
1 of 1

AIMS Lecture Notes on Numerical Analysis

Peter J. Olver

March, 2006

Lecture notes:

Computer Arithmetic.

 pdf postscript

Numerical Solution of Scalar Equations.

 pdf postscript

Review of Matrix Algebra.

 pdf postscript

Gaussian Elimination.

 pdf postscript

Inner Products and Norms.

 pdf postscript

Eigenvalues and Singular Values.

 pdf postscript

Iterative Methods for Linear Systems.

 pdf postscript

Numerical Computation of Eigenvalues.

 pdf postscript

Numerical Solution of Algebraic Systems.

 pdf postscript

Numerical Solution of Ordinary Differential Equations.

 pdf postscript

Numerical Solution of the Heat and Wave Equations.

 pdf postscript

Minimization.

 pdf postscript

Approximation and Interpolation.

 pdf postscript

The Finite Element Method.

 pdf postscript

References:

 pdf postscript

Exercise sets:

pdf: #1 #2 #3 #4 #5 #6 #7

postscript: #1 #2 #3 #4 #5 #6 #7

AIMS Lecture Notes 2006

Peter J. Olver

1. Computer Arithmetic

The purpose of computing is insight, not numbers.

— R.W. Hamming, [23]

The main goal of numerical analysis is to develop efficient algorithms for computing
precise numerical values of mathematical quantities, including functions, integrals, solu-
tions of algebraic equations, solutions of differential equations (both ordinary and partial),
solutions of minimization problems, and so on. The objects of interest typically (but not
exclusively) arise in applications, which seek not only their qualitative properties, but also
quantitative numerical data. The goal of this course of lectures is to introduce some of the
most important and basic numerical algorithms that are used in practical computations.
Beyond merely learning the basic techniques, it is crucial that an informed practitioner
develop a thorough understanding of how the algorithms are constructed, why they work,
and what their limitations are.

In any applied numerical computation, there are four key sources of error:

(i) Inexactness of the mathematical model for the underlying physical phenomenon.

(ii) Errors in measurements of parameters entering the model.

(iii) Round-off errors in computer arithmetic.

(iv) Approximations used to solve the full mathematical system.

Of these, (i) is the domain of mathematical modeling, and will not concern us here. Neither
will (ii), which is the domain of the experimentalists. (iii) arises due to the finite numerical
precision imposed by the computer. (iv) is the true domain of numerical analysis, and
refers to the fact that most systems of equations are too complicated to solve explicitly, or,
even in cases when an analytic solution formula is known, directly obtaining the precise
numerical values may be difficult.

There are two principal ways of quantifying computational errors.

Definition 1.1. Let x be a real number and let x? be an approximation. The
absolute error in the approximation x? ≈ x is defined as |x? − x |. The relative error is

defined as the ratio of the absolute error to the size of x, i.e.,
|x? − x |

|x |
, which assumes

x 6= 0; otherwise relative error is not defined.

3/15/06 1 c© 2006 Peter J. Olver

For example, 1000001 is an approximation to 1000000 with an absolute error of 1 and
a relative error of 10−6, while 2 is an approximation to 1 with an absolute error of 1 and a
relative error of 1. Typically, relative error is more intuitive and the preferred determiner
of the size of the error. The present convention is that errors are always ≥ 0, and are = 0
if and only if the approximation is exact. We will say that an approximation x? has k
significant decimal digits if its relative error is < 5 × 10−k−1. This means that the first k
digits of x? following its first nonzero digit are the same as those of x.

Ultimately, numerical algorithms must be performed on a computer. In the old days,
“computer” referred to a person or an analog machine, but nowadays inevitably means a
digital, electronic machine. A most unfortunate fact of life is that all digital computers, no
matter how “super”, can only store finitely many quantities. Thus, there is no way that
a computer can represent the (discrete) infinity of all integers or all rational numbers, let
alone the (continuous) infinity of all real or all complex numbers. So the decision of how
to approximate more general numbers using only the finitely many that the computer can
handle becomes of critical importance.

Each number in a computer is assigned a location or word , consisting of a specified
number of binary digits or bits. A k bit word can store a total of N = 2k different
numbers. For example, the standard single precision computer uses 32 bit arithmetic, for
a total of N = 232 ≈ 4.3× 109 different numbers, while double precision uses 64 bits, with
N = 264 ≈ 1.84× 1019 different numbers. The question is how to distribute the N exactly
representable numbers over the real line for maximum efficiency and accuracy in practical
computations.

One evident choice is to distribute them evenly, leading to fixed point arithmetic. For
example, one can use the first bit in a word to represent a sign, and treat the remaining
bits as integers, thereby representing the integers from 1− 1

2
N = 1− 2k−1 to 1

2
N = 2k−1

exactly. Of course, this does a poor job approximating most non-integral numbers. Another
option is to space the numbers closely together, say with uniform gap of 2−n, and so
distribute our N numbers uniformly over the interval −2−n−1N < x ≤ 2−n−1N . Real
numbers lying between the gaps are represented by either rounding , meaning the closest
exact representative, or chopping , meaning the exact representative immediately below (or
above if negative) the number. Numbers lying beyond the range must be represented by
the largest (or largest negative) representable number, which thus becomes a symbol for
overflow. When processing speed is a significant bottleneck, the use of such fixed point
representations is an attractive and faster alternative to the more cumbersome floating
point arithmetic most commonly used in practice.

The most common non-uniform distribution of our N numbers is the floating point

system, which is based on scientific notation. If x is any real number it can be written in
the form

x = ± .d1d2d3d4 . . . × 2n,

where d
ν

= 0 or 1, and n ∈ Z is an integer. We call d1d2d3d4 . . . the mantissa and n the
exponent. If x 6= 0, then we can uniquely choose n so that d1 = 1. In our computer, we
approximate x by a finite number of mantissa digits

x? = ± .d1d2d3d4 . . . d
k−1d̂k

× 2n,

3/15/06 2 c© 2006 Peter J. Olver

by either chopping or rounding the final digit. The exponent is also restricted to a finite
range of integers n

?
≤ N ≤ N?. Very small numbers, lying in the gap between 0 < |x | <

2n? , are said to cause underflow .

• In single precision floating point arithmetic, the sign is 1 bit, the exponent is 7 bits,
and the mantissa is 24 bits. The resulting nonzero numbers lie in the range

2−127 ≈ 10−38 ≤ |x | ≤ 2127 ≈ 1038,

and allow one to accurately represent numbers with approximately 7 significant
decimal digits of real numbers lying in this range.

• In double precision floating point arithmetic, the sign is 1 bit, the exponent is 10 bits,
and the mantissa is 53 bits, leading to floating point representations for a total of
1.84×1019 different numbers which, apart from 0. The resulting nonzero numbers
lie in the range

2−1023 ≈ 10−308 ≤ |x | ≤ 21023 ≈ 10308.

In double precision, one can accurately represent approximately 15 decimal digits.

Keep in mind floating point numbers are not uniformly spaced ! Moreover, when passing
from .111111 . . . × 2n to .100000 . . . × 2n+1, the inter-number spacing suddenly jumps by
a factor of 2. The non-smoothly varying spacing inherent in the floating point system can
cause subtle, undesirable numerical artifacts in high precision computations.

Remark : Although they are overwhelmingly the most prevalent, fixed and floating
point are not the only number systems that have been proposed. See [9] for another
intriguing possibility.

In the course of a calculation, intermediate errors interact in a complex fashion, and
result in a final total error that is not just the sum of the individual errors. If x? is an
approximation to x, and y? is an approximation to y, then, instead of arithmetic operations
+,−,×, / and so on, the computer uses a “pseudo-operations” to combine them. For
instance, to approximate the difference x − y of two real numbers, the computer begins
by replacing each by its floating point approximation x? and y?. It the subtracts these,
and replaces the exact result x? − y? by its nearest floating point representative, namely
(x? − y?)?. As the following example makes clear, this is not necessarily the same as the
floating point approximation to x − y, i.e., in general (x? − y?)? 6= (x − y)?.

Example 1.2. . Lets see what happens if we subtract the rational numbers

x =
301

2000
≈ .15050000 . . . , y =

301

2001
≈ .150424787

The exact answer is

x − y =
301

4002000
≈ .00007521239

However, if we use rounding to approximate with 4 significant digits†, then

x =
301

2000
≈ .1505, y =

301

2001
≈ .1504 and so x − y ≈ .0001,

† To aid comprehension, we are using base 10 instead of base 2 arithmetic in this example.

3/15/06 3 c© 2006 Peter J. Olver

2 4 6 8 10

-3

-2

-1

1

2

3

Figure 1.1. Roots of Polynomials.

which has no significant digits in common with the actual answer. On the other hand, if
we evaluate the difference using the alternative formula

x − y =
301 × 2001 − 301 × 2000

4002000
=

602301 − 602000

4002000

≈
6.023 × 105 − 6.020 × 105

4.002 × 106
=

.003 × 105

4.002 × 106
≈ .00007496,

we at least reproduce the first two significant digits. Thus, the result of a floating point
computation depends on the order of the arithmetic operations! In particular, the associa-
tive and distributive laws are not valid in floating point arithmetic! In the development
of numerical analysis, one tends to not pay attention to this “minor detail’, although its
effects must always be kept in the back of one’s mind when evaluating the results of any
serious numerical computation.

Just in case you are getting a little complacent, thinking “gee, a few tiny round off
errors can’t really make that big a difference”, let us close with two cautionary examples.

Example 1.3. Consider the pair of degree 10 polynomials

p(x) = (x − 1)(x − 2)(x − 3)(x − 4)(x − 5)(x − 6)(x − 7)(x − 8)(x − 9)(x − 10)

and

q(x) = p(x) + x5.

They only differ in the value of the coefficient of their middle term, which, by a direct
expansion, is −902055x5 in p(x), and −902054x5 in q(x); all other terms are the same.
The relative error between the two coefficients is roughly one-thousandth of one percent.

Our task is to compute the roots of these two polynomials, i.e., the solutions to
p(x) = 0 and q(x) = 0. Those of p(x) are obvious. One might expect the roots of q(x) to

3/15/06 4 c© 2006 Peter J. Olver

0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

Figure 1.2. Sensitive Dependence on Initial Data.

be rather close to the integers 1, 2, . . . , 10. However, their approximate values are

1.0000027558, 1.99921, 3.02591, 3.82275,

5.24676 ± 0.751485 i , 7.57271 ± 1.11728 i , 9.75659 ± 0.368389 i .

Surprisingly, only the smallest two roots are relatively unchanged; the third and fourth
roots differ by roughly 1% and 27%, while the final six roots have mysteriously meta-
morphosed into three complex conjugate pairs of roots of q(x). The two sets of roots are
plotted in Figure 1.1; those of p(x) are indicated by solid disks, while those of q(x) are
indicated by open circles.

We have thus learned that an almost negligible change in a single coefficient of a real
polynomial can have dramatic and unanticipated effects on its roots. Needless to say, this
indicates that finding accurate numerical values for the roots of high degree polynomials
is a very challenging problem.

Example 1.4. Consider the initial value problem

du

dt
− 2u = −e− t, u(0) = 1

3
.

The solution is easily found:
u(t) = 1

3
e− t,

and is exponentially decaying as t → ∞.

However, in a floating point computer, we are not able to represent the initial con-
dition 1

3
exactly, and make some small round-off error (depending on the precision of the

computer). Let ε 6= 0 represent the error in the initial condition. The solution to the
perturbed initial value problem

dv

dt
− 2v = −e− t, v(0) = 1

3
+ ε,

is
v(t) = 1

3
e− t + ε e2 t,

which is exponentially growing as t increases. As sketched in Figure 1.2, the two solutions
remain close only for a very short time interval, the duration of which depends on the

3/15/06 5 c© 2006 Peter J. Olver

size in the initial error, but then they eventually diverge far away from each other. As a
consequence, a tiny error in the initial data can have a dramatic effect on the solution.
This phenomenon is referred to as sensitive dependence on initial conditions.

The numerical computation of the exponentially decaying exact solution in the face
of round-off errors is an extreme challenge. Even the tiniest of error will immediately
introduce an exponentially growing mode which will eventually swamp the true solution.
Furthermore, in many important applications, the physically relevant solution is the one
that decays to zero at large distances, and is usually distinguished from the vast majority
of solutions that grow at large distances. So the computational problem is both important
and very difficult.

Examples 1.3 and 1.4 are known as ill-conditioned problems meaning that tiny changes
in the data have dramatic effects on the solutions. Simple numerical methods work as
advertised on well-conditioned problems, but all have their limitations and a sufficiently
ill-conditioned problem will test the limits of the algorithm and/or computer, and, in
many instances, require revamping a standard numerical solution scheme to adapt to the
ill-conditioning. Some problems are so ill-conditioned as to defy even the most powerful
computers and sophisticated algorithms. For this reason, numerical analysis will forever
remain a vital and vibrant area of mathematical research.

So, numerical analysis cannot be viewed in isolation as a black box, and left in the
hands of the mathematical experts. Every practitioner will, sooner or later, confront a
problem that tests the limitations of standard algorithms and software. Without a proper
understanding of the mathematical principles involved in constructing basic numerical
algorithms, one is ill-equipped, if not hopelessly handicapped, when dealing with such
problems. The purpose of this series of lectures is to give you the proper mathematical
grounding in modern numerical analysis.

3/15/06 6 c© 2006 Peter J. Olver

AIMS Lecture Notes 2006

Peter J. Olver

2. Numerical Solution of Scalar Equations

Most numerical solution methods are based on some form of iteration. The basic idea
is that repeated application of the algorithm will produce closer and closer approximations
to the desired solution. To analyze such algorithms, our first task is to understand general
iterative processes.

2.1. Iteration of Functions.

Iteration, meaning repeated application of a function, can be viewed as a discrete

dynamical system in which the continuous time variable has been “quantized” to assume
integer values. Even iterating a very simple quadratic scalar function can lead to an amaz-
ing variety of dynamical phenomena, including multiply-periodic solutions and genuine
chaos. Nonlinear iterative systems arise not just in mathematics, but also underlie the
growth and decay of biological populations, predator-prey interactions, spread of commu-
nicable diseases such as Aids, and host of other natural phenomena. Moreover, many
numerical solution methods — for systems of algebraic equations, ordinary differential
equations, partial differential equations, and so on — rely on iteration, and so the the-
ory underlies the analysis of convergence and efficiency of such numerical approximation
schemes.

In general, an iterative system has the form

u(k+1) = g(u(k)), (2.1)

where g: Rn → R
n is a real vector-valued function. (One can similarly treat iteration of

complex-valued functions g: Cn → C
n, but, for simplicity, we only deal with real systems

here.) A solution is a discrete collection of points† u(k) ∈ R
n, in which the index k =

0, 1, 2, 3, . . . takes on non-negative integer values.

Once we specify the initial iterate,

u(0) = c, (2.2)

then the resulting solution to the discrete dynamical system (2.1) is easily computed:

u(1) = g(u(0)) = g(c), u(2) = g(u(1)) = g(g(c)), u(3) = g(u(2)) = g(g(g(c))), . . .

† The superscripts on u
(k) refer to the iteration number, and do not denote derivatives.

3/15/06 7 c© 2006 Peter J. Olver

and so on. Thus, unlike continuous dynamical systems, the existence and uniqueness of
solutions is not an issue. As long as each successive iterate u(k) lies in the domain of
definition of g one merely repeats the process to produce the solution,

u(k) =

k times︷ ︸︸ ︷
g ◦ · · · ◦g (c), k = 0, 1, 2, . . . ,

(2.3)

which is obtained by composing the function g with itself a total of k times. In other
words, the solution to a discrete dynamical system corresponds to repeatedly pushing the
g key on your calculator. For example, entering 0 and then repeatedly hitting the cos key
corresponds to solving the iterative system

u(k+1) = cosu(k), u(0) = 0. (2.4)

The first 10 iterates are displayed in the following table:

k 0 1 2 3 4 5 6 7 8 9

u(k) 0 1 .540302 .857553 .65429 .79348 .701369 .76396 .722102 .750418

For simplicity, we shall always assume that the vector-valued function g: Rn → R
n is

defined on all of R
n; otherwise, we must always be careful that the successive iterates u(k)

never leave its domain of definition, thereby causing the iteration to break down. To avoid
technical complications, we will also assume that g is at least continuous; later results rely
on additional smoothness requirements, e.g., continuity of its first and second order partial
derivatives.

While the solution to a discrete dynamical system is essentially trivial, understanding
its behavior is definitely not. Sometimes the solution converges to a particular value —
the key requirement for numerical solution methods. Sometimes it goes off to ∞, or, more
precisely, the norms of the iterates are unbounded: ‖u(k) ‖ → ∞ as k → ∞. Sometimes
the solution repeats itself after a while. And sometimes the iterates behave in a seemingly
random, chaotic manner — all depending on the function g and, at times, the initial
condition c. Although all of these cases may arise in real-world applications, we shall
mostly concentrate upon understanding convergence.

Definition 2.1. A fixed point or equilibrium of a discrete dynamical system (2.1) is
a vector u? ∈ R

n such that

g(u?) = u?. (2.5)

We easily see that every fixed point provides a constant solution to the discrete dy-
namical system, namely u(k) = u? for all k. Moreover, it is not hard to prove that any
convergent solution necessarily converges to a fixed point.

Proposition 2.2. If a solution to a discrete dynamical system converges,

lim
k→∞

u(k) = u?,

then the limit u? is a fixed point.

3/15/06 8 c© 2006 Peter J. Olver

Proof : This is a simple consequence of the continuity of g. We have

u? = lim
k→∞

u(k+1) = lim
k→∞

g(u(k)) = g

(
lim

k→∞
u(k)

)
= g(u?),

the last two equalities following from the continuity of g. Q.E.D.

For example, continuing the cosine iteration (2.4), we find that the iterates gradually
converge to the value u? ≈ .739085, which is the unique solution to the fixed point equation

cosu = u.

Later we will see how to rigorously prove this observed behavior.

Of course, not every solution to a discrete dynamical system will necessarily converge,
but Proposition 2.2 says that if it does, then it must converge to a fixed point. Thus, a
key goal is to understand when a solution converges, and, if so, to which fixed point — if
there is more than one. Fixed points are divided into three classes:

• asymptotically stable, with the property that all nearby solutions converge to it,

• stable, with the property that all nearby solutions stay nearby, and

• unstable, almost all of whose nearby solutions diverge away from the fixed point.

Thus, from a practical standpoint, convergence of the iterates of a discrete dynamical
system requires asymptotic stability of the fixed point. Examples will appear in abundance
in the following sections.

Scalar Functions

As always, the first step is to thoroughly understand the scalar case, and so we begin
with a discrete dynamical system

u(k+1) = g(u(k)), u(0) = c, (2.6)

in which g: R→ R is a continuous, scalar-valued function. As noted above, we will assume,
for simplicity, that g is defined everywhere, and so we do not need to worry about whether
the iterates u(0), u(1), u(2), . . . are all well-defined.

As usual, to study systems one begins with an in-depth analysis of the scalar version.
Consider the iterative equation

u(k+1) = a u(k), u(0) = c. (2.7)

The general solution to (2.7) is easily found:

u(1) = a u(0) = a c, u(2) = a u(1) = a2 c, u(3) = a u(2) = a3 c,

and, in general,

u(k) = ak c. (2.8)

If the initial condition is a = 0, then the solution u(k) ≡ 0 is constant. Therefore, 0 is a
fixed point or equilibrium solution for the iterative system.

3/15/06 9 c© 2006 Peter J. Olver

5 10 15 20 25 30

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

0 < a < 1

5 10 15 20 25 30

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

−1 < a < 0

5 10 15 20 25 30

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

a = 1

5 10 15 20 25 30

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

a = −1

5 10 15 20 25 30

-10

-7.5

-5

-2.5

2.5

5

7.5

10

1 < a

5 10 15 20 25 30

-10

-7.5

-5

-2.5

2.5

5

7.5

10

a < −1

Figure 2.1. One Dimensional Real Linear Iterative Systems.

Example 2.3. Banks add interest to a savings account at discrete time intervals.
For example, if the bank offers 5% interest compounded yearly, this means that the account
balance will increase by 5% each year. Thus, assuming no deposits or withdrawals, the
balance u(k) after k years will satisfy the iterative equation (2.7) with a = 1 + r where
r = .05 is the interest rate, and the 1 indicates that all the money remains in the account.
Thus, after k years, your account balance is

u(k) = (1 + r)kc, where c = u(0) (2.9)

is your initial deposit. For example, if c = $1, 000, after 1 year your account has u(1) =
$1, 050, after 10 years u(10) = $1, 628.89, after 50 years u(50) = $11, 467.40, and after 200
years u(200) = $17, 292, 580.82.

When the interest is compounded monthly, the rate is still quoted on a yearly basis,
and so you receive 1

12 of the interest each month. If û(k) denotes the balance after k

months, then, after n years, the account balance is û(12n) =
(
1 + 1

12 r
)

12n c. Thus,

when the interest rate of 5% is compounded monthly, your account balance is û(12) =
$1, 051.16 after 1 year, û(120) = $1, 647.01 after 10 years, û(600) = $12, 119.38 after 50
years, and û(2400) = $21, 573, 572.66 dollars after 200 years. So, if you wait sufficiently
long, compounding will have a dramatic effect. Similarly, daily compounding replaces 12
by 365.25, the number of days in a year. After 200 years, the balance is $22, 011, 396.03.

Let us analyze the solutions of scalar iterative equations, starting with the case when
a ∈ R is a real constant. Aside from the equilibrium solution u(k) ≡ 0, the iterates exhibit
five qualitatively different behaviors, depending on the size of the coefficient a.

(a) If a = 0, the solution immediately becomes zero, and stays there, so u(k) = 0 for all
k ≥ 1.

(b) If 0 < a < 1, then the solution is of one sign, and tends monotonically to zero, so
u(k) → 0 as k →∞.

3/15/06 10 c© 2006 Peter J. Olver

(c) If −1 < a < 0, then the solution tends to zero: u(k) → 0 as k → ∞. Successive
iterates have alternating signs.

(d) If a = 1, the solution is constant: u(k) = a, for all k ≥ 0.

(e) If a = −1, the solution switches back and forth between two values; u(k) = (−1)k c.

(f) If 1 < a < ∞, then the iterates u(k) become unbounded. If c > 0, they go mono-
tonically to +∞; if c < 0, to −∞.

(g) If −∞ < a < −1, then the iterates u(k) also become unbounded, with alternating
signs.

In Figure 2.1 we exhibit representative scatter plots for the nontrivial cases (b – g). The
horizontal axis indicates the index k and the vertical axis the solution value u. Each dot
in the scatter plot represents an iterate u(k).

To describe the different scenarios, we adopt a terminology that already appeared in
the continuous realm. In the first three cases, the fixed point u = 0 is said to be globally

asymptotically stable since all solutions tend to 0 as k → ∞. In cases (d) and (e), the
zero solution is stable, since solutions with nearby initial data, | c | ¿ 1, remain nearby.
In the final two cases, the zero solution is unstable; any nonzero initial data a 6= 0 — no
matter how small — will give rise to a solution that eventually goes arbitrarily far away
from equilibrium.

Let us also analyze complex scalar iterative systems. The coefficient a and the initial
datum c in (2.7) are allowed to be complex numbers. The solution is the same, (2.8), but
now we need to know what happens when we raise a complex number a to a high power.
The secret is to write a = r e i θ in polar form, where r = | a | is its modulus and θ = ph a
its angle or phase. Then ak = rk e i kθ. Since | e i kθ | = 1, we have | ak | = | a |k, and so
the solutions (2.8) have modulus |u(k) | = | ak a | = | a |k | a |. As a result, u(k) will remain
bounded if and only if | a | ≤ 1, and will tend to zero as k →∞ if and only if | a | < 1.

We have thus established the basic stability criteria for scalar, linear systems.

Theorem 2.4. The zero solution to a (real or complex) scalar iterative system

u(k+1) = a u(k) is

(a) asymptotically stable if and only if | a | < 1,

(b) stable if and only if | a | ≤ 1,

(c) unstable if and only if | a | > 1.

Nonlinear Scalar Iteration

The simplest “nonlinear” case is that of an affine function

g(u) = au + b, (2.10)

leading to an affine discrete dynamical system

u(k+1) = au(k) + b. (2.11)

The only fixed point is the solution to

u? = g(u?) = au? + b, namely, u? =
b

1− a
. (2.12)

3/15/06 11 c© 2006 Peter J. Olver

u?
1

u?
2

u?
3

Figure 2.2. Fixed Points.

The formula for u? requires that a 6= 1, and, indeed, the case a = 1 has no fixed point, as
the reader can easily confirm.

Since we already know the value of u?, we can readily analyze the differences

e(k) = u(k) − u?, (2.13)

between successive iterates and the fixed point. Observe that, the smaller e(k) is, the closer
u(k) is to the desired fixed point. In many applications, the iterate u(k) is viewed as an
approximation to the fixed point u?, and so e(k) is interpreted as the error in the kth

iterate. Subtracting the fixed point equation (2.12) from the iteration equation (2.11), we
find

u(k+1) − u? = a(u(k) − u?).

Therefore the errors e(k) are related by a linear iteration

e(k+1) = ae(k), and hence e(k) = ake(0). (2.14)

Therefore, the solutions to this scalar linear iteration converge:

e(k) −→ 0 and hence u(k) −→ u?, if and only if | a | < 1.

This is the criterion for asymptotic stability of the fixed point, or, equivalently, convergence
of the affine iterative system (2.11). The magnitude of a determines the rate of convergence,
and the closer it is to 0, the faster the iterates approach the fixed point.

Example 2.5. The affine function

g(u) = 1
4 u + 2

leads to the iterative scheme

u(k+1) = 1
4 u(k) + 2.

3/15/06 12 c© 2006 Peter J. Olver

Figure 2.3. Tangent Line Approximation.

Starting with the initial condition u(0) = 0, the ensuing values are

k 1 2 3 4 5 6 7 8

u(k) 2.0 2.5 2.625 2.6562 2.6641 2.6660 2.6665 2.6666

Thus, after 8 iterations, the iterates have produced the fixed point u? = 8
3 to 4 decimal

places. The rate of convergence is 1
4 , and indeed

| e(k) | = |u(k) − u? | =
(

1
4

)k |u(0) − u? | = 8
3

(
1
4

)k −→ 0 as k −→ ∞.

Let us now turn to the fully nonlinear case. First note that the fixed points of g(u)
correspond to the intersections of its graph with the graph of the function i(u) = u. For
instance Figure 2.2 shows the graph of a function that has 3 fixed points, labeled u?

1, u
?
2, u

?
3.

In general, near any point in its domain, a (smooth) nonlinear function can be well
approximated by its tangent line, which repre4sents the graph of an affine function; see
Figure 2.3. Therefore, if we are close to a fixed point u?, then we might expect the iterative
system based on the nonlinear function g(u) to behave very much like that of its affine
tangent line approximation. And, indeed, this intuition turns out to be essentially correct.
This result forms our first concrete example of linearization, in which the analysis of a
nonlinear system is based on its linear (or, more precisely, affine) approximation.

The explicit formula for the tangent line to g(u) near the fixed point u = u? = g(u?)
is

g(u) ≈ g(u?) + g′(u?)(u− u?) ≡ au + b, (2.15)

where
a = g′(u?), b = g(u?)− g′(u?)u? =

(
1− g′(u?)

)
u?.

Note that u? = b /(1 − a) remains a fixed point for the affine approximation: au? + b =
u?. According to the preceding discussion, the convergence of the iterates for the affine
approximation is governed by the size of the coefficient a = g′(u?). This observation
inspires the basic stability criterion for fixed points of scalar iterative systems.

3/15/06 13 c© 2006 Peter J. Olver

Theorem 2.6. Let g(u) be a continuously differentiable scalar function. Suppose

u? = g(u?) is a fixed point. If | g′(u?) | < 1, then u? is an asymptotically stable fixed

point, and hence any sequence of iterates u(k) which starts out sufficiently close to u? will

converge to u?. On the other hand, if | g′(u?) | > 1, then u? is an unstable fixed point, and

the only iterates which converge to it are those that land exactly on it, i.e., u(k) = u? for

some k ≥ 0.

Proof : The goal is to prove that the errors e(k) = u(k) − u? between the iterates and
the fixed point tend to 0 as k → ∞. To this end, we try to estimate e(k+1) in terms of
e(k). According to (2.6) and the Mean Value Theorem from calculus,

e(k+1) = u(k+1) − u? = g(u(k))− g(u?) = g′(v) (u(k) − u?) = g′(v) e(k), (2.16)

for some v lying between u(k) and u?. By continuity, if | g′(u?) | < 1 at the fixed point,
then we can choose δ > 0 and | g′(u?) | < σ < 1 such that the estimate

| g′(v) | ≤ σ < 1 whenever | v − u? | < δ (2.17)

holds in a (perhaps small) interval surrounding the fixed point. Suppose

| e(k) | = |u(k) − u? | < δ.

Then the point v in (2.16), which is closer to u? than u(k), satisfies (2.17). Therefore,

|u(k+1) − u? | ≤ σ |u(k) − u? |, and hence | e(k+1) | ≤ σ | e(k) |. (2.18)

In particular, since σ < 1, we have |u(k+1) − u? | < δ, and hence the subsequent iterate
u(k+1) also lies in the interval where (2.17) holds. Repeating the argument, we conclude
that, provided the initial iterate satisfies

| e(0) | = |u(0) − u? | < δ,

the subsequent errors are bounded by

e(k) ≤ σk e(0), and hence e(k) = |u(k) − u? | −→ 0 as k →∞,

which completes the proof of the theorem in the stable case.

The proof in unstable case is left as an exercise for the reader. Q.E.D.

Remark : The constant σ governs the rate of convergence of the iterates to the fixed
point. The closer the iterates are to the fixed point, the smaller we can choose δ in (2.17),
and hence the closer we can choose σ to | g′(u?) |. Thus, roughly speaking, | g′(u?) | governs
the speed of convergence, once the iterates get close to the fixed point. This observation
will be developed more fully in the following subsection.

Remark : The cases when g′(u?) = ±1 are not covered by the theorem. For a linear
system, such fixed points are stable, but not asymptotically stable. For nonlinear systems,
more detailed knowledge of the nonlinear terms is required in order to resolve the status —
stable or unstable — of the fixed point. Despite their importance in certain applications,
we will not try to analyze such borderline cases any further here.

3/15/06 14 c© 2006 Peter J. Olver

m

u

Figure 2.4. Planetary Orbit.

Example 2.7. Given constants ε,m, the trigonometric equation

u = m + ε sin u (2.19)

is known as Kepler’s equation. It arises in the study of planetary motion, in which 0 < ε < 1
represents the eccentricity of an elliptical planetary orbit, u is the eccentric anomaly ,
defined as the angle formed at the center of the ellipse by the planet and the major axis,
and m = 2π t /T is its mean anomaly , which is the time, measured in units of T/(2π)
where T is the period of the orbit, i.e., the length of the planet’s year, since perihelion or
point of closest approach to the sun; see Figure 2.4.

The solutions to Kepler’s equation are the fixed points of the discrete dynamical
system based on the function

g(u) = m + ε sin u.

Note that
| g′(u) | = | ε cos u | = | ε | < 1, (2.20)

which automatically implies that the as yet unknown fixed point is stable. Indeed, con-
dition (2.20) is enough to prove the existence of a unique stable fixed point; see the
remark after Theorem 9.7. In the particular case m = ε = 1

2 , the result of iterating

u(k+1) = 1
2 + 1

2 sin u(k) starting with u(0) = 0 is

k 1 2 3 4 5 6 7 8 9

u(k) .5 .7397 .8370 .8713 .8826 .8862 .8873 .8877 .8878

After 13 iterations, we have converged sufficiently close to the solution (fixed point) u? =
.887862 to have computed its value to 6 decimal places.

3/15/06 15 c© 2006 Peter J. Olver

u

g(u)

u?

L+(u)

L−(u)

Figure 2.5. Graph of a Contraction.

Inspection of the proof of Theorem 2.6 reveals that we never really used the differen-
tiability of g, except to verify the inequality

| g(u)− g(u?) | ≤ σ |u− u? | for some fixed σ < 1. (2.21)

A function that satisfies (2.21) for all nearby u is called a contraction at the point u?. Any

function g(u) whose graph lies between the two lines

L±(u) = g(u?)± σ (u− u?) for some σ < 1,

for all u sufficiently close to u?, i.e., such that |u− u? | < δ for some δ > 0, defines a
contraction, and hence fixed point iteration starting with |u(0) − u? | < δ will converge to
u?; see Figure 2.5. In particular, any function that is differentiable at u? with | g′(u?) | < 1
defines a contraction at u?.

Example 2.8. The simplest truly nonlinear example is a quadratic polynomial. The
most important case is the so-called logistic map

g(u) = λu(1− u), (2.22)

where λ 6= 0 is a fixed non-zero parameter. (The case λ = 0 is completely trivial. Why?)
In fact, an elementary change of variables can make any quadratic iterative system into
one involving a logistic map.

The fixed points of the logistic map are the solutions to the quadratic equation

u = λu(1− u), or λu2 − λu + 1 = 0.

Using the quadratic formula, we conclude that g(u) has two fixed points:

u?
1 = 0, u?

2 = 1− 1

λ
.

3/15/06 16 c© 2006 Peter J. Olver

20 40 60 80 100

0.2

0.4

0.6

0.8

1

λ = 1.0

20 40 60 80 100

0.2

0.4

0.6

0.8

1

λ = 2.0

20 40 60 80 100

0.2

0.4

0.6

0.8

1

λ = 3.0

20 40 60 80 100

0.2

0.4

0.6

0.8

1

λ = 3.4

20 40 60 80 100

0.2

0.4

0.6

0.8

1

λ = 3.5

20 40 60 80 100

0.2

0.4

0.6

0.8

1

λ = 3.55

20 40 60 80 100

0.2

0.4

0.6

0.8

1

λ = 3.6

20 40 60 80 100

0.2

0.4

0.6

0.8

1

λ = 3.7

20 40 60 80 100

0.2

0.4

0.6

0.8

1

λ = 3.8

Figure 2.6. Logistic Iterates.

Let us apply Theorem 2.6 to determine their stability. The derivative is

g′(u) = λ− 2λu, and so g′(u?
1) = λ, g′(u?

2) = 2− λ.

Therefore, if |λ | < 1, the first fixed point is stable, while if 1 < λ < 3, the second fixed
point is stable. For λ < −1 or λ > 3 neither fixed point is stable, and we expect the
iterates to not converge at all.

Numerical experiments with this example show that it is the source of an amazingly
diverse range of behavior, depending upon the value of the parameter λ. In the accompa-
nying Figure 2.6, we display the results of iteration starting with initial point u(0) = .5 for
several different values of λ; in each plot, the horizontal axis indicates the iterate number
k and the vertical axis the iterate valoue u(k) for k = 0, . . . , 100. As expected from Theo-
rem 2.6, the iterates converge to one of the fixed points in the range −1 < λ < 3, except
when λ = 1. For λ a little bit larger than λ1 = 3, the iterates do not converge to a fixed
point. But it does not take long for them to settle down, switching back and forth between
two particular values. This behavior indicates the exitence of a (stable) period 2 orbit for
the discrete dynamical system, in accordance with the following definition.

3/15/06 17 c© 2006 Peter J. Olver

Definition 2.9. A period k orbit of a discrete dynamical system is a solution that
satisfies u(n+k) = u(n) for all n = 0, 1, 2, The (minimal) period is the smallest positive
value of k for which this condition holds.

Thus, a fixed point
u(0) = u(1) = u(2) = · · ·

is a period 1 orbit. A period 2 orbit satisfies

u(0) = u(2) = u(4) = · · · and u(1) = u(3) = u(5) = · · · ,

but u(0) 6= u(1), as otherwise the minimal period would be 1. Similarly, a period 3 orbit
has

u(0) = u(3) = u(6) = · · · , u(1) = u(4) = u(7) = · · · , u(2) = u(5) = u(8) = · · · ,

with u(0), u(1), u(2) distinct. Stability of a period k orbit implies that nearby iterates
converge to this periodic solution.

For the logistic map, the period 2 orbit persists until λ = λ2 ≈ 3.4495, after which
the iterates alternate between four values — a period 4 orbit. This again changes at
λ = λ3 ≈ 3.5441, after which the iterates end up alternating between eight values. In fact,
there is an increasing sequence of values

3 = λ1 < λ2 < λ3 < λ4 < · · · ,

where, for any λn < λ ≤ λn+1, the iterates eventually follow a period 2n orbit. Thus, as λ
passes through each value λn the period of the orbit goes from 2n to 2 ·2n = 2n+1, and the
discrete dynamical system experiences a bifurcation. The bifurcation values λn are packed
closer and closer together as n increases, piling up on an eventual limiting value

λ? = lim
n→∞

λn ≈ 3.5699,

at which point the orbit’s period has, so to speak, become infinitely large. The entire
phenomena is known as a period doubling cascade.

Interestingly, the ratios of the distances between successive bifurcation points ap-
proaches a well-defined limit,

λn+2 − λn+1

λn+1 − λn

−→ 4.6692 . . . , (2.23)

known as Feigenbaum’s constant . In the 1970’s, the American physicist Mitchell Feigen-
baum, [16], discovered that similar period doubling cascades appear in a broad range of
discrete dynamical systems. Even more remarkably, in almost all cases, the corresponding
ratios of distances between bifurcation points has the same limiting value. Feigenbaum’s
experimental observations were rigorously proved by Oscar Lanford in 1982, [32].

After λ passes the limiting value λ?, all hell breaks loose. The iterates become com-
pletely chaotic†, moving at random over the interval [0, 1]. But this is not the end of the

† The term “chaotic” does have a precise mathematical definition, but the reader can take it
more figuratively for the purposes of this elementary exposition.

3/15/06 18 c© 2006 Peter J. Olver

2.5 3 3.5 4

0.2

0.4

0.6

0.8

1

Figure 2.7. The Logistic Map.

story. Embedded within this chaotic regime are certain small ranges of λ where the system
settles down to a stable orbit, whose period is no longer necessarily a power of 2. In fact,
there exist values of λ for which the iterates settle down to a stable orbit of period k for any

positive integer k. For instance, as λ increases past λ3,? ≈ 3.83, a period 3 orbit appears
over a small range of values, after which, as λ increses slightly further, there is a period
doubling cascade where period 6, 12, 24, . . . orbits successively appear, each persisting on
a shorter and shorter range of parameter values, until λ passes yet another critical value
where chaos breaks out yet again. There is a well-prescribed order in which the periodic
orbits make their successive appearance, and each odd period k orbit is followed by a very
closely spaced sequence of period doubling bifurcations, of periods 2n k for n = 1, 2, 3, . . . ,
after which the iterates revert to completely chaotic behavior until the next periodic case
emerges. The ratios of distances between bifurcation points always have the same Feigen-
baum limit (2.23). Finally, these periodic and chaotic windows all pile up on the ultimate
parameter value λ?

? = 4. And then, when λ > 4, all the iterates go off to ∞, and the
system ceases to be interesting.

The reader is encouraged to write a simple computer program and perform some
numerical experiments. In particular, Figure 2.7 shows the asymptotic behavior of the
iterates for values of the parameter in the interesting range 2 < λ < 4. The horizontal
axis is λ, and the marked points show the ultimate fate of the iteration for the given
value of λ. For instance, each point the single curve lying above the smaller values of
λ represents a stable fixed point; this bifurcates into a pair of curves representing stable
period 2 orbits, which then bifurcates into 4 curves representing period 4 orbits, and so
on. Chaotic behavior is indicated by a somewhat random pattern of points lying above the
value of λ. To plot this figure, we ran the logistic iteration u(n) for 0 ≤ n ≤ 100, discarded
the first 50 points, and then plotted the next 50 iterates u(51), . . . , u(100). Investigation of
the fine detailed structure of the logistic map requires yet more iterations with increased
numerical accuracy. In addition one should discard more of the initial iterates so as to give

3/15/06 19 c© 2006 Peter J. Olver

the system enough time to settle down to a stable periodic orbit or, alternatively, continue
in a chaotic manner.

Remark : So far, we have only looked at real scalar iterative systems. Complex discrete
dynamical systems display yet more remarkable and fascinating behavior. The complex
version of the logistic iteration equation leads to the justly famous Julia and Mandelbrot
sets, [33], with their stunning, psychedelic fractal structure, [42].

The rich range of phenomena in evidence, even in such extremely simple nonlinear
iterative systems, is astounding. While intimations first appeared in the late nineteenth
century research of the influential French mathematician Henri Poincaré, serious investiga-
tions were delayed until the advent of the computer era, which precipitated an explosion of
research activity in the area of dynamical systems. Similar period doubling cascades and
chaos are found in a broad range of nonlinear systems, [1], and are often encountered in
physical applications, [35]. A modern explanation of fluid turbulence is that it is a (very
complicated) form of chaos, [1].

Quadratic Convergence

Let us now return to the more mundane case when the iterates converge to a stable
fixed point of the discrete dynamical system. In applications, we use the iterates to compute
a precise† numerical value for the fixed point, and hence the efficiency of the algorithm
depends on the speed of convergence of the iterates.

According to the remark following the proof Theorem 2.6, the convergence rate of an
iterative system is essentially governed by the magnitude of the derivative | g ′(u?) | at the
fixed point. The basic inequality (2.18) for the errors e(k) = u(k) − u?, namely

| e(k+1) | ≤ σ | e(k) |,
is known as a linear convergence estimate. It means that, once the iterates are close to
the fixed point, the error decreases by a factor of (at least) σ ≈ | g′(u?) | at each step. If
the kth iterate u(k) approximates the fixed point u? correctly to m decimal places, so its
error is bounded by

| e(k) | < .5× 10−m,

then the (k + 1)st iterate satisfies the error bound

| e(k+1) | ≤ σ | e(k) | < .5× 10−m σ = .5× 10−m+log
10

σ.

More generally, for any j > 0,

| e(k+j) | ≤ σj | e(k) | < .5× 10−m σj = .5× 10−m+j log
10

σ,

which means that the (k + j)th iterate u(k+j) has at least‡

m− j log10 σ = m + j log10 σ−1

† The degree of precision is to be specified by the user and the application.

‡ Note that since σ < 1, the logarithm log10 σ
−1 = − log10 σ > 0 is positive.

3/15/06 20 c© 2006 Peter J. Olver

correct decimal places. For instance, if σ = .1 then each new iterate produces one new
decimal place of accuracy (at least), while if σ = .9 then it typically takes 22 ≈ −1/ log10 .9
iterates to produce just one additional accurate digit!

This means that there is a huge advantage — particularly in the application of iterative
methods to the numerical solution of equations — to arrange that | g′(u?) | be as small as
possible. The fastest convergence rate of all will occur when g′(u?) = 0. In fact, in such a
happy situation, the rate of convergence is not just slightly, but dramatically faster than
linear.

Theorem 2.10. Suppose that g ∈ C2, and u? = g(u?) is a fixed point such that

g′(u?) = 0. Then, for all iterates u(k) sufficiently close to u?, the errors e(k) = u(k) − u?

satisfy the quadratic convergence estimate

| e(k+1) | ≤ τ | e(k) |2 (2.24)

for some constant τ > 0.

Proof : Just as that of the linear convergence estimate (2.18), the proof relies on
approximating g(u) by a simpler function near the fixed point. For linear convergence, an
affine approximation sufficed, but here we require a higher order approximation. Thus, we
replace the mean value formula (2.16) by the first order Taylor expansion

g(u) = g(u?) + g′(u?) (u− u?) + 1
2 g′′(w) (u− u?)2, (2.25)

where the final error term depends on an (unknown) point w that lies between u and u?.
At a fixed point, the constant term is g(u?) = u?. Furthermore, under our hypothesis
g′(u?) = 0, and so (2.25) reduces to

g(u)− u? = 1
2 g′′(w) (u− u?)2.

Therefore,

| g(u)− u? | ≤ τ |u− u? |2, (2.26)

where τ is chosen so that
1
2 | g

′′(w) | ≤ τ (2.27)

for all w sufficiently close to u?. Therefore, the magnitude of τ is governed by the size
of the second derivative of the iterative function g(u) near the fixed point. We use the
inequality (2.26) to estimate the error

| e(k+1) | = |u(k+1) − u? | = | g(u(k))− g(u?) | ≤ τ |u(k) − u? |2 = τ | e(k) |2,

which establishes the quadratic convergence estimate (2.24). Q.E.D.

Let us see how the quadratic estimate (2.24) speeds up the convergence rate. Following
our earlier argument, suppose u(k) is correct to m decimal places, so

| e(k) | < .5× 10−m.

3/15/06 21 c© 2006 Peter J. Olver

Then (2.24) implies that

| e(k+1) | < .5× (10−m)2 τ = .5× 10−2m+log
10

τ ,

and so u(k+1) has 2m − log10 τ accurate decimal places. If τ ≈ | g′′(u?) | is of moderate
size, we have essentially doubled the number of accurate decimal places in just a single
iterate! A second iteration will double the number of accurate digits yet again. Thus,
the convergence of a quadratic iteration scheme is extremely rapid, and, barring round-off
errors, one can produce any desired number of digits of accuracy in a very short time. For
example, if we start with an initial guess that is accurate in the first decimal digit, then a
linear iteration with σ = .1 will require 49 iterations to obtain 50 decimal place accuracy,
whereas a quadratic iteration (with τ = 1) will only require 6 iterations to obtain 26 = 64
decimal places of accuracy!

Example 2.11. Consider the function

g(u) =
2u3 + 3

3u2 + 3
.

There is a unique (real) fixed point u? = g(u?), which is the real solution to the cubic
equation

1
3 u3 + u− 1 = 0.

Note that

g′(u) =
2u4 + 6u2 − 6u

3(u2 + 1)2
=

6u
(

1
3 u3 + u− 1

)

3(u2 + 1)2
,

and hence g′(u?) = 0 vanishes at the fixed point. Theorem 2.10 implies that the iterations
will exhibit quadratic convergence to the root. Indeed, we find, starting with u(0) = 0, the
following values:

k 1 2 3

u(k) 1.00000000000000 .833333333333333 .817850637522769

4 5 6

.817731680821982 .817731673886824 .817731673886824

The convergence rate is dramatic: after only 5 iterations, we have produced the first 15
decimal places of the fixed point. In contrast, the linearly convergent scheme based on
g̃(u) = 1 − 1

3 u3 takes 29 iterations just to produce the first 5 decimal places of the same
solution.

In practice, the appearance of a quadratically convergent fixed point is a matter of
luck. The construction of quadratically convergent iterative methods for solving equations
will be the focus of the following Section.

3/15/06 22 c© 2006 Peter J. Olver

-1 -0.5 0.5 1

-4

-3

-2

-1

1

2

3

Figure 2.8. Graph of u5 + u + 1.

2.2. Numerical Solution of Equations.

Solving nonlinear equations and systems of equations is, of course, a problem of utmost
importance in mathematics and its manifold applications. We begin by studying the scalar
case. Thus, we are given a real-valued function f : R→ R, and seek its roots, i.e., the real
solution(s) to the scalar equation

f(u) = 0. (2.28)

Here are some prototypical examples:

(a) Find the roots of the quintic polynomial equation

u5 + u + 1 = 0. (2.29)

Graphing the left hand side of the equation, as in Figure 2.8, convinces us that there is
just one real root, lying somewhere between −1 and −.5. While there are explicit algebraic
formulas for the roots of quadratic, cubic, and quartic polynomials, a famous theorem† due
to the Norwegian mathematician Nils Henrik Abel in the early 1800’s states that there is
no such formula for generic fifth order polynomial equations.

(b) Any fixed point equation u = g(u) has the form (2.28) where f(u) = u − g(u).
For example, the trigonometric Kepler equation

u− ε sinu = m

arises in the study of planetary motion, cf. Example 2.7. Here ε,m are fixed constants,
and we seek a corresponding solution u.

(c) Suppose we are given chemical compounds A,B,C that react to produce a fourth
compound D according to

2A + B ←→ D, A + 3C ←→ D.

Let a, b, c be the initial concentrations of the reagents A,B,C injected into the reaction
chamber. If u denotes the concentration of D produced by the first reaction, and v that

† A modern proof of this fact relies on Galois theory, [19].

3/15/06 23 c© 2006 Peter J. Olver

a b

u?

f(u)

Figure 2.9. Intermediate Value Theorem.

by the second reaction, then the final equilibrium concentrations

a? = a− 2u− v, b? = b− u, c? = c− 3v, d? = u + v,

of the reagents will be determined by solving the nonlinear system

(a− 2u− v)2(b− u) = α(u + v), (a− 2u− v)(c− 3v)3 = β (u + v), (2.30)

where α, β are the known equilibrium constants of the two reactions.

Our immediate goal is to develop numerical algorithms for solving such nonlinear
scalar equations.

The Bisection Method

The most primitive algorithm, and the only one that is guaranteed to work in all cases,
is the Bisection Method. While it has an iterative flavor, it cannot be properly classed as
a method governed by functional iteration as defined in the preceding section, and so must
be studied directly in its own right.

The starting point is the Intermediate Value Theorem, which we state in simplified
form. See Figure 2.9 for an illustration, and [2] for a proof.

Lemma 2.12. Let f(u) be a continuous scalar function. Suppose we can find two

points a < b where the values of f(a) and f(b) take opposite signs, so either f(a) < 0 and

f(b) > 0, or f(a) > 0 and f(b) < 0. Then there exists at least one point a < u? < b where

f(u?) = 0.

Note that if f(a) = 0 or f(b) = 0, then finding a root is trivial. If f(a) and f(b) have
the same sign, then there may or may not be a root in between. Figure 2.10 plots the
functions u2 + 1, u2 and u2 − 1, on the interval −2 ≤ u ≤ 2. The first has two simple
roots; the second has a single double root, while the third has no root. We also note
that continuity of the function on the entire interval [a, b] is an essential hypothesis. For
example, the function f(u) = 1/u satisfies f(−1) = −1 and f(1) = 1, but there is no root
to the equation 1/u = 0.

3/15/06 24 c© 2006 Peter J. Olver

-2 -1 1 2

-2

-1

1

2

3

4

5

-2 -1 1 2

-2

-1

1

2

3

4

5

-2 -1 1 2

-2

-1

1

2

3

4

5

Figure 2.10. Roots of Quadratic Functions.

Note carefully that the Lemma 2.12 does not say there is a unique root between a
and b. There may be many roots, or even, in pathological examples, infinitely many. All
the theorem guarantees is that, under the stated hypotheses, there is at least one root.

Once we are assured that a root exists, bisection relies on a “divide and conquer”
strategy. The goal is to locate a root a < u? < b between the endpoints. Lacking any
additional evidence, one tactic would be to try the midpoint c = 1

2 (a + b) as a first guess
for the root. If, by some miracle, f(c) = 0, then we are done, since we have found a
solution! Otherwise (and typically) we look at the sign of f(c). There are two possibilities.
If f(a) and f(c) are of opposite signs, then the Intermediate Value Theorem tells us that
there is a root u? lying between a < u? < c. Otherwise, f(c) and f(b) must have opposite
signs, and so there is a root c < u? < b. In either event, we apply the same method to
the interval in which we are assured a root lies, and repeat the procedure. Each iteration
halves the length of the interval, and chooses the half in which a root is sure to lie. (There
may, of course, be a root in the other half interval, but as we cannot be sure, we discard
it from further consideration.) The root we home in on lies trapped in intervals of smaller
and smaller width, and so convergence of the method is guaranteed.

Example 2.13. The roots of the quadratic equation

f(u) = u2 + u− 3 = 0

can be computed exactly by the quadratic formula:

u?
1 =
−1 +

√
13

2
≈ 1.302775 . . . , u?

2 =
−1−

√
13

2
≈ −2.302775

Let us see how one might approximate them by applying the Bisection Algorithm. We start
the procedure by choosing the points a = u(0) = 1, b = v(0) = 2, noting that f(1) = −1
and f(2) = 3 have opposite signs and hence we are guaranteed that there is at least one
root between 1 and 2. In the first step we look at the midpoint of the interval [1, 2],
which is 1.5, and evaluate f(1.5) = .75. Since f(1) = −1 and f(1.5) = .75 have opposite
signs, we know that there is a root lying between 1 and 1.5. Thus, we take u(1) = 1 and
v(1) = 1.5 as the endpoints of the next interval, and continue. The next midpoint is at
1.25, where f(1.25) = −.1875 has the opposite sign to f(1.5) = .75, and so a root lies
between u(2) = 1.25 and v(2) = 1.5. The process is then iterated as long as desired — or,
more practically, as long as your computer’s precision does not become an issue.

3/15/06 25 c© 2006 Peter J. Olver

k u(k) v(k) w(k) = 1
2 (u(k) + v(k)) f(w(k))

0 1 2 1.5 .75

1 1 1.5 1.25 −.1875

2 1.25 1.5 1.375 .2656

3 1.25 1.375 1.3125 .0352

4 1.25 1.3125 1.2813 −.0771

5 1.2813 1.3125 1.2969 −.0212

6 1.2969 1.3125 1.3047 .0069

7 1.2969 1.3047 1.3008 −.0072

8 1.3008 1.3047 1.3027 −.0002

9 1.3027 1.3047 1.3037 .0034

10 1.3027 1.3037 1.3032 .0016

11 1.3027 1.3032 1.3030 .0007

12 1.3027 1.3030 1.3029 .0003

13 1.3027 1.3029 1.3028 .0001

14 1.3027 1.3028 1.3028 −.0000

The table displays the result of the algorithm, rounded off to four decimal places.
After 14 iterations, the Bisection Method has correctly computed the first four decimal
digits of the positive root u?

1. A similar bisection starting with the interval from u(1) = −3
to v(1) = −2 will produce the negative root.

A formal implementation of the Bisection Algorithm appears in the accompanying
pseudocode program. The endpoints of the kth interval are denoted by u(k) and v(k). The
midpoint is w(k) = 1

2

(
u(k) + v(k)

)
, and the key decision is whether w(k) should be the

right or left hand endpoint of the next interval. The integer n, governing the number of
iterations, is to be prescribed in accordance with how accurately we wish to approximate
the root u?.

The algorithm produces two sequences of approximations u(k) and v(k) that both
converge monotonically to u?, one from below and the other from above:

a = u(0) ≤ u(1) ≤ u(2) ≤ · · · ≤ u(k) −→ u? ←− v(k) ≤ · · · ≤ v(2) ≤ v(1) ≤ v(0) = b.

and u? is trapped between the two. Thus, the root is trapped inside a sequence of intervals
[u(k), v(k)] of progressively shorter and shorter length. Indeed, the length of each interval
is exactly half that of its predecessor:

v(k) − u(k) = 1
2 (v(k−1) − u(k−1)).

Iterating this formula, we conclude that

v(n) − u(n) =
(

1
2

)n
(v(0) − u(0)) =

(
1
2

)n
(b− a) −→ 0 as n −→ ∞.

3/15/06 26 c© 2006 Peter J. Olver

The Bisection Method

start

if f(a) f(b) < 0 set u(0) = a, v(0) = b

else print “Bisection Method not applicable”

for k = 0 to n− 1

set w(k) = 1
2 (u(k) + v(k))

if f(w(k)) = 0, stop; print u? = w(k)

if f(u(k)) f(w(k)) < 0, set u(k+1) = u(k), v(k+1) = w(k)

else set u(k+1) = w(k), v(k+1) = v(k)

next k

print u? = w(n) = 1
2 (u(n) + v(n))

end

The midpoint
w(n) = 1

2 (u(n) + v(n))

lies within a distance

|w(n) − u? | ≤ 1
2 (v(n) − u(n)) =

(
1
2

)n+1
(b− a)

of the root. Consequently, if we desire to approximate the root within a prescribed tolerance
ε, we should choose the number of iterations n so that

(
1
2

)n+1
(b− a) < ε, or n > log2

b− a

ε
− 1 . (2.31)

Summarizing:

Theorem 2.14. If f(u) is a continuous function, with f(a) f(b) < 0, then the

Bisection Method starting with u(0) = a, v(0) = b, will converge to a solution u? to the

equation f(u) = 0 lying between a and b. After n steps, the midpoint w(n) = 1
2 (u(n) + v(n))

will be within a distance of ε = 2−n−1(b− a) from the solution.

For example, in the case of the quadratic equation in Example 2.13, after 14 iterations,
we have approximated the positive root to within

ε =
(

1
2

)15
(2− 1) ≈ 3.052× 10−5,

reconfirming our observation that we have accurately computed its first four decimal places.
If we are in need of 10 decimal places, we set our tolerance to ε = .5 × 10−10, and so,
according to (2.31), must perform n = 34 > 33.22 ≈ log2 2× 1010−1 successive bisections†.

† This assumes we have sufficient precision on the computer to avoid round-off errors.

3/15/06 27 c© 2006 Peter J. Olver

Example 2.15. As noted at the beginning of this section, the quintic equation

f(u) = u5 + u + 1 = 0

has one real root, whose value can be readily computed by bisection. We start the algorithm
with the initial points u(0) = −1, v(0) = 0, noting that f(−1) = −1 < 0 while f(0) = 1 > 0
are of opposite signs. In order to compute the root to 6 decimal places, we set ε = .5×10−6

in (2.31), and so need to perform n = 20 > 19.93 ≈ log2 2× 106 − 1 bisections. Indeed,
the algorithm produces the approximation u? ≈ − .754878 to the root, and the displayed
digits are guaranteed to be accurate.

Fixed Point Methods

The Bisection Method has an ironclad guarantee to converge to a root of the function
— provided it can be properly started by locating two points where the function takes
opposite signs. This may be tricky if the function has two very closely spaced roots and
is, say, negative only for a very small interval between them, and may be impossible
for multiple roots, e.g., the root u? = 0 of the quadratic function f(u) = u2. When
applicable, its convergence rate is completely predictable, but not especially fast. Worse,
it has no immediately apparent extension to systems of equations, since there is no obvious
counterpart to the Intermediate Value Theorem for vector-valued functions.

Most other numerical schemes for solving equations rely on some form of fixed point
iteration. Thus, we seek to replace the system of equations f(u) = 0 with a fixed point
system u = g(u), that leads to the iterative solution scheme u(k+1) = g(u(k)). For this to
work, there are two key requirements:

(a) The solution u? to the equation f(u) = 0 is also a fixed point for g(u), and

(b) u? is, in fact a stable fixed point, meaning that the Jacobian g ′(u?) is a convergent
matrix, or, slightly more restrictively, ‖g ′(u?) ‖ < 1 for a prescribed matrix norm.

If both conditions hold, then, provided we choose the initial iterate u(0) = c sufficiently

close to u?, the iterates u(k) → u? will converge to the desired solution. Thus, the key
to the practical use of functional iteration for solving equations is the proper design of an
iterative system — coupled with a reasonably good initial guess for the solution. Before
implementing general procedures, let us discuss a näıve example.

Example 2.16. To solve the cubic equation

f(u) = u3 − u− 1 = 0 (2.32)

we note that f(1) = −1 while f(2) = 5, and so there is a root between 1 and 2. Indeed,
the Bisection Method leads to the approximate value u? ≈ 1.3247 after 17 iterations.

Let us try to find the same root by fixed point iteration. As a first, näıve, guess, we
rewrite the cubic equation in fixed point form

u = u3 − 1 = g̃(u).

Starting with the initial guess u(0) = 1.5, successive approximations to the solution are
found by iterating

u(k+1) = g̃(u(k)) = (u(k))3 − 1, k = 0, 1, 2,

3/15/06 28 c© 2006 Peter J. Olver

However, their values

u(0) = 1.5, u(1) = 2.375, u(2) = 12.396,

u(3) = 1904, u(4) = 6.9024× 109, u(5) = 3.2886× 1029, . . .

rapidly become unbounded, and so fail to converge. This could, in fact, have been predicted
by the convergence criterion in Theorem 2.6. Indeed, g̃ ′(u) = −3u2 and so | g̃ ′(u) | > 3
for all u ≥ 1, including the root u?. This means that u? is an unstable fixed point, and
the iterates cannot converge to it.

On the other hand, we can rewrite the equation (2.32) in the alternative iterative form

u = 3
√

1 + u = g(u).

In this case

0 ≤ g′(u) =
1

3(1 + u)2/3
≤ 1

3
for u > 0.

Thus, the stability condition (2.17) is satisfied, and we anticipate convergence at a rate of
at least 1

3 . (The Bisection Method converges more slowly, at rate 1
2 .) Indeed, the first few

iterates u(k+1) =
3
√

1 + u(k) are

1.5, 1.35721, 1.33086, 1.32588, 1.32494, 1.32476, 1.32473,

and we have converged to the root, correct to four decimal places, in only 6 iterations.

Newton’s Method

Our immediate goal is to design an efficient iterative scheme u(k+1) = g(u(k)) whose
iterates converge rapidly to the solution of the given scalar equation f(u) = 0. As we
learned in Section 2.1, the convergence of the iteration is governed by the magnitude
of its derivative at the fixed point. At the very least, we should impose the stability
criterion | g′(u?) | < 1, and the smaller this quantity can be made, the faster the iterative
scheme converges. if we are able to arrange that g′(u?) = 0, then the iterates will converge
quadratically fast, leading, as noted in the discussion following Theorem 2.10, to a dramatic
improvement in speed and efficiency.

Now, the first condition requires that g(u) = u whenever f(u) = 0. A little thought
will convince you that the iterative function should take the form

g(u) = u− h(u) f(u), (2.33)

where h(u) is a reasonably nice function. If f(u?) = 0, then clearly u? = g(u?), and so u?

is a fixed point. The converse holds provided h(u) 6= 0 is never zero.

For quadratic convergence, the key requirement is that the derivative of g(u) be zero
at the fixed point solutions. We compute

g′(u) = 1− h′(u) f(u)− h(u) f ′(u).

Thus, g′(u?) = 0 at a solution to f(u?) = 0 if and only if

0 = 1− h′(u?) f(u?)− h(u?) f ′(u?) = 1− h(u?) f ′(u?).

3/15/06 29 c© 2006 Peter J. Olver

Consequently, we should require that

h(u?) =
1

f ′(u?)
(2.34)

to ensure a quadratically convergent iterative scheme. This assumes that f ′(u?) 6= 0,
which means that u? is a simple root of f . For here on, we leave aside multiple roots,
which require a different approach.

Of course, there are many functions h(u) that satisfy (2.34), since we only need to
specify its value at a single point. The problem is that we do not know u? — after all this
is what we are trying to compute — and so cannot compute the value of the derivative
of f there. However, we can circumvent this apparent difficulty by a simple device: we
impose equation (2.34) at all points, setting

h(u) =
1

f ′(u)
, (2.35)

which certainly guarantees that it holds at the solution u?. The result is the function

g(u) = u − f(u)

f ′(u)
, (2.36)

and the resulting iteration scheme is known as Newton’s Method , which, as the name
suggests, dates back to the founder of the calculus. To this day, Newton’s Method remains
the most important general purpose algorithm for solving equations. It starts with an
initial guess u(0) to be supplied by the user, and then successively computes

u(k+1) = u(k) − f(u(k))

f ′(u(k))
. (2.37)

As long as the initial guess is sufficiently close, the iterates u(k) are guaranteed to converge,
quadratically fast, to the (simple) root u? of the equation f(u) = 0.

Theorem 2.17. Suppose f(u) ∈ C2 is twice continuously differentiable. Let u? be

a solution to the equation f(u?) = 0 such that f ′(u?) 6= 0. Given an initial guess u(0)

sufficiently close to u?, the Newton iteration scheme (2.37) converges at a quadratic rate

to the solution u?.

Proof : By continuity, if f ′(u?) 6= 0, then f ′(u) 6= 0 for all u sufficiently close to u?, and
hence the Newton iterative function (2.36) is well defined and continuously differentiable
near u?. Since g′(u) = f(u) f ′′(u)/f ′(u)2, we have g′(u?) = 0 when f(u?) = 0, as promised
by our construction. The quadratic convergence of the resulting iterative scheme is an
immediate consequence of Theorem 2.10. Q.E.D.

Example 2.18. Consider the cubic equation

f(u) = u3 − u− 1 = 0,

that we already solved in Example 2.16. The function used in the Newton iteration is

g(u) = u− f(u)

f ′(u)
= u− u3 − u− 1

3u2 − 1
,

3/15/06 30 c© 2006 Peter J. Olver

0.2 0.4 0.6 0.8 1

-0.25

-0.2

-0.15

-0.1

-0.05

0.05

0.1

Figure 2.11. The function f(u) = u3 − 3
2 u2 + 5

9 u− 1
27 .

which is well-defined as long as u 6= ± 1√
3

. We will try to avoid these singular points. The

iterative procedure

u(k+1) = g(u(k)) = u(k) − (u(k))3 − u(k) − 1

3(u(k))2 − 1

with initial guess u(0) = 1.5 produces the following values:

1.5, 1.34783, 1.32520, 1.32472,

and we have computed the root to 5 decimal places after only three iterations. The
quadratic convergence of Newton’s Method implies that, roughly, each new iterate doubles
the number of correct decimal places. Thus, to compute the root accurately to 40 decimal
places would only require 3 further iterations†. This underscores the tremendous advantage
that the Newton algorithm offers over competing methods.

Example 2.19. Consider the cubic polynomial equation

f(u) = u3 − 3
2 u2 + 5

9 u− 1
27 = 0.

Since

f(0) = − 1
27 , f

(
1
3

)
= 1

54 , f
(

2
3

)
= − 1

27 , f(1) = 1
54 ,

the Intermediate Value Lemma 2.12 guarantees that there are three roots on the interval
[0, 1]: one between 0 and 1

3 , the second between 1
3 and 2

3 , and the third between 2
3 and 1.

The graph in Figure 2.11 reconfirms this observation. Since we are dealing with a cubic
polynomial, there are no other roots. (Why?)

† This assumes we are working in a sufficiently high precision arithmetic so as to avoid round-off
errors.

3/15/06 31 c© 2006 Peter J. Olver

It takes sixteen iterations of the Bisection Method starting with the three subintervals[
0 , 1

3

]
,
[

1
3 , 2

3

]
and

[
2
3 , 1

]
, to produce the roots to six decimal places:

u?
1 ≈ .085119, u?

2 ≈ .451805, u?
3 ≈ .963076.

Incidentally, if we start with the interval [0, 1] and apply bisection, we converge (perhaps
surprisingly) to the largest root u?

3 in 17 iterations.

Fixed point iteration based on the formulation

u = g(u) = −u3 + 3
2 u2 + 4

9 u + 1
27

can be used to find the first and third roots, but not the second root. For instance, starting
with u(0) = 0 produces u?

1 to 5 decimal places after 23 iterations, whereas starting with
u(0) = 1 produces u?

3 to 5 decimal places after 14 iterations. The reason we cannot produce
u?

2 is due to the magnitude of the derivative

g′(u) = −3u2 + 3u + 4
9

at the roots, which is

g′(u?
1) ≈ 0.678065, g′(u?

2) ≈ 1.18748, g′(u?
3) ≈ 0.551126.

Thus, u?
1 and u?

3 are stable fixed points, but u?
2 is unstable. However, because g′(u?

1) and
g′(u?

3) are both bigger than .5, this iterative algorithm actually converges slower than
ordinary bisection!

Finally, Newton’s Method is based upon iteration of the rational function

g(u) = u− f(u)

f ′(u)
= u− u3 − 3

2 u2 + 5
9 u− 1

27

3u2 − 3u + 5
9

.

Starting with an initial guess of u(0) = 0, the method computes u?
1 to 6 decimal places

after only 4 iterations; starting with u(0) = .5, it produces u?
2 to similar accuracy after 2

iterations; while starting with u(0) = 1 produces u?
3 after 3 iterations — a dramatic speed

up over the other two methods.

Newton’s Method has a very pretty graphical interpretation, that helps us understand
what is going on and why it converges so fast. Given the equation f(u) = 0, suppose we
know an approximate value u = u(k) for a solution. Nearby u(k), we can approximate the
nonlinear function f(u) by its tangent line

y = f(u(k)) + f ′(u(k))(u− u(k)). (2.38)

As long as the tangent line is not horizontal — which requires f ′(u(k)) 6= 0 — it crosses
the axis at

u(k+1) = u(k) − f(u(k))

f ′(u(k))
,

3/15/06 32 c© 2006 Peter J. Olver

u(k)u(k+1)

f(u)

Figure 2.12. Newton’s Method.

which represents a new, and, presumably more accurate, approximation to the desired
root. The procedure is illustrated pictorially in Figure 2.12. Note that the passage from
u(k) to u(k+1) is exactly the Newton iteration step (2.37). Thus, Newtonian iteration is
the same as the approximation of function’s root by those of its successive tangent lines.

Given a sufficiently accurate initial guess, Newton’s Method will rapidly produce
highly accurate values for the simple roots to the equation in question. In practice, barring
some kind of special exploitable structure, Newton’s Method is the root-finding algorithm
of choice. The one caveat is that we need to start the process reasonably close to the
root we are seeking. Otherwise, there is no guarantee that a particular set of iterates will
converge, although if they do, the limiting value is necessarily a root of our equation. The
behavior of Newton’s Method as we change parameters and vary the initial guess is very
similar to the simpler logistic map that we studied in Section 2.1, including period dou-
bling bifurcations and chaotic behavior. The reader is invited to experiment with simple
examples; further details can be found in [42].

Example 2.20. For fixed values of the eccentricity ε, Kepler’s equation

u− ε sinu = m (2.39)

can be viewed as a implicit equation defining the eccentric anomaly u as a function of
the mean anomaly m. To solve Kepler’s equation by Newton’s Method, we introduce the
iterative function

g(u) = u − u− ε sin u−m

1− ε cos u
.

Notice that when | ε | < 1, the denominator never vanishes and so the iteration remains
well-defined everywhere. Starting with a sufficiently close initial guess u(0), we are assured
that the method will quickly converge to the solution.

