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Preface

The problem of solving nonlinear equations and systems of equations ranks
among the most significant in the theory and practice, not only of applied
mathematics but also of many branches of engineering sciences, physics, com-
puter science, astronomy, finance, and so on. A glance at the bibliography
and the list of great mathematicians who have worked on this topic points
to a high level of contemporary interest. Although the rapid development
of digital computers led to the effective implementation of many numerical
methods, in practical realization, it is necessary to solve various problems
such as computational efficiency based on the total central processor unit
time, the construction of iterative methods which possess a fast convergence
in the presence of multiplicity (or clusters) of a desired solution, the control
of rounding errors, information about error bounds of obtained approximate
solution, stating computationally verifiable initial conditions that ensure a
safe convergence, etc. It is the solution of these challenging problems that
was the principal motivation for the present study.

In this book, we are mainly concerned with the statement and study of
initial conditions that provide the guaranteed convergence of an iterative
method for solving equations of the form f(z) = 0. The traditional approach
to this problem is mainly based on asymptotic convergence analysis using
some strong hypotheses on differentiability and derivative bounds in a rather
wide domain. This kind of conditions often involves some unknown param-
eters as constants, or even desired roots of equation in the estimation pro-
cedure. Such results are most frequently of theoretical importance and they
provide only a qualitative description of the convergence property. The first
results dealing with the computationally verifiable domain of convergence
were obtained by Smale (1981), Smale (1986), Shub and Smale (1985), and
Kim (1985). This approach, often referred to as “point estimation theory,”
treats convergence conditions and the domain of convergence in solving an
equation f(z) = 0 using only the information of f at the initial point z(0).

In 1981, Smale introduced the concept of an approximate zero as an initial
point which provides the safe convergence of Newton’s method. Later, in 1986,
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he considered the convergence of Newton’s method from data at a single
point. X. Wang and Han (1989) and D. Wang and Zhao (1995) obtained
some improved results. The study in this field was extended by Kim (1988)
and Curry (1989) to some higher-order iterative methods including Euler’s
method and Halley’s method, and by Chen (1989), who dealt with the general
Newton-like quadratically convergent iterative algorithms. A short review of
these results is given in the first part of Chap. 2. Wang–Zhao’s improvement of
Smale’s convergence theorem and an interesting application to the Durand–
Kerner method for the simultaneous determination of polynomial zeros are
presented in the second part of Chap. 2.

The main aim of this book is to state such quantitative initial conditions
for predicting the immediate appearance of the guaranteed and fast conver-
gence of the considered numerical algorithm. Special attention is paid to the
convergence analysis of iterative methods for the simultaneous determination
of the zeros of algebraic polynomials. However, the problem of the choice of
initial approximations which ensure a safe convergence is a very difficult one
and it cannot be solved in a satisfactory way in general, not even in the case
of simple functions, such as algebraic polynomials. In 1995, the author of this
book and his contributors developed two procedures to state initial conditions
for the safe convergence of simultaneous methods for finding polynomial ze-
ros. The results were based on suitable localization theorems for polynomial
zeros and the convergence of error sequences. Chapter 3 is devoted to initial
conditions for the guaranteed convergence of most frequently used iterative
methods for the simultaneous approximations of all simple zeros of algebraic
polynomials. These conditions depend only on the coefficients of a given poly-
nomial P (z) = zn + an−1z

n−1 + · · · + a1z + a0 of degree n and the vector of
initial approximations z(0) =

(
z
(0)
1 , . . . , z

(0)
n

)
. In particular, some efficient a

posteriori error bound methods that produce disks containing the sought ze-
ros and require fewer numerical operations than the corresponding ordinary
interval methods are considered in the last part of Chap. 3.

The new results presented in Chaps. 4 and 5 are concerned with the higher-
order families of methods for the simultaneous determination of complex ze-
ros. These methods are based on the iterative formula of Hansen–Patrick’s
type for finding a single zero. As in Chap. 3, we state computationally verifi-
able initial conditions that guarantee the convergence of the presented meth-
ods. Initial conditions ensuring convergence of the corresponding iterative
methods for the inclusion of polynomial zeros are established in Chap. 5.
Convergence behavior of the considered methods is illustrated by numerical
examples.

I wish to thank Professor C. Carstensen of Humboldt University in Berlin.
Our joint work (Numer. Math. 1995) had a stimulating impact on the de-
velopment of the basic ideas for obtaining some results given in this book.
I am grateful to Professor S. Smale, the founder of the point estimation the-
ory, who drew my attention to his pioneering work. I am also thankful to
my contributors and coauthors of joint papers Professor T. Sakurai of the
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University of Tsukuba, Professor -D. Herceg of the University of Novi Sad,
Professor S. Ilić, Dr. L. Rančić, Dr. D. Milošević, and Professor D. -Dord̄ević
of the University of Nǐs for numerous important suggestions and valuable
comments. What I especially wish to acknowledge is the assistance and ex-
ceptional efforts of Sonja Dix-Stojanović and Aleksandra Milošević who read
the complete manuscript. Many small errors were eliminated in this manner.

My principal thanks, however, go to my wife Professor Ljiljana Petković for
her never-failing support, encouragement, and permanent discussions during
the preparation of the manuscript.

University of Nǐs, Miodrag S. Petković
Faculty of Electronic Engineering,
Department of Mathematics,
Nǐs 18000, Serbia
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Chapter 1

Basic Concepts

In this chapter, we give some basic concepts and properties, necessary in our
investigation of convergence characteristics of root finding methods. Most of
these methods are reviewed in Sect. 1.1, together with some historical notes
and various principles for their construction. Section 1.2 contains several re-
sults concerning the localization of polynomial zeros. We restrict ourselves to
inclusion disks in the complex plane that contain complex zeros of a given
polynomial. In Sect. 1.3, we give the basic properties and operations of cir-
cular complex interval arithmetic, prerequisite to a careful analysis of the
bounds of complex quantities that appear in our study and the construction
of inclusion methods described in Sect. 5.3.

1.1 Simultaneous Methods for Finding Polynomial Zeros

The problem of determining the zeros of a given polynomial is one of the first
nonlinear problems that mathematicians meet in their research and practice.
Although this problem seems to be simple at first sight, a perfect algorithm
for finding polynomial zeros has not been established yet, in spite of numerous
algorithms developed during the last 40 years. Each numerical method pos-
sesses its own advantages and disadvantages, so that it is not easy to choose
the “best” method for a given polynomial equation. Let us emphasize that
the rapid development of computing machines implies that many algorithms,
formerly of academic interest only, become feasible in practice.

Most algorithms calculate only one zero at a time. In cases when all zeros
are needed, these algorithms usually work serially as follows: when a zero has
been computed to sufficient accuracy, then the corresponding linear factor is
removed from the polynomial by the Horner scheme and the process is applied
again to determine a zero of the “deflated” polynomial whose degree is now
lowered by one. This is the method of successive deflations. If a great accuracy
of desired approximations to the zeros is required, the polynomial obtained

M. Petković, Point Estimation of Root Finding Methods. Lecture Notes 1
in Mathematics 1933,
c© Springer-Verlag Berlin Heidelberg 2008



2 1 Basic Concepts

after divisions by the previously calculated (inaccurate) linear factors may be
falsified to an extent which makes the remaining approximate zeros erroneous.
This is a flaw of the method of successive removal of linear factors. The
next disadvantage appears in those situations where it is sufficient to find
approximations with only a few significant digits. But, as mentioned above,
the method of deflation requires approximations of great accuracy. Besides,
this procedure cannot ensure that the zeros are determined in increasing
order of magnitude (see Wilkinson [190]), which is an additional shortcoming
of deflation.

The above difficulties can be overcome in many situations by approximat-
ing all zeros simultaneously. Various approaches to these procedures have
been developed: the method of search and exclusion (Henrici [57, Sect. 6.11]),
methods based on the fixed point relations (e.g., Börsch-Supan [9], [10],
Ehrlich [33], X. Wang and Zheng [182], Gargantini [47], [48]), qd algo-
rithm (Henrici [57, Sect. 7.6]), a globally convergent algorithm that is imple-
mented interactively (Farmer and Loizou [39]), tridiagonal matrix method
(Brugnano and Trigiante [12], Schmeisser [159]), companion matrix methods
(Smith [168], Niu and Sakurai [93], Fiedler [40], Malek and Vaillancourt [86]),
methods based on the application of root finders to a suitable function ([69],
[124], [146], [156]), methods which use rational approximations (Carstensen
and Sakurai [18], Sakurai et al. [157], [158]), and others (see, for instance,
Wilf [189], Pasquini and Trigiante [103], Jankins and Traub [67], Farmer
and Loizou [37], [38]). See also Pan’s survey paper [101] and references cited
therein.

Part I: Simultaneous Methods Based on Fixed Point Relations

In this book, we deal mainly with the simultaneous methods based on fixed
point relations (FPR). Such an approach generates algorithms with very fast
convergence in complex “point” arithmetic as well as in complex interval
arithmetic using the following procedure.

Let ζ1, . . . , ζn be the zeros of a given monic (normalized, highest coefficient
1) polynomial P (z) = zn + an−1z

n−1 + · · · + a1z + a0 of degree n and let
z1, . . . , zn be their respective approximations. We consider two types of FPR

ζi = F1(z1, . . . , zi−1, zi, ζi, zi+1, . . . , zn), (1.1)
ζi = F2(ζ1, . . . , ζi−1, zi, ζi+1, . . . , ζn), (1.2)

where i ∈ In := {1, . . . , n}. Now we give several FPR which have been the ba-
sis for the construction of the most frequently used iterative methods for the
simultaneous determination of polynomial zeros in complex arithmetic and
complex interval arithmetic. In the latter development, we will frequently use
Weierstrass’ correction Wi(zi) = P (zi)/

∏
j �=i(zi − zj) (i ∈ In). Sometimes,
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we will write Wi instead of Wi(zi). In addition to the references given behind
the type of FPR, the derivation of these FPR may be found in the book [109]
of M. Petković.

For brevity, we will sometimes write

∑
j �=i

xj instead of
n∑

j=1
j �=i

xj and
∏
j �=i

xj instead of
n∏

j=1
j �=i

xj .

Example 1.1. The Weierstrass-like FPR [109]:

ζi = z − P (z)
n∏

j=1
j �=i

(z − ζj)

(i ∈ In). (F1)

Equation (F1) follows from the factorization P (z) =
n∏

j=1

(z − ζj) =

(z − ζi)
n∏

j=1
j �=i

(z − ζj).

Example 1.2. The Newton-like FPR [50], [106]:

ζi = z − 1

P ′(z)
P (z)

−
n∑

j=1
j �=i

1
z − ζj

(i ∈ In). (F2)

Applying the logarithmic derivative to P (z) =
n∏

j=1

(z − ζj), the identity

P ′(z)
P (z)

=
n∑

j=1

1
z − ζj

(1.3)

is obtained. Finding z − ζi from (1.3), we get (F2).

Example 1.3. The Börsch-Supan-like FPR [11], [107]:

ζi = z − Wi

1 +
n∑

j=1
j �=i

Wj

ζi − zj

(i ∈ In). (F3)
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Lagrange’s interpolation applied to the distinct points z1, . . . , zn (�= ζi, i ∈
In) gives

P (z) = Wi

n∏
j=1
j �=i

(z − zj) +
n∏

j=1

(z − zj)

(
n∑

j=1
j �=i

Wj

z − zj
+ 1

)
. (1.4)

Taking z = ζi and solving the obtained equation in ζi − zi, from (1.4) we
derive (F3).

Example 1.4. The square root FPR [47], [106]:

ζi = z − 1⎡⎢⎣P ′(z)2 − P (z)P ′′(z)
P (z)2

−
n∑

j=1
j �=i

1
(z − ζj)2

⎤⎥⎦
1/2

(i ∈ In). (F4)

Differentiation of the identity (1.3) yields

−
(P ′(z)

P (z)

)′
=

P ′(z)2 − P (z)P ′′(z)
P (z)2

=
n∑

j=1

1
(z − ζj)2

, (1.5)

wherefrom we extract the term (z − ζi)2 and derive (F4).

Example 1.5. The Halley-like FPR [109], [182]:

ζi = z − 1

P ′(z)
P (z)

− P ′′(z)
2P ′(z)

− P (z)
2P ′(z)

[(
n∑

j=1
j �=i

1
z − ζj

)2

+
n∑

j=1
j �=i

1
(z − ζj)2

] . (F5)

Equation (F5) can be obtained by substituting the sums (1.3) and (1.5) in
the relation

P ′′(z)
P (z)

=
(P ′(z)

P (z)

)2

+
(P ′(z)

P (z)

)′
.

Actually, (F5) is a special case of a general fixed point relation derived by X.
Wang and Zheng [182] by the use of Bell’s polynomials (see Comment (M5)).

Substituting the exact zeros ζ1, . . . , ζn by their respective approximations
z1, . . . , zn and putting z = zi, from (1.1) and (1.2), we obtain iterative
schemes

ẑi = F1(z1, . . . , zn) (i ∈ In), (1.6)
ẑi = F2(z1, . . . , zn) (i ∈ In), (1.7)

in (ordinary) complex arithmetic, where ẑi is a new approximation to the
zero ζi. Another approach consisting of the substitution of the zeros on the



1.1 Simultaneous Methods for Finding Polynomial Zeros 5

right side of (1.1) and (1.2) by their inclusion disks enables the construction
of interval methods in circular complex interval arithmetic (see Sects. 1.3
and 5.3).

For illustration, we list below the corresponding simultaneous iterative
methods based on the FPR given in Examples 1.1–1.5 and having the form
(1.6) or (1.7).

The Durand–Kerner’s or Weierstrass’ method [1], [30], [32], [72], [148],
[187], order 2:

ẑi = zi − Wi = zi − P (zi)
n∏

j=1
j �=i

(zi − zj)

(i ∈ In). (M1)

The Ehrlich–Aberth’s method [1], [31], [33], [85], order 3:

ẑi = zi − 1

P ′(zi)
P (zi)

−
n∑

j=1
j �=i

1
zi − zj

(i ∈ In). (M2)

The Börsch-Supan’s method [10], [95], order 3:

ẑi = zi − Wi

1 +
n∑

j=1
j �=i

Wj

zi − zj

(i ∈ In). (M3)

Let us introduce δk,i =
P (k)(zi)
P (zi)

(k = 1, 2). Then

δ2
1,i − δ2,i =

P ′(zi)2 − P (zi)P ′′(zi)
P (zi)2

.

The square root method [47], [142], order 4:

ẑi = zi − 1[
δ2
1,i − δ2,i −

n∑
j=1
j �=i

1
(zi − zj)2

]1/2
(i ∈ In). (M4)

The Halley-like or Wang–Zheng’s method [182], order 4:

ẑi = zi − 1

f(zi) − P (zi)
2P ′(zi)

[(
n∑

j=1
j �=i

1
zi − zj

)2

+
n∑

j=1
j �=i

1
(zi − zj)2

] (i ∈ In),

(M5)
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where

f(zi) =
P ′(zi)
P (zi)

− P ′′(zi)
2P ′(zi)

(1.8)

is the denominator of Halley’s correction

H(zi) = Hi =
1

f(zi)
, (1.9)

which appears in the well-known classical Halley’s method [4], [45], [54]

ẑi = zi − H(zi) = zi − 1
P ′(zi)
P (zi)

− P ′′(zi)
2P ′(zi)

. (1.10)

Comment (M1). Formula (M1) has been rediscovered several times (see
Durand [32], Dochev [30], Börsch-Supan [9], Kerner [72], M. Prešić [147],
S. B. Prešić [149]) and it has been derived in various ways. But we emphasize
the little known fact that this formula was known seven decades ago. In his
lecture on the session of König, Academy of Science, held on 17 December
1891, Weierstrass communicated a new constructive proof of the fundamental
theorem of algebra (printed in [187]). In this proof, Weierstrass used the
sequences of numerical entries {a(λ)

ν } (ν = 1, . . . , n, λ = 0, 1, 2, . . .) defined
successively by (eq. (29) in Weierstrass’ work [187])⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a′
ν = aν − P (aν)∏

µ (aν − aµ)

a′′
ν = a′

ν − P (a′
ν)∏

µ (a′
ν − a′

µ)
(ν = 1, . . . , n, µ ≷ ν),

a′′′
ν = a′′

ν − P (a′′
ν)∏

µ (a′′
ν − a′′

µ)
and so on

(1.11)

where P is a polynomial of degree n with the zeros x1, . . . , xn.
The proof of the quadratic convergence of the iterative method (M1) is as-

cribed to Dochev [30], although his proof is not quite precise. The works [82],
[148], [162] offer a more precise proof. But it seems that the quadratic con-
vergence of the sequence (1.11) was known to Weierstrass. Namely, for the
maximal absolute differences ε(λ) = max

1≤ν≤n
|a(λ)

ν −xν |, he derived the following

inequality (eq. (32) in [187])

ε(λ) <
(
ε(0)
)2λ

(λ = 1, 2, . . .),

which points to the quadratic convergence of the sequences {a(λ)
ν }.
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Note that Weierstrass did not use (1.11) for the numerical calculation
of polynomial zeros. Durand [32] and Dochev [30] were the first to apply
the iterative formula (M1) in practice for the simultaneous approximation of
polynomial zeros.

In 1966, Kerner [72] proved that (M1) is, in fact, Newton’s method ẑ = z−
F ′(z)−1F (z) for solving nonlinear systems applied to the system of nonlinear
equations (known as Viète’s formulae)

(−1)kϕk(z1, . . . , zn) − ak = 0, (k = 1, . . . , n), (1.12)

where ϕk denotes the kth elementary symmetric function:

ϕk =
∑

1≤j1≤···jk≤n

zj1zj2 · · · zjk
.

Since Newton’s method is quadratically convergent, it follows immediately
that the iterative method (M1) also has quadratic convergence.

The iterative method (M1) shares with the Halley’s method (1.10) the dis-
tinction of being the most frequently rediscovered method in the literature.
From the fact that many authors dealt with the formula (M1), the itera-
tive method (M1) is called Weierstrass’, Durand–Kerner’s, or Weierstrass–
Dochev’s method; other combinations also appear in literature.

According to a great number of numerical experiments, many authors
have conjectured that the method (M1) possesses a global convergence in
practice for almost all starting vectors z(0) = (z(0)

1 , . . . , z
(0)
n ), assuming that

the components of z(0) are disjoint. This was proved for n = 2 (see [52], [64])
and for the cubic polynomial P (z) = z3 (Yamagishi [64]), but this is an open
problem still for a general n ≥ 3.

Let us note that the method (M1) works well even for the case where the
zeros of P are not necessarily distinct (see Fraigniaud [43], Miyakoda [89],
Pasquini and Trigiante [103], Carstensen [15], Kyurkchiev [81], Yamamoto,
Furakane, and Nogura [193], Kanno, Kyurkchiev, and Yamamoto [69],
Yamamoto, Kanno, and Atanassova [194], etc.). For these excellent properties
and great computational efficiency, this method is one of the most frequently
used simultaneous methods for determining polynomial zeros (see [109,
Chap. 6]).

Comment (M2). Although the method (M2) was first suggested by
Maehly [85] in 1954 for a refinement of the Newton’s method and used
by Börsch-Supan [9] in finding a posteriori error bounds for the zeros of
polynomials, it is more often referred to as the Ehrlich–Aberth’s method.
Ehrlich [33] proved the cubic convergence of this method and Aberth [1]
gave important contribution in its practical realization. The method (M2)
can also be derived from the Halley’s method (1.10) using the approximation
(see (1.49))
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P ′′(zi)
2P ′(zi)

≈
n∑

j=1
j �=i

1
zi − zj

(e.g., [37], [145]).
The Ehrlich–Aberth’s method (M2) can be easily accelerated by replacing

ζj with Newton’s approximation zj − P (zi)/P ′(zi) in (F2) instead of the
current approximation zj . In this way, we obtain

The Ehrlich–Aberth’s method with Newton’s corrections [97], order 4:

ẑi = zi − 1

1
Ni

−
n∑

j=1
j �=i

1
zi − zj + Nj

, Nj =
P (zj)
P ′(zj)

(i ∈ In). (M6)

For computational purpose, it is preferable to calculate Newton’s approxi-
mations zj − Nj in advance, before starting the iteration. Comparing (M2)
and (M6), we observe that Newton’s corrections can themselves be used to
improve the convergence rate; the increase of the convergence order from 3
to 4 is attained by using a negligible number of additional operations. For
this reason, the method (M6) is one of the most efficient methods for the
simultaneous determination of polynomial zeros.

Comment (M3). As far as we know, the method (M3) was first suggested
by Börsch-Supan [10] for the estimation of approximations to the zeros of
polynomials and their computation. The method (M3) was later considered
by Nourein [96] and Werner [188].

Carstensen [15] noted that the iterative formulae (M2) and (M3) are equiv-
alent. This follows according to the identity

P ′(zi)
P (zi)

−
n∑

j=1
j �=i

1
zi − zj

=
1

Wi

(
1 +

n∑
j=1
j �=i

Wj

zi − zj

)
,

which is proved in Sect. 3.3. Nevertheless, these formulae do not produce the
same results in practice due to the rounding errors appearing when arithmetic
of finite precision is used.

In a similar way as in the case of the Ehrlich–Aberth’s method (M2),
we can accelerate the Börsch-Supan’s method (M3), substituting ζi in (F3)
directly with Weierstrass’ approximation zi−Wi; in this manner, we construct

The Börsch-Supan’s method with Weierstrass’ correction [95], [96],
order 4:

ẑi = zi − Wi

1 +
n∑

j=1
j �=i

Wj

zi − Wi − zj

(i ∈ In). (M7)
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The improved method (M7) possesses a great computational efficiency since
the increase of the convergence order requires only a few additional calcula-
tions. This method was proposed by Nourein [96], so that it is often referred
to as Nourein’s method.

The Börsch-Supan’s method (M3) can be modified in the following way.
Assuming that the quantity ti =

∑
j �=i Wj/(zi − zj) is sufficiently small in

magnitude, we use the approximation 1/(1 + ti) ≈ 1 − ti and from (M3) we
obtain

Tanabe’s method [88], [147], [171], order 3:

ẑi = zi − Wi

(
1 −

n∑
j=1
j �=i

Wj

zi − zj

)
(i ∈ In). (M8)

This method is often called Tanabe’s method due to Tanabe [171] although
it was known earlier (see M. Prešić [147], G. V. Milovanović [88]). Kanno,
Kyurkchiev, and Yamamoto [69] have shown that Tanabe’s method (M8) may
be obtained by applying Chebyshev’s method

ẑ = z − f(z)
f ′(z)

(
1 +

f(z)f ′′(z)
2f ′(z)2

)
to the system (1.12).

Comment (M4). The method (M4) can be regarded as a modification of
Ostrowski’s method of the third order

ẑi = zi − 1[
δ2
1,i − δ2,i

]1/2
= z − 1[

P ′(zi)2 − P (zi)P ′′(zi)
P (zi)2

]1/2

(see Ostrowski [99], where the term square root method is used). The addi-
tional term in the form of the sum in (M4) provides the simultaneous deter-
mination of all zeros of a polynomial and, at the same time, the increase of
the order of convergence from 3 to 4.

It is interesting to note that the fixed point relation (F4) was applied first
for the construction of the simultaneous interval method in circular complex
arithmetic, proposed by Gargantini [47]. The iterative formula (M4) can be
obtained as the approximation of the centers of resulting improved disks
produced by Gargantini’s interval method. The square root method (M4)
and its modifications have been considered in detail in [142].

Substituting ζj by Newton’s approximation zj − Nj and Halley’s approx-
imation zj − Hj in (F4), we obtain the following accelerated methods.
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The square root method with Newton’s corrections [142], order 5:

ẑi = zi − 1[
δ2
1,i − δ2,i −

n∑
j=1
j �=i

1
(zi − zj + Nj)2

]1/2
(i ∈ In). (M9)

The square root method with Halley’s corrections [142], order 6:

ẑi = zi − 1[
δ2
1,i − δ2,i −

n∑
j=1
j �=i

1
(zi − zj + Hj)2

]1/2
(i ∈ In). (M10)

Both methods have very high computational efficiency since Newton’s and
Halley’s corrections use the already calculated values P (zj), P ′(zj), P ′′(zj)
(j ∈ In).

Comment (M5). As mentioned above, the fixed point relation (F5) is a spe-
cial case of a more general formula derived by X. Wang and Zheng in [182].
Consequently, the iterative method (M5) is a special case of the family of iter-
ative methods based on the generalized fixed point relation (1.16). This family
has the order of convergence k + 2, where k is the highest order of deriva-
tives of P appearing in the iterative formula. In special cases, for k = 1 and
k = 2, one obtains the iterative methods (M2) and (M5), respectively. Modi-
fied methods which accelerate (M5) have been considered in [143] and [177].

Wang–Zheng’s method may also be considered as a method of Halley’s
type. Indeed, the function f(z) given by (1.8) is the denominator of
Halley’s correction Hi = 1/f(zi) which appears in the well-known classi-
cal Halley’s method ẑi = zi − Hi of the third order (see (1.10)).

Substituting ζj with Newton’s approximation zj−Nj and Halley’s approx-
imation zj − Hj in (F5), we obtain the following accelerated methods.

The Halley-like method with Newton’s corrections [177], order 5:

ẑi = zi − 1

f(zi) − P (zi)
2P ′(zi)

[(
n∑

j=1
j �=i

1
zi − zj + Nj

)2

+
n∑

j=1
j �=i

1
(zi − zj + Nj)2

]

(i ∈ In). (M11)

The Halley-like method with Halley’s corrections [177], order 6:

ẑi = zi − 1

f(zi) − P (zi)
2P ′(zi)

[(
n∑

j=1
j �=i

1
zi − zj + Hj

)2

+
n∑

j=1
j �=i

1
(zi − zj + Hj)2

]

(i ∈ In). (M12)



1.1 Simultaneous Methods for Finding Polynomial Zeros 11

In [182] and [185], X. Wang and Zheng have derived a family of simultane-
ous methods based on Bell’s polynomials (for details about Bell’s polynomi-
als, see [6], [154, Chap. 5]). To describe this family of simultaneous methods,
we give an outline of Bell-like iterations.

For z ∈ C, let us define

sλ,i =
n∑

j=1
j �=i

(z − ζj)−λ (1.13)

and

∆0,i(z) = 1, ∆k,i(z) =
(−1)k

k!
P (z)

dk

dzk

[
P (z)−1

]
(k = 1, . . . , n). (1.14)

For k ∈ N and (z1, . . . , zk) ∈ Ck, the sum of the product of powers of
z1, . . . , zk

Bk(z1, . . . , zk) :=
k∑

ν=1

∑ k∏
λ=1

1
qλ!

(zλ

λ

)qλ

, B0 = 1 (1.15)

is called Bell’s polynomial. The second sum on the right side runs over all
nonnegative integers q1, . . . , qk satisfying the pair of equations

q1 + 2q2 + · · · + kqk = k,

q1 + q2 + · · · + qk = ν (1 ≤ ν ≤ k).

For example, the first few Bi are

B1(s1) = s1,

B2(s1, s2) =
1
2
s2 +

1
2
s2
1,

B3(s1, s2, s3) =
1
3
s3 +

1
2
s2s1 +

1
6
s3
1,

and so forth. We note that Bell’s polynomials can be computed recurrently
as

B0 = 1, Bk(z1, . . . , zk) =
1
k

k∑
ν=1

zνBk−ν(z1, . . . , zk).

X. Wang and Zheng have derived in [182] the fixed point relation

ζi = z − ∆k−1,i(z)
∆k,i(z) − Bk(s1,i, . . . , sk,i)

(i ∈ In), (1.16)

where sλ,i, ∆k,i(z), and Bk are defined by (1.13), (1.14), and (1.15), respec-
tively. This relation has effectively been applied to the construction of the
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following family of iterative methods for the simultaneous determination of
all zeros of a polynomial putting z = zi and substituting ζj with zj :

ẑi = zi − ∆k−1,i(zi)
∆k,i(zi) − Bk(ŝ1,i, . . . , ŝk,i)

(i ∈ In),

where ŝλ,i =
∑

j �=i(zi − zj)−λ. The order of convergence of the basic method
is k + 2, where k is the order of the highest derivative of polynomial used
in the iterative formula. Two special cases of this family, which are obtained
for k = 1 (the Ehrlich–Aberth’s method (M2)) and k = 2 (the Halley-like
method (M5)), are presented in this part.

Part II: Construction of Zero-Finding Methods by Weierstrass’
Functions

As mentioned above, there are different procedures for constructing iterative
methods for the simultaneous approximations of polynomial zeros; one of
them, based on FPR, is described in Part I. It is of interest to apply the
procedures that can generate a number of simultaneous methods in a unified
way. Such a method, based on the application of Weierstrass’ function, is
presented in this part. A few of the presented results have already been given
in [156]; we have extended here the mentioned approach to obtain other
simultaneous methods.

Weierstrass’ Functions

Our aim is to present a simple approach for the construction of iterative
methods for the simultaneous determination of polynomial zeros. In this man-
ner, it is possible to derive the numerous most frequently used simultaneous
zero-finding methods, but in a simpler way than the original derivation. The
proposed developing technique combines so-called Weierstrass’ functions and
suitable methods for finding a single (simple or multiple) zero of a function.
Aside from the presented methods, this approach can also be applied to other
specific methods for a single zero to develop known or new iterative formulae.

Let P (z) be a monic polynomial of degree n with simple zeros ζ1, . . . , ζn.
Let us assume that z1, . . . , zn are distinct points and define the polynomial
Q(z) =

∏n
j=1(z − zj). Then, using the development to partial fractions

P (z) − Q(z)
Q(z)

=
n∑

j=1

aj

z − zj
, aj =

P (z) − Q(z)
Q′(z)

∣∣∣
z=zj

=
P (zj)

n∏
j=1
j �=i

(zi − zj)

= Wj ,
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we derive

P (z) =
( n∑

j=1

Wj

z − zj
+1
) n∏

j=1

(z−zj) =
n∏

j=1
j �=i

(z−zj)

(
Wi +(z−zi)

(
1+

n∑
j=1
j �=i

Wj

z − zj

))
.

This representation of P can also be obtained using Lagrange’s interpolation.
Dividing the last relation by

∏
j �=i(z − zj), we find

Wi(z) =
P (z)

n∏
j=1
j �=i

(z − zj)

︸ ︷︷ ︸
F (1)

= Wi + (z − zi)
(
1 +

n∑
j=1
j �=i

Wj

z − zj

)
︸ ︷︷ ︸

F (2)

(i ∈ In), (1.17)

where we set Wi(zj) = Wj . We have two equivalent forms F (1) and F (2) of
the function z �→ Wi(z) which will be called Weierstrass’ function. The name
comes from Weierstrass’ iterative formula

ẑi = zi − Wi (i ∈ In)

of the second order for the simultaneous determination of simple zeros of a
polynomial P (see (M1)).

In the following, we will use the abbreviations

Gk,i =
n∑

j=1
j �=i

Wj

(zi − zj)k
, Sk,i =

n∑
j=1
j �=i

1
(zi − zj)k

(k = 1, 2).

Let

Ni =
P (zi)
P ′(zi)

=
1

δ1,i
and Hi =

P (zi)

P ′(zi) − P (zi)P ′′(zi)
2P ′(zi)

=
2δ1,i

2δ2
1,i − δ2,i

(1.18)
be, respectively, Newton’s and Halley’s corrections appearing in the well-
known iterative formulae

ẑi = zi − Ni (Newton’s method),
ẑi = zi − Hi (Halley’s method).

The order of convergence of these methods is 2 and 3, respectively. Aside
from approximations z1, . . . , zn to the zeros ζ1, . . . , ζn, we will use improved
approximations cj , where we take most frequently cj = zj − Nj (Newton’s
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approximation) or cj = zj − Hj (Halley’s approximation), see (1.18). Using
the improved approximations cj , we define the modified Weierstrass’ function

W̃i(z) =
P (z)

n∏
j=1
j �=i

(z − cj)

. (1.19)

Dealing with W̃i(z), we denote the corresponding sum with S̃k,i =
n∑

j=1
j �=i

1
(zi − cj)k

(k = 1, 2).

The derivatives of Wi(z) can be found using either (1.17)–F (1) or (1.17)–
F (2). In the first case (F (1)), we use the logarithmic derivatives and find

W ′
i (z)

Wi(z)

∣∣∣∣∣
z=zi

= δ1,i − S1,i,

(1.20)

W ′′
i (z)

W ′
i (z)

∣∣∣∣∣
z=zi

= δ1,i − S1,i +
δ2,i − δ2

1,i + S2,i

δ1,i − S1,i
.

Similarly, using the logarithmic derivatives in (1.19), we obtain

W̃ ′
i (z)

W̃i(z)

∣∣∣∣∣
z=zi

= δ1,i − S̃1,i,

(1.21)

W̃ ′′
i (z)

W̃ ′
i (z)

∣∣∣∣∣
z=zi

= δ1,i − S̃1,i +
δ2,i − δ2

1,i + S̃2,i

δ1,i − S̃1,i

.

Starting from (1.17)–F (2), it is easy to find

W ′
i (zi) = 1 +

n∑
j=1
j �=i

Wj

zi − zj
= 1 + G1,i,

W ′′
i (zi) = −2

n∑
j=1
j �=i

Wj

(zi − zj)2
= −2G2,i.

(1.22)

In this part, we demonstrate the application of Weierstrass’ function and
the modified Weierstrass’ function in the construction of iterative methods
for the simultaneous determination of polynomial zeros. Let us note that
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Weierstrass’ functions are rational functions whose nominator is a given poly-
nomial P . All applications are based on the fact that the rational function
W (or W̃ ) has the same zeros as the polynomial P .

We emphasize that the use of corrections is justified only when their eval-
uations require the already calculated quantities. In this way, the order of
convergence is increased using a negligible number of numerical operations,
giving a high computational efficiency to the stated method. The most con-
venient corrections with the described property are Newton’s approxima-
tion ci = zi − Ni and Halley’s approximation ci = zi − Hi since they can
be expressed using δ1,i and δ2,i, see (1.18). The Weierstrass’ approximation
cj = zi −Wi is suitable for the improvement on derivative-free methods, see,
e.g., the simultaneous method (M7).

The Börsch-Supan’s method

As mentioned above, Weierstrass’ function z �→ Wi(z) has the same zeros
ζ1, . . . , ζn as the polynomial P . The Newton’s method applied to Weierstrass’
function, instead of P (z), gives

ẑi = zi − Wi(zi)
W ′

i (zi)
. (1.23)

Substituting W ′
i (zi) given by (1.22) into (1.23), we immediately obtain

ẑi = zi − Wi

1 +
n∑

j=1
j �=i

Wj

zi − zj

= zi − 1
1 + G1,i

(i ∈ In), (1.24)

which is cubically convergent Börsch-Supan’s method presented in [10] (see
(M3)).

The Ehrlich–Aberth’s method

Applying the logarithmic derivative to

Wi(z) =
P (z)

n∏
j=1
j �=i

(z − zj)

,

we find
W ′

i (zi)
Wi(zi)

=
P ′(zi)
P (zi)

−
n∑

j=1
j �=i

1
zi − zj

,
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so that (1.23) yields

ẑi = zi − 1

P ′(zi)
P (zi)

−
n∑

j=1
j �=i

1
zi − zj

(i ∈ In).

This is the well-known iterative method of the third order considered in [1],
[9], [33], [85], frequently called the Ehrlich–Aberth’s method (see (M2)).

If we apply the modified Weierstrass’ function (with cj = zj − Nj) in the
same manner, we obtain

W̃ ′
i (zi)

W̃i(zi)
=

P ′(zi)
P (zi)

−
n∑

j=1
j �=i

1
zi − zj + Nj

.

From (1.23), it follows

ẑi = zi − 1

P ′(zi)
P (zi)

−
n∑

j=1
j �=i

1
zi − zj + Nj

(i ∈ In),

which is the fourth-order Ehrlich–Aberth’s method with Newton’s correc-
tions, also known as Nourein’s method [97] (see (M6)).

The Ostrowski-like methods

Applying the Ostrowski’s method [99]

ẑ = z − P (z)√
P ′(z)2 − P (z)P ′′(z)

(1.25)

to Weierstrass’ function Wi(z) instead of P (z), and using the derivatives
given by (1.22), we obtain

ẑi = zi − Wi√
(1 + G1,i)2 + 2WiG2,i

(i ∈ In).

This fourth-order method was also derived in [124] using Hansen–Patrick’s
family.

Let us rewrite (1.25) in the form

ẑ = z − 1[(P ′(z)
P (z)

)2

− P ′′(z)
P ′(z)

· P ′(z)
P (z)

]1/2
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and substitute the quotients P ′(zi)/P (zi) and P ′′(zi)/P ′(zi) by W ′
i (zi)/Wi(zi)

and W ′′
i (zi)/W ′

i (zi) (given by (1.20)) and then by W̃ ′
i (zi)/W̃i(zi) and

W̃ ′′
i (zi)/ W̃ ′

i (zi) (given by (1.21)). Thus, we obtain the following iterative
methods for the simultaneous determination of polynomial zeros

ẑi = zi − 1[
δ2
1,i − δ2,i −

n∑
j=1
j �=i

1
(zi − zj)2

]1/2
(i ∈ In), (1.26)

ẑi = zi − 1[
δ2
1,i − δ2,i −

n∑
j=1
j �=i

1
(zi − zj + Nj)2

]1/2
(i ∈ In), (1.27)

ẑi = zi − 1[
δ2
1,i − δ2,i −

n∑
j=1
j �=i

1
(zi − zj + Hj)2

]1/2
(i ∈ In), (1.28)

derived in a different way in [142]. The order of convergence of the methods
(1.26), (1.27), and (1.28) is 4, 5, and 6, respectively (see (M4), (M9), and
(M10)).

Bilinear Function and Two Fourth-Order Methods

We approximate the Weierstrass’ function Wi(z) at the point z = zi by the
bilinear function g of the form

g(z) =
(z − zi) + α1

α2(z − zi) + α3
(zi, α1, α2, α3 ∈ C), (1.29)

which coincides with Wi(z) at zi up through second derivatives, i.e.,

g(k)(zi) = W
(k)
i (zi) (k = 0, 1, 2, W

(0)
i (z) ≡ Wi(z)). (1.30)

Let ẑi be a complex number such that g(ẑi) = 0x. Then from (1.29), we
obtain

ẑi = zi − α1. (1.31)

This means that if zi is a sufficiently good approximation to a zero of the
rational function Wi(z) (and, thus, a zero of the polynomial P ), then ẑi is an
improved approximation to that zero.

To find the unknown complex coefficient α1, we start from (1.30) and get
the system of equations

α1

α3
= Wi(zi),

α3 − α1α2

α2
3

= W ′
i (zi),

2α2(α2α1 − α3)
α2

3

= W ′′
i (zi).
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Hence

α1 =
2Wi(zi)W ′

i (zi)
2W ′

i (zi)2 − Wi(zi)W ′′
i (zi)

and, according to (1.31), we find

ẑi = zi − 2Wi(zi)W ′
i (zi)

2W ′
i (zi)2 − Wi(zi)W ′′

i (zi)
(i ∈ In). (1.32)

The derivatives of Wi(z) can be found using either (1.17)–F (1) or (1.17)–
F (2). In the first case (F (1)), we use (1.20) and construct from (1.32) the
following fourth-order iterative method for the simultaneous approximation
of all simple zeros of a polynomial P :

ẑi = zi − 2(S1,i − δ1,i)
δ2,i − 2δ2

1,i + 2S1,iδ1,i + S2,i − S2
1,i

(i ∈ In).

This iterative formula was derived (in a completely different way) by Sakurai,
Torri, and Sugiura in [157].

When we use the derivatives of Wi(z) at z = zi given by (1.22), from
(1.32), we find

ẑi = zi − Wi(1 + G1,i)
(1 + G1,i)2 + WiG2,i

(i ∈ In). (1.33)

The method (1.33) was derived by Ellis and Watson [34] using an entirely
different approach.

The Börsch-Supan’s method with Weierstrass’ correction

Let i ∈ In be fixed and let z1, . . . , zn ∈ C. Using two approximations z′ and
z′′ for ζi, z′ �= z′′, the new approximation ẑ obtained by the secant method
applied to Wi(z) is

ẑ := z′ − z′′ − z′

Wi(z′′) − Wi(z′)
Wi(z′). (1.34)

Clearly, we assume that Wi(z′′) �= Wi(z′).
Let z′ = zi and z′′ = zi − Wi. Then by (1.17)–F (2), we have

Wi(z′)
Wi(z′′) − Wi(z′)

= −
(
1 +

n∑
j=1
j �=i

Wj

zi − Wi − zj

)−1

.
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According to this and (1.34), we obtain

ẑ = z′ − (z′′ − z′)
Wi(z′)

Wi(z′′) − Wi(z′)

= zi − Wi

1 +
n∑

j=1
j �=i

Wj

zi − Wi − zj

(i ∈ In). (1.35)

The iterative method (1.35) was derived by Nourein in [96] in a different way
and has the order of convergence equal to 4. Let us note that (1.35) is the
improvement of the method (1.24) (see (M3) and (M7)).

The iterative method (1.35) can also be derived starting from the
Steffensen-like iterative formula (see Steffensen [169] and Ostrowski [99,
p. 245])

ẑi = zi − P (zi)2

P (zi) − P (zi − P (zi))
(1.36)

taking Weierstrass’ function Wi(z) instead of the polynomial P (z) in (1.36).
Using (1.17)–F (2) and (1.36), we then obtain

ẑi = zi − Wi(zi)2

Wi(zi) − Wi(zi − Wi(zi))

= zi − W 2
i

Wi −
[
Wi − Wi

(
1 +

n∑
j=1
j �=i

Wj

zi − Wi − zj

)]

= zi − Wi

1 +
n∑

j=1
j �=i

Wj

zi − Wi − zj

(i ∈ In).

The Zheng–Sun’s method

We start from the iterative formula (1.35) and use the development into
geometric series (assuming that |Wi| is sufficiently small) to obtain

ẑ = zi − Wi

1 +
n∑

j=1
j �=i

Wj

zi − Wi − zj

= zi − Wi

1 +
n∑

j=1
j �=i

Wj

(zi − zj)
(
1 − Wi

zi − zj

)
= zi − Wi

1 +
n∑

j=1
j �=i

Wj

(zi − zj)

(
1 +

Wi

zi − zj
+
( Wi

zi − zj

)2

+ · · ·
) .
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Neglecting the terms of higher order, from the last relation, we get

ẑ = zi− Wi

1 +
n∑

j=1
j �=i

Wj

zi − zj
+ Wi

n∑
j=1
j �=i

Wj

zi − zj

= zi− Wi

1 + G1,i + WiG2,i
(i ∈ In).

The last iterative formula defines the iterative method of the fourth order
proposed by Zheng and Sun in [196]. Let us note that their derivation of
this method is unnecessarily complicated and occupies almost three pages
in [196].

The Chebyshev-like methods

Applying the Chebyshev’s third-order method [172]

ẑ = z − P (z)
P ′(z)

(
1 +

P (z)
P ′(z)

· P ′′(z)
2P ′(z)

)
to Weierstrass’ function Wi(z), we obtain

ẑi = zi − Wi

W ′
i

(
1 +

Wi

W ′
i

· W ′′
i

2W ′
i

)
(i ∈ In). (1.37)

Hence, by (1.20), we generate the fourth-order iterative method

ẑi = zi − 1
2(δ1,i − S1,i

[
3 +

δ2,i − δ2
1,i + S2,i

(δ1,i − S1,i)2

]
(i ∈ In), (1.38)

proposed by Sakurai and Petković [156].
Similarly, applying (1.22)–(1.37), we obtain another fourth-order method

of Chebyshev’s type

ẑi = zi − Wi

1 + G1,i

(
1 − WiG2,i

(1 + G1,i)2

)
(i ∈ In),

considered in [146].
If we use the modified Weierstrass’ function given by (1.19) and the corre-

sponding expressions (1.21), then we obtain the accelerated Chebyshev-like
method

ẑi = zi − 1

2(δ1,i − S̃1,i)

[
3 +

δ2,i − δ2
1,i + S̃2,i

(δ1,i − S̃1,i)2

]
(i ∈ In). (1.39)

It is not difficult to prove that the order of convergence of the method (1.39)
is 5 if we employ Newton’s approximations cj = zj −Nj , and 6 when Halley’s
approximations cj = zj − Hj are applied.
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The cubic derivative-free method

Let us take the polynomial P (z) instead of Wi(z) in (1.34). With the
same approximations, i.e., z′ = zi, z′′ = zi − Wi, from (1.34), we obtain the
cubically convergent derivative-free method

ẑi = zi − Wi

1 − P (zi − Wi)
P (zi)

(i ∈ In).

To avoid confusion, we emphasize that zi − Wi is the argument of P in the
last iterative formula.

Methods for Multiple Zeros

Let us consider a polynomial P with multiple zeros ζ1, . . . , ζν of the known
multiplicities µ1, . . . , µν (µ1 + · · · + µν = n) and let c1, . . . , cν be some ap-
proximations to these zeros. In a similar way to the previous part, we can
construct methods for the simultaneous determination of multiple zeros using
the Weierstrass-like function

W ∗
i (z) = P (z)/

ν∏
j=1
j �=i

(z − cj)µj (1.40)

and its derivatives in suitable iterative formulae for finding a single multiple
zero of a function f (not necessary a polynomial) of the multiplicity µ. For
example, we give several existing formulae of this kind, assuming that the
considered function is an algebraic polynomial P :

ẑ = z − µ
P (z)
P ′(z)

(Schröder’s method [160]), (1.41)

ẑ = z − 2
µ + 1

µ

P ′(z)
P (z)

− P ′′(z)
P ′(z)

(Halley-like method [55]), (1.42)

ẑ = z −
√

µP (z)√
P ′(z)2 − P (z)P ′′(z)

(square root method [99]), (1.43)

ẑ = z − nP (z)

P ′(z) ±
√

n − µ

µ

[
(n − 1)P ′(z)2 − nP (z)P ′′(z)

] (see [55]),(1.44)

ẑ = z − µ(α + 1)P (z)

αP ′(z) ±
√

(µ(α + 1) − α)P ′(z)2 − µ(α + 1)P (z)P ′′(z)
, (1.45)

etc. The formula (1.45) was derived in [135] and it is a simplified version
of Hansen–Patrick’s formula (4.7). The above formulae are of the form ẑi =
zi − ci; ci is just the correction appearing in (1.40) (taking z = zi and µ = µi
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in (1.41)–(1.45)). The iterative method (1.41) has quadratic convergence;
methods (1.42)–(1.45) possess cubic convergence.

Starting from (1.40) and associating the sum

S∗
k,i =

ν∑
j=1
j �=i

µj

(zi − cj)k
(k = 1, 2)

to the Weierstrass-like function (1.40), by logarithmic derivatives, we find(
W ∗

i (z)
)′

W ∗
i (z)

∣∣∣∣∣
z=zi

= δ1,i − S∗
1,i,(

W ∗
i (z)
)′′(

W ∗
i (z)
)′
∣∣∣∣∣
z=zi

= δ1,i − S∗
1,i +

δ2,i − δ2
1,i + S∗

2,i

δ1,i − S∗
1,i

.

(1.46)

For illustration, we will consider the iterative formulae (1.41) and (1.42).
Substituting P ′(zi)/P (zi) with (W ∗

i (zi))′/Wi(zi) (given by (1.46)) in (1.41)
and taking cj = zj and cj = zj − µj/δ1,j , we obtain, respectively, the third-
order method

ẑi = zi − µi

δ1,i −
ν∑

j=1
j �=i

µj

zi − zj

(i ∈ Iν)

and the fourth-order method

ẑi = zi − µi

δ1,i −
ν∑

j=1
j �=i

µj

zi − zj + µj/δ1,j

(i ∈ Iν)

for the simultaneous approximation of all multiple zeros of the polynomial P .
Substituting P ′(zi)/P (zi) with (W ∗

i (zi))′/Wi(zi) and P ′′(zi)/P ′(zi) with
(W ∗

i (zi))′′/(W ∗
i (zi))′ in (1.42), using (1.46), we find

ẑi = zi −
2µi(δ1,i − S∗

1,i)
(δ1,i − S∗

1,i)2 − µi(δ2,i − δ2
1,i + S∗

2,i)
(i ∈ Iν). (1.47)

Taking cj = zj in the sum S∗
1,i, the iterative formula (1.47) yields the fourth-

order method for multiple zeros. The acceleration of the convergence can be
achieved taking cj = zj − N∗

j (the order 5) and cj = zj − H∗
j (the order 6),

where

N∗
j = µj

P (zj)
P ′(zj)

=
µj

δ1,j
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and
H∗

j =
1

µj + 1
2µj

· P ′(zj)
P (zj)

− P ′′(zj)
2P ′(zj)

=
2µjδ1,j

(µj + 1)δ2
1,j − µjδ2,j

are the Schröder’s correction and the Halley-like correction, respectively (see
(1.41) and (1.42)).

In a similar way, the iterative formulae (1.43)–(1.45) can be modified to
generate iterative methods for the simultaneous determination of multiple
zeros, some of which are new ones.

All presented simultaneous methods are based on iterative methods for
finding a single (simple or multiple) zero and derived in a simpler way com-
pared with the original derivations. We can continue to apply other iterative
methods to the Weierstrass’ function Wi(z), the modified Weierstrass’ func-
tion W̃ (z), and the Weierstrass-like function W ∗

i (z) to construct (existing or
new) classes of simultaneous methods for finding polynomial zeros.

Part III: Approximations of Derivatives

Farmer and Loizou [37] showed that the substitution of approximations of a
given polynomial

P (z) = anzn + an−1z
n−1 + · · · + a1z + a0, ana0 �= 0

and its derivatives in iterative formulae for finding a single zero of a function
can lead to a new class of methods for the simultaneous determination of
polynomial zeros.

Let us define

ui = zi − ζi, Ak(z) =
P (k)(z)
k!P ′(z)

,

Sk(zi) =
∑
j �=i

1
(zi − zj)k

, Tk(zi) =
∑
j �=i

1
(zi − ζj)k

(k = 1, 2, . . .).

Farmer and Loizou [37] gave the following formulae:

P ′(zi) = an

∏
j �=i

(zi − zj) + O(u), (1.48)

A2(zi) = S1(zi) + O(u), (1.49)
2A3(zi) = A2

2(zi) − S2(zi) + O(u), (1.50)
3A4(zi) = 3A2(zi)A3(zi) − A3

2(zi) + S3(zi) + O(u), (1.51)

etc., where u = max1≤i≤n |ui|. The derivation of these formulae is elementary
but cumbersome. For demonstration, we will prove (1.49).
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Using the logarithmic differentiation, we start from the factorization

P (z) = an

n∏
j=1

(z − ζj)

and obtain
P ′(z)
P (z)

=
n∑

j=1

1
z − ζj

, (1.52)

wherefrom

P ′(z) = P (z)
n∑

j=1

1
z − ζj

. (1.53)

By differentiating (1.53), we find

P ′′(z) = P ′(z)
n∑

j=1

1
z − ζj

− P (z)
n∑

j=1

1
(z − ζj)2

. (1.54)

Using (1.52), from (1.54), we obtain for z = zi

P ′′(zi)
P ′(zi)

=
n∑

j=1

1
zi − ζj

− 1
n∑

j=1

(zi − ζj)−1

n∑
j=1

1
(zi − ζj)2

=
1
ui

(1 + uiT1(zi)) − 1
ui

(1 + u2
i T2(zi)

1 + uiT1(zi)

)
.

Developing 1/(1 + uiT1(zi)) into geometric series, we get

2A2(zi) =
P ′′(zi)
P ′(zi)

=
1
ui

(1 + uiT1(zi)) − 1
ui

(1 + u2
i T2(zi))(1 − uiT1(zi) + O(u))

= 2T1(zi) + O(u) = 2
∑
j �=i

1
(zi − zj)(1 + uj/(zi − zj))

+ O(u)

= 2S1(zi) + O(u),

where we have used again the development into geometric series. Therefore,
we have proved (1.49).

Approximations (1.48)–(1.51) can be suitably applied to iterative processes
for finding a single zero. In what follows, we will consider a class of methods
of arbitrary order of convergence presented, e.g., by Farmer and Loizou [37].
Let h(z) = P (z)/P ′(z) and define λn recursively in the following way:
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λ1(z) = h(z),

λk(z) =
h(z)

1 −
k∑

i=2

Ai(z)
k−1∏

p=k−i+1

λp(z)

(k = 2, 3, . . . , n). (1.55)

Then, the iterative method

Ψn ≡ ẑi = zi − λn(zi) (m = 0, 1, . . .) (1.56)

is of order n + 1.

Remark 1.1. It is interesting to note that M. Petković and D. Herceg have
shown in [113] that the class of methods (1.55) is equivalent to other classes
of iterative methods, derived in various ways and expressed in different forms
by Gerlach [51], Ford and Pennline [41], Wang [179], Varjuhin and Kasjan-
juk [176], Jovanović [68], and Igarashi and Nagasaka [63].

