O. N�/ and it is of order O.M �1=2/. From the tables we can see, that

the value modeling decreases the computational cost of simulation (several times,
as compared to the direct one), which shows advantages of the value simulation for
both elementary transitions simultaneously (Tables 1 and 2).

4 Conclusion

We constructed value algorithms for estimating the total monomer concentration,
as well as the total monomer and dimer concentration in ensembles governed by
the coagulation Smoluchowski equation. We succeeded to reduce the computational
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costs with the help of combining the value modeling of the time between collisions
and the value modeling of the interacting pair number.

In future we plan to apply introduced methodology to the case of linear
coefficients Kij D a C b.i C j /. These coefficients are of practical use, e.g. in one
of classical polymer models. Moreover, the problem of optimal choice of parameter
", which depends on T , N0, H , needs further consideration.
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Numerical Simulation of the Drop Size
Distribution in a Spray

Christian Lécot, Moussa Tembely, Arthur Soucemarianadin, and Ali Tarhini

Abstract Classical methods of modeling predict a steady-state drop size distribu-
tion by using empirical or analytical approaches. In the present analysis, we use the
maximum of entropy method as an analytical approach for producing the initial data;
then we solve the coagulation equation to approximate the evolution of the drop size
distribution. This is done by a quasi-Monte Carlo simulation of the conservation
form of the equation. We compare the use of pseudo-random and quasi-random
numbers in the simulation. It is shown that the proposed method is able to predict
experimental phenomena observed during spray generation.

1 Introduction

The disintegration of bulk fluid into droplets in a surrounding gas (referred to
as atomization) is extensively developed and applied to a variety of industrial
processes. Jet printing technology has a broad range of utilization in areas such
as biotechnology, pharmacology, electronic printing or fuel cell manufacturing.
In certain applications, the drop size distribution must have particular form, and
constitutes one of the most important spray characteristics.

C. Lécot
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524 C. Lécot et al.

One method for modeling drop size distribution is empirical: given a collection
of “standard” distributions, a form is located that fits the data collected for a range of
atomizers. A problem with the empirical approach is the difficulty of extrapolating
the data to regimes outside the experimental range [1]. As an alternative to this
approach, the maximum entropy formalism (MEF) determines the most likely drop
size distribution as the one that maximizes an entropy function under a set of
physical constraints: we refer to the recent review [5].

Both approaches are essentially time-independent. But the drop size distribution
may change at varying distances from the atomizer nozzle. Some measurements
of drop diameters show distributions with two peaks, that the previous modeling
does not clearly explain [2, 6]. In the present analysis, we model the evolution of
droplet size distribution. First MEF is used for approximating the initial distribution.
The time-dependent distribution is then computed as the solution of the coagulation
equation [3].

We solve the equation with a Monte Carlo (MC) simulation. Particles are sampled
from the initial drop size distribution, time is discretized and the sizes are changed
according to the coagulation equation. If particles simulate directly drops, they may
coalesce, so the total number will decrease. Hence the system has to be enriched
to make the results statistically reliable. Here we solve the conservation form of
the coagulation equation, so that the number of particles in the simulation remains
constant.

A drawback of usual MC methods is their low convergence rate. In certain
cases, it is possible to improve it by replacing the pseudo-random numbers used
to simulate the i.i.d. random variables by quasi-random numbers. This is the basis
of quasi-Monte Carlo (QMC) methods [11]. In the present case, each step of the
simulation is formulated as a numerical integration and we find it necessary to sort
the particles by increasing size before performing a QMC quadrature [8, 9]: we are
then able to prove the convergence of the method.

For the application, we focus on an innovative spray on demand (SOD) technol-
ogy, where spray is generated only if required (in contrast with a continuous jetting
device) [15]. A modeling of the spray is carried out, and the drop size distribution
can be computed, which paves the way for optimization of the atomizer.

The outline of the paper is as follows. In Sect. 2, we derive the conservation form
of the coagulation equation, we describe the simulation schemes and we analyze
the convergence of the QMC algorithm. In Sect. 3, we present the SOD device, we
compute the drop size distribution for a given operating condition and we compare
MC and QMC approaches. Conclusions are drawn in Sect. 4.

2 Simulation of the Coagulation Equation

The representation of drop size distribution is an important issue in liquid atom-
ization. Several types of functions may be defined. The droplets ensemble can
be subdivided into subsets, where each subset consists of drops whose diameter
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are in a given interval: by counting the number of drops in each subset, one
constructs the frequency histogram with respect to diameter. The continuous
version of the histogram is the number-based diameter density fn.D/ � 0. It is
convenient to assume that the drop diameters range from zero to infinity, hence we
have

R C1
0 fn.D/dD D 1. It is also possible to construct a number-based volume

density gn.V /. Assuming the droplets are spherical, gn.V / D 2fn.D/=.�D2/. If we
consider the increment of volume in each class, we define the volume-based
diameter density fv.D/ WD �N D3fn.D/=.6V /, where N is the total number and
V is the total volume of droplets. The volume-based volume density is gv.V / WD
N Vgn.V /=V .

In the following, we use time-dependent quantities. The coagulation equation for
N .t/gn.V; t/ is [3]:

@

@t
.N .t/gn.V; t// D 1

2

Z V

0

Kc.V � W; W /N .t/gn.V � W; t/N .t/gn.W; t/dW

�
Z C1

0

Kc.V; W /N .t/gn.V; t/N .t/gn.W; t/dW; (1)

with the initial condition gn.V; 0/ D gn;0.V /, where gn;0.V / is a given density.
Here Kc.V; W / is the coagulation kernel describing the rate of coalescence between
two drops of volume V and W to form one drop of volume V C W . The kernel
is assumed to be nonnegative and symmetric. The total number of droplets N .t/

tends to decrease over time due to coalescence, while the total volume V .t/ remains
unchanged.

By multiplying Eq. 1 by V=V , we obtain the following conservation form:

@gv

@t
.V; t/ D

Z V

0

eKc.V � W; W /gv.V � W; t/gv.W; t/dW

�
Z C1

0

eKc.V; W /gv.V; t/gv.W; t/dW; (2)

where eKc is the modified coagulation kernel defined by: eKc.V; W / WD V Kc

.V; W /=W . We denote by gv;0.V / the initial volume-based volume density.
We introduce a weak formulation of Eq. 2. We denote by M C the set of all

measurable functions � W .0; C1/ ! Œ0; C1/. By multiplying Eq. 2 by � 2 M C
and by integrating, we obtain:

d

dt

Z C1

0

gv.V; t/�.V /dV D
Z C1

0

Z C1

0

eKc.V; W /gv.V; t/gv.W; t/.�.V C W / � �.V //dW dV: (3)
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2.1 The QMC Algorithm

We propose a QMC scheme for the numerical simulation of Eq. 2. We recall
from [11] some basic notations and concepts of QMC methods. Let s � 1 be a
fixed dimension and I s WD Œ0; 1/s be the s-dimensional unit cube and �s be the
s-dimensional Lebesgue measure. For a set U D fu0; : : : ; uN �1g of N points in I s

and for a measurable set B � I s we define the local discrepancy by

DN .B; U / WD 1

N

X

0�k<N

1B.uk/ � �s.B/;

where 1B is the indicator function of B . The star discrepancy of U is D?
N .U / WD

supJ ? jDN .J ?; U /j, where J ? runs through all subintervals of I s with a vertex at
the origin. For an integer b � 2, an elementary interval in base b is a set of the
form

Qs
iD1Œai b

�di ; .ai C 1/b�di /, with integers di � 0 and 0 � ai < bdi for
1 � i � s. If 0 � t � m are integers, a .t; m; s/-net in base b is a point set U of
bm points in I s such that DN .J; U / D 0 for every elementary interval J in base b

with measure bt�m. If b � 2 and t � 0 are integers, a sequence u0; u1; : : : of points
in I s is a .t; s/-sequence in base b if, for all integers n � 0 and m > t , the point set
U n WD fup W nbm � p < .n C 1/bmg forms a .t; m; s/-net in base b.

We suppose that eKc is bounded and we set eK1
c WD supV;W >0

eKc.V; W /. The
algorithm uses a constant number of N WD bm particles, where b � 2 and m � 1 are
integers . Time is discretized, using a time step �t satisfying �teK1

c < 1. We denote
tn WD n�t . We need a sequence U of quasi-random numbers for the simulation. We
assume that U is a .t; 3/-sequence in base b (for some t � 0). In addition, for n 2 N,
let: U n WD fup W nN � p < .nC1/N g. We assume: that �1;2.U n/ is a .0; m; 2/-net
in base b, where �1;2 is the projection defined by �1;2.x1; x2; x3/ WD .x1; x2/.

We first generate a set V0 WD fV 0
0 ; : : : ; V 0

N �1g of N positive numbers – the
particles – such that the initial volume-based volume probability gv;0.V /dV is
approximated by the probability distribution:

g0
v .V / WD 1

N

X

0�k<N

ı.V � V 0
k /;

where ı.V � Vk/ is the Dirac delta measure at Vk . This can be done by choosing:

V 0
k D G�1

v;0

�
2k C 1

2N

�

; 0 � k < N; (4)

where Gv;0 is the cumulative distribution function: Gv;0.V / WD R V

0
gv;0.W /dW .

For n � 0, let gv;n.V / WD gv.V; tn/. We suppose that a set Vn D fV n
0 ; : : : ; V n

N �1g
of particles has been computed so that

gn
v .V / WD 1

N

X

0�k<N

ı.V � V n
k /
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approximates, in a certain sense (see below), the probability gv;n.V /dV . The
approximation of the solution at time tnC1 is calculated as follows.

Particles are relabeled at the beginning of the time step by increasing size:

V n
0 � V n

1 � � � � � V n
N �1: (5)

This type of sorting was used in [8, 9]. It guarantees theoretical convergence: since
the algorithm can be described by a series of numerical integration, the sorting
reverts to minimizing the amplitude of the jumps of the function to be integrated.

We define a probability measure OgnC1
v by Euler discretization of Eq. 3:

1

�t

�Z C1

0

OgnC1
v .V /�.V / �

Z C1

0

gn
v .V /�.V /

�

D
Z C1

0

Z C1

0

eKc.V; W /gn
v .V /gn

v .W /.�.V C W / � �.V //; (6)

that is, replacing gn
v .x/ with its expression,

Z C1

0

OgnC1
v .V /�.V / D 1

N

X

0�k<N

0

@1 � �t

N

X

0�`<N

eKc.V
n

k ; V n
` /

1

A �.V n
k /

C �t

N 2

X

0�k;`<N

eKc.V
n

k ; V n
` /�.V n

k C V n
` /: (7)

The measure OgnC1
v approximates gv;nC1.V /dV , but it is not a sum of Dirac delta

measures. We recover this kind of approximation by using a QMC quadrature rule.
Let 1Rk;`

be the indicator function of Rk;` WD Œk=N; .k C1/=N /� Œ`=N; .`C1/=N /

and denote by 1I n
k;`

the indicator function of I n
k;` WD Œ0; �teKc.V n

k ; V n
` //. To � 2 M C

corresponds the indicator function:

C nC1
� .u/ WD

X

0�k;`<N

1Rk;`
.u1; u2/

��
1 � 1I n

k;`
.u3/

�
�.V n

k / C 1I n
k;`

.u3/�.V n
k C V n

` /
�

(for u D .u1; u2; u3/ 2 I 3), which is such that

Z C1

0

OgnC1
v .V /�.V / D

Z

I 3

C nC1
� .u/du: (8)

We determine gnC1
v by a quadrature in I 3, using the nodes U n:

Z C1

0

gnC1
v .V /�.V / D 1

N

X

nN �p<.nC1/N

C nC1
� .up/: (9)
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It is possible to summarize the calculation on a time step as follows. If u 2 I , let
k.u/ WD bN uc. Then, for nN � p < .n C 1/N , we have:

V nC1
k.up;1/ D

8
<

:

V n
k.up;1/ C V n

k.up;2/ if up;3 < �teKc.V
n

k.up;1/; V n
k.up;2//,

V n
k.up;1/ otherwise:

(10)

The numbers up;1 and up;2 select particles; particle k.up;1/ has for coagulation
partner particle k.up;2/, and the coagulation probability is Pc WD �teKc.V

n
k.up;1/;

V n
k.up;2//. Then up;3 is used to select an event:

• If 0 � up;3 < Pc , particles k.up;1/ and k.up;2/ coalesce,
• If Pc � up;3 < 1, no coalescence occurs.

The corresponding MC scheme is as follows: there is no reordering of particles
and, for 0 � k < N ,

V nC1
k D

(
V n

k C V n
Lk

if Uk < �teKc.V
n

k ; V n
Lk

/,

V n
k otherwise:

(11)

Here L0; : : : ; LN �1 are independent random samples drawn from the uniform
distribution on f0; : : : ; N �1g, while U0; : : : ; UN �1 are independent random samples
drawn from the uniform distribution on Œ0; 1/.

2.2 Convergence Analysis

We state a convergence result, which proves that the algorithm converges, as the
number N of particles grows to infinity; we then show numerical evidence of the
convergence in a simple case, where an analytical solution is available, and we
compare MC and QMC strategies.

We first adapt the basic tools of QMC methods to our settings. Let g be a
probability density on .0; C1/. If X > 0, let �X denote the indicator function
of .0; X/. The local discrepancy of the set V D fVk W 0 � k < N g � .0; C1/

relative to g is:

DN .X; VI g/ WD 1

N

X

0�k<N

�X .Vk/ �
Z C1

0

�X .V /g.V /dV:

The star discrepancy of V relative to g is D?
N .VI g/ WD supX>0 jDN .X; VI g/j.

We define the error of the QMC scheme at time tn to be the star discrepancy of
Vn relative to gv;n. The concept of variation of function in the sense of Hardy and
Krause may be extended to a function f defined on .0; C1/s and is denoted by
VHK.f /. The following proposition is an adaptation of the convergence result of [9]
and is similarly established. Details of the proof can be found in [13]. Let T > 0.
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Proposition 1. We suppose:

• For every V > 0, the function t ! gv.V; t/ is twice continuously differentiable

over .0; T / and gv;
@gv
@t

;
@2gv
@t2 are integrable over .0; C1/ � .0; T /,

• eKc is of bounded variation in the sense of Hardy and Krause.

Then, for tn � T ,

D?
N .VnI gv;n/ � ec2tnD?

N .V0I gv;0/ C �t

Z C1

0

Z tn

0

ec2.tn�t /

ˇ
ˇ
ˇ
ˇ
@2gv

@t2
.V; t/

ˇ
ˇ
ˇ
ˇ dtdV

C
�

2

�t
C c1

�
1

bb.m�t /=3c
ec2tn � 1

c2

;

where

c1 WD 4VHK.eKc/ C 3eK1

c and c2 WD sup
V >0

VHK.eKc.V; :// C sup
W >0

VHK.eKc.:; W // C 3eK1

c :

The upper bound is of order O.1=N 1=3/, which is worse than the length of the
confidence interval of MC methods, but numerical experiments show that the QMC
method converges faster than the corresponding MC scheme.

Now, we assess the accuracy of the QMC algorithm described above and we
compare it to the classical MC scheme: approximate solutions are computed in a
case where an analytical solution is available [12]. For QMC, the low-discrepancy
sequence used is the .0; 3/-sequence in base 3 of Faure [11]. Let Kc.V; W / D 1;
with initial condition e�V , the exact solution of Eq. 1 is:

4

.2 C t/2
exp

�

� 2V

2 C t

�

: (12)

The solution is computed up to time T D 10:0 with N particles (N varying between
34 and 313) and P time steps (P varying from 1 � 1;000 to 25 � 1;000).

In order to reduce scatter, we compute the averaged discrepancy defined as:

DN;P WD 1

1;000

1;000X

hD1

D?
N .VhpI gv;hp/;

where p WD P=1;000. Figure 1 shows log-log plots of DN;P for different values of
N and P , for both methods (MC and QMC). For a given number of particles and
for a given time step, the error of the QMC scheme is always smaller than the error
of the MC scheme; this gain is more effective when both discretization parameters
N and P are large enough.

If we assume that the method produces an error of order O.N �˛/, then the
exponent ˛ can be estimated by regression to fit the data, if �t is sufficiently
small, so that the influence of P on the error is negligible versus that of N . If we
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Fig. 1 Averaged discrepancy as a function of N (from 34 to 313), for P between 1;000 and 32;000.
Log-log plots of QMC (solid lines) compared to MC (dotted lines) results.
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Fig. 2 Linear regression estimates of the averaged discrepancy as a function of N (from 34 to 313)
for P D 32;000. Log-log plots of QMC (dashed lines) versus MC (dotted lines) outputs.

take P D 32;000, we find DN;P D O.N �0:46/ for MC simulations and DN;P D
O.N �0:64/ for QMC simulations: see Fig. 2.

Other computations have been done with a linear kernel Kc.V; W / D V C W

and the conclusions are the same as in the previous case: we refer to [13] for detailed
results.

3 Modeling of SOD Device

In this section we focus on the modeling of the spray generated by a new SOD
technology. A microchannel conveying fluid is excited and the drop hanging at the
beveled nozzle tip breaks up into droplets: see Fig. 3. A nomenclature for physical
quantities is given in Table 1.

Models based on the MEF are used to predict spray diameter density from
a small amount of information: the most probable distribution is the one which
maximizes the entropy [1, 5]. A new formulation of the MEF is presented in [4]:
an additional information is required to limit the production of the small drops.
Following Lienhard and Meyer [10], one finally obtains a generalized gamma
distribution:

fn.D/ D q

� . ˛
q
/

�
˛

q

�˛=q
D˛�1

D˛
q;0

exp

�

�˛

q

�
D

Dq;0

�q�

; (13)

where q > 0, ˛ � 1 and D
q
q;0 D R C1

0
Dqfn.D/dD. This leads to the following

volume-based volume density:
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Fig. 3 Spray on demand printhead. The picture on the left-hand side is approximately 2:5 mm
long.

Table 1 Nomenclature and values used in the simulation.

Symbol Name Value (IS units)

g Gravity acceleration 9:81

˛0

V Spray volume fraction 5:0 10�4

�a Viscosity of air 18:5 10�6

�f Viscosity of fluid 1:2 10�3

�a Air density 1:0

�f Fluid density 790:0

�f Fluid surface tension 22:0 10�3

gv.V / D 2

�

�
6

�

�˛=3
q

� . ˛C3
q

/

�
˛

q

� ˛C3
q V ˛=3

D˛C3
q;0

exp

 

�˛

q

�
6

�

�q=3
V q=3

D
q
q;0

!

: (14)

This is assumed to describe the spray at the nozzle tip and we take it as an initial
condition gv;0.V /. The particles are initially sampled by using the inverse transform
method: see Eq. 4.

Following [7], we express the coagulation kernel as follows.

Kc.V; W / D ka�e.V; W /hf .V; W /; (15)

where ka is an adjustable factor, �e.V; W / is the coalescence efficiency once
collision occurs between drops of volume V and W and hf .V; W / is the collision
frequency of drops of volume V and W . The efficiency is defined as the fraction of
collisions that result in coalescence, and is given by:

�e.V; W / D exp .�tcoal.V; W /=tcont.V; W // ; (16)

where tcoal.V; W / is the average coalescence time of drops of volume V and W ,
while tcont.V; W / is the contact time for the drops. An estimation of the coalescence
time is:
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tcoal.V; W / D cc

�
R3

V;W �f =�f

�1=2
; (17)

where �f is the fluid density, �f is the surface tension, cc is a constant factor;
the equivalent radius RV;W is defined by: 1=RV;W WD 1=D.V / C 1=D.W /, with
D.V / WD .6V=�/1=3. An expression for the contact time is:

tcont.V; W / D .D.V / C D.W //=.2jur .V; W /j/; (18)

where ur .V; W / is the average relative velocity between drops of volume V and W ;
the square of velocity may be estimated as follows.

jur .V; W /j2 D u`.V /2 C u`.W /2 � 4u`.V /u`.W /=�; (19)

where u`.V / is the terminal velocity of drops of volume V :

u`.V / D �f C �a

3�f C 2�a

D.V /2g

6�a

.�f � �a/: (20)

Here �f is the viscosity of fluid, �a is the viscosity of air, �a is the density of air
and g is the gravity acceleration. The collision frequency may be expressed in the
following form:

hf .V; W / D �

�
D.V /

2
C D.W /

2

�2

jur .V; W /jN gn.V /

Vt

N gn.W /

Vt

Vt (21)

and we approximate N gn.V / by its initial value N .0/gn;0.V /. Here Vt is the total
volume: Vt WD V =˛0

V , where ˛0
V is the spray volume fraction.

We perform the simulation of a SOD device with the following parameters:

q D 0:21 ˛ D 25:61 Dq;0 D 13:39 ka D 1:0 106 cc D 1:12

The physical data are given in Table 1; the fluid used here is ethanol.
We approximate the number-based diameter density fn.D; t/ up to time

T D 3:0 10�3 with N D 220 particles and P D 600 time steps. The results are
displayed in Figs. 4 and 5. We see that the distribution tends to have two peaks.
Similar bimodal distributions were measured [2,6] but no explanation was given for
the presence of the small peak. The measurements were done at a certain distance
from the atomizer: we think that this peak is due to coalescence of drops, which
is simulated here. The results of other experiments and developments are given in
[14, 15]. In addition, MC and QMC strategies are compared. For QMC, we use a
.1; 3/-sequence in base 2 of Niederreiter [11]. It is clear that the scattering of the
results is reduced when using QMC.
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Fig. 4 Simulation of the number-based diameter density: comparison of initial density and density
at t D 0:5 (top), t D 1:0 (middle), t D 1:5 (bottom). MC (left) versus QMC (right) results.
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Fig. 5 Simulation of the number-based diameter density: comparison of initial density and density
at t D 2:0 (top), t D 2:5 (middle), t D 3:0 (bottom). MC (left) versus QMC (right) results.
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4 Conclusion

In this paper, we have proposed a method for the calculation of drop size distribution
in a spray. The method uses a QMC simulation of the coagulation equation.

It starts with a formulation of the MEF including a limitation of small drops:
the solution is a generalized gamma distribution, which is used as initial data for the
simulation. Time is discretized and the spray is simulated using a constant number of
particles. They are sampled from the initial distribution; then they evolve according
to the dynamics described in the conservation form of the coagulation equation.
A low discrepancy sequence is used for coalescence. In order to make a proper
use of the great uniformity of the quasi-random points, the particles are reordered
according to their size at every time step. The results of computations show that this
algorithm converges faster than its MC counterpart. Finally we apply our scheme to
the simulation of the spray generated by a new SOD device. The method is able to
produce bimodal distributions which are observed in experiments and which may
be due to drop merging.

The QMC method is shown to converge as the number of simulation particles
tends to infinity; but there is a gap between the theoretical order of convergence and
the order observed in computations: the analysis must be pursued. The present work
shows qualitative agreement between computations and experiments; further work
is needed to obtain quantitative agreement under various operating conditions.
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Nonasymptotic Bounds on the Mean Square
Error for MCMC Estimates via Renewal
Techniques

Krzysztof Łatuszyński, Błażej Miasojedow, and Wojciech Niemiro

Abstract The Nummellin’s split chain construction allows to decompose a Markov
chain Monte Carlo (MCMC) trajectory into i.i.d. “excursions”. Regenerative
MCMC algorithms based on this technique use a random number of samples.
They have been proposed as a promising alternative to usual fixed length simulation
(Hobert et al., Biometrika 89:731–743, 2002; Mykland et al., J. Am. Statist. Assoc.
90:233–241, 1995; Rosenthal, J. Amer. Statist. Association 90:558–566, 1995).
In this note we derive nonasymptotic bounds on the mean square error (MSE) of
regenerative MCMC estimates via techniques of renewal theory and sequential
statistics. These results are applied to construct confidence intervals. We then focus
on two cases of particular interest: chains satisfying the Doeblin condition and a
geometric drift condition. Available explicit nonasymptotic results are compared
for different schemes of MCMC simulation.

1 Introduction

Consider a typical MCMC setting, where � is a probability distribution on X and
f W X ! R a Borel measurable function. The objective is to compute (estimate)
the integral

K. Łatuszyński
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� WD �f D
Z

X

�.dx/f .x/: (1)

Assume that direct simulation from � is intractable. Therefore one uses an
ergodic Markov chain with transition kernel P and stationary distribution � to
sample approximately from � . Numerous computational problems from Bayesian
inference, statistical physics or combinatorial enumeration fit into this setting. We
refer to [9, 29, 31] for theory and applications of MCMC.

Let .Xn/n�0 be the Markov chain in question. Typically one discards an initial
part of the trajectory (called burn-in, say of length t) to reduce bias, one simulates
the chain for n further steps and one approximates � with an ergodic average:

O�fix
t;n D 1

n

tCn�1X
iDt

f .Xi /: (2)

The fixed numbers t and n are the parameters of the algorithm. Asymptotic validity
of (2) is ensured by a Strong Law of Large Numbers and a Central Limit Theorem
(CLT). Under appropriate regularity conditions [4, 31], it holds that

p
n. O�fix

t;n � �/ ! N .0; �2
as.f //; .n ! 1/; (3)

where �2
as.f / is called the asymptotic variance. In contrast with the asymptotic

theory, explicit nonasymptotic error bounds for O�fix
t;n appear to be very difficult to

derive in practically meaningful problems.
Regenerative simulation offers a way to get around some of the difficulties. The

split chain construction introduced in [2, 27] (to be described in Sect. 2) allows for
partitioning the trajectory .Xn/n�0 into i.i.d. random tours (excursions) between
consecutive regeneration times T0; T1; T2; : : : . Random variables

�k.f / WD
Tk�1X

iDTk�1

f .Xi / (4)

are i.i.d. for k D 1; 2; : : : (�0.f / can have a different distribution). Mykland et al.
in [24] suggested a practically relevant recipe for identifying T0; T1; T2; : : : in
simulations (formula (2) in Sect. 2). This resolves the burn-in problem since one can
just ignore the part until the first regeneration T0. One can also stop the simulation at
a regeneration time, say Tr , and simulate r full i.i.d. tours, cf. Sect. 4 of [32]. Thus
one estimates � by

O� reg
r WD 1

Tr � T0

Tr �1X
iDT0

f .Xi / D
Pr

kD1 �k.f /Pr
kD1 �k

; (5)
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where �k D Tk � Tk�1 D �k.1/ are the lengths of excursions. The number of
tours r is fixed and the total simulation effort Tr is random. Since O� reg

r involves
i.i.d. random variables, classical tools seem to be sufficient to analyse its behaviour.
Asymptotically, (5) is equivalent to (2) because

p
rm. O� reg

r � �/ ! N .0; �2
as.f //; .r ! 1/;

where m WD E �1. Now rm D E .Tr � T0/, the expected length of the trajectory,
plays the role of n. However, our attempt at nonasymptotic analysis in Sect. 3.1
reveals unexpected difficulties: our bounds involve m in the denominator and in
most practically relevant situations m is unknown.

If m is known then instead of (5) one can use an unbiased estimator

Q�unb
r WD 1

rm

rX
kD1

�k.f /; (6)

Quite unexpectedly, (6) is not equivalent to (5), even in a weak asymptotic sense.
The standard CLT for i.i.d. summands yields

p
rm. Q�unb

r � �/ ! N .0; �2
unb.f //; .r ! 1/;

where �2
unb.f / WD Var�1.f /=m is in general different from �2

as.f /.
We introduce a new regenerative-sequential simulation scheme, for which better

nonasymptotic results can be derived. Namely, we fix n and define

R.n/ WD minfr W Tr > T0 C ng:

The estimator is defined as

O� reg-seq
n WD 1

TR.n/ � T0

TR.n/�1X
iDT0

f .Xi / D
PR.n/

kD1 �k.f /PR.n/

kD1 �k

: (7)

We thus generate a random number of tours as well as a random number of samples.
Our approach is based on inequalities for the mean square error,

MSE WD E . O� � �/2:

Bounds on the MSE can be used to construct fixed precision confidence intervals.
The goal is to obtain an estimator O� which satisfies

P.j O� � � j � "/ � 1 � ˛; (8)
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for given " and ˛. We combine the MSE bounds with the so called “median trick”
[15, 26]. One runs MCMC repeatedly and computes the median of independent
estimates to boost the level of confidence. In our paper, the median trick is used
in conjunction with regenerative simulation.

The organization of the paper is the following. In Sect. 2 we recall the split chain
construction. Nonasymptotic bounds for regenerative estimators defined by (5), (6)
and (7) are derived in Sect. 3. Derivation of more explicit bounds which involve
only computable quantities is deferred to Sects. 5 and 6, where we consider classes
of chains particularly important in the MCMC context. An analogous analysis of the
non-regenerative scheme (2) was considered in [20] and (in a different setting and
using different methods) in [33].

In Sect. 4 we discuss the median trick. The resulting confidence intervals are
compared with asymptotic results based on the CLT.

In Sect. 5 we consider Doeblin chains, i.e., uniformly ergodic chains that satisfy
a one step minorization condition. We compare regenerative estimators (5), (6) and
(7). Moreover, we also consider a perfect sampler available for Doeblin chains, cf.
[14,35]. We show that confidence intervals based on the median trick can outperform
those obtained via exponential inequalities for a single run simulation.

In Sect. 6 we proceed to analyze geometrically ergodic Markov chains, assuming
a drift condition towards a small set. We briefly compare regenerative schemes (5)
and (7) in this setting (the unbiased estimator (6) cannot be used, because m is
unknown).

2 Regenerative Simulation

We describe the setting more precisely. Let .Xn/n�0 be a Markov chain with tran-
sition kernel P on a Polish space X with stationary distribution �; i.e., �P D �:

Assume P is �-irreducible. The regeneration/split construction of Nummelin [27]
and Athreya and Ney [2] rests on the following assumption.

Assumption 1 (Small Set) There exist a Borel set J � X of positive � measure,
a number ˇ > 0 and a probability measure � such that

P.x; �/ � ˇI.x 2 J /�.�/:

Under Assumption 1 we can define a bivariate Markov chain .Xn; �n/ on the
space X � f0; 1g in the following way. Variable �n�1 depends only on Xn�1 via
P.�n�1 D 1jXn�1 D x/ D ˇI.x 2 J /. The rule of transition from .Xn�1; �n�1/ to
Xn is given by

P.Xn 2 Aj�n�1 D 1; Xn�1 D x/ D �.A/;

P.Xn 2 Aj�n�1 D 0; Xn�1 D x/ D Q.x; A/;
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where Q is the normalized “residual” kernel given by

Q.x; �/ WD P.x; �/ � ˇI.x 2 J /�.�/
1 � ˇI.x 2 J /

:

Whenever �n�1 D 1, the chain regenerates at moment n. The regeneration
epochs are

T0 WD minfn W �n�1 D 1g;
Tk WD minfn > Tk�1 W �n�1 D 1g:

The random tours defined by

�k WD .XTk�1
; : : : ; XTk�1; �k/; where �k D Tk � Tk�1; (9)

are independent. Without loss of generality, we assume that X0 � �.�/, unless stated
otherwise. Under this assumption, all the tours �k are i.i.d. for k > 0. We therefore
put T0 WD 0 and simplify notation. In the sequel symbols P and E without subscripts
refer to the chain started at �. If the initial distribution 	 is other than �, it will be
explicitly indicated by writing P	 and E 	 . Notation m D E �1 stands throughout the
paper.

We assume that we are able to identify regeneration times Tk . Mykland et al.
pointed out in [24] that actual sampling from Q can be avoided. We can generate
the chain using transition probabability P and then recover the regeneration
indicators via

P.�n�1 D 1jXn; Xn�1/ D I.Xn�1 2 J /
ˇ�.dXn/

P.Xn�1; dXn/
;

where �.dy/=P.x; dy/ denotes the Radon-Nikodym derivative (in practice, the
ratio of densities). Mykland’s trick has been established in a number of practically
relevant families (e.g., hierarchical linear models) and specific Markov chains
implementations, such as block Gibbs samplers or variable-at-a-time chains, see
[17, 25].

3 General Results for Regenerative Estimators

Recall that f W X ! R is a measurable function and � D �f . We consider
block sums �k.f / defined by (4). The general Kac theorem states that the
mean occupation time during one tour is proportional to the stationary measure
(Theorem 10.0.1 in [23] or Eqs. 3.3.4, 3.3.6, 3.4.7, and 3.5.1 in [28]). This yields

m D 1

ˇ�.J /
; E�1.f / D m�f D m�:
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From now on we assume that E�1.f /2 < 1 and E �2
1 < 1. For a discussion

of these assumptions in the MCMC context, see [13]. Let Nf WD f � �f and define

�2
as.f / WD E�1. Nf /2

m
; (10)

�2
� WD Var�1

m
: (11)

Remark 1. Under Assumption 1, finiteness of E�1. Nf /2 is a sufficient and neces-
sary condition for the CLT to hold for Markov chain .Xn/n�0 and function f . This
fact is proved in [4] in a more general setting. For our purposes it is important to
note that �2

as.f / in (10) is indeed the asymptotic variance which appears in the CLT.

3.1 Results for O�reg
r

We are to bound the estimation error which can be expressed as follows:

O� reg
r � � D

Pr
kD1

�
�k.f / � ��k

�
Pr

kD1 �k

D
Pr

kD1 dk

Tr

: (12)

where dk WD �k.f / � ��k D �k. Nf /. Therefore, for any 0 < ı < 1;

P.j O� reg
r � � j > "/ � P

 ˇ̌
ˇ̌ rX

kD1

dk

ˇ̌
ˇ̌ > rm".1 � ı/

!
C P

�
Tr < rm.1 � ı/

�
:

Since dk are i.i.d. with Ed1 D 0 and Vard1 D m�2
as.f /, we can use Chebyshev

inequality to bound the first term above:

P

 ˇ̌
ˇ̌ rX

kD1

dk

ˇ̌
ˇ̌ > rm".1 � ı/

!
� �2

as.f /

rm"2.1 � ı/2
:

The second term can be bounded similarly. We use the fact that �k are i.i.d. with
E �1 D m to write

P

�
Tr < rm.1 � ı/

�
� �2

�

rm2ı2
:

We conclude the above calculation with in following Theorem.

Theorem 1 Under Assumption 1 the following holds for every 0 < ı < 1

P.j O� reg
r � � j > "/ � 1

rm

�
�2

as.f /

"2.1 � ı/2
C �2

�

mı2

�
(13)
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and is minimized by

ı D ı� WD �
2=3
�

�
2=3
as .f /"

�2=3 C �
2=3
�

:

Obviously, ETr D rm is the expected length of trajectory. The main drawback
of Theorem 1 is that the bound on the estimation error depends on m, which is
typically unknown. Replacing m by 1 in (13) would be highly inefficient. This
fact motivates our study of another estimator, O� reg-seq

n , for which we can obtain
much more satisfactory results. We think that the derivation of better nonasymptotic
bounds for O� reg

r (not involving m) is an open problem.

3.2 Results for Q�unb
r

Recall that Q�unb
r can be used only when m is known and this situation is rather rare

in MCMC applications. The analysis of Q�unb
r is straightforward, because it is simply

a sum of i.i.d. random variables. In particular, we obtain the following.

Corollary 1 Under Assumption 1,

E . Q�unb
r � �/2 D �2

unb.f /

rm
; P.j Q�unb

r � � j > "/ � �2
unb.f /

rm "2
:

Note that �2
unb.f / D Var�1.f /=m can be expressed as

�2
unb.f / D �2

as.f / C �2�2
� C 2�
. Nf ; 1/; (14)

where 
. Nf ; 1/ WD Cov.�1. Nf /; �1.1//=m. This follows from the simple observation
that Var�1.f / D E .�1. Nf / C �.�1 � m//2.

3.3 Results for O� reg-seq
n

The result below bounds the MSE and the expected number of samples used to
compute the estimator.

Theorem 2 If Assumption 1 holds then

.i/ E . O� reg-seq
n � �/2 � �2

as.f /

n2
E TR.n/
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and
.ii/ E TR.n/ � n C C0;

where
C0 WD �2

� C m:

Corollary 2 Under Assumption 1,

E . O� reg-seq
n � �/2 � �2

as.f /

n

�
1 C C0

n

	
; (15)

P .j O� reg-seq
n � � j > "/ � �2

as.f /

n"2

�
1 C C0

n

	
: (16)

Remark 2. Note that the leading term �2
as.f /=n in (15) is “asymptotically correct”

in the sense that the standard fixed length estimator has MSE � �2
as.f /=n. The

regenerative-sequential scheme is “close to the fixed length simulation”, because
limn!1ETR.n/=n D 1.

Proof (of Theorem 2). Just as in (12) we have

O� reg-seq
n � � D

PR.n/

kD1.�k.f / � ��k/PR.n/

kD1 �k

D 1

TR.n/

R.n/X
kD1

dk;

where pairs .dk; �k/ are i.i.d. with Ed1 D 0 and Vard1 D m�2
as.f /. Since TR.n/ > n,

it follows that

E . O� reg-seq
n � �/2 � 1

n2
E

0
@R.n/X

kD1

dk

1
A

2

:

Since R.n/ is a stopping time with respect to Gk D �..d1; �1/; : : : ; .dk; �k//, we are
in a position to apply the two Wald’s identities (see Appendix). The second identity
yields

E

0
@

R.n/X
kD1

dk

1
A

2

D Var d1 ER.n/ D m�2
as.f /ER.n/:

In this expression we can replace mER.n/ by ETR.n/ because of the first Wald’s
identity:

E TR.n/ D E

R.n/X
kD1

�k D E �1 ER.n/ D mER.n/

and (i) follows.
We now focus attention on bounding the expectation of the “overshoot” �.n/ WD

TR.n/ � n. Since we assume that X0 � �, the cumulative sums �1 D T1 < T2 <

: : : < Tk < : : : form a (nondelayed) renewal process in discrete time. Let us invoke
the following elegant theorem of Lorden [21, Theorem 1]:
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E�.n/ � E �2
1 =m:

This inequality combined with (11) yields immediately ETR.n/ D E .n C �.n// �
n C �2

� C m, i.e., (ii).

4 The Median Trick

This ingeneous method of constructing fixed precision MCMC algorithms was
introduced in 1986 in [15], later used in many papers concerned with computational
complexity and further developed in [26]. We run l independent copies of the
Markov chain. Let O�.j / be an estimator computed in j th run. The final estimate
is O� WD med. O�.1/; : : : ; O�.l//. To ensure that O� satisfies (8), we require that P.j O�.j / �
� j > "/ � a (j D 1; : : : ; l) for some modest level of confidence 1 � a < 1 � ˛.
This is obtained via Chebyshev’s inequality, if a bound on MSE is available. The
well-known Chernoff’s inequality gives for odd l ,

P .j O� � � j � "/ � 1

2
Œ4a.1 � a/�l=2 D 1

2
exp



l

2
ln Œ4a.1 � a/�

�
: (17)

It is pointed out in [26] that under some assumptions there is a universal choice of
a, which nearly minimizes the overall number of samples, a� 	 0:11969.

Let us now examine how the median trick works in conjunction with regenerative
MCMC. We focus on O� reg-seq

n , because Corollary 2 gives the best available bound on
MSE. We first choose n such that the right hand side of (16) is less than or equal to
a�. Then choose l big enough to make the right hand side of (17) (with a D a�)
less than or equal to ˛. Compute estimator O� reg-seq

n repeatedly, using l independent
runs of the chain. We can see that (8) holds if

n � C1�
2
as.f /

"2
C C0; (18)

l � C2 ln.2˛/�1 and l is odd; (19)

where C1 WD 1=a� 	 8:3549 and C2 WD 2=ln Œ4a�.1 � a�/��1 	 2:3147 are
absolute constants. Indeed, (18) entails C1�

2
as.f /=."2n/ � 1 � C0=n, so

C1�
2
as.f /=."2n/.1 C C0=n/ � 1 � C 2

0 =n2 < 1. Consequently �2
as.f /=."2n/.1 C

C0=n/ < a� and we are in a position to apply (16).
The overall (expected) number of generated samples is lETR.n/ � nl as " ! 0

and n ! 1, by Theorem 2 (ii). Consequently for " ! 0 the cost of the algorithm
is approximately

nl � C
�2

as.f /

"2
log.2˛/�1; (20)
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where C D C1C2 	 19:34. To see how tight is the obtained lower bound, let
us compare (20) with the familiar asymptotic approximation, based on the CLT.
Consider an estimator based on one MCMC run of length n, say O�n D O�fix

t;n with
t D 0. From (3) we infer that

lim
"!0

P.j O�n � � j > "/ D ˛;

holds for

n � �2
as.f /

"2

�
˚�1.1 � ˛=2/

2
; (21)

where ˚�1 is the quantile function of the standard normal distribution. Taking into
account the fact that Œ˚�1.1 � ˛=2/�2 � 2 log.2˛/�1 for ˛ ! 0 we arrive at the
following conclusion. The right hand side of (20) is bigger than (21) roughly by a
constant factor of about 10 (for small " and ˛). The important difference is that (20)
is sufficient for an exact confidence interval while (21) only for an asymptotic one.

5 Doeblin Chains

Assume that the transition kernel P satisfies the following Doeblin condition: there
exist ˇ > 0 and a probability measure � such that

P.x; �/ � ˇ�.�/ for every x 2 X : (22)

This amounts to taking J WD X in Assumption 1. Condition (22) implies that the
chain is uniformly ergodic. We refer to [31] and [23] for definition of uniform
ergodicity and related concepts. As a consequence of the regeneration construction,
in our present setting �1 is distributed as a geometric random variable with parameter
ˇ and therefore

m D E �1 D 1

ˇ
and �2

� D Var�1

m
D 1 � ˇ

ˇ
:

Bounds on the asymptotic variance �2
as.f / under (22) are well known. Let �2 D

� Nf 2 be the stationary variance. Results in Sect. 5 of [4] imply that

�2
as.f / � �2

 
1 C 2

p
1 � ˇ

1 �p
1 � ˇ

!
� 4�2

ˇ
: (23)

Since in [4] a more general situation is considered, which complicates the formulas,
let us give a simple derivation of (23) under (22). By (10) and the formula (29) given
in the Appendix,
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�2
as.f / � E�1.j Nf j/2

m
D E �

Nf .X0/
2 C 2

1X
iD1

E � j Nf .X0/ Nf .Xi /jI.�1 > i/:

The first term above is equal to �2. To bound the terms of the series, use Cauchy-
Schwarz and the fact that, under (22), random variables X0 and �1 are independent.

Therefore E � j Nf .X0/ Nf .Xi/jI.�1 > i/ � �
E �

Nf .Xi/
2
E �

Nf .X0/
2
P�.�1 > i/

�1=2 D
�2.1 � ˇ/i=2. Computing the sum of the geometric series yields (23).