Fixing the eccentricity ε, we can employ tghe method of continuation to determine
how the solution u? = h(m) depends upon the mean anomaly m. Namely, we start at

3/15/06 33 c© 2006 Peter J. Olver

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2.13. The Solution to the Kepler Equation for Eccentricity ε = .5.

m = m0 = 0 with the obvious solution u? = h(0) = 0. Then, to compute the solution
at successive closely spaced values 0 < m1 < m2 < m3 < · · · , we use the previously
computed value as an initial guess u(0) = h(mk) for the value of the solution at the next
mesh point mk+1, and run the Newton scheme until it converges to a sufficiently accurate
approximation to the value u? = h(mk+1). As long as mk+1 is reasonably close to mk,
Newton’s Method will converge to the solution quite quickly.

The continuation method will quickly produce the values of u at the sample points.
Intermediate values can either be determined by an interpolation scheme, e.g., a cubic
spline fit of the data, or by running the Newton scheme using the closest known value as
an initial condition. A plot for 0 ≤ m ≤ 1 using the value ε = .5 appears in Figure 2.13.

3/15/06 34 c© 2006 Peter J. Olver

AIMS Lecture Notes 2006

Peter J. Olver

3. Review of Matrix Algebra

Vectors and matrices are essential for modern analysis of systems of equations —
algebrai, differential, functional, etc. In this part, we will review the most basic facts of
matrix arithmetic. See [38] for full details.

3.1. Matrices and Vectors.

A matrix is a rectangular array of numbers. Thus,

(

1 0 3
−2 4 1

)

,

π 0

e 1

2

− 1 .83√
5 − 4

7

, (.2 −1.6 .32),

(

0
0

)

,

(

1 3
−2 5

)

,

are all examples of matrices. We use the notation

A =

a
11

a
12

. . . a
1n

a
21

a
22

. . . a
2n

...
...

. . .
...

am1
am2

. . . amn

(3.1)

for a general matrix of size m×n (read “m by n”), where m denotes the number of rows in
A and n denotes the number of columns. Thus, the preceding examples of matrices have
respective sizes 2 × 3, 4 × 2, 1 × 3, 2 × 1, and 2 × 2. A matrix is square if m = n, i.e., it
has the same number of rows as columns. A column vector is a m× 1 matrix, while a row

vector is a 1×n matrix. As we shall see, column vectors are by far the more important of
the two, and the term “vector” without qualification will always mean “column vector”.
A 1 × 1 matrix, which has but a single entry, is both a row and a column vector.

The number that lies in the ith row and the jth column of A is called the (i, j) entry

of A, and is denoted by aij . The row index always appears first and the column index
second. Two matrices are equal, A = B, if and only if they have the same size, and all

their entries are the same: aij = bij for i = 1, . . . ,m and j = 1, . . . , n.

3/15/06 35 c© 2006 Peter J. Olver

A general linear system of m equations in n unknowns will take the form

a
11

x
1

+ a
12

x
2

+ · · · + a
1n xn = b

1
,

a
21

x
1

+ a
22

x
2

+ · · · + a
2n xn = b

2
,

...
...

...

am1
x

1
+ am2

x
2

+ · · · + amn xn = bm.

(3.2)

As such, it is composed of three basic ingredients: the m × n coefficient matrix A, with

entries aij as in (3.1), the column vector x =

x
1

x
2

...
xn

containing the unknowns, and the

column vector b =

b
1

b
2

...
bm

containing right hand sides. As an example, consider the linear

system
x + 2y + z = 2,

2y + z = 7,

x + y + 4z = 3,

The coefficient matrix A =

1 2 1
0 2 1
1 1 4

 can be filled in, entry by entry, from the coef-

ficients of the variables appearing in the equations. (Don’t forget to put a zero when a

avariable doesn’t appear in an equation!) The vector x =

x
y
z

 lists the variables, while

the entries of b =

2
7
3

 are the right hand sides of the equations.

Remark : We will consistently use bold face lower case letters to denote vectors, and
ordinary capital letters to denote general matrices.

Matrix Arithmetic

Matrix arithmetic involves three basic operations: matrix addition, scalar multiplica-

tion, and matrix multiplication. First we define addition of matrices. You are only allowed
to add two matrices of the same size, and matrix addition is performed entry by entry.
For example,

(

1 2
−1 0

)

+

(

3 −5
2 1

)

=

(

4 −3
1 1

)

.

Therefore, if A and B are m×n matrices, their sum C = A+B is the m×n matrix whose
entries are given by cij = aij + bij for i = 1, . . . ,m and j = 1, . . . , n. When defined, matrix

3/15/06 36 c© 2006 Peter J. Olver

addition is commutative, A + B = B + A, and associative, A + (B + C) = (A + B) + C,
just like ordinary addition.

A scalar is a fancy name for an ordinary number — the term merely distinguishes it
from a vector or a matrix. For the time being, we will restrict our attention to real scalars
and matrices with real entries, but eventually complex scalars and complex matrices must
be dealt with. We will consistently identify a scalar c ∈ R with the 1 × 1 matrix (c) in
which it is the sole entry, and so will omit the redundant parentheses in the latter case.
Scalar multiplication takes a scalar c and an m × n matrix A and computes the m × n
matrix B = cA by multiplying each entry of A by c. For example,

3

(

1 2
−1 0

)

=

(

3 6
−3 0

)

.

In general, bij = c aij for i = 1, . . . ,m and j = 1, . . . , n. Basic properties of scalar
multiplication are summarized at the end of this section.

Finally, we define matrix multiplication. First, the product between a row vector a

and a column vector x having the same number of entries is the scalar or 1 × 1 matrix
defined by the following rule:

a x = (a
1

a
2

. . . an)

x
1

x
2

...
xn

= a
1
x

1
+ a

2
x

2
+ · · · + an xn =

n
∑

k=1

ak xk. (3.3)

More generally, if A is an m × n matrix and B is an n × p matrix, so that the number of
columns in A equals the number of rows in B, then the matrix product C = AB is defined
as the m × p matrix whose (i, j) entry equals the vector product of the ith row of A and
the jth column of B. Therefore,

cij =
n
∑

k=1

aik bkj . (3.4)

Note that our restriction on the sizes of A and B guarantees that the relevant row and
column vectors will have the same number of entries, and so their product is defined.

For example, the product of the coefficient matrix A and vector of unknowns x for
our original system (4.1) is given by

Ax =

1 2 1
2 6 1
1 1 4

x
y
z

 =

x + 2y + z
2x + 6y + z
x + y + 4z

.

The result is a column vector whose entries reproduce the left hand sides of the original
linear system! As a result, we can rewrite the system

Ax = b (3.5)

as an equality between two column vectors. This result is general; a linear system (3.2)
consisting of m equations in n unknowns can be written in the matrix form (3.5) where A

3/15/06 37 c© 2006 Peter J. Olver

is the m×n coefficient matrix (3.1), x is the n×1 column vector of unknowns, and b is the
m × 1 column vector containing the right hand sides. This is one of the principal reasons
for the non-evident definition of matrix multiplication. Component-wise multiplication of
matrix entries turns out to be almost completely useless in applications.

Now, the bad news. Matrix multiplication is not commutative — that is, BA is not
necessarily equal to AB. For example, BA may not be defined even when AB is. Even if
both are defined, they may be different sized matrices. For example the product s = r c

of a row vector r, a 1 × n matrix, and a column vector c, an n × 1 matrix with the same
number of entries, is a 1 × 1 matrix or scalar, whereas the reversed product C = c r is an
n × n matrix. For instance,

(1 2)

(

3
0

)

= 3, whereas

(

3
0

)

(1 2) =

(

3 6
0 0

)

.

In computing the latter product, don’t forget that we multiply the rows of the first matrix
by the columns of the second. Moreover, even if the matrix products AB and BA have
the same size, which requires both A and B to be square matrices, we may still have
AB 6= BA. For example,

(

1 2
3 4

)(

0 1
−1 2

)

=

(

−2 5
−4 11

)

6=
(

3 4
5 6

)

=

(

0 1
−1 2

)(

1 2
3 4

)

.

On the other hand, matrix multiplication is associative, so A(BC) = (AB)C when-
ever A has size m × n, B has size n × p, and C has size p × q; the result is a matrix of
size m × q. The proof of associativity is a tedious computation based on the definition of
matrix multiplication that, for brevity, we omit. Consequently, the one difference between
matrix algebra and ordinary algebra is that you need to be careful not to change the order
of multiplicative factors without proper justification.

Since matrix multiplication acts by multiplying rows by columns, one can compute the
columns in a matrix product AB by multiplying the matrix A and the individual columns
of B. For example, the two columns of the matrix product

(

1 −1 2
2 0 −2

)

3 4
0 2

−1 1

 =

(

1 4
8 6

)

are obtained by multiplying the first matrix with the individual columns of the second:

(

1 −1 2
2 0 −2

)

3
0

−1

 =

(

1
8

)

,

(

1 −1 2
2 0 −2

)

4
2
1

 =

(

4
6

)

.

In general, if we use bk to denote the kth column of B, then

AB = A
(

b
1

b
2

. . . bp

)

=
(

Ab
1

Ab
2

. . . Abp

)

, (3.6)

indicating that the kth column of their matrix product is Abk.

There are two special matrices. The first is the zero matrix , all of whose entries are 0.
We use Om×n to denote the m × n zero matrix, often written as just O if the size is clear

3/15/06 38 c© 2006 Peter J. Olver

from the context. The zero matrix is the additive unit, so A + O = A = O + A when O
has the same size as A. In particular, we will use a bold face 0 to denote a column vector
with all zero entries.

The role of the multiplicative unit is played by the square identity matrix

I = In =

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1

of size n × n. The entries along the main diagonal (which runs from top left to bottom
right) are equal to 1, while the off-diagonal entries are all 0. As you can check, if A is any
m × n matrix, then Im A = A = A In . We will sometimes write the preceding equation
as just IA = A = A I , since each matrix product is well-defined for exactly one size of
identity matrix.

The identity matrix is a particular example of a diagonal matrix . In general, a square
matrix A is diagonal if all its off-diagonal entries are zero: aij = 0 for all i 6= j. We will
sometimes write D = diag (c

1
, . . . , cn) for the n × n diagonal matrix with diagonal entries

dii = ci. Thus, diag (1, 3, 0) refers to the diagonal matrix

1 0 0
0 3 0
0 0 0

, while the n × n

identity matrix can be written as In = diag (1, 1, . . . , 1).

Let us conclude this section by summarizing the basic properties of matrix arithmetic.
In the accompanying table, A,B,C are matrices; c, d are scalars; O is a zero matrix; and
I is an identity matrix. All matrices are assumed to have the correct sizes so that the
indicated operations are defined.

Matrix Inverses

The inverse of a matrix is analogous to the reciprocal a−1 = 1/a of a scalar. We
already encountered the inverses of matrices corresponding to elementary row operations.
In this section, we will study inverses of general square matrices. We begin with the formal
definition.

Definition 3.1. Let A be a square matrix of size n×n. An n×n matrix X is called
the inverse of A if it satisfies

XA = I = AX, (3.7)

where I = I n is the n×n identity matrix. The inverse is commonly denoted by X = A−1.

Remark : Noncommutativity of matrix multiplication requires that we impose both
conditions in (3.7) in order to properly define an inverse to the matrix A. The first
condition, X A = I , says that X is a left inverse, while the second, AX = I , requires that
X also be a right inverse. Rectangular matrices might have either a left inverse or a right
inverse, but, as we shall see, only square matrices have both, and so only square matrices

3/15/06 39 c© 2006 Peter J. Olver

Basic Matrix Arithmetic

Matrix Addition: Commutativity A + B = B + A

Associativity (A + B) + C = A + (B + C)

Zero Matrix A + O = A = O + A

Inverse A + (−A) = O, −A = (−1)A

Scalar Multiplication: Associativity c(dA) = (cd)A

Distributivity
c (A + B) = (cA) + (cB)

(c + d)A = (cA) + (dA)

Unit 1A = A

Zero 0A = O

Matrix Multiplication: Associativity (AB)C = A(BC)

Distributivity
A(B + C) = AB + AC,

(A + B)C = AC + BC,

Identity Matrix A I = A = IA

Zero Matrix AO = O, OA = O

can have full-fledged inverses. However, not every square matrix has an inverse. Indeed,
not every scalar has an inverse: 0−1 = 1/0 is not defined since the equation 0x = 1 has no
solution.

Example 3.2. Since

1 2 −1
−3 1 2
−2 2 1

3 4 −5
1 1 −1
4 6 −7

 =

1 0 0
0 1 0
0 0 1

 =

3 4 −5
1 1 −1
4 6 −7

1 2 −1
−3 1 2
−2 2 1

 ,

we conclude that when A =

1 2 −1
−3 1 2
−2 2 1

, then A−1 =

3 4 −5
1 1 −1
4 6 −7

. Observe that

there is no obvious way to anticipate the entries of A−1 from the entries of A.

Example 3.3. Let us compute the inverse X =

(

x y
z w

)

, when it exists, of a general

2 × 2 matrix A =

(

a b
c d

)

. The right inverse condition

AX =

(

a x + b z a y + bw
c x + d z c y + dw

)

=

(

1 0
0 1

)

= I

3/15/06 40 c© 2006 Peter J. Olver

holds if and only if x, y, z, w satisfy the linear system

a x + b z = 1,

c x + d z = 0,

a y + bw = 0,

c y + dw = 1.

Solving by Gaussian Elimination (or directly), we find

x =
d

ad − bc
, y = − b

ad − bc
, z = − c

ad − bc
, w =

a

ad − bc
,

provided the common denominator ad − bc 6= 0 does not vanish. Therefore, the matrix

X =
1

ad − bc

(

d − b
− c a

)

forms a right inverse to A. However, a short computation shows that it also defines a left
inverse:

X A =

(

x a + y c x b + y d
z a + w c z b + w d

)

=

(

1 0
0 1

)

= I ,

and hence X = A−1 is the inverse to A.

The denominator appearing in the preceding formulae has a special name; it is called
the determinant of the 2 × 2 matrix A, and denoted

det

(

a b
c d

)

= ad − bc. (3.8)

Thus, the determinant of a 2 × 2 matrix is the product of the diagonal entries minus the
product of the off-diagonal entries. Thus, the 2 × 2 matrix A is invertible, with

A−1 =
1

ad − bc

(

d − b
− c a

)

, (3.9)

if and only if det A 6= 0. For example, if A =

(

1 3
−2 −4

)

, then detA = 2 6= 0. We

conclude that A has an inverse, which, by (3.9), is A−1 =
1

2

(

−4 −3
2 1

)

=

(

− 2 − 3

2

1 1

2

)

.

Lemma 3.4. The inverse of a square matrix, if it exists, is unique.

Proof : Suppose both X and Y satisfy (3.7), so XA = I = AX and Y A = I = AY .
Then, by associativity, X = X I = X(AY) = (XA)Y = IY = Y , and hence X =
Y . Q.E.D.

Inverting a matrix twice brings us back to where we started.

Lemma 3.5. If A is invertible, then A−1 is also invertible and (A−1)−1 = A.

Proof : The matrix inverse equations A−1 A = I = AA−1 are sufficient to prove that
A is the inverse of A−1. Q.E.D.

3/15/06 41 c© 2006 Peter J. Olver

Lemma 3.6. If A and B are invertible matrices of the same size, then their product,

AB, is invertible, and

(AB)−1 = B−1A−1. (3.10)

Note that the order of the factors is reversed under inversion.

Proof : Let X = B−1A−1. Then, by associativity,

X (AB) = B−1A−1AB = B−1B = I , (AB)X = ABB−1A−1 = AA−1 = I .

Thus X is both a left and a right inverse for the product matrix AB and the result
follows. Q.E.D.

Example 3.7. One verifies, directly, that the inverse of A =

(

1 2
0 1

)

is A−1 =
(

1 −2
0 1

)

, while the inverse of B =

(

0 1
−1 0

)

is B−1 =

(

0 −1
1 0

)

. Therefore, the

inverse of their product C = AB =

(

1 2
0 1

)(

0 1
−1 0

)

=

(

−2 1
−1 0

)

is given by C−1 =

B−1A−1 =

(

0 −1
1 0

)(

1 −2
0 1

)

=

(

0 −1
1 −2

)

.

We can straightforwardly generalize the preceding result. The inverse of a k-fold
product of invertible matrices is the product of their inverses, in the reverse order :

(A
1
A

2
· · ·Ak−1

Ak)−1 = A−1

k A−1

k−1
· · ·A−1

2
A−1

1
. (3.11)

Warning : In general, (A + B)−1 6= A−1 + B−1. This equation is not even true for
scalars (1 × 1 matrices)!

Transposes and Symmetric Matrices

Another basic operation on matrices is to interchange their rows and columns. If A
is an m×n matrix, then its transpose, denoted AT , is the n×m matrix whose (i, j) entry
equals the (j, i) entry of A; thus

B = AT means that bij = aji.

For example, if

A =

(

1 2 3
4 5 6

)

, then AT =

1 4
2 5
3 6

 .

Observe that the rows of A become the columns of AT and vice versa. In particular, the
transpose of a row vector is a column vector, while the transpose of a column vector is a

row vector; if v =

1
2
3

, then vT = (1 2 3). The transpose of a scalar, considered as a

1 × 1 matrix, is itself: cT = c.

3/15/06 42 c© 2006 Peter J. Olver

Remark : Most vectors appearing in applied mathematics are column vectors. To
conserve vertical space in this text, we will often use the transpose notation, e.g., v =
(v

1
, v

2
, v

3
)
T
, as a compact way of writing column vectors.

In the square case, transposition can be viewed as “reflecting” the matrix entries
across the main diagonal. For example,

1 2 −1
3 0 5

−2 −4 8

T

=

1 3 −2
2 0 −4

−1 5 8

 .

In particular, the transpose of a lower triangular matrix is upper triangular and vice-versa.

Transposing twice returns you to where you started:

(AT)T = A. (3.12)

Unlike inversion, transposition is compatible with matrix addition and scalar multiplica-
tion:

(A + B)T = AT + BT , (cA)T = cAT . (3.13)

Transposition is also compatible with matrix multiplication, but with a twist. Like the
inverse, the transpose reverses the order of multiplication:

(AB)T = BT AT . (3.14)

Indeed, if A has size m × n and B has size n × p, so they can be multiplied, then AT has
size n × m and BT has size p × n, and so, in general, one has no choice but to multiply
BT AT in that order. Formula (3.14) is a straightforward consequence of the basic laws of
matrix multiplication. An important special case is the product between a row vector vT

and a column vector w with the same number of entries. In this case,

vT w = (vT w)T = wT v, (3.15)

because their product is a scalar and so, as noted above, equals its own transpose.

Lemma 3.8. If A is a nonsingular matrix, so is AT , and its inverse is denoted

A−T = (AT)−1 = (A−1)T . (3.16)

Thus, transposing a matrix and then inverting yields the same result as first inverting and

then transposing.

Proof : Let X = (A−1)T . Then, according to (3.14),

X AT = (A−1)T AT = (AA−1)T = I T = I .

The proof that AT X = I is similar, and so we conclude that X = (AT)−1. Q.E.D.

A particularly important class of square matrices is those that are unchanged by the
transpose operation.

3/15/06 43 c© 2006 Peter J. Olver

Definition 3.9. A square matrix is called symmetric if it equals its own transpose:
A = AT .

Thus, A is symmetric if and only if its entries satisfy aji = aij for all i, j. In other
words, entries lying in “mirror image” positions relative to the main diagonal must be
equal. For example, the most general symmetric 3 × 3 matrix has the form

A =

a b c
b d e
c e f

 .

Note that any diagonal matrix, including the identity, is symmetric. A lower or upper
triangular matrix is symmetric if and only if it is, in fact, a diagonal matrix.

3/15/06 44 c© 2006 Peter J. Olver

AIMS Lecture Notes 2006

Peter J. Olver

4. Gaussian Elimination

In this part, our focus will be on the most basic method for solving linear algebraic
systems, known as Gaussian Elimination in honor of one of the all-time mathematical
greats — the early nineteenth century German mathematician Carl Friedrich Gauss. As
the father of linear algebra, his name will occur repeatedly throughout this text. Gaus-
sian Elimination is quite elementary, but remains one of the most important algorithms
in applied (as well as theoretical) mathematics. Our initial focus will be on the most
important class of systems: those involving the same number of equations as unknowns
— although we will eventually develop techniques for handling completely general linear
systems. While the former typically have a unique solution, general linear systems may
have either no solutions or infinitely many solutions. Since physical models require exis-
tence and uniqueness of their solution, the systems arising in applications often (but not
always) involve the same number of equations as unknowns. Nevertheless, the ability to
confidently handle all types of linear systems is a basic prerequisite for further progress
in the subject. In contemporary applications, particularly those arising in numerical solu-
tions of differential equations, in signal and image processing, and elsewhere, the governing
linear systems can be huge, sometimes involving millions of equations in millions of un-
knowns, challenging even the most powerful supercomputer. So, a systematic and careful
development of solution techniques is essential. Section 4.5 discusses some of the practical
issues and limitations in computer implementations of the Gaussian Elimination method
for large systems arising in applications.

4.1. Solution of Linear Systems.

Gaussian Elimination is a simple, systematic algorithm to solve systems of linear
equations. It is the workhorse of linear algebra, and, as such, of absolutely fundamental
importance in applied mathematics. In this section, we review the method in the most
important case, in which there are the same number of equations as unknowns.

To illustrate, consider an elementary system of three linear equations

x + 2y + z = 2,

2x + 6y + z = 7,

x + y + 4z = 3,

(4.1)

3/15/06 45 c© 2006 Peter J. Olver

in three unknowns x, y, z. Linearity refers to the fact that the unknowns only appear to
the first power, and there are no product terms like xy or xyz. The basic solution method
is to systematically employ the following fundamental operation:

Linear System Operation #1: Add a multiple of one equation to another equation.

Before continuing, you might try to convince yourself that this operation doesn’t change
the solutions to the system. Our goal is to judiciously apply the operation and so be led to
a much simpler linear system that is easy to solve, and, moreover has the same solutions
as the original. Any linear system that is derived from the original system by successive
application of such operations will be called an equivalent system. By the preceding remark,
equivalent linear systems have the same solutions.

The systematic feature is that we successively eliminate the variables in our equations
in order of appearance. We begin by eliminating the first variable, x, from the second
equation. To this end, we subtract twice the first equation from the second, leading to

x + 2y + z = 2,

2y − z = 3,

x + y + 4z = 3.

(4.2)

Next, we eliminate x from the third equation by subtracting the first equation from it:

x + 2y + z = 2,

2y − z = 3,

−y + 3z = 1.

(4.3)

The equivalent system (4.3) is already simpler than the original (4.1). Notice that the
second and third equations do not involve x (by design) and so constitute a system of two
linear equations for two unknowns. Moreover, once we have solved this subsystem for y
and z, we can substitute the answer into the first equation, and we need only solve a single
linear equation for x.

We continue on in this fashion, the next phase being the elimination of the second
variable, y, from the third equation by adding 1

2 the second equation to it. The result is

x + 2y + z = 2,

2y − z = 3,
5
2 z = 5

2 ,

(4.4)

which is the simple system we are after. It is in what is called triangular form, which means
that, while the first equation involves all three variables, the second equation only involves
the second and third variables, and the last equation only involves the last variable.

Any triangular system can be straightforwardly solved by the method of Back Substi-

tution. As the name suggests, we work backwards, solving the last equation first, which
requires that z = 1. We substitute this result back into the penultimate equation, which
becomes 2y − 1 = 3, with solution y = 2. We finally substitute these two values for y and
z into the first equation, which becomes x + 5 = 2, and so the solution to the triangular
system (4.4) is

x = −3, y = 2, z = 1. (4.5)

3/15/06 46 c© 2006 Peter J. Olver

Moreover, since we only used our basic linear system operation to pass from (4.1) to the
triangular system (4.4), this is also the solution to the original system of linear equations,
as you can check. We note that the system (4.1) has a unique — meaning one and only
one — solution, namely (4.5).

And that, barring a few minor complications that can crop up from time to time, is
all that there is to the method of Gaussian Elimination! It is extraordinarily simple, but
its importance cannot be overemphasized. Before exploring the relevant issues, it will help
to reformulate our method in a more convenient matrix notation.

4.2. Gaussian Elimination — Regular Case.

With the basic matrix arithmetic operations in hand, let us now return to our primary
task. The goal is to develop a systematic method for solving linear systems of equations.
While we could continue to work directly with the equations, matrices provide a convenient
alternative that begins by merely shortening the amount of writing, but ultimately leads
to profound insight into the structure of linear systems and their solutions.

We begin by replacing the system (3.2) by its matrix constituents. It is convenient to
ignore the vector of unknowns, and form the augmented matrix

M =
(
A | b

)
=

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

∣∣∣∣∣∣∣∣

b1

b2
...

bm

 (4.6)

which is an m × (n + 1) matrix obtained by tacking the right hand side vector onto the
original coefficient matrix. The extra vertical line is included just to remind us that the
last column of this matrix plays a special role. For example, the augmented matrix for the
system (4.1), i.e.,

x + 2y + z = 2,

2x + 6y + z = 7,

x + y + 4z = 3,

is M =

1 2 1
2 6 1
1 1 4

∣∣∣∣∣∣

2
7
3

 . (4.7)

Note that one can immediately recover the equations in the original linear system from
the augmented matrix. Since operations on equations also affect their right hand sides,
keeping track of everything is most easily done through the augmented matrix.

For the time being, we will concentrate our efforts on linear systems that have the
same number, n, of equations as unknowns. The associated coefficient matrix A is square,
of size n×n. The corresponding augmented matrix M =

(
A | b

)
then has size n×(n+1).

The matrix operation that assumes the role of Linear System Operation #1 is:

Elementary Row Operation #1:
Add a scalar multiple of one row of the augmented matrix to another row.

For example, if we add −2 times the first row of the augmented matrix (4.7) to the second
row, the result is the row vector

−2 (1 2 1 2) + (2 6 1 7) = (0 2 −1 3).

3/15/06 47 c© 2006 Peter J. Olver

The result can be recognized as the second row of the modified augmented matrix

1 2 1
0 2 −1
1 1 4

∣∣∣∣∣∣

2
3
3

 (4.8)

that corresponds to the first equivalent system (4.2). When elementary row operation #1
is performed, it is critical that the result replaces the row being added to — not the row
being multiplied by the scalar. Notice that the elimination of a variable in an equation —
in this case, the first variable in the second equation — amounts to making its entry in
the coefficient matrix equal to zero.

We shall call the (1, 1) entry of the coefficient matrix the first pivot . The precise
definition of pivot will become clear as we continue; the one key requirement is that a
pivot be nonzero. Eliminating the first variable x from the second and third equations
amounts to making all the matrix entries in the column below the pivot equal to zero. We
have already done this with the (2, 1) entry in (4.8). To make the (3, 1) entry equal to
zero, we subtract (that is, add −1 times) the first row from the last row. The resulting
augmented matrix is

1 2 1
0 2 −1
0 −1 3

∣∣∣∣∣∣

2
3
1

 ,

which corresponds to the system (4.3). The second pivot is the (2, 2) entry of this matrix,
which is 2, and is the coefficient of the second variable in the second equation. Again, the
pivot must be nonzero. We use the elementary row operation of adding 1

2 of the second
row to the third row to make the entry below the second pivot equal to 0; the result is the
augmented matrix

N =

1 2 1
0 2 −1
0 0 5

2

∣∣∣∣∣∣

2
3
5
2

that corresponds to the triangular system (4.4). We write the final augmented matrix as

N =
(
U | c

)
, where U =

1 2 1
0 2 −1
0 0 5

2

 , c =

2
3
5
2

 .

The corresponding linear system has vector form

U x = c. (4.9)

Its coefficient matrix U is upper triangular , which means that all its entries below the
main diagonal are zero: uij = 0 whenever i > j. The three nonzero entries on its diagonal,

1, 2, 5
2 , including the last one in the (3, 3) slot, are the three pivots. Once the system

has been reduced to triangular form (4.9), we can easily solve it by Back Substitution, as
before.

3/15/06 48 c© 2006 Peter J. Olver

Gaussian Elimination — Regular Case

start

for j = 1 to n

if mjj = 0, stop; print “A is not regular”

else for i = j + 1 to n

set lij = mij/mjj

add − lij times row j of M to row i of M

next i

next j

end

The preceding algorithm for solving a linear system of n equations in n unknowns
is known as regular Gaussian Elimination. A square matrix A will be called regular † if
the algorithm successfully reduces it to upper triangular form U with all non-zero pivots
on the diagonal. In other words, for regular matrices, as the algorithm proceeds, each
successive pivot appearing on the diagonal must be nonzero; otherwise, the matrix is not
regular. We then use the pivot row to make all the entries lying in the column below the
pivot equal to zero through elementary row operations. The solution is found by applying
Back Substitution to the resulting triangular system.

Let us state this algorithm in the form of a program, written in a general “pseudocode”
that can be easily translated into any specific language, e.g., C++, Fortran, Java,
Maple, Mathematica or Matlab. By convention, the same letter M = (mij) will be
used to denote the current augmented matrix at each stage in the computation, keeping in
mind that its entries will change as the algorithm progresses. We initialize M =

(
A | b

)
.

The final output of the program, assuming A is regular, is the augmented matrix M =(
U | c

)
, where U is the upper triangular matrix whose diagonal entries are the pivots,

while c is the resulting vector of right hand sides in the triangular system U x = c.

Elementary Matrices

A key observation is that elementary row operations can, in fact, be realized by matrix
multiplication. To this end, we introduce the first type of “elementary matrix”. (Later
we will meet two other types of elementary matrix, corresponding to two other kinds of
elementary row operation.)

Definition 4.1. The elementary matrix E associated with an elementary row oper-
ation for m–rowed matrices is the matrix obtained by applying the row operation to the

† Strangely, there is no commonly accepted term to describe these kinds of matrices. For lack
of a better alternative, we propose to use the adjective “regular” in the sequel.

3/15/06 49 c© 2006 Peter J. Olver

m×m identity matrix Im .

For example, applying the elementary row operation that adds −2 times the first row

to the second row of the 3×3 identity matrix I =

1 0 0
0 1 0
0 0 1

 results in the corresponding

elementary matrix E1 =

1 0 0
−2 1 0

0 0 1

. We claim that, if A is any 3–rowed matrix, then

multiplying E1 A has the same effect as the given elementary row operation. For example,

1 0 0
−2 1 0

0 0 1

1 2 1
2 6 1
1 1 4

 =

1 2 1
0 2 −1
1 1 4

 ,

which you may recognize as the first elementary row operation we used to solve our illus-
trative example. If we set

E1 =

1 0 0
−2 1 0

0 0 1

 , E2 =

1 0 0
0 1 0
−1 0 1

 , E3 =

1 0 0
0 1 0
0 1

2 1

 , (4.10)

then multiplication by E1 will subtract twice the first row from the second row, multipli-
cation by E2 will subtract the first row from the third row, and multiplication by E3 will
add 1

2 the second row to the third row — precisely the row operations used to place our
original system in triangular form. Therefore, performing them in the correct order (and
using the associativity of matrix multiplication), we conclude that when

A =

1 2 1
2 6 1
1 1 4

 , then E3 E2 E1 A = U =

1 2 1
0 2 −1
0 0 5

2

 . (4.11)

The reader is urged to check this by directly multiplying the indicated matrices.

In general, then, an m×m elementary matrix E of the first type will have all 1’s on
the diagonal, one nonzero entry c in some off-diagonal position (i, j), with i 6= j, and all
other entries equal to zero. If A is any m×n matrix, then the matrix product E A is equal
to the matrix obtained from A by the elementary row operation adding c times row j to
row i. (Note that the order of i and j is reversed.)

To undo the operation of adding c times row j to row i, we must perform the inverse
row operation that subtracts c (or, equivalently, adds −c) times row j from row i. The
corresponding inverse elementary matrix again has 1’s along the diagonal and −c in the
(i, j) slot. Let us denote the inverses of the particular elementary matrices (4.10) by Li,
so that, according to our general rule,

L1 =

1 0 0
2 1 0
0 0 1

 , L2 =

1 0 0
0 1 0
1 0 1

 , L3 =

1 0 0
0 1 0
0 − 1

2 1

 . (4.12)

3/15/06 50 c© 2006 Peter J. Olver

Note that the products

L1 E1 = L2 E2 = L3 E3 = I (4.13)

yield the 3 × 3 identity matrix, reflecting the fact that the matrices represent mutually
inverse row operations.

The product of the latter three elementary matrices (4.12) is equal to

L = L1 L2 L3 =

1 0 0
2 1 0
1 − 1

2 1

 . (4.14)

The matrix L is called a special lower triangular matrix, where “lower triangular” means
that all the entries above the main diagonal are 0, while “special” indicates that all the
entries on the diagonal are equal to 1. Observe that the entries of L below the diagonal
are the same as the corresponding nonzero entries in the Li. This is a general fact that
holds when the lower triangular elementary matrices are multiplied in the correct order.
More generally, the following elementary consequence of the laws of matrix multiplication
will be used extensively.

Lemma 4.2. If L and L̂ are lower triangular matrices of the same size, so is their

product LL̂. If they are both special lower triangular, so is their product. Similarly, if

U, Û are (special) upper triangular matrices, so is their product U Û .

The LU Factorization

We have almost arrived at our first important result. Let us compute the product
of the matrices L and U in (4.11), (4.14). Using associativity of matrix multiplication,
equations (4.13), and the basic property of the identity matrix I , we conclude that

LU = (L1L2L3)(E3E2E1A) = L1L2(L3E3)E2E1A = L1L2 IE2E1A

= L1(L2E2)E1A = L1 IE1A = (L1E1)A = IA = A.

In other words, we have factored the coefficient matrix A = LU into a product of a special
lower triangular matrix L and an upper triangular matrix U with the nonzero pivots on its
main diagonal. By similar reasoning, the same holds true for almost all square matrices.

Theorem 4.3. A matrix A is regular if and only if it can be factored

A = LU, (4.15)

where L is a special lower triangular matrix, having all 1’s on the diagonal, and U is

upper triangular with nonzero diagonal entries, which are the pivots of A. The nonzero

off-diagonal entries lij for i > j appearing in L prescribe the elementary row operations

that bring A into upper triangular form; namely, one subtracts lij times row j from row i
at the appropriate step of the Gaussian Elimination process.

3/15/06 51 c© 2006 Peter J. Olver

In practice, to find the LU factorization of a square matrix A, one applies the regular
Gaussian Elimination algorithm to reduce A to its upper triangular form U . The entries
of L can be filled in during the course of the calculation with the negatives of the multiples
used in the elementary row operations. If the algorithm fails to be completed, which
happens whenever zero appears in any diagonal pivot position, then the original matrix is
not regular, and does not have an LU factorization.

Example 4.4. Let us compute the LU factorization of the matrix A =

2 1 1
4 5 2
2 −2 0

.

Applying the Gaussian Elimination algorithm, we begin by adding −2 times the first row
to the second row, and then adding −1 times the first row to the third. The result is

the matrix

2 1 1
0 3 0
0 −3 −1

. The next step adds the second row to the third row, leading

to the upper triangular matrix U =

2 1 1
0 3 0
0 0 −1

, whose diagonal entries are the pivots.

The corresponding lower triangular matrix is L =

1 0 0
2 1 0
1 −1 1

; its entries lying below

the main diagonal are the negatives of the multiples we used during the elimination proce-
dure. For instance, the (2, 1) entry indicates that we added −2 times the first row to the
second row, and so on. The reader might wish to verify the resulting factorization

2 1 1
4 5 2
2 −2 0

 = A = LU =

1 0 0
2 1 0
1 −1 1

2 1 1
0 3 0
0 0 −1

 .

Forward and Back Substitution

Once we know the LU factorization of a regular matrix A, we are able to solve any
associated linear system Ax = b in two easy stages:

(1) First, solve the lower triangular system

L c = b (4.16)

for the vector c by Forward Substitution. This is the same as Back Substitution, except
one solves the equations for the variables in the direct order — from first to last. Explicitly,

c1 = b1, ci = bi −
i−1∑

j =1

lij cj , for i = 2, 3, . . . , n, (4.17)

noting that the previously computed values of c1, . . . , ci−1 are used to determine ci.

(2) Second, solve the resulting upper triangular system

U x = c (4.18)

3/15/06 52 c© 2006 Peter J. Olver

by Back Substitution. The values of the unknowns

xn =
cn

unn

, xi =
1

uii

ci −

n∑

j = i+1

uij xj

 , for i = n− 1, . . . , 2, 1, (4.19)

are successively computed, but now in reverse order. It is worth pointing out that the
requirement that each pivot uii 6= 0 is essential here, as otherwise we would not be able to
solve for the corresponding variable xi.

Note that the combined algorithm does indeed solve the original system, since if

U x = c and L c = b, then Ax = LU x = L c = b.

Example 4.5. With the LU decomposition

2 1 1
4 5 2
2 −2 0

 =

1 0 0
2 1 0
1 −1 1

2 1 1
0 3 0
0 0 −1

found in Example 4.4, we can readily solve any linear system with the given coefficient
matrix by Forward and Back Substitution. For instance, to find the solution to

2 1 1
4 5 2
2 −2 0

x
y
z

 =

1
2
2

 ,

we first solve the lower triangular system

1 0 0
2 1 0
1 −1 1

a
b
c

 =

1
2
2

 , or, explicitly,

a = 1,

2a + b = 2,

a− b + c = 2.

The first equation says a = 1; substituting into the second, we find b = 0; the final equation
yields c = 1. We then use Back Substitution to solve the upper triangular system

2 1 1
0 3 0
0 0 −1

x
y
z

 =

a
b
c

 =

1
0
1

 , which is

2x + y + z = 1,

3y = 0,

−z = 1.

We find z = −1, then y = 0, and then x = 1, which is indeed the solution.

Thus, once we have found the LU factorization of the coefficient matrix A, the Forward
and Back Substitution processes quickly produce the solution to any system Ax = b.
Moreover, they can be straightforwardly programmed on a computer. In practice, to solve
a system from scratch, it is a matter of taste whether you work directly with the augmented
matrix, or first determine the LU factorization of the coefficient matrix, and then apply
Forward and Back Substitution to compute the solution.

3/15/06 53 c© 2006 Peter J. Olver

4.3. Pivoting and Permutations.

The method of Gaussian Elimination presented so far applies only to regular matrices.
But not every square matrix is regular; a simple class of examples is matrices whose upper
left, i.e., (1, 1), entry is zero, and so cannot serve as the first pivot. More generally, the
algorithm cannot proceed whenever a zero entry appears in the current pivot position on
the diagonal. What then to do? The answer requires revisiting the source of the method.

Consider, as a specific example, the linear system

2y + z = 2,

2x + 6y + z = 7,

x + y + 4z = 3.

(4.20)

The augmented coefficient matrix is

0 2 1
2 6 1
1 1 4

∣∣∣∣∣∣

2
7
3

 .

In this case, the (1, 1) entry is 0, and so is not a legitimate pivot. The problem, of course,
is that the first variable x does not appear in the first equation, and so we cannot use it
to eliminate x in the other two equations. But this “problem” is actually a bonus — we
already have an equation with only two variables in it, and so we only need to eliminate x
from one of the other two equations. To be systematic, we rewrite the system in a different
order,

2x + 6y + z = 7,

2y + z = 2,

x + y + 4z = 3,

by interchanging the first two equations. In other words, we employ

Linear System Operation #2: Interchange two equations.

Clearly, this operation does not change the solution and so produces an equivalent linear
system. In our case, the augmented coefficient matrix

2 6 1
0 2 1
1 1 4

∣∣∣∣∣∣

7
2
3

 ,

can be obtained from the original by performing the second type of row operation:

Elementary Row Operation #2: Interchange two rows of the matrix.

The new nonzero upper left entry, 2, can now serve as the first pivot, and we may
continue to apply elementary row operations of Type #1 to reduce our matrix to upper

3/15/06 54 c© 2006 Peter J. Olver

triangular form. For this particular example, we eliminate the remaining nonzero entry in
the first column by subtracting 1

2 the first row from the last:

2 6 1
0 2 1
0 −2 7

2

∣∣∣∣∣∣

7
2
− 1

2

 .

The (2, 2) entry serves as the next pivot. To eliminate the nonzero entry below it, we add
the second to the third row:

2 6 1
0 2 1
0 0 9

2

∣∣∣∣∣∣

7
2
3
2

 .

We have now placed the system in upper triangular form, with the three pivots 2, 2, and
9
2 along the diagonal. Back Substitution produces the solution x = 5

6 , y = 5
6 , z = 1

3 .

The row interchange that is required when a zero shows up in the diagonal pivot
position is known as pivoting . Later, in Section 4.5, we will discuss practical reasons for
pivoting even when a diagonal entry is nonzero. Let us distinguish the class of matrices
that can be reduced to upper triangular form by Gaussian Elimination with pivoting.
These matrices will prove to be of fundamental importance throughout linear algebra.

Definition 4.6. A square matrix is called nonsingular if it can be reduced to upper
triangular form with all non-zero elements on the diagonal — the pivots — by elementary
row operations of Types 1 and 2.

In contrast, a singular square matrix cannot be reduced to such upper triangular form
by such row operations, because at some stage in the elimination procedure the diagonal
entry and all the entries below it are zero. Every regular matrix is nonsingular, but, as
we just saw, not every nonsingular matrix is regular. Uniqueness of solutions is the key
defining characteristic of nonsingularity.

Theorem 4.7. A linear system Ax = b has a unique solution for every choice of

right hand side b if and only if its coefficient matrix A is square and nonsingular.

We are able to prove the “if” part of this theorem, since nonsingularity implies re-
duction to an equivalent upper triangular form that has the same solutions as the original
system. The unique solution to the system is then found by Back Substitution. The “only
if” part will be proved later.

The revised version of the Gaussian Elimination algorithm, valid for all nonsingular
coefficient matrices, is implemented by the accompanying pseudocode program. The start-
ing point is the augmented matrix M =

(
A | b

)
representing the linear system Ax = b.

After successful termination of the program, the result is an augmented matrix in upper
triangular form M =

(
U | c

)
representing the equivalent linear system U x = c. One then

uses Back Substitution to determine the solution x to the linear system.

3/15/06 55 c© 2006 Peter J. Olver

Gaussian Elimination — Nonsingular Case

start

for j = 1 to n

if mkj = 0 for all k ≥ j, stop; print “A is singular”

if mjj = 0 but mkj 6= 0 for some k > j, switch rows k and j

for i = j + 1 to n

set lij = mij/mjj

add − lij times row j to row i of M

next i

next j

end

Permutation Matrices

As with the first type of elementary row operation, row interchanges can be accom-
plished by multiplication by a second type of elementary matrix, which is found by applying
the row operation to the identity matrix of the appropriate size. For instance, interchang-
ing rows 1 and 2 of the 3× 3 identity matrix produces the elementary interchange matrix

P =

0 1 0
1 0 0
0 0 1

. The result P A of multiplying any 3–rowed matrix A on the left by P

is the same as interchanging the first two rows of A. For instance,

0 1 0
1 0 0
0 0 1

1 2 3
4 5 6
7 8 9

 =

4 5 6
1 2 3
7 8 9

 .

Multiple row interchanges are accomplished by combining such elementary interchange
matrices. Each such combination of row interchanges corresponds to a unique permutation
matrix.

Definition 4.8. A permutation matrix is a matrix obtained from the identity matrix
by any combination of row interchanges.

In particular, applying a row interchange to a permutation matrix produces another
permutation matrix. The following result is easily established.

Lemma 4.9. A matrix P is a permutation matrix if and only if each row of P
contains all 0 entries except for a single 1, and, in addition, each column of P also contains

all 0 entries except for a single 1.

3/15/06 56 c© 2006 Peter J. Olver

In general, if a permutation matrix P has a 1 in position (i, j), then the effect of
multiplication by P is to move the jth row of A into the ith row of the product P A.

Example 4.10. There are six different 3× 3 permutation matrices, namely

1 0 0
0 1 0
0 0 1

 ,

0 1 0
0 0 1
1 0 0

 ,

0 0 1
1 0 0
0 1 0

 ,

0 1 0
1 0 0
0 0 1

 ,

0 0 1
0 1 0
1 0 0

 ,

1 0 0
0 0 1
0 1 0

 .

(4.21)
These have the following effects: if A is a matrix with row vectors r1, r2, r3, then multipli-
cation on the left by each of the six permutation matrices produces, respectively,

r1

r2

r3

 ,

r2

r3

r1

 ,

r3

r1

r2

 ,

r2

r1

r3

 ,

r3

r2

r1

 ,

r1

r3

r2

 .

Thus, the first permutation matrix, which is the identity, does nothing. The fourth, fifth
and sixth represent row interchanges. The second and third are non-elementary permuta-
tions, and can be realized by a pair of successive row interchanges.

An elementary combinatorial argument proves that there are a total of

n ! = n (n− 1) (n− 2) · · · 3 · 2 · 1 (4.22)

different permutation matrices of size n × n. Moreover, the product P = P1 P2 of any
two permutation matrices is also a permutation matrix. An important point is that multi-
plication of permutation matrices is noncommutative — the order in which one permutes
makes a difference. Switching the first and second rows, and then switching the second
and third rows does not have the same effect as first switching the second and third rows
and then switching the first and second rows!

The Permuted LU Factorization

As we now know, any nonsingular matrix A can be reduced to upper triangular form
by elementary row operations of types #1 and #2. The row interchanges merely reorder
the equations. If one performs all of the required row interchanges in advance, then
the elimination algorithm can proceed without requiring any further pivoting. Thus, the
matrix obtained by permuting the rows of A in the prescribed manner is regular. In other
words, if A is a nonsingular matrix, then there is a permutation matrix P such that the
product P A is regular, and hence admits an LU factorization. As a result, we deduce the
general permuted LU factorization

P A = LU, (4.23)

where P is a permutation matrix, L is special lower triangular, and U is upper triangular
with the pivots on the diagonal. For instance, in the preceding example, we permuted the
first and second rows, and hence equation (4.23) has the explicit form

0 1 0
1 0 0
0 0 1

0 2 1
2 6 1
1 1 4

 =

1 0 0
0 1 0
1
2 −1 1

2 6 1
0 2 1
0 0 9

2

 .

3/15/06 57 c© 2006 Peter J. Olver

We have now established the following generalization of Theorem 4.3.

Theorem 4.11. Let A be an n × n matrix. Then the following conditions are

equivalent:

(i) A is nonsingular.

(ii) A has n nonzero pivots.

(iii) A admits a permuted LU factorization: P A = LU .

A practical method to construct a permuted LU factorization of a given matrix A
would proceed as follows. First set up P = L = I as n× n identity matrices. The matrix
P will keep track of the permutations performed during the Gaussian Elimination process,
while the entries of L below the diagonal are gradually replaced by the negatives of the
multiples used in the corresponding row operations of type #1. Each time two rows of A are
interchanged, the same two rows of P will be interchanged. Moreover, any pair of entries
that both lie below the diagonal in these same two rows of L must also be interchanged,
while entries lying on and above its diagonal need to stay in their place. At a successful
conclusion to the procedure, A will have been converted into the upper triangular matrix
U , while L and P will assume their final form. Here is an illustrative example.

Example 4.12. Our goal is to produce a permuted LU factorization of the matrix

A =

1 2 −1 0
2 4 −2 −1
−3 −5 6 1
−1 2 8 −2

.

To begin the procedure, we apply row operations of type #1 to eliminate the entries below
the first pivot. The updated matrices† are

A =

1 2 −1 0
0 0 0 −1
0 1 3 1
0 4 7 −2

, L =

1 0 0 0
2 1 0 0
−3 0 1 0
−1 0 0 1

, P =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

where L keeps track of the row operations, and we initialize P to be the identity matrix.
The (2, 2) entry of the new A is zero, and so we interchange its second and third rows,
leading to

A =

1 2 −1 0
0 1 3 1
0 0 0 −1
0 4 7 −2

, L =

1 0 0 0
−3 1 0 0

2 0 1 0
−1 0 0 1

, P =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

.

We interchanged the same two rows of P , while in L we only interchanged the already
computed entries in its second and third rows that lie in its first column below the diagonal.

† Here, we are adopting computer programming conventions, where updates of a matrix are
all given the same name.

3/15/06 58 c© 2006 Peter J. Olver

We then eliminate the nonzero entry lying below the (2, 2) pivot, leading to

A =

1 2 −1 0
0 1 3 1
0 0 0 −1
0 0 −5 −6

, L =

1 0 0 0
−3 1 0 0

2 0 1 0
−1 4 0 1

, P =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

.

A final row interchange places the matrix in upper triangular form:

U = A =

1 2 −1 0
0 1 3 1
0 0 −5 −6
0 0 0 −1

, L =

1 0 0 0
−3 1 0 0
−1 4 1 0

2 0 0 1

, P =

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

.

Again, we performed the same row interchange on P , while only interchanging the third
and fourth row entries of L that lie below the diagonal. You can verify that

P A =

1 2 −1 0
−3 −5 6 1
−1 2 8 −2

2 4 −2 −1

 =

1 0 0 0
−3 1 0 0
−1 4 1 0

2 0 0 1

1 2 −1 0
0 1 3 1
0 0 −5 −6
0 0 0 −1

 = LU, (4.24)

as promised. Thus, by rearranging the equations in the order first, third, fourth, second,
as prescribed by P , we obtain an equivalent linear system with regular coefficient matrix
P A.

Once the permuted LU factorization is established, the solution to the original system
Ax = b is obtained by applying the same Forward and Back Substitution algorithm
presented above. Explicitly, we first multiply the system Ax = b by the permutation
matrix, leading to

P Ax = P b = b̂, (4.25)

whose right hand side b̂ has been obtained by permuting the entries of b in the same
fashion as the rows of A. We then solve the two triangular systems

L c = b̂ and U x = c (4.26)

by, respectively, Forward and Back Substitution.

Example 4.12. (continued) Suppose we wish to solve the linear system

1 2 −1 0
2 4 −2 −1
−3 −5 6 1
−1 2 8 −2

x
y
z
w

 =

1
−1

3
0

.

In view of the P A = LU factorization established in (4.24), we need only solve the two
auxiliary lower and upper triangular systems (4.26). The lower triangular system is

1 0 0 0
−3 1 0 0
−1 4 1 0

2 0 0 1

a
b
c
d

 =

1
3
0
−1

;

3/15/06 59 c© 2006 Peter J. Olver

whose right hand side was obtained by applying the permutation matrix P to the right
hand side of the original system. Its solution, namely a = 1, b = 6, c = −23, d = −3, is
obtained through Forward Substitution. The resulting upper triangular system is

1 2 −1 0
0 1 3 1
0 0 −5 −6
0 0 0 −1

x
y
z
w

 =

1
6

−23
−3

.

Its solution, w = 3, z = 1, y = 0, x = 2, which is also the solution to the original system,
is easily obtained by Back Substitution.

4.4. Gauss–Jordan Elimination.

The principal algorithm used to compute the inverse of a nonsingular matrix is known
as Gauss–Jordan Elimination, in honor of Gauss and Wilhelm Jordan, a nineteenth century
German engineer. A key fact is that we only need to solve the right inverse equation

AX = I (4.27)

in order to compute X = A−1. The left inverse equation in (3.7), namely XA = I , will
then follow as an automatic consequence. In other words, for square matrices, a right
inverse is automatically a left inverse, and conversely! A proof will appear below.

The reader may well ask, then, why use both left and right inverse conditions in the
original definition? There are several good reasons. First of all, a non-square matrix
may satisfy one of the two conditions — having either a left inverse or a right inverse
— but can never satisfy both. Moreover, even when we restrict our attention to square
matrices, starting with only one of the conditions makes the logical development of the
subject considerably more difficult, and not really worth the extra effort. Once we have
established the basic properties of the inverse of a square matrix, we can then safely discard
the superfluous left inverse condition. Finally, when we generalize the notion of an inverse
to linear operators, then, unlike square matrices, we cannot dispense with either of the
conditions.

Let us write out the individual columns of the right inverse equation (4.27). The j th

column of the n × n identity matrix I is the vector ej that has a single 1 in the jth slot
and 0’s elsewhere, so

e1 =

1
0
0
...
0
0

, e2 =

0
1
0
...
0
0

, . . . en =

0
0
0
...
0
1

. (4.28)

According to (3.6), the jth column of the matrix product AX is equal to Axj , where xj

denotes the jth column of the inverse matrix X. Therefore, the single matrix equation
(4.27) is equivalent to n linear systems

Ax1 = e1, Ax2 = e2, . . . Axn = en, (4.29)

3/15/06 60 c© 2006 Peter J. Olver

all having the same coefficient matrix. As such, to solve them we should form the n
augmented matrices M1 =

(
A | e1

)
, . . . ,Mn =

(
A | en

)
, and then apply our Gaussian

Elimination algorithm to each. But this would be a waste of effort. Since the coefficient
matrix is the same, we will end up performing identical row operations on each augmented
matrix. Clearly, it will be more efficient to combine them into one large augmented matrix
M =

(
A | e1 . . . en

)
=
(
A | I

)
, of size n× (2n), in which the right hand sides e1, . . . , en

of our systems are placed into n different columns, which we then recognize as reassembling
the columns of an n×n identity matrix. We may then simultaneously apply our elementary
row operations to reduce, if possible, the large augmented matrix so that its first n columns
are in upper triangular form.

Example 4.13. For example, to find the inverse of the matrix A =

0 2 1
2 6 1
1 1 4

, we

form the large augmented matrix

0 2 1
2 6 1
1 1 4

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

 .

Applying the same sequence of elementary row operations as in Section 4.3, we first inter-
change the rows

2 6 1
0 2 1
1 1 4

∣∣∣∣∣∣

0 1 0
1 0 0
0 0 1

 ,

and then eliminate the nonzero entries below the first pivot,

2 6 1
0 2 1
0 −2 7

2

∣∣∣∣∣∣

0 1 0
1 0 0
0 − 1

2 1

 .

Next we eliminate the entry below the second pivot:

2 6 1
0 2 1
0 0 9

2

∣∣∣∣∣∣

0 1 0
1 0 0
1 − 1

2 1

 .

At this stage, we have reduced our augmented matrix to the form
(
U | C

)
where U is

upper triangular. This is equivalent to reducing the original n linear systems Axi = ei to
n upper triangular systems U xi = ci. We can therefore perform n back substitutions to
produce the solutions xi, which would form the individual columns of the inverse matrix
X = (x1 . . . xn). In the more common version of the Gauss–Jordan scheme, one instead
continues to employ elementary row operations to fully reduce the augmented matrix. The
goal is to produce an augmented matrix

(
I | X

)
in which the left hand n× n matrix has

become the identity, while the right hand matrix is the desired solution X = A−1. Indeed,(
I | X

)
represents the n trivial linear systems Ix = xi whose solutions x = xi are the

columns of the inverse matrix X.

Now, the identity matrix has 0’s below the diagonal, just like U . It also has 1’s along
the diagonal, whereas U has the pivots (which are all nonzero) along the diagonal. Thus,

3/15/06 61 c© 2006 Peter J. Olver

the next phase in the reduction process is to make all the diagonal entries of U equal to 1.
To proceed, we need to introduce the last, and least, of our linear systems operations.

Linear System Operation #3: Multiply an equation by a nonzero constant.

This operation clearly does not affect the solution, and so yields an equivalent linear
system. The corresponding elementary row operation is:

Elementary Row Operation #3: Multiply a row of the matrix by a nonzero scalar.

Dividing the rows of the upper triangular augmented matrix
(
U | C

)
by the diagonal

pivots of U will produce a matrix of the form
(
V | B

)
where V is special upper triangular ,

meaning it has all 1’s along the diagonal. In our particular example, the result of these
three elementary row operations of Type #3 is

1 3 1
2

0 1 1
2

0 0 1

∣∣∣∣∣∣∣

0 1
2 0

1
2 0 0
2
9 − 1

9
2
9

 ,

where we multiplied the first and second rows by 1
2 and the third row by 2

9 .

We are now over halfway towards our goal. We need only make the entries above
the diagonal of the left hand matrix equal to zero. This can be done by elementary row
operations of Type #1, but now we work backwards. First, we eliminate the nonzero
entries in the third column lying above the (3, 3) entry by subtracting one half the third
row from the second and also from the first:

1 3 0

0 1 0

0 0 1

∣∣∣∣∣∣∣

− 1
9

5
9 − 1

9
7
18

1
18 − 1

9
2
9 − 1

9
2
9

 .

Finally, we subtract 3 times the second row from the first to eliminate the remaining
nonzero off-diagonal entry, thereby completing the Gauss–Jordan procedure:

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣

− 23
18

7
18

2
9

7
18

1
18 − 1

9
2
9 − 1

9
2
9

 .

The left hand matrix is the identity, and therefore the final right hand matrix is our desired
inverse:

A−1 =

− 23

18
7
18

2
9

7
18

1
18 − 1

9
2
9 − 1

9
2
9

 . (4.30)

The reader may wish to verify that the final result does satisfy both inverse conditions
AA−1 = I = A−1A.

We are now able to complete the proofs of the basic results on inverse matrices. First,
we need to determine the elementary matrix corresponding to an elementary row operation

3/15/06 62 c© 2006 Peter J. Olver

of type #3. Again, this is obtained by performing the row operation in question on the
identity matrix. Thus, the elementary matrix that multiplies row i by the nonzero scalar
c is the diagonal matrix having c in the ith diagonal position, and 1’s elsewhere along the
diagonal. The inverse elementary matrix is the diagonal matrix with 1/c in the ith diagonal
position and 1’s elsewhere on the main diagonal; it corresponds to the inverse operation
that divides row i by c. For example, the elementary matrix that multiplies the second

row of a 3–rowed matrix by 5 is E =

1 0 0
0 5 0
0 0 1

, and has inverse E−1 =

1 0 0
0 1

5 0
0 0 1

.

In summary:

Lemma 4.14. Every elementary matrix is nonsingular, and its inverse is also an

elementary matrix of the same type.

The Gauss–Jordan method tells us how to reduce any nonsingular square matrix A
to the identity matrix by a sequence of elementary row operations. Let E1, E2, . . . , EN be
the corresponding elementary matrices. The elimination procedure that reduces A to I
amounts to multiplying A by a succession of elementary matrices:

EN EN−1 · · · E2 E1 A = I . (4.31)

We claim that the product matrix

X = EN EN−1 · · · E2 E1 (4.32)

is the inverse of A. Indeed, formula (4.31) says that XA = I , and so X is a left inverse.
Furthermore, each elementary matrix has an inverse, and so by (3.11), X itself is invertible,
with

X−1 = E−1
1 E−1

2 · · · E−1
N−1 E−1

N . (4.33)

Therefore, multiplying formula (4.31), namely X A = I , on the left by X−1 leads to
A = X−1. Lemma 3.5 implies X = A−1. We have thus proved

Theorem 4.15. A square matrix A has an inverse if and only if it is nonsingular.

Consequently, an n × n matrix will have an inverse if and only if it can be reduced
to upper triangular form, with n nonzero pivots on the diagonal, by a combination of
elementary row operations. Indeed, “invertible” is often used as a synonym for “nonsingu-
lar”. All other matrices are singular and do not have an inverse as defined above. Before
attempting to prove Theorem 4.15, we need to first become familiar with some elementary
properties of matrix inverses.

Finally, equating A = X−1 to the product (4.33), and invoking Lemma 4.14, we have
established the following result.

Proposition 4.16. Every nonsingular matrix A can be written as the product of

elementary matrices.

3/15/06 63 c© 2006 Peter J. Olver

Example 4.17. The 2×2 matrix A =

(
0 −1
1 3

)
is converted into the identity matrix

by first interchanging its rows,

(
1 3
0 −1

)
, then scaling the second row by −1,

(
1 3
0 1

)
,

and, finally, subtracting 3 times the second row from the first to obtain

(
1 0
0 1

)
= I . The

corresponding elementary matrices are

E1 =

(
0 1
1 0

)
, E2 =

(
1 0
0 −1

)
, E3 =

(
1 −3
0 1

)
.

Therefore, by (4.32),

A−1 = E3 E2 E1 =

(
1 −3
0 1

)(
1 0
0 −1

)(
0 1
1 0

)
=

(
3 1
−1 0

)
,

while

A = E−1
1 E−1

2 E−1
3 =

(
0 1
1 0

)(
1 0
0 −1

)(
1 3
0 1

)
=

(
0 −1
1 3

)
.

As an application, let us prove that the inverse of a nonsingular triangular matrix is
also triangular. Specifically:

Proposition 4.18. If L is a lower triangular matrix with all nonzero entries on

the main diagonal, then L is nonsingular and its inverse L−1 is also lower triangular. In

particular, if L is special lower triangular, so is L−1. A similar result holds for upper

triangular matrices.

Proof : It suffices to note that if L has all nonzero diagonal entries, one can reduce
L to the identity by elementary row operations of Types #1 and #3, whose associated
elementary matrices are all lower triangular. Lemma 4.2 implies that the product (4.32)
is then also lower triangular. If L is special, then all the pivots are equal to 1. Thus,
no elementary row operations of Type #3 are required, and so L can be reduced to the
identity matrix by elementary row operations of Type #1 alone. Therefore, its inverse is
a product of special lower triangular matrices, and hence is itself special lower triangular.
A similar argument applies in the upper triangular cases. Q.E.D.

Solving Linear Systems with the Inverse

The primary motivation for introducing the matrix inverse is that it provides a com-
pact formula for the solution to any linear system with an invertible coefficient matrix.

Theorem 4.19. If A is nonsingular, then x = A−1 b is the unique solution to the

linear system Ax = b.

Proof : We merely multiply the system by A−1, which yields x = A−1Ax = A−1b.
Moreover, Ax = AA−1b = b, proving that x = A−1b is indeed the solution. Q.E.D.

3/15/06 64 c© 2006 Peter J. Olver

For example, let us return to the linear system (4.20). Since we computed the inverse
of its coefficient matrix in (4.30), a “direct” way to solve the system is to multiply the
right hand side by the inverse matrix:

x
y
z

 =

− 23

18
7
18

2
9

7
18

1
18 − 1

9
2
9 − 1

9
2
9

2

7

3

 =

5
6
5
6
1
3

 ,

reproducing our earlier solution.

However, while æsthetically appealing, the solution method based on the inverse ma-
trix is hopelessly inefficient as compared to direct Gaussian Elimination, and, despite what
you may have learned, should not be used in practical computations. (A complete justi-
fication of this dictum will be provided in Section 4.5.) On the other hand, the inverse
does play a useful role in theoretical developments, as well as providing insight into the
design of practical algorithms. But the principal message of applied linear algebra is that
LU decomposition and Gaussian Elimination are fundamental; matrix inverses are to be
avoided in all but the most elementary computations.

Remark : The reader may have learned a version of the Gauss–Jordan algorithm for
solving a single linear system that replaces the Back Substitution step by a complete
reduction of the coefficient matrix to the identity. In other words, to solve Ax = b, we
start with the augmented matrix M =

(
A | b

)
and use all three types of elementary

row operations to produce (assuming nonsingularity) the fully reduced form
(

I | d
)
,

representing the trivially soluble, equivalent system x = d, which is the solution to the
original system. However, Back Substitution is more efficient, and remains the method of
choice in practical computations.

The LDV Factorization

The second phase of the Gauss–Jordan process leads to a slightly more detailed version
of the LU factorization. Let D denote the diagonal matrix having the same diagonal entries
as U ; in other words, D contains the pivots on its diagonal and zeros everywhere else. Let
V be the special upper triangular matrix obtained from U by dividing each row by its
pivot, so that V has all 1’s on the diagonal. We already encountered V during the course
of the Gauss–Jordan procedure. It is easily seen that U = DV , which implies the following
result.

Theorem 4.20. A matrix A is regular if and only if it admits a factorization

A = LDV, (4.34)

where L is a special lower triangular matrix, D is a diagonal matrix having the nonzero

pivots on the diagonal, and V is a special upper triangular matrix.

For the matrix appearing in Example 4.4, we have U = DV , where

U =

2 1 1
0 3 0
0 0 −1

 , D =

2 0 0
0 3 0
0 0 −1

 , V =

1 1
2

1
2

0 1 0
0 0 1

 .

3/15/06 65 c© 2006 Peter J. Olver

This leads to the factorization

A =

2 1 1
4 5 2
2 −2 0

 =

1 0 0
2 1 0
1 −1 1

2 0 0
0 3 0
0 0 −1

1 1
2

1
2

0 1 0
0 0 1

 = LDV.

Proposition 4.21. If A = LU is regular, then the factors L and U are uniquely

determined. The same holds for the A = LDV factorization.

Proof : Suppose LU = L̃ Ũ . Since the diagonal entries of all four matrices are non-
zero, Proposition 4.18 implies that they are invertible. Therefore,

L̃−1L = L̃−1LU U−1 = L̃−1L̃ Ũ U−1 = Ũ U−1. (4.35)

The left hand side of the matrix equation (4.35) is the product of two special lower triangu-
lar matrices, and so, by Lemma 4.2, is itself special lower triangular. The right hand side
is the product of two upper triangular matrices, and hence is upper triangular. But the
only way a special lower triangular matrix could equal an upper triangular matrix is if they
both equal the diagonal identity matrix. Therefore, L̃−1L = I = Ũ U−1, and so L̃ = L and
Ũ = U , proving the first result. The LDV version is an immediate consequence. Q.E.D.

As you may have guessed, the more general cases requiring one or more row inter-
changes lead to a permuted LDV factorization in the following form.

Theorem 4.22. A matrix A is nonsingular if and only if there is a permutation

matrix P such that

P A = LDV, (4.36)

where L,D, V are, respectively, special lower triangular, diagonal, and special upper tri-

angular matrices.

Uniqueness does not hold for the more general permuted factorizations (4.23), (4.36),
since there may be several permutation matrices that place a matrix in regular form.
Moreover, unlike regular elimination, the pivots, i.e., the diagonal entries of U , are no
longer uniquely defined, but depend on the particular combination of row interchanges
employed during the course of the computation.

The LDV factorization of a nonsingular matrix takes a particularly simple form if
the matrix also happens to be symmetric. This result will form the foundation of some
significant later developments.

Theorem 4.23. A symmetric matrix A is regular if and only if it can be factored as

A = LDLT , (4.37)

where L is a special lower triangular matrix and D is a diagonal matrix with nonzero

diagonal entries.

3/15/06 66 c© 2006 Peter J. Olver

Proof : We already know, according to Theorem 4.20, that we can factor

A = LDV. (4.38)

We take the transpose of both sides of this equation:

AT = (LDV)T = V T DT LT = V T DLT , (4.39)

since diagonal matrices are automatically symmetric: DT = D. Note that V T is spe-
cial lower triangular, and LT is special upper triangular. Therefore (4.39) is the LDV
factorization of AT .

In particular, if A is symmetric, then

LDV = A = AT = V T DLT .

Uniqueness of the LDV factorization implies that

L = V T and V = LT

(which are two versions of the same equation). Replacing V by LT in (4.38) establishes
the factorization (4.37). Q.E.D.

Remark : If A = LDLT , then A is necessarily symmetric. Indeed,

AT = (LD LT)T = (LT)T DT LT = LD LT = A.

However, not every symmetric matrix has an LDLT factorization. A simple example is

the irregular but nonsingular 2× 2 matrix

(
0 1
1 0

)
.

Example 4.24. The problem is to find the LDLT factorization of the particular

symmetric matrix A =

1 2 1
2 6 1
1 1 4

. This requires performing the usual Gaussian Elim-

ination algorithm. Subtracting twice the first row from the second and also the first row

from the third produces the matrix

1 2 1
0 2 −1
0 −1 3

. We then add one half of the second

row of the latter matrix to its third row, resulting in the upper triangular form

U =

1 2 1
0 2 −1
0 0 5

2

 =

1 0 0
0 2 0
0 0 5

2

1 2 1
0 1 − 1

2
0 0 1

 = DV,

which we further factor by dividing each row of U by its pivot. On the other hand,
the special lower triangular matrix associated with the preceding row operations is L =

1 0 0
2 1 0
1 − 1

2 1

, which, as guaranteed by Theorem 4.23, is the transpose of V = LT .

3/15/06 67 c© 2006 Peter J. Olver

Therefore, the desired A = LU = LDLT factorizations of this particular symmetric
matrix are

1 2 1
2 6 1
1 1 4

=

1 0 0
2 1 0
1 − 1

2 1

1 2 1
0 2 −1
0 0 5

2

=

1 0 0
2 1 0
1 − 1

2 1

1 0 0
0 2 0
0 0 5

2

1 2 1
0 1 − 1

2
0 0 1

 .

Example 4.25. Let us look at a general 2 × 2 symmetric matrix A =

(
a b
b c

)
.

Regularity requires that the first pivot be a 6= 0. A single row operation will place A

in upper triangular form U =

(
a c

0
ac− b2

a

)
. The associated lower triangular matrix is

L =

(
1 0
b
a 1

)
. Thus, A = LU . Finally, D =

(
a 0

0
ac− b2

a

)
is just the diagonal part of

U , and we find U = DLT , so that the LDLT factorization is explicitly given by

(
a b
b c

)
=

(
1 0
b
a 1

) (
a 0

0
ac− b2

a

) (
1

b
a

0 1

)
. (4.40)

4.5. Practical Linear Algebra.

For pedagogical and practical reasons, the examples and exercises we have chosen to
illustrate the algorithms are all based on relatively small matrices. When dealing with
matrices of moderate size, the differences between the various approaches to solving linear
systems (Gauss, Gauss–Jordan, matrix inverse, etc.) are relatively unimportant, particu-
larly if one has a decent computer or even hand calculator to do the tedious parts. However,
real-world applied mathematics deals with much larger linear systems, and the design of
efficient algorithms is a must. For example, numerical solution schemes for ordinary differ-
ential equations will typically lead to matrices with thousands of entries, while numerical
schemes for partial differential equations arising in fluid and solid mechanics, weather pre-
diction, image and video processing, quantum mechanics, molecular dynamics, chemical
processes, etc., will often require dealing with matrices with more than a million entries.
It is not hard for such systems to tax even the most sophisticated supercomputer. Thus, it
is essential that we understand the computational details of competing methods in order
to compare their efficiency, and thereby gain some experience with the issues underlying
the design of high performance numerical algorithms.

