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Preface

The Society for the Foundations of Computational Mathematics supports
and promotes fundamental research in computational mathematics and its
applications, interpreted in the broadest sense. It fosters interaction among
mathematics, computer science and other areas of computational science
through its conferences, workshops and publications. As part of this en-
deavour to promote research across a wide spectrum of subjects concerned
with computation, the Society brings together leading researchers working
in diverse fields. Major conferences of the Society have been held in Park
City (1995), Rio de Janeiro (1997), Oxford (1999), Minneapolis (2002), and
Santander (2005). The next conference is expected to be held in 2008. More
information about FoCM is available at its website http://www.focm.net.

The conference in Santander on June 30 – July 9, 2005, was attended by
several hundred scientists. FoCM conferences follow a set pattern: morn-
ings are devoted to plenary talks, while in the afternoon the conference
divides into a number of workshops, each devoted to a different theme
within the broad theme of foundations of computational mathematics. This
structure allows for a very high standard of presentation, while affording
endless opportunities for cross-fertilization and communication across sub-
ject boundaries. Workshops at the Santander conference were held in the
following twenty-one fields:

– information-based complexity
– special functions and orthogonal polynomials
– computational algebraic geometry
– multiresolution and adaptivity in numerical PDEs
– geometric modelling and animation
– computational geometry and topology
– mathematical control theory and applications
– geometric integration and computational mechanics
– learning theory
– optimization
– relations with computer science: algorithmic game theory and met-

ric embeddings
– image and signal processing
– symbolic analysis

vii



viii Preface

– random matrices
– foundations of numerical PDEs
– approximation theory
– computational number theory
– numerical linear algebra
– real-number complexity
– computational dynamics
– stochastic computation.

In addition to the workshops, eighteen plenary lectures, covering a broad
spectrum of topics connected to computational mathematics, were deliv-
ered by some of the world’s foremost researchers. This volume is a col-
lection of articles, based on the plenary talks presented at FoCM 2005.
The topics covered in the lectures and in this volume reflect the breadth
of research within computational mathematics as well as the richness and
fertility of interactions between seemingly unrelated branches of pure and
applied mathematics.

We hope that this volume will be of interest to researchers in the field
of computational mathematics and also to non-experts who wish to gain
some insight into the state of the art in this active and significant field.

Like previous FoCM conferences, the Santander gathering proved itself
as a unique meeting point of researchers in computational mathematics and
of theoreticians in mathematics and computer science. While presenting
plenary talks by foremost world authorities and maintaining the highest
technical level in the workshops, the conference, like previous meetings, laid
emphasis on multidisciplinary interaction across subjects and disciplines in
an informal and friendly atmosphere.

We wish to express our gratitude to the local organizers and adminis-
trative staff of our hosts the Universidad Cantabria, and wish to thank
the Departamento de Matemáticas, Estad́ıstica y Computación of Univer-
sidad Cantabria, the Vicerrectorado de Investigación de la Universidad de
Cantabria, and Proyecto Nacional MTM2004-20180-E for their financial
assistance and for making FoCM 2005 such an outstanding success. We
would like to thank the authors of the articles in this volume for producing
in short order such excellent contributions. Above all, however, we wish to
express our gratitude to all the participants of FoCM 2005 for attending
the meeting and making it such an exciting, productive and scientifically
stimulating event.
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On the Complexity of Non Universal
Polynomial Equation Solving:

Old and New Results
C. Beltrán

Departamento de Matemáticas
Universidad de Cantabria

Santander, Spain
e-mail: beltranc@unican.es

L. M. Pardo
Departamento de Matemáticas

Universidad de Cantabria
Santander, Spain

e-mail: luis.pardo@unican.es

Abstract

These pages summarize some results on the efficiency of polynomial equa-
tion solving. We focus on semantic algorithms, i.e., algorithms whose run-
ning time depends on some intrinsic/semantic invariant associated with
the input data. Both computer algebra and numerical analysis algorithms
are discussed. We show a probabilistic and positive answer to Smale’s 17th
problem. Estimates of the probability distribution of the condition number
of singular complex matrices are also exhibited.

1.1 Introduction

These pages summarize some results on upper and lower complexity bounds
in Elimination Theory. They are a revision of the program stated in Pardo
(1995).

We focus on Efficient Polynomial Equation Solving. This is one of the
challenges in the recent history of Computational Mathematics. Two main
frameworks in scientific computing deal with this problem. Following dif-
ferent approaches, symbolic/algebraic computing and numerical analysis
developed their own techniques for solving polynomial equations. We sur-
vey statements of both approaches. New results are contained in Sections
1.4 and 1.5.

Multivariate Polynomial Equation Solving is a central topic both in
Computational Mathematics and Computational Algebraic Geometry

1



2 C. Beltrán and L. M. Pardo

(Elimination Theory in nineteenth century terminology). Its origin goes
back to work of Sturm, Hermite, Cayley, and Sylvester, among others.
Elimination Theory consists of the preparation of input data (polynomial
equations and inequalities) to answer questions involving quantifiers. This
approach also underlies Kronecker (1882), Hilbert (1890) and further devel-
opments in Algebraic Geometry. A central problem in Elimination Theory
is the following:

Problem 1 (Hilbert’s Nullstellensatz) Design an efficient algorithm
that performs the following task:
Given a system of multivariate polynomial equations

f1, . . . , fs ∈ C[X1, . . . , Xn],

decide whether the following algebraic variety is empty or not:

V (f1, . . . , fs) := {x ∈ Cn : fi(x) = 0, 1 ≤ i ≤ s}.

Here the term efficient refers to computational complexity. In the words
of Traub & Werschultz (1998): “computational complexity is a measure
of the intrinsic computational resources required to solve a mathematical
problem”. Computational resources are measured in terms of a compu-
tational model or computational device that performs the corresponding
algorithm that solves the problem. Intrinsic here means that we measure
resources required by the problem and not the concrete algorithm. Hence,
computational complexity is the design and analysis of an optimal algo-
rithm (in terms of computational resources) that solves a mathematical
problem.

The notion of computational resource requirements has been present in
the mathematical literature for many years, although not always in an
explicit form. For instance, we cite Galois who explicitly described com-
putational requirements in his Mémoire sur la Résolubilité des Équations
par Radicaux. Galois wrote: “En un mot, les calculs sont impracticables”.
Galois had developed an algorithm that decided whether a univariate poly-
nomial equation was solvable by radicals, but he realized that the computa-
tional complexity required by his procedure was excessive. The phrase thus
means that he declined to perform calculations. In fact, he had discovered
a central subject in computational complexity: Intractability.

In Galois’ time, neither the notion of algorithm nor that of a complexity
measure had been established. This relevant step in the history of math-
ematics was made around 1933. The works of Gödel, Church and Turing
established the notion of algorithm which in later years lead to the exis-
tence of computers. We note that Turing’s work and his machine concept
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of algorithm also became the standard pattern for computational complex-
ity. In these pages, we shall measure computational resources in terms of
Turing machines as much as is possible.

Computational resources are measured as functions of the input length.
The input length is the time we need to write down the data. The (running)
time function is the function that relates input length and running time
under a concrete computational model.

Intractability is one of the frustrating aspects of computational complex-
ity studies. A mathematical problem is intractable if the computational re-
sources required to solve it are so excessive that there is no hope of solving
the problem in practice. Observe that intractability is independent of the
algorithm we design. For example, mathematical problems whose running
time are at least exponential in the input length are naturally intractable.
These are called exponential problems and there is no hope of solving them
in any real or future computer. The reason is that this exponential time
requirement is intrinsic to the problem and not to the concrete algorithm
or computer.

Tractable problems are those mathematical problems whose time func-
tion is bounded by a polynomial of the input length. Between tractable
and intractable problems there lies a large number of problems for which it
is not known as yet whether they are tractable. We call them the Boundary
of Intractability (cf. Garey & Johnson (1979)). Hilbert’s Nullstellensatz
lies in this boundary. This simply means that no-one has yet designed a
tractable algorithm that solves Hilbert’s Nullstellensatz, and it also means
that no-one has yet proved that this problem is intractable. That is, it is
not known whether there is an algorithm that solves HN in running time
which depends polynomially on the number of variables.

There are several strategies for studying the computational complexity
of Hilbert’s Nullstellensatz. We classify them in two main groups: syn-
tactical and semantical. Although these pages are mainly concerned with
semantical strategies, we shall sketch some of the syntactical achievements
in the study of HN.

Syntactical strategies are characterized by the fact that polynomials are
considered as lists of coefficients (dense encoding) in certain vector spaces.
They are then treated as vectors and linear algebra methods are applied to
answer questions (mainly those involving quantifiers).

Historically, the first syntactical algorithm for HN goes back to Hilbert
and his student Hermann (cf. Hermann (1926)). Hilbert and Hermann
reduced HN to the consistency of a system of linear equations.

Hilbert’s Nullstellensatz (Hilbert (1890)) states that given a list of
polynomials f1, . . . , fs ∈ C[X1, . . . , Xn] of degree at most d, the complex
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algebraic variety they define V (f1, . . . , fs) ⊆ Cn is empty if an only if there
are polynomials g1, . . . , gs ∈ C[X1, . . . , Xn] such that the following equality
holds:

1 = g1f1 + · · ·+ gsfs. (1.1)

Identities such as (1.1) are called Bézout Identities.
From Hermann’s work, we know that there is a function D(d, n) which

depends only on the number of variables and the maximum of the degrees,
such that the following equivalence holds:

The variety V (f1, . . . , fs) ⊆ Cn is empty if and only if there exist poly-
nomials g1, . . . , gs in C[X1, . . . , Xn] of degree at most D(d, n) satisfying
identity (1.1).

Let us observe that Hermann’s bound D(d, n) reduces HN to the con-
sistency question of a system of linear equations. The unknowns are the
coefficients of the (possibly existing) polynomials g1, . . . , gs occurring in
(1.1). The linear equations are determined by linear functions in the co-
efficients of the input polynomials f1, . . . , fs. This approach reduces HN
to the problem of deciding consistency of the linear system given by (1.1)
involving

s

(
D(d, n) + n

n

)
variables and equations. Its running time is obviously polynomial in this
quantity. Hence, sharp upper bounds for the function D(d, n) also imply
sharp upper complexity bounds for this approach to solving HN. Studies
on sharp upper bounds for D(d, n) are called Effective Nullstellensätze.
We cite Brownawell (1987), Caniglia, Galligo & J. Heintz (1988), Kollár
(1988), Berenstein & Yger (1991, 1991a), Krick & Pardo (1996), Hägele,
Morais, Pardo & M. Sombra (2000), Krick, Pardo & Sombra (2001) and
their references. The known bounds for D(d, n) can be summarized by the
following inequalities:

dn−1 ≤ D(d, n) ≤ dn.

Thus, this approach is neither efficient nor applicable since the time com-
plexity is of order (

dn + n

n

)
≈ dn2

.

For example, deciding consistency of a system of cubic polynomial equa-
tions in 20 variables by this method requires deciding consistency of a
system of more than 3400 linear equations in a similar number of variables.
This is intractable in any actual or future computer.
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In Hägele, Morais, Pardo & Sombra (2000) a simply exponential time
algorithm (time of order dn) to compute Bézout identities was shown, al-
though the technique used in that paper is not syntactical but semantical.

A second syntactical strategy to deal with HN is due to rewriting tech-
niques. The most frequently used rewriting method is that of the stan-
dard/Gröbner basis algorithms. Since the works Hironaka (1964) and
Buchberger (1965), a huge list of references has been produced (cf. for in-
stance Becker & Weispfenning (1993), Cox, Little & O’Shea (1997), Mora
(2003), Vasconcelos (1998) and references therein). Most of these refer-
ences discuss algorithms that compute Gröbner bases of an ideal. This
strategy has also been fruitful in terms of implementations. Gröbner basis
algorithmics is a standard primitive implemented in most computer alge-
bra packages (Maple, Magma or Mathematica, for example). Most efficient
implementations are due to Faugère (the FGb series). This approach has
a serious drawback in terms of computational complexity. Since Mayr &
Meyer (1982), we know that computing with Gröbner bases is exponential
space complete and this is even worse than the running time of methods
based on Effective Nullstellensätze. Computing with Gröbner bases involv-
ing more than 15 variables is not yet available. Thus, purely syntactical
Gröbner bases techniques do not seem to be the best methods of dealing
with HN.

A third syntactical strategy uses the underlying concepts of Structural
Complexity. Namely, problems are classified into complexity classes and the
study of the complexity of a problem consists in locating the appropriate
class where this problem is complete. In Blum, Shub & Smale (1989), the
authors proved that HN is complete in the class NPC of nondeterministic
polynomial time under the abstract model of complex Turing machines
(cf. also Blum, Cucker, Shub & Smale (1998)). Other authors studied the
complexity of HN within the more realistic Turing machine framework. In
Koiran (1996) (see also Rojas (2001, 2003)) the author proved that HN
belongs to the complexity class PH (polynomial hierarchy).

Nevertheless, all these syntactical strategies seem to forget that we are
dealing with geometric objects (algebraic varieties) and regular mappings
(polynomials viewed as functions and not as mere lists of coefficients). Alge-
braic varieties and regular mappings are mathematical objects rich in terms
of semantic invariants. They have been studied for years in an attempt to
describe their topological, geometrical and arithmetical properties. These
studies have generated a large number of semantic invariants that must
be related to computational complexity. This idea of relating semantical
invariants to complexity is not completely new. In fact, semantical in-
variants of geometrical objects have been used to show lower complexity
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bounds for computational problems (see, for example, Montaña, Morais &
Pardo (1996) and references therein). The converse problem was to de-
sign an algorithm that solves HN in time which depends polynomially on
some semantical invariants of the input list of multivariate polynomials.
This was achieved by the TERA experience. In fact, the TERA expe-
rience was more a current of thought than a research project, that was
active during the nineties. Some of its achievements will be described in
Section 1.2.

Somewhere between syntactical and semantical strategies, we may
find “sparse” elimination techniques as in Sturmfels (1996) and references
therein. However, we do not discuss sparse elimination here.

The rest of the chapter is structured as follows. In Section 1.2 we present
an overview of some of the achievements of the TERA experience. In Sec-
tion 1.3 we discuss an exponential lower time bound for universal algorithms
in Elimination Theory. In Section 1.4 we show a positive answer to Smale’s
17th Problem. Finally, in Section 1.5 we show sharp upper bounds for the
probability distribution of the condition number of singular matrices.

1.2 Semantic Algorithms

In the middle nineties, the notion of semantic algorithms in Elimination
Theory was introduced. Two works initiated this new generation of algo-
rithms : Pardo (1995) and Giusti, Heintz, Morais & Pardo (1995). The
first paper established a program, whereas the second one exhibited the first
example of a semantical algorithm for Elimination Theory. This program
was achieved in the series of papers Giusti, Heintz, Morais, Morgenstern
& Pardo (1998), Giusti, Hägele, Heintz, Montaña, Morais & Pardo (1997),
Giusti, Heintz, Morais & Pardo (1997). These works became the basis of
the research experience called TERA. This section is devoted to a brief
sketch of some of these achievements.

First of all, we reformulate Hilbert’s Nullstellensatz in the following form.

Problem 2 Design an efficient algorithm that performs the following task:
Given a list of polynomials f1, . . . , fs, g ∈ C[X1, . . . , Xn] of degree at most
d, decide whether the polynomial g vanishes at some point of the algebraic
variety V (f1, . . . , fs) ⊆ Cn.

This is the usual formulation of elimination polynomials (like resultants
and discriminants) in classical Elimination Theory. This is also the usual
formulation of NP–complete problems (cf. Heintz & Morgenstern (1993) or
Pardo (1995) and references therein). Note that all NP–complete problems
are particular instances of Problem 2 above.
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In this formulation, the role played by g and the list of f1, . . . , fs seems
to be different.

From a list of polynomials like f1, . . . , fs we want to compute some infor-
mation concerning the variety V := V (f1, . . . , fs) of its common zeros. The
information we compute is expected to be used to answer further questions
involving the variety V . This information is commonly called a solution
of the input list of polynomials f1, . . . , fs. For instance, in Problem 2, a
solution of f1, . . . , fs should be used to decide whether a new polynomial
g vanishes at some point in V . The way we choose to represent this infor-
mation in a computer may be called the encoding of the solution variety
V .

Obviously, different questions will condition the way we represent the
information on the variety V in a computer. Hence, different notions of
solution lead to different kinds of algorithms and different encodings of al-
gebraic varieties. In Section 1.4 we recall the Shub–Smale notion of solution
(approximate zeros) whose potentiality is still unexplored.

The proposal of TERA consisted in the design and analysis of a semantic
algorithm that performs the following task:

From an input list f1, . . . , fs, the algorithm outputs a description of the
solution variety V (f1, . . . , fs).

This algorithm must satisfy two main properties:

• Its running time should be bounded by some intrinsic/semantic quantity
that depends on the input list.
• Its output must contain sufficient information to answer any kind of

elimination question like the one described in Problem 2.

These two properties lead to a notion of solution that we briefly sketch
here. It is called Kronecker’s encoding of an affine algebraic variety (cf.
Kronecker (1882)).

Let f1, . . . , fi ∈ C[X1, . . . , Xn] be a sequence of polynomials defining a
radical ideal (f1, . . . , fi) of codimension i. Let V := V (f1, . . . , fi) ⊆ Cn be
the complex algebraic variety of dimension n−i given by its common zeros.
A Kronecker encoding of V is a birational isomorphism of V with some
complex algebraic hypersurface in some affine complex space of dimension
n− i + 1.

Technically, this is expressed as follows. Firstly, let us assume that the
variables X1, . . . , Xn are in Noether position with respect to the variety V .
Namely, we assume that the following is an integral ring extension:

C[X1, . . . , Xn−i] ↪→ C[X1, . . . , Xn]/(f1, . . . , fi).

Let u := λn−i+1Xn−i+1 + · · · + λnXn ∈ Q[X1, . . . , Xn] be a linear form
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in the dependent variables {Xn−i+1, . . . , Xn}. A Noether’s normalization
and the linear mapping u define a linear projection:

U : Cn −→ Cn−i+1 : (x1, . . . , xn) �−→ (x1, . . . , xn−i, u(x1, . . . , xn)) .

Let U |V : V −→ Cn−i+1 be the restriction of the projection U to the
variety V . The image set of the projection U |V is a complex hypersurface
Hu in Cn−i+1. Let us denote by χu ∈ C[X1, . . . , Xn−i, T ] the minimal
equation of Hu. The polynomial χu is called the elimination polynomial of
u with respect to V .

The linear form u is called a primitive element if and only if the projection
U |V defines a birational isomorphism of V with Hu.

A Kronecker solution of the system of polynomial equations f1 = 0, . . . ,

fi = 0 consists of a description of the Noether normalization, the primitive
element u, the hypersurface Hu and a description of the inverse of the
birational isomorphism, i.e., a description of (U |V )−1. Formally, this list
of items can be given as follows:

• The list of variables in Noether position X1, . . . , Xn (which includes a
description of the dimension of V ). It is just a regular matrix that defines
a linear change of coordinates that puts the variables in Noether position.
• The primitive element u := λn−i+1Xn−i+1 + · · · + λnXn given by its

coefficients in Z (or any other computable subfield of C).
• The minimal equation χu of the hypersurface Hu.
• A description of (U |V )−1. This description can be given by the following

list of polynomials:

– A nonzero polynomial ρ ∈ C[X1, . . . , Xn−i].
– A list of polynomials vj ∈ C[X1, . . . , Xn−i, T ], n− i + 1 ≤ j ≤ n.

These polynomials must satisfy the equality:

(U |V )−1(x, t) =
(
x1, . . . , xn−i, ρ

−1(x)vn−i+1(x, t), . . . , ρ−1(x)vn(x, t)
)
,

for all x := (x1, . . . , xn−i) ∈ Cn−i, t ∈ C, such that (x, t) ∈ Hu, ρ(x) �= 0.

In 1882, Kronecker conceived an iterative procedure for solving multi-
variate systems of equations F := [f1, . . . , fn] defining zero–dimensional
complex varieties. Kronecker’s idea can be sketched in the following terms:

First, the procedure starts with system [f1] and it “solves” the equidi-
mensional variety of codimension one V (f1) ⊆ Cn. Then the procedure
runs iteratively: From a Kronecker encoding of V (f1, . . . , fi), the proce-
dure “eliminates” the polynomial fi+1 to obtain a Kronecker encoding of
the “next” variety V (f1, . . . , fi+1). Proceed until i = n is reached.

This iterative procedure has two main drawbacks, which can be explained
in the following terms:
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• First of all, the storage problem arising with the encoding of the inter-
mediate polynomials. The polynomials χu, ρ and vj are polynomials of
high degree (eventually of degree di) involving n− i + 1 variables. Thus,
to compute with them, the procedure has to handle all their coefficients,
which amounts to (

di + n− i + 1
n− i + 1

)
in number, For example, for i := n/2 the procedure must save more
than dn2/4 coefficients. Handling such polynomials also requires a time
complexity of similar order. This does not seem to be more efficient
than the original treatment based on the Effective Nullstellensätze (cf.
Section 1.1).
• Secondly, Kronecker’s iterative procedure introduces a nesting of inter-

polation procedures. This nesting is demanded by the iterative process.
Every time the procedure computes a new set of variables in Noether
position, the procedure makes a recursive call of previously computed
objects. This increases the time complexity function to dO(n2).

The procedure was therefore forgotten by contemporary mathematicians
and is hardly mentioned in the literature of Algebraic Geometry. Macaulay
quotes Kronecker’s procedure in Macaulay (1916) and so does König (1903).
But both of them thought that this procedure would require excessive run-
ning time to be efficient, and so references to it have progressively vanished
from the literature. Traces of this procedure can be found spread over the
Algebraic Geometry literature without giving the required reference to it.
For example, Kronecker’s notion of solution was used in Zariski (1995) to
define a notion of dimension for algebraic varieties, claiming that it was
also used in the same form by Severi and others.

In Giusti, Heintz, Morais & Pardo (1995) and Pardo (1995), Kronecker’s
approach for solving was rediscovered without previous knowledge of this
ancestor. These two works were able to overcome the first drawback (space
problem of representation) of the previous methods. The technical trick
was the use of a data structure coming from semi–numerical modeling:
straight–line programs. This idea of representing polynomials by programs
evaluating them goes back to previous work of the same research group
(such as Giusti, Heintz (1991, 1993) or Krick & Pardo (1996), see also the
references given in Pardo (1995)).

To overcome the second drawback (nesting), the authors introduced a
method based on nonarchimedean Newton’s operator. The approximate
zeros in the corresponding nonarchimedean basin of attraction were called
Lifting Fibers in Giusti, Hägele, Heintz, Morais, Montaña & Pardo (1997)
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solving the problem of nesting of interpolation procedures by Hensel’s
Lemma (also called the Implicit Mapping Theorem).

Unfortunately, Giusti, Hägele, Heintz, Morais, Montaña & Pardo (1997)
introduced (for the Lifting Fibers) running time requirements which depend
on the heights of the intermediate varieties in the sense of Bost, Gillet &
Soulé (1994) or Philippon (1991, 1994, 1995). This drawback was finally
overcome in Giusti, Heintz, Morais & Pardo (1997), where integer numbers
were represented by straight–line programs and the following result was
finally established:

Theorem 1.1 (Giusti, Heintz, Morais & Pardo (1997)) There exists a
bounded error probability Turing machine M which performs the following
task: Given a systemof multivariate polynomial equations F := (f1, . . . , fn),
satisfying the following properties

• deg(fi) ≤ d and ht(fi) ≤ h for 1 ≤ i ≤ n (h is the bit length of the
coefficients),
• the ideals (f1, . . . , fi) are radical ideals of codimension i in the ring

Q[X1, . . . , Xn] for 1 ≤ i ≤ n− 1,
• the variety V (f1, . . . , fn) ⊆ Cn is a zero–dimensional complex alge-

braic variety,
then the machine M outputs a Kronecker solution of the variety

V (f1, . . . , fn).

The running time of the machine M is polynomial in the quantities

δ(F ), n, h, d, L,

where δ(F ) is the maximum of the degrees of the intermediate varieties (in
the sense of Heintz (1983)), namely

δ(F ) := max{deg(V (f1, . . . , fi)) : 1 ≤ i ≤ n− 1},

and L is the input length in any natural encoding of multivariate polyno-
mials.

It must be said that the coefficients of the polynomials involved in a
Kronecker solution of the variety V (f1, . . . , fn) are given by straight–line
programs. However, the complexity estimates for the Turing machine M

are independent of the height.
The quantity δ(F ) becomes a kind of condition number for symbolic

methods to solve systems of multivariate polynomial equations by Kro-
necker’s deformation technique.

After Giusti, Heintz, Morais, & Pardo (1997), several new authors got
involved in the TERA experience, with several technical improvements,
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mainly on the exponents occurring in the polynomial upper time bound
quoted in Theorem 1.1. Among them we can cite Giusti & Schost (1999),
Lecerf (2001), Heintz, Matera & Weissbein (2001), for instance. This de-
pendence on a semantic invariant was also translated to the problem of
computing real solutions of real polynomial equations in the series of pa-
pers Bank, Giusti, Heintz & Mbakop (1997,2001), Bank, Giusti, Heintz &
Pardo (2004, 2005). The algorithm was successfully implemented by Lecerf
and Salvy. This implementation, involving some technical variations, was
presented in Giusti, Lecerf & Salvy (2001).

Despite the expected good behavior in practical applications, the package
Kronecker was not sufficiently efficient to deal with a reasonable number of
variables. Hence, a deeper revision of the original goals was needed. Firstly,
the reader should observe that the geometric degree of any input system
δ(F ) is generically equal to its worst case value (the Bézout number D :=∏n

i=1 deg(fi)). Secondly, the Bézout number is exponential in the number
of variables and so is its running time on average. Thus, Kronecker’s
solving can only be efficient for a few particular instances (when δ(F ) is
“small”). Up to now, we have not found a good class of natural problems
with “small” geometric degree δ(F ).

1.3 Universal Solving

The TERA experience and the results of the package Kronecker lead to
two central questions:

• Is the Bézout number D a barrier for the complexity of polynomial equa-
tion solvers?
• In case of a positive answer, explain the meaning of this barrier.

An attempt to answer these two questions was the notion of Universal
Algorithms and the results shown in Heintz, Matera, Pardo & Wachen-
chauzer (1998), Pardo (2000), and Castro, Giusti, Heintz, Matera & Pardo
(2003). Roughly speaking, a polynomial equation solver is universal if its
output contains sufficient information to answer all elimination questions
concerning the solution variety. All known algorithms (either syntactical
or semantical) in Elimination Theory are universal. Formalizing this idea
requires some additional terminology.

Another feature of semantic algorithms is that they can be adapted to
any particular data structure used to represent input polynomials. Data
structures of input polynomials are typically defined by a regular morphism
from some space of parameters to some space of input data. This can be
formalized as follows.
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Let Pd ⊆ C[X1, . . . , Xn] be the vector space of all complex polynomials
of degree at most d. For a list of degrees (d) := (d1, . . . , dn), let P(d) be
the Cartesian product

P(d) :=
n∏

i=1

Pdi
.

The vector space of dense input encoding P(d) represents the class of sys-
tems of multivariate polynomials F := [f1, . . . , fn] ∈ P(d). We denote by
V (F ) ⊆ Cn the set of its common zeros, if any. Namely,

V (F ) := {x ∈ Cn : fi(x) = 0, 1 ≤ i ≤ n}.

For every constructible subset W ⊆ Cm, a data structure for input systems
and parameters in W is a regular mapping

Φ : W ⊆ Cm −→ P(d).

The mapping Φ associates to every parameter α ∈W a system of multivari-
ate polynomial equations Fα ∈ P(d). The image set Im(Φ) is the particular
class of systems we want to solve and the varieties V (Fα) ⊆ Cn are the
solution varieties. The constructible set W is called the source space and
its dimension dim(W ) ≤ m is called the source dimension. In standard
applications, the dimension m of the source space is much smaller than the
dimension N of P(d).

A polynomial equation solver adapted to the unirational family Φ takes
as input a system Fα in Im(Φ) and outputs some encoding of the solution
variety V (Fα) ⊆ Cn. The encoding of V (Fα) is written as a point in some
affine space CM . Once again, the dimension M is usually much greater
than the source dimension.

For example, the semantic algorithm described in Section 1.2 associates
to every α ∈ W a Kronecker description of V (Fα). Namely, we represent
V (Fα) by the list of coefficients of all polynomials occurring in a Kronecker
description of V (Fα). This can be done in some affine space CM , where
M is a quantity polynomial in the number of variables and linear in some
quantity δ(Φ) given as the maximum of the geometric degrees of input
systems in Im(Φ). Namely,

δ(Φ) := {deg(V (Fα)) : α ∈W}.

Generically, δ(Φ) equals the Bézout number D :=
∏n

i=1 di and, hence, it
is exponential in the number of variables n. A similar phenomenon can
be observed using either Cayley–Chow encoding or Macaulay’s encoding of
equidimensional algebraic varieties.
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This yields the model described in Castro, Giusti, Heintz, Matera &
Pardo (2003) that we briefly sketch. In the sequel, a unirational family of
elimination problems is a regular morphism

ε : W ⊆ Cm −→ CM .

The space CM is called the target space, a point y ∈ Im ε ⊆ CM is
called a target point (also a semantical object), and the dimension M of
the target space is called the target dimension. In the previous notation,
for every α ∈W , ε(α) is the encoding of the solution variety V (Fα), where
Fα ∈ Im(Φ) ⊆ P(d).

Given a unirational family of elimination problems ε, a mathematical
question concerning target points y ∈ Im ε ⊆ CM is simply a transfor-
mation of the target space in a neighborhood of (Im ε, y). Namely, a
transformation is the germ of a mapping

θ : (CM , y) −→ (C�, q).

The space C� is called the space of answers, and its dimension 	 is called the
dimension of the space of answers. Usual mathematical questions concern
spaces of answers of small dimension (with respect to the target dimension).
For example, decisional questions are transformations of the semantical
object into some unidimensional space of answers, i.e., transformations of
the form

θ : (CM , y) −→ (C, q).

We claim that the goal of Elimination Theory is the design of algorithms
that answer questions concerning target points of unirational families of
polynomials.

As the target dimension is usually too big, efficient elimination proce-
dures evaluate an alternative mapping:

µ : W ⊆ Cm −→ Cs.

We call µ a black–box. It is usually evaluated by an algorithm whose par-
ticular form will not be discussed here.

A versal black–box associated with a unirational family of elimination
problems ε : W −→ CM is a mapping µ : W −→ Cs such that the following
property holds:
For every source point α ∈W and every question θ : (CM , ε(α)) −→ (C�, z)
there is a germ of a mapping ρ : (Cs, µ(α)) −→ (C�, z) such that the
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following diagram commutes:

(W,α) −→ε (Im ε, ε(α)) −→θ (C�, z)

µ ↘ ↗ ρ

(Im µ, µ(α))

For every source point α, the point µ(α) ∈ Cs is called the output encoding
of the target ε(α). The number s of coordinates of µ(α) is called the output
length.

Proposition 1.1 For every unirational family of elimination problems ε :
W −→ CM and a black–box µ : W −→ Cs, the following properties are
equivalent:

1. µ is a versal black–box associated with ε.
2. For every source point α ∈ W there is a mapping germ ρα : (Cs,

µ(α)) −→ (CM , ε(α)) such that the following diagram commutes.

(W,α) −→ε (Im ε, ε(α))

µ ↘ ↑ ρα

(Im µ, µ(α))

The germ ρα is called the interpolation procedure of the versal black–box µ

at α.

Let ε : W −→ CM be a unirational family of elimination problems and
let µ : W −→ Cs be some versal black–box associated with ε. We say that
µ is certified if there is a mapping

ϕ : Im ε −→ Im µ,

such that µ = ϕ ◦ ε.

Definition 1.2 Let ε : W −→ CM be a unirational family of elimination
problems. A universal black–box associated with ε is a versal and certified
black–box µ : W −→ Cs such that the following properties hold :

1. The black–box µ is holomorphic.
2. For every source point α ∈W the interpolation procedure ρα of µ is

the germ of a holomorphic mapping.
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Definition 1.3 A polynomial equation solver is called universal if for every
unirational family of elimination problems ε : W −→ CM the procedure
generates a universal black–box µ : W −→ Cs associated with ε.

Theorem 1.2 There is a sequence
(
εn : Wn ⊆ Cm(n) −→ CM(n)

)
n∈N

of
unirational families of polynomials such that for every n ∈ N the following
holds:

1. The input length is linear in n. Namely, m(n) = O(n).
2. The degree of the input space Wn and that of the regular mapping

εn are also linear in n.
3. There is an explicit description of the input space Wn of length linear

in n.
4. The target dimension M(n) is exponential in n.
5. For every n ∈ N and every universal black–box µn : Wn −→ Csn

associated with εn the output length sn is exponential in the source
dimension, i.e.,

sn ≥ 2n.

This technical statement can also be stated in the following terms.

Corollary 1.1 (Castro, Giusti, Heintz, Matera & Pardo (2003)) Every
universal polynomial equation solver requires exponential running time. In
particular, the procedure described in Section 1.2 above is essentially opti-
mal as a universal polynomial equation solver.

As shown in Castro, Giusti, Heintz, Matera & Pardo (2003), we can
always associate to every unirational family of elimination problems, a cer-
tified black–box whose output length is linear in the source dimension.
Namely, the smoothness condition on ρα is a necessary condition for The-
orem 1.2 to hold. However, nonsmooth exact interpolation procedures are
difficult to comprehend.

It is also possible to define the notion of a universal solver in a numerical
analysis context. For example, the algorithms implemented by Verschelde
and collaborators (cf. Verschelde (2000) and references therein) are univer-
sal polynomial solvers. A universal numerical analysis solver takes as input
a list of multivariate polynomial equations F ∈ P(d) and outputs approxi-
mations for all zeros ζ ∈ V (F ). Since the average number of zeros equals
the Bézout number D, it is immediate that universal numerical solvers also
require exponential running time.

Corollary 1.1 must not be understood as a negative result. It is asking for
a new generation of algorithms: Nonuniversal polynomial equation solvers.
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The output of a nonuniversal solver will contain only partial information
about the variety of solutions. This simple idea also leads to a long series
of new problems and questions. The obvious and first is nevertheless the
most difficult to answer: Which questions can be answered with the infor-
mation provided by a nonuniversal algorithm? Much more experience with
nonuniversal solvers is still required before dealing with this question.

An example of a symbolic, semantic and nonuniversal polynomial equa-
tion solver was given in San Mart́ın & Pardo (2004). However, the worst
case complexity of this algorithm is also exponential in the number of vari-
ables and, hence, intractable.

The search for nonuniversal solvers naturally leads to numerical analysis
polynomial system solvers.

1.4 Shub & Smale Approximate Zero Theory: Bézout 51
2

In the first half of the nineties, Shub and Smale introduced a seminal
conception of the foundations of numerical analysis. They focused on a
theory of numerical polynomial equation solvers in the series of papers
Shub & Smale (1993a, 1993b, 1993c, 1994, 1996). Other authors that also
took this approach are Blum, Cucker, Shub & Smale (1998), Dedieu (2001b,
2003), Kim (1988, 1989), Malajovich (1994), Malajovich & Rojas (2002),
Yakoubsohn (1995) and references therein.

Shub and Smale’s theory of approximate zeros provides an answer to the
barrier question stated in Section 1.3. The new results of this section are
taken from the still unpublished manuscript Beltrán & Pardo (2005).

As in Shub & Smale (1994), the input space is the space of systems of
multivariate homogeneous polynomials with dense encoding and fixed de-
gree list. Namely, for every positive integer d ∈ N, let Hd ⊆ C[X0, . . . , Xn]
be the vector space of all homogeneous polynomials of degree d. For a
list of degrees (d) := (d1, . . . , dn) ∈ Nn, let H(d) be the set of all sys-
tems F := [f1, . . . , fn] of homogeneous polynomials of respective degrees
deg(fi) = di, 1 ≤ i ≤ n. In other words, H(d) :=

∏n
i=1 Hdi

.
We denote by N + 1 the complex dimension of the vector space H(d).

Note that N + 1 is the input length for dense encoding of multivariate
polynomials. For every system F ∈ H(d), we also denote by V (F ) the
projective algebraic variety of its common zeros. Namely,

V (F ) := {x ∈ IPn(C) : fi(x) = 0, 1 ≤ i ≤ n}.

Note that with this notation V (F ) is always a nonempty projective alge-
braic variety.
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In Beltrán & Pardo (2005), the following statement is proven. It repre-
sents a positive answer to Problem 17 of Smale (2000).

Theorem 1.3 There is a bounded error probabilistic numerical analysis
procedure that solves most systems of multivariate polynomial equations
with running time that is polynomial in

n,N, d.

The probability that a system F ∈ H(d) is solved by this procedure is greater
than

1− 1
N

.

In this statement the term “solves” means the “algorithm outputs
nonuniversal information” about the variety of solutions, whereas the term
“most” means “with high probability of success”. The precise meaning of
this theorem requires some additional technical notions.

A nonuniversal numerical analysis solver takes as input a system F ∈
H(d) and outputs local information on some (mostly just one) of the zeros
ζ ∈ V (F ). The local information (close to a zero) we compute is the
information provided by an approximate zero z ∈ IPn(C) of F associated
with some zero ζ ∈ V (F ) (in the sense of Shub & Smale (1993b) or Shub
(1993)).

For every input system F ∈ H(d), let NF be the projective Newton op-
erator as introduced in Shub (1993). According to Shub & Smale (1993a),
an approximate zero z ∈ IPn(C) of a system F ∈ H(d) with associated zero
ζ ∈ V (F ) ⊆ IPn(C) is a projective point such that the sequence of iterates
(Nk

F (z))k∈N is well–defined and converges to the actual zero ζ ∈ V (F ) at
a speed which is doubly exponential in the number of iterations. In this
sense, the approximate zero z is rich in local information about the zero
ζ ∈ V (F ). In Castro, Hägele, Morais & Pardo (2001), the authors also ob-
served that approximate zeros with rational coordinates contain not only
local information about the associated zero, but also algebraic information.
However, we will not discuss these aspects here.

These basic notions stated, a nonuniversal numerical analysis solver is
an algorithm that has the following input/output structure:

Input: A system of homogeneous polynomial equations F ∈ H(d).

Output: An approximate zero z ∈ IPn(C) of F associated with some zero
ζ ∈ V (F ).
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Such kinds of algorithms are not conceived for solving all input systems
but a large subclass of them. In principle, singular systems are not intended
to be solved by our procedure: this requires further (and more delicate)
analysis.

Let Σ ⊆ H(d) be the class of systems F such that V (F ) contains a
singular zero. We call Σ the discriminant variety. These pages are mainly
concerned with procedures that solve systems without singular zeros (i.e.,
systems F ∈ H(d) \ Σ).

Our main algorithmic scheme is Newton’s Homotopic Deformation in
the projective space (as described in Shub & Smale (1996)): Given F,G ∈
H(d) \ Σ, we consider the “segment” of systems “between” F and G,

Γ := {Ft := (1− t)G + tF, t ∈ [0, 1]}.

If Γ ∩ Σ = ∅, there are nonintersecting and smooth curves of equations–
solutions associated with this segment:

Ci(Γ) := {(Ft, ζt) : ζt ∈ V (Ft), t ∈ [0, 1]}, 1 ≤ i ≤ D :=
n∏

i=1

di.

Then, Newton’s operator may be used to follow closely one of these curves
Ci(Γ) in the incidence variety. This procedure computes some approxi-
mate zero z1 associated with some zero of F (i.e., t = 1) starting at some
approximate zero z0 associated with G (i.e., from t = 0). The following def-
inition formalizes this strategy based on a Newton Homotopic Deformation
Technique.

Definition 1.4 A Newton’s Homotopic Deformation scheme (NHD for
short) with initial data (G, z0) ∈ H(d) × IPn(C) and resource function ϕ :
H(d)×R+ −→ R+ is an algorithmic scheme based on the following strategy:

Input: F ∈ H(d), ε ∈ R+.

Perform ϕ(F, ε) “homotopic steps” following the segment

(1− t)G + tF, t ∈ [0, 1],

starting at (G, z0), where z0 is an approximate zero of G associated
with some zero ζ0 ∈ V (G).

Output:

either failure, or
an approximate zero z1 ∈ IPn(C) of F .
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An algorithm following the NHD scheme is an algorithm that constructs
a polygonal P with ϕ(F, ε) vertices. The initial vertex of P is the point
(G, z0) and its final vertex is the point (F, z1) for some z1 ∈ IPn(C). The
output of the algorithm is the value z1 ∈ IPn(C). The polygonal is con-
structed by “homotopic steps” (path-following methods) that go from one
vertex to the next. Hence, ϕ(F, ε) is the number of homotopic steps per-
formed by the algorithm. Different subroutines have been designed to per-
form each one of these “homotopic steps”. One of them is the projec-
tive Newton operator as described in Shub & Smale (1993b), Shub (1993),
Malajovich (1994).

The positive real number ε is currently used both to control the number
of steps (through the function ϕ(F, ε)) and the probability of failure (i.e.,
the probability that a given input F ∈ H(d) is not solved in ϕ(F, ε) steps
with initial pair (G, z0)).

Initial pairs with optimal tradeoff between the number of steps and the
probability of failure are required. The following notion is an attempt to
fix what this means.

Definition 1.5 Let ε > 0 be a positive real number. We say that an initial
pair (G, z0) ∈ H(d) × IPn(C) is ε–efficient for the NHD scheme if there is
an algorithm based on the NHD scheme with initial pair (G, z0) such that
the following properties hold:

1. The resource function (i.e., the number of steps) ϕ(F, ε) is bounded
by a polynomial in the quantities ε−1, n,N, d, where d := max{di :
1 ≤ i ≤ n}.

2. The probability of “failure” (i.e., the probability that a system is not
solved) is at most ε.

Observe that a pair (G, z0) ∈ H(d) × IPn(C) may be ε–efficient for some
positive real number ε > 0 and not ε′–efficient for ε′ < ε.

Moreover, the main outcome in Shub & Smale (1994) proves that for
every positive real number ε > 0, there is at least one ε–efficient initial
pair (Gε, ζε) ∈ H(d) × IPn(C). This statement is an absolute breakthrough
regarding the efficiency of numerical analysis polynomial equation solving.
It leads to the following procedure based on the NHD scheme:

Input: F ∈ H(d), ε ∈ R+.

• Compute (Gε, ζε) (the ε–efficient initial pair whose existence is guaran-
teed by Shub & Smale (1994)).
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• Perform a polynomial (in ε−1, n,N, d) number of homotopic steps fol-
lowing the segment (1− t)G + tF , t ∈ [0, 1], starting at (Gε, ζε).

Output:
either failure, or
an approximate zero z ∈ IPn(C) of F .

The procedure seems to give an answer since it may compute approxi-
mate zeros for most systems of homogeneous polynomial equations. Here,
most means with probability greater than 1− ε.

However, the procedure has three main drawbacks. First of all, Shub
& Smale (1994) prove the existence of some ε−efficient initial pair, but
they give no hint as to how to compute such a pair (Gε, ζε). Note that
if there is no method of computing (Gε, ζε), then the previous scheme is
not a proper algorithm (one cannot “write” (Gε, ζε) and then one cannot
start to compute). Shub & Smale (1994) used the term “quasi–algorithm”
to explain the result they obtained, whereas Problem 17 in Smale (2000)
asks for a “uniform algorithm”. In a broad sense, this scheme is close to an
“oracle machine” where the initial pair (Gε, ζε) is given by some undefinable
oracle. Moreover, the lack of hints on ε–efficient initial pairs leads both to
“Shub & Smale’s Conjecture” (Shub & Smale (1994)) and to Smale’s 17th
problem.

A second drawback is the dependence of (Gε, ζε) on the value ε.
Thirdly, the reader should observe that the initial pair (Gε, ζε) must

be solved before we can perform any computation. Namely, ζε must be an
approximate zero of Gε. In fact, Shub & Smale (1994) proved the existence
of such (Gε, ζε) assuming that ζε is a true zero of Gε (i.e., ζε ∈ V (Gε)).
This means that we not only need to start at some approximate zero of Gε

but it seems that we need to start at a true and exact zero of this initial
system.

Thus, any algorithm based on this version of NHD requires some “a
priori” tasks not all of them simple:
First, one has to detect some system of equations Gε such that some of
its zeros ζε yields an ε−efficient initial pair (Gε, ζε). Second, one needs to
“solve” the system Gε in order to compute the “exact” solution ζε.

As “exact” solutions do not seem a good choice, we must proceed in the
opposite manner. We must start at some complex point ζε ∈ IPn(C), given
a priori. Then we must prove that there is a system Gε vanishing at ζε

such that (Gε, ζε) is an ε−efficient initial pair. The existence of such a kind
of system Gε for any given ζε ∈ IPn(C) easily follows from the arguments
in Shub & Smale (1994). But, once again, no hint on how to find Gε from
ζε seems to be known.
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In Beltrán & Pardo (2005) we exhibit a solution to these drawbacks. We
found a probabilistic approach and, hence, we can give an efficient uniform
(i.e., true) algorithm that solves most systems of multivariate polynomial
equations. This is achieved using the following notation.

Definition 1.6 A class G ⊆ H(d) × IPn(C) is called a correct test class
(also questor set) for efficient initial pairs if for every ε > 0 the probability
that a randomly chosen pair (G, ζ) ∈ G is ε–efficient is greater than

1− (nNd)O(1)ε,

where O(1) denotes some fixed constant independent of ε, d and n.

Note the analogy between these classes of efficient initial systems and
the classes of “correct test sequences” (also “questor sets”) for polynomial
zero tests (as in Heintz & Schnorr (1982), Krick & Pardo (1996) or Castro,
Giusti, Heintz, Matera & Pardo (2003)). The following is shown in Beltrán
& Pardo (2005).

Theorem 1.4 For every degree list (d) = (d1, . . . , dn) there is a questor set
G(d) for efficient initial pairs that solves most of the systems in H(d) in time
which depends polynomially on the input length N of the dense encoding of
multivariate polynomials.

The existence of a questor set for initial pairs G(d) ⊆ H(d) × IPn(C)
yields another variation (of a probabilistic nature) on the algorithms based
on NHD schemes. First of all, note that the class G(d) does not depend on
the positive real number ε > 0 under consideration. Thus, we can define
the following NHD scheme based on some fixed questor set G(d).

Input: F ∈ H(d), ε ∈ R+.

• Guess at random (G, ζ) ∈ G(d).
• Perform a polynomial (in ε−1, n,N, d) number of homotopic steps fol-

lowing the segment (1− t)G + tF , t ∈ [0, 1], starting at (G, ζ).

Output:
either failure, or
an approximate zero z ∈ IPn(C) of F .

Observe that the questor set G(d) is independent of the value ε under con-
sideration. However, the existence of such a questor set does not imply the
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existence of an algorithm. In fact, a simple existence statement as Theorem
1.4 will not be better than the main outcome in Shub & Smale (1994).

In Beltrán & Pardo (2005), we exhibit an algorithmically tractable subset
G(d) which is proven to be a questor set for efficient initial pairs. This rather
technical class can be defined as follows:

Let ∆ be the Kostlan matrix as defined in Shub & Smale (1993a). Using
this matrix, Shub & Smale (1993a) define a Hermitian product 〈·, ·〉∆ on
H(d) which is invariant under certain natural actions of the unitary group
Un+1 onH(d). We denote by ||·||∆ the norm onH(d) defined by 〈·, ·〉∆. This
Hermitian product 〈·, ·〉∆ also defines a complex Riemannian structure on
the complex projective space IP(H(d)). This complex Riemannian structure
on IP(H(d)) induces a volume form dν∆ on IP(H(d)) and hence a measure
on this manifold. The measure on IP(H(d)) also induces a probability on
this complex Riemannian manifold. Moreover, for every subset A ⊆ IPn(C)
the probability ν∆[A] induced by dν∆ agrees with the Gaussian measure of
its projecting cone Ã ⊆ H(d). In the sequel, volumes and probabilities in
H(d) and IP(H(d)) always refers to these probabilities and measures defined
by 〈·, ·〉∆.

Let us now fix a projective point e0 := (1 : 0 : · · · : 0) ∈ IPn(C). Let
L0 ⊆ H(d) be the class of systems of homogeneous polynomial equations
given by the property:
A system F := [	1, . . . , 	n] ∈ H(d) belongs to L0 if and only if for every i,
1 ≤ i ≤ n, there is a linear mapping λi : Cn −→ C such that the following
equality holds:

	i := Xdi−1
0 λi(X1, . . . , Xn).

Let V0 ⊆ H(d) be the class of all homogeneous systems F ∈ H(d) that
vanish at e0. Namely,

V0 := {F ∈ H(d) : e0 ∈ V (F )}.

Note that L0 is a vector subspace of V0.
Next, let L⊥

0 be the orthogonal complement of L0 in V0 with respect to
Kostlan’s metric 〈·, ·〉∆. Note that L⊥

0 is the class of all systems F ∈ H(d)

that vanishes at e0 and such that its derivative DF (e0) also vanishes at e0.
Namely, it is the class of all systems of polynomial equations of order at
least 2 at e0.

Let Y be the following convex affine set, obtained as the product of closed
balls:

Y := [0, 1]×B1(L⊥
0 )×B1(Mn×(n+1)(C)) ⊆ R× CN+1,

where B1(L⊥
0 ) is the closed ball of radius one in L⊥

0 with respect to the
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canonical Hermitian metric and B1(Mn×(n+1)(C)) is the closed ball of
radius one in the space of n× (n+1) complex matrices with respect to the
standard Frobenius norm. We assume Y is endowed with the product of
the respective Riemannian structures and the corresponding measures and
probabilities.

Let τ ∈ R be the real number given by

τ :=

√(
n2 + n

N

)
.

Now, let us fix any mapping φ : Mn×(n+1)(C) −→ Un+1 such that for
every matrix M ∈ Mn×(n+1)(C) of maximal rank, φ associates a unitary
matrix φ(M) ∈ Un+1 verifying Mφ(M)e0 = 0. Namely, φ(M) transforms
e0 into a vector in the kernel Ker(M) of M . Our statements below are
independent of the chosen mapping φ that satisfies this property.

Next, let us denote by e⊥0 the orthogonal complement of the affine point
(1, 0, . . . , 0) ∈ Cn+1 with respect to the standard Hermitian metric in Cn+1.
Note that we may identify e⊥0 with the tangent space Te0IPn(C) to the
complex manifold IPn(C) at e0 ∈ IPn(C).

For every matrix M ∈ Mn×(n+1)(C) of maximal rank, we may define a
linear isomorphism 	M := Mφ(M) : e⊥0 −→ Cn.

Let us define a mapping ψ0 : Mn×(n+1)(C) −→ L0 in the following
terms. For every matrix M ∈ Mn×(n+1)(C), we associate the system of
homogeneous polynomial equations ψ0(M) ∈ L0 given by the equality:

ψ0(M) := [Xd1−1
0 d

1/2
1 λ1(X1, . . . , Xn), . . . , Xdn −1

0 d1/2
n λn(X1, . . . , Xn)],

where 	M := [λ1, . . . , λn] : e⊥0 −→ Cn is the linear mapping defined by the
matrix Mφ(M).

Define a mapping G(d) : Y −→ V0 in the following terms. For every
(t, h,M) ∈ Y , let G(d)(t, h,M) ∈ V0 be the system of homogeneous poly-
nomial equations given by the identity:

G(d)(t, h,M) :=
(
1− τ 2t

1
n2+n

)1/2 ∆−1h

||h||2
+ τt

1
2n2+2n ψ0

(
M

||M ||F

)
∈ V0.

Finally, let G(d) be the class defined by the identity:

G(d) := Im(G(d))× {e0} ⊆ H(d) × IPn(C). (1.2)

Note that G(d) is included in the incidence variety and that all systems
in Im(G(d)) share a common zero e0. Hence initial pairs in (G, z) ∈ G(d)

always use the same exact zero z = e0. In particular, they are all solved
by construction.
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We assume that the set G(d) is endowed with the pull–back probabil-
ity distribution obtained from Y via G(d). Namely, in order to choose a
random point in G(d), we choose a random point y ∈ Y , and we compute
(G(d)(y), e0) ∈ G(d).

The following statement has been shown in Beltrán & Pardo (2005).

Theorem 1.5 (Main) With the above notation, the class G(d) defined by
identity (1.2) is a questor set for efficient initial pairs in H(d).

More precisely, for every positive real number ε > 0, the probability that
a randomly chosen data (G, e0) ∈ G(d) is ε–efficient is greater than

1− ε.

Additionally, for these ε–efficient pairs (G, e0) ∈ G(d), the probability that a
randomly chosen input F ∈ H(d) is solved by NHD with initial data (G, e0)
performing O(n5N2d4ε−2) steps is at least

1− ε.

As usual, the existence of questor sets immediately yields a probabilistic
algorithm. This is Theorem 1.3 above, which is an immediate consequence
of Theorem 1.5. The following corollary shows how this statement applies.

Corollary 1.2 There is a bounded error probability algorithm that solves
most homogeneous systems of cubic equations (namely inputs are in H(3))
in time of order

O(n13ε−2),

with probability greater than 1− ε.

Taking ε = 1
n4 , for instance, this probabilistic algorithm solves a cu-

bic homogeneous system in running time at most O(n21) with probability
greater than 1− 1

n4 .
However, randomly choosing a pair (G, e0) ∈ G(d) is not exactly what

a computer can perform. We need a discrete class of ε−efficient initial
systems. This is achieved by the following argument (that follows those in
Castro, San Mart́ın & Pardo (2002,2003)).

Observe that Y ⊆ R × CN+1 may be seen to be a real semi–algebraic
set under the identification R × CN+1 ≡ R2N+3. Let H ≥ 0 be a positive
integer number. Let Z2N+3 ⊆ R2N+3 be the lattice consisting of the integer
points in R2N+3. Let Y H be the set of points defined as follows:

Y H := Y ∩ Z2N+3

[
1
H

]
,
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where Z2N+3[ 1
H

] is the lattice given by the equality:

Z2N+3

[
1
H

]
:=

{ z

H
: z ∈ Z2N+3

}
.

Observe that (4N + 6)(log2 H + 1) is a bound for the number of binary
digits required to write any point y ∈ Y H in a computer.

For any positive real number H > 0, we denote by GH
(d) ⊆ G(d) the finite

set of points given by the equality:

GH
(d) := {(G(d)(y), e0) : y ∈ Y H}.

We consider GH
(d) endowed with the pull–back probability distribution

obtained from Y H via G(d). Namely, in order to choose a random point
(g, e0) ∈ GH

(d), we choose a random point (uniform distribution) y ∈ Y H and
we compute the point (G(d)(y), e0) ∈ G(d). Then, the following statement
also holds.

Theorem 1.6 (Beltrán & Pardo (2005)) There exists a universal con-
stant C > 0 such that for every two positive real numbers ε > 0,H > 0
satisfying

log2 H ≥ CnN3 log2 d + 2 log2 ε−1,

the following properties hold.

• The probability (uniform distribution) that a randomly chosen data
(G, e0) ∈ GH

(d) is ε–efficient is greater than

1− 2ε.

• For ε−efficient initial pairs (G, e0) ∈ GH
(d), the probability that a

randomly chosen input F ∈ H(d) is solved by NHD with initial data
(G, e0) performing O(n5N2d4ε−2) steps is at least

1− ε.

Theorem 1.5 and its consequences represent a small step forward in the
theory introduced by Shub and Smale. It simply shows the existence of
a true, although probabilistic, algorithm that computes partial informa-
tion about solution varieties for most homogeneous systems of polynomial
equations in time which depends polynomially on the input length.

However, things are not as optimistic as they appear. First of all,
the algorithm we propose here is probabilistic and, hence, “uniform” as
demanded in Smale (2000). Obviously, a deterministic version is also
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desirable. Nevertheless, we consider this a minor drawback that time and
some investment of scientific effort will probably overcome.

The second drawback is more important. The algorithm, its efficiency
and its probability of success depends upon the generic (dense) encoding of
input polynomials. Namely, it is based on the full space H(d) of input sys-
tems. This seems to be an overly mathematical working hypothesis. Note
that the aim of such kind of result is essentially that of explaining why com-
putational numerical analysis methods run efficiently in real life computing,
even when there is no well–founded reason proving their efficiency.

In real life computing, problems modelled by polynomial equations have
some structure and are a subset of the generic class of polynomials in dense
encoding. Namely, real life problems provide inputs that belong to some
particular subclasses of polynomial data (as unirational families of input
systems given by regular mappings Φ : W ⊆ Cm −→ H(d)).

Theorem 1.5 states that G(d) is a questor set of initial pairs for generic
input data. However, it does not mean that G(d) is also a questor set for
input systems F in a unirational family of data like Im(Φ). As we claimed
in Section 1.3, source dimension is usually much smaller than the dimension
N + 1 of the space of input systems. Hence, Im(Φ) is commonly a set of
measure zero and it may be unfortunately contained in the class of systems
for which G(d) G(d) does not apply. Hence the question is whether this
algorithmic scheme (or anything inspired by these ideas) can be adapted to
particular classes of input data.

In order to deal with this open question, we need to reconsider most of
the studies done by Shub and Smale on the generic case H(d), this time
applied to special subsets Im(Φ) of H(d).

Theorem 1.5 owes much of its strength to the good behavior of the prob-
ability distribution of a condition number µnorm in the full space of generic
inputs H(d). This is the main semantic invariant involved in the complexity
of numerical analysis polynomial equation solvers (as remarked in Shub &
Smale (1993b)).

Any answer to the above adaptability question requires a preliminary
study on the behavior of the probability distribution of the condition num-
ber for nonlinear systems when restricted to submanifolds, subvarieties and
particular subclasses of the generic space H(d).

In the next section we illustrate some of the main difficulties that may
arise in such a study. We deal with the adaptability question of a simpler
problem. We study the probability distribution of the condition number
associated with the class of singular matrices. It contains some of the main
results of Beltrán & Pardo (2004a, 2004b).
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1.5 The Distribution of the Condition Number of Singular
Complex Matrices

Condition numbers in linear algebra were introduced in Turing (1948).
They were also studied in Goldstine & von Neumann (1947) and Wilkinson
(1965). Variations of these condition numbers may be found in the liter-
ature of numerical linear algebra (cf. Demmel (1988), Golub & van Loan
(1996), Higham (2002), Trefethen & Bau (1997) and references therein).

A relevant breakthrough was the study of the probability distribution of
these condition numbers. The paper Smale (1985) and, mainly, Edelman
(1988, 1992) showed the exact values of the probability distribution of the
condition number of dense complex matrices.

From a computational point of view, these statements can be trans-
lated into the following terms. Let P be a numerical analysis procedure
whose space of input data is the space of arbitrary square complex matri-
ces Mn(C). Then, Edelman’s statements mean that the probability that a
randomly chosen dense matrix inMn(C) is a well–conditioned input for P
is high.

Sometimes, however, we deal with procedures P whose input space is a
proper subset C ⊆ Mn(C). Additionally such procedures with particular
data lead to particular condition numbers κC adapted both for the proce-
dure P and the input space C. Edelman’s and Smale’s results do not apply
with these constraints. In Beltrán & Pardo (2004a, 2004b) we introduced
a new technique to study the probability distribution of condition numbers
κC . Namely, we introduce a technique to exhibit upper bound estimates
for the quantity

vol[{A ∈ C : κC(A) > ε−1}]
vol[C] , (1.3)

where ε > 0 is a positive real number, and vol[·] is some suitable measure
on the space C of acceptable inputs for P.

As an example of how our technique applies, let C := Σn−1 ⊆Mn(C) be
the class of all singular complex matrices. In Kahan (2000) and Stewart
& Sun (1990), a condition number for singular matrices A ∈ C is consid-
ered. This condition number measures the precision required to perform
kernel computations. For every singular matrix A ∈ Σn−1 of corank 1, the
condition number κn−1

D (A) ∈ R is defined by the identity

κn−1
D (A) := ‖A‖F ‖A†‖2,

where ‖A‖F is the Frobenius norm of the matrix A, A† is the Moore–



28 C. Beltrán and L. M. Pardo

Penrose pseudo–inverse of A and ‖A†‖2 is the norm of A† as a linear
operator.

As Σn−1 is a complex homogeneous hypersurface inMn(C) (i.e., a cone
of complex codimension 1), it is endowed with a natural volume vol in-
duced by the 2(n2 − 1)−dimensional Hausdorff measure of its intersection
with the unit disk. In Beltrán & Pardo (2004b), we prove the following
statement.

Theorem 1.7 With the same notation and assumptions as above, the fol-
lowing inequality holds:

vol[A ∈ Σn−1 : κn−1
D (A) > ε−1]

vol[Σn−1]
≤ 18n20ε6,

This statement is an (almost) immediate consequences of a wider class
of results that we state below.

First of all, most condition numbers are by nature projective functions.
For example, the classical condition number κ of numerical linear algebra is
naturally defined as a function on the complex projective space IP(Mn(C))
defined by the complex vector space Mn(C). Namely, we may see κ as a
function

κ : IP(Mn(C)) −→ R+ ∪∞.

Secondly, statements like the Schmidt–Mirsky–Eckart–Young Theorem (cf.
Schmidt (1907), Eckart & Young (1936), Mirsky (1963)) imply that Smale’s
and Edelman’s estimates are, in fact, estimates of the volume of a tube
about a concrete projective algebraic variety in IP(Mn(C)).

In Beltrán & Pardo (2004b), we prove a general upper bound for the
volume of a tube about any (possibly singular) complex projective algebraic
variety (see Theorem 1.8 below).

Estimates on volumes of tubes is a classic topic that began with Weyl’s
Tube Formula for tubes in the affine space (cf. Weyl (1939)). Formulae
for the volumes of some tubes about analytic submanifolds of complex
projective spaces are due to Gray (2004) and references therein. However,
Gray’s results do not apply even in Smale’s and Edelman’s case. Nor do
they apply to particular classes C, as above. Firstly, Gray’s statements
are only valid for smooth submanifolds and not for singular varieties (as,
for instance, Σn−1). Secondly, Gray’s theorems are only valid for tubes of
small enough radius (depending on intrinsic features of the manifold under
consideration) which may become dramatically small in the presence of
singularities. These two drawbacks motivated us to search for a general
statement that may be stated as follows.
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Let dνn be the volume form associated with the complex Riemannian
structure of IPn(C). Let V ⊆ IPn(C) be any subset of the complex pro-
jective space and let ε > 0 be a positive real number. We define the tube
of radius ε about V in IPn(C) as the subset Vε ⊆ IPn(C) given by the
identity:

Vε := {x ∈ IPn(C) : dIP (x, V ) < ε},

where dIP (x, y) := sin dR(x, y) and dR : IPn(C)2 −→ R is the Fubini–Study
distance.

Theorem 1.8 Let V ⊆ IPn(C) be a (possibly singular) equidimensional
complex algebraic variety of (complex) codimension r in IPn(C). Let 0 <

ε ≤ 1 be a positive real number. Then, the following inequality holds

νn[Vε]
νn[IPn(C)]

≤ 2 deg(V )
(e n ε

r

)2r

,

where deg(V ) is the degree of V .

This theorem can be applied to Edelman’s conditions to obtain the esti-
mate:

vol[{A ∈Mn(C) : κD(A) > ε−1}]
vol[Mn(C)]

≤ 2e2n5ε2,

where κD(A) := ‖A‖F ‖A−1‖2, and vol is the standard Gaussian measure
in Cn2

. We also prove that the constants on the right–hand side of the
inequality in Theorem 1.8 are essentially optimal.

The reader will observe that our bound is less sharp than Edelman’s
or Smale’s bounds, although it is a particular instance of a more general
statement.

Next, observe that neither Smale’s nor Edelman’s results nor Theorem
1.8 exhibit upper bounds on the probability distribution described in equa-
tion (1.3). In particular, they do not apply to prove Theorem 1.7. In order
to deal with this kind of estimate, we need an upper bound for the volume
of the intersection of an extrinsic tube with a proper subvariety. This is our
main result from Beltrán & Pardo (2004b) and is contained in the following
statement.

Theorem 1.9 Let V, V ′ ⊆ IPn(C) be two projective equidimensional alge-
braic varieties of respective dimensions m > m′ ≥ 1. Let 0 < ε ≤ 1 be
a positive real number. With the same notation as in Theorem 1.8, the



30 C. Beltrán and L. M. Pardo

following inequality holds:

νm[V ′
ε ∩ V ]

νm[V ]
≤ cdeg(V ′)n

(
n

m′

)2 [
e

n−m′

m−m′ ε

]2(m−m′)

,

where c ≤ 4e1/3π, νm is the 2m−dimensional natural measure in the alge-
braic variety V , and deg(V ′) is the degree of V ′.

Now, observe that the projective point defined by a corank 1 matrix
A ∈ Σn−1 ⊆ IP(Mn(C)) satisfies:

κn−1
d (A) :=

1
dIP (A,Σn−2)

,

where Σn−2 ⊆ IP(Mn(C)) is the projective algebraic variety of all complex
matrices of corank at least 2, dIP (A,Σn−2) := sin dR(A,Σn−2), and dR is
the Fubini–Study distance in the complex projective space IP(Mn(C)).

Hence, Theorem 1.7 becomes an immediate consequence of Theorem 1.9.
In Beltrán & Pardo (2004b) other examples of applications of Theorem 1.9
are shown, including the stratification by corank of the space of complex
matrices Mn(C) and the corresponding condition number.

This is just an example of how research on the adaptability question
(discussed in Section 1.4) can be initiated. It is, however, far from being an
appropriate treatment for the adaptability question in either linear algebra
or in the nonlinear case. Future advances in this direction are required.
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T. Krick, L. M. Pardo and M. Sombra (2001), ‘Sharp estimates for the Arithmetic
Nullstellensatz’, Duke Math. Journal 109, 521–598.
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Abstract

Given a multivariate real (or complex) polynomial p and a domain D, we
would like to decide whether an algorithm exists to evaluate p(x) accurately
for all x ∈ D using rounded real (or complex) arithmetic. Here “accurately”
means with relative error less than 1, i.e., with some correct leading digits.
The answer depends on the model of rounded arithmetic: We assume that
for any arithmetic operator op(a, b), for example a+ b or a · b, its computed
value is op(a, b) · (1 + δ), where |δ| is bounded by some constant ε where
0 < ε � 1, but δ is otherwise arbitrary. This model is the traditional one
used to analyze the accuracy of floating point algorithms.

Our ultimate goal is to establish a decision procedure that, for any p

and D, either exhibits an accurate algorithm or proves that none exists. In
contrast to the case where numbers are stored and manipulated as finite bit
strings (e.g., as floating point numbers or rational numbers) we show that
some polynomials p are impossible to evaluate accurately. The existence
of an accurate algorithm will depend not just on p and D, but on which
arithmetic operators are available (perhaps beyond +, −, and ·), which
constants are available to the algorithm (integers, algebraic numbers, ...),

36
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and whether branching is permitted in the algorithm. For floating point
computation, our model can be used to identify which accurate operators
beyond +, − and · (e.g., dot products, 3x3 determinants, ...) are necessary
to evaluate a particular p(x).

Toward this goal, we present necessary conditions on p for it to be accu-
rately evaluable on open real or complex domains D. We also give sufficient
conditions, and describe progress toward a complete decision procedure.
We do present a complete decision procedure for homogeneous polynomi-
als p with integer coefficients, D = Cn, and using only the arithmetic
operations +, − and ·.

2.1 Introduction

Let x = (x1, . . . , xn) be a vector of real (or complex) numbers, let p(x)
denote a multivariate polynomial, and let D be a subset of Rn (or Cn).
We would ideally like to evaluate p(x) accurately for all x ∈ D, despite
any rounding errors in arithmetic operations. The nature of the problem
depends on how we measure accuracy, what kinds of rounding errors we
consider, the class of polynomials p(x), the domain D, and what oper-
ations and constants our evaluation algorithms may use. Depending on
these choices, an accurate algorithm for evaluating p(x) may or may not
exist. Our ultimate goal is a decision procedure that will either exhibit an
algorithm that evaluates p(x) accurately for all x ∈ D, or else exhibit a
proof that no such algorithm exists.

By accuracy , we mean that we compute an approximation pcomp(x) to
p(x) that has small relative error: |p(x) − pcomp(x)| ≤ η|p(x)| for some
desired 0 < η < 1. In particular, η < 1 implies that p(x) = 0 if and only if
pcomp(x) = 0. This requirement that p and pcomp define the same variety
will be crucial in our development. We justify this definition of accuracy
in more detail in Section 2.

Our motivation for this work is two-fold. First, it is common for nu-
merical analysts to seek accurate formulas for particularly important or
common expressions. For example, in computational geometry and mesh
generation, certain geometric predicates like “Is point x inside, on or out-
side circle C?” are expressed as multivariate polynomials p(·) whose signs
determine the answer; the correctness of the algorithms depends critically
on the correctness of the sign, which is in turn guaranteed by having a
relative error less than 1 in the value of p(·) [Shewchuk (1997)]. We would
like to automate the process of finding such formulas.

The second motivation is based on recent work of Koev and one of
the authors [Demmel and Koev (2004a)] which identified several classes of
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structured matrices (e.g., Vandermonde, Cauchy, totally positive, certain
discretized elliptic partial differential equations, ...) for which algorithms
exist to accurately perform some (or all) computations from linear algebra:
determinants, inversion, Gaussian elimination, computing singular values,
computing eigenvalues, and so on. The proliferation of these classes of
structured matrices led us to ask what common algebraic structure these
matrix classes possess that made these accurate algorithms possible. This
paper gives a partial answer to this question; see Section 2.6.

Now we consider our model of rounded arithmetic. Let op(·) denote a
basic arithmetic operation, for example op(x, y) = x + y or op(x, y, z) =
x+y ·z. Then we assume that the rounded value of op(·), which we denote
rnd(op(·)), satisfies

rnd(op(·)) = op(·)(1 + δ) (2.1)

where we call δ the rounding error . We assume only that |δ| is tiny, |δ| ≤ ε,
where 0 < ε < 1 and typically ε � 1; otherwise δ is an arbitrary real
(or complex) number. The constant ε is called the machine precision, by
analogy to floating point computation, since this model is the traditional
one used to analyze the accuracy of floating point algorithms [Higham
(2002), Wilkinson (1963)].

To illustrate the obstacles to accurate evaluation that this model poses,
consider evaluating p(x) = x1 + x2 + x3 in the most straightforward way:
add (and round) x1 and x2, and then add (and round) x3. If we let δ1 be
the first rounding error and δ2 be the second rounding error, we get the
computed value pcomp(x) = ((x1 + x2)(1 + δ1) + x3)(1 + δ2). To see that
this algorithm is not accurate, simply choose x1 = x2 = 1 and x3 = −2
(so p(x) = 0) and δ1 �= 0. Then pcomp(1, 1,−2) = 2δ1(1 + δ2) �= 0, so the
relative error is infinite. Indeed, it can be shown that there is an open set
of x and of (δ1, δ2) where the relative error is large, so that this loss of
accuracy occurs on a “large” set. We will see that unless x1 + x2 + x3 is
itself a basic arithmetic operation, or unless the variety {x1 +x2 +x3 = 0}
is otherwise constructible from varieties derived from basic operations as
described in Theorem 2.9, then no algorithm exists to evaluate x1 +x2 +x3

accurately for all arguments.
In contrast, if we were to assume that the xi and coefficients of p were

given as exact rational numbers (e.g., as floating point numbers), then
by performing integer arithmetic with sufficiently large integers it would
clearly be a straightforward matter to evaluate any p(x) as an exact ratio-
nal number. (One could also use floating point arithmetic to accomplish
this; see Sections 2.2.3 and 2.2.8.) In other words, accurate evaluation is
always possible, and the only question is cost. Our model addresses this
by identifying which composite operations have to be provided with high
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precision in order to evaluate p(x) accurately. For further discussion of the
challenge of evaluating a simple polynomial like x1 + x2 + x3 accurately,
see Section 2.2.8.

We give some examples to illustrate our results. Consider the family of
homogeneous polynomials

Mjk(x) = j · x6
3 + x2

1 · x2
2 · (j · x2

1 + j · x2
2 − k · x2

3)

where j and k are positive integers, D = Rn, and we allow only addi-
tion, subtraction and multiplication of two arguments as basic arithmetic
operations, along with comparisons and branching.

• When k/j < 3, Mjk(x) is positive definite, i.e., zero only at the origin
and positive elsewhere. This will mean that Mjk(x) is easy to evaluate
accurately using a simple method discussed in Section 2.3.
• When k/j > 3, then we will show that Mjk(x) cannot be evaluated

accurately by any algorithm using only addition, subtraction and mul-
tiplication of two arguments. This will follow from a simple necessary
condition on the real variety VR(Mjk), the set of real x where Mjk(x) = 0,
see Theorem 2.3. This theorem requires the real variety VR(p) (or the
complex variety VC(p)) to lie in a certain explicitly given finite set of
varieties called allowable varieties in order to be able to evaluate p(x)
accurately in real arithmetic (or in complex arithmetic, resp.).
• When k/j = 3, i.e., on the boundary between the above two cases,

Mjk(x) is a multiple of the Motzkin polynomial [Reznick (2000)]. Its
real variety VR(Mjk) = {x : |x1| = |x2| = |x3|} satisfies the necessary
condition of Theorem 2.3, and the simplest accurate algorithm to evalu-
ate it that we know is shown (in part) below:

if |x1 − x3| ≤ |x1 + x3| ∧ |x2 − x3| ≤ |x2 + x3| then

p = x4
3 · [4((x1 − x3)2 + (x2 − x3)2 + (x1 − x3)(x2 − x3))]

+x3
3 · [2(2(x1 − x3)3 + 5(x2 − x3)(x1 − x3)2

+ 5(x2 − x3)2(x1 − x3) + 2(x2 − x3)3)]

+x2
3 · [(x1 − x3)4 + 8(x2 − x3)(x1 − x3)3

+ 9(x2 − x3)2(x1 − x3)2

+ 8(x2 − x3)3(x1 − x3) + (x2 − x3)4]

+x3 · [2(x2 − x3)(x1 − x3)((x1 − x3)3

+ 2(x2 − x3)(x1 − x3)2

+ 2(x2 − x3)2(x1 − x3) + (x2 − x3)3)]

+ (x2 − x3)2(x1 − x3)2((x1 − x3)2 + (x2 − x3)2)

p = j · p
else ... 7 more analogous cases.
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In general, for a Motzkin polynomial in n real variables (n = 3 above),
the algorithm has 2n separate cases. Just n tests and branches are needed
to choose the correct case for any input x, so that the cost of running
the algorithm is still just a polynomial function of n for any particular
x.

In contrast to the real case, when D = Cn then Theorem 2.3 will show
that Mjk(x) is not accurately evaluable using only addition, subtraction
and multiplication.

If we still want to evaluate Mjk(x) accurately in one of the cases where
addition, subtraction and multiplication alone do not suffice, it is natural to
ask which composite or “black-box” operations we would need to implement
accurately to do so. Section 2.5 addresses this question.

The necessary condition for accurate evaluability of p(x) in Theorem 2.3
depends only on the variety of p(x). The next example shows that the
variety alone is not enough to determine accurate evaluability, at least in
the real case. Consider the two irreducible, homogeneous, degree 2d, real
polynomials

pi(x) =
(
x2d

1 + x2d
2

)
+
(
x2

1 + x2
2

)
(qi(x3, . . . , xn))2 for i = 1, 2 (2.2)

where qi(·) is a homogeneous polynomial of degree d − 1. Both p1(x) and
p2(x) have the same real variety VR(p1) = VR(p2) = {x : x1 = x2 = 0},
which is allowable, i.e., satisfies the necessary condition for accurate evalua-
bility in Theorem 2.3. However, near x1 = x2 = 0, pi(x) is “dominated” by
(x2

1 +x2
2)(qi(x3, . . . , xn))2, so accurate evaluability of pi(x) in turn depends

on accurate evaluability of qi(x3, . . . , xn). Since q1(·) may be accurately
evaluable while q2(·) is not, we see that VR(pi) alone cannot determine
whether pi(x) is accurately evaluable. Applying the same principle to qi(·),
we see that any decision procedure must be recursive, expanding pi(x) near
the components of its variety and so on. We show current progress toward a
decision procedure in Section 2.4.3. In particular, Theorem 2.7 shows that,
at least for algorithms without branching, being able to compute dominant
terms of p (suitably defined) accurately on Rn is a necessary condition for
computing p accurately on Rn. Furthermore, Theorem 2.8 shows that accu-
rate evaluability of the dominant terms, along with branching, is sufficient
to evaluate p accurately.

In contrast to the real case, Theorem 2.5 shows that for the complex case,
with D = Cn, and using only addition, subtraction and multiplication of
two arguments, a homogeneous polynomial p(x) with integer coefficients
is accurately evaluable if and only if it satisfies the necessary condition of
Theorem 2.3. More concretely, p(x) is accurately evaluable for all x ∈ Cn
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if and only if p(x) can be completely factored into a product of factors of
the form xi, xi + xj and xi − xj .

The results described so far from Section 2.4 consider only addition, sub-
traction, multiplication and (exact) negation (which we call classical arith-
metic). Section 2.5 considers the same questions when accurate black-box
operations beyond addition, subtraction and multiplication are permitted,
such as fused-multiply-add [Montoye, Hokenek, and Runyon (1990)], or
indeed any collection of polynomials at all (e.g., dot products, 3x3 deter-
minants, ...). The necessary condition on the variety of p from Theorem 2.3
is generalized to black-boxes in Theorem 2.9, and the sufficient conditions
Theorem 2.5 in the complex case are generalized in Theorems 2.12 and 2.13.

The rest of this paper is organized as follows. Section 2.2 discusses fur-
ther details of our algorithmic model, explains why it is a useful model
of floating point computation, and otherwise justifies the choices we have
made in this paper. Section 2.3 discusses the evaluation of positive poly-
nomials. Section 2.4 discusses necessary conditions (for real and complex
data) and sufficient conditions (for complex data) for accurate evaluabil-
ity, when using only classical arithmetic. Section 2.4.3 describes progress
toward devising a decision procedure for accurate evaluability in the real
case using classical arithmetic. Section 2.5 extends Section 2.4’s necessary
conditions to arbitrary black-box arithmetic operations, and gives suffi-
cient conditions in the complex case. Section 2.6 describes implications for
accurate linear algebra on structured matrices.

2.2 Models of Algorithms and Related Work

Now we state more formally our decision question. We write the output
of our algorithm as pcomp(x, δ), where δ = (δ1, δ2, . . . δk) is the vector of
rounding errors made during the algorithm.

Definition 2.1 We say that pcomp(x, δ) is an accurate algorithm for the
evaluation of p(x) for x ∈ D if

∀ 0 < η < 1 ... for any η = desired relative error
∃ 0 < ε < 1 ... there is an ε = machine precision
∀ x ∈ D ... so that for all x in the domain
∀ |δi| ≤ ε ... and for all rounding errors bounded by ε

|pcomp(x, δ)− p(x)| ≤ η · |p(x)| ... the relative error
is at most η.

Our ultimate goal is a decision procedure (a “compiler”) that takes p(·)
and D as input, and either produces an accurate algorithm pcomp (including
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how to choose the machine precision ε given the desired relative error η)
or exhibits a proof that none exists.

To be more precise, we must say what our set of possible algorithms
includes. The above decision question is apparently not Tarski-decidable
[Renegar (1992), Tarski (1951)] despite its appearance, because we see no
way to express “there exists an algorithm” in that format.

The basic decisions about algorithms that we make are as follows, with
details given in the indicated sections:

Sec. 2.2.1: We insist that the inputs x are given exactly, rather than
approximately.

Sec. 2.2.2: We insist that the algorithm compute the exact value of p(x)
in finitely many steps when all rounding errors δ = 0. In par-
ticular, we exclude iterative algorithms which might produce an
approximate value of p(x) even when δ = 0.

Sec. 2.2.3: We describe the basic arithmetic operations we consider, be-
yond addition, subtraction and multiplication. We also describe
the constants available to our algorithms.

Sec. 2.2.4: We consider algorithms both with and without comparisons
and branching, since this choice may change the set of polynomials
that we can accurately evaluate.

Sec. 2.2.5: If the computed value of an operation depends only the val-
ues of its operands, i.e., if the same operands x and y of op(x, y)
always yield the same δ in rnd(op(x, y)) = op(x, y) · (1 + δ), then
we call our model deterministic, else it is nondeterministic. We
show that comparisons and branching let a nondeterministic ma-
chine simulate a deterministic one, and subsequently restrict our
investigation to the easier nondeterministic model.

Sec. 2.2.6: What domains of evaluation D do we consider? In principle,
any semialgebraic set D is a possibility, but for simplicity we mostly
consider open D, especially D = Rn or D = Cn. We point out
issues in extending results to other D.

Finally, Section 2.2.7 summarizes the axioms our model satisfies, and
Section 2.2.8 compares our model to other models of arithmetic, and ex-
plains the advantages of our model.

2.2.1 Exact or Rounded Inputs

We must decide whether we assume that the arguments are given exactly
[Blum, Cucker, Shub, and Smale (1996b), Cucker and Grigoriev (1999),
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Renegar (1992), Tarski (1951)] or are known only approximately [Cucker
and Smale (1999), Edelat and Sünderhauf (1998), Ko (1991), Pour-El and
Richards (1989)]. Not knowing the input x exactly means that at best
(i.e., in the absence of any further error) we could only hope to compute
the exact value of p(x̂) for some x̂ ≈ x, an algorithmic property known as
backward stability [Demmel (1997), Higham (2002)]. Since we insist that
zero outputs be computed exactly in order to have bounded relative error,
this means there is no way to guarantee that p(x̂) = 0 when p(x) = 0, for
nonconstant p. This is true even for simple addition x1 + x2. So we insist
on exact inputs in our model.

2.2.2 Finite Convergence

Do we consider algorithms that take a bounded amount of time for all
inputs x ∈ D, and return pcomp(x, 0) = p(x), i.e., the exact answer when
all rounding errors are zero? Or do we consider possibly iterative algorithms
that might take arbitrarily long on some inputs to produce an adequately
accurate answer? We consider only the former, because (1) it seems natural
to use a finite algorithm to evaluate a finite object like a polynomial, (2) we
have seen no situations where an iterative algorithm offers any advantage
to obtaining guaranteed relative accuracy and (3) this lets us write any
algorithm as a piecewise polynomial function and so use tools from algebraic
geometry.

2.2.3 Basic Arithmetic Operations and Constants

What are the basic arithmetic operations? For most of the paper we
consider addition, subtraction and multiplication of two arguments, since
this is necessary and sufficient for polynomial evaluation in the absence
of rounding error. Furthermore, we consider negation as a basic opera-
tion that is always exact (since this mimics all implementations of rounded
arithmetic). Sometimes we will also use (rounded) multiplication by a con-
stant op(x) = c · x. We also show how to extend our results to include
additional basic arithmetic operations like op(x, y, z) = x + y · z. The
motivations for considering such additional “black-box” operations are as
follows:

1. By considering operations like x + c, x − c and c · x for any c in
a set C of constants, we may investigate how the the choice of C

affects accurate evaluability. For example, if C includes the roots
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of a polynomial like p(x) = x2 − 2, then we can accurately evaluate
p(x) with the algorithm (x −

√
2) · (x +

√
2), but otherwise it may

be impossible. We note that having C include all algebraic numbers
would in principle let us evaluate any univariate polynomial p(x)
accurately by using its factored form p(x) = c

∏d
i=1(x− ri).

In the complex case, it is natural to consider multiplication by√
−1 as an exact operation, since it only involves “swapping” and

possibly negating the real and imaginary parts. We can accommo-
date this by introducing operations like x+

√
−1 ·y and x−

√
−1 ·y.

The necessary conditions in Theorem 2.9 and sufficient conditions
in Theorems 2.12 and 2.13 do not depend on how one chooses an
operation x − ri from a possibly infinite set, just whether that op-
eration exists in the set. On the other hand, a decision procedure
must effectively choose that operation, so our decision procedures
will restrict themselves to enumerable (typically finite) sets of pos-
sible operations.1

2. Many computers now supply operations like x+y·z in hardware with
the accuracy we demand (the fused-multiply-add instruction [Mon-
toye, Hokenek, and Runyon (1990)]). It is natural to ask how this
operation extends the class of polynomials that we can accurately
evaluate.

3. It is natural to build a library (in software or perhaps even hardware)
containing several such accurate operations, and ask how much this
extends the class of polynomials that can be evaluated accurately.
This approach is taken in computational geometry, where the li-
brary of accurate operations is chosen to implement certain geo-
metric predicates precisely (e.g., “is point x inside, outside or on
circle C?” written as a polynomial whose sign determines the an-
swer). These precise geometric predicates are critical to performing
reliable mesh generation [Shewchuk (1997)].

4. A common technique for extending floating point precision is to
simulate and manipulate extra precision numbers by representing a
high precision number y as a sum y =

∑k
i=1 yi of numbers satisfying

|yi| � |yi+1|, the idea being that each yi represents (nearly) disjoint
parts of the binary expansion of y (see Bailey (1993), Bailey (1995),
Dekker (1971), Demmel and Hida (2003), Khachiyan (1984), Møller
(1965), Pichat (1972), Priest (1991)) and the references therein; sim-
ilar techniques were used by Gill as early as 1951). This technique
can be modeled by the correct choice of black-box operations as we

1 We could in principle deal with the set of all instructions x − r for r an arbitrary
algebraic number, because the algebraic numbers are enumerable.
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now illustrate. Suppose we include the enumerable set of black-box
operations

∑n
i=1 pi, where n is any finite number, and each pi is

the product of 1 to d arguments. In other words, we include the
accurate evaluation of arbitrary multivariate polynomials in Z[x] of
degree at most d among our black-box operations. Then the follow-
ing sequence of operations produces as accurate an approximation
of any such polynomial

n∑
i=1

pi = y1 + y2 + · · ·+ yk

as desired:

y1 = rnd

(
n∑

i=1

pi

)
= (1 + δ1)

(
n∑

i=1

pi

)

y2 = rnd

(
n∑

i=1

pi − y1

)
= (1 + δ2)

(
n∑

i=1

pi − y1

)
· · ·

yk = rnd

 n∑
i=1

pi −
k−1∑
j=1

yj

 = (1 + δk)

 n∑
i=1

pi −
k−1∑
j=1

yj


Induction shows that

k∑
j=1

yj =

1− (−1)k

 k∏
j=1

δj

 ·( n∑
i=1

pi

)

so that y =
∑k

j=1 yj approximates the desired quantity with rela-
tive error at most εk. Despite this apparent power, our necessary
conditions in Theorem 2.9 and Section 2.6.1 will still show limits
on what can be evaluated accurately. For example, no irreducible
polynomial of degree ≥ 3 can be accurately evaluable over Cn if only
dot products (degree d = 2) are available.

5. Another standard technique for extending floating point precision is
to split a floating point number x with b bits in its fraction into the
exact sum x = xhi + xlo, where xhi and xlo each have only b/2 bits
in their fractions. Then products like

x ·y = (xhi +xlo) · (yhi +ylo) = xhi ·yhi +xhi ·ylo +xlo ·yhi +xlo ·ylo

can be represented exactly as a sum of 4 floating point numbers,
since each product like xhi · yhi has at most b bits in its fraction
and so can be computed without error. Arbitrary products may be
computed accurately by applying this technique repeatedly, which
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is the basis of some extra-precise software floating point libraries
like Shewchuk (1997). The proof of accuracy of the algorithm for
splitting x = xhi + xlo is intrinsically discrete, and depends on a
sequence of classical operations some of which can be proven to
be free of error [Shewchuk (1997), Thm 17], and similarly for the
exactness of xhi · yhi. Therefore this exact multiplication operation
cannot be built from simpler, inexact operations in our classical
model. But we may still model this approach as follows: We imagine
an exact multiplication operation x · y, and note that all we can do
with it is feed it into the inputs of other operations. This means that
from the operation rnd(z +w) we also get rnd(x ·y +w), rnd(x ·y +
r · s), rnd(x · y · z +w), and so on. In other words, we take the other
operations in our model and from each create an enumerable set of
other black-boxes, to which we can apply our necessary and sufficient
conditions.

2.2.4 Comparisons and Branching

Are we permitted to do comparisons and then branch based on their re-
sults? Are comparisons exact , i.e., are the computed values of x > y,
x = y and x < y (true or false) always correct for real x and y? (For
complex x and y we consider only the comparison x = y.) We consider
algorithms both without comparisons (in which case pcomp(x, δ) is simply
a polynomial), and with exact comparisons and branching (in which case
pcomp(x, δ) is a piecewise polynomial, on semialgebraic sets determined by
inequalities among other polynomials in x and δ). We conjecture that using
comparisons and branching strictly enlarges the set of polynomials that we
can evaluate accurately.

We note that by comparing x − ri to zero for selected constants ri, we
could extract part of the bit representation of x. Since we are limiting
ourselves to a finite number of operations, we could at most approximate
x this way, and as stated in Section 2.2.1, this means we could not exploit
this to get high relative accuracy near p(x) = 0. We note that the model of
arithmetic in Cucker and Smale (1999) excludes real→integer conversion
instructions.

2.2.5 Nondeterminism

As currently described, our model is nondeterministic, e.g., the rounded
result of 1 + 1 is not necessarily identical if it is performed more than
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once. This is certainly different behavior than the deterministic comput-
ers whose behavior we are modeling. However, it turns out that this is
not a limitation, because we can always simulate a deterministic machine
with a nondeterministic one using comparisons and branching. The idea
is simple: The first addition instruction (say) records its input arguments
and computed sum in a list. Every subsequent addition instruction com-
pares its arguments to the ones in the list (which it can do exactly), and
either just uses the precomputed sum if it finds them, or else does the ad-
dition and appends the results to the list. In other words, the existence
(or nonexistence) of an accurate algorithm in a model with comparisons
and branching does not depend on whether the machine is determinis-
tic. So for simplicity, we will henceforth assume that our machines are
nondeterministic.

2.2.6 Choice of Domain D
As mentioned in the introduction, it seems natural to consider any semial-
gebraic set as a possible domain of evaluation for p(x). While some choices,
like D = {x : p(x) = 0} make evaluating p(x) trivial, they beg the question
of how one would know whether x ∈ D. Similarly, if D includes a discrete
set of points, then p(x) can be evaluated at these points by looking up
the answers in a table. To avoid these pathologies, it may seem adequate
restrict D to be a sufficiently “fat” set, say open. But this still leads to
interesting complications; for example the algorithm

pcomp(x, δ) = ((x1 + x2)(1 + δ1) + x3)(1 + δ2)

for p(x) = x1+x2+x3, which is inaccurate on Rn, is accurate on the open set
{|x1+x2| > 2|x3|}, whose closure intersects the variety VR(p) on {x1+x2 =
0 ∧ x3 = 0}.

In this paper we will mostly deal with open D, especially D = Rn or
D = Cn, and comment on when our results apply to smaller D.

2.2.7 Summary of Arithmetic and Algorithmic Models

We summarize the axioms our arithmetic and algorithms must satisfy. We
start with the axioms all arithmetic operations and algorithms satisfy:

Exact Inputs. Our algorithm will be given the input exactly.
Finite Convergence. An accurate algorithm must, when all roundoff

errors δ = 0, compute the exact value of the polynomial in a finite
number of steps.
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Roundoff Model. Except for negation, which is exact, the rounded value
of any arithmetic operation op(x1, . . . , xk) satisfies

rnd(op(x1, . . . , xk)) = op(x1, . . . , xk) · (1 + δ)

where δ is arbitrary number satisfying |δ| ≤ ε, where ε is a nonzero
value called the machine precision. If the data x is real (or com-
plex), then δ is also real (resp. complex).

Nondeterminism. Every arithmetic operation produces an independent
roundoff error δ, even if the arguments to different operations are
identical.

Domain D. Unless otherwise specified, the domain of evaluation D is
assumed to be all of Rn (or all of Cn).

We now list the alternative axioms our algorithms may satisfy. In each
category, an algorithm must satisfy one set of axioms or the other.

Branching or Not. Some of our algorithms will permit exact compar-
isons of intermediate quantities (<, = and > for real data), and
subsequent branching based on the result of the comparison. Other
algorithms will not permit branching. In the complex case, we will
see that branching does not matter (see Sections 2.4.2 and 2.5.2).

Classical or “black-box” operations. Some of our algorithms will use
only “classical” arithmetic operations, namely addition, subtrac-
tion and multiplication. Others will use a set of arbitrary polyno-
mial “black-box” operations, like op(x, y, z) = x + y · z or op(x) =
x−
√

2, of our choice. In particular, we omit division.

2.2.8 Other Models of Error and Arithmetic

Our goal in this paper is to model rounded, finite precision computa-
tion, i.e., arithmetic with numbers represented in scientific notation, and
rounded to their leading k digits, for some fixed k. It is natural to ask
about models related to ours.

First, we point out some positive attributes of our model:

1. The model rnd(op(a, b)) = op(a, b)(1 + δ) has been the most widely
used model for floating point error analysis [Higham (2002)] since the
early papers of von Neumann and Goldstine (1947), Turing (1948)
and Wilkinson (1963).

2. The extension to include black-boxes includes widely used floating
point techniques for extending the precision.
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3. Though the model is for real (or complex) arithmetic, it can be
efficiently simulated on a conventional Turing machine by using
a simple variation of floating point numbers m · 2e, stored as the
pair of integers (m, e), where m is of fixed length, and |e| grows as
necessary. In particular, any sequence of n addition, subtraction,
multiplication or division (by nonzero) operations can increase the
largest exponent e by at most O(n) bits, and so can be done in
time polynomial in the input size. See Demmel and Koev (2001)
for further discussion. This is in contrast to repeated squaring in
the BSS model [Blum (2004)] which can lead to exponential time
simulations.