If the chain is reversible, there is a better bound than (23). We can use the
well-known formula for �2

as.f / in terms of the spectral decomposition of P (e.g.,
expression “C” in [11]). Results of [30] show that the spectrum of P is a subset of
Œ�1 C ˇ; 1 � ˇ�. We conclude that for reversible Doeblin chains,

�2
as.f / � 2 � ˇ

ˇ
�2 � 2�2

ˇ
: (24)

An important class of reversible chains are Independence Metropolis-Hastings
chains (see e.g., [31]) that are known to be uniformly ergodic if and only if the
rejection probability r.x/ is uniformly bounded from 1 by say 1 � ˇ. This is
equivalent to the candidate distribution being bounded below by ˇ� (cf. [1,22]) and
translates into (22) with � D � . The formula for �2

as.f / in (23) and (24) depends
on ˇ in an optimal way. Moreover (24) is sharp. To see this consider the following
example.

Example 1. Let ˇ � 1=2 and define a Markov chain .Xn/n�0 on X D f0; 1g with
stationary distribution � D Œ1=2; 1=2� and transition matrix

P D
�

1 � ˇ=2 ˇ=2

ˇ=2 1 � ˇ=2

�
:

Hence P D ˇ� C .1 � ˇ/I2 and P.x; �/ � ˇ�: Note that the residual kernel Q is in
our example the identity matrix I2. Thus, before the first regeneration �1 the chain
does not move. Let f .x/ D x: Thus �2 D 1=4. To compute �2

as.f / we use another
well-known formula (expression “B” in [11]):

�2
as.f / D �2 C 2

1X
iD1

Cov�ff .X0/; f .Xi /g

D �2 C 2�2

1X
iD1

.1 � ˇ/i D 2 � ˇ

ˇ
�2:

To compute �2
unb.f /, note that �1.f / D I.X0 D 1/�1. Since �1 is independent of

X0 and X0 � � D � we obtain
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�2
unb.f / D ˇVar�1.f / D ˇ

�
EVar.�1.f /jX0/ C VarE .�1.f /jX0/



D 1 � ˇ

2ˇ
C 1

4ˇ
D 3 � 2ˇ

ˇ
�2:

Interestingly, in this example �2
unb.f / > �2

as.f /.

In the setting of this section, we will now compare upper bounds on the total
simulation effort needed for different MCMC schemes to get P.j O� � � j > "/ � ˛.

5.1 Regenerative-Sequential Estimator and the Median Trick

Recall that this simulation scheme consists of l MCMC runs, each of approximate
length n. Substituting either (23) or (24) in (20) we obtain that the expected number
of samples is

nl � 19:34
4�2

ˇ"2
log.2˛/�1 and nl � 19:34

.2 � ˇ/�2

ˇ"2
log.2˛/�1 (25)

(respectively in the general case and for reversible chains). Note also that in the
setting of this Section we have an exact expression for the constant C0 in Theorem 2.
Indeed, C0 D 2=ˇ � 1.

5.2 Standard One-Run Average and Exponential Inequality

For uniformly ergodic chains a direct comparison of our approach to exponential
inequalities [10, 18] is possible. We focus on the result proved in [18] for chains on
a countable state space. This inequality is tight in the sense that it reduces to the
Hoeffding bound when specialised to the i.i.d. case. For f bounded let kf k1 WD
supx2X jf .x/j. Consider the simple average over n Markov chain samples, say
O�n D O�fix

t;n with t D 0. For an arbitrary initial distribution 	 we have

P	.j O�n � � j > "/ � 2 exp

(
�n � 1

2

�
2ˇ

kf k1
" � 3

n � 1

	2
)

:

After identifying the leading terms we can see that to make the right hand side less
than ˛ we need

n � kf k21
2ˇ2"2

log.˛=2/�1 � 2�2

ˇ2"2
log.˛=2/�1: (26)
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Comparing (25) with (26) yields a ratio of roughly 40ˇ or 20ˇ respectively. This in
particular indicates that the dependence on ˇ in [10, 18] probably can be improved.
We note that in examples of practical interest ˇ usually decays exponentially with
the dimension of X and using the regenerative-sequential-median scheme will
often result in a lower total simulation cost. Moreover, this approach is valid for
an unbounded target function f , in contrast with classical exponential inequalities.

5.3 Perfect Sampler and the Median Trick

For Doeblin chains, if regeneration times can be identified, perfect sampling can
be performed easily as a version of read-once algorithm [35]. This is due to the
following observation. If condition (22) holds and X0 � � then

XTk�1; k D 1; 2; : : :

are i.i.d. random variables from � (see [4, 5, 14, 28] for versions of this result).
Therefore from each random tour between regeneration times one can obtain a
single perfect sample (by taking the state of the chain prior to regeneration) and
use it for i.i.d. estimation. We define

O�perf
r WD 1

r

rX
kD1

f .XTk�1/:

Clearly

E . O�perf
r � �/2 D �2

r
and P.j O�perf

r � � j > "/ � �2

r"2
:

Note that to compute O�perf
r we need to simulate n � r=ˇ steps of the Markov chain.

If we combine the perfect sampler with the median trick we obtain an algorithm
with the expected number of samples

nl � 19:34
�2

ˇ"2
log.2˛/�1: (27)

Comparing (25) with (26) and (27) leads to the conclusion that if one targets
rigorous nonasymptotic results in the Doeblin chain setting, the approach described
here outperforms other methods.

5.4 Remarks on Other Schemes

The bound for O� reg
r in Theorem 1 is clearly inferior to that for O� reg-seq

n in Corollary 2.
Therefore we excluded the scheme based on O� reg

r from our comparisons.
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As for Q�unb
r , this estimator can be used in the Doeblin chains setting, because

m D 1=ˇ is known. The bounds for Q�unb
r in Sect. 3.2 involve �2

unb.f /. Although we
cannot provide a rigorous proof, we conjecture that in most practical situations we
have �2

unb.f / > �2
as.f /, because 
. Nf ; 1/ in (14) is often close to zero. If this is the

case, then the bound for Q�unb
r is inferior to that for O� reg-seq

n .

6 A Geometric Drift Condition

Using drift conditions is a standard approach for establishing geometric ergodicity.
We refer to [31] or [23] for the definition and further details. The assumption
below is the same as in [3]. Specifically, let J be the small set which appears in
Assumption 1.

Assumption 2 (Drift) There exist a function V W X ! Œ1; 1Œ, constants  < 1

and K < 1 such that

P V.x/ WD
Z

X

P.x; dy/V.y/ �
(

V.x/ for x 62 J;

K for x 2 J;

In many papers conditions similar to Assumption 2 have been established for realis-
tic MCMC algorithms in statistical models of practical relevance [7,8,12,16,17,34].
This opens the possibility of computing our bounds in these models.

Under Assumption 2, it is possible to bound �2
as.f /, �2

� and C0 which appear in
Theorems 1 and 2, by expressions involving only , ˇ and K . The following result
is a minor variation of Theorem 6.5 in [19].

Theorem 3 If Assumptions 1 and 2 hold and f is such that k Nf kV 1=2 WD
supx j Nf .x/j=V 1=2.x/ < 1, then

�2
as.f / � k Nf k2

V 1=2

�
1 C 1=2

1 � 1=2
�.V / C 2.K1=2 � 1=2 � ˇ/

ˇ.1 � 1=2/
�.V 1=2/

�

C0 � 2

�
1=2

1 � 1=2
�.V 1=2/ C K1=2 � 1=2 � ˇ

ˇ.1 � 1=2/

�
C 1:

To bound �2
� we can use the obvious inequality �2

� D C0 � m � C0 � 1. Moreover,
one can easily control �V and �V 1=2 and further replace k Nf kV 1=2 e.g., by kf kV 1=2 C
.K1=2 � 1=2/=.1 � 1=2/, we refer to [19] for details.

Let us now discuss possible approaches to confidence estimation in the setting
of this section. Perfect sampling is in general unavailable. For unbounded f we
cannot apply exponential inequalities for the standard one-run estimate. Since m is
unknown we cannot use Q�unb

r . This leaves O� reg
r and O� reg-seq

n combined with the median
trick. To analyse O� reg

r we can apply Theorem 1. Upper bounds for �2
as.f / and �2

� are
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available. However, in Theorem 1 we will also need a lower bound on m. Without
further assumptions we can only write

m D 1

�.J /ˇ
� 1

ˇ
: (28)

In the above analysis (28) is particularly disappointing. It multiplies the bound by
an unexpected and substantial factor, as �.J / is typically small in applications. For
O� reg-seq
n we have much more satisfactory results. Theorems 2 and 3 can be used to

obtain bounds which do not involve m. In many realistic examples, the parameters ˇ,
 and K which appear in Assumptions 1 (Small Set) and 2 (Drift) can be explicitly
computed, see e.g., [16, 17, 34].

We note that nonasymptotic confidence intervals for MCMC estimators under
drift condition have also been obtained in [20], where identification of regeneration
times has not been assumed. In absence of regeneration times a different approach
has been used and the bounds are typically weaker. For example one can compare
[20, Corollary 3.2] (for estimator O�fix

t;n) combined with the bounds in [3] with our

Theorems 2 and 3 (for estimator O� reg-seq
n ).

Appendix

For convenience, we recall the two identities of Abraham Wald, which we need
in the proof of Theorem 2. Proofs can be found e.g., in [6, Theorems 1 and 3 in
Sect. 5.3].

Assume that �1; : : : ; �k; : : :, are i.i.d. random variables and R is a stopping time
such that ER < 1.

I Wald identity: If E j�1j < 1 then

E

RX
kD1

�k D ERE �1:

II Wald identity: If E �1 D 0 and E �2
1 < 1 then

E

 
RX

kD1

�k

!2

D ERE �2
1:

In Sect. 5 we used the following formula taken from [28, Eq. 4.1.4]. In the
notation of our Sects. 2 and 3, for every g � 0 we have

E ��1.g/2

m
D E �g.X0/

2 C 2

1X
iD1

E �g.X0/g.Xi /I.T > i/: (29)
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In [28] this formula, with g D Nf , is used to derive an expression for the asymptotic
variance �2

as.f / D E ��1. Nf /=m under the assumption that f is bounded. For g � 0,
the proof is the same.
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Accelerating the Convergence of Lattice
Methods by Importance Sampling-Based
Transformations

Earl Maize, John Sepikas, and Jerome Spanier

Abstract Importance sampling is a powerful technique for improving the stochas-
tic solution of quadrature problems as well as problems associated with the
solution of integral equations, and a generalization of importance sampling, called
weighted importance sampling, provides even more potential for error reduction.
Additionally, lattice methods are particularly effective for integrating sufficiently
smooth periodic functions. We will discuss the advantage of combining these ideas
to transform non-periodic to periodic integrands over the unit hypercube to improve
the convergence rates of lattice-based quadrature formulas. We provide a pair of
examples that show that with the proper choice of importance transformation,
the order in the rate of convergence of a quadrature formula can be increased
significantly.

This technique becomes even more effective when implemented using a family of
multidimensional dyadic sequences generally called extensible lattices. Based on an
extension of an idea of Soboĺ [17] extensible lattices are both infinite and at the same
time return to lattice-based methods with the appropriate choice of sample size.
The effectiveness of these sequences, both theoretically and with numerical results,
is discussed. Also, there is an interesting parallel with low discrepancy sequences
generated by the fractional parts of integer multiples of irrationals which may point
the way to a useful construction method for extensible lattices.
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L. Plaskota and H. Woźniakowski (eds.), Monte Carlo and Quasi-Monte Carlo
Methods 2010, Springer Proceedings in Mathematics and Statistics 23,
DOI 10.1007/978-3-642-27440-4 32, © Springer-Verlag Berlin Heidelberg 2012

557



558 E. Maize et al.

1 Introduction

The need for estimates of multidimensional integrals is widespread. It is well known
nowadays that quasi-Monte Carlo (qMC) methods can (sometimes surprisingly)
provide better estimates for these purposes than classical deterministic quadrature
formulas or pseudorandom Monte Carlo (MC) methods. All such qMC methods rely
on the uniformity of the points selected in the integration domain. A highly desirable
feature of any technique for forming such estimates is the possibility of adding
sample points without recomputing the previously sampled points. For independent
samples (the MC case) this is no problem but for correlated samples (the qMC case)
the uniformity, as measured by the discrepancy, tends to be lowered in blocks whose
size depends on the algorithm that generates the qMC sequence. Moreover, when the
qMC sequence is generated by a conventional lattice rule, extending the sequence
requires recomputing all of the sequence elements anew, as we will explain below.
In other words, conventional lattice rule methods require deciding in advance how
many qMC points are needed – an uncomfortable constraint when more points are
needed. Overcoming this limitation leads to the notion of extensible lattice rules.

Let g be an s-dimensional vector of integers and form the sequence

xn D
n n

N
g
o

n D 0; 1; : : : ; N � 1 (1)

where the braces indicate the fractional part of each vector component. We are
interested in using the xn as arguments for the approximation of an integral over
the s-dimensional hypercube I s by a sum:

� D
Z

I s

f .x/dx � 1

N

NX
nD1

f .xn/: (2)

The formulas (1) and (2) define a rank-1 lattice rule, an idea that originated with
Korobov [8], and has given rise to a great deal of interest in the intervening years,
especially in the last 20 years.

It is well known that lattice methods are especially attractive when used to
estimate integrals of smooth periodic functions. Consider the class E�

s .K/ of all
periodic functions f on I s whose coefficients in the absolutely convergent Fourier
series expansion

f .x/ D
X
h2Zs

ch exp.2�i h � x/ (3)

satisfy the decay condition

jchj � K
1

r.h/�
: (4)
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with � > 1 and where

r.h/ D max.1; jh1j/ max.1; jh2j/ � � � max.1; jhsj/ (5)

and h D .h1; : : : ; hs/ 2 Zs .
For such functions, a quick calculation shows that the error in a lattice method

may be expressed as

ˇ̌
ˇ̌
ˇ̌
Z

I s

f .x/d t � 1

N

NX
nD1

f .xn/

ˇ̌
ˇ̌
ˇ̌ D

X0

h�g�0.modN/

ch (6)

� K
X0

h�g�0.modN/

r.h/��: (7)

where the prime on the summation indicates that the sum is to taken over all h 2 Zs

except for h D .0; : : : ; 0/. The infinite sum appearing in (7) is a recurring figure of
merit for lattice methods which we denote by

P�.g; N / �
X0

h�g�0.modN/

r.h/��: (8)

An excellent survey of lattice methods is in [13]. One can find there that there
exist lattice methods whose errors satisfy

ˇ̌
ˇ̌
ˇ̌
Z

I s

f .x/d t � 1

N

NX
nD1

f .xn/

ˇ̌
ˇ̌
ˇ̌ D O.N ��.logN /�s/: (9)

Note that the error expression in (9) now takes advantage of the additional
smoothness of the integrand as represented by the size of �.

It is clear from (1) that the value of xn depends on the choice of the integer
N . In his 1981 Ph.D. dissertation Maize [11] observed that certain infinite dyadic
sequences (and their generalizations to other prime bases) can be used to define
arguments xn that do not depend on an a priori choice of N; as they do in the
formula (1). This gives rise to the possibility of extending N – point lattice rule
quadrature formulas to infinite sequences that revert to lattice rules for specific
choices of N: The simplest instance of these in the one dimensional case gives rise
to the van der Corput sequence xn D �2.n/ and produces an infinite sequence with
the property that when N is any power of two, the points x1; : : : ; xN define a lattice.
Maize pointed out that such sequences can be easily (and exactly) implemented in
a computer and he showed how such sequences might be used to improve upon
(log N )s/N convergence rates for periodic and sufficiently regular integrands.
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Many of the ideas of Maize’s dissertation were published in the paper [21].
The idea of extensibility for lattice rules reappeared in a paper by Hickernell and
Hong [4] and has subsequently been pursued further in [5, 6] and in other papers.
Such infinite sequences, defined with respect to a number base b with the property
that for every integer b the first bm points form a lattice, are now called extensible
lattice rules. Such sequences, therefore, behave in much the same way as the initial
segments of .t; s/ sequences do to form .t; m; s/ nets [12, 13]. The challenge is to
establish the existence of extensible lattices with favorable uniformity properties and
exhibit constructive algorithms for their effective computation.

To capitalize on this possibility, we explore the potential advantage in converting
nonperiodic to periodic integrands by applying transformations of the sort that
are commonly used for other purposes in the context of pseudorandom Monte
Carlo. Specifically, we will see that importance sampling transformations are useful
candidates for such consideration.

These ideas will be illustrated by applying them to the evaluation of a simple
three dimensional integral and a more challenging four dimensional example.

2 Extensible Lattices

The generation of extensible lattices in [11] was inspired by the notion of good
direction numbers found in Soboĺ [17], which is itself a generalization of Korobov’s
development of the theory of good lattice points [8]. The essential motivation is to
find a way to preserve the desirable convergence properties of good lattice methods
while at the same time maintaining an unlimited supply of sampling points.

2.1 Generation of Extensible Lattices

The general method for defining an extensible lattice is to select an increasing
sequence of positive integers N1 < N2 < : : : and generating vectors of integers
g.1/; g.2/; : : : such that each finite lattice sequence is nested within the next. That is,

�
n

Nk

g.k/

� Nk�1

nD0

�
�

n

NkC1

g.kC1/

� NkC1�1

nD0

: (10)

Figure 1 depicts such a nested lattice sequence.
One particular method for accomplishing this is to choose a prime p and

let Nj D pj . If we then insist that the generating vectors satisfy g.lC1/ � g.l/

mod .pl / where the congruence is taken component-wise, it is easily seen that the
inclusions (10) are satisfied.
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Fig. 1 Nested lattices.

If our only aim were to sample integrands with the fixed sample sizes Nk; k D
1; 2; : : :, the definitions above would be sufficient. However, the practitioner may
wish to choose an intermediate sample size, that is a sample size N where Nk <

N < NkC1. For that we require a way to generate intermediate points in an extended
lattice in a manner that distributes them uniformly over I s . As it turns out, the van
der Corput sequence provides an ideal mechanism for accomplishing this.

Since our immediate goal is to explore the practical application of this theory, we
will from here on restrict ourselves to dyadic sequences; that is, extensible lattice
sequences with p D 2. The reader is referred to [5] and [6] for the more general case.

We begin with the s D 1 case. Let �.k/; k D 1; 2; : : : be a sequence of integers
with �.kC1/ � �.k/ .mod 2k/. For any integer n; represent n in base 2 via n D
�1 C �22 C � � � C �l 2

l�1 and define the nth component of the sequence as

x.n/ D
n�1

2
�.1/ C �2

4
�.2/ C � � � C �l

2l
�.l/

o
: (11)

Since �.kC1/ � �.k/ .mod 2k/ it follows that (11) is equivalent to

x.n/ D ˚
�2.n/�.l/

�
where l D blog2 nc C 1 (12)

and �2.n/ is van der Corput’s radical inverse function with base 2. Note that the
choice �.k/ D 1 for all k produces the classic van der Corput sequence.

Finally, given a sequence of s-dimensional vectors �.l/ whose components satisfy
�

.lC1/
j � �

.l/
j .mod 2l/ we may define the infinite s-dimensional sequence xn

component-wise via

x
.n/
j D �

2
�

.1/
j C �2

4
�

.2/
j C � � � C �l

2l
�

.l/
j (13)

or as noted above,
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x
.n/
j D

n
�2.n/�

.n/

l

o
where l D blog2 nc C 1: (14)

and then form the s-dimensional sequence via

x.n/ D ˚
�2.n/�.l/

�
(15)

where the fractional parts are taken component-wise.
Recall that for a prime p, the definition of a p-adic integer is an infinite sequence

fa.1/; a.2/; : : :g of integers where a.kC1/ � a.k/ .mod pk/. Denote by Op the set of
all such sequences with the canonical representation a.kC1/ D a.k/ C bpk where
b 2 f0; 1; 2; : : : ; p � 1g. With addition and multiplication defined componentwise
(and reduction to canonical form as required), the set Op , called the p-adic integers,
is an integral domain and can be imbedded in a field called the p-adic numbers. An
ordinary integer n is represented in Op via the sequence fn; n; : : : ; n; : : :g. In the
context of p-adic integers, ordinary integers are called rational integers.

Returning to the definition of the generating vector, we observe that a sequence
of integers �.k/; k D 1; 2; : : : satisfying �.kC1/ � �.k/ .mod 2k/ is simply a 2-adic
integer. It is quite straightforward to see [5, 11] that by viewing the binary fractions
as naturally imbedded within the 2-adic numbers and applying 2-adic arithmetic,
(15) is represented by

x.n/ D f�2.n/�g (16)

where � is a vector of 2-adic integers.

2.2 Distribution Properties of Extensible Lattices

In the previous section, we described a method for generating extensible lattices
which can be compactly expressed via (16). The existence of uniformly distributed
extensible lattice sequences is confirmed via the following theorem [11].

Theorem 1. Let �1; : : : �s be 2-adic integers and let � D .�1; : : : �s/: The s-
dimensional infinite sequence x.n/ D f�2.n/�g is uniformly distributed (see [10]) if
and only if �1; : : : �s are linearly independent over the rational integers.

The proof is accomplished via the use of Weyl’s criterion. Note the very intriguing
analog between sequences generated by (16) and sequences of the form x.n/ D
fn˛g where ˛ is an s-dimensional vector of irrational numbers. As it turns out in
both cases, the equidistribution of the sequence hinges on the independence of the
components of the generating vector over the rational numbers. We will expand
upon this observation later.

Clearly there is an ample supply of generating vectors since the cardinality
of the 2-adic integers is that of the continuum and any independent set will, in
the limit, correctly integrate any function in E�

s .K/. The question then turns to
the quantitative performance of these sequences. Most recently, Hickernell and
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Niederreiter [6] have examined the distribution properties of extensible lattices with
respect to several figures of merit. Their result germane to our discussion here is
summarized in the following theorem.

Theorem 2. For a given dimension s and any � > 0, there exist 2-adic generating
vectors � and a constant C.�; �; s/ such that

P�.�.l/; 2l / � C.�; �; s/2��l .log 2l/�.sC1/Œlog log.2l C 1/��.1C�/ (17)

for l D 1; 2; : : : :

where the figure of merit P�.�.l/; 2l / is defined in (8). Considering the very slowly
increasing log.log/ term, we see that, comparing (17) with (7), the potential penalty
for requiring that the lattices be nested is only slightly more than an additional factor
of log.2l /�.

2.3 Construction of Generating Vectors

From the previous sections, we know that uniformly distributed extensible lattices
not only exist, but at least in theory, have distribution properties that are worse
by only a factor slightly larger than log.N /� when compared with the best
known results for general lattice methods. Unfortunately, these results are based
on averaging techniques and none provides an explicit representation for good
generating vectors. We are left in the position of having a good theoretical method
but with no practical path to implemention.

One idea for the construction of generating vectors is a “bootstrap” method
whereby one picks an appropriate figure of merit and an initial guess for a generating
vector. One then examines the figure of merit for all possible candidate generating
vectors of the form �.lC1/ � �.l/ .mod pl /. A potential pitfall of this method of
course, is that, while at each step it does guarantee that the next component of the
generating vector will be optimal with respect to the previous choices, it does not
guarantee global optimality. Maize [11] numerically explored this technique for
� D 2 and p D 2. It was further studied by Hickernell et al. [5]. Niederreiter
and Pillichshammer [14] have examined this method in the more general context of
weighted Korobov spaces using several different figures of merit and have provided
some very positive results regarding this process. For the figure of merit P�.�.l/; 2l /

and remaining in base 2, the algorithm in [14] may be described as follows:

Step 1: Set �.1/ D .1; 1; : : : ; 1/

Step 2: For k D 2; 3; : : : ; choose �.k/ D �.k�1/ C 2k�1�; where �j D 0; 1; so
that P�.�.l/; 2l / is minimized. The following theorem appears in [14].

Theorem 3. With the algorithm above,
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P�.�.l/; 2l / D
X0

h��.l/D0.mod2l/

r.h/�2 �
� sY

j D1

.1 C 2	.�// � 1
�

min
�
l;

2��1

2��1 � 1

� 1

2l

(18)
where 	 is the Riemann zeta function.

We can see that there is a gap between this algorithm’s performance and the best
results of Sect. 2.2. In particular, we have lost, except in the constant multiplier,
any dependence on the smoothness of the integrand, �. As noted in Maize [11]
and Niederreiter and Pillichshammer [14], numerical evidence suggests that there
is substantial room for improvement. We present some of the evidence in the next
section.

2.4 Numerical Investigations

For the figure of merit P�.�.l/; 2l / we have implemented the algorithm in the
previous section for the choice � D 2 and for dimensions s D 1; 2; : : : ; 10 and
for sample sizes up to 228. The normalized results multiplied by N D 2l are
plotted in Fig. 2. Examining the curves in the figure, it is clear that the error term
is approaching zero more rapidly than 2�l suggested by the best known theoretical
results for the algorithm. The numerical results appear much more promising. In
fact, referring to Fig. 3 where the same results are normalized by the convergence
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rates inferred from Theorem 2, it may not be too reckless to conjecture that there
are generating vectors that will produce a convergence rate of

ˇ̌
ˇ̌
ˇ̌
Z

I s

f .x/d t � 1

N

NX
nD1

f .xn/

ˇ̌
ˇ̌
ˇ̌ D O..logN /�s=N �/ for f 2 E�

s .K/ (19)

and N D 2l .

3 Integration of Periodic and Non-periodic Functions

Traditionally, importance sampling [3, 19] provides a standard Monte Carlo tech-
nique for reducing the variance in pseudorandom estimates of an integral and in
solving integral equations. It achieves this by evaluating the integrand at points
that are nonuniformly distributed and reweighting the integrand values to eliminate
the bias engendered by the nonuniform sampling. The method attempts to generate
sample points preferentially in subdomains more “important” in the sense of their
relative contribution to estimates of the integral under consideration. Here we want
to use the methodology of importance sampling, and its generalization to weighted
uniform sampling [16,18], not to redistribute the sample points, but rather to convert
a nonperiodic integrand to one that is periodic and smooth. Our interest in doing so
is to gain access to the higher rates of convergence promised by lattice methods
when applied to smooth periodic integrands.
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3.1 Theoretical Convergence Rates

Standard MC methods converge, of course, at the rate forecast by the central
limit theorem. Thus, as the number N of samples increases the integration error
(as measured by the standard deviation, or the relative standard deviation, of the
sample mean) reduces asymptotically as O.N �1=2/ for any L2 integrand: For qMC
methods there are various measures of the error, frequently referred to as figures of
merit, such as the quantity P� that we have consistently used in this paper. Other
figures of merit are introduced elsewhere in the literature, and a more extensive
discussion can be found, e.g., in [14].

3.2 Use of Importance Sampling to Periodicize

Given the improved convergence rates for lattice methods when applied to smooth
periodic functions, it seems reasonable to investigate whether quadrature problems,
especially those in high dimensions, can benefit from conversion of nonperiodic to
periodic integrands. This is not a new idea; it was discussed already in [7, 9, 22].
More recently, the book [13] provides a number of other references related to this
topic.

In Paul Chelson’s 1976 dissertation [2], see also [20, 21], a primary focus was
to make rigorous the possibility of applying quasirandom methods to the estimation
of finite dimensional integrals and solutions of matrix and integral equations. The
latter problems are infinite dimensional in the sense that the underlying sample
space is infinite dimensional. Further, if that could be shown, Chelson wanted to
know whether variance reduction techniques, such as importance sampling, could
be useful in the qMC context. Chelson found that this is, indeed, the case and
he established a generalized Koksma-Hlawka inequality for both the finite and
infinite dimensional instances in which the term V.f / involving the variation of the
integrand is replaced by V.f =g/; where g plays the role of an importance function.
This gives rise to the possibility that the function g can be chosen in such a way
that V.f =g/ � V.f /: Such an idea could then improve the estimate of the integral,
but it does not increase the rate of convergence of the sum to the integral. In [11]
Maize generalized Chelson’s results to weighted importance sampling [16, 18] and
establised a Koksma-Hlawka inequality in which the variation of the integrand V.f /

is replaced by V..f � �h/=g/ where h is a positive weighting function.
These results established that these methods, so useful for MC applications,

might offer similar advantages in the qMC context. Whereas importance sampling
requires the selection of a suitable importance function, weighted uniform sampling
offers much greater flexibility. The reader is referred to [21] for a discussion of these
ideas.

For the estimation of s-dimensional integrals, the importance sampling formula-
tion chooses a (usually) nonuniform distribution function G.x/ on I s and uses the
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estimate

� D
Z

I s

f .t/d t � 1

N

NX
nD1

f .G�1.xn//

g.G�1.xn//
(20)

in place of Z

I s

f .t/d t � 1

N

NX
nD1

f .xn/; (21)

where g.x/ is the probability density function corresponding to G: Instead of
choosing G to minimize the variance (or variation in the qMC instance) of the
estimator f .x/=g.x/, we can choose G to convert f to a smooth periodic function
and hopefully take advantage of higher order convergence rates. More generally
according to Maize [11] (see also [21]), we can select a nonnegative weighting
function h.t/ whose integral over I s is 1 and use

Z

I s

f .t/d t �
NX

nD1

f .G�1.xn//

g.G�1.xn//
=

NX
nD1

h.G�1.xn//

g.G�1.xn//
(22)

in place of (21).
For example, a simple way to “periodicize” an integrand is via the Bernstein

polynomials
1

g.x/
D B˛.x/ D Kx˛.1 � x/˛ (23)

with a normalizing constant K; which is clearly a periodic function on I s: With such
a definition, it is a simple matter to calculate G�1.x/.

A potential danger of this method is that the Jacobian of the resulting transfor-
mation can produce much larger derivatives than those of f; adversely affecting
the error bounds. While we might obtain a better convergence rate, the implied
constants multiplying the error term may have grown to the point where we have
lost the advantage. An additional complication is that computing G�1 can be quite
cumbersome for practical problems. This is where the choice of the weighting
function h can be used. As stated above, [11] (see also [21]) provides a bound for the
error in weighted uniform sampling that is proportional to V..f ��h/=g/. From this
we can see that if h is chosen to mimic the behavior of the integrand, for example
by choosing h to be a low order approximation of f that is readily integrated, it
can both relieve the requirement that g closely mimic the integrand and at the same
time, reduce the constant multipliers in the error term.
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4 Examples

Let us suppose that we wish to evaluate the integral of the function f .x; y; z/ D
4x2yzexy over the three-dimensional unit cube. This integral is easily evaluated to

� D
Z

I 3

4x2yzexydxdyd z D 2.3 � e/: (24)

Figure 4 constrasts the performance of MC and a few qMC estimators in estimating
this integral. The quadrature errors incurred from the use of a pseudorandom
sequence, the Halton sequence, an fn˛g sequence, and the 3-dimensional extensible
lattice sequence based on the numerical alogrithms from Sect. 2.4 are plotted
versus sample size. One can easily see the rather slow

p
N performance of the

pseudorandom technique and the much better performance of the quasi-random
sequences.

We now focus on using an extensible lattice and the techniques from Sect. 3.2
to improve the performance of the estimates. We choose a very simple one-
dimensional importance function for each variable based on the first order Bernstein
polynomial

G�1.t/ D 3t2 � 2t3 (25)

where t D x; y; or z. A simple calculation shows that
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f .G�1.x//

g.G�1.x//
D 63xyz.1 � x/.1 � y/.1 � z/f .G�1.x//: (26)

For a weighting function, we will mimic the behavior of f by approximating the
exponential term with the first three terms of the appropriate Taylor series. After
performing the appropriate normalizations, we obtain

h.x; y; z/ D 80

11
x2yz.1 C xy C .xy/2

2
/: (27)

Figure 5 illustrates the results of these numerical studies. We can see that
using importance sampling to periodicize the integrand does, indeed, result in an
improved convergence rate. In addition, the use of the weighting function with
importance sampling maintains the improved convergence rate while improving the
constant multiplier. This fairly modest example shows that when the integrand is
sufficiently regular, the technique of weighted importance sampling, implemented
with extensible lattices, can be an effective technique for reducing error in qMC
computations.

As a second example, let us consider the 4-dimensional integral

� D
Z

R4

�
1 C kxk2

�1=2

e�kxk2
dx: (28)
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which has been studied in [1] and [15]. A change of variables yields the equivalent
integral

� D
Z

I 4

�
1 C

4X
j D1

.'�1/2.tj /=2
�1=2

d t (29)

where ' is the cumulative normal distribution function. For this example, we will
consider varying the order of the Bernstein polynomials used to “periodicize” the
integrand. Figure 6 compares the relative errors derived from our method (˛ D
2; 3; 4) with those based on the Genz-Patterson method used [1] for reference. Again
in this more challenging example we see the benefits of our approach. Our second
order method performs as well and the higher order methods outperform the Genz-
Patterson quadrature method.

5 Summary and Future Work

We have described early efforts to develop infinite sequences of points in I s

whose initial segments of length 2m form a series of ever larger lattices; sequences
now called extensible lattice sequences. Aside from their attractiveness for esti-
mating finite dimensional integrals, in Sect. 3.2 we mentioned that extensible
lattice sequences can also be used to solve infinite dimensional problems such as
those characterized by matrix and integral equations. The sequences introduced
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in Sect. 2.1 seem well suited to this task and we hope to report in a subsequent
publication on our efforts to explore this idea.

A second area of future work is to fill any part of the gap between the
best currently known theoretical convergence rates and the often more optimistic
evidence provided in various numerical experiments, including our own.

Finally, we plan to investigate the possible value of constructive methods for
extensible lattices that make use of p-adic irrationals, as suggested by Theorem 1.
We close with one final piece of evidence that this last idea may be a fruitful
approach.

Recall from Theorem 1 that a sufficient condition for uniform distribution of a
sequence of the form (16) is that the components of the generating vector � viewed
as 2-adic integers must be linearly independent over the rationals. The first quadratic
irrrational in the 2-adic numbers is

p
17 whose first few terms as a 2-adic integer

are given by
p

17 D f1; 3; 7; 7; 23; 23; 23; 23; 279; : : :g. We can select the generating
vector � D .1;

p
17/ in two dimensions and generate the sequence as defined in (16).

Figure 7 plots the normalized figure of merit P2.�; 2l / alongside the result from the
optimum generating vector for s D 2. As Fig. 7 clearly shows, while initially not
as good as the vector found by the exhaustive search, � D .1;

p
17/ is indeed an

effective generator of an extensible lattice for s D 2.
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Exact Simulation of Occupation Times

Roman N. Makarov and Karl Wouterloot

Abstract A novel algorithm for the exact simulation of occupation times for
Brownian processes and jump-diffusion processes with finite jump intensity is
constructed. Our approach is based on sampling from the distribution function of
occupation times of a Brownian bridge. For more general diffusions we propose
an approximation procedure based on the Brownian bridge interpolation of sample
paths. The simulation methods are applied to pricing occupation time derivatives
and quantile options under the double-exponential jump-diffusion process and the
constant elasticity of variance (CEV) diffusion model.

1 Introduction

Consider a filtered probability space .˝; F ; .Ft /t�0;P/. For a stochastic pro-
cess S D .St /t�0, adapted to the filtration .Ft /t�0, the occupation times below
and above level L 2 R from time 0 to T > 0 are respectively defined as follows:

AL;�
T .S/ �

Z T

0

1St�L dt (below L) and AL;C
T .S/ �

Z T

0

1St >L dt (above L).

(1)

The occupations times A
L;˙
T are nonnegative quantities and satisfy A

L;C
T C

AL;�
T D T . We will also use the notation AL;C

Œu;v� � R v
u 1St >L dt and AL;�

Œu;v� �R v
u 1St�L dt to denote the occupation times on an arbitrary time interval, Œu; v�,

0 � u < v.
Note that a strictly monotone transformation of a process does not change the

distribution of occupation times. Suppose the process X D .Xt/t�0 is obtained by
applying a strictly monotone mapping X to the process S, i.e. Xt D X.St / for t � 0.
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Then, A
L;˙
t .S/

dD A
`;˙
t .X/, for every t > 0, where ` D X.L/. In the paper, we

consider two asset pricing models that can be mapped to other simpler organized
processes. In particular, Kou’s model (Sect. 3) is an exponential Lévy process; the
CEV diffusion model (Sect. 4) is a power-type transformation of the CIR model.

There have been numerous papers published on the distribution of occupation
times for Brownian motion with and without drift. By using the Feynman-Kac
formula, the joint density function of the occupation time and terminal asset value
was obtained in [14] and [19] (see also [5]). A similar approach was used in [13]
to derive the distribution function of the occupation time for a standard Brownian
bridge from 0 to 0. Analytical pricing formulae for occupation time derivatives
under the constant elasticity of variance (CEV) diffusion models are obtained
in [18]. However, a numerical implementation of those results is difficult.

In this paper, we generalize the result of [13]. For one important case, we are
able to express the cumulative distribution functions (c.d.f.’s) of occupation times in
terms of the error function and elementary functions. This result allows us to apply
the inverse c.d.f. method for the efficient Monte Carlo simulation of occupation
times for various (jump-)diffusion processes.

Consider a market consisting of three securities: a risk-free bond with the price
process .Bt DB0ert /t�0, a risky asset with the price process .St /t�0 2 RC � Œ0; 1/,
and an occupation-time-related option contingent upon the asset. There are a large
number of different derivatives whose payoff functions depend on occupation times
of an asset price process. In this paper, we are interested in claims f ˙ whose payoff
is of the form f ˙ D f .ST ; A

L;˙
T /; for some function f W RC � Œ0; T � ! RC.

Assume there exists an equivalent probability measure (e.m.m. for short)eP such
that the discounted asset price process .e�rtSt /t�0 is aeP-martingale. The arbitrage
free price processes .V

f;˙
t /0�t�T of the claims f ˙ are thus defined by

V
f;˙

t D e�r.T�t /eE hf .ST ; A
L;˙
T / j Ft

i
: (2)

Step options were first proposed as an alternative to barrier options in [19]. The
payoff functions of the proportional step call and step put options are respectively
given by f call

step.ST ; AT / D .ST �K/Ce��AT and f
put
step.ST ; AT / D .K �ST /Ce��AT ;

where � � 0, and the occupation time AT in these formulae is given by (1).
As one can see, the payoff function of a step option works under the same

principles as knock-and-out barrier options, but with less risk. If a step down option
is purchased, the holder’s payout will be discounted by the occupation time below L,
provided that the process S does hit L before time T . Letting � ! 0C, a step option
becomes a vanilla European option. Letting � ! 1, the payoff of a step option

becomes that of a barrier option, since lim�!1 exp
�
��A

L;�
T

�
D 1inf0�t�T St >L a.s..

The payoff functions of the fixed-strike call and floating strike put ˛-quantile
options are respectively defined by .M ˛

T .S/ � K/C and .M ˛
T .S/ � ST /C; where

M ˛
T .S/ � inffL W A

L;�
T � ˛T g is known as the ˛-quantile (0 < ˛ < 1).

The ˛-quantile options may be viewed as a generalization of lookback options.
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There is a remarkable relationship between the ˛-quantile of a Lévy process
and the distribution of the maximum and minimum values of the process obtained
in [11]. Let .Xt/t�0 and .Yt /t�0 be independent copies of a process X with stationary
and independent increments and with X0 D Y0 D 0. Then, there is the following
equivalence in distribution:

�
Xt

M ˛
t .X/

�
dD
�

X˛t C Y.1�˛/t

sup0�s�˛t Xs C inf0�s�.1�˛/t Ys

�
: (3)

In this paper, we consider the simulation of occupation times and quantiles
for jump-diffusion models and nonlinear solvable diffusions. The main application
is the pricing of occupation-time and ˛-quantile options. As a result, we obtain
efficient Monte Carlo algorithms for two asset pricing models, namely, the Kou
jump-diffusion model [16] and the CEV diffusion model [10]. Our approach can be
easily extended to other Lévy models with finite jump intensity as well as to other
solvable state-dependent volatility diffusion models [7].

2 Occupation Times of a Brownian Bridge

Let .W x
t /t�0 denote the Brownian motion starting at x 2 R. The Brownian bridge

W
x;y

Œ0;T � from x to y over Œ0; T � is defined by W
x;y

Œ0;T �.t/
dD ˚

W x
t j W x

T D y
�

; 0 � t

� T .

Theorem 1. The c.d.f. FC` .� I y/ � P

n
A

`;C
1 .W

0;y

Œ0;1�/ � �
o
, 0 < � < 1, of the

occupation time above level ` for a Brownian bridge from 0 to y over Œ0; 1� is given
by the following cases.

Case (I) For y � ` and ` � 0,

FC` .� I y/ D 1 � 2
p

�

�
e

y2

2

Z 1

�

e�
.2`�y/2

2.1�u/

p
u � �

u2
p

1 � u
du (4)

D 1 � .1 � �/e�
b
�C y2

2

 
eb.2b C 1/ erfc .

p
b/ � 2

r
b

�

!
; (5)

where b D 2.`�y=2/2�

1��
.

Case (II) For 0 � ` < y,

FC` .� I y/ D
Z �

0

.� � u/e
y2

2 � `2

2.1�u/� .y�`/2

2u

p
2�.u.1 � u//

3
2

�
�

`.y � `/2

u
� .y � `/2`2

1 � u
C y � 2`

�
du:

(6)
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Case (III) For ` < 0, FC` .� I y/ D 1 � FC�`.1 � � I �y/.

Proof. The case with x D y D 0 was done in [13]. For the general case,
the argument is almost exactly the same. First, we consider Case (I). Let
f t;x.� jy/ denote the p.d.f. of A`;C

t .W x/ conditional on W x
t D y, 0 � � �

t , x; y 2R. Note that f 1;0.� jy/ D @
@�

FC` .� I y/. The Fourier transform and

double Laplace transform of the joint p.d.f. for A
`;C
t and W x

t is u.xIp;�;ˇ/p
2�

�
Fy

h
Lt

h
L� Œf t;x.� jy/ 1p

2�t
e�.y�x/2=2t I ˇ�I �

i
I p
i
. By the Feynman-Kac formula,

u is a unique solution to 1
2
u00.x/ � .� C ˇ1x>`/u.x/ D �eipx; subject to conditions

u.`�/ D u.`C/ and u0.`�/ D u0.`C/. From [13], when x D 0 we have that

u.0/ D �4ˇ.
p

2.�Cˇ/Cip/
.2�Cp2/.2.�Cˇ/Cp2/

exp.�`
p

2�Cip`/p
2.�Cˇ/Cp2�

C 2
2�Cp2 : Applying the inverse Fourier

transform, we obtain that

Lt

2
4L�

2
4f t;0.� jy/

e�
y2

2tp
2�t

I ˇ

3
5 I �

3
5 D F�1

p

�
u.0I p; �; ˇ/p

2�
I y

�

D e�y
p

2�

p
2�

�
p

� C ˇ � p
�p

� C ˇ C p
�

e.y�2`/
p

2�:

(7)

Taking the inverse Laplace transform of both sides of (7), we obtain

1 � L�

	
f 1;0.� jy/I ˇ


 D e
y2

2

Z 1

0

e�
ˇu
2 I1

�
ˇu
2

�
e�

.2`�y/2

2.1�u/

u
p

1 � u
du: (8)

Integration by parts gives 1 � L�

	
f 1;0.� jy/I ˇ


 D ˇL�

	
1 � FC` .� I y/I ˇ



.