The most basic question is: how many arithmetic operations† are required to complete
an algorithm? The number will directly influence the time spent running the algorithm
on a computer. We shall keep track of additions and multiplications separately, since the

† For simplicity, we will only count basic arithmetic operations. But it is worth noting that
other issues, such as the number of I/O operations, may also play a role in estimating the com-
putational complexity of a numerical algorithm.

3/15/06 68 c© 2006 Peter J. Olver

latter typically take longer to process. But we shall not distinguish between addition and
subtraction, nor between multiplication and division, as these typically rely on the same
floating point algorithm. We shall also assume that the matrices and vectors we deal with
are generic, with few, if any, zero entries. Modifications of the basic algorithms for sparse

matrices, meaning those that have lots of zero entries, are an important topic of research,
since these include many of the large matrices that appear in applications to differential
equations. We refer the interested reader to more advanced treatments of numerical linear
algebra, such as [13, 24, 43, 48], for further developments.

First, when multiplying an n× n matrix A and an n× 1 column vector b, each entry
of the product Ab requires n multiplications of the form aij bj and n− 1 additions to sum

the resulting products. Since there are n entries, this means a total of n2 multiplications
and n(n − 1) = n2 − n additions. Thus, for a matrix of size n = 100, one needs about
10, 000 distinct multiplications and a similar number of additions. If n = 1, 000, 000 = 106,
then n2 = 1012, which is phenomenally large, and the total time required to perform the
computation becomes a significant issue.

Let us next look at the (regular) Gaussian Elimination algorithm, referring back to
our pseudocode program for the notational details. First, we count how many arithmetic
operations are based on the jth pivot mjj . For each of the n − j rows lying below it, we
must perform one division to compute the factor lij = mij/mjj used in the elementary
row operation. The entries in the column below the pivot will be set to zero automatically,
and so we need only compute the updated entries lying strictly below and to the right of
the pivot. There are (n− j)2 such entries in the coefficient matrix and an additional n− j
entries in the last column of the augmented matrix. Let us concentrate on the former for
the moment. For each of these, we replace mik by mik − lij mjk, and so must perform one
multiplication and one addition. For the jth pivot, there are a total of (n− j)(n− j + 1)
multiplications — including the initial n − j divisions needed to produce the lij — and

(n− j)2 additions needed to update the coefficient matrix. Therefore, to reduce a regular
n× n matrix to upper triangular form requires a total of

n∑

j =1

(n− j)(n− j + 1) =
n3 − n

3
multiplications and

n∑

j =1

(n− j)2 =
2n3 − 3n2 + n

6
additions.

(4.41)

Thus, when n is large, both involve approximately 1
3 n3 operations.

We should also be keeping track of the number of operations on the right hand side
of the system. No pivots appear there, and so there are

n∑

j =1

(n− j) =
n2 − n

2
(4.42)

multiplications and the same number of additions required to produce the right hand side
in the resulting triangular system U x = c. For large n, this count is considerably smaller
than the coefficient matrix totals (4.41). We note that the Forward Substitution equations

3/15/06 69 c© 2006 Peter J. Olver

(4.17) require precisely the same number of arithmetic operations to solve Lc = b for the
right hand side of the upper triangular system. Indeed, the jth equation

cj = bj −
j−1∑

k=1

ljk ck

requires j − 1 multiplications and the same number of additions, giving a total of
n∑

j =1

j =
n2 − n

2

operations of each type. Therefore, to reduce a linear system to upper triangular form,
it makes no difference in computational efficiency whether one works directly with the
augmented matrix or employs Forward Substitution after the LU factorization of the
coefficient matrix has been established.

The Back Substitution phase of the algorithm can be similarly analyzed. To find the
value of

xj =
1

ujj

cj −

n∑

k=j+1

ujk xk

once we have computed xj+1, . . . , xn, requires n− j +1 multiplications/divisions and n− j
additions. Therefore, the Back Substitution phase of the algorithm requires

n∑

j =1

(n− j + 1) =
n2 + n

2
multiplications, along with

n∑

j =1

(n− j) =
n2 − n

2
additions.

(4.43)

For n large, both of these are approximately equal to 1
2 n2. Comparing the counts, we

conclude that the bulk of the computational effort goes into the reduction of the coefficient
matrix to upper triangular form.

Combining the two counts (4.42–43), we discover that, once we have computed the
A = LU decomposition of the coefficient matrix, the Forward and Back Substitution
process requires n2 multiplications and n2 − n additions to solve a linear system Ax = b.
This is exactly the same as the number of multiplications and additions needed to compute
the product A−1b. Thus, even if we happen to know the inverse of A, it is still just as

efficient to use Forward and Back Substitution to compute the solution!

On the other hand, the computation of A−1 is decidedly more inefficient. There are
two possible strategies. First, we can solve the n linear systems

Ax = ei, i = 1, . . . , n, (4.44)

for the individual columns of A−1. This requires first computing the LU decomposition,
which uses about 1

3 n3 multiplications and a similar number of additions, followed by apply-
ing Forward and Back Substitution to each of the systems, using n·n2 = n3 multiplications
and n(n2 − n) ≈ n3 additions, for a grand total of about 4

3 n3 operations of each type in
order to compute A−1. Gauss–Jordan Elimination fares no better (in fact, slightly worse),

3/15/06 70 c© 2006 Peter J. Olver

also requiring about the same number, 4
3 n3, of each type of arithmetic operation. Both

algorithms can be made more efficient by exploiting the fact that there are lots of zeros
on the right hand sides of the systems (4.44). Designing the algorithm to avoid adding
or subtracting a preordained 0, or multiplying or dividing by a preordained ±1, reduces
the total number of operations required to compute A−1 to exactly n3 multiplications
and n(n − 1)2 ≈ n3 additions. And don’t forget we still need to multiply A−1b to solve
the original system. As a result, solving a linear system with the inverse matrix requires
approximately three times as many arithmetic operations, and so would take three times
as long to complete, as the more elementary Gaussian Elimination and Back Substitu-
tion algorithm. This justifies our earlier contention that matrix inversion is inefficient,
and, except in very special situations, should never be used for solving linear systems in
practice.

Tridiagonal Matrices

Of course, in special cases, the actual arithmetic operation count might be consider-
ably reduced, particularly if A is a sparse matrix with many zero entries. A number of
specialized techniques have been designed to handle sparse linear systems. A particularly
important class are the tridiagonal matrices

A =

q1 r1

p1 q2 r2

p2 q3 r3

. . .
. . .

. . .

pn−2 qn−1 rn−1

pn−1 qn

(4.45)

with all entries zero except for those on the main diagonal, namely aii = qi, the subdi-

agonal , meaning the n − 1 entries ai+1,i = pi immediately below the main diagonal, and
the superdiagonal , meaning the entries ai,i+1 = ri immediately above the main diagonal.
(Blank entries indicate a 0.) Such matrices arise in the numerical solution of ordinary dif-
ferential equations and the spline fitting of curves for interpolation and computer graphics.
If A = LU is regular, it turns out that the factors are lower and upper bidiagonal matrices,
of the form

L =

1
l1 1

l2 1
. . .

. . .

ln−2 1
ln−1 1

, U =

d1 u1

d2 u2

d3 u3

. . .
. . .

dn−1 un−1

dn

. (4.46)

3/15/06 71 c© 2006 Peter J. Olver

Multiplying out LU and equating the result to A leads to the equations

d1 = q1, u1 = r1, l1 d1 = p1,

l1 u1 + d2 = q2, u2 = r2, l2 d2 = p2,

...
...

...

lj−1 uj−1 + dj = qj , uj = rj , lj dj = pj ,

...
...

...

ln−2 un−2 + dn−1 = qn−1, un−1 = rn−1, ln−1 dn−1 = pn−1,

ln−1 un−1 + dn = qn.

(4.47)

These elementary algebraic equations can be successively solved for the entries of L and U
in the following order: d1, u1, l1, d2, u2, l2, d3, u3 The original matrix A is regular pro-
vided none of the diagonal entries d1, d2, . . . are zero, which allows the recursive procedure
to successfully proceed to termination.

Once the LU factors are in place, we can apply Forward and Back Substitution to
solve the tridiagonal linear system Ax = b. We first solve the lower triangular system
Lc = b by Forward Substitution, which leads to the recursive equations

c1 = b1, c2 = b2 − l1 c1, . . . cn = bn − ln−1 cn−1. (4.48)

We then solve the upper triangular system U x = c by Back Substitution, again recursively:

xn =
cn

dn

, xn−1 =
cn−1 − un−1 xn

dn−1

, . . . x1 =
c1 − u1 x2

d1

. (4.49)

As you can check, there are a total of 5n − 4 multiplications/divisions and 3n − 3 addi-
tions/subtractions required to solve a general tridiagonal system of n linear equations —
a striking improvement over the general case.

Example 4.26. Consider the n× n tridiagonal matrix

A =

4 1
1 4 1

1 4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4

in which the diagonal entries are all qi = 4, while the entries immediately above and below
the main diagonal are all pi = ri = 1. According to (4.47), the tridiagonal factorization
(4.46) has u1 = u2 = . . . = un−1 = 1, while

d1 = 4, lj = 1/dj , dj+1 = 4− lj , j = 1, 2, . . . , n− 1.

The computed values are

3/15/06 72 c© 2006 Peter J. Olver

j 1 2 3 4 5 6 7

dj 4.0 3.75 3.733333 3.732143 3.732057 3.732051 3.732051

lj .25 .266666 .267857 .267942 .267948 .267949 .267949

These converge rapidly to

dj −→ 2 +
√

3 = 3.732051 . . . , lj −→ 2−
√

3 = .267949 . . . ,

which makes the factorization for large n almost trivial. The numbers 2±
√

3 are the roots
of the quadratic equation x2− 4x + 1 = 0, and are characterized as the fixed points of the
nonlinear iterative system dj+1 = 4− 1/dj .

Pivoting Strategies

Let us now investigate the practical side of pivoting. As we know, in the irregular
situations when a zero shows up in a diagonal pivot position, a row interchange is required
to proceed with the elimination algorithm. But even when a nonzero pivot element is in
place, there may be good numerical reasons for exchanging rows in order to install a more
desirable element in the pivot position. Here is a simple example:

.01x + 1.6 y = 32.1, x + .6 y = 22. (4.50)

The exact solution to the system is easily found:

x = 10, y = 20.

Suppose we are working with a very primitive calculator that only retains 3 digits of
accuracy. (Of course, this is not a very realistic situation, but the example could be
suitably modified to produce similar difficulties no matter how many digits of accuracy
our computer retains.) The augmented matrix is

(
.01 1.6
1 .6

∣∣∣∣
32.1

22

)
.

Choosing the (1, 1) entry as our pivot, and subtracting 100 times the first row from the
second produces the upper triangular form

(
.01 1.6
0 −159.4

∣∣∣∣
32.1

−3188

)
.

Since our calculator has only three–place accuracy, it will round the entries in the second
row, producing the augmented coefficient matrix

(
.01 1.6
0 −159.0

∣∣∣∣
32.1

−3190

)
.

The solution by Back Substitution gives

y = 3190/159 = 20.0628 . . . ' 20.1, and then

x = 100 (32.1− 1.6 y) = 100 (32.1− 32.16) ' 100 (32.1− 32.2) = −10.

3/15/06 73 c© 2006 Peter J. Olver

Gaussian Elimination With Partial Pivoting

start

for i = 1 to n

set ρ(i) = i

next i

for j = 1 to n

if mρ(i),j = 0 for all i ≥ j, stop; print “A is singular”

choose i > j such that mρ(i),j is maximal

interchange ρ(i)←→ ρ(j)

for i = j + 1 to n

set lρ(i)j = mρ(i)j/mρ(j)j

for k = j + 1 to n + 1

set mρ(i)k = mρ(i)k − lρ(i)jmρ(j)k

next k

next i

next j

end

The relatively small error in y has produced a very large error in x — not even its sign is
correct!

The problem is that the first pivot, .01, is much smaller than the other element, 1,
that appears in the column below it. Interchanging the two rows before performing the row
operation would resolve the difficulty — even with such an inaccurate calculator! After
the interchange, we have (

1 .6
.01 1.6

∣∣∣∣
22

32.1

)
,

which results in the rounded-off upper triangular form
(

1 .6
0 1.594

∣∣∣∣
22
31.88

)
'

(
1 .6
0 1.59

∣∣∣∣
22
31.9

)
.

The solution by Back Substitution now gives a respectable answer:

y = 31.9/1.59 = 20.0628 . . . ' 20.1, x = 22− .6 y = 22− 12.06 ' 22− 12.1 = 9.9.

The general strategy, known as Partial Pivoting , says that at each stage, we should
use the largest (in absolute value) legitimate (i.e., in the pivot column on or below the
diagonal) element as the pivot, even if the diagonal element is nonzero. Partial pivoting
can help suppress the undesirable effects of round-off errors during the computation.

3/15/06 74 c© 2006 Peter J. Olver

In a computer implementation of pivoting, there is no need to waste processor time
physically exchanging the row entries in memory. Rather, one introduces a separate array
of pointers that serve to indicate which original row is currently in which permuted position.
More concretely, one initializes n row pointers ρ(1) = 1, . . . , ρ(n) = n. Interchanging
row i and row j of the coefficient or augmented matrix is then accomplished by merely
interchanging ρ(i) and ρ(j). Thus, to access a matrix element that is currently in row i of
the augmented matrix, one merely retrieves the element that is in row ρ(i) in the computer’s
memory. An explicit implementation of this strategy is provided in the accompanying
pseudocode program.

Partial pivoting will solve most problems, although there can still be difficulties. For
instance, it does not accurately solve the system

10x + 1600 y = 3210, x + .6 y = 22,

obtained by multiplying the first equation in (4.50) by 1000. The tip-off is that, while
the entries in the column containing the pivot are smaller, those in its row are much
larger. The solution to this difficulty is Full Pivoting , in which one also performs column
interchanges — preferably with a column pointer — to move the largest legitimate element
into the pivot position. In practice, a column interchange amounts to reordering the
variables in the system, which, as long as one keeps proper track of the order, also doesn’t
change the solutions. Thus, switching the order of x, y leads to the augmented matrix(

1600 10
.6 1

∣∣∣∣
3210

22

)
in which the first column now refers to y and the second to x. Now

Gaussian Elimination will produce a reasonably accurate solution to the system.

Finally, there are some matrices that are hard to handle even with sophisticated
pivoting strategies. Such ill-conditioned matrices are typically characterized by being
“almost” singular. A famous example of an ill-conditioned matrix is the n × n Hilbert

matrix

Hn =

1
1
2

1
3

1
4

. . .
1
n

1
2

1
3

1
4

1
5

. . .
1

n + 1
1
3

1
4

1
5

1
6

. . .
1

n + 2
1
4

1
5

1
6

1
7

. . .
1

n + 3
...

...
...

...
. . .

...

1
n

1
n + 1

1
n + 2

1
n + 3

. . .
1

2n− 1

. (4.51)

It can be shown that Hn is nonsingular for all n. However, the solution of a linear system
whose coefficient matrix is a Hilbert matrix Hn, even for moderately large n, is a very
challenging problem, even using high precision computer arithmetic. This is because the
larger n is, the closer Hn is, in a sense, to being singular.

The reader is urged to try the following computer experiment. Fix a moderately large
value of n, say 20. Choose a column vector x with n entries chosen at random. Compute

3/15/06 75 c© 2006 Peter J. Olver

b = Hn x directly. Then try to solve the system Hn x = b by Gaussian Elimination, and
compare the result with the original vector x. If you obtain an accurate solution with
n = 20, try n = 50 or 100. This will give you a good indicator of the degree of arithmetic
precision used by your computer hardware, and the accuracy of the numerical solution
algorithm(s) in your software.

3/15/06 76 c© 2006 Peter J. Olver

AIMS Lecture Notes 2006

Peter J. Olver

5. Inner Products and Norms

The norm of a vector is a measure of its size. Besides the familiar Euclidean norm
based on the dot product, there are a number of other important norms that are used in
numerical analysis. In this section, we review the basic properties of inner products and
norms.

5.1. Inner Products.

Some, but not all, norms are based on inner products. The most basic example is the
familiar dot product

〈v ,w 〉 = v · w = v
1
w

1
+ v

2
w

2
+ · · · + vn wn =

n
∑

i=1

vi wi, (5.1)

between (column) vectors v = (v
1
, v

2
, . . . , vn)

T
, w = (w

1
, w

2
, . . . , wn)

T
, lying in the

Euclidean space R
n. A key observation is that the dot product (5.1) is equal to the matrix

product

v · w = vT w = (v
1

v
2

. . . vn)

w
1

w
2

...
wn

(5.2)

between the row vector vT and the column vector w. The key fact is that the dot product
of a vector with itself,

v · v = v2

1
+ v2

2
+ · · · + v2

n,

is the sum of the squares of its entries, and hence, by the classical Pythagorean Theorem,
equals the square of its length; see Figure 5.1. Consequently, the Euclidean norm or length

of a vector is found by taking the square root:

‖v ‖ =
√

v · v =
√

v2
1

+ v2
2

+ · · · + v2
n . (5.3)

Note that every nonzero vector v 6= 0 has positive Euclidean norm, ‖v ‖ > 0, while only
the zero vector has zero norm: ‖v ‖ = 0 if and only if v = 0. The elementary properties
of dot product and Euclidean norm serve to inspire the abstract definition of more general
inner products.

3/15/06 77 c© 2006 Peter J. Olver

v
1

v
2

‖v ‖

v
1

v
2

v
3

‖v ‖

Figure 5.1. The Euclidean Norm in R
2 and R

3.

Definition 5.1. An inner product on the vector space R
n is a pairing that takes two

vectors v,w ∈ R
n and produces a real number 〈v ,w 〉 ∈ R. The inner product is required

to satisfy the following three axioms for all u,v,w ∈ V , and scalars c, d ∈ R.

(i) Bilinearity :
〈 cu + dv ,w 〉 = c 〈u ,w 〉 + d 〈v ,w 〉,
〈u , cv + dw 〉 = c 〈u ,v 〉 + d 〈u ,w 〉. (5.4)

(ii) Symmetry :
〈v ,w 〉 = 〈w ,v 〉. (5.5)

(iii) Positivity :
〈v ,v 〉 > 0 whenever v 6= 0, while 〈0 ,0 〉 = 0. (5.6)

Given an inner product, the associated norm of a vector v ∈ V is defined as the
positive square root of the inner product of the vector with itself:

‖v ‖ =
√

〈v ,v 〉 . (5.7)

The positivity axiom implies that ‖v ‖ ≥ 0 is real and non-negative, and equals 0 if and
only if v = 0 is the zero vector.

Example 5.2. While certainly the most common inner product on R
2, the dot

product
v · w = v

1
w

1
+ v

2
w

2

is by no means the only possibility. A simple example is provided by the weighted inner

product

〈v ,w 〉 = 2v
1
w

1
+ 5v

2
w

2
, v =

(

v
1

v
2

)

, w =

(

w
1

w
2

)

. (5.8)

Let us verify that this formula does indeed define an inner product. The symmetry axiom
(5.5) is immediate. Moreover,

〈 cu + dv ,w 〉 = 2(cu
1

+ dv
1
)w

1
+ 5(cu

2
+ dv

2
)w

2

= c(2u
1
w

1
+ 5u

2
w

2
) + d(2v

1
w

1
+ 5v

2
w

2
) = c 〈u ,w 〉 + d 〈v ,w 〉,

3/15/06 78 c© 2006 Peter J. Olver

which verifies the first bilinearity condition; the second follows by a very similar computa-
tion. Moreover, 〈0 ,0 〉 = 0, while

〈v ,v 〉 = 2v2

1
+ 5v2

2
> 0 whenever v 6= 0,

since at least one of the summands is strictly positive. This establishes (5.8) as a legitimate

inner product on R
2. The associated weighted norm ‖v ‖ =

√

2v2

1
+ 5v2

2
defines an

alternative, “non-Pythagorean” notion of length of vectors and distance between points in
the plane.

A less evident example of an inner product on R
2 is provided by the expression

〈v ,w 〉 = v
1
w

1
− v

1
w

2
− v

2
w

1
+ 4v

2
w

2
. (5.9)

Bilinearity is verified in the same manner as before, and symmetry is immediate. Positivity
is ensured by noticing that

〈v ,v 〉 = v2

1
− 2v

1
v
2

+ 4v2

2
= (v

1
− v

2
)2 + 3v2

2
≥ 0

is always non-negative, and, moreover, is equal to zero if and only if v
1
− v

2
= 0, v

2
= 0,

i.e., only when v = 0. We conclude that (5.9) defines yet another inner product on R
2,

with associated norm

‖v ‖ =
√

〈v ,v 〉 =
√

v2

1
− 2v

1
v
2

+ 4v2

2
.

The second example (5.8) is a particular case of a general class of inner products.

Example 5.3. Let c
1
, . . . , cn > 0 be a set of positive numbers. The corresponding

weighted inner product and weighted norm on R
n are defined by

〈v ,w 〉 =

n
∑

i=1

ci vi wi, ‖v ‖ =
√

〈v ,v 〉 =

√

√

√

√

n
∑

i=1

ci v
2

i . (5.10)

The numbers ci are the weights. Observe that the larger the weight ci, the more the ith

coordinate of v contributes to the norm. We can rewrite the weighted inner product in
the useful vector form

〈v ,w 〉 = vT C w, where C =

c
1

0 0 . . . 0
0 c

2
0 . . . 0

0 0 c
3

. . . 0
...

...
...

. . .
...

0 0 0 . . . cn

(5.11)

is the diagonal weight matrix . Weighted norms are particularly relevant in statistics and
data fitting, [12], where one wants to emphasize certain quantities and de-emphasize oth-
ers; this is done by assigning appropriate weights to the different components of the data
vector v.

3/15/06 79 c© 2006 Peter J. Olver

θ
v

w

Figure 5.2. Angle Between Two Vectors.

5.2. Inequalities.

There are two absolutely fundamental inequalities that are valid for any inner product
on any vector space. The first is inspired by the geometric interpretation of the dot product
on Euclidean space in terms of the angle between vectors. It is named after two of the
founders of modern analysis, Augustin Cauchy and Herman Schwarz, who established it in
the case of the L2 inner product on function space†. The more familiar triangle inequality,
that the length of any side of a triangle is bounded by the sum of the lengths of the other
two sides is, in fact, an immediate consequence of the Cauchy–Schwarz inequality, and
hence also valid for any norm based on an inner product.

The Cauchy–Schwarz Inequality

In Euclidean geometry, the dot product between two vectors can be geometrically
characterized by the equation

v · w = ‖v ‖ ‖w ‖ cos θ, (5.12)

where θ measures the angle between the vectors v and w, as drawn in Figure 5.2. Since

| cos θ | ≤ 1,

the absolute value of the dot product is bounded by the product of the lengths of the
vectors:

|v · w | ≤ ‖v ‖ ‖w ‖.
This is the simplest form of the general Cauchy–Schwarz inequality . We present a simple,
algebraic proof that does not rely on the geometrical notions of length and angle and thus
demonstrates its universal validity for any inner product.

Theorem 5.4. Every inner product satisfies the Cauchy–Schwarz inequality

| 〈v ,w 〉 | ≤ ‖v ‖ ‖w ‖, for all v,w ∈ V. (5.13)

Here, ‖v ‖ is the associated norm, while | · | denotes absolute value of real numbers. Equal-

ity holds if and only if v and w are parallel vectors.

† Russians also give credit for its discovery to their compatriot Viktor Bunyakovskii, and,
indeed, some authors append his name to the inequality.

3/15/06 80 c© 2006 Peter J. Olver

Proof : The case when w = 0 is trivial, since both sides of (5.13) are equal to 0. Thus,
we may suppose w 6= 0. Let t ∈ R be an arbitrary scalar. Using the three inner product
axioms, we have

0 ≤ ‖v + tw ‖2 = 〈v + tw ,v + tw 〉 = ‖v ‖2 + 2 t 〈v ,w 〉 + t2 ‖w ‖2, (5.14)

with equality holding if and only if v = − tw — which requires v and w to be parallel
vectors. We fix v and w, and consider the right hand side of (5.14) as a quadratic function,

0 ≤ p(t) = at2 + 2bt + c, where a = ‖w ‖2, b = 〈v ,w 〉, c = ‖v ‖2,

of the scalar variable t. To get the maximum mileage out of the fact that p(t) ≥ 0, let us
look at where it assumes its minimum, which occurs when its derivative is zero:

p′(t) = 2at + 2b = 0, and so t = − b

a
= − 〈v ,w 〉

‖w ‖2
.

Substituting this particular value of t into (5.14), we find

0 ≤ ‖v ‖2 − 2
〈v ,w 〉2
‖w ‖2

+
〈v ,w 〉2
‖w ‖2

= ‖v ‖2 − 〈v ,w 〉2
‖w ‖2

.

Rearranging this last inequality, we conclude that

〈v ,w 〉2
‖w ‖2

≤ ‖v ‖2, or 〈v ,w 〉2 ≤ ‖v ‖2 ‖w ‖2.

Also, as noted above, equality holds if and only if v and w are parallel. Taking the
(positive) square root of both sides of the final inequality completes the proof of the
Cauchy–Schwarz inequality (5.13). Q.E.D.

Given any inner product, we can use the quotient

cos θ =
〈v ,w 〉

‖v ‖ ‖w ‖ (5.15)

to define the “angle” between the vector space elements v,w ∈ V . The Cauchy–Schwarz
inequality tells us that the ratio lies between −1 and +1, and hence the angle θ is well
defined, and, in fact, unique if we restrict it to lie in the range 0 ≤ θ ≤ π.

For example, the vectors v = (1, 0, 1)
T
, w = (0, 1, 1)

T
have dot product v · w = 1

and norms ‖v ‖ = ‖w ‖ =
√

2. Hence the Euclidean angle between them is given by

cos θ =
1√

2 ·
√

2
=

1

2
, and so θ = 1

3
π = 1.0472

On the other hand, if we adopt the weighted inner product 〈v ,w 〉 = v
1
w

1
+ 2v

2
w

2
+

3v
3
w

3
, then v · w = 3, ‖v ‖ = 2, ‖w ‖ =

√
5, and hence their “weighted” angle becomes

cos θ =
3

2
√

5
= .67082 . . . , with θ = .835482

3/15/06 81 c© 2006 Peter J. Olver

v + w

v

w

Figure 5.3. Triangle Inequality.

Thus, the measurement of angle (and length) is dependent upon the choice of an underlying
inner product.

In Euclidean geometry, perpendicular vectors meet at a right angle, θ = 1

2
π or 3

2
π,

with cos θ = 0. The angle formula (5.12) implies that the vectors v,w are perpendicular if
and only if their dot product vanishes: v ·w = 0. Perpendicularity is of interest in general
inner product spaces, but, for historical reasons, has been given a more suggestive name.

Definition 5.5. Two elements v,w ∈ V of an inner product space V are called
orthogonal if their inner product vanishes: 〈v ,w 〉 = 0.

In particular, the zero element is orthogonal to everything: 〈0 ,v 〉 = 0 for all v ∈ V .
Orthogonality is a remarkably powerful tool in all applications of linear algebra, and often
serves to dramatically simplify many computations.

The Triangle Inequality

The familiar triangle inequality states that the length of one side of a triangle is at
most equal to the sum of the lengths of the other two sides. Referring to Figure 5.3, if
the first two sides are represented by vectors v and w, then the third corresponds to their
sum v + w. The triangle inequality turns out to be an elementary consequence of the
Cauchy–Schwarz inequality, and hence is valid in any inner product space.

Theorem 5.6. The norm associated with an inner product satisfies the triangle
inequality

‖v + w ‖ ≤ ‖v ‖ + ‖w ‖ for all v,w ∈ V. (5.16)

Equality holds if and only if v and w are parallel vectors.

Proof : We compute

‖v + w ‖2 = 〈v + w ,v + w 〉 = ‖v ‖2 + 2 〈v ,w 〉 + ‖w ‖2

≤ ‖v ‖2 + 2 | 〈v ,w 〉 | + ‖w ‖2 ≤ ‖v ‖2 + 2 ‖v ‖ ‖w ‖ + ‖w ‖2

=
(

‖v ‖ + ‖w ‖
)2

,

where the middle inequality follows from Cauchy–Schwarz. Taking square roots of both
sides and using positivity completes the proof. Q.E.D.

3/15/06 82 c© 2006 Peter J. Olver

Example 5.7. The vectors v =

1
2

−1

 and w =

2
0
3

 sum to v + w =

3
2
2

.

Their Euclidean norms are ‖v ‖ =
√

6 and ‖w ‖ =
√

13, while ‖v + w ‖ =
√

17. The

triangle inequality (5.16) in this case says
√

17 ≤
√

6 +
√

13, which is valid.

5.3. Norms.

Every inner product gives rise to a norm that can be used to measure the magnitude
or length of the elements of the underlying vector space. However, not every norm that is
used in analysis and applications arises from an inner product. To define a general norm,
we will extract those properties that do not directly rely on the inner product structure.

Definition 5.8. A norm on the vector space R
n assigns a real number ‖v ‖ to each

vector v ∈ V , subject to the following axioms for every v,w ∈ V , and c ∈ R.

(i) Positivity : ‖v ‖ ≥ 0, with ‖v ‖ = 0 if and only if v = 0.

(ii) Homogeneity : ‖ cv ‖ = | c | ‖v ‖.
(iii) Triangle inequality : ‖v + w ‖ ≤ ‖v ‖ + ‖w ‖.

As we now know, every inner product gives rise to a norm. Indeed, positivity of the
norm is one of the inner product axioms. The homogeneity property follows since

‖ cv ‖ =
√

〈 cv , cv 〉 =
√

c2 〈v ,v 〉 = | c |
√

〈v ,v 〉 = | c | ‖v ‖.

Finally, the triangle inequality for an inner product norm was established in Theorem 5.6.
Let us introduce some of the principal examples of norms that do not come from inner
products.

The 1–norm of a vector v = (v
1
, v

2
, . . . , vn)

T ∈ R
n is defined as the sum of the

absolute values of its entries:

‖v ‖
1

= | v
1
| + | v

2
| + · · · + | vn |. (5.17)

The max or ∞–norm is equal to its maximal entry (in absolute value):

‖v ‖∞ = max { | v
1
|, | v

2
|, . . . , | vn | }. (5.18)

Verification of the positivity and homogeneity properties for these two norms is straight-
forward; the triangle inequality is a direct consequence of the elementary inequality

| a + b | ≤ | a | + | b |, a, b ∈ R,

for absolute values.

The Euclidean norm, 1–norm, and ∞–norm on R
n are just three representatives of

the general p–norm

‖v ‖p =
p

√

√

√

√

n
∑

i=1

| vi |p . (5.19)

3/15/06 83 c© 2006 Peter J. Olver

‖v − w ‖

v

w

Figure 5.4. Distance Between Vectors.

This quantity defines a norm for any 1 ≤ p < ∞. The ∞–norm is a limiting case of (5.19)
as p → ∞. Note that the Euclidean norm (5.3) is the 2–norm, and is often designated
as such; it is the only p–norm which comes from an inner product. The positivity and
homogeneity properties of the p–norm are not hard to establish. The triangle inequality,
however, is not trivial; in detail, it reads

p

√

√

√

√

n
∑

i=1

| vi + wi |p ≤ p

√

√

√

√

n
∑

i=1

| vi |p +
p

√

√

√

√

n
∑

i=1

|wi |p , (5.20)

and is known as Minkowski’s inequality . A complete proof can be found in [30].

Every norm defines a distance between vector space elements, namely

d(v,w) = ‖v − w ‖. (5.21)

For the standard dot product norm, we recover the usual notion of distance between points
in Euclidean space. Other types of norms produce alternative (and sometimes quite useful)
notions of distance that are, nevertheless, subject to all the familiar properties:

(a) Symmetry : d(v,w) = d(w,v);

(b) Positivity : d(v,w) = 0 if and only if v = w;

(c) Triangle Inequality : d(v,w) ≤ d(v, z) + d(z,w).

Equivalence of Norms

While there are many different types of norms on R
n, in a certain sense, they are all

more or less equivalent†. “Equivalence” does not mean that they assume the same value,
but rather that they are always close to one another, and so, for many analytical purposes,
may be used interchangeably. As a consequence, we may be able to simplify the analysis
of a problem by choosing a suitably adapted norm.

† This statement remains valid in any finite-dimensional vector space, but is not correct in
infinite-dimensional function spaces.

3/15/06 84 c© 2006 Peter J. Olver

Theorem 5.9. Let ‖ · ‖
1

and ‖ · ‖
2

be any two norms on R
n. Then there exist

positive constants c?, C? > 0 such that

c? ‖v ‖
1
≤ ‖v ‖

2
≤ C? ‖v ‖

1
for every v ∈ R

n. (5.22)

Proof : We just sketch the basic idea, leaving the details to a more rigorous real anal-
ysis course, cf. [11; §7.6]. We begin by noting that a norm defines a continuous real-valued
function f(v) = ‖v ‖ on R

n. (Continuity is, in fact, a consequence of the triangle inequal-
ity.) Let S

1
=
{

‖u ‖
1

= 1
}

denote the unit sphere of the first norm. Any continuous
function defined on a compact set achieves both a maximum and a minimum value. Thus,
restricting the second norm function to the unit sphere S

1
of the first norm, we can set

c? = min { ‖u ‖
2
| u ∈ S

1
} , C? = max { ‖u ‖

2
| u ∈ S

1
} . (5.23)

Moreover, 0 < c? ≤ C? < ∞, with equality holding if and only if the norms are the same.
The minimum and maximum (5.23) will serve as the constants in the desired inequalities
(5.22). Indeed, by definition,

c? ≤ ‖u ‖
2
≤ C? when ‖u ‖

1
= 1, (5.24)

which proves that (5.22) is valid for all unit vectors v = u ∈ S
1
. To prove the inequalities

in general, assume v 6= 0. (The case v = 0 is trivial.) The homogeneity property of
the norm implies that u = v/‖v ‖

1
∈ S

1
is a unit vector in the first norm: ‖u ‖

1
=

‖v ‖/‖v ‖
1

= 1. Moreover, ‖u ‖
2

= ‖v ‖
2
/‖v ‖

1
. Substituting into (5.24) and clearing

denominators completes the proof of (5.22). Q.E.D.

Example 5.10. For example, consider the Euclidean norm ‖ · ‖
2

and the max norm
‖ · ‖∞ on R

n. The bounding constants are found by minimizing and maximizing ‖u ‖∞ =
max{ |u

1
|, . . . , |un | } over all unit vectors ‖u ‖

2
= 1 on the (round) unit sphere. The

maximal value is achieved at the poles ± ek, with ‖± ek ‖∞ = C? = 1 The minimal value

is attained at the points
(

± 1√
n

, . . . ,± 1√
n

)

, whereby c? = 1√
n

. Therefore,

1√
n
‖v ‖

2
≤ ‖v ‖∞ ≤ ‖v ‖

2
. (5.25)

We can interpret these inequalities as follows. Suppose v is a vector lying on the unit
sphere in the Euclidean norm, so ‖v ‖

2
= 1. Then (5.25) tells us that its ∞ norm is

bounded from above and below by 1√
n
≤ ‖v ‖∞ ≤ 1. Therefore, the Euclidean unit sphere

sits inside the ∞ norm unit sphere and outside the ∞ norm sphere of radius 1√
n

.

3/15/06 85 c© 2006 Peter J. Olver

AIMS Lecture Notes 2006

Peter J. Olver

6. Eigenvalues and Singular Values

In this section, we collect together the basic facts about eigenvalues and eigenvectors.
From a geometrical viewpoint, the eigenvectors indicate the directions of pure stretch
and the eigenvalues the extent of stretching. Most matrices are complete, meaning that
their (complex) eigenvectors form a basis of the underlying vector space. A particularly
important class are the symmetric matrices, whose eigenvectors form an orthogonal basis
of R

n. A non-square matrix A does not have eigenvalues. In their place, one uses the
square roots of the eigenvalues of the associated square Gram matrix K = AT A, which are
called singular values of the original matrix. The numerical computation of eigenvalues
and eigenvectors is a challenging issue, and must be be deferred until later.

6.1. Eigenvalues and Eigenvectors.

We inaugurate our discussion of eigenvalues and eigenvectors with the basic definition.

Definition 6.1. Let A be an n × n matrix. A scalar λ is called an eigenvalue of A
if there is a non-zero vector v 6= 0, called an eigenvector , such that

Av = λv. (6.1)

In other words, the matrix A stretches the eigenvector v by an amount specified by
the eigenvalue λ.

Remark : The odd-looking terms “eigenvalue” and “eigenvector” are hybrid German–
English words. In the original German, they are Eigenwert and Eigenvektor , which can
be fully translated as “proper value” and “proper vector”. For some reason, the half-
translated terms have acquired a certain charm, and are now standard. The alternative
English terms characteristic value and characteristic vector can be found in some (mostly
older) texts. Oddly, the term characteristic equation, to be defined below, is still used.

The requirement that the eigenvector v be nonzero is important, since v = 0 is a
trivial solution to the eigenvalue equation (6.1) for any scalar λ. Moreover, as far as
solving linear ordinary differential equations goes, the zero vector v = 0 gives u(t) ≡ 0,
which is certainly a solution, but one that we already knew.

The eigenvalue equation (6.1) is a system of linear equations for the entries of the
eigenvector v — provided that the eigenvalue λ is specified in advance — but is “mildly”

3/15/06 86 c© 2006 Peter J. Olver

nonlinear as a combined system for λ and v. Gaussian Elimination per se will not solve
the problem, and we are in need of a new idea. Let us begin by rewriting the equation in
the form

(A − λ I)v = 0, (6.2)

where I is the identity matrix of the correct size†. Now, for given λ, equation (6.2) is a
homogeneous linear system for v, and always has the trivial zero solution v = 0. But we
are specifically seeking a nonzero solution! A homogeneous linear system has a nonzero
solution v 6= 0 if and only if its coefficient matrix, which in this case is A−λ I , is singular.
This observation is the key to resolving the eigenvector equation.

Theorem 6.2. A scalar λ is an eigenvalue of the n × n matrix A if and only if

the matrix A − λ I is singular, i.e., of rank < n. The corresponding eigenvectors are the

nonzero solutions to the eigenvalue equation (A − λ I)v = 0.

Proposition 6.3. A scalar λ is an eigenvalue of the matrix A if and only if λ is a

solution to the characteristic equation

det(A − λ I) = 0. (6.3)

In practice, when finding eigenvalues and eigenvectors by hand, one first solves the
characteristic equation (6.3). Then, for each eigenvalue λ one uses standard linear algebra
methods, i.e., Gaussian Elimination, to solve the corresponding linear system (6.2) for the
eigenvector v.

Example 6.4. Consider the 2 × 2 matrix

A =

(
3 1
1 3

)
.

We compute the determinant in the characteristic equation using formula (3.8):

det(A − λ I) = det

(
3 − λ 1

1 3 − λ

)
= (3 − λ)2 − 1 = λ2 − 6λ + 8.

Thus, the characteristic equation is a quadratic polynomial equation, and can be solved
by factorization:

λ2 − 6λ + 8 = (λ − 4) (λ − 2) = 0.

We conclude that A has two eigenvalues: λ
1

= 4 and λ
2

= 2.

For each eigenvalue, the corresponding eigenvectors are found by solving the associated
homogeneous linear system (6.2). For the first eigenvalue, the eigenvector equation is

(A − 4 I)v =

(
−1 1

1 −1

)(
x
y

)
=

(
0
0

)
, or

−x + y = 0,

x − y = 0.

† Note that it is not legal to write (6.2) in the form (A− λ)v = 0 since we do not know how to
subtract a scalar λ from a matrix A. Worse, if you type A − λ in Matlab or Mathematica,
the result will be to subtract λ from all the entries of A, which is not what we are after!

3/15/06 87 c© 2006 Peter J. Olver

The general solution is

x = y = a, so v =

(
a
a

)
= a

(
1
1

)
,

where a is an arbitrary scalar. Only the nonzero solutions† count as eigenvectors, and so
the eigenvectors for the eigenvalue λ

1
= 4 must have a 6= 0, i.e., they are all nonzero scalar

multiples of the basic eigenvector v
1

= (1, 1)
T
.

Remark : In general, if v is an eigenvector of A for the eigenvalue λ, then so is any
nonzero scalar multiple of v. In practice, we only distinguish linearly independent eigen-
vectors. Thus, in this example, we shall say “v

1
= (1, 1)

T
is the eigenvector corresponding

to the eigenvalue λ
1

= 4”, when we really mean that the eigenvectors for λ
1

= 4 consist of
all nonzero scalar multiples of v

1
.

Similarly, for the second eigenvalue λ
2

= 2, the eigenvector equation is

(A − 2 I)v =

(
1 1
1 1

)(
x
y

)
=

(
0
0

)
.

The solution (−a, a)
T

= a (−1, 1)
T

is the set of scalar multiples of the eigenvector

v
2

= (−1, 1)
T
. Therefore, the complete list of eigenvalues and eigenvectors (up to scalar

multiple) for this particular matrix is

λ
1

= 4, v
1

=

(
1
1

)
, λ

2
= 2, v

2
=

(
−1

1

)
.

Example 6.5. Consider the 3 × 3 matrix

A =

0 −1 −1
1 2 1
1 1 2

 .

Using the formula for a 3 × 3 determinant, we compute the characteristic equation

0 = det(A − λ I) = det

−λ −1 −1
1 2 − λ 1
1 1 2 − λ

= (−λ)(2 − λ)2 + (−1) · 1 · 1 + (−1) · 1 · 1 −
− 1 · (2 − λ)(−1) − 1 · 1 · (−λ) − (2 − λ) · 1 · (−1)

= −λ3 + 4λ2 − 5λ + 2.

The resulting cubic polynomial can be factored:

−λ3 + 4λ2 − 5λ + 2 = − (λ − 1)2 (λ − 2) = 0.

† If, at this stage, you end up with a linear system with only the trivial zero solution, you’ve
done something wrong! Either you don’t have a correct eigenvalue — maybe you made a mistake
setting up and/or solving the characteristic equation — or you’ve made an error solving the
homogeneous eigenvector system.

3/15/06 88 c© 2006 Peter J. Olver

Most 3× 3 matrices have three different eigenvalues, but this particular one has only two:
λ

1
= 1, which is called a double eigenvalue since it is a double root of the characteristic

equation, along with a simple eigenvalue λ
2

= 2.

The eigenvector equation (6.2) for the double eigenvalue λ
1

= 1 is

(A − I)v =

−1 −1 −1
1 1 1
1 1 1

x
y
z

 =

0
0
0

 .

The general solution to this homogeneous linear system

v =

−a − b
a
b

 = a

−1
1
0

+ b

−1
0
1

depends upon two free variables: y = a and z = b. Any nonzero solution forms a valid
eigenvector for the eigenvalue λ

1
= 1, and so the general eigenvector is any non-zero linear

combination of the two “basis eigenvectors” v
1

= (−1, 1, 0)
T
, v̂

1
= (−1, 0, 1)

T
.

On the other hand, the eigenvector equation for the simple eigenvalue λ
2

= 2 is

(A − 2 I)v =

−2 −1 −1
1 0 1
1 1 0

x
y
z

 =

0
0
0

 .

The general solution

v =

−a
a
a

 = a

−1
1
1

consists of all scalar multiples of the eigenvector v
2

= (−1, 1, 1)
T
.

In summary, the eigenvalues and (basis) eigenvectors for this matrix are

λ
1

= 1, v
1

=

−1
1
0

 , v̂

1
=

−1
0
1

 ,

λ
2

= 2, v
2

=

−1
1
1

 .

(6.4)

In general, given a real eigenvalue λ, the corresponding eigenspace Vλ ⊂ R
n is the

subspace spanned by all its eigenvectors. Equivalently, the eigenspace is the kernel

Vλ = ker(A − λ I). (6.5)

In particular, λ ∈ R is an eigenvalue if and only if Vλ 6= {0} is a nontrivial subspace, and
then every nonzero element of Vλ is a corresponding eigenvector. The most economical
way to indicate each eigenspace is by writing out a basis, as in (6.4) with v

1
, v̂

1
giving a

basis for V
1
, while v

2
is a basis for V

2
.

3/15/06 89 c© 2006 Peter J. Olver

Example 6.6. The characteristic equation of the matrix A =

1 2 1
1 −1 1
2 0 1

 is

0 = det(A − λ I) = −λ3 + λ2 + 5λ + 3 = − (λ + 1)2 (λ − 3).

Again, there is a double eigenvalue λ
1

= −1 and a simple eigenvalue λ
2

= 3. However, in
this case the matrix

A − λ
1
I = A + I =

2 2 1
1 0 1
2 0 2

has only a one-dimensional kernel, spanned by v
1

= (2,−1,−2)
T
. Thus, even though λ

1

is a double eigenvalue, it only admits a one-dimensional eigenspace. The list of eigenvalues
and eigenvectors is, in a sense, incomplete:

λ
1

= −1, v
1

=

2
−1
−2

 , λ

2
= 3, v

2
=

2
1
2

 .

Example 6.7. Finally, consider the matrix A =

1 2 0
0 1 −2
2 2 −1

. The characteristic

equation is

0 = det(A − λ I) = −λ3 + λ2 − 3λ − 5 = − (λ + 1) (λ2 − 2λ + 5).

The linear factor yields the eigenvalue −1. The quadratic factor leads to two complex
roots, 1 + 2 i and 1 − 2 i , which can be obtained via the quadratic formula. Hence A has
one real and two complex eigenvalues:

λ
1

= −1, λ
2

= 1 + 2 i , λ
3

= 1 − 2 i .

Solving the associated linear system, the real eigenvalue is found to have corresponding
eigenvector v

1
= (−1, 1, 1)

T
.

Complex eigenvalues are as important as real eigenvalues, and we need to be able to
handle them too. To find the corresponding eigenvectors, which will also be complex, we
need to solve the usual eigenvalue equation (6.2), which is now a complex homogeneous
linear system. For example, the eigenvector(s) for λ

2
= 1 + 2 i are found by solving

[
A − (1 + 2 i) I

]
v =

−2 i 2 0
0 −2 i −2
2 2 −2 − 2 i

x
y
z

 =

0
0
0

 .

This linear system can be solved by Gaussian Elimination (with complex pivots). A simpler
strategy is to work directly: the first equation −2 ix + 2y = 0 tells us that y = ix, while
the second equation −2 i y − 2z = 0 says z = − i y = x. If we trust our calculations so
far, we do not need to solve the final equation 2x + 2y + (−2 − 2 i)z = 0, since we know
that the coefficient matrix is singular and hence this equation must be a consequence of

3/15/06 90 c© 2006 Peter J. Olver

the first two. (However, it does serve as a useful check on our work.) So, the general

solution v = (x, ix, x)
T

is an arbitrary constant multiple of the complex eigenvector

v
2

= (1, i , 1)
T
. The eigenvector equation for λ

3
= 1− 2 i is similarly solved for the third

eigenvector v
3

= (1,− i , 1)
T
.

Summarizing, the matrix under consideration has three complex eigenvalues and three
corresponding eigenvectors, each unique up to (complex) scalar multiple:

λ
1

= −1, λ
2

= 1 + 2 i , λ
3

= 1 − 2 i ,

v
1

=

−1
1
1

 , v

2
=

1
i
1

 , v

3
=

1
− i

1

 .

Note that the third complex eigenvalue is the complex conjugate of the second, and the
eigenvectors are similarly related. This is indicative of a general fact for real matrices:

Proposition 6.8. If A is a real matrix with a complex eigenvalue λ = µ + i ν and

corresponding complex eigenvector v = x+ iy, then the complex conjugate λ = µ− i ν is

also an eigenvalue with complex conjugate eigenvector v = x − iy.

Proof : First take complex conjugates of the eigenvalue equation (6.1):

A v = Av = λv = λ v.

Using the fact that a real matrix is unaffected by conjugation, so A = A, we conclude
Av = λ v, which is the equation for the eigenvalue λ and eigenvector v. Q.E.D.

As a consequence, when dealing with real matrices, we only need to compute the
eigenvectors for one of each complex conjugate pair of eigenvalues. This observation ef-
fectively halves the amount of work in the unfortunate event that we are confronted with
complex eigenvalues.

The eigenspace associated with a complex eigenvalue λ is the subspace Vλ ⊂ C
n

spanned by the associated eigenvectors. One might also consider complex eigenvectors
associated with a real eigenvalue, but this doesn’t add anything to the picture — they
are merely complex linear combinations of the real eigenvalues. Thus, we only introduce
complex eigenvectors when dealing with genuinely complex eigenvalues.

Remark : The reader may recall that we said one should never use determinants in
practical computations. So why have we reverted to using determinants to find eigenvalues?
The truthful answer is that the practical computation of eigenvalues and eigenvectors never

resorts to the characteristic equation! The method is fraught with numerical traps and
inefficiencies when (a) computing the determinant leading to the characteristic equation,
then (b) solving the resulting polynomial equation, which is itself a nontrivial numerical
problem†, [7, 43], and, finally, (c) solving each of the resulting linear eigenvector systems.

† In fact, one effective numerical strategy for finding the roots of a polynomial is to turn the
procedure on its head, and calculate the eigenvalues of a matrix whose characteristic equation is
the polynomial in question! See [43] for details.

3/15/06 91 c© 2006 Peter J. Olver

Worse, if we only know an approximation λ̃ to the true eigenvalue λ, the approximate
eigenvector system (A − λ̃)v = 0 will almost certainly have a nonsingular coefficient
matrix, and hence only admits the trivial solution v = 0 — which does not even qualify
as an eigenvector!

Nevertheless, the characteristic equation does give us important theoretical insight
into the structure of the eigenvalues of a matrix, and can be used when dealing with
small matrices, e.g., 2 × 2 and 3 × 3, presuming exact arithmetic is employed. Numerical
algorithms for computing eigenvalues and eigenvectors are based on completely different
ideas.

Proposition 6.9. A matrix A is singular if and only if 0 is an eigenvalue.

Proof : By definition, 0 is an eigenvalue of A if and only if there is a nonzero solution to
the eigenvector equation Av = 0v = 0. Thus, 0 is an eigenvector of A if and only if it has
a non-zero vector in its kernel, ker A 6= {0}, and hence A is necessarily singular. Q.E.D.

Basic Properties of Eigenvalues

If A is an n × n matrix, then its characteristic polynomial is

pA(λ) = det(A − λ I) = cn λn + cn−1
λn−1 + · · · + c

1
λ + c

0
. (6.6)

The fact that pA(λ) is a polynomial of degree n is a consequence of the general determi-
nantal formula. Indeed, every term is prescribed by a permutation π of the rows of the
matrix, and equals plus or minus a product of n distinct matrix entries including one from
each row and one from each column. The term corresponding to the identity permutation
is obtained by multiplying the diagonal entries together, which, in this case, is

(a
11
−λ) (a

22
−λ) · · · (ann−λ) = (−1)nλn+(−1)n−1

(
a
11

+ a
22

+ · · · + ann

)
λn−1+ · · · .

(6.7)
All of the other terms have at most n− 2 diagonal factors aii − λ, and so are polynomials
of degree ≤ n− 2 in λ. Thus, (6.7) is the only summand containing the monomials λn and
λn−1, and so their respective coefficients are

cn = (−1)n, cn−1
= (−1)n−1(a

11
+ a

22
+ · · · + ann) = (−1)n−1 trA, (6.8)

where trA, the sum of its diagonal entries, is called the trace of the matrix A. The other
coefficients cn−2

, . . . , c
1
, c

0
in (6.6) are more complicated combinations of the entries of A.

However, setting λ = 0 implies

pA(0) = det A = c
0
,

and hence the constant term in the characteristic polynomial equals the determinant of

the matrix. In particular, if A =

(
a b
c d

)
is a 2 × 2 matrix, its characteristic polynomial

has the explicit form

pA(λ) = det(A − λ I) = det

(
a − λ b

c d − λ

)

= λ2 − (a + d)λ + (ad − bc) = λ2 − (trA)λ + (detA).

(6.9)

3/15/06 92 c© 2006 Peter J. Olver

As a result of these considerations, the characteristic equation of an n × n matrix A
is a polynomial equation of degree n. According to the Fundamental Theorem of Algebra,
[17], every (complex) polynomial of degree n ≥ 1 can be completely factored, and so we
can write the characteristic polynomial in factored form:

pA(λ) = (−1)n(λ − λ
1
)(λ − λ

2
) · · · (λ − λn). (6.10)

The complex numbers λ
1
, . . . , λn, some of which may be repeated, are the roots of the

characteristic equation pA(λ) = 0, and hence the eigenvalues of the matrix A. Therefore,
we immediately conclude:

Theorem 6.10. An n×n matrix A has at least one and at most n distinct complex

eigenvalues.

Most n×n matrices — meaning those for which the characteristic polynomial factors
into n distinct factors — have exactly n complex eigenvalues. More generally, an eigenvalue
λj is said to have multiplicity m if the factor (λ − λj) appears exactly m times in the
factorization (6.10) of the characteristic polynomial. An eigenvalue is simple if it has
multiplicity 1. In particular, A has n distinct eigenvalues if and only if all its eigenvalues
are simple. In all cases, when the repeated eigenvalues are counted in accordance with
their multiplicity, every n × n matrix has a total of n, possibly repeated, eigenvalues.

An example of a matrix with just one eigenvalue, of multiplicity n, is the n×n identity
matrix I , whose only eigenvalue is λ = 1. In this case, every nonzero vector in R

n is an
eigenvector of the identity matrix, and so the eigenspace is all of R

n. At the other extreme,
the “bidiagonal” Jordan block matrix †

Ja =

a 1
a 1

a 1
. . .

. . .

a 1
a

(6.11)

also has only one eigenvalue, λ = a, again of multiplicity n. But in this case, Ja has only
one eigenvector (up to scalar multiple), which is the first standard basis vector e

1
, and so

its eigenspace is one-dimensional.

Remark : If λ is a complex eigenvalue of multiplicity k for the real matrix A, then its
complex conjugate λ also has multiplicity k. This is because complex conjugate roots of a
real polynomial necessarily appear with identical multiplicities.

If we explicitly multiply out the factored product (6.10) and equate the result to the
characteristic polynomial (6.6), we find that its coefficients c

0
, c

1
, . . . cn−1

can be written

† All non-displayed entries are zero.

3/15/06 93 c© 2006 Peter J. Olver

as certain polynomials of the roots, known as the elementary symmetric polynomials. The
first and last are of particular importance:

c
0

= λ
1
λ

2
· · · λn, cn−1

= (−1)n−1 (λ
1

+ λ
2

+ · · · + λn). (6.12)

Comparison with our previous formulae for the coefficients c
0

and cn−1
leads to the fol-

lowing useful result.

Proposition 6.11. The sum of the eigenvalues of a matrix equals its trace:

λ
1

+ λ
2

+ · · · + λn = tr A = a
11

+ a
22

+ · · · + ann. (6.13)

The product of the eigenvalues equals its determinant:

λ
1
λ

2
· · · λn = det A. (6.14)

Remark : For repeated eigenvalues, one must add or multiply them in the formulae
(6.13–14) according to their multiplicity.

Example 6.12. The matrix A =

1 2 1
1 −1 1
2 0 1

 considered in Example 6.6 has trace

and determinant

tr A = 1, detA = 3,

which fix, respectively, the coefficient of λ2 and the constant term in its characteristic
equation. This matrix has two distinct eigenvalues: −1, which is a double eigenvalue, and
3, which is simple. For this particular matrix, formulae (6.13–14) become

1 = trA = (−1) + (−1) + 3, 3 = detA = (−1)(−1) 3.

Note that the double eigenvalue contributes twice to the sum and to the product.

6.2. Completeness.

Most of the vector space bases that play a distinguished role in applications are as-
sembled from the eigenvectors of a particular matrix. In this section, we show that the
eigenvectors of any “complete” matrix automatically form a basis for R

n or, in the complex
case, C

n. In the following subsection, we use the eigenvector basis to rewrite the linear
transformation determined by the matrix in a simple diagonal form. The most important
cases — symmetric and positive definite matrices — will be treated in the following section.

The first task is to show that eigenvectors corresponding to distinct eigenvalues are
automatically linearly independent.

Lemma 6.13. If λ
1
, . . . , λk are distinct eigenvalues of the same matrix A, then the

corresponding eigenvectors v
1
, . . . ,vk are linearly independent.

3/15/06 94 c© 2006 Peter J. Olver

Proof : The result is proved by induction on the number of eigenvalues. The case
k = 1 is immediate since an eigenvector cannot be zero. Assume that we know the result
is valid for k − 1 eigenvalues. Suppose we have a vanishing linear combination:

c
1
v

1
+ · · · + ck−1

vk−1
+ ck vk = 0. (6.15)

Let us multiply this equation by the matrix A:

A
(
c
1
v

1
+ · · · + ck−1

vk−1
+ ck vk

)
= c

1
Av

1
+ · · · + ck−1

Avk−1
+ ck Avk

= c
1
λ

1
v

1
+ · · · + ck−1

λk−1
vk−1

+ ck λk vk = 0.

On the other hand, if we multiply the original equation (6.15) by λk, we also have

c
1
λk v

1
+ · · · + ck−1

λk vk−1
+ ck λk vk = 0.

Subtracting this from the previous equation, the final terms cancel and we are left with
the equation

c
1
(λ

1
− λk)v

1
+ · · · + ck−1

(λk−1
− λk)vk−1

= 0.

This is a vanishing linear combination of the first k − 1 eigenvectors, and so, by our
induction hypothesis, can only happen if all the coefficients are zero:

c
1
(λ

1
− λk) = 0, . . . ck−1

(λk−1
− λk) = 0.

The eigenvalues were assumed to be distinct, so λj 6= λk when j 6= k. Consequently,
c
1

= · · · = ck−1
= 0. Substituting these values back into (6.15), we find ck vk = 0, and

so ck = 0 also, since the eigenvector vk 6= 0. Thus we have proved that (6.15) holds if
and only if c

1
= · · · = ck = 0, which implies the linear independence of the eigenvectors

v
1
, . . . ,vk. This completes the induction step. Q.E.D.

The most important consequence of this result is when a matrix has the maximum
allotment of eigenvalues.

Theorem 6.14. If the n×n real matrix A has n distinct real eigenvalues λ
1
, . . . , λn,

then the corresponding real eigenvectors v
1
, . . . ,vn form a basis of R

n. If A (which may

now be either a real or a complex matrix) has n distinct complex eigenvalues, then the

corresponding eigenvectors v
1
, . . . ,vn form a basis of C

n.

For instance, the 2 × 2 matrix in Example 6.4 has two distinct real eigenvalues, and
its two independent eigenvectors form a basis of R

2. The 3 × 3 matrix in Example 6.7
has three distinct complex eigenvalues, and its eigenvectors form a basis for C

3. If a
matrix has multiple eigenvalues, then there may or may not be an eigenvector basis of R

n

(or C
n). The matrix in Example 6.5 admits an eigenvector basis, whereas the matrix in

Example 6.6 does not. In general, it can be proved that the dimension of the eigenspace
is less than or equal to the eigenvalue’s multiplicity. In particular, every simple eigenvalue
has a one-dimensional eigenspace, and hence, up to scalar multiple, only one associated
eigenvector.

Definition 6.15. An eigenvalue λ of a matrix A is called complete if the correspond-
ing eigenspace Vλ = ker(A − λ I) has the same dimension as its multiplicity. The matrix
A is complete if all its eigenvalues are.

3/15/06 95 c© 2006 Peter J. Olver

Note that a simple eigenvalue is automatically complete, since its eigenspace is the
one-dimensional subspace spanned by the corresponding eigenvector. Thus, only multiple
eigenvalues can cause a matrix to be incomplete.

Remark : The multiplicity of an eigenvalue λi is sometimes referred to as its algebraic

multiplicity . The dimension of the eigenspace Vλ is its geometric multiplicity , and so
completeness requires that the two multiplicities are equal. The word “complete” is not
completely standard; other common terms for such matrices are perfect , semi-simple and,
as discussed shortly, diagonalizable.

Theorem 6.16. An n × n real or complex matrix A is complete if and only if its

eigenvectors span C
n. In particular, any n × n matrix that has n distinct eigenvalues is

complete.

Or, stated another way, a matrix is complete if and only if its eigenvectors can be used
to form a basis of C

n. Most matrices are complete. Incomplete n×n matrices, which have
fewer than n linearly independent complex eigenvectors, are considerably less pleasant to
deal with.

6.3. Eigenvalues of Symmetric Matrices.

Fortunately, the matrices that arise in most applications are complete and, in fact,
possess some additional structure that ameliorates the calculation of their eigenvalues and
eigenvectors. The most important class are the symmetric, including positive definite,
matrices. In fact, not only are the eigenvalues of a symmetric matrix necessarily real, the
eigenvectors always form an orthogonal basis of the underlying Euclidean space. In fact,
this is by far the most common way for orthogonal bases to appear — as the eigenvector
bases of symmetric matrices. Let us state this important result, but defer its proof until
the end of the section.

Theorem 6.17. Let A = AT be a real symmetric n × n matrix. Then

(a) All the eigenvalues of A are real.

(b) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

(c) There is an orthonormal basis of R
n consisting of n eigenvectors of A.

In particular, all symmetric matrices are complete.

Example 6.18. The 2 × 2 matrix A =

(
3 1
1 3

)
considered in Example 6.4 is sym-

metric, and so has real eigenvalues λ
1

= 4 and λ
2

= 2. You can easily check that the

corresponding eigenvectors v
1

= (1, 1)
T

and v
2

= (−1, 1)
T

are orthogonal: v
1
· v

2
= 0,

and hence form an orthogonal basis of R
2. The orthonormal eigenvector basis promised

by Theorem 6.17 is obtained by dividing each eigenvector by its Euclidean norm:

u
1

=

(
1√
2

1√
2

)
, u

2
=

(
− 1√

2

1√
2

)
.

3/15/06 96 c© 2006 Peter J. Olver

Example 6.19. Consider the symmetric matrix A =

5 −4 2
−4 5 2

2 2 −1

. A straight-

forward computation produces its eigenvalues and eigenvectors:

λ
1

= 9, λ
2

= 3, λ
3

= −3,

v
1

=

1
−1

0

 , v

2
=

1
1
1

 , v

3
=

1
1

−2

 .

As the reader can check, the eigenvectors form an orthogonal basis of R
3. An orthonormal

basis is provided by the unit eigenvectors

u
1

=

1√
2

− 1√
2

0

 , u

2
=

1√
3

1√
3

1√
3

 , u

3
=

1√
6

1√
6

− 2√
6

 .

In particular, the eigenvalues of a symmetric matrix can be used to test its positive
definiteness.

Theorem 6.20. A symmetric matrix K = KT is positive definite if and only if all

of its eigenvalues are strictly positive.

Example 6.21. Consider the symmetric matrix K =

8 0 1
0 8 1
1 1 7

. Its characteristic

equation is

det(K − λ I) = −λ3 + 23λ2 − 174λ + 432 = −(λ − 9)(λ − 8)(λ − 6),

and so its eigenvalues are 9, 8, and 6. Since they are all positive, K is a positive definite
matrix. The associated eigenvectors are

λ
1

= 9, v
1

=

1
1
1

 , λ

2
= 8, v

2
=

−1
1
0

 , λ

3
= 6, v

3
=

−1
−1

2

 .

Note that the eigenvectors form an orthogonal basis of R
3, as guaranteed by Theorem 6.17.

As usual, we can construct an corresponding orthonormal eigenvector basis

u
1

=

1√
3

1√
3

1√
3

 , u

2
=

− 1√
2

1√
2

0

 , u

3
=

− 1√
6

− 1√
6

2√
6

 ,

by dividing each eigenvector by its norm.

3/15/06 97 c© 2006 Peter J. Olver

-6 -4 -2 2 4 6 8

-3

-2

-1

1

2

3

Figure 6.1. Gerschgorin Disks and Eigenvalues.

6.4. The Gerschgorin Circle Theorem.

In general, precisely computing the eigenvalues is not easy, and, in most cases, must be
done through a numerical eigenvalue routine. In applications, though, we may not require
their exact numerical values, but only approximate locations. The Gerschgorin Circle

Theorem, due to the early twentieth century Russian mathematician Semen Gerschgorin,
serves to restrict the eigenvalues to a certain well-defined region in the complex plane.

Definition 6.22. Let A be an n × n matrix, either real or complex. For each
1 ≤ i ≤ n, define the Gerschgorin disk

Di = { | z − aii | ≤ ri | z ∈ C } , where ri =
n∑

j=1

j 6=i

| aij |. (6.16)

The Gerschgorin domain DA =
n

[

i=1

Di ⊂ C is the union of the Gerschgorin disks.

Thus, the ith Gerschgorin disk Di is centered at the ith diagonal entry aii, and has
radius ri equal to the sum of the absolute values of the off-diagonal entries that are in the
ith row of A. We can now state the Gerschgorin Circle Theorem.

Theorem 6.23. All real and complex eigenvalues of the matrix A lie in its Ger-

schgorin domain DA.

Example 6.24. The matrix A =

2 −1 0
1 4 −1

−1 −1 −3

 has Gerschgorin disks

D
1

= { | z − 2 | ≤ 1 } , D
2

= { | z − 4 | ≤ 2 } , D
3

= { | z + 3 | ≤ 2 } ,

which are plotted in Figure 6.1. The eigenvalues of A are

λ
1

= 3, λ
2

=
√

10 = 3.1623 . . . , λ
3

= −
√

10 = −3.1623

Observe that λ
1

belongs to both D
1

and D
2
, while λ

2
lies in D

2
, and λ

3
is in D

3
. We thus

confirm that all three eigenvalues are in the Gerschgorin domain DA = D
1
∪ D

2
∪ D

3
.

3/15/06 98 c© 2006 Peter J. Olver

Proof of Theorem 6.23 : Let v be an eigenvector of A with eigenvalue λ. Let u =
v/‖v ‖∞ be the corresponding unit eigenvector with respect to the ∞ norm, so

‖u ‖∞ = max
{
|u

1
|, . . . , |un |

}
= 1.

Let ui be an entry of u that achieves the maximum: |ui | = 1. Writing out the ith

component of the eigenvalue equation Au = λu, we find

n∑

j =1

aij uj = λui, which we rewrite as
n∑

j=1

j 6=i

aij uj = (λ − aii)ui.

Therefore, since all |uj | ≤ 1 while |ui | = 1,

|λ − aii | = |λ − aii | |ui | =

∣∣∣∣∣∣

∑

j 6=i

aij uj

∣∣∣∣∣∣
≤
∑

j 6=i

| aij | |uj | ≤
∑

j 6=i

| aij | = ri.

This immediately implies that λ ∈ Di ⊂ DA belongs to the ith Gerschgorin disk. Q.E.D.

One application is a simple direct test that guarantees invertibility of a matrix without
requiring Gaussian Elimination or computing determinants. According to Proposition 6.9,
a matrix A is nonsingular if and only if it does not admit zero as an eigenvalue. Thus,
if its Gerschgorin domain does not contain 0, it cannot be an eigenvalue, and hence A is
necessarily invertible. The condition 0 6∈ DA requires that the matrix have large diagonal
entries, as quantified by the following definition.

Definition 6.25. A square matrix A is called strictly diagonally dominant if

| aii | >

n∑

j=1

j 6=i

| aij |, for all i = 1, . . . , n. (6.17)

In other words, strict diagonal dominance requires each diagonal entry to be larger,
in absolute value, than the sum of the absolute values of all the other entries in its row.

For example, the matrix

3 −1 1
1 −4 2

−2 −1 5

 is strictly diagonally dominant since

| 3 | > | −1 | + | 1 |, | −4 | > | 1 | + | 2 |, | 5 | > | −2 | + | −1 |.
Diagonally dominant matrices appear frequently in numerical solution methods for both
ordinary and partial differential equations. As we shall see, they are the most common
class of matrices to which iterative solution methods can be successfully applied.

Theorem 6.26. A strictly diagonally dominant matrix is nonsingular.

Proof : The diagonal dominance inequalities (6.17) imply that the radius of the ith

Gerschgorin disk is strictly less than the modulus of its center: ri < | aii |. Thus, the disk
cannot contain 0; indeed, if z ∈ Di, then, by the triangle inequality,

ri > | z − aii | ≥ | aii | − | z | > ri − | z |, and hence | z | > 0.

3/15/06 99 c© 2006 Peter J. Olver

Thus, 0 6∈ DA does not lie in the Gerschgorin domain and so cannot be an eigen-
value. Q.E.D.

Warning : The converse to this result is obviously not true; there are plenty of non-
singular matrices that are not diagonally dominant.

6.5. Singular Values.

We have already indicated the central role played by the eigenvalues and eigenvectors
of a square matrix in both theory and applications. Much more evidence to this effect will
appear in the ensuing chapters. Alas, rectangular matrices do not have eigenvalues (why?),
and so, at first glance, do not appear to possess any quantities of comparable significance.
But you no doubt recall that our earlier treatment of least squares minimization problems,
as well as the equilibrium equations for structures and circuits, made essential use of the
symmetric, positive semi-definite square Gram matrix K = AT A — which can be naturally
formed even when A is not square. Perhaps the eigenvalues of K might play a comparably
important role for general matrices. Since they are not easily related to the eigenvalues of
A — which, in the non-square case, don’t even exist — we shall endow them with a new
name.

Definition 6.27. The singular values σ
1
, . . . , σr of an m×n matrix A are the positive

square roots, σi =
√

λi > 0, of the nonzero eigenvalues of the associated Gram matrix
K = AT A. The corresponding eigenvectors of K are known as the singular vectors of A.

Since K is necessarily positive semi-definite, its eigenvalues are always non-negative,
λi ≥ 0, which justifies the positivity of the singular values of A — independently of whether
A itself has positive, negative, or even complex eigenvalues — or is rectangular and has
no eigenvalues at all. The standard convention is to label the singular values in decreasing
order, so that σ

1
≥ σ

2
≥ · · · ≥ σr > 0. Thus, σ

1
will always denote the largest or

dominant singular value. If K = AT A has repeated eigenvalues, the singular values of A
are repeated with the same multiplicities. As we will see, the number r of singular values
is always equal to the rank of the matrix.

Warning : Many texts include the zero eigenvalues of K as singular values of A. We
find this to be somewhat less convenient, but you should be aware of the differences in the
two conventions.

Example 6.28. Let A =

(
3 5
4 0

)
. The associated Gram matrix K = AT A =

(
25 15
15 25

)
has eigenvalues λ

1
= 40, λ

2
= 10, and corresponding eigenvectors v

1
=

(
1
1

)
,

v
2

=

(
1

−1

)
. Thus, the singular values of A are σ

1
=

√
40 ≈ 6.3246 and σ

2
=

√
10 ≈

3.1623, with v
1
,v

2
being the singular vectors. Note that the singular values are not the

same as its eigenvalues, which are λ
1

= 1

2
(3 +

√
89) ≈ 6.2170 and λ

2
= 1

2
(3 −

√
89) ≈

−3.2170 — nor are the singular vectors eigenvectors of A.

3/15/06 100 c© 2006 Peter J. Olver

Only in the special case of symmetric matrices is there a direct connection between
the singular values and the eigenvalues.

Proposition 6.29. If A = AT is a symmetric matrix, its singular values are the

absolute values of its nonzero eigenvalues: σi = |λi | > 0; its singular vectors coincide with

the associated non-null eigenvectors.

Proof : When A is symmetric, K = AT A = A2. So, if Av = λv, then Kv = A2v =
λ2v. Thus, every eigenvector v of A is also an eigenvector of K with eigenvalue λ2.
Therefore, the eigenvector basis of A is also an eigenvector basis for K, and hence also
forms a complete system of singular vectors for A. Q.E.D.

Condition Number, Rank, and Principal Component Analysis

The singular values not only provide a pretty geometric interpretation of the action
of the matrix, they also play a key role in modern computational algorithms. The relative
magnitudes of the singular values can be used to distinguish well-behaved linear systems
from ill-conditioned systems which are much trickier to solve accurately. Since the number
of singular values equals the matrix’s rank, an n×n matrix with fewer than n singular values
is singular. For the same reason, a square matrix with one or more very small singular
values should be considered to be close to singular. The potential difficulty of accurately
solving a linear algebraic system with coefficient matrix A is traditionally quantified as
follows.

Definition 6.30. The condition number of a nonsingular n × n matrix is the ratio
between its largest and smallest singular value: κ(A) = σ

1
/σn.

If A is singular, it is said to have condition number ∞. A matrix with a very large
condition number is said to be ill-conditioned ; in practice, this occurs when the condition
number is larger than the reciprocal of the machine’s precision, e.g., 107 for typical single
precision arithmetic. As the name implies, it is much harder to solve a linear system
Ax = b when its coefficient matrix is ill-conditioned.

Determining the rank of a large matrix can be a numerical challenge. Small numer-
ical errors in the entries can have an unpredictable effect. For example, the matrix A =

1 1 −1
2 2 −2
3 3 −3

 has rank r = 1, but a tiny change, e.g., Ã =

1.00001 1. −1.
2. 2.00001 −2.
3. 3. −3.00001

,

will produce a nonsingular matrix with rank r = 3. The latter matrix, however, is very
close to singular, and this is highlighted by its singular values, which are σ

1
≈ 6.48075

while σ
2
≈ σ

3
≈ .000001. The fact that the second and third singular values are very small

indicates that Ã is very close to a matrix of rank 1 and should be viewed as a numerical
(or experimental) perturbation of such a matrix. Thus, an effective practical method for
computing the rank of a matrix is to first assign a threshold, e.g., 10−5, for singular values,
and then treat any small singular value lying below the threshold as if it were zero.

This idea underlies the method of Principal Component Analysis that is assuming
an increasingly visible role in modern statistics, data mining, imaging, speech recognition,

3/15/06 101 c© 2006 Peter J. Olver

semantics, and a variety of other fields, [29]. The singular vectors associated with the larger
singular values indicate the principal components of the matrix, while small singular values
indicate relatively unimportant directions. In applications, the columns of the matrix A
represent the data vectors, which are normalized to have mean 0. The corresponding
Gram matrix K = AT A can be identified as the associated covariance matrix , [12]. Its
eigenvectors are the principal components that serve to indicate directions of correlation
and clustering in the data.

3/15/06 102 c© 2006 Peter J. Olver

AIMS Lecture Notes 2006

Peter J. Olver

7. Iterative Methods for Linear Systems

Linear iteration coincides with multiplication by successive powers of a matrix; con-
vergence of the iterates depends on the magnitude of its eigenvalues. We discuss in some
detail a variety of convergence criteria based on the spectral radius, on matrix norms, and
on eigenvalue estimates provided by the Gerschgorin Circle Theorem.

We will then turn our attention to the three most important iterative schemes used
to accurately approximate the solutions to linear algebraic systems. The classical Jacobi
method is the simplest, while an evident serialization leads to the popular Gauss–Seidel
method. Completely general convergence criteria are hard to formulate, although con-
vergence is assured for the important class of diagonally dominant matrices that arise in
many applications. A simple modification of the Gauss–Seidel scheme, known as Succes-
sive Over-Relaxation (SOR), can dramatically speed up the convergence rate, and is the
method of choice in many modern applications. Finally, we introduce the method of conju-
gate gradients, a powerful “semi-direct” iterative scheme that, in contrast to the classical
iterative schemes, is guaranteed to eventually produce the exact solution.

7.1. Linear Iterative Systems.

We begin with the basic definition of an iterative system of linear equations.

Definition 7.1. A linear iterative system takes the form

u(k+1) = T u(k), u(0) = a. (7.1)

The coefficient matrix T has size n × n. We will consider both real and complex sys-
tems, and so the iterates† u(k) are vectors either in R

n (which assumes that the coefficient
matrix T is also real) or in C

n. For k = 1, 2, 3, . . . , the solution u(k) is uniquely determined
by the initial conditions u(0) = a.

Powers of Matrices

The solution to the general linear iterative system (7.1) is, at least at first glance,
immediate. Clearly,

u(1) = T u(0) = T a, u(2) = T u(1) = T 2a, u(3) = T u(2) = T 3a,

† Warning : The superscripts on u
(k) refer to the iterate number, and should not be mistaken

for derivatives.

10/18/06 103 c© 2006 Peter J. Olver

and, in general,
u(k) = T ka. (7.2)

Thus, the iterates are simply determined by multiplying the initial vector a by the succes-
sive powers of the coefficient matrix T . And so, unlike differential equations, proving the
existence and uniqueness of solutions to an iterative system is completely trivial.

However, unlike real or complex scalars, the general formulae and qualitative behavior
of the powers of a square matrix are not nearly so immediately apparent. (Before con-
tinuing, the reader is urged to experiment with simple 2 × 2 matrices, trying to detect
patterns.) To make progress, recall how we managed to solve linear systems of differential
equations by suitably adapting the known exponential solution from the scalar version.
In the iterative case, the scalar solution formula (2.8) is written in terms of powers, not
exponentials. This motivates us to try the power ansatz

u(k) = λk v, (7.3)

in which λ is a scalar and v is a fixed vector, as a possible solution to the system. We find

u(k+1) = λk+1v, while T u(k) = T (λk v) = λk T v.

These two expressions will be equal if and only if

T v = λv.

Therefore, (7.3) is a nontrivial solution to (7.1) if and only if λ is an eigenvalue of the
coefficient matrix T and v 6= 0 an associated eigenvector .

Thus, to each eigenvector and eigenvalue of the coefficient matrix, we can construct
a solution to the iterative system. We can then appeal to linear superposition to combine
the basic power solutions to form more general solutions. In particular, if the coefficient
matrix is complete, then this method will, as in the case of linear ordinary differential
equations, produce the general solution.

Theorem 7.2. If the coefficient matrix T is complete, then the general solution to

the linear iterative system u(k+1) = T u(k) is given by

u(k) = c1 λk
1 v1 + c2 λk

2 v2 + · · · + cn λk
n vn, (7.4)

where v1, . . . ,vn are the linearly independent eigenvectors and λ1, . . . , λn the correspond-

ing eigenvalues of T . The coefficients c1, . . . , cn are arbitrary scalars and are uniquely

prescribed by the initial conditions u(0) = a.

Proof : Since we already know that (7.4) is a solution to the system for arbitrary
c1, . . . , cn, it suffices to show that we can match any prescribed initial conditions. To this
end, we need to solve the linear system

u(0) = c1v1 + · · · + cn vn = a. (7.5)

Completeness of T implies that its eigenvectors form a basis of C
n, and hence (7.5) always

admits a solution. In matrix form, we can rewrite (7.5) as

S c = a, so that c = S−1a,

10/18/06 104 c© 2006 Peter J. Olver

where S = (v1 v2 . . . vn) is the (nonsingular) matrix whose columns are the eigenvec-
tors. Q.E.D.

Remark : Solutions in the incomplete cases rely on the Jordan canonical form. As
with systems of differential equations, the formulas are more complicated, and will not be
written out.

Example 7.3. Consider the iterative system

x(k+1) = 3
5 x(k) + 1

5 y(k), y(k+1) = 1
5 x(k) + 3

5 y(k), (7.6)

with initial conditions

x(0) = a, y(0) = b. (7.7)

The system can be rewritten in our matrix form (7.1), with

T =

(
.6 .2
.2 .6

)
, u(k) =

(
x(k)

y(k)

)
, a =

(
a
b

)
.

Solving the characteristic equation

det(T − λ I) = λ2 − 1.2λ − .32 = 0

produces the eigenvalues λ1 = .8, λ2 = .4. We then solve the associated linear systems
(T − λj I)vj = 0 for the corresponding eigenvectors:

λ1 = .8 , v1 =

(
1
1

)
, λ2 = .4 , v2 =

(
−1

1

)
.

Therefore, the basic power solutions are

u
(k)
1 = (.8)k

(
1
1

)
, u

(k)
2 = (.4)k

(
−1

1

)
.

Theorem 7.2 tells us that the general solution is given as a linear combination,

u(k) = c1u
(k)
1 + c2u

(k)
2 = c1 (.8)k

(
1
1

)
+ c2 (.4)k

(
−1

1

)
=

(
c1 (.8)k − c2 (.4)k

c1 (.8)k + c2 (.4)k

)
,

where c1, c2 are determined by the initial conditions:

u(0) =

(
c1 − c2

c1 + c2

)
=

(
a
b

)
, and hence c1 =

a + b

2
, c2 =

b − a

2
.

Therefore, the explicit formula for the solution to the initial value problem (7.6–7) is

x(k) = (.8)k a + b

2
+ (.4)k a − b

2
, y(k) = (.8)k a + b

2
+ (.4)k b − a

2
.

In particular, as k → ∞, the iterates u(k) → 0 converge to zero at a rate governed by
the dominant eigenvalue λ1 = .8. Thus, (7.6) defines a stable iterative system. Figure 7.1
illustrates the cumulative effect of the iteration. The initial conditions consist of a large
number of points on the unit circle x2 + y2 = 1, which are successively mapped to points
on progressively smaller and flatter ellipses, all converging towards the origin.

10/18/06 105 c© 2006 Peter J. Olver

Figure 7.1. Stable Iterative System.

Example 7.4. The Fibonacci numbers are defined by the second order† iterative
scheme

u(k+2) = u(k+1) + u(k), (7.8)

with initial conditions

u(0) = a, u(1) = b. (7.9)

In short, to obtain the next Fibonacci number, add the previous two. The classical Fi-

bonacci integers start with a = 0, b = 1; the next few are

u(0) = 0, u(1) = 1, u(2) = 1, u(3) = 2, u(4) = 3, u(5) = 5, u(6) = 8, u(7) = 13,

The Fibonacci integers occur in a surprising variety of natural objects, including leaves,
flowers, and fruit, [46]. They were originally introduced by the Italian Renaissance math-
ematician Fibonacci (Leonardo of Pisa) as a crude model of the growth of a population of
rabbits. In Fibonacci’s model, the kth Fibonacci number u(k) measures the total number
of pairs of rabbits at year k. We start the process with a single juvenile pair‡ at year 0.
Once a year, each pair of rabbits produces a new pair of offspring, but it takes a full year
for a rabbit pair to mature enough to produce offspring of their own.

Just as every higher order ordinary differential equation can be replaced by an equiv-
alent first order system, so every higher order iterative equation can be replaced by a first

† In general, an iterative system u
(k+j) = T1u

(k+j−1) + · · · + Tju
(k) in which the new iterate

depends upon the preceding j values is said to have order j.

‡ We ignore important details like the sex of the offspring.

10/18/06 106 c© 2006 Peter J. Olver

order iterative system. In this particular case, we define the vector

u(k) =

(
u(k)

u(k+1)

)
∈ R

2,

and note that (7.8) is equivalent to the matrix system
(

u(k+1)

u(k+2)

)
=

(
0 1
1 1

)(
u(k)

u(k+1)

)
, or u(k+1) = T u(k), where T =

(
0 1
1 1

)
.

To find the explicit formula for the Fibonacci numbers, we must determine the eigenvalues
and eigenvectors of the coefficient matrix T . A straightforward computation produces

λ1 =
1 +

√
5

2
= 1.618034 . . . , λ2 =

1 −
√

5

2
= − .618034 . . . ,

v1 =

(
−1+

√
5

2

1

)
, v2 =

(
−1−

√
5

2

1

)
.

Therefore, according to (7.4), the general solution to the Fibonacci system is

u(k) =

(
u(k)

u(k+1)

)
= c1

(
1 +

√
5

2

)k(−1+
√

5

2

1

)
+ c2

(
1 −

√
5

2

)k(−1−
√

5

2

1

)
. (7.10)

The initial data

u(0) = c1

(
−1+

√
5

2

1

)
+ c2

(
−1−

√
5

2

1

)
=

(
a

b

)

uniquely specifies the coefficients

c1 =
2a + (1 +

√
5)b

2
√

5
, c2 = − 2a + (1 −

√
5)b

2
√

5
.

The first entry of the solution vector (7.10) produces the explicit formula

u(k) =
(−1 +

√
5)a + 2b

2
√

5

(
1 +

√
5

2

)k

+
(1 +

√
5)a − 2b

2
√

5

(
1 −

√
5

2

)k

(7.11)

for the kth Fibonacci number. For the particular initial conditions a = 0, b = 1, (7.11)
reduces to the classical Binet formula

u(k) =
1√
5

(

1 +
√

5

2

)k

−
(

1 −
√

5

2

)k

 (7.12)

for the kth Fibonacci integer. It is a remarkable fact that, for every value of k, all the
√

5’s
cancel out, and the Binet formula does indeed produce the Fibonacci integers listed above.
Another useful observation is that, since

0 < |λ2 | =

√
5 − 1

2
< 1 < λ1 =

1 +
√

5

2
,

10/18/06 107 c© 2006 Peter J. Olver

Figure 7.2. Fibonacci Iteration.

the terms involving λk
1 go to ∞ (and so the zero solution to this iterative system is unstable)

while the terms involving λk
2 go to zero. Therefore, even for k moderately large, the first

term in (7.11) is an excellent approximation (and one that gets more and more accurate
with increasing k) to the kth Fibonacci number. A plot of the first 4 iterates, starting
with the initial data consisting of equally spaced points on the unit circle, can be seen in
Figure 7.2. As in the previous example, the circle is mapped to a sequence of progressively
more eccentric ellipses; however, their major semi-axes become more and more stretched
out, and almost all points end up going off to ∞.

The dominant eigenvalue λ1 = 1
2

(
1 +

√
5
)

= 1.618034 . . . is known as the golden

ratio and plays an important role in spiral growth in nature, as well as in art, architecture
and design, [46]. It describes the overall growth rate of the Fibonacci integers, and, in
fact, any sequence of Fibonacci numbers with initial conditions b 6= 1

2

(
1 −

√
5
)
a.

Example 7.5. Let T =

−3 1 6
1 −1 −2

−1 −1 0

 be the coefficient matrix for a three-

dimensional iterative system u(k+1) = T u(k). Its eigenvalues and corresponding eigen-
vectors are

λ1 = −2, λ2 = −1 + i , λ3 = −1 − i ,

v1 =

4
−2

1

 , v2 =

2 − i
−1
1

, v3 =

2 + i
−1
1

.

10/18/06 108 c© 2006 Peter J. Olver

Therefore, according to (7.4), the general complex solution to the iterative system is

u(k) = b1 (−2)k

4
−2

1

+ b2 (−1 + i)k

2 − i
−1
1

+ b3 (−1 − i)k

2 + i
−1
1

,

where b1, b2, b3 are arbitrary complex scalars.

If we are only interested in real solutions, we can, as in the case of systems of differential
equations, break up any complex solution into its real and imaginary parts, each of which
constitutes a real solution. We begin by writing λ2 = −1 + i =

√
2 e3π i /4, and hence

(−1 + i)k = 2k/2 e3kπ i /4 = 2k/2
(
cos 3

4 kπ + i sin 3
4 kπ

)
.

Therefore, the complex solution

(−1 + i)k

2 − i
−1
1

 = 2k/2

2 cos 3
4 kπ + sin 3

4 kπ

− cos 3
4 kπ

cos 3
4 kπ

+ i 2k/2

2 sin 3
4 kπ − cos 3

4 kπ

− sin 3
4 kπ

sin 3
4 kπ

is a combination of two independent real solutions. The complex conjugate eigenvalue
λ3 = −1 − i leads, as before, to the complex conjugate solution — and the same two
real solutions. The general real solution u(k) to the system can be written as a linear
combination of the three independent real solutions:

c1 (−2)k

4
−2

1

+ c2 2k/2

2 cos 3
4 kπ + sin 3

4 kπ

− cos 3
4 kπ

cos 3
4 kπ

+ c3 2k/2

2 sin 3
4 kπ − cos 3

4 kπ

− sin 3
4 kπ

sin 3
4 kπ

,

(7.13)
where c1, c2, c3 are arbitrary real scalars, uniquely prescribed by the initial conditions.

7.2. Stability.

With the solution formula (7.4) in hand, we are now in a position to understand
the qualitative behavior of solutions to (complete) linear iterative systems. The most
important case for applications is when all the iterates converge to 0.

Definition 7.6. The equilibrium solution u⋆ = 0 to a linear iterative system (7.1)
is called asymptotically stable if and only if all solutions u(k) → 0 as k → ∞.

Asymptotic stability relies on the following property of the coefficient matrix.

Definition 7.7. A matrix T is called convergent if its powers converge to the zero
matrix, T k → O, meaning that the individual entries of T k all go to 0 as k → ∞.

The equivalence of the convergence condition and stability of the iterative system
follows immediately from the solution formula (7.2).

Proposition 7.8. The linear iterative system u(k+1) = T u(k) has asymptotically

stable zero solution if and only if T is a convergent matrix.

10/18/06 109 c© 2006 Peter J. Olver

Proof : If T k → O, and u(k) = T k a is any solution, then clearly u(k) → 0 as k → ∞,

proving stability. Conversely, the solution u
(k)
j = T kej is the same as the jth column of

T k. If the origin is asymptotically stable, then u
(k)
j → 0. Thus, the individual columns of

T k all tend to 0, proving that T k → O. Q.E.D.

To facilitate the analysis of convergence, we shall adopt a norm ‖ · ‖ on our underlying
vector space, R

n or C
n. The reader may be inclined to choose the Euclidean (or Hermitian)

norm, but, in practice, the ∞ norm

‖u ‖∞ = max
{
|u1 |, . . . , |un |

}
(7.14)

prescribed by the vector’s maximal entry (in modulus) is usually much easier to work with.
Convergence of the iterates is equivalent to convergence of their norms:

u(k) → 0 if and only if ‖u(k) ‖ → 0 as k → ∞.

The fundamental stability criterion for linear iterative systems relies on the size of the
eigenvalues of the coefficient matrix.

Theorem 7.9. A linear iterative system (7.1) is asymptotically stable if and only if

all its (complex) eigenvalues have modulus strictly less than one: |λj | < 1.

Proof : Let us prove this result assuming that the coefficient matrix T is complete.
(The proof in the incomplete case relies on the Jordan canonical form, and is outlined in
the exercises.) If λj is an eigenvalue such that |λj | < 1, then the corresponding basis

solution u
(k)
j = λk

j vj tends to zero as k → ∞; indeed,

‖u
(k)
j ‖ = ‖λk

j vj ‖ = |λj |k ‖vj ‖ −→ 0 since |λj | < 1.

Therefore, if all eigenvalues are less than 1 in modulus, all terms in the solution formula
(7.4) tend to zero, which proves asymptotic stability: u(k) → 0. Conversely, if any eigen-
value satisfies |λj | ≥ 1, then the solution u(k) = λk

j vj does not tend to 0 as k → ∞, and
hence 0 is not asymptotically stable. Q.E.D.

Consequently, the necessary and sufficient condition for asymptotic stability of a linear
iterative system is that all the eigenvalues of the coefficient matrix lie strictly inside the
unit circle in the complex plane: |λj | < 1.

Definition 7.10. The spectral radius of a matrix T is defined as the maximal mod-
ulus of all of its real and complex eigenvalues: ρ(T) = max { |λ1 |, . . . , |λk | }.

We can then restate the Stability Theorem 7.9 as follows:

Theorem 7.11. The matrix T is convergent if and only if its spectral radius is

strictly less than one: ρ(T) < 1.

10/18/06 110 c© 2006 Peter J. Olver

If T is complete, then we can apply the triangle inequality to (7.4) to estimate

‖u(k) ‖ = ‖ c1 λk
1 v1 + · · · + cn λk

n vn ‖
≤ |λ1 |k ‖ c1v1 ‖ + · · · + |λn |k ‖ cn vn ‖
≤ ρ(T)k

(
| c1 | ‖v1 ‖ + · · · + | cn | ‖vn ‖

)
= C ρ(T)k,

(7.15)

for some constant C > 0 that depends only upon the initial conditions. In particular, if
ρ(T) < 1, then

‖u(k) ‖ ≤ C ρ(T)k −→ 0 as k → ∞, (7.16)

in accordance with Theorem 7.11. Thus, the spectral radius prescribes the rate of con-
vergence of the solutions to equilibrium. The smaller the spectral radius, the faster the
solutions go to 0.

If T has only one largest (simple) eigenvalue, so |λ1 | > |λj | for all j > 1, then the

first term in the solution formula (7.4) will eventually dominate all the others: ‖λk
1 v1 ‖ ≫

‖λk
j vj ‖ for j > 1 and k ≫ 0. Therefore, provided that c1 6= 0, the solution (7.4) has the

asymptotic formula

u(k) ≈ c1 λk
1 v1, (7.17)

and so most solutions end up parallel to v1. In particular, if |λ1 | = ρ(T) < 1, such a
solution approaches 0 along the direction of the dominant eigenvector v1 at a rate governed
by the modulus of the dominant eigenvalue. The exceptional solutions, with c1 = 0, tend
to 0 at a faster rate, along one of the other eigendirections. In practical computations,
one rarely observes the exceptional solutions. Indeed, even if the initial condition does not
involve the dominant eigenvector, round-off error during the iteration will almost inevitably
introduce a small component in the direction of v1, which will, if you wait long enough,
eventually dominate the computation.

Warning : The inequality (7.15) only applies to complete matrices. In the general
case, one can prove that the solution satisfies the slightly weaker inequality

‖u(k) ‖ ≤ C σk for all k ≥ 0, where σ > ρ(T) (7.18)

is any number larger than the spectral radius, while C > 0 is a positive constant (whose
value may depend on how close σ is to ρ).

Example 7.12. According to Example 7.5, the matrix

T =

−3 1 6
1 −1 −2

−1 −1 0

 has eigenvalues

λ1 = −2,

λ2 = −1 + i ,

λ3 = −1 − i .

Since |λ1 | = 2 > |λ2 | = |λ3 | =
√

2 , the spectral radius is ρ(T) = |λ1 | = 2. We conclude
that T is not a convergent matrix. As the reader can check, either directly, or from the
solution formula (7.13), the vectors u(k) = T ku(0) obtained by repeatedly multiplying any
nonzero initial vector u(0) by T rapidly go off to ∞, at a rate roughly equal to ρ(T)k = 2k.

10/18/06 111 c© 2006 Peter J. Olver

On the other hand, the matrix

T̃ = − 1
3 T =

1 −1
3 −2

− 1
3

1
3

2
3

1
3

1
3 0

 with eigenvalues

λ1 = 2
3 ,

λ2 = 1
3 − 1

3 i ,

λ3 = 1
3 + 1

3 i ,

has spectral radius ρ(T̃) = 2
3 , and hence is a convergent matrix. According to (7.17), if we

write the initial data u(0) = c1v1+c2v2+c3v3 as a linear combination of the eigenvectors,

then, provided c1 6= 0, the iterates have the asymptotic form u(k) ≈ c1

(
− 2

3

)k
v1, where

v1 = (4,−2, 1)
T

is the eigenvector corresponding to the dominant eigenvalue λ1 = − 2
3 .

Thus, for most initial vectors, the iterates end up decreasing in length by a factor of almost
exactly 2

3 , eventually becoming parallel to the dominant eigenvector v1. This is borne out

by a sample computation: starting with u(0) = (1, 1, 1)
T
, the first ten iterates are

−.0936
.0462

−.0231

,

−.0627
.0312

−.0158

,

−.0416
.0208

−.0105

,

−.0275
.0138

−.0069

,

−.0182
.0091

−.0046

,

−.0121
.0061

−.0030

,

−.0081
.0040

−.0020

,

−.0054
.0027

−.0013

,

−.0036
.0018

−.0009

,

−.0024
.0012

−.0006

.

7.3. Matrix Norms.

The convergence of a linear iterative system is governed by the spectral radius or
largest eigenvalue (in modulus) of the coefficient matrix. Unfortunately, finding accurate
approximations to the eigenvalues of most matrices is a nontrivial computational task. In-
deed, all practical numerical algorithms rely on some form of iteration. But using iteration
to determine the spectral radius defeats the purpose, which is to predict the behavior of
the iterative system in advance!

In this section, we present two alternative approaches for directly investigating con-
vergence and stability issues. Matrix norms form a natural class of norms on the vector
space of n×n matrices and can, in many instances, be used to establish convergence with
a minimal effort.

Matrix Norms

We work exclusively with real n × n matrices in this section, although the results
straightforwardly extend to complex matrices. We begin by fixing a norm ‖ · ‖ on R

n.
The norm may or may not come from an inner product — this is irrelevant as far as the
construction goes. Each norm on R

n will naturally induce a norm on the vector space
Mn×n of all n × n matrices. Roughly speaking, the matrix norm tells us how much a
linear transformation stretches vectors relative to the given norm.

10/18/06 112 c© 2006 Peter J. Olver

Theorem 7.13. If ‖ · ‖ is any norm on R
n, then the quantity

‖A ‖ = max { ‖Au ‖ | ‖u ‖ = 1 } (7.19)

defines a norm on Mn×n, known as the natural matrix norm.

Proof : First note that ‖A ‖ < ∞, since the maximum is taken on a closed and
bounded subset, namely the unit sphere S1 = {‖u ‖ = 1} for the given norm. To show
that (7.19) defines a norm, we need to verify the three basic axioms of Definition 5.8.

Non-negativity, ‖A ‖ ≥ 0, is immediate. Suppose ‖A ‖ = 0. This means that, for
every unit vector, ‖Au ‖ = 0, and hence Au = 0 whenever ‖u ‖ = 1. If 0 6= v ∈ R

n is
any nonzero vector, then u = v/r, where r = ‖v ‖, is a unit vector, so

Av = A(r u) = r Au = 0. (7.20)

Therefore, Av = 0 for every v ∈ R
n, which implies A = O is the zero matrix. This serves

to prove the positivity property. As for homogeneity, if c ∈ R is any scalar,

‖ cA ‖ = max { ‖ cAu ‖ } = max { | c | ‖Au ‖ } = | c | max { ‖Au ‖ } = | c | ‖A ‖.
Finally, to prove the triangle inequality, we use the fact that the maximum of the sum of
quantities is bounded by the sum of their individual maxima. Therefore, since the norm
on R

n satisfies the triangle inequality,

‖A + B ‖ = max { ‖Au + B u ‖ } ≤ max { ‖Au ‖ + ‖B u ‖ }
≤ max { ‖Au ‖ } + max { ‖B u ‖ } = ‖A ‖ + ‖B ‖. Q .E .D .

The property that distinguishes a matrix norm from a generic norm on the space of
matrices is the fact that it also obeys a very useful product inequality .

Theorem 7.14. A natural matrix norm satisfies

‖Av ‖ ≤ ‖A ‖ ‖v ‖, for all A ∈ Mn×n, v ∈ R
n. (7.21)

Furthermore,

‖AB ‖ ≤ ‖A ‖ ‖B ‖, for all A,B ∈ Mn×n. (7.22)

Proof : Note first that, by definition ‖Au ‖ ≤ ‖A ‖ for all unit vectors ‖u ‖ = 1.
Then, letting v = r u where u is a unit vector and r = ‖v ‖, we have

‖Av ‖ = ‖A(r u) ‖ = r ‖Au ‖ ≤ r ‖A ‖ = ‖v ‖ ‖A ‖,
proving the first inequality. To prove the second, we apply the first to compute

‖AB ‖ = max { ‖AB u ‖ } = max { ‖A (B u) ‖ }
≤ max { ‖A ‖ ‖B u ‖ } = ‖A ‖ max { ‖B u ‖ } = ‖A ‖ ‖B ‖. Q .E .D .

Remark : In general, a norm on the vector space of n × n matrices is called a matrix

norm if it also satisfies the multiplicative inequality (7.22). Most, but not all, matrix
norms used in applications come from norms on the underlying vector space.

10/18/06 113 c© 2006 Peter J. Olver

The multiplicative inequality (7.22) implies, in particular, that ‖A2 ‖ ≤ ‖A ‖2; equal-
ity is not necessarily valid. More generally:

Proposition 7.15. If A is a square matrix, then ‖Ak ‖ ≤ ‖A ‖k. In particular, if

‖A ‖ < 1, then ‖Ak ‖ → 0 as k → ∞, and hence A is a convergent matrix: Ak → O.

The converse is not quite true; a convergent matrix does not necessarily have ma-
trix norm less than 1, or even ≤ 1 — see Example 7.20 below. An alternative proof of
Proposition 7.15 can be based on the following useful estimate:

Theorem 7.16. The spectral radius of a matrix is bounded by its matrix norm:

ρ(A) ≤ ‖A ‖. (7.23)

Proof : If λ is a real eigenvalue, and u a corresponding unit eigenvector, so that
Au = λu with ‖u ‖ = 1, then

‖Au ‖ = ‖λu ‖ = |λ | ‖u ‖ = |λ |. (7.24)

Since ‖A ‖ is the maximum of ‖Au ‖ over all possible unit vectors, this implies that

|λ | ≤ ‖A ‖. (7.25)

If all the eigenvalues of A are real, then the spectral radius is the maximum of their absolute
values, and so it too is bounded by ‖A ‖, proving (7.23).

If A has complex eigenvalues, then we need to work a little harder to establish (7.25).
(This is because the matrix norm is defined by the effect of A on real vectors, and so
we cannot directly use the complex eigenvectors to establish the required bound.) Let
λ = r e i θ be a complex eigenvalue with complex eigenvector z = x + iy. Define

m = min
{
‖Re (e i ϕ z) ‖ = ‖ (cos ϕ)x − (sinϕ)y ‖

∣∣ 0 ≤ ϕ ≤ 2π
}

. (7.26)

Since the indicated subset is a closed curve (in fact, an ellipse) that does not go through
the origin, m > 0. Let ϕ0 denote the value of the angle that produces the minimum, so

m = ‖ (cos ϕ0)x − (sinϕ0)y ‖ = ‖Re
(
e i ϕ0 z

)
‖.

Define the real unit vector

u =
Re
(
e i ϕ0 z

)

m
=

(cos ϕ0)x − (sinϕ0)y

m
, so that ‖u ‖ = 1.

Then

Au =
1

m
Re
(
e i ϕ0 A z

)
=

1

m
Re
(
e i ϕ0 r e i θ z

)
=

r

m
Re
(
e i (ϕ0+θ) z

)
.

Therefore, keeping in mind that m is the minimal value in (7.26),

‖A ‖ ≥ ‖Au ‖ =
r

m
‖Re

(
e i (ϕ0+θ) z

)
‖ ≥ r = |λ |, (7.27)

and so (7.25) also holds for complex eigenvalues. Q.E.D.

10/18/06 114 c© 2006 Peter J. Olver

Explicit Formulae

Let us now determine the explicit formulae for the matrix norms induced by our most
important vector norms on R

n. The simplest to handle is the ∞ norm

‖v ‖∞ = max {| v1 |, . . . , | vn |}.

Definition 7.17. The ith absolute row sum of a matrix A is the sum of the absolute
values of the entries in the ith row:

si = | ai1 | + · · · + | ain | =
n∑

j =1

| aij |. (7.28)

Proposition 7.18. The ∞ matrix norm of a matrix A is equal to its maximal

absolute row sum:

‖A ‖∞ = max{s1, . . . , sn} = max

n∑

j =1

| aij |

∣∣∣∣∣∣
1 ≤ i ≤ n

 . (7.29)

Proof : Let s = max{s1, . . . , sn} denote the right hand side of (7.29). Given any
v ∈ R

n, we compute

‖Av ‖∞ = max

∣∣∣∣∣∣

n∑

j =1

aijvj

∣∣∣∣∣∣

 ≤ max

n∑

j =1

| aijvj |

≤ max

n∑

j =1

| aij |

 max

{
| vj |

}
= s ‖v ‖∞.

In particular, by specializing to ‖v ‖∞ = 1, we deduce that ‖A ‖∞ ≤ s.

On the other hand, suppose the maximal absolute row sum occurs at row i, so

si =
n∑

j =1

| aij | = s. (7.30)

Let u ∈ R
n be the specific vector that has the following entries: uj = +1 if aij > 0, while

uj = −1 if aij < 0. Then ‖u ‖∞ = 1. Moreover, since aij uj = | aij |, the ith entry of Au

is equal to the ith absolute row sum (7.30). This implies that

‖A ‖∞ ≥ ‖Au ‖∞ ≥ s. Q .E .D .

Combining Propositions 7.15 and 7.18, we have established the following convergence
criterion.

Corollary 7.19. If all the absolute row sums of A are strictly less than 1, then

‖A ‖∞ < 1 and hence A is a convergent matrix.

10/18/06 115 c© 2006 Peter J. Olver

Example 7.20. Consider the symmetric matrix A =

(
1
2 − 1

3

− 1
3

1
4

)
. Its two abso-

lute row sums are
∣∣ 1

2

∣∣+
∣∣− 1

3

∣∣ = 5
6 ,
∣∣− 1

3

∣∣+
∣∣ 1

4

∣∣ = 7
12 , so

‖A ‖∞ = max
{

5
6 , 7

12

}
= 5

6 ≈ .83333

Since the norm is less than 1, A is a convergent matrix. Indeed, its eigenvalues are

λ1 =
9 +

√
73

24
≈ .7310 . . . , λ2 =

9 −
√

73

24
≈ .0190 . . . ,

and hence the spectral radius is

ρ(A) =
9 +

√
73

24
≈ .7310 . . . ,

which is slightly smaller than its ∞ norm.

The row sum test for convergence is not always conclusive. For example, the matrix

A =

(
1
2 − 3

5

− 3
5

1
4

)
has matrix norm ‖A ‖∞ = 11

10 > 1. (7.31)

On the other hand, its eigenvalues are (15 ±
√

601)/40, and hence its spectral radius is

ρ(A) =
15 +

√
601

40
≈ .98788 . . . ,

which implies that A is (just barely) convergent, even though its maximal row sum is larger
than 1.

The matrix norm associated with the Euclidean norm ‖v ‖2 =
√

v2
1 + · · · + v2

n is
given by largest singular value.

Proposition 7.21. The matrix norm corresponding to the Euclidean norm equals

the maximal singular value:

‖A ‖2 = σ1 = max {σ1, . . . , σr}, r = rankA > 0, while ‖O ‖2 = 0. (7.32)

Unfortunately, as we discovered in Example 7.20, matrix norms are not a foolproof test
of convergence. There exist convergent matrices such that ρ(A) < 1 and yet have matrix
norm ‖A ‖ ≥ 1. In such cases, the matrix norm is not able to predict convergence of the
iterative system, although one should expect the convergence to be quite slow. Although
such pathology might show up in the chosen matrix norm, it turns out that one can always
rig up some matrix norm for which ‖A ‖ < 1. This follows from a more general result,
whose proof can be found in [40].

Theorem 7.22. Let A have spectral radius ρ(A). If ε > 0 is any positive number,

then there exists a matrix norm ‖ · ‖ such that

ρ(A) ≤ ‖A ‖ < ρ(A) + ε. (7.33)

Corollary 7.23. If A is a convergent matrix, then there exists a matrix norm such

that ‖A ‖ < 1.

10/18/06 116 c© 2006 Peter J. Olver

Proof : By definition, A is convergent if and only if ρ(A) < 1. Choose ε > 0 such that
ρ(A) + ε < 1. Any norm that satisfies (7.33) has the desired property. Q.E.D.

Remark : Based on the accumulated evidence, one might be tempted to speculate that
the spectral radius itself defines a matrix norm. Unfortunately, this is not the case. For

example, the nonzero matrix A =

(
0 1
0 0

)
has zero spectral radius, ρ(A) = 0, in violation

of a basic norm axiom.

7.4. Iterative Solution of Linear Algebraic Systems.

In this section, we return to the most basic problem in linear algebra: solving the
linear algebraic system

Au = b, (7.34)

consisting of n equations in n unknowns. We assume that the coefficient matrix A is
nonsingular, and so the solution u = A−1b is unique.

We will introduce several popular iterative methods that can be used to approximate
the solution for certain classes of coefficient matrices. The resulting algorithms will provide
an attractive alternative to Gaussian Elimination, particularly when dealing with the large,
sparse systems that arise in the numerical solution to differential equations. One major
advantage of an iterative technique is that it (typically) produces progressively more and
more accurate approximations to the solution, and hence, by prolonging the iterations,
can, at least in principle, compute the solution to any desired order of accuracy. Moreover,
even performing just a few iterations may produce a reasonable approximation to the
true solution — in stark contrast to Gaussian Elimination, where one must continue the
algorithm through to the bitter end before any useful information can be extracted. A
partially completed Gaussian Elimination is of scant use! A significant weakness is that
iterative schemes are not universally applicable, and their design relies upon the detailed
structure of the coefficient matrix.

We shall be attempting to solve the linear system (7.34) by replacing it with an
iterative system of the form

u(k+1) = T u(k) + c, u(0) = u0, (7.35)

in which T is an n×n matrix and c a vector. This represents a slight generalization of our
earlier iterative system (7.1), in that the right hand side is now an affine function of u(k).
Suppose that the solutions to the affine iterative system converge: u(k) → u⋆ as k → ∞.
Then, by taking the limit of both sides of (7.35), we discover that the limit point u⋆ solves
the fixed-point equation

u⋆ = T u⋆ + c. (7.36)

Thus, we need to design our iterative system so that

(a) te solution to the fixed-point system u = T u + c coincides with the solution to
the original system Au = b, and

(b) the iterates defined by (7.35) are known to converge to the fixed point.

Before exploring these issues in depth, let us look at a simple example.

10/18/06 117 c© 2006 Peter J. Olver

Example 7.24. Consider the linear system

3x + y − z = 3, x − 4y + 2z = −1, −2x − y + 5z = 2, (7.37)

which has the vectorial form Au = b, with

A =

3 1 −1
1 −4 2

−2 −1 5

 , u =

x
y
z

, b =

3
−1

2

.

One easy way to convert a linear system into a fixed-point form is to rewrite it as

u = Iu − Au + Au = (I − A)u + b = T u + c, where T = I − A, c = b.

In the present case,

T = I − A =

−2 −1 1
−1 5 −2

2 1 −4

 , c = b =

3
−1

2

.

The resulting iterative system u(k+1) = T u(k) + c has the explicit form

x(k+1) = −2x(k) − y(k) + z(k) + 3,

y(k+1) = −x(k) + 5y(k) − 2z(k) − 1,

z(k+1) = 2x(k) + y(k) − 4z(k) + 2.

(7.38)

Another possibility is to solve the first equation in (7.37) for x, the second for y, and
the third for z, so that

x = −1
3 y + 1

3 z + 1, y = 1
4 x + 1

2 z + 1
4 , z = 2

5 x + 1
5 y + 2

5 .

The resulting equations have the form of a fixed-point system

u = T̂ u + ĉ, in which T̂ =

0 −1
3

1
3

1
4 0 1

2
2
5

1
5 0

, ĉ =

1
1
4
2
5

.

The corresponding iteration u(k+1) = T̂ u(k) + ĉ takes the explicit form

x(k+1) = − 1
3 y(k) + 1

3 z(k) + 1,

y(k+1) = 1
4 x(k) + 1

2 z(k) + 1
4 ,

z(k+1) = 2
5 x(k) + 1

5 y(k) + 2
5 .

(7.39)

Do the resulting iterative schemes converge to the solution x = y = z = 1? The
results, starting with initial guess u(0) = (0, 0, 0), are tabulated as follows.

10/18/06 118 c© 2006 Peter J. Olver

k u(k+1) = T u(k) + b u(k+1) = T̂ u(k) + ĉ

0 0 0 0 0 0 0

1 3 −1 2 1 .25 .4

2 0 −13 −1 1.05 .7 .85

3 15 −64 −7 1.05 .9375 .96

4 30 −322 −4 1.0075 .9925 1.0075

5 261 −1633 −244 1.005 1.00562 1.0015

6 870 −7939 −133 .9986 1.002 1.0031

7 6069 −40300 −5665 1.0004 1.0012 .9999

8 22500 −196240 −5500 .9995 1.0000 1.0004

9 145743 −992701 −129238 1.0001 1.0001 .9998

10 571980 −4850773 −184261 .9999 .9999 1.0001

11 3522555 −24457324 −2969767 1.0000 1.0000 1.0000

For the first scheme, the answer is clearly no — the iterates become wilder and wilder.
Indeed, this occurs no matter how close the initial guess u(0) is to the actual solution —
unless u(0) = u⋆ happens to be exactly equal. In the second case, the iterates do converge
to the solution, and it does not take too long, even starting from a poor initial guess, to
obtain a reasonably accurate approximation. Of course, in such a simple example, it would
be silly to use iteration, when Gaussian Elimination can be done by hand and produces the
solution almost immediately. However, we use the small examples for illustrative purposes,
bringing the full power of iterative schemes to bear on the large linear systems arising in
applications.

The convergence of solutions to (7.35) to the fixed point u⋆ is based on the behavior
of the error vectors

e(k) = u(k) − u⋆, (7.40)

which measure how close the iterates are to the true solution. Let us find out how the
successive error vectors are related. We compute

e(k+1) = u(k+1) − u⋆ = (T u(k) + a) − (T u⋆ + a) = T (u(k) − u⋆) = T e(k),

showing that the error vectors satisfy a linear iterative system

e(k+1) = T e(k), (7.41)

with the same coefficient matrix T . Therefore, they are given by the explicit formula

e(k) = T k e(0).

Now, the solutions to (7.35) converge to the fixed point, u(k) → u⋆, if and only if the error
vectors converge to zero: e(k) → 0 as k → ∞. Our analysis of linear iterative systems, as
summarized in Proposition 7.8, establishes the following basic convergence result.

10/18/06 119 c© 2006 Peter J. Olver

Proposition 7.25. The affine iterative system (7.35) will converge to the solution

to the fixed point equation (7.36) if and only if T is a convergent matrix: ρ(T) < 1.

The spectral radius ρ(T) of the coefficient matrix will govern the speed of convergence.
Therefore, our main goal is to construct an iterative scheme whose coefficient matrix has
as small a spectral radius as possible. At the very least, the spectral radius must be less
than 1. For the two iterative schemes presented in Example 7.24, the spectral radii of the
coefficient matrices are found to be

ρ(T) ≈ 4.9675, ρ(T̂) = .5.

Therefore, T is not a convergent matrix, which explains the wild behavior of its iterates,
whereas T̂ is convergent, and one expects the error to roughly decrease by a factor of 1

2 at
each step.

The Jacobi Method

The first general iterative scheme for solving linear systems is based on the same
simple idea used in our illustrative Example 7.24. Namely, we solve the ith equation in the
system Au = b, which is

n∑

j =1

aij uj = bi,

for the ith variable ui. To do this, we need to assume that all the diagonal entries of A are
nonzero: aii 6= 0. The result is

ui = − 1

aii

n∑

j=1
j 6=i

aij uj +
bi

aii

=
n∑

j =1

tij uj + ci, (7.42)

where

tij =

−
aij

aii

, i 6= j,

0, i = j,

and ci =
bi

aii

. (7.43)

The result has the form of a fixed-point system u = T u + c, and forms the basis of the
Jacobi method

u(k+1) = T u(k) + c, u(0) = u0, (7.44)

named after the influential nineteenth century German analyst Carl Jacobi. The explicit
form of the Jacobi iterative scheme is

u
(k+1)
i = − 1

aii

n∑

j=1
j 6=i

aij u
(k)
j +

bi

aii

. (7.45)

It is instructive to rederive the Jacobi method in a direct matrix form. We begin by
decomposing the coefficient matrix

A = L + D + U (7.46)

10/18/06 120 c© 2006 Peter J. Olver

into the sum of a strictly lower triangular matrix L, a diagonal matrix D, and a strictly
upper triangular matrix U , each of which is uniquely specified. For example, when

A =

3 1 −1
1 −4 2

−2 −1 5

 , (7.47)

the decomposition (7.46) yields

L =

0 0 0
1 0 0

−2 −1 0

 , D =

3 0 0
0 −4 0
0 0 5

 , U =

0 1 −1
0 0 2
0 0 0

 .

Warning : The L,D,U in the elementary additive decomposition (7.46) have nothing
to do with the L,D,U appearing in factorizations arising from Gaussian Elimination. The
latter play no role in the iterative solution methods considered here.

We then rewrite the system

Au = (L + D + U)u = b in the alternative form D u = − (L + U)u + b.

The Jacobi fixed point equations (7.42) amounts to solving for

u = T u + c, where T = −D−1(L + U), c = D−1b. (7.48)

For the example (7.47), we recover the Jacobi iteration matrix as

T = −D−1(L + U) =

0 − 1
3

1
3

1
4 0 1

2
2
5

1
5 0

.

Deciding in advance whether or not the Jacobi method will converge is not easy.
However, it can be shown that Jacobi iteration is guaranteed to converge when the original
coefficient matrix has large diagonal entries, in accordance with Definition 6.25.

Theorem 7.26. If A is strictly diagonally dominant, then the associated Jacobi

iteration scheme converges.

Proof : We shall prove that ‖T ‖∞ < 1, and so Corollary 7.19 implies that T is a
convergent matrix. The absolute row sums of the Jacobi matrix T = −D−1(L + U) are,
according to (7.43),

si =

n∑

j =1

| tij | =
1

| aii |

n∑

j=1
j 6=i

| aij | < 1,
(7.49)

because A is strictly diagonally dominant. Thus, ‖T ‖∞ = max{s1, . . . , sn} < 1, and the
result follows. Q.E.D.

10/18/06 121 c© 2006 Peter J. Olver

Example 7.27. Consider the linear system

4x + y + w = 1,

x + 4y + z + v = 2,

y + 4z + w = −1,

x + z + 4w + v = 2,

y + w + 4v = 1.

The Jacobi method solves the respective equations for x, y, z, w, v, leading to the iterative
scheme

x(k+1) = − 1
4 y(k) − 1

4 w(k) + 1
4 ,

y(k+1) = − 1
4 x(k) − 1

4 z(k) − 1
4 v(k) + 1

2 ,

z(k+1) = − 1
4 y(k) − 1

4 w(k) − 1
4 ,

w(k+1) = − 1
4 x(k) − 1

4 z(k) − 1
4 v(k) + 1

2 ,

v(k+1) = − 1
4 y(k) − 1

4 w(k) + 1
4 .

The coefficient matrix of the original system,

A =

4 1 0 1 0
1 4 1 0 1
0 1 4 1 0
1 0 1 4 1
0 1 0 1 4

,

is diagonally dominant, and so we are guaranteed that the Jacobi iterations will eventually
converge to the solution. Indeed, the Jacobi scheme takes the iterative form (7.48), with

T =

0 −1
4 0 −1

4 0

− 1
4 0 −1

4 0 −1
4

0 −1
4 0 −1

4 0

− 1
4 0 −1

4 0 −1
4

0 −1
4 0 −1

4 0

, c =

1
4
1
2

− 1
4
1
2
1
4

.

Note that ‖T ‖∞ = 3
4 < 1, validating convergence of the scheme. Thus, to obtain, say,

four decimal place accuracy in the solution, we estimate that it would take less than
log(.5 × 10−4)/ log .75 ≈ 34 iterates, assuming a moderate initial error. But the matrix
norm always underestimates the true rate of convergence, as prescribed by the spectral
radius ρ(T) = .6124, which would imply about log(.5× 10−4)/ log .6124 ≈ 20 iterations to
obtain the desired accuracy. Indeed, starting with the initial guess x(0) = y(0) = z(0) =
w(0) = v(0) = 0, the Jacobi iterates converge to the exact solution

x = − .1, y = .7, z = − .6, w = .7, v = − .1,

to within four decimal places in exactly 20 iterations.

10/18/06 122 c© 2006 Peter J. Olver

The Gauss–Seidel Method

The Gauss–Seidel method relies on a slightly more refined implementation of the
Jacobi process. To understand how it works, it will help to write out the Jacobi iteration
scheme (7.44) in full detail:

u
(k+1)
1 = t12 u

(k)
2 + t13 u

(k)
3 + · · · + t1,n−1 u

(k)
n−1 + t1n u(k)

n + c1,

u
(k+1)
2 = t21 u

(k)
1 + t23 u

(k)
3 + · · · + t2,n−1 u

(k)
n−1 + t2n u(k)

n + c2,

u
(k+1)
3 = t31 u

(k)
1 + t32 u

(k)
2 · · · + t3,n−1 u

(k)
n−1 + t3n u(k)

n + c3,

...
...

...
. . .

. . .
...

u(k+1)
n = tn1 u

(k)
1 + tn2 u

(k)
2 + tn3 u

(k)
3 + · · · + tn,n−1 u

(k)
n−1 + cn,

(7.50)

where we are explicitly noting the fact that the diagonal entries of T vanish. Observe
that we are using the entries of u(k) to compute all of the updated values of u(k+1).
Presumably, if the iterates u(k) are converging to the solution u⋆, then their individual

entries are also converging, and so each u
(k+1)
j should be a better approximation to u⋆

j

than u
(k)
j is. Therefore, if we begin the kth Jacobi iteration by computing u

(k+1)
1 using the

first equation, then we are tempted to use this new and improved value to replace u
(k)
1 in

each of the subsequent equations. In particular, we employ the modified equation

u
(k+1)
2 = t21 u

(k+1)
1 + t23 u

(k)
3 + · · · + t1n u(k)

n + c2

to update the second component of our iterate. This more accurate value should then be

used to update u
(k+1)
3 , and so on.

The upshot of these considerations is the Gauss–Seidel method

u
(k+1)
i = ti1 u

(k+1)
1 + · · · + ti,i−1 u

(k+1)
i−1 + ti,i+1 u

(k)
i+1 + · · · + tin u(k)

n + ci, i = 1, . . . , n,

(7.51)
named after Gauss (as usual!) and the German astronomer/mathematician Philipp von
Seidel. At the kth stage of the iteration, we use (7.51) to compute the revised entries

u
(k+1)
1 , u

(k+1)
2 , . . . , u(k+1)

n in their numerical order. Once an entry has been updated, the
new value is immediately used in all subsequent computations.

Example 7.28. For the linear system

3x + y − z = 3, x − 4y + 2z = −1, −2x − y + 5z = 2,

the Jacobi iteration method was given in (7.39). To construct the corresponding Gauss–
Seidel scheme we use updated values of x, y and z as they become available. Explicitly,

x(k+1) = −1
3 y(k) + 1

3 z(k) + 1,

y(k+1) = 1
4 x(k+1) + 1

2 z(k) + 1
4 ,

z(k+1) = 2
5 x(k+1) + 1

5 y(k+1) + 2
5 .

(7.52)

10/18/06 123 c© 2006 Peter J. Olver

The resulting iterates starting with u(0) = 0 are

u(1) =

1.0000
.5000
.9000

, u(2) =

1.1333
.9833

1.0500

, u(3) =

1.0222
1.0306
1.0150

, u(4) =

.9948
1.0062
.9992

,

u(5) =

.9977

.9990

.9989

, u(6) =

1.0000
.9994
.9999

, u(7) =

1.0001
1.0000
1.0001

, u(8) =

1.0000
1.0000
1.0000

,

and have converged to the solution, to 4 decimal place accuracy, after only 8 iterations —
as opposed to the 11 iterations required by the Jacobi method.

The Gauss–Seidel iteration scheme is particularly suited to implementation on a serial

computer, since one can immediately replace each component u
(k)
i by its updated value

u
(k+1)
i , thereby also saving on storage in the computer’s memory. In contrast, the Jacobi

scheme requires us to retain all the old values u(k) until the new approximation u(k+1) has
been computed. Moreover, Gauss–Seidel typically (although not always) converges faster
than Jacobi, making it the iterative algorithm of choice for serial processors. On the other
hand, with the advent of parallel processing machines, variants of the parallelizable Jacobi
scheme have recently been making a comeback.

What is Gauss–Seidel really up to? Let us rewrite the basic iterative equation (7.51)
by multiplying by aii and moving the terms involving u(k+1) to the left hand side. In view
of the formula (7.43) for the entries of T , the resulting equation is

ai1 u
(k+1)
1 + · · · + ai,i−1 u

(k+1)
i−1 + aii u

(k+1)
i = − ai,i+1 u

(k)
i+1 − · · · − ain u(k)

n + bi.

In matrix form, taking (7.46) into account, this reads

(L + D)u(k+1) = −U u(k) + b, (7.53)

and so can be viewed as a linear system of equations for u(k+1) with lower triangular
coefficient matrix L + D. Note that the fixed point of (7.53), namely the solution to

(L + D)u = −U u + b,

coincides with the solution to the original system

Au = (L + D + U)u = b.

In other words, the Gauss–Seidel procedure is merely implementing Forward Substitution
to solve the lower triangular system (7.53) for the next iterate:

u(k+1) = − (L + D)−1U u(k) + (L + D)−1 b.

The latter is in our more usual iterative form

u(k+1) = T̃ u(k) + c̃, where T̃ = −(L + D)−1U, c̃ = (L + D)−1 b. (7.54)

Consequently, the convergence of the Gauss–Seidel iterates is governed by the spectral
radius of the coefficient matrix T̃ .

10/18/06 124 c© 2006 Peter J. Olver

Returning to Example 7.28, we have

A =

3 1 −1
1 −4 2

−2 −1 5

 , L + D =

3 0 0
1 −4 0

−2 −1 5

 , U =

0 1 −1
0 0 2
0 0 0

 .

Therefore, the Gauss–Seidel matrix is

T̃ = −(L + D)−1U =

0 −.3333 .3333

0 −.0833 .5833

0 −.1500 .2500

.

Its eigenvalues are 0 and .0833±.2444 i , and hence its spectral radius is ρ(T̃) ≈ .2582. This
is roughly the square of the Jacobi spectral radius of .5, which tell us that the Gauss–Seidel
iterations will converge about twice as fast to the solution. This can be verified by more
extensive computations. Although examples can be constructed where the Jacobi method
converges faster, in many practical situations Gauss–Seidel tends to converge roughly twice
as fast as Jacobi.

Completely general conditions guaranteeing convergence of the Gauss–Seidel method
are hard to establish. But, like the Jacobi scheme, it is guaranteed to converge when the
original coefficient matrix is strictly diagonally dominant.

Theorem 7.29. If A is strictly diagonally dominant, then the Gauss–Seidel iteration

scheme for solving Au = b converges.

Proof : Let e(k) = u(k) − u⋆ denote the kth Gauss–Seidel error vector. As in (7.41),

the error vectors satisfy the linear iterative system e(k+1) = T̃ e(k), but a direct estimate of
‖ T̃ ‖∞ is not so easy. Instead, let us write out the linear iterative system in components:

e
(k+1)
i = ti1 e

(k+1)
1 + · · · + ti,i−1 e

(k+1)
i−1 + ti,i+1 e

(k)
i+1 + · · · + tin e(k)

n . (7.55)

Let
m(k) = ‖ e(k) ‖∞ = max

{
| e(k)

1 |, . . . , | e(k)
n |

}
(7.56)

denote the ∞ norm of the kth error vector. To prove convergence, e(k) → 0, it suffices to
show that m(k) → 0 as k → ∞. We claim that diagonal dominance of A implies that

m(k+1) ≤ s m(k), where s = ‖T ‖∞ < 1 (7.57)

denotes the ∞ matrix norm of the Jacobi matrix (not the Gauss–Seidel matrix), which,
by (7.49), is less than 1. We infer that m(k) ≤ sk m(0) → 0 as k → ∞, demonstrating the
theorem.

To prove (7.57), we use induction on i = 1, . . . , n. Our induction hypothesis is

| e(k+1)
j | ≤ s m(k) < m(k) for j = 1, . . . , i − 1.

(When i = 1, there is no assumption.) Moreover, by (7.56),

| e(k)
j | ≤ m(k) for all j = 1, . . . , n.

10/18/06 125 c© 2006 Peter J. Olver

We use these two inequalities to estimate | e(k+1)
i | from (7.55):

| e(k+1)
i | ≤ | ti1 | | e

(k+1)
1 | + · · · + | ti,i−1 | | e

(k+1)
i−1 | + | ti,i+1 | | e

(k)
i+1 | + · · · + | tin | | e(k)

n |
≤
(
| ti1 | + · · · + | tin |

)
m(k) ≤ s m(k),

which completes the induction step. As a result, the maximum

m(k+1) = max
{
| e(k+1)

1 |, . . . , | e(k+1)
n |

}
≤ s m(k)

also satisfies the same bound, and hence (7.57) follows. Q.E.D.

Example 7.30. For the linear system considered in Example 7.27, the Gauss–Seidel
iterations take the form

x(k+1) = − 1
4 y(k) − 1

4 w(k) + 1
4 ,

y(k+1) = − 1
4 x(k+1) − 1

4 z(k) − 1
4 v(k) + 1

2 ,

z(k+1) = − 1
4 y(k+1) − 1

4 w(k) − 1
4 ,

w(k+1) = − 1
4 x(k+1) − 1

4 z(k+1) − 1
4 v(k) + 1

2 ,

v(k+1) = − 1
4 y(k+1) − 1

4 w(k+1) + 1
4 .

Starting with x(0) = y(0) = z(0) = w(0) = v(0) = 0, the Gauss–Seidel iterates converge
to the solution x = − .1, y = .7, z = − .6, w = .7, v = − .1, to four decimal places in 11
iterations, again roughly twice as fast as the Jacobi scheme. Indeed, the convergence rate
is governed by the corresponding Gauss–Seidel matrix T̃ , which is

4 0 0 0 0
1 4 0 0 0
0 1 4 0 0
1 0 1 4 0
0 1 0 1 4

−1

0 1 0 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 =

0 −.2500 0 −.2500 0
0 .0625 −.2500 .0625 −.2500
0 −.0156 .0625 −.2656 .0625
0 .0664 −.0156 .1289 −.2656
0 −.0322 .0664 −.0479 .1289

.

Its spectral radius is ρ(T̃) = .3936, which is, as in the previous example, approximately
the square of the spectral radius of the Jacobi coefficient matrix, which explains the speed
up in convergence.

Successive Over–Relaxation (SOR)

As we know, the smaller the spectral radius (or matrix norm) of the coefficient matrix,
the faster the convergence of the iterative scheme. One of the goals of researchers in
numerical linear algebra is to design new methods for accelerating the convergence. In his
1950 thesis, the American mathematician David Young discovered a simple modification of
the Jacobi and Gauss–Seidel methods that can, in favorable situations, lead to a dramatic
speed up in the rate of convergence. The method, known as successive over-relaxation,
and often abbreviated as SOR, has become the iterative method of choice in many modern
applications, [13, 47]. In this subsection, we provide a brief overview.

10/18/06 126 c© 2006 Peter J. Olver

In practice, finding the optimal iterative algorithm to solve a given linear system is
as hard as solving the system itself. Therefore, researchers have relied on a few tried
and true techniques for designing iterative schemes that can be used in the more common
applications. Consider a linear algebraic system

Au = b.

Every decomposition
A = M − N (7.58)

of the coefficient matrix into the difference of two matrices leads to an equivalent system
of the form

M u = N u + b. (7.59)

Provided that M is nonsingular, we can rewrite the system in the fixed point form

u = M−1N u + M−1b = T u + c, where T = M−1N, c = M−1b.

Now, we are free to choose any such M , which then specifies N = A−M uniquely. However,
for the resulting iterative scheme u(k+1) = T u(k) + c to be practical we must arrange that

(a) T = M−1N is a convergent matrix, and

(b) M can be easily inverted.

The second requirement ensures that the iterative equations

M u(k+1) = N u(k) + b (7.60)

can be solved for u(k+1) with minimal computational effort. Typically, this requires that
M be either a diagonal matrix, in which case the inversion is immediate, or upper or lower
triangular, in which case one employs Back or Forward Substitution to solve for u(k+1).

With this in mind, we now introduce the SOR method. It relies on a slight gener-
alization of the Gauss–Seidel decomposition (7.53) of the matrix into lower plus diagonal
and upper triangular parts. The starting point is to write

A = L + D + U =
[
L + α D

]
−
[
(α − 1) D − U

]
, (7.61)

where 0 6= α is an adjustable scalar parameter. We decompose the system Au = b as

(L + α D)u =
[
(α − 1) D − U

]
u + b. (7.62)

It turns out to be slightly more convenient to divide (7.62) through by α and write the
resulting iterative system in the form

(ωL + D)u(k+1) =
[
(1 − ω) D − ω U

]
u(k) + ω b, (7.63)

where ω = 1/α is called the relaxation parameter . Assuming, as usual, that all diagonal
entries of A are nonzero, the matrix ωL + D is an invertible lower triangular matrix, and
so we can use Forward Substitution to solve the iterative system (7.63) to recover u(k+1).
The explicit formula for its ith entry is

u
(k+1)
i = ω ti1 u

(k+1)
1 + · · · + ω ti,i−1 u

(k+1)
i−1 + (1 − ω) u

(k)
i +

+ ω ti,i+1 u
(k)
i+1 + · · · + ω tin u(k)

n + ω ci,
(7.64)

10/18/06 127 c© 2006 Peter J. Olver

where tij and ci denote the original Jacobi values (7.43). As in the Gauss–Seidel approach,
we update the entries u

(k+1)
i in numerical order i = 1, . . . , n. Thus, to obtain the SOR

scheme (7.64), we merely multiply the right hand side of the Gauss–Seidel scheme (7.51)

by the adjustable relaxation parameter ω and append the diagonal term (1 − ω) u
(k)
i . In

particular, if we set ω = 1, then the SOR method reduces to the Gauss–Seidel method.
Choosing ω < 1 leads to an under-relaxed method, while ω > 1, known as over-relaxation,
is the choice that works in most practical instances.

To analyze the SOR scheme in detail, we rewrite (7.63) in the fixed point form

u(k+1) = Tω u(k) + cω, (7.65)

where

Tω = (ωL + D)−1
[
(1 − ω) D − ω U

]
, cω = (ωL + D)−1 ω b. (7.66)

The rate of convergence is governed by the spectral radius of the matrix Tω. The goal
is to choose the relaxation parameter ω so as to make the spectral radius of Tω as small
as possible. As we will see, a clever choice of ω can result in a dramatic speed up in the
convergence rate. Let us look at an elementary example.

Example 7.31. Consider the matrix A =

(
2 −1

−1 2

)
, which we decompose as A =

L + D + U , where

L =

(
0 0

−1 0

)
, D =

(
2 0
0 2

)
, U =

(
0 −1
0 0

)
.

Jacobi iteration is based on the coefficient matrix T = −D−1(L + U) =

(
0 1

2
1
2 0

)
. Its

spectral radius is ρ(T) = .5, and hence the Jacobi scheme takes, on average, roughly
3.3 ≈ −1/ log10 .5 iterations to produce each new decimal place in the solution.

The SOR scheme (7.63) takes the explicit form

(
2 0

−ω 2

)
u(k+1) =

(
2(1 − ω) ω

0 2(1 − ω)

)
u(k) + ω b,

where Gauss–Seidel is the particular case ω = 1. The SOR coefficient matrix is

Tω =

(
2 0

−ω 2

)−1(
2(1 − ω) ω

0 2(1 − ω)

)
=

(
1 − ω 1

2 ω
1
2 ω(1 − ω) 1

4 (2 − ω)2

)
.

To compute the eigenvalues of Tω, we form its characteristic equation

0 = det(Tω − λ I) = λ2 −
(
2 − 2ω + 1

4 ω2
)
λ + (1 − ω)2 = (λ + ω − 1)2 − 1

4 λω2. (7.67)

Our goal is to choose ω so that

(a) both eigenvalues are less than 1 in modulus, so |λ1 |, |λ2 | < 1. This is the minimal
requirement for convergence of the method.

(b) the largest eigenvalue (in modulus) is as small as possible. This will give the smallest
spectral radius for Tω and hence the fastest convergence rate.

10/18/06 128 c© 2006 Peter J. Olver

The product of the two eigenvalues is the determinant,

λ1 λ2 = detTω = (1 − ω)2.

If ω ≤ 0 or ω ≥ 2, then detTω ≥ 1, and hence at least one of the eigenvalues would have
modulus larger than 1. Thus, in order to ensure convergence, we must require 0 < ω < 2.
For Gauss–Seidel, at ω = 1, the eigenvalues are λ1 = 1

4 , λ2 = 0, and the spectral radius is
ρ(T1) = .25. This is exactly the square of the Jacobi spectral radius, and hence the Gauss–
Seidel iterates converge twice as fast; so it only takes, on average, about −1/ log10 .25 =
1.66 Gauss–Seidel iterations to produce each new decimal place of accuracy. It can be
shown that as ω increases above 1, the two eigenvalues move along the real axis towards
each other. They coincide when

ω = ω⋆ = 8 − 4
√

3 ≈ 1.07, at which point λ1 = λ2 = ω⋆ − 1 = .07 = ρ(Tω),

which is the convergence rate of the optimal SOR scheme. Each iteration produces slightly
more than one new decimal place in the solution, which represents a significant improve-
ment over the Gauss–Seidel convergence rate. It takes about twice as many Gauss–Seidel
iterations (and four times as many Jacobi iterations) to produce the same accuracy as this
optimal SOR method.

Of course, in such a simple 2×2 example, it is not so surprising that we can construct
the best value for the relaxation parameter by hand. Young was able to find the optimal
value of the relaxation parameter for a broad class of matrices that includes most of those
arising in the finite difference and finite element numerical solutions to ordinary and partial
differential equations. For the matrices in Young’s class, the Jacobi eigenvalues occur in
signed pairs. If ±µ are a pair of eigenvalues for the Jacobi method, then the corresponding
eigenvalues of the SOR iteration matrix satisfy the quadratic equation

(λ + ω − 1)2 = λω2 µ2. (7.68)

If ω = 1, so we have standard Gauss–Seidel, then λ2 = λµ2, and so the eigenvalues are
λ = 0, λ = µ2. The Gauss–Seidel spectral radius is therefore the square of the Jacobi
spectral radius, and so (at least for matrices in the Young class) its iterates converge twice
as fast. The quadratic equation (7.68) has the same properties as in the 2 × 2 version
(7.67) (which corresponds to the case µ = 1

2), and hence the optimal value of ω will be the
one at which the two roots are equal:

λ1 = λ2 = ω − 1, which occurs when ω =
2 − 2

√
1 − µ2

µ2
=

2

1 +
√

1 − µ2
.

Therefore, if ρJ = max |µ | denotes the spectral radius of the Jacobi method, then the
Gauss–Seidel has spectral radius ρGS = ρ2

J , while the SOR method with optimal relaxation
parameter

ω⋆ =
2

1 +
√

1 − ρ2
J

, has spectral radius ρ⋆ = ω⋆ − 1. (7.69)

For example, if ρJ = .99, which is rather slow convergence (but common for iterative
numerical solution schemes for partial differential equations), then ρGS = .9801, which is

10/18/06 129 c© 2006 Peter J. Olver

twice as fast, but still quite slow, while SOR with ω⋆ = 1.7527 has ρ⋆ = .7527, which is
dramatically faster†. Indeed, since ρ⋆ ≈ (ρGS)14 ≈ (ρJ)28, it takes about 14 Gauss–Seidel
(and 28 Jacobi) iterations to produce the same accuracy as one SOR step. It is amazing
that such a simple idea can have such a dramatic effect.

† More precisely, since the SOR matrix is not diagonalizable, the overall convergence rate is
slightly slower than the spectral radius. However, this technical detail does not affect the overall
conclusion.

10/18/06 130 c© 2006 Peter J. Olver

AIMS Lecture Notes 2006

Peter J. Olver

8. Numerical Computation of Eigenvalues

In this part, we discuss some practical methods for computing eigenvalues and eigen-
vectors of matrices. Needless to say, we completely avoid trying to solve (or even write
down) the characteristic polynomial equation. The very basic power method and its vari-
ants, which is based on linear iteration, is used to effectively approximate selected eigenval-
ues. To determine the complete system of eigenvalues and eigenvectors, the remarkable QR
algorithm, which relies on the Gram–Schmidt orthogonalization procedure, is the method
of choice, and we shall close with a new proof of its convergence.

8.1. The Power Method.

We have already noted the role played by the eigenvalues and eigenvectors in the
solution to linear iterative systems. Now we are going to turn the tables, and use the
iterative system as a mechanism for approximating the eigenvalues, or, more correctly,
selected eigenvalues of the coefficient matrix. The simplest of the resulting computational
procedures is known as the power method .

We assume, for simplicity, that A is a complete† n× n matrix. Let v1, . . . ,vn denote
its eigenvector basis, and λ1, . . . , λn the corresponding eigenvalues. As we have learned,
the solution to the linear iterative system

v(k+1) = Av(k), v(0) = v, (8.1)

is obtained by multiplying the initial vector v by the successive powers of the coefficient
matrix: v(k) = Ak v. If we write the initial vector in terms of the eigenvector basis

v = c1v1 + · · · + cn vn, (8.2)

then the solution takes the explicit form given in Theorem 7.2, namely

v(k) = Ak v = c1 λk
1 v1 + · · · + cn λk

n vn. (8.3)

† This is not a very severe restriction. Most matrices are complete. Moreover, perturbations
caused by round off and/or numerical inaccuracies will almost inevitably make an incomplete
matrix complete.

3/15/06 131 c© 2006 Peter J. Olver

Suppose further that A has a single dominant real eigenvalue, λ1, that is larger than
all others in magnitude, so

|λ1 | > |λj | for all j > 1. (8.4)

As its name implies, this eigenvalue will eventually dominate the iteration (8.3). Indeed,
since

|λ1 |k À |λj |k for all j > 1 and all k À 0,

the first term in the iterative formula (8.3) will eventually be much larger than the rest,
and so, provided c1 6= 0,

v(k) ≈ c1 λk
1 v1 for k À 0.

Therefore, the solution to the iterative system (8.1) will, almost always, end up being a
multiple of the dominant eigenvector of the coefficient matrix.

To compute the corresponding eigenvalue, we note that the ith entry of the iterate

v(k) is approximated by v
(k)
i ≈ c1λ

k
1 v1,i, where v1,i is the ith entry of the eigenvector v1.

Thus, as long as v1,i 6= 0, we can recover the dominant eigenvalue by taking a ratio between
selected components of successive iterates:

λ1 ≈ v
(k)
i

v
(k−1)
i

, provided that v
(k−1)
i 6= 0. (8.5)

Example 8.1. Consider the matrix A =

−1 2 2
−1 −4 −2
−3 9 7

. As you can check, its

eigenvalues and eigenvectors are

λ1 = 3, v1 =

1
−1

3

 , λ2 = −2, v2 =

0
1

−1

 , λ3 = 1, v3 =

−1
1

−2

 .

Repeatedly multiplying an initial vector v = (1, 0, 0)
T
, say, by A results in the iterates

v(k) = Akv listed in the accompanying table. The last column indicates the ratio λ(k) =

v
(k)
1 /v

(k−1)
1 between the first components of successive iterates. (One could equally well

use the second or third components.) The ratios are converging to the dominant eigenvalue
λ1 = 3, while the vectors v(k) are converging to a very large multiple of the corresponding

eigenvector v1 = (1,−1, 3)
T
.

The success of the power method lies in the assumption that A has a unique dominant
eigenvalue of maximal modulus, which, by definition, equals its spectral radius: |λ1 | =
ρ(A). The rate of convergence of the method is governed by the ratio |λ2/λ1 | between
the subdominant and dominant eigenvalues. Thus, the farther the dominant eigenvalue
lies away from the rest, the faster the power method converges. We also assumed that the
initial vector v(0) includes a nonzero multiple of the dominant eigenvector, i.e., c1 6= 0. As
we do not know the eigenvectors, it is not so easy to guarantee this in advance, although
one must be quite unlucky to make such a poor choice of initial vector. (Of course, the
stupid choice v(0) = 0 is not counted.) Moreover, even if c1 happens to be 0 initially,

3/15/06 132 c© 2006 Peter J. Olver

k v(k) λ(k)

0 1 0 0

1 −1 −1 −3 −1.

2 −7 11 −27 7.

3 −25 17 −69 3.5714

4 −79 95 −255 3.1600

5 −241 209 −693 3.0506

6 −727 791 −2247 3.0166

7 −2185 2057 −6429 3.0055

8 −6559 6815 −19935 3.0018

9 −19681 19169 −58533 3.0006

10 −59047 60071 −178167 3.0002

11 −177145 175097 −529389 3.0001

12 −531439 535535 −1598415 3.0000

numerical round-off error will typically come to one’s rescue, since it will almost inevitably
introduce a tiny component of the eigenvector v1 into some iterate, and this component
will eventually dominate the computation. The trick is to wait long enough for it to show
up!

Since the iterates of A are, typically, getting either very large — when ρ(A) > 1
— or very small — when ρ(A) < 1 — the iterated vectors will be increasingly subject
to numerical over- or under-flow, and the method may break down before a reasonable
approximation is achieved. One way to avoid this outcome is to restrict our attention
to unit vectors relative to a given norm, e.g., the Euclidean norm or the ∞ norm, since
their entries cannot be too large, and so are less likely to cause numerical errors in the
computations. As usual, the unit vector u(k) = ‖v(k) ‖−1 v(k) is obtained by dividing the
iterate by its norm; it can be computed directly by the modified iterative scheme

u(0) =
v(0)

‖v(0) ‖ , and u(k+1) =
Au(k)

‖Au(k) ‖ . (8.6)

If the dominant eigenvalue λ1 > 0 is positive, then u(k) → u1 will converge to one of the
two dominant unit eigenvectors (the other is −u1). If λ1 < 0, then the iterates will switch
back and forth between the two eigenvectors, so u(k) ≈ ±u1. In either case, the dominant
eigenvalue λ1 is obtained as a limiting ratio between nonzero entries of Au(k) and u(k).
If some other sort of behavior is observed, it means that one of our assumptions is not
valid; either A has more than one dominant eigenvalue of maximum modulus, e.g., it has
a complex conjugate pair of eigenvalues of largest modulus, or it is not complete.

Example 8.2. For the matrix considered in Example 8.1, starting the iterative
scheme (8.6) with u(k) = (1, 0, 0)

T
by A, the resulting unit vectors are tabulated below.

3/15/06 133 c© 2006 Peter J. Olver

k u(k) λ

0 1 0 0

1 −.3015 −.3015 −.9045 −1.0000

2 −.2335 .3669 −.9005 7.0000

3 −.3319 .2257 −.9159 3.5714

4 −.2788 .3353 −.8999 3.1600

5 −.3159 .2740 −.9084 3.0506

6 −.2919 .3176 −.9022 3.0166

7 −.3080 .2899 −.9061 3.0055

8 −.2973 .3089 −.9035 3.0018

9 −.3044 .2965 −.9052 3.0006

10 −.2996 .3048 −.9041 3.0002

11 −.3028 .2993 −.9048 3.0001

12 −.3007 .3030 −.9043 3.0000

The last column, being the ratio between the first components of Au(k−1) and u(k−1),
again converges to the dominant eigenvalue λ1 = 3.

Variants of the power method for computing the other eigenvalues of the matrix are
explored in the exercises.

8.2. The QR Algorithm.

The most popular scheme for simultaneously approximating all the eigenvalues of a
matrix A is the remarkable QR algorithm, first proposed in 1961 by Francis, [18], and
Kublanovskaya, [31]. The underlying idea is simple, but surprising. The first step is to
factor the matrix

A = A0 = Q0 R0

into a product of an orthogonal matrix Q0 and a positive (i.e., with all positive entries along
the diagonal) upper triangular matrix R0 by using the Gram–Schmidt orthogonalization
procedure. Next, multiply the two factors together in the wrong order ! The result is the
new matrix

A1 = R0 Q0.

We then repeat these two steps. Thus, we next factor

A1 = Q1 R1

using the Gram–Schmidt process, and then multiply the factors in the reverse order to
produce

A2 = R2 Q2.

3/15/06 134 c© 2006 Peter J. Olver

The complete algorithm can be written as

A = Q0 R0, Ak+1 = Rk Qk = Qk+1 Rk+1, k = 0, 1, 2, . . . , (8.7)

where Qk, Rk come from the previous step, and the subsequent orthogonal matrix Qk+1

and positive upper triangular matrix Rk+1 are computed by using the numerically stable
form of the Gram–Schmidt algorithm.

The astonishing fact is that, for many matrices A, the iterates Ak −→ V converge to
an upper triangular matrix V whose diagonal entries are the eigenvalues of A. Thus, after
a sufficient number of iterations, say k?, the matrix Ak? will have very small entries below
the diagonal, and one can read off a complete system of (approximate) eigenvalues along
its diagonal. For each eigenvalue, the computation of the corresponding eigenvector can
be done by solving the appropriate homogeneous linear system, or by applying the shifted
inverse power method.

Example 8.3. Consider the matrix A =

(
2 1
2 3

)
. The initial Gram–Schmidt fac-

torization A = Q0 R0 yields

Q0 =

(
.7071 −.7071
.7071 .7071

)
, R0 =

(
2.8284 2.8284

0 1.4142

)
.

These are multiplied in the reverse order to give

A1 = R0 Q0 =

(
4 0
1 1

)
.

We refactor A1 = Q1 R1 via Gram–Schmidt, and then reverse multiply to produce

Q1 =

(
.9701 −.2425
.2425 .9701

)
, R1 =

(
4.1231 .2425

0 .9701

)
,

A2 = R1 Q1 =

(
4.0588 −.7647
.2353 .9412

)
.

The next iteration yields

Q2 =

(
.9983 −.0579
.0579 .9983

)
, R2 =

(
4.0656 −.7090

0 .9839

)
,

A3 = R2 Q2 =

(
4.0178 −.9431
.0569 .9822

)
.

Continuing in this manner, after 9 iterations we find, to four decimal places,

Q9 =

(
1 0
0 1

)
, R9 =

(
4 −1
0 1

)
, A10 = R9 Q9 =

(
4 −1
0 1

)
.

The eigenvalues of A, namely 4 and 1, appear along the diagonal of A10. Additional
iterations produce very little further change, although they can be used for increasing the
accuracy of the computed eigenvalues.

3/15/06 135 c© 2006 Peter J. Olver

If the original matrix A happens to be symmetric and positive definite, then the
limiting matrix Ak −→ V = Λ is, in fact, the diagonal matrix containing the eigenvalues
of A. Moreover, if, in this case, we recursively define

Sk = Sk−1 Qk = Q0 Q1 · · · Qk−1 Qk, (8.8)

then Sk −→ S have, as their limit, an orthogonal matrix whose columns are the orthonor-
mal eigenvector basis of A.

Example 8.4. Consider the symmetric matrix A =

2 1 0
1 3 −1
0 −1 6

. The initial

A = Q0 R0 factorization produces

S0 = Q0 =

.8944 −.4082 −.1826

.4472 .8165 .3651
0 −.4082 .9129

 , R0 =

2.2361 2.2361 − .4472
0 2.4495 −3.2660
0 0 5.1121

 ,

and so

A1 = R0 Q0 =

3.0000 1.0954 0
1.0954 3.3333 −2.0870

0 −2.0870 4.6667

 .

We refactor A1 = Q1 R1 and reverse multiply to produce

Q1 =

.9393 −.2734 −.2071

.3430 .7488 .5672
0 −.6038 .7972

 , S1 = S0 Q1 =

.7001 −.4400 −.5623

.7001 .2686 .6615
−.1400 −.8569 .4962

 ,

R1 =

3.1937 2.1723 − .7158
0 3.4565 −4.3804
0 0 2.5364

 , A2 = R1 Q1 =

3.7451 1.1856 0
1.1856 5.2330 −1.5314

0 −1.5314 2.0219

 .

Continuing in this manner, after 10 iterations we find

Q10 =

1.0000 − .0067 0
.0067 1.0000 .0001

0 −.0001 1.0000

 , S10 =

.0753 −.5667 −.8205

.3128 −.7679 .5591
−.9468 −.2987 .1194

 ,

R10 =

6.3229 .0647 0
0 3.3582 −.0006
0 0 1.3187

 , A11 =

6.3232 .0224 0
.0224 3.3581 −.0002

0 −.0002 1.3187

 .

After 20 iterations, the process has completely settled down, and

Q20 =

1 0 0
0 1 0
0 0 1

 , S20 =

.0710 −.5672 −.8205

.3069 −.7702 .5590
−.9491 −.2915 .1194

 ,

R20 =

6.3234 .0001 0
0 3.3579 0
0 0 1.3187

 , A21 =

6.3234 0 0
0 3.3579 0
0 0 1.3187

 .

The eigenvalues of A appear along the diagonal of A21, while the columns of S20 are the
corresponding orthonormal eigenvector basis, listed in the same order as the eigenvalues,
both correct to 4 decimal places.

3/15/06 136 c© 2006 Peter J. Olver

v

u

H v

u⊥

Figure 8.1. Elementary Reflection Matrix.

Tridiagonalization

In practical implementations, the direct QR algorithm often takes too long to provide
reasonable approximations to the eigenvalues of large matrices. Fortunately, the algorithm
can be made much more efficient by a simple preprocessing step. The key observation is
that the QR algorithm preserves the class of symmetric tridiagonal matrices, and, more-
over, like Gaussian Elimination, is much faster when applied to this class of matrices.

Consider the Householder or elementary reflection matrix

H = I − 2uuT (8.9)

in which u is a unit vector (in the Euclidean norm). The matrix H represents a reflection
of vectors through the orthogonal complement to u, as illustrated in Figure 8.1. It is easy
to shoe that H is a symmetric orthogonal matrix, and so

HT = H, H2 = I , H−1 = H. (8.10)

The proof is straightforward: symmetry is immediate, while

H HT = H2 = (I − 2uuT) (I − 2uuT) = I − 4uuT + 4u (uT u)uT = I

since, by assumption, uT u = ‖u ‖2 = 1.

In Householder’s approach to the QR factorization, we were able to convert the matrix
A to upper triangular form R by a sequence of elementary reflection matrices. Unfortu-
nately, this procedure does not preserve the eigenvalues of the matrix — the diagonal
entries of R are not the eigenvalues — and so we need to be a bit more clever here.

Lemma 8.5. If H = I − 2uuT is an elementary reflection matrix, with u a unit

vector, then A and B = HAH are similar matrices and hence have the same eigenvalues.

Proof : According to (8.10), H−1 = H, and hence B = H−1AH is similar to A.
Q.E.D.

3/15/06 137 c© 2006 Peter J. Olver

Given a symmetric n × n matrix A, our goal is to devise a similar tridiagonal matrix
by applying a sequence of Householder reflections. We begin by setting

x1 =

0
a21

a31
...

an1

, y1 =

0
±r1

0
...
0

, where r1 = ‖x1 ‖ = ‖y1 ‖,

so that x1 contains all the off-diagonal entries of the first column of A. Let

H1 = I − 2u1 uT
1 , where u1 =

x1 − y1

‖x1 − y1 ‖
be the corresponding elementary reflection matrix that maps x1 to y1. Either ± sign in
the formula for y1 works in the algorithm; a good choice is to set it to be the opposite of
the sign of the entry a21, which helps minimize the possible effects of round-off error when
computing the unit vector u1. By direct computation,

A2 = H1 AH1 =

a11 r1 0 . . . 0
r1 ã22 ã23 . . . ã2n

0 ã32 ã33 . . . ã3n

...
...

...
. . .

...
0 ãn2 ãn3 . . . ãnn

(8.11)

for certain ãij ; the explicit formulae are not needed. Thus, by a single Householder trans-
formation, we convert A into a similar matrix A2 whose first row and column are in
tridiagonal form. We repeat the process on the lower right (n − 1) × (n − 1) submatrix of
A2. We set

x2 =

0
0

ã32

ã42
...

ãn2

, y1 =

0
0

±r2

0
...
0

, where r2 = ‖x2 ‖ = ‖y2 ‖,

and the ± sign is chosen to be the opposite of that of ã32. Setting

H2 = I − 2u2 uT
2 , where u2 =

x2 − y2

‖x2 − y2 ‖
,

we construct the similar matrix

A3 = H2 A2 H2 =

a11 r1 0 0 . . . 0
r1 ã22 r2 0 . . . 0
0 r2 â33 â34 . . . â3n

0 0 â43 â44 . . . â4n

...
...

...
...

. . .
...

0 0 ân3 ân4 . . . ânn

.

3/15/06 138 c© 2006 Peter J. Olver

whose first two rows and columns are now in tridiagonal form. The remaining steps in the
algorithm should now be clear. Thus, the final result is a tridiagonal matrix T = An that
has the same eigenvalues as the original symmetric matrix A. Let us illustrate the method
by an example.

Example 8.6. To tridiagonalize A =

4 1 −1 2
1 4 1 −1

−1 1 4 1
2 −1 1 4

, we begin with its first

column. We set x1 =

0
1

−1
2

, so that y1 =

0√
6

0
0

 ≈

0
2.4495

0
0

. Therefore, the unit

vector is u1 =
x1 − y1

‖x1 − y1 ‖
=

0
.8391

−.2433
.4865

, with corresponding Householder matrix

H1 = I − 2u1 uT
1 =

1 0 0 0
0 −.4082 .4082 −.8165
0 .4082 .8816 .2367
0 −.8165 .2367 .5266

.

Thus,

A2 = H1 AH1 =

4.0000 −2.4495 0 0
−2.4495 2.3333 −.3865 −.8599

0 −.3865 4.9440 −.1246
0 −.8599 −.1246 4.7227

.

In the next phase, x2 =

0
0

−.3865
−.8599

, y2 =

0
0

−.9428
0

, so u2 =

0
0

−.8396
−.5431

, and

H2 = I − 2u2 uT
2 =

1 0 0 0
0 1 0 0
0 0 −.4100 −.9121
0 0 −.9121 .4100

.

The resulting matrix

T = A3 = H2 A2 H2 =

4.0000 −2.4495 0 0
−2.4495 2.3333 .9428 0

0 .9428 4.6667 0
0 0 0 5

is now in tridiagonal form.

Since the final tridiagonal matrix T has the same eigenvalues as A, we can apply
the QR algorithm to T to approximate the common eigenvalues. (The eigenvectors must
then be computed separately, e.g., by the shifted inverse power method.) If A = A1 is

3/15/06 139 c© 2006 Peter J. Olver

tridiagonal, so are all the iterates A2, A3, Moreover, far fewer arithmetic operations
are required. For instance, in the preceding example, after we apply 20 iterations of the
QR algorithm directly to T , the upper triangular factor has become

R20 =

6.0000 −.0065 0 0
0 4.5616 0 0
0 0 5.0000 0
0 0 0 .4384

.

The eigenvalues of T , and hence also of A, appear along the diagonal, and are correct to
4 decimal places.

Finally, even if A is not symmetric, one can still apply the same sequence of House-
holder transformations to simplify it. The final result is no longer tridiagonal, but rather
a similar upper Hessenberg matrix , which means that all entries below the subdiagonal are
zero, but those above the superdiagonal are not necessarily zero. For instance, a 5 × 5
upper Hessenberg matrix looks like

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

,

where the starred entries can be anything. It can be proved that the QR algorithm
maintains the upper Hessenberg form, and, while not as efficient as in the tridiagonal
case, still yields a significant savings in computational effort required to find the common
eigenvalues. Further details and analysis can be found in [13, 43, 48].

3/15/06 140 c© 2006 Peter J. Olver

AIMS Lecture Notes 2006

Peter J. Olver

9. Numerical Solution of Algebraic Systems

In this part, we discuss basic iterative methods for solving systems of algebraic equa-
tions. By far the most common is a vector-valued version of Newton’s Method, which will
form our primary object of study.

9.1. Vector–Valued Iteration.

Extending the scalar analysis to vector-valued iterative systems is not especially dif-
ficult. We will build on our experience with linear iterative systems.

We begin by fixing a norm ‖ · ‖ on R
n. Since we will also be computing the associated

matrix norm ‖A ‖, as defined in Theorem 7.13, it may be more convenient for computations
to adopt either the 1 or the ∞ norms rather than the standard Euclidean norm.

We begin by defining the vector-valued counterpart of the basic linear convergence
condition (2.21).

Definition 9.1. A function g: Rn → R
n is a contraction at a point u? ∈ R

n if there
exists a constant 0 ≤ σ < 1 such that

‖g(u) − g(u?) ‖ ≤ σ ‖u − u? ‖ (9.1)

for all u sufficiently close to u?, i.e., ‖u − u? ‖ < δ for some fixed δ > 0.

Remark : The notion of a contraction depends on the underlying choice of matrix
norm. Indeed, the linear function g(u) = Au if and only if ‖A ‖ < 1, which implies
that A is a convergent matrix. While every convergent matrix satisfies ‖A ‖ < 1 in some

matrix norm, and hence defines a contraction relative to that norm, it may very well have
‖A ‖ > 1 in a particular norm, violating the contaction condition; see (7.31) for an explicit
example.

Theorem 9.2. If u? = g(u?) is a fixed point for the discrete dynamical system (2.1)
and g is a contraction at u?, then u? is an asymptotically stable fixed point.

Proof : The proof is a copy of the last part of the proof of Theorem 2.6. We write

‖u(k+1) − u? ‖ = ‖g(u(k)) − g(u?) ‖ ≤ σ ‖u(k) − u? ‖,

3/15/06 141 c© 2006 Peter J. Olver

using the assumed estimate (9.1). Iterating this basic inequality immediately demonstrates
that

‖u(k) − u? ‖ ≤ σk ‖u(0) − u? ‖ for k = 0, 1, 2, 3, (9.2)

Since σ < 1, the right hand side tends to 0 as k → ∞, and hence u(k) → u?. Q.E.D.

In most interesting situations, the function g is differentiable, and so can be approxi-
mated by its first order Taylor polynomial

g(u) ≈ g(u?) + g ′(u?) (u − u?) = u? + g ′(u?) (u − u?). (9.3)

Here

g ′(u) =

∂g1

∂u1

∂g1

∂u2

. . .
∂g1

∂u
n

∂g2

∂u1

∂g2

∂u2

. . .
∂g2

∂u
n

...
...

. . .
...

∂g
n

∂u1

∂g
n

∂u2

. . .
∂g

n

∂u
n

, (9.4)

denotes the n × n Jacobian matrix of the vector-valued function g, whose entries are the
partial derivatives of its individual components. Since u? is fixed, the the right hand
side of (9.3) is an affine function of u. Moreover, u? remains a fixed point of the affine
approximation. Proposition 7.25 tells us that iteration of the affine function will converge
to the fixed point if and only if its coefficient matrix, namely g ′(u?), is a convergent matrix,
meaning that its spectral radius ρ(g ′(u?)) < 1.

Theorem 9.3. Let u? be a fixed point for the discrete dynamical system u(k+1) =
g(u(k)). If the Jacobian matrix norm ‖g ′(u?) ‖ < 1, then g is a contraction at u?, and

hence the fixed point u? is asymptotically stable.

Proof : The first order Taylor expansion of g(u) at the fixed point u? takes the form

g(u) = g(u?) + g ′(u?) (u − u?) + R(u − u?), (9.5)

where the remainder term satisfies

lim
u→u

?

R(u − u?)

‖u − u? ‖
= 0.

Let ε > 0 be such that
σ = ‖g ′(u?) ‖ + ε < 1.

Choose 0 < δ < 1 such that ‖R(u − u?) ‖ ≤ ε ‖u − u? ‖ whenever ‖u − u? ‖ ≤ δ. For
such u, we have, by the Triangle Inequality,

‖g(u) − g(u?) ‖ ≤ ‖g ′(u?) (u − u?) ‖ + ‖R(u − u?) ‖

≤
(

‖g ′(u?) ‖ + ε
)

‖u − u? ‖ = σ ‖u − u? ‖,

which establishes the contraction inequality (9.1). Q.E.D.

3/15/06 142 c© 2006 Peter J. Olver

Corollary 9.4. If the Jacobian matrix g ′(u?) is a convergent matrix, meaning that

its spectral radius satisfies ρ
(

g ′(u?)
)

< 1, then u? is an asymptotically stable fixed point.

Proof : Corollary 7.23 assures us that ‖g ′(u?) ‖ < 1 in some matrix norm. Using this
norm, the result immediately follows from the theorem. Q.E.D.

Theorem 9.3 tells us that initial values u(0) that are sufficiently near a stable fixed
point u? are guaranteed to converge to it. In the linear case, closeness of the initial data
to the fixed point was not, in fact, an issue; all stable fixed points are, in fact, globally
stable. For nonlinear iteration, it is of critical importance, and one does not typically
expect iteration starting with far away initial data to converge to the desired fixed point.
An interesting (and difficult) problem is to determine the so-called basin of attraction of a
stable fixed point, defined as the set of all initial data that ends up converging to it. As in
the elementary logistic map (2.22), initial values that lie outside a basin of attraction can
lead to divergent iterates, periodic orbits, or even exhibit chaotic behavior. The full range
of possible phenomena is a topic of contemporary research in dynamical systems theory,
[42], and in numerical analysis, [1].

Example 9.5. Consider the function

g(u, v) =

(

− 1
4 u3 + 9

8 u + 1
4 v3

3
4 v − 1

2 uv

)

.

There are four (real) fixed points; stability is determined by the size of the eigenvalues of
the Jacobian matrix

g′(u, v) =

(

9
8 − 3

4 u2 − 1
2 v

3
4 v2 3

4 − 1
2 u

)

at each of the fixed points. The results are summarized in the following table:

fixed point u?

1 =

(

0
0

)

u?

2 =

(

1√
2

0

)

u?

3 =

(

− 1√
2

0

)

u?

4 =

(

− 1
2
1
2

)

Jacobian matrix

(

9
8 0

0 3
4

) (

3
4 0

0 3
4 − 1

2
√

2

) (

3
4 0

0 3
4 + 1

2
√

2

) (

15
16 − 1

4
3
16 1

)

eigenvalues 1.125, .75 .75, .396447 1.10355, .75 .96875 ± .214239 i

spectral radius 1.125 .75 1.10355 .992157

Thus, u?

2 and u?

4 are stable fixed points, whereas u?

1 and u?

3 are both unstable. Indeed,

starting with u(0) = (.5, .5)
T
, it takes 24 iterates to converge to u?

2 with 4 significant

decimal digits, whereas starting with u(0) = (−.7, .7)
T
, it takes 1049 iterates to converge

to within 4 digits of u?

4; the slower convergence rate is predicted by the larger Jacobian

3/15/06 143 c© 2006 Peter J. Olver

Figure 9.1. Basins of Attraction.

spectral radius. The two basins of attraction are plotted in Figure 9.1. The stable fixed
points are indicated by black dots. The light gray region contains u?

2 and indicates all the
points that converge to it; the darker gray indicates points converging, more slowly, to u?

4.
All other initial points, except u?

1 and u?

3, have rapidly unbounded iterates: ‖u(k) ‖ → ∞.

The smaller the spectral radius or matrix norm of the Jacobian matrix at the fixed
point, the faster the nearby iterates will converge to it. As in the scalar case, quadratic
convergence will occur when the Jacobian matrix g ′(u?) = O is the zero matrix, i.e.,
all first order partial derivatives of the components of g vanish at the fixed point. The
quadratic convergence estimate

‖u(k+1) − u? ‖ ≤ τ ‖u(k) − u? ‖2 (9.6)

follows from the second order Taylor expansion of g(u) at the fixed point.

Of course, in practice we don’t know the norm or spectral radius of the Jacobian
matrix g ′(u?) because we don’t know where the fixed point is. This apparent difficulty
can be easily circumvented by requiring that ‖g ′(u) ‖ < 1 for all u — or, at least, for all
u in a domain Ω containing the fixed point. In fact, this hypothesis can be used to prove
the exitence and uniqueness of asymptotically stable fixed points. Rather than work with
the Jacobian matrix, let us return to the contraction condition (9.1), but now imposed
uniformly on an entire domain.

Definition 9.6. A function g: Rn → R
n is called a contraction mapping on a domain

Ω ⊂ R
n if

(a) it maps Ω to itself, so g(u) ∈ Ω whenever u ∈ Ω, and

(b) there exists a constant 0 ≤ σ < 1 such that

‖g(u) − g(v) ‖ ≤ σ ‖u − v ‖ for all u,v ∈ Ω. (9.7)

In other words, applying a contraction mapping reduces the mutual distance between
points. So, as its name indicates, a contraction mapping effectively shrinks the size of its

3/15/06 144 c© 2006 Peter J. Olver

Ω

g

Ω

Figure 9.2. A Contraction Mapping.

domain; see Figure 9.2. As the iterations proceed, the successive image domains become
smaller and smaller. If the original domain is closed and bounded, then it is forced to
shrink down to a single point, which is the unique fixed point of the iterative system. This
follows from the Contraction Mapping Theorem

Theorem 9.7. If g is a contraction mapping on a closed bounded domain Ω ⊂ R
n,

then g admits a unique fixed point u? ∈ Ω. Moreover, starting with any initial point

u(0) ∈ Ω, the iterates u(k+1) = g(u(k)) necessarily converge to the fixed point: u(k) → u?.

In particular, if ‖g ′(u) ‖ < 1 for all u ∈ Ω, then the conclusions of the Contraction
Mapping Theorem 9.7 hold.

9.2. Solution of Algebraic Systems.

There is no direct universal solution method for nonlinear systems comparable to
Gaussian elimination. Numerical solution techniques rely almost exclusively on iterative
algorithms. This section presents the principal methods for numerically approximating
the solution(s) to a nonlinear system. We shall only discuss general purpose algorithms;
specialized methods for solving particular classes of equations, e.g., polynomial equations,
can be found in numerical analysis texts, e.g., [5, 7, 43]. Of course, the most important
specialized methods — those designed for solving linear systems — will continue to play a
critical role, even in the nonlinear regime.

We concentrate on the “regular” case when the system contains the same number of
equations as unknowns:

f1(u1, . . . , un
) = 0, . . . f

n
(u1, . . . , un

) = 0. (9.8)

We will rewrite the system in vector form

f(u) = 0, (9.9)

where f : Rn → R
n is a vector-valued function of n variables. In practice, we do not

necessarily require that f be defined on all of R
n, although this does simplify the exposition.

We shall only consider solutions that are separated from any others. More formally:

Definition 9.8. A solution u? to a system f(u) = 0 is called isolated if there exists
δ > 0 such that f(u) 6= 0 for all u satisfying 0 < ‖u − u? ‖ < δ.

3/15/06 145 c© 2006 Peter J. Olver

Example 9.9. Consider the planar equation

x2 + y2 = (x2 + y2)2.

Rewriting the equation in polar coordinates as

r = r2 or r(r − 1) = 0,

we immediately see that the solutions consist of the origin x = y = 0 and all points on the
unit circle r2 = x2 + y2 = 1. Only the origin is an isolated solution, since every solution
lying on the circle has plenty of other points on the circle that lie arbitrarily close to it.

Typically, solutions to a system of n equations in n unknowns are isolated, although
this is not always true. For example, if A is a singular n× n matrix, then the solutions to
the homogeneous linear system Au = 0 form a nontrivial subspace, and so are not isolated.
Nonlinear systems with non-isolated solutions can similarly be viewed as exhibiting some
form of degeneracy. In general, the numerical computation of non-isolated solutions, e.g.,
solving the implicit equations for a curve or surface, is a much more difficult problem, and
we will not attempt to discuss these issues in this introductory presentation. (However, our
continuation approach to the Kepler equation in Example 2.20 indicates how one might
proceed in such situations.)

In the case of a single scalar equation, the simple roots, meaning those for which
f ′(u?) 6= 0, are the easiest to compute. In higher dimensions, the role of the derivative
of the function is played by the Jacobian matrix (9.4), and this motivates the following
definition.

Definition 9.10. A solution u? to a system f(u) = 0 is called nonsingular if the
associated Jacobian matrix is nonsingular there: det f ′(u?) 6= 0.

Note that the Jacobian matrix is square if and only if the system has the same number
of equations as unknowns, which is thus one of the requirements for a solution to be
nonsingular in our sense. Moreover, the Inverse Function Theorem from multivariable
calculus, [2, 34], implies that a nonsingular solution is necessarily isolated.

Theorem 9.11. Every nonsingular solution u? to a system f(u) = 0 is isolated.

Being the multivariate counterparts of simple roots also means that nonsingular solu-
tions of systems are the most amenable to practical computation. Computing non-isolated
solutions, as well as isolated solutions with a singular Jacobian matrix, is a considerable
challenge, and practical algorithms remain much less well developed. For this reason, we
focus exclusively on numerical solution techniques for nonsingular solutions.

Now, let us turn to numerical solution techniques. The first remark is that, unlike the
scalar case, proving existence of a solution to a system of equations is often a challenging
issue. There is no counterpart to the Intermediate Value Lemma 2.12 for vector-valued
functions. It is not hard to find vector-valued functions whose entries take on both positive
and negative values, but admit no solutions. This precludes any simple analog of the
Bisection Method for nonlinear systems in more than one unknown.

3/15/06 146 c© 2006 Peter J. Olver

On the other hand, Newton’s Method can be straightforwardly adapted to compute
nonsingular solutions to systems of equations, and is the most widely used method for this
purpose. The derivation proceeds in very similar manner to the scalar case. First, we
replace the system (9.9) by a fixed point system

u = g(u) (9.10)

having the same solutions. By direct analogy with (2.33), any (reasonable) fixed point
method will take the form

g(u) = u − L(u) f(u), (9.11)

where L(u) is an n × n matrix-valued function. Clearly, if f(u) = 0 then g(u) = u;
conversely, if g(u) = u, then L(u) f(u) = 0. If we further require that the matrix L(u)
be nonsingular, i.e., detL(u) 6= 0, then every fixed point of the iterator (9.11) will be a
solution to the system (9.9) and vice versa.

According to Theorem 9.3, the speed of convergence (if any) of the iterative method

u(k+1) = g(u(k)) (9.12)

is governed by the matrix norm (or, more precisely, the spectral radius) of the Jacobian
matrix g ′(u?) at the fixed point. In particular, if

g ′(u?) = O (9.13)

is the zero matrix, then the method converges quadratically fast. Let’s figure out how this
can be arranged. Computing the derivative using the matrix version of the Leibniz rule
for the derivative of a matrix product, we find

g ′(u?) = I − L(u?) f ′(u?), (9.14)

where I is the n × n identity matrix. (Fortunately, all the terms that involve derivatives
of the entries of L(u) go away since f(u?) = 0 by assumption.) Therefore, the quadratic
convergence criterion (9.13) holds if and only if

L(u?) f ′(u?) = I , and hence L(u?) = f ′(u?)
−1

(9.15)

should be the inverse of the Jacobian matrix of f at the solution, which, fortuitously, was
already assumed to be nonsingular.

As in the scalar case, we don’t know the solution u?, but we can arrange that condition
(9.15) holds by setting

L(u) = f ′(u)
−1

everywhere — or at least everywhere that f has a nonsingular Jacobian matrix. The
resulting fixed point system

u = g(u) = u − f ′(u)−1 f(u), (9.16)

leads to the quadratically convergent Newton iteration scheme

u(k+1) = u(k) − f ′(u(k))−1 f(u(k)). (9.17)

All it requires is that we guess an initial value u(0) that is sufficiently close to the desired
solution u?. We are then guaranteed that the iterates u(k) converge quadratically fast to
u?.

3/15/06 147 c© 2006 Peter J. Olver

Figure 9.3. Computing the Cube Roots of Unity by Newton’s Method.

Theorem 9.12. Let u? be a nonsingular solution to the system f(u) = 0. Then,

provided u(0) is sufficiently close to u?, the Newton iteration scheme (9.17) converges at a

quadratic rate to the solution: u(k) → u?.

Example 9.13. Consider the pair of simultaneous cubic equations

f1(u, v) = u3 − 3uv2 − 1 = 0, f2(u, v) = 3u2 v − v3 = 0. (9.18)

It is not difficult to prove that there are precisely three solutions:

u?

1 =

(

1
0

)

, u?

2 =

(

−.5
.866025 . . .

)

, u?

3 =

(

−.5
−.866025 . . .

)

. (9.19)

The Newton scheme relies on the Jacobian matrix

f ′(u) =

(

3u2 − 3v2 − 6uv

6uv 3u2 − 3v2

)

.

Since det f ′(u) = 9(u2 + v2) is non-zero except at the origin, all three solutions are non-
singular, and hence, for a sufficiently close initial value, Newton’s Method will converge to
the nearby solution. We explicitly compute the inverse Jacobian matrix:

f ′(u)−1 =
1

9(u2 + v2)

(

3u2 − 3v2 6uv

− 6uv 3u2 − 3v2

)

.

Hence, in this particular example, the Newton iterator (9.16) is

g(u) =

(

u

v

)

−
1

9(u2 + v2)

(

3u2 − 3v2 6uv

− 6uv 3u2 − 3v2

)(

u3 − 3uv2 − 1
3u2 v − v3

)

.

3/15/06 148 c© 2006 Peter J. Olver

α

β

`

m

v1

v1 + v2

Figure 9.4. Robot Arm.

A complete diagram of the three basins of attraction, consisting of points whose New-
ton iterates converge to each of the three roots, has a remarkably complicated, fractal-like
structure, as illustrated in Figure 9.3. In this plot, the x and y coordinates run from −1.5
to 1.5. The points in the black region all converge to u?

1; those in the light gray region
all converge to u?

2; while those in the dark gray region all converge to u?

3. The closer one
is to the root, the sooner the iterates converge. On the interfaces between the basins of
attraction are points for which the Newton iterates fail to converge, but exhibit a random,
chaotic behavior. However, round-off errors will cause such iterates to fall into one of the
basins, making it extremely difficult to observe such behavio over the long run.

Remark : The alert reader may notice that in this example, we are in fact merely
computing the cube roots of unity, i.e., equations (9.18) are the real and imaginary parts
of the complex equation z3 = 1 when z = u + i v.

Example 9.14. A robot arm consists of two rigid rods that are joined end-to-end to
a fixed point in the plane, which we take as the origin 0. The arms are free to rotate, and
the problem is to configure them so that the robot’s hand ends up at the prescribed position
a = (a, b)

T
. The first rod has length ` and makes an angle α with the horizontal, so its

end is at position v1 = (` cos α, ` sinα)
T
. The second rod has length m and makes an

angle β with the horizontal, and so is represented by the vector v2 = (m cos β,m sin β)
T
.

The hand at the end of the second arm is at position v1 + v2, and the problem is to find
values for the angles α, β so that v1 +v2 = a; see Figure 9.4. To this end, we need to solve
the system of equations

` cos α + m cos β = a, ` sin α + m sin β = b, (9.20)

for the angles α, β.

To find the solution, we shall apply Newton’s Method. First, we compute the Jacobian
matrix of the system with respect to α, β, which is

f ′(α, β) =

(

− ` sinα −m sin β

` cos α m cos β

)

,

3/15/06 149 c© 2006 Peter J. Olver

with inverse

f ′(α, β)−1 =
1

`m sin(β − α)

(

− ` sinα m sin β

− ` cosα m cos β

)

.

As a result, the Newton iteration equation (9.17) has the explicit form
(

α(k+1)

β(k+1)

)

=

(

α(k)

β(k)

)

−

−
1

`m sin(β(k) − α(k))

(

− ` cos α(k) m sin β(k)

− ` cos α(k) m sin β(k)

)(

` cosα(k) + m cos β(k) − a

` sinα(k) + m sin β(k) − b

)

.

when running the iteration, one must be careful to avoid points at which α(k) − β(k) = 0
or π, i.e., where the robot arm has straightened out.

As an example, let us assume that the rods have lengths ` = 2, m = 1, and the
desired location of the hand is at a = (1, 1)

T
. We start with an initial guess of α(0) = 0,

β(0) = 1
2 π, so the first rod lies along the x–axis and the second is perpendicular. The first

few Newton iterates are given in the accompanying table. The first column is the iterate
number k; the second and third columns indicate the angles α(k), β(k) of the rods. The
fourth and fifth give the position (x(k), y(k))T of the joint or elbow, while the final two
indicate the position (z(k), w(k))T of the robot’s hand.

k α(k) β(k) x(k) y(k) z(k) w(k)

0 .0000 1.5708 2.0000 .0000 2.0000 1.0000

1 .0000 2.5708 2.0000 .0000 1.1585 .5403

2 .3533 2.8642 1.8765 .6920 .9147 .9658

3 .2917 2.7084 1.9155 .5751 1.0079 .9948

4 .2987 2.7176 1.9114 .5886 1.0000 1.0000

5 .2987 2.7176 1.9114 .5886 1.0000 1.0000

Observe that the robot has rapidly converged to one of the two possible configurations.
(Can you figure out what the second equilibrium is?) In general, convergence depends on
the choice of initial configuration, and the Newton iterates do not always settle down to
a fixed point. For instance, if ‖a ‖ > ` + m, there is no possible solution, since the arms
are too short for the hand to reach to desired location; thus, no choice of initial conditions
will lead to a convergent scheme and the robot arm flaps around in a chaotic manner.

Now that we have gained a little experience with Newton’s Method for systems of
equations, some supplementary remarks are in order. As we learned, except perhaps in
very low-dimensional situations, one should not directly invert a matrix, but rather use
Gaussian elimination, or, in favorable situations, a linear iterative scheme, e.g., Jacobi,
Gauss–Seidel or even SOR. So a better strategy is to leave the Newton system (9.17) in
unsolved, implicit form

f ′(u(k))v(k) = − f(u(k)), u(k+1) = u(k) + v(k). (9.21)

3/15/06 150 c© 2006 Peter J. Olver

Given the iterate u(k), we compute the Jacobian matrix f ′(u(k)) and the right hand side
− f(u(k)), and then use our preferred linear systems solver to find v(k). Adding u(k) to
the result immediately yields the updated approximation u(k+1) to the solution.

The main bottleneck in the implementation of the Newton scheme, particularly for
large systems, is solving the linear system in (9.21). The coefficient matrix f ′(u(k)) must be
recomputed at each step of the iteration, and hence knowing the solution to the kth linear
system does not appear to help us solve the subsequent system. Pereforming a complete
Gaussian elimination at every step will tend to slow down the algorithm, particularly in
high dimensional situations involving many equations in many unknowns.

One simple dodge for speeding up the computation is to note that, once we start
converging, u(k) will be very close to u(k−1) and so we will probably not go far wrong by
using f ′(u(k−1)) in place of the updated Jacobian matrix f ′(u(k)). Since we have already
solved the linear system with coefficient matrix f ′(u(k−1)), we know its LU factorization,
and hence can use Forward and Back Substitution to quickly solve the modified system

f ′(u(k−1))v(k+1) = − f(u(k)), u(k+1) = u(k) + v(k). (9.22)

If u(k+1) is still close to u(k−1), we can continue to use f ′(u(k−1)) as the coefficient matrix
when proceeding on to the next iterate u(k+2). We proceed in this manner until there
has been a notable change in the iterates, at which stage we can revert to solving the
correct, unmodified linear system (9.21) by Gaussian Elimination. This strategy may
dramatically reduce the total amount of computation required to approximate the solution
to a prescribed accuracy. The down side is that this quasi-Newton scheme is only linearly
convergent, and so does not home in on the root as fast as the unmodified implementation.
The user needs to balance the trade-off between speed of convergence versus amount of
time needed to solve the linear system at each step in the process. See [43] for further
discussion.

3/15/06 151 c© 2006 Peter J. Olver

AIMS Lecture Notes 2006

Peter J. Olver

10. Numerical Solution of

Ordinary Differential Equations

This part is concerned with the numerical solution of initial value problems for systems
of ordinary differential equations. We will introduce the most basic one-step methods,
beginning with the most basic Euler scheme, and working up to the extremely popular
Runge–Kutta fourth order method that can be successfully employed in most situations.
We end with a brief discussion of stiff differential equations, which present a more serious
challenge to numerical analysts.

10.1. First Order Systems of Ordinary Differential Equations.

Let us begin by reviewing the theory of ordinary differential equations. Many physical
applications lead to higher order systems of ordinary differential equations, but there is a
simple reformulation that will convert them into equivalent first order systems. Thus, we
do not lose any generality by restricting our attention to the first order case throughout.
Moreover, numerical solution schemes for higher order initial value problems are entirely
based on their reformulation as first order systems.

First Order Systems

A first order system of ordinary differential equations has the general form

du1

dt
= F1(t, u1, . . . , un), · · · dun

dt
= Fn(t, u1, . . . , un). (10.1)

The unknowns u1(t), . . . , un(t) are scalar functions of the real variable t, which usually
represents time. We shall write the system more compactly in vector form

du

dt
= F(t,u), (10.2)

where u(t) = (u1(t), . . . , un(t))
T
, and F(t,u) = (F1(t, u1, . . . , un), . . . , Fn(t, u1, . . . , un))

T

is a vector-valued function of n + 1 variables. By a solution to the differential equation,
we mean a vector-valued function u(t) that is defined and continuously differentiable on
an interval a < t < b, and, moreover, satisfies the differential equation on its interval of
definition. Each solution u(t) serves to parametrize a curve C ⊂ R

n, also known as a
trajectory or orbit of the system.

2/25/07 152 c© 2006 Peter J. Olver

In this part, we shall concentrate on initial value problems for such first order systems.
The general initial conditions are

u1(t0) = a1, u2(t0) = a2, · · · un(t0) = an, (10.3)

or, in vectorial form,
u(t0) = a (10.4)

Here t0 is a prescribed initial time, while the vector a = (a1, a2, . . . , an)
T

fixes the initial
position of the desired solution. In favorable situations, as described below, the initial
conditions serve to uniquely specify a solution to the differential equations — at least for
nearby times. The general issues of existence and uniquenss of solutions will be addressed
in the following section.

A system of differential equations is called autonomous if the right hand side does not
explicitly depend upon the time t, and so takes the form

du

dt
= F(u). (10.5)

One important class of autonomous first order systems are the steady state fluid flows.
Here F(u) = v represents the fluid velocity vector field at the position u. The solution
u(t) to the initial value problem (10.5, 4) describes the motion of a fluid particle that starts
at position a at time t0. The differential equation tells us that the fluid velocity at each
point on the particle’s trajectory matches the prescribed vector field.

An equilibrium solution is constant: u(t) ≡ u⋆ for all t. Thus, its derivative must
vanish, du/dt ≡ 0, and hence, every equilibrium solution arises as a solution to the system
of algebraic equations

F(u⋆) = 0 (10.6)

prescribed by the vanishing of the right hand side of the system (10.5).

Example 10.1. Although a population of people, animals, or bacteria consists of
individuals, the aggregate behavior can often be effectively modeled by a dynamical system
that involves continuously varying variables. As first proposed by the English economist
Thomas Malthus in 1798, the population of a species grows, roughly, in proportion to
its size. Thus, the number of individuals N(t) at time t satisfies a first order differential
equation of the form

dN

dt
= ρN, (10.7)

where the proportionality factor ρ = β − δ measures the rate of growth, namely the
difference between the birth rate β ≥ 0 and the death rate δ ≥ 0. Thus, if births exceed
deaths, ρ > 0, and the population increases, whereas if ρ < 0, more individuals are dying
and the population shrinks.

In the very simplest model, the growth rate ρ is assumed to be independent of the
population size, and (10.7) reduces to the simple linear ordinary differential equation. The
solutions satisfy the Malthusian exponential growth law N(t) = N0 eρt, where N0 = N(0)
is the initial population size. Thus, if ρ > 0, the population grows without limit, while if

2/25/07 153 c© 2006 Peter J. Olver

ρ < 0, the population dies out, so N(t) → 0 as t → ∞, at an exponentially fast rate. The
Malthusian population model provides a reasonably accurate description of the behavior
of an isolated population in an environment with unlimited resources.

In a more realistic scenario, the growth rate will depend upon the size of the population
as well as external environmental factors. For example, in the presence of limited resources,
relatively small populations will increase, whereas an excessively large population will have
insufficient resources to survive, and so its growth rate will be negative. In other words,
the growth rate ρ(N) > 0 when N < N⋆, while ρ(N) < 0 when N > N⋆, where the
carrying capacity N⋆ > 0 depends upon the resource availability. The simplest class of
functions that satifies these two inequalities are of the form ρ(N) = λ(N⋆ − N), where
λ > 0 is a positive constant. This leads us to the nonlinear population model

dN

dt
= λN (N⋆ − N). (10.8)

In deriving this model, we assumed that the environment is not changing over time; a
dynamical environment would require a more complicated non-autonomous differential
equation.

Before analyzing the solutions to the nonlinear population model, let us make a pre-
liminary change of variables, and set u(t) = N(t)/N⋆, so that u represents the size of
the population in proportion to the carrying capacity N⋆. A straightforward computation
shows that u(t) satisfies the so-called logistic differential equation

du

dt
= λu(1 − u), u(0) = u0, (10.9)

where we assign the initial time to be t0 = 0 for simplicity. The logistic differential equation
can be viewed as the continuous counterpart of the logistic map (2.22). However, unlike
its discrete namesake, the logistic differential equation is quite sedate, and its solutions
easily understood.

First, there are two equilibrium solutions: u(t) ≡ 0 and u(t) ≡ 1, obtained by setting
the right hand side of the equation equal to zero. The first represents a nonexistent
population with no individuals and hence no reproduction. The second equilibrium solution
corresponds to a static population N(t) ≡ N⋆ that is at the ideal size for the environment,
so deaths exactly balance births. In all other situations, the population size will vary over
time.

To integrate the logistic differential equation, we proceed as above, first writing it in
the separated form

du

u(1 − u)
= λ dt.

Integrating both sides, and using partial fractions,

λt + k =

∫
du

u(1 − u)
=

∫ [
1

u
+

1

1 − u

]
du = log

∣∣∣∣
u

1 − u

∣∣∣∣ ,

where k is a constant of integration. Therefore

u

1 − u
= ceλt, where c = ±ek.

2/25/07 154 c© 2006 Peter J. Olver

2 4 6 8 10

-1

-0.5

0.5

1

1.5

2

Figure 10.1. Solutions to u′ = u(1 − u).

Solving for u, we deduce the solution

u(t) =
ceλt

1 + ceλt
. (10.10)

The constant of integration is fixed by the initial condition. Solving the algebraic equation

u0 = u(0) =
c

1 + c
yields c =

u0

1 − u0

.

Substituting the result back into the solution formula (10.10) and simplifying, we find

u(t) =
u0 eλt

1 − u0 + u0 eλt
. (10.11)

The resulting solutions are illustrated in Figure 10.1. Interestingly, while the equilibrium
solutions are not covered by the integration method, they reappear in the final solution
formula, corresponding to initial data u0 = 0 and u0 = 1 respectively. However, this is a
lucky accident, and cannot be anticipated in more complicated situations.

When using the logistic equation to model population dynamics, the initial data is
assumed to be positive, u0 > 0. As time t → ∞, the solution (10.11) tends to the
equilibrium value u(t) → 1 — which corresponds to N(t) → N⋆ approaching the carrying
capacity in the original population model. For small initial values u0 ≪ 1 the solution
initially grows at an exponential rate λ, corresponding to a population with unlimited
resources. However, as the population increases, the gradual lack of resources tends to
slow down the growth rate, and eventually the population saturates at the equilibrium
value. On the other hand, if u0 > 1, the population is too large to be sustained by the
available resources, and so dies off until it reaches the same saturation value. If u0 = 0,

2/25/07 155 c© 2006 Peter J. Olver

then the solution remains at equilibrium u(t) ≡ 0. Finally, when u0 < 0, the solution only
exists for a finite amount of time, with

u(t) −→ −∞ as t −→ t⋆ =
1

λ
log

(
1 − 1

u0

)
.

Of course, this final case does appear in the physical world, since we cannot have a negative
population!

Example 10.2. A predator-prey system is a simplified ecological model of two
species: the predators which feed on the prey. For example, the predators might be
lions roaming the Serengeti and the prey zebra. We let u(t) represent the number of prey,
and v(t) the number of predators at time t. Both species obey a population growth model
of the form (10.7), and so the dynamical equations can be written as

du

dt
= ρu,

dv

dt
= σv,

where the growth rates ρ, σ may depend upon the other species. The more prey, i.e., the
larger u is, the faster the predators reproduce, while a lack of prey will cause them to die
off. On the other hand, the more predators, the faster the prey are consumed and the
slower their net rate of growth.

If we assume that the environment has unlimited resources for the prey, which, bar-
ring drought, is probably valid in the case of the zebras, then the simplest model that
incorporates these assumptions is the Lotka–Volterra system

du

dt
= αu − δuv,

dv

dt
= −β v + γ uv, (10.12)

corresponding to growth rates ρ = α − δ v, σ = −β + γ u. The parameters α, β, γ, δ >
0 are all positive, and their precise values will depend upon the species involved and
how they interact, as indicated by field data, combined with, perhaps, educated guesses.
In particular, α represents the unrestrained growth rate of the prey in the absence of
predators, while −β represents the rate that the predators die off in the absence of their
prey. The nonlinear terms model the interaction of the two species: the rate of increase
in the predators is proportional to the number of available prey, while the rate of decrese
in the prey is proportional to the number of predators. The initial conditions u(t0) = u0,
v(t0) = v0 represent the initial populations of the two species.

We will discuss the integration of the Lotka–Volterra system (10.12) below. Here, let
us content ourselves with determining the possible equilibria. Setting the right hand sides
of the system to zero leads to the nonlinear algebraic system

0 = αu − δuv = u(α − δ v), 0 = −β v + γ uv = v(−β + γ u).

Thus, there are two distinct equilibria, namely

u⋆
1 = v⋆

1 = 0, u⋆
2 = β/γ, v⋆

2 = α/δ.

The first is the uninteresting (or, rather catastropic) situation where there are no animals —
no predators and no prey. The second is a nontrivial solution in which both populations

2/25/07 156 c© 2006 Peter J. Olver

maintain a steady value, for which the birth rate of the prey is precisely sufficient to
continuously feed the predators. Is this a feasible solution? Or, to state the question more
mathematically, is this a stable equilibrium? We shall develop the tools to answer this
question below.

Higher Order Systems

A wide variety of physical systems are modeled by nonlinear systems of differential
equations depending upon second and, occasionally, even higher order derivatives of the
unknowns. But there is an easy device that will reduce any higher order ordinary differ-
ential equation or system to an equivalent first order system. “Equivalent” means that
each solution to the first order system uniquely corresponds to a solution to the higher
order equation and vice versa. The upshot is that, for all practical purposes, one only
needs to analyze first order systems. Moreover, the vast majority of numerical solution
algorithms are designed for first order systems, and so to numerically integrate a higher
order equation, one must place it into an equivalent first order form.

We have already encountered the main idea in our discussion of the phase plane
approach to second order scalar equations

d2u

dt2
= F

(
t, u,

du

dt

)
. (10.13)

We introduce a new dependent variable v =
du

dt
. Since

dv

dt
=

d2u

dt2
, the functions u, v satisfy

the equivalent first order system

du

dt
= v,

dv

dt
= F (t, u, v). (10.14)

Conversely, it is easy to check that if u(t) = (u(t), v(t))
T

is any solution to the first
order system, then its first component u(t) defines a solution to the scalar equation, which
establishes their equivalence. The basic initial conditions u(t0) = u0, v(t0) = v0, for the
first order system translate into a pair of initial conditions u(t0) = u0,

�

u(t0) = v0, specifying
the value of the solution and its first order derivative for the second order equation.

Similarly, given a third order equation

d3u

dt3
= F

(
t, u,

du

dt
,
d2u

dt2

)
,

we set

v =
du

dt
, w =

dv

dt
=

d2u

dt2
.

The variables u, v, w satisfy the equivalent first order system

du

dt
= v,

dv

dt
= w,

dw

dt
= F (t, u, v, w).

The general technique should now be clear.

2/25/07 157 c© 2006 Peter J. Olver

Example 10.3. The forced van der Pol equation

d2u

dt2
+ (u2 − 1)

du

dt
+ u = f(t) (10.15)

arises in the modeling of an electrical circuit with a triode whose resistance changes with
the current. It also arises in certain chemical reactions and wind-induced motions of
structures. To convert the van der Pol equation into an equivalent first order system, we
set v = du/dt, whence

du

dt
= v,

dv

dt
= f(t) − (u2 − 1)v − u, (10.16)

is the equivalent phase plane system.

Example 10.4. The Newtonian equations for a mass m moving in a potential force
field are a second order system of the form

m
d2u

dt2
= −∇F (u)

in which u(t) = (u(t), v(t), w(t))
T

represents the position of the mass and F (u) =
F (u, v, w) the potential function. In components,

m
d2u

dt2
= − ∂F

∂u
, m

d2v

dt2
= − ∂F

∂v
, m

d2w

dt2
= − ∂F

∂w
. (10.17)

For example, a planet moving in the sun’s gravitational field satisfies the Newtonian system
for the gravitational potential

F (u) = − α

‖u ‖ = − α√
u2 + v2 + w2

, (10.18)

where α depends on the masses and the universal gravitational constant. (This simplified
model ignores all interplanetary forces.) Thus, the mass’ motion in such a gravitational
force field follows the solution to the second order Newtonian system

m
d2u

dt2
= −∇F (u) = − αu

‖u ‖3
=

α

(u2 + v2 + w2)3/2

u
v
w

.

The same system of ordinary differential equations describes the motion of a charged
particle in a Coulomb electric force field, where the sign of α is positive for attracting
opposite charges, and negative for repelling like charges.

To convert the second order Newton equations into a first order system, we set v =
�

u

to be the mass’ velocity vector, with components

p =
du

dt
, q =

dv

dt
, r =

dw

dt
,

2/25/07 158 c© 2006 Peter J. Olver

and so

du

dt
= p,

dv

dt
= q,

dw

dt
= r, (10.19)

dp

dt
= − 1

m

∂F

∂u
(u, v, w),

dq

dt
= − 1

m

∂F

∂v
(u, v, w),

dr

dt
= − 1

m

∂F

∂w
(u, v, w).

One of Newton’s greatest acheivements was to solve this system in the case of the cen-
tral gravitational potential (10.18), and thereby confirm the validity of Kepler’s laws of
planetary motion.

10.2. Existence, Uniqueness, and Continuous Dependence.

It goes without saying that there is no general analytical method that will solve all
differential equations. Indeed, even relatively simple first order, scalar, non-autonomous
ordinary differential equations cannot be solved in closed form. For example, the solution
to the particular Riccati equation

du

dt
= u2 + t (10.20)

cannot be written in terms of elementary functions, although there is a solution formula
that relies on Airy functions. The Abel equation

du

dt
= u3 + t (10.21)

fares even worse, since its general solution cannot be written in terms of even standard
special functions — although power series solutions can be tediously ground out term
by term. Understanding when a given differential equation can be solved in terms of
elementary functions or known special functions is an active area of contemporary research,
[6]. In this vein, we cannot resist mentioning that the most important class of exact
solution techniques for differential equations are those based on symmetry. An introduction
can be found in the author’s graduate level monograph [37]; see also [8, 26].

Existence

Before worrying about how to solve a differential equation, either analytically, qual-
itatively, or numerically, it behooves us to try to resolve the core mathematical issues of
existence and uniqueness. First, does a solution exist? If, not, it makes no sense trying to
find one. Second, is the solution uniquely determined? Otherwise, the differential equation
probably has scant relevance for physical applications since we cannot use it as a predictive
tool. Since differential equations inevitably have lots of solutions, the only way in which
we can deduce uniqueness is by imposing suitable initial (or boundary) conditions.

Unlike partial differential equations, which must be treated on a case-by-case basis,
there are complete general answers to both the existence and uniqueness questions for
initial value problems for systems of ordinary differential equations. (Boundary value
problems are more subtle.) While obviously important, we will not take the time to
present the proofs of these fundamental results, which can be found in most advanced
textbooks on the subject, including [4, 22, 25, 27].

Let us begin by stating the Fundamental Existence Theorem for initial value problems
associated with first order systems of ordinary differential equations.

2/25/07 159 c© 2006 Peter J. Olver

0.5 1 1.5 2

-1

-0.5

0.5

1

1.5

2

Figure 10.2. Solutions to
�

u = u2.

Theorem 10.5. Let F(t,u) be a continuous function. Then the initial value prob-
lem†

du

dt
= F(t,u), u(t0) = a, (10.22)

admits a solution u = f(t) that is, at least, defined for nearby times, i.e., when | t − t0 | < δ
for some δ > 0.

Theorem 10.5 guarantees that the solution to the initial value problem exists — at
least for times sufficiently close to the initial instant t0. This may be the most that can be
said, although in many cases the maximal interval α < t < β of existence of the solution
might be much larger — possibly infinite, −∞ < t < ∞, resulting in a global solution.
The interval of existence of a solution typically depends upon both the equation and the
particular initial data.

Example 10.6. Consider the autonomous initial value problem

du

dt
= u2, u(t0) = u0. (10.23)

To solve the differential equation, we rewrite it in the separated form

du

u2
= dt, and then integrate both sides: − 1

u
=

∫
du

u2
= t + k.

† If F(t,u) is only defined on a subdomain Ω ⊂ R
n+1, then we must assume that the point

(t0, a) ∈ Ω specifying the initial conditions belongs to its domain of definition.

2/25/07 160 c© 2006 Peter J. Olver

Solving the resulting algebraic equation for u, we deduce the solution formula

u = − 1

t + k
. (10.24)

To specify the integration constant k, we evaluate u at the initial time t0; this implies

u0 = − 1

t0 + k
, so that k = − 1

u0

− t0.

Therefore, the solution to the initial value problem is

u =
u0

1 − u0(t − t0)
. (10.25)

Figure 10.2 shows the graphs of some typical solutions.

As t approaches the critical value t⋆ = t0 +1/u0 from below, the solution “blows up”,
meaning u(t) → ∞ as t → t⋆. The blow-up time t⋆ depends upon the initial data — the
larger u0 > 0 is, the sooner the solution goes off to infinity. If the initial data is negative,
u0 < 0, the solution is well-defined for all t > t0, but has a singularity in the past, at
t⋆ = t0 + 1/u0 < t0. The only solution that exists for all positive and negative time is the
constant solution u(t) ≡ 0, corresponding to the initial condition u0 = 0.

Thus, even though its right hand side is defined everywhere, the solutions to the scalar
initial value problem (10.23) only exist up until time 1/u0, and so, the larger the initial
data, the shorter the time of existence. In this example, the only global solution is the
equilibrium solution u(t) ≡ 0. It is worth noting that this short-term existence phenomenon
does not appear in the linear regime, where, barring singularities in the equation itself,
solutions to a linear ordinary differential equation are guaranteed to exist for all time.

In practice, one always extends a solutions to its maximal interval of existence. The
Existence Theorem 10.5 implies that there are only two possible ways in whcih a solution
cannot be extended beyond a time t⋆: Either

(i) the solution becomes unbounded: ‖u(t) ‖ → ∞ as t → t⋆, or

(ii) if the right hand side F (t,u) is only defined on a subset Ω ⊂ R
n+1, then the solution

u(t) reaches the boundary ∂Ω as t → t⋆.

If neither occurs in finite time, then the solution is necessarily global. In other words, a
solution to an ordinary differential equation cannot suddenly vanish into thin air.

Remark : The existence theorem can be readily adapted to any higher order system
of ordinary differential equations through the method of converting it into an equivalent
first order system by introducing additional variables. The appropriate initial conditions
guaranteeing existence are induced from those of the corresponding first order system, as
in the second order example (10.13) discussed above.

Uniqueness and Smoothness

As important as existence is the question of uniqueness. Does the initial value problem
have more than one solution? If so, then we cannot use the differential equation to predict

2/25/07 161 c© 2006 Peter J. Olver

0.5 1 1.5 2

0.5

1

1.5

2

Figure 10.3. Solutions to the Differential Equation
�

u = 5
3 u2/5.

the future behavior of the system from its current state. While continuity of the right
hand side of the differential equation will guarantee that a solution exists, it is not quite
sufficient to ensure uniqueness of the solution to the initial value problem. The difficulty
can be appreciated by looking at an elementary example.

Example 10.7. Consider the nonlinear initial value problem

du

dt
=

5

3
u2/5, u(0) = 0. (10.26)

Since the right hand side is a continuous function, Theorem 10.5 assures us of the existence
of a solution — at least for t close to 0. This autonomous scalar equation can be easily
solved by the usual method:

∫
3

5

du

u2/5
= u3/5 = t + c, and so u = (t + c)5/3.

Substituting into the initial condition implies that c = 0, and hence u(t) = t5/3 is a solution
to the initial value problem.

On the other hand, since the right hand side of the differential equation vanishes at
u = 0, the constant function u(t) ≡ 0 is an equilibrium solution to the differential equation.
(Here is an example where the integration method fails to recover the equilibrium solution.)
Moreover, the equilibrium solution has the same initial value u(0) = 0. Therefore, we have
constructed two different solutions to the initial value problem (10.26). Uniqueness is not

valid! Worse yet, there are, in fact, an infinite number of solutions to the initial value
problem. For any a > 0, the function

u(t) =

{
0, 0 ≤ t ≤ a,

(t − a)5/3, t ≥ a,
(10.27)

is differentiable everywhere, even at t = a. (Why?) Moreover, it satisfies both the differ-
ential equation and the initial condition, and hence defines a solution to the initial value
problem. Several of these solutions are plotted in Figure 10.3.

2/25/07 162 c© 2006 Peter J. Olver

Thus, to ensure uniqueness of solutions, we need to impose a more stringent condition,
beyond mere continuity. The proof of the following basic uniqueness theorem can be found
in the above references.

Theorem 10.8. If F(t,u) ∈ C1 is continuously differentiable, then there exists one
and only one solution† to the initial value problem (10.22).

Thus, the difficulty with the differential equation (10.26) is that the function F (u) =
5
3 u2/5, although continuous everywhere, is not differentiable at u = 0, and hence the
Uniqueness Theorem 10.8 does not apply. On the other hand, F (u) is continuously differ-
entiable away from u = 0, and so any nonzero initial condition u(t0) = u0 6= 0 will produce
a unique solution — for as long as it remains away from the problematic value u = 0.

Blanket Hypothesis: From now on, all differential equations must satisfy the unique-
ness criterion that their right hand side is continuously differentiable.

While continuous differentiability is sufficient to guarantee uniqueness of solutions,
the smoother the right hand side of the system, the smoother the solutions. Specifically:

Theorem 10.9. If F ∈ Cn for n ≥ 1, then any solution to the system
�

u = F(t,u) is
of class u ∈ Cn+1. If F(t,u) is an analytic function, then all solutions u(t) are analytic.

One important consequence of uniqueness is that the solution trajectories of an au-
tonomous system do not vary over time.

Proposition 10.10. Consider an autonomous system
�

u = F(u) whose right hand
side F ∈ C1. If u(t) is the solution to with initial condition u(t0) = u0, then the solution
to the initial value problem ũ(t1) = u0 is ũ(t) = u(t − t1 + t0).

Note that the two solutions u(t) and ũ(t) parametrize the same curve in R
n, differing

only by an overall “phase shift”, t1 − t0, in their parametrizations. Thus, all solutions
passing through the point u0 follow the same trajectory, irrespective of the time they
arrive there. Indeed, not only is the trajectory the same, but the solutions have identical
speeds at each point along the trajectory curve. For instance, if the right hand side of
the system represents the velocity vector field of steady state fluid flow, Proposition 10.10
implies that the stream lines — the paths followed by the individual fluid particles — do
not change in time, even though the fluid itself is in motion. This, indeed, is the meaning
of the term “steady state” in fluid mechanics.

Continuous Dependence

In a real-world applications, initial conditions are almost never known exactly. Rather,
experimental and physical errors will only allow us to say that their values are approxi-
mately equal to those in our mathematical model. Thus, to retain physical relevance, we
need to be sure that small errors in our initial measurements do not induce a large change
in the solution. A similar argument can be made for any physical parameters, e.g., masses,

† As noted earlier, we extend all solutions to their maximal interval of existence.

2/25/07 163 c© 2006 Peter J. Olver

charges, spring stiffnesses, frictional coefficients, etc., that appear in the differential equa-
tion itself. A slight change in the parameters should not have a dramatic effect on the
solution.

Mathematically, what we are after is a criterion of continuous dependence of solutions
upon both initial data and parameters. Fortunately, the desired result holds without any
additional assumptions, beyond requiring that the parameters appear continuously in the
differential equation. We state both results in a single theorem.

Theorem 10.11. Consider an initial value problem problem

du

dt
= F(t,u,µ), u(t0) = a(µ), (10.28)

in which the differential equation and/or the initial conditions depend continuously on
one or more parameters µ = (µ1, . . . , µk). Then the unique† solution u(t,µ) depends
continuously upon the parameters.

Example 10.12. Let us look at a perturbed version

du

dt
= α u2, u(0) = u0 + ε,

of the initial value problem that we considered in Example 10.6. We regard ε as a small
perturbation of our original initial data u0, and α as a variable parameter in the equation.
The solution is

u(t, ε) =
u0 + ε

1 − α(u0 + ε) t
. (10.29)

Note that, where defined, this is a continuous function of both parameters α, ε. Thus, a
small change in the initial data, or in the equation, produces a small change in the solution
— at least for times near the initial time.

Continuous dependence does not preclude nearby solutions from eventually becoming
far apart. Indeed, the blow-up time t⋆ = 1/

[
α(u0 + ε)

]
for the solution (10.29) depends

upon both the initial data and the parameter in the equation. Thus, as we approach the
singularity, solutions that started out very close to each other will get arbitrarily far apart;
see Figure 10.2 for an illustration.

An even simpler example is the linear model of exponential growth
�

u = αu when
α > 0. A very tiny change in the initial conditions has a negligible short term effect upon
the solution, but over longer time intervals, the differences between the two solutions will
be dramatic. Thus, the “sensitive dependence” of solutions on initial conditions already
appears in very simple linear equations. For similar reasons, sontinuous dependence does
not prevent solutions from exhibiting chaotic behavior. Further development of these ideas
can be found in [1, 14] and elsewhere.

† We continue to impose our blanket uniqueness hypothesis.

2/25/07 164 c© 2006 Peter J. Olver

10.3. Numerical Methods.

Since we have no hope of solving the vast majority of differential equations in explicit,
analytic form, the design of suitable numerical algorithms for accurately approximating
solutions is essential. The ubiquity of differential equations throughout mathematics and
its applications has driven the tremendous research effort devoted to numerical solution
schemes, some dating back to the beginnings of the calculus. Nowadays, one has the
luxury of choosing from a wide range of excellent software packages that provide reliable
and accurate results for a broad range of systems, at least for solutions over moderately
long time periods. However, all of these packages, and the underlying methods, have their
limitations, and it is essential that one be able to to recognize when the software is working
as advertised, and when it produces spurious results! Here is where the theory, particularly
the classification of equilibria and their stability properties, as well as first integrals and
Lyapunov functions, can play an essential role. Explicit solutions, when known, can also
be used as test cases for tracking the reliability and accuracy of a chosen numerical scheme.

In this section, we survey the most basic numerical methods for solving initial value
problems. For brevity, we shall only consider so-called single step schemes, culminating in
the very popular and versatile fourth order Runge–Kutta Method. This should only serve
as a extremely basic introduction to the subject, and many other important and useful
methods can be found in more specialized texts, [21, 28]. It goes without saying that some
equations are more difficult to accurately approximate than others, and a variety of more
specialized techniques are employed when confronted with a recalcitrant system. But all
of the more advanced developments build on the basic schemes and ideas laid out in this
section.

Euler’s Method

The key issues confronting the numerical analyst of ordinary differential equations
already appear in the simplest first order ordinary differential equation. Our goal is to
calculate a decent approxiomation to the (unique) solution to the initial value problem

du

dt
= F (t, u), u(t0) = u0. (10.30)

To keep matters simple, we will focus our attention on the scalar case; however, all formulas
and results written in a manner that can be readily adapted to first order systems — just
replace the scalar functions u(t) and F (t, u) by vector-valued functions u and F(t,u)
throughout. (The time t, of course, remains a scalar.) Higher order ordinary differential
equations are inevitably handled by first converting them into an equivalent first order
system, as discussed in Section 10.1, and then applying the numerical scheme.

The very simplest numerical solution method is named after Leonhard Euler — al-
though Newton and his contemporaries were well aware of such a simple technique. Euler’s
Method is rarely used in practice because much more efficient and accurate techniques can
be implemented with minimal additional work. Nevertheless, the method lies at the core
of the entire subject, and must be thoroughly understood before progressing on to the
more sophisticated algorithms that arise in real-world computations.

2/25/07 165 c© 2006 Peter J. Olver

Starting at the initial time t0, we introduce successive mesh points (or sample times)

t0 < t1 < t2 < t3 < · · · ,

continuing on until we reach a desired final time tn = t⋆. The mesh points should be fairly
closely spaced. To keep the analysis as simple as possible, we will always use a uniform
step size, and so

h = tk+1 − tk > 0, (10.31)

does not depend on k and is assumed to be relatively small. This assumption serves to
simplify the analysis, and does not significantly affect the underlying ideas. For a uniform
step size, the kth mesh point is at tk = t0 + k h. More sophisticated adaptive methods, in
which the step size is adjusted in order to maintain accuracy of the numerical solution, can
be found in more specialized texts, e.g., [21, 28]. Our numerical algorithm will recursively
compute approximations uk ≈ u(tk), for k = 0, 1, 2, 3, . . . , to the sampled values of the
solution u(t) at the chosen mesh points. Our goal is to make the error Ek = uk − u(tk)
in the approximation at each time tk as small as possible. If required, the values of
the solution u(t) between mesh points may be computed by a subsequent interpolation
procedure, e.g., the cubic splines of Section 13.3.

As you learned in first year calculus, the simplest approximation to a (continuously
differentiable) function u(t) is provided by its tangent line or first order Taylor polynomial.
Thus, near the mesh point tk

u(t) ≈ u(tk) + (t − tk)
du

dt
(tk) = u(tk) + (t − tk) F (tk, u(tk)),

in which we replace the derivative du/dt of the solution by the right hand side of the
governing differential equation (10.30). In particular, the approximate value of the solution
at the subsequent mesh point is

u(tk+1) ≈ u(tk) + (tk+1 − tk) F (tk, u(tk)). (10.32)

This simple idea forms the basis of Euler’s Method.

Since in practice we only know the approximation uk to the value of u(tk) at the
current mesh point, we are forced to replace u(tk) by its approximation uk in the preceding
formula. We thereby convert (10.32) into the iterative scheme

uk+1 = uk + (tk+1 − tk) F (tk, uk). (10.33)

In particular, when based on a uniform step size (10.31), Euler’s Method takes the simple
form

uk+1 = uk + hF (tk, uk). (10.34)

As sketched in Figure 10.4, the method starts off approximating the solution reasonably
well, but gradually loses accuracy as the errors accumulate.

Euler’s Method is the simplest example of a one-step numerical scheme for integrating
an ordinary differential equation. This refers to the fact that the succeeding approximation,
uk+1 ≈ u(tk+1), depends only upon the current value, uk ≈ u(tk), which is one mesh point
or “step” behind.

2/25/07 166 c© 2006 Peter J. Olver

t0 t1 t2 t3

u0

u1

u2

u3

u(t)

Figure 10.4. Euler’s Method.

To begin to understand how Euler’s Method works in practice, let us test it on a
problem we know how to solve, since this will allow us to precisely monitor the resulting
errors in our numerical approximation to the solution.

Example 10.13. The simplest “nontrivial” initial value problem is

du

dt
= u, u(0) = 1,

whose solution is, of course, the exponential function u(t) = et. Since F (t, u) = u, Euler’s
Method (10.34) with a fixed step size h > 0 takes the form

uk+1 = uk + huk = (1 + h) uk.

This is a linear iterative equation, and hence easy to solve:

uk = (1 + h)ku0 = (1 + h)k

is our proposed approximation to the solution u(tk) = etk at the mesh point tk = kh.
Therefore, the Euler scheme to solve the differential equation, we are effectively approxi-
mating the exponential by a power function:

etk = ekh ≈ (1 + h)k

When we use simply t to indicate the mesh time tk = kh, we recover, in the limit, a
well-known calculus formula:

et = lim
h→ 0

(1 + h)t/h = lim
k →∞

(
1 +

t

k

)k

. (10.35)

A reader familiar with the computation of compound interest will recognize this particular
approximation. As the time interval of compounding, h, gets smaller and smaller, the
amount in the savings account approaches an exponential.

How good is the resulting approximation? The error

E(tk) = Ek = uk − etk

2/25/07 167 c© 2006 Peter J. Olver

measures the difference between the true solution and its numerical approximation at time
t = tk = kh. Let us tabulate the error at the particular times t = 1, 2 and 3 for various
values of the step size h. The actual solution values are

e1 = e = 2.718281828 . . . , e2 = 7.389056096 . . . , e3 = 20.085536912

In this case, the numerical approximation always underestimates the true solution.

h E(1) E(2) E(3)

.1 − .125 − .662 −2.636

.01 − .0134 − .0730 − .297

.001 − .00135 − .00738 − .0301

.0001 − .000136 − .000739 − .00301

.00001 − .0000136 − .0000739 − .000301

Some key observations:

• For a fixed step size h, the further we go from the initial point t0 = 0, the larger the
magnitude of the error.

• On the other hand, the smaller the step size, the smaller the error at a fixed value of t.
The trade-off is that more steps, and hence more computational effort† is required
to produce the numerical approximation. For instance, we need k = 10 steps of
size h = .1, but k = 1000 steps of size h = .001 to compute an approximation to
u(t) at time t = 1.

• The error is more or less in proportion to the step size. Decreasing the step size by a
factor of 1

10 decreases the error by a similar amount, but simultaneously increases
the amount of computation by a factor of 10.

The final observation indicates that the Euler Method is of first order , which means that
the error depends linearly‡ on the step size h. More specifically, at a fixed time t, the error
is bounded by

|E(t) | = |uk − u(t) | ≤ C(t) h, when t = tk = k h, (10.36)

for some positive C(t) > 0 that depends upon the time, and the initial condition, but not
on the step size.

† In this case, there happens to be an explicit formula for the numerical solution which can be
used to bypass the iterations. However, in almost any other situation, one cannot compute the
approximation uk without having first determined the intermediate values u0, . . . , uk−1.

‡ See the discussion of the order of iterative methods in Section 2.1 for motivation.

2/25/07 168 c© 2006 Peter J. Olver

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

1.4

h = .1

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

1.4

h = .01

Figure 10.5. Euler’s Method for
�

u =
(
1 − 4

3 t
)
u.

Example 10.14. The solution to the initial value problem

du

dt
=

(
1 − 4

3 t
)
u, u(0) = 1, (10.37)

is found by the method of separation of variables:

u(t) = exp
(
t − 2

3 t2
)
. (10.38)

Euler’s Method leads to the iterative numerical scheme

uk+1 = uk + h
(
1 − 4

3 tk
)
uk, u0 = 1.

In Figure 10.5 we compare the graphs of the actual and numerical solutions for step sizes
h = .1 and .01. In the former plot, we expliticly show the mesh points, but not in the
latter, since they are too dense; moreover, the graphs of the numerical and true solutions
are almost indistinguishable at this resolution.

The following table lists the numerical errors E(tk) = uk−u(tk) between the computed
and actual solution values

u(1) = 1.395612425 . . . , u(2) = .513417119 . . . , u(3) = .049787068 . . . ,

for several different step sizes:

h E(1) E(2) E(3)

.1000 .07461761 .03357536 − .00845267

.0100 .00749258 .00324416 − .00075619

.0010 .00074947 .00032338 − .00007477

.0001 .00007495 .00003233 − .00000747

2/25/07 169 c© 2006 Peter J. Olver

As in the previous example, each decrease in step size by a factor of 10 leads to one
additional decimal digit of accuracy in the computed solution.

Taylor Methods

In general, the order of a numerical solution method governs both the accuracy of its
approximations and the speed at which they converge to the true solution as the step size
is decreased. Although the Euler Method is simple and easy to implement, it is only a
first order scheme, and therefore of limited utility in serious computations. So, the goal is
to devise simple numerical methods that enjoy a much higher order of accuracy.

Our derivation of the Euler Method was based on a first order Taylor approximation
to the solution. So, an evident way to design a higher order method is to employ a higher
order Taylor approximation. The Taylor series expansion for the solution u(t) at the
succeeding mesh point tk+1 = tk + h has the form

u(tk+1) = u(tk + h) = u(tk) + h
du

dt
(tk) +

h2

2

d2u

dt2
(tk) +

h3

6

d3u

dt3
(tk) + · · · . (10.39)

As we just saw, we can evaluate the first derivative term through use of the underlying
differential equation:

du

dt
= F (t, u). (10.40)

The second derivative term can be found by differentiating the equation with respect to t.
Invoking the chain rule†,

d2u

dt2
=

d

dt

du

dt
=

d

dt
F (t, u(t)) =

∂F

∂t
(t, u) +

∂F

∂u
(t, u)

du

dt

=
∂F

∂t
(t, u) +

∂F

∂u
(t, u) F (t, u) ≡ F (2)(t, u).

(10.41)

This operation is known as the total derivative, indicating that that we must treat the
second variable u as a function of t when differentiating. Substituting (10.40–41) into
(10.39) and truncating at order h2 leads to the Second Order Taylor Method

uk+1 = uk + hF (tk, uk) +
h2

2
F (2)(tk, uk)

= uk + hF (tk, uk) +
h2

2

(
∂F

∂t
(tk, uk) +

∂F

∂u
(tk, uk) F (tk, uk)

)
,

(10.42)

in which, as before, we replace the solution value u(tk) by its computed approximation
uk. The resulting method is of second order, meaning that the error function satisfies the
quadratic error estimate

|E(t) | = |uk − u(t) | ≤ C(t) h2 when t = tk = k h. (10.43)

† We assume throughout that F has as many continuous derivatives as needed.

2/25/07 170 c© 2006 Peter J. Olver

Example 10.15. Let us explicitly formulate the second order Taylor Method for the
initial value problem (10.37). Here

du

dt
= F (t, u) =

(
1 − 4

3 t
)
u,

d2u

dt2
=

d

dt
F (t, u) = − 4

3 u +
(
1 − 4

3 t
) du

dt
= − 4

3 u +
(
1 − 4

3 t
)2

u,

and so (10.42) becomes

uk+1 = uk + h
(
1 − 4

3 tk
)
uk + 1

2 h2
[
− 4

3 uk +
(
1 − 4

3 tk
)2

uk

]
, u0 = 1.

The following table lists the errors between the values computed by the second order Taylor
scheme and the actual solution values, as given in Example 10.14.

h E(1) E(2) E(3)

.100 .00276995 −.00133328 .00027753

.010 .00002680 −.00001216 .00000252

.001 .00000027 −.00000012 .00000002

In accordance with the quadratic error estimate (10.43), a decrease in the step size
by a factor of 1

10 leads in an increase in accuracy of the solution by a factor 1
100 , i.e., an

increase in 2 significant decimal places in the numerical approximation of the solution.

Higher order Taylor Methods can be readily established by including further terms in
the expansion (10.39). However, they are rarely used in practice, for two reasons:

• Owing to their dependence upon the partial derivatives of F (t, u), the right hand side
of the differential equation needs to be rather smooth.

• Even worse, the explicit formulae become exceedingly complicated, even for relatively
simple functions F (t, u). Efficient evaluation of the multiplicity of terms in the Taylor
approximation and avoidance of round off errors become significant concerns.

As a result, mathematicians soon abandoned the Taylor series approach, and began to look
elsewhere for high order, efficient integration methods.

Error Analysis

Before pressing on, we need to engage in a more serious discussion of the error in a
numerical scheme. A general one-step numerical method can be written in the form

uk+1 = G(h, tk, uk), (10.44)

where G is a prescribed function of the current approximate solution value uk ≈ u(tk), the
time tk, and the step size h = tk+1 − tk, which, for illustrative purposes, we assume to be
fixed. (We leave the discussion of multi-step methods, in which G could also depend upon
the earlier values uk−1, uk−2, . . . , to more advanced texts, e.g., [21, 28].)

2/25/07 171 c© 2006 Peter J. Olver

In any numerical integration scheme there are, in general, three sources of error.

• The first is the local error committed in the current step of the algorithm. Even if we
have managed to compute a completely accurate value of the solution uk = u(tk) at
time tk, the numerical approximation scheme (10.44) is almost certainly not exact,
and will therefore introduce an error into the next computed value uk+1 ≈ u(tk+1).
Round-off errors, resulting from the finite precision of the computer arithmetic, will
also contribute to the local error.

• The second is due to the error that is already present in the current approximation uk ≈
u(tk). The local errors tend to accumulate as we continue to run the iteration, and
the net result is the global error , which is what we actually observe when compaing
the numerical apporximation with the exact solution.

• Finally, if the initial condition u0 ≈ u(t0) is not computed accurately, this initial error

will also make a contribution. For example, if u(t0) = π, then we introduce some
initial error by using a decimal approximation, say π ≈ 3.14159.

The third error source will, for simplicity, be ignored in our discussion, i.e., we will assume
u0 = u(t0) is exact. Further, for simplicity we will assume that round-off errors do not
play any significant role — although one must always keep them in mind when analyzing
the computation. Since the global error is entirely due to the accumulation of successive
local errors, we must first understand the local error in detail.

To measure the local error in going from tk to tk+1, we compare the exact solution
value u(tk+1) with its numerical approximation (10.44) under the assumption that the
current computed value is correct: uk = u(tk). Of course, in practice this is never the case,
and so the local error is an artificial quantity. Be that as it may, in most circumstances
the local error is (a) easy to estimate, and, (b) provides a reliable guide to the global
accuracy of the numerical scheme. To estimate the local error, we assume that the step
size h is small and approximate the solution u(t) by its Taylor expansion†

u(tk+1) = u(tk) + h
du

dt
(tk) +

h2

2

d2u

dt2
(tk) + · · ·

= uk + hF (tk, uk) +
h2

2
F (2)(tk, uk) + · · · .

(10.45)

In the second expression, we have employed (10.41) and its higher order analogs to evaluate
the derivative terms, and then invoked our local accuracy assumption to replace u(tk) by
uk. On the other hand, a direct Taylor expansion, in h, of the numerical scheme produces

uk+1 = G(h, tk, uk) = G(0, tk, uk) + h
∂G

∂h
(0, tk, uk) +

h2

2

∂2G

∂h2
(0, tk, uk) + · · · . (10.46)

The local error is obtained by comparing these two Taylor expansions.

Definition 10.16. A numerical integration method is of order n if the Taylor ex-
pansions (10.45, 46) of the exact and numerical solutions agree up to order hn.

† In our analysis, we assume that the differential equation, and hence the solution, has sufficient
smoothness to justify the relevant Taylor approximation.

2/25/07 172 c© 2006 Peter J. Olver

For example, the Euler Method

uk+1 = G(h, tk, uk) = uk + hF (tk, uk),

is already in the form of a Taylor expansion — that has no terms involving h2, h3,
Comparing with the exact expansion (10.45), we see that the constant and order h terms
are the same, but the order h2 terms differ (unless F (2) ≡ 0). Thus, according to the
definition, the Euler Method is a first order method. Similarly, the Taylor Method (10.42)
is a second order method, because it was explicitly designed to match the constant, h and
h2 terms in the Taylor expansion of the solution. The general Taylor Method of order n
sets G(h, tk, uk) to be exactly the order n Taylor polynomial, differing from the full Taylor
expansion at order hn+1.

Under fairly general hypotheses, it can be proved that, if the numerical scheme has
order n as measured by the local error, then the global error is bounded by a multiple of
hn. In other words, assuming no round-off or initial error, the computed value uk and the
solution at time tk can be bounded by

|uk − u(tk) | ≤ M hn, (10.47)

where the constant M > 0 may depend on the time tk and the particular solution u(t). The
error bound (10.47) serves to justify our numerical observations. For a method of order n,
decreasing the step size by a factor of 1

10 will decrease the overall error by a factor of about
10−n, and so, roughly speaking, we anticipate gaining an additional n digits of accuracy —
at least up until the point that round-off errors begin to play a role. Readers interested in a
more complete error analysis of numerical integration schemes should consult a specialized
text, e.g., [21, 28].

The bottom line is the higher its order, the more accurate the numerical scheme, and
hence the larger the step size that can be used to produce the solution to a desired accuracy.
However, this must be balanced with the fact that higher order methods inevitably require
more computational effort at each step. If the total amount of computation has also
decreased, then the high order method is to be preferred over a simpler, lower order
method. Our goal now is to find another route to the design of higher order methods that
avoids the complications inherent in a direct Taylor expansion.

An Equivalent Integral Equation

The secret to the design of higher order numerical algorithms is to replace the dif-
ferential equation by an equivalent integral equation. By way of motivation, recall that,
in general, differentiation is a badly behaved process; a reasonable function can have an
unreasonable derivative. On the other hand, integration ameliorates; even quite nasty
functions have relatively well-behaved integrals. For the same reason, accurate numerical
integration is relatively painless, whereas numerical differentiation should be avoided un-
less necessary. While we have not dealt directly with integral equations in this text, the
subject has been extensively developed by mathematicians, [10], and has many important
physical applications.

Conversion of an initial value problem (10.30) to an integral equation is straightfor-
ward. We integrate both sides of the differential equation from the initial point t0 to a

2/25/07 173 c© 2006 Peter J. Olver

variable time t. The Fundamental Theorem of Calculus is used to explicitly evaluate the
left hand integral:

u(t) − u(t0) =

∫ t

t0

�

u(s) ds =

∫ t

t0

F (s, u(s)) ds.

Rearranging terms, we arrive at the key result.

Lemma 10.17. The solution u(t) to the the integral equation

u(t) = u(t0) +

∫ t

t0

F (s, u(s)) ds (10.48)

coincides with the solution to the initial value problem
du

dt
= F (t, u), u(t0) = u0.

Proof : Our derivation already showed that the solution to the initial value problem
satisfies the integral equation (10.48). Conversely, suppose that u(t) solves the integral
equation. Since u(t0) = u0 is constant, the Fundamental Theorem of Calculus tells us that

the derivative of the right hand side of (10.48) is equal to the integrand, so
du

dt
= F (t, u(t)).

Moreover, at t = t0, the upper and lower limits of the integral coincide, and so it vanishes,
whence u(t) = u(t0) = u0 has the correct initial conditions. Q.E.D.

Observe that, unlike the differential equation, the integral equation (10.48) requires
no additional initial condition — it is automatically built into the equation. The proofs of
the fundamental existence and uniqueness Theorems 10.5 and 10.8 for ordinary differential
equations are, in fact, based on the integral equation reformulation of the initial value
problem; see [22, 25] for details.

The integral equation reformulation is equally valid for systems of first order ordinary
differential equations. As noted above, u(t) and F(t,u(t)) become vector-valued func-
tions. Integrating a vector-valued function is accomplished by integrating its individual
components. Complete details are left to the exercises.

Implicit and Predictor–Corrector Methods

From this point onwards, we shall abandon the original initial value problem, and
turn our attention to numerically solving the equivalent integral equation (10.48). Let us
rewrite the integral equation, starting at the mesh point tk instead of t0, and integrating
until time t = tk+1. The result is the basic integral formula

u(tk+1) = u(tk) +

∫ tk+1

tk

F (s, u(s)) ds (10.49)

that (implicitly) computes the value of the solution at the subsequent mesh point. Com-
paring this formula with the Euler Method

uk+1 = uk + hF (tk, uk), where h = tk+1 − tk,

2/25/07 174 c© 2006 Peter J. Olver

Left Endpoint Rule Trapezoid Rule Midpoint Rule

Figure 10.6. Numerical Integration Methods.

and assuming for the moment that uk = u(tk) is exact, we discover that we are merely
approximating the integral by

∫ tk+1

tk

F (s, u(s)) ds ≈ hF (tk, u(tk)). (10.50)

This is the Left Endpoint Rule for numerical integration — that approximates the area
under the curve g(t) = F (t, u(t)) between tk ≤ t ≤ tk+1 by the area of a rectangle whose
height g(tk) = F (tk, u(tk)) ≈ F (tk, uk) is prescribed by the left-hand endpoint of the graph.
As indicated in Figure 10.6, this is a reasonable, but not especially accurate method of
numerical integration.

In first year calculus, you no doubt encountered much better methods of approximat-
ing the integral of a function. One of these is the Trapezoid Rule, which approximates
the integral of the function g(t) by the area of a trapezoid obtained by connecting the two
points (tk, g(tk)) and (tk+1, g(tk+1)) on the graph of g by a straight line, as in the sec-
ond Figure 10.6. Let us therefore try replacing (10.50) by the more accurate trapezoidal
approximation

∫ tk+1

tk

F (s, u(s)) ds ≈ 1
2 h

[
F (tk, u(tk)) + F (tk+1, u(tk+1))

]
. (10.51)

Substituting this approximation into the integral formula (10.49), and replacing the solu-
tion values u(tk), u(tk+1) by their numerical approximations, leads to the (hopefully) more
accurate numerical scheme

uk+1 = uk + 1
2 h

[
F (tk, uk) + F (tk+1, uk+1)

]
, (10.52)

known as the Trapezoid Method . It is an implicit scheme, since the updated value uk+1

appears on both sides of the equation, and hence is only defined implicitly.

Example 10.18. Consider the differential equation
�

u =
(
1 − 4

3 t
)
u studied in Ex-

amples 10.14 and 10.15. The Trapezoid Method with a fixed step size h takes the form

uk+1 = uk + 1
2 h

[(
1 − 4

3 tk
)
uk +

(
1 − 4

3 tk+1

)
uk+1

]
.

2/25/07 175 c© 2006 Peter J. Olver

In this case, we can explicit solve for the updated solution value, leading to the recursive
formula

uk+1 =
1 + 1

2 h
(
1 − 4

3 tk
)

1 − 1
2 h

(
1 − 4

3 tk+1

) uk =
1 + 1

2 h − 2
3 htk

1 − 1
2 h + 2

3 h (tk + h)
uk. (10.53)

Implementing this scheme for three different step sizes gives the following errors between
the computed and true solutions at times t = 1, 2, 3.

h E(1) E(2) E(3)

.100 −.00133315 .00060372 −.00012486

.010 −.00001335 .00000602 −.00000124

.001 −.00000013 .00000006 −.00000001

The numerical data indicates that the Trapezoid Method is of second order. For each
reduction in step size by 1

10 , the accuracy in the solution increases by, roughly, a factor of
1

100 = 1
102 ; that is, the numerical solution acquires two additional accurate decimal digits.

The main difficulty with the Trapezoid Method (and any other implicit scheme) is
immediately apparent. The updated approximate value for the solution uk+1 appears on
both sides of the equation (10.52). Only for very simple functions F (t, u) can one expect to
solve (10.52) explicitly for uk+1 in terms of the known quantities tk, uk and tk+1 = tk + h.
The alternative is to employ a numerical equation solver, such as the bisection algorithm
or Newton’s Method, to compute uk+1. In the case of Newton’s Method, one would use
the current approximation uk as a first guess for the new approximation uk+1 — as in the
continuation method discussed in Example 2.20. The resulting scheme requires some work
to program, but can be effective in certain situations.

An alternative, less involved strategy is based on the following far-reaching idea. We
already know a half-way decent approximation to the solution value uk+1 — namely that
provided by the more primitive Euler scheme

ũk+1 = uk + hF (tk, uk). (10.54)

Let’s use this estimated value in place of uk+1 on the right hand side of the implicit
equation (10.52). The result

uk+1 = uk + 1
2 h

[
F (tk, uk) + F (tk + h, ũk+1)

]

= uk + 1
2 h

[
F (tk, uk) + F

(
tk + h, uk + hF (tk, uk)

)]
.

(10.55)

is known as the Improved Euler Method . It is a completely explicit scheme since there is
no need to solve any equation to find the updated value uk+1.

Example 10.19. For our favorite equation
�

u =
(
1 − 4

3 t
)
u, the Improved Euler

Method begins with the Euler approximation

ũk+1 = uk + h
(
1 − 4

3 tk
)
uk,

2/25/07 176 c© 2006 Peter J. Olver

and then replaces it by the improved value

uk+1 = uk + 1
2 h

[(
1 − 4

3 tk
)
uk +

(
1 − 4

3 tk+1

)
ũk+1

]

= uk + 1
2 h

[(
1 − 4

3 tk
)
uk +

(
1 − 4

3 (tk + h)
)(

uk + h
(
1 − 4

3 tk
)
uk

)]

=
[(

1 − 2
3 h2

) [
1 + h

(
1 − 4

3 tk
)]

+ 1
2 h2

(
1 − 4

3 tk
)2

]
uk.

Implementing this scheme leads to the following errors in the numerical solution at the
indicated times. The Improved Euler Method performs comparably to the fully implicit
scheme (10.53), and significantly better than the original Euler Method.

h E(1) E(2) E(3)

.100 −.00070230 .00097842 .00147748

.010 −.00000459 .00001068 .00001264

.001 −.00000004 .00000011 .00000012

The Improved Euler Method is the simplest of a large family of so-called predictor–

corrector algorithms. In general, one begins a relatively crude method — in this case the
Euler Method — to predict a first approximation ũk+1 to the desired solution value uk+1.
One then employs a more sophisticated, typically implicit, method to correct the original
prediction, by replacing the required update uk+1 on the right hand side of the implicit
scheme by the less accurate prediction ũk+1. The resulting explicit, corrected value uk+1

will, provided the method has been designed with due care, be an improved approximation
to the true solution.

The numerical data in Example 10.19 indicates that the Improved Euler Method is
of second order since each reduction in step size by 1

10 improves the solution accuracy by,
roughly, a factor of 1

100 . To verify this prediction, we expand the right hand side of (10.55)
in a Taylor series in h, and then compare, term by term, with the solution expansion
(10.45). First,

F
(
tk + h, uk + hF (tk, uk)

)
= F + h

(
Ft + F Fu

)
+ 1

2 h2
(
Ftt + 2F Ftu + F 2 Fuu

)
+ · · · ,

where all the terms involving F and its partial derivatives on the right hand side are
evaluated at tk, uk. Substituting into (10.55), we find

uk+1 = uk + hF + 1
2 h2

(
Ft + F Fu

)
+ 1

4 h3
(
Ftt + 2F Ftu + F 2 Fuu

)
+ · · · . (10.56)

The two Taylor expansions (10.45) and (10.56) agree in their order 1, h and h2 terms, but
differ at order h3. This confirms our experimental observation that the Improved Euler
Method is of second order.

We can design a range of numerical solution schemes by implementing alternative nu-
merical approximations to the basic integral equation (10.49). For example, the Midpoint

2/25/07 177 c© 2006 Peter J. Olver

Rule approximates the integral of the function g(t) by the area of the rectangle whose
height is the value of the function at the midpoint:

∫ tk+1

tk

g(s) ds ≈ h g
(
tk + 1

2 h
)
, where h = tk+1 − tk. (10.57)

See Figure 10.6 for an illustration. The Midpoint Rule is known to have the same order of
accuracy as the Trapezoid Rule, [2, 7]. Substituting into (10.49) leads to the approximation

uk+1 = uk +

∫ tk+1

tk

F (s, u(s)) ds ≈ uk + hF
(
tk + 1

2 h, u
(
tk + 1

2 h
))

.

Of course, we don’t know the value of the solution u
(
tk + 1

2 h
)

at the midpoint, but can
predict it through a straightforward adaptation of the basic Euler approximation:

u
(
tk + 1

2 h
)
≈ uk + 1

2 hF (tk, uk).

The result is the Midpoint Method

uk+1 = uk + hF
(
tk + 1

2 h, uk + 1
2 hF (tk, uk)

)
. (10.58)

A comparison of the terms in the Taylor expansions of (10.45), (10.58) reveals that the
Midpoint Method is also of second order.

Runge–Kutta Methods

The Improved Euler and Midpoint Methods are the most elementary incarnations of
a general class of numerical schemes for ordinary differential equations that were first sys-
tematically studied by the German mathematicians Carle Runge and Martin Kutta in the
late nineteenth century. Runge–Kutta Methods are by far the most popular and powerful
general-purpose numerical methods for integrating ordinary differential equations. While
not appropriate in all possible situations, Runge–Kutta schemes are surprisingly robust,
performing efficiently and accurately in a wide variety of problems. Barring significant
complications, they are the method of choice in most basic applications. They comprise
the engine that powers most computer software for solving general initial value problems
for systems of ordinary differential equations.

The most general Runge–Kutta Method takes the form

uk+1 = uk + h

m∑

i=1

ci F (ti,k, ui,k), (10.59)

where m counts the number of terms in the method. Each ti,k denotes a point in the kth

mesh interval, so tk ≤ ti,k ≤ tk+1. The second argument ui,k ≈ u(ti,k) should be viewed
as an approximation to the solution at the point ti,k, and so is computed by a simpler
Runge–Kutta scheme of the same general format. There is a lot of flexibility in the design
of the method, through choosing the coefficients ci, the times ti,k, as well as the scheme
(and all parameters therein) used to compute each of the intermediate approximations
ui,k. As always, the order of the method is fixed by the power of h to which the Taylor

2/25/07 178 c© 2006 Peter J. Olver

expansions of the numerical method (10.59) and the actual solution (10.45) agree. Clearly,
the more terms we include in the Runge–Kutta formula (10.59), the more free parameters
available to match terms in the solution’s Taylor series, and so the higher the potential
order of the method. Thus, the goal is to arrange the parameters so that the method has
a high order of accuracy, while, simultaneously, avoiding unduly complicated, and hence
computationally costly, formulae.

Both the Improved Euler and Midpoint Methods are instances of a family of two term
Runge–Kutta Methods

uk+1 = uk + h
[
aF (tk, uk) + b F

(
tk,2, uk,2

)]

= uk + h
[
aF (tk, uk) + b F

(
tk + λh, uk + λhF (tk, uk)

)]
,

(10.60)

based on the current mesh point, so tk,1 = tk, and one intermediate point tk,2 = tk + λh
with 0 ≤ λ ≤ 1. The basic Euler Method is used to approximate the solution value

uk,2 = uk + λhF (tk, uk)

at tk,2. The Improved Euler Method sets a = b = 1
2 and λ = 1, while the Midpoint Method

corresponds to a = 0, b = 1, λ = 1
2 . The range of possible values for a, b and λ is found

by matching the Taylor expansion

uk+1 = uk + h
[
aF (tk, uk) + b F

(
tk + λh, uk + λhF (tk, uk)

)]

= uk + h (a + b) F (tk, uk) + h2 b λ

[
∂F

∂t
(tk, uk) + F (tk, uk)

∂F

∂u
(tk, uk)

]
+ · · · .

(in powers of h) of the right hand side of (10.60) with the Taylor expansion (10.45) of the
solution, namely

u(tk+1) = uk + hF (tk, uk) +
h2

2
[Ft(tk, uk) + F (tk, uk) Fu(tk, uk)] + · · · ,

to as high an order as possible. First, the constant terms, uk, are the same. For the order
h and order h2 terms to agree, we must have, respectively,

a + b = 1, b λ = 1
2 .

Therefore, setting

a = 1 − µ, b = µ, and λ =
1

2µ
, where µ is arbitrary†,

leads to the following family of two term, second order Runge–Kutta Methods:

uk+1 = uk + h

[
(1 − µ) F (tk, uk) + µF

(
tk +

h

2µ
, uk +

h

2µ
F (tk, uk)

)]
. (10.61)

† Although we should restrict µ ≥
1
2 in order that 0 ≤ λ ≤ 1.

2/25/07 179 c© 2006 Peter J. Olver

The case µ = 1
2 corresponds to the Improved Euler Method (10.55), while µ = 1 yields

the Midpoint Method (10.58). Unfortunately, none of these methods are able to match
all of the third order terms in the Taylor expansion for the solution, and so we are left
with a one-parameter family of two step Runge–Kutta Methods, all of second order, that
include the Improved Euler and Midpoint schemes as particular instances. The methods
with 1

2 ≤ µ ≤ 1 all perform more or less comparably, and there is no special reason to
prefer one over the other.

To construct a third order Runge–Kutta Method, we need to take at least m ≥ 3
terms in (10.59). A rather intricate computation (best done with the aid of computer
algebra) will produce a range of valid schemes; the results can be found in [21, 28]. The
algebraic manipulations are rather tedious, and we leave a complete discussion of the
available options to a more advanced treatment. In practical applications, a particularly
simple fourth order, four term formula has become the most used. The method, often
abbreviated as RK4, takes the form

uk+1 = uk +
h

6

[
F (tk, uk) + 2F (t2,k, u2,k) + 2F (t3,k, u3,k) + F (t4,k, u4,k)

]
, (10.62)

where the times and function values are successively computed according to the following
procedure:

t2,k = tk + 1
2 h, u2,k = uk + 1

2 hF (tk, uk),

t3,k = tk + 1
2 h, u3,k = uk + 1

2 hF (t2,k, u2,k),

t4,k = tk + h, u4,k = uk + hF (t3,k, u3,k).

(10.63)

The four term RK4 scheme (10.62–63) is, in fact, a fourth order method. This is confirmed
by demonstrating that the Taylor expansion of the right hand side of (10.62) in powers of
h matches all of the terms in the Taylor series for the solution (10.45) up to and including
those of order h4, and hence the local error is of order h5. This is not a computation for the
faint-hearted — bring lots of paper and erasers, or, better yet, a good computer algebra
package! The RK4 scheme is but one instance of a large family of fourth order, four term
Runge–Kutta Methods, and by far the most popular owing to its relative simplicity.

Example 10.20. Application of the RK4 Method (10.62–63) to our favorite initial
value problem (10.37) leads to the following errors at the indicated times:

h E(1) E(2) E(3)

.100 −1.944 × 10−7 1.086 × 10−6 4.592 × 10−6

.010 −1.508 × 10−11 1.093 × 10−10 3.851 × 10−10

.001 −1.332 × 10−15 −4.741 × 10−14 1.932 × 10−14

The accuracy is phenomenally good — much better than any of our earlier numerical
schemes. Each decrease in the step size by a factor of 1

10 results in about 4 additional

2/25/07 180 c© 2006 Peter J. Olver

decimal digits of accuracy in the computed solution, in complete accordance with its status
as a fourth order method.

Actually, it is not entirely fair to compare the accuracy of the methods using the
same step size. Each iteration of the RK4 Method requires four evaluations of the func-
tion F (t, u), and hence takes the same computational effort as four Euler iterations, or,
equivalently, two Improved Euler iterations. Thus, the more revealing comparison would
be between RK4 at step size h, Euler at step size 1

4 h, and Improved Euler at step size 1
2 h,

as these involve roughly the same amount of computational effort. The resulting errors
E(1) at time t = 1 are listed in the following table.

Thus, even taking computational effort into account, the Runge–Kutta Method con-
tinues to outperform its rivals. At a step size of .1, it is almost as accurate as the Im-
proved Euler Method with step size .0005, and hence 200 times as much computation,
while the Euler Method would require a step size of approximately .24× 10−6, and would
be 4, 000, 000 times as slow as Runge–Kutta! With a step size of .001, RK4 computes a
solution value that is near the limits imposed by machine accuracy (in single precision
arithmetic). The superb performance level and accuracy of the RK4 Method immediately
explains its popularity for a broad range of applications.

h Euler Improved Euler Runge–Kutta 4

.1 1.872 × 10−2 −1.424 × 10−4 −1.944 × 10−7

.01 1.874 × 10−3 −1.112 × 10−6 −1.508 × 10−11

.001 1.870 × 10−4 −1.080 × 10−8 −1.332 × 10−15

Example 10.21. As noted earlier, by writing the function values as vectors uk ≈
u(tk), one can immediately use all of the preceding methods to integrate initial value
problems for first order systems of ordinary differential equations

�

u = F(u). Consider, by
way of example, the Lotka–Volterra system

du

dt
= 2u − uv,

dv

dt
= −9v + 3uv. (10.64)

To find a numerical solution, we write u = (u, v)
T

for the solution vector, while F(u) =

(2u − uv,−9v + 3uv)
T

is the right hand side of the system. The Euler Method with step
size h is given by

u(k+1) = u(k) + hF(u(k)),

or, explicitly, as a first order nonlinear iterative system

u(k+1) = u(k) + h (2u(k) − u(k) v(k)), v(k+1) = v(k) + h (−9v(k) + 3u(k) v(k)).

The Improved Euler and Runge–Kutta schemes are implemented in a similar fashion.
Phase portraits of the three numerical algorithms starting with initial conditions u(0) =
v(0) = 1.5, and up to time t = 25 in the case of the Euler Method, and t = 50 for the other

2/25/07 181 c© 2006 Peter J. Olver

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Euler Method, h = .01

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Euler Method, h = .001

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Improved Euler Method, h = .01

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

RK4 Method, h = .01

Figure 10.7. Numerical Solutions of Predator–Prey Model.

two, appear in Figure 10.7. In fact, the solution is supposed to travel periodically around
a closed curve, which is the level set

I(u, v) = 9 log u − 3u + 2 log v − v = I(1.5, 1.5) = −1.53988

of the first integral. The Euler Method spirals away from the exact periodic solution,
whereas the Improved Euler and RK4 Methods perform rather well. Since we do not have
an analytic formula for the solution, we cannot measure the exact error in the methods.
However, the known first integral is supposed to remain constant on the solution trajec-
tories, and so one means of monitoring the accuracy of the solution is by the variation
in the numerical values of I(u(k), v(k)). These are graphed in Figure 10.8; the Improved
Euler keeps the vlue within .0005, while for the RK4 solution, only the fifth decimal place
in the value of the first integral experiences any change over the indicated time period. Of
course, the ononger one continues to integrate, the more error will gradually creep into the

2/25/07 182 c© 2006 Peter J. Olver

5 10 15 20 25

-0.8

-0.6

-0.4

-0.2

Euler Method
h = .001

10 20 30 40 50

-0.004

-0.003

-0.002

-0.001

Improved Euler Method

h = .01

10 20 30 40 50

-0.00001

-7.5·10-6
-5·10-6

-2.5·10-6

2.5·10-6
5·10-6

RK4 Method
h = .01

Figure 10.8. Numerical Evaluation of Lotka–Volterra First Integral.

numerical solution. Still, for most practical purposes, the RK4 solution is indistinguishable
from the exact solution.

In practical implementations, it is important to monitor the accuracy of the numer-
ical solution, so to gauge when to abandon an insufficiently precise computation. Since
accuracy is dependent upon the step size h, one may try adjusting h so as stay within a
preassigned error. Adaptive methods, allow one to change the step size during the course
of the computation, in response to some estimation of the overall error. Insufficiently ac-
curate numerical solutions would necessitate a suitable reduction in step size (or increase
in the order of the scheme). On the other hand, if the solution is more accurate than the
application requires, one could increase the step size so as to reduce the total amount of
computational effort.

How might one decide when a method is giving inaccurate results, since one presum-
ably does not know the true solution and so has nothing to directly test the numerical
approximation against? One useful idea is to integrate the differential equation using two
different numerical schemes, usually of different orders of accuracy, and then compare the
results. If the two solution values are reasonably close, then one is usually safe in as-
suming that the methods are both giving accurate results, while in the event that they
differ beyond some preassigned tolerance, then one needs to re-evaluate the step size. The
required adjustment to the step size relies on a more detailed analysis of the error terms.
Several well-studied methods are employed in practical situations; the most popular is the
Runge–Kutta–Fehlberg Method, which combines a fourth and a fifth order Runge–Kutta
scheme for error control. Details can be found in more advanced treatments of the subject,
e.g., [21, 28].

Stiff Differential Equations

While the fourth order Runge–Kutta Method with a sufficiently small step size will
successfully integrate a broad range of differential equations — at least over not unduly long
time intervals — it does occasionally experience unexpected difficulties. While we have
not developed sufficiently sophisticated analytical tools to conduct a thorough analysis, it
will be instructive to look at why a breakdown might occur in a simpler context.

Example 10.22. The elementary linear initial value problem

du

dt
= −250u, u(0) = 1, (10.65)

2/25/07 183 c© 2006 Peter J. Olver

is an instructive and sobering example. The explicit solution is easily found; it is a very
rapidly decreasing exponential: u(t) = e−250 t.

u(t) = e−250 t with u(1) ≈ 2.69 × 10−109.

The following table gives the result of approximating the solution value u(1) ≈ 2.69×10−109

at time t = 1 using three of our numerical integration schemes for various step sizes:

h Euler Improved Euler RK4

.1 6.34 × 1013 3.99 × 1024 2.81 × 1041

.01 4.07 × 1017 1.22 × 1021 1.53 × 10−19

.001 1.15 × 10−125 6.17 × 10−108 2.69 × 10−109

The results are not misprints! When the step size is .1, the computed solution values
are perplexingly large, and appear to represent an exponentially growing solution — the
complete opposite of the rapidly decaying true solution. Reducing the step size beyond a
critical threshold suddenly transforms the numerical solution to an exponentially decaying
function. Only the fourth order RK4 Method with step size h = .001 — and hence a total
of 1, 000 steps — does a reasonable job at approximating the correct value of the solution
at t = 1.

You may well ask, what on earth is going on? The solution couldn’t be simpler — why
is it so difficult to compute it? To understand the basic issue, let us analyze how the Euler
Method handles such simple differential equations. Consider the initial value problem

du

dt
= λu, u(0) = 1, (10.66)

which has an exponential solution
u(t) = eλt. (10.67)

As in Example 10.13, the Euler Method with step size h relies on the iterative scheme

uk+1 = (1 + λh) uk, u0 = 1,

with solution
uk = (1 + λh)k. (10.68)

If λ > 0, the exact solution (10.67) is exponentially growing. Since 1 + λh > 1, the
numerical iterates are also growing, albeit at a somewhat slower rate. In this case, there
is no inherent surprise with the numerical approximation procedure — in the short run
it gives fairly accurate results, but eventually trails behind the exponentially growing
solution.

On the other hand, if λ < 0, then the exact solution is exponentially decaying and
positive. But now, if λh < −2, then 1 + λh < −1, and the iterates (10.68) grow expo-
nentially fast in magnitude, with alternating signs. In this case, the numerical solution

2/25/07 184 c© 2006 Peter J. Olver

is nowhere close to the true solution; this explains the previously observed pathological
behavior. If −1 < 1 + λh < 0, the numerical solutions decay in magnitude, but continue
to alternate between positive and negative values. Thus, to correctly model the qualitative
features of the solution and obtain a numerically respectable approximation, we need to
choose the step size h so as to ensure that 0 < 1 + λh, and hence h < −1/λ when λ < 0.
For the value λ = −250 in the example, then, we must choose h < 1

250 = .004 in order that
the Euler Method give a reasonable numerical answer. A similar, but more complicated
analysis applies to any of the Runge–Kutta schemes.

Thus, the numerical methods for ordinary differential equations exhibit a form of
conditional stability. Paradoxically, the larger negative λ is — and hence the faster the
solution tends to a trivial zero equilibrium — the more difficult and expensive the numer-
ical integration. The system (10.65) is the simplest example of what is known as a stiff

differential equation. In general, an equation or system is stiff if it has one or more very
rapidly decaying solutions. In the case of autonomous (constant coefficient) linear systems
�

u = Au, stiffness occurs whenever the coefficient matrix A has an eigenvalue with a large
negative real part: Re λ ≪ 0, resulting in a very rapidly decaying eigensolution. It only
takes one such eigensolution to render the equation stiff, and ruin the numerical compu-
tation of even the well behaved solutions! Curiously, the component of the actual solution
corresponding to such large negative eigenvalues is almost irrelevant, as it becomes almost
instanteously tiny. However, the presence of such an eigenvalue continues to render the
numerical solution to the system very difficult, even to the point of exhausting any avail-
able computing resources. Stiff equations require more sophisticated numerical procedures
to integrate, and we refer the reader to [21, 28] for details.

2/25/07 185 c© 2006 Peter J. Olver

AIMS LectureNotes 2006
Peter J. Olver

11. Numerical Solution of
the Heat and Wave Equations

In this part, we study numerical solution methodss for the two most important equa-
tions of one-dimensional continuum dynamics. The heat equation models the diffusion of
thermal energy in a body; here, we treat the case of a one-dimensional bar. The wave
equation describes vibrations and waves in continuous media, including sound waves, wa-
ter waves, elastic waves, electromagnetic waves, and so on. For simplicity, we restrict our
attention to the case of waves in a one-dimensional medium, e.g., a string, bar, or column
of air.

We begin with a general discussion of finite difference formulae for numerically ap-
proximating derivatives of functions. The basic finite difference scheme is obtained by
replacing the derivatives in the equation by the appropriate numerical differentiation for-
mulae. However, there is no guarantee that the resulting numerical scheme will accurately
approximate the true solution, and further analysis is required to elicit bona fide, conver-
gent numerical algorithms. In dynamical problems, the finite difference schemes replace
the partial differential equation by an iterative linear matrix system, and the analysis of
convergence relies on the methods covered in Section 7.1.

We will only introduce the most basic algorithms, leaving more sophisticated variations
and extensions to a more thorough treatment, which can be found in numerical analysis
texts, e.g., [5, 7, 28].

11.1. Finite Differences.

In general, to approximate the derivative of a function at a point, say f ′(x) or f ′′(x),
one constructs a suitable combination of sampled function values at nearby points. The
underlying formalism used to construct these approximation formulae is known as the
calculus of finite differences. Its development has a long and influential history, dating
back to Newton. The resulting finite difference numerical methods for solving differential
equations have extremely broad applicability, and can, with proper care, be adapted to
most problems that arise in mathematics and its many applications.

The simplest finite difference approximation is the ordinary difference quotient

u(x + h) − u(x)
h

≈ u′(x), (11.1)

4/20/07 186 c© 2006 Peter J. Olver

One-Sided Difference Central Difference

Figure 11.1. Finite Difference Approximations.

used to approximate the first derivative of the function u(x). Indeed, if u is differentiable
at x, then u′(x) is, by definition, the limit, as h → 0 of the finite difference quotients.
Geometrically, the difference quotient equals the slope of the secant line through the two
points

(
x, u(x)

)
and

(
x + h, u(x + h)

)
on the graph of the function. For small h, this

should be a reasonably good approximation to the slope of the tangent line, u′(x), as
illustrated in the first picture in Figure 11.1.

How close an approximation is the difference quotient? To answer this question, we
assume that u(x) is at least twice continuously differentiable, and examine the first order
Taylor expansion

u(x + h) = u(x) + u′(x) h + 1
2 u′′(ξ) h2. (11.2)

We have used the Cauchy formula for the remainder term, in which ξ represents some point
lying between x and x + h. The error or difference between the finite difference formula
and the derivative being approximated is given by

u(x + h) − u(x)
h

− u′(x) = 1
2 u′′(ξ) h. (11.3)

Since the error is proportional to h, we say that the finite difference quotient (11.3) is a
first order approximation. When the precise formula for the error is not so important, we
will write

u′(x) =
u(x + h) − u(x)

h
+ O(h). (11.4)

The “big Oh” notation O(h) refers to a term that is proportional to h, or, more rigorously,
bounded by a constant multiple of h as h → 0.

Example 11.1. Let u(x) = sin x. Let us try to approximate u′(1) = cos 1 =
0.5403023 . . . by computing finite difference quotients

cos 1 ≈ sin(1 + h) − sin 1
h

.

The result for different values of h is listed in the following table.

4/20/07 187 c© 2006 Peter J. Olver

h 1 .1 .01 .001 .0001
approximation 0.067826 0.497364 0.536086 0.539881 0.540260

error −0.472476 −0.042939 −0.004216 −0.000421 −0.000042

We observe that reducing the step size by a factor of 1
10 reduces the size of the error by

approximately the same factor. Thus, to obtain 10 decimal digits of accuracy, we anticipate
needing a step size of about h = 10−11. The fact that the error is more of less proportional
to the step size confirms that we are dealing with a first order numerical approximation.

To approximate higher order derivatives, we need to evaluate the function at more
than two points. In general, an approximation to the nth order derivative u(n)(x) requires
at least n+1 distinct sample points. For simplicity, we shall only use equally spaced points,
leaving the general case to the exercises.

For example, let us try to approximate u′′(x) by sampling u at the particular points x,
x + h and x− h. Which combination of the function values u(x− h), u(x), u(x+h) should
be used? The answer to such a question can be found by consideration of the relevant
Taylor expansions

u(x + h) = u(x) + u′(x) h + u′′(x)
h2

2
+ u′′′(x)

h3

6
+ O(h4),

u(x − h) = u(x) − u′(x) h + u′′(x)
h2

2
− u′′′(x)

h3

6
+ O(h4),

(11.5)

where the error terms are proportional to h4. Adding the two formulae together gives

u(x + h) + u(x − h) = 2u(x) + u′′(x) h2 + O(h4).

Rearranging terms, we conclude that

u′′(x) =
u(x + h) − 2u(x) + u(x − h)

h2
+ O(h2), (11.6)

The result is known as the centered finite difference approximation to the second derivative
of a function. Since the error is proportional to h2, this is a second order approximation.

Example 11.2. Let u(x) = ex2
, with u′′(x) = (4x2 + 2)ex2

. Let us approximate
u′′(1) = 6e = 16.30969097 . . . by using the finite difference quotient (11.6):

6e ≈ e(1+h)2 − 2e + e(1−h)2

h2
.

The results are listed in the following table.

h 1 .1 .01 .001 .0001

approximation 50.16158638 16.48289823 16.31141265 16.30970819 16.30969115

error 33.85189541 0.17320726 0.00172168 0.00001722 0.00000018

Each reduction in step size by a factor of 1
10 reduces the size of the error by a factor of

1
100

and results in a gain of two new decimal digits of accuracy, confirming that the finite
difference approximation is of second order.

4/20/07 188 c© 2006 Peter J. Olver

However, this prediction is not completely borne out in practice. If we take† h = .00001
then the formula produces the approximation 16.3097002570, with an error of 0.0000092863
— which is less accurate that the approximation with h = .0001. The problem is that
round-off errors have now begun to affect the computation, and underscores the difficulty
with numerical differentiation. Finite difference formulae involve dividing very small quan-
tities, which can induce large numerical errors due to round-off. As a result, while they
typically produce reasonably good approximations to the derivatives for moderately small
step sizes, to achieve high accuracy, one must switch to a higher precision. In fact, a similar
comment applied to the previous Example 11.1, and our expectations about the error were
not, in fact, fully justified as you may have discovered if you tried an extremely small step
size.

Another way to improve the order of accuracy of finite difference approximations is
to employ more sample points. For instance, if the first order approximation (11.4) to the
first derivative based on the two points x and x+h is not sufficiently accurate, one can try
combining the function values at three points x, x + h and x− h. To find the appropriate
combination of u(x−h), u(x), u(x+h), we return to the Taylor expansions (11.5). To solve
for u′(x), we subtract† the two formulae, and so

u(x + h) − u(x − h) = 2u′(x)h + u′′′(x)
h3

3
+ O(h4).

Rearranging the terms, we are led to the well-known centered difference formula

u′(x) =
u(x + h) − u(x − h)

2h
+ O(h2), (11.7)

which is a second order approximation to the first derivative. Geometrically, the cen-
tered difference quotient represents the slope of the secant line through the two points(
x − h, u(x − h)

)
and

(
x + h, u(x + h)

)
on the graph of u centered symmetrically about

the point x. Figure 11.1 illustrates the two approximations; the advantages in accuracy in
the centered difference version are graphically evident. Higher order approximations can be
found by evaluating the function at yet more sample points, including, say, x+2h, x−2h,
etc.

Example 11.3. Return to the function u(x) = sin x considered in Example 11.1.
The centered difference approximation to its derivative u′(1) = cos 1 = 0.5403023 . . . is

cos 1 ≈ sin(1 + h) − sin(1 − h)
2h

.

The results are tabulated as follows:

† This next computation depends upon the computer’s precision; here we used single precision
in Matlab.

† The terms O(h4) do not cancel, since they represent potentially different multiples of h4.

4/20/07 189 c© 2006 Peter J. Olver

h .1 .01 .001 .0001

approximation 0.53940225217 0.54029330087 0.54030221582 0.54030230497

error −0.00090005370 −0.00000900499 −0.00000009005 −0.00000000090

As advertised, the results are much more accurate than the one-sided finite difference
approximation used in Example 11.1 at the same step size. Since it is a second order
approximation, each reduction in the step size by a factor of 1

10 results in two more decimal
places of accuracy.

Many additional finite difference approximations can be constructed by similar manip-
ulations of Taylor expansions, but these few very basic ones will suffice for our subsequent
purposes. In the following subsection, we apply the finite difference formulae to develop
numerical solution schemes for the heat and wave equations.

11.2. Numerical Algorithms for the Heat Equation.

Consider the heat equation

∂u

∂t
= γ

∂2u

∂x2
, 0 < x < �, t ≥ 0, (11.8)

representing a homogeneous diffusion process of, sqy, heat in bar of length � and constant
thermal diffusivity γ > 0. The solution u(t, x) represents the temperature in the bar at
time t ≥ 0 and position 0 ≤ x ≤ �. To be concrete, we will impose time-dependent Dirichlet
boundary conditions

u(t, 0) = α(t), u(t, �) = β(t), t ≥ 0, (11.9)

specifying the temperature at the ends of the bar, along with the initial conditions

u(0, x) = f(x), 0 ≤ x ≤ �, (11.10)

specifying the bar’s initial temperature distribution. In order to effect a numerical approx-
imation to the solution to this initial-boundary value problem, we begin by introducing a
rectangular mesh consisting of points (ti, xj) with

0 = x0 < x1 < · · · < xn = � and 0 = t0 < t1 < t2 < · · · .

For simplicity, we maintain a uniform mesh spacing in both directions, with

h = xj+1 − xj =
�

n
, k = ti+1 − ti,

representing, respectively, the spatial mesh size and the time step size. It will be essential
that we do not a priori require the two to be the same. We shall use the notation

ui,j ≈ u(ti, xj) where ti = i k, xj = j h, (11.11)

to denote the numerical approximation to the solution value at the indicated mesh point.

4/20/07 190 c© 2006 Peter J. Olver

As a first attempt at designing a numerical method, we shall use the simplest finite
difference approximations to the derivatives. The second order space derivative is approx-
imated by (11.6), and hence

∂2u

∂x2
(ti, xj) ≈ u(ti, xj+1) − 2 u(ti, xj) + u(ti, xj−1)

h2
+ O(h2)

≈ ui,j+1 − 2 ui,j + ui,j−1

h2
+ O(h2),

(11.12)

where the error in the approximation is proportional to h2. Similarly, the one-sided finite
difference approximation (11.4) is used for the time derivative, and so

∂u

∂t
(ti, xj) ≈ u(ti+1, xj) − u(ti, xj)

k
+ O(k) ≈ ui+1,j − ui,j

k
+ O(k), (11.13)

where the error is proportion to k. In practice, one should try to ensure that the approxi-
mations have similar orders of accuracy, which leads us to choose

k ≈ h2.

Assuming h < 1, this requirement has the important consequence that the time steps must
be much smaller than the space mesh size.

Remark : At this stage, the reader might be tempted to replace (11.13) by the second
order central difference approximation (11.7). However, this produces significant compli-
cations, and the resulting numerical scheme is not practical.

Replacing the derivatives in the heat equation (11.14) by their finite difference ap-
proximations (11.12), (11.13), and rearranging terms, we end up with the linear system

ui+1,j = µui,j+1 + (1 − 2µ)ui,j + µui,j−1,
i = 0, 1, 2, . . . ,

j = 1, . . . , n − 1,
(11.14)

in which
µ =

γ k

h2
. (11.15)

The resulting numerical scheme takes the form of an iterative linear system for the solution
values ui,j ≈ u(ti, xj), j = 1, . . . , n − 1, at each time step ti.

The initial condition (11.10) means that we should initialize our numerical data by
sampling the initial temperature at the mesh points:

u0,j = fj = f(xj), j = 1, . . . , n − 1. (11.16)

Similarly, the boundary conditions (11.9) require that

ui,0 = αi = α(ti), ui,n = βi = β(ti), i = 0, 1, 2, (11.17)

For consistency, we should assume that the initial and boundary conditions agree at the
corners of the domain:

f0 = f(0) = u(0, 0) = α(0) = α0, fn = f(�) = u(0, �) = β(0) = β0.

4/20/07 191 c© 2006 Peter J. Olver

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

Figure 11.2. A Solution to the Heat Equation.

The three equations (11.14–17) completely prescribe the numerical approximation algo-
rithm for solving the initial-boundary value problem (11.8–10).

Let us rewrite the scheme in a more transparent matrix form. First, let

u(i) =
(
ui,1, ui,2, . . . , ui,n−1

)T ≈ (
u(ti, x1), u(ti, x2), . . . , u(ti, xn−1)

)T (11.18)

be the vector whose entries are the numerical approximations to the solution values at
time ti at the interior nodes. We omit the boundary nodes x0 = 0, xn = �, since those
values are fixed by the boundary conditions (11.9). Then (11.14) assumes the compact
vectorial form

u(i+1) = Au(i) + b(i), (11.19)

where

A =

1 − 2µ µ
µ 1 − 2µ µ

µ 1 − 2µ µ

µ
.
. µ

µ 1 − 2µ

, b(i) =

µ αi

0
0
...
0

µ βi

. (11.20)

The coefficient matrix A is symmetric and tridiagonal. The contributions (11.17) of the
boundary nodes appear in the vector b(i). This numerical method is known as an explicit
scheme since each iterate is computed directly without relying on solving an auxiliary
equation — unlike the implicit schemes to be discussed below.

Example 11.4. Let us fix the diffusivity γ = 1 and the bar length � = 1. Consider
the initial temperature profile

u(0, x) = f(x) =

−x, 0 ≤ x ≤ 1
5 ,

x − 2
5 , 1

5 ≤ x ≤ 7
10 ,

1 − x, 7
10 ≤ x ≤ 1,

(11.21)

4/20/07 192 c© 2006 Peter J. Olver

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

Figure 11.3. Numerical Solutions for the Heat Equation
Based on the Explicit Scheme.

on a bar of length 1, plotted in the first graph in Figure 11.2. The solution is plotted
at the successive times t = ., .02, .04, . . . , .1. Observe that the corners in the initial data
are immediately smoothed out. As time progresses, the solution decays, at an exponential
rate of π2 ≈ 9.87, to a uniform, zero temperature, which is the equilibrium temperature
distribution for the homogeneous Dirichlet boundary conditions. As the solution decays
to thermal equilibrium, it also assumes the progressively more symmetric shape of a single
sine arc, of exponentially decreasing amplitude.

In our numerical solution, we take the spatial step size h = .1. In Figure 11.3 we
compare two (slightly) different time step sizes on the same initial data as used in (11.21).
The first sequence uses the time step k = h2 = .01 and plots the solution at times t =
0., .02, .04. The solution is already starting to show signs of instability, and indeed soon
thereafter becomes completely wild. The second sequence takes k = .005 and plots the
solution at times t = 0., .025, .05. (Note that the two sequences of plots have different
vertical scales.) Even though we are employing a rather coarse mesh, the numerical solution
is not too far away from the true solution to the initial value problem, which can be found
in Figure 11.2.

In light of this calculation, we need to understand why our scheme sometimes gives
reasonable answers but at other times utterly fails. To this end, let us specialize to homo-
geneous boundary conditions

u(t, 0) = 0 = u(t, �), whereby αi = βi = 0 for all i = 0, 1, 2, 3, . . . ,
(11.22)

and so (11.19) reduces to a homogeneous, linear iterative system

u(i+1) = Au(i). (11.23)

According to Proposition 7.8, all solutions will converge to zero, u(i) → 0 — as they are
supposed to (why?) — if and only if A is a convergent matrix. But convergence depends
upon the step sizes. Example 11.4 is indicating that for mesh size h = .1, the time step

4/20/07 193 c© 2006 Peter J. Olver

k = .01 yields a non-convergent matrix, while k = .005 leads to a convergent matrix and
a valid numerical scheme.

As we learned in Theorem 7.11, the convergence property of a matrix is fixed by
its spectral radius, i.e., its largest eigenvalue in magnitude. There is, in fact, an explicit
formula for the eigenvalues of the particular tridiagonal matrix in our numerical scheme,
which follows from the following general result.

Lemma 11.5. The eigenvalues of an (n−1)× (n−1) tridiagonal matrix all of whose
diagonal entries are equal to a and all of whose sub- and super-diagonal entries are equal
to b are

λk = a + 2b cos
πk

n
, k = 1, . . . , n − 1. (11.24)

Proof : The corresponding eigenvectors are

vk =
(

sin
kπ

n
, sin

2kπ

n
, . . . sin

nkπ

n

)T

.

Indeed, the jth entry of the eigenvalue equation Avk = λk vk reads

a sin
j kπ

n
+ b

(
sin

(j − 1)kπ

n
+ sin

(j + 1)kπ

n

)
=

(
a + 2b cos

kπ

n

)
sin

j kπ

n
,

which follows from the trigonometric identity

sin α + sin β = 2 cos
α − β

2
sin

α + β

2
. Q .E .D .

In our particular case, a = 1− 2µ and b = µ, and hence the eigenvalues of the matrix
A given by (11.20) are

λk = 1 − 2µ + 2µ cos
πk

n
, k = 1, . . . , n − 1.

Since the cosine term ranges between −1 and +1, the eigenvalues satisfy

1 − 4µ < λk < 1.

Thus, assuming that 0 < µ ≤ 1
2 guarantees that all |λk | < 1, and hence A is a convergent

matrix. In this way, we have deduced the basic stability criterion

µ =
γ k

h2
≤ 1

2
, or k ≤ h2

2γ
. (11.25)

With some additional analytical work, [28], it can be shown that this is sufficient to
conclude that the numerical scheme (11.14–17) converges to the true solution to the initial-
boundary value problem for the heat equation.

Since not all choices of space and time steps lead to a convergent scheme, the numerical
method is called conditionally stable. The convergence criterion (11.25) places a severe
restriction on the time step size. For instance, if we have h = .01, and γ = 1, then we can
only use a time step size k ≤ .00005, which is minuscule. It would take an inordinately

4/20/07 194 c© 2006 Peter J. Olver

large number of time steps to compute the value of the solution at even a moderate times,
e.g., t = 1. Moreover, owing to the limited accuracy of computers, the propagation of
round-off errors might then cause a significant reduction in the overall accuracy of the
final solution values.

An unconditionally stable method — one that does not restrict the time step — can
be constructed by using the backwards difference formula

∂u

∂t
(ti, xj) ≈

u(ti, xj) − u(ti−1, xj)
k

+ O(hk) (11.26)

to approximate the temporal derivative. Substituting (11.26) and the same approximation
(11.12) for uxx into the heat equation, and then replacing i by i + 1, leads to the iterative
system

ui+1,j − µ
(
ui+1,j+1 − 2ui+1,j + ui+1,j−1

)
= ui,j ,

i = 0, 1, 2, . . . ,

j = 1, . . . , n − 1,
(11.27)

where the parameter µ = γ k/h2 is as above. The initial and boundary conditions also
have the same form (11.16), (11.17). The system can be written in the matrix form

Âu(i+1) = u(i) + b(i+1), (11.28)

where Â is obtained from the matrix A in (11.20) by replacing µ by −µ. This defines an
implicit method since we have to solve a tridiagonal linear system at each step in order
to compute the next iterate u(i+1). However, as we learned in Section 4.5, tridiagonal
systems can be solved very rapidly, and so speed does not become a significant issue in the
practical implementation of this implicit scheme.

Let us look at the convergence properties of the implicit scheme. For homogeneous
Dirichlet boundary conditions (11.22), the system takes the form

u(i+1) = Â−1 u(i),

and the convergence is now governed by the eigenvalues of Â−1. Lemma 11.5 tells us that
the eigenvalues of Â are

λk = 1 + 2µ − 2µ cos
πk

n
, k = 1, . . . , n − 1.

As a result, its inverse Â−1 has eigenvalues

1
λk

=
1

1 + 2µ

(
1 − cos

πk

n

) , k = 1, . . . , n − 1.

Since µ > 0, the latter are always less than 1 in absolute value, and so Â is always a
convergent matrix. The implicit scheme (11.28) is convergent for any choice of step sizes
h, k, and hence unconditionally stable.

4/20/07 195 c© 2006 Peter J. Olver

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

Figure 11.4. Numerical Solutions for the Heat Equation
Based on the Implicit Scheme.

Example 11.6. Consider the same initial-boundary value problem considered in
Example 11.4. In Figure 11.4, we plot the numerical solutions obtained using the implicit
scheme. The initial data is not displayed, but we graph the numerical solutions at times
t = .2, .4, .6 with a mesh size of h = .1. On the top line, we use a time step of k = .01,
while on the bottom k = .005. Unlike the explicit scheme, there is very little difference
between the two — both come much closer to the actual solution than the explicit scheme.
Indeed, even significantly larger time steps give reasonable numerical approximations to
the solution.

Another popular numerical scheme is the Crank–Nicolson method

ui+1,j − ui,j =
µ

2
(
ui+1,j+1 − 2 ui+1,j + ui+1,j−1 + ui,j+1 − 2 ui,j + ui,j−1

)
. (11.29)

which can be obtained by averaging the explicit and implicit schemes (11.14, 27). We can
write the iterative system in matrix form

B u(i+1) = C u(i) + 1
2

(
b(i) + b(i+1)

)
,

where

B =

1 + µ − 1
2
µ

− 1
2 µ 1 + µ − 1

2 µ

− 1
2
µ

.

.

, C =

1 − µ 1
2
µ

1
2 µ 1 − µ 1

2 µ

1
2
µ

.

.

. (11.30)

Convergence is governed by the generalized eigenvalues of the tridiagonal matrix pair
B, C, or, equivalently, the eigenvalues of the product B−1 C, which are

λk =
1 − µ

(
1 − cos

πk

n

)

1 + µ

(
1 − cos

πk

n

) , k = 1, . . . , n − 1. (11.31)

4/20/07 196 c© 2006 Peter J. Olver

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

Figure 11.5. Numerical Solutions for the Heat Equation
Based on the Crank–Nicolson Scheme.

Since µ > 0, all of the eigenvalues are strictly less than 1 in absolute value, and so the
Crank–Nicolson scheme is also unconditionally stable. A detailed analysis will show that
the errors are of the order of k2 and h2, and so it is reasonable to choose the time step to
have the same order of magnitude as the space step, k ≈ h. This gives the Crank–Nicolson
scheme one advantage over the previous two methods. However, applying it to the initial
value problem considered earlier points out a significant weakness. Figure 11.5 shows the
result of running the scheme on the initial data (11.21). The top row has space and time
step sizes h = k = .1, and does a rather poor job replicating the solution. The second row
uses h = k = .01, and performs better except near the corners where an annoying and
incorrect local time oscillation persists as the solution decays. Indeed, since most of its
eigenvalues are near −1, the Crank–Nicolson scheme does not do a good job of damping
out the high frequency modes that arise from small scale features, including discontinuities
and corners in the initial data. On the other hand, most of the eigenvalues of the fully
implicit scheme are near zero, and it tends to handle the high frequency modes better,
losing out to Crank–Nicolson when the data is smooth. Thus, a good strategy is to first
evolve using the implicit scheme until the small scale noise is dissipated away, and then
switch to Crank–Nicolson to use a much larger time step for final the large scale changes.

11.3. Numerical Solution Methods for the Wave Equation.

Let us now look at some numerical solution techniques for the wave equation. Al-
though this is in a sense unnecessary, owing to the explicit d’Alembert solution formula,
the experience we gain in designing workable schemes will serve us well in more compli-
cated situations, including inhomogeneous media, and higher dimensional problems, when
analytic solution formulas are no longer available.

Consider the wave equation

∂2u

∂t2
= c2 ∂2u

∂x2
, 0 < x < �, t ≥ 0, (11.32)

modeling vibrations of a homogeneous bar of length � with constant wave speed c > 0. We

4/20/07 197 c© 2006 Peter J. Olver

impose Dirichlet boundary conditions

u(t, 0) = α(t), u(t, �) = β(t), t ≥ 0. (11.33)

and initial conditions

u(0, x) = f(x),
∂u

∂t
(0, x) = g(x), 0 ≤ x ≤ �. (11.34)

We adopt the same uniformly spaced mesh

ti = i k, xj = j h, where h =
�

n
.

In order to discretize the wave equation, we replace the second order derivatives by
their standard finite difference approximations (11.6), namely

∂2u

∂t2
(ti, xj) ≈ u(ti+1, xj) − 2u(ti, xj) + u(ti−1, xj)

k2
+ O(h2),

∂2u

∂x2
(ti, xj) ≈ u(ti, xj+1) − 2u(ti, xj) + u(ti, xj−1)

h2
+ O(k2),

(11.35)

Since the errors are of orders of k2 and h2, we anticipate to be able to choose the space
and time step sizes of comparable magnitude:

k ≈ h.

Substituting the finite difference formulae (11.35) into the partial differential equation
(11.32), and rearranging terms, we are led to the iterative system

ui+1,j = σ2 ui,j+1 + 2 (1 − σ2) ui,j + σ2 ui,j−1 − ui−1,j ,
i = 1, 2, . . . ,

j = 1, . . . , n − 1,
(11.36)

for the numerical approximations ui,j ≈ u(ti, xj) to the solution values at the mesh points.
The positive parameter

σ =
c k

h
> 0 (11.37)

depends upon the wave speed and the ratio of space and time step sizes. The boundary
conditions (11.33) require that

ui,0 = αi = α(ti), ui,n = βi = β(ti), i = 0, 1, 2, (11.38)

This allows us to rewrite the system in matrix form

u(i+1) = Bu(i) − u(i−1) + b(i), (11.39)

where

B =

2 (1 − σ2) σ2

σ2 2 (1 − σ2) σ2

σ2
. σ2

σ2 2 (1 − σ2)

, u(j) =

u1,j

u2,j

...
un−2,j

un−1,j

, b(j) =

σ2 αj

0
...
0

σ2 βj

.

(11.40)

4/20/07 198 c© 2006 Peter J. Olver

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

Figure 11.6. Numerically Stable Waves.

The entries of u(i) are, as in (11.18), the numerical approximations to the solution values
at the interior nodes. Note that the system (11.39) is a second order iterative scheme,
since computing the next iterate u(i+1) requires the value of the preceding two, u(i) and
u(i−1).

The one difficulty is getting the method started. We know u(0) since u0,j = fj = f(xj)
is determined by the initial position. However, we also need to find u(1) with entries
u1,j ≈ u(k, xj) at time t1 = k in order launch the iteration, but the initial velocity
ut(0, x) = g(x) prescribes the derivatives ut(0, xj) = gj = g(xj) at time t0 = 0 instead.
One way to resolve this difficult would be to utilize the finite difference approximation

gj =
∂u

∂t
(0, xj) ≈

u(k, xj) − u(0, xj)
k

≈ u1,j − gj

k
(11.41)

to compute the required values
u1,j = fj + k gj .

However, the approximation (11.41) is only accurate to order k, whereas the rest of the
scheme has error proportional to k2. Therefore, we would introduce an unacceptably large
error at the initial step.

To construct an initial approximation to u(1) with error on the order of k2, we need
to analyze the local error in more detail. Note that, by Taylor’s theorem,

u(k, xj) − u(0, xj)
k

≈ ∂u

∂t
(0, xj) +

k

2
∂2u

∂t2
(0, xj) =

∂u

∂t
(0, xj) +

c2 k

2
∂2u

∂x2
(0, xj) ,

where the error is now of order k2, and, in the final equality, we have used the fact that u
is a solution to the wave equation. Therefore, we find

u(k, xj) ≈ u(0, xj) + k
∂u

∂t
(0, xj) +

c2 k2

2
∂2u

∂x2
(0, xj)

= f(xj) + k g(xj) +
c2 k2

2
f ′′(xj) ≈ fj + k gj +

c2 k2

2h2
(fj+1 − 2fj + fj−1) ,

4/20/07 199 c© 2006 Peter J. Olver

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

Figure 11.7. Numerically Unstable Waves.

where we can use the finite difference approximation (11.6) for the second derivative of
f(x) if no explicit formula is known. Therefore, when we initiate the scheme by setting

u1,j = 1
2 σ2 fj+1 + (1 − σ2)fj + 1

2 σ2 fj−1 + k gj, (11.42)

or, in matrix form,

u(0) = f , u(1) = 1
2 Bu(0) + kg + 1

2 b(0), (11.43)

we will have maintained the desired order k2 (and h2) accuracy.

Example 11.7. Consider the particular initial value problem

utt = uxx,
u(0, x) = e−400 (x−.3)2 , ut(0, x) = 0,

u(t, 0) = u(1, 0) = 0,

0 ≤ x ≤ 1,

t ≥ 0,

subject to homogeneous Dirichlet boundary conditions on the interval [0, 1]. The initial
data is a fairly concentrated single hump centered at x = .3, and we expect it to split into
two half sized humps, which then collide with the ends. Let us choose a space discretization
consisting of 90 equally spaced points, and so h = 1

90 = .0111 If we choose a time
step of k = .01, whereby σ = .9, then we get reasonably accurate solution over a fairly
long time range, as plotted in Figure 11.6 at times t = 0, .1, .2, . . . , .5. On the other hand,
if we double the time step, setting k = .02, so σ = 1.8, then, as plotted in Figure 11.7
at times t = 0, .05, .1, .14, .16, .18, we observe an instability eventually creeping into the
picture that eventually overwhelms the numerical solution. Thus, the numerical scheme
appears to only be conditionally stable.

The stability analysis of this numerical scheme proceeds as follows. We first need to
recast the second order iterative system (11.39) into a first order system. In analogy with

Example 7.4, this is accomplished by introducing the vector z(i) =
(

u(i)

u(i−1)

)
∈ R

2n−2.
Then

z(i+1) = C z(i) + c(i), where C =
(

B − I
I O

)
. (11.44)

4/20/07 200 c© 2006 Peter J. Olver

Therefore, the stability of the method will be determined by the eigenvalues of the coeffi-

cient matrix C. The eigenvector equation C z = λ z, where z =
(

u
v

)
, can be written out

in its individual components:

Bu − v = λu, u = λv.

Substituting the second equation into the first, we find

(λ B − λ2 − 1)v = 0, or Bv =
(

λ +
1
λ

)
v.

The latter equation implies that v is an eigenvector of B with λ + λ−1 the corresponding
eigenvalue. The eigenvalues of the tridiagonal matrix B are governed by Lemma 11.5, in
which a = 2(1 − σ2) and b = σ2, and hence are

λ +
1
λ

= 2
(

1 − σ2 + σ2 cos
πk

n

)
, k = 1, . . . , n − 1.

Multiplying both sides by λ leads to a quadratic equation for the eigenvalues,

λ2 − 2ak λ + 1 = 0, where 1 − 2σ2 < ak = 1 − σ2 + σ2 cos
πk

n
< 1. (11.45)

Each pair of solutions to these n − 1 quadratic equations, namely

λ±
k = ak ±

√
a2

k − 1 , (11.46)

yields two eigenvalues of the matrix C. If ak > 1, then one of the two eigenvalues will
be larger than one in magnitude, which means that the linear iterative system has an
exponentially growing mode, and so ‖u(i) ‖ → ∞ as i → ∞ for almost all choices of
initial data. This is clearly incompatible with the wave equation solution that we are
trying to approximate, which is periodic and hence remains bounded. On the other hand,
if | ak | < 1, then the eigenvalues (11.46) are complex numbers of modulus 1, indicated
stability (but not convergence) of the matrix C. Therefore, in view of (11.45), we should
require that

σ =
c k

h
< 1, or k <

h

c
, (11.47)

which places a restriction on the relative sizes of the time and space steps. We conclude
that the numerical scheme is conditionally stable.

The stability criterion (11.47) is known as the Courant condition, and can be assigned
a simple geometric interpretation. Recall that the wave speed c is the slope of the charac-
teristic lines for the wave equation. The Courant condition requires that the mesh slope,
which is defined to be the ratio of the space step size to the time step size, namely h/k,
must be strictly greater than the characteristic slope c. A signal starting at a mesh point
(ti, xj) will reach positions xj ± k/c at the next time ti+1 = ti + k, which are still between
the mesh points xj−1 and xj+1. Thus, characteristic lines that start at a mesh point are
not allowed to reach beyond the neighboring mesh points at the next time step.

For instance, in Figure 11.8, the wave speed is c = 1.25. The first figure has equal
mesh spacing k = h, and does not satisfy the Courant condition (11.47), whereas the

4/20/07 201 c© 2006 Peter J. Olver

Figure 11.8. The Courant Condition.

second figure has k = 1
2 h, which does. Note how the characteristic lines starting at a

given mesh point have progressed beyond the neighboring mesh points after one time step
in the first case, but not in the second.

4/20/07 202 c© 2006 Peter J. Olver

AIMS Lecture Notes 2006

Peter J. Olver

12. Minimization

In this part, we will introduce and solve the most basic mathematical optimization
problem: minimize a quadratic function depending on several variables. This will require
a short introduction to positive definite matrices. Assuming the coefficient matrix of the
quadratic terms is positive definite, the minimizer can be found by solving an associated
linear algebraic system. With the solution in hand, we are able to treat a wide range
of applications, including least squares fitting of data, interpolation, as well as the finite
element method for solvilng boundary value problems for differential equations.

12.1. Positive Definite Matrices.

Minimization of functions of several variables relies on an extremely important class
of symmetric matrices.

Definition 12.1. An n × n matrix K is called positive definite if it is symmetric,
KT = K, and satisfies the positivity condition

xT K x > 0 for all vectors 0 6= x ∈ R
n. (12.1)

We will sometimes write K > 0 to mean that K is a symmetric, positive definite matrix.

Warning : The condition K > 0 does not mean that all the entries of K are positive.
There are many positive definite matrices that have some negative entries; see Example 12.2
below. Conversely, many symmetric matrices with all positive entries are not positive
definite!

Remark : Although some authors allow non-symmetric matrices to be designated as
positive definite, we will only say that a matrix is positive definite when it is symmetric.
But, to underscore our convention and remind the casual reader, we will often include the
superfluous adjective “symmetric” when speaking of positive definite matrices.

Given any symmetric matrix K, the homogeneous quadratic polynomial

q(x) = xT K x =
n∑

i,j =1

kij xi xj , (12.2)

3/15/06 203 c© 2006 Peter J. Olver

is known as a quadratic form on R
n. The quadratic form is called positive definite if

q(x) > 0 for all 0 6= x ∈ R
n. (12.3)

Thus, a quadratic form is positive definite if and only if its coefficient matrix is.

Example 12.2. Even though the symmetric matrix K =

(
4 −2

−2 3

)
has two

negative entries, it is, nevertheless, a positive definite matrix. Indeed, the corresponding
quadratic form

q(x) = xT K x = 4x2
1 − 4x1 x2 + 3x2

2 = (2x1 − x2)
2 + 2x2

2 ≥ 0

is a sum of two non-negative quantities. Moreover, q(x) = 0 if and only if both 2x1−x2 = 0
and x2 = 0, which implies x1 = 0 also. This proves q(x) > 0 for all x 6= 0, and hence K is
indeed a positive definite matrix.

On the other hand, despite the fact that K =

(
1 2
2 1

)
has all positive entries, it is

not a positive definite matrix. Indeed, writing out

q(x) = xT K x = x2
1 + 4x1 x2 + x2

2,

we find, for instance, that q(1,−1) = −2 < 0, violating positivity. These two simple
examples should be enough to convince the reader that the problem of determining whether
a given symmetric matrix is or is not positive definite is not completely elementary.

Example 12.3. By definition, a general symmetric 2 × 2 matrix K =

(
a b
b c

)
is

positive definite if and only if the associated quadratic form satisfies

q(x) = ax2
1 + 2bx1 x2 + cx2

2 > 0 for all x 6= 0. (12.4)

Analytic geometry tells us that this is the case if and only if

a > 0, a c − b2 > 0, (12.5)

i.e., the quadratic form has positive leading coefficient and positive determinant (or nega-
tive discriminant).

A practical test of positive definiteness comes from the following result, whose proof
is based on Gaussian Elimination, [38].

Theorem 12.4. A symmetric matrix K is positive definite if and only if it is regular

and has all positive pivots.

In other words, a square matrix K is positive definite if and only if it can be factored
K = LDLT , where L is special lower triangular and D is diagonal with all positive diagonal
entries. Indeed, we cna then write the associated quadratic form as a sum of squares

q(x) = xT K x = xT LD LT x = (LT x)T D (LT x)

= yT Dy = d1 y2
1 + · · · + dn y2

n,
where y = LT x. (12.6)

Furthermore, the resulting diagonal quadratic form is positive definite, yT Dy > 0 for all
y 6= 0 if and only if all the pivots are positive, di > 0. Invertibility of LT tells us that
y = 0 if and only if x = 0, and hence, positivity of the pivots is equivalent to positive
definiteness of the original quadratic form: q(x) > 0 for all x 6= 0.

3/15/06 204 c© 2006 Peter J. Olver

Example 12.5. Consider the symmetric matrix K =

1 2 −1
2 6 0

−1 0 9

. Gaussian

Elimination produces the factors

L =

1 0 0
2 1 0

−1 1 1

 , D =

1 0 0
0 2 0
0 0 6

 , LT =

1 2 −1
0 1 1
0 0 1

 ,

in its factorization K = LDLT . Since the pivots — the diagonal entries 1, 2 and 6 in D
— are all positive, Theorem 12.4 implies that K is positive definite, which means that the
associated quadratic form satisfies

q(x) = x2
1 + 4x1 x2 − 2x1 x3 + 6x2

2 + 9x2
3 > 0, for all x = (x1, x2, x3)

T
6= 0.

Indeed, the LDLT factorization implies that q(x) can be explicitly written as a sum of
squares:

q(x) = x2
1 + 4x1 x2 − 2x1 x3 + 6x2

2 + 9x2
3 = y2

1 + 2y2
2 + 6y2

3 , (12.7)

where

y1 = x1 + 2x2 − x3, y2 = x2 + x3, y3 = x3,

are the entries of y = LT x. Positivity of the coefficients of the y2
i (which are the pivots)

implies that q(x) is positive definite.

Slightly more generally, a quadratic form and its associated symmetric coefficient
matrix are called positive semi-definite if

q(x) = xT K x ≥ 0 for all x ∈ R
n. (12.8)

A positive semi-definite matrix may have null directions, meaning non-zero vectors z such
that q(z) = zT K z = 0. Clearly, any nonzero vector z such that K z = 0 defines a null
direction, but there may be others. A positive definite matrix is not allowed to have null
directions, and so ker K = {0}. Therefore:

Proposition 12.6. If K is positive definite, then K is nonsingular.

The converse, however, is not valid; many symmetric, nonsingular matrices fail to be
positive definite.

Example 12.7. The matrix K =

(
1 −1

−1 1

)
is positive semi-definite, but not

positive definite. Indeed, the associated quadratic form

q(x) = xT K x = x2
1 − 2x1 x2 + x2

2 = (x1 − x2)
2 ≥ 0

is a perfect square, and so clearly non-negative. However, the elements of ker K, namely
the scalar multiples of the vector (1, 1)

T
, define null directions: q(c, c) = 0.

3/15/06 205 c© 2006 Peter J. Olver

In a similar fashion, a quadratic form q(x) = xT K x and its associated symmetric
matrix K are called negative semi-definite if q(x) ≤ 0 for all x and negative definite if
q(x) < 0 for all x 6= 0. A quadratic form is called indefinite if it is neither positive nor
negative semi-definite; equivalently, there exist points x+ where q(x+) > 0 and points x

−

where q(x
−

) < 0. Details can be found in the exercises.

Gram Matrices

Symmetric matrices whose entries are given by inner products of elements of an inner
product space will appear throughout this text. They are named after the nineteenth
century Danish mathematician Jorgen Gram — not the metric mass unit!

Definition 12.8. Let A be an m × n matrix Then the n × n matrix

K = AT A (12.9)

is known as the associated Gram matrix .

Example 12.9. If

A =

1 3
2 0

−1 6

, then K = AT A =

(
1 2 −1
3 0 6

)

1 3
2 0

−1 6

 =

(
6 −3

−3 45

)
.

The resulting matrix is positive definite owing to the following result.

Theorem 12.10. All Gram matrices are positive semi-definite. The Gram matrix

K = AT A is positive definite if and only if ker A = {0}.

Proof : To prove positive (semi-)definiteness of K, we need to examine the associated
quadratic form

q(x) = xT K x = xT AT Ax = (Ax)T Ax = ‖Ax ‖2 ≥ 0,

for all x ∈ R
n. Moreover, it equals 0 if and only if Ax = 0, and so if A has trivial kernel,

this requires x = 0, and hence q(x) = 0 if and only if x = 0. Thus, in this case, q(x) and
K are positive definite. Q.E.D.

More generally, if C > 0 is any symmetric, positive definite m × m matrix, then we
define the weighted Gram matrix

K = AT C A. (12.10)

Theorem 12.10 also holds as stated for weighted Gram matrices. In the majority of appli-
cations, C = diag (c1, . . . , cm) is a diagonal positive definite matrix, which requires it to
have strictly positive diagonal entries ci > 0.

Example 12.11. Returning to the situation of Example 12.9, let C =

3 0 0
0 2 0
0 0 5

be a diagonal positive definite matrix. Then the corresponding weighted Gram matrix

3/15/06 206 c© 2006 Peter J. Olver

-1 1 2 3

1

2

3

4

5

a > 0

-1 1 2 3

1

2

3

4

5

a < 0

-1 1 2 3

1

2

3

4

5

a = 0

Figure 12.1. Parabolas.

(12.10) is

K̃ = AT C A =

(
1 2 −1
3 0 6

)

3 0 0
0 2 0
0 0 5

1 3
2 0

−1 6

 =

(
16 −21

−21 207

)
,

which is again positive definite.

12.2. Minimization of Quadratic Functions.

The simplest algebraic equations are linear systems. As such, they must be thor-
oughly understood before venturing into the far more complicated nonlinear realm. For
minimization problems, the starting point is the quadratic function. (Linear functions do
not have minima — think of the function f(x) = αx + β whose graph is a straight line.)
In this section, we shall see how the problem of minimizing a general quadratic function
of n variables can be solved by linear algebra techniques.

Let us begin by reviewing the very simplest example — minimizing a scalar quadratic
function

p(x) = ax2 + 2bx + c (12.11)

over all possible values of x ∈ R. If a > 0, then the graph of p is a parabola pointing
upwards, and so there exists a unique minimum value. If a < 0, the parabola points
downwards, and there is no minimum (although there is a maximum). If a = 0, the graph
is a straight line, and there is neither minimum nor maximum — except in the trivial
case when b = 0 also, and the function p(x) = c is constant, with every x qualifying as a
minimum and a maximum. The three nontrivial possibilities are sketched in Figure 12.1.

In the case a > 0, the minimum can be found by calculus. The critical points of a
function, which are candidates for minima (and maxima), are found by setting its derivative
to zero. In this case, differentiating, and solving

p′(x) = 2ax + 2b = 0,

we conclude that the only possible minimum value occurs at

x? = −
b

a
, where p(x?) = c −

b2

a
. (12.12)

3/15/06 207 c© 2006 Peter J. Olver

Of course, one must check that this critical point is indeed a minimum, and not a maximum
or inflection point. The second derivative test will show that p′′(x?) = 2a > 0, and so x?

is at least a local minimum.

A more instructive approach to this problem — and one that only requires elementary
algebra — is to “complete the square”. We rewrite

p(x) = a

(
x +

b

a

)2

+
ac − b2

a
. (12.13)

If a > 0, then the first term is always ≥ 0, and, moreover, attains its minimum value 0
only at x? = −b/a. The second term is constant, and so is unaffected by the value of x.
Thus, the global minimum of p(x) is at x? = −b/a. Moreover, its minimal value equals the
constant term, p(x?) = (ac − b2)/a, thereby reconfirming and strengthening the calculus
result in (12.12).

Now that we have the one-variable case firmly in hand, let us turn our attention to
the more substantial problem of minimizing quadratic functions of several variables. Thus,
we seek to minimize a (real) quadratic function

p(x) = p(x1, . . . , xn) =
n∑

i,j =1

kij xi xj − 2
n∑

i=1

fi xi + c, (12.14)

depending on n variables x = (x1, x2, . . . , xn)
T

∈ R
n. The coefficients kij , fi and c are

all assumed to be real. Moreover, we can assume, without loss of generality, that the
coefficients of the quadratic terms are symmetric: kij = kji. Note that p(x) is more
general than a quadratic form (12.2) in that it also contains linear and constant terms.
We seek a global minimum, and so the variables x are allowed to vary over all of R

n.

Let us begin by rewriting the quadratic function (12.14) in a more compact matrix
notation:

p(x) = xT K x − 2xT f + c, (12.15)

in which K = (kij) is a symmetric n × n matrix, f is a constant vector, and c is a
constant scalar. We first note that in the simple scalar case (12.11), we needed to impose
the condition that the quadratic coefficient a is positive in order to obtain a (unique)
minimum. The corresponding condition for the multivariable case is that the quadratic
coefficient matrix K be positive definite. This key assumption enables us to establish a
general minimization criterion.

Theorem 12.12. If K is a symmetric, positive definite matrix, then the quadratic

function (12.15) has a unique minimizer, which is the solution to the linear system

K x = f , namely x? = K−1f . (12.16)

The minimum value of p(x) is equal to any of the following expressions:

p(x?) = p(K−1f) = c − fT K−1f = c − fT x? = c − (x?)T K x?. (12.17)

3/15/06 208 c© 2006 Peter J. Olver

Proof : First recall that, by Proposition 12.6, positive definiteness implies that K is
a nonsingular matrix, and hence the linear system (12.16) does have a unique solution
x? = K−1f . Then, for any x ∈ R

n, we can write

p(x) = xT K x − 2xT f + c = xT K x − 2xT K x? + c

= (x − x?)T K(x − x?) +
[
c − (x?)T K x?

]
,

(12.18)

where we used the symmetry of K = KT to identify xT K x? = (x?)T K x. The first term
in the final expression has the form yT K y, where y = x − x?. Since we assumed that K
is positive definite, we know that yT K y > 0 for all y 6= 0. Thus, the first term achieves
its minimum value, namely 0, if and only if 0 = y = x − x?. Moreover, since x? is fixed,
the second term does not depend on x. Therefore, the minimum of p(x) occurs at x = x?

and its minimum value p(x?) is equal to the constant term. The alternative expressions
in (12.17) follow from simple substitutions. Q.E.D.

Example 12.13. Consider the problem of minimizing the quadratic function

p(x1, x2) = 4x2
1 − 2x1 x2 + 3x2

2 + 3x1 − 2x2 + 1

over all (real) x1, x2. We first write the function in our matrix form (12.15), so

p(x1, x2) = (x1 x2)

(
4 −1

−1 3

)(
x1

x2

)
− 2 (x1 x2)

(
− 3

2

1

)
+ 1,

whereby

K =

(
4 −1

−1 3

)
, f =

(
− 3

2

1

)
. (12.19)

(Pay attention to the overall factor of −2 in front of the linear terms.) According to
Theorem 12.12, to find the minimum we must solve the linear system

(
4 −1

−1 3

)(
x1

x2

)
=

(
− 3

2

1

)
. (12.20)

Applying the usual Gaussian Elimination algorithm, only one row operation is required to
place the coefficient matrix in upper triangular form:

(
4 −1

− 1 3

∣∣∣∣∣
− 3

2

1

)
7−→

(
4 −1

0 11

4

∣∣∣∣∣
− 3

2

5

8

)
.

The coefficient matrix is regular as no row interchanges were required, and its two pivots,
namely 4, 11

4
, are both positive. Thus, by Theorem 12.4, K > 0 and hence p(x1, x2) really

does have a minimum, obtained by applying Back Substitution to the reduced system:

x? =

(
x?

1

x?
2

)
=

(
− 7

22

5

22

)
≈

(
−.31818

.22727

)
. (12.21)

3/15/06 209 c© 2006 Peter J. Olver

The quickest way to compute the minimal value

p(x?) = p
(
− 7

22
, 5

22

)
= 13

44
≈ .29546

is to use the second formula in (12.17).

It is instructive to compare the algebraic solution method with the minimization
procedure you learned in multi-variable calculus, cf. [2, 34]. The critical points of p(x1, x2)
are found by setting both partial derivatives equal to zero:

∂p

∂x1

= 8x1 − 2x2 + 3 = 0,
∂p

∂x2

= −2x1 + 6x2 − 2 = 0.

If we divide by an overall factor of 2, these are precisely the same linear equations we
already constructed in (12.20). Thus, not surprisingly, the calculus approach leads to the
same minimizer (12.21). To check whether x? is a (local) minimum, we need to apply the
second derivative test. In the case of a function of several variables, this requires analyzing
the Hessian matrix , which is the symmetric matrix of second order partial derivatives

H =

∂2p

∂x2
1

∂2p

∂x1∂x2

∂2p

∂x1∂x2

∂2p

∂x2
2

 =

(
8 −2

−2 6

)
= 2K,

which is exactly twice the quadratic coefficient matrix (12.19). If the Hessian matrix is
positive definite — which we already know in this case — then the critical point is indeed
a (local) minimum.

Thus, the calculus and algebraic approaches to this minimization problem lead, as
they must, to identical results. However, the algebraic method is more powerful, because
it immediately produces the unique, global minimum, whereas, barring additional work,
calculus can only guarantee that the critical point is a local minimum. Moreover, the
proof of the calculus local minimization criterion — that the Hessian matrix be positive
definite at the critical point — relies, in fact, on the algebraic solution to the quadratic
minimization problem! In summary: minimization of quadratic functions is a problem
in linear algebra, while minimizing more complicated functions requires the full force of
multivariable calculus.

The most efficient method for producing a minimum of a quadratic function p(x) on
R

n, then, is to first write out the symmetric coefficient matrix K and the vector f . Solving
the system K x = f will produce the minimizer x? provided K > 0 — which should be
checked during the course of the procedure using the criteria of Theorem 12.4, that is,
making sure that no row interchanges are used and all the pivots are positive.

Example 12.14. Let us minimize the quadratic function

p(x, y, z) = x2 + 2xy + xz + 2y2 + y z + 2z2 + 6y − 7z + 5.

3/15/06 210 c© 2006 Peter J. Olver

This has the matrix form (12.15) with

K =

1 1 1

2

1 2 1

2

1

2

1

2
2

 , x =

x

y

z

 , f =

0

− 3
7

2

 , c = 5.

Gaussian Elimination produces the LDLT factorization

K =

1 1 1

2

1 2 1

2

1

2

1

2
2

 =

1 0 0

1 1 0
1

2
0 1

1 0 0

0 1 0

0 0 7

4

1 1 1

2

0 1 0

0 0 1

 .

The pivots, i.e., the diagonal entries of D, are all positive, and hence K is positive definite.
Theorem 12.12 then guarantees that p(x, y, z) has a unique minimizer, which is found by
solving the linear system K x = f . The solution is then quickly obtained by forward and
back substitution:

x? = 2, y? = −3, z? = 2, with p(x?, y?, z?) = p(2,−3, 2) = −11.

Theorem 12.12 solves the general quadratic minimization problem when the quadratic
coefficient matrix is positive definite. If K is not positive definite, then the quadratic
function (12.15) does not have a minimum, apart from one exceptional situation.

Theorem 12.15. If K is positive definite, then the quadratic function p(x) =
xT K x − 2xT f + c has a unique global minimizer x? satisfying K x? = f . If K is only

positive semi-definite, and f ∈ rng K, then every solution to the linear system K x? = f is

a global minimum of p(x), but the minimum is not unique since p(x? + z) = p(x?) for any

null vector z ∈ ker K. In all other cases, p(x) has no global minimum.

3/15/06 211 c© 2006 Peter J. Olver

AIMS Lecture Notes 2006

Peter J. Olver

13. Approximation and Interpolation

We will now apply our minimization results to the interpolation and least squares
fitting of data and functions.

13.1. Least Squares.

Linear systems with more equations than unknowns typically do not have solutions.
In such situations, the least squares solution to a linear system is one means of getting as
close as one can to an actual solution.

Definition 13.1. A least squares solution to a linear system of equations

Ax = b (13.1)

is a vector x? ∈ R
n that minimizes the Euclidean norm ‖Ax − b ‖.

If the system (13.1) actually has a solution, then it is automatically the least squares
solution. Thus, the concept of least squares solution is new only when the system does not
have a solution.

To find the least squares solution, we need to minimize the quadratic function

‖Ax − b ‖2 = (Ax − b)T (Ax − b) = (xT AT − bT)(Ax − b)

= xT AT Ax − 2xT AT b + bT b = xT Kx − 2xT f + c,

where

K = AT A, f = AT b, c = ‖b ‖2. (13.2)

According to Theorem 12.10, the Gram matrix K = AT A is positive definite if and only if
ker A = {0}. In this case, Theorem 12.12 supplies us with the solution to this minimization
problem.

Theorem 13.2. Assume that ker A = {0}. Set K = AT A and f = AT b. Then

the least squares solution to the linear system Ax = b is the unique solution x? to the

so-called normal equations

K x = f or, explicitly, (AT A)x = AT b, (13.3)

namely

x? = (AT A)−1AT b. (13.4)

3/15/06 212 c© 2006 Peter J. Olver

The least squares error is

‖Ax? − b ‖2 = ‖b ‖2 − fT x? = ‖b ‖2 − bT A(AT A)−1AT b. (13.5)

Note that the normal equations (13.3) can be simply obtained by multiplying the
original system Ax = b on both sides by AT . In particular, if A is square and invertible,
then (AT A)−1 = A−1(AT)−1, and so (13.4) reduces to x = A−1b, while the two terms in
the error formula (13.5) cancel out, producing zero error. In the rectangular case — when
inversion is not allowed — (13.4) gives a new formula for the solution to a compatible
linear system Ax = b.

Example 13.3. Consider the linear system

x1 + 2x2 = 1,

3x1 − x2 + x3 = 0,

−x1 + 2x2 + x3 = −1,

x1 − x2 − 2x3 = 2,

2x1 + x2 − x3 = 2,

consisting of 5 equations in 3 unknowns. The coefficient matrix and right hand side are

A =

1 2 0
3 −1 1

−1 2 1
1 −1 −2
2 1 −1

, b =

1
0

−1
2
2

.

A direct application of Gaussian Elimination shows that the system is incompatible — it
has no solution. Of course, to apply the least squares method, we are not required to check
this in advance. If the system has a solution, it is the least squares solution too, and the
least squares method will find it.

To form the normal equations (13.3), we compute

K = AT A =

16 −2 −2
−2 11 2
−2 2 7

, f = AT b =

8
0

−7

 .

Solving the 3 × 3 system K x = f by Gaussian Elimination, we find

x = K−1f ≈ (.4119, .2482,−.9532)
T

to be the least squares solution to the system. The least squares error is

‖b − Ax? ‖ ≈ ‖ (−.0917, .0342, .1313, .0701, .0252)
T ‖ ≈ .1799,

which is reasonably small — indicating that the system is, roughly speaking, not too
incompatible.

3/15/06 213 c© 2006 Peter J. Olver

13.2. Data Fitting and Interpolation.

One of the most important applications of the least squares minimization process is
to the fitting of data points. Suppose we are running an experiment in which we measure
a certain time-dependent physical quantity. At time ti we make the measurement yi, and
thereby obtain a set of, say, m data points

(t1, y1), (t2, y2), . . . (tm, ym). (13.6)

Suppose our theory indicates that the data points are supposed to all lie on a single line

y = α + β t, (13.7)

whose precise form — meaning its coefficients α, β — is to be determined. For example,
a police car is interested in clocking the speed of a vehicle by using measurements of its
relative distance at several times. Assuming that the vehicle is traveling at constant speed,
its position at time t will have the linear form (13.7), with β, the velocity, and α, the initial
position, to be determined. Experimental error will almost inevitably make this impossible
to achieve exactly, and so the problem is to find the straight line (13.7) that “best fits”
the measured data and then use its slope to estimate the vehicle’s velocity.

The error between the measured value yi and the sample value predicted by the
function (13.7) at t = ti is

ei = yi − (α + β ti), i = 1, . . . ,m.

We can write this system of equations in matrix form as

e = y − Ax,

where

e =

e1

e2

...
em

, y =

y1

y2

...
ym

, while A =

1 t1
1 t2
...

...
1 tm

, x =

(

α
β

)

. (13.8)

We call e the error vector and y the data vector . The coefficients α, β of our desired
function (13.7) are the unknowns, forming the entries of the column vector x.

If we could fit the data exactly, so yi = α + β ti for all i, then each ei = 0, and we
could solve Ax = y for the coefficients α, β. In the language of linear algebra, the data
points all lie on a straight line if and only if y ∈ rng A. If the data points are not collinear,
then we seek the straight line that minimizes the total squared error or Euclidean norm

Error = ‖ e ‖ =
√

e2
1 + · · · + e2

m .

Pictorially, referring to Figure 13.1, the errors are the vertical distances from the points
to the line, and we are seeking to minimize the square root of the sum of the squares of

3/15/06 214 c© 2006 Peter J. Olver

Figure 13.1. Least Squares Approximation of Data by a Straight Line.

the individual errors†, hence the term least squares. In other words, we are looking for the
coefficient vector x = (α, β)

T
that minimizes the Euclidean norm of the error vector

‖ e ‖ = ‖Ax − y ‖. (13.9)

Thus, we recover the problem of characterizing the least squares solution to the linear
system Ax = y.

Theorem 13.2 prescribes the solution to this least squares minimization problem. We
form the normal equations

(AT A)x = AT y, with solution x? = (AT A)−1AT y. (13.10)

Invertibility of the Gram matrix K = AT A relies on the assumption that the matrix A has
linearly independent columns. For the particular matrix in (13.8), linear independence of
its two columns requires that not all the ti’s be equal, i.e., we must measure the data at
at least two distinct times. Note that this restriction does not preclude measuring some of
the data at the same time, e.g., by repeating the experiment. However, choosing all the
ti’s to be the same is a silly data fitting problem. (Why?)

† This choice of minimization may strike the reader as a little odd. Why not just minimize
the sum of the absolute value of the errors, i.e., the 1 norm ‖ e ‖1 = | e1 | + · · · + | en | of the
error vector, or minimize the maximal error, i.e., the ∞ norm ‖ e ‖∞ = max{| e1 |, . . . , | en |}?
Or, even better, why minimize the vertical distance to the line? The perpendicular distance from
each data point to the line might strike you as a better measure of error. The answer is that,
although each of these alternative minimization criteria is interesting and potentially useful, they
all lead to nonlinear minimization problems, and so are much harder to solve! The least squares
minimization problem can be solved by linear algebra, and so, purely on the grounds of simplicity,
is the method of choice in most applications. Moreover, one needs to fully understand the linear
problem before diving into more treacherous nonlinear waters.

3/15/06 215 c© 2006 Peter J. Olver

Under this assumption, we then compute

AT A =

(

1 1 . . . 1
t1 t2 . . . tm

)

1 t1
1 t2
...

...
1 tm

=

(

m
∑

ti
∑

ti
∑

(ti)
2

)

= m

(

1 t

t t2

)

,

AT y =

(

1 1 . . . 1
t1 t2 . . . tm

)

y1

y2

...
ym

=

(

∑

yi
∑

ti yi

)

= m

(

y

t y

)

,

(13.11)

where the overbars, namely

t =
1

m

m
∑

i=1

ti, y =
1

m

m
∑

i=1

yi, t2 =
1

m

m
∑

i=1

t2
i , t y =

1

m

m
∑

i=1

ti yi, (13.12)

denote the average sample values of the indicated variables.

Warning : The average of a product is not equal to the product of the averages! In
particular,

t2 6= (t)2, t y 6= t y.

Substituting (13.11) into the normal equations (13.10), and canceling the common
factor of m, we find that we have only to solve a pair of linear equations

α + t β = y, t α + t2 β = t y,

for the coefficients:

α = y − t β, β =
t y − t y

t2 − (t)2
=

∑

(ti − t) yi
∑

(ti − t)2
. (13.13)

Therefore, the best (in the least squares sense) straight line that fits the given data is

y = β (t − t) + y, (13.14)

where the line’s slope β is given in (13.13).

Example 13.4. Suppose the data points are given by the table

ti 0 1 3 6

yi 2 3 7 12

To find the least squares line, we construct

A =

1 0
1 1
1 3
1 6

, AT =

(

1 1 1 1
0 1 3 6

)

, y =

2
3
7

12

.

3/15/06 216 c© 2006 Peter J. Olver

1 2 3 4 5 6

2

4

6

8

10

12

Figure 13.2. Least Squares Line.

Therefore

AT A =

(

4 10
10 46

)

, AT y =

(

24
96

)

.

The normal equations (13.10) reduce to

4α + 10β = 24, 10α + 46β = 96, so α = 12

7
, β = 12

7
.

Therefore, the best least squares fit to the data is the straight line

y = 12

7
+ 12

7
t.

Alternatively, one can compute this formula directly from (13.13–14). As you can see in
Figure 13.2, the least squares line does a fairly good job of approximating the data points.

Example 13.5. Suppose we are given a sample of an unknown radioactive isotope.
At time ti we measure, using a Geiger counter, the amount mi of radioactive material
in the sample. The problem is to determine the initial amount of material along with
the isotope’s half life. If the measurements were exact, we would have m(t) = m0e

β t,
where m0 = m(0) is the initial mass, and β < 0 the decay rate. The half-life is given by
t? = β−1 log 2.

As it stands this is not a linear least squares problem. But it can be easily converted
to the proper form by taking logarithms:

y(t) = log m(t) = log m0 + β t = α + β t.

We can thus do a linear least squares fit on the logarithms yi = log mi of the radioactive
mass data at the measurement times ti to determine the best values for β and α = log m0.

Polynomial Approximation and Interpolation

The basic least squares philosophy has a variety of different extensions, all interesting
and all useful. First, we can replace the straight line (13.7) by a parabola defined by a
quadratic function

y = α + β t + γ t2. (13.15)

3/15/06 217 c© 2006 Peter J. Olver

For example, Newton’s theory of gravitation says that (in the absence of air resistance) a
falling object obeys the parabolic law (13.15), where α = h0 is the initial height, β = v0

is the initial velocity, and γ = − 1

2
g is minus one half the gravitational constant. Suppose

we observe a falling body on a new planet, and measure its height yi at times ti. Then we
can approximate its initial height, initial velocity and gravitational acceleration by finding
the parabola (13.15) that best fits the data. Again, we characterize the least squares fit
by minimizing the sum of the squares of the individual errors ei = yi − y(ti).

The method can evidently be extended to a completely general polynomial function

y(t) = α0 + α1 t + · · · + αn tn (13.16)

of degree n. The total least squares error between the data and the sample values of the
function is equal to

‖ e ‖2 =
m
∑

i=1

[

yi − y(ti)
]2

= ‖y − Ax ‖2, (13.17)

where

A =

1 t1 t21 . . . tn1
1 t2 t22 . . . tn2
...

...
...

. . .
...

1 tm t2m . . . tnm

, x =

α0

α1

α2

...
αn

, y =

y1

y2

...
ym

. (13.18)

The coefficient m × (n + 1) coefficient matrix is known as a Vandermonde matrix , named
after the eighteenth century French mathematician, scientist and musicologist Alexandre–
Théophile Vandermonde — despite the fact that it appears nowhere in his four mathemat-
ical papers! In particular, if m = n + 1, then A is square, and so, assuming invertibility,
we can solve Ax = y exactly. In other words, there is no error, and the solution is an
interpolating polynomial , meaning that it fits the data exactly. A proof of the following
result can be found at the end of this section.

Lemma 13.6. If t1, . . . , tn+1 are distinct, ti 6= tj , then the (n + 1)× (n + 1) Vander-

monde interpolation matrix (13.18) is nonsingular.

This result immediately implies the basic existence theorem for interpolating polyno-
mials.

Theorem 13.7. Let t1, . . . , tn+1 be distinct sample points. Then, for any prescribed

data y1, . . . , yn+1, there exists a unique interpolating polynomial of degree ≤ n with the

prescribed sample values y(ti) = yi for all i = 1, . . . , n + 1.

Thus, two points will determine a unique interpolating line, three points a unique
interpolating parabola, four points an interpolating cubic, and so on; see Figure 13.3.

The basic ideas of interpolation and least squares fitting of data can be applied to
approximate complicated mathematical functions by much simpler polynomials. Such ap-
proximation schemes are used in all numerical computations. Your computer or calculator
is only able to add, subtract, multiply and divide. Thus, when you ask it to compute

√
t or

3/15/06 218 c© 2006 Peter J. Olver

Linear Quadratic Cubic

Figure 13.3. Interpolating Polynomials.

et or cos t or any other non-rational function, the program must rely on an approximation
scheme based on polynomials†. In the “dark ages” before computers, one would consult
precomputed tables of values of the function at particular data points. If one needed a
value at a nontabulated point, then some form of polynomial interpolation would be used
to accurately approximate the intermediate value.

Example 13.8. Suppose that we would like to compute reasonably accurate values
for the exponential function et for values of t lying in the interval 0 ≤ t ≤ 1 by approxi-
mating it by a quadratic polynomial

p(t) = α + β t + γ t2. (13.19)

If we choose 3 points, say t1 = 0, t2 = .5, t3 = 1, then there is a unique quadratic polynomial
(13.19) that interpolates et at the data points, i.e.,

p(ti) = eti for i = 1, 2, 3.

In this case, the coefficient matrix (13.18), namely

A =

1 0 0
1 .5 .25
1 1 1

,

is nonsingular. Therefore, we can exactly solve the interpolation equations

Ax = y, where y =

et1

et2

et3

=

1.

1.64872

2.71828

is the data vector, which we assume we already know. The solution

x =

α

β

γ

=

1.

.876603

.841679

† Actually, one could also allow interpolation and approximation by rational functions, a sub-
ject known as Padé approximation theory , [3].

3/15/06 219 c© 2006 Peter J. Olver

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

Figure 13.4. Quadratic Interpolating Polynomial for et.

yields the interpolating polynomial

p(t) = 1 + .876603 t + .841679 t2. (13.20)

It is the unique quadratic polynomial that agrees with et at the three specified data points.
See Figure 13.4 for a comparison of the graphs; the first graph shows et, the second p(t),
and the third lays the two graphs on top of each other. Even with such a primitive
interpolation scheme, the two functions are quite close. The maximum error or L∞ norm
of the difference is

‖ et − p(t) ‖∞ = max
{

| et − p(t) |
∣

∣ 0 ≤ t ≤ 1
}

≈ .01442,

with the largest deviation occurring at t ≈ .796.

There is, in fact, an explicit formula for the interpolating polynomial that is named af-
ter the influential eighteenth century Italo–French mathematician Joseph–Louis Lagrange.
Suppose we know the solutions x1, . . . ,xn+1 to the particular interpolation systems

Axk = ek, k = 1, . . . , n + 1, (13.21)

where e1, . . . , en+1 are the standard basis vectors of R
n+1. Then the solution to

Ax = y = y1 e1 + · · · + yn+1 en+1

is given by the superposition formula

x = y1x1 + · · · + yn+1 xn+1.

The particular interpolation equation (13.21) corresponds to the interpolation data y = ek,
meaning that yk = 1, while yi = 0 at all points ti with i 6= k. If we can find the
n + 1 particular interpolating polynomials that realize this very special data, we can use
superposition to construct the general interpolating polynomial.

Theorem 13.9. Given distinct sample points t1, . . . , tn+1, the kth Lagrange inter-
polating polynomial is given by

Lk(t) =
(t − t1) · · · (t − tk−1)(t − tk+1) · · · (t − tn+1)

(tk − t1) · · · (tk − tk−1)(tk − tk+1) · · · (tk − tn+1)
, k = 1, . . . , n + 1.

(13.22)

3/15/06 220 c© 2006 Peter J. Olver

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

L1(t)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

L2(t)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

L3(t)

Figure 13.5. Lagrange Interpolating Polynomials for the Points 0, .5, 1.

It is the unique polynomial of degree n that satisfies

Lk(ti) =

{

1, i = k,

0, i 6= k,
i, k = 1, . . . , n + 1. (13.23)

Proof : The uniqueness of the Lagrange interpolating polynomial is an immediate
consequence of Theorem 13.7. To show that (13.22) is the correct formula, we note that
when t = ti for any i 6= k, the factor (t− ti) in the numerator of Lk(t) vanishes, while the
denominator is not zero since the points are distinct. On the other hand, when t = tk, the
numerator and denominator are equal, and so Lk(tk) = 1. Q.E.D.

Theorem 13.10. If t1, . . . , tn+1 are distinct, then the polynomial of degree ≤ n that

interpolates the associated data y1, . . . , yn+1 is

p(t) = y1 L1(t) + · · · + yn+1 Ln+1(t). (13.24)

Proof : We merely compute

p(tk) = y1 L1(tk) + · · · + yk Lk(t) + · · · + yn+1 Ln+1(tk) = yk,

where, according to (13.23), every summand except the kth is zero. Q.E.D.

Example 13.11. For example, the three quadratic Lagrange interpolating polyno-
mials for the values t1 = 0, t2 = 1

2
, t3 = 1 used to interpolate et in Example 13.8 are

L1(t) =

(

t − 1

2

)

(t − 1)
(

0 − 1

2

)

(0 − 1)
= 2 t2 − 3 t + 1,

L2(t) =
(t − 0)(t − 1)
(

1

2
− 0

)(

1

2
− 1

) = −4 t2 + 4 t,

L3(t) =
(t − 0)

(

t − 1

2

)

(1 − 0)
(

1 − 1

2

) = 2 t2 − t.

(13.25)

Thus, we can rewrite the quadratic interpolant (13.20) to et as

y(t) = L1(t) + e1/2 L2(t) + eL3(t)

= (2 t2 − 3 t + 1) + 1.64872(−4 t2 + 4 t) + 2.71828(2 t2 − t).

3/15/06 221 c© 2006 Peter J. Olver

-3 -2 -1 1 2 3

-0.2

0.2

0.4

0.6

0.8

1

-3 -2 -1 1 2 3

-0.2

0.2

0.4

0.6

0.8

1

-3 -2 -1 1 2 3

-0.2

0.2

0.4

0.6

0.8

1

Figure 13.6. Degree 2, 4 and 10 Interpolating Polynomials for 1/(1 + t2).

We stress that this is the same interpolating polynomial — we have merely rewritten it in
the more transparent Lagrange form.

You might expect that the higher the degree, the more accurate the interpolating
polynomial. This expectation turns out, unfortunately, not to be uniformly valid. While
low degree interpolating polynomials are usually reasonable approximants to functions,
high degree interpolants are not only more expensive to compute, but can be rather badly
behaved, particularly near the ends of the interval. For example, Figure 13.6 displays the
degree 2, 4 and 10 interpolating polynomials for the function 1/(1 + t2) on the interval
−3 ≤ t ≤ 3 using equally spaced data points. Note the rather poor approximation of the
function near the ends of the interval. Higher degree interpolants fare even worse, although
the bad behavior becomes more and more concentrated near the endpoints. As a conse-
quence, high degree polynomial interpolation tends not to be used in practical applications.
Better alternatives rely on least squares approximants by low degree polynomials, to be
described next, and interpolation by piecewise cubic splines, a topic that will be discussed
in depth later.

If we have m > n + 1 data points, then, usually, there is no degree n polynomial that
fits all the data, and so we must switch over to a least squares approximation. The first
requirement is that the associated m× (n+1) interpolation matrix (13.18) has rank n+1;
this follows from Lemma 13.6, provided that at least n + 1 of the values t1, . . . , tm are
distinct. Thus, given data at m ≥ n+1 different sample points t1, . . . , tm, we can uniquely
determine the best least squares polynomial of degree n that fits the data by solving the
normal equations (13.10).

Example 13.12. Let us return to the problem of approximating the exponential
function et. If we use more than three data points, but still require a quadratic polynomial,
then we can no longer interpolate exactly, and must devise a least squares approximant.
For instance, using five equally spaced sample points t1 = 0, t2 = .25, t3 = .5, t4 = .75,
t5 = 1, the coefficient matrix and sampled data vector (13.18) are

A =

1 0 0
1 .25 .0625
1 .5 .25
1 .75 .5625
1 1 1

, y =

1.
1.28403
1.64872
2.11700
2.71828

.

3/15/06 222 c© 2006 Peter J. Olver

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

Figure 13.7. Quadratic Approximant and Quartic Interpolant for et.

The solution to the normal equations (13.3), with

K = AT A =

5. 2.5 1.875
2.5 1.875 1.5625
1.875 1.5625 1.38281

, f = AT y =

8.76803
5.45140
4.40153

,

is

x = K−1f = (1.00514, .864277, .843538)
T

.

This leads to the quadratic least squares approximant

p2(t) = 1.00514 + .864277 t + .843538 t2.

On the other hand, the quartic interpolating polynomial

p4(t) = 1 + .998803 t + .509787 t2 + .140276 t3 + .069416 t4

is found directly from the data values as above. The quadratic polynomial has a maximal
error of ≈ .011 over the interval [0, 1] — slightly better than the quadratic interpolant —
while the quartic has a significantly smaller maximal error: ≈ .0000527. (In this case, high
degree interpolants are not ill behaved.) See Figure 13.7 for a comparison of the graphs.

Proof of Lemma 13.6 : We will establish the rather striking LU factorization of
the transposed Vandermonde matrix V = AT , which will immediately prove that, when
t1, . . . , tn+1 are distinct, both V and A are nonsingular matrices. The 4 × 4 case is in-
structive for understanding the general pattern. Applying regular Gaussian Elimination,

3/15/06 223 c© 2006 Peter J. Olver

we find the explicit LU factorization

1 1 1 1

t1 t2 t3 t4
t21 t22 t23 t24
t31 t32 t33 t34

=

1 0 0 0

t1 1 0 0

t21 t1 + t2 1 0

t31 t21 + t1 t2 + t22 t1 + t2 + t3 1

1 1 1 1

0 t2 − t1 t3 − t1 t4 − t1
0 0 (t3 − t1)(t3 − t2) (t4 − t1)(t4 − t2)

0 0 0 (t4 − t1)(t4 − t2)(t4 − t3)

.

In the general (n + 1) × (n + 1) case, the individual entries of the matrices appearing in
factorization V = LU are

vij = ti−1
j , i, j = 1, . . . , n + 1, (13.26)

`ij =
∑

1≤k1≤···≤ki−j≤j

tk1
tk2

· · · tki−j
, 1 ≤ j < i ≤ n + 1,

`ii = 1, i = 1, . . . , n + 1,

`ij = 0, 1 ≤ i < j ≤ n + 1,

uij =
i
∏

k=1

(tj − tk), 1 < i ≤ j ≤ n + 1,
u1j = 1, j = 1, . . . , n + 1,

uij = 0, 1 ≤ j < i ≤ n + 1.

Full details of the proof that V = LU can be found in [20, 41]. (Surprisingly, as far as we
know, these are the first places this factorization appears in the literature.) The entries of
L lying below the diagonal are known as the complete monomial polynomials since `ij is
obtained by summing, with unit coefficients, all monomials of degree i−j in the j variables
t1, . . . , tj . The entries of U appearing on or above the diagonal are known as the Newton

difference polynomials. In particular, if t1, . . . , tn are distinct, so ti 6= tj for i 6= j, all
entries of U lying on or above the diagonal are nonzero. In this case, V has all nonzero
pivots, and is a regular, hence nonsingular matrix. Q.E.D.

Approximation and Interpolation by General Functions

There is nothing special about polynomial functions in the preceding approximation
scheme. For example, suppose we were interested in finding the best trigonometric ap-
proximation

y = α1 cos t + α2 sin t

to a given set of data. Again, the least squares error takes the same form ‖y − Ax ‖2 as
in (13.17), where

A =

cos t1 sin t1
cos t2 sin t2

...
...

cos tm sin tm

, x =

(

α1

α2

)

, y =

y1

y2

...
ym

.

3/15/06 224 c© 2006 Peter J. Olver

Thus, the columns of A are the sampled values of the functions cos t, sin t. The key is
that the unspecified parameters — in this case α1, α2 — occur linearly in the approximat-
ing function. Thus, the most general case is to approximate the data (13.6) by a linear
combination

y(t) = α1 h1(t) + α2 h2(t) + · · · + αn hn(t)

of prescribed functions h1(x), . . . , hn(x). The least squares error is, as always, given by

Error =

√

√

√

√

m
∑

i=1

(

yi − y(ti)
)2

= ‖y − Ax ‖,

where the sample matrix A, the vector of unknown coefficients x, and the data vector y

are

A =

h1(t1) h2(t1) . . . hn(t1)

h1(t2) h2(t2) . . . hn(t2)
...

...
. . .

...

h1(tm) h2(tm) . . . hn(tm)

, x =

α1

α2

...
αn

, y =

y1

y2

...
ym

. (13.27)

If A is square and nonsingular, then we can find an interpolating function of the prescribed
form by solving the linear system

Ax = y. (13.28)

A particularly important case is provided by the 2n + 1 trigonometric functions

1, cos x, sinx, cos 2x, sin 2x, . . . cos nx, sinnx.

Interpolation on 2n + 1 equally spaced data points on the interval [0, 2π] leads to the
Discrete Fourier Transform, used in signal processing, data transmission, and compression.

If there are more than n data points, then we cannot, in general, interpolate exactly,
and must content ourselves with a least squares approximation that minimizes the error at
the sample points as best it can. The least squares solution to the interpolation equations
(13.28) is found by solving the associated normal equations K x = f , where the (i, j) entry
of K = AT A is m times the average sample value of the product of hi(t) and hj(t), namely

kij = m hi(t)hj(t) =

m
∑

κ=1

hi(tκ)hj(tκ), (13.29)

whereas the ith entry of f = AT y is

fi = m hi(t) y =

m
∑

κ=1

hi(tκ) yκ. (13.30)

The one issue is whether the columns of the sample matrix A are linearly independent.
This is more subtle than the polynomial case covered by Lemma 13.6. Linear independence

3/15/06 225 c© 2006 Peter J. Olver

of the sampled function vectors is, in general, more restrictive than merely requiring the
functions themselves to be linearly independent.

If the parameters do not occur linearly in the functional formula, then we cannot use
linear algebra to effect a least squares approximation. For example, one cannot determine
the frequency ω, the amplitude r, and the phase shift δ of the general trigonometric
approximation

y = c1 cos ωt + c2 sinωt = r cos(ωt + δ)

that minimizes the least squares error at the sample points. Approximating data by such
a function constitutes a nonlinear minimization problem.

Weighted Least Squares

Another extension to the basic least squares method is to introduce weights in the
measurement of the error. Suppose some of the data is known to be more reliable or
more significant than others. For example, measurements at an earlier time may be more
accurate, or more critical to the data fitting problem, than later measurements. In that
situation, we should penalize any errors in the earlier measurements and downplay errors
in the later data.

In general, this requires the introduction of a positive weight ci > 0 associated to
each data point (ti, yi); the larger the weight, the more vital the error. For a straight line
approximation y = α + β t, the weighted least squares error is defined as

Error =

√

√

√

√

m
∑

i=1

ci e
2
i =

√

√

√

√

m
∑

i=1

ci

[

yi − (α + β ti)
]2

.

Let us rewrite this formula in matrix form. Let C = diag (c1, . . . , cm) denote the diagonal
weight matrix . Note that C > 0 is positive definite, since all the weights are positive. The
least squares error,

Error =
√

eT C e = ‖ e ‖,
is then the norm of the error vector e with respect to the weighted inner product 〈v ,w 〉 =
vT C w. Since e = y − Ax,

‖ e ‖2 = ‖Ax − y ‖2 = (Ax − y)T C (Ax − y)

= xT AT C Ax − 2xT AT C y + yT C y = xT K x − 2xT f + c,
(13.31)

where

K = AT C A, f = AT C y, c = yT C y = ‖y ‖2.

Note that K is the weighted Gram matrix derived in (12.10), and so is positive definite
provided A has linearly independent columns or, equivalently, has rank n.

Theorem 13.13. Suppose A is an m×n matrix with linearly independent columns.

Suppose C > 0 is any positive definite m×m matrix. Then, the quadratic function (13.31)
giving the weighted least squares error has a unique minimizer, which is the solution to

the weighted normal equations

AT C Ax = AT C y, so that x = (AT C A)−1 AT C y. (13.32)

3/15/06 226 c© 2006 Peter J. Olver

1 2 3 4 5 6

2

4

6

8

10

12

Figure 13.8. Weighted Least Squares Line.

In brief, the weighted least squares solution is obtained by multiplying both sides of
the original system Ax = y by the matrix AT C. The derivation of this result allows C > 0
to be any positive definite matrix. In applications, the off-diagonal entries of C can be
used to weight cross-correlation terms in the data, although this extra freedom is rarely
used in practice.

Example 13.14. In Example 13.4, we fit the following data

ti 0 1 3 6

yi 2 3 7 12

ci 3 2 1

2

1

4

with an unweighted least squares line. Now we shall assign the weights listed in the last
row of the table for the error at each sample point. Thus, errors in the first two data values
carry more weight than the latter two. To find the weighted least squares line y = α + β t
that best fits the data, we compute

AT C A =

(

1 1 1 1
0 1 3 6

)

3 0 0 0
0 2 0 0
0 0 1

2
0

0 0 0 1

4

1 0
1 1
1 3
1 6

=

(

23

4
5

5 31

2

)

,

AT C y =

(

1 1 1 1
0 1 3 6

)

3 0 0 0
0 2 0 0
0 0 1

2
0

0 0 0 1

4

2
3
7

12

=

(

37

2

69

2

)

.

Thus, the weighted normal equations (13.32) reduce to

23

4
α + 5β = 37

2
, 5α + 31

2
β = 69

2
, so α = 1.7817, β = 1.6511.

Therefore, the least squares fit to the data under the given weights is

y = 1.7817 + 1.6511 t,

as plotted in Figure 13.8.

3/15/06 227 c© 2006 Peter J. Olver

13.3. Splines.

Polynomials are but one of the options for interpolating data points by smooth func-
tions. In pre–CAD (computer aided design) draftsmanship, a spline was a long, thin,
flexible strip of wood that was used to draw a smooth curve through prescribed points.
The points were marked by small pegs, and the spline rested on the pegs. The mathemat-
ical theory of splines was first developed in the 1940’s by the Romanian mathematician
Isaac Schoenberg as an attractive alternative to polynomial interpolation and approxima-
tion. Splines have since become ubiquitous in numerical analysis, in geometric modeling,
in design and manufacturing, in computer graphics and animation, and in many other
applications.

We suppose that the spline coincides with the graph of a function y = u(x). The
pegs are fixed at the prescribed data points (x0, y0), . . . , (xn, yn), and this requires u(x) to
satisfy the interpolation conditions

u(xj) = yj , j = 0, . . . , n. (13.33)

The mesh points x0 < x1 < x2 < · · · < xn are distinct and labeled in increasing order.
The spline is modeled as an elastic beam, [38], and so

u(x) = aj + bj (x − xj) + cj (x − xj)
2 + dj (x − xj)

3,
xj ≤ x ≤ xj+1,

j = 0, . . . , n − 1,
(13.34)

is a piecewise cubic function — meaning that, between successive mesh points, it is a cubic
polynomial, but not necessarily the same cubic on each subinterval. The fact that we write
the formula (13.34) in terms of x − xj is merely for computational convenience.

Our problem is to determine the coefficients

aj , bj , cj , dj , j = 0, . . . , n − 1.

Since there are n subintervals, there are a total of 4n coefficients, and so we require 4n
equations to uniquely prescribe them. First, we need the spline to satisfy the interpolation
conditions (13.33). Since it is defined by a different formula on each side of the mesh point,
this results in a total of 2n conditions:

u(x+
j) = aj = yj ,

u(x−
j+1) = aj + bj hj + cj h2

j + dj h3
j = yj+1,

j = 0, . . . , n − 1, (13.35)

where we abbreviate the length of the jth subinterval by

hj = xj+1 − xj .

The next step is to require that the spline be as smooth as possible. The interpolation con-
ditions (13.35) guarantee that u(x) is continuous. The condition u(x) ∈ C1 be continuously
differentiable requires that u′(x) be continuous at the interior mesh points x1, . . . , xn−1,
which imposes the n − 1 additional conditions

bj + 2cj hj + 3dj h2
j = u′(x−

j+1) = u′(x+
j+1) = bj+1, j = 0, . . . , n − 2. (13.36)

3/15/06 228 c© 2006 Peter J. Olver

To make u ∈ C2, we impose n − 1 further conditions

2cj + 6dj hj = u′′(x−
j+1) = u′′(x+

j+1) = 2cj+1, j = 0, . . . , n − 2, (13.37)

to ensure that u′′ is continuous at the mesh points. We have now imposed a total of 4n−2
conditions, namely (13.35–37), on the 4n coefficients. The two missing constraints will
come from boundary conditions at the two endpoints, namely x0 and xn. There are three
common types:

(i) Natural boundary conditions: u′′(x0) = u′′(xn) = 0, whereby

c0 = 0, cn−1 + 3dn−1 hn−1 = 0. (13.38)

Physically, this models a simply supported spline that rests freely on the first and last
pegs.

(ii) Clamped boundary conditions: u′(x0) = α, u′(xn) = β, where α, β, which could
be 0, are fixed by the user. This requires

b0 = α, bn−1 + 2cn−1 hn−1 + 3dn−1 h2
n−1 = β. (13.39)

This corresponds to clamping the spline at prescribed angles at each end.

(iii) Periodic boundary conditions: u′(x0) = u′(xn), u′′(x0) = u′′(xn), so that

b0 = bn−1 + 2cn−1 hn−1 + 3dn−1 h2
n−1, c0 = cn−1 + 3dn−1 hn−1. (13.40)

If we also require that the end interpolation values agree,

u(x0) = y0 = yn = u(xn), (13.41)

then the resulting spline will be a periodic C2 function, so u(x+p) = u(x) with p = xn−x0

for all x. The periodic case is used to draw smooth closed curves; see below.

Theorem 13.15. Suppose we are given mesh points a = x0 < x1 < · · · < xn = b,
and corresponding data values y0, y1, . . . , yn, along with one of the three kinds of boundary

conditions (13.38), (13.39), or (13.40). Then there exists a unique piecewise cubic spline

function u(x) ∈ C2[a, b] that interpolates the data, u(x0) = y0, . . . , u(xn) = yn, and

satisfies the boundary conditions.

Proof : We first discuss the natural case. The clamped case is left as an exercise for
the reader, while the slightly harder periodic case will be treated at the end of the section.
The first set of equations in (13.35) says that

aj = yj , j = 0, . . . , n − 1. (13.42)

Next, (13.37–38) imply that

dj =
cj+1 − cj

3hj

. (13.43)

This equation also holds for j = n − 1, provided that we make the convention that†

cn = 0.

† This is merely for convenience; there is no cn used in the formula for the spline.

3/15/06 229 c© 2006 Peter J. Olver

We now substitute (13.42–43) into the second set of equations in (13.35), and then solve
the resulting equation for

bj =
yj+1 − yj

hj

−
(2cj + cj+1)hj

3
. (13.44)

Substituting this result and (13.43) back into (13.36), and simplifying, we find

hj cj + 2(hj + hj+1)cj+1 + hj+1 cj+2 = 3

[

yj+2 − yj+1

hj+1

−
yj+1 − yj

hj

]

= zj+1, (13.45)

where we introduce zj+1 as a shorthand for the quantity on the right hand side.

In the case of natural boundary conditions, we have

c0 = 0, cn = 0,

and so (13.45) constitutes a tridiagonal linear system

A c = z, (13.46)

for the unknown coefficients c =
(

c1, c2, . . . , cn−1

)T
, with coefficient matrix

A =

2(h0 + h1) h1

h1 2(h1 + h2) h2

h2 2(h2 + h3) h3

. . .
. . .

. . .

hn−3 2(hn−3 + hn−2) hn−2

hn−2 2(hn−2 + hn−1)

(13.47)

and right hand side z =
(

z1, z2, . . . , zn−1

)T
. Once (13.47) has been solved, we will then

use (13.42–44) to reconstruct the other spline coefficients aj , bj , dj .

The key observation is that the coefficient matrix A is strictly diagonally dominant ,
cf. Definition 6.25, because all the hj > 0, and so

2(hj−1 + hj) > hj−1 + hj .

Theorem 6.26 implies that A is nonsingular, and hence the tridiagonal linear system has
a unique solution c. This suffices to prove the theorem in the case of natural boundary
conditions. Q.E.D.

To actually solve the linear system (13.46), we can apply our tridiagonal solution
algorithm (4.47). Let us specialize to the most important case, when the mesh points are
equally spaced in the interval [a, b], so that

xj = a + j h, where h = hj =
b − a

n
, j = 0, . . . , n − 1.

3/15/06 230 c© 2006 Peter J. Olver

1 2 3 4

-1

-0.5

0.5

1

1.5

2

Figure 13.9. A Cubic Spline.

In this case, the coefficient matrix A = hB is equal to h times the tridiagonal matrix

B =

4 1
1 4 1

1 4 1
1 4 1

1 4 1
. . .

. . .
. . .

that first appeared in Example 4.26. Its LU factorization takes on an especially simple
form, since most of the entries of L and U are essentially the same decimal numbers. This
makes the implementation of the Forward and Back Substitution procedures almost trivial.

Figure 13.9 shows a particular example — a natural spline passing through the data
points (0, 0), (1, 2), (2,−1), (3, 1), (4, 0). As with the Green’s function for the beam, the
human eye is unable to discern the discontinuities in its third derivatives, and so the graph
appears completely smooth, even though it is, in fact, only C2.

In the periodic case, we set

an+k = an, bn+k = bn, cn+k = cn, dn+k = dn, zn+k = zn.

With this convention, the basic equations (13.42–45) are the same. In this case, the
coefficient matrix for the linear system

A c = z, with c =
(

c0, c1, . . . , cn−1

)T
, z =

(

z0, z1, . . . , zn−1

)T
,

3/15/06 231 c© 2006 Peter J. Olver

Figure 13.10. Three Sample Spline Letters.

is of circulant tridiagonal form:

A =

2(hn−1 + h0) h0 hn−1

h0 2(h0 + h1) h1

h1 2(h1 + h2) h2

. . .
. . .

. . .

hn−3 2(hn−3 + hn−2) hn−2

hn−1 hn−2 2(hn−2 + hn−1)

.

(13.48)
Again A is strictly diagonally dominant, and so there is a unique solution c, from which
one reconstructs the spline, proving Theorem 13.15 in the periodic case.

One immediate application of splines is curve fitting in computer aided design and
graphics. The basic problem is to draw a smooth parametrized curve u(t) = (u(t), v(t))

T

that passes through a set of prescribed data points xk = (xk, yk)
T

in the plane. We have
the freedom to choose the parameter value t = tk when the curve passes through the kth

point; the simplest and most common choice is to set tk = k. We then construct the
functions x = u(t) and y = v(t) as cubic splines interpolating the x and y coordinates of
the data points, so u(tk) = xk, v(tk) = yk. For smooth closed curves, we require that both
splines be periodic; for curves with ends, either natural or clamped boundary conditions
are used.

Most computer graphics packages include one or more implementations of parame-
trized spline curves. The same idea also underlies modern font design for laser printing
and typography (including the fonts used in this book). The great advantage of spline
fonts over their bitmapped counterparts is that they can be readily scaled. Some sample
letter shapes parametrized by periodic splines passing through the indicated data points
are plotted in Figure 13.10. Better fits can be easily obtained by increasing the number of
data points. Various extensions of the basic spline algorithms to space curves and surfaces
are an essential component of modern computer graphics, design, and animation, [15, 44].

3/15/06 232 c© 2006 Peter J. Olver

AIMS Lecture Notes 2006

Peter J. Olver

14. Finite Elements

In this part, we introduce the powerful finite element method for finding numerical
approximations to the solutions to boundary value problems involving both ordinary and
partial differential equations can be solved by direct integration. The method relies on the
characterization of the solution as the minimizer of a suitable quadratic functional. The
innovative idea is to restrict the infinite-dimensional minimization principle characterizing
the exact solution to a suitably chosen finite-dimensional subspace of the function space.
When properly formulated, the solution to the resulting finite-dimensional minimization
problem approximates the true minimizer. The finite-dimensional minimizer is found by
solving the induced linear algebraic system, using either direct or iterative methods. We
begin with one-dimensional boundary value problems involving ordinary differential equa-
tions, and, in the final section, show how to adapt the finite element analysis to partial
differential equations, specifically the two-dimensional Laplace and Poisson equations.