Models of arithmetic may be categorized according to several criteria
(the references below are not exhaustive, but illustrative):

• Are numbers (and any errors) represented discretely (e.g., as bit strings
such as floating point numbers) [Demmel and Koev (2001), Higham
(2002), Wilkinson (1963)], or as a (real or complex) continuum [Blum,
Cucker, Shub, and Smale (1997), Cucker and Dedieu (2001)]?
• Is arithmetic exact [Blum, Cucker, Shub, and Smale (1997), Blum,

Cucker, Shub, and Smale (1996a)] or rounded [Cucker and Grigoriev
(1999), Cucker and Smale (1999), Higham (2002), Wilkinson (1963)]? If
it is rounded, is the error bounded in a relative sense [Higham (2002)],
absolute sense [Blum, Cucker, Shub, and Smale (1997)], or something
else [Lozier and Olver (1990), Demmel (1987), Demmel (1984)] [Higham
(2002), Sec. 2.9]?
• In which of these metrics is the final error assessed?
• Is the input data exact [Blum, Cucker, Shub, and Smale (1997)] or

considered “rounded” from its true value [Chatelin and Frayssé (1996),
Edelat and Sünderhauf (1998), Ko (1991), Pour-El and Richards (1989),
Renegar (1994)] (and if rounded, again how is the error bounded)?
• Do we want a “worst case” error analysis [Higham (2002), Wilkinson

(1963)], or by modeling rounding errors as random variables, a statisti-
cal analysis [Vignes (1993), Kahan (1998), Spielman and Teng (2002)]
[Higham (2002), Sec. 2.8]? Does a condition number appear explicitly
in the complexity of the problem [Cucker and Smale (1999)]?

First we consider floating point arithmetic itself, i.e., where real numbers
are represented by a pair of integers (m,n) representing the real number
m·rn, where r is a fixed number called the radix (typically r = 2 or r = 10).
Either by using one of many techniques in the literature for using an array
(x1, ..., xs) of floating point numbers to represent x =

∑s
i=1 xi to very high
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accuracy and to perform arithmetic on such high precision numbers (e.g.,
Bailey (1993), Bailey (1995), Priest (1991)), or by converting m · rn to an
exact rational number and performing exact rational arithmetic, one can
clearly evaluate any polynomial p(x) without error, and the only question
is cost. In light of this, our results on classical vs black-box arithmetic can
be interpreted as saying when such high precision techniques are necessary,
and which black-box operations must be implemented this way, in order to
evaluate p accurately.

Let us revisit the accurate evaluation of the simple polynomial y1 + y2 +
y3. The obvious algorithm is to carry enough digits so that the sum is
computed exactly, and then rounded at the end. But then to compute
(2e + 1) − 2e accurately would require carrying at least e bits, which is
exponential in the size of the input (log2 e bits to represent e). Instead,
most practical algorithms rely on the technique in the above paragraph,
repeatedly replacing partial sums like y1 + y2 by x1 + x2 where |x1| � |x2|
and in fact the bits of x1 and x2 do not “overlap.” These techniques depend
intrinsically on the discreteness of the number representation to prove that
certain intermediate additions and subtractions are in fact exact. Our
model treats this by modeling the entire operation as a black-box (see
Section 2.2.3).

Second, consider our goal of guaranteed high relative accuracy. One
might propose that absolute accuracy is a more tractable goal, i.e., guar-
anteeing |pcomp(x, δ) − p(x)| ≤ η instead of |pcomp(x, δ) − p(x)| ≤ η|p(x)|.
However, we claim that as long as our basic arithmetic operations are de-
fined to have bounded relative error ε, then trying to attain relative error
in pcomp is the most natural goal.

Indeed, we claim that tiny absolute accuracy is impossible to attain for
any nonconstant polynomial p(x) when D = Rn or D = Cn. For example,
consider p(x) = x1 + x2, for which the obvious algorithm is pcomp(x, δ) =
(x1 +x2)(1+δ). Thus the absolute error |pcomp(x, δ)−p(x)| = |x1 +x2|δ ≤
|x1 + x2|ε. This absolute error is at most η precisely when |x1 + x2| ≤ η/ε,
i.e., for x in a diagonal strip in the (x1, x2) plane. For p(x) = x1 · x2 we
analogously get accuracy only for x in a region bounded by hyperbolas.
In other words, even for the simplest possible polynomials that take one
operation to evaluate, they cannot be evaluated to high absolute accuracy
on most of D = Rn or Cn. The natural error model to consider when trying
to attain low absolute error in p(x) is to have low absolute error in the basic
arithmetic operations, and this is indeed the approach taken in Cucker and
Smale (1999)(though as stated before, repeated squaring can lead to an
exponential growth in the number of bits a real number represents [Blum
(2004)]).
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One could also consider more complicated error models, for example
mixed absolute/relative error : |pcomp(x, δ)−p(x)| ≤ η ·max(|p(x)|, 1). Sim-
ilar models have been used to model underflow error in floating point arith-
metic [Demmel (1984)]. A small mixed error implies that either the relative
error or the absolute error must be small, and so may be easier to attain
than either small absolute error or small relative error alone. But we argue
that, at least for the class of homogeneous polynomials evaluated on homo-
geneous D, the question of whether p(x) is accurately evaluable yields the
same answer whether we mean accuracy in the relative sense or mixed sense.
To see why, note that x ∈ D if and only if αx ∈ D for any scalar α, since D
is homogeneous, and that p(αx) = αdp(x), where d = degree(p). Thus for
any nonzero p(x), scaling x to αx will make η ·max(|p(αx)|, 1) = η|p(αx)|
once α is large enough, i.e., relative error η must be attained. By results
in Section 2.4.3, this will mean that pcomp(x, δ) must also be homogeneous
in x of the same degree, i.e., pcomp(αx, δ) = αdpcomp(x, δ). Thus for any
x ∈ D at which we can evaluate p(x) with high mixed accuracy, we can
choose α large enough so that

αd|pcomp(x, δ)− p(x)| = |pcomp(αx, δ)− p(αx)| ≤ η ·max(|p(αx)|, 1)

= η · |p(αx)| = αd · η · |p(x)|

implying that p(αx) can be evaluated with high relative accuracy for all
α. In summary, changing our goal from relative accuracy to mixed rela-
tive/absolute accuracy will not change any of our results, for the case of
homogeneous p and homogeneous D.

Yet another model is to assume that the input x is given only approxi-
mately, instead of exactly as we assume. This corresponds to the approach
taken in Edelat and Sünderhauf (1998), Ko (1991), Pour-El and Richards
(1989), in which one can imagine reading as many leading bits as desired
of each input xi from an infinite tape, after which one tries to compute the
answer using a conventional Turing machine model. This gives yet different
results, since, for example, the difference x1−x2 cannot be computed with
small relative error in a bounded amount of time, since x1 and x2 may agree
in arbitrarily many leading digits. Absolute error is more appropriate for
this model.

It is worth commenting on why high accuracy of the sort we want is
desirable in light of inevitable uncertainties in the inputs. Indeed, many
numerical algorithms are successfully analyzed using backward error analy-
sis [Higham (2002), Demmel (1997)], where the computed results are shown
to be the exact result for a slightly perturbed value of the input. This is the
case, for example, for polynomial evaluation using Horner’s rule where one
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shows that one gets the exact value of a polynomial at x but with slightly
perturbed coefficients. Why is this not always accurate enough?

We already mentioned mesh generation [Shewchuk (1997)], where the
inputs are approximately known physical coordinates of some physical ob-
ject to be triangulated, but where geometric predicates about the vertices
defining the triangulation must be answered consistently; this means the
signs of certain polynomials must be computed exactly, which is in turn
guaranteed by guaranteeing any relative accuracy η < 1.

More generally, in many physical simulations, the parameters describing
the physical system to be simulated are often known to only a few digits,
if that many. Nonetheless, intermediate computations must be performed
to much higher accuracy than the input data is known, for example to
make sure the computed system conserves energy (which it should to high
accuracy for the results to be meaningful, even if the initial conditions are
uncertain).

Another example where high accuracy is important are the trigonometric
functions: When x is very large and slightly uncertain, the value of sinx

may be completely uncertain. Still, we want the computed trigonometric
functions to (nearly) satisfy identities like sin2 x + cos2 x = 1 and sin 2x =
2 sin x cos x so that we can reason about program correctness. Many other
examples of this sort can be found in articles posted at Kahan (webpage).

In the spirit of backward error analysis, one could consider the polyno-
mial p fixed, but settle for accurately computing p(x̂) where x̂ differs from
x by only a small relative change in each component xi. This is not guar-
anteed by Horner’s rule, which is equivalent to changing the polynomial
p slightly but not x. Would it be easier to compute p(x̂) accurately than
p(x) itself? This is the case for some polynomials, like x1 + x2 + x3 or
c1x

2
2x

3
3 + c2x

2
1x

3
3 + c3x1x

4
2, where there is a unique xi that we can associate

with each monomial to “absorb” the rounding error from Horner’s rule. In
particular, with Horner’s rule, the number of monomials in p(x) may at
most be equal to the number of xi. In analogy to this paper, one could
ask for a decision procedure to identify polynomials that permit accurate
evaluation of p(x̂) using any algorithm. This is a possible topic for future
work.

Another possibility is to consider error probabilistically [Higham (2002),
Sec. 2.8]. This has been implemented in a practical system [Vignes (1993)],
where a program is automatically executed repeatedly with slightly differ-
ent rounding errors made at each step in order to assess the distribution of
the final error. This approach is criticized in Kahan (1998) for improperly
modeling the discrete, non-random behavior of roundoff, and for possibly



Toward Accurate Polynomial Evaluation in Rounded Arithmetic 53

invalidating (near) identities like sin 2x = 2 sinx cos x upon which correct-
ness may depend.

In smoothed analysis [Spielman and Teng (2002)], one considers com-
plexity (or for us, relative error) by averaging over a Gaussian distribution
around each input. For us, input could mean either the argument x of a
fixed polynomial p, or the polynomial itself, or both. First consider the
case of a fixed polynomial p with a randomly perturbed x. This case is
analogous to the previous paragraph, because the inputs can be thought
of as slightly perturbed before starting the algorithm. Indeed, one could
imagine rounding the inputs slightly to nearby rational or floating point
numbers, and then computing exactly. But in this case, it is easy to see
that, at least for codimension 1 varieties of p, the “smoothed” relative error
is finite or infinite precisely when the worst case relative error is finite or
infinite. So smoothing does not change our basic analysis.1 Now suppose
one smooths over the polynomial p, i.e., over its coefficients. If we smooth
using a Gaussian distribution, then as we will see, the genericity of “bad” p

will make the smoothed relative error infinite for all polynomials. Chang-
ing the distribution from Gaussian to one with a small support would only
distinguish between positive definite polynomials, the easy case discussed
in Section 2.3, and polynomials that are not positive definite.

In interval arithmetic [Moore (1979), Neumaier (1990), Alefeld and
Herzberger (1983)] one represents each number by a floating point interval
guaranteed to contain it. To do this one rounds interval endpoints “out-
ward” to ensure that, for example, the sum c = a+ b of two intervals yields
an interval c guaranteed to contain the sum of any two numbers in a and b.
It is intuitive that if an interval algorithm existed to evaluate p(x) for x ∈ D
that always computed an interval whose width was small compared to the
number of smallest magnitude in the interval, and if the algorithm obeyed
the rules in Section 2.2.7, then it would satisfy our accuracy requirements.
Conversely, one might conjecture that an algorithm accurate by our criteria
would straightforwardly provide an accurate interval algorithm, where one
would simply replace all arithmetic operation by interval operations. The
issue of interpreting comparisons and branches using possibly overlapping
intervals makes this question interesting, and a possible subject for future
work.

Finally, many authors use condition numbers in their analysis of the com-
plexity of solving certain problems. This is classical in numerical analysis
[Higham (2002)]; more recent references are Chatelin and Frayssé (1996),

1 The logarithm of the relative error, like the logarithm of many condition numbers,
does however have a finite average.
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Cucker and Smale (1999), Cucker and Dedieu (2001). In this approach,
one is willing to do more and more work to get an adequate answer as
the condition number grows, perhaps without bound. Such a conditioning
question appears in our approach, if we ask how small the machine preci-
sion ε must be as a function of the desired relative error η, as well as p,
D, and allowed operations. Computing this condition number (outside the
easy case described in Section 2.3) is an open question.

2.3 Evaluating positive polynomials accurately

Here we address the simpler case where the polynomial p(x) to be evaluated
has no zeros in the domain of evaluation D. It turns out that we need more
than this to guarantee accurate evaluability: we will require that |p(x)| be
bounded both above and below in an appropriate manner on D.

We let D̄ denote the closure of D.

Theorem 2.1 Let pcomp(x, δ) be any algorithm for p(x) satisfying the con-
dition pcomp(x, 0) = p(x), i.e., it computes the correct value in the absence
of rounding error. Let pmin := infx∈D̄ |p(x)|. Suppose D̄ is compact and
pmin > 0. Then pcomp(x, δ) is an accurate algorithm for p(x) on D.

Proof Since the relative error on D is |pcomp(x, δ) − p(x)|/|p(x)| ≤
|pcomp(x, δ) − p(x)|/pmin, it suffices to show that the numerator appro-
proaches 0 uniformly as δ → 0. This follows by writing the value of
pcomp(x, δ) along any branch of the algorithm as pcomp(x, δ) = p(x) +∑

α>0 pα(x)δα, where α > 0 is a multi-index (α1, . . . , αk) with at least
one component exceeding zero and δα := δα1

1 · · · δαk

k . By compactness of
D̄, |

∑
α>0 pα(x)δα| ≤ C

∑
α>0 |δ|α for some constant C, which goes to 0

uniformly as the upper bound ε on each |δi| goes to zero.

Next we consider domains D whose closure is not compact. To see that
merely requiring pmin > 0 is not enough, consider evaluating p(x) = 1 +
(x1+x2+x3)2 on R3. Intuitively, p(x) can only be accurate if its “dominant
term” (x1 + x2 + x3)2 is accurate, once it is large enough, and this is
not possible using only addition, subtraction and multiplication. (These
observations will be formalized in Sections 2.4.)

Instead, we consider a homogeneous polynomial p(x) evaluated on a ho-
mogeneous D, i.e., one where x ∈ D implies γx ∈ D for any scalar γ.
Even though such D are unbounded, homogeneity of p will let us consider
just the behavior of p(x) on D intersected with the unit ball Sn−1 in Rn

(or S2n−1 in Cn). On this intersection we can use the same compactness
argument as above:
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Theorem 2.2 Let p(x) be a homogeneous polynomial, let D be a homoge-
neous domain, and let S denote the unit ball in Rn (or Cn). Let

pmin,homo := inf
x∈D̄∩S

|p(x)|

Then p(x) can be evaluated accurately if pmin,homo > 0.

Proof We describe an algorithm pcomp(x, δ) for evaluating p(x). There
are many such algorithms, but we only describe a simple one. (Indeed,
we will see that the set of all accurate algorithms for this situation can
be characterized completely by Definition 2.11 and Lemma 2.3.) Write
p(x) =

∑
α cαxα, where α is a multi-index (α1, . . . , αn) and cα �= 0 is a

scalar. Homogeneity implies |α| =
∑

i αi is constant. Then the algorithm
simply

1. computes each xα term by repeated multiplication by xis,
2. computes each cαxα either by multiplication by cα or by repeated

addition if cα is an integer, and
3. sums the cαxα terms.

Since each multiplication, addition and subtraction contributes a (1 + δi)
term, it is easy to see that

pcomp(x, δ) =
∑

α

cαxα∆α

where each ∆α is the product of at most some number f of factors of the
form 1 + δi.

Now let ‖x‖2 = (
∑

i |xi|2)1/2, so x̂ = x/‖x‖2 is in the unit ball S. Then
the relative error may be bounded by∣∣∣∣pcomp(x, δ)− p(x)

p(x)

∣∣∣∣ =
∣∣∣∣∑α cαxα∆α −

∑
α cαxα∑

α cαxα

∣∣∣∣
=
∣∣∣∣∑α cαx̂α(∆α − 1)∑

α cαx̂α

∣∣∣∣
≤
∑

α |cα| · |∆α − 1|
pmin

≤
∑

α |cα| · ((1 + ε)f − 1)
pmin

which goes to zero uniformly in ε.

2.4 Classical arithmetic

In this section we consider the simple or classical arithmetic over the real or
complex fields, with the three basic operations {+,−, ·}, to which we add
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negation. The model of arithmetic is governed by the laws in Section 2.2.7.
We remind the reader that this arithmetic model does not allow the use of
constants.

In Section 2.4.1 we find a necesary condition for accurate evaluability
over either field, and in Section 2.4.2 we prove that this condition is also
sufficient for the complex case.

Throughout this section, we will make use of the following definition of
allowability.

Definition 2.2 Let p be a polynomial over Rn or Cn, with variety V (p) :=
{x : p(x) = 0}. We call V (p) allowable if it can be represented as a union
of intersections of sets of the form

1. Zi :={x : xi = 0}, (2.3)

2. Sij :={x : xi + xj = 0}, (2.4)

3. Dij :={x : xi − xj = 0}. (2.5)

If V (p) is not allowable, we call it unallowable.

Remark 2.1 For a polynomial p, having an allowable variety V (p) is obvi-
ously a Tarski-decidable property (following Tarski (1951)), since the num-
ber of unions of intersections of hyperplanes (2.3)-(2.5) is finite.

2.4.1 Necessity: real and complex

All the statements and proofs in this section work equally well for both the
real and the complex case, and thus we may treat them together. At the
end of the section we use the necessity condition to obtain a partial result
relating to domains.

Definition 2.3 From now we will refer to the space of variables as S ∈
{Rn, Cn}.

To state and prove the main result of this section, we need to introduce
some additional notions and notation.

Definition 2.4 Given a polynomial p over S with unallowable variety V (p),
consider all sets W that are finite intersections of allowable hyperplanes
defined by (2.3), (2.4), (2.5), and subtract from V (p) those W for which
W ⊂ V (p). We call the remaining subset of the variety points in general
position and denote it by G(p).
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Remark 2.2 If V (p) is not allowable, then from definition 2.4 it follows
that G(p) �= ∅. One may also think of points in G(p) as “unallowable”
or “problematic”, because, as we will see, we necessarily get large relative
errors in their vicinity.

Definition 2.5 Given x ∈ S, define the set Allow(x) as the intersection
of all allowable hyperplanes going through x:

Allow(x) := (∩x∈Zi
Zi) ∩

(
∩x∈Sij

Sij

)
∩
(
∩x∈Dij

Dij

)
,

with the understanding that

Allow(x) :=S whenever x /∈ Zi, Sij , Dij for all i, j.

Note that Allow(x) is a linear subspace of S.

We will be interested in the sets Allow(x) primarily when x ∈ G(p). For
such cases we make the following observation.

Remark 2.3 For each x ∈ G(p), the set Allow(x) is not a subset of V (p):

Allow(x) �⊆ V (p),

which follows directly from the definition of G(p).

We can now state the main result of this section, which is a necessity
condition for the evaluability of polynomials over domains.

Theorem 2.3 Let p be a polynomial over a domain D ∈ S. Let G(p) be
the set of points in general position on the variety V (p). If there exists
x ∈ D ∩ G(p) such that Allow(x) ∩ Int(D) �= ∅, then p is not accurately
evaluable on D.

To prove Theorem 2.3, we need to recall the notion of Zariski topology
(see, e.g., Hulek (2003)).

Definition 2.6 A subset Y ⊆ Rn (or Cn) is called a Zariski closed set
if there a subset T of the polynomial ring R[x1, . . . , xn] (or C[x1, . . . , xn])
such that Y is the variety of T : Y = V (T ) := ∩p∈T V (p). A complement
of a Zariski closed set is said to be Zariski open. The class of Zariski open
sets defines the Zariski topology on S.

In this paper, we consider the Zariski topology not on S, but on a hy-
percube centered at the origin in δ-space (the space in which the vector
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of error variables δ lies). This topology is defined in exactly the same
fashion.

Note that a Zariski closed set has measure zero unless it is defined by
the zero polynomial only; then the set is the whole space. In the coming
proof we will deal with nonempty Zariski open sets, which are all of full
measure. Finally, it is worth noting that the Zariski sets we will work with
are algorithm-dependent.

Finally, we represent any algorithm as in Blum, Shub, and Smale (1989)
and in Aho, Hopcroft, and Ullman (1974) by a directed acyclic graph
(DAG) with input nodes, branching nodes, and output nodes. For simplic-
ity in dealing with negation (given that negation is an exact operation), we
define a special type of edge which indicates that the value carried along
the edge is negated. We call these special edges dotted, to distinguish them
from the regular solid ones.

Every computational node has two inputs (which may both come from a
single other computational node); depending on the source of these inputs
we have computational nodes with inputs from two distinct nodes and
computational nodes with inputs from the same node. The latter type
correspond either to

1. doubling ((x, x) +�→ 2x),
2. doubling and negating ((−x,−x) +�→ −2x),
3. computing zero exactly ((−x, x) +�→ 0, (−x,−x) −�→ 0, or (x, x) −�→ 0),
4. squaring ((x, x) ·�→ x2 or (−x,−x) ·�→ x2),
5. squaring and negating ((−x, x) ·�→ −x2).

All nodes are labeled by (op(·), δi) with op(·) representing the operation
that takes place at that node. It means that at each node, the algorithm
takes in two inputs, executes the operation, and multiplies the result by
(1 + δi).

Finally, for each branch, there is a single destination node, with one
input and no output, whose input value is the result of the algorithm.

Throughout the rest of this section, unless specified, we consider only
non-branching algorithms.

Definition 2.7 For a given x ∈ S, we say that a computational node N is
of non-trivial type if its output is a nonzero polynomial in the variables δ

when the algorithm is run on the given x and with symbolic δs.

Definition 2.8 For a fixed x, let N be any non-trivial computational node
in an algorithm. We denote by L(N) (resp., R(N)) the set of computa-
tional nodes in the left (resp., right) subgraphs of N . If both inputs come
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from the same node, i.e. L(N) and R(N) overlap, we will only talk about
L(N).

Definition 2.9 For a given ε > 0, we denote by Hε the hypercube of edge
length 2ε centered at the origin, in δ-space.

We will need the following Proposition.

Proposition 2.10 Given any algorithm, any ε > 0, and a point x ∈
G(p), there exists a Zariski open set ∆ in Hε such that no non-trivial
computational node has a zero output on the input x for all δ ∈ ∆.

Proof The proof follows from the definition of the non-trivial computational
node.

Since every non-trivial computational node outputs a non-trivial poly-
nomial in δ, it follows that each non-trivial computational node is nonzero
on a Zariski open set (corresponding to the output polynomial in δ) in
Hε. Intersecting this finite number of Zariski open sets we obtain a Zariski
open set which we denote by ∆; for any δ ∈ ∆ the output of any non-trivial
computational node is nonzero.

We can now state and prove the following crucial lemma.

Lemma 2.1 For a given algorithm, any x ∈ G(p), and ε > 0, exactly one
of the following holds:

1. there exists a Zariski open set ∆ ⊆ Hε such that the value pcomp(x, δ)
computed by the algorithm is not zero when the algorithm is run with
source input x and δ ∈ ∆;

2. pcomp(y, δ) = 0 for all y ∈ Allow(x) and all δ in Hε.

Proof of Lemma 2.1. We recall that the algorithm can be represented as a
DAG, as described in the paragraphs preceding Definition 2.7.

Fix a point x ∈ G(p). Once x is fixed, the result of each computation
is a polynomial expression in the δs. Consider the Zariski open set ∆
whose existence is guaranteed by Proposition 2.10. There are now two
possibilities: either the output node is of non-trivial type, in which case
pcomp(x, δ) �= 0 for all δ ∈ ∆, or the output node is not of non-trivial type,
in which case pcomp(x, δ0) = 0 for some δ0 ∈ ∆.

In the latter case the output of the computation is zero; we trace back
this zero to its origin, by marking in descending order all computational
nodes that produced a zero (and thus we get a set of paths in the DAG,
all of whose nodes produced exact zeros). Note that we are not interested



60 James Demmel, Ioana Dumitriu, and Olga Holtz

in all nodes that produced a 0; only those which are on paths of zeros to
the output node.

We will examine the last occurrences of zeros on paths of marked vertices,
i.e. the zeros that are farthest from the output on such paths.

Lemma 2.2 The last zero on such a path must be either

1. a source;
2. the output of a node where (−x, x) +�→ 0, (−x,−x) −�→ 0, or (x, x) −�→

0 are performed;
3. the output of an addition or subtraction node with two nonzero

source inputs.

Proof of Lemma 2.2. Note that a nonzero non-source output will be a
non-constant polynomial in the δ specific to that node.

Clearly the last zero output cannot happen at a multiplication node; we
have thus to show that the last occurrence of a zero output cannot happen
at an addition or subtraction node which has two nonzero inputs from
different nodes, at least one of which is a non-source. We prove the last
statement by reductio ad absurdum.

Assume we could have a zero output at a node N with two nonzero
inputs, at least one of which is not a source. Let R(N) and L(N) be
as in Definition 2.8. Let δ(L(N)) and δ(R(N)) be the sets of errors δi

corresponding to the left, respectively the right subtrees of N .
By assumption, δ(R(N)) ∪ δ(L(N)) �= ∅ (since at least one of the two

input nodes is a non-source). Let δl (δr) denote the δ associated to the
left (right) input node of N . Then we claim that either δl /∈ δ(R(N)) or
δr /∈ δ(L(N)). (There is also the possibility that one of the two input nodes
is a source and does not have a δ, but in that case the argument in the
next paragraph becomes trivial.)

Indeed, since each δ is specific to a node, if δl were in δ(R(N)), there
would be a path from the left input node to the right input node. Similarly,
if δr were in δ(L(N)), then there would be a path from the right input node
of N to the left input node of N . So if both events were to happen at the
same time, there would be a cycle in the DAG. This cannot happen, hence
either δl /∈ δ(R(N)) or δr /∈ δ(L(N)).

Assume w.l.o.g. δl /∈ δ(R(N)). Then the left input of N is a non-
trivial polynomial in δl, while the right input does not depend on δl at
all. Hence their sum or difference is still a non-trivial polynomial in δl.
Contradiction. �

Now that Lemma 2.2 has been proven, we can state the crucial fact
of the proof of Lemma 2.1: all last occurrences of a zero appear at nodes
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which either correspond to allowable constraints (i.e., zero sources, or sums
and differences of sources,) or are addition/subtraction nodes with both
inputs from the same node, which always, on any source inputs, produce a
zero.

Take now any point y ∈ Allow(x); then y produces the same chains
of consecutive zeros constructed (marked) in Lemma 2.1 as x does, with
errors given by δ0 ∈ ∆. Indeed, any node on such a chain that has a
zero output at x when the error variables are δ0 can trace this zero back
to an allowable constraint (which is satisfied by both x and y) or to an
addition/subtraction node with both inputs from the same node; hence
the node will also have a zero output at y with errors δ0. In particu-
lar, if pcomp(x, δ0) = 0 for δ0 ∈ ∆, then pcomp(y, δ0) = 0. Moreover,
changing δ0 can only introduce additional zeros, but cannot eliminate ze-
ros on the zero paths that we traced for x (by the choice of ∆). Therefore,
pcomp(y, δ) = 0 for all y ∈ Allow(x) and δ ∈ Hε. This completes the proof of
Lemma 2.1. �

From Lemma 2.1 we obtain the following corollary.

Corollary 2.1 For any ε > 0 and any x ∈ G(p), exactly one of the follow-
ing holds: the relative error of computation, |pcomp−p|/|p|, is either infinity
at x for all δ in a Zariski open set or 1 at all points y ∈ (Allow(x) \ V (p))
and all δ ∈ Hε.

We now consider algorithms with or without branches.

Theorem 2.4 Given a (branching or non-branching) algorithm with output
function pcomp(·), x ∈ G(p), and ε > 0, then one of the following is true:

1. there exists a set ∆1 of positive measure in Hε such that pcomp(x, δ)
is nonzero whenever the algorithm is run with errors δ ∈ ∆1, or

2. there exists a set ∆2 of positive measure in Hε such that for every
δ ∈ ∆2, there exists a neighborhood Nδ(x) of x such that for every
y ∈ Nδ(x) ∩ (Allow(x) \ V (p)), pcomp(y, δ) = 0 when the algorithm
is run with errors δ.

Remark 2.4 This implies that, on a set of positive measure in Hε, the
relative accuracy of any given algorithm is either ∞ or 1.

Proof With pcomp(·) the output function and x a fixed point in general
position, we keep the δs symbolic. Depending on the results of the com-
parisons, the algorithm splits into a finite number of non-branching algo-
rithms, which all start in the same way (with the input nodes) and then
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differ in accordance with a finite set of polynomial constraints on the δs
and xs.

Some of these branches will be chosen by sets of δs of measure zero;
at least one of the branches will have to be chosen by a set of δs of
positive measure whose interior is nonempty (all constraints being poly-
nomials). Call that branch B, and let the set of δs that choose it be
called ∆B .

By Proposition 2.10, there exists a Zariski open set ∆ ∈ Hε such that,
for all δ ∈ ∆, no non-trivial node in the subgraph representing our branch
B has a zero output. In particular, this includes all quantities computed
for comparisons that define B. Let ∆2 := Int(∆B ∩∆), where Int denotes
the interior of a set. By the choice of ∆B and ∆, the obtained set ∆2 is
non-empty.

Suppose the algorithm is run with errors δ0 ∈ ∆2 and pcomp(x, δ0) �= 0.
Then, by continuity, there must be a neighborhood ∆1 in the set ∆2 on
which the computation will still be directed to branch B and pcomp(x, ·)
will still be nonzero, so we are in Case 1.

Assume now that we are not in Case 1, i.e. there is no δ ∈ ∆2 such that
pcomp(x, δ) �= 0. In this case we show by contradiction that pcomp(y, δ) = 0
for all y ∈ Allow(x) if y is sufficiently close to x (since Allow(x) is a linear
subspace containing x, there exist points in Allow(x) which are arbitrarily
close to x), thus, that Case 2 must be fulfilled.

If this claim is not true, then there is no neighborhood Nδ(x) of x such
that when y ∈ Nδ(x)∩Allow(x), the algorithm is directed to branch B on
δ. In that case, there must be a sequence {yn} ∈ (Allow(x) \ V (p)) such
that yn → x and yn is always directed elsewhere for this choice of δ. The
reason for this is that Allow(x) is a linear subspace which is not contained
in V (p); hence no neighborhood of x in Allow(x) can be contained in V (p),
and then such a sequence yn must exist.

Since there is a finite number of branches, we might as well assume that
all yn will be directed to the same branch B′ for this δ and that they split
off at the same branching node (pigeonhole principle).

Now consider the branching node where the splitting occurs, and let
r(z, δ) be the quantity to be compared to 0 at that node. Since we always
go to B′ with yn but to B with x, it follows that we necessarily must have
r(yn, δ) �= 0 whereas r(x, δ) = 0. On the other hand, until that splitting
point the algorithm followed the same path with yn and with x, computing
with the same errors δ. Applying then case 2 of Lemma 2.1 (which can be
read to state that any algorithm computing r, and obtaining r(x, δ) = 0,
will also obtain r(yn, δ) = 0), we get a contradiction.

This completes the proof of Theorem 2.4.
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Corollary 2.2 Let p be a polynomial over S with unallowable variety V (p).
Choose any algorithm with output function pcomp(·), any point x ∈ G(p),
ε > 0, and η < 1. Then there exists a set ∆x of positive measure arbitrarily

close to x and a set ∆ of positive measure in Hε, such that |pcomp − p|/|p|
is strictly larger than η when computed at a point y ∈ ∆x using any vector
of relative errors δ ∈ ∆.

Proof On symbolic input x and with symbolic δ, the algorithm will have m

branches B1, . . . , Bm that correspond to constraints yielding (semi-
algebraic) sets of positive measure S1, . . . , Sm in (x, δ)-space. Choose x ∈
G(p), and let (x, 0) be a point in (x, δ)-space.

1. If (x, 0) is in Int(Si) (the interior of some region Si), then by Lemma
2.1 and Corollary 2.1 there exists either

(a) a δ0 in δ-space sufficiently small such that (x, δ0) is in Int(Si)
and pcomp(x, δ0) �= 0. The relative error at (x, δ0) is in this
case∞, and (by continuity) there must be a small ball around
(x, δ0) which is still in Int(Si), on which the minimum relative
error is arbitrarily large, certainly larger than 1;

(b) a δ0 in δ-space sufficiently small and a y ∈ Allow(x)\V (p) suf-
ficiently close to x such that (y, δ0) is in Int(Si) and
pcomp(y, δ0) = 0. In this case the relative error at (y, δ0)
is 1, and (by continuity) there must be a small ball around
(y, δ0) which is still in Int(Si), on which the relative error is
strictly larger than our η < 1.

2. Otherwise, (x, 0) must be on the boundary of some of the regions Si;
assume w.l.o.g. that it is on the boundary of the regions S1, . . . , Sl.
In this case, we choose a small hyperdisk Bε̃((x, 0)) in the linear sub-
space (x, ·) such that Bε̃((x, 0)) intersects the closures of S1, . . . , Sl

(and no other Sis). We can do this because the sets Si are all semi-
algebraic.

(a) If there exists a δ0 in δ-space such that (x, δ0) ∈ Bε̃((x, 0))
and (x, δ0) ∈ Int(Si) for some i ∈ {1, . . . , l}, then by the
same argument as in case 1. we obtain a small ball included
in Int(Si) on which the relative error is greater than η;

(b) Otherwise, if there exists a δ0 such that (x, δ0) ∈ Bε̃((x, 0))
is on the boundary of some region Si for which the local
algorithm corresponding to it would yield pcomp(x, δ0) �= 0,
then (by continuity) there exists a small ball around (x, δ0)
such that the intersection of that small ball with Si is of
positive measure, and the relative error on that small ball
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as computed by the algorithm corresponding to Si is greater
than 1;

(c) Finally, otherwise, choose some point (x, δ1) ∈ Bε̃((x, 0)),
so that (x, δ1) is on the boundary of a subset of regions
S ⊂ {S1, . . . , Sl}. We must have that pcomp(x, δ1) = 0 when
computed using any of the algorithms that correspond to any
Si ∈ S.
Let now B(x) be a small ball around x in x-space, and con-
sider B̃(x) := B(x) ∩ (Allow(x) \ V (p)).
There exists some y ∈ B̃(x), close enough to x, such that
(y, δ1) is either in the interior or on the boundary of some
Sk ∈ S.
By Lemma 2.1, since we must have pcomp(y, δ1) = 0 as com-
puted by the algorithm corresponding to Sk, if follows (by
continuity) that there is a small ball around (y, δ1) on which
the relative error, when computed using the algorithm corre-
sponding to Sk, is greater than η. The intersection of that
small ball with Sk must have positive measure.

From the above analysis, it follows that there is always a set of positive
measure, arbitrarily close to (x, 0), on which the algorithm will produce a
relative error larger than η.

Proof of Theorem 2.3. Follows immediately from Theorem 2.4 and Corol-
lary 2.2. �

Remark 2.5 Consider the polynomial p(x, y) = (1 − xy)2 + x2, whose
variety is at infinity. We believe that Theorem 2.3 can be extended to show
that polynomials like p(x, y) cannot be evaluated accurately on R; this is
future work.

2.4.2 Sufficiency: the complex case

Suppose we now restrict input values to be complex numbers and use the
same algorithm types and the notion of accurate evaluability from the
previous sections. By Theorem 2.3, for a polynomial p of n complex vari-
ables to be accurately evaluable over Cn it is necessary that its variety
V (p) :={z ∈ Cn : p(z) = 0} be allowable.

The goal of this section is that this condition is also sufficient, as stated
in the following theorem.
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Theorem 2.5 Let p : Cn → C be a polynomial with integer coefficients
and zero constant term. Then p is accurately evaluable on D = Cn if and
only if the variety V (p) is allowable.

To prove this we first investigate what allowable complex varieties can
look like. We start by recalling a basic fact about complex polynomial
varieties, which can for example be deduced from Theorem 3.7.4 on page 53
of Taylor (2004). Let V denote any complex variety. To say that dimC(V ) =
k means that, for each z ∈ V and each δ > 0, there exists w ∈ V ∩B(z, δ)
such that w has a V -neighborhood that is homeomorphic to a real 2k-
dimensional ball.

Theorem 2.6 Let p be a non-constant polynomial over Cn. Then

dimC(V (p)) = n− 1.

Corollary 2.3 Let p : Cn → C be a nonconstant polynomial whose variety
V (p) is allowable. Then V (p) is a union of allowable hyperplanes.

Proof Suppose V (p) = ∪jSj , where each Sj is an intersection of the sets in
Definition 2.2 and, for some j0, Sj0 is not a hyperplane but an irredundant
intersection of hyperplanes. Let z ∈ Sj0 \ ∪j �=j0Sj . Then, for some δ > 0,
B(z, δ)∩V (p) ⊂ Sj0 . Since dimC(Sj0) < n−1, no point in B(z, δ)∩V (p) has
a V (p)-neighborhood that is homeomorphic to a real 2(n− 1)-dimensional
ball. Contradiction.

Corollary 2.4 If p : Cn → C is a polynomial whose variety V (p) is al-
lowable, then it is a product p = c

∏
j pj, where each pj is a power of xi,

(xi − xj), or (xi + xj).

Proof By Corollary 2.3, the variety V (p) is a union of allowable hyper-
planes. Choose a hyperplane H in that union. If H = Zj0 for some J0,
expand p into a Taylor series in xj0 . If H = Di0j0 (or H = Si0j0) for
some i0, j0, expand p into a Taylor series in (xi0 − xj0) (or (xi0 + xj0)).
In either case, in this expansion, the zeroth coefficient of p must be the
zero polynomial in xj , j �= j0 (or j /∈ {i0, j0}). Hence there is a k such
that p(x) = xk

j0
p̃(x) in the first case, or p(x) = (xi0 ± xj0)

k p̃(x) in the
second (third) one. In any case, we choose k maximal, so that the variety
V (p̃) is the closure of the set V (p) \ Zj0 in the first case, or V (p) \ Di0j0

(V (p) \ Si0,j0) in the second (third) case. Then proceed by factoring p̃ in
the same fashion.
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Proof of Theorem 2.5. By Corollary 2.4, p = c
∏

j pj , with each pj a power
of xk or (xk ± xl). It also follows that c must be an integer since all
coefficients of p are integers.

Since each of the factors is accurately evaluable, and we can get any
integer constant c in front of p by repeated addition (followed, if need
be, by negation), which are again accurate operations, the algorithm that
forms their product and then adds/negates to obtain c evaluates p

accurately. �

Remark 2.6 From Theorem 2.5, it follows that only homogeneous polyno-
mials are accurately evaluable over Cn.

2.4.3 Toward a necessary and sufficient condition in the real case

In this section we show that accurate evaluability of a polynomial over
Rn is ultimately related to accurate evaluability of its “dominant terms”.
This latter notion is formally defined later in this section. Informally, it
describes the terms of the polynomial that dominate the remaining terms in
a particular semialgebraic set close to a particular component of its variety;
thus it depends on how we “approach” the variety of a polynomial.

For reasons outlined in Section 2.3, we consider here only homogeneous
polynomials. Furthermore, most of this section is devoted to non-branching
algorithms, but we do need branching for our statements at the end of
the section. The reader will be alerted to any change in our basic
assumptions.

Here is a short walk through this section:

• In Section 2.4.3.1. Homogeneity, we discuss an expansion of the
relative error |pcomp(x, δ) − p(x)|/|p(x)| as a function of x and δ, and
prove a result about accurate evaluability of homogeneous polynomials
that will be used in Section 2.4.3.3. Pruning.

• In Section 2.4.3.2. Dominance, we introduce the notion of dominance
and present different ways of looking at an irreducible component of
the variety V (p) using various simple linear changes of variables. These
changes of variables allow us to identify all the dominant terms of the
polynomial, together with the “slices” of space where they dominate.
• In Section 2.4.3.3. Pruning, we explain how to “prune” an algo-

rithm to manufacture an algorithm that evaluates one of its dominant
terms, and prove a necessary condition, Theorem 2.7, for the accu-
rate evaluation of a homogeneous polynomial by a non-branching al-
gorithm. Roughly speaking, this condition says that accurate evaluation
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of the dominant terms we identified in Section 2.4.3.2. Dominance, is
necessary.
• In Section 2.4.3.4. Sufficiency of evaluating dominant terms, we

identify a special collection of dominant terms, together with the slices
of space where they dominate. If accurately evaluable by (branching or
non-branching) algorithms, these dominant terms allow us to construct a
branching algorithm for the evaluation of the polynomial over the entire
space (Theorem 2.8). These are just some of the terms present in the
statement of Theorem 2.7.

2.4.3.1 Homogeneity

We begin by establishing some basic facts about non-branching algorithms
that evaluate homogeneous polynomials.

Definition 2.11 We call an algorithm pcomp(x, δ) with error set δ for
computing p(x) homogeneous of degree d if

1. the final output is of degree d in x;
2. no output of a computational node exceeds degree d in x;
3. the output of every computational node is homogeneous in x.

Lemma 2.3 If p(x) is a homogeneous polynomial of degree d and if a non-
branching algorithm evaluates p(x) accurately by computing pcomp(x, δ), the
algorithm must itself be homogeneous of degree d.

Proof First note that the output of the algorithm must be of degree at
least d in x, since pcomp(x, δ) = p(x) when δ = 0. Let us now write the
overall relative error as

relerr(x, δ) =
pcomp(x, δ)− p(x)

p(x)
=
∑

α

pα(x)
p(x)

δα

where α is a multi-index. If pcomp(x, δ) is accurate then pα(x)/p(x) must
be a bounded rational function on the domain (Rn, or in the homogeneous
case the sphere S(n−1)). This implies, in particular, that the output cannot
be of degree higher than d in x. So, Condition 1 of Definition 2.11 must be
satisfied.

Now suppose Condition 3. of Definition 2.11 is violated. We would like
to show that the final output is also inhomogeneous. We can assume with-
out loss of generality that the algorithm does not contain nodes that do
operations like x− x or 0 · x (these can be “pre-pruned” and replaced with
a 0 source). There exists a highest node (op(·), δi) whose output is not
homogeneous. If it is the output node, we are done. Otherwise, look at
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the next node (op(·), δj) on the path toward the output node. The output
of op(·, δj) is homogeneous. On the other hand, the output of (op(·), δi)
(which is one of the two inputs to (op(·), δj)) must be inhomogeneous in
x and must contain a term δir(x) with r(x) an inhomogeneous polynomial
in x.

If op(·, δi) is the only input to op(·, δj), then inhomogeneity will be
present in both outputs, since neither doubling nor squaring can cancel it;
contradiction. Otherwise there is another input to op(·, δj) (call it op(·, δk)).
The output of op(·, δk) must therefore also be inhomogeneous to cancel the
inhomogeneous r(x). Since the DAG is acyclic, δi is not present in the out-
put of op(·, δk) or δk is not present in the output op(·, δi). Without loss of
generality, assume the former case. Then the term δir(x) will create inho-
mogeneity in the output of (op(·), δj), and hence (op(·), δi) is not a highest
node with inhomogeneous output, contradiction. Hence pcomp(x, δ) is not
homogeneous in x, thus one of the pα(x)’s has to contain terms in x of
higher or smaller degree than d.

Similarly, if Condition 2. of Definition 2.11 were violated, then for some
δs the final output would be a polynomial of higher degree in x, and that
would also mean some pα(x) would be of higher degree in x.

In either of these cases, if some pα(x) contained terms of smaller degree
than d, by scaling the variables appropriately and letting some of them
go to 0, we would deduce that pα(x)/p(x) could not be bounded. If some
pα(x) contained terms of higher degree than d, by scaling the variables
appropriately and letting some of them go to ∞, we would once again
obtain that pα(x)/p(x) could not be bounded.

This proof shows that an algorithm evaluates a homogeneous polynomial
p accurately on Rn if and only if each fraction pα/p is bounded on Rn.
It also shows each pα has to be homogeneous of the same degree as p.
Therefore, each fraction pα/p is bounded on Rn if and only if it is bounded
on the unit sphere S(n−1). We record this as a corollary.

Corollary 2.5 A non-branching homogeneous algorithm is accurate on Rn

if and only if it is accurate on S(n−1).

2.4.3.2 Dominance

Now we begin our description of “dominant terms” of a polynomial. Given
a polynomial p with an allowable variety V (p), let us fix an irreducible
component of V (p). Any such component is described by linear allowable
constraints, which, after reordering variables, can be grouped into l groups
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as

x1 = · · · = xk1 = 0, xk1+1 = · · · = ±xk2 , . . . , xkl−1+1 = · · · = ±xkl
.

To consider terms of p that “dominate” in a neighborhood of that compo-
nent, we will change variables to map any component of a variety to a set
of the form

x̃1 = · · · = x̃k1 = 0, x̃k1+2 = · · · = x̃k2 = 0, . . . ,

x̃kl−1+2 = · · · = x̃kl
= 0.

(2.6)

The changes of variables we will use are defined inductively as follows.

Definition 2.12 We call a change of variables associated with a set of the
form

σ1x1 = σ2x2 = · · · = σkxk, σl = ±1, l = 1, . . . , k,

basic if it leaves one of the variables unchanged, which we will refer to
as the representative of the group, and replaces the remaining variables by
their sums (or differences) with the representative of the group. In other
words,

x̃j :=xj , x̃l := xl − σjσlxj for l �= j,

where xj is the representative of the group x1, . . . , xk. A change of variables
associated with a set of all x satisfying conditions

x1 = · · · = xk1 = 0,

σk1+1xk1+1 = σk1+2xk1+2 = · · · = σk2xk2 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σkl−1+1xkl−1+1 = σkl−1+2xkl−1+2 = · · · = σkl
xkl

,

σj = ±1 for all pertinent j

(2.7)

is basic if it is a composition of the identity map on the first k1 variables
and (l−1) basic changes of variables associated with each set σk1+1xk1+1 =
· · · = σk2xk2 through σkl−1+1xkl−1+1 = · · · = σkl

xkl
.

Finally, a change of variables associated with a set S of type (2.7) is
standard if it is a basic change of variables associated with some allowable
irreducible superset S̃ ⊇ S and it maps S to (2.6).

Thus, a standard change of variables amounts to splitting the group
x1, . . . , xk1 into smaller groups and either keeping the conditions xr =
· · · = xq = 0 or assigning arbitrary signs to members of each group so as
to obtain a set σrxr = · · · = σqxq. It may also involve splitting the chains
of conditions σkm +1xkm +1 = · · · = σkm +1xkm +1 into several subchains.
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The standard change of variables is then just one of the basic changes of
variables associated with the obtained set.

Example 1 There are 5× 3 standard changes of variables associated with
the set

x1 = x2 = 0, x3 = −x4 = x5 :

x̃1 = x1, x̃2 = x2, x̃3 = x3, x̃4 = x4 + x3, x̃5 = x5 − x3, or
x̃1 = x1, x̃2 = x2, x̃3 = x3 + x4, x̃4 = x4, x̃5 = x5 + x4, or
x̃1 = x1, x̃2 = x2, x̃3 = x3 − x5, x̃4 = x4 + x5, x̃5 = x5, or
x̃1 = x1, x̃2 = x2 − x1, x̃3 = x3, x̃4 = x4 + x3, x̃5 = x5 − x3, or
x̃1 = x1, x̃2 = x2 − x1, x̃3 = x3 + x4, x̃4 = x4, x̃5 = x5 + x4, or
x̃1 = x1, x̃2 = x2 − x1, x̃3 = x3 − x5, x̃4 = x4 + x5, x̃5 = x5, or
x̃1 = x1, x̃2 = x2 + x1, x̃3 = x3, x̃4 = x4 + x3, x̃5 = x5 − x3, or
x̃1 = x1, x̃2 = x2 + x1, x̃3 = x3 + x4, x̃4 = x4, x̃5 = x5 + x4, or
x̃1 = x1, x̃2 = x2 + x1, x̃3 = x3 − x5, x̃4 = x4 + x5, x̃5 = x5, or
x̃1 = x1 − x2, x̃2 = x2, x̃3 = x3, x̃4 = x4 + x3, x̃5 = x5 − x3, or
x̃1 = x1 − x2, x̃2 = x2, x̃3 = x3 + x4, x̃4 = x4, x̃5 = x5 + x4, or
x̃1 = x1 − x2, x̃2 = x2, x̃3 = x3 − x5, x̃4 = x4 + x5, x̃5 = x5, or
x̃1 = x1 + x2, x̃2 = x2, x̃3 = x3, x̃4 = x4 + x3, x̃5 = x5 − x3, or
x̃1 = x1 + x2, x̃2 = x2, x̃3 = x3 + x4, x̃4 = x4, x̃5 = x5 + x4, or
x̃1 = x1 + x2, x̃2 = x2, x̃3 = x3 − x5, x̃4 = x4 + x5, x̃5 = x5,

The supersets S̃ for this example are the set S itself together with the set
{x : x1 + x2 = 0, x3 = −x4 = x5} and the set {x : x1 − x2 = 0, x3 = −x4 =
x5}.

Note that we can write the vector of new variables x̃ as Cx where C is
a matrix, so can label the change of variables by the matrix C.

Now let us consider components of the variety V (p). We have seen that
any given component of V (p) can be put into the form x1 = x2 = · · · =
xk = 0 using a standard change of variables, provided V (p) is allowable.
(To avoid cumbersome notation, we renumber all the variables set to zero
as x1 through xk for our discussion that follows. We will return to the
original description to introduce the notion of pruning.)

Write the polynomial p(x) in the form

p(x) =
∑
λ∈Λ

cλxλ
[1:k]qλ

(
x[k+1:n]

)
, (2.8)

where, almost following MATLAB notation, we write x[1:k] :=(x1, . . . , xk),
x[k+1:n] :=(xk+1, . . . , xn). Also, we let Λ be the set of all multi-indices
λ :=(λ1, . . . , λk) occuring in the monomials of p(x).
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To determine all dominant terms associated with the component x1 =
x2 = · · · = xk = 0, consider the Newton polytope P of the polynomial
p with respect to the variables x1 through xk only, i.e., the convex hull
of the exponent vectors λ ∈ Λ (see, e.g., p. 71 of Miller and Sturmfels
(2005)). Next, consider the normal fan N(P ) of P (see pp. 192–193 of
Ziegler (1995)) consisting of the cones of all row vectors η from the dual
space (Rk)∗ whose dot products with x ∈ P are maximal for x on a fixed
face of P . That means that for every nonempty face F of P we take

NF :={η = (n1, . . . , nk) ∈ (Rk)∗ :
F ⊆ {x ∈ P : ηx(:=

∑k
j=1 njxj) = maxy∈P ηy}}

and

N(P ) :={NF : F is a face of P}.

Finally, consider the intersection of the negative of the normal fan−N(P )
and the nonnegative quadrant (Rk)∗+. This splits the first quadrant (Rk)∗+
into several regions SΛj

according to which subsets Λj of exponents λ “dom-
inate” close to the considered component of the variety V (p), in the fol-
lowing sense:

Definition 2.13 Let Λj be a subset of Λ that determines a face of the
Newton polytope P of p such that the negative of its normal cone −N(P )
intersects (Rk)∗+ nontrivially (not only at the origin). Define SΛj

∈ (Rk)∗+
to be the set of all nonnegative row vectors η such that

ηλ1 = ηλ2 < ηλ, ∀λ1, λ2 ∈ Λj , and λ ∈ Λ \ Λj .

Note that if x1 through xk are small, then the exponential change of
variables xj �→ − log |xj | gives rise to a correspondence between the non-
negative part of −N(P ) and the space of original variables x[1:k]. We map
back the sets SΛj

into a neighborhood of 0 in Rk by lifting.1

Definition 2.14 Let FΛj
⊆ [−1, 1]k be the set of all points x[1:k] ∈ Rk such

that

η :=(− log |x1|, . . . ,− log |xk|) ∈ SΛj
.

Remark 2.7 For any j, the closure of FΛj
contains the origin in Rk.

Remark 2.8 Given a point x[1:k] ∈ FΛj
, and given η = (n1, n2, . . . , nk) ∈

SΛj
, for any t ∈ (0, 1), the vector (x1t

n1 , . . . , xktnk ) is in FΛj
. Indeed,

1 This is reminiscent of the concept of an amoeba introduced in Gelfand, Kapranov,
and Zelevinsky (1994).
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if (− log |x1|, . . . ,− log |xk|) ∈ SΛj
, then so is (− log |x1|, . . . ,− log |xk|) −

log |t|η, since all equalities and inequalities that define SΛj
will be preserved,

the latter because log |t| < 0.

Example 2 Consider the following polynomial

p(x1, x2, x3) = x8
2x

12
3 + x2

1x
2
2x

16
3 + x8

1x
12
3 + x6

1x
14
2 + x10

1 x6
2x

4
3.

We show below the Newton polytope P of p with respect to the variables x1,
x2, its normal fan N(P ), the intersection −N(P ) ∩ R2

+, the regions SΛj
,

and the regions FΛj
.
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.

Definition 2.15 We define the dominant term of p(x) corresponding to
the component x1 = · · · = xk = 0 and the region FΛj

by

pdomj
(x) :=

∑
λ∈Λj

cλxλ
[1:k]qλ

(
x[k+1:n]

)
.

The following observations about dominant terms are immediate.

Lemma 2.4 Let η = (n1, . . . , nk) ∈ SΛj
and let dj :=

∑
λi∈Λj

λini. Let x0

be fixed and let

x(t) :=(x1(t), . . . , xn(t)), xj(t) :=
{

tnj x0
j j = 1, . . . , k,

x0
j , j = k + 1, . . . , n.

Then pdomj
(x(t)) has degree dj in t and is the lowest degree term of p(x(t))

in t, that is

p(x(t)) = pdomj
(x(t)) + o(tdj ) as t→ 0, degt pdomj

(x(t)) = dj .

Proof Follows directly from the definition of a dominant term.
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Corollary 2.6 Under the assumptions of Lemma 2.4 suppose that
pdomj

(x0) �= 0. Then

lim
t→0

pdomj
(x(t))

p(x(t))
= 1.

Thus pdomj
is the leading term along each curve traced by x(t) as t

tends to zero from above. An important question now is whether the dom-
inant term pdomj

indeed dominates the remaining terms of p in the region
FΛj

in the sense that pdomj
(x)/p(x) is close to 1 sufficiently close to the

component x1 = · · · = xk = 0 of the variety V (p). This requires, at a
minimum, that the variety V (pdomj

) does not have a component strictly
larger than the set x1 = · · · = xk = 0. Note that most dominant terms
of a polynomial actually fail this requirement. Indeed, most dominant
terms of p are monomials, which correspond to regions FΛj

indexed by
singletons Λj , hence to the vertices of the Newton polytope of p. The
dominant terms corresponding to larger sets Λj are more useful, since they
pick up terms relevant not only in the region FΛj

but also in its neigh-
borhood. In Example 2 above the dominant terms for F{(2,2),(8,0)} and
F{(2,2),(0,8)}, corresponding to the edges of the Newton polygon, are the
useful ones. This points to the fact that we should be ultimately inter-
ested only in dominant terms corresponding to the facets, i.e., the highest-
dimensional faces, of the Newton polytope of p. Note that the convex hull
of Λj is a facet of the Newton polytope N if and only if the set SΛj

is a
one-dimensional ray.

The next lemma will be instrumental for our results in Section 2.4.3.4.
It shows that each dominant term pdomj

such that the convex hull of Λj is
a facet of the Newton polytope of p and whose variety V (pdomj

) does not
have a component strictly larger than the set x1 = · · · = xk = 0 indeed
dominates the remaining terms in p in a certain “slice” F̃Λj around FΛj .

Lemma 2.5 Let pdomj be the dominant term of a homogeneous polynomial
p corresponding to the component x1 = · · · = xk = 0 of the variety V (p)
and to the set Λj whose convex hull is a facet of the Newton polytope N .

Let S̃Λj
be any closed pointed cone in (Rk)∗+ with vertex at 0 that does

not intersect other one-dimensional rays SΛl
, l �= j, and contains SΛj

\{0}
in its interior. Let F̃Λj

be the closure of the set{
x[1:k] ∈ [−1, 1]k : (− log |x1|, . . . ,− log |xk|) ∈ S̃Λj

}
. (2.9)

Suppose the variety V (pdomj
) of pdomj

is allowable and intersects F̃Λj
only

at 0. Let ‖ · ‖ be any norm. Then, for any δ = δ(j) > 0, there exists
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ε = ε(j) > 0 such that∣∣∣pdom j
(x[1:k ],x[k+1:n ])

p(x[1:k ],x[k+1:n ])
− 1

∣∣∣ < δ whenever ‖x[1:k ]‖
‖x[k+1:n ]‖ ≤ ε

and x[1:k] ∈ F̃Λj .
(2.10)

Proof We prove the lemma in the case F̃Λj
does not intersect nontrivially

any of the coordinate planes (the proof extends to the other case via limiting
arguments). Let ‖x[k+1:n]‖ = 1 and let x1 through xk be ±1. If η =
(n1, . . . , nk) ∈ S̃Λj , then, directly from the definition of the set F̃Λj , the
curve (tn1x1, . . . , t

nk xk), t ∈ (0, 1], lies in F̃Λj
(and every point in F̃Λj

lies on
such a curve). Denote (tn1x1, . . . , t

nk xk, x[k+1:n]) by x(t) and let t decrease
from 1 to 0, keeping the xm, m = 1, . . . , n, fixed. By the assumption of the
Lemma, pdomj

(x(t)) does not vanish for sufficiently small t > 0. Moreover,
by Lemma 2.4, pdomj

is the leading term of p in FΛj
. Since the cone S̃Λj

around SΛj
does not intersect any other one-dimensional rays SΛl

, l �= j, all
the monomials present in any term that dominates in F̃Λj

\FΛj
are already

present in pdomj
. Thus pdomj

contains all terms that dominate in F̃Λj
.

Therefore, there exists ε(x) > 0 such that |pdomj
(x(t))/p(x(t)) − 1| < δ

whenever t < ε(x). The function f : x → ε(x) is lower semicontinuous.
Since the set S :={x : xm = ±1, m = 1, . . . , k, ‖x[k+1:n]‖ = 1} is compact,
the minimum ε := min f(S) is necessarily positive and satisfies (2.10).

The above discussion of dominance was based on the transformation of
a given irreducible component of the variety to the form x1 = · · · = xk =
0. We must reiterate that the identification of dominant terms becomes
possible only after a suitable change of variables C is used to put a given
irreducible component into the standard form x1 = · · · = xk = 0 and then
the sets Λj are determined. Note however that the polynomial pdomj

is
given in terms of the original variables, i.e., as a sum of monomials in the
original variables xq and sums/differences xq ± xr. We will therefore use
the more precise notation pdomj ,C in the sequel.

Without loss of generality we can assume that any standard change of
variables has the form

x = (x[1:k1], x[k1+1:k2], . . . , x[kl−1+1:kl ]) �→
x̃ = (x̃[1:k1], x̃[k1+1:k2], . . . , x̃[kl−1+1:kl ]), where
x̃km +1 := xkm +1, x̃km +2 :=xkm +2 − σkm +2xkm +1, . . . ,

x̃km +1 := xkm +1 − σkm +1xkm +1 ,

k0 := 0, σr = ±1 for all pertinent r

(2.11)

Note also that we can think of the vectors η ∈ SΛj
as being indexed by

integers 1 through kl, i.e., η = (n1, . . . , nkl
). Moreover, to define pruning
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in the next subsection we will assume that

nkm +1 ≤ nr for all r = km + 2, . . . , km+1

and for all m = 0, . . . , l − 1.
(2.12)

Remark 2.9 This condition is trivially satisfied if nkm +1 = 0, as is the
case for any group xkm +1 = σkm +2xkm +2 = · · · = σkm +1xkm +1 of original
conditions that define the given irreducible component of V (p), since xkm +1

does not have to be close to 0 in the neighborhood of that component of V (p).
If, however, the same group of equalities was created from the original
conditions xkm +1 = xkm +2 = · · · = xkm +1 = 0 due to the particular change
of variables C, the condition (2.12) is no longer forced upon us. Yet (2.12)
can be assumed without loss of generality. Indeed, if, say, nkm +2 < nkm +1,
then we can always switch to another standard change of variables by taking
xkm +2 to be the representative of the group xkm +1, . . . , xkm +1 and taking
the sums/differences with xkm +2 as the other new variables. Also note
that (2.12) is satisfied either by all or by no vectors in SΛj

. In other
words, (2.12) is a property of the entire set SΛj

. So, with a slight abuse of
terminology we will say that a set SΛj

satisfies or fails (2.12).

Finally note that the curves (x(t)) corresponding to the change of vari-
ables (2.11) are described as follows:

x(t) :=(x[1:k1](t), x[k1+1:k2](t), . . . , x[kl−1+1:kl ](t), x[kl +1:n]), where
x[km +1:km +1](t) :=(tnkm +1xkm +1, t

nkm +2xkm +2 + σkm +2t
nkm +1 xkm +1, . . . ,

tnkm +1 xkm +1 + σkm +1t
nkm +1 xkm +1) where k0 := 1, m = 0, . . . , l.

(2.13)

This description will be instrumental in our discussion of pruning, which
follows immediately.

2.4.3.3 Pruning

Now we discuss how to convert an accurate algorithm that evaluates a
polynomial p into an accurate algorithm that evaluates a selected dominant
term pdomj ,C . This process, which we will refer to as pruning, will consist
of deleting some vertices and edges and redirecting certain other edges in
the DAG that represents the algorithm.

Definition 2.16 (Pruning) Given a non-branching algorithm represented
by a DAG for computing pcomp(x, δ), a standard change of variables C of
the form (2.11) and a subset Λj ∈ Λ satisfying (2.12), we choose any
η ∈ SΛj

, we input (formally) the expression (2.13), and then perform the
following process.
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We can perform one of two actions: redirection or deletion. By redi-
rection (of sources) we mean replacing an edge from a source node corre-
sponding to a variable xj to a computational node i by an edge from the
representative xrep of xj followed by exact negation if σj = −1. This corre-
sponds to replacing xj by the product σjxrep. To define deletion, consider
a node i with distinct input nodes j and k. Then deletion of node i from
node j means deleting the out-edge to node i from node j, changing the
origin of all out-edges from node i to input node k, and deleting node i.

Starting at the sources, we process each node as follows, provided that
both its inputs have already been processed (this can be done because of
acyclicity). Let the node being processed be node i, i.e., (op(·), δi), and
assume it has input nodes k and l. Both inputs being polynomials in t, we
determine the lowest degree terms in t present in either of them and denote
these degrees by deg(k) and deg(l).

if op(·) = · and one or both inputs are sources, then

redirect each source input.

if op(·) = ±, then

if deg(k) �= deg(l), say deg(k) > deg(l), delete input node i from
node k.

else If nodes k and l are sources and the operation op(·) leads to
cancellation of their lowest degree terms in t, examine their
second-lowest degree terms. If those degrees coincide or if
one second-lowest term is missing, we change nothing. If
one is bigger than the other, we do not change the source
containing the lower degree term in t, but redirect the other
source.
If only one of nodes k and l is a source or if both inputs are
sources but there is no cancellation of lowest degree terms,
redirect each source.

We then delete inductively all nodes which no longer are on any path to
the output.

We call this process pruning, and denote the output of the pruned algo-
rithm by pdomj ,C,comp(x, δ).

Remark 2.10 Note that the outcome of pruning does not depend on the
choice of η ∈ SΛj

. Since each region SΛj
is determined by linear homoge-

neous equalities and inequalities with integer coefficients, the vector η can
always be chosen to have all integer entries.
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Example 3 Figure 6 shows an example of pruning an algorithm that eval-
uates the polynomial

x2
1x

2
2 + (x2 − x3)4 + (x3 − x4)2x2

5

using the substitution

(tx1, x2, tx3 + x2, tx4 + x2, x5)

near the component

x1 = 0, x2 = x3 = x4.

Figure 6. Pruning an algorithm for p(x) = x2
1x

2
2 + (x2 − x3)4

+(x3 − x4)2x2
5.
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The result of pruning is an algorithm that evaluates the dominant term

x2
1x

2
2 + (x3 − x4)2x2

5.

One of two branches leading to the node A is pruned due to the fact that
it computes a quantity of order O(t4) whereas the other branch produces a
quantity of order O(t2).

The output of the original algorithm is given by((
x2

1(1 + δ1)x2
2(1 + δ2)(1 + δ3)

+ (x2 − x3)4(1 + δ4)4(1 + δ5)2(1 + δ6)
)
(1 + δ7)

+ (x3 − x4)2(1 + δ8)2(1 + δ9)x2
5(1 + δ10)(1 + δ11)

)
(1 + δ12).

The output of the pruned algorithm is(
x2

1(1 + δ1)x2
2(1 + δ2)(1 + δ3)

+ (x3 − x4)2(1 + δ8)2(1 + δ9)x2
5(1 + δ10)(1 + δ11)

)
(1 + δ12).

Let us prove that this process will indeed produce an algorithm that
accurately evaluates the corresponding dominant term.

Theorem 2.7 Suppose a non-branching algorithm evaluates a polynomial p

accurately on Rn by computing pcomp(x, δ). Suppose C is a standard change
of variables (2.11) associated with an irreducible component of V (p). Let
pdomj ,C be one of the corresponding dominant terms of p and let SΛj

sat-
isfy (2.12). Then the pruned algorithm defined in Definition 2.16 with out-
put pdomj ,C,comp(x, δ) evaluates pdomj ,C accurately on Rn. In other words,
being able to compute all such pdomj ,C for all components of the variety
V (p) and all standard changes of variables C accurately is a condition nec-
essary to compute p accurately.

Proof Directly from the definition of pruning it can be seen that the output
of each computational node is a homogeneous polynomial in t. This can be
checked inductively starting from computational nodes operating on two
sources, using the pruning rules. Moreover, the pruning rules are equivalent
to taking the lowest degree terms in t (as well as setting some δs to zero).
This can be checked inductively as well, once we rule out the situation
when a ± node in the original algorithm leads to exact cancellation of
lowest degree terms of the inputs, and at least one of the inputs is not a
source. Indeed, in that case one of the inputs contains a factor (1 + δ) and
that δ by acyclicity is not present in the other input. Therefore no exact
cancellation of lowest degree terms can occur.



80 James Demmel, Ioana Dumitriu, and Olga Holtz

Thus, the final output pdomj ,C,comp(x, δ) of the pruned algorithm takes
the lowest degree terms in t of the final output of the original algorithm, so
pdomj ,C,comp(x, δ) is homogeneous in t (of degree dj = ηλ =

∑
λini). We

write

pcomp(x, δ)− p(x)
p(x)

=
∑
α

pα(x)
p(x)

δα,

pdomj ,C,comp(x)− pdomj ,C(x)
pdomj ,C(x)

=
∑
α

pα,domj ,C(x)
pdomj ,C(x)

δα.

Note that, in eliminating nodes and redirecting the out-edges in the pruning
process, we do the equivalent of setting some of the δs to 0, and hence the
set of monomials δα present in the second sum is a subset of the set of
monomials δα present in the first sum.

Indeed, first of all, we can focus on the effect of deleting some nodes,
since redirection does not affect δs at all, because only sources can be redi-
rected. So, if δα appears in the second sum, there is a path which yields
the corresponding multi-index, on which some term in pα,domj ,C(x) is com-
puted. But since this path survived the pruning, there is a corresponding
path in the original DAG which perhaps has a few more nodes that have
been deleted in the pruning process and a few source nodes that were redi-
rected. In the computation, the effect of deleting a node was to set that
δ equal to 0 (and make some terms of higher degree disappear). So the
surviving term was also present in the computation of pcomp(x, δ), with the
same multi-index: just choose the 1 in the (1 + δ) each time when you hit
a node that will be deleted (i.e., whose δ will be set to 0).

Now note that pα,domj ,C(x) is the leading term of pα(x), i.e., the term of
smallest degree dj in t. This happens since each term of degree dj in pα(x)
must survive on the same path in the DAG, with the same choices of 1 in
(1 + δ) each time we hit a deleted node.

We can now prove that pdomj ,C,comp(x) is accurate. To do that, it is
enough to show that each pα,domj ,C(x)/pdomj ,C(x) is bounded, provided
that there is some constant M such that |pα(x)/p(x)| ≤M for all x.

Choose a point x = (x1, . . . , xn) not on the variety of pdomj ,C and con-
sider the curve traced by the associated point x(t) from (2.13) as t tends to
0. Since both pα,domj ,C(x(t)) and pdomj ,C(x(t)) are homogeneous of degree
dj in t, we have∣∣∣∣pα,domj ,C(x)

pdomj ,C(x)

∣∣∣∣ =
∣∣∣∣pα,domj ,C(x(t))

pdomj ,C(x(t))

∣∣∣∣ = lim
t→0

∣∣∣∣pα,domj ,C(x(t))
pdomj ,C(x(t))

∣∣∣∣ .

Since both pα,domj ,C(x(t)) and pdomj ,C(x(t)) are the dominant terms in
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pα(x), respectively p(x), along the curve {x(t) : t→ 0}, we conclude that∣∣∣∣pα,domj ,C(x)
pdomj ,C(x)

∣∣∣∣ = lim
t→0

∣∣∣∣pα,domj ,C(x(t))
pdomj ,C(x(t))

∣∣∣∣ = lim
t→0

∣∣∣∣pα(x(t))
p(x(t))

∣∣∣∣ ≤M .

Invoking the density of the Zariski open set {x : pdomj ,C(x) �= 0}, we are
done.

2.4.3.4 Sufficiency of evaluating dominant terms

Our next goal is to prove a converse of a sort to Theorem 2.7. Strictly speak-
ing, the results that follow do not provide a true converse, since branching is
needed to construct an algorithm that evaluates a polynomial p accurately
from algorithms that evaluate its dominant terms accurately.

For the rest of this section, we make two assumptions, viz., that our
polynomial p is homogeneous and irreducible. The latter assumption effec-
tively reduces the problem to that of accurate evaluation of a nonnegative
polynomial, due to the following lemma.

Lemma 2.6 If a polynomial p is irreducible and has an allowable variety
V (p), then it is either a constant multiple of a linear form that defines an
allowable hyperplane or it does not change its sign in Rn.

Proof Suppose that p changes its sign. Then the sets {x : p(x) > 0}
and {x : p(x) < 0} are both open, hence the part of the variety V (p)
whose neighborhood contains points from both sets must have dimension
n−1. The only allowable sets of dimension n−1 are allowable hyperplanes.
Therefore, the linear polynomial that defines an allowable hyperplane must
divide p. As p is assumed to be irreducible, p must be a constant multiple
of the linear polynomial.

Thus, unless p is a constant multiple of a linear factor of the type xi or
xi ± xj , it must satisfy p(x) ≥ 0 for all x ∈ Rn or p(x) ≤ 0 for all x ∈ Rn.

From now on we therefore restrict ourselves to the nontrivial case when
a (homogeneous and irreducible) polynomial p is nonnegative everywhere
in Rn.

Theorem 2.8 Let p be a homogeneous nonnegative polynomial whose va-
riety V (p) is allowable. Suppose that all dominant terms pdomj ,C for all
components of the variety V (p), all standard changes of variables C and
all subsets Λj satisfying (2.12) are accurately evaluable. Then there exists
a branching algorithm that evaluates p accurately over Rn.
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Proof We first show how to evaluate p accurately in a neighborhood of each
irreducible component of its variety V (p). We next evaluate p accurately
off these neighborhoods of V (p). The final algorithm will involve branch-
ing depending on which region the input belongs to, and the subsequent
execution of the corresponding subroutine. We fix the relative accuracy η

that we want to achieve.
Consider a particular irreducible component V0 of the variety V (p). Us-

ing any standard change of variables C, say, a basic change of variables
associated with V0, we map V0 to a set of the form x̃1 = · · · = x̃k = 0.
Our goal is to create an ε-neighborhood of V0 where we can evaluate p

accurately. It will be built up from semialgebraic ε-neighborhoods. We
begin with any set S containing a neighborhood V0, say, we let S coin-
cide with [−1, 1]k × Rn−k after the change of variables C. We partition
the cube [−1, 1]k into sets F̃Λj

of type (2.9) as follows: We consider, as in
Section 2.4.3.2 above, the Newton polytope P of p, form the intersection
of the negative of its normal fan −N(P ) with the nonnegative quadrant
Rk

+ (in the new coordinate system), and determine the sets SΛj
. If con-

dition (2.12) fails for some of the sets SΛj
, we transform them using a

suitable standard change of variables as described in Remark 2.9 so as to
meet condition (2.12). For the rest of the argument, we can assume that
all sets SΛj

satisfy (2.12).
To form conic neighborhoods of one-dimensional rays of −N(P ) ∩ Rk

+

(which are normal to facets of the Newton polytope), we intersect −N(P )∩
Rk

+ with, say, the hyperplane x̃1 + · · ·+ x̃k = 1. Perform the Voronoi tes-
selation (see, e.g., Ziegler (1995)) of the simplex x̃1 + · · ·+ x̃k = 1, x̃j ≥ 0,
j = 1, . . . , k relative to the intersection points of −N(P ) ∩ Rk

+ with the
hyperplane x̃1 + · · · + x̃k = 1. Connecting each Voronoi cell of the tes-
selation to the origin x̃1 = · · · x̃k = 0 by straight rays, we obtain cones
S̃Λj

and the corresponding sets F̃Λj
of type (2.9). Note that the Voronoi

cells and therefore the cones S̃Λj
are determined by rational inequalities

since the tesselation centers have rational coordinates. Hence the sets F̃Λj

are semialgebraic, and moreover are determined by polynomial inequalities
with integer coefficients. Indeed, even though the sets F̃Λj are defined using
logarithms, the resulting inequalities are among powers of absolute values
of the variables and/or their sums and differences. For example, if a partic-
ular set F̃Λj

is described by the requirement that (− log |x1|,− log |x2|) lie
between two lines through the origin, with slopes 1/2 and 2/3, respectively,
this translates into the condition |x2|4 ≤ |x1|2 ≤ |x2|3.

Now consider a particular “slice” F̃Λj
and the dominant term pdomj ,C .

By Theorem 2.7, the dominant term pdomj ,C must be accurately evaluable
everywhere. Hence, in particular, its variety V (pdomj ,C) must be allowable.
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Since the polynomial p vanishes on V0, the dominant term pdomj ,C must
vanish on V0 as well. So, there are two possibilities: V (pdomj ,C)∩F̃Λj

either
coincides with V0 or is strictly larger.

In the first case we apply Lemma 2.5 to show that we can evaluate p

accurately in F̃Λj
sufficiently close to V0, as follows: Since the polynomial

pdomj ,C is accurately evaluable everywhere, for any number ηj > 0 there
exists an algorithm with output pdomj ,C,comp such that |pdomj ,C,comp −
pdomj ,C |/|pdomj ,C | < ηj everywhere. Next, by Lemma 2.5, for any δj > 0
there exists εj > 0 such that (2.10) holds. Choose ηj and δj so that

ηj(1 + δj) + δj < η.

Then we have∣∣∣∣pdomj ,C,comp − p

p

∣∣∣∣ ≤ |pdomj ,C,comp − pdomj ,C |+ |pdomj ,C − p|
|p|

=
|pdomj ,C,comp − pdomj ,C |

|pdomj ,C |
·
|pdomj ,C |
|p| +

|pdomj ,C − p|
|p|

≤ ηj(1 + δj) + δj < η

in the εj-neighborhood of V0 within the set F̃Λj . Therefore, p can be
evaluated by computing pdomj ,C,comp to accuracy η in the εj-neighborhood
of V0 within F̃Λj

.
In the second case V (pdomj ,C) has an irreducible component, say, W0,

that is strictly larger than V0 and intersects F̃Λj
nontrivially. Since

V (pdomj ,C) is allowable, it follows from Definition 2.12 that there exists
a standard change of variables C1 associated with V0 that maps W0 to a
set x̃1 = · · · = x̃l = 0, l < k. Use that change of variables and consider
the new Newton polytope and dominant terms. Since the polynomial p

is positive in S \ V0, there are terms in p that do not contain variables
x̃1 through x̃l. Therefore each new pdomr ,C1 picks up some of those non-
vanishing terms. Hence the (allowable) varieties V (pdomr ,C1) have irre-
ducible components strictly smaller than W0 (but still containing V0). So,
we can subdivide the set F̃Λj further using the sets F̃Λr coming from the
change of variables C1 and the resulting dominant terms will vanish on
a set strictly smaller than W0. In this fashion, we refine our subdivision
repeatedly until we obtain a subdivision of the original set S into semial-
gebraic pieces (Sj) such that the associated dominant terms pdomj

vanish
in Sj only on V0. Applying Lemma 2.5 in each such situation, we con-
clude that p can be evaluated accurately sufficiently close to V0 within each
piece Sj .

For each V0, we therefore can find a collection (Sj) of semialgebraic sets,
all determined by polynomial inequalities with integer coefficients, and the
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corresponding numbers εj , so that the polynomial p can be evaluated with
accuracy η in each εj-neighborhood of V0 within the piece Sj . Note that
we can assume that each εj is a reciprocal of an integer, so that testing
whether a particular point x is within εj of V0 within Sj can be done by
branching based on polynomial inequalities with integer coefficients.

The final algorithm will be organized as follows. Given an input x,
determine by branching whether x is in Sj and within the corresponding
εj of a component V0. If that is the case, evaluate p(x) using the algorithm
that is accurate in Sj in that neighborhood of V0. For x not in any of
the neighborhoods, evaluate p by Horner’s rule. Since the polynomial p is
strictly positive off the neighborhoods of the components of its variety, the
reasoning of Section 2.3 applies, showing that the Horner’s rule algorithm
is accurate. If x is on the boundary of a set Sj , any applicable algorithm
will do, since the inequalities we use are not strict. Thus the resulting
algorithm for evaluating p will have accuracy η as required.

2.4.3.5 Obstacles to full induction

The reasoning above suggests that there could be an inductive decision pro-
cedure that would allow us to determine whether or not a given polynomial
is accurately evaluable by reducing the problem for the original polynomial
p to the same problem for its dominant terms, then their dominant terms,
and so forth, going all the way to monomials or other polynomials that
are easy to analyze. However, this idea would only work if the dominant
terms were somehow “simpler” than the original polynomial itself. This
approach would require an induction variable that would decrease at each
step.

Two possible choices are the number of variables or the degree of the
polynomial under consideration. Sometimes, however, neither of the two
goes down, and moreover, the dominant term may even coincide with the
polynomial itself. For example, if

p(x) = A(x[3:n])x2
1 + B(x[3:n])x1x2 + C(x[3:n])x2

2

where A, B, C are nonnegative polynomials in x3 through xn, then the
only useful dominant term of p in the neighborhood of the set x1 = x2 = 0
is the polynomial p itself. Thus no progress whatsoever is made in this
situation.

Another possibility is induction on domains but we do not yet envision
how to make this idea precise, since we do not know exactly when a given
polynomial is accurately evaluable on a given domain.
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Further work to establish a full decision procedure is therefore highly
desirable.

2.5 “Black-box” arithmetic

In this section we prove a necessary condition (for both the real and the
complex cases) for a more general type of arithmetic, which allows for
“black-box” polynomial operations. We describe the type of operations
below.

Definition 2.17 We call a black-box operation any type of operation that
takes a number of inputs (real or complex) x1, . . . , xk and produces an out-
put q such that q is a polynomial in x1, . . . , xk.

Example 4 q(x1, x2, x3) = x1 + x2x3.

Remark 2.11 Note that +,−, and · are all black-box operations.

Consider a fixed set of multivariate polynomials {qj : j ∈ J} with real or
complex inputs (this set may be infinite). In our model under consideration,
the arithmetic operations allowed are given by the black-box operations
q1, . . . , qk, and negation (which will be dealt with by way of dotted edges,
as in Section 2.4). With the exception of negation, which is exact, all the
others yield a rnd(op(a1, . . . , al)) = op(a1, . . . , al)(1 + δ), with |δ| < ε (ε
here is the machine precision). All arithmetic operations have unit cost.
We consider the same arithmetical models as in Section 2.2.7, with this
larger class of operations.

2.5.1 Necessity: real and complex

In order to see how the statement of the necessity Theorem 2.3 changes,
we need to introduce a different notion of allowability.

Recall that we denote by S the space of variables (which may be either
Rn or Cn). From now on we will denote the set {1, . . . , n} by A.

Definition 2.18 Let p(x1, . . . , xn) be a multivariate polynomial over S
with variety V (p). Let AZ ⊆ A, and let AD,AS ⊆ A × A . Modify p as
follows: impose conditions of the type Zi for each i ∈ AZ , and of type Dij,
respectively Sij, on all pairs of variables in AD, respectively AS. Rewrite
p subject to those conditions (e.g. set Xi = 0 for all i ∈ AZ), and denote
it by p̃, and denote by AR the set of remaining independent variables (use
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the convention which eliminates the second variable in each pair in AD or
AS).

Choose a set T ⊆ AR, and let

VT,AZ ,AD ,AS
(p) = ∩αV (qα) ,

where the polynomials qα are the coefficients of the expansion of p̃ in the
variables xT :

p̃(x1, . . . , xn) =
∑
α

qαxα
T ,

with qα being polynomials in xAR \T only.
Finally, let AN be a subset of AR \ T . We negate each variable in AN ,

and let VT,AZ ,AD ,AS ,AN
(p) be the variety obtained from VT,AZ ,AD ,AS

(p),
with each variable in AN negated.

Remark 2.12 V∅,∅,∅,∅,∅(p) = V (p). We also note that, if we have a black-
box computing p, then the set of all polynomials p̃ that can be obtained from
p by permuting, repeating, and negating the variables (as in the definition
above) is exactly the set of all polynomials that can be evaluated with a

single rounding error, using that black box.

Definition 2.19 For simplicity, we denote a set (T,AZ ,AD,AS ,AN ) by
I, and a set (T,AZ ,AD,AS) by I+.

Example 5 Let p(x, y, z) = x + y · z (the fused multiply-add). We record
below all possibilities for I = (T,AZ ,AD,AS,AN ), together with the ob-
tained subvariety VI(p).

Without loss of generality, assume that we have eliminated all redundant
or complicated conditions, like (x, y) ∈ AD and (x, y) ∈ AS (which im-
mediately leads to x = y = 0, that is, x, y ∈ AZ). We assume thus that
all variables not present in AZ cannot be deduced to be 0 from conditions
imposed by AD or/and AS.

We obtain that all possibilities for VI(p) are, up to a permutation of the
variables,

� {x = 0}, {x = 1}, {x = −1},
� {x = 0} ∪ {x = 1}, {x = 0} ∪ {x = −1},
� {x = 0} ∪ {y = 0}, {x = 0} ∪ {y = 1}, {x = 0} ∪ {y = −1},
� {x = −y2}, {x = y2}, {x− y · z = 0}, and {x + y · z = 0}.

Definition 2.20 We define q−2(x1, x2) = x1x2, q−1(x1, x2) = x1 +x2, and
q0(x1, x2) = x1 − x2.
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Remark 2.13 The sets

1. Zi = {x : xi = 0}, (2.14)

2. Sij = {x : xi + xj = 0}, (2.15)

3. Dij = {x : xi − xj = 0}, (2.16)

and unions thereof, describe all non-trivial (neither ∅ nor S) sets of type
VI , for q−2, q−1, and q0.

We will assume from now on that the black-box operations q−2, q−1, q0

defined in 2.20, and some arbitrary extra operations qj , with j ∈ J (J may
be infinite) are given and fixed.

Definition 2.21 We call any set VI(qj) with I = (T,AZ ,AD,AS,AN ) as
defined above and qj a black-box operation basic q-allowable.

We call any set R irreducible q-allowable if it is an irreducible component
of a (finite) intersection of basic q-allowable sets, i.e., when R is irreducible
and

R ⊆ ∩l Ql ,

where each Ql is a basic q-allowable set.
We call any set Q q-allowable if it is a (finite) union of irreducible q-

allowable sets, i.e.,

Q = ∪jRj ,

where each Rj is an irreducible q-allowable set.
Any set R which is not q-allowable we call q-unallowable.

Remark 2.14 Note that the above definition of q-allowability is closed un-
der taking union, intersection, and irreducible components. This parallels
the definition of allowability for the classical arithmetic case – in the clas-
sical case, every allowable set was already irreducible (being an intersection
of hyperplanes).

Once again, we need to build the setup to state and prove our new neces-
sity condition. To do this, we will modify the statements of the definitions
and the statements and proofs of the lemmas from Section 2.4.1. Since
most proofs just follow in the footsteps of those from Section 2.4.1, instead
of repeating them, we will only point out the places where they differ and
show how we modified them to work in the new context.
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Definition 2.22 Given a polynomial p with q-unallowable variety V (p),
consider all sets W that are q-allowable (as in Definition 2.21), and subtract
from V (p) those W for which W ⊂ V (p). We call the remaining subset of
the variety points in general position and denote it by G(p).

Remark 2.15 Since V (p) is q-unallowable, G(p) is non-empty.

Definition 2.23 Given x ∈ S, define the set q−Allow(x) as the intersec-
tion of all basic q-allowable sets going through x:

q−Allow(x) :=∩j∈J∪{−2,−1,0}
(
∩I : x∈Vı(qj ) VI(qj)

)
,

for all possible choices of T,AZ ,AD,AS ,AN .
The intersection in parentheses is S whenever x /∈ VI(qj) for all possible

I.

Remark 2.16 When x ∈ G(p), q−Allow(x) �⊆ G(p).

We can now state our necessity condition.

Theorem 2.9 Given the black-box operations q−2, q−1, q0, and {qj : j ∈ J},
and the model of arithmetic described above, let p be a polynomial defined
over a domain D ⊂ S. Let G(p) be the set of points in general position
on the variety V (p). If there exists x ∈ D ∩ G(p) such that q−Allow(x) ∩
Int(D) �= ∅, then p is not accurately evaluable on D.

We proceed to the construction of the elements of the proof of Theo-
rem 2.9. The algorithm will once again be represented by a DAG with
input nodes, branching nodes, and output nodes. As in Section 2.4, for
simplicity in dealing with negation (since negation is exact), we will work
with solid edges, which convey a value unchanged, and dotted edges, which
indicate that negation of the conveyed quantity has occurred.

From now on, unless specified, we will consider only non-branching
algorithms.

We will continue to use the definition of a Zariski set (Definition 2.6) on a
hypercube in δ-space, and we work with the same definition of a non-trivial
computational node (recalled below).

Definition 2.24 For a given x ∈ S, we say that a computational node N

is of q-non-trivial type if its output is a nonconstant polynomial of δ.

Recall the notation Hε from Definition 2.9.
The equivalent of Proposition 2.10 becomes the following.
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Proposition 2.25 Given any algorithm, any ε > 0, and a point x in
G(p), there exists a Zariski open set ∆ ⊂ Hε such that no q-non-trivial
computational node has a zero output on the input x for all δ ∈ ∆.

Proof The proof of Proposition 2.25 follows the same path as that of
Proposition 2.10. To each q-non-trivial node corresponds a Zariski open
set in δ-space; there is a finite number of them, and their intersection
provides us with the Zariski open set we are looking for.

We will now state and sketch the proof of the equivalent of Lemma 2.1.

Lemma 2.7 For a given algorithm, x ∈ G(p), and ε > 0, exactly one of
the following holds:

1. there exists a Zariski open set ∆ ∈ Hε such that the value pcomp(x, δ)
computed by the algorithm is not zero when the algorithm is run with
source input x and errors δ ∈ ∆;

2. pcomp(y, δ) = 0 for all y ∈ q−Allow(x) and all δ ∈ Hε.

Proof of Lemma 2.7. Give x ∈ G(p), choose δ from the Zariski open set ∆
whose existence is given by Proposition 2.25. Either the output node is of
q-non-trivial type (in which case pcomp(x, ·) �= 0 and we are done) or the
output is a nonzero constant polynomial in δ (and again we are done) or
the output is the zero polynomial in δ. In this latter case, we trace back
all the zeros again, as in the proof of Lemma 2.1, and get a set of paths of
nodes that produced all 0.

Let us start from the last nodes on these paths and work our way up,
level after level. The last node on such a path is either a source, or a node
with all inputs from sources, or a node with at least one input which is
not a source and not 0 (and hence a polynomial in δ). In the former two
cases, we have traced back the zeros to basic q-allowable conditions. We
will show that this is also true for the latter case.

Lemma 2.8 If the last zero occurs at a node which computes a black-
box operation qj and which has some source inputs and some (nontrivial)
polynomial inputs, then the sources lie in some VI(qj) (and this constraint
causes the zero output of this node).

Proof of Lemma 2.8. Label the node Ñ (assume it corresponds to the
black-box qj) with output 0; then some inputs are sources, and some are
polynomials of δ (since this was the last node on the path, it has no zero
inputs). By the choice of δ, it follows that the output has to be the 0
polynomial in δ.
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Some of the non-source inputs to Ñ might come from the same nodes;
assume you have a total of l distinct nodes which input to Ñ (nonconstant)
polynomials of δ, and let I1(δ), I2(δ), . . . , Il(δ) denote these inputs. We will
need the following lemma.

Lemma 2.9 Since the DAG is acyclic, I1(δ), I2(δ), . . . , Il(δ) are alge-

braically independent polynomials in δ.

Proof of Lemma 2.9. Suppose there is some polynomial dependence
among I1(δ), . . . , Il(δ). Let N1, . . . , Nl be the nodes which have computed
I1(δ), . . . , Il(δ), and let δ1, δ2, . . . , δl be the specific δs at these nodes. Let
D1, . . . , Dl be the set of δs present (non-trivially) in the output of each
node, e.g., δi ∈ Di. At least one δi is not present in ∪i�=jDj ; other-
wise we get a cycle. But then Ii(δ) is algebraically independent from the
other inputs, i.e., there is some dependence among the inputs Ij(δ) with
j �= i. We use induction on the number of remaining inputs, and exclude
one input at a time, until we’re left with a contradiction. This proves
Lemma 2.9. �

Replace each Ii(δ) (or −Ii(δ)) in Y by the same dummy variable zi

(respectively −zi), for each i ∈ {1, . . . , l}. The variables zi are algebraically
independent by Lemma 2.9.

Denote by z the new vector of inputs to Ñ (both values and variables).
The value qj(z) = 0, regardless of the zis (since it was 0 regardless of the
δs and the zi are algebraically independent variables). It follows that the
constraints which place z on the variety of qj are twofold: they come from
constraints of the type Dij and Sij which describe the places where we
inputted the values zi, and they come from imposing conditions on the
other inputs, which are sources. Thus the constraints on z are of the form
VT,∅,AD ,AS ,AN

(qj)=: VI . This concludes the proof of Lemma 2.8. �

Now that we have shown that the last marked vertices all provide ba-
sic q-allowable conditions, we proceed by induction: we look at a “next”
marked vertex (here “next” means that all its marked ancestors have been
examined already). It has some zero inputs, some source inputs, some of
the inputs satisfy constraints of type Dij and Sij , and some of the inputs
are polynomial. From here on we proceed as in Lemma 2.8, and obtain a
set of new constraints to be imposed on the sources, of the type VI(qj),
which we will intersect with the rest of the constraints obtained so far.

At the end of the examinations, we have found a set of basic q-allowable
constraints which the sources must satisfy, i.e., a list of basic q-allowable
sets with the property that the sources lie in their intersection; the fact
that the sources satisfy these constraints is responsible for the zero output
at the end of the computation.
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It is not hard to see that in this case, once again, it follows that for all
y in q−Allow(x) and any δ ∈ ∆, the output is 0 (just as in Lemma 2.1).
Thus we have proved Lemma 2.7. �

From Lemma 2.7 we obtain the following corollary.

Corollary 2.7 For any algorithm, for any ε > 0, and any x ∈ G(p), exactly
one of the following holds: the relative error of computation, |pcomp−p|/|p|,
is either infinity at x for all δ in a Zariski open set or 1 at all points
y ∈ (q−Allow(x) \ V (p)) and all δ ∈ Hε.

We will now consider algorithms with or without branches.

Theorem 2.10 Given a (branching or non-branching) algorithm with out-
put function pcomp(·), x ∈ G(p), and ε > 0, then one of the following is
true:

1. there exists a set ∆1 ∈ Hε of positive measure such that pcomp(x, δ)
is nonzero whenever the algorithm is run with errors δ ∈ ∆1, or

2. there exists a set ∆2 ∈ Hε of positive measure such that for every δ ∈
∆2, there exists a neighborhood Nδ(x) of x such that for every y ∈
Nδ(x)∩ (q−Allow(x) \ V (p)), pcomp(y, δ) = 0 when the algorithm is
run with errors δ.

Remark 2.17 Just as before, this implies that, on a set of positive measure
in Hε, the relative accuracy of any given algorithm is either ∞ or 1.

Proof The proof is essentially the same as in Theorem 2.4; the only thing
that needs to be examined is the existence in q−Allow(x) \ V (p) of an
infinite sequence {yn} with yn → x.

We will make use of the following basic result in the theory of algebraic
varieties, which can for example be found as Theorem 1 in Section 6.1 of
Shafarevich (1994).

Result 2.11 If X and Y are polynomial varieties such that X ⊆ Y , then
dim(X) ≤ dim(Y ). If Y is irreducible and X ⊆ Y is a (closed) subvariety
with dim(X) = dim(Y ), then X = Y .

We write q−Allow(x) as a union of irreducible q-allowable components.
By the way we defined G(p), it follows that none of these components
is included in V (p); by Result 2.11, it follows that the intersection of any
irreducible q-allowable component P of q−Allow(x) with V (p) has a smaller
dimension than P .



92 James Demmel, Ioana Dumitriu, and Olga Holtz

Choose the (unique) irreducible component P that contains x; this com-
ponent must have dimension at least 1 (since if it contained only x, the
set {x} would be q-allowable, and hence we would have extracted it from
V (p), which is a contradiction with the fact that x ∈ G(p)). Since P \V (p)
has a smaller dimension than P , there must be some infinite sequence {yn}
in P \ V (p), i.e., in q−Allow(x) \ V (p), such that yn → x.

The rest of the argument goes through just as in Theorem 2.4.

Finally, as in Section 2.4.1, we have a corollary.

Corollary 2.8 Let p be a polynomial over S with unallowable variety V (p).
Given any algorithm with output function pcomp(·), a point x ∈ G(p), ε > 0,
and η < 1, there exists a set ∆x of positive measure arbitrarily close to x

and a set ∆ ∈ Hε of positive measure, such that |pcomp − p|/|p| is strictly
larger than η when computed at a point y ∈ ∆x with errors δ ∈ ∆.