Applying the identity I1.z=2/ D 2zez=2

�

R 1

0

p
v.1 � v/e�zvdv in (8), changing the

order of integration, and changing variables uv D � , we obtain (4) by uniqueness of
the Laplace transform. Changing variables u D �C�x2

1C�x2 and simplifying the integral
obtained, we arrive at (5).

The proof of Case (II) follows a similar argument. From [13], we obtain the
formula for u.0/. Taking the inverse Fourier transform and then the double inverse
Laplace transform, we obtain (6). The derivation can be done by using tables of
Fourier transform and Laplace transform pairs and the shift theorem. Case (III)
follows by symmetry of the Brownian motion. ut

Here, the complementary error function, denoted erfc, is defined as

erfc .x/ D 2p
�

Z 1
x

e�u2

du:
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Since A`;�
t C A`;C

t D t holds for every t � 0, the c.d.f. F �̀ of the occupation

time A
`;�
1 .W

0;y

Œ0;1�/ is given by F �̀.�/ D 1 � FC` .1 � �/, 0 � � � 1. Note that if

x D y D ` D 0, then A
0;˙
1 .W

0;0
Œ0;1�/ � Uniform.0; 1/ (see [5]).

The c.d.f.’s F ˙̀ for an arbitrary time interval of length T can be obtained from
the respective c.d.f.’s for the time interval of length 1 thanks to the property

P

n
A

`;˙
T � t j W0 D x; WT D y

o
D P

�
A

p̀
T

;˙
1 � t

T
j W0 D xp

T
; W1 D yp

T

�
:

By using the symmetry properties of the Brownian motion, we can evaluate the
c.d.f. of A

`;˙
T .W

x;y

Œ0;T �/ for the general case with arbitrary x, y, and `. The following
equalities in distribution are valid:

A`;˙
T

�
W

x;y

Œ0;T �

�
dD A`;�

T

�
W

2`�x;2`�y

Œ0;T �

�
dD A`�x;˙

T

�
W

0;y�x

Œ0;T �

�
dD A�`;�

T

�
W
�x;�y

Œ0;T �

�
:

In Theorem 1, we obtain the c.d.f. of the occupation time above level ` for
a Brownian motion pinned at points x and y at times 0 and 1, respectively. In
practice, the c.d.f. for the case where both x and y lie on one side with respect
to the level ` can be computed more easily than for the other case. For example, if
x D 0, y � `, and ` � 0, then the c.d.f. of A

`;C
1 D A

`;C
1 .W

0;y

Œ0;1�/ given in (5) is
expressed in terms of the complimentary error function, which is fast and easy to
compute. Therefore, one can use the inverse c.d.f. method to draw the occupation
time A

`;C
1 . Note that there is a non-zero probability that the Brownian bridge W

0;y

Œ0;1�

with y < ` does not cross level ` > 0. Thus, the probability PfA`;C
1 D 0g is not

zero in this case. From (5), we obtain PfA`;C
1 D 0g D FC` .0I y/ D 1 � e�2`.`�y/ ,

which is also the probability that the Brownian bridge W
0;y

Œ0;1� does not hit the level `.
We also need to consider the other case where the Brownian motion is pinned

at points x and y that lie on the opposite sides of the barrier `. For example,
if x D 0 and 0 � ` < y, then c.d.f. of A

`;C
1 is given by the integral in

(6), which is computationally expensive to evaluate during the simulation process
when parameters randomly change. To overcome this difficulty, we propose a two-
step procedure. First, we sample the first hitting time �` 2 .0; T / at the barrier
` of the Brownian bridge W

x;y

Œ0;T �, where x < ` < y or y < ` < x. Then,
we sample the occupation time of the Brownian bridge from ` to y over Œ�`; T �.
Since the new bridge starts at the level `, the c.d.f. of the occupation time can be
reduced to the integral in (5). Recall that the first hitting time (f.h.t. for short) �`

of a diffusion process .Xt/t�0 with almost surely continuous paths is defined by
�`.x/ D infft > 0 W Xt D ` j X0 D xg. The c.d.f. F �

` of the f.h.t. �`, ` > 0, of the

Brownian bridge W
0;y

Œ0;T �, ` < y, is given entirely in terms of error functions, which
are quick to compute. It has the following form for 0 < t < T (see [4]):
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F �
` .t I y/ D Pf�` � t j W0 D 0; WT D yg D Pf max

0�s�t
Ws � ` j W0 D 0; WT D yg

D 1

2
e�

2`.`�y/
T erfc

�
`T � .2` � y/tp

2

�
C 1

2
erfc

 
`T � ytp
2tT .T � t/

!
:

(9)
We obtain Algorithm 5 for sampling A

`;˙
T , where we assume ` � x. In the case of

` < x, one can use the equality in distribution: A
`;˙
T .W

x;y

Œ0;T �/
dD T �A

�`;˙
T .W

�x;�y

Œ0;T � /.

Algorithm 5 Sampling occupation times A`;˙
T for a Brownian Bridge W

x;y

Œ0;T �

input x, y, T > 0, ` � x

set y1  y�x
p

T
, `1  `�xp

T

if y1 � `1 then
sample U � Uniform.0; 1/

set A supft 2 Œ0; 1� W F
C

`1
.t I y1/ < U g

set A
`;C
T D A � T , A

`;�
T D T � A

`;C
T

else
sample i.i.d. U; V � Uniform.0; 1/

set �  supft 2 Œ0; 1� W F �
`1

.t I y1/ < V g
set y2  y1�`1

p
1��

set A 1� supft 2 Œ0; 1� W F
C

0 .t I�y2/ < U g
set A

`;C
T  A � .1� �/ � T , A

`;�
T  T � A

`;C
T

end if
return A

`;˙
T

Note that the bridge distribution of a Brownian motion with drift,
fWt C �t; t� 0g; is the same as that of a standard Brownian motion. Thus, the
distributions of occupation times will not change with introducing a non-zero drift
(see [5]).

3 Pricing Occupation Time Options Under a Jump Diffusion

In this section, we propose an algorithm for the exact simulation of occupation
times of a Lévy process that has a Gaussian component and a jump component
of compound Poisson type. Suppose the stock price is governed by the following
dynamics:

dSt

St�
D � dt C � dWt C d

 
NtX

iD1

.Vi � 1/

!
; StD0 D S0 > 0; (10)

where � and � are constants, .Wt /t�0 is a standard Brownian motion, .Nt/t�0 is
a Poisson process with arrival rate �, and fVi giD1;2;::: is a sequence of independent
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identically distributed (i.i.d.) random variables. We assume that .Wt/, .Nt /, and fVig
are jointly independent.

As an example, we consider Kou’s double exponential jump diffusion
model [16], where the random variables Yi D ln.Vi / follows a double exponential
distribution with the p.d.f. fY .y/ D p	Ce�	Cy1y�0 C .1 � p/	�e�	�jyj1y<0;

where 	C > 1; 	� > 0, p 2 Œ0; 1�. There are two types of jumps in the process:
upward jumps (with occurrence probability p and average jump size 1

	C
) and

downward jumps (with occurrence probability 1 � p and average jump size 1
	�

).
Both types of jumps are exponentially distributed.

Algorithm 6 Simulation of a sample path, occupation times, and extremes for
a jump-diffusion model .St /

input: moments of jumps T1 < : : : < TN on Œ0; T � and values fXk�; XkgkD1;:::;N ,
where Xk D X.Tk/, Xk� D X.Tk�/, and X.t/ � 1

�
ln St

set mX
0  0, M X

0  0,
for n from 1 to N do

sample An D A
`;C
ŒTn�1;Tn�

�
W

Xn�1;Xn�

ŒTn�1;Tn�

�
sample Un; Vn � Uniform.0; 1/

set mX
n  minfmX

n�1; Xn�1 C 1
2


Bn �

p
B2

n � 2
Tn ln Un

�g
set M X

n  maxfM X
n�1; Xn�1 C 1

2


Bn C

p
B2

n � 2
Tn ln Vn

�g
end for
set ST  S0e�XN , mT  S0e�mX

N , MT  S0e�M X
N

set A
L;C
T  PN

nD1 An, A
L;�
T  T � A

L;C
T

return ST and only one of A
L;˙
T , mT , MT

The stochastic differential equation (s.d.e. for short) in (10) can be solved analyt-
ically. Under an e.m.m.eP, we have that � D r � ��, where � D eEŒeY � 1� is given

by � D p	C

	C�1
C .1�p/	�

	�C1
� 1, and St D S0 exp

�
.r � �2

2
� ��/t C �Wt CPNt

iD1 Yi

�
(see [17]). Note thateP can be obtained by using the Esscher transform.

A Lévy process with finite jump intensity behaves like a Brownian motion
between successive jumps. The simulation scheme is well known (e.g., see [9]).
First, we sample the time and size of each jump occurred on Œ0; T �. Second,
we sample the Brownian increment for each time-interval between successive
jumps. The only addition to this scheme is the sampling of occupation times.
As a result, we obtain Algorithm 6. We can also sample the minimum value mT

and the maximum value MT of a Lévy sample path. These values are used for
pricing ˛-quantile options thanks to the property in (3). Notice that Algorithm 6
is implemented in a way so that it allows the user to sample the extreme values and
the occupation times from their correct marginal distributions, but with an improper
joint distribution. Therefore, only one quantity from the list fmT ; MT ; A

L;˙
T g can be

used after each execution of Algorithm 6. This is sufficient for our applications. To
sample an ˛-quantile option payoff, the user needs to run the algorithm twice to
obtain independent sample values of the maximum and minimum. It is possible
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to sample mT and MT from their joint distribution, but the joint distribution of
occupation times and extremes for a Brownian bridge is not available to the best of
our knowledge.

4 Pricing Occupation Time Options Under the CEV Model

Simulation of path-dependent variables such as the running minimum/maximum
and occupation times is a challenging computational problem for general stochastic
processes. In the case of Brownian motion (and its derivatives) with or without
a compound Poisson component, exact simulation algorithms can be constructed by
using the Brownian bridge interpolation. This procedure suggests an approximation
for more general diffusions.

Consider a discrete-time skeleton of a sample path. Its continuous-time approx-
imation can be obtained by interpolating over each subinterval using independent
Brownian bridges. Such an approach can be used to approximately simulate the
minimum and maximum and barrier crossing probabilities (see [1, 3, 15]), however
resulting estimates of path-dependent quantities are biased. We apply this idea
to approximately simulate occupation times of the constant elasticity of variance
(CEV) diffusion for which an exact path sampling algorithm is available in [21].

4.1 Exact Simulation of the CEV Process

The CEV diffusion S D .St /t�0 2 RC follows dSt D �St dt C ıS
ˇC1
t dWt ; StD0 D

S0 > 0; where ı > 0 and � 2 R. Under the e.m.m.eP, we have that � D r . Here we
assume that ˇ < 0, hence the boundary s D 0 of the state space Œ0; 1/ is regular.
Here we consider the case where the endpoint s D 0 is a killing boundary. Let �0

denote the first hitting time at zero. We assume that St D 0 for all t � �0.
The CEV process is a transformation of the Cox-Ross-Ingersoll (CIR) diffusion

model X D .Xt /t�0 that follows dXt D .�0 � �1Xt / dt C 2
p

Xt dWt (see [5]).
Indeed, by using Itô’s formula, it is easy to show that the mapping X.s/ �
.ıjˇj/�2s�2ˇ (which is strictly increasing since ˇ < 0) transforms a CEV process
into a CIR process with �0 D 2 C 1

ˇ
and �1 D 2�ˇ, i.e. Xt D X.St /. Moreover,

the CIR process can be obtained by a scale and time transformation of the square
Bessel (SQB) process. Also note that the radial Ornstein-Uhlenbeck (ROU) process

Z D .Zt /t�0, obeying the s.d.e. dZt D
�

�0�1
2Zt

� �1Zt

2

�
dt C dWt; can be obtained

by taking the square root of the CIR process, i.e. Zt D p
Xt .

The literature on simulating the CIR and other related processes is rather exten-
sive (e.g., see [15] and references therein). However, most of existing algorithms
either are approximation schemes or deal with the case without absorption at
zero. In [21], a general exact sampling method for Bessel diffusions is presented.
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The sampling method allows one to exactly sample a variety of diffusions that are
related to the SQB process through scale and time transformations, change of vari-
ables, and by change of measure. These include the CIR, CEV, and hypergeometric
diffusions described in [7]. The paths of the CEV and CIR processes can be sampled
simultaneously at time moments fti gN

iD0, 0 D t0 < t1 < : : : < tN conditional on
StD0 D S0 as outlined below.

1. Apply Algorithm 7 to sample a path of the SQB process Y with index � D 1
2ˇ

,

at time points fui D u.ti I �1 D 2�ˇ/gN
iD0 conditional on Y0 D X.S0/. Here we

define u.t I �1/ D e�1t�1
�1

if �1 ¤ 0, and u.t I �1/ D t if �1 D 0.
2. Use the scale and time transformation to obtain sample paths of the CIR model X

as follows: Xti � e�1ti Yui for each i D 0; 1; : : : ; N .
3. Transform by using the mapping Sti D X�1.Xti /, i D 1; : : : ; N , to obtain

a discrete-time sample path of the CEV process S.

Algorithm 7 Simulation of an SQB sample path
The sequential sampling method conditional on the first hitting time at zero, �0, for modelling
an SQB process with absorption at the origin (see [21]).

input Y0 > 0; 0 D u0 < u1 < : : : < uN ; � < 0

sample G � Gamma.j�j; 1/; set �0 Y0

2G
for n from 1 to N do

if un < �0 then

sample Pn � Poisson

�
Yun�1 .�0 � un/

2.�0 � un�1/.un � un�1/

�

sample Yun � Gamma

�
Pn C j�j C 1;

�0 � un�1

.�0 � un/.un � un�1/

�

else
set Yun  0

end if
end for
return .Y0; Yu1 ; : : : ; YuN /

4.2 Simulation of Occupation Times for the CEV Processes

The CEV process S can be obtained by applying a monotone transformation to
the ROU process Z and vice versa. Indeed, Zt D p

X.St /, t � 0. The diffusion
coefficient of the s.d.e. describing the ROU process equals one. Therefore, .Zt / can
be well approximated by a drifted Brownian motion on short time intervals. If .Zt /

is pinned at times ti�1 and ti that are close enough together, the process will behave
like a Brownian motion pinned at the same times. Therefore, on short time intervals
Œt1; t2�, the occupation times of the CEV process conditional on Sti D si > 0;

i D 1; 2, can be approximated by occupation times of a Brownian bridge, i.e.
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�
A

L;˙
Œt1;t2�.S/ j St1 D s1; St2 D s2

�
dD
�
A

`;˙
Œt1;t2�.Z/ j Zt1 D z1; Zt2 D z2

�

d�
�
A

`;˙
Œt1;t2�.W/ j Wt1 D z1; Wt2 D z2

�
;

where ` D p
X.L/, L > 0, and zi D p

X.si /, i D 1; 2. Note that numerical
tests demonstrate that the Brownian bridge interpolation procedure produces more
accurate estimates of occupation times if it is applied to the ROU process rather
than the CEV diffusion. Alternatively, one can use a piecewise-linear approximation
of continuous-time sample paths of the ROU process to approximate occupation
times. The latter approach can also be used to compute ˛-quantiles of a sample
path. A more rigorous stochastic analysis of such approximation approaches is the
matter of our future research.

Since the origin is an absorbing boundary, occupation times only need to be
simulated until the maturity T or �0, whichever comes first. For arbitrary T > 0 and
L > 0, we have AL;C

T .S/ D AL;C
T^�0

.S/ and AL;�
T .S/ D T � AL;C

T .S/. Our strategy

for the approximate sampling of occupation times A
L;˙
T^�0

.S/ for the CEV process
works as follows.

1. For a given time partition f0 D t0 < t1 < : : : < tN D T ^ �0g, draw a sample
CEV path, St1; : : : ; StN , conditional on S0 and �0 D �0.S0/.

2. Obtain the respective sample path of the ROU process by using the transforma-
tion Zti D p

X.Sti / for each i D 0; 1; : : : ; N .
3. Sample the occupation times of A

`;˙
Œti�1;ti �

for the Brownian bridge from Zti�1 to

Zti over Œti�1; ti � for each i D 1; : : : ; N . Here, ` D p
X.L/.

4. Obtain the approximation: A
L;˙
tN .S/ � PN

iD1 A
`;˙
Œti�1;ti �

.

4.3 The First Hitting Time Approach

There is another approach that can speed up the pricing of occupation time options.
Suppose S0 > L and consider an option whose payoff depends on A

L;�
T . By using

the fact that the events fAL;�
T D 0g and f�L > T g, where �L D �L.S0/ is the first

hitting time down at L, are equivalent, we can rewrite the no-arbitrage price of the
option as follows:

e�rTeE hf .ST ; A
L;�
T /

i
D e�rTeE hf .ST ; 0/1

A
L;�
T D0

i
C e�rTeE hf .ST ; A

L;�
T /1

A
L;�
T >0

i

D e�rTeE 	f .ST ; 0/1�L>T


C e�rT pTeE
h
f .ST ; A

L;�
T / j �L � T

i
:

(11)

where the probability pT D Pf�L < T g D PfAL;�
T > 0g can be computed by using

results of [20]. Notice that the first term in (11) is the no-arbitrage price for a down-
and-out barrier option. The analytical price of the down-and-out barrier option under
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the CEV model is well known (see [12]). Thus, the first term in (11) can be computed
analytically, while the second term can be estimated by the Monte Carlo method.

First, we sample the first hitting time down �L with the condition �L � T . The
c.d.f. of the first hitting time down is given by the spectral expansion (see [20]).
It is computationally expensive to evaluate such an expansion, thus the c.d.f. of �L

should be computed once on a fine partition of Œ0; T � and stored in memory. After
that, the inverse c.d.f. method is applied to sample �L conditional on f�L � T g.
Second, we sample A

L;�
T . Since the process S first hits the level L at �L, the only

time that S can spend below L occurs after �L. Therefore, the process need not be
sampled on the interval Œ0; �L�, since we only need the occupation time below L and
the terminal asset price to compute the payoff of an option. Alternatively, one can
use the f.h.t. approach to speed up the sampling of the occupation times thanks to

the following property: A
L;�
Œ0;T �.StD0 D S0/

dD 1�L�T � A
L;�
Œ�L;T �.StD�L D L/:

5 Numerical Results

As a test case for Algorithm 6, prices of some proportional step down options
with payoffs depending on A

L;�
T and ˛-quantile options were computed. First,

we consider pricing under Kou’s model. The parameters used in simulations were
S0 D 100, T D 1 (years), r D 0:05, � D 0:3, � D 3, p D 0:5, 	C D 30,
	� D 20, � D 1, and L D 102. Monte Carlo unbiased estimates of proportional
step option prices were computed for a range of strikes with N D 106 trials; the
results are given in Table 1. In all tables below, sN denotes the sample standard
deviation of the Monte Carlo estimate. Also, all of the simulations in this section
were implemented in MATLABr 7:10:0, and they were run on a Intel Pentiumr

4 1:60 GHz processor with 3 GB of RAM.
Simulations of ˛-quantiles under Kou’s model were performed using the exact

sampling algorithm. Monte Carlo unbiased estimates of fixed strike ˛-quantile
option prices were obtained for various values of K and � from N D 106 trials. The
other model parameters used in these simulations are S0 D 100, T D 1, r D 0:05,
� D 3, p D 0:6, 	C D 34, 	� D 34, and ˛ D 0:2. The results of these simulations
are given in Table 2. Tables 1 and 2 contain the exact prices of the occupation time

Table 1 The Monte Carlo unbiased estimates of proportional step down call option prices under
Kou’s model are tabulated for various K and S0. The parameters are T D 1, r D 0:05, � D 0:2,
� D 3, p D 0:5, 	C D 30, 	� D 20, � D 1, L D 102, and N D 106 .

K S0 D 100 S0 D 105

Estimate˙sN Exact Estimate˙sN Exact

90 13.7715˙0.0173 13.81883 19.0374˙0.0207 19.04025
100 9.3901˙0.0147 9.42438 13.4581˙0.0181 13.45927
110 5.9558˙0.0120 5.97929 8.9005˙0.0152 8.90134
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Table 2 The Monte Carlo unbiased estimates of ˛-Quantile call option prices for various K and
� under Kou’s model are tabulated for ˛ D 0:2. The parameters used are S0 D 100, T D 1,
r D 0:05, � D 3, p D 0:6, 	C D 34, 	� D 34, and N D 106 .

K � D 0:2 � D 0:3

Estimate˙sN Exact Estimate˙sN Exact

90 6.9982˙0.0074 6.98492 6.7290˙0.0092 6.72912
100 2.0793˙0.0043 2.08466 2.6993˙0.0060 2.69358
110 0.3666˙0.0018 0.37724 0.8643˙0.0034 0.86545

Table 3 The Monte Carlo biased estimates of proportional step down call and put prices under
the CEV model using the Brownian bridge interpolation method are tabulated for various values of
K . The parameters used are S0 D 100, T D 1, r D 0:1, ı D 2:5, ˇ D �0:5, � D 0:5, L D 90,

t D 0:05, and N D 106 .

K Step calls Step puts

Estimate˙sN Exact Estimate˙sN Exact

90 20.9939˙0.0009 20.9939 2.0416˙0.0006 2.0382
100 14.8192˙0.0006 14.8172 4.1988˙ 0.0010 4.1938
110 9.8621˙0.0004 9.8600 7.5750˙0.0017 7.5689

options taken from [6]. We can observe the perfect agreement between the Monte
Carlo estimates and the exact values.

Monte Carlo biased estimates of proportional step down option prices under the
CEV model were also computed. This was done using the exact CEV path sampling
algorithm together with the Brownian bridge approximation or the piecewise linear
path interpolation. To reduce the variance, the estimator of a standard European
option price was used as a control variate. The Monte Carlo estimates of option
prices are compared with the analytical estimates obtained in [8]. Recall that the
origin is an absorbing boundary for the CEV model. If the asset price process hits
the zero boundary before the maturity date, then the asset goes to bankruptcy and
a derivative on the asset becomes worthless. Thus, the payoff function is given by

f ˙step.AL;˙
T .S/; ST / D e��A

L;˙
T .S/f .ST /1T <�0 :

The estimates were obtained from averaging over N D 106 samples, with a time
step of 
t D 0:05. These approximate prices are given in Table 3, for a range of
K , and with � D 0:5, L D 90 and T D 1. The CEV model parameters used in all
simulations were ı D 2:5, ˇ D �0:5, and r D 0:1.

The Brownian bridge interpolation and linear interpolation sampling methods
were compared for various values of 
t . To do this, Monte Carlo estimates of the
step call prices were computed using both of these sampling methods for a range
of 
t and with N D 5 	 106 trials. The results of these simulations are shown in
Table 4. As is seen from the table, the Brownian bridge interpolation method works
quite accurately even for 
t D 0:5 (i.e. a sample skeleton only consists of two
points).
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Table 4 The Monte Carlo biased estimates of proportional step call prices under the CEV model
obtained with the use of the Brownian bridge approximation and linear interpolation methods
are compared for decreasing time steps 
t . The parameter values used in the simulations are
S0 D 100, T D 1, r D 0:1, ı D 2:5, ˇ D �0:5, � D 0:5, L D 90, K D 100, N D 5 � 106 . The
analytical estimate of the option price is 14.8172.


t Bridge interpolation Linear interpolation

Estimate˙sN Time (s) Estimate˙sN Time (s)

0.5 14.8184˙0.0003 19,160 14.8451˙0.0004 7,105
0.25 14.8191˙0.0003 38,815 14.7906˙0.0004 15,685
0.1 14.8194˙0.0003 78,770 14.7931˙0.0003 41,835
0.05 14.8191˙0.0006 142,150 14.8046˙0.0003 76,560

Table 5 The Monte Carlo biased estimates of proportional step down put option prices under the
CEV model using the Brownian bridge approximation are tabulated for various values of K . Also,
the regular path sampling algorithm (a) is compared to the accelerated first hitting time sampling
algorithm (b). The other parameters used are S0 D 100, T D 1, r D 0:1, ı D 2:5, ˇ D �0:5,
� D 0:5, L D 90, 
t D 0:05, and N D 106.

K Estimate (a)˙sN Estimate (b)˙sN Exact

90 2.0394˙0.0006 2.0407˙0.0004 2.0382
100 4.1927˙0.0010 4.1974˙0.0008 4.1938
110 7.5616˙0.0017 7.5730˙0.0012 7.5689

(Time is 28,430 s) (Time is 26,875 s)

Finally, the first hitting time method was used to price the proportional step
down put option under the CEV model. These simulations used the exact CEV
path sampling algorithm along with the Brownian bridge approximation method
for N D 106 trials and with 
t D 0:05. The prices were computed for a range of
K , and they are given in Table 5 along with their standard errors. As is seen from
the table, the cost of the f.h.t. method is twice less than that of the regular algorithm.
The cost of a MCM algorithm is defined as a product of the sample variance and the
computational time.

6 Conclusions

In this paper, we study the simulation of occupation times of Brownian processes,
jump diffusions, and state-dependent volatility diffusion models. An efficient
algorithm for the exact sampling of occupation times of a Brownian bridge is
presented. It is used for the exact simulation of occupation times for Kou’s jump-
diffusion model. We apply this method to pricing occupation time derivatives.
Also, a similar algorithm is designed for pricing quantile options. The sampling
method is efficient and can be extended to general Lévy processes. It works for
any finite activity process provided that an exact path simulation algorithm is
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available. Infinite activity Lévy processes can be treated by replacing small jumps
with a diffusion term (e.g., see [2]).

By using the Brownian bridge interpolation of a general diffusion process,
we obtain an approximate sampling algorithm for occupation times of the CEV
diffusion model. The prices of proportional step options are computed by the Monte
Carlo method. The approach can be extended to other types of occupation time
derivatives and also to other solvable diffusion models (e.g., see [7]).

Acknowledgements The first author acknowledges the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC) for a Discovery Research Grant. We thank
the two anonymous reviewers for their comments, which helped to improve the paper.

References

1. Andersen, L., Brotherton-Ratcliffe, R.: Exact Exotics. Risk 9, 85–89 (1996)
2. Asmussen, S., Rosinski, J.: Approximations of small jumps of Lévy processes with a view
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A Global Adaptive Quasi-Monte Carlo
Algorithm for Functions of Low Truncation
Dimension Applied to Problems from Finance

Dirk Nuyens and Benjamin J. Waterhouse

Abstract We show how to improve the performance of the quasi-Monte Carlo
method for solving some pricing problems from financial engineering. The key
point of the new algorithm, coined “GELT”, is an adaptive re-ordering of the point
set so that the function is sampled more frequently in the regions where there is
greater variation. The adaptivity only operates on the first few dimensions of the
integrand and we show how to explicitly obtain the points of a digital sequence
falling into boxes into these first few dimensions. This is effective as the problem is
first transformed into having “low truncation dimension”. In general it is assumed
that finance problems have low effective dimension. In addition we make use of a
so-called “sniffer function” to cope with the discontinuity in the integrand function.
Numerical results with the new adaptive algorithm are presented for pricing a digital
Asian option, an Asian option and an Asian option with an up-and-out barrier.

1 Introduction

We are interested in the pricing of contingent claims, which is of great interest in
the area of mathematical finance. Typically, the claim is made on the uncertain future
value of an asset such as a stock, commodity or exchange rate. The price of the
asset S at time t is assumed to follow a stochastic differential equation
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dS.t/ D a.S; t/ dt C b.S; t/ dW.t/; 0 < t � T;

with some initial price S.0/ D S0. We are interested in calculating the expected
value of such a contingent claim. For example, the claim on a European call option
with strike price K is max.S.T / � K; 0/. In this case, the claim depends only on
the final value of the asset, for other types the entire path may be important. Here
we focus on “Asian” options where the claim is based upon the average price over
time.

Most often the problem must be approximated numerically. The expected value
problem may be formulated as an integration problem over the unit cube where
numerical integration techniques such as Monte Carlo (MC) integration are often
used. Monte Carlo integration refers to approximating the integral as

Z
Œ0;1�s

f .x/ dx � 1

n

n�1X
kD0

f .xk/; (1)

where the points xk 2 Œ0; 1�s are chosen i.i.d. from the unit cube. The value of s is
related to the number of time discretisations used in the problem. This can typically
be in the hundreds or thousands.

Quasi-Monte Carlo (QMC) integration looks similar to MC integration except
that the points xk are chosen deterministically from the unit cube. In this paper we
make use of a particular type known as digital .t; m; s/-nets and .t; s/-sequences
where the number of points need not be fixed a priori. This is a desirable property
as we will typically continue to add points until some error bound is achieved. These
sequences are ordered in such a way that the unit cube is filled in a uniform way.
However, many problems from mathematical finance involve integrands which are
constant for large regions of the domain.

The key idea of this paper is to sample more frequently in regions which are
“interesting” using a “sniffer function”, where, crucially, the integrand needs to
have low truncation dimension. Techniques for obtaining a reformulation of the
original integral, known as “path construction methods”, have been well studied
in the literature and are still an active research topic. We will show the effect, in
pictures, of a good transformation for our running example of a digital Asian option.
Such a transformation is the first step in applying our adaptive algorithm.

The remainder of the paper is organised as follows. Problems typical of financial
mathematics are discussed in Sect. 2. In Sect. 3 we examine the structure of digital
.t; m; s/-nets and identify ways in which we can exploit their structure. The new
adaptive algorithm is detailed in Sect. 4 and we present numerical results in Sect. 5.

2 Problems from Financial Mathematics

In this paper we consider contingent claims over stocks using the basic Black and
Scholes model [1, 15]
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dS.t/ D rS.t/ dt C �S.t/ dW.t/; 0 < t � T; (2)

where r is the risk-free interest rate and � is the volatility of the stock. One may
allow r and � to vary with time and the stock price, but for simplicity we shall
consider them to be constant. Some may argue that the Black and Scholes model is
a bad fit for reality, and they are right. However, here it simplifies matters and lets us
focus on the story we want to tell. Nevertheless, the proposed method will also work
in more advanced settings as long as one is able to transform the problem into one
having low truncation dimension. More advanced path constructions than discussed
in this paper can be used to that effect, see, e.g., [11].

It is well-known that the solution to (2), for a given Brownian motion W.t/, is

S.t/ D S0 exp..r � �2=2/t C �W.t//; 0 < t � T; where S0 D S.0/: (3)

2.1 Constructing an Asset Price Path

Our task now is to construct a discretised Brownian motion W.tj / for j D 1; : : : ; s.
To simplify the notation, we define the vector w D .W.t1/; : : : ; W.ts// containing
the Brownian motion at times t1; : : : ; ts . The vector w has mean zero and covariance
matrix ˙ D �

min.ti ; tj /
�s

i;j D1
. To construct the vector w, we simply construct a

vector z � Ns.0; I / and note that Az � Ns.0; ˙/ if AA> D ˙ . Given w D Az, the
asset price at time tj can be found using (3) to be

S.tj / D S0 exp..r � �2=2/tj C �wj /:

There are several ways of constructing the Brownian path w, or equivalently, of
choosing the matrix A. Here we only make use of the three most straightforward
methods: increment-by-increment (also called standard construction or Cholesky
construction), Brownian bridge and PCA (a full eigenvector based decomposition).
All of them are discussed in, e.g., [8] or [7]. Numerical results for a specific problem
are shown in Fig. 2. We note that there are more advanced methods to construct the
paths, see, e.g., [10,11,27]. A good path construction method is important in ensur-
ing that the problem will be of low truncation dimension. However, from the point
of view of the (plain) Monte Carlo method each of these construction methods is
equivalent. It is only when using a quasi-Monte Carlo method that the choice of path
construction can make a difference in the numerical approximation of the integral.

2.2 A Digital Asian Call Option

The typical pricing problem from financial engineering involves calculating the
expected value of a contingent claim g whose value depends on the asset price.
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For the discretised model we are considering, we assume that g depends on the
asset price at times t1; t2; : : : ; ts . An example of this is a single-stock digital Asian
call option with strike price K . The payoff of this claim is given by

g.S.t1/; : : : ; S.ts// D 1C

0
@1

s

sX
j D1

S.tk/ � K

1
A ; (4)

where 1C represents the indicator function for the positive real line. That is, the
value of the claim at time T is one if the arithmetic average of the price is greater
than K and zero otherwise. The fact that the indicator function defines a jump in
the payoff makes this problem harder than the typical Asian option that is often
considered in QMC related literature.

The discounted value of this claim at time t D 0 is given by e�rT
E.g.w//. We

calculate this expected value by integrating the value of the claim over all possible
Brownian paths w. This allows us to formulate the problem as

E.g.w// D
Z
Rs

g.w/
1

.2�/s=2
p

det ˙
exp

�
�1

2
w>˙�1w

�
dw

D
Z

Œ0;1�s
g.A˚�1.x// dx (5)

where ˚�1.x/ D .˚�1.x1/; : : : ; ˚�1.xs//
> with ˚�1.�/ denoting the inverse cumu-

lative normal distribution function. It is important to notice here that evaluation of
the inverse cumulative normal is by far the most expensive part in evaluating (4).
We will make use of this observation in the new algorithm.

3 Quasi-Monte Carlo Point Sets

We approximate the s-dimensional integral over the unit cube with an n-point
equal weight approximation of the form (1) using deterministically chosen points
xk , for k D 0; 1; : : : ; n � 1 from a QMC sequence. It is well-known that the
error of MC integration is O.n�1=2/, whereas for QMC integration the error is
O.n�1.log n/s/. Although the asymptotic bound is superior for QMC, for typically
encountered values of n and s, the QMC bound is much weaker. Work by Sloan
and Woźniakowski [23], and several following, demonstrated that if the importance
of subsequent variables in the integrand diminishes sufficiently quickly then it is
possible to achieve a rate of convergence arbitrarily close to O.n�1/.

Although most problems from finance are not covered by the theory from [23]
this rate can often be achieved. See for example the numerical results in [4] which
show O.n�0:9/ for an Asian option under the PCA path construction. For the
more difficult digital Asian option considered here, we observe, in Fig. 2, a rate
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of approximately O.n�0:7/ using PCA path construction. In Sect. 5 we will see that
the adaptive algorithm presented later in this paper will further improve upon this
result.

3.1 Randomised QMC

One advantage of MC integration is that we may calculate an unbiased estimate
of the standard error of the integration. Since the points in a QMC point set are
correlated, we may no longer calculate this unbiased estimate. To get around this we
randomise the QMC point set. For an overview of several randomization techniques
we refer to [13]. Here we use random shifts, to be specified next, uniformly drawn
from the s-dimensional unit cube. For each of these independent random shifts,
�1, . . . , �M , we then obtain a number of independent estimates for the integral,
Q1, . . . , QM , where

Qi WD 1

n

n�1X
kD0

f .x
.i/

k /; with x
.i/

k the shifted version of point xk by shift �i :

The approximation to the integral is now taken as the average over the M indepen-
dent n-point approximations

Q WD 1

M

MX
iD1

Qi ; stderr.Q/ D
vuut 1

M.M � 1/

MX
iD1

�
Qi � Q

�2
: (6)

The total number of sample points used is then nM . The independent approxima-
tions, Q1, . . . , QM , can be used to calculate an unbiased estimate of the standard
error for the approximation Q by the usual formula (6). Typically M is taken a small
number, say 10 or 20, where more random shifts give a better approximation for the
standard error. It is no use taking M much larger since one is only interested in the
magnitude of the standard error.

The type of random shift considered in this paper is a digital shift, see, e.g.,
[5, 13].

Definition 1. Given an s-dimensional point set P D fxkgk and a shift � 2 Œ0; 1/s ,
we define the digitally shifted point set P C � in base b by setting

P C � D fykgk; where yk D xk ˚b �;

where ˚b is digitwise addition, in base b, modulo b, applied componentwise.
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3.2 Digital Nets and Sequences

In this paper we are interested in a type of QMC point set known as a .t; m; s/-net
in base b (where base 2 is the most practical choice). Such a .t; m; s/-net in base b

could be a set of bm points taken from a .t; s/-sequence in base b. We shall see that
these sequences and nets have some attractive and exploitable properties. For a full
background to the theory of these nets see [5, 16]. First we need to define what is
meant by the notion of an elementary interval in base b.

Definition 2. An elementary interval in base b is a half-open subset of the unit cube
of the form

J.a; h/ D
sY

j D1

�
aj b�hj ; .aj C 1/ b�hj

�
; for all hj � 0 and 0 � aj < bhj :

Such an elementary interval J.a; h/ has volume b�P
j hj . If such an elementary

interval has exactly the expected number of points for a given point set, then that
point set is called a .t; m; s/-net.

Definition 3. A .t; m; s/-net in base b is an s-dimensional point set with bm points
and which has in each elementary interval of volume bt�m exactly the expected
number of points bt�mbm D bt .

The parameter t , 0 � t � m, is sometimes called (counterintuitively) the quality
parameter of the net, where a smaller value of t is better. Obviously any point set in
the unit cube is a .t; m; s/-net with t D m, since all the points fall in the unit cube,
and one is then obviously interested in the smallest value of t possible.

One of the attractive features of, e.g., Sobol’ points is that the opening dimen-
sions are of particularly good quality (this is true for all popular low-discrepancy
point sets). The Sobol’ sequence yields .0; m; 2/-nets with m being any positive
integer. (For a comprehensive list of minimal values of t , given m; s and b, see
http://mint.sbg.ac.at/ and [22].) In other words, taking any initial sequence of the
Sobol’ sequence of size 2m, then one will find one point in each of the elementary
intervals of volume 2�m in the first two dimensions, i.e., t D 0.

Another important property is that a .t; m; s/-net in base b will remain a .t; m; s/-
net, with exactly the same t-value, following any digital shift in base b. This is easy
to see from Definitions 1 and 3, since the digital shift is a bijection from Zb to Zb

for each of the digits in the base b expansion of the point. Thus also for a shifted
Sobol’ sequence the observation from the previous paragraph is true.

A particular set of these elementary intervals in the first two dimensions of
volume 2�m, for m a multiple of 2, are the square boxes with sides 2�m=2. Observing
the left-hand point set in Fig. 1, we see that 16 digitally-shifted Sobol’ points, which
form a .0; 4; 2/-net, can be divided into a 4 � 4 grid of equi-sized squares with
one point lying in each box. In the right-hand point set of Fig. 1, we increased the
number of points to 64 D 4 � 16. Now there are 4 points in each box of the 4 � 4
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Fig. 1 First two dimensions of a digitally-shifted Sobol’ sequence. Left: first 16 (D 24) points,
right: first 64 (D 26) points.

grid and these grids can now be further subdivided to form an 8 � 8 grid. This will
form the basis of the subdivision process in the adaptive algorithm.

Although this subdivision process seems trivial in two dimensions, the cost
is exponential in the number of dimensions, i.e., 2s . Furthermore, there are no
.0; m; 3/-sequences in base 2 and one then has to resort to .0; s/-sequences in some
higher base b > 2, e.g., the Faure sequence [6]. The subdivision in each dimension
will then be b times instead of just 2, i.e., bs subdivisions. The proposed algorithm
in Sect. 4 can handle all that, but it will become less and less interesting as the
base increases. Alternatively, for t ¤ 0, one may choose to increase the number of
points at a higher pace. From Definition 3 we note that as we take bm points from a
.t; s/-sequence in base b, and t � m is a multiple of s, i.e., t � m D ��s, then we
find bt points in each elementary box with sides b�� � � � � � b�� .

3.3 QMC on the Digital Asian Call Option

We use the following parameters for the digital option used throughout the paper:

T D 2; s D 256; � D 23%; r D 5%; S0 D 1; K D 1:

To obtain an error estimate we take the approach of Sect. 3.1 and therefore the Sobol’
point set was digitally shifted ten times. In Fig. 2 we see the price of the option
and the standard error as the number of points in the Sobol’ point set is increased.
All three different methods of factorising the matrix ˙ D AA> from Sect. 2.1 are
shown as well as the plain Monte Carlo result. It is clear from this figure that the
PCA method performs best for this particular problem, with the Brownian bridge
method the next best, followed by the standard construction. In each case, the same
Sobol’ point set and the same digital shifts were used. All three QMC methods
easily outperform the MC method.



596 D. Nuyens and B.J. Waterhouse

500 1000 1500 2000 2500 3000 3500 4000
0.5

0.502

0.504

0.506

0.508

0.51

0.512

0.514

0.516

0.518

0.52

n

va
lu

e

100 101 102 103

10−2

10−3

10−4

10−1

n

st
d.

 e
rr

.

MC
QMC
QMC+BB
QMC+PCA

Fig. 2 Different path constructions on the digital Asian option problem. Left: the standard error
(using ten shifts), the lines are in the same ordering as on the legend. One can determine that Monte
Carlo (MC) performs like O.n�0:5/, quasi-Monte Carlo with the standard construction (QMC) has
O.n�0:55/, whilst using Brownian bridge (QMC+BB) gives O.n�0:64/ and using (QMC+PCA)
gives O.n�0:71/. Right: the convergence is illustrated by looking at the calculated value.

It should be noted that the PCA method will not be the best for every application.
Work by Papageorgiou [19] and by Wang and Sloan [27] demonstrates that
depending on the particular problem, the standard construction may even be the best
choice for the matrix A. There also exist more advanced transformation methods,
so-called linear transform (LT) methods, see, e.g., [10, 11], which will try to find
the “optimal” linear transform for the problem at hand. While we will not discuss
those methods further, it should be obvious that their usage could be advantageous,
especially since they allow for more realistic pricing models than the standard log-
normal model we employ here, cf. [11]. In the next section we give a heuristic
explanation as to why particular problems perform better with a particular choice of
the matrix A.

3.4 Low Truncation Dimension

One feature of QMC point sets is that the quality of the point set deteriorates as
the dimension increases. That is, the minimal possible t-value of the .t; m; s/-net
will increase as s is increased. We should therefore aim to construct our integration
problem in such a way as to have low truncation dimension. We follow Caflisch
et al.’s definition of truncation dimension [2].

