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Preface

Orthogonal polynomials play a prominent role in pure, applied, and computational mathematics,
as well as in the applied sciences. It is the aim of the present volume in the series “Numerical
Analysis in the 20th Century” to review, and sometimes extend, some of the many known results
and properties of orthogonal polynomials and related quadrature rules. In addition, this volume
discusses techniques available for the analysis of orthogonal polynomials and associated quadrature
rules. Indeed, the design and computation of numerical integration methods is an important area in
numerical analysis, and orthogonal polynomials play a fundamental role in the analysis of many
integration methods.

The 20th century has witnessed a rapid development of orthogonal polynomials and related quadra-
ture rules, and we therefore cannot even attempt to review all significant developments within this
volume. We primarily have sought to emphasize results and techniques that have been of significance
in computational or applied mathematics, or which we believe may lead to significant progress in
these areas in the near future. Unfortunately, we cannot claim completeness even within this limited
scope. Nevertheless, we hope that the readers of this volume will find the papers of interest and
many references to related work of help.

We outline the contributions in the present volume. Properties of orthogonal polynomials are
the focus of the papers by Marcellan and Alvarez-Nodarse and by Freund. The former contribu-
tion discusses “Favard’s theorem”, i.e., the question under which conditions the recurrence coef-
ficients of a family of polynomials determine a measure with respect to which the polynomials
in this family are orthogonal. Polynomials that satisfy a three-term recurrence relation as well as
Szegd polynomials are considered. The measure is allowed to be signed, i.e., the moment ma-
trix is allowed to be indefinite. Freund discusses matrix-valued polynomials that are orthogonal
with respect to a measure that defines a bilinear form. This contribution focuses on breakdowns
of the recurrence relations and discusses techniques for overcoming this difficulty. Matrix-valued
orthogonal polynomials form the basis for algorithms for reduced-order modeling. Freund’s con-
tribution to this volume provides references to such algorithms and their application to circuit
simulation.

The contribution by Peherstorfer and Steinbauer analyzes inverse images of polynomial map-
pings in the complex plane and their relevance to extremal properties of polynomials orthogonal
with respect to measures supported on a variety of sets, such as several intervals, lemniscates, or
equipotential lines. Applications include fractal theory and Julia sets.

Orthogonality with respect to Sobolev inner products has attracted the interest of many re-
searchers during the last decade. The paper by Martinez discusses some of the recent developments

0377-0427/01/$ - see front matter (©) 2001 Elsevier Science B.V. All rights reserved.
PII: S0377-0427(00)00490-8
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in this area. The contribution by Lopez Lagomasino, Pijeira, and Perez Izquierdo deals with or-
thogonal polynomials associated with measures supported on compact subsets of the complex plane.
The location and asymptotic distribution of the zeros of the orthogonal polynomials, as well as
the nth-root asymptotic behavior of these polynomials is analyzed, using methods of potential
theory.

Investigations based on spectral theory for symmetric operators can provide insight into the analytic
properties of both orthogonal polynomials and the associated Padé approximants. The contribution
by Beckermann surveys these results.

Van Assche and Coussement study multiple orthogonal polynomials. These polynomials arise
in simultaneous rational approximation; in particular, they form the foundation for simultaneous
Hermite—Padé approximation of a system of several functions. The paper compares multiple orthog-
onal polynomials with the classical families of orthogonal polynomials, such as Hermite, Laguerre,
Jacobi, and Bessel polynomials, using characterization theorems.

Bultheel, Gonzalez-Vera, Hendriksen, and Njﬁstad consider orthogonal rational functions with pre-
scribed poles, and discuss quadrature rules for their exact integration. These quadrature rules may
be viewed as extensions of quadrature rules for Szegd polynomials. The latter rules are exact for
rational functions with poles at the origin and at infinity.

Many of the papers of this volume are concerned with quadrature or cubature rules related to
orthogonal polynomials. The analysis of multivariable orthogonal polynomials forms the foundation
of many cubature formulas. The contribution by Cools, Mysovskikh, and Schmid discusses the con-
nection between cubature formulas and orthogonal polynomials. The paper reviews the development
initiated by Radon’s seminal contribution from 1948 and discusses open questions. The work by Xu
deals with multivariate orthogonal polynomials and cubature formulas for several regions in RY. Xu
shows that orthogonal structures and cubature formulas for these regions are closely related.

The paper by Milovanovi¢ deals with the properties of quadrature rules with multiple nodes. These
rules generalize the Gauss—Turan rules. Moment-preserving approximation by defective splines is
considered as an application.

Computational issues related to Gauss quadrature rules are the topic of the contributions by Ehrich
and Laurie. The latter paper discusses numerical methods for the computation of the nodes and
weights of Gauss-type quadrature rules, when moments, modified moments, or the recursion coef-
ficients of the orthogonal polynomials associated with a nonnegative measure are known. Ehrich
is concerned with how to estimate the error of quadrature rules of Gauss type. This question is
important, e.g., for the design of adaptive quadrature routines based on rules of Gauss type.

The contribution by Mori and Sugihara reviews the double exponential transformation in numerical
integration and in a variety of Sinc methods. This transformation enables efficient evaluation of the
integrals of analytic functions with endpoint singularities.

Many algorithms for the solution of large-scale problems in science and engineering are based
on orthogonal polynomials and Gauss-type quadrature rules. Calvetti, Morigi, Reichel, and Sgallari
describe an application of Gauss quadrature to the computation of bounds or estimates of the Eu-
clidean norm of the error in iterates (approximate solutions) generated by an iterative method for the
solution of large linear systems of equations with a symmetric matrix. The matrix may be positive
definite or indefinite.

The computation of zeros of polynomials is a classical problem in numerical analysis. The contri-
bution by Ammar, Calvetti, Gragg, and Reichel describes algorithms based on Szegé polynomials.
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In particular, knowledge of the location of zeros of Szeg6 polynomials is important for the analysis
and implementation of filters for time series.
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Abstract

The computation of zeros of polynomials is a classical computational problem. This paper presents two new zerofinders
that are based on the observation that, after a suitable change of variable, any polynomial can be considered a member
of a family of Szegd polynomials. Numerical experiments indicate that these methods generally give higher accuracy than
computing the eigenvalues of the companion matrix associated with the polynomial. ©) 2001 Elsevier Science B.V. All
rights reserved.

Keywords: Szego—Hessenberg matrix; Companion matrix; Eigenvalue problem; Continuation method; Parallel computation

1. Introduction

The computation of the zeros of a polynomial
U(z)=2"+ o, 2"+ oz + o, o €C, (1)

is a fundamental problem in scientific computation that arises in many diverse applications. The
conditioning of this problem has been investigated by Gautschi [8,9]. Several classical methods for
determining zeros of polynomials are described by Henrici [17, Chapter 6] and Stoer and Bulirsch
[26, Chapter 5]. A recent extensive bibliography of zerofinders is provided by McNamee [21].
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Among the most popular numerical methods for computing zeros of polynomials are the Jenkins—
Traub algorithm [18], and the computation of the zeros as eigenvalues of the companion matrix

0 N
1 0 e 00—y
1 0 e 00—
c - | eom )
1 0 —0y—2
_0 1 —0y—1 i

associated with the polynomial (1) by the QR algorithm after balancing; see Edelman and Murakami
[7] and Moler [22]. Recently, Goedecker [10] compared these methods and found the latter approach
to be competitive with several available implementations of the Jenkins—Traub algorithm with regard
to both accuracy and execution time for polynomials of small to moderate degree.

This paper describes two new methods for computing zeros of polynomials. The methods are
based on the observation that, after a change of variable, any polynomial can be considered a
member of a family of Szegd polynomials. The new zerofinders use the recursion relation for the
Szegd polynomials, which are defined as follows. Let @ be a nondecreasing distribution function
with infinitely many points of increase on the unit circle in the complex plane and define the inner
product

| S
(fag):% a f(Z)g(Z)dCO(f), Z::exp(it)’ i::\/__l’ (3)

for polynomials f and g, where the bar denotes complex conjugation. We assume for notational
convenience that dw(¢) is scaled so that (1,1) = 1. Introduce orthonormal polynomials with re-
spect to this inner product, ¢, ¢, ¢,,..., where ¢; is of degree j with positive leading coefficient.
These polynomials are known as Szego polynomials and many of their properties are discussed by
Grenander and Szego [16]. In particular, they satisfy the recursion relation

Po(z) = Pp(2) =1,

0in1Pi(2) =z¢)(z) +y,11¢;(z), j=0,1,2,...,.n—1,

0j11971(2) = 7;120,(2) + ¢5(2), (4)
where the recursion coefficients y,;; and the auxiliary coefficients ¢, are defined by

) — _(Z(bja 1)
yj+1 5 s

J

Oj+1 = O-](1 - ”yj+l‘2)7 j:(),laza"'a
5j+1 :5j0-j+1: 5020'(): 1. (5)
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It follows from (4) that the auxiliary polynomials ¢; satisfy

¢ (2):=2';(1/2). (6)

The zeros of the Szegd polynomials are strictly inside the unit circle and all recursion coefficients
y; are of magnitude smaller than one; see, e.g., [1,16]. The leading coefficient of ¢; is 1/9;.

The first step in the new zerofinders of this paper is to determine recursion coefficients {y j};':],
such that the Szeg0d polynomial ¢, satisfies

On () = Miv(2), (7)

where

{=mz+n, (8)

and the constants #; and #, are chosen so that the zeros z; of v, are mapped to zeros (; of ¢, inside
the unit circle. We refer to this change of variable as a rescaling of the monic polynomial y;,(z). Its
construction is discussed in Section 2. Thus, the problem of determining the zeros of y;, is reduced
to the problem of computing the zeros of a Szegd polynomial of degree n. Section 3 considers two
methods for this purpose, based on a matrix formulation of the recursion relation (4). This gives
an n x n upper Hessenberg matrix whose cigenvalues are the zeros of ¢,. We refer to this matrix,
which is described in [11], as the Szegd—Hessenberg matrix associated with ¢,. Having computed
the eigenvalues (; of this matrix, we use the relation (8) to compute the zeros z; of V.

A third method for computing the zeros of ,(z) is to use the power-basis coefficients of the
monic Szego polynomial @,({):=9,¢,({) of (7) to form the companion matrix associated with @,
compute its eigenvalues, and transform these back to the z-variable using (8). In other words, to
use the companion matrix of the rescaled monic polynomial &, instead of that of ys,. This method
is included in the numerical results we report in Section 4.

Section 4 compares the use of the QR algorithm with balancing for computing the eigenvalues of
the Szegd—Hessenberg, the companion matrix (2) of 4, and the companion matrix of the rescaled
polynomial @,. We note in passing that these are all upper Hessenberg matrices. Balancing is
commonly used for improving the accuracy of the computed eigenvalues; see [7] for a discussion on
balancing of the companion matrix. In our experiments we found that when the parameters 7, and
n, for the rescaling are chosen so that all zeros of ¢, are inside the unit circle and one zero is close
to the unit circle, the computed eigenvalues of the Szegé—Hessenberg matrix and of the companion
matrix of the rescaled polynomial (7) generally provide more accurate zeros of i, than those of
the companion matrix of ,. This rescaling is achieved by application of the Schur—Cohn test as
described in Section 3. Numerous computed examples, some of which are reported in Section 4,
indicate that computing eigenvalues of the Szego—Hessenberg matrix after balancing often gives the
zeros of 1, with higher accuracy than computing eigenvalues of the companion matrix of the scaled
polynomial (7) after balancing. Both methods, in general, give higher accuracy in the computed
zeros than computing the zeros of , as eigenvalues of the balanced companion matrix.

The other zerofinder for Szegd polynomials discussed in Section 3 is the continuation method
previously introduced in [2]. For many polynomials ,, this method yields higher accuracy than the
computation of the eigenvalues of the associated companion or Szego—Hessenberg matrices. Section
4 presents numerical examples and Section 5 contains concluding remarks.
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2. Computation of Szegé polynomials

Given a polynomial 1,(z) in power-basis form (1), we compute the recursion coefficients {y;}/_,
of the family of Szegd polynomials {¢,}7_,, chosen so that ¢, satisfies (7), by first transforming
the polynomial ), so that the average of its zeros vanishes. Then we determine a disk centered at
the origin that contains all zeros of the transformed polynomial. The complex plane is then scaled
so that this disk becomes the unit disk. In this fashion, the problem of determining the zeros of
the polynomial y, has been transformed into an equivalent problem of determining the zeros of a
polynomial with all zeros in the unit disk. We may assume that the latter polynomial has leading
coefficient one, and identify it with the monic Szegd polynomial @, = J,¢,. Given the power-basis
coefficients of @,, the recursion coefficients of the family of Szegd polynomials {¢;}}_, can be
computed by the Schur—Cohn algorithm. The remainder of this section describes details of the
computations outlined.

Let {z;}}_, denote the zeros of y, and introduce the average of the zeros

1 n
pi=— sz. 9)
nis
We evaluate this quantity as p = —o,_;/n, and define the new variable Z =z — p. The polynomial

~

W ,(2):=yn(z) can be written as

-2

U, (B)=2" 4Gyt 4 012+ do. (10)

n—1

The coefficients {d;}"~; can be computed from the coefficients {«;}7=] in ((n*) arithmetic operations.

We now scale the z-plane in two steps in order to move the zeros of i, inside the unit circle.
Our choice of scaling is motivated by the following result mentioned by Ostrowski [23].

Proposition 2.1. Let y, be a polynomial of degree n of the form
1(2) = 2"+ P22 4+ Prz + fo, (11)
and assume that

03‘12;)«(4 |ﬂf| =1

Then all zeros of y, are contained in the open disk {z:|z| < (14 V/5)} in the complex plane.

Proof. Let z be a zero of y, and assume that |z| > 1. Then
2= =Py = = Pz — o,
and it follows that

n—2 ) n—1 __ 1
|z|" < Z |z = |Z|—
— lz] — 1
Jj=0
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This inequality can be written as

2 (22 = 2l - < — 1. (12)
Since |z|*—|z|—1=(|z|-1(1=v/5))(]z] - 1(14+V/5)), inequality (12) can only hold for |z| < 1(1+/5).
O

After the change of variable Z:=¢Z, where ¢ > 0 is chosen so that

max ¢’|d, ;| =1,
2<j<n
the polynomial l,Zn(E)::a"vﬁn(é) satisfies the conditions of the proposition.
Define the scaling factor
2

r:zl Y (13)
By Proposition 2.1 the change of variables

(=12 (14)
yields a monic polynomial

P()=1",(2) (15)

with all zeros inside the unit circle.

We identify @ with the monic Szegd polynomial J,¢,, and wish to compute the recursion
coefficients {y;}/_, that determine polynomials of lower degree {$;}1=5 in the same family of Szegd
polynomials; see (4). This can be done by using the relationship between the coefficients of ¢, in
power form and the coefficients of the associated auxiliary polynomial. Specifically, it follows from

(6) that if
¢,(z) = Xj: Bzt (16)
then .
B =3 B
pard

Thus, given the Szegd polynomial ¢, in power form, we can determine the coefficients of the
associated auxiliary polynomial ¢ in power form and apply the recursion formula (4) “backwards”
in order to determine the recursion coefficient y, and the coefficients of the polynomials ¢, ; and
¢;_, in power form. In this manner we can determine the recursion coeflicients y; for decreasing
values of the index j.

The Schur—Cohn algorithm, see, e.g., Henrici [17, Chapter 6], is an implementation of these com-
putations. The algorithm requires ()(n*) arithmetic operations to determine the recursion coefficients
{7;}j= from the representation of ¢, in power form (16).

We remark that the Schur—Cohn algorithm is known for its use in determining whether a given
polynomial, in power form, has all zeros inside the unit circle. In this context it is known as the
Schur—Cohn test; see [17, Chapter 6]. All zeros being strictly inside the unit circle is equivalent
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with all recursion coeflicients {y;}7_, being of magnitude strictly smaller than one. We will return
to this property of the recursion coefficients in Section 3.

Perhaps the first application of the Schur—Cohn algorithm to the computation of zeros of poly-
nomials was described by Lehmer [19], who covered the complex plane by disks and used the
Schur—Cohn test to determine which disks contain zeros of the polynomial. Lehmer’s method can
be viewed as a generalization of the bisection method to the complex plane. It is discussed in [17,
Chapter 6].

3. The zerofinders

We present two zerofinders for ¢, and assume that the recursion coefficients {y;}}_, as well as
the auxiliary coeflicients {o;}}_, are available.

3.1. An eigenvalue method
Eliminating the auxiliary polynomials ¢7 in the recursion formula (4) yields an expression for

$;+1 in terms of Szegd polynomials of lower degree. Writing the expressions for the first n + 1
Szeg6 polynomials in matrix form yields

[Po(2), P1(2), ..., Pur(2)H, = 2[Po(2), P1(2), .., Pu1(2)] — [0,..., 0, u(2)], (17)
where
(=11 —on —0100); —01 TV |
o =N 710203 —7102+ Cp1Vn
) =773 — 7203+ Op_1Vn
H, = e Crxn (18)
Op—2 —Pp—2Vn—1 ~Vp—20n—17n
| 0 On—1 —Tn1Vn

is the Szegd—Hessenberg matrix associated with the Szegd polynomials {¢;}/_,; see [11]. Eq. (17)
shows that the eigenvalues of the upper Hessenberg matrix H, are the zeros of ¢,. Thus, we can
compute the zeros of ¢, by determining the eigenvalues of H,,.

Let {;, 1<j<n, denote the zeros of ¢,. The scaling parameters 7, and 7, in (8) are chosen so
that all zeros of ¢, are inside the unit circle. However, for some polynomials ), the scaling may
be such that

K= max |(;|<1.
1<j<n

We have noticed that we can determine the zeros of i, with higher accuracy when the disk is rescaled
to make x, close to one. Such a rescaling is easy to achieve by repeated application of the Schur—
Cohn test as follows. Instead of scaling Z by the factor (13) in (14), we scale Z by 1:=v2/(1 ++/5)
and apply the Schur—Cohn test to determine whether all zeros of the scaled polynomial (15) so
obtained are inside the unit circle. If they are not, then we increase the scaling factor 7 in (14) by



G.S. Ammar et al. | Journal of Computational and Applied Mathematics 127 (2001) 1-16 7

a factor At:=(2/(1 4+ /5))"'* and check whether the (re)scaled polynomial (15) obtained has all
zeros inside the unit circle. The scaling factor 7 is increased repeatedly by the factor At until the
polynomial (15) has all its zeros inside the unit circle. On the other hand, if the polynomial (15)
associated with the scaling factor 7=+/2/(1++/5) has all zeros inside the unit circle, we repeatedly
decrease t by a factor (A7)~ until a scaling factor T has been determined, such that all zeros of
the polynomial @ are inside the unit disk, but at least one zero of @{¥/4? is not. Our choice of
scaling factor 7 in (14) assures that the monic polynomial (15) has all its zeros inside the unit circle
and (at least) one zero close to the unit circle.

The scaling factors 7 in (14) for the computed examples reported in Section 4 have been deter-
mined as described above. In our experience, the time spent rescaling the disk is negligible compared
to the time required to compute the eigenvalues of H,, because each rescaling only requires ()(n*)
arithmetic operations.

After determining the scaling factor 7 as described above and computing the recursion coefficients
{7,}}=, via the Schur-Cohn test, we form the Szegd—Hessenberg matrix (18), balance it, and compute
its eigenvalues using the QR algorithm.

3.2. A continuation method

Similarly as in the method described in Section 3.1, we first determine the recursion coefficients
of the Szegd polynomials {¢;}_, such that Eq. (7) holds, as described above. We then apply the
continuation method for computing zeros of Szegd polynomials developed in [2]. In this method the
Szego—Hessenberg matrix (18) is considered a function of the last recursion parameter y,. Denote
this parameter by ¢ € C and the associated Szego—Hessenberg matrix by H,(¢). Thus, we write the
matrix (18) as H,(y,). When |t| = 1, the Szeg6—Hessenberg matrix H,(¢) is unitary. Assume that
va # 0. Then H,(y,/|y.|) is the closest unitary matrix to H,(y,); see [2] for details. The continuation
method for computing zeros of Szegd polynomials consists of the following steps:

(i) Compute the eigenvalues of the unitary upper Hessenberg matrix H,(7,/|7.|)-
(ii) Apply a continuation method for tracking the path of each eigenvalue of the matrix H,(¢) as ¢
is moved from y,/|y,| to y,.

Several algorithms that require only ()(n*) arithmetic operations for the computations of Step (i) are
available; see, e.g. [4—6,12-15]. If the coefficients o; in (1) are real, then the method discussed in [3]
can also be applied. These methods compute the eigenvalues of H,(y,/|y.|) without explicitly forming
the matrix elements. In the numerical experiments reported in Section 4, we used the implementation
[4,5] of the divide-and-conquer method described in [14,15]. The computations required for this
method can readily be implemented on a parallel computer. This may be of importance in the
application of the zerofinder in real-time filter design; see, e.g., Parks and Burrus [24] and references
therein for more on this application of polynomial zerofinders.

We have found that for many polynomials v, the continuation method determines the zeros with
higher accuracy than the method discussed in Section 3.1. The continuation method determines the
zeros of the Szegd polynomial ¢, close to the unit circle particularly rapidly. However, our present
implementation of the continuation method may fail to determine all zeros for some polynomials 1,
when the pathfollowing is complicated by (numerous) bifurcation points. These cases are easy to
identify; see [2] for a discussion and remedies.
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Table 1
Ten polynomials of degree n = 15 with zeros in D,

Differences: CB SHB CM CBS

6.67E—-05 4.89E—06 4.57E—06 6.82E—06
1.66E—03 7.57E-05 5.49E—-05 2.11E—-04
1.20E—-01 3.06E-03 — 1.83E—-02
8.41E—-04 2.45E—05 3.91E-05 6.22E—04
9.66E—04 5.88E—05 5.82E-05 1.51E—-04
2.75E—-05 5.20E-07 1.79E—07 2.40E—06
3.34E-05 5.75E—-06 2.711E—-07 2.05E—05
1.67E—05 2.85E—06 2.25E—-06 5.52E-05
2.72E—04 6.60E—06 7.48E—07 3.77E-05
7.60E—05 1.16E—06 7.40E—07 3.30E—-06

Averages: 1.24E—-02 3.24E-04 1.79E—05 1.94E—-03

Residuals: CB SHB CM CBS W

3.85E—06 9.06E—-07 4.89E—07 1.10E—-06 6.94E—07
3.31E-07 9.68E—08 2.05E—-08 1.15E-07 1.47E—-08
3.16E—05 1.30E—05 — 2.41E—05 5.80E—07
2.48E—06 9.15E-07 3.16E-07 1.47E—-06 6.62E—08
5.24E—-06 6.74E—-07 1.18E—06 1.50E—06 3.58E—-07
8.64E—08 2.13E—08 1.47E—-08 4.12E—08 2.18E—09
1.87E—06 6.88E—07 5.66E—07 8.80E—07 2.92E—-08
2.93E—-06 2.48E—06 2.76E—07 2.71E—-06 4.34E—08
2.14E-07 7.87E—08 6.35E—08 3.23E-08 6.32E—09
1.07E—06 4.44E—-07 9.72E—08 9.11E-07 2.11E—-08

Averages: 4.97E—-06 1.93E—-06 3.36E—-07 3.28E—06 1.82E—-07
Differences Residuals
CB 0 0
SHB 10 2 10 2
CM 9 8 8 9 8 7
CBS 9 0 1 0 10 1 2 1

We remark that other continuation methods also are available, such as the method proposed by Li
and Zeng [20] for computing the eigenvalues of a general Hessenberg matrix. This method does not
use the structure of the Hessenberg matrices (18), i.e., the fact that the last recursion coefficient y, is
a natural continuation parameter. However, it may be possible to apply some techniques developed
in [20] to improve the performance of the continuation method of this paper; see [2] for a discussion
and references to other continuation methods.
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Table 2
Ten polynomials of degree n = 15 with zeros in D,

Differences: CB SHB CM CBS

3.06E—04 4.98E—05 4.25E—-05 9.49E—05
1.47E—-04 4.30E—05 4.22E—05 8.30E—05
9.99E—-06 2.40E—06 2.67E-07 8.38E—06
5.97E—-06 3.04E-05 2.09E—-06 1.59E—05
2.72E—04 3.44E—-05 3.05E-05 3.37E—-05
1.10E—06 1.77E—-06 5.06E—-07 1.53E—06
4.77E—-04 1.56E—05 1.78E—05 5.08E—05
7.30E—04 1.02E—-03 8.53E—-04 8.76E—04
7.92E—-06 2.82E—06 1.53E—06 6.90E—06
4.88E—04 8.80E—05 1.33E-05 1.55E—-04

Averages: 2.44E—-04 1.29E—04 1.00E—04 1.33E—-04

Residuals: CB SHB CM CBS Un

5.85E—-02 6.82E—03 1.11E-02 6.22E—03 1.06E—03
1.50E—01 3.04E-02 1.96E—02 4.09E—02 1.95E—-02
8.29E—-02 1.90E—02 4.67E—03 1.26E—02 2.27E—03
4.56E—01 4.67E—-01 2.94E—-02 2.13E-01 7.14E-03
1.98E—03 2.93E—-03 8.92E—04 8.11E—-04 1.00E—03
1.77E—-02 1.92E—02 7.89E—03 7.24E—-03 1.30E—03
7.42E—01 3.88E—01 4.22E—-01 5.35E-01 1.84E—-02
9.64E—-03 7.14E-03 3.95E-03 1.23E—-02 4.08E—03
7.70E—02 2.89E—-02 2.19E—-02 1.21E-01 4.53E—-03
3.02E-02 3.05E-03 6.00E—04 4.11E—04 2.43E-03

Averages: 1.62E-01 9.73E—02 5.22E—02 9.50E—02 6.17E—03
Differences Residuals
CB 1 0
SHB 7 1 7 1
CM 9 9 8 10 8 5
CBS 7 4 0 0 8 6 4 4

4. Computed examples

We present the results of several computed examples which illustrate the performance of the
zerofinders discussed in Section 3. The computer programs used were all written in FORTRAN
77, and the numerical experiments were carried out on a SUN SparcStation 5 in single-precision
arithmetic, i.e., with approximately 7 significant decimal digits of accuracy, except where explicitly
stated otherwise. The eigenvalues of the companion and Szegé—Hessenberg matrices were computed
by single-precision subroutines from EISPACK [25].
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Table 3
Comparison of methods for 100 polynomials of each degree n with zeros in D,

Average differences

n CB SHB CM CBS N
10 1.20E—03 1.78E—05 1.75E—-05 2.08E—05 99
15 3.12E-03 1.34E—04 1.14E—-02 3.22E-04 94
20 3.48E—02 6.59E—03 7.27E—03 9.89E—03 86
30 1.75E—01 5.28E—02 1.67E—03 1.04E—01 47
40 3.95E-01 1.60E—01 1.07E—03 3.20E—01 12
Average residuals
n CB SHB CM CBS Un N
10 1.70E—06 1.09E—06 3.58E—07 9.85E—-07 1.20E—07 99
15 6.99E—06 2.89E—06 7.89E—07 3.39E—06 2.95E—-07 94
20 4.06E—03 9.95E—06 1.90E—06 2.35E—05 8.01E—07 86
30 3.08E+4-01 7.52E—03 1.36E—05 1.03E—-03 4.83E—-06 47
40 1.05E+04 3.92E—-02 6.31E—06 4.30E—02 4.64E—05 12

In our experiments, we input a set of n real or complex conjugate zeros of the polynomial s, see
(1), and compute the coefficients o; of the power-basis representation by a recursion formula. These
computations are carried out in double-precision arithmetic, i.e., with about 15 significant digits, in
order to avoid loss of accuracy. After their computation, the «; are stored as single-precision real
numbers. We now seek to determine the zeros of 1, given the coefficients «;, with one of several
methods:
CB: The QR algorithm applied to the companion matrix (2) of s, after balancing, using the
EISPACK routines balanc and hqr.

CBS: The QR algorithm applied to the companion matrix of the monic Szegd polynomial @,, after
balancing, using the EISPACK routines balanc and hqr.

SHB: The QR algorithm applied to the Szegé—Hessenberg matrix after balancing, using the EIS-
PACK routines balanc and hqr.

CM: The continuation method for real Szegd—Hessenberg matrices, described in [2].

We compare the following computed quantities:

Residuals: The maximum modulus of the values of the initial monic polynomial i, in power form
(1) at the computed roots.

Differences: The computed zeros are put into correspondence with the initial zeros, which were
used to generate 1, as described above, and the maximum difference after this pairing is computed.
Note that this is not exactly the error in the computed zeros; the error is the maximum difference of
the computed roots and the exact roots of the monic polynomial ,. However, since the coefficients
of s, were computed from the given zeros in floating-point arithmetic, the exact zeros of the ), need
not be close to the input zeros. Nevertheless, the computed differences provide a way to compare
the various methods.

In the tables we also display in the column labeled ), the residuals computed at the input zeros;
i.e., at the zeros that were used to compute the power-basis coefficients of ;. This provides some
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Table 4
Comparative counts for 100 polynomials for each degree n with zeros in D,

Differences Residuals
n=10
CB 0 2
SHB 97 12 79 13
CM 99 83 71 95 81 74
CBS 90 28 20 17 78 39 15 11
n=15
CB 0 2
SHB 100 17 77 8
CM 97 80 78 95 85 81
CBS 88 16 9 5 71 48 12 9
n=20
CB 0 4
SHB 97 15 79 16
CM 88 78 77 88 79 73
CBS 85 19 17 8 70 32 18 7
n=230
CB 1 8
SHB 97 42 84 29
CM 61 55 53 58 50 46
CBS 73 6 40 4 73 29 48 17
n=40
CB 4 8
SHB 94 74 88 55
CM 26 17 16 19 13 12
CBS 61 8 78 6 76 29 83 25

indication of how ill-conditioned the roots of ¥, and the computation of its power-basis coefficients
are, as well as an indication of the significance of the differences and the other computed residuals
that are displayed.

The polynomials ), in all computed examples except those for Tables 7-8 have real or complex
conjugate zeros uniformly distributed in a disk

Dr:={z: |z|<R}CC. (19)

In particular, the coefficients o; in the representation (1) are real. We generate zeros of y, in
Dy as follows. Two random numbers are determined according to a uniform distribution on the
interval [ — R,R] and used as the real and imaginary parts of a candidate zero z. If z € Dy and
Im(z) > 1 x 107°, then both z and Z are accepted as zeros of . If z € Dg and Im(z)<1 x 107°
then Re(z) is accepted as a real zero of . The purpose of the condition on the imaginary part of z
is to avoid that ), has very close zeros. We generate candidate points until # zeros of i, have been
determined. When 7 is odd, then at least one of the zeros of i, is in the real interval [ — R, R].



12 G.S. Ammar et al. | Journal of Computational and Applied Mathematics 127 (2001) 1-16

Table 5
Comparison of methods for 100 polynomials of degree n =20 for each radius R

Average differences

R CB SHB CM CBS N
0.2 2.96E—01 1.54E—03 1.25E—-03 2.01E-03 86
0.7 9.76E—02 4.45E—03 5.59E—04 6.54E—03 84
1.0 3.48E—02 6.59E—03 7.27E—03 9.89E—03 86
1.5 2.20E—02 1.16E—02 8.55E—04 1.84E—02 83
3.0 6.81E—02 2.32E—02 1.71E-03 3.38E—02 83
Average residuals
R CB SHB CM CBS Wn N
0.2 6.79E—10 1.32E—-19 2.27E-20 1.15E—19 7.20E-21 86
0.7 4.69E—07 7.86E—09 1.73E—09 7.43E—09 5.79E—10 84
1.0 4.06E—03 9.95E—06 1.90E—06 2.35E—05 8.01E—07 86
1.5 6.91E4-01 4.03E—-02 5.13E-03 7.10E—02 3.15E-03 83
3.0 1.17E+08 4.06E+04 5.50E+-03 6.79E+4-04 3.30E+03 83

Table 1 shows results for 10 polynomials ;5 generated in this manner with zeros in the disk D;.
We display the maximum modulus of the residuals and the maximum difference of the computed
zeros with the input zeros for the methods CB, SHB, CM, and CBS. The results for CM for one
of these 10 polynomials are marked with a “— to indicate that the continuation method did not
yield all n zeros. The averages for CM ignore the entries marked by —. In Table 1 the standard
companion matrix approach (CB) consistently yields the least accuracy as measured both by the
residuals and by the differences with the input zeros.

The integer arrays at the bottom of Table 1 display the relative performance of the algorithms. The
(j,k) entry for j > k is the number of times the jth algorithm gave smaller maximal differences or
residuals than the kth algorithm, and the (j,j) entry indicates the number of times the jth algorithm
gave the smallest maximal differences or residuals among the four methods compared. For example,
the arrays for Table 1 show that CM produces the smallest residuals for 7 of the 10 polynomials
generated. This count includes the polynomial for which CM failed to determine all zeros. The
maximum residual for CM was smaller than for CB, SHB, and CBS for 9, 8, and 8 polynomials,
respectively. CB produced larger residuals than any of the other three methods for all polynomials,
except for the polynomial for which CM failed to determine all zeros.

Table 2 gives the results for 10 polynomials of degree 15 with uniformly distributed real and
complex conjugate zeros in the disk D,. In this experiment, CM successfully determined all zeros
of all polynomials.

Tables 3 and 4 show summary data for 100 polynomials of each of several degrees n with
uniformly distributed real and complex conjugate zeros in the disk D;. We display in Tables 3 the
average of the maximum differences and the average of the maximum residuals for the methods CB,
SHB and CBS over all polynomials. For CM we compute these averages only over those polynomials
for which the method successfully determined all zeros. The number of those polynomials of each
degree n, out of 100, is denoted by N and is displayed in the last column of Table 3.
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Table 6
Comparative counts for 100 polynomials of degree n = 20 for each radius R

Differences Residuals
R=02
CB 0 0
SHB 100 22 100 12
CM 100 73 72 100 79 73
CBS 100 23 15 6 100 48 20 15
R=07
CB 0 0
SHB 100 19 100 10
CM 91 81 76 90 80 75
CBS 100 15 17 5 100 35 20 15
R=1.0
CB 0 4
SHB 97 15 79 16
CM 88 78 77 88 79 73
CBS 85 19 17 8 70 32 18 7
R=15
CB 7 4
SHB 58 18 77 21
CM 87 76 72 85 72 67
CBS 36 16 17 3 72 37 21 8
R=3.0
CB 4 0
SHB 66 16 95 22
CM 89 78 76 89 69 66
CBS 44 17 17 4 90 37 22 12

In the experiments in Tables 5 and 6, we generated 100 polynomials of degree 20 with uniformly
distributed real or complex conjugate zeros in disks (19) of radius R for several different values of R.
The entries in the columns “Average differences” and “Average residuals” of Table 5 are computed
as for Table 3. We display results obtained for disks with radii between 0.2 and 3.

Finally, Tables 7 and 8 illustrate the performance of the zerofinders for polynomials s, with
real zeros only. The zeros are uniformly distributed in the interval [ — 1,1]. Tables 7 and 8 are
analogous to Tables 3 and 4. We see that CBS often gives significantly higher accuracy than CB,
and SHB usually yields slightly higher accuracy than CBS. Our present implementation of CM
is able to accurately determine all or most zeros for the polynomials in this experiment of fairly
low degree, n <10, only, due to numerous bifurcation points encountered during pathfollowing. The
performance of CM might be improved by using a more sophisticated pathfollowing method; see
[2] for a discussion.
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Table 7

Comparison of methods for 100 polynomials of each degree n zeros in [ — 1,1]
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Average differences

n CB SHB CBS
10 8.73E—03 1.53E—03 3.16E—03
15 5.83E—02 1.43E—02 3.47E—-02
20 2.07E-01 8.64E—02 1.67E—01
30 4.97E-01 2.93E-01 5.62E—01
40 7.18E—01 5.62E—01 7.94E—01

Average residuals
n CB SHB CBS /A
10 7.90E—07 4.64E—07 423E-07 6.92E—08
15 1.59E—06 8.51E—-07 1.48E—06 9.62E—08
20 1.03E—05 4.05E—06 9.74E—06 2.69E—07
30 3.07E—04 5.24E—05 8.11E—05 7.90E—07
40 3.70E+401 5.01E—02 6.71E—02 3.34E—06
Table 8

Comparative counts for 100 polynomials of each degree n with zeros in [ — 1,1]

Differences Residuals
n=10
CB 2 6
SHB 96 31 71 23
CBS 74 9 7 74 59 28
n=15
CB 2 17
SHB 98 63 75 50
CBS 77 5 4 60 31 26
n=20
CB 2 17
SHB 98 95 77 68
CBS 71 4 3 59 17 15
n=30
CB 10 7
SHB 89 86 93 85
CBS 39 6 4 64 11 8
n=40
CB 19 10
SHB 78 67 88 80
CBS 37 20 13 53 11 10
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In addition to the examples reported above, we carried out numerous numerical experiments with
the zerofinders applied to polynomials whose zeros were uniformly distributed in squares and wedges
in the complex plane. The performance of the zerofinders for these problems is similar to the
performance reported in the Tables 1-6, and we therefore omit the details. We noted that for some
classes of problems CBS performed comparatively better than in the Tables 1-6, and gave about
the same accuracy as SHB. In all examples considered, CB gave the poorest overall accuracy.

5. Conclusions

Numerous numerical experiments, some of which have been presented in Section 4, indicate that
the polynomial zerofinders CBS, CM and SHB presented in this paper, in general, yield higher
accuracy than computing eigenvalues of the associated balanced companion matrix, the CB method.
When CM finds all zeros, this method typically yields the highest accuracy. Presently, we are
using a fairly simple path-following scheme described in [2], and this implementation of CM may
occasionally occasionally fail to find all zeros. Our numerical experiments suggest that CM with an
improved pathfollowing scheme would be an attractive zerofinder. Alternatively, one can use CM
as presently implemented and switch to a different zerofinding method when CM fails to determine
all zeros. This approach has the advantage of allowing us to keep the pathfollowing scheme simple.
The numerical examples of Section 4, as well as other examples not reported, indicate that the
SHB method may be a good method to switch to. It is simple to implement and often gives higher
accuracy than the CB and CBS methods.
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Abstract

Complex Jacobi matrices play an important role in the study of asymptotics and zero distribution of formal orthogonal
polynomials (FOPs). The latter are essential tools in several fields of numerical analysis, for instance in the context of
iterative methods for solving large systems of linear equations, or in the study of Padé approximation and Jacobi continued
fractions. In this paper we present some known and some new results on FOPs in terms of spectral properties of the
underlying (infinite) Jacobi matrix, with a special emphasis to unbounded recurrence coeflicients. Here we recover several
classical results for real Jacobi matrices. The inverse problem of characterizing properties of the Jacobi operator in terms
of FOPs and other solutions of a given three-term recurrence is also investigated. This enables us to give results on the
approximation of the resolvent by inverses of finite sections, with applications to the convergence of Padé approximants.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

We denote by /? the Hilbert space of complex square-summable sequences, with the usual scalar
product (u,v)=>_u;v;, and by (e,),>o its usual orthonormal basis. Furthermore, for a linear operator
T in /%, we denote by Z(T), A(T), N (T), and o(T), its domain of definition, its range, its kernel,
and its spectrum, respectively.
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Given complex numbers a,,b,, n=>0, with a, # 0 for all n, we associate the infinite tridiagonal
complex Jacobi matrix

ap bl ap 0
o = . (1.1)

0 ap b2 25

In the symmetric case b,,a, € R for all n one recovers the classical Jacobi matrix. Denoting by
%, C /* the linear space of finite linear combinations of the basis elements ey, e, ..., we may identify
via the usual matrix product a complex Jacobi matrix .o/ with an operator acting on %. Its closure
A is called the corresponding second-order difference operator or Jacobi operator (see Section 2.1
for a more detailed discussion).

Second-order (or higher-order) difference operators have received much attention in the last years,
partly motivated by applications to nonlinear discrete dynamical systems (see [7,20,21,29,38] and the
references therein). Also, Jacobi matrices are known to be a very useful tool in the study of (formal)
orthogonal polynomials ((F)OPs), which again have applications in numerous fields of numerical
analysis. To give an example, (formal) orthogonal polynomials have been used very successfully in
numerical linear algebra for describing both algorithmic aspects and convergence behavior of iterative
methods like conjugate gradients, GMRES, Lanczos, QMR, and many others. Another example is
given by the study of convergence of continued fractions and Padé approximants. Indeed, also the
study of higher-order difference operators is of interest in all these applications; let us mention
the Bogoyavlenskii discrete dynamical system [8], Ruhe’s block version of the Lanczos method in
numerical linear algebra, or the problem of Hermite—Padé and matrix Padé approximation (for the
latter see, e.g., the surveys [5,6]). In the present paper we will restrict ourselves to the less involved
case of three diagonals.

To start with, a linear functional ¢ acting on the space of polynomials with complex coefficients is
called regular if and only if det(c(x’**)); s—.., # 0 for all n=>0. Given a regular ¢ (with ¢(1)=1),
there exists a sequence (g,),>0 of FOPs, i.e., ¢, is a polynomial of degree n (unique up to a sign),
and c(q; - qx) vanishes if j # k and is equal to 1 otherwise. These polynomials are known to verify
a three-term recurrence of the form

anQn+1(2) = (Z - bn)‘]n(z) - an—l‘]n—l(z)a n=0, ro(Z) =1, (I—l(z) =0,

where a, = c(zq,:19,) € C\{0}, and b, = c(zq,q,) € C. Here a,,b, are known to be real if and
only if ¢ is positive, i.e., ¢(P)>0 for each nontrivial polynomial P taking nonnegative values on
Theorem says that any (g,(z)).so verifying a three-term recurrence relation of the above form is
a sequence of formal orthogonal polynomials with respect to some regular linear functional c. As
shown in Remark 2.3 below, this linear functional can be given in terms of the Jacobi operator 4
defined above, namely c(P) = (e, P(A)ey) for each polynomial P. In the real case one also knows
that there is orthogonality with respect to some positive Borel measure u supported on the real axis,

i.e., c(P)= [ P(x)du(x).
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Notice that g, is (up to normalization) the characteristic polynomial of the finite submatrix .oZ, of
order n of .«Z. Also, the second-order difference equation

Z'yn:anyn+l+bnyn+an—1yn—1: n>O (12)

(a_;:=1) together with the initialization y_; =0 may be formally rewritten as the spectral equation
(zf — o) y=0. This gives somehow the idea that spectral properties of the Jacobi operator should
be determined by the spectral or asymptotic properties of FOPs, and vice versa. Indeed, in the real
case the link is very much known (see, for instance, [38] or [37]): if 4 is self-adjoint, then there
is just one measure of orthogonality (obtained by the spectral theorem applied to A), with support
being equal to the spectrum o(4) of A. Also, the zeros of OPs lie all in the convex hull of a(A4),
are interlacing, and every point in ¢(A4) attracts zeros. Furthermore, in case of bounded 4 one may
describe the asymptotic behavior of OPs on and outside a(A4). Surprisingly, for formal orthogonal
polynomials these questions have been investigated only recently in terms of the operator 4, probably
owing to the fact that here things may change quite a bit (see, for instance, Example 3.2 below).

To our knowledge, the first detailed account on (a class of) complex Jacobi matrices was given
by Wall in his treatise [59] on continued fractions. He dealt with the problem of convergence of
Jacobi continued fractions (J-fractions)

2 2 2
| —a; —a; —a;

1 | | | ...
z— by +|Z—b1 +|z—b2 +|z—b3 + (1.3)

having at infinity the (possibly formal) expansion f(z)=3"; c(x')z/~'=3", (es, A’€o)z~/~". Their nth
convergent may be rewritten as p,(z)/q.(z), where (p,(2)).>_1,(¢.(2)).>_1 are particular solutions
of (1.2) with initializations

q(z)=1, q1(z)=0, po(z)=0, p.(z)=-1, (1.4)

i.e., g, are the FOPs mentioned above. Also, p,/q, is just the nth Padé approximant (at infinity) of
the perfect power series f. Notice that, in case of a bounded operator 4, f is the Laurent expansion
at infinity of the so-called Weyl! function [21]

d(z):=(ep, (zI —A) ey), z € Q(A),

where here and in the sequel Q(4) = C\a(4) denotes the resolvent set, i.c., the set of all z € C
such that A"(zI —A4)={0} and Z(zI — A) = ¢* (and thus the resolvent (zI — A)~" is bounded).

The aim of the present paper is threefold: we try to give a somehow complete account on con-
nections between FOPs, complex J-fractions and complex Jacobi matrices presented in the last five
years. In this context we report about recent work by Aptekarev, Kaliaguine, Van Assche, Bar-
rios, Lopez Lagomasino, Martinez-Finkelshtein, Torrano, Castro Smirnova, Simon, Magnus, Stahl,
Baratchart, Ambroladze, Almendral Vazquez, and the present author. Special attention in our study
is given to unbounded complex Jacobi matrices, where similar uniqueness problems occur as for
the classical moment problem. Secondly, we present some new results concerning ratio-normality of
FOPs and compact perturbations of complex Jacobi matrices. In addition, we show that many recent
results on convergence of complex J-fractions in terms of Jacobi operators [13—-16,18,20] are, in
fact, results on the approximation of the resolvent of complex Jacobi operators. Finally, we mention
several open problems in this field of research. A main (at least partially) open question is however
omitted: do these results have a counterpart for higher-order difference operators?
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The paper is organized as follows: Some preliminaries and spectral properties of Jacobi operators
in terms of solutions of (1.2) are presented in Section 2. In Section 2.1 we report about the problem
of associating a unique operator to (1.1), and introduce the notion of proper Jacobi matrices. Next
to some preliminary observations, we recall in Section 2.2 Wall’s definition of determinate Jacobi
matrices and relate it to proper ones. Also, some sufficient conditions for determinacy are discussed
[59,13,22]. Known characterizations [7,19] of elements z of the resolvent set in terms of the asymp-
totic behavior of solutions of (1.2) are described in Section 2.3. Here we also show in Theorem 2.11
that for indeterminate complex Jacobi operators we have a similar behavior as for nonself-adjoint
Jacobi operators (where the corresponding moment problem does not have a unique solution). In
Section 2.4 we highlight the significance of the Weyl function and of functions of the second kind.
Their representation as Cauchy transforms is investigated in Section 2.5, where we also study the
case of totally positive moment sequences leading to nonreal compact Jacobi matrices.

In Section 3 we describe results on the asymptotic behavior of FOPs in the resolvent set. nth-root
asymptotics for bounded complex Jacobi matrices obtained in [7,18,20] are presented in Section 3.1.
In Section 3.2 we deal with the problem of localizing zeros of FOPs, thereby generalizing some
results from [18]. We show that, roughly, under some additional hypotheses, there are only “few”
zeros in compact subsets of the resolvent set. An important tool is the study of ratios of two succes-
sive monic FOPs. An inverse open problem concerning zero-free regions is presented in Section 3.3.
In Section 3.4 we characterize compact perturbations of complex Jacobi matrices in terms of the ra-
tios mentioned above. Strong asymptotics for trace class perturbations are the subject of Section 3.5.
In the final Section 4, we investigate the problem of convergence of Pad¢ approximants (or J-frac-
tions) and more generally of (weak, strong or norm) resolvent convergence. A version of the Kan-
torovich Theorem for complex Jacobi matrices is given in Section 4.1, together with a discussion
of its assumptions. We describe in Section 4.2 consequences for the approximation of the Weyl
function, and finally illustrate in Section 4.3 some of our findings by discussing (asymptotically)
periodic complex Jacobi matrices.

2. The Jacobi operator
2.1. Infinite matrices and operators

Given an infinite matrix .o/ = (a,); x>0 of complex numbers, can we define correctly a (closed
and perhaps densely defined) operator via matrix calculus by identifying elements of /2 with infinite
column vectors? Of course, owing to Hilbert and his collaborators, an answer to this question is
known, see, e.g., [2]. In this section we briefly summarize the most important facts. Here we will
restrict ourselves to matrices ./ whose rows and columns are elements of /2, an assumption which
is obviously true for banded matrices such as our complex Jacobi matrices.

By assumption, the formal product .o7 - y is defined for any y € /2. Thus, as a natural candidate of
an operator associated with .o/, we could consider the so-called maximal operator (see [30, Example
11.2.3]) [/],., With

max

D[ A ) ={y €% A -y € L7} (2.1)
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and [«/],,.v:=< -y € /*. However, there are other operators having interesting properties which
may be associated with .«/. For instance, since the columns of .o/ are elements of /2, we may define
a linear operator on %, (also denoted by .o7) by setting

ey = (ajr)j=0, k=0,1,2,....

Notice that [.«/] . is an extension' of .o7.

A minimum requirement in the spectral theory of linear operators is that the operator in question
be closed [30, Section III.5.2]. In general, our operator ./ is not closed, but it is closable [30,
Section I11.5.3], i.e., for any sequence (»™),>oC Z(./) with y™ — 0 and .oy — v we have

v=20. To see this, notice that
oo
(e,v) = lim kz_;aj,k v = lim (g, y) =0,

where v; = (@5 k=0 € /* by assumption on the rows of .o/. Thus, we may consider the closure
[«7] . of ., i.e., the smallest closed extension of .«Z. Notice that

min

D([A),) =Ly € % A(¥™)y=0 C 6, converging to y, and

(2 y™),0 C £* converging (to [./].. 1)} (2.2)

We have the following links between the operators [.o/] [«/] and their adjoints.

min? max >

Lemma 2.1. Let the infinite matrix /™ be obtained from o/ by transposing and by taking complex
conjugates of the elements. Then

([‘%]min)* = [‘Q{H]max’ ([‘Qi]maxy|< = ['Q/H]min'

In particular, the maximal operator [</] .. is a closed extension of [./]

max min*

Proof. In order to show the first equality, for short we write 4 =[.¢/] ... By definition of the adjoint
[30, Section 1I1.5.5]), Z(A4*) equals the set of all y € /2 such that there exists a y* € /> with

(y,Ax)=(y",x) for all x € 9(A4)

and y* = A*y. According to the characterization of %(A4) given above and the continuity of the
scalar product, it is sufficient to require that (y,4x) = (»*,x) holds for all x € %,, or, equivalently,

y; =(e;,y") =(4e;, y) forall j=>0.

Since (de;, y) coincides with the jth component of the formal product 7"y, we obtain 4* =[.o/"]
by definition (2.1) of 2([.«/"],..)-

The second identity of Lemma 2.1 follows from the fact that 4** = A4 by [30, Theorem II1.5.29].
Finally, we obtain the last claim by observing that [</] . i1s an extension of ./, and [.</],, is
closed (since an adjoint of a densely defined operator is closed [30, Theorem I11.5.29]). [

max

" Given two operators T,S in />, we say that S is an extension of T' (and write T C S) if Z(T') C Z(S), and Ty =Sy
for all y € 2(T).



22 B. Beckermann | Journal of Computational and Applied Mathematics 127 (2001) 17-65

Definition 2.2. The infinite matrix ./ with rows and columns in /? is called proper if the operators
[«/] .. and [«/] . coincide.

max min

Notice that any operator B defined by matrix product (i.e., By=.«7-y for y € Z(B)) necessarily is
a restriction of [.«7] ., by (2.1). From Lemma 2.1 we obtain the equivalent description .«/% C B*. If
in addition €, C Z(B), then .« C B C [.¢/],,,,. We may conclude that any closed operator B defined
by matrix product and ¥, C Z(B) satisfies [.«/],;, C B C[/] and such an operator B is unique
if and only if .7 is proper.?

Let us have a look at the special case of Hermitian matrices .7, i.e., .o/ = .o/". Here Lemma 2.1
tells us that 4:=[2/],, has the adjoint 4* = [27],. (see also [52, p. 90] or [30, Example V.3.13]),
which is an extension of A. Hence 4 is symmetric, and we obtain the following equivalencies: 4 is
self-adjoint (i.e., 4 = A4") if and only if .7 is proper if and only if there exists a unique symmetric
closed extension of .o/ (cf. with [30, Problem II1.5.25]).

max?

Remark 2.3. The notion of proper Jacobi matrices may be motivated by considering the following
problem: given a regular functional ¢ acting on the space of polynomials, can we describe its action
by a densely defined closed operator B, namely ¢(P) = (¢,P(B)f) and, more generally,

c(P-Q)=(0Q(B)g,P(B)f) for all polynomials P,Q (2.3)
with suitable f,g € /2?

We first show that any closed operator B with o7 ;;, C B C ./ . satisfies (2.3) with [ =g = e,.
Obviously, it is sufficient to show the relation

e; =4¢;(B)eo = q;(B) e0, j=0.
Indeed, ey = qo(B)ey by (1.4), and by induction, using (1.2), we obtain
a;q;11(B)eg = Bq;(B)ey — b;q;(B)ey — aj_1q;-1(B)ey = Be; — bje; —a;_1e; | = aje;y,

the last equality following from .o/ C B. Since a; # 0, the relation e;;; = g;+1(B)ey follows. In a
similar way the other identity is shown using the relation .«#" C B*.

We now show that these are essentially all the operators satisfying (2.3). Notice first that B is
only properly characterized by (2.3) if f is a cyclic element of B (i.e., f € 2(B") for all k, and
span{B’ f: j >0} is dense in /?), and ¢ is a cyclic element of B*. In this case, using the orthogonality
relations of the FOPs ¢;, we may conclude that (f),),>0 and (g,).>¢, defined by f, =¢,(B)f and
g =q.(B)*g, is a complete normalized biorthogonal system. The expansion coefficients of B f} (and
B*g;, resp.) with respect to the system (f,),>0 (and (g,),>0, resp.) are given by

amin(j,k) 1f]:k+10rk:]+1,
(9,Bf0) = (fuBg;) = czq,qr) = (ej, Ley) = { b, if j=k,
0 else.

2Some authors consider other extensions of .7 which are not defined by matrix product, or which are defined by
Hilbert space extensions, see, for instance, [45, Section 6] or [42].
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In other words, up to the representation of /2 and its dual with the help of these different bases,
we have .o/ C B and /" C B*, and thus .o, C B C .%/ .. We may conclude in particular that an
operator as in (2.3) is unique (up to basis transformations) if and only if .« is proper. [

For an infinite matrix ./, define the quantity
(u, V)
(u,0)
where on the right-hand side .oZ, denotes the principal submatrix of order n of .«Z. Clearly, ||.<Z|| is
the operator norm of o7, and [./],;, is bounded (with ||[./]..|| = ||-<Z]|) if and only if ||.«/|| <oc.
One easily checks that in this case Z([.«/],,,)=¢>. Conversely, if Z([.</],;,)=¢?, then .« is bounded

by the closed graph theorem [30, Theorem II1.5.20]. Finally, we recall the well-known estimate [30,
Example 111.2.3]

|| < [supZIaj,k!] sup Y lajl| - (2.4)
7 k=0 k- j=o

Using this formula, one easily verifies the well-known fact that banded matrices .o/ are bounded if
and only if their entries are uniformly bounded.

We may conclude that a bounded matrix .o/ is proper, and thus we may associate a unique closed
operator 4 =[.27],;, whose action is described via matrix calculus. However, these properties do not
remain necessarily true for unbounded matrices.

|l#|[:= sup

uvEG)

= sup ||/,

n=0

2.2. Spectral properties of Jacobi operators

In what follows, o7 will be the complex Jacobi matrix of (1.1) with entries a,,b, € C, a, # 0,
We refer to its closure 4 =[.2/] .. as the corresponding difference operator or Jacobi operator, and
denote by 4" = [.«7],,, the maximal closed extension of 4 defined by matrix product. Since .o/ is
obtained from .o/ by taking the complex conjugate of each entry, we may conclude from Lemma 2.1
that A* = I14*I1, where II denotes the complex conjugation operator defined by I1(y;);>0 = (3;),50-

The aim of this section is to summarize some basic properties of the operators 4, A" in terms of
solutions ¢(z):=(g,(z))s>0 and p(z):=(p.(z)).>0 of recurrence (1.2), (1.4).

We will make use of the projection operators I1; defined by

Hj(yanlayZa--'):(yanla---ayjflsosoa---) S (609 ]21
Clearly, II;y — y for j — oo for any y € /*. Also, one easily checks that, for any sequence
Y = (Yn)n=0, one has Il;y € Z(4), with
AULy)=H,( - y)+a;—;-(0,...,0,—y;,¥;-1,0,0,....). (2.5)
——
Jj=1
Using (2.4), one easily verifies that 4 is bounded if and only if the entries of .o/ are uniformly
bounded; more precisely,

sup /[, + [, + la,2 <141 < sup(la,i| + |B,] + ai]) (2.6)
n=0

n=0

(where we tacitly put a_; = 0). Also, notice that .o/ is Hermitian if and only if it is real.
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Some further elementary observations are summarized in

Lemma 2.4. (a) For z € C there holds
0<dim A" (z] — A)<dim A"(z] — A")<1

with N (zI — A") = (>N {iq(z): 4 € C}.

(b) For n=0 and z € C we have e, — q,(z)ey € #(zI — A).

(¢) For z € C there holds {y € 2(A"): (zI — A")y =eo} = /> N {yq(z) — p(z): y € C}.

(d) For all z € C we have G(zl — A*) = G(A*) = [ID(A*), N (I — A*) = TN ((z] — A)*), and
Rzl — A = HR((z] — A)").

Proof. (a) Since 4 C A%, we only have to show the last assertion. By (2.1), y=(,)n>0 € A (z] —A")
if and only if y € /2, and we have (z.# — .o/) - y = 0. The latter identity may be rewritten as
—@yYui1 + (= b))y — a1y =0, n=0, y_;=0.

Comparing with (1.2), (1.4), we see that (z.# — .&/)- y =0 if and only if y = y, - g(z), leading to
the above description of A (zI — A%).
(b) Notice that (1.2), (1.4) may be rewritten as

(29 =) -q(z)=0, (z2J — ) p(z) = —e.
Combining this with (2.5), we obtain

(ZI - A)Hn+lp(z) = —€ + a (Oa e 05 pn+l(z): 7pn(z): 0, Oa . ')1 (27)
~—
(2l — A)Tyorq(z) = ay - (0, ..., 0,qns1(2), —qu(2), 0,0, ...). (2.8)
——

n

Also, one easily verifies by induction, using (1.2), that

an'(Qn(z)'pn+l(z)_qwrl(z)'pn(z)): 1, nz — 1: zeC. (29)
Thus, we have found an element of ¢y C Z(4) satisfying

(zl — D)1, 11[g.(2) p(z) — pa(2)q(2)]

=—qu(z)eg +a, - (0,...,0,4.(2) pr1(z) — pu(2)qn11(2),0,0,...) = €, — gu(2)eo.
——r
(c) Since (zf — 7)) - (y-q(z) — p(z)) = e, for all y, a proof for this assertion follows the same
lines as the one of part (a). We omit the details.
(d) This part is an immediate consequence of the fact that

(zl —A) =z —A* =21 — HA'Il = H(z] —ADHII. O

For a closed densely defined linear operator T in /2, the integer dim .4"(T') is usually referred to as
the nullity of T, and dim .A"(zI — T') coincides with the geometric multiplicity of the “eigenvalue” z
(if larger than zero). One also defines the deficiency of T as the codimension in /2 of %(T). Provided
that Z(T) is closed, it follows from [30, Theorem 1V.5.13, Lemma III.1.40] that the deficiency of T
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coincides with dim .A4"(T*), and that also %(T*) is closed. Taking into account Lemma 2.4(a), (d),
we may conclude that both deficiency and nullity are bounded by one for our operators z/ — A and

zI — A" provided one of them has closed range. Consequently, we obtain for the essential spectrum
[30, Chapter 1V.5.6]

Oess(A) = 0o (A") = {z € C: #(zl — A) is not closed}. (2.10)

Recall that this (closed) part of the spectrum of A4 (or 4%) remains invariant under compact perturba-
tions [30, Theorem IV.5.35]. Let us relate Definition 2.2 to the notion of determinacy as introduced
by Wall.

Definition 2.5 (See Wall [59, Definition 22.1]). The complex Jacobi matrix .7 is called determinate
if at least one of the sequences p(0) or ¢(0) is not an element of /.

According to [59, Theorem 22.1], .7 is indeterminate if p(z) and g(z) are elements of /> for one
z € C, and in this case they are elements of /2 for all z € C. It is also known (see [1, pp. 138-141]
or [38, p. 76]) that a real Jacobi matrix is proper (i.c., self-adjoint) if and only if it is determinate.
In the general case we have the following

Theorem 2.6 (Cf. with Beckermann [19, Proposition 3.2]). (a) A4 determinate complex Jacobi ma-
trix .o with o.(A) # C is proper.

(b) A proper complex Jacobi matrix <f is determinate.

(¢) If Q(A) # 0 then </ is proper.

Proof. Part (a) has been established in [19, Proposition 3.2], the proof is mainly based on Lemma
2.4(d) and the fact that in the case z & g.(A4) the set #(zI —A) (and Z((zI —A)*), resp.) coincides
with the orthogonal complement of A"((zI — 4)*) (and of A"(z — A), resp.).

In order to show part (b), suppose that .«/ is not determinate. Then dim .4 (z — A*) =1 and
€y C R(zl — A*) for all z € C according to Lemma 2.4(a)—(c), and thus %, C #((zI — A)*) by
Lemma 2.4(d). Taking into account that ./"(zI —A) is just the orthogonal complement Z((zI —A)*)*
of #((zI — A)*), we may conclude that dim .4"(z — A) = 0, showing that 4 # A*.

Part (c) was also mentioned in [19, Proposition 3.2]: Let z € Q(A4). Then %(zI —A)=/? by defini-
tion of the resolvent set. Hence A ((zI —4)*)={0}, implying that ./"(z/ —A4*)={0} by Lemma 2.4(d).
From Lemma 2.4(a) we may conclude that (g,(z)),=0 € /%, and hence .o/ is determinate. Finally,
since C\0ess(4) D 2(A) is nonempty, it follows from Theorem 2.6(a) that .o/ is proper. [

In order to complete the statement of Theorem 2.6, we should mention the following charac-
terization in terms of operators of indeterminate complex Jacobi matrices which will be shown in
Theorem 2.11 below: if .o/ is indeterminate, then g.(A4) is empty and o(4) = C; more precisely,
for all z € C, the kernel of zI — 4 is empty, %(z] — A) is closed and has codimension 1, the kernel
of zI — A" has dimension 1, and Z(zI — A") = /.