The proof is based on the topology of S, and is identical to the proof of
Corollary 2.2; we choose not to repeat it.

Proof of Theorem 2.9. Follows immediately from Theorem 2.10 and Corol-
lary 2.8. �

2.5.2 Sufficiency: the complex case

In this section we obtain a sufficiency condition for the accurate evaluability
of a complex polynomial, given a black-box arithmetic with operations
q−2, q−1, q0 and {qj |j ∈ J} (J may be an infinite set).

Throughout this section, we assume our black-box operations include qc,
which consists of multiplication by a complex constant: qc(x) = c ·x. Note
that this operation is natural, and that most computers perform it with
relative accuracy.

We believe that the sufficiency condition we obtain here is sub-optimal
in general, but it subsumes the sufficiency condition we found for the basic
complex case with classical arithmetic {+,−, ·}.

We assume that the black-box polynomials defining the operations qj

with j ∈ J are irreducible.

Lemma 2.10 The varieties VI(qj) are irreducible for any j ∈ J and any
I as in Definition 2.18 if and only if all qj, j ∈ J are affine polynomials.

Proof If qj is an affine polynomial then any V(qj) is also affine, hence
irreducible over Cn. Conversely, if qj is not an affine polynomial, then by
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inputting a single value x for all the variables, we obtain a one-variable
polynomial of degree at least 2, which is necessarily reducible over Cn.

We state here the best sufficiency condition for the accurate evaluability
of a polynomial we were able to find in the general case, and a necessary
and sufficient condition for the all-affine black-box operations case.

Theorem 2.12 (General case) Given a polynomial p : Cn → C

with V (p) a finite union of intersections of hyperplanes Zi, Sij , Dij, and
varieties V (qj), for j ∈ J , then p is accurately evaluable.

Theorem 2.13 (Affine case) If all black-box operations qj, j ∈ J are
affine, then a polynomial p : Cn → C is accurately evaluable iff V (p) is
a union of intersections of hyperplanes Zi, Sij , Dij, and varieties VI(qj),
for j ∈ J and I as in Definition 2.18.

We will begin by proving Theorem 2.12. We will once again make use of
Theorem 2.6 and of Theorem 2.11.

Lemma 2.11 If V (p) is as in Theorem 2.12, then V (p) is a simple finite
union of hyperplanes Zi, Sij , Dij and varieties V (qj) (with no intersec-
tions).

Proof Indeed, if that were not the case, then some irreducible q-allowable
component P of V (p) would be an intersection of two or more sets described
in Theorem 2.12. If P were contained in the intersection of two or more
(distinct) hyperplanes, its dimension would be smaller than n− 2, and we
would get a contradiction to Theorem 2.6.

Suppose now that P was contained in the intersection of a V (qj) with
some other variety or hyperplane. All such varieties, by Theorem 2.6, must
have dimension n − 1, and since all such varieties and hyperplanes are
irreducible, by Result 2.11, their intersection must have dimension strictly
smaller than n − 2. Contradiction; we have thus proved that the variety
V (p) is a simple union of hyperplanes Zi, Dij , Sij , and varieties V (qj).

Corollary 2.9 If p : Cn → C is a polynomial whose variety V (p) is q-
allowable, then it is a product p = c

∏
j pj, where each pj is a power of xi,

(xi − xj), (xi + xj), or qj, and c is a complex constant.

Proof By Lemma 2.11, the variety V (p) is a union of basic q-allowable
hyperplanes and varieties V (qj).
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Choose an irreducible q-allowable set in the union. If this set is a hy-
perplane, then by following the same argument as in Corollary 2.4, we
obtain that p factors into some p̃ and some power of either xi, (xi − xj),
or (xi + xj).

Suppose now that the irreducible q-allowable set were a variety V (qj);
since p is 0 whenever qj is 0 and qj is irreducible, it follows that qj divides
p. We factor then p into the largest power of qj which divides it, and some
other polynomial p̃.

In either of the two cases, we proceed by factoring p̃ in the same fashion,
until we encounter a polynomial p̃ of degree 0. That polynomial is the
constant c.

Proof of Theorem 2.12. By Corollary 2.4, p = c
∏

j pj , with each pj a power
of xk, (xk ± xl), or ql.

Since each of the factors is accurately evaluable, the algorithm that forms
their product evaluates p accurately. Multiplication by c (corresponding to
the black-box qc) is also accurate, hence p is accurately evaluable. �

The proof of Theorem 2.13 follows the path described above; we sketch
it here.

Proof of Theorem 2.13. The key fact in obtaining this condition is the irre-
ducibility of all sets VI(qj), which is guaranteed by Lemma 2.10, together
with the result of Lemma 2.11. Once again, we can write the polyno-
mial as a product of powers of xi, (xi ± xj), or VI(qj), times a constant;
this takes care of the sufficiency part, while the necessity follows from
Theorem 2.9. �

Remark 2.18 Note that Theorem 2.13 is a more general necessary and suf-
ficient condition than Theorem 2.5, which only considered having q−2, q−1,
and q0 as operations, and restricted the polynomials to have integer coeffi-
cients (thus eliminating the need for qc).

2.6 Accurate Linear Algebra in Rounded Arithmetic

Now we describe implications of our results to the question of whether
we can accurately do numerical linear algebra on structured matrices. By
a structured matrix we mean a family of n-by-n matrices M whose en-
tries Mij(x) are simple polynomial or rational functions of parameters x.
Typically there are only O(n) parameters, and the polynomials Mij(x)
are closely related (for otherwise little can be said). Typical examples
include Cauchy matrices (Mij(x, y) = 1/(xi + yj)), Vandermonde
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matrices (Mij(x) = xj−1
i ), generalized Vandermonde matrices (Mij(x) =

x
j−1+λj

i , where the λj are a nondecreasing sequence of nonnegative inte-
gers), Toeplitz matrices (Mij(x) = xi−j), totally positive matrices (where
M is expressed as a product of simple nonnegative bidiagonal matrices
arising from its Neville factorization), acyclic matrices, suitably discretized
elliptic partial differential operations, and so on [Demmel (2002), Dem-
mel and Koev (2004a), Demmel and Koev (2001), Demmel, Gu, Eisenstat,
Slapničar, Veselić, and Z. Drmač (1999), Demmel (1999), Demmel and
Koev (2004b), Demmel and Koev (2005b), Demmel and Koev (2005a),
Koev (2004), Koev (2005)].

It has been recently shown that all the matrices on the above list (ex-
cept Toeplitz and non-totally-positive generalized Vandermonde matrices)
admit accurate algorithms in rounded arithmetic for many or all of the
problems of numerical linear algebra:

• computing the determinant
• computing all the minors
• computing the inverse
• computing the triangular factorization from Gaussian elimination, with

various kinds of pivoting
• computing eigenvalues
• computing singular values

We have gathered together these results in Table 2.1.

[1]: Demmel, Gu, Eisenstat, Slapničar, Veselić, and Z. Drmač (1999)
[2]: Dopico, Molera, and Moro (2003)
[3]: O’Cinneide (1996)
[4]: Attahiru, Junggong, and Ye (2002a)
[5]: Attahiru, Junggong, and Ye (2002b)
[6]: Demmel and Koev (2001)
[7]: Demmel and Koev (2004b)
[8]: Demmel (1999)
[9]: Demmel and Koev (2005b)
[10]: Higham (1990)
The proliferation of these accurate algorithms for some but not all matrix

structures motivates us to ask for which structures they exist.
To convert this to a question about polynomials, we begin by noting that

being able to compute the determinant accurately is a necessary condition
for most of the above computations. For example, if the diagonal entries
of a triangular factorization of A, or its eigenvalues, are computable with
small relative error, then so is their product, the determinant.
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Table 2.1. General Structured Matrices

Any Sym
Type of matrix det A A−1 minor LDU SVD EVD

Acyclic n n2 n ≤ n2 n3 N/A
(e.g., bidiagonal) [1] [1] [1] [1] [1]

Total Sign n n3 n n4 n4 n4

Compound [1] [1] [1] [1] [1] [2]

Diagonally Scaled n3 n5 n3 n3 n3 n3

Totally Unimodular [1] [1] [1] [1] [2]

Weakly diagonally n3 n3 No n3 n3 n3

dominant M-matrix [3] [4,5] [6] [7] [7] [2]

Dis- Cauchy n2 n2 n2 ≤ n3 n3 n3

place- [8] [8] [2]
ment Vandermonde n2 No No No n3 n3

Rank [6] [6] [6] [8,9] [2]
One Polynomial n2 No No No ∗ ∗

Vandermonde [10] 2.6.1 2.6.1 2.6.1 [9] [2]

It is also true that being able to compute all the minors accurately
is a sufficient condition for many of the above computations. For the
inverse and triangular factorization, this follows from Cramer’s rule and
Sylvester’s theorem, resp., and for the singular values an algorithm is de-
scribed in Demmel, Gu, Eisenstat, Slapničar, Veselić, and Z. Drmač (1999),
Demmel and Koev (2001).

Thus, if the determinants pn(x) = detMn×n(x) of a class of n-by-n
structured matrices M do not satisfy the necessary conditions described in
Theorem 2.9 for any enumerable set of black-box operations (perhaps with
other properties, like bounded degree), then we can conclude that accurate
algorithms of the sort described in the above citations are impossible.

In particular, to satisfy these necessary conditions would require that
the varieties V (pn) be allowable (or q-allowable). For example, if V is a
Vandermonde matrix, then det(V ) =

∏
i<j(xi−xj) satisfies this condition,

using only subtraction and multiplication.
The following theorem states a condition which guarantees the impossi-

bility of an algorithm using any enumerable set of black-box operations of
bounded degree:

Theorem 2.14 Let M(x) be an n-by-n structured complex matrix with
determinant pn(x) as described above. Suppose pn(x) has an irreducible
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factor p̂n(x) whose degree goes to infinity as n goes to infinity. Then for
any enumerable set of black-box arithmetic operations of bounded degree,
for sufficiently large n it is impossible to accurately evaluate pn(x) over the
complex numbers.

Proof Let q1, . . . , qm be any finite set of black-box operations. To obtain
a contradiction, suppose the complex variety V (pn) satisfies the necessary
conditions of Theorem 2.9, i.e., that V (pn) is allowable. This means that
V (pn), which includes the hypersurface V (p̂n) as an irreducible component,
can be written as the union of irreducible q-allowable sets (by Def. 2.21).
This means that V (p̂n) must itself be equal to an irreducible q-allowable
set (a hypersurface), since representations as unions of irreducible sets are
unique. The irreducible q-allowable sets of codimension 1 are defined by
single irreducible polynomials, which are in turn derived by the process of
setting variables equal to one another, to one another’s negation, or zero
(as described in Defs. 2.18 and 2.21), and so have bounded degree. This
contradicts the unboundedness of the degree of V (p̂n).

In the next theorem we apply this result to the set of complex Toeplitz
matrices. We use the following notation. Let T be an n-by-n Toeplitz
matrix, with xj on the j-th diagonal, so x0 is on the main diagonal, xn−1

is in the top right corner, and x1−n is in the bottom left corner.

Theorem 2.15 The determinant of a Toeplitz matrix T is irreducible over
any field.

Corollary 2.10 The determinants of the set of complex Toeplitz matrices
cannot be evaluated accurately using any enumerable set of bounded-degree
black-box operations.

Proof of Theorem 2.15. We use induction on n. We note that det T depends
on every variable xj , because det T includes the monomials ±xn−j

j xj
j−n

for j > 0, as well as xn
0 , and these monomials contain the maximum

powers of xj and xj−n appearing in the determinant. Now xn−1 ap-
pears exactly once in T , so det T must be an affine function of xn−1, say
det T = xn−1 ·p1n+p2n. By expanding det T along the first row or column,
we see that p1n is itself the determinant of a Toeplitz matrix with diago-
nals x1−n, . . . , xn−3, and p2n depends on x1−n, . . . , xn−2 but not xn−1. If
det T = xn−1 · p1n + p2n were reducible, its factorization would have to
look like xn−1 · p1n + p2n = (xn−1 · p3n + p4n)p5n, where all the subscripted
p polynomials are independent of xn−1, implying either that p1n = p3np5n
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were reducible, a contradiction by our induction hypothesis, or p3n = 1
and so p1n|p2n. Now we can write p2n = x2

n−2q1n + xn−2q2n + q3n where
q1n �= 0, since det T includes the monomial ±x2

n−2x
n−2
−2 and no higher pow-

ers of xn−2. Furthermore q1n is independent of xn−1, xn−2 and xn−3, and
q2n and q3n are independent of xn−1 and xn−2. Since p1n is independent of
xn−2, the only way we could have p1n|p2n is to have p1n|q1n, p1n|q2n, and
p1n|q3n. But since p1n depends on xn−3 and q1n is independent of xn−3,
this is a contradiction. So the determinant of a Toeplitz matrix must be
irreducible. �

In the real case, irreducibility of pn is not enough to conclude that pn

cannot be evaluated accurately, because VR(pn) may still be allowable (and
even vanish). So we consider another necessary condition for allowability:
Since all black-boxes have a finite number of arguments, their associated
codimension-1 irreducible components must have the property that whether
x ∈ VI(qj) depends on only a finite number of components of x. Thus to
prove that the hypersurface VR(pn) is not allowable, it suffices to find at
least one regular point x∗ in VR(pn) such that the tangent hyperplane at x∗

is not parallel to sufficiently many coordinate directions, i.e., membership
in VR(pn) depends on more variables than any VI(qj). This is easy to do
for real Toeplitz matrices.

Theorem 2.16 Let V be the variety of the determinant of real singular
Toeplitz matrices. Then V has codimension 1, and at almost all regular
points, its tangent hyperplane is parallel to no coordinate directions.

Corollary 2.11 The determinants of the set of real Toeplitz matrices can-
not be evaluated accurately using any enumerable set of bounded-degree
black-box operations.

Proof of Theorem 2.16. Let Toep(i, j) denote the Toeplitz matrix with
diagonal entries xi through xj ; thus Toep(i, j) has dimension (j − i)/2 +
1. Let U be the Zariski open set where det Toep(i, j) �= 0 for all 1 −
n ≤ i ≤ j < n − 1 and j − i even. Then det T is a nonconstant affine
function of xn−1, and so for any choice of x1−n, . . . , xn−2 in U , det T

is zero for a unique choice of xn−1. This shows that VR(det T ) has real
codimension 1.

Furthermore, det T has highest order term in each xi, 0 < i ≤ n − 1,
equal to ±Toep(1− n, 2i− n− 1)xn−i

i , i.e., with nonzero coefficient on U .
It also has the highest order term in each xi, 1 − n ≤ i < 0, equal to
±Toep(n + 2i + 1, n− 1)xn+i

i , i.e., with nonzero coefficient on U . Finally,
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the highest order term in x0 is xn
0 , with coefficient 1. Thus the gradient

of det T has all nonzero components on a Zariski open set, and whether
det T = 0 depends on all variables. �

2.6.1 Vandermonde matrices and generalizations

In this section we will explain the entries filled “No” in Table 2.1. First we
will show that polynomial Vandermonde matrices do not have algorithms
for computing accurate inverses, by proving that certain minors needed in
the expression cannot be accurately computed (this will also explain the
“No” in the Any minor column). Finally, we will show that the LDU
factorization for polynomial Vandermonde matrices cannot be computed
accurately.

First we consider the class of generalized Vandermonde matrices V ,
where Vij = Pj−1(xi) is a polynomial function of xi, with 1 ≤ i, j ≤ n.
This class includes the standard Vandermonde (where Pj−1(xi) = xj−1

i )
and many others.

Consider a generalized Vandermonde matrix where Pj−1(xi) = x
j−1+λj

i

with 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn. The tuple λ = (λ1, λ2, . . . , λn) is called
a partition. Any square submatrix of such a generalized Vandermonde
matrix is also a generalized Vandermonde matrix. A generalized Vander-
monde matrix is known to have determinant of the form sλ(x)

∏
i<j(xi−xj)

where sλ(x) is a polynomial of degree |λ| =
∑

i λi, and called a Schur func-
tion [MacDonald (1995)]. In infinitely many variables (not our situation)
the Schur function is irreducible [Farahat (1958)], but in finitely many
variables, the Schur function is sometimes irreducible and sometimes not
[Stanley (1999), Exer. 7.30]. But there are irreducible Schur functions of
arbitrarily high degree. Thus we conclude by Theorem 2.14 that no enu-
merable set of black-box operations of bounded degree can compute all
Schur functions accurately when the xi are complex.

If we restrict the domain D to be nonnegative real numbers, then the sit-
uation changes: The nonnegativity of the coefficients of the Schur functions
shows that they are positive in D, and indeed the generalized Vandermonde
matrix is totally positive [Karlin (1968)]. Combined with the homogeneity
of the Schur function, Theorem 2.2 implies that the Schur function, and
so determinants (and minors) of totally positive generalized Vandermonde
matrices can be evaluated accurately in classical arithmetic. For accurate
algorithms that are more efficient than the one in Theorem 2.2, see Demmel
and Koev (2005c).

Now consider a polynomial Vandermonde matrix VP defined by a family
{Pk(x)}k∈N of polynomials such that deg(Pk) = k, and VP (i, j) = Pj−1(xi).
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Note that any VP can be written as VP = V C, with V being a regular
Vandermonde matrix, and C being an upper triangular matrix of coeffi-
cients of the polynomials Pk, i.e.,

Pj−1(x) =
j∑

i=1

C(i, j)xi−1 , ∀1 ≤ j ≤ n .

Denote by ci−1 := D̃(i, i), for all 1 ≤ i ≤ n the highest-order coefficients of
the polynomials P0(x), . . . , Pn−1(x).

To compute the inverse of the matrix VP , we need to compute the minors
that result from deleting a row and a column, i.e., (in MATLAB notation)
det(VP ([1 : i−1, i+1:n], [1 :j−1, j+1:n]). We will focus our attention on the
computation of the (i, n−1) minors, i.e., the ones that result from deleting
any of the rows and the (n− 1)st column.

The resulting matrices look like

MP,i := VP ([1 : i−1, i+1:n], [1 :n−2, n])

=



c0 P1(x1) . . . Pn−3(x1) Pn−1(x1)
...

...
. . .

...
...

c0 P1(xi−1) . . . Pn−3(xi−1) Pn−1(xi−1)
c0 P1(xi+1) . . . Pn−3(xi+1) Pn−1(xi+1)
...

...
. . .

...
...

c0 P1(xn) . . . Pn−3(xn) Pn−1(xn)


.

Hence, we can manipulate the columns of det(MP,i) by subtracting from
them linear combinations of other columns, to obtain

det(MP,i)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 c1x1 . . . cn−3x
n−3
1 cn−1x

n−1
1 + C(n− 1, n)xn−2

1
...

...
. . .

...
c0 c1xi−1 . . . cn−3x

n−3
i−1 cn−1x

n−1
i−1 + C(n− 1, n)xn−2

i−1

c0 c1xi+1 . . . cn−3x
n−3
i+1 cn−1x

n−1
i+1 + C(n− 1, n)xn−2

i+1
...

...
. . .

...
c0 c1xn . . . cn−3x

n−3
n cn−1x

n−1
n + C(n− 1, n)xn−2

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
By expanding on the last column, and using the results from Demmel

and Koev (2001), we obtain that there are constants E and F , specifically
E = C(n− 1, n)

∏n−2
i=1 ci−1 and F = E cn−1

C(n−1,n) , such that

det(MP,i) =
∏

k < j
k, j �= i

(xj − xk)
[
E + F · s[1](x1, . . . , xi−1, xi+1, . . . , xn)

]
,
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with s[1] being the Schur function corresponding to the partition λ =
(1, 0, . . . , 0), i.e.,

det(MP,i) =
∏

k < j
k, j �= i

(xj −xk)
[
E + F · (x1 + . . .+xi−1 +xi+1 + . . .+xn)

]
,

and it is not hard to see that for any n ≥ 4, the above polynomial in
x1, . . . , xi−1, xi+1, . . . , xn does not have an allowable variety, and hence
the inverse cannot be evaluated accurately in classical arithmetic.

Denote �x �=i :=(x1, . . . , xi−1, xi+1, . . . , xn).
Similarly, one can prove that the (i, n − k) minor detMP,i,k can be ob-

tained as

det(MP,i,k) =
∏
m<j

m,m �=i

(xj − xm)
[
A1 + A2s[1]( �x �=i) + . . . + Aks[1k ]( �x �=i)

]
,

where [1l] = (1, 1, 1, . . . , 0), the right side containing exactly l ones and the
rest 0; A1, . . . , Ak are constants which can be computed easily in terms of
the entries of the matrix C.

Since for any l < n− 1, s[1l ] is a homogeneous irreducible polynomial of
degree l in n− 1 variables, the factor in the square brackets has degree k.
Appropriate choices of n and the matrix C are likely to make this factor
irreducible (for example, by making |Ak| � |Al| for all l �= k). If this is
the case, then by Theorem 2.14, this family of matrices has inverses that
cannot be evaluated accurately even with the addition of any enumerable
set of bounded-degree black-boxes.

This explains why we have filled in with “No” the entries corresponding
to columns “A−1” and “Any minor” in the Polynomial Vandermonde row
of Table 2.1. Below we explain the “No” in the Polynomial Vandermonde
row, in the column “LDU”.

We can write C = D̃C̃, with D̃ being the diagonal matrix of highest-
order coefficients, i.e., D̃(i, i) = C(i, i) for all 1 ≤ i ≤ n. We will assume
that the matrices C and D̃ are given to us exactly.

If we let VP = LP DP UP and V = LDU , it follows that

LP = L ;

DP = DD̃ ;

UP = D̃−1UC .

Since we cannot compute L accurately in the general Vandermonde case,
it follows that we cannot compute LP accurately in the polynomial Van-
dermonde case.
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Finally, we explain the “*” entries in the polynomial Vandermonde row.
These depend on special properties of the polynomial. In general, neither
the SVD nor the symmetric eigenvalue decomposition (EVD) are com-
putable accurately, but if the polynomials are certain orthogonal polyno-
mials, then the accurate SVD is possible [Demmel and Koev (2005b)], and
an accurate symmetric EVD may also be possible [Dopico, Molera, and
Moro (2003)].
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P. Koev (2004), Accurate computations with totally nonnegative matri-

ces, submitted to SIAM Journal on Matrix Analysis and Applications,
www-math.mit.edu/~plamen/files/acctp.pdf.

P. Koev (2005), Accurate eigenvalues and SVDs of totally nonnegative matrices,
SIAM J. Matrix Anal. Appl. 27, 1–23.

D. Lozier and F. Olver (1990), Closure and precision in level-index arithmetic,
SIAM J. Num. Anal. 27, 1295–1304.

I. G. MacDonald (1995), Symmetric Functions and Hall Polynomials, Oxford
University Press, 2nd edition.

E. Miller and B. Sturmfels (2005), Combinatorial Commutative Algebra,
Springer-Verlag.

O. Møller (1965), Quasi double precision in floating-point arithmetic, BIT 5,
37–50.

R. K. Montoye, E. Hokenek, and S. L. Runyon (1990), Design of the IBM RISC
System 6000 floating point execution unit, IBM Journal of Research and
Development 34, 59–70.

R. E. Moore (1979), Methods and Applications of Interval Analysis, SIAM,
Philadelphia.

A. Neumaier (1990), Interval Methods for Systems of Equations, Cambridge
University Press, Cambridge, England.

C. O’Cinneide (1996), Relative-error for the LU decomposition via the GTH
algorithm, Numer. Math. 73, 507–519.

M. Pichat (1972), Correction d’une somme en arithmetique à virgule flottante,
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Abstract

The efficient numerical treatment of high-dimensional problems is ham-
pered by the curse of dimensionality. We review approximation techniques
which overcome this problem to some extent. Here, we focus on methods
stemming from Kolmogorov’s theorem, the ANOVA decomposition and the
sparse grid approach and discuss their prerequisites and properties. More-
over, we present energy-norm based sparse grids and demonstrate that,
for functions with bounded mixed derivatives on the unit hypercube, the
associated approximation rate in terms of the involved degrees of freedom
shows no dependence on the dimension at all, neither in the approximation
order nor in the order constant.

3.1 Introduction

The discretization of PDEs by conventional methods is limited to problems
with up to three or four dimensions due to storage requirements and com-
putational complexity. The reason is the so-called curse of dimensionality,
a term coined in (Bellmann 1961). Here, the cost to compute and represent
an approximation with a prescribed accuracy ε depends exponentially on
the dimensionality d of the problem considered. We encounter complexities
of the order O(ε−d/r) with r > 0 depending on the respective approach, the
smoothness of the function under consideration, the polynomial degree of
the ansatz functions and the details of the implementation. If we consider
simple uniform grids with piecewise d-polynomial functions over a bounded
domain in a finite element or finite difference approach, this complexity es-
timate translates to O(Nd) grid points or degrees of freedom for which

106
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approximation accuracies of the order O(N−r) are achieved.1 Thus, the
computational cost and storage requirements grow exponentially with the
dimensionality of the problem, which is the reason for the dimensional re-
strictions mentioned above, even on the most powerful machines presently
available.

The curse of dimensionality can be circumvented to some extent by re-
stricting the class of functions under consideration. If we make a stronger
assumption on the smoothness of the solution such that the order of accu-
racy depends on d as O(N−c·d) with r = c · d, we directly see that the cost
complexity is independent of d and that it is of the order O(ε−d/(c·d)) =
O(ε−1/c), for some c independent of d. This way, the curse of dimension-
ality can be broken easily.2 In any case, such a smoothness assumption is
somewhat unrealistic.

Nevertheless for practical applications in high(er) dimensions often a cer-
tain smoothness assumption on the function is implicitly present (e.g., in
the data of the problem) which, in some way, relates to its dimensionality.
Then, the curse of dimensionality is weakened or can even be broken com-
pletely. The problem on the one hand is to detect and classify applications
where this may happen and on the other hand to develop and implement
numerical schemes which exploit such a situation. This is the subject of
this article. We intend to give an overview on recent approaches and results
in this direction from the view of function approximation and solution of
partial differential equations.

The remainder of this paper is organized as follows: In Section 3.2, we
briefly consider applications in which high-dimensional partial differential
equations appear. We then discuss the breaking of the curse of dimension-
ality from the theoretical point of view. Here, we collect known approaches
for getting rid of the exponential dependence on d. Furthermore we consider
the theorem of Kolmogorov in more detail and give a survey of approxima-
tion schemes which are related to it.

In Section 3.3 we consider dimension-wise decompositions of high-
dimensional functions. Here we resort to ANOVA-type decompositions
where a function is split into its contributions from different groups of sub-
dimensions, an approach which is widely used in statistics. It basically
involves the splitting of a one-dimensional function space into the constant
subspace and the remainder space. A product construction then gives the

1 If the solution is not smooth but possesses singularities, the order r of accuracy
deteriorates. Adaptive refinement/nonlinear approximation is employed with success.
In the best case, the cost-benefit ratio of a smooth solution can be recovered.

2 An example would be the p-version of the finite element method if we couple the
polynomial degree p to the dimension d and consider functions from the Sobolev
space Hp+1.
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associated splitting for the d-dimensional case. This reveals the relative
importance of different dimensions as well as their interactions and cor-
relations. For certain applications it can be observed that an apparently
high-dimensional function possesses a low effective dimension or that there
is a certain decay for the component functions with their dimension. Then
the curse of dimensionality may be avoided. We formalize this with the
help of reproducing kernel Hilbert spaces. The importance of the differ-
ent contributions in an ANOVA splitting can then be expressed by certain
weights.

For practical computations the associated subspaces need to be further
discretized. This leads to so-called sparse grids which are discussed in
detail in Section 3.4. To this end, we refine the remainder space of the one-
dimensional splitting, i.e., we equip it with a basis. We use the standard
piecewise linear hierarchical basis in one dimension (Faber 1909, Yserentant
1986) as the simplest example of a one-dimensional multiscale series ex-
pansion which involves interpolation by piecewise linears. Then the ten-
sor product construction generates a basis for the d-dimensional case. A
proper truncation – that can be formally derived by solving an optimiza-
tion problem closely related to M -term approximation which involves the
error norm and the smoothness assumption – results in sparse grids. For
functions with bounded mixed second derivatives, approximation schemes
are gained which exhibit cost complexities of the order O(N(log N)d−1)
and give an accuracy of O(N−2(log N)d−1) if we measure the error in the
L2-norm. However if we consider the energy norm, optimality leads us
to an energy-based sparse grid with cost complexity O(N) and accuracy
O(N−1) only. Thus, the exponential dependence of the logarithmic terms
on d is completely removed (but is still present in the constants). Finally
we discuss the order constants in more detail. In one special case we are
able to show that, for the best approximation v

(E)
M in the energy-norm

based sparse grid space with dimension M , the following error estimate
holds:

‖u− v
(E)
M ‖E ≤ c · d2 · 0.97515d ·M−1 · |u|2,∞

where the regularity term |u|2,∞ involves mixed second derivatives of u.
The concluding remarks of Section 3.5 summarize the discussion and give

an outlook on current developments with sparse grids.

3.2 High dimensional problems and the curse of dimensionality

Usually in classical physics most problems are formulated as systems of
(nonlinear) partial differential equations in three space dimension and one
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time dimension.1 Here, the geometry of the object under consideration can
be quite complicated. As examples consider flow around a car or an air-
plane, combustion in an engine, structural analysis of mechanical machines
and buildings in civil engineering or related multiphysics applications which
involve coupled systems of partial differential equations. These problems
can nowadays be well treated with parallel adaptive finite element meth-
ods involving multilevel solvers on large parallel computers. They are at
the edge of today’s applications of numerical simulation in science and
engineering. An efficient geometry description, subsequent parallel mesh
generation, reliable a-posteriori error estimators for adaptive finite element
discretizations, robust parallel multilevel solvers and load-balancing tech-
niques for the overall approach are subjects of current research and form
the mainstream in scientific computing.

However there are also problems which involve substantially more than
just three spatial dimensions. Then, high-dimensionality often results from
mathematical modelling. Besides pure integration problems stemming from
physics and finance, typically models from the stochastics and data analy-
sis world show up. For example, high-dimensional Laplace/diffusion prob-
lems and high-dimensional convection diffusion problems result from diffu-
sion approximation techniques or the Fokker-Planck equation. Examples
are the description of queueing networks (Mitzlaff 1997, Shen, Chen, Dai
and Dai 2002), random excitations of mechanical structures (Johnson, Wo-
jtkiewicz, Bergman and Spencer 1997, McWilliam, Knappett and Fox 2000,
Wojtkiewicz and Bergman 2000), reaction mechanisms in molecular biol-
ogy (Sjöberg 2002, Elf, Lötstedt and Sjöberg 2001), the viscoelasticity in
polymer fluids (Rouse 1953, Prakash and Öttinger 1999, Prakash 2000,
Venktiteswaran and Junk 2005a, Venktiteswaran and Junk 2005b, Lozinski
and Chauviere 2003, Lozinski, Chauviere, Fang and Owens 2003, Chau-
viere and Lozinski 2004, Süli 2006), or various models for the pricing of
financial derivatives (Duffie 1996, Kwok 1998, Wilmott 1998, Reisinger
2003, Schwab 2003, Escobar and Seco 2005). Furthermore, homogenization
with multiple scales (Allaire 1992, Cioranescu, Damlamian and Griso 2002,
Matache 2002, Hoang and Schwab 2003) as well as stochastic elliptic equa-
tions (Schwab and Todor 2003a, Schwab and Todor 2003b) result in high-
dimensional PDEs. Next, we find quite high-dimensional problems in
quantum mechanics and particle physics. Here, the dimensionality of the
Schrödinger equation (Messiah 2000) grows with the number of considered
1 Of course physical theories may involve more than just three spatial dimensions.

For example the equations related to superstring theories which can be regarded as
limits of the M-theory or the theory of supergravitation are formulated in 10 or 11
dimensions, respectively, see (Green, Schwarz and Witten 1998) and the references
cited therein.
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electrons and nuclei. Then, problems in statistical mechanics lead to the
Liouville equation or the Langevin equation and related phase space models
where the dimension depends on the number of particles (Balescu 1997).
Furthermore, reinforcement learning and stochastic optimal control in con-
tinuous time give raise to the Hamilton-Jacobi-Bellman equation in high
dimensions (Sutton and Barto 1998, Munos 2000, Munos and Moore 2002).
Finally data mining problems involve differential operators as smoothing
or regularization terms (priors) whose dimension grows with the number of
features of the data (Girosi, Jones and Poggio 1995, Garcke, Griebel and
Thess 2001, Schölkopf and Smola 2002, Hegland 2003, Garcke 2004).

Now, in higher dimensions, the question of the shape of the domain is
not as important as in the two- and three-dimensional case, since com-
plicated domains typically do not appear in applications. Conceptually,
besides IRd itself, we use mainly hypercubes like [−a, a]d, a ∈ IR, and their
straightforward generalizations using different values of a for each coordi-
nate direction as well as the corresponding structures in polar coordinates.
These domains are of tensor product structure. This is an important pre-
requisite for numerical methods for higher-dimensional partial differential
equations as we will see later.

3.2.1 Curse of dimensionality

Classical approximation schemes exhibit the curse of dimensionality
(Bellmann 1961). We then have

||f − fM || = O(M−r/d) ,

where r and d denote the isotropic smoothness of the function f and the
problem’s dimensionality, respectively. This is one of the main obstacles
in the numerical treatment of high-dimensional problems. Therefore, the
question is whether we can find situations, i.e., either function spaces or
error norms, for which the curse of dimensionality can be broken. At first
glance, there is an easy way out: if we make a stronger assumption on the
smoothness of the function f such that r = O(d), then, we directly obtain
||f − fM || = O(M−c) with constant c > 0. Of course, such an assumption
is quite unrealistic.

However, about thirteen years ago, (Barron 1993) found an interesting
result: Denote by FL1 the class of functions with Fourier transforms in L1.
Then, consider the class of functions of IRd with ∇f ∈ FL1. We expect for
the best M -term approximation fM an approximation rate

||f − fM || = O(M−1/d)
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since ∇f ∈ FL1 ≈ r = 1. However Barron was able to show that

||f − fM || = O(M−1/2),

independent of d. Meanwhile, other function classes have been introduced
with such properties. They comprise certain radial basis schemes, stochas-
tic sampling techniques and approaches that work with spaces of functions
with bounded mixed derivatives.

A better understanding of these results is possible with the help of har-
monic analysis (Donoho 2000). Here, we resort to the approach of the
L1-combination of L∞-atoms, see also (Triebel 1992, DeVore 1998). Con-
sider the class of functions F(K) with integral representation

f(x) =
∫

A(x, t)dµ(t) with
∫

d|µ|(t) ≤ K , (3.1)

where for fixed t we call A(x, t) = At(x) an L∞-atom, if |At(x)| ≤ 1 holds.
Then, there are results from Maurey for Banach spaces and Stechkin in
Fourier analysis which state that there exists an M -term sum

fM (x) =
M∑

j=1

ajAtj
(x)

where

||f − fM ||∞ ≤ C ·M−1/2

with C independent of d.
As a first example we consider superpositions of Gaussian bumps (ra-

dial basis schemes). These resemble the space F(K,Gaussians) with
t := (x0, s) and Gaussian atoms A(x, t) = exp(−‖x − x0‖2/s2). Now,
if the sum of the height of all Gaussians is bounded by K, (Niyogi and
Girosi 1998) showed that the resulting approximation rate is independent
of d for the corresponding radial basis schemes. There is no further con-
dition on the widths or positions of the bumps. Note that this corre-
sponds to a ball in Besov space Bd

1,1(IR
d) which is just the bump algebra

in (Meyer 1992). Thus, we have nothing but a restriction to smoother
functions for higher dimensions such that the ratio r/d stays constant and,
consequently, M−r/d does again not grow with d.

Another class of functions with an approximation rate independent of d

is F(K,Orthant) which uses the parameter set of shifted orthants. Now
t = (x0, k), and k is the orthant indicator. Furthermore, A(x, t) is the
indicator of orthant k with apex at x0. Again, if the integral (3.1) is at most
K, the resulting approximation rate is of order O(M−1/2) independent
of d. A typical and well-known example for such a construction is the
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cumulative distribution function in IRd. This just results in the Monte Carlo
method.

A more general class are the functions which are formed by any super-
position of 2d functions, each orthantwise monotone for a different orthant.
Now, the condition

∫
d|µ|(t) ≤ 1 is the same as

∂df

∂x1 · · · ∂xd
∈ L1 , (3.2)

i.e., we obtain the space of bounded mixed first variation. Again, this
means to consider only functions which get smoother as the dimensionality
increases, but, in contrast to the examples mentioned above, now, only an
anisotropic smoothness assumption is involved. Note that this is just the
prerequisite for sparse grids with the piecewise constant hierarchical basis.

Further results on high-dimensional (and even infinite-dimensional) prob-
lems and their tractability were given by (Wasilkovski and Woźniakowski
1995, Sloan and Woźniakowski 1998, Wasilkovski and Woźniakowski 1999,
Sloan 2001, Hickernell, Sloan and Wasilkowski 2004, Dick, Sloan, Wang
and Woźniakowski 2004, Sloan, Wang and Woźniakowski 2004). Here, es-
pecially in the context of numerical integration, the notion of weighted
Sobolev spaces was introduced. Following the observation that for some
problems the integrand becomes less and less variable in successive co-
ordinate directions, a sequence of positive weights {γj} with decreasing
values is used, with the weight γj being associated with coordinate direc-
tion j. Then it can be shown that the integration problem in a particular
Sobolev space setting becomes strongly tractable (Traub and Woźniakowski
1980, Traub, Wasilkowski and Woźniakowski 1983, Traub, Wasilkowski
and Woźniakowski 1988), i.e., that the worst-case error for all functions
in the unit ball of the weighted Sobolev space is bounded independently
of d and tends polynomially to zero if and only if the sum of the weights
is asymptotically bounded from above. This corresponds to a decay of
the kernel contributions in a reproducing kernel Hilbert space with in-
creasing d. The original paper (Sloan and Woźniakowski 1998) assumes
that the integrand belongs to a Sobolev space of functions with square-
integrable mixed first derivatives with the weights built into the definition
of the associated inner product. Note that this assumption is closely re-
lated to that of (3.2) above. Since then, more general assumptions on the
weights and, thus, on the induced weighted function spaces have been found
(Dick et al. 2004, Hickernell et al. 2004, Sloan et al. 2004, Hickernell and
Woźniakowski 2000, Wasilkowski and Woźniakowski 2004).

In any case, we observe that a certain smoothness assumption on the
function under consideration changes with d and leads to approximation
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rates that no longer depend exponentially on d. This raises the ques-
tion what smoothness for changing d and smoothness for d → ∞ mean
at all.

To this end, let us note an interesting aspect, namely the concentra-
tion of measure phenomenon (Milman 1988, Milman and Schechtman 2001,
Talagrand 1995, Gromov 1999, Ledoux 2001) for probabilities in normed
spaces in high dimensions (also known as the geometric law of large num-
bers). This is an important development in modern analysis and geometry,
manifesting itself across a wide range of mathematical sciences, particu-
larly geometric functional analysis, probability theory, graph theory, di-
verse fields of computer science, and statistical physics. In the statistical
setting it states the following: Let f be a Lipschitz function with Lipschitz
constant L on the d-sphere. Let P be a normalized Lebesgue measure
on the sphere and let X be a random variable uniformly distributed with
respect to P . Then,

P{|f(X)− Ef(X)| > t} ≤ c1 exp(−c2t
2/L2)

with constants c1, c2 independent of f and d. In its simplest form, the
phenomenon of concentration of measure just says that every Lipschitz
function on a sufficiently high-dimensional domain Ω is well approximated
by a constant function (Hegland and Pestov 1999, Baxter and Iserles 2003).
Thus, there is some chance to treat high-dimensional problems despite the
curse of dimensionality.

The relation of the concentration of measure phenomenon to approxima-
tion estimates was further elaborated upon in (Hegland and Pozzi 2005).
There, with the help of a concentration function which expresses the con-
centration effect of the underlying metric space, new inequalities for the
error of function approximations have been derived. Besides estimates for
the above mentioned approximation of a function by a constant (e.g., by its
mean or by the evaluation at a random point) and radial basis functions,
also piecewise constant approximation schemes and piecewise approxima-
tions of higher order by Hermite polynomials have been studied. The re-
sulting approximation rates were the same as with conventional estimates
based on finite elements. However the constants in the estimates were sub-
stantially better. They are independent of the dimension and in addition
allow realistic bounds for multimodal distributions which is not the case
for classical approaches based on interpolation theory. These techniques
may be employed to obtain better estimates for the constants in the order
estimates with respect to the dimension in e.g., sparse grid approximation
schemes. This however is future work.
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3.2.2 The theorem of Komogorov and related approximation
schemes

One approach to develop efficient approximations which allow one to over-
come the curse of dimensionality is to describe multivariate continuous
functions as a superposition (Rassias and Simsa 1995, Khavinson 1997)
of a number of continuous functions with fewer variables. This question
is related to Hilbert’s 13th problem, see (Vitushkin 2004) and the refe-
rences cited therein. It was answered in (Kolmogorov 1957) who found
that every continuous function of several variables can be represented by
the superposition of continuous functions with only two variables. Kol-
mogorov even showed that every continuous function of several variables
can be represented by the superposition of continuous functions with only
one variable,1 see also (Sprecher 1965, Lorentz, v. Golitschek and Makovoz
1996, Khavinson 1997) for improved versions.

Kolmogorov’s famous result can be expressed as follows: Let f be a mul-
tivariate continuous function on the unit cube, i.e., f(x1, . . . , xd) : [0, 1]d →
IR. Each function f ∈ C([0, 1]d) has a representation

f(x1, . . . , xd) =
2d+1∑
i=1

fi

 d∑
j=1

φi,j(xj)

 (3.3)

where all {fi} and {φi,j} are one-dimensional continuous functions defined
on IR and all {φi,j} are independent of the choice of f . An improvement
was given in (Fridman 1967) where it was shown that the inner functions
{φi,j} can be chosen to be Lipschitz continuous with exponent one.

There have been various refinements of this result. A version with just
one outer function and 2d + 1 inner functions, see (Lorentz et al. 1996)
Chapter 17, reads: There exist 2d + 1 continuous, strictly increasing func-
tions φi : [0, 1] → [0, 1] and d positive constants λi with

∑d
i=1 λi ≤ 1 with

the property that each function f ∈ C([0, 1]d) has a representation

f(x1, . . . , xd) =
2d+1∑
i=1

g

 d∑
j=1

λjφi(xj)

 (3.4)

for some non-smooth g ∈ C([0, 1]) depending on f . Here, the functions
φi together with their summation provide a one-to-one embedding of the
unit cube [0, 1]d into IR2d+1, i.e., we have with Xi :=

∑d
j=1 λjφi(xj) the

representation f(x1, . . . , xd) =
∑2d+1

i=1 g(Xi). Note that there is a close
relation to d-dimensional topology: The theorem of Menger and Nöbeling,
see (Hurewicz and Wallman 1948), page 84, tells us that any d-dimensional

1 Kolmogorov’s student Arnold showed even before in (Arnold 1957, Arnold 1958,
Arnold 1959) that any f ∈ C([0, 1]3) can be represented as a superposition of contin-
uous functions in two variables, and thus refuted Hilbert’s conjecture.
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compact set can be homeomorphically embedded into [0, 1]2d+1. Thus,
Kolmogorov’s theorem (3.4) can be seen as just a special case of it.

Another version with 2d + 1 outer functions and one inner function is
due to (Sprecher 1965). It reads

f(x1, . . . , xd) =
2d+1∑
i=1

fi

 d∑
j=1

λjφ(xj + i · α)

 (3.5)

with suitable constants λi, α and a continuous one-dimensional function
φ. It also gives an embedding of [0, 1]d into IR2d+1 by f(x1, . . . , xd) =∑2d+1

i=1 fi(Xi) with Xi :=
∑d

j=1 λjφ(xj + i · α).
The proof of Kolmogorov’s theorem is non-constructive and does not pro-

vide us with a way to choose the inner and outer functions in (3.3), (3.4)
or (3.5), respectively. A first attempt to remedy this problem with merely
an approximation of the inner function and an interpolation of the outer
functions was made in (de Figueiredo 1980). Recently, however, algorithms
were given to explicitly construct the functions in (3.5). The implementa-
tion of an inner function φ which does not depend on f was discussed in
(Sprecher 1996). Here φ is pointwise defined on an everywhere dense set of
rational numbers in [0, 1] from which it can be uniquely extended to a con-
tinuous function on [0, 1]. The resulting φ is non-continuous. There is also
a close relation of φ to space-filling curves, see (Sprecher and Draghici 2002,
Sagan 1994). An implementation of the outer functions fi by an iterative
method was presented in (Sprecher 1997). This established the first con-
structive proof of Kolmogorov’s theorem. It furthermore allows to realize
(3.5) as a feedforward neural network with a hidden layer that computes
the variables Xi and therefore involves the embedding mapping only, and a
single output layer in which f is computed by means of the functions fi(Xi),
see also (Hecht-Nielsen 1987a, Hecht-Nielsen 1987b). In (Köppen 2002) the
construction was improved to give a continuous inner function φ.

Thus, in view of Kolmogorov’s result, it seems that there are no high-
dimensional functions and thus no high-dimensional problems at all. How-
ever, it turns out that the representing functions are quite bad, i.e., they are
at best only continuous and highly non-smooth. This limits their practical
use for approximation and interpolation purposes (Girosi and Poggio 1989),
like e.g., for the discretization of PDEs within the Galerkin approach. In
particular, the representing functions cannot be chosen to be differentiable.
This even holds if one wants to represent an analytic function f only, see
(Vitushkin 1964).

Nevertheless Kolmogorov’s theorem inspired many linear and nonlinear
approximation schemes and there have been various attempts to generalize
Kolmogorov’s formula. Moreover, in (Kurkova 1991) it was noticed that
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in the proof of Kolmogorov’s superposition theorem the fixed number of
2d + 1 basis functions can be replaced by a variable number m and the
task of function representation can be replaced by the task of function
approximation. In the following we give an (incomplete) list of approaches
which are related to Kolmogorov’s theorem.

• Popular approximation schemes in statistics are the so-called additive
models, see (Hastie and Tibshirani 1986, Hastie and Tibshirani 1990).
They resemble the approximation

f(x1, . . . , xd) ≈
d∑

i=1

fi(xi). (3.6)

This form can be derived from (3.3) by choosing d instead of 2d + 1 and
replacing the inner functions φij trivially by the identity if i = j and
zero otherwise.
• The projection pursuit algorithm (Friedman and Stützle 1981, Stone

1985) approximates a function f by

f(x1, . . . , xd) ≈ f0 +
m∑

i=1

fi

 d∑
j=1

βij · xj


with the so-called projection directions �βi := (βi1, . . . , βid) and with f0

as the average of the function f . Here the parameter vectors �βi and
the functions fi are estimated from the data. This scheme can also be
interpreted as a special case of (3.6) using linear combinations of the
original coordinates.
• Closely related are multilayer perceptrons with a single hidden layer.

They approximate f by

f(x1, . . . , xd) ≈ h

 m∑
i=1

αig

 d∑
j=1

βijxj


where h and g are arbitrary nonlinear functions. Here, the network is
trained with a given set of input and output values and the approxima-
tion is then determined by the values of αi and the vectors �βi which
are found by least squares minimization. In (Kurkova 1991) it was
demonstrated how to approximate a Hecht-Nielsen network which im-
plements Komogorov’s superposition approach by such traditional neural
networks.
• Also radial basis schemes belong to the class of approximation schemes

which can be derived from (3.3). Here the dimension embedding takes
place by a distance function, i.e., the sum of the inner functions gets
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replaced by the Euclidean norm. They can under certain assumptions
be written as

f(x) ≈
m∑

i=1

βifi(‖x− yi‖) + P (x)

where x = (x1, . . . , xd), the fi are a chosen set of radial basis functions,
yi ∈ IRd are their centers, the βi are constants and P (x) is a polynomial.
The coefficients are then fitted to the data by means of least-squares
minimization.
• Starting from the representation (3.4), (Igelnik and Parikh 2003) intro-

duced so-called Kolmogorov spline networks. There, 2d + 1 is replaced
by a general m and the outer function g and the inner functions φi are
replaced by cubic splines s(·, γi) and s(·, γi,j) where the parameters γi

and γi,j of the splines are adjusted to fit given data on f properly. The
approximation scheme is defined as

fm(x1, . . . , xd) =
m∑

i=1

s

 d∑
j=1

λjs(xj , γi,j), γi

 (3.7)

with positive numbers λ1, . . . , λd with
∑

λj ≤ 1 which can be chosen
independent of f . It was shown that, for any function f from the class
of continuously differentiable functions on [0, 1]d with bounded gradient,
there exists a function fm of the form (3.7) such that ‖f−fm‖ = O(1/m).
The number of degrees of freedom involved in the network is of the
order O(m2/3). This result compares favorably with the approximation
order O(1/

√
m) and the number of degrees of freedom O(m2) usually

achieved for general one-hidden layer feedforward networks for this class
of functions, compare also (Barron 1993, Igelnik and Parikh 2003) and
the references cited therein. A similar approach was also presented in
(Coppejans 2004).
• Finally, Kronecker-product type approximations of the form

f(x) ≈
m∑

i=1

ci

d∏
j=1

fij(xj), ci ∈ IR,

possess a structure similar to Kolmogorov’s theorem. Here however the
inner sum is replaced by a product of one-dimensional functions. To see
the relation to (3.3) choose there fi(·) = ci·exp(·) and φij(·) = log(fij(·)).
For numerical purposes, the one-dimensional functions fij are further
expanded in a series with a suitable multilevel basis which is then prop-
erly truncated or, more often, they are just simply discretized on a uni-
form grid. For details and applications see (Beylkin and Mohlenkamp
2002, Beylkin and Mohlenkamp 2005, Tyrtyshnikov 2004, Hackbusch and
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Khoromskij 2004), the related developments on so-called H- and H2-
matrices (Hackbusch, Khoromskij and Sauter 2000, Grasedyck and Hack-
busch 2003) and the references cited therein. A similar decomposition is
used in the MCTDH approach (Beck, Jäckle, Worth and Meyer 2000).

The basic theory of this decomposition can be found in (Golomb 1959):
In the case d=2 mainly the classical Hilbert-Schmidt theory appears, i.e.,
the functions fij are the unique solution of a system of two coupled linear
integral equations which resemble the continuous analogue of the classi-
cal singular value decomposition. For the case d > 2 however, a system
of nonlinear integral equations results for which the solution is no longer
unique. Then heuristics must be used to obtain some solution. Never-
theless it is observed in applications that good approximations can be
obtained with an already relatively small number m.

For most of these approximation schemes the parameters are obtained
by some kind of (least-squares) minimization. Here, however the objective
functional may not be globally convex and can have many minima which
results in non-unique representations. Thus, the associated approximation
rates for these schemes for increasing m are not always fully understood
and, moreover, it is not clear which representation to prefer over another
for a particular application. In the following we therefore study a simpler
linear decomposition of a d-dimensional function into its contributions from
different (groups of) subdimensions which can be seen as a multivariate
generalization of (3.6).

3.3 Dimension-wise space decomposition

We consider a decomposition of the d-dimensional function f as

f(x1, . . . , xd) = f0 +
d∑
j1

fj1(xj1) +
d∑

j1<j2

fj1,j2(xj1 , xj2) (3.8)

+
d∑

j1<j2<j3

fj1,j2,j3(xj1 , xj2 , xj3) + · · ·+ fj1,...,jd
(xj1 , . . . , xjd

).

Here, f0 is a constant function, fj1 are one-dimensional functions, fj1,j2

are two-dimensional functions, and so on. This type of decomposition goes
back to (Hoeffding 1948) and is well known in statistics under the name
ANOVA (analysis of variance), see also (Efron and Stein 1981). Note that
(3.8) is a finite expansion of f into 2d different terms. Such a decomposi-
tion can be gained by a tensor product construction of a splitting of the
one-dimensional function space into its constant subspace and its remain-
der. This will be explained in more detail in the following.
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3.3.1 ANOVA-like decompositions

Let V (d) denote the underlying space of d-dimensional functions f(x) =
f(x1, . . . , xd) : Ω̄(d) → R with Ω̄(d) = [0, 1]d. Let µ be a product measure
with unit mass which has a density, i.e.,

dµ(x) =
d∏

j=1

dµj(xj),
∫

Ω̄(1)
dµ(xj) = 1, (3.9)

dµ(x) = h(x) =
d∏

j=1

hj(xj)dxj , (3.10)

where hj(xj) is the marginal density of the input variable xj . Further-
more, let V (d) be a Hilbert space equipped with the inner product (f, g) =∫
Ω̄(d) f(x)g(x)dµ(x) and associated norm ‖ · ‖. First we will deal with the

one-dimensional case. We decompose V (1) in a simple two-scale fashion by

V (1) = 1⊕W (3.11)

where 1 denotes the one-dimensional subspace span{1} which contains the
constant functions. Associated to such a splitting is a mapping P : V (1) →
1 with

Pf(x) =
∫

Ω̄(1)
f(x)dµ(x). (3.12)

Examples are the conventional Lebesque measure dµ(x) = dx which leads
to the integral average

Pf(x) =
∫

Ω̄(1)
f(x)dx

or the Dirac measure located at a point a, i.e., dµ(x) = δ(x− a)dx, which
results in the simple evaluation at point a

Pf(x) =
∫

Ω̄(1)
δ(x− a)f(x)dx = f(a). (3.13)

This introduces the decomposition

f(x) = f0 + f1(x) (3.14)

with

f0 = Pf(x) =
∫

Ω̄(1)
f(x)dµ(x) ∈ 1 and (3.15)

f1(x) = (I − P )f(x) = f(x)−
∫

Ω̄(1)
f(x)dµ(x) ∈W. (3.16)

Then W is the subspace of V (1) of functions which satisfy the relation∫
Ω̄(1) f(x)dµ(x) = 0. It is orthogonal to 1 and, with

∫
Ω̄(1) f1dµ(x) = 0, it

is easy to see that ‖f‖ = ‖f0‖+ ‖f1‖ and (f, g) = (f0, g0) + (f1, g1) with g

split analogously to (3.14).
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Note that for (3.13) with differentiable f there is a close relation to the
Taylor expansion. The decomposition (3.14) is just the Taylor formula of
first order and f1 = f(x)− f(a) =

∫ x

a
f ′(t)dt is the remainder term.

Now we consider the d-dimensional case: The one-dimensional splitting
introduces a natural decomposition of the d-dimensional function space
V (d) by a tensor product construction

V (d) =
d⊗

j=1

(1j ⊕Wj) (3.17)

= 11 ⊗ · · · ⊗ 1d

⊕
d⊕

i=1

11 ⊗ · · · ⊗Wi ⊗ · · · ⊗ 1d

⊕
d⊕

i=1

⊕
i<j

11 ⊗ · · · ⊗Wi ⊗ · · · ⊗Wj ⊗ · · · ⊗ 1d

⊕
d⊕

i=1

⊕
i<j

⊕
i<j<k

11 ⊗ · · · ⊗Wi ⊗ · · · ⊗Wj ⊗ · · · ⊗Wk ⊗ · · · ⊗ 1d

· · ·
⊕ W1 ⊗ · · · ⊗Wd.

Here 1j = 1 and Wj = W ; we use the index j merely to indicate the
respective coordinate direction for explanatory reasons. Another notation
which involves the subsets of the index set {1, 2, . . . , d} is1

V (d) =
⊕

u⊂{1,...,d}

 ⊗
k∈{1,...,d}/u

1k

⊗
⊗

j∈u

Wj

 =:
⊕

u⊂{1,...,d}
Wu. (3.18)

Then, a function f ∈ V (d) is decomposed accordingly as

f(x1, . . . , xd) = f0 +
d∑
j1

fj1(xj1) +
d∑

j1<j2

fj1,j2(xj1 , xj2) (3.19)

+
d∑

j1<j2<j3

fj1,j2,j3(xj1 , xj2 , xj3) + · · ·+ fj1,...,jd
(xj1 , . . . , xjd

)

=
∑

u⊂{1,...,d}
fu(xu)

where fu ∈Wu and xu denotes the variables xi of x with i ∈ u. Note that

1 Note the obvious identity
∏

j∈v(bj + cj ) =
∑

u⊂v

∏
k∈v/u bk

∏
j∈u cj ,∀bj , cj ∈ R. It

can be applied for products of sums of functions and products of sums of subspaces
in an analogous way.
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due to the power set construct this is a finite expansion which involves
2d different terms. The decomposition is unique for a fixed choice of the
one-dimensional mapping P : V (1) → 1.

Associated is the identity

I(d) =
d⊗

j=1

(Pj + (Ij − Pj))

=
∑

u⊂{1,...,d}

 ∏
k∈{1,...,d}/u

Pk

 ·
∏

j∈u

(Ij − Pj)

 =:
∑

u⊂{1,...,d}
Pu

where Pj and Ij denote the one-dimensional projection operator (3.12)
and the identity for the j-th coordinate direction, respectively. Here the
projection

∏d
j=1 Pjf is the unconditional mean of f (with respect to the

measure µ) and the partial projection
∏

k∈{1,...,d}/u Pkf is the conditional
mean

∫
..
∫

f(x)
∏

k∈{1,...,d}/u dµk(xk).
For the example of the conventional Lebesque measure dµ(x) = dx we

obtain the functions in (3.19) as

f0 =
d∏

j=1

Pjf =
∫

Ω̄(d)
f(x)

d∏
i=1

dxi,

fj1(xj1) =
∫

Ω̄(d−1)
f(x)

∏
i�=j1

dxi − f0,

fj1,j2(xj1,j2) =
∫

Ω̄(d−2)
f(x)

∏
i�∈{j1,j2}

dxi − fj1(xj1)− fj2(xj2)− f0,

. . . . . .

fj1,...,jk
(xj1,...,jk

) =
∫

Ω̄(d−k )
f(x)

∏
i�∈{j1,...,jk }

dxi (3.20)

−
∑

i1<···<ik−1⊂{j1,...,jk }
fi1,...,ik−1(xi1 , . . . , xik−1)

−
∑

i1<···<ik−2⊂{j1,...,jk }
fi1,...,ik−2(xi1 , . . . , xik−2)

. . .

−
∑
j1

fj1(xj1)− f0,

. . . . . .

This is just the well known ANOVA decomposition used in statistics, see
(Efron and Stein 1981, Wahba 1990) and the references cited therein.
There, if the input consists of independently distributed uniform random
variables (with respect to the Lebesque measure) then the component
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functions are uncorrelated and the total variance D can be written as

D = E(f − f0)2 =
∑
j1

Dj1 +
∑

j1<j2

Dj1,j2 +
∑

j1<j2<j3

Dj1,j2,j3 + . . . Dj1,...jd

with the partial variances1

Dj1,...,jk
=
∫

Ω̄(k )
(fj1,...,jk

)2dxj1 . . . dxjk
.

For the example of the Dirac measure located at a point aj, i.e., with
dµ(xj) = δ(xj − aj)dxj and dµ(x) =

∏d
j=1 dµ(xj), we obtain the functions

in (3.19) as

f0 = f(x)|x=a

fj1(xj1) = f(x)|x=a\xj1
− f0,

fj1,j2(xj1,j2) = f(x)|x=a\{xj1 ,xj2} − fj1(xj1)− fj2(xj2)− f0,

. . . . . .

fj1,...,jk
(xj1,...,jk

) = f(x)|x=a\{xj1 ,...,xjk
} (3.21)

−
∑

{i1,...,ik−1}⊂{j1,...,jk }
fi1,...,ik−1(xi1 , . . . , xik−1)

−
∑

{i1,...,ik−2}⊂{j1,...,jk }
fi1,...,ik−2(xi1 , . . . , xik−2)

. . .

−
∑
j1

fj1(xj1)− f0,

. . . . . .

where now only (partial) point evaluations in the point a = (a1, . . . , ad) are
involved. Here we use the notation

f(x)|x=a\xi
= f(a1, . . . , ai−1, xi, ai+1, . . . , ad)

with its obvious generalization to a \ {xj1 , . . . , xjk
}. This approach is con-

sidered in (Rabitz and Alis 1999) under the name cut-HDMR and is closely
related to the anchor spaces of (Sloan et al. 2004, Dick et al. 2004, Hicker-
nell and Woźniakowski 2000, Wasilkowski and Woźniakowski 2004). Note
that a component function vanishes if the value of one of its input variables
xi is equal to the associated coordinate of the point a, i.e.,

fj1,...,jk
(xj1,...,jk

)|xi =ai
= 0 i ∈ {j1, . . . , jk}.

Thus the decomposition (3.21) expresses f as a superposition of its values
on lines, faces, hyperplanes etc. that pass through the point a. Also note
1 The global sensitivity indices are then defined as Sj1,...,jk

= Dj1,...,jk
/D. They

describe the contribution of the input {xj1 , . . . , xjk
} to the variance of the output.
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that the component functions fulfill

fi1,...,ip
(xi1,...,ip

)fj1,...,jq
(xj1,...,jq

)|xk =ak
= 0 k ∈ {i1, . . . , ip}∪{j1, . . . , jp},

which is a direct consequence of the orthogonality∫
Ω̄(d)

fi1,...,ip
(xi1,...,ip

)fj1,...,jq
(xj1,...,jq

)dµ(x) = 0

with dµ(x) =
∏d

j=1 δ(xj − aj)dxj .
Note furthermore that for differentiable f there is a close relation to

the multivariate Taylor expansion. The decomposition (3.21) is just the
multivariate Taylor formula of first order in each coordinate direction with
partial remainder terms. Moreover, the multivariate Taylor expansion of f

around a (provided that f is sufficiently many times differentiable of course)
and a short calculation shows the following: The component functions of
first order, i.e., fj1 , are the sum of all terms in the Taylor series which
depend only on xj1 , the component functions of second order, i.e., fj1,j2 ,
are the sum of all terms in the Taylor series which depend on xj1 and xj2 ,
and so on. Thus (3.21) resembles a rearrangement of the infinite number
of terms in the full Taylor series into a finite number, i.e., 2d, of different
groups where each group corresponds to one component function (which
still contains as series an infinite number of terms).

Note finally that there are various generalizations of (3.21). Instead of
the Dirac measure at one point a we could also take the average of the Dirac
measures at m different points and build an ANOVA-type decomposition on
it. This approach is closely related to the multi-cut-HDMR method of (Li,
Rosenthal and Rabitz 2001b, Li, Schoendorf, Ho and Rabitz 2004). Other
variants (mp-cut-HDMR and lp-RS) can be found in (Li, Wang, Rosenthal
and Rabitz 2001c) and (Li, Atramonov, Rabitz, Wang, Georgopoulos and
Demiralp 2001a), respectively.

In summary an ANOVA-type decomposition of f into component func-
tions reveals the relative importance of the different dimensions as well
as their interactions and correlations. In general, an arbitrary function
f may result in zero components except of its highest order term
fj1,...,jd

(xj1 , . . . , xjd
) or might have all its components beeing relevant.

Then, nothing is gained with respect to the curse of dimensionality when
switching from f to its ANOVA decomposition. However in many practical
applications it can be observed that the finite series (3.19) decays rapidly.
In some cases it is even of finite order q, i.e., for the components fu of the
decomposition (3.19) there holds

fu = 0 with |u| > q
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with q << d. This usually expresses the fact that reasonable, meaningful
(observable) coordinates of the physical system under consideration had
been chosen. Alternatively it may happen that the different dimensions
are not of equal importance and we find a decay in the contribution of the
dimensions (after sorting according to their relevance) and their associated
higher order interactions.

Examples with such types of behavior of the expansion (3.19) are:

• In most molecular dynamics simulation codes only two-body (bonds),
three-body (angle) and four-body (dihedral) potential functions are used
to describe molecules, i.e., it holds that the finite order of the associated
ANOVA decomposition is trivially q ≤ 4. It seems that this mostly
gives a sufficient representation of the potential energy hypersurface of
a system, especially when macroscopic variables are sought.
• Closely related is the Mayer cluster expansion in statistical mechanics.

Here, for pair potentials Uij(xi, xj) which express the interaction between
two particles, the term

exp

−∑
i<j

Uij(xi, xj)

 =
∏
i<j

exp(−Uij(xi, xj))

gets transformed by exp(−Uij(xi, xj)) =: 1 + φij(xi, xj) into

1 +
∑
i<j

φij +
∑
i<j

∑
k<l

φijφkl +
∑
i<j

∑
k<l

∑
m<n

φijφklφmn + · · ·

which allows one to write the partition function of the canonical ensemble
of a particle system by means of cluster integrals, for details see (Hill
1956), page 123 ff.
• In many statistical applications a statistics of second order is sufficient,

i.e., the covariances of the input variables play an important role, but
higher-order correlations are neglected. Again this means that we have
finite order q ≤ 2 in the associated ANOVA decomposition.

• In data mining it is found from multivariate adaptive regression splines
(MARS), see (Friedman 1991), that even for really high-dimensional data
there appear at most 5-7 dimensional interactions, i.e., q ≤ 7, and higher-
order interactions are practically not significant.
• The Brownian bridge representation of a Markov process results in a

concentration of the total variation in the first few levels of the dis-
cretization since the variance decays with the factor 2−1/2 from level to
level, see also (Caflisch, Morokoff and Owen 1997, Morokoff 1998, Ger-
stner and Griebel 2003, Gerstner and Griebel 1998) where the Brownian



Sparse Grids for Higher Dimensional Problems 125

bridge was used in high-dimensional integration problems. A further
analysis in view of reproducing kernel Hilbert spaces with weights is
given in (Leobacher, Scheicher and Larcher 2003). Note that for the
Karhunen-Loewe decomposition an even better decay may result than
for the Brownian bridge.
• Many problems in mathematical finance can be formulated as high-

dimensional integrals, where the large number of dimensions arises from
small time steps in time discretization and/or a large number of state
variables. Examples are option pricing, bond valuation or the pricing
of collateral mortgage backed securities. There, it turns out that for
the ANOVA decomposition of the integrand the importance of each di-
mension is naturally weighted by certain hidden weights where with the
increase of dimension the lower-order terms continue to play a signifi-
cant role and the higher-order terms tend to be negligible, see (Caflisch
et al. 1997, Sloan and Wang 2005). This is a reason why Quasi-Monte-
Carlo performs better than expected, especially for high-dimensional in-
tegrands.
• There is also a counterexample. In quantum chemistry, the solution

of Schrödinger’s equation for d fermions has to obey the antisymmetry
condition due to Pauli’s principle. It can be shown that for an ANOVA
decomposition of an antisymmetric f all terms fu with |u| < d − 1 are
identically zero and all information of f is contained in the terms with
order d− 1 and d.1

In summary, in certain applications, i.e., for f from special function
spaces, we know a-priori how the ANOVA-components decay and may re-
sort to a truncation of (3.19) after the q-th order terms, where q is related
to the needed accuracy. Or we may a-priori know if ANOVA-terms of
order higher than some q are present at all or not. The question is how
these situations and the associated function spaces can be characterized.
A possibility are reproducing kernel Hilbert spaces. The associated multi-
dimensional kernel function can be decomposed analogously to the ANOVA
expansion into a sum of kernels. Then these partial kernels can be equipped
with different individual weights. These weights allow one to model various
behaviors of decay for the different contributions in the ANOVA decompo-
sition as well as truncations to finite order. This will be dealt with in the
following.

1 For bosonic systems a symmetry condition is needed instead. Then all functions fu
with the same order |u| are the same.
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3.3.2 Reproducing kernel Hilbert spaces

The theory of reproducing kernel Hilbert spaces (RKHS) was introduced
in (Aronzaijn 1950). It allows one to describe function spaces in a concise
and elegant way by means of so-called reproducing kernel functions. To
this end, we assume that f : [0, 1]d → IR belongs to a Hilbert space H

with associated inner product 〈·, ·〉H and norm ‖f‖H = 〈f, f〉1/2
H . We

assume that H is continuously embedded into L2([0, 1]d). Thus, we consider
integrable functions f with respect to the Lebesgue measure for which

‖f‖L2 :=
(∫

[0,1]d
f2(t)dt

)1/2

< ∞. Furthermore, there is a non-negative
number c(H) depending on the space H such that

‖f‖L2 ≤ c(H) ‖f‖H for all f ∈ H. (3.22)

Finally we assume that the evaluation of the function f is well-defined and
continuous, i.e., that the linear functional f ∈ H �→ f(x) is continuous
for any x ∈ [0, 1]d. These assumptions are equivalent to the requirement
that H is a reproducing kernel Hilbert space, see (Aronzaijn 1950). Hence,
H has an associated kernel K(d) : [0, 1]d × [0, 1]d → IR which is uniquely
defined by the following three conditions:

• K(d)(·, t) ∈ H for all t ∈ [0, 1]d,
•
(
K(d)(xi, xj)

)n
i,j=1

is a symmetric and non-negative definite matrix for
all n and points xi from [0, 1]d,

• f(t) =
〈
f,K(d)(·, t)

〉
H

for all f ∈ H and all t ∈ [0, 1]d (reproducing
kernel property).

Thus it is sufficient to give K(d) to uniquely characterize the associated
function space H. The theory of reproducing kernel Hilbert spaces can
be found in detail in (Aronzaijn 1950); further aspects are discussed in
(Wahba 1990, Ritter 2000).

From the three properties of reproducing kernels it easily follows that

K(d)(t, x) =
〈
K(d)(·, x),K(d)(·, t)

〉
H

for all t, x ∈ [0, 1]d,√
K(d)(t, t) = ‖K(d)(·, t)‖H for all t ∈ [0, 1]d,

|f(t)| ≤ ‖f‖H
√

K(d)(t, t) for all f ∈ H, t ∈ [0, 1]d.

If H is separable, then for an arbitrary orthonormal basis {ηi}, we have
K(d)(·, x) =

∑dim(H)
i=1 ciηi with ci =

〈
ηi,K

(d)(·, x)
〉

H
= ηi(x). Therefore

K(d)(x, t) =
dim(H)∑

i=1

ηi(x)ηi(t) for all x, t ∈ [0, 1]d. (3.23)
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In a way, the reverse of this argument is also true, see (Wahba 1990). To
this end, let {ηi}∞i=1 be a given arbitrary sequence of linearly independent
functions defined on [0, 1]d such that

∑∞
i=1 η2

i (t) < ∞ for all t ∈ [0, 1]d.
Consider the space H = span{η1, η2, . . . } of functions f(t) =

∑∞
i=1 fiηi(t)

with real numbers fi such that
∑∞

i=1 f2
i < ∞. Observe that f(t) is well-

defined. For f ∈ H the coefficients fi are uniquely determined since the
ηi’s are linearly independent. The inner product in H is given by requiring
that the ηi’s be orthonormal, 〈ηi, ηj〉H = δi,j. Hence, for f, g ∈ H we
have 〈f, g〉H =

∑∞
i=1 figi with fi and gi being the coefficients of f and

g, respectively. Then H is a Hilbert space. Furthermore, it can be easily
shown that

K(d)(x, t) =
∞∑

i=1

ηi(x)ηi(t)

is its reproducing kernel.
Note that the Hilbert space L2([0, 1]d) does not have a reproducing

kernel, since point evaluation t ∈ [0, 1]d �→ f(t) is not well-defined for
L2([0, 1]d) and thus can not be continuous. It is easy to see that H is
continuously embedded in L2 if we assume that∫

[0,1]d
K(d)(t, t) dt < ∞. (3.24)

Indeed, f2(t) ≤ ‖f‖2H ·K(d)(t, t), and therefore (3.22) holds with

c(H) =

(∫
[0,1]d

K(d)(t, t) dt

)1/2

. (3.25)

In this case, H is a proper subset of L2, and K(d)(·, t) ∈ L2 for arbitrary
t ∈ [0, 1]d. Many examples of reproducing kernel Hilbert spaces can be
found in the literature, see for example (Wahba 1990, Ritter 2000).

Remember now our approach in Subsection 3.3.1: We first split V (1) =
1 ⊕W in (3.11) and then used the tensor product construction in (3.17)
to gain the decomposition V (d) =

⊕
u⊂{1,...,d} Wu in (3.18) for the d-

dimensional case. From (Aronzaijn 1950) we know the following facts:

• The reproducing kernel for the direct sum of two orthogonal subspaces
is the sum of the single reproducing kernels.
• The reproducing kernel for a tensor product of two RKHS is the product

of the single reproducing kernels.

This allows us, depending on the one-dimensional splitting and the
associated orthogonal norm, to build a d-dimensional RKHS as a
product of the sum of one-dimensional RKHSs. If we have for the
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orthogonal splitting (3.11) the associated sum of reproducing kernels
K(x, y) = K1(x, y) + KW (x, y) we obtain for the splitting (3.18) the cor-
responding kernel

K(d)(x, y) =
d∏

j=1

(
K1

j (xj , yj) + KW
j (xj , yj)

)
=

∑
u⊂{1,...,d}

∏
k∈{1,...,d}\u

K1
k (xk, yk) ·

∏
j∈u

KW
j (xj , yj)

=:
∑

u⊂{1,...,d}
Ku(x, y)

with Ku(x, y) =
∏

k∈{1,...,d}\u K1
k (xk, yk)·

∏
j∈u KW

j (xj , yj). Here we again
use the indices j and k to indicate the respective coordinate directions. In
the special case of K1

j (xj , yj) = 1 we directly have

K(d)(x, y) =
∑

u⊂{1,...,d}

∏
j∈u

KW
j (xj , yj).

3.3.3 Weighted spaces

Now we are in the position to introduce weights into the splittings. We
follow (Sloan et al. 2004, Dick et al. 2004, Wasilkowski and Woźniakowski
2004), see also (Kuo and Sloan 2005). First we consider the simple case
where each dimension gets its own weight γj ∈ IR+

0 , j = 1, . . . , d, i.e., where
d different non-negative weights are involved. We then have K1

j = 1 and
replace KW

j by γj ·KW
j .1 We obtain with

∏
k∈{1,...,d}\u K1

k = 1

K(d)(x, y) =
∑

u⊂{1,...,d}

∏
j∈u

γj ·
∏
j∈u

KW
j (xj , yj)

=:
∑

u⊂{1,...,d}
γd,u ·Kd,u(xu, yu)

with γd,u =
∏

j∈u γj and Kd,u(xu, yu) =
∏

j∈u KW
j (xj , yj). The resulting

weights γd,u are just products of the γj .
We can generalize this approach as follows: We set

K(d)(x, y) =
∑

u⊂{1,...,d}
γd,u ·

∏
j∈u

KW
j (xj , yj)

=:
∑

u⊂{1,...,d}
γd,u ·Kd,u(xu, yu) (3.26)

where we now allow 2d general non-negative weights γd,u ∈ IR+
0 which

1 Without loss of generality we choose here the weight one in front of the kernel K1

which is associated to the subspace 1 of constants.
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need no longer be formed as products of one-dimensional weights γi but
may be chosen arbitrarily. Here we use the convention γd,{} = 1 and∏

j∈{} KW
j = 1.

As an example we consider the reproducing kernels

KW
j (x, y) =

1
2
B2(x− y) +

(
x− 1

2

)(
y − 1

2

)
+ µj(x) + µj(y) + mj

where B2(x) := x2− x + 1/6 denotes the Bernoulli polynomial of degree 2,
µj is a function with bounded derivative in [0, 1] such that∫ 1

0

µj(x)dx = 0, mj :=
∫ 1

0

(µ′(x))2dx.

This kernel was presented for example in (Sloan et al. 2004). It allows to
capture the two types of ANOVA-decompositions introduced in (3.20) and
(3.21) as special cases and it also allows one to generalize them by means
of the weights γd,u.

The choice µj(x) = 0, j = 1, . . . , d, gives mj = 0 and thus KW
j (x, y) =

1
2B2(x − y) + (x − 1

2 )(y − 1
2 ). Note that

∫ 1

0
KW

j (x, y)dy = 0,∀x ∈ [0, 1].
Then, the associated kernel (3.26) is called the ANOVA Sobolev kernel with
general weights γd,u. It can be shown that the associated inner product in
V (d) is now

〈f, g〉V (d) =
∑

u⊂{1,...,d}

1
γd,u

∫
[0,1]|u|

(∫
[0,1]d−|u|

∂|u|f(x)
∂xu

dx−u∫
[0,1]d−|u|

∂|u|g(x)
∂xu

dx−u

)
dxu

(3.27)

where we interpret the term associated to u = {} as the product of integrals∫
[0,1]d

f(x)dx
∫
[0,1]d

g(x)dx. Here, xu denotes the |u|-dimensional vector of
the components xj with j ∈ u and x−u denotes x{1,...,d}\u.

The choice

KW
j (x, y) =

{
min(|x− aj |, |y − aj |), if (x− aj)(y − aj) > 0,

0, else,

leads for (3.26) to the so-called anchored ANOVA Sobolev kernel with point
a = (a1, . . . , ad) and general weights γd,u. The associated inner product is

〈f, g〉V (d) =
∑

u⊂{1,...,d}

1
γd,u

∫
[0,1]|u|

∂|u|f(xu, a−u)
∂xu

∂|u|g(xu, a−u)
∂xu

dxu (3.28)

where (xu, a−u) denotes the d-dimensional vector whose j-th component is
equal to xj if j ∈ u and to aj if j �∈ u, respectively. For the case u = {}
we set

∫
[0,1]|{}| f(x{}, a−{})dx{} := f(a).
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In both cases the associated weighted inner product can be written as

〈f, g〉V (d) =
∑

u⊂{1,...,d}

1
γ d,u

(fu, gu)Vu (3.29)

where

(fu, gu)Vu =
∫

[0,1]|u|

∂|u|fu(xu)
∂xu

∂|u|gu(xu)
∂xu

dµ(xu) (3.30)

and f =
∑

u fu and g =
∑

u gu are the ANOVA decompositions of f and
g with respect to the chosen measure dµ(x). A straightforward calculation
which uses the fact that fu and gu are the components of an ANOVA
decomposition and thus possess orthogonality properties shows that (3.30)
and the integrals in the sum (3.27) and (3.28) are indeed equivalent.1

From (3.29) we see the effect of the weights on the inner product: The
{γd,u} are non-negative numbers which measure the influence of the associ-
ated partial derivative of the function and, consequently, also the influence
of the corresponding terms fu of the decomposition (3.14). Note that for
positive weights the associated weighted norm

‖f‖V (d) =
√
〈f, f〉V (d) =

√∑
u

1
γd,u

(fu, fu)Vu

is equivalent (up to a constant) to the conventional norm in V (d) (with just
a weighting of the contributions to the overall norm). However, for any
u with γd,u → 0 the associated contribution to the norm is forced to zero
since

1
γ d,u

(fu, fu)Vu ≤ const.⇒ (fu, fu)Vu ≤ const. · γd,u → 0.

Thus fu = 0, the associated subspace Wu is switched off and we obtain a
true subspace of the overall space.

The weights {γd,u} therefore allow to explicitly prescribe the importance
of different dimensions and of the correlations and interactions between
(groups of) dimensions and thus allow one to characterize the associated
function spaces and the possibly low, hidden dimensionality of nominally
high-dimensional functions.

An attempt in this direction was the concept of effective dimension
introduced in (Caflisch et al. 1997). There, based on the ANOVA

1 Plug the ANOVA decompositions f =
∑

v fv and g =
∑

v gv into (3.27), change the
order of the sum, the integral and the derivative and use the orthogonality of the
ANOVA decomposition and the fact that the partial derivative is non-zero only if
u ⊂ v. An analogous argument holds for (3.28).
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decomposition of a function, the distribution of the overall variance to the
ANOVA components was considered. This leads to the definitions of the
truncation dimension dt and the superposition dimension ds of a function.
There, f has truncation dimension dt if the sum of the partial variances
of the ANOVA terms fu with u ⊂ {1, . . . , dt} exceeds 99 percent of the
total variance σ(f). Alternatively, f has superposition dimension ds if the
sum of the partial variances of the ANOVA terms fu with order |u| ≤ ds

exceeds 99 percent of the total variance. It was argued that the success of
Quasi Monte Carlo methods for high-dimensional problems from finance is
due to the relatively low effective dimensions of the integrands involved.
In particular, the example of a mortgage backed security with nominal 360
dimensions from (Paskov and Traub 1995) showed an effective dimension
of only about 50 in the truncation sense and about 32 in the superposition
sense, see (Caflisch et al. 1997) for details and (Sloan and Wang 2005) for
a further discussion on this subject. With the help of the general weights
{γd,u}, besides these two simple situations, more general situations can
now be modeled and analyzed. In addition to the product weights men-
tioned above, also the case of order-dependent weights, i.e., the interaction
between the variables in xu depends only on |u|, and the case of finite-order
weights, i.e., there exists q ∈ IN such that γd,u = 0 for all |u| > q, has been
studied, see (Sloan and Woźniakowski 1998, Dick et al. 2004, Hickernell et
al. 2004, Sloan et al. 2004, Hickernell and Woźniakowski 2000, Wasilkowski
and Woźniakowski 2004) and the references cited therein. This was mainly
done for the analysis of Quasi Monte Carlo methods and lattice rules for
the numerical integration of high-dimensional functions.

A closely related approach with weighted kernels can be found in the area
of data analysis, where the weights are called rescaling parameters. There,
for so-called interaction spline models (Wahba 1990), page 129 ff., strategies
are discussed to delete ANOVA-component subspaces driven by data fitting
methods. The weights γd,u are not given a-priori but are determined in an
adaptive fashion by statistical tests. Alternative techniques are the l1-
penalty method or the structured Multicategory Support Vector Machine
where an updating algorithm is used for the tuning of the weights, see (Lee,
Lin and Wahba 2004b, Lee, Kim, Lee and Koo 2004a).

Now, with a-priori knowledge, i.e., for the case of weights with finite
order q, where γd,u = 0 for |u| > q, only a proper discretization of the
remaining component functions is needed. Then, the curse of dimension-
ality is no longer present with respect to d but only with respect to q, as
shown for quadrature and more general linear problems in (Wasilkowski
and Woźniakowski 2004). In a similar fashion, for the case of sufficiently
fast-decaying weights, the series expansion (3.19) may be truncated



132 Michael Griebel

accordingly, which then results in an approximation to the true function.1

Then, again, for a proper discretization of the remaining component func-
tions, the curse of dimensionality may no longer be present with respect
to d but only with respect to a smaller intrinsic dimension of the over-
all function. In this sense, the curse of dimensionality can be broken and
nominally high-dimensional problems can be tackled.

Note that a truncation of the ANOVA series introduces a modelling error
whereas the subsequent discretization of the remaining subspaces relates to
a discretization error. This unnatural distinction between modelling error
and subsequent discretization error can be overcome if we intertwine the
truncation of the ANOVA series and the discretization. However, how these
two types of errors may be balanced, how this may be done in a purely adap-
tive fashion, what the smoothness assumptions, a-posteriori error indicators
and refinement procedures, first, for the ANOVA parts and, second, within
the discretization of the ANOVA parts have to be and how they relate
to each other is presently not completely clear, especially for PDE-based
problems.2 Nevertheless, such a type of approach needs to be developed
and applied in the area of partial differential equations in the future.

3.4 Sparse grids

So far we have seen how an ANOVA-type decomposition may be used to
detect important and unimportant correlations and interactions between
(groups of) dimensions. However the components in the decomposition
(3.19) are still continuous functions and the corresponding subspaces Wu

are in general infinite-dimensional. Moreover, for practical computations a
choice of basis and a further discretization is needed for each of the sub-
spaces. To this end, we can follow the same principle as in Subsection 3.3.1.
First we equip the space W in the one-dimensional splitting (3.11) with a
proper (infinite) basis {φk} (the constant, i.e., φ0 = 1 is excluded). Then we
apply the tensor product construction (3.17) to come to the d-dimensional
case. Here we just form the products of the respective one-dimensional
basis functions. This results in an induced basis {φu,k} for each of the

1 Alternatively a closure by an approximation of the higher order terms by means of
products of lower order terms or similar may be sought.

2 If we assume, for example, fu ∈ C|u|·k([0, 1]|u|), ∀u, we directly see that f ∈
Ck·d([0, 1]d). However there exist more partial derivatives like, for example, the
|u|-th mixed derivative of fu and, therefore, f belongs to the space of bounded k-th
mixed derivatives, compare also (Novak and Ritter 1998). Note that the inverse di-
rection of this implication is in general not valid. Now, for functions whose ANOVA
decomposition is of finite order q, only a prerequisite fu ∈ Cq·k([0, 1]|u|) is at most
necessary to have f from the space of bounded k-th mixed derivatives.
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ANOVA subspaces Wu with multi-index k = (kj1 , . . . , kj|u|) ∈ IN|u| where
φu,k(xu) =

∏
j∈u φkj

(xj) ·
∏

j∈{1,...,d}\u 1. This may be seen as an (infinite)
refinement of the ANOVA decomposition by a further decomposition of the
space W (e.g., by means of the span of certain basis functions).1 Then,
we can write each component function as linear combination of these basis
functions. This overall expansion of the sum of component functions of the
ANOVA decomposition must be truncated properly in each of its compo-
nents to obtain a finite dimensional approximation to f and to its compo-
nent functions fj1 , fj1,j2 , . . . , fj1,...jd

. This leads to so-called sparse grids.
Depending on the smoothness assumed – here usually certain mixed deriva-
tives have to be bounded – and depending on the specific one-dimensional
basis chosen, such an approach allows to get rid of the curse of dimension-
ality to some extent.

This concept works for quite general systems of one-dimensional basis
functions. Candidates are the eigenbasis of an associated one-dimensional
differential operator (which may be chosen depending on the respective
higher dimensional problem under consideration), classical Fourier bases,
(hierarchical) global polynomial systems (Boyd 2000, Karniadakis and
Sherwin 1999, Szabo and Babuska 1991, Bungartz 1998, Bungartz and
Griebel 2004) or function families with localization properties like wavelets
(Daubechies 1992), prewavelets (Chui and Wang 1992, Griebel and Oswald
1995b) or interpolets (Deslauriers and Dubuc 1989, Donoho and Yu 1999)
and related wavelet-like constructs, see (Cohen 2003, Bungartz and Griebel
2004) for a survey. But also multiscale finite element systems and frames
(Oswald 1994, Griebel 1994, Griebel and Oswald 1994, Griebel and Oswald
1995a, Griebel and Oswald 1995b) may be used.

In the following, we restrict ourselves for reasons of simplicity to the
standard hat function and the associated hierarchical Faber basis. It is
closely related to piecewise linear finite elements and thus suited for the
discretization of elliptic PDEs of second order in weak form. This choice
allows in a straightforward way to derive approximation orders and cost
complexities by simple geometric series arguments and triangle inequalities.
Moreover, for this special choice of basis we are able to also derive estimates
of the constants involved and their dependence on the dimension d. We

1 Note the close relation to the work in (Lemieux and Owen 2002, Liu and Owen 2005),
to MARS (Friedman 1991), to the WARNAX model (Wei and Billings 2004) and to
tensor product space ANOVA models (Gu and Wahba 1993, Lin 2000). For example
in (Wahba 1990), page 130, the one-dimensional two-scale splitting is extended to
more terms which correspond to higher derivatives. Orthogonality is then given by
a proper eigenbasis associated to this splitting. This results in so-called interaction
splines.
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now closely follow (Bungartz 1992, Bungartz and Griebel 1999, Bungartz
1998, Bungartz and Griebel 2004).

3.4.1 Hierarchical multilevel subspace splitting

3.4.1.1 Subspace decomposition

Let Ω̄ := [0, 1]d denote the d-dimensional unit interval. We consider multi-
variate functions u, u(x) ∈ IR, x := (x1, . . . , xd) ∈ Ω̄, with (in some sense)
bounded weak mixed derivatives

Dαu :=
∂|α|1u

∂xα1
1 · · · ∂xαd

d

(3.31)

up to some given order r ∈ IN0. Here, α ∈ INd
0 denotes a d-dimensional

multi-index with the norms |α|1 :=
∑d

j=1 αj and |α|∞ := max1≤j≤d αj .
Furthermore, we use for multi-indices component-wise arithmetic opera-
tions, for example α · β := (α1β1, . . . , αdβd), γ · α := (γα1, . . . , γαd), or
2α := (2α1 , . . . , 2αd ), the relational operators α ≤ β :⇔ ∀1≤j≤d αj ≤ βj

and α < β :⇔ α ≤ β ∧ ∃1≤j≤d αj < βj , and, finally, special multi-
indices like 0 := (0, . . . , 0) or 1 := (1, . . . , 1), and so on.

In the following, for q ∈ {2,∞} and r ∈ IN0, we study the spaces

Xq,r(Ω̄) :=
{
u : Ω̄→ IR : Dαu ∈ Lq(Ω), |α|∞ ≤ r

}
,

Xq,r
0 (Ω̄) :=

{
u ∈ Xq,r(Ω̄) : u|∂Ω = 0

}
.

(3.32)

Thus, Xq,r(Ω̄) denotes the space of all functions of bounded (with respect
to the Lq-norm) mixed derivatives up to order r, and Xq,r

0 (Ω̄) will be the
subspace of Xq,r(Ω̄) consisting of those u ∈ Xq,r(Ω̄) which vanishes on the
boundary ∂Ω. Note that we first restrict ourselves to the case of homo-
geneous boundary conditions, i.e., to Xq,r

0 (Ω̄). As smoothness parameter
r ∈ IN0, we need r = 2 for the case of piecewise linear approximations
which will be in the following in the focus of our considerations. Finally,
for functions u ∈ Xq,r

0 (Ω̄) and multi-indices α with |α|∞ ≤ r, we introduce
the seminorm

|u|α,∞ := ‖Dαu‖∞ . (3.33)

Now, with the multi-index l = (l1, . . . , ld) ∈ INd which indicates the
level of refinement in a multivariate sense, we consider the family of d-
dimensional standard rectangular grids

{Ωl, l ∈ INd} (3.34)

on Ω̄ with mesh size

hl := (hl1 , . . . , hld ) := 2−l . (3.35)
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That is, the grid Ωl is equidistant with respect to each individual coordinate
direction, but, in general, may have different mesh sizes in the different
coordinate directions. The grid points xl,i of grid Ωl are just the points

xl,i := (xl1,i1 , . . . , xld ,id
) := i · hl , 0 ≤ i ≤ 2l . (3.36)

Thus, here and in the following, the multi-index l indicates the level (of a
grid, a point, or, later on, a basis function, respectively), whereas the multi-
index i denotes the location of a given grid point xl,i in the respective grid
Ωl.

Next, we define discrete approximation spaces and sets of basis functions
that span those discrete spaces. In a piecewise linear setting, the simplest
choice of a 1 D basis function is the standard hat function φ(x),

φ(x) :=
{

1− |x|, if x ∈ [−1, 1] ,
0, else.

(3.37)

This function can be used to generate an arbitrary φlj ,ij
(xj) with support

[xlj ,ij
−hlj , xlj ,ij

+hlj ] = [(ij−1)hlj , (ij +1)hlj ] by dilation and translation,
that is

φlj ,ij
(xj) := φ

(
xj − ij · hlj

hlj

)
. (3.38)

The resulting 1 D basis functions are the input of the tensor product con-
struction which provides a suitable piecewise d-linear basis function in each
grid point xl,i (see Figure 3.1):

φl,i(x) :=
d∏

j=1

φlj ,ij
(xj) . (3.39)

Since we deal with homogeneous boundary conditions (i.e., with Xq,2
0 (Ω̄)),

only those φl,i(x) that correspond to inner grid points of Ωl are taken into

W

2

1

X

x

y 21

W
W

Fig. 3.1. Tensor product approach for piecewise bilinear basis functions.
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account for the definition of

Vl := span
{
φl,i : 1 ≤ i ≤ 2l − 1

}
, (3.40)

the space of piecewise d-linear functions with respect to the interior of
Ωl. Obviously, the φl,i form a basis of Vl, with one basis function φl,i

of a support of the fixed size 2 · hl for each inner grid point xl,i of Ωl,
and this basis {φl,i} is simply the standard nodal point basis of the finite
dimensional space Vl.

Additionally, we introduce the hierarchical increments Wl,

Wl := span
{
φl,i : 1 ≤ i ≤ 2l − 1, ij odd for all 1 ≤ j ≤ d

}
, (3.41)

for which the relation

Vl =
⊕
k≤l

Wk (3.42)

can be easily seen. Note that the supports of all basis functions φl,i span-
ning Wl are mutually disjoint. Thus, with the index set

Il :=
{
i ∈ INd : 1 ≤ i ≤ 2l − 1, ij odd for all 1 ≤ j ≤ d

}
, (3.43)

we get another basis of Vl, the hierarchical basis

{φk,i : i ∈ Ik,k ≤ l} (3.44)

which generalizes the well-known 1 D basis shown in Figure 3.2 to the
d-dimensional case by means of a tensor product approach. With these

Fig. 3.2. Piecewise linear hierarchical basis (solid) vs. nodal point basis (dashed).
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hierarchical difference spaces Wl, we can define

V (d) :=
∞∑

l1=1

. . .

∞∑
ld =1

W(l1,...,ld ) =
⊕
l∈INd

Wl (3.45)

with its natural hierarchical basis

{φl,i : i ∈ Il, l ∈ INd}. (3.46)

Except for completion with respect to the H1-norm, V (d) is just the un-
derlying Sobolev space H1

0 (Ω̄), i.e., V̄ (d) = H1
0 (Ω̄).

Now it is easy to see that any function u ∈ H1
0 (Ω̄) and, consequently,

any u ∈ Xq,2
0 (Ω̄) can be uniquely split by

u(x) =
∑
l

ul(x), ul(x) =
∑
i∈Il

vl,i · φl,i(x) ∈ Wl , (3.47)

where the vl,i ∈ IR are the coefficient values of the hierarchical product
basis representation of u.

3.4.1.2 Basic properties of the subspaces

We summarize the most important properties of the hierarchical subspaces
Wl.