The first few Ψn are given by

Ψ3 = zi − h(zi)
1 − A2(zi)h(zi)

(Halley [54]),

Ψ4 = zi −
h(zi)

[
1 − A2(zi)h(zi)

]
1 − 2A2(zi)h(zi) + A3(zi)h(zi)2

,

Ψ5 = zi −
h(zi)

[
1 − 2A2(zi)h(zi) + A3(zi)h(zi)2

]
1 − 3A2(zi)h(zi) +

[
2A3(zi) + A2

2(zi)
]
h(zi)2 − A4(zi)h(zi)3

,

and so forth.
By replacing the derivative of the highest order in Ψn, and using an ap-

proximation of the type given by (1.48)–(1.51), we obtain iterative methods
for the simultaneous determination of polynomial zeros.

The second-order iterative method (Weierstrass’ or Durand–
Kerner’s method):

ẑi = zi − P (zi)

an

n∏
j=1
j �=i

(zi − zj)

(i ∈ In).

The third-order iterative method (Ehrlich–Aberth’s method):

ẑi = zi − h(zi)
1 − h(zi)S1(zi)

(i ∈ In).
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The fourth-order iterative method (Farmer–Loizou’s method):

ẑi = zi −
h(zi)

[
1 − A2(zi)h(zi)

]
1 − 2A2(zi)h(zi) + 1

2

[
A2

2(zi) − S2(zi)
]
h(zi)2

(i ∈ In),

etc.

1.2 Localization of Polynomial Zeros

Before applying any iterative method for the inclusion of polynomial zeros, it
is necessary to find initial regions (disks or rectangles) containing these zeros.
Obviously, these inclusion disks can be suitably used for iterative methods
realized in ordinary (“point”) real or complex arithmetic (for example, taking
the centers of these complex intervals). There are a lot of results concerning
this topic, from the classical ones presented in Henrici [57] and Marden [87]
to the more recent contributions.

The choice of initial inclusion regions which contain polynomial zeros is
strongly connected with the conditions for the convergence of iterative meth-
ods. Most of these conditions presented in the literature depend on unknown
data, for instance, of some functions of the sought zeros, which is not of prac-
tical importance. In this section, we consider initial regions which depend on
the initial complex approximations z

(0)
1 , . . . , z

(0)
n to the simple complex zeros

ζ1, . . . , ζn.
We begin with a particular result which has a global character. Consider

a monic polynomial P of degree n,

P (z) = zn + an−1z
n−1 + · · · + a1z + a0 =

n∏
j=1

(z − ζj), (ai ∈ C), (1.57)

with the zeros ζ1, . . . , ζn. Solving polynomial equations, it is often of interest
to find an inclusion radius R for the given polynomial P such that all zeros
of P satisfy

|ζi| ≤ R (i = 1, . . . , n).

The following assertion has a great practical importance (see, e.g., [57,
p. 457]).

Theorem 1.1. Let ω1, . . . , ωn be positive numbers such that ω1+ · · ·+ωn ≤ 1
and let

R := max
1≤k≤n

ω
−1/k
k |an−k|1/k.

Then R is an inclusion radius for P .

Specially, taking ωk = 1/2k, from Theorem 1.1, it follows that the disk
centered at the origin with the radius
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R = 2 max
1≤k≤n

|an−k|1/k (1.58)

contains all zeros of the polynomial P . The last result can also be found in
Dekker’s work [28] and Knuth’s book [76]. Note that it is often convenient in
a subdividing procedure to take the smallest possible square containing the
circle {z : |z| ≤ R} as the initial region, where R is given by (1.58).

Using (1.58) and the substitution w = 1/z, it is easy to show that the disk
centered at the origin with the radius

r =
1
2

min
1≤k≤n

∣∣∣a0

ak

∣∣∣1/k

does not contain any zero of P . Therefore, all zeros of the polynomial P lie
in the annulus {z : r ≤ |z| ≤ R}.

The inclusion disk given by (1.58) has the center at the origin. But it
is reasonable to translate this center at the center of gravity of the zeros
ζ1, . . . , ζn. Since ζ1 + · · · + ζn = −an−1, the center of gravity is given by
c = −an−1/n. Substituting y = z + c = z − an−1/n in (1.57) transforms the
polynomial P into the shifted polynomial

P (z + c) = zn + bn−2z
n−2 + · · · + b1z + b0 (bn−1 = 0).

The center of gravity of the zeros ξ1, . . . , ξn (ξi = ζi + c) of the transformed
polynomial P (z + c) is 0. The inclusion radius

R′ = 2 max
2≤k≤n

|bn−k|1/k

for the zeros ξ1, . . . , ξn is most frequently less than R calculated by (1.58).
The following result of Van der Sluis [175] precisely describes the afore-

mentioned procedure.

Theorem 1.2. All the zeros ζ1, . . . , ζn of the polynomial (1.57) satisfy√
2
n

L ≤ |ζi − c| ≤ 1 +
√

5
2

L < 1.62L,

where c = −an−1/n, L = max
k≥2

|bn−k|1/k, and P (z + c) =
∑n

k=0 bkzk

(bn−1 = 0).

We have already derived the Durand–Kerner’s iterative formula (see (M1))

ẑi = zi − P (zi)
n∏

j=1
j �=i

(zi − zj)

= zi − Wi (i ∈ In). (1.59)
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Weierstrass’ corrections Wi have been often used as a posteriori error es-
timates for a given set of approximate zeros. Smith [168] showed that the
disk

|z − (zi − Wi)| ≤ (n − 1)|Wi|
contains at least one zero of P . This is a slight improvement of the result of
Braess and Hadeler [11] who proved that the disk given by

|z − zi| ≤ n|Wi|

also contains at least one zero of the polynomial P . The latter is a consequence
of Smith’s result.

Throughout this book, a disk with center c and radius r will be denoted
by the parametric notation {c; r}. It is easy to show by the continuity that,
if disks {z1;n|W1|}, . . . , {zn;n|Wn|} are mutually disjoint, then each of them
contains one and only one zero of P . The same is valid for Smith’s disks.

We now present inclusion disks based on Weierstrass’ corrections. It is
known (see Carstensen [14] or Elsner [35]) that the characteristic polynomial
of the n × n-matrix

B := diag (z1, . . . , zn) −

⎡⎢⎣1
...
1

⎤⎥⎦ · [W1 · · ·Wn]

is equal to (−1)nP (z). Hence, by Gerschgorin’s inclusion theorem applied to
B, we can get locations of the zeros of P . Before doing this, we may transform
the matrix B into T−1BT having the same eigenvalues for any regular matrix
T . The question “which T gives the best inclusion disks?” can be answered
(in some sense) if T belongs to the class of diagonal matrices. It turns out
that the “best Gerschgorin’s disks” lead to the following estimate, proved by
Carstensen [14] and Elsner [35].

Theorem 1.3. For p ∈ {1, 2, . . . , n} and ξ ∈ C, let r be a positive number
bounded by

max
1≤j≤p

(|zj − Wj − ξ| − |Wj |) < r < min
p+1≤j≤n

(|zj − Wj − ξ| + |Wj |)

such that 1 > y(r) ≥ 0, where

y(r) :=
p∑

j=1

|Wj |
r − |zj − Wj − ξ| + |Wj | +

n∑
j=p+1

|Wj |
|zj − Wj − ξ| + |Wj | − r

.

Then, there are exactly p zeros in the open disk with center ξ and radius r.
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Remark 1.2. In the case p = n, the conditions on the upper bound of r
and the last sum must be neglected. A reordering leads to more flexibility in
Theorem 1.3.

Remark 1.3. Adopting notations from Theorem 1.3, it follows from y(r) ≤ 1
by continuity that at least p zeros of P lie in the closed disk with center ξ
and radius r.

In the case p = 1, Theorem 1.3 can be specified giving the following simpler
estimate proved by Carstensen [13, Satz 3] (see also [9], [11], [14] for similar
results).

Theorem 1.4. Let ηi := zi − Wi ∈ C \ {z1, . . . , zn} and set

γi := |Wi| · max
1≤j≤n

j �=i

|zj − ηi|−1, σi :=
n∑

j=1
j �=i

|Wj |
|zj − ηi| , i ∈ {1, . . . , n}.

If
√

1 + γi >
√

γi +
√

σi, then there is exactly one zero of P in the disk with
center ηi and radius

|Wi| ·
(

1 − 2(1 − 2σi − γi)
1 − σi − 2γi +

√
(1 − σi − 2γi)2 + 4σi(1 − 2σi − γi)2)

)
.

If √
1 + γi >

√
γi +

√
σi and γi + 2σi < 1, (1.60)

then there is exactly one zero of P in the disk with center ηi and radius

|Wi|γi + σi

1 − σi
.

Remark 1.4. From the expression for the radius of inclusion disk and the fact
that φ(γi, σi) = (γi+σi)/(1−σi) is monotonically increasing function in both
variables γi, σi ∈ (0, 1), it follows that this disk is smaller if γi and σi are
smaller.

Let w = max
1≤i≤n

|Wi| and let d = min
i�=j

|zi − zj | be the minimal distance

between distinct approximations z1, . . . , zn to the zeros of P . Let us assume
that the inequality

w < cnd (1.61)

is satisfied, where cn, called i-factor (see Chap. 3), is the quantity that de-
pends only on the polynomial degree n. The inequality (1.61) can be applied
for finding the upper bound of γi and σi defined in Theorem 1.4. These
bounds will depend on the i-factor cn and our aim is to determine the max-
imal number cn, so that both inequalities (1.60) are satisfied. This is the
subject of the following theorem.
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Theorem 1.5. If the i-factor cn appearing in (1.61) is not greater than
1/(2n), then both inequalities (1.60) hold and the minimal radius of the in-
clusion disk given in Theorem 1.4 is not greater than |Wi|.
Proof. First, we have |zj − ηi| = |zj − zi + Wi| ≥ |zj − zi| − |Wi| ≥ d − w so
that, in view of (1.61), we bound

γi ≤ w

d − w
<

cn

1 − cn
, σi ≤ (n − 1)w

d − w
<

(n − 1)cn

1 − cn
.

Now, the inequalities (1.60) become

(n − 1)cn

1 − cn
+ 2

√
cn

1 − cn
· (n − 1)cn

1 − cn
< 1,

cn

1 − cn
+

2(n − 1)cn

1 − cn
< 1,

or, after some rearrangement with the assumption cn < 1,

cn <
1

n + 2
√

n − 1
and cn <

1
2n

.

For n ≥ 3, both inequalities will be satisfied if we choose cn < 1/(2n).
Using the above bounds of γi and σi and Remark 1.4, we estimate

γi + σi

1 − σi
|Wi| <

ncn

1 − ncn
|Wi| < |Wi|,

which proves the second part of the theorem. 
�

Theorem 1.6. Let cn = 1/(αn+β), α ≥ 2, β > (2−α)n, and let us assume
that w < cnd holds. Then for n ≥ 3, the disks

D1 :=
{

z1−W1;
n

(α − 1)n + β
|W1|
}

, . . . , Dn :=
{

zn−Wn;
n

(α − 1)n + β
|Wn|

}
are mutually disjoint and each of them contains one and only one zero of P .

Proof. Using the bounds of γi and σi given in the proof of Theorem 1.5, we
find

γi <
1

αn + β − 1
, σi <

n − 1
αn + β − 1

so that for the upper bound of the inclusion radii (centered at ηi = zi −Wi),
we have

γi + σi

1 − σi
|Wi| <

n

(α − 1)n + β
|Wi|.

In view of Theorems 1.4 and 1.5, the inclusion disk

Di =
{

zi − Wi;
n

(α − 1)n + β
|Wi|
}

(i ∈ In)
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will contain exactly one zero of P if Di∩Dj = ∅ (i �= j). Using the inequality

αn + β − 2 > 2 > 2n/((α − 1)n + β),

we find

|mid Di − mid Dj | = |(zi − Wi) − (zj − Wj)| ≥ |zi − zj | − |Wi| − |Wj |
≥ d − 2w > w(αn + β − 2) >

n

(α − 1)n + β

(|Wi| + |Wj |
)

= radD1 + radD2.

Hence, from a geometrical construction (see also (1.69)), it follows Di

⋂
Dj =

∅, i �= j. 
�

Corollary 1.1. Under the conditions of Theorem 1.6, each of disks D∗
i de-

fined by

D∗
i :=

{
zi;

αn + β

(α − 1)n + β
|Wi|
}

=
{

zi;
1

1 − ncn
|Wi|
}

(i ∈ In)

contains exactly one zero of P .

Proof. Since

Di =
{

zi − Wi;
n

(α − 1)n + β
|Wi|} ⊂

{
zi; |Wi| + n

(α − 1)n + β
|Wi|
}

=
{

zi;
αn + β

(α − 1)n + β
|Wi|
}

= D∗
i (i ∈ In)

and having in mind that (α − 1)n + β > 2 holds under the conditions of
Theorem 1.6, we have

|zi − zj | ≥ d >
αn + β

(α − 1)n + β

(|Wi| + |Wj |
)

= rad D∗
i + rad D∗

j (i �= j),

which means that the disks D∗
1 , . . . , D∗

n are also separated. Therefore, each
of them contains one and only one zero of P . 
�

The disks D∗
1 , . . . , D∗

n, although larger in size compared with those defined
in Theorem 1.6, are centered at zi, which is simpler for calculation. This
advantage is used in Chaps. 3–5 to estimate the difference |zi−ζi| (< rad D∗

i ).
From Theorem 1.6, we see that a small cn produces smaller inclusion disks.

But in that case, the condition (1.61) becomes stronger in the sense that it
requires smaller |Wi|. Considering the above opposite requirements for the
i-factor cn, the following natural question arises: What is more productive
(1) to increase cn in (1.61) and weaken the convergence condition or (2) to
decrease cn and produce smaller inclusion disks? To answer this question, we
emphasize that weaker conditions are sufficient to ensure the convergence of
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the most frequently used inclusion methods, see [110]. In practice, interval
methods converge starting with considerably larger disks. Besides, the need
for smaller disks appears mainly to simplify theoretical analysis and avoid
perplexed inequalities. Finally, it should be stressed that too small an i-factor
cn would cause serious difficulties in realization of the inequality w < cnd be-
cause small values of w assume very close initial approximations to the zeros.
Altogether, the choice of as great as possible an i-factor cn has undoubtable
advantages (option (1)). This subject is also discussed in Chap. 3.

1.3 Complex Interval Arithmetic

In Chaps. 3–5, we handle complex circular intervals to obtain some estimates
and bounds. For the reader’s convenience, we digress briefly to list the basic
properties and operations of circular complex arithmetic. For more details,
see the books by Alefeld and Herzberger [3, Chap. 5] and M. Petković and L.
Petković [129, Chap. 1].

A disk Z with radius r = radZ and center c = mid Z ∈ C, where C is the
set of complex numbers, will be denoted with Z = {c; r} = {z : |z − c| ≤ r}.
This notation provides that operations of circular arithmetic may be easily
parametrized. The set of all complex circular intervals (disks) is denoted by
K(C).

We begin by defining basic circular arithmetic operations. If 0 /∈ Z (i.e.,
|c| > r), then the inverse of Z is obtained by the Möbius transformation

Z−1 :=
{

c̄

|c|2 − r2
;

r

|c|2 − r2

}
=
{

1
z

: z ∈ Z

}
. (1.62)

From (1.62), we observe that the inversion Z−1 is an exact operation. Some-
times, we will use the so-called centered inverse of a disk,

ZIc :=
{

1
c
;

r

|c|(|c| − r)

}
⊇ Z−1, (1.63)

enlarged with respect to the exact range Z−1, but simpler for calculations.
Actually, this is the Taylor’s form of inversion derived in [105].

Furthermore, if Zk = {ck; rk} (k = 1, 2), then

Z1 ± Z2 := {c1 ± c2; r1 + r2} = {z1 ± z2 : z ∈ Z1, z2 ∈ Z2}. (1.64)

In general, the following is valid

n∑
k=1

Zk =

{
n∑

k=1

ck;
n∑

k=1

rk

}
.
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If α ∈ C, then
α · {c; r} = {αc; |α|r}. (1.65)

The product Z1 · Z2 is defined as in [50]:

Z1 · Z2 := {c1c2; |c1|r2 + |c2|r1 + r1r2} ⊇ {z1z2 : z1 ∈ Z1, z2 ∈ Z2}. (1.66)

Then, by (1.62), (1.63), and (1.66),

Z1 : Z2 := Z1 · Z−1
2 or Z1 : Z2 := Z1 · ZIc

2 (0 /∈ Z2).

Using the definition (1.66), we derive

n∏
k=1

{ck; rk} =

{
n∏

k=1

ck;
n∏

k=1

(|ck| + rk) −
n∏

k=1

|ck|
}

. (1.67)

For two disks Z1 = {c1; r1} and Z2 = {c2; r2}, the following is valid:

Z1 ⊆ Z2 ⇐⇒ |c1 − c2| ≤ r2 − r1, (1.68)
Z1 ∩ Z2 = ∅ ⇐⇒ |c1 − c2| > r1 + r2. (1.69)

A fundamental property of interval computation is inclusion isotonic-
ity, which forms the basis for almost all applications of interval arithmetic.
Theorem 1.7 shows this property for the four basic operations in circular
complex arithmetic ([3, Chap. 5]).

Theorem 1.7. Let Ak, Bk ∈ K(C) (k = 1, 2) be such that

Ak ⊆ Bk (k = 1, 2).

Then
A1 ∗ A2 ⊆ B1 ∗ B1

holds for the circular complex operation ∗ ∈ {+,−, ·, :}.
Let f be a complex function over a given disk Z ∈ K(C). The complex-

valued set {f(z) : z ∈ Z} is not a disk in general. To deal with disks, we
introduce a circular extension F of f , defined on a subset D ⊆ K(C) such
that

F (Z) ⊇ {f(z) : z ∈ Z} for all Z ∈ D (inclusion),
F (z) = f(z) for all z ∈ Z (complex restriction).

We shall say that the complex interval extension F is inclusion isotone if the
implication

Z1 ⊆ Z1 =⇒ F (Z1) ⊆ F (Z2)
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is satisfied for all Z1, Z1 ∈ D. In particular, we have

z ∈ Z =⇒ f(z) = F (z) ∈ F (Z). (1.70)

The following simple property is valid:

max {0, |mid F (Z)| − radF (Z)} ≤ |f(z)| ≤ |mid F (Z)| + radF (Z)

for all z ∈ Z. In particular, if f(z) = z and z ∈ Z, then

max {0, |mid Z| − radZ} ≤ |z| ≤ |mid Z| + radZ. (1.71)

The square root of a disk {c; r} in the centered form, where c = |c|eiθ and
|c| > r, is defined as the union of two disks (see Gargantini [47]):

{c; r}1/2 :=
{√

|c|eiθ/2; η
}⋃{

−
√
|c|eiθ/2; η

}
, (1.72)

η =
√
|c| −

√
|c| − r.



Chapter 2

Iterative Processes and Point
Estimation Theory

This chapter is devoted to estimations of zero-finding methods from data at
one point in the light of Smale’s point estimation theory [165]. One of the
crucial problems in solving equations of the form f(z) = 0 is the construction
of such initial conditions, which provide the guaranteed convergence of the
considered numerical algorithm. These initial conditions involve an initial
approximation z(0) to a zero ζ of f and they should be established in such
a way that the sequence {z(m)}m=1,2,... of approximations, generated by the
implemented algorithm which starts from z(0), tends to the zero of f . The
construction of initial conditions and the choice of initial approximations
ensuring the guaranteed convergence are very difficult problems that cannot
be solved in a satisfactory way in general, even in the case of simple functions,
such as algebraic polynomials.

In Sect. 2.1, we present some historical data and Smale’s point estimation
theory applied to Newton’s method. More generalized problems are discussed
in Sect. 2.2, where the whole class of quadratically convergent methods is
treated, and in Sect. 2.3, where Smale’s work is applied to the third-order
methods. Improvements of Smale’s result related to Newton’s method, carried
out by X. Wang and Han [181] and D. Wang and Zhao [178], are the subject
of Sect. 2.4. Their approach is applied to the convergence analysis of the
Durand–Kerner’s method for the simultaneous determination of all zeros of
a polynomial (Sect. 2.5).

2.1 Newton’s Method Estimates

Newton’s method and its modifications have been often used for solving
nonlinear equations and systems. The Newton’s method attempts to solve
f(z) = 0 by an iteratively defined sequence

zm+1 = zm − f ′(zm)−1f(zm) (m = 0, 1, . . .)

M. Petković, Point Estimation of Root Finding Methods. Lecture Notes 35
in Mathematics 1933,
c© Springer-Verlag Berlin Heidelberg 2008
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for an initial point z0. If this initial point is well chosen, then the convergence
of the sequence {zm} is reasonably fast.

However, not much is known about the region of convergence and it is
difficult to obtain a priori knowledge of convergence. Let d denote the di-
mension of a system of nonlinear equations (with d unknown variables). The
quadratic character of convergence in case of a single equation (d = 1) was
discussed by J. B. J. Fourier [42]. The first convergence proof of the Newton’s
method for d = 2, which uses only the second derivatives, was given by A. M.
Ostrowski in 1936. The proof for general d was presented in a doctoral the-
sis by Bussmann and communicated by Rechbock in the journal Z. Angew.
Math. Mech. 22 (1942). Later, Kantorovich adapted the proof to very general
problems of functional analysis [70]. From a theoretical as well as practical
point of view, this fundamental result has had a great importance and it has
initiated a series of papers (e.g., Kantorovich and Akilov [71], Ostrowski [99],
Gragg and Tapia [53], Rall [152], Traub and Wozniakowski [173]).

Kantorovich’s approach in solving systems of nonlinear equations, very in-
fluential in this area, has the following properties (a) weak differentiability
hypotheses are imposed on the system, although analyticity (as a strong hy-
pothesis) is assumed and (b) it is supposed that derivative bounds exist over
the entire domain. On the other hand, Smale [165], [167] deduced necessary
information from data at a single point. This original viewpoint makes the
valuable advance in the theory and practice of iterative processes for solving
nonlinear equations and we take Smale’s point estimation theory as the main
subject of this chapter.

First results concerned with computationally verifiable domain of conver-
gence were found by Smale [165] and Shub and Smale [163] (see also Kim [73])
and they depend on classical research connected with schlicht function the-
ory. Later, in 1986, Smale [167] proposed a different strategy based on “point
data” to state the theorems about convergence of Newton’s method in Ba-
nach space. Most of Sect. 2.2 is, essentially, the adaptation of Smale’s work
presented in [167].

In this chapter, we deal with the so-called approximate zero, defined as
a point that provides fast convergence to a zero immediately after starting
iterative process. Although several versions of this notion exist for Newton’s
method and other higher-order iterative methods (see [163]–[167]), the def-
inition given in [167] seems most acceptable since it handles the terms of
convergence property and, at the same time, points to the order of conver-
gence. To introduce Smale’s idea, we consider first the simple case of a single
polynomial

f(z) = anzn + an−1z
n−1 + · · · + a1z + a0

of degree n. The Newton’s method, applied to the polynomial equation
f(z) = 0, starts with z0 ∈ C and produces successively the sequence of
approximations {zm} by the iterative formula
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zm = zm−1 − f(zm−1)
f ′(zm−1)

(m = 0, 1, . . .).

Having in mind the quadratic convergence of Newton’s method, Smale [167]
introduced the notion of approximate zeros by the following definition.

Definition 1. z0 ∈ C is an approximate zero of f if it satisfies the following
convergence condition

‖zm − zm−1‖ ≤
(

1
2

)2m−1−1

‖z1 − z0‖ (m = 1, 2, . . . ).

Sometimes, the above inequality is written in the equivalent form∥∥∥∥ f(zm)
f ′(zm)

∥∥∥∥ ≤ (1
2

)2m−1−1 ∥∥∥∥ f(z0)
f ′(z0)

∥∥∥∥ (m = 1, 2, . . . ).

We observe that the exponent in the two last inequalities indicates the
quadratic convergence. Evidently, in the case of single polynomials, the norm
‖ · ‖ can be replaced by the absolute value | · |.

Let f (k) denote the kth derivative of f at a point z ∈ C. A function α(z, f)
defined by

α(z, f) =
∣∣∣∣ f(z)
f ′(z)

∣∣∣∣ sup
k>1

∣∣∣∣f (k)(z)
k!f ′(z)

∣∣∣∣1/(k−1)

has an important role in constructing a test for an approximate zero.
Now, let f : E → F be an analytic map from an open subset of a real

or complex Banach space E to a space F . A great deal of the subsequent
consideration assumes the finite-dimensional cases E = Cn, F = Cn, where
n could be equal to 1 as in the case of single polynomials. In particular, the
map f could be related to a system of polynomials.

Following the notation of Kantorovich and Akilov [71] and Collatz [21],
the Fréchet derivative of f : E → F at a point z ∈ E will be denoted by f ′

(z).

Furthermore, f
(k)
(z) denotes the kth derivative of f at a point z in the sense of

Fréchet. For brevity, we will write

f
(k)
(z) hk instead of f

(k)
(z) (h, . . . , h)︸ ︷︷ ︸

k times

.

For example, if f : X → X is an analytic mapping on D ⊂ X and z and z+h
belong to D, then the Taylor’s expansion of f at the point z is given by

f(z + h) =
∞∑

k=0

1
k!

f
(k)
(z) (h, . . . , h)︸ ︷︷ ︸

k times

=
∞∑

k=0

1
k!

f
(k)
(z) hk.
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Assume that the derivative f ′
(z) is invertible, then Newton’s method gen-

erates a new vector ẑ from z by

ẑ = z − (f ′
(z)

)−1
f(z).

Let us denote the norm of this Newton’s step ẑ − z with β, i.e.,

β = β(z, f) = ‖(f ′
(z)

)−1
f(z)‖.

If f ′
(z) is not invertible, then we let β = ∞.
Starting from a point z0 ∈ E, Newton’s method generates the sequence of

successive approximations zm = zm−1 −
(
f ′
(zm−1)

)−1
f(zm−1) (if possible) in

Banach space. Following Definition 1, the point z0 ∈ E is called an approxi-
mate zero of f if zm is defined for all m and satisfies:

‖zm − zm−1‖ ≤
(

1
2

)2m−1−1

‖z1 − z0‖, for all m ≥ 1.

Hence, it follows that {zm} is a Cauchy sequence with a limit, say ζ ∈ E. It
is easy to see that f(ζ) = 0. Indeed, since zm+1 = zm − (f ′

(zm)

)−1
f(zm), we

estimate

‖f(zm)‖ = ‖f ′
(zm)(zm+1 − zm)‖ ≤ ‖f ′

(zm)‖ ‖zm+1 − zm‖.

Taking the limit as m → ∞ yields

‖f(ζ)‖ ≤ ‖f ′
(zm)‖ lim

m→∞ ‖zm+1 − zm‖ = 0.

Having in mind Definition 1, we note that for an approximate zero, Newton’s
method is superconvergent beginning with the first iteration.

To give criteria for z to be an approximate zero, let us define

γ(z, f) = sup
k>1

∥∥∥∥∥∥(f ′
(z)

)−1 f
(k)
(z)

k!

∥∥∥∥∥∥
1/(k−1)

or, if
(
f ′
(z)

)−1 or the supremum does not exist, set γ(z, f) = ∞. The norm is
assumed to be a norm of a multilinear map as it is defined in [29] and [83].
It will be convenient sometimes to write γ(z, f) as γf (z), γ(z), or γ. Finally,
let us define α(z, f) = β(z, f)γ(z, f), where β was defined earlier.

Assume now that f : E → F is a map expressed as f(z) =
∑n

k=0 akzk,
where z ∈ E, 0 < n ≤ ∞. Here, E and F are Banach spaces, and ak is a
bounded symmetric k-linear map from E × · · · × E (k times) to F . In other
words, akzk is a homogeneous polynomial of degree k. For E = Cd, we meet
the case in the usual sense, and for d = 1 (one variable) ak is kth coefficient
(real or complex) of f . If n is finite, then f is a polynomial.
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Let us define
‖f‖ = sup

k≥0
‖ak‖ (general case),

where ‖ak‖ is the norm of ak as a bounded map, and introduce

φn(r) =
n∑

i=0

ri, φ′
n(r) =

d

dr
φn(r), φ(r) = φ∞(r) =

1
1 − r

.

The main result will be stated through some lemmas. Let us suppose that
E and F are Banach spaces, both real or both complex.

Lemma 2.1. Let A,B : E → F be bounded linear maps and let A be in-
vertible. Assume that the inequality ‖A−1B − I‖ < c < 1 holds, then B is
invertible and ‖B−1A‖ < 1/(1 − c).

Proof. Let V = I − A−1B. Since ‖V ‖ < 1,
∞∑

k=0

V k exists and its norm is less

than 1/(1 − c). Furthermore,

(I − V )
n∑

k=0

V k(I − V ) = I − V n+1.

By taking limits, we observe that A−1B = I−V is invertible with the inverse
∞∑

k=0

V k. Note that A−1B

∞∑
k=0

V k = I, and hence B can be expressed as the

composition of invertible maps. 
�

Lemma 2.2. Assume that f : E → F is analytic and ẑ, z ∈ E are such that
‖ẑ − z‖ < 1 −√

2/2. Then:

(i) f ′
(ẑ) is invertible.

(ii)
∥∥(f ′

(ẑ)

)−1
f ′
(z)

∥∥ <
1

2 − φ′(‖ẑ − z‖γ(z))
.

(iii) γ(ẑ) ≤ γ(z)
1

2 − φ′(‖ẑ − z‖γ(z))

(
1

1 − ‖ẑ − z‖γ(z)

)3

.

Proof. Using the Taylor’s expansion of f ′ in the neighborhood of the point z,
one obtains

f ′
(ẑ) =

∞∑
k=0

f
(k+1)
(z)

k!
(ẑ − z)k.

Hence, (
f ′
(z)

)−1
f ′
(ẑ) =

∞∑
k=0

(
f ′
(z)

)−1 f
(k+1)
(z)

k!
(ẑ − z)k
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and (
f ′
(z)

)−1
f ′
(ẑ) − I =

∞∑
k=1

(k + 1)

(
f ′
(z)

)−1
f

(k+1)
(z)

(k + 1)!
(ẑ − z)k.

According to this, we have

∥∥(f ′
(z)

)−1
f ′
(ẑ) − I

∥∥ ≤ ∞∑
k=1

(k + 1)

∥∥∥∥∥∥
(
f ′
(z)

)−1
f

(k+1)
(z)

(k + 1)!

∥∥∥∥∥∥ ‖ẑ − z‖k

≤
∞∑

k=1

(k + 1)
(
γ(z)‖ẑ − z‖)k

≤ φ′(γ(z)‖ẑ − z‖) − 1.

Since γ(z)‖ẑ − z‖ < 1 −√
2/2, all the series in this proof are convergent.

Besides, for r < 1 −√
2/2, we have φ′(r) − 1 < 1, where φ′(r) = 1/(1 − r)2.

According to Lemma 2.1, the assertions (i) and (ii) of Lemma 2.2 follow.
Starting from φ(r) = 1/(1 − r), we derive

φ(ν)(r)
ν!

=
∞∑

k=0

(
ν + k

k

)
rk =

1
(1 − r)ν+1

.

Also, we have
1

2 − φ′(r)
· 1
(1 − r)2

=
1

ψ(r)
,

where
ψ(r) = 2r2 − 4r + 1.

The above formulae, including the derivatives of φ, will be used in further
consideration.

To prove (iii) of Lemma 2.2, we put

γk = γk(z) =

∥∥∥∥∥∥(f ′
(z)

)−1 f
(k)
(z)

k!

∥∥∥∥∥∥
1/(k−1)

and γ = sup
k>1

γk.

Then, by Taylor’s expansion, we estimate

γk(ẑ)k−1 =

∥∥∥∥∥∥(f ′
(z)

)−1
f ′
(z)

∞∑
ν=0

(
f ′
(z)

)−1
f

(k+ν)
(z) (ẑ − z)ν

ν!k!

∥∥∥∥∥∥
≤ ∥∥(f ′

(z)

)−1
f ′
(z)

∥∥ ∞∑
ν=0

(
k + ν

ν

)∥∥∥∥∥∥
(
f ′
(z)

)−1
f

(k+ν)
(z) (ẑ − z)ν

(k + ν)!

∥∥∥∥∥∥
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≤ ∥∥(f ′
(z)

)−1
f ′
(z)

∥∥γ(z)k−1
∞∑

ν=0

(
k + ν

ν

)
(‖ẑ − z‖γ(z))ν

≤ ∥∥(f ′
(z)

)−1
f ′
(z)

∥∥γk−1

(
1

1 − γ‖ẑ − z‖
)k+1

.

Using (ii) of Lemma 2.2 and extracting the (k − 1)th root, we obtain

γk(ẑ) ≤ γ

2 − φ′(γ‖ẑ − z‖)
(

1
1 − γ‖ẑ − z‖

)(k+1)/(k−1)

.

The supremum is achieved at k = 2, which leads to the statement (iii) of
Lemma 2.2. 
�

Lemma 2.3. (i) Let α = α(z, f) < 1 and ẑ = z − (f ′
(z)

)−1
f(z), β = β(z, f).

Then, we have ∥∥(f ′
(z)

)−1
f(ẑ)
∥∥ ≤ β

(
α

1 − α

)
.

(ii) Let z, ẑ ∈ E with f(z) = 0, and let the inequality ‖ẑ − z‖γ(z) < 1 hold.
Then, ∥∥(f ′

(z)

)−1
f(ẑ)
∥∥ ≤ ‖ẑ − z‖

1 − ‖ẑ − z‖γ(z)
.

Proof. Using the Taylor’s series, we obtain

(
f ′
(z)

)−1
f(ẑ) =

∞∑
k=0

(
f ′
(z)

)−1 f
(k)
(z)

k!
(ẑ − z)k.

We omit the first two terms on the right side because of

(
f ′
(z)

)−1
f(z) +

(
f ′
(z)

)−1
f ′
(z)(ẑ − z) = (z − ẑ)︸ ︷︷ ︸

Newton′s step

+(ẑ − z) = 0.

Since β(z) = ‖ẑ − z‖, there follows

‖(f ′
(z)

)−1
f(ẑ)‖ ≤ β

∞∑
k=2

(γβ)k−1 ≤ β
α

1 − α
,

ending the proof of (i). To prove (ii), we begin as above and drop out the
first term since f(z) = 0. Thus, we estimate
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‖(f ′
(z)

)−1
f(ẑ)‖ ≤ ‖ẑ − z‖

(
1 +

∞∑
k=2

γk−1
k ‖ẑ − z‖k−1

)
≤ ‖ẑ − z‖

∞∑
k=0

(γ‖ẑ − z‖)k

≤ ‖ẑ − z‖ 1
1 − ‖ẑ − z‖γ(z)

,

which completes the proof of Lemma 2.3. 
�

Lemma 2.4. Let f : E → F be an analytic map from the Banach space E
to F and let α = α(z, f), β = β(z), and β̂ = β(ẑ):

(i) If α < 1 −√
2/2, then

β̂ ≤ β

(
α

1 − α

)(
1

2 − φ′(α)

)
.

(ii) If f(z) = 0 and γ‖ẑ − z‖ < 1 −√
2/2, then

β̂ ≤ ‖ẑ − z‖ 1
2 − φ′(γ‖ẑ − z‖)

(
1

1 − γ‖ẑ − z‖
)

.

Proof. We estimate

β(ẑ) =
∥∥(f ′

(ẑ)

)−1
f(ẑ)
∥∥ =
∥∥(f ′

(ẑ)

)−1
f ′
(z)

(
f ′
(z)

)−1
f(ẑ)
∥∥

≤ ∥∥(f ′
(ẑ)

)−1
f ′
(z)

∥∥ ∥∥(f ′
(z)

)−1
f(ẑ)
∥∥

≤
(

1
2 − φ′(α)

)
β

(
α

1 − α

)
.

In the last step, we use the assertions (ii) of Lemma 2.2 and (i) of Lemma 2.3.
The assertion (ii) of the lemma is proved in a similar way. If f(z) = 0,

then by Lemmas 2.2(ii) and 2.3(ii), we obtain

β(ẑ) ≤ ∥∥(f ′
(ẑ)

)−1
f ′
(z)

∥∥∥∥(f ′
(z)

)−1
f(ẑ)
∥∥

≤ 1
2 − φ′(‖ẑ − z‖γ(z))

‖ẑ − z‖ 1
(1 − ‖ẑ − z‖γ(z))

. 
�

Lemma 2.5. Let ψ(r) = 2r2 − 4r + 1 as above. Using the notation of
Lemma 2.4, we have the following assertions:

(i) If α < 1 −√
2/2, then

α̂ = α(ẑ, f) ≤
(

α

ψ(α)

)2

.
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(ii) If f(ζ) = 0 and ‖z − ζ‖γ(ζ) < 1 −√
2/2, then

α̂ ≤ γ(ζ)‖z − ζ‖
ψ(γ(ζ)‖z − ζ‖)2 .

Proof. Since α̂ = β̂γ̂, using Lemmas 2.2(iii) and 2.4(i), we get

α̂ ≤ β

(
α

1 − α

)(
1

2 − φ′(α)

)
γ

(
1

1 − α

)3( 1
2 − φ′(α)

)
,

and hence

α̂ < (βγ)α
(

1
ψ(α)

)2

≤
(

α

ψ(α)

)2

.

The proof of Lemma 2.5(ii) goes in a similar way using Lemmas 2.2(iii)
and 2.4(ii). 
�

The following assertion leads to the main result.

Proposition 2.1. Let f : E → F be analytic, z = z0 ∈ E, and
α(z)/ψ(α(z))2 = a < 1. Let αm = α(zm), ψm = ψ(α(zm)) (m = 1, 2, . . .),
where zm = zm−1 −

(
f ′
(zm−1)

)−1
f(zm−1) (m = 1, 2, . . .), then:

(i) αm ≤ a2m−1α(z0) (m = 1, 2, . . .).
(ii) zm is defined for all m.
(iii) ‖zm − zm−1‖ < a2m−1−1‖z1 − z0‖, for all m.

Proof. Assume that a constant A > 0 and ai > 0 satisfy the inequality
ai+1 ≤ Aa2

i for all i = 0, 1, . . .. We prove by induction that

am ≤ (Aa0

)2m−1
a0 (m = 1, 2, . . .).

According to this and Lemma 2.5(i), we proved (i), while the assertion (ii)
follows from (i). Therefore, it remains to prove (iii). The case m = 1 is evident
so that we consider the case m > 1.

With regard to Proposition 2.1(i) and the relation between φ′ and ψ (see
the proof of Lemma 2.2), we write

‖zm − zm−1‖ ≤ ‖zm−1 − zm−2‖αm−2(1 − αm−2)
ψm−2

.

Using the assertion (ii) and induction on this inequality, we get

‖zm − zm−1‖ ≤ a2m−2−1‖z1 − z0‖a2m−1−1α(z0)
(

1 − αm−2

ψm−2

)
≤ a2m−1−1‖z1 − z0‖α(z0)

ψm−2
< a2m−1−1‖z1 − z0‖,
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where the inequality
α(z0)
ψm−2

≤ α0

ψ0
≤ aψ0 < 1

is used. 
�
Now the main result, due to Smale [167], may be stated.

Theorem 2.1. There is a constant α0 approximately equal to 0.130707 such
that if α(z, f) < α0, then z is an approximate zero of f .

Proof. Consider the previously introduced polynomial ψ(r) = 2r2 − 4r + 1,
and the function (α/ψ(α))2 of Lemma 2.5(i). We restrict our attention to
the interval determined by 0 ≤ r ≤ 1 −√

2/2 ∼= 0.293. The function r/ψ(r)2

increases from 0 to ∞ as r goes from 0 to 1−√
2/2. In fact, Theorem 2.1 is a

consequence of Proposition 2.1 where a = 1/2. For this reason, let α0 be the
unique r such that r/ψ(r)2 = a = 1/2. Thus, α0 is a zero of the real quartic
polynomial ψ(r)2−2r = 4r4−16r3 +20r2−10r+1. Using Newton’s method
with the starting point in the interval (0, 0.293), we calculate approximately
α0 = 0.130707 and complete the proof. 
�
Remark 2.1. Kim [73] has independently given a proof of Theorem 2.1 with
α0 = 1/54. Since her proof uses the theory of schlicht functions, it cannot be
extended to several variables. The same author [74] has improved this bound
to α0 = 1/48, but only for single polynomials.

Remark 2.2. Theorem 2.1 can be slightly sharpened in cases where f is a
polynomial map E → F of Banach spaces of degree n < ∞. To confirm that,
it is necessary to replace φ(r) by φn(r) = 1 + r + · · · + rn everywhere in the
proofs and conclusions.

Remark 2.3. The following shows that α0 must be less than or equal
to 3 − 2

√
2 ≈ 0.1716 in Theorem 2.1. Let fa : C → C be fa(z) =

2z − z/(1 − z) − a, a > 0. Then, α(0, fa) = a and fa(ζ) = 0, where
ζ =

(
(1 + a) ±√(1 + a)2 − 8a

)
/4. If α = a > 3 − 2

√
2, these roots are

not real, so that Newton’s method for solving fa(z) = 0, starting at z0 = 0,
will never converge.

2.2 Approximate Zeros of Quadratically Convergent
Methods

Continuing in the spirit of the works by Smale [167], Curry [25], and Kim [74],
Chen [19] has dealt with analytic functions in the complex plane C and the
general Newton-like quadratically convergent iterative methods of the form
z+M(f(z), f ′(z)), which evidently include Newton’s method z−f(z)/f ′(z) as
a special case. The conditions for a point to be an approximate zero presented
in [25], [74], [167] are essentially the same. They are based on the inequality
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γf (z0)|f(z0)|
|f ′(z0)| < α0

for a certain constant α0, which takes different values depending on the it-
erative algorithm under investigation (Newton’s, Euler’s, or Halley’s). Here,
γf (z) = γ(z, f) is defined as in Sect. 2.1. In [19], Chen has established a
similar condition for a point to be an approximate zero and shown what
characteristic of the methods affects the bound. This generalization repre-
sents the original conditions for Newton’s method found by Smale [167] (see
also [25], [74]) in a more general frame. Furthermore, Chen’s approach en-
ables that other iterative methods of this form can be applied to improve the
convergence behavior of Newton’s method in a global sense.

Applying the iteration of a rational map z+M(f(z), f ′(z)), each attracting
cycle or fixed point attracts at least one critical point (following the Fatou–
Julia’s theory; see, e.g., [36], [104]). The divergent behavior appears due to the
existence of attracting cycles other than the fixed points. In some situations,
it is possible to perturb Newton’s method in such suitable ways that some
attracting cycles are removed. In this manner, in the region where Newton’s
method diverges, one may alter it to some other methods to accomplish
convergence. Chen [19] presented the following example: Newton’s method
when applied to the polynomial f(z) = 1

2z3 − z + 1 has the attracting cycle
{0; 1} on the real line. When using

M(f, f ′) = − f

f ′ +
f3

f ′(1 + 2f2)
(f ≡ f(z)),

the attracting cycle {0; 1} is removed. Moreover, the whole real line is free of
any attracting cycles.

In this section, we give a short review (without proofs) of Chen’s re-
sults [19] concerning approximate zeros of quadratically convergent methods.
Let f be any analytic function in the complex plane C and define a function
M : C × (C \ {0}) → C. In what follows, we will study iterative methods for
finding zeros of f in the form

If (z) = z + M(f(z), f ′(z)).

As usual, we write In
f for the n-fold composition If ◦ · · · ◦ If of If , so that

In
f (z) is the nth iterate If (If (· · · (If (z)))) of z.

Assume that M satisfies the following:

(a) M : C × (C \ {0}) → C is analytic;

(b) M(0, ·) ≡ 0;

(c) M (1,0)(0, v) = −1
v
, where M (1,0)(u, v) =

∂M(u, v)
∂u

.
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Assumptions (b) and (c) mean that the iteration If is locally quadratically
convergent at simple zeros of f . In particular, Newton’s method is M(u, v) =
−u/v, which evidently satisfies assumptions (a)–(c).

Instead of Smale’s Definition 1, Chen [19] defines the notion of an approx-
imate zero in terms of the residual and in a somewhat stronger sense.

Definition 2. Let If be the iterative method defined on M and let zm =
Im
f (z0) for m ≥ 0. We call z0 an approximate zero of f with respect to If if

there exist positive numbers a0, a1, a2, ... satisfying a0 < 1 and ak+1 ≤ a2
k

for all k ≥ 0 such that |f(zm+k)| < a2m−1
k |f(zk)| (m ≥ 0, k ≥ 0).

Remark 2.4. If z0 is an approximate zero, then so is z1 = If (z0), which
means that Definition 2 of an approximate zero is forward invariant. Note
that Smale’s Definition 1 does not have this property. Another advantage is
that it directly points to the quadratic convergence since, assuming that z0

is an approximate zero,

|f(zm)| ≤ a2m−1
0 |f(z0)| (m ≥ 0),

which is the residual version of the original definition in [167] taking a0 = 1/2.
It is clear that the condition for a point to be an approximate zero found
in [167] is still valid under Definition 2.

Let

γf (z) = sup
k>1

∣∣∣f (k)(z)
k!f ′(z)

∣∣∣1/(k−1)

,

τM (u, v) = sup
n1+n2≥1

∣∣∣M (n1,n2)(u, v)
n1!n2!

∣∣∣1/(n1+n2)

,

where M (n1,n2)(u, v) = ∂n1+n2M(u, v)/∂un1∂vn2 . Chen [19] has stated the
following theorem.

Theorem 2.2. Assume that M satisfies the assumptions (a)–(c) and let

KM
def= sup

|v|�=0

|v|τM (0, v) < ∞.

Then, there exists a number t1(KM ) depending on KM such that if

(γf (z0) + 1)|f(z0)|τM (0, f ′(z0)) < t1(KM ),

then z0 is an approximate zero of f with respect to M , i.e., there exist positive
numbers a0, a1, a2, . . . satisfying a0 < 1 and ak+1 ≤ a2

k for all k ≥ 0 such that

|f(zm+k)| ≤ a2m−1
k |f(zk)|

for all m ≥ 0 and k ≥ 0, where zm = Im
f (z0).
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Let t∗1(KM ) = t1(KM )/KM . Then, we immediately obtain corollary to
Theorem 2.2.

Corollary 2.1. If the inequality

(γf (z0) + 1)
∣∣∣ f(z0)
f ′(z0)

∣∣∣ < t∗1(KM )

is valid, then z0 is an approximate zero of f with respect to M .

As a special case, consider Newton’s method. One computes τM (0, v) =
1/|v| so that KM = 1 and, consequently, t∗1(1) = t1(1) ≈ 0.142301. Therefore,
we have the following result.

Corollary 2.2. If

(γf (z0) + 1)
∣∣∣ f(z0)
f ′(z0)

∣∣∣ < t1(1) ≈ 0.142301,

then z0 is an approximate zero of f with respect to the Newton’s iteration.

It has been shown in [19] that the functions t1(KM ) and t∗1(KM ) are
decreasing in KM . According to this, we can conclude that the bound in the
condition for approximate zeros depends on the algorithm M through the
number KM in a decreasing manner.

Let us introduce

Tf (z) = (γf (z) + 1)|f(z)|τM (0, f ′(z))

and

Ψ(x,KM ) =
KMx(1 − x)2

[(1 + KM )(1 − x)2 − KM ]2[2(1 − x)2 − 1]
.

Chen [19, Lemma 3.10] has proved that a0 = Ψ(Tf (z0),KM ). Therefore, to
have a0 ≤ 1/2 as in Smale’s definition of an approximate zero (Definition 1
in Sect. 2.1) for Newton’s method, it is necessary that the inequality

(γf (z0) + 1)|f(z0)/f ′(z0)| ≤ α ≈ 0.115354

holds, where α satisfies Ψ(α, 1) = 1/2. We note that the constant bound
α ≈ 0.115354 obtained from Chen’s more general result is smaller than α0 ≈
0.130707 appearing in Theorem 2.1. This is a consequence of Chen’s more
general technique and the fact that Definitions 1 and 2 of an approximate
zero, upon which the results were derived, are not quite the same.

As mentioned in [19], experimental work shows that the theoretical bounds
given in the theorems are rather conservative, which was confirmed by Curry
and Van Vleck [26] about Smale’s bound for Newton’s method when ap-
plied to cubic polynomials. On the other hand, these bounds are involved in
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sufficient conditions that provide (in a theoretical sense) a guaranteed con-
vergence of any given quadratically convergent iteration scheme M applied
to any given analytic function.

Numerical experiments performed by Chen [19] show that the regions of
approximate zeros with respect to the iteration defined by M(u, v) = −u/v+
u2/v2 are completely contained in the corresponding regions with respect to
Newton’s iteration. This fact suggests the following question: Is the Newton’s
iteration optimal compared with other quadratically convergent iterations in
the sense of having the largest regions of approximate zeros?

2.3 Approximate Zeros of Higher-Order Methods

Smale’s work [167] presented in Sect. 2.1 has been generalized by Curry [25]
to higher-order methods. Curry has considered a family of iterative meth-
ods which were referred to as “incremental Euler’s methods” by Shub and
Smale [163]. If S2 is the Riemann sphere, an incremental algorithm is a
mapping

Ih,f : S2 → S2, ẑ = Ih,f (z)

parametrized by the variable h, 0 ≤ h ≤ 1, depending on a complex polyno-
mial f .

In this section, we present only the main results (without derivations and
proofs) stated by Curry in [25]. We use the same notation established in Shub
and Smale [163] and Smale [167] and used in the previous sections. Let f(z)
be a polynomial of degree n with z ∈ C such that both f(z) and f ′(z) are
nonzero. Denote the inverse to f by f−1

z and the radius of convergence of f−1
z

by r(z, f) = |f(z) − f(θ∗)| for some θ∗, such that f ′(θ∗) vanishes, in other
words, θ∗ is a critical point of f .

If f(z) �= 0, let us define

h1(z, f) =
r(z, f)
|f(z)| ,

i.e.,

h1(z, f) ≥ min
θ

f′(θ)=0

∣∣∣∣f(z) − f(θ)
f(z)

∣∣∣∣ .
In what follows, the quantity h1 plays an important role.

Assume h < h1(z, f), then ẑ = f−1
z ((1 − h)f(z)) is a solution to the

equation
f(ẑ)
f(z)

= 1 − h.
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The Taylor’s expansion of f(ẑ) at the point z yields

E∞(z, h, f) = ẑ = z +
∞∑

ν=1

(f−1
z )(ν)(f(z))(−hf(z))ν

ν!
.

The kth incremental Euler’s algorithm Ek(z, h, f) or briefly Ek is defined by

Ek(z, h, f) = τkf−1
z (1 − hf(z)) = z +

k∑
ν=1

(f−1
z )(ν)(f(z))(−hf(z))ν

ν!
,

where τk is the truncation operator. The order of convergence of the kth
incremental Euler’s methods is k + 1.

Let us introduce

σk = (−1)k−1 f (k)(z)
k!f ′(z)

( f(z)
f ′(z)

)k−1

.

In particular, for h = 1, we have a basic sequence Ek(z, 1, f) that was con-
sidered by Schröder [160] and, much later, by Traub [172]. For example, we
obtain

E1(z, 1, f) = z − f(z)
f ′(z)

(Newton’s method),

E2(z, 1, f) = z − f(z)
f ′(z)

(1 − σ2)

= z − f(z)
f ′(z)

(
1 +

f(z)f ′′(z)
2f ′(z)2

)
(Euler–Chebyshev’s method),

etc., and for k = 4 and an arbitrary h

E4(z, h, f) = z − f(z)
f ′(z)

(
h − σ2h

2 + (2σ2
2 − σ3)h3 − (5σ3

2 − 5σ2σ3 + σ4)h4
)
.

The following definition used in [25] and this section is a generalization of
Smale’s Definition 1 given in Sect. 2.1.

Definition 3. z0 ∈ C is an approximate zero of a polynomial f for a zero-
finding method of order k if it satisfies the following convergence condition∣∣∣∣ f(zm)

f ′(zm)

∣∣∣∣ ≤ (1
2

)km−1
∣∣∣∣ f(z0)
f ′(z0)

∣∣∣∣ (m = 1, 2, . . .),

where zm = φk(zm−1) and φk is a method of order k.

Let α = α(z, f) be defined as in Sect. 2.1. Curry [25] has proved the fol-
lowing assertion.
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Proposition 2.2. Let f be a polynomial of degree n with f(z), f ′(z) nonzero,
where z ∈ C, and let ẑ = Ek(z, h, f). If α(z, f) < 1, then a constant Ck exists
such that

α(ẑ, f) ≤ αk+1Ck

ψ2(αx)
,

where x = (h1/4)(e4/h1 − 1) and ψ(α) = 2α2 − 4α + 1.
For example, we have C1 = 1, C2 = 2, C3 = 5, C4 = 16, and C5 = 61.