For f 2 L2.Œ0; 1�s/ there is an orthogonal ANOVA decomposition

f .x/ D
X
u�D

fu.xu/; (7)
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Fig. 3 Opening 2-dimensional projections (in Œ0; 1�2) of a digital Asian call option using three
usual ways of path constructions for QMC. Left: Standard construction, middle: Brownian bridge
construction, right: PCA construction.

with D D f1; 2; : : : ; sg and where the function fu.xu/ depends only on xj if j 2 u
and the variance of the function can be written as

�2.f / WD Is.f
2/ � Is.f /2 D

X
u�D

�2.fu/; �2.fu/ D
Z

Œ0;1�s
.fu.xu//2 dx;

where �2.f;/ D 0. We next define the truncation dimension.

Definition 4. The truncation dimension of f is q if

X
u�f1;:::;qg

�2
u � p �2;

where p is an agreed upon constant chosen close to 1.

So, for p D 0:99 over 99% of the variance is captured by the first q variables.
There is a similar concept known as the superposition dimension which will not be
of interest to us in this paper. See [2] for an explanation of this.

If a problem has low truncation dimension, and if the opening few variables of
the QMC point set are of superior quality to the subsequent dimensions, then we
should expect (see [18]) to get a better result than if the problem did not have low
truncation dimension. Furthermore, for an Asian option (non-digital) the truncation
dimension after PCA is 2, after Brownian bridge it is 8 and for standard construction
it is 0:8s [25, 26].

We now return to our example problem, the digital Asian option. While it
is possible to estimate the truncation dimension, we gain more insight into the
motivation for the algorithm by looking at some graphs. In Fig. 3 we plot the .1; 2/-
dimensional projection of a 256-dimensional point sampling of our digital Asian
option example (using 256 Sobol’ points with 10 random shifts). If the value of
the integrand was 0 at a particular point, then that point is denoted with a full disc
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(darker areas). If the integrand took value 1, then it is denoted with an open disc
(lighter areas).

We see in Fig. 3a, the standard construction, that, on the basis of the location
of the first two dimensions of the 256-dimensional point, we have little idea as to
whether the integrand will take the value 0 or 1. In Fig. 3b, which is the Brownian
bridge construction, we gain a much clearer picture. On the basis of just the first two
components of each point, we have a good idea as to whether or not the integrand
takes value 0 or 1. However, there is a distinct “region of uncertainty”. Note that
even if for some simulated value of .x1; x2; x3; : : : ; xs/ the value of the function may
be 1, then that does not mean that there cannot be another vector .x1; x2; x0

3; : : : ; x0
s/

where the value might be 0. We could loosely define the region of uncertainty in
these 2-dimensional plots as the area where a change in the coordinates xj for j > 2

could have a sudden change of the function value from 0 to 1 or visa versa. In this
sense there is also a region of uncertainty in the 2-dimensional plot for the standard
construction, but there it spans the whole area Œ0; 1�2.

For the PCA construction in Fig. 3c we see that, based on just the first two
components of each point, we can guess with very high probability the value that
the integrand takes for the full 256-dimensional point. There is still a region of
uncertainty which we shall refer to as the interesting region, however, it makes up
just a very small proportion of the overall domain. We will describe an adaptive
algorithm, where the adaptivity is only used in the first two dimensions, to avoid
waisting samples on the constant part. Since we know QMC works well on the
problem, the algorithm we propose is actually a reordering of the points such that
they will sample more densely in the interesting region. Combined with a good
stopping criterion this will lead to avoid sampling the constant area of the payoff.

4 A New Adaptive Algorithm for Low Truncation Dimension

A global adaptive algorithm breaks down the integration domain recursively in
smaller subdomains, globally selecting subdomains for further refinement which
have the largest estimated error contribution, see, e.g., [3]. Uniform subdivision
of the integration domain has a cost which grows exponentially with the number
of dimensions, e.g., one may choose to split an s-dimensional hypercube into 2s

smaller subcubes. Due to the exponential cost in the number of dimensions such an
approach is only feasible for low dimensional functions (say s � 5). This means the
256 dimensions of our example problem are out of the question.

Alternative techniques for high-dimensional functions are based on the idea from
HALF [24] and only split one dimension at a time “in half”. In the Monte Carlo
literature such an algorithm is known by the name MISER [20] where the splitting
is based on the variance of the regions. VEGAS [14] is an alternative method that
uses importance sampling based on an estimated probability density function which
is constructed during an initial step of the algorithm. These algorithms have been
adapted for usage with QMC in [21].
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These approaches have difficulties when parts of the integrand are constant or
when the integrand is really high-dimensional. E.g., the performance of MISER
(using the GNU Scientific Library implementation) on our running example is
identical to Monte Carlo; whilst VEGAS is unable to pass its initialization phase.
Therefore we follow a completely different path by exploiting the low truncation
dimension property of the function, allowing uniform subdivision in the first few
dimensions, and by guiding the adaptive process by the introduction of a “sniffer
function”.

Assume the truncation dimension is denoted by q, and q is rather small (say 2

or 3). For the digital Asian option in fact we estimated q D 2, c.f. [25]. Furthermore
we are given a .t; s/-sequence in base b for which, if we confine the sequence to only
the first q dimensions, its t-value, denoted by tq , is also rather small, say 0 or 1. For
the Sobol’ and Niederreiter sequences we have t2 D 0. We now use the properties
laid out in Sect. 3.2 and formalize what we need in the following proposition.

Proposition 1. Given a .t; s/-sequence in base b, which, confined to the first q

dimensions has a t-value of tq , then the unit cube Œ0; 1�q can be subdivided into b�q

congruent subcubes for which the first bm points have exactly btq points in each of
these subcubes if m � tq D �q for � 2 N, i.e., if m � tq is a multiple of q.

Proof. This is a direct consequence of Definitions 2 and 3.

Given such a sequence we propose Algorithm 1, which is a global adaptive
algorithm which adaptively subdivides the first q dimensions. Next to MISER [20]
and VEGAS [14] we propose to call this algorithm GELT, which are chocolate
coins, as they are clearly less expensive than real gold coins. (Chocolate “gelt” is
given to Jewish children for Chanukah, but a similar tradition exists in Belgium and
The Netherlands for St. Nicholas, where “geld” is the Dutch word for money.)
Note that, in contrast with direct application of QMC, the sample points are now not
equally weighted over the whole domain, but they are equally weighted with respect
to the volume in which they occur, this as a direct consequence of splitting up the
domain in smaller subdomains. Also note that in step 2(c)i we reuse the previous
function values in the box.

An important consequence of the new algorithm is that, if we fix a preset
maximum resolution R, it is still using exactly the same QMC points, but in a
different ordering. This means that the trust one would have in applying QMC to
the given problem is easily ported to the adaptive algorithm, since running it “till
the end” of a .t; Rq C tq ; s/-net will give exactly the same numerical result (apart
from rounding error); but in case of a low truncation dimension the algorithm will
have converged dramatically faster as we will see.

Remark 1. Instead of the uniform subdivision scheme that we propose here, one
could consider the approach from HALF [24]. This would allow the values of b, q

and tq to be larger, letting q grow to the normal values of dimensionality for HALF,
VEGAS and MISER. (For b ¤ 2 this algorithm would divide each dimension in
b parts instead of 2.) E.g., in [21] numerical tests go up to 30 dimensions, although
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Algorithm 1 GELT (Global adaptive reordering for low truncation dimension)
0. Input

– an s-dimensional integrand function with (small) truncation dimension q,
– a .t; s/-sequence in base b, with (small) t -value tq in the first q dimensions.

1. Initialize

– regionlist D �
.box: Œ0; 1�q ; resolution: 0; importance: C 1/

�
(as a priority queue),

– global approximation Q D 0,
– error estimate E D C1.

2. Repeat the following as long as convergence criterion not met

a. Remove the regions w 2 regionlist which have the largest importance.
b. For all these regions w � .box:B; resolution: �; importance: V /, split B into

bq congruent subcubes Bi of q-dimensional volume b�.�C1/q .
c. Repeat the following for each such subcube Bi .

i. Using the btq points in subcube Bi , from the first btq C.�C1/q points of the sequence,
calculate:

– the local approximation Q
.j/
i for each of the random shifts, j D 1; : : : ; M ,

by evaluating only the new points;

– and, based on the above calculations, the importance Vi of this box Bi ,
by using the sniffer function (see Sect. 4.1).

ii. Calculate the local approximation over all shifts: Qi D M �1
PM

jD1 Q
.j/
i .

iii. Add .box:Bi ; resolution: � C 1; importance: Vi / to the list.

d. Update the global approximation Q and error estimate E .

3. Return global approximation Q and error estimate E .

it is noted there that the QMC MISER algorithm proposed there should not be used
in more than 5 dimensions, as plain QMC then seems to work better.

4.1 The Sniffer Function: Detecting Interesting Boxes

Foremost the adaptive QMC algorithm has to be able to detect interesting boxes.
However, recall that our example function is discontinuous (typically in finance
there is a discontinuity in the function itself or in the derivatives), as such the typical
technique of estimating the variance in each box as a measure of “importance”
is easily fooled. E.g., the discontinuity could be located close to the sides of
the box where it is easily missed by sampling. To circumvent missing out on the
discontinuity we propose the usage of a sniffer function to somehow smear out
the information.
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We now explain our main idea: since the dominating cost is the generation of
multivariate normal samples and since evaluating the payoff function is negligible
compared to this, cf. (4) and (5), it is relatively cheap to reuse the generated paths
with a modified payoff function which we construct in such a way as to reveal the
proximity of the discontinuity. In this way this so-called “sniffer function” will give
an indication of the importance of a given box for further refinement, even in the
case when all sample points in the box would have the same value.

Several approaches are possible for constructing such a sniffer function. The
most straightforward approach takes a smoothed version of the original payoff
function and then uses the variance of this sniffer function as an indicator to
detect interesting regions. For this approach one can make direct use of the random
shifting, calculating the variance per box. A more immediate approach uses the
derivative of the smoothed payoff function as the sniffer function and then use its
values directly as an indication of importance (and then we do not rely on random
shifting).

Recall that the payoff function of our running example, the digital Asian call
option, has an abrupt discontinuity, cf. (4). We can write this payoff in terms of the
Heaviside step function H :

g.S.t1/; : : : ; S.ts// D H.S � K/; where S WD 1

s

sX
j D1

S.tk/:

Using a well known smooth approximation for H and then differentiating we get

Hk.x/ WD 1

1 C exp.�2kx/
; and Dk.x/ WD d

dx
Hk.x/ D 2k exp.�2kx/

.1 C exp.�2kx//2
;

where larger values of k give better approximations. The numerical example for the
digital Asian option in Sect. 5 uses Dk.x/=.2k/ as the sniffer function with a value
of k D 20�, where we scale k with the resolution � of the box. As we also use
random shifting we take the maximum value encountered and the sniffer value is
then scaled w.r.t. the volume of the box. Calculating the value of the sniffer function
is indeed an extra cost, but compared to constructing the path (and thus evaluating
the inverse cumulative normal) this cost is negligible.

4.2 Localising Points and Shifted Points

The last important ingredient for the adaptive algorithm is the ability to generate the
points inside a given box. To localise points of a digital .t; s/-sequence in base b

which fall into the interesting boxes in the first q-dimensions we can use many
approaches: (1) a brute force search through the generated points, (2) preprocess
the sequence and form a hierarchical data set of indices, see, e.g., [12] for a similar
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approach w.r.t. the Halton sequence, or (3) directly solve a system of congruences
governed by the generating matrices of the digital sequence to determine the point
indices, see also [9] in this volume. Here we are interested in the last option as this
is the most efficient one.

An s-dimensional digital sequence in base b is generated by a set of s infinite
dimensional generating matrices Cj 2 F

1�1
b , j D 1; : : : ; s. We now consider

the points up to m-digit precision. If we denote by C m�m
j the principal submatrix

starting at the left upper corner of dimension m � m, then the j th component of the
kth point of the digital .t; m; s/-net taken from this .t; s/-sequence is generated by
the following matrix-vector product over Fb:

Exk;j D

0
BBB@

xk;j;1

xk;j;2

:::

xk;j;m

1
CCCA D C m�m

j
Ek D C m�m

j

0
BBB@

k0

k1

:::

km�1

1
CCCA ; (8)

where we use the base b expansions xk;j D Pm
iD1 xk;j;i b�i and k D Pm�1

iD0 ki bi ,
and the notation Ex means to assemble the base b digits in a vector over the finite
field as indicated.

Now suppose we want to generate s-dimensional points in a q-dimensional
subcube of resolution � (in the first q dimensions), anchored at a=b� 2 Œ0; 1/q:

B.a; �/ WD
qY

j D1

Œaj b��; .aj C 1/ b��/ �
sY

j DqC1

Œ0; 1/;

where 0 � aj < b�; j D 1; : : : ; q;

then the base b digits of the anchor indices aj determine which indices k will
fulfill this condition. Following from (8) and Proposition 1, we get a system of
congruences

0
B@

Ea1

:::

Eaq

1
CA D

0
BB@

C
��q�Ctq
1

:::

C
��q�Ctq
q

1
CCA Ek: (9)

The solutions Ek 2 F
q�Ctq
b determine which indices k fall inside B.a; �/.

For brevity we will now focus on two-dimensional localisation, i.e., q D 2, using
the Sobol’ sequence, i.e., t2 D 0. (Exactly the same holds for the Niederreiter
sequence as the generating matrices of the first two dimensions are the same.)
Then, the generating matrix C1 for the first dimension is just the identity matrix
I1, resulting in a radical inversion in base 2, and the generating matrix C2 is upper
triangular. To find the one point in the first 22� points in a box B.a; �/ we first
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Table 1 The matrices B�1
� for solving (10) for dimension 2 of the Sobol’ or Niederreiter sequence

in base 2: each column is interpreted as the binary expansion of an integer with the least significant
bits in the top rows; for reference the generating matrix is also given.

� Columns of B�1
�

1 1

2 1; 3

3 2; 6; 5

4 1; 3; 5; 15

5 8; 24; 27; 30; 17

6 4; 12; 20; 60; 17; 51

7 2; 6; 10; 30; 34; 102; 85

8 1; 3; 5; 15; 17; 51; 85; 255

9 128; 384; 387; 390; 393; 408; 427; 510; 257

10 64; 192; 320; 960; 325; 975; 340; 1020; 257; 771

11 32; 96; 160; 480; 544; 1632; 1455; 510; 514; 1542; 1285

12 16; 48; 80; 240; 272; 816; 1360; 4080; 257; 771; 1285; 3855

13 8; 24; 40; 120; 136; 408; 680; 2040; 2056; 6168; 6939; 7710; 4369

14 4; 12; 20; 60; 68; 204; 340; 1020; 1028; 3084; 5140; 15420; 4369; 13107

15 2; 6; 10; 30; 34; 102; 170; 510; 514; 1542; 2570; 7710; 8738; 26214; 21845

16 1; 3; 5; 15; 17; 51; 85; 255; 257; 771; 1285; 3855; 4369; 13107; 21845; 65535

C 1�32
2 D .1; 3; 5; 15; 17; 51; 85; 255; 257; 771; 1285; 3855; 4369; 13107;

21845; 65535; 65537; 196611; 327685; 983055; 1114129; 3342387;

5570645; 16711935; 16843009; 50529027; 84215045; 252645135;

286331153; 858993459; 1431655765; 4294967295/

trivially solve Ea1 D I�
Ek1 with Ek1 2 Z

�
2 . Each point which has an index k 	 k1

.mod 2�/ will fall into Œa1 b��; .a1 C 1/ b��/ into the first dimension. To determine
k2 we next solve

Ea2 D C ��2�
2

Ek D �
A� B�

� Ek1

Ek2

!
;

or in other words, solve

Ea2 � A�
Ek1 D B�

Ek2: (10)

Since we have a .0; 2/-sequence we know we can find exactly one point and thus
B� is invertible. We can calculate the matrices B�1

� for � D 1; 2; : : : up front, just as
one stores the generating matrices of the Sobol’ sequence (e.g., as a list of integers).
These numbers are given in Table 1. Solving for Ek2 costs no more than generating a
two-dimensional point of the sequence (using bit instructions) and is thus negligible
if one is generating a 256-dimensional point set. Digital shifts are easily handled
in this method by subtracting (modulo b) the first � digits of the shift from the
particular anchor. The same inverses B�1

� can be used for all possible shifts.
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5 Numerical Results

We test three different call options: a digital Asian option with parameters as given
in Sect. 3.3, a standard Asian option with parameters as in [4] (T D 1, s D 100,
� D 0:2, r D 0:1, S0 D 100, K D 100), and this same Asian option with an
up-and-out barrier condition added (same parameters as before with a barrier
at B D 110). For all tests we use PCA path construction for the QMC and GELT

algorithms and report the standard error over ten random shifts. In Fig. 4 we show
for each test a row of three columns. In the first column we show the projection
(for one shift only) on Œ0; 1�2 denoting the distribution of the zero payoffs (in the
top small panels) and the positive payoffs (bottom small panels) as sampled by the
sniffer function. In the middle column we show confidence intervals at a distance
of 3:4 from the mean. The graph shows the whole range of n for MC and QMC+PCA.
The new algorithm QMC+PCA+GELT does not need this many samples and so stops
earlier. In the last column the convergence of the standard error is plotted as well as
two reference lines: one with slope �1=2 and one with slope �1.

The sniffer functions for these different products can be constructed intuitively
(although interesting on its own, no real effort was made to find out optimal sniffers).
For the digital Asian call option we use the following sniffer function

s1.x; k/ D exp.�2kx/

.1 C exp.�2kx//2
; x D S � K

K
; k D 20�;

where � is the resolution of the box which has sides of length 2� . As this is a binary
option it is sufficient to detect the discontinuity. In the top row of Fig. 4 we see a
convergence of O.n�0:85/ for QMC+PCA+GELT, c.f. Fig. 2.

For the Asian call option we use the following sniffer function

s2.x; k/ D 1

1 C exp.�kx/
; x D S � K

K
C 1

�2
; k D 20�2:

As this sniffer function just gives constant importance to areas which have an
assumed positive payoff (in contrast with the sniffer above for the digital Asian)
we artificially move the boundary by a factor ��2. In Fig. 4 we notice the same con-
vergence speed as for the QMC+PCA algorithm, but without the shaky convergence
behavior. Furthermore, QMC+PCA+GELT practically always has a smaller standard
error than QMC+PCA and whilst QMC+PCA underestimates the value of the payoff in
a shaky way, the new algorithm much quicker reaches a stable value.

The Asian call option with up-and-out barrier does not really have the low
truncation dimension that we would like. We first propose a sniffer function for
the up-and-out barrier part:

s3.x; k/ D 1 � 1

1 C exp.�kx/
; x D sS � 0:95B

B
; k D �:
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Fig. 4 Top to bottom: digital Asian, Asian and Asian with up-and-out barrier. Left to right: sniffer
sampling (zero payoff/positive payoff); value and confidence intervals; standard error (ten shifts).

We use the same smoothing as for the Asian call which here only partially matches
the shape that can be seen in the bottom row of Fig. 4, however we also see that
this is sufficient to improve the convergence. This sniffer somehow distributes the
barrier over the whole path where the 0:95 part artificially makes the area bigger.

For the complete sniffer for the Asian call option with up-and-out barrier we
combine the two previous sniffers in such a way that if one of the two previous
sniffers sees a box as unimportant the total sniffer will see it as unimportant:
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s4.x/ D ˇ̌
.1 C s2.x; 10�2//.1 C s3.x; �// � 2

ˇ̌
:

In Fig. 4 we clearly see that we need only a quarter of the samples to achieve a
similar standard error as with the QMC+PCA or MC method.

Our calculated reference values for these examples are 0:50777 for the digital
Asian call option, 7:1028 for the Asian call option and 0:011 for the Asian call with
up-and-out barrier.

6 Conclusion

We presented GELT: a global adaptive algorithm based on reordering the points of
a QMC sequence by means of a sniffer function for functions of low truncation
dimension. The algorithm was demonstrated using examples from financial engi-
neering in the Black & Scholes model for ease of presentation, but can as well be
used in more advanced settings. We have shown that the algorithm performs better
than the standard QMC+PCA approach while only having a minor overhead cost.
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Random and Deterministic Digit Permutations
of the Halton Sequence*

Giray Ökten, Manan Shah, and Yevgeny Goncharov

Abstract The Halton sequence is one of the classical low-discrepancy sequences.
It is effectively used in numerical integration when the dimension is small, however,
for larger dimensions, the uniformity of the sequence quickly degrades. As a
remedy, generalized (scrambled) Halton sequences have been introduced by several
researchers since the 1970s. In a generalized Halton sequence, the digits of the
original Halton sequence are permuted using a carefully selected permutation. Some
of the permutations in the literature are designed to minimize some measure of
discrepancy, and some are obtained heuristically.

In this paper, we investigate how these carefully selected permutations differ
from a permutation simply generated at random. We use a recent genetic algorithm,
test problems from numerical integration, and a recent randomized quasi-Monte
Carlo method, to compare generalized Halton sequences with randomly chosen
permutations, with the traditional generalized Halton sequences. Numerical results
suggest that the random permutation approach is as good as, or better than, the
“best” deterministic permutations.

Introduction

The Halton sequences are arguably the best known low-discrepancy sequences.
They are obtained from one-dimensional van der Corput sequences which have a
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simple definition easy to implement. The nth term of the van der Corput sequence in
base b, denoted by �b.n/, is defined as follows: First, write n in its base b expansion:

n D .ak � � � a1a0/b D a0 C a1b C ::: C akbk;
then compute

�b.n/ D .0:a0a1 � � � ak/b D a0

b
C a1

b2
C ::: C ak

bkC1
: (1)

The Halton sequence in the bases b1; :::; bs is .�b1.n/; :::; �bs .n//1
nD1: This is a uni-

formly distributed mod 1 (u.d. mod 1) sequence (see Kuipers and Niederreiter [11]
for its definition) if the bases are relatively prime. In practice, bi is usually chosen
as the i th prime number.

One useful application of the Halton sequences (in general, low-discrepancy
sequences) is to numerical integration. The celebrated Koksma–Hlawka inequality
states,

Theorem 1. If f has bounded variation V.f / in the sense of Hardy and Krause
over Œ0; 1�s ; then, for any x1; :::; xN 2 Œ0; 1/s; we have

ˇ
ˇ
ˇ
ˇ
ˇ

1

N

NX

nD1

f .xn/ �
Z

Œ0;1/s

f .x/dx

ˇ
ˇ
ˇ
ˇ
ˇ

� V.f /D�
N .xi /: (2)

For the definition of bounded variation in the sense of Hardy and Krause,
see Niederreiter [10]. The term D�

N .xi /; called the star discrepancy of vectors
x1; :::; xN in Œ0; 1/s; is defined as follows: For a subset S of Œ0; 1/s; let AN .S/ be the
number of vectors xi that belong to S; and let �.S/ be the s-dimensional Lebesgue
measure of S .

Definition 1. The star discrepancy of vectors x1; :::; xN 2 Œ0; 1/s is

D�
N .xi / D sup

S

ˇ
ˇ
ˇ
ˇ

AN .S/

N
� �.S/

ˇ
ˇ
ˇ
ˇ

where S is an s-dimensional interval of the form
sQ

iD1

Œ0; ˛i /; and the supremum is

taken over the family of all such intervals. If the supremum is taken over intervals

of the form
sQ

iD1

Œ˛i ; ˇi /; then we obtain the so-called (extreme) discrepancy.

The star discrepancy of the Halton sequence, or any low-discrepancy sequence,
is O.N �1.logs N //: This fact, together with the Koksma–Hlawka inequality, lay the
foundation of the quasi-Monte Carlo integration.

There is a well-known defect of the Halton sequence: in higher dimensions
when the base is larger, certain components of the sequence exhibit very poor
uniformity. This phenomenon is sometimes described as high correlation between
higher bases. Figure 1, which plots the first 500 Halton vectors in bases 227 and
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Fig. 1 The first 500 Halton
vectors in bases 227 and 229.

229 (corresponding to 49th and 50th prime numbers) illustrate this high correlation.
Similar plots have been reported by several authors in the past.

Observing this deficiency of the Halton sequence, Braaten and Weller [2] offered
a remedy by generalizing the Halton sequence by using appropriately chosen
permutations to scramble the digits in Eq. 1. Let �bi be a permutation on the digit
set f0; :::; bi � 1g; and generalize Eq. 1 as

�bi .n/ D �bi .a0/

bi

C �bi .a1/

b2
i

C ::: C �bi .ak/

bkC1
i

(3)

and define the Halton sequence in bases b1; :::; bs as .�b1.n/; :::; �bs .n//1
nD1. Halton

sequences generalized in this way are called generalized Halton, or scrambled
Halton sequences. Here we will use the term digit permuted Halton sequences.
Another generalization that allows different permutations for the different digits in
Eq. 3 is also discussed in the literature; see, for example, Faure and Lemieux [6].

Since the publication of Braaten and Weller [2], several authors introduced
different permutations to scramble the digits of the Halton sequence; see, for
example, [1, 3–6, 8, 17–19]. Some of these permutations were obtained using
heuristics, such as [8] and [18], and some others were obtained by searching for
the optimal permutations that minimize the discrepancy of the one-dimensional or
two-dimensional projections of the Halton sequence, such as [2–6].

As we will elaborate further in Sect. 1, most authors cited above use a numerical
approach to compare various digit permuted Halton sequences and we will follow
the same methodology. Before we get into more details, let us entertain a simple
question: Do these digit permuted Halton sequences avoid the phenomenon of high
correlation between higher bases (see Fig. 1), which was a defect of the Halton
sequence? To answer this, we pick four permuted sequences; (1) permutations
by Chi et al. [4], which were obtained by searching for best linear permutations
that minimize correlations, (2) permutations by Faure [5], which were obtained by
minimizing the discrepancy of one-dimensional projections, (3) permutations by
Faure and Lemieux [6], which were obtained by considering both one and two-
dimensional projections, and (4) permutations by Kocis and Whiten [8], which were
obtained heuristically. Figure 2 plots the first 500 digit permuted Halton vectors
in bases 71 & 229 using the Chi, Mascagni, Warnock (CMW) permutation, 191
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CMW Bases 71 & 229 KW Bases 191 & 193

FL Bases 131 & 223 Faure Bases 1031 & 1033

Fig. 2 The first 500 vectors
from digit permuted Halton
sequences.

& 193 using the Kocis and Whiten (KW) permutation, 131 & 223 using the Faure
and Lemieux (FL) permutation, and 1,031 & 1,033 using the Faure permutation.
Note that 1,033 is the 174th prime number and a dimension as large as 174 is not
uncommon, for example, in financial applications.

Figure 2 suggests that the digit permuted Halton sequences are also prone to the
same deficiency of the Halton sequence. The bases used in the above plots were
obtained by a computer search, and there are several other projections for each case
that have similarly poor behavior. In Sects. 2 and 3, we will go further than a visual
inspection, and compare digit permuted Halton sequences by their star discrepancy,
and the error they produce in numerical integration.

In this paper we want to investigate the following question: What if we pick the
permutation �bi in Eq. 3, simply at random, from the space of all permutations?
How would this approach, which we call random digit permuted Halton sequence,
compare with the existing deterministic digit permuted Halton sequences? Perhaps
a quick test for this idea would be to plot its vectors that correspond to the same
bases we considered in Fig. 2.

Inspecting Fig. 3, we do not see a visual correlation we can speak of. Moreover,
the same computer search program that we used to detect correlations in digit
permuted Halton sequences did not detect similar correlations for any bases for
the random digit permuted Halton sequence. On the other hand, one might wonder
if these plots are too “pseudorandom like”. The rest of the paper is devoted to
comparing random digit permuted sequences with their deterministic counterparts.

1 Methodology

There are two main approaches to decide whether a given low-discrepancy sequence
is better than another: theoretical, and empirical. The conventional theoretical
approach computes upper bounds for the star discrepancy of the sequences, and
chooses the one with the smaller upper bound. The star discrepancy of N vectors
of an s�dimensional low-discrepancy sequence is bounded by cs.log N /sCO
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Random permutation – Bases 71 & 229 Random permutation – Bases 191 & 193

Random permutation – Bases 131 & 223 Random permutation – Bases 1031 & 1033

Fig. 3 First 500 vectors from randomly permuted Halton sequences.

..log N /s�1/ where cs is a constant that depends on the dimension s: The theoretical
approach compares different sequences by their corresponding cs values. There
are two disadvantages of this approach. The first disadvantage is that since the
upper bound for the star discrepancy becomes very large as s and N get larger,
comparing the star discrepancy of different sequences by comparing the upper
bounds they satisfy becomes meaningless when these upper bounds are several
orders of magnitude larger than the actual star discrepancy.

The second disadvantage is that we do not know how tight the known bounds
are for the constant cs: For example, the Halton sequence used to be considered
as the worst sequence among Faure, Sobol’, Niederreiter, and Niederreiter-Xing
sequences, based on the behavior of its cs value. However, recent error bounds
of Atanassov [1] imply significantly lower cs values for the Halton sequence.
In fact, a special case of these upper bounds, which apply to a digit permuted
Halton sequence introduced by Atanassov [1], has lower cs values than the Faure,
Sobol’, Niederreiter, and Niederreiter-Xing sequences. For details see Faure and
Lemieux [6].

There are two empirical approaches used in the literature to compare low-
discrepancy sequences. The first one is to apply the sequences to test problems
with known solutions, and compare the sequences by the exact error they produce.
The test problems are usually chosen from numerical integration, as well as
various applications such as particle transport theory and computational finance.
Numerical results are sometimes surprising. For example, even though the digit
permuted Halton sequence by Atanassov [1] has the best known bounds for its
star discrepancy, after extensive numerical results, Faure and Lemieux [6] conclude
that several other digit permuted sequences (Chi et al. [4], Kocis and Whiten [8])
generally perform as well as the one by Atanassov [1] and Faure and Lemieux [6].
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The second empirical approach is to compute the discrepancy of the sequence
numerically. The star discrepancy is difficult to compute, but a variant of it, the L2�
discrepancy, is somewhat easier. In some papers, the L2� discrepancy is used to
compare different sequences. We will discuss a drawback of this approach in the
next section.

In this paper, we will use the empirical approach to compare various digit
permuted Halton sequences including the random digit permutation approach. Since
it is not very practical to compare all digit permuted sequences, we will proceed
as follows: Faure and Lemieux [6], after extensive numerical results, recommend
the permutations by Atanassov and, Faure and Lemieux, and also report that
permutations by Kocis and Whiten and Chi et al. generally perform well. We will
use these sequences except the one by Atanassov in our numerical results. We
will also consider the permutation by Faure [5], which was used successfully in
previous numerical studies of the authors (Goncharov et al. [7]), and the permutation
by Braaten and Weller [2]. The standard Halton sequence, and the permutation
by Vandewoestyne and Cools [18], will be included in the numerical results as
benchmarks.

Our empirical approach has two parts. We will compare the selected digit per-
muted sequences by computing lower and upper bounds for their star discrepancy,
for some relatively small choices for sample size N , using a recent genetic algorithm
developed by Shah [14] and an algorithm developed by Thiémard [15]. For larger
sample sizes, however, we observed that computing meaningful bounds for the star
discrepancy becomes intractable, and thus we will compare the sequences by the
statistical error (possible by a randomization of the sequences we will discuss later)
they produce when used in numerical integration. In our numerical results we do
not consider the efficiency of the sequences. If we assume that the permutations
are known and precomputed, as it would be the case in a practical implementation,
then there is no significant difference between the computing times of various digit
permuted Halton sequences.

The test problem we will consider from numerical integration is estimating the
integral of

f .x1; :::; xs/ D
sY

iD1

j4xi � 2j C ai

1 C ai

(4)

in Œ0; 1/s: The exact value of the integral is one, and the sensitivity of the function to
xi quickly decreases as ai increases. This function was first considered by Radovic
et al. [21] and used subsequently by several authors.

2 Computing the Discrepancy

A modified version of the star discrepancy, which is easier to compute, is the L2-star
discrepancy:
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Table 1 T �

N and lower bounds for D�

N of 16-dimensional digit
permuted Halton vectors.

N T �

N Lower Bounds for D�

N

BW REV BW REV

50 13:5 � 10�4 2:00 � 10�4 0:295 0:404

100 7:01 � 10�4 1:77 � 10�4 0:261 0:356

200 3:64 � 10�4 1:53 � 10�4 0:152 0:268

Definition 2. The L2-star discrepancy of vectors x1; :::; xN 2 Œ0; 1/s is

T �
N .xi / D

"
Z

Œ0;1/s

�
AN .S/

N
� �.S/

�2

d˛1:::d˛s

#1=2

where S D
sQ

iD1

Œ0; ˛i /:

Similarly, we can define the L2-extreme discrepancy, TN .xi /; by replacing the
sup norm in the definition of extreme discrepancy (Definition 1) by the L2�norm.
There are explicit formulas to compute T �

N and TN of a finite set of vectors.
However, the formulas are ill-conditioned and they require high precision; see
Vandewoestyne and Cools [18] for a discussion.

Matoušek [9] (p. 529) points out to a more serious drawback of T �
N : if the

dimension s is high, and the number of points is relatively small, then any point
set clustered around the vertex .1; 1; :::; 1/ of the s-dimensional cube has nearly the
best possible L2-discrepancy!

We now discuss a recent example where the L2-discrepancies give misleading
results. In Vandewoestyne and Cools [18], a new permutation for the Halton
sequence, called the reverse permutation, was introduced. The authors compared
several digit permuted Halton sequences by their T �

N and TN ; in dimensions that
varied between 8 and 32. They considered at most N D 1;000 vectors in their
computations. They concluded that the reverse permutation performed as good, or
better, than the other permutations, in terms of the L2-discrepancies. For example,
Fig. 9 on page 355 of [18] shows that T �

N of the sixteen dimensional Halton vectors
obtained by the reverse permutation is much lower than that of the Braaten and
Weller permutation, as N varies between 1 and 1,000. We compute T �

N ; and lower
bounds for D�

N ; for the Braaten and Weller permutation (BW) and the reverse
permutation (REV), when N D 50; 100; 200; in Table 1. The lower bounds for
D�

N are computed using the genetic algorithm by Shah [14], which we will discuss
in more detail later.2

2In the numerical results of Sect. 2.1 we will give interval estimates for star discrepancy; a lower
bound using the genetic algorithm, and an upper bound using Thiémard’s algorithm. In this table,
we only report lower bounds since computing upper bounds with these parameters was expensive.
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Table 2 Integration error
for f .

N REV BW REV/BW

100 434 � 10�5 34:1 � 10�5 12.7
200 138 � 10�5 13:7 � 10�5 10.0
300 47:4 � 10�5 44:2 � 10�5 1.1
400 113 � 10�5 7:28 � 10�5 15.5
500 18:2 � 10�5 18:0 � 10�5 1.0
600 17:2 � 10�5 38:8 � 10�5 0.4
700 66:5 � 10�5 9:84 � 10�5 6.8
800 37:2 � 10�5 11:4 � 10�5 3.3
900 8:93 � 10�5 8:89 � 10�5 1.0
1;000 25:8 � 10�5 11:8 � 10�5 2.2

Observe that although T �
N values for the reverse permutation are lower than the

Braaten and Weller permutation for each N , exactly the opposite is true for the lower
bounds for D�

N Š Which one of these results indicate a better sequence in terms of
numerical integration? Next, we compare these sequences by comparing the exact
error they produce when used to integrate the function f with s D 16 (see (4)).
Table 2 displays the absolute error against the sample size N: The choices we make
for N match the values used in Fig. 9 of [18].

We observe that except for N D 600; the Braaten and Weller permutation error
is less than or equal to the reverse permutation error. In fact, in almost all of the
numerical results of this paper, the reverse permutation, together with the standard
Halton sequence, gave the largest error among the digit permuted sequences.

2.1 Computing Lower Bounds for Star Discrepancy Using
a Genetic Algorithm

Here we will discuss a recent genetic algorithm by Shah (see [13,14]) that computes
lower bounds for the star discrepancy. The parameters of the algorithm were
determined so that the algorithm provides good estimates for the star discrepancy
when applied to two types of examples. The first type of examples included a
small number of low-discrepancy vectors and dimension, so that the exact star
discrepancy could be computed using a brute force search algorithm. For example,
the star discrepancy of the first 50 vectors of the 5-dimensional Halton sequence
was computed using a brute force search algorithm. Then the genetic algorithm was
run, independently, forty times to obtain forty estimates (lower bounds) for the star
discrepancy. Thirty-eight of these estimates were in fact the exact discrepancy, and
the remaining two were within 1.64% of the exact value.

The other type of examples Shah used to determine the algorithm parameters had
larger number of vectors or dimension, and a brute force search was not practical.
However, lower and upper bounds for the star discrepancy could be computed
using an algorithm by Thiémard [15]. Shah used the examples and the bounds
given in [15], and was able to show that the genetic algorithm consistently yielded
discrepancy estimates within Thiémard’s bounds.
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Table 3 Lower & upper bounds for star discrepancy for different
bases. Dimension is five.

D�

100 Case A Case B Case C

Halton .0:110; 0:146/ .0:601; 0:643/ .0:961; 1:/

Reverse .0:084; 0:130/ .0:401; 0:428/ .0:563; 0:581/

Faure .0:097; 0:151/ .0:143; 0:186/ .0:185; 0:225/

FL .0:115; 0:150/ .0:152; 0:193/ .0:109; 0:148/

KW .0:100; 0:136/ .0:149; 0:179/ .0:124; 0:165/

CMW .0:116; 0:152/ .0:261; 0:291/ .0:522; 0:556/

Random .0:104; 0:152/ .0:146; 0:173/ .0:188; 0:202/

In the next two tables, we compute lower bounds for the star discrepancy of
the first 100 digit permuted Halton vectors, D�

100, using the genetic algorithm.
We also compute upper bounds for D�

100 using Thiémard’s algorithm3 [15]. For
example, the first entry in Table 3, .0:110; 0:146/; states that the lower & upper
bounds for D�

100 computed by the genetic algorithm and Thiémard’s algorithm,
were 0:110 and 0:146; respectively, for the Halton sequence (in bases given below in
Case A). We consider the permutations by Vandewoestyne and Cools [18], Faure [5],
Faure and Lemieux [6], Kocis and Whiten [8], Chi et al. [4], and the standard
Halton sequence; these sequences are labeled as Reverse, Faure, FL, KW, CMW,
and Halton, respectively, in the tables. We want to compare these digit permuted
sequences with our proposed random digit permuted sequences, with respect to
their star discrepancy. To do this, we generate forty sets of random permutations
independently (one random permutation for each base), which gives forty random
digit permuted Halton sequences. We then compute lower and upper bounds for
the star discrepancy of the first 100 vectors of these sequences. The row “Random”
displays the sample means of these bounds.

In Table 3, there are three cases labeled as A, B, and C. In each case, we
compute D�

100 when the dimension of the sequence is five, however, different
cases use different bases. In A, the bases of the Halton sequence are the first five
prime numbers; p1; p2; :::; p5 (pi is the i th prime number): In B, the bases are
p14;p20; p27; p33; p39; and in C the bases are p46;p47; p48; p49; p50: We would like
to see how increasing the prime base affects the discrepancy.

When the prime bases and the dimension (which is five) are low, as in Case A,
we do not expect to see the standard Halton sequence have poor star discrepancy,
and the results support that. The star discrepancy intervals of the sequences are
close. In Case B, we increase the prime bases, in a mixed way, and the results
change considerably. Now Halton has the worst discrepancy, followed by Reverse,

3The complexity of Thiémard’s algorithm grows at least as s="s ; where s is the dimension and
" is the parameter that specifies the difference between the upper and lower bounds for the star-
discrepancy (see [16] for a proof of the result on complexity and [15] for empirical results on
complexity). We were able to go as low as " D 0:05 in Table 3, and " D 0:2 in Table 4. The genetic
algorithm gave tighter lower bounds than Thiémard’s algorithm in computing times roughly one-
fifth (Table 3) and one-fortieth (Table 4) of Thiemard’s algorithm.
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Table 4 Star discrepancy for different bases. Dimension is ten.

D�

100 Case A Case B Case C Case D

Halton .0:251; 0:387/ .0:769; 0:962/ .0:910; 1:000/ .0:860; 1:000/

Reverse .0:244; 0:392/ .0:429; 0:569/ .0:485; 0:640/ .0:903; 0:927/

Faure .0:157; 0:324/ .0:238; 0:395/ .0:209; 0:388/ .0:360; 0:555/

FL .0:189; 0:348/ .0:216; 0:369/ .0:187; 0:332/ .0:317; 0:485/

KW .0:171; 0:331/ .0:285; 0:451/ .0:212; 0:378/ .0:419; 0:573/

CMW .0:184; 0:337/ .0:198; 0:364/ .0:548; 0:683/ N/A
Random .0:182; 0:345/ .0:212; 0:373/ .0:259; 0:444/ .0:294; 0:437/

and CMW. The permutations Faure, FL, KW, and Random are in good agreement.
Further increasing the bases in Case C spreads out the values; FL gives the lowest
star discrepancy, and KW, Faure and Random come next.

In Table 4 we do a similar analysis, but now the problem is slightly more difficult:
the dimension of the vectors is 10. In Case A, the bases are the first ten primes,
and all the discrepancy intervals overlap, although the lower bounds for Halton and
Reverse are the highest. In Case B, C, and D, the bases are the i th prime numbers
where i 2 f11, 17, 21, 22, 24, 29, 31, 35, 37, 40g, i 2 f41, 42, 43, 44, 45, 46,
47, 48, 49, 50g, and i 2 f43, 44, 49, 50, 76, 77, 135, 136, 173, 174g. In Cases B
and D, Halton and Reverse give the highest star discrepancy intervals, and in Case
C, CMW joins them. Since permutations for CMW are available up to p50 D 229,
no estimates are available in Case D. Looking at these interval estimates across
each row, one notices that the random permutation yields intervals that gradually
increase with bases, but slower, when compared to other permutations. In Case D,
the Random permutation gives the lowest lower and upper bounds.

3 Applications

In this section we compare deterministic and random digit permuted sequences
when they are applied to the numerical integration of

f .x1; :::; xs / D
sY

iD1

.j4xi � 2j C ai / = .1 C ai / :

In our numerical comparisons, we will proceed as follows: All digit permuted Hal-
ton sequences can be randomized by the random-start approach, which is a random-
ized quasi-Monte Carlo technique (see Ökten [12] and Wang and Hickernell [20]).
This enables us to compute the root mean square error of estimates obtained by
independently “random-starting” a given digit permuted Halton sequence. For the
random permutation approach, we will apply the random-start randomization to one
realization of a random permuted Halton sequence.
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Fig. 4 Random digit permutation versus deterministic permutations. Case D.