From (3.41) and (3.43), we immediately learn the dimension of Wl, i. e.
the number of degrees of freedom (grid points or basis functions, resp.)
associated with Wl:

|Wl| = |Il| = 2|l−1|1 . (3.48)

The question is now how important Wl is for the interpolation of some
given u ∈ Xq,2

0 (Ω̄). In the following we will discuss the contribution of a
subspace Wl to the overall interpolant according to (3.47). Here, besides
the Lp-norms, p ∈ {2,∞} we will concentrate on the energy norm

‖u‖E :=

∫
Ω

d∑
j=1

(
∂u(x)
∂xj

)2

dx

1/2

, (3.49)

which is equivalent to the H1-norm in H1
0 (Ω̄). For the Laplacian, (3.49)

indeed indicates the energy norm in finite element terminology.1

1 Note that analogous results for the maximum norm ‖ · ‖∞ and the Lp-norm ‖ · ‖p (in
general p = 2) can be found in e.g., (Bungartz and Griebel 2004).
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First, we look at the different hierarchical basis functions φl,i(x). A
straightforward calculation gives

‖φl,i‖E =
√

2 ·
(

2
3

)(d−1)/2

· 2−|l|1/2 ·

 d∑
j=1

22lj

1/2

. (3.50)

Next, we consider the hierarchical coefficient values vl,i in more detail.
They can be computed from the function values u(xl,i) in the following
way:

vl,i =

 d∏
j=1

[
− 1

2 1− 1
2

]
xlj ,ij

,lj

u. (3.51)

This is due to the definition of the spaces Wl and their basis functions
(3.41), whose supports are mutually disjoint and do not contain coarse grid
points xk,j, k < l, in their interior. The right-hand side term in (3.51),
as usual in multigrid terminology (see, for example, (Hackbusch 1985)),
denotes a d-dimensional stencil which gives the coefficients for a linear
combination of nodal values of its argument u.

A straightforward calculation using partial integration twice and the
product structure of (3.51), see (Bungartz and Griebel 2004) for details,
gives the integral representation

vl,i =
∫

Ω

ψl,i(x) ·D2u(x) dx (3.52)

for any coefficient value vl,i of the hierarchical representation (3.47) of
u ∈ Xq,2

0 (Ω̄). Here ψlj ,ij
(xj) := −2−(lj +1) · φlj ,ij

(xj), and furthermore
ψl,i(x) :=

∏d
j=1 ψlj ,ij

(xj).
Starting from (3.52), we are now able to give bounds for the hierarchi-

cal coefficients with respect to the seminorm introduced in (3.33). For the
detailed proof see again e.g., (Bungartz and Griebel 2004). We obtain

|vl,i| ≤ 2−d · 2−2·|l|1 · |u|2,∞. (3.53)

We are now ready to state the following Lemma.

Lemma 1 Let u ∈ Xq,2
0 (Ω̄) be given in its hierarchical representation

(3.47). Then, the following estimate holds for its components ul ∈Wl:

||ul||E ≤ 1
2 · 12(d−1)/2

· 2−2·|l|1 ·

 d∑
j=1

22·lj

1/2

· |u|2,∞. (3.54)
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Proof Note that the supports of all φl,i contributing to ul according to
(3.47) are mutually disjoint. Then

||ul||2E =

∥∥∥∥∥∑
i∈Il

vl,i · φl,i

∥∥∥∥∥
2

E

=
∑
i∈Il

|vl,i|2 · ||φl,i||2E

≤
∑
i∈Il

1
4d
· 2−4·|l|1 · |u|22,∞ · 2 ·

(
2
3

)d−1

· 2−|l|1 ·

 d∑
j=1

22·lj


=

1
2 · 6d−1

· 2−5·|l|1 ·

 d∑
j=1

22·lj

 ·∑
i∈Il

|u|22,∞

=
1

4 · 12d−1
· 2−4·|l|1 ·

 d∑
j=1

22·lj

 · |u|22,∞.

This shows (3.54).

3.4.2 Energy-norm based sparse grids

We will now construct finite-dimensional approximation spaces U for V (d)

or Xq,2
0 (Ω̄), respectively. Such a U is based on a subspace selection I ⊂ INd,

U :=
⊕
l∈I

Wl , (3.55)

with corresponding interpolants

uU :=
∑
l∈I

ul , ul ∈Wl . (3.56)

The estimate

‖u− uU‖ =

∥∥∥∥∥∑
l

ul −
∑
l∈I

ul

∥∥∥∥∥ ≤ ∑
l�∈I

‖ul‖ ≤
∑
l�∈I

b(l) · |u| (3.57)

will then allow the evaluation of the approximation space U with respect
to a norm ‖·‖ and a corresponding seminorm | · | on the basis of the bounds
from above indicating the benefit b(l) of Wl.

3.4.2.1 Construction of subspaces by optimization

We now address the question how to determine optimal subspace index
sets I which optimize cost versus accuracy for the interpolation error for
functions u from Xq,2

0 . To this end, we look for an optimum V (opt) by
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solving a restricted optimization problem of the type

max
u∈Xq ,2

0 :|u|=1
‖u− uV (opt)‖ = min

U⊂V (d):|U |=w
max

u∈Xq ,2
0 :|u|=1

‖u− uU‖ (3.58)

for some prescribed work count w. The aim is to profit from a given work
count as much as possible.1 Of course, any potential solution V (opt) of
(3.58) has to be expected to depend on the norm ‖ · ‖ as well as on the
seminorm | · | used to measure the error of u’s interpolant uU ∈ U or the
smoothness of u, respectively. Note that this a-priori optimization strategy
depends only on the problem class (i.e., on the space u has to belong to –
here Xq,2

0 (Ω̄)), but not on u itself.2

According to our hierarchical setting, we will allow discrete spaces of the
type U :=

⊕
l∈I Wl for an arbitrary finite index set I ⊂ INd as candidates

for the optimization process only. Now, an approach like (3.58) selects
certain Wl due to their importance and, thus, selects the respective grids
and the underlying index sets I ⊂ INd. This is done by using techniques
known from combinatorial optimization as follows:

For the following, a grid and its representation I – formerly a finite set of
multi-indices – is nothing but a bounded subset of INd

+, and a hierarchical
subspace Wl just corresponds to a point l ∈ INd

+. First, we have to refor-
mulate the optimization problem (3.58). We define the local functions c(l)
and b(l), for the multi-indices l ∈ INd. According to (3.48), the local cost
c(l) is

c(l) := |Wl| = 2|l−1|1 . (3.59)

Obviously, c(l) ∈ IN holds for all l ∈ INd. Concerning the local benefit b(l),
we define

b(l) := γ · β(l) , (3.60)

where β(l) is an upper bound for ‖ul‖2 according to (3.54), and γ is a factor
which depends on the problem’s dimensionality d and on the smoothness
of the data, i.e., of u, but which is constant with respect to l, such that
b(l) ∈ IN. The bound in (3.54) shows that such a choice of γ is indeed
possible. At the moment, we do not yet fix the norm to be used here.

Now, the search for an optimal grid I ⊂ INd can be restricted to all I ⊂
I(max) := {1, . . . , N}d for a sufficiently large N without loss of generality.

1 Note that an optimization the other way round could be done as well: Prescribe some
desired accuracy ε and look for the discrete approximation scheme that achieves
this with the smallest possible work count. This is in fact the point of view of
computational complexity.

2 This is in contrast to adaptive grid refinement which uses a-posteriori error estimators
to approximate one given function u.
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Next, global cost and benefit functions C(I) and B(I) are to be defined.
For C(I), we set

C(I) :=
∑
l∈I

c(l) =
∑

l∈I(max)

x(l) · c(l) , (3.61)

where

x(l) :=
{

0 : l /∈ I,
1 : l ∈ I.

(3.62)

The interpolant to u on a grid I provides the global benefit B(I):∥∥∥∥∥u − ∑
l∈I

ul

∥∥∥∥∥
2

≈

∥∥∥∥∥∥
∑

l∈I(max)

ul −
∑
l∈I

ul

∥∥∥∥∥∥
2

≤
∑

l∈I(max)\I

‖ul‖2

≤
∑

l∈I(max)

(1− x(l)) · γ · β(l)

=
∑

l∈I(max)

γ · β(l)−
∑

l∈I(max)

x(l) · γ · β(l)

=:
∑

l∈I(max)

γ · β(l)−B(I) .

(3.63)

Of course, (3.63) gives only an upper bound for an approximation to the
(squared) interpolation error, because it does not take into account all
l /∈ I(max). However, since N and, consequently, I(max) can be chosen to be
as large as is appropriate, this is not a serious restriction. Altogether, we
get the following reformulation of (3.58):

max
I⊂I(max)

B(I) with C(I) = w, i.e.,

max
I⊂I(max)

∑
l∈I(max)

x(l) · γ · β(l) with
∑

l∈I(max)

x(l) · c(l) = w . (3.64)

If we arrange the l ∈ I(max) in some linear order (a lexicographical one,
for instance) with local cost ci and benefit bi, i = 1, . . . , Nd =: M , (3.64)
results in

max
x

bTx with cT x = w , (3.65)

where b ∈ INM , c ∈ INM , x ∈ {0, 1}M , and, without loss of generality,
w ∈ IN. In combinatorial optimization, a problem like (3.65) is called a
binary knapsack problem (Martello and Toth 1990), which is known to be
NP-hard. However, a slight change makes things much easier. If rational
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solutions, i.e., x ∈ ([0, 1] ∩Q)M , are allowed, too, there exists a very simple
algorithm that provides an optimal solution vector x ∈ ([0, 1] ∩Q)M :

1. rearrange the order that b1
c1
≥ b2

c2
· · · ≥ bM

cM
,

2. let r := max
{

j :
j∑

i=1
ci ≤ w

}
,

3. x1 := · · · := xr := 1,

xr+1 :=
(

w −
r∑

i=1

ci

)
/cr+1,

xr+2 := · · · := xM := 0.

Although there is only one potential non-binary coefficient xr+1, the ra-
tional solution vector x, generally, has nothing to do with its binary coun-
terpart. But, fortunately, our knapsack is of variable size, since the global
work count w is an arbitrarily chosen natural number. Therefore, it is pos-
sible to force the solution of the rational problem to be a binary one which
is, of course, also a solution of the corresponding binary problem. Conse-
quently, the global optimization problem (3.58) or (3.65), respectively, can
be reduced to the discussion of the local cost-benefit ratios bi/ci or b(l)/c(l)
of the underlying subspaces Wl. Those subspaces with the best cost-benefit
ratios are taken into account first, and the smaller these ratios become, the
more negligible the underlying subspaces turn out to be.

Now, if our cost-benefit approach is based on the Lp-norms, with p ∈
{1,∞} we showed in (Bungartz and Griebel 2004) that this results in the
regular sparse grid spaces

V (1)
n :=

⊕
|l|1 ≤ n+d−1

Wl (3.66)

which have been introduced in (Zenger 1991). Note that they are the finite
element analogon of the well-known hyperbolic cross or Korobov spaces
which are based on the Fourier series expansion instead of the hierarchical
Faber basis. An example of a regular sparse grid is given for the two- and
three-dimensional case in Figure 3.3. The basic concept can be traced back
to (Smolyak 1963, Babenko 1960), see also (Gordon 1969, Gordon 1971,
Delvos 1982, Delvos and Schempp 1989, DeVore, Konyagin and Temlyakov
1998).

The dimension of the space V
(1)
n fulfills∣∣V (1)

n

∣∣ = O
(
h−1

n · | log2 hn|d−1
)

(3.67)

with hn = 2−n, whereas, for the interpolation error of a function u ∈
Xq,2

0 (Ω̄) in the sparse grid space V
(1)
n there holds∣∣∣∣u− u(1)

n

∣∣∣∣
p

= O
(
h2

n · nd−1
)
, (3.68)
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Fig. 3.3. Lp-norm based sparse grids: Two-dimensional example (left) and three-
dimensional example (right), here including sparse grid points on the boundary.

for the Lp-norms, and

∣∣∣∣u− u(1)
n

∣∣∣∣
E
≤ d · |u|2,∞

2 · 3(d−1)/2 · 4d−1
· 2−n = O(hn), (3.69)

for the energy-norm, see for example (Bungartz and Griebel 2004) for de-
tailed proofs. Note that the conventional full grid space

V (∞)
n :=

⊕
|l|∞≤n

Wl

results in an error in the Lp-norm of the order O(h2
n) and an error in

the energy-norm of the order O(hn). It however possesses a dimension
|V (∞)

n | = O(h−d
n ) and thus exhibits the curse of dimensionality with

respect to hn. In comparison to that we now see a crucial improvement for
V

(1)
n : The number of degrees of freedom is reduced significantly, whereas

the accuracy deteriorates only slightly for the Lp-norm and stays of the
same order for the energy-norm. The curse of dimensionality is now present
in the log(hn)-term only. Since this result is optimal with respect to the
Lp-norms, a further improvement can only be expected if we change the
setting. Therefore, in the following, we turn to the energy norm.

3.4.2.2 Energy-based sparse grids

We now base our cost-benefit approach on the energy norm. According
to (3.48) and (3.54) and following the discussion in Section 3.4.2.1, we
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define

cbrE(l) :=
bE(l)
c(l)

:=
2−4·|l|1 · |u|22,∞

4 · 12d−1 · 2|l−1|1
·

d∑
j=1

4lj

=
3
6d
· 2−5·|l|1 ·

d∑
j=1

4lj · |u|22,∞

(3.70)

as the local cost-benefit ratio. Note that, instead of ‖ul‖E itself, only an
upper bound for the squared energy norm of ul is used. The resulting op-
timal grid I(opt) will consist of all those multi-indices l or their respective
hierarchical subspaces Wl that fulfill cbrE(l) ≥ σE(n) for some given con-
stant threshold σE(n). Here, σE(n) is defined via the cost-benefit ratio of
Wl̄ with l̄ := (n, 1, . . . , 1):

σE(n) := cbrE (̄l) =
3
6d
· 2−5·(n+d−1) ·

(
4n + 4 · (d− 1)

)
· |u|22,∞. (3.71)

Thus, applying the criterion cbrE(l) ≥ σE(n), we come to a sparse grid
approximation space V

(E)
n which is based on the energy norm:

V (E)
n :=

⊕
|l|1− 1

5 ·log2(
∑

d
j=1 4lj ) ≤ (n+d−1)− 1

5 ·log2(4
n +4d−4)

Wl . (3.72)

For a comparison of the underlying subspace schemes of V
(1)
n and V

(E)
n in

two dimensions, see Figure 3.4.

l l

l l2 2

11

Fig. 3.4. Scheme of subspaces for V
(1)
30 (left) and V

(E)
30 (right), d = 2.

First, we look at the number of grid points of the underlying sparse grids.

Lemma 2 The energy-based sparse grid space V
(E)
n is a subspace of V

(1)
n ,

and its dimension fulfills

|V (E)
n | ≤ 2n · d

2
·
(
1− 2−

2
3
)−d ≤ 2n · d

2
· ed = O

(
h−1

n

)
. (3.73)
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Proof For subspaces Wl with |l|1 = n + d− 1 + i, i ∈ IN, we have

|l|1 −
1
5
· log2

 d∑
j=1

4lj

≥ n + d− 1 + i− 1
5
· log2

(
4n+i + 4d− 4

)
≥ n + d− 1 + i− 1

5
· log2

(
4i (4n + 4d− 4)

)
> n + d− 1− 1

5
· log2 (4n + 4d− 4) .

Therefore, no Wl with |l|1 > n + d− 1 can belong to V
(E)
n . Consequently,

V
(E)
n is a subspace of V

(1)
n and |V (E)

n | ≤ |V (1)
n | for all n ∈ IN. Starting

from that, (3.48) provides

|V (E)
n |=

n−1∑
i=0

∑
|l|1=n+d−1−i ,∑d

j=1 4
lj ≥ 4n +4d−4

32i

|Wl|

= 2n · 1
2
·

n−1∑
i=0

2−i ·
∑

|l|1=n+d−1−i ,∑d
j=1 4

lj ≥ 4n +4d−4
32i

1

≤ 2n · 1
2
· lim

n→∞

n−1∑
i=0

2−i ·
∑

|l|1=n+d−1−i ,∑d
j=1 4

lj ≥ 4n +4d−4
32i

1

= 2n · 1
2
· lim

n→∞

n−1∑
i=0

2−i · d ·
(

d− 1− "1.5i#
d− 1

)
,

since it can be shown that, for n → ∞, our energy-based sparse grid and
the grid resulting from the second condition |l|∞ ≥ n−"2.5i# for the inner
sum instead of

d∑
j=1

4lj ≥ 4n + 4d− 4
32i

are the same, and since there exist(
d− 1 + "1.5i#

d− 1

)
such subspaces Wl with |l|∞ = l1. Consequently, we obtain

|V (E)
n | ≤ 2n · d

2
·

∞∑
i=0

2−
2
3 i ·

(
d− 1 + i

d− 1

)
= 2n · d

2
·
(
1− 2−

2
3
)−d

≤ 2n · d
2
· ed ,
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since
∑∞

i=0 xi ·
(
k+i
k

)
= (1− x)−k−1 for k ∈ IN0 and 0 < x < 1.

Next, we have to deal with the interpolation accuracy of the energy-based
sparse grid spaces V

(E)
n and to study the sparse grid interpolant u

(E)
n ∈

V
(E)
n .

Theorem 1 The energy norm of the interpolation error of some u ∈
Xq,2

0 (Ω̄) in the energy-based sparse grid space V
(E)
n is bounded by

‖u− u(E)
n ‖E ≤

d · |u|2,∞
3(d−1)/2 · 4d−1

·
(

1
2

+
(5

2

)d−1
)
· 2−n = O(hn). (3.74)

Proof First, since

||u− u(E)
n ||E ≤ ||u− u(1)

n ||E + ||u(1)
n − u(E)

n ||E ,

and since we know that ||u− u
(1)
n ||E is of the order O(hn), we can restrict

ourselves to ||u(1)
n − u

(E)
n ||E . For that, it can be shown that, for i ∈ IN0,

each Wl with |l|1 = n + d− 1− i and |l|∞ ≥ n− 2.5i is a subspace of V
(E)
n .

Therefore, we obtain with (3.54)

||u(1)
n − u(E)

n ||E ≤
∑

Wl⊆V
(1)

n �V
(E )

n

||ul||E ≤
i∗∑

i=0

∑
|l|1=n+d−1−i ,

|l|∞< n−2.5i

||ul||E

≤ |u|2,∞
2 · 12(d−1)/2

·
i∗∑

i=0

∑
|l|1=n+d−1−i ,

|l|∞< n−2.5i

4−|l|1 ·

 d∑
j=1

4lj

1/2

≤ |u|2,∞
2 · 12(d−1)/2

· 4−n−d+1 ·
i∗∑

i=0

4i ·
∑

|l|1=n+d−1−i ,

|l|∞< n−2.5i

 d∑
j=1

2lj


≤ |u|2,∞

2 · 12(d−1)/2
· 4−n−d+1 ·

i∗∑
i=0

4i ·
n−1−�2.5i�∑

j=1

d ·
(

n + d− 2− i− j

d− 2

)
· 2j

=
|u|2,∞

2 · 12(d−1)/2
4−n−d+1

i∗∑
i=0

4i

n−1−�2.5i�∑
k=1

d

(
d− 2 + "1.5i#+ k

d− 2

)
2n−�2.5i�−k

=
d · |u|2,∞

2 · 12(d−1)/2
4−(d−1)2−n

i∗∑
i=0

2−� i
2 �

n−1−�2.5i�∑
k=1

(
d− 2 + "1.5i#+ k

d− 2

)
2−k

≤ d · |u|2,∞
2 · 12(d−1)/2

· 4−(d−1) · 2−n · 2 · 5d−1

=
d · |u|2,∞

3(d−1)/2 · 4d−1
·
(5

2

)d−1

· 2−n,
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where 0 ≤ i∗ ≤ n−1 is the maximum value of i for which the set of indices
l with |l|1 = n + d− 1− i and |l|∞ < n− 2.5i is not empty. Together with
(3.69) we get the result.

The crucial result of this section is that, with the energy-based sparse grid
spaces V

(E)
n , the curse of dimensionality can be overcome. In both (3.73)

and (3.74), the n-dependent terms are free of any d-dependencies: There is
an order of O(2n) for the dimension and O(2−n) for the interpolation error.
In particular, there is no longer any polynomial term in n like nd−1 as for
the case of the space V

(1)
1 . That is, apart from the factors that are constant

with respect to n, there is no d-dependence in either |V (E)
n | or ||u−u

(E)
n ||E

and, thus, no deterioration in complexity for higher dimensional problems.
The curse of dimensionality has thus been completely overcome, at least
with respect to n. However the constants in the order estimates are still
dependent on the dimension d. This will be studied in more detail in the
following section.

3.4.3 The constants and their dependence on d

So far, we derived the estimate

|V (E)
n | ≤ c1(d) · 2n (3.75)

for the degrees of freedom of the sparse grid spaces V
(E)
n with the constant

c1(d) =
d

2
(1− 2−2/3)−d

and the estimate

‖u− u(E)
n ‖E ≤ c2(d) · 2−n · |u|2,∞ = O(hn) , (3.76)

for the accuracy of the achieved interpolation error with the constant

c2(d) =
d

3(d−1)/2 · 4d−1
·
(

1
2

+
(5

2

)d−1
)

.

Note that the upper bound (3.69) for the interpolant u
(E)
n of u in V

(E)
n also

gives by virtue of Cea’s lemma an upper bound for the best approximation
in V

(E)
n . We thus have

inf
vn ∈V

(E )
n

‖u− vn‖E ≤ ‖u− u(E)
n ‖E .

We are interested in casting these results in a form which is more com-
mon in approximation theory, i.e., we want to express the bound for the
approximation error in terms of the amount of degrees of freedom involved.
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To this end we define the number of degrees of freedom for the best ap-
proximation of u in V

(E)
n as

M := |V (E)
n |. (3.77)

We then express the estimate of the approximation error in terms of M .

Theorem 2 For the best approximation of a function u ∈ Xq,2
0 (Ω̄) in the

space V
(E)
n with respect to the energy norm, there holds

inf
vn ∈V

(E )
n

‖u− vn‖E ≤ ‖u− u(E)
n ‖E ≤ c · d2 · 0.97515d ·M−1 · |u|2,∞. (3.78)

Proof First, with the definition (3.77) we solve (3.75) for 2n. Taking the
inverse we obtain 2−n ≤ c1(d) ·M−1. Then

‖u− u(E)
n ‖E ≤ c2(d) · 2−n · |u|2,∞ ≤ c1(d) · c2(d) ·M−1 · |u|2,∞.

With

c1(d) · c2(d) =
d

2
(1− 2−2/3)−d · d

3(d−1)/2 · 4d−1
·
(

1
2

+
(5

2

)d−1
)

=
√

3 · d2

(
1

(1− 2−2/3) ·
√

3 · 4

)d

+
4 ·
√

3
5
· d2

(
5

(1− 2−2/3) ·
√

3 · 8

)d

≤
√

3 · d2 · 0.39901d +
4
√

3
5
· d2 · 0.97515d (3.79)

the estimate (3.78) results.

Thus we see that we obtain for the constant a decay for d → ∞ to zero.1

The term |u|2,∞ however is also dependent on d and may grow exponen-
tially with it. Already for the simple example u(x) =

∏d
j=1 sin(2πkxj) we

see that |u|2,∞ = (4π2k2)d grows faster than 0.97515d decays. Obviously it
is sufficient to restrict ourselves to the approximation of functions u ∈ Xq,2

0

with |u|2,∞ = o(1/(d2 · 0.97515d)) to insure that ‖u − u
(E)
n ‖E is bounded

for all d. But it is not clear how interesting this function class for large
d is in practice. Nevertheless, the facts we know from the concentration
of measure phenomenon (i.e., that the best approximation in very high
dimensions is nearly constant) give hope in this direction.

1 Note that this holds for the asymptotics with respect to M , i.e., the estimates for c1
and c2 were done for asymptotically large n.
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Note that if we use the seminorm

|u|2,2 :=
∥∥D2u

∥∥
2

=
(∫

Ω̄

∣∣D2u
∣∣2 dx

)1/2

instead and rewrite all the above lemmata, theorems and their proofs in
terms of the associated regularity assumption |u|2,2 we are no longer able to
derive a favorable estimate as in (3.79). We obtain slightly worse estimates
where, for the c1 and c2 involved, we only get c1(d) · c2(d) ≤ c ·

√
3 ·

d2 · 0.45041d +
√

3 4
5 · d2 · 1.12601d. Thus we see a blow-up to infinity for

d → ∞ for these estimates. Since the corresponding c1 and c2 are only
upper bounds of the true d-dependent constants it is not clear if this also
holds for them or not. Note furthermore that a rescaling of the size of the
domain Ω of course also influences the constants c1 and c2 which has to be
taken into account in the above discussion.

Let us finally consider the case of non-homogeneous boundary conditions,
i.e., u from the space Xq,2. Now, to capture also functions living on the
boundary of Ω̄, we generalize the two-scale splitting (3.11) to a three-
scale decomposition V (1) = 1 ⊕ lin ⊕ W̃ where 1 denotes the subspace
of constants, lin denotes the subspace of linear functions (without the
constants) and W̃ denotes the remainder, respectively. Note that 1 ⊕ lin
is just the kernel of the second derivative. This augmented splitting is now
used as the input of a tensor product construction to gain a splitting of
the function space for the d-dimensional case. Analogously to (3.17) and
(3.18) a decomposition of the d-dimensional space into now 3d subspaces is
introduced by Xq,2 .= V (d) =

⊗d
j=1(1j ⊕ linj ⊕ W̃j) and we can repeat the

discussion of Section 3.3.1 in a similar way for the refined decomposition.
Informally speaking, the space Xq,2 can then be decomposed into Xq,2 \
Xq,2

0 and Xq,2
0 consistent with this refined decomposition, and we can split

a function u ∈ Xq,2 accordingly into

u = ũ + v where ũ ∈ Xq,2 \Xq,2
0 and v ∈ Xq,2

0 .

The regularity condition |u|2,∞ ≤ c < ∞ translates to ‖D2u‖∞ ≤ c < ∞,
with some d-dependent constant c. For the term D2u we obtain

D2u =
∂2du

∂x2
1 · · · ∂x2

d

=
∂2d(ũ + v)
∂x2

1 · · · ∂x2
d

=
∂2dv

∂x2
1 · · · ∂x2

d

since ∂2d ũ
∂x2

1···∂x2
d

vanishes due to the involved constant and linear subspaces.
We are thus just in the situation of homogeneous boundary conditions as
treated previously and the lemmata and theorems above apply. Note that
the more general assumption Dαu ∈ L∞, |α|∞ ≤ 2, from (3.32) relates to
the (second) variation of Hardy and Krause (Owen 2004) and involves in a
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dimension-recursive way different partial (mixed) derivatives up to second
order of the contributions of u from the various boundary manifolds of Ω̄.

In an analogous way, we enlarge our basis function set to also capture
functions living on the boundary of Ω̄. To this end we introduce two more
functions into the one-dimensional hierarchical basis from Figure 3.2 which
are associated to the left and right boundary point of [0, 1] and number
their associated level l by −1 for the left point and 0 for the right point,
respectively. As basis functions we use the constant function φ−1,1(x) := 1
for the left boundary point and the linear function φ0,1(x) = x for the right
boundary point. Then, {φ−1,1, φ0,1} just spans the subspace of constant
and linear functions.1 This augmented system of basis functions is now used
as the input of the tensor product construction (3.39) to gain a function sys-
tem for the d-dimensional case. Moreover, analogously to (3.45) and (3.47),
a function u ∈ Xq,2 can now be represented as u(x) =

∑
l∈(IN∪{−1,0})d ul(x)

and the space Xq,2 gets decomposed as
⊗

l∈(IN∪{−1,0})d Wl.2

Our approach so far was focused on the space of bounded second mixed
derivatives, the energy-norm as measure for the approximation error and
(piecewise) linear hierarchical basis functions. It can be carried over to
a more general setting where we measure the approximation error in the
Hs-norm, s ∈ (−∞,∞), assume a smoothness of the type |u|

Hl,t
m ix

, where l

denotes isotropic and t mixed smoothness, see (Griebel and Knapek 2000),
and use wavelet-type multilevel systems with sufficient primal and dual
regularity. Then, depending on these additional parameters, we can again
derive optimal discrete approximation spaces, we may study their cost com-
plexities and approximation properties for different regimes of s, l, t and
we can identify situations where the curse of dimensionality can be bro-
ken. The approach is based on norm-equivalences and associated wavelet-
type multilevel systems. This is explained in more detail in (Griebel and
Knapek 2000, Knapek 2000a), see also (Knapek 2000b) for a variant using
Fourier bases. Since the constants in these norm-equivalences depend on d,
the constants in the resulting error estimates also depend on d and cannot,
in contrast to our approach in Section 3.4.3, be estimated explicitly.

Another generalization of the sparse grid concept uses optimization not
with respect to a whole class of functions involving error norm and smooth-
ness prerequisite (a-priori knowledge) but, in the interpolation context,
with respect to one single given function or, alternatively, in the context of
PDEs, with respect to a given right-hand side or other data in the partial

1 We could also have used the linear function 1 − x at the left boundary point instead.
Here, we use the constant one to be completely in sync with our splitting V = 1⊕W
from (3.11).

2 Xq,2 \ Xq,2
0 is then (up to completion) just

∑
l∈(IN∪{−1,0})d \INd Wl.



Sparse Grids for Higher Dimensional Problems 151

differential equation. This leads with proper a-posteriori error estimators to
an adaptively refined sparse grid which adapts itself (hopefully in an opti-
mal way) to the specific situation. The adaption and refinement process can
be performed on the level of the subspaces Wl from (3.41). This results in
a so-called dimension-adaptive method for sparse grids, see (Gerstner and
Griebel 2003). This approach is well suited for high-dimensional functions
and detects important and unimportant dimensions and groups of dimen-
sions of an ANOVA-decomposition in an automatic way (provided that the
error indicators are sound and no premature termination of the adaption
process occurs). The method was developed and used so far for integration
problems, its application to partial differential equations is future work. Al-
ternatively, the adaption and refinement process can be performed on the
level of the single basis functions φl,i. We then obtain a method where, be-
sides the detection of important and unimportant dimensions and groups of
dimensions, singularities and similar local variations in a function are addi-
tionally found and resolved. Here, the development of sound local error es-
timators (via the dual problem), efficient refinement strategies and the asso-
ciated complexities with respect to d are an area of active research (Griebel
1998, Bungartz and Griebel 2004, Bungartz 1998, Schneider 2000). Figure
3.5 gives examples of two- and three-dimensional adaptive sparse grids.

Fig. 3.5. Adaptively refined sparse grids: Two-dimensional example (left) and
three-dimensional example (right).

3.5 Concluding remarks

We reviewed approximation techniques which have the potential to over-
come the curse of dimensionality, which is a main obstacle in the numerical
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treatment of most high-dimensional problems. After a survey on methods
stemming from Kolmogorov’s theorem, we focused on the ANOVA decom-
position and the sparse grid approach and discussed their properties and
prerequisites. Moreover, we presented energy-norm based sparse grids and
demonstrated that, for functions with bounded mixed second derivatives
on the unit hypercube, the associated approximation rate in terms of the
involved degrees of freedom shows no dependence on the dimension at all,
neither in the approximation order nor in the order constant. Important
ingredients were the product structure of the underlying domain in high
dimensions, a one-dimensional splitting of the space into the constant and
the remainder subspaces and, as a refinement of the remainder subspace, a
one-dimensional multilevel basis. Then a tensor-product approach leads to
both the ANOVA decomposition and a multilevel series expansion of the
underlying function. Proper truncation may result in an ANOVA decom-
position with finite order weights or, if the more elaborate one-dimensional
multiscale splitting is employed, in sparse grids. In this sense sparse grids
are closely related to the ANOVA approach and can be seen as a discretiza-
tion and refined version of it. In the case of functions with low effective
dimension or alternatively, bounded mixed second derivatives, the curse of
dimensionality indeed can be broken.

These techniques can, together with a Galerkin approach or with a fi-
nite difference method, be applied successfully to higher-dimensional par-
tial differential equations. Areas of actual research are here, besides el-
liptic partial differential equations, also parabolic problems, like e.g., the
Fokker-Planck equation with many practical applications in the natural
sciences and financial engineering, ranging from the modelling of mechani-
cal systems with random oscillations to the pricing of financial derivatives.
Also the Schrödinger equation is of utmost interest. Here, in (Griebel and
Hamaekers 2006) we developed antisymmetric sparse grid spaces to cope
with the antisymmetry condition stemming from Pauli’s principle, see also
(Yserentant 2004). Further actual work is the use of sparse grids in space-
time (Griebel, Oeltz and Vassilevski 2005). There a product structure
between space and time exists naturally and can be exploited.

To reach higher space dimensions the constants in the complexities must
be kept as low as possible. Besides the theoretical results on the con-
stants which we presented in the preceding section for approximations in
the energy-norm, also the effect of the detailed implementation (data struc-
tures, fast solution of the discretized linear systems by e.g., multigrid) on
the complexity constants has to be taken into account. Presently we are
able to treat elliptic differential equations with up to about 120 dimensions
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on a modern workstation (provided that there are homogeneous boundary
conditions and a product-type right hand side), see (Feuersänger 2005).

Further work has surely to be done to better relate ANOVA-type ap-
proaches from high-dimensional integration, data mining and statistics to
the solution of partial differential equations by sparse grid techniques, espe-
cially with respect to adaptivity. Then certain classes of high-dimensional
PDE problems with e.g., lower effective dimension or a decay in the inter-
action weights of the solution may be detected automatically and treated
effectively. Finally there is hope to numerically deal with high-dimensional
problems due to the concentration of measure phenomenon.
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Abstract

This article discusses the energy conservation of a wide class of numerical
integrators applied to Hamiltonian systems. It surveys known material by
various illustrations, and it also contains more recent and new results.

4.1 Introduction

In this introductory section we present the class of differential equations
considered (Hamiltonian systems) together with properties of their flow,
and we introduce numerical integration methods that can be expressed as
B-series. We further discuss difficulties that can arise when one tries to
conserve exactly the Hamiltonian.

4.1.1 Properties of Hamiltonian systems

We consider Hamiltonian systems

ṗ = −∇qH(p, q)

q̇ = ∇pH(p, q)
or ẏ = J−1∇H(y), J =

(
0 I

−I 0

)
(4.1)

where y = (p, q)T and H(y) = H(p, q) is a real-valued smooth function,
and we emphasise the following two properties of such systems:

(P1) energy conservation, and
(P2) symplecticity.

Property (P1) just means that H(y) = H(p, q) is constant along solutions of
the differential equation. For classical mechanical systems, where H(p, q) =
1
2pT M(q)−1p + U(q) is the sum of kinetic and potential energy, this is
equivalent to the conservation of the total energy.
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Property (P2) – symplecticity – can be conveniently expressed in terms
of the flow ϕt(y0) of the differential equation, which is the solution at time
t for the initial value y(0) = y0. Symplecticity then means that

ϕ′
t(y)T Jϕ′

t(y) = J, (4.2)

where prime indicates the derivative with respect to y. It is interesting to
mention that this property is characteristic for Hamiltonian systems.

4.1.2 B-series integrators

For a general differential equation ẏ = f(y), the Taylor series of the exact
solution with initial value y(0) = y can be written as

y(h) = y + hf(y) + h2

2!
f ′(y)f(y)

+h3

3!

(
f ′′(y)

(
f(y), f(y)

)
+ f ′(y)f ′(y)f(y)

)
+ . . .

(4.3)

We consider numerical integrators yn+1 = Φh(yn), whose Taylor series have
the same structure as (4.3) with additional real coefficients:

Φh(y) = y + ha( )f(y) + h2a( )f ′(y)f(y)

+h3
(

a( )

2
f ′′(y)

(
f(y), f(y)

)
+ a( )f ′(y)f ′(y)f(y)

)
+ . . .

(4.4)

The coefficients a(τ), which are in a one-to-one correspondence with rooted
trees, characterise the integrator. Properties like energy conservation and
symplecticity can be expressed in terms of these coefficients. Series expan-
sions of the form (4.4), called B-series, have their origin in the paper of
Butcher (1972) and were introduced by Hairer & Wanner (1974).

Such B-series integrators are comprised of Runge–Kutta methods (RK),
Taylor series methods, the underlying one-step method (in the sense of
Kirchgraber (1986), see also chapter XIV of HLW021) of linear multistep
methods (lmm), and all their extensions such as general linear methods
(glm) and multistep-multistage-multiderivative methods (mmm); see the
left cube of Figure 4.1.

For the numerical treatment of Hamiltonian systems, partitioned meth-
ods that allow one to treat the p and q components in a different manner are
even more important. The basic method is the symplectic Euler discretisa-
tion, which combines the explicit and implicit Euler methods. Taylor series
methods are replaced by the generating function methods of Feng Kang,

1 The monograph “Geometric Numerical Integration” of Hairer, Lubich & Wanner
(2002) will be cited frequently. Reference to it will be abbreviated by HLW02.
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mmm
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lmm

glm dRK

Taylor

Euler

RK
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dlmm2
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Feng Kang

sympl. Euler

pRK

Fig. 4.1. The cube of B-series methods (left) and its extension to partitioned
methods (right).

multistep methods by their variants for second-order differential equations
(lmm2), etc.; see the right cube of Figure 4.1.

4.1.3 Exact energy conservation

For a numerical solution obtained by yn+1 = Φh(yn) we would like to have
energy conservation (i.e., H(yn) = const for all n) and symplecticity (i.e.,
Φ′

h(y)T JΦ′
h(y) = J) at the same time. Unfortunately, this is not possible.

Ge & Marsden (1988) proved that for Hamiltonian systems without further
conserved quantities such a method has to be a re-parametrisation of the
exact flow. An algebraic proof for the impossibility of having an energy
conserving symplectic B-series integrator (which is different from the exact
flow) is given by Chartier, Faou & Murua (2005).

Let us study what happens when we force energy conservation and thus
give up symplecticity. We consider the three-body problem (Sun–Jupiter–
Saturn) which is a Hamiltonian system with

H(p, q) =
1
2

2∑
i=0

1
mi

pT
i pi −G

2∑
i=1

i−1∑
j=0

mimj

‖qi − qj‖
.

The initial values qi(0), pi(0) ∈ R3 and the parameters G and mi are taken
from HLW02, page 11. To this problem we apply two kinds of integra-
tors that exactly conserve the Hamiltonian along the numerical solution.
Notice, however, that neither of these methods is symmetric so that the
considerations of Section 4.4 do not apply.

Projection method. The most obvious approach for achieving exact en-
ergy conservation is by projection. Assume that yn is an approximation
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sympl. Euler, h = 5 sympl. Euler, proj. onto H

S SJ

Fig. 4.2. Numerical solution of the Sun–Jupiter–Saturn system.

to y(tn) satisfying H(yn) = H(y0). We compute ŷn+1 = Φh(yn) with
some basic method, and then project ŷn+1 orthogonally onto the energy
surface {y |H(y) = H(y0)} yielding yn+1. If we take as basic method the
symplectic Euler method (see method (4.8) below), an integration with
step size h = 5 over an interval of 1.3 · 106 Earth days gives the result of
Figure 4.2. The left picture shows the numerical solution obtained without
any projection. Although the energy is not exactly conserved, we observe
a qualitatively correct behaviour (for an explanation see Section 4.2). The
picture on the right in Figure 4.2 shows the result obtained by the same
method, but with an additional projection onto the energy surface after
every step. Clearly, this does not improve the result; in fact, it even de-
stroys the good long-time behaviour.

Energy conserving B-series method. In the previous experiment one
can criticise the fact that the projection step throws out the method from
the class of B-series integrators. This is correct. Motivated by the results
of Faou, Hairer & Pham (2005) we therefore consider the method yn+1 =
Φh(yn), where Φh(y) is the exact flow at time t = h of

ẏ = f(y) + h3
(
f ′f ′′(f, f) + f ′′(f, f ′f)

)
(y). (4.5)

It is not difficult to check that this is a B-series method, and that for
f(y) = J−1∇H(y) the energy H(y) is a first integral of (4.5), so that
H(yn) = const . Since the perturbation in (4.5) is not Hamiltonian, the
method is not symplectic. We do not claim that this method can be realised
by a Runge–Kutta or multistep method. Application to the Sun–Jupiter–
Saturn system gives a result that is very similar to that of the projection
method (right picture of Figure 4.2).

From these experiments we conclude that exact energy conservation
alone is certainly not sufficient for a qualitatively correct long-time in-
tegration of Hamiltonian systems.
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4.2 Methods that exactly conserve quadratic first integrals

We now turn our attention to property (P2) – symplecticity – of Hamilto-
nian systems. This turns out to be closely related to the exact conservation
of quadratic first integrals.

4.2.1 Equivalence with symplecticity

Consider the Hamiltonian system together with its variational equation,

ẏ = J−1∇H(y), Ψ̇ = J−1∇2H(y)Ψ, (4.6)

where Ψ(t) is the derivative of y(t) with respect to its initial value. The
symplecticity condition (4.2) just expresses the fact that ΨT JΨ is a first
integral of the system (4.6); i.e., it is constant along solutions of (4.6).

Theorem 4.1 (criterion for symplecticity) A B-series integrator is
symplectic (i.e., it satisfies Φ′

h(y)T JΦ′
h(y) = J) if and only if it exactly

conserves all quadratic first integrals of a system ẏ = f(y).

Conservation of quadratic first integrals implies symplecticity. Bochev &
Scovel (1994) have shown for Runge–Kutta and general linear methods that
the derivative of the numerical solution with respect to the initial value,
Ψn := ∂yn/∂y0, is the result of the same numerical method applied to the
augmented system (4.6). This implies the statement, because ΨT JΨ is a
quadratic first integral of the system. The extension to B-series methods
is straight-forward.

Symplecticity implies conservation of quadratic first integrals. Calvo &
Sanz-Serna (1994) have given a characterisation of the symplecticity of B-
series methods in terms of the coefficients a(τ) of (4.4); see also HLW02,
page 201. Chartier, Faou & Murua (2005) show that exactly the same
conditions on the coefficients imply that the method conserves exactly all
quadratic first integrals of the differential equation.

Implicit midpoint rule. Let us illustrate the above characterisation of
symplectic B-series methods for the implicit midpoint rule

yn+1 − yn = hf
(
(yn+1 + yn)/2

)
. (4.7)

For this we assume that Q(y) = yT Cy (with a symmetric matrix C) is a
first integral of ẏ = f(y), i.e., yT Cf(y) = 0 for all y. Left-multiplication of
(4.7) with (yn+1 + yn)T C yields a vanishing right-hand side and

0 = (yn+1 + yn)T C(yn+1 − yn) = yT
n+1Cyn+1 − yT

n Cyn.
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This proves that Q(yn) is exactly conserved, implying that the implicit
midpoint rule is a symplectic integrator.

4.2.2 Partitioned methods

As mentioned in the introduction, partitioned methods play an important
role for solving Hamiltonian systems. They allow one to treat the variables
p and q in the Hamiltonian system (4.1) in a different way. For partitioned
methods the above characterisation remains valid only if one restricts the
statements to quadratic first integrals of the special form Q(p, q) = pT Eq

with an arbitrary matrix E.

Symplectic Euler method. Consider the combination of the implicit
and explicit Euler methods. This yields the discretisation

pn+1 = pn − h∇qH(pn+1, qn)

qn+1 = qn + h∇pH(pn+1, qn).
(4.8)

If pT Eq is a first integral of (4.1), a multiplication of the first relation
of (4.8) by (Eqn)T , of the second relation by pT

n+1E, and addition of the
two proves the exact conservation of this first integral. Consequently, the
method is symplectic.

Störmer–Verlet scheme. Composing a half-step of method (4.8) with
its adjoint (explicit in p and implicit in q) gives

pn+1/2 = pn −
h

2
∇qH(pn+1/2, qn)

qn+1 = qn +
h

2

(
∇pH(pn+1/2, qn) +∇pH(pn+1/2, qn+1)

)
pn+1 = pn+1/2 −

h

2
∇qH(pn+1/2, qn+1).

(4.9)

As the composition of symplectic mappings it is a symplectic integrator.
For a separable Hamiltonian H(p, q) = pT p/2+U(q), this scheme implies

qn+1 − 2qn + qn−1 = −h2∇qU(qn), (4.10)

which is a natural discretisation of q̈ = −∇qU(q) that can already be found
in the Principia of Newton; c.f., Hairer, Lubich & Wanner (2003).
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4.2.3 Near energy conservation

The aim of this article is to study energy conservation of numerical integra-
tors. In general, symplectic B-series methods cannot conserve the Hamil-
tonian exactly (see Section 4.1.3). However, we have the following central
result, which was intuitively clear since the use of symplectic methods and
was rigorously proved by Benettin & Giorgilli (1994); see also Section IX.8
of HLW02.

Theorem 4.2 Consider

• a Hamiltonian system with analytic H : U → R, and
• a symplectic B-series method Φh(y) of order r.

As long as {yn} stays in a compact set, we have for tn = nh and h→ 0,

H(yn) = H(y0) +O(hr) +O(tne−γ/ωh), (4.11)

where γ > 0 only depends on the method, and ω is related to the Lipschitz-
constant (or highest frequency) of the differential equation.

If h is small enough, the second error term in (4.11) is exponentially small
on exponentially long time intervals. Thus we have error conservation up
to a bounded O(hr) term on such long intervals.

Let us illustrate this behaviour with the symplectic Euler method (4.8)
applied to the Sun–Jupiter–Saturn system. Figure 4.3 shows the relative
error in the Hamiltonian on an interval of 500 000 Earth days. The energy
oscillates around the correct constant value and does not show any drift.
The non-symplectic explicit Euler method, however, has a linear drift in
the energy that makes the method useless even when applied with a much
smaller step size.

Idea of the proof (backward error analysis). Let us indicate the proof
of the previous theorem. This is a welcome opportunity for mentioning
backward error analysis which is one of the most important tools in the
analysis of geometric integrators.

−.01

.00

.01

.02 explicit Euler, h = 0.1

symplectic Euler, h = 50

Fig. 4.3. Energy conservation of numerical methods.
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Formal analysis. The numerical solution of a B-series method can be
interpreted as the exact solution of a modified differential equation which,
very similar to (4.4), is of the form

ẏ = f(y) + hb( )f ′(y)f(y) (4.12)

+h2
(

b( )

2
f ′′(y)

(
f(y), f(y)

)
+ b( )f ′(y)f ′(y)f(y)

)
+ . . .

The coefficients b(τ) of this modified equation are obtained recursively by
comparing the series (4.4) with the Taylor series expansion of the solution
of (4.12) at t = h. Consequently, we have yn = ϕ̃nh(y0), where ϕ̃t(y) is the
exact flow of (4.12).

It turns out that for symplectic B-series integrators (4.4) and for f(y) =
J−1∇H(y), (4.12) is Hamiltonian with modified Hamiltonian

H̃(y) = H(y) + hrHr+1(y) + hr+1Hr+2(y) + . . . (4.13)

Since the exact flow ϕ̃t(y) conserves the Hamiltonian H̃(y), it follows that
H̃(yn) = const , and thus H(yn) = H(y0) + O(hr). Unfortunately, the
above series are asymptotic series and usually diverge. This is why we call
this part of the proof a formal analysis.

Rigorous analysis. Whereas the formal analysis is relatively simple and
gives already much insight into long-time integration, the rigorous analysis
is rather technical. One has to truncate the series so that the resulting
error in yn − ϕ̃nh(y0) is as small as possible. This induces the linearly
increasing exponentially small error term in the statement of Theorem 4.2.

Illustration with the Lennard–Jones potential. To illustrate the re-
sult of the previous theorem, consider the Hamiltonian

H(p, q) =
1
2
p2 + q−12 − q−6,

which models the motion of a particle against a strongly repelling wall.
The variable q represents the distance to the wall, and p the velocity of the
particle. With initial values q0 = 10 and p0 < 0 such that H(p0, q0) = 1,
the particle moves against the wall until t ≈ 6.5, and then it bounces
off. The solid lines in Figure 4.4 show the error in the Hamiltonian H(p, q)
for the Störmer–Verlet method applied with 3 different step sizes. In
the beginning this error is very small, then it increases and is maximal
when the particle approaches the wall. At t ≈ 6.5 the value of q is very
small, so that the Lipschitz constant of the system (i.e., ω in (4.11)) is
large. For relatively large step sizes h (upper pictures of Figure 4.4) when
ωh ≈ 1, the exponential term in (4.11) becomes dominant, and energy
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Fig. 4.4. Error in the truncated modified Hamiltonian for the Lennard–Jones
potential and the Störmer–Verlet method.

conservation breaks down. In such situations, the value of the energy can
change dramatically. We thus see that in spite of the use of a symplec-
tic integrator, the energy drifts off the correct value if the step size is too
large.

For this simple problem, we have computed the perturbations H3(y) and
H5(y) in the modified Hamiltonian (the functions H2k(y) vanish identically,
because the Störmer–Verlet method is symmetric). In Figure 4.4 we have
included the functions H(yn) + h2H3(yn) − const (dashed) and H(yn) +
h2H3(yn) + h4H5(yn) − const (dotted), where the constants are chosen
so that the expressions vanish at the initial value. We see that H(yn) +
h2H3(yn)+h4H5(yn) = const up to round-off on a large part of the interval
considered. This nicely illustrates that the modified Hamiltonian is much
better conserved than the energy H(y).

4.3 Methods that nearly conserve quadratic first integrals

We next study the question whether a larger class of numerical integrators
can have the same good energy conservation as symplectic methods. Let
us begin with an instructive example.

4.3.1 Trapezoidal rule

Consider the trapezoidal rule

yn+1 = yn +
h

2
(
f(yn) + f(yn+1)

)
, (4.14)
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and apply it to the Sun–Jupiter–Saturn system as in the previous experi-
ments. Figure 4.5 shows the error in the Hamiltonian (upper picture) and
in the angular momentum (lower picture), which is a quadratic first integral
of the system. We have used the same initial data and the same integration
interval as in Figure 4.3, and constant step size h = 50.

We first notice that the trapezoidal rule cannot be symplectic. Other-
wise, by Theorem 4.1, the angular momentum would be exactly conserved
along the numerical solution. Nevertheless, we observe an excellent con-
servation of the total energy, very similar to that for the symplectic Euler
method of Figure 4.3. We shall give two explanations of this good long-time
behaviour.

−.001

.000

.001

−.001

.000

.001

error in the total energy

error in the angular momentum (norm)

Fig. 4.5. Error in the total energy and in the angular momentum for the trape-
zoidal rule.

1st explanation: near-conservation of quadratic first integrals.
Let u(t) be a solution of the modified differential equation in the sense of
backward error analysis, cf. (4.12). For the moment we only need that u(t)
is smooth and u(tn) = yn. This function thus satisfies

u(t + h) = u(t) +
h

2

(
f
(
u(t + h)

)
+ f

(
u(t)

))
.

Writing the Taylor series expansion as u(t+h) = ehDu(t), where D denotes
differentiation with respect to time t, this relation becomes(

ehD − 1
)
u(t) =

h

2

(
ehD + 1

)
f
(
u(t)

)
(4.15)

or, equivalently,(
1− h2

12
D2 +

h4

120
D4 + . . .

)
u̇(t) = f

(
u(t)

)
. (4.16)

Assume now that Q(y) = yT Cy is a first integral of the differential equation
(like the angular momentum in the Sun–Jupiter–Saturn system). This is
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equivalent to the condition yT Cf(y) = 0 for all y. Multiplying (4.16)
from the left by u(t)T C gives a vanishing right-hand side and (omitting
the obvious argument t)

uT C
(
u̇− h2

12
u(3) +

h4

120
u(5) + . . .

)
= uT Cf(u) = 0. (4.17)

Miraculously, this expression can be written as a total differential and, after
multiplication by 2, becomes

d

dt

(
uT Cu− h2

12
(
2uT Cü− u̇T Cu̇

)
+ . . .

)
= 0. (4.18)

This means that the function u(t) and hence the numerical solution of the
trapezoidal rule leaves the expression

Q̃(y) = yT Cy − h2

12
(
2yT Cf ′(y)f(y)− f(y)T Cf(y)

)
+ . . . (4.19)

invariant. Consequently, the original first integral Q(y) = yT Cy is nearly
conserved with an O(h2) error that does not grow with time. This com-
pletely explains the behaviour of the lower picture of Figure 4.5.

2nd explanation: conjugate symplecticity. Let ΦEulex
h and ΦEulim

h

denote the numerical flow of the explicit and implicit Euler methods, re-
spectively. Those of the trapezoidal rule (4.14) and of the midpoint rule
(4.7) are then given by

Φtrap
h = ΦEulim

h/2 ◦ ΦEulex
h/2 , Φmidp

h = ΦEulex
h/2 ◦ ΦEulim

h/2 .

This implies that the trapezoidal rule and the implicit midpoint rule are
connected by the conjugacy relation ΦEulex

h/2 ◦Φtrap
h = Φmidp

h ◦ΦEulex
h/2 . With

χh := (Φmidp
h )−1/2 ◦ ΦEulex

h/2 , which is O(h2) close to the identity,

χh ◦ Φtrap
h = Φmidp

h ◦ χh and χh ◦
(
Φtrap

h

)n =
(
Φmidp

h

)n ◦ χh, (4.20)

so that a numerical solution {yn}n≥0 of the trapezoidal rule is connected
via χh(yn) = zn to the numerical solution {zn}n≥0 of the midpoint rule
obtained with starting value z0 = χh(y0). This explains why the non-
symplectic trapezoidal rule has the same good long-time behaviour as the
symplectic midpoint rule (upper picture of Figure 4.5).

4.3.2 Symmetric linear multistep methods

Symmetric linear multistep methods form an important class of numerical
integrators that have properties similar to those of the trapezoidal rule.
However, one has to take care of the stability of parasitic solutions.
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Multistep methods for first-order differential equations. Since the
numerical solution of a multistep method

αkyn+k + . . . + α0yn = h
(
βkf(yn+k) + . . . + β0f(yn)

)
(4.21)

depends on k starting approximations y0, . . . , yk−1, it is not at all obvi-
ous how symplecticity or the conservation of first integrals should be in-
terpreted. The key idea is to consider the so-called underlying one-step
method Φh(y), which is formally a series like (4.4), whose coefficients a( ),
a( ), . . . are determined by

αkΦk
h(y) + . . . + α1Φh(y) + α0y = h

(
βkf(Φk

h(y)) + . . . + β0f(y)
)
.

This means that for starting approximations given by yj = Φj
h(y0) for

j = 0, . . . , k−1, the numerical solutions of the multistep method and of its
underlying one-step method are identical. We say that the linear multistep
method (4.21) is symplectic (conserves energy, conserves quadratic first
integrals, . . .), if its underlying one-step method is symplectic (conserves
energy, conserves quadratic first integrals, . . .).

It has been shown by Tang (1993) that linear multistep methods cannot
be symplectic. However, they have an interesting property that will be
explained next. If we let u(t) be the solution of the modified differential
equation of Φh(y), we have

ρ(ehD)u(t) = hσ(ehD)f
(
u(t)

)
,

where ρ(ζ) and σ(ζ) are the generating polynomials of the coefficients αj

and βj , respectively. This equation reduces to (4.15) for the trapezoidal
rule. If the method is symmetric (αk−j = −αj and βk−j = βj), the anal-
ysis of Section 4.3.1 extends straight-forwardly to the present situation,
and shows that for problems having Q(y) = yT Cy as first integral there
exists Q̃(y) of the form (4.19) which is exactly conserved by the method
(see Hairer & Lubich (2004)). Moreover, Chartier, Faou & Murua (2005)
have shown that a method with this property is conjugate to a symplectic
integrator.

Attention ! In spite of these nice properties of symmetric linear multi-
step methods (4.21), they are not recommended for the long-time integra-
tion of Hamiltonian systems. The difficulty is that for nonlinear problems
no results on stable propagation of the parasitic solution components are
known, and numerical experiments reveal that they are unstable in most
cases.
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Multistep methods for second-order differential equations. An im-
portant class of Hamiltonian systems have H(p, q) = 1

2
pT M−1p+U(q) with

constant mass matrix M (for convenience we assume in the following that
M is the identity). Such problems are equivalent to the second-order dif-
ferential equation

q̈ = −∇U(q), (4.22)

and it is natural to consider multistep methods adapted to this form:

αkqn+k + . . . + α0qn = −h2
(
βk∇U(qn+k) + . . . + β0∇U(qn)

)
. (4.23)

Notice that the Störmer–Verlet method (4.10) is a special case of this
formulation. The statements for methods (4.21) can all be extended to
the situation of second-order differential equations (near conservation of
quadratic first integrals, conjugate symplecticity of the underlying one-step
method).

To also obtain bounds on the parasitic solution components for arbitrary
starting approximations, we extend the idea of backward error analysis
(Hairer 1999). We write the numerical solution as

qn = v(nh) +
∑

ζn
j wj(nh) (4.24)

where the ζj ’s stand for zeros (different from 1) of the characteristic poly-
nomial ρ(ζ) =

∑k
j=0 αjζ

j and products thereof. Inserting (4.24) into the
linear multistep formula (4.23), expanding into a Taylor series, and com-
paring the expressions multiplying ζn

j and powers of h, we get the modified
equations – a second-order differential equation for v(t), first-order differen-
tial equations for wj(t) if ζj is a simple zero of ρ(ζ), and algebraic relations,
if ζj is a product of zeros of ρ(ζ).

If we are interested in energy conservation we have to complement (4.23)
with an approximation of the derivative, which in general is given by a
formula of the form

q̇n =
1
h

�∑
j=−�

δjqn+j .

Exploiting the Hamiltonian structure in the modified differential equations,
Hairer & Lubich (2004) prove the following result.

Theorem 4.3 Consider the Hamiltonian system (4.22) with analytic po-
tential function U(q), and assume that the linear multistep method (4.23)
has order r and is

• symmetric, i.e., αk−j = αj and βk−j = βj;
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• without weak instability, i.e., ρ(ζ) = (ζ − 1)2ρ̂(ζ) and the zeros of
ρ̂(ζ) lie on the unit circle, are simple, and different from 1.

If the starting approximations q0, . . . , qk−1 are O(hr+1) close to the exact
solution, and the numerical solution stays in a compact set, then we have
on intervals of length T = O(h−r−2)

• ‖wj(t)‖ ≤ Chr+1 with C independent of t;

• {qn, q̇n} nearly conserves the total energy (without drift);

• {qn, q̇n} nearly conserves quadratic first integrals of the form qT Eq̇

(without drift).

We do not have energy conservation on exponentially long time intervals
(as for symplectic integrators), but the intervals are sufficiently long for
practical computations. This result justifies the use of high-order symmet-
ric linear multistep methods (4.23) for long-time integrations in celestial
mechanics.

4.4 Energy conservation with symmetric methods

There is still another class of numerical integrators – symmetric methods –
which, for special kinds of Hamiltonian systems, give good energy conser-
vation. Since in certain situations (such as variable step size integration,
multiple time stepping, reversible averaging) it is much easier to design
symmetric discretisations than symplectic ones, it is of interest to charac-
terise the problems for which symmetric methods have a good long-time
behaviour.

4.4.1 Symmetric non-symplectic methods

Let us start with a numerical experiment. We consider the 3-stage
Lobatto IIIB method which is an implicit Runge–Kutta method (its
coefficients can be found in Section II.1.4 of HLW02). It is neither symplec-
tic nor conjugate to a symplectic method (see Section VI.7.4 of HLW02),
but it is a symmetric integrator. This means that its numerical flow sat-
isfies Φ−1

−h(y) = Φh(y). We apply this integrator with step size h = 400
in the usual way to the three-body Sun–Jupiter–Saturn system. The re-
sult can be seen in Figure 4.6. There is apparently no difference com-
pared with the results obtained by the trapezoidal rule. What is the
reason?
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Fig. 4.6. Error in the total energy and in the angular momentum for the 3-stage
Lobatto IIIB method.

4.4.2 Integrable reversible systems

Unfortunately, very little is known about the energy conservation of sym-
metric B-series methods. The only exceptions are integrable reversible
systems. In this survey article we present some results without giving all
the technical assumptions, and we refer the interested reader to Chapter XI
of HLW02.

We assume that the differential equation (not necessarily Hamiltonian)
can be written in the form

u̇ = f(u, v), v̇ = g(u, v), (4.25)

and that it is reversible with respect to the involution (u, v) �→ (u,−v).
This means that

f(u,−v) = −f(u, v), g(u,−v) = g(u, v). (4.26)

Hamiltonian systems, for which the Hamiltonian is quadratic in p, satisfy
these relations with q in the role of u, and p in the role of v.

Such a system is called an integrable reversible system if there exists a
reversibility-preserving change of coordinates (a, θ) �→ (u, v) such that in
the new coordinates the system is of the form

ȧ = 0, θ̇ = ω(a). (4.27)

This system can be solved exactly. The action variables a are constant
(i.e., first integrals), and the angle variables θ grow linearly with time. The
Kepler problem with H(p1, p2, q1, q2) = 1

2(p2
1 + p2

2)− (q2
1 + q2

2)
−1/2 satisfies

all these conditions if we put u = (q1, p2) and v = (−p1, q2). The Sun–
Jupiter–Saturn system is a small perturbation of an integrable reversible
system.

Under certain technical assumptions (analyticity of the vector field,
strong non-resonance condition, etc.) it is proved in HLW02 that all
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action variables are nearly conserved over long times for symmetric
B-series methods. Moreover, the global error grows at most linearly with
time. Since these results hold also for small reversible perturbations of
integrable reversible systems, the behaviour shown in Figure 4.6 is
explained.

4.4.3 An example: the perturbed pendulum

Let us illustrate with a simple example the difficulties that can be en-
countered by a symmetric method. Consider the one-degree-of-freedom
Hamiltonian system with (see Figure 4.7)

H(p, q) =
1
2

p2 − cos q + 0.2 sin(2q). (4.28)

With u = q and v = p it is of the form (4.25) and satisfies the condition
(4.26). Considered as a Hamiltonian system, it is also integrable.

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

−2

−1

1

Fig. 4.7. Phase portrait of the perturbed pendulum problem.

We consider two different initial values (thick points in Figure 4.7). The
values q0 = 0 and p0 = 1.8 produce a periodic solution whose orbit is
invariant with respect to the reflection p �→ −p. For q0 = 0 and p0 = 2.2
the solution is still periodic (on the cylinder), but it does not contain any
symmetry.

As in the previous experiment, we apply the 3-stage Lobatto IIIB method.
We use the step size h = 0.2 and consider an interval of length 200. For
the initial values with symmetric solution (Figure 4.8) the energy is well
conserved without any drift. For the second set of initial values, how-
ever, there is a clear drift in the energy along the numerical solution
(Figure 4.9).

Symplectic methods and methods that are conjugate to a symplectic
method will have bounded energy error for this problem. We have in-
cluded in Figure 4.9 the numerical result obtained with the symplectic
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Fig. 4.8. Energy conservation of the Lobatto IIIB method for the perturbed pen-
dulum with initial values corresponding to a symmetric solution.
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−.0002
−.0001
.0000
.0001
.0002

Störmer–Verlet, h = 0.01

Lobatto IIIB, h = 0.2

Fig. 4.9. Energy conservation of the Lobatto IIIB method for the perturbed pen-
dulum with initial values corresponding to a solution without symmetry. The
result of the symplectic Störmer–Verlet scheme is included.

Störmer–Verlet method (with smaller step size, because it is only of order
2, compared to order 4 of the Lobatto IIIB method).

4.5 Concluding remarks

In many applications, and in particular in long-time integrations of mechan-
ical systems, it is important that the energy along the numerical solution
does not drift from the correct value. Within the class of B-series methods
we have studied the following properties:

• symplecticity (Section 4.2): the energy is nearly conserved for all Hamil-
tonian systems (integrable or chaotic) provided the step size is sufficiently
small;
• conjugate symplecticity (Section 4.3): methods with this property have

the same long-time behaviour as symplectic methods and are well suited
for the integration of Hamiltonian systems;
• symmetry (Section 4.4): for reversible Hamiltonian systems and a solu-

tion with a certain symmetry, symmetric methods usually give excellent
results; a complete explanation is missing in many situations.

Figure 4.10 shows the connections between these properties. Symplec-
ticity and exact energy conservation are not compatible. However, it is
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energy
conserv.

symplectic

symmetric

conjugate symplectic

Fig. 4.10. Survey of geometric integrators for Hamiltonian systems.

possible to have symmetric methods that exactly conserve energy. Exam-
ples are energy-momentum methods (see Section V.5 of HLW02) which,
however, do not fall into the class of B-series methods.
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Abstract

In this article we report on recent work on building numerical approximation
schemes for nonlinear Schrödinger equations. We first consider finite-
difference space semi-discretizations and show that the standard conserva-
tive scheme does not reproduce at the discrete level the dispersion
properties of the continuous Schrödinger equation. This is due to high fre-
quency numerical spurious solutions. In order to damp out or filter these
high-frequencies and to reflect the properties of the continuous problem we
propose two remedies. First, adding a suitable extra numerical viscosity
term at a convenient scale, and, second, a two-grid filter of the initial datum
with meshes of ratio 1/4. We prove that these alternate schemes preserve
the dispersion properties of the continuous model. We also present some
applications to the numerical approximation of nonlinear Schrödinger equa-
tions with initial data in L2. Despite the fact that classical energy methods
fail, using these dispersion properties, the numerical solutions of the semi-
discrete nonlinear problems are proved to converge to the solution of the
nonlinear Schrödinger equation. We also discuss some open problems and
some possible directions of future research.
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5.1 Introduction

Let us consider the 1− d linear Schrödinger Equation (LSE) on the whole
line {

iut + uxx = 0, x ∈ R, t �= 0,

u(0, x) = ϕ(x), x ∈ R.
(5.1)

The solution is given by u(t) = S(t)ϕ, where S(t) = eit∆ is the free
Schrödinger operator which defines a unitary transformation group in
L2(R). The linear semigroup has two important properties, the conser-
vation of the L2-norm

‖u(t)‖L2(R) = ‖ϕ‖L2(R) (5.2)

and a dispersive estimate :

|u(t, x)| ≤ 1√
4π|t|

‖ϕ‖L1(R). (5.3)

By classical arguments in the theory of dispersive equations the above
estimates imply more general space-time estimates for the linear semi-
group which allow proving the well-posedness of a wide class of nonlinear
Schrödinger equations (cf. Strichartz (1977), Tsutsumi (1987), Cazenave
(2003)).

In this paper we present some recent results on the qualitative proper-
ties of some numerical approximation schemes for the linear Schrödinger
equation and its consequences in the context of nonlinear problems.

More precisely, we analyze whether these numerical approximation
schemes have the same dispersive properties, uniformly with respect to the
mesh-size h, as in the case of the continuous Schrödinger equation (5.1). In
particular we analyze whether the decay rate (5.3) holds for the solutions of
the numerical scheme, uniformly in h. The study of these dispersion prop-
erties of the numerical scheme in the linear framework is relevant also for
proving their convergence in the nonlinear context. Indeed, since the proof
of the well-posedness of the nonlinear Schrödinger equations in the con-
tinuous framework requires a delicate use of the dispersion properties, the
proof of the convergence of the numerical scheme in the nonlinear context
is hopeless if these dispersion properties are not verified at the numerical
level.

To better illustrate the problems we shall address, let us first consider
the conservative semi-discrete numerical scheme i

duh

dt
+ ∆huh = 0, t �= 0,

uh(0) = ϕh.

(5.4)
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Here uh stands for the infinite unknown vector {uh
j }j∈Z, uh

j (t) being the
approximation of the solution at the node xj = jh, and ∆h the classical
second-order finite difference approximation of ∂2

x:

(∆huh)j =
uh

j+1 − 2uh
j + uh

j−1

h2
.

This scheme satisfies the classical properties of consistency and stability
which imply L2-convergence. In fact stability holds because of the conser-
vation of the discrete L2-norm under the flow (5.4):

d

dt

h
∑
j∈Z

|uh
j (t)|2

 = 0. (5.5)

The same convergence results hold for semilinear equations (NSE):

iut + uxx = f(u) (5.6)

provided that the nonlinearity f is globally Lipschitz continuous. But, it is
by now well known (cf. Tsutsumi (1987), Cazenave (2003)) that the NSE is
also well-posed for some nonlinearities that superlinearly grow at infinity.
This well-posedness result cannot be proved simply as a consequence of the
L2 conservation property and the dispersive properties of the LSE play a
key role.

Accordingly, one may not expect to prove convergence of the numerical
scheme in this class of nonlinearities without similar dispersive estimates
that should be uniform in the mesh-size parameter h → 0. In particu-
lar, a discrete version of (5.3) is required to hold, uniformly in h. This
difficulty may be avoided considering more smooth initial data ϕ, say, in
H1(R), a space in which the Schrödinger equation generates a group of
isometries and the nonlinearity is locally Lipschitz. But here, in order to
compare the dynamics of the continuous and semi-discrete systems we focus
on the L2(R)-case, which is a natural class in which to solve the nonlinear
Schrödinger equation.

In this article we first prove that the conservative scheme (5.4) fails
to have uniform dispersive properties. We then introduce two numerical
schemes for which the estimates are uniform. The first one uses an artificial
numerical viscosity term and the second one involves a two-grid algorithm
to precondition the initial data. Both approximation schemes of the linear
semigroup converge and have uniform dispersion properties. This allows
us to build two convergent numerical schemes for the NSE in the class of
L2(R) initial data.
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5.2 Notation and Preliminaries

In this section we introduce some notation that will be used in what fol-
lows: discrete lp spaces, semidiscrete Fourier transform, discrete fractional
differentiation, as well as the standard Strichartz estimates for the contin-
uous equations.
The spaces lp(hZ), 1 ≤ p < ∞, consist of all complex-valued sequences
{ck}k∈Z with

‖{ck}‖lp (hZ) =

(
h
∑
k∈Z

|ck|p
)1/p

<∞.

In contrast to the continuous case, these spaces are nested:

l1(hZ) ⊆ l2(hZ) ⊆ l∞(hZ).

The semidiscrete Fourier transform is a natural tool for the analysis of
numerical methods for partial differential equations, where we are always
concerned with functions defined on discrete grids. For any u ∈ l1(hZ), the
semidiscrete Fourier transform of u at the scale h is the function û defined
by

û(ξ) = (Fhv)(ξ) = h
∑
j∈Z

e−ijhξuj .

A priori, this sum defines a function û for all ξ ∈ R. We remark that any
wave number ξ is indistinguishable on the grid from all other wave numbers
ξ + 2πm/h, where m is an integer, a phenomenon called aliasing. Thus, it
is sufficient to consider the restriction of û to wave numbers in the range
[−π/h, π/h]. Also u can be recovered from û by the inverse semidiscrete
Fourier transform

vj = (F−1
h v̂)j =

∫ π/h

−π/h

eijhξû(ξ)dξ, j ∈ Z.

We will also make use of a discrete version of fractional differentiation.
For ϕ ∈ l2(hZ) and 0 ≤ s < 1 we define

(Dsϕ)j =
∫ π/h

−π/h

|ξ|sϕ̂(ξ)eijhξdξ.

Now, we make precise the classical dispersive estimates for the linear
continuous Schrödinger semigroup S(t). The energy and decay estimates
(5.2) and (5.3) lead, by interpolation (cf. Bergh & Löfström (1976)), to
the following Lp′ − Lp decay estimate:

‖S(t)ϕ‖Lp (R) � t−( 1
2−

1
p )‖ϕ‖Lp ′ (R),
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for all p ≥ 2 and t �= 0. More refined space-time estimates known as the
Strichartz inequalities (cf. Strichartz (1977), Ginibre & Velo (1992), Kell &
Tao (1998)) show that, in addition to the decay of the solution as t→∞,
a gain of spatial integrability occurs for t > 0. Namely

‖S(·)ϕ‖Lq (R,Lr (R)) ≤ C‖ϕ‖L2(R)

for suitable values of q and r, the so-called 1/2-admissible pairs. We recall
that an α-admissible pair (q, r) satisfies

1
q

= α

(
1
2
− 1

r

)
.

Also a local gain of 1/2 space derivative occurs in L2
x,t (cf. Constantin &

Saut (1988), Kenig, Ponce & Vega (1991)):

sup
x0,R

1
R

∫
B(x0,R)

∫ ∞

−∞
|D1/2

x eit∆u0|2dtdx ≤ C‖u0‖2L2(R).

5.3 Lack of Dispersion of the Conservative
Semi-Discrete Scheme

Using the discrete Fourier transform, we remark that there are slight (see
Fig. 5.1) but important differences between the symbols of the operators
−∆ and −∆h : p(ξ) = ξ2, ξ ∈ R for −∆ and ph(ξ) = 4/h2 sin2(ξh/2),
ξ ∈ [π/h, π/h] for −∆h. The symbol ph(ξ) changes convexity at the points
ξ = ±π/2h and has critical points also at ξ = ±π/h, two properties that
the continuous symbol does not fulfil. As we will see, these pathologies
affect the dispersive properties of the semi-discrete scheme.

Firstly we remark that eit∆h = eit∆1/h2
. Thus, by scaling, it is sufficient

to consider the case h = 1 and the large time behavior of solutions for this
mesh-size.
A useful tool to study the decay properties of solutions to dispersive equa-
tions is the classical Van der Corput lemma. Essentially it says that∣∣∣∣∣

∫ b

a

eitψ(ξ)dξ

∣∣∣∣∣ � t−1/k

provided that ψ is real valued and smooth in (a, b) satisfying |∂kψ(x)| ≥ 1
for all x ∈ (a, b). In the continuous case, i.e., with ψ(ξ) = ξ2, using that
the second derivative of the symbol is identically two (ψ′′(ξ) = 2), one
easily obtains (5.3). However, in the semi-discrete case the symbol of the
semidiscrete approximation p1(ξ) satisfies

|∂2p1(ξ)|+ |∂3p1(ξ)| ≥ c
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Fig. 5.1. The two symbols

for some positive constant c, a property that the second derivative does
not satisfy. This implies that for any t

‖u1(t)‖l∞(Z) �
(

1
t1/2

+
1

t1/3

)
‖u1(0)‖l1(Z). (5.7)

This estimates was obtained in Stefanov & Kevrekidis (2005) for the semi-
discrete Schrödinger equation in the lattice Z. But here, we are interested
on the behavior of the system as the mesh-size h tends to zero.

The decay estimate (5.7) contains two terms. The first one t−1/2, is
of the order of that of the continuous Schrödinger equation. The second
term t−1/3 is due to the discretization scheme and, more precisely, to the
behavior of the semi-discrete symbol at the frequencies ±π/2.
A scaling argument implies that

‖uh(t)‖l∞(hZ)

‖uh(0)‖l1(hZ)
� 1

t1/2
+

1
(th)1/3

,

an estimate which fails to be uniform with respect to the mesh size h.
As we have seen, the l∞(Z) norm of the discrete solution u1(t) behaves

as t−1/3 as t → ∞. This is illustrated in Fig. 5.2 by choosing the dis-
crete Dirac delta δ0 as initial datum such that u(0)j = δ0j where δ is the
Kronecker symbol. More generally one can prove that there is no gain of
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Fig. 5.2. Log-log plot of the time evolution of the l∞ norm of u1

with initial datum δ0.

integrability, uniformly with respect to the mesh size h. The same occurs
in what concerns the gain of the local regularity. The last pathology is due
to the fact that, in contrast with the continuous case, the symbol ph(ξ) has
critical points also at ±π/h. These negative results are summarized in the
following two theorems.

Theorem 5.1 Let T > 0, q0 ≥ 1 and q > q0. Then,

sup
h>0,ϕh∈lq0(hZ)

‖Sh(T )ϕh‖lq (hZ)

‖ϕh‖lq0 (hZ)
=∞ (5.8)

and

sup
h>0,ϕh∈lq0(hZ)

‖Sh(·)ϕh‖L1((0,T ),lq (hZ))

‖ϕh‖lq0(hZ)
=∞. (5.9)

Theorem 5.2 Let T > 0, q ∈ [1, 2] and s > 0. Then,

sup
h>0,ϕh∈lq (hZ)

(
h
∑1/h

j=0 |(DsSh(T )ϕh)j |2
)1/2

‖ϕh‖lq (hZ)
=∞ (5.10)
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and

sup
h>0,ϕh∈lq (hZ)

(∫ T

0
h
∑1/h

j=0 |(DsSh(t)ϕh)j |2dt
)1/2

‖ϕh‖lq (hZ)
=∞. (5.11)

According to these theorems the semi-discrete conservative scheme fails
to have uniform dispersive properties with respect to the mesh-size h.

Proof of Theorem 5.1. As we mentioned before, this pathological behavior
of the semi-discrete scheme is due to the contributions of the frequencies
±π/2h. To see this we argue by scaling:

‖Sh(T )ϕh‖lq (hZ)

‖ϕh‖lq0 (hZ)
=

h
1
q

h
1

q0

‖S1(T/h2)ϕh‖lq (Z)

‖ϕh‖lq0 (Z)
, (5.12)

reducing the estimates to the case h = 1.
Using that p1(ξ) changes convexity at the point π/2, we choose as initial

data a wave packet with its semidiscrete Fourier transform concentrated at
π/2.

We introduce the operator S1 : S(R)→ S(R) as

(S1(t)ϕ)(x) =
∫ π

−π

e−4it sin2 ξ
2 eixξϕ̂(ξ). (5.13)

Using the results of Plancherel & Pólya (1937) and Magyar, Stein & Wainger
(2002) concerning band-limited functions, i.e., with compactly supported
Fourier transform, it is convenient to replace the discrete norms by contin-
uous ones:

sup
ϕ∈lq0(Z)

‖S1(t)ϕ‖lq (Z)

‖ϕ‖lq0 (Z)
� sup

supp ϕ̂⊂[−π,π]

‖S1(t)ϕ‖Lq (R)

‖ϕ‖Lq0 (R)
. (5.14)

According to this we may consider that x varies continuously in R. To
simplify the presentation we set ψ(ξ) = −4t sin2 ξ

2 + xξ. For any interval
[a, b] ⊂ [−π, π], applying the Mean Value Theorem to eitψ(ξ), we have∣∣∣∣∣

∫ b

a

eiψ(ξ)ϕ̂(ξ)dξ

∣∣∣∣∣ ≥ (1− |b− a| sup
ξ∈[a,b]

|ψ′(ξ)|)
∫ b

a

ϕ̂(ξ)dξ

provided that ϕ̂ is nonnegative. Observe that

ψ′(ξ) = −2t sin ξ + x ∼ −2t
[
1 + O((ξ − π

2
)2)
]

+ x

for ξ ∼ π/2. Let ε be a small positive number that we shall fix below and
ϕ̂ε supported on the set {ξ : ξ − π/2 = O(ε)}. Then, |ψ′(ξ)| = O(ε−1) as
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long as x− 2t = O(ε−1) and t = O(ε−3). This implies that∣∣∣∣∫ π

−π

e−4it sin2 ξ
2+ixξϕ̂εdξ

∣∣∣∣ �
∫ π

2 +ε

π
2 −ε

ϕ̂ε(ξ)dξ.

Integrating over x− 2t = O(ε−1) we get, for all t = O(ε−3),

‖S1(t)ϕε‖Lq (R) � ε−
1
q

∫ π
2 +ε

π
2 −ε

ϕ̂ε(ξ)dξ. (5.15)

Then,

‖S1(t)ϕε‖Lq (R)

‖ϕε‖Lq0 (R)
� ε−

1
q

∫ π
2 +ε

π
2 −ε

ϕ̂ε(ξ)dξ

‖ϕε‖Lq0 (R)
. (5.16)

We now choose a function ϕ such that its Fourier transform ϕ̂ has com-
pact support and satisfies ϕ̂(0) > 0. Then we choose ϕε in the following
manner

ϕ̂ε(ξ) = ε−1ϕ̂
(
ε−1

(
ξ − π

2
))

.

For such ϕε, using the properties of the Fourier transform, we obtain
that ‖ϕε‖Lq0 (R) behaves as ε−1/q0 and

‖S1(t)ϕε‖Lq (R)

‖ϕε‖Lq0 (R)
� ε−

1
q + 1

q0

as long as t = O(ε−3).
Finally we choose ε such that ε−3 % h−2. Then, T/h2 ∼ ε−3 and the

above results imply

h
1
q − 1

q0 sup
supp ϕ̂⊂[−π,π]

‖S1(T/h2)ϕh‖Lq (R)dt

‖ϕh‖Lq0(R)
� h

1
q − 1

q0 h
2
3 (− 1

q + 1
q0

)

� h
1
3 ( 1

q − 1
q0

)
. (5.17)

This, together with (5.12) and (5.14), finishes the proof.

Proof of Theorem 5.2. The proof uses the same ideas as in the case of
Theorem 5.1 with the difference that we choose wave packets concentrated
at π.

5.4 The Viscous Semi-discretization Scheme

As we have seen in the previous section a simple conservative approximation
with finite differences does not reflect the dispersive properties of the LSE.
In general, a numerical scheme introduces artificial numerical dispersion,
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which is an intrinsic property of the scheme and not of the original PDE.
A possible remedy is to introduce a dissipative term to compensate the
artificial numerical dispersion.

We propose the following viscous semi-discretization of (5.1) i
duh

dt
+ ∆huh = ia(h)sgn(t)∆huh, t �= 0,

uh(0) = ϕh,

(5.18)

where a(h) is a positive function which tends to 0 as h tends to 0. We
remark that the proposed scheme is a combination of the conservative ap-
proximation of the Schrödinger equation and a semidiscretization of the
heat equation in a suitable time-scale. More precisely, the scheme

duh

dt
= a(h)∆huh

which underlines in (5.18) may be viewed as a discretization of

ut = a(h)∆u,

which is, indeed, a heat equation in the appropriate time-scale. The scheme
(5.18) generates a semigroup Sh

+(t), for t > 0. Similarly one may define
Sh
−(t), for t < 0. The solution uh satisfies the following energy estimate

d

dt

[
1
2
‖uh(t)‖2l2(hZ)

]
= −a(h)sgn(t)

h
∑
j∈Z

∣∣∣∣∣uh
j+1(t)− uh

j (t)
h

∣∣∣∣∣
2
 . (5.19)

In this energy identity the role that the numerical viscosity term plays is
clearly reflected. In particular it follows that

a(h)
∫
R

‖D1uh(t)‖2l2(hZ)dt ≤ 1
2
‖ϕh‖2l2(hZ). (5.20)

Therefore in addition to the L2-stability property we get some partial in-
formation on D1uh(t) in l2(hZ) that, despite the vanishing multiplicative
factor a(h), gives some extra control on the high frequencies.

The following result holds.

Theorem 5.3 Let us fix p ∈ [2,∞] and α ∈ (1/2, 1] . Then, for a(h) =
h2−1/α, Sh

±(t) maps continuously lp
′
(hZ) into lp(hZ) and there exists some

positive constant c(p) such that

‖Sh
±(t)ϕh‖lp (hZ) ≤ c(p)(|t|−α(1− 2

p ) + |t|− 1
2 (1− 2

p ))‖ϕh‖lp ′ (hZ) (5.21)

holds for all |t| �= 0, ϕ ∈ lp
′
(hZ) and h > 0.
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As Theorem 5.3 indicates, when α > 1/2, roughly speaking, (5.18) re-
produces the decay properties of LSE as t→∞.

Proof of Theorem 5.3. We consider the case of Sh
+(t), the other one be-

ing similar. We point out that Sh
+(t)ϕh = exp((i + a(h)sgn(t))t∆h)ϕh.

The term exp(a(h)sgn(t)t∆h)ϕh represents the solution of the semi-discrete
heat equation

vh
t −∆hvh = 0 (5.22)

at time |t|a(h). This shows that, as we mentioned above, the viscous scheme
is a combination of the conservative one and the semi-discrete heat equa-
tion.

Concerning the semidiscrete approximation (5.22) we have, as in the
continuous case, the following uniform (with respect to h) norm decay :

‖vh(t)‖lp (hZ) � |t|−1/2(1/q−1/p)‖vh
0 ‖lq (hZ) (5.23)

for all 1 ≤ q ≤ p ≤ ∞. This is a simple consequence of the following esti-
mate (that is obtained by multiplying (5.22) by the test function |vh

j |p−1vh
j )

d

dt

(
‖vh(t)‖plp (hZ)

)
≤ −c(p)‖∇+|vh|p/2‖l2(hZ)

and discrete Sobolev inequalities (see Escobedo & Zuazua (1991) for its
continuous counterpart).

In order to obtain (5.21) it suffices to consider the case p′ = 1 and
p′ = 2, since the others follow by interpolation. The case p′ = 2 is a
simple consequence of the energy estimate (5.19). The terms t−α(1−2/p)

and t−1/2(1−2/p) are obtained when estimating the high and low frequencies,
respectively. The numerical viscosity term contributes to the estimates of
the high frequencies. The low frequencies are estimated by applying the
Van der Corput Lemma (cf. Stein (1993), Proposition 2, Ch. VIII. Sect. 1,
p. 332).

We consider the projection operator P h on the low frequencies [−π/4h,

π/4h] defined by P̂ hϕh = ϕ̂hχ(−π/4h,π/4h). Using that

Sh
+ϕh = eit∆h eta(h)∆h [P hϕh + (I − P h)ϕh]

it is sufficient to prove that

‖eit∆h eta(h)∆h P hϕh‖l∞(Z) � 1
t1/2
‖ϕh‖l1(hZ) (5.24)

and

‖eit∆h eta(h)∆h (I − Ph)ϕh‖l∞(Z) � 1
tα
‖ϕh‖l1(hZ) (5.25)
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for all t > 0, uniformly in h > 0. By Young’s Inequality it is sufficient to
obtain upper bounds for the kernels of the operators involved:

Kh
1 (t) = χ(−π/4h,π/4h)e

−4it sin2( ξh
2 )−4ta(h) sin2( ξh

2 )

and

Kh
2 (t) = χ(−π/h,π/h)\(−π/4h,π/4h)e

−4it sin2( ξh
2 )−4ta(h) sin2( ξh

2 ).

The second estimate comes from the following

‖Kh
2 (t)‖l∞(hZ) ≤

∫ π
h

π
4h

e−4t
a(h)
h2 sin2( ξh

2 )dξ � 1
h

(
ta(h)
h2

)−α

� 1
tα

.

The first kernel is rewritten as Kh
1 (t) = Kh

3 (t) ∗ Hh(ta(h)), where Kh
3 (t)

is the kernel of the operator P heit∆h and Hh is the kernel of the semidis-
crete heat equation (5.22). Using the Van der Corput lemma we obtain
‖Kh

3 (t)‖l∞(hZ) � 1/
√

t. Also by (5.23) we get ‖Hh(ta(h))‖l1(hZ) � 1. Fi-
nally by Young’s inequality we obtain the desired estimate for Kh

1 (t).

As a consequence of the above theorem, the following TT ∗ estimate is
satisfied.

Lemma 5.1 For r ≥ 2 and α ∈ (1/2, 1], there exists a constant c(r) such
that

‖(Sh
sgn(t)(t))

∗Sh
sgn(s)(s)f

h‖lr (hZ) ≤

≤ c(r)(|t− s|−α(1− 2
r )+ |t− s|−1/2(1− 2

r ))‖fh‖lr ′ (hZ)

holds for all t �= s.

As a consequence of this, we have the following result.

Theorem 5.4 The following properties hold :
(i) For every ϕh ∈ l2(hZ) and finite T > 0, the function Sh

sgn(t)(t)ϕ
h

belongs to Lq([−T, T ], lr(hZ)) ∩ C([−T, T ], l2(hZ)) for every α-admissible
pair (q, r). Furthermore, there exists a constant c(T, r, q) depending on
T > 0 such that

‖Sh
sgn(·)(·)ϕh‖Lq ([−T,T ],lr (hZ)) ≤ c(T, r, q)‖ϕh‖l2(hZ), (5.26)

for all ϕh ∈ l2(hZ) and h > 0.
(ii) If (γ, ρ) is an α-admissible pair and f ∈ Lγ′

([−T, T ], lρ
′
(hZ)), then

for every α-admissible pair (q, r), the function

t �→ Φf (t) =
∫
R

Sh
sgn(t−s)(t− s)f(s)ds, t ∈ [−T, T ] (5.27)
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belongs to Lq([−T, T ], lr(hZ))∩C([−T, T ], l2(hZ)). Furthermore, there ex-
ists a constant c(T, q, r, γ, ρ) such that

‖Φf‖Lq ([−T,T ],lr (hZ)) ≤ c(T, q, r, γ, ρ)‖f‖Lγ ′ ([−T,T ],lρ ′ (hZ)), (5.28)

for all f ∈ Lγ′
([−T, T ], lρ

′
(hZ)) and h > 0.

Proof All the above estimates follow from Lemma 5.1 as a simple conse-
quence of the classical TT ∗ argument (cf. Cazenave (2003), Ch. 2, Section
3, p. 33).

We remark that all the estimates are local in time. This is a conse-
quence of the different behavior of the operators Sh

± at t ∼ 0 and t ∼ ±∞.
Despite their local (in time) character, these estimates are sufficient to
prove well-posedness and convergence for approximations of the nonlinear
Schrödinger equation. Global estimates can be obtained by replacing the
artificial viscosity term a(h)∆h in (5.18) by a higher order one : ã(h)∆2

h

with a convenient ã(h). The same arguments as before ensure the same
decay as in (5.21) as t ∼ 0 and t ∼ ∞, namely t−

1
2 (1− 2

p ).

Remark 5.1 Using similar arguments one can also show that a uniform
(with respect to h) gain of s space derivatives locally in L2

x,t holds for 0 <

s < 1/2α− 1/2. In fact one can prove the following stronger result.

Theorem 5.5 For all ϕh ∈ l2(hZ) and 0 < s < 1/2α− 1/2

sup
j∈Z

∫ ∞

−∞
|(DsSh

sgn(t)(t)ϕ
h)j |2dt � ‖ϕ‖2l2(hZ) (5.29)

holds uniformly in h > 0.

This is a consequence of the energy estimate (5.20) for the high frequencies
and of dispersive arguments for the low ones (cf. Constantin & Saut (1988)
and Kenig, Ponce & Vega (1991)).

5.5 A Viscous Approximation of the NSE

We concentrate on the semilinear NSE equation in R :{
iut + ∆u = |u|pu, x ∈ R, t > 0,

u(0, x) = ϕ(x), x ∈ R.
(5.30)

It is convenient to rewrite the problem (5.30) in the integral form

u(t) = S(t)ϕ− i

∫ t

0

S(t− s)|u(s)|pu(s)ds, (5.31)



194 Liviu I. Ignat and Enrique Zuazua

where the Schrödinger operator S(t) = eit∆ is a one-parameter unitary
group in L2(R) associated with the linear continuous Schrödinger equation.
The first result, due to Tsutsumi (1987), on the global existence for L2-
initial data, is the following theorem.

Theorem 5.6 (Global existence in L2, Tsutsumi (1987)). For 0 ≤ p < 4
and ϕ ∈ L2(R), there exists a unique solution u of (5.30) in C(R, L2(R))∩
Lq

loc(R, Lp+2(R)) with q = 4(p + 1)/p that satisfies the L2-norm conserva-
tion property

‖u(t)‖L2(R) = ‖ϕ‖L2(R).

This solution depends continuously on the initial condition ϕ in L2(R).

Local existence is proved by applying a fixed point argument in the in-
tegral formulation (5.31). Global existence holds because of the L2(R)-
conservation property which allows excluding finite-time blow-up.

We now consider the following viscous semi-discretization of (5.30): i
duh

dt
+ ∆huh = i sgn(t)a(h)∆huh + |uh|puh, t �= 0,

uh(0) = ϕh,

(5.32)

with 0 ≤ p < 4 and a(h) = h2− 1
α (h) such that α(h) ↓ 1/2 and a(h) → 0 as

h ↓ 0. The following l2(hZ)-norm dissipation law holds:

d

dt

(
1
2
‖uh(t)‖2l2(hZ)

)
= −a(h)sgn(t)

h
∑
j∈Z

∣∣∣∣∣uh
j+1 − uh

j

h

∣∣∣∣∣
2
 . (5.33)

Concerning the well posedness of (5.32) the following holds:

Theorem 5.7 (Ignat and Zuazua (2005a)). Let p ∈ (0, 4) and α(h) ∈
(1/2, 2/p]. Set

1
q(h)

= α(h)
(

1
2
− 1

p + 2

)
so that (q(h), p+2) is an α(h)-admissible pair. Then, for every ϕh ∈ l2(hZ),
there exists a unique global solution

uh ∈ C(R, l2(hZ)) ∩ L
q(h)
loc (R; lp+2(hZ))

of (5.32) which satisfies the following estimates, independently of h:

‖uh‖L∞(R,l2(hZ)) ≤ ‖ϕh‖l2(hZ) (5.34)
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and, for all finite T > 0,

‖uh‖Lq (h)([−T,T ],lp+2(hZ)) ≤ c(T )‖ϕh‖l2(hZ). (5.35)

Sketch of the Proof. The proof uses Theorem 5.4 and a standard fixed
point argument as in Tsutsumi (1987) and Cazenave (2003) in order to
obtain local solutions. Using the a priori estimate (5.33) we obtain a global
in time solution.

Let us now address the problem of convergence as h → 0. Given ϕ ∈
L2(R), for the semi-discrete problem (5.32) we consider a family of initial
data (ϕh

j )j∈Z such that

Ehϕh → ϕ

weakly in L2(R) as h→ 0. Here and in the sequel Eh denote the piecewise
constant interpolator Eh : l2(hZ)→ L2(R).

The main convergence result is contained in the following theorem.

Theorem 5.8 The sequence Ehuh satisfies

Ehuh �
⇀ u in L∞(R, L2(R)), (5.36)

Ehuh ⇀ u in Ls
loc(R, Lp+2(R)) ∀ s < q, (5.37)

Ehuh → u in L2
loc(R×R), (5.38)

|Ehuh|pEhuh ⇀ |u|pu in Lq′

loc(R, L(p+2)′(R)) (5.39)

where u is the unique solution of NSE and 2/q = 1/2− 1/(p + 2).

Remark 5.2 Our method works similarly in the critical case p = 4 for
small initial data. It suffices to modify the approximation scheme by tak-
ing a nonlinear term of the form |uh|2/α(h)uh in the semi-discrete equa-
tion (5.32) with a(h) = h2−1/α(h) and α(h) ↓ 1/2, a(h) ↓ 0, so that,
asymptotically, it approximates the critical nonlinearity of the continuous
Schrödinger equation. In this way the critical continuous exponent p = 4
is approximated by semi-discrete critical problems.