14.1. Finite Elements for Ordinary Differential Equations.

The characterization of the solution to a linear boundary value problem via a quadratic
minimization principle inspires a very powerful and widely used numerical solution scheme,
known as the finite element method . In this final section, we give a brief introduction to
the finite element method in the context of one-dimensional boundary value problems
involving ordinary differential equations.

The underlying idea is strikingly simple. We are trying to find the solution to a bound-
ary value problem by minimizing a quadratic functional P[u] on an infinite-dimensional
vector space U . The solution u? ∈ U to this minimization problem is found by solving a
differential equation subject to specified boundary conditions. However, minimizing the
functional on a finite-dimensional subspace W ⊂ U is a problem in linear algebra, and,
moreover, one that we already know how to solve! Of course, restricting the functional
P[u] to the subspace W will not, barring luck, lead to the exact minimizer. Nevertheless,
if we choose W to be a sufficiently “large” subspace, the resulting minimizer w? ∈ W
may very well provide a reasonable approximation to the actual solution u? ∈ U . A rigor-
ous justification of this process, under appropriate hypotheses, requires a full analysis of
the finite element method, and we refer the interested reader to [45, 49]. Here we shall
concentrate on trying to understand how to apply the method in practice.

3/15/06 233 c© 2006 Peter J. Olver

To be a bit more explicit, consider the minimization principle

P[u] = 1
2 ‖L[u] ‖

2
− 〈 f , u 〉 (14.1)

for the linear system

K[u] = f, where K = L∗ ◦L,

representing our boundary value problem. The norm in (14.1) is typically based on some
form of weighted inner product 〈〈 v , ṽ 〉〉 on the space of strains v = L[u] ∈ V , while the
inner product term 〈 f , u 〉 is typically (although not necessarily) unweighted on the space
of displacements u ∈ U . The linear operator takes the self-adjoint form K = L∗ ◦L, and
must be positive definite — which requires ker L = {0}. Without the positivity assumption,
the boundary value problem has either no solutions, or infinitely many; in either event,
the basic finite element method will not apply.

Rather than try to minimize P[u] on the entire function space U , we now seek to
minimize it on a suitably chosen finite-dimensional subspace W ⊂ U . We begin by selecting
a basis† ϕ1, . . . , ϕn of the subspace W . The general element of W is a (uniquely determined)
linear combination

ϕ(x) = c1 ϕ1(x) + · · · + cn ϕn(x) (14.2)

of the basis functions. Our goal, then, is to determine the coefficients c1, . . . , cn such
that ϕ(x) minimizes P[ϕ] among all such functions. Substituting (14.2) into (14.1) and
expanding we find

P[ϕ] =
1

2

n∑

i,j =1

mij ci cj −

n∑

i=1

bi ci = 1
2 cT M c − cT b, (14.3)

where

(a) c = (c1, c2, . . . , cn)
T

is the vector of unknown coefficients in (14.2),

(b) M = (mij) is the symmetric n × n matrix with entries

mij = 〈〈L[ϕi] , L[ϕj] 〉〉, i, j = 1, . . . , n, (14.4)

(c) b = (b1, b2, . . . , bn)
T

is the vector with entries

bi = 〈 f , ϕi 〉, i = 1, . . . , n. (14.5)

Observe that, once we specify the basis functions ϕi, the coefficients mij and bi are all
known quantities. Therefore, we have reduced our original problem to a finite-dimensional
problem of minimizing the quadratic function (14.3) over all possible vectors c ∈ R

n. The
coefficient matrix M is, in fact, positive definite, since, by the preceding computation,

cT M c =
n∑

i,j =1

mij ci cj = ‖L[c1 ϕ1(x) + · · · + cn ϕn] ‖2 = ‖L[ϕ] ‖
2

> 0 (14.6)

† In this case, an orthonormal basis is not of any particular help.

3/15/06 234 c© 2006 Peter J. Olver

as long as L[ϕ] 6= 0. Moreover, our positivity assumption implies that L[ϕ] = 0 if and only
if ϕ ≡ 0, and hence (14.6) is indeed positive for all c 6= 0. We can now invoke the original
finite-dimensional minimization Theorem 12.12 to conclude that the unique minimizer to
(14.3) is obtained by solving the associated linear system

M c = b. (14.7)

Solving (14.7) relies on some form of Gaussian Elimination, or, alternatively, an iterative
linear system solver, e.g., Gauss–Seidel or SOR.

This constitutes the basic abstract setting for the finite element method. The main
issue, then, is how to effectively choose the finite-dimensional subspace W . Two candidates
that might spring to mind are the space P (n) of polynomials of degree ≤ n, or the space
T (n) of trigonometric polynomials of degree ≤ n. However, for a variety of reasons, neither
is well suited to the finite element method. One criterion is that the functions in W must
satisfy the relevant boundary conditions — otherwise W would not be a subspace of U .
More importantly, in order to obtain sufficient accuracy, the linear algebraic system (14.7)
will typically be rather large, and so the coefficient matrix M should be as sparse as
possible, i.e., have lots of zero entries. Otherwise, computing the solution will be too time-
consuming to be of much practical value. Such considerations prove to be of absolutely
crucial importance when applying the method to solve boundary value problems for partial
differential equations in higher dimensions.

The really innovative contribution of the finite element method is to first (paradox-
ically) enlarge the space U of allowable functions upon which to minimize the quadratic
functional P[u]. The governing differential equation requires its solutions to have a certain
degree of smoothness, whereas the associated minimization principle typically requires only
half as many derivatives. Thus, for second order boundary value problems, P[u] only in-
volves first order derivatives. It can be rigorously shown that the functional has the same

minimizing solution, even if one allows (reasonable) functions that fail to have enough
derivatives to satisfy the differential equation. Thus, one can try minimizing over sub-
spaces containing fairly “rough” functions. Again, the justification of this method requires
some deeper analysis, which lies beyond the scope of this introductory treatment.

For second order boundary value problems, a popular and effective choice of the finite-
dimensional subspace is to use continuous, piecewise affine functions. Recall that a function
is affine, f(x) = ax + b, if and only if its graph is a straight line. The function is piecewise

affine if its graph consists of a finite number of straight line segments; a typical example is
plotted in Figure 14.1. Continuity requires that the individual line segments be connected
together end to end.

Given a boundary value problem on a bounded interval [a, b], let us fix a finite col-
lection of mesh points

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

The formulas simplify if one uses equally spaced mesh points, but this is not necessary for
the method to apply. Let W denote the vector space consisting of all continuous, piece-
wise affine functions, with corners at the nodes, that satisfy the homogeneous boundary

3/15/06 235 c© 2006 Peter J. Olver

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

Figure 14.1. A Continuous Piecewise Affine Function.

conditions. To be specific, let us treat the case of Dirichlet (fixed) boundary conditions

ϕ(a) = ϕ(b) = 0. (14.8)

Thus, on each subinterval

ϕ(x) = cj + bj(x − xj), for xj ≤ x ≤ xj+1, j = 0, . . . , n − 1.

Continuity of ϕ(x) requires

cj = ϕ(x+
j) = ϕ(x−

j) = cj−1 + bj−1 hj−1, j = 1, . . . , n − 1, (14.9)

where hj−1 = xj−xj−1 denotes the length of the jth subinterval. The boundary conditions
(14.8) require

ϕ(a) = c0 = 0, ϕ(b) = cn−1 + hn−1 bn−1 = 0. (14.10)

The function ϕ(x) involves a total of 2n unspecified coefficients c0, . . . , cn−1, b0, . . . , bn−1.
The continuity conditions (14.9) and the second boundary condition (14.10) uniquely de-
termine the bj . The first boundary condition specifies c0, while the remaining n − 1
coefficients c1 = ϕ(x1), . . . , cn−1 = ϕ(xn−1) are arbitrary. We conclude that the finite
element subspace W has dimension n − 1, which is the number of interior mesh points.

Remark : Every function ϕ(x) in our subspace has piecewise constant first derivative
w′(x). However, the jump discontinuities in ϕ′(x) imply that its second derivative ϕ′′(x)
has a delta function impulse at each mesh point, and is therefore far from being a solution to
the differential equation. Nevertheless, the finite element minimizer ϕ?(x) will, in practice,
provide a reasonable approximation to the actual solution u?(x).

The most convenient basis for W consists of the hat functions, which are continuous,
piecewise affine functions that interpolate the same basis data as the Lagrange polynomials
(13.22), namely

ϕj(xk) =

{
1, j = k,

0, j 6= k,
for j = 1, . . . , n − 1, k = 0, . . . , n.

3/15/06 236 c© 2006 Peter J. Olver

1 2 3 4 5 6 7

-0.2

0.2

0.4

0.6

0.8

1

1.2

Figure 14.2. A Hat Function.

The graph of a typical hat function appears in Figure 14.2. The explicit formula is easily
established:

ϕj(x) =

x − xj−1

xj − xj−1

, xj−1 ≤ x ≤ xj ,

xj+1 − x

xj+1 − xj

, xj ≤ x ≤ xj+1,

0, x ≤ xj−1 or x ≥ xj+1,

j = 1, . . . , n − 1. (14.11)

An advantage of using these basis elements is that the resulting coefficient matrix (14.4)
turns out to be tridiagonal. Therefore, the tridiagonal Gaussian Elimination algorithm in
(4.47) will rapidly produce the solution to the linear system (14.7). Since the accuracy of
the finite element solution increases with the number of mesh points, this solution scheme
allows us to easily compute very accurate numerical approximations.

Example 14.1. Consider the equilibrium equations

K[u] = −
d

dx

(
c(x)

du

dx

)
= f(x), 0 < x < `,

for a non-uniform bar subject to homogeneous Dirichlet boundary conditions. In order to
formulate a finite element approximation scheme, we begin with the minimization principle
based on the quadratic functional

P[u] = 1
2 ‖u′ ‖2 − 〈 f , u 〉 =

∫ `

0

[
1
2 c(x)u′(x)2 − f(x)u(x)

]
dx.

We divide the interval [0, `] into n equal subintervals, each of length h = `/n. The resulting
uniform mesh has

xj = j h =
j `

n
, j = 0, . . . , n.

3/15/06 237 c© 2006 Peter J. Olver

The corresponding finite element basis hat functions are explicitly given by

ϕj(x) =

(x − xj−1)/h, xj−1 ≤ x ≤ xj ,

(xj+1 − x)/h, xj ≤ x ≤ xj+1,

0, otherwise,

j = 1, . . . , n − 1. (14.12)

The associated linear system (14.7) has coefficient matrix entries

mij = 〈〈ϕ′
i , ϕ′

j 〉〉 =

∫ `

0

ϕ′
i(x)ϕ′

j(x)c(x) dx, i, j = 1, . . . , n − 1.

Since the function ϕi(x) vanishes except on the interval xi−1 < x < xi+1, while ϕj(x)
vanishes outside xj−1 < x < xj+1, the integral will vanish unless i = j or i = j ± 1.
Moreover,

ϕ′
j(x) =

1/h, xj−1 ≤ x ≤ xj ,

−1/h, xj ≤ x ≤ xj+1,

0, otherwise,

j = 1, . . . , n − 1.

Therefore, the coefficient matrix has the tridiagonal form

M =
1

h2

s0 + s1 −s1

−s1 s1 + s2 −s2

−s2 s2 + s3 −s3

. . .
. . .

. . .

−sn−3 sn−3 + sn−2 −sn−2

−sn−2 sn−2 + sn−1

, (14.13)

where

sj =

∫ xj+1

xj

c(x) dx (14.14)

is the total stiffness of the jth subinterval. For example, in the homogeneous case c(x) ≡ 1,
the coefficient matrix (14.13) reduces to the very special form

M =
1

h

2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2

. (14.15)

The corresponding right hand side has entries

bj = 〈 f , ϕj 〉 =

∫ `

0

f(x)ϕj(x) dx

=
1

h

[∫ xj

xj−1

(x − xj−1)f(x) dx +

∫ xj+1

xj

(xj+1 − x)f(x) dx

]
.

(14.16)

3/15/06 238 c© 2006 Peter J. Olver

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

Figure 14.3. Finite Element Solution to (14.19).

In this manner, we have assembled the basic ingredients for determining the finite element
approximation to the solution.

In practice, we do not have to explicitly evaluate the integrals (14.14, 16), but may
replace them by a suitably close numerical approximation. When h ¿ 1 is small, then
the integrals are taken over small intervals, and we can use the trapezoid rule†, [5, 7], to
approximate them:

sj ≈
h

2

[
c(xj) + c(xj+1)

]
, bj ≈ h f(xj). (14.17)

Remark : The jth entry of the resulting finite element system M c = b is, upon dividing
by h, given by

−
cj+1 − 2cj + cj−1

h2
= −

u(xj+1) − 2u(xj) + u(xj−1)

h2
= −f(xj). (14.18)

The left hand side coincides with the standard finite difference approximation to minus the
second derivative −u′′(xj) at the mesh point xj . As a result, for this particular differential
equation, the finite element and finite difference numerical solution methods happen to
coincide.

Example 14.2. Consider the boundary value problem

−
d

dx
(x + 1)

du

dx
= 1, u(0) = 0, u(1) = 0. (14.19)

† One might be tempted use more accurate numerical integration procedures, but the im-
provement in accuracy of the final answer is not very significant, particularly if the step size h is
small.

3/15/06 239 c© 2006 Peter J. Olver

The explicit solution is easily found by direct integration:

u(x) = −x +
log(x + 1)

log 2
. (14.20)

It minimizes the associated quadratic functional

P[u] =

∫ `

0

[
1
2 (x + 1)u′(x)2 − u(x)

]
dx (14.21)

over all possible functions u ∈ C1 that satisfy the given boundary conditions. The finite
element system (14.7) has coefficient matrix given by (14.13) and right hand side (14.16),
where

sj =

∫ xj+1

xj

(1 + x) dx = h (1 + xj) + 1
2 h2 = h + h2

(
j +

1

2

)
, bj =

∫ xj+1

xj

1 dx = h.

The resulting solution is plotted in Figure 14.3. The first three graphs contain, respectively,
5, 10, 20 points in the mesh, so that h = .2, .1, .05, while the last plots the exact solution
(14.20). Even when computed on rather coarse meshes, the finite element approximation
is quite respectable.

Example 14.3. Consider the Sturm–Liouville boundary value problem

−u′′ + (x + 1)u = xex, u(0) = 0, u(1) = 0. (14.22)

The solution minimizes the quadratic functional

P[u] =

∫ 1

0

[
1
2 u′(x)2 + 1

2 (x + 1)u(x)2 − ex u(x)
]
dx, (14.23)

over all functions u(x) that satisfy the boundary conditions. We lay out a uniform mesh
of step size h = 1/n. The corresponding finite element basis hat functions as in (14.12).
The matrix entries are given by†

mij =

∫ 1

0

[
ϕ′

i(x)ϕ′
j(x) + (x + 1)ϕi(x)ϕj(x)

]
dx ≈

2

h
+

2h

3
(xi + 1), i = j,

−
1

h
+

h

6
(xi + 1), | i − j | = 1,

0, otherwise,

while

bi = 〈xex , ϕi 〉 =

∫ 1

0

xex ϕi(x) dx ≈ xi e
xi h.

† The integration is made easier by noting that the integrand is zero except on a small subin-
terval. Since the function x + 1 (but not ϕi or ϕj) does not vary significantly on this subinterval,

it can be approximated by its value 1 + xi at a mesh point. A similar simplification is used in the
ensuing integral for bi.

3/15/06 240 c© 2006 Peter J. Olver

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

Figure 14.4. Finite Element Solution to (14.22).

The resulting solution is plotted in Figure 14.4. As in the previous figure, the first three
graphs contain, respectively, 5, 10, 20 points in the mesh, while the last plots the exact
solution, which can be expressed in terms of Airy functions, cf. [36].

So far, we have only treated homogeneous boundary conditions. An inhomogeneous
boundary value problem does not immediately fit into our framework since the set of func-
tions satisfying the boundary conditions does not form a vector space. One way to get
around this problem is to replace u(x) by ũ(x) = u(x) − h(x), where h(x) is any conve-
nient function that satisfies the boundary conditions. For example, for the inhomogeneous
Dirichlet conditions

u(a) = α, u(b) = β,

we can subtract off the affine function

h(x) =
(β − α)x + αb − β a

b − a
.

Another option is to choose an appropriate combination of elements at the endpoints:

h(x) = αϕ0(x) + βϕn(x).

Linearity implies that the difference ũ(x) = u(x) − h(x) satisfies the amended differential
equation

K[ũ] = f̃ , where f̃ = f − K[h],

now supplemented by homogeneous boundary conditions. The modified boundary value
problem can then be solved by the standard finite element method. Further details are
left as a project for the motivated student.

Finally, one can employ other functions beyond the piecewise affine hat functions
(14.11) to span finite element subspace. Another popular choice, which is essential for
higher order boundary value problems such as beams, is to use splines. Thus, once we
have chosen our mesh points, we can let ϕj(x) be the basis B–splines. Since ϕj(x) = 0

3/15/06 241 c© 2006 Peter J. Olver

for x ≤ xj−2 or x ≥ xj+2, the resulting coefficient matrix (14.4) is pentadiagonal , which
means mij = 0 whenever | i − j | > 2. Pentadiagonal matrices are not quite as pleasant
as their tridiagonal cousins, but are still rather sparse. Positive definiteness of M implies
that an iterative solution technique, e.g., SOR, can effectively and rapidly solve the linear
system, and thereby produce the finite element spline approximation to the boundary value
problem.

14.2. Finite Elements for the Laplace and Poisson Equations.

Finite element methods are also effectively employed to solving boundary value prob-
lems for elliptic partial differential equations. In this section, we concentrate on applying
these ideas to the two-dimensional Poisson equation. For specificity, we concentrate on the
homogeneous Dirichlet boundary value problem.

Theorem 14.4. The function u(x, y) that minimizes the Dirichlet integral

1
2 ‖∇u ‖2 − 〈u , f 〉 =

∫ ∫

Ω

(
1
2 u2

x + 1
2 u2

y − f u
)
dx dy (14.24)

among all C1 functions that satisfy the prescribed homogeneous Dirichlet boundary con-

ditions is the solution to the boundary value problem

−∆u = f in Ω u = 0 on ∂Ω. (14.25)

In the finite element approximation, we restrict the Dirichlet functional to a suitably
chosen finite-dimensional subspace. As in the one-dimensional situation, the most conve-
nient finite-dimensional subspaces consist of functions that may lack the requisite degree
of smoothness that qualifies them as possible solutions to the partial differential equation.
Nevertheless, they do provide good approximations to the actual solution. An important
practical consideration, impacting the speed of the calculation, is to employ functions with
small support. The resulting finite element matrix will then be sparse and the solution to
the linear system can be relatively rapidly calculate, usually by application of an iterative
numerical scheme such as the Gauss–Seidel or SOR methods discussed in Section 7.4.

Finite Elements and Triangulation

For one-dimensional boundary value problems, the finite element construction rests on
the introduction of a mesh a = x0 < x1 < · · · < xn = b on the interval of definition. The
mesh nodes xk break the interval into a collection of small subintervals. In two-dimensional
problems, a mesh consists of a finite number of points xk = (xk, yk), k = 1, . . . ,m, known
as nodes, usually lying inside the domain Ω ⊂ R

2. As such, there is considerable freedom
in the choice of mesh nodes, and completely uniform spacing is often not possible. We
regard the nodes as forming the vertices of a triangulation of the domain Ω, consisting of a
finite number of small triangles, which we denote by T1, . . . , TN . The nodes are split into
two categories — interior nodes and boundary nodes, the latter lying on or close to the
boundary of the domain. A curved boundary is approximated by the polygon through the
boundary nodes formed by the sides of the triangles lying on the edge of the domain; see
Figure 14.5 for a typical example. Thus, in computer implementations of the finite element

3/15/06 242 c© 2006 Peter J. Olver

Figure 14.5. Triangulation of a Planar Domain.

method, the first module is a routine that will automatically triangulate a specified domain
in some reasonable manner; see below for details on what “reasonable” entails.

As in our one-dimensional finite element construction, the functions w(x, y) in the
finite-dimensional subspace W will be continuous and piecewise affine. “Piecewise affine”
means that, on each triangle, the graph of w is flat, and so has the formula†

w(x, y) = αν + βν x + γν y, for (x, y) ∈ Tν . (14.26)

Continuity of w requires that its values on a common edge between two triangles must
agree, and this will impose certain compatibility conditions on the coefficients αµ, βµ, γµ

and αν , βν , γν associated with adjacent pairs of triangles Tµ, Tν . The graph of z = w(x, y)
forms a connected polyhedral surface whose triangular faces lie above the triangles in the
domain; see Figure 14.5 for an illustration.

The next step is to choose a basis of the subspace of piecewise affine functions for the
given triangulation. As in the one-dimensional version, the most convenient basis consists
of pyramid functions ϕk(x, y) which assume the value 1 at a single node xk, and are zero
at all the other nodes; thus

ϕk(xi, yi) =

{
1, i = k,

0, i 6= k.
(14.27)

Note that ϕk will be nonzero only on those triangles which have the node xk as one of
their vertices, and hence the graph of ϕk looks like a pyramid of unit height sitting on a
flat plane, as illustrated in Figure 14.7.

† Here and subsequently, the index ν is a superscript, not a power!

3/15/06 243 c© 2006 Peter J. Olver

Figure 14.6. Piecewise Affine Function.

Figure 14.7. Finite Element Pyramid Function.

The pyramid functions ϕk(x, y) corresponding to the interior nodes xk automatically
satisfy the homogeneous Dirichlet boundary conditions on the boundary of the domain
— or, more correctly, on the polygonal boundary of the triangulated domain, which is
supposed to be a good approximation to the curved boundary of the original domain Ω.
Thus, the finite-dimensional finite element subspace W is the span of the interior node
pyramid functions, and so general element w ∈ W is a linear combination thereof:

w(x, y) =
n∑

k=1

ck ϕk(x, y), (14.28)

where the sum ranges over the n interior nodes of the triangulation. Owing to the original
specification (14.27) of the pyramid functions, the coefficients

ck = w(xk, yk) ≈ u(xk, yk), k = 1, . . . , n, (14.29)

3/15/06 244 c© 2006 Peter J. Olver

are the same as the values of the finite element approximation w(x, y) at the interior
nodes. This immediately implies linear independence of the pyramid functions, since the
only linear combination that vanishes at all nodes is the trivial one c1 = · · · = cn = 0.
Thus, the interior node pyramid functions ϕ1, . . . ϕn form a basis for finite element subspace
W , which therefore has dimension equal to n, the number of interior nodes.

Determining the explicit formulae for the finite element basis functions is not difficult.
On one of the triangles Tν that has xk as a vertex, ϕk(x, y) will be the unique affine
function (14.26) that takes the value 1 at the vertex xk and 0 at its other two vertices xl

and xm. Thus, we are in need of a formula for an affine function or element

ων
k(x, y) = αν

k + βν
k x + γν

k y, (x, y) ∈ Tν , (14.30)

that takes the prescribed values

ων
k(xi, yi) = ων

k(xj , yj) = 0, ων
k(xk, yk) = 1,

at three distinct points. These three conditions lead to the linear system

ων
k(xi, yi) = αν

k + βν
k xi + γν

k yi = 0,

ων
k(xj , yj) = αν

k + βν
k xj + γν

k yj = 0,

ων
k(xk, yk) = αν

k + βν
k xk + γν

k yk = 1.

(14.31)

The solution produces the explicit formulae

αν
k =

xi yj − xj yi

∆ν

, βν
k =

yi − yj

∆ν

, γν
k =

xj − xi

∆ν

, (14.32)

for the coefficients; the denominator

∆ν = det

1 xi yi

1 xj yj

1 xk yk

 = ±2 area Tν (14.33)

is, up to sign, twice the area of the triangle Tν .

Example 14.5. Consider an isoceles right triangle T with vertices

x1 = (0, 0), x2 = (1, 0), x3 = (0, 1).

Using (14.32–33) (or solving the linear systems (14.31) directly), we immediately produce
the three affine elements

ω1(x, y) = 1 − x − y, ω2(x, y) = x, ω3(x, y) = y. (14.34)

As required, each ωk equals 1 at the vertex xk and is zero at the other two vertices.

The finite element pyramid function is then obtained by piecing together the individual
affine elements, whence

ϕk(x, y) =

{
ων

k(x, y), if (x, y) ∈ Tν which has xk as a vertex,

0, otherwise.
(14.35)

3/15/06 245 c© 2006 Peter J. Olver

Figure 14.8. Vertex Polygons.

Figure 14.9. Square Mesh Triangulations.

Continuity of ϕk(x, y) is assured since the constituent affine elements have the same values
at common vertices. The support of the pyramid function (14.35) is the polygon

suppϕk = Pk =
[

ν

Tν (14.36)

consisting of all the triangles Tν that have the node xk as a vertex. In other words,
ϕk(x, y) = 0 whenever (x, y) 6∈ Pk. We will call Pk the kth vertex polygon. The node xk

lies on the interior of its vertex polygon Pk, while the vertices of Pk are all those that are
connected to xk by a single edge of the triangulation. In Figure 14.8 the shaded regions
indicate two of the vertex polygons for the triangulation in Figure 14.5.

Example 14.6. The simplest, and most common triangulations are based on regular
meshes. Suppose that the nodes lie on a square grid, and so are of the form xi,j =
(ih + a, j h + b) where h > 0 is the inter-node spacing, and (a, b) represents an overall
offset. If we choose the triangles to all have the same orientation, as in the first picture
in Figure 14.9, then the vertex polygons all have the same shape, consisting of 6 triangles

3/15/06 246 c© 2006 Peter J. Olver

of total area 3h2 — the shaded region. On the other hand, if we choose an alternating,
perhaps more æsthetically pleasing triangulation as in the second picture, then there are
two types of vertex polygons. The first, consisting of four triangles, has area 2h2, while
the second, containing 8 triangles, has twice the area, 4h2. In practice, there are good
reasons to prefer the former triangulation.

In general, in order to ensure convergence of the finite element solution to the true
minimizer, one should choose a triangulation with the following properties:

(a) The triangles are not too long and skinny. In other words, their sides should have
comparable lengths. In particular, obtuse triangles should be avoided.

(b) The areas of nearby triangles Tν should not vary too much.

(c) The areas of nearby vertex polygons Pk should also not vary too much.

For adaptive or variable meshes, one might very well have wide variations in area over the
entire grid, with small triangles in regions of rapid change in the solution, and large ones in
less interesting regions. But, overall, the sizes of the triangles and vertex polygons should
not dramatically vary as one moves across the domain.

The Finite Element Equations

We now seek to approximate the solution to the homogeneous Dirichlet boundary value
problem by restricting the Dirichlet functional to the selected finite element subspace W .
Substituting the formula (14.28) for a general element of W into the quadratic Dirichlet
functional (14.24) and expanding, we find

P[w] = P

[
n∑

i=1

ci ϕi

]
=

∫ ∫

Ω

(

n∑

i=1

ci ∇ϕi

)2

− f(x, y)

(
n∑

i=1

ci ϕi

)
 dx dy

=
1

2

n∑

i,j =1

kij ci cj −
n∑

i=1

bi ci = 1
2 cT Kc − bT c.

Here, K = (kij) is the symmetric n × n matrix, while b = (b1, b2, . . . , bn)
T

is the vector
that have the respective entries

kij = 〈∇ϕi ,∇ϕj 〉 =

∫ ∫

Ω

∇ϕi · ∇ϕj dx dy,

bi = 〈 f , ϕi 〉 =

∫ ∫

Ω

f ϕi dx dy.

(14.37)

Thus, to determine the finite element approximation, we need to minimize the quadratic
function

P (c) = 1
2 cT Kc − bT c (14.38)

over all possible choices of coefficients c = (c1, c2, . . . , cn)
T

∈ R
n, i.e., over all possible

function values at the interior nodes. Restricting to the finite element subspace has reduced
us to a standard finite-dimensional quadratic minimization problem. First, the coefficient
matrix K > 0 is positive definite due to the positive definiteness of the original functional;

3/15/06 247 c© 2006 Peter J. Olver

the proof in Section 14.1 is easily adapted to the present situation. The minimizer is
obtained by solving the associated linear system

Kc = b. (14.39)

The solution to (14.39) can be effected by either Gaussian elimination or an iterative
technique.

To find explicit formulae for the matrix coefficients kij in (14.37), we begin by noting
that the gradient of the affine element (14.30) is equal to

∇ων
k(x, y) = aν

k =

(
βν

k

γν
k

)
=

1

∆ν

(
yi − yj

xj − xi

)
, (x, y) ∈ Tν , (14.40)

which is a constant vector inside the triangle Tν , while outside ∇ων
k = 0. Therefore,

∇ϕk(x, y) =

{
∇ων

k = aν
k, if (x, y) ∈ Tν which has xk as a vertex,

0, otherwise,
(14.41)

reduces to a piecewise constant function on the triangulation. Actually, (14.41) is not
quite correct since if (x, y) lies on the boundary of a triangle Tν , then the gradient does
not exist. However, this technicality will not cause any difficulty in evaluating the ensuing
integral.

We will approximate integrals over the domain Ω by integrals over the triangles, which
relies on our assumption that the polygonal boundary of the triangulation is a reasonably
close approximation to the true boundary ∂Ω. In particular,

kij ≈
∑

ν

∫ ∫

Tν

∇ϕi · ∇ϕj dx dy ≡
∑

ν

kν
ij . (14.42)

Now, according to (14.41), one or the other gradient in the integrand will vanish on the
entire triangle Tν unless both xi and xj are vertices. Therefore, the only terms contributing
to the sum are those triangles Tν that have both xi and xj as vertices. If i 6= j there are only
two such triangles, while if i = j every triangle in the ith vertex polygon Pi contributes.
The individual summands are easily evaluated, since the gradients are constant on the
triangles, and so, by (14.41),

kν
ij =

∫ ∫

Tν

aν
i · aν

j dx dy = aν
i · aν

j area Tν = 1
2 aν

i · aν
j |∆ν | .

Let Tν have vertices xi,xj ,xk. Then, by (14.40, 41, 33),

kν
ij =

1

2

(yj − yk)(yk − yi) + (xk − xj)(xi − xk)

(∆ν)2
|∆ν | = −

(xi − xk) · (xj − xk)

2 |∆ν |
, i 6= j,

kν
ii =

1

2

(yj − yk)2 + (xk − xj)
2

(∆ν)2
|∆ν | =

‖xj − xk ‖
2

2 |∆ν |
. (14.43)

In this manner, each triangle Tν specifies a collection of 6 different coefficients, kν
ij = kν

ji,
indexed by its vertices, and known as the elemental stiffnesses of Tν . Interestingly, the

3/15/06 248 c© 2006 Peter J. Olver

Figure 14.10. Right and Equilateral Triangles.

elemental stiffnesses depend only on the angles of the triangle and not on its size. Thus,
similar triangles have the same elemental stiffnesses. Indeed, if we denote the angle in Tν

at the vertex xk by θν
k , then

kν
ii = 1

2

(
cot θν

k + cot θν
j

)
, while kν

ij = kν
ji = − 1

2 cot θν
k , i 6= j, (14.44)

depend only upon the cotangents of the angles.

Example 14.7. The right triangle with vertices x1 = (0, 0), x2 = (1, 0), x3 = (0, 1)
has elemental stiffnesses

k11 = 1, k22 = k33 = 1
2 , k12 = k21 = k13 = k31 = − 1

2 , k23 = k32 = 0. (14.45)

The same holds for any other isoceles right triangle, as long as we chose the first vertex
to be at the right angle. Similarly, an equilateral triangle has all 60◦ angles, and so its
elemental stiffnesses are

k11 = k22 = k33 = 1√
3
≈ .577350,

k12 = k21 = k13 = k31 = k23 = k32 = − 1
2
√

3
≈ −.288675.

(14.46)

Assembling the Elements

The elemental stiffnesses of each triangle will contribute, through the summation
(14.42), to the finite element coefficient matrix K. We begin by constructing a larger
matrix K∗, which we call the full finite element matrix , of size m×m where m is the total
number of nodes in our triangulation, including both interior and boundary nodes. The
rows and columns of K∗ are labeled by the nodes xi. Let Kν = (kν

ij) be the corresponding
m×m matrix containing the elemental stiffnesses kν

ij of Tν in the rows and columns indexed
by its vertices, and all other entries equal to 0. Thus, Kν will have (at most) 9 nonzero
entries. The resulting m × m matrices are all summed together over all the triangles,

K∗ =
N∑

ν =1

Kν , (14.47)

to produce the full finite element matrix, in accordance with (14.42).

The full finite element matrix K∗ is too large, since its rows and columns include all
the nodes, whereas the finite element matrix K appearing in (14.39) only refers to the n

3/15/06 249 c© 2006 Peter J. Olver

Figure 14.11. The Oval Plate.

1

2

3

4
5 6

7

8
9 10

11

12

13

14

Triangles

1 2 3

45

6

7

8 9 10

11

12

13

Nodes

Figure 14.12. A Coarse Triangulation of the Oval Plate.

interior nodes. The reduced n× n finite element matrix K is simply obtained from K∗ by
deleting all rows and columns indexed by boundary nodes, retaining only the elements kij

when both xi and xj are interior nodes. For the homogeneous boundary value problem,
this is all we require. As we shall see, inhomogeneous boundary conditions are most easily
handled by retaining (part of) the full matrix K∗.

The easiest way to digest the construction is by working through a particular example.

Example 14.8. A metal plate has the shape of an oval running track, consisting
of a rectangle, with side lengths 1m by 2m, and two semicircular disks glued onto its
shorter ends, as sketched in Figure 14.11. The plate is subject to a heat source while its
edges are held at a fixed temperature. The problem is to find the equilibrium temperature
distribution within the plate. Mathematically, we must solve the Poisson equation with
Dirichlet boundary conditions, for the equilibrium temperature u(x, y).

Let us describe how to set up the finite element approximation to such a boundary
value problem. We begin with a very coarse triangulation of the plate, which will not give
particularly accurate results, but does serve to illustrate how to go about assembling the
finite element matrix. We divide the rectangular part of the plate into 8 right triangles,
while each semicircular end will be approximated by three equilateral triangles. The tri-
angles are numbered from 1 to 14 as indicated in Figure 14.12. There are 13 nodes in all,

3/15/06 250 c© 2006 Peter J. Olver

numbered as in the second figure. Only nodes 1, 2, 3 are interior, while the boundary nodes
are labeled 4 through 13, going counterclockwise around the boundary starting at the top.
The full finite element matrix K∗ will have size 13×13, its rows and columns labeled by all
the nodes, while the reduced matrix K appearing in the finite element equations (14.39)
consists of the upper left 3× 3 submatrix of K∗ corresponding to the three interior nodes.

Each triangle Tν will contribute the summand Kν whose values are its elemental
stiffnesses, as indexed by its vertices. For example, the first triangle T1 is equilateral, and
so has elemental stiffnesses (14.46). Its vertices are labeled 1, 5, and 6, and therefore we
place the stiffnesses (14.46) in the rows and columns numbered 1, 5, 6 to form the summand

K1 =

.577350 0 0 0 −.288675 −.288675 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .

−.288675 0 0 0 .577350 −.288675 0 0 . . .
−.288675 0 0 0 −.288675 .577350 0 0 . . .

0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
. . .

,

where all the undisplayed entries in the full 13× 13 matrix are 0. The next triangle T2 has
the same equilateral elemental stiffness matrix (14.46), but now its vertices are 1, 6, 7, and
so it will contribute

K2 =

.577350 0 0 0 0 −.288675 −.288675 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .

−.288675 0 0 0 0 .577350 −.2886750 0 . . .
−.288675 0 0 0 0 −.288675 .5773500 0 . . .

0 0 0 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
. . .

.

Similarly for K3, with vertices 1, 7, 8. On the other hand, triangle T4 is an isoceles right
triangle, and so has elemental stiffnesses (14.45). Its vertices are labeled 1, 4, and 5, with

3/15/06 251 c© 2006 Peter J. Olver

Figure 14.13. A Square Mesh for the Oval Plate.

vertex 5 at the right angle. Therefore, its contribution is

K4 =

.5 0 0 0 −.5 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 .5 −.5 0 0 0 . . .

−.5 0 0 −.5 1.0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
. . .

.

Continuing in this manner, we assemble 14 contributions K1, . . . ,K14, each with (at most)
9 nonzero entries. The full finite element matrix is the sum

K
∗ = K1 + K2 + · · · + K14

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

3.732 −1 0 0 −.7887 −.5774 −.5774
−1 4 −1 −1 0 0 0
0 −1 3.732 0 0 0 0
0 −1 0 2 −.5 0 0

−.7887 0 0 −.5 1.577 −.2887 0
−.5774 0 0 0 −.2887 1.155 −.2887
−.5774 0 0 0 0 −.2887 1.155
−.7887 0 0 0 0 0 −.2887

0 −1 0 0 0 0 0
0 0 −.7887 0 0 0 0
0 0 −.5774 0 0 0 0
0 0 −.5774 0 0 0 0
0 0 −.7887 −.5 0 0 0

(14.48)

3/15/06 252 c© 2006 Peter J. Olver

−.7887 0 0 0 0 0
0 −1 0 0 0 0
0 0 −.7887 −.5774 −.5774 −.7887
0 0 0 0 0 −.5
0 0 0 0 0 0
0 0 0 0 0 0

−.2887 0 0 0 0 0
1.577 −.5 0 0 0 0
−.5 2 −.5 0 0 0
0 −.5 1.577 −.2887 0 0
0 0 −.2887 1.155 −.2887 0
0 0 0 −.2887 1.155 −.2887
0 0 0 0 −.2887 1.577

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Since only nodes 1, 2, 3 are interior nodes, the reduced finite element matrix only uses the
upper left 3 × 3 block of K∗, so

K =

3.732 −1 0
−1 4 −1

0 −1 3.732

. (14.49)

It is not difficult to directly construct K, bypassing K∗ entirely.

For a finer triangulation, the construction is similar, but the matrices become much
larger. The procedure can, of course, be automated. Fortunately, if we choose a very
regular triangulation, then we do not need to be nearly as meticulous in assembling the
stiffness matrices, since many of the entries are the same. The simplest case is when we
use a uniform square mesh, and so triangulate the domain into isoceles right triangles.
This is accomplished by laying out a relatively dense square grid over the domain Ω ⊂ R

2.
The interior nodes are the grid points that fall inside the oval domain, while the boundary
nodes are all those grid points lying adjacent to one or more of the interior nodes, and
are near but not necessarily precisely on the boundary ∂Ω. Figure 14.13 shows the nodes
in a square grid with intermesh spacing h = .2. While a bit crude in its approximation
of the boundary of the domain, this procedure does have the advantage of making the
construction of the associated finite element matrix relatively painless.

For such a mesh, all the triangles are isoceles right triangles, with elemental stiffnesses
(14.45). Summing the corresponding matrices Kν over all the triangles, as in (14.47), the
rows and columns of K∗ corresponding to the interior nodes are seen to all have the
same form. Namely, if i labels an interior node, then the corresponding diagonal entry is
kii = 4, while the off-diagonal entries kij = kji, i 6= j, are equal to either −1 when node i
is adjacent to node j on the grid, and is equal to 0 in all other cases. Node j is allowed to
be a boundary node. (Interestingly, the result does not depend on how one orients the pair
of triangles making up each square of the grid, which only plays a role in the computation
of the right hand side of the finite element equation.) Observe that the same computation
applies even to our coarse triangulation. The interior node 2 belongs to all right isoceles
triangles, and the corresponding entries in (14.48) are k22 = 4, and k2j = −1 for the four
adjacent nodes j = 1, 3, 4, 9.

Remark : Interestingly, the coefficient matrix arising from the finite element method
on a square (or even rectangular) grid is the same as the coefficient matrix arising from a

3/15/06 253 c© 2006 Peter J. Olver

finite difference solution to the Laplace or Poisson equation. The finite element approach
has the advantage of applying to much more general triangulations.

In general, while the finite element matrix K for a two-dimensional boundary value
problem is not as nice as the tridiagonal matrices we obtained in our one-dimensional
problems, it is still very sparse and, on regular grids, highly structured. This makes
solution of the resulting linear system particularly amenable to an iterative matrix solver
such as Gauss–Seidel, Jacobi, or, for even faster convergence, successive over-relaxation
(SOR).

The Coefficient Vector and the Boundary Conditions

So far, we have been concentrating on assembling the finite element coefficient matrix
K. We also need to compute the forcing vector b = (b1, b2, . . . , bn)

T
appearing on the right

hand side of the fundamental linear equation (14.39). According to (14.37), the entries bi

are found by integrating the product of the forcing function and the finite element basis
function. As before, we will approximate the integral over the domain Ω by an integral
over the triangles, and so

bi =

∫ ∫

Ω

f ϕi dx dy ≈
∑

ν

∫ ∫

Tν

f ων
i dx dy ≡

∑

ν

bν
i . (14.50)

Typically, the exact computation of the various triangular integrals is not convenient,
and so we resort to a numerical approximation. Since we are assuming that the individual
triangles are small, we can adopt a very crude numerical integration scheme. If the function
f(x, y) does not vary much over the triangle Tν — which will certainly be the case if Tν is
sufficiently small — we may approximate f(x, y) ≈ cν

i for (x, y) ∈ Tν by a constant. The
integral (14.50) is then approximated by

bν
i =

∫ ∫

Tν

f ων
i dx dy ≈ cν

i

∫ ∫

Tν

ων
i (x, y) dx dy = 1

3 cν
i area Tν = 1

6 cν
i |∆ν |. (14.51)

The formula for the integral of the affine element ων
i (x, y) follows from solid geometry.

Indeed, it equals the volume under its graph, a tetrahedron of height 1 and base Tν , as
illustrated in Figure 14.14.

How to choose the constant cν
i ? In practice, the simplest choice is to let cν

i = f(xi, yi)
be the value of the function at the ith vertex. With this choice, the sum in (14.50) becomes

bi ≈
∑

ν

1
3 f(xi, yi) area Tν = 1

3 f(xi, yi) area Pi, (14.52)

where Pi is the vertex polygon (14.36) corresponding to the node xi. In particular, for the
square mesh with the uniform choice of triangles, as in Example 14.6,

area Pi = 3h2 for all i, and so bi ≈ f(xi, yi) h2 (14.53)

is well approximated by just h2 times the value of the forcing function at the node. This
is the underlying reason to choose the uniform triangulation for the square mesh; the
alternating version would give unequal values for the bi over adjacent nodes, and this
would introduce unnecessary errors into the final approximation.

3/15/06 254 c© 2006 Peter J. Olver

Figure 14.14. Finite Element Tetrahedron.

Example 14.9. For the coarsely triangulated oval plate, the reduced stiffness matrix
is (14.49). The Poisson equation

−∆u = 4

models a constant external heat source of magnitude 4◦ over the entire plate. If we keep
the edges of the plate fixed at 0◦, then we need to solve the finite element equation Kc = b,
where K is the coefficient matrix (14.49), while

b = 4
3

(
2 + 3

√
3

4 , 2, 2 + 3
√

3
4

)T

= (4.39872, 2.66667, 4.39872)
T

.

The entries of b are, by (14.52), equal to 4 = f(xi, yi) times one third the area of the
corresponding vertex polygon, which for node 2 is the square consisting of 4 right triangles,
each of area 1

2 , whereas for nodes 1 and 3 it consists of 4 right triangles of area 1
2 plus

three equilateral triangles, each of area
√

3
4 ; see Figure 14.12.

The solution to the final linear system is easily found:

c = (1.56724, 1.45028, 1.56724)
T

.

Its entries are the values of the finite element approximation at the three interior nodes.
The finite element solution is plotted in the first illustration in Figure 14.15. A more
accurate solution, based on a square grid triangulation of size h = .1 is plotted in the
second figure.

Inhomogeneous Boundary Conditions

So far, we have restricted our attention to problems with homogeneous Dirichlet
boundary conditions. The solution to the inhomogeneous Dirichlet problem

−∆u = f in Ω, u = h on ∂Ω,

is also obtained by minimizing the Dirichlet functional (14.24). However, now the min-
imization takes place over the affine subspace consisting of all functions that satisfy the

3/15/06 255 c© 2006 Peter J. Olver

Figure 14.15. Finite Element Solutions to Poisson’s Equation for an Oval Plate.

inhomogeneous boundary conditions. It is not difficult to fit this problem into the finite
element scheme.

The elements corresponding to the interior nodes of our triangulation remain as before,
but now we need to include additional elements to ensure that our approximation satisfies
the boundary conditions. Note that if xk is a boundary node, then the corresponding
boundary element ϕk(x, y) satisfies the interpolation condition (14.27), and so has the
same piecewise affine form (14.35). The corresponding finite element approximation

w(x, y) =
m∑

i=1

ci ϕi(x, y), (14.54)

has the same form as before, (14.28), but now the sum is over all nodes, both interior
and boundary. As before, the coefficients ci = w(xi, yi) ≈ u(xi, yi) are the values of the
finite element approximation at the nodes. Therefore, in order to satisfy the boundary
conditions, we require

cj = h(xj , yj) whenever xj = (xj , yj) is a boundary node. (14.55)

Remark : If the boundary node xj does not lie precisely on the boundary ∂Ω, we need
to approximate the value h(xj , yj) appropriately, e.g., by using the value of h(x, y) at the
nearest boundary point (x, y) ∈ ∂Ω.

The derivation of the finite element equations proceeds as before, but now there are
additional terms arising from the nonzero boundary values. Leaving the intervening details
to the reader, the final outcome can be written as follows. Let K∗ denote the full m × m
finite element matrix constructed as above. The reduced coefficient matrix K is obtained
by retaining the rows and columns corresponding to only interior nodes, and so will have
size n × n , where n is the number of interior nodes. The boundary coefficient matrix K̃
is the n× (m− n) matrix consisting of the entries of the interior rows that do not appear
in K, i.e., those lying in the columns indexed by the boundary nodes. For instance, in the
the coarse triangulation of the oval plate, the full finite element matrix is given in (14.48),
and the upper 3 × 3 subblock is the reduced matrix (14.49). The remaining entries of the

3/15/06 256 c© 2006 Peter J. Olver

Figure 14.16. Solution to the Dirichlet Problem for the Oval Plate.

first three rows form the boundary coefficient matrix

K̃ =

0 −.7887 −.5774 −.5774 −.7887 0 0 0 0 0
−1 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 −.7887 −.5774 −.5774 −.7887

.

(14.56)
We similarly split the coefficients ci of the finite element function (14.54) into two groups.
We let c ∈ R

n denote the as yet unknown coefficients ci corresponding to the values of the
approximation at the interior nodes xi, while h ∈ R

m−n will be the vector of boundary
values (14.55). The solution to the finite element approximation (14.54) is obtained by
solving the associated linear system

Kc + K̃ h = b, or Kc = f = b − K̃ h. (14.57)

Example 14.10. For the oval plate discussed in Example 14.8, suppose the right
hand semicircular edge is held at 10◦, the left hand semicircular edge at −10◦, while the two
straight edges have a linearly varying temperature distribution ranging from −10◦ at the
left to 10◦ at the right, as illustrated in Figure 14.16. Our task is to compute its equilibrium
temperature, assuming no internal heat source. Thus, for the coarse triangulation we have
the boundary nodes values

h = (h4, . . . , h13)
T

= (0,−1,−1,−1,−1, 0, 1, 1, 1, 1, 0)
T

.

Using the previously computed formulae (14.49, 56) for the interior coefficient matrix K

and boundary coefficient matrix K̃, we approximate the solution to the Laplace equation
by solving (14.57). We are assuming that there is no external forcing function, f(x, y) ≡

0, and so the right hand side is b = 0, and so we must solve Kc = f = − K̃ h =
(2.18564, 3.6, 7.64974)

T
. The finite element function corresponding to the solution c =

(1.06795, 1.8, 2.53205)
T

is plotted in the first illustration in Figure 14.16. Even on such
a coarse mesh, the approximation is not too bad, as evidenced by the second illustration,
which plots the finite element solution for a square mesh with spacing h = .2 between
nodes.

3/15/06 257 c© 2006 Peter J. Olver

References

[1] Alligood, K.T., Sauer, T.D., and Yorke, J.A., Chaos. An Introduction to Dynamical
Systems, Springer-Verlag, New York, 1997.

[2] Apostol, T.M., Calculus, Blaisdell Publishing Co., Waltham, Mass., 1967–69.

[3] Baker, G.A., Jr., and Graves–Morris, P., Padé Approximants, Encyclopedia of
Mathematics and Its Applications, v. 59, Cambridge University Press, Cambridge,
1996.

[4] Birkhoff, G., and Rota, G.–C., Ordinary Differential Equations, Blaisdell Publ. Co.,
Waltham, Mass., 1962.

[5] Bradie, B., A Friendly Introduction to Numerical Analysis, Prentice–Hall, Inc., Upper
Saddle River, N.J., 2006.

[6] Bronstein, M., and Lafaille, S., Solutions of linear ordinary differential equations in terms
of special functions, in: Proceedings of the 2002 International Symposium on Symbolic
and Algebraic Computation, T. Mora, ed., ACM, New York, 2002, pp. 23–28.

[7] Burden, R.L., and Faires, J.D., Numerical Analysis, Seventh Edition, Brooks/Cole, Pacific
Grove, CA, 2001.

[8] Cantwell, B.J., Introduction to Symmetry Analysis, Cambridge University Press,
Cambridge, 2003.

[9] Clenshaw, C.W., and Olver, F.W.J., Beyond floating point, J. Assoc. Comput. Mach. 31

(1984), 319–328.

[10] Courant, R., and Hilbert, D., Methods of Mathematical Physics, vol. I, Interscience Publ.,
New York, 1953.

[11] Davidson, K.R., and Donsig, A.P., Real Analysis with Real Applications, Prentice–Hall,
Inc., Upper Saddle River, N.J., 2002.

[12] DeGroot, M.H., and Schervish, M.J., Probability and Statistics, 3rd ed., Addison–Wesley,
Boston, 2002.

[13] Demmel, J.W., Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.

[14] Devaney, R.L., An Introduction to Chaotic Dynamical Systems, Addison–Wesley, Redwood
City, Calif., 1989.

[15] Farin, G.E., Curves and Surfaces for CAGD: A Practical Guide, Academic Press, London,
2002.

[16] Feigenbaum, M.J., Qualitative universality for a class of nonlinear transformations, J.
Stat. Phys. 19 (1978), 25–52.

[17] Fine, B., and Rosenberger, G., The Fundamental Theorem of Algebra, Undergraduate
Texts in Mathematics, Springer–Verlag, New York, 1997.

[18] Francis, J.G.F., The QR transformation I, II, Comput. J. 4 (1961–2), 265–271, 332–345.

[19] Gaal, L., Classical Galois theory, 4th ed., Chelsea Publ. Co., New York, 1988.

[20] Gohberg, I., and Koltracht, I., Triangular factors of Cauchy and Vandermonde matrices,
Integral Eq. Operator Theory 26 (1996), 46–59.

3/15/06 258 c© 2006 Peter J. Olver

[21] Hairer, E., Nørsett, S.P., and Wanner, G., Solving Ordinary Differential Equations, 2nd
ed., Springer–Verlag, New York, 1993–1996.

[22] Hale, J.K., Ordinary Differential Equations, Second Edition, R. E. Krieger Pub. Co.,
Huntington, N.Y., 1980.

[23] Hamming, R.W., Numerical Methods for Scientists and Engineers, McGraw–Hill, New
York, 1962.

[24] Higham, N.J., Accuracy and Stability of Numerical Algorithms, Second Edition, SIAM,
Philadelphia, 2002.

[25] Hirsch, M.W., and Smale, S., Differential Equations, Dynamical Systems, and Linear
Algebra, Academic Press, New York, 1974.

[26] Hydon, P.E., Symmetry Methods for Differential Equations, Cambridge Texts in Appl.
Math., Cambridge University Press, Cambridge, 2000.

[27] Ince, E.L., Ordinary Differential Equations, Dover Publ., New York, 1956.

[28] Iserles, A., A First Course in the Numerical Analysis of Differential Equations, Cambridge
University Press, Cambridge, 1996.

[29] Jolliffe, I.T., Principal Component Analysis, 2nd ed., Springer–Verlag, New York, 2002.

[30] Krall, A.M., Applied Analysis, D. Reidel Publishing Co., Boston, 1986.

[31] Kublanovskaya, V.N., On some algorithms for the solution of the complete eigenvalue
problem, USSR Comput. Math. Math. Phys. 3 (1961), 637–657.

[32] Lanford, O., A computer-assisted proof of the Feigenbaum conjecture, Bull. Amer. Math.
Soc. 6 (1982), 427–434.

[33] Mandelbrot, B.B., The Fractal Geometry of Nature, W.H. Freeman, New York, 1983.

[34] Marsden, J.E., and Tromba, A.J., Vector Calculus, 4th ed., W.H. Freeman, New York,
1996.

[35] Moon, F.C., Chaotic Vibrations, John Wiley & Sons, New York, 1987.

[36] Olver, F.W.J., Asymptotics and Special Functions, Academic Press, New York, 1974.

[37] Olver, P.J., Applications of Lie Groups to Differential Equations, 2nd ed., Graduate Texts
in Mathematics, vol. 107, Springer–Verlag, New York, 1993.

[38] Olver, P.J., and Shakiban, C., Applied Linear Algebra, Prentice–Hall, Inc., Upper Saddle
River, N.J., 2005.

[39] Olver, P.J., and Shakiban, C., Applied Mathematics, Prentice–Hall, Inc., Upper Saddle
River, N.J., to appear.

[40] Ortega, J.M., Numerical Analysis; A Second Course, Academic Press, New York, 1972.

[41] Orucc, H., and Phillips, G. M., Explicit factorization of the Vandermonde matrix, Linear
Algebra Appl. 315 (2000), 113–123.

[42] Peitgen, H.-O., and Richter, P.H., The Beauty of Fractals: Images of Complex Dynamical
Systems,Springer–Verlag, New York, 1986.

[43] Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical Recipes in
C: The Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge,
1995.

[44] Schumaker, L.L., Spline Functions: Basic Theory, John Wiley & Sons, New York, 1981.

[45] Strang, G., and Fix, G.J., An Analysis of the Finite Element Method, Prentice–Hall, Inc.,
Englewood Cliffs, N.J., 1973.

[46] Tannenbaum, P., Excursions in Modern Mathematics, 5th ed., Prentice–Hall, Inc., Upper
Saddle River, N.J, 2004.

[47] Varga, R.S., Matrix Iterative Analysis, 2nd ed., Springer–Verlag, New York, 2000.

3/15/06 259 c© 2006 Peter J. Olver

[48] Watkins, D.S., Fundamentals of Matrix Computations, Second Edition,,
Wiley–Interscience, New York, 2002.

[49] Zienkiewicz, O.C., and Taylor, R.L., The Finite Element Method, 4th ed., McGraw–Hill,
New York, 1989.

3/15/06 260 c© 2006 Peter J. Olver

AIMS Exercise Set # 1

Peter J. Olver

1. Determine the form of the single precision floating point arithmetic used in the

computers at AIMS. What is the largest number that can be accurately represented?

What is the smallest positive number n
1
? The second smallest positive number n

2
?

Which is larger: the gap between n
1

and 0 or the gap betweeen n
1

and n
2
? Discuss.

2. Determine the value of each of the following quantities using 4 digit rounding

and four digit chopping arithmetic. Find the abolute and relative errors of your

approximation. (a) π + e − cos 22◦, (b)
eπ − πe

log 10

11

.

3. (a) To how many significant decimal digits do the numbers
√

10002 and
√

10001

agree? (b) Subtract the two numbers. How many significant decimal digits are lost in the

computation? (c) How might you rearrange the computation to obtain a more accurate

answer.

4. (a) Verify that f(x) = 1 − sin x and g(x) =
cos2 x

1 + sin x
are identical functions.

(b) Which function should be used for computations when x is near 1

2
π? Why?

(c) Which function should be used for computations when x is near 3

2
π? Why?

5. Horner’s Method

(a) Suppose x is a real number and n a positive integer. How many multiplications are

need to efficiently compute xn? Hint : The answer is not n − 1.

(b) Verify the polynomial identity

p(x) = a
0

+ a
1
x + a

2
x2 + · · · + a

n
xn = a

0
+ x(a

1
+ x(a

2
+ x(· · · + x a

n
) · · ·)).

Explain why the right hand side is to be preferred when computing the values of

the polynomial p(x).

1 c© 2006 Peter J. Olver

6. Let

f(x) = ex − cos x − x.

(a) Using calculus, what should the graph of f(x) look like for x near 0?

(b) Using both single and double precision arithmetic, graph f(x) for |x | ≤ 5 × 10−8

and discuss what you observe.

(c) How might you obtain a more realistic graph?

7. Consider the linear system of equations

1.1x + 2.1 y = a, 2x + 3.8 y = b.

Solve the system for the following right hand sides: (i) a = 3.2, b = 5.8; (ii) a = 3.21,

b = 5.79; (iii) a = 3.1, b = 5.7. Discuss the conditioning of this system of equations.

2 c© 2006 Peter J. Olver

AIMS Exercise Set # 2

Peter J. Olver

1. Explain why the equation e−x = x has a solution on the interval [0, 1]. Use

bisection to find the root to 4 decimal places. Can you prove that there are no other

roots?

2. Find 6
√

3 to 5 decimal places by setting up an appropriate equation and solving

using bisection.

3. Find all real roots of the polynomial x5 − 3x2 + 1 to 4 decimal places using

bisection.

4. Let g(u) have a fixed point u? in the interval [0, 1], with g′(u?) 6= 1. Define

G(u) =
ug′(u) − g(u)

g′(u) − 1
.

(a) Prove that, for an initial guess u(0) near u?, the fixed point iteration scheme

u(n+1) = G(u(n)) converges to the fixed point u. (b) What is the order of convergence

of this method? (c) Test this method on the non-convergent cubic scheme in Example

2.16.

5. Let g(u) = 1 + u − 1
8 u3. (a) Find all fixed points of g(u). (b) Does fixed point

iteration converge? If so, to which fixed point(s)? What is the rate of convergence?

(c) Predict how may iterates will be needed to get the fixed point accurate to 4 decimal

places starting with the initial guess u(0) = 1. (d) Check your prediction by performing

the iteration.

6. Solve Exercise 1–3 by Newton’s Method.

7. (a) Let u? be a simple root of f(u) = 0. Discuss the rate of convergence of the

iterative method (sometimes known as Olver’s Method , in honor of the author’s father)

based on g(u) = u +
f(u)2 f ′′(u) − 2 f(u) f ′(u)2

2 f ′(u)3
to u?. (b) Try this method on the

equation in Exercise 3, and compare the speed of convergence with that of Newton’s

Method.

1 c© 2006 Peter J. Olver

AIMS Exercise Set # 3

Peter J. Olver

1. Which of the following matrices are regular? If reguolar, write down its LU

factorization. (a)

(

2 1
1 4

)

, (b)

(

0 −1
3 −2

)

, (c)

1 −2 3
−2 4 −1

3 −1 2

.

2. In each of the following problems, find the A = LU factorization of the

coefficient matrix, and then use Forward and Back Substitution to solve the corresponding

linear systems Ax = b for each of the indicated right hand side:

(a) A =

(

−1 3
3 2

)

, b =

(

1
−1

)

; (b) A =

1 0 −1 0
0 2 3 −1

−1 3 2 2
0 −1 2 1

, b =

1
0

−1
1

.

3. Find the LDLT factorization of the matrix

1 −1 −1
−1 3 2
−1 2 0

.

4. (a) Find the LU factorization of the n × n tridiagonal matrix A
n

with all 2’s

along the diagonal and all −1’s along the sub- and super-diagonals for n = 3, 4 and 5.

(b) Use your factorizations to solve the system A
n
x = b, where b = (1, 1, 1, . . . , 1)T .

(c) Can you write down the LU factorization of A
n

for general n? Do the entries in the

factors approach a limit as n gets larger and larger?

5. True or false: (a) The product of two tridiagonal matrices is tridiagonal.

(b) The inverse of a tridiagonal matrix is tridiagonal.

6. (a) Find the exact solution to the linear system x−5y− z = 1, 1

6
x− 5

6
y + z = 0,

2x − y = 3. (b) Solve the system using Gaussian Elimination with 4 digit rounding.

(c) Solve the system using Partial Pivoting and 4 digit rounding. Compare your answers.

7. Implement the computer experiment with Hilbert matrices outlined in the last

paragraph of the section.

1 c© 2006 Peter J. Olver

AIMS Exercise Set # 4

Peter J. Olver

1. Find the explicit formula for the solution to the following linear iterative system:

u(k+1) = u(k) − 2v(k), v(k+1) = −2u(k) + v(k), u(0) = 1, v(0) = 0.

2. Determine whether or not the following matrices are convergent:

(a)

(
2 −3
3 2

)
, (b)

1

5

5 −3 −2
1 −2 1
1 −5 4

.

3. (a) Find the spectral radius of the matrix T =

(
1 1

−1 − 7
6

)
. (b) Predict the

long term behavior of the iterative system u(k+1) = T u(k) + b, where b =

(
−1

2

)
, in as

much detail as you can.

4. Consider the linear system Ax = b, where A =

4 1 −2
−1 4 −1

1 −1 4

 , b =

4
0
4

.

(a) First, solve the equation directly by Gaussian Elimination. (b) Using the initial

approximation x(0) = 0, carry out three iterations of the Jacobi algorithm to compute

x(1),x(2) and x(3). How close are you to the exact solution? (c) Write the Jacobi

iteration in the form x(k+1) = T x(k) + c. Find the 3 × 3 matrix T and the vector c

explicitly. (d) Using the initial approximation x(0) = 0, carry out three iterations of

the Gauss–Seidel algorithm. Which is a better approximation to the solution — Jacobi

or Gauss–Seidel? (e) Write the Gauss–Seidel iteration in the form x(k+1) = T̃ x(k) + c̃.

Find the 3 × 3 matrix T̃ and the vector c̃ explicitly. (f) Determine the spectral

radius of the Jacobi matrix T , and use this to prove that the Jacobi method iteration

will converge to the solution of Ax = b for any choice of the initial approximation

x(0). (g) Determine the spectral radius of the Gauss–Seidel matrix T̃ . Which method

converges faster? (h) For the faster method, how many iterations would you expect to

need to obtain 5 decimal place accuracy? (i) Test your prediction by computing the

solution to the desired accuracy.

1 c© 2006 Peter J. Olver

5. The matrix A =

4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4

arises in the

finite difference (and finite element) discretization of the Poisson equation on a nine point

square grid. (a) Is A diagonally dominant? (b) Find the spectral radius of the Jacobi

and Gauss–Seidel iteration matrices. (c) Use formula (7.69) to fix the optimal value

of the SOR parameter. Verify that the spectral radius of the resulting iteration matrix

agrees with the second formula in (7.69). (d) For each iterative scheme, predict how

many iterations are needed to solve the linear system Ax = e1 to 3 decimal places, and

then verify your predictions by direct computation.

6. The generalization of Exercise 5 to the Poisson equation on an n× n grid results

in an n2 × n2 matrix in block tridiagonal form A =

K − I
− I K − I

− I K − I
. . .

. . .
. . .

,

in which K is the tridiagonal n× n matrix with 4’s on the main diagonal and −1’s on the

sub- and super-diagonal, while I denotes an n × n identity matrix. Use the known value

of the Jacobi spectral radius ρ
J

= cos
π

n + 1
, [47], to design an SOR method to solve the

linear system Au = f . Run the Jacobi, Gauss–Seidel, and SOR methods for the cases

n = 5 and f = e13 and n = 25 and f = e313 corresponding to a unit force at the center of

the grid.

2 c© 2006 Peter J. Olver

AIMS Exercise Set # 5

Peter J. Olver

1. Use the power method to find the dominant eigenvalue and associated

eigenvector of the following matrices: (a)

−2 0 1
−3 −2 0
−2 5 4

, (b)

4 1 0 1
1 4 1 0
0 1 4 1
1 0 1 4

.

2. Use Newton’s Method to find all points of intersection of the following pairs of

plane curves: x
3 + y

3 = 3, x
2 − y

2 = 2.

3. The system x
2 + xz = 2, xy − z

2 = −1, y
2 + z

2 = 1, has a solution x
? = 1,

y
? = 0, z

? = 1. Consider a fixed point iteration scheme with

g(x, y, z) =
(

x + α(x2 + xz − 2), y + α(xy − z
2 + 1), z + α(y2 + z

2 − 1)
)T

,

where α is a constant. (a) For which values of α does the iterative scheme converge to

the solution when the initial guess is nearby? (b) What is the best value of α as far as

the rate of convergence goes? (c) For the value of α from part (a) (or another value of

your own choosing) about how many iterations are required to approximate the solution

to 5 decimal places when the initial guess is x
(0) = 5

6 , y
(0) = − 1

3 , z
(0) = 9

8? Test your

estimate by running the iteration. (d) Write down the Newton iteration scheme for this

system. (e) Answer part (c) for the Newton scheme.

1 c© 2006 Peter J. Olver

AIMS Exercise Set # 6

Peter J. Olver

1. Prove that the Midpoint Method (10.58) is a second order method.

2. Consider the initial value problem

du

dt
= u(1 − u), u(0) = .1,

for the logistic differential equation.

(a) Find an explicit formula for the solution. Describe in words the behavior of the

solution for t > 0.

(b) Use the Euler Method with step sizes h = .2 and .1 to numerically approximate the

solution on the interval [0, 10]. Does your numerical solution behave as predicted

from part (a)? What is the maximal error on this interval? Can you predict the

error when h = .05? Test your prediction by running the method and computing

the error. Estimate the step size needed to compute the solution accurately to

10 decimal places (assuming no round off error)? How many steps are required?

(Just predict — no need to test it.)

(c) Answer part (b) for the Improved Euler Method.

(d) Answer part (b) for the fourth order Runge–Kutta Method.

(e) Discuss the behavior of the solution, both analytical and numerical, for the

alternative initial condition u(0) = −.1.

3. The nonlinear second order ordinary differential equation

d2θ

dt2
+ sin θ = 0

describes the motion of a pendulum under gravity without friction, with θ(t) representing

the angle from the vertical: θ = 0 represents the stable equilibrium where the pendulum

is hanging straight down, while θ = π corresponds to the unstable equilibrium where the

pendulum is standing straight up.

(a) Write out an equivalent first order system of ordinary differential equations in

u(t) = θ(t), v(t) =
dθ

dt
.

1 c© 2006 Peter J. Olver

(b) Prove that the total energy of the pendulum

E(u, v) = 1

2
v2 + (1 − cos u) =

1

2

(

dθ

dt

)

2

+ (1 − cos θ)

is constant on solutions. Hint : Show that dE/dt = 0. Explain why each solution

moves along a single level curve E(u, v) = c of the energy.

(c) Use either your physical intuition and/or part (b) to describe the motion of the

pendulum for the following initial conditions:

(i) u(0) = 0, v(0) = 1; (ii) u(0) = 0, v(0) = 1.95; (iii) u(0) = 0, v(0) = 2.

(d) Use the Euler Method to integrate the initial value problems for 0 ≤ t ≤ 50 with

step sizes h = .1 and .01. How accurately do your numerical solutions preserve

the energy? How accurately do your numerical solutions follow the behavior you

predicted in part (b)?

(e) Answer part (d) using the fourth order Runge–Kutta Method.

2 c© 2006 Peter J. Olver

AIMS Exercise Set # 7

Peter J. Olver

1. In this exercise, you are asked to find “one-sided” finite difference formulas

for derivatives. These are useful for approximating derivatives of functions at or near

the boundary of their domain. (a) Construct a second order, one-sided finite difference

formula that approximates the derivative f ′(x) using the values of f(x) at the points

x, x + h and x + 2h. (b) Find a finite difference formula for f ′′(x) that involves the same

values of f . What is the order of your formula? (c) Test your formulas by computing

approximations to the first and second derivatives of f(x) = ex
2

at x = 1 using step sizes

h = .1, .01 and .001. What is the error in your numerical approximations? Are the errors

compatible with the theoretical orders of the finite difference formulae? Discuss why or

why not. (d) Answer part (c) at the point x = 0.

2. (a) Design an explicit numerical method for solving the initial-boundary value

problem

u
t
= γ u

xx
+ s(x), u(t, 0) = u(t, 1) = 0, u(0, x) = f(x), 0 ≤ x ≤ 1,

for the heat equation with a source term s(x). (b) Test your scheme on the particular

problem for

γ =
1

6
, s(x) = x(1 − x)(10 − 22x), f(x) =

2
∣

∣ x − 1

6

∣

∣ − 1

3
, 0 ≤ x ≤ 1

3
,

0, 1

3
≤ x ≤ 2

3
,

1

2
− 3

∣

∣ x − 5

6

∣

∣ , 2

3
≤ x ≤ 1,

using space step sizes h = .1 and .05, and a suitably chosen time step k. (c) What is

the long term behavior of your solution? Can you find a formula for its eventual profile?

(d) Design an implicit scheme for the same problem. Does the behavior of your numerical

solution change? What are the advantages of the implicit scheme?

1 c© 2006 Peter J. Olver

	aims
	Computer Arithmetic
	Numerical Solution of Scalar Equations
	Review of Matrix Algebra
	Gaussian Elimination
	Inner Products and Norms
	Eigenvalues and Singular Values
	Iterative Methods for Linear Systems
	Numerical Computation of Eigenvalues
	Numerical Solution of Algebraic Systems
	Numerical Solution of Ordinary Differential Equations
	Numerical Solution of the Heat and Wave Equations
	Minimization
	Approximation and Interpolation
	The Finite Element Method
	References
	Exercise set #1
	Exercise set #2
	Exercise set #3
	Exercise set #4
	Exercise set #5
	Exercise set #6
	Exercise set #7