The numerical range (or field of values) [30, Section V.3.2] of a linear operator 7 in /2 is defined
by

O(T)={(y,Ty): y € Z(T),]|y|| = 1}.
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By a theorem of Hausdorff, @(T) and its closure I'(T) are convex. Also, g.4(4)C I'(4) by [30,
Theorem V.3.2]. Hence, for complex Jacobi matrices with g..(A4) 7% C or I'(4) # C, the notions of
determinacy and properness are equivalent. This includes the case of real Jacobi matrices since here
I'(4) C R. Notice that I'(4) # C implies that I'(4) is included in some half-plane of C. The case
of the lower half-plane {Im(z)<0} was considered by Wall [59, Definition 16.1], who called the
corresponding J-fraction positive definite and gave characterizations of such complex Jacobi matrices
in terms of chain sequences [59, Theorem 16.2]. In this context we should also mention that I'(4)
is compact if and only if 4 is bounded; indeed, one knows [27, Eq. (1.6)] that sup{|z|: z € '(4)} €
(141172, 1411

It is not known whether there exists a determinate complex Jacobi matrix which is not proper.
Since many of the results presented below are valid either for proper or for indeterminate Jacobi
matrices, a clarification of this problem seems to be desirable.

Results related to Theorem 2.6 have been discussed by several authors: Barrios et al. [13, Lemma 3]
showed that a complex Jacobi matrix .« = .o/’ + .o/” with o/’ self-adjoint and .2/” bounded is
determinate. More generally, Castro Smirnova [22, Theorem 2] proved that a bounded perturbation
of a real Jacobi matrix .o/ is determinate® if and only if .o/ is determinate. It is an interesting open
problem to characterize determinacy or properness in terms of the real and the imaginary part of a
Jacobi matrix.

Let us here have a look at a sufficient condition which will be used later.

Example 2.7. It is known [59, Theorem 25.1] that .o/ is determinate provided that
=1
Z = +00.
’an‘

We claim that then .o/ is also proper. To see this, let y € Z(4"). Choose integers ny<n, < - - - with

ny1—1 1

=y =1, (=0,
j=n, ‘ aj- 1’
and put
Ryl — 1
Y=Y iy € G
% J=n, ‘al 1|

Since n, — oo and II;y — y, one obtains ') — y. Furthermore, according to (2.5),

nye1—1
Z [[I1;47y — A" |

|aj | O‘f

N [§ SL ,

|4y — A" y|| <
la; 1

‘ j=n Jj=n¢

np—1

< HHWA#y—A#yHﬂLa—/ > O 50 sl 13511,0,0,...)

Jj=ns j—l

3 Of course, by (2.1), (2.2), a proper Jacobi matrix ./ remains proper after adding some bounded perturbation.
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2
< ||, 4%y — A"y|| + T,y =y

!/

and the right-hand side clearly tends to 0 for £/ — oo. Thus y € Z(4) by (2.2).

Combining Example 2.7 with the techniques of [18, Example 5.2], one may construct for any
closed set £ C C a proper difference operator A4 satisfying o.,(4)=EFE. In particular [18, Example 5.2],
notice that (in contrast to the real case) the resolvent set may consist of several connected compo-
nents.

To conclude this part, recall from [19] a further characterization of the essential spectrum in terms
of associated Jacobi matrices. We denote by .o/©) the “shifted” (complex) Jacobi matrix obtained by
replacing (a;,b;) in .o/ by (a;ix,b;41), j=0. As in [30, Chapter 1V.6.1] one shows that the operators
corresponding to .7 = o7V, and to .&/®), respectively, have the same essential spectrum for any
k>=0. In our case we have the following stronger assertion.

Theorem 2.8 (See Beckermann [19, Proposition 3.4]). Suppose that </ is determinate. Then 0..(A)
=a(A®)YN (4% for any k=0. More precisely, for any z € C\6.i(A) there exists a nontrivial
/*-solution (s,(z)),=_1 of (1.2), with

QAN = {z € C\ows(d): 5i-1(2) # 0}, k=0, (21D

If the entries of the difference of two (complex) Jacobi matrices tend to zero along diagonals,
then the difference of the corresponding difference operators is known to be compact [2]. We can
now give a different characterization of the essential spectrum, namely

Oess(A) = ﬂ{J(A'): A’ is a difference operator and 4 — A" is compact}. (2.12)

Here the inclusion C is true even in a more general setting [30, Theorem IV.5.35]. In order to see
the other inclusion, notice that for the particular solution of Theorem 2.8 there necessarily holds
|s_1(z)| + |so(z)| # 0. Therefore, by Theorem 2.8, the essential spectrum is already obtained by
taking the intersection with respect to all difference operators found by varying the entry ay of .7,
i.e.,, by rank 1 perturbations.

2.3. Characterization of the spectrum

In this subsection we are concerned with the problem of characterizing the spectrum of a difference
operator in terms of solutions of the recurrence relation (1.2). This connection can be exploited in
several ways. On the one hand, one sometimes knows the asymptotic behavior of solutions of (1.2)
(as for instance in the case of (asymptotically) periodic recurrence coefficients, cf. [15,16,20,26,34]),
and it is possible to determine the shape of the spectrum. On the other hand, we will see in Section
3 that we obtain nth-root asymptotics for FOPs and functions of the second kind on the resolvent
set.

A description of the resolvent operator (or more precisely of a (formal) “right reciprocal”) in terms
of the solutions p(z), ¢g(z) of recurrence (1.2) has been given already by Wall [59, Sections 59-61].
Starting with a paper of Aptekarev et al. [7], the problem of characterizing the spectrum has received
much attention in the last years, see [15,16,19,20] for Jacobi matrices and the survey papers [5,6]
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and the references therein for higher-order difference operators. A typical example of characterizing
the spectrum in terms of only one solution of (1.2) is the following.

Theorem 2.9 (See Beckermann [19, Theorem 2.3]). Let A be bounded. Then z € Q(A) if and only

if
Z;‘I:O |q/‘(2)|2
n=0 |an|2[|qn(2)‘2 + |qn+1(z)|2]
Indeed, using (2.8), we obtain for z € (4) and n=>0
1 r‘l— i\Z g Hﬂ :
< Z}—O |qj( )| H +1Q(Z)|| |2 <||(Zl —A)_1||2, (2.14)

21 = A2~ |auPllgn@)P + g P~ (G — D)

showing that (2.13) holds. The other implication is more involved; here one applies the character-
ization of Theorem 2.12 below. Notice that we may reformulate Theorem 2.9 as follows: we have
z € g(A4) if and only if the sequence (I1,9(z)/||I1,q(z)||).>0 contains a subsequence of approximate
eigenvectors (i.e., a sequence of elements of Z(4) of norm one so that their images under z/ — 4
tend to zero).

In view of (2.13), (2.14), we can give another formulation of Theorem 2.9: we have z € Q(4)
if and only if the sequence of numerators, and denominators in (2.13), respectively, have the same
asymptotic behavior. It becomes clear from the following considerations (and can also be checked
directly) that then both sequences will grow exponentially. It seems that, even for the classical case
of real bounded Jacobi matrices, this result has only been found recently [19]. As mentioned before,
here the spectrum of A coincides with the support of the measure of orthogonality p of (g,)n>o-

Some further consequences of relation (2.13) concerning the distribution of zeros of FOPs will
be discussed in Section 3.

In order to describe other characterizations of the spectrum, we will fix z € C, and denote by
A(y), y € C, the infinite matrix with elements

q;(z) - {y-a(z) — pe(2)} if 0<j<k,
{9;z) -y — pi(@)} - q(z) if 0<k<,

J,k=0,1,2,.... These matrices are just the (formal) “right reciprocals” mentioned by Wall [59,
Theorem 60.2]. In the next statement we characterize the resolvent set of possibly unbounded dif-
ference operators in terms of two solutions of (1.2). A special case of this assertion may be found
in [59, Theorem 61.2].

R()jk = {

Theorem 2.10. We have z € Q(A) if and only if </ is proper, and there exists a y € C such that
A(7y) is bounded. In this case, y is unique, and the resolvent is given by (zI — A)™" = [R())],i,» N
particular y = (ey, (zI — A)'ey).

Proof. Let z € Q(A), and denote by # = (£, ), k—o,1,.. the (bounded) infinite matrix corresponding
to the resolvent operator (zI — A)~'. It follows from Theorem 2.6(c) that .o/ is proper. Thus the
first implication follows by showing that 2 = 2(y) for y= (e, (zI —A) 'ey). Since Z((z —A)™')=
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9(zI — A), we obtain
(zl — AR - ey]l = (zI — A)[(z] — A) 'ep] = eo.

From Lemma 2.4(c) we get the form of the first column of %, namely %, 0=7q;(z) — p(z2)=2Z(});.0
for some y € C. Here the identity y = (e, (zI — 4) 'ey) is obtained by comparing the values for
the index j =0. The form of the other columns of Z# is obtained from Lemma 2.4(b) and its proof.
Indeed, we have for j>1, £>0

Rk — Qk(z)«%j,o = (e/s (2l — A)fl[ek — qi(2)eg]) = (ej, 1 [qi(z) p(2) — pi(2)q(2)])

and thus 2, = 2()); -
Conversely, suppose that #(y) is bounded, and denote by R its closure. By some eclementary
calculations using (1.2) and (2.9) one verifies that

R()) - (zej — Aej) =e;, j=0
and thus R(z/ — A)y = y for all y € €, by linearity. Recalling (2.2), we may conclude that

1—4 1—4 [—4 1
P I(C7 e b | | e ) | P (G e 54| I SN
ez ||yl et ||yl veo ||R(zT — A)y|| ~ [IR]

Consequently, 4"(z —A4)={0}, and from [30, Theorem IV.5.2] if follows that %(zI — 4) is closed.
In order to establish our claim z € Q(A4), it remains to show that %(zI — A) is dense in /2. Since
Z(7y) is bounded, its first column y(y) is an element of /2. Using Lemma 2.4(c), we may conclude
that ey € #(zI —A*), and thus e, € %(zI —A) since .7 is proper. Combining this with Lemma 2.4(b),
we find that €, C #(zI — A), and hence #(zI — A) = />.

For establishing the second sentence of Theorem 2.10, we still need to show that the y of the
preceding part of the proof necessarily coincides with (e, (zI —A)'ey). By construction of y(y) we
have (zI — A")y(y) = (zI — A)y(y) = ey, and thus y = (e, ¥(7)) = (eo, (zI — A)"'ey). [0

For the sake of completeness, let us also describe the case of operators 4 which are not proper.
Here we have either the trivial case g.(4)=C, or otherwise .o/ is indeterminate by Theorem 2.6(a).
In the latter case, we find exactly the same phenomena as for real Jacobi matrices (see, e.g., [1,38]
or [45, Theorem 2.6]).

Theorem 2.11. Suppose that <7 is indeterminate. Then the following assertions hold.

(a) 0es(A4) =0 and o(4) = o(4*) = C.

(b) A" is a two-dimensional extension of A. Furthermore, all other operators Ay, with A C Ay C A*
are one-dimensional extensions of A; they may be parametrized by n € C U {oo} via

0)— p(0
D(Ay) = {y+i%|’ﬁ(): y € D(A), )€ C}.

(c) We have oe(Ap) =0, and Apy = HAp I for all n. Furthermore, there exist entire functions
ap, ar,asz,as - C — C with ayas — aya; =1 such that

_a(2) — a2

o(Apy) = {z € C: ¢y, (z) =00}, where ¢[,7](z):—a3(z) s
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Finally, the resolvent of Ay, at z € Q(Ay;) is given by the closure of A(¢yy(z)), which is a
compact operator of Schmidt class.

Proof. For z € C, consider the infinite matrix & (z) with entries

qx(2)pj(z) — q;(2) pi(z) 1f 0<j<k,
L(2)jn = . .
if 0<k<).
Since o/ is indeterminate, we get >, |#(2);x|* <oo. In particular, the closure S(z) of ¥(z) is
bounded, and more precisely a compact operator of Schmidt class [30, Section V.2.4]. By some
elementary calculations using (1.2) and (2.9) one verifies that ¥ (z) - (ze; — /e;) = e; for j=0. As
in the last part of the proof of Theorem 2.10 it follows that S(z) is a left-inverse of z — A4, and it
follows that 2(zI —A) is closed and A"(zI —A4)={0}. Since by assumption .4 (zI —A")=span(q(z)),
we obtain

Rzl — A= N (2] — A)- =12, Rzl — A) =N (2] — A") = span(I1q(z))*, z € C.
Using (2.10), we may conclude that part (a) holds.
For a proof of (b), let y € Z(4"). Since A" p(0) = —e, by Lemma 2.4(c), we have
A"(y + (I119(0),4"y) - p(0)) € span(I1g(0))" = A(A).

Consequently, there exists a y' € Z(A4) with 0 = A*(y + (I1g(0),4%y) - p(0)) — 4y = A*(y +
(I1g(0),4%y) - p(0) — "), showing that y + (I1g(0),A4*y) - p(0) — )’ is a multiple of ¢(0). Hence
A" is a two-dimensional extension of 4. Since any other extension either has a nontrivial kernel
(1 = 00) or otherwise the image /? (n # oo), the second part of the assertion follows.

It remains to show part (c¢). Following [59, Section 23], we define the entire functions

a(z)=zY_ pi(0)pi(z), a(z)=1+2z> q;(0)pi(2),

j=0 j=0
ax(z)=—1+2z)_ pi0)g2). as2) =z q,(0)q;(2).
=0 =0
It is shown in [59, Theorem 23.1] that indeed a@(z)as(z) — ax(z)as(z) =1 for all z € C. Let z € C.
We claim that, for a suitable unique y € C U {oc} (depending on 7,z),
74(z) — p(z2) () —p(z) _ e

L+l L4y L+ 1yl

Indeed, for any y € ¥(4) and 1 € C

€ ,190) = p(0)\ (e = p) ;,14(0) — p(0)
() - (P = (5 + 425

€ D((el — Apy)),  with (zI — Apy) 1122

(2.15)

_(eo,y) + An/( +[nD) <(Z[_A)*qu(2)—p(2)’ )
1+ 1y 1+ [yl
_( 7q(z) — p(z) )~('7261(0)—ZP(0)+60)>
L+ 7 1+ |n]
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A
“armarmT

7 —z((yq(z) — p(2)),nq(0) — p(0))]

"

A

A D+ i)
and the term on the right-hand side equals zero for y = ¢, (z). Thus (2.15) holds.

We are now prepared to show part (c). First, notice that also z/ — A4j,; is a one-dimensional
extension of zI — A4 for all z € C. Therefore, %#(zI — Ap;) equals either /* or #(zI — A), and
hence is closed for all z € C. Consequently, oe(4p,;) = 0. Secondly, 4 C Ay C A* implies that
ITAIT = (A*)* Cdp, C ITIA*IT = A*, and hence Ap,y is a one-dimensional extension of II4II. Noticing
that ¢p,;(0) =#, we may conclude from (2.15) for z =0 that II(ng(0) — p(0))/(1 + [n|) € L(4},).
Since the one-dimensional extensions of IIAIl have been parametrized in part (b), it follows that
Apy = HApIT for all n. Taking into account that %(zI — Ap,y) is closed, we may conclude that
N(zl — Apy) = 0 if and only if #(zI — Ap,;) = /%, which by (2.15) is equivalent to ¢p;(z) # oo.
In the latter case, applying [30, Theorem IV.5.2], we find that z € Q(A4;,;), and thus o(4,) has the
form claimed in the assertion.

Finally, in the case y = ¢p,(z) # oo, it follows again from (2.15) that (e;,(z] — Apy) 'ep) =
¢1(2)g,(z) — pj(z) for j=0, and the characterization (zI — 4)™' = [Z(Pp(2))]min i proved as in
the first part of the proof of Theorem 2.10. Since

A(bn(2)) = L(2) + (Ppn(2)q,(z) — P(2))qi(2))jh=0.1,..
and .¥(z) is of Schmidt class, the same is true for %(¢,;(z)). This terminates the proof of Theorem
2.11. O

= [a1(2) = ax(2)n] + ylas(z) — aa(z)n]

Under the assumptions of Theorem 2.11, suppose in addition that .o/ is real. Then the extension
Ay, of 4 is symmetric if and only if # € RU {oo}. It follows from part (b) that 4, is self-adjoint,
i.e., we obtain all self-adjoint extensions of the difference operator 4 in /> (cf. with [1; 45, Theorem
2.6]). Notice also that then the corresponding functions ¢y,;(z) are just the Cauchy transforms of the
extremal [44, Theorem 2.13] or Neumann solutions [45] of the moment problem (which according
to part (c) are discrete).

Suppose that 4 is bounded (and thus .o/ is proper and determinate). In this case it is known [23]
that there is an exponential decay rate for the entries of the resolvent of the form (2.16). Conversely,
any infinite matrix with entries verifying (2.16) is bounded. We thus obtain the following result of
Aptekarev, Kaliaguine and Van Assche mentioned already in the introduction.

Theorem 2.12 (cf. with Aptekarev et al. [7, Theorem 1]). Let A be bounded. Then z € Q(A) if and
only if there exists a y(z) € C and positive constants f(z) and 6(z) such that for all j, k=0

[ 2(0(2))6| <B2) - 32) 1, o(z)<1. (2.16)

The equivalence of Theorem 2.12 remains true for unbounded difference operators where the
sequence of offdiagonal entries (a,),>o is bounded (see, e.g., [25, Proposition 2.2]) or contains a
“sufficiently dense” bounded subsequence (namely, there exists an increasing sequence (#; )i>o of
indices so that both sequences (a,, )i>o0 and (n;11 — 1y )r >0 are bounded, see [18, Theorem 2.1]). In
these two cases, the matrix .o/ is proper according to Example 2.7.
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Notice that in the original statement of [7, Theorem 1] the authors impose some additional con-
ditions on z which are not necessary. Also, the authors treat general tridiagonal matrices .«/ where
the entries of the superdiagonal may differ from those on the subdiagonal. Such operators can be
obtained by multiplying a complex Jacobi matrix on the left by some suitable diagonal matrix and
on the right by its inverse, i.e., we rescale our recurrence relation (1.2). Such recurrence relations
occur for instance in the context of monic (F)OPs, whereas we have chosen the normalization of
orthonormal FOPs. The following result of Kaliaguine and Beckermann shows that our normalization
gives the smallest spectrum.

Theorem 2.13 (Beckermann and Kaliaguine [20, Theorem 2.3]). Let &/ be a bounded complex
Jacobi matrix, and consider a bounded tridiagonal matrix /' = .49~ with diagonal 9. Then
for the corresponding difference operators A and A" we have Q(A") C Q(A).

As an example, take the tridiagonal Toeplitz matrix with diagonal entries a/2,0, 1/(2a). Here it is
known that the spectrum is the interior and the boundary of an ellipse with foci £1 and half axes
|a + 1/a|/2, and it is minimal (namely the interval [ — 1,1]) for @ = 1. Notice also that for monic
FOPs one chooses the normalization a = %

It would be interesting to generalize Theorem 2.13 to unbounded Jacobi matrices.

2.4. The Weyl function and functions of the second kind

Following Berezanskii (see [21]), we call
P(z):=(eo, (2l —A)eg), z € QA), (2.17)

the Weyl function of A. Since the resolvent is analytic on Q2(4), the same is true for the Weyl
function. If the operator 4 is bounded (or, equivalently, if the entries of .o/ are uniformly bounded),
then ¢ is analytic for |z|>||4]||. Then its Laurent series at infinity is given by

B(z) ~ Z (e0,A’ep)

z/ 1
ie., its coefﬁments are the moments of the linear functional ¢ of formal orthogonality (some authors
refer to the series on the right-hand side of (2.18) as the symbol of ¢). In the case where the
numerical range of A is not the whole plane (as for instance for real Jacobi matrices), one may
show (see, e.g., [59, Theorem 84.3]) that (2.18) can be interpreted as an asymptotic expansion of
¢ in some sector.
The associated functions of the second kind are given by

ri(2) = (en (21 — A)"'e)) = qu(2)P(2) — pu(z), n=0, z € QA),
where the last representation follows from Theorem 2.10 and the construction of #(¢(z)). Similarly,
we may express the other entries as

(ej,(zl —A) 'ey) = (ex, (zI — A) 'e)) =ri(2)g,(z), 0<j<k z € Q(A). (2.19)

In case of a bounded operator 4, we know from [18, Theorem 5.3] that the Weyl function contains
already all information about isolated points of the spectrum. The proof given for this assertion only
uses the representation (2.19), and thus also applies for unbounded operators.

, (2.18)
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Theorem 2.14 (Beckermann [18, Theorem 5.3 and Corollary 5.6]). Let { be an isolated point of
0(A). Then { € a.s(A) if and only if ¢ has an essential singularity in {, and { is an eigenvalue of
algebraic multiplicity m<oo if and only if ¢ has a pole of multiplicity m. In particular, if o(A)
is countable, then the set of singularities of ¢ coincides with o(A).

A proof of the second sentence of Theorem 2.14 is based on the observation that any element of
a closed and countable set 2 C C is either an isolated point or a limit of isolated points of X. Notice
that the spectrum is in particular countable and has the only accumulation point b € C if 4 — bl is
compact, i.e., a, — 0 and b, — b (see for instance Corollary 2.17 below). Here the Weyl function is
analytic in Q(4) (and in no larger set), meromorphic in C\{b}, and has an essential singularity at
b. For a nice survey on compact Jacobi matrices we refer the reader to [57].

Relation (2.19) allows us also to compare the growth of FOPs and of functions of the second
kind. Indeed, according to (2.9) we have

an(qn+l(z)rn(z) - Vn+1(Z)Qn(Z)) = 19 I’lZO, ze Q(A) (220)
This implies that
1< a\1a:P + 141 P10 + 1))

< 1+2’an"H(ZI_A)_1Hv (221)

1< 1P + |0 @ P 11D P + | ()2

<141+ Ja Pl =7 (2.22)

for all z € 2(4) and n>0. Indeed, the left-hand inequalities of (2.21), (2.22) follow by applying
the Cauchy—Schwarz inequality on (2.20). In order to verify the right-hand estimate in, e.g., (2.21),
we notice that, by (2.20),

‘an‘2(|qn(z)’2 + |¢]n+1(2)|2)(|”n(2)|2 + ’rnJrl(Z)‘Z)

:‘an|2[|qn(z)rn(z)|2 + ‘qn(z)rnﬂ(z)’z + |qn+1(z)rn+1(z)‘2] + |1 + a'1rn+1(z)qn(z)|2'

Each term of the form r;(z)g;(z) occurring on the right-hand side may be bounded by ||(zf —A4)™']],
leading to (2.21).
If additional information on the sequence (a,),>o is available, we may be even much more precise.

Corollary 2.15. Let (a,),>o be bounded. Then there exist continuous functions f: Q(A) — (0,+o0)
and 0:Q2(A) — (0,1) such that for all 0<j<k and for all z € Q(A4)

r(2) - g (2 < P(2) - 3(z) . (2.23)
If in addition A is bounded, then the functions [(z) and |z|- d(z) are continuous at infinity.
Here (2.23) follows from Theorem 2.12. The continuity of the functions f3,0 has been discussed

in [20, Lemma 3.3; 18, Lemma 2.3] for bounded A4, and implicitly in [19, proof of Theorem 2.1]
for bounded (a,),>o0.
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2.5. Some special cases

It is well known (see, e.g., [11]) that a linear functional ¢ having real moments is positive (i.e.,

s

c(P)= / P(x)du(x) for any polynomial P, (2.24)

where u is some positive Borel measure with real infinite support supp(u). Under these assumptions,
the support is a part of the positive real axis if and only if in addition det(c(x'™*')); -y _,>0 for
all n>0. Furthermore, the sequence of moments is totally monotone (i.e., (—1)*A*c(x")>0 for all
n, k=0, see [11, Section 5.4.1]) if and only if (2.24) holds with u some positive Borel measure
with infinite support supp(u) C [0, 1].

In all these cases, the corresponding Jacobi matrix is real, and the corresponding measure is unique
(uniqueness of the moment problem) if and only if .o/ is proper (in other words, 4 is self-adjoint).
In this case, u can be obtained by the Spectral Theorem, with supp(u) =0(4) C R, and

P(z) = / dux) (2.25)

zZ—X
holds for all z & a(A4).

In case of complex bounded Jacobi matrices (or more general proper operators with Q(4) Z I'(4)),
we may also obtain a complex-valued measure u satisfying (2.24) and (2.25) via the Cauchy in-
tegral formula; however, in general a(4) # supp(u). In all these cases, we recover the following
well-known representation of functions of the second kind as Cauchy transforms.

Lemma 2.16. Suppose that there exists some (real- or complex-valued) Borel measure u such that
(2.24) holds, and some set U C Q(A) such that (2.25) is true for all z € U. Then

@)= [ LD 4, 0<j<k v

Proof. Consider the sequence of Cauchy transforms

Fn(z)::/ 45 §x), 00
z—X

and 7_; =0. One easily checks, using (2.24) and (1.2), that —a,7,.1(z)+(z—b,)F(z) —a,_1F,_1(z)=
J qu(x)du(x)=c(g,) =0 for n=0. Moreover, 7o(z) = ¢(z) =r¢(z) for z € U by (2.25) and (2.19).
Consequently, for z € U, (7,(z)),>0 satisfies the same recurrence and initialization as the sequence

(7.(2))ns0, implying that #,(z) = r,,(z). Furthermore, for j <k there holds
(2)qi(x (z) — q;(x
n@ae) — [ LD gy = [TEZLE, 0 4y,

Since the fraction on the right-hand side is a polynomial of degree < j <k in x, the right-hand integral
vanishes by orthogonality and (2.24). O

If 4 is bounded, then any measure with compact support satisfying (2.24) will fulfill (2.25) with
U being equal to the unbounded component of the complement of a(A4)Usupp(u), since the functions
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on both sides of (2.25) have the same Laurent expansion at infinity. It would be very interesting
to prove for general nonreal (unbounded but proper) Jacobi matrices that if (2.24) holds for some
measure with compact support, then also (2.25) is true for z € U, where U is the intersection of
Q(A) with the unbounded connected component of C\supp(u).

To conclude this section let us have a look at a different class of functionals which to our
knowledge has not yet been studied in the context of complex Jacobi matrices: It is known from the
work of Schoenberg and Edrei that the sequence of (real) moments (¢, ),>0, ¢,=c(x"), co=1, ¢,=0
for n<O0, is totally positive (i.e., det(cy;—x);s—0,..,—1 =0 for all n,m>0) if and only if ) c¢;z/ is
the expansion at zero of a meromorphic function y having the representation

iy
l//(Z):e' Hl ! s ﬁj”y/ Z(OC +ﬁj)<OO

i — ﬁjZ

j=1 Jj=1

(including, for instance, the exponential function). Following [9], we exclude the case that y is
rational. Many results about convergence of Padé approximants (at zero) of these functions have
been obtained in [9], see also [11]. Let us consider the linear functionals ¢! defined by

k-1
") = cpin, k=0,  with symbol ¢l(z) =z* (1//(1/2) -3 cf)

Jj=0

(! = ¢), having symbols which are meromorphic in C\{0}, and analytic around infinity. We have
the following

Corollary 2.17. The functionals c™ as described above are regular for all k=0. The associated
complex Jacobi matrices </ are compact, with Weyl function given by ¢, and spectrum {0} U
{B;: j=1}. Finally, (a¥)? <0 for all n,k=0.

Proof. In [9, Theorem 1.I], the authors show that the Pad¢ table of  (at zero) is normal. Denote by
O, the denominator of the Padé approximant of type [m|n] at zero, normalized so that Q,, ,(0)=1,
and define

1
0N Qi (5 ) ="+ Ol + 07 4

It is well known and easily verified that Q%! is an nth monic FOP of the linear functional ¥, and
thus ¢! is regular. The sign of the recurrence coefficient al¥! follows from well-known determinantal
representations; we omit the details. Precise asymptotics for (Q,4x,)n>0 are given in [9, Theorem 1.11]
(see also [11]), implying that

nlir{}@ % = exp(E—j) ,10__1 (1 — %) (2.26)

for all £>0 uniformly on closed subsets of (C U {co})\{0}. In particular, the sequences (Q,[f]1 )n>0
and (O! 2),,>0 converge. On the other hand, we know from (1.2) that Q% (z) = (z — BIQM(z) —

(an l)an 1(2)‘ Thus
K _ ol _ pik] k] _ pik okl _ 2 2.27
Qn+l,l Qn,l n Qn+l2 an n Q (a 1) (2.27)
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implying that b*! — 0 and a!¥! — 0 for n— co. Hence /") is compact. Since its Weyl function ¢
has the same (convergent) Laurent expansion around infinity as ¢!, we have ¢ = ¢!, and the rest
of the assertion follows from Theorem 2.14 and the explicit knowledge of the singularities of ¢l

O

3. Asymptotics of FOPs
3.1. nth-root asymptotics of FOPs

In this subsection we will restrict ourselves to bounded Jacobi matrices 4. We present some recent
results of [7,18,20,53,54].

In their work on tridiagonal infinite matrices, Aptekarev, Kaliaguine and Van Assche also observed
[7, Corollary 3] that

limsup |q,(z)|"">1, z€ QA).

Indeed, a combination of (2.23) for j =0 and (2.21) yields the stronger relation
liminf [g,(2)]* + |gn1 ()7 >1, 2 € Q4). (3.1)

For real bounded Jacobi matrices, this relation was already established by Szwarc [53, Corollary 1],
who showed by examples [54] that there may be also exponential growth inside the spectrum.

Kaliaguine and Beckermann [20, Theorem 3.6] applied the maximum principle to the sequence of
functions of the second kind and showed that, in the unbounded connected component 2y(4) of the
resolvent set €2(4), one may replace 1 on the right-hand side of (3.1) by exp(g,)(z)). Here g,
denotes the (generalized) Green function with pole at co of the compact set g(4), being characterized
by the three properties (see, e.g., [41, Section 11.4]):

(i) gow) is nonnegative and harmonic in €,(4)\{oo},
(i) gow)(z) — log|z| has a limit for |z| — oo,
(1i1) lim,_.;.cqy4) goay(z) = 0 for quasi-every { € 0Qy(A).

We also recall that the limit in (ii) equals —log cap(a(4)), where cap(-) is the logarithmic capacity.
A detailed study of nth-root asymptotics of formal orthogonal polynomials with bounded recurrence
coefficients has been given in [18]. We denote by £, the leading coefficient of g¢,, i.e.,

k, = !

=
aop - ay---ap—

and define the quantities

Keup:= lim sup |7V K= ﬁ}fllioglf [fea 71

n—oo

Notice that |a,| <||4]|, and thus |k,|'">1/||4]|, implying that 0< K < Kep <|]4]].

Theorem 3.1 (See Beckermann [18, Theorems 2.5 and 2.10]). Let A be bounded. Then there exist
Junctions @i, gsup Such that

lim inf(|g,(2)* + |augu1(2)*) 7 = exp(—guup(2)), (3.2)
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lim sup(|gu(2) + [asg1(2)]F) " = exp(—gin(2)), (3.3)

holds uniformly on closed subsets of Q(A).
Here gy = 400 (and gy, = 400, resp.) if and only if kg, =0 (and K = 0, resp.). Otherwise,
ging IS superharmonic, strictly positive, and continuous in Q(A)\{oc}, with

lim  gine(z) — log|z| = log .
|z|—o0 Ksup

Also, gsyp is subharmonic, strictly positive, and continuous in Q(A)\{oo}, with

1
lim ggy(z) — log|z| =log —.
|z =00 Kinf

In addition,
0 < Kinr < Ksup <cap(a(4)), Jou)(2) <Gint(2) SGaup(2), 2 € Qo(A). (3.4)

Various further properties and relations between ¢,4), ¢inr and gy, may be found in [18,
Sections 2.2, 2.3]. The proof of Theorem 3.1 is based on (2.22), Corollary 2.15, and applies tools
from logarithmic potential theory. Instead of giving details, let us discuss some consequences and
special cases. First, since (a,),>o is bounded, we obtain from (3.2) that

limsup |¢,(2)]'" = exp(gup(z))> 1,z € Q). (3.5)

n—oo

Furthermore, we will show below that (3.3) implies the relation
liminf |¢,(z)|"" = exp(ginr(2))>1, z € F, (3.6)

provided that the set F' C €y(A4) does not contain any of the zeros of ¢, for sufficiently large n. In
addition, by combining (3.3) with (2.22) we get

lim sup |7,(2)]"" = exp(—gins(z)) <1, z € Q(A). 3.7)
Indeed, relation (2.22) allows us to restate Theorem 3.1 in terms of functions of the second kind.

The simplest case which may illustrate these findings is the Toeplitz operator .7 with a, = %,
b, =0, n=>0, see [38, Section 11.9.2].* Here one may write down explicitly g, and r, in terms
of the Joukowski function; in particular one finds that o(4) =[ — 1,1], and gint = gsup = gi—1,1;. Of
course, in the generic case there will be no particular relation between ¢ggyp, Ginr, and go(s). Some
extremal cases of Theorem 3.1 have been discussed in [18, Example 2.9] (see also [25, Examples
4.1, 4.2]). For instance, there are operators with 6(4) =[ — 1,3], and ginr = gsup = g[—1,1- Also, the
case 0(A) =[ —2,2], Kint = Ksup = % <cap(o(A4)) =1, and gin # gsyp may occur. In addition there is
an example where ggp(2) — ginr(2) = log(Kep/Kine) 7 0 for all z € Q(4).

The nth-root asymptotics of general orthogonal polynomials are investigated by Stahl and Totik
[51]. Of course, in case of orthogonality on the real line (i.e., real Jacobi matrices) results such as
(3.4)—(3.6) have been known before, see, e.g., [S1, Theorem 1.1.4, Corollary 1.1.7].

In this context we should mention the deep work of Stahl concerning the convergence of Padé
approximants and asymptotics of the related formal orthogonal polynomials. He considers linear

4 See also the case of periodic complex Jacobi matrices discussed in Section 4.3 below.
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functionals as in (2.24), where p is some (real or complex valued but not positive) Borel measure
with compact support. Of course, such functionals are not necessarily regular, but we can always
consider the asymptotics of the subsequence of (unique) FOPs corresponding to normal points. In [46,
Corollary of Theorem 1] Stahl constructs a measure u supported on [ — 1, 1] such that the sequence
of normalized zero counting measures is weakly dense in the set of positive Borel measures of total
mass <1 supported on C. In contrast, in the case of regular functionals and bounded recurrence
coefficients, it is shown in [18, Theorem 2.5] that the support of any partial weak limit of the
sequence of normalized zero counting measures is a subset of C\Qy(A4).

Another very interesting class has been considered by Stahl in a number of papers (see, for
instance, [49]), here the symbols (the Cauchy transform of u) are multivalued functions having,
e.g., a countable number of branchpoints. Here it follows from [49, Theorems 1.7, 1.8] that (3.5)
and (3.7) hold quasi-everywhere outside of supp(u), with ginr = gaypp being the Green function of
supp(u). Again, it is not clear whether the functional is regular and the corresponding recurrence
coeflicients are bounded.

Linear functionals of the form

! w(x)P(x)
1 V1 —x?
with some possibly complex-valued weight function w have been discussed by a number of authors,
see, e.g., the introduction of [46]. Nuttall [39], Nuttall and Wherry [40], Baxter [17], Magnus [33],
and Baratchart and Totik [12] suggested conditions on w insuring that all (at least sufficiently large)

indices n are normal, and that there are only “few” zeros outside of [ — 1, 1]. In particular, nth-root
asymptotics for the sequence of FOPs are derived.

cw(P) = dx (3.8)

3.2. Ratio asymptotics and zeros of FOP

It is well known that the monic polynomial g,/k, is the characteristic polynomial of the finite
section .oZ, obtained by taking the first # rows and columns of .oZ. In this section we will be concerned
with the location of zeros of FOPs, i.e., of eigenvalues of .oZ,. In numerical linear algebra, one often
refers to these zeros as Ritz values. The motivation for our work is the idea that the sequence of
matrices .oZ, approximates in some sense the infinite matrix .o/ and thus the corresponding difference
operator A4; therefore the corresponding spectra should be related. In the sequel, we will try to make
this statement more precise.

An important tool in our investigations is the rational function?

02 @@k
an‘]n-H(Z) Qn—H(Z)/an

u,(z):=

> Most of the results presented in this paper for the sequence (u,) are equally valid for the ratio

¢(n+1)(z)::’”n+l(2)

anrn(z)’

which can be shown to have a meromorphic continuation in C\oes(4), and coincides with the Weyl function of the
associated Jacobi matrix /""", Some additional interesting properties are presented in a future publication.
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_ det(z 5, — ,)
B det(anJrl - VQ{I’H’l)

Here and in the sequel we denote by eq,...,e, also the canonical basis of C""!, the length of the
vectors being clear from the context. In the theory of continued fractions, the sequence (1/u,),>¢ of
meromorphic functions is referred to as a tail sequence of the J-fraction (1.3) [32, Section II.1.2,
Eq. (1.2.7)]. Using (1.2), one easily verifies that
1 :anqnﬂ(z):l_bn_aﬁ—l_'_(9<1) )
zu(z)  z-qu(2) z 22 2 )
In order to motivate our results presented below, we briefly recall some properties of orthogonal
polynomials, i.e., real Jacobi matrices. It is well known that here the zeros of ¢, are simple, and lie
in the convex hull & of a(4). Also, they interlace with the zeros of ¢,,, and thus u, has positive
residuals. These two facts allow us to conclude that (u,),> is bounded uniformly in closed subsets
of C\.7. Finally, ¢, can have at most one zero in a gap of the form (a,b) C ¥ \a(A).
We should mention first that none of these properties remains valid for FOPs. Classical counter-
examples known from Padé approximation (such as the examples of Perron and of Gammel-Wallin,
see [11]) use linear functionals ¢ which are highly nonregular. But there also exist other ones.

= (ena(anJrl - tQ{nJrl)_len)'

(3.9)

Example 3.2. (a) The linear functional (3.8) with weight w(x) = (x — cos(a;7))(x — cos(a,m)) has
been studied in detail by Stahl [47]. Provided that 1, a4, o, are rationally independent, Stahl showed
that ¢ is regular, but (two) zeros of the sequence of FOPs cluster everywhere in C.

Not very much is known about the associated (nonreal) Jacobi matrix. Theorem 3.4(a) below
shows that I'(4) = C; in particular, 4 is unbounded. Also, it follows from [47, Section 5] that
(au)n>0 contains a bounded subsequence, and hence .7 is proper (and determinate) by Example 2.7.
On the other hand, it is unknown whether g(4) (or g.,(4)) equals the whole plane.

(b) Beckermann [18, Example 5.7] investigated the linear functional with generating function

bu) =~ ) [exo )~ 1]
:

Here the coefficients of the recurrence relation are given by a} =2 — d?, and

2
2 2 1
b=y b =d o = g G+ 3)
for n>0 (provided that there is no division by zero, which can be insured for instance if d &
(—o00,—+/3/2)U[ — 1,1TU (1/3/2,400)). One may show that a,, | — 0, and thus .7 is bounded
but not real. Also, 6(A4) = 0es(4) = {£1}. Furthermore, ¢,,_(—d) =0 for all n>0, and —d may
be far from the convex hull of ¢(A4).

2 2 2
Aoy t @3, =1—4d

Below we will see, however, that many of the properties for OPs remain valid for FOPs outside °
the numerical range .¥ = I'(4). An important tool in these investigations is the notion of normal
families as introduced by Montel: a sequence of functions analytic in some domain D is called a

8 Notice that, for real .«Z, the numerical range I'(4) coincides with the convex hull of the spectrum. It is known from
examples [20] that this property is no longer true for general complex Jacobi matrices.



40 B. Beckermann | Journal of Computational and Applied Mathematics 127 (2001) 17-65

normal family if from each subsequence we may extract a subsequence which converges locally
uniformly in D (i.e., uniformly on closed subsets’ of D), with the limit being different from the
constant co. By a Theorem of Montel [43, Section 2.2, Theorem 2.2.2], a family of functions analytic
in D is normal in D if and only if it is uniformly bounded on any closed subset of D. More generally,
we will also consider sequences of functions being meromorphic in D. Such a sequence is called
normal in D if, given a subsequence, we may extract a subsequence converging locally uniformly
in D with respect to the chordal metric y(-) on the Riemann sphere [43, Definition 3.1.1]. Notice
that normal families of analytic functions are also normal families of meromorphic functions, but
the converse is clearly not true.

Theorem 3.3. (a) The sequence (u,),>o is bounded above uniformly on compact subsets of C\I'(A).
(b) The sequence (u,),=o of meromorphic functions is normal around infinity if and only if A is
bounded.
(¢) (Cf. with Beckermann [18, Proposition 2.2]). Let A be some infinite set of integers such
that (a,),ea is bounded. Then the sequence (u,),ca of meromorphic functions is normal in Q(A).

Proof. (a) We first observe that there is a connection between the numerical range of the difference
operator and the numerical range of the finite sections .<Z,, namely ®

A
[(ty) = O(ty) = {(y’ D).\ e Gy, My = y} C &) C I(4).
)
Since
1 N2 — <)y (3, (25, — ,)y) .
=min ————— > min = dist(z, O(.4,)),
[CAEARN ] L ()

we may conclude that

1

[un(2)] = |(ens (2Ips1 — A1) 'e)| <||(2Ins1 — Aui) | < dist(z. T (A))’

leading to the claim of part (a).

(b) If 4 is bounded then I'(4) is compact. Hence its complement contains a neighborhood D
of infinity (for instance the set |z|>||4||), and (u,),>0 is a normal family of analytic functions in
U according to part (a) and the Theorem of Montel. Conversely, suppose that (u,),>0 is a normal
family of meromorphic functions in a neighborhood D of infinity. Then (u,),> is equicontinuous
in D (with respect to the chordal metric). Since u,(co) =0 for all n=0, there exists some R>0

7 All the subsequent considerations are in the extended complex plane C = C U {oco}, equipped with the chordal metric
7).

8 Indeed, using (2.2) one immediately obtains the more precise relation

I'(4) = Clos < U r(ﬂ,,)) .

n=0
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such that

X(u,,(z),O) — ‘un(z)| <1

WA < w0, |z|=R.
EATRE

It follows that |u,(z)|<1 for all n>0 and |z|>R. Applying the maximum principle for analytic
functions, we obtain |i,(z)| <R for all n>0 and |z| >R, where i,(z) =z - u,(z). Consequently, both
(@ ,)n>0 and (1/i1,),>0 are normal families of meromorphic functions in |z| >R. Since i ,(c0) =1, it
follows again from equicontinuity that (1/i,),>¢ is bounded above by some constant M for |z| >R’
with some suitable R'>R. Using the Cauchy formula, we obtain

M - (R/)Z
Y
Taking into account (3.9), we may conclude that both sequences (b,),>0, (¢,).>0 are bounded, and
thus the operator 4 is bounded.

(c) Here we closely follow arguments from [18, Proof of Proposition 2.2]. By the Marty Theorem

[43, Section 3], the sequence (u,),c, is a normal family of meromorphic functions in some domain
D C C if and only if the spherical derivative

]

1+ |u,|?

(Vi) ()| <M - R, |(1/ii,)"(00)] < n=0.

p(u,):=

is bounded uniformly with respect to n € A on compact subsets of D. Using the confluent limit of
the Christoffel-Darboux formula

a, - qn(x)‘h-&-l(z) - qn(z)qﬂ+](x) — z": qj(x) . qj(Z)a
=0

zZ—X

one obtains
| Z;'l:o qj(Z)2|
|q,1(z)\2 =+ |anqn+1(2)‘2

According to (2.14), the right-hand side is bounded above by max(1,|a,|*)||[(z — 4)"||, and this
quantity is bounded on closed subsets of €(A) uniformly for » € A by assumption on (a,). O

[p(ua)(2)| =

Let us briefly comment on Theorem 3.3. Part (¢) has been stated in [18, Proposition 2.2] for
bounded difference operators. Then, of course, the whole sequence (u,) is normal in (4), and from
the proof of part (b) we see that any partial limit of (u,) is different from the constants 0, co in
the unbounded connected component €,(4) of Q2(4). If 4 is no longer bounded, then things become
much more involved. However, for real Jacobi matrices we still obtain from part (a) the normality
in C\R. On the other hand, we see from part (b) that expansion (3.9) can only be exploited for
bounded difference operators.

A different proof of part (b) can be based on the following observation. For unbounded opera-
tors, it is interesting to consider the so-called contracted zero distribution (for real Jacobi matrices
see, e.g., [25,56]): Since the eigenvalues of .«7,/||.<Z,|| are all in the unit disk, one easily verifies
that §,(z) = g.(||-«%,||z) has its zeros in the unit disk. As a consequence, one may derive nth-root
asymptotics for (g,). Indeed, for particular families of recurrence coeflicients (Hermite, Laguerre, or
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Freud polynomials) even stronger asymptotics have been derived in the last years, see, e.g., [31]. In
our context, one may verify that the rational functions

. Ll gl Ll - 2)
Uu\z)= LQ{n “ Uy LQ{n "Z)=
@ =l -l all- 5 = el )

form a normal family in |z| > 1, which has at least one partial limit being different from the constant
0. Then the assertion of Theorem 3.3(b) follows by applying a criterion of Zalcman [60]. Indeed,
the contracted zero distribution has proved to be very useful in describing properties of OPs for
unbounded supports, and it seems to be interesting to explore the implications for complex Jacobi
matrices and FOPs.

In the following statement we summarize some implications for the zeros of FOPs.

Theorem 3.4. (a) There are no zeros of FOPs outside TI'(A).

(b) Let A be some infinite set of integers such that (a,).ca is bounded. Then for each closed
F CQ(A) there exists a 6 = (F) such that, for all n € A, the zeros of q, in F are at least at a
distance o from the zeros of q,.1 in F. If of is real, then Q(A) is the largest open set with this
property.

(¢) (Cf. with Beckermann [18, Proposition 2.1]). Let A be some infinite set of integers such
that (a,),ea is bounded, and denote by Q a connected component of Q(A) which is not a subset
of I'(4). Then for each closed F C Q there exists a constant v=v(F) such that, for all n € A, the
number of zeros of q,.1 in F (counting multiplicities) is bounded by v(F). If < is real, then Q is
a maximal open connected set with this property.

Proof. Part (a) follows immediately from Theorem 3.3(a) by observing that zeros of ¢, are poles of
u,. In order to show part (b), recall from Theorem 3.3(c) that (u,),c, is normal and thus equicontin-
uous in closed subsets of Q(4). Given F as above, we can find a ¢ >0 such that y(u,(z"),u,(z")) <3
for all n € A and for all z/,z"” € F satisfying |z/ —z"| <. If now z/,z" € F with ¢,(z')=0=g,.1(z"),
then

2(u(z"),u,(2")) = 7(0,00) = 1

and thus |z’ —z| >0, showing that the zeros in F of ¢, and of ¢,,, are separated.

Suppose now that .o/ is real. Then, according to, e.g., Example 2.7, the corresponding difference
operator 4 is self-adjoint, and the corresponding moment problem has a unique solution u, with
supp(u) =a(A4). It follows that, for any function f continuous on R with compact support, we have
L(f) — [ f(x)du(x), where I,(-) denotes the nth Gaussian quadrature rule. Given any z, & Q(4)
(i.e., zo € supp(u)) and >0, there exists a continuous function f with support in U =(zy— 0,20+ 9)
such that | f(x)du(x)>0. In particular, there exists some N such that 7,(f)>0, n>=N, showing
that all polynomials ¢, must have at least one zero in U. This terminates the proof of part (b).

If the assertion of part (c) is not true, then using Theorem 3.3(c) we may construct a closed
set FFC € and a subsequence (v,),>0 Of (u,).cs, U, having at least n poles in F, with (v,),>0
converging to some function v locally uniformly in 2. Notice that v is meromorphic in Q2. From
Theorem 3.3(a) we know that v is different from the constant co in Q\I'(4), and thus in Q. Clearly,
poles of (v,) only accumulate in the set F":={z € F: |v(z)| >2}, and thus we may suppose, without
loss of generality, that there exists an open set U D F with its closure U’ contained in Q such
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that |v(z)|>1 for z € U’, and v(z) # oo on the boundary dU’ of U’. As a consequence, for a
sufficiently large N, the sequence (1/v,),>y consists of functions being analytic in U’, and tends to
1/v uniformly in U’ with respect to the Euclidean metric. Applying the principle of argument to the
connected components of U, we may conclude that, for sufficiently large n, the number of poles of
v, in U’ coincides with the number of poles of v in U’. Since the latter number is finite, we have
a contradiction to the construction of v,. A proof for the final sentence of part (c) follows the same
lines as the second part of the proof of (b); we omit the details. [

Of course, for real Jacobi matrices, assertions related to Theorem 3.4 have been known before,
see [4, Corollary 2] for part (b), and [55, Theorem 6.1.1] for part (c). Part (a) for complex Jacobi
matrices has already been mentioned in [20, Theorem 3.10]. For complex bounded Jacobi matrices,
I'(4) is bounded and contains a(A4), and thus € necessarily coincides with the unbounded connected
component y(4) of Q2(4). Consequently, for bounded A, part (c) gives a bound for the number of
zeros of (all) FOPs in closed subsets of 2y3(4), and this statement has already been established in
[18, Proposition 2.1].

We terminate this section with a discussion of the closed convex set

Fe(4) = () T(4®),

k=0

where A®) denotes the difference operator of the associated Jacobi matrix .o/ introduced before
Theorem 2.8, A9 = 4. This set has been considered before in [13,14]. In the next statement we
collect some properties of this set. Our main purpose is to generalize Theorems 3.3(a) and 3.4(a).

Theorem 3.5. (a) There holds I'.s(A) C T'(A%D)C I'(A®) for all k=0, and T'(A) # C if and
only if I'(4) # C.

(b) For any compact difference operator B we have I'.(A) = I'ex(A + B).

(¢) Let o/ be proper. Then a(A) C I'(A) and 6.(A) C I 'e(A). Furthermore, a(A)\I «s(4) consists
of isolated points which accumulate only on I (A).

(d) The sequence (u,),=o of meromorphic functions is normal in Q(A)\I'«ss(A), and any partial
limit is different from the constant occ.

(e) For any compact subset F of Q(A)\I'ess(A) there exists a constant N =N (F) such that none
of the FOPs q, for n=N has a zero in F.

Proof. (a) The first inclusions follow immediately from the definition of the numerical range. It
remains to discuss the case I'.s(A4) # C. Then at least for one k>0 we must have I'(4%) # C.
Since I'(A®) is convex, it must be contained in some half-plane. Furthermore, one easily checks
that any z € ©(4) may be written as z = z; + z,, with z, € I'(4®) and |z,| <2||.«Z;||. Thus ©(4)
and I'(A4) are contained in some half-plane, and I'(4) # C.

(b) This assertion follows from the fact that any z € I'(A®) + B®)) may be written as z =z, + z3,
with z, € I'(4®), |z5|<||BP]|, and ||B®|| — 0.

(c) It is known [30, Theorem V.3.2] that, in connected components of C\I'(4), %(zI — A) is
closed and dimA"(zI — A) = 0. Since .o/ is proper, it follows from Lemma 2.4(d) that %(zI —
A)Yt = N((zl —A)*)={0}, and thus #(zI —A)=¢?*. Consequently, C\I'(4) C Q(4). Also, it follows
(implicitly) from [30, Theorem 1V.5.35] that 0ex(A4) = 0ess(A®)) for all k>0, and o.(4®) C I'(4AD)
by [30, Problem V.3.6]. Thus, we have also established the second inclusion g (A4) C I'ess(A).
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In order to see the last sentence of part (c), denote by D a connected component of C\Ges(A).
From [30, Section 1V.5.6] we know that either D C 6(4), or the elements of a(4) in D are isolated
and accumulate only in Ges(A) C Less(A). If now 0(A4)\ess(A) C C\0ess(4), there is nothing to show.
Otherwise, suppose that D contains a point z € 6(A4)\I'es(4). Then the assertion follows by showing
that D ¢ g(A4). Indeed, we know from part (a) and the preceding paragraph that there exists a
{ € C\I'(4)CQ(A). By convexity of I'.(A), it follows that the segment [z, (] is a subset of
C\T@es(A) C C\0ess(A). Hence [z,{] C D, which implies that D ¢ a(A4).

(d), (e) We show in Corollary 4.4(a) below that for any compact subset F of Q(A4)\I'.s(A4) there
exists a constant N = N(F') such that

sup max ||z, — o2,)" || < o0.

n=N %
Since u,(x) = (e,, (25,41 — Aop1) 'ey), it follows that

sup max |u,(z)| <oc.
n=N z€F

Then assertions (d), (e) follow immediately. [

A particularly interesting case contained in Theorem 3.5 has been discussed by Barrios, Lopez,
Martinez and Torrano, see [13-16]: here 4 = G + C, where G is a self-adjoint difference operator
(resulting from a real proper Jacobi matrix) and C is a compact complex difference operator. Then
</ is proper (and determinate), and

aess(A) = Gess(G) - I;ss(A) = I;ss(G) C F(G) = COHV(O’(G)) CR

by (2.12) and parts (a)—(c). Several of the results given in the present paper for general complex
Jacobi matrices have been shown for the above class already earlier, see, e.g., [13, Lemmas 3,4;
14]. In particular, Theorem 3.5(e) for this class was established in [13, Corollary 1].

3.3. An open problem concerning zero-free regions

We have seen above that, for bounded operators A, the zeros of all FOPs are contained in the
convex compact set I'(4), and most of them are “close” to the polynomial convex hull® of the
spectrum a(A4).

Let us have a closer look at an inverse problem: Suppose that ¢ is some regular linear functional
and I' is some compact!® convex set containing al/ zeros of all FOPs. Can we give some (spectral)
properties of the underlying difference operator, or the sequence (u,)?

Zero-free regions can be obtained from the recurrence relation, e.g., by applying techniques from
continued fractions. There are, for instance, Cassini ovals [58, Corollary 4.1], or the Worpitski set
(see [59, Theorem V.26.2; 20, Section 3.1]).

% Indeed, it is also unclear whether there is an example of a (complex) operator A4 where the number of zeros of FOPs
in some compact subset of a bounded component of (4) is unbounded.

10 Example 3.2(a) of Stahl shows that there exist regular functionals induced by some measure on [ — 1,1] where all
but two zeros stay in [ — 1,1], but the sequence of exceptional zeros is not bounded (and thus the underlying operator
also is unbounded). Thus the restriction to bounded I' seems to be natural.
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A related question in Padé approximation has been discussed by Gonchar [28], who showed
that the sequence of rational functions (p,/q.).=0 converges locally uniformly in C\I' to some
function f with a geometric rate. In other words, the absence of poles in sets (with a particular
shape) is already sufficient to insure convergence of Padé approximants. Let us recall here some of
his intermediate findings: writing a,, b, in terms of the coefficients of ¢,/k, (cf. with (2.27)), and
taking into account that the zeros of ¢,/k, are bounded, one finds the relation (see [28, Proof of
Proposition 4])

|| L
sup —— <00, Ssup —— <oQ. 3.10
voo n+ 1 1 (3.10)
Notice that combining this result with Example 2.7 shows that the underlying complex Jacobi matrix
is proper. A combination of [28, Propositions 2,4] leads to the relations

lim inf |¢,(2)]"" = lim inf (|¢,(2)]* + [a,g+1(2)])""*” Zexp(gr(2)), z € C\I,

Keup = limsup |ag - a; - - -an_1|1/” <cap(I),

lim sup |}7n(z)’1/n = llyl;llg}f(|r~n(z)|2 + ’anfn+l(z)|2)1/(2n) <6Xp(—gp(2)), ze ([:\F,
where 7,(z) = q,(z) f(z) — pa.(z). Of course, in the case a(4) C I', these relations (with f(z) = ¢(z)
and 7,(z)=r,(z)) would follow from our Theorem 3.1. But this is exactly our problem: does it follow
only from the knowledge about zeros of FOPs that a(4) C I'? Clearly, for real Jacobi matrices the
answer is yes, but for complex Jacobi matrices?

Since an operator 4 with compact spectrum is necessarily bounded, a first step in this direction
would be to sharpen (3.10) and to show that 4 is bounded. According to Theorem 3.3(b), this is
equivalent to the fact that (u,),>0 (or (z-u,),>0) is normal in some neighborhood of infinity.

Notice that (z - u,),>o does not take the values 0,00 in C\F . Moreover, by a theorem of Montel
[43], any sequence of meromorphic functions which does not take three different values in some
region D is normal. It would be interesting to know whether, for our particular sequence of (rational)
functions, the information on the zeros of FOPs is already sufficient for normality.

Another interesting approach to our problem would be to impose in addition that 4 is bounded. If
this implies o(4) C I', then we would have at least a partial answer to the following problem raised
by Aptekarev et al. [7]: does the convergence of the whole sequence of Padé approximants with a
geometric rate at a fixed point z implies that z € Q(A4)?

3.4. Compact perturbations of Jacobi matrices and ratio asymptotics

An important element in the study of FOPs is the detection of so-called spurious zeros (or
spurious poles in Padé approximation). We have seen in the preceding section that the absence of
zeros in some region has some important consequences concerning, e.g., the convergence of Padé
approximants. Roughly speaking, we call spurious the zeros of FOPs which are not related to the
spectrum of the underlying difference operator. To give an example, consider a real Jacobi matrix
induced by a measure supported on [ —2,—1]U[1,2] which is symmetric with respect to the origin.
Then the zeros of the OPs ¢, lie all in the spectrum of 4, and also 2r of the zeros of the OPs
gons1 lie in the spectrum of A, but ¢,,.1(0) =0 by symmetry.
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We will not give a proper definition of spurious zero in the general case; see [50, Section 4]
for a more detailed discussion. Here we will restrict ourselves to bounded complex Jacobi matrices:
a sequence (z,).c, is said to consist of spurious zeros if ¢,(z,) =0, n € A, and (z,),c, lies in
some closed subset of the unbounded connected component €,(4) of the resolvent set. Notice that
|z,| <||4|] by Theorem 3.4(a), implying that (z,),c, remains in some compact subset of Qy(A4).
Therefore, we may (and will) assume that (z,),c, converges to some { € Qy(A4).

From Theorem 3.4(c) and the remarks after Theorem 3.4, we see that there are only “few” such
spurious zeros, and that the set of their limits { coincides with the set of zeros (or poles) in Qy(4)
of partial limits of the normal family (u,). Also, { € g(4) U I(A4) by Theorem 3.5(e).

One motivation for the considerations of this section is to show that the set of limits of spurious
zeros remains invariant with respect to compact perturbations. This follows as a corollary to the
following

Theorem 3.6. Let </, </ be two complex Jacobi matrices with entries a,,b,, and G,, b,, respectively.
Suppose that .</,.</ are bounded, and"' that arg(d,/a,) € (—n/2,m/2] for n=0.
Then the difference A — A of the corresponding difference operators is compact if and only if

lim y(u,,i,)=0 (3.11)
uniformly in closed subsets of Qy(A) N Qy(A).
Theorem 3.6 has been known before (at least partially) for real Jacobi matrices. Take as reference

system the entries d, =a # 0, b =b, n>0. Then

A 2

W)= @ bt by —az

uniformly on closed subsets of C\[b — 2a,b+2a] = C\o(4) (we choose a branch of the square root
such that the right-hand side vanishes at infinity). Thus Theorem 3.6 includes as a special case the
well-known description of the Nevai—Blumenthal class .#(a;b), see, e.g., [35]. This description is
usually shown by applying the Poincaré Theorem, and a similar description is known for compact
perturbations of (real) periodic Jacobi matrices (being considered more in detail in Section 4.3
below). Finally, Nevai and Van Assche [36] showed that a relation similar to (3.11) holds provided
that .o/ is a real compact perturbation of a real .7

Before proving Theorem 3.6, let us motivate and state a related more general result. Given any
(not necessarily regular) linear functional ¢ acting on the space of polynomials, the (unique) monic
FOPs Q, corresponding to normal indices n; together with some auxiliary monic polynomials Q,,
n # n; are known to satisfy a recurrence of the form

Z'Qn(z):Qn—O—l(Z)+ Z bn,ij(Z)a n>0a QO(Z): 13 (312)

J=n—"n

""'Such a normalization is known from orthogonal polynomials where usually a,,d,>0. It can be insured by possibly
multiplying ¢, by —1.
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where b, ; are some complex numbers, and the integer 7, >0 is bounded above by some multiple of
the maximal distance of two successive normal indices. We may rewrite the recurrence formally as

QO(Z) b()’()l 0 0o - ...
Ql(z) bl,O bl,l 1 0
0=GT =B o) 2= | baobsr bl 0 | (3.13)

i.e., 4 is a lower Hessenberg matrix. If in addition the distance of two successive normal indices
is uniformly bounded, then % is banded. This occurs, for instance, for symbols like sin(1/z), or for
functionals ¢ which are asymptotically regular, i.e., all sufficiently large indices are normal. Notice
that, by (3.13), O, is the characteristic polynomial of the finite principal submatrix %, of order n.

A class of asymptotically regular functionals was studied by Magnus [33], who considered ¢, of
(3.8) with a complex and continuous w which is different from 0 in [ — 1,1] (in fact, his class is
larger). By, e.g., the Theorem of Rakhmanov, the real Jacobi matrix associated to ¢, is a compact
perturbation of the Toeplitz operator having % on the super- and the subdiagonal and 0 elsewhere. The
functional ¢, may not be regular, but is asymptotically regular by [33, Theorem 6.1(i)]. Therefore,
the corresponding matrix 4 will in general not be tridiagonal, but is a compact perturbation of the
Toeplitz operator having 1 on the super-, } on the subdiagonal and 0 elsewhere (see [33, Theorem
6.1(iii)] and Theorem 3.7 below).