The critical semi-discrete problem presents the same difficulties as the
continuous one. Thus, the initial datum needs to be assumed to be small.
But the smallness condition is independent of the mesh-size h > 0. More
precisely, the following holds.
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Theorem 5.9 Let α(h) > 1/2 and p(h) = 2/α(h). There exists a constant
ε, independent of h, such that for all ‖ϕh‖l2(hZ) < ε, the semi-discrete
critical equation has a unique global solution

uh ∈ C(R, l2(hZ)) ∩ L
p(h)+2
loc (R, lp(h)+2(hZ)). (5.40)

Moreover uh ∈ Lq
loc(R, lr(hZ)) for all α(h)- admissible pairs (q, r) and

‖uh‖Lq ((−T,T ),lr (hZ)) ≤ C(q, T )‖ϕh‖l2(hZ). (5.41)

Observe that, in particular, (3/α(h), 6) is an α(h)-admissible pair. This
allows us to bound the solutions uh in a space Ls

loc(R, L6(R)) with s < 6.
With the same notation as in the subcritical case the following convergence
result holds.

Theorem 5.10 When p = 4 and under the smallness assumption of The-
orem 5.9, the sequence Euh satisfies

Euh �
⇀u in L∞(R, L2(R)), (5.42)

Euh ⇀ u in Ls
loc(R, L6(R))∀ s < 6, (5.43)

Euh → u in L2
loc(R×R), (5.44)

|Euh|p(h)|Euh|⇀ |u|4u in L6′

loc(R, L6′
(R)) (5.45)

where u is the unique weak solution of critical (NSE).

5.6 A Two-Grid Scheme

As an alternative to the previous scheme based on numerical viscosity, we
propose a two-grid algorithm introduced in Ignat & Zuazua (2005b), which
allows constructing conservative and convergent numerical schemes for the
nonlinear Schrödinger equation. As we shall see, the two-grid method acts
as a preconditioner or filter that eliminates the unwanted high-frequency
components from the initial data and nonlinearity. This method is inspired
by that used in Glowinski (1992) and Negreanu & Zuazua (2004) in the
context of the propagation and control of the wave equation. We emphasize
that, by this alternative approach, the purely conservative nature of the
scheme is preserved. But, for that to be the case, the nonlinearity needs to
be approximated in a careful way.

The method is roughly as follows. We consider two meshes: the coarse
one 4hZ of size 4h, h > 0, and the fine one hZ, of size h > 0. The com-
putational mesh is the fine one, of size h. The method relies basically on
solving the finite-difference semi-discretization (5.4) on the fine mesh hZ,
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but only for slowly oscillating data and nonlinearity, interpolated from the
coarse grid 4hZ. As we shall see, the 1/4 ratio between the two meshes is
important to guarantee the convergence of the method. This choice of the
mesh-ratio guarantees a particular structure of the data that cancels the
two pathologies of the discrete symbol mentioned above. Indeed, a careful
Fourier analysis of those initial data shows that their discrete Fourier trans-
forms vanish quadratically at the points ξ = ±π/2h and ξ = ±π/h. As we
shall see, this suffices to recover the dispersive properties of the continuous
model.

To make the analysis rigorous we introduce the space of slowly oscillating
sequences (SOS). The SOS on the fine grid hZ are those which are obtained
from the coarse grid 4hZ by an interpolation process. Obviously there is
a one to one correspondence between the coarse grid sequences and the
space

ChZ
4 = {ψ ∈ ChZ : suppψ ⊂ 4hZ}.

We introduce the extension operator E:

(Eψ)((4j + r)h) =
4− r

4
ψ(4jh) +

r

4
ψ((4j + 4)h), (5.46)

for all j ∈ Z, r = 0, 3 and ψ ∈ ChZ
4 . This associates to each element of

ChZ
4 an SOS on the fine grid. The space of slowly oscillating sequences on

the fine grid is as follows

V h
4 = {Eψ : ψ ∈ ChZ

4 }.

We also consider the projection operator Π : ChZ → ChZ
4 :

(Πφ)((4j + r)h) = φ((4j + r)h)δ4r ∀j ∈ Z, r = 0, 3, φ ∈ ChZ (5.47)

where δ is Kronecker’s symbol. We remark that E : ChZ
4 → V h

4 and Π :
V h

4 → ChZ
4 are bijective linear maps satisfying ΠE = IChZ

4
and EΠ = IV h

4
,

where IX denotes the identity operator on X. We now define Π̃ = EΠ :
ChZ → V h

4 , which acts as a smoothing or filtering operator and associates
to each sequence on the fine grid a slowly oscillating one. As we said above,
the restriction of this operator to V h

4 is the identity.
Concerning the discrete Fourier transform of SOS, by means of explicit

computations, one can prove that:

Lemma 5.2 Let φ ∈ l2(hZ). Then,

̂̃Πφ(ξ) = 4 cos2(ξh) cos2
(

ξh

2

)
Π̂φ(ξ). (5.48)
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Fig. 5.3. The multiplicative factor 2 cos2(ξh/2)
for the two-grid method with mesh ratio 1/2

Remark 5.3 One could think on a simpler two-grid construction, using
mesh-ratio 1/2 and, consequently, considering meshes of size h and 2h. We

then get ̂̃Πϕ(ξ) = 2 cos2(ξh/2)Π̂ϕ(ξ). This cancels the spurious numerical
solutions at the frequencies ±π/h (see Fig. 5.3), but not at ±π/2h. In
this case, as we proved in Section 5.3, the Strichartz estimates fail to be
uniform on h. Thus instead we choose the ratio between grids to be 1/4.
As the Figure 5.4 shows, the multiplicative factor occurring in (5.48) will
cancel the spurious numerical solutions at ±π/h and ±π/2h.

As we have proved in Section 5.3, there is no gain (uniformly in h) of
integrability of the linear semigroup eit∆h . However the linear semigroup
has appropriate decay properties when restricted to V h

4 uniformly in h > 0.
The main results we get are the following.

Theorem 5.11 Let p ≥ 2. The following properties hold:

i) ‖eit∆h Π̃ϕ‖lp (hZ) � |t|−1/2(1/p′−1/p)‖Π̃ϕ‖lp ′ (hZ) for all ϕ ∈ lp
′
(hZ),

h > 0 and t �= 0.

ii) For every sequence ϕ ∈ l2(hZ), the function t → eit∆h Π̃ϕ belongs to
Lq(R, lr(hZ))∩C(R, l2(hZ)) for every admissible pair (q, r). Furthermore,

‖eit∆h Π̃ϕ‖Lq (R,lr (hZ)) � ‖Π̃ϕ‖l2(hZ),

uniformly in h > 0.
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Fig. 5.4. The multiplicative factor 4 cos2(ξh) cos2
(

ξh
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)
for the two-grid method with mesh ratio 1/4

iii) Let (q, r), (q̃, r̃) be two admissible pairs. Then,∥∥∥∥∫
s<t

ei(t−s)∆h Π̃F (s)ds

∥∥∥∥
Lq (R,lr (hZ))

� ‖Π̃F‖Lq̃ (R,lr̃ (hZ))

for all F ∈ Lq̃(R, lr̃(hZ)), uniformly in h > 0.

Concerning the local smoothing properties we can prove the following
result.

Theorem 5.12 The following estimate

sup
j∈Z

∫ ∞

−∞

∣∣∣(D1/2eit∆h Π̃f)j

∣∣∣2 dt � ‖Π̃f‖2l2(hZ) (5.49)

holds for all f ∈ l2(hZ), uniformly in h > 0.

Proof of Theorem 5.11. The estimates ii) and iii) easily follow by the
classical TT ∗ argument (cf. Keel & Tao (1998), Cazenave (2003)) once one
proves i) with p′ = 1 and p′ = 2. The case p′ = 2 is a consequence of
the conservation of energy property. For p′ = 1, by a scaling argument, we
may assume that h = 1. The same arguments as in Section 5.4, reduce the
proof to the following upper bound for the kernel

‖K1(t)‖l∞(hZ) � 1
t1/2

,
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where

K̂1(t) = 4e−4it sin2 ξ
2 cos2(ξ) cos2

(
ξ

2

)
.

Using the fact that the second derivative of the symbol 4 sin2(ξ/2) is
given by 2 cos ξ, by means of oscillatory integral techniques (cf. Kenig,
Ponce & Vega (1991), Corollary 2.9, p. 46) we get

‖Kt‖l∞(Z) � 1
t1/2

∥∥∥∥2| cos(ξ)|3/2 cos2
ξ

2

∥∥∥∥
L∞([−π,π])

� 1
t1/2

.

Proof of Theorem 5.12. The estimate (5.49) is equivalent to the following
one

sup
j∈Z

∫ ∞

−∞

∣∣∣(eit∆h Π̃f)j

∣∣∣2 dt � ‖D−1/2Π̃f‖2l2(hZ). (5.50)

By scaling we consider the case h = 1. Applying the results of Kenig,
Ponce & Vega (1991) (Theorem 4.1, p. 54) we get

sup
j∈Z

∫ ∞

−∞

∣∣∣(eit∆h Π̃f)j

∣∣∣2 dt �
∫ π

−π

|Π̂f(ξ)|2 cos4 ξ cos4 ξ
2

| sin ξ| dξ

�
∫ π

−π

|Π̂f(ξ)|2
|ξ| dξ � ‖D−1/2f‖2l2(Z).

Observe that the key point in the above proof is that the factor cos(ξ/2)
in the amplitude of the Fourier representation of the initial datum com-
pensates the effects of the critical points of the symbol sin2(ξ/2) near the
points ±π.

The results proved in Theorem 5.11 i) are plotted in Fig. 5.7. We choose
an initial datum as in Fig. 5.6, obtained by interpolation of the Dirac delta:
Πu(0) = δ0 (see Fig. 5.5). Figure 5.7 shows the different behavior of the
solutions of the conservative and the two-grid schemes. The l∞(Z)-norm of
the solution u1(t) for the two-grid algorithm behaves like t−1/2 as t→∞,
with the decay rate predicted above, while the solutions of the conservative
scheme, without the two-grid filtering, decay like t−1/3.

5.7 A Conservative Approximation of the NSE

We consider the following semi-discretization of the NSE : i
duh

dt
+ ∆huh = Π̃f(uh), t �= 0,

uh(0) = Π̃ϕh,
(5.51)



Dispersive Properties of Numerical Schemes for NSE 201

x

u(x)

Fig. 5.5. u1(0) = δ0

u(x)

x

Fig. 5.6. u1(0) = Eδ0

where f(uh) is a suitable approximation of |u|pu with 0 < p < 4. In
order to prove the global well-posedness of (5.51), we need to guarantee the
conservation of the l2(hZ) norm of solutions, a property that the solutions
of NSE satisfy. For that the nonlinear term f(uh) has to be chosen so
that (Π̃f(uh), uh)l2(hZ) ∈ R. For that to be the case, it is not sufficient to
discretize the nonlinearity as for the viscous scheme, by simply sampling
it on the discrete mesh. A more careful choice is needed. The following
result holds.

Theorem 5.13 Let p ∈ (0, 4), q = 4(p + 2)/p and f : ChZ → ChZ be such
that

‖Π̃f(u)‖l(p+2)′ (hZ) � ‖|u|pu‖l(p+2)′ (hZ) (5.52)
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Fig. 5.7. Log-log plot of the time evolution of the l∞ norm of u1(t)

and

(Π̃f(u), u)l2(hZ) ∈ R.

Then, for every ϕh ∈ l2(hZ), there exists a unique global solution

uh ∈ C(R, l2(hZ)) ∩ Lq
loc(R; lp+2(hZ)) (5.53)

of (5.51) which satisfies the estimates

‖uh‖L∞(R,l2(hZ)) ≤ ‖Π̃ϕ‖l2(hZ) (5.54)

and

‖uh‖Lq (I,lp+2(hZ)) ≤ c(I)‖Π̃ϕ‖l2(hZ) (5.55)

for all finite intervals I, where the above constants are independent
of h.

Remark 5.4 The conditions above on the nonlinearity are satisfied if one
chooses

(f(uh))4j = g

(
(uh

4j +
3∑

r=1

4− r

4
(uh

4j+r + uh
4j−r))

/
4

)
; g(s) = |s|ps.

(5.56)
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With this choice it is easy to check that (5.52) holds with C > 0 independent
of h > 0. Furthermore (Π̃f(uh), uh)l2(hZ) ∈ R since

(Π̃f(uh), uh)l2(hZ) =

= h

3∑
r=0

∑
j∈Z

(
4− r

4
(f(uh))4j +

r

4
(f(uh))4j+4

)
uh

4j+r

= h
∑
j∈Z

(f(uh))4j

(
3∑

r=0

4− r

4
uh

4j+r +
3∑

r=0

r

4
uh

4j+r−4

)

= h
∑
j∈Z

g

(
(uh

4j +
3∑

r=1

4− r

4
(uh

4j+r + uh
4j−r))/4

)

×(uh
4j +

3∑
r=1

4− r

4
(uh

4j+r + uh
4j−r)).

Proof of Theorem 5.13. Local existence and uniqueness are a consequence
of the Strichartz estimates (Theorem 5.11) and of a fixed point argument.
The fact that (Π̃f(uh), uh)l2(hZ) is real guarantees the conservation of the
discrete energy h

∑
j∈Z |uj(t)|2. This allows excluding finite-time blow-up.

The main convergence result is the following

Theorem 5.14 Let uh be the unique solution of (5.51) with discrete initial
data ϕh such that Ehϕh ⇀ ϕ weakly in L2(R). Then, the sequence Ehuh

satisfies

Ehuh �
⇀u in L∞(R, L2(R)), (5.57)

Ehuh ⇀ u in Lq
loc(R, Lp+2(R)), (5.58)

Ehuh → u in L2
loc(R×R), (5.59)

EhΠ̃f(uh) ⇀ |u|pu in Lq′

loc(R, L(p+2)′(R)) (5.60)

where u is the unique solution of NSE and 2/q = 1/2− 1/(p + 2).

The critical nonlinearity p = 4 may also be handled by the two-grid
algorithm. In this case one can take directly p = 4 in the semi-discrete
scheme since the two-grid algorithm guarantees the dispersive estimates to
be true for all 1/2-admissible pairs.
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5.8 Open Problems

• Time Splitting Methods. In Besse, Bidégaray & Descombes (2002),
(see also Sanz-Serna & Calvo (1994), Descombres & Schatzman (2002))
the authors consider the NSE with initial data in H2(R2) and the nonlin-
ear term |u|2u. A time splitting method is used in order to approximate
the solution. More precisely, the nonlinear Schrödinger equation is split
into the flow Xt generated by the linear Schrödinger equation{

vt − i∆v = 0, x ∈ R2, t > 0,

v(0, x) = v0(x), x ∈ R2.
(5.61)

and the flow Y t for the differential equation{
wt − i|w|2w = 0, x ∈ R2, t > 0,

w(0, x) = w0(x), x ∈ R2.
(5.62)

One can then approximate the flow of NSE by combining the two flows
Xt and Y t using some of the classical splitting methods: the Lie for-
mula Zt

L = XtY t or the Strang formula Zt
S = Xt/2Y tXt/2. In Besse,

Bidégaray & Descombes (2002) the convergence of these methods is
proved for initial data in H2(R2). Note however that the nonlinear-
ity |u|2u is locally Lipschitz in H2(R2). Consequently this nonlinearity
in this functional setting can be dealt with by means of classical energy
methods, without using the Strichartz type estimate.

A possible problem for future research is to replace the above equations
(5.61), (5.62), which are continuous in the variable x, by discrete ones
and to analyze the convergence of the splitting method for the initial
data in L2(R). As we saw in Section 5.3 the simpler approximation of
(5.61) by finite differences does not have the dispersive properties of the
continuous model. It is then natural to consider one of the two remedies
we have designed: to add numerical viscosity or to regularize the initial
data by a two grid algorithm. The convergence of the splitting algorithm
is open because of the lack of dispersion of the ODE (5.62) and its semi-
discretizations.
• Discrete Transparent Boundary Conditions. In Arnold, Ehrhardt

& Sofronov (2003) the authors introduce a discrete transparent bound-
ary condition for a Crank–Nicolson finite difference discretization of the
Schrödinger equation. The same ideas allow constructing similar DTBC
for various numerical approximations of the LSE. It would be interest-
ing to study the dispersive properties of these approximations by means
of the techniques of Markowich & Poupaud (1999) based on microlocal
analysis. Supposing that the approximation fails to have the appropriate
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dispersive properties, one could apply the methods presented here in or-
der to recover the dispersive properties of the continuous model.
• Fully Discrete Schemes. It would be interesting to develop a sim-

ilar analysis for fully discrete approximation schemes. We present two
schemes, one which is implicit and the other one which is explicit in time.
The first one:

i
un+1

j − un
j

∆t
+

un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2
= 0, n ≥ 0, j ∈ Z, (5.63)

introduces time viscosity and consequently has the right dispersive prop-
erties. The second one is conservative and probably will present some
pathologies. As an example we choose the following approximation
scheme:

i
un+1

j − un−1
j

2∆t
+

un
j+1 − 2un

j + un
j−1

(∆x)2
= 0, n ≥ 1, j ∈ Z. (5.64)

In this case it is expected that the dispersive properties will not hold
for any Courant number λ = ∆t/(∆x)2 which satisfies the stability con-
dition. Giving a complete characterization of the fully discrete schemes
satisfying the dispersive properties of the continuous Schrödinger equa-
tion is an open problem.
• Bounded Domains. In Bourgain (1993) the LSE is studied on the

torus R/Z and the following estimates are proved :

‖eit∆ϕ‖L4(T2) � ‖ϕ‖L2(T). (5.65)

This estimate allows one to show the well posedness of a NSE on T2. As
we prove in Ignat (2006), in the case of the semidiscrete approximations,
similar l2x-L4

t l
4
x estimates fail to be uniform with respect to the mesh size

∆x. It is an open problem to establish what is the complete range of
(q, r) (if any) for which the estimates l2x-Lq

t l
r
x are uniform with respect

to the mesh size. It is then natural to consider schemes with numerical
viscosity or with a two-grid algorithm.

More recently, the results by Burq, Gérard and Tzvetkov (2004) show
Strichartz estimates with loss of derivatives on compact manifolds with-
out boundary. The corresponding results on the discrete level remain to
be studied.
• Variable Coefficients. In Banica (2003) the global dispersion and the

Strichartz inequalities are proved for a class of one-dimensional
Schrödinger equations with step-function coefficients having a finite num-
ber of discontinuities. Staffilani & Tataru (2002) proved the Strichartz
estimates for C2 coefficients. As we proved in Section 5.3, even in the
case of the approximations of the constant coefficients, the Strichartz
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estimates fail to be uniform with respect to the mesh size h. It would be
interesting to study if the two remedies we have presented in this article
are also efficient for a variable-coefficient problem.
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Abstract

Variational analysis concerns the geometry and calculus of nonsmooth sets
and functions, often viewed from an optimization perspective. Over sev-
eral decades, variational analysis has matured into a powerful and elegant
theory. One rich source of concrete examples involves the eigenvalues of
symmetric and nonsymmetric matrices, sometimes deriving from dynami-
cal or feedback control questions. This essay presents some central ideas
of variational analysis, developed from first principles, including convex-
ity and duality, generalized gradients, sensitivity, Clarke regularity, and
numerical nonsmooth optimization. Illustrative examples from eigenvalue
optimization, many from joint work with J.V. Burke and M.L. Overton,
include semidefinite programming, asymptotic stability, simultaneous plant
stabilization, and the distance to instability.

6.1 Introduction

The eigenvalues of a matrix vary nonsmoothly as we perturb the matrix.
For example, as the real parameter τ decreases through zero, the eigenval-
ues of the matrix [

0 τ

1 0

]
coalesce at zero from opposite sides of the real axis and then split along
the imaginary axis. This inherent nonsmoothness constrains standard
developments of eigenvalue perturbation theory, such as Kato (1982),
Bhatia (1997). The traditional theory, albeit a powerful tool in many
applications, primarily focuses either on precise sensitivity results with
respect to a single parameter, or on broader bounds for more general
perturbations.

208
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The modern theory of variational analysis offers an elegant attack on this
dilemma. Growing originally out of the calculus of variations, and driven by
the broad successes of the systematic approach to convexity popularized
by Rockafellar’s Convex Analysis (1970), the nonconvex theory pioneered
by Clarke (1973, 1983) has now blossomed into a comprehensive and power-
ful framework for optimization and variational problems beyond the realm
of classical calculus. The monographs Clarke (1998) and Rockafellar and
Wets (1998) give excellent overviews of variational analysis; Borwein and
Lewis (2000) is a broad introduction.

This essay sketches the symbiotic relationship between variational anal-
ysis and eigenvalue perturbation theory. I illustrate the main themes with
examples chosen heavily from my own recent work on symmetric matrices
and my collaboration with Jim Burke and Michael Overton on nonsym-
metric matrices. On the one hand, the language and tools of variational
analysis and nonsmooth optimization crystallize spectral properties of ma-
trices beyond the usual reach of eigenvalue perturbation theory. On the
other hand, classical mathematical knowledge about matrix spectra, and
their broad applicability, ensure that nonsmooth spectral analysis serves as
a significant testing ground for nonsmooth optimization theory.

6.2 Convexity, hyperbolic polynomials, and Lidskii’s theorem

Modern variational analysis grew originally from a systematic study of con-
vexity, so it is with convexity that we begin. Eigenvalues of real symmetric
matrices exhibit remarkable convexity properties, underlying an explosion
of interest throughout the optimization community over the last decade in
a far-reaching generalization of linear programming known as semidefinite
programming: see Ben-Tal and Nemirovski (2001) and Todd (2001).

Denote by Sn the Euclidean space of n-by-n real symmetric matrices,
equipped with the inner product 〈X,Y 〉 = trace(XY ). Within this space,
the positive semidefinite matrices Sn

+ constitute a closed convex cone. Semi-
definite programming is the study of linear optimization over intersections
of Sn

+ with affine subspaces.
An illuminating and strikingly general framework in which to consider

the most basic convexity properties of symmetric matrix eigenvalues is that
of hyperbolic polynomials, a notion originally associated with partial differ-
ential equations— see G̊arding (1951). The determinant is a hyperbolic
polynomial on Sn relative to the identity matrix I: in other words, it
is homogeneous (of degree n), and for any X ∈ Sn, the polynomial λ �→
det(X−λI) has all real roots, namely the eigenvalues λ1(X) ≥ · · · ≥ λn(X).
With this notation, we can consider the characteristic map λ : Sn → Rn.
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A spectral set in Sn is an inverse image of the form

λ−1(S) = {X ∈ Sn : λ(X) ∈ S}

for any set S ⊂ Rn.
The core perturbation property of the eigenvalues of symmetric matrices

is the following result (which forms a central theme of Bhatia (1997), for
example). We denote the group of n-by-n permutation matrices by Pn. For
a vector x ∈ Rn, we denote by Pnx the set {Px : P ∈ Pn}. Analogously,
for a set S ⊂ Rn, we denote by PnS the set ∪x∈SPnx, and we call S

symmetric if PnS = S. We denote the convex hull operation by conv , the
standard Euclidean norm on Rn by ‖ · ‖, and the positive orthant and its
interior by Rn

+ and Rn
++ respectively.

Theorem 6.1 (Lidskii, 1950) Any matrices X,Y ∈ Sn satisfy

λ(X)− λ(Y ) ∈ conv (Pnλ(X − Y )).

Immediate corollaries include many important classical properties of eigen-
values of symmetric matrices, some of which are collected below: see Horn
and Johnson (1985), and Stewart and Sun (1990). Lidskii’s theorem is not
the easiest avenue to any of these results, but it does provide a unifying
perspective: see Bhatia (1997).

Corollary 6.1 (characteristic map behavior) The characteristic map
λ : Sn → Rn has the following properties.

Monotonicity The map λ is monotone relative to the orderings induced by
the cones Sn

+ and Rn
+: any matrices X,Y ∈ Sn satisfy

X − Y ∈ Sn
+ ⇒ λ(X)− λ(Y ) ∈ Rn

+.

Convexity If the set C ⊂ Rn is symmetric and convex, then the spec-
tral set λ−1(C) is convex. In particular, the hyperbolicity cone
λ−1(Rn

++) is convex.
Nonexpansivity The map λ is nonexpansive: ‖λ(X)− λ(Y )‖ ≤ ‖X − Y ‖.

The same inequality also holds using the infinity norm on Rn and
the spectral norm on Sn.

Hyperbolic polynomials are strikingly simple to define, and form a broad,
rich class: see Bauschke et al. (2001). Nonetheless, hyperbolic polynomials
in three or fewer variables have a very specific structure. In one or two
variables, this observation is easy and uninteresting; in three variables, it
is neither. The following result, conjectured in Lax (1958), was observed
in Lewis et al. (2005) to be equivalent to a recent result of Helton and
Vinnikov (2002).
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Theorem 6.2 (“Lax conjecture”) A polynomial p on R3 is homogeneous
of degree 3, hyperbolic relative to the direction e = (1, 0, 0), and satisfies
p(e) = 1, if and only if it has the form

p(x) = det(x1I + x2A + x3B)

for some matrices A,B ∈ Sn.

At first sight, the Lax conjecture looks rather narrow in it applicability.
However, as the next corollary due to Gurvits (2004) exemplifies, it is a
much more general tool than first appearances suggest.

Corollary 6.2 Lidskii’s theorem holds for any hyperbolic polynomial.

Proof Suppose the degree-n polynomial p is hyperbolic on Rk relative to the
direction d. By normalizing, we can suppose p(d) = 1. For any vectors x, y,
we want to prove λ(x)−λ(y) ∈ conv(Pnλ(x−y)). Apply the Lax conjecture
to the polynomial on Rk defined by w ∈ R3 �→ p(w1d + w2x + w3y), which
is itself hyperbolic relative to e. The result now follows by appealing to
Lidskii’s theorem on Sn.

As an immediate consequence of this result, or alternatively, by directly
applying the same proof technique, each part of Corollary 6.1 also holds for
any hyperbolic polynomial. Each of these results has a more direct proof.
The monotonicity result appeared in G̊arding (1959), which also contains
a short proof of the central fact that the hyperbolicity cone is convex. The
more general convexity result appears in Bauschke et al. (2001), along with
the nonexpansive property, for which we need to make the nondegeneracy
assumption λ(x) = 0 ⇒ x = 0 and define ‖x‖ = ‖λ(x)‖.

6.3 Duality and normal cones

A characteristic feature of convex analysis
and optimization is the heavy use of du-
ality arguments, featuring separating hy-
perplanes in various guises: see Rockafellar
(1970). The most basic form of this idea is
duality for cones. The dual cone of a set
S ⊂ Rn is the closed convex cone

S∗ =
⋂
x∈S

{y : 〈x, y〉 ≤ 0}

(interpreting ∅∗ = Rn). The set S is itself
a closed convex cone if and only S = S∗∗.
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In addition to the “primal” properties of the characteristic map λ : Sn →
Rn listed in Corollary 6.1, λ also behaves well under duality operations.
The following basic theorem is one of several analogous results concerning
polar sets and Fenchel conjugate functions in Lewis (1996c).

Theorem 6.3 (dual spectral cones) For symmetric sets S ⊂ Rn,

(λ−1(S))∗ = λ−1(S∗).

This result is reminiscent of von Neumann’s 1937 characterization of
unitarily invariant matrix norms on the Euclidean space of n-by-n complex
matrices Mn (equipped with the Frobenius norm). Part of von Neumann’s
development is the formula

(σ−1(G))D = σ−1(GD),

where σ : Mn → Rn maps any matrix to a vector with components its sin-
gular values (in decreasing order), G is any symmetric norm-unit-ball sat-
isfying x ∈ G ⇔ |x| ∈ G (the absolute value applied componentwise), and
GD denotes the dual unit ball. Semisimple Lie theory provides one alge-
braic framework for exploring the parallels between von Neumann’s duality
formula and Theorem 6.3 (dual spectral cones): see Lewis (2000). Other
authors have investigated results like Theorem 6.3 for Euclidean Jordan
algebras, a popular setting in which to study interior-point optimization
algorithms: see Baes (2004) and Sun and Sun (2004).
A principal application of the dual cone idea

is in the development of optimality conditions
for constrained optimization problems. Given
a convex set C ⊂ Rn, the normal cone to C

at a point x̄ ∈ C is

NC(x̄) = (C − x̄)∗.

Using this notation, we have the best approx-
imation condition:

x̄ ∈ argmin{‖z − x‖ : x ∈ C} ⇒ z − x̄ ∈ NC(x̄), (6.1)

(and in fact the converse also holds). Theorem 6.3 (dual spectral cones) is
a special case of the following characterization of normal cones to spectral
sets: see Lewis (1996a).

Theorem 6.4 (spectral normal cones) If the set C ⊂ Rn is symmetric
and convex, then the spectral set λ−1(C) is convex, and matrices X,Y ∈ Sn
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satisfy Y ∈ Nλ−1(C)(X) if and only if there exists vectors x, y ∈ Rn and a
real n-by-n matrix U satisfying

X = UT (Diag x)U, UT U = I (6.2)

Y = UT (Diag y)U, y ∈ NC(x). (6.3)

In other words, if we can recognize normals to the symmetric convex set
C, then we can recognize normals to the convex spectral set λ−1(C) via
simultaneous spectral decompositions.

6.4 Normals to nonconvex sets and Clarke regularity

The normal cone to a convex set C ⊂ Rn has the following key elementary
properties, which may be found in Rockafellar (1970), for example.

(i) NC(x) is a convex cone for any point x ∈ C.
(ii) The best approximation condition (6.1) holds.
(iii) The set-value mapping x ∈ C �→ NC(x) has closed graph: if

(xr, yr)→ (x, y) in Rn ×Rn and yr ∈ NC(xr), then y ∈ NC(x).

This latter property guarantees some robustness for the normal cone, in
theory and algorithmic practice.

To broaden the context of variational anal-
ysis to nonconvex closed sets S ⊂ Rn (such
as smooth manifolds), we define the Clarke
normal cone mapping NS : S → Rn to be
the set-valued mapping satisfying properties
(i), (ii), (iii) with minimal graph: see Clarke
(1973) and Clarke et al. (1998). Thus the nor-
mal cone at a point x̄ ∈ S consists of all con-
vex combinations of limits of directions from
points near x̄ to their projections on S.

Variational analysis can also be developed in a parallel fashion without
the assumption of convexity in property (i): see Mordukhovich (1976) and
Rockafellar and Wets (1998). However, the Clarke cone suffices for this
essay.

The Clarke normal cone is a useful tool for describing necessary optimal-
ity conditions for variational problems. For example, the best approxima-
tion condition (6.1) generalizes as follows: see Clarke (1983).

Theorem 6.5 (necessary optimality condition) If the point x̄ mini-
mizes the smooth function f : Rn → R on the closed set S ⊂ Rn, then
−∇f(x̄) ∈ NS(x̄).
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We call a closed set S Clarke regular at a
point x ∈ S if any tangent direction to S at x

lies in NS(x)∗: see Clarke (1983). Geometri-
cally, for any sequences of points wr ∈ S and
zr ∈ Rn approaching x, if zr has a nearest
point xr in S, and the angle between zr − xr

and wr − x converges to θ, then θ is ob-
tuse. Clarke regularity is in fact independent
of the inner product. Convex sets and mani-
folds are regular at every point x, in fact hav-
ing the stronger property of prox-regularity:
every point near x has a unique nearest point
in S (see Poliquin et al. (2000)).

Clarke regularity is a recurrent theme in this essay, and plays a central
role both in theoretical variational analysis and in algorithmic matters. The
following result, from Clarke (1983), is an example of the kind of calculus
that Clarke regularity expedites.

Theorem 6.6 (chain rule) Suppose that the map Φ : Rm → Rn is smooth
around the point y ∈ Rm, and that the closed set S ⊂ Rn is Clarke regular
at the point Φ(y). If

NS(Φ(y)) ∩ ker(∇Φ(y))∗ = {0},

then the inverse image Φ−1(S) is Clarke regular at y, with Clarke normal
cone given by

NΦ−1(S)(y) = (∇Φ(y))∗NS(Φ(y)).

We return to the implications of Clarke regularity for nonsmooth optimiza-
tion algorithms towards the end of this essay.

Remarkably, the characteristic map behaves just as well with respect to
the Clarke normal cone as it does for normal cones to convex sets: see
Lewis (1996b). Furthermore, Clarke regularity “lifts” from Rn to Sn.

Theorem 6.7 (spectral Clarke normal cones) If the set S ⊂ Rn is
symmetric and closed, then matrices X,Y ∈ Sn satisfy Y ∈ Nλ−1(S)(X) if
and only if equations (6.2) and (6.3) hold. Furthermore, the spectral set
λ−1(S) is Clarke regular at X if and only if S is Clarke regular at the point
λ(X).

This result even remains unchanged for the nonconvex normal cone: see
Lewis (1999b).
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As an example, consider the optimization problem

sup{〈X,Y 〉 : X ∈ Sn, λ(X) = x},

for a given vector x ∈ Rn with nonincreasing components and a given
matrix Y ∈ Sn. The characteristic map λ is nonexpansive, by Corol-
lary 6.1 (characteristic map behavior), so in particular continuous, and
‖λ(X)‖ = ‖X‖ for all X ∈ Sn. Hence continuity and compactness ensure
this problem has an optimal solution X0. Applying Theorem 6.5 (neces-
sary optimality condition) shows Y ∈ NΩ(X0), where Ω is the spectral set
λ−1(x) = λ−1(Pnx) , so Theorem 6.7 (spectral Clarke normal cones) shows
that the matrices X0 and Y have a simultaneous spectral decomposition.
An elementary argument then shows 〈X0, Y 〉 = xT λ(Y ), so we deduce the
well-known inequality (essentially due to von Neumann (1937)).

〈X,Y 〉 ≤ λ(X)T λ(Y ), for any X,Y ∈ Sn. (6.4)

6.5 Stability and the Belgian chocolate problem

We turn next to eigenvalues of nonsymmetric matrices. Our primary focus
is on the set of stable matrices Mn

st, which consists of those matrices in Mn

having all eigenvalues in the closed left halfplane. The stability of a matrix
A ∈ Mn is closely related to the asymptotic behavior of the dynamical
system ẋ = Ax: specifically, as time t increases, eAt decays like eαt if and
only if A− αI is stable.

Analogously, a polynomial p(z) is stable if all its roots lie in the closed left
halfplane: if in fact they lie in the open halfplane, we call the polynomial
strictly stable. Thus a matrix is stable exactly when its characteristic
polynomial is stable. The set of stable monic polynomials

∆n =

w ∈ Cn : zn +
n−1∑
j=0

wjz
j stable


has the following beautiful variational property: see Burke and Overton
(2001b).

Theorem 6.8 (regularity of stable polynomials) The set of stable
monic polynomials ∆n is everywhere Clarke regular.

The corresponding property for the stable matrices Mn
st elegantly illus-

trates the power of nonsmooth calculus. We consider the map Φ : Mn →
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Cn taking a matrix X ∈Mn to its characteristic polynomial:

det(X − zI) = zn +
n−1∑
j=0

Φ(X)jz
j .

With this notation we have Mn
st = Φ−1(∆n). Even if X has a multiple

eigenvalue (as a root of its characteristic polynomial), the nonderogatory
case where each eigenspace is one-dimensional is “typical” (from the per-
spective of Arnold’s stratification of Mn into manifolds with fixed Jordan
structure—see Arnold (1971)). In this case, the derivative ∇Φ(X) is onto,
so we can calculate the Clarke normal cone to Mn

st at X easily using the
chain rule (Theorem 6.6), thereby recapturing the central result of Burke
and Overton (2001a).

Corollary 6.3 (regularity of stable matrices) The set of stable ma-
trices Mn

st is Clarke regular at any stable nonderogatory matrix X ∈Mn,
with Clarke normal cone

NMn
st

(X) = ∇Φ(X)∗N∆n
(Φ(X)).

An instructive two-part problem involving sets of stable polynomials was
proposed by Blondel (1994), as a challenge to illustrate the difficulty of
simultaneous plant stabilization in control. This problem illustrates the
interplay between modelling (in this case, control-theoretic), computational
experiments, and nonsmooth optimization theory.

Problem Given a real parameter δ, consider the problem of finding real
stable polynomials p, q, r satisfying

r(z) = (z2 − 2δz + 1)p(z) + (z2 − 1)q(z). (6.5)

(Notice the problem admits no solution if δ = 1.) Solve this problem
when δ = 0.9, and calculate how far δ can increase before the problem is
unsolvable.

Blondel offered a prize of one kilogram of Belgian chocolate for each part
of this problem. The first part was solved by a randomized search in Patel
et al. (2002). The second part remains open, although, following work
surveyed in Patel et al. (2002), the answer is known to be strictly less than
one.

Consider the following variational approach. We vary polynomials p

and q of fixed degree in order to move the roots of p, q, and r as far to
the left in the complex plane as possible. After normalizing so that the
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product pqr is monic, we arrive at the following numerical optimization
problem.

(Blδ)


minimize α

subject to p(z + α)q(z + α)r(z + α) stable monic
p, q cubic, r given by equation (6.5)

In Section 6.8 we describe a simple, general-purpose, “gradient sam-
pling” method for numerical nonsmooth optimization. Computational ex-
periments with this technique suggest that, for all values of the parameter δ

near 0.9, the optimal solution p̄, q̄, r̄, ᾱ of the problem (Blδ) has a persistent
structure:

• the polynomial q̄ is scalar;
• the polynomial z �→ r̄(z + ᾱ) is a multiple of z5;
• the objective value satisfies ᾱ < 0 (solving Blondel’s problem);
• the polynomial z �→ p̄(z + ᾱ) is strictly stable.

The figure below (from Burke et al. (2005a)) shows the roots of optimal
polynomials p̄ (+) and r̄ (×) for various values of δ.

Having observed this structure computationally, some simple algebra
shows that for any value of δ near

δ̄ =
1
2

√
2 +
√

2 = 0.92 . . . ,

the problem (Blδ) has a unique feasible solution with this structure, solving
Blondel’s problem for δ ≤ δ̄. Furthermore, a little nonsmooth calculus
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using Theorem 6.8 (regularity of stable polynomials) shows, at least with
the extra restriction that q is scalar, that this solution is a strict local
minimizer for (Blδ): see Burke et al. (2005a).

6.6 Partly smooth sets and sensitivity

The persistent structure of optimal solutions for Blondel’s problem in the
previous section exemplifies a widespread phenomenon in optimization. As-
suming appropriate nondegeneracy conditions, optimal solutions for lin-
ear, nonlinear, semidefinite and semi-infinite programs all have structures
that persist under small perturbations to the problem: in linear programs,
the optimal basis is fixed, in nonlinear programs, the active set stays un-
changed, and the rank of the optimal matrix in a semidefinite program is
constant. Variational analysis offers a unifying perspective on this phe-
nomenon.

Nonsmoothness abounds in optimization, but is usually structured.
The following definition from Lewis (2003) captures a key structural idea
for the sensitivity analysis of smooth and nonsmooth optimization prob-
lems.

We call a closed set S ⊂ Rn partly
smooth relative to a smooth manifold
M ⊂ S if the following properties hold.

• S is Clarke regular throughout M .
• M is a “ridge” of S: that is, NS(x)

spans NM (x) for all points x ∈M .
• The set-valued mapping

x ∈M �→ NS(x) is continuous.

For example, feasible regions of linear programs are polyhedral: any poly-
hedron is partly smooth relative to the relative interior of any of its faces.
Nonlinear programming considers more general feasible regions of the form

S = {x ∈ Rn : gi(x) ≤ 0 for i = 1, 2, . . . ,m},

for smooth functions gi : Rn → R. Suppose the point x̄ ∈ S satisfies the
linear independence constraint qualification:

{∇gi(x̄) : i ∈ I} is linearly independent, where I = {i : gi(x̄) = 0}.

In this case the set defined by the active constraints

M =
{

x : gi(x) = 0 for i ∈ I, ‖x− x̄‖ < ε
}

is a manifold for small ε > 0, relative to which the set S is partly smooth.
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As a final example, consider the semidefinite cone Sn
+. In the space Sn,

for any integer r = 0, 1, . . . , n, the set of matrices in Sn of rank r constitute
a manifold, relative to which Sn

+ is partly smooth. Feasible regions of
semidefinite programs are inverse images of Sn

+ under affine maps. We can
see that such sets are also partly smooth, using a chain rule analogous to
Theorem 6.6.

The notion of partial smoothness unifies a variety of active set ideas
in optimization. Typical sensitivity analysis for variational problems shows
that smooth perturbation of the parameters defining a problem leads
to a solution that varies smoothly while retaining a constant underly-
ing structure, often reflecting a persistent set of binding or “active” con-
straints. Partial smoothness abstracts this general observation, general-
izing earlier work on convex optimization in Burke and Moré (1988) and
Wright (1993).

Consider for example a feasible region S ⊂ Rn and an optimization
problem

(Py) inf{〈y, x〉 : x ∈ S},

depending on the parameter y ∈ Rn. By Theorem 6.5 (necessary optimality
condition), any optimal solution x for (Py) must satisfy

(OCy) − y ∈ NS(x).

Suppose the instance (Pȳ) (for some particular vector ȳ ∈ Rn) has an
optimal solution x̄ lying on a manifold M ⊂ S relative to which S is
partly smooth. Let us make two further assumptions, typical in sensitivity
analysis:

(i) the Clarke normal cone NS(x̄) contains the vector −ȳ in its relative
interior (that is, relative to its span);

(ii) perturbing the point x̄ on M leads to quadratic growth of the linear
function 〈ȳ, ·〉.

Condition (i) is a strengthening of condition (OCȳ) typically known as a
strict complementarity condition. Condition (ii) is a second-order sufficient
condition. With these assumptions, for any y near ȳ, the optimality condi-
tion (OCy) has a unique solution x(y) ∈M near x̄, depending smoothly on
y. If we assume that S is in fact prox-regular (rather than simply Clarke
regular) throughout M , then x(y) must be a local minimizer for the in-
stance (Py). Furthermore, in this case, a variety of common conceptual
algorithms applied to (Py) “identify” the manifold M finitely: the algo-
rithm generates iterates eventually lying in this manifold— see Hare and
Lewis (2004).
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Partial smoothness offers a simple unifying language to illuminate the
persistent structure of the optimal solutions of perturbed linear, nonlin-
ear, and semidefinite programs. We next apply this idea to the Belgian
chocolate problem.

If a polynomial lies on the boundary of the
set of stable monics, then it has some purely
imaginary roots iy1, iy2, . . . , iyr (where we as-
sume y1 > y2 > . . . > yr). If each such root
iyj has multiplicity mj , we call the sequence
m1,m2, . . . ,mr the imaginary multiplicity list.
In the example to the right, the multiplicity
list is 3, 1, 2.

The root cause for the persistent structure in the solutions to the Belgian
chocolate problem is then the following result.

Theorem 6.9 (partial smoothness of stable polynomials) Consider
a polynomial lying in the set of stable monics ∆n. The set of nearby monics
with the same imaginary multiplicity list constitute a manifold, with respect
to which ∆n is partly smooth.

Applying a suitable chain rule using the characteristic polynomial map, just
as we derived Corollary 6.3 (regularity of stable matrices) from Theorem 6.8
(regularity of stable polynomials), we deduce the analogous matrix version
below: see Lewis (2003).

Corollary 6.4 (partial smoothness of stable matrices) Consider a
nonderogatory matrix lying in the stable set Mn

st. The set of nearby matri-
ces with the same imaginary eigenvalue multiplicity list constitute a mani-
fold, with respect to which Mn

st is partly smooth.

In practice, varying a parametrized matrix in order to move its eigenval-
ues as far as possible into the left halfplane typically leads to nonderoga-
tory optimal solutions with multiple eigenvalues: see Burke et al. (2002b,
2005b). The above result crystallizes the underlying theoretical cause of
this phenomenon: see Burke et al. (2000, 2001).

6.7 Nonsmooth analysis and the distance to instability

So far in this essay we have taken a geometric approach to variational
analysis and nonsmooth optimization, emphasizing the role of the Clarke
normal cone. Conceptually, however, the theory is much broader, encom-
passing powerful generalizations of the derivative and of classical calculus:



Eigenvalues and Nonsmooth Optimization 221

see Clarke et al. (1998) and Rockafellar et al. (1998). We next briefly
sketch the beginnings of this development, building on the geometric ideas
we have already introduced.

Consider a function f : Rn → [−∞,∞]
with closed epigraph

epi(f) = {(x, r) ∈ Rn ×R : r ≥ f(x)}.

By analogy with the smooth case, we
define the Clarke generalized derivative by

∂f(x̄) = {y : (y,−1) ∈ Nepi(f)(x̄, f(x̄))}.

Theorem 6.5 (necessary optimality condition) implies the following central
role for the generalized derivative in optimization:

x̄ minimizes f ⇒ 0 ∈ ∂f(x̄). (6.6)

We call f Clarke regular at x̄ if epi(f) is Clarke regular at (x̄, f(x̄)),
and make the analogous definition for prox-regularity: see Poliquin and
Rockafellar (1996). For example, any smooth function f is Clarke regular,
with generalized derivative ∂f(x̄) = {∇f(x̄)}. Any convex function is
also Clarke regular, with generalized derivative agreeing with the classical
convex subdifferential: see Rockafellar (1970).

Our approach to the generalized derivative above is appealing in its the-
oretical economy, but is conceptually opaque. The definition makes little
obvious connection with classical differentiation. The following result from
Clarke (1973) relates the generalized derivative of a Lipschitz function to
the local behavior of its derivative, which is defined almost everywhere by
virtue of Rademacher’s theorem.

Theorem 6.10 (generalized derivatives of Lipschitz functions) The
Clarke generalized derivative of a Lipschitz function f : Rn → R at a point
x̄ ∈ Rn is given by

∂f(x̄) = conv {lim∇f(xr) : xr → x̄}.

The function f is Clarke regular at x̄ if and only if its directional derivative
satisfies

f ′(x̄; d) = lim sup
x→x̄

〈∇f(x), d〉

for every direction d ∈ Rn
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Without Clarke regularity, the optimality
condition (6.6) may be weak. For example,
zero maximizes minus the absolute value func-
tion, yet 0 ∈ ∂(−| · |)(0). With regularity
however, (6.6) strengthens to the more intu-
itive condition f ′(x̄; d) ≥ 0 for all directions
d.

A class of functions very common in applications are those f : Rn → R
that can be written locally in the form

f(x) = max
t∈T

ft(x),

where the parameter set T is compact, and the map (x, t) �→ ∇kft(x)
is continuous for k = 0, 1, 2. Such functions are called lower-C(2): they
are prox-regular, so in particular, Clarke regular—see Rockafellar et al.
(1998).

A typical example of a lower-C(2) function, arising in robust control
systems design, is called the distance to instability in Byers (1988), and is
also known as the complex stability radius—see Hinrichson and Pritchard
(1986). It is the distance from a matrix in Mn to the set of unstable
matrices. An easy argument shows that, for any matrix X0 ∈ Mn, this
function β : Mn → R can be written in the form

β(X) = min{‖Xu− zu‖ : ‖u‖ = 1, Re z ≥ 0, |z| ≤ k}

for all matrices X ∈Mn near X0, where the constant k depends on X0. If
X0 is strictly stable, then the quantity ‖Xu − zu‖ is bounded away from
zero for all X near X0, unit vectors u ∈ Cn, and complex z with Re z ≥ 0.
Consequently, the function −β is lower-C(2) on the strictly stable matrices.
For the H∞-norm in robust control (see Zhou et al. (1996)), a similar
analysis applies.

The figure below, from Burke et al. (2005a), shows the results of maxi-
mizing the minimum of the two distances to instability of the companion
matrices corresponding to the polynomials p and r in the chocolate prob-
lem. We restrict p to be a monic cubic, plotting its roots as ♦, and q to be
a scalar; we plot the roots of r as ◦. To compare, we leave the old optimally
stable roots in the plot. Notice how maximizing the stability radius causes
the root of order five to split, moving the roots closer to the imaginary axis
but nonetheless increasing the distance to instability.
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6.8 The gradient sampling method

Despite half a century of advances in computational optimization, and
several decades of development in the theory of nonsmooth optimization,
numerical minimization of nonsmooth nonconvex functions remains chal-
lenging: dependable publicly-available code is scarce. The results described
above for the Belgian chocolate problem were obtained in Burke et al.
(2005a) using a simple intuitive numerical method based on gradient sam-
pling: see Burke et al. (2002b, 2005b).

To motivate this method, consider a Lipschitz function f : Rn → R that
is Clarke regular at the point x ∈ Rn. The direction of steepest descent
is the unit vector u ∈ Rn minimizing the directional derivative f ′(x;u).
Theorem 6.10 (generalized derivatives of Lipschitz functions) shows that
this vector lies in the direction of the vector

d = − lim
ε↓0

argmin{‖d‖ : d ∈ cl conv∇f(x + εB)}

(where B is the unit ball in Rn). For example, if f is smooth at x, then
d = −∇f(x).

To approximate the direction d, we fix some small radius ε > 0, and
sample some number m > n random, independent, uniformly distributed
points Yj ∈ x + εB. Almost surely, f is differentiable at each Yj : we
assume, as is often the case in practice, that the gradients ∇f(Yj) are
readily available. We then define an approximate steepest descent direction
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by

d̂ = − argmin{‖d‖ : d ∈ conv {∇f(Yj) : j = 1, . . . ,m}}.

In practice, we choose Y1 = x, to guarantee f ′(x; d̂) < 0.
Finally, we imitate the classical steepest descent method for smooth min-

imization. We perform a simple linesearch to choose a stepsize

t̄ ≈ argmint≥0f(x + td̂),

(in practice often simply requiring the descent condition f(x+ t̄d̂) < f(x)).
We then update x ← x + t̄d̂, and repeat the whole process. The loop
terminates when the vector d̂ is small, at which point we may stop, or
restart with a smaller radius ε.

For nonsmooth nonconvex minimization problems with cheap function
and gradient evaluations and involving not too many variables, compu-
tational experience suggests that the gradient sampling method is a ro-
bust and reliable tool: see Burke et al. (2005b). The random sampling
approach to approximating the Clarke generalized derivative is motivated
theoretically in Burke et al. (2002a). Under reasonable conditions and suit-
ably implemented, the minimization method converges almost surely to a
point whose generalized derivative contains zero (see Burke et al. (2005b)):
as discussed above, assuming Clarke regularity, this condition guarantees
that there are no descent directions. Random sampling helps the method
avoid a common difficulty in designing nonsmooth optimization algorithms:
the expected value of the random search direction d̂ depends continu-
ously on the current point x (see Lewis (2005)), so the algorithm does not
“jam”.

6.9 Lidskii’s theorem again

The Clarke normal cone and generalized derivative are powerful and ver-
satile tools. Our discussion in the previous section indicates their use in
understanding algorithms for nonsmooth optimization. Our analysis of
the Belgian chocolate problem and subsequent sketch of the idea of par-
tial smoothness suggests the utility of nonsmooth language for optimality
conditions and sensitivity analysis. To bring this essay full circle, we end
with a purely analytic application of nonsmooth optimization ideas, us-
ing variational analysis to prove Lidskii’s eigenvalue perturbation result
(Theorem 6.1). The argument follows Lewis (1999a).

Given two matrices X,Y ∈ Sn, we wish to show

λ(X)− λ(Y ) ∈ conv(Pnλ(X − Y )).
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If this inclusion fails, the separating hyperplane theorem implies the exis-
tence of a vector w ∈ Rn satisfying the inequality

wT (λ(X)− λ(Y )) > max
P∈Pn

wT Pλ(X − Y ).

An elementary argument identifies the right hand side as [w]T λ(X − Y ),
where the vector [w] ∈ Rn has the same components as w rearranged into
nonincreasing order.

Turning our attention to the left hand side of the above inequality, we
consider the (nonconvex) spectral function F = wT λ. A suitable nons-
mooth version of the mean value theorem (see Clarke (1983)) applied to
this function shows that, for some matrix V on the line segment between
X and Y and some matrix Z ∈ ∂F (V ), we have

F (X)− F (Y ) = 〈Z,X − Y 〉 ≤ λ(Z)T λ(X − Y ),

using von Neumann’s inequality (6.4). The analogous result to Theorem
6.7 (spectral Clarke normal cones) for generalized derivatives shows there
exists vectors v, z ∈ Rn and a real n-by-n matrix U satisfying

V = UT (Diag v)U, UT U = I

Z = UT (Diag z)U, z ∈ ∂f(v),

where f : Rn → R is the function defined by f(v) = wT [v]. Theo-
rem 6.10 (generalized derivatives of Lipschitz functions) implies ∂f(v) ⊂
conv (Pnw), so

λ(Z) = [z] ∈ conv (Pn[w]).

We quickly deduce the contradiction λ(Z)T λ(X − Y ) ≤ [w]T λ(X − Y ),
completing the proof.

6.10 Final thoughts

Modern variational analysis deserves a wider mathematical audience than
it has so far reached. This essay aims to make converts, by illustrating the
elegant interplay between eigenvalues and nonsmooth optimization.

Convexity is a ubiquitous mathematical idea, and its significance for
spectral properties of symmetric matrices is well known: Lidskii’s theorem
is a central example. Hyperbolic polynomials provide a starkly simple
setting in which to view many of these classical properties. Conversely, the
truth of the Lax conjecture extends a wealth of symmetric matrix results
and methods, including Lidskii’s theorem, to hyperbolic polynomials.

Over several decades, convex analysis has developed into a widely-used
language for diverse areas of mathematics beyond just optimization, neatly
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unifying the geometry, duality, and calculus of convex sets and functions,
and their normal cones and generalized derivatives. Building on this suc-
cess, the nonconvex theory pioneered by Clarke has matured into a versatile
toolkit. The spectral behavior of symmetric matrices provides a powerful
illustration of this theory in action.

Far from being pathological or rare, nonsmoothness is fundamental to
our understanding of optimization. Its occurrence in concrete problems
is typically structured. In particular, Clarke regularity is often a rea-
sonable assumption, with far-reaching implications both in theory and
computational practice. Many nonsmooth optimization problems exhibit
partial smoothness, an advantageous mix of smooth and nonsmooth be-
havior helping our understanding of sensitivity analysis and algorithm
convergence.

Optimizing the stability of polynomials or matrices exemplifies partially
smooth behavior: active roots or eigenvalues cluster at optimal solutions.
The Belgian chocolate problem is a typical illustration, both of the theory
and of the robust effectiveness of Gradient Sampling, a simple and intuitive
computational approach to nonsmooth optimization.

Variational analysis, in its full generality, is less familiar and more chal-
lenging than in the convex case. However, the nonsmooth nature of eigen-
values makes it a natural ingredient for perturbation theory in particular,
and matrix analysis in general. It seems likely that the interplay between
eigenvalues and nonsmooth optimization, briefly sketched in this essay, will
continue to flourish.
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7.1 Introduction

The question, “Is the long term qualitative behaviour of numerical solu-
tions accurate?” is increasingly being asked. One way of gauging this is to
examine the success or otherwise of the numerical code to maintain certain
conserved quantities such as energy or potential vorticity. For example,
numerical solutions of a conservative system are usually presented together
with plots of energy dissipation. But what if the conserved quantity is
a less well studied quantity than energy or is not easily measured in the
approximate function space? What if there is more than one conserved
quantity? Is it possible to construct an integrator that maintains, a priori ,
several laws at once?

Arguably, the most physically important conserved quantities arise via
Noether’s theorem; the system has an underlying variational principle and a
Lie group symmetry leaves the Lagrangian invariant. A Lie group is a group
whose elements depend in a smooth way on real or complex parameters.
Energy, momentum and potential vorticity, used to track the development
of certain weather fronts, are conserved quantities arising from translation
in time and space, and fluid particle relabelling respectively. The Lie groups
for all three examples act on the base space which is discretised. It is not
obvious how to build their automatic conservation into a discretisation, and
expressions for the conserved quantities must be known exactly in order to
track them.

The study of Lie group symmetries of differential equations is one of the
success stories of symbolic computation, (Hereman (1997)). Not only sym-
metries but integration techniques based on them are now commercially
available, (Cheb-Terrab, Duarte and da Mota (1998)). Moreover, these

230
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can usually be obtained without understanding the underlying theory: no
human interaction with the software is required. This success is built on
the fact that explicit, exact, analytic formulae are known for all the req-
uisite quantities (see for example Olver (1993)), and the algorithms which
are required for the intermediate processing are well understood (Hubert
(2000), Hubert (2003), Mansfield and Clarkson (1997), Reid (1991), Reid,
Wittkopf and Boulton (1996)).

One possibility is to use symbolic methods to study symmetries and con-
servation laws of discrete systems. One might then calculate intrinsically
conserved quantities of existing schemes, but so far this line of research has
been less successful for a variety of reasons. The philosophical points of
view that are possible for such a theory are still debated, and the compu-
tations involved are less tractable than those for smooth systems (Hydon
(2000), Levi, Tremblay and Winternitz (2005), Quispel, Capel and Sahade-
van (1992)).

The key objective of the present article is to examine the idea of mak-
ing a conservation law an intrinsic property of a scheme by building in a
symmetry and a discrete variational principle. There are several challenges
to this approach. The first is to show how a group action that takes place
in a base space that gets discretised is nevertheless still present in some
sense. The second is to present a mathematical structure that allows a
discrete conservation law to be proven rigorously from the existence of the
symmetry.

At the simplest level, the proof of Noether’s theorem for smooth systems
involves symbolic manipulation of the formulae involved. It is necessary
to dig a little deeper to see what might transfer to a discrete setting.
The algebraic foundation and the mathematical structures using which
Noether’s theorem can be proved and elucidated involve the construc-
tion of a variational complex (see Olver (1993) and references therein).
A complex is an exact sequence of maps, that is, the kernel of one map
equals the image of the previous map in the sequence. The familiar grad –
curl – div sequence is locally exact , that is, is exact provided the domain of
the functions involved is diffeomorphic to a disc. The variational complex
involves the extended sequence of operators, grad – curl – div – Euler-
Lagrange – Helmholtz. This extension makes sense if the coefficient func-
tions involve arbitrary dependent variables and their derivatives, as in-
deed a Lagrangian does. Exactness means, for example, an expression
is a divergence if and only if it maps to zero under the Euler–Lagrange
operator.

Variational methods for difference systems have been available in the
literature for some time (Kupershmidt (1985)). The complete set of proofs
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showing the difference variational complex is exact were given more recently
(Hydon and Mansfield (2004)). There is no tangent structure on a discrete
lattice, and so no “top down” construction for the variational complex for
difference systems can exist. Yet the formulae involved in the difference
version of Noether’s theorem are amazingly similar, to the point where
a “syntax translation” tells you how to convert one to its counterpart.
An independent view and derivation of Noether’s theorem for difference
systems has been given by Dorodnitsyn (2001).

In the third part of this paper, we discuss how the algebraic arguments
transfer to moment-based approximations on an arbitrary triangulation.
Classical constructions from algebraic topology, such as simplicial spaces,
chains and cochains, boundary and coboundary operators, are needed for
this. These ideas are of increasing interest to both physicists and numerical
analysts (Chard and Shapiro (2000), Hiptmair (2002), Mattiussi (1997),
Schwalm, Moritz, Giona and Schwalm (1999), Tonti (1975)). The interplay
of such notions with physical quantities and systems is being explored as
a way to ensure that the correct geometry of a problem is encoded in the
discretisation.

Our arguments require that the set of moments used fits into an ex-
act scheme as described by Arnold (2002). This means that the var-
ious projections to finite dimensional function spaces need to maintain
the exactness of the grad – curl – div sequence. Exactness guarantees
the conditions for numerical stability given by Brezzi’s theorem (Brezzi
(1974)), so these ideas have innate meaning for the finite element method
quite apart from those presented here. The variational complex for such
schemes is detailed in Mansfield and Quispel (2005). Here, we develop
those ideas further to investigate Noether’s Theorem for finite element
approximations.

In Section 7.1, a brief look at Noether’s theorem for smooth systems tells
the story in a way that the analogies for finite difference and finite element
can be easily seen. This is followed by a discussion of the variational
complex for difference systems. We define the difference Euler-Lagrange
operator, explain how group actions are inherited, and give some examples.
Also included is a discussion of how the theory of moving frames can be
used to find difference invariants of given Lie group actions. These are
used to construct a Lagrangian which a priori will have a conservation law
corresponding to the given group.

The main result of this paper can be summarised as follows: instead
of proving approximate conservation of an exact quantity, we demonstrate
the possibility of exact conservation of an associated approximate quantity.
The examples are deliberately small and straightforward.
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7.2 Brief review of Noether’s theorem for smooth systems

Definition 7.1 A conservation law for a system of differential equations
is a divergence expression which is zero on solutions of the system.

For example, the heat equation ut + (−ux)x = 0 is its own conservation
law. To move from the divergence form to the more usual integral form,
integrate over an arbitrary domain, assume ∂t and

∫
commute, and apply

Stokes’ Theorem, to obtain,

∂

∂t

∫
Ω

u + (−ux)]∂Ω = 0.

In words, this equation reads, “the rate of change of total heat in Ω equals
the net of comings and goings of heat across the boundary.” The conserved
quantity is (usually) that behind the time derivative in the divergence ex-
pression.

Noether’s theorem provides a conservation law for an Euler–Lagrange
system where the Lagrangian is invariant under a Lie group action. The
Lagrangian here includes the volume form in the action integral, so we
speak of the Lagrangian form. Table 7.1 gives the standard names of the
conserved quantity for the most common group actions arising in physical
applications.

Symmetry Conserved Quantity

{
t∗ = t + c
translation in time

Energy{
x∗

i = xi + c
translation in space

Linear Momenta vector{
x∗ = Rx
rotation in space

Angular Momenta vectora∗ = φ(a, b), b∗ = ψ(a, b)
φaψb − φbψa ≡ 1
Particle relabelling

Potential vorticity

Table 7.1. The usual examples

7.2.1 The Euler–Lagrange Equations

The Euler–Lagrange equations are the result of applying a “zero derivative”
condition when the dependent variable in a Lagrangian form is varied.



234 E. L. Mansfield

Example 6 If the Lagrangian is L[u] = 1
2

(
u2

x + u2
xx

)
dx then the variation

of L[u] in the direction v is, by definition,

d̂L[u](v) = d
dε

∣∣
ε=0

L[u + εv]

= (uxvx + uxxvxx)dx

= (−uxxv + uxxxxv)dx + D
Dx

(
uxdu− 2uxxvx + D

Dx (uxxv)
)

= E(L)vdx + D
Dx

η(L, v).

The Euler–Lagrange equation for this Lagrangian is uxxxx − uxx = 0.

For the purposes of this article, the way to think of the Euler–Lagrange
operator is as E = π ◦ d̂, where π projects out the total derivative (total
divergence) term. In the case of more than one dependent variable, where
each one varies separately, we obtain an equation for each dependent vari-
able. For example,

d̂L[u1, u2](v1, v2) = d
dε

∣∣
ε=0

L[u1 + εv1, u2 + εv2]

= E1(L)v1dx + E2(L)v2dx + D
Dx

η(L, v).

The Euler–Lagrange system is then Ei(L) = 0, i = 1, 2. General formulae,
explicit, exact, symbolic, for Ei and η(L, v) are known, (Olver (1993)).

7.2.2 Variational Symmetries

Symmetries of differential structures are studied in terms of Lie group ac-
tions. A Lie group is one whose elements can be parametrised smoothly
by real (or complex) numbers. (More technically, a Lie group is a differen-
tiable manifold with a group product, such that the multiplication and the
inverse maps are smooth functions.) It turns out it is sufficient to study
actions of one-parameter subgroups of Lie groups.

Definition 7.2 A subgroup of the Lie group G is called a one-parameter
subgroup if it is parametrised by R, so that g(ε) ∈ G for all ε ∈ R, and

g(ε) · g(δ) = g(ε + δ).

For example, the set{(
exp(ε) 0

0 exp(−ε)

)
| ε ∈ R

}
is a one-parameter subgroup of SL(2, R), the special linear group of 2× 2
matrices with determinant equal to one.
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Definition 7.3 A (right) action of a group G on a space M is a smooth
map

G×M →M, (g, z) �→ g · z

such that

g1 · (g2 · z) = (g2g1) · z.

For a one-parameter subgroup this becomes

g(δ) · (g(ε) · z) = g(δ + ε) · z.

Example 7 For the group G = (R,+), that is, the real numbers under
addition, the projective action on the plane is given by

ε · x = x∗ =
x

1− εx
, ε · u = u∗(x∗) =

u(x)
1− εx

. (7.1)

This is actually only a local action since ε is restricted to a neighbourhood
of 0 ∈ R, where the neighbourhood depends on x. We demonstrate the
group action property:

δ · (ε · x) = δ ·
(

x

1− εx

)
=

x

1− δx

1− ε
x

1− δx

=
x

1− (ε + δ)x
= (ε + δ) · x.

For actions on X × U where X is the space of independent variables
and U the space of dependent variables, then an action is induced on the
associated jet bundle. This is called the prolongation action and is ob-
tained using the chain rule of undergraduate calculus. Thus, continuing
Example 7,

ε · ux = u∗
x∗ =

∂u∗(x∗)
∂x

/
∂x∗

∂x
=

ux

(1− εx)2

and checking this indeed gives a group action,

δ · (ε · ux) =
δ · ux

(1− ε(δ · x))2
=

ux

(1− (δ + ε)x)2
.

Given a prolongation action, we then have an induced action on the
integral of the Lagrangian form, given by

ε ·
∫
Ω

L(x, u, ux, . . . ) dx :=
∫

ε·Ω L(ε · x, ε · u, ε · ux, · · · ) dε · x

=
∫
Ω

L(ε · x, ε · u, ε · ux, · · · )dε · x
dx

dx

(7.2)

where the first line is the definition of a group action on an integral, and
the second follows by regarding the group action as a change of variable,
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back to the original domain. If the Lagrangian is invariant under this group
action for arbitrary Ω, we call the group action a variational symmetry. By
standard arguments (involving the Hilbert space L2),

L(x, u, ux, . . . ) = L(ε · x, ε · u, ε · ux, · · · )dε · x
dx

.

for all ε.

Definition 7.4 The infinitesimal action corresponding to that of a one-

parameter group with parameter ε is obtained by applying
d
dε

∣∣∣
ε=0

to the
transformed variables.

Continuing Example 7, we have

d
dε

∣∣∣
ε=0

ε · x = x2,
d
dε

∣∣∣
ε=0

ε · u = xu,
d
dε

∣∣∣
ε=0

ε · ux = 2xux.

If i indexes the independent variables and α indexes the dependent vari-
ables, we denote the infinitesimal action on these by

φα =
d
dε

∣∣∣
ε=0

ε · uα, ξi =
d
dε

∣∣∣
ε=0

ε · xi. (7.3)

Definition 7.5 With φα and ξi as defined in (7.3), the characteristic of
the group action is the vector Q = (Qα), with

Qα = φα −
∑

i

ξiu
α
xi

.

We can now state Noether’s Theorem.

Theorem 7.1 If Qα are the characteristics of a variational symmetry of
a Lagrangian form, then

Q · E(L) =
∑

α

QαEα(L) = Div(A(Q,L))

where precise expressions (symbolic, exact, analytic) for A(L,Q) are known
(Olver (1993), Proposition 5.74).

In words, given a symmetry of a Lagrangian, there is a divergence ex-
pression, Div(A(L,Q)) which is zero on solutions of the Euler–Lagrange
system, Eα(L) = 0.

On the simplest level, the proof involves a manipulation of the expres-
sions involved. In order to translate the theorem to a discrete setting, we
need to look at the algebraic underpinning of the proof. This consists of
the variational complex which we now briefly describe. Full details may be
found in (Olver (1993)).



Discrete Noether Theorems 237

7.2.3 The variational complex

The variational complex based on a p-dimensional space is constructed from
the commutative diagram,

D−→ Λp−1 D−→ Λp d̂−→ Λ̂1
d̂−→ Λ̂2

d̂−→
↓ π ↓ π

Λ1
∗

δ−→ Λ2
∗

δ−→
(7.4)

Brief description of the components of (7.4):
The spaces Λk on the left of the diagram (7.4) are k-forms in the inde-
pendent variables, but where the coefficients may depend, in a smooth
way, on a finite number of dependent variables and their derivatives. The
map D is the total exterior derivative. For example, in two dimensions,
D(uxdy) = uxxdxdy. The spaces Λ̂j are the so-called vertical k-forms,
that is, forms in the dependent variables and their derivatives, multiplied
by the volume form on the base space. For example, in a two dimensional
space, x2uxuyduduxdxdy ∈ Λ̂2. The map d̂ is the exterior derivatives in
the vertical direction. Thus, d̂(xyu2

xdxdy) = 2xyuxduxdxdy.
The first step in the calculation of the Euler–Lagrange operator in Exam-

ple 6 is indeed the map d̂. Using the exterior form notation, the calculation
becomes

d̂(Ldx) = d̂
(

1
2

(
u2

x + u2
xx

)
dx
)

= (uxdux + uxxduxx)dx

= (−uxxdu + uxxxxdu)dx

+ D
Dx

(
uxdu− 2uxxdux + D

Dx (uxxdu)
)

= E(L)dudx + D
Dx

η(L).

As is seen in this example, the “integration by parts” step uses an action
of the operator D/Dx on the forms, for example

D
Dx

(u2dux) = 2udux + u2duxx

and so forth. This generalises to higher dimensions, so that there is an
action of the total divergence operator on the Λ̂k.

The spaces Λk
∗ are defined as equivalence classes of vertical forms; two

forms are equivalent if they differ by a total divergence. The map d∗ is
then the maps d̂ as induced on these classes, while the maps π are the
projection maps. The Euler–Lagrange operator is then d̂ ◦ π.

Definition 7.6 The variational complex, given here for a p-dimensional
base space, is

· · · D−→ Λp−1 D−→ Λp E−→ Λ1
∗

d∗−→ Λ2
∗

d∗−→ · · · (7.5)
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Note that the map d∗ is denoted by δ in (Olver (1993)). We reserve the
notation δ for the simplicial coboundary map needed in section 11.3.

Theorem 7.2 (Olver (1993)) The complex (7.5) is exact. That is, the
image of one map equals the kernel of the next.

Thus, if E(L) = 0 then L is necessarily in the image of D. Since D on
Λp−1 is essentially the total divergence operator, this means that E is
zero, and only zero on, total divergences. The proof of this result is con-
structive, that is, formulae for the pre-images are known. These formulae
are given in terms of homotopy operators which can be used, at least in
principle, in ansatz methods for finding conservation laws not necessar-
ily arising from Noether’s Theorem. In practice, more direct methods are
often used (Wolf (2000), Wolf (2003), Wolf, Brand and Mohammadzadeh
(1999)).

The infinitesimal form of a Lie group action induces an action on forms.
To describe this, we make the following definitions.

Definition 7.7 Given the characteristic of an action Q = (Qα) given in
Definition 7.5, we define the characteristic vector

vQ =
∑
α,K

DK(Qα)
∂

∂uα
K

where α indexes the dependent variables and K is a multi-index of differ-
entiation.

The inner product of a vector with a form is given by

∂

∂uα
K

duβ
J = δα

β δK
J ,

∂

∂uα
K

dxi = 0

where δ is the Kronecker delta, and acts on products as a signed derivation.
Thus, for example,

v f(u)duxduxx = f(u)
DQ

Dx
duxx − f(u)

D2Q

Dx2
dux.

Noether’s theorem is obtained by considering the map vQ ◦d̂ and hence
vQ ◦ E;

D−→ Λp

E
−→
←−
vQ

Λ1
∗

d∗−→ (7.6)
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It is straightforward to show that the induced infinitesimal action of a Lie
group on a Lagrangian form has the formula,

d
dε

∣∣∣
ε=0

ε · L[u] = vQ d̂L[u] + Div(Lξ) (7.7)

where ξ = (ξ1, . . . , ξp).
If the Lagrangian is invariant, the left-hand side of (7.7) will be zero.

Since d̂L[u] =
∑

Eα(L)duαdx + Div(η(L)) and vQ has no ∂/∂xi terms, so
that Div and vQ commute, Noether’s theorem follows.

Example 8 Consider the Lagrangian, L[u] = 1
2

(
ux

u

)2 dx, which is invari-
ant under both translation in x and scaling in u. The associated Euler–
Lagrange equation is

E(L) =
u2

x

u3
− uxx

u2
.

For the translation action, Q = −ux since φ = 0 and ξ = 1. And indeed,

−uxE(L) =
1
2

d
dx

(
u2

x

u2

)
.

For the scaling action, Q = u, as φ = u and ξ = 0, and so

uE(L) = − d
dx

(ux

u

)
.

A more significant example can be found in (Bila, Mansfield and Clarkson
(2005)) where conservation laws arising from symmetries of a meteorolog-
ical model are classified.

In summary, the algebraic part of the proof of Noether’s theorem involves
a variational complex and an infinitesimal group action. Emulating the
algebraic pattern, rather than the analysis, is the key to success for the
construction and proof of the discrete Noether’s Theorems.

We next look at the translation of these concepts for difference systems.

7.3 Difference Systems

We will consider a difference Lagrangian L[uα
n] to be a smooth function

of a finite number of difference variables and their shifts. Such difference
Lagrangians may result from a discretisation of a smooth Lagrangian, but
not necessarily. Since there exist inherently discrete systems with perhaps
no continuum limit, we limit the types of calculations we perform here
strictly to those operations pertinent to such systems.

We regard the lattice coordinates n = (n1, . . . , np) ∈ Zp as the indepen-
dent variables. The dependent variables un = (u1

n, . . . , uq
n) are assumed to
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vary continuously and to take values in R. Let 1k be the p-tuple whose
only nonzero entry is in the kth place; this entry is 1. Then the kth shift
map acts as

Sk : n �→ n + 1k, Sk : f(n) �→ f(n + 1k) Sk : uβ
n �→ uβ

n+1k
,

Sk : f(n, . . . , uβ
n+m, . . . ) �→ f(n + 1k, . . . , uβ

n+m+1k
, . . . )

where f is a smooth function of its arguments. Note that the shift maps
commute (i.e., SkSj = SjSk), We write the composite of shifts using multi-
index notation as

Sm = Sm1
1 . . . Smp

p (7.8)

so that, for example, uβ
n+m = Smuβ

n.

Definition 7.8 A function F [uα
n] is said to be a total difference if there is

a vector (A1[uα
n], · · ·Ap[uα

n]) such that

F = (S1 − id)A1 + · · ·+ (Sp − id)Ap.

Definition 7.9 A difference conservation law for a difference system is a
total difference which is zero on solutions.

Example 9 The standard discretisation of the heat equation,

un,m+1 − un,m = un+1,m − 2un,m + un−1,m

is a difference conservation law for itself, since it can be written

(S1 − id)[(S1 − id)(−un−1,m)] + (S2 − id)un,m = 0.

Just as an integral of a total divergence depends only on the boundary
data, so does the sum over a lattice domain of a total difference.

7.3.1 The difference Euler–Lagrange operator

As with smooth systems, the difference Euler–Lagrange equations result
from a “zero derivative” condition when a difference Lagrangian is var-
ied with respect to its variables. The “integration by parts” step of the
calculation is replaced by, in one dimension,∑

(Sf)ngn =
∑

fn(S−1g)n + (S − id)
∑

(fn(S−1g)n).
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Example 10

d̂(Ln) = d̂
(

1
2u2

n + unun+1

)
= (undun + un+1dun + undun+1)

= (un + un+1 + un−1)dun + (S − id)(undun+1)

= E(Ln)dun + (S − id)(η(Ln)).

General formulae, (explicit, exact, symbolic), for E and η(Ln) are known
(Hydon and Mansfield (2004)).

As for the smooth case, we define the difference Euler–Lagrange oper-
ator to be E = π ◦ d̂, where π projects out the total difference term. If
there is more than one dependent variable, we obtain one equation for each
dependent variable, for example in one dimension,

d̂(Ln[u, v]) = Eu(Ln)dun + Ev(Ln)dvn + (S − id)(η(Ln)).

7.3.2 Difference variational symmetries

If the difference equation arises as a discretisation of a smooth system,
where there is a group action on the base space, then we can treat the mesh
variables xn as dependent variables (recall the independent variables are
now the integer lattice co-ordinates), see Example 11 below. The induced
group action will satisfy the property that the group action commutes with
the shift map:

ε · Sj(un) = ε · un+j = Sjε · un

for all j. For example,

ε · un =
un

1− εxn
implies ε · un+j =

un+j

1− εxn+j
.

We will assume this property for any group action on a difference system,
not just those arising from discretisations.

The symmetry condition is that L[uα
n] is an invariant function,

Ln

(
uα1
n , · · · , uα�

n+k

)
= Ln

(
ε · uα1

n , · · · , ε · uα�

n+k

)
. (7.9)

Defining the characteristics of the symmetry to be

Qα
n =

d
dε

∣∣∣
ε=0

ε · uα
n, (7.10)

and applying
d
dε

∣∣∣
ε=0
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to both sides of (7.9) yields

0 =
∑

k

∂Ln

∂uα
n+k

Qα
n+k (7.11)

Since by our assumption,

Qα
n+k = Sk(Qα

n),

equation (7.11) can be written as

0 = XQ d̂Ln

where

XQ =
∑
α, j

Sj(Qα
n)

∂

∂uα
n+j

.

Theorem 7.3 The difference Noether’s theorem. If the symmetry
condition (7.9) holds, then with the characteristics of the symmetry defined
in (7.10),

Q · E(Ln) =
∑

j

(Sj − id)
(
Aj

n(Qn, Ln)
)
.

Thus a symmetry yields a total difference expression which is zero on
solutions of the difference Euler–Lagrange system. Explicit formulae for
An(Qn, Ln) are known (Hereman, Colagrosso, Sayers, Ringler, Deconinck,
Nivala and Hickman (2005), Hereman, Sanders, Sayers and Wang (2005),
Hydon and Mansfield (2004)). As for the smooth system, these quanti-
ties are defined in terms of homotopy operators which may be used to
obtain conservation laws, not necessarily arising from Noether’s theorem,
in ansatz-based methods.

The similarity of the formulae to those of the smooth case is striking,
particularly when the formulae for An(Qn, Ln)) and A(Q,L)) are com-
pared. In fact, the algebraic underpinning of the difference Noether’s the-
orem matches that of the smooth. One can build a diagram in complete
analogy to (7.4), and the locally exact variational complex for difference
systems is

∆−→ Exp−1 ∆−→ Exp E−→ Λ1
∗

d∗−→ Λ2
∗

d∗−→

where Exn is a difference analogue of Λn and Λj
∗ are j-forms in the difference

dependent variables and their shifts, modulo total differences. The diagram
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corresponding to (7.6) is

∆−→ Exp

E
−→
←−

XQ

Λ1
∗

d∗−→ (7.12)

Note that the map d∗ is denoted by δ in (Hydon and Mansfield (2004)).
We reserve the notation δ for the simplicial coboundary map needed in
section 11.3.

Remark 7.1 The difference Noether’s theorem is independent of any con-
tinuum limit. This is important since there are difference systems with
multiple limits, or even no continuum limits at all. In cases where the dif-
ference system does have a continuum limit, it is interesting to note that
in the examples studied, the Euler–Lagrange system and the conservation
law also have continuum limits, and indeed limit to their corresponding
quantities, but no proof of a general result is known.

Example 11 This elementary example is taken from the Introduction of
Lee (1987), and concerns a difference model for the Lagrangian,

∫
( 1
2
ẋ2 −

V (x)) dt. Define

V̄ (n) =
1

xn − xn−1

∫ xn

xn−1

V (x) dx

and take

Ln =

[
1
2

(
xn − xn−1

tn − tn−1

)2

− V̄ (n)

]
(tn − tn−1).

The group action is translation in time, t∗n = tn+ε, with xn invariant. The
conserved quantity is thus “energy”. Now, Qt

n = 1 for all n, and Qx
n = 0.

The Euler–Lagrange equation for the tn, viewed as a dependent variable, is

0 = Et(Ln) = ∂
∂tn

Ln + S
(

∂
∂tn−1

Ln

)
and since Ln is a function of (tn − tn−1),

0 = Et(Ln) = (S − id)
(

∂

∂tn
Ln

)
verifying the difference Noether Theorem in this case. The first integral
(conservation law) is thus

1
2

(
xn − xn−1

tn − tn−1

)2

+ V̄ (n) = c.
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Note that the energy in the smooth case is

1
2
ẋ2 + V

showing the continuum limit of the energy for the difference system is the
energy for the smooth system.

Remark 7.2 The Euler–Lagrange equations for the mesh variables could
well be regarded as an equation for a moving mesh. It may be appropriate to
add terms to the difference Lagrangian that keep the mesh from collapsing
or folding.

7.3.3 Building in a conservation law to a difference variational
system

If we know the group action for a particular conservation law, we can “de-
sign in” that conservation law into a discretisation by taking a Lagrangian
composed of invariants. The Fels and Olver formulation of moving frames
(Fels and Olver (1998), Fels and Olver (1999)) is particularly helpful here.
A sample theorem concerning difference rotation invariants on Z2 follows.
Consider the action,

ε ·
(

xn

yn

)
=
(

cos ε− sin ε

sin ε cos ε

)(
xn

yn

)
. (7.13)

Theorem 7.4 Let (xn, yn), (xm, ym) be two points in the plane. Then

In,m = xnyn + xmym, Jn,m = xnym − xmyn

generate the invariants under the action (7.13); any planar rotation differ-
ence invariant is a function of these.

Example 12 We consider a difference Lagrangian which is invariant under
the action (7.13). Suppose

Ln =
1
2
J2

n,n+1 =
1
2
(xnyn+1 − xn+1yn)2.

Then the Euler–Lagrange equations are

Ex
n = Jn,n+1yn+1 − Jn−1,nyn−1,

Ey
n =−Jn,n+1xn+1 + Jn−1,nxn−1.
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Now, Qn = (Qx
n, Qy

x) = (−yn, xn) = d
dε

∣∣
ε=0

(x∗
n, y∗

n) and thus

Qn · En = Jn,n+1(−ynyn+1 − xnxn+1)
+Jn−1,n(ynyn−1 + xnxn−1)

=−Jn,n+1In,n+1 + Jn−1,nIn−1,n

=−(S − id)(Jn−1,nIn−1,n)

gives the conserved quantity. Since the group action is a rotation, the
conserved quantity is “angular momentum”. Note that In,m = Im,n and
Jn,m = −Jm,n.

Knowing the invariants is actually only half the battle, if you also re-
quire that the difference Lagrangian has a particular continuum limit. For
one-dimensional systems, the theory of multispace can be used to obtain
invariance under a given group action and a given limit simultaneously, see
Olver (2001), Mansfield and Hydon (2001).

7.4 Finite Element systems

In obtaining a Noether’s theorem for finite element approximations, we
base our discussion on the variational complex developed in Mansfield and
Quispel (2005). This, in turn, is based on the discussion of numerically
stable finite element approximations given in Arnold (2002). We first look
at a simple one-dimensional example. The analogies with the finite differ-
ence case here are sufficiently strong that we can obtain immediate results.
We then discuss the higher-dimensional case.

7.4.1 The one dimensional case

We give an example of a system of moments that fit a commutative diagram
and show how the Euler–Lagrange equations are derived. Let the “triangu-
lation” of R be given by . . . xn−1, xn, xn+1, . . . . We choose moment-based
approximations for 0-forms (functions), and 1-forms so that the following
diagram is commutative in each (xn, xn+1);

0 −→ R−→ Λ0 d−→ Λ1 −→ 0
Π0 ↓ Π1 ↓

0 −→ R−→ F0
d−→ F1 −→ 0

(7.14)

The maps Πi are projections to piecewise defined forms.



246 E. L. Mansfield

Example 13 In this example, the piecewise projection of 1-forms is

f(x)dx|(xn ,xn+1) �→
(∫ xn+1

xn

f(x)ψn(x)dx

)
dx

where ψn is given diagrammatically as

xn
xn+ 1

2
xn+1

ψn

area = 1

Here xn+ 1
2

is any intermediate point, and ψn(xn+ 1
2
) is chosen so that the

integral
∫ xn+1

xn
ψn = 1. The moments used to approximate functions are

αn =
1

xn+ 1
2
− xn

∫ x
n+ 1

2

xn

u(x) dx, βn =
1

xn+1 − xn+ 1
2

∫ xn+1

x
n+ 1

2

u(x) dx.

Commutativity means that

Π1(uxdx) =
(

d
dx

Π0(u)
)

dx, (7.15)

while the projection property is that

Πi ◦Πi = Πi.

So, we take the projection of u|(xn ,xn+1) using αn, βn to be

u �→ 2
βn − αn

xn+1 − xn
x +

(
xn+ 1

2
+ xn+1

xn+1 − xn

)
αn

−
(

xn+ 1
2

+ xn

xn+1 − xn

)
βn

The moments αn and βn are not unrelated, however. The formulae are
the same, only the domains differ. In effect, βn = αn+ 1

2
. So, we can define

a shift map S so that

S(n) = n + 1
2
,

S(αn) = βn,

S(βn) = αn+1.

We consider the simplest Lagrangian L =
∫

1
2u2

x dx which projects to

Π(L) =
∑

n

∫ xn+1

xn

1
2
Π(u)2x dx =

∑
n

2
(βn − αn)2

xn+1 − xn
=
∑

Ln.
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Then

d̂Ln = 4 βn −αn

xn+1−xn
(dβn − dαn)

= 4S(αn )−αn

xn+1−xn
(dS(αn)− dαn)

= 4
(
S−1

(
S(αn )−αn

xn+1−xn

)
− S(αn )−αn

xn+1−xn

)
dαn + (S − id)(something).

The discrete Euler–Lagrange equation is the coefficient of dαn. After “in-
tegration”, and setting βn = αn+ 1

2
,

αn+ 1
2
− αn

xn+1 − xn
≡ c

which has the correct continuum limit.

We note that usually the approximation of functions is chosen so that
the result is still continuous. This is an additional requirement that our
calculations don’t seem to need.

The main conjecture is that provided the system of moments used to
project the forms fits the commutative diagram (7.14), then an Euler–
Lagrange system, in the form of a recurrence system and having the cor-
rect continuum limit, can be derived (Mansfield and Quispel (2005)). As
earlier, this will be a zero derivative condition obtained when the projected
Lagrangian is varied with respect to the independent moments, modulo the
analogue of a total difference.

We will show in Section 7.4.3 how a group action acting on dependent
and independent variables induces an action on moments given as integrals.

7.4.2 The higher-dimensional case

We give the three-dimensional case; there are no significant changes for
higher (or lower!) dimensions.

Given a system of moments and sundry other data, also known as degrees
of freedom, we require that these yield projection operators such that the
diagram (written here for three-dimensional space) commutes:

0 −→ R −→ Λ0 −→ Λ1 −→ Λ2 −→ Λ3 −→ 0
Π0 ↓ Π1 ↓ Π2 ↓ Π3 ↓

0 −→ R−→ F0 −→ F1 −→ F2 −→ F3 −→ 0
(7.16)

all relative to some triangulation.
In general, a Lagrangian is composed of wedge products of 1-, 2- , . . . p-

forms. In Arnold (2002) it is argued that if the approximation of an n-form



248 E. L. Mansfield

is taken to be its projection in Fn, then commutativity implies conditions
for Brezzi’s theorem (Brezzi (1974)), guaranteeing numerical stability, will
hold.

Thus a finite element Lagrangian is built up of wedge products of forms in
F0, F1, . . .Fp−1, Fp, with unevaluated degrees of freedom. Call the space
of such products, F̃p. In each top-dimensional (p-dimensional) simplex,
denoted τ , integrate to get

L =
∑

τ

Lτ (α1
τ , · · ·αp

τ )

where αj
τ is the jth degree of freedom in τ . Note that L can also depend

on mesh data xn. We can now take the finite element vertical exterior
derivative, d̂, to be the variation with respect to the αj

τ .
There will be analogues of the shift maps that take moments defined on

one simplex to moments defined on nearby simplexes.
The analogue of total divergence or total difference is the coboundary con-

cept from simplicial algebraic topology which we define next. A coboundary
has the key property that for topologically trivial domains, its integral de-
pends only on data defined on the boundary of the domain of integration.
It is the generalisation, to an arbitrary mesh, of a telescoping sum.

Definition 7.10 Let X be a simplicial (triangulated) space. Denote by
C̄n(R) the vector space formed by all formal, finite sums of the n-simplexes
of X with coefficients in R. There is a boundary map

∂ : C̄n −→ C̄n−1

obtained by mapping each simplex to the sum of its boundary edges, signed
according to whether the orientation of the edge is that induced by the ori-
entation of the simplex or its opposite, and extended linearly.

Example 14 In Figure 7.1 we show an oriented simplex τ together with
its oriented edges ei. The boundary ∂τ = e1 − e2 + e3, where the signs are
determined by whether the orientation on τ induces the given orientation
on the edge, or not.

See Frankel (1997), Chapter 13 (in particular 13.2b), for a readable account
of oriented chains and the boundary map.

Definition 7.11 For the simplicial space X, an n-cochain with coefficients
in R is a map φ : C̄n −→ R. The set of simplicial n-cochains is denoted
C̄n. The coboundary map

δ : C̄n −→ C̄n+1
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e1

e3

e2

τ

Fig. 7.1. ∂(τ) = e1 − e2 + e3

is defined by

(δφ)(σ) = φ(∂σ).

For the simplex in Example 14, if φ(ei) = ci, then (δφ)(τ) = c1 − c2 + c3.
If a cochain ψ is of the form δφ for some cochain φ, we say simply

that ψ is a coboundary. If the simplicial space is in fact a regular trian-
gulation, it will be possible to write coboundaries in the form of a total
difference.

For the variational calculations that we consider, the coefficients R are
vertical forms in the dατ which themselves have coefficient functions of the
moments, the mesh variables, and so forth.

We can finally define the Finite Element Euler–Lagrange operator to be

E = π ◦ d̂ ◦
∫

where
∫

is the integration over each p-dimensional simplex that is used to
obtain the projected Lagrangian, and π is the projection map to equivalence
classes, where two forms are equivalent if they differ by a p-dimensional
coboundary. (Recall p is the dimension of the base space.)

The variational complex for the Finite Element Method (Mansfield and
Quispel (2005)), is then

d−→ F̃p−1 d−→ F̃p E−→F1
∗

d∗−→F2
∗

d∗−→

where:

• F̃∗ is the algebra generated by the Fi with unevaluated degrees of free-
dom
• d∗ = π ◦ d̂ is the vertical exterior derivative, that is, with respect to the

degrees of freedom, modulo coboundaries,
• F∗

∗ is the algebra of vertical forms modulo p-dimensional coboundaries.
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Looking now at the analogue of (7.6) and (7.12) for the Finite Element
variational complex, we can tentatively write

−→ F̃p E−→ F̃1
∗ −→

←−
vQ

(7.17)

Taking Lτ ∈ F̃p, if the natural symmetry condition holds, that is
vQ d̂(Lτ ) = 0 (or, more generally, is a coboundary), we will have the
Finite Element Noether’s Theorem,

0 =
∑

τ

Qτ · E(Lτ ) + δ(η(L,Q)). (7.18)

There are two problems. One is to find the general formula for both
E and η(L,Q) for an arbitrary mesh. If the mesh is regular, then E and
η(L,Q) will be easily derivable from arguments analogous to those for the
difference case. There are increasingly many computational arguments in
favour of considering cubical simplicial spaces; see Kaczynski, Mischaikow
and Mrozek (2003), for an exposition. In this case, coboundaries are essen-
tially total differences.

The second problem is to define vQ, which requires determining the in-
finitesimal action that is induced on the moments and other degrees of
freedom. In the next section, we address this second problem.

7.4.3 Group actions on moments

For degrees of freedom that are values of a function at a particular point,
the induced action is the same as for the function itself, and the discussion
in Section 7.3.2 applies. For degrees of freedom that are moments defined by
integrals, we can use results for the variational symmetry group action on
Lagrangians derived earlier. Thus, given a group action on the independent
and dependent variables, we take as a definition of the induced group action
on the moment with weight function ψ,

ε ·
∫

τ

f(x, u, · · · )ψ(x) dx =
∫

τ

f(ε · x, ε · u, · · · )ψ(ε · x)
Dε · x
Dx

dx. (7.19)

Example 15 Suppose the group action is translation in x, so that ε · x =
x + ε, while the dependent variables are invariants, ε · u = u. Then the
induced action on the moments

αj =
∫

τ

xju dx (7.20)
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is

ε · α0
τ = α0

τ ,

ε · α1
τ = α1

τ + εα0
τ ,

ε · α2
τ = α2

τ + 2εα1
τ + ε2α0

τ ,

and so forth. Thus,

Qj
τ =

d
dε

∣∣∣∣
ε=0

(ε · αj
τ ) = jαj−1

τ ,

whence

vQ =
∑
τ,j

jαj−1
τ

∂

∂αj
τ

.

If the mesh variables xn are also regarded as dependent (i.e., movable) then
one would add ∑

n

∂

∂xn

to this vector. The zeroth and first-order moment invariants are generated
by

α0
τ , α0

τα1
σ − α1

τα0
σ

while the second-order invariants are generated by

α2
τ

(
α0

σ

)2 − 2α1
σα1

τα0
τ +

(
α1

τ

)2
α0

σ,

where τ and σ are not necessarily distinct simplexes. The method of mov-
ing frames shows that any moment invariant (to order two) is a function
of these. Allowing movable mesh variables, we have that xn − xm is an
invariant, as is α0

τxn − α1
τ .

7.4.4 Building in a conservation law

The algebra underpinning Noether’s theorem shows that designing a con-
servation law into a numerically stable scheme requires a number of con-
ditions to be met on the choice of moments and how the Lagrangian is
approximated.

• The approximation of forms is required to fit into a commutative dia-
gram, (7.16) not only for stability but for the variational complex to be
applicable.



252 E. L. Mansfield

• The induced group action probably should involve essentially a finite
number of moments, so it may be necessary to use symmetry-adapted
moments. For example, if the group action is the projective action,
(7.1), then the index j in the moments (7.20) needs to be in the range
−N, · · · ,−3.

• The projected Lagrangian form needs to be invariant under the induced
action and have the correct continuum limit.