The sensitivity of f .x1; :::; xs/ to xi depends inversely on the magnitude of the
constant ai : By appropriately choosing ai ; we can specify which components are
more important, i.e., contribute more to the integral of the function. This enables us
to test how well the underlying quasi-Monte Carlo sequence performs in different
scenarios. For example, in Table 4, Case D, we observed that the lower bound
for the star discrepancy of the random permutation approach was smaller than
the lower bound for the other sequences. Case D corresponded to bases pi where
i 2 D D f43, 44, 49, 50, 76, 77, 135, 136, 173, 174g: This result suggests that
we might expect the random permutation approach perform relatively better in a
numerical integration problem where the function heavily depends on its variables
from the index set D: The test function f helps us to verify this hypothesis easily:
we set s D 10; ai D 0, and use prime bases that correspond to the indices from
D in constructing the digit permuted Halton sequences. This test function can also
be interpreted as a high dimensional function where the variables corresponding
to indices D are the most important. Figure 4 plots the root mean square error
(RMSE) of forty estimates when the Halton (HAL) sequence and the digit permuted
sequences by Faure (FAU), Vandewoestyne and Cools (REV), Random (RND),
Kocis and Whiten (KW), and Faure and Lemieux (FL) are randomized via the
random-start method. The random permutation approach gives the lowest RMSE for
all samples. FL gives the worst estimates (except for the last two samples), followed
by HAL and REV. Permutations FAU and KW give close results that are better than
FL, HAL, REV, except for the last sample.
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Fig. 5 Random digit permutations versus deterministic permutations. Mean dimension (in the
truncation sense) of 3.52.

We next consider s D 20; and generate a set of 20 random constants ai from
f0; 1; 2g; conditional on obtaining a mean dimension larger than 3.5. For a definition
of mean dimension see [22].

We obtained a D f0; 0; 1; 0; 2; 0; 0; 0; 0; 0; 2; 1; 2; 0; 1; 0; 2; 0; 1; 0g; and a mean
dimension (in the truncation sense [22]) of 3.52. Figure 5 plots the RMSE of forty
estimates generated via the random-start method. HAL and REV has the worst
overall performance. It is not easy to separate the other permutations in terms of
error, except for the very first sample. The prime bases used to obtain the results in
Fig. 5 were the first 20 prime numbers.

4 Conclusions

Deterministic permutations designed to improve the uniformity of the Halton
sequence have been around since the 1970s. Although various numerical exper-
iments have been used to show the benefits of these sequences over the Halton
sequence, the simple question of how such a sequence compares with a randomly
permuted sequence has not been addressed in the literature. We computed inter-
val estimates for the star discrepancy, and used a test problem from numerical
integration to compare randomly permuted Halton sequences with some selected
deterministic sequences. We performed additional numerical experiments that are
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not reported here due to space limitations. Quite surprisingly, in the problems we
considered, we have found that the random permutation approach was as good as,
or better, than the “best” deterministic permutations.

Acknowledgements We thank Dr. Hongmei Chi for supplying us with the permuted Halton
sequence code used in Chi et al. [4]. We also thank the anonymous referees for their helpful
comments.
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A Quasi Monte Carlo Method for Large-Scale
Inverse Problems

Nick Polydorides, Mengdi Wang, and Dimitri P. Bertsekas

Abstract We consider large-scale linear inverse problems with a simulation-based
algorithm that approximates the solution within a low-dimensional subspace. The
algorithm uses Tikhonov regularization, regression, and low-dimensional linear
algebra calculations and storage. For sampling efficiency, we implement importance
sampling schemes, specially tailored to the structure of inverse problems. We
emphasize various alternative methods for approximating the optimal sampling
distribution and we demonstrate their impact on the reduction of simulation noise.
The performance of our algorithm is tested on a practical inverse problem arising
from Fredholm integral equations of the first kind.

1 Introduction

Many problems in computational science and engineering are characterized by
experimental design, measurement acquisition, and parameter estimation or predic-
tion. This process involves mathematical modeling of the physical systems pertinent
to the observations, as well as estimation of unknown model parameters from the
acquired measurements by formulating and solving an inverse problem. Quite often
solving the inverse problem subject to measurement errors and model uncertainties
becomes computationally prohibitive, particularly for high-dimensional parameter
spaces and precise forward models [5].

In this paper we consider ill-posed inverse problems that upon discretization yield
large systems of linear equations. Such problems formulated as Fredholm integral
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equations of the first kind typically arise in several areas of engineering and natural
science including image processing, geophysical prospecting and wave scattering
[11]. The main characteristic of these problems is that the integral operator that
maps the model parameters to the observed data does not have a continuous inverse
and thus a small amount of noise in the data may trigger an arbitrarily large variation
in the estimated parameters. This inherent property of ill-posed problems is reflected
also in the discrete problem setting causing the coefficients matrix of the respective
linear system to be ill-conditioned or singular. Consider for example the integral
equation

b.y/ D
Z x2

x1

dx ˛.x; y/f .x/ C �.y/

to which we associate, through a numerical integration rule, the linear model

b D Af C � (1)

where A 2 <m�n is a dense ill-conditioned matrix, b 2 <m is the data vector,
f 2 <n is the discretization of the unknown function and � 2 <m is some additive
noise. In order to enforce stability in estimating f from noisy data b one may apply
Tikhonov regularization, expressed as a penalized least-squares problem

min
f 2<n

kb � Af k2� C �kf k2; (2)

where � 2 <m is a known probability distribution with positive components and
� 2 < is a positive regularization parameter. This problem is shown to have a
unique regularized solution ft , obtained by solving the linear system

.A0ZAC �I/ft D A0Zb;

where Z 2 <m�m is the diagonal matrix based on �, I is the identity matrix and
prime denotes transposition. The value of � is chosen such that .A0ZA C �I/

is full rank and well-conditioned for inversion [2]. When n or m is very large,
computing ft becomes challenging, hence we propose to approximate ft within
a low-dimensional subspace

S D ˚
˚r j r 2 <s

�
;

where ˚ 2 <n�s is a matrix whose columns represent the s discrete basis functions
spanning S . The type of basis functions can be arbitrary but we assume throughout
that ˚ has rank s. Our proposed methodology involves subspace approximation,
Monte-Carlo simulation, regression, and most significantly, only low-dimensional
vector operations, e.g. of order s. Let ˘ W <n 7! S be an orthogonal projection
operator. By decomposing f to its orthogonal components, f D ˘f C .I �˘/f ,
we have

b D A
�
˘f C .I �˘/f � C � D A˘f C �; (3)
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where the error term � D A.I � ˘/f C � encompasses the impact of subspace
approximation and the additive noise. By representing ˘f as ˚r , and applying a
Galerkin projection to S weighted by �, we obtain

c D Gr C z (4)

where
c D ˚ 0A0Zb; G D ˚ 0A0ZA˚ z D ˚ 0A0Z�:

The new projected operatorG 2 <s�s is now of moderate dimension but is typically
still ill-conditioned and may not be invertible. Suppose that instead of evaluatingG
and c by performing the high-dimensional matrix products, we use estimators OG
and Oc obtained by stochastic simulation. In such case we formulate the linear model

Oc D OGr C w; where w D z C . Oc � c/C .G � OG/r: (5)

Then an approximate solution r� can be computed from the regularized regression

min
r2<s

k OGr � Ock2
˙�1 C �kr � Nrk2; (6)

where ˙ 2 <m�m is the noise covariance matrix of w and Nr is an initial guess on
the solution. With minimal loss of generality we assume that � and � are random
variables with zero mean. The simulation-based regularized problem (6) admits the
unique solution

Or D . OG0˙�1 OG C �I/�1. OG0˙�1 Oc C �Nr/; (7)

although, because w is a function of r (cf. (5)), the noise covariance˙ is a function
of the required solution. To overcome this problem one option is to evaluate a
constant covariance based on a nominal r , such as the prior for example, yielding
˙ D˙.Nr/. Another possibility is a form of iterative regularized regression, whereby
we iteratively estimate the optimal solution using an intermediate correction of
˙.r/ as

OrkC1 D � OG0˙.Ork/�1 OG C �I
��1� OG0˙.Ork/�1 Oc C �Nr�; (8)

for k � 0 and r0 D Nr . The iteration was shown to converge locally to a fixed point
of (8), provided that a matrix Euclidean norm of˙.r/ is sufficiently small [19]. The
estimation of OG, Oc and ˙.Ork/ using stochastic simulation is addressed next.

2 Approximation Based on Simulation and Regression

Our approach is based on stochastic simulation. We note that there is a large body of
work on the solution of linear systems using Monte Carlo methods, starting with a
suggestion by von Neumann and Ulam, as recounted by Forsythe and Leibler [10],
(see also Curtiss [6] and the survey by Halton [12]). For a thorough review of the
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methods including some important recent developments we refer the readers to the
books by Asmussen et al. [1] and Lemieux [15].

Our approach differs from the works just mentioned in that it involves not
only simulation, but also approximation of the solution within a low-dimensional
subspace in the spirit of Galerkin approximation (see e.g. [5]). We also like to draw
the distinction from Markov chain Monte Carlo methods used in the context of linear
Bayesian estimation, where the a posteriori probability distribution is sampled
using, for example, the Metropolis-Hastings or the Gibbs algorithms [14]. Our
work is related to the approximate dynamic programming methodology that aims
to solve forms of Bellman’s equation of very large dimension by using simulation
(see the books by Bertsekas and Tsitsiklis [3], and by Sutton and Barto [18]).
This methodology has recently been extended to general square systems of linear
equations and regression problems in a paper by Bertsekas and Yu [4], which served
as a starting point for the present paper.

The use of simulation for linear algebra operations has also been adopted by
Drineas et al. in a series of papers [7–9] in the context of randomized algorithms
for massive dataset analysis. The authors propose sampling the entries of large
matrices, in order to construct new sparser or smaller matrices that behave like the
high-dimensional ones. In their analysis they consider products of several matrices
where they randomly take samples according to an importance sampling distribution
that relates to the Euclidean norms of the columns. In their work they make
no assumptions on the matrices, as opposed to our methodology, which applies
primarily to matrices of smooth structure like those arising from discretization of
Fredholm kernels.

2.1 Markov Chain Monte Carlo Framework

In [4] the authors suggest generating a long finite sequence of indices fi0; : : : ; itg
according to a nominal probability distribution � and two sequences of transitions
f.i0; j0/; : : : ; .it ; jt /g and f.i0; h0/; : : : ; .it ; ht /g according to some transition proba-
bilities �ij and �ih respectively. This yields estimates of the low-dimensionalG and
c as

OG D 1

t C 1

tX
pD0

�ipaipjpaiphp

�ip �ipjp�iphp
�jp�

0
hp
; Oc D 1

t C 1

tX
pD0

�ipaipjpbip

�ip�ipjp
�jp ; (9)

where aij denotes the .i; j /th component ofA, and �0
j is the j th row of˚ , assuming

that �ij > 0whenever aij > 0. Apart from the estimators one obtains a sample-based
estimator of the covariance given by

˙. Ork/ D 1

t C 1

tX
pD0

wpw0
p D 1

t C 1

tX
pD0

�
.Gp � OG/ Ork C . Oc�cp/

��
.Gp � OG/ Ork C . Oc�cp/

�0
;

(10)
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where each wp can be viewed as a sample of w, while Gp and cp denote the
corresponding sample terms averaged to yield OG and Oc. For further discussion and
a derivation of a confidence region for Ork obtained by introducing (9) and (10) into
(8) we refer to [19]. For the needs of this work, we borrow an important result from
[4], in the form of the following theorem.

Theorem 1. As t ! 1 we have OG ! G, and Oc ! c with probability 1, where OG
and Oc are given by (9).

Proof. The proof is in [4].

Remark 1. Under the conditions of Theorem 1, if the eigenvalues of the sample-
based covariance ˙.Ork/ are bounded below by a positive scalar, then iteration
(8) yields Ork ! r� with probability 1, where ˚r� is the target high-dimensional
regularized solution.

2.2 Variance Reduction by Importance Sampling

The central idea of our simulation method is to evaluate G and c as weighted
averages of samples generated by a probabilistic mechanism. In this context, a
critical issue is the reduction of the variance of the estimation errors OG � G and
Oc � c. To achieve this goal we use importance sampling, which can be shown to
yield estimators of minimal variance when an optimal probability distribution is
used for generating the samples [12]. Let˝ be a discrete sample space, 	 W ˝ 7! <
be a function and fi0; i1; : : : ; it g be the sequence of samples generated from ˝

independently according to distribution �. Then consider estimating the large sum
u D P

i2˝ 	i as

Ou D 1

t C 1

tX
pD0

	ip

�ip
;

and designing � so that the variance of Ou is minimized. If 	 is nonnegative, the
variance is

varfOug D u2

t C 1

�X
!2˝

�
	.!/=u

�2
�.!/

� 1
�
;

from where it is now apparent that the choice �� D 	u�1 is the optimal zero-
variance sampling distribution. Note that the non-negativity of 	 is not critical, for
if 	 admits negative values, it is trivial to decompose as 	 D 	C � 	� so that both
	C and 	� are positive functions. In such a situation Ou is computed by estimating
separately uC D P

i2˝ 	
C
i and u� D P

i2˝ 	�
i . As is well known, calculating the

optimal �� is impractical since it requires knowledge of the unknown sum. However,
designing a computationally tractable approximation O� that nearly minimizes theL1
norm k��	u�1k1 can be shown to reduce the variance of Ou. In the remaining part of
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this section we discuss some schemes for designing sampling distributions tailored
to the data of the linear ill-posed inverse problems, so to achieve variance reduction.

2.2.1 Designing Importance Sampling Distributions with Polynomial
Bases

We focus on estimating the .l; q/th entry of the symmetric, s � s matrix G and the
l th element of vector c independently in an element by element fashion. Noticing
that these can be expressed as high-dimensional sums (of dimensions n3 and n2

respectively)

Glq D �0
lA

0ZA�q D
nX
iD1

�i

� nX
jD1

aij�jl

�� nX
hD1

aih�hq

�
; (11)

cl D �0
lA

0Zb D
nX
iD1

�i

� nX
jD1

aij�jl

�
bi : (12)

One may consider a sequence of independent uniformly distributed sample indices
f.ip; jp; hp/gtpD0 and f.ip; jp/gtpD0 from the spaces Œ1; n
3 and Œ1; n
2, and compute
the Monte Carlo estimators

OGlq D 1

t C 1

tX
pD0

�ipaipjpaiphp�jpl�hpq

n�3 ; Ocl D 1

t C 1

tX
pD0

�ipaipjp�jplbip

n�2 :

Alternatively, one may design an importance sampling distribution customized for
Glq as in (11).1 In this case let the sample space be ˝ D Œ1; n
3 and consider the
function

	.i; j; h/ D �iaijaih�jl�hq;

assuming for simplicity that 	.i; j; h/ is nonnegative. The aim here is to construct,
in a computationally efficient manner, a sampling distribution O� that approximates
the optimal

��
Glq
.i; j; h/ D 	.i; j; h/

Glq
; where Glq D

nX
i;j;hD1

	.i; j; h/ D
nX
iD1

�ikai�lk1 kai�qk1

and belongs to some family of relatively simple distribution functions. In the above
ai is the i th row ofA and kai�lk1 is theL1 norm of the Hadamard product of ai and
�l . As it now becomes apparent, �� is not only high-dimensional and impractical

1Unless otherwise stated, from now on we deal exclusively withGlq . A simplified analysis applies
to cl .
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to compute, store and sample, but it also requires n-dimensional vector products
and sums. Using Bayes’ theorem and the conditional probability law the optimal
distribution can be reformulated in a product form as

��.i; j; h/ D �.hji; j /�.i; j / D �.hji; j /�.j ji/�.i/; (13)

where the marginal distributions are �.i; j / D Pn
hD1 �.i; j; h/ and �.i/ DPn

jD1 �.i; j /. We propose to approximate �� by approximating the constituent
sampling distributions

�.i/ D 	hj .i/

Glq
; �.j ji/ D 	h.i jj /Pn

iD1 	h.i; j /
; �.hji; j / D 	.i; j; h/Pn

i;jD1 	.i; j; h/
;

(14)
corresponding to the functions

	hj .i/ D
nX

jD1
	h.i; j /; 	h.i; j / D

nX
hD1

	.i; j; h/; 	.i; j; h/ D �iaijaih�jl�hq:

(15)
To accomplish this assume a low-dimensional discretization of the sampling space,
for example a uniform cubical grid. For instance let ˝D˝k � ˝k � ˝k, where
˝k D [K

iD1�i , and �1; : : : ; �K are K connected disjoint subsets of Œ1; n
.
Moreover, let  i W �i ! < be a polynomial function with support over �i and
let I�i denote a small nonempty set of points in �i , for i D 1; : : : ; K . Then one can
approximate 	 by Q	 using  i and samples of 	 at I�i . If  i is a constant function
then I�i requires only one point, whereas if it is linear then two sample points are
needed in each �i and so on with higher degree polynomials. The advantage of
using polynomial bases is that the approximate functions in (15) can be summed
up to yield the probability distributions in (14) without element-wise summation,
since the sums of discrete polynomial functions can be evaluated analytically. It
is now easy to see that as the grid dimension grows, i.e. K! n, then Q	! 	, so
that the approximate � will converge to the optimum ��, albeit with an increase
of computational complexity. The suitability of the proposed importance sampling
scheme relies predominantly on the ease of forming Q	 using a relatively small K
so that kQ	 � 	k1 is small and therefore so is kO� � ��k1. This is fundamentally due
to the smooth structure of 	, a property that stems from the smooth structure of the
model matrix A in (1) (resp. the Fourier series of the Fredholm kernel ˛ W f 7! b),
which always holds true in linear ill-posed inverse problems [11]. Once OG and Oc are
estimated, the low-dimensional solution can be computed by (7) or (8). Moreover,
since the components of G and c are estimated independently, one may view the
samples of G as vectors in <s2 that are independent of the samples of c. Thus we
can estimate the simulation error covariance by
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˙.Or/ D ˙c C

2
6664

Or 0 0 : : : 0

0 Or 0 : : : 0
: : :

: : :
: : :

: : :

0 : : : 0 Or 0

3
7775 ˙G

2
6664

Or 0 : : : 0

0 Or : : : 0

: : :
: : :

: : :
: : :

0 : : : 0 Or

3
7775 ; (16)

where ˙c 2 <s�s is the sample-based covariance of c and ˙G 2 <s2�s2 is the
sample-based covariance of G, which is given by

˙G D

2
6664

cov. Og0
1; Og0

1/ cov. Og0
1; Og0

2/ : : : cov. Og0
1; Og0

s/

cov. Og0
2; Og0

1/ cov. Og0
2; Og0

2/ : : : cov. Og0
2; Og0

s/
: : :

: : : : : :
: : :

cov. Og0
s ; Og0

1/ cov. Og0
s ; Og0

2/ : : : cov. Og0
s ; Og0

s/

3
7775 ;

where cov. Og0
i ; Og0

j / is the sample covariance between the i th and j th rows of OG.

2.2.2 The Simulation Algorithm

The resulting importance sampling (IS) algorithm for estimatingGlq is summarized
as follows:

1. Divide the sampling space Œ1; n
 into K disjoint intervals �1; : : : ; �K .
2. Fix d C 1 points I�i in �i , i D 1; : : : ; K , with d � 0.
3. Choose the bases of d th order polynomial functions  i W �i 7! <,
i D 1; : : : ; K .

4. Form the weights matrix N 2 <.dC1/K�.dC1/K�.dC1/K by evaluating 	.i; j; h/
at I�i � I�j � I�h , for i; j; h D 1; : : : ; K .

5. Sum N over the h-dimension to get Nh 2 <.dC1/K�.dC1/K .
6. Sum Nh over the j -dimension to get Nhj 2 <.dC1/K .
7. For p D 0; : : : ; t :

a. Evaluate the sum QD P.dC1/K
iD1 jNhj .i/j, construct distribution q.i/D

jNhj .i/j=Q and take sample si from [K
iD1I�i according to distribution q.

b. Let I�l be the set containing si , construct the distribution ql over �l by
interpolating with the bases  . Sample ip from�l according to distribution
ql with probability Pip .

c. Evaluate the sum QD P.dC1/K
jD1 jNh.si ; j /j, and construct q.j /D jNh

.si ; j /j=Q and take sample sj from [K
iD1I�i according to q.

d. Let I�m be the set containing sj , and construct distribution qm over �m by
interpolating. Sample jp from�m according to qm with probability Pjp .

e. Evaluate the sum QD P.dC1/K
hD1 jN.si ; sj ; h/j, and construct q.h/D jN.si ,

sj ; h/j=Q and take sample sh from [K
iD1I�i according to q.
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f. Let I�n be the set containing sh, and construct distribution qn over �n by
interpolating. Sample hp from�n according to qn with probability Php .

g. Register sample .ip; jp; hp/with probability �.ip; jp; hp/ D PipPjpPhp and
evaluate 	p D �ipaipjpaiphp�jpl�hpq .

h. Evaluate pth sample mean:

i. OGlq D 	p=�.ip; jp; hp/ if p D 0.
ii. OGlq D p

pC1 OGlq C 1
pC1 	p=�.ip; jp; hp/ if p > 0.

8. End sampling.
9. Evaluate t-sample variance var. OGlq/.

10. Evaluate the total error covariance using (16).
11. Compute the solution approximation from (7) or (8).

3 Discrete Linear Inverse Problems

Linear ill-posed inverse problems typically occur in applications of image pro-
cessing, emission tomography, wave diffraction, palaeo-climatology, and heat
transfer, and are usually expressed in Fredholm integral equations. Discretizing
these equations yields linear systems with ill-conditioned coefficient matrices.
This is an inherent characteristic of ill-posed problems and has been analyzed in
various publications, including [11] and [2] which emphasize its implications to
the existence, uniqueness and stability of the solution. In particular, the condition
number of the coefficient matrix obtained by discretization can be shown to increase
with the dimension n, sometimes at an exponential rate in which case the problem
is said to be heavily ill-posed.

In our development we have assumed the structure of the matrix A to be smooth,
implying that neighboring entries have almost identical values. This property is
due to the spectral properties of the Fredholm operators in consideration. Figure 1
illustrates this effect on a moderately sized discretized kernelA2 <n�n with nD 103

for a problem arising from geophysics. A large-scale numerical study based on this
model problem is investigated next.

3.1 Test Example: Gravitational Prospecting

Gravitational prospecting is a problem typically encountered in hydrocarbon explo-
ration. Suppose a mass of density f .�/ is distributed on a circular ringOi of radius
ri centered at the origin, where 0 � � � 2 . Allow also a concentric circle Oo
of radius ro, with ro � ri lying on the same plane, where the centrally directed
component of gravitational force b.�/ is measured, for 0 � � � 2 . According to
the law of cosines the squared distance between a mass element situated onOi at an
angle � and a point of Oo at � is
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Fig. 1 Contour plots of the elements of A (left) for a smaller scale problem with n D 103 and its
gradients in row index i (middle) and column index j (right) to indicate the smooth structure of
the model matrix as manifested by the flat regions in the gradient plots. At dimension n D 103 the
condition number of the A is 2:2� 1020.

�2t D r2o C r2i � 2rori cos.� � �/;

while the angle � formed between the normal component of the gravity force at �
and the line connecting that point to the gravitating element f .�/d� of the inner
ring satisfies

�t cos.�/ D ro � ri cos.� � �/:
In effect, the overall gravitational force exerted at the measuring angle � is

b.�/ D �

Z 2

0

d�
1

2�2t
cos.�/f .�/;

where � is the universal gravity constant. Taking for simplicity � D 1, ro D 1 and
ri D 0:5 yields the Fredholm equation

b.�/ D
Z 2

0

d� ˛.�; �/ f .�/; 0 � � � 2;

with kernel

˛.�; �/ D 2 � cos.� � �/�
5 � 4 cos.� � �/

�3=2 :
The integral equation is discretized using a midpoint quadrature rule on a uni-
form grid with nD 106 points f�i ; �j gni;j D 1 spanning over Œ0; 2
 � Œ0; 2
.
To approximate the solution we choose a subspace spanned by an orthogonal
basis of s D 102 piecewise constant functions, and consider reconstructing a
subspace approximation of the regularized density f given data b 2 <n. To test
the performance of the proposed scheme in reducing the simulation noise we run
the Algorithm 2.2.2 for various t and K , each time using piecewise constant, linear
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Fig. 2 Reduction in simulation noise Tr.˙G/ C Tr.˙c/ with the number of acquired samples.
From the left the cases with K D 20; 100 and 500 intervals, assuming s D 102 and n D 106.
In each graph the solid line is with the naive Monte Carlo sampling (uniform distribution), the
dashed for a piecewise constant approximation of the optimum IS distribution ��, the dotted for a
piecewise linear and the dash-dotted for a quadratic approximation of the optimum IS distribution.
Notice that the simulation error reduces in increasing K and in implementing a higher-order
approximation of the optimal IS distribution. In all cases the proposed scheme outperforms the
naive Monte Carlo sampling in reducing the variance of the estimators.

and quadratic basis functions for approximating the optimal importance sampling
distribution. The graphs of Fig. 2 illustrate the reduction of the simulation noise,
quantified in terms of the sum of the traces of the two sample-based covariances as
it is affected by t and K . Notice that Tr.˙G/C Tr.˙c/ reduces with increasing the
number of samples and/or the degree of the polynomials  used in approximating
the optimal distribution. The corresponding graphs obtained with uniform sampling
are plotted for comparison in order to show the superiority of the importance
sampling scheme.

In our numerical tests we choose not to add any measurement noise, i.e. � D 0.
When solving ill-posed inverse problems with synthetic data the noise free case
is considered as a “contrived” example as it allows for processing unrealistically
precise data, (see for example Chap. 5 in [14]). On the other hand, there is a large
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Fig. 3 Left, the true image f �, its projection ˘f � in S spanned by s D 102 piecewise constant
orthogonal basis functions, and the result of the simulated approximation ˚ Or . Angle � 2 Œ0; 2
 is
discretized in n D 106 elements. To the right a more detailed view of the results for 2 � � � 4:5.
Notice that the curves of ˘f � and ˚ Or are almost overlapping.

body of literature on how to adjust the regularization parameter � in (6) so as to
counteract the impact of noise and stabilize the solution. An extensive survey of
such methods is presented in Chap. 5 of [13]. In particular, notice that the problem
under consideration involves a square linear system of manageable dimension,
where the data vector Oc and coefficients matrix OG include simulation errors for
which we can estimate their element-wise variance based on samples. Moreover,
OG is symmetric and ill-conditioned and the overall noise includes the subspace

approximation error and any additive noise contained in the original data b. In this
context, to choose � we adopt the discrete Picard condition [17], which relies on
the singular value decomposition of the low-dimensional˙.Ork/�1=2 OG, implemented
after each iteration (8).

In this study we focus on demonstrating the performance of the Algorithm 2.2.2
in estimating G and c with reduced simulation error. In particular, our claim is that
for � D 0 and a sufficiently small � > 0, as the number of samples increases
the recursive formula (7) will generate a solution Or such that ˚ Or ! ˚r�. In
turn, this relies on reducing the simulation noise as illustrated by the graphs of
Fig. 2. Moreover, notice that in realistic experimental conditions, physical noise and
measurement precision are likely to result in k�k � Tr.˙G/C Tr.˙c/. In this case
the covariance of the overall noise in (5) will be predominantly determined by that
of �.

The results presented in Fig. 3 have been obtained after implementing Algo-
rithm 2.2.2 with t D 2 � 103, K D 102, n D 106, s D 102,  piecewise
linear, and � D 10�7. The figure shows for comparison the true solution f � used
to compute the data b, its subspace projection ˘f � and subspace approximation
˚ Or as computed by introducing OG, Oc, ˙G , and ˙c into (8) after only a single
iteration. The similarity between ˘f � and ˚ Or is indicative of the small variance
in the estimated OG and Oc. The total computation time, almost exclusively dissipated
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in estimating the upper triangular part of OG (5,150 entries) and the 102 entries of c
was about 8.5 h on a 2.66 GHz quad processor computer with 4 GB RAM running
Matlab [16].

4 Special Case: Underdetermined Problems

Quite often, practical limitations impose a limit to the amount of data that can
realistically be measured to estimate a certain set of parameters. By contrast, there
is always a quest for increasing the amount of information extracted from an inverse
solution, e.g. in terms of its degrees of freedom or resolution. This mismatch in
the dimensions of the parameter and data spaces evidently yields underdetermined
inverse problems. These problems are addressed in the context of the minimum-
norm Backus-Gilbert regularization method [2].

In dealing with severely underdetermined problems, one can implement our
algorithm to estimate the components of the high-dimensional solution directly,
without the need for subspace approximation. Assuming now that A 2 <s�n where
s is reasonably small and n is very large by comparison, we may adapt the preceding
methodology to estimate ft from

.A0ZAC �I/ft D A0Zb: (17)

Using the matrix inversion lemma [14], the solution can also be expressed as

ft D A0.AA0 C �Z�1/�1b;

which by contrast to (17) requires only the inversion of a low-dimensional matrix.
Using this lemma, it is also easy to prove that if .A0ZA C �I/ is well conditioned
then so is .AA0 C �Z�1/. In such a case the s-dimensional matrix we seek to
estimate by simulation is GDAA0, whose element Glq we express as a finite sum
of functions

Glq D
nX

i;jD1
	.i; j / D

nX
i;jD1

ali aqj :

To obtain an approximation to the optimal importance sampling distribution for 	
we work similar to the algorithm described above, essentially dividing the sampling
space Œ1; n
 into K disjoint intervals �1; : : : ; �K , where we take a number of
arbitrary points I�i and interpolate d -degree polynomial functions in each�i . After
t samples, the importance sampling yields the estimator given by

OGlq D 1

t C 1

tX
pD0

alipaqip

�.ip; jp/
; l; q D 1; : : : ; s;
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and its t-sample variance var. OGlq/. Consequently the i th element of the solution can
be computed by

fi D a0
i .

OG C �Q�1/�1b; (18)

where ai 2 <s is the i th column of A and Q is the noise covariance encompassing
the additive noise and the simulation error. Notice that since we do not use subspace
approximation, the approximation error is essentially zero.

5 Conclusions and Future Directions

In this paper, we have considered the approximate solution of linear inverse
problems within a low-dimensional subspace spanned by a given set of basis
functions. We have proposed a simulation-based regularized regression approach
that involves importance sampling and low-dimensional computation, and that
relies on designing sampling distributions customized to the model matrices and
basis functions spanning the subspace. We have elaborated on a few approaches
for designing near-optimal sampling distributions, which exploit the continuous
structure of the underlying models. The performance of our method has been
evaluated with a number of numerical tests using a classical inverse problem. The
computation experiments demonstrate an adequate reduction of simulation error
after a relatively small number of samples and an attendant improvement in quality
of the obtained approximate solution.

A central characteristic of our methodology is the use of low-dimensional
calculations in solving high-dimensional problems. Two important approximation
issues arise within this context: first the solution of the problem should admit a
reasonably accurate representation in terms of a relatively small number of basis
functions, and second, the problem should possess a reasonably continuous/smooth
structure so that effective importance sampling distributions can be designed with
relatively small effort. In our computational experiments, simple piecewise poly-
nomial approximations have proved adequate, but other more efficient alternatives
may be possible. We finally note that the use of regularized regression based on a
sample covariance obtained as a byproduct of the simulation was another critical
element for the success of our methodology with nearly singular problems.
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In Search for Good Chebyshev Lattices

Koen Poppe and Ronald Cools

Abstract Recently we introduced a new framework to describe some point sets
used for multivariate integration and approximation (Cools and Poppe, BIT Numer
Math 51:275–288, 2011), which we called Chebyshev lattices. The associated
integration rules are equal weight rules, with corrections for the points on the
boundary. In this text we detail the development of exhaustive search algorithms
for good Chebyshev lattices where the cost of the rules, i.e., the number of points
needed for a certain degree of exactness, is used as criterium. Almost loopless
algorithms are considered to avoid dependencies on the rank of the Chebyshev
lattice and the dimension. Also, several optimisations are applied: reduce the vast
search space by exploiting symmetries, lower the cost of the point set creation and
minimise the cost of the degree verification. The concluding summary of the search
results indicates that higher rank rules in general are better and that the blending
formulae due to Godzina lead to the best rules within the class of Chebyshev
lattice rules: no better rules have been found in the searches conducted in up to
five dimensions.

1 Introduction

1.1 Motivation

Recently Clenshaw–Curtis integration was revived [14, 15]. This technique for
1-dimensional integration is based on a cosine mapped trapezoidal rule. The
question that motivated this research is: can a similar transform applied to a
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lattice rule be beneficial for multivariate integration and approximation. In [3] we
presented the Chebyshev lattice rules as generalising framework for cubature rules
suited for integration with Chebyshev weight function. This setting arises naturally
when determining the coefficients of a Chebyshev approximation of a multivariate
function. Because of the limited number of parameters, the Chebyshev lattice
notation enables an exhaustive search in moderate dimensions. We are interested
in good cubature rules in the sense that they require a small number of points,
and thus function evaluations, to give exact results for the weighted integral of
polynomials up to a certain degree. We hope that, as known (near-) optimal point
sets fit into the framework, good cubature rules in moderate dimensions may also be
found.

1.2 Classical Lattices

Lattice rules are a well known family of quasi-Monte Carlo methods for the
approximation of s-dimensional integrals (see, e.g., [2, 13] and their references).
They are based on point sets that can easily be described as a linear combination of
k � s generating vectors. More specifically they are based on so-called integration
lattices: a discrete subset of the real space R

s that is closed under addition and
subtraction that contains the integer points as a subset. Hence the point set can be
described as

8
<

:

kX

j D1

`j zj

dj

: `j 2 Z; dj 2 N0 and zj 2 Z
s for j D 1; : : : ; k

9
=

;
; (1)

where we use curly braces only to denote the set of points,Z is the set of integers and
N0 WD f1; 2; : : :g. The associated lattice rule uses a set of points � D fxg � Œ0; 1/s ,
where the components of x consist of the fractional part of the lattice points, to
approximates the integral of f .x/ on the domain Œ0; 1�s

QŒf � WD 1

N

X

x2�

f .x/ �
Z

Œ0;1�s
f .x/ dx DW I Œf �: (2)

Note that N , the number of points in (2), follows from the generating vectors, more
specific N D j det G j�1 where G is a rational generator matrix of the lattice (1) [7].

There are many quality criteria for lattice rules in use, see [2] for a survey. One
of these is the total trigonometric degree. This is defined as the maximal n D jhj WDPs

rD1 jhr j for which all trigonometric functions f .x/ D Qs
rD1 exp .2�{ hrxr / are

integrated exactly, i.e., (2) becomes an equality. This allows for a ranking of rules:
good lattice rules have a small number of points N compared to other rules with the
same trigonometric degree and thus require fewer function evaluations.
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1.3 Chebyshev Lattices

Chebyshev lattices of rank k, as introduced in [3], are based on a cosine mapping
of a classical lattice with the same k generating vectors zj 2 Z

s and denominators
dj 2 N0, a fixed offset vector z� 2 Z

s and denominator d� 2 N0:

� WD
8
<

:
cos

0

@�

0

@
kX

j D1

`j zj

dj

C z�

d�

1

A

1

A: `j 2 Z for j D 1; : : : ; k

9
=

;
: (3)

The point sets (3) were developed in the context of multivariate integration on
hypercubes Cs WD Œ�1; 1�s using a Chebyshev approximation of the integrand.
Evaluating the coefficients of the approximation leads to integrals with Chebyshev
weight function !.x/ WD ��s

Qs
rD1.1�x2

r /� 1
2 that, due to hyperinterpolation theory

[12], can be replaced with a suitable cubature rule in which we use the points
from (3):

QŒf � WD
X

x2�
wx f .x/ �

Z

Cs

f .x/ !.x/ dx DW I Œf �: (4)

To avoid a periodicity requirement, and inherently through the cosine mapping,
� possibly includes points on all boundaries. The cubature rule (4) is therefore an
equal weight rule, with corrections for the points on the boundary. The weights
are still known explicitly, i.e., it is not necessary to solve a system of equations to
obtain their values. To correct for points on the boundary, a scaling of the weights is
needed: in three dimensions, points on faces, edges and vertices will have weights
proportional to 1

2
, 1

4
and 1

8
. Using the conditional function �.condition/, which

evaluates to 1 if the ‘condition’ is true, 0 otherwise, the weight wx can be written as

wx WD Qwx

QW ; where Qwx WD 2�Ps
rD1 �.jxr jD1/ and QW WD

X

x2�
Qwx; (5)

in which the normalisation factor QW ensures exactness of (4) for a constant function.
As with classical lattices, the quality of a cubature rule (4) can be expressed in

terms of its degree, but in this weighted setting we use the total algebraic degree.
If (4) is an equality for all polynomial functions f .x/ D Qs

rD1 xhr
r , where jhj � n,

the cubature rule is said to have a degree n. Similar to classical lattice rules, better
Chebyshev lattice rules require less points to attain a certain degree n.

It is important to note that, in contrast to the classical lattice rules, there is no
closed relation between the parameters of the Chebyshev lattice and the number
of points N . Also, due to the folding of the cosine mapping, it is not guaranteed
that good classical lattice parameters lead to good Chebyshev lattice rules and vice
versa.
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We showed [3] that most cubature point sets for the integrals (4) with Chebyshev
weight function can be written as a Chebyshev lattice rule. Godzina’s blending point
set [5], for example, an explicit s-dimensional point set with given degree n, leads
to the following full rank (k D s) Chebyshev lattice rule for n D 4� � 1 (� 2 N0):

z1 D Œ 1; 1; 1 � � � 1; 1 �

z2 D Œ 0; 2; 0 � � � 0; 0 �

:::
: : :

zs D Œ 0; 0; 0 � � � 0; 2 �

with

(
d1; : : : ; ds D d� D 2�;

z� D Œ 0; 1; 0; 1; : : :�:

1.4 Computer Search

It is obvious that Chebyshev lattice rules are described by a fixed number of
parameters. This search space depends on the rank k and the dimension s and
is bounded: due to the periodicity of the cosine mapping, the components of the
generating vectors can be reduced modulo their denominators. Without loss of
generality, we consider all denominators equal, i.e., d1 D � � � D dk D d and this
common denominator d can be seen as the third search parameter. Note that any
given Chebyshev lattice can be reformulated with equal denominators by taking d

equal to the least common multiple of all denominators d1; : : : ; dk . This simplifies
bookkeeping but postpones specific rules to higher values of d and thus more
expensive searches. For example, a rank-2 Chebyshev lattice with d1 D 5 and d2 D 7

will only be found when d D 35.
Each combination of parameters s, k and d leads to a different search space.

Our aim is to find the best Chebyshev lattices, i.e., the rules that require the lowest
number of points to attain a certain degree of accuracy. Therefore, the programs
keep track of the best Chebyshev lattice parameters, i.e., the generating vectors,
denominator and the number of points for each degree and replaces them only if
a rule with less points is found. These search process concepts are illustrated in
Listing 1.

It is obvious that the search from Listing 1 can be done in parallel for the number
of dimensions s, the rank k and the denominator d . This will require some post-
processing, to combine all the rules and find the ‘globally’ best ones, but can be
solved easily by storing the rules into a small database and by performing simple
queries to extract the best Chebyshev lattice rules.

Whenever possible, the search programs have been made invariant of the three
search parameters. To illustrate this, consider the most rudimentary way to iterate
over rank-1 generators in s dimensions using s nested loops, one for each component
of the generating vector. This is straightforward but limits the applicability of the
program to a fixed s. To avoid this dependency, we have been exploring loopless
and almost loopless algorithms [4, 6] that produce the same result with only one or
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Listing 1 Conceptual overview of the search for good Chebyshev lattice rules. Sects. 2–4
elaborate on the lines that are indicated in the algorithmic overview.

for s D 2; 3; : : :

catalog = [ ]
for k D 1; : : : ; s

for d D 1; 2; : : : until time budget for this s exhausted
Ý Section 2for each fz1; : : : ; zkg in the search space
Ý Section 3create the point set; let N be the number of points
Ý Section 4determine the algebraic total degree n

if( is empty(catalog[n]) jj N < catalog[n].N ) then
catalog[n] = fz1; : : : ; zk; d; N g

end if
end for

end for
end for
report the rules from catalog

end for

two nested loops, independent of the number of dimensions. This way, one could re-
write the rank-1 search so that the number of dimensions is just an input parameter:
no code must be changed to run the search for another number of dimensions. This
is clearly less error prone than explicit loops and could arguably be even slightly
faster.

In the following three sections, we provide more details on the actual search
programs and optimisations that have been used in the highlighted steps from
Listing 1. After that, actual search results in up to five dimensions are compared
to known point sets. Section 6 concludes this paper.

2 Reducing the Search Space

2.1 Exploiting Symmetry

The search space for generating vectors of s-dimensional, rank-k Chebyshev
lattices where the components of each j -th generating vector component belong
to f0; 1; : : : ; d g, has .d C 1/ks elements. However, symmetries can be exploited to
reduce this huge search space. Due to the symmetry of Cs and !, the components
of a point set can be permuted without influencing the degree. The same reasoning
allows us to reorder the components of the generating vectors, which of course is not
limited to rank-1. The higher rank case, i.e., k > 1, can also exploit the invariance
of the Chebyshev lattice with respect to the ordering of the k generating vectors.

Let us first focus on s-dimensional rank-1 Chebyshev lattices: consider the
integer search space where all generating vectors z1 live in. The number of
symmetries can be related to the number of distinct component values of this vector,
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here denoted by t . The most obvious example are the dC1 vectors that have only one
independent component, thus t D 1. This case can be summarised with a parametric
description z1 D .A; : : : ;A/. For t > 1, several parameter descriptions can be made,
e.g., for s D 3 and t D 2 there is z1 D .A;A;B/ and z1 D .A;B;B/ in which the
parameters A < B It should be clear that if all vectors satisfying these descriptions
are checked, it is no longer necessary to verify .A;B;A/, .B;A;A/, .B;B;A/ or
.B;A;B/ because of the cubature rules degree’s invariance with respect to coordinate
permutations. This leads to an asymptotical reduction of 1

sŠ
for d ! 1, but note

that the reduced space, with 1
sŠ

.d C 1/ks elements, still explodes for growing s, k

or d.
We define the unique generating vectors as the sets of generating vectors that

are in the reduced search space in which all of the above invariances have been
excluded. To see how many of those generating vectors there are, we first observe
that the entire search space in s dimensions can be decomposed as

.d C 1/s D
sX

tD1

  
d C 1

t

!

„ ƒ‚ …
I

�
X

g

sŠ
Qt

vD1 gvŠ

„ ƒ‚ …
II

!