For regular functionals, recurrence (3.13) holds with

by = by, bpyrn = a, bin=0, k—1>n>0 (3.14)

n

showing that 4 is bounded if and only if the corresponding Jacobi matrix is bounded. Recurrences
of the above form are also valid for more general sequences of polynomials. For instance, for monic
OPs with respect to the Hermitian scalar product

(fo= [ F@oE)ducz),

u being some positive measure with compact infinite support, we always have a recurrence (3.12)
with b, = (O, 20,),/(Ok, O ). We have the following complement to Theorem 3.6.

Theorem 3.7. Let # be a_tridiagonal matrix as in (3.14), with coefficients b, and associated
monic FOPs Q,, and Ie'z~ A be a lower Hessenberg matrix as in (3.13) with coefficients b, and
associated polynomials Q,, Provided that # and % are bounded, we have

lim (22 _ 2.6 ) _, (3.15)
1= \ Ont(2) - 0,4(2)
uniformly for |z| =R for sufficiently large R if and only if *

lim (bysyn — Do) =0, j=0,1,2,... . (3.16)

21f 4 is in addition banded, then this second condition is equivalent to the fact that 2 —# is compact.
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Proof. Suppose that (3.15) holds. Since Q,,Q, are monic and of degree exactly n, we have the
expansions

0u(z) _ \ Ung 0,(2) RS,
0 LT P L

where u,o=1i,0=1, and u,; — i, ; tends to zero for n — oo for all fixed j>1 by (3.15). From

(3.13) we obtain
0.2) 0.(2) 01() 0) , 0,2) | o 1
—1+b by bun ’HQM o (zf+2>mo

“0.1(2) "0,1(2) On(2) Qn+1(2)

for any n>;>0, and a similar equation for the quantities related to . Inserting the expansions at
infinity and comparing coefficients leads to

~ ~ ~2
~ ~ 2
un,l - un,l = bn,n - bn,n — O’ Upo — ui’l,z = (bn,n—] + bn,n) - (bVl,ﬂ—l + bn,n) - O

and similarly w, ;. — 6, ;11 = by—j — 13,,,,1_, +C,; — (j’n’.,- for j>2, where C,; is a polynomial
expression of the quantities b,_,,—;, for 0</<i<j, and C'n) ; 1s obtained from C,; by replacing
the quantities b,_,,_; by 13,,,/,,,,14. One concludes by recurrence on j that the claimed limit relation
(3.16) for the recurrence coefficients holds.

The other implication of Theorem 3.7 is slightly more involved. We choose

2| > R:=2 max{]|#||.| |41 }.
Then |z| >2max{||%,]||, |L%7,,H} for all n, implying that

N 2
H(Zjn _t%n)_ngi, n>0

|7 = 27| <
2]

| |’

It follows from (3.13) that
(an _gn) : (Qo(z)s [ERE) Qn—l(z))T = (Oa cee 70: Qn(z))T,

and thus Q,(2)/0,.,(z) = (e, (2511 —B,1) " 'e,), as well as

n . . i 4 N ) )
210/ <@t =Boen) ™I < %

Jj=0

From the latter relation one deduces by recurrence on n — j that

| 0,(2) 4
- - e, == < <j<n. 1
|(ej’(an+l f@i’H»l) ei’l)| |Qn+l(Z) ’Z‘Z(l + ’2’2/4)}1—1'7 0 ] n (3 7)
We claim that also
4
(€ns (zF01 — Bry1) ') < 0<j<n, (3.18)

|z[2(1 + |z[*/(4a?) )"
where a =max{1,sup|b,, .|} <||#|| <oo. This inequality is based on the observation that the poly-
nomials Ok(z):=k,q,(z) = k>Q,(z) satisfy

(QOL(Z)s cees Qﬁ—l(z)) (2SI — B,) = bn,nfl -(0,...,0, QnL(Z))
Thus a proof for (3.18) follows the same lines as the proof of (3.17); we omit the details.
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Given an ¢>0, by assumption (3.16) on the recurrence coefficients we may find an L >0 and an
N >0 such

=14 R*(4a*)) "2 <&, and |byisn — bprsn| <&, n=N, £=0,...,L

For all other indices we have the trivial upper bound |b,,/., — b,.s.| <(||8|| + |#||)= : b. Using
(3.17), (3.18), we obtain for |z| >R, n=N + L,

0.:) 0,
Qn+l(z) Qn+1(z)

‘ = ‘(em [(ZjnJrl - e@7%1)71 - (ZjnJrl _f%?wrl)il]enﬂ

= ‘(em(zjn-ﬁ—l - %n-&-l)il(gn-&-l - v@n+1)(szn-&-l _'%jn+l)7len)‘

7 " J
<E yi —jt+n— k‘b]k_ jk‘
J=0 k=0
<% n min{j,n— L}ln e k i: Z J—in—k Z(b—i-l)g
RJ:O k=0 ]nLknL R(l A)?
Since ¢>0 was arbitrary, we have established (3.15). Hence the second implication of Theorem 3.7

1s shown. 0O

Proof of Theorem 3.6. We apply Theorem 3.7 with
bnn_bm bn+1,n:(iz, bkn—o k—l>n>0

n

Since ¢,/(a,qn:1) = 0./Qns1 is bounded around infinity by Theorem 3.3(a), and similarly for the
quantities with tildes, we see that (3.11) implies (3.15). In order to show that also the converse
is true, suppose that (3.15) holds but not (3.11). Then there is some infinite set 4 and some
Zy € Qo(4) N Qy(A), (24)nes tending to some { € Qo(A) N Qy(A), such that (y(un(z,),1n(22))nes
does not converge to zero. Using the normality established in Theorem 3.3(¢), we find a subset also
denoted by A such that (u,),c4 (and (iéi,),cs resp.) tends to some meromorphic function u (and
i resp.) locally uniformly in Q,(4) (and in Qy(4) resp.). Notice that u({) # ii({) by construction
of {, and u =# in some neighborhood of infinity by (3.15), which is impossible for meromorphic
functions. Hence (3.11) and (3.15) are equivalent.

Notice that (3.16) may be rewritten in our setting as 15,, — b, — 0, and di —a*> — 0. The
normalization arg(d,/a,) € (—n/2,m/2] of Theorem 3.6 allows us to conclude that |a, —a,| <|a,+a,],
showing that (a2 — dﬁ)nZO tends to zero if and only if (a, — d,),>o does. Thus 4 — A4 is compact if
and only if (3.16) holds, and Theorem 3.6 follows from Theorem 3.7. [J

It is known for many examples (see, e.g., [50, Proposition 4.2]) that spurious poles of Padé
approximants p,/q, are accompanied by a “close” zero. As a further consequence of Theorem 3.7,
we can be more precise. In fact, consider # obtained from % by changing the values b, 0=0 and
bo,o € a(4). Comparing with (1.2) one easily sees that Qn(z) =(z — bo,o) pn(2)/k,, and as in the
above proof it follows that

( DPn dn )
(e 4y o
Ay P+l Anqnt1
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locally uniformly in Qq(4)NQo([#],.;,)=0(4)NQy(A™M), which according to Theorem 2.8 coincides
with Q:={z € Qy(4): ¢(z) # 0}. In particular, applying the argument principle, we may conclude
that, for every sequence (z,).c4 tending to { € Qy(4) with g,(z,) =0, there exists a sequence (z,,),e4
tending to { with p,(z,) =0.

3.5. Trace class perturbations and strong asymptotics

It is known for real Jacobi matrices [36] that if A — A is not only compact but of trace class,
then we may have a stronger form of convergence: A similar assertion is true for complex Jacobi
matrices.

Theorem 3.8. Let <o/, </ be two bounded complex Jacobi matrices. Provided that the difference
A — A of the corresponding difference operators is of trace class, i.e.,

Z(|an _dn| + |bn _Bn|)<oos

n=0

the corresponding monic FOPs satisfy
tim 2% _ det(r + (4 — A)al — 4))
n—oo Qn(z)

uniformly on closed subsets of subdomains D of Qo(A) N Qy(A) which are (asymptotically) free of
zeros of the FOPs q, and §,, n=0.

Proof. Define the projections E, : /> — C" by E,(¥;);j>0 = (¥;)o<j<n. We start by establishing for
z € Q(A) the formula

E,(zI —A)'Er — (29, — ) = (qo(2), .., qu1(2))T

(qO(Z)a"',qnfl(Z))- (319)

ra(z)
qn(2)
Indeed, by (2.19),

I, =E,(zl — A)zl — A)'E?
=E,(zl — A)E'E(zI — A) 'E" —(0,...,0,a,_1)"7.(z)(qo(2), -, qn_1(2)).
With E,(zI — A)E =z.9, — .o/, and
1

qn(2)
taken into account, identity (3.19) follows. In a similar way one obtains for z € Q(A4), using (3.19),

En(ZI _AN)(ZI _A)ilE: - (an - eja{n)(ljn - %n)il

,...,0,a,_)" = 22 — A)qo(2)s ... qu_1(2))"

=(z.9, — A)E Nzl — A)'E* — (2.9, — 4,) " 1+ E,(z — A)I — E*E,)(zI — A)"'E?

17a(2)

—(0,...,0,d,_1) r(2))qo(2), - .., gu_1(2))
q.(2)

=25 — AL, qo(2)s - -1 qu-1(2))
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0@ Q) @) énl(z)>T

:"”“””(z)‘]’“(z)(z’f’”%)(qn(z) I E R S

% (0,...,0,1)(z.8, — oZ,)"".
Consequently,
det(E,(zI — A)(zI — A)'EY)

=det((z.S, — A,)zI, — A,)"")

_ (]o(Z) - q~0(Z) qn—l(z) _ q~n71(z) !
det(l, — a,_17,(2)q.(2) <qn(2) qn(z),..., ) e ) 0,...,0,1))
0,(2) Gn1(2)  §,(2)
== — ap17y\Z2)gn\2Z T~ . 32
0.z ||~ HrE)a) ( 4@ ) )] (3:20)

Using the projector I1,=E;E, introduced in Section 2, we may write the term on the left-hand side
as

det(E,(zl — A)(zl — A)"'E) =det(l, + E,(4 — A)(zl — A)"'E})

= det(I + I1,(A — )zl — 4)™"),

where the term of the right is the determinant of a finite-rank perturbation of the identity; see, e.g.,
[30, Section I11.4.3]. Since 4 — A4 is a trace class operator, the same is true for (4 — A)(zl — A)~!
and thus

lim det(Z + My, (4 — A)zl — A)™") =det(I + (4 — )zl — A)™")

n—oo

uniformly in closed subsets of 2(4). It remains to see whether the term in brackets on the right-hand
side of (3.20) tends to 1. Let F be some closed subset of the zero-free region D C Q:=Qy(4)NQy(A).
According to Theorem 3.3(c), both (u,) and (#,) are normal families of meromorphic functions in
2, and the functions are analytic in the subdomain D. Furthermore, we know from Theorem 3.3 that
any partial limit is different from the constant infinity. It is known (see, e.g., [18, Lemma 2.4(d)])
that then (u,) and (#,) are bounded on F uniformly in n. Combining this with Theorem 3.6, we
find that |u, — i1,| — O uniformly in F, and

qn—l(Z) _ qnfl(z)
qu(2) q,(z)

tends to zero for n — oo. Moreover, the remaining term a,_,7,(z)g,(z) is bounded uniformly for
z € F and n>=0 according to (2.23). This terminates the proof of Theorem 3.8. [

max
zEF

<\an—1’f§1€a§ |ty—1(2) — 1 (2)| + |an_y — 5n—1\21€ag< |i,1(2))|

We conclude this section with some general remarks concerning the strong asymptotics

0,(2)
On(2)

Indeed, by examining the proof, we see that this assertion is true also for the more general matrices
#.% of Theorem 3.7 provided that # —% is of trace class. Finally, already from the real case it is

—¢g(z)| =0 where U is some closed disk around oc.

zEU
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known that for this form of strong asymptotics it is necessary that .«7 — .o/ is compact, but it does
not need to be of trace class. Indeed, a necessary and sufficient condition seems to be that .o/ — .o/
is compact, and that

n—1

Y [r(2)q;(2) = 7(2)d (2)] = trace I1,[(z] — A)™" — (zI — 4)~'1I,

J=0

converges for n — oo uniformly in U (to ¢’/g). It would be very interesting to explore the connection
to some complex counterpart of the Szegd condition.

4. Approximation of the resolvent and the Weyl function

The goal of this section is to investigate the question whether we can approximate the resolvent
(zI — A)~!' by means of inverses (z.%, — .Z,)"! of finite sections of z.# — .o/. This question is of
interest, e.g., for discrete Sturm-Liouville problems on the semiaxis: for solving in /? the equation
(zI —A)y=f for given f € /* via a projection method, one considers instead the finite-dimensional
problems (z.%, — oZ,)y") =E, f.

Another motivation comes from convergence questions for Padé approximation and continued
fractions: With p,,q, as in (1.2), (1.4) we define the rational function

Pa(2)
qn(2)
It is known [59] that 7,(z) has the J-fraction expansion

,(z) = = (eo, (25, — A,) ' ep).

2 2 2
1| —ag —4 —a4 | 2

_ | |
() z— by +|Z—b1 +\Z—b2 +|Z—b3 + +Z—b,,_1

being the nth convergent of the J-fraction (1.3). In addition, the (formal) expansion at infinity of this
J-fraction is known to coincide with (2.18), and one also shows that 7, is its nth Padé approximant
(at infinity). The question is whether we can expect the convergence of m,(z)= (e, (z.%, — .oZ,) " 'ey)
to the Weyl function ¢(z) = (e, (zI — A)ey).

This question has been studied by means of operators by many authors, see [59, Section 26; 7, 15,
16, 18, 20] for bounded 4 and [13,14] for bounded perturbations of possibly unbounded self-adjoint
A. Our aim is to show that most of these results about the approximation of the Weyl function are
in fact results about the approximation of the resolvent (z/ — A)~! by (z.9, — .«Z,)" ..

4.1. Approximation of the resolvent

Different kinds of resolvent convergence may be considered for z € Q(A4), for instance norm
convergence

lim |[(z.49, — <Z,)"" — E,(zI — A)"'E}|| =0, (4.1)
n’;jo
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strong resolvent convergence

lim EX(z4, — o4,) 'E,y=(l —A)"'y Vye/l? (4.2)

neA
or weak resolvent convergence

lim (E,y,(z5, — A,) 'E,y)=(V,(z —A)"'y) Yy, y €% (4.3)
neA

The interested reader may easily check that (4.1) implies (4.2), and the latter implies (4.3). Notice
also that (pointwise) convergence results for Padé approximation of the Weyl function are obtained
by choosing in (4.3) the vectors y=)'=¢,. In all these forms of convergence we assume implicitly
that z.#, — ./, is invertible for (sufficiently large) n € A. We also mention the related condition

lim sup |[(z.%, — Z,)""||= : C <co. (4.4)
e

A Kantorovich-type theorem gives connections between properties (4.2) and (4.4). For complex
(possibly unbounded) Jacobi matrices we have the following result.

Theorem 4.1. Let A be a difference operator resulting from a complex Jacobi matrix, A some
infinite set of integers, and z € C. The following assertions are equivalent:

(a) z € Q(A), and (4.2) holds.

(b) z € Q(A4), and (4.3) holds.

(c) o is proper, and (4.4) holds.

In addition, if property (c) holds for some z = z,, then the limit relations (4.2), (4.3) take place
uniformly for |z — zo| <1/(2C).

Proof. Trivially, (b) follows from (a). Also, Q(4) # () implies that .o/ is proper by Theorem 2.6.
In addition, (b) only makes sense if z.#, — .o, is invertible for sufficiently large n € A. Furthermore,
a sequence of weakly converging bounded linear operators is necessarily uniformly bounded, see,
e.g., [30, Section I11.3.1]. Thus (b) implies (c).

Suppose now that (¢) holds. By possibly dropping some elements from A we may replace condition
(4.4) by

sup||(z#, — o£,)7'[| < C":=3C/2 < 0. 45)
neA

For any y € %y, say, y =II,y, we find an index n € A, n>k, with

1B I

1 — A =||E 1 — A y|| = ||S — )E || = = .
H(Z )yH H k+l(z ) ky” H(Z ) y” ||(an*e}2{n)71|| C/

As in the second part of the proof of Theorem 2.10 we obtain

= >0.
eaw Iyl ee [P T C
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Consequently, A"(zI —A4)={0}. Since .« is proper, it follows from Lemma 2.4(a),(d) that A4 ((zI —
A)*) ={0}. Furthermore, by [30, Theorem 1V.5.2], #(zI — A) is closed. Since its orthogonal com-
plement is given by .A4"((zI — A)*), we may conclude that #(zI — A) = /?, and thus z € Q(A4).

In order to show the second part of (a), let y € /2=%(zl — A), and x € Z(A) with (zI —A)x=y.
Let e>0. By (2.2), we find X € %, y = (zI — A)X, such that

C'lly — p||<e/3, and ||x —X||<¢/3.
Also, since y € /? and ¥ € %,, we find an N >0 such that
=% and C'||(I-1II,)y||<¢/3, n=N.
Recalling that E,E; = .4, and E E, = II,, we obtain
|Ey (29, — A,)'Eyy — (2l — AW < |[Ej (25, — 4,) " E,[y — E (2.9, — 4,)EX]||
HIE) (29 — 4,)  EE (2, — A)EX — ||
< Cly = Izl — DILE| + ||[I1,% — x||
= C'lly — (2l — A)F|[ + |5 — x|

< (A = I)yll + [y = PID + [1F - x][<e

for all =N, n € A, and thus (4.2) holds.
It remains to show the last sentence. We first mention that if zy € C satisfies (4.5), then for any
z with |z — zp| <e<1/(2C) and for any n € A there holds

22, — )< 1202 — ) 7| - |[(Fo + (2 — 20)(20.5, — 4,) ") || <4C"=6C  (4.6)
and
||(an - =52/n)_1 - (Zojn - &{n)_lH = |Z _ZO|H(an - VQ{n)_l(Zofn - &/n)_lH <é- 9C2'

The same estimates are obtained for the resolvent. Thus, given ¢>0 and y € /%, we may cover
U:={z € C: |z—z| <1/(2C)} by a finite number of closed disks of radius &’ <&/(9C?-||y||) centred
at z;,...,zxg € U, and find an N such that

\|EX(zi Iy — ) 'Eyy — (zid — A) 'yl|<e, ne€ A, n=N, k=1,....K.
Then for each z € U we find a k& with |z — z|<¢/, and

HE;:(Zjn - ﬂn)_lEny - (ZI 7A)_1y||

<26 - 9CH) -yl + 1ES @ty — )" Eny — (2l —A)”'y]| <3¢

for all n=N, n € A, showing that the convergence in (4.2) (and thus in (4.3)) takes place uniformly
inU. O

Different variants of the Kantorovich Theorem have been discussed before in the context of FOPs
and Padé approximation, see [33, Theorems 4.1,4.2] or [14, Lemmas 4,5]. Usually, the condition
z € Q(A) is imposed for all equivalences; then the proof simplifies considerably, and also applies to
general proper matrices.
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We see from Theorem 4.1 that the notion of weak and strong resolvent convergence are equivalent
for proper complex Jacobi matrices. On the other hand, by (3.19),

H(Zjn - &/n)il _En(ZI _A)ilE:H =
4(2)

n—1 n—1
S lg@ =) - m@)| > g 47)
j=0

J=0 ;
and at least for particular examples it is known that the right-hand side of (4.7) does not tend to
zero. Thus we may not expect to have norm convergence.

If .o/ is not proper, then Theorem 4.1 does not give any information (notice that Q(4) = () by
Theorem 2.6(c)). However, at least in the indeterminate case we clearly understand what happens.

Theorem 4.2. Let o/ be indeterminate. If A is some infinite set of integers and { € C is such that
lim (eq, ((In — A,) €)= m, (4.8)

n—oo

neA
then with the unique n € CU {oo} satisfying ¢y({) =n (see Theorem 2.11) there holds
lim ||(z4, — ,)"" — E,(zl — Ay)) 'E;|| =0

n—oo

neA

uniformly on compact subsets of Q(Ay).

Proof. We will only show pointwise norm convergence for z € Q(4},;), the extension to uniform
convergence follows as in the proof of Theorem 4.1. First one shows as in (3.19) and (4.7) that

n—1
|50 = )™ = Eu(zl = Ap) " E || = |dn(2) = ma(2)| Y lg;(2), 2 € QAy).
Jj=0
Since .o/ is indeterminate, the sum is bounded uniformly in n for all z € C, and ¢,;(z)# oo.
Therefore, it remains only to show that n,({) — =n for n — oo, n € A implies w,(z) — ¢(2)
for n - oo, n € A and z € C. Here we follow [59, Proof of Theorem 23.2]: According to
[59, Theorem 23.1, Egs. (23.2), (23.6)], there exist polynomials a;,, j = 1,2,3,4 with

lim a;,(z) =a;(2), j=123,4,z€C, (4.9)
al,n(z)a4,n(z) - a2,n(2)a3,n(z) - 17 }’ZZO, zZ € C, (410)
pn(Z) = pn(o)aZ,n(Z) - qn(o)al,n(z)5 Qn(z) = pn(o)a4,n(z) - qn(O)a3,n(Z) (411)

with ay,...,a4 as in Theorem 2.11. Combining (4.10) and (4.11), we get
pn(o) = _pn(C)aln(C) + qn(é’)al,n(g)a %(O) = _pn(C)a4,n(C) + qn(C)aln(C)a
and, by assumption on 7,({) = p,({)/q.({), we may conclude from (4.9) that

. a) — as(0)
lim 7m(0) = O = a0’

neA
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Here the right-hand side equals # by definition. Applying again (4.9) and (4.11), we obtain for
z € C the desired relation
lim my(z) = 1) = 19:(2)
00 as(z) — nas(z)

neA

= ¢[,7](Z). O

Theorem 4.2 implies that in the indeterminate case we obtain weak and strong resolvent conver-
gence to (zI — Ap,;)~". Since (4.8) follows from weak convergence, we may conclude that here all
three notions of convergence are equivalent. Notice that (4.8) is equivalent to the convergence of a
subsequence of Padé approximants at one point.

Let us return to the more interesting case of proper complex Jacobi matrices. In order to be able
to exploit Theorem 4.1, we need to know whether there exist infinite sets A (possibly depending on
z) satisfying (4.4). In the following theorem we show that, under some additional assumptions, the
existence can be insured.

Theorem 4.3. (a) Suppose that the infinite sequence (a,),cq is bounded. Then z € Q(A) if and
only if there exists an infinite set of integers A satisfying (4.4).

(b) Suppose that (a,_1).ca is bounded, and let z € Q, where Q is a connected component of
Q(A) which is not a subset of I'(A). Then (4.4) holds if and only if z is not an accumulation point
of {zeros of q,: n € A}.

(c) Suppose that (a,-1)sca tends to zero. Then z € Q(A) if and only if (4.4) holds.

(d) Let 4,4 be two difference operators with compact A — A, and z € Q(A) N Q(A). Then (4.4)
for A implies (4.4) for A.

(e) Relation (4.4) with A =1{0,1,2,...} holds for z € Q(A)\Iess(A).

It seems that the assertions of Theorem 4.3 have gone unnoticed so far for general possibly
unbounded complex Jacobi matrices. For bounded or compact perturbations of self-adjoint Jacobi
matrices, results related to Theorem 4.3(e) may be found in [14, Sections 1, 2].

Combining Theorem 4.3 with Theorem 4.1 (specially the last sentence) and using classical com-
pactness arguments, we may get uniform counterparts of (4.1) and (4.4). Since these results play an
important role for the convergence of Padé approximants, we state them explicitly in

Corollary 4.4. We have

lim sup max ||(z.%, — </,)""|| <o
zeF
n—oo

neA
and
lim sup max |E; (29, — ) 'E,y — (2l —A4)"'y]|=0

n—oo

neA

for a compact set F and y € (* provided that one of the following conditions is satisfied:
(a) 4=H0,1,2,...} and F C Q(A)\Iess(A).
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(b) (a,_1)nea tends to zero and F C Q(A).
(¢) (an_1)nea is bounded, F C Q, with Q ¢ I'(4) being some subdomain of Q(A), and F does not
contain accumulation points of zeros of q,, n € A.

For the proof of Theorem 4.3(d),(e) we will need the following lemma, which for bounded
operators was already stated before by Magnus [33].

Lemma 4.5 (Cf. with Magnus [33, Theorem 4.4]). Let % be some infinite proper matrix, and write

B=[%).,,. Furthermore, let B be an operator in /*, with €, C Z(B), 0 € Q(B)N Q(B), and B — B
being compact. Then for any infinite set of integers A we have the implication
sup |[(E,BE)"'|| = C' <00 = limsup ||(E,BE")~"|| < c0.
neA
neA

Proof. We claim that there exist N, C such that, for all =N, n € A, the system
(E.BE;)x, =y,

admits a unique solution x, for all y, € C", with ||x,||<C - ||y.||.- Then the assertion follows. For
proving this claim, we rewrite the system as

(4, + (E,BE})'E(B — B)EIx, = (E,BE)"'y,.
Since E,E; =4, EXS4, =E", EXE, =II,, the system takes the form
[/ + B~'(B = B) + A,)(E;x,) = E;(E,BE; )y, (4.12)
where
A, =E;(E,BE;)'E(B—B)—B"'(B—B)
= [E;(E,BE;)'E, — B~'J( — I1,,X(B — B) + [E;(E,BE;)"'E, — B_'|II,(B — B)

for any integer m. Here the expression in brackets is bounded in norm by C'+||B7"||. Since (B —B)
is compact, it is known that ||({/ — IT,,)(B — B)|| — 0 for m — oco. Hence we may find an m such
that

1

I — I,)(B - B)||<——— -
4B B||[(C"+[|B])

Since 4 is proper, with 0 € Q(B), one shows as in the proof of Theorem 4.1 that
lim EX(E,BE')'E,y=B"'y, ye/

n—o0

neA

In particular, we may find for 8221/(4ﬂ"§_13" -||E.(B — B)||) an N=m such that
\[[EX(EBEX)'E, — B 'lej||<e, j=0,....m—1, n=N, n€ A,
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implying that ||[E}(E,BE)'E,— B~ '|E*|| <+/me. Collecting the individual terms, we may conclude
that |]A,,||<1/(2H§_1BH). In particular, B~'B + 4, is invertible, with its inverse having a norm
bounded by 2\|1§713H. Thus, system (4.12) has a unique solution for n>N, n € A, with
~—1 * *\— ~—1
|eal <2018 BIES(EBE) ™| ||yl <2[1B BIC"|| .

as claimed above. [J

Proof of Theorem 4.3. (a) By Example 2.7, o7 is proper. Thus (4.4) implies that z € Q. In order
to show the converse, let z € Q(4). According to (4.7), it will be sufficient to give a suitable error
estimate for the error of Padé approximation. For n € A’, define ¢, = 1 if |u,(z)|<1, and ¢, =0
otherwise. Furthermore, let A ={n+¢,: n € A'}. Then we get for n € A’

|an|28n |qn+é:n(z)|2 2 %(‘qn(z)|2 + ’anqn+1(z)|2)
by construction of ¢,, and trivially
|an|28" |rn+sn(z)|2 < ’I"n(Z)|2 + |anrn+l(z)|2'

Using the left-hand estimate of (2.22), we may conclude that

n

2 2 "
o < O e OF s
jgo ‘ql(z)‘ |qn(z)|2 + ‘anqn+l(z)|2 FZO |qJ(Z)‘

rn+sn (Z)
qn+£,, (Z)

<V2(Iru@)P + lawrna(@)P) Y lgi@)P

J=0

= \/E(HHIH-I(ZI _A)ilenHz + |an|2HHn+1(ZI _A)ilen-HHZ):

where in the last equality we have applied (2.19). Notice that the term on the right-hand side is
bounded by v2(1 + |a,|*)||(zf — 4)~'|]>. Hence, using (4.7), we obtain

1 Tse, = o) S NEWET = A ES| 4 (2 S, — ) — En(zl — A)7ES ]|

<)@ = A7+ V201 + |a, Pl — ) 7P

which is bounded in n by assumption on (a,). Thus (4.4) holds.

(b) We first show that (4.4) implies that z may not be an accumulation point of zeros of g¢,,
n € A. In fact, as in (4.6) we may find some N >0 such that

1
|’(€fn—,52{n)_l|’<6c’ neAa n>]v’ ’Z_C‘<%7

showing that eigenvalues of .oZ, (i.e., zeros of ¢,) have to stay away from z for sufficiently large
n € A. Suppose now that A is as described in part (b). Then there exists an open neighborhood
U C Q of z such that u, ; is analytic in U for n € A (at least after dropping a finite number of
elements of A). Also, from Theorem 3.3(c) we know that (#,_;),c4 1s a normal family of mero-
morphic functions in Q, with any partial limit being different from the constant oo by Theorem 3.3(a).
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It follows from [18, Lemma 2.4(d)] that then (u,_),c4 is bounded uniformly on compact subsets
of U, in particular,

d:=sup |u,_(z)| <oo.
neA

Consequently,

‘qn71(2)|2 + ‘anleH(Z)P > |qn71(Z)|2 + |ar171Qn(Z)‘2
|1 (2)]> + 1 - d?+1 ‘

As in the proof of part (a) (with ¢, =1 and = replaced by n — 1) we may conclude that
12— ) I<NE = D7+ VI +d2(0 + g [DIIE =7

and thus (4.4) is true.

(¢) As in part (a), it is sufficient to show that z € Q(A) implies (4.4). Denote by %" the
infinite matrix obtained from ./ by replacing a,_; by 0, and write B":=[%"]_. . Let z € Q(4). By
assumption on (a,_1),ec1, we find an N >0 such that

1
2/l =)

Thus z € Q(B"™) and ||(zI — B")™"||<2||(z — A)7'||. On the other hand, 4" is block diagonal,
with E,(zI — B 'E* = (2.4, — </,)"". Thus ||(z.%, — <£,)7"||<2||(z2f —A4)7"|| for all n € A, n>=N,
implying (4.4).

(d) This part follows immediately from Lemma 4.5.

(e) The complex Jacobi matrix .o/ is proper by Theorem 2.6(c), and one easily deduces that the
same is true for all associated Jacobi matrices .«Z*). By the definition of I'.(4), there exists a k>0
with z € C\I'(A")), the latter being a subset of Q(4*) by Theorem 3.5(c). From the proof of
Theorem 3.3(a) we know that

|an-19a(2)]* =

|4 — B"|| < neA, n=N.

122 — /)7 <

1
- >0.
dist(z T(a®y) <% =0

Let # be obtained from .o/ by keeping the elements from .«/*), putting { # z on the first k diagonal
positions, and zero elsewhere. One easily verifies that then
! <
0,
dist(z, {{} U T'(A4®))

Writing B = [4],,,,, we trivially have z € Q(B), and A — B is compact (and even of finite rank).
Thus the assertion follows from Lemma 4.5. [J

(27, — )7 || < n=0.

4.2. Some consequences for the approximation of the Weyl function

We summarize some consequences of the preceding section for the convergence of Padé approx-
imants 7,(z) = (e, (z.%, — oZ,)"'ey) (i.e., Weyl functions of the finite sections .oZ,) to the Weyl
function ¢(z) = (eg, (zI —A)'ey) in the following statement, which is an immediate consequence of
Corollary 4.4.
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Corollary 4.6. The subsequence (m,),c4 converges to the Weyl function ¢ uniformly in the compact

set F provided that one of the following conditions is satisfied.

(a) A={0,1,2,...} and F C Q(A)\I'es(4).

(b) (@u_1)neca tends to zero and F C Q(A).

(¢) (an_1)nea is bounded, F C Q, with Q ¢ I'(A) being some subdomain of Q(A), and F does not
contain accumulation points of zeros of q,, n € A.

For convergence outside I'(4) (which is included in Corollary 4.6(a)) we refer the reader to
[59, Theorems 26.2,26.3; 20, Theorem 3.10] in the case of bounded .o, and [59, Theorem 25.4] in
the case of determinate .o/. For the special case of a compact perturbation of a self-adjoint Jacobi
operator, Corollary 4.6(a) may be found in [14, Corollary 6; 13, Theorem 2]. The latter assertion
applies a different technique of proof, and contains additional information about the number of
poles at isolated points of Q(A4)\I'es(4). Assertion [14, Theorem 2] on bounded perturbations of a
self-adjoint Jacobi operator is contained in Corollary 4.6(a).

For bounded complex Jacobi matrices, Corollary 4.6(b) may be found in [18, Corollary 4.2].
As shown in [18, Corollary 5.6], this statement can be used to prove the Baker—Gammel-Wills
conjecture for Weyl functions of operators with countable compact spectrum. Corollary 4.6(c) for
bounded complex Jacobi matrices was established in [18, Theorem 4.1] (containing additional results
on the rate of convergence in terms of the functions gi,s and g, of Theorem 3.1). Here as set Q we
may choose the unbounded connected component €2,(4) of €(A). Notice that a connected component
Q of Q(4) with Q ¢ I'(4) is unbounded also for unbounded .«Z. Thus Corollary 4.6(c) has to be
compared with the result of Gonchar [28] mentioned in Section 3.3.

In their work on bounded tridiagonal infinite matrices, Aptekarev, Kaliaguine and Van Assche
observed [7, Theorem 2] that

lim inf |7,(z) — ¢(z)| =0, z € Q). (4.13)

Notice that this relation also holds for unbounded .o/ since otherwise a nontrivial multiple of the
sequence (|¢,(z)] )0 & ¢ would minorize the sequence (|r,(2)])r=0=(|$(z)—1,(2)|-|gu(2) )az0 € £2.
If a subsequence of (a,) is bounded, then by combining Theorem 4.3(a) with Theorem 4.1 we see
that relation (4.13) holds even uniformly in some neighborhood of any z € ©(A4). This was observed
before in [4, Corollaries 3,4] for bounded real, and in [18, Theorem 4.4] for bounded complex Jacobi
matrices.

In this context, let us discuss the related question whether (pointwise) convergence of (a subse-
quence of) Padé approximants at some z implies that z € Q(4). Clearly, the answer is no; see for
instance the counterexamples presented in the last paragraph of [7]. If, however, we replace Padé
convergence by weak (or strong) resolvent convergence, and we limit ourselves to sequences (a,)
containing a bounded subsequence, then the answer is yes: we have z € Q(A4) if and only if there
exists an infinite set A of indices such that

lim (E,y,(z4, — o4,) 'E,y) exists Vy,y' € /°. (4.14)

n—oo
neA

Indeed, if z € Q(A4), then we may use Theorems 4.3(a) and 4.1 to establish (4.14). Conversely,
(4.14) implies (4.4) by [30, Problem V.1.6], and thus z € ©2(4) by Theorem 4.3(a).
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We terminate this section with a generalization of [18, Theorem 3.1], where convergence in
(logarithmic) capacity of (7,) is established for bounded .2/ on compact subsets of the unbounded
connected component of the resolvent set.

Theorem 4.7. Let (a,),ca be bounded, and denote by Q a connected component of Q(A). Then
there exist ¢, € {0,1} such that, for each compact F C Q and for each ¢>0, we have
lim cap{z € F: |¢p(z) — 7., (z)| =€} = 0.

n—oo

neA

If in addition Q ¢ I'(4), then we may choose ¢, =1 for all n € A.

Proof. From Theorem 3.3(c) we know that (u,),c4 is @ normal family of meromorphic functions in
Q. If in addition Q ¢ I'(4), then any partial limit is different from the constant co by Theorem 3.3(a),
and we put v,=u,, ¢,=1. Otherwise, let { € Q. If |u,({)| <1, then again v,=u,, ¢,=1, and otherwise
v, = 1/u,, &,=0. In this way we have constructed a normal family (v,),c4 of meromorphic functions
in Q with any partial limit being different from the constant co.

Let F,F’' C Q be compact, the interior of F’ containing F. Let w,, n € A, be a monic polynomial
of minimal degree such that w,v, is analytic in . From the proof of Theorem 3.4(c) we know that
the degree v, of w, is bounded by some v(F”’) uniformly for n € A. We claim that

sup C,=: C(F)<oo, Cp=max|m,(z) " v,(z)|. (4.15)

neA z€F
Otherwise, there would be integers n;, € A such that C,, >k. By normality, we may assume, without
loss of generality, that (v, ); converges to some meromorphic v uniformly in F’. Since v # oo, we
find some open set D, F C D C F’, having a finite number of open components, and v(z) # oo for
z € 0D. By uniform convergence on 0D it follows that

lim sup max |v,, (z)| < co.

k—oo 2€0D
Since D is bounded and the degrees of the w, are uniformly bounded, we may conclude that the
above relation remains true after multiplication of v, with w,,. Using the maximum principle for
analytic functions, we obtain a bound for w,, - v, on F uniformly in k, in contradiction to the
construction of n;. Thus (4.5) holds.

From (4.15) we conclude that, for any d >max{2,2C(F)} and n € A,

cap{z € F: /1 + |v,(2)]?>d} <cap{z € F: |v,(z)|>d/2}

2C(F)} B (2C(F))‘/"~ - <2C(F)>l/"<F”
d N d h d ’
Notice that by construction (compare with the proof of Theorem 4.3(a))

o n+e,\Z 1 n\Z 2 2 2
66~ men )= (Z";) y \:q‘vl((z))‘ﬁ\“ 0PI + ara P

Since the term in brackets tends to zero uniformly in ' by (2.19), we obtain the claimed convergence
by combining the last two formulas. [

k

<cap {Z € F: |w,(2)|<
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Combining the reasoning of the proofs of Theorems 4.3(a) and 4.7, we may also show that with
Q, A, ¢, as in Theorem 4.7 there holds for any compact F C Q

1
lin% cap| {z € F: limsup ||(zFpss, — Lpss ) || > E =0.
neA

Thus, our result on convergence in capacity of Padé approximants is again connected to a type of
strong resolvent convergence in capacity.

In [48], Stahl suggested to replace in the Baker—Gammel-Wills conjecture [11] locally uniform
convergence of a subsequence by convergence in capacity of a subsequence. Theorem 4.7 confirms
(under assumptions on the regularity of the underlying function and assumptions on some of the
coefficients of its J-fraction expansion) that this is true in the resolvent set. Of course, this open set
does not need to contain the maximal disk of analyticity of the Weyl function, but it might be helpful
in investigating the above conjecture for special classes of functions. We refer the reader to Baker’s
survey [10] for further recent developments in convergence questions for Padé approximation.

4.3. An application to asymptotically periodic Jacobi matrices

A complex Jacobi-matrix .o/ is called m-periodic if a4 =ar, bjmix=0br, k=0,1,...,m—1, j=0,
and .« is called asymptotically periodic if it is a compact perturbation of an m-periodic matrix, i.e.,

iM Gk = ag,  lim b =b, k=0,1,...,m— 1.
Jj—oo Jj—oo
Real periodic and asymptotically periodic Jacobi matrices have been studied by a number of authors,
see, e.g., [26,24,34]. Complex perturbations of real periodic Jacobi matrices are investigated in
[15,16], and complex (asymptotically) periodic Jacobi matrices in [20, Sections 2.2, 2.3; 19, Example
3.6,3].

It is well known (see, e.g., [20, Section 2.2]) that, for m-periodic .o/, the sequences (p,(z)),>_1
and (¢,(z)),>_ satisfy the recurrence relation '

Visvmek = MzZ) * Vimek — Yi—tmsks J=0, k= —1 (4.16)
with some polynomial % for which we have several representations:

Gon-1(2) _ Pan(2)
Qm—l(Z) pm(Z)
In [20, Section 2.3], the authors show (see also [19, Example 3.6] or [3]) that g.(4) = {z €
C: h(z) € [ — 2,2]}, which by [20, Lemma 2.5] has empty interior and connected complement. The
Weyl function of .o/ is an algebraic function, meromorphic (and single valued) in C\oey(4), with
possible poles at the zeros of ¢,,_; [20, Section 2.2], and g(4) is just the extremal set of Stahl [49],
i.e., the set of minimal capacity outside of which the Weyl function has a single-valued analytic
continuation from infinity [20, Remark 2.9].

h(z) = =qu(z) — ap-1 Pnu—1(2).

13 Here we need to put a_i =am—1, and thus 1 = —a,_1 p_1(z) = amw—17—1(z). This slight modification does not change
the other elements of the sequences (pu(z))ns—1 Of (#4(2))nx>—1.
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Let us show here that we may localize the spurious zeros of the FOPs associated with </ (and
with 7). First, using (1.2) and (2.20), one easily verifies the well-known fact that

ngk_H)(Z)::ak(Qn+k+1(Z)rk(Z) — Fupk41(2)qx(2)) (4.17)

is the nth FOP of the associated Jacobi matrix .o/*™D, For z & 6.,(4), the equation y* = h(z)y — 1
has one solution w(z) of modulus |w(z)| <1, and the second solution 1/w(z). From (4.16), (3.7) we
may conclude that there exist (algebraic) functions oy, f;,7x such that

Fim(2) = 0(2) - w(zY,  Guin(2) = Bi(2) - w(z) + pilz) - w(z) ™ (4.18)
for all k= — 1, j>=0 and z € Q(A4). Injecting this information in (2.20) we obtain
ar(Pe1(2)ou(z) — (2w (2)) = 1, (4.19)

showing that |y,(z)| + |yr1(z)| # 0 for all z € Q(4). We may deduce that

111’11 / qjm+k(z) , Vk(Z)
/e Ajmskqjmri1(2)” @rPis1(2)

)—0, k=0,1,...,m— 1, z € QA). (4.20)

Also, by periodicity, ¢¥(z) = ¢*™)(z), and by combining (4.18) with (4.17) we may conclude that

g (@) = ar[w(z) ™" — w(2)]ou(z)p(2)- (4.21)
From (4.20) and (4.21) we see that spurious zeros of (g;.+x);>0 accumulating in { € Q(4) satisfy
7(0) =0 and thus g% () =0.

m

Combining this finding with Theorem 3.6 and Corollary 4.6(c), we obtain the following statement:

Corollary 4.8. Let </ be an asymptotically periodic complex Jacobi matrix, denote by .o/ the
corresponding m-periodic Jacobi matrix, and let k € gO, ...,m—1}. Then for each compact subset
F of Q(A) N Q(A) which does not contain zeros of '\ there exists a J =J(F) such that Gk
has no zeros in F for j=J, and

Jlgglo I?Eagi lp(z) — ﬁmj+k(z)| =0.

Notice that pointwise convergence for asymptotically periodic complex Jacobi matrices was already
obtained in [20, Theorem 2.11]. If .o7 is real, then clearly o.(A4) consists of at most m real intervals.
Barrios et al. [15,16] showed that then the zeros of all qﬁffll) lie in the convex hull & of g.(A4)

and obtained uniform convergence of (7,),>o on compact subsets of C\.%.
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Abstract

Classical interpolatory or Gaussian quadrature formulas are exact on sets of polynomials. The Szegd quadrature formulas
are the analogs for quadrature on the complex unit circle. Here the formulas are exact on sets of Laurent polynomials. In
this paper we consider generalizations of these ideas, where the (Laurent) polynomials are replaced by rational functions
that have prescribed poles. These quadrature formulas are closely related to certain multipoint rational approximants of
Cauchy or Riesz—Herglotz transforms of a (positive or general complex) measure. We consider the construction and
properties of these approximants and the corresponding quadrature formulas as well as the convergence and rate of
convergence. (©) 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is an important problem in numerical analysis to compute integrals of the form f: f(x)du(x)
where p is in general a complex measure on the interval [a, b] with —oo <a < b < +00. Most quadra-
ture formulas approximate this integral by a weighted combination of function values: >/ A, f(&x)-
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The quadrature parameters are the abscissas or knots {&,;}7_, and the coefficients or weights {4, }"_,.
One objective in constructing quadrature formulas could be to find the quadrature parameters such
that the formulas are exact for all functions in a class that is as large as possible.

The most familiar quadrature formulas based on this principle are the Gauss—Christoffel formulas.
These formulas choose for a positive measure i as abscissas the zeros of ¢,, which is the polynomial
of degree n orthogonal with respect to the inner product (f,g) = fab f(x)g(x)du(x). These zeros are
simple and all in the interval (a,b). The weights are the so-called Christoffe]l numbers. They are
positive and are constructed in such a way that the quadrature formula is exact for all f € Il,, i,
i.e., for any polynomial of degree at most 2n — 1. These Gauss—Christoffel formulas are optimal in
the sense that it is impossible to construct an n-point formula that is exact in I1; with k>2n. For a
survey, see for example [25]. The study of such quadrature formulas was partly motivated by the role
they played in the solution of the corresponding Stieltjes—Markov moment problem. That is, given a
sequence of complex numbers ¢;, find a positive or complex measure u such that ¢; = fab xFdu(x),
k=0,1,.... For complex measures see [41,31].

In this survey, it is our intention to concentrate on the computation of integrals of the form
LA = )7, f(e?)du(0) where f is a complex function defined on the unit circle and p is in
general a complex measure on [ — T, t].

The motivation for this problem is that, just as the previous case is related to a Stieltjes moment
problem for an interval, this integral can be related to the solution of a trigonometric moment problem
when p is a positive measure. The Stieltjes—Markov moment problems suggested the construction
of quadrature formulas in the largest possible subset of polynomials. However, in the case of the
trigonometric moment problem, it is very natural to consider Laurent polynomials (L-polynomials)
instead. This is motivated by the fact that a function continuous on the unit circle can be uniformly
approximated by L-polynomials. Since L-polynomials are rational functions with poles at the origin
and at infinity, the step towards a more general situation where the poles are at several other
(fixed) positions in the complex plane seems natural. This gives rise to a discussion of orthogonal
L-polynomials and orthogonal rational functions (with arbitrary but fixed poles).

The outline of the paper is as follows. First we introduce the basic ideas and techniques by
considering the case of Szegd quadrature formulas that are exact in the largest possible sets of
Laurent polynomials for integrals with a positive measure on the unit circle. We introduce the
rational (two-point Padé or Padé type) approximants, based on orthogonal polynomials, and the error
estimates for the rational approximants and for the quadrature. Section 3 introduces the rational
variants of these formulas and approximants. Their convergence is established in Section 5. The
necessary properties of orthogonal rational functions needed are discussed briefly in Section 4. Next,
we discuss the corresponding problems for a complex measure on the unit circle in Section 6. In
Section 7 we also discuss the case where the poles of the rational functions are chosen inside the
support of the measure. For ideas related to integrals on an interval (compact or not) of the real
line we refer to Section 8. Finally, in Section 9 we state some open problems for further research.

Some notation before we start: C is the complex plane and C = C U {o0}. We denote the unit
circle by T ={z€C: |z| = 1}, the open unit disk by D = {z€C: |z| < 1}, and the external of the
closed disk by E={z€C: |z| > 1}. For any function f, the para-hermitian conjugate is defined as
f+(2):=f(1/2). The set of polynomials of degree at most n=0 is denoted by II,, and II is the set
of all polynomials. By A, ,={>"{_, az": a, € C} we denote subsets of L-polynomials, and A is the
set of all L-polynomials. Note that Ay, =1I1I,. If P € I[1,\II,_, (where II_,=()), then P*(z)=z"P.(z).
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2. The unit circle and L-polynomials

A systematic study of quadrature problems for integrals of the form

L= [ 1) auo) @)

with p a positive measure was initiated by Jones et al. [36]. We shall introduce the main ingredients
here as an introduction to our more general discussion in the following sections. The quadrature

formula has the form (the measure p, is discrete with mass A4,; at the points &, k=1,...,n)
[#n{f} = ZAnkf(énk)a (2.2)
=1

where the abscissas are all simple and on T. The objective is an analogue of the Gauss—Christoffel
formula. That is, find knots and weights such that these formulas are exact in the largest possible
set of L-polynomials. So we consider here the polynomial space ¥, = II, and the space of Laurent
polynomials #,,=A_,,, where p and g are always assumed to be nonnegative integers. Note that
the dimension of #,, is p 4+ q + 1. It can be shown that for n different points ,; € T, there is no
quadrature formula of form (2.2) that is exact in some %, of dimension p+ ¢+ 1> 2n— 1. But
there is a quadrature formula that is exact in %,_;,-1, and this has the maximal possible dimension.
All n-point quadrature formulas with this maximal domain of validity can be described with one
free parameter 7, € T. The formulas are called Szegé formulas. They can be described as follows.
First we need the orthonormal polynomials ¢, obtained by orthogonalizing 1,z,z?%,... with respect
to the inner product

(o) = [ 1 du)

The para-orthogonal polynomials are then defined by Q,(z;7,):=¢,(z) + 1,¢}(z). Para-orthogonal
means that O, 1 span{z,...,z""'} while (Q,,1) # 0 # (Q,,z"). If 7,€T, then it can be shown
that Q,(z;1,) has n simple zeros {&,;}7_, C T. These depend on the parameter 7,. We can use this
parameter to place one zero, e.g., &,;, in some arbitrary w € T. The other knots {&,};_, are then
the zeros of k,_i(z,w), where k,_; represents the reproducing kernel for %, _;, that is k,_(z,w) =
Z,'-:ol @i(z)@;(w). It reproduces in the sense that (f,k,_,(-,w)) = f(w) for every f € .%,_,. This
implies, for example, that we only need to know the first n polynomials ¢,,...,,_; to find the »n
knots {&.x}i_,.

Theorem 2.1 (Gonzalez-Vera et al. [33]). If (2.2) is a Szegd formula, then the distinct knots
{&u}, C T are given by the zeros of the para-orthogonal functions Q,(z;t,)=@.(z)+ 1,05 (z) with
1, €T arbitrary, or equivalently by some arbitrary point &, €T and the zeros of
ko_1(z,&n). The (positive) weights A,; are given by the reciprocals

n—1
At =" @GP = ka1 (G En).
k=0

To study error formulas and convergence properties, we use the link with moment problems and
certain rational approximations.
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Therefore, we introduce some rational approximants to the Riesz—Herglotz transform of the mea-
sure u. Let us start by defining the Riesz—Herglotz transform as
t+z
F(z)=1{D(-,2)}, D(tz)= PR
which is a function analytic in @\T having a radial limit a.e. to the unit circle whose real part is
the absolutely continuous part of p. Moreover, it has expansions in D and E that can be described
in terms of the moments ¢, = 1,{z %}, k € Z. We have

F(z) ~Ly(z)=co + ZZCka, zeD,

j=1
Fu(z) ~ Loo(z) = —co =2 jc4z¥, zeE
j=1

Here we have a motivation for finding approximants that converge to F,, since this could help
solving the moment problem. Some rational approximants with fixed denominators are constructed
as follows.

Consider a triangular table X = {{,, e T:i=1,...,n; n€ N}, where ¢, # &,; for i # j. We
shall use the rows of this array as knots for quadrature formulas. Therefore, we shall call such
an array a node array. Let Q, € II, be a node polynomial, that is, a polynomial whose zeros are
{&, i=1,...,n}. For any such polynomial Q,, and for any pair of nonnegative integers ( p,q) such
that p+g=n—12>0, we can find a unique polynomial P, € II,, such that for F, =P,/O, we have

F.(z)— F,(z)=0[z"""], z—0,

Fu(z) = F,(z)=0[(1/2)""], z— oc.
The rational function F,, is called a two-point Padé-type approximation (2PTA). The relation with

quadrature formulas is that if the zeros of O, are the abscissas of the n-point Szegd quadrature
formula, then the 2PTA F,, = P,/Q, has the partial fraction expansion

F,U-n(Z) = ZAm‘D(iniaZ)a

i=1
where the 4,; are the weights of the quadrature formula.

Now let us consider a function f that is analytic in a neighborhood of T. More precisely, let G
be an open and bounded annulus such that 0 € G and T C G, and assume that f is analytic in (a
neighborhood of) the closure of G. Let I’y be the inner and I', the outer boundary of G so that
0G =TI'y UT;. Then, by Cauchy’s theorem we have for 1 € G

0= [Da2EE o) =—fE)20),

where the integral over I' runs clockwise over I'; and counter-clockwise over I',. Now applying the
operator /, and using Fubini’s theorem, we get

1 1
IL{f}= %/FFu(z)g(z)dz and [, {f}= %/FFu”(z)g(z)dz.

Thus, for the error, one has
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Theorem 2.2 (Bultheel et al. [11]). Let [ be analytic in the closure of G, where G is an open and
bounded annulus such that 0 ¢ G and T C G. Assume 0G =1 =T U T, with 'y the inner and I',
the outer boundary of G. Then, if the triangular table X, the 2PTA F,, = P,/Q,, and the n-point
Szegd formula are as above, we have

E Y =14/} —1, {f}——/ (F0) ~ Fu) LD

where the integral over I is clockwise for I'y and counter-clockwise for I'y, and

2Zp+l m Qn(ei())efip()

Qn(Z) - ei9 —

This shows that there is an intimate relationship between the convergents of 2PTA for F, and the
convergence of quadrature formulas.

We shall not develop our treatment of the polynomial case any further, but use the thread of this
section as a motivation for the more general case of rational functions replacing the polynomials.
We shall do this in the next sections. The polynomial situation is there just a special case.

Ry (2)=Fy(z) ~ F,,(z) = du(0).

3. Rational Szeg6 formulas and modified approximants

Let A = {a,: n=1,2,...} be an arbitrary sequence of points in D. Sometimes we abuse this
notation to mean also the point set of the ;. It should be clear from the context what it is meant
to be. Define the Blaschke factors {; by

O_Ck O — Z

G(z)=7—

|O(k‘ 1-— O_CkZ’

k=1,2,...,

where if oy =0, then &;/|o| is replaced by —1, and the Blaschke products By =1 and B, ={; - - - {;,
k>1. The spaces of polynomials of the previous section are replaced by the spaces of rational
functions %, = span{B,,...,B,}. Note that if we set 1o =1 and =,(z) = [[;_,(1 — &z), n>1, then
fe, is of the form p/m, with p€Il,. The spaces of negative powers of z are replaced by
% = span{Bo, Bi.,...,Bu}. Thus, setting @y =1 and w,(z) = [[}_,(z — o), n=>1, then f € %,.
is of the form g/w, with g € I1,. The space of L-polynomials is replaced by #,,= % ,. + £, =
{N/(m,w,): Ne€1I,.,}. Note that if all o, =0, then we are back in the situation of the polynomials
and the L-polynomials as in the previous section.

Let A ={1/d&: o € A}. Since #,, is a Chebyshev system on any set X C C\(AUA), it follows
that for any i=1,...,n, there is a unique rational function L,; € #,,, p+g=n—1>0, that satisfies
L,i(&,;) = 6, where as before X = {¢&,,i=1,...,n;n=1,2,...} is a triangular table of points on
T such that &, # &, for i # j. Hence f,(z) = >\, L.(z)f(&y) is the unique function in £,
interpolating a given function f in the points &, i=1,...,n, and 1, {f}:=L{f,} = > 4uf (&)
with 4,; =1,{L,} is a quadrature formula of interpolatory type having domain of validity #,,,.

Again, by an appropriate choice of the knots &,, we want to extend the domain of validity to
make it as large as possible. As in the L-polynomial case, it can be shown that
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Theorem 3.1 (Bultheel et al. [9]). There does not exist an n-point quadrature formula of the form
(2.2) with distinct knots on the unit circle that is exact in R,_1, or Ryn_1.

This means that #,_,,_, is a candidate for a maximal domain of validity. As in the polynomial
case, we can obtain this maximal domain of validity by choosing the abscissas as the zeros of the
para-orthogonal functions. Such an optimal formula is called a rational Szegé formula (or R-Szegd
formula for short).

Therefore we have to extend our previous notion of para-orthogonality. First we define the
operation indicated by a superstar. For any f,€ % \%,_1 (¥_, =0), we set f*:=B,f,.. This
generalizes the superstar conjugate for polynomials, since indeed if all «; are zero these notions
coincide. Suppose that by Gram—Schmidt orthogonalization of the Blaschke products {B,}, we gen-
erate an orthogonal sequence {¢,}. Then 0 = (L1, 0,) = (Pne» Lin—1y) = (@ BrL (n-1)x). Now
note that B, L ,—1. = {f € % f(a,) = 0}. Thus, if we set Z,(w) = {f €%, f(w) =0}, then
B, % -1y« = Lu(0ty). Thus, ¢, L%, | < @i L%, (x,). Moreover, note that (¢,,B,) = (1, ¢}) # 0. This
motivates the following definition.

Definition 3.2. We say that a sequence of functions Q, € %, is para-orthogonal if 0,1 %, N.%(a,)
for n>1 while (Q,,1) # 0 and (Q,,B,) # 0.

Definition 3.3. A function Q, € %, is called c-invariant if QO =cQ, for some nonzero constant ¢ € C.

It can be shown that any para-orthogonal and c-invariant function Q, € .%, has to be some constant
multiple of Q,(z;1,) = @.(z) + 7,¢;(z) with 7, € T. The most important property is stated in the
next theorem.

Theorem 3.4 (Bultheel et al. [9]). Any para-orthogonal and c-invariant function from £, has pre-
cisely n zeros; they are all simple and lie on T.

Thus, the functions Q,(z;1,) = @,(z) + 1,0} (z) with 7, € T can provide the knots for an R-Szego
formula and indeed they do, and what is more: this is the only possibility.

Theorem 3.5 (Bultheel et al. [9]). The quadrature formula (2.2) with distinct knots on T is an
R-Szegd formula (with maximal domain of validity R, ,, 1) if and only if

(a) it is of interpolatory type in R ,, with p,q nonnegative integers with p+q=n—1;

(b) the abscissas are the zeros of a para-orthogonal c-invariant function from %,.

Note that for each n, we have a one-parameter family of R-Szegd quadrature formulas, since the
parameter 7, € T is free.

We now introduce the reproducing kernels, since both the abscissas and the weights can be
expressed in terms of these kernels. If {¢;} are the orthonormal functions, then the kernel function
ku(z,w) =>4 @i(z)@i(w) is reproducing for %, meaning that (f,k,(-,w)) = f(w) for all € .%,.
As for the Szegd polynomials, these kernels appear in a Christoffel-Darboux formula.
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Theorem 3.6 (Bultheel et al. [8]). Let {¢@} be the orthonormal polynomials for the spaces .
Then the reproducing kernel satisfies

0105 W) — 94(2)9a(W)
1 - gn(Z)Cn(W) .

So far we have characterized the abscissas of the R-Szeg6 formulas as the zeros of the para-ortho-
gonal functions Q,(z;1,). They can also be written as the zeros of a reproducing kernel. Indeed, by
varying 7, € T, we can place for example ,; at any position w € T. The other n—1 zeros &,; are then
the zeros of k,_;(z,w). Conversely, if &, € T arbitrary and {&,;}", are the zeros of k,_(z, &), then
there is some 7, € T such that these {&,;}/_, are the zeros of the para-orthogonal function Q,(z;t,)
(see [7]).

Also the weights can be expressed in terms of the kernels exactly as in the polynomial case. This
results in the fact that Theorem 2.1 is still true if we replace Szegd formula by R-Szegé formula
(see [13]).

The 2PTA of the previous section are generalized to multipoint rational approximants (MRA)
in the following sense. Let O, = ¢, + 1,¢;, 1, € T, be the para-orthogonal function as above. Now
define the so-called functions of the second kind y, € &, as

U2 =LAE(2)pu(1) — D(1.2)gu(2)},  E(t,2)=D(1,2) + 1 (3.1)

and set P,=y, —1,\;. Then it turns out that the rational function F, (; 1,):=F,,=—P,/O, (depending
on z and 7,) is a MRA for the Riesz—Herglotz transform F),, since

ky_1(z,w) =

ZBn—l(Z)[Fu(Z) - F#”(Z)] and [ZBn—l(Z)]*[Fu(Z) - FH”(Z)]

are both analytic in @\T This means that F, interpolates F, in the points {0,0,,...,a,_} and
in {00, 1/d;....,1/&, 1}. Note that there are 2n + 1 degrees of freedom while there are 2n inter-
polation conditions. So there is one condition short for F, to be a multipoint Padé approximant.
These approximants are called modified approximants (MA) since they are modifications of the true
multipoint Padé approximants (MPA) F, (-;0) = ¢,/}s (interpolates in all the MA points and in
the extra point 1/a,) and F,,(-;00) = =y, /¢, (interpolates in all the MA points and in the extra
point o,,). Furthermore, it follows from the partial fraction expansion F, (z) = >_" | A,;D(&,,z) that
F,(z)=1,{D(-,z)}, and this relates it to the quadrature formula.

If more generally, we have a rational function F,,, whose denominator is a node polynomial of
degree n for some node array, and suppose it interpolates F, in the points {0,,...,a,} and in
{o0,1/d;....,1/d,}, then we say that it is an MRA of order (p + 1,¢ + 1). Thus, our MA is an
MRA of order (n,n). Let F, (z)=>_;_, A:D(&.,z) be the partial fraction decomposition of F,, which
defines the weights 4,; as

_ 2p(&)y(Eny) X,(1) .
TR I“{wp(ﬂnq(r)(r—énj)}’ SOES | ()

i=1

then it can be shown that for given (A, X), the quadrature formula 7, {f} =", 4, (&) is exact
in #,, if and only if F, is an MRA of type (p + 1, + 1) with respect to the point sets (A, X)
for the Riesz—Herglotz transform F, (see [15]).
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We can now work toward an expression for the error of the quadrature formula. Assume f
is analytic in the closure of G where G is an open and bounded annulus such that 0 ¢ G and
TCcGCC\(AU A\). This is only possible if A is in a compact subset of D, i.e., if the o do not
tend to T. Exactly the same type of proof as in the polynomial case can be given for the following
theorem.

Theorem 3.7 (Bultheel et al. [12]). Let [ be analytic in the closure of the open and bounded
annulus G which is such that 0 ¢ G and TCGCC\(A U A). Let X be a given node array.
Assume that 1, {f} =>"7 Auf(Ew) is exact in R, , and hence F,, =" | AuD(Ey, ) is an MRA
of order (p+ 1,9+ 1) for F, in the strong sense; then

1 - d
B S YIS} = 0} = g [ R0 = Rl =50 (32)
Define the node polynomial X,(z):=1]"_,(z — &.); then
Ry (GY=F(2) — F(z) = 222 EME) 7 Kl du) (33)

Xu(2) (el — Z)wp(em)nq(eig).

There is no MRA of degree n with simple poles in T and of order (n+ 1,n) or order (n,n + 1),
hence there is no quadrature formula with knots on T with domain of validity R, ,_\ or R, ,.

The only quadrature formulas exact in R,_,,-, with knots on T are the R-Szegé formulas,
and hence the MA are the only MRA of order (n,n), i.e., the ones whose poles are zeros of the
para-orthogonal function of degree n.

Here too, it is seen that the convergence of the quadrature formulas is closely related to the
convergence of the MAs or MRAs.

By means of orthogonality properties it can be shown that for the MAs the previous error formula
can be transformed into

2z, e
Ru(z)= Z@m, 1(2)7'[2 1(2)
[X.(2)]
where D, =1,{0,(z)(1 — &,z)}. Note that this term D, is caused by the fact that para-orthogonality

is a deficient orthogonality. When in classical formulas, zeros of orthogonal polynomials are used,
then such a term does not appear.

n X, i0 Zd 0
e R i)

— 2)w,_1(e)m,_ (i)

4. Orthogonal rational functions

The quadrature formulas we consider in this paper are closely related to the properties of orthog-
onal and quasi-orthogonal rational functions. We collect some properties of these functions in this
section. A fairly complete account of what is known about these orthogonal rational functions can
be found in the monograph [19].

The orthonormal rational functions { ¢y, ¢1,...} are obtained by orthonormalization of the sequence
of Blaschke products {By,B;,..., }. They were first considered by Djrbashian (see the references in
[24]). Later on, the reproducing kernels were considered in the context of linear prediction and the
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Nevanlinna—Pick interpolation problem [4]. We assume that they are normalized by the condition that
in the expansion ¢,(z) =3 }_, axBi(z), the leading coeflicient with respect to this basis is positive:
Kn=p, > 0. If k,(z,w) ="} @x(z)@i(w) is the reproducing kernel for %, =span{B,,...,B,}, then
it can be verified that k,(z,0,) = k,¢}(z), where ¢}(z) = B,(2)®,.(z), hence also k,(o,,0,) = K2.
Although it is not essential for the present application, we mention for completeness that the ¢,
satisfy a recurrence relation, i.e., there exist specific complex constants ¢, and J, such that |¢,|> —
16,2 = (2, (1 = [o2)/i2(1 = |o,—1[*)) > 0 and

K z— 0
¢u(z) = . &n =
Kn—1 1 - Gy

- 11—,z ,
i) + 9, 02|

1—d&,z

The initial condition is ¢o=1//co with co= [; du. There is also a Favard-type theorem: if some ¢,
satisfy a recurrence relation of this form, then they will form an orthonormal sequence with respect
to some positive measure on [. In this respect see also the contribution by Marcellan and Alvarez
in this volume.

The functions of the second kind s, associated with ¢, are another independent solution of the
same recurrence relation. They can also be derived from the ¢, by relation (3.1). In fact, this means
that o = \/co = 1/ and W, = [,{D(-,z)[@.(-) — @.(z)]} for n>1. The para-orthogonal functions
0.(z;1,)=@u(z)+ 1,0} (z) and the associated functions of the second kind P,(z;7,)=u(z) — 1, (2)
were introduced before.

Example 4.1 (Malmquist basis). Assume we take the normalized Lebesgue measure du(8)=d6/(2n).
Then it is known that the orthonormal functions are given by

zB,(z) /
QD"(Z):K"Z—oc ) Kn = 1_‘0(}1‘2-

This basis is known as the Malmquist basis. Then ¢(z) = k,/(1 — &,z) and therefore Q,(z;7,) =
(pn(2)+‘L',,(,D;(Z):K,,[(ZB,,(Z)/Z—OC,,)+(’L',,/1 —O_(,,Z)]. NOting that Bn(Z):nnwn(Z)/nn(Z): with N € —[I—a and
7, € T is arbitrary, we can choose 7, =#,, so that the expression for Q,(z;,) becomes Q,(z;1,) =
KnTalz,—1(2) + T, 1(2)]/7,(2). If all o =0, then w,_(z) =z""" and ®,_;(z) = 1, so that the zeros
of 0.(z;1,) are (a rotated version of) the nth roots of unity.

We also have to introduce the spaces %, ,=span{B_,,...,B,}, where p,q are nonnegative integers
and B_,=1/B,=B,.. Weset £ =,y %, and Z=J," ) %n.n-

Theorem 4.2 (Bultheel et al. [12]). The space ¥ is dense in H?(D), 1< p < oo, if and only if

(1= Joy|) = 0.
The space R is dense in LP(T), 1< p < oo, and in C(T) if and only if >, (1 — |o|) = oo.

We note that the condition >, (1 — |o|) = oo means that the Blaschke product B, converges
uniformly to zero in D. Also we should have p # oo in this theorem, and not 1< p<oo as
erroneously stated in [12].
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Finally, we mention the rational variant of the trigonometric moment problem. Suppose a linear
functional M is defined on ¥ by the moments

k
co=M{1}, a=M{l/n}, m(z)=]]0-&2), k=12,
i=1
and by M{w;.} = ¢; we can then define M on the whole of # =%+ ¥, =% - &,, where
ZL.={f+: f€ZL}. The moment problem is to find under what conditions there exists a positive
measure ¢ on T such that M{-} =1,{-}, and if the problem is solvable, to find conditions under
which the solution is unique and possibly, if there are more solutions, to describe all of them. For
a proof of the following results about moment problems, we refer to [14,18].

If it is assumed that M satisfies M{f.} =M{f} for all f €% and M{ff.} > 0 for all nonzero
f €, then this functional defines an inner product (f,g)y:=M{ fg.}. Under these conditions one
can guarantee that a solution for the moment problem exists. Denote by .# the set of all solutions. For
solving the uniqueness question, the MRAs that we considered in the previous section play a central
role in the solution of the problem. Recall that the MRA is given by F,(z; 1,)=—P.(z;1,)/0.(z; 1)),
1, € T, where Q,(z; 1,) are the para-orthogonal functions and P,(z; 7,) the associated functions of the
second kind. It turns out that the set K,(z)={F,(z;t): t€ T} is a circle. Moreover, the circular disks:
A,(z) with boundary K,(z) are nested: 4,.,(z) C 4,(z) and their boundaries touch. The limiting set
A(z) =, 4.(z) will be either one point or a circular disk, and this fact is independent of the value
chosen for the complex number z € C\(AUA). If the Blaschke product diverges, i.e., Y (1—|oy|)=00,
then the limiting set is a point and the moment problem has a unique solution (is determinate).
If the limiting set A(z) is a disk with positive radius, then the Blaschke product converges, i.e.,
> (1 — |ox|) < oo, and the moment problem has infinitely many solutions. The set A(z) can be
characterized as A(z) = {F,(z): p€ .4}, where F,(z) denotes the Riesz—Herglotz transform of u. A
solution u € ./ is called N-extremal if its Riesz—Herglotz transform F,(z) belongs to the boundary
of A(z). It can be proved that u € .# is N-extremal if and only if % is dense in Li.

The last density result is interesting because N-extremal solutions exist if the Blaschke product
converges. Thus, ¥ may be dense in Li even if > (1 —|a|) < co. However, if the Blaschke product
diverges, then % will be dense in L.

5. Convergence of MA and R-Szeg6 quadrature

We are still considering the case of a positive measure ¢ and MA’s F, =P,/0Q,, where O, =@, +
7,0k, 1, €T, is the para-orthogonal function in %, and P, =, — 1,/ is its associated function.
Also 1, {f} is the nth R-Szegd formula. We have seen that the convergence of 7, { f} is related to
the convergence of F,,. That F, does converge is essentially a consequence of the Stieltjes—Vitali
theorem.

Theorem 5.1 (Bultheel et al. [8,15]). If > .2 (1 — |a,|) = oo, then the MA’s F, (z;7,) converge to
F,(z) uniformly on compact subsets of C\T.

Remark. Because the Stieltjes—Vitali theorem is used, the proof of the above theorem is not con-
structive. It is an interesting open problem to give a constructive proof using continued fraction
methods [34].
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To estimate the rate of convergence, we recall that Q, = X,/n, and |B,| = |w,/n,|, so that from

(3.4)
2] 0,
0,G)F l"‘ { ] } * 'D"']

and hence there is a constant M not depending on » such that

|F O] <MY[[B, 1 ()11 = @iz Q)T (S, + (D)

TC,,,,l(Z)
T,(2)

Wy (Z)
T(2)

Ty Ty

)< \

Th—1 Wp—1

with S, = ||Q?||comax,ct|1 — &,¢|*. This explains why we need the root asymptotics of O, and B,
to estimate the rate of convergence for F, . Therefore we need some assumptions on p and the
point set A = {o,a,,...}. For the given set A, let v\ = 1/n Z;zl 0(a;) be the counting measure,
which assigns a mass at o, proportional to its multiplicity. Assume that v,' converges to some v* in
the weak star sense, in the dual of the Banach space C(@), where C is the Riemann sphere. Thus
lim, .o [ fdv® = [ fdv* for all feC(C). We denote this as v* — v, Then the root asymptotics
for the Blaschke products are given by:

Theorem 5.2 (Bultheel et al. [15]). If B, is the Blaschke product with zeros {oa}i_,, and v = v,
then

lim |B,(z)|"" = exp{A(z)} and lim |B,(z)|”"" = exp{i(%)}

locally uniformly for z € C\({0} U supp (v*) U supp (v*)), where
i) = [log L)l dv' @), L =1 5.1)

zx
and where 2 =1/z and A = {4 =1/a: o€ A}. For ze C\{0} we have the inequalities
limsup |B,(2)|"" <exp{A(z)} and limsup|B,(z)|”"" <exp{i(3)}.

n—oo n—oo

As for the root asymptotics of the para-orthogonal functions, one has

Theorem 5.3 (Bultheel et al. [15]). Let u be a positive measure satisfying the Szegd condition
ST log W (0)d0 > — oo and assume that the point set A is compactly included in D and that

v 598, Then, for the para-orthogonal functions Q,, it holds locally uniformly in the indicated
regions that

lim |Q,(2)|"" =1, zeD,
lim |0,(z)]'" = exp{A(2)}, z € E\supp(v"),

limsup |Q,(z)]"" <exp{i(z)}, z€F,

n—o0o

lim [|Q,(2)||: = 1.

A combination of the previous results now leads to the rate of convergence for the MA’s.
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Theorem 5.4 (Bultheel et al. [15]). Under the same conditions as in the previous theorem, the
Jollowing estimates hold for the convergence of the MAs F,, to the Riesz—Herglotz transform F,,.
Setting R,, = F, — F,,, we have

limsup |R,, (2)|"" <exp{i(z)} <1, VzeD,

n—oo

limsup [R,, (2)|"" <exp{A(2)} <1, Vz€E, wherez=1/z,

n—oo

and Mz) as in (5.1).

Example 5.5. Consider the simple case where lim;_. o = a€D. Then v*(z) = §, and A(z) =
log|l.(a)|, {(a) = (a — z)/(1 — Za). Therefore, limsup, . _|R, (z)|""<|(.(a)] <1 for z€D and
limsup, . |R, (2)]""<1/|{.(a)| <1 for z€E. The best rates of convergence are obtained for z
near a and 4 = 1/a, as one could obviously expect.

Similar results hold for the true MPAs:

Theorem 5.6 (Bultheel et al. [15]). Under the same conditions as in the previous theorem, the
following estimates hold for the convergence of the MPAs F, = /¢, and F) = —\ /¢! to
the Riesz—Herglotz transform F,. Set R, =F, — F, and R = F, — F; then locally uniformly
in the indicated regions:

limsup [R*(2)|'" <exp{A(z)} <1, VzeD,

limsup R, (z)|"" <exp{i(3)} < 1, Vz€[E, whereZ=1/z,

and Az) as in (5.1).

Now we can move on to the convergence of the R-Szeg6 formulas. This is a direct consequence
of the previous analysis For example, we get from (3.2) that

KO [ 10 - Bl

Therefore, it follows under the conditions of Theorems 3.7 and 5.4 that the R-Szegd quadrature
formula converges to the integral for all functions analytic in the closure of G with the annulus
(G as above in Theorem 3.7. For this situation, we can even obtain an estimate for the rate of
convergence that relies on the previous estimates.

< —
En A< r}larx

Theorem 5.7 (Bultheel et al. [15]). Let 1,,{f} be the R-Szegd formula for a function f that is
analytic in the closure of the open bounded annulus G such that 0 ¢ G and TC G C C\(A U A).

Then under the conditions of Theorem 5.4,
limsup |£,{f} — un{f}|1/n <y <1,

n—o0o

where y =max{y, .}, with y; = max,crnp exp{A(z)} and y, = max,crneexp{A(2)}, where Z=1/Z
and Mz) as in (5.1).
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To prove convergence for the broader class of continuous functions f € C(T), we define y,(f):=
inf ex,,||f — fullso- By Theorem 4.2, lim,_o y,(f) =0 if 3>, (1 — |o|) = oo. Assume that r,_; €
Ry—1,n—1 18 such that || —r,_1||oc = yu—1(f). If we take into account that 7, {r,_} =1,{r,—}, then
it follows that

EL A H =104 =} + Lo {ra— — SH<po(OILALS + L, {1}].

Thus, |E,, {f} <Ciy,—1(f), with C; a constant. So it follows from the convergence of y, that also the
R-Szeg6 formula converges for continuous functions. If we then also take into account the standard
argument proving that, if a quadrature formula with positive coefficients converges for continuous
functions, then it also converges for bounded integrable functions, we arrive at

Theorem 5.8. The R-Szegd formulas I, {f} converge for any bounded integrable function f and
positive p if 3, (1 — |o,|) = 0.

Thus, we have obtained convergence in the largest possible class.

With the help of [12, Theorem 4.7], it can be shown that 7, can be bounded in terms of the modulus
of continuity w( f,d)=sup{|f(¢)— f(7)|: t,t€ T, |Arg(¢/t)| < d}. So, there exists a constant C, such
that |E, {/} < Co(f,n/(n+ 1)) for n large enough.

6. The case of a complex measure

If the measure p is complex (not real), then we cannot guarantee the existence of a sequence of
orthogonal rational functions. In that case we can choose an arbitrary auxiliary positive measure v on
T and compute the knots of the quadrature formula as the zeros of a para-orthogonal function for this
measure. The obvious question is what would be a good choice for this auxiliary measure. Choosing
the Lebesgue measure as v would lead to equidistant nodes on T. There are few other examples
of measures that lead to explicit expressions for the knots. In general, they must be computed
numerically. If we are prepared to do this, then we could choose the measure v as a function of the
convergence behavior of the quadrature formulas.

In this case we shall consider absolutely continuous measures. So, let du(0)=p(0)d6 and dv(0)=
w(0)d0. We assume w(0) >0, [* [p(0)]d0 < oo, and p/w € L2, i.e.,

™ |p(0))? _ 2
[ﬂ o(0) df =K* < o0. (6.1)

We are concerned with the computation of integrals of the form I,{f} = ["_ f(e"*)p(0)d0 approxi-
mated by 1, {f} =31, Wuf (&), where X ={¢,;} CT is a node array.

Inspired by the results of the previous sections, our first guess is to choose the knots as the zeros
of the para-orthogonal functions for the positive weight w and construct interpolatory quadrature
formulas in a subspace #,, of dimension n. For this kind of quadrature formulas, we can show
that the coefficients do not grow too fast: There is an absolute constant (i.e., not depending on n)
C; such that Z;.':l W,;| <Csy/n. Then, by using a rational generalization of the Jackson III theorem
(see [12, Theorem 4.7]), it can be shown that the following convergence result holds.
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Theorem 6.1 (Bultheel et al. [12]). Let w and p be as in (6.1). Let f € C(T) with modulus of
continuity o(f,0)=0(6%), p > % Let p(n) and q(n) be nonnegative integers with p(n)+q(n)=n—1
and 1im,_, p(n)/n = 5. Then the interpolatory quadrature formulas 1, {f} whose knots are the
zeros of the para-orthogonal function for o and which are exact in R ppy 4 converge to I,{f}.

Note that we need p > % so that convergence in C(T) is not proved.

To get convergence for a larger class, we consider N-point quadrature formulas of interpolatory
type in #,, with N =2n + 1. The basic idea for constructing such quadrature formulas is the
following. Define g(e?):=p(0)/w(0); then it is clear that

L= [ 1w a0= [ 1 g o) do=1.{ g}

Now  is positive and we can apply our previous theory of R-Szegd formulas. However, the
integrand is now a product fg. If we want equality /,{ '} =I{f}, for f € %, ,, then we must be
able to integrate fg exactly for f € #,,. It can be shown that 1,{fg}=1,{f¢..} for all f€R,, if
gon is the orthogonal projection of g onto #,,, in L2 [17]. Thus, it is sufficient to construct quadrature
formulas exact in %, , - #,, so that I,{fg} and hence also /,{f} can be computed exactly for all
f €2, Note that by the product %, ,, - %,.,, we double each pole.

Therefore, we associate with the sequence A={o;} the doubling sequence A= {0, 0,01, 02,0, ...},
denoted as {dy, &, %y, d3,d4,...}. This doubling sequence can be used in exactly the same way as
before to define Blaschke products B, and spaces %,, and orthogonal rational functions @,. The
para-orthogonal rational functions Qn(z 7,)=¢,+1,p, with 7, € T and @, —Bn<pn* have n simple zeros
&, i=1,...,n, that can be used to construct R-Szegd quadrature formulas. Now set N =2n+1 and
let Iﬁ{f} be the R-Szegd formula that is exact in IéN,l,N,l :,?N,l-gw,l)*. Since F € ?;?N,LN,l &
F = fg with f,g9€ %,, we have reached our objective. We have

Theorem 6.2 (Bultheel et al. [17]). As in (6.1), let p be complex, w positive, and g(e')= p(0)/(0)
€L>(T). For N =2n+ 1, let {ﬁN,} be the zeros of the para-orthogonal function from Ly

associated with the doubling sequence A and the weight w. Moreover, let /fNj be the weights
of the corresponding N-point R-Szegd formula, exact in Ry_i n_1. Then the quadrature formula
=, W~Njf(51vj) computes the integral 1,{f} exactly for all f € R,, if the weights are
given by Wy; =An;jgan(En;), where go, is the projection of g onto R,, in L:(T).

This defines the quadrature formulas 7, { f}. Now to prove convergence, we use a rational ex-
tension of the classical Erdés-Turan theorem: if fy € 4, , interpolates f in the points {&n Y,
then, under the conditions given in Theorem 6.2, fy converges to f in L2(T). Using the bound
S W] < Csy/n, the Cauchy—Schwarz inequality, and a rational generalization of [43, Theorem
1.5.4], we get the following convergence result.

Theorem 6.3 (Bultheel et al. [17]). Assume the same conditions and the same interpolatory quadra-
ture formulas as in Theorem 6.2. If, moreover, 32 (1 — |o;|) = 0o, then the following convergence
results hold.
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For any bounded f for which I,{f} < oo exists as a Riemann integral, I,],\' {f} converges to
LAf}

For any bounded Riemann integrable f, Z;V:l | Wil f(Exy) converges to [T f(e)|p(0)|dO.

The MRA Fy(z) = I){D(-,z)} interpolates the Riesz—Herglotz transform F,(z) = I,{D(-,z)}
at the points {0,0,...,a,} and {oco,1/d,,...,1/4,}, and it converges to F, uniformly on compact
subsets of C\T.

The previous results are related to interpolatory quadrature formulas in %, ,. We can, however,
generalize to the asymmetric case and consider more general spaces 2, = 2 pu),qn)» Where p(n)
and ¢(n) are nondecreasing sequences of nonnegative integers such that p(n) 4+ g(n) =n — 1 and
lim, .., p(n)/n=r € (0,1). Note that the spaces %, have dimension » and they are nested. As before,
we need to introduce an asymmetric doubling sequence as follows. Set r(n) = max{p(n),q(n)},
S(n):min{p(n), CI(I’Z)}, OC():O, An:{ao, 001y Oty v v vy Xs(n)s Xs(n)s Ls(n)+1s -+ » OC,(,,)}:{&(), 0?1, ey O~Cn,1}. Since
increasing n to n+ 1 increases either p(n) or g(n) by one, this increases either »(n) or s(n) by one.
The numbering of the & is such that &, is either a repeated point o, or a new point o). This
defines the sequence A = {dy,d,,...} uniquely. The quantities related to the A are as before denoted
with a tilde. We construct quadrature formulas whose nodes are the zeros ¢,; of the para-orthogonal
function Qn(z; 7,) =0, (2)+1,p,(z). The ¢, € gn\g’n_ | are the orthogonal functions with respect to
the positive measure o with the properties introduced before. The weights W, of these quadrature
formulas 7, {f} = >";_, W f (&) are constructed such that 1, { f} is exact in &, = X pu),qn) Of
dimension n. With this setting, one can follow the same approach as in Theorem 5.4, but now the
MAs are replaced by MRAs of order (p(n)+ 1,g(n) + 1).

Theorem 6.4 (Bultheel et al. [20]). Assume [*_logw(0)d0 > — oo and let the sequence A, hence
also A, be included in a compact subset of D. Denote by F, the MRA of order (p(n)+1,q(n)+1)
to the Riesz—Herglotz transform F,. The denominator of F,, is [[,_, (z — &), where the &, are
the zeros of the para-orthogonal functions in ¥, with respect to the sequence A and the positive
function . This sequence A is defined as above in terms of the sequence A and the sequences of
integers (p(n),q(n)), p(n)+ 1(n)=n—1. The functions p and w satisfy (6.1). Then the following
convergence results hold.
limsup |F,(z) — F,,(2)|"" <exp{ri(z)} < 1, VzeD,

n—00

limsup |F,(z) — F,,(z)|"" <exp{si(£)} <1, Vz€E where Z=1}z,

n—o0

where r =1im,_ ., p(n)/n, s =lim,_,q(n)/n=1—r, and A(z) as in (5.1).

From this theorem, the following theorem follows directly by using Theorem 2.2.

Theorem 6.5 (Bultheel et al. [20]). Under the same conditions as in the previous theorem, assume
the quadrature formulas 1, {f} have nodes {&,};_, and their weights are defined such that the
Jormulas are exact in Ry qn 0f dimension n. Then it holds that

limsup |,{/} — 1, {/}"" <y < 1

n—oo
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for any function f analytic in a closed region G such that T C G C C\(AUA), where y=max{y1,7,}
with

j1= max exp{ri(z)} and 7y,= max exp{si(2)},

Mz) as in (5.1), I' = 0G is the boundary of G consisting of finitely many rectifiable curves,
r=1lim, .o p(n)/n, s=1lim, . qn)n=1—r, 2=1/2, A={d=1/a: a€ A}.

Note that if we take the balanced situation, i.e., when r =s = %, then from this theorem it follows
that y=+/7 with j=max{7,,7,}, where 7, =max.crnp exp{A(z)} and §, =max.crne exp{A(2)}. If we
assume that p is positive, then we can take w = p and A = A, so that the quadrature formulas then
considered in this theorem are precisely the R-Szegd formulas. This result is confirmed by Theorem
5.6, where indeed the bound 7 is given. The squaring y =" is of course to be expected.

7. Poles in the support of the measure

So far, we have assumed that the poles of the rational functions were outside the support of the
measure. If the poles are selected in the support, then we can refer to the theory of orthogonal
rational functions with poles on T when we want to compute integrals over T. This theory is
analogous and yet different from what was explained in Sections 3—6. It generalizes the differences
that also exist between polynomials orthogonal on the real line and polynomials orthogonal on the
unit circle.

So instead of choosing points «; inside D), we choose them all on the boundary T. We need to
define one exceptional point on T that is different from all o,. We assume without loss of generality
that it is —1. So A={ay,a,...} C T\{—1}. We consider the spaces ¥, =span{1/w,, 1/w,...,1/w,},
where w;(z) = Hf;l(z — o;) as before. The theory can be developed along the same lines, but it
is a bit more involved. We use the same notation where possible. Now it is important that if
@u(z) = pu(z)/mu(2), then p,(o,_1) # 0. If this holds, then ¢, is called regular, and the system
{@,} is regular if every function in the system is regular. It is for such a regular system that one
can prove that the orthogonal functions satisfy a recurrence relation of the following form [10]. For
n=2,3,... and with o, =0,

Z — Oly— Z — Oy
On1(2) + B,——2,_1(z) + C, 2 0n_a(2).
zZ— 0 zZ— 0y,

z— oy,
These constants satisfy 4, + B,(o,_1 — ®,_2) # 0 and C, # 0 for n =2,3,... .

The para-orthogonal functions are in this case replaced by quasi-orthogonal functions. These are
defined as

O,(z;1,):=pu(2) + 7

We have:

Pu(z) =

(A + o)z — oy)
"+ )(z — o)

q)n—l(z)a Ty € R.

Theorem 7.1 (Bultheel et al. [10]). If the system {¢@,} is regular, then it is always possible to find
(infinitely many so-called regular values) t, € R such that the quasi-orthogonal functions Q,(z;t,)
have precisely n zeros, all simple and on T\{a,...,0,}.
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Let {1 }i_, be these zeros. If we take them as knots for an interpolating quadrature formula for
L._1, then this quadrature formula will have positive weights and it will be exact in %,_, - %,_;.
If ©, =0 is a regular value, then the corresponding quadrature formula is exact in %, - %,.

These quadrature formulas are the analogs of the R-Szegd formulas. We shall denote them again
by 1, {f} =>"1_1 Auwf (). In fact, one can, exactly as for the R-Szegd formulas, express 4, and
& in terms of the reproducing kernels. Note that 4,;, and &, depend as before on the choice of 1,.
Then it can be shown that 1, {D(-,z)} =F,,(z) = —P,(z;1,)/Ou(z; 7,). This is a rational approximant
for the Riesz—Herglotz transform F,(z) =1,{D(-,z)} in a particular sense. Indeed, F,, (z) and F,(z)
are defined for z€ D, but by extending them by a nontangential limit to the boundary T, we
have interpolation in {0, 00, oy, a,...,0%,_1,%,_1} (repeated points imply interpolation in the Hermite
sense). In case 7, =0 is a regular value, then F,, = ,/¢@,, with i, as before the functions of the
second kind associated with ¢,. Then this F,, will also interpolate in the extra point o,. It can be
shown that if {¢,} is a regular system, then there is a subsequence F,, that converges to F, locally
uniformly in C\T. However, convergence has been explored only partially, and here is a wide-open
domain for future research.

8. Integrals over an interval

By conformally mapping the unit circle to the real line, we can obtain analogous results on the
real line. The results have different formulations, but they are essentially the same as the ones we
gave in the previous sections. We consider instead some other quadrature formulas that were derived,
making use of rational functions. We restrict ourselves in the first place to a compact interval 4 on
the real line, which we can always renormalize to be [ — 1,1]. It will be assumed everywhere in
this section that 4 denotes this interval.

So we now consider measures that are supported on an interval of the real line and we assume
that this interval is supp(u) C 4 =[ — 1,1]. The problem is to approximate the integral [, f(x)dx.
Several quadrature formulas of the form Y ;_, 4, f(x;), exact for other functions than polynomials
have been considered in the literature before. We shall discuss formulas exact for spaces of rational
functions with prescribed poles outside A. For more general cases, see the classical book [23, p.
122] and references therein.

Consider a positive measure p. In [26], Gautschi considers the following problem. Let o, £ =
1,...,M be distinct numbers in C\A4. For given integers m and n, with 1 <m<2n, find an n-point
quadrature formula exact for all monomials x/, j =0,...,2n — m — 1, as well as for the rational
functions (x —o)~%, k=1,...,.M, s=1,...,s:, with 5, >1 and Zﬁl sy = m. The solution is given
in the following theorem (which is also valid for an unbounded support A4).

Theorem 8.1 (Gautschi [26]). Given a positive measure u with supp(p) C A C R, {oy 1, C C\ 4,
and positive integers sy, Zf:l sy = m, and define w,,(x):= Hf:, (x — o ), a polynomial of degree
m. Assume that the measure du/w, admits an (polynomial) n-point Gaussian quadrature formula,
i.e., there are £ € A and A7 > 0 such that

/ 70y 3 Z AT F(EY+ES{S} with ES{f} =0, Vf€Elly .
A wm(x) Jj=1
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Define &;:=EF and A;:=A7 0,(E7), j=1,...,n. Then [, f(x)du(x)=>"7_, 4;1(&) + E A f}, where
EA{f}y=0 for all f€Ily,_p_, and for all fe{(x —o) > 1k=1,....,M;s=1,...,5}.

Depending on the application, several special choices of {a;} are proposed: they may contain
real numbers and/or complex conjugate pairs, and they may be of order 1 or 2. Independently, Van
Assche and Vanherwegen [44] discuss two special cases of Theorem 8.1: the o, are real and either
all s, =1 and m = 2n (a polynomial of degree —1 is understood as identically zero), or all but
one s, =2 and m = 2n — 1. The first case is called “Gaussian quadrature”, the second “orthogonal
quadrature”.

The main observation to be made with these quadrature formulas is that the nodes and weights are
closely related to the zeros and Christoffel numbers for polynomials orthogonal on A with respect
to a varying measure. This interaction, also observed by Lopez and Illan [34,35], makes it possible
to use results from orthogonal polynomials to get useful properties for the nodes and weights for
quadrature based on rational interpolation. This is the main contribution of [44] along with the
convergence in the class of continuous functions. It should be pointed out that unlike [26,44], in
[34,35] non-Newtonian tables of prescribed poles are used, so that when considering convergence
results, some additional conditions on the poles are necessary in order to assure the density of the
rational functions that are considered in the space C(A4) of functions continuous in 4. For instance,
when all the oy are different

Z(l—\ck\):oo where ¢; = o — /o — 1 (8.1)

k=1
(see [1, p. 254)).

We also mention here the work of Gautschi and coauthors [27-29]. In [27] the quadrature method
of Theorem 8.1 for the interval 4 = [0,00] is applied with m = 2n to Fermi—Dirac integrals, and
with m =2n — 1 to Bose—Einstein integrals, the poles selected being those of the integrand closest
to, or on, the real line. The paper [28] describes software implementing Theorem 8.1 and pays
special attention to the treatment of poles very close to the support of p. In [29] results analogous to
Theorem 8.1 are developed for other quadrature rules, e.g., Gauss—Kronrod and Gauss—Turan rules,
and for other integrals, e.g., Cauchy principal value integrals. In the case of the Lebesgue measure,
similar interpolatory formulas are also considered in [45].

Finally, we should mention the works of Min [39,40], where also quadrature formulas based on
rational functions are considered when taking du(x) = dx/v/1 — x2, x € A. The author makes use of
the properties of the generalized Chebyshev “polynomials™ associated with the rational system

{1, ! , ! ! } n=12,..., xeA (8.2)
X—0 X — 0 X — oy

This generalized notion is introduced in [2]. The term polynomial is misleading because they are in
fact rational functions in the span of the functions (8.2). The qualification Chebyshev is justified by
the fact that they have properties similar to classical Chebyshev polynomials. Using these Chebyshev
functions and assuming that {oy};_, CR\4, n=1,2,..., Min constructs the n-point interpolatory
quadrature formula

n 1
0r1=Y asen~ [ A2
k=1 -1

V1 —x2

dx,
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in the zeros of the generalized Chebyshev “polynomials”, and it turns out that this formula is exact
for all functions f € span{(x — o)~ (x — o) 2., (x — o)L (x — 04,) 72} = Ry 1 (01,0, ).

Theorem 8.2 (Min [39]). Let {0y} and Q,{f} be defined as above. Let {&;}i_, be the zeros of
T,(x), the generalized Chebyshev “polynomial” associated with (8.2). Then (a) Q,{f} is a positive
quadrature formula (i.e. A, >0 for k=1,...,n) and (b) fil f(x)/V1 —=x*dx = Q,{f} for any
fE€ Ry 1(01,...,0).

Since the converse of Theorem 8.1 is also true, it follows that the zeros of the nth Chebyshev
polynomial for (8.2) coincide with the zeros of the orthonormal polynomial of degree n with respect
to the varying measure

1

Y/ e e
On the other hand, let U, be the Chebyshev polynomial of the second kind associated with (8.2).
It is known [3, Theorem 1.2] that (a) TX(x)+ (V1 — sz,,(x))2 =1, (b) there are n+ 1 points {&,}
with —1=¢, <¢,_, <- <fl<fo—lsuchthat T(&)=(—1), k=0,...,n. Since ||T,||_11;=1,

n—1

{o )i CR\4.

{1 are the extreme points of 7, and also {& }'~" are the zeros of Un.

Theorem 8.3 (Min [39]). Let the elements {o;}} C C\R be paired by complex conjugation and let

{ék}’l’ ! be the zeros of U,(x) as defined above. Then there exist positive parameters Ay, . . . A, such
that for all f € Ry,_1(ct1,...,0,)

I = S 05
0,1} =Anf 1)+ X As G +A (1= [ 0 d

This is a Lobatto-type quadrature formula.

Let us next assume that p is a complex measure in 4 =[ — 1,1]. Theorem 8.1 is still valid,
however some difficulties have to be addressed. We need to guarantee the existence of n-point
Gaussian quadrature formulas for a measure of the type du(x)/w,(x) as defined in Theorem 8.1.
This requires orthogonal polynomials with respect to a complex measure, and these need not be of
degree n, and if they are, their zeros can be anywhere in the complex plane. In [31] the authors
could rely on known results about the asymptotic behavior of polynomials orthogonal with respect
to fixed complex measures and their zeros to overcome these difficulties. For a general rational
setting, a treatment similar to the one in Section 6 is given in [30,22,21]. The idea is as follows.
Assume du(x) = p(x)dx with p(x)€L'(4), possibly complex. Let A, = {o;,: j = 1,...,n} and
A=,en Ay with A C @\A be given, and set w,(x)=(x — o) - (x — a,,). For each n, define the
space R,:={P(x)/w,(x): P€Il,_,}. Given n distinct points {&,,..., &, } C 4, there exist parameters
Ay, ..., Ay such that

Y= [ S 0pe) dr =1, (=30 Auf G VS €

We call /, {f} an n-interpolatory quadrature formula for #,. By introducing an auxiliary positive
weight function f(x) on 4 and taking {¢;,}}_, as the zeros of the nth orthogonal polynomial with
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respect to B(x)/|w,(x)|?, several results on the convergence for these quadrature formulas have been
proved. Gonzalez-Vera et al. prove in [30] the convergence of this type of quadrature formulas in the
class of continuous functions satisfying a certain Lipschitz condition. Cala—Rodriguez and Lopez—
Lagomasino in [22] derive exact rates of convergence when approximating Markov-type analytic
functions. In both of these papers, the intimate connection between multipoint Padé-type approximants
and interpolatory quadrature formulas is explicitly exploited. The same kind of problem is considered
in [21] from a purely “numerical integration” point of view. The most relevant result is:

Theorem 8.4 (Cala-Rodriguez et al. [21]). Set A=[—1,1], A=,y A C @\A with A, ={o,,: j=
l,...,n}. Assume that dist(A,A) =0 >0 and that for each n€ N there exists an integer m =
m(n), | <m<n, such that o, € A, satisfies |Re(o,,)| > 1. Let p(x) € L'(A4) and p(x)=0 on A such
that [, |p(x)]*/p(x)dx=K} < oc. Let 1, {f}=3"1_, Ajuf (&) be the n-point interpolatory quadra-
ture formula in R, for the nodes {;,} that are zeros of Q,(x), the nth orthogonal polynomial
with respect to B(x)/|w.(x)|%, x € A. Then, lim,_ . 1, {f} =1,{f} for all bounded complex valued
Sunctions on A such that the integral 1,{f} exists.

As we have seen, when dealing with convergence of sequences of quadrature formulas based
on rational functions with prescribed poles, one makes use of some kind of condition about the
separation of the poles and the support of the measure (positive or complex) as for example in
Theorem 8.4 or some other condition like (8.1). Thus, it is a natural question to ask what happens
when sequences of points in the Table A tend to supp(u) C 4 or when some points are just chosen
in A. Consider for example the situation where the points in A are just a repetition of the boundary
points —1 or +1 of the interval A=[—1, 1]. According to the approach given in [38], let us consider
the transformation ¢ :[ — 1,1] — [0,00] given by ¢ = ¢(x) = (1 +x)/(1 —x). Thus, after this change
of variables, we can pass from an integral fil S (x)du(x) to an integral [~ g(¢)dA(¢). The poles at
x=1 are moved to poles at t=oc and the poles at x=—1 are moved to poles at t=0. This means that
our rational functions are reduced to Laurent polynomials. This special situation is closely related
to the so-called strong Stieltjes moment problem (see Section 9.3). The L-polynomials appear in
two-point Padé approximants in a situation similar to what was discussed in Section 2. However,
the difference is that now 0 and oo are points in the support of the measure. The generalization is
that we consider a sequence of poles o, that are in the support of the measure. Then we are back
in the situation similar to the one discussed in Section 7.

9. Open problems

Several open problems have been explicitly mentioned or at least been hinted at in the text, and
others may have jumped naturally to the mind of attentive readers. We add a few more in this
section.

9.1. Error bounds

In this paper we have considered the convergence of modified approximants (MA) or multipoint
rational approximants (MRA) and the corresponding convergence of R-Szegd quadrature formulas
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or interpolatory quadrature formulas. We have used some error bounds both for the approximants
and the quadrature formulas (and these are closely related by Theorem 3.7). However, we did not
give sharp bounds, and this is of course essential for computing exact rates of convergence.

Using continued fraction theory, Jones and Waadeland [37] recently gave computable sharp error
bounds for MAs, in the polynomial case, i.e., oy =0 for all k. A similar treatment could be done
in the rational case. As an illustration, we consider the case of the normalized Lebesgue measure
du(0) = d0/(2m). Let R, (z;1,) = Fu(z) — F,,(z) be the error for the MA. Recall (3.3), where
p+qg=n—1, X,(z2) =[I;_,(z — &x), with &, the zeros of the para-orthogonal function Q,(z;1,).
Let us take p =0 and ¢ =n — 1; then for the normalized Lebesgue measure we have

2ZTC,,,1(Z) 1 § )(n(t)de i0

R,un(Z): __./ ST sa— =e".
Xn(z) 2mi -7 T[nfl(t)(t - Z)
If z € D, then by the residue theorem, one gets

B Xn(o)nnl(z):|
R,(z2)=2 [1 X .
Now using the choice 7, =#, as in Example 4.1, we have
Xn z n
0,(z;1,) = ( ), X, (z)=c H (z — &) = KpTu[zw, 1 (2) + T, 1(2)].
TEVI(Z) k=1
Therefore,
TC,,_1(Z) :l 2ZCOn_1(Z)
R =211- = , zeD.
(@) [ 200 1(2) + Tr(2)] 20 r(2) + i (z)

This is an example of an explicit expression for the error of approximation. It is an open problem
to extend this to the general case.

9.2. Exact rates of convergence

In Theorem 5.6 we obtained estimates for the rate of convergence. It is however not clear
under what conditions on A and p we obtain equality, i.e., when a formula of the form
limsup, . |R,, (2)|"" = exp{/(z)} holds.

If p is the normalized Lebesgue measure and all o =0, then R, (z) =22z"/(z" + 1), and therefore
one gets

lim R, (2)|"" = |z| = exp{i(z)}, z€D.

Is it true for the normalized Lebesgue measure and A included in a compact subset of D that
1/n

. ZZCO,,_I(Z) N
”lggo 20, -1(2) + T,—1(2) = exp{4(2)}-

where A(z) is as in (5.1)?

9.3. Stieltjes problems

Concerning Stieltjes and strong Stieltjes moment problems, several situations are considered that
correspond to special choices of the poles like a finite number of poles that are cyclically repeated.
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Several results were obtained concerning the moment problem and the multipoint Padé approximants.
See for example [16] for the rational moment problem where poles are allowed on the unit circle.
The existence proof given there is closely related to the convergence of the quadrature formulas.
Several other papers exist about convergence of multipoint Padé approximants with or without a
cyclic repetition of the poles. The quadrature part is still largely unexplored. In [38], this situation
is briefly mentioned.

For the case of L-polynomials where one considers only the poles 0 and oo, the convergence
of two-point Padé approximants to Stieltjes transforms was studied in [32,5,6]. The latter papers
also give error estimates and consider the corresponding convergence and rates of convergence of
the quadrature formulas. To illustrate this, we formulate some of the theorems. Note that in this
section we are dealing with intervals A that may be finite or infinite, so it is not always possible
to renormalize it to the standard interval [ — 1,1] as in Section 8. Thus 4 has another meaning
here.

Theorem 9.1 (Bultheel et al. [6]). Let u be a positive measure on A=[a,b] with 0<a < b<oo. Let
OM(x)=r, [T, (x=&n), K, > 0, be the nth orthonormal polynomial with respect to x~? du(x), p=0.
Let F(z) = L{(x —z)™'} = [, 1/(x — z)du(x) be the Cauchy transform of u. Let I,{f} =
>2i—1 Ajnf(&jn) be the n-point Gaussian formula in A_,, where 0< p<2n, q=—1 and p+q=2n—1,
and set F, (z)=1,{(x—z)""'}. Then F,, is a rational function of type (n— 1,n) that is a two-point
Padé approximant (2PA) for F, (order p at the origin and order q + 2 at infinity).

Lépez-Lagomasino et al. prove in several papers (see for example [38]) the uniform convergence
of the 2PA in compact subsets of C\4 and give estimates for the rate of convergence. They assume
some Carleman-type conditions, namely either lim,_.., p(n)=occ and }_,°, c:,l,/ =00 or lim,_ o [2n—
1 — p(n)] =00 and >°°, ¢; /" = 0o, where the moments are defined as c,:= [ x" du(x), n€ Z.

When the measure du(x) = p(x)dx is complex, with [, [p(x)|dx < oo, then an auxiliary positive

measure o(x)dx with w(x) > 0, x € 4, is introduced such that [, [p(x)[*/w(x)dx = K* < oc.

Theorem 9.2 (Bultheel et al. [6]). Let Q% be the nth orthogonal polynomial with respect to x~*?w(x),
whose zeros are &, € A, and let 1, {f} =377_ Ajnf (&) be the interpolatory quadrature formula
exact in A_,,, p+q=n—1. Then F,(z)=1,{(x—z)~'} is a rational function of type (n—1,n)
and it is a two-point Padé-type (2PTA) approximant for F,.

Let dy= [, x*o(x)dx, k € N, be the moments of w and assume that p=p(n) and g=q(n)=n—1—
p(n), such that either lim,_.. p(n)=oc and >.°, d_)*" =00 or lim,_... g(n)=00 and ¥°°, d;"*"=
oo. Then the 2PTA F,,(z) converge to F,(z) uniformly in compact subsets of C\A. The quadrature
Sformula converges to the integral for all f € CP[0,00)={f € C[0,00): lim, .., f(x)=LeC} if
and only if >}, |Aw| <M for n€N.

Note that if in this theorem du is a positive Borel measure, we can set w=p, so that the quadrature
formula becomes the n-point Gaussian formula, and then the Carleman conditions on its moments
imply the convergence of the quadrature formulas in the class C®[0, o).

As for the rate of convergence, we assume that lim, .., p(n)/n =r€[0,1], and we assume that
u is of the form du(x) = x"exp(—z(x))dx, vE€ R, 7(x) continuous on (0,00) and for y >% and
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s> 0: lim, o+ (sx)'t(x) =lim,_ o (sx) "7(x) = 1. Set

2y {F(y + 1/2)] Vi
y—1L VAl ’

where I' is the Euler Gamma function, and with 0 =1 — 1/(2y) < 1, d(z) = (1 — r)? Im((sz)"?) +
r’Im((sz)~"?), where the branch is taken such that (—1)"* = i. Furthermore, for f analytic in
the domain G such that [0,00) C G CC and some compact K, define A(K):=exp(—R) with R =
2D(y)inf,cx {0(z)} > 0 for some compact K. It is then proved, using results from [38], that

D(y) = 7

Theorem 9.3 (Bultheel et al. [6]). With the notation just introduced, let I,{f} be the n-point
Gaussian quadrature formula exact in A_ ) 0—1—pmy With error E, =1, —1,. Let F, be the
corresponding 2PA for the Cauchy transform F, and R, =F, —F,, the associated error. Then

we have that lim,_, ||RH,,|\,1</(2”)(' = MK), where K is a compact subset of C\[0,00) and || - ||k
is the supremum norm in K. Also lim,_ .. E,{f} =0 for all f analytic in the domain G, and
limsup, . _|E, {/}"®" <A(D) < 1, where J C G is a Jordan curve.

If 1,, is the interpolatory quadrature formula of Theorem 9.2 and F,, the corresponding 2PTA,

then R,, — 0 uniformly in compact subsets K of C\[0,00) and limnﬂooHRH"H}(/(z”)“ =AMK) < 1.

For the quadrature formula it holds that limsup, |E#n{f}|l/”" <V/AW) < 1 with d C G a Jordan
curve and f analytic in G.

It is still an open problem to generalize this kind of results to the multipoint case where we select
a number of poles o € [0, oc]. Also the multipoint problem corresponding to the Hamburger moment
problem (the measure is supported on the whole of R as explained in Section 7) needs generalization.
There is almost nothing published about error estimates, convergence or rate of convergence for the
rational approximants or for the quadrature formulas.

9.4. Miscellaneous problems

(1) In the convergence results where the poles of the rational functions are outside the support of
the measure, it was assumed that they stayed away (they were in a compact subset of [D). What
if the latter is not true?

(2) In [42], Santos-Leon considers integrals of the form [* f(¢)K(0)d0 with K such that
ffﬂ |K(0)|d0 < co. He proposes quadrature formulas of interpolatory type with nodes uni-
formly distributed on T. Properties for the weights and estimates for the error of the quadrature
formulas are given. A similar treatment can be given when the nodes are the zeros of the
para-orthogonal rational functions with respect to the Lebesgue measure, which means the zeros
of zw,_1(z) + m,—1(2).
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Abstract

Iterative methods for the solution of linear systems of equations produce a sequence of approximate solutions. In many
applications it is desirable to be able to compute estimates of the norm of the error in the approximate solutions generated
and terminate the iterations when the estimates are sufficiently small. This paper presents a new iterative method based
on the Lanczos process for the solution of linear systems of equations with a symmetric matrix. The method is designed
to allow the computation of estimates of the Euclidean norm of the error in the computed approximate solutions. These
estimates are determined by evaluating certain Gauss, anti-Gauss, or Gauss—Radau quadrature rules. (©) 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Large linear systems of equations
Ax=b, AcR™, xecR", beR" (1)

with a nonsingular symmetric matrix are frequently solved by iterative methods, such as the conjugate
gradient method and variations thereof; see, e.g., [12, Chapter 10] or [17, Chapter 6]. It is the purpose
of the present paper to describe a modification of the conjugate gradient method that allows the
computation of bounds or estimates of the norm of the error in the computed approximate solutions.
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Assume for notational simplicity that the initial approximate solution of (1) is given by x, =0,
and let I1,_; denote the set of polynomials of degree at most £k — 1. The iterative method of this
paper yields approximate solutions of (1) of the form

X =q (b, k=1,2,..., 2)

where the iteration polynomials ¢, € II;_, are determined by the method.
The residual error associated with x; is defined by

roe=b— Ax; 3)
and the error in x; is given by

e =A""r,. 4)
Using (3) and (4), we obtain

efe, =riA 2 r, =b"A72h — 20" A" ' x; + x} x;. (5)

Thus, the Euclidean norm of e, can be evaluated by computing the terms on the right-hand side of
(5). The evaluation of the term x; x; is straightforward. This paper discusses how to evaluate bounds
or estimates of the other terms on the right-hand side of (5). The evaluation is made possible by
requiring that the iteration polynomials satisfy

Gi1(0)=0, k=12,.... (6)

Then b™4~'x;,=b"A~'q,_,(A)b can be computed for every k without using 4~!, and this makes easy
evaluation of the middle term on the right-hand side of (5) possible. The iterative method obtained
is closely related to the SYMMLQ method, see, e.g., [16] or [8, Section 6.5], and can be applied to
solve linear systems of equations (1) with a positive definite or indefinite symmetric matrix. Details
of the method are presented in Section 2.

Section 3 discusses how bounds or estimates of the first term on the right-hand side of (5) can be
computed by evaluating certain quadrature rules of Gauss-type. Specifically, when the matrix A4 is
positive definite and we have evaluated x;, a lower bound of "4~2b can be computed inexpensively
by evaluating a k-point Gauss quadrature rule. An estimate of an upper bound is obtained by
evaluating an associated k-point anti-Gauss rule. When A4 is indefinite, an estimate of the Euclidean
norm of the error e, is obtained by evaluating a (k + 1)-point Gauss—Radau quadrature rule with a
fixed node at the origin. We also describe how the quadrature rules can be updated inexpensively
when £ is increased. Section 4 presents a few computed examples, and Section 5 contains concluding
remarks.

The application of quadrature rules of Gauss-type to the computation of error bounds for approx-
imate solutions generated by an iterative method was first described by Dahlquist et al. [6], who
discussed the Jacobi iteration method. When the matrix 4 is symmetric and positive definite, the
linear system (1) can conveniently be solved by the conjugate gradient method. Dahlquist et al. [7],
and subsequently Golub and Meurant [10,14], describe methods for computing bounds in the A-norm
of approximate solutions determined by the conjugate gradient method. A new approach, based on
extrapolation, for computing estimates of the norm of the error in approximate solutions determined
by iterative methods has recently been proposed in [1].

Assume for the moment that the matrix 4 in (1) is symmetric and positive definite, and approx-
imate solutions x; of the linear system (1) are computed by the conjugate gradient method. The
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method of Golub and Meurant [10] for computing upper bounds for the 4-norm of the error in the
approximate solutions requires that a lower positive bound for the smallest eigenvalue of the matrix
A is available, and so does the scheme in [14], based on two-point Gauss quadrature rules, for
computing upper bounds of the Euclidean norm of the error in the iterates. Estimates of the smallest
eigenvalue can be computed by using the connection between the conjugate gradient method and
the Lanczos method, see, e.g., [12, Chapter 10]; however, it is generally difficult to determine posi-
tive lower bounds. The methods of the present paper for computing error estimates do not require
knowledge of any of the eigenvalues of the matrix A4.

The performance of iterative methods is often enhanced by the use of preconditioners; see, e.g.,
[12, Chapter 10,17, Chapters 9—10]. In the present paper, we assume that the linear system of
equations (1) represents the preconditioned system. Alternatively, one can let (1) represent the
unpreconditioned linear system and modify the iterative method to incorporate the preconditioner.
Meurant [15] shows how the computation of upper and lower bounds of the A-norm of the error
in approximate solutions determined by the conjugate gradient method can be carried out when this
approach is used. Analogous formulas can be derived for the iterative method of the present paper.

2. The iterative method

This section presents an iterative method for the solution of linear systems of equations (1) with
a nonsingular symmetric matrix 4. The description is divided into two subsections, the first of which
discusses basic properties of the method. The second subsection derives updating formulas for the
approximate solutions x; computed. The method may be considered a modification of the conjugate
gradient method or of the SYMMLQ method, described, e.g., in [8,16].

Our description uses the spectral factorization

A=U,A,U"

n?

U, e R, U'U, =1,
An:diag[ilalb"‘:in]a ilg;ﬁg <)‘fn* (7)

Here and throughout this paper, /; denotes the identity matrix of order j. Let 5:[151, by, ..., ZSH]T::UnT b
and express the matrix functional

F(A):=b"f()b, f(t):=1/r’, (8)

as a Stieltjes integral
F) =8 f(A)b =" fOs)B = / " f)do). )
k=1 -

The measure ® is a nondecreasing step function with jump discontinuities at the eigenvalues 4; of
A. We will use the notation

A= [ rwdo, (10)
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2.1. Basic properties

Our method is based on the Lanczos process. Given the right-hand side vector b, k steps of the
Lanczos process yield the Lanczos decomposition

AV, = ViTi + fi&, (1)
where V; = [v},0,,...,0,] € R™* and f; € R" satisfy V'V, =1, V,'f, =0 and

v = b/|[b]]. (12)
Moreover, T, € R*** is symmetric and tridiagonal. Throughout this paper é; denotes the jth axis
vector and || - || the Euclidean vector norm. We may assume that 7} has nonvanishing subdiagonal
entries; otherwise the Lanczos process breaks down and the solution of (1) can be computed as a
linear combination of the columns v; generated before break down.

Eq. (11) defines a recursion relation for the columns of V;. This relation, combined with (12),
shows that

v, =5, ()b, 1<j<k (13)

for certain polynomials s;_; of degree j — 1. These polynomials are orthogonal with respect to the
following inner product induced by (10) for functions g and / defined on the spectrum of 4,

(g, h):=I(gh). (14)
We have

oo

(Sj—1,8/-1) :/ S;—1(t)s/-1(t) do(t) = B U,s;—1(Ay)s,—1(A,) U b

=b"s; 1(A)s,1(4)b
. {Q J#

=0.V, =
7 1, j=¢,

(15)

where we have applied manipulations analogous to those used in Eq. (9). The last equality of (15)
follows from the orthogonality of the columns v; of V. Since the polynomial s, is of degree /, the
columns of ¥} span the Krylov subspace

Ky (4, b):=span{b, Ab,..., A" 'b},
1e.,

range (V) = K(4, b). (16)
We also will use the following form of the Lanczos decomposition:

AVi_y = ViTii1, (17)

where T, is the leading principal k£ x (k — 1) submatrix of 7.
Introduce the QR-factorization of Ty, i.e., let

Ti = OiRi, O R € RS, O[O0 =14, (18)
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where R; = [;{/(/',‘ )]ﬁ ,_ 1s upper triangular. Also, define

Ry

0 = Qk,kflﬁkfla (19)

Tk,kfl = Qk

where R;_, is the leading principal submatrix of order k — 1 of Ry, and Qy;_; € R¥**~1 consists of
the first k — 1 columns of Q. For definiteness, we assume that the diagonal entries in the triangular
factors in all QR-factorizations of this paper are nonnegative.

The following manipulations of the Lanczos decomposition (11) give an iterative method, whose
associated iteration polynomials satisfy (6). The manipulations are closely related to those re-
quired in the derivation of the implicitly restarted Lanczos method; see, e.g., [5]. Substituting the
QR-factorization (18) into the Lanczos decomposition (11) yields

AV = ViOiRi + £}, (20)
which after multiplication by O, from the right gives
AI;k = kak +ﬂéZQk, VkiszQk, fk::Rka. (21)

The matrix V; = [5fk),ﬁz(k),...,5,£k)] has orthonormal columns and 7 is the symmetric tridiagonal

matrix obtained from 7} by applying one step of the QR-algorithm with shift zero.
A relation between the first columns v; and ﬁl(k) of V; and V, respectively, is easily shown.
Assume that £ > 1 and multiply (20) by &, from the right. We obtain

AVié, = Vi Rié, + fié @y,

which simplifies to
Av, =5,

where we have used that R;é, = r1’¢,. Thus,
8" = 4b)||4b]|.

Since 7, is tridiagonal, the orthogonal matrix O, in the QR-factorization (18) is of upper
Hessenberg form. It follows that all but the last two components of the vector &, Q; are guar-
anteed to vanish. Therefore, decomposition (21) differs from a Lanczos decomposition in that the
last two columns of the matrix f;é; Oy may be nonvanishing.

Let V;_, be the matrix made up by the first k — 1 columns of V;. Note that

Vior = ViOri—1s (22)

where Qy,_; is defined by (19). Generally, V;_; # Vi_; see Section 2.2 for details. Removing the
last column from each term in Eq. (21) yields the decomposition

AV = Ve Do + fio8 s (23)
where V,ilfk_l =0, 17,1117,{_] =1I,_, and T_, is the leading principal submatrix of order k — 1 of

the matrix 7. Thus, decomposition (23) is a Lanczos decomposition with initial vector ﬁl(k) of Vi_,
proportional to 4b. Analogously to (16), we have

range (Vi_1) = (4, 4b). (24)
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We determine the iteration polynomials (2), and thereby the approximate solutions x; of (1), by
requiring that

X =g (A)b = V124 (25)

for some vector z;_; € R¢~!. It follows from (24) that any polynomial g;_; determined by (25)
satisfies (6). We choose z;_;, and thereby ¢;_; € II;_;, so that the residual error (3) associated with
the approximate solution x; of (1) satisfies the Petrov—Galerkin equation

0= Vkaﬂ'k = %(Elb - V1¢T71Al7k—lzk—1a (26)
which, by using (12) and factorization (22), simplifies to
|1]é1 = (AVie1) " ViOrsk—12k—1- (27)
We remark that if the matrix ¥,_; in (26) is replaced by ¥;_,, then the standard SYMMLQ method
[16] is obtained. The iteration polynomial ¢,_; associated with the standard SYMMLQ method, in
general, does not satisfy condition (6). The implementation of our method uses the QR-factorization
of the matrix 7}, similarly as the implementation of the SYMMLQ method described in [8, Section
6.5]. In contrast, the implementation of the SYMMLQ method presented in [16] is based on the

LQ-factorization of Tj.
It follows from (17) and (19) that

T

AVee ) ViOrior = T 1 Oksr = Ry (28)
Substituting (28) into (27) yields

=T -

R_yzi—1 = |bl]é:. (29)

This defines the iterative method.

Recursion formulas for updating the approximate solutions x; inexpensively are derived in Section
2.2. In the remainder of this subsection, we discuss how to evaluate the right-hand side of (5). Egs.
(24) and (25) show that x; € K;_,(4,4b), and therefore there is a vector y;,_; € R*"!, such that

A7 % = Vo iy (30)
Thus, by (17),
Xy = AV i1 = ViTik—1Yk—1, (31)

and, by (25) and (22), we have

Xy = Vka,k—lzk—l-

It follows that

Ork—12k—1 = Trk—1Yk—1. (32)
Multiplying this equation by Oy ,_, yields, in view of (19), that
Tk—1 = szquk,k—lyk—l = Rk—lyk—l- (33)

Application of (30), (12), (33) and (29), in order, yields
_ . Tl
BT A~ x = b Vi yi = |[bl[éyi—y = [1b][€1R, - 21 = 2i T (34)



D. Calvetti et al. | Journal of Computational and Applied Mathematics 127 (2001) 93-119 99

It follows from (25) that x[x; =z} ,z;_,. This observation and (34) show that Eq. (5) can be
written in the form

ejec=ri A =b"4A""b— 7| |71 (35)

The term z] ,z;_, is straightforward to evaluate from (29). Section 3 describes how easily com-
putable upper and lower bounds, or estimates, of 5'4~2b can be derived by using Gauss-type quadra-
ture rules. In this manner, we obtain easily computable upper and lower bounds, or estimates, of the
norm of e;. Details are described in Section 3.

Assume for the moment that »n steps of the Lanczos process have been carried out to yield the
Lanczos decomposition AV, = V,T,, analogous to (11). Using the QR-factorization (18) of 7, and
the property (12) yields

b"A7b = ||b||*¢\V," AV, é, = ||b||*¢| T, *é,

= [BeiR, 'R, "é:.
Substituting this expression into (35) and using (29) shows that
STl Tx Tl =T o
efe, = ||B|*eR, 'R, ey — ||B|[Pe R, R, @ (36)
The right-hand side of (36) is analogous to expressions for the 4-norm of the error e, discussed in

[10,11,14].

2.2. Updating formulas for the iterative method

We describe how the computation of the iterates x; defined by (25) can be organized so that
storage of only a few n-vectors is required.
Let the matrix 7, in (11) have the entries

_061 ﬁl 0 ]
B o P
ﬁz o3
T, = c R"X", (37)
oo Pres
ﬁk—z Ok —1 ﬂk—l
| 0 Bror o |

where according to the discussion following equation (12) we may assume that the f; are nonvan-
ishing. This property of the f3; secures that the eigenvalues of 7} are distinct. Introduce the spectral
factorization

T, = WO W, W, e R wlw, =1,

O = diag[0,0,...,01, 0% <P <... < 0P, (38)
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The QR-factorization (18) of 7} is computed by applying £ — 1 Givens rotations

I
(). € S kxk 2 2
G:= eER™, d+s7=1, 5,20, (39)
]kfjfl
to Ty, i.e.,
k—1 k=2 1 DT ~(2)T k—=1)T
Re=G{ VG .G, 0u=G'GP" G, (40)

see, e.g., [12, Chapter 5] for a discussion on Givens rotations. In our iterative method the matrix
O, is not explicitly formed; instead we use representation (40). Since 7 is tridiagonal, the upper
triangular matrix R, has nonvanishing entries on the diagonal and the two adjacent superdiagonals
only.

The matrix 7, in (37) is determined by k steps of the Lanczos process. After an additional step,
we obtain the Lanczos decomposition

AV = Vi T + fii8, 0 (41)

analogous to (11). For future reference, we remark that the last subdiagonal entry of the symmetric
tridiagonal matrix 7;,; may be computed by

=l Al (42)

already after completion of k£ Lanczos steps.
The matrix T;,; has the QR-factorization

Tk+1 = Qk+1Rk+1, (43)

whose factors can be computed from Q; and R in a straightforward manner. We have

OT

Ops1 = le (1}1 G(k)T e R(k+1)><(k+l)

OT

O 0
Qk+1,k f— [ . G/(cI:—);r,k c R(k-&-l)xk) (44)

where G is defined by (39) and G, , € R**D*¥ is made up of the first k columns of G{*).
We obtain updating formulas for computing the triangular matrix R, in (43) from the matrix Ry
in (40) by expressing these matrices in terms of their columns

6 Lk k k1) (k41 k1) (k41
Rk:[rl( ),rz( ),...,r,i )], [r( ), (k+1) ...,r( ), ,§+1 )]

Comparing (18) and (43) yields

(k)

r:
rj(k+1):|‘10 1, 1<) <k (45)
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and

B
k+1 k) (k=1 ~
"k(+1 )= Gk(+)1 G/(c+1 T8 (46)

Thus, the entries of all the matrices Ri,R,,...,R;,; can be computed in only O(k) arithmetic
floating-point operations.
The matrix R, = [F (k)] / / , defined by (19) is the leading principal submatrix of R,,; of order k

fED o6 ”/Ek)
ry =G )

and agrees with R; = [rj/ 1 ;.,—1 except for the last diagonal entry. Eq. (46) and the fact that f8; is
nonvanishing yield

k k
r/ik) >”1§k)>o’ (47)

and when 7} is nonsingular, we have rkk > 0.
We turn to the computation of the columns of

lad ~(k+1) ~(k+1 ~(k+1
Vi = [(+) W v/E+1 = =Vis10k+1 (48)

from those of the matrix ¥, where V., is determined by the Lanczos decomposition (41) and Q.
is given by (44). Substituting (44) into the right-hand side of (48) yields

171(+1 = [Vi, 0411011 = [Vk:vk+l]G](cl(+);r

= [Vk 1,Ckvk +Skvk+1:_skvk + CkVki1]- (49)

Thus, the first £ — 1 columns of the matrix Vk+1 are the columns of ¥7,_,. The columns ,ﬁkﬂ) and
17,51:{1) of I7k+1 are linear combinations of the last columns of ¥, and Viii. _

Assume that the solution z;—; of the linear system (29) is available. Since the matrix Ry is upper

triangular and R,_, is the leading principal submatrix of order £ — 1 of R;, the computation of the

solution Tk = [gl; CZ; s Ck]T of
Ryzi = [|b][é, (50)

is easy. We have

Q-1
Zk:[ ¢ ], G= (rlgk)szk P 1ka D/ (51)
k
Hence, only the last column of the matrix R, is required.
We are now in a position to compute x;,; from x;. Egs. (25) and (49) yield

(k+1) (k+1)

xk+1:szk—Vk 121 + Gty =x; + 40,

where we have used that v(k“) is the last column of 7,. Note that only the last few columns of V;

and ¥, have to be stored in order to update the approximate solution x;.

3. Quadrature rules of Gauss-type for error estimation

This section describes how to bound or compute estimates of the matrix functional (8) by approx-
imating the Stieltjes integral representation (9) by quadrature rules of Gauss-type. A nice discussion
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on the application of Gauss quadrature rules to the evaluation of upper and lower bounds of certain
matrix functionals is presented in [9]. Related discussions can also be found in [2,4,11].

3.1. Gauss quadrature rules

Let f be a 2k times continuously differentiable function defined on the interval [4;,4,], which
contains the support of the measure w. The k-point Gauss quadrature rule associated with w for the
computation of an approximation of the integral (10) is given by

k
G()=> f(0N®,  o:=|b| @ Wé ), (52)

J=1

where the H}k) and W, are defined by (38). The nodes and weights of the Gauss rule are uniquely
determined by the requirement

Y(p)=I(p), Vp€ Iy, (53)
where .# is defined by (10). We also will use the representation
G()=b][*e) f(To)e. (54)

The equivalence of (52) and (54) is shown in [9] and follows by substituting the spectral factorization
(38) into (54). The integration error

S f)=I() = %(f)

can be expressed as

2 5 ) oo k
SO D [ [ = 09y dooto) (55)

S="Gor | i

for some é(k) in the interval [A,4,], where f®*) denotes the derivative of order 2k of the function
f; see, e.g., [9] or [18, Section 3.6] for details.
In the remainder of this section, we will assume that f is given by (8) and that the matrix 4

is positive definite. Then f®)(¢) > 0 for ¢t > 0, and the constant 0" in (55) is positive. It follows
from (55) that &,(f) > 0, and therefore

G(f) < I(f)=F(4)=b"A"’b, (56)

where F(A) is defined by (8).
Representation (54) of the Gauss quadrature rule can be simplified by using the QR-factorization
(18) of T, when f is given by (8),

Gu(f)=||b|*e| T, *é, = ||b||*e|R; 'R; "é, = ||bI]7||R; "éy| . (57)

It is easy to evaluate the right-hand side of (57) when the solution z;_; of (29) is available. Let
7 € RF satisfy

R % = ||b]|é,. (58)
Then
Gu(f) = %%k (59)
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Since all entries »*

v~ of Ry and F}(’f) of R, are the same, except for rk(,f ) £ F,E,f), the solution of (58)
is given by

Tk—1 ~
“s [ 4 ] ’ Go=— V_lgk—)z,ki’k—z +F1£k—)1,k€k—l)/rk(lf)' (60)
k
Substituting inequality (56) into (35) (with k£ replaced by £+ 1) and using representation (59) yields
e 2
e]{+1ek+1 > ZZZk — ZZZk = Ck - C/zp (61)
where the equality follows from (51) and (60). A comparison of (51) and (60) yields, in view of

inequality (47), that |fk| >1(;|, and therefore the right-hand side of (61) is nonnegative. Moreover,
if {; # 0, then |{,| > |{i|, and we obtain

llewll > V& — & > 0. (62)

Thus, Gauss quadrature rules give easily computable lower bounds for the error in the approximate
solutions generated by the iterative method when applied to linear systems of equations with a
symmetric positive-definite matrix.

3.2. Anti-Gauss quadrature rules

Let the matrix 4 be symmetric and positive definite. If the smallest eigenvalue A; of 4 were
explicitly known, then an upper bound of (56) could be computed by a (k + 1)-point Gauss—Radau
quadrature rule with a fixed node between A; and the origin; see [9,10] for details. The computed
bound typically improves the further away from the origin we can allocate the fixed node. However,
accurate lower bounds for A; are, in general, not available. We therefore propose to use anti-Gauss
quadrature rules to compute estimates of the error that generally are of opposite sign as &.(f).

Anti-Gauss rules were introduced in [13], and their application to the evaluation of matrix func-
tionals was explored in [4]. Let f be a smooth function. Analogously to representation (54) of the
k-point Gauss rule, the (k+1)-point anti-Gauss quadrature rule associated with @ for the computation
of an approximation of integral (10) is given by

ajkﬂ(f)::”b“zél f(TkJrl)éls (63)
where
fo B 0
ﬁl 0% ﬁz
Br o3
TkJrl — c R(k+1)><(k+l). (64)
o B
ﬂk—1 Ok ﬂﬁk
L 0 \/Eﬁk Ok+1

Thus, T is obtained from 7)., by multiplying the last off-diagonal entries by v/2. We note that
the determination of 7', requires application of k + 1 steps of the Lanczos process; cf. (11).
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The (k + 1)-point anti-Gauss rule is characterized by the requirement that the integration error

G (f)=I(f) =G (f)
satisfies
@@;H(P) =—=6(p), Vp € Iy,

which can be written in the equivalent form

Gi(p)= QI —G)(p), Vp € My (65)

Assume for the moment that we can carry out n steps of the Lanczos process without break down.

This yields an orthonormal basis {v;}7_; of R" and an associated sequence of polynomials {sj};:ol

defined by (13) that satisfy (15). Expanding the function f on the spectrum of 4, denoted by A(4),
in terms of the polynomials s; yields

FO=3"ns(o), 1€ i), (66)

where n; = (f,s;), with the inner product defined by (14).
In view of .#(s;) =0 for j > 0 and (53), it follows from (66) that

() =10I(s0) = 110G (s0). (67)

Therefore, applying the Gauss rule %, and anti-Gauss rule %, to (66), using (53), (65) and (67),
yields for n>=2k + 2 that

n—1

G =T () + D 0,%(s)), (68)
=2k
. n—1 . 2k+1 n—1 .
Gen(f)= Z N&Gi(s;) = Z (25 — %G )(s;) + Z N%x1(s;)
J=0 j=0 j=2k+2
2%+1 2k+1 =1
= Z n;29(s;) — Z n;9x(s;) + Z NG k+1(s;)
Jj=0 Jj=0 j=2k+2
n—1 .
=I(f) = nuGi(su) — Naw1%i(s2%41) + Z NG k1(s))- (69)
J=2k+2

Assume that the coefficients 1, converge rapidly to zero with increasing index. Then the leading
terms in expansions (68) and (69) dominate the error, i.e.,

()= —9)(f) = —nuGi(su) — N1 (5241,
Eii(f) = (I =G )(f) = nu%i(s2) + N1 Ga(Saxs1)s (70)

where =~ stands for “approximately equal to”. This leads us to expect that, in general, the errors
&(f) and &, 1(f) are of opposite sign and of roughly the same magnitude.
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In the remainder of this subsection, we let f be defined by (8) and discuss the evaluation of
anti-Gauss rules for this particular integrand. Introduce the QR-factorization

- o - o - T~

Tiv1 = O Riv1, OpsRiyr € RUFD* D), 0119kt = Ik (71)
where R, = ['(k+1)]f“;1:1 is upper triangular. Using representation (63), we obtain, analogously to
(57), that

< T2 Te—1 «—T T _

Gen(f) = HszekaHel = "b‘lzeIRk+1Rk+lel = HbHZHRkHel 2. (72)

Since by (56) we have &(f) > 0, Eq. (70) suggests that, typically, & (/) < 0. Thus, we expect
that for many symmetric positive-definite matrices 4, right-hand side vectors b and values of %, the
inequality

Genr(f) > I(f)=F(A)=b"4"b (73)

holds, where f and F are given by (8).
Let g, satisfy

T -

RiiZi1 = |[B]]é. (74)
Then it follows from (72) that

Gt (f) = G (75)

The matrix Iékﬂ can be determined when k + 1 Lanczos steps have been completed, and so can the
approximate solution x;,; of (1). Substituting (73) into (35) (with k replaced by k + 1) and using
representation (75) suggests that the inequality

T ~T ~ T
€ri1€it1 < Ty Tkl — L Tk (76)

holds for many symmetric positive-definite matrices A, right-hand side vectors b and values of %.

We evaluate the right-hand side of (76) by using the close relation between the upper triangular
matrices Rkﬂ and R,. Assume that R, is nonsmgular and that f;.,; # 0. It is easy to see that the k x k
leading principal submatrix of R,,, agrees with R, except for its last diagonal entry. A comparison
of (74) with (29) (with k£ — 1 replaced by k) shows that

k-1
9 Z(k+1)
Zk+1 = k >
<(k+1)
k+1
where
s(k+1) — (k) v(k-‘rl)
k = (rk 2kz.:k 2+rk 1k€k 1)/
5 (k+1) FD ~(k+1)'(k+1) _(k+1)
G =—(F_ lk+l€k 1+ kk+1 )T Ptk

and the {; are entries of z;_;. Thus,

T S (k+1) 2 s (k+1 ) 2
Spt1%k+1 — Zka = (Ck+1 ) (Ck ) Ck'
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Substitution of this identity into (76) yields

lecall < V@2 + &y - (77)
According to the above discussion, we expect the argument of the square root to be positive and
the inequality to hold for many symmetric positive-definite matrices A, right-hand side vectors b and
values of k. We refer to the right-hand side of (77) as an upper estimate of the norm of the error
e;.1. However, we point out that inequality (77) might be violated for some values of k. This is
illustrated in the numerical examples of Section 4.

3.3. Gauss—Radau quadrature rules

Throughout this section we assume that the matrix A4 is nonsingular and indefinite. Thus, there is
an index m such that eigenvalues (7) of A4 satisfy

<l < o Koy <0< Ayt < -+ <Ay (78)

The application of Gauss quadrature rules (52) to estimate the norm of the error in approximate
solutions x; might not be possible for all values of & when 4 is indefinite, because for some £ > 0
one of the nodes ka) of the Gauss rule (52) may be at the origin, and the integrand f* given by (8)

is not defined there. In fact, numerical difficulties may arise also when one of the nodes G}k) is very
close to the origin. We circumvent this problem by modifying the integrand and estimating the norm
of the error in the computed approximate solutions by Gauss—Radau quadrature rules associated with
the measure w and with a fixed node at the origin. Note that since the matrix A is indefinite, the
origin is inside the smallest interval containing the spectrum of 4. Some of the desired Gauss—Radau
rules therefore might not exist. We will return to this issue below.

Let f be a smooth function on a sufficiently large interval that contains A(4) in its interior. We
may, for instance, think of f* as analytic. The (k + 1)-point Gauss-Radau quadrature rule associated
with the measure @ and with a fixed node 0 at the origin for the integration of f is of the form

k1
A Ak+1)
G (=) f(0; . (79)
j=1
It is characterized by the requirements that
R A(k+1)
Yi(p)=F(p), Vpe€lly and 0, =0.

The nodes and weights in (79) are given by formulas analogous to those for the nodes and weights
of standard Gauss rules (52). Introduce the symmetric tridiagonal matrix

_011 Bi 0
ﬁl 0% ﬂz
Br o3
karl — c R(k+l)><(k+1)’ (80)
e P
Beior o Pr
| 0 Be St |
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where

Qi1 =P, T, 'é
and 7, is given by (37). In view of the discussion on the computation of f5;, see (42), all entries
of the matrix 7., can be computed after £ Lanczos steps have been completed, provided that the
matrix 7} is invertible. Since A4 is indefinite, we cannot exclude that T} is singular. However, because
of the interlacing property of the eigenvalues of the matrices 7 and 7}.;, it follows that if 7} is
singular, then 7., is not. Thus, the desired (k + 1)-point Gauss—Radau rules can be determined for

at least every other value of k.
Define the spectral factorization

A 2 A ~ T 2 k1) x (k+1 AT o

Tk-H = Wk+18k+ka+1, Wk+1 S R( X ) Wk+1Wk+l :Ik-H’

N A(k+1) A(k+1) A(k+1) (k+1) A (k+1) A (k+1)
Oy = diag[0, > k+] , 0=0 |0 | \|0k+1 ‘

~ 1
The eigenvalues Hj o are distinct and may be positive or negative. The nodes in the Gauss—Radau
~(k
quadrature rule (79) are the eigenvalues 0; o and the weights are given by
&= |B] (€] W18,
see [9] for details. Analogously to (54), the quadrature rule (79) also can be represented by
Gen(f) = |IblPer f(Trine. (81)

Let for the moment f be a function that is analytic on an interval that contains all eigenvalues

A (k+1
of A4 and all Gauss—Radau nodes 04( " ), and satisfies

A (k+1)
1/, te (AU 0 k=
0, t=0.
Then
F(f)=b"A"*b=b"(4")b
and representations (79) and (81) yield
o, 40D 2A(k+1) 25T AT 25 it 52
gk+1(f)*2(0 ) = [|b]|"¢ (Tk+1) ¢, =|b| HTkHelH > (83)

where M denotes the Moore—Penrose pseudoinverse of the matrix M.

A(k+1)
Proposition 3.1. Let the index m be determined by (78). Then the nonvanishing eigenvalues 0, ’

of the Gauss—Radau matrix Ty, satisfy
A (k+1) A(k+1) )
j g/lm 0’/'0 >}~m+l, 2<]<k+1

Proof. The result follows by combining Lemmas 5.2 and 5.3 of [3]. O



108 D. Calvetti et al. | Journal of Computational and Applied Mathematics 127 (2001) 93-119

The proposition secures that none of the nonvanishing Gauss—Radau nodes is closer to the origin
than the eigenvalue of 4 of smallest magnitude. This property does not hold for nodes in Gauss rules
(52). Therefore, the symmetric tridiagonal matrices (37) associated with Gauss rules may be nearly
singular, even when A is well conditioned. Near singularity of the tridiagonal matrices (37) makes
the computed error estimates sensitive to propagated round-off errors, and may cause the computed
estimates to be of poor quality. This is illustrated in Examples 3 and 4 of Section 4.

The error (.# —%;,,)(f) can be expressed by a formula similar to (55). However, the derivatives of
the integrand f* change sign on the interval [4;,4,] and the sign of the error cannot be determined
from this formula. The Gauss—Radau rule only provides estimates of the error in the computed
approximate solutions. The computed examples of Section 4 show these estimates to be close to the
norm of the error in the computed approximate solutions. This is typical for our experience from a
large number of computed examples.

We turn to the evaluation of Gauss—Radau rules (83). Define the QR-factorization

Tk+1 - Qk+1Rk+la Qk+laRk+1 S R(k+l)x(k+l)a QZ+1Qk+1 :[k+la (84)

5 rplkDpkl : e P i A(k+1) :
where Ry =[7;,"'];,—; is upper triangular. Since T, is singular, the entry 7", vanishes. Note

that the matrix Qi in (84) is the same as in (43). Moreover, the leading k x k principal submatrix
of R;, is given by the matrix R; in (50).
Let q,f'fll) denote the last column of Q;.;. Then

k+DTA (k+DT 5 _~T 5 T
@i Tini=q " OrpiBi =€ (R =00,

By symmetry of 7', it follows that

T
Triqp =0,

ie., q,glfll) spans the null space of 7)., and is orthogonal to the range of T).,. In particular,

L — q,glfll)q,(ﬁlm is the orthogonal projector onto the range of T';.;.

We evaluate the right-hand side of (83) by using the QR-factorization (84) as follows. The vector
||B||T Z +1€; is the solution of minimal norm of the least-squares problem

min ||Tpeiyiesr — |B]]€]]. (85)

Vi1 EREH

We may replace the vector ||b||€; in (85) by its orthogonal projection onto the range of T.1 without

changing the solution of the least-squares problem. Thus, ||b]|7 Z +1€1 also is the solution of minimal
norm of the least-squares problem

min | Teopen — G — a5 a8 ]| (86)
Vi1 EREF

e N AT . A . . .
Substituting 7.1 =7, =R, 0, into (86) and letting y, , = O, 1 yields the consistent linear
system of equations

51 A k k ~
Ri i = Ui — q/i:l_])ql(ﬁ:il)T)HbHel' (87)

Let §,., denote the minimal norm solution of (87). Then y,,, = ||b]|O},,T Z .16, and therefore

A At
il =[BT ]l (88)
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Since r,f':{l,zH =0 and r(k+ ) > 0 for 1<j<k, the minimal norm solution of (87) is of the form

A Vi _
yk+1:[0‘|’ ykGRk.

The vector y, satisfies the linear system of equations obtained by removing the last row and column
of the matrix and the last entry of the right-hand side in (87), i.e.,

(ke+1)T ~

=T _ ~ -
Ry, = |bller — [[bllgiqii &,
where g, € R* consists of the first & entries of qkk“) Thus,
Vi =%+ Zk» (89)

where z; solves (50) and z; satisfies

szk = _HbH%ql(chl)T €. (90)

A recursion formula for the vector q,ﬁﬁl) can be derived easily. It follows from representation (44)

of the matrix Oy, that

X 0 0 X —sq,"”
‘I}Eﬁ” = Or11€541 = [ T leﬂekﬂ ¢ > (91)
01 Ck

where ¢*) denotes the last column of Q. Repeated application of Eq. (91) for increasing values of
k makes it possible to compute the vectors ¢, ¢, .. ,q,f’ﬁl) in about £?/2 arithmetic floating-point
operations.

The solutions of the linear systems (90) can be evaluated by a recursion formula based on (91)

for increasing values of & as follows. Eq. (91) yields that

giVe = —siql e,
4, = —siq” (92)
and
- g
D1 = —Sk+1 l ] s (93)
Ck

where the vector ¢, , consists of the k + 1 first entries of q]({kaz)’ the last column of Q.,. As-

sume that the solution Z; of (90) is available. We would like to compute the vector Z;.; =

(0,5 DT that satisfies
Ryien = —|1Bl1d. 415" (94)
Substituting (92) and (93) into (94) yields
=T _ qk ~
Ry Zen = —[BlIsi. L ] gii"e,
k
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which shows that

2 -
_ Sk+1%k
Sk+1 = —(k+1) | °

k+1
zh+1) 2 (DT~ =) D gy (D _kg 1)
G = *(”b||sk+1ck‘lk+1 €1+ j15k—1 +rk,k+1£k )/’”k+1,k+1-
Thus, assuming that the matrix Rk-H is available, all the vectors Zi,Z,,...,2:+1 can be computed in

O(k?*) arithmetic floating-point operations.

Having computed the solutions of (50) and (90), the above development, and in particular Egs.
(88) and (89), show that we can evaluate the (k 4 1)-point Gauss—Radau rule (83) with integrand
(82) according to

G () = llze + l -
Substituting this approximation of »*4~2b into (35) yields

eje,=|b"Ah — 7, 7|
~ |2k + Zel P — 24121

=2z + ) + Gl
where the last equality follows from (51). This suggests the approximation
el ~ |Z; 2z + Zx) + C/ﬂl/z- (95)
We note that the approximate solution x; of (1) and the right-hand side of (95) can be evaluated
after £ Lanczos steps have been carried out and the last subdiagonal entry of the Gauss—Radau

matrix (80) has been determined by (42). Computed examples in the following section indicate that
approximation (95) typically gives accurate estimates of the norm of the error.

4. Computed examples

We describe four examples that illustrate the performance of the iterative method, the error bound
and the error estimates. All computations were carried out on an XP1000 Alpha workstation in
Matlab with about 16 significant digits. In all examples we chose the initial approximate solution
Xxo = 0 and terminated the iterations as soon as

lex|] <& (96)

with &:=1-1071" or 1- 107", These values of ¢ are likely to be smaller than values of interest in
many application. Our choices of ¢ demonstrates the possibility of computing accurate solutions and
error estimates. In fact, the error bounds and estimates perform well also for values of ¢ smaller
than 1-107'%,

We determined the matrices in the linear systems in Examples 1-3 in the following fashion. Let

A:=U,A,UY, A, =diag[l, 2a,..., 4], U, € R™", U'U, =1, (97)

where the eigenvector matrix U, either is the n x n identity matrix /, or a random orthogonal matrix
determined by orthogonalizing the columns of an n x n real matrix with random entries. The matrix
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A is diagonal when U, = [, and dense when U, is a random orthogonal matrix. We remark that
the matrices 7, and V; in the Lanczos decomposition (11) depend on the choice of U,. Moreover,
propagated round-off errors, due to round-offs introduced during matrix—vector product evaluations
with the matrix 4, may depend on the matrix U,.

Example 1. Let n:=1000 and assume that the diagonal entries of the matrix A, in (97) are given by
4;=15j. We first let U, be a random orthogonal matrix. Then the matrix 4 defined by (97) is sym-
metric positive definite and dense. The right-hand side vector b is chosen so that x = 1—10 [1,1,...,1]"
solves (1). We terminate the iterations as soon as (96) is satisfied with e =1-10711,

Fig. 1 (a) shows the 10-logarithm of ||e;|| (solid curve), the 10-logarithm of the lower bound of
|lex|| computed by Gauss quadrature (62) (dash—dotted curve), and the 10-logarithm of the upper
estimate of ||e;|| computed by anti-Gauss quadrature (77) (dashed curve) as functions of the number
of iterations k. After the first 50 iterations, the computed lower bounds and upper estimates can be
seen to be quite close to the norm of the error in the computed approximate solutions.

The closeness between the lower bound (62), upper estimate (77), and the norm of the error
of the computed approximate solutions is also illustrated in Figs. 1(b) and (c). The former figure
displays ((fi — )2 —||ex]| (solid curve) and ((Cv,fk))2 - (CV,Ek_)1 Y — 2 )2 —||ex]| (dash—dotted curve)
as functions of k. These quantities are seen to converge to zero as k increases. To shed some light

on the rate of convergence, Fig. 1(c) shows the relative differences ((52 — V2 —||ex])/||ex|| and

(((Cvlik))2 + (5,@1 Y — )Y — |lec|])/]|ex]|, both of which converge to zero as k increases.

Fig. 1(a) also shows the 10-logarithm of the norm of the residual error (3) as a function of &
(dotted curve). The norm of the residual error is about a factor 1- 103 larger than the norm of
the error in the corresponding approximate solution. If we would like to stop the iterations when
the error in the computed approximate solution is below a certain tolerance, then we can terminate
the computations much sooner if we base the stopping criterion on formulas (62) and (77) than
on the norm of the residual error.

We now replace the random orthogonal matrix U, in definition (97) of the matrix 4 by [I,. The
matrix 4 obtained is diagonal and has the same spectrum as the matrix used for the computations
shown in Fig. 1. The right-hand side vector b is chosen so that x = % [1,1,...,1]" solves (1). The
performance of the iterative method applied to this linear system is displayed by Fig. 2, which is
analogous to Fig. 1.

Figs. 1 and 2 show the Gauss and anti-Gauss rules to give good lower bounds and upper estimates
of the norm of the error in the computed approximate solutions, with the lower bounds and upper
estimates being closer to the norm of the error when U, = I, than when U, was chosen to be a
random orthogonal matrix. This example illustrates that the quality of the computed error bounds
and estimates may depend on the eigenvector matrix of 4.

Example 2. Let the matrix 4 € R*¥**® in the linear system (1) be of the form (97) with Uy a
random orthogonal matrix and A4 defined by

1 _
Aii=c + lv(d —o)p®, i=1,2,...,48.
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Fig. 1. Example 1: Symmetric positive-definite dense matrix. (a) shows the 10-logarithm of the norm of the error (solid
curve), of the Gauss bound (62) (dash—dotted curve), of the anti-Gauss upper estimate (77) (dashed curve) and of the
norm of the residual error (dotted curve). (b) displays the error in the Gauss bound (solid curve) and anti-Gauss upper
estimate (dash—dotted curve). (c) shows the relative error in the Gauss bound (solid curve) and anti-Gauss upper estimate

(dash—dotted curve).

Here ¢:=0.1, d:=100 and p:=0.875. Thus, 4 is symmetric, positive definite and dense. The right-hand
side vector b is chosen so that x =[1,1,...,1]" solves the linear system (1). We terminate the iter-
ations as soon as (96) is satisfied with e=1-1071°,

Fig. 3 is analogous to Fig. 1 and shows the performance of the iterative method, of the lower
error bound (62) and of the upper error estimate (77). The error bound (62) and error estimate (77)
are seen to be close to the norm of the error in the computed approximate solutions. The “spikes” in
Figs. 3(b) and (c¢) correspond to anti-Gauss rules associated with ill-conditioned tridiagonal matrices
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Fig. 2. Example 1: Symmetric positive-definite dense matrix. (a) shows the 10-logarithm of the norm of the error (solid
curve), of the Gauss bound (62) (dash—dotted curve), of the anti-Gauss upper estimate (77) (dashed curve) and of the
norm of the residual error (dotted curve). (b) displays the error in the Gauss bound (solid curve) and anti-Gauss upper
estimate (dash—dotted curve). (c) shows the relative error in the Gauss bound (solid curve) and anti-Gauss upper estimate
(dash—dotted curve).

(64). Ill-conditioning of the tridiagonal matrices (64) can cause loss of accuracy in the computed
error estimates.

Now replace the random orthogonal matrix U,g in definition (97) of the matrix A by the identity
matrix Is5. The matrix 4 so defined is diagonal and has the same spectrum as the matrix used for
the computations shown in Fig. 3. The right-hand side vector b is chosen so that x =[1,1,...,1]"
solves (1). This linear system has previously been used in computed examples in [10,11,14] with
a stopping criterion, based on the A-norm instead of the Euclidean norm, with ¢ =1 1071 We
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Fig. 3. Example 2: Symmetric positive-definite dense matrix. (a) shows the 10-logarithm of the norm of the error (solid
curve), of the Gauss bound (62) (dash—dotted curve), of the anti-Gauss upper estimate (77) (dashed curve) and of the
norm of the residual error (dotted curve). (b) displays the error in the Gauss bound (solid curve) and anti-Gauss upper
estimate (dash—dotted curve). (c) shows the relative error in the Gauss bound (solid curve) and anti-Gauss upper estimate
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(dash—dotted curve).

therefore use the same value of ¢ in the present example. The performance of the iterative method,

as well as of the error bounds and estimates, are shown in Fig. 4.

Figs. 3 and 4 display that the lower bounds and upper estimates of the norm of the error in the
computed approximate solutions are closer to the norm of the error when U, = I;5 than when U,g
was chosen to be a random orthogonal matrix. Thus, similarly as in Example 1, the quality of the

error bounds and estimates depends on the eigenvector matrix of 4.
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Fig. 4. Example 2: Symmetric positive-definite diagonal matrix. (a) shows the 10-logarithm of the norm of the error (solid
curve), of the Gauss bound (62) (dash—dotted curve), of the anti-Gauss upper estimate (77) (dashed curve) and of the
norm of the residual error (dotted curve). (b) displays the error in the Gauss bound (solid curve) and anti-Gauss upper
estimate (dash—dotted curve). (c) shows the relative error in the Gauss bound (solid curve) and anti-Gauss upper estimate
(dash—dotted curve).

The following two examples are concerned with linear systems of equations with symmetric
indefinite matrices. For such matrices, the convex hull of the spectrum contains the origin, and some
Gauss rules (52) may have a node in the interval between the largest negative and the smallest
positive eigenvalues, where the matrix has no eigenvalues. The presence of a node close to the
origin can give inaccurate estimates of the norm of the error in the computed approximate solution.
This is illustrated by Figs. 5 and 6. This difficulty is circumvented by Gauss—Radau quadrature rules,
cf. Proposition 3.1.
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Fig. 5. Example 3: Symmetric indefinite dense matrix. (a) shows the 10-logarithm of the norm of the error (solid curve),
of the Gauss—Radau estimate (95) (dashed curve) and of the norm of the residual error (dotted curve). (b) displays the
10-logarithm of the norm of the error (solid curve), of the Gauss estimate (62) (dashed curve) and of the norm of the
residual error (dotted curve). (c) shows the error in the Gauss—Radau estimate (solid curve) and Gauss estimate (dotted
curve). (d) displays the relative error in the Gauss—Radau estimate (solid curve) and Gauss estimate (dotted curve).

Example 3. Let the matrix 4 in (1) be of order 491 and of the form (97), where U,y is a random
orthogonal matrix and the entries of the diagonal matrix A4 are given by

" 150+ (i—1), i=1,...,141,
- 141, i=142,...,491.

Then 4 is a dense matrix with eigenvalues in the interval [ — 150,350]. We determine the right-hand
side vector b so that x =[1,1,...,1]" solves the linear system (1). The iterations are terminated as
soon as (96) is satisfied with e =1-10"1.
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Fig. 6. Example 4: Symmetric indefinite banded matrix. (a) shows the 10-logarithm of the norm of the error (solid curve),
of the Gauss—Radau estimate (95) (dashed curve) and of the norm of the residual error (dotted curve). (b) displays the
10-logarithm of the norm of the error (solid curve), of the Gauss estimate (62) (dashed curve) and of the norm of the
residual error (dotted curve). (c) shows the error in the Gauss—Radau estimate (solid curve) and Gauss estimate (dotted
curve). (d) displays the relative error in the Gauss—Radau estimate (solid curve) and Gauss estimate (dotted curve).

Fig. 5(a) shows the 10-logarithm of the error in the computed approximate solutions (solid curve),
the 10-logarithm of the error estimate determined by Gauss—Radau quadrature (95) (dashed curve),
and the 10-logarithm of the norm of the residual error (dotted curve). The error estimates computed
by Gauss—Radau quadrature can be seen to be quite close to the norm of the error in the computed
approximate solutions.

Fig. 5(b) is obtained from Fig. 5(a) by replacing the curve for the Gauss—Radau estimates (95)
with a curve that displays error estimates computed by Gauss quadrature (62). Thus, the dashed
curve of Fig. 5(b) displays the 10-logarithm of the right-hand side of (62). Note that since A is
indefinite, formula (55) for the integration error does not reveal the sign of the error and inequality
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(56) is not guaranteed to hold. The Gauss rules only give estimates of the norm of the error in the
computed approximate solutions. The “spikes” of the dashed curve are caused by nodes of Gauss
rules being very close to the origin.

Fig. 5(c) is analogous to Fig. 3(b). The solid curve displays the error in the Gauss—Radau estimates
12, 2zi + Z2) + C|V2 — ||ex||, cf. (95), and the dashed curve shows the error in the Gauss estimates

(Ci — ()2 — ||e||. Fig. 5(d) displays the corresponding relative errors, i.e., (|Z; (22 + Z) + G|V? —

llex|)/|lex|| (solid curve) and (((fz — )2 —|ler|])/||exl] (dashed curve). The Gauss-Radau estimates
are seen to be more reliable than the Gauss estimates.

Example 4. Let 4 € R*>2% be defined by A:=B? — ulyy, where B is the standard 3-point dis-
cretization of the one-dimensional Laplacian and p:=+/3. Thus, B? is a pentadiagonal matrix; a
typical row has the nonvanishing entries {1, —4,6,—4,1}. Then 4 has 77 negative eigenvalues and
condition number 3.9 - 10°. The right-hand side vector b is chosen so that x =[1,1,...,1]" solves
the linear system (1). We terminate the iterations as soon as the stopping criterion (96) is satisfied
with e=1-10""1,

Figs. 6(a)—(d) are analogous to Figs. 5(a)—(d). The error estimates obtained by Gauss—Radau
rules are quite accurate, while the estimates determined by Gauss rules oscillate widely during the
first 77 iterations. After these initial iterations both Gauss—Radau and Gauss rules provide accurate
error estimates.

5. Conclusion

This paper describes an iterative method for the solution of linear systems of equations with a
symmetric nonsingular matrix. The iterative method is designed to allow the computation of bounds
or estimates of the error in the computed approximate solutions. Computed examples show that
the computed bounds and estimates are close to the norm of the actual errors in the computed
approximate solutions.
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Abstract

The connection between orthogonal polynomials and cubature formulae for the approximation of multivariate integrals
has been studied for about 100 yr. The article J. Radon published about 50 yr ago (J. Radon, Zur mechanischen Kubatur,
Monatsh. Math. 52 (1948) 286-300) has been very influential. In this text we describe some of the results that were
obtained during the search for answers to questions raised by his article. (© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Cubature; Multivariate integrals; Orthogonal polynomials

1. Introduction

The connection between orthogonal polynomials and algebraic integration formulae in higher di-
mension was already studied about 100 yr ago (early papers are, e.g., [1,6]). The problem became
widely noticed after the second edition of Krylov’s book “On the approximate calculation of inte-
grals” [43], published in 1967, wherein Mysovskikh introduced Radon’s construction of a formula
of degree 5 published in 1948 [72].

Though no final solution — similar to the one-dimensional case — has been found up to now, the
work in this field has been tremendous. In the textbooks by Krylov [43], Stroud [90], Sobolev [84],
Engels [20], Mysovskikh [66], Davis and Rabinowitz [17], Xu [94] and Sobolev and Vaskevich [85],
and in the survey article of Cools [10], the growth of knowledge in the field is documented. In this
text we will only try to describe some relevant results — following Radon’s ideas — that have been
found in the meantime.
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The one-dimensional algebraic case, i.e., interpolatory quadrature formulae and their relation to
orthogonal polynomials, is well known. In dimension 2 and beyond, things look worse: there are
more questions than answers. Nevertheless, some progress has been made. Though several essential
problems — important in applications — are still open, e.g., how minimal formulae of an arbitrary
degree of exactness look like for the integral over the square with constant weight function, several
results of some generality have been found. They make transparent why answers to important ques-
tions must be quite complex. We leave aside many particular results, in spite of their importance
for applications. For these we refer to the surveys in [90,14,11].

2. Basic concepts and notations

We would have liked to preserve the flair of the old papers; however, we finally decided to use
modern notations in order to achieve an easy and consistent way of presenting the results.

We denote by N the nonnegative integers. The monomials of degree m in n variables are written
in the short notation

X" =x{"xy? X" with |m| =m,
where x = (x1,x,...,X,), m=(m;,my,...,m,) € N", and

|m| = Z m; is the length of the multi-index m.
i=1
A polynomial f(x)= f(x,xs,...,x,) of (total) degree m can be represented as

m

f(x)= Z Z cxk, o €C,

s=0 |k|=s
and the summation in
k
gs(x) = Z CrX
|k|=s

is done over all multi-indices k of length s. The polynomial g, is called a homogeneous component

of degree s. Hence f is an element of the ring of polynomials with complex coeflicients, which will

be denoted by C[x] = C[xy,x,,...,x,]. The degree of a polynomial f will be denoted by deg(f).
The number of linearly independent polynomials of degree <m is

M= ("1,

n

the number of pairwise distinct monomials of degree m is M (n—1,m). When the linearly independent
monomials are needed as an ordered sequence, we will represent them by

{q)j(x)}j.ila
where j < k whenever deg(¢;(x)) < deg(¢«(x)). Hence
{q)j(x)};:h u= M(n,m),

contains all monomials of degree <m. Most of the results in the sequel will be stated in the ring
of polynomials with real coefficients, R[x;,x,,...,x,] = R[x], which will be denoted by P”. The
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polynomials in P” of degree <m will be denoted by P7. The elements of P form a vector space
over R with dimension dim P, = M (n, m).
We consider integrals of the type

S [ foods [ € EQ) (1)
where Q CR" is a region with inner points and the real weight function w is chosen such that the
moments

Jx"], me N,
exist. In many applications w(x) is nonnegative. Hence .#” is a positive linear functional. In most
of the results presented, .#” will be even strictly positive, i.e.,

J"[f] > 0 whenever 0 £ =0 on Q,

so orthogonal polynomials with respect to .#" are defined.

The type of integrals we consider includes integrals over the so-called standard regions, for which
we follow Stroud’s notation [90].
C,: the n-dimensional cube

Q={(x1,...,x,): —I<x;<l,i=1,...,n}

with weight function w(x) =1,
S,: the n-dimensional ball

Q= {(xl,...,xn): foél}
i=1

with weight function w(x) =1,
T,: the n-dimensional simplex

Q= {(xl,...,xn): insl and x; >0,i = 1,...,n}
i=1

with weight function w(x) =1,
E7: the entire n-dimensional space 2 = R" with weight function

n
2
o(x)=e", = le.z,
i=1

E’: the entire n-dimensional space 2 = R" with weight function
o(x)=e"",
H,: the region bounded by the regular hexagon with vertices
(£1,0), (:l:%, j:%\/g) and weight function w(x) = 1.

A cubature formula for (1) is of the form

S =20f1+RIf] (2)
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where

AL1=D wif(xY) 3)

J=1

is called a cubature sum. The x\/)’s are called nodes, the w;’s weights or coefficients, and R[f] is
the error. The shorthand notation

N
STy wif ()
j=1
is often used.

A nonnegative integer d is called degree of exactness or degree of precision or simply degree
of formula (2), if R[f] =0 for all polynomials f with deg(f)<d and if a polynomial g with
deg(g) =d + 1 exists such that R[g] # 0.

Let f € C[x] be given and deg( /) = m; the algebraic manifold of degree m generated by f will
be denoted by

Hu={xeC" f(x)=0}.

A cubature formula (2) with N =M (n,m) which is exact for all polynomials of degree <m: is called
interpolatory if the nodes do not lie on an algebraic manifold of degree m and the coefficients are
uniquely determined by the nodes.

If n=1, then N=m+ 1 and the converse is true, too. If the degree of exactness of the quadrature
formula is m, then it is interpolatory. For n>2 this does not hold in general. The number of nodes
might be lower than M (n,m) since some of the coefficients may vanish.

Theorem 1. Let (2) be given such that R[f] =0 for all polynomials of degree <m and N<u=
M(n,m). The formula is interpolatory if and only if

rank([@1(x), 9a2(x7), ..., o, (x)) = N.

We are specifying 2 by 2(n,m,N) if we refer to a cubature sum in n dimensions with a degree
of exactness m and N nodes. We only consider interpolatory cubature formulae. A noninterpolatory
formula can be transformed to an interpolatory formula by deleting nodes. In particular, minimal
formulae (N is minimal for fixed m) are interpolatory.

A polynomial P with deg(P) = m is called orthogonal with respect to the underlying #" if
J"PQO]=0 for all Q, deg(Q)<m— 1. It is called quasi-orthogonal it #"[PQ]=0 for all O,deg(Q)
<m—2.

A set of polynomials in R[xi,...,x,] is called a fundamental system of degree m whenever it
consists of M(n — 1,m) linearly independent polynomials of the form

X"+ QOm meN", deg(Qn)<|m|— 1.

A set ./ of polynomials is called a fundamental set of degree m if a fundamental system of degree
m is contained in span{./#}.
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In the two-dimensional case we drop the superscript n» and use x and y as variables, i.e., P,[P,,
and,

I = / fGo ol y)dxdy,  f € %(Q), QCR.

Whenever possible, one tries to find cubature sums (3) such that the following constraints are
satisfied:

(i) w; >0,

(i) xV € Q,
(iii) N is minimal for fixed degree m.
If n =1, Gaussian quadrature formulae satisfy all constraints. These formulae are closely connected
to orthogonal polynomials. The zeros of a quasi-orthogonal polynomial of degree k, P} + yP;_,
with free parameter y, are the nodes of a minimal quadrature formula of degree 2k — 2 with all
weights positive. The parameter 7 can be chosen such that all nodes are inside the domain of
integration, and, if y = 0 one obtains a uniquely determined formula of degree 2k — 1 satisfying
(1), (i1), (iii). Nonminimal interpolatory quadrature formulaec have been characterised by Sottas and
Wanner, Peherstorfer, and many others, most recently by Xu [86,68,69,96].

3. Radon’s formulae of degree 5

The paper by Johann Radon [72], which appeared in 1948, is not the oldest studying the application
of orthogonal polynomials to cubature formulae (earlier papers are, e.g., [1] to which Radon refers,
and [6]). However, Radon’s contribution became fundamental for all research in that field. Although
the word “cubature” appeared in the written English language already in the 17th century, this paper
is probably the first that used the term “Kubaturformel” (i.e., German for “cubature formula”) for
a weighted sum of function values to approximate a multiple integral (in contrast to quadrature
formula to approximate one-dimensional integrals). As an introduction to the survey which follows,
we will briefly sketch its main ideas.

Radon discusses the construction of cubature formulae of degree 5 with 7 nodes for integrals over
1,,C,,S,. We are sure Radon knew the estimate (22) and knew that this bound will not be attained
for classical (standard) regions in the case of degree 5. In order to construct a cubature formula of
degree m he counted the number of monomials of degree <m and used this divided by 3 as number
of necessary nodes. He was aware that for degrees 2, 3 and 4 this will not lead to a solution and
thus degree 5 is the first nontrivial case he could consider.

Assuming a formula of degree 5 with 7 nodes for an integral .#, a geometric consideration leads
to polynomials of degree 3 vanishing at the nodes. These polynomials have to be orthogonal with
respect to .# to all polynomials of degree 2, and exactly three such polynomials, P;, P,, P;, can
vanish at the nodes. In the next step further necessary conditions are derived for the P;. They must
satisfy
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for some linear polynomials Z; # 0. This can be reduced to
XKl +yK2 :K3, (5)

where K; are orthogonal polynomials of degree 3. Assuming the orthogonal basis of degree 3 in a
form

Pl=x""y'+ 0, Qi€P, i=0,123,
one obtains
Ky =P} + fP; +yP; and K, = —aP; — P} —yP;.

The parameters o, 5, y have to be chosen such that Kj is also an orthogonal polynomial of degree
3. Thus, by setting

A=J[PP; — PiP)], B=J[P,P; — PiP;], C=J[P{P;—P;P3], (6)
one obtains the linear system
0 A B o
-4 0 C||p|=o. (7
-B —-C 0 Y
Two cases may occur. The parameters o, 5, y can be determined up to a common factor, if
A+ B+ C* >0, (8)

otherwise they can be chosen arbitrarily. Radon did not further pursue the last case. He just remarked
that he did not succeed in proving that this case never occurs.

In case (8) the polynomials K;, K, K3 can be computed. If they are linearly independent, the
desired equation (4) is given by xK; + yK, = K;. If these polynomials vanish at 7 pairwise distinct
nodes, the degree of exactness follows from the orthogonality property of the K;’s.

If the K; are linearly dependent, it follows that

Kl = yQ and K2 = —XQ

for some Q € P,. In this case it can be shown that there is a K3 such that all K; vanish at 7 pairwise
distinct nodes. This construction again is based on geometric considerations and finally allows the
conclusion that such K3;’s can be computed.

Radon’s article continues with the construction of formulae of degree 5 with 7 nodes for integrals
over the standard regions with constant weight function 7,, C, and S,. The amount of computational
work — in a pre-computer time — is tremendous. The article finishes with an examination of the
cubature error.

Though the results are limited to a special case, Radon’s approach is the basis for fundamental
questions that were studied in the years following the publication of his result:

(i) Can this constructive method be generalised to a higher degree of exactness?
(ii) Can this constructive method be generalised to more than two dimensions?
(iii) Are there integrals for which the second case occurs, i.e., 4 =B=C =0?
(iv) Is 7 a lower bound for the number of nodes of cubature formulae of degree 5 if (8) holds?
(v) Are there lower bounds of some generality for the number of nodes?
(vi) What intrinsic tools were applied for the solution?
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Fifty years after the publication of Radon’s paper, it is still not possible to answer these questions
completely. We will outline what is known in the sequel.

4. Multivariate orthogonal polynomials

We assume that .#" is strictly positive. Different methods of generating an orthogonal polyno-
mial basis were discussed by Hirsch [34]. If the moments #"[x™], m € N”, are known, one can
either orthogonalise the monomial basis by the Gram—Schmidt procedure, or compute step by step
fundamental systems of orthogonal polynomials of degree m.

A third way is to find a partial differential equation with boundary conditions the polynomial
solutions of which lead to orthogonal systems. This permits finding formulae for the coefficients of
the polynomials and deriving recursion formulae. However, one has to find out if there is an integral
for which the polynomials form an orthogonal system.

4.1. Simple properties

The strictly positive integral (1) defines a scalar product in C[x] by

(¢,lﬁ)=f”[¢,ll_/]2/945()6)@@(36)(1& ¢,y € Clx]. )

Consider the polynomial
Pk+l(x):gk+l(x)+Zaiq)i(x)a K =M(n,k), (10)
i=1

where ¢,.1(x) is a given homogeneous component of degree k£ + 1 and the a;’s are unknown
coefficients. Assuming (10) to be orthogonal to ¢;(x), j=1,2,...,«, with respect to (9), we obtain

Zai((/)i5(pj):_(ngrl(x)’(Pj)’ Jj=L2,.. K (11)

i=1
The matrix of this system is the Gram matrix of the linearly independent polynomials ¢;(x),
@2(x),...,¢.(x). Hence, the a; are uniquely determined. The polynomial (10) is uniquely deter-
mined by its homogeneous component of degree k£ + 1 and by orthogonality to all polynomials of
degree <k.
We state some simple properties of orthogonal polynomials, which will be of use later.

Theorem 2. The following properties hold for an orthogonal polynomial P, .

(1) If the homogeneous component of degree k + 1 has real coefficients, then all coefficients are
real. This follows from (11).

(2) A real polynomial P, changes sign in Q. In particular,

{x € Q: Py >0} and {xeQ: Py <0}

are of positive measure, which follows from

/ Pei(x)o(x)dx =0,
Q
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(3) Whenever Py = UV with polynomials U and V of degree at least 1, then U is orthogonal
with respect to Q and the weight function o(x)|V(x)|>. This implies Properties (1) and (2)
for the factors as well.

(4) If the coefficients belonging to the highest-degree terms in the homogeneous component of a
factor are real, then the remaining coefficients are real, too.

(5) A real factor U of an orthogonal polynomial changes sign in Q. In particular,

{xe Q2 U>0} and {xeQ U<0}

are of positive measure. From this we obtain
(6) An orthogonal polynomial has no real multiple factors.

We normalise the orthogonal polynomials of degree & to
Pi=x"+01, keN", |kl|=k deg(Qr)<k—1.

This fundamental system of degree k£ will be gathered in a polynomial vector of dimension M (n—1,k)
and be written as P,. We refer to the common zeros of all P, as zeros of P,. The known explicit
expressions for these normalised orthogonal polynomials are collected in [10].

4.2. Recursion formulae

For n=2 the following results were found. Jackson [37] discusses a three-term recursion formula
for a given orthogonal system, Grobner [27] generates orthogonal systems by solving a variational
problem under constraints; Krall and Sheffer [42] study in a class of second-order differential equa-
tions special cases the polynomial solutions of which generate classical orthogonal systems. Since
their approach is closely related to recursion formulae and leads to concrete results we will outline
the main ideas.

Let

P;F:Xk_jyj‘i‘Qj, Q_/Epk_l, j:O,l,...,k, kEN,

be a basis of P. We can collect these fundamental systems of degree £ in vectors
P, =(PL,PE, ... PO,

The basis Py, k£ € N, is said to be a weak orthogonal system if there exist matrices
Ck> (_jk c Rk+l><k+l and DkaD_k c Rk-‘rlxk,

such that
xPi = Ly 1 Pryy + CiPp + D Py,

yPy = Fi\Piyy + Ci Py + Dy Py,

with shift matrices L;,, and F;; defined by [E; 0] and [0 E;], where E; is the identity in RFF1*k+1
and P_, =0.

A polynomial basis is said to be orthogonal with respect to a linear functional ¥ : P — R, if, for
each k € N, Z[P,P]]=0, [=0,1,...,k—1, and if rank(Z[P,P])=k+ 1. Here, P, P/ is the tensor
product of the vectors P, and P;, and Z[P,P]] is the matrix whose elements are determined by the
functional acting on the polynomial coefficients of the tensor product. The matrix M; = Z[P,P}] is

(12)
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known as the kth moment matrix. The basis {P;}rcn is said to be a (positive) definite orthogonal
system in case the matrices M;, k € N, are (positive) definite.

A definite system {P;}icn is a weak orthogonal system, i.e., it satisfies the recurrence relations
(12). Conversely, it follows from work by Xu [93] that a weak orthogonal system is an orthogonal
system with respect to some % if and only if

rank(S;) =k +1 where S, =[D; D;] € RFT1*2,

The associated moment problem consists in assigning a measure to the functional % defined by a
definite system. In particular, assigning a positive measure in case the system is positive definite
(Favard’s theorem) is quite complicated. We refer to Fuglede [24] and Xu [95].

Krall and Sheffer [42] studied the orthogonal polynomial systems which are generated by the
following second-order differential equation:

Do = —;uka), ;Lk eER, ke N, (13)

where

62 2
Fo=(a+dix+ey+ f1) w—i—(zaxy‘i‘dzx-i-ezy‘i‘fz)

2
co
+ (ay? +d3x+ezy+f3) +(Jx+h1)— +(gy+hz)—

for some real constants a # 0,¢,d;, e, f :» h;, and for
lp=—k((k—1)a+g), g+ka+#0, keN.

They determined all weak orthogonal systems which are generated from (13) and proved that they
are definite or positive definite, finding the classical orthogonal systems which had been derived in
[2] and some new definite systems.

In [4] the recursion formulae for all positive-definite systems have been computed in the following
way. Let {P; }1—o.1... be a definite orthogonal system with respect to .#. Multiplying (12) by P[_,, P],
and Pl |, respectlvely, and applying .#, we obtain

CiM; = I[xP P[], DM, = I[xP,P[ |1 =ML,
CiM; = I[yPPll, DiM;_, = F[yP,P_|]1=M,F].

By means of these identities the moment matrices can be computed by induction. Indeed, let G, =
diag{[2, E;_,]} and G, = diag{[E;_»,2]}; then

2E, = L} GL; + F}G.F,,
and consequently,
2 My, = ML} G Ly + MyF} G,F, = DiM,_,GL; + DM, _,G,F.

If one sets M, = 1, the last equation allows us to compute M, from M, _,, k € N. Based on [2],
Verlinden [91] has computed explicit recursion formulae for classical two-dimensional integrals, too.
So we refer to [91,4], if explicit recursion formulae are needed for standard integrals.
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Not all two-dimensional orthogonal systems of interest can be obtained from (13). For further
systems we refer to Koornwinder [38] and the references given there.

Kowalski in [39] presented a n-dimensional recursion formula and characterised it in [40,41]; Xu
[93] refined this characterisation by dropping one condition. We will briefly outline these results.
For a more complete insight into this development of a general theory of orthogonal polynomials in
n dimensions we refer to the excellent survey by Xu [98].

Let .#" be given, and let

Mk — f"[PkP,T] c RM(n—l,k)XM(n—],k)

be the moment matrix for .#”. Then the recursion formula can be stated as follows.

Theorem 3. For k=0,1,... there are matrices
Ak,i c RM(n—l,k)xM(n—l,kH), Bk,i c RM(n—l,k)xM(n—],k)’

and

Cp € RMO-LIXMO— L),
such that

XiPy = ApiPiy + BuPe+ CoiPioy, i=12,....n, k=0,1,...,
where P_; =0 and for all i=1,2,...,n and all k

AiiMyiy = I"[x PPl

By My = f"[xiPkP;],

T
Ak,iMk+1 :Mka+l,i'

Furthermore, there are matrices
Dk,i> Gk c RM(nfl,kH)XM(nfl,k)’ Hk c RM(nfl,kJrl)XM(nfl,k)

such that

Ppy = inDk,iPk + Gy Py + Hi Py,

i=1

where

n
E Dk,iAk,i = EM(n—l,k+1)><M(n—1,k+1)
i=1

and

ZDk,in,i = -Gy, ZDk,iCk,i = —H;.
i=1

i=1

We will denote the fundamental set of orthonormal polynomials (with respect to .#") of degree
k by pi. The recursion for orthonormal polynomials is given by Xu [95]. We reuse the notations
Api, Bii. In the following, these matrices will refer to the recursion for orthonormal matrices.
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Theorem 4. For k=0,1,... there are matrices
A € RM(n1—1.k)x M (n—1k+1) B, € RM(n=1.k)x M (n—1.k)
such that
Xi Pk :Ak,ipk+l + Bk,ipk +Ag71,[pk—la = 13 25 Ry k= 0’ 15 IR
where p_, =0, A_,; =0 and
rank(Ay ) = rank([A4] |4} ,| - |4L, 1) =M(n — Lk +1).
Fori,j=1,2,...,n, i # j, and k=0, the following matrix equations hold for the coefficient matrices:
(i) Ak,iAk+1,j :Ak,_/Ak+1,i:

(11) Ak iBisr,j + BiiAr; = Bi jAx;i + Ar jBisii,
(ili) Af_, Ax—1; + BiiBi; + Ak,;AZJ = Az_ljjAkfl,i + By jBri + Ak,jAz,i-

In order to characterise Gaussian cubature formulae, see Section 7.1.4; the use of orthonormal systems
gives more insight and often is easier to apply.

4.3. Common zeros

A direct analog of the Gaussian approach for n>2 suggests considering the common zeros of all
orthogonal polynomials of degree k£ as nodes of a formula of degree 2k — 1. So the behaviour of
common zeros of all orthogonal polynomials of degree & is of interest.

The following theorem, due to Mysovskikh [60,66], holds for (not necessarily orthogonal or real)
fundamental systems of polynomials; it turned out to be essential.

Theorem 5. Let
Rm:xm+Qm: deg(Qm)<m_ 1, |m| =m,

be a fundamental system of degree m. Then the following is true.
(1) The polynomials R,, have at most dim P?_, common zeros.
(ii) No polynomial of degree m — 1 vanishes at the common zeros of the R, if and only if the
Ry, have exactly dim P, common pairwise distinct zeros.

We will briefly derive the main properties of the zeros of fundamental systems of orthogonal
polynomials. Orthonormalising the monomials {¢;(x)}?°, with respect to .#", e.g., by the Gram-
Schmidt procedure, we obtain

{Fi(x)}2,  where J"[FiF;] =3y

The reproducing kernel in P is a polynomial in 2z variables,
u
Km(”ax):ZF/(u)Fj(x)’ u:M(n,m), (14)
=1

having the property
I"'Ky(u,x)f(x)] = f(u) forall feP). (15)
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Lemma 6. For an a € C" let | be a linear polynomial such that l(a) =0. Then R = I(x)K,(a,x)
is quasi-orthogonal. Whenever a is a common zero of P,., then R is orthogonal.

Proof. If Q € P2 _, we obtain by (15)
S 1)K (a, x)Q(x)] = l(a)Q(a) = 0.
If @ is a common zero of P, ., then
Fyn—1,m+i(@) =0, i=12,....M(n—1,m+1),
and thus K, (a,x) = K,,;1(a,x). Hence
R(x)=1(x)K,1(a,x)=1(x)K,(a,x)

is orthogonal to P},. Assuming deg(/(x)K,(a,x))<m, we obtain that R is zero, in contradiction to

K, (a,a@)= zu: |Fi(a)’| >0, p=M(mm). [

i=1

The following theorem was proved in [61,65].

Theorem 7. The zeros of P,., are real and simple, and they belong to the interior of the convex
hull of Q. Furthermore, P, and P,, have no zeros in common.

Proof. Let a € C" be a common zero of P, ;. By Lemma 6 the polynomials
(x; —a))Ky(a,x), i=12,...,n, (16)

are orthogonal to all polynomials of degree m. Because of property (3) in Theorem 2, the linear
factor x; — a; is real, hence a € R". The Jacobian matrix of (16) in a is diagonal with elements
K, (a,a) > 0. This implies that a is simple. If a is not an interior point of the convex hull of €,
there is a separating hyperplane /(x) through a, e.g., /(x)=0 for all x in the interior of the convex
hull. Since /(x) is a real factor of /(x)K,(a,x), this is a contradiction to property (5) in Theorem
2. Finally, @ is no common zero of P, since by Lemma 6 the degree of (16) is m + 1, hence
deg (K, (a,x))=m. O

Using the matrices presented in Theorem 4, Xu [97] defines infinite tridiagonal block Jacobi
matrices of the form

Bo; Ag; O 0 ... 0
Ay, Bii A 0 .00
=10 41, B, 4, 0

and truncated versions of these. He found a relation between an eigenvalue problem for these matrices
and the zeros of all orthogonal polynomials of a fixed degree. These results and their relation to
cubature formulae are further elaborated in [94].
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5. Lower bounds
5.1. Numerical characteristics

Mysovskikh [56] proved that Radon’s formulae are minimal whenever (8) holds. In [67] an
integral is constructed where the matrix in (7) is zero and a formula of degree 5 with 6 nodes can
be constructed. Applying Radon’s method to formulae of degree 3, Mysovskikh [59] found that such
formulae with 4 nodes exist if and only if

P3P — PiP{] #0; (17)

otherwise the formula has only 3 nodes. This has been further studied by Giinther [28,29]. Fritsch
[23] gave an example of an integral for which 2(n,3,n+ 1) exists. Cernicina [9] constructed a region
in R", 3<n<8, admitting minimal formulae of type 2(n,4,(n + 1)(n + 2)/2); for n =2 a formula
2(2,5,6) is obtained. Stroud [90] extended (6) in the following way:

B=[IPIP] = PiPllisjovin pipr, 0<ijn <o (18)
in order to obtain the lower bound in Theorem 10.
Mysovskikh [60] generalised (5) and (6) (in order to study the case which Radon did not further
pursue) by defining for given k£ and .# the following matrices:

Mktl = [f[Pk Pll‘c — PiP! 1]]i,j:0,1,...,k71> (19)

Jj+1 jti+
— note that M* is skew-symmetric — and
1 K pk k pk K pk
A= E[J[Piﬂqu - 2Pi Pj - Pi71Pj+1]]i,j:1,2,...,kfl‘

The elements of these matrices characterise the behaviour of the orthogonal polynomials with respect
to .#; so they were called numerical characteristics.

Theorem 8. The following are equivalent:
(1) the matrix A vanishes,
(ii) the matrix M} | vanishes,
(iii) the orthogonal basis of degree k has k(k + 1)/2 common pairwise distinct real zeros,
(iv) a cubature formula of degree 2k — 1 with the lowest possible number of nodes exists. Its
nodes are the common zeros of the orthogonal basis of degree k.

The proof in [66, p. 189], is based on Theorem 5 and the following considerations. The polyno-
mials

Q;=yPf —xPl,, i=0,1,....k—1, (20)

are of degree k; this is Radon’s equation (5). Hence if the common zeros of all P¥ are the nodes
of a formula of degree 2k — 1, then the Q; are orthogonal polynomials of degree k. This implies
M}, =0. Evidently, M;* , =0 implies 4 = 0. On the other hand, if 4 =0, then M}* , is of Hankel
type, and, since M* is skew-symmetric, this implies M}* , = 0. The existence of integrals admitting
the conditions of Theorem 8 was studied by Kuzmenkov in [44—46].

The articles based on Mysovskikh’s results prefer to work with M* |, and it turns out that this
matrix in many ways characterises the behaviour of the associated orthogonal polynomials.
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In order to generalise Theorem 8 to n dimensions, Eq. (20) has to be studied for all possible
variables. By means of the recursion formulae for orthonormal systems, n-dimensional numerical
characteristics can be defined. By condition (ii) in Theorem 4,

A1, pr — Ax—1,iX; Px

can be computed under the condition that these polynomials are orthogonal to P}_,. This leads to
the matrices

MX G j) = Ak Af_y — Ao Ay B =1,2,....n, i # ], (21)

which are representing the numerical characteristics of orthogonal polynomials in #» dimensions.
5.2. Lower bounds

To settle the question of minimal formulae, lower bounds for the number of nodes are needed.
The one-dimensional result can be generalised directly to find the following result, which seems to
be folklore.

Theorem 9. If 2(n,m,N) is a cubature sum for an integral 9", then
N=dim P}, , = M(n, [m/2]). (22)

As we have seen in Section 3, this lower bound is not sharp for n =2 and m = 5. A simple
consequence of Theorem 8 is

Theorem 10. If 2(2,2k — 1,N) is a cubature sum for an integral ¥ for which rank(M}X ) > 0,
then

N=dimP;,_; + 1.

Stroud [90] showed this under the condition that B in (18) does not vanish.
Considerable progress was made by Moller [49], who improved the lower bound for n = 2.

Theorem 11. If 2(2,2k — 1,N) is a cubature sum for an integral ¥, then
N=dimP;_; + %rank(Mktl). (23)

Proof. If a cubature sum 2(2,2k —1,N) is given, then no polynomial in P;,_, vanishes at all nodes.
If no polynomial of degree k vanishes at all nodes, then N >dim P, > dim[P;_; + %rank(Mk*_l),
since M* ;| € R"**, So Moller assumed the existence of s orthogonal polynomials Q; of degree &
which vanish at the nodes and first searched for a bound on s. Note that Q,,x0;, yQ; belong to an
ideal which does not contain any polynomial of P;_;. Let

W = Span{Qiaina yQia l: 1>29~'~3S};
then
Is—n=dmW <k +2+s,
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where # is the number of those xQ;, yQ; which can be dropped without diminishing the dimension
of # . These dependencies in #" are of the form

k k-1 k

k k k

X E aP; —y E a1 P = E b;P;.
i=1 i=0 i=0

By orthogonality this leads to
k-1

> a1 I[PLPL, — P

Jj+1
i=0

Pf1=0, j=0,1,....k—1,

1e.,
M,f_l(al,az,...,ak)T =0.
Thus we get n<k — rank(M} ,), from which we finally obtain

s<k+1—irank(M}*)). O

For all classes of integrals for which the rank of M} | has been computed, it turned out that either
the rank is zero (cf. [82]) or

rank(M}* ) = 2| k/2].

Classes of integrals for which the second rank condition holds have been already given by Moller
[49]. He showed this for product integrals and integrals enjoying central symmetry. This includes the
standard regions Cz,Sz,Hz,Egz and E}. Further classes with the same rank were detected by Rasputin
[73], Berens and Schmid [3]. These include the standard region 7.

Another important fact was observed by Moller. If (23) is attained, then the polynomials xQ;, yQO;
form a fundamental set of degree & + 1.

The improved lower bound, in general, is not sharp. Based on a characterisation of cubature sums
22,4k + 1,2(k + 1)> — 1) for circularly symmetric integrals in [92], it was shown in [16] that for
all k € N'\ {1} the integrals

/ f@ )2+ 2 e dxdy, a>0,
R2

and for o, f > — 1 the integrals
SO )+ ¥ (1 =2 = ) dxdy
N

admit cubature sums 2(2,4k +1,N) where at least N >2(k+1). Note that this includes the standard
regions S, and E;z. This result can however not be generalised to all circularly symmetric integrals.
In [92] the existence of a circularly symmetric integral admitting a cubature sum 2(2,9,17) has
been proven.

The n-dimensional version of Theorem 11 was stated in [51]. An explicit form of the matrices
involved was given in [97], using (21), which allows us to formulate (23) as follows.

Theorem 12. If 2(n,2k — 1,N) is a cubature sum for an integral 9", then
N >dim P}_, + imax{rank(M} |(i,/)): i,j = 1,2,...,n}. (24)
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Let us denote by %,, the linear space of all even polynomials in P}, and by %,,_, the linear
space of all odd polynomials in P4, ,. For integrals .#" which are centrally symmetric, i.e., for
which

JNO1=0 if Q€ %y, meN,

holds, another lower bound is known, which is not based on orthogonality.

Theorem 13. If 2(n,2k — 1,N) is a cubature sum for a centrally symmetric integral 9", then

N>2dim%,_, — { 1, if 0is a node and k is even,
0, else.

This bound was given for degree 3 by Mysovskikh [55]; the general case is due to Moller [47,51]
and Mysovskikh [64]. Moller proved that cubature formulae attaining the bound of Theorem 13
(having the node 0, if £ is even) are centrally symmetric, too. For n>3 and .#” centrally symmetric,
the bound of Theorem 13 is better than the one of Theorem 12. For =2 and .#" centrally symmetric,
they coincide.

To conclude this section, we remark that cubature formulae with all nodes real and attaining the
bounds of Theorem 9 or Theorem 13 are known to have all weights positive [58,90,47,12].

6. Methods of construction
6.1. Interpolation

Let QCR” be given and assume that € contains interior points. By virtue of the linear inde-
pendence of {¢;(x)}?, we can find for each m exactly p = M(n,m) points from € such that they
generate a regular Vandermonde matrix. We remark that v points, v < u, are always contained in an
algebraic manifold of degree m, hence p is the minimal number of points which do not belong to
such a manifold. We denote by

Vm — [(pl(x(j))’ (/)Z(x(]))’ 'a(pll(x(j))];tzla n :M(nam): (25)
the Vandermonde matrix defined by x, j=1,2,..., 1.

Theorem 14. The points x\, j =1,2,...,u, do not lie on an algebraic manifold of degree m if
and only if detV,, # 0.

A natural way to construct a cubature formula is interpolation. Choose u points x/) € R” which do
not lie on a manifold of degree m. Because of the nonsingularity of the corresponding Vandermonde
matrix we can construct the interpolating polynomial of f:

Py(x) = XH:L‘E"”(x)f (x7),

j=1
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where
LDy =0;, ij=1,2... 1
Substituting P,, for f in (1), we obtain

I
IL1=D_ wif (D) + R[], (26)

J=1

where
w; = / L (x)o(x) dx. (27)
Q

A cubature formula obtained in this way is obviously interpolatory, see Theorem 1.
6.2. Reproducing kernels

The method of reproducing kernel was introduced in [58] in order to construct cubature formulae
of degree 2k with a minimal number of nodes N = M(n,k). Most often the method will produce
cubature formulae with more nodes. By means of the orthonormal basis such cubature formulae may
be constructed by inserting f = F,F,, in (2) and studying

N
> wiF (D) (x) =81y Lm=1,2,...,N. (28)
j=1
Introducing the N x N matrices
F= [Fl(x(j))aF2(x(j))>- .. 7FN(x(j))]jy:1
and C = diag{w,w,...,wy}, we can write Eq. (28) as
F'CF =E.

This can be written as FFT =C~', i.e.,

N
S Fi(x")Fi(x)y=w, 10, rs=12,...,N.

i=1
If we are using (14), this can be rewritten as
Kk(x("),x(’)) = wr_lém, r,s,=1,2,...,N. (29)

If we assume that (28) will lead to a cubature formula, then the nodes and coefficients can be
determined by (29).
Let @', i=1,2,...,n, be pairwise distinct nodes of such a formula. We denote by #; the algebraic
manifold defined by the polynomial K,(a®”,x). From (29) we obtain
Ki(a?,a"") = b;6 , Lj=12,...,n. (30)
The remaining nodes of the formula belong to (_, #; and can be computed by solving for the
unknown variables x from

K@, x)=0, i=12,...,n.

-1
ij> b; = w;
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Since the nodes of the cubature sum 2(n,2k, M(n,k)) are not known, we proceed in the following
way. The nodes a” are chosen (whenever possible) in Q but different from any of the common
zeros of the fundamental system of orthogonal polynomials of degree k. So the order of the manifold
H; generated by K (a®),x) is k.

If a'V is fixed, then a® will be chosen on ', and, if possible in Q. If ', i=1,2,...,t—1, are
fixed, the next node a'” is chosen on ﬂﬁ;,l H';, if possible in Q. The a), i=1,2,...,n, constructed
in this way satisfy (30). If all nodes are chosen in R”, then b; > 0; in fact,

N
bi=) F}(a”)>0,
j=1

since the a” are no zeros of the fundamental system of orthogonal polynomials of degree k.
If there are no points at infinity on # = (\_, #,, then # consists of r points x/. Thus we
obtain

/ f(x)o(x)dx = 2(n,2kn+r) = ZAjf(a(”) + ZB,f(x(”). 31
Q j=1 j=1
The coefficients 4; can be computed from (31) since the formula is exact for K;(a®,x), i.e.,

/ Ki(a?, x)o(x)dx =) 4;K(a”,a") = 4K (a?,a?),
Q o
or, by using (15) with f =1,
1 1
b Ki(ah, ad)
If n+r=N=M(n,k), the coeflicients B; can be computed in an analogous way; if n+r > N, the
B; are determined by the condition for (31) to be of degree 2k.
The method of reproducing kernels can be applied to regions in R” without inner points, see
[36,52]. The method was applied in [58,7,8,25] to construct cubature formulae of degree 4 for a

variety of regions and in [47] to construct a cubature formula of degree 9 for the region ;.
Moller [47] and Gegel’ [26] proved

A[:

Theorem 15. If a, i =1,2,...,n, satisfy (30) where b; # 0, and if (\_, #; consists of pairwise
distinct nodes x\V, j=1,2,...,k", then

n k"
/Qf(x)w(x)dx = Am,2k,n + k") = ; ;if(a(i)) + ]z_]: w; f(x),

where b; = Ki(a®,a").

Moller modified this for centrally symmetric integrals by using the following important observation.
For these integrals, the orthogonal polynomials of degree m are even (odd) polynomials, if m is
even (odd). For the linear space IPZ of all even (odd) polynomials of degree <k if k£ is even (odd)
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the reproducing kernel
i !/
Ki(u,x) =Y Fw)Fy(x), t=k—2[k/2] +1, N=M(nk),
j=t

is considered. Here 3.’ denotes summation over all even (odd) polynomials F; if j is even (odd).
Again, nodes a', i = 1,2,...,n, are chosen (whenever possible) in Q but different from any of
the common zeros of the fundamental system of orthogonal polynomials of degree k.
The manifolds corresponding to K (a”,x) will be denoted by #;. If a®, i =1,2,. — 1, are
already selected, the node a' is chosen on ﬂ1:1 H;, if possible in Q. These nodes satlsfy
Ki(a?,ay=0:0,, i,j=1,2,...,n, (32)

ijs
where b; > 0 since a') € R".
We remark that the nodes in the modified method are chosen as a', —a'?, i=1,2,...,n. By central
symmetry it follows that

Ri(a?,~a) = (~1)Ki(a®,a),
hence by (32), if b; # 0, we get a') # —a') if i # j. So the a®,—a® are pairwise distinct, if
a? £ 0,i=1,2,...,n. If k is odd, this is satisfied; if k is even, the number of pairwise distinct
nodes @ and —a'”? may be 2n or 2n — 1. In [47] the following is derived.

Theorem 16. Let the integral be centrally symmetric. If the nodes a?, i=1,2,...,n, satisfy (32)
where b; # 0, and (\/_, H; consists of pairwise distinct points xV, j=1,2,....k", then

/ f(x)o(x)dx = 2(n,2k 4+ 1,2n + k")
Q

_ZZb

where b; = K (a®,a").

f(x(f))

6.3. Ideal theory

Let
X={", j=1,2,...,N}CR"
be a finite set of points, and define the subspace
W ={P € P): P(x)=0 for all x € X} CP".
Sobolev [83] proved

Theorem 17. The points X are the nodes of 2(n,m,N) for " if and only if
Peyw implies "'[P] =

An English rendering of the proof can be found in [10].
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The relationship of orthogonal polynomials and cubature formulae was studied since 1967 by
Mysovskikh [57,59,61-63] and Stroud [87-90]; in particular they introduced elements from algebraic
geometry.

Moller [47] recognised that this connection can be represented more transparently by using ideal
theory, and that this theory will help in determining common zeros of orthogonal polynomials. E.g.,
Theorem 5 follows easily from this theory. Let 2(n,m,N) be given such that

X={xY, j=1,2,....N}CR"
is the finite set of nodes, and define the polynomial ideal
A={PecP" Px)=0forall xcX}CP"

Then we obtain for each P € AN P’ the orthogonality condition #"[PQ] = 0, whenever PQ € P .
Moller introduced the notion of m-orthogonality. A set of polynomials is said to be m-orthogonal if
for every element P we have J"[PQ]=0, when PO € P. Hence, orthogonal polynomials of degree
m are (2m — 1)-orthogonal, while quasi-orthogonal polynomials of degree m are (2m — 2)-orthogonal.

The main problem is the selection of a suitable basis. It turns out that an H-basis suits best.
{Py,P,,..., P} is such a basis, if every Q € U can be written as

0= i Q:P;  where deg(Q;P;) <deg(Q).

i=1

The ideal then is written as U = (P, Ps,..., Py).

Theorem 18. Let O, i=1,2,...,s, be an H-basis of a zero-dimensional ideal N. Then the following
are equivalent:

(1) The Q; are m-orthogonal with respect to J".

(i1) There is a 2(n,m,N) using the N common zeros of N as nodes if no multiple nodes appear.

For multiple nodes, function derivatives can be used; this was proposed in [62,63]. Mdller called
formulae of this type generalised cubature formulae of algebraic degree. This was further developed
in [48-50].

In this ideal-theoretic setting, condition (5) can be interpreted as syzygy. If an H-basis of U is
fixed, then syzygies of higher order will occur; e.g., if P;, P, € U are of degree m, then it is possible
that

Q1P1 — Q2P2 € PZ—I for Q,' S

Moller found that such syzygies will occur in an H-basis and that they impose restrictions on the
polynomials which can be used constructively to compute a suitable ideal. Furthermore, the Hilbert
function can be used to study the number of common zeros. For the connection to Grobner bases
we refer to [53,13].

However, Theorem 18 allows nodes to be in C”. Schmid [78] proposed to avoid this by considering
real ideals.
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If the common zeros of an ideal 2 are denoted by 7#7(2) and the ideal of all polynomials which
vanish at a finite set X C R” by 2y, then

X 7 (AUy).
An ideal 2 is called real if
X =7(Uy).

So m-orthogonal real ideals characterise cubature formulae, and real ideals are characterised by the
following theorem due to Dubois et al. (cf. [18,19,75,76]).

Theorem 19. The following are equivalent:
(1) W is a real ideal,
(i) the common zeros of W are pairwise distinct and real,
(iii) P vanishes on V" (W) if and only if P € U,
(iv) for all M € N and all Q; € P",i=1,2,..., M,

M
ZQiZ € Wimplies Q; € A, i=1,2,....M.
i=1

By combining Moller’s results and the conditions which can be derived from Theorem 19 it is
possible to give a complete characterisation of cubature formulae. However, if the degree of the
formula m is fixed, the conditions which have to be satisfied strongly depend on the number of
nodes. Indeed, the number of nodes influences the number of polynomials in the ideal basis and
their degree. The conditions derived from Theorem 19 depend on the structure of the ideal basis,
and their complexity therefore increases with m.

In [79] Theorem 5 is extended by using Theorem 19 and applying it to ideals containing a
fundamental set of an arbitrary degree. It was then applied to construct cubature formulae for the
regions C,,S,, 7.

Theorem 20. Let R;, i =1,2,...,t, be linearly independent polynomials in P}, containing a funda-
mental system of degree m. If W= (R}, R,,...,R,), then

(1) V(AN =dim P2, — ¢,

(i) 7 (W)=N if and only if W is a real ideal.

6.3.1. Even-degree formulae
By applying the syzygies of first order to quasi-orthogonal polynomials it is possible to characterise
all even-degree formulae attaining the lower bound in (22).

Theorem 21. Let
k—1
Ri:Pz{(—i_ZVi]‘ijila i:()’ln"'nk’

J=0
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be quasi-orthogonal polynomials generating the ideal U. A cubature formula 2(2,2k —2,dim P;_,)
with all weights positive exists if and only if the parameters y; can be chosen such that

VR; — xRy € span{R;, j=0,1,...,k}, i=0,1,....,k—1, (33)
holds. If (33) holds, then the nodes of the formula are given by V" (W), and W is real.

Morrow and Patterson [54] proved this by applying Moller’s Theorem 18 and using the Hilbert
function to count the common zeros, counting multiplicities.

Schmid [77] applied Theorem 19 to prove that (33) is necessary and sufficient for 2l to be a
real ideal. From the work in [54] a classical integral is known for which all even-degree minimal
formulae can be computed, see Section 7.1.

The complexity of (33) can be realised by considering the equivalent matrix equation given in
[81] for integrals having central symmetry. The quadratic matrix equation

0=M*, + MMM 'T]

has to be solved. Here M, = [.¥ [P[kPj’.‘]]i, j—0.1..x is the moment matrix and M}, the matrix of the
numerical characteristics. I'; is a k& x k + 1 Hankel matrix, which has to be determined; from its
coefficients the y;;’s can be computed.

The straightforward generalisation to the n-dimensional case has been studied in [79,74]; however,
only moderate-degree formulae could be constructed for C,, n =2,3,4,5.

6.3.2. Odd-degree formulae

Stroud and Mysovskikh [88,59] proved that 2(2,2k — 1,k*) can be constructed if two orthogonal
polynomials of degree k can be found having exactly k* common pairwise distinct real zeros. Franke
[21] derived sufficient conditions implying the existence of 2(2,2k—1,N), where N < k?, for special
integrals over planar regions. Further generalisations were obtained in [62,63] by admitting point
evaluations of derivatives and preassigning nodes.

We recall Theorem 8 in the following form.

Theorem 22. 2(n,2k — 1,dim P,_,) exists if and only if the nodes are the zeros of Py.

For the standard regions, such formulae exist for =1 and k=1,2,...ork=1and n=1,2,..
for n>=2, k=2, such formulae do not exist. The existence of M(n,k — 1) common roots of the
polynomials gathered in P; can be reduced to the solution of a nonlinear system in # unknowns;
however, the number of equations is larger than n, since for n, k=2, we have

1
M(n—1,k)=M(n—1,2) = @% +1.

The existence of special regions for which Theorem 22 holds for moderate & have been discussed
in Section 5.2. A class of integrals for which Theorem 22 holds for arbitrary & was presented in
[82] for n =2, and in [5] for n arbitrary.
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In order to find cubature sums 2(2,2k — 1,N) where N attains the improved lower bound (23),
Moller derived the following necessary conditions:

Theorem 23. If 2(2,2k — 1,N) exists where N = dim P;_; + %rank(Mktl), then there are s =k +
1-— %rank(Mktl) orthogonal polynomials P; of degree k vanishing at the nodes of the formula and
satisfying the following conditions.
(i) Whenever orthogonal polynomials of degree k satisfy xQ; — yQ, = Qs, then Q; € span{P;, i =
1,2,...,s}.
(ii) xP;, yP; form a fundamental set of degree k + 1.
(iii) There are 2k — 3rank M}* | linearly independent vectors a € R**™) such that

k k k s
x* Z a;P; +xy Z +iPi + y2 Z Aopr21iPr = ZLiPia
i=0 i=0 i=0 i=1
where L; are linear polynomials.

These conditions are almost sufficient, too.

Theorem 24. If there are s=k+1— jrank(M;* ,) orthogonal polynomials P; of degree k satisfying
the conditions (1),(i1), and (iii) in Theorem 23, then these polynomials have N = dim[P;_; +
srank(M* ) affine common zeros. If they are pairwise distinct and real, then a cubature sum
22,2k — 1,N) exists.

The surprising result from this theorem was the construction of 2(2,9,17) for C,, the square
with constant weight function. Franke [22] expected that 20 would be the lowest possible number
of nodes for such a formula. Haegemans and Piessens [70,33] conjectured that 18 would be lowest
possible.

Again, by applying Theorem 19 one can determine further conditions which guarantee that the
polynomials P; generate a real ideal, i.e., have pairwise distinct real zeros. To check this, choose
U, i=12,....k + 1 — s, such that P,,U; are a fundamental system of degree k. By virtue of
condition (ii) of Theorem 23 there are polynomials R; and P € span{P;, i =1,2,...,s} such that
U;U; — R;;P € Py4,. If, in addition, the P; are chosen such that

J[U?> —RP] >0

for all U € span{U,, i=1,2,...,k+1—s}, P € span{P,;, i=1,2,...,s}, and R such that U> —RP €
Pi.1, then the ideal (Py,Ps,...,Py) is real.

This holds in the n-dimensional case, too, even if we admit ideals with a fundamental system of
maximal degree m + 1 [79].

Theorem 25. Let R;, i = 1,2,...,t, be an m-orthogonal fundamental set of degree m + 1 of lin-
early independent polynomials in P", and let W= (R\,R,,...,R,) and W =span{R,,R,,...,R,}. Let
U, dim % = N, be an arbitrary, but fixed, complement of W~ such that P}, ., =W @ %U. Then the
following are equivalent:

(1) A positive 2(n,m,N) for S" exists with nodes in ¥ ().
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(it) W and U are characterised by
(a) AN =(0),
(b) F"[Q* — R"] > 0 for all Q € %, where R" is chosen such that O* — R™ € P".

(ii1) W is a real ideal with a zero-set of N pairwise distinct real points, which are the nodes of
the cubature formula of degree m.

6.4. Formulae characterised by three orthogonal polynomials

The nodes of a Gauss quadrature formula are the zeros of one particular polynomial. The nodes
of a Gauss product cubature formula in #» dimensions are the common zeros of n polynomials in
n variables. Franke [21] derived conditions for planar product regions implying the existence of
cubature sums 2(2,2k —1,N) where N < k2, see Section 6.3.2. This is based on the common zeros
of two orthogonal polynomials.

Huelsman [35] proved that for fully symmetric regions, 2(2,7,10) cannot exist. Franke [22]
proved that for these regions, and also for symmetric product regions, a cubature sum 2(2,7,11)
cannot exist. He observed that from Stroud’s characterisation [90] there follows that a cubature sum
2(2,7,12) is characterised by three orthogonal polynomials of degree 4, and he exploited this to
construct some formulae.

In [70,71], Piessens and Haegemans observed that there are actually three orthogonal polynomials
of degree k that vanish in the nodes of their cubature formulae of degree 2k — 1 for k = 5,6.
Following this observation, and using earlier results of Radon and Franke, in a series of articles
[30,32,33] they constructed cubature formulae for a variety of planar regions whose nodes are the
common zeros of three orthogonal polynomials in two variables. They restricted their work to regions
that are symmetric with respect to both coordinate axes and noticed that Radon’s cubature formulae
for these regions have the same symmetry.

At first sight, it may look strange that Radon, Franke, Haegemans and Piessens characterised
cubature formulae in two dimensions as the common zeros of three polynomial equations in two
unknowns, i.e., as an overdetermined system of nonlinear equations. We now know, see Section 5.2,
that for centrally symmetric regions there are VE‘J + 1 linearly independent orthogonal polynomials
of degree k that vanish in the nodes of a cubature formula of degree 2k — 1 that attains the lower
bound of Theorem 11. We thus know that formulae of degree 5 and 7 that attain this bound are
fully characterised by three such polynomials. Formulas of higher degrees 2k — 1 that attain this
bound will have even more than three linearly independent orthogonal polynomials of degree % that
vanish in their nodes.

Franke, Haegemans and Piessens proceeded as follows. They assumed the existence of three
linearly independent orthogonal polynomials of the form

k
¢i=> ayPi, =123
j=0

The first set of conditions on the unknowns a;; is obtained by demanding that whenever a node
(o, ;) is a common zero of ¢, ¢,, and ¢s, then also (da;, =) is. A second set of conditions is
obtained by demanding that these three polynomials have sufficiently many common zeros. Obtaining
these conditions requires much labour, and a computer algebra system was used to derive some of
these. For higher degrees, the result contains some free parameters, and consequently a continuum
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Table 1
Number of nodes in known cubature formulae [22,30,32,33]*

2

Degree C S E; E; H,

7 12(0) 12(o0) 12(c0) 12(0) 12(0)

9 19(c0) 19(c0) 19(c0) 19(c0) 19(c0)
18(2) 18(1) 18(1) 18(1)

11 28(c0) 28(c0) 28(c0) 28(c0) 28(c0)
26(00) 26(c0) 26(c0) 26(0c0) 26(00)
25(2) 25(1) 25(1) 25(1)

"In parentheses the number of such cubature formulae is given.

of cubature formulae was obtained. In such a continuum Haegemans and Piessens searched for the
formula with the lowest number of nodes, e.g., by searching for a formula with a weight equal to
zero. An overview of the cubature formulae for the symmetric standard regions C,, S, Egz, E7, and
H, obtained in this way is presented in Table 1.

This approach was also used to construct cubature formulae of degree 5 for the four standard
symmetric regions in three dimensions [31]. A continuum of formulae with 21 nodes is obtained.
It is mentioned that this continuum contains formulae with 17, 15, 14 and 13 nodes, the last being
the lowest possible.

7. Cubature formulae of arbitrary degree

For an overview of all known minimal formulae, we refer to [10]. In this final section we present
those integrals for which minimal cubature formulae for an arbitrary degree of exactness were
constructed by using orthogonal polynomials. Though these examples are limited, they illustrate
that all lower bounds which have been discussed will be attained for special integrals and that the
construction methods based on orthogonal polynomials can be applied. Indirectly this shows that
improving these bounds will require more information about the given integral to be taken into
account. The symmetry of the region 2 and the weight function @ is not enough!

7.1. Minimal formulae for the square with special weight functions

Two-dimensional integrals with an infinite number of minimal cubature formulae have been pre-
sented by Morrow and Patterson [54]. They studied

Sialf] = / 11 / ll £ p)(1 =221 — y2) 2 dxdy.

The associated fundamental orthogonal system of degree k, U¥, i =0,1,...,k, is gathered in

U, = (U, UF,.. U
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Similarly, they studied

1 1
f*l/Z[f] = [1 [1 f(x,y)(l _XZ)—l/Z(l _ yZ)—l/Z dXdy,

where the associated fundamental orthogonal system of degree k, T#, i =0,1,...,k, is gathered in
T, = (T, T, ..., TH".
7.1.1. Even-degree formulae for J,,

A minimal cubature sum 2(2,2k — 2, dimP;_;) has been derived in [54]; the nodes are the
common zeros of

Ui+ 1/2FkTUk71,

where F; =[0 E;]. This is the special case ¢ =1 from the following result [80,81]:
For k=6, up to symmetries, all minimal cubature sums 2(2,2k — 2, dim P,_,) are generated by
the common zeros of

U, +1/2I7 0,

where I', is a Hankel matrix of the form

Yo (72V0 02?0 o 0y 1o
oy 07 oy - 1o 0 1-g¢°
Fk: . . . . . 5 VOZT,O#O'ER.
: : : : : 9
=y 1o 0 - 0 0

7.1.2. Odd-degree formulae for ),
Up to symmetries, all minimal cubature sums 2(2,2k — 1, dim P,_, + |£/2]), k odd, for .#,), are
generated by the common zeros of

(Ex +T')Uy,

where I'; is an orthogonal Hankel matrix of the form

Yo 0% A e TR
G0 023)0 O'kVo -0 Yo
ri=| : : R (34)
a"_lyo akyo -0 ... crk_3y0 a"_zyo
oty — o Yo 0 Ty Ty
where
g —1

90 =2/(k+1), ¢*=1, or Y= o’ #1, 6 €R.
g+t —1

Note that there are redundancies in (34), rank(E; + I'y)=|k/2| +2. The general form is obtained in

[81], special cases having been known long before: for 6 =0, yo=1 see [78], for =1 and 0 =—1

see [15].
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For odd-degree formulae, £ even, no general formula is known. However, there are minimal
cubature sums 2(2,2k — 1, dim P,_, + k/2), k even, for .#,,,, generated by the common zeros of

(Ex + T'p)Uy,
where I';, is an orthogonal Hankel matrix of the form (34), where

g —1

y0:2/(k+1), O'Zl, or yozm, G#I,GGR.

The case 0 =—1, yo =0 was stated in [54]. The result for ¢ =1 is obtained in [15], for ¢ #£ 1 it is
obtained in [81].

7.1.3. Odd-degree formulae for J_,,
If k£ is even, a minimal formula of degree 2k — 1 exists, the nodes being the common zeros of

TF+ T, i=0,1,...,k/2,

this result is due to [54]. Minimal formulae of degree 2k — 1, k odd or even, were derived in [15],
the nodes are the common zeros of

TF—Tf, i=0,1,...,|k2|, T§ +Tf+---+Tf  + T}

1

A third formula of degree 2k — 1 for k even is given in [15], the nodes are the common zeros of
TE—TF ., i=0,1,...,k2—1, TE +TF -+ TF , + T

7.1.4. Gaussian formulae

Cubature formulae attaining the lower bound (22) for even and odd degree are often called
formulae of Gaussian type or Gaussian formulae. They exist for a class of (nonstandard) integrals,
which will be shown in this section. This result is due to [82].

Let w(x) be a nonnegative function on / CR and let { p,} be the orthonormal polynomials with
respect to w. Koornwinder [38] introduced bivariate orthogonal polynomials as follows.

For given s € N let u=x 4 y and v =xy and define

5.(~1/2) ) ps@)pi(y) + ps(¥)pi(x) ifi<s,
P = { V2p,0)p(r) ifi=s,

and

P;,(l/z)(u v) = Ps1(X) pi(y) — Ps+1(J’)Pi(x)‘
1 b X — y
Then Pf’(il/ ) are polynomials of total degree s. Koornwinder showed that they form a bivariate
orthogonal system with respect to the weight function

(u* — 40)F2W (u,v).

Let x; ; be the zeros of the quasi-orthogonal polynomial p,+p p, | where p € R is arbitrary but fixed.
The roots are ordered by x;, < --- <x,,. Let u=x+y and v=xy, and define W (u,v)=w(x)w(y).
Then we have the following Gaussian cubature formula of degree 2k — 2:

k i
// £ )W (o) — 40) "2 dudo 2 573 0, £ (p + 30 X04200),
Q

i=1 j=1
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and
K+l i—1
//Q S, V)W (u, U)(“2 - 40)1/2 dudv = Z Z O f (Kik1 + Xjoks 15 Xik 41X 441)5
i=1 j=1
where

Q={(u,v): (x,y) €I xI and x < y}.

If p =0, then a uniquely determined formula of degree 2k — 1 will be obtained.

So there are classes of two-dimensional integrals for which the one-dimensional result of Gaussian
quadrature formulae can be regained. The lower bound (22) will be attained for odd and even degree,
the common zeros of

P+ pliPi_y, T € RV peR,

are the nodes of the formula, where I'; is determined from commuting properties in the orthonormal
recursion formula in Theorem 4 and a matrix equation which follows from (33) in Theorem 21.
These examples have been extended to the n-dimensional case in [5].
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Abstract

Gaussian formulas are among the most often used quadrature formulas in practice. In this survey, an overview is given
on stopping functionals for Gaussian formulas which are of the same type as quadrature formulas, i.e., linear combinations
of function evaluations. In particular, methods based on extended formulas like the important Gauss—Kronrod and Patterson
schemes, and methods which are based on Gaussian nodes, are presented and compared. (©) 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction
1.1. Motivation

The problem of approximating definite integrals is of central importance in many applications of
mathematics. In practice, a mere approximation of an integral very often will not be satisfactory
unless it is accompanied by an estimate of the error. For most quadrature formulas of practical in-
terest, error bounds are available in the literature which use, e.g., norms of higher-order derivatives
or bounds for the integrand in the complex plane. However, in many practical situations such infor-
mation about the integrand is not available. In particular, automatic quadrature routines are designed
such that the user only has to insert the limits of integration, a routine for computing the integrand,
a tolerance for the error and an upper bound for the number of function evaluations (cf. [51,52,18
p. 418]). Functionals based on function evaluations that provide estimates for the quadrature error
are called stopping functionals.

Most quadrature methods used in modern numerical software packages like those of NAG [71]
and IMSL [47] are based on Gaussian (Gauss—Kronrod, Patterson) formulas. Furthermore, both nu-
merical experience and theoretical results show the superiority of Gaussian formulas over many
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other quadrature formulas in many function classes (cf. in particular [11] and the literature cited
therein). For these reasons, the problem of practical error estimates in particular for Gaussian for-
mulas is very important, and many papers are devoted to this subject. Several stopping functionals
for Gaussian quadrature formulas have been proposed in the literature and as computer algorithms.
One may roughly divide these methods into two categories: (1) those based on extensions, i.e., on
the addition of nodes, and (2) those based (essentially) on the nodes of the Gaussian formulas. To
make this distinction more strict, in the following we say that an error estimate for a quadrature
formula Q, with n nodes is based on extension if the number of additional nodes is unbounded
when n — oo; otherwise, we call it essentially based on the nodes of Q,. Important prototypes for
the first category are the Gauss—Kronrod and the Patterson methods (see Section 2). The extension
strategy is also used by many practical implementations of the important Clenshaw—Curtis formulas.
Very often, the extended formula is used for approximating the integral, and the difference between
the two quadrature values is used to approximate the error. Such extended formulas are the state of
the art, e.g., in the above-mentioned software libraries and in the QUADPACK package [85]. The
second category includes the null rules and the recent Peano stopping functionals (see Section 3).
Such methods deserve special attention, since function evaluations are generally considered the com-
putationally most expensive part of quadrature algorithms.

Methods from both the categories have been used in automatic integration algorithms. In particular,
many automatic integration algorithms use interval subdivision techniques where a fixed pair of
a quadrature formula and a stopping functional are used to compute both a local approximation
and an error estimate. Based on this information, a decision is made about further subdivision.
Presently, the most important univariate general-purpose integrators over finite intervals, like the
NAG routine DO1AJF, use bisection strategies with pairs of Gaussian and Gauss—Kronrod formulas.
The Gauss—Kronrod scheme was introduced by Kronrod in 1964 [53,54]. Kronrod’s approach was,
for the estimation of the error of an n-point Gaussian formula, to choose n + 1 additional nodes
for the construction of a “better” formula, i.e., a formula that has the highest possible algebraic
degree of exactness using 2n + 1 function evaluations, among them the » function values that were
computed for the Gaussian formula. There exist exhaustive survey papers on the Gauss—Kronrod
scheme [39,67,69,74] and related quadrature formulas.

Presently, however, a general survey on stopping functionals that have been proposed for the
practical (computational) estimation of the error of Gaussian quadrature formulas does not seem to
exist. From a practical point of view, the most important problems seem to be the availability of
the stopping functional, its computational complexity, and its quality for error estimation. The aim
of this survey is to present the known methods and results with a focus on these practical aspects,
and with a certain emphasis on recent developments and results. For space limitations, we restrict
ourselves to the practically most important (linear) stopping functionals that are of the same type as
quadrature formulas, i.e., linear combinations of function evaluations. We do not include methods
which are based on error bounds from the literature using, e.g., norms of derivatives in conjunction
with automatic differentiation techniques and interval analysis (cf. [17,32] for more details on this
topic). Furthermore, we do not discuss stopping functionals based on other than Gauss-type formulas
in this survey (cf. [34]). The results on extended Gaussian formulas are summarized in Section 2,
and the stopping functionals based on Gaussian nodes are presented in Section 3. In the following
three subsections, we summarize basic facts on numerical integration and Peano kernels which are
necessary for the presentation in Sections 2 and 3.
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1.2. Basic facts and notation

For a given nonnegative and integrable weight function w on (a,b), —c0 < a < b < 00, a quadra-
ture formula Q, and the corresponding remainder R, of (algebraic) degree of exactness s are linear
functionals on C[a, b] defined by

n b
QMZZ%MMLRMh/wMMN%QML

deg(R,) el =0, k=0,1,...,s, () = "
eg(R,) =5 R,[m mp(x)=x",
0 k=51, ‘

with nodes —oco <x;, <--- <x,, <oo and weights a,, € R. Without restriction, using affine
transformations, in the following we set [a,b] =[ — 1,1] wherever not explicitly states otherwise.
Furthermore, we omit the second index in x,,, a,, whenever the meaning is clear from the context.
A quadrature formula is called interpolatory if deg(R,)>=n — 1. The unique quadrature formula with
n nodes and highest possible degree of exactness 2n — 1 is the Gaussian formula (with respect to
the weight w)

OS1f1=>_a; f(x}).
v=1
For an overview on Gaussian formulas, cf. [10,11,95] and, in particular, [37].
1.3. Principles of verified numerical integration

Numerical integration problems in practice are often of the following type. Given the limits of
integration a and b, a routine for computing f(x) at any x € (a,b), a tolerance ¢ and an upper
bound N on the number of function evaluations, compute a number Q such that

0~ J!, flaydal _
1 €
f_l ‘f(x)‘ dx

or give an approximation based on N function values and an estimate for the absolute error which
does not meet the requirement (2). Any software routine for this purpose is called automatic integra-
tion routine (cf. [18, Chapter 6]). In order to decide whether a particular quadrature approximation
0 =0,[f] fulfills (2), most often linear stopping functionals S,,, m >n, of the same type as O, are
used (cf. [34]),

|Q—/11f(x)dx <g¢ or 2)

SM[f]:Zbe(yV)ﬂ bveRs _1<y1<<ym<1,

v=1

{x150 X0 S{ 1y s Vi ) 3)

Such linear stopping functionals have a low computational complexity, in particular if n ~ m.
Natural requirements for an error estimate are its efficiency, i.e., an accurate approximation should
be accompanied by a small error estimate, and its reliability, i.e., the error estimate should not be
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smaller than the actual approximation error. However, it is obvious that without knowing more about
f than a finite number of function values it cannot be guaranteed that

R[S <ISuLST- (4)

For nonlinear stopping functionals cf. Section 3.3 as well as [57,85] and the literature cited therein.
A standard method for the construction of a (linear) stopping functional S* for O, is by choosing a
second (reference) quadrature formula QF and then computing

ST =90 = 0w, (5)

with some heuristically determined constant y € R.
1.4. Peano kernels and applications

Let L be a bounded linear functional on C[ — 1,1] with deg(L)>s — 1, where
deg(L) =sup{r|L[P,]=0, [P,: space of polynomials of degree<r}.
If L =R, is a quadrature remainder, this definition coincides with (1). For
f€A[—1,11:={f| f" is absolutely continuous in [ — 1,1], ||f||s < 00},

the following representation of L due to Peano is well known,

1
- | SO Lx) d

where K((L,-) is the so-called Peano kernel of L of order s,
{ 0 for u <0,

w' foru=0

K,(L,x)= LI(-—x)7", ul'=

1
(s —1)!
(cf. [12]). The constants

1
e, =cyL)= / |K(L,x)|dx
-1
are the best possible constants in estimates of the type

LU oo

1e.,

es(L) = sup{ILLA1| [ |1/ “]| <1} (6)

The functional L is said to be positive (negative) definite of order s if the Peano kernel K(Z,-)
is nonnegative (nonpositive) in the interval (a,b). An important example of a (positive) definite
functional is the divided difference

s+1 s+1

dVd(tl, IR ts+l)[f] = Z dvf(tv)5 dv = H (tv - tu)_la

pu=l1
uF#v

<<t < - <t <1,
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which is characterized by

O’ k:O’l,..., _la
dVd(tla"'atS+1)[mk] = {1 k=s. ’

We have
1
Kq(dVd(t], . 7ts+l ), ) = ;B[l‘], e ’ts+]](');

where B[t,...,t,1](-) is the B-spline with respect to the knots f,...,%.;, normalized by
IIBlt1, ..., t1]|li =1 (cf. [91, Section 4.3]).

Applying Peano kernel theory to quadrature remainders L = R, is a systematic and standard way
for obtaining error bounds for quadrature formulas (cf. [37, p.115]). In view of (6), the constants
¢s(L) can be considered as a measure for the quality of quadrature formulas for the function class
A,[—1,1]. Explicit or asymptotic values for these constants are known for many quadrature formulas
of practical interest and many function classes (cf. in particular [10,11,83]).

2. Extended Gaussian formulas
2.1. Gauss—Kronrod formulas and Stieltjes polynomials

Let o be nonnegative and integrable in the open interval (—1,1). It is well known that the nodes of
the Gaussian formula Q¢ with respect to the weight w are precisely the zeros of the nth orthonormal
polynomial p¢ with respect to the weight w (see, e.g., [97]). The following fundamental theorem
gives a more general statement.

Theorem 1. Let w be nonnegative and integrable in (—1,1). Let —1<x; <--- <x,<1 be fixed
numbers. A necessary and sufficient condition that for

Qn,m[f] = ZAvf(xv) + ZBuf(é,u)
y=1 u=1

we have
deg(R,n)=2m+n—1 (7)

is that simultaneously (i) the polynomial [],_,(x — &,) is orthogonal to all polynomials of degree
<m — 1 with respect to the sign changing weight o T]_ (- — x,), iLe.,

/1 co(x)xkﬁ(x—xv)ﬁ(x— )dx=0, k=0,1,....m—1, (8)
-1 v=1

n=1
and (ii) that Q,,, is interpolatory.
The orthogonality conditions (8) are a nonlinear system of equations for the unknown nodes ¢&i,...,&,.

The weight 4y,...,4,, Bi,...,B, are determined by the interpolation condition. Elementary examples
show that the system (8) is not always uniquely solvable. In fact, if xi,...,x, are the roots of the
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nth orthonormal polynomial of degree n, then for m < n/2 every choice of nodes &, ..., ¢, satisfies
(8), while for n =m there is no choice of &i,...,¢&, (even complex ones) such that (8) is satisfied
for £k =0. Well-known special instances of Theorem 1 are the Gaussian formula (» =0), the Radau
formulas (n=1,x; = +1), and the Lobatto formula (n =2,x; = —1,x, = 1). For these examples, the
function o [[)_,(- —x,) has no change of sign in (—1,1). For the Gauss—Kronrod formulas, the fixed
nodes are the nodes of the n-point Gaussian formula, i.e., the zeros of p?,

n+1

OS5, 1= A f () + ZB IED,
v=1
where &F,..., &% | and A?K,...,ASK, B{*,...,BSX are chosen such that (7) is satisfied with m=n+1.
The polynomlals

n+1

E, . 1(x)=c, H(x — ﬁ}f), cn €ER,
u=1

are called Stieltjes polynomials. These polynomials seem to appear first in a letter of T.J. Stieltjes to
C. Hermite in 1894 [2]. Stieltjes conjectured that the zeros of E,.;, for the Legendre weight w = 1,
are all real and in (—1,1) for each n € N, and that they interlace with the zeros of the Legendre
polynomial P,, i.e., the Gaussian nodes, for all n € N,

<& << <& <xf <& <L

These conjectures were proved by Szegd [96] for the wider class of weights w;(x) = (1 — x?)*~1/2,
A € (0,2]. Recent results on the location of the zeros of Stieltjes polynomials can be found in
[22,30]. The Gauss—Kronrod formulas have been introduced in 1964 by Kronrod, but there are no
hints that Kronrod was aware of Stieltjes’ and Szeg6’s work at that time. The connection has been
observed later by Barrucand [4] and by Mysovskih [70].

The most important weight function  for the application of Gauss—Kronrod formulas in automatic
integration is the Legendre weight. In this case, the positivity of the Gauss—Kronrod formulas was
proved by Monegato in [66]. In [86] (see also [88] for a correction), Rabinowitz proved that the
exact degree of precision of QSX | is 3n+1 if n is even and 3n+2 if n is odd. The nondefiniteness
of Gauss—Kronrod formulas was proved by Rabinowitz in [88]. Results on the convergence of the
interpolation processes based on the nodes of Gauss—Kronrod formulas can be found in [30,31]. For
more general weight functions and other constructions of extended positive quadrature formulas, see
Sections 2.4 and 2.7; cf. also the survey papers of Gautschi [39], Monegato [67,69] and Notaris [74];
for tables of nodes and weights see Piessens et al. [85] and the original work of Kronrod [53,54].

2.2. The Gauss—Kronrod stopping functional

The standard stopping functional for the Gauss—Kronrod method,

n+1

Soisr = Oomir — Zd JACHES Zd (%

is a linear combination of point evaluatlon functionals which satisfies

2n+l[mk]_ ) k:O,l,...,Zn—l,
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" . 22n+1n!4
S2n+l[m2n] = Rn [mZn] - m’

where my;(x) = x*, hence
22r1+1n!4

GK __ K
Sont1 = (n+ D)) dvd(&F, a7, &5 w1
and
GK 2n+1n'4
Kon(Synin> ) = 2n+ D2n)? BIES xy, x5, €50,
Furthermore,
R2Gr§l =1- 2n+1 =1- ;? - SanIil :RnG - Sanlila

where I[f]1= [" , f(x)dx, hence
K2n(R2G;EH’x) = KZn(Rner) - KZn(SZC;}thx)-
Since deg(RSY,|)=3n+ 1, we have

/ K (RSK |, x)x*dx =0, k=0,1,...,n+1,
and therefore,

1 1
/ Kzn(RnG,x)xk dx = / Kzn(San]i],x)xk dx, k=0,1,...,n+1,
~1 -1

159

)

i.e., the Peano kernel of the stopping functional reproduces the first n + 2 moments of the (2n)th
Peano kernel of QY. Moreover, &K, ...,éffH are characterized by (9). Hence, the construction of the
Gauss—Kronrod stopping functional S5, is essentially the construction of a suitable spline function
with partially free knots which approximates the (2n)th Peano kernel of QS “best” in the sense
of the maximum number of reproduced moments. The connection of Gaussian quadrature formulas
and moment-preserving spline approximation problems has been investigated in many papers, cf.
[26,35,38,40,46,64]. Other types of approximations lead to other stopping functionals (see Section
3). Peano kernel theory provides a general and very useful framework for the construction and

comparison of stopping functionals.
2.3. Gauss—Kronrod vs. Gaussian formulas

A result from [21, Corollary] states that for all n>1 we have

G GK
Cansaec(Ry 1) < Capanic(Ry50)s
where Kk =0 if n is even and k=1 if n is odd, and for n>15 we have
G
C3n+2+1c(R2n+1 ) 37n+l

C3n+2+rc(Ran+1 )
Asymptotically, we have

1/n
lim c3n+2+1c(Rg’n+1 ) _ 6_6 _ 1
Canra i (RSK ) 77 42013...

n—o0
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This relation shows that for “smooth”, i.e., infinitely often differentiable functions with all derivatives
uniformly bounded, 0% ., can be expected to give much better results than OFX . This has also been
observed in many numerical examples. A similar relation as above holds true for the error constants
Cintan—s(RSE ), s € N independent of n. For the case s = s(n), lim,_. s/n =4, 0<A4 < 1, it has
been proved in [20] that

1/n
. n K—s§ RG

GK
n— 00 C3n+2+1<—s(R2n+1

Concerning the case 4 =1, we have

(RS, )\
limsup<2"+12"“> <1,

Cont1 (RzG;ﬁl )

but the precise value of the limsup is presently an open problem.

A natural question is how Gauss—Kronrod and Gaussian formulas compare with respect to larger
classes of “nonsmooth” functions. Let s € N be independent of n. In this case we have [24]
CS(R2Gn+1) —

GK
2n+1

n—oo

T

nLn(;lo Cs(R
For more results on the error of Gauss—Kronrod formulas, cf. the survey papers [27,74] and the
literature cited therein.

2.4. Existence of Gauss—Kronrod formulas

Simple counterexamples show that the existence of Gauss—Kronrod formulas with real nodes
g%, ..., 9K inside the interval [ — 1,1] cannot be guaranteed for general o under the assumptions
of Theorem 1. In this section, an overview will be given on Gauss—Kronrod formulas for weight
functions which attracted most interest in the literature. Some remarks will also be made on the
existence of Kronrod extensions of Lobatto and Radau formulas. The use of Lobatto formulas and
Kronrod extensions of Lobatto formulas for automatic integration has recently been suggested by
Gander and Gautschi [36] in order to improve the existing automatic quadrature routines of the
Matlab software package [63]. Note that for Lobatto—Kronrod formulas, » Kronrod nodes have to be
chosen for n 4+ 1 Lobatto nodes (including +1), while for the Radau—Kronrod formulas » Kronrod
nodes have to be chosen for n given Radau nodes.

Following Gautschi and Notaris [41], the following properties have to be included in a systematic
study of Gauss—Kronrod formulas:
(a) The nodes x¥,...,x% and &¥,..., &5 | interlace.
(b) In addition to property (a), all nodes are contained in (—1,1).
(c) In addition to property (a), all weights A§¥,..., 45 and Bf¥,...,BSX are positive.
(d) All nodes, without necessarily satisfying (a) or (b), are real.

Monegato showed in [65] that the interlacing property of the nodes is equivalent to the positivity
of the weights BY¥,...,BSX, at the additional nodes &%,...,ESK . This property holds for general
weights .
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As mentioned in Section 2.1, for the ultraspherical or Gegenbauer weight function
C(),L(X):(l _x2)/1*1/2> RIS (_lal)’ A > _%a

Szegd [96] has shown that properties (a) and (b) are valid for 4 € (0,2]. For 4 =0, two nodes
are in £1. For 4 <0, Szegd gives the counterexample n = 3, where two nodes are outside of
[ — 1,1]. Monegato [67] pointed out that for sufficiently large / extended Gaussian formulas Q5§
with respect to w;, with deg(Q$5)>[2rn + [], r > 1 and [ integer, and with only real nodes and
positive weights, cannot exist for all » € N (as Gautschi [39] and Notaris [74] mention, the proof
is not correct, but can be repaired). Peherstorfer and Petras [82] recently proved that for every
A > 3, Gauss—Kronrod formulas do not exist with real nodes for all » € N. Gautschi and Notaris
[41] investigated Gauss—Kronrod formulas for w; numerically for n =1,2,...,20,24,28,...,40 and
computed feasible regions for the parameter 4 for each of the four properties. Existence results for
Lobatto—Kronrod formulas for w;, 4 € ( —%, 1], with real nodes in (—1,1) that have the interlacing
property with respect to the Lobatto nodes follow from the results about the Gauss—Kronrod formulas.
Monegato [69] conjectures the positivity of all quadrature weights for the Legendre weight function.
A partial (asymptotic) positive answer was given in [23] for weights which are associated with
nodes inside fixed subintervals of (—1,1).

Stieltjes polynomials and Gauss—Kronrod formulas have been considered for the more general
Jacobi weight function

Wy p(x) = (1 —x)*(1 +x)ﬁ, xe(-1,1), o f>-1

Ralbinowitlz [87] showed that (b) is no;[ \;alid fog o= —3%,—% <5 p<i (ﬁl# Dand -1 <a<3, f=
—5 (e # 3) for even n and for « = —3,; <f<; and ; <a<j, f=—; for odd n. Monegato [69]

derived the relations
Eyy PQe = 1) =B (1) — d,

n+1
ErGP28 = 1) =(=1)""EVE (1 - 20)ES (1),

where d, is an explicitly given constant and Eﬁl is the (suitable normalized) Stieltjes polyno-
1 1

mial associated with the weight w, . Hence, for o = ; and —% < ﬁg% as well as f =7 and
—% < ag%, results can be carried over from the ultraspherical case. Gautschi and Notaris [41]
extended their numerical investigations to the Jacobi weight function and determined feasible regions
in the (o, f)-plane for the validity of the four properties. It is well known that the left (right) Radau
formula for the weight w, s is connected with the Gaussian formula for the weight @, g (@ p41).
Numerical results in [3] indicate that Radau—Kronrod formulas for the Legendre weight have positive
weights and hence the interlacing property (see [69]).

The most elementary cases of the Jacobi weight function are those with |« = [B| = ;. For the
Chebyshev weight functions of the first kind with «=f= —% and of the second kind with a=p =1

=1,
we have the well-known identity
2T/1+1Un(x) = U2n+1(x)'

Therefore, the Stieltjes polynomials are identical to (1 — x?)U,_,(x) in the first case and to 7, in
the second case, and the degree of exactness is 4n — 1 in the first case and 4n 4+ 1 in the second.
The Gauss—Kronrod formula for the Chebyshev weight of the first kind is therefore the Lobatto
formula with 27 + 1 nodes for the same weight function, and the Gauss—Kronrod formula QSX, for
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the Chebyshev weight of the second kind is identical to the Gaussian formula Of, | for this weight.
For o =1, f=—1 (a«=—31, p=3), the Gauss—Kronrod formula is the (22 + 1)-point left (right)
Radau formula (see [69]).

In case of the Laguerre weight o(x)=x%*"", —1 < a<1, x € [0,00), Kahaner and Monegato [48]
showed that no Kronrod extension with real nodes and positive weights exists for » > 23, in the case
a =0 even for n > 1. Furthermore, Monegato [67] proved that extended Gaussian formulas O$XS
with respect to this weight, with deg(Q5:.S)>[2rn+1], r > 1 and [ integer, and with only real nodes
and positive weights do not exits for » sufficiently large. In case of the Hermite weight function
w(x)=e"~, real positive Kronrod extensions do not exist for all n € N\{1,2} (cf. [48]). For n=4, all
nodes are real but two weights are negative. Numerical examples suggest that for all n € N\ {1,2,4}
complex nodes occur, but this problem is still open. Notaris [73] uses the nonexistence results for
Gauss—Laguerre and Gauss—Hermite quadrature formulas and limit relations for the ultraspherical
and Hermite resp. Jacobi and Laguerre polynomials in order to deduce nonexistence results for
ultraspherical and Jacobi weight functions. Monegato [69] showed the existence of real Gauss—

Kronrod formulas with nodes in (—1,1) for the weight function
(1 _ x2)1/2

1 — 2’
Furthermore, the Kronrod nodes interlace with the Gaussian nodes. We have deg(Q5X |)=4n—1, if
n>1and p # 0, respectively deg(OSX ,)=4n+1 if n > 1, p=0, and deg(Q5*)=5. The weights
are always positive, see Gautschi and Rivlin [44]. Gautschi and Notaris [42], Notaris [72] and
Peherstorfer [79] considered the Bernstein—Szegd weight w(x)=+'1 — x?/s,,(x), where s,, is a positive
polynomial on [ —1,1] of degree m and prove that for all » € N the Gauss—Kronrod formulas exists
with nodes in (—1, 1) that interlace with the Gaussian nodes and with positive weights. Gautschi and
Notaris [43] generalized these results to weights for which the corresponding orthogonal polynomials
satisfy a three-term recurrence relation whose coefficients a, € R and b, > 0, n € N, are constant
above a fixed index / € N g, =« and b, = f for n>=/. More precisely, for such weights and all
n>2[—1, the Gauss—Kronrod formula OF¥, has the interlacing property, and all its weights are pos-
itive. Moreover, deg(RSX, | )>4n—21+2 for n>2/—1. If additionally the support of  is contained in
[a,b], where a=a—2+/p and b=u+2+/p, then all Kronrod nodes are contained in [a, b] for n>2/—1.

Peherstorfer [79—81] investigated properties (a)—(d) for more general classes of weight functions.
In particular, for sufficiently large n, Peherstorfer proved these properties for all weight functions
which can be represented by

o(x)=v1—x2D(?)?, x=cos¢ ¢ €[0,m],

where D is a real and analytic function with D(z) # 0 for |z|<1 (cf. [80]; see also [81] for
corrections).
Gautschi and Notaris pointed out the relation of Gauss—Kronrod formulas for the weight function

o(x) = —oo < u<l.

wfy“):|x|""(1—x2)°‘, a>—1, y>—1, xe(=1,1),

to those for the Jacobi weight w, (,41y,. Numerical results support the conjecture of Calio et al. [14]
that Gauss—Kronrod formulas for the weight w(x) = —Inx, x € (0,1), exist for all =1 and satisfy
(a)—(d). Gautschi [39, p. 40] conjectures similar results for the more general weight

o(x,0)=—x"Inx, xe€(0,1), a= j:% (o # % if n is even).
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Li [60] investigates Kronrod extensions of generalized Radau and Lobatto formulas, which use
function values and, in the first case, first derivatives at one boundary and in the second case first

derivatives at both boundaries. Explicit expressions are proved for the Stieltjes polynomials with
respect to Jacobi weight functions with x| = || = 1 and for the weights at the interval boundaries.

A three-point Gauss—Kronrod formula for the discrete weight

> e x/ )
o)=Y T =), x € (0.00)
Jj=0 ’

has been constructed a long time before Kronrod’s work by Ramanujan in his second notebook
[90].! As Askey reports [1], Ramanujan computed several Gaussian formulas in this notebook, and
his motivation for the Gauss—Kronrod formula for this weight was that the nodes of the three-point
Gaussian formula could not be found as simple expressions.

2.5. Patterson extensions

Patterson [75] computed sequences of embedded quadrature formulas by iterating Kronrod’s method.
The resulting formulas, now called Patterson extensions, are used, e.g., in the NAG routing DO1AHF
[71]. More precisely, Patterson extensions are quadrature formulas of the type

i 27 (n+1)

/_ POVGTIET NNV ES SEWICIRD DD DI I C))

p=1 v=1

i>1, where x?,...,xf are the nodes of a Gaussian formula, the nodes of Qy-1(,41)—1 are used by
Osini1)—1, and the free nodes are chosen according to Theorem 1. Hence, the algebraic accuracy of
Osi(nr1y—1 18 at least 3-277'(n+ 1) —2. Very little is known about the existence and positivity of Pat-
terson extensions for p = 1 and beyond Kronrod’s extension. Numerical examples in [77] show that
nodes outside the integration interval can occur. The only two weights for which general existence
results are available are the Chebyshev weight of the second kind, for which Patterson formulas
are identical to Gaussian formulas, and weight functions and Bernstein—Szego type [79]. Tables of
sequences of Kronrod—Patterson formulas have been given in [75,85]. Computational investigations
on the existence of the first Patterson extension are discussed in [89]. Patterson extensions recently
received some attention in the context of sparse grid methods of multivariate numerical integration
[45].

Let 4, ;, be the weight associated with the ith node (for nodes ordered in increasing magnitude)
which is added in the jth Patterson extension in a (interpolatory) formula which results from a total
of k>j extensions. Krogh and Van Snyder [50] observed that 4,;; ~ 0.5 4;;_,, and used this
property for representing Patterson extensions with fewer function values. Laurie [56] constructed
sequences of stratified nested quadrature formulas of the type

N —1

Owlf1=00u-n[f1+ > A f(xix), 0<0<1.

i=0

'T thank Prof. Askey for pointing out this reference.
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Here, only the value Qy_1) has to be stored from step k —1 to step k. Laurie computed sequences of
embedded quadrature formulas, for =1, and with interlacing nodes in (—1,1) and positive weights.
Hybrid methods are discussed in [78].

2.6. Anti-Gaussian formulas

Laurie [58] introduced the stratified pair of quadrature formulas

n+1

Lot = 3O7U1+ X2 5 /() (10)

where the &;,a; are the nodes of the “anti-Gaussian” formula
n+1
ONf1=D aif(&),
i=1
defined by the conditions

RS [mi] = —RS[m;], k=0,1,....2n+ 1.

n+1

An equivalent condition for symmetric formulas is
Ry [ma,] = =R} [ma,]. (11)

The nodes of Q29 are real for every integrable w, even if (a,b) is unbounded, and they interlace
with the Gaussian nodes. For the ultraspherical weight m,, also ¢; and &,,; are inside (—1,1).
There are Jacobi weights for which &; or &, are outside (—1, 1). Laurie [58] proposes the stopping

functional

S 1= 3O f 1= O/ D (12)

for the estimation of the error of L, ;. This is a multiple of a divided difference of order 2n. In
particular, for the Legendre weight we have

22n+] n 14

SZA;SA - M—HWdVd(él,Xb éz,Xz,. s Xy, €n+l)'

The Lobatto formula, for the Legendre weight “almost” satisfies (11) (cf. [10, p. 149]),

1
Y [ma] = — (1 + ;) RSTma].

2.7. Other extensions of Gaussian formulas

“Suboptimal” Kronrod extensions 0}, , have been considered for weight functions where Gauss—
Kronrod formulas do not exist with real nodes and positive weights, in particular, for the Laguerre
and Hermite weight functions (cf. Begumisa and Robinson [6]). Here, using Theorem 1, given the
n Gaussian nodes, one chooses n + 1 additional real nodes such that the degree of the formula is
deg(R’,,,)=3n+1—r, with r as small as possible and such that all weights are positive. Another
strategy is the extension by more than n+ 1 nodes (“Kronrod-heavy”); (see [39,49,68]). In terms of
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moment-preserving spline approximation (see Section 2.2), the first method is based on reproducing
less moments, while for the second method more spline knots are introduced.

Kronrod extensions of Turan type are considered in [7,59,92]. Smith [93,94] considers Kronrod
extensions that use high-order derivatives at £1 but only function values in the interior of the
integration interval. Stieltjes polynomials and Gauss—Kronrod formulas on the semicircle have been
considered in [15,16]. Kronrod extensions of Wilf-type formulas have been considered by Engels
et al. [33]. Rabinowitz [87] considers Gauss—Kronrod-type formulas for the computation of Cauchy
principal value integrals. For w = 1, the Stieltjes polynomial has a double zero in the center of the
interval of integration, and hence a derivative value is needed for computing the Gauss—Kronrod
formulas in this case.

3. Stopping functionals based on Gaussian nodes

As already mentioned in Section 1, in practice, most often the Kronrod scheme is used “back-
wards”, i.e., the (2n 4+ 1)-point Gauss—Kronrod formula gives the quadrature value, and the error
estimate is based on a comparison with the n-point Gaussian formula. As Laurie points out in [55,
p- 427], “viewed from this angle, it becomes somewhat mystifying why the Kronrod rule should
have been singled out as a candidate for the parenthood of subset rules. Could the (2n + 1)-point
Gaussian rule not equally well (or even better) have been used?” As discussed in detail in Section
2.3, the (2n + 1)-point Gaussian formula often gives better results than the (2n + 1)-point Gauss—
Kronrod formula and is a promising candidate, in particular, for automatic integration, if suitable
stopping functionals are available. Unlike in Kronrod’s approach, several authors considered meth-
ods for estimating the error of quadrature formulas essentially without extra function evaluations,
i.e., on the basis of the function values that have been computed for the quadrature formula. Most
of these stopping functionals can be represented by linear combinations of divided differences (see
Section 1.4; cf. also [34,55,61]). As for the Gauss—Kronrod formulas (see Section 2.2), a natural
construction principle is the approximation of a Peano Kernel of QY by a Peano kernel of a suitable
divided difference (see Section 3.4).

3.1. Successive deletion of alternate nodes

Patterson [76] considered sets of quadrature formulas which are derived from a fixed Gaussian
or Lobatto formula with 2" + 1 nodes, » € N, by successively deleting alternate points from the
preceding subset. The interpolatory formulas on these sets of nodes are hence nested by definition.
Furthermore, numerical results show that all formulas based on the Gaussian formulas Qf; and QY
and on the Lobatto formula QL are positive (see [76]).

3.2. Dropping the midpoint

Berntsen and Espelid [8] constructed a reference formula Q5 for the Gaussian formula OF, | by
dropping the node x§,, ,,,, = 0. Hence, we have

24+ p12(2n)!

S?n]il = ngJrl - ]23:: = (_l)n (4n + 1)' dVd(le"‘-axgq+])'
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Numerical results in favor of this stopping functional are given in [55]. In Section 3.4, a stopping
functional will be given which gives smaller estimates (by O(1/n)) but which are still guaranteed
error bounds for functions whose (2n)th derivative does not change sign.

3.3. Null rules

Linear combinations of kth divided differences are often called null rules (of degree k—1) [9,57,62].
For n+ 1 nodes, the linear space of null rules of degree >#n — m has dimension m. For any inner
product on R"*! a unique orthonormal basis of null rules can be constructed for this space. In
[9], the standard inner product (a,b) = 7" a;b; is used for null rules N, ,[f]1= """ a;f(x;) and
Nl f] :Z;’;l b, f(x;), with a=(ai,...,a,.1) and b= (by,...,b,.1). Laurie [57] considers the inner
product

(a,b)y = awh, W= diag[w;],
n+1

using the (nonzero) weights w; of a positive quadrature formula O,.[ f]1=>_;_; w:f(x;). Denoting the
monic orthogonal polynomials with respect to the discrete inner product ( f, g)zzg’ill w; f(x;)g(x;) by
pi» j=0,1,...,n, the null rules (Q,1[p])~"?Olpi f1, k=0,1,...,n, are mutually orthonormal with
respect to the inner product (-, -)y—1. These null rules are used in [57] to construct actual approxi-

mating polynomials f; and in turn for nonlinear error estimates which are based on approximating

S5 TG = fux) | dx.
3.4. Peano stopping functionals

Using the notation from Section 1.4, most stopping functionals S,, used in practice satisfy c;(R,)
< ¢4(S,,) for special values of s. This inequality implies deg(S,,)=>s — 1. A stronger condition can
be given using Peano kernels,

|K (R, x)| <K(S,,x) for every x € (a,b). (13)

For stopping functionals based on Peano kernel theory, cf. [34] and the literature cited therein. Every
functional S,, of the type (3) which satisfies (13) is called a (s,m) Peano stopping functional for
the quadrature formula Q,. A restriction for Peano stopping functionals is that the endpoints +1
have to be among the nodes of S,, (see [34,61]). An (s,m) Peano stopping functional S is called
optimal for Q, if

¢s(SP) = min{c,(S,,) | S,y is an (s,m) Peano stopping functional for Q,}.

In view of (13), the construction of optimal Peano stopping functionals is a problem of best one-sided
approximation by spline functions. For every O, with deg(R,)>=s — 1 and fixed nodes yi,..., y,
there exists a unique optimal (s,m) Peano stopping functional (cf. [28]). Condition (13) implies that
K(S,.,"), K(S,+R,,-) and K(S,,—R,,-) are nonnegative in (—1,1), i.e., S,,, S,—R, and S,,+R, are
positive definite of order s. Hence, definiteness criteria are important for the construction of Peano
stopping functionals (see [34] and in particular [13]); several algorithms are compared in [5].

A characteristic property of (s,m) Peano stopping functionals is that the inequality (4) is guaran-
teed for all

fed[—1,11={f € 4] — 1,1], f has no change of sign in [ — 1,1]}.
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This feature seems particularly attractive for automatic integration routines. Assuming that a given
function f is s times differentiable, its sth derivative may often have only a finite number of changes
of sign. Hence, after sufficiently many recursion steps of an interactive automatic quadrature routine,
“most” of the resulting subintervals [a;, ;] will not contain a change of sign of [, such that
f € Af[a;, b;]. Hence, in such subintervals, reliable error bounds can be obtained without explicit
knowledge of .

In view of the well-known definiteness of the Gaussian and Lobatto formulas,

S2n+1 = %(Q;I;-H - QI?)

is a (2n,2n + 1) stopping functional for the quadrature formula

Q2n+1 2(Q +1 + QG)

In general, pairs of positive and negative definite formulas lead to analogous constructions of Peano
stopping functionals (see also [19] for examples). However, from the point of view of practical
calculations, most interesting are stopping functionals for fixed quadrature formulas. In [29], the
following optimal (n,n + 1) Peano stopping formula has been constructed for the Lobatto formula

Oris
S = 2\/—E1 r(nFJ(rnl) 12) dvd(ay,
A (n+ 1,n+ 2) Peano stopping functional for the Gaussian formula Q¢ is given by [29]
1 I(m)[(n/2+1)
2"=1T'(n+ 1/2)I'(n/2 + 3/2)
This stopping functional gives both guaranteed inclusions for f € A7[ — 1, 1] and tight bounds, in
particular, tighter than (12) and tighter than S}~ in Section 3.2,

Czn(S2n+1) CZn(S2n+1)<7’ C + C(n).

Czn(Szn+1) 2(S3 1)
A (2,n) Peano stopping functional for Q¢ which is based only on the nodes {—1,0,1} can be found
in [84],

r_ L

32n+ 1y

Since & > — 1 and &, < 1, the Gauss—Kronrod stopping functional S5X, is no (s,2n + 1) Peano
stopping functional for any s € N. In [25], a (2n + 2,2n + 3) Peano stopping functional has been
constructed for the Gauss—Kronrod formula 0S¥,

1
Sons = ﬁ

L
9xn+l)'

G
Sn+2 -

dvd(—1,x5,...,x5,1). (14)

dvd(—1,0,1).

1:x1=éza . ns n+1’1)

where ¢, = (\/_\/(611 +3)/2n+3))(1 +V3n(2v/n+2—2)71).

4. Conclusion

In this survey, we gave an overview on practical error estimates for Gaussian formulas that
are of the same type as quadrature formulas, i.e., linear combinations of function values. Stopping
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functionals based both on extended Gaussian formulas and on Gaussian nodes are linear combinations
of divided differences. Peano kernels are a very useful tool for the construction and for the comparison
of both quadrature formulas and stopping functionals. In many cases, the construction of a stopping
functional is essentially the construction of a suitable spline function that approximates best, in a
given sense, a Peano kernel of the Gaussian formula (typically the highest-order Peano kernel). The
sense of “best” governs the type of the stopping functional: moment-preserving approximation leads
to Gauss—Kronrod formulas, while one-sided approximation leads to Peano stopping functionals.
Other types of approximations may be applied in many situations, e.g., on infinite intervals, where
Gauss—Kronrod formulas are not available. We shall discuss such methods elsewhere.
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Abstract

We present a computational procedure for generating formally orthogonal polynomials associated with a given bilinear
Hankel form with rectangular matrix-valued moments. Our approach covers the most general case of moments of any
size and is not restricted to square moments. Moreover, our algorithm has a built-in deflation procedure to handle linearly
dependent or almost linearly dependent columns and rows of the block Hankel matrix associated with the bilinear form.
Possible singular or close-to-singular leading principal submatrices of the deflated block Hankel matrix are avoided by
means of look-ahead techniques. Applications of the computational procedure to eigenvalue computations, reduced-order
modeling, the solution of multiple linear systems, and the fast solution of block Hankel systems are also briefly described.
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1. Introduction

It has been known for a long time that many of the algebraic properties of scalar orthogonal
polynomials on the real line carry over to the more general case of formally orthogonal polynomials
induced by a given sequence of scalar moments; see, e.g., [3,4,8,15-17] and the references given
there. For example, such formally orthogonal polynomials still satisfy three-term recurrences, as long
as the scalar Hankel matrix H associated with the moment sequence is strongly regular, i.e., all
leading principal submatrices of H are nonsingular. If H has some singular or in some sense nearly
singular leading principal submatrices, then so-called look-ahead techniques can be used to jump over
these submatrices, resulting in recurrence relations that connect the formally orthogonal polynomials
corresponding to three consecutive look-ahead steps. In particular, these recurrences reduce to the
standard three-term recurrences whenever three consecutive leading principal submatrices of H are
nonsingular.

0377-0427/01/$ - see front matter (©) 2001 Elsevier Science B.V. All rights reserved.
PII: S0377-0427(00)00505-7
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Scalar formally orthogonal polynomials are intimately connected with a number of algorithms for
matrix computations. For example, the classical Lanczos process [19] for nonsymmetric matrices, fast
solvers for linear systems with Hankel structure [14], and the computation of Padé approximants of
transfer functions of single-input single-output linear dynamical systems [6,10] are all closely related
to formally orthogonal polynomials. Furthermore, the theory of formally orthogonal polynomials
has proven to be useful for developing more robust versions of these algorithms. For instance,
the look-ahead variants [12,17,22] of the Lanczos process, which remedy possible breakdowns in
the classical algorithm, are direct translations of the extended recurrences for formally orthogonal
polynomials in the general case of Hankel matrices H with singular or nearly singular leading
principal submatrices.

The concept of formally orthogonal polynomials can be extended to the case of arbitrary, in general
rectangular, matrix-valued moments. However, except for special cases such as square orthogonal
matrix polynomials on the line [25], the theory of the associated matrix-valued polynomials is a lot
less developed than in the case of scalar moments. For example, a suitable extension of the classical
Lanczos process, which is only applicable to single right and left starting vectors, to multiple, say m
right and p left, starting vectors is intimately related to formally orthogonal polynomials associated
with sequences of (p X m)-matrix-valued moments that are given by a so-called realization. Such
a Lanczos-type method for multiple starting vectors was developed only recently [1,7], motivated
mainly by the need for such an algorithm for the computation of matrix-Padé approximants of
transfer functions of m-input p-output linear dynamical systems [7,9,10].

There are two intrinsic difficulties that arise in the case of ( p x m)-matrix-valued moments, but not
in the case of scalar moments. First, in the important case of matrix moments given by a realization,
the block Hankel matrix H associated with these moments necessarily exhibits systematic singular-
ities or ill-conditioning due to linearly dependent or nearly linearly dependent columns and rows.
These linear or nearly linear dependencies imply that from a certain point on all leading principal
submatrices of H are singular or nearly singular, although the moment information contained in H
has not been fully exhausted yet. In particular, block Hankel matrices induced by a realization are
not strongly regular, and singular or nearly singular submatrices caused by linearly dependent or
nearly linearly dependent columns and rows cannot be avoided by means of look-ahead techniques.
Instead, so-called deflation is needed in order to remove systematic singularities or ill-conditioning
due to linearly dependent or nearly linearly dependent columns and rows of H. Second, the fact
that m # p in general excludes the possibility of constructing the formally orthogonal polynomials
directly as right (m x m)-matrix-valued and left (p X p)-matrix-valued polynomials. Moreover, each
deflation of a column of H effectively reduces m by one and each deflation of a row of H effec-
tively reduces p by one. Since deflations of columns and rows occur independently in general, this
means that the “current” values of m and p in the course of the construction of formally orthogonal
polynomials will be different in general, even if m= p initially. The difficulties due to different m and
p can be avoided by constructing the polynomials associated with (p x m)-matrix-valued moments
vector-wise, rather than matrix-wise.

In this paper, we present a computational procedure for generating right and left formally orthog-
onal polynomials associated with a given bilinear form induced by a sequence of general rectangular
(p x m)-matrix-valued moments. Our approach covers the most general case of arbitrary integers
m, p=1, and we need not assume that the block Hankel matrix H associated with the given bilinear
form is strongly regular. Our algorithm has a built-in deflation procedure to handle linearly dependent



R.W. Freund|Journal of Computational and Applied Mathematics 127 (2001) 173—199 175

or almost linearly dependent columns and rows of H. Possible singular or close-to-singular lead-
ing principal submatrices of the deflated block Hankel matrix are avoided by means of look-ahead
techniques. Applications of the computational procedure to eigenvalue computations, reduced-order
modeling, the solution of multiple linear systems, and the fast solution of block Hankel systems are
also briefly described.

We remark that our approach of constructing formally orthogonal polynomials induced by matrix
moments in a vector-wise fashion is related to earlier work, such as [2,24,27]. However, in these
papers, the assumption that H is strongly regular is made, and this excludes the intrinsic difficulties
described above.

The remainder of this paper is organized as follows. In Section 2, we introduce some notation.
Section 3 describes our general setting of bilinear Hankel forms and discusses the need for deflation
and look-ahead. In Section 4, we present our notion of formally orthogonal polynomials associated
with a given bilinear Hankel form. In Section 5, we explain the structure of the recurrence relations
used in our construction of formally orthogonal polynomials. A complete statement of our algorithm
for generating formally orthogonal polynomials is given in Section 6, and some properties of this
algorithm are stated in Section 7. Applications of the algorithm are sketched in Section 8. Finally,
in Section 9, we make some concluding remarks.

2. Notation and some preliminaries

In this section, we introduce some notation used throughout this paper.

2.1. Notation

All vectors and matrices are allowed to have real or complex entries. We use boldface letters to
denote vectors and matrices. As usual, M = [my], M" = [my,], and M" = M = [my;] denote the
complex conjugate, transpose, and the conjugate transpose, respectively, of the matrix M =[m;]. We
use the notation [x;],. , for the subvector of x = [x;] induced by the index set #, and analogously,

[mi]ic s xen for the submatrix of M = [my] induced by the row indices # and column indices
A. The vector norm ||x|| := v/xHx is always the Euclidean norm, and ||M || := max - || Mx|| is the
corresponding induced matrix norm.

The ith unit vector of dimension j is denoted by e\”). We use I, to denote the n x n identity
matrix, and we will simply write I if the actual dimension is apparent from the context.

The sets of real and complex numbers are denoted by R and C, respectively. We use the symbols
N for the set of positive integers and Ny =N U {0} for the set of non-negative integers.

We denote by 2 the set of all vector-valued polynomials

o) =ay+a)+---+al, whereag,a,....,a; €T/, i€ Ny, (1)
with coefficient vectors of dimension j, and by

y(ij)::{dj:[d’l ¢2 ¢k”¢1>¢2:-~-=¢k€=@m}

the set of all matrix-valued polynomials with coefficient matrices of size j x k.
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We use the symbol 0 both for the number zero and for the scalar zero polynomial, and similarly,
the symbol 0 for the m x n zero matrix and the zero polynomials in 2¢) and 2U*®_ The actual
dimension of 0 will always be apparent from the context.

2.2. The degree of a vector polynomial

Following [2,5,27], we can associate with any given vector polynomial (1), ¢, the scalar polyno-
mial
(i+1)j—1

e =[1 2 - V9= D wih (2)

k=0

Here, the o;’s are just the coefficients of the stacked coefficient vector

a Ao
a, 041 )i

a= "= T | ecry (3)
a; Ai+1)j—1

of (1). The (diagonal) degree, deg ¢, of ¢ is then defined as the degree of the scalar polynomial
(2), ie.,

max{k | #0in (2)} if ¢ #0,

d%¢f{—m if ¢ = 0.

In the sequel, we will also use the notation

vec = (o Jo <k <dee ¢ %f ¢ #0,
0 if =0

for the vector that results from (3) by deleting any trailing zeros.

3. Bilinear Hankel forms and block Hankel matrices

In this section, we describe our general setting of bilinear Hankel forms and their associated
infinite block Hankel matrices. We also discuss the need for deflation and look-ahead to avoid
possible singular or ill-conditioned submatrices of the block Hankel matrices.

3.1. Bilinear Hankel forms

Let m, p>1 be given integers. A complex-valued functional
<.’.>:gB(P)ng(m),_,C 4)
is called a bilinear form if

<‘//’0-1¢1 + J2¢2> =0 <'l’7 ¢]> + 0-2<'/la ¢2> (Sa)
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and

(01, + 02y, @) = 01 (Y, @) + 02 (¥, D) (5b)
for all @,¢,,¢, € 2, Y, W, € PP, 5,0, € C. We say that (4) is a Hankel form if the
following shift property is satisfied:

(V. 2) = (M §) for all g € 2™, y € 27, (6)

In the sequel, it is always assumed that (4) is a given bilinear Hankel form. Furthermore, we extend
(4) to matrix-valued polynomials by setting

<‘/’19¢1> <'/’1a¢2> <'/’1»¢k>
<l//2,¢1> <'/’2a¢2> <'/’2»¢k>

(P, @) := c ¢/ (7)
<‘/’ja ¢1> <l/’js ¢2> U <l/’js ¢k>
for all
P=[¢p, ¢, - ¢le?", =0 ¥, - Ylec??
In particular, using the notation (7), we define p x m (matrix-valued) moments
M, = (1,2, 1,2}) € C"" for all j,k € N,. (8)

In view of the bilinearity (5a) and (5b), any bilinear form (4) is completely determined by its
moments (8). Furthermore, the shift property (6) means that the moments M, only depend on
Jj +k, and we set M, := M. Therefore, any bilinear Hankel form (4) is completely determined
by the sequence of moments

M = <Ipalm/1i> = <Ip;“ialm>s i€ NO-
The associated infinite block Hankel matrix

M, M, M,
M, M,
H = []wj+k]j,k>0 =M, )

is called the moment matrix of the bilinear Hankel form (4). Although H has a block Hankel

structure, we will also consider H as a scalar matrix with entries 4, ,, i.e.,

H =[h,,], >0 whereh,, € C for all v,u € N,.
Furthermore, for each n,k € Ny, we set

Hn,k = [h\',/l]0<v<n o<su<k and Hn = Hn,n = [h\',/l]0<v,,u<n'

5

Note that H, is the nth scalar leading principal submatrix of H.
With the notation just introduced, for any pair of vector-valued polynomials ¢ € 2 and
Y € 2P, we have

(W, ¢) = bTHdeg v.deg p@, Where a =vec ¢, b= vecy. (10)
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3.2. Bilinear Hankel forms associated with realizations

An important special case is bilinear Hankel forms that are associated with so-called realizations
of time-invariant linear dynamical systems. We refer the reader to [18, Chapter 10.11], [23], or [26,
Chapter 5.5] for a discussion of the concepts and results from realization theory that we will use in
this subsection.

Let

M; e CP" i=0,1,..., (11)
be a given sequence of moments. A triple of matrices

AeCVN RecCYV*m, LecCV* (12)
is called a realization of the sequence (11) if

M, =L"A'R for all i € N,,.

The integer N is called the dimension of the realization (12). A realization (12) of a given sequence
(11) is said to be minimal if its dimension N is as small as possible.

Not every given sequence (11) has a realization. The following well-known result (see, e.g., [26,
Theorem 21]) gives a necessary and sufficient condition for the existence of a realization in terms
of the infinite block Hankel matrix (9) with block entries (11).

Theorem A. A sequence (11) admits a realization if, and only if, the associated infinite block
Hankel matrix (9), H, has finite rank. Furthermore, if (11) has a realization, then N =rank H is
the dimension of a minimal realization.

For the remainder of this subsection, we now assume that H has finite rank and that (12) is a
given, not necessarily minimal, realization of the block entries (11) of H.
Note that, in view of (9) and (12), the block Hankel matrix H can be factored into block Krylov
matrices as follows:
LT
LA

H=|;72| [R AR AR ---]. (13)

As a first application of (13), we have the following connection of vector-valued polynomials with
vectors in CV.
Remark 1. Let ¢ € 2" and ¢ € 2P be any pair of polynomials. Then, using the representations
dA)=ay+ai+-+ai,
V() =by+ b )+ -+ b,
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we can associate with ¢ and ¥ the pair of vectors
v=¢(A)oR:=Ray+ ARa, + --- + A’Ra; € C",

(14)
w=y(A")Yo L:=Lby+ A"Lb, + --- 4+ (A")*Lb, € C".

By (10), (13), and (14), it follows that (Y, ¢) = w'v.

The factorization (13) of H necessarily implies that from a certain » on, all leading principal
submatrices H, are singular. Indeed, consider the right block Krylov matrix

[R AR AR -] (15)

in (13). The columns of the matrix (15) are vectors in C", and hence at most N of them are linearly
independent. By scanning the columns of (15) from left to right and deleting each column that is
linearly dependent on earlier columns, we obtain the deflated right block Krylov matrix

[Ry AR, A*R, --- A™7'R, ] (16)

By the structure of (15), a column 4/~!r being linearly dependent on earlier columns implies that
all columns A'r, i>j, are also linearly dependent on earlier columns. This implies that, for each
J=0,1,..., jmax, R; is a submatrix of R;_;, where, for j=0, we set R_, := R. Similarly, by scanning
the columns of the left block Krylov matrix

[L AL (AL ---]

from left to right and deleting each column that is linearly dependent on earlier columns, we obtain
the deflated left block Krylov matrix

[Ly AL (A"YL, - (4")™7'Ly,] (17)

max

Here, for each £k =0,1,..., knax, L; 1S a submatrix of L,_,, where, for k=0, we set L_, := L. Now
let j, be the smallest integer such that R; # R and let k, be the smallest integer such that L, # L.
Then, by construction, it follows that the nth leading principal submatrix

H, is singular for all n>=min{(j,+ 1)m,(ko+ 1)p} — 1.

Finally, we note that this systematic singularity of the submatrices H, can be avoided by replacing
the moment matrix H by the deflated moment matrix

Ly
LA

o — [Ry AR, --- Ajmax—1Rim]‘

Lz /ikmax—l
3.3. The need for deflation

We now return to general moment matrices H, and we extend the procedure for avoiding sys-
tematic singularities of submatrices H, to this general case.

Generalizing the procedure described in Section 3.2, we scan the columns, [4; ,];~,, ©#=0,1,..., of
H, from left to right and delete each column that is linearly dependent, or in some sense “almost”
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linearly dependent, on earlier columns. Similarly, we scan the rows, [A,;];~, v=0,1,..., of H,
from top to bottom and delete each row that is linearly dependent, or in some sense “almost”
linearly dependent, on earlier rows. We refer to this process of deleting linearly dependent and
“almost” linearly dependent columns and rows as deflation. Moreover, we say that exact deflation is
performed when only the linearly dependent columns and rows are removed. Clearly, exact deflation
is only possible in exact arithmetic, and deflation of “almost” linearly dependent columns and rows
has to be included when actual computations are done in finite-precision arithmetic.
In the sequel, we denote by

O<Spo< <<y <--- and Oy <y <--- <V, <--- (18)

the sequences of indices of those columns and rows of H, respectively, that are left after deflation
has been performed. Moreover, we denote by

=Y, and = {u (19)
the sets of all the indices (18), and by
H*" .= [hv,/t]vem, =4 (20)

the corresponding deflated moment matrix. Note that, in general, each of the two sequences (18)
may be finite of infinite, i.e., n,7, € Ny U {oo}. Hence H*" can have finitely or infinitely many
rows or columns. However, in the special case of Hankel matrices H of finite rank discussed in
Section 3.2, n,,n, < oo and thus H*" is a finite matrix.

In view of the block Hankel structure (9) of H, an exact deflation of a uth column of H implies
that also all (x+ jm)th columns, where j=1,2,..., need to be deflated. Similarly, an exact deflation
of a vth row implies that also all (v+jp)th rows, where j=1,2,..., need to be deflated. We assume
that the same rule is also applied in the case of general deflation, and so whenever a uth column or
vth row is deflated, we also deflate all (u + jm)th columns, j € N, respectively all (v + jp)th rows,
j € N. This implies that the sets (19) always satisfy the following conditions:

weé M=u+jmée¢ 4« forall j e N,
vE€ N =v+jp &N forall j €N,

Finally, we note that, by (18), the mappings n — g, and n — v, are both invertible, and we will
use p~! and v~! to denote the inverse mappings defined by

n:,u*l(un), W, € M, and n:vfl(vn), v, € N,

respectively.

3.4. The need for look-ahead

By replacing H with the deflated moment matrix H®" we have removed any rank deficiencies
due to linearly dependent columns and rows. Next, we discuss potential singularities of the leading
principal submatrices of H",

By (19) and (20), all the leading principal submatrices of H%" are given by

H*" =l lo<ij<n forall n€ N with n<np,y, 1)
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where
Amax = 1 + min{n,, n,}. (22)

Note that either ny, € Ng or np, = co. In the special case of Hankel matrices H of finite rank
discussed in Section 3.2, ny, is a finite integer.

By construction, the necessary singularities implied by linearly dependent columns or rows of H
have been removed from the submatrices (21). Obviously, as in the case of scalar Hankel matrices
(see, e.g., [14] and the references given there), this construction alone is not sufficient to always
guarantee that

det H*" £ 0 forall n € N with 7 <1p,,. (23)

However, the situation that (23) is satisfied is the generic case.

In the general case, some of the submatrices (21) may be singular or in some sense “close” to
singular, and we employ so-called look-ahead techniques [22,28] to avoid these submatrices. We
use the indices

np:=0<nm<m<---<n<--- (24)

to mark those submatrices H, _; that remain after any singular or close-to-singular submatrix has
been removed from (21). In particular, by construction, we have

det Hffﬂl #0 forall £k € N with n; <npay.

Finally, note that in the generic case when no look-ahead is necessary, the indices (24) are simply
given by

n, =k forall k € Ny with k<np. (25)

4. Formally orthogonal polynomials

In this section, we present our notion of formally orthogonal polynomials associated with a given
bilinear Hankel form (-, -) : 27 x 22" — C.

4.1. Two sequences of polynomials

Let M4 ={p.}ry and N ={v,},", be the column and row indices introduced in (18) and (19). Of
course, in practice, these indices are not given beforehand, and instead, they have to be determined
within our computational procedure for constructing vector-valued orthogonal polynomials. In Section
4.4 below, we will show how this can be done, but for now, we assume that .# and ./ are given.

Our computational procedure generates two sequences of right and left polynomials,

Do DpreesPpy... €P™ and Yo, Wy, 0,,... € PP, (26)

respectively. Here, n € Ny and 7 <., Where npy,, is given by (22). Furthermore, the polynomials
(26) are constructed such that their degrees are just the indices .# and ./, i.e.,

deggp,=pn, and degy,=v, foralln, (27)
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and their coefficient vectors,

) A
n n
o B
a” :=vec, = | | and b :=vecy,=| = |, (28)
O‘EZ) ﬁgn)
have no nonzero entries outside .# and ./, i.e., for all n,
ocg’) =0 ifu#.4 and BV=0 if v#.AN. (29)

4.2. Orthogonality in the generic case

The goal is to construct the polynomials (26) such that they are regular formally orthogonal
polynomials in the sense of the following definition.

Definition 2. The polynomial ¢, € 2™ is said to be an nth right formally orthogonal polynomial
(RFOP) if deg ¢, = n, and

(W, ) =0 forall y € 2P with degyp =v,, i<n. (30)

The polynomial ¥, € 2" is said to be an nth left formally orthogonal polynomial (LFOP) if
degy, =v, and

(Y, ) =0 for all p € 2" with degp =, i <n. (31)
Moreover, the RFOP ¢, and the LFOP ¥, are said to be regular if they are uniquely determined by

(30) and (31), respectively, up to a nonzero scalar factor.

Using (10), (21), and (27)—(29), one readily verifies that the condition (30) is equivalent to the
system of linear equations,

(n)
Ho hVO»/‘n
o™ h, y
15 Hn
HE | T = | T L a0, (32)
Oc.g:)—l hv,,,l, Hn

for the potentially nonzero coefficients of ¢,. Similarly, (31) is equivalent to the system of linear
equations,

(
v(r)l) hvmuo
ﬁ(") h, p
defl \T Vi " H1
(Hnil) . = _ﬂg:’) : P ﬁg:l) 7& 0, (33)
ﬁi’:ll hvm Hn—1

for the potentially nonzero coefficients of ¥,. In view of (32) and (33), ¢, and ¥, can be constructed
as a regular RFOP and a regular LFOP, respectively, if, and only if, H®% is nonsingular. We thus
have the following result on the existence of regular RFOPs and LFOPs in the generic case (23).
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Theorem 3. The polynomials (26) can all be constructed as regular RFOPs and LFOPs only in
the generic case, i.e., if the matrices H®" are nonsingular for all n € N with n<npy.

In the generic case, we thus construct the polynomials (26) such that

(W,,¢,) =0 foralli#n, i,n € Ny, i,n<Npuy. (34)
Using the notation
®,=[d, ¢ - ¢] and ¥.=[, ¥, - ¥, (35)

for the matrix polynomials whose columns are the first n 4+ 1 right and left polynomials (26),
respectively, the orthogonality condition (34) can be stated as follows:

(V,,®,) =4, forall n€ Ny, n<npy. (36)
Here,

A, = diag(dy, d1,...,9,), where J;:= (¥, ¢,) for all i. (37
Finally, let

Ay=[o)y<i <, and  B,:=[B o< ;< (38)

denote the matrices of the potentially nonzero coefficients of @, and ¥,, respectively. Then, by
(10), (21), (28), (29), and (38), the condition (36) is equivalent to the matrix factorization

B'H*"4,=4,, (39)

where A, and B, are nonsingular upper triangular matrices. Thus, it follows from (37) and (39) that
the condition (23) for the generic case is equivalent to

0; #0 for all 0<i < Mgy (40)
4.3. Orthogonality in the case of look-ahead

We now turn to the general case where look-ahead is used to avoid singular or close-to-singular
submatrices H®%. In view of Theorem 3, the polynomials ¢, and v, cannot be constructed as a
regular RFOP and LFOP is H®" if exactly singular. If H*" is nonsingular, but in some sense
close to singular, then building ¢, and ¥, as a regular RFOP and LFOP will result in numerical
instabilities in general. Therefore, we only construct the polynomials ¢, and ¥, corresponding to
the index sequence (24) as regular RFOPs and LFOPs, while the remaining polynomials satisfy only
a relaxed version of the orthogonality condition (34).

More precisely, based on the indices (24), we partition the right and left polynomials (26) into

clusters

oY :=[¢, b, - b, ] (41a)
and

W(k);:[,/,nk Voo o Wik (41b)

respectively. The polynomials (26) are then constructed such that we have the cluster-wise orthog-
onality

(PO, @0y =0 forall j £k, j,k € No, 1,1y <fias. (42)
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We remark that, by (42), the leading polynomials ¢, and ¥, of each kth cluster (41a) and (41b)
are regular RFOPs and LFOPs, respectively. Next, we set

AD = (PP ®®)  for all k.

Then, using essentially the same argument that lead to condition (40) in the generic case, it follows
that, in the general case,

AP s nonsingular for all £ € Ny with n; < By

Finally, note that each nth pair of polynomials ¢, and ¥, in (26) is part of exactly one pair of
clusters (41a) and (41b), namely those with index k& = y(n). Here and in the sequel, we use the
notation

y(n):=max{j € Ny |n;<n} (43)

for the function that determines the cluster index for the nth pair of polynomials. Recall from (25)
that in the case of no look-ahead, n, =k for all k. Thus, in the generic case, (43) reduces to

y(n)=n for all n. (44)

4.4. How deflation is done

In practice, the indices (18) and (19), which describe deflations, are not given beforehand, and
instead, they have to be determined as part of the algorithm for constructing the polynomials (26).
In this subsection, we describe how this is done.

In the algorithm, we keep track of the current block sizes m. and p.. Initially, m.=m and p.= p.
Every time a deflation of a right polynomial is performed, we set m. = m, — 1, and every time a
deflation of a left polynomial is performed, we set p. = p. — 1. Thus, at any stage of the algorithm,
m — m, respectively p — p., is just the number of deflations of right, respectively left, polynomials
that have occurred so far.

Now assume that we already have constructed the right and left polynomials (26) up to index n—1.
In addition to these polynomials, our algorithm has built m, right and p. left auxiliary polynomials,

¢n’¢n+l""’¢n+mc—l and '/In"/1n+l""5llln+pcfl’ (45)

that satisfy the following “partial” orthogonality conditions:

(PO $)=0 forall 0<k < p(n), n<i < n+ m, 46
W, @) =0 for all 0<k < y(n), n<i <n+ p.. 40
The polynomials (45) are the candidates for the next m,. right, respectively p. left, polynomials
in (26). In particular, in view of (46), the polynomials q’;n and l/;n already satisfy the necessary
orthogonality conditions of ¢, and y,. It remains to decide if (/3n or !/;n should be deflated. If (/3n is
deflated, it is deleted from (45), the indices of the remaining right polynomials in (45) are reduced
by one, and m, is reduced by one. If !/;n is deflated, one proceeds analogously.
The decision if qAbn or l/;n needs to be deflated is relatively simple for the special case of bilinear
Hankel forms given in terms of a realization (12). Indeed, it is easy to see that an exact deflation of
qAbn, respectively |/;n, needs to be performed if, and only if, the associated vectors (see (14)) satisfy

$,(A)oR=0, respectively v, (4")o L =0.
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In practice, one thus deflates 43,1: respectively l[ln, if
|, (A) o R||<dtol®, respectively ||, (A™) o L| <dtoll, (47)

where dtol’ >0 and dtol} >0 are suitably chosen small deflation tolerances. Note that the check
(47) reduces to exact deflation only if dtol] =dtol, =0.

In the general case of Hankel matrices H of not necessarily finite rank, one can show that exact
deflation of qAbn, respectively !/;n, needs to be performed if, and only if,

(I,¥,$,) =0, respectively (y,,I,2%) =0, for all k € Nj. (48)

Since (48) represents infinitely many conditions (representing the fact that H is an infinite matrix),
in practice, one needs to replace (48) by some appropriate finite version. For example, imitating
(47), one can check if, for all 0 <k <k(n),

(1,25, )| <dtolf, respectively ||(if,, I,/ <dtoll, (49)

where k(n) is a sufficiently large, but finite integer.

We conclude this section with some comments on the choice of the deflation tolerances dtol;
and dtol; in (47) and (49). Clearly, deflation of qan or tﬁn should occur independent of the actual
scaling of the problem. First, consider the special case of bilinear Hankel forms given in terms of
a realization (12). To make the deflation check independent of the actual scaling of the columns r;
of R, of the columns /; of L, and of the matrix 4, we use the tolerances

dtol - ||ry ¢ || if deg, <m,
ottt it
dtol - nest if deg@, > m,
i j (50)
dtO:L1 = { dtol - Hldegll;”H lf deg 1/111<p9

dtol - nest(4) if deg !/;n > p.

Here, nest(A) is either ||4|| or an estimate of || 4|, and dtol is an absolute deflation tolerance. Based
on our extensive numerical experiences for the applications outlined in Sections 8.1-8.4 below, we
recommend dtol =,/eps, where eps, is the machine precision. In practical applications, the matrix
A is often not available directly, and then the ideal choice nest(4) = ||4]|| in (50) is not feasible
in general. However, matrix—vector products with 4 and AT can usually be computed efficiently. In
this case, one evaluates quotients of the form

| Av]] |4 wll
o] [l

for a small number of vectors ve CY, v # 0, or w € C¥,w # 0, and then takes the largest of these
quotients as an estimate nest(A) of || A4]|.

In the case of Hankel matrices H not given in terms of a realization (12), the deflation tolerances
dtol?®, respectively dtoll, in (49) are chosen similar to (50) as products of an absolute deflation
tolerance dtol and factors that take the actual scaling of the columns, respectively rows, of H into
account.
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5. Recurrence relations

In this section, we describe the recurrence relations that are used in our computational procedure
for generating the polynomials (26). From now on, we always consider the general case where
look-ahead may be needed, and we will point out simplifications that occur in the generic case.

5.1. Recurrences in matrix form

Recall that the matrix polynomials @, and ¥, introduced in (35) contain the first n + 1 pairs,

b0, P15---> b, and Yo, ¥y, Y, (51)

of the polynomials (26). Using the notation @, and ¥,, the recurrences for generating all the
polynomials (51) can be summarized compactly in matrix form as follows:

~ A ~ defl
[Im }“djn] = djn Tn,m+n + [0 I 0, ¢n+1 e ¢n+mc] + dSern’
m—+n+1—me me
~ A ~ ~ defl (52)
i, ¥ l=¥Typt+0_--- 0 ¥\, - ¥, 1+¥, ..
p+n+1—pc P
Relations (52) hold true for all n=—1,0,1,2,..., where n<ny,. Here, we use the convention that
n = —1 corresponds to the initialization of the first m right and p left auxiliary polynomials,
&O!é]"",(ﬁm—l and !/;03!/;1,"',!/;17—1’
respectively, and we set @_;:=¥_;:=Qand T_, ,_,:= T_lﬂp_l :=( in (52). For n=>0, the matrices
Tn’mﬂ — [tjak]0<j<n,7m<k<n c C(n+1)><(m+n+1) (533)
and
T”ap‘*"’ = [Zf>k]0<j<n,—p<k<n S C(n+l)X(p+n+l) (53b)

contain the recurrence coefficients used for the right and left polynomials, respectively. Corresponding
to the partitioning of the matrices on the left-hand sides of (52), the matrices (53a) and (53b) can
be written in the form

Tn,m+n = [pn Tn] and Tn,ern = ['In Tn]a (54)
where

: ! 1 1
P =[tudo<j<n mek<co € CUT Ty =[t4]o<hen € CUFDXOTD,

(C(n+l)><p c C(n+l)><(n+l).

n,:= [fj,k]OS_/gn,—p<k<O € T, = [fj,k]os_/,ksn

~ defl ~ defl
Finally, the matrix polynomials @, ., and ¥, in (52) contain mostly zero columns, together
with the polynomials that have been deflated. Recall from Section 4.4 that in our algorithm the

polynomials (,{A)n and l[;n are used to check for necessary deflation. If it is decided that (ﬁn needs to be
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AL . ~ defl . . . : n
deflated, then ¢, is moved into @, ., and becomes its column with index m +n —m.. Otherwise, ¢,

is accepted as the next right polynomials ¢,. Similarly, each deflated left polynomials l/;n becomes
~ defl
the (p +n — p)th column of 'I’i ne

5.2. Structure of the recurrence matrices

Recall that the recurrence matrices for generating scalar formally orthogonal polynomials in the
special case m = p =1 are tridiagonal in the generic case and block-tridiagonal in the general case;
see, e.g., [14,16,17]. Similarly, the recurrence matrices (53a) and (53b), T, ., and Tnﬂpﬂ, exhibit
certain structures, although, in the case of deflation, these structures are somewhat more complicated
than those for m = p = 1. In this subsection, we describe the structures of the matrices (53a) and
(53b).

First, consider the simplest case that neither deflation nor look-ahead occur during the construction
of the polynomials (51). In this case, T, ., and T n,p+n have a banded structure. More precisely,
the entries of (53a) and (53b) satisfy

tix=0 if j>k+mork>j+ p,
Lix=0 if j>k+pork>j+m.

In terms of the partitionings (54), this means that p, and n, are upper triangular matrices, 7, is
a banded matrix with lower bandwidth m and upper bandwidth p, and T, is a banded matrix with
lower bandwidth p and upper bandwidth m.

Next, consider the case that deflation occurs. Recall that we use the integers m. and p. to count
deflations. More precisely, initially m, =m and p. = p, and then m,, respectively p., is reduced by
one every time a right polynomial 43”, respectively a left polynomial 1/;n, is deflated. It turns out that
m. and p. are also the “current” bandwidths of T, ,., and T np+n- This means that the deflation
of a right polynomial (/’317 reduces m, and thus both the lower bandwidth of T, ,., and the upper
bandwidth of T n, p+n Dy one. Similarly, the deflation of a left polynomial |/;n reduces p. and thus both
the upper bandwidth of 7, ., and the lower bandwidth of T » p+n Dy one. In addition, deflation has
a second effect. A deflation of (/3n implies that from now on, the matrix T n, p+n Will have additional
potentially nonzero entries 7,_,, ; in row n—m, and to the right of its banded part. These additional
entries mean that from now on, all left polynomials need to be explicitly orthogonalized against the
right polynomial ¢, , . Similarly, a deflation of l/;n implies that from now on, the matrix 7, .,
will have additional potentially nonzero entries #,_, ; in row n — p. and to the right of its banded
part. These additional entries mean that from now on, all right polynomials need to be explicitly
orthogonalized against the left polynomial ¥, , . The size of these additional entries in T n,pn and
T,..min can be shown to be bounded by

max dtol®’ and max dtoll,
Jj=0,1,....,n J Jj=0,1,...n J
respectively, where dtol} and dtoljl. are the tolerances used to check for deflation; see Section 4.4.

In particular, these additional entries in T np+n and T, ., all reduce to zero if only exact deflation
is performed, i.e., if dtol] =dtol; =0 for all /.
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Finally, in the general case where both deflation and look-ahead occur, non-trivial look-ahead
clusters, i.e., those with n;,; — n; > 1, result in “bulges” just above the banded parts of T, .,
and T n pn- 1N Algorithm 1 below, the cluster indices /, and /, defined in (58) and (57) mark
the first potentially nonzero elements of the banded parts, including the bulges due to look-ahead,
in the nth column of T, ,., and T n, p+n> Te€Spectively. More precisely, Ly is the first potentially

nonzero element in the nth column of T,,.,,, and 7, , is the first potentially nonzero element
in the nth column of T n, p+n. Furthermore, if the row indices n — m,, respectively n — p., of the
additional potentially nonzero elements due to deflation are part of a nontrivial look-ahead cluster,
then these additional potentially nonzero elements are spread out over all rows corresponding to that
look-ahead cluster. In Algorithm 1 below, the sets &, and ; of cluster indices are used to record
these additional nonzero rows above the banded parts of 7, ., and T n, p4n»> TESpeECtively.

At each nth pass through the main loop of Algorithm 1, based on 7 and %, we form the set
Sy in Step (6b) and, based on /4 and %, the set 4, in Step (7b). The set .7, in (59) contains
the indices k of those clusters for which the associated entries ¢;, n; <j < ny,; of column n of the
matrix T, ,., are potentially nonzero. These are just the indices of the clusters P of left polyno-
mials against which the next right auxiliary polynomial (j;n +m, has to be explicitly orthogonalized.
Note that the set ., in (59) has two parts. The first part in (59) contains the cluster indices cor-
responding to spread-out rows due to deflation of earlier left polynomials, while the second part in
(59) contains the cluster indices corresponding to the banded part of T, ,,. Similarly, the set .7,
in (61) contains the indices k of those clusters for which the associated entries 7,,, ny <j < 4
of column 7 of the matrix T n, p+n are potentially nonzero. These are just the indices of the clusters
@) of right polynomials against which the next left auxiliary polynomial |/;n +p. has to be explicitly
orthogonalized. The first parts of the set .#, in (61) contains the cluster indices corresponding to
spread-out rows due to deflation of earlier right polynomials, while the second part in (61) contains
the cluster indices corresponding to the banded part of T mmn

5.3. An example

In this subsection, we illustrate the structure of the recurrence matrices with an example.

Consider the case that m =4 and p =5, and assume that in the associated block Hankel matrix,
the columns with index k=2 +4i, 8+4i, 19+4i, i € Ny, and the rows with index j=7+5i, 11+
5i, 15+ 5i, i € Ny, need to be deflated. The associated indices (18) of the columns and rows left
after deflation are as follows:

n|0|1\23|4/5|6] 7 8|9 |10|11|12|13|14|---
1|011(314(5/7|9|11|13|15|17|21|25|29(33|- - -
v,[0112|3|4]5|6| 8 |9 (10|13]14|18|19(23|---

O

In terms of the auxiliary polynomials (45), these deflations of columns and rows translate into
deflations of the right auxiliary polynomials ¢, (when m. =4), ¢, (when m. =3), and ¢,, (when
me =2), and the left auxiliary polynomials y, (when p.=4), ¥, (when p. =3), and ¥,, (when
Pec= 2)
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fe * * % % ok % % 1 ]
o x ¥ % x  x % ok  k
¥ % *x * ¥ *x *x O O O O O O o ©
® x x x % *x x x 1
e * *x *x % x x *x 1 1 1 1 1 1
e % *x x x x x x 1 1 1 1 1
e x *x ¥ Xx x O O O O ©
T14)18: e * x *x * % 1
e % x kx * X
e x x *x *x O O ©
® X x x>k
e * x %
e x *
® %
L b -
Fig. 1. Structure of T4 3.
[e * ok x|k ok ok k 1
¥ % x| x *kx *x *x x 1 1
e % x| x *x *k * % x 1
e X |*x * x ¥ % x O O O O O O O O O
o |x x x x % *x x 1 1
® x k >k x % *x x 1
e x x x x *k k X
’f14’19: e % *x x *x *x *x 1
e x % x k ok
e %x x *x *x *x O O O O
e * X x x
e X x x %
® x X
® X
L b -

Fig. 2. Structure of T 1410

We now determine the structure of the recurrence matrices T4 5 and T4 50 at n = 14. First, we
assume that no look-ahead occurs. Recall from (44) that then y(i)=1i for all i. Algorithm 1 produces
the sets 7, = {3,9} and %, = {6,9}. Moreover, the values of the row indices /, and 7/, given by
(57) and (58) are as follows:

n|0|1|2|314|5/6|7|8|9|1011|12|13|14
/40/0{0]0|1]2|4/5/6|7| 8 |10{11{12]13
/4(0(0/0/0|0|0|1{3]4|5] 7 | 8 |10]11|12

The resulting structure of T4 5 and T 14,19 1s shown in Figs. 1 and 2, respectively. Here, the follow-
ing convention is used: guaranteed positive elements are marked by “e”, other potentially nonzero
elements within the banded parts are marked by “x”, and potentially nonzero elements outside the



190 R.W. Freund|Journal of Computational and Applied Mathematics 127 (2001) 173—199

banded parts due to deflation are marked by “¢”. Moreover, the vertical lines in Figs. 1 and 2

indicate the partitioning (54) of T4 5 into p,, and of T4, and T 14,19 into 1, and T, respectively.
Next, we assume that two non-trivial look-head clusters occur: one cluster of length ns — ny =3

starting at ny =4, followed by a cluster of length ns — ns =2 starting at ns = 7. Algorithm 1 now

produces the sets of cluster indices Z, = {3,6} and &, = {2,4,6}, and the values of the cluster

indices /4 and /y, given by (57) and (58) are as follows:

k10|1|213|4|5/6| 7| 8|9 (10|11
n;|0(112|314|7/9|10{11{12]13|14
/40{0{0|0|1|4/5/ 578|910
Zy|0/0]0]0]|0|3/14/5(5|7|8|9

4
4
1

0

The resulting structure of T4 5 and T 14,19 1s again shown in Figs. 1 and 2, respectively, where
we have used “1” to mark the additional potentially nonzero entries caused by the two non-trivial
look-ahead clusters.

6. The algorithm

In this section, we present a detailed statement of the complete computational procedure for
constructing formally orthogonal polynomials associated with a given bilinear Hankel form.

At pass n through the main loop of Algorithm 1 below, we construct the nth pair of polynomials,
¢, and ,. We use the counter / to denote the index of the clusters to which ¢, and ¥, are added.
This means that, at pass n, the currently constructed look-ahead clusters are

ds(/) = [¢n/ e ¢n] and ql(/) = [l/I”/ o '/ln]

We also check if these look-ahead clusters are complete. If they are, then the polynomials ¢, , and
¥,., constructed during the next, (n + 1)st, pass start new clusters. All the other notation used in
the following statement of Algorithm 1 has already been introduced.

Algorithm 1 (Construction of polynomials associated with (-, -).).

INPUT: A4 bilinear Hankel form (-, -): ?P) x ™ — C.
(0) Set qABl.:ef-f} and g, =i fori=0,1,...,m—1.
Set l/;l.:egf{ and V;=i fori=0,1,....,p—1.
Set m.=m and p.= p.
Set 943:9,/,:@ and /45:{'/,:0.
Set /=0, ng=0, and @ = ¢ = .
For n=0,1,2,..., do:
(1) (If necessary, deflate 43”.)
Decide if (/A)n needs to be deflated.
If no, continue with Step (2).
If yes, deflate an by doing the following:
(a) If m¢ =1, then stop.
(There are no more right orthogonal polynomials.)
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(b) If n=me, set Dy =Dy J{p(n —m)}.
(Z, records the cluster indices of right polynomials against which we have to explicitly
orthogonalize from now on.)

(c) Set qASi:([A)iH and i, = fi, ., for i=nn+1,...,n+m;—2.
(The polynomial an is deflated and becomes the (m +n — m,)th column of the matrix é?:fn
in (52); the indices of the remaining right auxiliary polynomials are reduced by one.)

(d) Set m¢=m, — 1.
(The current right block size is reduced by one.)

(e) Repeat all of Step (1).

(2) (If necessary, deflate l/;n.)

Decide if 1/;,, needs to be deflated.

If no, continue with Step (3).

If yes, deflate ¥, by doing the following:

(a) If p.=1, then stop.
(There are no more left orthogonal polynomials).

(b) If n= pe, set Zy =%, U{p(n — p)}.
(% records the cluster indices of left polynomials against which we have to explicitly
orthogonalize from now on.)

(c) Set |/;i:t/;i+1 and V; =V fori=n,n+1,....n+ p, — 2.
(The polynomial 1/;,, is deflated and becomes the (p+n — p.)th column of the matrix Y";ffn
in (52); the indices of the remaining left auxiliary polynomials are reduced by one.)

(d) Set p.= p.— 1.
(The current right block size is reduced by one.)

(e) Repeat all of Step (2).

(3) (Normalize qan and n/;n to obtain ¢, and ¥,, and add them to the current clusters ¢ and Y'.)
Set

A

¢n = ¢n s M = ‘an and ‘//n = L’ Vn = Gn’

tn,nfmc tn,nfpc

where t,,_,. >0 and 1, ,_, > 0 are suitable scaling factors.

Set @ =[® ¢ 1 and ¥ =[P y].
(4) (Compute 4 and check for end of look-ahead cluster.)

Form the matrix A = (¥, @),

If the matrix A" is singular or in some sense “close” to singular, continue with Step (6).
(5) (The /th look-ahead clusters @) and ¥ are complete and the following “end-of-clusters”

updates are performed.)

(a) (Orthogonalize the polynomials ¢, H,an +2,...,q§n m,_1 against )

Fori=n+1n+2,....n+m,— 1, set

[y <jen = (AP, ),

(]31» = (ﬁi - ¢(/)[tj,i*mc]n{<j<n' (55)
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(b) (Orthogonalize the polynomials ¥, H,l/;n +2,...,1/;,1 p_1 against )
Fori=n+1,n+2,....,n+ p. — 1, set

[Ty <jan = (AT, @),

U= = YOUhu s <ien (56)

(c) If w, =m, set
Ly =p(u" (ty, — m)). (57)

If v,, > p, set
Ly =70 (v, = P))- (58)

(d) Set t=¢+1, n,=n+1, and " =P =9.
(The polynomials ¢,., and ¢, , constructed in the next iteration start new look-ahead
clusters.)
(6) Obtain new right polynomial qASn +m, and make it orthogonal to complete right clusters.)

(a) Set (]A&Hmc =, and ., =, +m.
(b) (Determine the indices of the left clusters p® against which (l;

nalized.)
Set

needs to be orthogo-

n+me

Iy={k|k €Dy and k <ty U{lyly+1,....0 —1}. (59)

(¢) (Orthogonalize q§” .m, against these clusters.)
For all k € 4, (in ascending order), set

k)\— k) 7
[10)ay <j<m, = @) (P, D, 0,
n _ 2 (k)
¢n+mc - ¢n+mc - [tj’”]"k <j<mpgr” (60)

(7) (Obtain new left polynomial l/;n + . and make it orthogonal to complete right clusters.)

(a) Set l/;n+pc =y, and V,,, =V, + p.
(b) (Determine the indices of the right clusters @*) against which ¥, , needs to be orthogo-

nalized.)
Set

f¢:{k\k€@¢ and k</¢}U{/¢,/¢+1,...,/—l}. (61)

(¢) (Orthogonalize l/;n +p. against these clusters.)
For all k € 4,4 (in ascending order), set

by _ ( AGN=T /o1 (KT
[tj’"]nk<j<nk+1 - (A ) <l)[/n+pc’¢ > b

‘/’nerc = l/;nerc - ql(k)[fj,n]nkgj<nk+l' (62)
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In the following, let T, ,., and T » pin bE the matrices (53a) and (53b) with entries #;; and 7;;
generated by Algorithm 1. Here we use the convention that entries that are not explicitly generated
in Algorithm 1 are set to be zero.

7. Properties

In the following theorem, we summarize the key properties of Algorithm 1.

Theorem 4 (Properties of Algorithm 1).

(a) For each n=—1,0,1,2,..., the polynomials and matrices that have been generated after the
nth pass through the main loop of Algorithm 1, satisfy the recurrence relations (52).

(b) For each n=0,1,2,..., the polynomials that have been generated after the nth pass through
the main loop of Algorithm 1, satisfy

@,:=[¢, ¢ - ¢]=[00 o ... @

Vomlbo ¥ o l=1P0 W0 O, (63)
and the cluster-wise the orthogonality conditions

(¥, ®,) = A, :=diag(4”,4V,...,47),

(W _1,0,.)=0, i=12,....m

Wi @0 1) =0, i=12,...,p, (64)

where £ =vy(n+ 1).
Proof (Sketch). Part (a), as well as the partitioning property (63), can be directly verified.

The cluster-wise orthogonality conditions (64) are proved using induction on n. By the induc-
tion hypothesis, before Step (5a) in Algorithm 1 is performed, the right auxiliary polynomials
d)n +1,¢n FPYR d)n +m,1 are already orthogonal to all left clusters P® with 0<k < /. Thus it only
remains to orthogonalize these polynomials against ¥, and this is obviously achieved by the
update (55). Similarly, the update (56) is sufficient to ensure that the left auxiliary polynomials
1/1n +1,|//n 2 llln +p—1 are orthogonal against all right clusters @) with 0<k </. Next, consider the

update (60) of (]3 . Here, we need to show that for the ‘omitted’ clusters Y%, & & Sy, we have

n+me

<T(k)’ qa)ermc) = [<l/’j’ $n+nzc>]l1k <Jj<nggr = 0

To this end, assume that k ¢ .#,, and let n, <j < ny,. Since (/;
(6) of the bilinear Hankel form, it follows that

W in) = (0, 0,). (65)

= /¢, and using the shift property

n+me
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The polynomial Ay itself was used at the earlier pass j through the main loop of Algorithm 1 to
obtain the auxiliary polynomial l/l/ () Now, there are two cases. The first one is that 1/;] +pej) Was
deflated later on; in this case, however, k € @,,,, and thus, by (59), k € .#;, which contradicts our
assumption. This leaves the second case that l/l i+ ey Was not deflated. In this case, l/l ) was
orthogonalized to become ¥, and was added to the cluster with index &' =7y(;j") at pass j'. One can
show that 7y in (58) is just chosen such that k¥ </, implies " < /. Thus the polynomials y, and
¢, are part of clusters with different indices, and together with (65), it follows that

Wi i) = (W 0,) = (V0. ,) =

for all n, <j < nyyy with k € 4.
Similarly, one shows that the clusters with £ ¢ .4 can indeed be omitted in (62). [l

8. Applications

In this section, we sketch some applications of Algorithm 1. In the following, we assume that
A,R,L is a given triplet of matrices of the form (12).

8.1. A Lanczos-type algorithm for multiple starting vectors

The first application is a Lanczos-type method that extends the classical Lanczos process [19] to
multiple right and left starting vectors. We denote by #,(A4, R) the nth right block Krylov subspace
spanned by the first 7+ 1 columns of the deflated right block Krylov matrix (16), and by #,(A", L)
the nth left block Krylov subspace spanned by the first n + 1 columns of the deflated left block
Krylov matrix (17). The goal of the Lanczos-type method is to generate bi-orthogonal basis vectors
for #,(A,R) and #,(A",L). To this end, using (14), we associate with the polynomials generated
by Algorithm 1 the so-called right and left Lanczos vectors,

v,=¢,(A)oR and w,=y (A")oL, n=0,1,..., (66)

respectively. Then, by re-stating Algorithm 1 in terms of the vectors (66), instead of polynomials,
we obtain the desired Lanczos-type method for multiple right and left starting vectors. In fact, the
resulting algorithm is a look-ahead version of the Lanczos-type method stated in [10, Algorithm
9.2], and it can also be viewed as a variant of the Lanczos-type method proposed in [1].

It is easy to verify that the right and left Lanczos vectors (66) indeed span the right and left
block Krylov subspaces, i.c.,

span{vy,vy,...,0,} = #,(A4,R) (67a)
and

span{wo, w,...,w,} = A, (A", L). (67b)
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Now let V,:=[vyv; --- v,] and W,:=[wy w; --- w,] denote the matrices whose columns are the
first n + 1 right and left Lanczos vectors. The polynomial recurrences (52) then translate into the
following compact formulation of the recurrences used to generate the Lanczos vectors:

N Adeﬂ
[R A Vn] = V;z Tn,m+n + [0 c 9 v, e n+mc] + m+n>
— —_——————
m+n+1—me me
(68)
~ ~ defl
[L ATWa] = I/VnTn,p+n"i_[0 o 0 Wn+1 l"\)n+pc]_'— VVern'
p+n+1—pc

Pe

Here, the only possible nonzero columns of v oo and W are the columns containing deflated

m—+n +n

vectors. Moreover, in view of (47), even these columns are zero and thus

V —0 and W

p+n

=0 (69)

if only exact deflation is performed. Finally, the orthogonality conditions (64) translate into the
following cluster-wise bi-orthogonality relations of the Lanczos vectors:

WV, =4,:=diag(4”, 4V,..., 4,
W' 8,,=0, i=12,..,m, (70)
V/ 1w,,+,—0, i:1,2,...,pc.

Here, / =y(n + 1).

In the remainder of this paper, we always assume that n corresponds to the end of the /th
look-ahead cluster, i.e., n = n, — 1. This condition guarantees that, in (70), all blocks A® of the
block-diagonal matrix 4, and thus 4, itself are nonsingular.

By multiplying the first relation in (68) from the left by A;l WT and using the bi-orthogonality
relations (70), as well as the partitioning of T, ,,., in (54), we obtain

(A W'R AW AV,]= [p, T1+4, WV, (71)
= [pPTOJ TPTOJ]‘

Similarly, by multiplying the second relation in (68) from the left by 4, V", we get

(A" VIL ATVIA" W, =1y, T,+4; Ty

n p+n
~ Proj ]

AUANEH

Recall that I7d

m+n

and W

. contain mostly zero columns, together with the deflated vectors. This
can be used to show that the matrices T, and T, and the projected versions TP and T zmj differ
only in a few entries in their lower triangular parts, respectively. Furthermore, from (71) and (72),

it follows that
WAV, = A, T = (T)1 4, (73)

This relation implies that TP can be generated directly from only 7, T . and A4,, without using
the term A, ' WTV e in (71).

m+n
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For later use, we note that in the case of exact deflation, by (69), (71), and (72),
p,=A,"W'R, n,=A4"V'L, T,=A4,'W'A4V,. (74)

Next, we describe three applications of the Lanczos-type method sketched in this subsection.
8.2. Padé approximation of matrix-valued transfer functions

The matrix triplet (12) induces the (p x m)-matrix-valued transfer function
Z(s)=L"(I —sA)'R. (75)

The matrix size N in (12) is called the state-space dimension of (75). Let n < N, and consider
(p X m)-matrix-valued transfer functions

Zn+1(S) = LZ(I - SG’n)ilRm (76)

where G, € COtD*x+D R CO+Dxm and L, € C"*D*P_ Note that (76) is a transfer function of
the same form as (75), but with smaller state-space dimension n + 1, instead of N. A function of
the form (76) is said to be an (n + 1)st matrix-Padé approximant of Z (about the expansion point
so = 0) if the matrices G,, R, and L, are such that

Z,(s)=Z(s) + O(s*™),

where g(n) is as large as possible.

It turns out that, for the case of exact deflation, an (n + 1)st matrix-Padé approximant can be
obtained by a suitable two-sided projection of Z onto the nth block Krylov subspaces #,(A, R) and
A, (A, L). Recall from (67) that these subspaces are spanned by the columns of the matrices V,
and W,. In terms of ¥, and W,, the two-sided projection of (75) is as follows:

Z,1(s)= (VL) WV, — sW AV,) " (WR). (77)
Using the first relation in (70), as well as (74), we can re-write (77) in the following form:
Z,1(s) = (4,n,)' (I =sT,)"'p,. (78)

Hence Z,,, is a function of the type (76). Furthermore, in [9, Theorem 1], it is shown that (78) is
indeed an (n + 1)st matrix-Padé approximant of Z.

8.3. Approximate eigenvalues

In this subsection, we consider the eigenvalue problem,
Ax = 1x, (79)

for A. Using the same two-sided projection as in Section 8.2, we can derive from (79) a smaller
eigenvalue problem whose eigenvalues can then be used as approximate eigenvalues of A. More
precisely, setting x = ¥,z and multiplying (79) from the left by W', we get

WIAV,z =W V,z. (80)
By (73), the generalized eigenvalue problem (80) is equivalent to the standard eigenvalue problem,

T’groj =12,
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for the matrix TP generated from the Lanczos-type method sketched in Section 8.1. The eigenvalues
of TP are then used as approximate eigenvalues of A. For further details of this approach, we refer
the reader to [11].

8.4. Linear systems with multiple right-hand sides

Next, consider systems of linear equations with coefficient matrix 4 and multiple, say m, given
right-hand sides. Such linear systems can be written in compact matrix form,

AX = B, (81)

where B € C¥*™, Let X, € CV*™ be any guess for the solution of (81), and let Ry:=B — AX, be
the associated residual matrix. By running the Lanczos-type method sketched in Section 8.1 applied
to A,R = R,, and any (for example, random) matrix L € C¥*” until pass n, we obtain the matrices
p and TP, which can be used to generate a Galerkin-type iterate for (81). More precisely, we
set

X, =X+ V,Z,, where Z, € CrtDxm (82)
and require that the free parameter matrix Z, in (82) is chosen such that the Galerkin condition
W'B—AX,.)=0 (83)

is satisfied. By inserting (82) into (83) and using the definitions of pP™ and TP in (71), it follows
that (83) is equivalent to the linear system

iz, — g, (84)

Provided that TP™ is nonsingular, the solution of (84) defines a unique iterate (82). In the special
case that m = p and that no deflation occurs, the resulting iterative method for solving (81) is
mathematically equivalent to block-biconjugate gradients [21].

We remark that the condition on the nonsingularity of TP can be avoided by replacing (84) by
a least-squares problem with a rectangular extension of TP, which always has full column rank.
The resulting iterative method for solving (81) is the block-QMR algorithm [13,20].

8.5. A fast block Hankel solver

The last application is an extension of the fast solver for scalar Hankel matrices in [14] to general
block Hankel matrices.

Let A, and B, the matrices given by (28) and (38). Recall that these matrices contain the poten-
tially nonzero coeflicients of the first n + 1 pairs of polynomials (51) produced by Algorithm 1. By
construction, these matrices are upper triangular and they satisfy (¥,,®,) = BTH*"4,. Hence, the
first relation in (64) is equivalent to the following matrix factorization:

BH*"4, = A, = diag(4”,4",..., 4. (85)

Note that (85) represents an inverse triangular factorization of H®", By rewriting the recurrences
used to generate the polynomials in Algorithm 1 in terms of the columns of 4, and B,, one obtains
a fast, i.e., (n*), algorithm for computing the factorization (85) of the deflated block Hankel matrix
H", Details of this fast block Hankel solver will be given in a future publication.
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9. Concluding remarks

We have presented a computational procedure for generating vector-valued polynomials that are
formally orthogonal with respect to a matrix-valued bilinear form induced by a general block Hankel
matrix H with arbitrary, not necessarily square blocks. Existing algorithms for this problem require
the assumption that H is strongly regular; unfortunately, this assumption is not satisfied in one
of the most important special cases, namely bilinear forms given by a realization. In contrast, our
approach can handle the most general case and does not require any assumptions on the block Hankel
matrix H.

We have briefly discussed some applications of the proposed computational procedure to prob-
lems in linear algebra. There are other potential applications, for example Gauss quadrature for
matrix-valued bilinear forms, and these will be reported elsewhere.
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Abstract

Gaussian formulas for a linear functional L (such as a weighted integral) are best computed from the recursion co-
efficients relating the monic polynomials orthogonal with respect to L. In Gauss-type formulas, one or more extraneous
conditions (such as pre-assigning certain nodes) replace some of the equations expressing exactness when applied to
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1. Introduction

By n-point Gaussian quadrature we mean the approximation of a given linear functional L by a
discrete linear functional G,, the n-point Gaussian quadrature formula given by

n

Gulf1=D_ wif (%)),
j=1
such that G,[f] = L[f] whenever f € 2,,_,, where £,, is the space of polynomials of degree not
exceeding m. We say that the formula has degree 2n — 1. It is convenient to think of L as defined
on the space of all functions f:R — R, because when f is defined on a smaller interval, one can
simply define it to be zero elsewhere.
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The definition suggests an obvious brute force calculation method, namely:

(1) Select a basis for #,,_; for which L can reliably be evaluated.

(2) Solve the system of 2n non-linear equations for the 2n unknowns {w;} and {x;} without taking
any advantage of its structure, apart from possibly using a solver that can treat implicitly the
“linear” variables {w;}.

The brute force method is not totally devoid of theoretical merit, since the Jacobian of the system
gives information about the condition of the calculation problem, but is intractable for large n. In
some cases the brute force method, with ad hoc simplifying techniques that reflect great ingenuity,
may be the only available method to find certain formulas of Gauss-type. This nonstandard term is
here used to mean an n-point formula of degree at least n (i.e., of higher degree than an interpo-
latory formula) and defined by 2r equations, not all of which express exactness when applied to a
polynomial. In general there can be at most n — 1 such equations, the other n + 1 equations being
those that define the degree.

The best-known formulas of Gauss-type are the Radau, Lobatto and Kronrod formulas, respec-
tively, of degrees 2n—2, 2n—3 and approximately %n. They are discussed together with some others
in Section 4.

The problem is easiest when we know the coefficients of the three-term recursion

Prii(x) = (x —a)pix) — b pi1(x) ()

satisfied by the monic orthogonal polynomials { p;} (i.e., monic polynomials for which L[ p;q] =0
when g € 2,_1; by pgq we mean the pointwise product of p and ¢, i.e., (pg)(x) = p(x)g(x).) In
order that (1) be valid for /=0,1,2,..., it is customary to define p_;(x)=0; of course, py(x)=1.
This allows freedom in the choice of by; a convenient value suggested by Gautschi is by = L[ po],
which leads to the useful relation

L[ p?] = bbb, ...b,. (2)

Unless stated otherwise, we will assume that all b, are positive: this is for example the case when
L denotes integration with a positive measure. In Section 6 we discuss what could happen if some
b, are not positive.

The purpose of this paper is to survey the calculation methods currently regarded as efficient and
accurate for Gaussian and some Gauss-type formulas. To keep the paper concise and devoted to
a single theme, any method that does not explicitly use the three-term coefficients for G, is only
mentioned when no method based on them is available. The state of the art in software for computing
with three-term coefficients is Gautschi’s Fortran package ORTHPOL [20].

There are at least two ways of using the recursion coefficients.

(1) The nodes {x;} are the zeros of p,. The recursion (1) is a numerically stable way of computing
pn, and can easily be differentiated to give a recursion formula for the derivatives. One can
therefore calculate the nodes by a method such as Newton’s or Weierstrass’. Once a node has
been found, any of several classical formulas, such as

L[pifl]

= o) ) )
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Table 1
Two- and three-term recursion coefficients for the classical orthogonal polynomials. In the Jacobi
case, Kk =2k 4o+ f

Jacobi over (0,2) Laguerre over (0, c0)
ﬁZ _ 052
. WL Pkt ) e
+ o)k + +o+
b K2(k + 1)(k — 1) (ke + o)
2h(k + o) i
e Kk + 1)
o 20k + )k + o+ ) K+

K(k — 1)

can be applied to calculate its weight. This method is used in the monumental work by Stroud
and Secrest [47], which was the first to suggest that the use of tabulated formulas (of which
the book has many) might be superseded by subroutines (also given there).

(2) The symmetric tridiagonal matrix (known as the Jacobi matrix)

\/_ \/— b by

T =tridiag | a an—1
\F \F o /b,

has the nodes as eigenvalues, and when its eigenvectors are normalized to have length 1, the
weights are just w; =bou; ; where u, ; is the first component of the eigenvector corresponding to
the eigenvalue x;. Golub and Welsch [23] show how to modify the QR algorithm so that only
the required components are found.

In view of the Golub—Welsch result, the calculation of a Gaussian formula is considered to be es-
sentially a solved problem in the case where the recursion coefficients are known, and all b; > 0.
Still, even a fully satisfactory algorithm might be improved a little; some alternatives to the original
algorithm are discussed in Section 2. In particular, when some b, are negative, the algebraic iden-
tities behind the Golub—Welsch algorithm still hold, but the algorithm itself would require complex
arithmetic and its numerical stability and freedom from breakdown would become uncertain.
Analytical expressions for the recursion coefficients are only available in exceptional cases, in-
cluding the classical orthogonal polynomials (see Table 1). In practice one has to calculate them
from other information about the functional. Here two main general approaches have emerged.

(1) If L arises from integration with a weight function (by far the most common application), one
can approximate L by a quadrature formula with N >n points. This approach was first suggested
by Gautschi [12,14]. The problem of recovering the recursion coefficients from a discrete linear
functional is an important one in its own right, discussed in Section 3.1, although for our purpose
it is not necessary to obtain great accuracy right up to ay_; and by_;.

(2) In some cases it is possible to obtain modified moments w, = L[n;], where the polynomials {m; }
themselves are orthogonal with respect to another linear functional A. This approach is only
useful when the recursion coefficients {o;} and {f;} for the polynomials {7} are known: the
most common cases are the monic Chebyshev and Legendre polynomials (see Section 3.2).
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It is essential to remember that any algorithm for calculating {a;;b,} from {oy; S} can in
principle deliver no better accuracy than that implied by the condition of the map between the
two polynomial bases, a question thoroughly discussed by Gautschi [16]. In particular, it is well
known (to numerical analysts, at least) that the case oy = ff; =0, when the polynomials {m;}
reduce to the monomials and the modified moments to ordinary moments, is catastrophically
ill-conditioned.

Finally, it is sometimes possible to view certain Gauss-type quadratures for L as Gaussian quadra-
tures for a related linear functional L', so that the recursion coefficients for L’ can be derived with
more or less ease from those of L. These include Radau, Lobatto, anti-Gaussian and Kronrod for-
mulas, and are discussed in Section 4.

For much of the paper, the questions of when the methods are applicable and how well they work
is at best mentioned in passing. These issues are collected in Section 6. That section also contains
a new idea on how to check the accuracy of a Gaussian formula.

Recent developments in eigenvalue methods indicate that when it is known that not only the
weights but also the nodes must be positive, it is better to work with two-term recursion coefficients.
Laurie [33] discusses this question fully, and therefore only a brief summary is given in Section 5.

2. What to do when the recursion coefficients are known

The timeless fact about the Golub—Welsch algorithm is that any advance in our ability to solve
the symmetric tridiagonal eigenproblem immediately implies a corresponding advance in our ability
to compute Gaussian formulas. Therefore, the fragment of Matlab code

% Given the number of nodes n —
a=zeros(1l,n);

b=sqrt(1 ./(4-1 ./(1:n-1).72));

b0=2;
[S,D]l=eig(diag(b,1)+diag(a)+diag(b,-1));
x=diag(D); w= b0*S(1,:).72;

% — we now have nodes x and weights w

that computes the n-point Gaussian quadrature formula for Lf = fil f(x)dx may be inefficient
because the eigenvectors are found in their entirety, but as far as accuracy is concerned, it will
remain as state-of-the-art as the Linpack or LAPACK or whatever subroutines that underlie one’s
available Matlab implementation. Only the lines defining a, » and 50 need be changed to make it
work for other linear functionals with known recursion coefficients.

The above code fragment requires O(n®) operations, whereas the Golub-Welsch algorithm only
requires O(n?), as follows:

(1) The inner loop of the algorithm consists of an implicit QR sweep, implemented as a sequence
of plane rotations [44] in the (i,i + 1) plane, with i=1,2,...,n — 1.

(2) The same rotations are made to the first row of the eigenvector matrix, which starts at
[1,0,0,...,0] and ends as the square roots of the normalized weights.
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(3) All decisions as to shift strategy and deflation are made as usual, uninfluenced by the weight
calculation.

Since 1968, several improvements to the QR algorithm have been published. When eigenvalues
only are needed, there exist ways to avoid taking square roots, e.g., Pal-Walker—Kahan [35] and
Gates—Gragg [11] rational QR algorithms. The latter is slightly faster than the former, using one
multiplication less per inner loop. Parlett has suggested [35] that it may be better to calculate the
eigenvectors after the eigenvalues have already been found.

These ideas could lead to improvements to the Golub—Welsch algorithm if one could also calculate
the weights in a square-root free way. Laurie [32] has presented one way of so doing. The idea is to
calculate all the eigenvalues first, and then to do a QL instead of a QR sweep to find each weight.
In that case the sequence of plane rotations runs i =n — 1,n —2,...,1, so that the first row of the
eigenvector matrix is unchanged until the very last rotation. The first element changes to cos 0. The
required weight is by cos? 0. But the quantity C = cos? 0 is available directly from the rational QL
inner loop.

This idea should not be taken to its logical conclusion, as in algorithm sqlGauss of [32], where
the matrix is deflated immediately, and the other weights are computed using the deflated matrix. It
is well known that when “ultimate’ shifts are used in an attempt to converge to each eigenvalue in a
single iteration, the accumulation of roundoff is such that deflation is not always justified. This may
happen even when each shift is the correctly rounded machine representation of the corresponding
eigenvalue. Instead, each weight should be computed on its own, starting from [1,0,0,...,0].

The main recent alternative to the QR algorithm for the symmetric tridiagonal eigenproblem is
the divide-and-conquer algorithm. This algorithm is faster than QR on large problems when all
eigenvectors are required, and has been modified by Cuppen [4] to yield only those components
necessary to the quadrature formula. A numerical study that compares the original Golub—Welsch
algorithm to the square-root free QL-based version outlined above, and to the divide-and-conquer
method, would be an interesting topic for a master’s thesis. At the moment of writing the Golub—
Welsch algorithm is the only one of the three that has been published in the form of actual Fortran
code [20], but divide-and-conquer (in the numerically robust version of Gu and Eisenstat [25]) is
in LAPACK (called via dsyevd in double precision) and it would be easy to make the abbreviated
version that would be required for such a comparison.

3. Obtaining recursion coefficients
The subject of obtaining recursion coefficients is of importance in all applications of orthogonal

polynomials, and in this paper we concentrate on methods that are necessary in order to compute
Gauss-type quadratures.

3.1. Recursion coefficients via quadrature

Very often the functional L is given in the form

Lif]= / FGow(x) dx
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(or even more generally as a Stieltjes integral). When the integral can be evaluated analytically, a
procedure commonly called the Stieltjes algorithm gives the recursion coefficients. The formulas

_ L[pi]
Llpi\ ]

_ Llxpj]

Lipil’
are used in bootstrap fashion, alternating with the recursion (1): each coefficient is computed just
before it is needed to generate the next p,. (The notation x above stands for the identity polynomial:
x(t)=t.)

The luxury of analytical evaluation is rarely possible, and therefore Gautschi [12,14] suggests
replacing L by a suitable N-point quadrature formula Q with N >n, of sufficient accuracy that the
first n polynomials orthogonal to Q will coincide to working accuracy with those orthogonal to L.
The discrete Stieltjes algorithm is then obtained by running the above computation with Q in the
place of L, stopping when enough coefficients have been found.

One might equally well say that the desired Gaussian quadrature is the n-point formula corre-
sponding to the functional Q. The problem of calculating the coefficients {a;} and {b;} from a
given Gaussian quadrature formula can be viewed as an inverse eigenvalue problem. This approach
is taken by De Boor and Golub [5] and by Gragg and Harrod [24]. The latter paper gives examples,
involving either very nearly coincident nodes or very nearly vanishing weights, where the discrete
Stieltjes produces results with no significant figures. Reichel has given some other illustrative exam-
ples [41] showing that the Stieltjes algorithm may give inaccurate recursion coefficients a; and b,
for / < n even when N >n. So, although there are cases where the Stieltjes procedure is adequate,
the proverbial ‘cautious man’ will prefer to use the Gragg—Harrod algorithm [24].

An algorithm with a further small theoretical edge is discussed in Section 5.

/

a

3.2. Recursion coefficients from modified moments

Suppose that it is possible to obtain in a numerically stable way the modified moments

e = L],
where the monic polynomials {r;} satisfy the recursion
T (X) = (¢ — o ) (%) — Brmmg—1(x). (4)

To do so is seldom a trivial task, even in simple cases such as when the polynomials {7;} are monic
Chebyshev or Legendre polynomials. For example, it is likely to be disastrous to try direct quadrature
of {m;}. When the map from the basis {n;} to the basis { p;} is well conditioned, m; typically has
k sign changes in the integration interval, thereby leading to severe the loss of significant digits by
cancellation. The most promising approach is to look for a recursion formula connecting the {4 }.
Early attempts to do so needed inspiration, but Lewanowicz ([34] and many later papers) has shown
how to obtain such recursions when the functional L is an integral involving a weight function that
satisfies a differential equation with polynomial coefficients.

We leave the question as to the stable computation of modified moments and ask what can be
done with them when they are available.
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Sack and Donovan [45] point out that the mixed moments

o1 = L[ pi]

satisfy the five-term two-dimensional recursion relation

—Br Of—1,1
biaj—o 1) - | 6ki—1 0,1 Orisr | =0.
—1 Ok+1,1

Here the dot is taken to mean, as in the case of vectors, that the quantities to its left and right are
multiplied component by component and summed.

The matrix with entries [0y ,] is lower triangular, and this fact, together with the known first
column, allows us to generate the other entries along anti-diagonals running southwest to northeast.
When the main diagonal is reached, the stencil is centred over known entries to give the values of
b, and a; that are required to complete the next anti-diagonal.

The five-term stencil makes it easy to see that when two functionals are equal on the space P,
then all mixed moments o ; with k4 /<m and k # [ are zero, and therefore the first m+ 1 members
of the recursion coefficient sequences by, aq, b1, a1,... and fo, o, f1, %, ... are equal. For want of a
better term, we call this the degree-revealing property of the recursion coefficients.

4. Gauss-type quadratures

Our main tool for computing Gauss-type quadratures is to obtain the recursion coefficients for
the system of orthogonal polynomials that are generated by the quadrature formula itself. All the
machinery of Section 2 can then be brought to bear.

When the formula has degree close to the maximum, only a few of these coeflicients differ from
those of the Gaussian formula itself, and the problem is easy. When the formula is of comparatively
low degree, many coefficients differ and the problem is difficult.

In this section, we use notations such as a), b}, etc., to indicate recursion coeflicients for Gauss-type
formulas that do not necessarily equal the @; and b, of the Gaussian formula G,.

4.1. Radau, Lobatto, anti-Gaussian and other related formulas

The best-known Gauss-type quadratures are those with one or two preassigned nodes. We shall
call them, respectively, Radau and Lobatto formulas, although strictly speaking these names apply
to the case where the preassigned nodes are endpoints of the integration interval. A nice discussion
on Radau and Lobatto formulas is provided by Golub [21].

It is possible to calculate Radau and Lobatto formulas just like Gaussian formulas, by specifying
the recursion coefficients that define their orthogonal polynomials. By the degree-revealing property,
only a,_; in the case of a Radau formula, and both @,_; and b,_; in the case of a Lobatto formula,
will differ from that for the Gaussian formula. We obtain

a;_l =a,-1+ pn(é)/pn—l(é)
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for a formula with one preassigned node &, and

(o] = [o] + [m©) 2] [ )

n—1

for a formula with two preassigned nodes & and #.

The anti-Gaussian formulas introduced by Laurie [30] are likewise easily calculated. The idea
here is that G/ should have error equal in magnitude but opposite in sign to G,_;. The formula is
therefore also of degree 2n — 1. By the degree-revealing property, only a, ; and b, ; need to be
modified: in fact, it turns out that only the latter changes. We obtain

b;_] - 2b,,,1.

4.2. General modification algorithms

If the recursion coefficients for the Gaussian formula corresponding to a weight function w(x)
are known, then it is possible to derive the coefficients for the following weights in a reasonably
straightforward manner:

(1) (x = Hw(x);

(2) ((x = &P + n)w(x);
(3) (x =) 'w(x);

(4) ((x =& + 1)~ w(x).

Software for this calculation is included in ORTHPOL [20].
The (n— 1)-point Gaussian rule Gf_l for the weight function (x — &)w(x) is related to the n-point
Radau formula R, for w(x) with prescribed node & as follows if:

RLf1=pf(E)+ D rif(x),
j=1
then

G [f1=) (x5 — O f(x)).
Jj=1

To go from R, to G-_, we keep the nodes and multiply the weights by (x; —&); to go the other way
we divide the weights by (x; — £) and calculate the weight p for the fixed node from the condition
that f(x) =1 is integrated exactly.

This approach to calculating the Radau formula differs from the one in Section 4.1 in that the
fixed node is treated in different way to the others. By repeating the calculation, one can obtain
a Gaussian formula for functions with any number of preassigned poles or zeros, as is done by
Gautschi [19].

Similarly, the modification algorithms can be used to obtain the formulas with up to n — 1 pre-
assigned nodes. The details of the algorithms involved, including their extension to multiple nodes,
are discussed by Elhay, Golub and Kautsky (variously collaborating) in [22,26,27].
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4.3. Kronrod formulas

Formulas with m preassigned nodes, where n = 2m + 1, have been well studied. The best-known
case is the formula K,,.; whose preassigned nodes are those of G,. Although theoretical results go
back to Stieltjes and later Szego, the quadrature formulas themselves are named after Kronrod [28],
who computed them for Lf = fil f(x)dx by a brute force method.

Many methods for computing Kronrod formulas are known (see Gautschi’s survey [18]) but most
of them separate the calculation of the new nodes and weights from the calculation of new weights
for the old nodes. In the spirit of our theme we mention only methods based on the recurrence
relation for the polynomials generated by Ky, 1.

By the degree-revealing property, the last m entries in the recursion coefficient sequence differ
from those of Gy, ;. An algorithm to calculate them, based on the five-term recurrence of mixed
moments, is given by Laurie [31]. The theoretical base for that algorithm is a theorem, proved in
[31], that the leading and trailing n X n submatrices of the Jacobi matrix corresponding to K, have
the same characteristic polynomial. This theorem is used by Calvetti et al. [3] to derive a method
for calculating the Kronrod formula by a divide-and-conquer method applied to that Jacobi matrix,
in which the new coefficients are never explicitly found.

The divide-and-conquer method seems on the basis of numerical experiments to be a little more
accurate than the method based on finding the new recursion coefficients, but the latter also has
some theoretical and practical advantages. From the theoretical point of view, it allows us to tell
whether the formula is real with positive weights before calculating it: the question is equivalent to
asking whether all b} > 0. For example, in [31], an analytic criterion is obtained for the existence
of a 5-point Kronrod formula for the Jacobi weight (1 — x)*(1 + x)? in terms of the positivity of
certain sixth-degree polynomials in o and . From a practical point of view, Kronrod formulas with
complex nodes and/or negative weights can also be calculated.

4.4. Other formulas with m = (n — 1)/2 preassigned nodes

An easy alternative to the Kronrod formula is to require that not only should the nodes of G, be
preassigned, but their weights in the new formula should be the old weights multiplied by 1. In that
case, the required formula is simply the mean of the Gaussian formula G, and the anti-Gaussian
formula G/, ,. For lack of a better term, we call the formula (G, + G, ) an averaged Gaussian
formula. This formula exists in many more cases than does the Kronrod formula (see [31]).

The general case with m = (n — 1)/2 preassigned nodes is numerically very difficult. A software
package has been published by Patterson [40], but one must be prepared to compute in much higher
precision than that of the required formula.

The philosophy behind the Kronrod and anti-Gaussian formulas can be iterated to form sequences
of embedded quadrature formulas in which each member is related to its predecessor in the same way
as a Kronrod or averaged Gaussian formula is related to a Gaussian formula. In the first case, the
Patterson formulas [38,39] are obtained: each Patterson formula is of Gauss-type under the restriction
that all the nodes of the preceding formula are pre-assigned. In the second case, Laurie’s stratified
formulas [29] are obtained: each formula is of Gauss-type under the restriction that all the nodes of
the preceding formula are pre-assigned, with their weights multiplied by %
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For both of these families of formulas, the best available calculation algorithms (too complicated
to describe here) require very high precision. It is an open question whether the difficulty is inherent
(which seems likely) or an ingenious algorithm that can calculate the formulas in a numerically
stable way might one day be discovered.

5. Two-term recursion coefficients

The symmetric tridiagonal matrix 7' defined in Section 1 is positive definite if and only if all the
nodes are positive. In that case, 7 can be factorized as 7 = R'R where

R:bidiag(\/a‘/a\/a\/e_z...mm).

The coefficients are related by the equations

ar=4q+1 + e, (5)

b, = qie,. (6)

Although the matrix R is useful from a theoretical point of view, practical algorithms involving
two-term coefficients all work with two bidiagonal matrices

- 1 1 1
L—bldlag< " 62...671 >, (7

U — bidiag ( 8)

1 1 o 1 )
Qg e e )]
which have the property that LU is similar to 7.

The main computational tool is Rutishauser’s qd algorithm [43], which requires only rational
operations. It is slightly older, and computationally more efficient, than the QR algorithm, but was
neglected for many years because the standard form of the algorithm is numerically suspect.

Recent work by Dhillon, Fernando and Parlett (variously collaborating) [6,7,36,37] has catapulted
the qd algorithm back into the limelight. The point is that the ‘differential” form of the qd algorithm
(which Rutishauser knew but did not love, because it uses one multiplication more per inner loop than
the standard form) has a remarkable stability property: when the two-term coefficients are known
to full floating-point accuracy, the eigenvalues of T can also be calculated to high floating-point
accuracy.

Laurie [33] surveys the theoretical and computational aspects of two-term versus three-term re-
cursions. It is argued there that two-term recursions might become the method of choice, but at this
stage of software development that is not yet the case.
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5.1. Computing formulas from two-term recursion coefficients

Since the eigenvalues of RTR are the squares of the singular values of R, it is possible to give a
‘timeless’ algorithm also in the two-term case:

% Given the number of nodes n —
q=(1:n)./(1:2:2%n);

e=(1:n-1)./(3:2:2*n);

b0=2;
[U,D,V]l=svd(diag(sqrt(q))+diag(sqrt(e),1);
x=diag(D). ~2; w=bO*V(1,:)."2;

% — we now have nodes x and weights w.

In practice, this algorithm might not be all that is desired, because high-floating-point accuracy
of the smallest singular value is not relevant in the traditional applications of the SVD and the
implementation might not deliver such accuracy. It is also annoying that one must take square roots
before entering the svd routine, and square the result afterwards, but such is the price one pays for
using general-purpose software.

Software for the two-term formulas is not as highly developed yet as in the case of three-term
formulas, but the area is one of intense current reaserch, and it is already planned to add such
methods to the standard linear algebra package LAPACK which is at present the engine driving
higher-level languages like Matlab and Octave.

As for Gaussian quadrature, there exists an algorithm given by Rutishauser himself [43] that
computes the weights in a single qd array, but the algorithm relies on ‘ultimate’ shifts and therefore
the later weights may be badly contaminated. At this stage, there is no generally accepted ‘best’
way to calculate the weights.

Much work remains to be done: in particular, a two-term version of ORTHPOL would be very
welcome.

5.2. Obtaining two-term recursion coefficients

The one thing that one should not do is to start from known three-term coefficients and solve Egs.
(5) and (6), because that requires subtraction of numbers with the same sign. The reverse procedure,
to obtain g, and b, from ¢; and e,, is on the other hand quite a reasonable thing to do.

One should therefore obtain the required two-term coefficients directly. In the case of the clas-
sical orthogonal polynomials (if necessary shifted to move the left endpoint of their interval of
orthogonality to the origin), this is easily done, and in fact the formulas for the two-term coeffi-
cients are simpler than those for the three-term ones (see Table 1). In the case of formulas such as
those for the Jacobi weight, the shift back to [ — 1, 1] will of course lead to some cancellation if a
node happens to lie close to 0. Such a node cannot be obtained in this way to high-floating-point
accuracy.

In the case where the coefficients themselves are to be obtained by quadrature, it is easy to modify
the discrete Stieltjes procedure. Alternatively, one may use an algorithm given by Laurie [32], which
requires no subtractions and is therefore numerically stable in the sense of componentwise relative
error.
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An analogue of the Sack—Donovan algorithm is given in by Laurie [33], which allows us to
calculate the two-term recursion coefficients directly from modified moments.

6. Existence and numerical considerations

We use the following terminology [30] when discussing questions about the existence of a
Gaussian or Gauss-type formula:

A quadrature formula exists if its defining equations have a (possibly complex) solution.

e The formula is real if the points and weights are all real.

e A real formula is internal if all the points belong to the (closed) interval of integration. A node
not belonging to the interval is called an exterior node.

e The formula is positive if all the weights are positive.

The classical results are:

e The Gaussian formula G, is real and positive if and only if all b, >0, / =0,1,...,n— 1.

e When L[ f]= ff f(x)dow(x), and w(x) is nondecreasing with at least n points of increase in the
interval (4,B), then G, is real, positive and internal. This condition covers the classical integrals
with weight functions and also discrete linear functionals with positive coefficients.

e The nodes and weights are well-conditioned functions of the coefficients {b,} and {@,} when all
b;>0,1=0,1,....,n— 1.

The main positive results about conditioning and numerical stability are

e When the Gaussian formula is real and positive, the computation of nodes and weights from
recursion coefficients is well conditioned in a vector norm.

e When the Gaussian formula is symmetric around zero, the computation of nodes is well conditioned
in the sense of componentwise relative error.

e The computation of recursion coefficients from positive weights and inter-node gaps x,.; — x; is
well conditioned in the sense of componentwise relative error [32].

There are also some negative results

e The computation of recursion coefficients from positive weights and distinct nodes is ill-conditioned
in a vector norm [24].

The last two results seem to give contradictory answers to the question: is the map from a positive
quadrature formula to its recursion coefficients well conditioned? The answer is generally thought to
be ‘yes’, e.g., Gautschi [17] bluntly states: ‘The map H, is always well conditioned’. The negative
result of Gragg and Harrod [24] arises because they measure the distance between two weight
vectors w and W as max|w; — ;| and not as max|w; — w;|/|w;|. The matter is fully discussed by
Laurie [32].

To summarize: when starting from accurate three-term coefficients, with all b, positive, a formula
with positive weights is obtained and its absolute error will be small. When starting from accurate
two-term coeflicients, all positive, a formula with positive nodes and weights is obtained and its
relative error will be small.
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When starting from accurate modified moments, all depends on the condition of the map from
the one polynomial base to the other. The classic paper of Gautschi [16] analyzes many cases, and
further work has been done by Fischer [8-10].

In the case of a finite interval, it has been shown by Beckermann and Bourreau [2] that the
auxiliary base must be orthogonal with respect to a measure that has the same minimal support as
that of the polynomials we are trying to find, otherwise the condition number rises exponentially.
This is only a sufficient condition for instability, and it is therefore still necessary to exhibit caution
even when the condition is satisfied. Section 6.1 shows how to obtain an a posteriori numerical
estimate for the error in such a case.

The temptation is great to use the methods even when the hypotheses required for the theorems
do not hold. For example, some of the b, values obtained by Laurie’s algorithm [31] for computing
a Kronrod formula via its the three-term coefficients may be negative. This does not mean that the
Kronrod formula does not exist, only that it is not positive or not real (or both). In the case where
the formula is still real, any method that only uses b, and not its square root, such as those in [32],
should work. Some methods that particularly cater for such a possibility have also been developed
by Ammar et al. [1].

The case of a general indefinite measure can be written in terms of a symmetric (not Hermitian)
tridiagonal matrix with complex entries. The inverse eigenvalue problem for such a matrix is dis-
cussed by Reichel [42]. In general, algorithms with look-ahead have to be used, but these tend to
be fairly complicated.

As a general rule, the algebraic properties of the methods remain valid when the hypotheses fail,
but the numerical stability might be adversely affected. Therefore, a method should still calculate the
correct numbers in exact arithmetic as long as everything stays real, and may well deliver satisfactory
results also in finite precision. Of course, as soon as quantities that should be real turn out to be
complex, software that requires real numbers will fail, and software in a language that silently goes
complex (like Matlab) may give wrong answers, since the original version may have tacitly relied
on identities such as z =z that are no longer true.

6.1. Estimating accuracy of the computed formula

Gautschi’s paper How and how not to check the accuracy of Gaussian formulae [15] is one of
those little gems of numerical analysis that should be required reading for all postgraduate students.
The main ‘how not to’ dictum is that it is meaningless to demonstrate that the formula integrates
the required monomials to machine precision: some very bad formulas also do that. The ‘how to’
suggestions involve higher precision than was used to compute the formula itself.

If the only available data are the moments with respect to an ill-conditioned base (such as the
monomials) then higher precision is indeed unavoidable, even when the moments are given as exact
rational numbers. In the cases where we start from modified moments or recursion coefficients, it is
relatively easy to calculate the sensitivity of the formula.

We give the argument for three-term recursions but it is equally well applicable to two-term
ones. The Sack—Donovan algorithm for computing recursion coefficients from modified moments is
noniterative and uses ()(n*) operations. One can vary each modified moment in turn by approximately
V€, where ¢ is the machine epsilon, to obtain in ()(n*) operations a numerical Jacobian J; for the
dependence of recursion coefficients on modified moments.
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The computation of the formula itself is iterative, and one would be squeamish to compute a
numerical Jacobian by varying the recursion coefficients. But the Gragg—Harrod algorithm, which
uses ((n*) operations, is noniterative, and one could therefore obtain a numerical inverse Jacobian
J, ' (where J, is the Jacobian for the dependence of the nodes and weights on recursion coefficients)
by varying the nodes and weights.

Under the assumption (which may be a highly optimistic one) that the original modified moments
are correct to machine precision one could compute an iterative correction to the formula as follows:

(1) Calculate the recursion coefficients Gr, by for the computed formula by the Gragg—Harrod
algorithm.

(2) Calculate the modified moments fi; for these recursion coeflicients by the Salzer algorithm [46].

(3) Calculate the residual w; — f;.

(4) Calculate the correction to the formula by applying (J,')~'J; to the residual.

Of course, without the aid of higher precision in the first three steps of the above procedure, one
cannot hope to improve the formula, but the correction can be expected to be of approximately the
same order of magnitude as the error in the formula.

6.2. Underflow and overflow

On computers with double-precision IEEE arithmetic, underflow and overflow is less of a problem
than on some older machines. Nevertheless, in the case of calculating Gaussian quadrature formulas,
it could be a difficulty if care is not taken. For example, the examples in [24] showing ill-conditioning
in a vector norm arise because some weights underflow and are set to zero.

In the case of integration over a finite interval, it is easy to avoid underflow and overflow.
The critical quantities of interest are the numbers L[ p?]. These appear in, €.g., the Sack—-Donovan
algorithm and in certain formulas for the weights. By the formula (2), overflow or underflow will
arise if b, — b for any positive value of b except 1. When the length of the interval is 4, it is fairly
well known that b, — 1 for a very large family of weight functions. Any software with claims to
robustness against overflow or underflow should therefore scale the interval to have length 4 before
embarking on any computation.

On an infinite interval it is not typical for lim,_.., b, to exist. The best that one could achieve by
scaling is to have some b, less than and some greater than 1, a technique that has its limitations.
Care must therefore be taken to detect the overflow and underflow in the computation, since their
avoidance cannot be guaranteed.

6.3. Floating-point computation and relative accuracy

It is a common practice to perform the calculations for finite intervals on [ — 1,1]. The underflow
and overflow argument above suggests that [ —2,2] is a much safer interval to work on. This is still
not good enough. In practice, points of a Gaussian formula cluster near the endpoints of the interval
and have very small weights there. When they are used to integrate functions with singularities at
the endpoints (there are better ways to do that, we know, but a numerical analyst has no control
over the abuses to which software will be put) the important quantity is the distance between the
node and the endpoint, which is subject to cancellation when the endpoint is nonzero.
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For careful work, one should store as floating-point numbers not the nodes, but the gaps between
them. These are precisely the quantities for which the floating-point stability result in [32] holds. A
challenge for future research is the development of software that can reliably compute those gaps.
One approach may be to shift each endpoint in turn to the origin, and keep half the gaps and weights
from each computation; the difficulty is then transferred to obtaining accurate floating-point values
for the shifted coefficients, which is possible for the Jacobi polynomials but may require methods
not yet known in the general case.

7. Conclusion

The calculation of Gauss-type quadrature formulas is a well-understood problem for which fully
satisfactory methods are available when the recursion coefficients are known. Questions on which
work remains to be done include:

e Do rational QR and divide-and-conquer methods really improve on the Golub—Welsch algorithm

in practice?

Does the QL algorithm give higher accuracy in practice than the QR algorithm?

Does the qd algorithm really improve on the Golub—Welsch algorithm in practice?

To what extent do the answers to the previous three questions depend on implementation?

Is the use of very high precision for the Patterson and stratified sequences of embedded integration

formulas inherently unavoidable?

e Two-term analogues for current three-term methods need to be developed, in particular in the form
of reliable software, culminating in a package like ORTHPOL but based on two-term recursions.

e Can the inter-node gaps of a quadrature formula be accurately computed without using higher
precision?
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Abstract

Sobolev orthogonal polynomials with respect to measures supported on compact subsets of the complex plane are
considered. For a wide class of such Sobolev orthogonal polynomials, it is proved that their zeros are contained in a
compact subset of the complex plane and their asymptotic-zero distribution is studied. We also find the nth-root asymptotic
behavior of the corresponding sequence of Sobolev orthogonal polynomials. (©) 2001 Elsevier Science B.V. All rights
reserved.

1. Introduction

Let {}}, be a set of m+1 finite positive Borel measures. For each k=0, ..., m the support S )
of w, is a compact subset of the complex plane C. We will assume that S(uy) contains infinitely
many points. If p,q are polynomials, we define

(Pq)s=) / PE@OE) dpe(x) =D (P4 1. (1.1)
k=0 k=0
As usual, f® denotes the kth derivative of a function f and the bar complex conjugation. Obviously,
(1.1) defines an inner product on the linear space of all polynomials. Therefore, a unique sequence
of monic orthogonal polynomials is associated with it containing a representative for each degree.
By O, we will denote the corresponding monic orthogonal polynomial of degree n. The sequence
{0,} is called the sequence of general monic Sobolev orthogonal polynomials relative to (1.1).
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Sobolev orthogonal polynomials have attracted considerable attention in the past decade, but only
recently has there been a breakthrough in the study of their asymptotic properties for sufficiently
general classes of defining measures. In this connection, we call attention to the papers [4,5,7],
in which some of the first results of general character were obtained regarding nth-root, ratio, and
strong asymptotics, respectively, of Sobolev orthogonal polynomials. The first two deal with measures
supported on the real line and the third with measures supported on arcs and closed Jordan curves.

In this paper, we consider the nth-root asymptotic behavior; therefore, we will only comment
on [4]. In [4], for measures supported on the real line and with m = 1, the authors assume that
Uo, 11 € Reg (in the sense defined in [10]) and that their supports are regular sets with respect to the
solution of the Dirichlet problem. Under these conditions, they find the asymptotic zero distribution
of the zeros of the derivatives of the Sobolev orthogonal polynomials and of the sequence of Sobolev
orthogonal polynomials themselves when additionally it is assumed that S(uy) D S(¢;). In [6], these
questions were considered for arbitrary m and additional information was obtained on the location
of the zeros which allowed to derive the nth-root asymptotic behavior of the Sobolev orthogonal
polynomials outside a certain compact set.

The object of the present paper is to extend the results of [6] to the case when the measures
involved in the inner product are supported on compact subsets of the complex plane. Under a
certain domination assumption on the measures involved in the Sobolev inner product, we prove
in Section 2 that the zeros of general Sobolev orthogonal polynomials are contained in a compact
subset of the complex plane. For Sobolev inner products on the real line, we also study in Section 2
the case when the supports of the measures are mutually disjoint and give a sufficient condition
for the boundedness of the zeros of the Sobolev orthogonal polynomials. Section 3 is dedicated to
the study of the asymptotic zero distribution and nth-root asymptotic behavior of general Sobolev
orthogonal polynomials. For this purpose, methods of potential theory are employed.

In order to state the corresponding results, let us fix some assumptions and additional notation.
As above, (1.1) defines an inner product on the space Z of all polynomials. The norm of p € £ is

m 12 m 1/2
1plls = (Z / \p‘“(x)zdum)) = <Z Hp“’uizwk)) : (1.2)
k=0 k=0
We say that the Sobolev inner product (1.1) is sequentially dominated if
S(:uk)CS(:ukfl): kzl»"'am,
and

dpe = fr—1dpye—1, Sro1 € Loo(i—1), k=1,....m.

For example, if all the measures in the inner product are equal, then it is sequentially dominated.
The concept of a sequentially dominated Sobolev inner product was introduced in [6] for the real
case (when the supports of the measures are contained in the real line).

Theorem 1.1. Assume that the Sobolev inner product (1.1) is sequentially dominated; then for
each p € 2 we have that

|lxplls <Cllplls, (1.3)
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where

C=Q[Ct + (m+17CD'"?, (1.4)
and

Ci=max |,  C= max ||filloq:
As usual, two norms || - ||, and || - ||, on a given normed space E are said to be equivalent if there

exist positive constants ¢y, c, such that
allx[i <[l <ellx[li, x€E.

If a Sobolev inner product defines a norm on & which is equivalent to that defined by a sequentially
dominated Sobolev inner product, we say that the Sobolev inner product is essentially sequentially
dominated. 1t is immediate from the previous theorem that a Sobolev inner product which is essen-
tially sequentially dominated also satisfies (1.3) (in general, with a constant C different from (1.4)).
Whenever (1.3) holds, we say that the multiplication operator is bounded on the space of all poly-
nomials. This property implies in turn the uniform boundedness of the zeros of Sobolev orthogonal
polynomials.

Theorem 1.2. Assume that for some positive constant C we have that
Ixplls<Cllplls, pe€2.

Then all the zeros of the Sobolev orthogonal polynomials are contained in the disk {z : |z| <C}.
In particular, this is true if the Sobolev inner product is essentially sequentially dominated.

In a recent paper, see Theorem 4.1 in [9] (for related questions see also [1]), the author proves
for Sobolev inner products supported on the real line that the boundedness of the multiplication
operator implies that the corresponding Sobolev inner product is essentially sequentially dominated.
Therefore, in terms of the boundedness of the multiplication operator on the space of polynomials,
we cannot obtain more information on the uniform boundedness of the zeros of the Sobolev orthog-
onal polynomials than that expressed in the theorem above. It is well known that in the case of
usual orthogonality the uniform boundedness of the zeros implies that the multiplication operator is
bounded. In general, this is not the case for Sobolev inner products, as the following result illustrates.
In the sequel, Co(K) denotes the convex hull of a compact set K.

Theorem 1.3. For m =1, assume that S(uy) and S(u;) are contained in the real line and

Co(S(t0)) N Co(S(1)) = 0.

Then for all n=2 the zeros of Q. are simple, contained in the interior of Co(S(to) U S(t11)),
and the zeros of the Sobolev orthogonal polynomials lie in the disk centered at the extreme point
of Co(S(uy)) furthest away from S(uy) and radius equal to twice the diameter of Co(S(1o)US(u1)).

The statements of this theorem will be complemented below. As Theorem 1.3 clearly indicates,
Theorem 1.2 is far from giving an answer to the question of uniform boundedness of the zeros of
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Sobolev orthogonal polynomials. The main question remains; that is, prove or disprove that for any
compactly supported Sobolev inner product the zeros of the corresponding Sobolev orthogonal poly-
nomials are uniformly bounded. This question is of vital importance in the study of the asymptotic
behaviour of Sobolev orthogonal polynomials.

We mention some concepts needed to state the result on the nth-root asymptotic behaviour of
Sobolev orthogonal polynomials. For any polynomial g of exact degree n, we denote

1 n
v(g):=— Z‘Szv
nis

where zi,...,z, are the zeros of g repeated according to their multiplicity, and d., is the Dirac measure
with mass one at the point z;. This is the so-called normalized zero counting measure associated
with ¢. In [10], the authors introduce a class Reg of regular measures. For measures supported on
a compact set of the complex plane, they prove that (see Theorem 3.1.1) u € Reg if and only if

lim |0, /114 = cap(S(w)),

where (O, denotes the nth monic orthogonal polynomials (in the usual sense) with respect to u
and cap(S(u)) denotes the logarithmic capacity of S(u). In case that S(u) is a regular compact set
with respect to the solution of the Dirichlet problem on the unbounded connected component of the
complement of S(u) in the extended complex plane, the measure p belongs to Reg (see Theorem
3.2.3 in [10]) if and only if

1/n
lim <”””S(’”> =1 (1.5)
r=o0 \ || PallLao
for every sequence of polynomials {p,},deg p,<n, p, # 0. Here and in the following, || - ||s.)
denotes the supremum norm on S(u).
Set

A=),
k=0

We call this set the support of the Sobolev inner product. Denote by go(z; c0) the Green’s function
of the region Q with singularity at infinity, where 2 is the unbounded connected component of the
complement of A in the extended complex plane. When 4 is regular, then the Green’s function is
continuous up to the boundary, and we extend it continuously to all of C assigning to it the value
zero on the complement of Q. By w, we denote the equilibrium measure of A. Assume that there
exists / € {0,...,m} such that |J,_, S(u;)= 4, where S(u) is regular, and y; € Reg for k=0,...,1.
Under these assumptions, we say that the Sobolev inner product (1.1) is [-regular.
The next result is inspired by Theorem 1 and Corollary 13 of [4].

Theorem 1.4. Let the Sobolev inner product (1.1) be Il-reqular. Then for each fixed k =0,...,1
and for all j=k

lim sup ||0%| 5, , <cap(4). (1.6)

n—oo
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For all j=1

lim [|0][}" = cap(4). (1.7)
Furthermore, if the interior of A is empty and its complement connected, then for all j=1

lim v(0)") = (1.8)
in the weak star topology of measures.

The following example illustrates that (1.8) is not a direct consequence of (1.7). On the unit
circle, take p;,j =0,...,m, equal to the Lebesgue measure. This Sobolev inner product is 0-regular
and thus (1.7) holds for all j>0. Obviously, {z"} is the corresponding sequence of monic Sobolev
orthogonal polynomials whose sequence of normalized zero counting measures converges in the
weak star topology to the Dirac measure with mass one at zero. When (1.7) is true then (1.8) holds
if it is known that lim,_ ., v(QY)(4) = 0 for every compact set 4 contained in the union of the
bounded components of C\ S(w,) (see Theorem 2.1 in [2]). But finding general conditions on the
measures involved in the inner product which would guarantee this property is, in general, an open
problem already in the case of usual orthogonality.

If the inner product is sequentially dominated, then S(u) = A; therefore, if S(uy) and p are
regular, the corresponding inner product is O-regular. In the sequel, Z, = {0,1,...}. An immediate
consequence of Theorems 1.2 and 1.4 is the following.

Theorem 1.5. Assume that for some positive constant C we have that
plls<Cllplls, p€?,

and that the Sobolev inner product is I-regular. Then, for all j>1

limsup |QY)(2)|"" < cap(A)e2=>),  z € C. (1.9)
Furthermore,
lim |QY)(2)|"" = cap(4)e2=>), (1.10)

uniformly on each compact subset of {z: |z| > C}NQ. Finally, if the interior of A is empty and its
complement connected, we have equality in (1.9) for all z € C except for a set of capacity zero,
S(wy) cA{z: |z|<C}, and

i &) _ [ dost)

= Qi (z) ) z—x

: (1.11)

uniformly on compact subsets of {z: |z| > C}.

These results will be complemented in the sections below. In the rest of the paper, we maintain
the notations and definitions introduced above.
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2. Zero location

The proof of Theorem 1.1 is simple and can be carried out following the same procedure as for
an analogous result in [6], so we leave it to the reader. Theorem 1.2 also has an analogue in [6],
but we have found a nice short proof which we include here.

Proof of Theorem 1.2. Let O, denote the nth Sobolev orthogonal polynomial. Since it cannot be
orthogonal to itself, it is of degree n. Let x, denote one of its zeros. It is obvious that there exists
a polynomial g of degree n — 1 such that xg =xq + O,. Since Q, is orthogonal to g, and using the
boundednes of the multiplication operator, we obtain

xolllg[ls = [[xoq|]s <!lxq||s < Cllglls-
Simplifying ||¢||s(£ 0) in the inequality above, we obtain the bound claimed on |xy| independent of
n. The rest of the statements follow from Theorem 1.1. O

Now, let us consider the special case refered to in Theorem 1.3. For the proof of the corresponding
result we need some auxiliary lemmas. Let / be a given interval of the real line (open or closed) and
q a polynomial. By c¢(gq;/) and x(g;/) we denote the number of zeros and the number of changes
of sign, respectively, that the polynomial ¢ has on the interval /.

Lemma 2.1. Let I be an interval of the real line and q a polynomial such that degg=1=1. We
have that

c(g;1) +e(g;C\D<L
Proof. By Rolle’s Theorem, it follows that
c(g;)<e(q’ 1) + 1.
Therefore,
c(q; 1) +e(g;C\D<ce(g; 1) +1+c(g5C\I)=c(g;C)+ 1 =1,

as we wanted to prove. [J

As above, let O, denote the nth monic Sobolev orthogonal polynomial with respect to (1.1), where
all the measures are supported on the real line. In the rest of this section, we denote by (:)° the
interior of the set in parentheses with the Euclidean topology on R.

Lemma 2.2. Assume that n>=1. Then

K(On3 (Co(S(10)))") = 1.

Proof. If, on the contrary, O, does not change sign on the indicated set, we immediately obtain a
contradiction from the fact that O, is orthogonal to 1, since then

0= (0, 1)s = / 0, duo(x) £0. O
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Unless otherwise stated, in the rest of this section we restrict our attention to the case presented
in Theorem 1.3. That is, m = 1, the supports of uy and p; are contained in the real line and their
convex hulls do not intersect.

Lemma 2.3. Under the hypothesis of Theorem 1.3, for n=1, we have that
K(Ons (Co(S(10)))") + 1(QDy; (Co(S (1))’ ) =n — 1. (2.12)

Proof. For n = 1,2 the statement follows from Lemma 2.2. Let n>3 and assume that (2.12) does
not hold. That is,

1(Dn; (Co(S(10)))") + 1(Q;3 (Co(S(p1)))") = I <n = 2. (2.13)
Without loss of generality, we can assume that
Co(S(po)) = [a,b],  Co(S(w)) =I[c,d], b<ec.

This reduction is always possible by means of a linear change of variables.
Let x, be the point in (a,b) closest to [c,d] where O, changes sign. This point exists by Lemma
2.2. There are two possibilities: either

Ol(xg+&)Q(c+e)>0 (2.14)
for all sufficiently small ¢ > 0, or
O, (xo+ )0 (c+¢)<0 (2.15)

for all sufficiently small & > 0. Let us consider separately each case.

Assume that (2.14) holds. Let g be a polynomial of degree </ with real coefficients, not identically
equal to zero, which has a zero at each point of (a,b) where O, changes sign and whose derivative
has a zero at each point of (¢,d) where Q) changes sign. The existence of such a polynomial
g reduces to solving a system of / equations in / + 1 unknowns (the coefficients of ¢). Thus, a
nontrivial solution always exists. Notice that

1<c(q;(a, b))+ c(q';(c,d))

with strict inequality if either ¢ (resp. ¢’) has on (a,b) (resp. (¢,d)) zeros of multiplicity greater
than one or distinct from those assigned by construction. On the other hand, because of Lemma 2.2,
the degree of ¢ is at least 1; therefore, using Lemma 2.1, we have that

c(q;(a,b)) + c(q'; (c,d))<degg <.

The last two inequalities imply that
I =c(g;(a,b)) + c(¢'; (c;d)) = degg.

Hence, ¢Q, and ¢’Q, have constant sign on [a,b] and [c,d], respectively. We can choose ¢ in such
a way that ¢g0,>0 on [a,b] (if this were not so replace ¢ by —¢q). With this selection, for all
sufficiently small ¢ > 0, we have that ¢'(xo + €)O/(xo + ¢) > 0. All the zeros of ¢’ are contained in
(a,x0) U (c,d), so ¢’ preserves its sign along the interval (xo,c + ¢), for all sufficiently small & > 0.
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On the other hand, we are in case (2.14) where Q) has the same sign to the right of x, and of c.
Therefore, ¢'Q;, >0 on [c,d]. Since degg<n — 2, using orthogonality, we obtain the contradiction

0= / 4()0,(x) dpno(x) + / ¢ ()0, (x) dj(x) > 0.

So, (2.14) cannot hold if (2.13) is true.

Let us assume that we are in the situation (2.15). The difference is that to the right of x, and
¢ the polynomial Q) has different signs. Notice (see (2.13)) that we have at least one degree of
freedom left to use orthogonality. Here, we construct ¢ of degree </ + 1 with real coeflicients
and not identically equal to zero with the same interpolation conditions as above plus ¢'(c) = 0.
Following the same line of reasoning as above, we have that ¢Q, and ¢'Q/ preserve their sign on
[a,b] and [c,d], respectively. Taking ¢ so that ¢gQ,>0 on [a,b], one can see that also ¢'Q/, >0 on
[c,d]. Since degg =1+ 1<n — 1, using orthogonality, we obtain that (2.15) is not possible under
(2.13). But either (2.14) or (2.15) must hold, thus (2.12) must be true. [

Corollary 2.4. Set I=Co(S(uo)US(111))\(Co(S(p0))UCo(S(p1)). Under the conditions of Theorem
1.3, we have that

(O 1)+ (@<L
Proof. This is an immediate consequence of Lemmas 2.1 and 2.3 applied to Q,. U

Proof of Theorem 1.3. We will employ the notation introduced for the proof of Lemma 2.3.
According to Lemmas 2.1 and 2.3,

n—1<1=x(0s;(a,b)) + 1(Q;; (e, d))<n.

If [ =n, then by Rolle’s Theorem we have that all the zeros of Q! are simple and contained in
(a,b) U (c,d), which implies our first statement.

Suppose that / =n — 1. We consider the same two cases (2.14) and (2.15) analyzed in the proof
of Lemma 2.3. Following the arguments used in the proof of Lemma 2.3, we can easily see that
(2.14) is not possible with /=n— 1. If (2.15) holds, then Q/ has an extra zero in the interval [x,c],
and again by use of Rolle’s Theorem we have that all the zeros of Q) are simple and contained in
(a,d).

In order to prove the second part of Theorem 1.3, we use the following remarkable result known
as Grace’s Apollarity Theorem. (We wish to thank T. Erdelyi for drawing our attention to this simple
proof of the second statement.) Let g be a polynomial of degree greater than or equal to two. Take
any two zeros of g in the complex plane and draw the straight line which cuts perpendicularly the
segment joining the two zeros at its midpoint. Then ¢’ has at least one zero in each of the closed
half planes into which the line divides the complex plane. For the proof of this result see Theorem
1.4.7 in [8] (see also [3, pp. 23-24]).

For n =1 the second statement is certainly true, because from Lemma 2.1 we know that for
all n>=1,0, has a zero on (a,b). Let n=2. If O, had a zero outside the circle with center at d
and radius equal to |a — d|, then by Grace’s Apollarity Theorem Q! would have a zero outside the
segment (a,d), which contradicts the first statement of the theorem. Therefore, all the zeros of Q,
lie in the indicated set. [J



G. Lopez Lagomasino et al. | Journal of Computational and Applied Mathematics 127 (2001) 219-230 227

Remark 1. The arguments used in the proof of Lemma 2.3 allow us to deduce some other interesting
properties which resemble those satisfied by usual orthogonal polynomials. For example, the interval
joining any two consecutive zeros of O, on (a, b) intersects S(uo). Analogously, the interval joining
any two consecutive zeros of Q) on (c¢,d) intersects S(u;). In order to prove this, notice that if any
one of these statements were not true, then in the construction of the polynomial ¢ in Lemma 2.3
we could disregard the corresponding zeros which gives us some extra degrees of freedom to use
orthogonality, and arrive at a contradiction, as was done there. From the proof of Theorem 1.3 it is
also clear that the zeros of Q, in (a,b) are simple and interlace with the zeros of Q/ on that set.

Remark 2. The key to the proof of Theorem 1.3 is Lemma 2.1. Its role is to guarantee that in the
construction of ¢ in Lemma 2.3 no extra zeros of ¢ or ¢’ fall on (a,b) or (¢,d), respectively. Lemma
2.1 can be used in order to cover more general Sobolev inner products supported on the real line,
as long as the supports of the measures appear in a certain order. To be more precise, following
essentially the same ideas, we can prove the following result.

Consider a Sobolev inner product (1.1) supported on the real line such that for each £=0,...,m—1

k
Co (U S(u,-)) NS () = 0.
j=0

Then for all n>m the zeros of Q' are simple and they are contained in the interior of CO(U;.”:O S(u;)).
The zeros of QY), j=0,...,m — 1, lie in the disk centered at z, and radius equal to 3" /r, where
zo is the center of the interval Co(Uy’:0 S(;)) and r is equal to half the length of that interval.

For m =1 this statement is weaker than that contained in Theorem 1.3 regarding the location of
the zeros of the Q,, because in the present conditions we allow that the support of S(u;) have points
on both sides of Co(S(uo)).

3. Regular asymptotic zero distribution

For the proof of Theorem 1.4, we need the following lemma, which is proved in [6] and is easy
to verify.

Lemma 3.1. Let E be a compact regular subset of the complex plane and {P,} a sequence of
polynomials such that deg P, <n and P, # 0. Then, for all k € Z,,

1/n
J2Q)
1imsup<H " HE) <lI. (3.16)

n—oo \ [|Palle

The first result of general character for the nth-root asymptotic of Sobolev orthogonal polynomials
appeared in [4] (for measures supported on the real line and m = 1). Minor details allowed two of
us to extend that result to the case of arbitrary m (see [6]). Now, we present the case of Sobolev
orthogonal polynomials in the complex plane. Since the proof remains essentially the same, we will
only outline the main aspects.
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Proof of Theorem 1.4. Let 7, denote the monic Chebyshev polynomial of degree n for the support
4 of the given Sobolev inner product. For simplicity of notation, we write || - ||z, =|| - |- By the
minimizing property of the Sobolev norm of the polynomial Q,, we have

m m

10l <N ulls < ITlls = D NTPIE< D2 (Sl T3 (3.17)
k=0 k=0

It is well known that lim,_,..||7,||}" = cap(4). Since 4 is a regular compact set, by Lemma 3.1

(applied to T,) and (3.17) it follows that
lim sup [|Q,[[;" < lim sup ||Q,[[s" < cap(4). (3.18)

n—oo n—o0o

Since the measure y; and its support are regular, we can combine (1.5) and (3.18) to obtain that
for each £k =0,...,1,

lim sup HQSPH;{’L”Scap(A). (3.19)
By virtue of Lemma 3.1, relation (1.6) follows from (3.19).
If j>=1, then (1.6) holds for each £ =0,...,/. Since

10411 = max 104 s

using (1.6), we obtain

lim sup || O1[[}" < cap(4).

n—oo

On the other hand,

lim inf ||Q”||}" = cap(4)

is true for any sequence {Q,} of monic polynomials. Hence (1.7) follows.
If the compact set 4 has empty interior and connected complement, it is well known (see [2,
Theorem 2.1]) that (1.7) implies (1.8). [

Remark 3. We wish to point out that in Theorem 1.4 eventually some of the measures ., k =
2,...,m — 1, may be the null measure, in which case p; and S(u;) =0 are considered to be regular
and ||0\"||p = 0. With these conventions, Theorem 1.4 remains in force.

The so-called discrete Sobolev orthogonal polynomials have attracted particular attention in the
past years. They are of the form

m N;
(f.9)s = /f(X)g(X)duo(X) + YD A fV(eg (e, (3.20)
i=1 j=0
where A4;;>0,4;y, > 0. If any of the points ¢; lie in the complement of the support S(uy) of o,
the corresponding Sobolev inner product cannot be /-regular. Nevertheless, a simple modification of
the proof of Theorem 1.4 allows to consider this case. For details see [6], here we only state the
corresponding result.
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Theorem 3.2. Let the discrete Sobolev inner product (3.20) be such that S(uy) is regular and
Uo € Reg. Then, (1.7) holds for all j=0, with A =S(uy), and so does (1.8) under the additional
assumption that S(uy) has empty interior and connected complement.

The proof of Theorem 1.5 contains some new elements with respect to the analogous result for
Sobolev inner products supported on the real line, so we include it.

Proof of Theorem 1.5. Fix j € Z,. Set

\Q“)( )| _
vn( ) HQ])HA _gQ(Z’OO)‘
We show that
0,(2)<0, z e CU{oo}. (3.21)

This function is subharmonic in £ and on the boundary of Q it is <0. By the maximum principle
for subharmonic functions it is <0 on all Q. On the complement of  we also have that v,(z)<0
because by definition (and the regularity of 4) Green’s function is identically equal to zero on this
set and the other term which defines v, is obviously at most zero by the maximum principle of
analytic functions. These remarks imply (1.9) by taking the upper limit in (3.21) and using (1.7)
(for this inequality no use is made of the boundedness of the multiplication operator on £).

From Theorem 1.2, we have that for all n € Z,, the zeros of the Sobolev orthogonal polynomials
are contained in {z: |z| <C}. It is well known that the zeros of the derivative of a polynomial lie
in the convex hull of the set of zeros of the polynomial itself. Therefore, the zeros of Q') for
all n € Z, lie in {z: |z|<C}. Using this, we have that {v,} forms a family of uniformly bounded
harmonic functions on each compact subset of {z: |z| > C}NQ (including infinity). Take a sequence
of indices A such that {v,},cs converges uniformly on each compact subset of {z: |z| > C} N Q.
Let v, denote its limit. Obviously, v, is harmonic and <0 in {z: |z| > C} N Q, and because of
(1.7), v4a(c0) = 0. Therefore, v, = 0 in {z: |z| > C} N Q. Since this is true for every convergent
subsequence of {v,}, we get that the whole sequence converges to zero uniformly on each compact
subset of {z: |z] > C} N Q. This is equivalent to (1.10).

If in addition the interior of A is empty and its complement connected, we can use (1.8). The
measures v,; = W(Q), n € Z,, and w, have their support contained in a compact subset of C.
Using this and (1.8) from the Lower Envelope Theorem (see [10, p. 223]), we obtain

v, (0= [og

for all z € C except for a set of zero capac1ty. Th1s is equivalent to having equality in (1.9) except
for a set of capacity zero, because (see [10 p- 7D

liminf [ log ——

n—o0 | |

dCUA(x)

ga(z; 00) = log Cap(A) / 0g —— de(X)

Let x,”,z =1,. — Jj, denote the n — j zeros of Q). As mentioned above, all these zeros are
contained in {z ]z] < C}. From (1.8), each point of S(w,) must be a limit point of zeros of {Q\};
therefore, S(w,) C{z: |z| <C}. Decomposing in simple fractions and using the definition of v, ;, we
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obtain
Gth(z) 1L 1 n—j [dv,(x
Qn(‘)( ):72 _ ]/ i ) (3.22)
nQn] () h3z _x:r,i n zZ—=X
Therefore, for each fixed j € Z,, the family of functions
(D) ( 5
Q"(i)() , nelz,, (3.23)
nQ:’’(z)

is uniformly bounded on each compact subset of {z: |z| > C}.

On the other hand, all the measures v, ;, n € Z., are supported in {z: |z|<C} and for z, |z| > C,
fixed, the function (z — x)~' is continuous on {x: |x|<C} with respect to x. Therefore, from (1.8)
and (3.22), we find that any subsequence of (3.23) which converges uniformly on compact subsets
of {z: |z| > C} converges pointwise to [(z — x)~'dw,(x). Thus, the whole sequence converges
uniformly to this function on compact subsets of {z: |z| > C}, as stated in (1.11). [
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Abstract

In this paper we p