7.5 Conclusions

Instead of the approximate conservation of an exact law, the algebraic
arguments offered here yield exact conservation of an approximate law!
Clearly much remains to be done to bring these ideas into the practical
arena, in particular the analytic problem of achieving everything listed
in Section 7.4.4 for some interesting applications. Another problem is,
how does the order of approximation of the conservation law compare to
the order of approximation of the scheme? Whether such schemes prove
efficient and useful is for the future to decide. Nevertheless, schemes with
guaranteed conservation laws appear to be possible.
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Abstract

In the late 1970’s, W. Thurston proved that the set of volumes of hyperbolic
3-manifolds has a rich and intriguing structure. In particular, the set of
volumes is well-ordered and of order type ωω:

v1 < v2 < v3 < . . .→ vω < vω+1 < vω+2 < . . .

The question of which hyperbolic 3-manifolds realize these low volumes has
resisted a variety of assaults for almost 30 years. Now, it appears that new
ideas have put us on the verge of answering these questions in a satisfying
way. I will present one of these new ideas and show how the implementation
of the idea makes natural use of the computer in two different ways. This
is joint work with D. Gabai and P. Milley. I will start from the beginning
and slowly work my way up to the main ideas.

8.1 Historical Ramblings

We begin with selected topics in the history of Geometry. These remarks
are meant to be taken casually. In particular, I do not claim that all I say
is entirely accurate. But at least it should present some general themes
that will provide context for hyperbolic 3-manifolds.

Our story begins with the Pythagorean mathematicians of 2500 to 2600
years ago. They held an atomistic view of the Universe. As such, it is
not surprising that they believed that all lengths are commensurable. That
is, given two lengths, they believed that these lengths were both integral
multiples of some common unit. (As an aside, it’s interesting to speculate
as to how the very practical Pythagoreans would have physically found the
common unit if presented with two lengths.)

255



256 G. Robert Meyerhoff

The Pythagoreans also knew the Pythagorean Theorem: in a right tri-
angle the square of the hypotenuse is equal to the sum of the squares of
the other two sides. When confronted with an equal-legged right triangle,
the Pythagoreans would have assumed the hypotenuse was commensurable
with the sides. Of course, this isn’t true because, in modern terms,

√
2 is

irrational.
The Pythagoreans were profoundly shaken by this discovery. It showed

them that their intuitive method of doing mathematics could lead to catas-
trophe. To avoid this, they invented the axiomatic method: start with
self-evident truths, use incontrovertible rules of reasoning, and produce
mathematical truths.

After many years of trial and error, Greek mathematicians subsequent to
the Pythagoreans came up with the following five postulates for geometry:

P1) Two points determine a (unique) line.
P2) Lines can be extended indefinitely
P3) A circle with any center and radius can be constructed.
P4) All right angles are equivalent.
P5) Given two lines and a third line that intersects both of them in

interior angles less than a right angle (on the same side), then the
two lines (if extended indefinitely) meet at some point on the same
side of the third line as the two less-than-right angles.

Much later commentators complained that Postulate 5 is not self-evident.
These commentators wished to prove that P5 followed from P1 through
P4, thereby reducing Euclidean Geometry to self-evident postulates. The
Euclidean mathematicians, who spent countless years fine-tuning the pos-
tulates, would have laughed at this complaint. They knew full well that
Postulate 5 was absolutely necessary to produce a sufficiently rich theory
of Geometry.

Nonetheless, the problem of proving that P5 followed from P1 → P4
occupied numerous mathematicians for over a thousand years. One note-
worthy example is provided by the Jesuit mathematician Saccheri (∼1700),
a masterful teacher who delighted in the method of proof by contradiction.
Saccheri decided to assume P1 → P4 and the negation of P5, and show
that this leads to a contradiction.

Given this starting point, Saccheri proved many theorems without reach-
ing a contradiction. These theorems are theorems in non-Euclidean Geom-
etry, although Saccheri didn’t look at it this way. He thirsted to find a
contradiction, and finally, in desperation, claimed a (lame) contradiction
(“this is repugnant to the nature of a straight line!”). In his mind, this
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“contradiction” meant that he had succeeded in his task of vindicating
Euclid.

I recently heard the following interpretation of Saccheri’s behavior. The
claim is that Saccheri knew full well that he was unable to produce a legit-
imate contradiction, and hence that he had likely constructed a new type
of geometry. However, as a Jesuit mathematician well aware of the perse-
cution of Galileo and other scientists with heretical views, Saccheri realized
that he needed to state that the accepted wisdom (Euclidean Geometry is
perfect) was true. So he put forth a lame contradiction, and thereby kept
the regressive elements at bay.

Despite this perhaps fanciful interpretation, three mathematicians subse-
quent to Saccheri are given credit for discovering Non-Euclidean Geometry:
Bolyai, Lobachevsky, and Gauss. The work of Bolyai and Lobachevsky was
done, independently, in the 1820’s. Lobachevsky and Bolyai said that P1
→ P4 together with the negation of P5 produces a new, legitimate Geome-
try, and then they vigorously developed the theory of this geometry. Gauss
probably made the discovery prior to Bolyai and Lobachevsky but declined
to announce his results because he feared the “stings and clamors of the
Boeotians.”

Bolyai and Lobachevsky proved lots of theorems about their new geom-
etry. But all of their theorems were synthetically derived (directly from
the axioms) hence mysterious. It is not surprising that mathematicians
were slow to embrace this new geometry when surprising theorems (e.g.,
there are no rectangles in this geometry) are presented with no intuitive
explanation to make them palatable.

As an aside, we note that in 1816 Wachter showed that if the negation
of P5 is assumed, then a sphere of infinite radius (sphere with center at
infinity) is Euclidean (that is, its induced geometry is Euclidean). Bolyai
and Lobachevsky rediscovered this.

After Bolyai and Lobachevsky, Non-Euclidean Geometry (also called Hy-
perbolic Geometry) languished for 30 years. Then Beltrami produced mod-
els for Hyperbolic Geometry, thereby providing a concrete and intuitive
basis for the geometry. Beltrami also proved that Hyperbolic Geometry is
consistent if and only if Euclidean Geometry is consistent.

8.2 Models for Hyperbolic Geometry

By studying a model of Hyperbolic Geometry we can get a more intuitive
sense of the geometry. The first model we will study is the Poincaré Disk
Model PD. This consists of the open unit disk {(x, y) : x2 + y2 < 1} to-
gether with the hyperbolic metric dsH determined by dsH = dsE

(1/2)(1−(x2+y2))
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where dsE is the usual Euclidean metric for the plane. Thus, the Poincaré
Disk Model can be thought of as a distorted version of the Euclidean disk
and we can attempt to understand PD by exploiting its underlying Eu-
clidean aspects. Of course, this can lead to confusion as to what is hyper-
bolic and what is Euclidean.

Casually looking at the metric dsH we see that a small curve near the
origin would have hyperbolic and Euclidean lengths that are quite close
(here we are ignoring the factor of 1/2 in the denominator which is needed
to make certain calculations work out nicely), but that as we get close to
the boundary circle, a short Euclidean curve would have a long hyperbolic
length. Of course, to the inhabitants of hyperbolic space, this analysis is
nonsensical: all points have the same geometric properties. The trick is
that the interplay between the hyperbolic and the Euclidean makes points
appear different to our extrinsic eyes.

The first step towards understanding a geometry is to analyze the vari-
ous geometric objects that live there. First, the geodesics in PD, that is,
the curves that locally minimize the metric. It turns out that the set of
geodesics consists of Euclidean lines through the origin (hence perpendic-
ular to the boundary at both ends) and Euclidean circles perpendicular to
the boundary. This description of the geodesics gives a comforting feeling
because it is a description in terms of familiar geometric objects. Further,
given this collection of geodesics, it is easy to see that the Euclidean fifth
postulate is not satisfied; although perhaps it’s best to use Playfair’s ver-
sion of the Euclidean Parallel Postulate: Given a line l and a point P not
on l, there is exactly one line through P that is parallel to l.

Next we describe the set of hyperbolic circles in PD. Given the ro-
tational symmetry of dsH around the origin, it is not surprising that, as
sets of points, the hyperbolic circles centered at the origin are precisely
the Euclidean circles of radius less than one centered at the origin. But
it might be surprising to find out that the hyperbolic circles centered at
points other than the origin are also Euclidean circles, although now the
hyperbolic center is not the same as the Euclidean center. The explanation
for this surprising fact is that the set of orientation-preserving isometries of
PD are precisely the set of fractional linear transformations that take the
unit circle onto itself. Because fractional linear transformations preserve
angles, and take the set of Euclidean circles and lines to the set of Euclidean
circles and lines, it follows that the Euclidean/hyperbolic circles centered
at the origin are transformed by isometries to Euclidean/hyperbolic circles.

Different models for hyperbolic geometry are useful in different contexts.
For example, the Poincaré Disk Model is well-suited for analyzing prob-
lems involving geodesics through a point: by the homogeneous nature of
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hyperbolic space, the point can be assumed to be the origin and the hyper-
bolic geodesics through this point are Euclidean straight lines. Our next
model is particularly good at analyzing situations involving a distinguished
point at infinity

The Upper Half-Plane Model consists of the set {(x, y) : y > 0} together
with the metric dsH = dsE

y
. Although all points look the same to the

inhabitants, to our extrinsic eyes we see that Euclidean curves high above
the bounding x−axis are much shorter than their Euclidean counterparts
with y close to 0. Hence if one were trying to find the hyperbolically
shortest path between two points with the same y coordinates, one would
be inclined to head up (higher y) and then down rather than follow the
Euclidean straight line between the two points. In fact, the geodesics in
this model are Euclidean circles perpendicular at both ends to the bounding
x−axis, and vertical Euclidean lines. The explanation again uses fractional
linear transformations: the orientation-preserving isometries of UHP are
precisely the fractional linear transformations of the form z → (az+b)/(cz+
d) where a, b, c, d are real numbers. In fact, Isom+(UHP) = PSL(2,R),
the set of 2 × 2 matrices with real entries and determinant one, modulo
plus-or-minus the identity.

Another explanation is that there is a fractional linear transformation
taking PD to UHP which transforms the metric appropriately. This also
makes it clear that hyperbolic circles are Euclidean circles (as point sets) in
UHP although now the hyperbolic centers always differ from the Euclidean
centers.

The generalizations of these models to 3 dimensions are straightforward.
For example, the Upper-Half-Space Model consists of the set {(x, y, t) :
t > 0} together with the metric dsH = dsE

t . The geodesics are Euclidean
circles perpendicular at both ends to the bounding xy−plane, and vertical
Euclidean lines. And hyperbolic spheres are Euclidean spheres.

What is a sphere of infinite radius like? Start with a point in UHS
and construct a sphere with that point as its maximum (as a set in R3).
Now, hold that maximum point but let the sphere expand. The radius is
expanding and the center is drifting downwards. Eventually (Euclideanly)
the bottom of the sphere bumps into the bounding xy−plane and the pro-
cess stops. At this point, this Euclidean sphere is not a true hyperbolic
sphere, it’s a hyperbolic sphere of infinite radius and it’s called a horo-
sphere; the point of tangency on the xy−plane is called the center of the
horosphere. Wachter’s claim (see above) is that horospheres have induced
Euclidean geometries. Why is this so?

It’s easy to see that this claim is true if we use a hyperbolic isometry
to send the center of a horosphere to the point at infinity for UHS. The
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horosphere centered at this point must be a plane parallel to the xy−plane.
Hence it has constant t coordinate and hence its induced metric is a con-
stant times the Euclidean metric, hence Euclidean. Here we use the fact,
discovered by Poincaré in the 1880’s, that Isom+(UHS) = PSL(2,C), the
set of 2 × 2 matrices with complex entries and determinant one, modulo
plus-or-minus the identity. These fractional linear transformations act on
the bounding extended complex plane and extend naturally to UHS: a
point in UHS can be located as the point of intersection of a Euclidean
hemisphere and two vertical planes; then these three objects are sent to
vertical planes and/or hemispheres by the natural extension of the frac-
tional linear transformation and they locate the image of the original point
as their intersection.

As an example, we note that the matrix [2 0 0 (1/2)] takes z = x + iy

to 2z+0
0z+(1/2)

. That is, z → 4z. Hence hemispheres centered at the origin are
blown up by a factor of 4 as point sets. If the matrix is [2eiθ 0 0 e−iθ/2],
then z → 4e2iθz and the hemispheres are rotated through angle 2θ around
the t−axis, as well as being blown up by a factor of 4.

8.3 Surfaces

Definition (naive): A 2-manifold is a space that locally looks like the
xy−plane.

All compact 2-manifolds are well-known. They are the sphere, the torus,
the 2-holed torus, the 3-holed torus, the 4-holed torus, and so on.

Note that here we are using the topological notion of equivalence. Two
2-manifolds are topologically equivalent or homeomorphic if there exists
an invertible map from one onto the other which is continuous and whose
inverse is continuous.

The geometric notion of equivalence would produce a different list be-
cause, for example, spheres of various radii in Euclidean 3-space would
be considered geometrically different because the means of measuring dis-
tances (induced from Euclidean 3-space) would produce different calcula-
tions in each sphere.

We now give a definition of geometric 2-manifold.

Definition (naive): A geometric 2-manifold is a 2-manifold with a metric
that locally produces exactly the same calculations as the geometric model
space.
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For our purposes we will restrict to 2-dimensional geometric model spaces
that are simply connected (all loops shrink to points) and whose metrics
are homogeneous (have the same metric properties at each point). It is
well-known that the only such 2-dimensional model spaces are the sphere
S (normalized to have radius 1), the Euclidean plane E, and the hyperbolic
plane H(normalized as well).

These three model geometries are easy to tell apart via some simple local
measurements. For example, a circle of radius r could be constructed in
each space (r < π in S) and the circumference would be 2π sin(r) in S, 2π
in E, and 2π sinh(r) in H. Note that as r approaches zero, the spherical
and hyperbolic circumferences approach the Euclidean circumference.

Another simple local measurement would be the sum of the angles in a
triangle. In S the sum is always greater than π, in E it is always equal to
π, and in H it is always less than π. Again, as the triangles get smaller in
S and H they become more Euclidean. Note also that in S the area of a
triangle is (α + β + γ) − π where α, β, γ are the angles in the triangle.
Similarly, in H the area of a triangle is π− (α +β + γ). In E the angles do
not determine the triangle and the area is not determined by the angles.

Example: A sphere of radius 1 is a spherical 2-manifold.

Q: Does a sphere admit a metric which is Euclidean?

The most obvious attempt to make a sphere Euclidean fails: Consider
the surface of a cube. This is topologically a sphere, and has an unusual
metric induced from the ambient Euclidean 3-space E3. It comes pretty
close to being Euclidean. Points on the cubical faces have nice Euclidean
neighborhoods, and points on the edges have nice Euclidean neighborhoods
(flatten out a neighborhood to see this), but the vertex points don’t work
because there is only (3/2)π angle. But perhaps if we tried harder we might
succeed in putting a Euclidean structure on a sphere? The answer is no,
as we will see shortly.

However, there is an immediate example of a 2-manifold which admits a
Euclidean structure:

Example: A torus admits a metric which makes it a Euclidean 2-manifold.
The metric for the torus must be chosen with a little care. The usual torus
(the surface of a doughnut) sitting in E3 with the induced metric is not
Euclidean: one can show that it’s a bit too curved. However if we take a
square in E2 and abstractly identify opposite sides we get a Euclidean torus
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(don’t try to glue it up in E3: the first gluing of opposite edges preserves
the Euclidean structure, but the second gluing breaks it). If we analyze
the three types of points (points in the square, points on an edge, vertex
points) we see that all have neighborhoods that are exactly Euclidean. The
vertices work because all four are glued to give one point, and that point
has 2π angle.

We now make a 2-paragraph digression to re-think the Euclidean torus:

If you were a 2-dimensional creature living in a Euclidean torus gotten by
identifying opposite edges of a square, what would you see? If you looked
straight ahead through the right edge, your line of sight would come around
in back of you and you would see the back of your head. If you looked
straight up through the top edge you would see the bottom of your feet.
Similarly, with some work one could analyze various lines of sight. But a
better way to think of this is as follows. When you look ahead through the
right edge, construct another copy of the square (with a model of you inside
it) and glue its left edge to your original copy’s right edge, and continue
this process to the right infinitely often and then to the left infinitely often.
Then do it through the top edge infinitely often in both directions, and
then move up to various of the new squares and continue the process until
the entire plane is covered by copies of the original square. This object so
constructed is the universal cover of the Euclidean torus; it turns out to be
our friend the Euclidean plane E, and it contains infinitely many copies of
you. It is now easy to determine what you would see along any sightline.

In reverse, we can think of this Euclidean torus as the orbit space E/G

where G is the group of (Euclidean) isometries generated by z → z + 1
and z → z + i. Hence, we can think of our Euclidean torus as a geometric
object or an algebraic object G.

Q: Which compact 2-manifolds admit which geometric structures?

At this point we know that the sphere admits a spherical structure, the
torus admits a Euclidean structure, and that the most obvious attempt to
put a Euclidean structure on a sphere fails. It might seem rather daunting
to show that a particular 2-manifold does not admit a Euclidean structure,
because naively one would have to try an infinite number of possibilities
and eliminate them all.

However, we are rescued by the Gauss-Bonnet Theorem (a good exposi-
tion of this material is in Weeks (1985)).
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Theorem 8.1 (Gauss-Bonnet) If (X, ρ) is a geometric 2-manifold con-
sisting of a compact 2-manifold X and a geometric metric ρ then

2πχ(X) = κ(ρ)Area(X, ρ)

where χ(X) is the Euler characteristic of the topological manifold X which
is computed by decomposing X into triangles then computing V − E + F ;
κ(ρ) is the curvature of the geometric model space (κ(S) = 1, κ(E) =
0, κ(H) = −1), and Area(X, ρ) is the area of the geometric manifold.

Because the sphere has Euler characteristic 2 and the area of any geo-
metric 2-manifold is positive, we see that the sphere can admit neither
a Euclidean nor a hyperbolic structure. Similarly, because the torus has
Euler characteristic 0, we see that the torus can admit neither a spherical
nor a hyperbolic structure. Finally, because the n−holed tori for n > 1
have Euler characteristic less than 0, we see that they can admit neither
spherical nor Euclidean structures.

Our knowledge of which compact 2-manifolds admit which geometric
structures will be satisfyingly completed by showing that all n−holed tori
for n > 1 admit hyperbolic structures. The construction utilizes the re-
markable properties of the hyperbolic plane. To start, it is easy to show
that a 2-holed torus can be obtained by identifying opposite edges of an
8−gon, and that given this identification all 8 vertices get identified to one
point. If we took a regular Euclidean 8−gon with this identification scheme
and analyzed all the points, we would see that the one vertex would have
much too much angle and Euclideaness would break down.

But if we could find a regular 8−gon in H with all angles π/4 then this
identification scheme (via hyperbolic isometries) would produce a hyper-
bolic 2-holed torus. This can be done as follows, where we use the Poincaré
Disk model because of its symmetry about the origin. Regularly space 8
rays coming out of the origin. Take a circle centered at the origin and mark
its intersection with these 8 rays. Connect these 8 intersection points by
geodesic segments in the obvious way to produce a regular 8-gon in PD.
If the circle is very small then the 8-gon is nearly Euclidean and the angles
at the vertices are much too big. If the circle is very large and the points
are near the boundary then the geodesic segments are nearly perpendicular
to the boundary circle and the 8 angles are close to 0. For some circle in
between we get a regular 8-gon with all angles π/4 and with the above
identifications this produces a hyperbolic 2-holed torus.

The same process works for a 3-holed torus via a 12-gon, and so on.
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8.4 Hyperbolic 3-Manifolds

In the 2-dimensional case, all compact manifolds admit spherical, Eu-
clidean, or hyperbolic geometric structures. The biggest category being
the hyperbolic category: exactly one 2-manifold is spherical, exactly one
2-manifold is Euclidean, and all the rest are hyperbolic. Further, the hy-
perbolic 2-manifolds are the most complicated topologically. The situation
in 3 dimensions turns out to be similar, but it was a surprise when it was
discovered. The trick is that, despite their abundance, the complicated
topological nature of hyperbolic 3-manifolds made them difficult to find.

In contrast, examples of spherical and Euclidean 3-manifolds were easy
to come by. For example, the 3-sphere is spherical, and the 3-torus (which
is gotten by identifying opposite faces of a cube) is Euclidean.

But it wasn’t until the 1930’s that the first examples of compact hyper-
bolic 3-manifolds were discovered by Lobell (by gluing together 8 copies
of a 14-sided right-angled hyperbolic polyhedron; see the historical note in
Ratcliffe (1994) on page 500). We comment that all of our manifolds are
assumed to be orientable.

A simpler example was found by Seifert and Weber in a 1933 paper.

Example (Seifert-Weber): Take a regular dodecahedron and identify op-
posite faces with a 3π/5 twist. This results in the edges being identified
five to one. Hence, to get a geometric manifold we need dihedral angles of
2π/5. This can be accomplished in hyperbolic 3-space. The vertex points
work as well with these angles, and we have a hyperbolic 3-manifold. The
fact that a regular dodecahedron with all angles 2π/5 exists in H3 is not as
obvious as the analogous 2-dimensional fact. In 2 dimensions, the limiting
case has all angles 0 and there’s a lot of breathing room in our attempts to
find small dihedral angles. In 3 dimensions the limiting case has vertices
at infinity and a small neighborhood of a vertex point cut off by a horo-
sphere must be a Euclidean regular triangle, hence have all angles 2π/6,
just barely enough to allow for a smaller regular dodecahedron to have all
dihedral angles 2π/5.

It wasn’t until the 1980’s that W. Thurston, inspired by work of T. Jor-
gensen, showed that hyperbolic 3-manifolds were abundant within the cat-
egory of closed 3-manifolds, and that it was likely that “most” topolog-
ical 3-manifolds admit hyperbolic structures. In fact, Thurston made a
broader Geometrization Conjecture: that all compact 3-manifolds have a
natural decomposition into pieces that admit geometric structures from 8
natural 3-dimensional geometries. G. Perelman has put forth a proof of
this conjecture.
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The situation in higher dimensions is quite different. Attempts to put
geometric structures on higher dimensional manifolds must contend with
a greater number of combinatorial constraints and this is sufficiently dif-
ficult that the geometric n-manifolds are sparse within the category of
n-manifolds for n ≥ 4.

But, because we are in 3 dimensions we get to follow Thurston’s lead
and focus on hyperbolic 3-manifolds. The question that arises is how to go
about understanding this fundamentally important class of 3-manifolds?
One great tool in studying manifolds is the use of invariants; they distill
the essence of the manifold down to simple mathematical objects. In 2
dimensions, the Euler characteristic is a simple-to-compute invariant (just
triangulate the manifold and count V−E+F ) which turns out to completely
classify compact 2-manifolds. By the Gauss-Bonnet Theorem, the area of a
hyperbolic 2-manifold is determined by its Euler Characteristic, hence the
area can be used to tell us what topological 2-manifold a given hyperbolic
2-manifold is.

One has to be a little careful here, because a given 2-manifold that ad-
mits a hyperbolic structure actually admits many non-equivalent hyper-
bolic structures. For example, one can take the shortest geodesic in a
hyperbolic 2-manifold and start pinching it (making it shorter) and with
some care still have a hyperbolic 2-manifold. One aspect of the needed
care is to ensure that the shorter the geodesic, the bigger the (embed-
ded) collar around it. Although the area can tell us what topological 2-
manifold a given hyperbolic 2-manifold is, by the Gauss-Bonnet Theorem,
it doesn’t distinguish between the various hyperbolic structures on the
2-manifold.

In 3 dimensions the situation is markedly different. Mostow’s Rigidity
Theorem tells us that if a compact 3-manifold admits a hyperbolic struc-
ture, then this hyperbolic structure is unique. Mostow’s Theorem was
generalized to complete hyperbolic 3-manifolds of finite volume by A. Mar-
den and G. Prasad. Here the restriction to finite volume is necessary, and
there is in fact a rich theory of hyperbolic structures on infinite-volume
hyperbolic 3-manifolds.

8.5 Volumes of Hyperbolic 3-Manifolds

The most natural geometric invariant is the volume, which simply uses the
metric to measure the hyperbolic 3-manifold.

Example: Consider C = {(x, y, t) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, t ≥ 1}
in the Upper-Half-Space Model of hyperbolic 3-space, and glue opposite
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vertical faces by the hyperbolic isometries z → z + 1 and z → z + i. This
is a slightly odd example in that it is not quite a hyperbolic 3-manifold
according to our criteria because it has a boundary, which is a Euclidean
torus T (of course, the boundary could be thrown out, but then it wouldn’t
be complete). Nonetheless, we can compute the volume of this hyperbolic
object (note that topologically this object is T 2× [1,∞]) by integrating the
hyperbolic volume form dxdydt

t3 (which is simply the size of an infinitesimal
cube in UHS) over C. Interestingly, despite the infinite nature of C, the
volume turns out to be finite:

∫ ∫ ∫
dxdydt

t3
= Area(T )

∫ ∞

1

dt

t3
= Area(T )

(
−1
2t2

]∞
1

=
1
2
Area(T ).

In the late 1970’s W. Thurston, utilizing work of Jorgensen and
M. Gromov, proved a remarkable structure theorem for the set of vol-
umes of hyperbolic 3-manifolds. Here is a statement of a part of his
theorem.

Theorem 8.2 (Thurston) The set of volumes of hyperbolic 3-manifolds
is a well-ordered subset of R+ of order type ωω. The set of manifolds with
any given volume is finite.

So, there is a lowest volume of a hyperbolic 3-manifold, then a next low-
est volume, then a third lowest, and so on. Further, Thurston showed
that these volumes limit on the volume vω of a complete, non-compact
hyperbolic 3-manifold (a cusped hyperbolic 3-manifold), and that then the
process continued with a next lowest volume and so on.

v1 < v2 < v3 < . . .→ vω < vω+1 < vω+2 < . . .

This raises several questions. What hyperbolic 3-manifold has minimum
volume? What properties do the limiting manifolds have? What hyperbolic
3-manifold realizes this least limiting volume?

We begin by investigating the middle question, in one lower dimension.
As mentioned, in 2 dimensions one can alter the geometry of a hyperbolic
2-manifold by, for example, pinching a short geodesic. The more you pinch
the geodesic, the bigger the collar around it must grow. In the limit,
the geodesic disappears (goes off to infinity) and there remains an infinite
collar neighborhood, called a cusp neighborhood. Actually, there are 2
such cusp neighborhoods in the 2-dimensional case and in fact the limit
of the pinching process is 2 complete punctured hyperbolic 2-manifolds if
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the pinching geodesic is separating, or 1 complete punctured hyperbolic
2-manifold with 2 punctures if the geodesic is not separating.

In 3 dimensions the limiting behavior of volumes is generally produced
by taking a short geodesic with a maximal embedded solid tube neighbor-
hood and shrinking the geodesic. As the geodesic shrinks, the maximal
embedded solid tube around it grows and the geodesic drifts away from the
“thick” part of the manifold. The geodesic gets shorter and shorter and the
embedded solid tube gets bigger and bigger, and in the limit the geodesic
disappears and the embedded solid tube neighborhood becomes a cusp
neighborhood. Such a limiting manifold is a cusped hyperbolic 3-manifold.
There is a big difference from the 2-dimensional case though: by Mostow’s
Theorem, the topology of the manifolds in the sequence must change. Ba-
sically, the embedded solid tube must be “reseated” on its boundary torus;
that is, Dehn surgery is being performed.

Limits are good, so we include cusped hyperbolic 3-manifolds in the
class of hyperbolic 3-manifolds. Consider the short geodesic in one of the
approximating hyperbolic 3-manifolds M = H3/Γ where Γ ⊂ Isom+(H3).
When we lift the short geodesic from M to its universal cover H3 we get a
collection of infinite length geodesics (compare with our previous discussion
about the universal cover of a Euclidean torus). If we focus on one such
infinite geodesic we see that there is an isometry γ ∈ Γ which takes the
geodesic to itself by translating along it. In a sense, it winds the infinite
geodesic on itself to produce the original closed (short) geodesic. We note
that the embedded solid tube around the short geodesic lifts to a collection
of infinite embedded solid tubes whose cores comprise the collection of
infinite geodesics.

Having analyzed the lifts of a short geodesic, we turn to the limit of the
short geodesics, which is the cusp. What does a cusp neighborhood in a
cusped manifold M look like in the universal cover, H3? The answer is that
it consists of a collection of horoballs, all of which are equivalent under the
action of the group Γ where M = H3/Γ.

Given a collection of horoballs it is generally a good idea to view them
in the Upper-Half-Space model. It is also a good idea to normalize so that
one of the horoballs is centered at infinity. Now, expand the horoballs
equivariantly until the first time that two horoballs bump into each other.
Note that if the cusp neighborhood had been the maximal (embedded) cusp
neighborhood, then no additional expansion would have been needed. In
any case, we can normalize so that one of the bumping points is the point
(0, 0, 1). If we focus on the cusp at infinity, we see that there is a subgroup
Γ∞ of Γ which fixes the point at infinity and takes the horoball at infinity
to itself, thereby producing the original cusp neighborhood in M.
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8.6 The Maximal Cusp Diagram

What do we see when we look down from infinity at all these horoballs?
From infinity each of these horoballs looks like a disk, and the biggest
disks have radius 1

2 because of our normalization. This radius of 1
2 can

be thought of as being measured in the induced Euclidean metric on the
bounding horosphere {(x, y, t) : t = 1}. The transformations in Γ∞ are
simply translations of this bounding horosphere and, by construction, must
move points a distance greater than or equal to 1. Thus we see that the pic-
ture from infinity contains infinite repetition, and that all the information
is contained in a fundamental domain determined by Γ∞. In the finite-
volume case Γ∞ is generated by two elements z → z + a and z → z + b

where a, b are non-trivial complex numbers that are not multiples of each
other.

This view from infinity of horoballs together with the generators of Γ∞
produces the Maximal Cusp Diagram, which contains within it a description
of the torus boundary of the maximal cusp neighborhood. We now exploit
this maximal cusp torus Tc to get some control over the volume of the
cusped manifold. This control arises from our previous calculation of the
hyperbolic volume of the region A × [1,∞] where A was a square (more
generally, a parallelogram) with opposite edges identified (forming a torus)
in the horosphere {t = 1}. The answer was that the volume is one-half the
area of the boundary torus, and this relationship holds for the maximal
cusp and its maximal torus boundary.

By our set-up there is an embedded disk of radius 1
2 in the maximal

cusp torus Tc. Hence π(1/2)2 = π/4 is a lower bound for the area of Tc.
Of course, we’ve missed area outside this disk. It is a well-known result
of Thue that the densest packing of equal-radius disks in the plane is the
hexagonal packing, which has density π

2
√

3
. In our set-up this means that

π/4
area(Tc ) ≤ π/(2

√
3) and this tells us that area(Tc) ≥

√
3/2. This produces a

lower bound for the volume of a cusped hyperbolic 3-manifold:
√

3/4 ≤ vω.
If one can use packing of disks to improve the area bound for the bound-

ary of the maximal cusp torus, then one should be able to use packing of
horoballs to improve the volume bound for the maximal cusp. The maximal
density of horoballs packed in H3 (ignoring technical problems associated
with packings in hyperbolic space) was discovered by K. Boroczky and it
is
√

3/(2VI) where VI is the volume of the ideal regular tetrahedron in H3.
So we have an improved lower bound VI/2 ≤ vω.

C. Adams showed that in the maximal cusp diagram there is another disk
of radius 1/2 which is not a translate under Γ∞ of the original disk of radius
1/2. This produces a bound of VI ≤ vω (see Adams (1987)). Subsequently,
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C. Cao and R. Meyerhoff proved that, in fact, 2VI = vω (this volume is
realized by the figure-eight knot complement in the 3-sphere and by its
sibling); see Cao-Meyerhoff (2001). However, we plan to ignore the details
of the proof of Cao-Meyerhoff and begin to present our new method for
studying volume bounds.

We will consider the orthodistance spectrum for the horoball lifts of a
maximal cusp in a cusped hyperbolic 3-manifold. That is we look at the
distances between various horoball lifts in H3. Let o(1) be the distance
between the nearest horoballs. Of course, in our set-up o(1) = 0 because
we expanded our cusp neighborhood out to the first “hit” which occurred
(after normalizing) at (0, 0, 1), among other points. In the maximal cusp
diagram we see that the disks associated with horoballs a distance o(1)
from the horoball B∞ at infinity are the disk of radius 1/2 centered at (0, 0)
and its translates under Γ∞ as well as the disk of radius 1/2 guaranteed
by Adams, and its translates. We call this collection of disks D(1). Now
let o(2) be the second nearest distance between horoball lifts other than
the distances subsumed under o(1) and described in the previous sentence.
(Note that o(2) could be 0.)

If we analyze the disks in the maximal cusp diagram that are o(2) away
from B∞ we see that they all have the same radius and that if o(2) is
close to zero then this radius is close to 1/2 and that if o(2) is far from
zero then this radius is considerably less than 1/2, in fact the formula for
the radius is ( 1

2)e(2)−2, where e(2) is the Euclidean distance between the
centers of horoballs abutting B∞ that are separated by distance o(2). We
can compute that e(n) = eo(n)/2.

Consider the collection of radius 1/2 disks D(1) described two paragraphs
above, and expand these disks to radius ( 1

2)e(2). By construction (and a
bit of work) it can be shown that these expanded disks must be disjoint
(or perhaps tangent). Hence we can improve our bound on area by using
o(2). In particular, if o(2) is big and the horoballs, hence disk shadows,
are widely separated then we get plenty of area from the expanded disks.
But if o(2) is small, and the expansion is hence small, then we still do well
because we know that a horoball a distance o(2) away from B∞ must have
radius close to 1

2 and this means we have disks of radius close to 1
2 in our

maximal cusp diagram; this collection of disks is denoted D(2). This sort
of trade-off argument was introduced in Gabai-Meyerhoff-Milley (2001).

8.7 The Mom Technology

Now, we will be greedy and push this analysis out to o(4) the fourth near-
est distance between horoball lifts (after taking into account the notion of



270 G. Robert Meyerhoff

equivalence described above) and look at the collections of disks D(1), D(2),
D(3), D(4). In particular, we will expand these disks according to o(4); for
example, the D(1) disks will be expanded to radius (1

2 )e(4).
The problem arises that the various expanded disks may overlap, for

example if there are disks in D(1) whose associated horoballs are separated
by o(2) (and o(2) < o(4)). If there are few overlaps, then we’re happy
because there won’t be much punishment for double-counting of area. In
fact, we can set up a parameter space argument on the computer where
the parameters are the orthodistances o(2), o(3), o(4), and then carry out
the various area calculations including the accounting for overlaps. This is
one use of the computer in our work, and it produces a bound of 2.7 for
the volume of a cusped hyperbolic 3-manifold in the case where there are
few overlaps arising from o(4)−related disk expansion.

What if there are lots of overlaps arising from o(4)−related expansion?
The computations become unpleasant, and worse, we find ourselves losing
area rapidly as we have to adjust for double counting of area associated
with the overlaps. This sounds bad. But in this case, the bad situation
turns out to be good. The fact that there are lots of overlaps turns out to
provide powerful topological information about the cusped manifold.

In particular, the overlaps correspond to 2-handles. So we now take a
moment to talk about building a manifold by joining handles. We work
through the classical example: building a 2-dimensional torus by starting
with a disk and adding handles appropriately. Take a disk and deform it
to produce a (lower) hemisphere, and think of its boundary as the equator.
Now add a line connecting diametrically opposed points on the equator;
this line is a 1-handle which we can thicken to produce something that
looks like an actual handle for our “basket”. After some mild deformation
of the basket, we see that it is topologically equivalent to a sphere with two
disks cut out. This, in turn, is topologically equivalent to a cylinder, and
we can bend this cylinder to get half of a classical torus. Now, the two circle
boundary components of this cylinder, which is in the shape of half a torus,
can be connected by a 1-handle. The 1-handle can be thickened and we note
that this new manifold has one boundary component (a circle). In fact,
we can deform this new manifold to get a torus with a disk removed. Adding
in a disk (a 2-handle) completes the handlebody construction of the torus.

Handles arise naturally in our situation. For example, if we have two
horoball lifts that are separated by o(2) then the shortest geodesic con-
necting them (note that it is orthogonal to both horoballs) is a 1-handle.
In fact, associated with o(1), o(2), o(3) we have a collection of 1-handles.
Note that the 1-handles associated with o(1) have length 0, but that’s not
a problem.
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Overlaps in the maximal cusp diagram generally correspond to 2-handles.
For example, if a disk D1 in D(1) and a disk D3 in D(3) are separated by
distance o(2) then we have an overlap from our o(4)−expanded disks, and
we also have a 2-handle which is a totally geodesic surface with a boundary
made up of six pieces: the 1-handle from D1 to B∞, then the Euclidean
line on B∞ running from the base of the 1-handle connecting D1 and B∞
to the base of the 1-handle connecting B∞ and D3, then the 1-handle
connecting B∞ and D3, then a curve running on the horosphere associated
with D3, then the 1-handle connecting D3 and D1, and finally a curve on
the horosphere associated with D1. This is a 2-handle of type (1, 3, 2).

The idea is that if we have sufficient overlaps, then we can build up the
manifold from the cusp neighborhood and the handles (if we fill in the
torus boundary components that remain). That is, our handle structure
produces a cusped hyperbolic 3-manifold (with more than one cusp) and
we can obtain our original manifold by filling in the cusps appropriately
(via hyperbolic Dehn surgery).

So, the dichotomy that enables us to answer low-volume questions works
as follows (in the cusped category). Take a cusped hyperbolic 3-manifold.
On the one hand, if the maximal cusp diagram has little overlap between the
expanded disks (the expansion is associated with o(4)) associated with the
disks in D(1), D(2), D(3) then a computer analysis shows that the volume
of the cusped hyperbolic 3-manifold must be at least 2.7. On the other
hand, if there is sufficient overlap among the expanded disks then we can
use the handle information residing in the overlaps to build a 2-cusped (or
more) hyperbolic 3-manifold from which the original hyperbolic 3-manifold
is obtained by Dehn surgery. So, the plan in the sufficient-overlap case is
to find all the relevant 2-or-more-cusped hyperbolic 3-manifolds that arise
as potential parents for low-volume 1-cusped hyperbolic 3-manifolds.

There are two sufficient-overlap subcases that we consider for this work.
First, we look at the subcase where we have two 1-handles arising from
o(1) and o(2) and two 2-handles arising from overlaps of expanded disks
coming from D(1) and D(2) (similarly we could have two 1-handles arising
from o(1) and o(3) and two 2-handles arising from overlaps of expanded
disks coming from D(1) and D(3); and once more with 2 and 3). Sec-
ond, we consider the subcase where we have three 1-handles arising from
o(1), o(2), o(3) and three 2-handles arising from overlaps of expanded disks
coming from D(1), D(2), D(3).

Given a certain amount of topological and geometric preparation, we find
that the handle structures can be used to construct 2-complexes (in the
given 3-manifold) with good dual triangulations. In particular, in the two
1-handles and two 2-handles subcase, we find that the dual triangulations
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are made up of either four 3-sided pyramids, or two 4-sided pyramids;
and in the three 1-handles and three 2-handles subcase, we find that the
dual triangulations are made up of either six 3-sided pyramids; two 3-sided
pyramids and an octahedron; or two 5-sided pyramids.

We wish to find the cusped hyperbolic 3-manifolds (with two or more
cusps) that can arise from these triangulations. These cusped manifolds
will be the parents (via Dehn surgery) of the low-volume cusped hyperbolic
3-manifolds. We call these parent cusped hyperbolic 3-manifolds Mom(2)’s
in the two 1-handles and two 2-handles case, and Mom(3)’s in the three
1-handles and three 2-handles case.

Thus we come to our second use of the computer. In each of the five
situations (as listed two paragraphs up), we have the computer enumerate
all ways to identify faces (in pairs) to get a 3-manifold, and then we use
J. Weeks’ SnapPea program to test whether the 3-manifold (with bound-
ary) is hyperbolic. Of course, we significantly reduce the amount of work
the computer needs to do by eliminating natural redundancies, and by
throwing out those 3-manifolds that have boundary components that are
not tori (note, they automatically can’t be hyperbolic).

We arrive at a list of Mom(2)’s: m125, m129, m202 where they are
described using the notation in J. Weeks’ census of hyperbolic 3-manifolds
obtained by gluing seven or fewer tetrahedra. Note that the manifold m129
is the Whitehead Link complement in S3. The list of Mom(3)’s could also
be given, but perhaps it wouldn’t be too illuminating. Suffice it to say that
there are 18 of them.

Thus we arrive at our theorem.

Theorem 8.3 (Gabai, Meyerhoff, Milley) A cusped orientable hyper-
bolic 3-manifold has volume greater than 2.7, or is obtained by Dehn surgery
on a Mom(2) or a Mom(3).

In fact, Weeks has analyzed the Dehn surgery spaces for these 21 Mom’s
and, using Weeks’ work, we have that the first six lowest volume cusped
orientable hyperbolic 3-manifolds are m003, m004, m006, m007, m009,

m010 which are the first 6 orientable cusped hyperbolic 3-manifolds in the
SnapPea census.
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Abstract

In this paper, we survey some recent progress in the smoothed analysis
of algorithms and heuristics in mathematical programming, combinatorial
optimization, computational geometry, and scientific computing. Our focus
will be more on problems and results rather than on proofs. We discuss
several perturbation models used in smoothed analysis for both continuous
and discrete inputs. Perhaps more importantly, we present a collection of
emerging open questions as food for thought in this field.

9.1 Prelinminaries

The quality of an algorithm is often measured by its time complexity (Aho,
Hopcroft & Ullman (1983) and Cormen, Leiserson, Rivest & Stein (2001)).
There are other performance parameters that might be important as well,
such as the amount of space used in computation, the number of bits needed
to achieve a given precision (Wilkinson (1961)), the number of cache misses
in a system with a memory hierarchy (Aggarwal et al. (1987), Frigo et al.
(1999), and Sen et al. (2002)), the error probability of a decision algorithm
(Spielman & Teng (2003a)), the number of random bits needed in a ran-
domized algorithm (Motwani & Raghavan (1995)), the number of calls to
a particular “oracle” program, and the number of iterations of an iterative
algorithm (Wright (1997), Ye (1997), Nesterov & Nemirovskii (1994), and
Golub & Van Loan (1989)). The quality of an approximation algorithm
could be its approximation ratio (Vazirani (2001)) and the quality of an
online algorithm could be its competitive ratio (Sleator & Tarjan (1985)
and Borodin & El-Yaniv (1998)).

274
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Once we fix a quality parameter Q, there might still be more than one way
to measure an algorithm A. If our universe of inputs happens to have only
one instance x then the most natural measure is the instance-based complex-
ity, given by Q(A,x). In such a case, if we have a few algorithms A1, . . . , Ak

in our repertoire, we can easily decide which one is better. If our universe
of inputs has two instances x and y, then the instance-based measure of an
algorithm A defines a two dimensional vector (Q(A,x), Q(A,y)). For two
algorithms A1 and A2, if Q(A1,x) < Q(A2,x) but Q(A1,y) > Q(A2,y),
then strictly speaking, they are not comparable.

The universe D of inputs is much more complex, both in theory and
in practice. The instance-based measure defines a high-dimensional vector
when D is finite. Otherwise, it can be viewed as a function from D to
R. How should one measure the quality of an algorithm? How should one
compare two algorithms?

Traditionally, one partitions an input domain D into a collection of sub-
domains {D1, . . . , Dn, . . .} according to the input size. The set Dn rep-
resents all instances in D whose input size is n. Given an algorithm A,
for each Dn, one comes up with a scalar tQ,A(n) that “summarizes” the
performance of A over Dn, as given by the restriction Qn(A) of Q(A, ·)
to Dn. Then tQ,A(n) is a function of n. With the help of big-O or big-Θ
notations, one often characterizes the behavior of A by evaluating tQ,A(n)
asymptomatically.

The definition of input sizes could be a source of discussion, for example,

• in optimization, scientific computing, and computational geometry, the
input size could be the number of real scalars in the input;
• in number-theoretical algorithms, it could be the total number of bits in

the input;
• in comparison-based sorting, it could the number of elements, while in

some other sorting algorithms, it could be the total number of letters in
the input;
• in the knapsack problem, it could be the total magnitude (or the size of

the unary representation) of the input.

Whatever the definition of the input size is, we need to find a way to
measure and to summarize the performance of an algorithm over an input
subdomain Dn.

The most commonly used measure is the worst-case measure. It is given
by

W [Qn(A)] = max
x∈Dn

Q(A,x).
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When the worst-case measure of an algorithm A is small1, we have an
absolute guarantee on the performance of algorithm A no matter which
input it is given. Algorithms with good worst-case performance have been
developed for a great number of problems including some seemingly difficult
ones such as primality testing (Solovay & Strassen (1977), Miller (1975),
Adleman & Huang (1987), and Agrawal, Kayal & Saxena (2004)) and
convex programming (Nesterov & Nemirovskii (1994)). These algorithms
have time complexity upper-bounded by a (low-degree) polynomial function
in n.

However, with an even greater number of problems, ranging from net-
work design to industrial optimizations, we have been less lucky. Scientists
and engineers often use heuristic algorithms for these problems. Most of
these algorithms, after years of improvements, work well in practice. But,
their worst-case complexities might be still be very poor. For example,
they could be exponential in their input sizes. For theorists who are also
concerned about the practical performance of algorithms, it has long been
observed that the worst-case instances of such an algorithm might not be
“typical” and might never occur in practice. Thus, worst-case analysis
can pessimistically suggest that the performance of the algorithm is poor.
Trying to rigorously understand and model the practical performance of
heuristic algorithms has been a major challenge in Theoretical Computer
Science2 (cf. the report of Condon et al. (1999)).

Average-case analysis was introduced to overcome this difficulty. In it,
one first determines a distribution of inputs and then measures the expected
performance of an algorithm assuming inputs are drawn from this distri-
bution. If we suppose that S is a distribution over Dn, the average-case
measure according to S is

AVGS [Qn(A)] = Ex∈SDn
[Q(A,x)] ,

where we use x ∈S Dn to denote that x is randomly chosen from Dn

according to distribution S.
Ideally, one should use a mathematically analyzable distribution that is

also the same as or close to the “practical distribution.” But finding such

1 For example, the number of comparisons needed by the merge-sort algorithm to sort
any sequence of n elements is bounded above by n log n.

2 The theory-practice gap is not limited to heuristics with exponential complexities.
Many polynomial time algorithms, such as the interior-point method for linear pro-
gramming (Karmarkar (1984)) and the conjugate gradient method for linear systems
(Hestenes & Stiefel (1952)), are often much faster than their worst-case bounds. In
addition, various heuristics are used to speed up the practical performance of codes
that are based on worst-case polynomial time algorithms. These heuristics might in
fact worsen the worst-case performance, or make the worst-case complexity hard to
analyze.
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a distribution and analyzing it could be a difficult or even impossible task.
As most average-case analyses are conducted on simpler distributions than
what might occur in practice, the inputs encountered in applications may
bear little resemblance to the random inputs that dominate the analysis.
For example, a randomly chosen graph with average degree around six is
rarely similar to a finite-element graph in two dimensions, even though the
latter also has average degree around six. Random objects such as random
graphs or random matrices might have some special properties with all but
exponentially low probability, and these special properties might dominate
the average-case analysis.

Smoothed analysis (Spielman & Teng (2004)) is a recently developed
framework for analyzing algorithms and heuristics. It is partially motivated
by the observation that input parameters in practice are often subject to
a small degree of random noise: In industrial optimization and market
predictions, the input parameters could be obtained by physical measure-
ments, and measurements usually have some random uncertainties of low
magnitudes. In computer aided design, the input parameters could be the
output of another computer program, e.g., a geometric modeling program,
that might have numerical imprecision due to rounding and approximation
errors. Even in applications where inputs are discrete, there might be ran-
domness in the formation of inputs. For example, the network structure of
the Internet may very well be governed by some “blueprints” of the govern-
ment and industrial giants, but it is still “perturbed” by the involvements
of smaller Internet service providers. Thus it may be neither completely
random nor arbitrary.

In smoothed analysis, we assume that an input to an algorithm is subject
to a slight random perturbation. The smoothed measure of an algorithm
on an input instance is its expected performance over the perturbations of
that instance. We define the smoothed complexity of an algorithm as the
maximum smoothed measure over its inputs.

In this paper, we survey the progress made in smoothed analysis in re-
cent years. We discuss several perturbation models considered for both
continuous and discrete problems. We then present some open questions
in this field.

9.2 Basic Perturbation Models and Polynomial
Smoothed Complexity

To conduct smoothed analysis, we need a perturbation model that can
capture the randomness and imprecision in the formation of inputs. To
be concrete in the discussion below, we first consider the case when our



278 Daniel A. Spielman and Shang-Hua Teng

sub-universe is Dn = Rn, as often considered in optimization, scientific
computing, and computational geometry. For these continuous inputs, for
example, the family of Gaussian distributions (cf. Feller (1968, 1970))
provide a perturbation model for noise.

Recall that a univariate Gaussian distribution with mean 0 and standard
deviation σ has density

1√
2πσ

e−x2/2σ2
.

A Gaussian random vector of variance σ2 centered at the origin in Rn

is a vector where each entry is a Gaussian random variable of standard
deviation σ and mean 0. It has density

1(√
2πσ

)d
e−‖x‖2/2σ2

.

Definition 9.1 (Gaussian Perturbations) Let x̄ ∈ Rn. A σ-Gaussian
perturbation of x̄ is a random vector x = x̄ + g, where g is a Gaussian
random vector of variance σ2.

Definition 9.2 (Smoothed Complexity with Gaussian Perturba-
tions) Suppose Qn : Dn = Rn → R+ is a quality function. Then the
smoothed complexity of Qn under σ-Gaussian perturbations is given
as

max
x̄∈Rn

Eg [Qn (x̄ + ‖x̄‖2 g)] ,

where g is a Gaussian random vector of variance σ2.

Each instance x̄ of a computational problem has a neighborhood which,
intuitively, contains the set of instances that are close to and similar to
x̄. A perturbation model defines a distribution over the neighborhood of
x̄. The closer x is to x̄, the higher x and x̄ might be correlated due to
the randomness in the formation of input instances. In Gaussian pertur-
bations, the closeness and similarity among inputs are measured by their
Euclidean distance. As the density function decreases exponentially in dis-
tance, the variance parameter σ defines the magnitude of perturbations and
also captures the radius of the most likely neighborhood of an instance. The
smoothed complexity is measured in terms of the input length n as well as
σ, the magnitude of the perturbations. As σ increases continuously start-
ing from 0, the smoothed complexity interpolates between the worst-case
and average-case complexities (Spielman & Teng (2004)).
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Of course, not all computational problems deal with continuous inputs.
A commonly used communication model with a noisy channel assumes
inputs are subject to Boolean perturbations of probability σ:

Definition 9.3 (Boolean Perturbations) Let x̄ = (x̄1, . . . , x̄n) ∈ {0, 1}n
or {−1, 1}n A σ-Boolean perturbation of x̄ is a random string x =
(x1, . . . , xn) ∈ {0, 1}n or {−1, 1}n, where xi = x̄i with probability 1− σ.

In Boolean perturbations, the closeness and similarity of instances are
measured by their Hamming distances. Again, the parameter σ defines
the magnitude of perturbations as well as the radius of the most likely
neighborhood of an instance.

In scheduling, packing, and sorting, the inputs are often integers of cer-
tain magnitudes. Banderier, Beier, and Mehlhorn (2003) propose to use
the partial bit randomization model:

Definition 9.4 (Partial Bit Randomization) Let z̄ be an integer and
k be a positive integer indicating the magnitude of the perturbation. A k-
partial bit randomization of z̄ is an integer z obtained from z̄ by replacing
its k least significant bits by a random number in [0 : 2k−1] according to
some distribution over [0 : 2k−1].

In comparison-based sorting and online problems, each input consists of
a sequence of elements. Banderier, Beier, and Mehlhorn (2003) introduce
the following partial permutation model:

Definition 9.5 (Partial Permutation Perturbations) Let s̄ be a se-
quence of n elements. Let 0 ≤ σ ≤ 1 be the magnitude of perturbations.
A σ-partial permutation of s̄ is a random sequence s obtained from s̄ by
first building a subset S by independently selecting each index number from
{1, 2, . . . , n} with probability σ, and then randomly permuting elements of
s̄ in position S while retaining the positions of all other elements.

The perturbation model that most naturally captures the imprecision
in the formation of inputs can vary from application to application. For
instance, it might be more suitable to use uniform random perturbations
within a properly-centered ball to analyze some computational geometry
algorithms.

Definition 9.6 (Uniform Ball Perturbations) Let x̄ ∈ Rn. A uniform
ball perturbation of radius σ of x̄ is a random vector x chosen uniformly
from the ball of radius σ centered at x̄.



280 Daniel A. Spielman and Shang-Hua Teng

For any of the basic perturbation models we have discussed, there might
be some refinements and variants worthy of considerations.

For example, Eppstein1 proposed the following refinement of the partial
permutation model: Let s̄ be a sequence of n elements that have a total
ordering. Let ‖s‖ denote the number of elements of the input that must be
moved to make the input sorted or reverse-sorted. To obtain a perturbed
element, one randomly chooses a set S of (σ · ‖s‖) elements, and randomly
permutes them. In this model, one does not perturb the already-sorted in-
put or the reverse-sorted input at all, and the perturbations of other inputs
depend on their distance to these inputs. This definition is inspired by the
definition of smoothed analysis for problems that take inputs from Rn: we
do not perturb the zero vector, and perturb other vectors in proportion to
their norm. For sorting, one may view the already-sorted input as a zero,
and distance-to-sorted as a norm.

In analyzing scientific computing algorithms that take advantage of the
sparsity in the problem instances, one may find relative Gaussian pertur-
bations or zero-preserving Gaussian perturbations better models of impre-
cision:

Definition 9.7 (Relative Gaussian Perturbations) Let x̄ be a vector
(x̄1, . . . , x̄n) ∈ Rn. A relative σ-Gaussian perturbation of x̄ is a random
vector x = (x1, . . . , xn) where xi = x̄i(1 + gi), where gi is a Gaussian
random variable with standard deviation σ.

Definition 9.8 (Zero-Preserving Gaussian Perturbations) For any
x̄ = (x̄1, . . . , x̄n) ∈ Rn, a zero-preserving σ-Gaussian perturbation of x̄ is
a vector x = (x1, . . . , xn) where xi = x̄i + (1− IsZero (x̄i)) gi, where gi is
a Gaussian random variable with standard deviation σ and IsZero (x) = 1
if x = 0, and IsZero (x) = 0, otherwise.

When time complexity is the main concern, the central questions in
smoothed analysis naturally are:

Does an algorithm have polynomial smoothed complexity? Is a decision or search/
optimization problem in smoothed polynomial time?

In addition to the notion of input size, one needs a model of perturbations
and a notion of magnitudes of perturbations to define polynomial smoothed
complexity. Given a model and notion of magnitudes of perturbations,
there might still be several possible definitions of polynomial smoothed
complexity.

1 Personal Communication
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Spielman and Teng (2004) define polynomial smoothed complexity as:

Definition 9.9 (Polynomial Smoothed Complexity) Given a problem
P with input domain D = ∪nDn where Dn represents all instances whose
input size is n. Let R = ∪n,σRn,σ be a family of perturbations where Rn,σ

defines for each x̄ ∈ Dn a perturbation distribution of x̄ with magnitude
σ. Let A be an algorithm for solving P and TA(x) be the time complexity
for solving an instance x ∈ D. Then algorithm A has polynomial smoothed
complexity if there exist constants n0, σ0, c, k1 and k2 such that for all
n ≥ n0 and 0 ≤ σ ≤ σ0,

max
x̄∈Dn

(
Ex←Rn ,σ (x̄) [TA(x)]

)
≤ c · σ−k2 · nk1 , (9.1)

where x← Rn,σ(x̄) means x is chosen according to distribution Rn,σ(x̄).
The problem P is in smoothed polynomial time with perturbation model
R if it has an algorithm with polynomial smoothed complexity.

For example, Spielman and Teng show that the simplex method with
the shadow-vertex pivoting rule (Gass & Saaty (1955)) has polynomial
smoothed complexity under Gaussian perturbations. We can relax or
strengthen the dependency on σ in the definition of the polynomial
smoothed complexity.

Definition 9.10 (Polynomial Smoothed Complexity: II) Let P , A,
D, Dn, R, Rn,σ be the same as in Definition 9.9. Then algorithm A has
polynomial smoothed complexity if there exist constants n0, σ0, c, k, and a
function g : R+ → R+ such that for all n ≥ n0 and 0 ≤ σ ≤ σ0,

max
x̄∈Dn

(
Ex←Rn ,σ (x̄) [TA(x)]

)
≤ c · g(σ) · nk.

In particularly, when g(σ) is a poly-logarithmic function of 1/σ, we say the
algorithm has polynomial smoothed complexity with poly-logarithmic depen-
dency on 1/σ.

By Markov’s inequality (cf. Alon & Spencer (1992) and Feller (1968)),
if an algorithm A has smoothed complexity T (n, σ), then

min
x̄∈Dn

Prx←Rn ,σ (x̄)

[
TA(x) ≤ δ−1T (n, σ)

]
≥ 1− δ. (9.2)

In other words, if A has polynomial smoothed complexity, then for any x̄,
with high probability, say with (1− δ), A can solve a random perturbation
of x̄ in time polynomial in n, 1/σ, and 1/δ
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However, the probabilistic upper bound given in (9.2) does not usually
imply that the smoothed complexity of A is O(T (n, σ)). In fact Eqn (9.2)
may not even imply that

max
x̄∈Dn

(
Ex←Rn ,σ (x̄) [TA(x)]

)
is finite.

Eqn (9.2) suggests a relaxed extension of polynomial smoothed complex-
ity.

Definition 9.11 (Probably Polynomial Smoothed Complexity) Let
P , A, D, Dn, R, Rn,σ be the same as in Definition 9.9. Then algorithm
A has probably polynomial smoothed complexity if there exist constants n0,
σ0, c, k1, k2, k3, such that for all n ≥ n0 and 0 ≤ σ ≤ σ0,

max
x̄∈Dn

(
Prx←Rn ,σ (x̄)

[
TA(x) > c · σ−k1 · δ−k2 · nk3

])
≤ δ. (9.3)

Equivalently, there exist constants n0, σ0, c, and α, such that for all n ≥ n0

and 0 ≤ σ ≤ σ0,

max
x̄∈Dn

(
Ex←Rn ,σ (x̄) [(TA(x))α]

)
≤ c · σ−1 · n (9.4)

The relaxation of polynomial smoothed complexity given in Eqn (9.3) is
introduced by Blum and Dunagan (2002) in their analysis of the percep-
tron algorithm. They show that the perceptron algorithm has probably
polynomial smoothed complexity, in spite of the fact that its smoothed
complexity according to Definition 9.9 is unbounded. Beier and Vöcking
(2004), in their study of the binary optimization problem, introduce the
alternative form given in Eqn (9.4).

9.3 Progress in Smoothed Analysis

We cluster the materials in this section into four subsections.

• Linear Programming.
• Combinatorial Optimization.
• Scientific Computing.
• Discrete and Geometric Structures.

Although these topics appear to be diverse, the approaches developed
for conducting smoothed analysis in these areas are quite similar. In fact,
most approaches consist of two basic steps:

• Geometric/Combinatorial Conditions of Nice Instances: Estab-
lish a set of analyzable geometric or combinatorial conditions under
which the algorithm performs well on an instance.
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• Probabilistic Analysis: Prove that for every input, these geomet-
ric/combinatorial conditions hold with high probability over its pertur-
bations.

The challenge in the first step is to establish manageable conditions. The
instance-based complexity itself provides the most accurate characteriza-
tion of nice and bad input instances of an algorithm, but this characteriza-
tion is hardly useful in analysis. What we often look for are conditions that
are accurate enough for predicting the performance and simple enough for
probabilistic analysis. For example, the number of iterations of the Con-
jugate Gradient Method (CG) (Hestenes & Stiefel (1952)) for solving a
symmetric positive definite linear system Ax = b can be bounded above
by O

(√
κ(A)

)
(Golub & Van Loan (1989)), where κ(A) is the condition

number of A – the ratio of the largest eigenvalue of A to the smallest
eigenvalue of A. Thus, if A is from a distribution where κ(A) is small with
high probability, then we can use κ(A) as our condition of nice inputs,
even though there might exist A with very large κ(A) and b for which the
CG converges rapidly. But if A is from a distribution where the condition
numbers are mostly very large, and the CG has been observed and believed
to perform well, then we need to find some other conditions for its good
performance.

To establish a lower bound on the worst-case complexity of an algorithm
we rely a lot on our intuition of the properties for bad instances. In contrast,
to prove a smoothed upper bound, we need to work with our imagination
to find properties of nice instances. However, these two studies are not
completely unrelated, and if all of our worst-case instances are unstable
in a perturbation model, then there might be reasons to believe that the
smoothed measure is good.

9.3.1 Linear Programming

In a linear program, one is asked to optimize a linear objective function
subject to a set of linear constraints. Mathematically, according to one
standard form of linear programming, one is solving

max cT x subject to Ax ≤ b,

where A is an m × n matrix, b is an m-dimensional vector, and c is an
n-dimensional vector.

If the constraints are feasible, then they define a convex polyhedron
{x : Ax ≤ b}. This polyhedron could be unbounded in the direction of c
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in which case the optimal value of the linear program is infinite. Other-
wise, the optimal value is finite and the solution point x that achieves this
optimal value must be a vertex of the polyhedron {x : Ax ≤ b}. Note that
a vertex is determined by a subset of equations from Ax = b.

Linear programming is perhaps the most fundamental optimization prob-
lem (Dantzig (1991)). Several methods for solving linear programs have
been developed since its introduction (Dantzig (1951), Khachiyan (1979),
and Karmarkar (1984)). The most commonly used approaches for solv-
ing a linear program are the simplex method (Dantzig (1951)) and the
interior-point method (Karmarkar (1984)).

We start our discussion with results in the smoothed analysis of the
simplex method. We then continue with three other methods for solving
linear programs: the perceptron method, its variant with scaling, and the
interior-point method.

Smoothed Analysis of the Simplex Method

The simplex method provides a family of linear programming algorithms.
Most of them are two-phase algorithms: In Phase I, they determine whether
a given linear program is infeasible and, if the program is feasible, they also
compute an initial vertex v0 of the feasible region and enter Phase II, where
they iterate: in the ith iteration, they find a neighboring vertex vi of vi−1

with better objective value, or terminate with an extreme ray from vi−1

on which the objective function is unbounded above, or terminate with an
optimal solution vi−1. Some two-phase simplex methods can determine
whether a feasible linear program is unbounded in the objective direction
in Phase I.

Spielman and Teng (2004) consider the smoothed complexity of the sim-
plex method under Gaussian perturbations: For any Ā, b̄, c̄, the perturba-
tions of the linear program defined by (Ā, b̄, c̄) is

max cTx subject to Ax ≤ b,

where A, b, and c, respectively, are obtained from Ā, b̄, c̄ by a Gaussian
perturbations of variance (∥∥Ā, b̄, c̄

∥∥
F

σ
)2

,

where ‖(A,b, c)‖F is the square root of the sum of squares of the entries
in A,b, and c.

In this smoothed setting, with probability 1, every vertex of the feasible
region is determined by exactly n equations. Two vertices v and u of the
feasible region are neighbors if their associated sets of equations differ by
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only one equation. So with probability 1, apart from the extreme vertices
from which there is a feasible ray, each vertex of a perturbed linear program
has n neighbors.

Spielman and Teng prove the following theorem.

Theorem 9.1 (Smoothed Complexity of the Simplex Method)
There exists a two-phase simplex algorithm with polynomial smoothed com-
plexity under Gaussian perturbations.

Let A be a σ-Gaussian perturbation of an m×n matrix Ā with
∥∥Ā∥∥

F
≤

1 and 1 be the m-vector all of whose entries are equal to 1. Then the
polyhedron {x : Ax ≤ 1} is always feasible with 0 as a feasible point. For
any two n-vectors c and t the projection of the polyhedron {x : Ax ≤ 1}
on the two-dimensional plane spanned by c and t is called the shadow
of the polyhedron onto the plane spanned by c and t. We denote this
shadow by Shadowt,c (A), and its size, the number of its vertices, by
|Shadowt,c (A)|. Theorem 9.1 is built upon the smoothed analysis of
|Shadowt,c (A)|.

Theorem 9.2 (Smoothed Shadow Size) For any m×n matrix Ā with∥∥Ā∥∥
F
≤ 1, let A be a σ-Gaussian perturbation of Ā. For any two n-

dimensional vectors c and t

EA [|Shadowt,c (A)|] = O

(
mn3

min(σ, 1/
√

n log m)6

)
.

This probabilistic geometric theorem provides a smoothed upper bound
on the Phase II complexity of the simplex method algorithm with the
shadow-vertex pivot rule (Gass & Saaty (1955)). Theorem 9.1 was es-
tablished by a reduction of Phase I computation to Phase II computation
in n + 1 dimensions.

Recently, Deshpande and Spielman (2005) improve Theorem 9.2 with a
greatly simplified proof.

Theorem 9.3 (Deshpande-Spielman) For any m × n matrix Ā with∥∥Ā∥∥
F
≤ 1, let A be a σ-Gaussian perturbation of Ā. For any two n-

dimensional vectors c and t

EA [|Shadowt,c (A)|] = O

(
m3n1.5

min(σ, 1/
√

n log m)3

)
.
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Perceptron Algorithms

The perceptron algorithm (Agmon (1954) and Rosenblatt (1962)) is an
iterative algorithm for finding a feasible solution to linear programs in the
form

Ax ≥ 0, x �= 0. (9.5)

It is commonly used in Machine Learning (Minsky & Papert (1988)) for
finding a linear separator of two sets of points R = {p1, . . . ,pm1} and
B = {qm1+1, . . . ,qm2} in Rn. If R and B are separable by a hyperplane
through 0 with normal vector x, then

pT
i x ≥ 0 for each i ∈ {1 : m1}, and

qT
i x ≤ 0 for each i ∈ {m1 + 1 : m1 + m2}.

Letting ai = pi for i ∈ {1 : m1} and ai = −qi for {m1 + 1 : m1 + m2}, the
problem becomes the linear program given in (9.5).

The perceptron algorithm starts with an initial unit vector x0. During
the kth iteration, if there exists a row aT

i of A with aT
i xk−1 < 0 then it sets

xk = xk−1 + ai/ ‖ai‖2. The complexity question is: how many iterations
does the perceptron algorithm take when given a feasible linear program
of form (9.5)? The following theorem of Block (1962) and Novikoff (1962)
gives an upper bound in term of a geometric quantity.

Theorem 9.4 (Block-Novikoff) For a linear program of form (9.5), let

ρ(A) = max
x:‖x‖2=1,Ax≥0

min
i

(
aT

i

‖ai‖2
x
)

.

The perceptron algorithm terminates in O(1/ρ2(A)) iterations.

The parameter ρ(A) is known as the wiggle room of the perceptron prob-
lem. By establishing a probabilistic lower bound on the wiggle room, Blum
and Dunagan (2002) obtain the following result.

Theorem 9.5 (Blum-Dunagan) For any Ā ∈ Rm×n with
∥∥Ā∥∥

F
≤ 1,

let A be a σ-Gaussian perturbation of Ā for σ ≤
√

1/2n. Then, for any δ,
with probability at least 1− δ, in

O

(
n3m2 log2(m/δ)

σ2δ2

)
iterations, the perceptron algorithm finds a feasible solution or correctly
concludes that the linear program defined by A is infeasible.
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Blum and Dunagan’s result does not imply that the smoothed complexity
of the perceptron algorithm is polynomial in m, n, and 1/σ. It only states
that with high probability, the perceptron algorithm with a polynomial
number of iterations would correctly solve a perturbed linear program.
See Definition 9.11. But this discrepancy in the definitions of polynomial
smoothed complexities in the results of the perceptron method (Theorem
9.5) and the simplex method (Theorem 9.1) might provide some insights
on why the simplex method usually performs better in practice than the
perceptron algorithm.

Recently, Dunagan and Vempala (2004) improve the performance
of a randomized version of the perceptron algorithm by applying peri-
odic rescalings. They show that, with high probability, their algorithm
finds a feasible solution to feasible linear programs of form (9.5) in time
O(mn4 log n log(1/ρ(A))). It is not hard to combine the analysis of Blum-
Dunagan with the the result of Dunagan-Vempala to prove the following
result.

Theorem 9.6 (Smoothed complexity perceptron algorithms with
rescaling) For any Ā ∈ Rm×n with

∥∥Ā∥∥
F
≤ 1, let A be a σ-Gaussian

perturbation of Ā, for σ ≤
√

1/2n. Then, for any δ, with probability at
least 1− δ, in random

O
(
mn4 log

(nm

σδ

)
time, the Dunagan-Vempala perceptron algorithm finds a feasible solution
or correctly concludes that the linear program defined by A is infeasible.

Condition Number of Linear Programs and the Smoothed Com-
plexity of Interior-Point Methods

The parameter ρ(A) aforementioned is a special case of the condition num-
ber of a linear program introduced by Renegar (1994), (1995a). Consider
the following four common canonical forms of linear programs and their
dual forms:

max cT x s.t. Ax ≤ b

min bT y s.t. AT y = c, y ≥ 0, (1)

max cT x s.t. Ax ≤ b, x ≥ 0

min bT y s.t. AT y ≥ c, y ≥ 0, (2)

max cT x s.t. Ax = b, x ≥ 0

min bT y s.t. AT y ≥ c, (3)
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find x �= 0 s.t. Ax ≤ 0

find y �= 0 s.t. AT y = 0, y ≥ 0. (4)

A key concept in defining the condition number is the set of ill-posed linear
programs. A linear program is ill-posed if the program can be made both
feasible and infeasible by arbitrarily small changes to its data.

In his pioneering work (Renegar (1994), (1995a), (1995b)), Renegar de-
fines the condition number of a linear program as the scale-invariant re-
ciprocal of the distance of that program to “ill-posedness”. Any linear
program may be expressed in each of the first three canonical forms. How-
ever, transformations among formulations do not in general preserve their
condition numbers (Renegar (1995a)). Therefore, the condition number is
defined for each normal form.

Let F be the property that a linear program is feasible. For each (A,b, c)
and i ∈ {1, 2, 3}, let PLPi(A,b, c) and DLPi(A,b, c) be the primal and
dual linear programs, respectively, in normal form (i) defined by data
(A,b, c). Let

ρi(A,b, c) = sup {δ : ‖∆A,∆b,∆c‖F ≤ δ implies

F (PLPi(A,b, c)) = F (PLPi(A + ∆A,b + ∆b, c + ∆c)) &

F (DLPi(A,b, c)) = F (DLPi(A + ∆A,b + ∆b, c + ∆c))
}
.

The condition number of the linear program defined by data (A,b, c) in
normal form (i) is

Ci(A,b, c) =
‖A,b, c‖F
ρi(A,b, c)

.

We can similarly define the distance ρ4(A) to ill-posedness and the condi-
tion number C4(A) of a linear program in normal form (4).

Dunagan, Spielman and Teng (2002) prove the following theorem:

Theorem 9.7 (Smoothed condition number) For any (Ā, b̄, c̄) with∥∥Ā, b̄, c̄
∥∥

F
≤ 1 and σ ≤ 1, let A, b and c be σ-Gaussian perturbations of

Ā, b̄ and c̄, respectively. Then,

EA,b,c [log Ci(A,b, c)] = O(log(mn/σ)).

For any linear program of form (i), i ∈ {1, 2, 3}, specified by (A,b, c)
and parameter ε ≤ 1, there is an interior-point algorithm that determines
whether the program is infeasible or unbounded or finds a feasible solution
x with duality gap ε ‖A,b, c‖F in O(N3 log(N ·Ci(A,b, c)/ε)) operations
(Renegar (1994), (1995a), (1995b), Vera (1996), Freund & Vera (1999)).
where N = max(m,n). Let Ti((A,b, c), ε) be the time complexity of these
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interior-point algorithms. For a linear program of form (4) given by A,
there is an algorithm that finds a feasible solution x or determines that
the program is infeasible in O(N3 log(N · C4(A))) operations (Cucker &
Peña (2001) and Freund & Vera (1999)). Let Ti((A,b, c), ε) be the time
complexity of these interior-point algorithms. We have,

Theorem 9.8 (Smoothed Complexity of IPM: Approximation) For
any σ ≤ 1, for any Ā ∈ Rm×n, b̄ ∈ Rm and c̄ ∈ Rn such that

∥∥Ā, b̄, c̄
∥∥

F
≤

1, let (A,b, c) be a σ-Gaussian perturbation of (Ā, b̄, c̄). Then,

E(A,b,c) [Ti((A,b, c), ε)] = O
(
max(m,n)3 log

(mn

σε

)
.

When an exact solution of a linear program is desired, one can find an
optimal solution in two steps: First, apply the interior-point method to
find a feasible point that is close enough to optimal solution. Then run a
termination algorithm that “jumps” from the close-to-optimal solution to
the optimal solution. For a feasible program defined by (A,b, c), there is
a precision quantity δ(A,b, c) such that for all ε ≤ δ(A,b, c), one could
jump from any ε-accurate solution to an exact solution. Spielman and Teng
(2003b) show that under σ-Gaussian perturbations, the smoothed value of
max(1, log(1/δ(A,b, c))) is O(log nm/σ). Putting everything together, we
obtain the following theorem.

Theorem 9.9 (Smoothed Complexity of IPM: Exact Solution) For
any Ā ∈ Rm×n, b̄ ∈ Rm and c̄ ∈ Rn such that

∥∥Ā, b̄, c̄
∥∥

F
≤ 1 and σ ≤ 1,

let (A,b, c) be a σ-Gaussian perturbation of (Ā, b̄, c̄). One can apply the
interior-point algorithm with periodic applications of a termination proce-
dure to exactly solve a linear program in normal form 1, 2, or 3 in an
expected

O
(
max(m,n)3 log

(mn

σ

)
arithmetic operations.

Smoothed Complexity of Linear Programming in Low Dimen-
sions

A linear program is often referred to as a low-dimensional linear program
if m � n. Clarkson (1995) introduces a remarkable reduction algorithm
and proves the following lemma.

Lemma 9.1 (Clarkson’s Reduction) For any linear program with m

constraints in n variables, with random sampling, one can reduce the
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problem of solving this program to the problems of solving O(n2 log m) pro-
grams with 9n2 constraints in n variables.

One can solve a low-dimensional linear program in two steps:

1. Apply Clarkson’s reduction to the input program.
2. Use an interior-point algorithm to solve these smaller linear programs.

We can use Theorem 9.9 to prove the following theorem.

Theorem 9.10 (Smoothed complexity of low-dimensional linear
programming) There is a linear programming algorithm with smoothed
complexity

O
(
n2m + n8 log m log(mn/σ)

)
.

So far, this is the best smoothed bound for low-dimensional linear pro-
gramming. In contrast, the best worst-case upper bound for low-
dimensional linear programming is obtained by the combination of Clark-
son’s reduction with the randomized simplex algorithm of Kalai (1992) and
Matousĕk, Sharir, and Welzl (1992). The complexity of this combination
is

n2m + nO
(√

n/logn+log log m
)
.

9.3.2 Combinatorial Optimization

In combinatorial optimization, the solutions are discrete. However, not
all input parameters of combinatorial optimization problems are necessar-
ily discrete. For example, in optimization problems defined on weighted
graphs such as the Traveling Salesman Problem, the Minimum Steiner Tree
Problem, and the Multi-Commodity Flow Problem, the weights could be
continuous while the graph structure remains discrete (Papadimitriou &
Steiglitz (1982)). In integer linear programming (Schrijver (1986)), all in-
put parameters can be continuous, though the solutions must be integer
vectors. For these problems, we can still consider the effects of Gaussian
perturbations. In this subsection, we discuss results on the smoothed anal-
ysis of the binary optimization problem, integer programming, and some
problems in online optimization.

Binary Optimization Problems

Beier and Vöcking (2004) consider the following Binary Optimization Prob-
lem:

max cT x subject to Ax ≤ b and x ∈ {0, 1}n
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Several classical discrete optimization problems can be expressed as bi-
nary optimization problems. One example is the 0/1-Knapsack Problem:
Given a set of n items {(w1, v1), . . . , (wn, vn)} where item i has weight
wi ≥ 0 and value vi ≥ 0, and a knapsack of capacity c, find a subset
S ⊆ {1, . . . , n} with

∑
i∈S wi ≤ c that maximizes

∑
i∈S vi. By setting

xi = 1 if i ∈ S and xi = 0 if i �∈ S, one can express the knapsack problem
as a binary optimization problem:

max
∑

i

vixi, subject to
∑

i

wixi ≤ c and xi ∈ {0, 1} ∀ i ∈ {1, . . . , n}.

Another example is the Constrained Shortest Path Problem (Ziegelmann
(2001)): Given a graph G = (V,E) where each edge e ∈ E has distance
de > 0 and latency le ≥ 0, a source vertex s, a destination vertex t, and a
latency tolerance parameter L, find a path P from s to t with

∑
e∈P le ≤ L

that minimizes
∑

e∈P de.
Let P be the set of all simple paths from s to t. In any feasible solution,

there must be a path in P with all of its edges chosen. Let C be all subsets
of the edges whose removal disconnects s from t. By the duality relation
between cuts and paths, in any feasible solution and for any cut C ∈ C, at
least one of its edges is chosen. For each e ∈ E, let xe be a binary variable
with xe = 1 if e is chosen. One can then reformulate the constrained
shortest path problem as:

max −
∑

e∈E dexe subject to
∑
e∈E

lexe ≤ L∑
e∈C

xe ≥ 1 for all C ∈ C and

xe ∈ {0, 1} for all e ∈ E.

In their smoothed analysis of the binary optimization problem, Beier and
Vöcking distinguish two types of expressions: deterministic expressions and
stochastic expressions. Unlike the stochastic constraints, the deterministic
constraints are not subject to perturbations. For instance, in the smoothed
analysis of the Constrained Shortest Path Problem, one could assume the
distances and latencies are subject to some perturbations while the set of
combinatorial structure of the graph is not subject to any perturbation,
making the constraints

∑
e∈C xe ≥ 1 for all C ∈ C deterministic.

One way to capture the deterministic constraints in the binary optimiza-
tion problem is the following reformulation:

min cT x subject to Ax ≤ b and x ∈ S ∩ {0, 1}n , (9.6)

where S is the intersection of the feasible sets of the deterministic linear
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constraints. Then, in smoothed analysis, one assumes entries of (A,b) are
always subject to perturbations and only needs to consider the possibility
of whether the objective function is also subject to perturbations.

Beier and Vöcking (2004) also introduce a quite general way to extend
Gaussian perturbations: Let f be a piece-wise continuous univariate den-
sity function of a probability distribution (i.e., f(x) ≥ 0 and

∫
R

f(x)dx =
1), with finite mean

∫
R
|x| f(x)dx and supx f(x) = 1. For σ ≤ 1, let fσ be

a scaling of f such that fσ(x) = f(x/σ)/σ. It is easy to check that the
mean of fσ satisfies∫

R

|x| · fσ(x)dx = σ

(∫
R

|x| · f(x)dx

)
,

and ∫
R

fσ(x)dx =
∫

R

f(x/σ)/σdx =
∫

R

f(y)dy = 1.

For any x̄, an f -perturbation with magnitude σ < 1 is a random variable
x = x̄+r, where r is randomly chosen according to a density fσ. To perturb
a vector, one independently perturbs each of its entries. For example,
the σ-Gaussian perturbation is an f -perturbation with magnitude σ when
f(x) = e−x2/2/

√
2π. By setting f to be 1/2 in [−1, 1] and 0 outside [−1, 1],

one obtains a family of uniform perturbations within a box of side-length
2σ centered at a vector. By setting f to be 1 in [0, 1] and 0 outside [0, 1],
one obtains a family of uniform perturbations with a box of side-length σ

in the positive quadrant of a vector.
Before stating the main result of Beier and Vöcking, let us first review

a few concepts from complexity theory (Papadimitriou (1994) and Sipser
(1996)). Let RP denote the class of decision problems solvable by a ran-
domized polynomial time algorithm such that for every “yes”-instance, the
algorithm accepts with probability at least 1/2, and for every “no”-instance,
the algorithm always rejects. Let coRP be the complement of RP. Let ZPP

be the intersection of RP and coRP. In other words, ZPP is the class of de-
cision problems solvable by a randomized algorithm that always returns
the correct answer, and whose expected running time (on every input) is
polynomial.

For a binary optimization problem Π, let Πu be the “unary” representa-
tion of Π – in Πu, all parameters in the stochastic expressions are assumed
to be integers in unary representation.

Theorem 9.11 (Beier and Vöcking’s Characterization) For every
density function f with finite mean and supx f(x) ≤ 1, in the perturbation
model defined by f-perturbations, a binary optimization problem Π is in
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smoothed polynomial time probabilistically (see (9.4)) if and only if Πu ∈
ZPP.1 Moreover, a binary optimization problem Π is in smoothed polynomial
time as in (9.1), if Πu can be solved in linear time.

For instance, because the unary version of the 0/1-knapsack problem
can be solved in linear time using dynamic programming, as a corollary of
Theorem 9.11, the 0/1-knapsack problem is in smoothed polynomial time.
Like the 0/1-knapsack problem, the Constrained Shortest Path Problem is
NP-complete while its unary version is in P. Thus, the Constrained Shortest
Path Problem is in smoothed polynomial time probabilistically. One can
similarly prove the Constrained Minimum Spanning Tree Problem (Ravi &
Goemans (1996)), the Constrained Minimum Weighted Matching Problem,
and several other instances of packing problems are in smoothed polynomial
time in the sense of Definition 9.11.

In contrast, even though 0/1-integer programming with a fixed number
of constraints is in smoothed polynomial time, general 0/1-integer program
is not (unless NP = RP).

In the proof of Theorem 9.11, Beier and Vöcking examine the distribution
of three quantities of a binary optimization problem Π:

• Winner Gap: If Π is feasible and has more than one feasible solution,
then the winner gap is the difference between the objective value of
the optimal solution and the objective value of the second best feasible
solution.
• Loser Gap: Let I+(Π) ⊆ {0, 1}n be the set of infeasible binary vectors

with better objective values than the optimal solution. Suppose the
feasible region is given by aT

i x ≤ bi, for i ∈ [1,m]. The loser gap is then
equal to

min
x∈I+(Π)

max
i

(aT
i x− bi),

that is, the minimum amount of violation of binary vectors in I+(Π).
• Feasibility Gap: Suppose x∗ is the optimal solution. Then the feasi-

bility gap is equal to

min
i: aT

i x ≤ bi is stochastic
(bi − aT

i x∗),

that is, the minimum slack of the optimal solution with respect to
stochastic constraints.

1 Usually by saying Π has a pseudo-polynomial time algorithm, one means Πu ∈ P.
So Πu ∈ ZPP means that Π are solvable by a randomized pseudo-polynomial time
algorithm. We say a problem Π is strongly NP-hard, if Πu is NP-hard. For example,
0/1-integer programming with fixed number of constraints is in pseudo-polynomial
time, while general 0/1-integer programming is strongly NP-hard.
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Note that these three quantities are closely related with the concept of
the condition numbers studied in the smoothed analysis of the perceptron
algorithm and the interior-point algorithms. Beier and Vöcking prove that
the reciprocal of each of these quantities is polynomial with high proba-
bility. Consequently, if the binary optimization problem has k stochastic
equations and n variables, then with high probability the winner is uniquely
determined when revealing O(log(nk/σ)) bits of each stochastic coefficient.
So, if Πu is in ZPP, then the ZPP algorithm would solve almost all perturbed
instances.

Integer Programming

Röglin and Vöcking (2005) extend the result of Beier and Vöcking to integer
linear programming. They consider programs of the form

max cT x subject to Ax ≤ b and x ∈ Dn, (9.7)

where A is an m× n real matrix, b ∈ Rm, and D ⊂ Z.

Theorem 9.12 (Röglin and Vöcking) For any constant c, let Π be a
class of integer linear programs of form (9.7) with |D| = O(nc). Then,
Π is in smoothed polynomial time in the probabilistic sense if and only if
Πu ∈ ZPP.

Smoothed Competitive Ratio of Online Scheduling

In online computing (Sleator & Tarjan (1985)) an input is given as a
sequence of events x = x1 ◦ x2 ◦ . . . ◦ xi ◦ . . .. For all i, an online al-
gorithm A must generate a response ri based on {x1, . . . , xi} only. Let
rA(x) = r1 ◦ r2 ◦ . . . ◦ ri ◦ . . . be its response sequence. There is a positive-
valued cost function COST (r) for each response r.

Let OPT (x) be the cost of the best response, possibly generated by
an optimal offline algorithm that has access of all events in x. Sleator and
Tarjan (1985) define the worst-case competitive ratio of an online algorithm
to be

sup
x

{
COST (rA(x))

OPT (x)

}
.

Becchetti, Leonardi, Marchetti-Spaccamela, Schäfer, and Vredeveld
(2003) apply smoothed analysis to evaluate the performance of online
algorithms. For a perturbation model D, they define the smoothed
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competitive-ratio as

sup
x̄

{
Ex ∈D D(x̄)

[
COST (rA(x))

OPT (x)

]}
.

They then apply this measure to the following online scheduling problem.
The input is a collection of jobs {j1, . . . , jn}. Each job ji has a release time
Ri and processing time Ti. An online scheduler only knows the existence of
ji at its release time Ri. Its processing time Ti is not known until the job
is completed. In the system, one is allowed to interrupt a running job and
resume it later on the system. The system could have only one machine or
m parallel machines. The scheduler decides when and which uncompleted
job should be executed at an available machine, as well as when and which
running job to interrupt. Each machine can only process at most one job
at any time. Suppose the completion time of job ji is Ci. The flow time of
ji is then Fi = Ci − Ri. The objective of the scheduler is to minimize the
total flow time ∑

i

Fi =
∑

i

(Ci −Ri) .

Since the Multi-Level Feedback algorithm (MLF) is one of the commonly
used processor-scheduling algorithms in operating systems such as Unix
and Windows NT, Becchetti et al. (2003) choose to analyze its smoothed
competitive ratio.

MLF maintains a set of queues Q0, . . . , Q... and uses Qi to book-keep
jobs that have recently processed for 2i−1 time units. At each stage, the
scheduler processes the job at the front of the lowest non-empty queue. This
algorithm is non-clairvoyant as it makes decisions without full knowledge
of the running time of each job.

Although MLF performs well in practice, its worst-case competitive ratio
is rather poor. In fact no deterministic non-clairvoyant preemptive schedul-
ing algorithm has good competitive ratio due to a lower bound of Ω(2K)
on the competitive ratio of any such scheduling algorithm when processing
times of jobs are chosen from [1, 2K ], as shown by Motwani, Phillips, and
Torng (1993).

In their smoothed analysis, Becchetti et al. use the partial bit pertur-
bation model introduced by Banderier, Beier, and Mehlhorn (2003) with
magnitude parameter k ≤ K. See Definition 9.4. Becchetti et al.’s re-
sults hold for any well-conditioned distribution over [0, 2k−1] whose density
function f satisfies that f is symmetric around its mean µ(f) ∈ [0, 2k−1]
and f is non-decreasing in [1, µ(f)]. Let σ denote the standard deviation
of f .
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Theorem 9.13 (Smoothed Performance of MLF) For any K, k,
and σ, under a partial k-bit perturbation model with a well-conditioned
distribution of standard deviation σ, the smoothed competitive ratio of MLF
is O

(
22kσ−22K−k + 22kσ−3

)
.

For example, Theorem 9.13 implies that the smoothed competitive ratio
of MLF is O(2K−k) for the uniform partial k-bit randomization as the
standard deviation of this distribution is Θ(2k).

Metrical Task Systems

The metrical task systems introduced by Borodin, Linial, and Saks (1992)
provide a general framework for modeling many online problems including
various scheduling and paging problems. A metrical task system is defined
by a weighted, connected and undirected graph G = (V,E,d), where, for
each e ∈ E, d(e) > 0 specifies the length of edge e. For simplicity, one can
assume V = {1, . . . , n}. Naturally, via shortest paths, d also defines the
distance d(u, v) between any two vertices u and v in the graph. A task
can then be represented by an n-dimensional vector τ = (τ(1), . . . , τ(n)),
where τ(i) specifies the service cost of performing τ at vertex i. In an
online metrical task system, a server is initially positioned at a starting
vertex v0, and needs to service a sequence (τ1, . . . , τi, . . . ) of tasks. Upon
receiving τi, an online algorithm must decide which vertex vi to service τi.
So the cost to service τi depends on vi−1 and is equal d(vi, vi−1) + τi(vi).
The objective of the optimization problem is to minimize the total service
cost

∑
i (d(vi, vi−1) + τi(vi)) .

The deterministic online algorithm with the best possible worst-case
competitive ratio is the Work Function Algorithm (WFA) developed by
Borodin, Linial, and Saks. The idea of this algorithm is very simple.
Let wi(v) be the minimum offline cost to process (τ1, . . . , τi) with start-
ing position v0 and ending position v. The vector wi = (. . . , wi(v), . . . )
is called the work function. One can compute wi incrementally by dy-
namic programming. The optimal off-line cost to process (τ1, . . . , τi) is
then minv wi(v). WFA simply chooses si to be the vertex that realizes
minv(wi(v) + d(si−1, v)). Borodin et al. proved that the worst-case com-
petitive ratio of WFA is 2n − 1, and also proved that 2n − 1 is the best
possible competitive ratio for any deterministic online algorithm.

Schäfer and Sivadasan (2004) consider the smoothed competitive ratio
assuming that the service cost of each task is subject to a random pertur-
bation with mean 0 and standard deviation σ. If the perturbation makes
a cost negative, then the cost would be reassigned to 0.
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Theorem 9.14 (Schäfer and Sivadasan) There exist constants c1 and
c2 such that for all (. . . , τ̄i, . . .) with τ̄i ≤ 1, the smoothed competitive ratio
of WFA is bounded above by the smaller of the following two quantities:

c1 ·
(

DIAMETER (G)
λmin

(
λmin

σ
+ log ∆

))
, and

[c2 ·
(√

n · λmax

λmin

(
λmin

σ
+ log ∆

))
,

where λmin = mine∈E d(e), λmax = maxe∈E d(e), DIAMETER (G) is the
diameter, maxu,v d(u, v), of G, and ∆ is the maximum vertex degree of G.

Furthermore, if the service cost vector of each task contains at most k

non-zero entries, then the smoothed competitive ratio of WFA is

O

(
k · λmax

λmin

(
λmin

σ
+ log ∆

))
.

9.3.3 Scientific Computing

Scientific computing is another area where input parameters are often con-
tinuous. In addition, due to round-off errors in scientific computing, inputs
to numerical algorithms are subject to random perturbations (Wilkinson
(1963)). We now discuss results of smoothed analysis in solving linear
systems and in parallel mesh generation.

Growth Factor and Bit-Complexity of Gaussian Elimination

Solving linear systems is the most fundamental problem in computational
science and numerical linear algebra (Strang (1980), Golub & Van Loan
(1989), Demmel (1997)). The most common method used to find a solution
to a system Ax = b is the classical Gaussian elimination. The method
first uses elimination to reduce an n variables and n equations system to
a smaller n − 1 by n − 1 system and then recursively solves the smaller
system. In the elimination, it chooses one of the equations and one of the
variables, and uses the chosen equation to eliminate the variable from other
equations. The choice of the equation and the variable is determined by a
pivoting rule.

The simplest pivoting rule is to use the ith equation to eliminate the
ith variable. This process, often referred as Gaussian elimination without
pivoting, factors the coefficient matrix A into

A = LU,

where L is a lower triangular matrix and U is an upper triangular matrix.
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The pivoting rule most used in practice is partial pivoting. In the ith step,
it chooses the equation in which the ith variable has the largest coefficient in
absolute value, and uses that equation to eliminate the ith variable. Gaus-
sian elimination with partial pivoting defines a row-permutation matrix P
and factors PA into

PA = LU.

Because of the partial pivoting, all entries in L have absolute value at
most 1.

Another quite natural pivoting rule is the complete pivoting rule. In the
ith step, it chooses the equation containing the the largest coefficient (in
absolute value) from the entire system uses it to eliminate the variable that
has that coefficient. Gaussian elimination with complete pivoting produces
a row permutation matrix P (for the choices of equations) and a column
permutation matrix Q (for the choices of variables) and factors PAQ into

PAQ = LU.

In his seminal work, Wilkinson (1961) considers the number of bits
needed to obtain a solution of a given accuracy. He proves that it suf-
fices to carry out Gaussian elimination with

b + log2(5nκ(A) ‖L‖∞ ‖U‖∞ / ‖A‖∞ + 3)

bits of accuracy to obtain a solution that is accurate to b bits. In the
formula, κ(A) = ‖A‖2

∥∥A−1
∥∥

2
is the condition number of A where ‖A‖2 =

maxx ‖Ax‖2 / ‖x‖2, and ‖A‖∞ is the maximum absolute row sum. The
reciprocal of

∥∥A−1
∥∥

2
is also known as the smallest singular value of A.

The quantity ‖L‖∞ ‖U‖∞ / ‖A‖∞ is called the growth factor of the
elimination. It depends on the pivoting rule. We will use ρGEWP (A),
ρGEPP (A), and ρGECP (A) to respectively denote the growth factors of
Gaussian elimination without pivoting, with partial pivoting, and with
complete pivoting.

For some nonsingular matrix A, ρGEWP (A) could be unbounded as the
pivoting coefficient could be zero or arbitrarily close to zero.

Wilkinson constructs a family of matrices, Wn = Ln + Cn, where Ln

is an n × n lower triangular matrix with diagonal entries equal to 1 and
off-diagonal entries equal to −1, and Cn is a matrix with Cn[n, n] = 0,
Cn[i, j] = 0 for j < n, and Cn[i, n] = 1 for i < n. For Wn, ρGEPP (Wn) =
Ω(2n). On the positive side, Wilkinson also proves that for any non-singular
matrix A, ρGECP (A) = nO(log n).