: (6)

In this, the I-part represents the number of generators one can construct with t-
different parameters in f0; : : : ; d g and the II-part denotes the number of symmetries
that should also be included to get the entire space (this is also the number of
permutations of the multi-set with occurrence counts g ). Examples of the vectors g
are given in Table 1 and a proof of (6) for s � 4 is given in the Appendix.

Using this formalism, the size of the search space for rank-1 rules can be written
explicitly by taking only one symmetry setting per parameter description. This
replaces the II-part in (6) by #g, the number of g vectors, and leads to (see Appendix)

Us;d;kD1 D
sX

tD1

  
d C 1

t

!

� #g

!

D
sX

tD1

  
d C 1

t

!

�
 

s � 1

s � t

!!

: (7)

For higher ranks, a similar approach can be followed, but note that coordinate
changes need to be considered for all k generating vectors together. A similar para-
metric approach as above can be used to describe the vectors. In two dimensions,
rank k D 2, this leads to the following sets of vectors where A < B < C < D:

Z D
"

z1

z2

#

D
"
A;A

A;B

#

;

"
A;B

A;C

#

;

"
A;B

B;A

#

;

"
A;B

C;A

#

; : : : ;

"
A;B

C;D

#

: (8)

The second symmetry for higher ranks is the order of the k vectors. Obviously,
permuting them does not change the Chebyshev lattice. Also, because the search
focusses on a specific rank, sets of vectors with a linear dependency can be
discarded.
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Table 1 Examples of the descriptions of a s-dimensional grid with components in f0; : : : ; dg with
their occurrence vector g. The last column lists the specific values of part II in (6).

(a) s D 1

t Descr. g sŠQt
vD1 gvŠ

P
g

sŠQt
vD1 gvŠ

1 A Œ1� 1 1

(b) s D 2

t Descr. g sŠQt
vD1 gvŠ

P
g

sŠQt
vD1 gvŠ

1 A,A Œ2� 1 1
2 A,B Œ1; 1� 2 2

(c) s D 3

t Descr. g sŠQt
vD1 gv Š

P
g

sŠQt
vD1 gvŠ

1 A,A,A Œ3� 1 1
2 A,A,B Œ2; 1� 3

6
A,B,B Œ1; 2� 3

3 A,B,C Œ1; 1; 1� 6 6

(d) s D 4

t Descr. g sŠQt
vD1 gvŠ

P
g

sŠQt
vD1 gvŠ

1 A,A,A,A Œ4� 1 1
2 A,A,A,B Œ3; 1� 4

14A,A,B,B Œ2; 2� 6
A,B,B,B Œ1; 3� 4

3 A,A,B,C Œ2; 1; 1� 12
36A,B,B,C Œ1; 2; 1� 12

A,B,C,C Œ1; 1; 2� 12
4 A,B,C,D Œ1; 1; 1; 1� 24 24

The parametric representation of the generators provides us with a flexible and
memory friendly way of avoiding symmetries without explicitly storing all visited
generators. Creating the parametric descriptions requires only a moderate O

�
.ks/ks

�

memory locations. It is important to see that this number is independent of d :
the descriptions can thus be calculated once and re-used for every value of the
denominator (skipping descriptions where t > k .d C 1/).

Our current programs use an almost loopless algorithm to generate the prescrip-
tions for arbitrary rank k and dimension s and stores them on disk. The actual
search then reads these descriptions one by one and uses a second almost loopless
algorithm to generate the values for the parameters A;B; : : : Note that the loopless
property dramatically simplifies this process, because the number of parameters t
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is now just an input argument of the algorithm: t may vary between descriptions
without adding any complexity to the program.

2.2 Hermite Normal Form

Following the discussions in ([13], Chap. 9), another way of avoiding spurious
elements in the search space is by using the Hermite normal form. It is shown that
integration lattices yield a full-rank matrix H which is derived from a generator
matrix Z 2 Z

s�s with on its rows the k generating vectors, extended with s � k

suitable unit vectors, using a unimodular transformation U so that Z D U H. These
Hermite matrices have a specific structure which can be exploited during the search
process:

H D �
Hi;j

� D
0

where

8
ˆ̂
<

ˆ̂
:

Hi;j D 0; j < i;

0 < Hi;j � d; j D i;

0 � Hi;j < Hj;j ; j > i:

(9)

To enumerate all H matrices, only s.sC1/

2
parameters are needed instead of s2 when

considering all generator matrices Z. Using the specific structure of H, the number
of elements in this search space is thus only

Us;d D
sY

rD1

dX

ıD0

ır�1: (10)

We have implemented a routine that iterates over all Hermite normal form
matrices H, given s and a denominator d . For this search, we loosened the fixed
rank requirement and checked all sets of generating vectors up to a certain rank-k
because this determines the number of parameters in H.

3 Reducing the Point Set Creation Cost

When creating a Chebyshev lattice point set, duplicates must be avoided. This
is somehow expensive because for a rank-k Chebyshev lattice with common
denominator d , NN D .d C 1/k s-dimensional points must be verified to be distinct.
Using a balanced tree structure, a red-black tree in our programs, the number of
scalar comparisons in this operation can be reduced from O

�
s NN 2

�
to O

�
s NN log NN �,

but further improvements are possible. With the common denominator d , it is easy
to see that points from the Chebyshev lattice are derived from an integer vector y` .
Rewriting the points from (3) as
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x` D cos
��

d
y`

�
with y` WD

kX

j D1

`j zj C z� (11)

clearly shows this. Moreover, due to the periodicity of the cosine, this integer vector
y` can be reduced, component by component, so that it still produces the same point
x`. Using Qy` for this reduced integer vector and ‘minmodd ’ for the element-wise
reduction so that Qy` 2 Œ0; d �s , we can write the points as

x` D cos
��

d
y`

�
DW cos

��

d
Qy`

�
with Qy` WD minmodd .y`/ : (12)

It suffices to compare s-dimensional integer vectors Qy`, instead of floating point
vectors, to see whether a given point is already in the set. And, since d is rather
small (less than a few hundred), it might be possible to compress the vectors even
more. One way is to use integers with smaller ranges to represent Qy` but combining
the component values using a multi-radix notation proved to be even quicker. With
sufficiently large integers, Qy` can be stored as a scalar

	` D
sX

rD1

Qy`;r .d C 1/r ; (13)

which is significantly faster in comparisons than the loop that is needed to go over
all the components. Note that the tree also requires less memory as it only has to
store 	` values to determine whether a point is a duplicate or not.

4 Reducing the Degree Verification Cost

4.1 Evaluation of the Basis Function

In order to check the degree of a given point set and weights, the cubature rule (4)
is evaluated for polynomials with increasing degree. It seems that, without prior
knowledge about the point set, not much can be done to accelerate this step: all
polynomials for increasing degrees must be verified. However, using Chebyshev
polynomials Th.x/ WD Qs

rD1 cos .hr arccos.xr // simplifies the evaluation: it is
obvious that arccos.xr / can be precomputed, but, because all points will originate
from a Chebyshev lattice, using Qy` from (12) leads to

Th.x`/ D
sY

rD1

cos
�
hr arccos

�
cos

��

d
y`;r

���
D

sY

rD1

cos
�
hr

�

d
Qy`;r

�
(14)

and so the evaluation of the arccosine of the cosine can be avoided.
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(a) Caching cosines (b) Caching cumulative products

(c) Caching both cosines and cumulative products

Fig. 1 Three ways of reducing the evaluation complexity of Th.x`/ in (14). For the order in which
the h’s are generated, variant (b) is the fastest, followed by (a). Variant (c) is slightly slower than
(b) but requires more bookkeeping. For clarity, the diagrams show the evaluation in only one point.
Evidently, this is vectorised over all points to benefit from pipelining.

For each degree n, all polynomials Th with jhj D n must be verified, but the
order in which this is done does not matter. If explicit loops are used, cos.hr

�
d

Qy`;r /

will only change when hr changes. By storing these product terms for each hr (see
Fig. 1a), the computational complexity, in terms of the number of cosine evaluations,
is O

�Ps
rD1

�
n
r

�
N
�

for the evaluation for N points, instead of the O
�
s
�

n
s

�
N
�

a naive
implementation would require.

Alternatively, the number of floating point operations can be reduced by storing
cumulative products of the cosines, as illustrated in Fig. 1b. For example, if we
know that only hs changes, the repeated calculations of the cumulative productQs�1

rD1 cos.hr
�
d

Qy`;r / from (14) can be cached easily.
These two ideas can also be combined, leading to the diagram in Fig. 1c.

However, experiments for moderate dimensions (s � 10) have shown that this
third variant does not provide an additional decrease in execution time. Caching
the cumulative product from Fig. 1b provides the fastest results and can be seen to
be more cache friendly because of memory locality.
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4.2 Generation of the Coefficients

This complexity can be reduced even further using an algorithm that generates the
coefficients h in a way that minimises component changes because this increases
the efficiency of the caches mentioned before. Of course, explicit loops already do
this but as explained before we have been exploring almost loopless algorithms to
avoid the dependency on the number of dimensions.

Our almost loopless algorithm, based on [4], generates all h’s for a certain degree
n using only two component changes per h. This is optimal: less changes would
violate the fixed degree assumption.

4.3 Special Note on n D 1

As exactness for a constant (n D 0) is guaranteed by the scaling of the weights, the
first degree that must be checked is n D 1. Research has shown that a significant
part of the generators fail for this degree. Using the fact that all s coefficients h with
jhj D 1 have only one non-zero element, this degree can be verified using only sN

cosines in total (N is the number of points in the Chebyshev lattice) compared to
s2N cosines if these zero elements are not exploited. Unrolling for n D 1 speeds up
some searches with up to a factor 3.

4.4 Incorporating Knowledge of the Point Set

Orthogonal to the above, another way to improve the complexity of the degree
verification is the use of symmetry information. If it is known in advance that a point
set equals its reflection around any xr D 0, only even degrees must be checked in
that direction (odd degrees are guaranteed). This proves very effective in reducing
the number of polynomials in the verification, but for now symmetry information
is not available a such. As the generating vectors are known, they do provide
information about the symmetry. However, due to the folding-like operations of the
element-wise cosine transform in the Chebyshev lattices, it is unclear how to derive
this kind of symmetry properties directly.

5 Search Results

All results from the different search programs are summarised in Table 2. This
shows that the best point sets do not improve the results of Godzina given at the end
of Sect. 1.3. Therefore we measure the cost for the rules, i.e., the number of points,
relative to those of Godzina as can be seen in Fig. 2. In up to four dimensions we
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Table 2 Generating vectors corresponding to the Chebyshev lattices from Fig. 2 without offset
vector (z� D 0). Note that the results for s D 2 are excluded here, because they correspond to the
Padua (k D 1) and Morrow-Patterson (k D 2) points described in [3]. The same applies for k D s

where the results correspond to Godzina’s point set. In five dimensions, only rank-1 Chebyshev
lattices and one rank-2 have been found so far.

(a) s D 3, k D 1

n z1 d N

1 1 1 1 1 2

3 6 10 15 30 18

5 12 15 20 60 30

7 20 28 35 140 60

9 30 35 42 210 84

11 42 66 77 462 168

13 56 63 72 504 180

15 72 88 99 792 270

17 90 99 110 990 330

19 110 130 143 1;430 462

21 132 143 156 1;716 546

23 156 204 221 2;652 819

25 182 195 210 2;730 840

27 210 238 255 3;570 1;080

29 240 255 272 4;080 1;224

31 272 304 323 5;168 1;530

33 306 323 342 5;814 1;710

(b) s D 3, k D 2

n z1 z2 d N

1 0 0 2 2 2 1 2 3

3 0 4 6 3 6 3 6 10

5 3 4 4 0 0 8 12 20

7 4 5 5 0 0 10 20 39

9 6 25 6 30 25 6 30 63

11 7 18 7 21 18 7 42 100

(c) s D 4, k D 1

n z1 d N

1 1 1 1 1 1 2

3 30 42 70 105 210 72

5 60 84 105 140 420 120

7 140 180 252 315 1;260 300

9 210 330 385 462 2;310 504

11 462 546 858 1;001 6;006 1;176

13 504 616 693 792 5;544 1;080

(d) s D 4, k D 2

n z1 z2 d N

1 0 0 0 2 2 2 2 1 2 3

3 0 6 4 0 3 3 6 2 6 20

5 3 4 4 9 3 12 4 3 12 52

7 4 5 5 12 4 15 5 4 20 117

(e) s D 4, k D 3

n z1 z2 z3 d N

1 1 0 0 1 0 1 0 0 0 0 1 0 2 27

3 3 3 3 2 0 6 0 4 0 0 6 4 6 18

(f) s D 5, k D 1

n z1 d N

1 1 1 1 1 1 1 2

3 210 330 462 770 1; 155 2; 310 432

5 420 660 924 1; 155 1; 540 4; 620 720

7 1; 260 1; 540 1; 980 2; 772 3; 465 13; 860 1; 800

9 2; 520 3; 080 3; 465 3; 960 5; 544 27; 720 3; 240

11 6; 006 7; 854 9; 282 14; 586 17; 017 102; 102 10; 584

13 5; 544 6; 552 8; 008 9; 009 10; 296 72; 072 7; 560

(g) s D 5, k D 2

n z1 z2 d N

1 0 0 0 0 2 2 2 2 2 1 2 3
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(b) s = 3: the best points sets are those described by Noskov [10], another specialisation of Godz-
ina’s set. No results for k = 2 and n ≥ 13 were found within the search time bounds.
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(c) s = 4: as with three dimensions, rank-k rules where 1 < k < s appear harder to find. Therefore,
several degrees do not have a rank-2 and/or rank-3 rule. Godzina’s set is also found here.

(a) s = 2: for rank-2, the point sets due to Godzina’s were found (some of them with an nonzero
z ), this corresponds to the well known Morrow-Patterson point set [9].D

Fig. 2 Search results for up to four dimensions. As Godzina’s point set describes the best
Chebyshev lattices found so far, we show the relative number of points relative to the number
in Godzina’s set. The graphs show the number of points as function of the degree for different
ranks. The black bars on top of the full-rank rules indicate results for non-zero offset vectors z�.
A circle indicates that the specific rule found, is identical to a point set due to Godzina.
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have found point sets equivalent to those due to Godzina, those cases are indicated
with a circle on the graphs. Note that although Godzina’s point set is generally
described with a full rank Chebyshev lattice (i.e., k D s), for a degree n D 1, the
denominator d D 2 and thus the rank of the rule drops to 1.

Although we searched for Chebyshev lattices without offset, i.e., z� D 0, Fig. 2
also includes results for the shifted Chebyshev lattices that were found by adding
shifts to the previously known rules. Often, by adding a shift, the number of points
could be reduced a little, while retaining the degree.

In two dimensions, the Morrow-Patterson points [9] are known to be optimal:
they achieve the theoretical lower bound for the number of points due to Möller [8].
As shown in [3], these optimal set are a specialisation of Godzina’s point set. The
best two-dimensional rank-1 rules in correspond to the Padua points [1]. They
are non-optimal and require more points to achieve the same degree as those by
Morrow-Patterson.

For s D 3, the point set described by Noskov [10], again instances of Godzina’s
rules, are found to be best. It also appears that good rank-2 rules are rather hard
to find: within the self imposed bounds on the search time, for corresponding
denominators, both good rank-1 and good rank-3 rules were found. The rank-2 rules
however, seem to require larger denominators and thus more time than allowed.
From the incomplete results of Fig. 2b, a first general observation can be made:
except for n D 1, higher rank rules require less points for the same degree. This
actually encourages us to pursue high rank searches, although this requires iterating
in a much larger space.

Results in four dimensions (see Fig. 2c) and preliminary ones for s D 5 (only
shown in Table 2) support the observation that higher ranks require less points.
Investigation of the actual point sets also shows a favour for grid-like structures.
This is rather unwanted, because it corresponds to quickly growing number of points
when the degree and the number of dimensions increases. Note however that this
growth is intrinsic for the definition of the degree we have chosen here, so it cannot
be eliminated completely.

6 Conclusion

We have presented several approaches to search for good Chebyshev lattices
and detailed the implementation and optimisation using, amongst other, (almost)
loopless algorithms and caching structures. Our searches provide computational
evidence that Godzina’s point set is ‘optimal’ within all Chebyshev lattices: no
better point sets were found so far. They are of full rank and require less points than
lower rank results, which also appears to be a general observation in this context.
An advantage of these not so commonly known blending point sets and rank-1
Chebyshev lattices is the ability to use the fast Fourier transform while creating
Chebyshev approximations of a function. This might lead to efficient software for
interpolation and integration in moderate dimensions [11].
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With these results, we will not pursue the search for good Chebyshev lattices,
although future work could include worst-case-error based criteria and possibly
other definitions of the polynomial degree. Such quality criteria are required anyway
if one wants to extend the applicability to higher dimensions.
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Appendix: Proof of Identity (6) and (7)

The sum of a general function G.g/ over all g’s is equivalent to t � 1 nested sums

X

g

G.g/ �
s�.t�1/X

g1D1

s�.t�2/�g1X

g2D1

s�.t�3/�g1�g2X

g3D1

: : :

s�1

�Pt�2

D1 g
X

gt�1D1

G.g /
ˇ
ˇ
gt Ds�Pt�1


D1 g

: (15)

Therefore, part II from identity (6) can be rewritten into

X

g

sŠ
Qt

vD1 gvŠ
D

s�.t�1/X

g1D1

1

g1Š

s�.t�2/�g1X

g2D1

1

g2Š

s�.t�3/�g1�g2X

g3D1

1

g3Š
: : :

s�1

�Pt�2

D1 g
X

gt�1D1

sŠ

gt�1Š
�
s �Pt�1


D1 g


�
Š
:

We verified (6) computationally for s 2 Œ1; 20� and d 2 Œ1; 100�. The proofs for
s 2 Œ2; 4� (s D 1 is trivial), as used in this paper, are straightforward. The bold
numbers correspond to part II of (6) and are taken from Table 1. Hence we obtain:

s D 2
�

dC1
1

�
1 C �

dC1
2

�
2

D .d C 1/ C d.d C 1/

D d 2 C 2d C 1 D .d C 1/2;

s D 3
�

dC1
1

�
1 C �

dC1
2

�
6 C �

dC1
3

�
6

D .d C 1/ C 3d.d C 1/ C .d � 1/d.d C 1/

D d 3 C 3d 2 C 3d C 1 D .d C 1/3;

s D 4
�

dC1
1

�
1 C �

dC1
2

�
14 C �

dC1
3

�
36 C �

dC1
4

�
24

D .d C 1/ C 7d.d C 1/ C 6.d � 1/d.d C 1/ C .d � 2/.d � 1/d.d C 1/

D d 4 C 4d 3 C 6d 2 C 4d C 1 D .d C 1/4:
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Formula (7) can be proven easily for general s. Counting the g’s corresponds to
substituting G.g/ � 1 in (15):

X

g

1 D
s�.t�1/X

g1D1

s�.t�2/�g1X

g2D1

s�.t�3/�g1�g2X

g3D1

: : :

s�1

�Pt�2

D1 g
X

gt�1D1

1 D
t�1Y

�D1

s � .t � �/

�
D
 

s � 1

t � 1

!

:
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Approximation of Functions from a Hilbert
Space Using Function Values or General Linear
Information

Ralph Tandetzky

Abstract We give an example of a Hilbert space embedding H � `p, 1 � p < 1,
whose approximation numbers tend to zero much faster than its sampling numbers.
The main result shows that optimal algorithms for approximation that use only
function evaluation can be more than polynomially worse than algorithms using
general linear information.

1 The Problem

We consider the problem of approximating the embedding operator

I W H ! Lp.X; �/

from a Hilbert space H of functions on a measure space .X; �/ into the space
Lp.X; �/, where all functionals f 7! f .x/, H ! R are continuous for x 2 X . In
order to simplify the formulas we will neglect writing � all the time and we replace
.X; �/ by X . To approximate the operator I we allow algorithms of the form

An.f / D '.˛1.f /; : : : ; ˛n.f //;

where ' W R
n ! Lp.X/ can be any continuous mapping and ˛1; : : : ; ˛n are

bounded linear functionals (i.e. general linear information) that can be chosen
adaptively. That means, that ˛i may depend on ˛1.f /; : : : ; ˛i�1.f /. It is well-
known that the best algorithms need no adaption and are linear as stated in [4].
Therefore, we can restrict ourselves to algorithms of the form
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An.f / D
nX

iD1

˛i .f /hi .˛i 2 H 0; hi 2 Lp.X//

without loss of generality. If we allow only function evaluations f 7! f .x/ instead
of general bounded linear functionals, then linear algorithms are again optimal.

In order to measure how difficult the approximation problem is, when we have
general information or only function evaluations, we define the approximation
numbers an.H � Lp.X// and the sampling numbers gn.H � Lp.X//.

Definition 1. Let H � Lp.X/ be a Hilbert space of functions f on a set X , such
that the function evaluations x� W H ! R, f 7! f .x/ are continuous for x 2 X .
The approximation numbers an.H � Lp/ and the sampling numbers gn.H � Lp/

are defined as

an.H � Lp.X// WD inf
˛1;:::;˛n2H 0

h1;:::;hn2Lp

sup
f 2H

kf kH �1

����f �
nX

iD1

˛i .f /hi

����
p

;

gn.H � Lp.X// WD inf
x1;:::;xn2X
h1;:::;hn2Lp

sup
f 2H

kf kH �1

����f �
nX

iD1

f .xi /hi

����
p

:

Remark 1. The approximation numbers an.H � Lp.X// can be understood to be
the worst case error (measured in Lp.X/) of the best algorithm that uses general
linear information. On the other hand the sampling numbers gn.H � Lp.X/ are
the corresponding errors if only function evaluations are permitted. If it is clear,
what embedding we are talking about, we will omit it in our notation. Obviously,
an � gn for every embedding H � Lp.X/.

For many spaces the approximation numbers are known or at least can be
estimated very well, because they are analytically easy to handle. For the sampling
numbers this is not the case, however, they are more interesting in numerical
analysis, since computer algorithms can usually access function values, but not
general linear functionals. In many applications the sampling numbers are almost
as good as the approximation numbers. This leads to the question: “When are the
sampling numbers roughly as good as the approximation numbers?” We want to ask
this question more precisely in terms of the rate of convergence.

Definition 2. The order of convergence of a null sequence .cn/ is defined as

r.cn/ WD supfˇ 2 R W lim
n!1 cnnˇ D 0g:

For example the order of convergence of n�a.log n/b is a, for a > 0 and b 2 R.
Now the question is whether for embeddings H � Lp.X/ it holds

r.an/ D r.gn/:

We will summarize what is known in the following section.
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2 What is Known?

As an improvement of [5], Kuo et al. [2] showed that for p D 2 and r.an/ > 1
2

it
holds

r.gn/ � 2r.an/

2r.an/ C 1„ ƒ‚ …
>1=2

r.an/ >
1

2
r.an/:

This is true for all continuous embeddings H � L2.X/ for which all function
evaluations are continuous. On the other hand, Hinrichs et al. [1] constructed
embeddings with r.an/ D 1

2
and r.gn/ D 0, where again p D 2. This shows that

there is a discontinuity at r.an/ D 1
2

for the worst possible rate of convergence of
the sampling numbers. In this paper the result of Hinrichs et al. will be generalized
from p D 2 to arbitrary p 2 Œ1; 1/.

A summary of convergence rates in various settings is given in [3].

3 Results

Theorem 1. For each p with 1 � p < 1 there exists a Hilbert space H � `p with

r.an.H � `p// D min
n 1

p
;

1

2

o
and r.gn.H � `p// D 0 :

The result of Hinrichs, Novak and Vybı́ral is a little bit more general than stated
above. However, for the question of what convergence rate we get for the sampling
numbers, if we know the convergence rate of the approximation numbers, this is the
answer implied by their results. For p D 2 we get the same answer. For p < 2 the
convergence rate of the approximation numbers does not change in our result, but
stays 1

2
. For p > 2 the convergence rate is still positive but tends to 0 for p ! 1.

The methods used in the proof do not yield any particular result for p D 1 that is
non-trivial.

4 Proof

The proof can be divided into three steps. In the first step we consider finite-
dimensional spaces in which the approximation numbers are much smaller than
the sampling numbers. In a second step we prove a lemma that roughly states that if
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finite-dimensional examples exist, which have sufficiently large sampling numbers
compared to the approximation numbers, then there are infinite-dimesional Hilbert
space embeddings H � `p which have large sampling numbers. In the last step we
choose parameters for the finite-dimensional spaces which match the assumptions
in the lemma of the second step.

4.1 First Step: The Finite-Dimensional Case

Definition 3. Let N 2 N and ı > " > 0. We define the Hilbert space

HN;ı;" WD R
N

with the norm

kxkHN;ı;"
WD

r
1

ı2
.x; y/2 C 1

"2
k.x � .x; y/yk2

2 ;

where y D N �1=2.1; : : : ; 1/ 2 R
N . The term .x; y/ is meant to be the scalar product

in `N
2 .

These spaces have small approximation numbers and large sampling numbers,
if " is small compared to ı and N is large. This is, what the following proposition
states.

Proposition 1. The approximation numbers and sampling numbers of the embed-
ding HN;ı;" � `N

p satisfy the inequalities

a0 � ıN 1=p�1=2 C " for p > 2,

a0 � ıN 1=p�1=2 for p � 2,

an � " for n � 1; p � 2,

an � "N 1=p�1=2 for n � 1; p < 2,

gn � .N � n/1=p�1=2

r
1

ı2
C n

"2N

for all n D 0; : : : ; N and p with 1 � p < 1.

In order to show this, we recall the following result.

Lemma 1. Let H � Lp.X/ be a Hilbert space of functions on a set X , such that
for any fixed x 2 X the functional x� W H ! R, f 7! f .x/ is continuous. Then
the approximation numbers and sampling numbers can be described by
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an.H � Lp.X// D inf
˛1;:::;˛n2H 0

sup
f 2Hnf0g

˛i .f /D08i

kf kp

kf kH

;

gn.H � Lp.X// D inf
x1;:::;xn2X

sup
f 2Hnf0g

f .xi /D08i

kf kp

kf kH

:

This result is well-known and we will not prove it here.

Proof (Proof of Proposition 1). We use the notation H WD HN;ı;" throughout the
proof. We will first discuss the estimate for the approximation numbers starting
with n D 0. For p > 2 and x 2 H we get from the monotonicity of the `p norms

kxkp � kx � .x; y/ykp C k.x; y/ykp � kx � .x; y/yk2 C j.x; y/j � kykp

� "kxkH C ıkxkH N 1=p�1=2 D ." C ıN 1=p�1=2/kxkH :

Hence we get a0 D kIdkH!`N
p

� " C ıN 1=p�1=2 for p > 2. On the other hand, for

p � 2 and x 2 H we obtain from Hölders inequality1

kxkp � kxk2k.1; : : : ; 1/k 1
1=p�1=2

D
q

k.x; y/yk2
2 C kx � .x; y/yk2

2 � N 1=p�1=2

� ıkxkH N 1=p�1=2 :

This shows a0 D kIdkH!`N
p

� ıN 1=p�1=2 for p � 2.
We continue with the case n � 1 and p � 2. It suffices to show a1 � ", since

the sequence of approximation numbers is monotonically decreasing. We use the
representation from Lemma 1. If ˛1.x/ WD .x; y/ D 0, then

kxkH D
r

1

ı2
.x; y/2 C 1

"2
kx � .x; y/yk2

2 D 1

"
kxk2 � 1

"
kxkp :

Hence a1 � ".
Now let us consider the case n � 1 and p < 2. Again, we use the formula from

Lemma 1. We show the result for n C 1 assuming n � 0. In order to do so, we
define n C 1 functionals ˛0.x/ WD .x; y/, ˛i .x/ D xi for i D 1; : : : ; n. For an x

with ˛0.x/ D 0; : : : ; ˛n.x/ D 0 we have

kxkH D
r

1

ı2
.x; y/2 C 1

"2
kx � .x; y/yk2

2 D 1

"
kxk2

� 1

"
kIdk`N �n

2 !`N �n
p

kxkp � 1

"
.N � n/1=p�1=2kxkp :

1We use the Hölder inequality in the form k.xnyn/kp � k.xn/kqk.yn/kr , where 1=p D 1=qC1=r .
In our case we have q D 2 and r D 1

1=p�1=2
.
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The dimensions of `N �n
2 and `N �n

p are N � n because there are only N � n

coordinates of x that can be different from zero. Thus we obtain

anC1 � 1

"
.N � n/1=p�1=2 for n � 0:

Finally, let us investigate the sampling numbers. We can write the formula in
Lemma 1 in the following way:

gn D inf
��f1;:::;N g

#�Dn

sup
x2Hnf0g

xi D08i2�

kxkp

kxkH

:

For a given � � f1; : : : ; N g with #� D n we define a concrete x� 2 H to get the
estimate for the gn from below. We put

x�
i WD

(
1 for i 62 �,

0 for i 2 �.

We get

kx�kp

kx�kH

D .N � n/1=p

vuut 1

ı2

.N � n/2

N
C 1

"2

�X

i2�

�N � n

N

�2 C
X

i 62�

� n

N

�2
�

D .N � n/1=p

r
.N � n/2

ı2N
C n.N � n/2 C .N � n/n2

"2N 2

� .N � n/1=p�1=2

r
1

ı2
C n

"2N

:

This completes the proof.

4.2 Second Step: A Lemma

Lemma 2. Let p 2 Œ1; 1/. If p < 2, then let .CM /M2N be a sequence of positive
numbers in ` 1

1=p�1=2
, otherwise put CM WD 1 for all M 2 N. Furthermore, let

.�M /M2N and .�M /M2N be convergent sequence of real numbers with

� WD lim
M!1 �M > lim

M!1 �M DW � :

If for every M 2 N
C there are an N 2 N

C and an embedding of a Hilbert space
HM � `N

p , such that
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an.HM � `N
p / � 1

.M C n/�M
for all n 2 f0; : : : ; N g,

gn.HM � `N
p / � 1

CM n�M
for some n 2 f1; : : : ; N g,

then there exists an embedding of a Hilbert space H � `p with

r.an.H � `p// � � > � � r.gn.H � `p// :

This space H is a weighted direct sum of infinitely many spaces HM . If p � 2 then
the direct sum is not weighted.

Proof. We define the sequence .Mk/k2N, .Nk/k2N and .nk/k2N inductively by the
following properties:

1. M0 WD 1

2. MkC1 D Mk C Nk for k 2 N.
3. For k 2 N the embedding HMk

� `Nk
p shall satisfy

an.HMk
� `Nk

p / � 1

.Mk C n/�Nk
for all n 2 f0; : : : ; Nkg,

gnk
.HMk

� `Nk
p / � 1

CMk
n

�Mk

k

:

Such sequences .Mk/k2N, .Nk/k2N and .nk/k2N exist, but they are not uniquely
defined. We select one such triple of sequence. Based on that, for every sequence
x D .xn/nD1;2;::: of real numbers, we define

Pkx WD .xMk
; : : : ; xMkC1�1/ 2 HMk

and

kxkH WD
vuut

1X

kD0

C �2
Mk

kPkxk2
HMk

:

We put

H WD
1M

kD0

HMk
WD fx D .xn/nD1;2;::: � R W kxkH < 1g :

Firstly, we will show that r.an.H � `p// � �. Let us take any n D 1; 2; : : :

and choose k 2 N with Mk � n < MkC1. Now let us pick linear functionals
Q̨Mk

; : : : ; Q̨n 2 H 0
Mk

such that
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sup
x2HMk

nf0g
Q̨i .x/D08i

kxkp

kxkH

D an�Mk
.HMk

� `Nk
p / :

This is possible according to Lemma 1 because HMk
is finite-dimensional. Fur-

thermore, for x 2 H we define ˛i .x/ WD xi for i D 1; : : : ; Mk � 1 and
˛i .x/ WD Q̨ i .Pkx/ for i D Mk; : : : ; n. If ˛1.x/ D � � � D ˛n.x/ D 0 then for q

with q WD 1 for p � 2 and 1=q D 1=p � 1=2 for p < 2 we get

kxkp D
� 1X

iD0

kPi xkp
p

�1=p

�
� 1X

iDk

C �2
Mi

kPi xk2
p

�1=2

k.CM /kq

�
�

C �2
Mk

an�Mk
.HMk

� `Nk
p /2kPkxk2

HMk

C
1X

iDkC1

C �2
Mi

a0.HMi � `Ni
p /2kPi xk2

HMi

�1=2

k.CM /kq

�
�

C �2
Mk

n2�Mk

kPkxk2
HMk

C
1X

iDkC1

C �2
Mi

M
2�Mi

i

kPi xk2
HMi

�1=2

k.CM /kq

� sup
i�k

1

n�Mi
kxkH k.CM /kq :

Hence, by Lemma 1 we have

an.H � `p/ � sup
i�k

k.CM /kq

n�Mi
for k such that Mk � n < MkC1.

Since limM!1 �M D �, it follows that r.an.H � `p// � �.
Now we show the second estimate r.gn.H � `p// � �. We already know that

gnk
.HNk

� `Nk
p / � 1

CMk
n

�Mk

k

for k 2 N.

We will now show that this implies a similar estimate for the sampling numbers of
the embedding H � `p. We obtain

gnk
.H � `p/ D inf

��f1;2;:::g
j�jDnk

sup
x2Hnf0g

xi D08i2�

kxkp

kxkH

� inf
��f1;:::;Nk g

j�jDnk

sup
x2HNk

nf0g
.x/i D08i2�

kxk2

C �1
Mk

kxkHMk

D CMk
gnk

.HMk
� `Nk

p / � 1

n
�Mk

k

:
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We know that �Nk
! � for k ! 1. Thus it remains to prove that nk ! 1 for

k ! 1. This, in turn, is evident from

1

CMk
n

�Mk

k

� gnk
.HMk

� `Nk
p / � g0.HMk

� `Nk
p / D a0.HMk

� `Nk
p / � 1

M
�Mk

k

H) nk � M
�Mk

=�Mk

k C
�1=�Mk

Mk
� Mk for large enough k,

which completes the proof.

4.3 Final Step: Putting Everything Together

Having the first two steps, we are now able to prove Theorem 1. In order to do so,
we take the finite-dimensional spaces from the first step and choose their parameters
to fit the conditions of the lemma in the second step. We will have to make some
case differentiations while we construct parameters that fulfill the conditions given
in that lemma. Let us start with the sequence .CM /M2N. For p < 2 we pick any
sequence of positive numbers in ` 1

1=p�1=2
, for example CM WD 2�M . If p � 2 then

we put CM WD 1 for all M 2 N. Furthermore, we choose .�M /M2N to be a sequence
that converges to minf1=p; 1=2g from below, with 0 < �M < minf1=p; 1=2g for
all M 2 N. Furthermore, let .�M /M2N be a null sequence of positive numbers. Fix
M 2 N. We put

HM WD HN;ı;" with

ı WD
(

ŒM ��M � .M C N /��M � N 1=2�1=p for p � 2,

M ��M N 1=2�1=p for p < 2
and

" WD
(

.M C N /��M for p � 2,

.M C N /��M N 1=2�1=p for p < 2.

Note that we did not determine N yet. Therefore ı, " and especially HM still depend
on N . For large enough N the inequality ı > " is fulfilled as assumed in the
definition of the HN;ı;" spaces. We will now continue the proof by showing the
inequality for the approximation numbers required in Lemma 2 for every N (large
enough, so that ı > ") and n D 0; : : : ; N . For p � 2 Proposition 1 yields

a0.HM � `N
p / � ıN 1=p�1=2 C " D M ��M and

an.HM � `N
p / � " D .M C N /��M � .M C n/��M for n D 1; : : : ; N .
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This shows an.HM � `N
p / � .M C n/��M for n D 0; : : : ; N for p � 2. For

p < 2 this estimate is obvious, if we have an eye on Proposition 1. Hence we have
proven the estimate for the approximation numbers required in Lemma 2 for all
N large enough and n D 0; : : : ; N . We will proceed by estimating the sampling
numbers. Afterward we will select adequate N and n, for which the inequality
for the sampling numbers required in Lemma 2 is satisfied. For every n 2 N the
sampling numbers can be estimated by

gn.HM � `N
p / � .N � n/1=p�1=2

r
1

ı2
C n

"2N

according to Proposition 1. For p � 2 we get

gn.HM � `N
p / � .N � n/1=p�1=2

s
N 2=p�1

ŒM ��M � .M C N /��N �2
C n.M C N /2�M N �1

N !1� N 1=p�1=2

p
N 2=p�1M 2�M C nN 2�M �1

D 1p
M 2�M C nN 2�N �2=p

N !1�! M ��M :

Here the � symbol means, that the quotient of the right hand side and the left hand
side converges to 1 for N ! 1. Similarly, for p < 2 we obtain

gn.HN � `N
p / � .N � n/1=p�1=2

q
M 2�M N 2=p�1 C nN �1.M C N /2�M N 2=p�1

N !1� N 1=p�1=2

p
M 2�M N 2=p�1 C nN 2�M �1N 2=p�1

D 1p
M 2�M C nN 2�M �1

N !1�! M ��M :

Hence the lower bound for the sampling numbers gn converges to M ��M in both
cases. Now we choose an n 2 N with C �1

M n��M � M ��M . Since the lower bound
for the sampling numbers converges to M ��M for N ! 1, there exists an N 2 N,
such that

gn.HM � `N
p / � C �1

M n��M

can be accomplished. The claim of Theorem 1 follows from Lemma 2.
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High Order Weak Approximation Schemes
for Lévy-Driven SDEs

Peter Tankov

Abstract We propose new jump-adapted weak approximation schemes for stochas-
tic differential equations driven by pure-jump Lévy processes. The idea is to replace
the driving Lévy process Z with a finite intensity process which has the same Lévy
measure outside a neighborhood of zero and matches a given number of moments
of Z. By matching 3 moments we construct a scheme which works for all Lévy
measures and is superior to the existing approaches both in terms of convergence
rates and easiness of implementation. In the case of Lévy processes with stable-
like behavior of small jumps, we construct schemes with arbitrarily high rates of
convergence by matching a sufficiently large number of moments.

1 Introduction

Let Z be a d -dimensional Lévy process without diffusion component, that is,

Zt D � t C
Z t

0

Z
jyj�1

ybN .dy; ds/ C
Z t

0

Z
jyj>1

yN.dy; ds/; t 2 Œ0; 1�:

Here � 2 R
d , N is a Poisson random measure on R

d � Œ0; 1/ with intensity �

satisfying
R

1 ^ kyk2�.dy/ < 1 and bN .dy; ds/ D N.dy; ds/ � �.dy/ds denotes
the compensated version of N . We study the case when �.Rd / D 1, that is, there
is an infinite number of jumps in every interval of nonzero length a.s. Further, let
X be an R

n-valued adapted stochastic process, unique solution of the stochastic
differential equation
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Xt D X0 C
Z t

0

h.Xs�/dZs; t 2 Œ0; 1�; (1)

where h is an m � d matrix.
In this article we are interested in the numerical evaluation of EŒf .X1/� for a

sufficiently smooth function f by Monte Carlo, via discretization and simulation of
the process X . We propose new weak approximation algorithms for (1) and study
their rate of convergence.

The traditional method to simulate X is to use the Euler scheme with constant
time step

OXn
iC1

n

D OXn
i
n

C h
� OXn

i
n

� �
Z iC1

n
� Z i

n

�
:

This method has the convergence rate [6, 9]

jEŒf .X1/� � EŒf
� OXn

1

�
�j � C

n

but suffers from two difficulties: first, for a general Lévy measure �, there is no
available algorithm to simulate the increments of the driving Lévy process and
second, a large jump of Z occurring between two discretization points can lead
to an important discretization error.

A natural idea due to Rubenthaler [11] (in the context of finite-intensity jump
processes, this idea appears also in [2, 8]), is to approximate Z with a compound
Poisson process by replacing the small jumps with their expectation

Z"
t WD �"t C

Z t

0

Z
jyj>"

yN.dy; ds/; �" D � �
Z

"<jyj�1

y�.dy/;

and then place discretization dates at all jump times of Z".
The computational complexity of simulating a single trajectory using this method

becomes a random variable, but the convergence rate may be computed in terms
of the expected number of discretization dates, proportional to �" D R

jyj�" �.dy/.
When the jumps of Z are highly concentrated around zero, however, this approxi-
mation is too rough and the convergence rates can be arbitrarily slow.

In [7], the authors proposed a scheme which builds on Rubenthaler’s idea of using
the times of large jumps of Z as discretization dates but achieves better convergence
rates. Their idea is, first, to approximate the small jumps of Z with a suitably chosen
Brownian motion, in order to match not only the first but also the second moment
of Z, and second, to construct an approximation to the solution of the continuous
SDE between the times of large jumps. Similar ideas of Gaussian correction were
recently used in [5] in the context of multilevel Monte Carlo methods for the
problem (1). However, although diffusion approximation of small jumps improves
the convergence rate, there are limits on how well the small jumps of a Lévy process
can be approximated by a Brownian motion. In particular, the Brownian motion is a
symmetric process, while a Lévy process may be asymmetric.
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In this paper we develop new jump-adapted discretization schemes based on
approximating the Lévy process Z with a finite intensity Lévy process Z" without
diffusion part. Contrary to previous works, instead of simply truncating jumps
smaller than ", we construct efficient finite intensity approximations which match a
given number of moments of Z. These approximations are superior to the existing
approaches in two ways. First, given that Z" is a finite intensity Lévy process, the
solution to (1) with Z replaced by Z" is easy to compute, either explicitly or with a
fast numerical method, making it straightforward to implement the scheme. Second,
by choosing the parameters of Z" in a suitable manner, one can, in principle, match
an arbitrary number of moments of Z and obtain a discretization scheme with an
arbitrarily high convergence rate.

The paper is structured as follows. In Sect. 2, we present the main idea of moment
matching approximations and provide a basic error bound for such schemes. In
Sect. 3, we introduce our first scheme which is based on matching 3 moments of
Z and can be used for general Lévy processes. For Lévy processes with stable-like
behavior of small jumps near zero, the scheme is shown to be rate-optimal. Finally,
Sect. 4 shows how schemes of arbitrary order can be constructed by matching
additional moments, in the context of one-dimensional Lévy processes with stable-
like behavior of small jumps.

2 Moment Matching Compound Poisson Approximations

Let Z" be a finite intensity Lévy process without diffusion part approximating Z in
a certain sense to be defined later:

Z"
t WD �"t C

Z t

0

Z
Rd

yN ".dy; ds/; (2)

where N " is a Poisson random measure with intensity measure dt � �" such that
�" WD �".Rd / < 1.

In this paper we propose to approximate the process (1) by the solution to

d OXt D h. OXt�/dZ"
t ; OX0 D X0; (3)

which can be computed by applying the Euler scheme at the jump times of Z"

and solving the deterministic ODE d OXt D h. OXt /�"dt explicitly (or by a Runge–
Kutta method1) between these jump times. The following proposition provides a

1In this paper, to simplify the treatment, we assume that the ODE is solved explicitly. Upper bounds
on the additional error introduced by the Runge–Kutta method are given in [7, Proposition 7].
These bounds can be made arbitrarily small by taking a Runge–Kutta algorithm of sufficiently
high order.
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basic estimate for the weak error of such an approximation scheme. We impose the
following alternative regularity assumptions on the functions f and h:

.Hn/ f 2 C n, h 2 C n f .k/ and h.k/ are bounded for 1 � k � n and
R

z2n�.d z/ <

1.
.H0

n/ f 2 C n, h 2 C n, h.k/ are bounded for 1 � k � n, f .k/ have at most
polynomial growth for 1 � k � n and

R jzjk�.d z/ < 1 for all k � 1.

Proposition 1. Let Z and OZ be Lévy processes with characteristic triplets .0; �; �/

and .0; O�; O�/ respectively, and let X and OX be the corresponding solutions of
SDE (1). Assume O� D � , O� D � on fkxk > 1g, either .Hn/ or .H0

n/ for n � 3

and
Z
Rd

xi1 : : : xik �.dx/ D
Z
Rd

xi1 : : : xik O�.dx/; 2 � k � n � 1; 1 � ik � d: (4)

Then

jEŒf . OX1/ � f .X1/�j � C

Z
Rd

kxknjd� � d O�j;

where the constant C may depend on f , g, x and � but not on O�.

Proof. To simplify notation, we give the proof in the case m D d D 1. Let u.t; x/ D
E.t;x/Œf .X1/�. By Lemma 13 in [7], u 2 C 1;n.Œ0; 1� � R/ and satisfies

@u

@t
.t; x/ C �

@u

@x
.t; x/h.x/ C

Z
jyj>1

.u.t; x C h.x/y/ � u.t; x// � .dy/

C
Z

jyj�1

�
u.t; x C h.x/y/ � u.t; x/ � @u

@x
.t; x/h.x/y

�
�.dy/ D 0; (5)

u.1; x/ D f .x/:

Applying Itô formula under the integral sign and using (5) and Lemma 11 in [7]
(bounds on moments of OXt ) yields

EŒf . OX1/ � f .X1/� D EŒu.1; OX1/ � u.0; X0/�

D E

�Z 1

0

Z
R

�
u.t; OXt C h. OXt /z/ � u.t; OXt/ � h. OXt/z

@u

@x

�
.d O� � d�/dt

	

C E

�Z 1

0

Z
R

n
u.t; OXt� C h. OXt�/z/ � u.t; OXt�/

o ON .d z; dt/

	

D E

"Z 1

0

Z
R

n�1X
kD2

@ku.t; OXt/

@xk
hk. OXt /z

k.d O� � d�/dt C remainder

#
;

D EŒremainder�;
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where in the last line we used the moment matching condition (4) and the remainder
coming from the Taylor formula can be estimated as

jremainderj �
Z 1

0

Z
R

sup
0�s�1

ˇ̌
ˇ̌
ˇ
@nu.s; OXs/

@xn

ˇ̌
ˇ̌
ˇ jh. OXt /jnjzjnjd O� � d�jdt

� C sup
0�s�1

ˇ̌
ˇ̌
ˇ
@nu.s; OXs/

@xn

ˇ̌
ˇ̌
ˇ sup

0�s�1

jh. OXs/jn
Z
R

jzjnjd O� � d�j

From the Lipschitz property of h and Lemma 13 in [7],

sup
0�s�1

ˇ̌
ˇ̌
ˇ
@nu.s; OXs/

@xn

ˇ̌
ˇ̌
ˇ sup

0�s�1

jh. OXs/jn � C.1 C sup
0�t�1

j OXt jp/

for some C < 1, where p D n under .Hn/ and p > n under .H0
n/. Following the

arguments in the proof of Lemma 11 in [7], we get

EŒ sup
0�t�1

j OXt jp� � C.1Cjxjp/ exp

"
c

 
j N� jp C

Z
R

jzjp O�.d z/ C
�Z

R

z2 O�.d z/

�p=2
!#

for different constants C and c, where

N� D O� C
Z

jzj>1

z O�.d z/ D � C
Z

jzj>1

z�.d z/

by our assumptions. Since
R
R

z2 O�.d z/ D R
R

z2�.d z/ by assumption, and

Z
R

jzjp O�.d z/ �
Z

jzj>1

jzjp O�.d z/ C
Z

jzj�1

jzj2 O�.d z/

D
Z

jzj>1

jzjp�.d z/ C
Z

jzj�1

jzj2�.d z/;

it is clear that EŒsup0�t�1 j OXt jp� � C for some constant C which does not depend
on O�. ut

3 The 3-Moment Scheme

Our first scheme is based on matching the first 3 moments of the process Z. Let
Sd�1 be the unit sphere in the d -dimensional space, and �.dr � d�/ be a Lévy
measure on R

d written in spherical coordinates r 2 Œ0; 1/ and � 2 Sd�1 and
satisfying

R
Œ0;1/�Sd�1 r3�.dr; d�/ < 1. Denote by N� the reflection of � with
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respect to the origin defined by N�.B/ D �.fx W �x 2 Bg/. We introduce two
measures on Sd�1:

N�.d�/ D 1

2

Z
jr j�"

r3

"3
.�.dr; d�/ � N�.dr; d�//

�.d�/ D 1

2

Z
jr j�"

r2

"2
.�.dr; d�/ C N�.dr; d�// :

The 3-moment scheme is defined by

�".dr; d�/ D �.dr; d�/1r>" C ı".dr/f�.d�/ C N�.d�/g (6)

�" D � �
Z

Œ0;1��Sd�1

r� �".dr; d�/; (7)

where ı" denotes a point mass at ".

Proposition 2 (Multidimensional 3-moment scheme). For every " > 0, �" is a
finite positive measure satisfying

Z
Rd

xi xj �.dx/ D
Z
Rd

xi xj �".dx/ (8)

Z
Rd

xi xj xk�.dx/ D
Z
Rd

xi xj xk�".dx/; 1 � i; j; k � d (9)

�" WD
Z
Rd

�".dx/ D
Z

kxk>"

�.dx/ C "�2

Z
kxk�"

kxk2�.dx/ (10)

Z
Rd

kxk4jd� � d�"j �
Z

kxk�"

kxk4�.dx/ C "2

Z
kxk�"

kxk2�.dx/; (11)

where the last inequality is an equality if �.fx W kxk D "g/ D 0.

Proof. The positivity of �" being straightforward, let us check (8). Let feigd
iD1 be

the coordinate vectors. Then,

Z
Rd

xi xj �".dx/ D
Z

Œ0;1/�Sd�1

r2h�; eiih�; ej i�".dr; d�/

D
Z

.";1/�Sd�1

r2h�; eiih�; ej i�.dr; d�/ C
Z

Sd�1

"2h�; eiih�; ej if�.d�/ C N�.d�/g

D
Z

.";1/�Sd�1

r2h�; eiih�; ej i�.dr; d�/ C
Z

Sd�1

"2h�; eiih�; ej i�.d�/

D
Z

.0;1/�Sd�1

r2h�; eiih�; ej i�.dr; d�/ D
Z
Rd

xi xj �.dx/:



High Order Weak Approximation Schemes for Lévy-Driven SDEs 673

The other equations can be checked in a similar manner. ut
Corollary 1. Let d D 1. Then the 3-moment scheme can be written as

�".dx/ D �.dx/1jxj>" C �Cı".dx/ C ��ı�".dx/

�˙ D 1

2

�Z
jxj�"

x2

"2
�.dx/ ˙

Z
jxj�"

x3

"3
�.dx/

�

Corollary 2 (Worst-case convergence rate). Assume .H4/ or .H0
4/. Then the

solution OX of (3) with the characteristics of Z" given by (6)–(7) satisfies

jEŒf . OX1/ � f .X1/�j D o.��1
" /:

as " ! 0.

Proof. By Proposition 1 we need to show that

lim
"#0

�"

Z
Rd

kxk4jd� � d�"j D 0:

By Proposition 2,

lim
"#0

�"

Z
Rd

kxk4jd� � d�"j

� lim
"#0

�Z
kxk>"

�.dx/ C "�2

Z
kxk�"

kxk2�.dx/

�

�
�Z

kxk�"

kxk4�.dx/ C "2

Z
kxk�"

kxk2�.dx/

�

� 2 lim
"#0

"2

�Z
kxk>"

�.dx/ C "�2

Z
kxk�"

kxk2�.dx/

� Z
kxk�"

kxk2�.dx/

D 2 lim
"#0

"2

Z
kxk>"

�.dx/

Z
kxk�"

kxk2�.dx/

� 2

Z
Rd

kxk2�.dx/ lim
"#0

"2

Z
kxk>"

�.dx/ D 0;

where in the last line the dominated convergence theorem was used. ut
In many parametric or semiparametric models, the Lévy measure has a singular-

ity of type 1

jxj1C˛ near zero. This is the case for stable processes, tempered stable
processes [10], normal inverse Gaussian process [1], CGMY [3] and other models.
Stable-like behavior of small jumps is a standard assumption for the analysis of
asymptotic behavior of Lévy processes in many contexts, and in our problem as
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well, this property allows to obtain a more precise estimate of the convergence rate.
We shall impose the following assumption, which does not require the Lévy measure
to have a density:

.H � ˛/ There exist C > 0 and ˛ 2 .0; 2/ such that2

l.r/ � C r�˛ as r ! 0 (12)

where l.r/ WD R
kxk>r

�.dx/.

Corollary 3 (Stable-like behavior). Assume .H � ˛/ and .H4/ or .H0
4/. Then the

solution OX of (3) with the characteristics of Z" given by (6)–(7) satisfies

jEŒf . OX1/ � f .X1/�j D O

�
�

1� 4
˛

"

�
:

Proof. Under .H � ˛/, by integration parts we get that for all n � 2,

Z
kxk�r

kxkn�.dx/ � C˛

n � ˛
rn�˛ as r ! 0:

Therefore, under this assumption,

�" � 2C

2 � ˛
"�˛ and

Z
Rd

kxk4jd� � d�"j . C˛.6 � 2˛/

.2 � ˛/.4 � ˛/
"4�˛ as " ! 0;

from which the result follows directly. ut
Remark 1. It is interesting to compare the convergence rates for our jump-adapted
moment matching scheme (6–7) with the convergence rates for the classical Euler
scheme, known from the literature. In [6, 9], under assumptions similar to our .H4/

or .H0
4/, it has been shown that the discretization error of the Euler scheme for

Lévy-driven stochastic differential equations decays linearly with the computational
effort. Since the worst-case error for our scheme decays like o.��1

" /, our approach
always outperforms the Euler scheme in this setting. Under stronger assumptions
(similar to our .H8/ or .H0

8/), [6, 9] give an expansion of the discretization error,
making it possible to use the Romberg-Richardson extrapolation and obtain a
quadratic convergence of the discretization error to zero. This is faster than our
worst-case rate, but for stable-like processes with Blumenthal-Getoor index ˛,
Corollary 3 shows that our approach outperforms the Euler scheme with Romberg
extrapolation for ˛ < 4

3
. It is important to emphasize, that our scheme is usually

much easier to implement than the Euler scheme because it does not require the
simulation of increments of the process. If an approximate simulation algorithm

2Throughout this paper we write f � g if lim f .x/

g.x/
D 1 and f . g if lim sup f .x/

g.x/
� 1.
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of increments is used, the rate of convergence of the Euler scheme with Romberg
extrapolation will in general be slower than quadratic [6]. Further comparisons of
our scheme with the existing approaches are given in the numerical example below.

Rate-Optimality of the 3-Moment Scheme

From Proposition 1 we know that under the assumption .H4/ or .H0
4/, the approxi-

mation error of a scheme of the form (2)–(3) can be measured in terms of the 4-th
absolute moment of the difference of Lévy measures. We introduce the class of Lévy
measures on R

d with intensity bounded by N :

M N D f� Lévy measure on R
d ; �.Rd / � N g:

The class of Lévy measures with intensity bounded by �" is then denoted by M �" ,
and the smallest possible error achieved by any measure within this class is bounded
from below by a constant times inf�02M�"

R
Rd kxk4jd��d�0j. The next result shows

that as " ! 0, the error achieved by the 3-moment scheme �" differs from this lower
bound by at most a constant multiplicative factor .

Proposition 3. Assume .H � ˛/ and let �" be given by (6). Then,

lim sup
"#0

R
Rd kxk4jd� � d�"j

inf�02M�"

R
Rd kxk4jd� � d�0j < 1:

Proof. Step 1. Let us first compute

EN WD inf
�02MN

Z
Rd

kxk4jd� � d�0j: (13)

For �0 2 M N , let �0 D �0
c C �0

s where �0
c is absolutely continuous with respect to

� and �0
s is singular. Then �0

c.R
d / � N and

Z
Rd

kxk4jd� � d�0j D
Z
Rd

kxk4jd� � d�0
cj C

Z
Rd

kxk4d�0
s:

Therefore, the minimization in (13) can be restricted to measures �0 which are
absolutely continuous with respect to �, or, in other words,

EN D inf
Z
Rd

kxk4j1 � �.x/j�.dx/;

where the inf is taken over all measurable functions � W R
d ! R

C such thatR
Rd �.x/�.dx/ � N . By a similar argument, one can show that it is sufficient

to consider only functions � W Rd ! Œ0; 1�. Given such a function �.r; �/, the
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spherically symmetric function

O�.r/ WD
R

Sd�1 �.r; �/�.dr; d�/R
Sd�1 �.dr; d�/

leads to the same values of the intensity and the minimization functional.
Therefore, letting O�.dr/ WD R

Sd�1 �.dr; d�/,

EN D inf
0�O��1

Z 1

0

r4.1 � O�.r// O�.dr/ s. t.
Z 1

0

O�.r/ O�.dr/ � N: (14)

For every e > 0,

EN � inf
0�O��1

�Z 1

0

r4.1 � O�.r// O�.dr/ C e4

�Z 1

0

O�.r/ O�.dr/ � N

��
:

The inf in the right-hand side can be computed pointwise and is attained by
O�.r/ D 1r>e C �1rDe for any � 2 Œ0; 1�. Let e.N / and �.N / be such that

O�..e.N /; 1// C �.N / O�.fe.N /g/ D N:

Such a e.N / can always be determined uniquely and �.N / is determined
uniquely if �.fe.N /g/ > 0. It follows that O�.r/ D 1r>e.N / C �.N /1rDe.N / is
a minimizer for (14) and therefore

EN D
Z

kxk<e

kxk4�.dx/ C .1 � �/e4�.fx W kxk D eg/;

where e and � are solutions of

�.fx W kxk > eg/ C ��.fx W kxk D eg/ D N:

Step 2. For every " > 0, let e."/ and �."/ be solutions of

�.fx W kxk > e."/g/ C �."/�.fx W kxk D e."/g/ D �":

It is clear that e."/ ! 0 as " ! 0 and after some straightforward computations
using the assumption .H � ˛/ we get that

lim
"!0

e."/

"
D
�

2 � ˛

2

�1=˛

:

Then,
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lim
"#0

R
Rd kxk4jd� � d�"j

E�"

D lim
"#0

R
Rd kxk4jd� � d�"j

"4�˛
lim
"#0

"4�˛

e."/4�˛

� lim
"#0

e."/4�˛R
kxk<e."/

kxk4�.dx/ C .1 � �."//e."/4�.fx W kxk D e."/g/

Under .H � ˛/ the three limits are easily computed and we finally get

lim
"#0

R
Rd kxk4jd� � d�"j

E�"

D .3 � ˛/

�
2

2 � ˛

�4=˛

: (15)

ut
Remark 2. The constant .3 � ˛/



2

2�˛

�4=˛
> 1 appearing in the right-hand side

of (15) cannot be interpreted as a “measure of suboptimality” of the 3-moment
scheme, but only as a rough upper bound, because in the optimization problem
(13) the moment-matching constraints were not imposed (if they were, it would
not be possible to solve the problem explicitly). On the other hand, the fact that this
constant is unbounded as ˛ ! 2 suggests that such a rate-optimality result cannot
be shown for general Lévy measures without imposing the assumption .H � ˛/.

Numerical Illustration

We shall now illustrate the theoretical results on a concrete example of a SDE driven
by a normal inverse Gaussian (NIG) process [1], whose characteristic function is

�t .u/ WD EŒeiuZt � D exp
n
�ıt

�p
˛2 � .ˇ � iu/2 �

p
˛2 � ˇ2

�o
;

where ˛ > 0, ˇ 2 .�˛; ˛/ and ı > 0 are parameters. The Lévy density is given by

�.x/ D ı˛

	

eˇxK1.˛jxj/
jxj ;

where K is the modified Bessel function of the second kind. The NIG process has
stable-like behavior of small jumps with �.x/ � const

jxj2 , x ! 0 (which means that
.H � ˛/ is satisfied with ˛ D 1), and exponential tail decay. The increments of the
NIG process can be simulated explicitly (see [4, Algorithms 6.9 and 6.10]), which
enables us to compare our jump-adapted algorithm with the classical Euler scheme.

For the numerical example we solve the one-dimensional SDE

dXt D sin.aXt /dZt ;
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where Z is the NIG Lévy process (with drift adjusted to have EŒZt � D 0). The
solution of the corresponding deterministic ODE

dXt D sin.aXt/dt; X0 D x

is given explicitly by

Xt D �.t I x/ D 1

a
arccos

1 C cos.ax/ � e2at .1 � cos.ax//

1 C cos.ax/ C e2at .1 � cos.ax//

Figure 1 presents the approximation errors for evaluating the functional EŒ.X1 �
1/C� by Monte-Carlo using the 3-moment scheme described in this section (marked
with crosses), the diffusion approximation of [7, Sect. 3] (circles), the classical Euler
scheme (diamonds) and the Euler scheme with Romberg extrapolation (triangles).
The parameter values are ˛ � 3:038, ˇ D 1:6, ı � 0:323, a D 5 and X0 D 1.
For each scheme we plot the logarithm of the approximation error as function
of the logarithm of the computational cost (time needed to obtain a Monte Carlo
estimator with the standard deviation approximately equal to that of the Euler
scheme estimator with 2,000 discretization points and 106 Monte Carlo paths). The
approximation error is defined as the difference between the computed value and
the value given by the Euler scheme with 2,000 discretization points. The curves are
obtained by varying the truncation parameter " for the two jump-adapted schemes
and by varying the discretization time step for the Euler scheme.

The approximation error for the Euler scheme is a straight line with slope
corresponding to the theoretical convergence rate of 1

n
. The graph for the 3-moment

scheme seems to confirm the theoretical convergence rate of ��3
" ; the scheme

is much faster than the others and the corresponding curve quickly drops below
the dotted line which symbolizes the level of the statistical error. One advantage
of the Euler scheme is that the discretization error can be expanded [9], which
allows one to use the Romberg-Richardson extrapolation techniques. However,
Fig. 1 shows that in the considered example our scheme remains competitive even
if the convergence of the Euler scheme is accelerated with such an extrapolation
technique.

4 High Order Schemes for One-Dimensional Stable-Like
Lévy Processes

In this section, we develop schemes of arbitrary order for Lévy processes with
stable-like behavior of small jumps. Throughout this section, we take d D 1 and
let Z be a Lévy process with characteristic triplet .0; �; �/ satisfying the following
refined version of .H � ˛/:
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Fig. 1 Approximation errors for the 3-moment scheme (crosses), the scheme of [7, Sect. 3]
(circles), the Euler scheme (diamonds) and the Euler scheme with Romberg extrapolation
(triangles). The horizontal dotted line corresponds to the logarithm of the two standard deviations
of the Monte Carlo estimator (the number of simulations for each numerical experiment was chosen
to have approximately the same standard deviation for all points); everything that is below the
dotted line is Monte Carlo noise.

.H0 � ˛/ There exist, cC � 0, c� � 0 with cC C c� > 0 and ˛ 2 .0; 2/ such that

Z 1

"

�.dx/ � cC"�˛ and
Z �"

�1
�.dx/ � c�"�˛ as " # 0

Introduce the probability measure

��.x/ WD .2 � ˛/jxj1�˛.cC10�x�1 C c�1�1�x�0/

cC C c�
: (16)

Let n � 0 and " > 0. The high-order scheme for the stochastic differential equation
(1) based on n C 2 moments and truncation level " is constructed as follows:

1. Find a discrete probability measure N� D Pn
iD0 a�

i ıxi with

Z
R

xk N�.dx/ D
Z
R

xk��.dx/; 1 � k � n; (17)

such that x0 < x1 < � � � < xn, xi ¤ 0 for all i and a�
i > 0 for all i .
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2. Compute the coefficients fa"
i g by solving the linear system


2
"

nX
iD0

a"
i x

k
i "k D

Z
jxj�"

x2Ck�.dx/; k D 0; : : : ; n; 
2
" D

Z
jxj�"

x2�.dx/:

3. The high-order scheme is defined by

�".dx/ D �.dx/1jxj>" C 
2
"

nX
iD0

a"
i ı"xi .dx/

x2
i "2

; �" D � �
Z

jzj�1

z�".d z/:

(18)

Remark 3. The first step in implementing the scheme is to solve the moment-
matching problem (17) for measure ��. This problem will have, in general, an
infinite number of solutions since there are many more unknowns than equations,
and any of these solutions can be used to construct a high-order approximation
scheme. An explicit solution for n D 3 is given in Example 1.

Remark 4. It is easy to see that the measure

��
" .dx/ WD .
�

" /2

nX
iD0

a�
i ı"xi .dx/

x2
i "2

; .
�
" /2 WD

Z
jxj�"

x2��.z/d z:

matches the moments of orders 2; : : : ; nC2 of ��.x/1jxj�", where �� is the measure
given by

��.x/ D ˛cC1x>0 C ˛c�1x<0

jxj1C˛
;

that is, �� satisfies the assumption .H0 � ˛/ with equalities instead of equivalences.
The idea of the method is to replace the coefficients fa�

i g with a different set
of coefficients while keeping the same points fxig to obtain a measure which
matches the moments of �.x/1jxj�". Therefore, the points fxi g do not depend on
the truncation parameter " while the coefficients fa"

i g depend on it.

Example 1. As an example we provide a possible solution of the moment matching
problem for n D 3, which leads to a 5-moment scheme (matching 3 moments of
�� or 5 moments of the Lévy process). We assume that �� has mass both on the
positive and the negative half-line: cCc� > 0.

The moments of �� are given by

mk D 2 � ˛

k C 2 � ˛
.� C .�1/k.1 � �//; � WD cC

cC C c�
:

It is then convenient to look for the discrete measure matching the first 3 moments
of �� in the form

N� D .1 � �/.pı�"2 C .1 � p/ı�"1 / C �..1 � p/ı"1 C pı"2/; (19)
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where p 2 .0; 1/, 0 < "1 < "2 are parameters to be identified from the moment
conditions

.1 � p/"k
1 C p"k

2 D 2 � ˛

k C 2 � ˛
; k D 1; 2; 3:

For the purpose of solving this system of equations, let E be a random variable such
that P ŒE D "2� D p D 1 � P ŒE D "1�. From the moment conditions, we get:

N" WD EŒE � D 2 � ˛

3 � ˛
; 
2 WD Var E D .2 � ˛/

.4 � ˛/.3 � ˛/2
; (20)

s WD EŒ.E � EŒE �/3�


3
D 2

˛ � 1

5 � ˛

r
4 � ˛

2 � ˛
: (21)

On the other hand, the skewness s can be directly linked to the weight p:

s D 1 � 2pp
p.1 � p/

) p D 1

2
� 1

2
sign .s/

s
s2

s2 C 4
; (22)

and the parameters "1 and "2 can be linked to N"; 
 and p:

"1 D N" � 


r
p

1 � p
; "2 D N" C 


s
1 � p

p
: (23)

The dependence of "1, "2 and p on ˛ is shown in Fig. 2: it is clear from the graph
that the constraints p 2 .0; 1/ and 0 < "1 < "2 are satisfied for all ˛ 2 .0; 2/:
therefore, Eqs. 19–23 define a four-atom probability measure which matches the
first 3 moments of ��.

Proposition 4. Let N� D Pn
iD0 a�

i ıxi be a solution of (17). There exists "0 > 0 such
that for all " < "0, �" is a positive measure satisfying

Z
R

xk�.dx/ D
Z
R

xk�".dx/; 2 � k � n C 2 (24)

There exist positive constants C1 and C2 such that

�" D �".R/ � C1"
�˛;

Z
R

jxjnC3jd� � d�"j . C2"
nC3�˛ as " ! 0:

Corollary 4. Assume .HnC3/ or .H0
nC3/. Then the solution OX of (3) with charac-

teristics of Z" given by (18) satisfies

jEŒf . OX1/ � f .X1/�j D O

�
�

1� nC3
˛

"

�
:
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Fig. 2 Solution of the moment matching problem for 3 moments (see Example 1).

Proof (of Proposition 4). The moment conditions (24) hold by construction. Using
integration by parts, we compute

Z
jzj�"

z2Ck�.d z/ � .cC C .�1/kc�/˛"2Ck�˛

2 C k � ˛
as " ! 0 for k � 0.

Therefore,

lim
"!0

1


2
" "k

Z
jzj�"

z2Ck�.d z/ D .2 � ˛/.cC C .�1/kc�/

.2 C k � ˛/.cC C c�/
D
Z
R

xk��.dx/:

Since the matrix Mij D .xj /i , 0 � i � n, 0 � j � n is invertible (Vandermonde
matrix), this implies that lim"!0 a"

i D a�
i . Therefore, there exists "0 > 0 such that

for all " < "0, a"
i > 0 for all i and �" is a positive measure.

We next compute:

�".R/ D
Z

jxj>"

�.dx/ C 
2
"

"2

nX
iD0

a"
i

x2
i

�
Z

jxj>"

�.dx/ C 
2
"

"2

nX
iD0

a�
i

x2
i

� "�˛.cC C c�/

(
1 C ˛

2 � ˛

nX
iD0

a�
i

x2
i

)
;
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Z
R

jxjnC3jd� � d�"j �
Z

jxj�"

jxjnC3d� C 
2
" "nC1

nX
iD0

a"
i jxi jnC1

� "nC3�˛.cC C c�/

(
˛

3 C k � ˛
C ˛

2 � ˛

nX
iD0

a�
i jxi jnC1

)
:

ut
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High-Discrepancy Sequences for
High-Dimensional Numerical Integration

Shu Tezuka

Abstract In this paper, we consider a sequence of points in Œ0; 1�d , which are
distributed only on the diagonal line between .0; : : : ; 0/ and .1; : : : ; 1/. The
sequence is constructed based on a one-dimensional low-discrepancy sequence. We
apply such sequences to d -dimensional numerical integration for two classes of
integrals. The first class includes isotropic integrals. Under a certain condition, we
prove that the integration error for this class is O.

p
log N =N /, where N is the

number of points. The second class is called as Kolmogorov superposition integrals
for which, under a certain condition, we prove that the integration error for this class
is O..log N /=N /.

1 Introduction

Low-discrepancy sequences (or quasi-Monte Carlo methods) have been widely used
and successfully applied to high-dimensional (sometimes very high dimensions like
1,000 or more) numerical integration in the last two decades [3, 5]. The notion of
discrepancy [4,6,10] originated from uniform distribution of sequences, a branch of
analytic number theory, in early 1900s. Informally speaking, the lower (or smaller)
discrepancy is, the more uniformly distributed are points in some domain.

On the other hand, the Kolmogorov superposition theorem tells that integration of
any continuous high-dimensional function is written as the sum of one-dimensional
integrations, and recently, research efforts (see, e.g., [1]) have been done to make
the theorem numerically constructive. The theorem implies that any continuous
high-dimensional function has “hidden” one-dimensional structure, whether it is

S. Tezuka
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explicit or not. Thus, exploiting such structure may lead us to show the existence of
high-dimensional sequences that are not necessarily of low-discrepancy, whose con-
vergence is faster than that of low-discrepancy sequences of the same dimensions.

In this paper, we consider a sequence of points in Œ0; 1�d , which are distributed
only on the diagonal line between .0; : : : ; 0/ and .1; : : : ; 1/, where the sequence
is constructed from a one-dimensional low-discrepancy sequence. As it stands
clearly, the points are extremely non-uniform in Œ0; 1�d and thus we call them high-
discrepancy sequences. (Some relevant earlier results are found in [11, 12].) We
apply such sequences to d -dimensional numerical integration for two classes of
integrals. The first class includes isotropic integrals, and the second class is called
as Kolmogorov superposition integrals. For these two classes of integrals, we prove
that if we use appropriate high-discrepancy sequences for the integration, then
the integration error becomes better than that of d -dimensional low-discrepancy
sequences.

The organization of the paper is as follows: In Sect. 2, we recall isotropic
integrals, and define the d -dimensional isotropic high-discrepancy sequences. Then,
we prove that under a certain condition the integration error for this class of integrals
is O.

p
log N =N /, where N is the number of points. In Sect. 3, we first overview

the Kolmogorov superposition theorem, which tells us that any continuous function
on Œ0; 1�d can be represented by superposition of one-dimensional functions. Based
on this theorem, we define Kolmogorov superposition integrals and then define the
d -dimensional Kolmogorov superposition high-discrepancy sequences. We prove
that under a certain condition the integration error for this class of integrals is
O..log N /=N /, where N is the number of points. In Sect. 4, we summarize software
implementations of these two types of high-discrepancy sequences and give some
numerical results. In the last section, we discuss the significance of the results.

2 High-Discrepancy Sequences for Isotropic Integrals

The following integral is called the d -dimensional isotropic integral:

Id .h/ D
Z

Rd

h.jjxjj/e�jjxjj2 dx; (1)

where d � 1 and jjxjj denotes the Euclidean norm of x in R
d . This kind of

integral often appears in computational physics, and as practical examples, we know
h.x/ D cos.x/ or h.x/ D p

1 C x2. The research of the isotropic integral dates
back to Keister [2], as well as Papageorgiou and Traub [9], more than 10 years
ago. Although the integral can be reduced to one-dimensional by using spherical
coordinates, they tackled (1) directly because it takes advantage of dependence on
the norm automatically.
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In numerical computations with d -dimensional low-discrepancy sequences, the
domain, Rd , of the integral is always transformed to the unit hypercube, Œ0; 1�d .
Thus, we actually compute the following integral:

Id .h/ D �d=2

Z

Œ0;1�d
h

0

@

vu
ut1

2

dX

iD1

.��1.ui //2

1

Adu1 � � � dud ;

where �.x/ is the standard normal distribution function.
We define an isotropic high-discrepancy sequence as follows:

Definition 1. An isotropic high-discrepancy sequence is defined as a sequence of
points

Pn D .sn; : : : ; sn/ 2 Œ0; 1�d ; n D 0; 1; 2; : : : ;

with sn D �.��1.vn/=
p

d/; where �.x/; .x � 0/; is the chi-distribution function of
degree d , and vn; n D 0; 1; 2; : : :, is a one-dimensional low-discrepancy sequence
satisfying DN D c=N , .N D 1; 2; : : :/; with a constant c � 1=2, where DN means
the star discrepancy of the first N points.

As the definition makes clear, isotropic high-discrepancy sequences are distributed
only on the diagonal line between .0; : : : ; 0/ and .1; : : : ; 1/. We should note that
the sequence is constructed independently of h.x/, the integrand of isotropic
integrals.

Based on the results of Papageorgiou [7], we obtain the following theorem:

Theorem 1. For an isotropic integral, if the function h.x/ is absolutely continuous,
h0.x/ exists almost everywhere, and ess supfjh0.x/j W x 2 Rg � M , then the error
of the numerical integration using an isotropic high-discrepancy sequence is given
by O.

p
log N =N /, where M is a constant and N is the number of points.

Proof. If the points Pn, n D 0; 1; : : : ; in Definition 1 are used for the integration,
we have

QN .h/ D �d=2

N

N �1X

nD0

h

0

@

vu
u
t1

2

dX

iD1

.��1.sn//2

1

A

D �d=2

N

N �1X

nD0

h

 r
d

2

ˇ
ˇ��1.sn/

ˇ
ˇ
!

D �d=2

N

N �1X

nD0

h

 r
d

2

ˇ̌
ˇ
ˇ�

�1

�
�

�
��1.vn/p

d

��ˇ̌
ˇ
ˇ

!

D �d=2

N

N �1X

nD0

h

�
��1.vn/p

2

�
:
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From Theorem 2 of [7], we have

��d=2jId .h/ � QN .h/j � C1

p
log N

N
;

where C1 is a constant dependent on d and M . Thus, the proof is complete. ut

3 High-Discrepancy Sequences for Kolmogorov
Superposition Integrals

The Kolmogorov superposition theorem tells us that for any integer d � 1, any
continuous function f .x1; : : : ; xd / on Œ0; 1�d can be represented as a superposition
of one-dimensional functions, i.e.,

f .x1; : : : ; xd / D
2dX

qD0

gq

 
dX

iD1

ai �q.xi /

!

;

where gq.x/; q D 0; 1; : : : ; 2d; are functions determined depending on f .x1; : : : ;

xd /, and ai ; i D 1; : : : ; d are constants with
Pd

iD1 ai D 1, determined indepen-
dently of f .x1; : : : ; xd /. And �i .x/; i D 1; : : : ; d; are monotone increasing and
continuous function on Œ0; 1�, determined independently of f .x1; : : : ; xd /. How to
construct these functions and constants can be found in [1], which also includes
more detail and latest information on this theorem.

Based on the theorem above, we define a Kolmogorov superposition integral as
follows:

Definition 2. A Kolmogorov superposition integral is defined by

Id .g/ D
Z

Œ0;1�d
g

 
dX

iD1

ai �.xi /

!

dx1 � � � dxd ;

where �.x/ is any monotone increasing function on Œ0; 1� which is continuous in
.0; 1/, and a1; : : : ; ad are constants with

Pd
iD1 ai D 1. And g.x/ is any function

such that jId .g/j < 1. Remark that �.x/ can be ˙1 at the ends of the unit interval
Œ0; 1�.

We should note that isotropic integrals are not part of Kolmogorov superposition
integrals, because .��1.x//2 is not monotone increasing in Œ0; 1�. We give a practical
example of Kolmogorov superposition integral below.

Example 1. The option payoff function with maturity d days, the total time T D
d=365, and the stock price being simulated daily has the following form:
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f .x1; : : : ; xd / D max

0

@S0 exp

0

@
�

r � �2

2

�
T C �

r
T

d

dX

j D1

xj

1

A � K; 0

1

A ;

where S0 the stock spot price, r the risk free interest rate, and � annualized volatility.
Therefore, this integral is written as the Kolmogorov superposition integral with

g.x/ D max.a exp.bx/ � K; 0/;

�.x/ D ��1.x/;

a1 D � � � D ad D 1=d;

where a and b are appropriate constants. According to Papageorgiou [8], many
integrals that appear in finance have this form.

We now give the definition of a Kolmogorov superposition high-discrepancy
sequence.

Definition 3. A Kolmogorov superposition high-discrepancy sequence is defined
as a sequence of points

Pn D .sn; : : : ; sn/ 2 Œ0; 1�d ; n D 0; 1; 2; : : : ;

with sn D � �1.p�1.vn//; where p.x/ is the distribution function corresponding
to
Pd

iD1 ai �.xi /, and vn; n D 0; 1; 2; : : :, is a one-dimensional low-discrepancy
sequence.

The function p.x/ can be obtained either by repeatedly calculating convolutions
or by using the product of the characteristic functions of probability distribu-
tion functions. As the definition makes it clear, the points of the Kolmogorov
superposition high-discrepancy sequence are distributed only on the diagonal line
between .0; : : : ; 0/ and .1; : : : ; 1/. We should note that the sequence is constructed
independently of g.x/, the integrand of Kolmogorov superposition integrals. On the
integration error, we obtain the following theorem:

Theorem 2. Denote �.x/ D g.p�1.x//. For a Kolmogorov superposition integral,
if the function �.x/ is of bounded variation, then the error of the numerical
integration using a Kolmogorov superposition high-discrepancy sequence is given
by O..log N /=N /, where N is the number of points.

Proof. If the points Pn, n D 0; 1; : : : ; in Definition 3 are used for the integration,
we have

ˇ
ˇ
ˇ
ˇ̌
Z

Œ0;1�d
g

 
dX

iD1

ai �.xi /

!

dx1 � � � dxd � 1

N

N �1X

nD0

g

 
dX

iD1

ai �.sn/

!ˇˇ
ˇ
ˇ̌
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D
ˇ
ˇ̌
ˇ
ˇ

Z 1

�1
g.z/p0.z/d z � 1

N

N �1X

nD0

g.�.sn//

ˇ
ˇ̌
ˇ
ˇ

D
ˇ
ˇ
ˇ̌
ˇ

Z 1

0

g.p�1.u//du � 1

N

N �1X

nD0

g.�.� �1.p�1.vn////

ˇ
ˇ
ˇ̌
ˇ

D
ˇ
ˇ
ˇ̌
ˇ

Z 1

0

�.u/du � 1

N

N �1X

nD0

�.vn/

ˇ
ˇ
ˇ̌
ˇ

� V.�/DN ;

where V.�/ is the variation of �.x/. Since vn; n D 0; 1; : : : ; is a one-dimensional
low-discrepancy sequence, we have

jId .g/ � QN .g/j � C2

log N

N
;

where C2 is a constant generally dependent on d . Thus, the proof is complete. ut
We should remark that the function �.x/ associated with the integral described

in Example 1 is not of bounded variation. However, the results of Papageorgiou [8]
imply that the integration error for the high-discrepancy sequence is O.n�1Co.1//,
where the asymptotic constant is independent of d .

4 Software Implementation

We summarize software implementations of the two types of high-discrepancy
sequences discussed above. First, an implementation for isotropic high-discrepancy
sequences (I-HDS) is given below.

[Software implementation of I-HDS]
Preprocessing:

By using the parameters, d; �.x/; and �.x/, compute I-HDS as

Pn D .sn; : : : ; sn/ 2 Œ0; 1�d ; n D 0; 1; 2; : : : ;

with sn D �.��1.vn/=
p

d/; where vn; n D 0; 1; 2; : : : ; is the van der Corput
sequence. Then store it in the memory.

Main processing:
Once the integrand h.x/ is given, call N points of the I-HDS from the memory, and
compute
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�d=2

N

N �1X

nD0

h

 r
d

2
��1.sn/

!

as an approximation to the integral. ut

The next is an implementation for Kolmogorov superposition high-discrepancy
sequences (KS-HDS).

[Software implementation of KS-HDS]
Preprocessing:

By using the parameters, d , p.x/, and �.x/, compute KS-HDS as

Pn D .sn; : : : ; sn/ 2 Œ0; 1�d ; n D 0; 1; 2; : : : ;

with sn D � �1.p�1.vn//; where vn; n D 0; 1; 2; : : : ; is the van der Corput sequence.
Then store it in the memory.

Main processing:
Once the integrand g.x/ is given, call N points of the KS-HDS from the memory,
and compute

1

N

N �1X

nD0

g.�.sn//

as an approximation to the integral. ut

For both implementations, if d is large, the functions �.x/ and p.x/ can be
replaced by the normal distribution thanks to the central limit theorem.

In the following, we give results of numerical computations for the comparison
among three methods: Monte Carlo methods, quasi-Monte Carlo methods (Sobol’
sequences), and high-discrepancy sequences. The results are shown in Figs. 1 and 2,
where the horizontal line indicates the number of points N , which is almost
proportional to the computation time. The vertical line indicates the approximated
value of the integral. Figure 1 shows the result for the 50-dimensional isotropic
integral with h.x/ D cos.x/, where we denote Monte Carlo methods by 50Dim.MC,
quasi-Monte Carlo methods by 50Dim.QMC, and high-discrepancy sequences by
50Dim.HDS. Figure 2 (top) shows the result for the Kolmogorov superposition
integral described in Example 1, where a D 100 exp.0:5=365/ D 100:137::,
b D 30=

p
365 D 1:57 : : :, d D 100, and K D 100. In finance words, stock

price S0 D 100, risk free rate r D 0:05, and volatility � D 0:3. The Black-Scholes
formula gives the option price to be 6.9193. Figure 2 (bottom) gives the result for
the following integral: Z

Œ0;1�d

dx1 � � � dxd

1 C x1 C � � � C xd

: (2)
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Fig. 1 Comparison of three methods for the isotropic integral with h.x/ D cos.x/.

This is a Kolmogorov superposition integral with g.x/ D 1=.1 C d � x/, �.x/ D
x, and a1 D � � � D ad D 1=d . In Fig. 2 we denote Monte Carlo methods by
100Dim.MC, quasi-Monte Carlo methods by 100Dim.QMC, and high-discrepancy
sequences by 100Dim.HDS. In Figs. 1 and 2 (bottom) the results show that QMC
and HDS are much faster to converge than MC. If we look closely at the figure
for a small number of points, say, N � 1; 000, then HDS looks slightly faster to
become stable than QMC. Figure 2 (top) shows that QMC is as slow as MC, and
much slower than HDS.

5 Conclusion

If d -dimensional low-discrepancy sequences are applied to numerical integration
for the two classes of integrals discussed in this paper, then the integration error is
O.log N /d =N / according to the Koksma-Hlawka bound. On the other hand, high-
discrepancy sequences give the integration error O.

p
log N =N / for the isotropic

case and O..log N /=N / for the Kolmogorov superposition case. We should note
that the Koksma-Hlawka bound is useless for the integration using high-discrepancy
sequences because their d -dimensional discrepancy never goes to zero as the
number of points approaches to the infinity.
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Fig. 2 Comparison of three methods for two Kolmogorov superposition integrals: the integral
from Example 1 (top) and the integral given in (2) (bottom).
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Multilevel Path Simulation for Jump-Diffusion
SDEs

Yuan Xia and Michael B. Giles

Abstract We investigate the extension of the multilevel Monte Carlo path simula-
tion method to jump-diffusion SDEs. We consider models with finite rate activity
using a jump-adapted discretisation in which the jump times are computed and
added to the standard uniform discretisation times. The key component in multilevel
analysis is the calculation of an expected payoff difference between a coarse path
simulation and a fine path simulation with twice as many timesteps. If the Poisson
jump rate is constant, the jump times are the same on both paths and the multilevel
extension is relatively straightforward, but the implementation is more complex in
the case of state-dependent jump rates for which the jump times naturally differ.

1 Introduction

In the Black-Scholes Model, the price of an option is given by the expected value
of a payoff depending upon an asset price modelled by a stochastic differential
equation driven by Brownian motion,

dS.t/ D a.S.t/; t/ dt C b.S.t/; t/ dW.t/; 0 � t � T; (1)

with given initial data S0. Although this model is widely used, the fact that asset
returns are not log-normal has motivated people to suggest models which better
capture the characteristics of the asset price dynamics. Merton [9] instead proposed
a jump-diffusion process, in which the asset price follows a jump-diffusion SDE:
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L. Plaskota and H. Woźniakowski (eds.), Monte Carlo and Quasi-Monte Carlo
Methods 2010, Springer Proceedings in Mathematics and Statistics 23,
DOI 10.1007/978-3-642-27440-4 41, © Springer-Verlag Berlin Heidelberg 2012

695



696 Y. Xia and M. B. Giles

dS.t/ D a.S.t�/; t/ dt C b.S.t�/; t/ dW.t/ C c.S.t�/; t/ dJ.t/; 0 � t � T;

(2)

where the jump term J.t/ is a compound Poisson process
PN.t/

iD1 .Yi � 1/, the jump
magnitude Yi has a prescribed distribution, and N.t/ is a Poisson process with
intensity �, independent of the Brownian motion. Due to the existence of jumps,
the process is a càdlàg process, i.e., having right continuity with left limits. We note
that S.t�/ denotes the left limit of the process while S.t/ D lims!tC S.t/. In [9],
Merton also assumed that log Yi has a normal distribution.

There are several ways in which to generalize the Merton model. Here we
consider one case investigated by Glasserman and Merener [7], in which the jump
rate depends on the asset price, namely � D �.S.t�/; t/.

For European options, we are interested in the expected value of a function of
the terminal state, f .S.T //, but in the case of exotic options the valuation depends
on the entire path S.t/; 0 � t � T . The expected value can be estimated by a
simple Monte Carlo method with a suitable approximation to the SDE solution.
However, if the discretisation has first order weak convergence then to achieve
an O.�/ root mean square (RMS) error requires O.��2/ paths, each with O.��1/

timesteps, leading to a computational complexity of O.��3/.
Giles [4,5] introduced a multilevel Monte Carlo path simulation method, demon-

strating that the computational cost can be reduced to O.��2/ for SDEs driven by
Brownian motion. This has been extended by Dereich and Heidenreich [2, 3] to
approximation methods for both finite and infinite activity Lévy-driven SDEs with
globally Lipschitz payoffs. The work in this paper differs in considering simpler
finite activity jump-diffusion models, but also one example of a more challenging
non-Lipschitz payoff, and also uses a more accurate Milstein discretisation to
achieve an improved order of convergence for the multilevel correction variance
which will be defined later.

We first present the jump-adapted discretisation of jump-diffusion processes,
and review the multilevel Monte Carlo method and some modifications for jump-
diffusion processes. We then present the numerical algorithm in detail for the
constant rate jump-diffusion model, and show numerical results for various options.
The next section presents the thinning algorithm used for state-dependent inten-
sities, and the final section draws conclusions and indicates directions for future
research.

2 A Jump-Adapted Milstein Discretisation

To simulate finite activity jump-diffusion processes, we choose to use the jump-
adapted approximation proposed by Platen [10]. For each path simulation, the set
of jump times J D f�1; �2; : : : ; �mg within the time interval Œ0; T � is added to a set
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of uniformly spaced times t 0
i D i T=N; i D 0; : : : ; N; to form a combined set of

discretisation times T D f0 D t0 < t1 < t2 < : : : < tM D T g. As a result, the
length of each timestep hn D tnC1 � tn will be no greater than h D T=N .

Within each timestep the first order Milstein discretisation is used to approximate
the SDE, and then the jump is simulated when the simulation time is equal to one
of the jump times. This gives the following numerical method:

bS
�
nC1 D bSn C an hn C bn �Wn C 1

2
b0

n bn .�W 2
n � hn/;

bSnC1 D
8
<

:

bS
�
nC1 C c.bS

�
nC1; tnC1/.Yi � 1/; when tnC1 D �i I

bS
�
nC1; otherwise;

(3)

where the subscript n is used to denotes the timestep index, bS
�
n D bS.tn�/ is the

left limit of the approximated path, �Wn is the Brownian increment during the
timestep, an; bn; b0

n are the values of a; b; b0 based on .bSn; tn/, and Yi is the jump
magnitude at �i .

3 Multilevel Monte Carlo Method

For Brownian diffusion SDEs, suppose we perform Monte Carlo path simulations
on different levels of resolution `, with 2` uniform timesteps on level `. For a given
Brownian path W.t/, let P denote the payoff, and let bP ` denote its approximation
by a numerical scheme with timestep h`. As a result of the linearity of the
expectation operator, we have the following identity:

EŒbP L� D EŒbP 0� C
LX

`D1

EŒbP `�bP `�1�: (4)

Let bY 0 denote the standard Monte Carlo estimate for EŒbP 0� using N0 paths, and for
` > 0, we use N` independent paths to estimate EŒbP `�bP `�1� using

bY ` D N �1
`

NX̀

iD1

�
bP

.i/

` �bP .i/

`�1

�
: (5)

The multilevel method exploits the fact that V` WD VŒbP ` �bP `�1� decreases with `,
and adaptively chooses N` to minimise the computational cost to achieve a desired
root-mean-square error. This is summarized in the following theorem:
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Theorem 1. Let P denote a functional of the solution of stochastic differential
equation (1) for a given Brownian path W.t/, and let bP ` denote the corresponding
approximation using a numerical discretisation with timestep h` D 2�` T .

If there exist independent estimators bY ` based on N` Monte Carlo samples, and
positive constants ˛ � 1

2
; ˇ; c1; c2; c3 such that

(i)
ˇ
ˇ
ˇEŒbP ` � P �

ˇ
ˇ
ˇ � c1 h˛

`

(ii) EŒbY `� D
8
<

:

EŒbP 0�; l D 0

EŒbP ` � bP `�1�; l > 0

(iii) VŒbY `� � c2 N �1
` h

ˇ

`

(iv) C`, the computational complexity of bY `, is bounded by

C` � c3 N` h�1
` ;

then there exists a positive constant c4 such that for any � <e�1 there are values L

and N` for which the multilevel estimator

bY D
LX

`D0

bY `;

has a mean-square-error with bound

MSE � E

��
bY � EŒP �

�2
�

< �2

with a computational complexity C with bound

C �

8
ˆ̂
<̂

ˆ̂
:̂

c4 ��2; ˇ > 1;

c4 ��2.log �/2; ˇ D 1;

c4 ��2�.1�ˇ/=˛; 0 < ˇ < 1:

Proof. See [5].

In the case of the jump-adapted discretisation, h` should be taken to be the
uniform timestep at level `, to which the jump times are added to form the set of
discretisation times. We have to define the computational complexity as the expected
computational cost since different paths may have different numbers of jumps.
However, the expected number of jumps is finite and therefore the cost bound in
assumption .iv/ will still remain valid for an appropriate choice of the constant c3.
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4 Multilevel Monte Carlo for Constant Jump Rate

The Multilevel Monte Carlo approach for a constant jump rate is straightforward.
The jump times �j , which are the same for the coarse and fine paths, are simulated
by setting �j � �j �1 � exp.�/. The Brownian increments �Wn are generated for
the fine path, and then summed appropriately to generate the increments for the
coarse path. In the following we show numerical results for European call, lookback
and barrier options. Asian and digital options have also been simulated; numerical
results for these are available in [12] along with more details of the construction of
the multilevel estimators for the path-dependent payoffs.

All of the options are priced for the Merton model in which the jump-diffusion
SDE under the risk-neutral measure is

dS.t/

S.t�/
D .r � �m/ dt C � dW.t/ C dJ.t/; 0 � t � T;

where � is the jump intensity, r is the risk-free interest rate, � is the volatility, the
jump magnitude satisfies log Yi � N.a; b/, and m D EŒYi � � 1 is the compensator
to ensure the discounted asset price is a martingale. All of the simulations in this
section use the parameter values S0 D 100, K D 100, T D 1, r D 0:05, � D 0:2,
aD0:1, b D0:2, �D1.

4.1 European Call Option

Figure 1 shows the numerical results for the European call option with payoff
exp.�rT / .S.T /�K/C, with .x/C � max.x; 0/ and strike K D100.

The top left plot shows the behaviour of the variance of both bP ` and the
multilevel correction bP ` �bP `�1, estimated using 105 samples so that the Monte
Carlo sampling error is negligible. The slope of the MLMC line indicates that
V` � VŒbP ` � bP `�1� D O.h2

`/, corresponding to ˇ D 2 in condition .i i i/ of

Theorem 1. The top right plot shows that EŒbP ` �bP `�1� is approximately O.h`/,
corresponding to ˛ D 1 in condition .i/. Noting that the payoff is Lipschitz, both of
these are consistent with the first order strong convergence proved in [11].

The bottom two plots correspond to five different multilevel calculations with
different user-specified accuracies to be achieved. These use the numerical algo-
rithm given in [5] to determine the number of grid levels, and the optimal number
of samples on each level, which are required to achieve the desired accuracy. The
left plot shows that in each case many more samples are used on level 0 than on any
other level, with very few samples used on the finest level of resolution. The right
plot shows that the the multilevel cost is approximately proportional to ��2, which
agrees with the computational complexity bound in Theorem 1 for the ˇ >1 case.
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Fig. 1 European call option with constant Poisson rate.

4.2 Lookback Option

The payoff of the lookback option we consider is

P D exp.�rT /

�

S.T / � min
0�t�T

S.t/

�

:

Previous work [4] achieved a second order convergence rate for the multilevel
correction variance using the Milstein discretisation and an estimator constructed by
approximating the behaviour within a timestep as an Itô process with constant drift
and volatility, conditional on the endpoint values bSn and bSnC1. Brownian Bridge
results (see Sect. 6.4 in [6]) give the minimum value within the timestep Œtn; tnC1�,
conditional on the end values, as

bSn;min D 1
2

 

bSn CbSnC1 �
r
�
bSnC1�bSn

�2 � 2 b2
n h log Un

!

; (6)
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where bn is the constant volatility and Un is a uniform random variable on Œ0; 1�.
The same treatment can be used for the jump-adapted discretisation in this paper,
except thatbS

�
nC1 must be used in place ofbSnC1 in (6).

Equation 6 is used for the fine path approximation, but a different treatment is
used for the coarse path, as in [4]. This involves a change to the original telescoping
sum in (4) which now becomes

EŒbP
f

L� D EŒbP
f

0 � C
LX

`D1

EŒbP
f

` �bP c

`�1�; (7)

where bP
f

` is the approximation on level ` when it is the finer of the two levels being

considered, and bP
c

` is the approximation when it is the coarser of the two. This

modified telescoping sum remains valid provided EŒbP
f

` � D EŒbP
c

`�:

Considering a particular timestep in the coarse path construction, we have two
possible situations. If it does not contain one of the fine path discretisation times,
and therefore corresponds exactly to one of the fine path timesteps, then it is treated
in the same way as the fine path, using the same uniform random number Un. This
leads naturally to a very small difference in the respective minima for the two paths.

The more complicated case is the one in which the coarse timestep contains one
of the fine path discretisation times t 0, and so corresponds to the union of two fine
path timesteps. In this case, the value at time t 0 is given by the conditional Brownian
interpolant

bS.t 0/ D bSn C � .bS
�
nC1 �bSn/ C bn

�
W.t 0/ � Wn � � .WnC1 � Wn/

	
; (8)

where � D .t 0 � tn/=.tnC1 � tn/ and the value of W.t 0/ comes from the fine path
simulation. Given this value for bS.t 0/, the minimum values for S.t/ within the two
intervals Œtn; t 0� and Œt 0; tnC1� can be simulated in the same way as before, using the
same uniform random numbers as the two fine timesteps.

The equality EŒbP
f

` � D EŒbP
c

`� is respected in this treatment because W.t 0/ comes
from the correct distribution, conditional on WnC1; Wn, and therefore, conditional
on the values of the Brownian path at the set of coarse discretisation points, the
computed value for the coarse path minimum has exactly the same distribution as it
would have if the fine path algorithm were applied.

Further discussion and analysis of this is given in [13], including a proof
that the strong error between the analytic path and the conditional interpolation
approximation is at worst O.h log h/.

Figure 2 presents the numerical results. The results are very similar to those
obtained by Giles for geometric Brownian motion [4]. The top two plots indicate
second order variance convergence rate and first order weak convergence, both of
which are consistent with the O.h log h/ strong convergence. The computational
cost of the multilevel method is therefore proportional to ��2, as shown in the bottom
right plot.
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Fig. 2 Lookback option with constant Poisson rate.

4.3 Barrier Option

We consider a down-and-out call barrier option for which the discounted payoff is

P D exp.�rT / .S.T /�K/C
�fMT >Bg;

where MT D min0�t�T S.t/: The jump-adapted Milstein discretisation with the
Brownian interpolation gives the approximation

bP D exp.�rT / .bS.T /�K/C
�nbM T >B

o

where cM T D min0�t�T
bS.t/. This could be simulated in exactly the same way

as the lookback option, but in this case the payoff is a discontinuous function of
the minimum MT and an O.h/ error in approximating MT would lead to an O.h/

variance for the multilevel correction.
Instead, following the approach of Cont and Tankov (see p. 177 in [1]), it is

better to use the expected value conditional on the values of the discrete Brownian
increments and the jump times and magnitudes, all of which may be represented
collectively as F . This yields
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E

�

exp.�rT / .bS.T /�K/C
�
n
bM T >B

o

�

D E

�

exp.�rT / .bS.T /�K/C
E

�

�nbM T >B
o j F

��

D E

"

exp.�rT / .bS.T / � K/C
nT �1Y

nD0

bpn

#

where nT is the number of timesteps, and bpn denotes the conditional probability
that the path does not cross the barrier B during the nth timestep:

bpn D 1 � exp

 
�2 .bSn�B/C.bS

�
nC1�B/C

b2
n .tnC1 � tn/

!

: (9)

This barrier crossing probability is computed through conditional expectation and
can be used to deduce (6).

For the coarse path calculation, we again deal separately with two cases. When
the coarse timestep does not include a fine path time, then we again use (9). In the
other case, when it includes a fine path time t 0 we evaluate the Brownian interpolant
at t 0 and then use the conditional expectation to obtain

bpn D
(

1 � exp

 
�2 .bSn�B/C.bS.t 0/�B/C

b2
n .t 0 � tn/

!)

�
(

1 � exp

 
�2 .bS.t 0/�B/C.bS

�
nC1�B/C

b2
n .tnC1 � t 0/

!)

: (10)

Figure 3 shows the numerical results for K D100, B D85. The top left plot shows
that the multilevel variance is O.h

ˇ

` / for ˇ � 3=2 . This is similar to the behavior
for a diffusion process [4]. The bottom right plot shows that the computational cost
of the multilevel method is again almost perfectly proportional to ��2.

5 Path-Dependent Rates

In the case of a path-dependent jump rate �.St ; t/, the implementation of the
multilevel method becomes more difficult because the coarse and fine path approx-
imations may jump at different times. These differences could lead to a large
difference between the coarse and fine path payoffs, and hence greatly increase
the variance of the multilevel correction. To avoid this, we modify the simulation
approach of Glasserman and Merener [7] which uses “thinning” to treat the case in
which � is bounded.
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Fig. 3 Barrier option with constant Poisson rate.

The idea of the thinning method is to construct a Poisson process with a constant
rate �sup which is an upper bound of the state-dependent rate. This gives a set of
candidate jump times, and these are then selected as true jump times with probability
�.St ; t/=�sup. Hence we have the following jump-adapted thinning Milstein scheme:

1. Generate the jump-adapted time grid for a Poisson process with constant
rate �sup;

2. Simulate each timestep using the Milstein discretisation;
3. When the endpoint tnC1 is a candidate jump time, generate a uniform random

number U � Œ0; 1�, and if U < ptnC1
D �.S.tnC1�/; tnC1/

�sup
, then accept tnC1 as

a real jump time and simulate the jump.

5.1 Multilevel Treatment

In the multilevel implementation, if we use the above algorithm with different
acceptance probabilities for fine and coarse level, there may be some samples in
which a jump candidate is accepted for the fine path, but not for the coarse path, or
vice versa. Because of first order strong convergence, the difference in acceptance
probabilities will be O.h/, and hence there is an O.h/ probability of coarse and fine
paths differing in accepting candidate jumps. Such differences will give an O.1/
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difference in the payoff value, and hence the multilevel variance will be O.h/. A
more detailed analysis of this is given in [13].

To improve the variance convergence rate, we use a change of measure so that the
acceptance probability is the same for both fine and coarse paths. This is achieved
by taking the expectation with respect to a new measure Q:

EŒbP ` � bP `�1� D EQŒbP `

Y

�

Rf
� � bP `�1

Y

�

Rc
� �

where � are the jump times. The acceptance probability for a candidate jump under
the measure Q is defined to be 1

2
for both coarse and fine paths, instead of p� D

�.S.��/; �/ = �sup. The corresponding Radon-Nikodym derivatives are

Rf
� D

8
ˆ̂
<

ˆ̂
:

2pf
� ; if U <

1

2
I

2.1 � pf
� /; if U � 1

2
;

Rc
� D

8
ˆ̂
<

ˆ̂
:

2pc
� ; if U <

1

2
I

2.1 � pc
� /; if U � 1

2
;

Since R
f
� � Rc

� D O.h/ and bP ` � bP `�1 D O.h/, this results in the multilevel
correction variance VQŒbP `

Q
� R

f
� � bP `�1

Q
� Rc

� � being O.h2/.
If the analytic formulation is expressed using the same thinning and change of

measure, the weak error can be decomposed into two terms as follows:

EQ

"

bP `

Y

�

Rf
� � P

Y

�

R�

#

D EQ

"

.bP ` � P /
Y

�

Rf
�

#

CEQ

"

P .
Y

�

Rf
� �

Y

�

R� /

#

:

Using Hölder’s inequality, the bound max.R� ; R
f
� / � 2 and standard results for

a Poisson process, the first term can be bounded using weak convergence results
for the constant rate process, and the second term can be bounded using the
corresponding strong convergence results [13]. This guarantees that the multilevel
procedure does converge to the correct value.

5.1.1 Numerical Results

We show numerical results for a European call option using

� D 1

1 C .S.t�/=S0/2
; �sup D 1;

and with all other parameters as used previously for the constant rate cases.
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Fig. 4 European call option with path-dependent Poisson rate using thinning without a change of
measure.

Comparing Figs. 4 and 5 we see that the variance convergence rate is significantly
improved by the change of measure, but there is little change in the computational
cost. This is due to the main computational effort being on the coarsest level, which
suggests using quasi-Monte Carlo on that level [8].

The bottom left plot in Fig. 4 shows a slightly erratic behaviour. This is because
the O.h`/ variance is due to a small fraction of the paths having an O.1/ value for
bP ` � bP `�1. In the numerical procedure, the variance is estimated using an initial
sample of 100 paths. When the variance is dominated by a few outliers, this sample
size is not sufficient to provide an accurate estimate, leading to this variability.

6 Conclusions and Future Work

In this work we have extended the multilevel Monte Carlo method to scalar
jump-diffusion SDEs using a jump-adapted discretisation. Second order variance
convergence is maintained in the constant rate case for European options with
Lipschitz payoffs, and also for lookback options by constructing estimators using
a previous Brownian interpolation technique. Variance convergence of order 1.5 is
obtained for barrier and digital options, which again matches the convergence which
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Fig. 5 European call option with path-dependent Poisson rate using thinning with a change of
measure.

has been achieved previously for scalar SDEs without jumps. In the state-dependent
rate case, we use thinning with a change of measure to avoid asynchronous jumps
in the fine and coarse levels. In separate work [12] we have also investigated an
alternative approach using a time-change Poisson process to handle cases in which
there is no upper bound on the jump rate.

The first natural direction for future work is numerical analysis to determine
the order of convergence of multilevel correction variance [13]. A second is to
investigate other Lévy processes, such as VG (Variance-Gamma), and NIG (Normal
Inverse Gaussian). We also plan to investigate whether the multilevel quasi-Monte
Carlo method [8] will further reduce the cost.
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Randomized Algorithms for Hamiltonian
Simulation

Chi Zhang

Abstract We consider randomized algorithms for simulating the evolution of a
Hamiltonian H D Pm

jD1 Hj for time t . The evolution is simulated by a product
of exponentials of Hj in a random sequence, and random evolution times. Hence
the final state of the system is approximated by a mixed quantum state. First we
provide a scheme to bound the error of the final quantum state in a randomized
algorithm. Then we obtain randomized algorithms which have the same efficiency
as certain deterministic algorithms but which are simpler to implement.

1 Introduction

Simulation of quantum systems is one of the main applications of quantum
computing. While the computational cost of simulating many particle quantum
systems using classical computers grows exponentially with the number of particles,
quantum computers have the potential to carry out the simulation efficiently. This
property, pointed out by Feynman, is one of the founding ideas of the field of
quantum computing [1]. In addition to predicting and simulating the behavior
of physical and chemical systems [1–5], the simulation problem also has other
applications such as unstructured search, adiabatic optimization, quantum walks,
and the NAND tree evaluation algorithms [6–13].

In a Hamiltonian simulation problem, the goal is to simulate the unitary operator
e�iHt , for some given time-independent Hamiltonian H and evolution time t . The
accuracy " of the simulation is measured by the trace distance [14] between the
simulated final state and the desired final state.

C. Zhang
Department of Computer Science, Columbia University, New York, USA, 10027
e-mail: czhang@cs.columbia.edu
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Of particular interest are splitting methods that approximate the unitary evolution
U D e�iHt by a product of exponentials of Hjs for some sequence of js and
intervals ts , i.e., OU D QN

sD1 e�iHjs ts , where H D Pm
jD1 Hj and assuming Hj

can be implemented efficiently. Without loss of generality, throughout this paper, the
norm ofH , jjH jj, is assumed to be constant, since the evolution of any Hamiltonian
H for time t can be reduced to the evolution of H=jjH jj for time jjH jjt . The cost
of a quantum algorithm is measured by the number of exponentials ofH1; � � � ;Hm.

Various deterministic algorithms for this problem have been proposed in the
literature, see, e.g., [4, 14–17], including algorithms based on the Trotter formula
[14], the Strang splitting formula [15] and Suzuki’s decompositions[16, 17]. Con-
sider for an example, the algorithm based on the Trotter formula. Let " be the error
bound. First, the evolution time t is divided into K D O.t2="/ small intervals
of size �t D t=K . Then, each e�iH�t is simulated by

Qm
jD1 e�iHj �t . From the

Trotter formula, the increase of the trace distance is at mostO.�t2/ in each interval,
hence the error in the final state is guaranteed not to exceed ". Moreover, high order
splitting methods [4, 16, 17] can be used to derive asymptotically tight bounds for
the number of required exponentials. However, as far as we know only deterministic
algorithms have been considered.

In this paper, we consider randomized algorithms for Hamiltonian simulation. By
randomized we mean algorithms simulating U D e�iHt by OU! D QN!

sD1 e�iHjs;! ts;!
for random sequences of js;! and intervals ts;! , occurring with probability p! .
Consequently, the final state is approximated by a mixed quantum state. We show
that:

1. Consider a randomized algorithm, where the unitary operator U is simulated by
OU! with probability p! . Assume the initial and final states for U are �init and
�final, and the initial and final state of the simulation process are Q�init and Q�final,
respectively. Then

D.�final; Q�final/ � D.�init; Q�init/C 2jjE. OU!/ � U jj C E.jj OU! � U jj2/

where D.�/ be the trace distance and E.�/ denotes the expectation.
2. There are randomized algorithms which are easier to implement than determin-

istic algorithms having the same accuracy and efficiency.

2 Random Models for Hamiltonian Simulation

Let us now state the problem in more detail and then discuss the algorithms and their
performance. A quantum system evolves according to the Schrödinger equation

i
d

dt
j .t/i D H j .t/i;
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where H is the system Hamiltonian. For a time-independentH , the solution of the
Schrödinger is j .t/i D e�iHt j 0i, where j 0i is the initial state at t D 0. Here we
assume that H is the sum of local Hamiltonians, i.e.,

H D
mX

jD1
Hj ; (1)

and all the Hj are such that e�iHj � can be implemented efficiently for any � . We
will use a product of exponentials of Hj for some sequence of js and intervals ts ,
i.e., OU D QN

sD1 e�iHjs ts , to simulate U D e�iHt . However, since the Hj do not
commute in general, this introduces an error in the simulation. We measure this
error using the trace distance, as in [4]. The trace distance between quantum states
� and � is

D.�; �/ � 1

2
Trj� � � j;

where jAj � p
A�A is the positive square root of A�A [14]. Our goal is to obtain

tight bounds on N for algorithms achieving accuracy " in the simulation.
In the randomized model, the sequence of unitary operators is selected randomly

according to a certain probability distribution. The distribution can be realized
either by “coin-flips” or by “control qubits”. As a result, the algorithm is a product
of a random sequence of unitary operators OU! D QN!

sD1 e�iHjs;! ts;! selected with
probability p! . Hence, for initial state �init D j 0ih 0j, the final state of the
quantum algorithm is a mixed state

P
! p!

OU!�init OU �
! . For more general cases, where

the initial state of the simulation is not exactly �init, but is a different mixed state Q�init,
the final state becomes

Q�final D
X

!

p! OU! Q�init OU �
!:

We now obtain an upper bound for the trace distance between the desired state
and the one computed by a randomized algorithm.

Theorem 1. Let U be the unitary operator being simulated by a set of random
unitary operators f OU!g with probability distribution fp!g. Assume the initial state
for U is �init, and the final state is �final D U�initU

�. While the initial state of
the simulation process is Q�init, and the final state is Q�final. Then, the trace distance
between �final and Q�final is bounded from above by

D.�final; Q�final/ � D.�init; Q�init/C 2jjE. OU!/� U jj CE.jj OU! � U jj2/; (2)

where D.�/ denotes the trace distance, E.�/ denotes the expectation, and jj � jj is the
2-norm.

Proof. First, we calculate the difference between �final and Q�final, which is
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Q�final � �final D
X

!

p! OU! Q�init OU �
! � U�initU

�

D
X

!

p!.U C OU! � U / Q�init.U C OU! � U /� � U�initU
�

D
X

!

p!. OU! � U / Q�initU
� C

X

!

p!U Q�init. OU! � U /�

C
X

!

p!. OU! � U / Q�init. OU! � U /� C
X

!

p!U Q�initU
� � U�initU

�

D
 
X

!

p! OU! � U

!

Q�initU
� C U Q�init

 
X

!

p! OU! � U

!�

C
X

!

p!. OU! � U / Q�init. OU! � U /� C U. Q�init � �init/U
�:

Hence,

D. Q�final; �final/ D Trj Q�final � �finalj

� Trj
 
X

!

p! OU! � U
!

Q�initU
�j C TrjU Q�init

 
X

!

p! OU! � U

!�

j

C
X

!

p!Trj. OU! � U / Q�init. OU! � U /�j C Trj Q�init � �initj

� 2jj
X

!

p! OU! � U jj C
X

!

p! jj OU! � U jj2 CD. Q�init; �init/

DD. Q�init; �init/C 2jjE. OU!/� U jj C E.jj OU! � U jj2/:
ut

Similarly to deterministic splitting algorithms, in a randomized algorithm the
evolution time t is divided into K small intervals of size �t D t=K , where K
is decided later. The algorithm is comprised of K stages, and in each stage it
approximates e�iH�t by a product of unitary operators selected randomly according
to a ceratin probability distribution. More precisely, in the k-th stage, the initial state
is Q�k�1, and the algorithm selects a product of exponentials randomly according to
a certain probability distribution fp!g from f OU! D Qn!

sD1 e�iHjs;! �ts;! g. Then, the
final state of the k-th stage is

Q�k D
X

!

p! OU! Q�k�1 OU �
!:

Assume that Q�init D �init D j .0/ih .0/j. The final state of the algorithm, Q�K ,
is used to approximate �final D j .t/ih .t/j. Then, by choosing different unitary
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operator sets f OU!g and the corresponding distributions fp!g, we can provide several
randomized algorithms with different efficiencies.

From Theorem 1, in each stage the increase of the trace distance is bounded
from above by jjE. OU!/ � U jj and E.jj OU! � U jj2/, modulo a constant. If both of
these two terms are bounded from above by O.�trC1/, for some integer r , then the
randomized algorithm yields a total error scaling as O.trC1=Kr/. Hence, the value
of K required to achieve a given error bound " scales as O.t1C1=r="1=r /. When the
number of exponentials in each stage can be considered constant, the number of
exponentials equals

N D O.K/ D O
�
t1C1=r="1=r

�
:

We have the following corollary.

Corollary 1. Consider a randomized algorithm for e�iHt , where the evolution
time t is divided into K small intervals of length �t , and the evolution in each
interval is simulated by the randomly selected OU! with probability p! . If

maxfjjE. OU!/� e�iH�t jj; E.jj OU! � e�iH�t jj2/g D O.�trC1/;

for some integer r , then the total number of exponentials of the algorithm approxi-
mating e�iHt is

O.t1C1=r="1=r/:

The number of exponentials in each stage represents the difficulty to implement
the algorithm, i.e., the more exponentials needed in each stage, the more parameters
needed to store and the more factors needed to control in the implementation of
the algorithm. On the other hand, the efficiency of an algorithm is the total number
of exponentials needed, i.e., the number of exponentials in each stage multiplies
the number of total stages in the algorithm. Since in this paper, the number of
exponentials in each stage is considered as constant, it can be determined by the total
number of stages asymptotically. Particularly, an algorithm has fewer exponentials
in each stage does not mean that it has higher efficiency.

3 Examples of Randomized Algorithms

In this section, we give several examples of randomized algorithms and use the
lemma above to analyze their costs. The goal is to simulate the evolution of H DPm

jD1 Hj for an evolution time t .
In each stage of the algorithm, the operator U0 D e�iH�t is simulated by the

product of random operators OU!l , for l D 1; � � � ; m in m consecutive substages. Let
QU! D Qm

lD1 OU!l , then due to Theorem 1, the error of the algorithm in each stage is
decided by two elements, jjE. QU!/ � U0jj and E.jj QU! � U0jj2/. Since the selection
of each operator is independent and uniform,
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Algorithm 1
1: Divide the total evolution time t into K equal small segments of size �t , where K will be

defined later. The algorithm is comprised of K stages, and in the k-th stage, the initial state
Q�init is denoted as Q�k�1 and the final state Q�final is denoted as Q�k , for k D 1; � � � ; K .

2: Let Q�0 D �0 D j 0ih 0j be the initial state of the first stage of the algorithm.
3: In the k-th stage of the algorithm, there are m substages. In the l-th substage, the initial state

is Q�k;l , and of course Q�k;0 D Q�k�1.

1. In each substage, the algorithm chooses uniformly and independently at random an operator
from fe�iH1�t ; : : : ; e�iHm�t g, i.e., in the l-th substage, the operator would be OU!l D
e�iH!l �t with probability p!l D 1

m
for !l D 1; � � � :m. Taking into account all the

alternatives, the final state of l-th substage in the k-th stage is

Q�k;l D
mX

jD1

1

m
e�iHj �t Q�k;l�1e

iHj�t :

2. The final state of the k-th stage is Q�k D Q�k;m.

4: The final result of the algorithm is Q�K and is used to approximate the final quantum state.

E. QU!/ D
0

@ 1

m

mX

jD1
e�iHj �t

1

A

m

D I � i

mX

jD1
Hj�t CO.�t2/:

Hence,
jjE. QU!/� U0jj D O.�t2/:

Furthermore, for any !, QU! D I CO.�t/, then

E.jj QU! � U0jj2/ D O.�t2/:

Thus the total error is " D O.K�t2/ and the total number of exponentials used in
the algorithm is

N D mK D O.t2="/:

We remark that, modulo a constant, there is a deterministic algorithm with the
same performance. The algorithm is based on a direct application of the Trotter
formula

Qm
jD1 e�iHj �t . However, Algorithm 1 has a certain advantage over this

deterministic algorithm. In each stage, the deterministic algorithm has a product
of m exponentials in a precise sequence, hence it has to store the current index
j of e�iHj �t , for j D 1; � � � ; m. However, in Algorithm 1, the exponentials are
random and independent of each other, hence the algorithm can be considered to be
“memoryless”.

In each stage, the algorithm simulates U0 D e�iH�t by OU1 or OU2 with equal
probability 1=2. Since
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Algorithm 2
1: Divide the total evolution time t into K equal small segments of size �t . The algorithm is

comprised of K stages, and in the k-th stage, the initial state Q�init is denoted as Q�k�1 and the
final state Q�final is denoted as Q�k , for k D 1; � � � ; K .

2: Let Q�0 D j 0ih 0j be the initial state of the first stage of the algorithm.
3: In the k-th stage of the algorithm where the initial state is Q�k�1, k D 1; : : : ; K . The

algorithm selects a unitary operator uniformly and independently at random from f OU1 D
Qm
jD1 e

�iHj �t ; OU2 D Q1
jDm e

�iHj �t g, i.e., in the k-th stage the operator would be OU! with
probability p! D 1=2, for ! D 1; 2. Taking into account all the alternatives, the final state of
the k-th stage is

Q�k D 1

2

� OU1 Q�k�1
OU�
1 C OU2 Q�k�1

OU�
2

�
:

4: The final result of the algorithm is Q�K and is used to approximate the final quantum state.

OU1 D
mY

jD1
.I � iHj�t � 1

2
H2
j �t

2 CO.�t3//

D I � i
mX

jD1
Hj�t � 1

2

mX

jD1
H2
j �t

2 �
X

j1<j2

Hj1Hj2�t
2 CO.�t3/;

OU2 D
1Y

jDm
.I � iHj�t � 1

2
H2
j �t

2 CO.�t3//

D I � i
mX

jD1
Hj�t � 1

2

mX

jD1
H2
j �t

2 �
X

j1<j2

Hj2Hj1�t
2 CO.�t3/;

jj OU! � U0jj D O.�t2/, for ! D 1; 2, hence

E.jj OU! � U0jj2/ D O.�t4/:

Moreover,E. OU!/ D I � iH�t � 1
2
H2�t2 CO.�t3/, hence

jjE. OU!/� U0jj D O.�t3/:

Due to Theorem 1, the error of this algorithm simulating e�iH�t in each stage
is O.�t3/. Hence, for a given accuracy ", the total number of exponentials in
Algorithm 2 is

N D mK D O.t3=2="1=2/:

We remark that, modulo a constant, there is a deterministic algorithm with the same
performance. The difference is that the deterministic algorithm is more complicated,
since it is based on the Strang splitting formula
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OU D
mY

jD1
e�i 12Hj �t

1Y

jDm
e�i 12Hj �t :

As a result, in each stage, the deterministic algorithm has 2m � 1 exponentials, but
Algorithm 2 only has m exponentials.

Next, we focus on the case that mD 2. In Ref.[16], the author shows the
deterministic algorithm

OU D e�i 12 sH1�t e�isH2�t e�i 12 .1�s/H1�t e�i.1�2s/H2�t e�i 12 .1�s/H1�t e�isH2�t e�i 12 sH1�t ;
(3)

for simulating e�iH�t , where s D 1

2� 3
p
2
. The algorithm yields an error O.�t4/ in

each stage, hence having O.t4=3="1=3/ exponentials. However, it requires irrational
evolution times, which cannot be fully accurately represented. The inaccuracy
caused by these will affect the efficiency of the algorithm, and make the algorithm
more difficult to implement. We present a randomized algorithm with the same
performance, but using fewer and simpler exponentials in each stage.

It can be proved (see, the Appendix) that

E.jj OU! � U jj2/ D O.�t4/;

and

jjE. OU!/� U0jj D O.�t4/:

Hence, from Theorem 1, the error in each stage is bounded byO.�t4/, and the total
number of exponentials used is N D 4K D O.t4=3="1=3/.

Compared to the deterministic algorithm which uses seven exponentials in each
stage, Algorithm 3 uses only four exponentials. Moreover, the exponentials in
the deterministic algorithm have irrational factors in their evolution time, which
certainly bring difficulties in implementation. However, all of the exponentials used
in Algorithm 3 have very simple factors in the evolution time. From [16], it is
known that it requires at least six exponentials in each stage to simulate e�iH�t
within error bound O.�t4/ for deterministic algorithms. For the same efficiency,
we have presented a randomized algorithm, i.e., Algorithm 3, which uses only four
exponentials in each stage.

Note that, Algorithm 3 is not the only randomized algorithm which has
O.t4=3="1=3/ exponentials. In fact, if in each stage an algorithm selects

OU! D e�ix!H1�t e�i.1�x!/H2�t e�i.1�x!/H1�t e�ix!H2�t
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Algorithm 3
1: Divide the total evolution time t into K equal small segments of size �t . The algorithm is

comprised of K stages, and in the k-th stage, the initial state Q�init is denoted as Q�k�1 and the
final state Q�final is denoted as Q�k , for k D 1; � � � ; K .

2: Let Q�0 D j 0ih 0j be the initial state of the first stage of the algorithm.
3: In the k-th stage of the algorithm where the initial state is Q�k�1, k D 1; : : : ; K . The algorithm

selects

OU1 D e�i 12 H1�t e�i 12 H2�t e�i 12 H1�t e�i 12 H2�t with probability p1 D 5

12
;

OU2 D e�i 12 H2�t e�i 12 H1�t e�i 12 H2�t e�i 12 H1�t with probability p2 D 5

12
;

OU3 D e�i 32 H1�t ei
1
2 H2�t ei

1
2 H1�t e�i 32 H2�t with probability p3 D 1

12

OU4 D e�i 32 H2�t ei
1
2 H1�t ei

1
2 H2�t e�i 32 H1�t with probability p4 D 1

12
:

i.e., the operator in the k-th stage is OU! with p! for ! D 1; 2; 3; 4. Taking into account all the
alternatives, the final state of stage k is

Q�k D
4X

!D1

p! OU! Q�k�1
OU�
!:

4: The final result of the algorithm is Q�K and is used to approximate the final quantum state.

with probability 1
2
p! and

OV! D e�ix!H2�t e�i.1�x!/H1�t e�i.1�x!/H2�t e�ix!H1�t

with the same probability 1
2
p! , as long asE.x!.1�x!/2/ D P

! p!x!.1�x!/2 D
1
6
, then the algorithm also has O.t4=3="1=3/ exponentials.

The above examples show that there are randomized algorithms which have the
same efficiencies with some deterministic algorithms, but are easier to implement.
However, it is not clear whether there are randomized algorithms which have higher
efficiencies than all deterministic algorithms known. It would be an interesting
problem to work on.
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Appendix

Here, we provide the details of the analysis for the efficiency for Algorithm 3.
In each stage, the algorithm simulate U0 D e�iH�t with U! with p! , for ! D 1; 2; 3; 4. It is

easy to check, for any x,

e�ixH1�t e�i.1�x/H2�t e�i.1�x/H1�t e�ixH2�t

D I � i.H1 CH2/�t �
�
1

2
H2
1 C 1

2
H2
2 C x.2� x/H1H2 C .1� x/2H2H1

�

�t2

C
(
1

6
H3
1 C 1

6
H3
2 C

�

x2
�
3

2
� x

	

C 1

2
x.1� x/2

�

H2
1H2 C 1

2
.1� x/3H2

2H1

C
�
1

2
x.1� x/2 C x2.

3

2
� x/

�

H1H
2
2 C 1

2
.1� x/3H2H

2
1

C x.1� x/2H1H2H1 C x.1� x/2H2H1H2

)

�t3 CO.�t4/:

(4)

and

e�ixH2�t e�i.1�x/H1�t e�i.1�x/H2�t e�ixH1�t

D I � i.H1 CH2/�t �
�
1

2
H2
1 C 1

2
H2
2 C x.2� x/H2H1 C .1� x/2H1H2

�

�t2

C
(
1

6
H3
1 C 1

6
H3
2 C

�

x2
�
3

2
� x

	

C 1

2
x.1� x/2

�

H2
2H1 C 1

2
.1� x/3H2

1H2

C
�
1

2
x.1� x/2 C x2

�
3

2
� x

	�

H2H
2
1 C 1

2
.1� x/3H1H

2
2

C x.1� x/2H2H1H2 C x.1� x/2H1H2H1

)

�t3 CO.�t4/:

(5)

Therefore, jj OU! � U0jj D O.�t2/, for ! D 1; � � � ; 4, and

E.jj OU! � U jj2/ D O.�t4/:

Furthermore, from Eqs. 4 and 5,

E. OU!/ DI � i.H1 CH2/�t � 1

2
.H1 CH2/

2�t2

C i

"
1

2
.
1

2
�E.x.1� x/2//.H1H

2
2 CH2H

2
1 CH2

1H2 CH2
2H1/

C E.x.1� x/2/.H1H2H1 CH2H1H2/

#

�t3 CO.�t4/;

where
E.x.1� x/2/ D 2� 5

12
� 1

2

�

1� 1

2

	2
C 2� 1

12
� 3

2

�

1� 3

2

	2
D 1

6
:
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Hence,
jjE. OU!/� U0jj D O.�t4/:

From Theorem 1, the error in each stage is bounded by O.�t4/, and the total number of
exponentials used is N D 4K D O.t4=3="1=3/.
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P.O.B.35, University of Jyväskylä, 40014, Finland, matti.vihola@jyu.fi

Jochen Voss University of Leeds, School of Mathematics,, Leeds, LS2 9J, United
Kingdom, J.Voss@leeds.ac.uk

Magnus Wahlström Max Planck Institute for Informatics, Stuhlsatzenhausweg
85, Saarbrücken, 66111, Germany, wahl@mpi-inf.mpg.de

Ruihong Wang IAPCM, NO.2 Fenghaodong Road,Haidian District, Beijing,
100094, China, wang ruihong@iapcm.ac.cn

Xiaoqun Wang Tsinghua University, Department of Mathmatical Sciences, Bei-
jing, 100084, China, xwang@math.tsinghua.edu.cn

Grzegorz Wasilkowski University of Kentucky, Computer Science Dept., 773
Anderson Hall, Lexington, 40515, United States of America, greg@cs.uky.edu

Markus Weimar University of Jena, FSU Jena, Mathematical Institute, Jena,
07740, Germany, markus.weimar@uni-jena.de

Art Werschulz Fordham University, Columbia University, Columbia University,
Dept. Computer Science, New York, 10027, United States of America, agw@cs.
columbia.edu

David White Warwick University, Maths Dept, Coventry, CV47AL, United King-
dom, david.white@warwick.ac.uk

Marek Wielgosz Polish Financial Supervision Authority, Plac Powstancow
Warszawy 1, Warszawa, 00-950, Poland, marek.wielgosz@knf.gov.pl

Dawn Woodard Cornell University, 206 Rhodes Hall, ORIE, Ithaca, NY, 14853,
United States of America, woodard@cornell.edu



Conference Participants 729
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