Note that Proposition 2.2 asserts that the kth incremental Euler’s algorithm
is of order k + 1 provided α is “sufficiently small.”

Let αm = α(zm, f) and ψm = ψ(αmx), where zm = Ek(zm−1, 1, f). The
following convergence theorem concerned with approximate zero and initial
conditions for methods of order k + 1 has been stated in [25].

Theorem 2.3. Let ẑ = Ek(z, 1, f) be the kth Euler’s algorithm of order k+1.
There is an α0 such that if α(z, f) < α0, then the iteration scheme starting
from z = z0 converges and∣∣∣∣ f(zm)

f ′(zm)

∣∣∣∣ ≤ (1
2

)(k+1)m−1
∣∣∣∣ f(z0)
f ′(z0)

∣∣∣∣
holds, where (α0/ψ0)C

1/k
k ≤ 1

2 .

We end this section with convergence theorems for two methods of prac-
tical interest, both cubically convergent. The proof of these theorems can be
found in [25]. The methods are the second incremental Euler’s method

E2(z, 1, f) = ẑ = z − f(z)
f ′(z)

(
1 +

f(z)f ′′(z)
f ′(z)2

)
, (2.1)

often called the Euler–Chebyshev’s method and the Halley’s method given
by

ẑ = z − f(z)
f ′(z)

( 1
1 − f ′(z)f ′′(z)/2(f ′(z))2

)
(2.2)

(see special cases given above).
Let D(α) = (1 − 2α)(1 − 6α + 7α2).

Theorem 2.4 (Halley’s method). There is an α0(z, f) such that if
α(z, f) < α0, then z0 is an approximate zero of Halley’s method (2.2) and∣∣∣∣ f(zm)

f ′(zm)

∣∣∣∣ ≤ (1
2

)3m−1
∣∣∣∣ f(z0)
f ′(z0)

∣∣∣∣ ,
for all m, where α0 satisfies to the inequality α0/D(α0) ≤ 1/2

√
2 (α0 <

0.11283).

Let αm = α(zm, f) and D̂m = D̂(αm) = 2α2
m(1+αm)2−4αm(1+αm)+1.
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Theorem 2.5 (Euler–Chebyshev’s method E2(z, 1, h)). There is an
α0(z, f) such that if α(z, f) < α0(z, f), then the method (2.1) starting from
z = z0 converges and ∣∣∣∣ f(zm)

f ′(zm)

∣∣∣∣ ≤ (1
2

)3m−1
∣∣∣∣ f(z0)
f ′(z0)

∣∣∣∣ ,
where α0 satisfies the inequality α0/D̂0 ≤ 1/2

√
5 (α0 < 0.11565).

2.4 Improvement of Smale’s Result

In Sects. 2.1 and 2.2, we have considered the convergence of Newton’s method

z(m+1) = z(m) − (f ′
(z(m))

)−1
f(z(m)) (m = 0, 1, 2 . . . ) (2.3)

for solving the nonlinear equation

f(z) = 0, f : D ⊂ E → F, (2.4)

where f is a nonlinear mapping from an open subset D of a real or complex
Banach space E to a space F . To determine the convergence of Newton’s
method, Smale’s point estimation theory presented in [167] makes use of
the information of f at the initial point z(0) ∈ D instead of the domain
condition in Kantorovich’s theorem and leads to the important results given
in Theorem 2.1. To adjust the notation with the one used in Sect. 2.5, in this
section, we use parenthesized superscripts to denote the iteration index of
points from the subset D, unlike Sects. 2.1–2.3 where the subscript index was
employed. However, the iteration index of real sequences will be still denoted
by the subscripts. In this section, we also lay the foundation prerequisite
to a point estimation of the Durand–Kerner’s method for the simultaneous
determination of polynomial zeros, investigated in Sect. 2.5.

In 1989, X. Wang and Han [181] introduced a majorizing sequence method
into the “point estimation” and obtained the following result which is more
precise than Theorem 2.1.

Theorem 2.6 (Wang and Han [181]). If α = α(z, f) ≤ 3− 2
√

2, then the
Newton’s method starting from z = z(0) is well defined, and for m = 0, 1, . . .
the inequality

‖z(m+1) − z(m)‖ ≤ (1 − q2m

)
√

(1 + α)2 − 8α

2α(1 − ηq2m−1)(1 − ηq2m+1 − 1)
· ηq2m−1‖z(1) − z(0)‖
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holds, where

η =
1 + α −√(1 + α)2 − 8α

1 + α +
√

(1 + α)2 − 8α
, q =

1 − α −√(1 + α)2 − 8α

1 − α +
√

(1 + α)2 − 8α
.

Since 3− 2
√

2 ≈ 0.171573 > 0.130707, this result obviously improves Smale’s
result. The constant 3 − 2

√
2 in Theorem 2.6 is the best possible under the

considered condition.
Let us note that the above two results given in Theorems 2.1 and 2.6 are

based on the assumption that the sequence

γk =
∥∥(f ′

(z)

)−1
f

(k)
(z) /k!

∥∥, k ≥ 2, (2.5)

is bounded by
γ = sup

k≥2
γ

1/(k−1)
k

(see Smale [167] and Sect. 2.1). However, in some concrete and special map-
ping, the assumption about the bound for γk may be suppressed. In the
subsequent discussion, we present the adaptation of the work by D. Wang
and Zhao [178] which offers an improvement on Smale’s result. The corre-
sponding convergence theorem gives more precise estimation under weaker
condition. It is applied in Sect. 2.5 to the Durand–Kerner’s method (see [32],
[72], and Sect. 1.1) to state the initial conditions that depend only on starting
approximations and guarantee the convergence of this method.

In what follows, we always assume that f is an analytic mapping. As
in [167], let β =

∥∥(f ′
(z)

)−1
f(z)
∥∥ be the norm of the Newton’s step. We con-

sider the auxiliary functions

φ(t) = β − ψ(t), ψ(t) = t −
∞∑

k=2

γktk, (2.6)

where γk is defined by (2.5), but the sequence {γk} (k ≥ 2) will not be
assumed to be bounded by γ.

The distribution of zeros of the function φ(t) is discussed in the following
lemma.

Lemma 2.6. Let maxt>0 ψ(t) exist. Then, φ(t) has a unique positive zero
in [0,+∞) if β = maxt>0 ψ(t), while φ(t) has exactly two different positive
zeros in [0,+∞) if β < maxt>0 ψ(t).

The proof of this lemma is elementary and makes use of a simple geo-
metrical construction and the fact that φ(t) and ψ(t) are strictly convex and
concave functions for t ∈ (0,+∞), respectively (see [178] for the complete
proof).

Now, we apply Newton’s method to the function φ(t) and generate a real
sequence {tk}
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tm+1 = tm − φ(tm)
φ′(tm)

(m = 0, 1, 2, . . . ). (2.7)

An important property of the sequence {tm} is considered in the following
lemma.

Lemma 2.7. Let t∗ denote the smallest positive zero of φ(t) in [0,+∞).
Then, under the condition of Lemma 2.6, the sequence {tm} generated by
(2.7) monotonously converges to t∗.

Proof. Assume that t′ is an extremum point of ψ(t). Since the functions φ(t)
and −ψ(t) are strictly convex, we infer that t′ is their unique extremum
point. Furthermore, φ′(t) is a monotonically increasing function in [0,+∞)
with φ′(t) < 0 in (0, t′), φ′(t) > 0 in (t′,+∞), and φ′(t′) = 0. Then for
t0 < t∗, we have φ(t0) > 0 and φ′(t0) < 0 so that from (2.7), we obtain

t1 − t0 = − φ(t0)
φ′(t0)

> 0,

i.e., t1 > t0. Let us note that we may choose t0 = 0 without loss of generality.
Using the mean value theorem and (2.7) (for m = 0), we find

t1 = t0 +
φ(t∗) − φ(t0)

φ′(t0)
= t0 +

φ′(ξ)(t∗ − t0)
φ′(t0)

, ξ ∈ (t0, t∗).

Hence

t1 − t∗ = (t∗ − t0)
(φ′(ξ)

φ(t0)
− 1
)

< 0

because of t∗ > t0 and φ′(ξ)/φ′(t0) < 1. Therefore, we have t1 < t∗.
Assume now that tk > tk−1 and tk < t∗ for k ≥ 1. Since

tk+1 − tk = − φ(tk)
φ′(tk)

and φ(tk) > 0, −φ′(tk) > 0, we find tk+1 > tk. Applying the same procedure
as for k = 0, we find

tk+1 = tk +
φ(t∗) − φ(tk)

φ′(tk)
= tk +

φ′(ξ)
φ′(tk)

(t∗ − tk), ξ ∈ (tk, t∗),

i.e.,

tk+1 − t∗ = (t∗ − tk)
( φ′(ξ)

φ′(tk)
− 1
)
.

Since t∗ > tk and φ′(ξ)/φ′(tk) < 1, we get tk+1 < t∗. Therefore, we have
proved by induction that the sequence {tm}, generated by Newton’s method
(2.7), satisfies

tm+1 > tm, tm < t∗, for all m = 0, 1, 2, . . . .
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Thus, the sequence {tm} is monotonically increasing and bounded, which
means that it is convergent with the limit t∗. 
�

According to the above consideration, we can state the following theorem.

Theorem 2.7. Let {z(m)} be determined by the Newton’s method (2.3) with
the starting value z = z(0) and let {tm} be generated by (2.7). Then, under
the condition of Lemma 2.6, the sequence {tm} is the majorizing sequence of
{z(m)}, i.e., the inequality

‖z(m+1) − z(m)‖ ≤ tm+1 − tm

holds for all m.

Proof. In the proof of this theorem, we use the properties of φ(t) and the
distribution of its zeros, given in Lemmas 2.6 and 2.7. Now, let t∗ and t∗∗

be the smallest and largest positive zeros of φ(t), respectively, and t′ satisfies
φ′(t′) = 0. Since

φ′(t) = −1 +
∞∑

k=1

(k + 1)γk+1t
k,

we have

φ′(t′) = 0 =⇒
∞∑

k=1

(k + 1)γk+1t
′k = 1.

According to this and having in mind that φ′(t) is a monotonically increasing
function, we find

0 <

∞∑
k=1

(k + 1)γk+1t
k < 1 for t ∈ (0, t′),

i.e.,
0 < φ′(t) + 1 < 1.

Let us assume that ‖z′− z(0)‖ = t < t′. Then, using the previous relations
and the Taylor’s expansion, we find

∥∥(f ′
(z(0))

)−1
f ′
(z′) − I

∥∥ ≤ ∞∑
k=1

∥∥(f ′
(z(0))

)−1
f

(k+1)

(z(0))

∥∥
k!

‖z′ − z(0)‖k

=
∞∑

k=1

(k + 1)γk+1t
k = φ′(t) + 1 < 1.

By using Lemma 2.1 for c = φ′(t) + 1, we get∥∥(f ′
(z′)
)−1

f ′
(z(0))

∥∥ ≤ − 1
φ′(t)

.
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Using induction with respect to m, we shall now show that the sequence
{z(m)} is well defined, and

‖z(m+1) − z(m)‖ ≤ tm+1 − tm (m = 0, 1, . . . , t0 = 0). (2.8)

When m = 0, we obtain

‖z(1) − z(0)‖ =
∥∥(f ′

(z(0))

)−1
f(z(0))‖ = β.

For t0 = 0, we have φ(0) = β and φ′(0) = −1, so that

t1 − t0 = − φ(t0)
φ′(t0)

= β.

Thus, (2.8) holds for m = 0.
Let us assume that for m ≤ k − 1, the inequalities

‖z(m+1) − z(m)‖ ≤ tm+1 − tm (m = 0, 1, . . . , k − 1)

are valid. Then, by summing the above inequalities, we find

‖z(k) − z(0)‖ ≤
k−1∑
λ=0

‖z(λ+1) − z(λ)‖ ≤
k−1∑
λ=0

(tλ+1 − tλ) = tk ≤ t∗ < t′

and, in the same way as above,∥∥(f ′
(z(k))

)−1
f ′
(z(0))

∥∥ ≤ − 1
φ′(tk)

. (2.9)

Now we use (2.3), (2.5), (2.7), and (2.8) and estimate∥∥(f ′
(z(0))

)−1
f(z(k))

∥∥
=
∥∥(f ′

(z(0))

)−1[
f(z(k)) − f(z(k−1)) − f ′

(z(k−1))(z
(k) − z(k−1))

]∥∥
=

∥∥∥∥∥
1∫

0

(1 − τ)
(
f ′
(z(0))

)−1
f

′′
(z(k−1)+τ(z(k)−z(k−1)))(z

(k) − z(k−1))2dτ

∥∥∥∥∥
=

∥∥∥∥∥
1∫

0

(1 − τ)
∞∑

j=0

(
f ′
(z(0))

)−1
f

(j+2)

(z(0))

j!

×(z(k−1) − z(0) + τ(z(k) − z(k−1)))j(z(k) − z(k−1))2dτ

∥∥∥∥∥
≤

1∫
0

(1 − τ)
∞∑

j=0

(j + 1)(j + 2)γj+2(tk−1 + τ(tk − tk−1))j(tk − tk−1)2dτ



56 2 Iterative Processes and Point Estimation Theory

=

1∫
0

(1 − τ)φ′′(tk−1 + τ(tk − tk−1))(tk − tk−1)2dτ

=

tk∫
tk−1

(tk − u)φ′′(u)du =
[
(tk − u)φ′(u)

]∣∣∣tk

tk−1

+

tk∫
tk−1

φ′(u)du

= −(tk − tk−1)φ′(tk−1) + φ(tk) − φ(tk−1)

= φ(tk). (2.10)

Finally, using (2.9) and (2.10), we get

‖z(k+1) − z(k)‖ =
∥∥(f ′

(z(k))

)−1
f(z(k))

∥∥
≤ ∥∥(f ′

(z(k))

)−1
f ′(z(0))

∥∥ ∥∥(f ′
(z(0))

)−1
f(z(k))

∥∥
≤ −φ(tk)/φ′(tk) = tk+1 − tk.

The proof by induction is now completed and thus, the inequality (2.8) is
proved for all m ≥ 0. 
�

Using Theorem 2.7, one can state the convergence theorem for the New-
ton’s method (2.3) and the existence of the solution of (2.4).

Remark 2.5. Actually, in Theorem 2.6, the Newton’s method was applied to
the function

φ(t) = β − t +
γt2

1 − γt
, where γ = sup

k≥2

∥∥∥∥∥(f ′
(z)

)−1 f
(k)
(z)

k!

∥∥∥∥∥
1/(k−1)

.

Under the condition of Theorem 2.6, X. Wang and Han [181] have proved
that the sequence {tm} is a majorizing sequence of {z(m)}. Furthermore,
they have shown that the constant α0 = 3− 2

√
2 ≈ 0.172 is the upper bound

of all the best α that guarantee the convergence of the Newton’s method
under the point estimation conditions. Besides, the obtained estimation is
optimal.

It is evident that Wang–Han’s result is an improvement on Smale’s result
given in Theorem 2.1, while Wang–Zhao’s Theorem 2.7 uses more precise
estimation. In the subsequent consideration, an application of Theorem 2.7
will be demonstrated, from which one can see that the constant α0 can be
taken to be much larger than 0.172.

The subject of Theorem 2.8 is to determine a neighborhood S(z∗, δ) of the
solution z∗, such that for any z ∈ S(z∗, δ) the condition of Theorem 2.7 is
fulfilled.
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Theorem 2.8. Let

γ∗ = sup
k≥2

∥∥(f ′
(z∗)

)−1
f

(k)
(z∗)/k!‖1/(k−1)

and let z∗ be a solution of (2.4). Then, there exists a neighborhood

S(z∗, δ) = {z : ‖z − z∗‖ ≤ δ, γ∗δ ≤ (3 − 2
√

2)/2}

such that Theorem 2.7 is valid for any z = z(0) ∈ S(z∗, δ).

Proof. Using the Taylor’s series, we obtain

∥∥(f ′
(z∗)

)−1
f ′
(z∗) − I

∥∥ ≤ ∥∥∥ ∞∑
k=1

∥∥(f ′
(z∗)

)−1
f

(k+1)
(z∗)

∥∥
k!

(z − z∗)
∥∥∥

≤
∞∑

k=1

(k + 1)(γ∗)kδk =
1

(1 − γ∗δ)2
− 1 < 1,

where we take z ∈ S(z∗, δ). By Lemma 2.1, one gets

∥∥(f ′
(z)

)−1
f ′
(z∗)

∥∥ ≤ 1
2 − 1/(1 − γ∗δ)2

=
(1 − γ∗δ)2

h(δ)
, (2.11)

where h(δ) = 2(γ∗)2δ2 − 4γ∗δ + 1. Besides, we estimate

∥∥(f ′
(z∗)

)−1
f(z)
∥∥ ≤ ∥∥∥ ∞∑

k=1

∥∥(f ′
(z∗)

)−1
f

(k)
(z)

∥∥
k!

(z − z∗)k
∥∥∥

≤
∞∑

k=1

(γ∗)k−1δk =
δ

1 − γ∗δ
. (2.12)

Combining (2.11) and (2.12), we arrive at∥∥(f ′
(z)

)−1
f(z)‖ = ‖(f ′

(z)

)−1
f ′
(z∗)

∥∥ ‖(f ′
(z∗)

)−1
f(z)‖

≤ δ(1 − γ∗δ)
h(δ)

.

In addition,

∥∥(f ′
(z∗)

)−1
f

(k)
(z) /k!

∥∥ =
∥∥∥ ∞∑

ν=1

∥∥(f ′
(z∗)

)−1
f

(k+ν)
(z∗)

∥∥
ν!k!

(z − z∗)ν
∥∥∥

≤
∞∑

ν=0

(
k + ν

ν

)
(γ∗)k+ν−1δν
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= (γ∗)k−1
∞∑

ν=0

(
k + ν

ν

)
(γ∗δ)ν

=
(γ∗)k−1

(1 − γ∗δ)k+1
. (2.13)

By virtue of (2.11) and (2.13), we obtain

γk =
∥∥(f ′

(z)

)−1
f

(k)
(z) /k!‖ ≤ (γ∗)k−1

h(δ)(1 − γ∗δ)k−1
.

Recalling the definition of the function φ(t) (given by (2.6)) and using the
previously derived estimates, we find

φ(t) =
∥∥(f ′

(z)

)−1
f(z)
∥∥− t +

∞∑
k=2

∥∥∥(f ′
(z)

)−1
f

(k)
(z)

k!

∥∥∥tk
=

δ(1 − γ∗δ)
h(δ)

− t +
∞∑

k=2

(γ∗)k−1tk

h(δ)(1 − γ∗δ)k−1

=
δ(1 − γ∗δ)

h(δ)
− t +

γ∗t2

h(δ)(1 − γ∗δ − γ∗t)

=
(1 − γ∗δ)2

h(δ)(1 − γ∗δ − γ∗t)
w(t),

where
w(t) = 2γ∗t2 − (1 − 2γ∗δ)t + δ.

According to the above form of φ(t), we conclude that the functions φ(t)
and w(t) have the same zeros and φ(t) is strictly convex in (0,+∞). Under
the condition

δγ∗ <
3 − 2

√
2

2
, (2.14)

we find
∆ = (1 − 2γ∗δ)2 − 8γ∗δ ≥ 0, (2.15)

which means that w(t) has two positive real zeros. Therefore, φ(t) has also
two positive real zeros. Having in mind Lemmas 2.6 and 2.7, this completes
the proof of Theorem 2.8. 
�

In what follows, we apply Theorems 2.7 and 2.8 to a special algorithm for
the simultaneous determination of all zeros of a polynomial.
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2.5 Point Estimation of Durand–Kerner’s Method

Let us consider a monic complex polynomial of degree n,

P (z) = zn + a1z
n−1 + · · · + an =

n∏
j=1

(z − ζj), (2.16)

where ζ1, . . . , ζn are simple zeros of P . One of the most efficient and fre-
quently used methods for the simultaneous approximation of all simple poly-
nomial zeros is the Durand–Kerner’s method (also known as Weierstrass’ or
Weierstrass–Dochev’s method, see [30], [32], [72], [187])

z
(m+1)
i = z

(m)
i − P (z(m)

i )
n∏

j=1
j �=i

(z(m)
i − z

(m)
j )

(i ∈ In, m = 0, 1, . . . ). (2.17)

Let us introduce a mapping

f : Cn → Cn, (2.18)

where

f(z) =

⎡⎢⎣ p1(z1, . . . , zn)
...

pn(z1, . . . , zn)

⎤⎥⎦ , z =

⎡⎢⎣ z1

...
zn

⎤⎥⎦ ∈ Cn

and

pi(z1, . . . , zn) = (−1)iψi(z1, . . . , zn) − ai (i = 1, . . . , n),
(2.19)

ψi(z1, . . . , zn) =
∑

1≤j1<···<ji≤n

zj1 · · · zji
(i = 1, . . . , n).

In 1966, Kerner [72] proved that the Durand–Kerner’s method (2.17) is,
actually, Newton’s method (2.3) applied to the system of nonlinear equations

f(z) = 0, (2.20)

where f is defined as above. The point estimation convergence theorem of
the Newton’s method, presented in Sect. 2.4, will be applied in this section to
the convergence analysis of the simultaneous method (2.17). First, we have to
calculate the higher-order derivatives and their norms for the mapping given
by (2.18) and (2.19). This requires the operation with an auxiliary polynomial
defined by
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Q(z) = zn + b1z
n−1 + · · · + bn =

n∏
i=1

(z − zi), (2.21)

where

bi = (−1)iψi(z1, . . . , zn) = pi(z1, . . . , zn) + ai (i ∈ In). (2.22)

Differentiating Q with respect to zj (j = 1, . . . , n), we find

∂Q

∂zj
= −

∏
i�=j

(z − zi) =
∂b1

∂zj
zn−1 + · · · + ∂bn−1

∂zj
z +

∂bn

∂zj
.

Putting z = zi (i ∈ In) in the above relations yields

⎡⎢⎣ zn−1
1 · · · z1 1

...
zn−1

n · · · zn 1

⎤⎥⎦
⎡⎢⎢⎢⎢⎣

∂b1

∂z1
· · · ∂b1

∂zn
...

∂bn

∂z1
· · · ∂bn

∂zn

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎣−Q′(z1) 0
. . .

0 −Q′(zn)

⎤⎥⎦ . (2.23)

Having in mind the mapping (2.18) and (2.19), in this section, we shall use
the notation that is standard in a study of systems of nonlinear equations.

From (2.22), we obtain

f ′(z) =

⎡⎢⎢⎢⎢⎣
∂p1

∂z1
· · · ∂p1

∂zn
...

∂pn

∂z1
· · · ∂pn

∂zn

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
∂b1

∂z1
· · · ∂b1

∂zn
...

∂bn

∂z1
· · · ∂bn

∂zn

⎤⎥⎥⎥⎥⎦ . (2.24)

In view of (2.23) and (2.24), we find

f ′(z)−1 =

⎡⎢⎢⎢⎢⎢⎣
− zn−1

1

Q′(z1)
· · · − 1

Q′(z1)
...

− zn−1
n

Q′(zn)
· · · − 1

Q′(zn)

⎤⎥⎥⎥⎥⎥⎦
and calculate

A(k) = f ′(z)−1f (k)(z),

where f (k)(z) denotes the kth derivative of f . For mi �=mj , i�=j, 1 ≤ i, j ≤ n,
we have

∂kQ

∂zm1 · · · ∂zmk

= (−1)k
∏

k �=m1,...,mk

(z − zk) =
n∑

λ=1

∂kbλ

∂zm1 · · · ∂zmk

zn−λ,



2.5 Point Estimation of Durand–Kerner’s Method 61

while for mi = mj , we obtain

∂kQ

∂zm1 · · · ∂zmk

=
n∑

λ=1

∂kbλ

∂zm1 · · · ∂zmk

zn−λ = 0.

Taking into account (2.21), we find

A(k) = f ′(z)−1f (k)(z) =

(
−

n∑
λ=1

zn−λ
i

Q′(zi)
· ∂kbλ

∂zm1 · · · ∂zmk

)
i,i1,...,ik

=
(

(−1)k+1δi1···ik
·
∏

λ�=i1,...,ik
(zi − zλ)

Q′(zi)

)
i,i1,...,ik

,

where

δi1,...,ik
=
{

1, iν = ij ,
0, iν �= ij .

In tensor terminology, A(k) is a k-order tensor.
Let T denote a k-order tensor expressed in the form T = (ti,j1,...,jk

), where
the first-order tensor is the usual matrix T = (tij). The norms of T are given
by

‖T‖1 = max
1≤j1,...,jk≤n

n∑
i=1

|ti,j1,...,jk
|,

‖T‖∞ = max
1≤i≤n

n∑
j1,...,jk=1

|ti,j1,...,jk
|.

Using these norms, two kinds of estimation of A(k) were found in [195]:

‖A(k)‖1 ≤ k(n − k + 1)
ndk−1

, (2.25)

‖A(k)‖∞ ≤ k(n − 1)!
(n − k)!dk−1

, (2.26)

where
d = min

i�=j
|zi − zj |.

For a given point z(0) ∈ Cn, we denote

β1 = ‖f ′(z(0))−1f(z(0))‖1 =
n∑

j=1

∣∣∣∣∣ P (z(0)
j )

Q′(z(0)
j )

∣∣∣∣∣,
β∞ = ‖f ′(z(0))−1f(z(0))‖∞ = max

1≤j≤n

∣∣∣∣∣ P (z(0)
j )

Q′(z(0)
j )

∣∣∣∣∣,



62 2 Iterative Processes and Point Estimation Theory

and introduce the abbreviations

η1 =
β1

d0
, η∞ =

β∞
d0

, d0 = min
i�=j

|z(0)
i − z

(0)
j |.

Following the construction of the scalar function φ(t) in Sect. 2.4, in a
similar way, we construct the scalar functions

h∞(t) = t

(
1 +

t

d0

)n−1

− 2t + β∞, ∀t ∈ [0,+∞), (2.27)

h1(t) =
n−1∑
k=0

(n − k)tk+1

k!ndk
0

− t + β1, ∀t ∈ [0,+∞). (2.28)

Let τ = t/d0. After dividing both sides of (2.27) and (2.28) by d0, the func-
tions (2.27) and (2.28) become

φ∞(τ) = τ(1 + τ)n−1 − 2τ + η∞,

φ1(τ) =
n−1∑
k=1

(n − k)τk+1

k!n
− τ + η1.

Evidently, φ1(τ) and φ∞(τ) possess the same properties as h1(t) and
h∞(t), respectively, which leads to the following lemma (see Zhao and
D. Wang [195]).

Lemma 2.8. The following assertions are valid:

(i) φ1(τ) and φ∞(τ) are strictly convex in (0,+∞).
(ii) φ1(τ) and φ∞(τ) have real zeros in [0,∞) if and only if

η∞ ≤ −min
τ>0

(
τ(1 + τ)n−1 − 2τ

)
, (2.29)

η1 ≤ −min
τ>0

(
n−1∑
k=1

(n − k)
k!n

τk+1 − τ

)
. (2.30)

The proof of this lemma is very simple and can be found in [195]. Actually,
Lemma 2.8 is, essentially, a special case of Lemma 2.6 related to the functions
φ∞(τ) and φ1(τ).

Lemma 2.9. Assume that φ∞(τ) and φ1(τ) satisfy (2.29) and (2.30), respec-
tively. Let us correspond the Newton’s iterations

τ1
m+1 = τ1

m − φ1(τ1
m)

φ′
1(τ1

m)
, τ∞

m+1 = τ∞
m − φ∞(τ∞

m )
φ′∞(τ∞

m )
(m = 0, 1, . . .) (2.31)

to the equations
φ1(τ) = 0, φ∞(τ) = 0.
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Then, the Newton’s methods (2.31), starting from τ1
0 = τ∞

0 = 0,
monotonously converge to the minimum roots τ1

∗ and τ∞
∗ of the above

equations, respectively.

Note that this lemma is a special case of Lemma 2.7 for the functions φ∞(τ)
and φ1(τ).

Theorem 2.9. Let us assume

η∞ < −min
τ>0

(
τ(1 + τ)n−1 − 2τ

)
. (2.32)

Then, the Durand–Kerner’s sequence {z(m)}, generated by (2.17), starting
from z = z(0), converges to all simple roots of the equation P (z) = 0. Besides,
we have

‖z(m) − z∗‖∞ ≤ τ∞
∗ − τ∞

m (m = 0, 1, 2 . . .),

where τ∞
∗ is defined by (2.31) and z∗

T

= [α1 · · ·αn] ∈ Cn.

Proof. This theorem is, essentially, a special case of Theorem 2.7 for the
mapping (2.18) and the function φ∞(τ). In fact, according to the properties
of φ∞(τ) with τ ∈ [0, τ∞

∗ ] and (2.26), we estimate

‖f ′(z(0))−1f ′(z) − I‖∞ ≤
n−1∑
k=1

∥∥∥f ′(z(0))−1f (k+1)(z(0))
k!

∥∥∥
∞

∥∥z − z(0)
∥∥k

∞

≤
n−1∑
k=1

(k + 1)(n − 1)!
k!(n − k − 1)!

(
t

d0

)k

(t = ‖z − z(0)‖∞)

=
d

dτ

(
n−1∑
k=1

(n − 1)!
k!(n − k − 1)!

τk+1

)
(τ = t/d0)

= φ′
∞(τ) + 1 < 1.

Hence, by Lemma 2.1 and (2.9),

‖f ′(z)−1f ′(z(0))‖∞ ≤ − 1
φ′∞(τ)

.

Similarly, it can be proved

‖f ′(z(0))−1f
′′
(z)‖ ≤ φ

′′
(τ)

(see D. Wang and Zhao [178]). Using this result and (2.26), Zhao and D.
Wang [195] have estimated
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‖f ′(z(0))−1f(z(n))‖∞
≤ ‖f ′(z(0))−1[f(z(n)) − f(z(n−1)) − f ′(z(n−1))(z(n) − z(n−1))]‖∞

=

∥∥∥∥∥
1∫

0

(1 − θ)f ′(z(0))−1f
′′
(z(n−1) + θ(z(n) − z(n−1)))(z(n) − z(n−1))2dθ

∥∥∥∥∥
∞

≤
∥∥∥∥∥

1∫
0

(1 − θ)φ
′′
∞(τ∞

n−1 + θ(τ∞
n − τ∞

n−1))(τ
∞
n − τ∞

n−1)
2dθ

∥∥∥∥∥
∞

= φ∞(τ∞
n ).

According to these inequalities, by induction, there follows

‖z(m+1) − z(m)‖∞ = ‖f ′(z(m))−1f(z(m))‖∞
≤ ‖f ′(z(m))−1f ′(z(0))‖∞‖f ′(z(0))−1f(z(m))‖∞
≤ −φ∞(τ∞

m )
φ′∞(τ∞

m )
= τ∞

m+1 − τ∞
m (m = 0, 1, . . . ). 
�

Using the properties of φ1(τ) and the inequalities for ‖ · ‖1, Theorem 2.10
concerning the norm ‖ · ‖1, similar to Theorem 2.9, can be stated.

Theorem 2.10. Assume that

η1 ≤ −min
τ>0

(
n−1∑
k=1

(n − k)
k!n

τk+1 − τ

)
. (2.33)

Then, the Durand–Kerner’s sequence {z(m)}, generated by (2.17), starting
from z = z(0), converges to all simple roots of the equation f(z) = 0. Besides,
we have estimations

‖z(m) − z∗‖1 ≤ τ1
∗ − τ1

m (m = 0, 1, . . .),

where τ1
m is determined by (2.31).

Conditions (2.32) and (2.33) in Theorems 2.6 and 2.7 are of limited value
as far as practical problems are concerned. However, they can be suitably
rearranged to the forms which are much more convenient for practical use.
This is given in the following theorem, proved in [195].

Theorem 2.11. The following inequalities are valid:

−min
τ>0

(τ(1 + τ)n−1 − 2τ) ≥ −min
τ>0

1
n − 1

(τeτ − 2τ),

−min
τ>0

(
n−1∑
k=1

(n − k)
k!n

τk+1 − τ

)
≥ −min

τ>0
(τeτ − 2τ).
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From Theorem 2.11, it follows that if the inequalities

η1 ≤ −min
τ>0

(τeτ − 2τ), (2.34)

η∞ ≤ −min
τ>0

1
n − 1

(τeτ − 2τ) (2.35)

are valid, then the conditions of Theorems 2.9 and 2.10 are also valid.
The question of the existence of a neighborhood S∗ of z∗T =[α1 · · ·αn] such

that Theorems 2.9 and 2.10 hold for any z(0) ∈ S∗ was considered in [195].
From Wang–Han’s Theorem 2.6, we see that the sequence {z(k)}, generated

by Newton’s method, starting from z = z(0), converges to the solution of
f(z) = 0 under the condition

α = α(z, f) ≤ 3 − 2
√

2. (2.36)

If Theorem 2.6 is applied to the Durand–Kerner’s method with the norm
‖ · ‖1, then

γ1 = sup
k≥2

∥∥∥A(k)

k!

∥∥∥1/(k−1)

1
= sup

k≥2

(
k(n − k + 1)

k!ndk−1
0

)1/(k−1)

=
(n − 1)

n

1
d0

.

Hence, by (2.36), we obtain

α = α(z(0), f) = β1 · γ1 =
(n − 1)

n

1
d0

β1 ≤ 3 − 2
√

2

or
η1 ≤ n

n − 1
(3 − 2

√
2), where η1 =

β1

d0
. (2.37)

This convergence condition may be expressed in more explicit form as

n∑
j=1

∣∣∣∣∣ P (z(0)
j )

Q′(z(0)
j )

∣∣∣∣∣ ≤ n

n − 1
(3 − 2

√
2)d0. (2.38)

Taking the norm ‖ · ‖∞ yields

max
1≤j≤n

∣∣∣∣∣ P (z(0)
j )

n∏
k=1
k �=j

(z(0)
j − z

(0)
k )

∣∣∣∣∣ = max
1≤j≤n

|W (z(0)
j )| ≤ UB(η∞) d0, (2.39)

where UB(a) denotes the upper bound of a real number a. The condi-
tions (2.38) and (2.39) will often be encountered later in Chaps. 3–5. From
(2.37), we observe that for n = 3, the upper bound of η1 is η1 ≤ 0.2574 . . .,
and this bound of η1 decreases as n increases. Since n

n−1 ≈ 1 for sufficiently
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large n, it follows that for n ≥ 3, the upper bound of η1 will vary within the
interval [0.1716, 0.2574].

Let us now return to Wang–Zhao’s result given in Theorem 2.9. By (2.33)
and (2.34), we observe that for n ≥ 3, the varying interval [η

1
, η̄1] of the upper

bound of η1 is determined by [η
1
, η̄1] = [0.2044, 0.3241], which is more precise

than Wang–Han’s result. Note that η
1

does not depend on the polynomial
degree n (see (2.34)). In Sect. 3.2, we will see that the results of this section
are further improved.

A similar conclusion is valid for ‖ · ‖∞.



Chapter 3

Point Estimation of Simultaneous
Methods

In this chapter, we are primarily interested in the construction of computa-
tionally verifiable initial conditions and the corresponding convergence anal-
ysis of the simultaneous methods presented in Sect. 1.1. These quantitative
conditions predict the immediate appearance of the guaranteed and fast con-
vergence of the considered methods. Two original procedures, based on (1)
suitable localization theorems for polynomial zeros and (2) the convergence
of error sequences, are applied to the most frequently used iterative methods
for finding polynomial zeros.

3.1 Point Estimation and Polynomial Equations

As mentioned in Chap. 2, one of the most important problems in solving
nonlinear equations is the construction of such initial conditions which pro-
vide both the guaranteed and fast convergence of the considered numerical
algorithm. Smale’s approach from 1981, known as “point estimation theory,”
examines convergence conditions in solving an equation f(z) = 0 using only
the information of f at the initial point z0. In the case of monic algebraic
polynomials of the form

P (z) = zn + an−1z
n−1 + · · · + a1z + a0,

which are the main subject of our investigation in this chapter and Chaps. 4
and 5, initial conditions should be some functions of polynomial coeffi-
cients a = (a0, . . . , an−1), its degree n, and initial approximations z(0) =
(z(0)

1 , . . . , z
(0)
n ). A rather wide class of initial conditions can be represented

by the inequality of general form

φ(z(0),a, n) < 0. (3.1)

M. Petković, Point Estimation of Root Finding Methods. Lecture Notes 67
in Mathematics 1933,
c© Springer-Verlag Berlin Heidelberg 2008
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It is well known that the convergence of any iterative method for finding
zeros of a given function is strongly connected with the distribution of its ze-
ros. If these zeros are well separated, almost all algorithms show mainly good
convergence properties. Conversely, in the case of very close zeros (“clusters
of zeros”), almost all algorithms either fail or work with a big effort. From this
short discussion, it is obvious that a measure of separation of zeros should
be taken as an argument of the function φ given in (3.1). Since the exact
zeros are unknown, we restrict ourselves to deal with the minimal distance
among initial approximations d(0) = minj �=i |z(0)

i − z
(0)
j |. Furthermore, the

closeness of initial approximations to the wanted zeros is also an important
parameter, which influences the convergence of the applied method. A mea-
sure of this closeness can be suitably expressed by a quantity of the form
h(z) = |P (z)/Q(z)|, where Q(z) does not vanish when z lies in the neighbor-
hood Λ(ζ) of any zero ζ of P . For example, in the case of simple zeros of a
polynomial, the choice

Q(z) = P ′(z), Q(z) =
n∏

j=1
j �=i

(z − zj) or

|Q(z)| = |P ′(z)|−1 sup
k>1

∣∣∣P (k)(z)
k!P ′(z)

∣∣∣1/(k−1)

(see Sect. 2.1)

gives satisfactory results. Let us note that, considering algebraic equations,
the degree of a polynomial n appears as a natural parameter in (3.1). There-
fore, instead of (3.1), we can take the inequality of the form

ϕ(h(0), d(0), n) < 0, (3.2)

where h(0) depends on P and Q at the initial point z(0).
Let In := {1, . . . , n} be the index set. For i ∈ In and m = 0, 1, . . . , let us

introduce the quantity

W
(m)
i =

P
(
z
(m)
i

)
n∏

j=1
j �=i

(
z
(m)
i − z

(m)
j

) (i ∈ In, m = 0, 1, . . .), (3.3)

which is often called Weierstrass’ correction since it appeared in Weierstrass’
paper [187]. In [178], D. Wang and Zhao improved Smale’s result for Newton’s
method and applied it to the Durand–Kerner’s method for the simultaneous
determination of polynomial zeros (see Sect. 2.5, (2.38), and (2.39)). Their
approach led in a natural way to an initial condition of the form

w(0) ≤ cn d(0), (3.4)
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where
w(0) = max

1≤i,j≤n
i�=j

|W (0)
i |, d(0) = min

1≤i,j≤n
i�=j

|z(0)
i − z

(0)
j |.

A completely different approach presented in [112] for the same method
also led to the condition of the form (3.4). In both cases, the quantity cn

was of the form cn = 1/(an + b), where a and b are suitably chosen positive
constants. It turned out that initial conditions of this form are also suitable for
other simultaneous methods for solving polynomial equations, as shown in the
subsequent papers [5], [110], [112], [114]–[117], [119]–[121], [123], [132], [133],
[136], [137], [140], [150], [151], [178], [195] and the books [20] and [118]. For
these reasons, in the convergence analysis of simultaneous methods considered
in this book, we will also use initial conditions of the form (3.4). We note
that (3.4) is a special case of the condition (3.2). The quantity cn, which
depends only on the polynomial degree n, will be called the inequality factor,
or the i-factor for brevity. We emphasize that during the last years, special
attention has been paid to the increase of the i-factor cn for the following
obvious reason. From (3.4), we notice that a greater value of cn allows a
greater value of |W (0)

i |. This means that cruder initial approximations can
be chosen, which is of evident interest in practical realizations of numerical
algorithms.

The proofs of convergence theorems of the simultaneous methods investi-
gated in this chapter and Chaps. 4 and 5 are based on the inductive argu-
ments. It turns out that the inequality of the form (3.4), with a specific value
of cn depending on the considered method, appears as a connecting link in
the chain of inductive steps. Namely, w(0) ≤ cnd(0) ⇒ w(1) ≤ cnd(1), and
one may prove by induction that w(0) ≤ cnd(0) implies w(m) ≤ cnd(m) for all
m = 0, 1, 2, . . ..

In this chapter, we discuss the best possible values of the i-factor cn ap-
pearing in the initial condition (3.4) for some efficient and frequently used
iterative methods for the simultaneous determination of polynomial zeros.
The reader is referred to Sect. 1.1 for the characteristics (derivation, histori-
cal notes, convergence speed) of these methods. We study the choice of “al-
most optimal” factor cn. The notion “almost optimal” i-factor arises from (1)
the presence of a system of (say) k inequalities and (2) the use of computer
arithmetic of finite precision:

(1) In the convergence analysis, it is necessary to provide the validity of k
substantial successive inequalities g1(cn) ≥ 0, . . . , gk(cn) ≥ 0 (in this or-
der), where all gi(cn) are monotonically decreasing functions of cn (see
Fig. 3.1). The optimal value cn should be determined as the unique solu-
tion of the corresponding equations gi(cn) = 0. Unfortunately, all equa-
tions cannot be satisfied simultaneously and we are constrained to find
such cn which makes the inequalities gi(cn) ≥ 0 as sharp as possible.
Since gi(cn) ≥ 0 succeeds gj(cn) ≥ 0 for j < i, we first find cn so that
the inequality g1(cn) ≥ 0 is as sharp as possible and check the validity
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of all remaining inequalities g2(cn) ≥ 0, . . . , gk(cn) ≥ 0. If some of them
are not valid, we decrease cn and repeat the process until all inequalities
are satisfied. For demonstration, we give a particular example on Fig. 3.1.
The third inequality g3(cn) ≥ 0 is not satisfied for c

(1)
n , so that cn takes a

smaller value c
(2)
n satisfying all three inequalities. In practice, the choice

of cn is performed iteratively, using a programming package, in our book
Mathematica 6.0.

g1

cn
cn
cn

cn cn

g2 g3

(1)

(2)

Fig. 3.1 The choice of i-factor cn iteratively

(2) Since computer arithmetic of finite precision is employed, the optimal
value (the exact solution of gi(cn) = 0, if it exists for some i) cannot
be represented exactly, so that cn should be decreased for a few bits
to satisfy the inequalities gi(cn) > 0. The required conditions (in the
form of inequalities gi(cn) ≥ 0) are still satisfied with great accuracy.
We stress that this slight decrease of the i-factor cn with respect to the
optimal value is negligible from a practical point of view. For this reason,
the constants a and b appearing in cn = 1/(an + b) are rounded for all
methods considered in this book.

The entries of cn, obtained in this way and presented in this chapter, are
increased (and, thus, improved) compared with those given in the literature,
which means that newly established initial conditions for the guaranteed
convergence of the considered methods are weakened (see Fig. 3.3).

We note that all considerations in this book are given for n ≥ 3, taking
into account that algebraic equations of the order ≤ 2 are trivial and their
numerical treatment is unnecessary. In our analysis, we will sometimes omit
the iteration index m, and new entries in the later (m + 1)th iteration will
be additionally stressed by the symbol ̂ (“hat”). For example, instead of

z
(m)
i , z

(m+1)
i ,W

(m)
i ,W

(m+1)
i , d(m), d(m+1), N

(m)
i , N

(m+1)
i , etc.,

we will write
zi, ẑi,Wi, Ŵi, d, d̂, Ni, N̂i.
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According to this, we denote

w = max
1≤i≤n

|Wi|, ŵ = max
1≤i≤n

|Ŵi|.

This denotation will also be used in the subsequent study in Chaps. 4 and 5.

3.2 Guaranteed Convergence: Correction Approach

In this chapter, we present two procedures in the study of the guaranteed con-
vergence of simultaneous methods (1) the approach based on iterative correc-
tions and (2) the approach based on convergent sequences. Both schemes will
be applied to the most frequently used simultaneous zero-finding methods in
considerable details.

Applying the first method (1), we will deal with a real function t �→ g(t)
defined on (0, 1) by

g(t) =

⎧⎪⎨⎪⎩
1 + 2t, 0 < t ≤ 1

2
1

1 − t
,

1
2

< t < 1

The minorizing function of g(t) on (0, 1) is given in the following lemma
whose proof is elementary.

Lemma 3.1. Let

sm (t) =
m∑

i=0

ti + tm (t ∈ (0, 1) , m = 1, 2, . . .).

Then, sm (t) < g (t) .

Most of the iterative methods for the simultaneous determination of simple
zeros of a polynomial can be expressed in the form

z
(m+1)
i = z

(m)
i − Ci

(
z
(m)
1 , . . . , z(m)

n

)
(i ∈ In, m = 0, 1, . . .), (3.5)

where z
(m)
1 , . . . , z

(m)
n are some distinct approximations to simple zeros

ζ1, . . . , ζn, respectively, obtained in the mth iterative step by the method
(3.5). In what follows, the term

C
(m)
i = Ci

(
z
(m)
1 , . . . , z(m)

n

)
(i ∈ In)

will be called the iterative correction or simply the correction.
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Let Λ(ζi) be a sufficiently close neighborhood of the zero ζi (i ∈ In). In
this book, we consider a class of iterative methods of the form (3.5) with
corrections Ci which can be expressed as

Ci(z1, . . . , zn) =
P (zi)

Fi(z1, . . . , zn)
(i ∈ In), (3.6)

where the function (z1, . . . , zn) �→ Fi(z1, . . . , zn) satisfies the following condi-
tions for each i ∈ In and distinct approximations z1, . . . , zn:

1◦ Fi(ζ1, . . . , ζn) �= 0,

2◦ Fi(z1, . . . , zn) �= 0 for any (z1, . . . , zn) ∈ Λ(ζ1) × · · · × Λ(ζn) =: Y,

3◦ Fi(z1, . . . , zn) is continuous in Cn.

Starting from mutually disjoint approximations z
(0)
1 , . . . , z

(0)
n , the itera-

tive method (3.5) produces n sequences of approximations
{
z
(m)
i

}
(i ∈ In)

which, under certain convenient conditions, converge to the polynomial zeros.
Indeed, if we find the limit values

lim
m→∞ z

(m)
i = ζi (i ∈ In),

then having in mind (3.6) and the conditions 1◦–3◦, we obtain from (3.5)

0 = lim
m→∞

(
z
(m)
i − z

(m+1)
i

)
= lim

m→∞Ci

(
z
(m)
1 , . . . , z(m)

n

)
= lim

m→∞
P
(
z
(m)
i

)
Fi

(
z
(m)
1 , . . . , z

(m)
n

) =
P (ζi)

Fi(ζ1, . . . , ζn)
(i ∈ In).

Hence P (ζi) = 0, i.e., ζi is a zero of the polynomial P .
Theorem 3.1 has the key role in our convergence analysis of simultaneous

methods presented in this section and Chap. 4 (see M. Petković, Carstensen,
and Trajković [112]).

Theorem 3.1. Let the iterative method (3.5) have the iterative correction of
the form (3.6) for which the conditions 1◦–3◦ hold, and let z

(0)
1 , . . . , z

(0)
n be

distinct initial approximations to the zeros of P . If there exists a real number
β ∈ (0, 1) such that the following two inequalities

(i)
∣∣C(m+1)

i

∣∣ ≤ β
∣∣C(m)

i

∣∣ (m = 0, 1, . . .),

(ii)
∣∣z(0)

i − z
(0)
j

∣∣ > g(β)
(∣∣C(0)

i

∣∣+ ∣∣C(0)
j

∣∣) (i �= j, i, j ∈ In)

are valid, then the iterative method (3.5) is convergent.



3.2 Guaranteed Convergence: Correction Approach 73

Proof. Let us define disks D
(m)
i := {z(m+1)

i ; |C(m)
i |} for i ∈ In and m =

0, 1, . . . , where z
(m+1)
i and C

(m)
i are approximations and corrections appear-

ing in (3.5). Then for a fixed i ∈ In, we have

D
(m)
i = {z(m)

i − C
(m)
i ; |C(m)

i |} = {z(m−1)
i − C

(m−1)
i − C

(m)
i ; |C(m)

i |} = · · ·
= {z(0)

i − C
(0)
i − C

(1)
i − · · · − C

(m)
i ; |C(m)

i |} ⊂ {z(0)
i ; r(m)

i },

where
r
(m)
i = |C(0)

i | + · · · + |C(m−1)
i | + 2|C(m)

i |.
Using (i), we find |C(k)

i | ≤ βk|C(0)
i | (k = 1, 2, . . . , β < 1) so that, according

to Lemma 3.1 and the definition of the function g(t),

r
(m)
i ≤ |C(0)

i |(1 + β + · · · + βm + βm) < g(β)|C(0)
i |.

Therefore, for each i ∈ In, we have the inclusion

D
(m)
i ⊂ Si :=

{
z
(0)
i ; g(β)|C(0)

i |},
which means that the disk Si contains all the disks D

(m)
i (m = 0, 1, . . .). In

regard to this and the definition of disks D
(m)
i , we can illustrate the described

situation by Fig. 3.2.

Fig. 3.2 Inclusion disk Si contains all disks D
(m)
i

The sequence {z(m)
i } of the centers of the disks D

(m)
i forms a Cauchy’s

sequence in the disk Si ⊃ D
(m)
i (m = 0, 1, . . .). Since the metric subspace Si
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is complete (as a closed set in C), there exists a unique point z∗i ∈ Si such
that

z
(m)
i → z∗i as m → ∞ and z∗i ∈ Si.

Since

z
(m+1)
i = z

(m)
i − P (z(m)

i )

F (z(m)
1 , . . . , z

(m)
n )

and F (z(m)
1 , . . . , z

(m)
n ) does not vanish whenever (z1, . . . , zn) ∈ Y , there

follows

|P (z(m)
i )| = |F (z(m)

1 , . . . , z(m)
n )(z(m+1)

i − z
(m)
i )|

≤ |F (z(m)
1 , . . . , z(m)

n )| |z(m+1)
i − z

(m)
i |.

Taking the limit when m → ∞, we obtain

|P (z∗i )| ≤ lim
m→∞ |F (z(m)

1 , . . . , z(m)
n )| lim

m→∞ |z(m+1)
i − z

(m)
i | = 0,

which means that the limit points z∗1 , . . . , z∗n of the sequences {z(m)
1 }, . . . , {z(m)

n }
are, actually, the zeros of the polynomial P . To complete the proof of the
theorem, it is necessary to show that each of the sequences {z(m)

i } (i ∈ In)
converges to one and only one zero of P . Since z

(m)
i ∈ Si for each i ∈ In

and m = 0, 1, . . ., it suffices to prove that the disks S1, . . . , Sn are mutually
disjoint, i.e. (according to (1.67)),

|z(0)
i −z

(0)
j |=|mid Si−mid Sj |>radSi+radSj = g(β)

(|C(0)
i |+ |C(0)

j |) (i �= j),

which reduces to (ii). 
�
In this section and Chap. 4, we will apply Theorem 3.1 to some iterative

methods for the simultaneous approximation of simple zeros of a polynomial.
We will assume that an iterative method is well defined if F (z1, . . . , zn)�=0
under the stated initial conditions and for each array of approximations
(z1, . . . , zn) obtained in the course of the iterative procedure.

The convergence analysis of simultaneous methods considered in this sec-
tion is essentially based on Theorem 3.1 and the four relations connecting
the quantities |Wi| (Weierstrass’ corrections), d (minimal distance between
approximations), and |Ci| (iterative corrections). These relations are referred
to as W–D, W–W, C–C, and C–W inequalities according to the quantities
involved, and read thus:

(W–D): w(0) ≤ cnd(0), (3.7)

(W–W):
∣∣W (m+1)

i

∣∣ ≤ δn

∣∣W (m)
i

∣∣ (i ∈ In, m = 0, 1, . . .), (3.8)
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(C–C):
∣∣C(m+1)

i

∣∣ ≤ βn

∣∣C(m)
i

∣∣ (i ∈ In, m = 0, 1, . . .), (3.9)

(C–W):
∣∣C(m)

i

∣∣ ≤ λn

∣∣W (m)
i

∣∣
cn

(i ∈ In, m = 0, 1, . . .). (3.10)

Here, cn, δn, βn, and λn are real positive constants depending only on the
polynomial degree n. The W–D inequality (3.7) defines the initial condition
for the guaranteed convergence of an iterative method and plays the main
role in the convergence analysis based on the relations (3.7)–(3.10).

The convergence analysis consists of two steps:

1◦ Starting from the W–D inequality (3.7), derive the W–W inequality (3.8)
for each m = 0, 1, . . .. The i-factor cn has to be chosen so that δn<1 holds.
In this way, the convergence of the sequences of Weierstrass’ corrections
{W (m)

i } (i ∈ In) to 0 is ensured.
2◦ Derive the C–C inequality (3.9) for each m = 0, 1, . . . under the condition

(3.7). The choice of the i-factor cn must provide the validity of the C–W
inequality (3.10) and the inequalities

βn < 1 (3.11)

and
λn <

1
2g(βn)

. (3.12)

The last requirement arises from the following consideration. Assume that
(3.7) implies the inequality (3.10) for all i ∈ In. Then using (3.7), we obtain

∣∣z(0)
i − z

(0)
j

∣∣ ≥ d(0) ≥ w(0)

cn
≥
∣∣C(0)

i

∣∣+ ∣∣C(0)
j

∣∣
2λn

.

Hence, to provide the inequality (ii) in Theorem 3.1, it is necessary to be
1/(2λn) > g(βn) (the inequality (3.12)) where, according to the conditions of
Theorem 3.1, the (positive) argument βn must be less than 1 (the inequality
(3.11)). Note that the requirement βn < 1 is also necessary to ensure the
contraction of the correction terms (see (3.9)) and, thus, the convergence of
the considered simultaneous method.

In the subsequent analysis, we will apply the described procedure to some
favorable simultaneous methods. This procedure requires certain bounds of
the same type and, to avoid the repetition, we give them in the following
lemma.

Lemma 3.2. For distinct complex numbers z1, . . . , zn and ẑ1, . . . , ẑn, let

d = min
1≤i,j≤n

i�=j

|zi − zj |, d̂ = min
1≤i,j≤n

i�=j

|ẑi − ẑj | (i ∈ In).
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If
|ẑi − zi| ≤ λnd (i ∈ In, λn < 1/2), (3.13)

then

|ẑi − zj | ≥ (1 − λn)d (i ∈ In), (3.14)
|ẑi − ẑj | ≥ (1 − 2λn)d (i ∈ In), (3.15)

and ∣∣∣∣∣∏
j �=i

ẑi − zj

ẑi − ẑj

∣∣∣∣∣ ≤
(

1 +
λn

1 − 2λn

)n−1

. (3.16)

Proof. Applying the triangle inequality, we find

|ẑi − zj | ≥ |zi − zj | − |ẑi − zi| ≥ d − λnd = (1 − λn)d

and

|ẑi− ẑj | ≥ |zi−zj |− |ẑi−zi|− |ẑj −zj | ≥ d−λnd−λnd = (1−2λn)d. (3.17)

From ∏
j �=i

ẑi − zj

ẑi − ẑj
=
∏
j �=i

(
1 +

ẑj − zj

ẑi − ẑj

)
and ∣∣∣∣ ẑj − zj

ẑi − ẑj

∣∣∣∣ ≤ λnd

(1 − 2λn)d
=

λn

1 − 2λn
,

we obtain∣∣∣∣∣∏
j �=i

ẑi − zj

ẑi − ẑj

∣∣∣∣∣ =∏
j �=i

∣∣∣∣1 +
ẑj − zj

ẑi − ẑj

∣∣∣∣ ≤∏
j �=i

(
1 +
∣∣∣∣ ẑj − zj

ẑi − ẑj

∣∣∣∣)
≤
∏
j �=i

(
1 +

λn

1 − 2λn

)
=
(
1 +

λn

1 − 2λn

)n−1

. 
�

Remark 3.1. Since d̂ ≤ |ẑi − ẑj |, from (3.17) we obtain

d̂ ≤ (1 − 2λn)d. (3.18)

In what follows, we apply Theorem 3.1 to the convergence analysis of four
frequently used simultaneous zero-finding methods.

The Durand–Kerner’s Method

One of the most frequently used iterative methods for the simultaneous
determination of simple zeros of a polynomial is the Durand–Kerner’s (or
Weierstrass’) method defined by
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z
(m+1)
i = z

(m)
i − W

(m)
i (i ∈ In, m = 0, 1, . . .), (3.19)

where W
(m)
i is given by (3.3). In this case, the iterative correction term is

equal to Weierstrass’ correction, i.e., Ci = Wi = P (zi)/Fi(z1, . . . , zn), where

Fi(z1, . . . , zn) =
n∏

j=1
j �=i

(zi − zj) (i ∈ In).

To simplify the denotation, we will omit sometimes the iteration index m
in the sequel and denote quantities in the subsequent (m + 1)th iteration
by ̂ (“hat”). It will be always assumed that the polynomial degree n is not
smaller than 3.

Lemma 3.3. Let z1, . . . , zn be distinct approximations and let

w ≤ cnd, (3.20)
cn ∈ (0, 0.5) , (3.21)

δn :=
(n − 1) cn

1 − cn

(
1 +

cn

1 − 2cn

)n−1

≤ 1 − 2cn (3.22)

hold. Then:

(i)
∣∣∣Ŵi

∣∣∣ ≤ δn |Wi|.
(ii) ŵ ≤ cnd̂.

Proof. Let λn = cn. From (3.19) and (3.20), there follows

|ẑi − zi| = |Wi| ≤ w ≤ cnd. (3.23)

According to this and Lemma 3.2, we obtain

|ẑi − zj | ≥ (1 − cn)d (3.24)

and
|ẑi − ẑj | ≥ (1 − 2cn)d. (3.25)

From the iterative formula (3.19), it follows

Wi

ẑi − zi
= −1,

so that
n∑

j=1

Wj

ẑi − zj
+ 1 =

Wi

ẑi − zi
+
∑
j �=i

Wj

ẑi − zj
+ 1 =

∑
j �=i

Wj

ẑi − zj
. (3.26)



78 3 Point Estimation of Simultaneous Methods

Putting z = ẑi in the polynomial representation by Lagrange’s interpola-
tion formula

P (z) =

(
n∑

j=1

Wj

z − zj
+ 1

)
n∏

j=1

(z − zj), (3.27)

we find by (3.26)

P (ẑi) = (ẑi − zi)

(∑
j �=i

Wj

ẑi − zj

)∏
j �=i

(ẑi − zj).

After dividing with
∏
j �=i

(ẑi − ẑj), one obtains

Ŵi =
P (ẑi)∏

j �=i

(ẑi − ẑj)
= (ẑi − zi)

(∑
j �=i

Wj

ẑi − zj

)∏
j �=i

(
1 +

ẑj − zj

ẑi − ẑj

)
. (3.28)

Using the inequalities (3.20), (3.23)–(3.25) and Lemma 3.2, from (3.28),
we estimate ∣∣Ŵi

∣∣ ≤ |ẑi − zi|
∑
j �=i

|Wj |
|ẑi − zj |

∏
j �=i

(
1 +

|ẑj − zj |
|ẑi − ẑj |

)

≤ |Wi| (n − 1)w
(1 − cn)d

(
1 +

cnd

(1 − 2cn)d

)n−1

≤ |Wi| (n − 1)cn

1 − cn

(
1 +

cn

1 − 2cn

)n−1

= δn |Wi| .

This proves the assertion (i) of the lemma.
Since

d̂ = min
1≤i,j≤n

i�=j

|ẑi − ẑj | ,

from (3.25), one obtains

d̂ ≥ (1 − 2λn)d = (1 − 2cn)d, i.e., d ≤ d̂

1 − 2cn
.

According to the last inequality and (3.22), we estimate

∣∣Ŵi

∣∣ ≤ δn |Wi| ≤ δncnd ≤ δn

1 − 2cn
cnd̂ ≤ cnd̂.

Therefore, the assertion (ii) holds. 
�
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Theorem 3.2. Let the assumptions from Lemma 3.3 hold. If z
(0)
1 , . . . , z

(0)
n

are distinct approximations for which the initial condition

w(0) ≤ cnd(0) (3.29)

is valid, then the Durand–Kerner’s method (3.19) is convergent.

Proof. It is sufficient to prove the assertions (i) and (ii) of Theorem 3.1 taking
C

(m)
i = W

(m)
i in this particular case.

According to (ii) of Lemma 3.3, we conclude that (3.29) provides the im-
plication w(0) ≤ cnd(0) ⇒ w(1) ≤ cnd(1). In a similar way, we show the
implication

w(m) ≤ cnd(m) =⇒ w(m+1) ≤ cnd(m+1),

proving by induction that the initial condition (3.29) implies the inequality

w(m) ≤ cnd(m) (3.30)

for each m = 1, 2, . . .. Hence, by (i) of Lemma 3.3, we get∣∣W (m+1)
i

∣∣ ≤ δn

∣∣W (m)
i

∣∣ = βn|W (m)
i | (3.31)

for each m = 0, 1, . . .. Let us note that (3.31) is the W–W inequality of the
form (3.8), but also the C–C inequality of the form (3.9) since Ci = Wi in
this particular case with βn = δn, where δn is given by (3.22). Therefore, the
assertion (i) holds true.

In a similar way as for (3.25), under the condition (3.29), we prove the
inequality∣∣z(m+1)

i − z
(m+1)
j

∣∣ ≥ (1 − 2cn)d(m) > 0 (i �= j, i, j ∈ In, m = 0, 1, . . .),

so that
Fi

(
z
(m)
1 , . . . , z(m)

n

)
=
∏
i �=j

(z(m)
i − z

(m)
j ) �= 0

in each iteration. Therefore, the Durand–Kerner’s method (3.19) is well
defined.

Since βn = δn, from (3.22), we see that βn < 1 (necessary condition (3.11)),
and the function g is well defined. To prove (ii) of Theorem 3.1, we have to
show that the inequality (3.12) is valid. If βn ≥ 1/2, then (3.12) becomes

1
1 − βn

<
1

2λn
,

which is equivalent to (3.22). If βn < 1/2, then (3.12) reduces to

1 + βn <
1

2λn
, i.e., λn = cn <

1
2(1 + 2βn)

∈ (0.25, 0.5),
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which holds according to the assumption (3.21) of Lemma 3.3. Since we have
proved both assertions (i) and (ii) of Theorem 3.1, we conclude that the
Durand–Kerner’s method (3.19) is convergent. 
�

The choice of the “almost optimal” value of cn is considered in the following
lemma.

Lemma 3.4. The i-factor cn given by

cn =
1

An + B
, A = 1.76325, B = 0.8689425, (3.32)

satisfies the conditions (3.21) and (3.22).

Proof. Since cn ≤ c3 ≈ 0.16238, it follows that cn ∈ (0, 0.5) and (3.21) holds
true.

To prove (3.22), it is sufficient to prove the inequality

ηn :=
δn

1 − 2cn
=

n − 1
1 − cn

cn

1 − 2cn

(
1 +

cn

1 − 2cn

)n−1

≤ 1. (3.33)

Since

lim
n→∞

1
1 − cn

= 1, lim
n→∞

(
1 +

cn

1 − 2cn

)1 − 2cn

cn = e, lim
n→∞

(n − 1) cn

1 − 2cn
=

1
A

,

where A = 1.76325 appears in (3.32), we obtain

lim
n→∞ ηn =

1
A

e1/A < 0.99998 < 1.

Since the sequence {ηn}, defined by (3.33), is monotonically increasing for
n ≥ 3, we have ηn < η∞ < 0.99998 < 1. 
�
Remark 3.2. The constant A = 1.76325 is determined as the reciprocal value
of the approximate solution of the equation xex = 1, and chosen so that it
satisfies the inequality e1/A/A < 1 (to fulfill the condition limn→∞ ηn < 1).
The use of an approximate solution of the equation xex = 1 instead of the
exact solution (that cannot be represented in floating-point arithmetic of
finite precision) just leads to the notion of the “almost optimal” i-factor.
Taking a greater number of decimal digits for A (and, consequently, for B,
see Remark 3.3), we can make the inequality (3.34) arbitrarily sharp. In this
way, we can improve the i-factor cn to the desired (optimal) extent but, from
a practical point of view, such improvement is negligible.

Remark 3.3. Note that the coefficient B in (3.32), not only for the Durand–
Kerner’s method but also for other methods, is chosen so that the entries δn,
βn, and λn appearing in the W–W, C–C, and C–W inequalities (3.8)–(3.10)
ensure the validity of these inequalities for a particular n, most frequently
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for n = 3. For example, this coefficient for the Durand–Kerner’s method is
B = 0.8689425.

According to Theorem 3.1 and Lemma 3.4, we can state the convergence
theorem, which considers initial conditions for the guaranteed convergence of
the Durand–Kerner’s method.

Theorem 3.3. The Durand–Kerner’s method is convergent under the
condition

w(0) <
d(0)

1.76325n + 0.8689425
. (3.34)

Remark 3.4. The sign < (“strongly less”) in the inequality (3.34) differs from
“ ≤ ” used in the previous consideration since the concrete choice of A and B
in (3.14) yields δn < 1 − 2cn in (3.22) (also “strongly less”). This is also the
case in all remaining methods presented in this book, so that the subsequent
situations of this type will not be explained again.

Some authors have considered initial conditions in the form of the
inequality

‖W (0)‖1 =
n∑

i=1

∣∣W (0)
i

∣∣ ≤ Ωnd(0), W (0) = (W (0)
1 , . . . , W (0)

n ),

instead of the condition (3.7). Obviously, one can take Ωn = n cn since (3.29)
implies ∣∣W (0)

i

∣∣ ≤ cnd(0) (i = 1, . . . , n).

As already mentioned, the choice of cn and Ωn as large as possible permits
cruder initial approximations.

We recall some previous ranges concerned with the bounds of Ωn for n ≥ 3.
X. Wang and Han obtained in [181]

Ωn =
n

n − 1

(
3 − 2

√
2
)
∈ (0.1716, 0.2574) (n ≥ 3).

D. Wang and Zhao improved in [178] the above result yielding the interval

Ωn ∈ (0.2044, 0.3241) (n ≥ 3).

Batra [5] and M. Petković et al. [120] have dealt with cn = 1/(2n), which
gives Ωn = 0.5. The choice of cn in this section (see (3.32)) yields

Ω3 = 3c3 = 0.48712

and

Ωn ∈
(
4c4, lim

n→∞ncn

)
=
(

0.50493,
1
A

)
= (0.50493, 0.56713) (n ≥ 4),

which improves all previous results.



82 3 Point Estimation of Simultaneous Methods

The Börsch-Supan’s Method

Börsch-Supan’s third-order method for the simultaneous approximations of
all simple zeros of a polynomial, presented for the first time in [10] and later
in [95], is defined by the iterative formula

z
(m+1)
i = z

(m)
i − W

(m)
i

1 +
n∑

j=1
j �=i

W
(m)
j

z
(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .), (3.35)

where W
(m)
i are given by (3.3) (see Sect. 1.1). This formula has the form (3.5)

with the correction

Ci(z1, . . . , zn) =
P (zi)

Fi(z1, . . . , zn)
(i ∈ In),

where

Fi(z1, . . . , zn) =

(
1 +
∑
j �=i

Wj

zi − zj

)∏
j �=i

(zi − zj) (i ∈ In).

Before establishing the main convergence theorems, we prove two auxiliary
results.

Lemma 3.5. Let z1, . . . , zn be distinct complex numbers and let

cn ∈
(

0,
1

n + 1

)
(3.36)

and
w ≤ cnd. (3.37)

Then:

(i)
cn

λn
≤
∣∣∣∣∣1 +

∑
j �=i

Wj

zi − zj

∣∣∣∣∣ ≤ 2 − cn

λn
.

(ii) |ẑi − zi| ≤ λn

cn
|Wi| ≤ λnd.

(iii) |ẑi − zj | ≥ (1 − λn)d.
(iv) |ẑi − ẑj | ≥ (1 − 2λn)d.

(v)

∣∣∣∣∣
n∑

j=1

Wj

ẑi − zj
+ 1

∣∣∣∣∣ ≤ (n − 1)λncn

1 − λn
.

(vi)

∣∣∣∣∣∏
j �=i

ẑi − zj

ẑi − ẑj

∣∣∣∣∣ ≤
(

1 +
λn

1 − 2λn

)n−1

,

where λn =
cn

1 − (n − 1)cn
.
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Proof. Since 1−2λn =
1 − (n + 1)cn

1 − (n − 1)cn
, from (3.36), it follows 0 < 1−2λn < 1,

hence λn ∈ (0, 0.5). By (3.37) and the definition of d, we obtain∣∣∣∣∣1 +
∑
j �=i

Wj

zi − zj

∣∣∣∣∣ ≥ 1 −
∑
j �=i

|Wj |
|zi − zj | ≥ 1 − (n − 1)w

d
≥ 1 − (n − 1) cn =

cn

λn

and ∣∣∣∣∣1 +
∑
j �=i

Wj

zi − zj

∣∣∣∣∣ ≤ 1 +
(n − 1)w

d
≤ 1 + (n − 1) cn = 2 − cn

λn
,

which proves (i). By (i) and (3.37), we prove (ii):

|ẑi − zi| =
|Wi|∣∣∣∣∣1 +
∑
j �=i

Wj

zi − zj

∣∣∣∣∣
≤ |Wi|

1 − (n − 1) cn
=

λn

cn
|Wi| ≤ λnd.

The assertions (iii), (iv), and (vi) follow directly according to Lemma 3.2.
Omitting the iteration index, from (3.35), we find

Wi

ẑi − zi
= −1 −

∑
j �=i

Wj

zi − zj
,

so that∣∣∣∣∣
n∑

j=1

Wj

ẑi − zj
+ 1

∣∣∣∣∣ =
∣∣∣∣∣ Wi

ẑi − zi
+
∑
j �=i

Wj

ẑi − zj
+ 1

∣∣∣∣∣ =
∣∣∣∣∣∑

j �=i

Wj(zi − ẑi)
(ẑi − zj)(zi − zj)

∣∣∣∣∣.
Hence, using (3.37), (ii), and (iii), it follows∣∣∣∣∣

n∑
j=1

Wj

ẑi − zj
+ 1

∣∣∣∣∣ ≤ |ẑi − zi|
∑
j �=i

|Wj |
|ẑi − zj ||zi − zj | ≤

(n − 1)λncn

1 − λn
,

which means that (v) is also true. This completes the proof of the lemma.

�

According to Lemma 3.5, we can prove the following assertions.

Lemma 3.6. Let z1, . . . , zn be distinct approximations and let the assump-
tions (3.36) and (3.37) of Lemma 3.5 hold. In addition, let

δn :=
(n − 1)λ2

n

1 − λn

(
1 +

λn

1 − 2λn

)n−1

≤ 1 − 2λn (3.38)



84 3 Point Estimation of Simultaneous Methods

be valid. Then:

(i) |Ŵi| ≤ δn|Wi|.
(ii) ŵ ≤ cnd̂.

Proof. Setting z = ẑi in (3.27), where ẑi is a new approximation produced by
the Börsch-Supan’s method (3.35), we obtain

P (ẑi) = (ẑi − zi)

(
n∑

j=1

Wj

ẑi − zj
+ 1

)∏
j �=i

(ẑi − zj).

After dividing with
∏
j �=i

(ẑi − ẑj), we get

Ŵi = (ẑi − zi)

(
n∑

j=1

Wj

ẑi − zj
+ 1

)∏
j �=i

ẑi − zj

ẑi − ẑj
.

Using the bounds (ii), (v), and (vi) of Lemma 3.5, we estimate

∣∣Ŵi

∣∣ = |ẑi − zi|
∣∣∣∣∣

n∑
j=1

Wj

ẑi − zj
+ 1

∣∣∣∣∣
∣∣∣∣∣∏

j �=i

ẑi − zj

ẑi − ẑj

∣∣∣∣∣
≤ |Wi| (n − 1)λ2

n

1 − λn

(
1 +

λn

1 − 2λn

)n−1

,

i.e.,
∣∣Ŵi

∣∣ ≤ δn|Wi|. Therefore, the assertion (i) holds true.
According to (iv) of Lemma 3.5, there follows

d̂ ≥ (1 − 2λn)d.

This inequality, together with (i) of Lemma 3.6 and (3.38), gives (ii), i.e.,

∣∣Ŵi

∣∣ ≤ δn|Wi| ≤ δn

1 − 2λn
cnd̂ ≤ cnd̂. 
�

Theorem 3.4. Let the assumptions from Lemmas 3.5 and 3.6 hold and, in
addition, let

βn :=
(2λn

cn
− 1
)
δn < 1 (3.39)

and
g(βn) <

1
2λn

. (3.40)

If z
(0)
1 , . . . , z

(0)
n are distinct initial approximations satisfying

w(0) ≤ cnd(0), (3.41)
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then the Börsch-Supan’s method (3.35) is convergent.

Proof. It is sufficient to prove (i) and (ii) of Theorem 3.1 for the iterative
correction given by

C
(m)
i =

W
(m)
i

1 +
∑
j �=i

W
(m)
j

z
(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .)

(see (3.35)). By virtue of Lemma 3.6, which holds under the conditions (3.36),
(3.38), and (3.41), we can prove by induction that

w(m+1) ≤ δnw(m) ≤ δn

1 − 2λn
cnd(m+1) ≤ cnd(m+1)

holds for each m = 0, 1, . . ..
Starting from the assertion (i) of Lemma 3.5, under the condition (3.41),

we prove by induction

Fi

(
z
(m)
1 , . . . , z(m)

n

)
=

(
1 +
∑
j �=i

W
(m)
j

z
(m)
i − z

(m)
j

)∏
j �=i

(
z
(m)
i − z

(m)
j

)
�= 0

for each i ∈ In and m = 0, 1, . . .. Therefore, the Börsch-Supan’s method
(3.35) is well defined in each iteration.

Using (i) of Lemma 3.5, we find

|Ci| =
|Wi|∣∣∣∣∣1 +
∑
j �=i

Wj

zi − zj

∣∣∣∣∣
≤ λn

cn
|Wi|, (3.42)

so that for the next iterative step we obtain by Lemma 3.5 and (i) of
Lemma 3.6

∣∣Ĉi

∣∣ ≤ λn

cn

∣∣∣Ŵi

∣∣∣ ≤ λnδn

cn

|Wi|∣∣∣∣∣1 +
∑
j �=i

Wj

zi − zj

∣∣∣∣∣
∣∣∣∣∣1 +

∑
j �=i

Wj

zi − zj

∣∣∣∣∣

=
λnδn

cn
|Ci|
∣∣∣∣∣1 +

∑
j �=i

Wj

zi − zj

∣∣∣∣∣ ≤ λnδn

cn

(
2 − cn

λn

)
|Ci|

= δn

(2λn

cn
− 1
)
|Ci| = βn|Ci|,

where βn < 1 (the assumption (3.39)). Using the same argumentation, we
prove by induction
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i

∣∣ ≤ βn

∣∣C(m)
i

∣∣
for each i ∈ In and m = 0, 1, . . ..

By (3.41) and (3.42), we estimate

1
λn

|C(0)
i | ≤ |W (0)

i |
cn

≤ d(0).

According to this and (3.40), we see that

∣∣z(0)
i − z

(0)
j

∣∣ ≥ d(0) ≥ w(0)

cn
≥ 1

2λn

(∣∣C(0)
i

∣∣+ ∣∣C(0)
j

∣∣)
> g(βn)

(∣∣C(0)
i

∣∣+ ∣∣C(0)
j

∣∣)
holds for each i �= j, i, j ∈ In. This proves (ii) of Theorem 3.1. The validity
of (i) and (ii) of Theorem 3.1 shows that the Börsch-Supan’s method (3.35)
is convergent under the given conditions. 
�

The choice of the i-factor cn is considered in the following lemma.

Lemma 3.7. The i-factor cn defined by

cn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

n + 9
2

, n = 3, 4

1
309
200n + 5

, n ≥ 5

(3.43)

satisfies the condition of Theorem 3.4.

The proof of this lemma is elementary and it is derived by a simple analysis
of the sequences {βn} and {g(βn)}.

According to Lemma 3.7 and Theorem 3.4, we may state the following
theorem.

Theorem 3.5. The Börsch-Supan’s method (3.35) is convergent under the
condition (3.41), where cn is given by (3.43).

Tanabe’s Method

In Sect. 1.1, we have presented the third-order method, often referred to as
Tanabe’s method

z
(m+1)
i = z

(m)
i −W

(m)
i

(
1−
∑
j �=i

W
(m)
j

z
(m)
i − z

(m)
j

)
(i ∈ In, m = 0, 1, . . .). (3.44)

As in the previous cases, before stating initial conditions that ensure the
guaranteed convergence of the method (3.44), we give first some necessary
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bounds using the previously introduced notation and omitting the iteration
index for simplicity.

Lemma 3.8. Let z1, . . . , zn be distinct approximations and let

cn ∈
(
0,

1
1 +

√
2n − 1

)
. (3.45)

If the inequality
w ≤ cnd (3.46)

holds, then for i, j ∈ In we have:

(i)
λn

cn
= 1 + (n − 1)cn ≥

∣∣∣1 −
∑
j �=i

Wj

zi − zj

∣∣∣ ≥ 1 − (n − 1)cn = 2 − λn

cn
.

(ii) |ẑi − zi| ≤ λn

cn
|Wi| ≤ λnd.

(iii) |ẑi − zj | ≥ (1 − λn)d.
(iv) |ẑi − ẑj | ≥ (1 − 2λn)d.

(v)
∣∣∣ n∑
j=1

Wj

ẑi − zj
+ 1
∣∣∣ ≤ (n − 1)c2

n

(2cn − λn)(1 − λn)

(
λn + (n − 1)cn

)
.

(vi)
∏
j �=i

∣∣∣ ẑi − zj

ẑi − ẑj

∣∣∣ ≤ (1 +
λn

1 − 2λn

)n−1

,

where λn = (1 + (n − 1)cn)cn.

Proof. We omit the proofs of the assertions (i)–(iv) and (vi) since they are
quite similar to those given in Lemma 3.5. To prove (v), we first introduce

σi =
∑
j �=i

Wj

zi − zj
.

Then

|σi| ≤ (n − 1)w
d

≤ (n − 1)cn and
|σi|

1 − |σi| ≤
(n − 1)cn

1 − (n − 1)cn
. (3.47)

From the iterative formula (3.44), we obtain

Wi

ẑi − zi
= − 1

1 −
∑
j �=i

Wj

zi − zj

,
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so that by (3.47) it follows∣∣∣ n∑
j=1

Wj

ẑi − zj
+ 1
∣∣∣ = ∣∣∣ Wi

ẑi − zi
+
∑
j �=i

Wj

ẑi − zj
+ 1
∣∣∣ = ∣∣∣1 − 1

1 − σi
+
∑
j �=i

Wj

ẑi − zj

∣∣∣
=

1
|1 − σi|

∣∣∣∑
j �=i

Wj

ẑi − zj
−
∑
j �=i

Wj

zi − zj
− σi

∑
j �=i

Wj

zi − zj

∣∣∣
≤ 1

|1 − σi|
∣∣∣∑
j �=i

Wj(zi − ẑi)
(ẑi − zj)(zi − zj)

∣∣∣+ |σi|
1 − |σi|

∣∣∣∑
j �=i

Wj

ẑi − zj

∣∣∣
≤ 1

1 − (n − 1)cn
|zi − ẑi|

∑
j �=i

|Wj |
|ẑi − zj ||zi − zj |

+
(n − 1)cn

1 − (n − 1)cn

∑
j �=i

|Wj |
|ẑi − zj | .

Hence, by (ii), (iii), (3.46), and (3.47), we estimate∣∣∣ n∑
j=1

Wj

ẑi − zj
+ 1
∣∣∣ ≤ λd

1 − (n − 1)cn

(n − 1)w
(1 − λn)d · d +

(n − 1)cn

1 − (n − 1)cn

(n − 1)w
(1 − λn)d

=
(n − 1)c2

n

(2cn − λn)(1 − λn)

(
λn + (n − 1)cn

)
. 
�

Remark 3.5. The inequalities (iv) and (vi) require 2λn<1 or 2cn(1+(n − 1)
cn) < 1. This inequality will be satisfied if cn < 1/(1 +

√
2n − 1), which is

true according to (3.45).

Lemma 3.9. Let z1, . . . , zn be distinct approximations and let the assump-
tions (3.45) and (3.46) of Lemma 3.8 hold. If the inequality

δn :=
(n − 1)cnλn

(2cn − λn)(1 − λn)

(
λn+(n−1)cn

)(
1+

λn

1 − 2λn

)n−1

≤ 1−2λn (3.48)

is valid, then:

(i) |Ŵi| ≤ δn|Wi|.
(ii) ŵ ≤ cnd̂.

Proof. Putting z = ẑi in (3.27), where ẑi is a new approximation obtained by
Tanabe’s method (3.44), and dividing with

∏
j �=i

(ẑi − ẑj), we obtain

Ŵi =
P (ẑi)∏

j �=i

(ẑi − ẑj)
= (ẑi − zi)

[
n∑

j=1

Wj

ẑi − zj
+ 1

]∏
j �=i

ẑi − zj

ẑi − ẑj
.
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From the last relation, we obtain by (ii), (v), and (vi) of Lemma 3.8

|Ŵi| = |ẑi − zi|
∣∣∣ n∑
j=1

Wj

ẑi − zj
+ 1
∣∣∣∏

j �=i

∣∣∣ ẑi − zj

ẑi − ẑj

∣∣∣
≤ λn

cn
|Wi| (n − 1)c2

n

(2cn − λn)(1 − λn)

(
λn + (n − 1)cn

)(
1 +

λn

1 − 2λn

)n−1

= δn|Wi|,

which proves (i).
Using (iv) of Lemma 3.8, we find

d̂ ≥ (1 − 2λn)d.

Combining this inequality with (i) of Lemma 3.9, (3.45), and (3.48), we
prove (ii):

|Ŵi| ≤ δn|Wi| ≤ δncnd ≤ δn

1 − 2λn
cnd̂ ≤ cnd̂. 
�

Theorem 3.6. Let the assumptions of Lemmas 3.7 and 3.8 be valid and let

βn :=
λnδn

2cn − λn
< 1 (3.49)

and
g(βn) <

1
2λn

. (3.50)

If z
(0)
1 , . . . , z

(0)
n are distinct initial approximations satisfying

w(0) ≤ cnd(0), (3.51)

then the Tanabe’s method (3.44) is convergent.

Proof. In Lemma 3.9 (assertion (ii)), we derived the implication w ≤ cnd ⇒
ŵ ≤ cnd̂. Using a similar procedure, we prove by induction that the initial
condition (3.51) implies the inequality w(m) ≤ cnd(m) for each m = 1, 2, . . ..
Therefore, all assertions of Lemmas 3.8 and 3.9 are valid for each m = 1, 2, . . ..
For example, we have

|W (m+1)
i | ≤ δn|W (m)

i | (i ∈ In, m = 0, 1, . . .). (3.52)

From the iterative formula (3.44), we see that corrections C
(m)
i are given by

C
(m)
i = W

(m)
i

(
1 −
∑
j �=i

W
(m)
j

z
(m)
i − z

(m)
j

)
(i ∈ In). (3.53)
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This correction has the required form

C
(m)
i = P (z(m)

i )/F (z(m)
1 , . . . , z(m)

n ),

where

Fi(z
(m)
1 , . . . , z(m)

n ) =

∏
j �=i

(
z
(m)
i − z

(m)
j

)
1 −
∑
j �=i

W
(m)
j

z
(m)
i − z

(m)
j

(i ∈ In).

According to (i) of Lemma 3.8, it follows Fi(z
(m)
1 , . . . , z

(m)
n ) �= 0, which means

that the Tanabe’s method is well defined in each iteration.
We now prove the first part of the theorem which is concerned with the

monotonicity of the sequences {C(m)
i } (i ∈ In) of corrections. Starting from

(3.53) and omitting iteration indices, we find by (ii) of Lemma 3.8 (which is
valid under the condition (3.51))

|Ci| = |Wi|
∣∣∣1 −

∑
j �=i

Wj

zi − zj

∣∣∣ ≤ λn

cn
|Wi|. (3.54)

According to (3.52)–(3.54) and by the inequalities (i) of Lemma 3.8, we
obtain

|Ĉi| ≤ λn

cn
|Ŵi| ≤ λnδn

cn
|Wi| =

λnδn

cn
·

∣∣∣∣∣Wi

(
1 −
∑
j �=i

Wj

zi − zj

)∣∣∣∣∣∣∣∣1 −
∑
j �=i

Wj

zi − zj

∣∣∣
≤ λnδn

cn(2 − λn/cn)
|Ci| = βn|Ci|,

where βn < 1 (assumption (3.49)). By induction, it is proved that the in-
equality |C(m+1)

i | ≤ βn|C(m)
i | holds for each i = 1, . . . , n and m = 0, 1, . . ..

By (3.51) and (3.54), we estimate

1
λn

|C(0)
i | ≤ w(0)

cn
≤ d(0).

According to this, (3.50), and (3.51), we conclude that

|z(0)
i − z

(0)
j | ≥ d(0) ≥ w(0)

cn
≥ 1

2λn

(|C(0)
i | + |C(0)

j |) > g(βn)
(|C(0)

i | + |C(0)
j |)

holds for each i �= j, i, j ∈ In. This proves (ii) of Theorem 3.1. 
�
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Lemma 3.10. The i-factor cn given by cn = 1/(3n) satisfies the condition
(3.45), (3.48), (3.49), and (3.50).

Proof. Obviously, cn = 1/(3n) < 1/
(
1+

√
2n − 1

)
. Furthermore, the sequence

{δn} is monotonically increasing so that

δn < lim
n→+∞ δn =

2
9
e4/9 ≈ 0.3465 < 0.35 for every n ≥ 3.

We adopt δn = 0.35 and prove that (3.48) holds; indeed,

δn = 0.35 < 1 − 2λn = 1 − 2(4n − 1)
9n2

(
≥ 59

81
≈ 0.728

)
for every n ≥ 3.

For δn = 0.35 and cn = 1/(3n), the sequence {βn} defined by

βn =
δnλn

2cn − λn
=

0.35(4n − 1)
2n + 1

is monotonically increasing so that

βn < lim
n→+∞ δn = 0.7 < 1 (n ≥ 3),

which means that (3.49) is valid.
Finally, we check the validity of the inequality (3.50) taking βn = 0.7. We

obtain

g(βn) = g(0.7) =
1

1 − 0.7
= 3.333... <

1
2λn

=
9n2

2(4n − 1)

(
≥ 81

22
≈ 3.68

)
,

wherefrom we conclude that the inequality (3.50) holds for every n ≥ 3. 
�

According to Lemma 3.10 and Theorem 3.1, the following theorem is
stated.

Theorem 3.7. The Tanabe’s method (3.44) is convergent under condition
(3.51), where cn = 1/(3n).

The Chebyshev-Like Method

In Sect. 1.1, we have presented the iterative fourth-order method of
Chebyshev’s type

z
(m+1)
i = z

(m)
i − W

(m)
i

1 + G
(m)
1,i

(
1 − W

(m)
i G

(m)
2,i

(1 + G
(m)
1,i )2

)
(i ∈ In, m = 0, 1, 2, . . .),

(3.55)
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proposed by M. Petković, Tričković, and -D. Herceg [146]. Before stating initial
conditions that guarantee the convergence of the method (3.55), three lemmas
which concern some necessary bounds and estimations are given first.

Lemma 3.11. Let z1, . . . , zn be distinct approximations to the zeros ζ1, . . . , ζn

of a polynomial P and let ẑ1, . . . , ẑn be new approximations obtained by the
iterative formula (3.55). If the inequality

w < cnd, cn =
2

5n + 3
(n ≥ 3) (3.56)

holds, then for all i ∈ In we have:

(i)
3n + 5
5n + 3

< |1 + G1,i| <
7n + 1
5n + 3

.

(ii) |ẑi − zi| ≤ λn

cn
|Wi| ≤ λnd, where λn =

2(9n2 + 34n + 21)
(3n + 5)3

.

Proof. According to the definition of the minimal distance d and the inequality
(3.56), it follows

|G1,i| ≤
∑
j �=i

|Wj |
|zi − zj | < (n − 1)cn, |G2,i| ≤

∑
j �=i

|Wj |
|zi − zj |2 <

(n − 1)cn

d
,

(3.57)
so that we find

|1 + G1,i| ≥ 1 −
∑
j �=i

|Wj |
|zi − zj | > 1 − (n − 1)cn =

3n + 5
5n + 3

and

|1 + G1,i| ≤ 1 +
∑
j �=i

|Wj |
|zi − zj | < 1 + (n − 1)cn =

7n + 1
5n + 3

.

Therefore, the assertion (i) of Lemma 3.11 is proved.
Using (i) and (3.57), we estimate∣∣∣ Wi

1 + G1,i

∣∣∣ < w

1 − (n − 1)cn
<

2
3n + 5

d (3.58)

and∣∣∣ WiG2,i

(1 + G1,i)2

∣∣∣ < w(n − 1)cn/d

(1 − (n − 1)cn)2
<

c2
n(n − 1)

(1 − (n − 1)cn)2
≤ 4(n − 1)

(3n + 5)2
. (3.59)
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Using (3.58) and (3.59), we obtain the bound (ii):

|ẑi − zi| = |Ci| =
∣∣∣ Wi

1 + G1,i

(
1 − WiG2,i

(1 + G1,i)2
)∣∣∣

≤ |Wi|
|1 + G1,i|

(
1 +

|WiG2,i|
|1 + G1,i|2

)
< |Wi| · 5n + 3

3n + 5

(
1 +

4(n − 1)
(3n + 5)2

)
<

2(9n2 + 34n + 21)
(3n + 5)3

d = λnd. 
�

According to Lemma 3.2 and the assertion (ii) of Lemma 3.11, under the
condition (3.56), we have

|ẑi − zj | > (1 − λn)d (i, j ∈ In), (3.60)
|ẑi − ẑj | > (1 − 2λn)d (i, j ∈ In), (3.61)

and ∣∣∣∣∣∏
j �=i

ẑi − zj

ẑi − ẑj

∣∣∣∣∣ <
(

1 +
λn

1 − 2λn

)n−1

. (3.62)

Let us note that the necessary condition λn < 1/2 is satisfied under the
condition (3.56).

Remark 3.6. Since (3.61) is valid for arbitrary pair i, j ∈ In and λn < 1/2 if
(3.56) holds, there follows

d̂ = min
j �=i

|ẑi − ẑj | > (1 − 2λn)d. (3.63)

Lemma 3.12. If the inequality (3.56) holds, then

(i) |Ŵi| < 0.22|Wi|.
(ii) ŵ <

2
5n + 3

d̂.

Proof. For distinct points z1, . . . , zn, we use the polynomial representation
(3.27) and putting z = ẑi in (3.27), we find

P (ẑi) = (ẑi − zi)

(
Wi

ẑi − zi
+
∑
j �=i

Wj

ẑi − zj
+ 1

)∏
j �=i

(ẑi − zj).
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After division with
∏
j �=i

(ẑi − ẑj), we get

Ŵi =
P (ẑi)∏

j �=i

(ẑi − ẑj)
= (ẑi − zi)

(
Wi

ẑi − zi
+
∑
j �=i

Wj

ẑi − zj
+ 1

)∏
j �=i

(
ẑi − zj

ẑi − ẑj

)
.

(3.64)
From the iterative formula (3.55), it follows

Wi

ẑi − zi
=

−(1 + G1,i)

1 − WiG2,i

(1 + G1,i)2

= −1 −
G1,i +

WiG2,i

(1 + G1,i)2

1 − WiG2,i

(1 + G1,i)2

. (3.65)

Then

Wi

ẑi − zi
+
∑
j �=i

Wj

ẑi − zj
+ 1 = −1 −

G1,i +
WiG2,i

(1 + G1,i)2

1 − WiG2,i

(1 + G1,i)2

+
∑
j �=i

Wj

ẑi − zj
+ 1

=

−
∑
j �=i

Wj

zi − zj
+
∑
j �=i

Wj

ẑi − zj
− WiG2,i

(1 + G1,i)2
− WiG2,i

(1 + G1,i)2
∑
j �=i

Wj

ẑi − zj

1 − WiG2,i

(1 + G1,i)2

=

−(ẑi − zi)
∑
j �=i

Wj

(zi − zj)(ẑi − zj)
− WiG2,i

(1 + G1,i)2
(
1 +
∑
j �=i

Wj

ẑi − zj

)
1 − WiG2,i

(1 + G1,i)2

.

From the last formula, we obtain by (3.59), (3.60), the definition of the min-
imal distance, and (ii) of Lemma 3.11∣∣∣ Wi

ẑi − zi
+
∑
j �=i

Wj

ẑi − zj
+ 1
∣∣∣

≤
|ẑi − zi|

∑
j �=i

|Wj |
|zi − zj ||ẑi − zj | +

∣∣∣ WiG2,i

(1 + G1,i)2

∣∣∣(1 +
∑
j �=i

|Wj |
|ẑi − zj |

)
1 −
∣∣∣ WiG2,i

(1 + G1,i)2

∣∣∣
<

8(135n5 + 594n4 + 646n3 − 292n2 − 821n − 262)
(5n + 3)(9n2 + 26n + 29)(27n3 + 117n2 + 157n + 83)

= yn. (3.66)
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Now, starting from (3.64) and taking into account (3.60)–(3.62), (3.66), and
the assertions of Lemma 3.11, we obtain

|Ŵi| ≤ |ẑi − zi|
∣∣∣ n∑
j=1

Wj

ẑi − zj
+ 1
∣∣∣∏

j �=i

(
1 +

|ẑj − zj |
|ẑi − ẑj |

)
<

λn

cn
|Wi|yn

(
1 +

λn

1 − 2λn

)n−1

= φn|Wi|.

Using the symbolic computation in the programming package Mathematica
6.0, we find that the sequence

{
φn

}
n=3,4,...

attains its maximum for n = 5:

φn ≤ φ5 < 0.22, for all n ≥ 3.

Therefore, |Ŵi| < 0.22|Wi| and the assertion (i) is valid.
According to this, (3.63), and the inequality

0.22(3n + 5)3

27n3 + 99n2 + 89n + 41
≤ 0.32 < 1,

we find

|Ŵi| < 0.22|Wi| < 0.22
2d

5n + 3
< 0.22

2
5n + 3

(3n + 5)3

27n3 + 99n2 + 89n + 41
d̂,

wherefrom
ŵ <

2
5n + 3

d̂,

which proves the assertion (ii) of Lemma 3.12. 
�
Now, we are able to establish the main convergence theorem for the iter-

ative method (3.55).

Theorem 3.8. If the initial approximations z
(0)
1 , . . . , z

(0)
n satisfy the initial

condition
w(0) < cnd(0), cn =

2
5n + 3

(n ≥ 3), (3.67)

then the iterative method (3.55) is convergent.

Proof. It is sufficient to prove that the inequalities (i) and (ii) of Theorem 3.1
are valid for the correction

C
(m)
i =

W
(m)
i

1 + G
(m)
1,i

(
1 − W

(m)
i G

(m)
2,i

(1 + G
(m)
1,i )2

)
(i ∈ In),

which appears in the considered method (3.55).
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Using Lemma 3.11(i) and (3.59), we find

|Ci| = |ẑi − zi| =
∣∣∣ Wi

1 + G1,i

(
1 − WiG2,i

(1 + G1,i)2
)∣∣∣

<
5n + 3
3n + 5

Wi

(
1 +

4(n − 1)
(3n + 5)2

)
=

(5n + 3)(9n2 + 34n + 21)
(3n + 5)3

|Wi|
= xn|Wi|.

It is easy to show that the sequence {xn}n=3,4,... is monotonically increasing
and xn < lim

m→∞xn = 5/3, wherefrom

|Ci| <
5
3
|Wi|. (3.68)

In Lemma 3.12 (assertion (ii)), the implication w < cnd ⇒ ŵ < cnd̂ has been
proved. Using a similar procedure, we prove by induction that the initial
condition (3.67) implies the inequality w(m) < cnd(m) for each m = 1, 2, . . ..
Therefore, by (i) of Lemma 3.12, we obtain

|W (m+1)
i | < 0.22|W (m)

i | (i ∈ In, m = 0, 1, . . .).

According to this and by the inequalities (i) of Lemma 3.11 and (3.68), we
obtain (omitting iteration indices)

|Ĉi| =
5
3
|Ŵi| <

5
3
· 0.22|Wi|

=
1.1
3

∣∣∣ Wi

1 + G1,i

(
1 − WiG2,i

(1 + G1,i)2
)∣∣∣∣∣∣∣∣ 1 + G1,i

1 − WiG2,i

(1 + G1,i)2

∣∣∣∣∣
<

1.1
3

|Ci|
7n + 1
5n + 3

1 − 4(n − 1)
(3n + 5)2

< 0.52|Ci|.

In this manner, we have proved by induction that the inequality |C(m+1)
i | <

0.52|C(m)
i | holds for each i = 1, . . . , n and m = 0, 1, . . .. Furthermore, com-

paring this result with (i) of Theorem 3.1, we see that β = 0.52 < 1. This
yields the first part of the theorem. In addition, according to (3.57), we note
that the following is valid:

|G1,i| < (n − 1)cn =
2(n − 1)
5n + 3

≤ 2
9

< 1,

which means that 0 /∈ 1 + G1,i. Using induction and the assertion (ii) of
Lemma 3.12, we prove that 0 /∈ 1 + G

(m)
1,i for arbitrary iteration index m.



3.3 Guaranteed Convergence: Sequence Approach 97

Therefore, under the condition (3.67), the iterative method (3.55) is well
defined in each iteration.

To prove (ii) of Theorem 3.8, we first note that β = 0.52 yields g(β) =
1

1−0.52 ≈ 2.08. It remains to prove the disjunctivity of the inclusion disks

S1 = {z(0)
1 ; 2.08|C(0)

1 }, . . . , Sn = {z(0)
n ; 2.08|C(0)

n }.

By virtue of (3.68), we have |C(0)
i | < 5

3w(0), wherefrom

d(0) >
5n + 3

2
w(0) >

5n + 3
2

· 3
5
|C(0)

i | ≥ 3(5n + 3)
20

(|C(0)
i | + |C(0)

j |)
> g(0.52)

(|C(0)
i | + |C(0)

j |).
This means that∣∣z(0)

i − z
(0)
j

∣∣ ≥ d(0) > g(0.52)
(∣∣C(0)

i

∣∣+ ∣∣C(0)
j

∣∣) = radSi + radSj .

Therefore, the inclusion disks S1, . . . , Sn are disjoint, which completes the
proof of Theorem 3.8. 
�

3.3 Guaranteed Convergence: Sequence Approach

In what follows, we will present another concept of the convergence analysis
involving initial conditions of the form (3.7) which guarantee the convergence
of the considered methods.

Let z
(m)
1 , . . . , z

(m)
n be approximations to the simple zeros ζ1, . . . , ζn of a

polynomial P , generated by some iterative method for the simultaneous de-
termination of zeros at the mth iterative step and let u

(m)
i = z

(m)
i −ζi (i ∈ In).

Our main aim is to study the convergence of the sequences {u(m)
1 }, . . . , {u(m)

n }
under the initial condition (3.7). In our analysis, we will use Corollary 1.1
proved in [118] (see Sect. 1.2).

The point estimation approach presented in this section consists of the
following main steps:

1◦ If cn ≤ 1/(2n) and (3.7) holds, from Corollary 1.1, it follows that the
inequalities

|u(0)
i | = |z(0)

i − ζi| <
|W (0)

i |
1 − ncn

(3.69)

are valid for each i ∈ In. These inequalities have an important role in
the estimation procedure involved in the convergence analysis of the se-
quences

{
z
(m)
i

}
, produced by the considered simultaneous method.
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2◦ In the next step, we derive the inequalities

d < τnd̂ and |Ŵi| < βn|Wi|,

which involve the minimal distances and the Weierstrass’ corrections at
two successive iterative steps. The i-factor cn appearing in (3.7) has to
be chosen to provide such values of τn and βn which give the following
implication

w < cnd =⇒ ŵ < cnd̂,

important in the proof of convergence theorems by induction. Let us note
that the above implication will hold if τnβn < 1.

3◦ In the final step, we derive the inequalities of the form

|u(m+1)
i | ≤ γ(n, d(m))|u(m)

i |p
(

n∑
j=1
j �=i

|u(m)
j |q

)r

(3.70)

for i = 1, . . . , n and m = 0, 1, . . ., and prove that all sequences{|u(m)
1 |}, . . ., {|u(m)

n |} tend to 0 under the condition (3.7) (with suit-
ably chosen cn), which means that z

(m)
i → ζi (i ∈ In). The order of

convergence of these sequences is obtained from (3.70) and it is equal to
p + qr.

To study iterative methods which do not involve Weierstrass’ corrections
Wi, appearing in the initial conditions of the form (3.7), it is necessary to
establish a suitable relation between Newton’s correction P (zi)/P ′(zi) and
Weierstrass’ correction Wi. Applying the logarithmic derivative to P (t), rep-
resented by the Lagrangean interpolation formula (3.27) (for z = t), one
obtains

P ′(t)
P (t)

=
n∑

j=1
j �=i

1
t − zj

+

n∑
j=1
j �=i

Wj

t − zj
+ 1 − (t − zi)

n∑
j=1
j �=i

Wj

(t − zj)2

Wi + (t − zi)

[
n∑

j=1
j �=i

Wj

t − zj
+ 1

] . (3.71)

Putting t = zi in (3.71), we get Carstensen’s identity [15]

P ′(zi)
P (zi)

=
n∑

j=1
j �=i

1
zi − zj

+

n∑
j=1
j �=i

Wj

zi − zj
+ 1

Wi
. (3.72)

In what follows, we will apply the three-stage aforementioned procedure
for the convergence analysis of some frequently used simultaneous methods.
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The Ehrlich–Aberth’s Method

In this part, we use Newton’s and Weierstrass’ correction, given, respectively,
by

N
(m)
i =

P (z(m)
i )

P ′(z(m)
i )

and W
(m)
i =

P (z(m)
i )

n∏
j=1
j �=i

(z(m)
i − z

(m)
j )

(i ∈ In, m = 0, 1, . . .).

We are concerned here with one of the most efficient numerical methods for
the simultaneous approximation of all zeros of a polynomial, given by the
iterative formula

z
(m+1)
i = z

(m)
i − 1

1

N
(m)
i

−
n∑

j=1
j �=i

1

z
(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .). (3.73)

Our aim is to state practically applicable initial conditions of the form
(3.7), which enable a guaranteed convergence of the Ehrlich–Aberth’s method
(3.73). First, we present a lemma concerned with the localization of polyno-
mial zeros.

Lemma 3.13. Assume that the following condition

w < cnd, cn =

⎧⎪⎪⎨⎪⎪⎩
1

2n + 1.4
, 3 ≤ n ≤ 7

1
2n

, n ≥ 8

(3.74)

is satisfied. Then, each disk
{

zi;
1

1 − ncn
|Wi|
}

(i ∈ In) contains one and only

one zero of P .

The above assertion follows from Corollary 1.1 under the condition (3.74).

Lemma 3.14. Let z1, . . . , zn be distinct approximations to the zeros ζ1, . . . , ζn

of a polynomial P of degree n and let ẑ1, . . . , ẑn be new respective approxi-
mations obtained by the Ehrlich–Aberth’s method (3.73). Then, the following
formula is valid:

Ŵi = −(ẑi − zi)2
∑
j �=i

Wj

(ẑi − zj)(zi − zj)

∏
j �=i

(
1 +

ẑj − zj

ẑi − ẑj

)
. (3.75)
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Proof. From the iterative formula (3.73), one obtains

1
ẑi − zi

=
∑
j �=i

1
zi − zj

− P ′(zi)
P (zi)

,

so that, using (3.72),

Wi

ẑi − zi
= Wi

(∑
j �=i

1
zi − zj

− P ′(zi)
P (zi)

)
= −Wi

[
1

Wi

(∑
j �=i

Wj

zi − zj
+ 1
)]

= −
∑
j �=i

Wj

zi − zj
− 1.

According to this, we have

n∑
j=1

Wj

ẑi − zj
+ 1 =

Wi

ẑi − zi
+
∑
j �=i

Wj

ẑi − zj
+ 1 = −

∑
j �=i

Wj

zi − zj
+
∑
j �=i

Wj

ẑi − zj

= −(ẑi − zi)
∑
j �=i

Wj

(ẑi − zj)(zi − zj)
.

Taking into account the last expression, returning to (3.27), we find for
z = ẑi

P (ẑi) =
( n∑

j=1

Wj

ẑi − zj
+ 1
) n∏

j=1

(ẑi − zj)

= −(ẑi − zi)2
∑
j �=i

Wj

(ẑi − zj)(zi − zj)

∏
j �=i

(ẑi − zj).

After dividing by
∏

j �=i(ẑi − ẑj) and some rearrangement, we obtain (3.75).

�

Let us introduce the abbreviations:

ρn =
1

1 − ncn
, γn =

1
1 − ρncn − (n − 1)(ρncn)2

,

λn = ρncn(1 − ρncn)γn, βn =
(n − 1)λ2

n

1 − λn

(
1 +

λn

1 − 2λn

)n−1

.

Lemma 3.15. Let ẑ1, . . . , ẑn be approximations produced by the Ehrlich–
Aberth’s method (3.73) and let ui = zi − ζi and ûi = ẑi − ζi. If n ≥ 3 and the
inequality (3.74) holds, then:

(i) d <
1

1 − 2λn
d̂.
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(ii) ŵ < βnw.
(iii) ŵ < cnd̂.
(iv) |ûi| ≤ γn

d2
|ui|2

∑
j �=i

|uj |.

Proof. According to the initial condition (3.74) and Lemma 3.13, we have

|ui| = |zi − ζi| ≤ ρn|Wi| ≤ ρnw < ρncnd. (3.76)

In view of (3.76) and the definition of the minimal distance d, we find

|zj − ζi| ≥ |zj − zi| − |zi − ζi| > d − ρncnd = (1 − ρncn)d. (3.77)

Using the identity

P ′(zi)
P (zi)

=
n∑

j=1

1
zi − ζj

=
1
ui

+
∑
j �=i

1
zi − ζj

, (3.78)

from (3.73), we get

ûi = ẑi − ζi = zi − ζi − 1
1
ui

+
∑
j �=i

1
zi − ζj

−
∑
j �=i

1
zi − zj

= ui − ui

1 − uiSi
= − u2

i Si

1 − uiSi
, (3.79)

where Si =
∑
j �=i

uj

(zi − ζj)(zi − zj)
.

Using the definition of d and the bounds (3.76) and (3.77), we estimate

|uiSi| ≤ |ui|
∑
j �=i

|uj |
|zi − ζj ||zi − zj | < ρncnd · (n − 1)ρncnd

(1 − ρncn)d2

=
(ρncn)2(n − 1)

1 − ρncn
. (3.80)

Now, by (3.76) and (3.80), from (3.73) we find

|ẑi − zi| =
∣∣∣ ui

1 − uiSi

∣∣∣ ≤ |ui|
1 − |uiSi| <

|ui|
1 − (ρncn)2(n − 1)

1 − ρncn

<
ρncn(1 − ρncn)

1 − ρncn − (ρncn)2(n − 1)
d = ρncn(1 − ρncn)γnd

= λnd (3.81)
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and also
|ẑi − zi| < (1 − ρncn)γn|ui| < (1 − ρncn)γnρn|Wi|. (3.82)

Having in mind (3.81), according to Lemma 3.2, we conclude that the esti-
mates |ẑi − zj | > (1 − λn)d and |ẑi − ẑj | > (1 − 2λn)d (i ∈ In) hold. From
the last inequality, we find

d

d̂
<

1
1 − 2λn

for every n ≥ 3, (3.83)

which proves the assertion (i) of Lemma 3.15.
Using the starting inequality w/d < cn and the bounds (3.81), (3.82),

(3.14), (3.15), and (3.16), we estimate the quantities involved in (3.75):

|Ŵi| ≤ |ẑi − zi|2
∑
j �=i

|Wj |
|ẑi − zj ||zi − zj |

∏
j �=i

(
1 +

|ẑj − zj |
|ẑi − ẑj |

)
<

(n − 1)λ2
n

(1 − λn)

(
1 +

λn

1 − 2λn

)n−1

|Wi|
= βn|Wi|.

Therefore, we have
ŵ < βnw (3.84)

so that, by (3.74), (3.83), and (3.84), we estimate

ŵ < βnw < βncnd <
βn

1 − 2λn
cnd̂.

Since
βn

1 − 2λn
< 0.95 < 1 for all 3 ≤ n ≤ 7

and
βn

1 − 2λn
< 0.78 < 1 for all n ≥ 8,

we have
ŵ < cnd̂, n ≥ 3.

In this way, we have proved the assertions (ii) and (iii) of Lemma 3.15.
Using the previously derived bounds, we find

|ûi| ≤ |ui|2|Si|
1 − |uiSi| <

|ui|2

1 − (ρcn)2(n − 1)
1 − ρncn

∑
j �=i

|uj |
|zi − ζj ||zi − zj |

<
1 − ρncn

1 − ρncn − (ρncn)2(n − 1)
|ui|2

∑
j �=i

|uj |
(1 − ρncn)d2

=
1

(1 − ρncn − (ρncn)2(n − 1))d2
|ui|2

∑
j �=i

|uj |,
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wherefrom
|ûi| <

γn

d2
|ui|2

∑
j �=i

|uj |. (3.85)

This strict inequality is derived assuming that ui �= 0 (see Remark 3.8). If we
include the case ui = 0, then it follows

|ûi| ≤ γn

d2
|ui|2

∑
j �=i

|uj |

and the assertion (iv) of Lemma 3.15 is proved. 
�
Remark 3.7. In what follows, the assertions of the form (i)–(iv) of Lemma 3.15
will be presented for the three other methods, but for different i-factor cn

and specific entries of λn, βn, and γn.

We now give the convergence theorem for the Ehrlich–Aberth’s method
(3.73), which involves only initial approximations to the zeros, the polynomial
coefficients, and the polynomial degree n.

Theorem 3.9. Under the initial condition

w(0) < cnd(0), (3.86)

where cn is given by (3.74), the Ehrlich–Aberth’s method (3.73) is convergent
with the cubic convergence.

Proof. The convergence analysis is based on the estimation procedure of the
errors u

(m)
i = z

(m)
i − ζi (i ∈ In). The proof is by induction with the argu-

mentation used for the inequalities (i)–(iv) of Lemma 3.15. Since the initial
condition (3.86) coincides with (3.74), all estimates given in Lemma 3.15 are
valid for the index m = 1. Actually, this is the part of the proof with respect
to m = 1. Furthermore, the inequality (iii) again reduces to the condition
of the form (3.74) and, therefore, the assertions (i)–(iv) of Lemma 3.15 hold
for the next index, and so on. All estimates and bounds for the index m are
derived essentially in the same way as for m = 0. In fact, the implication

w(m) < cnd(m) =⇒ w(m+1) < cnd(m+1)

plays the key role in the convergence analysis of the Ehrlich–Aberth’s method
(3.73) because it involves the initial condition (3.86), which enables the valid-
ity of all inequalities given in Lemma 3.15 for all m = 0, 1, . . .. In particular,
regarding (3.83) and (3.85), we have

d(m)

d(m+1)
<

1
1 − 2λn

(3.87)
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and

|u(m+1)
i | ≤ γn

(d(m))2
|u(m)

i |2
n∑

j=1
j �=i

|u(m)
j | (i ∈ In) (3.88)

for each iteration index m = 0, 1, . . . if (3.86) holds.
Substituting

t
(m)
i =

[ (n − 1)γn

(1 − 2λn)(d(m))2

]1/2

|u(m)
i |,

the inequalities (3.88) become

t
(m+1)
i ≤ (1 − 2λn)d(m)

(n − 1)d(m+1)

(
t
(m)
i

)2 n∑
j=1
j �=i

t
(m)
j ,

wherefrom, by (3.87),

t
(m+1)
i <

(
t
(m)
i

)2
n − 1

n∑
j=1
j �=i

t
(m)
j (i ∈ In). (3.89)

By virtue of (3.76), we find

t
(0)
i =

√
(n − 1)γn

(1 − 2λn)(d(0))2
|u(0)

i | < ρncnd(0)

√
(n − 1)γn

(1 − 2λn)(d(0))2

= ρncn

√
(n − 1)γn

1 − 2λn

for each i = 1, . . . , n. Taking

t = max
1≤i≤n

t
(0)
i < ρncn

√
(n − 1)γn

1 − 2λn
,

we come to the inequalities

t
(0)
i ≤ t < 0.571 < 1 (3 ≤ n ≤ 7)

and
t
(0)
i ≤ t < 0.432 < 1 (n ≥ 8)

for all i = 1, . . . , n. According to this, from (3.89), we conclude that the
sequences

{
t
(m)
i

}
(and, consequently,

{|u(m)
i |}) tend to 0 for all i = 1, . . . , n.

Therefore, the Ehrlich–Aberth’s method (3.73) is convergent.
Taking into account that the quantity d(m), which appears in (3.88), is

bounded (see the proof of Theorem 5.1) and tends to min
i�=j

|ζi−ζj | and setting
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u(m) = max
1≤i≤n

|u(m)
i |,

from (3.88), we obtain

|u(m+1)
i | ≤ u(m+1) <

(n − 1)γn

d(m)
|u(m)|3,

which proves the cubic convergence. 
�
Remark 3.8. As usual in the convergence analysis of iterative methods (see,
e.g., [48]), we could assume that the errors u

(m)
i =z

(m)
i − ζi (i ∈ In) do

not reach 0 for a finite m. However, if u
(m0)
i =0 for some indices i1, . . . , ik

and m0 ≥ 0, we just take z
(m0)
i1

, . . . , z
(m0)
ik

as approximations to the zeros
ζi1 , . . . , ζik

and do not iterate further for the indices i1, . . . , ik. If the se-
quences {u(m)

i } (i ∈ In \ {i1, . . . , ik}) have the order of convergence q, then
obviously the sequences {u(m)

i1
}, . . . , {u(m)

ik
} converge with the convergence

rate at least q. This remark refers not only to the iterative method (3.73)
but also to all methods considered in this book. For this reason, we do not
discuss this point further.

The Ehrlich–Aberth’s Method with Newton’s Corrections

The convergence of the Ehrlich–Aberth’s method (3.1) can be accelerated
using Newton’s corrections N

(m)
i = P (z(m)

i )/P ′(z(m)
i ) (i ∈ In, m = 0, 1, . . .).

In this way, the following method for the simultaneous approximation of all
simple zeros of a given polynomial P can be established

z
(m+1)
i = z

(m)
i − 1

1

N
(m)
i

−
∑
j �=i

1

z
(m)
i − z

(m)
j + N

(m)
j

(i ∈ In), (3.90)

where m = 0, 1, . . ., see Sect. 1.1. This method will be briefly called the EAN
method.

From Corollary 1.1, the following lemma can be stated.

Lemma 3.16. Let z1, . . . , zn be distinct numbers satisfying the inequality

w < cnd, cn =

⎧⎪⎪⎨⎪⎪⎩
1

2.2n + 1.9
, 3 ≤ n ≤ 21

1
2.2n

, n ≥ 22

. (3.91)

Then, the disks
{

z1;
1

1 − ncn
|W1|
}

, . . . ,
{

zn;
1

1 − ncn
|Wn|

}
are mutually dis-

joint and each of them contains exactly one zero of a polynomial P .

We now give the expression for the improved Weierstrass’ correction Ŵi.
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Lemma 3.17. Let z1, . . . , zn be distinct approximations to the zeros ζ1, . . . , ζn

of a polynomial P of degree n and let ẑ1, . . . , ẑn be new respective approxi-
mations obtained by the EAN method (3.90). Then, the following formula is
valid:

Ŵi = −(ẑi − zi)
(
WiΣN,i + (ẑi − zi)ΣW,i

)∏
j �=i

(
1 +

ẑj − zj

ẑi − ẑj

)
, (3.92)

where

ΣN,i =
∑
j �=i

Nj

(zi − zj + Nj)(zi − zj)
, ΣW,i =

∑
j �=i

Wj

(ẑi − zj)(zi − zj)
.

The relation (3.92) is obtained by combining the Lagrangean interpolation
formula (3.27) for z = ẑi, the iterative formula (3.90), and the identity (3.72).
Since the proving technique of Lemma 3.17 is a variation on earlier procedure
applied in the proof of Lemma 3.14, we shall pass over it lightly. The complete
proof can be found in [119].

We introduce the abbreviations:

ρn =
1

1 − ncn
, δn = 1 − ρncn − (n − 1)ρncn,

αn = (1 − ρncn)((1 − ρncn)2 − (n − 1)ρncn),

γn =
n − 1

αn − (n − 1)2(ρncn)3
, λn =

αnγnρncn

n − 1
,

βn = λn(n − 1)
( (1 − ρncn)2ρncn

αn
+

λn

1 − λn

)(
1 +

λn

1 − 2λn

)n−1

.

Lemma 3.18. Let ẑ1, . . . , ẑn be approximations generated by the EAN method
(3.90) and let ui = zi − ζi, ûi = ẑi − ζi. If n ≥ 3 and the inequality (3.91)
holds, then:

(i) d <
1

1 − 2λn
d̂.

(ii) ŵ < βnw.
(iii) ŵ < cnd̂.
(iv) |ûi| ≤ γn

d3
|ui|2

∑
j �=i

|uj |2.

Proof. In regard to (3.91) and Lemma 3.16, we have ζi ∈
{

zi;
1

1 − ncn
|Wi|
}

(i ∈ In), so that

|ui| = |zi − ζi| ≤ ρn|Wi| ≤ ρnw < ρncnd. (3.93)
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According to this and the definition of the minimal distance d, we find

|zj − ζi| ≥ |zj − zi| − |zi − ζi| > d − ρncnd = (1 − ρncn)d. (3.94)

Using the identity (3.78) and the estimates (3.93) and (3.94), we obtain∣∣∣∣∣P ′(zi)
P (zi)

∣∣∣∣∣ =
∣∣∣∣∣

n∑
j=1

1
zi − ζj

∣∣∣∣∣ ≥ 1
|zi − ζi| −

∑
j �=i

1
|zi − ζj | >

1
ρncnd

− n − 1
(1 − ρncn)d

=
1 − ρncn − (n − 1)ρncn

(1 − ρncn)ρncnd
=

δn

(1 − ρncn)ρncnd
.

Hence

|Ni| =

∣∣∣∣∣ P (zi)
P ′(zi)

∣∣∣∣∣ < (1 − ρncn)ρncnd

δn
, (3.95)

so that

|zi − zj + Nj | ≥ |zi − zj | − |Nj | > d − (1 − ρncn)ρncnd

δn

=
(1 − ρncn)2 − (n − 1)ρncn

δn
d =

αn

δn(1 − ρncn)
d. (3.96)

Let us introduce

Si =
∑
j �=i

Nj − uj

(zi − ζj)(zi − zj + Nj)
, hj =

∑
k �=j

1
zj − ζk

.

We start from the iterative formula (3.90) and use the identity (3.78) to find

ûi = ẑi − ζi = zi − ζi − 1
1
ui

+
∑
j �=i

1
zi − ζj

−
∑
j �=i

1
zi − zj + Nj

= ui − ui

1 + ui

∑
j �=i

Nj − uj

(zi − ζj)(zi − zj + Nj)

= ui − ui

1 + uiSi
=

u2
i Si

1 + uiSi
. (3.97)

Furthermore, we find

Nj =
uj

1 + ujhj
, Nj−uj = − u2

jhj

1 + ujhj
, Si = −

∑
j �=i

u2
jhj

1 + ujhj

(zi − ζj)(zi − zj + Nj)
.
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Using (3.93) and the inequality

|hj | =
∣∣∣∑
k �=j

1
zj − ζk

∣∣∣ < n − 1
(1 − ρncn)d

,

we find

∣∣∣ hj

1 + ujhj

∣∣∣ ≤ |hj |
1 − |uj ||hj | <

n − 1
(1 − ρncn)d

1 − ρncnd
n − 1

(1 − ρncn)d

=
n − 1
δnd

. (3.98)

Combining (3.93), (3.94), (3.96), and (3.98), we obtain

|uiSi| ≤ |ui|
∑
j �=i

|uj |2
∣∣∣ hj

1 + ujhj

∣∣∣
|zi − ζj ||zi − zj + Nj |

< ρncnd ·
(n − 1)(ρncnd)2

n − 1
δnd

(1 − ρncn)d
αn

δn(1 − ρncn)
d

=
(n − 1)2(ρncn)3

αn
. (3.99)

Using (3.93) and (3.99), from (3.90), we find

|ẑi − zi| =
∣∣∣ ui

1 + uiSi

∣∣∣ ≤ |ui|
1 − |uiSi| <

|ui|
1 − (n − 1)2(ρncn)3

αn

=
αn

αn − (n − 1)2(ρncn)3
|ui| <

αnρncnγn

n − 1
d = λnd

and

|ẑi − zi| <
αn

αn − (n − 1)2(ρncn)3
|ui| <

αnρnγn

n − 1
|Wi| =

λn

cn
|Wi| < λnd.

(3.100)
Since (3.100) holds, we apply Lemma 3.2 and obtain

d <
1

1 − 2λn
d̂ (3.101)

from (3.15). Thus, the assertion (i) of Lemma 3.18 is valid.
Using the starting inequality w/d < cn and the bounds (3.95), (3.96),

(3.100), (3.14), and (3.15), for n ≥ 3, we estimate the quantities appearing
in (3.92):
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|Wi||ΣN,i| < w
(n − 1)

(1 − ρncn)ρncnd

δn
αn

δn(1 − ρncn)
d2

<
(n − 1)(1 − ρncn)2ρnc2

n

αn
,

|ẑi − zi||ΣW,i| < λnd
(n − 1)cnd

(1 − λn)d · d <
(n − 1)λncn

1 − λn
.

According to the last two bounds and (3.16), from (3.92), we estimate

|Ŵi| ≤ |ẑi − zi|
(
|Wi||ΣN,i| + |ẑi − zi||ΣW,i|

)∣∣∣∏
j �=i

(
1 +

ẑj − zj

ẑi − ẑj

)∣∣∣
<

λn

cn
|Wi|
( (n − 1)(1 − ρncn)2ρnc2

n

αn
+

(n − 1)λncn

1 − λn

)(
1 +

λn

1 + 2λn

)n−1

= βn|Wi| ≤ βnw,

i.e.,
ŵ < βnw. (3.102)

Therefore, we have proved the assertion (ii) of Lemma 3.18.
Since

βn

1 − 2λn
< 0.942 for 3 ≤ n ≤ 21

and
βn

1 − 2λn
< 0.943 for n ≥ 22,

starting from (3.102), by (3.91) and (3.101), we find

ŵ < βnw < βncnd <
βn

1 − 2λn
· cnd̂ < cnd̂,

which means that the implication w < cnd ⇒ ŵ < cnd holds. This proves
(iii) of Lemma 3.18.

Using the above bounds, from (3.97), we obtain

|ûi| ≤ |ui|2|Si|
1 − |uiSi| <

αn

αn − (n − 1)2(ρncn)3
|ui|2

∑
j �=i

|uj |2
∣∣∣ hj

1 + ujhj

∣∣∣
|zi − ζj ||zi − zj + Nj |

<
αn

αn − (n − 1)2(ρncn)3

n − 1
δnd

(1 − ρncn)d
αn

δn(1 − ρncn)
d
|ui|2

∑
j �=i

|uj |2,
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wherefrom (taking into account Remark 3.8)

|ûi| ≤ γn

d3
|ui|2

∑
j �=i

|uj |2,

which proves (iv) of Lemma 3.18. 
�
Now, we give the convergence theorem for the EAN method (3.90).

Theorem 3.10. Let P be a polynomial of degree n ≥ 3 with simple zeros. If
the initial condition

w(0) < cnd(0) (3.103)

holds, where cn is given by (3.91), then the EAN method (3.90) is convergent
with the order of convergence 4.

Proof. Similarly to the proof of Theorem 3.9, we apply induction with the
argumentation used for the inequalities (i)–(iv) of Lemma 3.18. According to
(3.103) and (3.91), all estimates given in Lemma 3.18 are valid for the index
m = 1. We notice that the inequality (iii) coincides with the condition of the
form (3.103), and hence, the assertions (i)–(iv) of Lemma 3.18 are valid for
the next index, etc. The implication

w(m) < cnd(m) =⇒ w(m+1) < cnd(m+1)

provides the validity of all inequalities given in Lemma 3.18 for all m =
0, 1, . . .. In particular, we have

d(m)

d(m+1)
<

1
1 − 2λn

(3.104)

and

|u(m+1)
i | ≤ γn

(d(m))3
|u(m)

i |2
n∑

j=1
j �=i

|u(m)
j |2 (i ∈ In) (3.105)

for each iteration index m = 0, 1, . . . , where

γn =
n − 1

αn − (n − 1)2(ρncn)3
.

Substituting

t
(m)
i =

[ (n − 1)γn

(1 − 2λn)(d(m))3

]1/3

|u(m)
i |

into (3.105) yields

t
(m+1)
i ≤ (1 − 2λn)d(m)

(n − 1)d(m+1)

(
t
(m)
i

)2 n∑
j=1
j �=i

(
t
(m)
j

)2 (i ∈ In).
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Hence, using (3.104), we obtain

t
(m+1)
i <

1
n − 1

[t(m)
i ]2

n∑
j=1
j �=i

[t(m)
j ]2 (i ∈ In). (3.106)

Using (3.93), we find

t
(0)
i =

[ (n − 1)γn

(1 − 2λn)(d(0))3

]1/3

|u(0)
i | < ρncnd(0)

[ (n − 1)γn

(1 − 2λn)(d(0))3

]1/3

= ρncn

[ (n − 1)γn

1 − 2λn

]1/3

.

Taking t = max
1≤i≤n

t
(0)
i yields

t
(0)
i ≤ t < 0.626 < 1 (3 ≤ n ≤ 21)

and
t
(0)
i ≤ t < 0.640 < 1 (n ≥ 22)

for each i = 1, . . . , n. In regard to this, we conclude from (3.106) that the
sequences

{
t
(m)
i

}
and

{|u(m)
i |} tend to 0 for all i = 1, . . . , n, meaning that

z
(m)
i → ζi. Therefore, the EAN method (3.90) is convergent. Besides, taking

into account that the quantity d(m) appearing in (3.105) is bounded and
tends to min

1≤i,j≤n
i�=j

|ζi − ζj | and setting

u(m) = max
1≤i≤n

|u(m)
i |,

from (3.105), we obtain

|u(m+1)
i | ≤ u(m+1) < (n − 1)

γn

(d(m))3
(
u(m)
)4

,

which means that the order of convergence of the EAN method is 4. 
�

The Börsch-Supan’s Method with Weierstrass’ Correction

The cubically convergent Börsch-Supan’s method

z
(m+1)
i = z

(m)
i − W

(m)
i

1 +
∑
j �=i

W
(m)
j

z
(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .),
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presented in [10], can be accelerated by using Weierstrass’ corrections W
(m)
i =

P (z(m)
i )
/∏

j �=i(z
(m)
i −z

(m)
j ). In this manner, we obtain the following iterative

formula (see Nourein [95])

z
(m+1)
i = z

(m)
i − W

(m)
i

1 +
∑
j �=i

W
(m)
j

z
(m)
i − W

(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .).

(3.107)

The order of convergence of the Börsch-Supan’s method with Weierstrass’
corrections (3.107) is 4 (see, e.g., [16], [188]). For brevity, the method (3.107)
will be referred to as the BSW method.

Let us introduce the abbreviations:

ρn =
1

1 − ncn
, γn =

ρn(1 + ρncn)2n−2

(1 − ρncn)2
,

λn = ρncn(1 − cn), βn =
λnρnc2

n(n − 1)2

(1 − λn)(1 − cn)

(
1 +

λn

1 − 2λn

)n−1

.

Lemma 3.19. Let ẑ1, . . . , ẑn be approximations obtained by the iterative
method (3.107) and let ûi = ẑi − ζi, d̂ = min

i�=j
|ẑi − ẑj |, and ŵ = max

1≤i≤n
|Ŵi|.

If the inequality

w < cnd, cn =

⎧⎪⎪⎨⎪⎪⎩
1

2n + 1
, 3 ≤ n ≤ 13

1
2n

, n ≥ 14

(3.108)

holds, then:

(i) ŵ < βnw.

(ii) d <
1

1 − 2λn
d̂.

(iii) |ui| < ρncnd.
(iv) ŵ < cnd̂.

(v) |ûi| ≤ γn

d3
|ui|2
(∑

j �=i

|uj |
)2

.

The proof of this lemma is strikingly similar to that of Lemmas 3.15 and
3.18 and will be omitted.

Now, we establish initial conditions of practical interest, which guarantee
the convergence of the BSW method (3.107).

Theorem 3.11. If the initial condition given by

w(0) < cnd(0) (3.109)
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is satisfied, where cn is given by (3.108), then the iterative method (3.107) is
convergent with the order of convergence 4.

Proof. The proof of this theorem is based on the assertions of Lemma 3.19
with the help of the previously presented technique. As in the already stated
convergence theorems, the proof goes by induction. By the same argumenta-
tion as in the previous proofs, the initial condition (3.109) provides the valid-
ity of the inequality w(m) < cnd(m) for all m ≥ 0, and hence, the inequalities
(i)–(iv) of Lemma 3.19 also hold for all m ≥ 0. In particular (according to
Lemma 3.19(i)), we have

d(m)

d(m+1)
<

1
1 − 2λn

(3.110)

and, with regard to Lemma 3.19(iv),

|u(m+1)
i | ≤ γn

(d(m))3
|u(m)

i |2
(

n∑
j=1
j �=i

|u(m)
j |
)2

(3.111)

for each i ∈ In and all m = 0, 1, . . ..
Substituting

t
(m)
i =

[ (n − 1)2γn

(1 − 2λn)(d(m))3

]1/3

|u(m)
i |

into (3.111) and using (3.110), we obtain

t
(m+1)
i <

1
(n − 1)2

(
t
(m)
i

)2( n∑
j=1
j �=i

t
(m)
j

)2

. (3.112)

By the assertion (ii) of Lemma 3.19 for the first iteration (m = 0), we have

t
(0)
i =

[ (n − 1)2γn

(1 − 2λn)(d(0))3

]1/3

|u(0)
i | < ρncn

[ (n − 1)2γn

1 − 2λn

]1/3

. (3.113)

Putting t = maxi t
(0)
i , we find from (3.113) that t

(0)
i ≤ t < 0.988 < 1 for

3 ≤ n ≤ 13, and t
(0)
i ≤ t < 0.999 < 1 for n ≥ 14, for each i = 1, . . . , n.

According to this, we infer from (3.112) that the sequences {t(m)
i } (and,

consequently, {|u(m)
i |}) tend to 0 for all i = 1, . . . , n. Hence, the BSW method

(3.107) is convergent.
Putting u(m) = max

1≤i≤n
|u(m)

i |, from (3.111), we get

u(m+1) <
γn

(d(m))3
(n − 1)2

(
u(m)
)4

,

which means that the order of convergence of the BSW method is 4. 
�
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The Halley-Like Method

Using a concept based on Bell’s polynomials, X. Wang and Zheng [182] estab-
lished a family of iterative methods of the order of convergence k + 2, where
k is the highest order of the derivative of P appearing in the generalized iter-
ative formula, see Sect. 1.1. For k = 1, this family gives the Ehrlich–Aberth’s
method (3.73), and for k = 2 produces the following iterative method of
the fourth order for the simultaneous approximation of all simple zeros of a
polynomial P

z
(m+1)
i = z

(m)
i − 1

f(z(m)
i ) − P (z(m)

i )

2P ′(z(m)
i )

([
S

(m)
1,i

]2
+ S

(m)
2,i

) (i∈In, m=0, 1, . . .),

(3.114)
where

f(z) =
P ′(z)
P (z)

− P ′′(z)
2P ′(z)

, S
(m)
k,i =

∑
j �=i

1(
z
(m)
i − z

(m)
j

)k (k = 1, 2).

Since the function f(z) appears in the well-known Halley’s iterative method

ẑi = zi − 1
P ′(zi)
P (zi)

− P ′′(zi)
2P ′(zi)

= zi − 1
f(zi)

,

we could say that the method (3.114) is of Halley’s type. In the literature,
the method (3.114) is sometimes called the Wang–Zheng’s method.

The convergence analysis of the Halley-like method (3.114) is similar to
that given previously in this section (see also the paper by M. Petković and
-D. Herceg [117]), so it will be presented in short.

Let us introduce the following abbreviations:

ρn =
1

1 − ncn
, ηn =

2(1 − nρncn)
1 − ρncn

− n(n − 1)(ρncn)3(2 − ρncn)
(1 − ρncn)2

,

λn =
2ρncn(1 − ρncn + (n − 1)ρncn)

(1 − ρncn)ηn
, γn =

n(2 − ρncn)
ηn(1 − ρncn)2

.

Lemma 3.20. Let ẑ1, . . . , ẑn be approximations generated by the iterative
method (3.114) and let ûi = ẑi − ζi, d̂ = min

i�=j
|ẑi − ẑj |, and ŵ = max

1≤i≤n
|Ŵi|.

If the inequality

w < cnd, cn =

⎧⎪⎪⎨⎪⎪⎩
1

3n + 2.4
, 3 ≤ n ≤ 20

1
3n

, n ≥ 21

(3.115)
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holds, then:

(i) d <
1

1 − 2λn
d̂.

(ii) |ui| < ρncnd.
(iii) ŵ < cnd̂.
(iv) |ûi| ≤ γn

d3
|ui|3

∑
j �=i

|uj |.

The proof of this lemma is similar to the proofs of Lemmas 3.15 and 3.18.
We now give the convergence theorem for the iterative method (3.114)

under computationally verifiable initial conditions.

Theorem 3.12. Let P be a polynomial of degree n ≥ 3 with simple zeros. If
the initial condition

w(0) < cnd(0) (3.116)

holds, where cn is given by (3.115), then the Halley-like method (3.114) is
convergent with the fourth order of convergence.

Proof. The proof of this theorem goes in a similar way to the previous cases
using the assertions of Lemma 3.20. By virtue of the implication (iii) of
Lemma 3.20 (i.e., w < cnd ⇒ ŵ < cnd̂ ), we conclude by induction that
the initial condition (3.116) implies the inequality w(m) < cnd(m) for each
m = 1, 2, . . .. For this reason, the assertions of Lemma 3.20 are valid for all
m ≥ 0. In particular (according to (i) and (iv) of Lemma 3.20), we have

d(m)

d(m+1)
<

1
1 − 2λn

(3.117)

and

|u(m+1)
i | ≤ γn

(d(m))3
|u(m)

i |3
n∑

j=1
j �=i

|u(m)
j | (i ∈ In) (3.118)

for each iteration index m = 0, 1, . . ..
Substituting

t
(m)
i =

[ (n − 1)γn

(1 − 2λn)(d(m))3

]1/3

|u(m)
i |

into (3.118) gives

t
(m+1)
i ≤ (1 − 2λn)d(m)

(n − 1)d(m+1)

(
t
(m)
i

)3 n∑
j=1
j �=i

t
(m)
j (i ∈ In).

Hence, using (3.117), we arrive at

t
(m+1)
i <

1
n − 1

(
t
(m)
i

)3 n∑
j=1
j �=i

t
(m)
j (i ∈ In). (3.119)
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Since |u(0)
i | < ρncnd(0) (assertion (ii) of Lemma 3.20), we may write

t
(0)
i =

[ (n − 1)γn

(1 − 2λn)(d(0))3

]1/3

|u(0)
i | < ρncn

[ (n − 1)γn

1 − 2λn

]1/3

for each i = 1, . . . , n. Let t
(0)
i ≤ maxi t

(0)
i = t. Then

t < ρncn

[ (n − 1)γn

1 − 2λn

]1/3

< 0.310 for 3 ≤ n ≤ 20

and
t < 0.239 for n ≥ 21,

i.e., t
(0)
i ≤ t < 1 for all i = 1, . . . , n. Hence, we conclude from (3.119) that the

sequences
{
t
(m)
i

}
(and, consequently,

{|u(m)
i |}) tend to 0 for all i = 1, . . . , n.

Therefore, z
(m)
i → ζi (i ∈ In) and the method (3.114) is convergent.

Finally, from (3.118), there follows

|u(m+1)
i | ≤ u(m+1) < (n − 1)

γn

(d(m))3
(
u(m)
)4

,

where u(m) = max
1≤i≤n

|u(m)
i |. Therefore, the convergence order of the Halley-

like method (3.114) is 4. 
�

Some Computational Aspects

In this section, we have improved the convergence conditions of four root find-
ing methods. For the purpose of comparison, let us introduce the normalized
i-factor Ωn = n · cn. The former Ωn for the considered methods, found in the
recent papers cited in Sect. 1.1, and the improved (new) Ωn, proposed in this
section, are given in Table 3.1.

Table 3.1 The entries of normalized i-factors

Former Ωn New Ωn

Ehrlich–Aberth’s method (3.73)
n

2n + 3

{ n

2n + 1.4
(3 ≤ n ≤ 7),

1/2 (n ≥ 8)

EAN method (3.90)
1

3

{ n

2.2n + 1.9
(3 ≤ n ≤ 21),

1/2.2 (n ≥ 22)

BSW method (3.107)
n

2n + 2

{ n

2n + 1
(3 ≤ n ≤ 13),

1/2 (n ≥ 14)

Halley-like method (3.114)
1

4

{ n

3n + 2.4
(3 ≤ n ≤ 20),

1/3 (n ≥ 21)
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To compare the former Ωn = ncn with the improved Ωn, we introduce a
percentage measure of the improvement

r% =
Ω

(new)
n − Ω

(former)
n

Ω
(former)
n

· 100.

Following Table 3.1, we calculated r% for n ∈ [3, 30] and displayed r% in
Fig. 3.3 as a function of n for each of the four considered methods. From
Fig. 3.3, we observe that we have significantly improved i-factors cn, especially
for the EAN method (3.90) and Halley-like method (3.114).

The values of the i-factor cn, given in the corresponding convergence the-
orems for the considered iterative methods, are mainly of theoretical impor-
tance. We were constrained to take smaller values of cn to enable the validity
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Fig. 3.3 (a) r%: the method (3.73) Fig. 3.3 (b) r%: the method (3.90)
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Fig. 3.3 (c) r%: the method (3.107) Fig. 3.3 (d) r%: the method (3.114)

of inequalities appearing in the convergence analysis. However, these theoret-
ical values of cn can be suitably applied in ranking the considered methods
regarding (1) their initial conditions for the guaranteed convergence and (2)
convergence behavior in practice.

As mentioned in [118], in practical implementation of simultaneous root
finding methods, we may take greater cn related to that given in the conver-
gence theorems and still preserve both guaranteed and fast convergence. The
determination of the range of values of i-factor cn providing favorable fea-
tures (guaranteed and fast convergence) is a very difficult task, and practical
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experiments are the only means for obtaining some information on its range.
We have tested the considered methods in examples of many algebraic poly-
nomials with degree up to 20, taking initial approximations in such a way
that the i-factor took the values kcn for k = 1 (theoretical entry applied in
the stated initial conditions) and for k = 1.5, 2, 3, 5, and 10. The stopping
criterion was given by the inequality

max
1≤i≤n

|z(m)
i − ζi| < 10−15.

In Table 3.2, we give the average number of iterations (rounded to one decimal
place), needed to satisfy this criterion.

From Table 3.2, we observe that the new i-factor not greater than 2cn

mainly preserves the convergence rate related to the theoretical value cn given
in the presented convergence theorems. The entry 3cn is rather acceptable

Table 3.2 The average number of iterations as the i-factor increases

cn 1.5cn 2cn 3cn 5cn 10cn

Ehrlich–Aberth’s method (3.73) 3.9 4 4.2 5.4 7.3 13.3

EAN method (3.90) 3.1 3.2 3.4 5.1 6.1 10.2

BSW method (3.107) 3 3.1 3.3 4.3 5.8 9.8

Halley-like method (3.114) 3.2 3.4 4.2 5.5 6.7 10.7

from a practical point of view, while the choice of 5cn doubles the number
of iterations. Finally, the value 10cn significantly decreases the convergence
rate of all considered methods, although still provides the convergence.

3.4 A Posteriori Error Bound Methods

In this section, we combine good properties of iterative methods with fast
convergence and a posteriori error bounds given in Corollary 1.1, based on
Carstensen’s results [13] on Gerschgorin’s disks, to construct efficient inclu-
sion methods for polynomial complex zeros. Simultaneous determination of
both centers and radii leads to iterative error bound methods, which en-
joy very convenient property of enclosing zeros at each iteration. This class
of methods possesses a high computational efficiency since it requires less
numerical operations compared with standard interval methods realized in
interval arithmetic (see M. Petković and L. Petković [132]). Numerical ex-
periments demonstrate equal or even better convergence behavior of these
methods than the corresponding circular interval methods. In this section,
the main attention is devoted to the construction of inclusion error bound
methods. We will also give a review of some properties of these methods,
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including the convergence rate, efficient implementation, and initial condi-
tions for the guaranteed convergence.

Corollary 1.1 given in Chap. 1 may be expressed in the following form.

Corollary 3.1. Let P be an algebraic polynomial with simple (real or com-
plex) zeros. Under the condition w < cnd (cn ≤ 1/(2n)), each of disks Di

defined by

Di =
{

zi;
|Wi(zi)|
1 − ncn

}
=
{
zi; ρi

}
(i ∈ In)

contains exactly one zero of P .

If the centers zi of disks Di are calculated by an iterative method, then
we can generate sequences of disks D

(m)
i (m = 0, 1, . . .) whose radii ρ

(m)
i =

W
(m)
i /(1 − ncn) converge to 0 under some suitable conditions. It should be

noted that only those methods which use quantities already calculated in
the previous iterative step (in our case, the corrections Wi) enable a high
computational efficiency. For this reason, we restrict our choice to the class
of derivative-free methods which deal with Weierstrass’ corrections, so-called
W -class. The following most frequently used simultaneous methods from the
W -class will be considered.

The Durand–Kerner’s or Weierstrass’ method [32], [72], shorter the
W method, the convergence order 2:

z
(m+1)
i = z

(m)
i − W

(m)
i (i ∈ In, m = 0, 1, . . .). (3.120)

The Börsch-Supan’s method [10], shorter the BS method, the convergence
order 3:

z
(m+1)
i = z

(m)
i − W

(m)
i

1 +
∑
j �=i

W
(m)
j

z
(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .). (3.121)

The Börsch-Supan’s method with Weierstrass’ correction [95],
shorter the BSW method, the convergence order 4:

z
(m+1)
i = z

(m)
i − W

(m)
i

1 +
∑
j �=i

W
(m)
j

z
(m)
i − W

(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .).

(3.122)
Let us note that W

(m)
i = W (z(m)

i ), see (1.17).
Let z

(0)
1 , . . . , z

(0)
n be given initial approximations and let

z
(m)
i = ΦW (z(m−1)

i ) (i ∈ In, m = 1, 2, . . .) (3.123)
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be a derivative-free iterative method based on Weierstrass’ corrections (be-
longing to the W -class), which is indicated by the subscript index “W.” For
example, the methods (3.120)–(3.122) belong to the W -class. Other iterative
methods of Weierstrass’ class are given in [34], [124], [131], [146], and [196].

Combining the results of Corollary 3.1 and (3.123), we can state the fol-
lowing inclusion method in a general form.

A posteriori error bound method. A posteriori error bound method
(shorter PEB method) is defined by the sequences of disks

{
D

(m)
i

}
(i ∈ In),

D
(0)
i =

{
z
(0)
i ;

|W (z(0)
i )|

1 − ncn

}
,

D
(m)
i =

{
z
(m)
i ; ρ(m)

i

}
, (i ∈ In, m = 1, 2, . . .), (3.124)

z
(m)
i = ΦW (z(m−1)

i ), ρ
(m)
i =

|W (z(m)
i )|

1 − ncn
,

assuming that the initial condition w(0) < cnd(0) (with cn ≤ 1/(2n)) holds.

The proposed method, defined by the sequences of disks given by (3.124),
may be regarded as a quasi-interval method, which differs structurally from
standard interval methods that deal with disks as arguments. For comparison,
let us present the following circular interval methods which do not use the
polynomial derivatives.

The Weierstrass-like interval method [183], the order 2:

Z
(m+1)
i = z

(m)
i − P (z(m)

i )
n∏

j=1
j �=i

(
z
(m)
i − Z

(m)
j

) (i ∈ In, m = 0, 1, . . .). (3.125)

The Börsch-Supan-like interval method [107], the order 3:

Z
(m+1)
i = z

(m)
i − W

(m)
i

1 +
n∑

j=1
j �=i

W
(m)
j

Z
(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .). (3.126)

The Börsch-Supan-like interval method with Weierstrass’ correc-
tion [111], the order 4 (with the centered inversion (1.63)):

Z
(m+1)
i = z

(m)
i − W

(m)
i

1 +
n∑

j=1
j �=i

W
(m)
j

Z
(m)
i − W

(m)
i − z

(m)
j

(i ∈ In, m = 0, 1, . . .).

(3.127)
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All of the methods (3.124)–(3.127) possess the crucial inclusion property:
each of the produced disks contains exactly one zero in each iteration. In
this manner, not only very close zero approximations (given by the centers
of disks) but also the upper error bounds for the zeros (given by the radii
of disks) are obtained. More about interval methods for solving polynomial
equations can be found in the books by M. Petković [109] and M. Petković
and L. Petković [129].

Studying the convergence of error bounds produced by (3.124), the follow-
ing important tasks arise:

1. Determine the convergence order of a posteriori error bound method when
the centers z

(m)
i of disks

D
(m)
i =

{
z
(m)
i ;

|W (z(m)
i )|

1 − ncn

}
(i ∈ In, m = 0, 1, . . .) (3.128)

are calculated by an iterative method of order k (≥ 2).
2. State computationally verifiable initial condition that guarantees the con-

vergence of the sequences of radii
{
radD

(m)
i

}
. We note that this problem,

very important in the theory and practice of iterative processes in general,
is a part of Smale’s point estimation theory [165] which has attracted a
considerable attention during the last two decades (see [118] and Chap. 2
for details). As mentioned in the previous sections, initial conditions in
the case of algebraic polynomials should depend only on attainable data –
initial approximations, polynomial degree, and polynomial coefficients.

3. Compare the computational efficiencies of the PEB methods and the ex-
isting circular interval methods (given, for instance, by (3.125)–(3.127)).
Which of these two classes of methods is more efficient?

4. Using numerical experiments, compare the size of inclusion disks produced
by the PEB methods and the corresponding interval methods (3.125)–
(3.127). Whether the construction of PEB methods is justified?

The study of these subjects was the main goal of the paper [122]. Here, we
give the final results and conclusions of this investigation in short.

Assume that the following inequality

w(0) < cnd(0) (3.129)

holds, where cn is given by

cn =

⎧⎪⎪⎨⎪⎪⎩
1
2n

, the W method [2] and BS method [42],

1
2n + 1

, the BSW method [52].

(3.130)
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Then, the following three methods from the W-class are convergent: the
Durand–Kerner’s method (3.120) (for the proof, see Batra [5]), the Börsch-
Supan’s method (3.121) (M. Petković and -D. Herceg [117]), and the Börsch-
Supan’s method with Weierstrass’ correction (3.122) (see [60], [140]). The
corresponding inequalities of the form

|W (m+1)
i | < δn|W (m)

i | (δn < 1)

are the composite parts of Lemmas 3.3(i), 3.6(i), and 3.19(i) under the con-
dition (3.129) for specific entries cn given by (3.130). This means that the
sequences

{|W (m)
i |} (i ∈ In) are convergent and tend to 0. Hence, the se-

quences of radii
{
ρ(m)|} (i ∈ In) are also convergent and tend to 0 under the

condition (3.129). The convergence rate of the PEB methods based on the
iterative methods (3.120)–(3.122) was studied in [122], where the following
assertions were proved.

Theorem 3.13. The PEB method (3.124), based on the Durand–Kerner’s
method (3.120), converges quadratically if the initial condition (3.129) holds,
where cn = 1/(2n).

Theorem 3.14. The PEB method (3.124), based on the Börsch-Supan’s
method (3.121), converges cubically if the initial condition (3.129) holds,
where cn = 1/(2n).

Theorem 3.15. The PEB method (3.124), based on the Börsch-Supan’s
method with Weierstrass’ corrections (3.122), converges with the order 4 if
the initial condition (3.129) holds, where cn = 1/(2n + 1).

We emphasize that the initial condition (3.129) (with cn given by (3.130))
that guarantees the convergence of the PEB methods (3.124)–(3.120),
(3.124)–(3.121), and (3.124)–(3.122) depends only on attainable data, which
is of great practical importance.

Computational Aspects

In the continuation of this section, we give some practical aspects in the
implementation of the proposed methods. As mentioned above, the compu-
tational cost significantly decreases if the quantities W

(0)
i ,W

(1)
i , . . . (i ∈ In),

necessary in the calculation of the radii ρ
(m)
i = |W (m)

i |/(1−ncn), are applied
in the calculation of the centers z

(m+1)
i defined by the employed iterative

formula from the W -class. Regarding the iterative formulae (3.120)–(3.122),
we observe that this requirement is satisfied. A general calculating procedure
can be described by the following algorithm.
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Calculating Procedure (I)

Given z
(0)
1 , . . . , z

(0)
n and the tolerance parameter τ .

Set m = 0.
1◦ Calculate Weierstrass’ corrections W

(m)
1 , . . . , W

(m)
n at the points z

(m)
1 ,

. . . , z
(m)
n .

2◦ Calculate the radii ρ
(m)
i = |W (m)

i |/(1 − ncn) (i = 1, . . . , n).
3◦ If max

1≤i≤n
ρ
(m)
i < τ , then STOP

otherwise, GO TO 4◦.
4◦ Calculate the new approximations z

(m+1)
1 , . . . , z

(m+1)
n by a suitable iterative

formula from the W -class (for instance, by (3.120), (3.121), or (3.122)).
5◦ Set m := m + 1 and GO TO the step 1◦.

Following the procedure (I), we have realized many numerical examples
and, for demonstration, we select the following one.

Example 3.1. We considered the polynomial

P (z) = z13 − (5 + 5i)z12 + (5 + 25i)z11 + (15 − 55i)z10 − (66 − 75i)z9

+ 90z8 − z5 + (5 + 5i)z4 − (5 + 25i)z3 − (15 − 55i)z2

+ (66 − 75i)z − 90
= (z − 3)(z8 − 1)(z2 − 2z + 5)(z − 2i)(z − 3i).

Starting from sufficiently close initial approximations z
(0)
1 , . . . , z

(0)
13 , we first

calculated the radii ρ
(0)
i = |W (z(0)

i |/(1 − ncn) of initial disks D
(0)
1 , . . . , D

(0)
13 .

These disks were applied in the implementation of a posteriori error bound
methods (3.124) as well as interval methods (3.125)–(3.127). We obtained
max ρ

(0)
i = 0.3961 for the methods (3.125), (I-W), (3.126), (I-BS) and

max ρ
(0)
i = 0.3819 for (3.127) and (I-BSW). The approximations z

(m)
i (m ≥ 1)

were calculated by the iterative formulae (3.120)–(3.122) and the correspond-
ing inclusion methods are referred to as (I-W), (I-BS), and (I-BSW), respec-
tively. The largest radii of the disks obtained in the first four iterations may
be found in Table 3.3, where A(−q) means A × 10−q.

Table 3.3 Resulting disks obtained by Procedure I

Methods max ρ
(1)
i max ρ

(2)
i max ρ

(3)
i max ρ

(4)
i

(I-W) (3.124)–(3.120) 1.26(−1) 1.74(−2) 1.33(−4) 1.59(−8)

Interval W (3.125) 1.05 No inclusions – –

(I-BS) (3.124)–(3.121) 1.83(−2) 3.61(−6) 1.32(−17) 7.06(−52)

Interval BS (3.126) 1.99(−1) 2.41(−4) 2.39(−15) 2.38(−49)

(I-BSW) (3.124)–(3.122) 6.94(−3) 4.92(−10) 1.83(−38) 3.20(−152)

Interval BSW (3.127) 2.98(−1) 1.47(−5) 1.81(−24) 2.68(−100)
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In our calculation, we employed multiprecision arithmetic in Mathematica
6.0 since the tested methods converge extremely fast producing very small
disks. From Table 3.3, we observe that the PEB methods are equal or better
than the corresponding methods (of the same order) (3.125)–(3.127) realized
in complex interval arithmetic. A number of numerical experiments showed
similar convergence behavior of the tested methods.

The Weierstrass’ interval method (3.125) exhibits rather poor results. The
explanation lies in the fact that this method uses the product of disks which
is not an exact operation in circular arithmetic and produces oversized disks
(see Sect. 1.3).

Calculation Procedure (I) assumes the knowledge of initial approxima-
tions z

(0)
1 , . . . , z

(0)
n in advance. The determination of these approximations

is usually realized by a slowly convergent multistage composite algorithm.
Sometimes, the following simple approach gives good results in practice.

Calculating Procedure (II)

1◦ Find the disk centered at the origin with the radius

R = 2 max
1≤k≤n

∣∣an−k

∣∣1/k (see (1.58) or (5.72)),

which contains all zeros of the polynomial P (z) = zn + an−1z
n−1 + · · · +

a1z + a0.
2◦ Calculate Aberth’s initial approximations [1]

z(0)
ν = −an−1

n
+ r0 exp(iθν), i =

√−1, θν =
π

n

(
2ν − 3

2
)

(ν = 1, . . . , n),

equidistantly distributed along the circle |z + an−1/n| = r0, r0 ≤ R (see
Sect. 4.4).

3◦ Apply the simultaneous method (3.120) or (3.121) starting with Aberth’s
approximations; stop the iterative process when the condition

max
1≤i≤n

|W (z(m)
i )| < cn min

i �=j
|z(m)

i − z
(m)
j | (3.131)

is satisfied.
4◦–8◦ The same as the steps 1◦–5◦ of Procedure I.

We applied Procedure II on the following example.

Example 3.2. To find approximations to the zeros of the polynomial

z15 + z14 + 1 = 0

satisfying the condition (3.131) (with cn = 1/(2n)), we applied the
Börsch-Supan’s method (3.121) with Aberth’s initial approximations taking
an−1 = 1, n = 15, and r0 = 2. The condition (3.131) was satisfied after seven
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iterative steps. The obtained approximations were used to start the PEB
methods (I-W), (I-BS), and (I-BSW). After three iterations, we obtained
disks whose largest radii are given in Table 3.4.

Table 3.4 Resulting disks obtained by (I-W), (I-BS), and (I-BSW): Procedure II

Methods max ρ
(0)
i max ρ

(1)
i max ρ

(2)
i

(I-W) (3.124)–(3.120) 1.51(−3) 3.79(−6) 2.27(−11)

(I-BS) (3.124)–(3.121) 1.51(−3) 4.10(−9) 8.31(−26)

(I-BSW) (3.124)–(3.122) 1.46(−3) 9.64(−12) 1.60(−44)

From Tables 3.3 and 3.4, we observe that the results obtained by the
methods (I-W), (I-BS), and (I-BSW) coincide with the theoretical results
given in Corollary 3.1 and Theorems 3.13–3.15; in other words, the or-
der of convergence in practice matches very well the order expressed in
Theorems 3.13–3.15.

At the beginning of the section, we mentioned that the PEB methods re-
quire less numerical operations compared with their counterparts in complex
interval arithmetic. In Table 3.5, we give the total number of numerical oper-
ations per one iteration, reduced to real arithmetic operations. We have used
the following abbreviations:

– AS(n) (total number of additions and subtractions)
– M(n) (multiplications)
– D(n) (divisions)

Table 3.5 The number of basic operations

AS(n) M(n) D(n)

(I-W) (3.124)–(3.120) 8n2 + n 8n2 + 2n 2n

Interval W (3.125) 22n2 − 6n 25n2 − 6n 8n2 − n

(I-BS) (3.124)–(3.121) 15n2 − 6n 14n2 + 2n 2n2 + 2n

Interval BS (3.126) 23n2 − 4n 23n2 + 2n 7n2 + 2n

(I-BSW) (3.124)–(3.122) 15n2 − 4n 14n2 + 2n 2n2 + 2n

Interval BSW (3.127) 23n2 − 2n 23n2 + 2n 7n2 + 2n

From Table 3.5, we observe that the PEB methods require significantly less
numerical operations with respect to the corresponding interval methods.
One of the reasons for this advantage is the use of the already calculated
Weierstrass’ corrections Wi in the evaluation of the radii ρi.

Parallel Implementation

It is worth noting that the error bound method (3.124) for the simultaneous
determination of all zeros of a polynomial is very suitable for the implemen-
tation on parallel computers since it runs in several identical versions. In this
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manner, a great deal of computation can be executed simultaneously. An
analysis of total running time of a parallel iteration and the determination of
the optimal number of processors points to some undoubted advantages of the
implementation of simultaneous methods on parallel processing computers,
see, e.g., [22]–[24], [44], [115]. The parallel processing becomes of great inter-
est to speed up the determination of zeros when one should treat polynomials
with degree 100 and higher, appearing in mathematical models in scientific
engineering, including digital signal processing or automatic control [66], [92].

The model of parallel implementation is as follows: It is assumed that the
number of processors k (≤ n) is given in advance. Let

W (m) =
(
W

(m)
1 , . . . , W (m)

n

)
,

ρ(m) =
(
ρ
(m)
1 , . . . , ρ(m)

n

)
,

z (m) =
(
z
(m)
1 , . . . , z(m)

n

)
denote vectors at the mth iterative step, where ρ

(m)
i = |W (z(m)

i )|/(1 − ncn),
and z

(m)
i is obtained by the iterative formula z

(m)
i = ΦW (z(m−1)

i ) (i ∈ In).
The starting vector z (0) is computed by all processors C1, . . . , Ck using some
suitable globally convergent method based on a subdivided procedure and
the inclusion annulus {z : r ≤ |z| ≤ R} which contains all zeros, given later
by (4.72).

In the next stage, each step consists of sharing the calculation of W
(m)
i ,

ρ
(m)
i , and z

(m+1)
i among the processors and in updating their data through

a broadcast procedure (shorter BCAST (W (m), ρ(m)), BCAST (z (m+1))).
As in [23], let I1, . . . , Ik be disjunctive partitions of the set {1, . . . , n}, where
∪Ij = {1, . . . , n}. To provide good load balancing between the processors,
the index sets I1, . . . , Ik are chosen so that the number of their components
N(Ij) (j = 1, . . . , k) is determined as N(Ij) ≤

[
n
k

]
. At the mth iterative step,

the processor Cj (j = 1, ..., k) computes W
(m)
i , ρ

(m)
i , and, if necessary, z

(m+1)
i

for all i ∈ Ij and then it transmits these values to all other processors using
a broadcast procedure. The program terminates when the stopping criterion
is satisfied, say, if for a given tolerance τ the inequality

max
1≤i≤n

∣∣ρ(m)
i

∣∣ < τ

holds. A program written in pseudocode for a parallel implementation of the
error bound method (3.124) is given below.

Program A POSTERIORI ERROR BOUND METHOD
begin

for all j = 1, . . . , k do determination of the approximations z (0);
m := 0
C :=false
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do
for all j = 1, . . . , k do in parallel
begin

Compute W
(m)
i , i ∈ Ij ;

Compute ρ
(m)
i , i ∈ Ij ;

Communication: BCAST
(
W (m),ρ (m)

)
;

end
if max

1≤i≤n
ρ
(m)
i < τ ; C :=true

else
m := m + 1
for all j = 1, . . . , k do in parallel
begin

Compute z
(m)
i , i ∈ Ij , by (3.123);

Communication: BCAST
(
z (m)

)
;

end
endif

until C
OUTPUT z (m),ρ(m)

end



Chapter 4

Families of Simultaneous Methods
of Higher Order: Part I

The aim of this chapter is to present the fourth-order families of simultane-
ous methods for the determination of polynomial (simple or multiple) zeros.
These methods are based on Hansen–Patrick’s one-parameter family [55] with
the cubic convergence (Sect. 4.1). First, we present the derivative-free family
of methods for the simultaneous approximation of simple zeros and show that
the methods of this family have the convergence order equal to 4 (Sect. 4.2).
Next, we give computationally verifiable initial conditions that provide the
guaranteed convergence and state the convergence theorem. In the second
part of this chapter (Sect. 4.3), we study another family of methods that
uses derivatives, also based on Hansen–Patrick’s formula. Aside from conver-
gence analysis, we construct families of methods for finding multiple zeros
of a polynomial. To demonstrate the convergence speed of the considered
families, several numerical examples are included at the end of the chapter
(Sect. 4.4).

4.1 Hansen–Patrick’s Family of Root Finding Methods

Let f be an analytic function in a complex domain with a simple or multi-
ple zero ζ. The problem of extracting zeros is extensively investigated in the
literature on this subject and many efficient iterative methods have been de-
veloped. Among them, the third-order methods such as Euler’s, Laguerre’s,
Halley’s, and Ostrowski’s method have an important role. Such a wide range
of methods opens the question of their mutual dependance and the equiva-
lency of some methods.

One attempt to unify the class of methods with cubic convergence was
presented in the paper [55] of Hansen and Patrick by the family

ẑ = z − (α + 1)f(z)

αf ′(z) ±
√

f ′(z)2 − (α + 1)f(z)f ′′(z)
, (4.1)

M. Petković, Point Estimation of Root Finding Methods. Lecture Notes 129
in Mathematics 1933,
c© Springer-Verlag Berlin Heidelberg 2008
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where α (�= −1) is a parameter and ẑ denotes a new approximation. This
family has a cubic convergence for a finite α (for the proof, see [55]).

Starting from the Hansen–Patrick’s iterative formula (4.1), some well-
known methods are obtained by a suitable choice of the parameter α. We
illustrate this by several examples:

1. Taking α = 0, (4.1) reduces to Ostrowski’s method [113]

ẑ = z − f(z)√
f ′(z)2 − f ′′(z)f(z)

. (4.2)

2. Setting α = 1 in (4.1), we directly obtain the third-order Euler’s method
[146], [172]

ẑ = z − 2f(z)
f ′(z) ±√f ′(z)2 − 2f(z)f ′′(z)

, (4.3)

sometimes called Halley’s irrational method [4], [45].
3. For α = −1, we apply a limiting process and generate Halley’s method [4],

[45]

ẑ = z − f(z)

f ′(z) − f(z)f ′′(z)
2f ′(z)

. (4.4)

4. Taking α = 1/(ν − 1) in (4.1), we obtain Laguerre’s method

ẑ = z − νf(z)
f ′(z) ±√(ν − 1)2f ′(z)2 − ν(ν − 1)f(z)f ′′(z)

, (4.5)

where ν (�= 0, 1) is a parameter. Extensive studies of Laguerre’s method
(4.2) can be found in [99] (see also [8], [55], [84], [102]). Two modifications
of Laguerre’s method, which enable simultaneous determination of all sim-
ple zeros of a polynomial and have the order of convergence at least 4, were
presented by Hansen, Patrick, and Rusnak [56]. Further improvements of
these methods were proposed in [134].

5. If we let α → ∞ in (4.1), we obtain Newton’s method

ẑ = z − f(z)
f ′(z)

, (4.6)

which has the quadratic convergence.

Remark 4.1. In [55], Hansen and Patrick derived a family of zero-finding
methods (4.1) through an extensive procedure. Actually, this family is not
new; as shown in [135], it can be obtained from Laguerre’s method (4.5) by a
special choice of the parameter ν. Indeed, substituting ν = 1/α + 1 in (4.5),
we obtain Hansen–Patrick’s formula (4.1).
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Remark 4.2. According to Henrici [57, p. 532], the argument of the square
root appearing in the above iterative formulae is to be chosen to differ by
less than π/2 from the argument of f ′(z).

Remark 4.3. It is known that Laguerre’s and Halley’s method converge glob-
ally and monotonically in the case when f is a polynomial with all real roots
(see, e.g., Davies and Dawson [27]). Besides, Laguerre’s method shows ex-
tremely good behavior when |z| is large, see Parlett [102].

Multiple Zeros

Let ζ be the zero of f of the (known) multiplicity µ. Hansen and Patrick have
started from the function f in the form f(z) = (z − ζ)µg(z) (g(ζ) �= 0) and
obtained a one-parameter family of methods for finding a multiple zero,

ẑ = z − µ(µα + 1)f(z)

µαf ′(z) ±
√

µ(α(µ − 1) + 1)f ′(z)2 − µ(µα + 1)f(z)f ′′(z)
. (4.7)

Let us consider some special cases corresponding to those given for simple
zeros (see (1.41)–(1.45)):

1. If we set α = 0 in (4.7), then we obtain the well-known Ostrowski’s method
of the third order

ẑ = z −
√

µf(z)√
f ′(z)2 − f(z)f ′′(z)

. (4.8)

2. Letting α = 1/µ in (4.7), we obtain the third-order Euler’s method for
multiple zeros

ẑ = z − 2µf(z)

f ′(z) ±
√

(2µ − 1)f ′(z)2 − 2µf(z)f ′′(z)
. (4.9)

3. Taking α = −1/µ and applying a limiting process in (4.7), one obtains

ẑ = z − f(z)
µ + 1
2µ

f ′(z) − f(z)f ′′(z)
2f ′(z)

. (4.10)

This is Halley’s method for multiple zeros of the third order.
4. Putting α = 1/(ν − µ) in (4.7), we get the counterpart of Laguerre’s

method

ẑ = z − νf(z)

f ′(z) ±
√(ν − µ

µ

)[
(ν − 1)f ′(z)2 − νf(z)f ′′(z)

] , (4.11)

which was known to Bodewig [8].
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5. Letting α → ∞ in (4.7), we obtain the second-order Newton’s method for
multiple zeros, known also as Schröder’s method [160],

ẑ = z − µ
f(z)
f ′(z)

. (4.12)

Remark 4.4. Let us introduce the function

F (z) = f(z)1/µ

for which ζ is a simple zero. Applying Hansen–Patrick’s formula (4.1) to the
function F , we obtain the iterative process for finding a multiple zero [135]

ẑ = z − µ(α + 1)f(z)

αf ′(z) ±
√

(µ(α + 1) − α)f ′(z)2 − µ(α + 1)f(z)f ′′(z)
. (4.13)

This is the simplified version of Hansen–Patrick’s formula (4.7); indeed, for-
mally replacing α with µα in (4.13), we obtain (4.7).

4.2 Derivative-Free Family of Simultaneous Methods

We consider now a special case when the function f is an algebraic polyno-
mial. Let P be a monic polynomial of degree n with simple zeros ζ1, . . . , ζn

and let z1, . . . , zn be n pairwise distinct approximations to these zeros. In
Sect. 1.1, we have dealt with the Weierstrass’ correction

Wi =
P (zi)

n∏
j=1
j �=i

(zi − zj)

(i ∈ In). (4.14)

Using Weierstrass’ corrections W1, . . . , Wn and approximations z1, . . . , zn,
by the Lagrangean interpolation, we can represent the polynomial P for all
z ∈ C as

P (z) =
n∏

j=1

(z − zj) +
n∑

k=1

Wk

n∏
j=1
j �=k

(z − zj). (4.15)

Recall that the Weierstrass’ function Wi(z) has been introduced in Sect. 1.1
by (1.17), i.e.,

Wi(z) =
P (z)

n∏
j=1
j �=i

(z − zj)

.
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Using (4.15), we get (compare with F (2) in (1.17))

Wi(z) = Wi + (z − zi)
(
1 +

n∑
j=1
j �=i

Wj

z − zj

)
. (4.16)

Note that any zero ζi of P is also a zero of the function Wi(z).
For simplicity, we use the corrections Wi and introduce the following ab-

breviations:

G1,i =
n∑

j=1
j �=i

Wj

zi − zj
, G2,i =

n∑
j=1
j �=i

Wj

(zi − zj)2
.

Starting from (4.16), we find

Wi(zi) = Wi, W ′
i (zi) = 1 +

n∑
j=1
j �=i

Wj

zi − zj
= 1 + G1,i,

W ′′
i (zi) = −2

n∑
j=1
j �=i

Wj

(zi − zj)2
= −2G2,i.

(4.17)

Applying Hansen–Patrick’s formula (4.1) to the function Wi(z) given by
(4.16), M. Petković et al. [124] derived the following one-parameter family
for the simultaneous approximation of all simple zeros of a polynomial P :

ẑi = zi − (α + 1)Wi

α(1 + G1,i) ±
√

(1 + G1,i)2 + 2(α + 1)WiG2,i

(i ∈ In). (4.18)

We will prove later that the order of convergence of the iterative methods
of the family (4.18) is equal to 4 for any fixed and finite parameter α. This
family of methods enables (1) simultaneous determination of all zeros of a
given polynomial and (2) the acceleration of the order of convergence from
3 to 4. A number of numerical experiments have shown that the proposed
methods possess very good convergence properties.

Now, we present some special cases of the iterative formula (4.18).
For α = 0, the family (4.18) gives the Ostrowski-like method

ẑi = zi − Wi√
(1 + G1,i)2 + 2WiG2,i

(i ∈ In). (4.19)

As in the case of other considered methods, the name comes from the fact
that the method (4.19) can be obtained by applying the Ostrowski’s method
(4.2) to the function Wi(z).

Setting α = 1 in (4.18), we obtain the Euler-like method

ẑi = zi − 2Wi

1 + G1,i ±
√

(1 + G1,i)2 + 4WiG2,i

(i ∈ In). (4.20)
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If we let α = 1/(n− 1), where n is the polynomial degree, (4.18) becomes
the Laguerre-like method

ẑi = zi − nWi

1 + G1,i ±
√

((n − 1)(1 + G1,i))2 + 2n(n − 1)WiG2,i

(i ∈ In).

(4.21)

The case α = −1 is not obvious at first sight and it requires a limiting
operation in (4.18). After short calculation, we find that α = −1 yields

ẑi = zi − Wi(1 + G1,i)
(1 + G1,i)2 + WiG2,i

(i ∈ In). (4.22)

This formula can be derived directly by applying the classical Halley’s formula
(4.4) to the Weierstrass’ function Wi(z), so that (4.22) will be referred to as
the Halley-like method. Let us note that Ellis and Watson [34] derived the
iterative formula (4.22) using a different approach.

Letting α → ∞ in (4.18), we get

ẑi = zi − Wi

1 + G1,i
= zi − Wi

1 +
∑
j �=i

Wj

zi − zj

(i ∈ In). (4.23)

This is the third-order iterative method proposed for the first time by Börsch-
Supan [10]. Let us note that this method can be directly obtained by applying
Newton’s method (4.6) to the Weierstrass’ function Wi(z).

Note that the iterative formula (4.18) contains a “±” in front of the square
root. We should choose the sign in such a way that the denominator is larger
in magnitude. If approximations are reasonably close to the zeros of P , which
is the case when we deal with the initial conditions considered in this book,
then a simple analysis similar to that presented in [174] shows that we should
take the sign “+.” Such a choice ensures that the main part of the iterative
formula (4.18) is the cubically convergent Börsch-Supan’s method (4.23). In
the case of the minus sign, the iterative formula (4.18) behaves as

ẑi = zi − α + 1
α − 1

· Wi

1 + G1,i
(i ∈ In),

which gives only a linearly convergent method for a finite α. We must there-
fore take the plus sign, i.e., we write (4.18) in the form

ẑi = zi − (α + 1)Wi

(1 + G1,i)
(
α +
√

1 + 2(α + 1)ti
) (i ∈ In), (4.24)

where
ti =

WiG2,i

(1 + G1,i)2
.
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If α = −1, then applying a limiting operation in (4.24) we obtain the Halley-
like simultaneous method (see (4.22))

ẑi = zi − Wi

(1 + G1,i)(1 + ti)
(i ∈ In). (4.25)

Remark 4.5. In this section, we consider iterative methods from the family
(4.18) with the order of convergence 4. For this reason, we will assume that
the parameter α is not too large in magnitude. The convergence analysis
presented in [124] shows that large values of |α| give the methods whose con-
vergence rate decreases and approaches 3. In practice, in such situations, the
iterative formula (4.18) behaves as the aforementioned cubically convergent
Börsch-Supan’s method (4.23). In that case, the initial convergence condi-
tions may be weakened, see [114] and Lemma 3.7.

Let us introduce the denotations

qn :=
(n − 1)cn

(1 − (n − 1)cn)2
, hn :=

√
1 − 2|α + 1|qn.

The parameter α can generally take entries from the complex-valued set.
However, such a choice does not yield any advantages so that, in practice,
we deal with a real α for simplicity. In this analysis, hn must be a real
nonnegative quantity. For this reason, we start from the inequality 2|α +
1|qn ≤ 1 and obtain the following range for the parameter α, called the
α-disk:

Aα(n) :=
{
−1;

1
2qn

}
⊇
{
−1;

2c2
3

(1 − 2c3)2
}

, n ≥ 3.

Order of Convergence

Now, we prove that the iterative methods of the family (4.18) have the order
of convergence equals 4 for any fixed and finite parameter α. In our con-
vergence analysis, we will use the notation introduced above. Besides, let
ûi = ẑi − ζi and ui = zi − ζi be the errors in two successive iterations. For
any two complex numbers z and w which are of the same order in magni-
tude, we will write z = OM (w). In our analysis, we will suppose that the
errors u1, . . . , un are of the same order in magnitude, i.e., ui = OM (uj) for
any pair i, j ∈ In. Furthermore, let u∗ ∈ {u1, . . . , un} be the error with the
maximal magnitude (i.e., |u∗| ≥ |ui| (i = 1, . . . , n) but still u∗ = OM (ui) for
any i ∈ In).

Theorem 4.1. If the approximations z1, . . . , zn are sufficiently close to the
zeros of P , then the family of zero-finding methods (4.18) has the order of
convergence 4.
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Proof. Let us introduce the abbreviation σi =
∑
j �=i

Wj

ζi − zj
. Since

Wj = (zj − ζj)
∏
k �=j

zj − ζk

zj − zk
,

we have the estimates

Wi = OM (ui) = OM (u∗), G1,i = OM (u∗), G2,i = OM (u∗),

σi = OM (u∗), ti = OM (u2
∗). (4.26)

Let z be a complex number such that |z| < 1. Then, we have the develop-
ments

√
1 + z = 1 +

z

2
− z2

8
+ · · · and (1 + z)−1 = 1− z + z2 − z3 + · · · , (4.27)

where the principal branch is taken in the case of the square root.
Starting from (4.24) and using the developments (4.27), we find

ẑi = zi − (α + 1)Wi

α(1 + G1,i) + (1 + G1,i)
√

1 + 2(α + 1)ti

= zi − (α + 1)Wi

(1 + G1,i)(α + 1 + (α + 1)ti + OM (t2i ))
,

wherefrom (assuming that α �= −1)

ẑi = zi − Wi

(1 + G1,i)
(
1 + ti + OM (t2i )

)
= zi − Wi

1 + G1,i

(
1 − WiG2,i

(1 + G1,i)2
+ OM (t2i )

)
. (4.28)

Setting z := ζi in (4.16) (giving Wi(ζi) = 0), we obtain Wi = ui(1+σi). Now,
(4.28) becomes

ẑi = zi − ui(1 + σi)
1 + G1,i

(
1 − ui(1 + σi)G2,i(

1 + G1,i

)2 + OM (t2i )

)
,

wherefrom, taking into account the estimates (4.26),

ûi = ẑi − ζi = ui −
ui(1 + σi)

[
(1 + G1,i)2 − ui(1 + σi)G2,i

]
(1 + G1,i)3

+ OM (u5
∗).
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After short rearrangement, we find

ûi =
ui(Xi + Yi + Zi)

(1 + G1,i)3
+ OM (u5

∗), (4.29)

where

Xi = G1,i − σi + uiG2,i,

Yi = G1,i

[
2(G1,i − σi) + G2

1,i − G1,iσi

]
,

Zi = uiG2,iσi(2 + σi).

Since

G1,i − σi =
∑
j �=i

Wj

zi − zj
−
∑
j �=i

Wj

ζi − zj
= −ui

∑
j �=i

Wj

(ζi − zj)(zi − zj)
, (4.30)

we have
G1,i − σi + uiG2,i = u2

i

∑
j �=i

Wj

(zi − zj)2(ζi − zj)
. (4.31)

According to (4.26), (4.30), and (4.31), we estimate

Xi = u2
iOM (u∗), Yi = OM (u3

∗), Zi = uiOM (u2
∗). (4.32)

The denominator (1 + G1,i)3 tends to 1 when the errors u1, . . . , un tend
to 0. Having in mind this fact and the estimates (4.32), from (4.29), we find
ûi = uiOM (u3

∗) = OM (u4
∗), which completes the proof of the theorem. 
�

Initial Conditions and Guaranteed Convergence

In the previous analysis, we have proved that the order of convergence of the
family (4.18) is 4, assuming that the initial approximations are sufficiently
small, neglecting details concerned with the distribution of approximations
and their closeness to the corresponding zeros. We apply now Theorem 3.1
and initial conditions of the form (3.4) to state the convergence theorem for
the one-parameter family (4.18) of simultaneous methods for finding polyno-
mial zeros (see [117], [132]). The initial condition is computationally verifiable
and guarantees the convergence, which is of importance in practice. Before
establishing the main result, we give two necessary lemmas.

Lemma 4.1. Let z1, . . . , zn be distinct approximations to the zeros ζ1, . . . , ζn

of a polynomial P of degree n ≥ 3 and let ẑ1, . . . , ẑn be new approximations
obtained by the iterative formula (4.18). If the inequality

w ≤ cnd, cn ∈
(
0,

2
5(n − 1)

]
, (4.33)
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holds, then for i, j ∈ In we obtain:

(i)
cn

(1 − 2qn)λn
= 1 − (n − 1)cn ≤ |1 + G1,i| ≤ 1 + (n − 1)cn

= 2 − cn

(1 − 2qn)λn
,

(ii) |G2,i| ≤ (n − 1)w
d2

,

(iii) |ti| ≤ qn,

(iv)
√

1 + 2(α + 1)ti ∈
{

1;
2|α + 1|qn

1 + hn

}
,

(v) |ẑi − zi| = |Ci| ≤ λn

cn
|Wi| ≤ λnd,

where
λn =

cn

(1 − 2qn)
(
1 − (n − 1)cn

) .
Proof. According to the definition of the minimal distance d and the inequal-
ity (4.33), we have∑

j �=i

|Wj |
|zi − zj | ≤

(n − 1)w
d

≤ (n − 1)cn,

so that we estimate

|1 + G1,i| ≥ 1 −
∑
j �=i

|Wj |
|zi − zj | ≥ 1 − (n − 1)cn =

cn

(1 − 2qn)λn
,

|1 + G1,i| ≤ 1 +
∑
j �=i

|Wj |
|zi − zj | ≤ 1 + (n − 1)cn = 2 − cn

(1 − 2qn)λn
,

|G2,i| ≤
∑
j �=i

|Wj |
|zi − zj |2 ≤ (n − 1)w

d2
.

Thus, the assertions (i) and (ii) of Lemma 4.1 are proved.
Using (i), (ii), and (4.33), we prove (iii):

|ti| =
∣∣∣ WiG2,i

(1 + G1,i)2

∣∣∣ ≤ (n − 1)w2

d2(1 − (n − 1)cn)2
≤ (n − 1)c2

n

(1 − (n − 1)cn)2
= qn.

Hence, we conclude that ti ∈ T := {0; qn}, where T is the disk centered at
the origin with the radius qn. Using the inclusion isotonicity property (1.70)
and the formula (1.72) for the square root of a disk (taking the principal
value-set centered at

√|c|ei θ
2 ), we find

√
1 + 2(α + 1)ti ∈

√
1 + 2|α + 1|T =

√
{1; 2|α + 1|qn} =

{
1;

2|α + 1|qn

1 + hn

}
,

which proves the assertion (iv) of the lemma.
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Assume that α �= −1, which means that we deal with the square root in
(4.24). By means of (iv) and applying the centered inversion of a disk (1.63),
we obtain

α + 1
(1 + G1,i)

(
α +
√

1 + 2(α + 1)ti
) ∈ α + 1

(1 + G1,i)
(
α +
{

1;
2|α + 1|qn

1 + hn

})
=

1

(1 + G1,i)
{

1;
2qn

1 + hn

}
⊆ 1

1 + G1,i

{
1;

2qn

1 + hn − 2qn

}
.

Using the last inclusion, from the iterative formula (4.24), we find

ẑi − zi = −Ci = − (α + 1)Wi

(1 + G1,i)
(
α +
√

1 + 2(α + 1)ti
)

∈ − Wi

1 + G1,i

{
1;

2qn

1 + hn − 2qn

}
,

where Ci is the iterative correction appearing in (4.24). According to the
inequality (1.71), from the last expression, it follows that

|ẑi − zi| = |Ci| <
∣∣∣ Wi

1 + G1,i

∣∣∣(1 +
2qn

1 + hn − 2qn

)
=

|Wi/(1 + G1,i)|
1 − 2qn/(1 + hn)

. (4.34)

Using the inequalities (4.33), |1 + G1,i| ≥ 1 − (n − 1)cn, and
2qn

1 + hn
≤ 2qn,

we start from (4.34) and prove (v)

|ẑi − zi| = |Ci| ≤ |Wi|
1 − (n − 1)cn

1
1 − 2qn

=
λn

cn
|Wi| ≤ λnd.

In the case α = −1, the inequalities (i)–(iii) of Lemma 4.1 are also valid
so that we have from (4.25)

|ẑi − zi| ≤
∣∣∣ Wi

1 + G1,i

∣∣∣ 1
1 − |ti| ≤

λn

cn
|Wi| ≤ λnd,

which coincides with (v) of Lemma 4.1 for α �= −1. 
�

Lemma 4.2. Let distinct approximations z1, . . . , zn satisfy the conditions
(4.33) and let

δn :=

(
(n − 1)λ2

n

1 − λn
+

14λnqn

5cn

)(
1 +

λn

1 − 2λn

)n−1

≤ 1 − 2λn. (4.35)
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Then:

(i) |Ŵi| ≤ δn|Wi|.
(ii) ŵ ≤ cnd̂.

Proof. Putting z = ẑi in (4.15), we obtain

P (ẑi) =
( Wi

ẑi − zi
+ 1 +

∑
j �=i

Wj

ẑi − zj

) n∏
j=1

(ẑi − zj).

After dividing by
∏
j �=i

(ẑi − ẑj), we find

Ŵi =
P (ẑi)∏

j �=i

(ẑi − ẑj)
= (ẑi − zi)

( Wi

ẑi − zi
+ 1 +

∑
j �=i

Wj

ẑi − zj

)∏
j �=i

(
1 +

ẑj − zj

ẑi − ẑj

)
.

(4.36)

First, let α �= −1. Using (i) and (iv) of Lemma 4.1 and the inequality
cn ≤ 2/(5(n − 1)), from the iterative formula (4.24), we obtain by circular
arithmetic operations (see Sect. 1.3)

Wi

ẑi − zi
= −

(1 + G1,i)
(
α +
√

1 + 2(α + 1)ti
)

α + 1

∈ −
(1 + G1,i)(α + 1)

{
1;

2qn

1 + hn

}
α + 1

=
{
−1 − G1,i; |1 + G1,i| 2q

1 + hn

}
⊆
{
−1 − G1,i; 2qn(1 + (n − 1)cn)

}
,

wherefrom
Wi

ẑi − zi
⊆
{
−1 − G1,i;

14qn

5

}
.

According to this, we derive the following inclusion:

Wi

ẑi − zi
+ 1 +

∑
j �=i

Wj

ẑi − zj
∈
{
−1 − G1,i;

14qn

5

}
+ 1 +

∑
j �=i

Wj

ẑi − zj

=
{
−1 −

∑
j �=i

Wj

zi − zj
+ 1 +

∑
j �=i

Wj

ẑi − zj
;
14qn

5

}

=
{
−(ẑi − zi)

∑
j �=i

Wj

(zi − zj)(ẑi − zj)
;
14qn

5

}
.
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Hence, by (1.71), we estimate∣∣∣ Wi

ẑi − zi
+ 1 +

∑
j �=i

Wj

ẑi − zj

∣∣∣ ≤ |ẑi − zi|
∑
j �=i

|Wj |
|zi − zj ||ẑi − zj | +

14qn

5
. (4.37)

By applying (v) of Lemma 4.1, we have

|ẑi − zj | ≥ |zi − zj | − |ẑi − zi| ≥ d − λnd = (1 − λn)d, (4.38)

|ẑi − ẑj | ≥ |zi − zj | − |ẑi − zi| − |ẑj − zj | ≥ d − 2λnd = (1 − 2λn)d. (4.39)

From (4.39) and taking into account the definition of the minimal distance,
we find

d̂ ≥ (1 − 2λn)d or d ≤ d̂

1 − 2λn
. (4.40)

Using the estimates (4.33), (4.38), and (v) of Lemma 4.1, from (4.37), we
obtain∣∣∣ Wi

ẑi − zi
+ 1 +

∑
j �=i

Wj

ẑi − zj

∣∣∣ ≤ λnd
(n − 1)w

(1 − λn)d2
+

14qn

5
≤ (n − 1)cnλn

1 − λn
+

14qn

5
.

(4.41)
By (v) of Lemma 4.1 and (4.39), there follows∣∣∣∏

j �=i

(
1 +

ẑj − zj

ẑi − ẑj

)∣∣∣ ≤∏
j �=i

(
1 +

|ẑj − zj |
|ẑi − ẑj |

)
<
(
1 +

λnd

(1 − 2λn)d

)n−1

=
(
1 +

λn

1 − 2λn

)n−1

. (4.42)

Taking into account (v) of Lemma 4.1, (4.41), and (4.42), from (4.36), we
obtain

|Ŵi| ≤ |ẑi − zi|
∣∣∣ Wi

ẑi − zi
+ 1 +

∑
j �=i

Wj

ẑi − zj

∣∣∣∣∣∣∏
j �=i

(
1 +

ẑj − zj

ẑi − ẑj

)∣∣∣
<

λn

cn
|Wi|
( (n − 1)cnλn

1 − λn
+

14qn

5

)(
1 +

λn

1 − 2λn

)n−1

,

wherefrom
|Ŵi| ≤ δn|Wi|, (4.43)

and the assertion (i) of Lemma 4.2 is proved. Using this inequality and the
inequalities (4.33) and (4.40), we prove the assertion (ii)

ŵ ≤ δnw ≤ δncnd ≤ δncn

1 − 2λn
d̂ ≤ cnd̂,

the last inequality being valid due to δn ≤ 1 − 2λn.
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Let us consider now the case α = −1. From (4.25), we obtain

Wi

ẑi − zi
= −1 − G1,i − ti(1 + G1,i) = −1 −

∑
j �=i

Wj

zi − zj
− WiG2,i

1 + G1,i
,

so that

Wi

ẑi − zi
+ 1 +

∑
j �=i

Wj

ẑi − zj
= −(ẑi − zi)

∑
j �=i

Wj

(zi − zj)(ẑi − zj)
− WiG2,i

1 + G1,i
.

Using (v) of Lemma 4.1, (4.38), and the inequality∣∣∣ WiG2,i

1 + G1,i

∣∣∣ ≤ (n − 1)w2

(1 − (n − 1)cn)d2
≤ (n − 1)c2

n

1 − (n − 1)cn
,

which follows according to (i)–(iii) of Lemma 4.1 and (4.33), we obtain∣∣∣ Wi

ẑi − zi
+ 1 +

∑
j �=i

Wj

ẑi − zj

∣∣∣ ≤ (n − 1)cnλn

1 − λn
+

(n − 1)c2
n

1 − (n − 1)cn

≤ (n − 1)cnλn

1 − λn
+

14qn

5
.

The last inequality, together with (4.42), yields the inequality of the form
(4.43) with δn given by (4.35).

The inequality ŵ ≤ cnd̂ for α = −1 is proved in a similar way. Therefore,
as in the case α �= −1, we obtain the inequalities (i) and (ii) of Lemma 4.2.


�

Theorem 4.2. Let α ∈ An(α), n ≥ 3 and let the condition (4.33) be valid.
In addition, let

βn := δn

(2λn

cn
− 1

1 − 2qn
+

14λnqn

5cn

)
< 1 (4.44)

and
g(βn) <

1
2λn

. (4.45)

Then, the one-parameter family (4.18) is convergent.

Proof. It is sufficient to prove that Theorem 3.1 holds true under the condi-
tions (4.33), (4.44), and (4.45).

According to (ii) of Lemma 4.2, we have the implication

w(0) ≤ cnd(0) =⇒ w(1) ≤ cnd(1).

Using the same argumentation, under the given conditions, we derive the
implication
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w(m) ≤ cnd(m) =⇒ w(m+1) ≤ cnd(m+1).

Hence, we prove by induction that (4.33) implies

w(m) ≤ cnd(m)

for each m = 1, 2, . . . , which means that all assertions of Lemmas 4.1 and 4.2
hold for each m = 1, 2, . . .. In particular, the inequalities∣∣W (m+1)

i

∣∣ ≤ δn

∣∣W (m)
i

∣∣ (i ∈ In, m = 0, 1, . . .) (4.46)

and∣∣C(m)
i

∣∣ = ∣∣z(m+1)
i − z

(m)
i

∣∣ ≤ λn

cn

∣∣W (m)
i

∣∣ (i ∈ In, m = 0, 1, . . . ) (4.47)

are valid.
From (4.24), we see that the iterative correction C

(m)
i is given by

C
(m)
i =

(α + 1)W (m)
i(

1 + G
(m)
1,i

)(
α +
√

1 + 2(α + 1)t(m)
i

) . (4.48)

Omitting the iteration index, from (4.47), we obtain by (4.46) and (4.48)

|Ĉi| ≤ λn

cn
|Ŵi| ≤ λnδn

cn
|Ci||yi|, (4.49)

where

yi =
(1 + G1,i)

(
α +
√

1 + 2(α + 1)ti
)

α + 1
. (4.50)

According to (4.33) and (i) of Lemma 4.1, we have

|1 + G1,i| ≤ 1 + (n − 1)cn ≤ 1 +
2(n − 1)
5(n − 1)

=
7
5
.

By this bound and (iii) of Lemma 4.1, from (4.50), we find

yi ∈ (1 + G1,i)
α +
{

1;
2|α + 1|qn

1 + hn

}
α + 1

= (1 + G1,i)
{

1;
2qn

1 + hn

}
⊆
{

1 + G1,i; 2qn|1 + G1,i|
}
⊆
{

1 + G1,i;
14qn

5

}
,

wherefrom we find the upper bound of |yi|:

|yi| ≤ |1 + G1,i| + 14qn

5
≤ 2 − cn

(1 − 2qn)λn
+

14qn

5
.
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Using this bound, from (4.49), we obtain

|Ĉi| ≤ λnδn

cn

(
2 − cn

(1 − 2qn)λn
+

14qn

5

)
|Ci| = βn|Ci|,

where βn is given by (4.44).
In the case α = −1, letting α → −1 in (4.50), we obtain

yi = (1 + G1,i)(1 + ti).

According to (i)–(iii) of Lemma 4.1, there follows

|yi| ≤ |1 + G1,i|(1 + |ti|) ≤
(
2 − cn

(1 − 2qn)λn

)
(1 + qn)

< 2 − cn

(1 − 2qn)λn
+

14qn

5
.

Therefore, in both cases, α �= −1 and α = −1, we have proved the inequality∣∣∣C(m+1)
i

∣∣∣ ≤ βn

∣∣∣C(m)
i

∣∣∣ (i ∈ In, m = 0, 1, . . .),

which completes the proof of the assertion (i) of Theorem 3.1 applied to the
iterative method (4.18) under the conditions of Theorem 4.2.

To prove (ii) of Theorem 3.1, we use the bound (v) from Lemma 4.1 and
find |C(0)

i | ≤ λn|W (0)
i |/cn. According to this, (4.33), and (4.45), one obtains

|z(0)
i − z

(0)
j | ≥ d(0) ≥ w(0)

cn
≥ 1

2λn

(∣∣C(0)
i

∣∣+ ∣∣C(0)
j

∣∣) > g(βn)
(∣∣C(0)

i

∣∣+ ∣∣C(0)
j

∣∣).
Finally, we prove that the family of iterative methods (4.24) is well defined

in each iteration. From (4.24), we observe that

Ci =
P (zi)

Fi(z1, . . . , zn)
,

where

Fi(z1, . . . , zn) =
(1 + G1,i

1 + α

)(
α +
√

1 + 2(α + 1)ti
) n∏

j=1
j �=i

(zi − zj).

Let α �= −1. From (iii) of Lemma 4.1, we find

α +
√

1 + 2(α + 1)ti ∈
{

α + 1;
2|α + 1|qn

1 + hn

}
⊆ (α + 1){1; 2qn},
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where {1; 2qn} is the disk centered at 1 with the radius 2qn. Since |z| ≥ 1−2qn

for any z ∈ {1; 2qn}, it follows∣∣∣α +
√

1 + 2(α + 1)ti
∣∣∣ ≥ |α + 1|(1 − 2qn). (4.51)

Taking the upper bound cn ≤ 2/(5(n − 1)) (see Lemma 4.1), we estimate

qn ≤ 4
9(n − 1)

≤ 2
9
. (4.52)

According to (4.51), (4.52), and the bound

|1 + G1,i| ≥ 1 − (n − 1)cn ≥ 1 − (n − 1)
2

5(n − 1)
=

3
5

(4.53)

(see (i) of Lemma 4.1), from (4.51), we find∣∣∣∣(1 + G1,i

1 + α

)(
α +
√

1 + 2(α + 1)ti

)∣∣∣∣ ≥ |1 + G1,i|(1 − 2qn) ≥ 3

5

(
1 − 4

9

)
=

1

3
> 0.

In addition, since |zi − zj | ≥ d > 0, we find that
∏

j �=i(zi − zj) �= 0, and thus,
Fi(z1, . . . , zn) �= 0.

In a similar way, we derive the proof in the case α = −1. Namely, then

Fi(z1, . . . , zn) = (1 + G1,i)(1 + ti)
∏
j �=i

(zi − zj),

so that by (4.53) and (ii) of Lemma 4.1 we find

|Fi(z1, . . . , zn)| =
∣∣1 + G1,i

∣∣|1 + ti|
∏
j �=i

|zi − zj | ≥
(
1 − (n − 1)cn

)
(1 − qn)dn−1

≥ 3

5
· 7

9
dn−1 =

7

15
dn−1 > 0. ��

Theorem 4.3. Let z
(0)
1 , . . . , z

(0)
n be distinct initial approximations satisfying

the initial condition

w(0) ≤ d(0)

2.7n + 0.75
. (4.54)

Then, the family of simultaneous methods (4.18) is convergent.

Proof. Having in mind the assertion of Theorem 4.2, it is sufficient to prove
that the specific value of i-factor cn = 1/(2.7n + 0.75), appearing in (4.54),
satisfies the conditions (4.33), (4.35), (4.44), and (4.45).

First, we directly verify that cn = 1/(2.7n + 0.75) ∈ (0, 2/(5(n − 1))
]
.

Furthermore, the sequence {δn}, given by (4.35), is monotonically decreasing
for n ≥ 4 and δn ≤ δ4 < 0.362 (n ≥ 4) holds. In addition, δ3 < 0.365 so
that δn < 1. Besides, 1 − 2λn > 0.68 (n ≥ 3) and, therefore, δn < 0.365 <
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1− 2λn, which means that (4.35) holds. The sequence {βn} is monotonically
decreasing for n ≥ 4 and

1 > β3 = 0.66352 . . . , 0.731 > β4 ≥ βn (n ≥ 4),

i.e., the condition (4.44) is fulfilled.
Finally, the sequence {g(βn)−1/2λn} is monotonically decreasing for n ≥ 4

and
g(βn) − 1

2λn
≤ g(β4) − 1

2λ4
= −0.211826 . . . < 0

is valid. In particular, g(β3)− 1
2λ3

= −0.161 . . . < 0. Therefore, the inequality

g(βn) <
1

2λn
holds for all n ≥ 3, and thus, the condition (4.47) is also

satisfied. This completes the proof of the convergence theorem. 
�

4.3 Family of Simultaneous Methods with Derivatives

Let us consider Hansen–Patrick’s family (4.1) and let f ≡ P be a monic poly-
nomial of order n with (real or complex) simple zeros. Obviously, the zeros of
P coincide with the zeros of the rational Weierstrass’ function Wi(z) given by
(1.17). In the subsequent discussion, we will use the following abbreviations:

δk,i =
P (k)(zi)
P (zi)

, Sk,i =
n∑

j=1
j �=i

1
(zi − zj)k

(k = 1, 2).

Applying Hansen–Patrick’s formula (4.1) to the function Wi(z) (see (1.17))
and using (1.20), the following one-parameter family of iterative methods for
the simultaneous approximation of all simple zeros of a polynomial P has
been derived by M. Petković, Sakurai, and Rančić [141]:

ẑi = zi − α + 1

α(δ1,i − S1,i) +
[
(α + 1)(δ2

1,i − δ2,i − S2,i) − α(δ1,i − S1,i)2
]1/2

∗
(i ∈ In). (4.55)

It is assumed that two values of the (complex) square root are taken in (4.55).
We have to choose a “proper” sign in front of the square root in such a way
that a smaller step |ẑi − zi| is taken. The symbol ∗ in (4.55) and subsequent
iterative formulae points to the proper sign. A criterion for the selection of
the proper value of the square root, which has a practical importance, can be
stated according to the result of Henrici [57, p. 532], see Remark 4.2. If the
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approximations are sufficiently close to the zeros, it turns out that one has
to choose the principal branch of the square root in (4.55).

We present some special cases of the iterative formula (4.55):

α = 0, the Ostrowski-like method:

ẑi = zi − 1[
δ2
1,i − δ2,i − S2,i

]1/2

∗

(i ∈ In).

This method was derived by Gargantini as a special case of the square root
interval method in circular complex arithmetic [47].

α = 1, the Euler-like method:

ẑi = zi − 2

δ1,i − S1,i +
[
2(δ2

1,i − δ2,i − S2,i) − (δ1,i − S1,i)2
]1/2

∗

(i ∈ In).

α = 1/(n − 1), the Laguerre-like method:

ẑi = zi − n

δ1,i − S1,i +
[
n(n − 1)(δ2

1,i − δ2,i − S2,i) − (n − 1)(δ1,i − S1,i)2
]1/2

∗
(i ∈ In).

α = −1, the Halley-like method:

ẑi = zi − 2(S1,i − δ1,i)
δ2,i − 2δ2

1,i + 2S1,iδ1,i + S2,i − S2
1,i

(i ∈ In). (4.56)

The Halley-like method (4.56) is obtained from (4.55) for α → −1 applying
a limiting operation. This method was also derived by Sakurai, Torii, and
Sugiura [157] using a different approach.

α → ∞, the Newton-like method or Ehrlich–Aberth’s method ([1], [33]) of the
third order:

ẑi = zi − 1
δ1,i − S1,i

(i ∈ In). (4.57)

Remark 4.6. Let f ≡ P be a monic polynomial of order n with simple
zeros and let cj be either cj = zj − Nj (the Newton’s approximation) or
cj = zj − Hj (the Halley’s approximation) (see (1.18)). Applying Hansen–
Patrick’s formula (4.1) to the modified Weierstrass’ function given by (1.19),
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the following one-parameter family of iterative methods for the simultaneous
approximation of all simple zeros of a polynomial P is derived:

ẑi = zi − α + 1

α(δ1,i − S∗
1,i) +

[
(α + 1)(δ2

1,i − δ2,i − S∗
2,i) − α

[
δ1,i −

(
S∗

1,i

)2]]1/2

∗
(i ∈ In),

where S∗
k,i =

∑
j �=i(zi − cj)−k (k = 1, 2). This is a new family with a high

order of convergence. In the special case α = 0, it reduces to the improved
iterative methods (1.27) and (1.28) of Ostrowski’s type. If we take cj = zj ,
then we obtain the basic simultaneous method of the fourth order (4.55),
considered in [141].

In this section, we investigate iterative methods from the family (4.55),
which have the order of convergence 4, see Theorem 4.4. For this reason,
we will assume that the parameter α is not too large in magnitude, see
Remarks 4.5 and 4.8 and the iterative formula (4.57).

Convergence Analysis

Now, we determine the convergence order of the family of simultaneous meth-
ods (4.55). In addition, according to the discussion given in Remarks 4.5 and
4.8, we will assume that the parameter α is not too large in magnitude.

Theorem 4.4. If initial approximations z
(0)
1 , . . . , z

(0)
n are sufficiently close

to the zeros ζ1, . . . , ζn of the polynomial P , then the family of simultaneous
iterative methods (4.55) has the order of convergence equal to 4.

Proof. Let us introduce the errors ui = zi − ζi, ûi = ẑi − ζi (i ∈ In) and the
abbreviations

Ai =
n∑

j=1
j �=i

uj

(zi − ζj)(zi − zj)
, Bi =

n∑
j=1
j �=i

(2zi − zj − ζj)uj

(zi − ζj)2(zi − zj)2
.

In our proof, we will use the identities

δ1,i =
n∑

j=1

1
zi − ζj

, δ2
1,i − δ2,i =

n∑
j=1

1
(zi − ζj)2

.

Hence, after some elementary calculations, we obtain

δ1,i − S1,i =
1
ui

(
1 − Aiui

)
, δ2

1,i − δ2,i − S2,i =
1
u2

i

(
1 − Biu

2
i

)
.
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Using the last two relations, from the iterative formula (4.55), we find

ûi = ẑi − ζi = ui − (α + 1)ui

α(1 − Aiui) +
[
(α + 1)(1 − Biu2

i ) − α(1 − Aiui)2
]1/2

∗

= ui − (α + 1)ui

α(1 − Aiui) +
[
1 + Viui

]1/2

∗

,

where
Vi = 2αAi − (α + 1)Biui − αA2

i ui.

Assuming that |ui| is sufficiently small and having in mind the principal
branch of the square root, we have√

1 + Viui = 1 +
Viui

2
+ OM

(
V 2

i u2
i

)
(see (4.27)). Now, we obtain

ûi = ui − (α + 1)ui

α(1 − Aiui) + 1 +
Viui

2
+ OM

(
V 2

i u2
i

)
= ui − 2(α + 1)ui

2(α + 1) − (α + 1)Biu2
i − αA2

i u
2
i + OM

(
V 2

i u2
i

) ,
or, after a short rearrangement,

ûi =
u3

i

(
(α + 1)Bi + αA2

i

)
+ OM

(
V 2

i u3
i

)
(α + 1)Biu2

i + αA2
i u

2
i − 2(α + 1) + OM

(
V 2

i u2
i

) . (4.58)

Let u = max
1≤j≤n

|uj |. We estimate |Ai| = O(u), |Bi| = O(u), and |Vi| =

O(u), so that from (4.58) there follows

|ûi| = |ui|3O(u).

If we adopt that absolute values of all errors uj (j = 1, . . . , n) are of the same
order, say |uj | = O(|ui|) for any pair i, j ∈ In, we will have

|û| = O(|u|4),
which proves the assertion. 
�
Remark 4.7. Recently, Huang and Zheng [62] have used the approximation

P ′′(zi)
P ′(zi)

≈ 2
n∑

j=1
j �=i

1
zi − zj
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in (4.1) to derive a new family of simultaneous methods of the form

ẑi = zi − (α + 1)/δ1,i

α +
[
1 − 2(α + 1)

δ1,i

n∑
j=1
j �=i

1
zi − zj

]1/2
(i ∈ In). (4.59)

This iterative formula is simpler than (4.55) but it possesses only a cubic
convergence. Besides, a theoretical analysis as well as numerous numerical
experiments have shown that the domain of convergence of the family (4.59)
is narrower compared with the domain of the family (4.55).

Methods for Multiple Zeros

Let us consider now the case when a polynomial P has multiple zeros
ζ1, . . . , ζν (ν ≤ n) of the known multiplicities µ1, . . . , µν , respectively. Then,
the zeros of P coincide with the zeros of the rational Weierstrass-like function
given by (1.40) (with cj = zj). We note that efficient procedures for finding
the order of multiplicity can be found in [78], [79], and [93].

Let δq,i (q = 1, 2) be defined as above and let

S̃q,i =
ν∑

j=1
j �=i

µj

(zi − zj)q
(q = 1, 2). (4.60)

Starting from (1.40) and applying logarithmic derivative, using (4.60), we
find (

W ∗
i (z)
)′

W ∗
i (z)

∣∣∣∣∣
z=zi

= δ1,i − S̃1,i, (4.61)

(
W ∗

i (z)
)′′(

W ∗
i (z)
)′
∣∣∣∣∣
z=zi

= δ1,i − S̃1,i +
δ2,i − δ2

1,i + S̃2,i

δ1,i − S̃1,i

. (4.62)

Let us rewrite the iterative formula (4.13) (substituting f with P ) to the
form

ẑ = z − µ(α + 1)

α
P ′(z)
P (z)

+

[
(µ(α + 1) − α)

(P ′(z)
P (z)

)2

− µ(α + 1)
P ′′(z)
P ′(z)

· P (z)
P ′(z)

]1/2

∗

.

Similarly as in the case of simple zeros, let us substitute P ′/P with (W ∗
i )′/W ∗

i

(formula (4.61)), P ′′/P ′ with (W ∗
i )′′/(W ∗

i )′ (formula (4.62)), and, in addi-
tion, µ with µi. In this way, we obtain a one-parameter family for the simul-
taneous determination of multiple zeros (with known multiplicities) of the
polynomial P
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ẑi = zi − µi(α + 1)

α(δ1,i − S̃1,i) +
[
µi(α + 1)(δ2

1,i − δ2,i − S̃2,i) − α(δ1,i − S̃1,i)2
]1/2

∗

,

(4.63)

where i ∈ Iν := {1, . . . , ν}. We note that another iterative formula for mul-
tiple zeros with similar structure was proposed in [124]. For specific values
of the parameter α, we obtain some special cases of the iterative formula
(4.63). For example, for α = 0 (Ostrowski’s case), the iterative formula (4.63)
becomes

ẑi = zi −
√

µi[
δ2
1,i − δ2,i − S̃2,i

]1/2

∗

(i ∈ Iν).

This method arises from the square root iterative interval method proposed
by Gargantini in [49] for multiple zeros. Furthermore, in a limiting procedure
when α → −1, from (4.63), we obtain the Halley-like method

ẑi = zi − 2µi(δ1,i − S̃1,i)

(δ1,i − S̃1,i)2 − µi(δ2,i − δ2
1,i + S̃2,i)

(i ∈ Iν),

previously derived in [144] using a different approach.
In a similar way, we can obtain the Euler-like (α = 1) and Laguerre-like

method (α = µi/(n − µi)) for finding multiple zeros. If α → ∞, performing
a limiting operation in (4.63), we obtain

ẑi = zi − µi

δ1,i − S̃1,i

= zi − µi

P ′(zi)
P (zi)

−
ν∑

j=1
j �=i

µj

zi − zj

(i ∈ Iν),

the well-known third-order method for multiple zeros which can be obtained
from Gargantini’s interval method for the inclusion of multiple zeros [48]. This
iterative method can be regarded as Ehrlich–Aberth’s version for multiple
zeros.

Using a similar analysis as in the proof of Theorem 4.1, we can prove the
following assertion.

Theorem 4.5. If initial approximations z
(0)
1 , . . . , z

(0)
ν are sufficiently close

to the zeros ζ1, . . . , ζν of the polynomial P , then the family of simultaneous
iterative methods (4.63) has the fourth order of convergence.

Initial Conditions and Guaranteed Convergence

We have proved above that the family (4.55) possesses the fourth order of
convergence, assuming that initial approximations are close enough to the
sought zeros. Similarly as in Sect. 4.2, now we give a more precise conver-
gence analysis which includes computationally verifiable initial conditions
(see [123]).
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In the sequel, we will assume that the following inequality

w < cnd, cn =
1

3n + 2
, (4.64)

is valid. Since w < 1/(3n + 2) < d/(2n), the assertions of Corollary 1.1 hold.
Let us introduce

Li =
α + 1

α +
[
1 − (α + 1)ti

]1/2

∗

, ti = 1 +
(
δ2,i − δ2

1,i + S2,i

)(
δ1,i − S1,i

)−2
.

Then, the iterative formula (4.55) can be rewritten in the form

ẑi = zi − (α + 1)(δ1,i − S1,i)−1

α +
[
1 − (α + 1)

(
1 +
(
δ2,i − δ2

1,i + S2,i

)(
δ1,i − S1,i

)−2
)]1/2

∗

= zi − (α + 1)(δ1,i − S1,i)−1

α +
[
1 − (α + 1)ti

]1/2

∗

,

i.e.,
ẑi = zi − Li(δ1,i − S1,i)−1. (4.65)

To ensure only positive values under the square root of some quantities,
the parameter α must belong to the disk

Kα(n) := {−1; 1/qn}, where qn =
1

2n + 4
≤ 1

10
(4.66)

(see [123]).
Remark 4.8. According to (4.66), the values of the parameter α must belong
to the disk Kα(n) = {−1, 1/qn} ⊆ {−1; 10}. However, the above restriction
on α should not be regarded as a disadvantage. It can be shown that the use
of large values of |α| generates the methods whose convergence rate decreases
and approaches 3. In practice, in such situations, the iterative method (4.55)
behaves as the aforementioned cubically convergent Ehrlich–Aberth’s method
(4.57).

Lemma 4.3. Let (4.64) hold and let α ∈ Kα(n) = {−1; 1/qn}. Then for all
i = 1, . . . , n we have:

(i) Li ∈ {1; qn}−1 ⊂
{

1;
qn

1 − qn

}
.

(ii) |(δ1,i − S1,i)−1| < 3
2 |Wi|.

(iii) |ẑi − zi| = |Ci| < 5
3 |Wi| < λnd, where λn =

5
3(3n + 2)

.

(iv) |Ŵi| < 1
4 |Wi|.
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(v) ŵ < cnd̂, cn = 1/(3n + 2).
(vi) d̂ > (1 − 2λn)d.

The proofs of these assertions can be found in [123].

Theorem 4.6. Let n ≥ 3 and α ∈ Kα(n). Then, the one-parameter family
of iterative methods (4.55) is convergent under the condition

w(0) <
d(0)

3n + 2
. (4.67)

Proof. The following implication arises from Lemma 4.3 (assertion (v)):

w < cnd =⇒ ŵ < cnd̂, cn =
1

3n + 2
.

By induction, we can prove that the condition (4.67) implies the inequal-
ity w(m) < cnd(m) for each m = 1, 2, . . .. Therefore, all the assertions of
Lemma 4.3 hold for each m = 1, 2, . . . if the initial condition (4.67) is valid.
In particular, the following inequalities

|W (m+1)
i | <

1
4
|W (m)

i | (4.68)

and
|C(m)

i | = |z(m+1)
i − z

(m)
i | <

5
3
|W (m)

i | (4.69)

hold for i ∈ In and m = 0, 1, . . ..
From the iterative formula (4.65) for α �= −1, we see that the corrections

C
(m)
i are expressed by

C
(m)
i = L

(m)
i

(
δ
(m)
1,i − S

(m)
1,i

)−1

, (4.70)

where the abbreviations L
(m)
i , δ

(m)
1,i , and S

(m)
1,i are related to the mth iterative

step.
To prove that the iterative process (4.55) is well defined in each iteration,

it is sufficient to show that the function Fi(z1, . . . , zn) = P (zi)/Ci cannot
take the value 0. From (4.70), we have

Fi(z1, . . . , zn) =
P (zi)(δ1,i − S1,i)

Li
=

Wi(δ1,i − S1,i)
Li

∏
j �=i

(zi − zj).

Starting from Lemma 4.3(i), we find by (1.63) and (1.71)

1
Li

∈ {1; q} =⇒ 1
|Li| ≥ 1 − qn =

9
10

.
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According to Lemma 4.3(ii), we have

|Wi(δ1,i − S1,i| > |Wi| · 2
3|Wi| =

2
3
.

Finally, using the definition of the minimal distance, one obtains∣∣∣∏
j �=i

(zi − zj)
∣∣∣ ≥ dn−1 > 0.

Using the last three inequalities, we get

|Fi(z1, . . . , zn)| =
1

|Li| |Wi(δ1,i − S1,i)|
∣∣∣∏
j �=i

(zi − zj)
∣∣∣ > 9

10
· 2
3
· dn−1 > 0.

Now, we prove that the sequences {|C(m)
i |} (i ∈ In) are monotonically

decreasing. Omitting the iteration index for simplicity, from (4.68), (4.69),
and

(δ1,i − S1,i)Wi = 1 +
∑
j �=i

Wj

zi − zj

(see (3.72)), we find

|Ĉi| <
5
3
|Ŵi| <

5
3
· 1
4
|Wi| =

5
12

|Li(δ1,i − S1,i)−1|
∣∣∣ (δ1,i − S1,i)Wi

Li

∣∣∣
=

5
12

|Ci|
∣∣∣ 1
Li

(
1 +
∑
j �=i

Wj

zi − zj

)∣∣∣,
i.e.,

|Ĉi| <
5
12

|xi||Ci|, where xi =
1
Li

(
1 +
∑
j �=i

Wj

zi − zj

)
. (4.71)

Using the inclusion (i) of Lemma 4.3 and the inequality∣∣∣1 +
∑
j �=i

Wj

zi − zj

∣∣∣ ≤ 1 +
∑
j �=i

|Wj |
|zi − zj | ≤ 1 +

(n − 1)w
d

< 1 + (n − 1)cn,

we find
xi ∈

(
1 +
∑
j �=i

Wj

zi − zj

)
{1; qn},

so that, using (1.71),

|xi| < (1 + (n − 1)cn)(1 + qn) <
22
15

.
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From (4.71), we now obtain

|Ĉi| <
5
12

· 22
15

|Ci| =
11
18

|Ci|.

Therefore, the constant β which appears in Theorem 3.1 is equal to β =
11/18 ≈ 0.6111. By induction, we prove that the inequalities

|C(m+1)
i | <

11
18

|C(m)
i |

hold for each i = 1, . . . , n and m = 0, 1, . . ..
The quantity g(β) appearing in (ii) of Theorem 3.1 is equal to g(11/18) =

1/(1 − 11/18) = 18/7. It remains to prove the disjunctivity of the inclusion
disks

S1 =
{

z
(0)
1 ;

18
7
|C(0)

1 |
}

, . . . , Sn =
{

z(0)
n ;

18
7
|C(0)

n |
}

(assertion (ii) of Theorem 3.1). By virtue of (4.69), we have

|C(0)
i | <

5
3
w(0)

for all i = 1, . . . , n. If we choose the index k ∈ In such that

|C(0)
k | = max

1≤i≤n
|C(0)

i |,

then

d(0) > (3n + 2)w(0) >
3
5
(3n + 2)|C(0)

k | ≥ 3(3n + 2)
10

(|C(0)
i | + |C(0)

j |)
> g(11/18)

(|C(0)
i | + |C(0)

j |),
since

3(3n + 2)
10

≥ 3.3 > g(11/18) = 2.571...

for all n ≥ 3. This means that

|z(0)
i − z

(0)
j | ≥ d(0) > g(11/18)(|C(0)

i | + |C(0)
j |) = radSi + radSj .

Hence, according to (1.69), it follows that the inclusion disks S1, . . . , Sn are
disjoint, which completes the proof of Theorem 4.6. 
�

We conclude this section with the remark that the quantity cn appearing
in the initial condition (4.67) may be greater than 1/(3n + 2) for some par-
ticular methods belonging to the family (4.55). The use of a smaller cn in
Theorem 4.6 is the price that one usually has to pay for being more general.
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4.4 Numerical Examples

To demonstrate the convergence speed and the behavior of some methods
belonging to the families presented in Sects. 4.2 and 4.3, we have tested these
methods in the examples of algebraic polynomials using multiprecision arith-
metic. We have used several values for the parameter α and taken common
starting approximations z

(0)
1 , . . . , z

(0)
n for each method. The accuracy of ap-

proximations has been estimated by the maximal error

u(m) = max
1≤i≤n

|z(m)
i − ζi|,

where m = 0, 1, . . . is the iteration index. The stopping criterion has been
given by the inequality

E(m) = max
i≤i≤n

|P (z(m)
i )| < τ,

where τ is a given tolerance.
In our numerical experiments, we have often used the fact that all zeros

of a polynomial P (z) = anzn + an−1z
n−1 + · · · + a1z + a0 (a0, an �= 0) lie

inside the annulus

{z ∈ C : r < |z| < R},
r =

1
2

min
1≤k≤n

∣∣∣a0

ak

∣∣∣1/k

, R = 2 max
1≤k≤n

∣∣∣an−k

an

∣∣∣1/k

(4.72)

(see [57, Theorem 6.4b, Corollary 6.4k] and Sect. 1.2). All tested methods
have started with Aberth’s initial approximations [1]

z
(0)
k = −an−1

n
+ r0 exp(iθk), i =

√−1, θk =
π

n

(
2k − 3

2

)
(k = 1, . . . , n).

(4.73)
We content ourselves with three examples.

Example 4.1. Methods from the class (4.18) have been tested in the example
of the monic polynomial P of degree n = 25 given by

P (z) = z25 + (0.752 + 0.729i)z24 + (−0.879 − 0.331i)z23 + (0.381 − 0.918i)z22

+(0.781 − 0.845i)z21 + (−0.046 − 0.917i)z20 + (0.673 + 0.886i)z19

+(0.678 + 0.769i)z18 + (−0.529 − 0.874i)z17 + (0.288 + 0.095i)z16

+(−0.018 + 0.799i)z15 + (−0.957 + 0.386i)z14 + (0.675 − 0.872i)z13

+(0.433 − 0.562i)z12 + (−0.760 + 0.128i)z11 + (−0.693 − 0.882i)z10

+(0.770 − 0.467i)z9 + (−0.119 + 0.277i)z8 + (0.274 − 0.569i)z7

+(−0.028 − 0.238i)z6 + (0.387 + 0.457i)z5 + (−0.855 − 0.186i)z4

+(0.223 − 0.048i)z3 + (0.317 + 0.650i)z2 + (−0.573 + 0.801i)z

+(0.129 − 0.237i).
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The coefficients ak ∈ C of P (except the leading coefficient) have been chosen
by the random generator as Re(ak) = random(x), Im(ak) = random(x),
where random(x) ∈ (−1, 1). Using (4.72), we find that all zeros of the above
polynomial lie in the annulus {z : r = 0.3054 < |z| < 2.0947 = R}.

For comparison, we have also tested the well-known Durand–Kerner’s
method (D–K for brevity)

z
(m+1)
i = z

(m)
i − P (z(m)

i )
n∏

j=1
j �=i

(z(m)
i − z

(m)
j )

(i ∈ In; m = 0, 1, . . .) (4.74)

(see Comment (M1) in Sect. 1.1). This method is one of the most efficient
methods for the simultaneous approximation of all zeros of a polynomial. All
tested methods started with Aberth’s initial approximations given by (4.73)
with n = 25, an−1 = 0.752 + 0.729 i. In this example, the stopping criterion
was given by

E(m) = max
1≤i≤25

|P (z(m)
i )| < τ = 10−7.

We have performed three experiments taking r0 = 1.2, 10, and 100 in
(4.73). The first value is equal to the arithmetic mean of the radii r = 0.3054
and R = 2.0947 of the inclusion annulus given above. The values r0 = 10
and r0 = 100 have been chosen to exhibit the influence of r0 to the conver-
gence speed of the tested methods but also to show very good convergence
behavior in the situation when the initial approximations are very crude and
considerably far from the sought zeros.

Table 4.1 gives the number of iterative steps for the considered iterative
procedures (4.18) and the Durand–Kerner’s method (4.74). From this table,
we see that the fourth-order methods (4.18) require less than half of the
iterations produced by the second-order methods (4.74) if the parameter α
in (4.18) is not too large. This means that the convergence behavior of the
proposed methods (4.18) is at least as good as the behavior of the Durand–
Kerner’s method (4.74).

Table 4.1 Family (4.18): the number of iterations for different |z(0)
i | = r0

r0 � α 0 1 −1 1/(n − 1) 1,000 D–K (4.74)

1.2 8 8 5 11 7 13

10 24 28 24 22 36 65

100 40 56 49 39 62 124

Example 4.2. Methods from the class (4.55) have been tested in the example
of the monic polynomial P of degree n = 15 given by
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P (z) = z15 + (−0.732 + 0.921 i)z14 + (0.801 − 0.573 i)z13 + (0.506 − 0.713 i)z12

+(−0.670 + 0.841 i)z11 + (−0.369 − 0.682 i)z10 + (0.177 − 0.946 i)z9

+(−0.115 + 0.577 i)z8 + (0.174 − 0.956 i)z7 + (−0.018 − 0.438 i)z6

+(0.738 + 0.645 i)z5 + (−0.655 − 0.618 i)z4 + (0.123 − 0.088 i)z3

+(0.773 + 0.965 i)z2 + (−0.757 + 0.109 i)z + 0.223 − 0.439 i.

The coefficients ak ∈ C of P (except the leading coefficient) were chosen by
the random generator as in Example 4.1. Using (4.72), we find that all zeros
of the above polynomial lie in the annulus {z ∈ C : r = 0.477 < |z| <
2.353 = R}.

For comparison, we have also tested the Durand–Kerner’s method (4.74)
and the Ehrlich–Aberth’s method (4.57). The Ehrlich–Aberth’s method
(briefly E–A method) has been tested for the purpose of comparison related
to the methods from the family (4.55) obtained for very large α. All tested
methods started with Aberth’s initial approximations given by (4.73). In this
example, the stopping criterion was given by

E(m) = max
1≤i≤15

|P (z(m)
i )| < τ = 10−12.

We have performed several experiments taking r0 = 0.2, 0.5, 1, 2, 4, 6, 8,
and 100 to investigate the behavior of the tested methods for initial approxi-
mations of various magnitudes. Table 4.2 gives the number of iterative steps
for the methods of the family (4.55), the D–K method (4.74), and the E–A
method (4.57).

From Table 4.2, we see that the fourth-order methods (4.55) (excepting the
Euler-like method (α = 1) for some r0) require less than half of iterative steps
produced by the D–K method (4.74) if the parameter α in (4.55) is not too
large. A hundred performed experiments, involving polynomials of various

Table 4.2 Family (4.55): the number of iterations for different |z(0)
i | = r0

r0 � α 0 1 −1 1/(n − 1) 1,000 E–A (4.57) D–K (4.74)

0.2 a 18 14 12 9 16 100b

0.5 a 10 8 11 9 9 100b

1 17 9 9 9 7 7 22

2 10 10 8 9 9 9 16

4 11 14 11 12 14 14 26

6 12 18 13 12 15 16 32

8 15 25 15 14 19 19 36

100 26 c 28 24 38 38 73

aThe Ostrowski-like method oscillates giving some approximations of insufficient accuracy
bThe Durand–Kerner’s method converges to the exact zeros but in more than 100
iterations
cSome approximations are found with very high precision, but the remaining ones cannot
be improved by the Euler-like method
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degrees, have led to the same conclusion. These numerical results, as well as
Examples 4.1 and 4.2, point that the convergence behavior of the proposed
methods (4.55) is at least as good as the behavior of the D–K method (4.74).
In addition, numerical experiments show that the E–A method (4.57) behaves
almost the same as the methods from the family (4.55) for large α, which
coincides with theoretical results (see Sect. 4.3 and Remark 4.8).

Let us note that certain convergence features of some tested methods are
explained by comments given below Table 4.2. For instance, the Ostrowski-
like method (α = 0) and the D–K method (4.74) are not so efficient for initial
approximations of small magnitudes. The D–K method attains the required
stopping criterion but after a great number of iterations. On the other hand,
the Ostrowski-like method provides very high accuracy for most approxima-
tions with a few iterations but whilst others reach a certain (insufficient)
accuracy and cannot be improved in the continuation of iterative procedure;
practically, this method “oscillates.” It is interesting to note that Euler-like
method (α = 1) shows similar behavior but for initial approximations of large
magnitude.

Most problems appearing in practical realization of the methods from the
family (4.55) can be overcome by the choice of initial approximations in such
a way that they lie inside the annulus {z ∈ C : r < |z| < R}, where r and R
are determined by (4.72). Our numerical experiments with such a choice of
initial approximations showed that all tested methods have almost the same
convergence behavior for a wide range of values of the parameter α and very
fast convergence.

Example 4.3. We tested the family of simultaneous methods (4.63) for mul-
tiple zeros in the example of the polynomial

P (z) = (z − 1.9)2(z − 2)2(z − 2.1)2(z2 + 4z + 8)(z2 + 1)3

= z14 − 8z13 + 22.98z12 − 39.92z11 + 142.94z10 − 583.76z9 + 1515.34z8

−2867.92z7 + 4412.62z6 − 5380.4z5 + 5251.53z4 − 4340.48z3

+2742.73z2 − 1276.16z + 509.443.

The exact zeros are ζ1 = 1.9, ζ2 = 2, ζ3 = 2.1, ζ4,5 = −2 ± 2 i, and ζ6,7 = ±i
with respective multiplicities µ1 = µ2 = µ3 = 2, µ4 = µ5 = 1, and µ6,7 = 3.

We terminated the iterative process when the stopping criterion

E(m) = max
1≤i≤7

|P (z(m)
i )| < τ = 10−8

was satisfied. All tested methods started with Aberth’s initial approximations
(4.73) taking n = 14, k = 7, an−1 = −8, and r0 = 1; thus, we took initial
approximations equidistantly spaced on the circle with radius r0 = 1. The
numbers of iterations are given below:

Ostrowski-like method, α = 0 12 iterations
Euler-like method, α = 1 7 iterations
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Laguerre-like method, α = µi/(n − µi) 7 iterations
Halley-like method, α = −1 7 iterations
Large parameter method, α = 500 13 iterations

1−1−2
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2
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Fig. 4.1 The flow of the iterative process (4.63) for α = 500

The flow of the iterative process (4.63) for α = 500, concerning all zeros,
is displayed in Fig. 4.1, where small circles represent the exact zeros. Let
us note that the applied algorithm chooses itself the directions toward the
sought zeros. This means that some approximations are good for the zeros
in their vicinity (for instance, z

(0)
3 , z

(0)
6 ), the others are rather far from the

targets (z(0)
2 , z

(0)
4 , z

(0)
5 ). In addition, there is a cluster of zeros {1.9, 2, 2.1}

in the considered example. However, despite these unsuitable conditions, the
employed method overcomes aforementioned difficulties and finds all multiple
zeros spending relatively little CPU time (i.e., it runs a small number of
iterative steps).



Chapter 5

Families of Simultaneous Methods
of Higher Order: Part II

In this chapter, we derive a fixed point relation of the square root type,
which is the base for the construction of new one-parameter families of iter-
ative methods for the simultaneous determination of simple complex zeros of
a polynomial in ordinary complex arithmetic (Sect. 5.1) and circular complex
arithmetic (Sect. 5.3). A slight modification of the derived fixed point relation
can provide the simultaneous approximation of multiple zeros. Under com-
putationally verifiable initial conditions, we prove that the basic method has
the convergence order equal to 4. Using an approach with corrections, pro-
posed by Carstensen and M. Petković in [17] and [111], we construct modified
methods with very fast convergence on the account of only a few additional
numerical operations (Sect. 5.2). In this way, we obtain a high computational
efficiency of the proposed methods. Numerical results are given in Sect. 5.2
for the methods realized in ordinary complex arithmetic and in Sect. 5.3 for
the methods implemented in circular complex arithmetic.

5.1 One-Parameter Family for Simple Zeros

In this section, we present a new family of high-order methods for the simul-
taneous determination of simple complex zeros of a polynomial. This family
includes a complex parameter α (�= −1) whose values will be discussed later.
Let P be a monic polynomial with simple zeros ζ1, . . . , ζn and let z1, . . . , zn

be their mutually distinct approximations. For the point z = zi (i ∈ In), let
us introduce the notations:

Σλ,i =
n∑

j=1
j �=i

1
(zi − ζj)λ

, Sλ,i =
n∑

j=1
j �=i

1
(zi − zj)λ

(λ = 1, 2),

δ1,i =
P ′(zi)
P (zi)

, ∆i =
P ′(zi)2 − P (zi)P ′′(zi)

P (zi)2
, (5.1)

M. Petković, Point Estimation of Root Finding Methods. Lecture Notes 161
in Mathematics 1933,
c© Springer-Verlag Berlin Heidelberg 2008
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f∗
i = (α + 1)Σ2,i − α(α + 1)Σ2

1,i, fi = (α + 1)S2,i − α(α + 1)S2
1,i, (5.2)

ui = zi − ζi, u = max
1≤i≤n

|ui|.

Lemma 5.1. For i ∈ In, the following identity is valid

(α + 1)∆i − αδ2
1,i − f∗

i =
(α + 1

ui
− αδ1,i

)2

. (5.3)

Proof. Starting from the identities

δ1,i =
P ′(zi)
P (zi)

=
n∑

j=1

1
zi − ζj

=
1
ui

+ Σ1,i (5.4)

and

∆i =
P ′(zi)2 − P (zi)P ′′(zi)

P (zi)2
= −
(

P ′(zi)
P (zi)

)′
=

n∑
j=1

1
(zi − ζj)2

=
1
u2

i

+ Σ2,i,

(5.5)

we obtain

(α + 1)∆i − αδ2
1,i − f∗

i = (α + 1)
( 1

u2
i

+ Σ2,i

)
− α
( 1

ui
+ Σ1,i

)2

−(α + 1)Σ2,i + α(α + 1)Σ2
1,i

=
1
u2

i

− 2α

ui
Σ1,i + α2Σ2

1,i −
2α

ui
Σ1,i

=
1
u2

i

− 2δ1,i

ui

(
δ1,i − 1

ui

)
+ α2

(
δ1,i − 1

ui

)2

=
(α + 1

ui
− αδ1,i

)2

. 
�

The identity (5.3) is convenient for the construction of a fruitful fixed point
relation. Solving for ζi yields

ζi = zi − α + 1

αδ1,i +
[
(α + 1)∆i − αδ2

1,i − f∗
i

]1/2
(i ∈ In), (5.6)

assuming that two values of the square root have to be taken in (5.6).
To save the space, it is convenient to use a more compact notation as

follows:
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1◦ The approximations z
(m)
1 , . . . , z

(m)
n of the zeros at the mth iterative

step will be briefly denoted by z1, . . . , zn, and the new approximations
z
(m+1)
1 , . . . , z

(m+1)
n , obtained in the subsequent iteration by some simul-

taneous iterative method, by ẑ1, . . . , ẑn, respectively.

2◦ Sk,i(a, b) =
i−1∑
j=1

1
(zi − aj)k

+
n∑

j=i+1

1
(zi − bj)k

,

fi(a, b) = (α + 1)S2,i(a, b) − α(α + 1)S2
1,i(a, b),

where a = (a1, . . . , an) and b = (b1, . . . , bn) are some vectors of dis-
tinct complex numbers. If a = b = z = (z1, . . . , zn), then we will write
Sk,i(z,z) = Sk,i and fi(z,z) = fi as in (5.2). Dealing with f∗

i , we always
have a = b = ζ = (ζ1, . . . , ζn) so that we will write only f∗

i for brevity,
omitting arguments.

3◦ z = (z1, . . . , zn) (the current vector of approximations),
ẑ = (ẑ1, . . . , ẑn) (the new vector of approximations).

Putting ζi := ẑi in (5.6), where ẑi is a new approximation to the zero ζi,
and taking certain approximations of ζj on the right side of the fixed point
relation (5.6), we obtain a new one-parameter family of iterative methods for
the simultaneous determination of all simple zeros of a polynomial. Omitting
f∗

i in (5.6) and setting ζi := ẑi, we observe that (5.6) reduces to the Hansen–
Patrick’s family (4.1). For this reason, all iterative methods derived in this
chapter could be regarded as methods of Hansen–Patrick’s type.

In our consideration of a new family, we will always assume that α �= −1. In
the particular case α = −1, the proposed family reduces (by applying a limit
process) to the Halley-like method proposed by X. Wang and Zheng [184]. The
corresponding initial conditions which ensure the guaranteed convergence of
this method have been considered by M. Petković and -D. Herceg [116].

For the total-step methods (parallel or the Jacobi mode) and the single-
step methods (serial or the Gauss-Seidel mode), the abbreviations TS and SS
will be used. First, we will construct the family of total-step methods [138]:

The basic total-step method (TS):

ẑi = zi − α + 1

αδ1,i +
[
(α + 1)∆i − αδ2

1,i − fi(z,z)
]1/2

∗

(i ∈ In). (TS)

Remark 5.1. We assume that two values of the (complex) square root have
to be taken in (5.6), (TS), and the modified iterative formulae presented
later. As in Chap. 4, we will use the symbol ∗ to indicate the choice of the
proper value of the square root, which appears in the presented iterative
formulae. If approximations to the zeros are reasonably good, for instance, if
the conditions (5.11) and (5.12) hold, then the sign + should be taken.



164 5 Families of Simultaneous Methods of Higher Order: Part II

Now, we present some special cases of the family (TS) taking various values
of the parameter α:
α = 0, the Ostrowski-like method:

ẑi = zi − 1[
∆i − S2,i(z,z)

]1/2

∗

(i ∈ In). (5.7)

α = 1/(n − 1), the Laguerre-like method:

ẑi = zi − n

δ1,i +
[
(n − 1)(n∆i − δ2

1,i − nS2,i(z,z) +
n

n − 1
S2

1,i(z,z))
]1/2

∗
(i ∈ In). (5.8)

α = 1, the Euler-like method:

ẑi = zi − 2

δ1,i +
[
2∆i − δ2

1,i − 2(S2,i(z,z) − S2
1,i(z,z))

]1/2

∗

(i ∈ In). (5.9)

α = −1, the Halley-like method:

ẑi = zi − 2δ1,i

∆i + δ2
1,i − S2,i(z,z) − S2

1,i(z,z)
(i ∈ In). (5.10)

The Halley-like method (5.10) is obtained for α → −1 applying a limiting
operation. This method was derived earlier by X. Wang and Zheng [182].

The names in (5.7)–(5.10) come from the similarity with the quoted clas-
sical methods. Indeed, omitting the sums S1,i and S2,i in the above formulae,
we obtain the corresponding well-known classical methods (see Sect. 4.1).

Convergence Analysis

First, we give some estimates necessary for establishing the main conver-
gence theorem. For simplicity, we will often omit the iteration index m and
denote quantities in the subsequent (m + 1)th iteration by ̂ .

Using Corollary 1.1, we obtain the following upper error bounds.

Lemma 5.2. Let z1 . . . , zn be distinct numbers satisfying the inequality w <
cnd, cn < 1/(2n). Then

|ui| = |ζi − zi| <
|Wi|

1 − ncn
(i ∈ In). (5.11)

In this section, we assume that the following condition

w < cnd, cn = 1/(4n) (5.12)
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is fulfilled. Since w < 1/(4n) < d/(2n), the assertions of Corollary 1.1 and
Lemma 5.2 hold. According to Lemma 5.2, (5.12), and Corollary 1.1, we
obtain that D1 = {z1; 4

3 |W1|}, . . . , Dn = {zn; 4
3 |Wn|} are mutually disjoint

disks and each of them contains one and only one zero of the polynomial P .
Also, in our convergence analysis, we will handle the parameter α lying in the
disk {z : |z| < 1.8} centered at the origin (i.e., |α| < 1.8). These values for cn

and the upper bound of α have been found by using an extensive estimate-
and-fitting procedure by using the programming package Mathematica 6.0.

Lemma 5.3. Let z1, . . . , zn be distinct approximations to the zeros ζ1, . . . , ζn

and let ui = zi − ζi and ûi = ẑi − ζi, where ẑ1, . . . , ẑn are approximations
produced by the family of iterative methods (TS). If (5.12) holds and |α| <
1.8 ∧ α �= −1, then

|ûi| ≤ 40n

d3
|ui|3

∑
j �=i

|uj | (i ∈ In).

Proof. From (5.11), we obtain

|ui| = |zi − ζi| <
1

1 − ncn
|Wi| ≤ 1

1 − ncn
w <

cn

1 − ncn
d =

d

3n
. (5.13)

Then

|zi − ζj | ≥ |zi − zj | − |zj − ζj | > d − cn

1 − ncn
d =

3n − 1
3n

d. (5.14)

Following the introduced notations, we find

f∗
i − fi(z,z) = −(α + 1)

∑
j �=i

uj

(zi − zj)(zi − ζj)

( 1
zi − zj

+
1

zi − ζj

)

+α(α + 1)
∑
j �=i

uj

(zi − zj)(zi − ζj)

(∑
j �=i

1
zi − zj

+
∑
j �=i

1
zi − ζj

)
.

Using the bound (5.14) and the definition of the minimal distance d, we
estimate

1
|zi − zj ||zi − ζj | ≤

3n

(3n − 1)d2
=: an,

1
|zi − zj | +

1
|zi − ζj | ≤

1
d

+
3n

(3n − 1)d
=

6n − 1
(3n − 1)d

=: bn. (5.15)
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Then, from the previous expression for f∗
i − fi(z,z), we obtain for i ∈ In

|f∗
i − fi(z,z)| ≤ |α + 1|bnan

∑
j �=i

|uj | + |α||α + 1|bnan(n − 1)
∑
j �=i

|uj |

≤ |α + 1|(1 + |α|(n − 1))bnan

∑
j �=i

|uj |

< |α + 1| (1 + 2|α|)
2

3n(n − 1)(6n − 1)
(3n − 1)2d3

∑
j �=i

|uj |. (5.16)

Since

α + 1
ui

− αδ1,i =
α + 1

ui
− α

n∑
j=1

1
zi − ζj

=
1
ui

− α
∑
j �=i

1
zi − ζj

,

by (5.13) and (5.14), we have∣∣∣α + 1
ui

− αδ1,i

∣∣∣ ≥ 1
|ui| − |α|

∑
j �=i

1
|zi − ζj | >

1
|ui| −

3n(n − 1)|α|
(3n − 1)d

>
1
|ui|
(
1 − (n − 1)|α|

3n − 1

)
>

3 − |α|
3|ui| (5.17)

and ∣∣∣α + 1
ui

− αδ1,i

∣∣∣|ui| =
∣∣∣1 − αui

∑
j �=i

1
zi − ζj

∣∣∣ ≤ 1 + |α||ui|
∑
j �=i

1
|zi − ζj |

< 1 +
3n(n − 1)
(3n − 1)d

|α||ui| <
3 + |α|

3
. (5.18)

Let us introduce the quantities yi and vi by

yi = (α + 1)∆i − αδ2
1,i − fi(z,z), vi =

f∗
i − fi(z,z)(α + 1
ui

− αδ1,i

)2 .

Using the identity (5.3), we obtain

yi = (α+1)∆i−αδ2
1,i−f∗

i +f∗
i −fi(z,z) =

(α + 1
ui

−αδ1,i

)2

(1+vi). (5.19)

According to the bounds (5.16) and (5.17) of |f∗
i − fi(z,z)| and |(α + 1)/

ui − αδ1,i|, we estimate
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|vi| ≤ |f∗
i − fi(z,z)|

|(α + 1)/ui − αδ1,i|2 <

|α + 1|(1 + 2|α|)
2

3n(n − 1)(6n − 1)
(3n − 1)2d3

∑
j �=i

|uj |
(3 − |α|

3|ui|
)2

=
|α + 1|(1 + 2|α|)

(3 − |α|)2
27n(n − 1)(6n − 1)

2(3n − 1)2
|ui|2
d3

∑
j �=i

|uj |

<
|α + 1|(1 + 2|α|)

(3 − |α|)2)
9n|ui|2

d3

∑
j �=i

|uj | =: hi (i ∈ In), (5.20)

where we have used the inequality

6n − 1
(3n − 1)2

<
2

3(n − 1)
for all n ≥ 3.

Since |ui| < d/(3n) (according to (5.13)), we have

|ui|2
∑
j �=i

|uj | <
(n − 1)d3

27n3
, (5.21)

so that (taking into account that |α| < 1.8)

hi <
|α + 1|(1 + 2|α|)

(3 − |α|)2
(n − 1)

3n2
≤ 2(|α| + 1)(1 + 2|α|)

27(3 − |α|)2 < 0.67 < 1 (n ≥ 3).

Therefore
1

1 +
√

1 − hi

< 0.64. (5.22)

Since |vi| < hi, there follows vi ∈ V := {0;hi}, where V is the disk centered
at the origin with the radius hi. Now, using (1.64), (1.70), (1.72) (taking the
principal branch), and the inequality (5.22), we find[

1 + vi

]1/2

∗
∈
[
1 + {0;hi}

]1/2

∗
=
[
{1;hi}

]1/2

∗
=
{

1; 1 −
√

1 − hi

}

=

{
1;

hi

1 +
√

1 − hi

}
⊂
{

1; 0.64hi

}
. (5.23)

Let
xi = αδ1,i +

[
yi

]1/2

∗ .
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Then, using (5.18)–(5.20) and (5.23), as well as the properties (1.65), (1.70),
and Theorem 1.7, we have

xi = αδ1,i +
(α + 1

ui
− αδ1,i

)[
1 + vi

]1/2

∗

∈ αδ1,i +
(α + 1

ui
− αδ1,i

){
1; 0.64hi

}
=
{α + 1

ui
;
∣∣∣α + 1

ui
− αδ1,i

∣∣∣|ui|0.64hi

|ui|
}

⊂
{

α + 1
ui

;
0.64(3 + |α|)hi

3|ui|

}

=

{
α + 1

ui
; |α + 1|ϕ(|α|)1.92n|ui|

d3

∑
j �=i

|uj |
}

,

where we put

ϕ(|α|) =
(1 + 2|α|)(3 + |α|)

(3 − |α|)2 .

Since ϕ(|α|) < 15.5 for |α| < 1.8, we have

xi ∈
{α + 1

ui
;Ri

}
(i ∈ In), (5.24)

where

Ri =
30n|α + 1||ui|

d3

∑
j �=i

|uj | (i ∈ In). (5.25)

Using (5.24), the centered inversion of a disk (1.63), (1.65), and (1.70), we
obtain

α + 1
xi

∈ α + 1{
(α + 1)/ui;Ri

} = (α + 1)

{
ui

α + 1
;

Ri

|α + 1|
|ui|

( |α + 1|
|ui| − Ri

)
}

=

{
ui;

Ri|ui|2
|α + 1| − Ri|ui|

}
. (5.26)

By (5.13), we find that Ri|ui| <
20|α + 1|

81
for all n ≥ 3, so that

|α + 1| − Ri|ui| > |α + 1| − 20
81

|α + 1| =
61
81

|α + 1| > 0.

Therefore, the disk in (5.26) is well defined. In addition, using (5.26) and the
last inequalities, we get
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α + 1
xi

∈
{

ui;
81Ri|ui|2
61|α + 1|

}
. (5.27)

The iterative formula (TS) can be written in the form

ẑi = zi − α + 1
xi

, (5.28)

wherefrom

ẑi − ζi = zi − ζi − α + 1
xi

, i.e., ûi = ui − α + 1
xi

.

Hence, by the inclusion (5.27), we find

ûi = ui − α + 1
xi

∈
{

0;
81Ri|ui|2
61|α + 1|

}
,

wherefrom, by (1.71) and (5.25),

|ûi| ≤ 81
61|α + 1|Ri|ui|2 =

81
61|α + 1|

30n|α + 1||ui|3
d3

∑
j �=i

|uj |

<
40n

d3
|ui|3

∑
j �=i

|uj | (i ∈ In), (5.29)

which proves Lemma 5.3. 
�
Lemma 5.4. Under the condition of Lemma 5.3, the following assertions are
valid for the iterative method (TS):

(i) d <
9n

9n − 8
d̂.

(ii) |Ŵi| < 2
3 |Wi|.

(iii) ŵ <
d̂

4n
.

Proof. From (5.27) and (5.28), it follows

ẑi − zi = −α + 1
xi

∈ −
{

ui;
81Ri|ui|2
61|α + 1|

}
⊂ −
{

ui;
40n

d3
|ui|3

∑
j �=i

|uj |
}

.

Using (1.71) and (5.13), from the last inclusion, we have

|ẑi − zi| ≤ |ui| + 40n

d3
|ui|3

∑
j �=i

|uj | ≤ |ui|
(
1 +

40(n − 1)
27n2

)
<

4
3
|ui| <

16
9

w <
4d

9n
. (5.30)
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From (5.30), we obtain

|ẑi − zj | ≥ |zi − zj | − |ẑi − zi| > d − 4d

9n
=

9n − 4
9n

d (5.31)

and

|ẑi − ẑj | ≥ |zi − zj | − |ẑi − zi| − |ẑj − zj | > d − 8d

9n
=

9n − 8
9n

d. (5.32)

The inequality (5.32) yields

d̂ >
9n − 8

9n
d, i.e.,

d

d̂
<

9n

9n − 8
, (5.33)

which proves (i) of the lemma.
By the inclusion (5.24), from the iterative formula (5.28), we obtain

1
ẑi − zi

= − xi

α + 1
∈
{
− 1

ui
;

Ri

|α + 1|
}

=
{
− 1

ui
;
30n|ui|

d3

∑
j �=i

|uj |
}

=
{
− 1

ui
;κi

}
,

where we put κi =
30n|ui|

d3

∑
j �=i

|uj |. Hence

Wi

ẑi − zi
∈
{
−Wi

ui
; |Wi|κi

}
. (5.34)

We use the identities (5.5) and (3.72) to find

δ1,i =
n∑

j=1

1
zi − ζj

=
1
ui

+
∑
j �=i

1
zi − ζj

=
∑
j �=i

1
zi − zj

+
1

Wi

(∑
j �=i

Wj

zi − zj
+ 1
)
,

wherefrom

1
ui

=
∑
j �=i

1
zi − zj

+
1

Wi

(∑
j �=i

Wj

zi − zj
+ 1
)
−
∑
j �=i

1
zi − ζj

. (5.35)

Using (5.34) and (5.35), we get

n∑
j=1

Wj

ẑi − zj
+ 1 =

Wi

ẑi − zi
+
∑
j �=i

Wj

ẑi − zj
+ 1

∈
{
−Wi

ui
; |Wi|κi

}
+
∑
j �=i

Wj

ẑi − zj
+ 1
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=

{
−Wi

ui
+
∑
j �=i

Wj

ẑi − zj
+ 1; |Wi|κi

}

=

{
−Wi

∑
j �=i

1
zi − zj

−
∑
j �=i

Wj

zi − zj
− 1 + Wi

∑
j �=i

1
zi − ζj

+
∑
j �=i

Wj

ẑi − zj
+ 1; |Wi|κi

}
= {Θi;Ψi},

where

Θi = −Wi

∑
j �=i

uj

(zi − ζj)(zi − zj)
− (ẑi − zi)

∑
j �=i

Wj

(ẑi − zj)(zi − zj)
(5.36)

and
Ψi = |Wi|κi. (5.37)

Let us estimate the moduli of Θi and Ψi. Starting from (5.36) and using
(5.12)–(5.14), (5.30), and (5.31), we find

|Θi| ≤ |Wi|
∑
j �=i

|uj |
|zi − ζj ||zi − zj | + |ẑi − zi|

∑
j �=i

|Wj |
|ẑi − zj ||zi − zj |

<
(n − 1)4

3w2

3n − 1
3n

d2
+

16(n − 1)w2

9(9n − 4)
9n

d2

<
n − 1

4n(3n − 1)
+

n − 1
n(9n − 4)

< 0.05.

By virtue of (5.12) and (5.13), from (5.37), we obtain

Ψi = |Wi|κi < w
30n|ui|

d3

∑
j �=i

|uj | < w
30n(n − 1)

d3

(4w

3

)2

<
5(n − 1)

6n2
≤ 5

27
< 0.186. (5.38)

According to (1.71) and using the upper bounds of |Θi| and Ψi, we estimate∣∣∣ n∑
j=1

Wj

ẑi − zj
+ 1
∣∣∣ < |Θi| + Ψi < 0.05 + 0.186 < 0.236. (5.39)

Furthermore, using the bounds (5.30) and (5.32), we find∣∣∣∏
j �=i

ẑi − zj

ẑi − ẑj

∣∣∣ ≤∏
j �=i

(
1 +

|ẑj − zj |
|ẑi − ẑj |

)
<
(
1 +

4
9n − 8

)n−1

< 1.56.
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Having in mind the last inequality and the inequalities (5.30) and (5.32),
we start from (3.71) for z = ẑi and find

|Ŵi| =

∣∣∣∣∣ P (ẑi)∏
j �=i

(ẑi − ẑj)

∣∣∣∣∣ ≤ |ẑi − zi|
∣∣∣ n∑
j=1

Wj

ẑi − zj
+ 1
∣∣∣∣∣∣∏

j �=i

ẑi − zj

ẑi − ẑj

∣∣∣
<

16
9
|Wi| · 0.236 · 1.56 <

2
3
|Wi|

and the assertion (ii) is proved.
According to (5.12), and (i) and (ii) of Lemma 5.3, we find for |α| < 1.8

ŵ <
2
3
w <

2
3
· d

4n
<

2
12n

· 9n

9n − 8
d̂ <

d̂

4n
,

which completes the proof of the assertion (iii) of the lemma. 
�
Using results of Lemmas 5.3 and 5.4, we are able to state initial conditions

which guarantee the convergence of the family of methods (TS) and to find
its convergence order (see M. Petković and Rančić [138]).

Theorem 5.1. Let P be a polynomial of degree n ≥ 3 with simple zeros. If
the initial condition

w(0) < cnd(0), cn =
1
4n

(5.40)

holds, then the family of simultaneous methods (TS) is convergent for |α| <
1.8 with the order of convergence 4.

Proof. Using a similar technique presented in Chap. 3 and in the proofs of
Lemmas 5.3 and 5.4, we prove the assertions of Theorem 5.1 by induction.
Since (5.12) and (5.40) are of the same form, all estimates given in Lemmas 5.3
and 5.4 are valid for the index m = 1. Furthermore, the inequality (iii) in
Lemma 5.4 coincides with (5.12), so that the assertions of Lemmas 5.3 and 5.4
are valid for the subsequent index, etc. Hence, by induction, we obtain the
implication

w(m) < cnd(m) =⇒ w(m+1) < cnd(m+1).

It involves the initial condition (5.40) under which all inequalities given in
Lemmas 5.3 and 5.4 are valid for all m = 0, 1, . . .. In particular, we have

d(m)

d(m+1)
<

9n

9n − 8
(5.41)

and

|u(m+1)
i | ≤ 40n(

d(m)
)3 |u(m)

i |3
n∑

j=1
j �=i

|u(m)
j | (i ∈ In) (5.42)

for each iteration index m = 0, 1, . . ..
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Let us substitute

t
(m)
i =

[
9n

9n − 8
(n − 1)

40n(
d(m)
)3
]1/3

|u(m)
i |

in (5.42), then

t
(m+1)
i ≤ 9n − 8

9n(n − 1)
d(m)

d(m+1)
(t(m)

i )3
n∑

j=1
j �=i

t
(m)
j .

Hence, by virtue of (5.41),

t
(m+1)
i ≤ 1

n − 1
(
t
(m)
i

)3 n∑
j=1
j �=i

t
(m)
j (i ∈ In, m = 0, 1, . . .). (5.43)

In regard to (5.13), for |α| < 1.8, we find

t
(0)
i =

[
360n2(n − 1)

(9n − 8)
(
d(0)
)3
]1/3

|u(0)
i | <

[
360n2(n − 1)

(9n − 8)
(
d(0)
)3
]1/3

d(0)

3n

<
[ 40(n − 1)
3n(9n − 8)

]1/3

< 0.78 < 1.

Put t = maxi t
(0)
i , then obviously t

(0)
i ≤ t < 1 for all i = 1, . . . , n and n ≥ 3.

Hence, we conclude from (5.43) that the sequences {t(m)
i } (and, consequently,

{|u(m)
i |}) tend to 0 for all i = 1, . . . , n. Therefore, z

(m)
i → ζi (i ∈ In) and the

family of methods (TS) is convergent.
Using (5.30), (5.32), and (ii) of Lemma 5.4, we successively find

d(m) > d(m−1) − 32
9

w(m−1) > d(m−2) − 32
9

w(m−2) − 32
9

w(m−1)

...

> d(0) − 32
9

(
w(0) + w(1) + · · · + w(m−1)

)
> d(0) − 32

9
w(0)
(
1 + 2/3 + (2/3)2 + · · · + (2/3)m−1

)
> d(0) − 32

3
w(0) > d(0) − 32

3
cnd(0) >

(
1 − 8

3n

)
d(0).

Therefore, the quantity 1/d(m) appearing in (5.42) is bounded by 1/d(m) <
3n/((3n − 8)d(0)), so that from (5.42) we conclude that the order of conver-
gence of the total-step method (TS) is 4. 
�
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Remark 5.2. The condition |α| < 1.8 is sufficient. This bound is used to ensure
the validity of some (not so sharp) inequalities and estimates in the presented
convergence analysis. However, in practice, we can take considerably larger
value of |α|, as many numerical examples have shown.

The convergence of the total-step method (TS) can be accelerated if we use
new approximations to the zeros as soon as they are available (Gauss-Seidel
approach). In this way, we obtain

The basic single-step method (SS):

ẑi = zi − α + 1

αδ1,i +
[
(α + 1)∆i − αδ2

1,i − fi(ẑ,z)
]1/2

∗

(i ∈ In). (SS)

5.2 Family of Methods with Corrections

In this section, we state other modifications of the families (TS) and (SS)
which possess very fast convergence. The proposed methods have a high
computational efficiency since the acceleration of convergence is attained with
only a few additional computations. Actually, the increase of the convergence
rate is attained using Newton’s and Halley’s corrections, which use already
calculated values of P, P ′, P ′′ at the points z1, . . . , zn – current approxima-
tions to the wanted zeros.

Let us introduce some notations:

Ni = N(zi) = 1/δ1,i =
P (zi)
P ′(zi)

(Newton’s correction), (5.44)

Hi = H(zi) =
[P ′(zi)

P (zi)
− P ′′(zi)

2P ′(zi)

]−1

=
2δ1,i

δ2
1,i + ∆i

(5.45)

(Halley’s correction),

zN = (zN,1, . . . , zN,n), zN,i = zi − N(zi) (Newton’s approximations),

zH = (zH,1, . . . , zH,n), zH,i = zi − H(zi) (Halley’s approximations).

We recall that the correction terms (5.44) and (5.45) appear in the iterative
formulae

ẑ = z−N(z) (Newton’s method) and ẑ = z−H(z) (Halley’s method),

which have quadratic and cubic convergence, respectively.
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Taking certain approximations zj of ζj in the sums involved in f∗
i (see

(5.2)) on the right side of the fixed point relation (5.6) and putting ζi := ẑi

in (5.6), where ẑi is a new approximation to the zero ζi, we obtain approx-
imations fi of f∗

i . Then from (5.6), we construct some improved families
of iterative methods for the simultaneous determination of all simple zeros
of a polynomial. First, we will construct the following families of total-step
methods (parallel mode):

The basic total-step method (TS):

ẑi = zi − α + 1

αδ1,i +
[
(α + 1)∆i − αδ2

1,i − fi(z,z)
]1/2

∗

(i ∈ In). (TS)

The total-step method with Newton’s corrections (TSN):

ẑi = zi − α + 1

αδ1,i +
[
(α + 1)∆i − αδ2

1,i − fi(zN ,zN )
]1/2

∗

(i ∈ In). (TSN)

The total-step method with Halley’s corrections (TSH):

ẑi = zi − α + 1

αδ1,i +
[
(α + 1)∆i − αδ2

1,i − fi(zH ,zH)
]1/2

∗

(i ∈ In). (TSH)

The corresponding single-step methods (serial mode) have the form:

The basic single-step method (SS):

ẑi = zi − α + 1

αδ1,i +
[
(α + 1)∆i − αδ2

1,i − fi(ẑ,z)
]1/2

∗

(i ∈ In). (SS)

The single-step method with Newton’s corrections (SSN):

ẑi = zi − α + 1

αδ1,i +
[
(α + 1)∆i − αδ2

1,i − fi(ẑ,zN )
]1/2

∗

(i ∈ In). (SSN)

The single-step method with Halley’s corrections (SSH):

ẑi = zi − α + 1

αδ1,i +
[
(α + 1)∆i − αδ2

1,i − fi(ẑ,zH)
]1/2

∗

(i ∈ In). (SSH)

For some specific values of the parameter α, from the families of methods
listed above, we obtain special cases such as the Ostrowski-like method (α = 0,
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studied in [47] and [106]), the Laguerre-like method (α = 1/(n−1), considered
in [134]), the Euler-like method (α = 1), and the Halley-like method (α = −1),
see [177] and [182].

Convergence Analysis

Studying the convergence analysis of the total-step methods (TS), (TSN),
and (TSH), we will investigate all three methods simultaneously. The same is
valid for the single-step methods (SS), (SSN), and (SSH). For this purpose,
we denote these methods with the additional superscript indices 1 (for (TS)
and (SS)), 2 (for (TSN) and (SSN)), and 3 (for (TSH) and (SSH)) and, in
the same manner, we denote the corresponding vectors of approximations as
follows:

z(1) = z = (z1, . . . , zn),
z(2) = zN = (zN,1, . . . , zN,n),

z(3) = zH = (zH,1, . . . , zH,n).

Now, we are able to present all the mentioned total-step methods (for
α �= −1), denoted with (TS(k)) (k = 1, 2, 3), in the unique form as

ẑi = zi− α + 1

αδ1,i +
[
(α + 1)∆i − αδ2

1,i − fi(z(k),z(k))
]1/2

∗

(i ∈ In, k = 1, 2, 3).

(TS(k))
Using the above notation for the arguments of fi, the single-step methods

(SS), (SSN), and (SSH), denoted commonly with (SS(k)), can be written in
the unique form

ẑi = zi − α + 1

αδ1,i +
[
(α + 1)∆i − αδ2

1,i − fi(ẑ,z(k))
]1/2

∗

(i ∈ In, k = 1, 2, 3).

(SS(k))
Computationally verifiable initial conditions which ensure the guaranteed

convergence of the basic total-step method (k = 1) of Laguerre’s type (α =
1/(n − 1)) were established in [133].

Using the same technique presented in Sect. 5.1, we are able to state con-
vergence theorems for the methods listed above. These theorems include the
initial condition of the form w < cnd providing the guaranteed convergence,
see [153] where this analysis is given in detail. However, this analysis occupies
a lot of space so that we will give a convergence theorem under simplified
conditions.

We assume that α �= −1 in all iterative formulae presented above.
If α = −1, then applying a limiting operation we obtain the methods of
Halley’s type



5.2 Family of Methods with Corrections 177

ẑi = zi − 2δ1,i

∆i + δ2
1,i − S2,i(z(k),z(k)) − S2

1,i(z(k),z(k))
(i ∈ In, k = 1, 2, 3),

whose basic variant and some improvements were considered in [109,
Sect. 5.5], [177], and [182].

Let us introduce the notation

η = min
1≤i,j≤n

i�=j

|ζi − ζj |, q =
4n

η

and suppose that the conditions

|ui| = |zi − ζi| <
η

4n
=

1
q

(i = 1, . . . , n) (5.46)

are satisfied. Also, in our convergence analysis, we will deal with the param-
eter α lying in the disk |z| < 2.4 centered at the origin (i.e., |α| < 2.4).

Lemma 5.5. Let z1, . . . , zn be distinct approximations to the zeros ζ1, . . . , ζn

and let ui = zi−ζi and ûi = ẑi−ζi, where ẑ1, . . . , ẑn are approximations pro-
duced by the iterative methods TS(k). If (5.46) holds and |α| < 2.4 ∧ α �= −1,
then:

(i) |ûi| ≤ qk+2

n − 1
|ui|3

∑
j �=i

|uj |k (i ∈ In, k = 1, 2, 3).

(ii) |ûi| <
η

4n
=

1
q

(i ∈ In).

The proof of the assertions (i) and (ii) is extensive but elementary, and
can be derived applying a similar technique as the one used in [134]. The
complete proof is given in [153]. For these reasons, we omit the proof.

Let z
(0)
1 , . . . , z

(0)
n be approximations close enough to the zeros ζ1, . . . , ζn of

the polynomial P and let

u
(m)
i = z

(m)
i − ζi, u(m) = max

1≤i≤n
|u(m)

i |,

where z
(m)
1 , . . . , z

(m)
n are approximations obtained in the mth iterative step.

Theorem 5.2. Let |α| < 2.4 ∧ α �= −1 and let the inequalities

|u(0)
i | = |z(0)

i − ζi| <
η

4n
=

1
q

(i = 1, . . . , n) (5.47)

hold. Then, the total-step methods (TS(k)) are convergent with the conver-
gence order equal to k + 3 (k = 1, 2, 3).
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Proof. Starting from the condition (5.47) (which coincides with (5.46)) and
using the assertion (i) of Lemma 5.5, we come to the following inequalities

|u(1)
i | ≤ qk+2

n − 1
|u(0)

i |3
n∑

j=1
j �=i

|u(0)
j |k <

1
q

(i ∈ In, k = 1, 2, 3),

which means that the implications

|u(0)
i | <

η

4n
=

1
q

=⇒ |u(1)
i | <

η

4n
=

1
q

(i ∈ In)

are valid (see also the assertion (ii) of Lemma 5.5). We can prove by induction
that the condition (5.47) implies

|u(m+1)
i | ≤ qk+2

n − 1
|u(m)

i |3
n∑

j=1
j �=i

|u(m)
j |k <

1
q

(i ∈ In, k = 1, 2, 3) (5.48)

for each m = 0, 1, . . . and i ∈ In. Replacing |u(m)
i | = t

(m)
i /q in (5.48), we get

t
(m+1)
i ≤

(
t
(m)
i

)3
n − 1

n∑
j=1
j �=i

(
t
(m)
j

)k (i ∈ In, k = 1, 2, 3). (5.49)

Let t(m) = max
1≤i≤n

t
(m)
i . From (5.47), it follows

q|u(0)
i | = t

(0)
i ≤ t(0) < 1 (i ∈ In).

Successive application of the inequalities of this type to (5.49) gives t
(m)
i < 1

for all i ∈ In and m = 1, 2, . . .. According to this, we get from (5.49)

t
(m+1)
i ≤ (t(m)

i

)3(
t(m)
)k ≤ (t(m)

)k+3 (k = 1, 2, 3). (5.50)

From (5.50), we infer that the sequences {t(m)
i } (i ∈ In) converge to 0, which

means that the sequences {|u(m)
i |} are also convergent, i.e., z

(m)
i → ζi (i ∈ In).

Finally, from (5.50), we may conclude that the total-step methods (TS(k))
have the convergence order k + 3, i.e., the total-step methods (TS) (k = 1),
(TSN) (k = 2), and (TSH) (k = 3) have the order of convergence 4, 5, and 6,
respectively. 
�

Let us consider now the convergence rate of the single-step method (SS(k)).
Applying the same technique and argumentations presented in [134] and
starting from the initial conditions (5.47), we can prove that the inequalities
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|u(m+1)
i | ≤ qk+2

n − 1
|u(m)

i |3
(

i−1∑
j=1

|u(m+1)
j | + qk−1

n∑
j=i+1

|u(m)
j |k

)
<

1

q
(k = 1, 2, 3)

(5.51)
hold for each m = 0, 1, . . . and i ∈ In, supposing that for i = 1 the first sum
in (5.51) is omitted.

Substituting |u(m)
i | = t

(m)
i /q into (5.51), we obtain

t
(m+1)
i ≤

(
t
(m)
i

)3
n − 1

(
i−1∑
j=1

t
(m+1)
j +

n∑
j=i+1

(
t
(m)
j

)k) (i ∈ In, k = 1, 2, 3). (5.52)

The convergence analysis of the single-step methods (SS(k)), similar to
that presented by Alefeld and Herzberger [2], uses the notion of the R-order
of convergence introduced by Ortega and Rheinboldt [98]. The R-order of an
iterative process IP with the limit point ζ will be denoted by OR((IP), ζ).

Theorem 5.3. Assume that the initial conditions (5.47) and the inequalities
(5.51) are valid for the single-step method (SS(k)). Then, the R-order of
convergence of (SS(k)) is given by

OR((SS(k)), ζ) ≥ 3 + τn(k), (5.53)

where τn(k) > k is the unique positive root of the equation

τn − kn−1τ − 3kn−1 = 0. (5.54)

Proof. As in the proof of Theorem 5.2, we first note that the condition (5.47)
implies

|u(0)
i |q = t

(0)
i ≤ t = max

1≤i≤n
t
(0)
i < 1. (5.55)

According to this and (5.52), we conclude that the sequences {t(m)
i } (i ∈ In)

converge to 0. Hence, the sequences {|u(m)
i |} are also convergent which means

that z
(m)
i → ζi (i ∈ In).

Applying the technique by Alefeld and Herzberger [2], the following system
of inequalities can be derived from the relations (5.52) and (5.55):

t
(m+1)
i ≤ ts

(m)
i (i = 1, . . . , n, m = 0, 1, . . .). (5.56)

The column vectors s(m) = [s(m)
1 · · · s(m)

n ]T are successively computed by

s(m+1) = An(k) s(m) (5.57)
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starting with s(0) = [1 · · · 1]T . The n × n-matrix An(k) in (5.57) is given by

An(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 k
3 k O

3 k
. . . . . .

O
3 k

3 k 0 0 · · · 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(k = 1, 2, 3)

(see [109, Sect. 2.3] for more general case). The characteristic polynomial of
the matrix An(k) is

gn(λ; k) = (λ − 3)n − (λ − 3)kn−1 − 3kn−1.

Replacing τ = λ − 3, we get

φn(τ ; k) = gn(τ + 3; k) = τn − kn−1τ − 3kn−1.

It is easy to show that the equation

τn − kn−1τ − 3kn−1 = 0

has the unique positive root τn(k) > k. The corresponding (positive) eigen-
value of the matrix An(k) is 3 + τn(k). Using some elements of the matrix
analysis, we find that the matrix An(k) is irreducible and primitive, so that
it has the unique positive eigenvalue equal to its spectral radius ρ(An(k)).
According to the analysis presented by Alefeld and Herzberger [2], it can be
shown that the spectral radius ρ(An(k)) gives the lower bound of the R-order
of iterative method (SS(k)), for which the inequalities (5.53) are valid. There-
fore, we have

OR((SS(k)), ζ) ≥ ρ(An(k)) = 3 + τn(k),

where τn(k) > k is the unique positive root of (5.54). 
�
The lower bounds of OR((SS), ζ), OR((SSN), ζ), and OR((SSH), ζ) are

displayed in Table 5.1.

Table 5.1 The lower bound of the R-order of convergence

Methods �n 3 4 5 6 7 10 20 Very large n

(SS) 4.67 4.45 4.34 4.27 4.23 4.15 4.07 → 4

(SSN) 5.86 5.59 5.44 5.36 5.30 5.20 5.10 → 5

(SSH) 6.97 6.66 6.50 6.40 6.34 6.23 6.11 → 6
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Methods for Multiple Zeros

Let us now consider a monic polynomial P of degree n with multiple zeros
ζ1, . . . , ζν (ν ≤ n) of the respective multiplicities µ1, . . . , µν (µ1+· · ·+µν = n)

P (z) =
ν∏

j=1

(z − ζj)µj .

For the point z = zi (i ∈ Iν := {1, . . . , ν}), let us rearrange the previous
notations used for simple zeros:

Σλ,i =
ν∑

j=1
j �=i

µj

(zi − ζj)λ
, Sλ,i =

ν∑
j=1
j �=i

µj

(zi − zj)λ
(λ = 1, 2),

f∗
i = µi(α + 1)Σ2,i − α(α + 1)Σ2

1,i, fi = µi(α + 1)S2,i − α(α + 1)S2
1,i.

Lemma 5.6. For i ∈ Iν , the following identity is valid

µi(α + 1)∆i − αδ2
1,i − f∗

i =
(µi(α + 1)

ui
− αδ1,i

)2

. (5.58)

Proof. Using the identities

δ1,i =
P ′(zi)
P (zi)

=
ν∑

j=1

µj

zi − ζj
=

µi

ui
+

ν∑
j=1
j �=i

µi

zi − ζj
(5.59)

and

∆i =
P ′(zi)2 − P (zi)P ′′(zi)

P (zi)2
= −
[ d

dz

P ′(z)
P (z)

]
z=zi

=
ν∑

j=1

µj

(zi − ζj)2

=
µi

u2
i

+
ν∑

j=1
j �=i

µj

(zi − ζj)2
, (5.60)

we obtain

µi(α + 1)∆i − αδ2
1,i − q∗i = µi(α + 1)

(µi

u2
i

+ Σ2,i

)
− α
(µi

ui
+ Σ1,i

)2

−µi(α + 1)Σ2,i + α(α + 1)Σ2
1,i

=
µ2

i

u2
i

+ α2Σ2
1,i −

2αµi

ui
Σ1,i
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=
µ2

i

u2
i

+ α2
(
δ2
1,i +

µ2
i

u2
i

− 2δ1,iµi

ui

)
− 2αµi

ui

(
δ1,i − µi

ui

)
=
(µi(α + 1)

ui
− αδ1,i

)2

. 
�

From the identity (5.58), we derive the following fixed point relation

ζi = zi − µi(α + 1)

αδ1,i +
[
µi(α + 1)∆i − αδ2

1,i − f∗
i

]1/2
(i ∈ Iν), (5.61)

assuming that two values of the square root have to be taken in (5.61). As in
the previous chapters, the symbol ∗ indicates the choice of proper value. The
fixed point relation (5.61) is suitable for the construction of iterative methods
for the simultaneous finding of multiple zeros of a given polynomial [139]:

The total-step methods for multiple zeros:

ẑi = zi − µi(α + 1)

αδ1,i +
[
µi(α + 1)∆i − αδ2

1,i − fi(z,z)
]1/2

∗

(i ∈ Iν). (5.62)

The single-step methods for multiple zeros:

ẑi = zi − µi(α + 1)

αδ1,i +
[
µi(α + 1)∆i − αδ2

1,i − fi(ẑ,z)
]1/2

∗

(i ∈ Iν). (5.63)

In the same manner as in Sect. 5.2, starting from (5.61) we can acceler-
ate the iterative methods (5.62) and (5.63) using Schröder’s and Halley’s
corrections given by

N(zi) = µi
P (zi)
P ′(zi)

and H(zi) =
P (zi)(1 + 1/µi

2

)
P ′(zi) − P (zi)P ′′(zi)

2P ′(zi)

.

The order of convergence of the iterative methods (5.62) and (5.63) and their
modifications with corrections is given through Theorems 5.2 and 5.3.

Numerical Results: Methods in Ordinary Complex Arithmetic

To compare the results of numerical experiments with theoretical predic-
tions exposed in the preceding sections, a considerable number of polynomial
equations were solved. To present approximations of very high accuracy, we
implemented the corresponding algorithms using the programming package
Mathematica 6.0 with multiprecision arithmetic.

As a measure of closeness of approximations to the exact zeros, we have
calculated Euclid’s norm
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e(m) := ||z(m) − ζ||E =

(
n∑

i=1

∣∣z(m)
i − ζi

∣∣2)1/2

.

Example 5.1. Iterative methods (5.7)–(5.10) were applied for the simultaneous
approximation to the zeros of the polynomial

P (z) = z11 − (4 + i)z10 + (3 + 4i)z9 − (38 + 3i)z8 − (27 − 38i)z7

+(44 + 27i)z6 + (117 − 44i)z5 + (598 − 117i)z4 − (934 + 598i)z3

+(360 + 934i)z2 + (1800 − 360i)z − 1800i
= (z2 − 4)(z2 + 9)(z2 − 2z + 2)(z2 + 2z + 5)(z − i)(z + 1)(z − 5).

The exact zeros of this polynomial are ±2, ±3i, 1±i, −1±2i, i, −1, and 5. For
the purpose of comparison, beside the methods (5.7)–(5.10), we also tested a
particular method from the family (TS) which is obtained for α = 1/2:

ẑi = zi − 3

δ1,i +
√

2
[
3∆i − δ2

1,i − 3S2,i(z,z) + 3
2S2

1,i(z,z)
]1/2

∗

. (5.64)

Also, we applied the single-step version of (5.64).
All tested methods started with the following initial approximations:

z
(0)
1 = 2.1 + 0.2i, z

(0)
2 = −2.2 + 0.2i, z

(0)
3 = 0.3 + 3.2i,

z
(0)
4 = −0.2 − 3.2i, z

(0)
5 = 1.2 + 1.2i, z

(0)
6 = 0.7 − 0.8i,

z
(0)
7 = −0.8 + 2.3i, z

(0)
8 = −0.7 − 1.8i, z

(0)
9 = −0.3 + 0.7i,

z
(0)
10 = −1.2 + 0.2i, z

(0)
11 = 4.8 + 0.3i.

For these approximations, we have e(0) ≈ 1.1. The measure of accuracy
e(m) (m = 1, 2, 3) is displayed in Table 5.2, where the denotation A(−q)
means A × 10−q.

Table 5.2 Euclid’s norm of errors

Methods α = 0 α = 1
n−1

α = 1/2 α = 1 α = −1

e(1) 1.71(−2) 1.67(−2) 3.30(−2) 7.67(−2) 6.64(−2)

(TS) e(2) 4.17(−9) 3.74(−9) 8.95(−8) 2.51(−6) 2.38(−6)

e(3) 3.36(−35) 1.96(−35) 3.37(−30) 6.29(−24) 6.04(−24)

e(1) 2.31(−2) 2.07(−2) 1.98(−2) 4.18(−2) 5.79(−2)

(SS) e(2) 2.35(−9) 9.94(−10) 2.18(−9) 2.96(−7) 6.22(−7)

e(3) 2.16(−36) 1.80(−37) 7.20(−37) 6.96(−28) 1.37(−26)
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Example 5.2. Iterative methods (5.62) and (5.63), obtained for α = 0, α =
1/(n − 1), α = 1/2, α = 1, and α = −1, were applied for the simultaneous
determination of multiple zeros of the polynomial

P (z) = z13 − (1 − 2i)z12 − (10 + 2i)z11 − (30 + 18i)z10 + (35 − 62i)z9

+(293 + 52i)z8 + (452 + 524i)z7 − (340 − 956i)z6

−(2505 + 156i)z5 − (3495 + 4054i)z4 − (538 + 7146i)z3

+(2898 − 5130i)z2 + (2565 − 1350i)z + 675
= (z + 1)4(z − 3)3(z + i)2(z2 + 2z + 5)2.

The exact zeros of this polynomial are ζ1 = −1, ζ2 = 3, ζ3 = −i, and ζ4,5 =
−1± 2i with respective multiplicities µ1 = 4, µ2 = 3, and µ3 = µ4 = µ5 = 2.
The following complex numbers were chosen as starting approximations to
these zeros:

z
(0)
1 = −0.7 + 0.3i, z

(0)
2 = 2.7 + 0.3i, z

(0)
3 = 0.3 − 0.8i,

z
(0)
4 = −1.2 − 2.3i, z

(0)
5 = −1.3 + 2.2i.

In the presented example for the initial approximations, we have e(0) ≈ 1.43.
The measure of accuracy e(m) (m = 1, 2, 3) is given in Table 5.3.

Table 5.3 Euclid’s norm of errors

Methods α = 0 α = 1
n−1

α = 1/2 α = 1 α = −1

e(1) 2.39(−2) 1.62(−2) 1.93(−2) 6.32(−2) 5.72(−2)

(TS) e(2) 1.47(−8) 1.18(−9) 1.39(−9) 8.80(−7) 1.54(−6)

e(3) 8.08(−34) 6.08(−38) 9.63(−38) 4.96(−26) 2.20(−26)

e(1) 1.54(−2) 1.38(−2) 1.42(−2) 1.51(−2) 1.99(−2)

(SS) e(2) 3.48(−10) 1.95(−10) 2.54(−10) 1.03(−9) 2.02(−9)

e(3) 1.18(−42) 2.35(−43) 1.19(−41) 5.72(−40) 2.40(−38)

Numerical experiments demonstrated very fast convergence of the modified
methods with corrections. For illustration, we present the following numerical
example.

Example 5.3. We applied the proposed methods (TS(k)) and (SS(k)) for the
simultaneous determination of the zeros of the polynomial

P (z) = z11 + (1 − 4i)z10 − (6 + 4i)z9 − (6 − 44i)z8 − (36 − 44i)z7

−(36 + 76i)z6 + (186 − 76i)z5 + (186 − 364i)z4 − (445 − 364i)z3

−(445 − 3600i)z2 − (4500 − 3600i)z − 4500.

The exact zeros of this polynomial are ζ1 = −1, ζ2,3 = ±3, ζ4 = 5i, ζ5,6 = ±2i,
ζ7,8 = 2 ± i, ζ9,10 = −2 ± i, and ζ11 = −i.
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The total-step as well as the single-step methods with Newton’s and Hal-
ley’s corrections, presented in Sect. 5.2, use the already calculated values
P, P ′, P ′′ at the points z1, . . . , zn, so that the convergence rate of these itera-
tive methods is accelerated with negligible number of additional operations.
Therefore, the employed approach provides the high computational efficiency
of the proposed methods. Further decrease of the total number of operations
may be attained by calculating the approximations zj −N(zj) and zj −H(zj)
in advance, before summing the terms handling these approximations. In this
way, the repeat calculations of the same quantities are avoided.

All tested methods started with the following initial approximations:

z
(0)
1 = −1.2 − 0.3i, z

(0)
2 = 3.3 + 0.2i, z

(0)
3 = −3.2 + 0.2i,

z
(0)
4 = 0.3 + 4.8i, z

(0)
5 = 0.2 + 1.7i, z

(0)
6 = 0.2 − 2.2i,

z
(0)
7 = 2.3 + 1.2i, z

(0)
8 = 1.8 − 0.7i, z

(0)
9 = −1.8 + 1.3i,

z
(0)
10 = −1.8 − 0.8i, z

(0)
11 = −0.2 − 0.8i.

The measure of accuracy e(m) (m = 1, 2, 3) is given in Tables 5.4 and 5.5 for
the total-step and single-step methods, respectively. In the presented example
for the initial approximations, we have e(0) = 1.11.

Table 5.4 Euclid’s norm of errors: total-step methods

Methods (TS) (TSN) (TSH)

e(1) 2.88(−2) 1.72(−2) 5.53(−3)

α = 0 e(2) 6.71(−8) 9.91(−11) 1.25(−16)

e(3) 2.07(−30) 4.73(−53) 2.38(−99)

e(1) 2.68(−2) 1.70(−2) 5.47(−3)

α = 1
n−1

e(2) 5.63(−8) 7.43(−11) 6.97(−17)

e(3) 3.70(−31) 1.39(−54) 1.25(−100)

e(1) 3.64(−2) 2.82(−2) 8.15(−3)

α = 1/2 e(2) 7.81(−8) 4.68(−10) 9.39(−15)

e(3) 1.84(−30) 4.55(−49) 4.70(−86)

e(1) 2.15(−1) 7.29(−2) 2.05(−2)

α = 1 e(2) 3.16(−4) 2.81(−7) 2.48(−11)

e(3) 1.30(−16) 5.42(−34) 5.06(−65)

e(1) 3.34(−1) 4.90(−2) 1.54(−2)

α = −1 e(2) 4.40(−4) 1.61(−8) 2.73(−13)

e(3) 7.17(−17) 1.68(−40) 3.62(−77)

From Tables 5.2–5.5 and a hundred tested polynomial equations, we can
conclude that the results obtained by the proposed methods well match the
theoretical results given in Theorems 5.1–5.3. Also, we note that two iterative
steps of the presented families of methods are usually sufficient in solving
most practical problems when initial approximations are reasonably good
and polynomials are well conditioned. The third iteration is included to show
remarkably fast convergence and give approximations of very high accuracy,
rarely required in practice at present.
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Table 5.5 Euclid’s norm of errors: single-step methods

Methods (SS) (SSN) (SSH)

e(1) 2.19(−2) 1.50(−2) 5.09(−3)

α = 0 e(2) 6.60(−9) 1.62(−11) 9.90(−17)

e(3) 1.65(−37) 4.13(−60) 5.97(−104)

e(1) 2.18(−2) 1.52(−2) 4.98(−3)

α = 1
n−1

e(2) 6.45(−9) 8.31(−12) 7.97(−17)

e(3) 3.36(−38) 6.70(−62) 1.14(−106)

e(1) 3.46(−2) 2.52(−2) 7.41(−3)

α = 1/2 e(2) 6.54(−8) 4.28(−10) 1.18(−15)

e(3) 1.89(−32) 1.60(−50) 1.44(−92)

e(1) 2.14(−1) 5.32(−2) 1.81(−2)

α = 1 e(2) 3.33(−4) 2.03(−8) 4.08(−12)

e(3) 2.61(−18) 1.89(−41) 1.71(−76)

e(1) 5.04(−2) 3.12(−2) 9.88(−3)

α = −1 e(2) 2.98(−7) 1.29(−9) 1.31(−14)

e(3) 2.89(−27) 6.60(−47) 7.12(−87)

5.3 Family of Interval Methods

The fixed point relation (5.6) is suitable for the construction of interval itera-
tive methods for the simultaneous inclusion of simple complex zeros of a poly-
nomial. Let us assume that we have found mutually disjoint disks Z1, . . . , Zn

with centers zi = midZi and radii ri = radZi such that ζi ∈ Zi (i ∈ In). Let
us substitute the zeros ζj by their inclusion disks Zj in the expression for f∗

i ,
given by (5.2). In this way, we obtain a circular extension Fi of f∗

i

Fi = (α + 1)
n∑

j=1
j �=i

( 1
zi − Zj

)2

− α(α + 1)

(
n∑

j=1
j �=i

1
zi − Zj

)2

(5.65)

with f∗
i ∈ Fi for each i ∈ In.

Using the inclusion isotonicity property (see Sect. 1.3), from the fixed point
relation (5.6), we get

ζi ∈ Ẑi := zi − α + 1

αδ1,i +
[
(α + 1)∆i − αδ2

1,i − Fi

)]1/2
(i ∈ In). (5.66)

If the denominator in (5.66) is a disk not containing 0, then Ẑi is a new outer
circular approximation to the zero ζi, i.e., ζi ∈ Ẑi (i ∈ In).

Let us introduce some notations:

1◦ The circular inclusion approximations Z
(m)
1 , . . . , Z

(m)
n of the zeros at the

mth iterative step will be briefly denoted by Z1, . . . , Zn, and the new
approximations Z

(m+1)
1 , . . . , Z

(m+1)
n , obtained by some simultaneous in-

clusion iterative method, by Ẑ1, . . . , Ẑn, respectively.
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2◦ Sk,i(A,B) =
i−1∑
j=1

( 1
zi − Aj

)k

+
n∑

j=i+1

( 1
zi − Bj

)k

, zi = midZi,

Fi(A,B) = (α + 1)S2,i(A,B) − α(α + 1)S2
1,i(A,B),

where A = (A1, . . . , An) and B = (B1, . . . , Bn) are some vectors of disks.
If A = B = Z = (Z1, . . . , Zn), then we will sometimes write Sk,i(Z,Z) =
Sk,i and Fi(Z,Z) = Fi.

3◦ Z = (Z1, . . . , Zn) (the current disk approximations),
Ẑ = (Ẑ1, . . . , Ẑn) (the new disk approximations).

Starting from (5.66), we obtain a new one-parameter family of iterative
methods for the simultaneous inclusion of all simple complex zeros of a poly-
nomial. In our consideration of the new family, we will always suppose that
α �= −1. However, the particular case α = −1 reduces (by applying a limiting
process) to the already known Halley-like interval method which was studied
in [108], [182], [184], and [186].

First, following (5.66), we will construct the family of total-step meth-
ods [126]:

The basic interval total-step method (ITS):

Ẑi = zi − α + 1

αδ1,i +
[
(α + 1)∆i − αδ2

1,i − Fi(Z,Z)
]1/2

∗

(i ∈ In). (ITS)

The symbol ∗ indicates that one of the two disks (say U1,i = {c1,i; di} and
U2,i = {c2,i; di}, where c1,i = −c2,i) has to be chosen according to a suitable
criterion. That disk will be called a “proper” disk. From (5.3) and the inclu-
sion f∗

i ∈ Fi, we conclude that the proper disk is the one which contains the
complex number (α + 1)/ui − αδ1,i. The choice of the proper sign in front
of the square root in (ITS) was considered in detail in [47] (see also [109,
Chap. 3]). The following criterion for the choice of the proper disk of a square
root (between two disks) can be stated:

If the disks Z1, . . . , Zn are reasonably small, then we have to choose that
disk (between U1,i and U2,i) whose center minimizes

|P ′(zi)/P (zi) − ck,i| (k = 1, 2).

The inclusion method (ITS) and its modifications which will be presented
later are realized in circular complex interval arithmetic, which means that
the produced approximations have the form of disks containing the wanted
zeros. Therefore, these methods can be regarded as a self-validated numerical
tool that features built-in upper error bounds to approximations expressed by
the radii of the resulting disks. This enclosure property is the main advantage
of inclusion methods.
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Now, we present some special cases of the family (ITS) of iterative interval
methods:

α = 0, the Ostrowski-like method:

Ẑi = zi − 1[
∆i − S2,i(Z,Z)

]1/2

∗

(i ∈ In). (5.67)

α = 1/(n − 1), the Laguerre-like method:

Ẑi = zi − n

δ1,i +
[
(n − 1)

(
n∆i − δ2

1,i − nS2,i(Z,Z) +
n

n − 1
S2

1,i(Z,Z)
)]1/2

∗

(i ∈ In). (5.68)

α = 1, the Euler-like method:

Ẑi = zi − 2

δ1,i +
[
2∆i − δ2

1,i − 2
(
S2,i(Z,Z) − S2

1,i(Z,Z)
)]1/2

∗

(i ∈ In).

(5.69)
α = −1, the Halley-like method:

Ẑi = zi − 2δ1,i

∆i + δ2
1,i − S2,i(Z,Z) − S2

1,i(Z,Z)
(i ∈ In). (5.70)

The Halley-like method is obtained for α → −1 applying a limiting operation.
The names come from the similarity with the quoted classical methods. For

instance, omitting the sum in (5.67), we obtain the well-known Ostrowski’s
method ẑi = zi − 1/

[
∆i

]1/2

∗ , see [99].
For m = 0, 1, 2, . . . and n ≥ 3, let us introduce

r(m) = max
1≤i≤n

r
(m)
i , ρ(m) = min

1≤i,j≤n
i�=j

{|z(m)
i − z

(m)
j | − r

(m)
j }.

The quantity ρ(m) can be regarded as a measure of the separation of disks
Z

(m)
j from each other. The following assertion was proved by M. Petković

and Milošević [126].

Theorem 5.4. Let the interval sequences
{
Z

(m)
i

}
(i ∈ In) be defined by the

iterative formula (ITS), where |a| < 1.13. Then, under the condition

ρ(0) > 4(n − 1)r(0),

for each i ∈ In and m = 0, 1, . . ., we have:
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(i) ζi ∈ Z
(m)
i .

(ii) r(m+1) <
14(n − 1)2

(
r(m)
)4(

ρ(0) − 17
11r(0)

)3 .

The above theorem asserts that (1) each of the produced disks contains the
wanted zero in every iteration and (2) the convergence order of the interval
method (ITS) is 4.

The total-step interval method (ITS) can be accelerated by using already
calculated disk approximations in the current iteration (Gauss-Seidel ap-
proach). In this way, we obtain the single-step interval method:

Ẑi = zi − α + 1

αδ1,i +
[
(α + 1)∆i − αδ2

1,i − Fi(Ẑ,Z)
]1/2

∗

(i ∈ In). (ISS)

The R-order of convergence of the single-step method (ISS) is given by The-
orem 5.3 for k = 1 (the method without corrections).

The interval method (ITS) can be easily modified for the inclusion of
multiple zeros (with known multiplicities) in a similar way as in Sect. 5.2.
Starting from the fixed point relation (5.61), we obtain a new one-parameter
family of iterative methods for the simultaneous inclusion of all multiple zeros
of a polynomial:

Ẑi = zi − µi(α + 1)

αδ1,i +
[
µi(α + 1)∆i − αδ2

1,i − Fi

]1/2

∗

(i ∈ Iν = {1, . . . , ν}),

(5.71)
where

Fi = µi(α + 1)S2,i − α(α + 1)S2
1,i

= µi(α + 1)
ν∑

j=1
j �=i

µj

( 1
zi − Zj

)2

− α(α + 1)

(
ν∑

j=1
j �=i

µj

zi − Zj

)2

.

More details about this method, including the convergence analysis and
numerical examples, can be found in [125] where the following convergence
theorem was proved.

Theorem 5.5. Let the interval sequences
{
Z

(m)
i

}
(i ∈ Iν) be defined by the

iterative formula (5.71), where |a| < 1.1. Then, under the condition

ρ(0) > 4(n − µ)r(0),
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the following assertions hold for each i ∈ Iν and m = 0, 1, . . .:

(i) ζi ∈ Z
(m)
i .

(ii) r(m+1) <
17(n − µ)2

(
r(m)
)4

µ
(
ρ(0) − 71

43r(0)
)3 .

Other modifications of the interval method (ITS) of the higher order
that use Newton’s and Halley’s corrections (see Sect. 5.2) were studied by
M. Petković and Milošević [127].

Numerical Results: Methods in Circular Complex Arithmetic

The presented family of inclusion methods and its modifications have been
tested in solving many polynomial equations. In the implementation of these
fast algorithms, we have applied a multistage globally convergent composite
algorithm:

(a) Find an inclusion region of the complex plane which includes all zeros
of a polynomial. It is well known that all zeros of a polynomial P (z) =
zn + an−1z

n−1 + · · ·+ a1z + a0 lie in the disk centered at the origin with
the radius

R = 2 max
1≤k≤n

|an−k|1/k (5.72)

(see Henrici [57, p. 457]). It is possible to use other similar formulae (see,
e.g., [155]), but (5.72) has been found to be sufficient and satisfactory in
practice.

(b) Apply a slow convergent search algorithm to obtain mutually disjoint rect-
angles with a prescribed tolerance for the semidiagonals (sufficient to
provide the convergence), each containing only one zero. Let C ′ = ©(S)
and S′ = �(C) denote a circle C ′ which circumscribes a square S and
a square S′ which circumscribes a circle C, respectively. Starting with
the initial inclusion square �({0;R}), we use the efficient squaring sub-
dividing procedure presented in [58] to find reasonably well-separated
squares, say S1, . . . , Sν (ν ≤ n). In this process, we employ appropri-
ate inclusion tests (see [7], [57], [90], [100], [128], [155]) to determine
which of the intermediate smaller squares still contains zeros, discard-
ing all that do not. Thereafter we find initial inclusion disjoint disks
C1 = Z

(0)
1 = ©(S1), . . . , Cν = Z

(0)
ν = ©(Sν).

(c) Determine the number of zeros contained in each initial disk. The meth-
ods based on the principle of argument and realized by numerical inte-
gration in the complex plane give satisfactory results in practice, see [46],
[57], [65], [78], [79], [87], [93]. If the number of zeros, say N(Ci), is greater
than 1, then we take the center of each initial disk zi = mid Ci to be a
zero approximation and estimate the multiplicity of a (possibly multiple)
zero contained in the disk Ci using the Lagouanelle formula (see [75], [77])
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µi = lim
zi→ζi

P ′(zi)2

P ′(zi)2 − P (zi)P ′′(zi)
.

For practical purpose, this formula is adapted for approximate calculation
as follows

µi = R
[ P ′(zi)2

P ′(zi)2 − P (zi)P ′′(zi)

]
, (5.73)

where the denotation R[Ai

]
means that the calculated value Ai (in

bracket) should be rounded to the nearest integer. In this estimating
process, we assume that the radius of Ci is small enough to provide rea-
sonably good approximation zi to the zero ζi. To control the result, the
order of multiplicity may also be determined by a method presented re-
cently by Niu and Sakurai [93]. If (1) µi = N(Ci), we conclude that the
disk Ci contains one zero of the multiplicity µi. If (2) µi �= N(Ci) or
|Ai −R[Ai]| > τ , where τ (> 0.1, say) is a tolerance which estimates the
“goodness” of rounding in (5.73), then there is an indication that the disk
Ci contains a cluster of N(Ci) close zeros instead of one multiple zero.
In this chapter, we consider only the case (1). Since the study of clusters
is very actual, the reader is referred to the papers [7], [61], [78]–[80], [91],
[94], [100], [155], [191] for more details.

(d) Improve disks C1, . . . , Cν containing the zeros of the multiplicities
µ1, . . . , µν , respectively (determined in (c)), with rapidly convergent
iterative methods to any required accuracy.

Here, we present numerical results obtained by the interval method (ITS)
described in Sect. 5.3. For comparison, beside the methods (5.67)–(5.70), we
tested the method (ITS) which is obtained for α = 1/2

Ẑi = zi − 3

δ1,i +
√

2
[
3∆i − δ2

1,i − 3S2,i(Z,Z) + 3
2S2

1,i(Z,Z)
]1/2

∗

, (5.74)

and the following inclusion methods of the fourth order

Ẑi = zi − 1

P ′(zi)
P (zi)

−
n∑

j=1
j �=i

(
zi − Zj + Nj

)Ic

(i ∈ In) (5.75)

(see Carstensen and M. Petković [17]) and

Ẑi = zi − W (zi)

1 +
n∑

j=1
j �=i

W (zj)
(
Zi − Wi − zj

)Ic

(i ∈ In) (5.76)



192 5 Families of Simultaneous Methods of Higher Order: Part II

(see M. Petković and Carstensen [111]). We recall that the superscript index
Ic denotes the centered inversion of a disk, see (1.63).

Some authors consider that it is better to apply more iterations of Weier-
strass’ method of the second order (see [109, Chap. 3])

Ẑi = zi − P (zi)

(
n∏

j=1
j �=i

(zi − Zj)

)−1

(i ∈ In) (5.77)

than any higher-order method. To check this opinion, we also tested this
method.

Numerical experiments showed very fast convergence of the inclusion meth-
ods even in the case of relatively large initial disks. In all tested examples,
the choice of initial disks was carried out under weaker conditions than those
given in Theorem 5.4; moreover, the ratio ρ(0)/r(0) was most frequently two,
three, or more times less than 4(n−1). We have selected two typical examples.

Example 5.4. The interval methods (5.67)–(5.70) and (5.74)–(5.77) were ap-
plied for the simultaneous inclusion of the zeros of the polynomial

P (z) = z9 + 3z8 − 3z7 − 9z6 + 3z5 + 9z4 + 99z3 + 297z2 − 100z − 300.

The exact zeros of this polynomial are −3, ±1, ±2i, and ±2 ± i. The initial
disks were selected to be Z

(0)
i = {z(0)

i ; 0.3} with the centers

z
(0)
1 = −3.1 + 0.2i, z

(0)
2 = −1.2 − 0.1i, z

(0)
3 = 1.2 + 0.1i,

z
(0)
4 = 0.2 − 2.1i, z

(0)
5 = 0.2 + 1.9i, z

(0)
6 = −1.8 + 1.1i,

z
(0)
7 = −1.8 − 0.9i, z

(0)
8 = 2.1 + 1.1i, z

(0)
9 = 1.8 − 0.9i.

The entries of the maximal radii of the disks produced in the first three
iterations, for different values of α, are given in Table 5.6. We observe that
the Weierstrass-like method (5.77) diverged.

Table 5.6 The maximal radii of inclusion disks

Methods r(1) r(2) r(3)

(ITS) α = 1 1.96(−2) 5.32(−9) 7.95(−39)

(ITS) α = 1/2 1.45(−2) 7.13(−10) 4.64(−43)

(ITS) α = 1
n−1

9.03(−3) 3.96(−10) 4.81(−42)

(ITS) α = 0 8.09(−3) 3.20(−10) 1.70(−40)

(ITS) α = −1 2.38(−2) 4.28(−8) 4.62(−34)

(5.75) 5.38(−2) 1.11(−5) 4.90(−23)

(5.76) 1.12(−2) 9.97(−9) 3.38(−34)

(5.77) Diverges – –

Example 5.5. The same interval methods from Example 5.4 were applied for
the determination of the eigenvalues of Hessenberg’s matrix H (see Stoer
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and Bulirsch [170]). Gerschgorin’s disks were taken as the initial regions
containing these eigenvalues. It is known that these disks are of the form
{hii;Ri} (i = 1, . . . , n), where hii are the diagonal elements of a matrix
[hij ]n×n and Ri =

∑
j �=i |hij |. If these disks are mutually disjoint, then each

of them contains one and only one eigenvalue, which is very convenient for
the application of inclusion methods.

The methods were tested in the example of the matrix

H =

⎡⎢⎢⎢⎢⎣
2+3i 1 0 0 0

0 4+6i 1 0 0
0 0 6+9i 1 0
0 0 0 8+12i 1
1 0 0 0 10+15i

⎤⎥⎥⎥⎥⎦ ,

whose characteristic polynomial is

g(λ) = λ5 − (30 + 45i)λ4 + (−425 + 1020i)λ3 + (10350 − 2025i)λ2

−(32606 + 32880i)λ − 14641 + 71640i.

We selected Gerschgorin’s disks

Z1 = {2 + 3i; 1}, Z2 = {4 + 6i; 1}, Z3 = {6 + 9i; 1},

Z4 = {8 + 12i; 1}, Z5 = {10 + 15i; 1}
for the initial disks containing the zeros of g, i.e., the eigenvalues of H. The
maximal radii r(m) = max radZ

(m)
i (m = 1, 2) of the produced disks are

displayed in Table 5.7.
From Table 5.7, we observe that the applied inclusion methods converge

very fast. The explanation for this extremely rapid convergence lies in the fact
that the eigenvalues of Hessenberg’s matrix considered in this example are
very close to the diagonal elements. Because of the closeness to the desired
zeros, the centers of initial disks cause very fast convergence of the sequences
of inclusion disk centers, which provides fast convergence of the sequences of
radii.

Table 5.7 The enclosure of the eigenvalues of Hessenberg’s matrix

Methods r(1) r(2)

(ITS) α = 1 2.73(−10) 4.92(−43)

(ITS) α = 1/2 2.39(−10) 3.65(−43)

(ITS) α = 1/(n − 1) 2.21(−10) 3.02(−43)

(ITS) α = 0 2.04(−10) 2.38(−43)

(ITS) α = −1 2.73(−10) 2.74(−43)

(5.75) 5.64(−7) 1.71(−37)

(5.76) 3.27(−7) 1.60(−28)
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We note that, as in Example 5.4, the Weierstrass-like method (5.77) diverged.
In Sect. 5.3, we presented a new one-parameter family of iterative meth-

ods for the simultaneous inclusion of simple complex zeros of a polynomial.
According to a hundred numerical examples and the theoretical convergence
analysis given in [125]–[127], the characteristics and advantages of this family
can be summarized as follows:

• The produced enclosing disks enable automatic determination of rigorous
error bounds of the obtained approximations.

• The proposed family is of general type and includes previously derived
methods of the square root type.

• Numerical examples demonstrate stable and fast convergence of the family
(ITS); furthermore, the methods of this family compete with the existing
inclusion methods of the fourth order (5.75) and (5.76), they even produce
tighter disks in some cases; moreover, numerical experiments show that a
variation of the parameter α can often provide a better approach to the
wanted zeros compared with (5.75) and (5.76). See Examples 5.4 and 5.5.

• The quadratically convergent Weierstrass-like method (5.77) diverged not
only in the displayed examples, but also in solving numerous polynomial
equations. This means that the application of quadratically convergent
methods, such as the Weierstrass-like method (5.77), is not always better
than higher-order methods. Such outcome partly arises from the fact that
the product of disks is not an exact operation in circular interval arithmetic
(see (1.66)) and usually gives enlarged disks. In this manner, the disk in the
denominator of (5.77) can include the number 0 and the method becomes
undefined. This disadvantage of the inclusion method (5.77) can be avoided
if we use the following iterative formula

Ẑi = zi − P (zi)
n∏

j=1
j �=i

(zi − Zj)−1 (i ∈ In) (5.78)

instead of (5.77). In this way, disks containing 0 are eliminated, but the
product of inverse disks still generates large disks and the iterative process
(5.78) will break in the next iterations.

• The convergence order of the proposed family is 4; it can be significantly
increased by suitable (already calculated) corrections with negligible num-
ber of additional operations, providing in this way a high computational
efficiency, see [127].

• A slight modification of the fixed point relation, which served as the base
for the construction of the considered algorithm, can provide the simulta-
neous inclusion of multiple zeros, see [125].

In our experiments, we used various values of the parameter α belonging
to the disk {0; 3}. We could not find a specific value of α giving a method
from the family (ITS) which would be asymptotically best for all P . All
tested methods presented similar behavior for the values of α ∈ {0; 3} and
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very fast convergence for good initial approximations. A number of numerical
examples showed only that one of the tested methods is the best for some
polynomials, while the other one is the best for other polynomials. Actually,
the convergence behavior strongly depends on initial approximations, their
distribution, and the structure of tested polynomials.
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33. Ehrlich, L.W.: A modified Newton method for polynomials. Comm. ACM, 10,
107–108 (1967)

34. Ellis, G.H., Watson, L.T.: A parallel algorithm for simple roots of polynomials. Com-
put. Math. Appl., 2, 107–121 (1984)

35. Elsner, L.: Remark on simultaneous inclusion of the zeros of a polynomial by Ger-
schgorin’s theorem. Numer. Math., 21, 425–427 (1973)

36. Falconer, K.: Fractal Geometry. Mathematical Foundation and Applications, John
Wiley and Sons (1990)

37. Farmer, M.R., Loizou, G.: A class of iteration functions for improving, simultaneously,
approximations to the zeros of a polynomial. BIT, 15, 250–258 (1975)

38. Farmer, M.R., Loizou, G.: An algorithm for total, or parallel, factorization of a poly-
nomial. Math. Proc. Cambridge Philos. Soc., 82, 427–437 (1977)

39. Farmer, M.R., Loizou, G.: Locating multiple zeros interactively. Comput. Math.
Appl., 11, 595–603 (1985)

40. Fiedler, M.: Expressing a polynomial as the characteristic polynomial of a symmetric
matrices. Linear Algebra Appl., 141, 265–270 (1990)

41. Ford, W.F., Pennline, J.A.: Accelerated convergence in Newton’s method. SIAM Rev.,
38, 658–659 (1996)

42. Fourier, J.B.J.: Oeuvres de Fourier, Vol. II. Gauthier-Villars, Paris, 249–250 (1890)
43. Fraigniaud, P.: The Durand-Kerner polynomial root finding method in case of mul-

tiple roots. BIT, 31, 112–123 (1991)
44. Freeman, T.L.: Calculating polynomial zeros on a local memory parallel computer.

Parallel Computing, 12, 351–358 (1989)
45. Gander, W.: On Halley’s iteration methods. Amer. Math. Monthly, 92, 131–134

(1985)



References 199

46. Gargantini, P.: Parallel algorithms for the determination of polynomial zeros. In:
Thomas, R., Williams, H.C. (eds) Proc. III Manitoba Conf. on Numer. Math., Utilitas
Mathematica Publ. Inc., Winnipeg (1974), pp. 195–211

47. Gargantini, I.: Parallel Laguerre iterations: The complex case. Numer. Math., 26,
317–323 (1976)

48. Gargantini, I.: Further application of circular arithmetic: Schroeder-like algorithms
with error bound for finding zeros of polynomials. SIAM J. Numer. Anal., 15, 497–510
(1978)

49. Gargantini, I.: Parallel square-root iterations for multiple roots. Comput. Math.
Appl., 6, 279–288 (1980)

50. Gargantini, I., Henrici, P.: Circular arithmetic and the determination of polynomial
zeros. Numer. Math., 18, 305–320 (1972)

51. Gerlach, J.: Accelerated convergence in Newton’s method. SIAM Rev., 36, 272–276
(1994)

52. Green, M.W., Korsak, A.J., Pease, M.C.: Simultaneous iteration toward all roots of
a complex polynomial. SIAM Rev., 18, 501–502 (1976)

53. Gregg, W., Tapia, R.: Optimal error bounds for the Newton-Kantorowich theorem.
SIAM J. Numer. Anal., 11, 10–13 (1974)

54. Halley, E.: A new, exact, and easy method of findinng the roots of any equations
generally, and that without any previous reduction. (ABRIDGED, by C. Hutton, G.
Shaw, R. Pearson, translated from Latin), Phil. Trans. Roy. Soc. London III (1809)

55. Hansen, E., Patrick, M.: A family of root finding methods. Numer. Math., 27, 257–269
(1977)

56. Hansen, E., Patrick, M., Rusnak, J.: Some modifications of Laguerre’s method. BIT,
17, 409–417 (1977)

57. Henrici, P.: Applied and Computational Complex Analysis, Vol. I. John Wiley and
Sons, New York (1974)

58. Herceg, -D.D.: Computer implementation and interpretation of iterative methods for
solving equations. Master Thesis, University of Novi Sad, Novi Sad (1997)

59. Herceg, -D.D.: An algorithm for localization of polynomial zeros. In: Tošić, R.
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148. Prešić, M.: A convergence theorem for a method for simultaneous determination of all
zeros of a polynomial. Publications de l’Institut Mathématique, 28, 159–168 (1980)
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Glossary

C the set of complex numbers, 32

K(C) the set of circular disks, 32

Z = {c; r} circular disk = {z ∈ C : |z − c| ≤ r} ∈ K(C), 32

mid Z center of a disk Z, 32

rad Z radius of a disk Z, 32

Z−1 exact inverse of a disk Z, 32

ZIc centered inverse of a disk Z, 32

Z1 ∩ Z2 intersection of two disks, 33

Z1 ⊆ Z2 inclusion of disks, 33

Z1/2 square root of a disk Z, 34

In index set, In = {1, . . . , n}, 2

P monic algebraic polynomial, P (z) = zn + an−1z
n−1 + · · · + a1z + a0, 2

zi approximation to the zero ζi of a polynomial P , 2

ẑi the next approximation to the zero ζi, 4

δk,i = P (k)(zi)/P (zi) (k = 1, 2, . . .), 5

∆i =
(
P ′(zi)2 − P (zi)P ′′(zi)

)
/P (zi)2, 163

Wi Weierstrass’ correction = P (zi)/
∏

j �=i(zi − zj), 2

Ni Newton’s correction = P (zi)/P ′(zi), 8

Hi Halley’s correction =
(
P ′(zi)/P (zi) − P ′′(zi)/(2P ′(zi))

)−1, 6

w maximal Weierstrass’ correction = max
1≤i≤n

|Wi|, 68

205



206 Glossary

f function whose zero ζ is sought, 35

f−1 the inverse function to f , 38

f (k) the kth derivative of a complex function f , 46

f
(k)
(z) the kth Fréchet derivative at the point z, 37

ζ a zero of f , 35

ζi a zero of a polynomial P , 2

µ the multiplicity of the zero ζ of a function f , 21

µi the multiplicity of the zero ζi of a polynomial P , 21

Ek(z, h, f) the kth incremental Euler algorithm, 49

d minimal distance between approximations = min
j �=i

|zi − zj |, 61

cn i-factor, w ≤ cnd, 69

z
(m)
i approximation to the zero ζi in the mth iteration, 71

u
(m)
i error in the mth iteration = z

(m)
i − ζi, 97

γn convergence factor, 97

C
(m)
i iterative correction in the mth iteration, 71

βn contraction factor, |C(m+1)
i | < βn|C(m)

i |, 74

O same order of magnitude (of real numbers), 23

OM same order of magnitude (of complex numbers), 135

OR R-order of convergence, 181

ρ(m) a measure of the separation of inclusion disks generated in the mth
iteration, 190

≈ approximate equality between numbers, 7
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a posteriori error bound methods, 118,
120

calculating procedure (I), 123

calculating procedure (II), 124

parallel implementation, 125

approximate zero, 37, 46, 49

Euler–Chebyshev’s method, 51

Halley’s method, 50

higher-order methods, 50

Newton’s method, 44

quadratically convergent methods, 44,
45

approximations of derivatives, 23

attracting cycle, 45

Banach space, 37, 42, 44, 51

basic (Schröder’s) sequence, 49

Bell’s polynomials, 11

Bell-like iterations, 11

bilinear function, 17

Carstensen’s identity, 8

Cauchy sequence, 38

center of gravity, 27

characteristic polynomial, 28

Chen’s approach, 45

circular arithmetic operations, 140

circular complex (interval) arithmetic,
32, 147, 190

circular extension, 33, 186

circular inclusion approximations, 186

clusters of zeros, 68, 191

computer arithmetic, 70

convergence of Newton’s method, 51

convergence order of

families of simultaneous methods with
corrections

single-step, 179

total-step, 177

Hansen–Patrick’s family, 146, 147, 163

convergence theorem

a posteriori error bound methods, 122

Börsch-Supan’s method, 84, 86

Börsch-Supan’s method with
Weierstrass’ correction, 112

Chebyshev-like method, 95

Durand–Kerner’s method, 78, 81

Ehrlich–Aberth’s method, 103

Ehrlich–Aberth’s methods with
Newton’s corrections, 110

families of simultaneous methods, 172

family of simultaneous interval
methods, 188, 189

Halley-like method, 115

Hansen–Patrick’s family, derivative
free, 142, 145

Hansen–Patrick’s family with
derivatives, 153

Tanabe’s method, 89, 91

critical point, 45

deflation, 1

disk inversion, centered, 32, 120, 139,
168, 191

disk inversion, exact, 32

division of disks, 33

Durand-Kerner sequence, 63, 64

Euclid’s norm, 182, 183

family of interval methods, 186

families of simultaneous methods, 161

single-step, 174

total-step, 163
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Euler-like, 164

Halley-like, 164

Laguerre-like, 164

Ostrowski-like, 164

with corrections, 174

single-step, 175

total-step, 175

with Halley’s corrections

single-step, 175

total-step, 175

with Newton’s corrections

single-step, 175

total-step, 175

fixed point relation, 2

Börsch-Supan-like, 3

family of simultaneous methods

for multiple zeros, 182

for simple Zeros, 161

Halley-like, 4

Newton-like, 3

square root family, 162

square root type, 4

Wang-Zheng, generalized, 11

Weirstrass-like, 3

Fréchet derivative, 37

Gauss-Seidel approach, 174

Gerschgorin’s disks, 28, 193

Gerschgorin’s theorem, 28

global convergence, 7

guaranteed convergence, 71, 151

correction approach, 71

convergence theorem, 72

Hansen–Patrick’s family, derivative
free, 137

Hansen–Patrick’s family with
derivatives, 151

sequence approach, 97

Halley’s approximation, 15, 20

Halley’s correction, 6, 174

Halley-like corrections, 182

Hansen–Patrick’s family, 16, 129

Börsch-Supan’s method, 134

for a single zero, 129

for finding polynomial zeros,
simultaneously, 129

simultaneous derivative-free method,
133

Euler-like, 133

Halley-like, 134, 135

Laguerre-like, 134

Ostrowski-like, 133

simultaneous methods with derivatives,
146

Ehrlich–Aberth, 147

Euler-like, 147

Halley-like, 147

Laguerre-like, 147

Ostrowski-like, 147

with corrections, 148

Hessenberg’s matrix, 192

Horner scheme, 1

i-factor cn, 29, 31, 69, 80, 81, 86, 91, 92,
95, 99, 105, 112, 114

i-factor cn, almost optimal, 69, 80

inclusion annulus, 156

inclusion disks, 27, 31, 119

based on Weierstrass’ corrections, 28

of Braess-Hadeler, 28

of Smith, 28

inclusion isotonicity, 33, 186

inclusion of disks, 33

inclusion property, 121

inclusion radius, 26, 27

inclusion region, 26, 190

inclusion test, 190

incremental Euler’s methods, 48–50

initial approximations of Aberth, 124,
157, 159

initial condition, 67, 68, 121, 151

Börsch-Supan’s method, 86

Börsch-Supan’s method with
Weierstrass’ correction, 112

Chebyshev-like method, 95

Durand–Kerner’s method, 81

Ehrlich–Aberth’s method, 103

Ehrlich–Aberth’s methods with
Newton’s corrections, 110

families of simultaneous methods, 164

Halley-like method, 115

Hansen–Patrick’s family, derivative
free, 137, 145

Tanabe’s method, 91

intersection of disks, 33

interval methods, 118, 120, 121

Börsch-Supan-like, 120

Börsch-Supan-like with Weierstrass’
correction, 120

family of simultaneous methods

Euler-like, 188

for multiple zeros, 189

Halley-like, 188

Laguerre-like, 188

Ostrowski-like, 188

total-step, 187
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Halley-like, 187

of the fourth order, 191

Weierstrass-like, 120, 192

iterative correction, 71, 74, 143

Kantorovich’s approach, 36

Lagouanelle formula, 190

Lagrange’s interpolation, 13, 78, 98, 106,
132

majorizing sequence, 54

majorizing sequence method, 51

Mathematica 6.0, 70, 95, 124, 165, 182

mean value theorem, 53

method (for a single zero), 6

Chebyshev, 9, 20

Euler, 130

Euler–Chebyshev, 49, 50

Farmer-Loizou, 24

Halley, 6, 13, 50, 130, 174

Hansen–Patrick, 129, 130

Laguerre, 130

Newton, 13, 35, 45, 49, 51, 52, 130, 174

for nonlinear systems, 7, 59

Ostrowski, 16, 130

Ostrowski’s (square root) method, 9

Stefensen-like, 19

method (for all polynomial zeros,
simultaneously), 5

Börsch-Supan’s method, 5, 15, 82, 119,
134

with Weierstrass’ correction, 8, 18,
111, 119

Chebyshev-like, 20, 91

Chebyshev-like, accelerated, 20

cubic derivative free, 21

Durand–Kerner, 5, 25, 27, 51, 76, 119,
157

Ehrlich–Aberth’s method, 5, 7, 16, 25,
99, 147

with Newton’s corrections, 8, 16, 105

Ellis-Watson, 18, 134

Farmer–Loizou, 26

Halley-like method, 5, 114

with Halley’s corrections, 10

with Newton’s corrections, 10

Huang–Zheng, 149

Nourein, 9, 16, 19

Sakurai-Petković, 20

Sakurai-Torri-Sugiura, 18, 147

square root method, 5

with Halley’s corrections, 10

with Newton’s corrections, 10

Tanabe, 9, 86

Wang–Zheng, 5

Weierstrass, 5

Zheng–Sun, 19

method for multiple zeros, 21, 150

Euler-like, 131

family of simultaneous methods, 181

single-step, 182

total-step, 182

of the fifth order, 22

of the fourth order, 22

of Hansen–Patrick’s type, 150, 151

of the sixth order, 23

of the third order, 22

Halley-like, 21, 131

Hansen-Patric, 131

simplified version, 132

Laguerre-like, 21, 131

Ostrowski-like, 131

Schröder, 21, 132

square root type, 21

minimal distance, 68, 74

minorizing function, 71

multiple zero(s), 21, 131, 150

multiplicity of zero, 21, 150, 190

multiprecision arithmetic, 124, 156, 182

Newton’s approximation, 15, 20

Newton’s correction, 8, 174

Newton’s method estimates, 44, 47, 51,
56

in Banach space, 38

Newton’s step, 52

normalized i-factor, 116

number of numerical operations, 125

number of zeros (in a disk), 190

parametric notation, 28

point estimation of

Börsch-Supan’s method, 82

Börsch-Supan’s methods with
Weierstrass’ correction, 111

Chebyshev-like method, 91

Durand–Kerner’s method, 59, 76

Ehrlich–Aberth’s method, 99

Ehrlich–Aberth’s methods with
Newton’s corrections, 105

Euler–Chebyshev’s method, 51

families of simultaneous methods, 172

Halley’s method, 50

Halley-like method, 114

Newton’s method, 59

Tanabe’s method, 86

point estimation theory, 36
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principle of argument, 190
product of disks, 33

quadratically convergent methods, 44

R-order of convergence, 179
radius of convergence, 48

schlicht function theory, 36, 44
Schröder’s correction, 182
search algorithm, 190
simultaneous interval methods, 9
spectral radius, 180
square root of a disk, 34
stopping criterion, 156, 157
subdividing procedure, 190

Taylor’s expansion, 37, 39, 54
tensor of k-th order, 61

tensor of the first order, 61

truncation operator, 49

Viète’s formulae, 7

W-class, 119, 120

Wang–Han’s convergence theorem, 51

Wang–Zhao’s convergence theorem, 54,
66

Weierstrass’ function, 13, 15–17, 19, 20,
23, 132

Weierstrass’ function, modified, 14, 16,
20, 23

Weierstrass’ approximation, 15

Weierstrass’ correction, 28, 68, 74, 119,
132

Weierstrass’ sequences, 6

Weierstrass-like function, 21–23, 150
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