Wilkinson’s counterexample shows that in the worst-case one must use
at least Ω(n) bits to accurately solve every linear system using the partial
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pivoting rule. However, in practice one usually obtains accurate answers
using much less precision1. In fact, it is rare to find an implementa-
tion of Gaussian elimination that uses more than double precision, and
high-precision solvers are rarely used or needed (Trefethen & Schreiber
(1990) and Trefethen & Bau (1997)). For example, LAPACK uses 64 bits
(Anderson et al. (1999)).

Sankar, Spielman, and Teng (2005) conduct smoothed analysis of growth
factors for Gaussian eliminations without pivoting and with partial pivot-
ing. They prove the following results.

Theorem 9.15 (Gaussian Elimination without Pivoting) For n >

e4, let Ā be an n-by-n matrix for which
∥∥Ā∥∥

2
≤ 1, and let A be a σ-

Gaussian perturbation of Ā, for σ ≤ 1/2. Then,

E [log ρGEWP (A)] ≤ 3 log2 n + 2.5 log2

(
1
σ

)
+

1
2

log2 log2 n + 1.81.

Theorem 9.16 (Gaussian Elimination with Partial Pivoting) For
any n-by-n matrix Ā such that

∥∥Ā∥∥
2
≤ 1, let A be a σ-Gaussian pertur-

bation of Ā. Then, for x > 1

Pr

[
ρGEPP (A) > x21

(
n(1 + σ

√
n)

σ

)12 log n
]
≤ x− log n.

Condition Number of Matrices

A key step in the smoothed analysis of the growth factor is to obtain a
smoothed bound on the condition number of a square matrix. The condi-
tion number κ(A) = ‖A‖2

∥∥A−1
∥∥

2
measures how much the solution to a

system Ax = b changes as one makes slight changes to A and b. A con-
sequence is that if one solves the linear system using fewer than log(κ(A))
bits of precision, one is likely to obtain a result far from a solution (Golub
& Van Loan (1989), Trefethen & Bau (1997), Demmel (1997)).

Sankar, Spielman, and Teng (2005) establish the following smoothed
bound on the condition number:

Theorem 9.17 (Smoothed Analysis of Condition number) Let Ā
be an n × n matrix satisfying

∥∥Ā∥∥
2
≤ √n, and let A be a σ-Gaussian

1 Wright (1993) gives a collection of natural problems for which Gaussian elimination
with partial pivoting is unstable.
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perturbation of Ā, with σ ≤ 1. Then,

Pr [κ(A) ≥ x] ≤
14.1n

(
1 +

√
2 ln(x)/9n

)
xσ

.

As bounds on the norm of a random matrix are standard, to prove The-
orem 9.17, one only needs to focus on the norm of the inverse. Notice
that 1/

∥∥A−1
∥∥

2
= minx ‖Ax‖2 / ‖x‖2 is the smallest singular value of A.

Sankar, Spielman, and Teng prove the following theorem:

Theorem 9.18 (Smallest singular value) Let Ā be an arbitrary square
matrix in Rn×n, and let A be a σ-Gaussian perturbation of Ā. Then

PrA
[∥∥A−1

∥∥
2
≥ x

]
≤ 2.35

√
n

xσ

Wschebor (2004) improves the smoothed bound on the condition number.

Theorem 9.19 (Wschebor) Let Ā be an n × n matrix and let A be a
σ-Gaussian perturbation of Ā for σ ≤ 1. Then,

Pr [κ(A) ≥ x] ≤ n

x

 1
4
√

2πn
+ 7

(
5 +

4
∥∥Ā∥∥2

2
(1 + log n)
σ2n

)1/2
 .

When
∥∥Ā∥∥

2
≤ √n, his result implies

Pr [κ(A) ≥ x] ≤ O

(
n log n

xσ

)
.

Zero-Preserving Perturbations and Symmetric Linear Systems

Many matrices that occur in practice are both symmetric and sparse.
Moreover, numerical algorithms take advantage of any assumed sparseness.
Thus, it is natural to study the smoothed complexity of algorithms under
perturbations that respect symmetry and non-zero structure. See Defini-
tion 9.8 for zero-preserving perturbations. One can express a symmetric
matrix A as T + D + TT , where T is a lower-triangular matrix with zeros
on the diagonal and D is a diagonal matrix. By making a zero-preserving
perturbation to T̄, we preserve the symmetry and the zero-structure of the
matrix.

Sankar, Spielman, Teng (2005) extend their results on condition num-
ber and growth factor to symmetric matrices with zero-preserving and
symmetry-preserving perturbations.
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Theorem 9.20 (Condition number and growth factor of symmet-
ric matrices) Let Ā = T̄ + D̄ + T̄T be an arbitrary n-by-n symmetric
matrix satisfying

∥∥Ā∥∥
2
≤ √n. Let σ2 ≤ 1, let T be a zero-preserving

σ-Gaussian perturbation of T̄, let GD be a diagonal matrix of Gaussian
random variables of standard deviation σ and mean 0 that are independent
of T and let D = D̄ + GD. Then, for A = T + D + TT and x ≥ 2,

Pr [κ(A) ≥ x] ≤ O

(
n2
√

log x

xσ

)
.

In addition,

E [log ρGEWP (A)] = O
(
log

(n

σ

)
.

Well-Shaped Mesh Generation: Parallel Delaunay Refinement

Mesh generation is a key problem in scientific computing (Edelsbrunner
(2001) and Teng & Wong (2000)). In mesh generation, one is given a
geometric domain, specified by its boundary. The goal is to produce a
triangulation of the domain, wherein all triangles are well-shaped. One
standard definition of well-shapedness is that the ratio of the circum-radius
to the shortest side of each triangle is bounded by a prespecified constant,
such as 2 (Miller et al. (1995)). One would also like to minimize the number
of triangles in the mesh.

A special family of input domains is the periodic point set: If P is a finite
set of points in the half-open unit box [0, 1)d and Zd is the d-dimensional
integer grid, then S = P +Zd is a periodic point set (Edelsbrunner (2001)).
The periodic set S contains all points p+v, where p ∈ P and v is an integer
vector. Periodic point sets are often used to study some basic issues in
well-shaped mesh generation and to simplify the presentation of several
mesh generation algorithms (Cheng et al. (2000) and Edelsbrunner et al.
(2000)).

The Delaunay triangulation of a periodic point set is also periodic. In
general, this triangulation might not be well-shaped. A practical and
popular technique to generate a well-shaped mesh is to iteratively ap-
ply Delaunay refinement1: Choose a triangle that is not well-shaped, add
its circumcenter to the domain, and recompute the Delaunay triangula-
tion. This process will be repeated until there are no more poorly-shaped
elements.
1 Chew (1989) and Ruppert (1993) pioneer this approach in two dimensions and

Shewchuk (1998) extends it to three dimensions. Li and Teng (2001), Cheng and
Dey (2002) resolve a major difficulty of Shewchuk’s extension to ensure that all tetra-
hedra are well-shaped.
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The standard Delaunay refinement algorithms are inherently sequential.
Spielman, Teng, and Üngör (2002) define a parallel rule1 for adding more
points for refinement. They prove that if the minimum pair-wise distance of
the input point set is s, then the use of the parallel rule takes O(log2(1/s))
parallel time. In the smoothed setting where input points are subject to
small perturbations, their result implies:

Theorem 9.21 (Parallel Delaunay Refinements) For any point set
P̄ ⊆ R2, let P be a σ-Gaussian perturbation of P̄ . Then there is a parallel
Delaunay refinement algorithm that, in O(log2(1/σ)) time, produces a well-
shaped mesh for P + Z2. Moreover, the number of elements in this mesh is
within a constant factor of the optimal solution. The number of processors
needed is equal to the size of the resulting mesh.

9.3.4 Discrete and Geometric Structures

The notion of perturbations and neighborhoods is far less straightforward
for discrete structures than for continuous structures. Perhaps, the simplest
model for perturbing a graph Ḡ = (V, Ē) is to insert every non-edge (i, j) �∈
Ē into the graph with some probability σ and to delete every edge (i, j) ∈ E

from the graph with some probability σ. We denote this distribution on
graphs by P(Ḡ, σ) and call the resulting graph G = (V,E) a σ-perturbation
of Ḡ.

Unfortunately, such perturbations can considerably change the proper-
ties of a graph. For example, the above perturbation model can not be
used if we would like to study the performance of a bisection algorithm for
planar graphs, because almost all perturbed graphs are non-planar.

We now discuss some modifications of this model, which have been pro-
posed in an attempt to make the analysis more meaningful.

• Property-Preserving Perturbations (Spielman & Teng (2003a)):
Given a property P and a basic model of perturbation, a P -preserving
perturbation of an object X̄ is a perturbation of X̄ according to the basic
perturbation model but subject to the condition P (X) = P (X̄). In the
case when Ḡ is a graph and the basic model is the σ-perturbation of Ḡ,
the probability of a graph G with P (G) = P (Ḡ) is

PrG←P(Ḡ,σ)

[
G and (P (G) = P (Ḡ))

]
PrG←(Ḡ,σ)

[
P (G) = P (Ḡ)

]
1 By relaxing the refinement rule that the circumcenters of poorly shaped triangles must

be added, then in Spielman, Teng, and Üngör (2004), they show another approach
with (log(1/s)) parallel time.
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In the property preserving perturbation model for graphs, P can be
any graph property such as planarity or can be a combination of several
properties such as being planar and having a bisection of size at most B.

• The Semi-Random Model (Blum & Spencer (1995)): Blum and
Spencer’s semi-random graph model combines Santha and Vazirani’s
(1986) semi-random source with the random graph model that has a
“planted solution” (Boppana (1987)). Since this is best described by an
example, let us consider the k-Coloring Problem.

An adversary plants a solution by partitioning the set V of n vertices
into k subsets V1, . . . , Vk. Let

F = {(u, v)|u and v are in different subsets}

be the set of potential inter-subset edges. A graph is then constructed
by the following semi-random process that perturbs the decisions of the
adversary: Initially let H = F . Then while H is not empty,

1. the adversary chooses an edge e from H, and decides whether it
would like to include the edge in the graph.

2. The semi-random process then reverses the decision with proba-
bility σ.

3. The edge e is then removed from H.

We will refer such a graph as a semi-random k-colorable graph. In this
model, one can also require that each Vi has size n/k or Θ(n/k). Such a
graph is called a balanced semi-random k-colorable graph.

All semi-random k-colorable graphs have the same planted coloring:
Π(v) = i for all v ∈ Vi, because both the adversary and the semi-random
process preserve this solution by only considering edges from F .

As with the smoothed model, one can work with the semi-random
model, by varying σ from 0 to 1/2, to interpolate between worst-case and
average-case complexity for k-coloring. In fact, the semi-random model
is related to the following perturbation model that partially preserves a
particular solution:

Let Ḡ = (V, Ē) be a k-colorable graph. Let Π : V → {1, . . . , k} be a
k-coloring of Ḡ and let Vi = {v | Π(v) = i}. The model then returns a
graph G = (V,E) that is a σ-perturbation of Ḡ subject to Π also being
a valid k-coloring of G. In other words, the perturbation is subject to

E ⊆ F = {(u, v)|u and v are in different subsets} .

This perturbation model is equivalent to the semi-random model in which
the adversary is oblivious. An oblivious adversary simply chooses a set
Ē ⊆ F , and sends the decisions that only include edges in Ē (and hence
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exclude edges in F − Ē) through the semi-random process. Thus, if a k-
coloring algorithm can successfully color semi-random k-colorable graphs
(with high probability), it must also be able to color graphs generated
by the perturbation model that partially preserves a particular solution.
• Solution-Preserving Perturbations: The semi-random model only

generates graphs that have the planted solution and hence only assigns
non-zero probabilities to graphs that have the planted solution. In this
model, the decision problem, such as whether a graph is k-colorable, is
trivial. The search problem, in which one is asked to find the planted
solution, is the subject of the study.

An alternative model is to apply perturbations that preserve a planted
solution. Continuing to use the graph coloring problem as our example,
let Π : V → {1, . . . k} be a k-coloring assignment. For a graph Ḡ =
(V, Ē), if it is k-colored by Π, then G is a σ-perturbation of Ḡ subject to
G having Π as a solution; otherwise G is a σ-perturbation of Ḡ subject
to G not having Π as a solution.
• Monotone Adversary Semi-Random Model (Blum & Spencer

(1995), Feige & Kilian (1998) and Feige & Krauthgamer (2002)): Blum
and Spencer define another generation process of semi-random graphs of
k-colorable graphs: First, partition the set of n vertices into k subsets
V1, . . . , Vk each having n/k vertices. Second, choose a set E1 of edges by
selecting each edge in

F = {(u, v)|u and v are in different subsets}

independently with probability σ. Then, the adversary chooses another
set E2 from F and returns G = (V,E1 ∪ E2).

The monotone adversary semi-random model can be applied to a graph
problem P with a particular “planted” solution S. It is a two step model.
In the first step, it generates a “random” graph G̃ = (V, Ẽ) with S as a
solution according to some distribution. In the second step, the adversary
can only modify G̃ in a limited way – the modification has to respect the
planted solution S.

For example, the following is the semi-random model for graph bisec-
tion analyzed by Feige and Kilian (1998): Let 0 ≤ q < p ≤ 1, let V1 be a
subset of V of size n/2 and let V2 = V − V1. The random process builds
a graph G̃ = (V, Ẽ) by selecting each edge in V1 × V2 with independent
probability q and each edge in (V1 × V1) ∪ (V2 × V2) with probability p.
The adversary is then given the chance to add a subset of edges from
(V1×V1)∪(V2×V2) to the graph and remove a subset of edges of V1×V2

from the graph.
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Results in the Semi-Random Model

We now summarize some results in the monotone adversary semi-random
model.

Theorem 9.22 (Semi-Random Coloring: Blum-Spencer) For any
ε > 0 and p ≥ n

−2k
(k+1)k−2+ε, there is a polynomial-time algorithm to k-color

a balanced semi-random k-colorable graph with probability 1− o(1). When
k = 3, the condition on p is p ≥ n−1/3+ε.

Feige and Kilian (1998) improve the above result and show:

Theorem 9.23 (Semi-random Coloring: Feige and Kilian) For any
constant k, ε > 0 and p ≥ ((1 + ε)k lnn)/n, there is a polynomial-time
algorithm to k-color a balanced semi-random k-colorable graph with high
probability. But if p < (1−ε) ln /n, every random polynomial time algorithm
will fail with high probability to k-color a balanced semi-random k-colorable
graph, unless NP ⊆ BPP .

Feige and Kilian (1998) also extend their semi-random analysis to the
maximum independent set and Graph Bisection Problem. For the indepen-
dent set problem, they develop a new two-phase algorithm. The algorithm
first uses semidefinite programming as a tool to compute a constant num-
ber of nearly independent sets. It then uses a matching based optimization
technique to purify the output of Phase I to extract the embedded maxi-
mum independent set.

Theorem 9.24 (Semi-Random Maximum Independent Set) For any
α > 0, ε > 0, and p = (1 + ε) ln n/αn, there is a randomized polynomial
time algorithm that finds the embedded independent set of size αn in a
semirandom graph with high probability.

For graph bisection, Feige and Kilian consider the monotone adver-
sary semirandom model and analyze the performance of a semidefinite-
programming-based bisection algorithm.

Theorem 9.25 (Semi-Random Bisection) There exists a constant c

such that for any 1 ≥ p > q satisfying p − q ≥ c
√

p log n/n, with high
probability, Feige-Kilian’s algorithm finds the embedded bisection in a semi-
random graph in polynomial time.

Feige and Krauthgamer (2002) examine the Bandwidth Problem:. One
is given a undirected graph G = (V,E) of n vertices and is asked to find
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a linear ordering π from V onto {1, . . . , n} to minimize the bandwidth:
max {|π(u)− π(v)| : (u, v) ∈ E}.

In the semi-random model, using parameters B and p, a graph is gen-
erated by choosing a linear ordering π of V and selecting each pair (u, v)
satisfying |π(u)− π(v)| ≤ B with probability p. Then the monotone ad-
versary may add a set of pairs (w, z) satisfying |π(w)− π(z)| ≤ B.

Theorem 9.26 (Bandwidth Problem) There exists a constant c such
that for any ε, B, and p satisfying ln2 n ≤ Bn/ ln n and p ≥ c ln n/B, with
high probability, Feige and Krauthgamer’s algorithm, in polynomial time,
returns a linear ordering of vertices with bandwidth (1+ε)B for semirandom
graphs.

Results in the Property-Preserving Model

Spielman and Teng (2003a) prove that under property-preserving perturba-
tions, several property-testing algorithms become sublinear-time decision
algorithms with low smoothed error probability.

In a decision problem of a property P over an instance domain Dn, one
is given an instance x ∈ Dn and is asked to decide whether P (x) is true
or false. In graph theory, some graph properties such as Bipartite, the
property of being bipartite, have a polynomial-time decision procedure.
Other properties such as ρ-Clique, the property of having a clique of size
ρn and ρ-Bisection, the property of having a bisection of at most ρn2 edges,
have no polynomial-time decision procedure unless NP = RP.

Rubinfeld and Sudan (1996) introduce property testing, a relaxation of
the standard decision problem. The objective of property testing is to
efficiently distinguish those instances that have a property from those that
are “far” from having the property. An algorithm A is said to be a property
tester for the property P with parameter ε ≥ 0 if

1. for all x with property P , then Pr [A(x, ε) = 1] ≥ 2/3; and
2. for all x of distance at least ε from every instance that has property

P , Pr [A(x, ε) = 1] ≤ 1/3,

under some appropriate measure of distance on inputs. It follows from this
definition that a property testing algorithm A satisfies

Pr [A(X, ε) �= P (X)] < 1/3

for all instances that have property P and for all instances that are at least
ε distance from those with property P . For graphs, one possible measure
of the distance between two graphs G1 = (V,E1) and G2 = (V,E2) on n
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vertices is the fraction of edges on which G1 and G2 differ: |(E1 ∪ E2) \

(E1 ∩ E2)|/
(

n

2

)
.

A typical property-testing algorithm will use a randomized process to
choose a small number of facets of x to examine, and then make its decision.
For example, a property tester for a graph property may query whether or
not certain edges exist in the graph. The quality of a property-testing
algorithm is measured by its query complexity (the number of queries to
the input) and its time complexity.

Under this relaxation, many properties can be tested by sub-linear algo-
rithms that examine random portions of their input. For example, Goldre-
ich, Goldwasser, and Ron (1998) prove the following theorem.

Theorem 9.27 (Goldreich-Goldwasser-Ron) The properties ρ-Clique
and ρ-Bisection have property-testing algorithms with query complexity poly-
nomial in 1/ε and time complexity 2Õ(1/ε3), and the property Bipartite has
a property testing algorithm with query and time complexities polynomial
in 1/ε.

Let P be a graph property. Let PP (X,σ) be the distribution of P -
preserving σ-perturbations of X. Spielman and Teng (2003a) use the fol-
lowing lemma to relate the smoothed error probability of using a testing
algorithm for P as a decision procedure with the probability that a P -
preserving perturbed instance is far from one having property P .

Lemma 9.2 (Testing for Decision: Smoothed Error Probability)
Let P be a property and P(X̄, σ) be a family of distributions satisfying for
all X̄ without property P ,

PrX ←P(X̄,σ)

[
X is ε-close to P |P (X) = P (X̄)

]
≤ λ(ε, σ, n).

Then for every P -testing algorithm A and every input X̄,

PrX ←P(X̄,σ)

[
A(X) �= P (X)|P (X) = P (X̄)

]
< 1/3 + λ(ε, σ, n).

Spielman and Teng (2003a) show that for any graph Ḡ and for P ∈
{Bipartite, ρ-Clique, ρ-Bisection}, then Ḡ not satisfying P implies that
(for any ε for the first property, and ε < σ(1/4 − 2ρ) for the last two
properties),

PrG←PP (Ḡ,σ)[G is ε close to a graph with property P ] < 2−Ω(n2).

Clearly, if Ḡ satisfies P then G also satisfies P . Therefore,
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Theorem 9.28 (Testing for Decision: Smoothed Perspective) There
exists an algorithm A that takes as input a graph G, examines poly(1/σ)
edges of G and runs in time Õ(1/ε3) when P is Bipartite, and in 2Õ(1/ε2)

time when P is ρ-Clique or ρ-Bisection such that for every Ḡ, if G is a
P -property preserving σ-perturbation of Ḡ, then

Pr [A(G) �= P (G)] < 1/3 + o(1).

Applying the techniques developed by Feige and Kilian (1998) Spielman
and Teng (2003a) demonstrate a testing algorithm with faster smoothed
complexity for ρ-Clique.

Theorem 9.29 (Fast Clique Tester) Let ρ and σ < 1/2 be constants.
For any graph Ḡ, let G be a ρ-Clique preserving σ-perturbation of Ḡ. Then,
there exists an algorithm A that examines the induced subgraph of G on a
randomly chosen set of 8

ρσ log
(

4
ρσ

)
vertices and runs in time polynomial

in 1
ρσ to achieve

Pr [A(G) �= ρ-Clique(G)] < 1/4 + o(1).

Comparison of Perturbation Models

Suppose we have two models M1 and M2 for measuring a performance
quality Q of an algorithm A. Then, M1 is said to be more adversarial1 than
M2 if M1(Q,A, σ) ≥M2(Q,A, σ). For example, the worst-case measure is
more adversarial than the smoothed measure and than an average measure.
If M1 is more adversarial than M2, then any upper bound for model M1

is also an upper bound for M2. Conversely, any lower bound for M2 is an
lower bound for M1.

As noted in Blum & Spencer (1995) and Feige & Kilian (1998), the
monotone adversary semi-random model is at least as adversarial as the
semi-random model. In turn, the semi-random model is more adversarial
than the semi-random model with an oblivious adversary.

However, results for the semi-random model may not always extend to
the property-preserving perturbation model, even though these two are
seemingly related. This is partially due to the fact that the semi-random
model only produces “positive” instances which share a common, planted
solution. For example, for the k-coloring problem, the semi-random model

1 One might extend our standard complexity notions such as O, o, Ω, and Θ for models
of measures. For example, we could say M1 = Θ(M2) if there exist constants n0, σ0,
and C1 ≤ C2 such that for all n ≥ n0 and σ ≤ σ0, C1M2(Q, A, σ) ≤ M1(Q, A, σ) ≤
C2M2(Q, A, σ) when input size is n.
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only generates graphs that are k-colorable and all graphs from this distri-
bution share a common, planted k coloring. Thus, this model does not
assign probabilities to graphs without this planted solution. As some of
these “unassigned” graphs are still k-colorable, results in the semi-random
model may not provide any performance information on them. If we want
to extend a result from the semi-random model to the smoothed model
with property-preserving perturbations, we need to understand the contri-
bution of these instances. For some graph problems, such as the bisection
problem, it remains open whether results in the semi-random model still
hold in the property-preserving perturbation model. In fact, it is not even
clear whether the results would extend to the more closely related solution-
preserving perturbation model.

Finding a proper perturbation model for modeling practical discrete al-
gorithms can be a challenging task. For certain graph problems such as
coloring and bisection, the semi-random model defines a family of distri-
butions using a random process that can be efficiently implemented. In
contrast, the conditional density of an instance in the property-preserving
distribution might be hard to compute in polynomial time. As argued
in Spielman & Teng (2003a), the “practical” distributions may not have
efficient descriptions. So the requirement that a perturbation model be
efficiently implementable might not be reasonable or necessary. Of course,
if one would like to conduct some experimental studies of these models, it
would be helpful if one had an efficient procedure for the perturbation.

For certain graph properties such as planarity, it is relatively hard to
define a semi-random model to study them. For more complex studies, such
as those on the performance of a planar bisection algorithm, one might need
to be more creative to define a suitable semi-random model. Being able
to model these studies might be the strength of the property-preserving
perturbation framework.

Number of Left-to-Right Maxima and Height of Binary Search
Trees

For a sequence a = (a1, . . . , an), an element ai is a left-to-right maximum
of a if ai > aj, for all j < i. When a = (1, 2, . . . , n), the number of left-
to-right maxima is n. Manthey and Reischuk (2005) prove the following
bounds that improve an early result of Banderier, Beier, and Mehlhorn
(2003).

Theorem 9.30 (Manthey-Reischuk) For any sequence ā, let a be an
σ-partial permutation of ā. Let φ(a) be the number of left-to-right maxima
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of a. Then for all 0 < σ < 1,

0.4(1− σ)
√

n/σ ≤ E [φ(a)] ≤ 3.6(1− σ)
√

n/σ.

The most commonly used data structure for storing a set whose elements
have a total ordering is the binary search tree. Perhaps the simplest way
to form a binary search tree for a sequence a = (a1, . . . , an) is to insert
elements of a one by one into an initially empty binary search tree. For
i = 2 to n, we insert ai into the binary search tree Ti−1 of {a1, . . . , ai−1}
to produce tree Ti. An important parameter of this data structure is the
height of the tree. Let T (a) denote the binary search tree so constructed.
If a is sorted, either in increasing or decreasing order, then the height of
T (a) is n. Manthey and Reischuk (2005) prove the following result.

Theorem 9.31 (Manthey-Reischuk) For any sequence ā, let a be an
σ-partial permutation of ā. Let h(a) be the height of the binary search tree
T (a). Then for all 0 < σ < 1,

0.8(1− σ)
√

n/σ ≤ E [h(a)] ≤ 6.7(1− σ)
√

n/σ.

Number of Extreme Points in d Dimensions

Recall that the vertices of the convex hull of a set P of points in Rd are
points in P that cannot be expressed as a convex combination of other
points in P . These points are also called the extreme points of P . Let
v(P ) be the number of extreme points of P . A well known result (Bentley
et al. (1978)) in geometry states: If P is a set of n points chosen uni-
formly at random from the unit d-cube, then the expected value of v(P ) is
O(logd−1 n).

Damerow and Sohler (2004) consider the following version of the
smoothed value of v(P ) and prove the following theorem.

Theorem 9.32 (Damerow-Sohler) For any set P̄ = {p̄1, . . . , p̄n} of n

points from the unit d-cube, let r1, . . . , rn be n vectors chosen uniformly
at random from the cube [−ε, ε]d. Let P = {p̄1 + r1, . . . , p̄n + rn} be an
perturbation of P̄ . Then

E [v(P )] = O

((
n log n

ε

)1−1/(d+1)
)

.
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Motion Complexity

Kinetic data structures have become subjects of active research in computa-
tional geometry since their introduction by Basch, Guibas, and Hershberger
(1997). The aim of these dynamic data structures is to efficiently maintain
combinatorial and geometric information of continuously moving objects.
The motion of objects is typically specified by some algebraic function. The
complexity of the kinetic data structures depends on the initial positions
of objects as well as the functions that govern their motion.

As a first step to study the smoothed complexity of kinetic data struc-
tures, Damerow, Meyer auf der Heide, Räcke, Scheideler, and Sohler (2003)
consider the following problem: Given a set P = {p1, . . . ,pn} of n points
in Rd and a set V = {v1, . . . ,vn} of initial velocity vectors, the position
of the ith object at time t is pi(t) = pi + tvi. The motion complexity for
maintaining the orthogonal bounding box is defined to be the number of
combinatorial changes of the 2d sides of the bounding box.

In the worst case, this motion complexity is Ω(dn). When vi and pi

are chosen uniformly at random from the unit cube [−1, 1]d, the average
complexity is O(d log n). Damerow et al. prove the following result.

Theorem 9.33 (Smoothed Motion Complexity) For any positive in-
teger d, let P̄ = {p̄1, . . . , p̄n} ⊂ [−1, 1]d and V̄ = {v̄1, . . . , v̄n} ⊂ [−1, 1]d.
Let P = {p1, . . . ,pn} and V = {v1, . . . ,vn} be σ-Gaussian perturbations
of P̄ and V̄ , respectively. Then the expected motion complexity for main-
taining the orthogonal bounding box of (P, V ) is O(d(1 + 1/σ) log1.5 n) and
Ω(d
√

log n).

Properties of Perturbed Graphs and Formula

Each perturbation model in the smoothed analysis of graph algorithms
can be used to define a distribution of random graphs. For example, let
H = (V,E) be an undirected graph over vertices V = {1, . . . , n}. For any
σ < 1, the σ-perturbations of H can be viewed as a distribution of random
graphs. Let us refer it as GH,σ. Similarly, for any graph property P , the
P -preserving σ-perturbations of a graph H is also a distribution of random
graphs, denoted by GP,H,σ.

For any m and H = (V,E), Bohman, Frieze and Martin (2003) define a
distribution GH,m of random graphs (V,E∪R) where R is a set of m edges
chosen uniformly at random from the complement of E, i.e., chosen from
Ē = {(i, j) �∈ E} .

Krivelevich, Sudakov, and Tetali (2005) prove a sharp threshold for the
appearance of a fixed subgraph. For a fixed graph Γ with nΓ vertices and eΓ
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edges, let m(Γ) = max {eΓ′/nΓ′ |Γ′ ⊆ Γ, nΓ′ > 0}. For any positive integer
r, let

mr(Γ) = min
r-way partition (V1, . . . , Vr) of V (Γ)

max
|Vi |>0

m(Γ(Vi))

Theorem 9.34 (Emerging of a Subgraph) Let r and α be constants
such that r ≥ 2 and α ∈

(
r−2
r−1 , r−1

r

]
. Let Γ be a graph of no more than

n vertices. Then, for every graph H over {1, . . . , n} of average degree
αn, where m = ω(n2−1/mr (Γ)), GH,m almost surely contains a copy of
Γ. Moreover, there exists a graph H ′ of average degree αn such that if
m = o(n2−1/mr (Γ)), then GH′,m almost surely does not contain a copy of
Γ. Here f = ω(g) is equivalent to g = o(f).

Krievlevich, Sudakov, and Tetalli also consider the problem of adding m

randomly chosen disjunctions of k literals to a satisfiable instance, F , of a
k-SAT formula on n variables. They obtain the following result.

Theorem 9.35 (Transition From Happy to Unhappy) For some c > 0
and ε < 1/k, let F be a satisfiable k-SAT formula on n variables with
at least cnk−ε clauses. Then almost surely the conjunction of F with a
randomly chosen k-SAT formula of m = ω(nkε) clauses is not satisfiable.
Moreover, there exists a satisfiable k-SAT formula F ′ of Ω(nk−ε) clauses
such that the conjunction of F with a randomly chosen k-SAT formula of
m = o(nkε) clauses is satisfiable with high probability.

Several other discrete properties have been studied in the smoothed
setting: for example, Flaxman and Frieze (2004) consider the diameter
of perturbed digraphs and Sudakov and Vondrak (2005) examine the 2-
colorability of dense hypergraphs.

Very recently, Arthur and Vassilvitskii (2005) analyze the smoothed it-
eration complexity of the k-means method (Lloyd (1982)) for clustering:
Given a set P of n points in Rd, the k-means method first chooses an
arbitrary set of k centers and uses the Voronoi diagram of these centers
to partition P into k clusters. Then the center-of-mass of each of these
clusters becomes a new center, and the k-means method re-clusters the
points and repeats this process until it stabilizes. They show that in the
worst-case, the k-means method requires 2Ω(

√
n) iterations to converge. In

contrast, they prove that the k-means method has probably polynomial
smoothed complexity.
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9.4 Open Problems

In this section, we discuss some emerging open questions in smoothed anal-
ysis. For some problems and algorithms, we will present concrete conjec-
tures, whereas for others, we will discuss possible directions for research.

P1: The Simplex Method and its Pivoting Rules

During a Phase II iteration of a simplex algorithm, a vertex vi−1 may
have several neighboring vertices with better objective values. The algo-
rithm needs to decide which of them should be chosen as the next vertex
vi. Simplex algorithms differ by their pivoting rules which guide this de-
cision when there are multiple choices. Several pivoting rules have been
proposed in the literature (Dantzig (1991) and Chvatal (1983)). They
include

• Greedy: Choose the vertex that maximizes the improvement of the ob-
jective value, cT (vi − vi−1).

• Steepest-Edge: Choose the vertex vi whose edge (vi−1,vi) forms the
smallest angle with c, that is, vi maximizes

cT (vi − vi−1)
||vi − vi−1||2

.

• Random: Choose randomly from the neighboring vertices with better
objective values according to some distribution.

There are other rules such as the shadow-vertex rule (Gass & Saaty
(1955)), Bland’s rule (1977) and the self-dual simplex rule (Dantzig (1991)
and Lemke (1965)).

The steepest-edge rule (Forrest & Goldfarb (1992)) is among the most
commonly used in practice. But most existing pivoting rules have been
shown to have exponential worst-case complexity (Klee & Minty (1972),
Goldfarb & Sit (1979), Goldfarb (1983), Jeroslow (1973), Murty (1980),
Amenta & Ziegler (1999)).

A natural open question is whether our results such as Theorem 9.1 on
the smoothed complexity of the shadow-vertex rule can be extended to
other pivoting rules.

Conjecture 9.36 (Smoothed Simplex Conjecture) The smoothed com-
plexity of the simplex algorithms with greedy, steepest-descent, and random
pivoting rules are polynomial under Gaussian perturbations.

The key step for proving Conjecture 9.36 is the Phase II complexity, since
Phase I computation can often be reduced to a Phase II computation in
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which we already know that the constraints are feasible and have an initial
vertex of the feasible region. Like the shadow-vertex simplex algorithm,
these simplex algorithms iteratively produce a path of vertices of the fea-
sible region that monotonically improves the objective value. We refer to
such a path as a c-monotonic path of the feasible polyhedron, recalling that
c is the objective direction.

There is a geometric reason, as pointed out in Spielman & Teng (2004),
that the shadow-vertex simplex algorithm is the first simplex algorithm con-
sidered in both the average-case (Borgwardt (1980)) and smoothed analy-
ses: The length of the c-monotonic path constructed by the shadow-vertex
algorithm can be bounded above by the size of the shadow. Moreover,
the shadow depends only on the initial vertex and the objective direction.
So in the probabilistic analysis, we do not need to explicitly consider the
iterative steps taken by the simplex algorithm.

The key to analyze the smoothed complexity of simplex algorithms with,
say, the steepest-edge pivoting rule is to search for a simpler geometric
parameter that upper bounds the length of its c-monotonic path. We
could start with linear programs of form

max cT x subject to Ax ≤ 1.

One approach is to relate the length of the steepest-edge c-monotonic path
with the size of the shadow analyzed in Theorem 9.1.

Conjecture 9.37 (Shadow and Steepest-Edge Path: I) For any m×n

matrix Ā and an n-vector c̄ such that
∥∥Ā, c̄

∥∥
F
≤ 1, let A and c be σ-

Gaussian perturbations of Ā and c̄, respectively. For an m-vector z, let v
be the vertex of the polyhedron {x : Ax ≤ 1} that maximizes zT v and let
P be the steepest-edge c-monotonic path of the polyhedron {x : Ax ≤ 1}
starting from v. Then, there exists a constant α ≥ 1 and an x0(m,n, 1/σ)
polynomial in m,n, and 1/σ, such that for all x > x0(m,n, 1/σ)

Pr [|P | > x] ≤ α · Pr [|Shadowz,c (A) | > x] .

Conjecture 9.38 (Shadow and Steepest-Edge Path: II) Let A, c,
z, P be the same as defined in Conjecture 9.37. Then, there exists an
h(m,n, 1/σ) polynomial in m,n, and 1/σ and constants k1 and k2

Pr [|P | > h(m,n, 1/σ) · |Shadowz,c (A) |] =
1

mk1nk2
.

One can try to prove similar conjectures for the greedy c-monotonic path.
One might, of course, consider more direct approaches to solve the chal-

lenge posted by iterative methods. The main difficulty in conducting
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probabilistic analyses for iterative methods is not unique to the simplex
method. In the study of the growth factor of Gaussian elimination with
partial pivoting and interior-point methods for linear and convex program-
ming, we have been facing a similar challenge: How do we resolve the
dependency of the structures before and after an iterative step? In each
iterative step, the algorithm explores some fraction of data which is ini-
tially either random or subject to some random perturbations. However,
this exploration of the algorithm in determining an iterative step spoils
the “randomness” in the same fraction of the data. We can be lucky with
some iterative algorithms, such as the shadow-vertex simplex algorithm
and Gaussian elimination without pivoting. For each of these, we have
found a “flat” upper bound parameter to support an iteration-free analysis
of the iterative algorithm. Developing a systematic framework for proba-
bilistic analysis of general iterative methods is a challenging and rewarding
research direction.

One simplex algorithm that comes with a flat geometric characteriza-
tion is Lemke’s self-dual parametric simplex algorithm (Dantzig (1991) and
Lemke (1965)). Polynomial expected bound was established for a lexico-
graphic variant of the self-dual model for solving a random linear program
whose matrices are drawn from a spherically-symmetric distribution (Adler,
Karp, & Shamir (1987), Adler & Megiddo (1985), and Todd (1986)).

Conjecture 9.39 (Lemke’s Self-Dual Parametric Simplex Algo-
rithm) Lemke’s self-dual parametric simplex algorithm has polynomial
smoothed complexity under Gaussian perturbations.

Another line of research in the smoothed analysis of the simplex algo-
rithm is to extend the result from Gaussian perturbations to other pertur-
bations. Recall the family of distributions introduced by Beier and Vöcking
(2004): Let f be a piece-wise continuous univariate density function with
finite mean

∫
R
|x| f(x)dx and supx f(x) = 1. For σ ≤ 1, let fσ be a scaling

of f such that fσ(x) = f(x/σ)/σ. For any x̄, an f -perturbation with mag-
nitude σ < 1 is a random variable x = x̄ + r, where r is randomly chosen
according to density fσ.

Conjecture 9.40 (Perturbations and Simplex Methods) For any
piece-wise continuous univariate density function f with finite mean and
supx f(x) = 1, there exists a σ0 such that for any 0 ≤ σ ≤ σ0 the simplex
algorithm with the shadow-vertex pivoting rule has smoothed time complex-
ity polynomial in m, n, and 1/σ under f-perturbations with magnitude σ.
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P2: Smoothed Hirsch Conjecture

The Hirsch conjecture states that for any convex polytope of m facets in
n dimensions, the diameter of the graph induced by the 1-skeleton of the
polytope is bounded above by (m−n). In other words, any two vertices on
the polytope are connected by a path of length at most (m− n). The best
bound on the diameter of the polyhedron known today is given by Kalai
and Kleitman (1992). Their bound is mlog2 n+1. In the smoothed setting,
we would like to prove the following conjecture.

Conjecture 9.41 (Smoothed Hirsch Conjecture) For any m×n ma-
trix Ā and any m-vector b̄ ∈ Rm such that

∥∥Ā∥∥
F
≤ 1 and

∥∥b̄∥∥
2
≤ 1, let

A and b be σ-Gaussian perturbations of Ā and b̄, respectively. If Ax ≤ b
is feasible, then the expected diameter of the polyhedron defined by Ax ≤ b
is polynomial in m, n, and 1/σ.

A special case of the Smoothed Hirsch Conjecture closely related with
Theorem 9.2 is:

Conjecture 9.42 (Smoothed Hirsch Conjecture: Special Case) For
any m×n matrix Ā such that

∥∥Ā∥∥
F
≤ 1, let A be a σ-Gaussian perturba-

tion of Ā. Then the expected diameter of the polyhedron defined by Ax ≤ 1
is polynomial in m, n, and 1/σ.

Note that Conjecture 9.42 does not directly follow from Theorem 9.2,
although the latter states that on the polyhedron {x | Ax ≤ 1}, for any
two n-vectors c and z, the expected length of the shortest path connecting
the vertex optimized by c and the vertex optimized by z is polynomial in
m, n and 1/σ. There could be an exponential number of pairs of vertices
on the polyhedron. Without using additional geometric properties, the
probability bound in Theorem 9.2 may not be strong enough.

P3: Number of Iterations of IPM and Parallel Linear Program-
ming Algorithms

Several interior-point methods take O(
√

n ·L) number of iterations to solve
a linear program. Some experiments suggest that the number of iterations
could be as low as O

(
log2(mn)

)
when long-step interior-point methods

are used. Although progress has been made in recent years concerning
the convergence of these methods, it remains open whether, in the worst-
case, these long-step methods are better than the more prudent short-step
methods (Wright (1997) and Ye (1997)). If practical observations are any
indication (Todd (1991)), then the following conjecture could be true.
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Conjecture 9.43 (IPM: Optimistic Convergence) Under Gaussian
perturbations, there is an interior-point algorithm with smoothed iteration
complexity O

(
log2(mn/σ)

)
for solving linear programming with input di-

mensions m× n.

The best worst-case iteration lower bound is Ω(n1/3) due to Todd (1994)
and Todd and Ye (1996). However, the programs for which these lower
bounds hold are very ill-conditioned. Dunagan, Spielman, and Teng (2002)
observe that small perturbations could improve the condition numbers of
the resulting linear program. Thus, the lower bound of Todd-Ye does not
hold in the smoothed model.

There has not yet been a lower bound of Ω(nε) for well-conditioned linear
programs. We would like to know whether such a lower bound holds for
well-conditioned programs, or whether there are interior-point algorithms
that take fewer iterations when their input is well-conditioned. Perhaps
one could start with the following weaker version of Conjecture 9.43:

Conjecture 9.44 (IPM: First step?) There is an interior-point al-
gorithm with smoothed iteration complexity O

(
nε log2(mn/σ)

)
for solving

linear programs, for some ε < 1/2.

A closely related theoretical question is the smoothed parallel complexity
of linear programming. In the worst-case, linear programming is complete
for P under log-space reductions (Dobkin, Lipton & Reiss (1979)). In other
words, it is unlikely that one can solve linear programs in poly-logarithmic
time using a polynomial number of processors. Solving linear programming
approximately is also complete for P (Serna (1991) and Megiddo (1992)).

If Conjecture 9.43 is true, then linear programming has a smoothed NC
algorithm – one can solve a linear program in poly-logarithmic (in m, n,
and 1/σ)) time using a polynomial number of processors. One might relax
the poly-logarithmic dependency on 1/σ and conjecture that:

Conjecture 9.45 (Parallel Linear Programming) There exists a lin-
ear programming algorithm with smoothed parallel complexity, under σ-
Gaussian perturbations, O

(
σ−k1 logk2(mn)

)
for some constants k1 and

k2.

Luby and Nisan (1993) consider the parallel complexity of a special fam-
ily of linear programs

max cT x subject to Ax ≤ b,

where all input entries in A, b and c are positive. They give a parallel
algorithm that, for any ε > 0, finds a (1 + ε)-approximate solution in time
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polynomial in 1/ε and log(mn) using O(mn) processors. Although posi-
tive linear programming is also complete for P under log-space reductions
(Trevisan & Xhafa (1998)) the following conjecture may still be true.

Conjecture 9.46 (Positive Linear Programming) There exists a posi-
tive linear programming algorithm with smoothed parallel complexity
O
(
σ−k1 logk2(mn)

)
for some constant k1 and k2.

The conjecture above may follow from the results of Spielman & Teng
(2003b), Dunagan, Spielman, & Teng (2002) and Luby & Nisan (1993).
It might be more challenging, however, to prove the following stronger
conjecture:

Conjecture 9.47 (Positive Linear Programming: Stronger Ver-
sion) There is a positive linear programming algorithm with smoothed par-
allel complexity O (logc(mn/σ)) for some constant c.

We would like to conclude this subsection with what might be a simple
question. Vaidya (1987) proves that any linear program (A,b, c) of m con-
straints and n variables can be solved in O((n+m)n2+(n+m)1.5n)L) time.
Is it true that the L in Vaidya’s bound can be replaced by log C(A,b, c)?
Recall that C(A,b, c) is the condition number of the linear program de-
fined by (A,b, c). If true, we can apply the smoothed analysis of Dunagan,
Spielman and Teng (2002) to show Vaidya’s linear programming algorithm
runs in O((n + m)n2 + (n + m)1.5n) log(mn/σ)) smoothed time. Com-
bining with Clarkson’s reduction (1995), this would reduce the smoothed
complexity for linear programming in low dimensions to

O
(
n2m + n6 log m log(mn/σ)

)
.

P4: Convex and Conic Programming

Can we extend Theorem 9.7 and Theorem 9.8 from linear programming
to conic convex programming (Cucker & Peña (2001) and Freund & Vera
(2000)) and to general convex programming (Nesterov & Nemirovskii
(1994))? For conic convex programming, one can first consider the fol-
lowing form

min cT x subject to Ax− b ∈ C1 and x ∈ C2

where C1 ⊂ Rm and C2 ⊂ Rn are closed convex cones.
The dual of this program is

max bTy subject to c−AT y ∈ C∗
2 and y ∈ C∗

1,
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where for i ∈ {1, 2}, C∗
i is the dual cone of Ci:

C∗
i =

{
u : uTv ≥ 0 for any v ∈ Ci.

}
Note that in this form the primal and dual programs have the same

format. As the concept of the distance to ill-posedness can be easily ex-
tended from linear programs to conic programs, Renegar’s condition num-
ber for linear programs naturally extends to conic programs. Similarly,
it has been shown (Freund & Vera (200) and Nesterov & Nemirovskii
(1994)) that the complexity of the interior-point method for conic pro-
gramming depends logarithmically on the condition number of the input
program.

For a convex body K in Rd, let ∂K be its boundary. For any ε ≥ 0, let

∂ (K, ε) = {x : ∃x′ ∈ ∂K, ‖x− x′‖2 ≤ ε}

The proof of Theorem 9.7 uses the following key probabilistic bound of
Ball (1993) in convex geometry.

Theorem 9.48 (Ball (1993)) Let µ be the density function of a n-
dimensional Gaussian random vector with center 0 and variance σ2. Then
for any convex body K in Rn,∫

∂K

µ ≤ 4n1/4.

The smoothed analysis of Dunagan, Spielman and Teng (2002) applied
the following corollary of Theorem 9.48 to estimate the probability that a
perturbed linear program is poorly conditioned.

Corollary 9.1 (Darting the boundary of a convex set) For a vector
x̄ ∈ Rn, let x be a σ-Gaussian perturbation of x̄. Then for any convex body
K in Rn,

Prx [x ∈ ∂ (K, ε) \K] ≤ 4n1/4ε

σ
(outside boundary),

Prx [x ∈ ∂ (K, ε) ∩K] ≤ 4n1/4ε

σ
(inside boundary).

Proving the following conjecture would allow us to extend Theorem 9.7
and Theorem 9.8 to conic convex programming.

Conjecture 9.49 (Linear Transformation of Convex Cones) For
any convex cone K in Rn, let A be a σ-Gaussian perturbation of an m×n

matrix Ā with
∥∥Ā∥∥

F
≤ 1. Then, there exist constants σ0, m0, n0, c, k1,
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k2, and k3 such that for any convex cone C with angle Θ, n ≥ n0, m ≥ m0,
and 0 ≤ σ ≤ σ0

Pr [(A ·K) ∩C = ∅ & (A ·K) ∩ ∂ (C, ε) �= ∅] ≤ c ·mk1nk2

( ε

σ

)k3

, and

Pr [(A ·K) ∩C �= ∅ & ((A ·K) ∩C) ⊆ ∂ (C, ε ·Θ)] ≤ c ·mk1nk2

( ε

σ

)k3

.

Note that when K is a single vector, (A ·K) is a Gaussian perturbation
of the vector (Ā ·K). Thus, in this case, Conjecture 9.49 is a special case
of Corollary 9.1 and hence is true.

Conjecture 9.50 (Smoothed condition number of conic program-
ming) For any (Ā, b̄, c̄) and σ ≤ 1, let A, b and c be σ-Gaussian per-
turbations of Ā, b̄ and c̄. Then, for any closed convex cones C1 and C2,
the expectation of the the logarithm of the condition of the conic program
defined by A,b, c together with C1 and C2 is O(log(mn/σ)).

An important family of conic convex programming problems is semi-
definite programming (SDP). The standard primal form of a semi-definite
program is (Todd (2001))

max
X

C • X subject to Ai • X = bi, i = 1, . . . ,m and X * 0

where C, Ai, and X are symmetric matrices and X is required to be positive
semi-definite. Because the set of positive semi-definite matrices forms a
convex cone, a semi-definite program is a conic convex program. One can
define the condition number of a semi-definition program for (C, {Ai} ,b).
We conjecture that the expectation of the the logarithm of this condition
number is O(log(mn/σ)) under Gaussian perturbations.

Even though every convex optimization problem can be transformed into
an equivalent instance of conic programming, the transformation, like those
among normal forms of linear programming, may not preserve the condition
number of the programs. Freund and Ordóñez (2005) explicitly consider
the condition number of convex programming in the following non-conic
form:

min cT x subject to Ax− b ∈ C and x ∈ K

where C ⊂ Rm is a convex cone while K could be any closed convex set
(including a cone).

It would be interesting to understand the smoothed behavior of the con-
dition number of convex programs in this form.
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P5: Two-Person Games and Multi-Person Games

A two-person game or bimatrix game (Nash (1951) and Lemke (1965)) is
specified by two m×n matrices A and B, where the m rows represent the
pure strategies for the first player, and the n columns represent the pure
strategies for the second player. In other words, if the first player chooses
strategy i and the second player chooses strategy j, then the payoffs to the
first and the second players are aij and bij , respectively.

Nash’s theorem (1951) on non-cooperative games when specialized to
two-person games states that there exists a profile of possibly mixed strate-
gies so that neither player can gain by changing his/her (mixed) strategy,
while the other player stays put. Such a profile of strategies is called a
Nash equilibrium.

Mathematically, a mixed strategy for the first player can be expressed
by a column probability vector x ∈ Rm, that is, a vector with non-negative
entries that sum to 1, while a mixed strategy for the second player is a
probability vector y ∈ Rn. A Nash equilibrium is then a pair of probability
vectors (x,y) such that for all probabilities vectors x′ ∈ Rm and y′ ∈ Rn,

xT Ay ≥ (x′)T Ay and xT By ≥ xT By′.

The complexity of finding a Nash equilibrium of a two-person game re-
mains open and is considered to be a major open question in theoretical
computer science. Recently, Savani and von Stengel (2004) show that the
classical Lemke-Howson algorithm (1964) needs an exponential number of
steps in the worst case.

In smoothed analysis with Gaussian perturbations, we assume the payoff
matrices A and B are subject to small Gaussian perturbations. The most
optimistic conjecture is:

Conjecture 9.51 (Smoothed 2-Nash Conjecture) The problem of
finding a Nash equilibrium of a two-person game, 2-Nash, is in smoothed
polynomial time under Gaussian perturbations.

As the first step of this research, one could examine the worst-case in-
stances of Savani-von Stengel in the smoothed model. We would like to
understand whether such worst-case instances are stable when subject to
perturbations. If one can build a stable instance with poor complexity for
Lemke-Howson’s algorithm, then its smoothed complexity would be poor.

Open Question 1 (Smoothed Complexity of Lemke-Howson) Does
Lemke-Howson’s algorithm for 2-Nash have polynomial smoothed complex-
ity under Gaussian perturbations?
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One could consider other algorithms in order to prove the Smoothed
2-Nash Conjecture. An encouraging recent development is the work of
Barany, Vempala, and Vetta (2005) who show that when entries of A
and B are Gaussian variables with mean 0, then 2-Nash has polynomial
average-case complexity. So far, their technique does not quite apply to
the smoothed model.

As a more general research direction, one can ask similar questions about
other games, such as the combinatorially defined graphical games (Kearns,
Littman & Singh (2001)), general multi-player finite games (Nash (1951)),
or stochastic games (Jurdzinski (2005)).

The 4-person game, 4-Nash, was recently shown to be PPAD-complete by
Daskalakis, Goldberg, and Papadimitriou (2005). This result implies that
4-Nash is as hard as the computation of Brouwer fixed points.

Open Question 2 (Game Theory and Algorithms) What is the
smoothed complexity of the computation of Nash equilibria? What is the
impact of perturbations to mechanism design?

In particular,

Open Question 3 (Smoothed Complexity of 4-Nash) Is 4-Nash, or
3-Nash, in smoothed polynomial time under Gaussian perturbations?

P6: Gaussian Elimination and Condition Numbers

Several very basic questions on the stability and growth factors of Gaussian
elimination remain open. In the worst-case, there are matrices for which
Gaussian elimination with partial pivoting has a larger growth factor than
Gaussian elimination without pivoting. Similarly, there are matrices for
which Gaussian elimination with complete pivoting has a larger growth
factor than Gaussian elimination with partial pivoting. Experimentally,
partial pivoting has been shown to be much more stable than no pivoting
but less stable than complete pivoting.

The most important open problem in the smoothed analysis of Gaussian
elimination is to improve the bound of Theorem 9.16. Experimental work
seems to suggest that it is exponentially unlikely that Gaussian elimination
with partial pivoting has a superpolynomial growth factor.

Conjecture 9.52 (Exponential Stability of GEPP) For any n × n

matrix Ā such that
∥∥Ā∥∥

2
≤ 1, let A be a σ-Gaussian perturbation of Ā.

Then, there exists constants c1 and c2 such that

PrA
[
ρGEPP (A) > x

(n

σ

)c1]
≤ 2−c2x.
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There are several other matrix factorization methods that also enjoy
practical success. One example is the Bruhat’s decomposition that fac-
tors A as A = VΠU where Π is a permutation matrix, V and U are
upper triangular matrices, and ΠT VΠ is a lower triangular matrix (van
den Driessche,Odeh & Olesky (1998)). Another example is the superLU
algorithm developed by Li and Demmel (Li (2005)). It first permutes a
matrix A in order to move large elements to the diagonal. A maximum
weighted matching algorithm is used for this step to produce a permutation
matrix P. The algorithm then symmetrically permutes PA into Q(PA)QT

to improve the sparsity for elimination. Then Q(PA)QT is factored into
LU using Gaussian elimination with no pivoting but with one modification:
if during the elimination the current pivoting diagonal entry is smaller than
ε ‖A‖F , for some ε, then it is replaced by

√
ε ‖A‖2 before the elimination

step proceeds. To solve a linear system Ax = b, one can use this fac-
torization to obtain an approximate solution by solving the two triangular
systems, one defined by U and one defined by L. Finally the algorithm
may apply a few iterations to improve its solution.

Open Question 4 (Stability of Linear Solvers) What is the smoothed
performance of these practically-used factorization algorithms and linear
solvers under Gaussian perturbations or under zero-preserving Gaussian
perturbations?

An alternative approach to improve the stability of LU factorization is
to use randomization. For example, in the ith step of elimination, instead
of choosing the equation with the largest ith coefficient (in absolute value)
as in partial pivoting, one can select the next equation from a random
distribution that depends on the magnitudes the ith coefficients of the
equation. Intuitively, the larger the magnitude of its ith coefficient, the
higher is the chance that the equation is chosen. For example, suppose
the ith coefficients are a

(i−1)
i,i , . . . , a

(i−1)
n,i . For each p > 0, the p-normal

partial pivoting chooses the equation with coefficient a
(i−1)
k,i for k ≥ i with

probability (
a
(i−1)
k,i

)p

(
a
(i−1)
i,i

)p

+ . . . +
(
a
(i−1)
n,i

)p .

Open Question 5 (Gaussian elimination with p-normal partial piv-
oting) What is the expected growth factor of Gaussian elimination with
p-normal partial pivoting?

Is there a p such that the expected growth factor of Gaussian elimination
with p-normal partial pivoting is polynomial in n?
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Under Gaussian perturbations, what is the smoothed growth factor of
Gaussian elimination with p-normal partial pivoting?

Does Gaussian elimination with p-normal partial pivoting have exponen-
tial stability as defined in Conjecture 9.52?

There are several questions still open dealing with the condition numbers
and the smallest singular value of a square matrix.

Conjecture 9.53 (Condition Number) Let Ā be an n×n matrix satis-
fying

∥∥Ā∥∥
2
≤ √n, and let A be a σ-Gaussian perturbation of Ā for σ ≤ 1.

Then,

Pr [κ(A) ≥ x] ≤ O
( n

xσ

)
.

Conjecture 9.54 (Smallest Singular Value) Let Ā be an arbitrary
square matrix in Rn×n, and let A be a σ-Gaussian perturbation of Ā.
Then

PrA
[∥∥A−1

∥∥
2
≥ x

]
≤
√

n

xσ
.

In the average case where G is a Gaussian matrix with each of its entries
an independent univariate Gaussian variable with mean 0 and standard
deviation σ, Edelman (1988) proves

PrG
[∥∥G−1

∥∥
2
≥ x

]
≤
√

n

xσ
.

One possible way to prove Conjecture 9.54 would be to show that the
Gaussian matrix considered by Edelman, is in fact, the worst-case distri-
bution, as stated in the next conjecture.

Conjecture 9.55 (Gaussian Matrices and Gaussian Perturbations)
Let Ā be an arbitrary square matrix in Rn×n, and let A be a σ-Gaussian
perturbation of Ā. Let G be a Gaussian matrix of variance σ2 as above.
Then for all x ≥ 1

PrA
[∥∥A−1

∥∥
2
≥ x

]
≤ PrG

[∥∥G−1
∥∥

2
≥ x

]
.

Finally, we have a conjecture on the smallest singular value of a Boolean
perturbation of binary matrices.

Conjecture 9.56 (Smallest Singular Value of Binary Matrices)
Let Ā be an arbitrary square matrix in {−1,+1}n×n, and let A be a σ-
Boolean perturbation of Ā. Then there exists a constant α < 1 such that

PrA
[∥∥A−1

∥∥
2
≥ x

]
≤
√

n

xσ
+ αn.
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P7: Algebraic Eigenvalue Problems

Steve Vavasis1 suggests studying the smoothed complexity of the classical
QR iteration algorithm for solving algebraic eigenvalue problems. The
eigenvalue problem is to find all eigenvalue-eigenvector pairs of a given
n × n matrix A, where the entries of A could be either complex or real.
A scalar λ and an n-dimensional vector x form an eigenvalue-eigenvector
pair of A if Ax = λx. Note that the eigenvalue λ and the entries of its
eigenvector x could be complex. The famous Schur decomposition theorem
states:

Theorem 9.57 (Schur Decomposition) If A is an n×n complex matrix,
then there exists a unitary matrix Q such that

QHAQ = T,

where T is an upper triangular matrix with all the eigenvalues of A ap-
pearing on its diagonal.

In addition, if A is a real matrix, then there exists an orthogonal matrix
Q ∈ Rn×n such that

QT AQ =


R1,1 R1,2 . . . R1,k

0 R2,2 . . . R2,k

...
...

...
...

0 0 . . . Rk,k

 ,

where Ri,i is either a scalar or a 2 × 2 matrix. When Ri,i is a scalar,
it is an eigenvalue of A and when Ri,i is a 2 × 2 matrix, it has complex
conjugate eigenvalues.

The QR iteration algorithm was first developed by Francis (1961). Its
basic form is very simple. Initially, let A0 = A. Iteratively, in the kth step,
the algorithm first computes an QR-decomposition of Ai−1:

Ak−1 = Qk−1Rk−1,

where Qk−1 is a unitary matrix and Rk−1 is an upper triangular matrix.
It then defines

Ak = Rk−1Qk−1.

It is well known that in the complex case when |λ1| > |λ2| > · · · > |λn| ,
the QR iteration algorithm converges and produces the Schur decomposi-
tion. In the real case, under some mild condition, the QR iteration algo-
rithm converges to produce a real Schur decomposition (Wilkinson (1988)
1 Personal Communication.
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and Golub & Van Loan (1989)). Thus one can use the QR iteration algo-
rithm to approximate all eigenvalues of A to an arbitrary precision.

Open Question 6 (Smoothed Complexity of QR iterations: Steve
Vavasis) What is the smoothed complexity of the QR iteration algorithm?

The convergence of the QR iteration algorithm depends on the the min-
imum gaps among eigenvalues of the input matrix. For example, in the
complex case when |λ1| > |λ2| > · · · > |λn| , the lower off-diagonal (i, j)-
entry of Ak (i > j) is O((λi/λj)k) (Wilkinson (1988) and Golub & Van
Loan (1989)).

Thus, understanding the eigenvalue gaps in the smoothed setting could
hold the key to establishing the smoothed rate of convergence of the QR
iteration algorithm.

Conjecture 9.58 (Minimum Complex Eigenvalue Gaps) Let Ā be an
n×n complex matrix with

∥∥Ā∥∥
F
≤ 1. Let A be a σ-Gaussian perturbation

of Ā. Let λ1, . . . , λn be the eigenvalues of A and assume |λ1| ≥ |λ2| ≥
· · · ≥ |λn| . Then, there exist positive constants c, k1, k2, k3 such that, for
all x > 1,

Pr
[
min
i>1

∣∣∣∣λi−1 − λi

λi−1

∣∣∣∣ ≤ 1
x

]
≤ c · nk1 · x−k2 · σ−k3 .

One can similarly make a conjecture for real matrices.

Conjecture 9.59 (Minimum Real Eigenvalue Gaps) Let Ā ∈ Rn×n

with
∥∥Ā∥∥

F
≤ 1. Let A be a σ-Gaussian perturbation of Ā. Then, there

exist positive constants c, k1, k2, k3 such that, for all x > 1,

Pr

[
min

non-conjugate eigenvalues λi, λj

∣∣∣∣λi − λj

λi

∣∣∣∣ ≤ 1
x

]
≤ c·nk1 ·x−k2 ·σ−k3 .

For a symmetric matrix A, all of its eigenvalues are real and QR itera-
tions preserve the symmetry as

Ai = Ri−1Qi−1 = QT
i−1Qi−1Ri−1Qi−1 = QT

i−1Ai−1Qi−1.

If the eigenvalues of A are λ1, . . . , λn, then the QR iteration algorithm
converges to diag (λ1, . . . , λn), the diagonal matrix whose diagonal entries
are λ1, . . . , λn.

Proving the following conjecture could be useful to establish a smoothed
rate of convergence of the QR iteration algorithm under zero-preserving
Gaussian perturbations.



Smoothed Analysis of Algorithms and Heuristics 327

Conjecture 9.60 (Minimum Symmetric Eigenvalue Gaps) Let Ā
be an n × n real and symmetric matrix with

∥∥Ā∥∥
F
≤ 1. Let A = Ā +

σdiag (g1, . . . , gn) be a σ-Gaussian perturbation of the diagonal of Ā. Let
λ1, . . . , λn be the eigenvalues of A such that |λ1| ≥ |λ2| ≥ · · · ≥ |λn| . Then,
there exist positive constants c, k1, k2, k3 such that, for all x > 1,

Pr
[
min

i

∣∣∣∣λi−1 − λi

λi

∣∣∣∣ ≤ 1
x

]
≤ c · nk1 · x−k2 · σ−k3 .

A closely related conjecture is about the singular value gaps.

Conjecture 9.61 (Minimum Singular Value Gaps) Let Ā be an m×n

real matrix with
∥∥Ā∥∥

F
≤ 1 and m ≤ n. Let A be a σ-Gaussian perturbation

of Ā. Let s1, . . . , sm be the singular value of A such that s1 ≥ s2 ≥ · · · ≥
sm. Then, there exist positive constants c, k1, k2, k3 such that, for all
x > 1,

Pr
[
min

i

(
si−1 − si

si

)
≤ 1

x

]
≤ c · nk1 · x−k2 · σ−k3 .

In practice, one usually does not apply the QR iteration algorithm di-
rectly to an input matrix A. The QR computation of each iteration could
take O(n3) time, which might be too expensive. In fact, most practical im-
plementations first use an orthogonal similarity transformation to reduce
the matrix A to an upper-Hessenberg form (Wilkinson (1988) and Golub &
Van Loan (1989)) A0 = QH

0 AQ0. A matrix H = (hi,j) is upper Hessenberg
if hi,j = 0 for i > j + 1. This step is important because the QR factor-
ization of an upper Hessenberg matrix can be computed in O(n2) time,
instead of O(n3). The standard approach uses Givens rotations at each
step to perform QR factorization of an upper Hessenberg matrix. A nice
property of the Givens process for QR factorization is that the resulting
QR iteration algorithm preserves the upper Hessenberg form.

In general, the practical QR iteration algorithms go beyond just applying
an initial Hessenberg reduction. What makes them more successful in
practice is the collection of shifting strategies that are used to improve
the rate of convergence (Wilkinson (1988) and Golub & Van Loan (1989)).
Each shifted iteration consists of the following steps.

1. Determine a scalar µi−1;
2. Compute Ai−1 − µi−1I = Qi−1Ri−1;
3. Let Ai = Ri−1Qi−1 + µi−1I.

In practice, QR iteration algorithms may perform double shifts during
each iteration.
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Open Question 7 (Smoothed Complexity of Practical QR Itera-
tion Algorithms)

• What is the smoothed complexity of these practical QR iteration
algorithms?
• Is the smoothed rate of convergence of any practical QR iteration

algorithm better than that of the classical QR iteration algorithm?
• What is the impact of Hessenberg reduction on the smoothed rate of

convergence of QR iteration Algorithms?
• What are the smoothed rates of convergence of the classical or practi-

cal symmetric QR iteration algorithms under symmetry-preserving
Gaussian perturbations and under symmetry-preserving and zero-
preserving Gaussian perturbations?

P8: Property-Preserving Perturbations

For some discrete problems, as we have discussed in Section 9.3.4, results
from the semi-random model might not always extend to the corresponding
property-preserving perturbations. Perhaps the most appealing problem is
the Bisection Problem.

Open Question 8 (Bisection) Is the ρ-Bisection Problem, under ρ-
Bisection preserving perturbations, in smoothed polynomial time (in the
probabilistic sense), for some constant 0 < ρ < 1?

A closely related problem is whether a ρ-Bisection property testing algo-
rithm exists that runs in time polynomial in 1/ε and 1/σ in the smoothed
model under ρ-Bisection-preserving σ-perturbations. Another related prob-
lem is whether the ρ-Bisection Problem is in smoothed polynomial time (in
the probabilistic sense) under the solution-preserving perturbations.

The property-preserving model is not limited to discrete settings. It can
be applied to the continuous setting as well. For example, one can study the
smoothed complexity of a linear programming algorithm under feasibility-
preserving Gaussian perturbations.

Open Question 9 (Feasibility and Linear Programming) Is the sim-
plex method with the shadow-vertex pivoting rule still in smoothed polyno-
mial time under feasibility-preserving Gaussian perturbations?

Is the smoothed value of the logarithm of the condition number of linear
programs still poly-logarithmic in m, n, and 1/σ as stated in Theorem 9.7,
under feasibility-preserving Gaussian perturbations?
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As the purpose of smoothed analysis is to shed light on the practical per-
formance of an algorithm, it is more desirable to use a perturbation model
that better fits the input instances. See the Final Remarks at the end of
this paper for more discussion. Thus, if all or most practical instances
to an algorithm share some common structures, such as being symmetric
or being planar, then to have a meaningful theory, we may have to con-
sider perturbations that preserve these structures. For example, the fact
that many scientific computing algorithms use the sparsity of the input
to achieve good performance encourages us to define the zero-preserving
or magnitude-preserving perturbations such as relative Gaussian perturba-
tions. So far, however, the smoothed complexities of various problems and
algorithms under these perturbations remains wide open.

Open Question 10 (Structure-Preserving Perturbations) What is
the impact of structure-preserving perturbations, such as magnitude-
preserving and zero-preserving perturbations, on the smoothed complexity
of an algorithm?

P9: Smoothed Complexity and Approximation Algorithms

Open Question 11 (Smoothed Complexity and Hardness of Ap-
proximation) Is there any connection between the smoothed complexity
of an optimization problem and the hardness of its approximation? Under
what conditions does “hard to approximate” imply “high smoothed complex-
ity” and vice versa?

As smoothed time complexity measures the performance of an algorithm
A on an input x by the expected performance of A over a “neighborhood”
distribution of x, intuitively, if this complexity is low, then one could first
perturb an instance and solve the optimization problem over the perturbed
instance. The resulting algorithm then has low randomized complexity.

How good this randomized algorithm can be as an approximation algo-
rithm may depend on the perturbation model, the property of the objective
function and the structure of the solution space.

Suppose A is an algorithm for solving a minimization problem with an
objective function f over an input domain D = ∪nDn. Suppose further,
there is a family of neighborhoods Nσ(x̄) ⊆ ∪n′=Θ(n)Dn′ for every x̄ ∈ Dn,
such that for all x ∈ Nσ(x̄), |f(A(x))− f(A(x̄))| ≤ h(σ) where h : R → R+

is a monotonically increasing function.
If there is a family of perturbations R = ∪n,σRn,σ, where, for each

x̄ ∈ Dn, Rn,σ defines a perturbation distribution over Nσ(x̄) such that
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the smoothed complexity of A under this perturbation model is T (n, σ),
then A can be used as a family of randomized approximation algorithms of
expected complexity T (n, σ) that comes within h(σ) of the optimal value
for minimizing f in instance x̄, provided R can be efficiently sampled.

For example, consider a two-person game given by two m × n matrices
Ā = (āi,j) and B̄ =

(
b̄i,j

)
. Suppose A = (ai,j) and B = (bi,j) are σ-

uniform-cube perturbations of Ā and B̄, respectively, where ai,j (and bi,j)
is an independent random variable chosen uniformly from the interval [āi,j−
σ, āi,j +σ] ( and [b̄i,j−σ, b̄i,j +σ]). Then, for every pair of mixed strategies
x and y,

∣∣xT Ay − xT Āy
∣∣ ≤ 2σ. and

∣∣xT By − xT B̄y
∣∣ ≤ 2σ.

Now suppose (x,y) is a Nash equilibrium for (A,B). Then, for any
(x′,y′), we have

(x′)T Āy − xT Āy ≤ ((x′)T Ay − xT Ay) + 4σ ≤ 4σ,

as well as xT B̄y′ − xT B̄y ≤ 4σ. Thus, (x,y) is a (4σ)-Nash equilibrium
for (Ā, B̄): a profile of mixed strategies such that no player can gain more
than an amount 4σ by changing his/her strategy unilaterally. Similarly, if
(x,y) is an ε-Nash equilibrium for (A,B), then (x,y) is an (ε + 4σ)-Nash
equilibrium for (Ā, B̄). Therefore,

Proposition 9.12 (Smoothed 2-Nash and Approximated 2-Nash) If
2-Nash can be solved in smoothed time polynomial in m, n, and g(1/σ) un-
der σ-uniform-cube perturbations, then an ε-Nash equilibrium of two-person
games can found in randomized time polynomial in m, n, and g(1/ε).

However, for a constrained optimization problem, the optimal solution
of a perturbed instance x may not be feasible for the original instance x̄.
Although running A on the perturbed instance x provides a good approx-
imation of the optimal value for the original instance x̄, one still needs
an efficient procedure to “round” the solution for x to a feasible solution
for x̄ in order to approximately solve the optimization problem. For some
problems, such as linear programming, the optimal solution for x might be
quite “far” away from the optimal solution for x̄, although their objective
values are be close. This discrepancy might pose algorithmic challenges to
approximations.

Another interesting direction of research is to examine the worst-case
instances appearing in the literature to determine whether they are stable
under perturbations. If all the known worst-case instances of a problem
or an algorithm are not stable under some perturbations, then one could
ask whether its smoothed complexity under these perturbations is low, or
if there are other bad instances that are stable.
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P10: Other Algorithms and Practical Algorithms

There are many other successful practical heuristics that we cannot discuss
here in great detail. For example, Berthold Vöcking suggests, as interesting
and relevant research directions, considering the smoothed complexity of
heuristics like branch-and-bound or cutting-plane methods on structurally
simple optimization problems like packing problems with a constant num-
ber of constraints.

Other very popular methods include the multilevel algorithms (Brandt
(1988) and Teng (1998)), differential evolution (Price, Storn & Lampinen
(2005)), and various local search and global optimization heuristics. We
would like to understand the smoothed complexity of these methods. For
example, the following conjecture is at the center of our research (in this
area).

Conjecture 9.62 (Multilevel Bisection Conjecture) There is a mul-
tilevel bisection algorithm with smoothed polynomial time complexity that
finds a (c · ρ)-bisection (for some constant c) under ρ-bisection-preserving
perturbations as well as in the semi-random model.

Conjecture 9.63 (Multilevel Sparsest-Cut Conjecture) There is a
multilevel partitioning algorithm with smoothed polynomial time complex-
ity that finds a partition with sparsity c · ρ under ρ-sparsest-cut-preserving
perturbations as well as in the semi-random model.

Final Remarks

Developing rigorous mathematical theory that can model the observed per-
formance of practical algorithms and heuristics has become an increasingly
important task in Theoretical Computer Science. Unlike four decades ago,
when theorists were introducing asymptotic complexity but practitioners
could only solve linear systems with less than 500 variables, we now have
computers that are capable of solving very large-scale problems. Moreover,
as heuristic algorithms become ubiquitous in applications, we have increas-
ing opportunities to obtain data, especially on large-scale problems, from
these remarkable heuristics.

One of the main objectives of smoothed analysis is to encourage the de-
velopment of theories for the practical behaviors of algorithms. We are
especially interested in modeling those algorithms whose practical perfor-
mance is much better than their worst-case complexity measures.

A key step is to build analyzable models that are able to capture some
essential aspects of the algorithms and, of equal importance, the inherent
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properties of practical instances. So necessarily, any such model should be
more instance-oriented than our traditional worst-case and average analy-
ses, and should consider the formation process of input instances.

However, modeling observed data and practical instances is a challeng-
ing task. Practical inputs are often complex and there may be multiple
parameters that govern the process of their formation. Most of the current
work in smoothed analysis focuses on the randomness in the formation of
inputs and approximates the likelihood of any particular instance by its
similarity or distance to a “hidden blueprint” of a “targeted” instance of
the input-formation process. As the targeted instance might not be known
to the algorithm, in the same spirit of worst-case analysis, we used the max-
imum over all possible targeted instances in the definition of the smoothed
complexity.

This approach to characterize the randomness in the formation of input
instances promises to be a good first step to model or to approximate the
distribution of practical instances. One must understand the possible lim-
itations of any particular perturbation model, however, and not overstate
the practical implication of any particular analysis.

One way to improve the similarity-or-distance based perturbation models
is to develop an analysis framework that takes into account the formation
of input instances. For example, if the input instances to an algorithm A

come from the output of another algorithm B, then algorithm B, together
with a model of B’s input instances, is the description of A’s inputs. To be
concrete, consider finite-element calculations in scientific computing. The
input to its linear solver A are stiffness matrices which are produced by
a finite-element mesh generation algorithm B. The meshing algorithm B,
which could be a randomized algorithm, receives a geometric domain Ω
and a partial differential equation F as an input instances to construct a
stiffness matrix. So the distribution of the stiffness matrices to algorithm
A is determined by the distribution D of the geometric domains Ω and
the set F of partial differential equations, as well as the mesh generation
algorithm B. One can define the measure of the performance of A as

E(Ω,F )←D
[
EX←B(Ω,F ) [Q(A,X)]

]
.

If, for example, Ω̄ is a design of an advanced rocket from a set R of
“blueprints” and F is from a set F of PDEs for physical parameters such
as pressure, speed, and temperature for the rocket, and Ω is generated by
a perturbation model P of the blueprints, then one may further measure
the performance of A by the smoothed value of the quantity above:

max
F∈F,Ω̄∈R

EΩ←P(Ω̄)

[
EX←B(Ω,F ) [Q(A,X)]

]
.
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There might be many different frameworks for modeling the formation
process of the input instances. For example, one could use a Markov pro-
cess, a branch tree with probabilistic nodes and binary branching nodes
or some innovative diagrams or flowcharts. The better we can model our
input data, the more accurately we can model the performance of an algo-
rithm. But to be rigorous mathematically, we may have to come up with a
conjecture that matches the practical observations, and find a way to prove
the conjecture.

Another objective of smoothed analysis is to provide insights and mo-
tivations to design new algorithms, especially those with good smoothed
complexity. For example, our analysis of the smoothed growth factor sug-
gests a new and more stable solver for linear systems: Suppose we are
given a linear system Ax = b. We first use the standard elimination-based
algorithm – or software – to solve Ax = b. Suppose x∗ is the solution
computed. If ‖b−Ax∗‖ is small enough, then we simply return x∗. Oth-
erwise, we can determine a parameter ε and generate a new linear system
(A + εG)y = b, where G is a Gaussian matrix with independent entries
with mean 0 and variance 1. So instead of using the solution of Ax = b,
we solve a perturbed linear system (A + εG)y = b. It follows from the
condition number analysis that if ε is (significantly) smaller than κ(A),
then the solution to the perturbed linear system is a good approximation
to the original one. One can use practical experience or binary search to
set ε.

The new algorithm has the property that its success depends only on
the machine precision and the condition number of A, while the original
algorithm may fail due to large growth factors. For example, the following
is a segment of matlab code that first solves a linear system whose matrix
is the 70×70 Wilkinson matrix, using the Matlab linear solver, then solves
it with our new algorithm.

>> % Using the Matlab Solver

>> n = 70; A = 2*eye(n)-tril(ones(n)); A(:,n)=1;

>> b = randn(70,1);

>> x = A\b;

>> norm(A*x-b)

>> 2.762797463910437e+004

>> % FAILED because of large growth factor

>> %Using the new solver

>> Ap = A + randn(n)/10^9;

>> y = Ap\b;

>> norm(Ap*y-b)
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>> 6.343500222435404e-015

>> norm(A*y-b)

>> 4.434147778553908e-008

Because the Matlab linear solver uses Gaussian elimination with partial
pivoting, it fails to solve the linear system because of the large growth
factor. But our perturbation-based algorithm finds a good solution.

We conclude this paper with the open question that initially led us to
smoothed analysis.

Open Question 12 (Linear Programming in Strongly Random
Polynomial Time?) Can the techniques from the smoothed analysis of
the simplex and interior-point methods be used to develop a randomized
strongly polynomial-time algorithm for linear programming?
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Abstract

High-dimensional partial differential equations with nonnegative character-
istic form arise in numerous mathematical models in science. In problems
of this kind, the computational challenge of beating the exponential growth
of complexity as a function of dimension is exacerbated by the fact that the
problem may be transport-dominated. We develop the analysis of stabilised
sparse finite element methods for such high-dimensional, non-self-adjoint,
possibly degenerate differential equations.

10.1 Introduction

Suppose that Ω := (0, 1)d, d ≥ 2, and that a = (aij)d
i,j=1 is a symmetric

positive semidefinite matrix with entries aij ∈ R, i, j = 1, . . . , d. In other
words,

a� = a and ξ�a ξ ≥ 0 ∀ξ ∈ Rd.

Suppose further that b ∈ Rd and c ∈ R, and let f ∈ L2(Ω). We shall
consider the partial differential equation

−a : ∇∇u + b · ∇u + cu = f(x), x ∈ Ω, (10.1)

subject to suitable boundary conditions on ∂Ω which will be stated below.
Here ∇∇u is the d×d Hessian matrix of u whose (i, j) entry is ∂2u/∂xi ∂xj ,
i, j = 1, . . . , d. Given two d × d matrices A and B, we define their scalar
product A : B :=

∑d
i,j=1 AijBij . The associated matrix norm |A| := (A :

A)1/2 is called the Frobenius norm of A.

343
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The real-valued polynomial α ∈ P2(Rd; R) of degree ≤ 2 defined by

ξ ∈ Rd �→ α(ξ) = ξ�a ξ ∈ R

is called the characteristic polynomial or characteristic form of the differ-
ential operator

u �→ Lu := −a : ∇∇u + b · ∇u + cu

featuring in (10.1) and, under our hypotheses on the matrix a, the equa-
tion (10.1) is referred to as a partial differential equation with nonnegative
characteristic form (cf. Olĕınik & Radkevič (1973)).

For the sake of simplicity of presentation we shall confine ourselves to
differential operators L with constant coefficients. In this case,

a : ∇∇u = ∇ · (a∇u) = ∇∇ : (au) and b · ∇u = ∇ · (bu).

With additional technical difficulties most of our results can be extended
to the case of variable coefficients, where a = a(x), b = b(x) and c = c(x)
for x ∈ Ω.

Partial differential equations with nonnegative characteristic form fre-
quently arise as mathematical models in physics and chemistry (particu-
larly in the kinetic theory of polymers and coagulation-fragmentation prob-
lems), molecular biology and mathematical finance (cf. van Kampen (1992),
Öttinger (1996), Laurençot & Mischler (2002), Elf, Lötstedt & Sjöberg
(2003)). Important special cases of these equations include the following:

(a) when the diffusion matrix a = a� is positive definite, (10.1) is an
elliptic partial differential equation;

(b) when a ≡ 0 and the transport direction b �= 0, the partial differential
equation (10.1) is a first-order hyperbolic equation;

(c) when

a =
(

α 0
0 0

)
,

where α is a (d−1)×(d−1) symmetric positive definite matrix and b =
(0, . . . , 0, 1)� ∈ Rd, (10.1) is a parabolic partial differential equation,
with time-like direction b.

In addition to these classical types, the family of partial differential equa-
tions with nonnegative characteristic form encompasses a range of other
linear second-order partial differential equations, such as degenerate el-
liptic equations and ultra-parabolic equations. According to a result of
Hörmander (2005) (cf. Theorem 11.1.10 on p. 67), second-order hypoellip-
tic operators have non-negative characteristic form, after possible multipli-
cation by −1, so they too fall within this category.



High-dimensional Transport-dominated Diffusion Problems 345

For classical types of partial differential equations, such as those listed
under (a), (b) and (c) above, rich families of reliable, stable and highly
accurate numerical techniques have been developed. Yet, only isolated
attempts have been made to explore computational aspects of the class
of partial differential equations with nonnegative characteristic form as a
whole (cf. Houston & Süli (2001) and Houston, Schwab & Süli (2002)). In
particular, there has been no research to date on the numerical analysis of
high-dimensional partial differential equations with nonnegative character-
istic form.

The field of stochastic analysis is a particularly fertile source of equations
of this kind (cf. Bass (1997)): the progressive Kolmogorov equation satis-
fied by the probability density function ψ(x1, . . . , xd, t) of a d-component
vectorial stochastic process X(t) = (X1(t), . . . , Xd(t))� which is the so-
lution of a system of stochastic differential equations including Brownian
noise is a partial differential equation with nonnegative characteristic form
in the d + 1 variables (x, t) = (x1, . . . , xd, t). To be more precise, consider
the stochastic differential equation:

dX(t) = b(X(t)) dt + σ(X(t)) dW (t), X(0) = X,

where W = (W1, . . . ,Wp)� is a p-dimensional Wiener process adapted
to a filtration {Ft , t ≥ 0}, b ∈ C1

b(R
d; Rd) is the drift vector, and σ ∈

C2
b(R

d, Rd×p) is the diffusion matrix. Here Ck
b (Rn, Rm) denotes the space

of bounded and continuous mappings from Rn into Rm, m,n ≥ 1, all of
whose partial derivatives of order k or less are bounded and continuous on
Rn. When the subscript b is absent, boundedness is not enforced.

Assuming that the random variable X(t) = (X1(t), . . . , Xd(t))� has a
probability density function ψ ∈ C2,1(Rd×[0,∞), R), then ψ is the solution
of the initial-value problem

∂ψ

∂t
(x, t) = (Aψ)(x, t), x ∈ Rd, t > 0,

ψ(x, 0) = ψ0(x), x ∈ Rd,

where the differential operator A : C2(Rd; R)→ C0(Rd; R) is defined by

Aψ := −
d∑

j=1

∂

∂xj
(bj(x)ψ) +

1
2

d∑
i,j=1

∂2

∂xi∂xj
(aij(x)ψ) ,

with a(x) = σ(x)σ�(x) ≥ 0 (see Corollary 5.2.10 on p.135 in Lapeyre,
Pardoux & Sentis (2003)). Thus, ψ is the solution of the initial-value
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problem

∂ψ

∂t
+

d∑
j=1

∂

∂xj
(bj(x)ψ) =

1
2

d∑
i,j=1

∂2

∂xi∂xj
(aij(x)ψ) , x ∈ Rd, t ≥ 0,

ψ(x, 0) = ψ0(x), x ∈ Rd,

where, for each x ∈ Rd, a(x) is a d×d symmetric positive semidefinite ma-
trix. The progressive Kolmogorov equation ∂ψ

∂t
= Aψ is a partial differen-

tial equation with nonnegative characteristic form, called a Fokker–Planck
equation1.

The operator A is generally nonsymmetric (since, typically, b �= 0) and
degenerate (since, in general, a(x) = σ(x)σ�(x) has nontrivial kernel). In
addition, since the (possibly large) number d of equations in the system
of stochastic differential equations is equal to the number of components
of the independent variable x of the probability density function ψ, the
Fokker–Planck equation may be high-dimensional.

The focus of the present paper is the construction and the analysis of
finite element approximations to high-dimensional partial differential equa-
tions with non-negative characteristic form. The paper is structured as
follows. In order to provide a physical motivation for the mathematical
questions considered here, we begin by presenting an example of a high-
dimensional transport-dominated diffusion problem which arises from the
kinetic theory of dilute polymers. We shall also explain briefly why such
high-dimensional transport-dominated diffusion problems present a com-
putational challenge. We shall then state in Section 11.3 the appropriate
boundary conditions for the model equation (10.1), derive the weak formu-
lation of the resulting boundary value problem and show the existence of a
unique weak solution. Section 11.4 is devoted to the construction of a hier-
archical finite element space for univariate functions. The tensorisation of
this space and the subsequent sparsification of the resulting tensor-product
space are described in Section 11.5; our chief objective is to reduce the
computational complexity of the discretisation without adversely effecting
the approximation properties of the finite element space. In Sections 10.6
and 10.7 we build a stabilised finite element method over the sparse tensor
product space, and we explore its stability and convergence.

The origins of sparse tensor product constructions and hyperbolic cross
spaces can be traced back to the works of Babenko (1960) and Smolyak
(1963); we refer to the papers of Temlyakov (1989), DeVore, Konyagin &
Temlyakov (1998) for the study of high-dimensional approximation prob-
lems, to the works of Wasilkowski & Woźniakowski (1995) and Novak &

1 After the physicists Adriaan Daniël Fokker (1887–1972) and Max Planck (1858–1947).
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Ritter (1998) for high-dimensional integration problems and associated
complexity questions, to the paper of Zenger (1991) for an early contri-
bution to the numerical solution of high-dimensional partial differential
equations, to the articles by von Petersdorff & Schwab (2004) and Hoang &
Schwab (2005) for the analysis of sparse-grid methods for high-dimensional
elliptic multiscale problems and parabolic equations, respectively, and to
the recent Acta Numerica article of Bungartz & Griebel (2004) for a de-
tailed survey of the field of sparse-grid methods.

10.2 An example from the kinetic theory of polymers

We present an example of a high-dimensional partial differential equation
with nonnegative characteristic form which originates from the kinetic the-
ory of dilute polymeric fluids. The fluid is assumed to occupy a domain
O ⊂ Rn; for physical reasons, n = 2 or n = 3 here.

There is a hierarchy of mathematical models that describe the evolu-
tion of the flow of a dilute polymer, the complexity of the model being
dependent on the level of model-reduction (coarse-graining) that has taken
place. The simplest model of this kind to account for noninteracting poly-
mer chains is the so-called dumbbell model where each polymer chain which
is suspended in the viscous incompressible Newtonian solvent whose flow-
velocity is u(x, t), x ∈ O, t ∈ [0, T ], is modelled by a dumbbell; a dumbbell
consists of two beads connected by an elastic spring. At time t ∈ [0, T ] the
dumbbell is characterised by the position of its centre of mass X(t) ∈ Rd

and its elongation vector Q(t) ∈ Rd. When a dumbbell is placed into the
given velocity field u(x, t), three forces act on each bead: the first force
is the drag force proportional to the difference between the bead velocity
and the velocity of the surrounding fluid particles; the second force is the
elastic force F due to the spring stiffness; the third force is due to thermal
agitation and is modelled as Brownian noise. On rescaling the elongation
vector, Newton’s equations of motion for the beads give rise to the following
system of stochastic differential equations:

dX(t) = u(X(t), t) dt, (10.2)

dQ(t) =
(
∇Xu(X(t), t)Q(t)− 1

2λ
F (Q(t))

)
dt +

1√
λ

dW (t), (10.3)

where W = (W1, . . . ,Wn)� is an n-dimensional Wiener process, F (Q)
denotes the elastic force acting on the chain due to elongation, and the
positive parameter λ = ξ/(4H) characterises the elastic property of the
fluid, with ξ ∈ R>0 denoting the drag coefficient and H ∈ R>0 the spring
stiffness.
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Let (x, q, t) �→ ψ(x, q, t) denote the probability density function of the
vector-valued stochastic process (X(t), Q(t)); thus, ψ(x, q, t)|dx| |dq| rep-
resents the probability, at time t ∈ [0, T ], of finding the centre of mass of
a dumbbell in the volume element x + dx and having the endpoint of its
elongation vector within the volume element q + dq. Let us suppose that
the elastic force F : D ⊆ Rd → Rd, d = 2, 3, of the spring is defined on an
open ball D ⊆ Rd through a (sufficiently smooth) potential U : R≥0 → R

via F (q) := U ′( 1
2
|q|2) q. Then, the probability density function ψ(x, q, t)

of the stochastic process (X(t), Q(t)) defined by (10.2), (10.3) satisfies the
Fokker–Planck equation

∂ψ

∂t
+∇x · (uψ) +∇q ·

(
(∇xu)q ψ − 1

2λ
F (q)ψ

)
=

1
2λ

∆qψ, (10.4)

for x ∈ O, q ∈ D and t ∈ (0, T ]. The equation is supplemented by the
initial condition ψ(x, q, 0) = ψ0(x, q) ≥ 0 and appropriate boundary condi-
tions. Due to the fact that, unlike (10.3), the differential equation (10.2)
does not involve random effects, the Fokker–Planck equation (10.4) for the
associated probability density function is a degenerate parabolic equation
for ψ(x, q, t) with no diffusion in the x-direction.

In order to complete the definition of the dumbbell model, we note that
the velocity field u appearing in (10.4) and the pressure p of the solvent
are, in turn, found from the incompressible Navier–Stokes equations

∂u

∂t
+ (u · ∇x)u− ν ∆xu +∇xp =∇x · τ, in O × (0, T ],

∇x · u = 0, in O × (0, T ],

u = 0, on ∂O × (0, T ],

u(x, 0) = u0(x), x ∈ O,

where the elastic extra-stress tensor τ = τ(ψ) is defined in terms of the
probability density function ψ as follows:

τ(ψ) := k µ (C(ψ)− ρ(ψ) I).

Here k, µ ∈ R>0 are, respectively, the Boltzmann constant and the absolute
temperature, I is the unit n× n tensor, and

C(ψ)(x, t) :=
∫

D

ψ(x, q, t)U ′( 1
2 |q|

2) q q� dq,

ρ(ψ)(x, t) :=
∫

D

ψ(x, q, t) dq.

We refer to the recent paper of Barrett, Schwab & Süli (2005) for theoretical
results concerning the existence of a global weak solution to this coupled
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Fokker–Planck–Navier–Stokes problem; see also the work of Le Bris & Lions
(2004) on related transport(-diffusion) problems with nonsmooth transport
fields.

The Fokker–Planck equation (10.4) is a partial differential equation with
nonnegative characteristic form in 2n + 1 independent variables x ∈ O ⊂
Rn, q ∈ D ⊂ Rn and t ∈ (0, T ] ⊂ R>0. In order to provide a rough estimate
of the computational complexity of a classical algorithm for the numerical
solution of the equation (10.4) supplemented with an initial condition and
suitable boundary conditions, let us suppose that the spatial domain is
O × D = (−1/2, 1/2)2n and1 that a standard continuous piecewise linear
Galerkin finite element method is used on each time level over a uniform
axiparallel spatial mesh. Let us further suppose that the mesh has the
relatively coarse spacing h = 1/64 in each of the 2n spatial co-ordinate
directions and that a simple one-step method (such as the forward or back-
ward Euler scheme, or the Crank–Nicolson scheme) is used to evolve the
discrete solution in time. Ignoring degrees of freedom that lie on the bound-
ary of O×D, we see that the resulting system of linear equations involves
around 634 = 15752962 ≈ 1.5 × 107 unknowns on each time level when
n = 2 (i.e., 2n = 4) and around 636 = 62523502209 ≈ 6.2× 1010 unknowns
on each time level when n = 3 (i.e., 2n = 6). Even on such coarse meshes
the number of degrees of freedom in the numerical approximation to the an-
alytical solution in 4 and 6 dimensions is very large, and grows very rapidly
(exponentially fast, in fact,) as a function of d = 2n + 1, the number of
independent variables. In general, on a uniform mesh of size h = 1/N in
each of the 2n spatial co-ordinate directions, the number of unknowns per
time level (counting only those that are internal to O × D) is (N − 1)2n.
Over a unit time interval, and using the Crank–Nicolson scheme with time
step k = h, this amounts to a total of approximately N(N −1)2n = O(Nd)
unknowns.

In addition to being high-dimensional, the equation (10.4) exhibits the
features of a first-order hyperbolic equation with respect to x ∈ Rn (when
variation with respect to q is suppressed), and those of a second-order
parabolic transport-diffusion equation with respect to q ∈ Rn (when vari-
ation with respect to x is suppressed).

Our objective in this paper is to explore the algorithmic implications of
this unpleasant combination of high-dimensionality and transport-
dominated diffusion. In particular, our aim is to develop purely deterministic

1 Here, for simplicity, we took D = (−1/2, 1/2)n , — a ball in Rn of radius 1/2 in the
�∞-norm. In fact, D is a ball in Rn in the �2-norm of a certain fixed radius qmax ≤ ∞,
the maximum admissible length of the elongation vector Q.
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numerical algorithms based on the Galerkin method for high-dimensional
transport-dominated diffusion problems of the form (10.1).

Alternative, stochastic, or mixed deterministic-stochastic computational
approaches which have been pursued in the literature employ the intimate
connection between the Fokker–Planck equation satisfied by the probability
density function and the system of stochastic differential equations which
govern the evolution of the underlying stochastic process (see, for example,
the monograph of Öttinger (1996) and the survey paper by Jourdain, Le
Bris & Lelièvre (2004)).

10.2.1 The curse of dominant transport

Classical Galerkin methods comprise a class of stable, reliable and accurate
techniques for the numerical approximation of diffusion-dominated prob-
lems typified by symmetric elliptic equations (viz. equation (10.1) in the
special case when a is a symmetric positive definite matrix and b = 0).
In this case, a Galerkin method for the numerical solution of the equation
(10.1), supplemented with a suitable boundary condition, coincides with
the Ritz method based on energy minimisation over a finite-dimensional
subspace of the infinite-dimensional Hilbert space H containing the weak
solution u to the boundary value problem. The energy-norm is simply the
norm induced by the symmetric and coercive bilinear form associated with
the weak formulation of the problem, which acts as an inner product on H.
The Galerkin approximation to u is then the best approximation to u in the
energy norm from the finite-dimensional subspace. If, on the other hand,
b �= 0, then a Galerkin method for the numerical solution of an elliptic
equation of the form (10.1) cannot be rephrased in the language of energy
minimisation over a finite-dimensional space; nevertheless, it will supply an
accurate approximation to u, as long as a ‘dominates’ b in a certain sense.

In a Galerkin finite element method the finite-dimensional subspace from
which the approximate solution uh is sought consists of continuous piece-
wise polynomial functions of a fixed degree p which are defined over a par-
tition of a certain fixed ‘granularity’ h > 0 of the computational domain
Ω ⊂ Rd. Suppose, for example, that d = 1, Ω = (0, 1), p = 1, a ∈ R>0,
b ∈ R, c = 0, f ∈ C[0, 1], f ≥ 0 and h = 1/N , where N ∈ N>1; let us also
suppose for the sake of simplicity that homogeneous Dirichlet boundary
conditions are imposed on ∂Ω = {0, 1}. As long as a ≥ 1

2h|b| (i.e., provided
that the transport-diffusion problem is diffusion-dominated relative to the
finite element partition), the qualitative behaviour of uh will be correct,
in the sense that uh will obey a maximum principle analogous to the one
satisfied by the analytical solution u.
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This favourable behaviour of the approximate solution uh is completely
lost in the transport-dominated regime, when a < 1

2
h|b|; for such h, uh

exhibits maximum-principle-violating oscillations on the scale of the mesh.
The oscillations will be particularly prominent in the boundary layer lo-
cated in the vicinity of one of the endpoints of the interval [0, 1], i.e., at
x = 0 when b < 0 and x = 1 when b > 0.

An analogous situation is observed in the multidimensional case. Sup-
pose, for example, that Ω = (0, 1)d with d > 1, p = 1 (i.e., continuous
piecewise linear polynomials in d variables are used on a simplicial partition
of Ω), a = a� ∈ Rd×d is a positive definite matrix, b ∈ Rd, c = 0, f ∈ C(Ω)
and h ∈ R>0 is a mesh-parameter measuring the granularity of the finite el-
ement mesh; again, we assume that a homogeneous Dirichlet boundary con-
dition is imposed on ∂Ω. When |a| << h|b|, maximum-principle-violating
oscillations will be observed in the vicinity of boundary layers; the oscil-
lations will extend into the interior of the computational domain along
subcharacteristic curves (i.e., along the transport direction b). Of course,
if the mesh parameter h is sufficiently reduced so that h|b| << |a|, then
the numerical approximation uh will recover its accuracy and will appear
qualitatively correct. Unfortunately the reduction of the mesh-parameter
h to this level may place unachievable demands on limited computational
resources.

10.2.2 The curse of dimensionality

The computational complexity of a numerical algorithm for the approxi-
mate solution of a transport-dominated diffusion equation is particularly
unfavourable when the problem is high-dimensional. If, for example,
continuous piecewise polynomial finite element basis functions of degree
p are used in d dimensions on a mesh of size h and u is sufficiently smooth,
in the limit of h → 0 and p → ∞ the error E = ‖u − uh‖L2(Ω) will
exhibit the optimal asymptotic convergence rate: E + Cp(u) (h/(p + 1))p+1,
where Cp(u) = Const.|u|Hp+1(Ω). Now, when |b|/|a| � 1, Cp(u) +
Const.(|b|/|a|)p+1/2. Hence, for a preset tolerance TOL, the requirement
that E = TOL translates into requiring that

h

p + 1
+ Const.

(
(|a|/|b|)1−1/(2(p+1))TOL1/(p+1)

)
.

At the same time, the computational complexity of the numerical method
will scale as Const.((p + 1)/h)d. In terms of TOL this then gives

Complexity + Const.
(
(|b|/|a|)d(1−1/(2(p+1)))TOL−d/(p+1)

)
. (10.5)
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Exponential growth of computational complexity as a function of the di-
mension of the problem is referred to as the curse of dimensionality. It is
clear from (10.5) that for a transport-dominated diffusion problem, where
|b|/|a| � 1, the curse of dimensionality may be particularly harmful. The
focus of the paper is precisely this unfavourable situation, when the curse
of dimensionality is exacerbated by dominant transport.

10.3 Boundary conditions and weak formulation

Before embarking on the construction of the numerical algorithm, we shall
introduce the necessary boundary conditions and the weak formulation of
the model boundary-value problem on Ω = (0, 1)d for the equation (10.1).

Let Γ denote the union of all (d−1)-dimensional open faces of the domain
Ω = (0, 1)d. On recalling that, by hypothesis, a = a� and α(ξ) = ξ�a ξ ≥ 0
for all ξ ∈ Rd, we define the subset Γ0 of Γ by

Γ0 := {x ∈ Γ : α(ν(x)) > 0} ;

here ν(x) denotes the unit normal vector to Γ at x ∈ Γ, pointing outward
with respect to Ω. The set Γ0 can be thought of as the elliptic part of Γ.
The complement Γ\Γ0 of Γ0 is referred to as the hyperbolic part of Γ. We
note that, by definition, α = 0 on Γ \ Γ0.

On introducing the Fichera function

x ∈ Γ �→ β(x) := b · ν(x) ∈ R

defined on Γ, we subdivide Γ\Γ0 as follows:

Γ− := {x ∈ Γ\Γ0 : β(x) < 0} , Γ+ := {x ∈ Γ\Γ0 : β(x) ≥ 0} ;

the sets Γ− and Γ+ are referred to as the (hyperbolic) inflow and outflow
boundary, respectively. Thereby, we obtain the following decomposition
of Γ:

Γ = Γ0 ∪ Γ− ∪ Γ+.

Lemma 10.1 Each of the sets Γ0, Γ−, Γ+ is a union of (d−1)-dimensional
open faces of Ω. Moreover, each pair of mutually opposite (d − 1)-
dimensional open faces of Ω is contained either in the elliptic part Γ0 of Γ
or in its complement Γ \ Γ0 = Γ− ∪ Γ+, the hyperbolic part of Γ.

Proof Since a is a constant matrix and ν is a face-wise constant vector,
Γ0 is a union of (disjoint) (d − 1)-dimensional open faces of Γ. Indeed, if
x ∈ Γ0 and y is any point that lies on the same (d − 1)-dimensional open



High-dimensional Transport-dominated Diffusion Problems 353

face of Ω as x, then ν(y) = ν(x) and therefore α(ν(y)) = α(ν(x)) > 0;
hence y ∈ Γ0 also.

A certain (d − 1)-dimensional open face ϕ of Ω is contained in Γ0 if,
and only if, the opposite face ϕ̂ is also contained in Γ0. To prove this,
let ϕ ⊂ Γ0 and let x = (x1, . . . , xi, . . . , xd) ∈ ϕ, with Oxi signifying the
(unique) co-ordinate direction such that ν(x)‖Oxi; here O = (0, . . . , 0). In
other words, xi ∈ {0, 1}, and the (d − 1)-dimensional face ϕ to which x

belongs is orthogonal to the co-ordinate direction Oxi. Hence, the point
x̂ = (x1, . . . , |xi − 1|, . . . , xd) lies on the (d − 1)-dimensional open face ϕ̂

of Ω that is opposite the face ϕ (i.e., ϕ̂‖ϕ), and ν(x̂) = −ν(x). As α is a
homogeneous function of degree 2 on Γ0, it follows that

α(ν(x̂)) = α(−ν(x)) = (−1)2α(ν(x)) = α(ν(x)) > 0,

which implies that x̂ ∈ Γ0. By what we have shown before, we deduce that
the entire face ϕ̂ is contained in Γ0.

Similarly, since b is a constant vector, each of Γ− and Γ+ is a union of
(d− 1)-dimensional open faces of Γ. If a certain (d− 1)-dimensional open
face ϕ is contained in Γ−, then the opposite face ϕ̂ is contained in the set
Γ+.

We note in passing, however, that if ϕ ⊂ Γ+ then the opposite face ϕ̂

need not be contained in Γ−; indeed, if ϕ ⊂ Γ+ and β = 0 on ϕ then β = 0
on ϕ̂ also, so then both ϕ and the opposite face ϕ̂ are contained in Γ+. Of
course, if β > 0 on ϕ ⊂ Γ+, then β < 0 on the opposite face ϕ̂, and then
ϕ̂ ⊂ Γ−.

We consider the following boundary–value problem: find u such that

Lu ≡ −a : ∇∇u + b · ∇u + cu = f in Ω, (10.6)

u = 0 on Γ0 ∪ Γ−. (10.7)

Before stating the variational formulation of (10.6), (10.7), we note the
following simple result (see, e.g., Houston and Süli (2001) for a proof).

Lemma 10.2 Suppose that M ∈ Rd×d is a d×d symmetric positive semidef-
inite matrix. If ξ ∈ Rd satisfies ξ�Mξ = 0, then Mξ = 0.

Since a ∈ Rd×d is a symmetric positive semidefinite matrix and ν�aν = 0
on Γ \ Γ0, we deduce from Lemma 10.2 with M = a and ξ = ν that

aν = 0 on Γ \ Γ0. (10.8)

Let us suppose for a moment that (10.6), (10.7) has a solution u in H2(Ω).
Thanks to our assumption that a is a constant matrix, we have that

a : ∇∇u = ∇ · (a∇u).
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Furthermore, a∇u ∈ [H1(Ω)]d, which implies that the normal trace
γν,∂Ω(a∇u) of a∇u on ∂Ω belongs to H1/2(∂Ω). By virtue of (10.8),

γν,∂Ω(a∇u)|Γ\Γ0 = 0.

Note also that measd−1(∂Ω \ Γ) = 0. Hence∫
∂Ω

γν,∂Ω(a∇u) · γ0,∂Ω(v)ds =
∫

Γ

γν,∂Ω(a∇u)|Γ · γ0,∂Ω(v)|Γds = 0 (10.9)

for all v ∈ V, where

V =
{
v ∈ H1(Ω) : γ0,∂Ω(v)|Γ0 = 0

}
.

This observation will be of key importance. On multiplying the partial
differential equation (10.6) by v ∈ V and integrating by parts, we find that

(a∇u,∇v)− (u,∇ · (bv)) + (cu, v) + 〈u, v〉+ = (f, v) for all v ∈ V,

(10.10)
where (·, ·) denotes the L2 inner–product over Ω and

〈w, v〉± =
∫

Γ±

|β|wv ds,

with β signifying the Fichera function b · ν, as before. We note that in the
transition to (10.10) the boundary integral term on Γ which arises in the
course of partial integration from the −∇ · (a∇u) term vanishes by virtue
of (10.9), while the boundary integral term on Γ \ Γ+ = Γ0 ∪ Γ− resulting
from the b · ∇u term on partial integration disappears since u = 0 on this
set by (10.7).

The form of (10.10) serves as motivation for the statement of the weak
formulation of (10.6), (10.7) which is presented below. We consider the
inner product (·, ·)H defined by

(w, v)H := (a∇w,∇v) + (w, v) + 〈w, v〉Γ−∪Γ+

and denote by H the closure of the space V in the norm ‖ · ‖H defined by

‖w‖H := (w,w)1/2
H .

Clearly, H is a Hilbert space. For w ∈ H and v ∈ V, we now consider the
bilinear form B(·, ·) : H× V → R defined by

B(w, v) := (a∇w,∇v)− (w,∇ · (bv)) + (cw, v) + 〈w, v〉+,

and for v ∈ V we introduce the linear functional L : V → R by

L(v) := (f, v).
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We shall say that u ∈ H is a weak solution to the boundary–value problem
(10.6), (10.7) if

B(u, v) = L(v) ∀v ∈ V. (10.11)

The existence of a unique weak solution is guaranteed by the following
theorem (cf. also Theorem 1.4.1 on p.29 of Olĕınik & Radkevič (1973) and
Houston & Süli (2001)).

Theorem 10.1 Suppose that c ∈ R>0. For each f ∈ L2(Ω), there exists a
unique u in a Hilbert subspace Ĥ of H such that (10.11) holds.

Proof For v ∈ V fixed, we deduce by means of the Cauchy-Schwarz in-
equality that

B(w, v) ≤ K1‖w‖H‖v‖H1(Ω) ∀w ∈ H,

where we have used the trace theorem for H1(Ω). Thus B(·, v) is a contin-
uous linear functional on the Hilbert space H. By the Riesz representation
theorem, there exists a unique element T (v) in H such that

B(w, v) = (w, T (v))H ∀w ∈ H.

Since B is bilinear, it follows that T : v → T (v) is a linear operator from
V into H. Next we show that T is injective. Note that

B(v, v) = (a∇v,∇v)− (v,∇ · (bv)) + (cv, v) + 〈v, v〉+ ∀v ∈ V.

Upon integrating by parts in the second term on the right–hand side we
deduce that

B(v, v) = (a∇v,∇v) + c‖v‖2 + 1
2
〈v, v〉Γ−∪Γ+ ≥ K0‖v‖2H ∀v ∈ V,

where K0 = min(c, 1
2
) > 0 and ‖ · ‖ = ‖ · ‖L2(Ω). Hence

(v, T (v))H ≥ K0‖v‖2H ∀v ∈ V. (10.12)

Consequently, T : v �→ T (v) is an injection from V onto the range R(T )
of T contained in H. Thus, T : V → R(T ) is a bijection. Let S = T−1 :
R(T )→ V, and let Ĥ denote the closure of R(T ) in H. Since, by (10.12),
‖S(v)‖H ≤ (1/K0)‖v‖H for all v ∈ R(T ), it follows that S : R(T )→ V is
a continuous linear operator; therefore, it can be extended, from the dense
subspace R(T ) of Ĥ to the whole of Ĥ, as a continuous linear operator
Ŝ : Ĥ → H. Furthermore, since

|L(v)| ≤ ‖f‖‖v‖H ∀v ∈ H,

it follows that L ◦ Ŝ : v ∈ Ĥ �→ L(Ŝ(v)) ∈ R is a continuous linear
functional on Ĥ. Since Ĥ is closed (by definition) in the norm of H, it is a
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Hilbert subspace of H. Hence, by the Riesz representation theorem, there
exists a unique u ∈ Ĥ such that

L(Ŝ(w)) = (u,w)H ∀w ∈ Ĥ.

Thus, by the definition of Ŝ, Ŝ(w) = S(w) for all w in R(T ); hence,

L(S(w)) = (u,w)H ∀w ∈ R(T ).

Equivalently, on writing v = S(w),

(u, T (v))H = L(v) ∀v ∈ V.

Thus we have shown the existence of a unique u ∈ Ĥ(⊂ H) such that

B(u, v) ≡ (u, Tv)H = L(v) ∀v ∈ V,

which completes the proof.

We note that the boundary condition u|Γ− = 0 on the inflow part Γ− of
the hyperbolic boundary Γ \Γ0 = Γ− ∪Γ+ is imposed weakly, through the
definition of the bilinear form B(·, ·), while the boundary condition u|Γ0 = 0
on the elliptic part Γ0 of Γ is imposed strongly, through the choice of the
function space H. Indeed, all elements in H vanish on Γ0. Hence, we
deduce from Lemma 10.1 that

d⊗
i=1

H1
(0)(0, 1) ≡ H1

(0)(0, 1)⊗ · · · ⊗H1
(0)(0, 1) ⊂ H, (10.13)

where the ith component H1
(0)(0, 1) in the d-fold tensor product on the left-

hand side of the inclusion is defined to be equal to H1
0(0, 1) if the co-ordinate

direction Oxi is orthogonal to a pair of (d − 1)-dimensional open faces
contained in the elliptic part Γ0 of Γ; otherwise (i.e., when the direction
Oxi is orthogonal to a pair of (d− 1)-dimensional open faces contained in
the hyperbolic part Γ \ Γ0 = Γ− ∪ Γ+ of Γ), it is defined to be equal to
H1(0, 1). Clearly, if ϕ and ϕ̂ are a pair of (d − 1)-dimensional open faces
of Ω which are opposite each other (i.e., ϕ ‖ ϕ̂), then there exists a unique
i ∈ {1, . . . , d} such that the co-ordinate direction Oxi is orthogonal to this
pair of faces.

Next, we shall consider the discretisation of the problem (10.11). Mo-
tivated by the tensor product structure of the space on the left-hand side
of the inclusion (10.13), we shall base our Galerkin discretisation on a
finite-dimensional subspace of H which is the tensor product of univari-
ate subspaces of H1

(0)(0, 1). Thus, we begin by setting up the necessary
notation in the case of the univariate space H1

(0)(0, 1).
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10.4 Univariate discretisation

Let I = (0, 1) and consider the sequence of partitions (T �)�≥0, where T 0 =
{I} and where the partition T �+1 is obtained from the previous partition
T � = {I�

j : j = 0, . . . , 2� − 1} by halving each of the intervals I�
j . We

consider the finite-dimensional linear subspace V� of H1(0, 1) consisting of
all continuous piecewise polynomials of degree p = 1 on the partition T �.
We also consider its subspace V�

0 := V�∩C0[0, 1] ⊂ H1
0(0, 1) consisting of all

continuous piecewise linear functions on T � that vanish at both endpoints
of the interval [0, 1].

The mesh size in the partition T � is h� := 2−� and we define N �
0 :=

dim(V�
0). Clearly, N �

0 = 2� − 1 for 	 ≥ 0. We define M �
0 := N �

0 − N �−1
0 ,

	 ≥ 1, and let M0
0 := N0

0 = 0. Analogously, we define N � := dim(V�) and
M � := N �−N �−1 for 	 ≥ 1, with M0 = N0 = 2. Then, N � = N �

0+2 = 2�+1
for all 	 ≥ 0, and M � = M �

0 = 2�−1, 	 ≥ 1. In what follows, we shall not
distinguish between M �

0 and M � for 	 ≥ 1 and will simply write M � for
both.

For L ≥ 1 we consider the linearly independent set{
ψ�

j : j = 1, . . . ,M �, 	 = 1, . . . , L
}

in VL
0 , where, for x ∈ [0, 1],

ψ�
j(x) :=

(
1− 2�

∣∣∣∣x− 2j − 1
2�

∣∣∣∣)
+

, j = 1, . . . , 2�−1, 	 = 1, . . . , L.

Clearly,

VL
0 = span{ψ�

j : j = 1, . . . , M �, 	 = 1, . . . , L},

diam
(
supp ψ�

j

)
≤ 2.2−�, j = 1, . . . , M �, 	 = 1, . . . , L.

Any function v ∈ VL
0 has the representation

v(x) =
L∑

�=1

M�∑
j=1

v�
jψ

�
j(x),

with a uniquely defined set of coefficients v�
j ∈ R.

For L ≥ 1, we consider the L2(0, 1)-orthogonal projector

P L
0 : L2(0, 1)→ VL

0 .

This has the following approximation property (cf. Brenner & Scott (2002)):∥∥v − PL
0 v
∥∥

Hs (0,1)
≤ Const.2−(2−s)L‖v‖H2(0,1), (10.14)

where L ≥ 1, s ∈ {0, 1}, and v ∈ H2(0, 1) ∩ H1
0(0, 1). In particular, v =
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limL→∞ PL
0 v for all v ∈ H2(0, 1) ∩ H1

0(0, 1), where the limit is considered
in the Hs(0, 1)-norm, s ∈ {0, 1}.

In order to extend the construction to the multidimensional case, it is
helpful to define the increment spaces W�

0, 	 ≥ 0, as follows:

W0
0 := V0

0 = {0},
W� := span

{
ψ�

j : 1 ≤ j ≤M �
}
, 	 ≥ 1.

With this notation, we can write

V�
0 = V�−1

0 ⊕W�, 	 ≥ 1.

Therefore,

V�
0 =W0

0 ⊕W1 ⊕ · · · ⊕W� =W1 ⊕ · · · ⊕W�, 	 ≥ 1. (10.15)

We proceed similarly for functions v which do not vanish at the endpoints
of the interval [0, 1]. Any v ∈ VL, L ≥ 1, has the representation

v(x) = (1− x)v(0) + xv(1) +
L∑

�=1

M�∑
j=1

v�
jψ

�
j(x),

with a uniquely defined set of coefficients v�
j ∈ R. For L ≥ 0 we shall write

this expansion in compact form as

v(x) =
L∑

�=0

M�∑
j=1

v�
jψ

�
j(x),

where ψ0
1(x) = 1− x, ψ0

2(x) = x, v0
1 = v(0) and v0

2 = v(1). Thus,

VL = span
{
ψ�

j : j = 1, . . . ,M �, 	 = 0, . . . , L
}
, L ≥ 0.

For L ≥ 0 we consider the L2(0, 1)-orthogonal projector1

PL : L2(0, 1)→ VL.

This has the following approximation property (cf. Brenner & Scott (2002)):

‖v − P Lv‖Hs (0,1) ≤ Const.2−(2−s)L‖v‖H2(0,1), (10.16)

where L ≥ 0, s ∈ {0, 1} and v ∈ H2(0, 1). In particular, v = limL→∞ PLv

1 The choice of P L is somewhat arbitrary; e.g., we could have defined PL : H1(0, 1) 
→
VL by PLv := I0v + PL

0 (v − I0v), where (I0v)(x) = (1− x)v(0) + xv(1), and arrived
at identical conclusions to those below. For example, (10.16) will follow from (10.14)
on noting that ‖v − I0v‖Hs (0,1) ≤ Const.|v|H2(0,1) for s ∈ {0, 1} and v ∈ H2(0, 1). In

addition, this alternative projector has the appealing property:

PL |H1
0(0,1) = P L

0 for all L ≥ 1.
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for all v ∈ H2(0, 1), where the limit is considered in the Hs(0, 1)-norm for
s ∈ {0, 1}.

This time, we define the increment spaces W�, 	 ≥ 0, as follows:

W0 := V0 = span{1− x, x},
W� := span

{
ψ�

j : 1 ≤ j ≤M �
}
, 	 ≥ 1.

Hence, we can write

V� = V�−1 ⊕W�, 	 ≥ 1.

Therefore,

V� =W0 ⊕W1 ⊕ · · · ⊕W�, 	 ≥ 1. (10.17)

10.5 Sparse tensor-product spaces

Now we return to the original multidimensional setting on Ω = (0, 1)d and
consider the finite-dimensional subspace V L

0 of
⊗d

i=1 H1
(0)(0, 1) defined by

V L
0 :=

d⊗
i=1

VL
(0) = VL

(0) ⊗ · · · ⊗ VL
(0), (10.18)

where the ith component VL
(0) in this tensor product is chosen to be VL

0

if the co-ordinate axis Oxi is orthogonal to a pair of (d − 1)-dimensional
open faces of Ω which belong to Γ0, and VL

(0) is chosen as VL otherwise.
In particular, if a = 0 and therefore Γ0 = ∅, then VL

(0) = VL for each
component in the tensor product. Conversely, if a is positive definite, then
Γ0 = Γ and therefore VL

(0) = VL
0 for each component of the tensor product.

In general, for a ≥ 0 that is neither identically zero nor positive definite,
VL

(0) = VL
0 for a certain number i of components in the tensor product,

where 0 < i < d, and VL
(0) = VL for the rest.

Using the hierarchical decompositions (10.15) and (10.17), we have that

V L
0 =

⊕
|�|∞≤L

W�1 ⊗ · · · ⊗W�d , 	 = (	1, . . . , 	d), (10.19)

with the convention thatW�i =0 = {0} whenever Oxi is a co-ordinate direc-
tion that is orthogonal to a pair of (d−1)-dimensional open faces contained
in Γ0; otherwise, W�i =0 = span{1− xi, xi}.

The space V L
0 has O(2Ld) degrees of freedom, a number that grows

exponentially as a function of d. In order to reduce the number of degrees
of freedom, we shall replace V L

0 with a lower-dimensional subspace V̂ L
0
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defined as follows:

V̂ L
0 :=

⊕
|�|1≤L

W�1 ⊗ · · · ⊗W�d , 	 = (	1, . . . , 	d), (10.20)

again with the convention thatW�i =0 = {0} whenever Oxi is a co-ordinate
direction that is orthogonal to a pair of (d − 1)-dimensional open faces
contained in Γ0; otherwise, W�i =0 = span{1− xi, xi}.

The space V̂ L
0 is called a sparse tensor product space. It has

dim(V̂ L
0 ) = O(2L Ld−1) = O(2L(log2 2L)d−1)

degrees of freedom, which is a considerably smaller number than

dim(V L
0 ) = O(2Ld) = O(2L(2L)d−1).

Let us consider the d-dimensional projector

PL
(0) · · ·PL

(0) :
d⊗

i=1

H1
(0)(0, 1)→

d⊗
i=1

VL
(0) = V L

0 ,

where the ith component PL
(0) is equal to PL

0 if the co-ordinate direction
Oxi is orthogonal to a pair of (d− 1)-dimensional open faces contained in
Γ0, and is equal to PL otherwise.

Now, let

Q� =
{

P � − P �−1, 	 ≥ 1,

P 0, 	 = 0.

We also define

Q�
0 =

{
P �

0 − P �−1
0 , 	 ≥ 1,

P 0
0 , 	 = 0,

with the convention that P 0
0 = 0. Thus,

PL
(0) =

L∑
�=0

Q�
(0),

where Q�
(0) = Q�

0 when P �
(0) = P �

0 and Q�
(0) = Q� when P �

(0) = P �.
Hence,

P L
(0) · · ·P L

(0) =
∑

|�|∞≤L

Q�1
(0) · · ·Q

�d

(0), 	 = (	1, . . . , 	d),

where Q�i

(0) is equal to Q�
0 when the co-ordinate direction Oxi is orthog-

onal to a pair of (d − 1)-dimensional open faces in Γ0, and equal to Q�

otherwise.
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The sparse counterpart P̂L
0 of the tensor-product projector PL

(0) · · ·P L
(0)

is then defined by truncating the index set {	 : |	|∞ ≤ L} of the sum to
{	 : |	|1 ≤ L}:

P̂L
0 :=

∑
|�|1≤L

Q�1
(0) · · ·Q

�d

(0) :
d⊗

i=1

H1
(0)(0, 1)→ V̂ L

0 , 	 = (	1, . . . , 	d),

where Q�i

(0) is equal to Q�
0 when the co-ordinate direction Oxi is orthogonal

to a pair of (d − 1)-dimensional open faces contained in Γ0, and equal to
Q� otherwise. In order to formulate the approximation properties of the
projector P̂L

0 , for k ∈ N≥1 we define the space Hk(Ω) of functions with
square-integrable mixed kth derivatives

Hk(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω), |α|∞ ≤ k}

equipped with the norm

‖v‖Hk (Ω) =

 ∑
|α|∞≤k

‖Dαv‖2L2(Ω)

1/2

.

Now we are ready to state our main approximation result.

Proposition 10.1 Suppose that u ∈ H2(Ω) ∩
⊗d

i=1 H1
(0)(0, 1). Then, for

s ∈ {0, 1},

‖u− P̂L
0 u‖Hs (Ω)≤

{
Const.h2

L| log2 hL|d−1‖u‖H2(Ω), if s = 0,

Const.h2−s
L ‖u‖H2(Ω), if s = 1,

(10.21)

where hL = 2−L.

Proof We follow the line of argument in the proof of Proposition 3.2 in the
paper by von Petersdorff & Schwab (2004), suitably modified to accommo-
date our nonstandard function space H2(Ω) ∩

⊗d
i=1 H1

(0)(0, 1), as well as
the fact that the norm-equivalence properties in the L2(0, 1) and H1(0, 1)
norms, employed for the wavelet basis therein, do not apply here.

In the one-dimensional case, on writing

Q�
(0)u =

(
P �

(0)u− u
)

+
(
u− P �−1

(0) u
)
, 	 = 1, 2, . . . ,

we deduce from the approximation properties of P �
0 and P � that, for u ∈

H2(0, 1) ∩H1
(0)(0, 1),∥∥Q�

(0)u
∥∥

Hs (0,1)
≤ Const.2(s−2)�‖u‖H2(0,1), 	 = 0, 1, . . . , (10.22)
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where s ∈ {0, 1}. We recall that

u = lim
L→∞

PL
(0)u = lim

L→∞

L∑
�=0

Q�
(0)u =

∞∑
�=0

Q�
(0)u

and hence

u− P L
(0)u =

∑
�>L

Q�
(0)u

for all u ∈ H2(0, 1) ∩ H1
(0)(0, 1), where the limits of the infinite series are

considered in the Hs(0, 1)-norm, s ∈ {0, 1}.
In the multidimensional case, we deduce from (10.22) that∥∥Q�1

(0) ⊗ · · · ⊗Q�d

(0)u
∥∥

Hs (Ω)
≤ Const.2s|�|∞−2|�|1‖u‖H2(Ω);

also,

u− P̂L
0 u =

∑
|�|1>L

Q�1
(0) ⊗ · · · ⊗Q�d

(0)u

for all u ∈ H2(Ω) ∩
⊗d

i=1 H1
(0)(0, 1), where the limit of the infinite sum

is considered in the
⊗d

i=1 Hs(0, 1)-norm, s ∈ {0, 1}. Noting that for 	 =
(	1, . . . , 	d), such that |	|1 = m,

2s|�|∞−2|�|1 = 2(s−2)L+(s−2)(m−L)+s(|�|∞−m),

we have that

∥∥u− P̂ L
0 u
∥∥

Hs (Ω)
≤ Const.

 ∑
|�|1>L

2s|�|∞−2|�|1

 ‖u‖H2(Ω)

= Const.

 ∞∑
m=L+1

∑
|�|1=m

2s|�|∞−2|�|1

 ‖u‖H2(Ω)

= Const.2(s−2)L

( ∞∑
m=L+1

2(s−2)(m−L)σm

)
‖u‖H2(Ω),

where σm =
∑

|�|1=m 2s(|�|∞−m).
For s = 0 we have σm ≤ Const.md−1, while for s > 0 the bound

σm ≤ Const. holds, independent of m. The final forms of the inequali-
ties (10.21) follow, with 2(s−2)L = h2−s

L and L = | log2 hL|, on observing
that

∑∞
m=L+1 2(s−2)(m−L)σm is bounded by Const.Ld−1 when s = 0 and

by a constant independent of L when s > 0.

Since the space Hk(Ω) of functions of square-integrable mixed kth deriva-
tives is a proper subspace of the classical Sobolev space Hk(Ω) = {v ∈
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L2(Ω) : Dαv ∈ L2(Ω), |α|1 ≤ k}, Proposition 10.1 indicates that preserv-
ing the optimal approximation order O(h2−s) of the full tensor-product
space V L

0 in the Hs(Ω)-norm, s = 0, 1, upon sparsification (with a mild
polylogarithmic loss of | log2 hL|d−1 in the case of s = 0) comes at the
expense of increased smoothness requirements on the function u which is
approximated from the sparse tensor-product space V̂ L

0 .

10.6 Sparse stabilised finite element method

Having defined the finite-dimensional space V̂ L
0 from which the approxi-

mate solution will be sought, we now introduce the remaining ingredients
of our Galerkin method: a bilinear form bδ(·, ·) which approximates the bi-
linear form B(·, ·) from the weak formulation (10.11) of the boundary value
problem (10.6), (10.7) and a linear functional lδ(·) which approximates the
linear functional L(·) from (10.11).

Let us consider the bilinear form

bδ(w, v) := B(w, v) + δL

∑
κ∈T L

(Lw, b · ∇v)κ.

Here δL ∈ [0, 1/c] is a (‘streamline-diffusion’) parameter to be chosen below,
and κ ∈ T L are d-dimensional axiparallel cubic elements of edge-length hL

in the partition of the computational domain Ω = (0, 1)d; there are 2Ld

such elements κ in T L, a number that grows exponentially with d. The
second term can be thought of as least-square stabilisation in the direction
of subcharacteristics (‘streamlines’).

We also define the linear functional

lδ(v) := L(v) + δL

∑
κ∈T L

(f, b · ∇v)κ (= L(v) + δL(f, b · ∇v)) ,

and consider the finite-dimensional problem: find uh ∈ V̂ L
0 such that

bδ(uh, vh) = lδ(vh) ∀vh ∈ V̂ L
0 . (10.23)

The idea behind the method (10.23) is to introduce mesh-dependent
numerical diffusion into the standard Galerkin finite element method along
subcharacteristic directions, with the aim to suppress maximum-principle-
violating oscillations on the scale of the mesh, and let δL → 0 with hL → 0.
For an analysis of the method in the case of standard finite element spaces
and (low-dimensional) elliptic transport-dominated diffusion equations we
refer to the monograph of Roos, Stynes & Tobiska (1996).

It would have been more accurate to write uhL
and vhL

instead of uh

and vh in (10.23). However, to avoid notational clutter, we shall refrain
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from doing so. Instead, we adopt the convention that the dependence of
h = hL on the index L will be implied, even when not explicitly noted.

We begin with the stability-analysis of the method. Since uh|κ is multi-
linear in each κ ∈ T L and a is a constant matrix, it follows that

∇ · (a∇uh)|κ = a : ∇∇uh|κ = 0.

Therefore,

bδ(uh, vh) = B(uh, vh) + δL(b · ∇uh + cuh, b · ∇vh)

for all uh, vh ∈ V̂ L
0 . We note in passing that this simplification of bδ(·, ·)

over V̂ L
0 × V̂ L

0 , in comparison with its original definition, has useful compu-
tational consequences: it helps to avoid summation over the 2Ld elements
κ comprising the mesh T L in the implementation of the method. Now,

bδ(vh, vh) = (a∇vh,∇vh) + (cvh, vh) + δL‖b · ∇vh‖2

+
1
2

∫
Γ+∪Γ−

|β||vh|2 ds +
1
2
cδL

∫
Γ

β|vh|2 ds

≥ (a∇vh,∇vh) + c‖vh‖2 + δL‖b · ∇vh‖2 (10.24)

+
1
2
(1 + cδL)

∫
Γ+

|β||vh|2 ds +
1
2
(1− cδL)

∫
Γ−

|β||vh|2 ds,

where we have made use of the facts that β ≤ |β| on Γ− and vh|Γ0 = 0.
Since (10.23) is a linear problem in a finite-dimensional linear space, (10.24)
implies the existence and uniqueness of a solution uh to (10.23) in V̂ L

0 .
Let us also note that

|lδ(vh)| ≤
(

1
c

+ δL

)1/2

‖f‖
(
c‖vh‖2 + δL‖b · ∇vh‖2

)1/2
(10.25)

for all vh ∈ V̂ L
0 . On noting that, by hypothesis, 1− cδL ≥ 0 and combining

(10.24) and (10.25) we deduce that

|||uh|||2SD := (a∇uh,∇uh) + c‖uh‖2 + δL‖b · ∇uh‖2

+
1
2
(1 + cδL)

∫
Γ+

|β||uh|2 ds +
1
2
(1− cδL)

∫
Γ−

|β||uh|2 ds

≤
(

1
c

+ δL

)
‖f‖2.

Hence,

|||uh|||SD ≤ (2/c)1/2‖f‖, (10.26)

which establishes the stability of the method (10.23), for all δL ∈ [0, 1/c].
The next section is devoted to the error analysis of the method. We shall

require the following multiplicative trace inequality.
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Lemma 10.3 (Multiplicative trace inequality) Let Ω = (0, 1)d where
d ≥ 2 and suppose that Γ+ is the hyperbolic outflow part of Γ. Then,∫

Γ+

|v|2 ds ≤ 4d‖v‖ ‖v‖H1(Ω) ∀v ∈ H1(Ω).

Proof We shall prove the inequality for v ∈ C1(Ω). For v ∈ H1(Ω) the
result follows by density of C1(Ω) in H1(Ω). As we have noted before, Γ+

is a union of (d− 1)-dimensional open faces of Ω. Let us suppose without
loss of generality that the face x1 = 0 of Ω belongs to Γ+. Then,

v2(0, x′) = v2(x1, x
′) +

∫ 0

x1

∂

∂x1
v2(ξ, x′)dξ, x′ = (x2, . . . , xn).

Hence, on integrating this over x = (x1, x
′) ∈ (0, 1)× (0, 1)d−1 = Ω,∫

x′∈(0,1)d−1
v2(0, x′) dx′ =

∫ 1

0

∫
x′∈(0,1)d−1

v2(x1, x
′) dx′ dx1

+ 2
∫ 1

0

∫
x′∈(0,1)d−1

∫ 0

x1

v(ξ, x′)
∂

∂x1
v(ξ, x′)dξ dx′ dx1

≤ ‖v‖2 + 2‖v‖ ‖vx1‖.

In the generic case when β > 0 on the whole of Γ+, the set Γ+ will contain
at most d of the 2d faces of Ω, — at most one complete face of Ω orthogonal
to the ith co-ordinate direction, i = 1, . . . , d. Otherwise, if β = 0 on certain
faces that belong to Γ+, the set Γ+ may contain as many as 2d− 1 of the
2d faces of Ω. Thus, in the worst case,∫

Γ+

|v|2 ds ≤ (2d− 1)‖v‖2 + 4‖v‖
d∑

i=1

‖uxi
‖.

Therefore,∫
Γ+

|v|2 ds ≤ 2d
√

2 max
{

1,
2

d1/2

}
‖v‖ ‖v‖H1(Ω) ≤ 4d‖v‖ ‖v‖H1(Ω).

Hence the required result.

10.7 Error analysis

Our goal in this section is to estimate the size of the error between the
analytical solution u ∈ H and its approximation uh ∈ V̂ L

0 . We shall assume
throughout that f ∈ L2(Ω) and the corresponding solution u ∈ H2(Ω) ∩
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i=1 H1

(0)(0, 1) ⊂ H. Clearly,

bδ(u− uh, vh) = B(u, vh)− L(vh) + δL

∑
κ∈T L

(Lu− f, b · ∇vh)κ

for all vh ∈ V̂ L
0 ⊂ V. Hence we deduce from (10.11) the following Galerkin

orthogonality property:

bδ(u− uh, vh) = 0 ∀vh ∈ V̂ L
0 . (10.27)

Let us decompose the error u− uh as follows:

u− uh = (u− P̂Lu) + (P̂Lu− uh) = η + ξ,

where η := u− P̂ Lu and ξ := P̂ Lu− uh. By the triangle inequality,

|||u− uh|||SD ≤ |||η|||SD + |||ξ|||SD. (10.28)

We begin by bounding |||ξ|||SD. By (10.24) and (10.27), we have that

|||ξ|||2SD ≤ bδ(ξ, ξ) = bδ(u− uh, ξ)− bδ(η, ξ) = −bδ(η, ξ).

Therefore,

|||ξ|||2SD ≤ |bδ(η, ξ)|. (10.29)

Now since ∇∇(PLu)|κ = 0 for each κ ∈ T L, we have that ∇∇η|κ = ∇∇u|κ
on each κ ∈ T L, and therefore

bδ(η, ξ) = (a∇η,∇ξ)− (η, b · ∇ξ) + (cη, ξ) +
∫

Γ+

|β|ηξ ds

+ δL(−a : ∇∇u + b · ∇η + cη, b · ∇ξ)

= I + II + III + IV + V + VI + VII.

We shall estimate each of the terms I to VII in turn:

I≤
(
|a|1/2‖∇η‖

)
|||ξ|||SD,

II≤
(
δ
−1/2
L ‖η‖

)
|||ξ|||SD,

III≤
(
c1/2‖η‖

)
|||ξ|||SD,

V ≤
(
δ
1/2
L |a| |u|H2(Ω)

)
|||ξ|||SD,

VI≤
(
δ
1/2
L |b| ‖∇η‖

)
|||ξ|||SD,

VII≤
(
cδ

1/2
L ‖η‖

)
|||ξ|||SD.
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Here |a| is the Frobenius norm of the matrix a and |b| is the Euclidean
norm of the vector b. It remains to estimate IV:

IV ≤
(

2|b|
1 + cδL

)1/2
(∫

Γ+

|η|2 ds

)1/2

|||ξ|||SD

≤ (2|b|)1/2 (4d)1/2‖η‖1/2‖η‖1/2
H1(Ω)|||ξ|||SD,

where in the transition to the last line we used the multiplicative trace
inequality from Lemma 10.3. Hence, by (10.29),

|||ξ|||SD ≤ |a|1/2‖∇η‖+δ
−1/2
L ‖η‖+c1/2‖η‖+(8d)1/2|b|1/2‖η‖1/2 ‖η‖1/2

H1(Ω)

+ δ
1/2
L |a||u|H2(Ω) + δ

1/2
L |b|‖∇η‖+ cδ

1/2
L ‖η‖. (10.30)

On selecting

δL := Kδ min
(

h2
L

|a| ,
hL| log2 hL|d−1

d|b| ,
1
c

)
, (10.31)

with Kδ ∈ R>0 a constant, independent of hL and d, we get that

|||ξ|||2SD ≤ C(u)
(
|a|h2

L +
h4

L| log2 hL|2(d−1)

δL

)
,

where C(u) := Const.‖u‖2H2(Ω), and Const. is a positive constant indepen-
dent of hL. An identical bound holds for |||η|||SD. Thus we have proved
the following theorem.

Theorem 10.2 Suppose that f ∈ L2(Ω), c > 0 and u ∈ H2(Ω)∩H. Then,
the following bound holds for the error u−uh between the analytical solution
u of (10.11) and its sparse finite element approximation uh ∈ V̂ L

0 defined
by (10.23), with L ≥ 1 and h = hL = 2−L:

|||u− uh|||2SD ≤ C(u)
(
|a|h2

L + h4
L| log2 hL|2(d−1)

×max
(
|a|
h2

L

,
d|b|

hL| log2 hL|d−1
, c

))
,

with the streamline-diffusion parameter δL defined by the formula (10.31)
and C(u) = Const.‖u‖2H2(Ω) where Const. is a positive constant indepen-
dent of the discretisation parameter hL.

10.8 Final remarks

We close with some remarks on Theorem 10.2 and on possible extensions of
the results presented here. We begin by noting that, save for the polyloga-
rithmic factors, the definition of δL and the structure of the error bound in
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the ||| · |||SD norm are exactly the same as if we used the full tensor-product
finite element space V L

0 instead of the sparse tensor product space V̂ L
0 (cf.

Houston & Süli (2001)). On the other hand, as we have commented ear-
lier, through the use of the sparse space V̂ L

0 , computational complexity has
been reduced from O(2Ld) to O(2L(log2 2L)d−1). Hence, in comparison
with a streamline-diffusion method based on the full tensor-product space,
a substantial computational saving has been achieved at the cost of only a
marginal loss in accuracy.

a) In the diffusion-dominated case, that is when |a| ≈ 1 and |b| ≈ 0, we
see from Theorem 10.2 that the error, in the streamline-diffusion norm
||| · |||SD, is O(hL| log2 hL|d−1) as hL → 0, provided that the streamline-
diffusion parameter is chosen as

δL = Kδh
2
L/|a|.

This asymptotic convergence rate, as hL → 0, is slower, by the polyloga-
rithmic factor | log2 hL|d−1, than the O(hL) bound on the ‖·‖H1(Ω) norm
of the error in a standard sparse Galerkin finite element approximation
of Poisson’s equation on Ω = (0, 1)d.

b) In the transport-dominated case, that is when |a| ≈ 0 and |b| ≈ 1,

δL = KδhL| log2 hL|d−1/(d|b|),

so the error of the method, measured in the streamline-diffusion norm,
is O(h3/2

L | log2 hL|d−1) when the diffusivity matrix a degenerates.
c) We have confined ourselves to finite element approximations based on

tensor-product piecewise polynomials of degree p = 1 in each of the
d co-ordinate directions. The analysis in the case of p ≥ 1 is more
technical and will be presented elsewhere.

d) For simplicity, we have restricted ourselves to uniform tensor-product
partitions of [0, 1]d. Numerical experiments indicate that, in the pres-
ence of boundary-layers, the accuracy of the proposed sparse streamline-
diffusion method can be improved by using high-dimensional versions
of Shishkin-type boundary-layer-fitted tensor-product nonuniform grids.
For technical details concerning the efficient implementation of sparse-
grid finite element methods, we refer to the articles of Zumbusch (2000)
and Bungartz & Griebel (2004).
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Abstract

In nonlinear approximation we seek ways to approximate complicated func-
tions by simpler functions using methods that depend nonlinearly on the
function being approximated. Recently, a particular kind of nonlinear ap-
proximation, namely greedy approximation has attracted a lot of attention
in both theoretical and applied settings. Greedy type algorithms have
proven to be very useful in various applications such as image compression,
signal processing, design of neural networks, and the numerical solution
of nonlinear partial differential equations. A theory of greedy approxima-
tion is now emerging. Some fundamental convergence results have already
been established and many fundamental problems remain unsolved. In
this survey we place emphasis on the study of the efficiency of greedy al-
gorithms with regards to redundant systems (dictionaries). Redundancy,
on the one hand, offers much promise for greater efficiency in terms of the
rate of approximation. On the other hand, it gives rise to highly nontrivial
theoretical and practical problems. We note that there is solid justifica-
tion for the importance of redundant systems in both theoretical questions
and practical applications. This survey is a continuation of the survey
Temlyakov (2003a) on nonlinear approximations. Here we concentrate on
more recent results on greedy approximation.

11.1 Introduction

In the last decade we have seen successes in the study of nonlinear ap-
proximation (see the surveys DeVore (1998) and Temlyakov (2003a)). This
study was motivated by numerous applications. Nonlinear approximation
is important in applications because of its efficiency. Two types of non-
linear approximation are frequently employed in applications. Adaptive
methods are used in PDE solvers. The m-term approximation considered
in this paper is used in image and signal processing as well as in the design

371



372 V. N. Temlyakov

of neural networks. The fundamental question of nonlinear approximation
is how to construct good methods (algorithms) of nonlinear approximation.
This problem has two levels of nonlinearity. The first level of nonlinearity is
m-term approximation with respect to bases. In this problem one can use
the function expansion (unique) with regards to a given basis to build an
approximant. In this case nonlinearity is introduced by looking for an m-
term approximant with terms (basis elements in the approximant) allowed
to depend upon a given function. This idea is utilized in the Threshold-
ing Greedy Algorithm (see the survey Konyagin & Temlyakov (2002) for a
detailed discussion). At a second level, nonlinearity is introduced when we
replace a basis by a more general system which is not necessarily minimal
(redundant system, dictionary). This case is much more complicated than
the first (bases case). However, there is solid justification for the impor-
tance of redundant systems in both theoretical questions and in practical
applications (see for instance Schmidt (1906-1907), Huber (1985), Donoho
(2001)).

Recent results have established (see Temlyakov (2003a)) that greedy type
algorithms are suitable methods of nonlinear approximation in both m-
term approximation with regard to bases and m-term approximation with
regard to redundant systems. The survey Temlyakov (2003a) contains a
discussion of results on greedy approximation published before 2001. In
this short survey we try to complement the paper Temlyakov (2003a) with
a discussion of new results on greedy approximation with regard to a re-
dundant system (dictionary). We refer the reader to the survey Konyagin
& Temlyakov (2002) for a discussion of recent results on greedy approxi-
mation with regard to a basis.

In order to address the contemporary needs of approximation theory and
computational mathematics, a very general model of approximation with
regards to a redundant system (dictionary) has been considered in many
recent papers. For a survey of some of these results we refer the reader
to DeVore (1998) and Temlyakov (2003a). As such a model we choose a
Banach space X with elements as target functions and an arbitrary system
D of elements of this space, such that span D = X, as an approximat-
ing system. We would like to have an algorithm for constructing m-term
approximants that adds, at each step, only one new element from D and
keeps the elements of D obtained at the previous steps. This requirement
is an analog of an on-line computation property that is very desirable in
practical algorithms. Clearly, we are looking for good algorithms which
satisfy the minimum requirement that they converge for each target func-
tion. It is not obvious that such an algorithm exists in a setting at the
level of generality above (X, D arbitrary). It turns out that there is a



Greedy Approximations 373

fundamental principle that allows us to construct good algorithms both
for arbitrary redundant systems and for very simple well structured bases
like the Haar basis. This principle is the use of a greedy step in searching
for a new element to be added to a given m-term approximant. The com-
mon feature of all algorithms of m-term approximation discussed in this
paper is the presence of a greedy step. By a greedy step in choosing an
mth element gm(f) ∈ D to be used in an m-term approximant, we mean
one which maximizes a certain functional determined by information from
the previous steps of the algorithm. We obtain different types of greedy
algorithms by varying the functional mentioned above and also by using
different ways of constructing (choosing coefficients of the linear combina-
tion) the m-term approximant from the, already found, m elements of the
dictionary.

Let X be a Banach space with norm ‖ · ‖. We say that a set of elements
(functions) D from X is a dictionary if each g ∈ D has norm one (‖g‖ = 1),
and spanD = X. In addition we assume, for convenience (when we work
in a Banach space), that a dictionary is symmetric:

g ∈ D implies − g ∈ D.

Thus from the definition of a dictionary it follows that any element f ∈ X

can be approximated arbitrarily well by finite linear combinations of the
dictionary elements. Our primary goal in Sections 11.2 and 11.3 is to study
representations of an element f ∈ X by a series

f ∼
∞∑

j=1

cj(f)gj(f), gj(f) ∈ D, cj(f) > 0, j = 1, 2, . . . . (11.1)

In building a representation (11.1) we should construct two sequences:
{gj(f)}∞j=1 and {cj(f)}∞j=1. In this paper the construction of {gj(f)}∞j=1

will be based upon ideas used in greedy-type nonlinear approximation
(greedy-type algorithms). This justifies the use of the term greedy expan-
sion for (11.1) considered in the paper. The construction of {gj(f)}∞j=1 is,
clearly, the most important and difficult part in building a representation
(11.1). On the basis of the contemporary theory of nonlinear approxi-
mation with regards to redundant dictionaries we may conclude that the
method of using a norming functional in the greedy steps of an algorithm
is the most productive in approximation in Banach spaces. This method
was used, for the first time, in Donahue, Gurvits, Darken & Sontag (1997).

We will study in Sections 11.2 and 11.3 of this paper greedy algorithms
with regard to D that provide greedy expansions. For a nonzero element
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f ∈ X we denote by Ff a norming (peak) functional for f :

‖Ff‖ = 1, Ff (f) = ‖f‖.

The existence of such a functional is guaranteed by the Hahn-Banach The-
orem. Let

rD(f) := sup
Ff

sup
g∈D

Ff (g).

We note that in general a norming functional Ff is not unique. This is
why we take supFf

over all norming functionals of f in the definition of
rD(f). It is known that in the case of uniformly smooth Banach spaces
(our primary object here) the norming functional Ff is unique. In such a
case we do not need supFf

in the definition of rD(f). We consider here
approximation in uniformly smooth Banach spaces. For a Banach space X

we define the modulus of smoothness

ρ(u) := sup
‖x‖=‖y‖=1

(
1
2
(‖x + uy‖+ ‖x− uy‖)− 1

)
.

A uniformly smooth Banach space is one with the property

lim
u→0

ρ(u)/u = 0.

In Section 11.4 we discuss modifications of greedy algorithms that are
motivated by practical applications of these algorithms. First of all, we
assume that our evaluations are not exact. We use a functional that is an
approximant of a norming functional and we use a near-best approximant
instead of the best approximant. Secondly, we address the very important
issue of the evaluation of supg∈D Ff (g). To make this evaluation feasible
we restrict our search to a finite subset D(N) of D. In other words, we
evaluate supg∈D(N) Ff (g). We present the corresponding convergence and
rate of convergence results in Section 11.4.

Section 11.5 is devoted to a discussion of specific dictionaries that are
close (in a certain sense) to orthogonal bases in the case of Hilbert spaces.
We also include new results on M -coherent dictionaries in Banach spaces.

We stress that in this short survey we discuss only a fraction of the
recent results on greedy approximation. For instance, we do not cover
the following very interesting topics that deserve separate surveys: greedy
approximation with regard to a randomly chosen dictionary, simultaneous
greedy approximations.
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11.2 Greedy expansions in Hilbert spaces

11.2.1 Pure Greedy Algorithm

We define first the Pure Greedy Algorithm (PGA) in a Hilbert space H.
We describe this algorithm for a general dictionary D. If f ∈ H, we let
g(f) ∈ D be an element from D which maximizes |〈f, g〉|. We will assume,
for simplicity, that such a maximizer exists; if not, suitable modifications
are necessary (see Weak Greedy Algorithm in Temlyakov (2003a), p. 54)
in the algorithm that follows. We define

G(f,D) := 〈f, g(f)〉g(f)

and

R(f,D) := f −G(f,D).

Pure Greedy Algorithm (PGA) We define R0(f,D) := f and G0(f,D)
:= 0. Then, for each m ≥ 1, we inductively define

Gm(f,D) := Gm−1(f,D) + G(Rm−1(f,D),D)

Rm(f,D) := f −Gm(f,D) = R(Rm−1(f,D),D).

For a general dictionary D we define the class of functions

Ao
1(D,M) := {f ∈ H : f =

∑
k∈Λ

ckwk, wk ∈ D,

#Λ <∞ and
∑
k∈Λ

|ck| ≤M}

and we define A1(D,M) as the closure (in H) of Ao
1(D,M). Furthermore,

we define A1(D) as the union of the classes A1(D,M) over all M > 0. For
f ∈ A1(D), we define the norm

|f |A1(D)

as the smallest M such that f ∈ A1(D,M). It will be convenient to use
the notation A1(D) := A1(D, 1).

It was proved in DeVore & Temlyakov (1996) that for a general dictionary
D the Pure Greedy Algorithm provides the estimate

‖f −Gm(f,D)‖ ≤ |f |A1(D)m
−1/6.

(In this and similar estimates we consider that the inequality holds for all
possible choices of {Gm}.)

The above estimate was improved a little in Konyagin & Temlyakov
(1999) to

‖f −Gm(f,D)‖ ≤ 4|f |A1(D)m
−11/62.
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In this subsection we discuss recent progress on the following open prob-
lem (see Temlyakov (2003a), p. 65, Open Problem 3.1). This problem is a
central theoretical problem in greedy approximation in Hilbert spaces.

Open problem. Find the order of decay of the sequence

γ(m) := sup
f,D,{Gm }

(‖f −Gm(f,D)‖|f |−1
A1(D)),

where sup is taken over all dictionaries D, all elements f ∈ A1(D) \ {0}
and all possible choices of {Gm}.

Recently, the known upper bounds in approximation by the Pure Greedy
Algorithm have been improved upon by Sil’nichenko (2004). Sil’nichenko
proved the estimate

γ(m) ≤ Cm− s
2(2+s)

where s is a solution from the interval [1, 1.5] of the equation

(1 + x)
1

2+x

(
2 + x

1 + x

)
− 1 + x

x
= 0.

Numerical calculations of s (see Sil’nichenko (2004)) give

s

2(2 + s)
= 0.182 · · · > 11/62 = 0.177 . . . .

The technique used in Sil’nichenko (2004) is a further development of a
method from Konyagin & Temlyakov (1999).

There is also some progress in the lower estimates. The estimate

γ(m) ≥ Cm−0.27,

with a positive constant C, has been proved in Livshitz & Temlyakov
(2003). For previous lower estimates see Temlyakov (2003a), p. 59.

11.2.2 Greedy Expansions

The PGA and its generalization the Weak Greedy Algorithm (WGA) (see
Temlyakov (2003a), p. 54 or the definition of the WGA(b) below with
b = 1) give, for every element f ∈ H, a convergent expansion in a series
with respect to a dictionary D. In this subsection we discuss a further
generalization of the WGA that also provides a convergent expansion. We
consider here a generalization of the WGA obtained by introducing to it
a tuning parameter b ∈ (0, 1] (see Temlyakov (2003b)). Let a sequence
τ = {tk}∞k=1, 0 ≤ tk ≤ 1, and a parameter b ∈ (0, 1] be given. We define
the Weak Greedy Algorithm with parameter b as follows.
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Weak Greedy Algorithm with Parameter b (WGA(b)) We define
fτ,b
0 := f . Then, for each m ≥ 1, we inductively define:
1) ϕτ,b

m ∈ D is any element satisfying∣∣〈fτ,b
m−1, ϕ

τ,b
m

〉∣∣ ≥ tm sup
g∈D
|〈fτ,b

m−1, g〉|;

2) Set

f τ,b
m := fτ,b

m−1 − b
〈
fτ,b

m−1, ϕ
τ,b
m

〉
ϕτ,b

m ;

3) Define

Gτ,b
m (f,D) := b

m∑
j=1

〈
f τ,b

j−1, ϕ
τ,b
j

〉
ϕτ,b

j .

We note that the WGA(b) can be seen as a realization of the Approximate
Greedy Algorithm studied in Gribonval & Nielsen (2001) and Galatenko &
Livshitz (2003).

We point out that the WGA(b) contains, in addition to the first (greedy)
step, the second step (see 2), 3) in the above definition) where we update
an approximant by adding an orthogonal projection of the residual fτ,b

m−1

onto ϕτ,b
m multiplied by b. The WGA(b) therefore provides, for each f ∈ H,

an expansion into a series (greedy expansion)

f ∼
∞∑

j=1

cj(f)ϕτ,b
j , cj(f) := b

〈
fτ,b

j−1, ϕ
τ,b
j

〉
.

We begin with a convergence result from Temlyakov (2003b). We define
by V the class of sequences x = {xk}∞k=1, xk ≥ 0, k = 1, 2, . . . , with the
following property: there exists a sequence 0 = q0 < q1 < . . . that may
depend on x such that

∞∑
s=1

2s

∆qs
<∞;

and
∞∑

s=1

2−s

qs∑
k=1

x2
k <∞,

where ∆qs := qs − qs−1.

Theorem 11.1 Let τ /∈ V. Then, the WGA(b) with b ∈ (0, 1] converges
for each f and all Hilbert spaces H and dictionaries D.

Theorem 11.1 is an extension of the corresponding result for the WGA
(see Temlyakov (2003a), p. 58).
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We proved in Temlyakov (2003b) the following convergence rate of the
WGA(b).

Theorem 11.2 Let D be an arbitrary dictionary in H. Assume τ :=
{tk}∞k=1 is a nonincreasing sequence and b ∈ (0, 1]. Then, for f ∈ A1(D),
we have

‖f −Gτ,b
m (f,D)‖ ≤

(
1 + b(2− b)

m∑
k=1

t2k

)−(2−b)tm /2(2+(2−b)tm )

.

This theorem is an extension of the corresponding result for the WGA
(see Temlyakov (2003a), p. 59). In the particular case tk = 1, k = 1, 2, . . . ,
we get the following rate of convergence

‖f −G1,b
m (f,D)‖ ≤ Cm−r(b), r(b) :=

2− b

2(4− b)
.

We note that r(1) = 1/6 and r(b) → 1/4 as b → 0. Thus we can offer the
following observation. At each step of the Pure Greedy Algorithm we can
choose a fixed fraction of the optimal coefficient for that step instead of the
optimal coefficient itself. Surprisingly, this leads to better upper estimates
than those known for the Pure Greedy Algorithm.

11.2.3 Other Expansions

Important features of approximation schemes discussed in the previous sub-
section are the following. An approximation method (algorithm) provides
an expansion and in addition each dictionary element participating in this
expansion is chosen at a greedy step (it is a maximizer or a weak maximizer
of |〈fm−1, g〉| over g ∈ D). The best upper estimates for such schemes (for
f ∈ A1(D)) are not better than m−1/4. It is known that some greedy type
algorithms, for instance, the Orthogonal Greedy Algorithm, provide a bet-
ter rate of convergence m−1/2 (see Temlyakov (2003a), p. 60). However,
these algorithms do not provide an expansion. In this subsection we discuss
very recent results of E. D. Livshitz on a construction of expansions (not
greedy expansions) that provide a rate of convergence close to m−1/2. This
construction contains, in addition to the greedy step, another step that is
not a greedy step. The following algorithm has been studied in Livshitz
(2004).

Weak Reversing Greedy Algorithm (WRsGA) Let t ∈ (0, 1]. For a
given D and f ∈ H we set f0 := f . Assume that for n ≥ 0 a sequence
of residuals f0, . . . , fn, a sequence of dictionary elements g1, . . . , gn, and a
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sequence of coefficients c1, . . . , cn have already been defined in such a way
that

fk = f0 −
k∑

i=1

cigi, 1 ≤ k ≤ n.

Denote

Dn := {gi}ni=1,

vn(g) :=
∑

i≤n,gi =g

ci,

bn :=
∑

g∈Dn

|vn(g)|,

an := 〈fn, fn〉.

Let n ≥ 1. Consider the two inequalities

min(|vn(g)|, |〈fn, g〉|) ≥ ant2

9bn
, (11.2)

sign(vn(g)) = −sign(〈fn, g〉). (11.3)

If there exists a g ∈ Dn satisfying both (11.2) and (11.3) then we set

gn+1 := g, cn+1 := sign(〈fn, g〉)min(|vn(g)|, |〈fn, g〉|)

and

fn+1 := fn − cn+1gn+1.

If there is no g ∈ Dn satisfying both (11.2) and (11.3) then we apply a
greedy step and choose as gn+1 any element of the dictionary satisfying

|〈fn, gn+1〉| ≥ t sup
g∈D
|〈fn, g〉|.

Define

cn+1 := 〈fn, gn+1〉, fn+1 := fn − cn+1gn+1.

This algorithm has two different ways of choosing a new element gn+1

from the dictionary. One of them is the greedy step. A new feature of
the above algorithm is the other step that we call a reversing step. The
following result has been obtained in Livshitz (2004).

Theorem 11.3 Let t ∈ (0, 1] and f ∈ A1(D). Then,

‖fm‖ ≤ C(t)m−1/2 ln m.
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11.3 Greedy expansions in Banach spaces

Greedy expansions in Hilbert spaces have been well studied. The theory
of greedy expansions in Hilbert spaces began in 1987 with the celebrated
paper Jones (1987) on the convergence of the PGA. The WGA has also been
studied extensively (see survey Temlyakov (2003a)). The corresponding
convergence theorems and estimates for the rate of convergence are known.
Recent results on greedy expansions in Hilbert spaces have been discussed
in Section 11.2. Much less is known about greedy expansions in Banach
spaces. There were only a few scattered results (see Dilworth, Kutzarova
& Temlyakov (2002)) on greedy expansions in Banach spaces until a recent
breakthrough result in Ganichev & Kalton (2003). We proceed to the
formulation of this result. We begin with a definition of the Weak Dual
Greedy Algorithm (see Temlyakov (2003a), p. 66). We assume here that D
is a symmetric dictionary.

Weak Dual Greedy Algorithm (WDGA) We define fD
0 := fD,τ

0 := f .
Then, for each m ≥ 1, we inductively define:

1) ϕD
m := ϕD,τ

m ∈ D is any element satisfying

FfD
m −1

(
ϕD

m

)
≥ tm sup

g∈D
FfD

m −1
(g);

2) am is such that∥∥fD
m−1 − amϕD

m

∥∥ = min
a∈R

∥∥fD
m−1 − aϕD

m

∥∥;
3) Denote

fD
m := fD,τ

m := fD
m−1 − amϕD

m.

In the case τ = {1} the WDGA coincides with the Dual Greedy Al-
gorithm (DGA). The following conjecture was formulated in Temlyakov
(2003a), p. 73, Open problem 4.3: the Dual Greedy Algorithm converges
for all dictionaries D and each element f ∈ X in uniformly smooth Banach
spaces X with modulus of smoothness of fixed power type q, 1 < q ≤ 2,
(ρ(u) ≤ γuq).

Recently, the following very interesting result has been proved in
Ganichev & Kalton (2003).

Theorem 11.4 Let τ = {t}, t ∈ (0, 1], and X = Lp, 1 < p < ∞. Then,
the WDGA converges for any dictionary D for all functions f ∈ Lp.

This result is a first step in studying greedy expansions in Banach spaces.
We also mention that E. D. Livshitz (see Livshitz (2003)) constructed ex-
pansions in Banach spaces based on different greedy-type algorithms. The-
orem 11.4 gives a partial answer to the above conjecture. However, the
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general case of uniformly smooth Banach spaces X is still open. Theorem
11.4 also leaves open the following two important problems.

1. Is there a greedy type algorithm that provides convergent greedy
expansions for eachD and all f in a uniformly smooth Banach space?

2. What is a rate of convergence of greedy expansions for f ∈ A1(D)?

In the paper Temlyakov (2003b) we addressed these two problems. We
considered there a modification of the WDGA. The new feature of that
modification is a method of selecting the mth coefficient cm(f) of the ex-
pansion (11.1). An approach developed in the paper Temlyakov (2003b)
works in any uniformly smooth Banach space.

We proceed to the definition of the algorithm that we studied in
Temlyakov (2003b).

Dual Greedy Algorithm with Parameters (t, b, µ) (DGA(t, b, µ)) Let
X be a uniformly smooth Banach space with modulus of smoothness ρ(u)
and let µ(u) be a continuous majorant of ρ(u): ρ(u) ≤ µ(u), u ∈ [0,∞). For
parameters t ∈ (0, 1], b ∈ (0, 1] we define sequences {fm}∞m=0, {ϕm}∞m=1,
{cm}∞m=1 inductively. Let f0 := f . If for m ≥ 1 fm−1 = 0 then we set
fj = 0 for j ≥ m and stop. If fm−1 �= 0 then we perform the following
three steps.

1) Take any ϕm ∈ D such that

Ffm −1(ϕm) ≥ trD(fm−1). (11.4)

2) Choose cm > 0 from the equation

‖fm−1‖µ(cm/‖fm−1‖) =
tb

2
cmrD(fm−1).

3) Define

fm := fm−1 − cmϕm.

In Temlyakov (2003b) we proved the following convergence result.

Theorem 11.5 Let X be a uniformly smooth Banach space with modulus
of smoothness ρ(u) and let µ(u) be a continuous majorant of ρ(u) with the
property µ(u)/u ↓ 0 as u→ +0. Then, for any t ∈ (0, 1] and b ∈ (0, 1), the
DGA(t, b, µ) converges for each dictionary D and all f ∈ X.

The following result from Temlyakov (2003b) gives a rate of convergence.

Theorem 11.6 Assume X has modulus of smoothness ρ(u) ≤ γuq, q ∈
(1, 2]. Denote µ(u) = γuq. Then, for any dictionary D and any f ∈ A1(D),
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the rate of convergence of the DGA(t, b, µ) is bounded by

‖fm‖ ≤ C(t, b, γ, q)m− t(1−b)
p(1+t(1−b)) , p :=

q

q − 1
.

Let us discuss an application of Theorem 11.6 in the case of a Hilbert
space. It is well known and easy to check that for a Hilbert space H one
has

ρ(u) ≤ (1 + u2)1/2 − 1 ≤ u2/2.

Therefore, by Theorem 11.6 with µ(u) = u2/2, the DGA(t, b, µ) provides
the error estimate

‖fm‖ ≤ C(t, b)m− t(1−b)
2(1+t(1−b)) for f ∈ A1(D). (11.5)

The estimate (11.5) with t = 1 gives

‖fm‖ ≤ C(b)m− 1−b
2(2−b) for f ∈ A1(D). (11.6)

The exponent 1−b
2(2−b)

in this estimate approaches 1/4 as b approaches 0.
Comparing (11.6) with the upper estimates from Section 11.2 for the PGA
we observe that the DGA(1, b, u2/2) with small b provides a better upper
estimate for the rate of convergence than the known estimates for the PGA.
Thus, for the general method DGA(1, b, u2/2) designed in a Banach space
we have a phenomenon similar to that for the WGA(b).

Let us determine how the DGA(1, b, u2/2) works in a Hilbert space. Con-
sider its mth step. Let ϕm ∈ D be as in (11.4). It is then clear that ϕm

maximizes the 〈fm−1, g〉 over the dictionary D and

〈fm−1, ϕm〉 = ‖fm−1‖rD(fm−1).

The PGA would use ϕm with the coefficient 〈fm−1, ϕm〉 at this step. The
DGA(1, b, u2/2) uses the same ϕm and only a fraction of 〈fm−1, ϕm〉:

cm = b‖fm−1‖rD(fm−1). (11.7)

Thus the choice b = 1 in (11.7) corresponds to the PGA. However, our
technique from Temlyakov (2003b), designed for general Banach spaces,
does not work in the case b = 1. From the above discussion we have
the following surprising observation. The use of a small fraction (cm =
b〈fm−1, ϕm〉) of an optimal coefficient results in the improvement of the
upper estimate for the rate of convergence.
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11.4 Greedy algorithms with approximate evaluations
and restricted search

Let τ := {tk}∞k=1 be a given sequence of nonnegative numbers tk ≤ 1, k =
1, . . . . We first define (see Temlyakov (2003a), p. 66) the Weak Chebyshev
Greedy Algorithm (WCGA) that is a generalization for Banach spaces of
the Weak Orthogonal Greedy Algorithm.

Weak Chebyshev Greedy Algorithm (WCGA) We define fc
0 :=

fc,τ
0 := f . Then, for each m ≥ 1 we inductively define:
1) ϕc

m := ϕc,τ
m ∈ D is any element satisfying

Ffc
m −1

(
ϕc

m

)
≥ tm sup

g∈D
Ffc

m −1
(g).

2) Define

Φm := Φτ
m := span

{
ϕc

j

}m

j=1
,

and define Gc
m := Gc,τ

m to be the best approximant to f from Φm.
3) Denote

fc
m := f c,τ

m := f −Gc
m.

In the case tk = 1, k = 1, 2, . . . , we call the WCGA the Chebyshev
Greedy Algorithm (CGA). Both the WCGA and the CGA are theoretical
greedy approximation methods. The term weak in the above definition
means that at step 1) we do not shoot for the optimal element of the
dictionary which realizes the corresponding supremum but are satisfied
with a weaker property than being optimal. The obvious reason for this is
that we do not know in general that the optimal element exists. Another
practical reason is that the weaker the assumption the easier it is to satisfy
it and, therefore, easier to realize in practice. However, it is clear that
in the case of an infinite dictionary D there is no direct computationally
feasible way to evaluate supg∈D Ffc

m −1
(g).

At the second step we are looking for the best approximant of f from
Φm. We know that such an approximant exists. However, in practice we
cannot find it exactly. We can only find it approximately with error.

The above observations motivated us to consider a variant of the WCGA
with an eye towards practically implementable algorithms.

We studied in Temlyakov (2002) the following modification of the WCGA.
Let three sequences τ = {tk}∞k=1, δ = {δk}∞k=0, η = {ηk}∞k=1 of numbers
from [0, 1] be given.

Approximate Weak Chebyshev Greedy Algorithm (AWCGA) We
define f0 := f τ,δ,η

0 := f . Then, for each m ≥ 1 we inductively define:
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1) Fm−1 is a functional with properties

‖Fm−1‖ ≤ 1, Fm−1(fm−1) ≥ ‖fm−1‖(1− δm−1);

and ϕm := ϕτ,δ,η
m ∈ D is any element satisfying

Fm−1(ϕm) ≥ tm sup
g∈D

Fm−1(g).

2) Define

Φm := span{ϕj}mj=1,

and denote

Em(f) := inf
ϕ∈Φm

‖f − ϕ‖.

Let Gm ∈ Φm be such that

‖f −Gm‖ ≤ Em(f)(1 + ηm).

3) Denote

fm := fτ,δ,η
m := f −Gm.

The term approximate in this definition means that we use a functional
Fm−1 that is an approximation to the norming (peak) functional Ffm −1

and also that we use an approximant Gm ∈ Φm which satisfies a weaker
assumption than being a best approximant to f from Φm. Thus, in the
approximate version of the WCGA, we have addressed the issue of inexact
evaluation of the norming functional and the best approximant. We did not
address the issue of finding the supg∈D Ffc

m −1
(g). In the paper Temlyakov

(2004) we addressed this issue. We did it in two steps. First we considered
the corresponding modification of the WCGA, and then the modification
of the AWCGA. These modifications are done in the style of the concept
of depth search from Donoho (2001).

We now consider a countable dictionary D = {±ψj}∞j=1. We denote
D(N) := {±ψj}Nj=1. Let N := {Nj}∞j=1 be a sequence of natural numbers.

Restricted Weak Chebyshev Greedy Algorithm (RWCGA) We
define f0 := fc,τ,N

0 := f . Then, for each m ≥ 1 we inductively define:
1) ϕm := ϕc,τ,N

m ∈ D(Nm) is any element satisfying

Ffm −1(ϕm) ≥ tm sup
g∈D(Nm )

Ffm −1(g).

2) Define

Φm := Φτ,N
m := span{ϕj}mj=1,

and define Gm := Gc,τ,N
m to be the best approximant to f from Φm.
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3) Denote

fm := fc,τ,N
m := f −Gm.

We formulate some results from Temlyakov (2002) and Temlyakov (2004)
in the particular case of a uniformly smooth Banach space with modulus
of smoothness of power type (see Temlyakov (2002), Temlyakov (2004) for
the general case). The following theorem was proved in Temlyakov (2002).

Theorem 11.7 Let a Banach space X have modulus of smoothness ρ(u)
of power type 1 < q ≤ 2; (ρ(u) ≤ γuq). Assume that

∞∑
m=1

tpm =∞, p =
q

q − 1
;

and

δm = o
(
tpm
)
, ηm = o

(
tpm
)
.

Then, the AWCGA converges for any f ∈ X.

We now give two theorems from Temlyakov (2004) on greedy algorithms
with restricted search.

Theorem 11.8 Let a Banach space X have modulus of smoothness ρ(u)
of power type 1 < q ≤ 2; (ρ(u) ≤ γuq). Assume that limm→∞ Nm = ∞
and

∞∑
m=1

tpm =∞, p =
q

q − 1
.

Then, the RWCGA converges for any f ∈ X.

For b > 0, K > 0, we define the class

Ab
1(K,D) := {f : d(f,A1(D(n)) ≤ Kn−b, n = 1, 2, . . . }.

Here, A1(D(n)) is a convex hull of {±ψj}nj=1 and for a compact set F

d(f, F ) := inf
φ∈F
‖f − φ‖.

Theorem 11.9 Let X be a uniformly smooth Banach space with modulus
of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Then, for t ∈ (0, 1] there exist
C1(t, γ, q,K), C2(t, γ, q,K) such that for N with Nm ≥ C1(t, γ, q,K)mr/b,
m = 1, 2, . . . we have, for any f ∈ Ab

1(K,D),∥∥fc,τ,N
m

∥∥ ≤ C2(t, γ, q,K)m−r, τ = {t}, r := 1− 1/q.
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We note that we can choose an algorithm from Theorem 11.9 that satis-
fies the polynomial depth search condition Nm ≤ Cma from Donoho (2001).

We proceed to an algorithm that combines approximate evaluations with
restricted search. Let three sequences τ = {tk}∞k=1, δ = {δk}∞k=0, η =
{ηk}∞k=1 of numbers from [0, 1] be given. Let N := {Nj}∞j=1 be a sequence
of natural numbers.

Restricted Approximate Weak Chebyshev Greedy Algorithm
(RAWCGA) We define f0 := fτ,δ,η,N

0 := f . Then, for each m ≥ 1
we inductively define:

1) Fm−1 is a functional with properties

‖Fm−1‖ ≤ 1, Fm−1(fm−1) ≥ ‖fm−1‖(1− δm−1);

and ϕm := ϕτ,δ,η,N
m ∈ D(Nm) is any element satisfying

Fm−1(ϕm) ≥ tm sup
g∈D(Nm )

Fm−1(g).

2) Define

Φm := span{ϕj}mj=1,

and denote

Em(f) := inf
ϕ∈Φm

‖f − ϕ‖.

Let Gm ∈ Φm be such that

‖f −Gm‖ ≤ Em(f)(1 + ηm).

3) Denote

fm := f τ,δ,η,N
m := f −Gm.

Theorem 11.10 Let a Banach space X have modulus of smoothness ρ(u)
of power type 1 < q ≤ 2; (ρ(u) ≤ γuq). Assume that limm→∞ Nm =∞,

∞∑
m=1

tpm =∞, p =
q

q − 1
,

and

δm = o
(
tpm
)
, ηm = o

(
tpm
)
.

Then, the RAWCGA converges for any f ∈ X.

We now make some general remarks on m-term approximation with the
depth search constraint. The depth search constraint means that for a given
m we restrict ourselves to systems of elements (subdictionaries) containing
at most N := N(m) elements. Let X be a linear metric space and for a set
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D ⊂ X, let Lm(D) denote the collection of all linear spaces spanned by m

elements of D. For a linear space L ⊂ X, the ε-neighborhood Uε(L) of L

is the set of all x ∈ X which are at a distance not exceeding ε from L (i.e.,
those x ∈ X which can be approximated to an error not exceeding ε by the
elements of L). For any compact set F ⊂ X and any integers N,m ≥ 1,
we define the (N,m)-entropy numbers (see Temlyakov (2003a), p. 94)

εN,m(F,X) := inf
#D=N

inf
{
ε : F ⊂ ∪L∈Lm (D)Uε(L)

}
.

We let Σm(D) denote the collection of all functions (elements) in X which
can be expressed as a linear combination of at most m elements of D. Thus
each function s ∈ Σm(D) can be written in the form

s =
∑
g∈Λ

cgg, Λ ⊂ D, #Λ ≤ m,

where the cg are real or complex numbers. In some cases, it may be pos-
sible to write an element from Σm(D) in this form in more than one way.
The space Σm(D) is not linear: the sum of two functions from Σm(D) is
generally not in Σm(D).

For a function f ∈ X we define its best m-term approximation error

σm(f) := σm(f,D) := inf
s∈Σm (D)

‖f − s‖.

For a function class F ⊂ X we define

σm(F ) := σm(F,D) := sup
f∈F

σm(f,D).

We can express σm(F,D) as

σm(F,D) = inf
{
ε : F ⊂ ∪L∈Lm (D)Uε(L)

}
.

It follows therefore that

inf
#D=N

σm(F,D) = εN,m(F,X).

In other words, finding best dictionaries consisting of N elements for m-
term approximation of F is the same as finding sets D which attain the
(N,m)-entropy numbers εN,m(F,X). It is easy to see that εm,m(F,X) =
dm(F,X) where dm(F,X) is the Kolmogorov width of F in X. This estab-
lishes a connection between (N,m)-entropy numbers and the Kolmogorov
widths. One can find a further discussion on the nonlinear Kolmogorov
(N,m)-widths and the entropy numbers in Temlyakov (2003a).
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11.5 A specific class of dictionaries

In Sections 11.2–11.4 we considered a setting as general as possible: an
arbitrary Hilbert or Banach space and any dictionary. We pointed out in
Temlyakov (2003a) that such a generality is justified by the contemporary
needs of approximation theory and computational mathematics. The gen-
erality of the setting allows us to apply the corresponding results for any
dictionary. In this section we discuss the question of how we can use the
specifics of a given dictionary D in order to improve our estimates for the
approximation rate of some of our favorite algorithms. One can find a dis-
cussion of this question in the case of λ-quasi-orthogonal dictionary D in
Temlyakov (2003a), p. 62–64.

In this section we consider dictionaries that have become popular in
signal processing. Denote by

M(D) := sup
g �=h;g,h∈D

|〈g, h〉|

the coherence parameter of a dictionary D. For an orthonormal basis B
we have M(B) = 0. It is clear that the smaller the M(D) the more the
dictionary D resembles an orthonormal basis. However, we should note
that, in the case M(D) > 0, D can be a redundant dictionary.

We now proceed to a discussion of the Orthogonal Greedy Algorithm
(OGA). If H0 is a finite-dimensional subspace of H, we let PH0 be the
orthogonal projector from H onto H0. That is, PH0(f) is the best approx-
imation to f from H0. As above, we let g(f) ∈ D be an element from
D which maximizes |〈f, g〉|. We shall assume, for simplicity, that such a
maximizer exists; if not, suitable modifications are necessary (see Weak Or-
thogonal Greedy Algorithm in Temlyakov (2003a), p. 55) in the algorithm
that follows.

Orthogonal Greedy Algorithm (OGA) We define fo
0 := Ro

0(f) :=
Ro

0(f,D) := f and Go
0(f) := Go

0(f,D) := 0. Then, for each m ≥ 1, we
inductively define:

Hm := Hm(f) := span
{
g
(
Ro

0(f)
)
, . . . , g

(
Ro

m−1(f)
)}

,

Go
m(f) := Go

m(f,D) := PHm (f),

fo
m := Ro

m(f) := Ro
m(f,D) := f −Go

m(f).

We discuss the performance of the OGA with respect to a dictionary
with coherence parameter M . Let {fo

m}∞m=1 be a sequence of residuals of
the OGA applied to an element f . It is natural to compare ‖fm‖ with the
corresponding σm(f,D). The idea of such a comparison for evaluating the
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quality of an approximation method goes back to Lebesgue. He proved the
following inequality. For any 2π-periodic continuous function f one has

‖f − Sn(f)‖∞ ≤
(

4 +
4
π2

ln n

)
En(f)∞, (11.8)

where Sn(f) is the nth partial sum of the Fourier series of f and En(f)∞
is the error of the best approximation of f by trigonometric polynomials of
order n in the uniform norm ‖ · ‖∞. The inequality (11.8) relates the error
of a particular method (Sn) of approximation by trigonometric polynomials
of order n to the best possible error En(f)∞ of approximation by trigono-
metric polynomials of order n. By a Lebesgue type inequality we mean
an inequality that provides an upper bound for the error of a particular
method of approximation of f by elements of a special form, say, form A,
by the best possible approximation of f by elements of the form A. In
the case of approximation with regards to bases (or minimal systems)
Lebesgue type inequalities are known both in linear and in nonlinear set-
tings (see the surveys Konyagin & Temlyakov (2002), Temlyakov (2003a)).
It would be very interesting to prove Lebesgue type inequalities for redun-
dant systems (dictionaries). However, there are substantial difficulties on
this way. To illustrate these difficulties we give an example from DeVore
& Temlyakov (1996).

Let B := {hk}∞k=1 be an orthonormal basis in a Hilbert space H. Consider
the following element

g := Ah1 + Ah2 + aA
∑
k≥3

(k(k + 1))−1/2hk

with

A := (33/89)1/2 and a := (23/11)1/2.

Then, ‖g‖ = 1. We define the dictionary D = B ∪ {g}. It has been proved
in DeVore & Temlyakov (1996) that for the function

f = h1 + h2

we have

‖f −Gm(f,D)‖ ≥ m−1/2, m ≥ 4.

It is clear that σ2(f,D) = 0.
We, therefore, look for conditions on a dictionary D that allow us to prove

Lebesgue type inequalities. The condition that D = B is an orthonormal
basis for H guarantees that

‖Rm(f,B)‖ = σm(f,B).
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This is an ideal situation. The results that we will discuss here concern the
case when we replace an orthonormal basis B by a dictionary that is, in a
certain sense, not far from an orthonormal basis.

The first general Lebesgue type inequality for the OGA for an M -coherent
dictionary was obtained in Gilbert, Muthukrishnan & Strauss (2003). They
proved that ∥∥fo

m

∥∥ ≤ 8m1/2σm(f) for m < 1/(32M). (11.9)

The constants in this inequality were improved upon in Tropp (2004) (see
also Donoho, Elad & Temlyakov (2004)):∥∥fo

m

∥∥ ≤ (1 + 6m)1/2σm(f) for m < 1/(3M). (11.10)

We proved in Donoho, Elad & Temlyakov (2005) the following Lebesgue
type inequality for the OGA.

Theorem 11.11 Let a dictionary D have mutual coherence M = M(D).
Then, for any S ≤ 1/(2M) we have the following inequalities∥∥fo

S

∥∥2 ≤ 2
∥∥fo

k

∥∥(σS−k

(
fo

k

)
+ 3MS

∥∥fo
k

∥∥), 0 ≤ k ≤ S. (11.11)

The inequalities (11.11) can be used for improving (11.10) for small m.
We proved in Donoho, Elad & Temlyakov (2005) the following inequalities.

Theorem 11.12 Let a dictionary D have mutual coherence M = M(D).
Assume m ≤ 0.05M−2/3. Then, for l ≥ 1 satisfying 2l ≤ log m we have∥∥f o

m(2l−1)

∥∥ ≤ 6m2−l

σm(f).

Corollary 11.1 Let a dictionary D have mutual coherence M = M(D).
Assume m ≤ 0.05M−2/3. Then, we have∥∥fo

[m log m]

∥∥ ≤ 24σm(f).

We note that, in particular, the inequality (11.10) implies the following
nice property of the OGA.

Theorem 11.13 (E-property (Exact recovery of S-term polyno-
mial)) Let a dictionary D have mutual coherence M = M(D). Assume
that

f =
S∑

j=1

ajgj , gj ∈ D, j = 1, . . . , S,

and S < 1/(3M). Then, the OGA with respect to D recovers f exactly
after S iterations (fS = 0).
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It is known (see Tropp (2004), Donoho, Elad & Temlyakov (2004)) that
the OGA has the E-property with S < (1+1/M)/2 and that the condition
S < (1 + 1/M)/2 is sharp. The proof of the E-property of the OGA is
simpler than the proof of (11.10). We present here a generalization of the
concept of M -coherent dictionary and the E-property to the case of Banach
spaces.

Let D be a dictionary in a Banach space X. We define the coherence
parameter of this dictionary in the following way

M(D) := sup
g �=h;g,h∈D

sup
Fg

|Fg(h)|.

We note that, in general, a norming functional Fg is not unique. This
is why we take supFg

over all norming functionals of g in the definition
of M(D). We do not need supFg

in the definition of M(D) if for each
g ∈ D there is a unique norming functional Fg ∈ X ′. Then, we define
D′ := {Fg, g ∈ D} and call D′ a dual dictionary to a dictionary D. It is
known that the uniqueness of the norming functional Fg is equivalent to
the property that g is a point of Gateaux smoothness:

lim
u→0

(‖g + uy‖+ ‖g − uy‖ − 2‖g‖)/u = 0

for any y ∈ X. In particular, if X is uniformly smooth then Ff is unique
for any f �= 0. We consider the following greedy algorithm.

Weak Quasi-Orthogonal Greedy Algorithm (WQGA) Let t ∈ (0, 1].
Denote f0 := fq,t

0 := f and find ϕ1 := ϕq,t
1 ∈ D such that

|Fϕ1(f0)| ≥ t sup
g∈D
|Fg(f0)|.

Next, we find c1 satisfying

Fϕ1(f − c1ϕ1) = 0.

Denote f1 := fq,t
1 := f − c1ϕ1.

We continue this construction in an inductive way. Assume that we
have already constructed residuals f0, f1, . . . , fm−1 and dictionary elements
ϕ1, . . . , ϕm−1. Now, we pick an element ϕm := ϕq,t

m ∈ D such that

|Fϕm
(fm−1)| ≥ t sup

g∈D
|Fg(fm−1)|.

Next, we look for cm
1 , . . . , cm

m satisfying

Fϕj

(
f −

m∑
i=1

cm
i ϕi

)
= 0, j = 1, . . . ,m. (11.12)
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If there is no solution to (11.12) then we stop, otherwise we denote fm :=
fq,t

m := f −
∑m

i=1 cm
i ϕi with cm

1 , . . . , cm
m satisfying (11.12).

We note that (11.12) has a unique solution if det ||Fϕj
(ϕi)||mi,j=1 �= 0. We

apply the WQGA in the case of a dictionary with the coherence param-
eter M := M(D). Then, by a simple well known argument on the linear
independence of the rows of the matrix ||Fϕj

(ϕi)||mi,j=1, we conclude that
(11.12) has a unique solution for any m < 1 + 1/M . Thus, in the case
of an M -coherent dictionary D, we can run the WQGA for at least [1/M ]
iterations.

Lemma 11.1 Let t ∈ (0, 1]. Assume that D has coherence parameter M .
Let S < t

1+t
(1 + 1/M). Then, for any f of the form

f =
S∑

i=1

aiψi,

where ψi are distinct elements of D, we have that ϕq,t
1 = ψj with some

j ∈ [1, S].

Proof Let A := maxi |ai| = |ap| > 0. Then,

|Fψp
(f)| ≥ |Fψp

(apψp)| −
∑
j �=p

|ajFψp
(ψj)| ≥ A(1−M(S − 1)).

Therefore,

max
i
|Fψi

(f)| ≥ A(1−M(S − 1)). (11.13)

On the other hand, for any g ∈ D different from ψi, i = 1, . . . , S, we get
from our assumptions

|Fg(f)| ≤
S∑

i=1

|aiFg(ψi)| ≤ AMS < tA(1−M(S − 1)). (11.14)

Comparing (11.13) with (11.14) we conclude the proof.

Theorem 11.14 Let t ∈ (0, 1]. Assume that D has coherence parameter
M . Let S < t

1+t (1 + 1/M). Then, for any f of the form

f =
S∑

i=1

aiψi,

where ψi are distinct elements of D, we have that fq,t
S = 0.
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Proof By Lemma 11.1 we obtain that each fq,t
m , m ≤ S, has a form

fq,t
m =

S∑
i=1

am
i ψi.

We note that, by (11.13), |Fϕq ,t
m +1

(fq,t
m )| > 0 for m < S provided fq,t

m �= 0.

Therefore, ϕq,t
m+1 is different from all the previous ϕq,t

1 , . . . , ϕq,t
m . Thus,

assuming without loss of generality that fq,t
S−1 �= 0, we conclude that the

set of ϕq,t
1 , . . . , ϕq,t

S coincides with the set ψ1, . . . , ψS .
The condition

Fψj
(

S∑
i=1

(
ai − aS

i

)
ψi = 0, j = 1, . . . , S,

implies ai = aS
i , i = 1, . . . , S. In the above we used the fact that

det ||Fϕj
(ϕi)||Si,j=1 �= 0.

References
R. A. DeVore (1998), ‘Nonlinear approximation’, Acta Numerica 7, 51–150.
R. A. DeVore and V. N. Temlyakov (1996), ‘Some remarks on greedy algorithms’,

Advances in Computational Mathematics 5, 173–187.
S. J. Dilworth, D. Kutzarova, and V. N. Temlyakov (2002), ‘Convergence of some

greedy algorithms in Banach spaces’, J. Fourier Analysis and Applications 8,
489–505.

M. Donahue, L. Gurvits, C. Darken, and E. Sontag (1997), ‘Rate of convex
approximation in non-Hilbert spaces’, Constr. Approx. 13, 187–220.

D. L. Donoho (2001), ‘Sparse components of images and optimal atomic decom-
positions’, Constr. Approx. 17, 353–382.

D. L. Donoho, M. Elad, and V. N. Temlyakov (2004), ‘Stable recovery of sparse
overcomplete representations in the presence of noise’, IMI-Preprints Series,
6, 1–42.

D. L. Donoho, M. Elad, and V. N. Temlyakov (2005), ‘On the Lebesgue type
inequalities for greedy approximation’, manuscript, 1–11.

V. V. Galatenko and E. D. Livshitz (2003), ‘On convergence of approximate weak
greedy algorithms’, East J. Approx. 9, 43–49.

M. Ganichev and N. J. Kalton (2003), ‘Convergence of the weak dual greedy
algorithm in Lp-spaces’, J. Approx. Theory 124, 89–95.

A. C. Gilbert, S. Muthukrishnan, and M. J. Strauss (2003), ‘Approximation
of functions over redundant dictionaries using coherence’, The 14th Annual
ACM-SIAM Symposium on Discrete Algorithms., 243–252.

R. Gribonval and M. Nielsen (2001), ‘Approximate weak greedy algorithms’,
Advances in Comput. Math. 14, 361–368.

P. J. Huber (1985), ‘Projection pursuit’, Annals of Stat. 13, 435–475.
L. Jones (1987), ‘On a conjecture of Huber concerning the convergence of pro-

jection pursuit regression’, Annals of Stat. 15, 880–882.



394 V. N. Temlyakov

S. V. Konyagin and V. N. Temlyakov (1999), ‘Rate of convergence of pure greedy
algorithm’, East J. Approx. 5, 493–499.

S. V. Konyagin and V. N. Temlyakov (2002), ‘Greedy approximation with regard
to bases and general minimal systems’, Serdica Math. J. 28, 305–328.

E. D. Livshitz (2003), ‘On convergence of greedy algorithms in Banach spaces’,
Matem. Zametki 73, 371-389.

E. D. Livshitz (2004), ‘On reversing greedy algorithm’ manuscript, 1–27.
E. D. Livshitz and V. N. Temlyakov (2003), ‘Two lower estimates in greedy

approximation’, Constr. Approx. 19, 509–523.
E. Schmidt (1906-1907), ‘Zur Theorie der linearen und nichtlinearen Integralgle-

ichungen. I’, Math. Annalen 63, 433–476.
A. V. Sil’nichenko (2004), ‘On the rate of convergence of greedy algorithms’,

manuscript, 1–5.
V. N. Temlyakov (2002), ‘Greedy type algorithms in Banach spaces and applica-

tions’, IMI Preprints Series, 18, 1–36.
V. N. Temlyakov (2003a), ‘Nonlinear methods of approximation’, Found. Com-

put. Math. 3, 33–107.
V. N. Temlyakov (2003b), ‘Greedy expansions in Banach spaces’, IMI Preprints

Series, 6, 1–21.
V. N. Temlyakov (2004), ‘On greedy algorithms with restricted depth search’,

IMI Preprints Series, 27, 1–16.
J. A. Tropp (2004), ‘Greed is good: Algorithmic results for sparse approximation’,

IEEE Trans. Inform. Theory 50(10), 2231–2242.


	Cover
	Title Page
	Copyright
	Contents�
	Preface�
	1 Non Universal Polynomial Equation Solving�
	2 Toward Accurate Polynomial Evaluation in Rounded Arithmetic�
	3 Sparse Grids for Higher Dimensional Problems�
	4 Long-time Energy Conservation�
	5 Dispersive Properties of Numerical Schemes for NSE�
	6 Eigenvalues and Nonsmooth Optimization�
	7 Discrete Noether Theorems�
	8 Hyperbolic 3-Manifolds and Their Computational Aspect�
	9 Smoothed Analysis of Algorithms and Heuristics�
	10 High-dimensional Transport-dominated Diffusion Problems�
	11 Greedy Approximations�

