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Preface

Orthogonal polynomials play a prominent role in pure, applied, and computational mathematics,
as well as in the applied sciences. It is the aim of the present volume in the series “Numerical
Analysis in the 20th Century” to review, and sometimes extend, some of the many known results
and properties of orthogonal polynomials and related quadrature rules. In addition, this volume
discusses techniques available for the analysis of orthogonal polynomials and associated quadrature
rules. Indeed, the design and computation of numerical integration methods is an important area in
numerical analysis, and orthogonal polynomials play a fundamental role in the analysis of many
integration methods.
The 20th century has witnessed a rapid development of orthogonal polynomials and related quadra-

ture rules, and we therefore cannot even attempt to review all signi�cant developments within this
volume. We primarily have sought to emphasize results and techniques that have been of signi�cance
in computational or applied mathematics, or which we believe may lead to signi�cant progress in
these areas in the near future. Unfortunately, we cannot claim completeness even within this limited
scope. Nevertheless, we hope that the readers of this volume will �nd the papers of interest and
many references to related work of help.
We outline the contributions in the present volume. Properties of orthogonal polynomials are

the focus of the papers by Marcell�an and �Alvarez-Nodarse and by Freund. The former contribu-
tion discusses “Favard’s theorem”, i.e., the question under which conditions the recurrence coef-
�cients of a family of polynomials determine a measure with respect to which the polynomials
in this family are orthogonal. Polynomials that satisfy a three-term recurrence relation as well as
Szegő polynomials are considered. The measure is allowed to be signed, i.e., the moment ma-
trix is allowed to be inde�nite. Freund discusses matrix-valued polynomials that are orthogonal
with respect to a measure that de�nes a bilinear form. This contribution focuses on breakdowns
of the recurrence relations and discusses techniques for overcoming this di�culty. Matrix-valued
orthogonal polynomials form the basis for algorithms for reduced-order modeling. Freund’s con-
tribution to this volume provides references to such algorithms and their application to circuit
simulation.
The contribution by Peherstorfer and Steinbauer analyzes inverse images of polynomial map-

pings in the complex plane and their relevance to extremal properties of polynomials orthogonal
with respect to measures supported on a variety of sets, such as several intervals, lemniscates, or
equipotential lines. Applications include fractal theory and Julia sets.
Orthogonality with respect to Sobolev inner products has attracted the interest of many re-

searchers during the last decade. The paper by Martinez discusses some of the recent developments
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in this area. The contribution by L�opez Lagomasino, Pijeira, and Perez Izquierdo deals with or-
thogonal polynomials associated with measures supported on compact subsets of the complex plane.
The location and asymptotic distribution of the zeros of the orthogonal polynomials, as well as
the nth-root asymptotic behavior of these polynomials is analyzed, using methods of potential
theory.
Investigations based on spectral theory for symmetric operators can provide insight into the analytic

properties of both orthogonal polynomials and the associated Pad�e approximants. The contribution
by Beckermann surveys these results.
Van Assche and Coussement study multiple orthogonal polynomials. These polynomials arise

in simultaneous rational approximation; in particular, they form the foundation for simultaneous
Hermite–Pad�e approximation of a system of several functions. The paper compares multiple orthog-
onal polynomials with the classical families of orthogonal polynomials, such as Hermite, Laguerre,
Jacobi, and Bessel polynomials, using characterization theorems.
Bultheel, Gonz�alez-Vera, Hendriksen, and Nj�astad consider orthogonal rational functions with pre-

scribed poles, and discuss quadrature rules for their exact integration. These quadrature rules may
be viewed as extensions of quadrature rules for Szegő polynomials. The latter rules are exact for
rational functions with poles at the origin and at in�nity.
Many of the papers of this volume are concerned with quadrature or cubature rules related to

orthogonal polynomials. The analysis of multivariable orthogonal polynomials forms the foundation
of many cubature formulas. The contribution by Cools, Mysovskikh, and Schmid discusses the con-
nection between cubature formulas and orthogonal polynomials. The paper reviews the development
initiated by Radon’s seminal contribution from 1948 and discusses open questions. The work by Xu
deals with multivariate orthogonal polynomials and cubature formulas for several regions in Rd. Xu
shows that orthogonal structures and cubature formulas for these regions are closely related.
The paper by Milovanovi�c deals with the properties of quadrature rules with multiple nodes. These

rules generalize the Gauss–Tur�an rules. Moment-preserving approximation by defective splines is
considered as an application.
Computational issues related to Gauss quadrature rules are the topic of the contributions by Ehrich

and Laurie. The latter paper discusses numerical methods for the computation of the nodes and
weights of Gauss-type quadrature rules, when moments, modi�ed moments, or the recursion coef-
�cients of the orthogonal polynomials associated with a nonnegative measure are known. Ehrich
is concerned with how to estimate the error of quadrature rules of Gauss type. This question is
important, e.g., for the design of adaptive quadrature routines based on rules of Gauss type.
The contribution by Mori and Sugihara reviews the double exponential transformation in numerical

integration and in a variety of Sinc methods. This transformation enables e�cient evaluation of the
integrals of analytic functions with endpoint singularities.
Many algorithms for the solution of large-scale problems in science and engineering are based

on orthogonal polynomials and Gauss-type quadrature rules. Calvetti, Morigi, Reichel, and Sgallari
describe an application of Gauss quadrature to the computation of bounds or estimates of the Eu-
clidean norm of the error in iterates (approximate solutions) generated by an iterative method for the
solution of large linear systems of equations with a symmetric matrix. The matrix may be positive
de�nite or inde�nite.
The computation of zeros of polynomials is a classical problem in numerical analysis. The contri-

bution by Ammar, Calvetti, Gragg, and Reichel describes algorithms based on Szegő polynomials.
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In particular, knowledge of the location of zeros of Szegő polynomials is important for the analysis
and implementation of �lters for time series.
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G.S. Ammar a ;∗, D. Calvettib; 1, W.B. Graggc, L. Reicheld ; 2

aDepartment of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115, USA
bDepartment of Mathematics, Case Western Reserve University, Cleveland, OH 44106, USA

cDepartment of Mathematics, Naval Postgraduate School, Monterey, CA 93943, USA
dDepartment of Mathematics and Computer Science, Kent State University, Kent, OH 44242, USA

Received 28 December 1999; received in revised form 27 March 2000

Abstract

The computation of zeros of polynomials is a classical computational problem. This paper presents two new zero�nders
that are based on the observation that, after a suitable change of variable, any polynomial can be considered a member
of a family of Szegő polynomials. Numerical experiments indicate that these methods generally give higher accuracy than
computing the eigenvalues of the companion matrix associated with the polynomial. c© 2001 Elsevier Science B.V. All
rights reserved.

Keywords: Szegő–Hessenberg matrix; Companion matrix; Eigenvalue problem; Continuation method; Parallel computation

1. Introduction

The computation of the zeros of a polynomial

 n(z) = zn + �n−1zn−1 + · · ·+ �1z + �0; �j ∈ C; (1)

is a fundamental problem in scienti�c computation that arises in many diverse applications. The
conditioning of this problem has been investigated by Gautschi [8,9]. Several classical methods for
determining zeros of polynomials are described by Henrici [17, Chapter 6] and Stoer and Bulirsch
[26, Chapter 5]. A recent extensive bibliography of zero�nders is provided by McNamee [21].

∗ Corresponding author.
E-mail addresses: ammar@math.niu.edu (G.S. Ammar), dxc57@po.cwru.edu (D. Calvetti), gragg@math.nps.navy.mil
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Among the most popular numerical methods for computing zeros of polynomials are the Jenkins–
Traub algorithm [18], and the computation of the zeros as eigenvalues of the companion matrix

Cn =




0 · · · 0 −�0
1 0 · · · 0 −�1
1 0 · · · 0 −�2

...
...

. . . . . .

1 0 −�n−2
0 1 −�n−1




∈ Cn×n (2)

associated with the polynomial (1) by the QR algorithm after balancing; see Edelman and Murakami
[7] and Moler [22]. Recently, Goedecker [10] compared these methods and found the latter approach
to be competitive with several available implementations of the Jenkins–Traub algorithm with regard
to both accuracy and execution time for polynomials of small to moderate degree.
This paper describes two new methods for computing zeros of polynomials. The methods are

based on the observation that, after a change of variable, any polynomial can be considered a
member of a family of Szegő polynomials. The new zero�nders use the recursion relation for the
Szegő polynomials, which are de�ned as follows. Let ! be a nondecreasing distribution function
with in�nitely many points of increase on the unit circle in the complex plane and de�ne the inner
product

(f; g):=
1
2�

∫ �

−�
f(z)g(z) d!(t); z:=exp(it); i:=

√−1; (3)

for polynomials f and g, where the bar denotes complex conjugation. We assume for notational
convenience that d!(t) is scaled so that (1; 1) = 1. Introduce orthonormal polynomials with re-
spect to this inner product, �0; �1; �2; : : : ; where �j is of degree j with positive leading coe�cient.
These polynomials are known as Szegő polynomials and many of their properties are discussed by
Grenander and Szegő [16]. In particular, they satisfy the recursion relation

�0(z) = �∗
0(z) = 1;

�j+1�j+1(z) = z�j(z) + 
j+1�∗
j (z); j = 0; 1; 2:; : : : ; n− 1;

�j+1�∗
j+1(z) = �
j+1z�j(z) + �∗

j (z); (4)

where the recursion coe�cients 
j+1 and the auxiliary coe�cients �j+1 are de�ned by


j+1 =−(z�j; 1)
�j

;

�j+1 = �j(1− |
j+1|2); j = 0; 1; 2; : : : ;

�j+1 = �j�j+1; �0 = �0 = 1: (5)
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It follows from (4) that the auxiliary polynomials �∗
j satisfy

�∗
j (z):=zj ��j(1=z): (6)

The zeros of the Szegő polynomials are strictly inside the unit circle and all recursion coe�cients

j are of magnitude smaller than one; see, e.g., [1,16]. The leading coe�cient of �j is 1=�j.
The �rst step in the new zero�nders of this paper is to determine recursion coe�cients {
j}n

j=1,
such that the Szegő polynomial �n satis�es

�n�n(�) = �n
1 n(z); (7)

where

�= �1z + �2; (8)

and the constants �1 and �2 are chosen so that the zeros zj of  n are mapped to zeros �j of �n inside
the unit circle. We refer to this change of variable as a rescaling of the monic polynomial  n(z). Its
construction is discussed in Section 2. Thus, the problem of determining the zeros of  n is reduced
to the problem of computing the zeros of a Szegő polynomial of degree n. Section 3 considers two
methods for this purpose, based on a matrix formulation of the recursion relation (4). This gives
an n× n upper Hessenberg matrix whose eigenvalues are the zeros of �n. We refer to this matrix,
which is described in [11], as the Szegő–Hessenberg matrix associated with �n. Having computed
the eigenvalues �j of this matrix, we use the relation (8) to compute the zeros zj of  n.
A third method for computing the zeros of  n(z) is to use the power-basis coe�cients of the

monic Szegő polynomial �n(�):=�n�n(�) of (7) to form the companion matrix associated with �n,
compute its eigenvalues, and transform these back to the z-variable using (8). In other words, to
use the companion matrix of the rescaled monic polynomial �n instead of that of  n. This method
is included in the numerical results we report in Section 4.
Section 4 compares the use of the QR algorithm with balancing for computing the eigenvalues of

the Szegő–Hessenberg, the companion matrix (2) of  n, and the companion matrix of the rescaled
polynomial �n. We note in passing that these are all upper Hessenberg matrices. Balancing is
commonly used for improving the accuracy of the computed eigenvalues; see [7] for a discussion on
balancing of the companion matrix. In our experiments we found that when the parameters �1 and
�2 for the rescaling are chosen so that all zeros of �n are inside the unit circle and one zero is close
to the unit circle, the computed eigenvalues of the Szegő–Hessenberg matrix and of the companion
matrix of the rescaled polynomial (7) generally provide more accurate zeros of  n than those of
the companion matrix of  n. This rescaling is achieved by application of the Schur–Cohn test as
described in Section 3. Numerous computed examples, some of which are reported in Section 4,
indicate that computing eigenvalues of the Szegő–Hessenberg matrix after balancing often gives the
zeros of  n with higher accuracy than computing eigenvalues of the companion matrix of the scaled
polynomial (7) after balancing. Both methods, in general, give higher accuracy in the computed
zeros than computing the zeros of  n as eigenvalues of the balanced companion matrix.
The other zero�nder for Szegő polynomials discussed in Section 3 is the continuation method

previously introduced in [2]. For many polynomials  n, this method yields higher accuracy than the
computation of the eigenvalues of the associated companion or Szegő–Hessenberg matrices. Section
4 presents numerical examples and Section 5 contains concluding remarks.
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2. Computation of Szegő polynomials

Given a polynomial  n(z) in power-basis form (1), we compute the recursion coe�cients {
j}n
j=1

of the family of Szegő polynomials {�j}n
j=0, chosen so that �n satis�es (7), by �rst transforming

the polynomial  n so that the average of its zeros vanishes. Then we determine a disk centered at
the origin that contains all zeros of the transformed polynomial. The complex plane is then scaled
so that this disk becomes the unit disk. In this fashion, the problem of determining the zeros of
the polynomial  n has been transformed into an equivalent problem of determining the zeros of a
polynomial with all zeros in the unit disk. We may assume that the latter polynomial has leading
coe�cient one, and identify it with the monic Szegő polynomial �n = �n�n. Given the power-basis
coe�cients of �n, the recursion coe�cients of the family of Szegő polynomials {�j}n

j=0 can be
computed by the Schur–Cohn algorithm. The remainder of this section describes details of the
computations outlined.
Let {zj}n

j=1 denote the zeros of  n and introduce the average of the zeros

�:=
1
n

n∑
j=1

zj: (9)

We evaluate this quantity as � = −�n−1=n, and de�ne the new variable ẑ = z − �. The polynomial
 ̂ n(ẑ):= n(z) can be written as

 ̂ n(ẑ) = ẑ n + �̂n−2ẑ
n−2 + · · ·+ �̂1ẑ + �̂0: (10)

The coe�cients {�̂j}n−2
j=0 can be computed from the coe�cients {�j}n−1

j=0 in O(n
2) arithmetic operations.

We now scale the ẑ-plane in two steps in order to move the zeros of  ̂ n inside the unit circle.
Our choice of scaling is motivated by the following result mentioned by Ostrowski [23].

Proposition 2.1. Let �n be a polynomial of degree n of the form

�n(z) = zn + �n−2zn−2 + · · ·+ �1z + �0; (11)

and assume that

max
06j6n−2

|�j|= 1:

Then all zeros of �n are contained in the open disk {z: |z|¡ 1
2 (1 +

√
5)} in the complex plane.

Proof. Let z be a zero of �n and assume that |z|¿ 1. Then

zn =−�n−2zn−2 − · · · − �1z − �0;

and it follows that

|z|n6
n−2∑
j=0

|z|j = |z|n−1 − 1
|z| − 1 :
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This inequality can be written as

|z|n−1(|z|2 − |z| − 1)6− 1: (12)

Since |z|2−|z|−1=(|z|− 1
2 (1−

√
5))(|z|− 1

2 (1+
√
5)), inequality (12) can only hold for |z|¡ 1

2 (1+
√
5).

After the change of variable z̃:=�ẑ, where �¿ 0 is chosen so that

max
26j6n

�j|�̂n−j|= 1;

the polynomial  ̃ n(z̃):=�n ̂ n(ẑ) satis�es the conditions of the proposition.
De�ne the scaling factor

�:=
2

1 +
√
5
: (13)

By Proposition 2.1 the change of variables

�:=�z̃ (14)

yields a monic polynomial

�(�)
n (�):=�n ̃ n(z̃) (15)

with all zeros inside the unit circle.
We identify �(�)

n with the monic Szegő polynomial �n�n, and wish to compute the recursion
coe�cients {
j}n

j=1 that determine polynomials of lower degree {�j}n−1
j=0 in the same family of Szegő

polynomials; see (4). This can be done by using the relationship between the coe�cients of �j in
power form and the coe�cients of the associated auxiliary polynomial. Speci�cally, it follows from
(6) that if

�j(z) =
j∑

k=0

�j;kz k ; (16)

then

�∗
j (z) =

j∑
k=0

��j;k−jz
k :

Thus, given the Szegő polynomial �n in power form, we can determine the coe�cients of the
associated auxiliary polynomial �∗

n in power form and apply the recursion formula (4) “backwards”
in order to determine the recursion coe�cient 
n and the coe�cients of the polynomials �n−1 and
�∗

n−1 in power form. In this manner we can determine the recursion coe�cients 
j for decreasing
values of the index j.
The Schur–Cohn algorithm, see, e.g., Henrici [17, Chapter 6], is an implementation of these com-

putations. The algorithm requires O(n2) arithmetic operations to determine the recursion coe�cients
{
j}n

j=1 from the representation of �n in power form (16).
We remark that the Schur–Cohn algorithm is known for its use in determining whether a given

polynomial, in power form, has all zeros inside the unit circle. In this context it is known as the
Schur–Cohn test; see [17, Chapter 6]. All zeros being strictly inside the unit circle is equivalent
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with all recursion coe�cients {
j}n
j=1 being of magnitude strictly smaller than one. We will return

to this property of the recursion coe�cients in Section 3.
Perhaps the �rst application of the Schur–Cohn algorithm to the computation of zeros of poly-

nomials was described by Lehmer [19], who covered the complex plane by disks and used the
Schur–Cohn test to determine which disks contain zeros of the polynomial. Lehmer’s method can
be viewed as a generalization of the bisection method to the complex plane. It is discussed in [17,
Chapter 6].

3. The zero�nders

We present two zero�nders for �n and assume that the recursion coe�cients {
j}n
j=1 as well as

the auxiliary coe�cients {�j}n
j=1 are available.

3.1. An eigenvalue method

Eliminating the auxiliary polynomials �∗
j in the recursion formula (4) yields an expression for

�j+1 in terms of Szegő polynomials of lower degree. Writing the expressions for the �rst n + 1
Szegő polynomials in matrix form yields

[�0(z); �1(z); : : : ; �n−1(z)]Hn = z[�0(z); �1(z); : : : ; �n−1(z)]− [0; : : : ; 0; �n(z)]; (17)

where

Hn =




−
1 −�1
2 −�1�2
3 · · · −�1 · · · �n−1
n

�1 − �
1
2 − �
1�2
3 · · · − �
1�2 · · · �n−1
n

�2 − �
2
3 · · · − �
2�3 · · · �n−1
n

. . .
...

�n−2 − �
n−2
n−1 − �
n−2�n−1
n

0 �n−1 − �
n−1
n




∈ Cn×n (18)

is the Szegő–Hessenberg matrix associated with the Szegő polynomials {�j}n
j=0; see [11]. Eq. (17)

shows that the eigenvalues of the upper Hessenberg matrix Hn are the zeros of �n. Thus, we can
compute the zeros of �n by determining the eigenvalues of Hn.
Let �j, 16j6n, denote the zeros of �n. The scaling parameters �1 and �2 in (8) are chosen so

that all zeros of �n are inside the unit circle. However, for some polynomials  n, the scaling may
be such that

�n:= max
16j6n

|�j|.1:
We have noticed that we can determine the zeros of  n with higher accuracy when the disk is rescaled
to make �n close to one. Such a rescaling is easy to achieve by repeated application of the Schur–
Cohn test as follows. Instead of scaling z̃ by the factor (13) in (14), we scale z̃ by �:=

√
2=(1+

√
5)

and apply the Schur–Cohn test to determine whether all zeros of the scaled polynomial (15) so
obtained are inside the unit circle. If they are not, then we increase the scaling factor � in (14) by
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a factor ��:=(2=(1 +
√
5))1=10 and check whether the (re)scaled polynomial (15) obtained has all

zeros inside the unit circle. The scaling factor � is increased repeatedly by the factor �� until the
polynomial (15) has all its zeros inside the unit circle. On the other hand, if the polynomial (15)
associated with the scaling factor �=

√
2=(1+

√
5) has all zeros inside the unit circle, we repeatedly

decrease � by a factor (��)−1 until a scaling factor � has been determined, such that all zeros of
the polynomial �(�)

n are inside the unit disk, but at least one zero of �(�=��)
n is not. Our choice of

scaling factor � in (14) assures that the monic polynomial (15) has all its zeros inside the unit circle
and (at least) one zero close to the unit circle.
The scaling factors � in (14) for the computed examples reported in Section 4 have been deter-

mined as described above. In our experience, the time spent rescaling the disk is negligible compared
to the time required to compute the eigenvalues of Hn, because each rescaling only requires O(n2)
arithmetic operations.
After determining the scaling factor � as described above and computing the recursion coe�cients

{
j}n
j=1 via the Schur–Cohn test, we form the Szegő–Hessenberg matrix (18), balance it, and compute

its eigenvalues using the QR algorithm.

3.2. A continuation method

Similarly as in the method described in Section 3.1, we �rst determine the recursion coe�cients
of the Szegő polynomials {�j}n

j=0 such that Eq. (7) holds, as described above. We then apply the
continuation method for computing zeros of Szegő polynomials developed in [2]. In this method the
Szegő–Hessenberg matrix (18) is considered a function of the last recursion parameter 
n. Denote
this parameter by t ∈ C and the associated Szegő–Hessenberg matrix by Hn(t). Thus, we write the
matrix (18) as Hn(
n). When |t| = 1, the Szegő–Hessenberg matrix Hn(t) is unitary. Assume that

n 6= 0. Then Hn(
n=|
n|) is the closest unitary matrix to Hn(
n); see [2] for details. The continuation
method for computing zeros of Szegő polynomials consists of the following steps:
(i) Compute the eigenvalues of the unitary upper Hessenberg matrix Hn(
n=|
n|).
(ii) Apply a continuation method for tracking the path of each eigenvalue of the matrix Hn(t) as t

is moved from 
n=|
n| to 
n.

Several algorithms that require only O(n2) arithmetic operations for the computations of Step (i) are
available; see, e.g. [4–6,12–15]. If the coe�cients �j in (1) are real, then the method discussed in [3]
can also be applied. These methods compute the eigenvalues of Hn(
n=|
n|) without explicitly forming
the matrix elements. In the numerical experiments reported in Section 4, we used the implementation
[4,5] of the divide-and-conquer method described in [14,15]. The computations required for this
method can readily be implemented on a parallel computer. This may be of importance in the
application of the zero�nder in real-time �lter design; see, e.g., Parks and Burrus [24] and references
therein for more on this application of polynomial zero�nders.
We have found that for many polynomials  n, the continuation method determines the zeros with

higher accuracy than the method discussed in Section 3.1. The continuation method determines the
zeros of the Szegő polynomial �n close to the unit circle particularly rapidly. However, our present
implementation of the continuation method may fail to determine all zeros for some polynomials  n

when the pathfollowing is complicated by (numerous) bifurcation points. These cases are easy to
identify; see [2] for a discussion and remedies.
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Table 1
Ten polynomials of degree n= 15 with zeros in D1

Di�erences: CB SHB CM CBS

6.67E−05 4.89E−06 4.57E−06 6.82E−06
1.66E−03 7.57E−05 5.49E−05 2.11E−04
1.20E−01 3.06E−03 — 1.83E−02
8.41E−04 2.45E−05 3.91E−05 6.22E−04
9.66E−04 5.88E−05 5.82E−05 1.51E−04
2.75E−05 5.20E−07 1.79E−07 2.40E−06
3.34E−05 5.75E−06 2.71E−07 2.05E−05
1.67E−05 2.85E−06 2.25E−06 5.52E−05
2.72E−04 6.60E−06 7.48E−07 3.77E−05
7.60E−05 1.16E−06 7.40E−07 3.30E−06

Averages: 1.24E−02 3.24E−04 1.79E−05 1.94E−03

Residuals: CB SHB CM CBS  n

3.85E−06 9.06E−07 4.89E−07 1.10E−06 6.94E−07
3.31E−07 9.68E−08 2.05E−08 1.15E−07 1.47E−08
3.16E−05 1.30E−05 — 2.41E−05 5.80E−07
2.48E−06 9.15E−07 3.16E−07 1.47E−06 6.62E−08
5.24E−06 6.74E−07 1.18E−06 1.50E−06 3.58E−07
8.64E−08 2.13E−08 1.47E−08 4.12E−08 2.18E−09
1.87E−06 6.88E−07 5.66E−07 8.80E−07 2.92E−08
2.93E−06 2.48E−06 2.76E−07 2.71E−06 4.34E−08
2.14E−07 7.87E−08 6.35E−08 3.23E−08 6.32E−09
1.07E−06 4.44E−07 9.72E−08 9.11E−07 2.11E−08

Averages: 4.97E−06 1.93E−06 3.36E−07 3.28E−06 1.82E−07

Di�erences Residuals

CB 0 0
SHB 10 2 10 2
CM 9 8 8 9 8 7
CBS 9 0 1 0 10 1 2 1

We remark that other continuation methods also are available, such as the method proposed by Li
and Zeng [20] for computing the eigenvalues of a general Hessenberg matrix. This method does not
use the structure of the Hessenberg matrices (18), i.e., the fact that the last recursion coe�cient 
n is
a natural continuation parameter. However, it may be possible to apply some techniques developed
in [20] to improve the performance of the continuation method of this paper; see [2] for a discussion
and references to other continuation methods.
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Table 2
Ten polynomials of degree n= 15 with zeros in D2

Di�erences: CB SHB CM CBS

3.06E−04 4.98E−05 4.25E−05 9.49E−05
1.47E−04 4.30E−05 4.22E−05 8.30E−05
9.99E−06 2.40E−06 2.67E−07 8.38E−06
5.97E−06 3.04E−05 2.09E−06 1.59E−05
2.72E−04 3.44E−05 3.05E−05 3.37E−05
1.10E−06 1.77E−06 5.06E−07 1.53E−06
4.77E−04 1.56E−05 1.78E−05 5.08E−05
7.30E−04 1.02E−03 8.53E−04 8.76E−04
7.92E−06 2.82E−06 1.53E−06 6.90E−06
4.88E−04 8.80E−05 1.33E−05 1.55E−04

Averages: 2.44E−04 1.29E−04 1.00E−04 1.33E−04

Residuals: CB SHB CM CBS  n

5.85E−02 6.82E−03 1.11E−02 6.22E−03 1.06E−03
1.50E−01 3.04E−02 1.96E−02 4.09E−02 1.95E−02
8.29E−02 1.90E−02 4.67E−03 1.26E−02 2.27E−03
4.56E−01 4.67E−01 2.94E−02 2.13E−01 7.14E−03
1.98E−03 2.93E−03 8.92E−04 8.11E−04 1.00E−03
1.77E−02 1.92E−02 7.89E−03 7.24E−03 1.30E−03
7.42E−01 3.88E−01 4.22E−01 5.35E−01 1.84E−02
9.64E−03 7.14E−03 3.95E−03 1.23E−02 4.08E−03
7.70E−02 2.89E−02 2.19E−02 1.21E−01 4.53E−03
3.02E−02 3.05E−03 6.00E−04 4.11E−04 2.43E−03

Averages: 1.62E−01 9.73E−02 5.22E−02 9.50E−02 6.17E−03

Di�erences Residuals

CB 1 0
SHB 7 1 7 1
CM 9 9 8 10 8 5
CBS 7 4 0 0 8 6 4 4

4. Computed examples

We present the results of several computed examples which illustrate the performance of the
zero�nders discussed in Section 3. The computer programs used were all written in FORTRAN
77, and the numerical experiments were carried out on a SUN SparcStation 5 in single-precision
arithmetic, i.e., with approximately 7 signi�cant decimal digits of accuracy, except where explicitly
stated otherwise. The eigenvalues of the companion and Szegő–Hessenberg matrices were computed
by single-precision subroutines from EISPACK [25].
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Table 3
Comparison of methods for 100 polynomials of each degree n with zeros in D1

Average di�erences
n CB SHB CM CBS N

10 1.20E−03 1.78E−05 1.75E−05 2.08E−05 99
15 3.12E−03 1.34E−04 1.14E−02 3.22E−04 94
20 3.48E−02 6.59E−03 7.27E−03 9.89E−03 86
30 1.75E−01 5.28E−02 1.67E−03 1.04E−01 47
40 3.95E−01 1.60E−01 1.07E−03 3.20E−01 12

Average residuals
n CB SHB CM CBS  n N

10 1.70E−06 1.09E−06 3.58E−07 9.85E−07 1.20E−07 99
15 6.99E−06 2.89E−06 7.89E−07 3.39E−06 2.95E−07 94
20 4.06E−03 9.95E−06 1.90E−06 2.35E−05 8.01E−07 86
30 3.08E+01 7.52E−03 1.36E−05 1.03E−03 4.83E−06 47
40 1.05E+04 3.92E−02 6.31E−06 4.30E−02 4.64E−05 12

In our experiments, we input a set of n real or complex conjugate zeros of the polynomial  n, see
(1), and compute the coe�cients �j of the power-basis representation by a recursion formula. These
computations are carried out in double-precision arithmetic, i.e., with about 15 signi�cant digits, in
order to avoid loss of accuracy. After their computation, the �j are stored as single-precision real
numbers. We now seek to determine the zeros of  n, given the coe�cients �j, with one of several
methods:
CB: The QR algorithm applied to the companion matrix (2) of  n after balancing, using the

EISPACK routines balanc and hqr.
CBS: The QR algorithm applied to the companion matrix of the monic Szegő polynomial �n, after

balancing, using the EISPACK routines balanc and hqr.
SHB: The QR algorithm applied to the Szegő–Hessenberg matrix after balancing, using the EIS-

PACK routines balanc and hqr.
CM: The continuation method for real Szegő–Hessenberg matrices, described in [2].

We compare the following computed quantities:
Residuals: The maximum modulus of the values of the initial monic polynomial  n in power form

(1) at the computed roots.
Di�erences: The computed zeros are put into correspondence with the initial zeros, which were

used to generate  n as described above, and the maximum di�erence after this pairing is computed.
Note that this is not exactly the error in the computed zeros; the error is the maximum di�erence of
the computed roots and the exact roots of the monic polynomial  n. However, since the coe�cients
of  n were computed from the given zeros in 
oating-point arithmetic, the exact zeros of the  n need
not be close to the input zeros. Nevertheless, the computed di�erences provide a way to compare
the various methods.
In the tables we also display in the column labeled  n the residuals computed at the input zeros;

i.e., at the zeros that were used to compute the power-basis coe�cients of  n. This provides some



G.S. Ammar et al. / Journal of Computational and Applied Mathematics 127 (2001) 1–16 11

Table 4
Comparative counts for 100 polynomials for each degree n with zeros in D1

Di�erences Residuals

n= 10
CB 0 2
SHB 97 12 79 13
CM 99 83 71 95 81 74
CBS 90 28 20 17 78 39 15 11

n= 15
CB 0 2
SHB 100 17 77 8
CM 97 80 78 95 85 81
CBS 88 16 9 5 71 48 12 9

n= 20
CB 0 4
SHB 97 15 79 16
CM 88 78 77 88 79 73
CBS 85 19 17 8 70 32 18 7

n= 30
CB 1 8
SHB 97 42 84 29
CM 61 55 53 58 50 46
CBS 73 6 40 4 73 29 48 17

n= 40
CB 4 8
SHB 94 74 88 55
CM 26 17 16 19 13 12
CBS 61 8 78 6 76 29 83 25

indication of how ill-conditioned the roots of  n and the computation of its power-basis coe�cients
are, as well as an indication of the signi�cance of the di�erences and the other computed residuals
that are displayed.
The polynomials  n in all computed examples except those for Tables 7–8 have real or complex

conjugate zeros uniformly distributed in a disk

DR:={z : |z|6R}⊂C: (19)

In particular, the coe�cients �j in the representation (1) are real. We generate zeros of  n in
DR as follows. Two random numbers are determined according to a uniform distribution on the
interval [ − R; R] and used as the real and imaginary parts of a candidate zero z. If z ∈ DR and
Im(z)¿ 1 × 10−6, then both z and �z are accepted as zeros of  n. If z ∈ DR and Im(z)61 × 10−6
then Re(z) is accepted as a real zero of  n. The purpose of the condition on the imaginary part of z
is to avoid that  n has very close zeros. We generate candidate points until n zeros of  n have been
determined. When n is odd, then at least one of the zeros of  n is in the real interval [− R; R].
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Table 5
Comparison of methods for 100 polynomials of degree n= 20 for each radius R

Average di�erences
R CB SHB CM CBS N

0.2 2.96E−01 1.54E−03 1.25E−03 2.01E−03 86
0.7 9.76E−02 4.45E−03 5.59E−04 6.54E−03 84
1.0 3.48E−02 6.59E−03 7.27E−03 9.89E−03 86
1.5 2.20E−02 1.16E−02 8.55E−04 1.84E−02 83
3.0 6.81E−02 2.32E−02 1.71E−03 3.38E−02 83

Average residuals
R CB SHB CM CBS  n N

0.2 6.79E−10 1.32E−19 2.27E−20 1.15E−19 7.20E−21 86
0.7 4.69E−07 7.86E−09 1.73E−09 7.43E−09 5.79E−10 84
1.0 4.06E−03 9.95E−06 1.90E−06 2.35E−05 8.01E−07 86
1.5 6.91E+01 4.03E−02 5.13E−03 7.10E−02 3.15E−03 83
3.0 1.17E+08 4.06E+04 5.50E+03 6.79E+04 3.30E+03 83

Table 1 shows results for 10 polynomials  15 generated in this manner with zeros in the disk D1.
We display the maximum modulus of the residuals and the maximum di�erence of the computed
zeros with the input zeros for the methods CB, SHB, CM, and CBS. The results for CM for one
of these 10 polynomials are marked with a “—” to indicate that the continuation method did not
yield all n zeros. The averages for CM ignore the entries marked by —. In Table 1 the standard
companion matrix approach (CB) consistently yields the least accuracy as measured both by the
residuals and by the di�erences with the input zeros.
The integer arrays at the bottom of Table 1 display the relative performance of the algorithms. The

(j; k) entry for j¿k is the number of times the jth algorithm gave smaller maximal di�erences or
residuals than the kth algorithm, and the (j; j) entry indicates the number of times the jth algorithm
gave the smallest maximal di�erences or residuals among the four methods compared. For example,
the arrays for Table 1 show that CM produces the smallest residuals for 7 of the 10 polynomials
generated. This count includes the polynomial for which CM failed to determine all zeros. The
maximum residual for CM was smaller than for CB, SHB, and CBS for 9, 8, and 8 polynomials,
respectively. CB produced larger residuals than any of the other three methods for all polynomials,
except for the polynomial for which CM failed to determine all zeros.
Table 2 gives the results for 10 polynomials of degree 15 with uniformly distributed real and

complex conjugate zeros in the disk D2. In this experiment, CM successfully determined all zeros
of all polynomials.
Tables 3 and 4 show summary data for 100 polynomials of each of several degrees n with

uniformly distributed real and complex conjugate zeros in the disk D1. We display in Tables 3 the
average of the maximum di�erences and the average of the maximum residuals for the methods CB,
SHB and CBS over all polynomials. For CM we compute these averages only over those polynomials
for which the method successfully determined all zeros. The number of those polynomials of each
degree n, out of 100, is denoted by N and is displayed in the last column of Table 3.
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Table 6
Comparative counts for 100 polynomials of degree n= 20 for each radius R

Di�erences Residuals

R= 0:2
CB 0 0
SHB 100 22 100 12
CM 100 73 72 100 79 73
CBS 100 23 15 6 100 48 20 15

R= 0:7
CB 0 0
SHB 100 19 100 10
CM 91 81 76 90 80 75
CBS 100 15 17 5 100 35 20 15

R= 1:0
CB 0 4
SHB 97 15 79 16
CM 88 78 77 88 79 73
CBS 85 19 17 8 70 32 18 7

R= 1:5
CB 7 4
SHB 58 18 77 21
CM 87 76 72 85 72 67
CBS 36 16 17 3 72 37 21 8

R= 3:0
CB 4 0
SHB 66 16 95 22
CM 89 78 76 89 69 66
CBS 44 17 17 4 90 37 22 12

In the experiments in Tables 5 and 6, we generated 100 polynomials of degree 20 with uniformly
distributed real or complex conjugate zeros in disks (19) of radius R for several di�erent values of R.
The entries in the columns “Average di�erences” and “Average residuals” of Table 5 are computed
as for Table 3. We display results obtained for disks with radii between 0.2 and 3.
Finally, Tables 7 and 8 illustrate the performance of the zero�nders for polynomials  20 with

real zeros only. The zeros are uniformly distributed in the interval [ − 1; 1]. Tables 7 and 8 are
analogous to Tables 3 and 4. We see that CBS often gives signi�cantly higher accuracy than CB,
and SHB usually yields slightly higher accuracy than CBS. Our present implementation of CM
is able to accurately determine all or most zeros for the polynomials in this experiment of fairly
low degree, n610, only, due to numerous bifurcation points encountered during pathfollowing. The
performance of CM might be improved by using a more sophisticated pathfollowing method; see
[2] for a discussion.
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Table 7
Comparison of methods for 100 polynomials of each degree n zeros in [− 1; 1]

Average di�erences
n CB SHB CBS

10 8.73E−03 1.53E−03 3.16E−03
15 5.83E−02 1.43E−02 3.47E−02
20 2.07E−01 8.64E−02 1.67E−01
30 4.97E−01 2.93E−01 5.62E−01
40 7.18E−01 5.62E−01 7.94E−01

Average residuals
n CB SHB CBS  n

10 7.90E−07 4.64E−07 4.23E−07 6.92E−08
15 1.59E−06 8.51E−07 1.48E−06 9.62E−08
20 1.03E−05 4.05E−06 9.74E−06 2.69E−07
30 3.07E−04 5.24E−05 8.11E−05 7.90E−07
40 3.70E+01 5.01E−02 6.71E−02 3.34E−06

Table 8
Comparative counts for 100 polynomials of each degree n with zeros in [− 1; 1]

Di�erences Residuals

n= 10
CB 2 6
SHB 96 31 71 23
CBS 74 9 7 74 59 28

n= 15
CB 2 17
SHB 98 63 75 50
CBS 77 5 4 60 31 26

n= 20
CB 2 17
SHB 98 95 77 68
CBS 71 4 3 59 17 15

n= 30
CB 10 7
SHB 89 86 93 85
CBS 39 6 4 64 11 8

n= 40
CB 19 10
SHB 78 67 88 80
CBS 37 20 13 53 11 10
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In addition to the examples reported above, we carried out numerous numerical experiments with
the zero�nders applied to polynomials whose zeros were uniformly distributed in squares and wedges
in the complex plane. The performance of the zero�nders for these problems is similar to the
performance reported in the Tables 1–6, and we therefore omit the details. We noted that for some
classes of problems CBS performed comparatively better than in the Tables 1–6, and gave about
the same accuracy as SHB. In all examples considered, CB gave the poorest overall accuracy.

5. Conclusions

Numerous numerical experiments, some of which have been presented in Section 4, indicate that
the polynomial zero�nders CBS, CM and SHB presented in this paper, in general, yield higher
accuracy than computing eigenvalues of the associated balanced companion matrix, the CB method.
When CM �nds all zeros, this method typically yields the highest accuracy. Presently, we are
using a fairly simple path-following scheme described in [2], and this implementation of CM may
occasionally occasionally fail to �nd all zeros. Our numerical experiments suggest that CM with an
improved pathfollowing scheme would be an attractive zero�nder. Alternatively, one can use CM
as presently implemented and switch to a di�erent zero�nding method when CM fails to determine
all zeros. This approach has the advantage of allowing us to keep the pathfollowing scheme simple.
The numerical examples of Section 4, as well as other examples not reported, indicate that the
SHB method may be a good method to switch to. It is simple to implement and often gives higher
accuracy than the CB and CBS methods.
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Linear Algebra Appl. 249 (1996) 125–155.
[3] G.S. Ammar, W.B. Gragg, L. Reichel, On the eigenproblem for orthogonal matrices, in: Proceedings of the 25th

IEEE Conference on Decision and Control, Athens, 1986, Institute for Electrical and Electronic Engineers, New
York, 1986, pp. 1963–1966.

[4] G.S. Ammar, L. Reichel, D.C. Sorensen, An implementation of a divide and conquer algorithm for the unitary
eigenproblem, ACM Trans. Math. Software 18 (1992) 292–307.

[5] G.S. Ammar, L. Reichel, D.C. Sorensen, Algorithm 730, ACM Trans. Math. Software 20 (1994) 161.
[6] A. Bunse-Gerstner, L. Elsner, Schur parameter pencils for the solution of the unitary eigenproblem, Linear Algebra

Appl. 154–156 (1991) 741–778.
[7] A. Edelman, H. Murakami, Polynomial roots from companion matrix eigenvalues, Math. Comp. 64 (1995) 763–776.
[8] W. Gautschi, On the condition of algebraic equations, Numer. Math. 21 (1973) 405–424.
[9] W. Gautschi, Question of numerical condition related to polynomials, in: G.H. Golub (Ed.), Studies in Numerical

Analysis, The Mathematical Association of America, Washington, D.C., 1984, pp. 140–177.
[10] S. Goedecker, Remark on algorithms to �nd roots of polynomials, SIAM J. Sci. Comput. 15 (1994) 1059–1063.
[11] W.B. Gragg, Positive de�nite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature

on the unit circle, J. Comput. Appl. Math. 46 (1993) 183–198. (This is a slight revision of a paper originally published
(in Russian) E.S. Nikolaev (Ed.), Numerical Methods in Linear Algebra, Moscow University Press, Moscow, 1982,
pp. 16–32.

[12] W.B. Gragg, The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math. 16 (1986) 1–8.



16 G.S. Ammar et al. / Journal of Computational and Applied Mathematics 127 (2001) 1–16

[13] W.B. Gragg, Stabilization of the UHQR algorithm, in: Z. Chen, Y. Li, C. Micchelli, Y. Xu (Eds.), Advances in
Computational Mathematics, Lecture Notes in Pure and Applied Mathematics, Vol. 202, Marcel Dekker, Hong Kong,
1999, pp. 139–154.

[14] W.B. Gragg, L. Reichel, A divide and conquer method for the unitary eigenproblem, in: M.T. Heath (Ed.), Hypercube
Multiprocessors 1987, SIAM, Philadelphia, PA, 1987, pp. 639–647.

[15] W.B. Gragg, L. Reichel, A divide and conquer method for unitary and orthogonal eigenproblems, Numer. Math. 57
(1990) 695–718.
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Abstract

Complex Jacobi matrices play an important role in the study of asymptotics and zero distribution of formal orthogonal
polynomials (FOPs). The latter are essential tools in several �elds of numerical analysis, for instance in the context of
iterative methods for solving large systems of linear equations, or in the study of Pad�e approximation and Jacobi continued
fractions. In this paper we present some known and some new results on FOPs in terms of spectral properties of the
underlying (in�nite) Jacobi matrix, with a special emphasis to unbounded recurrence coe�cients. Here we recover several
classical results for real Jacobi matrices. The inverse problem of characterizing properties of the Jacobi operator in terms
of FOPs and other solutions of a given three-term recurrence is also investigated. This enables us to give results on the
approximation of the resolvent by inverses of �nite sections, with applications to the convergence of Pad�e approximants.
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1. Introduction

We denote by ‘2 the Hilbert space of complex square-summable sequences, with the usual scalar
product (u; v)=

∑
ujvj, and by (en)n¿0 its usual orthonormal basis. Furthermore, for a linear operator

T in ‘2, we denote by D(T ); R(T ); N(T ), and �(T ), its domain of de�nition, its range, its kernel,
and its spectrum, respectively.
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Given complex numbers an; bn; n¿0, with an 6= 0 for all n, we associate the in�nite tridiagonal
complex Jacobi matrix

A=




b0 a0 0 · · · · · ·
a0 b1 a1 0

0 a1 b2 a2
. . .

...
. . . . . . . . . . . .




: (1.1)

In the symmetric case bn; an ∈ R for all n one recovers the classical Jacobi matrix. Denoting by
C0⊂ ‘2 the linear space of �nite linear combinations of the basis elements e0; e1; : : :, we may identify
via the usual matrix product a complex Jacobi matrix A with an operator acting on C0. Its closure
A is called the corresponding second-order di�erence operator or Jacobi operator (see Section 2.1
for a more detailed discussion).
Second-order (or higher-order) di�erence operators have received much attention in the last years,

partly motivated by applications to nonlinear discrete dynamical systems (see [7,20,21,29,38] and the
references therein). Also, Jacobi matrices are known to be a very useful tool in the study of (formal)
orthogonal polynomials ((F)OPs), which again have applications in numerous �elds of numerical
analysis. To give an example, (formal) orthogonal polynomials have been used very successfully in
numerical linear algebra for describing both algorithmic aspects and convergence behavior of iterative
methods like conjugate gradients, GMRES, Lanczos, QMR, and many others. Another example is
given by the study of convergence of continued fractions and Pad�e approximants. Indeed, also the
study of higher-order di�erence operators is of interest in all these applications; let us mention
the Bogoyavlenskii discrete dynamical system [8], Ruhe’s block version of the Lanczos method in
numerical linear algebra, or the problem of Hermite–Pad�e and matrix Pad�e approximation (for the
latter see, e.g., the surveys [5,6]). In the present paper we will restrict ourselves to the less involved
case of three diagonals.
To start with, a linear functional c acting on the space of polynomials with complex coe�cients is

called regular if and only if det(c(xj+k))j; k=0; :::; n 6= 0 for all n¿0. Given a regular c (with c(1)= 1),
there exists a sequence (qn)n¿0 of FOPs, i.e., qn is a polynomial of degree n (unique up to a sign),
and c(qj · qk) vanishes if j 6= k and is equal to 1 otherwise. These polynomials are known to verify
a three-term recurrence of the form

anqn+1(z) = (z − bn)qn(z)− an−1qn−1(z); n¿0; q0(z) = 1; q−1(z) = 0;

where an = c(zqn+1qn) ∈ C\{0}, and bn = c(zqnqn) ∈ C. Here an; bn are known to be real if and
only if c is positive, i.e., c(P)¿0 for each nontrivial polynomial P taking nonnegative values on
the real axis, or, equivalently, det(c(xj+k))j; k=0; :::; n¿0 for all n¿0. Conversely, the Shohat–Favard
Theorem says that any (qn(z))n¿0 verifying a three-term recurrence relation of the above form is
a sequence of formal orthogonal polynomials with respect to some regular linear functional c. As
shown in Remark 2.3 below, this linear functional can be given in terms of the Jacobi operator A
de�ned above, namely c(P) = (e0; P(A)e0) for each polynomial P. In the real case one also knows
that there is orthogonality with respect to some positive Borel measure � supported on the real axis,
i.e., c(P) =

∫
P(x) d�(x).
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Notice that qn is (up to normalization) the characteristic polynomial of the �nite submatrix An of
order n of A. Also, the second-order di�erence equation

z · yn = anyn+1 + bnyn + an−1yn−1; n¿0 (1.2)

(a−1:=1) together with the initialization y−1 = 0 may be formally rewritten as the spectral equation
(zI−A) ·y=0. This gives somehow the idea that spectral properties of the Jacobi operator should
be determined by the spectral or asymptotic properties of FOPs, and vice versa. Indeed, in the real
case the link is very much known (see, for instance, [38] or [37]): if A is self-adjoint, then there
is just one measure of orthogonality (obtained by the spectral theorem applied to A), with support
being equal to the spectrum �(A) of A. Also, the zeros of OPs lie all in the convex hull of �(A),
are interlacing, and every point in �(A) attracts zeros. Furthermore, in case of bounded A one may
describe the asymptotic behavior of OPs on and outside �(A). Surprisingly, for formal orthogonal
polynomials these questions have been investigated only recently in terms of the operator A, probably
owing to the fact that here things may change quite a bit (see, for instance, Example 3.2 below).
To our knowledge, the �rst detailed account on (a class of) complex Jacobi matrices was given

by Wall in his treatise [59] on continued fractions. He dealt with the problem of convergence of
Jacobi continued fractions (J -fractions)

1 |
|z − b0

+
−a20 |

|z − b1
+

−a21 ||z − b2
+

−a22 ||z − b3
+ · · · (1.3)

having at in�nity the (possibly formal) expansion f(z)=
∑

j c(x
j)z−j−1=

∑
j (e0; A

je0)z−j−1. Their nth
convergent may be rewritten as pn(z)=qn(z), where (pn(z))n¿−1; (qn(z))n¿−1 are particular solutions
of (1.2) with initializations

q0(z) = 1; q−1(z) = 0; p0(z) = 0; p−1(z) =−1; (1.4)

i.e., qn are the FOPs mentioned above. Also, pn=qn is just the nth Pad�e approximant (at in�nity) of
the perfect power series f. Notice that, in case of a bounded operator A, f is the Laurent expansion
at in�nity of the so-called Weyl function [21]

�(z):=(e0; (zI − A)−1e0); z ∈ 
(A);

where here and in the sequel 
(A) = C\�(A) denotes the resolvent set, i.e., the set of all z ∈ C
such that N(zI − A) = {0} and R(zI − A) = ‘2 (and thus the resolvent (zI − A)−1 is bounded).
The aim of the present paper is threefold: we try to give a somehow complete account on con-

nections between FOPs, complex J -fractions and complex Jacobi matrices presented in the last �ve
years. In this context we report about recent work by Aptekarev, Kaliaguine, Van Assche, Bar-
rios, L�opez Lagomasino, Mart��nez-Finkelshtein, Torrano, Castro Smirnova, Simon, Magnus, Stahl,
Baratchart, Ambroladze, Almendral V�azquez, and the present author. Special attention in our study
is given to unbounded complex Jacobi matrices, where similar uniqueness problems occur as for
the classical moment problem. Secondly, we present some new results concerning ratio-normality of
FOPs and compact perturbations of complex Jacobi matrices. In addition, we show that many recent
results on convergence of complex J -fractions in terms of Jacobi operators [13–16,18,20] are, in
fact, results on the approximation of the resolvent of complex Jacobi operators. Finally, we mention
several open problems in this �eld of research. A main (at least partially) open question is however
omitted: do these results have a counterpart for higher-order di�erence operators?
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The paper is organized as follows: Some preliminaries and spectral properties of Jacobi operators
in terms of solutions of (1.2) are presented in Section 2. In Section 2.1 we report about the problem
of associating a unique operator to (1.1), and introduce the notion of proper Jacobi matrices. Next
to some preliminary observations, we recall in Section 2.2 Wall’s de�nition of determinate Jacobi
matrices and relate it to proper ones. Also, some su�cient conditions for determinacy are discussed
[59,13,22]. Known characterizations [7,19] of elements z of the resolvent set in terms of the asymp-
totic behavior of solutions of (1.2) are described in Section 2.3. Here we also show in Theorem 2.11
that for indeterminate complex Jacobi operators we have a similar behavior as for nonself-adjoint
Jacobi operators (where the corresponding moment problem does not have a unique solution). In
Section 2.4 we highlight the signi�cance of the Weyl function and of functions of the second kind.
Their representation as Cauchy transforms is investigated in Section 2.5, where we also study the
case of totally positive moment sequences leading to nonreal compact Jacobi matrices.
In Section 3 we describe results on the asymptotic behavior of FOPs in the resolvent set. nth-root

asymptotics for bounded complex Jacobi matrices obtained in [7,18,20] are presented in Section 3.1.
In Section 3.2 we deal with the problem of localizing zeros of FOPs, thereby generalizing some
results from [18]. We show that, roughly, under some additional hypotheses, there are only “few”
zeros in compact subsets of the resolvent set. An important tool is the study of ratios of two succes-
sive monic FOPs. An inverse open problem concerning zero-free regions is presented in Section 3.3.
In Section 3.4 we characterize compact perturbations of complex Jacobi matrices in terms of the ra-
tios mentioned above. Strong asymptotics for trace class perturbations are the subject of Section 3.5.
In the �nal Section 4, we investigate the problem of convergence of Pad�e approximants (or J -frac-
tions) and more generally of (weak, strong or norm) resolvent convergence. A version of the Kan-
torovich Theorem for complex Jacobi matrices is given in Section 4.1, together with a discussion
of its assumptions. We describe in Section 4.2 consequences for the approximation of the Weyl
function, and �nally illustrate in Section 4.3 some of our �ndings by discussing (asymptotically)
periodic complex Jacobi matrices.

2. The Jacobi operator

2.1. In�nite matrices and operators

Given an in�nite matrix A = (aj;k)j; k¿0 of complex numbers, can we de�ne correctly a (closed
and perhaps densely de�ned) operator via matrix calculus by identifying elements of ‘2 with in�nite
column vectors? Of course, owing to Hilbert and his collaborators, an answer to this question is
known, see, e.g., [2]. In this section we brie
y summarize the most important facts. Here we will
restrict ourselves to matrices A whose rows and columns are elements of ‘2, an assumption which
is obviously true for banded matrices such as our complex Jacobi matrices.
By assumption, the formal product A ·y is de�ned for any y ∈ ‘2. Thus, as a natural candidate of

an operator associated with A, we could consider the so-called maximal operator (see [30, Example
III.2.3]) [A]max with

D([A]max) = {y ∈ ‘2: A · y ∈ ‘2} (2.1)
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and [A]maxy:=A · y ∈ ‘2. However, there are other operators having interesting properties which
may be associated with A. For instance, since the columns of A are elements of ‘2, we may de�ne
a linear operator on C0 (also denoted by A) by setting

Aek = (aj;k)j¿0; k = 0; 1; 2; : : : :

Notice that [A]max is an extension
1 of A.

A minimum requirement in the spectral theory of linear operators is that the operator in question
be closed [30, Section III.5.2]. In general, our operator A is not closed, but it is closable [30,
Section III.5.3], i.e., for any sequence (y(n))n¿0⊂D(A) with y(n) → 0 and Ay(n) → v we have
v= 0. To see this, notice that

(ej; v) = lim
n→∞

∞∑
k=0

aj;ky
(n)
k = lim

n→∞(vj; y
(n)) = 0;

where vj = (aj;k)k¿0 ∈ ‘2 by assumption on the rows of A. Thus, we may consider the closure
[A]min of A, i.e., the smallest closed extension of A. Notice that

D([A]min) = {y ∈ ‘2: ∃(y(n))n¿0⊂C0 converging to y; and

(Ay(n))n¿0⊂ ‘2 converging (to [A]miny)}: (2.2)

We have the following links between the operators [A]min; [A]max, and their adjoints.

Lemma 2.1. Let the in�nite matrix AH be obtained from A by transposing and by taking complex
conjugates of the elements. Then

([A]min)
∗ = [AH]max; ([A]max)

∗ = [AH]min:

In particular; the maximal operator [A]max is a closed extension of [A]min.

Proof. In order to show the �rst equality, for short we write A=[A]min. By de�nition of the adjoint
[30, Section III.5.5]), D(A∗) equals the set of all y ∈ ‘2 such that there exists a y∗ ∈ ‘2 with

(y; Ax) = (y∗; x) for all x ∈ D(A)

and y∗ = A∗y. According to the characterization of D(A) given above and the continuity of the
scalar product, it is su�cient to require that (y; Ax) = (y∗; x) holds for all x ∈ C0, or, equivalently,

y∗
j = (ej; y

∗) = (Aej; y) for all j¿0:

Since (Aej; y) coincides with the jth component of the formal product AHy, we obtain A∗=[AH]max
by de�nition (2.1) of D([AH]max).
The second identity of Lemma 2.1 follows from the fact that A∗∗ = A by [30, Theorem III.5.29].

Finally, we obtain the last claim by observing that [A]max is an extension of A, and [A]max is
closed (since an adjoint of a densely de�ned operator is closed [30, Theorem III.5.29]).

1 Given two operators T; S in ‘2, we say that S is an extension of T (and write T ⊂ S) if D(T )⊂D(S), and Ty = Sy
for all y ∈ D(T ).
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De�nition 2.2. The in�nite matrix A with rows and columns in ‘2 is called proper if the operators
[A]max and [A]min coincide.

Notice that any operator B de�ned by matrix product (i.e., By=A ·y for y ∈ D(B)) necessarily is
a restriction of [A]max by (2.1). From Lemma 2.1 we obtain the equivalent description AH⊂B∗. If
in addition C0⊂D(B), then A⊂B⊂ [A]max. We may conclude that any closed operator B de�ned
by matrix product and C0⊂D(B) satis�es [A]min⊂B⊂ [A]max, and such an operator B is unique
if and only if A is proper. 2

Let us have a look at the special case of Hermitian matrices A, i.e., A=AH. Here Lemma 2.1
tells us that A:=[A]min has the adjoint A

∗ = [A]max (see also [52, p. 90] or [30, Example V.3.13]),
which is an extension of A. Hence A is symmetric, and we obtain the following equivalencies: A is
self-adjoint (i.e., A= A∗) if and only if A is proper if and only if there exists a unique symmetric
closed extension of A (cf. with [30, Problem III.5.25]).

Remark 2.3. The notion of proper Jacobi matrices may be motivated by considering the following
problem: given a regular functional c acting on the space of polynomials, can we describe its action
by a densely de�ned closed operator B, namely c(P) = (g; P(B)f) and, more generally,

c(P · Q) = (Q(B)∗g; P(B)f) for all polynomials P;Q (2.3)

with suitable f; g ∈ ‘2?

We �rst show that any closed operator B with Amin⊂B⊂Amax satis�es (2.3) with f = g = e0.
Obviously, it is su�cient to show the relation

ej = qj(B)e0 = qj(B)∗e0; j¿0:

Indeed, e0 = q0(B)e0 by (1.4), and by induction, using (1.2), we obtain

ajqj+1(B)e0 = Bqj(B)e0 − bjqj(B)e0 − aj−1qj−1(B)e0 = Bej − bjej − aj−1ej−1 = ajej+1;

the last equality following from A⊂B. Since aj 6= 0, the relation ej+1 = qj+1(B)e0 follows. In a
similar way the other identity is shown using the relation AH⊂B∗.
We now show that these are essentially all the operators satisfying (2.3). Notice �rst that B is

only properly characterized by (2.3) if f is a cyclic element of B (i.e., f ∈ D(Bk) for all k, and
span{Bjf: j¿0} is dense in ‘2), and g is a cyclic element of B∗. In this case, using the orthogonality
relations of the FOPs qj, we may conclude that (fn)n¿0 and (gn)n¿0, de�ned by fn = qn(B)f and
gn= qn(B)∗g, is a complete normalized biorthogonal system. The expansion coe�cients of Bfk (and
B∗gj, resp.) with respect to the system (fn)n¿0 (and (gn)n¿0, resp.) are given by

(gj; Bfk) = (fk; B∗gj) = c(zqjqk) = (ej;Aek) =




amin( j; k) if j = k + 1 or k = j + 1;

bj if j = k;

0 else:

2 Some authors consider other extensions of A which are not de�ned by matrix product, or which are de�ned by
Hilbert space extensions, see, for instance, [45, Section 6] or [42].
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In other words, up to the representation of ‘2 and its dual with the help of these di�erent bases,
we have A⊂B and AH⊂B∗, and thus Amin⊂B⊂Amax. We may conclude in particular that an
operator as in (2.3) is unique (up to basis transformations) if and only if A is proper.

For an in�nite matrix A, de�ne the quantity

||A||:= sup
u;v∈C0

∣∣∣∣(u;Av)
(u; v)

∣∣∣∣= sup
n¿0

||An||;

where on the right-hand side An denotes the principal submatrix of order n of A. Clearly, ||A|| is
the operator norm of A, and [A]min is bounded (with ||[A]min||= ||A||) if and only if ||A||¡∞.
One easily checks that in this case D([A]min)=‘2. Conversely, if D([A]min)=‘2, then A is bounded
by the closed graph theorem [30, Theorem III:5:20]. Finally, we recall the well-known estimate [30,
Example III:2:3]

||A||26
[
sup

j

∞∑
k=0

|aj;k |
]
sup

k

∞∑
j=0

|aj;k |

 : (2.4)

Using this formula, one easily veri�es the well-known fact that banded matrices A are bounded if
and only if their entries are uniformly bounded.
We may conclude that a bounded matrix A is proper, and thus we may associate a unique closed

operator A=[A]min whose action is described via matrix calculus. However, these properties do not
remain necessarily true for unbounded matrices.

2.2. Spectral properties of Jacobi operators

In what follows, A will be the complex Jacobi matrix of (1.1) with entries an; bn ∈ C; an 6= 0,
We refer to its closure A= [A]min as the corresponding di�erence operator or Jacobi operator, and
denote by A# = [A]max the maximal closed extension of A de�ned by matrix product. Since AH is
obtained from A by taking the complex conjugate of each entry, we may conclude from Lemma 2.1
that A# =�A∗�, where � denotes the complex conjugation operator de�ned by �(yj)j¿0 = (yj)j¿0.
The aim of this section is to summarize some basic properties of the operators A; A# in terms of

solutions q(z):=(qn(z))n¿0 and p(z):=(pn(z))n¿0 of recurrence (1.2), (1.4).
We will make use of the projection operators �j de�ned by

�j(y0; y1; y2; : : :) = (y0; y1; : : : ; yj−1; 0; 0; : : :) ∈ C0; j¿1:

Clearly, �jy → y for j → ∞ for any y ∈ ‘2. Also, one easily checks that, for any sequence
y = (yn)n¿0, one has �jy ∈ D(A), with

A(�jy) =�j(A · y) + aj−1 · (0; : : : ; 0︸ ︷︷ ︸
j−1

;−yj; yj−1; 0; 0; : : : :): (2.5)

Using (2.4), one easily veri�es that A is bounded if and only if the entries of A are uniformly
bounded; more precisely,

sup
n¿0

√
|an−1|2 + |bn|2 + |an|26||A||6 sup

n¿0
(|an−1|+ |bn|+ |an|) (2.6)

(where we tacitly put a−1 = 0). Also, notice that A is Hermitian if and only if it is real.
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Some further elementary observations are summarized in

Lemma 2.4. (a) For z ∈ C there holds
06dimN(zI − A)6dimN(zI − A#)61

with N(zI − A#) = ‘2 ∩ {�q(z): � ∈ C}.
(b) For n¿0 and z ∈ C we have en − qn(z)e0 ∈ R(zI − A).
(c) For z ∈ C there holds {y ∈ D(A#): (zI − A#)y = e0}= ‘2 ∩ {
q(z)− p(z): 
 ∈ C}.
(d) For all z ∈ C we have D(zI − A#) =D(A#) =�D(A∗); N(zI − A#) =�N((zI − A)∗); and

R(zI − A#) =�R((zI − A)∗).

Proof. (a) Since A⊂A#, we only have to show the last assertion. By (2.1), y=(yn)n¿0 ∈ N(zI−A#)
if and only if y ∈ ‘2, and we have (zI −A) · y = 0. The latter identity may be rewritten as

−anyn+1 + (z − bn)yn − an−1yn−1 = 0; n¿0; y−1 = 0:

Comparing with (1.2), (1.4), we see that (zI −A) · y = 0 if and only if y = y0 · q(z), leading to
the above description of N(zI − A#).
(b) Notice that (1.2), (1.4) may be rewritten as

(zI −A) · q(z) = 0; (zI −A) · p(z) =−e0:

Combining this with (2.5), we obtain

(zI − A)�n+1p(z) =−e0 + an · (0; : : : ; 0︸ ︷︷ ︸
n

; pn+1(z);−pn(z); 0; 0; : : :); (2.7)

(zI − A)�n+1q(z) = an · (0; : : : ; 0︸ ︷︷ ︸
n

; qn+1(z);−qn(z); 0; 0; : : :): (2.8)

Also, one easily veri�es by induction, using (1.2), that

an · (qn(z) · pn+1(z)− qn+1(z) · pn(z)) = 1; n¿− 1; z ∈ C: (2.9)

Thus, we have found an element of C0⊂D(A) satisfying

(zI − A)�n+1[qn(z)p(z)− pn(z)q(z)]

=− qn(z)e0 + an · (0; : : : ; 0︸ ︷︷ ︸
n

; qn(z)pn+1(z)− pn(z)qn+1(z); 0; 0; : : :) = en − qn(z)e0:

(c) Since (zI −A) · (
 · q(z) − p(z)) = e0 for all 
, a proof for this assertion follows the same
lines as the one of part (a). We omit the details.
(d) This part is an immediate consequence of the fact that

(zI − A)∗ = �zI − A∗ = �zI −�A#� =�(zI − A#)�:

For a closed densely de�ned linear operator T in ‘2, the integer dimN(T ) is usually referred to as
the nullity of T , and dimN(zI −T ) coincides with the geometric multiplicity of the “eigenvalue” z
(if larger than zero). One also de�nes the de�ciency of T as the codimension in ‘2 of R(T ). Provided
that R(T ) is closed, it follows from [30, Theorem IV:5:13, Lemma III:1:40] that the de�ciency of T
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coincides with dimN(T ∗), and that also R(T ∗) is closed. Taking into account Lemma 2.4(a), (d),
we may conclude that both de�ciency and nullity are bounded by one for our operators zI − A and
zI − A# provided one of them has closed range. Consequently, we obtain for the essential spectrum
[30, Chapter IV:5:6]

�ess(A) = �ess(A#) = {z ∈ C: R(zI − A) is not closed}: (2.10)

Recall that this (closed) part of the spectrum of A (or A#) remains invariant under compact perturba-
tions [30, Theorem IV:5:35]. Let us relate De�nition 2.2 to the notion of determinacy as introduced
by Wall.

De�nition 2.5 (See Wall [59, De�nition 22:1]). The complex Jacobi matrixA is called determinate
if at least one of the sequences p(0) or q(0) is not an element of ‘2.

According to [59, Theorem 22:1], A is indeterminate if p(z) and q(z) are elements of ‘2 for one
z ∈ C, and in this case they are elements of ‘2 for all z ∈ C. It is also known (see [1, pp. 138–141]
or [38, p. 76]) that a real Jacobi matrix is proper (i.e., self-adjoint) if and only if it is determinate.
In the general case we have the following

Theorem 2.6 (Cf. with Beckermann [19, Proposition 3:2]). (a) A determinate complex Jacobi ma-
trix A with �ess(A) 6= C is proper.
(b) A proper complex Jacobi matrix A is determinate.
(c) If 
(A) 6= ∅ then A is proper.

Proof. Part (a) has been established in [19, Proposition 3:2], the proof is mainly based on Lemma
2.4(d) and the fact that in the case z 6∈ �ess(A) the set R(zI −A) (and R((zI −A)∗), resp.) coincides
with the orthogonal complement of N((zI − A)∗) (and of N(zI − A), resp.).
In order to show part (b), suppose that A is not determinate. Then dimN(zI − A#) = 1 and

C0⊂R(zI − A#) for all z ∈ C according to Lemma 2.4(a)–(c), and thus C0⊂R((zI − A)∗) by
Lemma 2.4(d). Taking into account that N(zI−A) is just the orthogonal complement R((zI−A)∗)⊥

of R((zI − A)∗), we may conclude that dimN(zI − A) = 0, showing that A 6= A#.
Part (c) was also mentioned in [19, Proposition 3:2]: Let z ∈ 
(A). Then R(zI−A)=‘2 by de�ni-

tion of the resolvent set. HenceN((zI−A)∗)={0}, implying thatN(zI−A#)={0} by Lemma 2.4(d).
From Lemma 2.4(a) we may conclude that (qn(z))n¿0 6∈ ‘2, and hence A is determinate. Finally,
since C\�ess(A)⊃
(A) is nonempty, it follows from Theorem 2.6(a) that A is proper.

In order to complete the statement of Theorem 2.6, we should mention the following charac-
terization in terms of operators of indeterminate complex Jacobi matrices which will be shown in
Theorem 2.11 below: if A is indeterminate, then �ess(A) is empty and �(A) = C; more precisely,
for all z ∈ C, the kernel of zI − A is empty, R(zI − A) is closed and has codimension 1, the kernel
of zI − A# has dimension 1, and R(zI − A#) = ‘2.
The numerical range (or �eld of values) [30, Section V:3:2] of a linear operator T in ‘2 is de�ned

by

�(T ) = {(y; Ty): y ∈ D(T ); ||y||= 1}:
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By a theorem of Hausdor�, �(T ) and its closure �(T ) are convex. Also, �ess(A)⊂�(A) by [30,
Theorem V:3:2]. Hence, for complex Jacobi matrices with �ess(A) 6= C or �(A) 6= C, the notions of
determinacy and properness are equivalent. This includes the case of real Jacobi matrices since here
�(A)⊂R. Notice that �(A) 6= C implies that �(A) is included in some half-plane of C. The case
of the lower half-plane {Im(z)60} was considered by Wall [59, De�nition 16:1], who called the
corresponding J -fraction positive de�nite and gave characterizations of such complex Jacobi matrices
in terms of chain sequences [59, Theorem 16:2]. In this context we should also mention that �(A)
is compact if and only if A is bounded; indeed, one knows [27, Eq. (1:6)] that sup{|z|: z ∈ �(A)} ∈
[||A||=2; ||A||].
It is not known whether there exists a determinate complex Jacobi matrix which is not proper.

Since many of the results presented below are valid either for proper or for indeterminate Jacobi
matrices, a clari�cation of this problem seems to be desirable.
Results related to Theorem 2.6 have been discussed by several authors: Barrios et al. [13, Lemma 3]

showed that a complex Jacobi matrix A = A′ + A′′ with A′ self-adjoint and A′′ bounded is
determinate. More generally, Castro Smirnova [22, Theorem 2] proved that a bounded perturbation
of a real Jacobi matrix A is determinate 3 if and only if A is determinate. It is an interesting open
problem to characterize determinacy or properness in terms of the real and the imaginary part of a
Jacobi matrix.
Let us here have a look at a su�cient condition which will be used later.

Example 2.7. It is known [59, Theorem 25:1] that A is determinate provided that
∞∑
n=0

1
|an| =+∞:

We claim that then A is also proper. To see this, let y ∈ D(A#). Choose integers n0¡n1¡ · · · with

�‘:=
n‘+1−1∑
j=n‘

1
|aj−1|¿1; ‘¿0;

and put

y(‘) =
1
�‘

n‘+1−1∑
j=n‘

1
|aj−1|�jy ∈ C0:

Since n‘ → ∞ and �jy → y, one obtains y(‘) → y. Furthermore, according to (2.5),

||Ay(‘) − A#y||6 1
�‘

n‘+1−1∑
j=n‘

||�jA#y − A#y||
|aj−1| +

1
�‘

∣∣∣∣∣
∣∣∣∣∣
n‘+1−1∑
j=n‘

A�jy −�jA#y
|aj−1|

∣∣∣∣∣
∣∣∣∣∣

6 ||�n‘A
#y − A#y||+ 1

�‘

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
n‘+1−1∑
j=n‘

(0; : : : ; 0︸ ︷︷ ︸
j−1

; |yj|; |yj−1|; 0; 0; : : : :)
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
3 Of course, by (2.1), (2.2), a proper Jacobi matrix A remains proper after adding some bounded perturbation.
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6 ||�n‘A
#y − A#y||+ 2

�‘
||�n‘y − y||

and the right-hand side clearly tends to 0 for ‘ → ∞. Thus y ∈ D(A) by (2.2).

Combining Example 2.7 with the techniques of [18, Example 5.2], one may construct for any
closed set E⊂C a proper di�erence operator A satisfying �ess(A)=E. In particular [18, Example 5:2],
notice that (in contrast to the real case) the resolvent set may consist of several connected compo-
nents.
To conclude this part, recall from [19] a further characterization of the essential spectrum in terms

of associated Jacobi matrices. We denote by A(k) the “shifted” (complex) Jacobi matrix obtained by
replacing (aj; bj) in A by (aj+k ; bj+k), j¿0. As in [30, Chapter IV:6:1] one shows that the operators
corresponding to A =A(0), and to A(k), respectively, have the same essential spectrum for any
k¿0. In our case we have the following stronger assertion.

Theorem 2.8 (See Beckermann [19, Proposition 3:4]). Suppose thatA is determinate. Then �ess(A)
= �(A(k)) ∩ �(A(k+1)) for any k¿0. More precisely; for any z ∈ C\�ess(A) there exists a nontrivial
‘2-solution (sn(z))n¿−1 of (1:2); with


(A(k)) = {z ∈ C\�ess(A): sk−1(z) 6= 0}; k¿0: (2.11)

If the entries of the di�erence of two (complex) Jacobi matrices tend to zero along diagonals,
then the di�erence of the corresponding di�erence operators is known to be compact [2]. We can
now give a di�erent characterization of the essential spectrum, namely

�ess(A) =
⋂

{�(A′): A′ is a di�erence operator and A− A′ is compact}: (2.12)

Here the inclusion ⊂ is true even in a more general setting [30, Theorem IV.5.35]. In order to see
the other inclusion, notice that for the particular solution of Theorem 2.8 there necessarily holds
|s−1(z)| + |s0(z)| 6= 0. Therefore, by Theorem 2.8, the essential spectrum is already obtained by
taking the intersection with respect to all di�erence operators found by varying the entry a0 of A,
i.e., by rank 1 perturbations.

2.3. Characterization of the spectrum

In this subsection we are concerned with the problem of characterizing the spectrum of a di�erence
operator in terms of solutions of the recurrence relation (1.2). This connection can be exploited in
several ways. On the one hand, one sometimes knows the asymptotic behavior of solutions of (1.2)
(as for instance in the case of (asymptotically) periodic recurrence coe�cients, cf. [15,16,20,26,34]),
and it is possible to determine the shape of the spectrum. On the other hand, we will see in Section
3 that we obtain nth-root asymptotics for FOPs and functions of the second kind on the resolvent
set.
A description of the resolvent operator (or more precisely of a (formal) “right reciprocal”) in terms

of the solutions p(z); q(z) of recurrence (1.2) has been given already by Wall [59, Sections 59–61].
Starting with a paper of Aptekarev et al. [7], the problem of characterizing the spectrum has received
much attention in the last years, see [15,16,19,20] for Jacobi matrices and the survey papers [5,6]
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and the references therein for higher-order di�erence operators. A typical example of characterizing
the spectrum in terms of only one solution of (1.2) is the following.

Theorem 2.9 (See Beckermann [19, Theorem 2:3]). Let A be bounded. Then z ∈ 
(A) if and only
if

sup
n¿0

∑n
j=0 |qj(z)|2

|an|2[|qn(z)|2 + |qn+1(z)|2]¡∞: (2.13)

Indeed, using (2.8), we obtain for z ∈ 
(A) and n¿0

1
||zI − A||26

∑n
j=0 |qj(z)|2

|an|2[|qn(z)|2 + |qn+1(z)|2] =
||�n+1q(z)||2

||(zI − A)�n+1q(z)||26||(zI − A)−1||2; (2.14)

showing that (2.13) holds. The other implication is more involved; here one applies the character-
ization of Theorem 2.12 below. Notice that we may reformulate Theorem 2.9 as follows: we have
z ∈ �(A) if and only if the sequence (�nq(z)=||�nq(z)||)n¿0 contains a subsequence of approximate
eigenvectors (i.e., a sequence of elements of D(A) of norm one so that their images under zI − A
tend to zero).
In view of (2.13), (2.14), we can give another formulation of Theorem 2.9: we have z ∈ 
(A)

if and only if the sequence of numerators, and denominators in (2.13), respectively, have the same
asymptotic behavior. It becomes clear from the following considerations (and can also be checked
directly) that then both sequences will grow exponentially. It seems that, even for the classical case
of real bounded Jacobi matrices, this result has only been found recently [19]. As mentioned before,
here the spectrum of A coincides with the support of the measure of orthogonality � of (qn)n¿0.
Some further consequences of relation (2.13) concerning the distribution of zeros of FOPs will

be discussed in Section 3.
In order to describe other characterizations of the spectrum, we will �x z ∈ C, and denote by

R(
); 
 ∈ C, the in�nite matrix with elements

R(
)j; k =

{
qj(z) · {
 · qk(z)− pk(z)} if 06j6k;

{qj(z) · 
− pj(z)} · qk(z) if 06k6j;

j; k = 0; 1; 2; : : : . These matrices are just the (formal) “right reciprocals” mentioned by Wall [59,
Theorem 60:2]. In the next statement we characterize the resolvent set of possibly unbounded dif-
ference operators in terms of two solutions of (1.2). A special case of this assertion may be found
in [59, Theorem 61:2].

Theorem 2.10. We have z ∈ 
(A) if and only if A is proper; and there exists a 
 ∈ C such that
R(
) is bounded. In this case; 
 is unique; and the resolvent is given by (zI − A)−1 = [R(
)]min; in
particular 
= (e0; (zI − A)−1e0).

Proof. Let z ∈ 
(A), and denote by R= (Rj; k)j; k=0;1; ::: the (bounded) in�nite matrix corresponding
to the resolvent operator (zI − A)−1. It follows from Theorem 2.6(c) that A is proper. Thus the
�rst implication follows by showing that R=R(
) for 
=(e0; (zI −A)−1e0). Since R((zI −A)−1)=



B. Beckermann / Journal of Computational and Applied Mathematics 127 (2001) 17–65 29

D(zI − A), we obtain

(zI − A)[R · e0] = (zI − A)[(zI − A)−1e0] = e0:

From Lemma 2.4(c) we get the form of the �rst column of R, namely Rj;0=
qj(z)−pj(z)=R(
)j;0
for some 
 ∈ C. Here the identity 
 = (e0; (zI − A)−1e0) is obtained by comparing the values for
the index j=0. The form of the other columns of R is obtained from Lemma 2.4(b) and its proof.
Indeed, we have for j¿1; k¿0

Rj; k − qk(z)Rj;0 = (ej; (zI − A)−1[ek − qk(z)e0]) = (ej; �k+1[qk(z)p(z)− pk(z)q(z)])

and thus Rj; k =R(
)j; k .
Conversely, suppose that R(
) is bounded, and denote by R its closure. By some elementary

calculations using (1.2) and (2.9) one veri�es that

R(
) · (zej −Aej) = ej; j¿0

and thus R(zI − A)y = y for all y ∈ C0 by linearity. Recalling (2.2), we may conclude that

inf
y∈D(A)

||(zI − A)y||
||y|| = inf

y∈C0

||(zI − A)y||
||y|| = inf

y∈C0

||(zI − A)y||
||R(zI − A)y||¿

1
||R||¿0:

Consequently, N(zI −A)= {0}, and from [30, Theorem IV.5.2] if follows that R(zI −A) is closed.
In order to establish our claim z ∈ 
(A), it remains to show that R(zI − A) is dense in ‘2. Since
R(
) is bounded, its �rst column y(
) is an element of ‘2. Using Lemma 2.4(c), we may conclude
that e0 ∈ R(zI−A#), and thus e0 ∈ R(zI−A) since A is proper. Combining this with Lemma 2.4(b),
we �nd that C0⊂R(zI − A), and hence R(zI − A) = ‘2.
For establishing the second sentence of Theorem 2.10, we still need to show that the 
 of the

preceding part of the proof necessarily coincides with (e0; (zI −A)−1e0). By construction of y(
) we
have (zI − A#)y(
) = (zI − A)y(
) = e0, and thus 
= (e0; y(
)) = (e0; (zI − A)−1e0).

For the sake of completeness, let us also describe the case of operators A which are not proper.
Here we have either the trivial case �ess(A)=C, or otherwise A is indeterminate by Theorem 2.6(a).
In the latter case, we �nd exactly the same phenomena as for real Jacobi matrices (see, e.g., [1,38]
or [45, Theorem 2.6]).

Theorem 2.11. Suppose that A is indeterminate. Then the following assertions hold:
(a) �ess(A) = ∅ and �(A) = �(A#) = C.
(b) A# is a two-dimensional extension of A. Furthermore; all other operators A[�] with A⊂A[�]⊂A#

are one-dimensional extensions of A; they may be parametrized by � ∈ C ∪ {∞} via

D(A[�]) =
{
y + �

�q(0)− p(0)
1 + |�| : y ∈ D(A); � ∈ C

}
:

(c) We have �ess(A[�]) = ∅; and A∗
[�] =�A[�]� for all �. Furthermore; there exist entire functions

a1; a2; a3; a4 : C→ C with a1a4 − a2a3 = 1 such that

�(A[�]) = {z ∈ C: �[�](z) =∞}; where �[�](z):=
a1(z)− a2(z)�
a3(z)− a4(z)�

:
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Finally; the resolvent of A[�] at z ∈ 
(A[�])) is given by the closure of R(�[�](z)); which is a
compact operator of Schmidt class.

Proof. For z ∈ C, consider the in�nite matrix S(z) with entries

S(z)j; k =

{
qk(z)pj(z)− qj(z)pk(z) if 06j6k;

0 if 06k6j:

Since A is indeterminate, we get
∑

j; k |S(z)j; k |2¡∞. In particular, the closure S(z) of S(z) is
bounded, and more precisely a compact operator of Schmidt class [30, Section V.2.4]. By some
elementary calculations using (1.2) and (2.9) one veri�es that S(z) · (zej −Aej) = ej for j¿0. As
in the last part of the proof of Theorem 2.10 it follows that S(z) is a left-inverse of zI − A, and it
follows that R(zI−A) is closed and N(zI−A)={0}. Since by assumption N(zI−A#)=span(q(z)),
we obtain

R(zI − A#) =N(zI − A)⊥ = ‘2; R(zI − A) =�N(zI − A#)⊥ = span(�q(z))⊥; z ∈ C:
Using (2.10), we may conclude that part (a) holds.
For a proof of (b), let y ∈ D(A#). Since A#p(0) =−e0 by Lemma 2.4(c), we have

A#(y + (�q(0); A#y) · p(0)) ∈ span(�q(0))⊥ =R(A):

Consequently, there exists a y′ ∈ D(A) with 0 = A#(y + (�q(0); A#y) · p(0)) − Ay′ = A#(y +
(�q(0); A#y) · p(0) − y′), showing that y + (�q(0); A#y) · p(0) − y′ is a multiple of q(0). Hence
A# is a two-dimensional extension of A. Since any other extension either has a nontrivial kernel
(�=∞) or otherwise the image ‘2 (� 6=∞), the second part of the assertion follows.
It remains to show part (c). Following [59, Section 23], we de�ne the entire functions

a1(z) = z
∞∑
j=0

pj(0)pj(z); a2(z) = 1 + z
∞∑
j=0

qj(0)pj(z);

a3(z) =−1 + z
∞∑
j=0

pj(0)qj(z); a4(z) = z
∞∑
j=0

qj(0)qj(z):

It is shown in [59, Theorem 23:1] that indeed a1(z)a4(z)− a2(z)a3(z) = 1 for all z ∈ C. Let z ∈ C.
We claim that, for a suitable unique 
 ∈ C ∪ {∞} (depending on �; z),

�

q(z)− p(z)
1 + |
| ∈ D((zI − A[�])∗); with (zI − A[�])∗�


q(z)− p(z)
1 + |
| =

e0
1 + |
| : (2.15)

Indeed, for any y ∈ D(A) and � ∈ C(
e0

1 + |
| ; y + �
�q(0)− p(0)
1 + |�|

)
−
(
�


q(z)− p(z)
1 + |
| ; (zI − A[�])

(
y + �

�q(0)− p(0)
1 + |�|

))

=
(e0; y) + ��=(1 + |�|)

1 + |
| −
(
(zI − A)∗�


q(z)− p(z)
1 + |
| ; y

)

−
(
�


q(z)− p(z)
1 + |
| ;

�(�zq(0)− zp(0) + e0)
1 + |�|

)
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=
�

(1 + |�|)(1 + |
|)[�− 
− z(�(
q(z)− p(z)); �q(0)− p(0))]

=
�

(1 + |�|)(1 + |
|)[− [a1(z)− a2(z)�] + 
[a3(z)− a4(z)�]]

and the term on the right-hand side equals zero for 
= �[�](z). Thus (2.15) holds.
We are now prepared to show part (c). First, notice that also zI − A[�] is a one-dimensional

extension of zI − A for all z ∈ C. Therefore, R(zI − A[�]) equals either ‘2 or R(zI − A), and
hence is closed for all z ∈ C. Consequently, �ess(A[�]) = ∅. Secondly, A⊂A[�]⊂A# implies that
�A�=(A#)∗ ⊂A∗

[�]⊂�A#�=A∗, and hence A∗
[�] is a one-dimensional extension of �A�. Noticing

that �[�](0) = �, we may conclude from (2.15) for z = 0 that �(�q(0)− p(0))=(1 + |�|) ∈ D(A∗
[�]).

Since the one-dimensional extensions of �A� have been parametrized in part (b), it follows that
A∗
[�] = �A[�]� for all �. Taking into account that R(zI − A[�]) is closed, we may conclude that

N(zI − A[�]) = ∅ if and only if R(zI − A[�]) = ‘2, which by (2.15) is equivalent to �[�](z) 6= ∞.
In the latter case, applying [30, Theorem IV.5.2], we �nd that z ∈ 
(A[�]), and thus �(A[�]) has the
form claimed in the assertion.
Finally, in the case 
 = �[�](z) 6= ∞, it follows again from (2.15) that (ej; (zI − A[�])−1e0) =

�[�](z)qj(z) − pj(z) for j¿0, and the characterization (zI − A)−1 = [R(�[�](z))]min is proved as in
the �rst part of the proof of Theorem 2.10. Since

R(�[�](z)) =S(z) + ((�[�](z)qj(z)− pj(z))qk(z))j; k=0;1; :::
and S(z) is of Schmidt class, the same is true for R(�[�](z)). This terminates the proof of Theorem
2:11.

Under the assumptions of Theorem 2.11, suppose in addition that A is real. Then the extension
A[�] of A is symmetric if and only if � ∈ R∪ {∞}. It follows from part (b) that A[�] is self-adjoint,
i.e., we obtain all self-adjoint extensions of the di�erence operator A in ‘2 (cf. with [1; 45, Theorem
2.6]). Notice also that then the corresponding functions �[�](z) are just the Cauchy transforms of the
extremal [44, Theorem 2.13] or Neumann solutions [45] of the moment problem (which according
to part (c) are discrete).
Suppose that A is bounded (and thus A is proper and determinate). In this case it is known [23]

that there is an exponential decay rate for the entries of the resolvent of the form (2.16). Conversely,
any in�nite matrix with entries verifying (2.16) is bounded. We thus obtain the following result of
Aptekarev, Kaliaguine and Van Assche mentioned already in the introduction.

Theorem 2.12 (cf. with Aptekarev et al. [7, Theorem 1]). Let A be bounded. Then z ∈
(A) if and
only if there exists a 
(z) ∈ C and positive constants �(z) and �(z) such that for all j; k¿0

|R(
(z))j; k |6�(z) · �(z)|k−j|; �(z)¡1: (2.16)

The equivalence of Theorem 2.12 remains true for unbounded di�erence operators where the
sequence of o�diagonal entries (an)n¿0 is bounded (see, e.g., [25, Proposition 2:2]) or contains a
“su�ciently dense” bounded subsequence (namely, there exists an increasing sequence (nk)k¿0 of
indices so that both sequences (ank )k¿0 and (nk+1 − nk)k¿0 are bounded, see [18, Theorem 2:1]). In
these two cases, the matrix A is proper according to Example 2.7.
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Notice that in the original statement of [7, Theorem 1] the authors impose some additional con-
ditions on z which are not necessary. Also, the authors treat general tridiagonal matrices A where
the entries of the superdiagonal may di�er from those on the subdiagonal. Such operators can be
obtained by multiplying a complex Jacobi matrix on the left by some suitable diagonal matrix and
on the right by its inverse, i.e., we rescale our recurrence relation (1.2). Such recurrence relations
occur for instance in the context of monic (F)OPs, whereas we have chosen the normalization of
orthonormal FOPs. The following result of Kaliaguine and Beckermann shows that our normalization
gives the smallest spectrum.

Theorem 2.13 (Beckermann and Kaliaguine [20, Theorem 2:3]). Let A be a bounded complex
Jacobi matrix; and consider a bounded tridiagonal matrix A′ =DAD−1 with diagonal D. Then
for the corresponding di�erence operators A and A′ we have 
(A′)⊂
(A).

As an example, take the tridiagonal Toeplitz matrix with diagonal entries a=2; 0; 1=(2a). Here it is
known that the spectrum is the interior and the boundary of an ellipse with foci ±1 and half axes
|a ± 1=a|=2, and it is minimal (namely the interval [ − 1; 1]) for a = 1. Notice also that for monic
FOPs one chooses the normalization a= 1

2 .
It would be interesting to generalize Theorem 2.13 to unbounded Jacobi matrices.

2.4. The Weyl function and functions of the second kind

Following Berezanskii (see [21]), we call

�(z):=(e0; (zI − A)−1e0); z ∈ 
(A); (2.17)

the Weyl function of A. Since the resolvent is analytic on 
(A), the same is true for the Weyl
function. If the operator A is bounded (or, equivalently, if the entries of A are uniformly bounded),
then � is analytic for |z|¿||A||. Then its Laurent series at in�nity is given by

�(z) ∼
∞∑
j=0

(e0; Aje0)
zj+1

; (2.18)

i.e., its coe�cients are the moments of the linear functional c of formal orthogonality (some authors
refer to the series on the right-hand side of (2.18) as the symbol of c). In the case where the
numerical range of A is not the whole plane (as for instance for real Jacobi matrices), one may
show (see, e.g., [59, Theorem 84:3]) that (2.18) can be interpreted as an asymptotic expansion of
� in some sector.
The associated functions of the second kind are given by

rn(z) = (en; (zI − A)−1e0) = qn(z)�(z)− pn(z); n¿0; z ∈ 
(A);

where the last representation follows from Theorem 2.10 and the construction of R(�(z)). Similarly,
we may express the other entries as

(ej; (zI − A)−1ek) = (ek ; (zI − A)−1ej) = rk(z)qj(z); 06j6k; z ∈ 
(A): (2.19)

In case of a bounded operator A, we know from [18, Theorem 5:3] that the Weyl function contains
already all information about isolated points of the spectrum. The proof given for this assertion only
uses the representation (2.19), and thus also applies for unbounded operators.
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Theorem 2.14 (Beckermann [18, Theorem 5:3 and Corollary 5:6]). Let � be an isolated point of
�(A). Then � ∈ �ess(A) if and only if � has an essential singularity in �; and � is an eigenvalue of
algebraic multiplicity m¡∞ if and only if � has a pole of multiplicity m. In particular; if �(A)
is countable; then the set of singularities of � coincides with �(A).

A proof of the second sentence of Theorem 2.14 is based on the observation that any element of
a closed and countable set �⊂C is either an isolated point or a limit of isolated points of �. Notice
that the spectrum is in particular countable and has the only accumulation point b ∈ C if A− bI is
compact, i.e., an → 0 and bn → b (see for instance Corollary 2.17 below). Here the Weyl function is
analytic in 
(A) (and in no larger set), meromorphic in C\{b}, and has an essential singularity at
b. For a nice survey on compact Jacobi matrices we refer the reader to [57].
Relation (2.19) allows us also to compare the growth of FOPs and of functions of the second

kind. Indeed, according to (2.9) we have

an(qn+1(z)rn(z)− rn+1(z)qn(z)) = 1; n¿0; z ∈ 
(A): (2.20)

This implies that

16 |an|
√
|qn(z)|2 + |qn+1(z)|2

√
|rn(z)|2 + |rn+1(z)|2

6 1 + 2|an| · ||(zI − A)−1||; (2.21)

16
√
|qn(z)|2 + |anqn+1(z)|2

√
|rn(z)|2 + |anrn+1(z)|2

6 1 + (1 + |an|2)||(zI − A)−1|| (2.22)

for all z ∈ 
(A) and n¿0. Indeed, the left-hand inequalities of (2.21), (2.22) follow by applying
the Cauchy–Schwarz inequality on (2.20). In order to verify the right-hand estimate in, e.g., (2.21),
we notice that, by (2.20),

|an|2(|qn(z)|2 + |qn+1(z)|2)(|rn(z)|2 + |rn+1(z)|2)
=|an|2[|qn(z)rn(z)|2 + |qn(z)rn+1(z)|2 + |qn+1(z)rn+1(z)|2] + |1 + anrn+1(z)qn(z)|2:

Each term of the form rj(z)qk(z) occurring on the right-hand side may be bounded by ||(zI −A)−1||,
leading to (2.21).
If additional information on the sequence (an)n¿0 is available, we may be even much more precise.

Corollary 2.15. Let (an)n¿0 be bounded. Then there exist continuous functions � :
(A)→ (0;+∞)
and � :
(A)→ (0; 1) such that for all 06j6k and for all z ∈ 
(A)

|rk(z) · qj(z)|6�(z) · �(z)k−j: (2.23)

If in addition A is bounded; then the functions �(z) and |z| · �(z) are continuous at in�nity.

Here (2.23) follows from Theorem 2.12. The continuity of the functions �; � has been discussed
in [20; Lemma 3:3; 18; Lemma 2:3] for bounded A, and implicitly in [19, proof of Theorem 2:1]
for bounded (an)n¿0.
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2.5. Some special cases

It is well known (see, e.g., [11]) that a linear functional c having real moments is positive (i.e.,
det(c(xj+k))j; k=0; :::; n¿0 for all n¿0) if and only if c has the representation

c(P) =
∫

P(x) d�(x) for any polynomial P; (2.24)

where � is some positive Borel measure with real in�nite support supp(�). Under these assumptions,
the support is a part of the positive real axis if and only if in addition det(c(xj+k+1))j; k=0; :::; n¿0 for
all n¿0. Furthermore, the sequence of moments is totally monotone (i.e., (−1)k�kc(xn)¿0 for all
n; k¿0, see [11, Section 5:4:1]) if and only if (2.24) holds with � some positive Borel measure
with in�nite support supp(�)⊂ [0; 1].
In all these cases, the corresponding Jacobi matrix is real, and the corresponding measure is unique

(uniqueness of the moment problem) if and only if A is proper (in other words, A is self-adjoint).
In this case, � can be obtained by the Spectral Theorem, with supp(�) = �(A)⊂R, and

�(z) =
∫
d�(x)
z − x

(2.25)

holds for all z 6∈ �(A).
In case of complex bounded Jacobi matrices (or more general proper operators with 
(A) 6⊂�(A)),

we may also obtain a complex-valued measure � satisfying (2.24) and (2.25) via the Cauchy in-
tegral formula; however, in general �(A) 6= supp(�). In all these cases, we recover the following
well-known representation of functions of the second kind as Cauchy transforms.

Lemma 2.16. Suppose that there exists some (real- or complex-valued) Borel measure � such that
(2:24) holds; and some set U ⊂
(A) such that (2:25) is true for all z ∈ U . Then

rk(z)qj(z) =
∫

qj(x)qk(x)
z − x

d�(x); 06j6k; z ∈ U:

Proof. Consider the sequence of Cauchy transforms

r̃n(z):=
∫

qn(x)
z − x

d�(x); n¿0

and r̃−1=0. One easily checks, using (2.24) and (1.2), that −anr̃n+1(z)+(z−bn)r̃n(z)−an−1r̃n−1(z)=∫
qn(x) d�(x)= c(qn)=�n;0 for n¿0. Moreover, r̃0(z)=�(z)= r0(z) for z ∈ U by (2.25) and (2.19).

Consequently, for z ∈ U , (r̃n(z))n¿0 satis�es the same recurrence and initialization as the sequence
(rn(z))n¿0, implying that r̃n(z) = rn(z). Furthermore, for j6k there holds

rk(z)qj(z)−
∫

qj(x)qk(x)
z − x

d�(x) =
∫

qj(z)− qj(x)
z − x

qk(x) d�(x):

Since the fraction on the right-hand side is a polynomial of degree¡j6k in x, the right-hand integral
vanishes by orthogonality and (2.24).

If A is bounded, then any measure with compact support satisfying (2.24) will ful�ll (2.25) with
U being equal to the unbounded component of the complement of �(A)∪supp(�), since the functions
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on both sides of (2.25) have the same Laurent expansion at in�nity. It would be very interesting
to prove for general nonreal (unbounded but proper) Jacobi matrices that if (2.24) holds for some
measure with compact support, then also (2.25) is true for z ∈ U , where U is the intersection of

(A) with the unbounded connected component of C\supp(�).
To conclude this section let us have a look at a di�erent class of functionals which to our

knowledge has not yet been studied in the context of complex Jacobi matrices: It is known from the
work of Schoenberg and Edrei that the sequence of (real) moments (cn)n¿0; cn=c(xn); c0=1; cn=0
for n¡0, is totally positive (i.e., det(cm+j−k)j; k=0; :::; n−1¿0 for all n; m¿0) if and only if

∑
cjzj is

the expansion at zero of a meromorphic function  having the representation

 (z) = e
z
∞∏
j=1

1 + �jz
1− �jz

; �j; �j; 
¿0;
∞∑
j=1

(�j + �j)¡∞

(including, for instance, the exponential function). Following [9], we exclude the case that  is
rational. Many results about convergence of Pad�e approximants (at zero) of these functions have
been obtained in [9], see also [11]. Let us consider the linear functionals c[k] de�ned by

c[k](xn) = cn+k ; n; k¿0; with symbol �[k](z) = zk−1

 (1=z)−

k−1∑
j=0

cj
zj




(c[0] = c), having symbols which are meromorphic in C\{0}, and analytic around in�nity. We have
the following

Corollary 2.17. The functionals c[k] as described above are regular for all k¿0. The associated
complex Jacobi matrices A[k] are compact; with Weyl function given by �[k]; and spectrum {0} ∪
{�j: j¿1}. Finally; (a[k]n )

2¡0 for all n; k¿0.

Proof. In [9, Theorem 1.I], the authors show that the Pad�e table of  (at zero) is normal. Denote by
Qm;n the denominator of the Pad�e approximant of type [m|n] at zero, normalized so that Qm;n(0)=1,
and de�ne

Q[k]
n (z):=znQn+k; n

(
1
z

)
= zn + Q[k]

n;1z
n−1 + Q[k]

n;2z
n−2 + · · · :

It is well known and easily veri�ed that Q[k]
n is an nth monic FOP of the linear functional c[k], and

thus c[k] is regular. The sign of the recurrence coe�cient a[k]n follows from well-known determinantal
representations; we omit the details. Precise asymptotics for (Qn+k; n)n¿0 are given in [9, Theorem 1.II]
(see also [11]), implying that

lim
n→∞

Q[k]
n (z)
zn

= exp
(−

2z

) ∞∏
j=1

(
1− �j

z

)
(2.26)

for all k¿0 uniformly on closed subsets of (C ∪ {∞})\{0}. In particular, the sequences (Q[k]
n;1)n¿0

and (Q[k]
n;2)n¿0 converge. On the other hand, we know from (1.2) that Q[k]

n+1(z) = (z − b[k]n )Q
[k]
n (z) −

(a[k]n−1)
2Q[k]

n−1(z). Thus

Q[k]
n+1;1 = Q[k]

n;1 − b[k]n ; Q[k]
n+1;2 = Q[k]

n;2 − b[k]n Q[k]
n;1 − (a[k]n−1)

2; (2.27)
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implying that b[k]n → 0 and a[k]n → 0 for n→∞. Hence A[k] is compact. Since its Weyl function �
has the same (convergent) Laurent expansion around in�nity as �[k], we have �=�[k], and the rest
of the assertion follows from Theorem 2.14 and the explicit knowledge of the singularities of �[k].

3. Asymptotics of FOPs

3.1. nth-root asymptotics of FOPs

In this subsection we will restrict ourselves to bounded Jacobi matrices A. We present some recent
results of [7,18,20,53,54].
In their work on tridiagonal in�nite matrices, Aptekarev, Kaliaguine and Van Assche also observed

[7, Corollary 3] that

lim sup
n→∞

|qn(z)|1=n¿1; z ∈ 
(A):

Indeed, a combination of (2.23) for j = 0 and (2.21) yields the stronger relation

lim inf
n→∞ [|qn(z)|2 + |qn+1(z)|2|]1=(2n)¿1; z ∈ 
(A): (3.1)

For real bounded Jacobi matrices, this relation was already established by Szwarc [53, Corollary 1],
who showed by examples [54] that there may be also exponential growth inside the spectrum.
Kaliaguine and Beckermann [20, Theorem 3.6] applied the maximum principle to the sequence of

functions of the second kind and showed that, in the unbounded connected component 
0(A) of the
resolvent set 
(A), one may replace 1 on the right-hand side of (3.1) by exp(g�(A)(z)). Here g�(A)

denotes the (generalized) Green function with pole at ∞ of the compact set �(A), being characterized
by the three properties (see, e.g., [41, Section II:4]):
(i) g�(A) is nonnegative and harmonic in 
0(A)\{∞},
(ii) g�(A)(z)− log |z| has a limit for |z| → ∞,
(iii) limz→�; z∈
0(A) g�(A)(z) = 0 for quasi-every � ∈ @
0(A).
We also recall that the limit in (ii) equals −log cap(�(A)), where cap(·) is the logarithmic capacity.

A detailed study of nth-root asymptotics of formal orthogonal polynomials with bounded recurrence
coe�cients has been given in [18]. We denote by kn the leading coe�cient of qn, i.e.,

kn =
1

a0 · a1 · · · an−1
;

and de�ne the quantities

�sup:= lim sup
n→∞

|kn|−1=n; �inf := lim inf
n→∞ |kn|−1=n:

Notice that |an|6||A||, and thus |kn|1=n¿1=||A||, implying that 06�inf6�sup6||A||.

Theorem 3.1 (See Beckermann [18, Theorems 2:5 and 2:10]). Let A be bounded. Then there exist
functions ginf ; gsup such that

lim inf
n→∞ (|qn(z)|2 + |anqn+1(z)|2)−1=(2n) = exp(−gsup(z)); (3.2)
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lim sup
n→∞

(|qn(z)|2 + |anqn+1(z)|2)−1=(2n) = exp(−ginf (z)); (3.3)

holds uniformly on closed subsets of 
(A).
Here ginf = +∞ (and gsup = +∞; resp.) if and only if �sup = 0 (and �inf = 0; resp.). Otherwise;

ginf is superharmonic; strictly positive; and continuous in 
(A)\{∞}; with

lim
|z|→∞

ginf (z)− log |z|= log 1
�sup

:

Also; gsup is subharmonic; strictly positive; and continuous in 
(A)\{∞}; with

lim
|z|→∞

gsup(z)− log |z|= log 1
�inf

:

In addition;

06�inf6�sup6cap(�(A)); g�(A)(z)6ginf (z)6gsup(z); z ∈ 
0(A): (3.4)

Various further properties and relations between g�(A), ginf and gsup may be found in [18,
Sections 2.2, 2.3]. The proof of Theorem 3.1 is based on (2.22), Corollary 2.15, and applies tools
from logarithmic potential theory. Instead of giving details, let us discuss some consequences and
special cases. First, since (an)n¿0 is bounded, we obtain from (3.2) that

lim sup
n→∞

|qn(z)|1=n = exp(gsup(z))¿1; z ∈ 
(A): (3.5)

Furthermore, we will show below that (3.3) implies the relation

lim inf
n→∞ |qn(z)|1=n = exp(ginf (z))¿1; z ∈ F; (3.6)

provided that the set F ⊂
0(A) does not contain any of the zeros of qn for su�ciently large n. In
addition, by combining (3.3) with (2.22) we get

lim sup
n→∞

|rn(z)|1=n = exp(−ginf (z))¡1; z ∈ 
(A): (3.7)

Indeed, relation (2.22) allows us to restate Theorem 3.1 in terms of functions of the second kind.
The simplest case which may illustrate these �ndings is the Toeplitz operator A with an = 1

2 ,
bn = 0, n¿0, see [38, Section II.9.2]. 4 Here one may write down explicitly qn and rn in terms
of the Joukowski function; in particular one �nds that �(A) = [ − 1; 1], and ginf = gsup = g[−1;1]. Of
course, in the generic case there will be no particular relation between gsup, ginf , and g�(A). Some
extremal cases of Theorem 3.1 have been discussed in [18, Example 2:9] (see also [25, Examples
4:1, 4:2]). For instance, there are operators with �(A) = [− 1; 3], and ginf = gsup = g[−1;1]. Also, the
case �(A) = [− 2; 2], �inf = �sup = 1

2¡cap(�(A)) = 1, and ginf 6= gsup may occur. In addition there is
an example where gsup(z)− ginf (z) = log(�sup=�inf ) 6= 0 for all z ∈ 
(A).
The nth-root asymptotics of general orthogonal polynomials are investigated by Stahl and Totik

[51]. Of course, in case of orthogonality on the real line (i.e., real Jacobi matrices) results such as
(3.4)–(3.6) have been known before, see, e.g., [51, Theorem 1:1:4, Corollary 1:1:7].
In this context we should mention the deep work of Stahl concerning the convergence of Pad�e

approximants and asymptotics of the related formal orthogonal polynomials. He considers linear

4 See also the case of periodic complex Jacobi matrices discussed in Section 4.3 below.
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functionals as in (2.24), where � is some (real or complex valued but not positive) Borel measure
with compact support. Of course, such functionals are not necessarily regular, but we can always
consider the asymptotics of the subsequence of (unique) FOPs corresponding to normal points. In [46,
Corollary of Theorem 1] Stahl constructs a measure � supported on [− 1; 1] such that the sequence
of normalized zero counting measures is weakly dense in the set of positive Borel measures of total
mass 61 supported on C. In contrast, in the case of regular functionals and bounded recurrence
coe�cients, it is shown in [18, Theorem 2:5] that the support of any partial weak limit of the
sequence of normalized zero counting measures is a subset of C\
0(A).
Another very interesting class has been considered by Stahl in a number of papers (see, for

instance, [49]), here the symbols (the Cauchy transform of �) are multivalued functions having,
e.g., a countable number of branchpoints. Here it follows from [49, Theorems 1:7, 1:8] that (3.5)
and (3.7) hold quasi-everywhere outside of supp(�), with ginf = gsupp being the Green function of
supp(�). Again, it is not clear whether the functional is regular and the corresponding recurrence
coe�cients are bounded.
Linear functionals of the form

cw(P) =
∫ 1

−1

w(x)P(x)√
1− x2

dx (3.8)

with some possibly complex-valued weight function w have been discussed by a number of authors,
see, e.g., the introduction of [46]. Nuttall [39], Nuttall and Wherry [40], Baxter [17], Magnus [33],
and Baratchart and Totik [12] suggested conditions on w insuring that all (at least su�ciently large)
indices n are normal, and that there are only “few” zeros outside of [− 1; 1]. In particular, nth-root
asymptotics for the sequence of FOPs are derived.

3.2. Ratio asymptotics and zeros of FOP

It is well known that the monic polynomial qn=kn is the characteristic polynomial of the �nite
sectionAn obtained by taking the �rst n rows and columns ofA. In this section we will be concerned
with the location of zeros of FOPs, i.e., of eigenvalues of An. In numerical linear algebra, one often
refers to these zeros as Ritz values. The motivation for our work is the idea that the sequence of
matrices An approximates in some sense the in�nite matrix A and thus the corresponding di�erence
operator A; therefore the corresponding spectra should be related. In the sequel, we will try to make
this statement more precise.
An important tool in our investigations is the rational function 5

un(z) :=
qn(z)

anqn+1(z)
=

qn(z)=kn
qn+1(z)=kn+1

5 Most of the results presented in this paper for the sequence (un) are equally valid for the ratio

�(n+1)(z):=
rn+1(z)
anrn(z)

;

which can be shown to have a meromorphic continuation in C\�ess(A), and coincides with the Weyl function of the
associated Jacobi matrix A(n+1). Some additional interesting properties are presented in a future publication.
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=
det(zIn −An)

det(zIn+1 −An+1)
= (en; (zIn+1 −An+1)−1en):

Here and in the sequel we denote by e0; : : : ; en also the canonical basis of Cn+1, the length of the
vectors being clear from the context. In the theory of continued fractions, the sequence (1=un)n¿0 of
meromorphic functions is referred to as a tail sequence of the J -fraction (1.3) [32, Section II.1.2,
Eq. (1.2.7)]. Using (1.2), one easily veri�es that

1
zun(z)

=
anqn+1(z)
z · qn(z)

= 1− bn

z
− a2n−1

z2
+ O

(
1
z3

)
z→∞

: (3.9)

In order to motivate our results presented below, we brie
y recall some properties of orthogonal
polynomials, i.e., real Jacobi matrices. It is well known that here the zeros of qn are simple, and lie
in the convex hull S of �(A). Also, they interlace with the zeros of qn+1, and thus un has positive
residuals. These two facts allow us to conclude that (un)n¿0 is bounded uniformly in closed subsets
of C\S. Finally, qn can have at most one zero in a gap of the form (a; b)⊂S\�(A).
We should mention �rst that none of these properties remains valid for FOPs. Classical counter-

examples known from Pad�e approximation (such as the examples of Perron and of Gammel-Wallin,
see [11]) use linear functionals c which are highly nonregular. But there also exist other ones.

Example 3.2. (a) The linear functional (3.8) with weight w(x) = (x − cos(�1�))(x − cos(�2�)) has
been studied in detail by Stahl [47]. Provided that 1, �1, �2 are rationally independent, Stahl showed
that c is regular, but (two) zeros of the sequence of FOPs cluster everywhere in C.
Not very much is known about the associated (nonreal) Jacobi matrix. Theorem 3.4(a) below

shows that �(A) = C; in particular, A is unbounded. Also, it follows from [47, Section 5] that
(an)n¿0 contains a bounded subsequence, and hence A is proper (and determinate) by Example 2.7.
On the other hand, it is unknown whether �(A) (or �ess(A)) equals the whole plane.
(b) Beckermann [18, Example 5:7] investigated the linear functional with generating function

�d(z) = (z − d)
[
exp

(
1

z2 − 1
)
− 1

]
:

Here the coe�cients of the recurrence relation are given by a20 =
3
2 − d2, and

b2n =−d; b2n+1 = d; −a22na
2
2n+1 =

1
4(2n+ 1)(2n+ 3)

; a22n+2 + a22n+1 = 1− d2

for n¿0 (provided that there is no division by zero, which can be insured for instance if d ∈
(−∞;−√3=2) ∪ [ − 1; 1] ∪ (√3=2;+∞)). One may show that a2n−1 → 0, and thus A is bounded
but not real. Also, �(A) = �ess(A) = {±1}. Furthermore, q2n−1(−d) = 0 for all n¿0, and −d may
be far from the convex hull of �(A).

Below we will see, however, that many of the properties for OPs remain valid for FOPs outside 6

the numerical range S = �(A). An important tool in these investigations is the notion of normal
families as introduced by Montel: a sequence of functions analytic in some domain D is called a

6 Notice that, for real A, the numerical range �(A) coincides with the convex hull of the spectrum. It is known from
examples [20] that this property is no longer true for general complex Jacobi matrices.
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normal family if from each subsequence we may extract a subsequence which converges locally
uniformly in D (i.e., uniformly on closed subsets 7 of D), with the limit being di�erent from the
constant ∞. By a Theorem of Montel [43, Section 2.2, Theorem 2.2.2], a family of functions analytic
in D is normal in D if and only if it is uniformly bounded on any closed subset of D. More generally,
we will also consider sequences of functions being meromorphic in D. Such a sequence is called
normal in D if, given a subsequence, we may extract a subsequence converging locally uniformly
in D with respect to the chordal metric �(·) on the Riemann sphere [43, De�nition 3.1.1]. Notice
that normal families of analytic functions are also normal families of meromorphic functions, but
the converse is clearly not true.

Theorem 3.3. (a) The sequence (un)n¿0 is bounded above uniformly on compact subsets of C\�(A).
(b) The sequence (un)n¿0 of meromorphic functions is normal around in�nity if and only if A is

bounded.
(c) (Cf. with Beckermann [18; Proposition 2:2]). Let � be some in�nite set of integers such

that (an)n∈� is bounded. Then the sequence (un)n∈� of meromorphic functions is normal in 
(A).

Proof. (a) We �rst observe that there is a connection between the numerical range of the di�erence
operator and the numerical range of the �nite sections An, namely 8

�(An) =�(An) =
{
(y; Ay)
(y; y)

: y ∈ C0; �ny = y
}
⊂�(A)⊂�(A):

Since

1
||(zIn −An)−1|| = miny∈Cn

||(zIn −An)y||
||y|| ¿min

y∈Cn

∣∣∣∣(y; (zIn −An)y)
(y; y)

∣∣∣∣= dist(z;�(An));

we may conclude that

|un(z)|= |(en; (zIn+1 −An+1)−1en)|6||(zIn+1 −An+1)−1||6 1
dist(z; �(A))

;

leading to the claim of part (a).
(b) If A is bounded then �(A) is compact. Hence its complement contains a neighborhood D

of in�nity (for instance the set |z|¿||A||), and (un)n¿0 is a normal family of analytic functions in
U according to part (a) and the Theorem of Montel. Conversely, suppose that (un)n¿0 is a normal
family of meromorphic functions in a neighborhood D of in�nity. Then (un)n¿0 is equicontinuous
in D (with respect to the chordal metric). Since un(∞) = 0 for all n¿0, there exists some R¿0

7 All the subsequent considerations are in the extended complex plane C=C∪ {∞}, equipped with the chordal metric
�(·).

8 Indeed, using (2.2) one immediately obtains the more precise relation

�(A) = Clos

(⋃
n¿0

�(An)

)
:
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such that

�(un(z); 0) =
|un(z)|√
1 + |un(z)|2

6
1
2
; n¿0; |z|¿R:

It follows that |un(z)|61 for all n¿0 and |z|¿R. Applying the maximum principle for analytic
functions, we obtain |ũ n(z)|6R for all n¿0 and |z|¿R, where ũ n(z) = z · un(z). Consequently, both
(ũ n)n¿0 and (1=ũ n)n¿0 are normal families of meromorphic functions in |z|¿R. Since ũ n(∞)= 1, it
follows again from equicontinuity that (1=ũ n)n¿0 is bounded above by some constant M for |z|¿R′

with some suitable R′¿R. Using the Cauchy formula, we obtain

|(1=ũ n)′(∞)|6M · R′; |(1=ũ n)′′(∞)|6M · (R′)2

2
; n¿0:

Taking into account (3.9), we may conclude that both sequences (bn)n¿0, (an)n¿0 are bounded, and
thus the operator A is bounded.
(c) Here we closely follow arguments from [18, Proof of Proposition 2.2]. By the Marty Theorem

[43, Section 3], the sequence (un)n∈� is a normal family of meromorphic functions in some domain
D⊂C if and only if the spherical derivative

�(un):=
|u′n|

1 + |un|2
is bounded uniformly with respect to n ∈ � on compact subsets of D. Using the con
uent limit of
the Christo�el–Darboux formula

an · qn(x)qn+1(z)− qn(z)qn+1(x)
z − x

=
n∑

j=0

qj(x) · qj(z);

one obtains

|�(un)(z)|=
|∑n

j=0 qj(z)2|
|qn(z)|2 + |anqn+1(z)|2 :

According to (2.14), the right-hand side is bounded above by max(1; |an|2)||(zI − A)−1||, and this
quantity is bounded on closed subsets of 
(A) uniformly for n ∈ � by assumption on (an).

Let us brie
y comment on Theorem 3.3. Part (c) has been stated in [18, Proposition 2:2] for
bounded di�erence operators. Then, of course, the whole sequence (un) is normal in 
(A), and from
the proof of part (b) we see that any partial limit of (un) is di�erent from the constants 0, ∞ in
the unbounded connected component 
0(A) of 
(A). If A is no longer bounded, then things become
much more involved. However, for real Jacobi matrices we still obtain from part (a) the normality
in C\R. On the other hand, we see from part (b) that expansion (3.9) can only be exploited for
bounded di�erence operators.
A di�erent proof of part (b) can be based on the following observation. For unbounded opera-

tors, it is interesting to consider the so-called contracted zero distribution (for real Jacobi matrices
see, e.g., [25,56]): Since the eigenvalues of An=||An|| are all in the unit disk, one easily veri�es
that q̃n(z) = qn(||An||z) has its zeros in the unit disk. As a consequence, one may derive nth-root
asymptotics for (q̃n). Indeed, for particular families of recurrence coe�cients (Hermite, Laguerre, or
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Freud polynomials) even stronger asymptotics have been derived in the last years, see, e.g., [31]. In
our context, one may verify that the rational functions

ũ n(z) = ||An+1|| · un(||An+1|| · z) = ||An+1|| · qn(||An+1|| · z)
an · qn+1(||An+1|| · z)

form a normal family in |z|¿1, which has at least one partial limit being di�erent from the constant
0. Then the assertion of Theorem 3.3(b) follows by applying a criterion of Zalcman [60]. Indeed,
the contracted zero distribution has proved to be very useful in describing properties of OPs for
unbounded supports, and it seems to be interesting to explore the implications for complex Jacobi
matrices and FOPs.
In the following statement we summarize some implications for the zeros of FOPs.

Theorem 3.4. (a) There are no zeros of FOPs outside �(A).
(b) Let � be some in�nite set of integers such that (an)n∈� is bounded. Then for each closed

F ⊂
(A) there exists a � = �(F) such that; for all n ∈ �; the zeros of qn in F are at least at a
distance � from the zeros of qn+1 in F . If A is real; then 
(A) is the largest open set with this
property.
(c) (Cf. with Beckermann [18, Proposition 2:1]). Let � be some in�nite set of integers such

that (an)n∈� is bounded; and denote by 
 a connected component of 
(A) which is not a subset
of �(A). Then for each closed F ⊂
 there exists a constant �= �(F) such that; for all n ∈ �; the
number of zeros of qn+1 in F (counting multiplicities) is bounded by �(F). If A is real; then 
 is
a maximal open connected set with this property.

Proof. Part (a) follows immediately from Theorem 3.3(a) by observing that zeros of qn+1 are poles of
un. In order to show part (b), recall from Theorem 3.3(c) that (un)n∈� is normal and thus equicontin-
uous in closed subsets of 
(A). Given F as above, we can �nd a �¿0 such that �(un(z′); un(z′′))6 1

2
for all n ∈ � and for all z′; z′′ ∈ F satisfying |z′−z′′|¡�. If now z′; z′′ ∈ F with qn(z′)=0=qn+1(z′′),
then

�(un(z′); un(z′′)) = �(0;∞) = 1
and thus |z′ − z′′|¿�, showing that the zeros in F of qn and of qn+1 are separated.
Suppose now that A is real. Then, according to, e.g., Example 2.7, the corresponding di�erence

operator A is self-adjoint, and the corresponding moment problem has a unique solution �, with
supp(�)=�(A). It follows that, for any function f continuous on R with compact support, we have
In(f) →

∫
f(x) d�(x), where In(·) denotes the nth Gaussian quadrature rule. Given any z0 6∈ 
(A)

(i.e., z0 ∈ supp(�)) and �¿0, there exists a continuous function f with support in U=(z0−�; z0+�)
such that

∫
f(x) d�(x)¿0. In particular, there exists some N such that In(f)¿0, n¿N , showing

that all polynomials qn must have at least one zero in U . This terminates the proof of part (b).
If the assertion of part (c) is not true, then using Theorem 3.3(c) we may construct a closed

set F ⊂
 and a subsequence (vn)n¿0 of (un)n∈�, vn having at least n poles in F , with (vn)n¿0
converging to some function v locally uniformly in 
. Notice that v is meromorphic in 
. From
Theorem 3.3(a) we know that v is di�erent from the constant ∞ in 
\�(A), and thus in 
. Clearly,
poles of (vn) only accumulate in the set F ′:={z ∈ F : |v(z)|¿2}, and thus we may suppose, without
loss of generality, that there exists an open set U ⊃F with its closure U ′ contained in 
 such
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that |v(z)|¿1 for z ∈ U ′, and v(z) 6= ∞ on the boundary @U ′ of U ′. As a consequence, for a
su�ciently large N , the sequence (1=vn)n¿N consists of functions being analytic in U ′, and tends to
1=v uniformly in U ′ with respect to the Euclidean metric. Applying the principle of argument to the
connected components of U , we may conclude that, for su�ciently large n, the number of poles of
vn in U ′ coincides with the number of poles of v in U ′. Since the latter number is �nite, we have
a contradiction to the construction of vn. A proof for the �nal sentence of part (c) follows the same
lines as the second part of the proof of (b); we omit the details.

Of course, for real Jacobi matrices, assertions related to Theorem 3.4 have been known before,
see [4, Corollary 2] for part (b), and [55, Theorem 6:1:1] for part (c). Part (a) for complex Jacobi
matrices has already been mentioned in [20, Theorem 3:10]. For complex bounded Jacobi matrices,
�(A) is bounded and contains �(A), and thus 
 necessarily coincides with the unbounded connected
component 
0(A) of 
(A). Consequently, for bounded A, part (c) gives a bound for the number of
zeros of (all) FOPs in closed subsets of 
0(A), and this statement has already been established in
[18, Proposition 2:1].
We terminate this section with a discussion of the closed convex set

�ess(A) =
⋂
k¿0

�(A(k));

where A(k) denotes the di�erence operator of the associated Jacobi matrix A(k) introduced before
Theorem 2.8, A(0) = A. This set has been considered before in [13,14]. In the next statement we
collect some properties of this set. Our main purpose is to generalize Theorems 3:3(a) and 3:4(a).

Theorem 3.5. (a) There holds �ess(A)⊂�(A(k+1))⊂�(A(k)) for all k¿0; and �ess(A) 6= C if and
only if �(A) 6= C.
(b) For any compact di�erence operator B we have �ess(A) = �ess(A+ B).
(c) LetA be proper. Then �(A)⊂�(A) and �ess(A)⊂�ess(A). Furthermore; �(A)\�ess(A) consists

of isolated points which accumulate only on �ess(A).
(d) The sequence (un)n¿0 of meromorphic functions is normal in 
(A)\�ess(A); and any partial

limit is di�erent from the constant ∞.
(e) For any compact subset F of 
(A)\�ess(A) there exists a constant N =N (F) such that none

of the FOPs qn for n¿N has a zero in F .

Proof. (a) The �rst inclusions follow immediately from the de�nition of the numerical range. It
remains to discuss the case �ess(A) 6= C. Then at least for one k¿0 we must have �(A(k)) 6= C.
Since �(A(k)) is convex, it must be contained in some half-plane. Furthermore, one easily checks
that any z ∈ �(A) may be written as z = z1 + z2, with z2 ∈ �(A(k)) and |z1|62||Ak ||. Thus �(A)
and �(A) are contained in some half-plane, and �(A) 6= C.
(b) This assertion follows from the fact that any z ∈ �(A(k) +B(k)) may be written as z= zA+ zB,

with zA ∈ �(A(k)), |zB|6||B(k)||, and ||B(k)|| → 0.
(c) It is known [30, Theorem V:3:2] that, in connected components of C\�(A), R(zI − A) is

closed and dimN(zI − A) = 0. Since A is proper, it follows from Lemma 2.4(d) that R(zI −
A)⊥=N((zI −A)∗)={0}, and thus R(zI −A)=‘2. Consequently, C\�(A)⊂
(A). Also, it follows
(implicitly) from [30, Theorem IV:5:35] that �ess(A)=�ess(A(k)) for all k¿0, and �ess(A(k))⊂�(A(k))
by [30, Problem V:3:6]. Thus, we have also established the second inclusion �ess(A)⊂�ess(A).
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In order to see the last sentence of part (c), denote by D a connected component of C\�ess(A).
From [30, Section IV:5:6] we know that either D⊂ �(A), or the elements of �(A) in D are isolated
and accumulate only in �ess(A)⊂�ess(A). If now �(A)\�ess(A)⊂C\�ess(A), there is nothing to show.
Otherwise, suppose that D contains a point z ∈ �(A)\�ess(A). Then the assertion follows by showing
that D 6⊂ �(A). Indeed, we know from part (a) and the preceding paragraph that there exists a
� ∈ C\�(A)⊂
(A). By convexity of �ess(A), it follows that the segment [z; �] is a subset of
C\�ess(A)⊂C\�ess(A). Hence [z; �]⊂D, which implies that D 6⊂ �(A).
(d), (e) We show in Corollary 4.4(a) below that for any compact subset F of 
(A)\�ess(A) there

exists a constant N = N (F) such that

sup
n¿N

max
z∈F

||(zIn −An)−1||¡∞:

Since un(x) = (en; (zIn+1 −An+1)−1en), it follows that

sup
n¿N

max
z∈F

|un(z)|¡∞:

Then assertions (d), (e) follow immediately.

A particularly interesting case contained in Theorem 3.5 has been discussed by Barrios, L�opez,
Mart��nez and Torrano, see [13–16]: here A = G + C, where G is a self-adjoint di�erence operator
(resulting from a real proper Jacobi matrix) and C is a compact complex di�erence operator. Then
A is proper (and determinate), and

�ess(A) = �ess(G)⊂�ess(A) = �ess(G)⊂�(G) = conv(�(G))⊂R
by (2.12) and parts (a)–(c). Several of the results given in the present paper for general complex
Jacobi matrices have been shown for the above class already earlier, see, e.g., [13, Lemmas 3; 4;
14]. In particular, Theorem 3.5(e) for this class was established in [13, Corollary 1].

3.3. An open problem concerning zero-free regions

We have seen above that, for bounded operators A, the zeros of all FOPs are contained in the
convex compact set �(A), and most of them are “close” to the polynomial convex hull 9 of the
spectrum �(A).
Let us have a closer look at an inverse problem: Suppose that c is some regular linear functional

and � is some compact 10 convex set containing all zeros of all FOPs. Can we give some (spectral)
properties of the underlying di�erence operator, or the sequence (un)?
Zero-free regions can be obtained from the recurrence relation, e.g., by applying techniques from

continued fractions. There are, for instance, Cassini ovals [58, Corollary 4:1], or the Worpitski set
(see [59, Theorem V:26:2; 20, Section 3.1]).

9 Indeed, it is also unclear whether there is an example of a (complex) operator A where the number of zeros of FOPs
in some compact subset of a bounded component of 
(A) is unbounded.
10 Example 3.2(a) of Stahl shows that there exist regular functionals induced by some measure on [ − 1; 1] where all

but two zeros stay in [ − 1; 1], but the sequence of exceptional zeros is not bounded (and thus the underlying operator
also is unbounded). Thus the restriction to bounded � seems to be natural.
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A related question in Pad�e approximation has been discussed by Gonchar [28], who showed
that the sequence of rational functions (pn=qn)n¿0 converges locally uniformly in C\� to some
function f with a geometric rate. In other words, the absence of poles in sets (with a particular
shape) is already su�cient to insure convergence of Pad�e approximants. Let us recall here some of
his intermediate �ndings: writing an; bn in terms of the coe�cients of qn=kn (cf. with (2.27)), and
taking into account that the zeros of qn=kn are bounded, one �nds the relation (see [28, Proof of
Proposition 4])

sup
n¿0

|an|
n+ 1

¡∞; sup
n¿0

|bn|
n+ 1

¡∞: (3.10)

Notice that combining this result with Example 2.7 shows that the underlying complex Jacobi matrix
is proper. A combination of [28, Propositions 2; 4] leads to the relations

lim inf
n→∞ |qn(z)|1=n = lim inf

n→∞ (|qn(z)|2 + |anqn+1(z)|2)1=(2n)¿exp(g�(z)); z ∈ C\�;

�sup = lim sup
n→∞

|a0 · a1 · · · an−1|1=n6cap(�);

lim sup
n→∞

|r̃n(z)|1=n = lim inf
n→∞ (|r̃n(z)|2 + |anr̃n+1(z)|2)1=(2n)6exp(−g�(z)); z ∈ C\�;

where r̃n(z) = qn(z)f(z)−pn(z). Of course, in the case �(A)⊂�, these relations (with f(z) =�(z)
and r̃n(z)=rn(z)) would follow from our Theorem 3.1. But this is exactly our problem: does it follow
only from the knowledge about zeros of FOPs that �(A)⊂�? Clearly, for real Jacobi matrices the
answer is yes, but for complex Jacobi matrices?
Since an operator A with compact spectrum is necessarily bounded, a �rst step in this direction

would be to sharpen (3.10) and to show that A is bounded. According to Theorem 3.3(b), this is
equivalent to the fact that (un)n¿0 (or (z · un)n¿0) is normal in some neighborhood of in�nity.
Notice that (z · un)n¿0 does not take the values 0;∞ in �C\�. Moreover, by a theorem of Montel

[43], any sequence of meromorphic functions which does not take three di�erent values in some
region D is normal. It would be interesting to know whether, for our particular sequence of (rational)
functions, the information on the zeros of FOPs is already su�cient for normality.
Another interesting approach to our problem would be to impose in addition that A is bounded. If

this implies �(A)⊂�, then we would have at least a partial answer to the following problem raised
by Aptekarev et al. [7]: does the convergence of the whole sequence of Pad�e approximants with a
geometric rate at a �xed point z implies that z ∈ 
(A)?

3.4. Compact perturbations of Jacobi matrices and ratio asymptotics

An important element in the study of FOPs is the detection of so-called spurious zeros (or
spurious poles in Pad�e approximation). We have seen in the preceding section that the absence of
zeros in some region has some important consequences concerning, e.g., the convergence of Pad�e
approximants. Roughly speaking, we call spurious the zeros of FOPs which are not related to the
spectrum of the underlying di�erence operator. To give an example, consider a real Jacobi matrix
induced by a measure supported on [− 2;−1]∪ [1; 2] which is symmetric with respect to the origin.
Then the zeros of the OPs q2n lie all in the spectrum of A, and also 2n of the zeros of the OPs
q2n+1 lie in the spectrum of A, but q2n+1(0) = 0 by symmetry.
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We will not give a proper de�nition of spurious zero in the general case; see [50, Section 4]
for a more detailed discussion. Here we will restrict ourselves to bounded complex Jacobi matrices:
a sequence (zn)n∈� is said to consist of spurious zeros if qn(zn) = 0, n ∈ �, and (zn)n∈� lies in
some closed subset of the unbounded connected component 
0(A) of the resolvent set. Notice that
|zn|6||A|| by Theorem 3.4(a), implying that (zn)n∈� remains in some compact subset of 
0(A).
Therefore, we may (and will) assume that (zn)n∈� converges to some � ∈ 
0(A).
From Theorem 3.4(c) and the remarks after Theorem 3.4, we see that there are only “few” such

spurious zeros, and that the set of their limits � coincides with the set of zeros (or poles) in 
0(A)
of partial limits of the normal family (un). Also, � ∈ �(A) ∪ �ess(A) by Theorem 3.5(e).
One motivation for the considerations of this section is to show that the set of limits of spurious

zeros remains invariant with respect to compact perturbations. This follows as a corollary to the
following

Theorem 3.6. Let A; Ã be two complex Jacobi matrices with entries an; bn; and ãn; b̃n; respectively.
Suppose that A; Ã are bounded; and 11 that arg(ãn=an) ∈ (−�=2; �=2] for n¿0.
Then the di�erence A− Ã of the corresponding di�erence operators is compact if and only if

lim
n→∞ �(un; ũ n) = 0 (3.11)

uniformly in closed subsets of 
0(A) ∩ 
0(Ã).

Theorem 3.6 has been known before (at least partially) for real Jacobi matrices. Take as reference
system the entries ãn = a 6= 0, b̃= b, n¿0. Then

ũ n(z) =
q̃n(z)

ãnq̃n+1(z)
→ 2

z − b+
√
(z − b)2 − 4a2

uniformly on closed subsets of C\[b− 2a; b+2a]=C\�(Ã) (we choose a branch of the square root
such that the right-hand side vanishes at in�nity). Thus Theorem 3.6 includes as a special case the
well-known description of the Nevai–Blumenthal class M(a; b), see, e.g., [35]. This description is
usually shown by applying the Poincar�e Theorem, and a similar description is known for compact
perturbations of (real) periodic Jacobi matrices (being considered more in detail in Section 4.3
below). Finally, Nevai and Van Assche [36] showed that a relation similar to (3.11) holds provided
that Ã is a real compact perturbation of a real A.
Before proving Theorem 3.6, let us motivate and state a related more general result. Given any

(not necessarily regular) linear functional c acting on the space of polynomials, the (unique) monic
FOPs Qnj corresponding to normal indices nj together with some auxiliary monic polynomials Qn,
n 6= nj are known to satisfy a recurrence of the form

z · Qn(z) = Qn+1(z) +
n∑

j=n−
n

bn; jQj(z); n¿0; Q0(z) = 1; (3.12)

11 Such a normalization is known from orthogonal polynomials where usually an; ãn¿0. It can be insured by possibly
multiplying q̃n by −1.
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where bn; j are some complex numbers, and the integer 
n¿0 is bounded above by some multiple of
the maximal distance of two successive normal indices. We may rewrite the recurrence formally as

0 = (zI −B) ·




Q0(z)

Q1(z)

Q2(z)

...



; B=




b0;0 1 0 0 · · · · · ·
b1;0 b1;1 1 0

b2;0 b2;1 b2;2 1 0

...
. . . . . . . . . . . . . . .



; (3.13)

i.e., B is a lower Hessenberg matrix. If in addition the distance of two successive normal indices
is uniformly bounded, then B is banded. This occurs, for instance, for symbols like sin(1=z), or for
functionals c which are asymptotically regular, i.e., all su�ciently large indices are normal. Notice
that, by (3.13), Qn is the characteristic polynomial of the �nite principal submatrix Bn of order n.
A class of asymptotically regular functionals was studied by Magnus [33], who considered cw of

(3.8) with a complex and continuous w which is di�erent from 0 in [ − 1; 1] (in fact, his class is
larger). By, e.g., the Theorem of Rakhmanov, the real Jacobi matrix associated to c|w| is a compact
perturbation of the Toeplitz operator having 1

2 on the super- and the subdiagonal and 0 elsewhere. The
functional cw may not be regular, but is asymptotically regular by [33, Theorem 6:1(i)]. Therefore,
the corresponding matrix B will in general not be tridiagonal, but is a compact perturbation of the
Toeplitz operator having 1 on the super-, 14 on the subdiagonal and 0 elsewhere (see [33, Theorem
6:1(iii)] and Theorem 3.7 below).
For regular functionals, recurrence (3.13) holds with

bn;n = bn; bn+1; n = a2n; bk;n = 0; k − 1¿n¿0 (3.14)

showing that B is bounded if and only if the corresponding Jacobi matrix is bounded. Recurrences
of the above form are also valid for more general sequences of polynomials. For instance, for monic
OPs with respect to the Hermitian scalar product

(f; g)� =
∫

f(z)g(z) d�(z);

� being some positive measure with compact in�nite support, we always have a recurrence (3.12)
with bn;k = (Qk; zQn)�=(Qk; Qk)�. We have the following complement to Theorem 3.6.

Theorem 3.7. Let B be a tridiagonal matrix as in (3:14); with coe�cients bn;k and associated
monic FOPs Qn; and let B̃ be a lower Hessenberg matrix as in (3:13) with coe�cients b̃n; k and
associated polynomials Q̃n; Provided that B and B̃ are bounded; we have

lim
n→∞

(
Qn(z)
Qn+1(z)

− Q̃n(z)

Q̃n+1(z)

)
= 0 (3.15)

uniformly for |z|¿R for su�ciently large R if and only if 12

lim
n→∞(bn+j; n − b̃n+j; n) = 0; j = 0; 1; 2; : : : : (3.16)

12 If B is in addition banded, then this second condition is equivalent to the fact that B−B̃ is compact.
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Proof. Suppose that (3.15) holds. Since Qn; Q̃n are monic and of degree exactly n, we have the
expansions

Qn(z)
Qn+1(z)

=
∞∑
j=0

un; j

zj+1
;

Q̃n(z)

Q̃n+1(z)
=

∞∑
j=0

ũ n; j

zj+1
;

where un;0 = ũ n;0 = 1, and un; j − ũ n; j tends to zero for n → ∞ for all �xed j¿1 by (3.15). From
(3.13) we obtain

z
Qn(z)
Qn+1(z)

=1+bn;n
Qn(z)
Qn+1(z)

+bn;n−1
Qn−1(z)
Qn(z)

Qn(z)
Qn+1(z)

+ · · · +bn;n−j

j∏
‘=0

Qn−‘(z)
Qn+1−‘(z)

+ O

(
1

zj+2

)
z→∞

for any n¿j¿0, and a similar equation for the quantities related to B̃. Inserting the expansions at
in�nity and comparing coe�cients leads to

un;1 − ũ n;1 = bn;n − b̃n; n → 0; un;2 − ũ n;2 = (bn;n−1 + b2n;n)− (b̃n; n−1 + b̃
2

n;n)→ 0

and similarly un; j+1 − ũ n; j+1 = bn;n−j − b̃n; n−j + Cn;j − C̃n; j for j¿2, where Cn;j is a polynomial
expression of the quantities bn−‘;n−i for 06‘6i¡j, and C̃n; j is obtained from Cn;j by replacing
the quantities bn−‘;n−i by b̃n−‘;n−i. One concludes by recurrence on j that the claimed limit relation
(3.16) for the recurrence coe�cients holds.
The other implication of Theorem 3.7 is slightly more involved. We choose

|z|¿R:=2max{||B||; ||B̃||}:
Then |z|¿2max{||Bn||; ||B̃n||} for all n, implying that

||(zIn −Bn)−1||6 2
|z| ; ||(zIn −B̃n)−1||6 2

|z| ; n¿0:

It follows from (3.13) that

(zIn −B̃n) · (Q̃0(z); : : : ; Q̃n−1(z))
T = (0; : : : ; 0; Q̃n(z))

T;

and thus Q̃n(z)=Q̃n+1(z) = (en; (zIn+1 −B̃n+1)−1en), as well as
n∑

j=0

|Q̃j(z)|26||(zIn+1 −B̃n+1)−1||2|Q̃n+1(z)|26
4|Q̃n+1(z)|2

|z|2 :

From the latter relation one deduces by recurrence on n− j that

|(ej; (zIn+1 −B̃n+1)−1en)|2 =
∣∣∣∣∣
Q̃j(z)

Q̃n+1(z)

∣∣∣∣∣
2

6
4

|z|2(1 + |z|2=4)n−j
; 06j6n: (3.17)

We claim that also

|(en; (zIn+1 −Bn+1)−1ej)|26 4
|z|2(1 + |z|2=(4a2))n−j

; 06j6n; (3.18)

where a=max{1; sup|bn+1; n|}6||B||¡∞. This inequality is based on the observation that the poly-
nomials QL

n(z):=knqn(z) = k2nQn(z) satisfy

(QL
0 (z); : : : ; Q

L
n−1(z)) · (zIn −Bn) = bn;n−1 · (0; : : : ; 0; QL

n (z)):

Thus a proof for (3.18) follows the same lines as the proof of (3.17); we omit the details.
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Given an �¿0, by assumption (3.16) on the recurrence coe�cients we may �nd an L¿0 and an
N¿0 such

�:=(1 + R2=(4a2))−1=2¡�1=L; and |bn+‘;n − b̃n+‘;n|¡�; n¿N; ‘ = 0; : : : ; L:

For all other indices we have the trivial upper bound |bn+‘;n − b̃n+‘;n|6(||B|| + ||B̃||)= : b. Using
(3.17), (3.18), we obtain for |z|¿R, n¿N + L,∣∣∣∣∣

Qn(z)
Qn+1(z)

− Q̃n(z)

Q̃n+1(z)

∣∣∣∣∣ = |(en; [(zIn+1 −Bn+1)−1 − (zIn+1 −B̃n+1)−1]en)|

= |(en; (zIn+1 −Bn+1)−1(B̃n+1 −Bn+1)(zIn+1 −B̃n+1)−1en)|

6
2
R

n∑
j=0

j∑
k=0

�n−j+n−k |bj;k − b̃j; k |

6
2b
R

n∑
j=0

min{j; n−L}∑
k=0

�n−j+n−k +
2�
R

n∑
j=n−L

j∑
k=n−L

�n−j+n−k6
2(b+ 1)
R(1− �)2

�:

Since �¿0 was arbitrary, we have established (3.15). Hence the second implication of Theorem 3.7
is shown.

Proof of Theorem 3.6. We apply Theorem 3.7 with

b̃n; n = b̃n; b̃n+1; n = ã2n; b̃k; n = 0; k − 1¿n¿0:

Since qn=(anqn+1) = Qn=Qn+1 is bounded around in�nity by Theorem 3.3(a), and similarly for the
quantities with tildes, we see that (3.11) implies (3.15). In order to show that also the converse
is true, suppose that (3.15) holds but not (3.11). Then there is some in�nite set � and some
zn ∈ 
0(A) ∩ 
0(Ã), (zn)n∈� tending to some � ∈ 
0(A) ∩ 
0(Ã), such that (�(un(zn); ũ n(zn)))n∈�

does not converge to zero. Using the normality established in Theorem 3.3(c), we �nd a subset also
denoted by � such that (un)n∈� (and (ũ n)n∈� resp.) tends to some meromorphic function u (and
ũ resp.) locally uniformly in 
0(A) (and in 
0(Ã) resp.). Notice that u(�) 6= ũ(�) by construction
of �, and u = ũ in some neighborhood of in�nity by (3.15), which is impossible for meromorphic
functions. Hence (3.11) and (3.15) are equivalent.
Notice that (3.16) may be rewritten in our setting as b̃n − bn → 0, and ã2n − a2n → 0. The

normalization arg(ãn=an) ∈ (−�=2; �=2] of Theorem 3.6 allows us to conclude that |an−ãn|6|an+ãn|,
showing that (a2n − ã2n)n¿0 tends to zero if and only if (an − ãn)n¿0 does. Thus A− Ã is compact if
and only if (3.16) holds, and Theorem 3.6 follows from Theorem 3.7.

It is known for many examples (see, e.g., [50, Proposition 4:2]) that spurious poles of Pad�e
approximants pn=qn are accompanied by a “close” zero. As a further consequence of Theorem 3.7,
we can be more precise. In fact, consider B̃ obtained from B by changing the values b̃1;0 = 0 and
b̃0;0 ∈ �(A). Comparing with (1.2) one easily sees that Q̃n(z) = (z − b̃0;0)pn(z)=kn, and as in the
above proof it follows that

�
(

pn

anpn+1
;

qn

anqn+1

)
→ 0



50 B. Beckermann / Journal of Computational and Applied Mathematics 127 (2001) 17–65

locally uniformly in 
0(A)∩
0([B̃]min)=
0(A)∩
0(A(1)), which according to Theorem 2.8 coincides
with 
:={z ∈ 
0(A): �(z) 6= 0}. In particular, applying the argument principle, we may conclude
that, for every sequence (zn)n∈� tending to � ∈ 
0(A) with qn(zn)=0, there exists a sequence (z′n)n∈�

tending to � with pn(z′n) = 0.

3.5. Trace class perturbations and strong asymptotics

It is known for real Jacobi matrices [36] that if A − Ã is not only compact but of trace class,
then we may have a stronger form of convergence: A similar assertion is true for complex Jacobi
matrices.

Theorem 3.8. Let A; Ã be two bounded complex Jacobi matrices. Provided that the di�erence
A− Ã of the corresponding di�erence operators is of trace class; i.e.;

∞∑
n=0

(|an − ãn|+ |bn − b̃n|)¡∞;

the corresponding monic FOPs satisfy

lim
n→∞

Q̃n(z)
Qn(z)

= det(I + (A− Ã)(zI − A)−1)

uniformly on closed subsets of subdomains D of 
0(A)∩
0(Ã) which are (asymptotically) free of
zeros of the FOPs qn and q̃n; n¿0.

Proof. De�ne the projections En : ‘2 → Cn by En(yj)j¿0 = (yj)06j¡n. We start by establishing for
z ∈ 
(A) the formula

En(zI − A)−1E∗
n − (zIn −An)−1 = (q0(z); : : : ; qn−1(z))T

rn(z)
qn(z)

(q0(z); : : : ; qn−1(z)): (3.19)

Indeed, by (2.19),

In=En(zI − A)(zI − A)−1E∗
n

=En(zI − A)E∗
n En(zI − A)−1E∗

n − (0; : : : ; 0; an−1)Trn(z)(q0(z); : : : ; qn−1(z)):

With En(zI − A)E∗
n = zIn −An and

(0; : : : ; 0; an−1)T =
1

qn(z)
(zIn −An)(q0(z); : : : ; qn−1(z))T

taken into account, identity (3.19) follows. In a similar way one obtains for z ∈ 
(A), using (3.19),

En(zI − Ã)(zI − A)−1E∗
n − (zIn − Ãn)(zIn −An)−1

=(zIn − Ãn)[En(zI − A)−1E∗
n − (zIn −An)−1] + En(zI − Ã)(I − E∗

n En)(zI − A)−1E∗
n

=((zIn − Ãn)(q0(z); : : : ; qn−1(z))T
rn(z)
qn(z)

− (0; : : : ; 0; ãn−1)Trn(z))(q0(z); : : : ; qn−1(z))
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=an−1rn(z)qn(z)(zIn − Ãn)
(
q0(z)
qn(z)

− q̃0(z)
q̃n(z)

; : : : ;
qn−1(z)
qn(z)

− q̃n−1(z)
q̃n(z)

)T

× (0; : : : ; 0; 1)(zIn −An)−1:

Consequently,

det(En(zI − Ã)(zI − A)−1E∗
n )

=det((zIn − Ãn)(zIn −An)−1)

det(In − an−1rn(z)qn(z)
(
q0(z)
qn(z)

− q̃0(z)
q̃n(z)

; : : : ;
qn−1(z)
qn(z)

− q̃n−1(z)
q̃n(z)

)T
(0; : : : ; 0; 1))

=
Q̃n(z)
Qn(z)

[
1− an−1rn(z)qn(z)

(
qn−1(z)
qn(z)

− q̃n−1(z)
q̃n(z)

)]
: (3.20)

Using the projector �n=E∗
n En introduced in Section 2, we may write the term on the left-hand side

as

det(En(zI − Ã)(zI − A)−1E∗
n ) = det(In + En(A− Ã)(zI − A)−1E∗

n )

= det(I +�n(A− Ã)(zI − A)−1);

where the term of the right is the determinant of a �nite-rank perturbation of the identity; see, e.g.,
[30, Section III.4.3]. Since A − Ã is a trace class operator, the same is true for (A − Ã)(zI − A)−1

and thus

lim
n→∞ det(I +�yn(A− Ã)(zI − A)−1) = det(I + (A− Ã)(zI − A)−1)

uniformly in closed subsets of 
(A). It remains to see whether the term in brackets on the right-hand
side of (3.20) tends to 1. Let F be some closed subset of the zero-free region D⊂
:=
0(A)∩
0(Ã).
According to Theorem 3.3(c), both (un) and (ũ n) are normal families of meromorphic functions in

, and the functions are analytic in the subdomain D. Furthermore, we know from Theorem 3.3 that
any partial limit is di�erent from the constant in�nity. It is known (see, e.g., [18, Lemma 2:4(d)])
that then (un) and (ũ n) are bounded on F uniformly in n. Combining this with Theorem 3.6, we
�nd that |un − ũ n| → 0 uniformly in F , and

max
z∈F

∣∣∣∣qn−1(z)
qn(z)

− q̃n−1(z)
q̃n(z)

∣∣∣∣6|an−1|max
z∈F

|un−1(z)− ũ n−1(z)|+ |an−1 − ãn−1|max
z∈F

|ũ n−1(z)|

tends to zero for n → ∞. Moreover, the remaining term an−1rn(z)qn(z) is bounded uniformly for
z ∈ F and n¿0 according to (2.23). This terminates the proof of Theorem 3.8.

We conclude this section with some general remarks concerning the strong asymptotics

max
z∈U

∣∣∣∣∣
Q̃n(z)
Qn(z)

− g(z)

∣∣∣∣∣= 0 where U is some closed disk around ∞:

Indeed, by examining the proof, we see that this assertion is true also for the more general matrices
B;B̃ of Theorem 3.7 provided that B−B̃ is of trace class. Finally, already from the real case it is
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known that for this form of strong asymptotics it is necessary that A− Ã is compact, but it does
not need to be of trace class. Indeed, a necessary and su�cient condition seems to be that A− Ã
is compact, and that

n−1∑
j=0

[rj(z)qj(z)− r̃j(z)q̃j(z)] = trace�n[(zI − A)−1 − (zI − Ã)−1]�n

converges for n → ∞ uniformly in U (to g′=g). It would be very interesting to explore the connection
to some complex counterpart of the Szegő condition.

4. Approximation of the resolvent and the Weyl function

The goal of this section is to investigate the question whether we can approximate the resolvent
(zI − A)−1 by means of inverses (zIn − An)−1 of �nite sections of zI − A. This question is of
interest, e.g., for discrete Sturm–Liouville problems on the semiaxis: for solving in ‘2 the equation
(zI −A)y=f for given f ∈ ‘2 via a projection method, one considers instead the �nite-dimensional
problems (zIn −An)y(n) = Enf.
Another motivation comes from convergence questions for Pad�e approximation and continued

fractions: With pn; qn as in (1.2), (1.4) we de�ne the rational function

�n(z) =
pn(z)
qn(z)

= (e0; (zIn −An)−1e0):

It is known [59] that �n(z) has the J -fraction expansion

�n(z) =
1 |

|z − b0
+

−a20 |
|z − b1

+
−a21 ||z − b2

+
−a22 ||z − b3

+ · · ·+ −a2n−2 ||z − bn−1

being the nth convergent of the J -fraction (1.3). In addition, the (formal) expansion at in�nity of this
J -fraction is known to coincide with (2.18), and one also shows that �n is its nth Pad�e approximant
(at in�nity). The question is whether we can expect the convergence of �n(z)= (e0; (zIn −An)−1e0)
to the Weyl function �(z) = (e0; (zI − A)−1e0).
This question has been studied by means of operators by many authors, see [59, Section 26; 7, 15,

16, 18, 20] for bounded A and [13,14] for bounded perturbations of possibly unbounded self-adjoint
A. Our aim is to show that most of these results about the approximation of the Weyl function are
in fact results about the approximation of the resolvent (zI − A)−1 by (zIn −An)−1.

4.1. Approximation of the resolvent

Di�erent kinds of resolvent convergence may be considered for z ∈ 
(A), for instance norm
convergence

lim
n→∞
n∈�

||(zIn −An)−1 − En(zI − A)−1E∗
n ||= 0; (4.1)



B. Beckermann / Journal of Computational and Applied Mathematics 127 (2001) 17–65 53

strong resolvent convergence

lim
n→∞
n∈�

E∗
n (zIn −An)−1Eny = (zI − A)−1y ∀y ∈ ‘2; (4.2)

or weak resolvent convergence

lim
n→∞
n∈�

(Eny′; (zIn −An)−1Eny) = (y′; (zI − A)−1y) ∀y; y′ ∈ ‘2: (4.3)

The interested reader may easily check that (4.1) implies (4.2), and the latter implies (4.3). Notice
also that (pointwise) convergence results for Pad�e approximation of the Weyl function are obtained
by choosing in (4.3) the vectors y=y′= e0. In all these forms of convergence we assume implicitly
that zIn −An is invertible for (su�ciently large) n ∈ �. We also mention the related condition

lim sup
n→∞
n∈�

||(zIn −An)−1||= : C¡∞: (4.4)

A Kantorovich-type theorem gives connections between properties (4.2) and (4.4). For complex
(possibly unbounded) Jacobi matrices we have the following result.

Theorem 4.1. Let A be a di�erence operator resulting from a complex Jacobi matrix; � some
in�nite set of integers; and z ∈ C. The following assertions are equivalent:
(a) z ∈ 
(A); and (4:2) holds.
(b) z ∈ 
(A); and (4:3) holds.
(c) A is proper; and (4:4) holds.
In addition; if property (c) holds for some z = z0; then the limit relations (4:2); (4:3) take place
uniformly for |z − z0|61=(2C).

Proof. Trivially, (b) follows from (a). Also, 
(A) 6= ∅ implies that A is proper by Theorem 2.6.
In addition, (b) only makes sense if zIn−An is invertible for su�ciently large n ∈ �. Furthermore,
a sequence of weakly converging bounded linear operators is necessarily uniformly bounded, see,
e.g., [30, Section III:3:1]. Thus (b) implies (c).
Suppose now that (c) holds. By possibly dropping some elements from � we may replace condition

(4.4) by

sup
n∈�

||(zIn −An)−1||6C ′:=3C=2¡∞: (4.5)

For any y ∈ C0, say, y =�ky, we �nd an index n ∈ �, n¿k, with

||(zI − A)y||= ||Ek+1(zI − A)�ky||= ||(zIn −An)Eny||¿ ||Eny||
||(zIn −An)−1||¿

||y||
C ′ :

As in the second part of the proof of Theorem 2.10 we obtain

inf
y∈D(A)

||(zI − A)y||
||y|| = inf

y∈C0

||(zI − A)y||
||y|| ¿

1
C ′¿0:
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Consequently, N(zI −A)={0}. Since A is proper, it follows from Lemma 2.4(a),(d) that N((zI −
A)∗) = {0}. Furthermore, by [30, Theorem IV:5:2], R(zI − A) is closed. Since its orthogonal com-
plement is given by N((zI − A)∗), we may conclude that R(zI − A) = ‘2, and thus z ∈ 
(A).
In order to show the second part of (a), let y ∈ ‘2 =R(zI −A), and x ∈ D(A) with (zI −A)x=y.

Let �¿0. By (2.2), we �nd x̃ ∈ C0, ỹ = (zI − A)x̃, such that

C ′||y − ỹ||6�=3; and ||x − x̃||6�=3:

Also, since y ∈ ‘2 and x̃ ∈ C0, we �nd an N¿0 such that

�nx̃ = x̃; and C ′||(I −�n)y||6�=3; n¿N:

Recalling that EnE∗
n =In and E∗

n En =�n, we obtain

||E∗
n (zIn −An)−1Eny − (zI − A)−1y||6 ||E∗

n (zIn −An)−1En[y − E∗
n (zIn −An)Enx̃]||

+ ||E∗
n (zIn −An)−1EnE∗

n (zIn −An)Enx̃ − x||
6C ′||y −�n(zI − A)�nx̃||+ ||�nx̃ − x||
= C ′||y −�n(zI − A)x̃||+ ||x̃ − x||
6C ′(||(I −�n)y||+ ||�n(y − ỹ)||) + ||x̃ − x||6�

for all n¿N , n ∈ �, and thus (4.2) holds.
It remains to show the last sentence. We �rst mention that if z0 ∈ C satis�es (4.5), then for any

z with |z − z0|6�61=(2C) and for any n ∈ � there holds

||(zIn −An)−1||6||(z0In −An)−1|| · ||(In + (z − z0)(z0In −An)−1)−1||64C ′ = 6C (4.6)

and

||(zIn −An)−1 − (z0In −An)−1||= |z − z0|||(zIn −An)−1(z0In −An)−1||6� · 9C2:

The same estimates are obtained for the resolvent. Thus, given �¿0 and y ∈ ‘2, we may cover
U :={z ∈ C: |z− z0|¡1=(2C)} by a �nite number of closed disks of radius �′6�=(9C2 · ||y||) centred
at z1; : : : ; zK ∈ U , and �nd an N such that

||E∗
n (zkIn −An)−1Eny − (zkI − A)−1y||¡�; n ∈ �; n¿N; k = 1; : : : ; K:

Then for each z ∈ U we �nd a k with |z − zk |6�′, and

||E∗
n (zIn −An)−1Eny − (zI − A)−1y||
62�′ · (9C2) · ||y||+ ||E∗

n (zkIn −An)−1Eny − (zkI − A)−1y||63�
for all n¿N , n ∈ �, showing that the convergence in (4.2) (and thus in (4.3)) takes place uniformly
in U .

Di�erent variants of the Kantorovich Theorem have been discussed before in the context of FOPs
and Pad�e approximation, see [33, Theorems 4:1; 4:2] or [14, Lemmas 4; 5]. Usually, the condition
z ∈ 
(A) is imposed for all equivalences; then the proof simpli�es considerably, and also applies to
general proper matrices.
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We see from Theorem 4.1 that the notion of weak and strong resolvent convergence are equivalent
for proper complex Jacobi matrices. On the other hand, by (3.19),

||(zIn −An)−1 − En(zI − A)−1E∗
n ||=

∣∣∣∣ rn(z)qn(z)

∣∣∣∣
n−1∑
j=0

|qj(z)|2 = |�(z)− �n(z)|
n−1∑
j=0

|qj(z)|2; (4.7)

and at least for particular examples it is known that the right-hand side of (4.7) does not tend to
zero. Thus we may not expect to have norm convergence.
If A is not proper, then Theorem 4.1 does not give any information (notice that 
(A) = ∅ by

Theorem 2.6(c)). However, at least in the indeterminate case we clearly understand what happens.

Theorem 4.2. Let A be indeterminate. If � is some in�nite set of integers and � ∈ C is such that
lim
n→∞
n∈�

(e0; (�In −An)−1e0)= : �; (4.8)

then with the unique � ∈ C ∪ {∞} satisfying �[�](�) = � (see Theorem 2:11) there holds

lim
n→∞
n∈�

||(zIn −An)−1 − En(zI − A[�])−1E∗
n ||= 0

uniformly on compact subsets of 
(A[�]).

Proof. We will only show pointwise norm convergence for z ∈ 
(A[�]), the extension to uniform
convergence follows as in the proof of Theorem 4.1. First one shows as in (3.19) and (4.7) that

||(zIn −An)−1 − En(zI − A[�])−1E∗
n ||= |�[�](z)− �n(z)|

n−1∑
j=0

|qj(z)|2; z ∈ 
(A[�]):

Since A is indeterminate, the sum is bounded uniformly in n for all z ∈ C, and �[�](z) 6=∞.
Therefore, it remains only to show that �n(�) → � for n → ∞, n ∈ � implies �n(z) → �[�](z)
for n → ∞, n ∈ � and z ∈ C. Here we follow [59, Proof of Theorem 23:2]: According to
[59, Theorem 23:1, Eqs. (23:2), (23:6)], there exist polynomials aj;n, j = 1; 2; 3; 4 with

lim
n→∞ aj;n(z) = aj(z); j = 1; 2; 3; 4; z ∈ C; (4.9)

a1; n(z)a4; n(z)− a2; n(z)a3; n(z) = 1; n¿0; z ∈ C; (4.10)

pn(z) = pn(0)a2; n(z)− qn(0)a1; n(z); qn(z) = pn(0)a4; n(z)− qn(0)a3; n(z) (4.11)

with a1; : : : ; a4 as in Theorem 2.11. Combining (4.10) and (4.11), we get

pn(0) =−pn(�)a3; n(�) + qn(�)a1; n(�); qn(0) =−pn(�)a4; n(�) + qn(�)a2; n(�);

and, by assumption on �n(�) = pn(�)=qn(�), we may conclude from (4.9) that

lim
n→∞
n∈�

�n(0) =
a1(�)− �a3(�)
a2(�)− �a4(�)

:
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Here the right-hand side equals � by de�nition. Applying again (4.9) and (4.11), we obtain for
z ∈ C the desired relation

lim
n→∞
n∈�

�n(z) =
a1(z)− �a2(z)
a3(z)− �a4(z)

= �[�](z):

Theorem 4.2 implies that in the indeterminate case we obtain weak and strong resolvent conver-
gence to (zI − A[�])−1. Since (4.8) follows from weak convergence, we may conclude that here all
three notions of convergence are equivalent. Notice that (4.8) is equivalent to the convergence of a
subsequence of Pad�e approximants at one point.
Let us return to the more interesting case of proper complex Jacobi matrices. In order to be able

to exploit Theorem 4.1, we need to know whether there exist in�nite sets � (possibly depending on
z) satisfying (4.4). In the following theorem we show that, under some additional assumptions, the
existence can be insured.

Theorem 4.3. (a) Suppose that the in�nite sequence (an)n∈�′ is bounded. Then z ∈ 
(A) if and
only if there exists an in�nite set of integers � satisfying (4:4).
(b) Suppose that (an−1)n∈� is bounded; and let z ∈ 
; where 
 is a connected component of


(A) which is not a subset of �(A). Then (4:4) holds if and only if z is not an accumulation point
of {zeros of qn: n ∈ �}.
(c) Suppose that (an−1)n∈� tends to zero. Then z ∈ 
(A) if and only if (4:4) holds.
(d) Let A; Ã be two di�erence operators with compact A− Ã; and z ∈ 
(A) ∩ 
(Ã). Then (4:4)

for A implies (4:4) for Ã.
(e) Relation (4:4) with �= {0; 1; 2; : : :} holds for z ∈ 
(A)\�ess(A).

It seems that the assertions of Theorem 4.3 have gone unnoticed so far for general possibly
unbounded complex Jacobi matrices. For bounded or compact perturbations of self-adjoint Jacobi
matrices, results related to Theorem 4.3(e) may be found in [14, Sections 1, 2].
Combining Theorem 4.3 with Theorem 4.1 (specially the last sentence) and using classical com-

pactness arguments, we may get uniform counterparts of (4.1) and (4.4). Since these results play an
important role for the convergence of Pad�e approximants, we state them explicitly in

Corollary 4.4. We have

lim sup
n→∞
n∈�

max
z∈F

||(zIn −An)−1||¡∞

and

lim sup
n→∞
n∈�

max
z∈F

||E∗
n (zIn −An)−1Eny − (zI − A)−1y||= 0

for a compact set F and y ∈ ‘2 provided that one of the following conditions is satis�ed:
(a) �= {0; 1; 2; : : :} and F ⊂
(A)\�ess(A).
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(b) (an−1)n∈� tends to zero and F ⊂
(A).
(c) (an−1)n∈� is bounded; F ⊂
; with 
 6⊂�(A) being some subdomain of 
(A), and F does not

contain accumulation points of zeros of qn; n ∈ �.

For the proof of Theorem 4.3(d),(e) we will need the following lemma, which for bounded
operators was already stated before by Magnus [33].

Lemma 4.5 (Cf. with Magnus [33, Theorem 4:4]). Let B be some in�nite proper matrix; and write
B= [B]min. Furthermore; let B̃ be an operator in ‘2; with C0⊂D(B̃); 0 ∈ 
(B)∩
(B̃); and B− B̃
being compact. Then for any in�nite set of integers � we have the implication

sup
n∈�

||(EnBE∗
n )

−1||= C ′¡∞ ⇒ lim sup
n→∞
n∈�

||(EnB̃E∗
n )

−1||¡∞:

Proof. We claim that there exist N; C such that, for all n¿N , n ∈ �, the system

(EnB̃E∗
n )xn = yn

admits a unique solution xn for all yn ∈ Cn, with ||xn||6C · ||yn||. Then the assertion follows. For
proving this claim, we rewrite the system as

[In + (EnBE∗
n )

−1En(B̃− B)E∗
n ]xn = (EnBE∗

n )
−1yn:

Since EnE∗
n =In, E∗

nIn = E∗
n , E

∗
n En =�n, the system takes the form

[I + B−1(B̃− B) + �n](E∗
n xn) = E∗

n (EnBE∗
n )

−1yn; (4.12)

where

�n=E∗
n (EnBE∗

n )
−1En(B̃− B)− B−1(B̃− B)

= [E∗
n (EnBE∗

n )
−1En − B−1](I −�m)(B̃− B) + [E∗

n (EnBE∗
n )

−1En − B−1]�m(B̃− B)

for any integer m. Here the expression in brackets is bounded in norm by C ′+ ||B−1||. Since (B− B̃)
is compact, it is known that ||(I − �m)(B̃ − B)|| → 0 for m → ∞. Hence we may �nd an m such
that

||(I −�m)(B̃− B)||6 1

4||B̃−1
B||(C ′ + ||B−1||)

:

Since B is proper, with 0 ∈ 
(B), one shows as in the proof of Theorem 4.1 that

lim
n→∞
n∈�

E∗
n (EnBE∗

n )
−1Eny = B−1y; y ∈ ‘2:

In particular, we may �nd for �:=1=(4
√
m||B̃−1

B|| · ||Em(B̃− B)||) an N¿m such that

||[E∗
n (EnBE∗

n )
−1En − B−1]ej||6�; j = 0; : : : ; m− 1; n¿N; n ∈ �;
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implying that ||[E∗
n (EnBE∗

n )
−1En−B−1]E∗

m||6
√
m�. Collecting the individual terms, we may conclude

that ||�n||61=(2||B̃−1
B||). In particular, B−1B̃ + �n is invertible, with its inverse having a norm

bounded by 2||B̃−1
B||. Thus, system (4.12) has a unique solution for n¿N , n ∈ �, with

||xn||62||B̃−1
B|| ||E∗

n (EnBE∗
n )

−1|| ||yn||62||B̃−1
B||C ′||yn||;

as claimed above.

Proof of Theorem 4.3. (a) By Example 2.7, A is proper. Thus (4.4) implies that z ∈ 
. In order
to show the converse, let z ∈ 
(A). According to (4.7), it will be su�cient to give a suitable error
estimate for the error of Pad�e approximation. For n ∈ �′, de�ne �n = 1 if |un(z)|61, and �n = 0
otherwise. Furthermore, let �= {n+ �n: n ∈ �′}. Then we get for n ∈ �′

|an|2�n |qn+�n(z)|2¿ 1
2 (|qn(z)|2 + |anqn+1(z)|2)

by construction of �n, and trivially

|an|2�n |rn+�n(z)|26|rn(z)|2 + |anrn+1(z)|2:
Using the left-hand estimate of (2.22), we may conclude that

∣∣∣∣ rn+�n(z)
qn+�n(z)

∣∣∣∣
n∑

j=0

|qj(z)|26
√
2
|rn(z)|2 + |anrn+1(z)|2
|qn(z)|2 + |anqn+1(z)|2

n∑
j=0

|qj(z)|2

6
√
2(|rn(z)|2 + |anrn+1(z)|2)

n∑
j=0

|qj(z)|2

=
√
2(||�n+1(zI − A)−1en||2 + |an|2||�n+1(zI − A)−1en+1||2);

where in the last equality we have applied (2.19). Notice that the term on the right-hand side is
bounded by

√
2(1 + |an|2)||(zI − A)−1||2. Hence, using (4.7), we obtain

||(zIn+�n −An+�n)
−1||6 ||En(zI − A)−1E∗

n ||+ ||(zIn+�n −An+�n)
−1 − En(zI − A)−1E∗

n ||

6 ||(zI − A)−1||+
√
2(1 + |an|2)||(zI − A)−1||2;

which is bounded in n by assumption on (an). Thus (4.4) holds.
(b) We �rst show that (4.4) implies that z may not be an accumulation point of zeros of qn,

n ∈ �. In fact, as in (4.6) we may �nd some N¿0 such that

||(�In −An)−1||66C; n ∈ �; n¿N; |z − �|¡ 1
2C

;

showing that eigenvalues of An (i.e., zeros of qn) have to stay away from z for su�ciently large
n ∈ �. Suppose now that � is as described in part (b). Then there exists an open neighborhood
U ⊂
 of z such that un−1 is analytic in U for n ∈ � (at least after dropping a �nite number of
elements of �). Also, from Theorem 3.3(c) we know that (un−1)n∈� is a normal family of mero-
morphic functions in 
, with any partial limit being di�erent from the constant∞ by Theorem 3.3(a).
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It follows from [18, Lemma 2.4(d)] that then (un−1)n∈� is bounded uniformly on compact subsets
of U , in particular,

d:= sup
n∈�

|un−1(z)|¡∞:

Consequently,

|an−1qn(z)|2 = |qn−1(z)|2 + |an−1qn(z)|2
|un−1(z)|2 + 1 ¿

|qn−1(z)|2 + |an−1qn(z)|2
d2 + 1

:

As in the proof of part (a) (with �n = 1 and n replaced by n− 1) we may conclude that
||(zIn −An)−1||6||(zI − A)−1||+

√
1 + d2(1 + |an−1|2)||(zI − A)−1||2

and thus (4.4) is true.
(c) As in part (a), it is su�cient to show that z ∈ 
(A) implies (4.4). Denote by B[n] the

in�nite matrix obtained from A by replacing an−1 by 0, and write B[n]:=[B[n]]min. Let z ∈ 
(A). By
assumption on (an−1)n∈�, we �nd an N¿0 such that

||A− B[n]||6 1
2||(zI − A)−1|| ; n ∈ �; n¿N:

Thus z ∈ 
(B[n]) and ||(zI − B[n])−1||62||(zI − A)−1||. On the other hand, B[n] is block diagonal,
with En(zI − B[n])−1E∗

n = (zIn −An)−1. Thus ||(zIn −An)−1||62||(zI − A)−1|| for all n ∈ �, n¿N ,
implying (4.4).
(d) This part follows immediately from Lemma 4.5.
(e) The complex Jacobi matrix A is proper by Theorem 2.6(c), and one easily deduces that the

same is true for all associated Jacobi matrices A(k). By the de�nition of �ess(A), there exists a k¿0
with z ∈ C\�(A(k)), the latter being a subset of 
(A(k)) by Theorem 3.5(c). From the proof of
Theorem 3.3(a) we know that

||(zIn −A(k)
n )

−1||6 1
dist(z; �(A(k)))

¡∞; n¿0:

Let B be obtained from A by keeping the elements from A(k), putting � 6= z on the �rst k diagonal
positions, and zero elsewhere. One easily veri�es that then

||(zIn −Bn)−1||6 1
dist(z; {�} ∪ �(A(k)))

¡∞; n¿0:

Writing B = [B]min, we trivially have z ∈ 
(B), and A − B is compact (and even of �nite rank).
Thus the assertion follows from Lemma 4.5.

4.2. Some consequences for the approximation of the Weyl function

We summarize some consequences of the preceding section for the convergence of Pad�e approx-
imants �n(z) = (e0; (zIn − An)−1e0) (i.e., Weyl functions of the �nite sections An) to the Weyl
function �(z)= (e0; (zI −A)−1e0) in the following statement, which is an immediate consequence of
Corollary 4.4.
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Corollary 4.6. The subsequence (�n)n∈� converges to the Weyl function � uniformly in the compact
set F provided that one of the following conditions is satis�ed:
(a) �= {0; 1; 2; : : :} and F ⊂
(A)\�ess(A).
(b) (an−1)n∈� tends to zero and F ⊂
(A).
(c) (an−1)n∈� is bounded; F ⊂
; with 
 6⊂�(A) being some subdomain of 
(A); and F does not

contain accumulation points of zeros of qn; n ∈ �.

For convergence outside �(A) (which is included in Corollary 4.6(a)) we refer the reader to
[59, Theorems 26:2; 26:3; 20, Theorem 3:10] in the case of bounded A, and [59, Theorem 25:4] in
the case of determinate A. For the special case of a compact perturbation of a self-adjoint Jacobi
operator, Corollary 4.6(a) may be found in [14, Corollary 6; 13, Theorem 2]. The latter assertion
applies a di�erent technique of proof, and contains additional information about the number of
poles at isolated points of 
(A)\�ess(A). Assertion [14, Theorem 2] on bounded perturbations of a
self-adjoint Jacobi operator is contained in Corollary 4.6(a).
For bounded complex Jacobi matrices, Corollary 4.6(b) may be found in [18, Corollary 4:2].

As shown in [18, Corollary 5:6], this statement can be used to prove the Baker–Gammel–Wills
conjecture for Weyl functions of operators with countable compact spectrum. Corollary 4.6(c) for
bounded complex Jacobi matrices was established in [18, Theorem 4.1] (containing additional results
on the rate of convergence in terms of the functions ginf and gsup of Theorem 3.1). Here as set 
 we
may choose the unbounded connected component 
0(A) of 
(A). Notice that a connected component

 of 
(A) with 
 6⊂�(A) is unbounded also for unbounded A. Thus Corollary 4.6(c) has to be
compared with the result of Gonchar [28] mentioned in Section 3.3.
In their work on bounded tridiagonal in�nite matrices, Aptekarev, Kaliaguine and Van Assche

observed [7, Theorem 2] that

lim inf
n→∞ |�n(z)− �(z)|= 0; z ∈ 
(A): (4.13)

Notice that this relation also holds for unbounded A since otherwise a nontrivial multiple of the
sequence (|qn(z)|)n¿0 6∈ ‘2 would minorize the sequence (|rn(z)|)n¿0=(|�(z)−�n(z)|·|qn(z)|)n¿0 ∈ ‘2.
If a subsequence of (an) is bounded, then by combining Theorem 4.3(a) with Theorem 4.1 we see
that relation (4.13) holds even uniformly in some neighborhood of any z ∈ 
(A). This was observed
before in [4, Corollaries 3; 4] for bounded real, and in [18, Theorem 4:4] for bounded complex Jacobi
matrices.
In this context, let us discuss the related question whether (pointwise) convergence of (a subse-

quence of) Pad�e approximants at some z implies that z ∈ 
(A). Clearly, the answer is no; see for
instance the counterexamples presented in the last paragraph of [7]. If, however, we replace Pad�e
convergence by weak (or strong) resolvent convergence, and we limit ourselves to sequences (an)
containing a bounded subsequence, then the answer is yes: we have z ∈ 
(A) if and only if there
exists an in�nite set � of indices such that

lim
n→∞
n∈�

(Eny′; (zIn −An)−1Eny) exists ∀y; y′ ∈ ‘2: (4.14)

Indeed, if z ∈ 
(A), then we may use Theorems 4:3(a) and 4:1 to establish (4.14). Conversely,
(4.14) implies (4.4) by [30, Problem V.1.6], and thus z ∈ 
(A) by Theorem 4.3(a).
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We terminate this section with a generalization of [18, Theorem 3.1], where convergence in
(logarithmic) capacity of (�n) is established for bounded A on compact subsets of the unbounded
connected component of the resolvent set.

Theorem 4.7. Let (an)n∈� be bounded; and denote by 
 a connected component of 
(A). Then
there exist �n ∈ {0; 1} such that; for each compact F ⊂
 and for each �¿0; we have

lim
n→∞
n∈�

cap{z ∈ F : |�(z)− �n+�n(z)|¿�}= 0:

If in addition 
 6⊂�(A); then we may choose �n = 1 for all n ∈ �.

Proof. From Theorem 3.3(c) we know that (un)n∈� is a normal family of meromorphic functions in

. If in addition 
 6⊂�(A), then any partial limit is di�erent from the constant ∞ by Theorem 3.3(a),
and we put vn=un, �n=1. Otherwise, let � ∈ 
. If |un(�)|61, then again vn=un, �n=1, and otherwise
vn=1=un, �n=0. In this way we have constructed a normal family (vn)n∈� of meromorphic functions
in 
 with any partial limit being di�erent from the constant ∞.
Let F; F ′ ⊂
 be compact, the interior of F ′ containing F . Let !n, n ∈ �, be a monic polynomial

of minimal degree such that !nvn is analytic in F ′. From the proof of Theorem 3.4(c) we know that
the degree �n of !n is bounded by some �(F ′) uniformly for n ∈ �. We claim that

sup
n∈�

Cn= : C(F)¡∞; Cn:=max
z∈F

|!n(z) · vn(z)|: (4.15)

Otherwise, there would be integers nk ∈ � such that Cnk¿k. By normality, we may assume, without
loss of generality, that (vnk )k converges to some meromorphic v uniformly in F ′. Since v 6=∞, we
�nd some open set D, F ⊂D⊂F ′, having a �nite number of open components, and v(z) 6= ∞ for
z ∈ @D. By uniform convergence on @D it follows that

lim sup
k→∞

max
z∈@D

|vnk (z)|¡∞:

Since D is bounded and the degrees of the !n are uniformly bounded, we may conclude that the
above relation remains true after multiplication of vnk with !nk . Using the maximum principle for
analytic functions, we obtain a bound for !nk · vnk on F uniformly in k, in contradiction to the
construction of nk . Thus (4.5) holds.
From (4.15) we conclude that, for any d¿max{2; 2C(F)} and n ∈ �,

cap{z ∈ F :
√
1 + |vn(z)|2¿d}6cap{z ∈ F : |vn(z)|¿d=2}

6cap
{
z ∈ F : |!n(z)|62C(F)d

}
=
(
2C(F)

d

)1=�n
6
(
2C(F)

d

)1=�(F′)

:

Notice that by construction (compare with the proof of Theorem 4.3(a))

�(z)− �n+�n(z) =
a�n
n rn+�n(z)

√
1 + |vn(z)|2√|qn(z)|2 + |anqn+1(z)|2

6
√
1 + |vn(z)|2[|rn(z)|2 + |anrn+1(z)|2|]:

Since the term in brackets tends to zero uniformly in F by (2.19), we obtain the claimed convergence
by combining the last two formulas.
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Combining the reasoning of the proofs of Theorems 4:3(a) and 4:7, we may also show that with

;�; �n as in Theorem 4.7 there holds for any compact F ⊂


lim
�→0
cap






z ∈ F : lim sup

n→∞
n∈�

||(zIn+�n −An+�n)
−1||¿1

�





= 0:

Thus, our result on convergence in capacity of Pad�e approximants is again connected to a type of
strong resolvent convergence in capacity.
In [48], Stahl suggested to replace in the Baker–Gammel–Wills conjecture [11] locally uniform

convergence of a subsequence by convergence in capacity of a subsequence. Theorem 4.7 con�rms
(under assumptions on the regularity of the underlying function and assumptions on some of the
coe�cients of its J -fraction expansion) that this is true in the resolvent set. Of course, this open set
does not need to contain the maximal disk of analyticity of the Weyl function, but it might be helpful
in investigating the above conjecture for special classes of functions. We refer the reader to Baker’s
survey [10] for further recent developments in convergence questions for Pad�e approximation.

4.3. An application to asymptotically periodic Jacobi matrices

A complex Jacobi-matrix A is called m-periodic if ajm+k=ak ; bjm+k=bk ; k=0; 1; : : : ; m−1; j¿0,
and Ã is called asymptotically periodic if it is a compact perturbation of an m-periodic matrix, i.e.,

lim
j→∞

ãjm+k = ak ; lim
j→∞

b̃jm+k = bk ; k = 0; 1; : : : ; m− 1:
Real periodic and asymptotically periodic Jacobi matrices have been studied by a number of authors,
see, e.g., [26,24,34]. Complex perturbations of real periodic Jacobi matrices are investigated in
[15,16], and complex (asymptotically) periodic Jacobi matrices in [20, Sections 2.2, 2.3; 19, Example
3:6,3].
It is well known (see, e.g., [20, Section 2.2]) that, for m-periodic A, the sequences (pn(z))n¿−1

and (qn(z))n¿−1 satisfy the recurrence relation 13

y(j+1)m+k = h(z) · yjm+k − y(j−1)m+k ; j¿0; k¿− 1 (4.16)

with some polynomial h for which we have several representations:

h(z) =
q2m−1(z)
qm−1(z)

=
p2m(z)
pm(z)

= qm(z)− am−1pm−1(z):

In [20, Section 2.3], the authors show (see also [19, Example 3:6] or [3]) that �ess(A) = {z ∈
C: h(z) ∈ [− 2; 2]}, which by [20, Lemma 2:5] has empty interior and connected complement. The
Weyl function of A is an algebraic function, meromorphic (and single valued) in C\�ess(A), with
possible poles at the zeros of qm−1 [20, Section 2.2], and �(A) is just the extremal set of Stahl [49],
i.e., the set of minimal capacity outside of which the Weyl function has a single-valued analytic
continuation from in�nity [20, Remark 2:9].

13 Here we need to put a−1 = am−1, and thus 1 =−am−1p−1(z) = am−1r−1(z). This slight modi�cation does not change
the other elements of the sequences (pn(z))n¿−1 or (rn(z))n¿−1.
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Let us show here that we may localize the spurious zeros of the FOPs associated with A (and
with Ã). First, using (1.2) and (2.20), one easily veri�es the well-known fact that

q(k+1)n (z):=ak(qn+k+1(z)rk(z)− rn+k+1(z)qk(z)) (4.17)

is the nth FOP of the associated Jacobi matrix A(k+1). For z 6∈ �ess(A), the equation y2 = h(z)y− 1
has one solution w(z) of modulus |w(z)|¡1, and the second solution 1=w(z). From (4.16), (3.7) we
may conclude that there exist (algebraic) functions �k ; �k ; 
k such that

rjm+k(z) = �k(z) · w(z)j; qjm+k(z) = �k(z) · w(z)j + 
k(z) · w(z)−j (4.18)

for all k¿− 1; j¿0 and z ∈ 
(A). Injecting this information in (2.20) we obtain

ak(
k+1(z)�k(z)− 
k(z)�k+1(z)) = 1; (4.19)

showing that |
k(z)|+ |
k+1(z)| 6= 0 for all z ∈ 
(A). We may deduce that

lim
j→∞

�

(
qjm+k(z)

ajm+kqjm+k+1(z)
;


k(z)
ak
k+1(z)

)
= 0; k = 0; 1; : : : ; m− 1; z ∈ 
(A): (4.20)

Also, by periodicity, q(k)n (z)= q(k+m)
n (z), and by combining (4.18) with (4.17) we may conclude that

q(k+1)m−1 (z) = ak[w(z)−1 − w(z)]�k(z)
k(z): (4.21)

From (4.20) and (4.21) we see that spurious zeros of (qjm+k)j¿0 accumulating in � ∈ 
(A) satisfy

k(�) = 0 and thus q(k+1)m−1 (�) = 0.
Combining this �nding with Theorem 3.6 and Corollary 4.6(c), we obtain the following statement:

Corollary 4.8. Let Ã be an asymptotically periodic complex Jacobi matrix; denote by A the
corresponding m-periodic Jacobi matrix; and let k ∈ {0; : : : ; m− 1}. Then for each compact subset
F of 
(A) ∩ 
(Ã) which does not contain zeros of q(k+1)m−1 there exists a J = J (F) such that q̃mj+k
has no zeros in F for j¿J; and

lim
j→∞

max
z∈F

|�̃(z)− �̃mj+k(z)|= 0:

Notice that pointwise convergence for asymptotically periodic complex Jacobi matrices was already
obtained in [20, Theorem 2.11]. If A is real, then clearly �ess(A) consists of at most m real intervals.
Barrios et al. [15,16] showed that then the zeros of all q(k+1)m−1 lie in the convex hull S of �ess(A)
and obtained uniform convergence of (�̃n)n¿0 on compact subsets of C\S.
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Abstract

Classical interpolatory or Gaussian quadrature formulas are exact on sets of polynomials. The Szegő quadrature formulas
are the analogs for quadrature on the complex unit circle. Here the formulas are exact on sets of Laurent polynomials. In
this paper we consider generalizations of these ideas, where the (Laurent) polynomials are replaced by rational functions
that have prescribed poles. These quadrature formulas are closely related to certain multipoint rational approximants of
Cauchy or Riesz–Herglotz transforms of a (positive or general complex) measure. We consider the construction and
properties of these approximants and the corresponding quadrature formulas as well as the convergence and rate of
convergence. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is an important problem in numerical analysis to compute integrals of the form
∫ b
a f(x) d�(x)

where � is in general a complex measure on the interval [a; b] with −∞6a¡b6+∞. Most quadra-
ture formulas approximate this integral by a weighted combination of function values:

∑n
i=1 Anif(�ni).
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The quadrature parameters are the abscissas or knots {�ni}n
i=1 and the coe�cients or weights {Ani}n

i=1.
One objective in constructing quadrature formulas could be to �nd the quadrature parameters such
that the formulas are exact for all functions in a class that is as large as possible.
The most familiar quadrature formulas based on this principle are the Gauss–Christo�el formulas.

These formulas choose for a positive measure � as abscissas the zeros of ’n, which is the polynomial
of degree n orthogonal with respect to the inner product 〈f; g〉= ∫ b

a f(x)g(x) d�(x). These zeros are
simple and all in the interval (a; b). The weights are the so-called Christo�el numbers. They are
positive and are constructed in such a way that the quadrature formula is exact for all f∈�2n−1,
i.e., for any polynomial of degree at most 2n− 1. These Gauss–Christo�el formulas are optimal in
the sense that it is impossible to construct an n-point formula that is exact in �k with k¿2n. For a
survey, see for example [25]. The study of such quadrature formulas was partly motivated by the role
they played in the solution of the corresponding Stieltjes–Markov moment problem. That is, given a
sequence of complex numbers ck , �nd a positive or complex measure � such that ck =

∫ b
a xk d�(x),

k = 0; 1; : : : : For complex measures see [41,31].
In this survey, it is our intention to concentrate on the computation of integrals of the form

I�{f}:=
∫ �
−� f(e

i�) d�(�) where f is a complex function de�ned on the unit circle and � is in
general a complex measure on [− �; �].
The motivation for this problem is that, just as the previous case is related to a Stieltjes moment

problem for an interval, this integral can be related to the solution of a trigonometric moment problem
when � is a positive measure. The Stieltjes–Markov moment problems suggested the construction
of quadrature formulas in the largest possible subset of polynomials. However, in the case of the
trigonometric moment problem, it is very natural to consider Laurent polynomials (L-polynomials)
instead. This is motivated by the fact that a function continuous on the unit circle can be uniformly
approximated by L-polynomials. Since L-polynomials are rational functions with poles at the origin
and at in�nity, the step towards a more general situation where the poles are at several other
(�xed) positions in the complex plane seems natural. This gives rise to a discussion of orthogonal
L-polynomials and orthogonal rational functions (with arbitrary but �xed poles).
The outline of the paper is as follows. First we introduce the basic ideas and techniques by

considering the case of Szegő quadrature formulas that are exact in the largest possible sets of
Laurent polynomials for integrals with a positive measure on the unit circle. We introduce the
rational (two-point Pad�e or Pad�e type) approximants, based on orthogonal polynomials, and the error
estimates for the rational approximants and for the quadrature. Section 3 introduces the rational
variants of these formulas and approximants. Their convergence is established in Section 5. The
necessary properties of orthogonal rational functions needed are discussed brie
y in Section 4. Next,
we discuss the corresponding problems for a complex measure on the unit circle in Section 6. In
Section 7 we also discuss the case where the poles of the rational functions are chosen inside the
support of the measure. For ideas related to integrals on an interval (compact or not) of the real
line we refer to Section 8. Finally, in Section 9 we state some open problems for further research.
Some notation before we start: C is the complex plane and Ĉ = C ∪ {∞}. We denote the unit

circle by T = {z ∈C: |z| = 1}, the open unit disk by D = {z ∈C: |z|¡ 1}, and the external of the
closed disk by E= {z ∈C: |z|¿ 1}. For any function f, the para-hermitian conjugate is de�ned as
f∗(z):=f(1= �z). The set of polynomials of degree at most n¿0 is denoted by �n, and � is the set
of all polynomials. By �p;q={∑q

k=p akzk : ak ∈C} we denote subsets of L-polynomials, and � is the
set of all L-polynomials. Note that �0; n=�n. If P ∈�n\�n−1 (where �−1=∅), then P∗(z)=znP∗(z).
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2. The unit circle and L-polynomials

A systematic study of quadrature problems for integrals of the form

I�{f}:=
∫ �

−�
f(ei�) d�(�) (2.1)

with � a positive measure was initiated by Jones et al. [36]. We shall introduce the main ingredients
here as an introduction to our more general discussion in the following sections. The quadrature
formula has the form (the measure �n is discrete with mass Ank at the points �nk , k = 1; : : : ; n)

I�n{f}=
n∑

k=1

Ankf(�nk); (2.2)

where the abscissas are all simple and on T. The objective is an analogue of the Gauss–Christo�el
formula. That is, �nd knots and weights such that these formulas are exact in the largest possible
set of L-polynomials. So we consider here the polynomial space Ln =�n and the space of Laurent
polynomials Rp;q=�−p;q, where p and q are always assumed to be nonnegative integers. Note that
the dimension of Rp;q is p+ q+ 1. It can be shown that for n di�erent points �ni ∈T, there is no
quadrature formula of form (2.2) that is exact in some Rp;q of dimension p+ q+ 1¿ 2n− 1. But
there is a quadrature formula that is exact in Rn−1; n−1, and this has the maximal possible dimension.
All n-point quadrature formulas with this maximal domain of validity can be described with one
free parameter �n ∈T. The formulas are called Szegő formulas. They can be described as follows.
First we need the orthonormal polynomials ’k , obtained by orthogonalizing 1; z; z2; : : : with respect
to the inner product

〈f; g〉=
∫ �

−�
f(ei�)g(ei�) d�(�):

The para-orthogonal polynomials are then de�ned by Qn(z; �n):=’n(z) + �n’∗
n(z). Para-orthogonal

means that Qn⊥ span{z; : : : ; zn−1} while 〈Qn; 1〉 6= 0 6= 〈Qn; zn〉. If �n ∈T, then it can be shown
that Qn(z; �n) has n simple zeros {�nk}n

k=1⊂T. These depend on the parameter �n. We can use this
parameter to place one zero, e.g., �n1, in some arbitrary w∈T. The other knots {�nk}n

k=2 are then
the zeros of kn−1(z; w), where kn−1 represents the reproducing kernel for Ln−1, that is kn−1(z; w) =∑n−1

i=0 ’i(z)’i(w). It reproduces in the sense that 〈f; kn−1(·; w)〉 = f(w) for every f∈Ln−1. This
implies, for example, that we only need to know the �rst n polynomials ’0; : : : ; ’n−1 to �nd the n
knots {�nk}n

k=1.

Theorem 2.1 (Gonz�alez-Vera et al. [33]). If (2:2) is a Szegő formula; then the distinct knots
{�ni}n

i=1⊂T are given by the zeros of the para-orthogonal functions Qn(z; �n)=’n(z)+�n’∗
n(z) with

�n ∈T arbitrary; or equivalently by some arbitrary point �n1 ∈T and the zeros of
kn−1(z; �n1). The (positive) weights Ani are given by the reciprocals

A−1
ni =

n−1∑
k=0

|’k(�ni)|2 = kn−1(�ni; �ni):

To study error formulas and convergence properties, we use the link with moment problems and
certain rational approximations.
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Therefore, we introduce some rational approximants to the Riesz–Herglotz transform of the mea-
sure �. Let us start by de�ning the Riesz–Herglotz transform as

F�(z) = I�{D(·; z)}; D(t; z) =
t + z
t − z

;

which is a function analytic in Ĉ\T having a radial limit a.e. to the unit circle whose real part is
the absolutely continuous part of �. Moreover, it has expansions in D and E that can be described
in terms of the moments ck = I�{z−k}, k ∈Z. We have

F�(z) ∼ L0(z) = c0 + 2
∞∑
j=1

ckzk ; z ∈D;

F�(z) ∼ L∞(z) =−c0 − 2
∞∑
j=1

c−kz−k ; z ∈ E:

Here we have a motivation for �nding approximants that converge to F�, since this could help
solving the moment problem. Some rational approximants with �xed denominators are constructed
as follows.
Consider a triangular table X = {�ni ∈T: i = 1; : : : ; n; n∈N}, where �ni 6= �nj for i 6= j. We

shall use the rows of this array as knots for quadrature formulas. Therefore, we shall call such
an array a node array. Let Qn ∈�n be a node polynomial, that is, a polynomial whose zeros are
{�ni; i=1; : : : ; n}. For any such polynomial Qn, and for any pair of nonnegative integers (p; q) such
that p+ q= n− 1¿0, we can �nd a unique polynomial Pn ∈�n such that for F�n = Pn=Qn we have

F�(z)− F�n(z) = O[z
p+1]; z → 0;

F�(z)− F�n(z) = O[(1=z)
q+1]; z → ∞:

The rational function F�n is called a two-point Pad�e-type approximation (2PTA). The relation with
quadrature formulas is that if the zeros of Qn are the abscissas of the n-point Szegő quadrature
formula, then the 2PTA F�n = Pn=Qn has the partial fraction expansion

F�n(z) =
n∑

i=1

AniD(�ni; z);

where the Ani are the weights of the quadrature formula.
Now let us consider a function f that is analytic in a neighborhood of T. More precisely, let G

be an open and bounded annulus such that 0 6∈ G and T⊂G, and assume that f is analytic in (a
neighborhood of) the closure of G. Let �1 be the inner and �2 the outer boundary of G so that
@G= �1 ∪ �2. Then, by Cauchy’s theorem we have for t ∈G

f(t) =
1
2�i

∫
�
D(t; z)g(z) dz; g(z) =−f(z)=(2z);

where the integral over � runs clockwise over �1 and counter-clockwise over �2. Now applying the
operator I� and using Fubini’s theorem, we get

I�{f}= 1
2�i

∫
�
F�(z)g(z) dz and I�n{f}=

1
2�i

∫
�
F�n(z)g(z) dz:

Thus, for the error, one has
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Theorem 2.2 (Bultheel et al. [11]). Let f be analytic in the closure of G; where G is an open and
bounded annulus such that 0 6∈ G and T⊂G. Assume @G=�=�1 ∪�2 with �1 the inner and �2
the outer boundary of G. Then; if the triangular table X; the 2PTA F�n = Pn=Qn; and the n-point
Szegő formula are as above; we have

E�n{f}= I�{f} − I�n{f}=
1
2�i

∫
�
[F�(t)− F�n(t)]

−f(t) dt
2t

;

where the integral over � is clockwise for �1 and counter-clockwise for �2; and

R�n(z):=F�(z)− F�n(z) =
2zp+1

Qn(z)

∫ �

−�

Qn(ei�)e−ip�

ei� − z
d�(�):

This shows that there is an intimate relationship between the convergents of 2PTA for F� and the
convergence of quadrature formulas.
We shall not develop our treatment of the polynomial case any further, but use the thread of this

section as a motivation for the more general case of rational functions replacing the polynomials.
We shall do this in the next sections. The polynomial situation is there just a special case.

3. Rational Szegő formulas and modi�ed approximants

Let A = {�n: n = 1; 2; : : :} be an arbitrary sequence of points in D. Sometimes we abuse this
notation to mean also the point set of the �k . It should be clear from the context what it is meant
to be. De�ne the Blaschke factors �k by

�k(z):=
��k

|�k |
�k − z
1− ��kz

; k = 1; 2; : : : ;

where if �k =0, then ��k=|�k | is replaced by −1, and the Blaschke products B0 = 1 and Bk = �1 · · · �k ,
k¿1. The spaces of polynomials of the previous section are replaced by the spaces of rational
functions Ln = span{B0; : : : ; Bn}. Note that if we set �0 = 1 and �n(z) =

∏n
k=1(1− ��kz), n¿1, then

f∈Ln is of the form p=�n with p∈�n. The spaces of negative powers of z are replaced by
Ln∗ = span{B0; B1∗; : : : ; Bn∗}. Thus, setting !0 = 1 and !n(z) =

∏n
k=1(z − �k), n¿1, then f∈Ln∗

is of the form q=!n with q∈�n. The space of L-polynomials is replaced by Rp;q =Lp∗ +Lq =
{N=(�q!p): N ∈�p+q}. Note that if all �k =0, then we are back in the situation of the polynomials
and the L-polynomials as in the previous section.
Let Â= {1= ��k : �k ∈A}. Since Rp;q is a Chebyshev system on any set X⊂C\(A∪ Â), it follows

that for any i=1; : : : ; n, there is a unique rational function Lni ∈Rp;q, p+q=n−1¿0, that satis�es
Lni(�nj) = �ij, where as before X = {�ni; i = 1; : : : ; n; n = 1; 2; : : :} is a triangular table of points on
T such that �ni 6= �nj for i 6= j. Hence fn(z) =

∑n
i=1 Lni(z)f(�ni) is the unique function in Rp;q

interpolating a given function f in the points �ni, i = 1; : : : ; n, and I�n{f}:=I�{fn}=∑n
i=1 Anif(�ni)

with Ani = I�{Lni} is a quadrature formula of interpolatory type having domain of validity Rp;q.
Again, by an appropriate choice of the knots �ni, we want to extend the domain of validity to

make it as large as possible. As in the L-polynomial case, it can be shown that
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Theorem 3.1 (Bultheel et al. [9]). There does not exist an n-point quadrature formula of the form
(2:2) with distinct knots on the unit circle that is exact in Rn−1; n or Rn;n−1.

This means that Rn−1; n−1 is a candidate for a maximal domain of validity. As in the polynomial
case, we can obtain this maximal domain of validity by choosing the abscissas as the zeros of the
para-orthogonal functions. Such an optimal formula is called a rational Szegő formula (or R-Szegő
formula for short).
Therefore we have to extend our previous notion of para-orthogonality. First we de�ne the

operation indicated by a superstar. For any fn ∈Ln\Ln−1 (L−1 = ∅), we set f∗
n :=Bnfn∗. This

generalizes the superstar conjugate for polynomials, since indeed if all �k are zero these notions
coincide. Suppose that by Gram–Schmidt orthogonalization of the Blaschke products {Bn}, we gen-
erate an orthogonal sequence {’n}. Then 0 = 〈Ln−1; ’n〉 = 〈�n∗;L(n−1)∗〉 = 〈’∗

n ; BnL(n−1)∗〉. Now
note that BnL(n−1)∗ = {f∈Ln: f(�n) = 0}. Thus, if we set Ln(w) = {f∈Ln: f(w) = 0}, then
BnL(n−1)∗=Ln(�n). Thus, ’n⊥Ln−1 ⇔ ’∗

n⊥Ln(�n). Moreover, note that 〈’n; Bn〉=〈1; ’∗
n〉 6= 0. This

motivates the following de�nition.

De�nition 3.2. We say that a sequence of functions Qn ∈Ln is para-orthogonal if Qn⊥Ln−1∩Ln(�n)
for n¿1 while 〈Qn; 1〉 6= 0 and 〈Qn; Bn〉 6= 0.

De�nition 3.3. A function Qn ∈Ln is called c-invariant if Q∗
n=cQn for some nonzero constant c∈C.

It can be shown that any para-orthogonal and c-invariant function Qn ∈Ln has to be some constant
multiple of Qn(z; �n) = ’n(z) + �n’∗

n(z) with �n ∈T. The most important property is stated in the
next theorem.

Theorem 3.4 (Bultheel et al. [9]). Any para-orthogonal and c-invariant function from Ln has pre-
cisely n zeros; they are all simple and lie on T.

Thus, the functions Qn(z; �n) =’n(z) + �n’∗
n(z) with �n ∈T can provide the knots for an R-Szegő

formula and indeed they do, and what is more: this is the only possibility.

Theorem 3.5 (Bultheel et al. [9]). The quadrature formula (2:2) with distinct knots on T is an
R-Szegő formula (with maximal domain of validity Rn−1; n−1) if and only if
(a) it is of interpolatory type in Rp;q with p; q nonnegative integers with p+ q= n− 1;
(b) the abscissas are the zeros of a para-orthogonal c-invariant function from Ln.

Note that for each n, we have a one-parameter family of R-Szegő quadrature formulas, since the
parameter �n ∈T is free.
We now introduce the reproducing kernels, since both the abscissas and the weights can be

expressed in terms of these kernels. If {’k} are the orthonormal functions, then the kernel function
kn(z; w) =

∑n
k=0 ’k(z)’k(w) is reproducing for Ln, meaning that 〈f; kn(·; w)〉=f(w) for all f∈Ln.

As for the Szegő polynomials, these kernels appear in a Christo�el–Darboux formula.
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Theorem 3.6 (Bultheel et al. [8]). Let {’k} be the orthonormal polynomials for the spaces Ln.
Then the reproducing kernel satis�es

kn−1(z; w) =
’∗

n(z)’∗
n(w)− ’n(z)’n(w)
1− �n(z)�n(w)

:

So far we have characterized the abscissas of the R-Szegő formulas as the zeros of the para-ortho-
gonal functions Qn(z; �n). They can also be written as the zeros of a reproducing kernel. Indeed, by
varying �n ∈T, we can place for example �n1 at any position w∈T. The other n−1 zeros �ni are then
the zeros of kn−1(z; w). Conversely, if �n1 ∈T arbitrary and {�ni}n

i=2 are the zeros of kn−1(z; �n1), then
there is some �n ∈T such that these {�ni}n

i=1 are the zeros of the para-orthogonal function Qn(z; �n)
(see [7]).
Also the weights can be expressed in terms of the kernels exactly as in the polynomial case. This

results in the fact that Theorem 2.1 is still true if we replace Szegő formula by R-Szegő formula
(see [13]).
The 2PTA of the previous section are generalized to multipoint rational approximants (MRA)

in the following sense. Let Qn = ’n + �n’∗
n , �n ∈T, be the para-orthogonal function as above. Now

de�ne the so-called functions of the second kind  n ∈Ln as

 n(z):=I�{E(t; z)’n(t)− D(t; z)’n(z)}; E(t; z) = D(t; z) + 1 (3.1)

and set Pn= n−�n ∗
n . Then it turns out that the rational function F�n(·; �n):=F�n=−Pn=Qn (depending

on z and �n) is a MRA for the Riesz–Herglotz transform F�, since

zBn−1(z)[F�(z)− F�n(z)] and [zBn−1(z)]∗[F�(z)− F�n(z)]

are both analytic in Ĉ\T. This means that F�n interpolates F� in the points {0; �1; : : : ; �n−1} and
in {∞; 1= ��1: : : : ; 1= ��n−1}. Note that there are 2n + 1 degrees of freedom while there are 2n inter-
polation conditions. So there is one condition short for F�n to be a multipoint Pad�e approximant.
These approximants are called modi�ed approximants (MA) since they are modi�cations of the true
multipoint Pad�e approximants (MPA) F�n(·; 0) = ’n= n (interpolates in all the MA points and in
the extra point 1= ��n) and F�n(·;∞) = − ∗

n =’
∗
n (interpolates in all the MA points and in the extra

point �n). Furthermore, it follows from the partial fraction expansion F�n(z) =
∑n

i=1 AniD(�ni; z) that
F�n(z) = I�n{D(·; z)}, and this relates it to the quadrature formula.
If more generally, we have a rational function F�n , whose denominator is a node polynomial of

degree n for some node array, and suppose it interpolates F� in the points {0; �1; : : : ; �p} and in
{∞; 1= ��1: : : : ; 1= ��q}, then we say that it is an MRA of order (p + 1; q + 1). Thus, our MA is an
MRA of order (n; n). Let F�n(z)=

∑n
i=1 AniD(�ni; z) be the partial fraction decomposition of F�n which

de�nes the weights Anj as

Anj:=
!p(�nj)�q(�nj)

X ′
n(�nj)

I�

{
Xn(t)

!p(t)�q(t)(t − �nj)

}
; Xn(t) =

n∏
i=1

(t − �ni);

then it can be shown that for given (A;X), the quadrature formula I�n{f}=
∑n

i=1 Anif(�ni) is exact
in Rp;q if and only if F�n is an MRA of type (p + 1; q + 1) with respect to the point sets (A;X)
for the Riesz–Herglotz transform F� (see [15]).
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We can now work toward an expression for the error of the quadrature formula. Assume f
is analytic in the closure of G where G is an open and bounded annulus such that 0 6∈ G and
T⊂G⊂C\(A ∪ Â). This is only possible if A is in a compact subset of D, i.e., if the �k do not
tend to T. Exactly the same type of proof as in the polynomial case can be given for the following
theorem.

Theorem 3.7 (Bultheel et al. [12]). Let f be analytic in the closure of the open and bounded
annulus G which is such that 0 6∈ G and T⊂G⊂C\(A ∪ Â). Let X be a given node array.
Assume that I�n{f}=

∑n
i=1 Anif(�ni) is exact in Rp;q and hence F�n =

∑n
i=1 AniD(�ni; ·) is an MRA

of order (p+ 1; q+ 1) for F� in the strong sense; then

E�n{f}:=I�{f} − I�n{f}=
1
2�i

∫
�
[F�(t)− F�n(t)]

−f(t) dt
2t

: (3.2)

De�ne the node polynomial Xn(z):=
∏n

i=1(z − �ni); then

R�n(z):=F�(z)− F�n(z) =
2z!p(z)�q(z)

Xn(z)

∫ �

−�

Xn(ei�) d�(�)
(ei� − z)!p(ei�)�q(ei�)

: (3.3)

There is no MRA of degree n with simple poles in T and of order (n+ 1; n) or order (n; n+ 1);
hence there is no quadrature formula with knots on T with domain of validity Rn;n−1 or Rn−1; n.
The only quadrature formulas exact in Rn−1; n−1 with knots on T are the R-Szegő formulas;

and hence the MA are the only MRA of order (n; n); i.e.; the ones whose poles are zeros of the
para-orthogonal function of degree n.

Here too, it is seen that the convergence of the quadrature formulas is closely related to the
convergence of the MAs or MRAs.
By means of orthogonality properties it can be shown that for the MAs the previous error formula

can be transformed into

R�n(z) =
2z!n−1(z)�n−1(z)

[Xn(z)]
2

[∫ �

−�

[Xn(ei�)]
2 d�(�)

(ei� − z)!n−1(ei�)�n−1(ei�)
+ Dn

]
; (3.4)

where Dn = I�{Qn(z)(1− ��nz)}. Note that this term Dn is caused by the fact that para-orthogonality
is a de�cient orthogonality. When in classical formulas, zeros of orthogonal polynomials are used,
then such a term does not appear.

4. Orthogonal rational functions

The quadrature formulas we consider in this paper are closely related to the properties of orthog-
onal and quasi-orthogonal rational functions. We collect some properties of these functions in this
section. A fairly complete account of what is known about these orthogonal rational functions can
be found in the monograph [19].
The orthonormal rational functions {’0; ’1; : : :} are obtained by orthonormalization of the sequence

of Blaschke products {B0; B1; : : : ; }. They were �rst considered by Djrbashian (see the references in
[24]). Later on, the reproducing kernels were considered in the context of linear prediction and the
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Nevanlinna–Pick interpolation problem [4]. We assume that they are normalized by the condition that
in the expansion ’n(z) =

∑n
k=0 ankBk(z), the leading coe�cient with respect to this basis is positive:

�n=ann ¿ 0. If kn(z; w)=
∑n

k=0 ’k(z)’k(w) is the reproducing kernel for Ln=span{B0; : : : ; Bn}, then
it can be veri�ed that kn(z; �n) = �n’∗

n(z), where ’∗
n(z) = Bn(z)’n∗(z), hence also kn(�n; �n) = �2n.

Although it is not essential for the present application, we mention for completeness that the ’n

satisfy a recurrence relation, i.e., there exist speci�c complex constants �n and �n such that |�n|2 −
|�n|2 = (�2n−1(1− |�n|2)=�2n(1− |�n−1|2))¿ 0 and

’n(z) =
�n

�n−1

[
�n
z − �n−1
1− ��nz

’n−1(z) + �n
1− ��n−1z
1− ��nz

’∗
n−1(z)

]
:

The initial condition is ’0 =1=
√
c0 with c0 =

∫
T d�. There is also a Favard-type theorem: if some ’n

satisfy a recurrence relation of this form, then they will form an orthonormal sequence with respect
to some positive measure on T. In this respect see also the contribution by Marcell�an and Alvarez
in this volume.
The functions of the second kind  n associated with ’n are another independent solution of the

same recurrence relation. They can also be derived from the ’n by relation (3.1). In fact, this means
that  0 =

√
c0 = 1=’0 and  n = I�{D(·; z)[’n(·) − ’n(z)]} for n¿1. The para-orthogonal functions

Qn(z; �n)=’n(z)+�n’∗
n(z) and the associated functions of the second kind Pn(z; �n)= n(z)−�n ∗

n (z)
were introduced before.

Example 4.1 (Malmquist basis). Assume we take the normalized Lebesgue measure d�(�)=d�=(2�).
Then it is known that the orthonormal functions are given by

’n(z) = �n
zBn(z)
z − �n

; �n =
√
1− |�n|2:

This basis is known as the Malmquist basis. Then ’∗
n(z) = �n=(1 − ��nz) and therefore Qn(z; �n) =

’n(z)+�n’∗
n(z)=�n[(zBn(z)=z−�n)+(�n=1− ��nz)]. Noting that Bn(z)=�n!n(z)=�n(z), with �n ∈T, and

�n ∈T is arbitrary, we can choose �n = �n, so that the expression for Qn(z; �n) becomes Qn(z; �n) =
�n�n[z!n−1(z) + �n−1(z)]=�n(z). If all �k = 0, then !n−1(z) = zn−1 and �n−1(z) = 1, so that the zeros
of Qn(z; �n) are (a rotated version of) the nth roots of unity.

We also have to introduce the spaces Rp;q=span{B−p; : : : ; Bq}, where p; q are nonnegative integers
and B−p = 1=Bp = Bp∗. We set L=

⋃∞
n=0Ln and R=

⋃∞
n=0Rn;n.

Theorem 4.2 (Bultheel et al. [12]). The space L is dense in Hp(D); 16p¡∞; if and only if∑
k(1− |�k |) =∞.
The space R is dense in Lp(T); 16p¡∞; and in C(T) if and only if

∑
k(1− |�k |) =∞.

We note that the condition
∑

k(1 − |�k |) = ∞ means that the Blaschke product Bn converges
uniformly to zero in D. Also we should have p 6= ∞ in this theorem, and not 16p6∞ as
erroneously stated in [12].
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Finally, we mention the rational variant of the trigonometric moment problem. Suppose a linear
functional M is de�ned on L by the moments

c0 =M{1}; ck =M{1=�k}; �k(z) =
k∏

i=1

(1− ��kz); k = 1; 2; : : :

and by M{!k∗} = �ck ; we can then de�ne M on the whole of R = L + L∗ = L · L∗, where
L∗ = {f∗: f∈L}. The moment problem is to �nd under what conditions there exists a positive
measure � on T such that M{·} = I�{·}, and if the problem is solvable, to �nd conditions under
which the solution is unique and possibly, if there are more solutions, to describe all of them. For
a proof of the following results about moment problems, we refer to [14,18].
If it is assumed that M satis�es M{f∗}=M{f} for all f∈R and M{ff∗}¿ 0 for all nonzero

f∈L, then this functional de�nes an inner product 〈f; g〉M :=M{fg∗}. Under these conditions one
can guarantee that a solution for the moment problem exists. Denote byM the set of all solutions. For
solving the uniqueness question, the MRAs that we considered in the previous section play a central
role in the solution of the problem. Recall that the MRA is given by Fn(z; �n)=−Pn(z; �n)=Qn(z; �n),
�n ∈T, where Qn(z; �n) are the para-orthogonal functions and Pn(z; �n) the associated functions of the
second kind. It turns out that the set Kn(z)={Fn(z; �): �∈T} is a circle. Moreover, the circular disks:
�n(z) with boundary Kn(z) are nested: �n+1(z)⊂�n(z) and their boundaries touch. The limiting set
�(z)=

⋂
n �n(z) will be either one point or a circular disk, and this fact is independent of the value

chosen for the complex number z ∈C\(A∪Â). If the Blaschke product diverges, i.e., ∑(1−|�k |)=∞,
then the limiting set is a point and the moment problem has a unique solution (is determinate).
If the limiting set �(z) is a disk with positive radius, then the Blaschke product converges, i.e.,∑
(1 − |�k |)¡∞, and the moment problem has in�nitely many solutions. The set �(z) can be

characterized as �(z) = {F�(z): �∈M}, where F�(z) denotes the Riesz–Herglotz transform of �. A
solution �∈M is called N-extremal if its Riesz–Herglotz transform F�(z) belongs to the boundary
of �(z). It can be proved that �∈M is N-extremal if and only if L is dense in L2�.
The last density result is interesting because N-extremal solutions exist if the Blaschke product

converges. Thus, L may be dense in L2� even if
∑
(1−|�k |)¡∞. However, if the Blaschke product

diverges, then L will be dense in L2�.

5. Convergence of MA and R-Szegő quadrature

We are still considering the case of a positive measure � and MA’s F�n=Pn=Qn, where Qn=’n+
�n’∗

n , �n ∈T, is the para-orthogonal function in Ln and Pn =  n − �n ∗
n is its associated function.

Also I�n{f} is the nth R-Szegő formula. We have seen that the convergence of I�n{f} is related to
the convergence of F�n . That F�n does converge is essentially a consequence of the Stieltjes–Vitali
theorem.

Theorem 5.1 (Bultheel et al. [8; 15]). If
∑∞

n=1(1− |�n|) =∞; then the MA’s F�n(z; �n) converge to
F�(z) uniformly on compact subsets of Ĉ\T.
Remark. Because the Stieltjes–Vitali theorem is used, the proof of the above theorem is not con-
structive. It is an interesting open problem to give a constructive proof using continued fraction
methods [34].
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To estimate the rate of convergence, we recall that Qn = Xn=�n and |Bn| = |!n=�n|, so that from
(3.4)

|F�n(z)|6
∣∣∣∣!n−1(z)
�n(z)

∣∣∣∣
∣∣∣∣�n−1(z)
�n(z)

∣∣∣∣ 2|z|
|Qn(z)|2

[
I�

{∣∣∣∣ �n

�n−1

∣∣∣∣
∣∣∣∣ �n

!n−1

∣∣∣∣ |Qn|2
| · −z|

}
+ |Dn|

]

and hence there is a constant M not depending on n such that

|F�n(z)|1=n6M 1=n[|Bn−1(z)||1− ��nz|2|Qn(z)|2]−1=n(Sn + |Dn|)1=n
with Sn = ||Q2

n||∞maxt∈T|1 − ��nt|2. This explains why we need the root asymptotics of Qn and Bn

to estimate the rate of convergence for F�n . Therefore we need some assumptions on � and the
point set A = {�1; �2; : : :}. For the given set A, let �An = 1=n

∑n
j=1 �(�j) be the counting measure,

which assigns a mass at �j proportional to its multiplicity. Assume that �An converges to some �A in
the weak star sense, in the dual of the Banach space C(Ĉ), where Ĉ is the Riemann sphere. Thus
limn→∞

∫
fd�An =

∫
fd�A for all f∈C(Ĉ). We denote this as �An

∗→ �A. Then the root asymptotics
for the Blaschke products are given by:

Theorem 5.2 (Bultheel et al. [15]). If Bn is the Blaschke product with zeros {�k}n
k=1, and �An

∗→ �A;
then

lim
n→∞ |Bn(z)|1=n = exp{�(z)} and lim

n→∞ |Bn(z)|−1=n = exp{�(ẑ)}

locally uniformly for z ∈ Ĉ\({0} ∪ supp (�A) ∪ supp (�Â)), where
�(z) =

∫
log|�z(x)| d�A(x); �z(x) =

x − z
1− �zx

(5.1)

and where ẑ = 1= �z and Â= {�̂= 1= ��: �∈A}. For z ∈C\{0} we have the inequalities
lim sup

n→∞
|Bn(z)|1=n6exp{�(z)} and lim sup

n→∞
|Bn(z)|−1=n6exp{�(ẑ)}:

As for the root asymptotics of the para-orthogonal functions, one has

Theorem 5.3 (Bultheel et al. [15]). Let � be a positive measure satisfying the Szegő condition∫ �
−� log �

′(�) d�¿ − ∞ and assume that the point set A is compactly included in D and that
�An

∗→ �A. Then; for the para-orthogonal functions Qn; it holds locally uniformly in the indicated
regions that

lim
n→∞ |Qn(z)|1=n = 1; z ∈D;

lim
n→∞ |Qn(z)|1=n = exp{�(z)}; z ∈ E\supp (�Â);
lim sup

n→∞
|Qn(z)|1=n6exp{�(z)}; z ∈ E;

lim
n→∞ ||Qn(z)||1=n∞ = 1:

A combination of the previous results now leads to the rate of convergence for the MA’s.
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Theorem 5.4 (Bultheel et al. [15]). Under the same conditions as in the previous theorem; the
following estimates hold for the convergence of the MAs F�n to the Riesz–Herglotz transform F�.
Setting R�n = F� − F�n ; we have

lim sup
n→∞

|R�n(z)|1=n6exp{�(z)}¡ 1; ∀z ∈D;

lim sup
n→∞

|R�n(z)|1=n6exp{�(ẑ)}¡ 1; ∀z ∈ E; where ẑ = 1= �z;

and �(z) as in (5:1).

Example 5.5. Consider the simple case where limk→∞ �k = a∈D. Then �A(z) = �a and �(z) =
log|�z(a)|, �z(a) = (a − z)=(1 − �za). Therefore, lim supn→∞|R�n(z)|1=n6|�z(a)|¡ 1 for z ∈D and
lim supn→∞|R�n(z)|1=n61=|�z(a)|¡ 1 for z ∈ E. The best rates of convergence are obtained for z
near a and â= 1= �a, as one could obviously expect.

Similar results hold for the true MPAs:

Theorem 5.6 (Bultheel et al. [15]). Under the same conditions as in the previous theorem; the
following estimates hold for the convergence of the MPAs Fn =  n=’n and F×

n = − ∗
n =’

∗
n to

the Riesz–Herglotz transform F�. Set Rn = F� − Fn and R×
n = F� − F×

n ; then locally uniformly
in the indicated regions:

lim sup
n→∞

|R×
n (z)|1=n6exp{�(z)}¡ 1; ∀z ∈D;

lim sup
n→∞

|R�n(z)|1=n6exp{�(ẑ)}¡ 1; ∀z ∈ E; where ẑ = 1= �z;

and �(z) as in (5:1).

Now we can move on to the convergence of the R-Szegő formulas. This is a direct consequence
of the previous analysis. For example, we get from (3.2) that

|E�n{f}|6
1
4� maxt∈�

∣∣∣∣f(t)t
∣∣∣∣
∫
�
|F�(t)− F�n(t)||dt|:

Therefore, it follows under the conditions of Theorems 3.7 and 5.4 that the R-Szegő quadrature
formula converges to the integral for all functions analytic in the closure of G with the annulus
G as above in Theorem 3.7. For this situation, we can even obtain an estimate for the rate of
convergence that relies on the previous estimates.

Theorem 5.7 (Bultheel et al. [15]). Let I�n{f} be the R-Szegő formula for a function f that is
analytic in the closure of the open bounded annulus G such that 0 6∈ G and T⊂G⊂C\(A ∪ Â).
Then under the conditions of Theorem 5:4;

lim sup
n→∞

|I�{f} − I�n{f}|1=n6
¡ 1;

where 
=max{
1; 
2}; with 
1 = maxz∈�∩D exp{�(z)} and 
2 = maxz∈�∩E exp{�(ẑ)}; where ẑ = 1= �z
and �(z) as in (5:1).
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To prove convergence for the broader class of continuous functions f∈C(T), we de�ne 
n(f):=
inf fn∈Rn; n ||f − fn||∞. By Theorem 4:2, limn→∞ 
n(f) = 0 if

∑
k(1 − |�k |) =∞. Assume that rn−1 ∈

Rn−1; n−1 is such that ||f− rn−1||∞= 
n−1(f). If we take into account that I�n{rn−1}= I�{rn−1}, then
it follows that

|E�n{f}|= |I�{f − rn}+ I�n{rn−1 − f}|6
n−1(f)[I�{1}+ I�n{1}]:
Thus, |E�n{f}|6C1
n−1(f), with C1 a constant. So it follows from the convergence of 
n that also the
R-Szegő formula converges for continuous functions. If we then also take into account the standard
argument proving that, if a quadrature formula with positive coe�cients converges for continuous
functions, then it also converges for bounded integrable functions, we arrive at

Theorem 5.8. The R-Szegő formulas I�n{f} converge for any bounded integrable function f and
positive � if

∑
n(1− |�n|) =∞.

Thus, we have obtained convergence in the largest possible class.
With the help of [12, Theorem 4:7], it can be shown that 
n can be bounded in terms of the modulus

of continuity !(f; �)=sup{|f(t)−f(�)|: t; �∈T; |Arg(t=�)|¡�}. So, there exists a constant C2 such
that |E�n{f}|6C2!(f; �=(n+ 1)) for n large enough.

6. The case of a complex measure

If the measure � is complex (not real), then we cannot guarantee the existence of a sequence of
orthogonal rational functions. In that case we can choose an arbitrary auxiliary positive measure � on
T and compute the knots of the quadrature formula as the zeros of a para-orthogonal function for this
measure. The obvious question is what would be a good choice for this auxiliary measure. Choosing
the Lebesgue measure as � would lead to equidistant nodes on T. There are few other examples
of measures that lead to explicit expressions for the knots. In general, they must be computed
numerically. If we are prepared to do this, then we could choose the measure � as a function of the
convergence behavior of the quadrature formulas.
In this case we shall consider absolutely continuous measures. So, let d�(�)=�(�) d� and d�(�)=

!(�) d�. We assume !(�)¿ 0,
∫ �
−� |�(�)|d�¡∞, and �=!∈L2!, i.e.,

∫ �

−�

|�(�)|2
!(�)

d�= K2¡∞: (6.1)

We are concerned with the computation of integrals of the form I�{f}=
∫ �
−� f(e

i�)�(�) d� approxi-
mated by I�n{f}=

∑n
i=1Wnif(�ni), where X= {�ni}⊂T is a node array.

Inspired by the results of the previous sections, our �rst guess is to choose the knots as the zeros
of the para-orthogonal functions for the positive weight ! and construct interpolatory quadrature
formulas in a subspace Rp;q of dimension n. For this kind of quadrature formulas, we can show
that the coe�cients do not grow too fast: There is an absolute constant (i.e., not depending on n)
C3 such that

∑n
j=1 |Wnj|6C3

√
n. Then, by using a rational generalization of the Jackson III theorem

(see [12, Theorem 4:7]), it can be shown that the following convergence result holds.
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Theorem 6.1 (Bultheel et al. [12]). Let ! and � be as in (6:1). Let f∈C(T) with modulus of
continuity !(f; �)=O(�p); p¿ 1

2 . Let p(n) and q(n) be nonnegative integers with p(n)+q(n)=n−1
and limn→∞p(n)=n = 1

2 . Then the interpolatory quadrature formulas I�n{f} whose knots are the
zeros of the para-orthogonal function for ! and which are exact in Rp(n); q(n) converge to I�{f}.

Note that we need p¿ 1
2 so that convergence in C(T) is not proved.

To get convergence for a larger class, we consider N -point quadrature formulas of interpolatory
type in Rn;n with N = 2n + 1. The basic idea for constructing such quadrature formulas is the
following. De�ne g(ei�):=�(�)=!(�); then it is clear that

I�{f}=
∫ �

−�
f(ei�)�(�) d�=

∫ �

−�
f(ei�)g(ei�)!(�) d�= I!{fg}:

Now ! is positive and we can apply our previous theory of R-Szegő formulas. However, the
integrand is now a product fg. If we want equality I�{f}= IN� {f}, for f∈Rn;n, then we must be
able to integrate fg exactly for f∈Rn;n. It can be shown that I!{fg}= I!{fg2n} for all f∈Rn;n if
g2n is the orthogonal projection of g onto Rn;n in L2! [17]. Thus, it is su�cient to construct quadrature
formulas exact in Rn;n ·Rn;n so that I!{fg} and hence also I�{f} can be computed exactly for all
f∈Rn;n. Note that by the product Rn;n ·Rn;n, we double each pole.
Therefore, we associate with the sequence A={�k} the doubling sequence Ã={0; �1; �1, �2; �2; : : :},

denoted as {�̃0; �̃1; �̃2; �̃3; �̃4; : : :}. This doubling sequence can be used in exactly the same way as
before to de�ne Blaschke products B̃n and spaces L̃n, and orthogonal rational functions ’̃n. The
para-orthogonal rational functions Q̃n(z; �n)=’̃n+�n’̃

∗
n with �n ∈T and ’̃∗

n=B̃n’̃n∗ have n simple zeros
�ni, i=1; : : : ; n, that can be used to construct R-Szegő quadrature formulas. Now set N =2n+1 and
let Ĩ

N
!{f} be the R-Szegő formula that is exact in R̃N−1;N−1=L̃N−1 ·L̃(N−1)∗. Since F ∈ R̃N−1;N−1 ⇔

F = fg with f; g∈Rn;n we have reached our objective. We have

Theorem 6.2 (Bultheel et al. [17]). As in (6:1); let � be complex; ! positive; and g(ei�)=�(�)=!(�)
∈L2!(T). For N = 2n + 1; let {�Nj}N

j=1 be the zeros of the para-orthogonal function from L̃N

associated with the doubling sequence Ã and the weight !. Moreover; let ÃNj be the weights
of the corresponding N-point R-Szegő formula; exact in R̃N−1;N−1. Then the quadrature formula
IN� {f} =

∑N
i=1WNjf(�Nj) computes the integral I�{f} exactly for all f∈Rn;n if the weights are

given by WNj =ÃNjg2n(�Nj); where g2n is the projection of g onto Rn;n in L2!(T).

This de�nes the quadrature formulas I�n{f}. Now to prove convergence, we use a rational ex-
tension of the classical Erdős–Tur�an theorem: if fN ∈Rn;n interpolates f in the points {�Nk}N

k=1,
then, under the conditions given in Theorem 6.2, fN converges to f in L2!(T). Using the bound∑N

k=1 |WNk |¡C3
√
n, the Cauchy–Schwarz inequality, and a rational generalization of [43, Theorem

1:5:4], we get the following convergence result.

Theorem 6.3 (Bultheel et al. [17]). Assume the same conditions and the same interpolatory quadra-
ture formulas as in Theorem 6:2. If; moreover;

∑∞
j=1(1− |�j|)=∞; then the following convergence

results hold.
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For any bounded f for which I�{f}¡∞ exists as a Riemann integral; I N� {f} converges to
I�{f}.
For any bounded Riemann integrable f;

∑N
j=1 |WNj|f(�Nj) converges to

∫ �
−� f(e

i�)|�(�)|d�.
The MRA FN (z) = IN� {D(·; z)} interpolates the Riesz–Herglotz transform F�(z) = I�{D(·; z)}

at the points {0; �1; : : : ; �n} and {∞; 1= ��1; : : : ; 1= ��n}; and it converges to F� uniformly on compact
subsets of Ĉ\T.

The previous results are related to interpolatory quadrature formulas in Rn;n. We can, however,
generalize to the asymmetric case and consider more general spaces Rn = Rp(n); q(n), where p(n)
and q(n) are nondecreasing sequences of nonnegative integers such that p(n) + q(n) = n − 1 and
limn→∞ p(n)=n=r ∈ (0; 1). Note that the spaces Rn have dimension n and they are nested. As before,
we need to introduce an asymmetric doubling sequence as follows. Set r(n) = max{p(n); q(n)},
s(n)=min{p(n); q(n)}; �0=0; Ãn={�0; �1; �1; : : : ; �s(n); �s(n); �s(n)+1; : : : ; �r(n)}={�̃0; �̃1; : : : ; �̃n−1}. Since
increasing n to n+1 increases either p(n) or q(n) by one, this increases either r(n) or s(n) by one.
The numbering of the �̃k is such that �̃n is either a repeated point �s(n)+1 or a new point �r(n)+1. This
de�nes the sequence Ã={�̃1; �̃1; : : :} uniquely. The quantities related to the Ã are as before denoted
with a tilde. We construct quadrature formulas whose nodes are the zeros �ni of the para-orthogonal
function Q̃n(z; �n)= ’̃n(z)+ �n’̃

∗
n(z). The ’̃n ∈ L̃n\L̃n−1 are the orthogonal functions with respect to

the positive measure ! with the properties introduced before. The weights Wnk of these quadrature
formulas I�n{f} =

∑n
k=1Wnkf(�nk) are constructed such that I�n{f} is exact in Rn = Rp(n); q(n) of

dimension n. With this setting, one can follow the same approach as in Theorem 5.4, but now the
MAs are replaced by MRAs of order (p(n) + 1; q(n) + 1).

Theorem 6.4 (Bultheel et al. [20]). Assume
∫ �
−� log!(�) d�¿−∞ and let the sequence A; hence

also Ã; be included in a compact subset of D. Denote by F�n the MRA of order (p(n)+1; q(n)+1)
to the Riesz–Herglotz transform F�. The denominator of F�n is

∏n
k=1 (z − �nk); where the �nk are

the zeros of the para-orthogonal functions in L̃n with respect to the sequence Ã and the positive
function !. This sequence Ã is de�ned as above in terms of the sequence A and the sequences of
integers (p(n); q(n)); p(n)+ 1(n)= n− 1. The functions � and ! satisfy (6:1). Then the following
convergence results hold:

lim sup
n→∞

|F�(z)− F�n(z)|1=n6exp{r�(z)}¡ 1; ∀z ∈D;

lim sup
n→∞

|F�(z)− F�n(z)|1=n6exp{s�(ẑ)}¡ 1; ∀z ∈ E where ẑ = 1= �z;

where r = limn→∞p(n)=n; s= limn→∞q(n)=n= 1− r; and �(z) as in (5:1).

From this theorem, the following theorem follows directly by using Theorem 2.2.

Theorem 6.5 (Bultheel et al. [20]). Under the same conditions as in the previous theorem; assume
the quadrature formulas I�n{f} have nodes {�nk}n

k=1 and their weights are de�ned such that the
formulas are exact in Rp(n); q(n) of dimension n. Then it holds that

lim sup
n→∞

|I�{f} − I�n{f}|1=n6
¡ 1
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for any function f analytic in a closed region G such that T⊂G⊂C\(A∪Â); where 
=max{
1; 
2}
with


1 = max
z∈�∩D

exp{r�(z)} and 
2 = max
z∈�∩E

exp{s�(ẑ)};
�(z) as in (5:1); � = @G is the boundary of G consisting of �nitely many recti�able curves;
r = limn→∞ p(n)=n; s= limn→∞ q(n)=n= 1− r; ẑ = 1= �z; Â= {�̂= 1= ��: �∈A}.

Note that if we take the balanced situation, i.e., when r= s= 1
2 , then from this theorem it follows

that 
=
√

̃ with 
̃=max{
̃1; 
̃2}, where 
̃1=maxz∈�∩D exp{�(z)} and 
̃2=maxz∈�∩E exp{�(ẑ)}. If we

assume that � is positive, then we can take != � and Ã=A, so that the quadrature formulas then
considered in this theorem are precisely the R-Szegő formulas. This result is con�rmed by Theorem
5.6, where indeed the bound 
̃ is given. The squaring 
= 
̃2 is of course to be expected.

7. Poles in the support of the measure

So far, we have assumed that the poles of the rational functions were outside the support of the
measure. If the poles are selected in the support, then we can refer to the theory of orthogonal
rational functions with poles on T when we want to compute integrals over T. This theory is
analogous and yet di�erent from what was explained in Sections 3–6. It generalizes the di�erences
that also exist between polynomials orthogonal on the real line and polynomials orthogonal on the
unit circle.
So instead of choosing points �k inside D, we choose them all on the boundary T. We need to

de�ne one exceptional point on T that is di�erent from all �k . We assume without loss of generality
that it is −1. So A={�1; �2; : : :}⊂T\{−1}. We consider the spaces Ln=span{1=!0; 1=!1; : : : ; 1=!n},
where !k(z) =

∏k
i=1(z − �i) as before. The theory can be developed along the same lines, but it

is a bit more involved. We use the same notation where possible. Now it is important that if
’n(z) = pn(z)=�n(z), then pn(�n−1) 6= 0. If this holds, then ’n is called regular, and the system
{’n} is regular if every function in the system is regular. It is for such a regular system that one
can prove that the orthogonal functions satisfy a recurrence relation of the following form [10]. For
n= 2; 3; : : : and with �0 = 0,

’n(z) =
An

z − �n
’n−1(z) + Bn

z − �n−2
z − �n

’n−1(z) + Cn
z − �n−2
z − �n

’n−2(z):

These constants satisfy An + Bn(�n−1 − �n−2) 6= 0 and Cn 6= 0 for n= 2; 3; : : : :
The para-orthogonal functions are in this case replaced by quasi-orthogonal functions. These are

de�ned as

Qn(z; �n):=’n(z) + �n
(1 + �n)(z − �n−1)
(1 + �n−1)(z − �n)

’n−1(z); �n ∈R:
We have:

Theorem 7.1 (Bultheel et al. [10]). If the system {’n} is regular; then it is always possible to �nd
(in�nitely many so-called regular values) �n ∈R such that the quasi-orthogonal functions Qn(z; �n)
have precisely n zeros; all simple and on T\{�1; : : : ; �n}.
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Let {�nk}n
k=1 be these zeros. If we take them as knots for an interpolating quadrature formula for

Ln−1; then this quadrature formula will have positive weights and it will be exact in Ln−1 ·Ln−1.
If �n = 0 is a regular value; then the corresponding quadrature formula is exact in Ln−1 ·Ln.

These quadrature formulas are the analogs of the R-Szegő formulas. We shall denote them again
by I�n{f}=

∑n
k=1 Ankf(�nk). In fact, one can, exactly as for the R-Szegő formulas, express Ank and

�nk in terms of the reproducing kernels. Note that Ank and �nk depend as before on the choice of �n.
Then it can be shown that I�n{D(·; z)}=F�n(z)=−Pn(z; �n)=Qn(z; �n). This is a rational approximant
for the Riesz–Herglotz transform F�(z) = I�{D(·; z)} in a particular sense. Indeed, F�n(z) and F�(z)
are de�ned for z ∈D, but by extending them by a nontangential limit to the boundary T, we
have interpolation in {0;∞; �1; �1; : : : ; �n−1; �n−1} (repeated points imply interpolation in the Hermite
sense). In case �n = 0 is a regular value, then F�n =  n=’n, with  n as before the functions of the
second kind associated with ’n. Then this F�n will also interpolate in the extra point �n. It can be
shown that if {’n} is a regular system, then there is a subsequence F�n(s) that converges to F� locally
uniformly in C\T. However, convergence has been explored only partially, and here is a wide-open
domain for future research.

8. Integrals over an interval

By conformally mapping the unit circle to the real line, we can obtain analogous results on the
real line. The results have di�erent formulations, but they are essentially the same as the ones we
gave in the previous sections. We consider instead some other quadrature formulas that were derived,
making use of rational functions. We restrict ourselves in the �rst place to a compact interval � on
the real line, which we can always renormalize to be [ − 1; 1]. It will be assumed everywhere in
this section that � denotes this interval.
So we now consider measures that are supported on an interval of the real line and we assume

that this interval is supp(�)⊂� = [ − 1; 1]. The problem is to approximate the integral
∫
� f(x) dx.

Several quadrature formulas of the form
∑n

k=1 Akf(xk), exact for other functions than polynomials
have been considered in the literature before. We shall discuss formulas exact for spaces of rational
functions with prescribed poles outside �. For more general cases, see the classical book [23, p.
122] and references therein.
Consider a positive measure �. In [26], Gautschi considers the following problem. Let �k , k =

1; : : : ; M be distinct numbers in C\�. For given integers m and n, with 16m62n, �nd an n-point
quadrature formula exact for all monomials xj, j = 0; : : : ; 2n − m − 1, as well as for the rational
functions (x − �k)−s, k = 1; : : : ; M , s = 1; : : : ; sk , with sk¿1 and

∑M
k=1 sk = m. The solution is given

in the following theorem (which is also valid for an unbounded support �).

Theorem 8.1 (Gautschi [26]). Given a positive measure � with supp(�)⊂�⊂R; {�k}M
k=1⊂C\�;

and positive integers sk ;
∑M

k=1 sk = m; and de�ne !m(x):=
∏M

k=1 (x − �k)sk ; a polynomial of degree
m. Assume that the measure d�=!m admits an (polynomial) n-point Gaussian quadrature formula;
i.e.; there are �G

j ∈� and AG
j ¿ 0 such that

∫
�
f(x)

d�(x)
!m(x)

=
n∑

j=1

AG
j f(�

G
j ) + EG

n {f} with EG
n {f}= 0; ∀f∈�2n−1:
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De�ne �j:=�G
j and Aj:=AG

j !m(�G
j ); j=1; : : : ; n. Then

∫
� f(x) d�(x) =

∑n
j=1 Ajf(�j) +En{f}; where

En{f}= 0 for all f∈�2n−m−1 and for all f∈{(x − �k)−s : k = 1; : : : ; M ; s= 1; : : : ; sk}.

Depending on the application, several special choices of {�k} are proposed: they may contain
real numbers and=or complex conjugate pairs, and they may be of order 1 or 2. Independently, Van
Assche and Vanherwegen [44] discuss two special cases of Theorem 8.1: the �k are real and either
all sk = 1 and m = 2n (a polynomial of degree −1 is understood as identically zero), or all but
one sk = 2 and m = 2n − 1. The �rst case is called “Gaussian quadrature”, the second “orthogonal
quadrature”.
The main observation to be made with these quadrature formulas is that the nodes and weights are

closely related to the zeros and Christo�el numbers for polynomials orthogonal on � with respect
to a varying measure. This interaction, also observed by L�opez and Illan [34,35], makes it possible
to use results from orthogonal polynomials to get useful properties for the nodes and weights for
quadrature based on rational interpolation. This is the main contribution of [44] along with the
convergence in the class of continuous functions. It should be pointed out that unlike [26,44], in
[34,35] non-Newtonian tables of prescribed poles are used, so that when considering convergence
results, some additional conditions on the poles are necessary in order to assure the density of the
rational functions that are considered in the space C(�) of functions continuous in �. For instance,
when all the �k are di�erent

∞∑
k=1

(1− |ck |) =∞ where ck = �k −
√

�2k − 1 (8.1)

(see [1, p. 254]).
We also mention here the work of Gautschi and coauthors [27–29]. In [27] the quadrature method

of Theorem 8.1 for the interval � = [0;∞] is applied with m = 2n to Fermi–Dirac integrals, and
with m = 2n − 1 to Bose–Einstein integrals, the poles selected being those of the integrand closest
to, or on, the real line. The paper [28] describes software implementing Theorem 8.1 and pays
special attention to the treatment of poles very close to the support of �. In [29] results analogous to
Theorem 8.1 are developed for other quadrature rules, e.g., Gauss–Kronrod and Gauss–Tur�an rules,
and for other integrals, e.g., Cauchy principal value integrals. In the case of the Lebesgue measure,
similar interpolatory formulas are also considered in [45].
Finally, we should mention the works of Min [39,40], where also quadrature formulas based on

rational functions are considered when taking d�(x) = dx=
√
1− x2, x∈�. The author makes use of

the properties of the generalized Chebyshev “polynomials” associated with the rational system{
1;

1
x − �1

;
1

x − �2
; : : : ;

1
x − �n

}
; n= 1; 2; : : : ; x∈�: (8.2)

This generalized notion is introduced in [2]. The term polynomial is misleading because they are in
fact rational functions in the span of the functions (8.2). The quali�cation Chebyshev is justi�ed by
the fact that they have properties similar to classical Chebyshev polynomials. Using these Chebyshev
functions and assuming that {�k}n

k=1⊂R\�, n = 1; 2; : : : , Min constructs the n-point interpolatory
quadrature formula

Qn{f}=
n∑

k=1

Akf(�k) ≈
∫ 1

−1

f(x)√
1− x2

dx;
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in the zeros of the generalized Chebyshev “polynomials”, and it turns out that this formula is exact
for all functions f∈ span{(x − �1)−1; (x − �1)−2; : : : ; (x − �n)−1; (x − �n)−2}=R2n−1(�1; : : : ; �n).

Theorem 8.2 (Min [39]). Let {�k} and Qn{f} be de�ned as above. Let {�k}n
k=1 be the zeros of

Tn(x); the generalized Chebyshev “polynomial” associated with (8:2). Then (a) Qn{f} is a positive
quadrature formula (i.e. Ak ¿ 0 for k = 1; : : : ; n) and (b)

∫ 1
−1 f(x)=

√
1− x2 dx = Qn{f} for any

f∈R2n−1(�1; : : : ; �n).

Since the converse of Theorem 8.1 is also true, it follows that the zeros of the nth Chebyshev
polynomial for (8.2) coincide with the zeros of the orthonormal polynomial of degree n with respect
to the varying measure

d�(x) =
1√

1− x2(x − �1)2 · · · (x − �n)2
; {�j}n

j=1⊂R\�:

On the other hand, let Un be the Chebyshev polynomial of the second kind associated with (8:2).
It is known [3, Theorem 1:2] that (a) T 2n (x) + (

√
1− x2Un(x))2 = 1, (b) there are n+ 1 points {�̃k}

with −1= �̃n ¡ �̃n−1¡ · · ·¡�̃1¡�̃0 = 1 such that T (�̃k)= (−1)k , k =0; : : : ; n. Since ||Tn||[−1;1] = 1,
{�̃k}n

0 are the extreme points of Tn and also {�̃k}n−1
1 are the zeros of Un.

Theorem 8.3 (Min [39]). Let the elements {�k}n
1⊂C\R be paired by complex conjugation and let

{�̃k}n−1
1 be the zeros of Un(x) as de�ned above. Then there exist positive parameters Ã0; : : : ;Ãn such

that for all f∈R2n−1(�1; : : : ; �n)

Q̃n{f}=Ã0f(1) +
n−1∑
k=1

Ãkf(�̃k) +Ãnf(−1) =
∫ 1

−1

f(x)√
1− x2

dx:

This is a Lobatto-type quadrature formula.
Let us next assume that � is a complex measure in � = [ − 1; 1]. Theorem 8.1 is still valid,

however some di�culties have to be addressed. We need to guarantee the existence of n-point
Gaussian quadrature formulas for a measure of the type d�(x)=!m(x) as de�ned in Theorem 8.1.
This requires orthogonal polynomials with respect to a complex measure, and these need not be of
degree n, and if they are, their zeros can be anywhere in the complex plane. In [31] the authors
could rely on known results about the asymptotic behavior of polynomials orthogonal with respect
to �xed complex measures and their zeros to overcome these di�culties. For a general rational
setting, a treatment similar to the one in Section 6 is given in [30,22,21]. The idea is as follows.
Assume d�(x) = �(x) dx with �(x)∈L1(�), possibly complex. Let An = {�jn: j = 1; : : : ; n} and
A=

⋃
n∈N An with A⊂ Ĉ\� be given, and set !n(x)= (x− �1n) · · · (x− �nn). For each n, de�ne the

space Rn:={P(x)=!n(x): P ∈�n−1}. Given n distinct points {�1n; : : : ; �nn}⊂�, there exist parameters
A1n; : : : ; Ann such that

I�{f}:=
∫ 1

−1
f(x)�(x) dx = I�n{f}:=

n∑
j=1

Ajnf(�jn); ∀f∈Rn:

We call I�n{f} an n-interpolatory quadrature formula for Rn. By introducing an auxiliary positive
weight function �(x) on � and taking {�jn}n

j=1 as the zeros of the nth orthogonal polynomial with
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respect to �(x)=|!n(x)|2, several results on the convergence for these quadrature formulas have been
proved. Gonz�alez-Vera et al. prove in [30] the convergence of this type of quadrature formulas in the
class of continuous functions satisfying a certain Lipschitz condition. Cala–Rodriguez and L�opez–
Lagomasino in [22] derive exact rates of convergence when approximating Markov-type analytic
functions. In both of these papers, the intimate connection between multipoint Pad�e-type approximants
and interpolatory quadrature formulas is explicitly exploited. The same kind of problem is considered
in [21] from a purely “numerical integration” point of view. The most relevant result is:

Theorem 8.4 (Cala-Rodriguez et al. [21]). Set �=[−1; 1]; A=⋃n∈N An ⊂ Ĉ\� with An={�jn: j=
1; : : : ; n}. Assume that dist(A; �) = �¿ 0 and that for each n∈N there exists an integer m =
m(n); 16m6n; such that �m ∈An satis�es |Re (�m)|¿ 1. Let �(x)∈L1(�) and �(x)¿0 on � such
that

∫
� |�(x)|2=�(x) dx=K2

1 ¡∞. Let I!n{f}=
∑n

j=1 Ajnf(�jn) be the n-point interpolatory quadra-
ture formula in Rn for the nodes {�jn} that are zeros of Qn(x); the nth orthogonal polynomial
with respect to �(x)=|!n(x)|2; x∈�. Then; limn→∞ I�n{f}= I�{f} for all bounded complex valued
functions on � such that the integral I�{f} exists.

As we have seen, when dealing with convergence of sequences of quadrature formulas based
on rational functions with prescribed poles, one makes use of some kind of condition about the
separation of the poles and the support of the measure (positive or complex) as for example in
Theorem 8.4 or some other condition like (8.1). Thus, it is a natural question to ask what happens
when sequences of points in the Table A tend to supp(�)⊂� or when some points are just chosen
in �. Consider for example the situation where the points in A are just a repetition of the boundary
points −1 or +1 of the interval �=[−1; 1]. According to the approach given in [38], let us consider
the transformation ’ : [− 1; 1]→ [0;∞] given by t =’(x) = (1+ x)=(1− x). Thus, after this change
of variables, we can pass from an integral

∫ 1
−1 f(x) d�(x) to an integral

∫∞
0 g(t) d�(t). The poles at

x=1 are moved to poles at t=∞ and the poles at x=−1 are moved to poles at t=0. This means that
our rational functions are reduced to Laurent polynomials. This special situation is closely related
to the so-called strong Stieltjes moment problem (see Section 9.3). The L-polynomials appear in
two-point Pad�e approximants in a situation similar to what was discussed in Section 2. However,
the di�erence is that now 0 and ∞ are points in the support of the measure. The generalization is
that we consider a sequence of poles �k that are in the support of the measure. Then we are back
in the situation similar to the one discussed in Section 7.

9. Open problems

Several open problems have been explicitly mentioned or at least been hinted at in the text, and
others may have jumped naturally to the mind of attentive readers. We add a few more in this
section.

9.1. Error bounds

In this paper we have considered the convergence of modi�ed approximants (MA) or multipoint
rational approximants (MRA) and the corresponding convergence of R-Szegő quadrature formulas
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or interpolatory quadrature formulas. We have used some error bounds both for the approximants
and the quadrature formulas (and these are closely related by Theorem 3.7). However, we did not
give sharp bounds, and this is of course essential for computing exact rates of convergence.
Using continued fraction theory, Jones and Waadeland [37] recently gave computable sharp error

bounds for MAs, in the polynomial case, i.e., �k = 0 for all k. A similar treatment could be done
in the rational case. As an illustration, we consider the case of the normalized Lebesgue measure
d�(�) = d�=(2�). Let R�n(z; �n) = F�(z) − F�n(z) be the error for the MA. Recall (3.3), where
p + q = n − 1, Xn(z) =

∏n
k=1(z − �nk), with �nk the zeros of the para-orthogonal function Qn(z; �n).

Let us take p= 0 and q= n− 1; then for the normalized Lebesgue measure we have
R�n(z) =

2z�n−1(z)
Xn(z)

1
2�i

∫ �

−�

Xn(t) d�
�n−1(t)(t − z)

; t = ei�:

If z ∈D, then by the residue theorem, one gets
R�n(z) = 2

[
1− Xn(0)�n−1(z)

Xn(z)

]
:

Now using the choice �n = �n as in Example 4.1, we have

Qn(z; �n) =
Xn(z)
�n(z)

; Xn(z) = c
n∏

k=1

(z − �nk) = �n�n[z!n−1(z) + �n−1(z)]:

Therefore,

R�n(z) = 2
[
1− �n−1(z)

z!n−1(z) + �n−1(z)

]
=

2z!n−1(z)
z!n−1(z) + �n−1(z)

; z ∈D:

This is an example of an explicit expression for the error of approximation. It is an open problem
to extend this to the general case.

9.2. Exact rates of convergence

In Theorem 5.6 we obtained estimates for the rate of convergence. It is however not clear
under what conditions on A and � we obtain equality, i.e., when a formula of the form
lim supn→∞|R�n(z)|1=n = exp{�(z)} holds.
If � is the normalized Lebesgue measure and all �k = 0, then R�n(z) = 2z

n=(zn + 1), and therefore
one gets

lim
n→∞ |R�n(z)|1=n = |z|= exp{�(z)}; z ∈D:

Is it true for the normalized Lebesgue measure and A included in a compact subset of D that

lim
n→∞

∣∣∣∣ 2z!n−1(z)
z!n−1(z) + �n−1(z)

∣∣∣∣
1=n

= exp{�(z)};
where �(z) is as in (5.1)?

9.3. Stieltjes problems

Concerning Stieltjes and strong Stieltjes moment problems, several situations are considered that
correspond to special choices of the poles like a �nite number of poles that are cyclically repeated.



88 A. Bultheel et al. / Journal of Computational and Applied Mathematics 127 (2001) 67–91

Several results were obtained concerning the moment problem and the multipoint Pad�e approximants.
See for example [16] for the rational moment problem where poles are allowed on the unit circle.
The existence proof given there is closely related to the convergence of the quadrature formulas.
Several other papers exist about convergence of multipoint Pad�e approximants with or without a
cyclic repetition of the poles. The quadrature part is still largely unexplored. In [38], this situation
is brie
y mentioned.
For the case of L-polynomials where one considers only the poles 0 and ∞, the convergence

of two-point Pad�e approximants to Stieltjes transforms was studied in [32,5,6]. The latter papers
also give error estimates and consider the corresponding convergence and rates of convergence of
the quadrature formulas. To illustrate this, we formulate some of the theorems. Note that in this
section we are dealing with intervals � that may be �nite or in�nite, so it is not always possible
to renormalize it to the standard interval [ − 1; 1] as in Section 8. Thus � has another meaning
here.

Theorem 9.1 (Bultheel et al. [6]). Let � be a positive measure on �=[a; b] with 06a¡b6∞. Let
Q�

n (x)=�n
∏n

k=1(x−�jn); �n ¿ 0; be the nth orthonormal polynomial with respect to x−p d�(x); p¿0.
Let F�(z) = I�{(x − z)−1} = ∫

� 1=(x − z) d�(x) be the Cauchy transform of �. Let I�n{f} =∑n
j=1 Ajnf(�jn) be the n-point Gaussian formula in �−p;q where 06p62n; q¿−1 and p+q=2n−1;

and set F�n(z)= I�n{(x− z)−1}. Then F�n is a rational function of type (n−1; n) that is a two-point
Pad�e approximant (2PA) for F� (order p at the origin and order q+ 2 at in�nity):

L�opez-Lagomasino et al. prove in several papers (see for example [38]) the uniform convergence
of the 2PA in compact subsets of C\� and give estimates for the rate of convergence. They assume
some Carleman-type conditions, namely either limn→∞ p(n)=∞ and

∑∞
n=1 c−1=2n−n =∞ or limn→∞ [2n−

1− p(n)] =∞ and
∑∞

n=1 c−1=2nn =∞, where the moments are de�ned as cn:=
∫
xn d�(x), n∈Z.

When the measure d�(x) = �(x) dx is complex, with
∫
� |�(x)| dx¡∞, then an auxiliary positive

measure !(x) dx with !(x)¿ 0, x∈�, is introduced such that
∫
� |�(x)|2=!(x) dx = K2¡∞.

Theorem 9.2 (Bultheel et al. [6]). Let Q!
n be the nth orthogonal polynomial with respect to x−2p!(x);

whose zeros are �jn ∈�; and let I�n{f} =
∑n

j=1 Ajnf(�jn) be the interpolatory quadrature formula
exact in �−p;q; p+ q= n− 1. Then F�n(z)= I�n{(x− z)−1} is a rational function of type (n− 1; n)
and it is a two-point Pad�e-type (2PTA) approximant for F�.
Let dk=

∫
� xk!(x) dx; k ∈N; be the moments of ! and assume that p=p(n) and q=q(n)=n−1−

p(n); such that either limn→∞ p(n)=∞ and
∑∞

n=1 d−1=2n
−n =∞ or limn→∞ q(n)=∞ and

∑∞
n=1 d

−1=2n
n =

∞. Then the 2PTA F�n(z) converge to F�(z) uniformly in compact subsets of C\�. The quadrature
formula converges to the integral for all f∈CB[0;∞) = {f∈C[0;∞): limx→∞ f(x) = L∈C} if
and only if

∑n
k=1 |Akn|6M for n∈N.

Note that if in this theorem d� is a positive Borel measure, we can set !=�, so that the quadrature
formula becomes the n-point Gaussian formula, and then the Carleman conditions on its moments
imply the convergence of the quadrature formulas in the class CB[0;∞).
As for the rate of convergence, we assume that limn→∞ p(n)=n = r ∈ [0; 1], and we assume that

� is of the form d�(x) = x�exp(−�(x)) dx; �∈R; �(x) continuous on (0;∞) and for 
¿ 1
2 and
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s¿ 0: limx→0+ (sx)
�(x) = limx→∞ (sx)−
�(x) = 1. Set

D(
) =
2


2
− 1
[
�(
+ 1=2)√

��(
)

]1=2

;

where � is the Euler Gamma function, and with � = 1 − 1=(2
)¡ 1; �(z) = (1 − r)� Im((sz)1=2) +
r� Im((sz)−1=2), where the branch is taken such that (−1)1=2 = i. Furthermore, for f analytic in
the domain G such that [0;∞)⊂G⊂ Ĉ and some compact K , de�ne �(K):=exp(−R) with R =
2D(
) inf z∈K {�(z)}¿ 0 for some compact K . It is then proved, using results from [38], that

Theorem 9.3 (Bultheel et al. [6]). With the notation just introduced; let I�n{f} be the n-point
Gaussian quadrature formula exact in �−p(n);2n−1−p(n) with error E�n = I� − I�n . Let F�n be the
corresponding 2PA for the Cauchy transform F� and R�n = F� − F�n the associated error. Then
we have that limn→∞ ||R�n ||1=(2n)

�

K = �(K); where K is a compact subset of C\[0;∞) and || · ||K
is the supremum norm in K. Also limn→∞ E�n{f} = 0 for all f analytic in the domain G; and
lim supn→∞ |E�n{f}|1=(2n)

�
6�(J)¡ 1; where J⊂G is a Jordan curve.

If I�n is the interpolatory quadrature formula of Theorem 9:2 and F�n the corresponding 2PTA;
then R�n → 0 uniformly in compact subsets K of C\[0;∞) and limn→∞||R�n ||1=(2n)

�

K =
√

�(K)¡ 1.
For the quadrature formula it holds that lim supn→∞ |E�n{f}|1=n

�
6
√

�(J)¡ 1 with J⊂G a Jordan
curve and f analytic in G.

It is still an open problem to generalize this kind of results to the multipoint case where we select
a number of poles �k ∈ [0;∞]. Also the multipoint problem corresponding to the Hamburger moment
problem (the measure is supported on the whole of R as explained in Section 7) needs generalization.
There is almost nothing published about error estimates, convergence or rate of convergence for the
rational approximants or for the quadrature formulas.

9.4. Miscellaneous problems

(1) In the convergence results where the poles of the rational functions are outside the support of
the measure, it was assumed that they stayed away (they were in a compact subset of D). What
if the latter is not true?

(2) In [42], Santos-Le�on considers integrals of the form
∫ �
−� f(e

i�)K(�) d� with K such that∫ �
−� |K(�)| d�¡∞. He proposes quadrature formulas of interpolatory type with nodes uni-
formly distributed on T. Properties for the weights and estimates for the error of the quadrature
formulas are given. A similar treatment can be given when the nodes are the zeros of the
para-orthogonal rational functions with respect to the Lebesgue measure, which means the zeros
of z!n−1(z) + �n−1(z).
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Abstract

Iterative methods for the solution of linear systems of equations produce a sequence of approximate solutions. In many
applications it is desirable to be able to compute estimates of the norm of the error in the approximate solutions generated
and terminate the iterations when the estimates are su�ciently small. This paper presents a new iterative method based
on the Lanczos process for the solution of linear systems of equations with a symmetric matrix. The method is designed
to allow the computation of estimates of the Euclidean norm of the error in the computed approximate solutions. These
estimates are determined by evaluating certain Gauss, anti-Gauss, or Gauss–Radau quadrature rules. c© 2001 Elsevier
Science B.V. All rights reserved.

Keywords: Lanczos process; Conjugate gradient method; Symmetric linear system; Gauss quadrature

1. Introduction

Large linear systems of equations

Ax= b; A ∈ Rn×n; x ∈ Rn; b ∈ Rn (1)

with a nonsingular symmetric matrix are frequently solved by iterative methods, such as the conjugate
gradient method and variations thereof; see, e.g., [12, Chapter 10] or [17, Chapter 6]. It is the purpose
of the present paper to describe a modi�cation of the conjugate gradient method that allows the
computation of bounds or estimates of the norm of the error in the computed approximate solutions.
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Assume for notational simplicity that the initial approximate solution of (1) is given by x0 = 0,
and let �k−1 denote the set of polynomials of degree at most k − 1. The iterative method of this
paper yields approximate solutions of (1) of the form

xk = qk−1(A)b; k = 1; 2; : : : ; (2)

where the iteration polynomials qk−1 ∈ �k−1 are determined by the method.
The residual error associated with xk is de�ned by

rk :=b− Axk (3)

and the error in xk is given by

ek :=A−1rk : (4)

Using (3) and (4), we obtain

eTk ek = rTk A
−2rk = bTA−2b− 2bTA−1xk + xTkxk : (5)

Thus, the Euclidean norm of ek can be evaluated by computing the terms on the right-hand side of
(5). The evaluation of the term xTkxk is straightforward. This paper discusses how to evaluate bounds
or estimates of the other terms on the right-hand side of (5). The evaluation is made possible by
requiring that the iteration polynomials satisfy

qk−1(0) = 0; k = 1; 2; : : : : (6)

Then bTA−1xk=bTA−1qk−1(A)b can be computed for every k without using A−1, and this makes easy
evaluation of the middle term on the right-hand side of (5) possible. The iterative method obtained
is closely related to the SYMMLQ method, see, e.g., [16] or [8, Section 6.5], and can be applied to
solve linear systems of equations (1) with a positive de�nite or inde�nite symmetric matrix. Details
of the method are presented in Section 2.
Section 3 discusses how bounds or estimates of the �rst term on the right-hand side of (5) can be

computed by evaluating certain quadrature rules of Gauss-type. Speci�cally, when the matrix A is
positive de�nite and we have evaluated xk , a lower bound of bTA−2b can be computed inexpensively
by evaluating a k-point Gauss quadrature rule. An estimate of an upper bound is obtained by
evaluating an associated k-point anti-Gauss rule. When A is inde�nite, an estimate of the Euclidean
norm of the error ek is obtained by evaluating a (k + 1)-point Gauss–Radau quadrature rule with a
�xed node at the origin. We also describe how the quadrature rules can be updated inexpensively
when k is increased. Section 4 presents a few computed examples, and Section 5 contains concluding
remarks.
The application of quadrature rules of Gauss-type to the computation of error bounds for approx-

imate solutions generated by an iterative method was �rst described by Dahlquist et al. [6], who
discussed the Jacobi iteration method. When the matrix A is symmetric and positive de�nite, the
linear system (1) can conveniently be solved by the conjugate gradient method. Dahlquist et al. [7],
and subsequently Golub and Meurant [10,14], describe methods for computing bounds in the A-norm
of approximate solutions determined by the conjugate gradient method. A new approach, based on
extrapolation, for computing estimates of the norm of the error in approximate solutions determined
by iterative methods has recently been proposed in [1].
Assume for the moment that the matrix A in (1) is symmetric and positive de�nite, and approx-

imate solutions xk of the linear system (1) are computed by the conjugate gradient method. The
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method of Golub and Meurant [10] for computing upper bounds for the A-norm of the error in the
approximate solutions requires that a lower positive bound for the smallest eigenvalue of the matrix
A is available, and so does the scheme in [14], based on two-point Gauss quadrature rules, for
computing upper bounds of the Euclidean norm of the error in the iterates. Estimates of the smallest
eigenvalue can be computed by using the connection between the conjugate gradient method and
the Lanczos method, see, e.g., [12, Chapter 10]; however, it is generally di�cult to determine posi-
tive lower bounds. The methods of the present paper for computing error estimates do not require
knowledge of any of the eigenvalues of the matrix A.
The performance of iterative methods is often enhanced by the use of preconditioners; see, e.g.,

[12, Chapter 10, 17, Chapters 9–10]. In the present paper, we assume that the linear system of
equations (1) represents the preconditioned system. Alternatively, one can let (1) represent the
unpreconditioned linear system and modify the iterative method to incorporate the preconditioner.
Meurant [15] shows how the computation of upper and lower bounds of the A-norm of the error
in approximate solutions determined by the conjugate gradient method can be carried out when this
approach is used. Analogous formulas can be derived for the iterative method of the present paper.

2. The iterative method

This section presents an iterative method for the solution of linear systems of equations (1) with
a nonsingular symmetric matrix A. The description is divided into two subsections, the �rst of which
discusses basic properties of the method. The second subsection derives updating formulas for the
approximate solutions xk computed. The method may be considered a modi�cation of the conjugate
gradient method or of the SYMMLQ method, described, e.g., in [8,16].
Our description uses the spectral factorization

A= Un�nU T
n ; Un ∈ Rn×n; U T

n Un = In;

�n = diag [�1; �2; : : : ; �n]; �16�26 · · ·6�n: (7)

Here and throughout this paper, Ij denotes the identity matrix of order j. Let b̂=[b̂1; b̂2; : : : ; b̂n]
T:=U T

n b
and express the matrix functional

F(A):=bTf(A)b; f(t):=1=t2; (8)

as a Stieltjes integral

F(A) = b̂
T
f(�n)b̂=

n∑
k=1

f(�k)b̂
2
k =

∫ ∞

−∞
f(t) d!(t): (9)

The measure ! is a nondecreasing step function with jump discontinuities at the eigenvalues �k of
A. We will use the notation

I(f):=
∫ ∞

−∞
f(t) d!(t): (10)
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2.1. Basic properties

Our method is based on the Lanczos process. Given the right-hand side vector b, k steps of the
Lanczos process yield the Lanczos decomposition

AVk = VkTk + fk ẽ
T
k ; (11)

where Vk = [C1; C2; : : : ; Ck] ∈ Rn×k and fk ∈ Rn satisfy V T
k Vk = Ik , V T

k fk = 0 and

C1 = b=||b||: (12)

Moreover, Tk ∈ Rk×k is symmetric and tridiagonal. Throughout this paper ẽj denotes the jth axis
vector and || · || the Euclidean vector norm. We may assume that Tk has nonvanishing subdiagonal
entries; otherwise the Lanczos process breaks down and the solution of (1) can be computed as a
linear combination of the columns Cj generated before break down.
Eq. (11) de�nes a recursion relation for the columns of Vk . This relation, combined with (12),

shows that

Cj = sj−1(A)b; 16j6k (13)

for certain polynomials sj−1 of degree j − 1. These polynomials are orthogonal with respect to the
following inner product induced by (10) for functions g and h de�ned on the spectrum of A,

(g; h):=I(gh): (14)

We have

(sj−1; s‘−1) =
∫ ∞

−∞
sj−1(t)s‘−1(t) d!(t) = bTUnsj−1(�n)s‘−1(�n)U T

n b

= bTsj−1(A)s‘−1(A)b

= CTj C‘ =
{
0; j 6= ‘;

1; j = ‘;
(15)

where we have applied manipulations analogous to those used in Eq. (9). The last equality of (15)
follows from the orthogonality of the columns Cj of Vk . Since the polynomial s‘ is of degree ‘, the
columns of Vk span the Krylov subspace

Kk(A; b):=span{b; Ab; : : : ; Ak−1b};
i.e.,

range (Vk) =Kk(A; b): (16)

We also will use the following form of the Lanczos decomposition:

AVk−1 = VkTk;k−1; (17)

where Tk;k−1 is the leading principal k × (k − 1) submatrix of Tk .
Introduce the QR-factorization of Tk , i.e., let

Tk = QkRk; Qk; Rk ∈ Rk×k ; QT
k Qk = Ik ; (18)
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where Rk = [r
(k)
j‘ ]

k
j; ‘=1 is upper triangular. Also, de�ne

Tk;k−1 = Qk

[ �Rk−1

0

]
= Qk;k−1 �Rk−1; (19)

where �Rk−1 is the leading principal submatrix of order k−1 of Rk , and Qk;k−1 ∈ Rk×(k−1) consists of
the �rst k − 1 columns of Qk . For de�niteness, we assume that the diagonal entries in the triangular
factors in all QR-factorizations of this paper are nonnegative.
The following manipulations of the Lanczos decomposition (11) give an iterative method, whose

associated iteration polynomials satisfy (6). The manipulations are closely related to those re-
quired in the derivation of the implicitly restarted Lanczos method; see, e.g., [5]. Substituting the
QR-factorization (18) into the Lanczos decomposition (11) yields

AVk = VkQkRk + fk ẽ
T
k ; (20)

which after multiplication by Qk from the right gives

AṼ k = Ṽ k T̃ k + fk ẽ
T
k Qk ; Ṽ k :=VkQk; T̃ k :=RkQk: (21)

The matrix Ṽ k = [C̃ (k)1 ; C̃ (k)2 ; : : : ; C̃ (k)k ] has orthonormal columns and T̃ k is the symmetric tridiagonal
matrix obtained from Tk by applying one step of the QR-algorithm with shift zero.
A relation between the �rst columns C1 and C̃ (k)1 of Vk and Ṽ k , respectively, is easily shown.

Assume that k ¿ 1 and multiply (20) by ẽ1 from the right. We obtain

AVk ẽ1 = Ṽ kRk ẽ1 + fk ẽ
T
k ẽ1;

which simpli�es to

AC1 = r (k)11 C̃
(k)
1 ;

where we have used that Rk ẽ1 = r (k)11 ẽ1. Thus,

C̃ (k)1 = Ab=||Ab||:
Since Tk is tridiagonal, the orthogonal matrix Qk in the QR-factorization (18) is of upper

Hessenberg form. It follows that all but the last two components of the vector ẽTk Qk are guar-
anteed to vanish. Therefore, decomposition (21) di�ers from a Lanczos decomposition in that the
last two columns of the matrix fk ẽ

T
k Qk may be nonvanishing.

Let �Vk−1 be the matrix made up by the �rst k − 1 columns of Ṽ k . Note that

�Vk−1 = VkQk;k−1; (22)

where Qk;k−1 is de�ned by (19). Generally, �Vk−1 6= Ṽk−1; see Section 2.2 for details. Removing the
last column from each term in Eq. (21) yields the decomposition

A �Vk−1 = �Vk−1T̃ k−1 + �f k−1ẽ
T
k−1; (23)

where �V
T
k−1 �f k−1 = 0, �V

T
k−1 �Vk−1 = Ik−1 and T̃ k−1 is the leading principal submatrix of order k − 1 of

the matrix T̃ k . Thus, decomposition (23) is a Lanczos decomposition with initial vector C̃ (k)1 of �Vk−1
proportional to Ab. Analogously to (16), we have

range ( �Vk−1) =Kk−1(A; Ab): (24)
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We determine the iteration polynomials (2), and thereby the approximate solutions xk of (1), by
requiring that

xk = qk−1(A)b= �Vk−1zk−1 (25)

for some vector zk−1 ∈ Rk−1. It follows from (24) that any polynomial qk−1 determined by (25)
satis�es (6). We choose zk−1, and thereby qk−1 ∈ �k−1, so that the residual error (3) associated with
the approximate solution xk of (1) satis�es the Petrov–Galerkin equation

0= V T
k−1rk = V T

k−1b− V T
k−1A �Vk−1zk−1; (26)

which, by using (12) and factorization (22), simpli�es to

||b||ẽ1 = (AVk−1)TVkQk;k−1zk−1: (27)

We remark that if the matrix �Vk−1 in (26) is replaced by Vk−1, then the standard SYMMLQ method
[16] is obtained. The iteration polynomial qk−1 associated with the standard SYMMLQ method, in
general, does not satisfy condition (6). The implementation of our method uses the QR-factorization
of the matrix Tk , similarly as the implementation of the SYMMLQ method described in [8, Section
6.5]. In contrast, the implementation of the SYMMLQ method presented in [16] is based on the
LQ-factorization of Tk .
It follows from (17) and (19) that

(AVk−1)TVkQk;k−1 = T Tk; k−1Qk;k−1 = �R
T
k−1: (28)

Substituting (28) into (27) yields

�R
T
k−1zk−1 = ||b||ẽ1: (29)

This de�nes the iterative method.
Recursion formulas for updating the approximate solutions xk inexpensively are derived in Section

2.2. In the remainder of this subsection, we discuss how to evaluate the right-hand side of (5). Eqs.
(24) and (25) show that xk ∈ Kk−1(A; Ab), and therefore there is a vector yk−1 ∈ Rk−1, such that

A−1xk = Vk−1yk−1: (30)

Thus, by (17),

xk = AVk−1yk−1 = VkTk;k−1yk−1; (31)

and, by (25) and (22), we have

xk = VkQk;k−1zk−1:

It follows that

Qk;k−1zk−1 = Tk;k−1yk−1: (32)

Multiplying this equation by QT
k; k−1 yields, in view of (19), that

zk−1 = QT
k; k−1Tk;k−1yk−1 = �Rk−1yk−1: (33)

Application of (30), (12), (33) and (29), in order, yields

bTA−1xk = bTVk−1yk−1 = ||b||ẽT1yk−1 = ||b||ẽT1 �R
−1
k−1zk−1 = zTk−1zk−1: (34)
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It follows from (25) that xTkxk = zTk−1zk−1. This observation and (34) show that Eq. (5) can be
written in the form

eTk ek = rTk A
−2rk = bTA−2b− zTk−1zk−1: (35)

The term zTk−1zk−1 is straightforward to evaluate from (29). Section 3 describes how easily com-
putable upper and lower bounds, or estimates, of bTA−2b can be derived by using Gauss-type quadra-
ture rules. In this manner, we obtain easily computable upper and lower bounds, or estimates, of the
norm of ek . Details are described in Section 3.
Assume for the moment that n steps of the Lanczos process have been carried out to yield the

Lanczos decomposition AVn = VnTn, analogous to (11). Using the QR-factorization (18) of Tn and
the property (12) yields

bTA−2b= ||b||2ẽT1V T
n A−2Vnẽ1 = ||b||2ẽT1T−2

n ẽ1

= ||b||2ẽT1R−1
n R−T

n ẽ1:

Substituting this expression into (35) and using (29) shows that

eTk ek = ||b||2ẽT1R−1
n R−T

n ẽ1 − ||b||2ẽT1 �R
−1
k−1 �R

−T
k−1ẽ1: (36)

The right-hand side of (36) is analogous to expressions for the A-norm of the error ek discussed in
[10,11,14].

2.2. Updating formulas for the iterative method

We describe how the computation of the iterates xk de�ned by (25) can be organized so that
storage of only a few n-vectors is required.
Let the matrix Tk in (11) have the entries

Tk =




�1 �1 0
�1 �2 �2

�2 �3
. . .

. . . . . . �k−2
�k−2 �k−1 �k−1

0 �k−1 �k




∈ Rk×k ; (37)

where according to the discussion following equation (12) we may assume that the �j are nonvan-
ishing. This property of the �j secures that the eigenvalues of Tk are distinct. Introduce the spectral
factorization

Tk =Wk�kW T
k ; Wk ∈ Rk×k ; W T

k Wk = Ik ;

�k = diag[�
(k)
1 ; � (k)2 ; : : : ; � (k)k ]; � (k)1 ¡� (k)2 ¡ · · ·¡� (k)k : (38)
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The QR-factorization (18) of Tk is computed by applying k − 1 Givens rotations

G( j)
k :=



Ij−1

cj sj
−sj cj

Ik−j−1


 ∈ Rk×k ; c2j + s2j = 1; sj¿0; (39)

to Tk , i.e.,

Rk :=G(k−1)
k G(k−2)

k · · ·G(1)
k Tk ; Qk :=G(1)T

k G(2)T
k · · ·G(k−1)T

k ; (40)

see, e.g., [12, Chapter 5] for a discussion on Givens rotations. In our iterative method the matrix
Qk is not explicitly formed; instead we use representation (40). Since Tk is tridiagonal, the upper
triangular matrix Rk has nonvanishing entries on the diagonal and the two adjacent superdiagonals
only.
The matrix Tk in (37) is determined by k steps of the Lanczos process. After an additional step,

we obtain the Lanczos decomposition

AVk+1 = Vk+1Tk+1 + fk+1ẽ
T
k+1; (41)

analogous to (11). For future reference, we remark that the last subdiagonal entry of the symmetric
tridiagonal matrix Tk+1 may be computed by

�k :=|| fk || (42)

already after completion of k Lanczos steps.
The matrix Tk+1 has the QR-factorization

Tk+1 = Qk+1Rk+1; (43)

whose factors can be computed from Qk and Rk in a straightforward manner. We have

Qk+1 =

[
Qk 0

0T 1

]
G(k)T

k+1 ∈ R(k+1)×(k+1);

Qk+1; k =

[
Qk 0

0T 1

]
G(k)T

k+1; k ∈ R(k+1)×k ; (44)

where G (k)
k+1 is de�ned by (39) and G (k)

k+1; k ∈ R(k+1)×k is made up of the �rst k columns of G (k)
k+1.

We obtain updating formulas for computing the triangular matrix Rk+1 in (43) from the matrix Rk

in (40) by expressing these matrices in terms of their columns

Rk = [r
(k)
1 ; r (k)2 ; : : : ; r (k)k ]; Rk+1 = [r

(k+1)
1 ; r (k+1)2 ; : : : ; r (k+1)k ; r (k+1)k+1 ]:

Comparing (18) and (43) yields

r (k+1)j =

[
r (k)j

0

]
; 16j¡k (45)
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and

r (k+1)k = G (k)
k+1

[
r (k)k

�k

]
;

r (k+1)k+1 = G (k)
k+1G

(k−1)
k+1 Tk+1ẽk+1: (46)

Thus, the entries of all the matrices R1; R2; : : : ; Rk+1 can be computed in only O(k) arithmetic

oating-point operations.
The matrix �Rk = [�r

(k)
j‘ ]

k
j; ‘=1 de�ned by (19) is the leading principal submatrix of Rk+1 of order k

and agrees with Rk = [r
(k)
j‘ ]

k
j; ‘=1 except for the last diagonal entry. Eq. (46) and the fact that �k is

nonvanishing yield

�r (k)kk ¿ r (k)kk ¿0; (47)

and when Tk is nonsingular, we have r (k)kk ¿ 0.
We turn to the computation of the columns of

Ṽ k+1 = [C̃ (k+1)1 ; C̃ (k+1)2 ; : : : ; C̃ (k+1)k+1 ]:=Vk+1Qk+1 (48)

from those of the matrix Ṽ k , where Vk+1 is determined by the Lanczos decomposition (41) and Qk+1

is given by (44). Substituting (44) into the right-hand side of (48) yields

Ṽ k+1 = [Vk; Ck+1]Qk+1 = [Ṽ k ; Ck+1]G(k)T
k+1

= [ �Vk−1; ck C̃ (k)k + skCk+1;−sk C̃ (k)k + ckCk+1]: (49)

Thus, the �rst k − 1 columns of the matrix Ṽ k+1 are the columns of �Vk−1. The columns C̃ (k+1)k and
C̃ (k+1)k+1 of Ṽ k+1 are linear combinations of the last columns of Ṽ k and Vk+1.
Assume that the solution zk−1 of the linear system (29) is available. Since the matrix �Rk is upper

triangular and �Rk−1 is the leading principal submatrix of order k − 1 of �Rk , the computation of the
solution zk = [�1; �2; : : : ; �k]

T of

�R
T
k zk = ||b||ẽ1 (50)

is easy. We have

zk =

[
zk−1

�k

]
; �k =−( �r (k)k−2; k�k−2 + �r (k)k−1; k�k−1)= �r

(k)
kk : (51)

Hence, only the last column of the matrix �Rk is required.
We are now in a position to compute xk+1 from xk . Eqs. (25) and (49) yield

xk+1 = �V kzk = �Vk−1zk−1 + �k C̃ (k+1)k = xk + �k C̃ (k+1)k ;

where we have used that C̃ (k+1)k is the last column of �V k . Note that only the last few columns of Vk

and Ṽ k have to be stored in order to update the approximate solution xk .

3. Quadrature rules of Gauss-type for error estimation

This section describes how to bound or compute estimates of the matrix functional (8) by approx-
imating the Stieltjes integral representation (9) by quadrature rules of Gauss-type. A nice discussion
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on the application of Gauss quadrature rules to the evaluation of upper and lower bounds of certain
matrix functionals is presented in [9]. Related discussions can also be found in [2,4,11].

3.1. Gauss quadrature rules

Let f be a 2k times continuously di�erentiable function de�ned on the interval [�1; �n], which
contains the support of the measure !. The k-point Gauss quadrature rule associated with ! for the
computation of an approximation of the integral (10) is given by

Gk(f):=
k∑

j=1

f(� (k)j )!
(k)
j ; ! (k)

j :=||b||2(ẽT1Wk ẽj)2; (52)

where the � (k)j and Wk are de�ned by (38). The nodes and weights of the Gauss rule are uniquely
determined by the requirement

Gk(p) =I(p); ∀p ∈ �2k−1; (53)

where I is de�ned by (10). We also will use the representation

Gk(f) = ||b||2ẽT1f(Tk)ẽ1: (54)

The equivalence of (52) and (54) is shown in [9] and follows by substituting the spectral factorization
(38) into (54). The integration error

Ek(f):=I(f)− Gk(f)

can be expressed as

Ek(f) =
f(2k)(�̃

(k)
)

(2k)!

∫ ∞

−∞

k∏
‘=1

(t − � (k)‘ )
2 d!(t) (55)

for some �̃
(k)
in the interval [�1; �n], where f(2k) denotes the derivative of order 2k of the function

f; see, e.g., [9] or [18, Section 3.6] for details.
In the remainder of this section, we will assume that f is given by (8) and that the matrix A

is positive de�nite. Then f(2k)(t)¿ 0 for t ¿ 0, and the constant �̃
(k)
in (55) is positive. It follows

from (55) that Ek(f)¿ 0, and therefore

Gk(f)¡I(f) = F(A) = bTA−2b; (56)

where F(A) is de�ned by (8).
Representation (54) of the Gauss quadrature rule can be simpli�ed by using the QR-factorization

(18) of Tk when f is given by (8),

Gk(f) = ||b||2ẽT1T−2
k ẽ1 = ||b||2ẽT1R−1

k R−T
k ẽ1 = ||b||2||R−T

k ẽ1||2: (57)

It is easy to evaluate the right-hand side of (57) when the solution zk−1 of (29) is available. Let
z̃k ∈ Rk satisfy

RTk z̃k = ||b||ẽ1: (58)

Then

Gk(f) = z̃Tk z̃k : (59)
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Since all entries r (k)j‘ of Rk and �r
(k)
j‘ of �Rk are the same, except for r (k)kk 6= �r (k)kk , the solution of (58)

is given by

z̃k =

[
zk−1

�̃k

]
; �̃k =−( �r (k)k−2; k�k−2 + �r (k)k−1; k�k−1)=r

(k)
kk : (60)

Substituting inequality (56) into (35) (with k replaced by k+1) and using representation (59) yields

eTk+1ek+1 ¿ z̃Tk z̃k − zTk zk = �̃
2

k − �2k ; (61)

where the equality follows from (51) and (60). A comparison of (51) and (60) yields, in view of
inequality (47), that |�̃k |¿|�k |, and therefore the right-hand side of (61) is nonnegative. Moreover,
if �̃k 6= 0, then |�̃k |¿ |�k |, and we obtain

||ek+1||¿
√

�̃
2

k − �2k ¿ 0: (62)

Thus, Gauss quadrature rules give easily computable lower bounds for the error in the approximate
solutions generated by the iterative method when applied to linear systems of equations with a
symmetric positive-de�nite matrix.

3.2. Anti-Gauss quadrature rules

Let the matrix A be symmetric and positive de�nite. If the smallest eigenvalue �1 of A were
explicitly known, then an upper bound of (56) could be computed by a (k + 1)-point Gauss–Radau
quadrature rule with a �xed node between �1 and the origin; see [9,10] for details. The computed
bound typically improves the further away from the origin we can allocate the �xed node. However,
accurate lower bounds for �1 are, in general, not available. We therefore propose to use anti-Gauss
quadrature rules to compute estimates of the error that generally are of opposite sign as Ek(f).
Anti-Gauss rules were introduced in [13], and their application to the evaluation of matrix func-

tionals was explored in [4]. Let f be a smooth function. Analogously to representation (54) of the
k-point Gauss rule, the (k+1)-point anti-Gauss quadrature rule associated with ! for the computation
of an approximation of integral (10) is given by

�Gk+1(f):=||b||2ẽT1f( �Tk+1)ẽ1; (63)

where

�Tk+1 =




�1 �1 0
�1 �2 �2

�2 �3
. . .

. . . . . . �k−1
�k−1 �k

√
2�k

0
√
2�k �k+1




∈ R(k+1)×(k+1): (64)

Thus, �Tk+1 is obtained from Tk+1 by multiplying the last o�-diagonal entries by
√
2. We note that

the determination of �Tk+1 requires application of k + 1 steps of the Lanczos process; cf. (11).



104 D. Calvetti et al. / Journal of Computational and Applied Mathematics 127 (2001) 93–119

The (k + 1)-point anti-Gauss rule is characterized by the requirement that the integration error

�Ek+1(f):=I(f)− �Gk+1(f)

satis�es

�Ek+1(p) =−Ek(p); ∀p ∈ �2k+1;

which can be written in the equivalent form

�Gk+1(p) = (2I − Gk)(p); ∀p ∈ �2k+1: (65)

Assume for the moment that we can carry out n steps of the Lanczos process without break down.
This yields an orthonormal basis {Cj}n

j=1 of Rn and an associated sequence of polynomials {sj}n−1
j=0

de�ned by (13) that satisfy (15). Expanding the function f on the spectrum of A, denoted by �(A),
in terms of the polynomials sj yields

f(t) =
∑n−1

j=0
�jsj(t); t ∈ �(A); (66)

where �j = (f; sj), with the inner product de�ned by (14).
In view of I(sj) = 0 for j¿ 0 and (53), it follows from (66) that

I(f) = �0I(s0) = �0Gk(s0): (67)

Therefore, applying the Gauss rule Gk and anti-Gauss rule �Gk+1 to (66), using (53), (65) and (67),
yields for n¿2k + 2 that

Gk(f) =I(f) +
n−1∑
j=2k

�jGk(sj); (68)

�Gk+1(f) =
n−1∑
j=0

�j
�Gk+1(sj) =

2k+1∑
j=0

�j(2I − Gk)(sj) +
n−1∑

j=2k+2

�j
�Gk+1(sj)

=
2k+1∑
j=0

�j2I(sj)−
2k+1∑
j=0

�jGk(sj) +
n−1∑

j=2k+2

�j
�Gk+1(sj)

=I(f)− �2kGk(s2k)− �2k+1Gk(s2k+1) +
n−1∑

j=2k+2

�j
�Gk+1(sj): (69)

Assume that the coe�cients �j converge rapidly to zero with increasing index. Then the leading
terms in expansions (68) and (69) dominate the error, i.e.,

Ek(f) = (I − Gk)(f) ≈ −�2kGk(s2k)− �2k+1Gk(s2k+1);

�Ek+1(f) = (I − �Gk+1)(f) ≈ �2kGk(s2k) + �2k+1Gk(s2k+1); (70)

where ≈ stands for “approximately equal to”. This leads us to expect that, in general, the errors
Ek(f) and �Ek+1(f) are of opposite sign and of roughly the same magnitude.
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In the remainder of this subsection, we let f be de�ned by (8) and discuss the evaluation of
anti-Gauss rules for this particular integrand. Introduce the QR-factorization

�Tk+1 = �Qk+1
�Rk+1; �Qk+1; �Rk+1 ∈ R(k+1)×(k+1); �Q

T

k+1
�Qk+1 = Ik+1; (71)

where �Rk+1 = [ �r
(k+1)
j‘ ]k+1j; ‘=1 is upper triangular. Using representation (63), we obtain, analogously to

(57), that

�Gk+1(f) = ||b||2ẽT1 �T
−2
k+1ẽ1 = ||b||2ẽT1 �R

−1
k+1
�R
−T
k+1ẽ1 = ||b||2|| �R−T

k+1ẽ1||2: (72)

Since by (56) we have Ek(f)¿ 0, Eq. (70) suggests that, typically, �Ek+1(f)¡ 0. Thus, we expect
that for many symmetric positive-de�nite matrices A, right-hand side vectors b and values of k, the
inequality

�Gk+1(f)¿I(f) = F(A) = bTA−2b (73)

holds, where f and F are given by (8).
Let �zk+1 satisfy

�R
T
k+1 �zk+1 = ||b||ẽ1: (74)

Then it follows from (72) that

�Gk+1(f) = �zTk+1 �zk+1: (75)

The matrix �Rk+1 can be determined when k +1 Lanczos steps have been completed, and so can the
approximate solution xk+1 of (1). Substituting (73) into (35) (with k replaced by k + 1) and using
representation (75) suggests that the inequality

eTk+1ek+1¡ �zTk+1 �zk+1 − zTk zk (76)

holds for many symmetric positive-de�nite matrices A, right-hand side vectors b and values of k.
We evaluate the right-hand side of (76) by using the close relation between the upper triangular

matrices �Rk+1 and �Rk . Assume that �Rk is nonsingular and that �k+1 6= 0. It is easy to see that the k×k
leading principal submatrix of �Rk+1 agrees with �Rk except for its last diagonal entry. A comparison
of (74) with (29) (with k − 1 replaced by k) shows that

�zk+1 =




zk−1

��
(k+1)

k

��
(k+1)

k+1


 ;

where

��
(k+1)

k =−( �r (k)k−2; k�k−2 + �r (k)k−1; k�k−1)= �r
(k+1)
kk ;

��
(k+1)

k+1 =−( �r (k+1)k−1; k+1�k−1 + �r (k+1)k; k+1
��
(k+1)

k )= �r (k+1)k+1; k+1

and the �j are entries of zk−1. Thus,

�zTk+1 �zk+1 − zTk zk = ( ��
(k+1)

k+1 )
2 + ( ��

(k+1)

k )2 − �2k :
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Substitution of this identity into (76) yields

||ek+1||¡
√
( ��
(k+1)

k+1 )2 + ( ��
(k+1)

k )2 − �2k : (77)

According to the above discussion, we expect the argument of the square root to be positive and
the inequality to hold for many symmetric positive-de�nite matrices A, right-hand side vectors b and
values of k. We refer to the right-hand side of (77) as an upper estimate of the norm of the error
ek+1. However, we point out that inequality (77) might be violated for some values of k. This is
illustrated in the numerical examples of Section 4.

3.3. Gauss–Radau quadrature rules

Throughout this section we assume that the matrix A is nonsingular and inde�nite. Thus, there is
an index m such that eigenvalues (7) of A satisfy

�16�26 · · ·6�m ¡ 0¡�m+16 · · ·6�n: (78)

The application of Gauss quadrature rules (52) to estimate the norm of the error in approximate
solutions xk might not be possible for all values of k when A is inde�nite, because for some k ¿ 0
one of the nodes � (k)j of the Gauss rule (52) may be at the origin, and the integrand f given by (8)
is not de�ned there. In fact, numerical di�culties may arise also when one of the nodes � (k)j is very
close to the origin. We circumvent this problem by modifying the integrand and estimating the norm
of the error in the computed approximate solutions by Gauss–Radau quadrature rules associated with
the measure ! and with a �xed node at the origin. Note that since the matrix A is inde�nite, the
origin is inside the smallest interval containing the spectrum of A. Some of the desired Gauss–Radau
rules therefore might not exist. We will return to this issue below.
Let f be a smooth function on a su�ciently large interval that contains �(A) in its interior. We

may, for instance, think of f as analytic. The (k +1)-point Gauss–Radau quadrature rule associated
with the measure ! and with a �xed node �̂1 at the origin for the integration of f is of the form

Ĝk+1(f):=
k+1∑
j=1

f(�̂
(k+1)

j )!̂ (k+1)
j : (79)

It is characterized by the requirements that

Ĝk+1(p) =I(p); ∀p ∈ �2k and �̂
(k+1)

1 = 0:

The nodes and weights in (79) are given by formulas analogous to those for the nodes and weights
of standard Gauss rules (52). Introduce the symmetric tridiagonal matrix

T̂ k+1 =




�1 �1 0
�1 �2 �2

�2 �3
. . .

. . . . . . �k−1
�k−1 �k �k

0 �k �̂k+1




∈ R(k+1)×(k+1); (80)
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where

�̂k+1:=�2k ẽ
T
k T

−1
k ẽk

and Tk is given by (37). In view of the discussion on the computation of �k , see (42), all entries
of the matrix T̂ k+1 can be computed after k Lanczos steps have been completed, provided that the
matrix Tk is invertible. Since A is inde�nite, we cannot exclude that Tk is singular. However, because
of the interlacing property of the eigenvalues of the matrices Tk and Tk+1, it follows that if Tk is
singular, then Tk+1 is not. Thus, the desired (k +1)-point Gauss–Radau rules can be determined for
at least every other value of k.
De�ne the spectral factorization

T̂ k+1 = Ŵ k+1�̂k+1Ŵ
T
k+1; Ŵ k+1 ∈ R(k+1)×(k+1); Ŵ

T
k+1Ŵ k+1 = Ik+1;

�̂k+1 = diag [�̂
(k+1)

1 ; �̂
(k+1)

2 ; : : : ; �̂
(k+1)

k+1 ]; 0 = �̂
(k+1)

1 ¡ |�̂ (k+1)2 |6 · · ·6|�̂ (k+1)k+1 |:

The eigenvalues �̂
(k+1)

j are distinct and may be positive or negative. The nodes in the Gauss–Radau

quadrature rule (79) are the eigenvalues �̂
(k+1)

j and the weights are given by

!̂ (k+1)
j :=||b||2(ẽT1Ŵ k+1ẽj)2;

see [9] for details. Analogously to (54), the quadrature rule (79) also can be represented by

Ĝk+1(f) = ||b||2ẽT1f(T̂ k+1)ẽ1: (81)

Let for the moment f be a function that is analytic on an interval that contains all eigenvalues

of A and all Gauss–Radau nodes �̂
(k+1)

j , and satis�es

f(t):=



1=t2; t ∈ �(A) ∪ {�̂ (k+1)j }k+1

j=2 ;

0; t = 0:
(82)

Then

I(f) = bTA−2b= bT(A†)2b

and representations (79) and (81) yield

Ĝk+1(f) =
k+1∑
j=2

(�̂
(k+1)

j )−2!̂ (k+1)
j = ||b||2ẽT1 (T̂

†
k+1)

2ẽ1 = ||b||2||T̂ †
k+1ẽ1||2; (83)

where M † denotes the Moore–Penrose pseudoinverse of the matrix M .

Proposition 3.1. Let the index m be determined by (78). Then the nonvanishing eigenvalues �̂
(k+1)

j

of the Gauss–Radau matrix T̂ k+1 satisfy

�̂
(k+1)

j 6�m or �̂
(k+1)

j ¿�m+1; 26j6k + 1:

Proof. The result follows by combining Lemmas 5:2 and 5:3 of [3].
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The proposition secures that none of the nonvanishing Gauss–Radau nodes is closer to the origin
than the eigenvalue of A of smallest magnitude. This property does not hold for nodes in Gauss rules
(52). Therefore, the symmetric tridiagonal matrices (37) associated with Gauss rules may be nearly
singular, even when A is well conditioned. Near singularity of the tridiagonal matrices (37) makes
the computed error estimates sensitive to propagated round-o� errors, and may cause the computed
estimates to be of poor quality. This is illustrated in Examples 3 and 4 of Section 4.
The error (I−Ĝk+1)(f) can be expressed by a formula similar to (55). However, the derivatives of

the integrand f change sign on the interval [�1; �n] and the sign of the error cannot be determined
from this formula. The Gauss–Radau rule only provides estimates of the error in the computed
approximate solutions. The computed examples of Section 4 show these estimates to be close to the
norm of the error in the computed approximate solutions. This is typical for our experience from a
large number of computed examples.
We turn to the evaluation of Gauss–Radau rules (83). De�ne the QR-factorization

T̂ k+1 = Qk+1R̂k+1; Qk+1; R̂k+1 ∈ R(k+1)×(k+1); QT
k+1Qk+1 = Ik+1; (84)

where R̂k+1=[r̂
(k+1)
j‘ ]k+1j; ‘=1 is upper triangular. Since T̂ k+1 is singular, the entry r̂ (k+1)k+1; k+1 vanishes. Note

that the matrix Qk+1 in (84) is the same as in (43). Moreover, the leading k× k principal submatrix
of R̂k+1 is given by the matrix �Rk in (50).
Let q (k+1)k+1 denote the last column of Qk+1. Then

q(k+1)Tk+1 T̂ k+1 = q(k+1)Tk+1 Qk+1R̂k+1 = ẽTk+1R̂k+1 = 0
T:

By symmetry of T̂ k+1 it follows that

T̂ k+1q
(k+1)
k+1 = 0;

i.e., q (k+1)k+1 spans the null space of T̂ k+1 and is orthogonal to the range of T̂ k+1. In particular,
Ik+1 − q (k+1)k+1 q(k+1)Tk+1 is the orthogonal projector onto the range of T̂ k+1.
We evaluate the right-hand side of (83) by using the QR-factorization (84) as follows. The vector

||b||T̂ †
k+1ẽ1 is the solution of minimal norm of the least-squares problem

min
yk+1∈Rk+1

||T̂ k+1yk+1 − ||b||ẽ1||: (85)

We may replace the vector ||b||ẽ1 in (85) by its orthogonal projection onto the range of T̂ k+1 without

changing the solution of the least-squares problem. Thus, ||b||T̂ †
k+1ẽ1 also is the solution of minimal

norm of the least-squares problem

min
yk+1∈Rk+1

||T̂ k+1yk+1 − (Ik+1 − q (k+1)k+1 q(k+1)Tk+1 )||b||ẽ1||: (86)

Substituting T̂ k+1 = T̂
T
k+1 = R̂

T
k+1Q

T
k+1 into (86) and letting ŷk+1 =QT

k+1yk+1 yields the consistent linear
system of equations

R̂
T
k+1ŷk+1 = (Ik+1 − q (k+1)k+1 q(k+1)Tk+1 )||b||ẽ1: (87)

Let ŷk+1 denote the minimal norm solution of (87). Then ŷk+1 = ||b||QT
k+1T̂

†
k+1ẽ1 and therefore

||ŷk+1||= ||b||||T̂ †
k+1ẽ1||: (88)
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Since r̂ (k+1)k+1; k+1 = 0 and r̂ (k+1)jj ¿ 0 for 16j6k, the minimal norm solution of (87) is of the form

ŷk+1 =

[
�yk

0

]
; �yk ∈ Rk :

The vector �yk satis�es the linear system of equations obtained by removing the last row and column
of the matrix and the last entry of the right-hand side in (87), i.e.,

�R
T
k �yk = ||b||ẽ1 − ||b|| �qkq

(k+1)T
k+1 ẽ1;

where �qk ∈ Rk consists of the �rst k entries of q (k+1)k+1 . Thus,

�yk = zk + �zk ; (89)

where zk solves (50) and �zk satis�es

�R
T
k �zk =−||b|| �qkq

(k+1)T
k+1 ẽ1: (90)

A recursion formula for the vector q (k+1)k+1 can be derived easily. It follows from representation (44)
of the matrix Qk+1 that

q (k+1)k+1 = Qk+1ẽk+1 =

[
Qk 0

0T 1

]
G(k)T

k+1 ẽk+1 =

[−skq
(k)
k

ck

]
; (91)

where q (k)k denotes the last column of Qk . Repeated application of Eq. (91) for increasing values of
k makes it possible to compute the vectors q(2)2 ; q(3)3 ; : : : ; q (k+1)k+1 in about k2=2 arithmetic 
oating-point
operations.
The solutions of the linear systems (90) can be evaluated by a recursion formula based on (91)

for increasing values of k as follows. Eq. (91) yields that

q(k+1)Tk+1 ẽ1 =−skq
(k)T
k ẽ1;

�qk =−skq
(k)
k (92)

and

�qk+1 =−sk+1

[
�qk

ck

]
; (93)

where the vector �qk+1 consists of the k + 1 �rst entries of q(k+2)k+2 , the last column of Qk+2. As-
sume that the solution �zk of (90) is available. We would like to compute the vector �zk+1 =
[ ��
(k+1)

1 ; ��
(k+1)

2 ; : : : ; ��
(k+1)

k+1 ]
T that satis�es

�R
T
k+1 �zk+1 =−||b|| �qk+1q

(k+2)T
k+2 ẽ1: (94)

Substituting (92) and (93) into (94) yields

�R
T
k+1 �zk+1 =−||b||s2k+1

[
�qk

ck

]
q(k+1)Tk+1 ẽ1;
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which shows that

�zk+1 =


 s2k+1 �zk

��
(k+1)

k+1


 ;

��
(k+1)

k+1 =−(||b||s2k+1ckq(k+1)Tk+1 ẽ1 + �r (k+1)k−1; k+1 ��
(k+1)

k−1 + �r (k+1)k; k+1
��
(k+1)

k )= �r (k+1)k+1; k+1:

Thus, assuming that the matrix �Rk+1 is available, all the vectors �z1; �z2; : : : ; �zk+1 can be computed in
O(k2) arithmetic 
oating-point operations.
Having computed the solutions of (50) and (90), the above development, and in particular Eqs.

(88) and (89), show that we can evaluate the (k + 1)-point Gauss–Radau rule (83) with integrand
(82) according to

Ĝk+1(f) = ||zk + �zk ||2:
Substituting this approximation of bTA−2b into (35) yields

eTk ek = |bTA−2b− zTk−1zk−1|
≈ |||zk + �zk ||2 − zTk−1zk−1|
= | �zTk (2zk + �zk) + �2k |;

where the last equality follows from (51). This suggests the approximation

||ek || ≈ | �zTk (2zk + �zk) + �2k |1=2: (95)

We note that the approximate solution xk of (1) and the right-hand side of (95) can be evaluated
after k Lanczos steps have been carried out and the last subdiagonal entry of the Gauss–Radau
matrix (80) has been determined by (42). Computed examples in the following section indicate that
approximation (95) typically gives accurate estimates of the norm of the error.

4. Computed examples

We describe four examples that illustrate the performance of the iterative method, the error bound
and the error estimates. All computations were carried out on an XP1000 Alpha workstation in
Matlab with about 16 signi�cant digits. In all examples we chose the initial approximate solution
x0 = 0 and terminated the iterations as soon as

||ek ||¡� (96)

with �:=1 · 10−10 or 1 · 10−11. These values of � are likely to be smaller than values of interest in
many application. Our choices of � demonstrates the possibility of computing accurate solutions and
error estimates. In fact, the error bounds and estimates perform well also for values of � smaller
than 1 · 10−11.
We determined the matrices in the linear systems in Examples 1–3 in the following fashion. Let

A:=Un�nU T
n ; �n = diag [�1; �2; : : : ; �n]; Un ∈ Rn×n; U T

n Un = In; (97)

where the eigenvector matrix Un either is the n×n identity matrix In or a random orthogonal matrix
determined by orthogonalizing the columns of an n× n real matrix with random entries. The matrix
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A is diagonal when Un = In and dense when Un is a random orthogonal matrix. We remark that
the matrices Tk and Vk in the Lanczos decomposition (11) depend on the choice of Un. Moreover,
propagated round-o� errors, due to round-o�s introduced during matrix–vector product evaluations
with the matrix A, may depend on the matrix Un.

Example 1. Let n:=1000 and assume that the diagonal entries of the matrix �n in (97) are given by
�j = 5j. We �rst let Un be a random orthogonal matrix. Then the matrix A de�ned by (97) is sym-
metric positive de�nite and dense. The right-hand side vector b is chosen so that x= 1

10 [1; 1; : : : ; 1]
T

solves (1). We terminate the iterations as soon as (96) is satis�ed with �= 1 · 10−11.
Fig. 1 (a) shows the 10-logarithm of ||ek || (solid curve), the 10-logarithm of the lower bound of

||ek || computed by Gauss quadrature (62) (dash–dotted curve), and the 10-logarithm of the upper
estimate of ||ek || computed by anti-Gauss quadrature (77) (dashed curve) as functions of the number
of iterations k. After the �rst 50 iterations, the computed lower bounds and upper estimates can be
seen to be quite close to the norm of the error in the computed approximate solutions.
The closeness between the lower bound (62), upper estimate (77), and the norm of the error

of the computed approximate solutions is also illustrated in Figs. 1(b) and (c). The former �gure

displays (�̃
2

k − �2k)
1=2− ||ek || (solid curve) and (( �� (k)k )

2 + ( ��
(k)

k−1)
2− �2k−1)

1=2− ||ek || (dash–dotted curve)
as functions of k. These quantities are seen to converge to zero as k increases. To shed some light

on the rate of convergence, Fig. 1(c) shows the relative di�erences ((�̃
2

k − �2k)
1=2 − ||ek ||)=||ek || and

((( ��
(k)

k )
2 + ( ��

(k)

k−1)
2 − �2k−1)

1=2 − ||ek ||)=||ek ||, both of which converge to zero as k increases.
Fig. 1(a) also shows the 10-logarithm of the norm of the residual error (3) as a function of k

(dotted curve). The norm of the residual error is about a factor 1 · 103 larger than the norm of
the error in the corresponding approximate solution. If we would like to stop the iterations when
the error in the computed approximate solution is below a certain tolerance, then we can terminate
the computations much sooner if we base the stopping criterion on formulas (62) and (77) than
on the norm of the residual error.
We now replace the random orthogonal matrix Un in de�nition (97) of the matrix A by In. The

matrix A obtained is diagonal and has the same spectrum as the matrix used for the computations
shown in Fig. 1. The right-hand side vector b is chosen so that x= 1

10 [1; 1; : : : ; 1]
T solves (1). The

performance of the iterative method applied to this linear system is displayed by Fig. 2, which is
analogous to Fig. 1.
Figs. 1 and 2 show the Gauss and anti-Gauss rules to give good lower bounds and upper estimates

of the norm of the error in the computed approximate solutions, with the lower bounds and upper
estimates being closer to the norm of the error when Un = In than when Un was chosen to be a
random orthogonal matrix. This example illustrates that the quality of the computed error bounds
and estimates may depend on the eigenvector matrix of A.

Example 2. Let the matrix A ∈ R48×48 in the linear system (1) be of the form (97) with U48 a
random orthogonal matrix and �48 de�ned by

�i:=c +
i − 1
47

(d− c)�48−i ; i = 1; 2; : : : ; 48:
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Fig. 1. Example 1: Symmetric positive-de�nite dense matrix. (a) shows the 10-logarithm of the norm of the error (solid
curve), of the Gauss bound (62) (dash–dotted curve), of the anti-Gauss upper estimate (77) (dashed curve) and of the
norm of the residual error (dotted curve). (b) displays the error in the Gauss bound (solid curve) and anti-Gauss upper
estimate (dash–dotted curve). (c) shows the relative error in the Gauss bound (solid curve) and anti-Gauss upper estimate
(dash–dotted curve).

Here c:=0:1; d:=100 and �:=0:875. Thus, A is symmetric, positive de�nite and dense. The right-hand
side vector b is chosen so that x= [1; 1; : : : ; 1]T solves the linear system (1). We terminate the iter-
ations as soon as (96) is satis�ed with �= 1 · 10−10.
Fig. 3 is analogous to Fig. 1 and shows the performance of the iterative method, of the lower

error bound (62) and of the upper error estimate (77). The error bound (62) and error estimate (77)
are seen to be close to the norm of the error in the computed approximate solutions. The “spikes” in
Figs. 3(b) and (c) correspond to anti-Gauss rules associated with ill-conditioned tridiagonal matrices
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Fig. 2. Example 1: Symmetric positive-de�nite dense matrix. (a) shows the 10-logarithm of the norm of the error (solid
curve), of the Gauss bound (62) (dash–dotted curve), of the anti-Gauss upper estimate (77) (dashed curve) and of the
norm of the residual error (dotted curve). (b) displays the error in the Gauss bound (solid curve) and anti-Gauss upper
estimate (dash–dotted curve). (c) shows the relative error in the Gauss bound (solid curve) and anti-Gauss upper estimate
(dash–dotted curve).

(64). Ill-conditioning of the tridiagonal matrices (64) can cause loss of accuracy in the computed
error estimates.
Now replace the random orthogonal matrix U48 in de�nition (97) of the matrix A by the identity

matrix I48. The matrix A so de�ned is diagonal and has the same spectrum as the matrix used for
the computations shown in Fig. 3. The right-hand side vector b is chosen so that x = [1; 1; : : : ; 1]T

solves (1). This linear system has previously been used in computed examples in [10,11,14] with
a stopping criterion, based on the A-norm instead of the Euclidean norm, with � = 1 · 10−10. We
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Fig. 3. Example 2: Symmetric positive-de�nite dense matrix. (a) shows the 10-logarithm of the norm of the error (solid
curve), of the Gauss bound (62) (dash–dotted curve), of the anti-Gauss upper estimate (77) (dashed curve) and of the
norm of the residual error (dotted curve). (b) displays the error in the Gauss bound (solid curve) and anti-Gauss upper
estimate (dash–dotted curve). (c) shows the relative error in the Gauss bound (solid curve) and anti-Gauss upper estimate
(dash–dotted curve).

therefore use the same value of � in the present example. The performance of the iterative method,
as well as of the error bounds and estimates, are shown in Fig. 4.
Figs. 3 and 4 display that the lower bounds and upper estimates of the norm of the error in the

computed approximate solutions are closer to the norm of the error when U48 = I48 than when U48

was chosen to be a random orthogonal matrix. Thus, similarly as in Example 1, the quality of the
error bounds and estimates depends on the eigenvector matrix of A.
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Fig. 4. Example 2: Symmetric positive-de�nite diagonal matrix. (a) shows the 10-logarithm of the norm of the error (solid
curve), of the Gauss bound (62) (dash–dotted curve), of the anti-Gauss upper estimate (77) (dashed curve) and of the
norm of the residual error (dotted curve). (b) displays the error in the Gauss bound (solid curve) and anti-Gauss upper
estimate (dash–dotted curve). (c) shows the relative error in the Gauss bound (solid curve) and anti-Gauss upper estimate
(dash–dotted curve).

The following two examples are concerned with linear systems of equations with symmetric
inde�nite matrices. For such matrices, the convex hull of the spectrum contains the origin, and some
Gauss rules (52) may have a node in the interval between the largest negative and the smallest
positive eigenvalues, where the matrix has no eigenvalues. The presence of a node close to the
origin can give inaccurate estimates of the norm of the error in the computed approximate solution.
This is illustrated by Figs. 5 and 6. This di�culty is circumvented by Gauss–Radau quadrature rules,
cf. Proposition 3.1.
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Fig. 5. Example 3: Symmetric inde�nite dense matrix. (a) shows the 10-logarithm of the norm of the error (solid curve),
of the Gauss–Radau estimate (95) (dashed curve) and of the norm of the residual error (dotted curve). (b) displays the
10-logarithm of the norm of the error (solid curve), of the Gauss estimate (62) (dashed curve) and of the norm of the
residual error (dotted curve). (c) shows the error in the Gauss–Radau estimate (solid curve) and Gauss estimate (dotted
curve). (d) displays the relative error in the Gauss–Radau estimate (solid curve) and Gauss estimate (dotted curve).

Example 3. Let the matrix A in (1) be of order 491 and of the form (97), where U491 is a random
orthogonal matrix and the entries of the diagonal matrix �491 are given by

�i =

{−150 + (i − 1); i = 1; : : : ; 141;

i − 141; i = 142; : : : ; 491:

Then A is a dense matrix with eigenvalues in the interval [−150; 350]. We determine the right-hand
side vector b so that x= [1; 1; : : : ; 1]T solves the linear system (1). The iterations are terminated as
soon as (96) is satis�ed with �= 1 · 10−11.
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Fig. 6. Example 4: Symmetric inde�nite banded matrix. (a) shows the 10-logarithm of the norm of the error (solid curve),
of the Gauss–Radau estimate (95) (dashed curve) and of the norm of the residual error (dotted curve). (b) displays the
10-logarithm of the norm of the error (solid curve), of the Gauss estimate (62) (dashed curve) and of the norm of the
residual error (dotted curve). (c) shows the error in the Gauss–Radau estimate (solid curve) and Gauss estimate (dotted
curve). (d) displays the relative error in the Gauss–Radau estimate (solid curve) and Gauss estimate (dotted curve).

Fig. 5(a) shows the 10-logarithm of the error in the computed approximate solutions (solid curve),
the 10-logarithm of the error estimate determined by Gauss–Radau quadrature (95) (dashed curve),
and the 10-logarithm of the norm of the residual error (dotted curve). The error estimates computed
by Gauss–Radau quadrature can be seen to be quite close to the norm of the error in the computed
approximate solutions.
Fig. 5(b) is obtained from Fig. 5(a) by replacing the curve for the Gauss–Radau estimates (95)

with a curve that displays error estimates computed by Gauss quadrature (62). Thus, the dashed
curve of Fig. 5(b) displays the 10-logarithm of the right-hand side of (62). Note that since A is
inde�nite, formula (55) for the integration error does not reveal the sign of the error and inequality
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(56) is not guaranteed to hold. The Gauss rules only give estimates of the norm of the error in the
computed approximate solutions. The “spikes” of the dashed curve are caused by nodes of Gauss
rules being very close to the origin.
Fig. 5(c) is analogous to Fig. 3(b). The solid curve displays the error in the Gauss–Radau estimates

| �zTk (2zk + �zk) + �2k |1=2 − ||ek ||, cf. (95), and the dashed curve shows the error in the Gauss estimates
(�̃
2

k − �2k)
1=2 − ||ek ||. Fig. 5(d) displays the corresponding relative errors, i.e., (| �zTk (2zk + �zk) + �2k |1=2 –

||ek ||)=||ek || (solid curve) and ((�̃2k − �2k)
1=2−||ek ||)=||ek || (dashed curve). The Gauss–Radau estimates

are seen to be more reliable than the Gauss estimates.

Example 4. Let A ∈ R200×200 be de�ned by A:=B2 − �I200, where B is the standard 3-point dis-
cretization of the one-dimensional Laplacian and �:=

√
3. Thus, B2 is a pentadiagonal matrix; a

typical row has the nonvanishing entries {1;−4; 6;−4; 1}. Then A has 77 negative eigenvalues and
condition number 3:9 · 103. The right-hand side vector b is chosen so that x = [1; 1; : : : ; 1]T solves
the linear system (1). We terminate the iterations as soon as the stopping criterion (96) is satis�ed
with �= 1 · 10−11.
Figs. 6(a)–(d) are analogous to Figs. 5(a)–(d). The error estimates obtained by Gauss–Radau

rules are quite accurate, while the estimates determined by Gauss rules oscillate widely during the
�rst 77 iterations. After these initial iterations both Gauss–Radau and Gauss rules provide accurate
error estimates.

5. Conclusion

This paper describes an iterative method for the solution of linear systems of equations with a
symmetric nonsingular matrix. The iterative method is designed to allow the computation of bounds
or estimates of the error in the computed approximate solutions. Computed examples show that
the computed bounds and estimates are close to the norm of the actual errors in the computed
approximate solutions.
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Abstract

The connection between orthogonal polynomials and cubature formulae for the approximation of multivariate integrals
has been studied for about 100 yr. The article J. Radon published about 50 yr ago (J. Radon, Zur mechanischen Kubatur,
Monatsh. Math. 52 (1948) 286–300) has been very in
uential. In this text we describe some of the results that were
obtained during the search for answers to questions raised by his article. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Cubature; Multivariate integrals; Orthogonal polynomials

1. Introduction

The connection between orthogonal polynomials and algebraic integration formulae in higher di-
mension was already studied about 100 yr ago (early papers are, e.g., [1,6]). The problem became
widely noticed after the second edition of Krylov’s book “On the approximate calculation of inte-
grals” [43], published in 1967, wherein Mysovskikh introduced Radon’s construction of a formula
of degree 5 published in 1948 [72].
Though no �nal solution – similar to the one-dimensional case – has been found up to now, the

work in this �eld has been tremendous. In the textbooks by Krylov [43], Stroud [90], Sobolev [84],
Engels [20], Mysovskikh [66], Davis and Rabinowitz [17], Xu [94] and Sobolev and Vaskevich [85],
and in the survey article of Cools [10], the growth of knowledge in the �eld is documented. In this
text we will only try to describe some relevant results – following Radon’s ideas – that have been
found in the meantime.
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E-mail address: ronald.cools@cs.kuleuven.ac.be (R. Cools).
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The one-dimensional algebraic case, i.e., interpolatory quadrature formulae and their relation to
orthogonal polynomials, is well known. In dimension 2 and beyond, things look worse: there are
more questions than answers. Nevertheless, some progress has been made. Though several essential
problems – important in applications – are still open, e.g., how minimal formulae of an arbitrary
degree of exactness look like for the integral over the square with constant weight function, several
results of some generality have been found. They make transparent why answers to important ques-
tions must be quite complex. We leave aside many particular results, in spite of their importance
for applications. For these we refer to the surveys in [90,14,11].

2. Basic concepts and notations

We would have liked to preserve the 
air of the old papers; however, we �nally decided to use
modern notations in order to achieve an easy and consistent way of presenting the results.
We denote by N the nonnegative integers. The monomials of degree m in n variables are written

in the short notation

xm = xm1
1 xm2

2 · · · xmn
n with |m|= m;

where x= (x1; x2; : : : ; xn), m = (m1; m2; : : : ; mn) ∈ Nn, and

|m|=
n∑

i=1

mi is the length of the multi-index m:

A polynomial f(x) = f(x1; x2; : : : ; xn) of (total) degree m can be represented as

f(x) =
m∑

s=0

∑
|k|=s

ckxk; ck ∈ C;

and the summation in

gs(x) =
∑
|k|=s

ckxk

is done over all multi-indices k of length s. The polynomial gs is called a homogeneous component
of degree s. Hence f is an element of the ring of polynomials with complex coe�cients, which will
be denoted by C[x] = C[x1; x2; : : : ; xn]. The degree of a polynomial f will be denoted by deg(f).
The number of linearly independent polynomials of degree 6m is

M (n; m) =
(
m+ n

n

)
;

the number of pairwise distinct monomials of degree m is M (n−1; m). When the linearly independent
monomials are needed as an ordered sequence, we will represent them by

{’j(x)}∞j=1;
where j¡k whenever deg(’j(x))¡ deg(’k(x)). Hence

{’j(x)}�
j=1; � =M (n; m);

contains all monomials of degree 6m. Most of the results in the sequel will be stated in the ring
of polynomials with real coe�cients, R[x1; x2; : : : ; xn] = R[x], which will be denoted by Pn. The
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polynomials in Pn of degree 6m will be denoted by Pn
m. The elements of Pn

m form a vector space
over R with dimension dimPn

m =M (n; m).
We consider integrals of the type

In[f] =
∫


f(x)!(x) dx; f ∈ C(
); (1)

where 
⊆Rn is a region with inner points and the real weight function ! is chosen such that the
moments

In[xm]; m ∈ Nn;

exist. In many applications !(x) is nonnegative. Hence In is a positive linear functional. In most
of the results presented, In will be even strictly positive, i.e.,

In[f]¿ 0 whenever 0 6= f¿0 on 
;

so orthogonal polynomials with respect to In are de�ned.
The type of integrals we consider includes integrals over the so-called standard regions, for which

we follow Stroud’s notation [90].
Cn: the n-dimensional cube


 = {(x1; : : : ; xn): − 16xi61; i = 1; : : : ; n}
with weight function !(x) = 1,

Sn: the n-dimensional ball


 =

{
(x1; : : : ; xn):

n∑
i=1

x2i61

}

with weight function !(x) = 1,
Tn: the n-dimensional simplex


 =

{
(x1; : : : ; xn):

n∑
i=1

xi61 and xi¿0; i = 1; : : : ; n

}

with weight function !(x) = 1,
Er2

n : the entire n-dimensional space 
 = Rn with weight function

!(x) = e−r2 ; r2 =
n∑

i=1

x2i ;

Er
n: the entire n-dimensional space 
 = Rn with weight function

!(x) = e−r ;

H2: the region bounded by the regular hexagon with vertices
(±1; 0), (± 1

2 , ± 1
2

√
3) and weight function !(x) = 1.

A cubature formula for (1) is of the form

In[f] = Q[f] + R[f]; (2)
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where

Q[f] =
N∑

j=1

wjf(x( j)) (3)

is called a cubature sum. The x( j)’s are called nodes, the wj’s weights or coe�cients, and R[f] is
the error. The shorthand notation

In[f] ∼=
N∑

j=1

wjf(x( j))

is often used.
A nonnegative integer d is called degree of exactness or degree of precision or simply degree

of formula (2), if R[f] = 0 for all polynomials f with deg(f)6d and if a polynomial g with
deg(g) = d+ 1 exists such that R[g] 6= 0.
Let f ∈ C[x] be given and deg(f) =m; the algebraic manifold of degree m generated by f will

be denoted by

Hm = {x ∈ Cn: f(x) = 0}:
A cubature formula (2) with N =M (n; m) which is exact for all polynomials of degree 6m is called
interpolatory if the nodes do not lie on an algebraic manifold of degree m and the coe�cients are
uniquely determined by the nodes.
If n=1, then N =m+1 and the converse is true, too. If the degree of exactness of the quadrature

formula is m, then it is interpolatory. For n¿2 this does not hold in general. The number of nodes
might be lower than M (n; m) since some of the coe�cients may vanish.

Theorem 1. Let (2) be given such that R[f] = 0 for all polynomials of degree 6m and N6� =
M (n; m). The formula is interpolatory if and only if

rank([’1(x( j)); ’2(x( j)); : : : ; ’�(x( j))]
N
j=1) = N:

We are specifying Q by Q(n; m; N ) if we refer to a cubature sum in n dimensions with a degree
of exactness m and N nodes. We only consider interpolatory cubature formulae. A noninterpolatory
formula can be transformed to an interpolatory formula by deleting nodes. In particular, minimal
formulae (N is minimal for �xed m) are interpolatory.
A polynomial P with deg(P) = m is called orthogonal with respect to the underlying In if

In[PQ] = 0 for all Q, deg(Q)6m− 1. It is called quasi-orthogonal if In[PQ] = 0 for all Q; deg(Q)
6m− 2.
A set of polynomials in R[x1; : : : ; xn] is called a fundamental system of degree m whenever it

consists of M (n− 1; m) linearly independent polynomials of the form
xm + Qm; m ∈ Nn; deg(Qm)6|m| − 1:

A set M of polynomials is called a fundamental set of degree m if a fundamental system of degree
m is contained in span{M}.
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In the two-dimensional case we drop the superscript n and use x and y as variables, i.e., P;Pm,
and,

I[f] =
∫


f(x; y)!(x; y) dx dy; f ∈ C(
); 
⊆R2:

Whenever possible, one tries to �nd cubature sums (3) such that the following constraints are
satis�ed:
(i) wj ¿ 0,
(ii) x( j) ∈ 
,
(iii) N is minimal for �xed degree m.
If n= 1, Gaussian quadrature formulae satisfy all constraints. These formulae are closely connected
to orthogonal polynomials. The zeros of a quasi-orthogonal polynomial of degree k, P1k + 
P1k−1
with free parameter 
, are the nodes of a minimal quadrature formula of degree 2k − 2 with all
weights positive. The parameter 
 can be chosen such that all nodes are inside the domain of
integration, and, if 
 = 0 one obtains a uniquely determined formula of degree 2k − 1 satisfying
(i), (ii), (iii). Nonminimal interpolatory quadrature formulae have been characterised by Sottas and
Wanner, Peherstorfer, and many others, most recently by Xu [86,68,69,96].

3. Radon’s formulae of degree 5

The paper by Johann Radon [72], which appeared in 1948, is not the oldest studying the application
of orthogonal polynomials to cubature formulae (earlier papers are, e.g., [1] to which Radon refers,
and [6]). However, Radon’s contribution became fundamental for all research in that �eld. Although
the word “cubature” appeared in the written English language already in the 17th century, this paper
is probably the �rst that used the term “Kubaturformel” (i.e., German for “cubature formula”) for
a weighted sum of function values to approximate a multiple integral (in contrast to quadrature
formula to approximate one-dimensional integrals). As an introduction to the survey which follows,
we will brie
y sketch its main ideas.
Radon discusses the construction of cubature formulae of degree 5 with 7 nodes for integrals over

T2; C2; S2. We are sure Radon knew the estimate (22) and knew that this bound will not be attained
for classical (standard) regions in the case of degree 5. In order to construct a cubature formula of
degree m he counted the number of monomials of degree 6m and used this divided by 3 as number
of necessary nodes. He was aware that for degrees 2, 3 and 4 this will not lead to a solution and
thus degree 5 is the �rst nontrivial case he could consider.
Assuming a formula of degree 5 with 7 nodes for an integral I, a geometric consideration leads

to polynomials of degree 3 vanishing at the nodes. These polynomials have to be orthogonal with
respect to I to all polynomials of degree 2, and exactly three such polynomials, P1, P2, P3, can
vanish at the nodes. In the next step further necessary conditions are derived for the Pi. They must
satisfy

3∑
i=1

LiPi = 0 (4)
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for some linear polynomials Li 6= 0. This can be reduced to
xK1 + yK2 = K3; (5)

where Ki are orthogonal polynomials of degree 3. Assuming the orthogonal basis of degree 3 in a
form

P3i = x3−iyi + Qi; Qi ∈ P2; i = 0; 1; 2; 3;

one obtains

K1 = �P31 + �P32 + 
P33 and K2 =−�P30 − �P31 − 
P32 :

The parameters �, �, 
 have to be chosen such that K3 is also an orthogonal polynomial of degree
3. Thus, by setting

A=I[P30P
3
2 − P31P

3
1]; B=I[P30P

3
3 − P31P

3
2]; C =I[P31P

3
3 − P32P

3
2]; (6)

one obtains the linear system
 0 A B
−A 0 C
−B −C 0




 �
�




= 0: (7)

Two cases may occur. The parameters �, �, 
 can be determined up to a common factor, if

A2 + B2 + C2¿ 0; (8)

otherwise they can be chosen arbitrarily. Radon did not further pursue the last case. He just remarked
that he did not succeed in proving that this case never occurs.
In case (8) the polynomials K1, K2, K3 can be computed. If they are linearly independent, the

desired equation (4) is given by xK1 + yK2 = K3. If these polynomials vanish at 7 pairwise distinct
nodes, the degree of exactness follows from the orthogonality property of the Ki’s.
If the Ki are linearly dependent, it follows that

K1 = yQ and K2 =−xQ

for some Q ∈ P2. In this case it can be shown that there is a K3 such that all Ki vanish at 7 pairwise
distinct nodes. This construction again is based on geometric considerations and �nally allows the
conclusion that such K3’s can be computed.
Radon’s article continues with the construction of formulae of degree 5 with 7 nodes for integrals

over the standard regions with constant weight function T2, C2 and S2. The amount of computational
work – in a pre-computer time – is tremendous. The article �nishes with an examination of the
cubature error.
Though the results are limited to a special case, Radon’s approach is the basis for fundamental

questions that were studied in the years following the publication of his result:
(i) Can this constructive method be generalised to a higher degree of exactness?
(ii) Can this constructive method be generalised to more than two dimensions?
(iii) Are there integrals for which the second case occurs, i.e., A= B= C = 0?
(iv) Is 7 a lower bound for the number of nodes of cubature formulae of degree 5 if (8) holds?
(v) Are there lower bounds of some generality for the number of nodes?
(vi) What intrinsic tools were applied for the solution?
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Fifty years after the publication of Radon’s paper, it is still not possible to answer these questions
completely. We will outline what is known in the sequel.

4. Multivariate orthogonal polynomials

We assume that In is strictly positive. Di�erent methods of generating an orthogonal polyno-
mial basis were discussed by Hirsch [34]. If the moments In[xm]; m ∈ Nn, are known, one can
either orthogonalise the monomial basis by the Gram–Schmidt procedure, or compute step by step
fundamental systems of orthogonal polynomials of degree m.
A third way is to �nd a partial di�erential equation with boundary conditions the polynomial

solutions of which lead to orthogonal systems. This permits �nding formulae for the coe�cients of
the polynomials and deriving recursion formulae. However, one has to �nd out if there is an integral
for which the polynomials form an orthogonal system.

4.1. Simple properties

The strictly positive integral (1) de�nes a scalar product in C[x] by

(�;  ) =In[�; � ] =
∫


�(x) (x)!(x) dx; �;  ∈ C[x]: (9)

Consider the polynomial

Pk+1(x) = gk+1(x) +
�∑

i=1

ai’i(x); � =M (n; k); (10)

where gk+1(x) is a given homogeneous component of degree k + 1 and the ai’s are unknown
coe�cients. Assuming (10) to be orthogonal to ’j(x); j=1; 2; : : : ; �; with respect to (9), we obtain

�∑
i=1

ai(’i; ’j) =−(gk+1(x); ’j); j = 1; 2; : : : ; �: (11)

The matrix of this system is the Gram matrix of the linearly independent polynomials ’1(x);
’2(x); : : : ; ’�(x). Hence, the ai are uniquely determined. The polynomial (10) is uniquely deter-
mined by its homogeneous component of degree k + 1 and by orthogonality to all polynomials of
degree 6k.
We state some simple properties of orthogonal polynomials, which will be of use later.

Theorem 2. The following properties hold for an orthogonal polynomial Pk+1.
(1) If the homogeneous component of degree k + 1 has real coe�cients; then all coe�cients are

real. This follows from (11).
(2) A real polynomial Pk+1 changes sign in 
. In particular;

{x ∈ 
: Pk+1¿ 0} and {x ∈ 
: Pk+1¡ 0}
are of positive measure; which follows from∫



Pk+1(x)!(x) dx= 0:
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(3) Whenever Pk+1 = UV with polynomials U and V of degree at least 1; then U is orthogonal
with respect to 
 and the weight function !(x)|V (x)|2. This implies Properties (1) and (2)
for the factors as well.

(4) If the coe�cients belonging to the highest-degree terms in the homogeneous component of a
factor are real; then the remaining coe�cients are real; too.

(5) A real factor U of an orthogonal polynomial changes sign in 
. In particular;

{x ∈ 
: U ¿ 0} and {x ∈ 
: U ¡ 0}
are of positive measure. From this we obtain

(6) An orthogonal polynomial has no real multiple factors.

We normalise the orthogonal polynomials of degree k to

Pk = xk + Qk; k ∈ Nn; |k|= k; deg(Qk)6k − 1:
This fundamental system of degree k will be gathered in a polynomial vector of dimension M (n−1; k)
and be written as Pk . We refer to the common zeros of all Pk as zeros of Pk . The known explicit
expressions for these normalised orthogonal polynomials are collected in [10].

4.2. Recursion formulae

For n=2 the following results were found. Jackson [37] discusses a three-term recursion formula
for a given orthogonal system, Gr�obner [27] generates orthogonal systems by solving a variational
problem under constraints; Krall and She�er [42] study in a class of second-order di�erential equa-
tions special cases the polynomial solutions of which generate classical orthogonal systems. Since
their approach is closely related to recursion formulae and leads to concrete results we will outline
the main ideas.
Let

Pk
j = xk−jyj + Qj; Qj ∈ Pk−1; j = 0; 1; : : : ; k; k ∈ N;

be a basis of P. We can collect these fundamental systems of degree k in vectors

Pk = (Pk
0 ; P

k
1 ; : : : ; P

k
k )
T:

The basis Pk ; k ∈ N; is said to be a weak orthogonal system if there exist matrices

Ck; �Ck ∈ Rk+1×k+1 and Dk; �Dk ∈ Rk+1×k ;

such that
xPk = Lk+1Pk+1 + CkPk + DkPk−1;

yPk = Fk+1Pk+1 + �CkPk + �DkPk−1;
(12)

with shift matrices Lk+1 and Fk+1 de�ned by [Ek 0] and [0 Ek], where Ek is the identity in Rk+1×k+1

and P−1 = 0.
A polynomial basis is said to be orthogonal with respect to a linear functional L : P→ R, if, for

each k ∈ N; L[PkPT
l ]=0; l=0; 1; : : : ; k−1, and if rank(L[PkPT

k ])=k+1. Here, PkPT
l is the tensor

product of the vectors Pk and Pl, and L[PkPT
l ] is the matrix whose elements are determined by the

functional acting on the polynomial coe�cients of the tensor product. The matrix Mk =L[PkPT
k ] is
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known as the kth moment matrix. The basis {Pk}k∈N is said to be a (positive) de�nite orthogonal
system in case the matrices Mk; k ∈ N, are (positive) de�nite.
A de�nite system {Pk}k∈N is a weak orthogonal system, i.e., it satis�es the recurrence relations

(12). Conversely, it follows from work by Xu [93] that a weak orthogonal system is an orthogonal
system with respect to some L if and only if

rank(Sk) = k + 1 where Sk = [Dk �Dk] ∈ Rk+1×2k :

The associated moment problem consists in assigning a measure to the functional L de�ned by a
de�nite system. In particular, assigning a positive measure in case the system is positive de�nite
(Favard’s theorem) is quite complicated. We refer to Fuglede [24] and Xu [95].
Krall and She�er [42] studied the orthogonal polynomial systems which are generated by the

following second-order di�erential equation:

D!=−�k!; �k ∈ R; k ∈ N; (13)

where

D!= (ax2 + d1x + e1y + f1)
@2!
@x2

+ (2axy + d2x + e2y + f2)
@2!
@x@y

+(ay2 + d3x + e3y + f3)
@2!
@y2

+ (gx + h1)
@!
@x
+ (gy + h2)

@!
@y

for some real constants a 6= 0; g; di; ei; fi; hi, and for

�k =−k((k − 1)a+ g); g+ ka 6= 0; k ∈ N:

They determined all weak orthogonal systems which are generated from (13) and proved that they
are de�nite or positive de�nite, �nding the classical orthogonal systems which had been derived in
[2] and some new de�nite systems.
In [4] the recursion formulae for all positive-de�nite systems have been computed in the following

way. Let {Pk}k=0;1; ::: be a de�nite orthogonal system with respect to I. Multiplying (12) by PT
k−1; PT

k ,
and PT

k+1, respectively, and applying I, we obtain

CkMk =I[xPkPT
k ]; DkMk−1 =I[xPkPT

k−1] =MkLTk ;

�CkMk =I[yPkPT
k ]; �DkMk−1 =I[yPkPT

k−1] =MkFTk :

By means of these identities the moment matrices can be computed by induction. Indeed, let Gk =
diag{[2; Ek−2]} and �Gk = diag{[Ek−2; 2]}; then

2Ek = LTk GkLk + FTk �GkFk;

and consequently,

2Mk =MkLTk GkLk +MkFTk �GkFk = DkMk−1GkLk + �DkMk−1 �GkFk:

If one sets M0 = 1, the last equation allows us to compute Mk from Mk−1; k ∈ N. Based on [2],
Verlinden [91] has computed explicit recursion formulae for classical two-dimensional integrals, too.
So we refer to [91,4], if explicit recursion formulae are needed for standard integrals.
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Not all two-dimensional orthogonal systems of interest can be obtained from (13). For further
systems we refer to Koornwinder [38] and the references given there.
Kowalski in [39] presented a n-dimensional recursion formula and characterised it in [40,41]; Xu

[93] re�ned this characterisation by dropping one condition. We will brie
y outline these results.
For a more complete insight into this development of a general theory of orthogonal polynomials in
n dimensions we refer to the excellent survey by Xu [98].
Let In be given, and let

Mk =In[PkPT
k ] ∈ RM (n−1; k)×M (n−1; k)

be the moment matrix for In. Then the recursion formula can be stated as follows.

Theorem 3. For k = 0; 1; : : : there are matrices

Ak; i ∈ RM (n−1; k)×M (n−1; k+1); Bk; i ∈ RM (n−1; k)×M (n−1; k);

and

Ck; i ∈ RM (n−1; k)×M (n−1; k−1);

such that

xiPk = Ak; iPk+1 + Bk; iPk + Ck; iPk−1; i = 1; 2; : : : ; n; k = 0; 1; : : : ;

where P−1 = 0 and for all i = 1; 2; : : : ; n and all k

Ak; iMk+1 =In[xiPkPT
k+1];

Bk; iMk =In[xiPkPT
k ];

Ak; iMk+1 =MkCT
k+1; i :

Furthermore; there are matrices

Dk; i; Gk ∈ RM (n−1; k+1)×M (n−1; k); Hk ∈ RM (n−1; k+1)×M (n−1; k)

such that

Pk+1 =
n∑

i=1

xiDk; iPk + GkPk + HkPk−1;

where
n∑

i=1

Dk; iAk; i = EM (n−1; k+1)×M (n−1; k+1)

and
n∑

i=1

Dk; iBk; i =−Gk;
n∑

i=1

Dk; iCk; i =−Hk:

We will denote the fundamental set of orthonormal polynomials (with respect to In) of degree
k by pk . The recursion for orthonormal polynomials is given by Xu [95]. We reuse the notations
Ak; i; Bk; i. In the following, these matrices will refer to the recursion for orthonormal matrices.
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Theorem 4. For k = 0; 1; : : : there are matrices

Ak; i ∈ RM (n−1; k)×M (n−1; k+1); Bk; i ∈ RM (n−1; k)×M (n−1; k)

such that

xi pk = Ak; i pk+1 + Bk; i pk + ATk−1; i pk−1; i = 1; 2; : : : ; n; k = 0; 1; : : : ;

where p−1 = 0; A−1; i = 0 and

rank(Ak) = rank([ATk;1|ATk;2| · · · |ATk; n]T) =M (n− 1; k + 1):
For i; j=1; 2; : : : ; n; i 6= j; and k¿0; the following matrix equations hold for the coe�cient matrices:
(i) Ak; i Ak+1; j = Ak;j Ak+1; i ;
(ii) Ak; iBk+1; j + Bk; iAk; j = Bk;jAk; i + Ak;jBk+1; i ;
(iii) ATk−1; iAk−1; j + Bk; iBk; j + Ak; iATk; j = ATk−1; jAk−1; i + Bk;jBk; i + Ak;j ATk; i.

In order to characterise Gaussian cubature formulae, see Section 7:1:4; the use of orthonormal systems
gives more insight and often is easier to apply.

4.3. Common zeros

A direct analog of the Gaussian approach for n¿2 suggests considering the common zeros of all
orthogonal polynomials of degree k as nodes of a formula of degree 2k − 1. So the behaviour of
common zeros of all orthogonal polynomials of degree k is of interest.
The following theorem, due to Mysovskikh [60,66], holds for (not necessarily orthogonal or real)

fundamental systems of polynomials; it turned out to be essential.

Theorem 5. Let

Rm = xm + Qm; deg(Qm)6m− 1; |m|= m;

be a fundamental system of degree m. Then the following is true.
(i) The polynomials Rm have at most dimPn

m−1 common zeros.
(ii) No polynomial of degree m − 1 vanishes at the common zeros of the Rm; if and only if the

Rm have exactly dimPn
m−1 common pairwise distinct zeros.

We will brie
y derive the main properties of the zeros of fundamental systems of orthogonal
polynomials. Orthonormalising the monomials {’j(x)}∞j=1 with respect to In, e.g., by the Gram–
Schmidt procedure, we obtain

{Fj(x)}∞j=1 where In[FiFj] = �ij:

The reproducing kernel in Pn
m is a polynomial in 2n variables,

Km(u; x) =
�∑

j=1

Fj(u)Fj(x); � =M (n; m); (14)

having the property

In[Km(u; x)f(x)] = f(u) for all f ∈ Pn
m: (15)
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Lemma 6. For an a ∈ Cn let l be a linear polynomial such that l(a) = 0. Then R= l(x)Km(a; x)
is quasi-orthogonal. Whenever a is a common zero of Pm+1; then R is orthogonal.

Proof. If Q ∈ Pn
m−1 we obtain by (15)

In[l(x)Km(a; x)Q(x)] = l(a)Q(a) = 0:

If a is a common zero of Pm+1, then

FM (n−1;m)+i(a) = 0; i = 1; 2; : : : ; M (n− 1; m+ 1);
and thus Km(a; x) = Km+1(a; x). Hence

R(x) = l(x)Km+1(a; x) = l(x)Km(a; x)

is orthogonal to Pn
m. Assuming deg(l(x)Km(a; x))6m; we obtain that R is zero, in contradiction to

Km(a; �a) =
�∑

i=1

|Fj(a)2|¿ 0; � =M (n; m):

The following theorem was proved in [61,65].

Theorem 7. The zeros of Pm+1 are real and simple; and they belong to the interior of the convex
hull of 
. Furthermore; Pm+1 and Pm have no zeros in common.

Proof. Let a ∈ Cn be a common zero of Pm+1. By Lemma 6 the polynomials

(xi − ai)Km(a; x); i = 1; 2; : : : ; n; (16)

are orthogonal to all polynomials of degree m. Because of property (3) in Theorem 2, the linear
factor xi − ai is real, hence a ∈ Rn. The Jacobian matrix of (16) in a is diagonal with elements
Km(a; a)¿ 0. This implies that a is simple. If a is not an interior point of the convex hull of 
,
there is a separating hyperplane l(x) through a, e.g., l(x)¿0 for all x in the interior of the convex
hull. Since l(x) is a real factor of l(x)Km(a; x), this is a contradiction to property (5) in Theorem
2. Finally, a is no common zero of Pm since by Lemma 6 the degree of (16) is m + 1, hence
deg (Km(a; x)) = m.

Using the matrices presented in Theorem 4, Xu [97] de�nes in�nite tridiagonal block Jacobi
matrices of the form

Ti =




B0; i A0; i 0 0 : : : 0
AT0; i B1; i A1; i 0 : : : 0
0 AT1; i B1; i A2; i : : : 0
...

...
...

...
...

...


 ; i = 1; 2; : : : ; n;

and truncated versions of these. He found a relation between an eigenvalue problem for these matrices
and the zeros of all orthogonal polynomials of a �xed degree. These results and their relation to
cubature formulae are further elaborated in [94].
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5. Lower bounds

5.1. Numerical characteristics

Mysovskikh [56] proved that Radon’s formulae are minimal whenever (8) holds. In [67] an
integral is constructed where the matrix in (7) is zero and a formula of degree 5 with 6 nodes can
be constructed. Applying Radon’s method to formulae of degree 3, Mysovskikh [59] found that such
formulae with 4 nodes exist if and only if

I[P20P
2
2 − P21P

2
1] 6= 0; (17)

otherwise the formula has only 3 nodes. This has been further studied by G�unther [28,29]. Fritsch
[23] gave an example of an integral for which Q(n; 3; n+1) exists. Cernicina [9] constructed a region
in Rn; 36n68, admitting minimal formulae of type Q(n; 4; (n+ 1)(n+ 2)=2); for n= 2 a formula
Q(2; 5; 6) is obtained. Stroud [90] extended (6) in the following way:

B= [I[Pk
i P

k
j − Pk

�P
k
�]]i+j=�+�; � 6=i 6=�; 06i; j; �; �6k ; (18)

in order to obtain the lower bound in Theorem 10.
Mysovskikh [60] generalised (5) and (6) (in order to study the case which Radon did not further

pursue) by de�ning for given k and I the following matrices:

M?
k−1 = [I[P

k
j+1P

k
i − Pk

j P
k
i+1]]i; j=0;1; :::; k−1; (19)

– note that M?
k is skew-symmetric – and

A= 1
2[I[P

k
i+1P

k
j−1 − 2Pk

i P
k
j − Pk

i−1P
k
j+1]]i; j=1;2; :::; k−1:

The elements of these matrices characterise the behaviour of the orthogonal polynomials with respect
to I; so they were called numerical characteristics.

Theorem 8. The following are equivalent:
(i) the matrix A vanishes;
(ii) the matrix M?

k−1 vanishes;
(iii) the orthogonal basis of degree k has k(k + 1)=2 common pairwise distinct real zeros;
(iv) a cubature formula of degree 2k − 1 with the lowest possible number of nodes exists. Its

nodes are the common zeros of the orthogonal basis of degree k.

The proof in [66, p. 189], is based on Theorem 5 and the following considerations. The polyno-
mials

Qi = yPk
i − xPk

i+1; i = 0; 1; : : : ; k − 1; (20)

are of degree k; this is Radon’s equation (5). Hence if the common zeros of all Pk
i are the nodes

of a formula of degree 2k − 1, then the Qi are orthogonal polynomials of degree k. This implies
M?

k−1 = 0. Evidently, M
?
k−1 = 0 implies A= 0. On the other hand, if A= 0, then M?

k−1 is of Hankel
type, and, since M?

k is skew-symmetric, this implies M?
k−1 = 0. The existence of integrals admitting

the conditions of Theorem 8 was studied by Kuzmenkov in [44–46].
The articles based on Mysovskikh’s results prefer to work with M?

k−1, and it turns out that this
matrix in many ways characterises the behaviour of the associated orthogonal polynomials.



134 R. Cools et al. / Journal of Computational and Applied Mathematics 127 (2001) 121–152

In order to generalise Theorem 8 to n dimensions, Eq. (20) has to be studied for all possible
variables. By means of the recursion formulae for orthonormal systems, n-dimensional numerical
characteristics can be de�ned. By condition (ii) in Theorem 4,

Ak−1; jxi pk − Ak−1; i xj pk

can be computed under the condition that these polynomials are orthogonal to Pn
k−1. This leads to

the matrices

M?
k−1(i; j) = Ak−1; i ATk−1; j − Ak−1; j ATk−1; i ; i; j = 1; 2; : : : ; n; i 6= j; (21)

which are representing the numerical characteristics of orthogonal polynomials in n dimensions.

5.2. Lower bounds

To settle the question of minimal formulae, lower bounds for the number of nodes are needed.
The one-dimensional result can be generalised directly to �nd the following result, which seems to
be folklore.

Theorem 9. If Q(n; m; N ) is a cubature sum for an integral In; then

N¿dimPn
bm=2c =M (n; bm=2c): (22)

As we have seen in Section 3, this lower bound is not sharp for n = 2 and m = 5. A simple
consequence of Theorem 8 is

Theorem 10. If Q(2; 2k − 1; N ) is a cubature sum for an integral I for which rank(M?
k−1)¿ 0;

then

N¿dimPk−1 + 1:

Stroud [90] showed this under the condition that B in (18) does not vanish.
Considerable progress was made by M�oller [49], who improved the lower bound for n= 2.

Theorem 11. If Q(2; 2k − 1; N ) is a cubature sum for an integral I; then

N¿dimPk−1 + 1
2 rank(M

?
k−1): (23)

Proof. If a cubature sum Q(2; 2k−1; N ) is given, then no polynomial in Pk−1 vanishes at all nodes.
If no polynomial of degree k vanishes at all nodes, then N¿dimPk ¿ dimPk−1 + 1

2 rank(M
?
k−1),

since M?
k−1 ∈ Rk×k . So M�oller assumed the existence of s orthogonal polynomials Qi of degree k

which vanish at the nodes and �rst searched for a bound on s. Note that Qi; xQi; yQi belong to an
ideal which does not contain any polynomial of Pk−1. Let

W = span{Qi; xQi; yQi; i = 1; 2; : : : ; s};
then

3s− �= dimW6k + 2 + s;
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where � is the number of those xQi; yQi which can be dropped without diminishing the dimension
of W. These dependencies in W are of the form

x
k∑

i=1

aiPk
i − y

k−1∑
i=0

ai+1Pk
i =

k∑
i=0

biPk
i :

By orthogonality this leads to
k−1∑
i=0

ai+1I[Pk
j P

k
i+1 − Pk

j+1P
k
i ] = 0; j = 0; 1; : : : ; k − 1;

i.e.,

M?
k−1(a1; a2; : : : ; ak)T = 0:

Thus we get �6k − rank(M?
k−1), from which we �nally obtain

s6k + 1− 1
2 rank(M

?
k−1):

For all classes of integrals for which the rank of M?
k−1 has been computed, it turned out that either

the rank is zero (cf. [82]) or

rank(M?
k−1) = 2bk=2c:

Classes of integrals for which the second rank condition holds have been already given by M�oller
[49]. He showed this for product integrals and integrals enjoying central symmetry. This includes the
standard regions C2; S2; H2; Er2

2 and Er
2. Further classes with the same rank were detected by Rasputin

[73], Berens and Schmid [3]. These include the standard region T2.
Another important fact was observed by M�oller. If (23) is attained, then the polynomials xQi; yQi

form a fundamental set of degree k + 1.
The improved lower bound, in general, is not sharp. Based on a characterisation of cubature sums

Q(2; 4k + 1; 2(k + 1)2 − 1) for circularly symmetric integrals in [92], it was shown in [16] that for
all k ∈ N \ {1} the integrals∫

R2
f(x; y)(x2 + y2)�−1e−x2−y2 dx dy; �¿ 0;

and for �; �¿− 1 the integrals∫
S2
f(x; y)(x2 + y2)�(1− x2 − y2)� dx dy

admit cubature sums Q(2; 4k+1; N ) where at least N¿2(k+1)2. Note that this includes the standard
regions S2 and Er2

2 . This result can however not be generalised to all circularly symmetric integrals.
In [92] the existence of a circularly symmetric integral admitting a cubature sum Q(2; 9; 17) has
been proven.
The n-dimensional version of Theorem 11 was stated in [51]. An explicit form of the matrices

involved was given in [97], using (21), which allows us to formulate (23) as follows.

Theorem 12. If Q(n; 2k − 1; N ) is a cubature sum for an integral In; then

N¿dimPn
k−1 +

1
2max{rank(M?

k−1(i; j)): i; j = 1; 2; : : : ; n}: (24)
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Let us denote by G2m the linear space of all even polynomials in Pn
2m and by G2m−1 the linear

space of all odd polynomials in Pn
2m−1. For integrals In which are centrally symmetric, i.e., for

which

In[Q] = 0 if Q ∈ G2m−1; m ∈ N;

holds, another lower bound is known, which is not based on orthogonality.

Theorem 13. If Q(n; 2k − 1; N ) is a cubature sum for a centrally symmetric integral In; then

N¿2 dimGk−1 −
{
1; if 0 is a node and k is even;
0; else:

This bound was given for degree 3 by Mysovskikh [55]; the general case is due to M�oller [47,51]
and Mysovskikh [64]. M�oller proved that cubature formulae attaining the bound of Theorem 13
(having the node 0, if k is even) are centrally symmetric, too. For n¿3 and In centrally symmetric,
the bound of Theorem 13 is better than the one of Theorem 12. For n=2 and In centrally symmetric,
they coincide.
To conclude this section, we remark that cubature formulae with all nodes real and attaining the

bounds of Theorem 9 or Theorem 13 are known to have all weights positive [58,90,47,12].

6. Methods of construction

6.1. Interpolation

Let 
⊆Rn be given and assume that 
 contains interior points. By virtue of the linear inde-
pendence of {’j(x)}∞j=1 we can �nd for each m exactly � =M (n; m) points from 
 such that they
generate a regular Vandermonde matrix. We remark that � points, �¡�, are always contained in an
algebraic manifold of degree m, hence � is the minimal number of points which do not belong to
such a manifold. We denote by

Vm = [’1(x( j)); ’2(x( j)); : : : ; ’�(x( j))]
�
j=1; � =M (n; m); (25)

the Vandermonde matrix de�ned by x( j); j = 1; 2; : : : ; �.

Theorem 14. The points x( j); j = 1; 2; : : : ; �; do not lie on an algebraic manifold of degree m if
and only if det Vm 6= 0.

A natural way to construct a cubature formula is interpolation. Choose � points x( j) ∈ Rn which do
not lie on a manifold of degree m. Because of the nonsingularity of the corresponding Vandermonde
matrix we can construct the interpolating polynomial of f:

Pm(x) =
�∑

j=1

L(m)j (x)f(x( j));
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where

L(m)j (x(i)) = �ij; i; j = 1; 2; : : : ; �:

Substituting Pm for f in (1), we obtain

I[f] =
�∑

j=1

wjf(x( j)) + R[f]; (26)

where

wj =
∫


L(m)j (x)!(x) dx: (27)

A cubature formula obtained in this way is obviously interpolatory, see Theorem 1.

6.2. Reproducing kernels

The method of reproducing kernel was introduced in [58] in order to construct cubature formulae
of degree 2k with a minimal number of nodes N = M (n; k). Most often the method will produce
cubature formulae with more nodes. By means of the orthonormal basis such cubature formulae may
be constructed by inserting f = FlFm in (2) and studying

N∑
j=1

wjFl(x( j))Fm(x( j)) = �lm; l; m= 1; 2; : : : ; N: (28)

Introducing the N × N matrices

F = [F1(x( j)); F2(x( j)); : : : ; FN (x( j))]
N
j=1

and C = diag{w1; w2; : : : ; wN}, we can write Eq. (28) as
FTCF = E:

This can be written as FFT = C−1, i.e.,
N∑
i=1

Fi(x(r))Fi(x(s)) = w−1
r �rs; r; s= 1; 2; : : : ; N:

If we are using (14), this can be rewritten as

Kk(x(r); x(s)) = w−1
r �rs; r; s;=1; 2; : : : ; N: (29)

If we assume that (28) will lead to a cubature formula, then the nodes and coe�cients can be
determined by (29).
Let a(i); i=1; 2; : : : ; n; be pairwise distinct nodes of such a formula. We denote by Hi the algebraic

manifold de�ned by the polynomial Kk(a(i); x). From (29) we obtain

Kk(a(i); a( j)) = bi�ij; bi = w−1
i ; i; j = 1; 2; : : : ; n: (30)

The remaining nodes of the formula belong to
⋂n

i=1Hi and can be computed by solving for the
unknown variables x from

Kk(a(i); x) = 0; i = 1; 2; : : : ; n:
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Since the nodes of the cubature sum Q(n; 2k;M (n; k)) are not known, we proceed in the following
way. The nodes a(i) are chosen (whenever possible) in 
 but di�erent from any of the common
zeros of the fundamental system of orthogonal polynomials of degree k. So the order of the manifold
Hi generated by Kk(a(i); x) is k.
If a(1) is �xed, then a(2) will be chosen on H1, and, if possible in 
. If a(i); i=1; 2; : : : ; t−1, are

�xed, the next node a(t) is chosen on
⋂t−1

i=1 Hi, if possible in 
. The a(i); i= 1; 2; : : : ; n, constructed
in this way satisfy (30). If all nodes are chosen in Rn, then bi ¿ 0; in fact,

bi =
N∑

j=1

F2j (a
(i))¿ 0;

since the a(i) are no zeros of the fundamental system of orthogonal polynomials of degree k.
If there are no points at in�nity on H =

⋂n
i=1Hi, then H consists of r points x( j). Thus we

obtain
∫


f(x)!(x) dx ∼= Q(n; 2k; n+ r) =

n∑
j=1

Ajf(a( j)) +
r∑

j=1

Bjf(x( j)): (31)

The coe�cients Ai can be computed from (31) since the formula is exact for Kk(a(i); x), i.e.,
∫


Kk(a(i); x)!(x) dx=

n∑
j=1

AjKk(a(i); a( j)) = AiKk(a(i); a(i));

or, by using (15) with f ≡ 1,

Ai =
1
bi
=

1
Kk(a(i); a(i))

:

If n+ r =N =M (n; k), the coe�cients Bj can be computed in an analogous way; if n+ r ¿N , the
Bj are determined by the condition for (31) to be of degree 2k.
The method of reproducing kernels can be applied to regions in Rn without inner points, see

[36,52]. The method was applied in [58,7,8,25] to construct cubature formulae of degree 4 for a
variety of regions and in [47] to construct a cubature formula of degree 9 for the region S2.
M�oller [47] and Gegel’ [26] proved

Theorem 15. If a(i); i = 1; 2; : : : ; n; satisfy (30) where bi 6= 0; and if ⋂n
i=1Hi consists of pairwise

distinct nodes x( j); j = 1; 2; : : : ; kn; then

∫


f(x)!(x) dx ∼= Q(m; 2k; n+ kn) =

n∑
i=1

1
bi
f(a(i)) +

kn∑
j=1

wjf(x( j));

where bi = Kk(a(i); a(i)).

M�oller modi�ed this for centrally symmetric integrals by using the following important observation.
For these integrals, the orthogonal polynomials of degree m are even (odd) polynomials, if m is
even (odd). For the linear space P̃n

k of all even (odd) polynomials of degree 6k if k is even (odd)
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the reproducing kernel

K̃k(u; x) =
N∑′

j=t

Fj(u)Fj(x); t = k − 2bk=2c+ 1; N =M (n; k);

is considered. Here
∑′ denotes summation over all even (odd) polynomials Fj if j is even (odd).

Again, nodes a(i), i = 1; 2; : : : ; n, are chosen (whenever possible) in 
 but di�erent from any of
the common zeros of the fundamental system of orthogonal polynomials of degree k.
The manifolds corresponding to K̃k(a(i); x) will be denoted by H̃i. If a(i), i = 1; 2; : : : ; t − 1; are

already selected, the node a(t) is chosen on
⋂t−1

i=1 H̃i, if possible in 
. These nodes satisfy

K̃k(a(i); a( j)) = bi�ij; i; j = 1; 2; : : : ; n; (32)

where bi ¿ 0 since a(i) ∈ Rn.
We remark that the nodes in the modi�ed method are chosen as a(i);−a(i), i=1; 2; : : : ; n. By central

symmetry it follows that

K̃k(a(i);−a( j)) = (−1)k K̃ k(a(i); a( j));

hence by (32), if bi 6= 0, we get a(i) 6= −a( j) if i 6= j. So the a(i);−a(i) are pairwise distinct, if
a(i) 6= 0, i = 1; 2; : : : ; n. If k is odd, this is satis�ed; if k is even, the number of pairwise distinct
nodes a(i) and −a(i) may be 2n or 2n− 1. In [47] the following is derived.

Theorem 16. Let the integral be centrally symmetric. If the nodes a(i), i = 1; 2; : : : ; n; satisfy (32)
where bi 6= 0; and ⋂n

i=1 H̃ i consists of pairwise distinct points x( j), j = 1; 2; : : : ; kn; then∫


f(x)!(x) dx∼=Q(n; 2k + 1; 2n+ kn)

=
n∑

i=1

1
2bi
[f(a(i)) + f(−a(i))] +

kn∑
j=1

wjf(x( j));

where bi = K̃k(a(i); a(i)).

6.3. Ideal theory

Let

X = {x( j); j = 1; 2; : : : ; N}⊂Rn

be a �nite set of points, and de�ne the subspace

W = {P ∈ Pn
m: P(x) = 0 for all x ∈ X }⊂Pn:

Sobolev [83] proved

Theorem 17. The points X are the nodes of Q(n; m; N ) for In if and only if

P ∈ W implies In[P] = 0:

An English rendering of the proof can be found in [10].
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The relationship of orthogonal polynomials and cubature formulae was studied since 1967 by
Mysovskikh [57,59,61–63] and Stroud [87–90]; in particular they introduced elements from algebraic
geometry.
M�oller [47] recognised that this connection can be represented more transparently by using ideal

theory, and that this theory will help in determining common zeros of orthogonal polynomials. E.g.,
Theorem 5 follows easily from this theory. Let Q(n; m; N ) be given such that

X = {x( j); j = 1; 2; : : : ; N}⊂Rn

is the �nite set of nodes, and de�ne the polynomial ideal

A= {P ∈ Pn: P(x) = 0 for all x ∈ X }⊂Pn:

Then we obtain for each P ∈ A ∩ Pn
m the orthogonality condition In[PQ] = 0, whenever PQ ∈ Pn

m.
M�oller introduced the notion of m-orthogonality. A set of polynomials is said to be m-orthogonal if
for every element P we have In[PQ]=0, when PQ ∈ Pn

m. Hence, orthogonal polynomials of degree
m are (2m−1)-orthogonal, while quasi-orthogonal polynomials of degree m are (2m−2)-orthogonal.
The main problem is the selection of a suitable basis. It turns out that an H -basis suits best.

{P1; P2; : : : ; Ps} is such a basis, if every Q ∈ A can be written as

Q =
s∑

i=1

QiPi where deg(QiPi)6deg(Q):

The ideal then is written as A= (P1; P2; : : : ; Ps).

Theorem 18. Let Qi; i=1; 2; : : : ; s; be an H-basis of a zero-dimensional ideal A. Then the following
are equivalent:
(i) The Qi are m-orthogonal with respect to In.
(ii) There is a Q(n; m; N ) using the N common zeros of A as nodes if no multiple nodes appear.

For multiple nodes, function derivatives can be used; this was proposed in [62,63]. M�oller called
formulae of this type generalised cubature formulae of algebraic degree. This was further developed
in [48–50].
In this ideal-theoretic setting, condition (5) can be interpreted as syzygy. If an H -basis of A is

�xed, then syzygies of higher order will occur; e.g., if P1; P2 ∈ A are of degree m, then it is possible
that

Q1P1 − Q2P2 ∈ Pn
m−1 for Qi ∈ Pn:

M�oller found that such syzygies will occur in an H -basis and that they impose restrictions on the
polynomials which can be used constructively to compute a suitable ideal. Furthermore, the Hilbert
function can be used to study the number of common zeros. For the connection to Gr�obner bases
we refer to [53,13].
However, Theorem 18 allows nodes to be in Cn. Schmid [78] proposed to avoid this by considering

real ideals.
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If the common zeros of an ideal A are denoted by V(A) and the ideal of all polynomials which
vanish at a �nite set X ⊂Rn by AX , then

X ⊆V(AX ):

An ideal A is called real if

X =V(AX ):

So m-orthogonal real ideals characterise cubature formulae, and real ideals are characterised by the
following theorem due to Dubois et al. (cf. [18,19,75,76]).

Theorem 19. The following are equivalent:
(i) A is a real ideal;
(ii) the common zeros of A are pairwise distinct and real;
(iii) P vanishes on V(A) if and only if P ∈ A;
(iv) for all M ∈ N and all Qi ∈ Pn; i = 1; 2; : : : ; M;

M∑
i=1

Q2
i ∈ A implies Qi ∈ A; i = 1; 2; : : : ; M:

By combining M�oller’s results and the conditions which can be derived from Theorem 19 it is
possible to give a complete characterisation of cubature formulae. However, if the degree of the
formula m is �xed, the conditions which have to be satis�ed strongly depend on the number of
nodes. Indeed, the number of nodes in
uences the number of polynomials in the ideal basis and
their degree. The conditions derived from Theorem 19 depend on the structure of the ideal basis,
and their complexity therefore increases with m.
In [79] Theorem 5 is extended by using Theorem 19 and applying it to ideals containing a

fundamental set of an arbitrary degree. It was then applied to construct cubature formulae for the
regions C2; S2; T2.

Theorem 20. Let Ri; i = 1; 2; : : : ; t; be linearly independent polynomials in Pn
m containing a funda-

mental system of degree m. If A= (R1; R2; : : : ; Rt); then
(i) V(A)6N = dimPn

m − t;
(ii) V(A) = N if and only if A is a real ideal.

6.3.1. Even-degree formulae
By applying the syzygies of �rst order to quasi-orthogonal polynomials it is possible to characterise

all even-degree formulae attaining the lower bound in (22).

Theorem 21. Let

Ri = Pk
i +

k−1∑
j=0


ijPk−1
j ; i = 0; 1; : : : ; k;
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be quasi-orthogonal polynomials generating the ideal A. A cubature formula Q(2; 2k−2; dimPk−1)
with all weights positive exists if and only if the parameters 
ij can be chosen such that

yRi − xRi+1 ∈ span{Rj; j = 0; 1; : : : ; k}; i = 0; 1; : : : ; k − 1; (33)

holds. If (33) holds; then the nodes of the formula are given by V(A); and A is real.

Morrow and Patterson [54] proved this by applying M�oller’s Theorem 18 and using the Hilbert
function to count the common zeros, counting multiplicities.
Schmid [77] applied Theorem 19 to prove that (33) is necessary and su�cient for A to be a

real ideal. From the work in [54] a classical integral is known for which all even-degree minimal
formulae can be computed, see Section 7:1.
The complexity of (33) can be realised by considering the equivalent matrix equation given in

[81] for integrals having central symmetry. The quadratic matrix equation

0 =M?
k−1 + �kM−1

k M?
k M−1

k �Tk

has to be solved. Here Mk = [I[Pk
i P

k
j ]]i; j=0;1; :::; k is the moment matrix and M?

k−1 the matrix of the
numerical characteristics. �k is a k × k + 1 Hankel matrix, which has to be determined; from its
coe�cients the 
ij’s can be computed.
The straightforward generalisation to the n-dimensional case has been studied in [79,74]; however,

only moderate-degree formulae could be constructed for Cn, n= 2; 3; 4; 5.

6.3.2. Odd-degree formulae
Stroud and Mysovskikh [88,59] proved that Q(2; 2k − 1; k2) can be constructed if two orthogonal

polynomials of degree k can be found having exactly k2 common pairwise distinct real zeros. Franke
[21] derived su�cient conditions implying the existence of Q(2; 2k−1; N ), where N ¡k2, for special
integrals over planar regions. Further generalisations were obtained in [62,63] by admitting point
evaluations of derivatives and preassigning nodes.
We recall Theorem 8 in the following form.

Theorem 22. Q(n; 2k − 1; dimPk−1) exists if and only if the nodes are the zeros of Pk .

For the standard regions, such formulae exist for n= 1 and k = 1; 2; : : : or k = 1 and n= 1; 2; : : :;
for n¿2, k¿2, such formulae do not exist. The existence of M (n; k − 1) common roots of the
polynomials gathered in Pk can be reduced to the solution of a nonlinear system in n unknowns;
however, the number of equations is larger than n, since for n; k¿2, we have

M (n− 1; k)¿M (n− 1; 2) = n(n+ 1)
2

¿n+ 1:

The existence of special regions for which Theorem 22 holds for moderate k have been discussed
in Section 5.2. A class of integrals for which Theorem 22 holds for arbitrary k was presented in
[82] for n= 2, and in [5] for n arbitrary.
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In order to �nd cubature sums Q(2; 2k − 1; N ) where N attains the improved lower bound (23),
M�oller derived the following necessary conditions:

Theorem 23. If Q(2; 2k − 1; N ) exists where N = dimPk−1 + 1
2 rank(M

?
k−1), then there are s= k +

1− 1
2 rank(M

?
k−1) orthogonal polynomials Pi of degree k vanishing at the nodes of the formula and

satisfying the following conditions.
(i) Whenever orthogonal polynomials of degree k satisfy xQ1−yQ2 =Q3; then Qi ∈ span{Pi; i=

1; 2; : : : ; s}.
(ii) xPi; yPi form a fundamental set of degree k + 1.
(iii) There are 2k − 3

2 rankM
?
k−1 linearly independent vectors a ∈ R3(k+1) such that

x2
k∑

i=0

aiPi + xy
k∑

i=0

ak+1+iPi + y2
k∑

i=0

a2k+2+iPi =
s∑

i=1

LiPi;

where Li are linear polynomials.

These conditions are almost su�cient, too.

Theorem 24. If there are s=k+1− 1
2 rank(M

?
k−1) orthogonal polynomials Pi of degree k satisfying

the conditions (i); (ii); and (iii) in Theorem 23; then these polynomials have N = dimPk−1 +
1
2 rank(M

?
k−1) a�ne common zeros. If they are pairwise distinct and real; then a cubature sum

Q(2; 2k − 1; N ) exists.

The surprising result from this theorem was the construction of Q(2; 9; 17) for C2, the square
with constant weight function. Franke [22] expected that 20 would be the lowest possible number
of nodes for such a formula. Haegemans and Piessens [70,33] conjectured that 18 would be lowest
possible.
Again, by applying Theorem 19 one can determine further conditions which guarantee that the

polynomials Pi generate a real ideal, i.e., have pairwise distinct real zeros. To check this, choose
Ui; i = 1; 2; : : : ; k + 1 − s; such that Pi; Ui are a fundamental system of degree k. By virtue of
condition (ii) of Theorem 23 there are polynomials Rij and P ∈ span{Pi; i = 1; 2; : : : ; s} such that
UiUj − RijP ∈ Pk+1. If, in addition, the Pi are chosen such that

I[U 2 − RP]¿ 0

for all U ∈ span{Ui; i=1; 2; : : : ; k+1− s}, P ∈ span{Pi; i=1; 2; : : : ; s}, and R such that U 2−RP ∈
Pk+1, then the ideal (P1; P2; : : : ; Ps) is real.
This holds in the n-dimensional case, too, even if we admit ideals with a fundamental system of

maximal degree m+ 1 [79].

Theorem 25. Let Ri; i = 1; 2; : : : ; t; be an m-orthogonal fundamental set of degree m + 1 of lin-
early independent polynomials in Pn; and let A=(R1; R2; : : : ; Rt) and W=span{R1; R2; : : : ; Rt}. Let
U; dimU= N; be an arbitrary; but �xed; complement of W such that Pn

m+1 =W ⊕U. Then the
following are equivalent:
(i) A positive Q(n; m; N ) for In exists with nodes in V(A).
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(ii) A and U are characterised by
(a) A ∩U= (0);
(b) In[Q2 − R+]¿ 0 for all Q ∈ U; where R+ is chosen such that Q2 − R+ ∈ Pn

m.
(iii) A is a real ideal with a zero-set of N pairwise distinct real points; which are the nodes of

the cubature formula of degree m.

6.4. Formulae characterised by three orthogonal polynomials

The nodes of a Gauss quadrature formula are the zeros of one particular polynomial. The nodes
of a Gauss product cubature formula in n dimensions are the common zeros of n polynomials in
n variables. Franke [21] derived conditions for planar product regions implying the existence of
cubature sums Q(2; 2k − 1; N ) where N ¡k2, see Section 6.3.2. This is based on the common zeros
of two orthogonal polynomials.
Huelsman [35] proved that for fully symmetric regions, Q(2; 7; 10) cannot exist. Franke [22]

proved that for these regions, and also for symmetric product regions, a cubature sum Q(2; 7; 11)
cannot exist. He observed that from Stroud’s characterisation [90] there follows that a cubature sum
Q(2; 7; 12) is characterised by three orthogonal polynomials of degree 4, and he exploited this to
construct some formulae.
In [70,71], Piessens and Haegemans observed that there are actually three orthogonal polynomials

of degree k that vanish in the nodes of their cubature formulae of degree 2k − 1 for k = 5; 6.
Following this observation, and using earlier results of Radon and Franke, in a series of articles
[30,32,33] they constructed cubature formulae for a variety of planar regions whose nodes are the
common zeros of three orthogonal polynomials in two variables. They restricted their work to regions
that are symmetric with respect to both coordinate axes and noticed that Radon’s cubature formulae
for these regions have the same symmetry.
At �rst sight, it may look strange that Radon, Franke, Haegemans and Piessens characterised

cubature formulae in two dimensions as the common zeros of three polynomial equations in two
unknowns, i.e., as an overdetermined system of nonlinear equations. We now know, see Section 5.2,
that for centrally symmetric regions there are b k

2c + 1 linearly independent orthogonal polynomials
of degree k that vanish in the nodes of a cubature formula of degree 2k − 1 that attains the lower
bound of Theorem 11. We thus know that formulae of degree 5 and 7 that attain this bound are
fully characterised by three such polynomials. Formulas of higher degrees 2k − 1 that attain this
bound will have even more than three linearly independent orthogonal polynomials of degree k that
vanish in their nodes.
Franke, Haegemans and Piessens proceeded as follows. They assumed the existence of three

linearly independent orthogonal polynomials of the form

�i =
k∑

j=0

aijPk
j ; i = 1; 2; 3:

The �rst set of conditions on the unknowns aij is obtained by demanding that whenever a node
(�i; �i) is a common zero of �1, �2, and �3, then also (±�i;±�i) is. A second set of conditions is
obtained by demanding that these three polynomials have su�ciently many common zeros. Obtaining
these conditions requires much labour, and a computer algebra system was used to derive some of
these. For higher degrees, the result contains some free parameters, and consequently a continuum
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Table 1
Number of nodes in known cubature formulae [22,30,32,33]a

Degree C2 S2 Er2
2 Er

2 H2

7 12(∞) 12(∞) 12(∞) 12(∞) 12(∞)

9 19(∞) 19(∞) 19(∞) 19(∞) 19(∞)
18(2) 18(1) 18(1) 18(1)

11 28(∞) 28(∞) 28(∞) 28(∞) 28(∞)
26(∞) 26(∞) 26(∞) 26(∞) 26(∞)
25(2) 25(1) 25(1) 25(1)

aIn parentheses the number of such cubature formulae is given.

of cubature formulae was obtained. In such a continuum Haegemans and Piessens searched for the
formula with the lowest number of nodes, e.g., by searching for a formula with a weight equal to
zero. An overview of the cubature formulae for the symmetric standard regions C2; S2; Er2

2 ; Er
2, and

H2 obtained in this way is presented in Table 1.
This approach was also used to construct cubature formulae of degree 5 for the four standard

symmetric regions in three dimensions [31]. A continuum of formulae with 21 nodes is obtained.
It is mentioned that this continuum contains formulae with 17, 15, 14 and 13 nodes, the last being
the lowest possible.

7. Cubature formulae of arbitrary degree

For an overview of all known minimal formulae, we refer to [10]. In this �nal section we present
those integrals for which minimal cubature formulae for an arbitrary degree of exactness were
constructed by using orthogonal polynomials. Though these examples are limited, they illustrate
that all lower bounds which have been discussed will be attained for special integrals and that the
construction methods based on orthogonal polynomials can be applied. Indirectly this shows that
improving these bounds will require more information about the given integral to be taken into
account. The symmetry of the region 
 and the weight function ! is not enough!

7.1. Minimal formulae for the square with special weight functions

Two-dimensional integrals with an in�nite number of minimal cubature formulae have been pre-
sented by Morrow and Patterson [54]. They studied

I1=2[f] =
∫ 1

−1

∫ 1

−1
f(x; y)(1− x2)1=2(1− y2)1=2 dx dy:

The associated fundamental orthogonal system of degree k, Uk
i ; i = 0; 1; : : : ; k, is gathered in

Uk = (Uk
0 ; U

k
1 ; : : : ; U

k
k )
T:
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Similarly, they studied

I−1=2[f] =
∫ 1

−1

∫ 1

−1
f(x; y)(1− x2)−1=2(1− y2)−1=2 dx dy;

where the associated fundamental orthogonal system of degree k; T k
i ; i = 0; 1; : : : ; k, is gathered in

Tk = (Tk
0 ; T

k
1 ; : : : ; T

k
k )
T:

7.1.1. Even-degree formulae for I1=2

A minimal cubature sum Q(2; 2k − 2; dimPk−1) has been derived in [54]; the nodes are the
common zeros of

Uk + 1=2FTk Uk−1;

where Fk = [0 Ek]. This is the special case � = 1 from the following result [80,81]:
For k¿6, up to symmetries, all minimal cubature sums Q(2; 2k − 2; dimPk−1) are generated by

the common zeros of

Uk + 1=2�TkUk−1;

where �k is a Hankel matrix of the form

�k =





0 �
0 �2
0 · · · �k−1
0 1=�
�
0 �2
0 �3
0 · · · 1=� 0
...

...
...

...
...

�k−1
0 1=� 0 · · · 0 0


 ; 
0 =

1− �2

�k+1
; 0 6= � ∈ R:

7.1.2. Odd-degree formulae for I1=2

Up to symmetries, all minimal cubature sums Q(2; 2k − 1; dimPk−1 + bk=2c), k odd, for I1=2 are
generated by the common zeros of

(Ek + �k)Uk ;

where �k is an orthogonal Hankel matrix of the form

�k =





0 �
0 : : : �k−1
0 �k
0 − �
�
0 �2
0 : : : �k
0 − � 
0
...

...
...

...
�k−1
0 �k
0 − � : : : �k−3
0 �k−2
0

�k
0 − � 
0 : : : �k−2
0 �k−1
0



; (34)

where


0 = 2=(k + 1); �2 = 1; or 
0 =
�2 − 1
�k+1 − 1 ; �2 6= 1; � ∈ R:

Note that there are redundancies in (34), rank(Ek +�k)= bk=2c+2. The general form is obtained in
[81], special cases having been known long before: for �=0; 
0 = 1 see [78], for �=1 and �=−1
see [15].
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For odd-degree formulae, k even, no general formula is known. However, there are minimal
cubature sums Q(2; 2k − 1; dimPk−1 + k=2), k even, for I1=2, generated by the common zeros of

(Ek + �k)Uk ;

where �k is an orthogonal Hankel matrix of the form (34), where


0 = 2=(k + 1); � = 1; or 
0 =
�2 − 1
�k+1 − 1 ; � 6= 1; � ∈ R:

The case �=−1; 
0 = 0 was stated in [54]. The result for �=1 is obtained in [15], for � 6= 1 it is
obtained in [81].

7.1.3. Odd-degree formulae for I−1=2
If k is even, a minimal formula of degree 2k − 1 exists, the nodes being the common zeros of

Tk
i + Tk

k−i ; i = 0; 1; : : : ; k=2;

this result is due to [54]. Minimal formulae of degree 2k − 1; k odd or even, were derived in [15],
the nodes are the common zeros of

Tk
i − Tk

k−i ; i = 0; 1; : : : ; bk=2c; T k
0 + Tk

1 + · · ·+ Tk
k−1 + Tk

k :

A third formula of degree 2k − 1 for k even is given in [15], the nodes are the common zeros of
Tk
i − Tk

k−i ; i = 0; 1; : : : ; k=2− 1; T k
0 + Tk

2 + · · ·+ Tk
k−2 + Tk

k :

7.1.4. Gaussian formulae
Cubature formulae attaining the lower bound (22) for even and odd degree are often called

formulae of Gaussian type or Gaussian formulae. They exist for a class of (nonstandard) integrals,
which will be shown in this section. This result is due to [82].
Let !(x) be a nonnegative function on I ⊆R and let {ps} be the orthonormal polynomials with

respect to !. Koornwinder [38] introduced bivariate orthogonal polynomials as follows.
For given s ∈ N let u= x + y and v= xy and de�ne

Ps; (−1=2)
i (u; v) =

{
ps(x)pi(y) + ps(y)pi(x) if i¡ s;√
2ps(x)ps(y) if i = s;

and

Ps; (1=2)
i (u; v) =

ps+1(x)pi(y)− ps+1(y)pi(x)
x − y

:

Then Ps; (±1=2)
i are polynomials of total degree s. Koornwinder showed that they form a bivariate

orthogonal system with respect to the weight function

(u2 − 4v)±1=2W (u; v):
Let xi; s be the zeros of the quasi-orthogonal polynomial ps+�ps−1 where � ∈ R is arbitrary but �xed.
The roots are ordered by x1; s ¡ · · ·¡xs;s. Let u= x+y and v= xy, and de�ne W (u; v)=!(x)!(y).
Then we have the following Gaussian cubature formula of degree 2k − 2:

∫∫


f(u; v)W (u; v)(u2 − 4v)−1=2 du dv ∼=

k∑
i=1

i∑
j=1

!i;jf(xi; k + xj; k ; xi; kxj; k);
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and

∫∫


f(u; v)W (u; v)(u2 − 4v)1=2 du dv ∼=

k+1∑
i=1

i−1∑
j=1

!i;jf(xi; k+1 + xj; k+1; xi; k+1xj; k+1);

where


 = {(u; v): (x; y) ∈ I × I and x¡y}:
If �= 0, then a uniquely determined formula of degree 2k − 1 will be obtained.
So there are classes of two-dimensional integrals for which the one-dimensional result of Gaussian

quadrature formulae can be regained. The lower bound (22) will be attained for odd and even degree,
the common zeros of

Pk + ��kPk−1; �k ∈ Rk+1×k ; � ∈ R;
are the nodes of the formula, where �k is determined from commuting properties in the orthonormal
recursion formula in Theorem 4 and a matrix equation which follows from (33) in Theorem 21.
These examples have been extended to the n-dimensional case in [5].
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Abstract

Gaussian formulas are among the most often used quadrature formulas in practice. In this survey, an overview is given
on stopping functionals for Gaussian formulas which are of the same type as quadrature formulas, i.e., linear combinations
of function evaluations. In particular, methods based on extended formulas like the important Gauss–Kronrod and Patterson
schemes, and methods which are based on Gaussian nodes, are presented and compared. c© 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

1.1. Motivation

The problem of approximating de�nite integrals is of central importance in many applications of
mathematics. In practice, a mere approximation of an integral very often will not be satisfactory
unless it is accompanied by an estimate of the error. For most quadrature formulas of practical in-
terest, error bounds are available in the literature which use, e.g., norms of higher-order derivatives
or bounds for the integrand in the complex plane. However, in many practical situations such infor-
mation about the integrand is not available. In particular, automatic quadrature routines are designed
such that the user only has to insert the limits of integration, a routine for computing the integrand,
a tolerance for the error and an upper bound for the number of function evaluations (cf. [51,52,18
p. 418]). Functionals based on function evaluations that provide estimates for the quadrature error
are called stopping functionals.
Most quadrature methods used in modern numerical software packages like those of NAG [71]

and IMSL [47] are based on Gaussian (Gauss–Kronrod, Patterson) formulas. Furthermore, both nu-
merical experience and theoretical results show the superiority of Gaussian formulas over many

0377-0427/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00496-9
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other quadrature formulas in many function classes (cf. in particular [11] and the literature cited
therein). For these reasons, the problem of practical error estimates in particular for Gaussian for-
mulas is very important, and many papers are devoted to this subject. Several stopping functionals
for Gaussian quadrature formulas have been proposed in the literature and as computer algorithms.
One may roughly divide these methods into two categories: (1) those based on extensions, i.e., on
the addition of nodes, and (2) those based (essentially) on the nodes of the Gaussian formulas. To
make this distinction more strict, in the following we say that an error estimate for a quadrature
formula Qn with n nodes is based on extension if the number of additional nodes is unbounded
when n → ∞; otherwise, we call it essentially based on the nodes of Qn. Important prototypes for
the �rst category are the Gauss–Kronrod and the Patterson methods (see Section 2). The extension
strategy is also used by many practical implementations of the important Clenshaw–Curtis formulas.
Very often, the extended formula is used for approximating the integral, and the di�erence between
the two quadrature values is used to approximate the error. Such extended formulas are the state of
the art, e.g., in the above-mentioned software libraries and in the QUADPACK package [85]. The
second category includes the null rules and the recent Peano stopping functionals (see Section 3).
Such methods deserve special attention, since function evaluations are generally considered the com-
putationally most expensive part of quadrature algorithms.
Methods from both the categories have been used in automatic integration algorithms. In particular,

many automatic integration algorithms use interval subdivision techniques where a �xed pair of
a quadrature formula and a stopping functional are used to compute both a local approximation
and an error estimate. Based on this information, a decision is made about further subdivision.
Presently, the most important univariate general-purpose integrators over �nite intervals, like the
NAG routine D01AJF, use bisection strategies with pairs of Gaussian and Gauss–Kronrod formulas.
The Gauss–Kronrod scheme was introduced by Kronrod in 1964 [53,54]. Kronrod’s approach was,
for the estimation of the error of an n-point Gaussian formula, to choose n + 1 additional nodes
for the construction of a “better” formula, i.e., a formula that has the highest possible algebraic
degree of exactness using 2n+ 1 function evaluations, among them the n function values that were
computed for the Gaussian formula. There exist exhaustive survey papers on the Gauss–Kronrod
scheme [39,67,69,74] and related quadrature formulas.
Presently, however, a general survey on stopping functionals that have been proposed for the

practical (computational) estimation of the error of Gaussian quadrature formulas does not seem to
exist. From a practical point of view, the most important problems seem to be the availability of
the stopping functional, its computational complexity, and its quality for error estimation. The aim
of this survey is to present the known methods and results with a focus on these practical aspects,
and with a certain emphasis on recent developments and results. For space limitations, we restrict
ourselves to the practically most important (linear) stopping functionals that are of the same type as
quadrature formulas, i.e., linear combinations of function evaluations. We do not include methods
which are based on error bounds from the literature using, e.g., norms of derivatives in conjunction
with automatic di�erentiation techniques and interval analysis (cf. [17,32] for more details on this
topic). Furthermore, we do not discuss stopping functionals based on other than Gauss-type formulas
in this survey (cf. [34]). The results on extended Gaussian formulas are summarized in Section 2,
and the stopping functionals based on Gaussian nodes are presented in Section 3. In the following
three subsections, we summarize basic facts on numerical integration and Peano kernels which are
necessary for the presentation in Sections 2 and 3.
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1.2. Basic facts and notation

For a given nonnegative and integrable weight function ! on (a; b); −∞¡a¡b¡∞, a quadra-
ture formula Qn and the corresponding remainder Rn of (algebraic) degree of exactness s are linear
functionals on C[a; b] de�ned by

Qn[f] =
n∑

�=1

a�;nf(x�;n); Rn[f] =
∫ b

a
!(x)f(x) dx − Qn[f];

deg(Rn) = s ⇔ Rn[mk]

{
=0; k = 0; 1; : : : ; s;

6= 0; k = s+ 1;
mk(x) = xk ; (1)

with nodes −∞¡x1; n ¡ · · ·¡xn;n ¡∞ and weights a�;n ∈ R. Without restriction, using a�ne
transformations, in the following we set [a; b] = [ − 1; 1] wherever not explicitly states otherwise.
Furthermore, we omit the second index in x�;n; a�;n whenever the meaning is clear from the context.
A quadrature formula is called interpolatory if deg(Rn)¿n− 1. The unique quadrature formula with
n nodes and highest possible degree of exactness 2n − 1 is the Gaussian formula (with respect to
the weight !)

QG
n [f] =

n∑
�=1

aG� f(x
G
� ):

For an overview on Gaussian formulas, cf. [10,11,95] and, in particular, [37].

1.3. Principles of veri�ed numerical integration

Numerical integration problems in practice are often of the following type. Given the limits of
integration a and b, a routine for computing f(x) at any x ∈ (a; b), a tolerance � and an upper
bound N on the number of function evaluations, compute a number Q such that∣∣∣∣∣Q −

∫ 1

−1
f(x) dx

∣∣∣∣∣6� or
|Q − ∫ 1−1 f(x) dx|∫ 1

−1 |f(x)| dx
6�; (2)

or give an approximation based on N function values and an estimate for the absolute error which
does not meet the requirement (2). Any software routine for this purpose is called automatic integra-
tion routine (cf. [18, Chapter 6]). In order to decide whether a particular quadrature approximation
Q=Qn[f] ful�lls (2), most often linear stopping functionals Sm; m¿n, of the same type as Qn are
used (cf. [34]),

Sm[f] =
m∑

�=1

b�f(y�); b� ∈ R; −16y1¡ · · ·¡ym61;

{x1; : : : ; xn}⊆{y1; : : : ; ym}: (3)

Such linear stopping functionals have a low computational complexity, in particular if n ≈ m.
Natural requirements for an error estimate are its e�ciency, i.e., an accurate approximation should
be accompanied by a small error estimate, and its reliability, i.e., the error estimate should not be
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smaller than the actual approximation error. However, it is obvious that without knowing more about
f than a �nite number of function values it cannot be guaranteed that

|Rn[f]|6|Sm[f]|: (4)

For nonlinear stopping functionals cf. Section 3.3 as well as [57,85] and the literature cited therein.
A standard method for the construction of a (linear) stopping functional S∗ for Qn is by choosing a
second (reference) quadrature formula Q∗

l and then computing

S∗ = 
(Q∗
l − Qn); (5)

with some heuristically determined constant 
 ∈ R.

1.4. Peano kernels and applications

Let L be a bounded linear functional on C[− 1; 1] with deg(L)¿s− 1, where
deg(L) = sup{r |L[Pr] = 0; Pr: space of polynomials of degree6r}:

If L= Rn is a quadrature remainder, this de�nition coincides with (1). For

f ∈ As[− 1; 1]:={f |f(s−1) is absolutely continuous in [− 1; 1]; ||f(s)||∞ ¡∞};
the following representation of L due to Peano is well known,

L[f] =
∫ 1

−1
f(s)(x)Ks(L; x) dx;

where Ks(L; ·) is the so-called Peano kernel of L of order s,

Ks(L; x) =
1

(s− 1)!L[(· − x) s−1+ ]; u s−1
+ =

{
0 for u¡ 0;

u s−1 for u¿ 0

(cf. [12]). The constants

cs = cs(L) =
∫ 1

−1
|Ks(L; x)| dx

are the best possible constants in estimates of the type

|L[f]|6cs||f(s)||∞;

i.e.,

cs(L) = sup{|L[f]| | ||f(s)||∞61}: (6)

The functional L is said to be positive (negative) de�nite of order s if the Peano kernel Ks(L; ·)
is nonnegative (nonpositive) in the interval (a; b). An important example of a (positive) de�nite
functional is the divided di�erence

dvd(t1; : : : ; ts+1)[f] =
s+1∑
�=1

d�f(t�); d� =
s+1∏
�=1
� 6=�

(t� − t�)−1;

16t1¡t2¡ · · ·¡ts+161;
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which is characterized by

dvd(t1; : : : ; ts+1)[mk] =
{
0; k = 0; 1; : : : ; s− 1;
1; k = s:

We have

Ks(dvd(t1; : : : ; ts+1); ·) = 1
s!
B[t1; : : : ; ts+1](·);

where B[t1; : : : ; ts+1](·) is the B-spline with respect to the knots t1; : : : ; ts+1, normalized by
‖B[t1; : : : ; ts+1]‖1 = 1 (cf. [91, Section 4:3]).
Applying Peano kernel theory to quadrature remainders L= Rn is a systematic and standard way

for obtaining error bounds for quadrature formulas (cf. [37, p.115]). In view of (6), the constants
cs(L) can be considered as a measure for the quality of quadrature formulas for the function class
As[−1; 1]. Explicit or asymptotic values for these constants are known for many quadrature formulas
of practical interest and many function classes (cf. in particular [10,11,83]).

2. Extended Gaussian formulas

2.1. Gauss–Kronrod formulas and Stieltjes polynomials

Let ! be nonnegative and integrable in the open interval (−1; 1). It is well known that the nodes of
the Gaussian formula QG

n with respect to the weight ! are precisely the zeros of the nth orthonormal
polynomial p!

n with respect to the weight ! (see, e.g., [97]). The following fundamental theorem
gives a more general statement.

Theorem 1. Let ! be nonnegative and integrable in (−1; 1). Let −16x1¡ · · ·¡xn61 be �xed
numbers. A necessary and su�cient condition that for

Qn;m[f] =
n∑

�=1

A�f(x�) +
m∑

�=1

B�f(��)

we have

deg(Rn;m)¿2m+ n− 1 (7)

is that simultaneously (i) the polynomial
∏m

�=1(x − ��) is orthogonal to all polynomials of degree
6m− 1 with respect to the sign changing weight !∏m

�=1(· − x�); i.e.;
∫ 1

−1
!(x)xk

n∏
�=1

(x − x�)
m∏

�=1

(x − ��) dx = 0; k = 0; 1; : : : ; m− 1; (8)

and (ii) that Qn;m is interpolatory.

The orthogonality conditions (8) are a nonlinear system of equations for the unknown nodes �1; : : : ; �m.
The weight A1; : : : ; An; B1; : : : ; Bm are determined by the interpolation condition. Elementary examples
show that the system (8) is not always uniquely solvable. In fact, if x1; : : : ; xn are the roots of the
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nth orthonormal polynomial of degree n, then for m¡n=2 every choice of nodes �1; : : : ; �m satis�es
(8), while for n= m there is no choice of �1; : : : ; �m (even complex ones) such that (8) is satis�ed
for k = 0. Well-known special instances of Theorem 1 are the Gaussian formula (n= 0), the Radau
formulas (n= 1; x1 =±1), and the Lobatto formula (n= 2; x1 =−1; x2 = 1). For these examples, the
function !

∏n
�=1(·−x�) has no change of sign in (−1; 1). For the Gauss–Kronrod formulas, the �xed

nodes are the nodes of the n-point Gaussian formula, i.e., the zeros of p!
n ,

QGK
2n+1[f] =

n∑
�=1

AGK� f(xG� ) +
n+1∑
�=1

BGK� f(�K� );

where �K1 ; : : : ; �
K
n+1 and AGK1 ; : : : ; AGKn , B

GK
1 ; : : : ; BGKn+1 are chosen such that (7) is satis�ed with m=n+1.

The polynomials

En+1(x) = cn
n+1∏
�=1

(x − �K� ); cn ∈ R;

are called Stieltjes polynomials. These polynomials seem to appear �rst in a letter of T.J. Stieltjes to
C. Hermite in 1894 [2]. Stieltjes conjectured that the zeros of En+1, for the Legendre weight ! ≡ 1,
are all real and in (−1; 1) for each n ∈ N, and that they interlace with the zeros of the Legendre
polynomial Pn, i.e., the Gaussian nodes, for all n ∈ N,

−1¡�K1 ¡xG1 ¡ · · ·¡�Kn ¡ xGn ¡�Kn+1¡ 1:

These conjectures were proved by Szegő [96] for the wider class of weights !�(x) = (1− x2)�−1=2,
� ∈ (0; 2]. Recent results on the location of the zeros of Stieltjes polynomials can be found in
[22,30]. The Gauss–Kronrod formulas have been introduced in 1964 by Kronrod, but there are no
hints that Kronrod was aware of Stieltjes’ and Szegő’s work at that time. The connection has been
observed later by Barrucand [4] and by Mysovskih [70].
The most important weight function ! for the application of Gauss–Kronrod formulas in automatic

integration is the Legendre weight. In this case, the positivity of the Gauss–Kronrod formulas was
proved by Monegato in [66]. In [86] (see also [88] for a correction), Rabinowitz proved that the
exact degree of precision of QGK

2n+1 is 3n+1 if n is even and 3n+2 if n is odd. The nonde�niteness
of Gauss–Kronrod formulas was proved by Rabinowitz in [88]. Results on the convergence of the
interpolation processes based on the nodes of Gauss–Kronrod formulas can be found in [30,31]. For
more general weight functions and other constructions of extended positive quadrature formulas, see
Sections 2.4 and 2.7; cf. also the survey papers of Gautschi [39], Monegato [67,69] and Notaris [74];
for tables of nodes and weights see Piessens et al. [85] and the original work of Kronrod [53,54].

2.2. The Gauss–Kronrod stopping functional

The standard stopping functional for the Gauss–Kronrod method,

SGK2n+1 = QGK
2n+1 − QG

n =
n∑

�=1

d̃�f(xG� ) +
n+1∑
�=1

d∗
�f(�

K
� )

is a linear combination of point evaluation functionals which satis�es

SGK2n+1[mk] = 0; k = 0; 1; : : : ; 2n− 1;
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SGK2n+1[m2n] = RGn [m2n] =
22n+1n!4

(2n+ 1)(2n)!2
;

where mk(x) = xk , hence

SGK2n+1 =
22n+1n!4

(2n+ 1)(2n)!2
dvd(�K1 ; x

G
1 ; �

K
2 ; : : : ; x

G
n ; �

K
n+1)

and

K2n(SGK2n+1; ·) =
22n+1n!4

(2n+ 1)(2n)!3
B[�K1 ; x

G
1 ; : : : ; x

G
n ; �

K
n+1](·):

Furthermore,

RGK2n+1 = I − QGK
2n+1 = I − QG

n − SGK2n+1 = RGn − SGK2n+1;

where I [f] =
∫ 1
−1 f(x) dx, hence

K2n(RGK2n+1; x) = K2n(RGn ; x)− K2n(SGK2n+1; x):

Since deg(RGK2n+1)¿3n+ 1, we have∫ 1

−1
K2n(RGK2n+1; x)x

k dx = 0; k = 0; 1; : : : ; n+ 1;

and therefore,∫ 1

−1
K2n(RGn ; x)x

k dx =
∫ 1

−1
K2n(SGK2n+1; x)x

k dx; k = 0; 1; : : : ; n+ 1; (9)

i.e., the Peano kernel of the stopping functional reproduces the �rst n + 2 moments of the (2n)th
Peano kernel of QG

n . Moreover, �
K
1 ; : : : ; �

K
n+1 are characterized by (9). Hence, the construction of the

Gauss–Kronrod stopping functional SGK2n+1 is essentially the construction of a suitable spline function
with partially free knots which approximates the (2n)th Peano kernel of QG

n “best” in the sense
of the maximum number of reproduced moments. The connection of Gaussian quadrature formulas
and moment-preserving spline approximation problems has been investigated in many papers, cf.
[26,35,38,40,46,64]. Other types of approximations lead to other stopping functionals (see Section
3). Peano kernel theory provides a general and very useful framework for the construction and
comparison of stopping functionals.

2.3. Gauss–Kronrod vs. Gaussian formulas

A result from [21, Corollary] states that for all n¿1 we have

c3n+2+�(RG2n+1)¡c3n+2+�(RGK2n+1);

where � = 0 if n is even and � = 1 if n is odd, and for n¿15 we have
c3n+2+�(RG2n+1)
c3n+2+�(RGK2n+1)

¡ 3−n+1:

Asymptotically, we have

lim
n→∞

(
c3n+2+�(RG2n+1)
c3n+2+�(RGK2n+1)

)1=n
=

√
66

77
=

1
4:2013 : : :

:
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This relation shows that for “smooth”, i.e., in�nitely often di�erentiable functions with all derivatives
uniformly bounded, QG

2n+1 can be expected to give much better results than QGK
2n+1. This has also been

observed in many numerical examples. A similar relation as above holds true for the error constants
c3n+2+�−s(RGK2n+1); s ∈ N independent of n. For the case s = s(n), limn→∞ s=n = A; 06A¡ 1, it has
been proved in [20] that

lim sup
n→∞

(
c3n+2+�−s(RG2n+1)
c3n+2+�−s(RGK2n+1)

)1=n
¡ 1:

Concerning the case A= 1, we have

lim sup
n→∞

(
c2n+1(RG2n+1)
c2n+1(RGK2n+1)

)1=n
61;

but the precise value of the lim sup is presently an open problem.
A natural question is how Gauss–Kronrod and Gaussian formulas compare with respect to larger

classes of “nonsmooth” functions. Let s ∈ N be independent of n. In this case we have [24]

lim
n→∞

cs(RG2n+1)
cs(RGK2n+1)

= 1:

For more results on the error of Gauss–Kronrod formulas, cf. the survey papers [27,74] and the
literature cited therein.

2.4. Existence of Gauss–Kronrod formulas

Simple counterexamples show that the existence of Gauss–Kronrod formulas with real nodes
�GK1 ; : : : ; �GKn+1 inside the interval [− 1; 1] cannot be guaranteed for general ! under the assumptions
of Theorem 1. In this section, an overview will be given on Gauss–Kronrod formulas for weight
functions which attracted most interest in the literature. Some remarks will also be made on the
existence of Kronrod extensions of Lobatto and Radau formulas. The use of Lobatto formulas and
Kronrod extensions of Lobatto formulas for automatic integration has recently been suggested by
Gander and Gautschi [36] in order to improve the existing automatic quadrature routines of the
Matlab software package [63]. Note that for Lobatto–Kronrod formulas, n Kronrod nodes have to be
chosen for n + 1 Lobatto nodes (including ±1), while for the Radau–Kronrod formulas n Kronrod
nodes have to be chosen for n given Radau nodes.
Following Gautschi and Notaris [41], the following properties have to be included in a systematic

study of Gauss–Kronrod formulas:
(a) The nodes xG1 ; : : : ; x

G
n and �K1 ; : : : ; �

K
n+1 interlace.

(b) In addition to property (a), all nodes are contained in (−1; 1).
(c) In addition to property (a), all weights AGK1 ; : : : ; AGKn and BGK1 ; : : : ; BGKn+1 are positive.
(d) All nodes, without necessarily satisfying (a) or (b), are real.

Monegato showed in [65] that the interlacing property of the nodes is equivalent to the positivity
of the weights BGK1 ; : : : ; BGKn+1 at the additional nodes �GK1 ; : : : ; �GKn+1. This property holds for general
weights !.



S. Ehrich / Journal of Computational and Applied Mathematics 127 (2001) 153–171 161

As mentioned in Section 2.1, for the ultraspherical or Gegenbauer weight function

!�(x) = (1− x2)�−1=2; x ∈ (−1; 1); �¿− 1
2 ;

Szegő [96] has shown that properties (a) and (b) are valid for � ∈ (0; 2]. For � = 0, two nodes
are in ±1. For �¡ 0, Szegő gives the counterexample n = 3, where two nodes are outside of
[ − 1; 1]. Monegato [67] pointed out that for su�ciently large � extended Gaussian formulas Qext G

2n+1

with respect to w�, with deg(Qext G
2n+1)¿[2rn + l]; r ¿ 1 and l integer, and with only real nodes and

positive weights, cannot exist for all n ∈ N (as Gautschi [39] and Notaris [74] mention, the proof
is not correct, but can be repaired). Peherstorfer and Petras [82] recently proved that for every
�¿ 3, Gauss–Kronrod formulas do not exist with real nodes for all n ∈ N. Gautschi and Notaris
[41] investigated Gauss–Kronrod formulas for !� numerically for n = 1; 2; : : : ; 20; 24; 28; : : : ; 40 and
computed feasible regions for the parameter � for each of the four properties. Existence results for
Lobatto–Kronrod formulas for w�; � ∈ (− 1

2 ; 1], with real nodes in (−1; 1) that have the interlacing
property with respect to the Lobatto nodes follow from the results about the Gauss–Kronrod formulas.
Monegato [69] conjectures the positivity of all quadrature weights for the Legendre weight function.
A partial (asymptotic) positive answer was given in [23] for weights which are associated with
nodes inside �xed subintervals of (−1; 1).
Stieltjes polynomials and Gauss–Kronrod formulas have been considered for the more general

Jacobi weight function

!�;�(x) = (1− x)�(1 + x)�; x ∈ (−1; 1); �; �¿− 1:
Rabinowitz [87] showed that (b) is not valid for �=− 1

2 ;− 1
2 ¡�6 3

2 (� 6= 1
2) and − 1

2 ¡�6 3
2 ; �=

− 1
2 (� 6= 1

2) for even n and for � =− 1
2 ;
3
26�6 5

2 and
3
2 ¡�6 5

2 ; � =− 1
2 for odd n. Monegato [69]

derived the relations

E�;−1=2
n+1 (2t2 − 1)= tE�;�

2n+1(t)− dn;

E�;−1=2
n+1 (2t2 − 1)= (−1)n+1E1=2; �n+1 (1− 2t2)E�;�

2n+2(t);

where dn is an explicitly given constant and E��
n+1 is the (suitable normalized) Stieltjes polyno-

mial associated with the weight !�;�. Hence, for � = 1
2 and − 1

2 ¡�6 3
2 as well as � = 1

2 and− 1
2 ¡�6 3

2 , results can be carried over from the ultraspherical case. Gautschi and Notaris [41]
extended their numerical investigations to the Jacobi weight function and determined feasible regions
in the (�; �)-plane for the validity of the four properties. It is well known that the left (right) Radau
formula for the weight !�;� is connected with the Gaussian formula for the weight !�+1; � (!�;�+1).
Numerical results in [3] indicate that Radau–Kronrod formulas for the Legendre weight have positive
weights and hence the interlacing property (see [69]).
The most elementary cases of the Jacobi weight function are those with |�| = |�| = 1

2 . For the
Chebyshev weight functions of the �rst kind with �=�=− 1

2 and of the second kind with �=�= 1
2 ,

we have the well-known identity

2Tn+1Un(x) = U2n+1(x):

Therefore, the Stieltjes polynomials are identical to (1− x2)Un−1(x) in the �rst case and to Tn+1 in
the second case, and the degree of exactness is 4n − 1 in the �rst case and 4n + 1 in the second.
The Gauss–Kronrod formula for the Chebyshev weight of the �rst kind is therefore the Lobatto
formula with 2n+ 1 nodes for the same weight function, and the Gauss–Kronrod formula QGK

2n+1 for
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the Chebyshev weight of the second kind is identical to the Gaussian formula QG
2n+1 for this weight.

For � = 1
2 ; � = − 1

2 (� = − 1
2 ; � = 1

2), the Gauss–Kronrod formula is the (2n + 1)-point left (right)
Radau formula (see [69]).
In case of the Laguerre weight !(x)=x�e−x; −1¡�61; x ∈ [0;∞), Kahaner and Monegato [48]

showed that no Kronrod extension with real nodes and positive weights exists for n¿ 23, in the case
� = 0 even for n¿ 1. Furthermore, Monegato [67] proved that extended Gaussian formulas Qext G

2n+1

with respect to this weight, with deg(Qext G
2n+1)¿[2rn+l]; r ¿ 1 and l integer, and with only real nodes

and positive weights do not exits for n su�ciently large. In case of the Hermite weight function
!(x)=e−x2 , real positive Kronrod extensions do not exist for all n ∈ N\{1; 2} (cf. [48]). For n=4, all
nodes are real but two weights are negative. Numerical examples suggest that for all n ∈ N\{1; 2; 4}
complex nodes occur, but this problem is still open. Notaris [73] uses the nonexistence results for
Gauss–Laguerre and Gauss–Hermite quadrature formulas and limit relations for the ultraspherical
and Hermite resp. Jacobi and Laguerre polynomials in order to deduce nonexistence results for
ultraspherical and Jacobi weight functions. Monegato [69] showed the existence of real Gauss–
Kronrod formulas with nodes in (−1; 1) for the weight function

!(�)(x) =
(1− x2)1=2

1− �x2
; −∞¡�61:

Furthermore, the Kronrod nodes interlace with the Gaussian nodes. We have deg(QGK
2n+1)= 4n− 1, if

n¿ 1 and � 6= 0, respectively deg(QGK
2n+1) = 4n+ 1 if n¿ 1; �= 0, and deg(QGK

3 ) = 5. The weights
are always positive, see Gautschi and Rivlin [44]. Gautschi and Notaris [42], Notaris [72] and
Peherstorfer [79] considered the Bernstein–Szegő weight !(x)=

√
1− x2=sm(x), where sm is a positive

polynomial on [−1; 1] of degree m and prove that for all n ∈ N the Gauss–Kronrod formulas exists
with nodes in (−1; 1) that interlace with the Gaussian nodes and with positive weights. Gautschi and
Notaris [43] generalized these results to weights for which the corresponding orthogonal polynomials
satisfy a three-term recurrence relation whose coe�cients an ∈ R and bn ¿ 0; n ∈ N, are constant
above a �xed index l ∈ N an = � and bn = � for n¿l. More precisely, for such weights and all
n¿2l−1, the Gauss–Kronrod formula QGK

2n+1 has the interlacing property, and all its weights are pos-
itive. Moreover, deg(RGK2n+1)¿4n−2l+2 for n¿2l−1. If additionally the support of ! is contained in
[a; b], where a=�−2√� and b=�+2

√
�, then all Kronrod nodes are contained in [a; b] for n¿2l−1.

Peherstorfer [79–81] investigated properties (a)–(d) for more general classes of weight functions.
In particular, for su�ciently large n, Peherstorfer proved these properties for all weight functions !
which can be represented by

!(x) =
√
1− x2D(ei�)2; x = cos� � ∈ [0; �];

where D is a real and analytic function with D(z) 6= 0 for |z|61 (cf. [80]; see also [81] for
corrections).
Gautschi and Notaris pointed out the relation of Gauss–Kronrod formulas for the weight function

!(�)

 = |x|
(1− x2)�; �¿− 1; 
¿− 1; x ∈ (−1; 1);

to those for the Jacobi weight !�; (
+1)=2. Numerical results support the conjecture of Cali�o et al. [14]
that Gauss–Kronrod formulas for the weight !(x) =−ln x; x ∈ (0; 1), exist for all n¿1 and satisfy
(a)–(d). Gautschi [39, p. 40] conjectures similar results for the more general weight

!(x; �) =−x� ln x; x ∈ (0; 1); �=± 1
2 (� 6= 1

2 if n is even):
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Li [60] investigates Kronrod extensions of generalized Radau and Lobatto formulas, which use
function values and, in the �rst case, �rst derivatives at one boundary and in the second case �rst
derivatives at both boundaries. Explicit expressions are proved for the Stieltjes polynomials with
respect to Jacobi weight functions with |�|= |�|= 1

2 and for the weights at the interval boundaries.
A three-point Gauss–Kronrod formula for the discrete weight

!(x) =
∞∑
j=0

e−xxj

j!
�(x − j); x ∈ (0;∞);

has been constructed a long time before Kronrod’s work by Ramanujan in his second notebook
[90]. 1 As Askey reports [1], Ramanujan computed several Gaussian formulas in this notebook, and
his motivation for the Gauss–Kronrod formula for this weight was that the nodes of the three-point
Gaussian formula could not be found as simple expressions.

2.5. Patterson extensions

Patterson [75] computed sequences of embedded quadrature formulas by iterating Kronrod’s method.
The resulting formulas, now called Patterson extensions, are used, e.g., in the NAG routing D01AHF
[71]. More precisely, Patterson extensions are quadrature formulas of the type

∫ 1

−1
p(x)f(x) dx ≈ Q2i(n+1)−1[f] =

n∑
�=1

�i�f(xG� ) +
i∑

�=1

2�−1(n+1)∑
�=1

�i��f(��
�);

i¿1, where xG1 ; : : : ; x
G
n are the nodes of a Gaussian formula, the nodes of Q2i−1(n+1)−1 are used by

Q2i(n+1)−1, and the free nodes are chosen according to Theorem 1. Hence, the algebraic accuracy of
Q2i(n+1)−1 is at least 3 ·2i−1(n+1)−2. Very little is known about the existence and positivity of Pat-
terson extensions for p ≡ 1 and beyond Kronrod’s extension. Numerical examples in [77] show that
nodes outside the integration interval can occur. The only two weights for which general existence
results are available are the Chebyshev weight of the second kind, for which Patterson formulas
are identical to Gaussian formulas, and weight functions and Bernstein–Szegő type [79]. Tables of
sequences of Kronrod–Patterson formulas have been given in [75,85]. Computational investigations
on the existence of the �rst Patterson extension are discussed in [89]. Patterson extensions recently
received some attention in the context of sparse grid methods of multivariate numerical integration
[45].
Let Ai; j; k be the weight associated with the ith node (for nodes ordered in increasing magnitude)

which is added in the jth Patterson extension in a (interpolatory) formula which results from a total
of k¿j extensions. Krogh and Van Snyder [50] observed that Ai; j; k ≈ 0:5 Ai; j; k−1, and used this
property for representing Patterson extensions with fewer function values. Laurie [56] constructed
sequences of strati�ed nested quadrature formulas of the type

Q(k)[f] = �Q(k−1)[f] +
nk−1∑
i=0

Ai;kf(xi; k); 0¡�¡ 1:

1 I thank Prof. Askey for pointing out this reference.
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Here, only the value Q(k−1) has to be stored from step k−1 to step k. Laurie computed sequences of
embedded quadrature formulas, for �= 1

2 , and with interlacing nodes in (−1; 1) and positive weights.
Hybrid methods are discussed in [78].

2.6. Anti-Gaussian formulas

Laurie [58] introduced the strati�ed pair of quadrature formulas

L2n+1 = 1
2Q

G
n [f] +

n+1∑
i=1

ai

2
f(�i); (10)

where the �i; ai are the nodes of the “anti-Gaussian” formula

QAG
n+1[f] =

n+1∑
i=1

aif(�i);

de�ned by the conditions

RAGn+1[mk] =−RGn [mk]; k = 0; 1; : : : ; 2n+ 1:

An equivalent condition for symmetric formulas is

RAGn+1[m2n] =−RGn [m2n]: (11)

The nodes of QAG
n+1 are real for every integrable !, even if (a; b) is unbounded, and they interlace

with the Gaussian nodes. For the ultraspherical weight !�, also �1 and �n+1 are inside (−1; 1).
There are Jacobi weights for which �1 or �n+1 are outside (−1; 1). Laurie [58] proposes the stopping
functional

SAG2n+1[f] =
1
2(Q

AG
n+1[f]− QG

n [f]) (12)

for the estimation of the error of L2n+1. This is a multiple of a divided di�erence of order 2n. In
particular, for the Legendre weight we have

SAG2n+1 =
22n+1

2n+ 1
n!4

(2n)!2
dvd(�1; x1; �2; x2; : : : ; xn; �n+1):

The Lobatto formula, for the Legendre weight “almost” satis�es (11) (cf. [10, p. 149]),

RLn+1[m2n] =−
(
1 +

1
n

)
RGn [m2n]:

2.7. Other extensions of Gaussian formulas

“Suboptimal” Kronrod extensions Qr
2n+1 have been considered for weight functions where Gauss–

Kronrod formulas do not exist with real nodes and positive weights, in particular, for the Laguerre
and Hermite weight functions (cf. Begumisa and Robinson [6]). Here, using Theorem 1, given the
n Gaussian nodes, one chooses n + 1 additional real nodes such that the degree of the formula is
deg(Rr

2n+1)¿3n+ 1− r, with r as small as possible and such that all weights are positive. Another
strategy is the extension by more than n+1 nodes (“Kronrod-heavy”); (see [39,49,68]). In terms of
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moment-preserving spline approximation (see Section 2.2), the �rst method is based on reproducing
less moments, while for the second method more spline knots are introduced.
Kronrod extensions of Tur�an type are considered in [7,59,92]. Smith [93,94] considers Kronrod

extensions that use high-order derivatives at ±1 but only function values in the interior of the
integration interval. Stieltjes polynomials and Gauss–Kronrod formulas on the semicircle have been
considered in [15,16]. Kronrod extensions of Wilf-type formulas have been considered by Engels
et al. [33]. Rabinowitz [87] considers Gauss–Kronrod-type formulas for the computation of Cauchy
principal value integrals. For ! ≡ 1, the Stieltjes polynomial has a double zero in the center of the
interval of integration, and hence a derivative value is needed for computing the Gauss–Kronrod
formulas in this case.

3. Stopping functionals based on Gaussian nodes

As already mentioned in Section 1, in practice, most often the Kronrod scheme is used “back-
wards”, i.e., the (2n + 1)-point Gauss–Kronrod formula gives the quadrature value, and the error
estimate is based on a comparison with the n-point Gaussian formula. As Laurie points out in [55,
p. 427], “viewed from this angle, it becomes somewhat mystifying why the Kronrod rule should
have been singled out as a candidate for the parenthood of subset rules. Could the (2n + 1)-point
Gaussian rule not equally well (or even better) have been used?” As discussed in detail in Section
2.3, the (2n + 1)-point Gaussian formula often gives better results than the (2n + 1)-point Gauss–
Kronrod formula and is a promising candidate, in particular, for automatic integration, if suitable
stopping functionals are available. Unlike in Kronrod’s approach, several authors considered meth-
ods for estimating the error of quadrature formulas essentially without extra function evaluations,
i.e., on the basis of the function values that have been computed for the quadrature formula. Most
of these stopping functionals can be represented by linear combinations of divided di�erences (see
Section 1.4; cf. also [34,55,61]). As for the Gauss–Kronrod formulas (see Section 2.2), a natural
construction principle is the approximation of a Peano Kernel of QG

n by a Peano kernel of a suitable
divided di�erence (see Section 3.4).

3.1. Successive deletion of alternate nodes

Patterson [76] considered sets of quadrature formulas which are derived from a �xed Gaussian
or Lobatto formula with 2r + 1 nodes, r ∈ N, by successively deleting alternate points from the
preceding subset. The interpolatory formulas on these sets of nodes are hence nested by de�nition.
Furthermore, numerical results show that all formulas based on the Gaussian formulas QG

33 and QG
65

and on the Lobatto formula QL
65 are positive (see [76]).

3.2. Dropping the midpoint

Berntsen and Espelid [8] constructed a reference formula QBE
2n for the Gaussian formula QG

2n+1 by
dropping the node xGn+1;2n+1 = 0. Hence, we have

SBE2n+1 = QG
2n+1 − QBE

2n = (−1)n
24n+1n!2(2n)!
(4n+ 1)!

dvd(xG1 ; : : : ; x
G
2n+1):
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Numerical results in favor of this stopping functional are given in [55]. In Section 3.4, a stopping
functional will be given which gives smaller estimates (by O(1=n)) but which are still guaranteed
error bounds for functions whose (2n)th derivative does not change sign.

3.3. Null rules

Linear combinations of kth divided di�erences are often called null rules (of degree k−1) [9,57,62].
For n+ 1 nodes, the linear space of null rules of degree ¿n− m has dimension m. For any inner
product on Rn+1, a unique orthonormal basis of null rules can be constructed for this space. In
[9], the standard inner product (a; b) =

∑n+1
i=1 aibi is used for null rules Nn+1[f] =

∑n+1
i=1 aif(xi) and

Ñ n+1[f]=
∑n+1

i=1 bif(xi), with a=(a1; : : : ; an+1) and b=(b1; : : : ; bn+1). Laurie [57] considers the inner
product

(a; b)W = aTWb; W = diag[wi];

using the (nonzero) weights wi of a positive quadrature formula Qn+1[f]=
∑n+1

i=1 wif(xi). Denoting the
monic orthogonal polynomials with respect to the discrete inner product (f; g)=

∑n+1
i=1 wif(xi)g(xi) by

pj; j=0; 1; : : : ; n, the null rules (Qn+1[p2k])
−1=2Q[pkf]; k=0; 1; : : : ; n, are mutually orthonormal with

respect to the inner product (·; ·)W−1 . These null rules are used in [57] to construct actual approxi-
mating polynomials fd and in turn for nonlinear error estimates which are based on approximating∫ 1
−1 |f(x)− fd(x) | dx.

3.4. Peano stopping functionals

Using the notation from Section 1.4, most stopping functionals Sm used in practice satisfy cs(Rn)
¡cs(Sm) for special values of s. This inequality implies deg(Sm)¿s − 1. A stronger condition can
be given using Peano kernels,

|Ks(Rn; x)|6Ks(Sm; x) for every x ∈ (a; b): (13)

For stopping functionals based on Peano kernel theory, cf. [34] and the literature cited therein. Every
functional Sm of the type (3) which satis�es (13) is called a (s; m) Peano stopping functional for
the quadrature formula Qn. A restriction for Peano stopping functionals is that the endpoints ±1
have to be among the nodes of Sm (see [34,61]). An (s; m) Peano stopping functional Soptm is called
optimal for Qn if

cs(Soptm ) = min{cs(Sm) | Sm is an (s; m) Peano stopping functional for Qn}:
In view of (13), the construction of optimal Peano stopping functionals is a problem of best one-sided
approximation by spline functions. For every Qn with deg(Rn)¿s − 1 and �xed nodes y1; : : : ; ym

there exists a unique optimal (s; m) Peano stopping functional (cf. [28]). Condition (13) implies that
Ks(Sm; ·); Ks(Sm+Rn; ·) and Ks(Sm−Rn; ·) are nonnegative in (−1; 1), i.e., Sm; Sm−Rn and Sm+Rn are
positive de�nite of order s. Hence, de�niteness criteria are important for the construction of Peano
stopping functionals (see [34] and in particular [13]); several algorithms are compared in [5].
A characteristic property of (s; m) Peano stopping functionals is that the inequality (4) is guaran-

teed for all

f ∈ A+s [− 1; 1] = {f ∈ As[− 1; 1]; f(s) has no change of sign in [− 1; 1]}:
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This feature seems particularly attractive for automatic integration routines. Assuming that a given
function f is s times di�erentiable, its sth derivative may often have only a �nite number of changes
of sign. Hence, after su�ciently many recursion steps of an interactive automatic quadrature routine,
“most” of the resulting subintervals [ai; bi] will not contain a change of sign of f(s), such that
f ∈ A+s [ai; bi]. Hence, in such subintervals, reliable error bounds can be obtained without explicit
knowledge of f(s).
In view of the well-known de�niteness of the Gaussian and Lobatto formulas,

S2n+1 = 1
2(Q

L
n+1 − QG

n )

is a (2n; 2n+ 1) stopping functional for the quadrature formula

Q2n+1 = 1
2(Q

L
n+1 + QG

n ):

In general, pairs of positive and negative de�nite formulas lead to analogous constructions of Peano
stopping functionals (see also [19] for examples). However, from the point of view of practical
calculations, most interesting are stopping functionals for �xed quadrature formulas. In [29], the
following optimal (n; n + 1) Peano stopping formula has been constructed for the Lobatto formula
QL

n+1,

SLn+1 =
√
�

2n−1
�(n)

�(n+ 1=2)
dvd(xL1 ; : : : ; x

L
n+1):

A (n+ 1; n+ 2) Peano stopping functional for the Gaussian formula QG
n is given by [29]

SGn+2 =
1
2n−1

�(n)�(n=2 + 1)
�(n+ 1=2)�(n=2 + 3=2)

dvd(−1; xG1 ; : : : ; xGn ; 1): (14)

This stopping functional gives both guaranteed inclusions for f ∈ A+s [− 1; 1] and tight bounds, in
particular, tighter than (12) and tighter than SBE2n+1 in Section 3.2,

c2n(SG2n+1)
c2n(SAG2n+1)

6
C
n
;

c2n(SG2n+1)
c2n(SBE2n+1)

6
C
n
; C 6= C(n):

A (2; n) Peano stopping functional for QG
n which is based only on the nodes {−1; 0; 1} can be found

in [84],

SP =
2�2

3(2n+ 1)2
dvd(−1; 0; 1):

Since �K1 ¿− 1 and �Kn+1¡ 1, the Gauss–Kronrod stopping functional SGK2n+1 is no (s; 2n+ 1) Peano
stopping functional for any s ∈ N. In [25], a (2n + 2; 2n + 3) Peano stopping functional has been
constructed for the Gauss–Kronrod formula QGK

2n+1,

S2n+3 =
1
22n

cn
n+ 1

dvd(−1; �K1 ; xG1 ; �K2 ; : : : ; xGn ; �Kn+1; 1);
where cn = (

√
�
√
(6n+ 3)=(2n+ 5))(1 +

√
3�(2

√
n+ 2− 2)−1).

4. Conclusion

In this survey, we gave an overview on practical error estimates for Gaussian formulas that
are of the same type as quadrature formulas, i.e., linear combinations of function values. Stopping
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functionals based both on extended Gaussian formulas and on Gaussian nodes are linear combinations
of divided di�erences. Peano kernels are a very useful tool for the construction and for the comparison
of both quadrature formulas and stopping functionals. In many cases, the construction of a stopping
functional is essentially the construction of a suitable spline function that approximates best, in a
given sense, a Peano kernel of the Gaussian formula (typically the highest-order Peano kernel). The
sense of “best” governs the type of the stopping functional: moment-preserving approximation leads
to Gauss–Kronrod formulas, while one-sided approximation leads to Peano stopping functionals.
Other types of approximations may be applied in many situations, e.g., on in�nite intervals, where
Gauss–Kronrod formulas are not available. We shall discuss such methods elsewhere.
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Abstract

We present a computational procedure for generating formally orthogonal polynomials associated with a given bilinear
Hankel form with rectangular matrix-valued moments. Our approach covers the most general case of moments of any
size and is not restricted to square moments. Moreover, our algorithm has a built-in de
ation procedure to handle linearly
dependent or almost linearly dependent columns and rows of the block Hankel matrix associated with the bilinear form.
Possible singular or close-to-singular leading principal submatrices of the de
ated block Hankel matrix are avoided by
means of look-ahead techniques. Applications of the computational procedure to eigenvalue computations, reduced-order
modeling, the solution of multiple linear systems, and the fast solution of block Hankel systems are also brie
y described.
c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Bilinear form; Vector-valued polynomials; Matrix-valued moments; Block Hankel matrix; De
ation; Look-
ahead; Realization; Block Krylov matrix; Lanczos-type algorithm; Matrix-Pad�e approximation; Fast block Hankel solver

1. Introduction

It has been known for a long time that many of the algebraic properties of scalar orthogonal
polynomials on the real line carry over to the more general case of formally orthogonal polynomials
induced by a given sequence of scalar moments; see, e.g., [3,4,8,15–17] and the references given
there. For example, such formally orthogonal polynomials still satisfy three-term recurrences, as long
as the scalar Hankel matrix H associated with the moment sequence is strongly regular, i.e., all
leading principal submatrices of H are nonsingular. If H has some singular or in some sense nearly
singular leading principal submatrices, then so-called look-ahead techniques can be used to jump over
these submatrices, resulting in recurrence relations that connect the formally orthogonal polynomials
corresponding to three consecutive look-ahead steps. In particular, these recurrences reduce to the
standard three-term recurrences whenever three consecutive leading principal submatrices of H are
nonsingular.

0377-0427/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
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Scalar formally orthogonal polynomials are intimately connected with a number of algorithms for
matrix computations. For example, the classical Lanczos process [19] for nonsymmetric matrices, fast
solvers for linear systems with Hankel structure [14], and the computation of Pad�e approximants of
transfer functions of single-input single-output linear dynamical systems [6,10] are all closely related
to formally orthogonal polynomials. Furthermore, the theory of formally orthogonal polynomials
has proven to be useful for developing more robust versions of these algorithms. For instance,
the look-ahead variants [12,17,22] of the Lanczos process, which remedy possible breakdowns in
the classical algorithm, are direct translations of the extended recurrences for formally orthogonal
polynomials in the general case of Hankel matrices H with singular or nearly singular leading
principal submatrices.
The concept of formally orthogonal polynomials can be extended to the case of arbitrary, in general

rectangular, matrix-valued moments. However, except for special cases such as square orthogonal
matrix polynomials on the line [25], the theory of the associated matrix-valued polynomials is a lot
less developed than in the case of scalar moments. For example, a suitable extension of the classical
Lanczos process, which is only applicable to single right and left starting vectors, to multiple, say m
right and p left, starting vectors is intimately related to formally orthogonal polynomials associated
with sequences of (p × m)-matrix-valued moments that are given by a so-called realization. Such
a Lanczos-type method for multiple starting vectors was developed only recently [1,7], motivated
mainly by the need for such an algorithm for the computation of matrix-Pad�e approximants of
transfer functions of m-input p-output linear dynamical systems [7,9,10].
There are two intrinsic di�culties that arise in the case of (p×m)-matrix-valued moments, but not

in the case of scalar moments. First, in the important case of matrix moments given by a realization,
the block Hankel matrix H associated with these moments necessarily exhibits systematic singular-
ities or ill-conditioning due to linearly dependent or nearly linearly dependent columns and rows.
These linear or nearly linear dependencies imply that from a certain point on all leading principal
submatrices of H are singular or nearly singular, although the moment information contained in H
has not been fully exhausted yet. In particular, block Hankel matrices induced by a realization are
not strongly regular, and singular or nearly singular submatrices caused by linearly dependent or
nearly linearly dependent columns and rows cannot be avoided by means of look-ahead techniques.
Instead, so-called de
ation is needed in order to remove systematic singularities or ill-conditioning
due to linearly dependent or nearly linearly dependent columns and rows of H . Second, the fact
that m 6= p in general excludes the possibility of constructing the formally orthogonal polynomials
directly as right (m×m)-matrix-valued and left (p×p)-matrix-valued polynomials. Moreover, each
de
ation of a column of H e�ectively reduces m by one and each de
ation of a row of H e�ec-
tively reduces p by one. Since de
ations of columns and rows occur independently in general, this
means that the “current” values of m and p in the course of the construction of formally orthogonal
polynomials will be di�erent in general, even if m=p initially. The di�culties due to di�erent m and
p can be avoided by constructing the polynomials associated with (p× m)-matrix-valued moments
vector-wise, rather than matrix-wise.
In this paper, we present a computational procedure for generating right and left formally orthog-

onal polynomials associated with a given bilinear form induced by a sequence of general rectangular
(p × m)-matrix-valued moments. Our approach covers the most general case of arbitrary integers
m;p¿1, and we need not assume that the block Hankel matrix H associated with the given bilinear
form is strongly regular. Our algorithm has a built-in de
ation procedure to handle linearly dependent
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or almost linearly dependent columns and rows of H . Possible singular or close-to-singular lead-
ing principal submatrices of the de
ated block Hankel matrix are avoided by means of look-ahead
techniques. Applications of the computational procedure to eigenvalue computations, reduced-order
modeling, the solution of multiple linear systems, and the fast solution of block Hankel systems are
also brie
y described.
We remark that our approach of constructing formally orthogonal polynomials induced by matrix

moments in a vector-wise fashion is related to earlier work, such as [2,24,27]. However, in these
papers, the assumption that H is strongly regular is made, and this excludes the intrinsic di�culties
described above.
The remainder of this paper is organized as follows. In Section 2, we introduce some notation.

Section 3 describes our general setting of bilinear Hankel forms and discusses the need for de
ation
and look-ahead. In Section 4, we present our notion of formally orthogonal polynomials associated
with a given bilinear Hankel form. In Section 5, we explain the structure of the recurrence relations
used in our construction of formally orthogonal polynomials. A complete statement of our algorithm
for generating formally orthogonal polynomials is given in Section 6, and some properties of this
algorithm are stated in Section 7. Applications of the algorithm are sketched in Section 8. Finally,
in Section 9, we make some concluding remarks.

2. Notation and some preliminaries

In this section, we introduce some notation used throughout this paper.

2.1. Notation

All vectors and matrices are allowed to have real or complex entries. We use boldface letters to
denote vectors and matrices. As usual, M = [mjk], MT = [mkj], and MH =M

T
= [mkj] denote the

complex conjugate, transpose, and the conjugate transpose, respectively, of the matrix M=[mjk]. We
use the notation [xj]j∈J for the subvector of x= [xj] induced by the index set J, and analogously,
[mjk]j∈J; k∈K for the submatrix of M = [mjk] induced by the row indices J and column indices
K. The vector norm ‖x‖ :=√

xHx is always the Euclidean norm, and ‖M‖ :=max‖x‖=1‖Mx‖ is the
corresponding induced matrix norm.
The ith unit vector of dimension j is denoted by e( j)i . We use In to denote the n × n identity

matrix, and we will simply write I if the actual dimension is apparent from the context.
The sets of real and complex numbers are denoted by R and C, respectively. We use the symbols

N for the set of positive integers and N0 =N ∪ {0} for the set of non-negative integers.
We denote by P( j) the set of all vector-valued polynomials

�(�) ≡ a0 + a1�+ · · ·+ ai�i; where a0; a1; : : : ; ai ∈ Cj; i ∈ N0; (1)

with coe�cient vectors of dimension j, and by

P( j×k) := {�= [�1 �2 · · · �k] |�1;�2; : : : ;�k ∈ P( j)}
the set of all matrix-valued polynomials with coe�cient matrices of size j × k.
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We use the symbol 0 both for the number zero and for the scalar zero polynomial, and similarly,
the symbol 0 for the m × n zero matrix and the zero polynomials in P( j) and P( j×k). The actual
dimension of 0 will always be apparent from the context.

2.2. The degree of a vector polynomial

Following [2,5,27], we can associate with any given vector polynomial (1), �, the scalar polyno-
mial

’(�) ≡ [1 � · · · �j−1] · �(�j) ≡
(i+1) j−1∑

k=0

�k�k : (2)

Here, the �k’s are just the coe�cients of the stacked coe�cient vector

a =




a0
a1
...
ai


=




�0
�1
...

�(i+1) j−1


 ∈ C(i+1) j (3)

of (1). The (diagonal) degree, deg�, of � is then de�ned as the degree of the scalar polynomial
(2), i.e.,

deg� :=

{
max{k | �k 6= 0 in (2)} if � 6= 0;

−∞ if �= 0:

In the sequel, we will also use the notation

vec� :=

{
[�k]06k6deg � if � 6= 0;

0 if �= 0

for the vector that results from (3) by deleting any trailing zeros.

3. Bilinear Hankel forms and block Hankel matrices

In this section, we describe our general setting of bilinear Hankel forms and their associated
in�nite block Hankel matrices. We also discuss the need for de
ation and look-ahead to avoid
possible singular or ill-conditioned submatrices of the block Hankel matrices.

3.1. Bilinear Hankel forms

Let m, p¿1 be given integers. A complex-valued functional

〈· ; · 〉 : P(p) ×P(m) 7→ C (4)

is called a bilinear form if

〈 ; �1�1 + �2�2〉= �1〈 ;�1〉+ �2〈 ;�2〉 (5a)
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and

〈�1 1 + �2 2;�〉= �1〈 1;�〉+ �2〈 2;�〉 (5b)

for all �;�1;�2 ∈ P(m),  ;  1;  2 ∈ P(p), �1; �2 ∈ C. We say that (4) is a Hankel form if the
following shift property is satis�ed:

〈 ; ��〉= 〈� ;�〉 for all � ∈ P(m);  ∈ P(p): (6)

In the sequel, it is always assumed that (4) is a given bilinear Hankel form. Furthermore, we extend
(4) to matrix-valued polynomials by setting

〈	;�〉 :=




〈 1;�1〉 〈 1;�2〉 · · · 〈 1;�k〉
〈 2;�1〉 〈 2;�2〉 · · · 〈 2;�k〉
...

...
...

〈 j;�1〉 〈 j;�2〉 · · · 〈 j;�k〉


 ∈ Cj×k (7)

for all

�= [�1 �2 · · · �k] ∈ P(m×k); 	 = [ 1  2 · · ·  j] ∈ P(p×j):

In particular, using the notation (7), we de�ne p× m (matrix-valued) moments

Mj; k := 〈Ip�j; Im�k〉 ∈ Cp×m for all j; k ∈ N0: (8)

In view of the bilinearity (5a) and (5b), any bilinear form (4) is completely determined by its
moments (8). Furthermore, the shift property (6) means that the moments Mj; k only depend on
j + k, and we set Mj+k :=Mj; k . Therefore, any bilinear Hankel form (4) is completely determined
by the sequence of moments

Mi := 〈Ip; Im�i〉= 〈Ip�i; Im〉; i ∈ N0:

The associated in�nite block Hankel matrix

H := [Mj+k]j; k¿0 =




M0 M1 M2 · · ·
M1 M2

M2
...


 (9)

is called the moment matrix of the bilinear Hankel form (4). Although H has a block Hankel
structure, we will also consider H as a scalar matrix with entries h�;�, i.e.,

H = [h�;�]�;�¿0; where h�;� ∈ C for all �; � ∈ N0:

Furthermore, for each n; k ∈ N0, we set

Hn; k := [h�;�]06�6n;06�6k and Hn :=Hn;n = [h�;�]06�;�6n:

Note that Hn is the nth scalar leading principal submatrix of H .
With the notation just introduced, for any pair of vector-valued polynomials � ∈ P(m) and

 ∈ P(p), we have

〈 ;�〉 := bTHdeg  ;deg �a; where a = vec�; b= vec  : (10)
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3.2. Bilinear Hankel forms associated with realizations

An important special case is bilinear Hankel forms that are associated with so-called realizations
of time-invariant linear dynamical systems. We refer the reader to [18, Chapter 10.11], [23], or [26,
Chapter 5.5] for a discussion of the concepts and results from realization theory that we will use in
this subsection.
Let

Mi ∈ Cp×m; i = 0; 1; : : : ; (11)

be a given sequence of moments. A triple of matrices

A ∈ CN×N ; R ∈ CN×m; L ∈ CN×p (12)

is called a realization of the sequence (11) if

Mi = LTAiR for all i ∈ N0:

The integer N is called the dimension of the realization (12). A realization (12) of a given sequence
(11) is said to be minimal if its dimension N is as small as possible.
Not every given sequence (11) has a realization. The following well-known result (see, e.g., [26,

Theorem 21]) gives a necessary and su�cient condition for the existence of a realization in terms
of the in�nite block Hankel matrix (9) with block entries (11).

Theorem A. A sequence (11) admits a realization if; and only if; the associated in�nite block
Hankel matrix (9); H ; has �nite rank. Furthermore; if (11) has a realization; then N = rankH is
the dimension of a minimal realization.

For the remainder of this subsection, we now assume that H has �nite rank and that (12) is a
given, not necessarily minimal, realization of the block entries (11) of H .
Note that, in view of (9) and (12), the block Hankel matrix H can be factored into block Krylov

matrices as follows:

H =




LT

LTA
LTA2

...


 · [R AR A2R · · · ]: (13)

As a �rst application of (13), we have the following connection of vector-valued polynomials with
vectors in CN .

Remark 1. Let � ∈ P(m) and  ∈ P(p) be any pair of polynomials. Then, using the representations

�(�) ≡ a0 + a1�+ · · ·+ aj�j;

 (�) ≡ b0 + b1�+ · · ·+ bk�k ;
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we can associate with � and  the pair of vectors

C= �(A) ◦ R :=Ra0 + ARa1 + · · ·+ AjRaj ∈ CN ;

w=  (AT) ◦ L :=Lb0 + ATLb1 + · · ·+ (AT)kLbk ∈ CN :
(14)

By (10), (13), and (14), it follows that 〈 ;�〉= wTC.

The factorization (13) of H necessarily implies that from a certain n on, all leading principal
submatrices Hn are singular. Indeed, consider the right block Krylov matrix

[R AR A2R · · · ] (15)

in (13). The columns of the matrix (15) are vectors in CN , and hence at most N of them are linearly
independent. By scanning the columns of (15) from left to right and deleting each column that is
linearly dependent on earlier columns, we obtain the de
ated right block Krylov matrix

[R0 AR1 A2R2 · · · Ajmax−1Rjmax ]: (16)

By the structure of (15), a column Aj−1r being linearly dependent on earlier columns implies that
all columns Air, i¿j, are also linearly dependent on earlier columns. This implies that, for each
j=0; 1; : : : ; jmax, Rj is a submatrix of Rj−1, where, for j=0, we set R−1 :=R. Similarly, by scanning
the columns of the left block Krylov matrix

[L ATL (AT)2L · · · ]
from left to right and deleting each column that is linearly dependent on earlier columns, we obtain
the de
ated left block Krylov matrix

[L0 ATL1 (AT)2L2 · · · (AT)kmax−1Lkmax ]: (17)

Here, for each k =0; 1; : : : ; kmax, Lk is a submatrix of Lk−1, where, for k =0, we set L−1 :=L. Now
let j0 be the smallest integer such that Rj0 6= R and let k0 be the smallest integer such that Lk0 6= L.
Then, by construction, it follows that the nth leading principal submatrix

Hn is singular for all n¿min{(j0 + 1)m; (k0 + 1)p} − 1:
Finally, we note that this systematic singularity of the submatrices Hn can be avoided by replacing
the moment matrix H by the de
ated moment matrix

H de
 :=




LT0
LT1A
...

LTkmaxA
kmax−1


 · [R0 AR1 · · · Ajmax−1Rjmax ]:

3.3. The need for de
ation

We now return to general moment matrices H , and we extend the procedure for avoiding sys-
tematic singularities of submatrices Hn to this general case.
Generalizing the procedure described in Section 3.2, we scan the columns, [hi;�]i¿0, �=0; 1; : : : ; of

H , from left to right and delete each column that is linearly dependent, or in some sense “almost”
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linearly dependent, on earlier columns. Similarly, we scan the rows, [h�; i]i¿0, � = 0; 1; : : : ; of H ,
from top to bottom and delete each row that is linearly dependent, or in some sense “almost”
linearly dependent, on earlier rows. We refer to this process of deleting linearly dependent and
“almost” linearly dependent columns and rows as de
ation. Moreover, we say that exact de
ation is
performed when only the linearly dependent columns and rows are removed. Clearly, exact de
ation
is only possible in exact arithmetic, and de
ation of “almost” linearly dependent columns and rows
has to be included when actual computations are done in �nite-precision arithmetic.
In the sequel, we denote by

06�0¡�1¡ · · ·¡�n ¡ · · · and 06�0¡�1¡ · · ·¡�n ¡ · · · (18)

the sequences of indices of those columns and rows of H , respectively, that are left after de
ation
has been performed. Moreover, we denote by

M= {�n}nr
n=0 and N= {�n}n‘

n=0 (19)

the sets of all the indices (18), and by

H de
 := [h�;�]�∈N; �∈M (20)

the corresponding de
ated moment matrix. Note that, in general, each of the two sequences (18)
may be �nite of in�nite, i.e., nr ; n‘ ∈ N0 ∪ {∞}. Hence H de
 can have �nitely or in�nitely many
rows or columns. However, in the special case of Hankel matrices H of �nite rank discussed in
Section 3.2, nr ; n‘ ¡∞ and thus H de
 is a �nite matrix.
In view of the block Hankel structure (9) of H , an exact de
ation of a �th column of H implies

that also all (�+ jm)th columns, where j=1; 2; : : : ; need to be de
ated. Similarly, an exact de
ation
of a �th row implies that also all (�+ jp)th rows, where j=1; 2; : : : ; need to be de
ated. We assume
that the same rule is also applied in the case of general de
ation, and so whenever a �th column or
�th row is de
ated, we also de
ate all (�+ jm)th columns, j ∈ N, respectively all (�+ jp)th rows,
j ∈ N. This implies that the sets (19) always satisfy the following conditions:

� 6∈ M⇒ � + jm 6∈ M for all j ∈ N0;

� 6∈ N⇒ �+ jp 6∈ N for all j ∈ N0:

Finally, we note that, by (18), the mappings n 7→ �n and n 7→ �n are both invertible, and we will
use �−1 and �−1 to denote the inverse mappings de�ned by

n= �−1(�n); �n ∈ M; and n= �−1(�n); �n ∈ N;

respectively.

3.4. The need for look-ahead

By replacing H with the de
ated moment matrix H de
, we have removed any rank de�ciencies
due to linearly dependent columns and rows. Next, we discuss potential singularities of the leading
principal submatrices of H de
.
By (19) and (20), all the leading principal submatrices of H de
 are given by

H de

n−1 := [h�i; �j ]06i; j¡n for all n ∈ N with n6nmax; (21)
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where

nmax := 1 + min{nr ; n‘}: (22)

Note that either nmax ∈ N0 or nmax =∞. In the special case of Hankel matrices H of �nite rank
discussed in Section 3.2, nmax is a �nite integer.
By construction, the necessary singularities implied by linearly dependent columns or rows of H

have been removed from the submatrices (21). Obviously, as in the case of scalar Hankel matrices
(see, e.g., [14] and the references given there), this construction alone is not su�cient to always
guarantee that

detH de

n−1 6= 0 for all n ∈ N with n6nmax: (23)

However, the situation that (23) is satis�ed is the generic case.
In the general case, some of the submatrices (21) may be singular or in some sense “close” to

singular, and we employ so-called look-ahead techniques [22,28] to avoid these submatrices. We
use the indices

n0 := 0¡n1¡n2¡ · · ·¡nk ¡ · · · (24)

to mark those submatrices Hnk−1 that remain after any singular or close-to-singular submatrix has
been removed from (21). In particular, by construction, we have

detH de

nk−1 6= 0 for all k ∈ N with nk6nmax:

Finally, note that in the generic case when no look-ahead is necessary, the indices (24) are simply
given by

nk = k for all k ∈ N0 with k6nmax: (25)

4. Formally orthogonal polynomials

In this section, we present our notion of formally orthogonal polynomials associated with a given
bilinear Hankel form 〈· ; ·〉 : P(p) ×P(m) 7→ C.

4.1. Two sequences of polynomials

Let M={�n}nr
n=0 and N={�n}n‘

n=0 be the column and row indices introduced in (18) and (19). Of
course, in practice, these indices are not given beforehand, and instead, they have to be determined
within our computational procedure for constructing vector-valued orthogonal polynomials. In Section
4.4 below, we will show how this can be done, but for now, we assume that M and N are given.
Our computational procedure generates two sequences of right and left polynomials,

�0;�1; : : : ;�n; : : : ∈ P(m) and  0;  1; : : : ;  n; : : : ∈ P(p); (26)

respectively. Here, n ∈ N0 and n6nmax, where nmax is given by (22). Furthermore, the polynomials
(26) are constructed such that their degrees are just the indices M and N, i.e.,

deg�n = �n and deg  n = �n for all n; (27)
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and their coe�cient vectors,

a(n) := vec�n =




�(n)0
�(n)1
...

�(n)�n


 and b(n) := vec  n =




�(n)0
�(n)1
...

�(n)�n


 ; (28)

have no nonzero entries outside M and N, i.e., for all n,

�(n)� = 0 if � 6=M and �(n)� = 0 if � 6=N: (29)

4.2. Orthogonality in the generic case

The goal is to construct the polynomials (26) such that they are regular formally orthogonal
polynomials in the sense of the following de�nition.

De�nition 2. The polynomial �n ∈ P(m) is said to be an nth right formally orthogonal polynomial
(RFOP) if deg�n = �n and

〈 ;�n〉= 0 for all  ∈ P(p) with deg  = �i; i¡n: (30)

The polynomial  n ∈ P(p) is said to be an nth left formally orthogonal polynomial (LFOP) if
deg  n = �n and

〈 n;�〉= 0 for all � ∈ P(m) with deg�= �i; i¡n: (31)

Moreover, the RFOP �n and the LFOP  n are said to be regular if they are uniquely determined by
(30) and (31), respectively, up to a nonzero scalar factor.

Using (10), (21), and (27)–(29), one readily veri�es that the condition (30) is equivalent to the
system of linear equations,

H de

n−1




�(n)�0
�(n)�1
...

�(n)�n−1


=−�(n)�n




h�0 ; �n

h�1 ; �n

...
h�n−1 ; �n


 ; �(n)�n

6= 0; (32)

for the potentially nonzero coe�cients of �n. Similarly, (31) is equivalent to the system of linear
equations,

(H de

n−1)

T




�(n)�0
�(n)�1
...

�(n)�n−1


=−�(n)�n




h�n; �0

h�n; �1
...

h�n; �n−1


 ; �(n)�n 6= 0; (33)

for the potentially nonzero coe�cients of  n. In view of (32) and (33), �n and  n can be constructed
as a regular RFOP and a regular LFOP, respectively, if, and only if, H de


n−1 is nonsingular. We thus
have the following result on the existence of regular RFOPs and LFOPs in the generic case (23).
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Theorem 3. The polynomials (26) can all be constructed as regular RFOPs and LFOPs only in
the generic case; i.e.; if the matrices H de


n−1 are nonsingular for all n ∈ N with n6nmax.

In the generic case, we thus construct the polynomials (26) such that

〈 i ;�n〉= 0 for all i 6= n; i; n ∈ N0; i; n6nmax: (34)

Using the notation

�n := [�0 �1 · · · �n] and 	n := [ 0  1 · · ·  n] (35)

for the matrix polynomials whose columns are the �rst n + 1 right and left polynomials (26),
respectively, the orthogonality condition (34) can be stated as follows:

〈	n;�n〉= �n for all n ∈ N0; n6nmax: (36)

Here,

�n := diag(�0; �1; : : : ; �n); where �i := 〈 i ;�i〉 for all i: (37)

Finally, let

An := [�( j)�i
]06i; j6n and Bn := [�( j)�i ]06i; j6n (38)

denote the matrices of the potentially nonzero coe�cients of �n and 	n, respectively. Then, by
(10), (21), (28), (29), and (38), the condition (36) is equivalent to the matrix factorization

BT
nH

de

n An = �n; (39)

where An and Bn are nonsingular upper triangular matrices. Thus, it follows from (37) and (39) that
the condition (23) for the generic case is equivalent to

�i 6= 0 for all 06i¡nmax: (40)

4.3. Orthogonality in the case of look-ahead

We now turn to the general case where look-ahead is used to avoid singular or close-to-singular
submatrices H de


n−1. In view of Theorem 3, the polynomials �n and  n cannot be constructed as a
regular RFOP and LFOP is H de


n−1 if exactly singular. If H de

n−1 is nonsingular, but in some sense

close to singular, then building �n and  n as a regular RFOP and LFOP will result in numerical
instabilities in general. Therefore, we only construct the polynomials �nk and  nk corresponding to
the index sequence (24) as regular RFOPs and LFOPs, while the remaining polynomials satisfy only
a relaxed version of the orthogonality condition (34).
More precisely, based on the indices (24), we partition the right and left polynomials (26) into

clusters

�(k) := [�nk �nk+1 · · · �nk+1−1] (41a)

and

	(k) := [ nk  nk+1 · · ·  nk+1−1]; (41b)

respectively. The polynomials (26) are then constructed such that we have the cluster-wise orthog-
onality

〈	( j);�(k)〉= 0 for all j 6= k; j; k ∈ N0; nj; nk6nmax: (42)
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We remark that, by (42), the leading polynomials �nk and  nk of each kth cluster (41a) and (41b)
are regular RFOPs and LFOPs, respectively. Next, we set

�(k) := 〈	(k);�(k)〉 for all k:

Then, using essentially the same argument that lead to condition (40) in the generic case, it follows
that, in the general case,

�(k) is nonsingular for all k ∈ N0 with nk ¡nmax:

Finally, note that each nth pair of polynomials �n and  n in (26) is part of exactly one pair of
clusters (41a) and (41b), namely those with index k = 
(n). Here and in the sequel, we use the
notation


(n) :=max{ j ∈ N0 | nj6n} (43)

for the function that determines the cluster index for the nth pair of polynomials. Recall from (25)
that in the case of no look-ahead, nk = k for all k. Thus, in the generic case, (43) reduces to


(n) = n for all n: (44)

4.4. How de
ation is done

In practice, the indices (18) and (19), which describe de
ations, are not given beforehand, and
instead, they have to be determined as part of the algorithm for constructing the polynomials (26).
In this subsection, we describe how this is done.
In the algorithm, we keep track of the current block sizes mc and pc. Initially, mc=m and pc=p.

Every time a de
ation of a right polynomial is performed, we set mc = mc − 1, and every time a
de
ation of a left polynomial is performed, we set pc =pc− 1. Thus, at any stage of the algorithm,
m−mc, respectively p−pc, is just the number of de
ations of right, respectively left, polynomials
that have occurred so far.
Now assume that we already have constructed the right and left polynomials (26) up to index n−1.

In addition to these polynomials, our algorithm has built mc right and pc left auxiliary polynomials,

�̂n; �̂n+1; : : : ; �̂n+mc−1 and  ̂ n;  ̂ n+1; : : : ;  ̂ n+pc−1; (45)

that satisfy the following “partial” orthogonality conditions:

〈	(k); �̂i〉= 0 for all 06k ¡
(n); n6i¡n+ mc;

〈 ̂ i ;�
(k)〉= 0 for all 06k ¡
(n); n6i¡n+ pc:

(46)

The polynomials (45) are the candidates for the next mc right, respectively pc left, polynomials
in (26). In particular, in view of (46), the polynomials �̂n and  ̂ n already satisfy the necessary
orthogonality conditions of �n and  n. It remains to decide if �̂n or  ̂ n should be de
ated. If �̂n is
de
ated, it is deleted from (45), the indices of the remaining right polynomials in (45) are reduced
by one, and mc is reduced by one. If  ̂ n is de
ated, one proceeds analogously.
The decision if �̂n or  ̂ n needs to be de
ated is relatively simple for the special case of bilinear

Hankel forms given in terms of a realization (12). Indeed, it is easy to see that an exact de
ation of
�̂n, respectively  ̂ n, needs to be performed if, and only if, the associated vectors (see (14)) satisfy

�̂n(A) ◦ R= 0; respectively  ̂ n(A
T) ◦ L= 0:
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In practice, one thus de
ates �̂n, respectively  ̂ n, if

‖�̂n(A) ◦ R‖6dtolrn; respectively ‖ ̂ n(A
T) ◦ L‖6dtolln; (47)

where dtolrn¿0 and dtolln¿0 are suitably chosen small de
ation tolerances. Note that the check
(47) reduces to exact de
ation only if dtolrn = dtolln = 0.
In the general case of Hankel matrices H of not necessarily �nite rank, one can show that exact

de
ation of �̂n, respectively  ̂ n, needs to be performed if, and only if,

〈Ip�k ; �̂n〉= 0; respectively 〈 ̂ n; Im�
k〉= 0; for all k ∈ N0: (48)

Since (48) represents in�nitely many conditions (representing the fact that H is an in�nite matrix),
in practice, one needs to replace (48) by some appropriate �nite version. For example, imitating
(47), one can check if, for all 06k6k(n),

‖〈Ip�k ; �̂n〉‖6dtolrn; respectively ‖〈 ̂ n; Im�
k〉‖6dtolln; (49)

where k(n) is a su�ciently large, but �nite integer.
We conclude this section with some comments on the choice of the de
ation tolerances dtolrn

and dtolln in (47) and (49). Clearly, de
ation of �̂n or  ̂ n should occur independent of the actual
scaling of the problem. First, consider the special case of bilinear Hankel forms given in terms of
a realization (12). To make the de
ation check independent of the actual scaling of the columns rj
of R, of the columns lj of L, and of the matrix A, we use the tolerances

dtolrn =

{
dtol · ‖rdeg �̂n

‖ if deg �̂n6m;

dtol · nest(A) if deg �̂n ¿m;

dtolln =

{
dtol · ‖ldeg  ̂ n

‖ if deg  ̂ n6p;

dtol · nest(A) if deg  ̂ n ¿p:

(50)

Here, nest(A) is either ‖A‖ or an estimate of ‖A‖, and dtol is an absolute de
ation tolerance. Based
on our extensive numerical experiences for the applications outlined in Sections 8.1–8.4 below, we
recommend dtol=

√
eps, where eps, is the machine precision. In practical applications, the matrix

A is often not available directly, and then the ideal choice nest(A) = ‖A‖ in (50) is not feasible
in general. However, matrix–vector products with A and AT can usually be computed e�ciently. In
this case, one evaluates quotients of the form

‖AC‖
‖C‖ or

‖ATw‖
‖w‖

for a small number of vectors C∈CN ; C 6= 0, or w ∈ CN ;w 6= 0, and then takes the largest of these
quotients as an estimate nest(A) of ‖A‖.
In the case of Hankel matrices H not given in terms of a realization (12), the de
ation tolerances

dtolrn, respectively dtolln, in (49) are chosen similar to (50) as products of an absolute de
ation
tolerance dtol and factors that take the actual scaling of the columns, respectively rows, of H into
account.
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5. Recurrence relations

In this section, we describe the recurrence relations that are used in our computational procedure
for generating the polynomials (26). From now on, we always consider the general case where
look-ahead may be needed, and we will point out simpli�cations that occur in the generic case.

5.1. Recurrences in matrix form

Recall that the matrix polynomials �n and 	n introduced in (35) contain the �rst n+ 1 pairs,

�0;�1; : : : ;�n and  0;  1; : : : ;  n; (51)

of the polynomials (26). Using the notation �n and 	n, the recurrences for generating all the
polynomials (51) can be summarized compactly in matrix form as follows:

[Im ��n] =�nTn;m+n + [0 · · · 0︸ ︷︷ ︸
m+n+1−mc

�̂n+1 · · · �̂n+mc︸ ︷︷ ︸
mc

] + �̂
de


m+n;

[Ip �	n] =	nT̃ n;p+n + [0 · · · 0︸ ︷︷ ︸
p+n+1−pc

 ̂ n+1 · · ·  ̂ n+pc︸ ︷︷ ︸
pc

] + 	̂
de


p+n:
(52)

Relations (52) hold true for all n=−1; 0; 1; 2; : : :, where n6nmax. Here, we use the convention that
n=−1 corresponds to the initialization of the �rst m right and p left auxiliary polynomials,

�̂0; �̂1; : : : ; �̂m−1 and  ̂ 0;  ̂ 1; : : : ;  ̂ p−1;

respectively, and we set �−1 :=	−1 := ∅ and T−1;m−1 := T̃−1;p−1 := ∅ in (52). For n¿0, the matrices
Tn;m+n = [tj; k]06j6n;−m6k6n ∈ C(n+1)×(m+n+1) (53a)

and

T̃ n;p+n = [t̃j; k]06j6n;−p6k6n ∈ C(n+1)×(p+n+1) (53b)

contain the recurrence coe�cients used for the right and left polynomials, respectively. Corresponding
to the partitioning of the matrices on the left-hand sides of (52), the matrices (53a) and (53b) can
be written in the form

Tn;m+n = [�n Tn] and T̃ n;p+n = [�n T̃ n]; (54)

where

�n := [tj; k]06j6n;−m6k¡0 ∈ C(n+1)×m; Tn = [tj; k]06j; k6n ∈ C(n+1)×(n+1);
�n := [t̃j; k]06j6n;−p6k¡0 ∈ C(n+1)×p; T̃ n = [t̃j; k]06j; k6n ∈ C(n+1)×(n+1):

Finally, the matrix polynomials �̂
de


m+n and 	̂
de


p+n in (52) contain mostly zero columns, together
with the polynomials that have been de
ated. Recall from Section 4.4 that in our algorithm the
polynomials �̂n and  ̂ n are used to check for necessary de
ation. If it is decided that �̂n needs to be
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de
ated, then �̂n is moved into �̂
de


m+n and becomes its column with index m+n−mc. Otherwise, �̂n

is accepted as the next right polynomials �n. Similarly, each de
ated left polynomials  ̂ n becomes

the (p+ n− pc)th column of 	̂
de


p+n.

5.2. Structure of the recurrence matrices

Recall that the recurrence matrices for generating scalar formally orthogonal polynomials in the
special case m=p= 1 are tridiagonal in the generic case and block-tridiagonal in the general case;
see, e.g., [14,16,17]. Similarly, the recurrence matrices (53a) and (53b), Tn;m+n and T̃ n;p+n, exhibit
certain structures, although, in the case of de
ation, these structures are somewhat more complicated
than those for m = p = 1. In this subsection, we describe the structures of the matrices (53a) and
(53b).
First, consider the simplest case that neither de
ation nor look-ahead occur during the construction

of the polynomials (51). In this case, Tn;m+n and T̃ n;p+n have a banded structure. More precisely,
the entries of (53a) and (53b) satisfy

tj; k =0 if j¿k + m or k ¿ j + p;

t̃j; k =0 if j¿k + p or k ¿ j + m:

In terms of the partitionings (54), this means that �n and �n are upper triangular matrices, Tn is
a banded matrix with lower bandwidth m and upper bandwidth p, and T̃ n is a banded matrix with
lower bandwidth p and upper bandwidth m.
Next, consider the case that de
ation occurs. Recall that we use the integers mc and pc to count

de
ations. More precisely, initially mc =m and pc = p, and then mc, respectively pc, is reduced by
one every time a right polynomial �̂n, respectively a left polynomial  ̂ n, is de
ated. It turns out that
mc and pc are also the “current” bandwidths of Tn;m+n and T̃ n;p+n. This means that the de
ation
of a right polynomial �̂n reduces mc and thus both the lower bandwidth of Tn;m+n and the upper
bandwidth of T̃ n;p+n by one. Similarly, the de
ation of a left polynomial  ̂ n reduces pc and thus both
the upper bandwidth of Tn;m+n and the lower bandwidth of T̃ n;p+n by one. In addition, de
ation has
a second e�ect. A de
ation of �̂n implies that from now on, the matrix T̃ n;p+n will have additional
potentially nonzero entries t̃n−mc ; k in row n−mc and to the right of its banded part. These additional
entries mean that from now on, all left polynomials need to be explicitly orthogonalized against the
right polynomial �n−mc . Similarly, a de
ation of  ̂ n implies that from now on, the matrix Tn;m+n

will have additional potentially nonzero entries tn−pc ; k in row n− pc and to the right of its banded
part. These additional entries mean that from now on, all right polynomials need to be explicitly
orthogonalized against the left polynomial  n−pc . The size of these additional entries in T̃ n;p+n and
Tn;m+n can be shown to be bounded by

max
j=0;1;:::; n

dtolrj and max
j=0;1;:::; n

dtollj ;

respectively, where dtolrj and dtollj are the tolerances used to check for de
ation; see Section 4.4.
In particular, these additional entries in T̃ n;p+n and Tn;m+n all reduce to zero if only exact de
ation
is performed, i.e., if dtolrj = dtollj = 0 for all j.
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Finally, in the general case where both de
ation and look-ahead occur, non-trivial look-ahead
clusters, i.e., those with nk+1 − nk ¿ 1, result in “bulges” just above the banded parts of Tn;m+n

and T̃ n;p+n. In Algorithm 1 below, the cluster indices ‘ and ‘� de�ned in (58) and (57) mark
the �rst potentially nonzero elements of the banded parts, including the bulges due to look-ahead,
in the nth column of Tn;m+n and T̃ n;p+n, respectively. More precisely, tn‘ ;n is the �rst potentially
nonzero element in the nth column of Tn;m+n, and t̃n‘� ;n is the �rst potentially nonzero element
in the nth column of T̃ n;p+n. Furthermore, if the row indices n − mc, respectively n − pc, of the
additional potentially nonzero elements due to de
ation are part of a nontrivial look-ahead cluster,
then these additional potentially nonzero elements are spread out over all rows corresponding to that
look-ahead cluster. In Algorithm 1 below, the sets D and D� of cluster indices are used to record
these additional nonzero rows above the banded parts of Tn;m+n and T̃ n;p+n, respectively.
At each nth pass through the main loop of Algorithm 1, based on ‘ and D , we form the set

I in Step (6b) and, based on ‘� and D�, the set I� in Step (7b). The set I in (59) contains
the indices k of those clusters for which the associated entries tj; n; nk6j¡nk+1 of column n of the
matrix Tn;m+n are potentially nonzero. These are just the indices of the clusters 	(k) of left polyno-
mials against which the next right auxiliary polynomial �̂n+mc has to be explicitly orthogonalized.
Note that the set I in (59) has two parts. The �rst part in (59) contains the cluster indices cor-
responding to spread-out rows due to de
ation of earlier left polynomials, while the second part in
(59) contains the cluster indices corresponding to the banded part of Tn;m+n. Similarly, the set I�

in (61) contains the indices k of those clusters for which the associated entries t̃j; n; nk6j¡nk+1

of column n of the matrix T̃ n;p+n are potentially nonzero. These are just the indices of the clusters
�(k) of right polynomials against which the next left auxiliary polynomial  ̂ n+pc has to be explicitly
orthogonalized. The �rst parts of the set I� in (61) contains the cluster indices corresponding to
spread-out rows due to de
ation of earlier right polynomials, while the second part in (61) contains
the cluster indices corresponding to the banded part of T̃ n;m+n.

5.3. An example

In this subsection, we illustrate the structure of the recurrence matrices with an example.
Consider the case that m= 4 and p= 5, and assume that in the associated block Hankel matrix,

the columns with index k=2+4i; 8+4i; 19+4i; i ∈ N0, and the rows with index j=7+5i; 11+
5i; 15 + 5i; i ∈ N0, need to be de
ated. The associated indices (18) of the columns and rows left
after de
ation are as follows:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 · · ·
�n 0 1 3 4 5 7 9 11 13 15 17 21 25 29 33 · · ·
�n 0 1 2 3 4 5 6 8 9 10 13 14 18 19 23 · · ·

In terms of the auxiliary polynomials (45), these de
ations of columns and rows translate into
de
ations of the right auxiliary polynomials �̂2 (when mc = 4), �̂6 (when mc = 3), and �̂11 (when
mc = 2), and the left auxiliary polynomials  ̂ 2 (when pc = 4),  ̂ 6 (when pc = 3), and  ̂ 11 (when
pc = 2).
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Fig. 1. Structure of T14;18.

Fig. 2. Structure of T̃14;19.

We now determine the structure of the recurrence matrices T14;18 and T̃ 14;19 at n= 14. First, we
assume that no look-ahead occurs. Recall from (44) that then 
(i)= i for all i. Algorithm 1 produces
the sets D� = {3; 9} and D = {6; 9}. Moreover, the values of the row indices ‘� and ‘ given by
(57) and (58) are as follows:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
‘� 0 0 0 0 1 2 4 5 6 7 8 10 11 12 13
‘ 0 0 0 0 0 0 1 3 4 5 7 8 10 11 12

The resulting structure of T14;18 and T̃ 14;19 is shown in Figs. 1 and 2, respectively. Here, the follow-
ing convention is used: guaranteed positive elements are marked by “•”, other potentially nonzero
elements within the banded parts are marked by “∗”, and potentially nonzero elements outside the
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banded parts due to de
ation are marked by “♦”. Moreover, the vertical lines in Figs. 1 and 2
indicate the partitioning (54) of T14;18 into �14 and of T14, and T̃ 14;19 into �14 and T̃ 14, respectively.
Next, we assume that two non-trivial look-head clusters occur: one cluster of length n5 − n4 = 3

starting at n4 = 4, followed by a cluster of length n6 − n5 = 2 starting at n5 = 7. Algorithm 1 now
produces the sets of cluster indices D� = {3; 6} and D = {2; 4; 6}, and the values of the cluster
indices ‘� and ‘ given by (57) and (58) are as follows:

k 0 1 2 3 4 5 6 7 8 9 10 11
nk 0 1 2 3 4 7 9 10 11 12 13 14
‘� 0 0 0 0 1 4 5 5 7 8 9 10
‘ 0 0 0 0 0 3 4 5 5 7 8 9

The resulting structure of T14;18 and T̃ 14;19 is again shown in Figs. 1 and 2, respectively, where
we have used “l” to mark the additional potentially nonzero entries caused by the two non-trivial
look-ahead clusters.

6. The algorithm

In this section, we present a detailed statement of the complete computational procedure for
constructing formally orthogonal polynomials associated with a given bilinear Hankel form.
At pass n through the main loop of Algorithm 1 below, we construct the nth pair of polynomials,

�n and  n. We use the counter ‘ to denote the index of the clusters to which �n and  n are added.
This means that, at pass n, the currently constructed look-ahead clusters are

�(‘) := [�n‘ · · · �n] and 	(‘) := [ n‘ · · ·  n]:

We also check if these look-ahead clusters are complete. If they are, then the polynomials �n+1 and
 n+1 constructed during the next, (n + 1)st, pass start new clusters. All the other notation used in
the following statement of Algorithm 1 has already been introduced.

Algorithm 1 (Construction of polynomials associated with 〈· ; ·〉.).

INPUT: A bilinear Hankel form 〈· ; ·〉: P(p) ×P(m) 7→ C.
(0) Set �̂i = e(m)i+1 and �̂i = i for i = 0; 1; : : : ; m− 1.

Set  ̂ i = e(p)i+1 and �̂i = i for i = 0; 1; : : : ; p− 1.
Set mc = m and pc = p.
Set D� =D = ∅ and ‘� = ‘ = 0.
Set ‘ = 0; n0 = 0, and �(0) =	(0) = ∅.

For n= 0; 1; 2; : : : ; do:
(1) (If necessary, de
ate �̂n:)

Decide if �̂n needs to be de
ated.
If no, continue with Step (2).
If yes, de
ate �̂n by doing the following:
(a) If mc = 1, then stop.

(There are no more right orthogonal polynomials.)
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(b) If n¿mc, set D� =D� ∪ {
(n− mc)}.
(D� records the cluster indices of right polynomials against which we have to explicitly
orthogonalize from now on.)

(c) Set �̂i = �̂i+1 and �̂i = �̂i+1 for i = n; n+ 1; : : : ; n+ mc − 2.
(The polynomial �̂n is de
ated and becomes the (m+n−mc)th column of the matrix �̂

de


m+n

in (52); the indices of the remaining right auxiliary polynomials are reduced by one.)
(d) Set mc = mc − 1.

(The current right block size is reduced by one.)
(e) Repeat all of Step (1).

(2) (If necessary, de
ate  ̂ n.)
Decide if  ̂ n needs to be de
ated.
If no, continue with Step (3).
If yes, de
ate  ̂ n by doing the following:
(a) If pc = 1, then stop.

(There are no more left orthogonal polynomials).
(b) If n¿pc, set D =D ∪ {
(n− pc)}.

(D records the cluster indices of left polynomials against which we have to explicitly
orthogonalize from now on.)

(c) Set  ̂ i =  ̂ i+1 and �̂i = �̂i+1 for i = n; n+ 1; : : : ; n+ pc − 2.
(The polynomial  ̂ n is de
ated and becomes the (p+n−pc)th column of the matrix 	de


p+n

in (52); the indices of the remaining left auxiliary polynomials are reduced by one.)
(d) Set pc = pc − 1.

(The current right block size is reduced by one.)
(e) Repeat all of Step (2).

(3) (Normalize �̂n and  ̂ n to obtain �n and  n, and add them to the current clusters �(‘) and  (‘).)
Set

�n =
�̂n

tn;n−mc
; �n = �̂n and  n =

 ̂ n

t̃n; n−pc
; �n = �̂n;

where tn;n−mc ¿ 0 and t̃n; n−pc ¿ 0 are suitable scaling factors.
Set �(‘) = [�(‘) �n] and 	(‘) = [	(‘)  n].

(4) (Compute �(‘) and check for end of look-ahead cluster.)
Form the matrix �(‘) = 〈	(‘);�(‘)〉.
If the matrix �(‘) is singular or in some sense “close” to singular, continue with Step (6).

(5) (The ‘th look-ahead clusters �(‘) and 	(‘) are complete and the following “end-of-clusters”
updates are performed.)
(a) (Orthogonalize the polynomials �̂n+1; �̂n+2; : : : ; �̂n+mc−1 against 	

(‘).)
For i = n+ 1; n+ 2; : : : ; n+ mc − 1, set

[tj; i−mc ]n‘6j6n = (�
(‘))−1〈	(‘); �̂i〉;

�̂i = �̂i −�(‘)[tj; i−mc ]n‘6j6n: (55)



192 R.W. Freund / Journal of Computational and Applied Mathematics 127 (2001) 173–199

(b) (Orthogonalize the polynomials  ̂ n+1;  ̂ n+2; : : : ;  ̂ n+pc−1 against �
(‘).)

For i = n+ 1; n+ 2; : : : ; n+ pc − 1, set
[ t̃j; i−pc ]n‘6j6n = (�

(‘))−T〈 ̂ i ;�
(‘)〉T;

 ̂ i =  ̂ i −	(‘)[ t̃j; i−pc ]n‘6j6n: (56)

(c) If �n‘¿m, set

‘� = 
(�−1(�n‘ − m)): (57)

If �n‘¿p, set

‘ = 
(�−1(�n‘ − p)): (58)

(d) Set ‘ = ‘ + 1; n‘ = n+ 1, and �(‘) =	(‘) = ∅.
(The polynomials �n+1 and  n+1 constructed in the next iteration start new look-ahead
clusters.)

(6) Obtain new right polynomial �̂n+mc and make it orthogonal to complete right clusters.)
(a) Set �̂n+mc = ��n and �̂n+mc = �n + m.
(b) (Determine the indices of the left clusters 	(k) against which �̂n+mc needs to be orthogo-

nalized.)
Set

I = {k | k ∈ D and k ¡‘ } ∪ {‘ ; ‘ + 1; : : : ; ‘ − 1}: (59)

(c) (Orthogonalize �̂n+mc against these clusters.)
For all k ∈ I (in ascending order), set

[tj; n]nk6j¡nk+1 = (�
(k))−1〈	(k); �̂n+mc〉;

�̂n+mc = �̂n+mc −�(k)[tj; n]nk6j¡nk+1 : (60)

(7) (Obtain new left polynomial  ̂ n+pc and make it orthogonal to complete right clusters.)
(a) Set  ̂ n+pc = � n and �̂n+pc = �n + p.
(b) (Determine the indices of the right clusters �(k) against which  ̂ n+pc needs to be orthogo-

nalized.)
Set

I� = {k | k ∈ D� and k ¡‘�} ∪ {‘�; ‘� + 1; : : : ; ‘ − 1}: (61)

(c) (Orthogonalize  ̂ n+pc against these clusters.)
For all k ∈ I� (in ascending order), set

[ t̃j; n]nk6j¡nk+1 = (�
(k))−T〈 ̂ n+pc ;�

(k)〉T;
 ̂ n+pc =  ̂ n+pc −	(k)[t̃j; n]nk6j¡nk+1 : (62)
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In the following, let Tn;m+n and T̃ n;p+n be the matrices (53a) and (53b) with entries tj; k and t̃j; k
generated by Algorithm 1. Here we use the convention that entries that are not explicitly generated
in Algorithm 1 are set to be zero.

7. Properties

In the following theorem, we summarize the key properties of Algorithm 1.

Theorem 4 (Properties of Algorithm 1).

(a) For each n=−1; 0; 1; 2; : : : ; the polynomials and matrices that have been generated after the
nth pass through the main loop of Algorithm 1; satisfy the recurrence relations (52).

(b) For each n= 0; 1; 2; : : : ; the polynomials that have been generated after the nth pass through
the main loop of Algorithm 1; satisfy

�n := [�0 �1 · · · �n] = [�
(0) �(1) · · · �(‘)];

	n := [ 0  1 · · ·  n] = [	
(0) 	(1) · · · 	(‘)]; (63)

and the cluster-wise the orthogonality conditions

〈	n;�n〉= �n := diag(�
(0);�(1); : : : ;�(‘));

〈	n‘−1; �̂n+i〉= 0; i = 1; 2; : : : ; mc;

〈 ̂ n+i ;�n‘−1〉= 0; i = 1; 2; : : : ; pc; (64)

where ‘ = 
(n+ 1).

Proof (Sketch). Part (a), as well as the partitioning property (63), can be directly veri�ed.

The cluster-wise orthogonality conditions (64) are proved using induction on n. By the induc-
tion hypothesis, before Step (5a) in Algorithm 1 is performed, the right auxiliary polynomials
�̂n+1; �̂n+2; : : : ; �̂n+mc−1 are already orthogonal to all left clusters 	(k) with 06k ¡‘. Thus it only
remains to orthogonalize these polynomials against 	(‘), and this is obviously achieved by the
update (55). Similarly, the update (56) is su�cient to ensure that the left auxiliary polynomials
 ̂ n+1;  ̂ n+2; : : : ;  ̂ n+pc−1 are orthogonal against all right clusters �(k) with 06k6‘. Next, consider the
update (60) of �̂n+mc . Here, we need to show that for the ‘omitted’ clusters 	(k); k 6∈ I , we have

〈	(k); �̂n+mc〉= [〈 j; �̂n+mc〉]nk6j¡nk+1 = 0:

To this end, assume that k 6∈ I and let nk6j¡nk+1. Since �̂n+mc =��n and using the shift property
(6) of the bilinear Hankel form, it follows that

〈 j; �̂n+mc〉= 〈� j;�n〉: (65)
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The polynomial � j itself was used at the earlier pass j through the main loop of Algorithm 1 to
obtain the auxiliary polynomial  ̂ j+pc( j). Now, there are two cases. The �rst one is that  ̂ j+pc( j) was
de
ated later on; in this case, however, k ∈ D , and thus, by (59), k ∈ I , which contradicts our
assumption. This leaves the second case that  ̂ j+pc( j) was not de
ated. In this case,  ̂ j+pc( j) was
orthogonalized to become  j′ and was added to the cluster with index k ′= 
(j′) at pass j′. One can
show that ‘ in (58) is just chosen such that k ¡‘ implies k ′ ¡‘. Thus the polynomials  j′ and
�n are part of clusters with di�erent indices, and together with (65), it follows that

〈 j; �̂n+mc〉= 〈� j;�n〉= 〈 j′ ;�n〉= 0

for all nk6j¡nk+1 with k 6∈ I .
Similarly, one shows that the clusters with k 6∈ I� can indeed be omitted in (62). .

8. Applications

In this section, we sketch some applications of Algorithm 1. In the following, we assume that
A;R;L is a given triplet of matrices of the form (12).

8.1. A Lanczos-type algorithm for multiple starting vectors

The �rst application is a Lanczos-type method that extends the classical Lanczos process [19] to
multiple right and left starting vectors. We denote by Kn(A;R) the nth right block Krylov subspace
spanned by the �rst n+1 columns of the de
ated right block Krylov matrix (16), and by Kn(AT;L)
the nth left block Krylov subspace spanned by the �rst n + 1 columns of the de
ated left block
Krylov matrix (17). The goal of the Lanczos-type method is to generate bi-orthogonal basis vectors
for Kn(A;R) and Kn(AT;L). To this end, using (14), we associate with the polynomials generated
by Algorithm 1 the so-called right and left Lanczos vectors,

Cn = �n(A) ◦ R and wn =  n(A
T) ◦ L; n= 0; 1; : : : ; (66)

respectively. Then, by re-stating Algorithm 1 in terms of the vectors (66), instead of polynomials,
we obtain the desired Lanczos-type method for multiple right and left starting vectors. In fact, the
resulting algorithm is a look-ahead version of the Lanczos-type method stated in [10, Algorithm
9:2], and it can also be viewed as a variant of the Lanczos-type method proposed in [1].
It is easy to verify that the right and left Lanczos vectors (66) indeed span the right and left

block Krylov subspaces, i.e.,

span{C0; C1; : : : ; Cn}=Kn(A;R) (67a)

and

span{w0;w1; : : : ;wn}=Kn(AT;L): (67b)
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Now let Vn := [C0 C1 · · · Cn] and Wn := [w0 w1 · · · wn] denote the matrices whose columns are the
�rst n + 1 right and left Lanczos vectors. The polynomial recurrences (52) then translate into the
following compact formulation of the recurrences used to generate the Lanczos vectors:

[R AV n] = VnTn;m+n + [0 · · · 0︸ ︷︷ ︸
m+n+1−mc

Ĉn · · · Ĉn+mc︸ ︷︷ ︸
mc

] + V̂
de


m+n;

[L ATWn] = WnT̃ n;p+n + [0 · · · 0︸ ︷︷ ︸
p+n+1−pc

ŵn+1 · · · ŵn+pc︸ ︷︷ ︸
pc

] + Ŵ
de


p+n:
(68)

Here, the only possible nonzero columns of V̂
de


m+n and Ŵ
de


p+n are the columns containing de
ated
vectors. Moreover, in view of (47), even these columns are zero and thus

V̂
de


m+n = 0 and Ŵ
de


p+n = 0 (69)

if only exact de
ation is performed. Finally, the orthogonality conditions (64) translate into the
following cluster-wise bi-orthogonality relations of the Lanczos vectors:

WT
n Vn = �n := diag(�

(0); �(1); : : : ; �(‘));

WT
n‘−1Ĉn+i = 0; i = 1; 2; : : : ; mc; (70)

VT
n‘−1ŵn+i = 0; i = 1; 2; : : : ; pc:

Here, ‘ = 
(n+ 1).
In the remainder of this paper, we always assume that n corresponds to the end of the ‘th

look-ahead cluster, i.e., n = n‘ − 1. This condition guarantees that, in (70), all blocks �(k) of the
block-diagonal matrix �n and thus �n itself are nonsingular.
By multiplying the �rst relation in (68) from the left by �−1

n WT
n and using the bi-orthogonality

relations (70), as well as the partitioning of Tn;m+n in (54), we obtain

[�−1
n WT

n R �−1
n WT

n A V n] = [�n Tn] + �−1
n WT

n V̂
de


m+n

=: [�projn T proj
n ]:

(71)

Similarly, by multiplying the second relation in (68) from the left by �−T
n VT

n , we get

[�−T
n VT

n L �−T
n VT

n AT Wn] = [�n T̃ n] + �−T
n VT

n Ŵ
de


p+n

=: [�projn T̃
proj

n ]:

Recall that V̂
de


m+n and Ŵ
de


p+n contain mostly zero columns, together with the de
ated vectors. This

can be used to show that the matrices Tn and T̃ n and the projected versions T proj
n and T̃

proj

n di�er
only in a few entries in their lower triangular parts, respectively. Furthermore, from (71) and (72),
it follows that

WT
n AV n = �nT proj

n = (T̃
proj

n )T�n: (73)

This relation implies that T proj
n can be generated directly from only Tn; T̃ n, and �n, without using

the term �−1
n WT

n V de

m+n in (71).
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For later use, we note that in the case of exact de
ation, by (69), (71), and (72),

�n = �−1
n WT

n R; �n = �−T
n VT

n L; Tn = �−1
n WT

n AV n: (74)

Next, we describe three applications of the Lanczos-type method sketched in this subsection.

8.2. Pad�e approximation of matrix-valued transfer functions

The matrix triplet (12) induces the (p× m)-matrix-valued transfer function

Z(s) ≡ LT(I − sA)−1R: (75)

The matrix size N in (12) is called the state-space dimension of (75). Let n¡N , and consider
(p× m)-matrix-valued transfer functions

Zn+1(s) ≡ LTn (I − sGn)−1Rn; (76)

where Gn ∈ C(n+1)×(n+1);Rn ∈ C(n+1)×m, and Ln ∈ C(n+1)×p. Note that (76) is a transfer function of
the same form as (75), but with smaller state-space dimension n + 1, instead of N . A function of
the form (76) is said to be an (n+1)st matrix-Pad�e approximant of Z (about the expansion point
s0 = 0) if the matrices Gn;Rn and Ln are such that

Zn+1(s) = Z(s) + O(sq(n));

where q(n) is as large as possible.
It turns out that, for the case of exact de
ation, an (n + 1)st matrix-Pad�e approximant can be

obtained by a suitable two-sided projection of Z onto the nth block Krylov subspaces Kn(A;R) and
Kn(AT;L). Recall from (67) that these subspaces are spanned by the columns of the matrices Vn

and Wn. In terms of Vn and Wn, the two-sided projection of (75) is as follows:

Zn+1(s) ≡ (VT
n L)T(WT

n Vn − sWT
n AV n)−1(WT

n R): (77)

Using the �rst relation in (70), as well as (74), we can re-write (77) in the following form:

Zn+1(s) ≡ (�Tn�n)
T(I − sTn)−1�n: (78)

Hence Zn+1 is a function of the type (76). Furthermore, in [9, Theorem 1], it is shown that (78) is
indeed an (n+ 1)st matrix-Pad�e approximant of Z .

8.3. Approximate eigenvalues

In this subsection, we consider the eigenvalue problem,

Ax= �x; (79)

for A. Using the same two-sided projection as in Section 8.2, we can derive from (79) a smaller
eigenvalue problem whose eigenvalues can then be used as approximate eigenvalues of A. More
precisely, setting x= Vnz and multiplying (79) from the left by WT

n , we get

WT
n AV nz = �WT

n Vnz: (80)

By (73), the generalized eigenvalue problem (80) is equivalent to the standard eigenvalue problem,

T proj
n z = �z;
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for the matrix T proj
n generated from the Lanczos-type method sketched in Section 8.1. The eigenvalues

of T proj
n are then used as approximate eigenvalues of A. For further details of this approach, we refer

the reader to [11].

8.4. Linear systems with multiple right-hand sides

Next, consider systems of linear equations with coe�cient matrix A and multiple, say m, given
right-hand sides. Such linear systems can be written in compact matrix form,

AX = B; (81)

where B ∈ CN×m. Let X0 ∈ CN×m be any guess for the solution of (81), and let R0 :=B − AX 0 be
the associated residual matrix. By running the Lanczos-type method sketched in Section 8.1 applied
to A;R=R0, and any (for example, random) matrix L ∈ CN×p until pass n, we obtain the matrices
�projn and T proj

n , which can be used to generate a Galerkin-type iterate for (81). More precisely, we
set

Xn+1 = X0 + VnZn; where Zn ∈ C(n+1)×m; (82)

and require that the free parameter matrix Zn in (82) is chosen such that the Galerkin condition

WT
n (B − AX n+1) = 0 (83)

is satis�ed. By inserting (82) into (83) and using the de�nitions of �projn and T proj
n in (71), it follows

that (83) is equivalent to the linear system

T proj
n Zn = �projn : (84)

Provided that T proj
n is nonsingular, the solution of (84) de�nes a unique iterate (82). In the special

case that m = p and that no de
ation occurs, the resulting iterative method for solving (81) is
mathematically equivalent to block-biconjugate gradients [21].
We remark that the condition on the nonsingularity of T proj

n can be avoided by replacing (84) by
a least-squares problem with a rectangular extension of T proj

n , which always has full column rank.
The resulting iterative method for solving (81) is the block-QMR algorithm [13,20].

8.5. A fast block Hankel solver

The last application is an extension of the fast solver for scalar Hankel matrices in [14] to general
block Hankel matrices.
Let An and Bn the matrices given by (28) and (38). Recall that these matrices contain the poten-

tially nonzero coe�cients of the �rst n+1 pairs of polynomials (51) produced by Algorithm 1. By
construction, these matrices are upper triangular and they satisfy 〈	n;�n〉 = BT

nH
de

n An. Hence, the

�rst relation in (64) is equivalent to the following matrix factorization:

BT
nH

de

n An = �n = diag(�

(0);�(1); : : : ;�(‘)): (85)

Note that (85) represents an inverse triangular factorization of H de

n . By rewriting the recurrences

used to generate the polynomials in Algorithm 1 in terms of the columns of An and Bn, one obtains
a fast, i.e., O(n2), algorithm for computing the factorization (85) of the de
ated block Hankel matrix
H de


n . Details of this fast block Hankel solver will be given in a future publication.
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9. Concluding remarks

We have presented a computational procedure for generating vector-valued polynomials that are
formally orthogonal with respect to a matrix-valued bilinear form induced by a general block Hankel
matrix H with arbitrary, not necessarily square blocks. Existing algorithms for this problem require
the assumption that H is strongly regular; unfortunately, this assumption is not satis�ed in one
of the most important special cases, namely bilinear forms given by a realization. In contrast, our
approach can handle the most general case and does not require any assumptions on the block Hankel
matrix H .
We have brie
y discussed some applications of the proposed computational procedure to prob-

lems in linear algebra. There are other potential applications, for example Gauss quadrature for
matrix-valued bilinear forms, and these will be reported elsewhere.
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Abstract

Gaussian formulas for a linear functional L (such as a weighted integral) are best computed from the recursion co-
e�cients relating the monic polynomials orthogonal with respect to L. In Gauss-type formulas, one or more extraneous
conditions (such as pre-assigning certain nodes) replace some of the equations expressing exactness when applied to
high-order polynomials. These extraneous conditions may be applied by modifying the same number of recursion co-
e�cients. We survey the methods of computing formulas from recursion coe�cients, methods of obtaining recursion
coe�cients and modifying them for Gauss-type formulas, and questions of existence and numerical accuracy associated
with those computations. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

By n-point Gaussian quadrature we mean the approximation of a given linear functional L by a
discrete linear functional Gn, the n-point Gaussian quadrature formula given by

Gn[f] =
n∑

j=1

wjf(xj);

such that Gn[f] = L[f] whenever f ∈ P2n−1, where Pm is the space of polynomials of degree not
exceeding m: We say that the formula has degree 2n− 1. It is convenient to think of L as de�ned
on the space of all functions f :R→ R, because when f is de�ned on a smaller interval, one can
simply de�ne it to be zero elsewhere.
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The de�nition suggests an obvious brute force calculation method, namely:

(1) Select a basis for P2n−1 for which L can reliably be evaluated.
(2) Solve the system of 2n non-linear equations for the 2n unknowns {wj} and {xj} without taking

any advantage of its structure, apart from possibly using a solver that can treat implicitly the
“linear” variables {wj}.

The brute force method is not totally devoid of theoretical merit, since the Jacobian of the system
gives information about the condition of the calculation problem, but is intractable for large n. In
some cases the brute force method, with ad hoc simplifying techniques that re
ect great ingenuity,
may be the only available method to �nd certain formulas of Gauss-type. This nonstandard term is
here used to mean an n-point formula of degree at least n (i.e., of higher degree than an interpo-
latory formula) and de�ned by 2n equations, not all of which express exactness when applied to a
polynomial. In general there can be at most n − 1 such equations, the other n + 1 equations being
those that de�ne the degree.
The best-known formulas of Gauss-type are the Radau, Lobatto and Kronrod formulas, respec-

tively, of degrees 2n−2; 2n−3 and approximately 3
2n. They are discussed together with some others

in Section 4.
The problem is easiest when we know the coe�cients of the three-term recursion

pl+1(x) = (x − al)pl(x)− blpl−1(x) (1)

satis�ed by the monic orthogonal polynomials {pl} (i.e., monic polynomials for which L[plq] = 0
when q ∈ Pl−1; by pq we mean the pointwise product of p and q, i.e., (pq)(x) = p(x)q(x).) In
order that (1) be valid for l=0; 1; 2; : : : ; it is customary to de�ne p−1(x) = 0; of course, p0(x) = 1.
This allows freedom in the choice of b0; a convenient value suggested by Gautschi is b0 = L[p0],
which leads to the useful relation

L[p2l ] = b0b1b2 : : : bl: (2)

Unless stated otherwise, we will assume that all bl are positive: this is for example the case when
L denotes integration with a positive measure. In Section 6 we discuss what could happen if some
bl are not positive.
The purpose of this paper is to survey the calculation methods currently regarded as e�cient and

accurate for Gaussian and some Gauss-type formulas. To keep the paper concise and devoted to
a single theme, any method that does not explicitly use the three-term coe�cients for Gn is only
mentioned when no method based on them is available. The state of the art in software for computing
with three-term coe�cients is Gautschi’s Fortran package ORTHPOL [20].
There are at least two ways of using the recursion coe�cients.

(1) The nodes {xj} are the zeros of pn. The recursion (1) is a numerically stable way of computing
pn, and can easily be di�erentiated to give a recursion formula for the derivatives. One can
therefore calculate the nodes by a method such as Newton’s or Weierstrass’. Once a node has
been found, any of several classical formulas, such as

wj =
L[p2n−1]

pn−1(xj)p′
n(xj)

; (3)
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Table 1
Two- and three-term recursion coe�cients for the classical orthogonal polynomials. In the Jacobi
case, � = 2k + � + �

Jacobi over (0,2) Laguerre over (0;∞)

ak 1 +
�2 − �2

�(� + 2)
2k + 1 + �

bk
4k(k + �)(k + �)(k + � + �)

�2(� + 1)(� − 1) k(k + �)

ek
2k(k + �)
�(� + 1)

k

qk
2(k + �)(k + � + �)

�(� − 1) k + �

can be applied to calculate its weight. This method is used in the monumental work by Stroud
and Secrest [47], which was the �rst to suggest that the use of tabulated formulas (of which
the book has many) might be superseded by subroutines (also given there).

(2) The symmetric tridiagonal matrix (known as the Jacobi matrix)

T = tridiag




√
b1

√
b1 •

√
bn−1

a0 a1 • • an−1√
b1

√
b1 •

√
bn−1




has the nodes as eigenvalues, and when its eigenvectors are normalized to have length 1, the
weights are just wj=b0u21; j where u1; j is the �rst component of the eigenvector corresponding to
the eigenvalue xj. Golub and Welsch [23] show how to modify the QR algorithm so that only
the required components are found.

In view of the Golub–Welsch result, the calculation of a Gaussian formula is considered to be es-
sentially a solved problem in the case where the recursion coe�cients are known, and all bj ¿ 0.
Still, even a fully satisfactory algorithm might be improved a little; some alternatives to the original
algorithm are discussed in Section 2. In particular, when some bl are negative, the algebraic iden-
tities behind the Golub–Welsch algorithm still hold, but the algorithm itself would require complex
arithmetic and its numerical stability and freedom from breakdown would become uncertain.
Analytical expressions for the recursion coe�cients are only available in exceptional cases, in-

cluding the classical orthogonal polynomials (see Table 1). In practice one has to calculate them
from other information about the functional. Here two main general approaches have emerged.

(1) If L arises from integration with a weight function (by far the most common application), one
can approximate L by a quadrature formula with N/n points. This approach was �rst suggested
by Gautschi [12,14]. The problem of recovering the recursion coe�cients from a discrete linear
functional is an important one in its own right, discussed in Section 3.1, although for our purpose
it is not necessary to obtain great accuracy right up to aN−1 and bN−1.

(2) In some cases it is possible to obtain modi�ed moments �k=L[�k], where the polynomials {�k}
themselves are orthogonal with respect to another linear functional �. This approach is only
useful when the recursion coe�cients {�k} and {�k} for the polynomials {�k} are known: the
most common cases are the monic Chebyshev and Legendre polynomials (see Section 3.2).
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It is essential to remember that any algorithm for calculating {al; bl} from {�k ; �k} can in
principle deliver no better accuracy than that implied by the condition of the map between the
two polynomial bases, a question thoroughly discussed by Gautschi [16]. In particular, it is well
known (to numerical analysts, at least) that the case �k = �k = 0, when the polynomials {�k}
reduce to the monomials and the modi�ed moments to ordinary moments, is catastrophically
ill-conditioned.

Finally, it is sometimes possible to view certain Gauss-type quadratures for L as Gaussian quadra-
tures for a related linear functional L′, so that the recursion coe�cients for L′ can be derived with
more or less ease from those of L. These include Radau, Lobatto, anti-Gaussian and Kronrod for-
mulas, and are discussed in Section 4.
For much of the paper, the questions of when the methods are applicable and how well they work

is at best mentioned in passing. These issues are collected in Section 6. That section also contains
a new idea on how to check the accuracy of a Gaussian formula.
Recent developments in eigenvalue methods indicate that when it is known that not only the

weights but also the nodes must be positive, it is better to work with two-term recursion coe�cients.
Laurie [33] discusses this question fully, and therefore only a brief summary is given in Section 5.

2. What to do when the recursion coe�cients are known

The timeless fact about the Golub–Welsch algorithm is that any advance in our ability to solve
the symmetric tridiagonal eigenproblem immediately implies a corresponding advance in our ability
to compute Gaussian formulas. Therefore, the fragment of Matlab code

% Given the number of nodes n —
a = zeros(1,n);
b=sqrt(1 ./(4-1 ./(1:n-1).^2));
b0=2;
[S,D]=eig(diag(b,1)+diag(a)+diag(b,-1));
x=diag(D); w= b0*S(1,:).^2;
% — we now have nodes x and weights w

that computes the n-point Gaussian quadrature formula for Lf =
∫ 1
−1 f(x) dx may be ine�cient

because the eigenvectors are found in their entirety, but as far as accuracy is concerned, it will
remain as state-of-the-art as the Linpack or LAPACK or whatever subroutines that underlie one’s
available Matlab implementation. Only the lines de�ning a; b and b0 need be changed to make it
work for other linear functionals with known recursion coe�cients.
The above code fragment requires O(n3) operations, whereas the Golub–Welsch algorithm only

requires O(n2), as follows:

(1) The inner loop of the algorithm consists of an implicit QR sweep, implemented as a sequence
of plane rotations [44] in the (i; i + 1) plane, with i = 1; 2; : : : ; n− 1.

(2) The same rotations are made to the �rst row of the eigenvector matrix, which starts at
[1; 0; 0; : : : ; 0] and ends as the square roots of the normalized weights.
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(3) All decisions as to shift strategy and de
ation are made as usual, unin
uenced by the weight
calculation.

Since 1968, several improvements to the QR algorithm have been published. When eigenvalues
only are needed, there exist ways to avoid taking square roots, e.g., Pal–Walker–Kahan [35] and
Gates–Gragg [11] rational QR algorithms. The latter is slightly faster than the former, using one
multiplication less per inner loop. Parlett has suggested [35] that it may be better to calculate the
eigenvectors after the eigenvalues have already been found.
These ideas could lead to improvements to the Golub–Welsch algorithm if one could also calculate

the weights in a square-root free way. Laurie [32] has presented one way of so doing. The idea is to
calculate all the eigenvalues �rst, and then to do a QL instead of a QR sweep to �nd each weight.
In that case the sequence of plane rotations runs i = n− 1; n− 2; : : : ; 1, so that the �rst row of the
eigenvector matrix is unchanged until the very last rotation. The �rst element changes to cos �. The
required weight is b0 cos2 �. But the quantity C = cos2 � is available directly from the rational QL
inner loop.
This idea should not be taken to its logical conclusion, as in algorithm sqlGauss of [32], where

the matrix is de
ated immediately, and the other weights are computed using the de
ated matrix. It
is well known that when ‘ultimate’ shifts are used in an attempt to converge to each eigenvalue in a
single iteration, the accumulation of roundo� is such that de
ation is not always justi�ed. This may
happen even when each shift is the correctly rounded machine representation of the corresponding
eigenvalue. Instead, each weight should be computed on its own, starting from [1; 0; 0; : : : ; 0].
The main recent alternative to the QR algorithm for the symmetric tridiagonal eigenproblem is

the divide-and-conquer algorithm. This algorithm is faster than QR on large problems when all
eigenvectors are required, and has been modi�ed by Cuppen [4] to yield only those components
necessary to the quadrature formula. A numerical study that compares the original Golub–Welsch
algorithm to the square-root free QL-based version outlined above, and to the divide-and-conquer
method, would be an interesting topic for a master’s thesis. At the moment of writing the Golub–
Welsch algorithm is the only one of the three that has been published in the form of actual Fortran
code [20], but divide-and-conquer (in the numerically robust version of Gu and Eisenstat [25]) is
in LAPACK (called via dsyevd in double precision) and it would be easy to make the abbreviated
version that would be required for such a comparison.

3. Obtaining recursion coe�cients

The subject of obtaining recursion coe�cients is of importance in all applications of orthogonal
polynomials, and in this paper we concentrate on methods that are necessary in order to compute
Gauss-type quadratures.

3.1. Recursion coe�cients via quadrature

Very often the functional L is given in the form

L[f] =
∫ B

A
f(x)w(x) dx
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(or even more generally as a Stieltjes integral). When the integral can be evaluated analytically, a
procedure commonly called the Stieltjes algorithm gives the recursion coe�cients. The formulas

bl =
L[p2l ]
L[p2l−1]

;

al =
L[xp2l ]
L[p2l ]

;

are used in bootstrap fashion, alternating with the recursion (1): each coe�cient is computed just
before it is needed to generate the next pl: (The notation x above stands for the identity polynomial:
x(t) = t:)
The luxury of analytical evaluation is rarely possible, and therefore Gautschi [12,14] suggests

replacing L by a suitable N -point quadrature formula Q with N/n; of su�cient accuracy that the
�rst n polynomials orthogonal to Q will coincide to working accuracy with those orthogonal to L:
The discrete Stieltjes algorithm is then obtained by running the above computation with Q in the
place of L; stopping when enough coe�cients have been found.
One might equally well say that the desired Gaussian quadrature is the n-point formula corre-

sponding to the functional Q: The problem of calculating the coe�cients {al} and {bl} from a
given Gaussian quadrature formula can be viewed as an inverse eigenvalue problem. This approach
is taken by De Boor and Golub [5] and by Gragg and Harrod [24]. The latter paper gives examples,
involving either very nearly coincident nodes or very nearly vanishing weights, where the discrete
Stieltjes produces results with no signi�cant �gures. Reichel has given some other illustrative exam-
ples [41] showing that the Stieltjes algorithm may give inaccurate recursion coe�cients al and bl

for l¡n even when N/n: So, although there are cases where the Stieltjes procedure is adequate,
the proverbial ‘cautious man’ will prefer to use the Gragg–Harrod algorithm [24].
An algorithm with a further small theoretical edge is discussed in Section 5.

3.2. Recursion coe�cients from modi�ed moments

Suppose that it is possible to obtain in a numerically stable way the modi�ed moments

�k = L[�k];

where the monic polynomials {�k} satisfy the recursion
�k+1(x) = (x − �k)�k(x)− �k�k−1(x): (4)

To do so is seldom a trivial task, even in simple cases such as when the polynomials {�k} are monic
Chebyshev or Legendre polynomials. For example, it is likely to be disastrous to try direct quadrature
of {�k}: When the map from the basis {�k} to the basis {pl} is well conditioned, �k typically has
k sign changes in the integration interval, thereby leading to severe the loss of signi�cant digits by
cancellation. The most promising approach is to look for a recursion formula connecting the {�k}:
Early attempts to do so needed inspiration, but Lewanowicz ([34] and many later papers) has shown
how to obtain such recursions when the functional L is an integral involving a weight function that
satis�es a di�erential equation with polynomial coe�cients.
We leave the question as to the stable computation of modi�ed moments and ask what can be

done with them when they are available.
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Sack and Donovan [45] point out that the mixed moments

�k; l = L[�kpl]

satisfy the �ve-term two-dimensional recursion relation

 −�k

bl al − �k 1
−1


 ·


 �k−1; l

�k; l−1 �k; l �k; l+1

�k+1; l


= 0:

Here the dot is taken to mean, as in the case of vectors, that the quantities to its left and right are
multiplied component by component and summed.
The matrix with entries [�k; l] is lower triangular, and this fact, together with the known �rst

column, allows us to generate the other entries along anti-diagonals running southwest to northeast.
When the main diagonal is reached, the stencil is centred over known entries to give the values of
bl and al that are required to complete the next anti-diagonal.
The �ve-term stencil makes it easy to see that when two functionals are equal on the space Pm;

then all mixed moments �k; l with k+l6m and k 6= l are zero, and therefore the �rst m+1 members
of the recursion coe�cient sequences b0; a0; b1; a1; : : : and �0; �0; �1; �1; : : : are equal. For want of a
better term, we call this the degree-revealing property of the recursion coe�cients.

4. Gauss-type quadratures

Our main tool for computing Gauss-type quadratures is to obtain the recursion coe�cients for
the system of orthogonal polynomials that are generated by the quadrature formula itself. All the
machinery of Section 2 can then be brought to bear.
When the formula has degree close to the maximum, only a few of these coe�cients di�er from

those of the Gaussian formula itself, and the problem is easy. When the formula is of comparatively
low degree, many coe�cients di�er and the problem is di�cult.
In this section, we use notations such as a′l; b′′l , etc., to indicate recursion coe�cients for Gauss-type

formulas that do not necessarily equal the al and bl of the Gaussian formula Gn:

4.1. Radau, Lobatto, anti-Gaussian and other related formulas

The best-known Gauss-type quadratures are those with one or two preassigned nodes. We shall
call them, respectively, Radau and Lobatto formulas, although strictly speaking these names apply
to the case where the preassigned nodes are endpoints of the integration interval. A nice discussion
on Radau and Lobatto formulas is provided by Golub [21].
It is possible to calculate Radau and Lobatto formulas just like Gaussian formulas, by specifying

the recursion coe�cients that de�ne their orthogonal polynomials. By the degree-revealing property,
only an−1 in the case of a Radau formula, and both an−1 and bn−1 in the case of a Lobatto formula,
will di�er from that for the Gaussian formula. We obtain

a′n−1 = an−1 + pn(�)=pn−1(�)
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for a formula with one preassigned node �; and

[
a′′n−1
b′′n−1

]
=
[
an−1
bn−1

]
+
[
pn−1(�) pn−2(�)
pn−1(�) pn−2(�)

]−1 [
pn(�)
pn(�)

]

for a formula with two preassigned nodes � and �:
The anti-Gaussian formulas introduced by Laurie [30] are likewise easily calculated. The idea

here is that G′
n should have error equal in magnitude but opposite in sign to Gn−1: The formula is

therefore also of degree 2n − 1: By the degree-revealing property, only an−1 and bn−1 need to be
modi�ed: in fact, it turns out that only the latter changes. We obtain

b′n−1 = 2bn−1:

4.2. General modi�cation algorithms

If the recursion coe�cients for the Gaussian formula corresponding to a weight function w(x)
are known, then it is possible to derive the coe�cients for the following weights in a reasonably
straightforward manner:

(1) (x − �)w(x);
(2) ((x − �)2 + �2)w(x);
(3) (x − �)−1w(x);
(4) ((x − �)2 + �2)−1w(x).

Software for this calculation is included in ORTHPOL [20].
The (n− 1)-point Gaussian rule G�

n−1 for the weight function (x− �)w(x) is related to the n-point
Radau formula Rn for w(x) with prescribed node � as follows if:

Rn[f] = �f(�) +
n∑

j=1

rjf(xj);

then

G�
n−1[f] =

n∑
j=1

(xj − �)rjf(xj):

To go from Rn to G�
n−1 we keep the nodes and multiply the weights by (xj−�); to go the other way

we divide the weights by (xj − �) and calculate the weight � for the �xed node from the condition
that f(x) = 1 is integrated exactly.
This approach to calculating the Radau formula di�ers from the one in Section 4.1 in that the

�xed node is treated in di�erent way to the others. By repeating the calculation, one can obtain
a Gaussian formula for functions with any number of preassigned poles or zeros, as is done by
Gautschi [19].
Similarly, the modi�cation algorithms can be used to obtain the formulas with up to n − 1 pre-

assigned nodes. The details of the algorithms involved, including their extension to multiple nodes,
are discussed by Elhay, Golub and Kautsky (variously collaborating) in [22,26,27].
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4.3. Kronrod formulas

Formulas with m preassigned nodes, where n= 2m+ 1; have been well studied. The best-known
case is the formula K2m+1 whose preassigned nodes are those of Gm: Although theoretical results go
back to Stieltjes and later Szegő, the quadrature formulas themselves are named after Kronrod [28],
who computed them for Lf =

∫ 1
−1 f(x) dx by a brute force method.

Many methods for computing Kronrod formulas are known (see Gautschi’s survey [18]) but most
of them separate the calculation of the new nodes and weights from the calculation of new weights
for the old nodes. In the spirit of our theme we mention only methods based on the recurrence
relation for the polynomials generated by K2m+1:
By the degree-revealing property, the last m entries in the recursion coe�cient sequence di�er

from those of G2m+1: An algorithm to calculate them, based on the �ve-term recurrence of mixed
moments, is given by Laurie [31]. The theoretical base for that algorithm is a theorem, proved in
[31], that the leading and trailing n×n submatrices of the Jacobi matrix corresponding to K2m+1 have
the same characteristic polynomial. This theorem is used by Calvetti et al. [3] to derive a method
for calculating the Kronrod formula by a divide-and-conquer method applied to that Jacobi matrix,
in which the new coe�cients are never explicitly found.
The divide-and-conquer method seems on the basis of numerical experiments to be a little more

accurate than the method based on �nding the new recursion coe�cients, but the latter also has
some theoretical and practical advantages. From the theoretical point of view, it allows us to tell
whether the formula is real with positive weights before calculating it: the question is equivalent to
asking whether all b′l ¿ 0: For example, in [31], an analytic criterion is obtained for the existence
of a 5-point Kronrod formula for the Jacobi weight (1 − x)�(1 + x)� in terms of the positivity of
certain sixth-degree polynomials in � and �: From a practical point of view, Kronrod formulas with
complex nodes and=or negative weights can also be calculated.

4.4. Other formulas with m= (n− 1)=2 preassigned nodes

An easy alternative to the Kronrod formula is to require that not only should the nodes of Gm be
preassigned, but their weights in the new formula should be the old weights multiplied by 1

2 : In that
case, the required formula is simply the mean of the Gaussian formula Gm and the anti-Gaussian
formula G′

m+1: For lack of a better term, we call the formula
1
2 (Gm + G′

m+1) an averaged Gaussian
formula. This formula exists in many more cases than does the Kronrod formula (see [31]).
The general case with m = (n− 1)=2 preassigned nodes is numerically very di�cult. A software

package has been published by Patterson [40], but one must be prepared to compute in much higher
precision than that of the required formula.
The philosophy behind the Kronrod and anti-Gaussian formulas can be iterated to form sequences

of embedded quadrature formulas in which each member is related to its predecessor in the same way
as a Kronrod or averaged Gaussian formula is related to a Gaussian formula. In the �rst case, the
Patterson formulas [38,39] are obtained: each Patterson formula is of Gauss-type under the restriction
that all the nodes of the preceding formula are pre-assigned. In the second case, Laurie’s strati�ed
formulas [29] are obtained: each formula is of Gauss-type under the restriction that all the nodes of
the preceding formula are pre-assigned, with their weights multiplied by 1

2 .
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For both of these families of formulas, the best available calculation algorithms (too complicated
to describe here) require very high precision. It is an open question whether the di�culty is inherent
(which seems likely) or an ingenious algorithm that can calculate the formulas in a numerically
stable way might one day be discovered.

5. Two-term recursion coe�cients

The symmetric tridiagonal matrix T de�ned in Section 1 is positive de�nite if and only if all the
nodes are positive. In that case, T can be factorized as T = RTR where

R= bidiag
( √

e1
√
e2 • √

en−1√
q1

√
q1 • • √

qn

)
:

The coe�cients are related by the equations

al = ql+1 + el; (5)

bl = qlel: (6)

Although the matrix R is useful from a theoretical point of view, practical algorithms involving
two-term coe�cients all work with two bidiagonal matrices

L= bidiag
(
1 1 • • 1
e1 e2 • en−1

)
; (7)

U = bidiag
(

1 1 • 1
q1 q2 • • qn

)
; (8)

which have the property that LU is similar to T .
The main computational tool is Rutishauser’s qd algorithm [43], which requires only rational

operations. It is slightly older, and computationally more e�cient, than the QR algorithm, but was
neglected for many years because the standard form of the algorithm is numerically suspect.
Recent work by Dhillon, Fernando and Parlett (variously collaborating) [6,7,36,37] has catapulted

the qd algorithm back into the limelight. The point is that the ‘di�erential’ form of the qd algorithm
(which Rutishauser knew but did not love, because it uses one multiplication more per inner loop than
the standard form) has a remarkable stability property: when the two-term coe�cients are known
to full 
oating-point accuracy, the eigenvalues of T can also be calculated to high 
oating-point
accuracy.
Laurie [33] surveys the theoretical and computational aspects of two-term versus three-term re-

cursions. It is argued there that two-term recursions might become the method of choice, but at this
stage of software development that is not yet the case.
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5.1. Computing formulas from two-term recursion coe�cients

Since the eigenvalues of RTR are the squares of the singular values of R, it is possible to give a
‘timeless’ algorithm also in the two-term case:

% Given the number of nodes n —
q=(1:n)./(1:2:2*n);
e=(1:n-1)./(3:2:2*n);
b0=2;
[U,D,V]=svd(diag(sqrt(q))+diag(sqrt(e),1);
x=diag(D). ^ 2; w=b0*V(1,:).^ 2;
% — we now have nodes x and weights w.

In practice, this algorithm might not be all that is desired, because high-
oating-point accuracy
of the smallest singular value is not relevant in the traditional applications of the SVD and the
implementation might not deliver such accuracy. It is also annoying that one must take square roots
before entering the svd routine, and square the result afterwards, but such is the price one pays for
using general-purpose software.
Software for the two-term formulas is not as highly developed yet as in the case of three-term

formulas, but the area is one of intense current reaserch, and it is already planned to add such
methods to the standard linear algebra package LAPACK which is at present the engine driving
higher-level languages like Matlab and Octave.
As for Gaussian quadrature, there exists an algorithm given by Rutishauser himself [43] that

computes the weights in a single qd array, but the algorithm relies on ‘ultimate’ shifts and therefore
the later weights may be badly contaminated. At this stage, there is no generally accepted ‘best’
way to calculate the weights.
Much work remains to be done: in particular, a two-term version of ORTHPOL would be very

welcome.

5.2. Obtaining two-term recursion coe�cients

The one thing that one should not do is to start from known three-term coe�cients and solve Eqs.
(5) and (6), because that requires subtraction of numbers with the same sign. The reverse procedure,
to obtain al and bl from ql and el; is on the other hand quite a reasonable thing to do.
One should therefore obtain the required two-term coe�cients directly. In the case of the clas-

sical orthogonal polynomials (if necessary shifted to move the left endpoint of their interval of
orthogonality to the origin), this is easily done, and in fact the formulas for the two-term coe�-
cients are simpler than those for the three-term ones (see Table 1). In the case of formulas such as
those for the Jacobi weight, the shift back to [− 1; 1] will of course lead to some cancellation if a
node happens to lie close to 0. Such a node cannot be obtained in this way to high-
oating-point
accuracy.
In the case where the coe�cients themselves are to be obtained by quadrature, it is easy to modify

the discrete Stieltjes procedure. Alternatively, one may use an algorithm given by Laurie [32], which
requires no subtractions and is therefore numerically stable in the sense of componentwise relative
error.
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An analogue of the Sack–Donovan algorithm is given in by Laurie [33], which allows us to
calculate the two-term recursion coe�cients directly from modi�ed moments.

6. Existence and numerical considerations

We use the following terminology [30] when discussing questions about the existence of a
Gaussian or Gauss-type formula:

• A quadrature formula exists if its de�ning equations have a (possibly complex) solution.
• The formula is real if the points and weights are all real.
• A real formula is internal if all the points belong to the (closed) interval of integration. A node
not belonging to the interval is called an exterior node.

• The formula is positive if all the weights are positive.
The classical results are:

• The Gaussian formula Gn is real and positive if and only if all bl ¿ 0; l= 0; 1; : : : ; n− 1.
• When L[f] =

∫ B
A f(x) d!(x), and !(x) is nondecreasing with at least n points of increase in the

interval (A; B); then Gn is real, positive and internal. This condition covers the classical integrals
with weight functions and also discrete linear functionals with positive coe�cients.

• The nodes and weights are well-conditioned functions of the coe�cients {bl} and {al} when all
bl ¿ 0; l= 0; 1; : : : ; n− 1.
The main positive results about conditioning and numerical stability are

• When the Gaussian formula is real and positive, the computation of nodes and weights from
recursion coe�cients is well conditioned in a vector norm.

• When the Gaussian formula is symmetric around zero, the computation of nodes is well conditioned
in the sense of componentwise relative error.

• The computation of recursion coe�cients from positive weights and inter-node gaps xj+1 − xj is
well conditioned in the sense of componentwise relative error [32].

There are also some negative results

• The computation of recursion coe�cients from positive weights and distinct nodes is ill-conditioned
in a vector norm [24].

The last two results seem to give contradictory answers to the question: is the map from a positive
quadrature formula to its recursion coe�cients well conditioned? The answer is generally thought to
be ‘yes’, e.g., Gautschi [17] bluntly states: ‘The map Hn is always well conditioned’. The negative
result of Gragg and Harrod [24] arises because they measure the distance between two weight
vectors w and ŵ as max|wj − ŵj| and not as max|wj − ŵj|=|wj|. The matter is fully discussed by
Laurie [32].
To summarize: when starting from accurate three-term coe�cients, with all bl positive, a formula

with positive weights is obtained and its absolute error will be small. When starting from accurate
two-term coe�cients, all positive, a formula with positive nodes and weights is obtained and its
relative error will be small.
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When starting from accurate modi�ed moments, all depends on the condition of the map from
the one polynomial base to the other. The classic paper of Gautschi [16] analyzes many cases, and
further work has been done by Fischer [8–10].
In the case of a �nite interval, it has been shown by Beckermann and Bourreau [2] that the

auxiliary base must be orthogonal with respect to a measure that has the same minimal support as
that of the polynomials we are trying to �nd, otherwise the condition number rises exponentially.
This is only a su�cient condition for instability, and it is therefore still necessary to exhibit caution
even when the condition is satis�ed. Section 6.1 shows how to obtain an a posteriori numerical
estimate for the error in such a case.
The temptation is great to use the methods even when the hypotheses required for the theorems

do not hold. For example, some of the bk values obtained by Laurie’s algorithm [31] for computing
a Kronrod formula via its the three-term coe�cients may be negative. This does not mean that the
Kronrod formula does not exist, only that it is not positive or not real (or both). In the case where
the formula is still real, any method that only uses bk and not its square root, such as those in [32],
should work. Some methods that particularly cater for such a possibility have also been developed
by Ammar et al. [1].
The case of a general inde�nite measure can be written in terms of a symmetric (not Hermitian)

tridiagonal matrix with complex entries. The inverse eigenvalue problem for such a matrix is dis-
cussed by Reichel [42]. In general, algorithms with look-ahead have to be used, but these tend to
be fairly complicated.
As a general rule, the algebraic properties of the methods remain valid when the hypotheses fail,

but the numerical stability might be adversely a�ected. Therefore, a method should still calculate the
correct numbers in exact arithmetic as long as everything stays real, and may well deliver satisfactory
results also in �nite precision. Of course, as soon as quantities that should be real turn out to be
complex, software that requires real numbers will fail, and software in a language that silently goes
complex (like Matlab) may give wrong answers, since the original version may have tacitly relied
on identities such as z = �z that are no longer true.

6.1. Estimating accuracy of the computed formula

Gautschi’s paper How and how not to check the accuracy of Gaussian formulae [15] is one of
those little gems of numerical analysis that should be required reading for all postgraduate students.
The main ‘how not to’ dictum is that it is meaningless to demonstrate that the formula integrates
the required monomials to machine precision: some very bad formulas also do that. The ‘how to’
suggestions involve higher precision than was used to compute the formula itself.
If the only available data are the moments with respect to an ill-conditioned base (such as the

monomials) then higher precision is indeed unavoidable, even when the moments are given as exact
rational numbers. In the cases where we start from modi�ed moments or recursion coe�cients, it is
relatively easy to calculate the sensitivity of the formula.
We give the argument for three-term recursions but it is equally well applicable to two-term

ones. The Sack–Donovan algorithm for computing recursion coe�cients from modi�ed moments is
noniterative and uses O(n2) operations. One can vary each modi�ed moment in turn by approximately√
�, where � is the machine epsilon, to obtain in O(n3) operations a numerical Jacobian J1 for the

dependence of recursion coe�cients on modi�ed moments.
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The computation of the formula itself is iterative, and one would be squeamish to compute a
numerical Jacobian by varying the recursion coe�cients. But the Gragg–Harrod algorithm, which
uses O(n2) operations, is noniterative, and one could therefore obtain a numerical inverse Jacobian
J−1
2 (where J2 is the Jacobian for the dependence of the nodes and weights on recursion coe�cients)
by varying the nodes and weights.
Under the assumption (which may be a highly optimistic one) that the original modi�ed moments

are correct to machine precision one could compute an iterative correction to the formula as follows:

(1) Calculate the recursion coe�cients âk ; b̂k for the computed formula by the Gragg–Harrod
algorithm.

(2) Calculate the modi�ed moments �̂i for these recursion coe�cients by the Salzer algorithm [46].
(3) Calculate the residual �i − �̂i.
(4) Calculate the correction to the formula by applying (J−1

2 )−1J1 to the residual.

Of course, without the aid of higher precision in the �rst three steps of the above procedure, one
cannot hope to improve the formula, but the correction can be expected to be of approximately the
same order of magnitude as the error in the formula.

6.2. Under
ow and over
ow

On computers with double-precision IEEE arithmetic, under
ow and over
ow is less of a problem
than on some older machines. Nevertheless, in the case of calculating Gaussian quadrature formulas,
it could be a di�culty if care is not taken. For example, the examples in [24] showing ill-conditioning
in a vector norm arise because some weights under
ow and are set to zero.
In the case of integration over a �nite interval, it is easy to avoid under
ow and over
ow.

The critical quantities of interest are the numbers L[p2l ]: These appear in, e.g., the Sack–Donovan
algorithm and in certain formulas for the weights. By the formula (2), over
ow or under
ow will
arise if bl → b for any positive value of b except 1. When the length of the interval is 4, it is fairly
well known that bl → 1 for a very large family of weight functions. Any software with claims to
robustness against over
ow or under
ow should therefore scale the interval to have length 4 before
embarking on any computation.
On an in�nite interval it is not typical for liml→∞ bl to exist. The best that one could achieve by

scaling is to have some bl less than and some greater than 1, a technique that has its limitations.
Care must therefore be taken to detect the over
ow and under
ow in the computation, since their
avoidance cannot be guaranteed.

6.3. Floating-point computation and relative accuracy

It is a common practice to perform the calculations for �nite intervals on [− 1; 1]: The under
ow
and over
ow argument above suggests that [−2; 2] is a much safer interval to work on. This is still
not good enough. In practice, points of a Gaussian formula cluster near the endpoints of the interval
and have very small weights there. When they are used to integrate functions with singularities at
the endpoints (there are better ways to do that, we know, but a numerical analyst has no control
over the abuses to which software will be put) the important quantity is the distance between the
node and the endpoint, which is subject to cancellation when the endpoint is nonzero.
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For careful work, one should store as 
oating-point numbers not the nodes, but the gaps between
them. These are precisely the quantities for which the 
oating-point stability result in [32] holds. A
challenge for future research is the development of software that can reliably compute those gaps.
One approach may be to shift each endpoint in turn to the origin, and keep half the gaps and weights
from each computation; the di�culty is then transferred to obtaining accurate 
oating-point values
for the shifted coe�cients, which is possible for the Jacobi polynomials but may require methods
not yet known in the general case.

7. Conclusion

The calculation of Gauss-type quadrature formulas is a well-understood problem for which fully
satisfactory methods are available when the recursion coe�cients are known. Questions on which
work remains to be done include:

• Do rational QR and divide-and-conquer methods really improve on the Golub–Welsch algorithm
in practice?

• Does the QL algorithm give higher accuracy in practice than the QR algorithm?
• Does the qd algorithm really improve on the Golub–Welsch algorithm in practice?
• To what extent do the answers to the previous three questions depend on implementation?
• Is the use of very high precision for the Patterson and strati�ed sequences of embedded integration
formulas inherently unavoidable?

• Two-term analogues for current three-term methods need to be developed, in particular in the form
of reliable software, culminating in a package like ORTHPOL but based on two-term recursions.

• Can the inter-node gaps of a quadrature formula be accurately computed without using higher
precision?
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Abstract

Sobolev orthogonal polynomials with respect to measures supported on compact subsets of the complex plane are
considered. For a wide class of such Sobolev orthogonal polynomials, it is proved that their zeros are contained in a
compact subset of the complex plane and their asymptotic-zero distribution is studied. We also �nd the nth-root asymptotic
behavior of the corresponding sequence of Sobolev orthogonal polynomials. c© 2001 Elsevier Science B.V. All rights
reserved.

1. Introduction

Let {�k}m
k=0 be a set of m+1 �nite positive Borel measures. For each k=0; : : : ; m the support S(�k)

of �k is a compact subset of the complex plane C. We will assume that S(�0) contains in�nitely
many points. If p; q are polynomials, we de�ne

〈p; q〉S =
m∑

k=0

∫
p(k)(x)q(k)(x) d�k(x) =

m∑
k=0

〈p(k); q(k)〉L2(�k ): (1.1)

As usual, f(k) denotes the kth derivative of a function f and the bar complex conjugation. Obviously,
(1.1) de�nes an inner product on the linear space of all polynomials. Therefore, a unique sequence
of monic orthogonal polynomials is associated with it containing a representative for each degree.
By Qn we will denote the corresponding monic orthogonal polynomial of degree n. The sequence
{Qn} is called the sequence of general monic Sobolev orthogonal polynomials relative to (1.1).
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Sobolev orthogonal polynomials have attracted considerable attention in the past decade, but only
recently has there been a breakthrough in the study of their asymptotic properties for su�ciently
general classes of de�ning measures. In this connection, we call attention to the papers [4,5,7],
in which some of the �rst results of general character were obtained regarding nth-root, ratio, and
strong asymptotics, respectively, of Sobolev orthogonal polynomials. The �rst two deal with measures
supported on the real line and the third with measures supported on arcs and closed Jordan curves.
In this paper, we consider the nth-root asymptotic behavior; therefore, we will only comment

on [4]. In [4], for measures supported on the real line and with m = 1, the authors assume that
�0; �1 ∈ Reg (in the sense de�ned in [10]) and that their supports are regular sets with respect to the
solution of the Dirichlet problem. Under these conditions, they �nd the asymptotic zero distribution
of the zeros of the derivatives of the Sobolev orthogonal polynomials and of the sequence of Sobolev
orthogonal polynomials themselves when additionally it is assumed that S(�0)⊃ S(�1). In [6], these
questions were considered for arbitrary m and additional information was obtained on the location
of the zeros which allowed to derive the nth-root asymptotic behavior of the Sobolev orthogonal
polynomials outside a certain compact set.
The object of the present paper is to extend the results of [6] to the case when the measures

involved in the inner product are supported on compact subsets of the complex plane. Under a
certain domination assumption on the measures involved in the Sobolev inner product, we prove
in Section 2 that the zeros of general Sobolev orthogonal polynomials are contained in a compact
subset of the complex plane. For Sobolev inner products on the real line, we also study in Section 2
the case when the supports of the measures are mutually disjoint and give a su�cient condition
for the boundedness of the zeros of the Sobolev orthogonal polynomials. Section 3 is dedicated to
the study of the asymptotic zero distribution and nth-root asymptotic behavior of general Sobolev
orthogonal polynomials. For this purpose, methods of potential theory are employed.
In order to state the corresponding results, let us �x some assumptions and additional notation.

As above, (1.1) de�nes an inner product on the space P of all polynomials. The norm of p ∈ P is

||p||S =
(

m∑
k=0

∫
|p(k)(x)|2 d�k(x)

)1=2
=

(
m∑

k=0

||p(k)||2L2(�k )

)1=2
: (1.2)

We say that the Sobolev inner product (1.1) is sequentially dominated if

S(�k)⊂ S(�k−1); k = 1; : : : ; m;

and

d�k = fk−1 d�k−1; fk−1 ∈ L∞(�k−1); k = 1; : : : ; m:

For example, if all the measures in the inner product are equal, then it is sequentially dominated.
The concept of a sequentially dominated Sobolev inner product was introduced in [6] for the real
case (when the supports of the measures are contained in the real line).

Theorem 1.1. Assume that the Sobolev inner product (1:1) is sequentially dominated; then for
each p ∈ P we have that

||xp||S6C||p||S ; (1.3)
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where

C = (2[C2
1 + (m+ 1)

2C2])1=2; (1.4)

and

C1 = max
x∈S(�0)

|x|; C2 = max
k=0;:::;m−1

||fk ||L∞(�k ):

As usual, two norms || · ||1 and || · ||2 on a given normed space E are said to be equivalent if there
exist positive constants c1; c2 such that

c1||x||16||x||26c2||x||1; x ∈ E:

If a Sobolev inner product de�nes a norm on P which is equivalent to that de�ned by a sequentially
dominated Sobolev inner product, we say that the Sobolev inner product is essentially sequentially
dominated. It is immediate from the previous theorem that a Sobolev inner product which is essen-
tially sequentially dominated also satis�es (1.3) (in general, with a constant C di�erent from (1.4)).
Whenever (1.3) holds, we say that the multiplication operator is bounded on the space of all poly-
nomials. This property implies in turn the uniform boundedness of the zeros of Sobolev orthogonal
polynomials.

Theorem 1.2. Assume that for some positive constant C we have that

||xp||S6C||p||S ; p ∈ P:

Then all the zeros of the Sobolev orthogonal polynomials are contained in the disk {z : |z|6C}.
In particular; this is true if the Sobolev inner product is essentially sequentially dominated.

In a recent paper, see Theorem 4:1 in [9] (for related questions see also [1]), the author proves
for Sobolev inner products supported on the real line that the boundedness of the multiplication
operator implies that the corresponding Sobolev inner product is essentially sequentially dominated.
Therefore, in terms of the boundedness of the multiplication operator on the space of polynomials,
we cannot obtain more information on the uniform boundedness of the zeros of the Sobolev orthog-
onal polynomials than that expressed in the theorem above. It is well known that in the case of
usual orthogonality the uniform boundedness of the zeros implies that the multiplication operator is
bounded. In general, this is not the case for Sobolev inner products, as the following result illustrates.
In the sequel, Co(K) denotes the convex hull of a compact set K .

Theorem 1.3. For m= 1; assume that S(�0) and S(�1) are contained in the real line and

Co(S(�0)) ∩ Co(S(�1)) = ∅:
Then for all n¿2 the zeros of Q′

n are simple; contained in the interior of Co(S(�0) ∪ S(�1));
and the zeros of the Sobolev orthogonal polynomials lie in the disk centered at the extreme point
of Co(S(�1)) furthest away from S(�0) and radius equal to twice the diameter of Co(S(�0)∪S(�1)).

The statements of this theorem will be complemented below. As Theorem 1.3 clearly indicates,
Theorem 1.2 is far from giving an answer to the question of uniform boundedness of the zeros of
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Sobolev orthogonal polynomials. The main question remains; that is, prove or disprove that for any
compactly supported Sobolev inner product the zeros of the corresponding Sobolev orthogonal poly-
nomials are uniformly bounded. This question is of vital importance in the study of the asymptotic
behaviour of Sobolev orthogonal polynomials.
We mention some concepts needed to state the result on the nth-root asymptotic behaviour of

Sobolev orthogonal polynomials. For any polynomial q of exact degree n, we denote

�(q):=
1
n

n∑
j=1

�zj ;

where z1; : : : ; zn are the zeros of q repeated according to their multiplicity, and �zj is the Dirac measure
with mass one at the point zj. This is the so-called normalized zero counting measure associated
with q. In [10], the authors introduce a class Reg of regular measures. For measures supported on
a compact set of the complex plane, they prove that (see Theorem 3:1:1) � ∈ Reg if and only if

lim
n→∞ ||Qn||1=nL2(�) = cap(S(�));

where Qn denotes the nth monic orthogonal polynomials (in the usual sense) with respect to �
and cap(S(�)) denotes the logarithmic capacity of S(�). In case that S(�) is a regular compact set
with respect to the solution of the Dirichlet problem on the unbounded connected component of the
complement of S(�) in the extended complex plane, the measure � belongs to Reg (see Theorem
3:2:3 in [10]) if and only if

lim
n→∞

(
||pn||S(�)
||pn||L2(�)

)1=n
= 1 (1.5)

for every sequence of polynomials {pn}; degpn6n; pn 6≡ 0. Here and in the following, || · ||S(�)
denotes the supremum norm on S(�).
Set

�=
m⋃

k=0

S(�k):

We call this set the support of the Sobolev inner product. Denote by g
(z;∞) the Green’s function
of the region 
 with singularity at in�nity, where 
 is the unbounded connected component of the
complement of � in the extended complex plane. When � is regular, then the Green’s function is
continuous up to the boundary, and we extend it continuously to all of C assigning to it the value
zero on the complement of 
. By !� we denote the equilibrium measure of �. Assume that there
exists l ∈ {0; : : : ; m} such that ⋃l

k=0 S(�k)=�, where S(�k) is regular, and �k ∈ Reg for k=0; : : : ; l.
Under these assumptions, we say that the Sobolev inner product (1.1) is l-regular.
The next result is inspired by Theorem 1 and Corollary 13 of [4].

Theorem 1.4. Let the Sobolev inner product (1:1) be l-regular. Then for each �xed k = 0; : : : ; l
and for all j¿k

lim sup
n→∞

||Q( j)
n ||1=nS(�k )6cap(�): (1.6)
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For all j¿l

lim
n→∞ ||Q( j)

n ||1=n� = cap(�): (1.7)

Furthermore; if the interior of � is empty and its complement connected, then for all j¿l

lim
n→∞ �(Q( j)

n ) = !� (1.8)

in the weak star topology of measures.

The following example illustrates that (1.8) is not a direct consequence of (1.7). On the unit
circle, take �j; j = 0; : : : ; m, equal to the Lebesgue measure. This Sobolev inner product is 0-regular
and thus (1.7) holds for all j¿0. Obviously, {zn} is the corresponding sequence of monic Sobolev
orthogonal polynomials whose sequence of normalized zero counting measures converges in the
weak star topology to the Dirac measure with mass one at zero. When (1.7) is true then (1.8) holds
if it is known that limn→∞ �(Q( j)

n )(A) = 0 for every compact set A contained in the union of the
bounded components of C \ S(!�) (see Theorem 2:1 in [2]). But �nding general conditions on the
measures involved in the inner product which would guarantee this property is, in general, an open
problem already in the case of usual orthogonality.
If the inner product is sequentially dominated, then S(�0) = �; therefore, if S(�0) and �0 are

regular, the corresponding inner product is 0-regular. In the sequel, Z+ = {0; 1; : : :}. An immediate
consequence of Theorems 1.2 and 1.4 is the following.

Theorem 1.5. Assume that for some positive constant C we have that

||xp||S6C||p||S ; p ∈ P;

and that the Sobolev inner product is l-regular. Then; for all j¿l

lim sup
n→∞

|Q( j)
n (z)|1=n6cap(�)eg
(z;∞); z ∈ C: (1.9)

Furthermore;

lim
n→∞ |Q( j)

n (z)|1=n = cap(�)eg
(z;∞); (1.10)

uniformly on each compact subset of {z: |z|¿C}∩
. Finally; if the interior of � is empty and its
complement connected; we have equality in (1:9) for all z ∈ C except for a set of capacity zero;
S(!�)⊂{z: |z|6C}; and

lim
n→∞

Q( j+1)
n (z)

nQ( j)
n (z)

=
∫

d!�(x)
z − x

; (1.11)

uniformly on compact subsets of {z: |z|¿C}.

These results will be complemented in the sections below. In the rest of the paper, we maintain
the notations and de�nitions introduced above.
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2. Zero location

The proof of Theorem 1:1 is simple and can be carried out following the same procedure as for
an analogous result in [6], so we leave it to the reader. Theorem 1:2 also has an analogue in [6],
but we have found a nice short proof which we include here.

Proof of Theorem 1.2. Let Qn denote the nth Sobolev orthogonal polynomial. Since it cannot be
orthogonal to itself, it is of degree n. Let x0 denote one of its zeros. It is obvious that there exists
a polynomial q of degree n− 1 such that xq= x0q+Qn. Since Qn is orthogonal to q, and using the
boundednes of the multiplication operator, we obtain

|x0|||q||S = ||x0q||S6||xq||S6C||q||S :
Simplifying ||q||S(6= 0) in the inequality above, we obtain the bound claimed on |x0| independent of
n. The rest of the statements follow from Theorem 1.1.

Now, let us consider the special case refered to in Theorem 1.3. For the proof of the corresponding
result we need some auxiliary lemmas. Let I be a given interval of the real line (open or closed) and
q a polynomial. By c(q; I) and �(q; I) we denote the number of zeros and the number of changes
of sign, respectively, that the polynomial q has on the interval I .

Lemma 2.1. Let I be an interval of the real line and q a polynomial such that deg q= l¿1. We
have that

c(q; I) + c(q′;C \ I)6l:

Proof. By Rolle’s Theorem, it follows that

c(q; I)6c(q′; I) + 1:

Therefore,

c(q; I) + c(q′;C \ I)6c(q′; I) + 1 + c(q′;C \ I) = c(q′;C) + 1 = l;

as we wanted to prove.

As above, let Qn denote the nth monic Sobolev orthogonal polynomial with respect to (1.1), where
all the measures are supported on the real line. In the rest of this section, we denote by (·)o the
interior of the set in parentheses with the Euclidean topology on R.

Lemma 2.2. Assume that n¿1. Then

�(Qn; (Co(S(�0)))o)¿1:

Proof. If, on the contrary, Qn does not change sign on the indicated set, we immediately obtain a
contradiction from the fact that Qn is orthogonal to 1, since then

0 = 〈Qn; 1〉S =
∫

Qn(x) d�0(x) 6= 0:
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Unless otherwise stated, in the rest of this section we restrict our attention to the case presented
in Theorem 1.3. That is, m = 1, the supports of �0 and �1 are contained in the real line and their
convex hulls do not intersect.

Lemma 2.3. Under the hypothesis of Theorem 1:3; for n¿1, we have that

�(Qn; (Co(S(�0)))o) + �(Q′
n; (Co(S(�1)))

o)¿n− 1: (2.12)

Proof. For n = 1; 2 the statement follows from Lemma 2.2. Let n¿3 and assume that (2.12) does
not hold. That is,

�(Qn; (Co(S(�0)))o) + �(Q′
n; (Co(S(�1)))

o) = l6n− 2: (2.13)

Without loss of generality, we can assume that

Co(S(�0)) = [a; b]; Co(S(�1)) = [c; d]; b¡c:

This reduction is always possible by means of a linear change of variables.
Let x0 be the point in (a; b) closest to [c; d] where Qn changes sign. This point exists by Lemma

2.2. There are two possibilities: either

Q′
n(x0 + �)Q′

n(c + �)¿ 0 (2.14)

for all su�ciently small �¿ 0, or

Q′
n(x0 + �)Q′

n(c + �)¡ 0 (2.15)

for all su�ciently small �¿ 0. Let us consider separately each case.
Assume that (2.14) holds. Let q be a polynomial of degree6l with real coe�cients, not identically

equal to zero, which has a zero at each point of (a; b) where Qn changes sign and whose derivative
has a zero at each point of (c; d) where Q′

n changes sign. The existence of such a polynomial
q reduces to solving a system of l equations in l + 1 unknowns (the coe�cients of q). Thus, a
nontrivial solution always exists. Notice that

l6c(q; (a; b)) + c(q′; (c; d))

with strict inequality if either q (resp. q′) has on (a; b) (resp. (c; d)) zeros of multiplicity greater
than one or distinct from those assigned by construction. On the other hand, because of Lemma 2.2,
the degree of q is at least 1; therefore, using Lemma 2.1, we have that

c(q; (a; b)) + c(q′; (c; d))6deg q6l:

The last two inequalities imply that

l= c(q; (a; b)) + c(q′; (c; d)) = deg q:

Hence, qQn and q′Q′
n have constant sign on [a; b] and [c; d], respectively. We can choose q in such

a way that qQn¿0 on [a; b] (if this were not so replace q by −q). With this selection, for all
su�ciently small �¿ 0, we have that q′(x0 + �)Q′

n(x0 + �)¿ 0. All the zeros of q′ are contained in
(a; x0) ∪ (c; d), so q′ preserves its sign along the interval (x0; c+ �), for all su�ciently small �¿ 0.
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On the other hand, we are in case (2.14) where Q′
n has the same sign to the right of x0 and of c.

Therefore, q′Q′
n¿0 on [c; d]. Since deg q6n− 2, using orthogonality, we obtain the contradiction

0 =
∫

q(x)Qn(x) d�0(x) +
∫

q′(x)Q′
n(x) d�1(x)¿ 0:

So, (2.14) cannot hold if (2.13) is true.
Let us assume that we are in the situation (2.15). The di�erence is that to the right of x0 and

c the polynomial Q′
n has di�erent signs. Notice (see (2.13)) that we have at least one degree of

freedom left to use orthogonality. Here, we construct q of degree 6l + 1 with real coe�cients
and not identically equal to zero with the same interpolation conditions as above plus q′(c) = 0.
Following the same line of reasoning as above, we have that qQn and q′Q′

n preserve their sign on
[a; b] and [c; d], respectively. Taking q so that qQn¿0 on [a; b], one can see that also q′Q′

n¿0 on
[c; d]. Since deg q = l + 16n − 1, using orthogonality, we obtain that (2.15) is not possible under
(2.13). But either (2.14) or (2.15) must hold, thus (2.12) must be true.

Corollary 2.4. Set I=Co(S(�0)∪S(�1))\(Co(S(�0))∪Co(S(�1)). Under the conditions of Theorem
1:3; we have that

c(Qn; I) + c(Q′
n; I)61:

Proof. This is an immediate consequence of Lemmas 2.1 and 2.3 applied to Qn.

Proof of Theorem 1.3. We will employ the notation introduced for the proof of Lemma 2.3.
According to Lemmas 2.1 and 2.3,

n− 16l= �(Qn; (a; b)) + �(Q′
n; (c; d))6n:

If l = n, then by Rolle’s Theorem we have that all the zeros of Q′
n are simple and contained in

(a; b) ∪ (c; d), which implies our �rst statement.
Suppose that l= n− 1. We consider the same two cases (2.14) and (2.15) analyzed in the proof

of Lemma 2.3. Following the arguments used in the proof of Lemma 2.3, we can easily see that
(2.14) is not possible with l=n−1. If (2.15) holds, then Q′

n has an extra zero in the interval [x0; c],
and again by use of Rolle’s Theorem we have that all the zeros of Q′

n are simple and contained in
(a; d).
In order to prove the second part of Theorem 1.3, we use the following remarkable result known

as Grace’s Apollarity Theorem. (We wish to thank T. Erdelyi for drawing our attention to this simple
proof of the second statement.) Let q be a polynomial of degree greater than or equal to two. Take
any two zeros of q in the complex plane and draw the straight line which cuts perpendicularly the
segment joining the two zeros at its midpoint. Then q′ has at least one zero in each of the closed
half planes into which the line divides the complex plane. For the proof of this result see Theorem
1:4:7 in [8] (see also [3, pp. 23–24]).
For n = 1 the second statement is certainly true, because from Lemma 2.1 we know that for

all n¿1; Qn has a zero on (a; b). Let n¿2. If Qn had a zero outside the circle with center at d
and radius equal to |a− d|, then by Grace’s Apollarity Theorem Q′

n would have a zero outside the
segment (a; d), which contradicts the �rst statement of the theorem. Therefore, all the zeros of Qn

lie in the indicated set.
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Remark 1. The arguments used in the proof of Lemma 2.3 allow us to deduce some other interesting
properties which resemble those satis�ed by usual orthogonal polynomials. For example, the interval
joining any two consecutive zeros of Qn on (a; b) intersects S(�0). Analogously, the interval joining
any two consecutive zeros of Q′

n on (c; d) intersects S(�1). In order to prove this, notice that if any
one of these statements were not true, then in the construction of the polynomial q in Lemma 2.3
we could disregard the corresponding zeros which gives us some extra degrees of freedom to use
orthogonality, and arrive at a contradiction, as was done there. From the proof of Theorem 1.3 it is
also clear that the zeros of Qn in (a; b) are simple and interlace with the zeros of Q′

n on that set.

Remark 2. The key to the proof of Theorem 1.3 is Lemma 2.1. Its role is to guarantee that in the
construction of q in Lemma 2.3 no extra zeros of q or q′ fall on (a; b) or (c; d), respectively. Lemma
2.1 can be used in order to cover more general Sobolev inner products supported on the real line,
as long as the supports of the measures appear in a certain order. To be more precise, following
essentially the same ideas, we can prove the following result.
Consider a Sobolev inner product (1.1) supported on the real line such that for each k=0; : : : ; m−1

Co


 k⋃

j=0

S(�j)


 ∩ S(�k+1) = ∅:

Then for all n¿m the zeros of Q(m)
n are simple and they are contained in the interior of Co(

⋃m
j=0 S(�j)).

The zeros of Q( j)
n ; j = 0; : : : ; m − 1, lie in the disk centered at z0 and radius equal to 3m−jr, where

z0 is the center of the interval Co(
⋃m

j=0 S(�j)) and r is equal to half the length of that interval.
For m= 1 this statement is weaker than that contained in Theorem 1.3 regarding the location of

the zeros of the Qn, because in the present conditions we allow that the support of S(�1) have points
on both sides of Co(S(�0)).

3. Regular asymptotic zero distribution

For the proof of Theorem 1.4, we need the following lemma, which is proved in [6] and is easy
to verify.

Lemma 3.1. Let E be a compact regular subset of the complex plane and {Pn} a sequence of
polynomials such that degPn6n and Pn 6≡ 0. Then; for all k ∈ Z+;

lim sup
n→∞

(
||P(k)n ||E
||Pn||E

)1=n
61: (3.16)

The �rst result of general character for the nth-root asymptotic of Sobolev orthogonal polynomials
appeared in [4] (for measures supported on the real line and m= 1). Minor details allowed two of
us to extend that result to the case of arbitrary m (see [6]). Now, we present the case of Sobolev
orthogonal polynomials in the complex plane. Since the proof remains essentially the same, we will
only outline the main aspects.
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Proof of Theorem 1.4. Let Tn denote the monic Chebyshev polynomial of degree n for the support
� of the given Sobolev inner product. For simplicity of notation, we write || · ||L2(�k ) = || · ||k : By the
minimizing property of the Sobolev norm of the polynomial Qn, we have

||Qn||k6||Qn||2S6||Tn||2S =
m∑

k=0

||T (k)n ||2k6
m∑

k=0

�k(S(�k))||T (k)n ||2�: (3.17)

It is well known that limn→∞||Tn||1=n� = cap(�). Since � is a regular compact set, by Lemma 3.1
(applied to Tn) and (3.17) it follows that

lim sup
n→∞

||Qn||1=nk 6 lim sup
n→∞

||Qn||1=nS 6cap(�): (3.18)

Since the measure �k and its support are regular, we can combine (1.5) and (3.18) to obtain that
for each k = 0; : : : ; l,

lim sup
n→∞

||Q(k)
n ||1=nS(�k )6cap(�): (3.19)

By virtue of Lemma 3.1, relation (1.6) follows from (3.19).
If j¿l, then (1.6) holds for each k = 0; : : : ; l. Since

||Q( j)
n ||� = max

k=0;:::;l
||Q( j)

n ||S(�k );

using (1.6), we obtain

lim sup
n→∞

||Q( j)
n ||1=n� 6cap(�):

On the other hand,

lim inf
n→∞ ||Q( j)

n ||1=n� ¿cap(�)

is true for any sequence {Qn} of monic polynomials. Hence (1.7) follows.
If the compact set � has empty interior and connected complement, it is well known (see [2,

Theorem 2:1]) that (1.7) implies (1.8).

Remark 3. We wish to point out that in Theorem 1.4 eventually some of the measures �k; k =
2; : : : ; m− 1; may be the null measure, in which case �k and S(�k) = ∅ are considered to be regular
and ||Q( j)

n ||∅ = 0. With these conventions, Theorem 1.4 remains in force.

The so-called discrete Sobolev orthogonal polynomials have attracted particular attention in the
past years. They are of the form

〈f; g〉S =
∫

f(x)g(x) d�0(x) +
m∑
i=1

Ni∑
j=0

Ai; jf(j)(ci)g(j)(ci); (3.20)

where Ai; j¿0; Ai;Ni ¿ 0: If any of the points ci lie in the complement of the support S(�0) of �0,
the corresponding Sobolev inner product cannot be l-regular. Nevertheless, a simple modi�cation of
the proof of Theorem 1.4 allows to consider this case. For details see [6], here we only state the
corresponding result.
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Theorem 3.2. Let the discrete Sobolev inner product (3:20) be such that S(�0) is regular and
�0 ∈ Reg. Then; (1:7) holds for all j¿0; with �= S(�0); and so does (1:8) under the additional
assumption that S(�0) has empty interior and connected complement.

The proof of Theorem 1.5 contains some new elements with respect to the analogous result for
Sobolev inner products supported on the real line, so we include it.

Proof of Theorem 1.5. Fix j ∈ Z+. Set

vn(z) =
1
n
log

|Q( j)
n (z)|

||Q( j)
n ||�

− g
(z;∞):

We show that

vn(z)60; z ∈ C ∪ {∞}: (3.21)

This function is subharmonic in 
 and on the boundary of 
 it is 60. By the maximum principle
for subharmonic functions it is 60 on all 
. On the complement of 
 we also have that vn(z)60
because by de�nition (and the regularity of �) Green’s function is identically equal to zero on this
set and the other term which de�nes vn is obviously at most zero by the maximum principle of
analytic functions. These remarks imply (1.9) by taking the upper limit in (3.21) and using (1.7)
(for this inequality no use is made of the boundedness of the multiplication operator on P).
From Theorem 1.2, we have that for all n ∈ Z+, the zeros of the Sobolev orthogonal polynomials

are contained in {z: |z|6C}. It is well known that the zeros of the derivative of a polynomial lie
in the convex hull of the set of zeros of the polynomial itself. Therefore, the zeros of Q( j)

n for
all n ∈ Z+ lie in {z: |z|6C}. Using this, we have that {vn} forms a family of uniformly bounded
harmonic functions on each compact subset of {z: |z|¿C}∩
 (including in�nity). Take a sequence
of indices � such that {vn}n∈� converges uniformly on each compact subset of {z: |z|¿C} ∩ 
.
Let v� denote its limit. Obviously, v� is harmonic and 60 in {z: |z|¿C} ∩ 
, and because of
(1.7), v�(∞) = 0. Therefore, v� ≡ 0 in {z: |z|¿C} ∩ 
. Since this is true for every convergent
subsequence of {vn}, we get that the whole sequence converges to zero uniformly on each compact
subset of {z: |z|¿C} ∩ 
. This is equivalent to (1.10).
If in addition the interior of � is empty and its complement connected, we can use (1.8). The

measures �n; j = �(Q( j)
n ); n ∈ Z+; and !� have their support contained in a compact subset of C.

Using this and (1.8), from the Lower Envelope Theorem (see [10, p. 223]), we obtain

lim inf
n→∞

∫
log

1
|z − x| d�n; j(x) =

∫
log

1
|z − x| d!�(x);

for all z ∈ C except for a set of zero capacity. This is equivalent to having equality in (1.9) except
for a set of capacity zero, because (see [10, p. 7])

g
(z;∞) = log 1
cap(�)

−
∫
log

1
|z − x| d!�(x):

Let x j
n; i; i = 1; : : : ; n − j; denote the n − j zeros of Q( j)

n . As mentioned above, all these zeros are
contained in {z: |z|6C}. From (1.8), each point of S(!�) must be a limit point of zeros of {Q( j)

n };
therefore, S(!�)⊂{z: |z|6C}. Decomposing in simple fractions and using the de�nition of �n; j; we
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obtain

Q( j+1)
n (z)

nQ( j)
n (z)

=
1
n

n−j∑
i=1

1
z − x j

n; i

=
n− j
n

∫
d�n; j(x)
z − x

: (3.22)

Therefore, for each �xed j ∈ Z+, the family of functions{
Q( j+1)

n (z)

nQ( j)
n (z)

}
; n ∈ Z+; (3.23)

is uniformly bounded on each compact subset of {z: |z|¿C}.
On the other hand, all the measures �n; j; n ∈ Z+; are supported in {z: |z|6C} and for z; |z|¿C;

�xed, the function (z − x)−1 is continuous on {x: |x|6C} with respect to x. Therefore, from (1.8)
and (3.22), we �nd that any subsequence of (3.23) which converges uniformly on compact subsets
of {z: |z|¿C} converges pointwise to ∫ (z − x)−1 d!�(x). Thus, the whole sequence converges
uniformly to this function on compact subsets of {z: |z|¿C}, as stated in (1.11).
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Abstract

In this paper we present a survey on the “Favard theorem” and its extensions. c© 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Given a sequence {Pn}∞n=0 of monic polynomials satisfying a certain recurrence relation, we are in-
terested in �nding a general inner product, if one exists, such that the sequence {Pn}∞n=0 is orthogonal
with respect to it.
The original “classical” result in this direction is due to Favard [10] even though his result seems

to be known to di�erent mathematicians. The �rst who obtained a similar result was Stieltjes in
1894 [23]. In fact, from the point of view of J -continued fractions obtained from the contraction of
an S-continued fraction with positive coe�cients, Stieltjes proved the existence of a positive linear
functional such that the denominators of the approximants are orthogonal with respect to it [23,
Section 11]. Later on, Stone gave another approach using the spectral resolution of a self-adjoint
operator associated with a Jacobi matrix [24, Theorem 10:23]. In his paper [21, p. 454] Shohat
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claims “We have been in possession of this proof for several years. Recently Favard published an
identical proof in the Comptes Rendus”. Also Natanson in his book [17, p. 167] said “This theorem
was also discovered (independent of Favard) by the author (Natanson) in the year 1935 and was
presented by him in a seminar led by S.N. Bernstein. He then did not publish the result since the
work of Favard appeared in the meantime”. The “same” theorem was also obtained by Perron [19],
Wintner [28] and Sherman [20], among others.
Favard’s result essentially means that if a sequence of monic polynomials {Pn}∞n=0 satis�es a

three-term recurrence relation

xPn(x) = Pn+1(x) + anPn(x) + bnPn−1(x); (1.1)

with an; bn ∈ R, bn ¿ 0, then there exists a positive Borel measure � such that {Pn}∞n=0 is orthogonal
with respect to the inner product

〈p; q〉=
∫
R
pq d�: (1.2)

This formulation is equivalent to the following: Given the linear operator t :P→ P; p(t)→ tp(t),
characterize an inner product such that the operator t is Hermitian with respect to the inner product.
A �rst extension of this problem is due to Chihara [5]. If {Pn}∞n=0 satis�es a three-term recurrence

relation like (1.1) with an; bn ∈ C; bn 6= 0, �nd a linear functional L de�ned on P, the linear space
of polynomials with complex coe�cients, such that {Pn}∞n=0 is orthogonal with respect to the general
inner product 〈p; q〉=L[pq], where p; q ∈ P. Notice that in the case analyzed by Favard [10] the
linear functional has an integral representation

L[p] =
∫
R
p d�:

Favard’s Theorem is an inverse problem in the sense that from information about polynomials we
can deduce what kind of inner product induces orthogonality for such polynomials. The aim of
this contribution is to survey some extensions of the Favard Theorem when a sequence of monic
polynomials {Pn}∞n=0 satis�es recurrence relations of a di�erent form than (1.1).
In the �rst place, in [8] a similar problem is studied relating to polynomials orthogonal with respect

to a positive Borel measure � supported on the unit circle, which satisfy a recurrence relation

�n(z) = z�n−1(z) + �n(0)�∗
n−1(z); |�n(0)|¡ 1; (1.3)

where �∗
n(z) = zn�n(1= �z).

Thus, a Favard Theorem means, in this case, to identify an inner product in P such that {�n}∞n=0
satisfying (1.3) is the corresponding sequence of orthogonal polynomials.
The structure of the paper is as follows. In Section 2 we present a survey of results surrounding the

Favard Theorem when a sequence of polynomials satis�es a linear relation like (1.1). In particular,
we show that the interlacing property for the zeros of two consecutive polynomials gives basic
information about the preceding ones in the sequence of polynomials.
In Section 3, an analogous approach is presented in the case of the unit circle in a more general

situation when |�n(0)| 6= 1. Furthermore, an integral representation for the corresponding inner
product is given. The connection with the trigonometric moment problem is stated when we assume
that the nth polynomial �n is coprime with �∗

n .
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In Section 4, we present some recent results about a natural extension of the above Favard theorems
taking into account their interpretation in terms of operator theory. Indeed, the multiplication by t is
a Hermitian operator with respect to (1.2) and a unitary operator with respect to the inner product

〈p; q〉=
∫
R
p(ei�)q(ei�) d�(�): (1.4)

Thus, we are interested in characterizing inner products such that the multiplication by a �xed
polynomial is a Hermitian or a unitary operator. The connection with matrix orthogonal polynomials
is stated, and some examples relating to Sobolev inner products are given.

2. The Favard theorem on the real line

2.1. Preliminaries

In this subsection we summarize some de�nitions and preliminary results that will be useful
throughout the work. Most of them can be found in [5].

De�nition 2.1. Let {�n}∞n=0 be a sequence of complex numbers (moment sequence) and L a func-
tional acting on the linear space of polynomials P with complex coe�cients. We say that L is a
moment functional associated with {�n}∞n=0 if L is linear, i.e., for all polynomials �1 and �2 and
any complex numbers �1 and �2,

L[�1�1 + �2�2] = �1L[�1] + �2L[�2] and L[xn] = �n; n= 0; 1; 2; : : : :

De�nition 2.2. Given a sequence of polynomials {Pn}∞n=0, we say that {Pn}∞n=0 is a sequence of
orthogonal polynomials (SOP) with respect to a moment functional L if for all nonnegative integers
n and m the following conditions hold:
(1) Pn is a polynomial of exact degree n,
(2) L[PnPm] = 0; m 6= n,
(3) L[P2n ] 6= 0.
Usually, the last two conditions are replaced by

L[xmPn(x)] = Kn�n;m; Kn 6= 0; 06m6n;

where �n;m is the Kronecker symbol.

The next theorems are direct consequences of the above de�nition [5, Chapter I, Sections 2 and
3, pp. 8–17].

Theorem 2.3. Let L be a moment functional and {Pn}∞n=0 a sequence of polynomials. Then the
following are equivalent:
(1) {Pn}∞n=0 is an SOP with respect to L.
(2) L[�Pn] = 0 for all polynomials � of degree m¡n; while L[�Pn] 6= 0 if the degree of � is n.
(3) L[xmPn(x)] = Kn�n;m; where Kn 6= 0; for m= 0; 1; : : : ; n.
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Theorem 2.4. Let {Pn}∞n=0 be an SOP with respect to L. Then; for every polynomial � of degree n

�(x) =
n∑

k=0

dkPk(x) where dk =
L[�Pk]
L[P2k ]

; k = 0; 1; : : : ; n: (2.1)

A simple consequence of the above theorem is that an SOP is uniquely determined if we im-
pose an additional condition that �xes the leading coe�cient kn of the polynomials (Pn(x) = knxn+
lower-order terms). When kn = 1 for all n = 0; 1; 2; : : : the corresponding SOP is called a monic
SOP (MSOP). If we choose kn = (L[P2n ])

−1=2, the SOP is called an orthonormal SOP
(SONP).
The next question which obviously arises is the existence of an SOP. To answer this question, it

is necessary to introduce the Hankel determinants �n,

�n =

∣∣∣∣∣∣∣∣∣∣∣∣

�0 �1 · · · �n

�1 �2 · · · �n+1

...
...
. . .

...

�n �n+1 · · · �2n

∣∣∣∣∣∣∣∣∣∣∣∣
:

Theorem 2.5. Let L be a moment functional associated with the sequence of moments {�n}∞n=0.
Then; the sequence of polynomials {Pn}∞n=0 is an SOP with respect to L if and only if �n 6=
0 for all nonnegative n. Moreover; the leading coe�cient kn of the polynomial Pn is given by
kn = Kn�n− 1=�n.

De�nition 2.6. A moment functional L is called positive de�nite if for every nonzero and non-
negative real polynomial �; L[�]¿ 0.

The following theorem characterizes the positive-de�nite functionals in terms of the moment
sequences {�n}∞n=0. The proof is straightforward.

Theorem 2.7. A moment functional L is positive de�nite if and only if their moments are real
and �n ¿ 0 for all n¿0.

Using the above theorem, we can de�ne a positive-de�nite moment functional L entirely in
terms of the determinants �n. In other words, a moment functional L is called positive de�-
nite if all its moments are real and �n ¿ 0 for all n¿0. Notice also that for a MSOP, it is
equivalent to say that Kn ¿ 0 for all n¿0. This, and the fact that an SOP exists if and only if
�n 6= 0, leads us to de�ne more general moment functionals: the so-called quasi-de�nite moment
functionals.

De�nition 2.8. A moment functional L is said to be quasi-de�nite if and only if �n 6= 0 for all
n¿0.
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We can write the explicit expression of the MOP in terms of the moments of the corresponding
functional:

Pn(x) =
1

�n−1

∣∣∣∣∣∣∣∣∣∣∣

�0 �1 · · · �n

�1 �2 · · · �n+1
...

...
. . .

...
�n−1 �n · · · �2n−1
1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
; �−1 ≡ 1; n= 0; 1; 2; : : : : (2.2)

One of the simplest characteristics of orthogonal polynomials is the so-called three-term recurrence
relation (TTRR) that connects every three consecutive polynomials of the SOP.

Theorem 2.9. If {Pn}∞n=0 is an MSOP with respect to a quasi-de�nite moment functional; then the
polynomials Pn satisfy a three-term recurrence relation

Pn(x) = (x − cn)Pn−1(x)− �nPn−2(x); n= 1; 2; 3; : : : ; (2.3)

where {cn}∞n=0 and {�n}∞n=0 are given by

cn =
L[xP2n−1]
L[P2n−1]

; n¿1; and �n =
L[xPn−1Pn−2]

L[P2n−2]
=

L[P2n−1]
L[P2n−2]

; n¿2;

respectively; and P−1(x) ≡ 0; P0(x) ≡ 1.

The proof of the above theorem is a simple consequence of the orthogonality of the polynomials
and Theorem 2:2. A straightforward calculation shows that (�1 =L[1])

�n+1 =
Kn

Kn−1
=

�n−2�n

�2n−1
; n= 1; 2; 3; : : : ;

and �−1 ≡ 1. From Theorem 2.7 and De�nition 2.8 it follows that, if �n 6= 0, then L is quasi-de�nite
whereas, if �n ¿ 0, then L is positive de�nite. Notice also that from the above expression we can
obtain the square norm Kn ≡ L[P2n ] of the polynomial Pn as

Kn ≡ L[P2n ] = �1�2 · · · �n+1: (2.4)

A useful consequence of Theorem 2.5 are the Christo�el–Darboux identities.

Theorem 2.10. Let {Pn}∞n=0 be an MSOP which satis�es (2:3) with �n 6= 0 for all nonnegative n.
Then

n∑
m=0

Pm(x)Pm(y)
Km

=
1
Kn

Pn+1(x)Pn(y)− Pn+1(y)Pn(x)
x − y

; n¿0; (2.5)

and
n∑

m=0

P2m(x)
Km

=
1
Kn
[P′

n+1(x)Pn(x)− Pn+1(x)P′
n(x)]; n¿0: (2.6)
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For an arbitrary normalization (not necessarily the monic one) of the polynomials Pn, the three-term
recurrence relation becomes

xPn−1(x) = �n Pn(x) + �nPn−1(x) + 
nPn−2(x): (2.7)

In this case, the coe�cients �n and �n can be obtained comparing the coe�cients of xn and xn−1,
respectively, in both sides of (2.7) and 
n is given by L[xPn−1Pn−2]=L[P2n−2]. This leads to

�n =
kn−1
kn

; �n =
bn−1
kn−1

− bn

kn
; 
n =

kn−2
kn−1

Kn−1
Kn−2

; (2.8)

where kn is the leading coe�cient of Pn and bn denotes the coe�cient of xn−1 in Pn, i.e., Pn(x) =
knxn+ bnxn−1 + · · ·. Notice also that knowing two of the coe�cients �n, �n, and 
n, one can �nd the
third one using (2.7) provided, for example, that Pn(x0) 6= 0 for some x0 (usually x0 = 0) and for all
n= 1; 2; 3; : : : .
The above TTRR (2.7) can be written in matrix form,

xPn−1 = JnPn−1 + �nPn(x)en; (2.9)

where

Pn−1 =




P0(x)

P1(x)

P2(x)

...

Pn−2(x)

Pn−1(x)




; Jn =




�1 �1 0 : : : 0 0


2 �2 �2 : : : 0 0

0 
3 �3 : : : 0 0

...
...
...
. . .

...
...

0 0 0 : : : �n−1 �n−1

0 0 0 : : : 
n �n




; en =




0

0

0

...

0

1




: (2.10)

Denoting by {xn; j}16j6n the zeros of the polynomial Pn, we see from (2.9) that each xn; j is an
eigenvalue of the corresponding tridiagonal matrix of order n and [P0(xn; j); : : : ; Pn−1(xn; j)]

T is the
associated eigenvector. From the above representation many useful properties of zeros of orthogonal
polynomials can be found.

2.2. The zeros of orthogonal polynomials

De�nition 2.11. Let L be a moment functional. The support of the functional L is the largest
interval (a; b)⊂R where L is positive de�nite.

The following theorem holds.

Theorem 2.12. Let (a; b) be the support of the positive-de�nite functional L; and let {Pn}∞n=0 be
the MSOP associated with L. Then;
(1) All zeros of Pn are real; simple; and located inside (a; b).
(2) Two consecutive polynomials Pn and Pn+1 have no common zeros.
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(3) Let {xn; j}n
j=1 denote the zeros of the polynomial Pn; with xn;1¡xn;2¡ · · · ¡xn;n. Then;

xn+1; j ¡ xn; j ¡ xn+1; j+1; j = 1; 2; 3; : : : ; n:

The last property is usually called the interlacing property.

Proof. Notice that, in the case when the SOP is an SONP, i.e., Kn=1 for all n, then the matrix Jn is
a symmetric real matrix (Jn= J Tn ; where J Tn denotes the transposed matrix of Jn). So its eigenvalues,
and thus, the zeros of the orthogonal polynomials are real. To prove that all zeros are simple, we
can use the Christo�el–Darboux identity (2.6). Let xk be a multiple zero of Pn, i.e., Pn(xk) = P′

n(xk)
=0. Then (2.6) gives

0¡
n∑

m=0

P2m(xk)
Km

=
1
Kn
[P′

n+1(xk)Pn(xk)− Pn+1(xk)P′
n(xk)] = 0:

This contradiction proves the statement. Let {xk}p
k=1 be the zeros of Pn inside (a; b). Then, Pn(x)

∏p
k=1

(x − xk) does not change sign in (a; b) and L[Pn(x)
∏p

k=1 (x − xk)] 6= 0, so p= n, i.e., all the zeros
of Pn are inside (a; b). Thus, the statement 1 is proved. To prove 2; we use the TTRR. In fact, if
xk is a zero of Pn and Pn+1, then it must be a zero of Pn−1. Continuing this process by induction,
we get that xk must be a zero of P0(x) ≡ 1, which is a contradiction. Before proving the interlacing
property 3 we will prove a theorem due to Cauchy [22, p. 197].

Theorem 2.13. Let B be a principal (n − 1) × (n − 1) submatrix of a real sym-
metric n × n matrix A; with eigenvalues �1¿�2¿ · · ·¿�n−1. Then; if �1¿�2¿ · · ·¿�n are the
eigenvalues of A;

�1¿�1¿�2¿ · · ·¿�n−1¿�n:

Proof. Let A be the n× n matrix

A=
(

B a
aT b

)
;

and assume that the theorem is not true, i.e., �i ¿�i or �i+1¿�i (since the matrix A is real symmet-
ric, all its eigenvalues are real). Let i be the �rst such index. If �i ¿�i (the other case is similar),
there exists a real number � such that �i ¿�¿�i. Then, B − �In−1, where Ik denotes the identity
k × k matrix, is nonsingular (det(B− �In−1) 6= 0), and the matrix

H =
(
B− �In−1 0

0 b− �− aT(B− �In−1)−1a

)

=
(

In−1 0
−aT(B− �In−1)−1 1

)(
B− �In−1 a

aT b− �

)(
I −(B− �In−1)−1a
0 1

)

is congruent to A− �In. Then, by the inertia theorem, the matrix H has the same number of positive
eigenvalues as A− �In, i.e., i− 1. But H has at least as many positive eigenvalues as B− �In−1, i.e.,
i. The contradiction proves the theorem.

Obviously, the interlacing property 3 can be obtained as a simple corollary of the Cauchy Theorem,
since the matrix Jn associated with the SONP is a real symmetric matrix and we can choose as A the
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matrix Jn+1 whose eigenvalues are the zeros of the polynomial Pn+1 and then, the principal submatrix
B is the matrix Jn whose eigenvalues coincide with the zeros of Pn. This completes the proof of
Theorem 2:12.

2.3. The Favard Theorem and some applications

In this subsection we will prove the so-called Favard Theorem.

Theorem 2.14. Let {cn}∞n=0 and {�n}∞n=0 be two arbitrary sequences of complex numbers; and let
{Pn}∞n=0 be a sequence of polynomials de�ned by the relation

Pn(x) = (x − cn)Pn−1(x)− �nPn−2(x); n= 1; 2; 3; : : : ; (2.11)

where P−1(x) = 0 and P0(x) = 1. Then; there exists a unique moment functional L such that

L[1] = �1; L[Pn Pm] = 0 if n 6= m:

Moreover; L is quasi-de�nite and {Pn}∞n=0 is the corresponding MSOP if and only if �n 6= 0; and
L is positive de�nite if and only if cn are real numbers and �n ¿ 0 for all n= 1; 2; 3; : : : .

Proof. To prove the theorem, we will de�ne the functional L by induction on Pn, the linear
subspace of polynomials with degree at most n. We put

L[1] = �0 = �1; L[Pn] = 0; n= 1; 2; 3; : : : : (2.12)

So, using the three-term recurrence relation (2.11), we can �nd all the moments in the following
way: Since L[Pn] = 0, the TTRR gives

0 =L[P1] =L[x − c1] = �1 − c1�1; then �1 = c1�1;

0 =L[P2] =L[(x − c2)P1 − �2P0] = �2 − (c1 + c2)�1 + (c1c2 − �2)�1;

then we can �nd �2, etc. Continuing this process, we can �nd, recursively, �n+1 by using the TTRR,
and they are uniquely determined. Next, using (2.11) and (2.12), we deduce that

xkPn(x) =
n+k∑

i=n−k

dn; iPi(x):

Then, L[xk Pn] = 0 for all k = 0; 1; 2; : : : ; n− 1. Finally,
L[xnPn] =L[xn−1(Pn+1 + cn+1Pn + �n+1Pn−1)] = �n+1L[xn−1Pn−1];

so, L[xnPn] = �n+1�n · · · �1.
Moreover, L is quasi-de�nite and {Pn}∞n=0 is the corresponding MSOP if and only if for all n¿1,

�n 6= 0, while L is positive de�nite and {Pn}∞n=0 is the corresponding MSOP if and only if for all
n¿1, cn ∈ R and �n ¿ 0.

Next, we will discuss some results dealing with the zeros of orthogonal polynomials.
The following theorem is due to Wendro� [27] (for a di�erent point of view using the B�ezoutian

matrix see [2]).
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Theorem 2.15. Let Pn and Pn−1 be two monic polynomials of degree n and n− 1; respectively. If
a¡x1¡x2¡ · · · ¡xn ¡b are the real zeros of Pn and y1¡y2¡ · · · ¡yn−1 are the real zeros
of Pn−1; and they satisfy the interlacing property; i.e.;

xi ¡yi ¡xi+1; i = 1; 2; 3; : : : ; n− 1;
then there exists a family of polynomials {Pk}n

k=0 orthogonal on [a; b] such that the above poly-
nomials Pn and Pn−1 belong to it.

Proof. Let cn=x1+x2+ · · ·+xn −y1−y2−· · ·−yn−1. Then, the polynomial Pn(x) − (x−cn)Pn−1(x)
is a polynomial of degree at most n− 2, i.e.,

Pn(x)− (x − cn)Pn−1(x) ≡ −�nR(x);

where R is a monic polynomial of degree r at most n− 2. Since
x1 − cn = (y1 − x2) + · · ·+ (yn−1 − xn)¡ 0;

and Pn−1(x1) 6= 0 (this is a consequence of the interlacing property), then �n 6= 0 and R(x1) 6= 0.
Moreover, Pn(yi)=−�nR(yi). Now, using the fact that Pn(yi)Pn(yi+1)¡ 0 (again this is a consequence
of the interlacing property), we conclude that also R(yi)R(yi+1)¡ 0, and this immediately implies
that R has exactly n− 2 real zeros and they satisfy yi ¡ zi ¡yi+1 for i = 1; 2; : : : ; n− 2.
If we now de�ne the polynomial Pn−2 of degree exactly n − 2, Pn−2 ≡ R, whose zeros interlace

with the zeros of Pn−1, we can construct, just repeating the above procedure, a polynomial of degree
n − 3 whose zeros interlace with the ones of Pn−2, etc. So we can �nd all polynomials Pk for
k = 1; 2; : : : ; n.
Notice also that, by construction,

Pn(x) = (x − cn)Pn−1(x)− �nPn−2(x);

so

�n =
(x1 − cn)Pn−1(x1)

Pn−2(x1)
¿ 0;

because sign Pn−1(x1)=(−1)n−1 and sign Pn−2(x1)=(−1)n−2, which is a consequence of the interlacing
property x1¡y1¡z1.

We point out here that it is possible to complete the family {Pk}n
k=0 to obtain a MSOP. To do

this, we can de�ne the polynomials Pk for k = n+ 1; n+ 2; : : : recursively by the expression

Pn+j(x) = (x − cn+j)Pn+j−1(x)− �n+jPn+j−2(x); j = 1; 2; 3; : : : ;

where cn+j and �n+j are real numbers chosen such that �n+j ¿ 0 and the zeros of Pn+j lie on (a; b).
Notice also that, in such a way, we have de�ned, from two given polynomials Pn−1 and Pn, a
sequence of polynomials satisfying a three-term recurrence relation of the form (2.11). So Theo-
rem 2.14 states that the corresponding sequence is an orthogonal polynomial sequence with respect
to a quasi-de�nite functional. Moreover, since the coe�cients in (2.11) are real and �n+j ¿ 0, the
corresponding functional is positive de�nite.
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Theorem 2.16 (Vinuesa and Guadalupe [26]; Nevai and Totik [18]). Let {xn}∞n=1 and {yn}∞n=1 be
two sequences of real numbers such that

· · · ¡x3¡x2¡x1 = y1¡y2¡y3¡ · · · :
Then there exists a unique system of monic polynomials {Pn}∞n=0 orthogonal with respect to a
positive de�nite functional on the real line such that Pn(xn) = Pn(yn) = 0 and Pn(t) 6= 0 for t 6∈
[xn; yn]; n= 1; 2; : : : .

Proof. Set P0 = 1, �0 = 0 and c0 = x1. De�ne {Pn}∞n=1, {cn}∞n=1 and {�n}∞n=1 by
Pn(x) = (x − cn)Pn−1(x)− �nPn−2(x); n¿1;

�n = (xn − yn)
[
Pn−2(xn)
Pn−1(xn)

− Pn−2(yn)
Pn−1(yn)

]−1
; cn = xn − �n

Pn−2(xn)
Pn−1(xn)

: (2.13)

The above two formulas come from the TTRR and from the requirement Pn(xn) = Pn(yn) = 0. By
induction one can show that Pn(x) 6= 0 if x 6∈ [xn; yn], Pn(xn)=Pn(yn)=0 and �n+1¿ 0 for n=0; 1; 2; : : :
. Then, from Theorem 2.14 {Pn}∞n=0 is a MSOP with respect to a positive de�nite moment functional.

Notice that, in the case xn=−yn, for n=1; 2; 3; : : :, the expression (2.13) for �n and cn reduces to

�n = xn
Pn−2(xn)
Pn−1(xn)

; cn = 0:

3. The Favard Theorem on the unit circle

3.1. Preliminaries

In this subsection we will summarize some de�nitions and results relating to orthogonal poly-
nomials on the unit circle T= {|z|= 1; z ∈ C}. See [13].

De�nition 3.1. Let {�n}n∈Z be a bisequence of complex numbers (moment sequence) such that
�−n = ��n and L be a functional on the linear space of Laurent polynomials �= Span{zk}k∈Z. We
say that L is a moment functional associated with {�n} if L is linear and L(xn) = �n, n ∈ Z.

De�nition 3.2. Given a sequence of polynomials {�n}∞n=0 we say that {�n}∞n=0 is a sequence of
orthogonal polynomials (SOP) with respect to a moment functional L if
(i) �n is a polynomial of exact degree n,
(ii) L(�n(z) · z−m) = 0, if 06m6n− 1, L(�n(z) · z−n) = Sn 6= 0, for every n= 0; 1; 2; : : : .

For such a linear functional L we can de�ne a Hermitian bilinear form in P (the linear space of
polynomials with complex coe�cients) as follows:

〈p(z); q(z)〉=L(p(z) · q(1= �z)); (3.1)

where q(z) denotes the complex conjugate of the polynomial q(z).
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Notice that De�nition 3.2 means that {�n}∞n=0 is an SOP with respect to the above bilinear form,
and thus the idea of orthogonality appears, as usual, in the framework of Hermitian bilinear forms.
Furthermore,

〈zp(z); zq(z)〉= 〈p(z); q(z)〉; (3.2)

i.e., the shift operator is unitary with respect to the bilinear form (3.1). In particular, the Gram
matrix for the canonical basis {zn}∞n=0 is a structured matrix of Toeplitz type, i.e.,

〈zm; zn〉= 〈zm−n; 1〉= 〈1; zn−m〉= �m−n; m; n ∈ N:

In this case the entries (m; n) of the Gram matrix depend of the di�erence m− n.
In the following we will denote Tn = [�k−j]

n
k; j=0.

Now we will deduce some recurrence relations for the respective sequence of monic orthogonal
polynomials.

Theorem 3.3. Let L be a moment functional associated with the bisequence {�n}n∈Z. The sequence
of polynomials {�n}∞n=0 is an SOP with respect to L if and only if det Tn 6= 0 for every n =
0; 1; 2; : : : : Furthermore; the leading coe�cient of �n is sn = det Tn−1=det Tn.

De�nition 3.4. L is said to be a positive-de�nite moment functional if for every Laurent polynomial
q(z) = p(z)p(1= �z); L(q)¿ 0.

Theorem 3.5. L is a positive-de�nite functional if and only if det Tn ¿ 0 for every n= 0; 1; 2; : : :.

De�nition 3.6. L is said to be a quasi-de�nite moment functional if det Tn 6= 0 for every n =
0; 1; 2; : : : :

Remark. Compare the above de�nitions with those of Section 2.1.

In the following we will assume that the SOP {�n}∞n=0 is normalized using the fact that the
leading coe�cient is one, i.e., we have a sequence of monic orthogonal polynomials (MSOP) given
by (n= 0; 1; 2; : : :)

�n(x) =
1

det Tn−1

∣∣∣∣∣∣∣∣∣∣∣

�0 �1 · · · �n

�−1 �0 · · · �n−1
...

...
. . .

...
�−n+1 �−n+2 · · · �1
1 z · · · zn

∣∣∣∣∣∣∣∣∣∣∣
; det T−1 ≡ 1: (3.3)

Unless stated otherwise, we will suppose the linear functional L is quasi-de�nite.

Theorem 3.7 (Geronimus [11]). If {�n}∞n=0 is an MSOP with respect to a quasi-de�nite moment
functional; it satis�es two recurrence relations:
(i) �n(z) = z�n−1(z) + �n(0)�∗

n−1(z); �0(z) = 1 (forward recurrence relation);
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(ii) �n(z) = (1− |�n(0)|2)z�n−1(z) +�n(0)�∗
n(z); �0(z) = 1 (backward recurrence relation); where

�∗
n(z) = zn�n(1= �z) is called the reciprocal polynomial of �n.

Proof. (i) Let Rn−1(z) = �n(z)− z�n−1(z). Thus, from orthogonality and (3.2)

〈Rn−1(z); zk〉=L(zk · Rn−1(1= �z)) =L(zk−n+1 · zn−1Rn−1(1= �z)) = 0;

for k = 1; 2; : : : ; n− 1, and L(z−j · zn−1Rn−1(1= �z)) = 0; j = 0; 1; : : : ; n− 2.
This means that the polynomial of degree at most n − 1, zn−1Rn−1(1= �z), with leading coe�cient

�n(0), is orthogonal to Pn−2, i.e.,

zn−1Rn−1(1= �z) = �n(0)�n−1(z):

Thus, Rn−1(z) = �n(0)�∗
n−1(z).

(ii) From (i) we deduce

�∗
n(z) = �∗

n−1(z) + �n(0)z�n−1(z):

Then, the substitution of �∗
n−1(z) in (i), using the above expression, leads to (ii).

Remark. Notice that, if we multiply both sides of (ii) by 1=zn, use the orthogonality of �n as well
as the explicit expression (3.3), we get the following identity:

det Tn

det Tn−1
= (1− |�n(0)|2)det Tn−1

det Tn−2
: (3.4)

The values {�n(0)}∞n=1 are called re
ection coe�cients or Schur parameters for the MSOP. Notice
that the main di�erence with the recurrence relation analyzed in Section 2 is that here only two
consecutive polynomials are involved and the reciprocal polynomial is needed. On the other hand,
the basic parameters which appear in these recurrence relations are the value at zero of the orthogonal
polynomial.

Theorem 3.8. L is a quasi-de�nite moment functional if and only if |�n(0)| 6= 1 for every n =
1; 2; 3; : : : :

Proof. If L is quasi-de�nite the corresponding MSOP satis�es both (i) and (ii). If for some n ∈ N,
|�n(0)|= 1, then from (ii), �n(z) = �n(0)�∗

n(z). Thus,

〈�n(z); zn〉=�n(0)〈�∗
n(z); z

n〉= �n(0)〈zn�n(1= �z); zn〉
=�n(0)〈�n(1= �z); 1〉= �n(0); �n(z)〉= 0;

which is a contradiction with the fact that {�n}∞n=1 is an MSOP.
Assume now that a sequence of polynomials is de�ned by (i) with |�n(0)| 6= 1. We will prove

by induction that there exists a moment functional L which is quasi-de�nite and such that {�n}∞n=1
is the corresponding sequence of MOP.
Let �1(z) = z + �1(0). We de�ne �1 =L(z) =−�1(0)�0. Thus

T1 =
(
�0 �1
�1 �0

)

is such that det T1 = �20(1− |�1(0)|2) 6= 0.
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Furthermore,

〈�1(z); z〉=L(�1(z) · 1=z) = �0 + �1(0)�1 = �0(1− |�1(0)|2) 6= 0;
i.e., �1 is a monic polynomial of degree 1 such that 〈�1(z); 1〉=�1 +�1(0)�0 =0, i.e., is orthogonal
to P0.
Assume {�0; �1; : : : ; �n−1} are monic and orthogonal. Let an = �n(0), |an| 6= 1, and construct a

polynomial �n of degree n such that

�n(z) = z�n−1(z) + �n(0)︸ ︷︷ ︸
an

�∗
n−1(z):

If �n(z) = zn + cn;1zn−1 + · · ·+ cn;n−1z+ an, we de�ne �n =−cn;1�n−1 − · · · − cn;n−1�1 − an�0. Notice
that this means that 〈�n(z); 1〉= 0.
On the other hand, for 16k6n− 1, using the recurrence relation (i)

〈�n(z); zk〉= 〈�n−1(z); zk−1〉+ an〈�∗
n−1(z); z

k〉= 0;
where the last term in the above sum vanishes since

〈�∗
n−1(z); z

k〉= 〈zn−k−1; �n−1(z)〉:
Finally, using (3.4), we have

〈�n(z); zn〉= det Tn

det Tn−1
= (1− |�n(0)|2)det Tn−1

det Tn−2
;

and thus, because of the induction hypothesis, 〈�n(z); zn〉 6= 0.

Corollary 3.9. The functional L is positive de�nite if and only if |�n(0)|¡ 1; for n= 1; 2; : : : .

3.2. The zeros of the orthogonal polynomials

In the following we will analyze the existence of an integral representation for a moment
functional.
First, we will consider the case of positive de�niteness.

Proposition 3.10 (Landau [12]). If � is a zero of �n(z); then |�|¡ 1.

Proof. Let �n(z) = (z − �)qn−1(z), where qn−1 is a polynomial of degree n− 1. Then,
0¡ 〈�n(z); �n(z)〉= 〈(z − �)qn−1(z); �n(z)〉= 〈zqn−1(z); �n(z)〉
= 〈zqn−1(z); zqn−1(z)− �qn−1(z)〉= 〈qn−1(z); qn−1(z)〉 − ��〈zqn−1(z); qn−1(z)〉
= 〈qn−1(z); qn−1(z)〉 − ��[〈�n(z); qn−1(z)〉+ �〈qn−1(z); qn−1(z)〉]
= (1− |�|2)〈qn−1(z); qn−1(z)〉;

and the result follows.

Corollary 3.11 (Montaner and Alfaro [16]). If � is a zero of �∗
n(z); then |�|¿ 1.
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Remark. Notice that, in the quasi-de�nite case, we only can guarantee that |�| 6= 1.

Next, we will de�ne an absolutely continuous measure such that the induced inner product in
Pn agrees with the restriction to Pn of our inner product associated with the positive-de�nite linear
functional. In order to do this, we need some preliminary result.

Lemma 3.12 (Erd�elyi et al. [8]). Let �n be the nth orthonormal polynomial with respect to a
positive de�nite linear functional. Then;

1
2�

∫ 2�

0
�k(ei�)�j(ei�)

d�
|�n(ei�)|2 = �j;k ; 06j6k6n¡∞:

Proof. Notice that
1
2�

∫ 2�

0
�n(ei�)�n(ei�)

d�
|�n(ei�)|2 = 1; (3.5)

and, for j¡n,

1
2�

∫ 2�

0
�n(ei�)�j(ei�)

d�
|�n(ei�)|2 =

1
2�

∫ 2�

0

[
�j(ei�)
�n(ei�)

]
d�

=
1
2�

∫ 2�

0

ei(n−j)��∗
j (e

i�)
�∗

n(ei�)
d�

=
1
2� i

∫
T

zn−j−1�∗
j (z)

�∗
n(z)

dz = 0; (3.6)

because of the analyticity of the function in the last integral (see Corollary 3.11). Then, �n(z) is
the nth orthonormal polynomial with respect to both, a positive linear functional and the absolutely
continuous measure d�n = d�=|�n(ei�)|2. By virtue of the backward recurrence relation (Theorem
3.7(ii)) for the orthonormal case, the polynomials {�j}n−1

j=0 , which are uniquely de�ned by this
recurrence relation, are orthogonal with respect to both, the linear functional and the measure d�n.
Thus, the result follows.

Remark. In [8], an induction argument is used in order to prove the previous result. Indeed, assuming
that for a �xed k6n,

1
2�

∫ 2�

0
�k(ei�)�j(ei�)

d�
|�n(ei�)|2 = �j; k ; 06j6k;

they proved that

1
2�

∫ 2�

0
�k−1(ei�)�l(ei�)

d�
|�n(ei�)|2 = �k−1; l; 06l6k − 1:

Notice that the nth orthogonal polynomial de�nes in a unique way the previous ones; thus, the proof
of the second statement (the induction) is not necessary. Of course, here we need not do this since
we are using the backward recurrence relation for the orthogonal polynomials �n.
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Notice also that the measure d�n = d�=|�n(ei�)|2 de�nes an MSOP {	n}∞n=0 such that 	m(z) =
zm−n�n(z), for m¿n, where �n is the monic polynomial corresponding to �n. Moreover, the sequence
of re
ection coe�cients corresponding to this MSOP {	n}∞n=0 is {�1(0); : : : ; �n(0); 0; 0; : : :}. Usually,
in the literature of orthogonal polynomials, this measure d�n is called a Bernstein–Szeg�o measure
(see [25]).
In Section 2, Theorem 2.15, we proved that the interlacing property for the zeros of two poly-

nomials Pn−1 and Pn of degree n− 1 and n, respectively, means that they are the (n− 1)st and nth
orthogonal polynomials of an MSOP. Indeed, the three-term recurrence relation for a MSOP plays a
central role in the proof. In the case of the unit circle, we have an analogous result, which is known
in the literature as the Schur–Cohn–Jury criterion [4].

Theorem 3.13. A monic polynomial p of degree n has its n zeros inside the unit circle if and only
if the family of parameters {ak}n

k=0 de�ned by the following backward algorithm

qn(z) = p(z); qn(0) = an;

qk(z) =
qk+1(z)− ak+1q∗k+1(z)

z(1− |ak+1|2) ; ak = qk(0); k = n− 1; n− 2; : : : ; 0;

satis�es |ak |¡ 1; k = 1; 2; : : : ; n:

Proof. Notice that the polynomials {qk}n
k=1, q0 = 1, satisfy a backward recurrence relation like

the polynomials orthogonal on the unit circle with truncated Schur parameters {ak}∞k=1. Because
{a1; a2; : : : ; an; 0; 0; : : :} is induced by the measure d�n = d�=|qn(ei�)|2 = d�=|p(ei�)|2, up to a constant
factor, then p = qn(z) is the nth monic orthogonal polynomial with respect to the measure d�n.
According to Proposition 3.10 its zeros are located inside the unit disk.
Conversely, if the polynomial p has its zeros inside the unit disk, then |an|= |qn(0)|¡ 1. On the

other hand, since

qn−1(z) =
qn(z)− anq∗n(z)
z(1− |an|2) ;

if � is a zero of qn−1 with |�|¿1, then qn(�) = anq∗n(�), and 0¡ |qn(�)|¡ |q∗n(�)|. This means that
|qn(�)=q∗n(�)|¡ 1, but this is in contradiction with the fact that the zeros of qn(z) are inside the unit
disk and thus, by the maximum modulus principle, |qn(z)=q∗n(z)|61 if |z|¡ 1, which is equivalent
to |qn(z)=q∗n(z)|¿1 for |z|¿1. The same procedure applied to all 16k6n− 2 leads to the result.

Remark. The above criterion is a very useful qualitative result in the stability theory for discrete
linear systems [4]. In fact, given the characteristic polynomial of the matrix of a linear system, we
do not need to calculate its zeros (the eigenvalues of the matrix) in order to prove that they are
located inside the unit disk, and then to prove the stability of the system.

3.3. The trigonometric moment problem revisited

Next, we can state our main result.
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Theorem 3.14 (Erd�elyi et al. [8]). Let {an}∞n=1 be a sequence of complex numbers such that |an|¡ 1;
n= 1; 2; : : : . Let

�0(z) = 1; �n(z) = z �n−1(z) + an�∗
n−1(z); n¿1:

Then; there exists a unique positive and �nite Borel measure � supported on T such that {�n}∞n=0
is the corresponding MSOP. In other words; the positive-de�nite linear functional associated with
the re
ection coe�cients {an}∞n=0 can be represented as

L[p(z)] =
∫ 2�

0
p(ei�) d�(�):

Proof. Let

�n(�) =
∫ �

0
d�n(t) =

∫ �

0

dt
|�n(eit)|2 ;

where �n denotes the nth orthonormal polynomial with respect to L. The function �n is monotonic
increasing in [0; 2�] and according to Lemma 3.12,

|�n(�)|6
∫ 2�

0

d�
|�n(ei�)|262�d0¡ +∞ ∀n ∈ N; � ∈ [0; 2�]:

From Helly’s selection principle (see, e.g., [5]) there exists a subsequence {�nk}∞nk=0 and a monotonic
increasing function � such that limnk→∞ �nk (�) = �(�). Furthermore, for every continuous function f
on T,

lim
nk→∞

1
2�

∫ 2�

0
f(ei�) d�nk (�) =

1
2�

∫ 2�

0
f(ei�) d�(�):

Finally,

1
2�

∫ 2�

0
�k(ei�)�j(ei�) d�(�) = lim

nl→∞
1
2�

∫ 2�

0
�k(ei�)�j(ei�) d�nl(�) = �j;k ;

taking nl ¿max{k; j}.

To conclude the study of the positive de�nite case, we will show an analog of Theorem 2.16 of
Section 2 in the following sense.

Theorem 3.15 (Alfaro and Vigil [1]). Let {zn}∞n=1 be a sequence of complex numbers such that
|zn|¡ 1. Then; there exists a unique sequence of monic polynomials �n orthogonal with respect to
a positive-de�nite moment functional such that �n(zn) = 0.

Proof. Since �1(z)= z+�1(0)= z− z1, then �1(0)=−z1, and |�1(0)|¡ 1. Using induction, assume
that zn−1 is a zero of �n−1 and |�n−1(0)|¡ 1. Let �n(z) = z�n−1(z) +�n(0)�∗

n−1(z), for n¿ 1, and
zn be a zero of �n. Then, substituting zn in the above expression, we deduce

zn�n−1(zn) =−�n(0)�∗
n−1(zn):

But �∗
n−1(zn) 6= 0 (otherwise zn would be a zero of �n−1, which is a contradiction). Thus,

�n(0) =−zn
�n−1(zn)
�∗

n−1(zn)
; but then |�n(0)|= |zn|

∣∣∣∣∣
�n−1(zn)
�∗

n−1(zn)

∣∣∣∣∣ ¡ |zn|¡ 1;
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since |�n−1(zn)=�∗
n−1(zn)|¡ 1 by the maximum modulus principle (see the proof of Theorem 3.13).

Then, the sequence {zn}∞n=1 de�nes uniquely a sequence of complex numbers {an}∞n=1, with an=�n(0),
and this sequence, according to Theorem 3.14, uniquely de�nes a sequence of orthogonal polynomials
{�n}∞n=0 with re
ection parameters an such that �n(zn) = 0.

In the quasi-de�nite case, as we already pointed out after Proposition 3.10, if �n is the nth
orthonormal polynomial with respect to a quasi-de�nite moment functional L, then the polynomials
z�n(z) and �∗

n(z) have no zeros in common. They are coprime, and by the B�ezout identity [4], there
exist polynomials r(z) and s(z) such that

z r(z)�n(z) + s(z)�∗
n(z) = 1;

or, equivalently, if u(z) = z r(z), i.e., u(0) = 0,

u(z)�n(z) + s(z)�∗
n(z) = 1:

The next result is analogous to that stated in Lemma 3.12.

Theorem 3.16 (Atzmon [3]). There exists a unique real trigonometric polynomial f(�) of degree
at most n; such that

1
2�

∫ 2�

0
�n(ei�)e−ik�f(�) d�= 0; 06k6n− 1; (3.7)

1
2�

∫ 2�

0
|�n(ei�)|2f(�) d�= 1; (3.8)

if and only if there exist u; v ∈ Pn; with u(0)=0; such that u(z)�n(z)+v(z)�∗
n(z)=1. Furthermore;

f(�) = |u(ei�)|2 − |v(ei�)|2:

Proof. If f satis�es (3.7) and (3.8), consider the function g(�) = f(�)�n(ei�), which is a trigono-
metric polynomial of degree at most 2n. The conditions mean that the Fourier coe�cients ĝ(k) of
g(�) are ĝ(j) = 0, j = 0; 1; : : : ; n − 1, and ĝ(n)�∗

n(0) = 1. Then, there exist polynomials u; v ∈ Pn,
such that u(0) = 0, v(0)�∗

n(0) = 1 and g(�) = ein�v(ei�)− u(ei�). In fact,

u(z) =−
n∑

j=1

ĝ(−j)zj and v(z) =
n∑

j=0

ĝ(j + n)zj:

Now we introduce the trigonometric polynomial of degree at most 3n, h(�) = �n(ei�)f(�)�n(ei�).
Notice that

h(�) = �∗
n(e

i�)v(ei�)− u(ei�)�n(ei�);

and h is a real-valued function. Then,

�∗
n(e

i�)v(ei�)− u(ei�)�n(ei�) = �∗
n(ei�)v(ei�)− u(ei�)�n(ei�);

or, equivalently,

s(�) = u(ei�)�n(ei�) + v(ei�)�∗
n(e

i�) ∈ R:
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This means that the algebraic polynomial of degree at most 2n,

q(z) = u(z)�n(z) + v(z)�∗
n(z);

is real-valued on the unit circle, and thus q̂(j) = q̂(−j) = 0, i.e.,

q(z) = q(0) = u(0)�n(0) + v(0)�∗
n(0) = 1:

This yields our result.
Conversely, assume there exist polynomials u; v ∈ Pn with u(0) = 0, such that

u(z)�n(z) + v(z)�∗
n(z) = 1: (3.9)

Let f(�)= v(ei�)v(ei�)−u(ei�)u(ei�), a trigonometric polynomial of degree at most n. We will prove
that the orthogonality conditions (3.7) and (3.8) hold.
Indeed, let g(�) = f(�)�n(ei�). Taking into account (3.9), we have

u(ei�)�n(ei�) + v(ei�)e−in��n(ei�) = 1; i:e:; ein� = u(ei�)�∗
n(e

i�) + v(ei�)�n(ei�):

Then, using (3.9) as well as the last expression, we obtain

g(�) = �n(ei�)[v(ei�)v(ei�)− u(ei�)u(ei�)] = ein�v(ei�)− u(ei�); (3.10)

which yields our orthogonality conditions

ĝ(j) = 0; j = 0; 1; : : : ; n− 1 and ĝ(n)�∗
n(0) = 1:

In order to prove uniqueness of f, notice that if u; v ∈ Pn satisfy (3.9) together with u(0)= 0, then
f(�) = u(ei�)�n(ei�)f(�) + v(ei�)�∗

n(e
i�)f(�). By (3.10), we get

f(�)�n(ei�) = ein� v(ei�)− u(ei�);

and

f(�)�∗
n(e

i�) = v(ei�)− ein�u(ei�):
Thus, f(�) = |v(ei�)|2 − |u(ei�)|2. The uniqueness of f follows from the uniqueness of u; v.

To conclude this section, we will show with two simple examples how to �nd the function f
explicitly.

Example 3.17. Let �3(z) = 2z3 + 1. Notice that because the zeros are inside the unit circle, we are
in a positive-de�nite case. Moreover, �∗

3(z) = z3 + 2. Using the Euclidean algorithm for z�3(z) and
�∗
3(z), we �nd

2z4 + z = 2z(z3 + 2)− 3z; and z3 + 2 =−3z(− 1
3 z

2) + 2:

Thus,
1
6 z

2(2z4 + z) + (z3 + 2)(12 − 1
3 z

3) = 1; and u(z) = 1
6z
3; v(z) = 1

2 − 1
3 z

3:

Then

f(�) = | 12 − 1
3e
3i�|2 − 1

36 =
1
3(1− cos 3�) = 1

6 |e3i� − 1|2¿0:
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Example 3.18. Let �3(z) = z(z2 + 4). Notice that now there are two zeros outside the unit circle.
In this case, �∗

3(z) = 4z
2 + 1. An analogous procedure leads to

z�3(z) = z4 + 4z2 = 1
4 z

2(4z2 + 1) + 15
4 z2; �∗

3(z) =
16
15 (

15
4 z

2) + 1:

Thus

− 16
15 z

2(z2 + 4) + ( 415 z
2 + 1)(4z2 + 1) = 1; u(z) =− 16

15 z
2; v(z) = 4

15 z
2 + 1;

so

f(�) = | 415 e2i� − 1|2 − 256
225 =− 1

15 (1 + 8 cos 2�);

which gives rise to a nonpositive case, i.e., to a signed measure on [− �; �].

4. The Favard Theorem for nonstandard inner products

To conclude this work, we will survey some very recent results concerning the Favard theorem
for Sobolev-type orthogonal polynomials.
First of all, we want to point out that the Favard Theorem on the real line can be considered in

a functional-analytic framework as follows.

Theorem 4.1 (Duran [6]). Let P be the linear space of real polynomials and B an inner product
on P. Then; the following conditions are equivalent:
(1) The multiplication operator t; i.e.; the operator t : P → P; p(t) → t p(t); is Hermitian for B;

that is; B(t f; g) = B(f; t g) for every polynomial f; g.
(2) There exists a nondiscrete positive measure � such that B(f; g) =

∫
f(t)g(t) d�(t).

(3) For any set of orthonormal polynomials (qn) with respect to B the following three-term recur-
rence holds:

tqn(t) = an+1qn+1(t) + bnqn(t) + anqn−1(t); n¿0; (4.1)

with q−1(t) = 0, q0(t) = 1 and {an}∞n=0; {bn}∞n=0 real sequences such that an ¿ 0 for all n.

Notice that from the three-term recurrence relation (4.1) we get

t2qn(x) = an+2an+1qn+2(t) + (bn+1an+1 + bnan+1)qn+1(t)

+ (a2n+1 + a2n + b2n)qn(t) + (anbn + anbn−1)qn−1(t) + anan−1qn−2(t);

i.e., the sequence {qn}∞n=0 satis�es a �ve-term recurrence relation, which is a simple consequence of
the symmetry of the operator t2 ≡ t · t.
Here we are interested in the converse problem, which is a natural extension of the Favard

Theorem: To characterize the real symmetric bilinear forms such that the operator t2 is a Hermitian
operator. A nonstandard example of such an inner products is

B(f; g) =
∫

f(t)g(t) d�(t) +Mf′(0)g′(0); f; g ∈ P;

for which t2 is Hermitian, i.e., B(t2f; g) = B(f; t2g).
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Theorem 4.2. Let B be a real symmetric bilinear form on the linear space P. Then the following
conditions are equivalent:
(1) The operator t2 is Hermitian for B; that is; B(t2f; g) = B(f; t2g) for every polynomial f; g.
(2) There exist two functions � and � such that

B(f; g) =
∫

f(t)g(t) d�(t) + 4
∫

f0(t)g0(t) d�(t); (4.2)

where f0 and g0 denote the odd components of f and g; respectively; i.e.;

f0(t) =
f(t)− f(−t)

2
; g0(t) =

g(t)− g(−t)
2

:

Moreover; if we put �n =
∫
tn d�(t) and �n = 4

∫
tn d�(t); then the matrix

an;k =
{
�n+k if n or k are even;
�n+k + �n+k otherwise;

is positive de�nite if and only if B is an inner product. In this case the set of orthonormal
polynomials with respect to an inner product of the form (4:2) satis�es a �ve-term recurrence
relation

t2qn(x) = An+2qn+2(t) + Bn+1qn+1(t) + Cnqn(t) + Bnqn−1(t) + Anqn−2(t); n¿0; (4.3)

where {An}∞n=0; {Bn}∞n=0; and {Cn}∞n=0 are real sequences such that An 6= 0 for all n.

Also we get a generalization of the Favard Theorem.

Theorem 4.3. Let {qn}∞n=0 be a set of polynomials satisfying the initial conditions q−1(t)=q−2(t)=0;
q0(t) = 1 and the �ve-term recurrence relation (4:3). Then; there exist two functions � and � such
that the bilinear form (4:2) is an inner product and the polynomials {qn}∞n=0 are orthonormal with
respect to B.

Remark. The above theorem does not guarantee the positivity of the measures � and �. In fact in
[6] some examples of inner products of type (4.2) where both measures cannot be chosen to be
positive, or � is positive and � cannot be chosen to be positive, are shown.

All the previous results can be extended to real symmetric bilinear forms such that the operator
“multiplication by h(t)”, where h is a �xed polynomial, is Hermitian for B, i.e., B(hf; g)=B(f; hg).
The basic idea consists in the choice of an adequate basis of P which is associated with the

polynomial h. Assume that deg h= N , and let Eh = span[1; h; h2; : : : ]; then

P= Eh ⊕ t Eh ⊕ · · · ⊕ tN−1Eh:

If �k denotes the projector operator in tkEh, then �k(p) = tkq[h(t)]. We introduce a new operator
�̃k : P→ P, p → q, where q denotes a polynomial such that �k(p) = tkq[h(t)]. Then we obtain the
following extension of Theorem 4.2:

Theorem 4.4. Let B be a real symmetric bilinear form in P. Then the following statements are
equivalent:
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(1) The operator “multiplication by h′′ is Hermitian for B; i.e.; B(hf; g) = B(f; hg) for every
polynomial f; g; where h is a polynomial of degree N .

(2) There exist functions �m;m′ for 06m6m′6N − 1 such that B is de�ned as follows:

B(f; g) =
∫
(�0(f); : : : ; �N−1(f))




d�0;0 · · · d�0;N−1
...

. . .
...

d�N−1;0 · · · d�N−1;N−1






�0(g)
...

�N−1(g)


 :

(3) There exist functions �0 and �m;m′ for 16m6m′6N − 1 such that B is de�ned as follows:

B(f; g) =
∫

f g d�0 +
∫
(�1(f); : : : ; �N−1(f))




d�1;1 · · · d�1;N−1
...

. . .
...

d�N−1;1 · · · d�N−1;N−1






�1(g)
...

�N−1(g)


 :

(4) There exist functions �̃m;m′ for 06m6m′6N − 1 such that B is de�ned as follows:

B(f; g) =
∫
(�̃0(f); : : : ; �̃N−1(f))




d�̃0;0 · · · d�̃0;N−1
...

. . .
...

d�̃N−1;0 · · · d�̃N−1;N−1






�̃0(g)
...

�̃N−1(g)


 :

(5) There exist functions �̃0 and �̃m;m′ for 16m6m′6N − 1 such that B is de�ned as follows:

B(f; g) =
∫

fg d�̃0 +
∫
(�̃1(f); : : : ; �̃N−1(f))




d�̃1;1 · · · d�̃1;N−1
...

. . .
...

d�̃N−1;1 · · · d�̃N−1;N−1






�̃1(g)
...

�̃N−1(g)


 :

Proof. The equivalence 1⇔ 2⇔ 3 was proved in [6]. 4 and 5 are a straightforward reformulation
of the above statements 2 and 3, respectively.

In a natural way, matrix measures appear in connection with this extension of the Favard Theorem.
This fact was pointed out in [7, Section 2]. Even more, if B is an inner product of Sobolev type,

B(f; g) =
∫

f(t) g(t) d�(t) +
N∑
i=1

∫
f(i)(t)g(i)(t) d�i(t); (4.4)

where {�i}N
i=1 are atomic measures, it is straightforward to prove that there exists a polynomial h of

degree depending on N and mass points such that h induces a Hermitian operator with respect to
B. As an immediate consequence we get a higher-order recurrence relation of type

h(t)qn(t) = cn;0qn(t) +
M∑
k=1

[cn;kqn−k(t) + cn+k; kqn+k(t)]; (4.5)

where M is the degree of h and {qn}∞n=0 is the sequence of orthogonal polynomials relative to B.
Furthermore, extra information about the measures {�i}N

i=1 in (4.4) is obtained in [9] when the
corresponding sequence of orthonormal polynomials satis�es a recurrence relation like (4.5).
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Theorem 4.5. Assume that there exists a polynomial h of deg h¿1 such that B(hf; g) = B(f; hg);
where B is de�ned by (4:4). Then the measures {�i}N

i=1 are necessarily of the form

�i(t) =
j(i)∑
k=1

�i; k�(t − ti; k);

for some positive integers j(i); where
(1) �i; k¿0; k = 1; 2; : : : ; j(i); i = 1; 2; : : : ; N .
(2) Ri = {ti; k}j(i)

k=1 6= ∅ are the distinct real zeros of h(i); i = 1; 2; : : : ; N .
(3) supp�i ⊂⋂i

k=1 Rk; k = 1; 2; : : : ; N .
(4) The degree of h is at least N + 1 and there exists a unique polynomial H of minimal degree

m(H) satisfying H (0) = 0 and B(Hf; g) = B(f;Hg).

The above situation corresponds to the so-called diagonal case for Sobolev-type orthogonal poly-
nomials.
Finally, we state a more general result, which was obtained in [6].

Theorem 4.6. Let P be the space of real polynomials and B a real symmetric bilinear form de�ned
on P. If h(t) = (t − t1)n1 · · · (t − tk)nk and N = deg h; then the following statements are equivalent:
(1) The operator “multiplication by h′′ is Hermitian for B and B(hf; tg) = B(tf; hg); i.e.; the

operators “ multiplication by h′′ and “multiplication by t′′ commute with respect to B.
(2) There exist a function � and constant real numbers Mi;j; l; l′ with 06i6nl−1; 06j6nl′ − 1;

16l; l′6k and Mi;j; l; l′ =Mj; i; l′ ; l; such that

B(f; g) =
∫

f(t) g(t) d�(t) +
k∑

l;l′=1

nl−1∑
i=0

nl′−1∑
j=0

Mi;j; l; l′f(i)(tl)g(i)(tl′):

To conclude, in view of the fact that the operator “multiplication by h” is Hermitian with respect
to the complex inner product

〈f; g〉=
∫
�
f(z)g(z) d�(z); (4.6)

where � is a harmonic algebraic curve de�ned by Ih(z)=0 and h a complex polynomial (see [15]),
it seems natural to ask:

Problem 1. To characterize the sesquilinear forms B : P × P → C such that the operator
“multiplication by h” satis�es B(hf; g) = B(f; hg) for every polynomial f; g ∈ P; the linear space
of polynomials with complex coe�cients.

In the same way (see [14]), given an inner product like (4.6), if � is an equipotential curve
|h(z)| = 1, where h is a complex polynomial, then the operator “multiplication by h” is isometric
with respect to (4.6). Thus, it is natural to formulate

Problem 2. To characterize the sesquilinear forms B :P×P→C such that the operator “multiplication
by h” satis�es B(hf; hg) = B(f; g) for every polynomial f; g ∈ P; the linear space of polynomials
with complex coe�cients.



F. Marcell�an, R. �Alvarez-Nodarse / Journal of Computational and Applied Mathematics 127 (2001) 231–254 253

The connection between these problems and matrix polynomials orthogonal with respect to matrix
measures supported on the real line and on the unit circle, respectively, has been shown in [15,14].
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Abstract

This paper surveys some recent achievements in the analytic theory of polynomials orthogonal with respect to inner
products involving derivatives. Asymptotic properties, zero location, approximation and moment theory are some of the
topic considered. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

During the VIII Symposium on Orthogonal Polynomials and Applications, held in September 1997
in Sevilla (Spain), a survey on some new results and tools in the study of the analytic properties of
Sobolev orthogonal polynomials was presented, which was published later in [22]. This is a modest
attempt to update that survey, including some topics where progress has been made in the two
intervening years.
In general terms, we refer to Sobolev orthogonal polynomials when the underlying inner prod-

uct involves derivatives (in the classical or distributional sense). Here we restrict ourselves to the
following setups, which are general enough to exhibit the main features of the subject (for a more
general de�nition, see e.g. [4]):

• Diagonal case: let {�k}m
k=0, with m ∈ Z+, be a set of m + 1 �nite positive Borel measures such

that at least one of the measures, say �j; has in�nitely many points of increase, in which case �k
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has at least k + 1 points of increase, when 06k ¡ j. If f(k) is the kth derivative of the function
f, then we denote

(f; g)S =
m∑

k=0

∫
f(k)g(k) d�k: (1)

• Nondiagonal case: for a function f put f =(f;f′; : : : ; f(m)). Given a �nite positive Borel measure
� on C with in�nitely many points of increase and an (m+1)×(m+1) Hermitian positive-de�nite
matrix A, set

(f; g)S =
∫

f A(gT)�k: (2)

Then either (1) or (2) de�nes an inner product in the linear space P of polynomials with complex
coe�cients. The Gram–Schmidt process applied to the canonical basis of P generates the orthonormal
sequence of polynomials {qn}, n=0; 1; : : : ; deg qn=n; we denote the corresponding monic polynomials
by Qn(x) = xn + lower degree terms, so that

qn(x) =
Qn(x)
||Qn||S ; n= 0; 1; : : : ; (3)

where ||f||S =
√
(f;f)S . As usual, we will call these polynomials Sobolev orthogonal polynomials.

In addition, we will use the following notation. If � is a measure, then supp(�) is its support and
Pn(·; �) is the corresponding nth monic polynomial (if it exists) orthogonal with respect to the inner
product

〈f; g〉� =
∫
supp(�)

f(z)g(z) d�(z):

We have

Pn(z; �) = zn +
n−1∑
k=0

cn;kzk ; 〈Pn(z; �); zk〉� = 0; k = 0; : : : ; n− 1:

If � is a compact set in the complex plane, we denote by C(�) its logarithmic capacity and by 

the unbounded component of �C\�; for simplicity we assume in what follows that 
 is regular with
respect to the Dirichlet problem. Also, ’ is the conformal mapping of 
 onto the exterior of a disc
|z|= r, normalized by

lim
z→∞ ’(z)=z = 1;

so that the radius r = C(�). Finally, !� stands for the equilibrium measure of the compact set �.
For details, see e.g. [35] or [36].
During the 1990s very active research on Sobolev orthogonal polynomials was in progress. Never-

theless, most of the results are connected with the algebraic aspects of the theory and classical
measures in the inner product. For a historical review of this period the reader is referred to [22]
(see also [26]). Here we are mainly interested in the analytic theory: asymptotics, Fourier series,
approximation properties, etc.
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2. Strong and comparative asymptotics

To study the asymptotic properties of the sequence {Qn} as n → ∞, a natural approach is
to compare it with the corresponding behavior of the sequence {Pn(·; �)}, where � is one of the
measures involved in the Sobolev inner product (1) or (2). If � is “good”, the asymptotic properties
of the standard orthogonal polynomials are well known, so we can arrive at conclusions about Qn.
Probably, the simplest case of a nontrivial Sobolev inner product is

(f; g)s=
∫

f(x)g(x) d�0(x) + �f′(�)g′(�):

It corresponds to (1) with m = 1 and �1 = ���, where as usual �� is the Dirac delta (unit mass)
at �. The case when the measures corresponding to derivatives are �nite collections of Dirac deltas
is known as discrete, although it is implicitly assumed that �0 has a nonzero absolutely continuous
component. The asymptotic properties of {Qn} in such a situation have been thoroughly studied in
[16]. As it was shown there, a discrete measure �1 cannot “outweigh” the absolutely continuous �0,
and the asymptotic behavior of the polynomials Qn is identical to the standard orthogonal polynomials
corresponding to a mass-point modi�cation of �0.
For example, assume that �0 is supported on an interval [a; b]⊂R and belongs to the Nevai class

M (a; b) (see [29]), and that �¿ 0 and � ∈ R. Then,

lim
n→∞

Qn(z)
Pn(z; �0 + �1)

= 1

holds uniformly on compact subsets of �C \ ([a; b] ∪ {�}) (see [16]).
We also may try to construct an analogue of the classical theory when we have derivatives in the

inner product, considering Szegő or Nevai classes of measures or weights.
Assume that all the measures �k in the inner product (1) are supported on the same Jordan curve

or arc �⊂C. If we recall that one of the motivations for introducing Sobolev orthogonal polynomials
is a least-squares �tting of di�erentiable functions, this seems to be the most natural situation in
practice. On the support � we impose a restriction: the natural (arclength) parametrization of �
belongs to the class C2+, which is the subclass of functions of C2 whose second derivatives satisfy
a Lipschitz condition.
In order to extend Szegő’s theory to Sobolev orthogonality, we assume �rst that all the measures

�k belong to the Szegő class on �.
The experience accumulated so far shows that the right approach to the asymptotics of {Qn}

consists in a “decoupling” of terms in (1). Observe that after taking derivatives the polynomials
involved are no longer monic. The factor O(nk) which multiples Q(k)

n plays a crucial role as n → ∞.
Decoupling here means that we can restrict our attention to the last term of (1) and show that
only {Q(m)

n } “matters”. This can be done by comparing the Sobolev norm ||Q(m)
n ||S with the standard

L2(�m) norm of Q(m)
n and using the extremality of the L2(�m) norm for Pn−m(:; �m). This allows us

to �nd the asymptotics of {Q(m)
n } described by the Szegő theory. The second step is to “recover”

the behavior of the sequences {Q(k)
n } for k = 0; : : : ; m− 1.

By means of this scheme, Bernstein–Szegő type theorems were established in [23] (case m = 1)
and in [25] (for m¿ 1). A combination of some of these results can be stated in the form of
comparative asymptotics:
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Theorem 1. With the above-mentioned assumptions on the measures �k; k = 0; : : : ; m; we have

lim
n→∞

Q(k)
n (z)

nkPn−k(z; �m)
=

1
[’′(z)]m−k for k = 0; 1; : : : ; m; (4)

uniformly on compact subsets of 
:

By considering a slightly di�erent extremal problem, we can extend this result to the case when
�m has an absolutely continuous part from the Szegő class on � plus a �nite number of mass points
in C. The condition that the measures �k , k = 0; : : : ; m− 1, belong to the Szegő class, is introduced
because of some technicalities in the proof: at some stage we must derive strong asymptotics from
the L2 one. Indeed, this condition is clearly not necessary for (4). An easy example is produced in
[23]. Later, in [3], a case of Sobolev orthogonality (1) on the unit circle with m = 1 was studied,
where, assuming more restrictive conditions on �1, the same asymptotics was established for a wider
class of measures �0.
Thus, a necessary condition for (4) or, on the contrary, any nontrivial examples when this asymp-

totics does not hold, is still an open problem.
The case of noncoincident supports of the measures �k is very interesting and, for the time being,

practically unexplored. An insight into the di�culties inherent in this situation is given in the paper
[14] on the weak asymptotics of Qn. Any advance in the study of the strong asymptotics of Qn when
integrals in (1) are taken in di�erent supports is of great interest.

3. Recent extensions or the importance to be coherent

One approach to the study of asymptotics has not yet been mentioned, namely the coherence of
measures �k . Although its scope is limited, it has played an important role during the last few years.
Historically, the coherence of measures was introduced in connection with Sobolev orthogonality

and was essential in establishing �rst results on asymptotics in the nondiscrete case. Brie
y, we say
that two measures, � and �, form a coherent pair if there exists a �xed constant k ∈ N0 such that
for each n ∈ N the monic orthogonal polynomial Pn(:; �) can be expressed as a linear combination
of the set

P′
n+1(:; �); : : : P

′
n−k(:; �):

Coherence is then classi�ed in terms of k.
Coherent pairs of measures on R have been known for several years, but the complete classi�-

cation (for k = 0) was given only in [27]. This work was a basis for [24], where the �rst more or
less general result on nondiscrete asymptotics was obtained by means of a very simple but success-
ful technique: establishing an algebraic relation between the sequence {Qn} and the corresponding
sequence {Pn(:; �)}, having a �xed number of terms, and studying the asymptotic behavior of the
parameters involved. This leads easily to the comparative outer asymptotics.
As recent results show, this idea can be exploited in a variety of contexts. For instance, the case

of a coherent pair with m = 1 and unbounded support of the measures was studied in [28] (where
a result of [20] was extended). According to [27], in this case, either one of the measures �0 or �1
in (1) is given by the classical Laguerre weight. Following the path described above one can show
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that for a suitable parameter � of the Laguerre polynomials L(�)n , the ratio Qn(x)=L(�)n (x) tends to a
constant for x ∈ C \ [0;+∞), which in turn shows that the zeros of Qn accumulate on [0;+∞).
The nondiagonal Sobolev inner product can also be dealt with if we have coherence. In [21], the

authors take (2) with a 2 × 2 matrix A and the measure d�(x) = x�e−x dx on [0;+∞). Observe
that this case can be reduced to the diagonal one (1) but with a sign-varying weight in the �rst
integral. Thus, the results in [21] are not immediate consequences of those in [20]. Exploiting the
algebraic relation between the two families (classical and Sobolev), once again one can derive
the outer comparative asymptotics in C \ [0;+∞), which gives in the limit a constant. Perhaps
more informative is the scaled asymptotics Qn(nx)=L(�−1)n (nx) holding uniformly in C \ [0; 4], which
leads directly to an analogue of the Plancherel–Rotach asymptotics for Qn. Finally, we can use the
well-known Mehler–Heine asymptotic formula for L(�−1)n (nx) in order to relate it (and its zeros) to
the Bessel functions. Analogous research for � given by the Hermite weight on R was carried out
in [2].
More complicated coherent pairs have been studied in [19], which yield similar asymptotic results.

At any rate, after the work [27] it became apparent that coherence cannot lead us very far from the
classical weights on R. Some attempts to extend this notion to supports in the complex plane (say,
on the unit circle) have not given any important results so far.
From the discussion above, it becomes clear that a discretization of the measures �k in (1) for

k¿1 changes the asymptotic behavior of the corresponding Sobolev polynomials. An alternative
approach could be to get rid of derivatives in the inner product by replacing them with a suitable
�nite-di�erence scheme.
One of the �rst problems in this direction was considered in [9] for

(f; g)S =
∫
R
fg d�0 + ��f(c)�g(c); �¿ 0;

where �f(x)=f(x+1)−f(x) and the support of �0 is disjoint with (c; c+1). The paper is devoted
mainly to algebraic properties and zero location of polynomials Qn orthogonal with respect to this
inner product.
Thus, we have the following problem: given two measures on R; �0 and �1, describe the properties

of the sequence of polynomials Qn orthogonal with respect to the inner product

(f; g)S = 〈f; g〉�0 + 〈�f; �g〉�1 : (5)

As far as I know, only the cases of discrete measures �1 have so far been studied, both from
algebraic and analytic points of view. For instance, in [15] the construction of the corresponding
Sobolev space is discussed.
We can generalize in some sense the classical families of orthogonal polynomials of a discrete

variable if in (5) we take both measures �k discrete. In a series of papers [5,7], the so-called
Meixner–Sobolev polynomials are studied, which are orthogonal with respect to (5) and

�0 =
∞∑
i=0

(

+ i − 1

i

)
ti �i; 0¡t¡ 1; 
¿ 0; �1 = ��0; �¿ 0:

The Sobolev inner product (·; ·)S obtained in this way �ts in both schemes (1) and (2).
The asymptotic properties of the corresponding Sobolev orthogonal polynomials Qn are studied in

[7]. Once again we observe the use of coherence in the proof: the authors show that Qn; Qn+1; Pn(·; �0)



260 A. Mart��nez-Finkelshtein / Journal of Computational and Applied Mathematics 127 (2001) 255–266

and Pn+1(·; �0) are linearly dependent and �nd expressions for the (nonzero) coe�cients of a van-
ishing linear combination. This yields bounds or recurrence relations for the Sobolev norms of Qn,
which in turn allows us to establish comparative asymptotics of the coe�cients above. As usual, an
analogue of Poincar�e’s theorem does the rest.
As the support of the Meixner discrete measure is unbounded, it is more interesting to study a

contracted asymptotics obtained by a scaling of the variable. The authors of [7] �nd the behavior
of the ratio Qn(nz)=Pn(nz; �0) for z 6∈ [0; (1 +√

t)2=(1 − t)] and show that the zeros accumulate on
the complement of this interval.
One step further in the direction of discretizing of derivatives in (1) is to consider a nonuniform

mesh on R. In particular, we could take discretization knots of the form qk and substitute the
di�erential operator D in (1) by the q-di�erence operator Dq:

Dqf(x) =
f(qx)− f(x)
(q− 1)x ; x 6= 0; q 6= 1; Dqf(0) = f′(0):

In [6], the little q-Laguerre measure was considered,

�0 =
∑
k¿0

(aq)k(aq; q)∞
(q; q)k

�qk ; 0¡aq; q¡ 1;

where as usual,

(b; q)0 = 1; (b; q)k =
k∏

j=1

(1− bqj−1); 0¡k6∞:

Then (1) becomes

(f; g)S = 〈f; g〉�0 + 〈Dqf;Dqg〉�1 ;
for �1 = ��0; �¿ 0, the corresponding Qn are called little q-Laguerre–Sobolev polynomials.
Once again, the “coherent” scheme works perfectly. In particular, the properties of Laguerre–

Sobolev polynomials [20] can be recovered by taking appropriate limits in the little q-Laguerre–
Sobolev family when q ↑ 1.

4. Balanced Sobolev orthogonal polynomials

The role of the derivatives in the last term in (1), which introduce large factors as n → ∞,
was discussed above along with the idea of “decoupling” the study of each derivative Q(k)

n . These
considerations motivate the idea of balancing the terms of the Sobolev inner product by considering
only monic polynomials. In other words, we can look for monic polynomials Qn of degree n, which
minimize the norm

||Qn||2 = 〈Qn; Qn〉�0 + 〈Q′
n=n; Q

′
n=n〉�1

in the class of all monic polynomials of degree n. In a more general setting, we can study orthog-
onality with respect to (1), where each term is multiplied by a parameter which depends on the
degree of the polynomial.
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In [1], we made use once again of coherence of measures supported on [−1; 1] in order to explore
the following situation: let {�n} be a decreasing sequence of real positive numbers such that

lim
n→∞ n2�n = L; 0¡L¡+∞; (6)

and let Qn now stand for the monic polynomial of degree n orthogonal to all polynomials of degree
¡n with respect to the inner product

(p; q)S;n = 〈p; q〉�0 + �n〈p′; q′〉�1 : (7)

Observe that the inner product varies with the degree n; thus we could speak also of varying Sobolev
orthogonality.
If we introduce, in addition, the measure �∗ on [− 1; 1],

d�∗(x) = {�′
0(x) + 4L|’′(x)|2�′

1(x)} dx; x ∈ [− 1; 1]; (8)

we have the following theorem.

Theorem 2 (Alfaro et al. [1]). Let (�0; �1) be a coherent pair of measures satisfying Szegő’s con-
dition on [− 1; 1]; and let the sequence {�n} be as in (6). Then;

lim
n→∞

Qn(z)
Pn(z; �∗)

= 1; (9)

locally uniformly in C \ [− 1; 1].

In other words, the sequence {Qn} asymptotically behaves like the monic orthogonal polynomial
sequence corresponding to the measure (8).
The study of polynomials orthogonal with respect to a varying inner product (7) under assumption

(6) should be extended to a wider class of measures �k . Coherence still can give something new
for unbounded support, but the general case of bounded supp(�k) probably must be attacked with
the help of the Szegő type theory as described above.

5. Moments and approximation properties of Sobolev polynomials

It is clear that the moment theory plays an essential role in the study of the properties of standard
orthogonal polynomials. At the same time, �rst works in this direction for the Sobolev orthogonality
are very recent. In [8] (see also [30]) the diagonal case (1) is considered, when all the measures
�k are supported on R. As usual, the moment problem associated with (1) looks for the inversion
of the mapping

� = (�0; : : : ; �m)→ M= (si; j)∞i; j=0; si; j = (xi; x j)S : (10)

To be more precise, the Sobolev moment problem (or the S-moment problem) is the following: given
an in�nite matrix M = (si; j)∞i; j=0 and m + 1 subsets of R; �k ; k = 0; : : : ; m, �nd a set of measures
�0; : : : ; �m (�m 6= 0) such that

supp�k ⊂�k; k = 0; : : : ; m and si; j = (xi; x j)S for i; j = 0; : : : :

As usual, the problem is considered “de�nite” if it has a solution, and “determinate” if this solution
is unique.
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In this setting we can observe once again the phenomenon of “decoupling” mentioned above.
Indeed, using (1), we can see that if M is given by the right-hand side of (10), then

M=
m∑

k=0

DkMkD
T
k ; Mm 6= 0; (11)

where

Dk = (dk
i; j)

∞
i; j=0; dk

i; j =
i!

(i − k)!
�k; i−j; k = 0; : : : ; m;

and Mk are in�nite Hankel matrices. Thus, questions about S-moment problem can be tackled by
means of the classical tools of moment theory. In fact, in [8] it was shown that if M has a
decomposition (11) then de�niteness (determinacy) of the S-moment problem is equivalent of that
for the classical moment problem for each measure �k; k = 0; : : : ; m. A characterization of all the
matrices M which for a �xed m admit (11) can be found in [30, Theorem 2:1], where they are
called Hankel–Sobolev matrices.
As moments and recurrence go hand in hand in the theory of orthogonal polynomials, it is natural

to explore this path here. It is immediate to see that the Sobolev inner products (1) and (2) lack of
an essential feature of the standard inner product, namely

(xp(x); q(x))S 6= (p(x); xq(x))S :
As a consequence, we cannot expect a three-term recurrence relation for Qn (neither any recurrence
relation with a �xed number of terms, except in the case that the measures corresponding to deriva-
tives are discrete, see [10]). Nevertheless, expanding polynomials xqn(x) in the basis q0; : : : ; qn we
obtain the Hessenberg matrix of coe�cients,

R= (ri; j)∞i; j=0; ri; j = (xqi(x); qj(x))S : (12)

As in the standard case, the zeros of the Sobolev orthogonal polynomial qn are the eigenvalues
of the n × n principal minor of R. This shows that the zeros are connected with the operator of
multiplication by the variable (or shift operator).
Now we can try to use the tools of operator theory. But here special care is needed in de�ning the

appropriate function space. For the time being we can work it out formally: since (1) or (2) de�ne
an inner product in the space P, we can take its completion identifying all the Cauchy sequences of
polynomials whose di�erence tends to zero in the norm || · ||S . Let us denote the resulting Hilbert
space by PS = PS(�); � = (�0; : : : ; �m).
Considerations above show that by means of the matrix (12) we can de�ne in P a linear operator

R such that

Rp(x) = xp(x): (13)

By continuity, it can be extended to the multiplication operator in PS .
Recall that the location of zeros of Sobolev orthogonal polynomials is not a trivial problem.

Simple examples show that they do not necessarily remain in the convex hull of the union of the
supports of the measures �k and can be complex even when all the �k are supported on R. Some
accurate numerical results in this regard can be found in [14]. In particular, the following question
is open: is it true that whenever the measures �0; : : : ; �m are compactly supported in C, the zeros of
Qn are uniformly bounded?
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The �rst bene�t from the interpretation of the recurrence for qn in terms of operator theory was
obtained in [17; 30; Theorem 3.6] and this result was improved in [18]: if R is bounded and ||R|| is
its operator norm, then all the zeros of the Sobolev orthogonal polynomials Qn are contained in the
disc

{z ∈ C: |z|6||R||}:
Indeed, if x0 is a zero of Qn then xp(x) = x0p(x) + Qn(x) for a p ∈ Pn−1. Since p and Qn are
orthogonal,

|x0|2||p||2S = ||xp(x)||2S − ||Qn(x)||2S6||xp(x)||2S = ||Rp(x)||2S6||R||2||p||2S
which yields the result.
Thus, the question whether or not the multiplication operator R is bounded turns out to be a key

for the location of zeros and, as it was shown in [14], to asymptotic results for the nth root of Qn.
Clearly enough, without a thorough knowledge of the space PS this condition (R is bounded) lacks
of any practical application.
But we can have a simple and veri�able su�cient condition for ||R||¡∞, introduced also in

[17]: the sequential domination of the Sobolev inner product (1). It means that for k = 1; : : : ; m,

supp�k ⊂ supp�k−1; �k � �k−1;
d�k

d�k−1
∈ L∞(�k−1); (14)

where �.� means that � is absolutely continuous with respect to � and d�=d� stands for the Radon–
Nikodym derivative. A bound for ||R|| in terms of maxx∈supp(�0)|x| and the sup-norm of the derivatives
above can be obtained (see [18]).
At a second look, the assumption of sequential domination seems more natural. Indeed, we have

seen above that in part owing to derivatives in the integrals de�ning (1), the last measure, �m, plays
the leading role and determines the behavior of Q(m)

n , while the other measures are bound to “control”
the proper asymptotic behavior of Q(k)

n , for k=0; : : : ; m−1. This can be achieved by assigning more
weight to measures with smaller index, like in (14).
It turns out that the condition of sequential domination is in some sense not far from being

also necessary. This comes as a result of a series of works [31–34], aiming in particular at a full
understanding of the structure and properties of the space PS de�ned above. We are talking here
about a general theory of Sobolev spaces.
Weighted Sobolev spaces are studied from several points of view, motivated mainly by the analysis

of di�erential equations. Their extension to general measures is less explored. Some examples have
been considered in [11–13], but the beginnings of a systematic study can be found in the papers
mentioned above. In particular, two key questions are discussed in [32,33]: what is a reasonable
extension of the de�nition of a Sobolev space of functions with respect to a vectorial measure
� = (�0; : : : ; �m)? For example, we could de�ne it as the largest space where the Sobolev norm
|| · ||S has sense and is �nite. Then, the second question arises: what is the relation of this space to
PS(�)? In other words, we should study the possibility of approximation of a class of functions by
polynomials in the norm || · ||S .
A good description of PS(�) led in [31,34] to a proof of both necessary and su�cient conditions for

the multiplication operator R to be bounded in PS . Rather remarkable is the result that the su�cient
condition of sequential domination is not far from being necessary. Roughly speaking, Theorem 4:1
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in [31] says that if all the measures �k are compactly supported on R and R is bounded, then there
exists a vectorial measure �, also compactly supported on R, whose components are sequentially
dominated, and such that the Sobolev norms induced by � and � are equivalent.
Let us go back to asymptotics. If we have located the zeros of {Qn}, which turn out to be

uniformly bounded, we can apply the ideas of [14] to obtain the zero distribution along with the
nth root asymptotics of the Sobolev polynomials. This is the second part of [17,18].
For any polynomial Q of exact degree n we denote by

�(Q) =
1
n

∑
Q(z)=0

�z;

the normalized zero counting measure associated with Q. The (weak) zero distribution of the poly-
nomials Qn studies the convergence of the sequence �(Qn) in the weak-∗ topology. The class of reg-
ular measures � ∈ Reg, compactly supported on R, has been introduced in [36] and is characterized
by the fact that

lim
n→∞ ||Pn(·; �)||1=nL2(�) = C(supp(�)):

Consider again the Sobolev inner product (1). Assume that there exists an l ∈ {0; : : : ; m} such that
l⋃

k=0

supp(�k) =
m⋃

k=0

supp(�k)

and �0; : : : ; �l ∈ Reg, with their supports regular with respect to the Dirichlet problem. Following
[17], we call this inner product l-regular. For example, if it is sequentially dominated and the support
of �0 is regular with respect to the Dirichlet problem, then the condition �0 ∈ Reg is equivalent to
0-regularity.
If (1) is l-regular, then the derivatives Q(k)

n for l6k6m exhibit regular behavior. Indeed, let
� =

⋃m
k=0 supp(�k); then we have

Theorem 3 (Lopez et al. [18]). If (1) is l-regular; then for l6k6m;

lim
n→∞

(
max
z∈�

|Q(k)
n (z)|

)1=n
= C(�)

and; if the interior of � is empty and C\� is connected;

lim
n→∞ �(Q(k)

n ) = !�;

the equilibrium measure of �.
In particular; if (1) is sequentially dominated and 0-regular; then for k = 0; : : : ; m;

lim
n→∞ |Q(k)

n (z)|1=n = |’(z)|
holds locally uniformly in the intersection of {z ∈ C: |z|¿ ||R||} with the unbounded connected
component of C \ �. As before; R is the multiplication operator (13) in PS(�).

This exposition shows that the analytic theory of Sobolev orthogonal polynomials, though very
abundant in results and conjectures, is still in its beginning. New approaches and fresh nonstandard
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ideas are needed. Moreover, in spite of its “numerical” motivation, the development of the theory
up to now has obeyed more its own internal logic than the needs of the practitioner. Thus, a good
stimulus outside to this �eld would be more than welcome and could help to state the right questions
leading to beautiful answers.
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[23] A. Mart��nez-Finkelshtein, Bernstein–Szegő’s theorem for Sobolev orthogonal polynomials, Constr. Approx. 16 (2000)
73–84.

[24] A. Mart��nez-Finkelshtein, J.J. Moreno-Balc�azar, T.E. P�erez, M.A. Piñar, Asymptotics of Sobolev orthogonal
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Abstract

Quadrature formulas with multiple nodes, power orthogonality, and some applications of such quadratures to moment-
preserving approximation by defective splines are considered. An account on power orthogonality (s- and �-orthogonal
polynomials) and generalized Gaussian quadratures with multiple nodes, including stable algorithms for numerical con-
struction of the corresponding polynomials and Cotes numbers, are given. In particular, the important case of Chebyshev
weight is analyzed. Finally, some applications in moment-preserving approximation of functions by defective splines are
discussed. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Quadratures with multiple nodes; Gauss–Tur�an-type quadratures; Error term; Convergence; Orthogonal poly-
nomials; s- and �-orthogonal polynomials; Nonnegative measure; Extremal polynomial; Weights; Nodes; Degree of pre-
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1. Introduction

More than 100 years after Gauss published his famous method of approximate integration, which
was enriched by signi�cant contributions of Jacobi and Christo�el, there appeared the idea of nu-
merical integration involving multiple nodes. Taking any system of n distinct points {�1; : : : ; �n} and
n nonnegative integers m1; : : : ; mn, and starting from the Hermite the interpolation formula, Chakalov
(Tschakalo� in German transliteration) [8] in 1948 obtained the quadrature formula

∫ 1

−1
f(t) dt=

n∑
�= 1

[A0; �f(��) + A1; �f′(��) + : : :+ Am�−1;�f
(m�−1)(��)]; (1.1)
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which is exact for all polynomials of degree at most m1 + : : : + mn − 1. Precisely, he gave a
method for computing the coe�cients Ai;� in (1.1). Such coe�cients (Cotes numbers of higher order)
are evidently Ai;�=

∫ 1
−1 ‘i; �(t) dt (�=1; : : : ; n; i=0; 1; : : : ; m� − 1), where ‘i; �(t) are the fundamental

functions of Hermite interpolation.
In 1950, specializing m1 = : : : =mn= k in (1.1), Tur�an [90] studied numerical quadratures of the

form ∫ 1

−1
f(t) dt=

k−1∑
i= 0

n∑
�= 1

Ai;�f(i)(��) + Rn;k(f): (1.2)

Let Pm be the set of all algebraic polynomials of degree at most m. It is clear that formula (1.2)
can be made exact for f ∈ Pkn−1, for any given points −16 �16 : : : 6 �n6 1. However, for k =1
formula (1.2), i.e.,∫ 1

−1
f(t) dt=

n∑
�= 1

A0; �f(��) + Rn;1(f)

is exact for all polynomials of degree at most 2n− 1 if the nodes �� are the zeros of the Legendre
polynomial Pn, and it is the well-known Gauss–Legendre quadrature rule.
Because of Gauss’s result it is natural to ask whether nodes �� can be chosen so that the quadrature

formula (1.2) will be exact for algebraic polynomials of degree not exceeding (k + 1)n− 1. Tur�an
[90] showed that the answer is negative for k =2, and for k =3 it is positive. He proved that the
nodes �� should be chosen as the zeros of the monic polynomial �∗

n(t)= tn + : : : which minimizes
the integral

∫ 1
−1 [�n(t)]

4 dt, where �n(t)= tn + an−1tn−1 + : : :+ a1t + a0.
In the general case, the answer is negative for even, and positive for odd k, and then �� must be

the zeros of the polynomial minimizing
∫ 1
−1 [�n(t)]

k+1 dt. When k =1, then �n is the monic Legendre
polynomial P̂n.
Because of the above, we assume that k =2s+ 1, s¿ 0. Instead of (1.2), it is also interesting to

consider a more general Gauss–Tur�an-type quadrature formula
∫
R
f(t) d�(t)=

2s∑
i= 0

n∑
�= 1

Ai;�f(i)(��) + Rn;2s(f); (1.3)

where d�(t) is a given nonnegative measure on the real line R, with compact or unbounded support,
for which all moments �k =

∫
R tk d�(t) (k =0; 1; : : :) exist and are �nite, and �0¿ 0. It is known that

formula (1.3) is exact for all polynomials of degree not exceeding 2(s + 1)n − 1, i.e., Rn;2s(f)= 0
for f ∈ P2(s+1)n−1. The nodes �� (�=1; : : : ; n) in (1.3) are the zeros of the monic polynomial �n;s(t),
which minimizes the integral

F(a0; a1; : : : ; an−1)=
∫
R
[�n(t)]

2s+2 d�(t); (1.4)

where �n(t)= tn + an−1tn−1 + : : :+ a1t + a0. This minimization leads to the conditions
1

2s+ 2
@F
@ak

=
∫
R
[�n(t)]

2s+1tk d�(t)= 0 (k =0; 1; : : : ; n− 1): (1.5)

These polynomials �n= �n;s are known as s-orthogonal (or s-self associated) polynomials on R
with respect to the measure d�(t) (for more details see [15,62,65,66]. For s=0 they reduce to the
standard orthogonal polynomials and (1.3) becomes the well-known Gauss–Christo�el formula.
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Using some facts about monosplines, Micchelli [47] investigated the sign of the Cotes coe�cients
Ai;� in the Tur�an quadrature.
A generalization of the Tur�an quadrature formula (1.3) (for d�(t)= dt on (a; b)) to rules having

nodes with arbitrary multiplicities was derived independently by Chakalov [9,10] and Popoviciu [74].
Important theoretical progress on this subject was made by Stancu [82,84] (see also [88]).
In this case, it is important to assume that the nodes �� are ordered, say

�1¡�2¡: : :¡ �n; (1.6)

with multiplicities m1, m2, : : : , mn, respectively. A permutation of the multiplicities m1, m2, : : : , mn,
with the nodes held �xed, in general yields a new quadrature rule.
It can be shown that the quadrature formula (1.1) is exact for all polynomials of degree less

than 2
∑n

�= 1 [(m� + 1)=2]. Thus, the multiplicities m� that are even do not contribute toward an
increase in the degree of exactness, so that it is reasonable to assume that all m� be odd integers,
m�=2s�+1 (�=1; 2; : : : ; n). Therefore, for a given sequence of nonnegative integers �=(s1; s2; : : : ; sn)
the corresponding quadrature formula

∫
R
f(t) d�(t)=

n∑
�= 1

2s�∑
i= 0

Ai;�f(i)(��) + R(f) (1.7)

has maximum degree of exactness

dmax = 2
n∑

�= 1

s� + 2n− 1 (1.8)

if and only if
∫
R

n∏
�= 1

(t − ��)2s�+1tk d�(t)= 0 (k =0; 1; : : : ; n− 1): (1.9)

The last orthogonality conditions correspond to (1.5) and they could be obtained by the minimization
of the integral

∫
R

n∏
�= 1

(t − ��)2s�+2 d�(t):

The existence of such quadrature rules was proved by Chakalov [9], Popoviciu [74], Morelli and
Verna [57], and existence and uniqueness (subject to (1.6)) by Ghizzetti and Ossicini [27].
Conditions (1.9) de�ne a sequence of polynomials {�n;�}n∈N0 ,

�n;�(t)=
n∏

�= 1

(t − �(n;�)� ); �(n;�)1 ¡�(n;�)2 ¡: : :¡ �(n;�)n ;

such that∫
R
�k;�(t)

n∏
�= 1

(t − �(n;�)� )2s�+1 d�(t)= 0 (k =0; 1; : : : ; n− 1): (1.10)

Thus, we get now a general type of power orthogonality. These polynomials �k;� are called �-
orthogonal polynomials, and they correspond to the sequence �=(s1; s2; : : :). We will often write
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simple �� or �(n)� instead of �(n;�)� . If we have �=(s; s; : : :), the above polynomials reduce to the
s-orthogonal polynomials.
This paper is devoted to quadrature formulas with multiple nodes, power orthogonality, and some

applications of such quadrature formulas to moment-preserving approximation by defective splines.
In Section 2, we give an account on power orthogonality, which includes some properties of s-
and �-orthogonal polynomials and their construction. Section 3 is devoted to some methods for
constructing generalized Gaussian formulas with multiple nodes. The important case of Chebyshev
weight is analyzed in Section 4. Finally, some applications to moment-preserving approximation by
defective splines are discussed in Section 5.

2. Power orthogonality

This section is devoted to power-orthogonal polynomials. We give an account on theoretical results
on this subject, and we also consider methods for numerical construction of such polynomials.

2.1. Properties of s- and �-orthogonal polynomials

The orthogonality conditions for s-orthogonal polynomials �n;s= �n;s( · ; d�) are given by (1.5) i.e.,∫
R
[�n;s(t)]

2s+1�k; s(t) d�(t)= 0 (k =0; 1; : : : ; n− 1): (2.1)

These polynomials were investigated mainly by Italian mathematicians, especially the case d�(t)=
w(t) dt on [a; b] (e.g., Ossicini [62,63], Ghizzetti and Ossicini [23–27], Guerra [37,38], Ossicini and
Rosati [67–69], Gori [29], Gori and Lo Cascio [30]). The basic result concerns related to zero
distribution.

Theorem 2.1. There exists a unique monic polynomial �n;s for which (2:1) is satis�ed; and �n;s has
n distinct real zeros which are all contained in the open interval (a; b).

This result was proved by Tur�an [90] for d�(t)= dt on [− 1; 1]. It was also proved by Ossicini
[62] (see also the book [24, pp. 74–75]) using di�erent methods.
Usually, we assume that the zeros ��= �(n; s)� (�=1; 2; : : : ; n) of �n;s are ordered as in (1.6).
In the symmetric case w(−t)=w(t) on [−b; b] (b¿ 0), it is easy to see that �n;s(−t)= (−1)n�n; s(t).

In the simplest case of Legendre s-orthogonal polynomials Pn;s(t)= an
∏n

�= 1 (t − ��), where the nor-
malization factor an is taken to have Pn;s(1)= 1, Ghizzetti and Ossicini [23] proved that |Pn;s(t)|6 1,
when −16 t6 1. Also, they determined the minimum in (1.4) in this case,

Fn;s=
∫ 1

−1
[Pn;s(t)]

2s+2 dt=
2

1 + (2s+ 2)n
:

Indeed, integration by parts gives

Fn;s= [tPn; s(t)2s+2]
1
−1 − (2s+ 2)

∫ 1

−1
tPn; s(t)2s+1P′

n; s(t) dt=2− (2s+ 2)nFn;s

because tP′
n; s(t)= nPn;s(t) + Q(t) (Q ∈ Pn−2 in this symmetric case). It would be interesting to

determine this minimum for other classical weights.
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Fig. 1. Nonnegative zeros of Pn;s(t) for s=1 and n=1(1)20 (left); Positive zeros of Pn;s(t) for n=8 and s=0(1)10
(right).

Fig. 2. Nonnegative zeros of Hn;s(t) for s=1 and n=1(1)20 (left); Positive zeros of Hn;s(t) for n=8 and s=0(1)10
(right).

Fig. 3. Zeros of Ln;s(t) for s=1 and n=1(1)10 (left) and for n=4 and s=0(1)10 (right).

In Fig. 1 we display the distribution of nonnegative zeros for Legendre s-orthogonal polynomials,
taking s=1 and n=1; 2; : : : ; 20. Also, we present graphics when n is �xed (n=8) and s runs up to
10. The corresponding graphics for Hermite s-orthogonal polynomials Hn;s are given in Fig. 2.
In Fig. 3 we present all zeros of Laguerre s-orthogonal polynomials for s=1 and n6 10, and

also for n=4 and s6 10. Also, we give the corresponding zero distribution of generalized Laguerre
s-orthogonal polynomial L(�)n; s , when � ∈ (−1; 5] (n=4, s=1) (see Fig. 4). Numerical experimentation
suggests the following result.
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Fig. 4. Zero distribution of L�
n; s(t) for n=4, s=1 and −1¡�6 5.

Theorem 2.2. For every s ∈ N0; the zeros of �n;s and �n+1; s mutually separate each other.

This interlacing property is well-known when s=0 (cf. [89, p. 46], [11, p. 28]). The proof of
Theorem 2.2 can be obtained by applying a general result on interlacing properties of the zeros
of the error functions in best Lp-approximations, given by Pinkus and Ziegler [73, Theorem 1:1].
Precisely, we put u�(t)= t�−1 (�=1; : : : ; n + 2), p=2s + 2, and then use Corollary 1:1 from [73].
In the notation of this paper, qn;p= �n;s and qn+1;p= �n+1; s, and their zeros strictly interlace for each
s¿ 0.
A particularly interesting case is the Chebyshev measure

d�1(t)= (1− t2)−1=2dt:

In 1930, Bernstein [3] showed that the monic Chebyshev polynomial T̂ n(t)=Tn(t)=2n−1 minimizes
all integrals of the form

∫ 1

−1

|�n(t)|k+1√
1− t2

dt (k¿ 0):

Thus, the Chebyshev polynomials Tn are s-orthogonal on [−1; 1] for each s¿ 0. Ossicini and Rosati
[65] found three other measures d�k(t) (k =2; 3; 4) for which the s-orthogonal polynomials can be
identi�ed as Chebyshev polynomials of the second, third, and fourth kind: Sn, Vn, and Wn, which
are de�ned by

Sn(cos �)=
sin(n+ 1)�
sin �

; Vn(cos �)=
cos(n+ 1

2)�
cos 12�

; Wn(cos �)=
sin(n+ 1

2)�
sin 1

2�
;

respectively (cf. [18]). However, these measures depend on s,

d�2(t)= (1− t2)1=2+sdt; d�3(t)=
(1 + t)1=2+s

(1− t)1=2
dt; d�4(t)=

(1− t)1=2+s

(1 + t)1=2
dt:

Notice that Wn(−t)= (−1)nVn(t).
Considering the set of Jacobi polynomials P(�;�)n , Ossicini and Rosati [69] showed that the only

Jacobi polynomials which are s-orthogonal for a positive integer s are the Chebyshev polynomials
of the �rst kind, which occur when �= �= − 1

2 . Recently, Shi [77] (see also [78]) has proved that
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the Chebyshev weight w(t)= (1− t2)−1=2 is the only weight (up to a linear transformation) having
the property: For each �xed n; the solutions of the extremal problem

∫ 1

−1

(
n∏

�= 1

(t − ��)

)m

w(t) dt= min
�(t) = tn+···

∫ 1

−1
[�(t)]mw(t) dt (2.2)

for every even m are the same. Precisely, he proved the following result.

Theorem 2.3. Let w be a weight supported on [− 1; 1] such that ∫ 1−1 w(t) dt=1. If (2:2) holds for
the following pairs (m; n):

m=m1; m2; : : : ; if n=1; 2; 4; and m=2; 4; if n=3; 5; 6; : : : ;

where {mk}k∈N is a strictly increasing sequence of even natural numbers such that m1 = 2 and∑+∞
k = 1 (1=mk)= +∞; then there exist two numbers � and � such that w= v�;�; where

v�;�(t)=




1
�
√
(t − �)(� − t)

; t ∈ (�; �);
0; t 6∈ (�; �):

Recently, Gori and Micchelli [33] have introduced for each n a class of weight functions Wn

de�ned on [− 1; 1] for which explicit n-point Gauss–Tur�an quadrature formulas of all orders can be
found. In other words, these classes of weight functions have the peculiarity that the corresponding
s-orthogonal polynomials, of the same degree, are independent of s. The class Wn includes certain
generalized Jacobi weight functions wn;�(t)= |Sn−1(t)=n|2�+1(1− t2)�, where Sn−1(cos �)= sin n�=sin �
(Chebyshev polynomial of the second kind) and �¿− 1. In this case, the Chebyshev polynomials
Tn appear as s-orthogonal polynomials. For n=2 the previous weight function reduces to the weight
w2; �(t)= |t|2�+1(1− t2)�, which was studied in [30,31,36].
Very little is known about �-orthogonal polynomials. Except for Rodrigues’ formula, which has an

analogue for these polynomials (see [25,26]), no general theory is available. Some particular results
on zeros of �-orthogonal polynomials and their asymptotic behavior are known (cf. [59–61]). The
Legendre case with �=(0; s) was considered by Morelli and Verna [59], and they proved that

lim
s→+∞ �1 = − 1 and lim

s→+∞ �2 = 0:

2.2. Numerical construction of power-orthogonal polynomials

An iterative process for computing the coe�cients of s-orthogonal polynomials in a special case,
when the interval [a; b] is symmetric with respect to the origin and the weight w is an even function,
was proposed by Vincenti [93]. He applied his process to the Legendre case. When n and s increase,
the process becomes numerically unstable.
At the Third Conference on Numerical Methods and Approximation Theory (Ni�s, August 18–21,

1987) (see [51]) we presented a stable method for numerically constructing s-orthogonal polynomials
and their zeros. It uses an iterative method with quadratic convergence based on a discretized Stieltjes
procedure and the Newton–Kantorovi�c method.
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Table 1

n d�(n; s)(t) Orthogonal polynomials

0 (�(0; s)0 (t))2sd�(t) �(0; s)0

1 (�(1; s)1 (t))2sd�(t) �(1; s)0 �(1; s)1

2 (�(2; s)2 (t))2sd�(t) �(2; s)0 �(2; s)1 �(2; s)2

3 (�(3; s)3 (t))2sd�(t) �(3; s)0 �(3; s)1 �(3; s)2 �(3; s)3

...

The basic idea for our method to numerically construct s-orthogonal polynomials with respect to
the measure d�(t) on the real line R is a reinterpretation of the “orthogonality conditions” (2.1).
For given n and s, we put d�(t)= d�(n; s)(t)= (�n;s(t))2sd�(t). The conditions can then be written as∫

R
�(n; s)k (t)t�d�(t)= 0 (�=0; 1; : : : ; k − 1);

where {�(n; s)k } is a sequence of monic orthogonal polynomials with respect to the new measure
d�(t). Of course, �n;s( · )= �(n; s)n ( · ). As we can see, the polynomials �(n; s)k (k =0; 1; : : :) are implicitly
de�ned, because the measure d�(t) depends of �(n; s)n (t). A general class of such polynomials was
introduced and studied by Engels (cf. [12, pp. 214–226]). We will write simply �k( · ) instead of
�(n; s)k ( · ). These polynomials satisfy a three-term recurrence relation

��+1(t)= (t − ��)��(t)− ����−1(t); �=0; 1; : : : ;

�−1(t)= 0; �0(t)= 1; (2.3)

where because of orthogonality

��= ��(n; s)=
(t��; ��)
(��; ��)

=
∫
R t�2�(t) d�(t)∫
R �2�(t) d�(t)

;

��= ��(n; s)=
(��; ��)

(��−1; ��−1)
=

∫
R �2�(t) d�(t)∫
R �2�−1(t) d�(t)

(2.4)

and by convention, �0 =
∫
R d�(t).

The coe�cients �� and �� are the fundamental quantities in the constructive theory of orthogonal
polynomials. They provide a compact way of representing orthogonal polynomials, requiring only
a linear array of parameters. The coe�cients of orthogonal polynomials, or their zeros, in contrast
need two-dimensional arrays. Knowing the coe�cients ��, �� (�=0; 1; : : : ; n− 1) gives us access to
the �rst n+1 orthogonal polynomials �0, �1; : : : ; �n. Of course, for a given n, we are interested only
in the last of them, i.e., �n ≡ �(n; s)n . Thus, for n=0; 1; : : : ; the diagonal (boxed) elements in Table 1
are our s-orthogonal polynomials �(n; s)n .
A stable procedure for �nding the coe�cients ��, �� is the discretized Stieltjes procedure, espe-

cially for in�nite intervals of orthogonality (see [15,16,20]). Unfortunately, in our case this pro-
cedure cannot be applied directly, because the measure d�(t) involves an unknown polynomial



G.V. Milovanovi�c / Journal of Computational and Applied Mathematics 127 (2001) 267–286 275

�(n; s)n . Consequently, we consider the system of nonlinear equations in the unknowns �0; �1; : : : ; �n−1,
�0; �1; : : : ; �n−1

f0≡ �0 −
∫
R
�2sn (t) d�(t)= 0;

f2�+1≡
∫
R
(�� − t)�2�(t)�

2s
n (t) d�(t)= 0 (�=0; 1; : : : ; n− 1);

f2� ≡
∫
R
(���2�−1(t)− �2�(t))�

2s
n (t) d�(t)= 0 (�=1; : : : ; n− 1);

(2.5)

which follows from (2.4), and then we apply the Newton–Kantorovi�c method for determining the
coe�cients of the recurrence relation (2.3) (see [51,22]). If su�ciently good starting approximations
are chosen, the convergence of this method is quadratic. The elements of the Jacobian can be easily
computed using the recurrence relation (2.3), but with other (delayed) initial values (see [51,22]).
All integrals in (2.5), as well as the integrals in the elements of the Jacobian, can be computed
exactly, except for rounding errors, by using a Gauss–Christo�el quadrature formula with respect to
the measure d�(t):

∫
R
g(t) d�(t)=

N∑
�= 1

A(N )� g(�(N )� ) + RN (g); (2.6)

taking N =(s+1)n nodes. This formula is exact for all polynomials of degree at most 2N−1=2(s+
1)n− 1=2(n− 1) + 2ns+ 1.
Thus, all calculations in this method are based on using only the fundamental three-term recurrence

relation (2.3) and the Gauss–Christo�el quadrature formula (2.6). The problem of �nding su�ciently
good starting approximations for �[0]� = �[0]� (n; s) and �[0]� = �[0]� (n; s) is the most serious one. In [51,22]
we proposed to take the values obtained for n−1, i.e., �[0]� = ��(s; n−1), �[0]� = ��(s; n−1), �6 n−2,
and the corresponding extrapolated values for �[0]n−1 and �[0]n−1. In the case n=1 we solve the equation

�(�0)=�(�0(s; 1))=
∫
R
(t − �0)2s+1 d�(t)= 0;

and then determine �0 = �0(s; 1)=
∫
R(t − �0)2s d�(t).

The zeros ��= ��(n; s) (�=1; : : : ; n) of �(n; s)n , i.e., the nodes of the Gauss–Tur�an-type quadrature
formula (1.3), can be obtained very easily as eigenvalues of a (symmetric tridiagonal) Jacobi matrix
Jn using the QR algorithm, namely

Jn=




�0
√

�1 O√
�1 �1

√
�2√

�2 �2
. . .

. . . . . .
√

�n−1

O
√

�n−1 �n−1




;

where ��= ��(n; s), ��= ��(n; s) (�=0; 1; : : : ; n− 1).
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Table 2

� (1; 1; 3) (1; 3; 1) (3; 1; 1)

�(3; �)1 −2:30298348189811 −2:26862030544612 −1:57815506119966
�(3; �)2 −0:62210813435576 0 0:62210813435576
�(3; �)3 1:57815506119966 2:26862030544612 2:30298348189811

An iterative method for the construction of �-orthogonal polynomials was developed by Gori et al.
[32]. In this case, the corresponding reinterpretation of the “orthogonality conditions” (1.10) leads
to conditions∫

R
�(n;�)k (t)t� d�(t)= 0 (�=0; 1; : : : ; k − 1);

where

d�(t)= d�(n;�)(t)=
n∏

�= 1

(t − �(n;�)� )2s� d�(t): (2.7)

Therefore, we conclude that {�(n;�)k } is a sequence of (standard) orthogonal polynomials with respect
to the measure d�(t). Evidently, �(n;�)n ( · ) is the desired �-orthogonal polynomial �n;�( · ). Since
d�(t) is given by (2.7), we cannot apply here the same procedure as in the case of s-orthogonal
polynomials. Namely, the determination of the Jacobian requires the partial derivatives of the zeros
�(n;�)� with respect to �k and �k , which is not possible in an analytic form. Because of that, in [32] a
discrete analogue of the Newton–Kantorovi�c method (a version of the secant method) was used. The
convergence of this method is superlinear and strongly depends on the choice of the starting points.
Recently, Milovanovi�c and Spalevi�c [56] have considered an iterative method for determining the
zeros of �-orthogonal polynomials.
As we mentioned in Section 1, �-orthogonal polynomials are unique when (1.6) is imposed,

with corresponding multiplicities m1; m2; : : : ; mn. Otherwise, the number of distinct �-polynomials is
n!=(k1!k2! · · · kq!) for some q (16 q6 n), where ki is the number of nodes of multiplicity mj= i, each
node counted exactly once,

∑q
i= 1 ki= n. For example, in the case n=3, with multiplicities 3; 3; 7,

we have three di�erent Hermite �-polynomials (w(t)= e−t2 on R), which correspond to �=(1; 1; 3),
(1; 3; 1), and (3; 1; 1) (see Table 2).

3. Generalized Gaussian quadrature with multiple nodes

3.1. A theoretical approach

In order to construct a quadrature formula of form (1.7), with multiple nodes �� (whose mul-
tiplicities are m�=2s� + 1), Stroud and Stancu [88] (see also Stancu [80,84]) considered ‘ dis-
tinct real numbers �1; : : : ; �‘ and assumed that none of these coincide with any of the ��. The
Lagrange–Hermite interpolation polynomial for the function f at simple nodes �� and the multiple
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nodes ��,

L(t;f)≡L

(
�1

2s1 + 1
; : : : ;

�n

2sn + 1;

�1

1
; : : : ;

�‘

1
; f|t

)

can be expressed in the form

L(t;f)=!(t)L

(
�1

2s1 + 1
; : : : ;

�n

2sn + 1
; f1|t

)
+ 
(t)L

(
�1

1
; : : : ;

�‘

1
; f2|t

)
;

where !(t)= (t − �1) · · · (t − �‘), 
(t)= (t − �1)2s1+1 · · · (t − �n)2sn+1, and f1(t)=f(t)=!(t),
f2(t)=f(t)=
(t). Since the remainder r(t;f) of the interpolation formula f(t)=L(t;f) + r(t;f)
can be expressed as a divided di�erence,

r(t;f)=
(t)!(t)

[
�1

2s1 + 1
; : : : ;

�n

2sn + 1
;

�1

1
; : : : ;

�‘

1
;

t

1
;f

]
; (3.1)

we obtain the quadrature formula∫
R
f(t) d�(t)=Q(f) + ’(f) + %(f); (3.2)

where Q(f) is the quadrature sum in (1.7), %(f)=
∫
R r(t;f) d�(t) and ’(f) has the form ’(f)=∑‘

�= 1 B�f(��). Since the divided di�erence in (3.1) is of order M + ‘=
∑n

�= 1(2s� + 1) + ‘, it
follows that the quadrature formula (3.2) has degree of exactness M + ‘ − 1.
For arbitrary �1; : : : ; �‘ it was proved [88] that it is possible to determine the nodes �1; : : : ; �n (with

the m� given) so that B1 = · · · =B‘=0. For this, the necessary and su�cient condition is that 
(t)
be orthogonal to P‘−1 with respect to the measure d�(t), i.e.,∫

R
tk
(t) d�(t)= 0 (k =0; 1; : : : ; ‘ − 1): (3.3)

If ‘= n, system (3.3) has at least one real solution consisting of the n distinct real nodes �1; : : : ; �n.
The case ‘¡n was considered by Stancu [85]. Stancu [81–86] also generalized the previous quadra-
ture formulas using the quadrature sum with multiple Gaussian nodes �� and multiple preassigned
nodes �� in the form

Q(f)=
n∑

�= 1

m�−1∑
i= 0

Ai;�f(i)(��) +
‘∑

�= 1

k�−1∑
j= 0

Bj;�f(j)(��):

A particular case with simple Gaussian nodes and multiple �xed nodes was considered by Stancu
and Stroud [87]. The existence and uniqueness of the previous quadratures exact for an extended
complete Chebyshev (ETC) system were proved by Karlin and Pinkus [41,42] without using a
variational principle. Barrow [2] gave a di�erent proof using the topological degree of a mapping.
On the other hand, Barrar et al. [1] obtained the results entirely via a variational principle. Namely,
they considered the problem of �nding the element of minimal Lp norm (16p¡+∞) from a family
of generalized polynomials, where the multiplicities of the zeros are speci�ed. As an application,
they obtained Gaussian quadrature formulas exact for extended Chebyshev systems. The L1 case was
studied in [4,6] (see also [40]).
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Using a result from [80], Stancu [84] determined the following expression for Cotes coe�cients
in (1.7):

Ai;�=
1

i!(2s� − i)!

[
1


�(t)

∫
R


(t)− 
(x)
t − x

d�(x)
](2s�−i)

t = ��

;

where 
�(t)=
(t)=(t − ��)2s�+1. An alternative expression

Ai;�=
1
i!

2s�−i∑
k = 0

1
k!

[
(t − ��)2s�+1


(t)

](k)
t = ��

∫
R


(t)
(t − ��)2s�−i−k+1

d�(t) (3.4)

was obtained in [55].
Some properties of Cotes numbers in the Tur�an quadrature (1.3), as well as some inequalities

related to zeros of s-orthogonal polynomials, were investigated by Ossicini and Rosati [68] (see also
[46]).
The remainder term in formulas with multiple nodes was studied by Chakalov [9], Ionescu [39],

Ossicini [63], Pavel [70–72]. For holomorphic functions f in the Tur�an quadrature (1.3) over a
�nite interval [a; b], Ossicini and Rosati [65] found the contour integral representation

Rn;2s(f)=
1
2�i

∮
�

�n;s(z)
[�n; s(z)]

2s+1 f(z) dz; �n; s(z)=
∫ b

a

[�n; s(z)]
2s+1

z − t
d�(t);

where [a; b]⊂ int� and �n; s= �n; s(·; d�). Taking as � confocal ellipses (having foci at ±1 and
the sum of semiaxes equal to �¿ 1), Ossicini et al. [64] considered two special Chebyshev mea-
sures d�1(t) and d�2(t) (see Section 2.1) and determined estimates for the corresponding remain-
ders Rn;2s(f), from which they proved the convergence and rate of convergence of the quadra-
tures, Rn;s(f)=O(�−n(2s+1)), n → +∞. Morelli and Verna [58] also investigated the convergence of
quadrature formulas related to �-orthogonal polynomials.

3.2. Numerical construction

A stable method for determining the coe�cients Ai;� in the Gauss–Tur�an quadrature formula (1.3)
was given by Gautschi and Milovanovi�c [22]. Some alternative methods were proposed by Stroud
and Stancu [88] (see also [84]), Golub and Kautsky [28], and Milovanovi�c and Spalevi�c [54]. A
generalization of the method from [22] to the general case when s� ∈ N0 (�=1; : : : ; n) was derived
recently in [55]. Here, we brie
y present the basic idea of this method.
First, we de�ne as in the previous subsection 
�(t)=

∏
i 6=� (t − �i)2si+1 and use the polynomials

fk;�(t)= (t − ��)k
�(t)= (t − ��)k
∏
i 6=�

(t − �i)2si+1;

where 06 k6 2s� and 16 �6 n. Notice that degfk;�6 2
∑n

i= 1 si + n − 1. This means that the
integration (1.7) is exact for all polynomials fk;�, i.e., R(fk;�)= 0, when 06 k6 2s� and 16 �6 n.
Thus, we have

n∑
j= 1

2sj∑
i= 0

Ai; jf
(i)
k; �(�j)=

∫
R
fk;�(t) d�(t);
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that is,

2s�∑
i= 0

Ai;�f
(i)
k; �(��)= �k;�; (3.5)

because for every j 6= � we have f(i)k; �(�j)= 0 (06 i6 2sj). Here, we have put

�k;�=
∫
R
fk;�(t) d�(t)=

∫
R
(t − ��)k

∏
i 6=�

(t − �i)2si+1 d�(t):

For each � we have in (3.5) a system of 2s�+1 linear equations in the same number of unknowns,
Ai;� (i=0; 1; : : : ; 2s�). It can be shown that each system (3.5) is upper triangular. Thus, once all zeros
of the �-orthogonal polynomial �n;�, i.e., the nodes of the quadrature formula (1.7), are known, the
determination of its weights Ai;� is reduced to solving the n linear systems of 2s� + 1 equations




f0; �(��) f′
0; �(��) : : : f(2s�)0; � (��)

f′
1; �(��) : : : f(2s�)1; � (��)

. . .

f(2s�)2s�;� (��)







A0; �

A1; �
...

A2s�;�



=




�0; �

�1; �
...

�2s�;�



:

Using these systems and the normalized moments

�̂k; �=
�k;�∏

i 6=� (�� − ti)2si+1
=
∫
R
(t − ��)k

∏
i 6=�

(
t − �i
�� − �i

)2si+1
d�(t);

we can prove [55]

Theorem 3.1. For �xed � (16 �6 n) the coe�cients Ai;� in the generalized Gauss–Tur�an quadra-
ture formula (1:7) are given by

b2s�+1 = (2s�)!A2s�;�= �̂2s�;�;

bk =(k − 1)!Ak−1; �= �̂k−1; � −
2s�+1∑
j= k+1

âk; jbj (k =2s�; : : : ; 1);

where

âk; k =1; âk; k+j= − 1
j

j∑
l= 1

ulâl; j; ul=
∑
i 6=�

(2si + 1)(�i − ��)−l:

The normalized moments �̂k; � can be computed exactly, except for rounding errors, by using
the same Gauss–Christo�el formula as in the construction of �-orthogonal polynomials, i.e., (2.6)
with N =

∑n
�= 1 s� + n nodes. A few numerical examples can be found in [22,52,55]. Also, in

[55] an alternative approach to the numerical calculation of the coe�cients Ai;� was given using
expression (3.4).
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4. Some remarks on the Chebyshev measure

From the remarks in Section 2 about s-orthogonal polynomials with Chebyshev measure, it is easy
to see that the Chebyshev–Tur�an formula is given by

∫ 1

−1

f(t)√
1− t2

dt=
2s∑

i= 0

n∑
�= 1

Ai;�f(i)(��) + Rn(f); (4.1)

where ��=cos((2� − 1)�=2n) (�=1; : : : ; n). It is exact for all polynomials of degree at most
2(s + 1)n − 1. Tur�an stated the problem of explicit determination of the Ai;� and their behavior
as n → +∞ (see Problem XXVI in [91]). In this regard, Micchelli and Rivlin [49] proved the
following characterization: If f ∈ P2(s+1)n−1 then

∫ 1

−1

f(t)√
1− t2

dt=
�
n




n∑
�= 1

f(��) +
s∑

j= 1

�jf′[�2j1 ; : : : ; �
2j
n ]


 ;

where

�j=
(−1) j
2j4(n−1) j

(−1=2
j

)
(j=1; 2; : : :)

and g[yr
1; : : : ; y

r
m] denotes the divided di�erence of the function g; where each yj is repeated r

times. In fact, they obtained a quadrature formula of highest algebraic degree of precision for the
Fourier–Chebyshev coe�cients of a given function f, which is based on the divided di�erences of
f′ at the zeros of the Chebyshev polynomial Tn. A Lobatto type of Tur�an quadrature was considered
by Micchelli and Sharma [50]. Recently, Bojanov [5] has given a simple approach to questions of
the previous type and applied it to the coe�cients in arbitrary orthogonal expansions of f. As
an auxiliary result he obtained a new interpolation formula and a new representation of the Tur�an
quadrature formula. Some further results can be found in [79].
For s=1, the solution of the Tur�an problem XXVI is given by

A0; �=
�
n
; A1; �= − ���

4n3
; A2; �=

�
4n3

(1− �2�):

In 1975 Riess [75], and in 1984 Varma [92], using very di�erent methods, obtained the explicit
solution of the Tur�an problem for s=2. One simple answer to Tur�an’s question was given by Kis
[43]. His result can be stated in the following form: If g is an even trigonometric polynomial of
degree at most 2(s+ 1)n− 1, then∫ �

0
g(�) d�=

�
n(s!)2

s∑
j= 0

Sj

4 jn2j

n∑
�= 1

g(2j)
(
2�− 1
2n

�
)
;

where the Ss−j (j=0; 1; : : : ; s) denote the elementary symmetric polynomials with respect to the
numbers 12; 22; : : : ; s2, i.e., Ss=1, Ss−1 = 12 + 22 + · · ·+ s2; : : : ; S0 = 12 · 22 · · · s2. Consequently,∫ 1

−1

f(t)√
1− t2

dt=
�

n(s!)2

s∑
j= 0

Sj

4 jn2j

n∑
�= 1

[D2jf(cos �)]�= ((2�−1)=2n)�:

An explicit expression for the coe�cients Ai;� was recently derived by Shi [76]. The remainder Rn(f)
in (4.1) was studied by Pavel [70].
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5. Some remarks on moment-preserving spline approximation

Solving some problems in computational plasma physics, Calder and Laframboise [7] consid-
ered the problem of approximating the Maxwell velocity distribution by a step function, i.e., by
a “multiple-water-bag distribution” in their terminology, in such a way that as many of the initial
moments as possible of the Maxwell distribution are preserved. They used a classical method of re-
duction to an eigenvalue problem for Hankel matrices, requiring high-precision calculations because
of numerical instability. A similar problem, involving Dirac’s �-function instead of Heaviside’s step
function, was treated earlier by Laframboise and Stau�er [45], using the classical Prony’s method.
A stable procedure for these problems was given by Gautschi [17] (see also [19]), who found the
close connection of these problems with Gaussian quadratures. This work was extended to spline
approximation of arbitrary degree by Gautschi and Milovanovi�c [21]. In this case, a spline sn;m of
degree m with n knots is sought so as to faithfully reproduce the �rst 2n moments of a given function
f. Under suitable assumptions on f, it was shown that the problem has a unique solution if and
only if certain Gauss–Christo�el quadratures exist that correspond to a moment functional or weight
distribution depending on f. Existence, uniqueness, and pointwise convergence of such approxima-
tions were analyzed. Frontini et al. [13] and Frontini and Milovanovi�c [14] considered analogous
problems on an arbitrary �nite interval. If the approximations exist, they can be represented in terms
of generalized Gauss–Lobatto and Gauss–Radau quadrature formulas relative to appropriate measures
depending on f.
At the Singapore Conference on Numerical Mathematics (1988) we presented a moment-preserving

approximation on [0;+∞) by defective splines of degree m, with odd defect (see [53]).
A spline function of degree m¿ 1 on the interval 06 t ¡ +∞, vanishing at t= +∞, with

variable positive knots �� (�=1; : : : ; n) having multiplicities m� (6m) (�=1; : : : ; n; n¿ 1) can be
represented in the form

Sn;m(t)=
n∑

�= 1

m�−1∑
i= 0

��; i(�� − t)m−i
+ (06 t ¡+∞); (5.1)

where ��; i are real numbers. Under the conditions

∫ +∞

0
t j+d−1Sn;m(t) dt=

∫ +∞

0
t j+d−1f(t) dt (j=0; 1; : : : ; 2(s+ 1)n− 1)

in [53] we considered the problem of approximating a function f(t) of the radial distance t= ‖x‖ (0
6 t ¡ + ∞) in Rd (d¿ 1) by the spline function (5.1), where m�=2s + 1 (�=1; : : : ; n; s ∈
N0). Under suitable assumptions on f, we showed that the problem has a unique solution if and
only if certain generalized Tur�an quadratures exist corresponding to a measure depending on f. A
more general case with variable defects was considered by Gori and Santi [34] and Kova�cevi�c and
Milovanovi�c [44] (see also [52]). In that case, the approximation problems reduce to quadratures of
form (1.7) and �-orthogonal polynomials.
Following [44], we discuss here two problems of approximating a function f(t), 06 t ¡+∞, by

the defective spline function (5.1). Let N denote the number of the variable knots �� (�=1; : : : ; n)
of the spline function Sn;m(t), counting multiplicities, i.e., N =m1 + · · ·+ mn.
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Problem 5.1. Determine Sn;m in (5:1) such that S (k)n;m(0)=f(k)(0) (k =0; 1; : : : ; N + n − 1; m¿
N + n− 1).

Problem 5.2. Determine Sn;m in (5:1) such that S (k)n;m(0)=f(k)(0) (k =0; 1; : : : ; l; l6m) and
∫ +∞

0
t jSn;m(t) dt=

∫ +∞

0
t jf(t) dt (j=0; 1; : : : ; N + n− l− 2):

The next theorem gives the solution of Problem 5.2.

Theorem 5.3. Let f ∈ Cm+1[0;+∞) and ∫ +∞0 tN+n−l+m|f(m+1)(t)| dt ¡+∞. Then a spline function
Sn;m of form (5:2); with positive knots ��; that satis�es the conditions of Problem 5:2 exists and is
unique if and only if the measure

d�(t)=
(−1)m+1

m!
tm−lf(m+1)(t) dt

admits a generalized Gauss–Tur�an quadrature
∫ +∞

0
g(t) d�(t)=

n∑
�= 1

m�−1∑
k = 0

A(n)�; kg
(k)(�(n)� ) + Rn(g; d�) (5.2)

with n distinct positive nodes �(n)� ; where Rn(g;d�)= 0 for all g ∈ PN+n−1. The knots in (5:1) are
given by ��= �(n)� ; and the coe�cients ��; i by the following triangular system:

A(n)�; k =
m�−i∑
i= k

(m− i)!
m!

(
i

k

)
[Di−k tm−l]t = ����; i (k =0; 1; : : : ; m� − 1):

If we let l=N+n−1, this theorem gives also the solution of Problem 5:1. The case m1 =m2 = · · ·
=mn=1, l= − 1, has been obtained by Gautschi and Milovanovi�c [21]. The error of the spline
approximation can be expressed as the remainder term in (5.2) for a particular function �t(x)=
x−(m−l)(x − t)m+ (see [44]).
Further extensions of the moment-preserving spline approximation on [0; 1] are given by Micchelli

[48]. He relates this approximation to the theory of monosplines. A similar problem by defective
spline functions on the �nite interval [0; 1] has been studied by Gori and Santi [35] and solved by
means of monosplines.
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Abstract

The double-exponential transformation was �rst proposed by Takahasi and Mori in 1974 for the e�cient evaluation of
integrals of an analytic function with end-point singularity. Afterwards, this transformation was improved for the evaluation
of oscillatory functions like Fourier integrals. Recently, it turned out that the double-exponential transformation is useful
not only for numerical integration but also for various kinds of Sinc numerical methods. The purpose of the present paper
is to review the double-exponential transformation in numerical integration and in a variety of Sinc numerical methods.
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1. Numerical integration and the double-exponential transformation

The double-exponential transformation was �rst proposed by Takahasi and Mori in 1974 in order
to compute the integrals with end-point singularity such as

I =
∫ 1

−1

dx
(2− x)(1− x)1=4(1 + x)3=4

(1.1)

with high e�ciency [7,10,11,30].
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The double-exponential formula for numerical integration based on this transformation can be
derived in the following way. Let the integral under consideration be

I =
∫ b

a
f(x) dx: (1.2)

The interval (a; b) of integration may be �nite, half-in�nite (0;∞) or in�nite (−∞;∞). The integrand
f(x) must be analytic on the interval (a; b) but may have a singularity at the end point x = a or b
or both.
Now, we apply a variable transformation

x = �(t); a= �(−∞); b= �(∞); (1.3)

where �(t) is analytic on (−∞;∞), and have
I =

∫ ∞

−∞
f(�(t))�′(t) dt: (1.4)

A crucial point is that we should employ a function �(t) such that after the transformation the decay
of the integrand be double exponential, i.e.,

|f(�(t))�′(t)| ≈ exp(−c exp |t|); |t| → ∞: (1.5)

On the other hand, it is known that, for an integral like (1.4) of an analytic function over (−∞;∞),
the trapezoidal formula with an equal mesh size gives an optimal formula [5,28]. Accordingly, we
apply the trapezoidal formula with an equal mesh size h to (1.4), which gives

Ih = h
∞∑

k=−∞
f(�(kh))�′(kh): (1.6)

In actual computation of (1.6) we truncate the in�nite summation at k=−N− and k=N+ and obtain

I (N )h = h
N+∑

k=−N−

f(�(kh))�′(kh); N = N+ + N− + 1; (1.7)

where N is the number of function evaluations. Since the integrand after the transformation decays
double exponentially like (1.5), we call the formula obtained in this way the double-exponential
formula, abbreviated as the DE formula.
For the integral over (−1; 1)

I =
∫ 1

−1
f(x) dx (1.8)

the transformation

x = �(t) = tanh
(�
2
sinh t

)
(1.9)

will give a double-exponential formula

I (N )h = h
N+∑

k=−N−

f
(
tanh

(�
2
sinh kh

)) �=2 cosh kh
cosh2(�=2 sinh kh)

: (1.10)

The double-exponential formula is designed so that it gives the most accurate result by the minimum
number of function evaluations. In this sense, we call it an optimal formula [30]. For example, in
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Table 1
Comparison of the e�ciency of DEFINT and DQAGS. The absolute error tolerance is 10−8. N
is the number of function evaluations and abs.error is the actual absolute error of the result

DEFINT DQAGS

Integral N abs.error N abs.error

I1 25 2:0 · 10−11 315 6:7 · 10−16
I2 387 4:8 · 10−14 189 3:1 · 10−15
I3 387 1:0 · 10−13 567 1:1 · 10−13
I4 259 4:8 · 10−12 651 1:4 · 10−17

case of (1.1), it gives an approximate value which is correct up to 16 signi�cant digits by only
about N = 50 function evaluations.
The merits of the double-exponential formula are as follows.
First, if we write the error of (1.6) in terms of the mesh size h of the trapezoidal formula, we

have [30]

|�Ih|= |I − Ih| ≈ exp
(
−c1

h

)
: (1.11)

From this we see that the error converges to 0 very quickly as the mesh size h becomes small.
On the other hand, if we write the error in terms of the number N of function evaluations, we
have [30]

|�I (N )h |= |I − I (N )h |w exp
(
−c2

N
logN

)
: (1.12)

A single-exponential transformation

x = tanh t (1.13)

for the integral over (−1; 1) will give [30]
|�I (N )h | ≈ exp(−c3

√
N ): (1.14)

We can see that as N becomes large, (1.12) converges to 0 much more quickly than (1.14).
Second, if the integrand has a singularity at the end point like (1.1), it will be mapped onto in�nity.

On the other hand, the integrand after the transformation decays double exponentially toward in�nity,
and hence we can truncate the in�nite summation at a moderate value of k in (1.6). In addition,
we can evaluate integrals with di�erent orders of singularity using the same formula (1.7). In that
sense, we can say that the double-exponential formula is robust with regard to singularities.
Third, since the base formula is the trapezoidal formula with an equal mesh size, we can make use

of the result of the previous step with the mesh size h when we improve the value by halving the
mesh size to h=2. Therefore, the present formula is suitable for constructing an automatic integrator.
In addition, the points �(kh) and the weights h�′(kh) can easily be computed as seen in (1.10).
In Table 1 we show numerical examples to compare the e�ciency of an automatic integrator

DEFINT in [8] based on the DE transformation (1.9) and DQAGS in QUADPACK [24] for the
following four integrals:

I1 =
∫ 1

0
x−1=4 log(1=x) dx; I2 =

∫ 1

0

1
16(x − �=4)2 + 1=16 dx;
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I3 =
∫ �

0
cos(64 sin x) dx; I4 =

∫ 1

0
exp(20(x − 1)) sin(256x) dx:

From Table 1 we see that DEFINT is more e�cient than DQAGS for I1; I3 and I4, but that it is less
e�cient for I2 because its integrand has a sharp peak at x = �=4 and DEFINT regards it as almost
not analytic at this point.
The double-exponential transformation can be applied not only to an integral with end-point singu-

larity over a �nite interval, but also to other kinds of integrals such as an integral over a half-in�nite
interval [9]. Some useful transformations for typical types of integrals are listed below:

I =
∫ 1

−1
f(x) dx ⇒ x = tanh

(�
2
sinh t

)
; (1.15)

I =
∫ ∞

0
f(x) dx ⇒ x = exp

(�
2
sinh t

)
; (1.16)

I =
∫ ∞

0
f1(x) exp(−x) dx ⇒ x = exp(t − exp(−t)); (1.17)

I =
∫ ∞

−∞
f(x) dx ⇒ x = sinh

(�
2
sinh t

)
: (1.18)

Before the double-exponential formula was proposed, a formula by Iri et al. [2], abbreviated as
IMT formula, based on the transformation which maps (−1; 1) onto itself had been known. This
transformation gave a signi�cant hint for the discovery of the double-exponential formula [29].
However, the error of the IMT formula behaves as exp(−c

√
N ), which is equivalent to the behavior

of a formula based on the single-exponential transformation like (1.13). Also, there have been some
attempts to improve the e�ciency of the IMT formula [6,12].
In a mathematically more rigorous manner, the optimality of the double-exponential formula is

established by Sugihara [26]. His approach is functional analytic. The basis of this approach is due
to Stenger, which is described in full detail in his book [25]. Stenger there considers the integral∫∞
−∞ g(w) dw as the complex integral along the real axis in the w-plane and supposes that the
integrand g(w) is analytic and bounded in the strip region |Imw|¡d of the w-plane. Under some
additional conditions, he proves that the trapezoidal rule with an equal mesh size is optimal for
the integral of a function which decays single exponentially as w → ±∞ along the real axis. He
also shows that the error behaves like (1.14). Sugihara proceeds analogously. He supposes that the
integrand g(w) be analytic and bounded in the strip region |Imw|¡d of the w-plane, and proves
the optimality of the trapezoidal rule with an equal mesh size for the integral of a function enjoying
the double-exponential decay, together with an error estimate like (1.12). This result shows that
the double-exponential transformation provides a more e�cient quadrature formula than the single
exponential one. Sugihara further shows that, except the identically vanishing function, there exists
no function that is analytic and bounded in the strip region |Imw|¡d and that decays more rapidly
than exp(−exp(�=2d|w|)) as w → ±∞. Thus, he concludes that the double-exponential formula is
optimal.



M. Mori, M. Sugihara / Journal of Computational and Applied Mathematics 127 (2001) 287–296 291

2. Evaluation of Fourier-type integrals

Although the double-exponential transformation is useful for various kinds of integrals, it does
not work well for Fourier-type integrals of a slowly decaying oscillatory function like

Is =
∫ ∞

0
f1(x) sin!x dx;

Ic =
∫ ∞

0
f1(x) cos!x dx:

(2.1)

In 1991 Ooura and Mori proposed a variable transformation suitable for such kinds of integrals [21].
Choose a function �(t) satisfying

�(−∞) = 0; �(+∞) =∞; (2.2)

�′(t)→ 0 double exponentially as t → −∞; (2.3)

�(t)→ t double exponentially as t → +∞; (2.4)

and transform Is and Ic using



Is : x =M�(t)=!
(M = const:):

Ic : x =M�
(
t − �

2M

)/
!

(2.5)

Then we have a new kind of the double-exponential formula useful for the integrals such as (2.1).
M is a constant which will be determined as shown later. This transformation is chosen in such
a way that as x becomes large in the positive direction the points of the formula approach double
exponentially the zeros of sin!x or cos!x, so that we do not have to evaluate the integrand for
large value of x.
Ooura and Mori �rst proposed a transformation

�(t) =
t

1− exp(−k sinh t)
; (2.6)

which satis�es the condition mentioned above [21]. Afterwards, Ooura proposed

�(t) =
t

1− exp(−2t − �(1− e−t)− �(et − 1)) (2.7)

� = 1
4 ; �= �=

√
1 +M log(1 +M)=(4�) (2.8)

as a more e�cient transformation [18,20,23].
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Table 2
Comparison of the e�ciency of a DE integrator and DQAWF. While 10−8 is given as the
absolute error tolerance for DQAWF, it is given as the relative error tolerance for the DE
integrator. N is the number of function evaluations, and rel.error and abs.error are the actual
relative and absolute errors of the result

DE integrator DQAWF

Integral N rel.error abs.error N abs.error

I5 72 1:0 · 10−14 1:6 · 10−14 430 1:8 · 10−11
I6 308 3:6 · 10−11 2:0 · 10−11 445 2:7 · 10−11
I7 70 1:2 · 10−10 6:9 · 10−11 570 6:8 · 10−12
I8 68 1:0 · 10−14 1:3 · 10−14 615 1:4 · 10−11

If we substitute �(t) into x of Is in (2.1) we have

Is =M
∫ ∞

−∞
f1(M�(t)=!) sin(M�(t))�′(t)=! dt: (2.9)

Then, we apply the trapezoidal formula with an equal mesh size h and have

I (N )s; h =Mh
N+∑

k=−N−

f1(M�(kh)=!) sin(M�(kh))�′(kh)=!: (2.10)

The situation is similar in the case of Ic. Here we choose M and h in such a way that

Mh= �: (2.11)

Then for Is as well as Ic

sin(M�(kh)) ∼ sinMkh= sin �k = 0;

cos
(
M�

(
kh− �

2M

))
∼ cos

(
Mkh− �

2

)
= cos

(
�k − �

2

)
= 0 (2.12)

hold, and we see that as k becomes large the points approach the zeros of sin!x or cos!x double
exponentially.
The formula gives a good result even when it is applied to an integral

I =
∫ ∞

0
log x sin x dx =−
 (2.13)

whose integrand has a divergent function log x [22]. Although this integral should be de�ned as

lim
�→0

∫ ∞

0
exp(−�x) log x sin x dx =−
; (2.14)

we will get an approximate value of −
 that is correct up to 10 signi�cant digits with only 70
function evaluations of f1(x) = log x in the formula (2.10).
In Table 2, we show numerical examples of Fourier-type integrals to compare the e�ciency

of a DE automatic integrator based on the DE transformation (2.7) and (2.8), and DQAWF in
QUADPACK [24] for the following four integrals:

I5 =
∫ ∞

0

sin x
x
dx; I6 =

∫ ∞

0

cos x
(x − 2)2 + 1 dx;
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I7 =
∫ ∞

0
log x sin x dx; I8 =

∫ ∞

0

cos x√
x
dx:

3. Application of the double-exponential transformation to other types of integrals

The double-exponential transformation can be used to evaluate other kinds of integrals.
Ogata et al. proposed a method to evaluate the Cauchy principal value integral

I = p:v:
∫ 1

−1

f(x)
x − �

dx (3.1)

and the Hadamard �nite-part integral

I = f :p:
∫ 1

−1

f(x)
(x − �)n

dx (3.2)

by means of the double-exponential transformation [16].
Ogata and Sugihara also proposed a quadrature formula for oscillatory integrals involving Bessel

functions such as

I =
∫ ∞

0

x
x2 + 1

J0(x) dx; (3.3)

employing the same idea as mentioned in Section 2 [13–15]. It is noted here that, while developing
the quadrature formula, they achieved an extremely high-precision quadrature formula of interpolatory
type for antisymmetric integrals, i.e.,

I =
∫ ∞

−∞
(sign x)f(x) dx =

(∫ ∞

0
−
∫ 0

−∞

)
f(x) dx: (3.4)

The abscissae of the quadrature are zeros of Bessel functions.
Ooura devised a transformation which can be regarded as a continuous version of the Euler

transformation. By this transformation, together with the double exponential one, we can evaluate
integrals of a slowly decaying oscillatory function like

I =
∫ ∞

0
J0
(√
2x + x2

)
dx (3.5)

whose distribution of the zeros is not equidistant [17,20].
Also Ooura combined his continuous Euler transformation with FFT to give a method for e�cient

evaluation of a Fourier transform [19,20] like

I =
1
2�

∫ ∞

−∞
log(1 + x2) e−i!x dx: (3.6)

4. Sinc numerical methods and the double-exponential transformation

Recently, it turned out that the double-exponential transformation is useful not only for numerical
integration but also for a variety of so-called Sinc numerical methods.
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The Sinc numerical methods are based on an approximation over the doubly in�nite interval
(−∞;∞), which is written as

f(x) ≈
n∑

k=−n

f(kh)S(k; h)(x); (4.1)

where the basis functions S(k; h)(x) are the Sinc functions de�ned by

S(k; h)(x) =
sin �=h(x − kh)
�=h(x − kh)

; k = 0;±1;±2; : : : ; (4.2)

with a positive constant h. The approximation (4.1) is called the Sinc approximation.
The Sinc approximation and numerical integration are closely related through an identity∫ ∞

−∞

(
n∑

k=−n

f(kh)S(k; h)(x)− f(x)

)
dx = h

n∑
k=−n

f(kh)−
∫ ∞

−∞
f(x) dx (4.3)

between the approximation error of the Sinc approximation and the one of integration by the trape-
zoidal rule. This identity implies that the class of the functions for which the Sinc approximation
gives highly accurate approximations is almost identical to the class of functions for which the trape-
zoidal rule gives highly accurate results. This fact suggests that the applicability of the transformation
technique developed in the area of numerical integration of the Sinc approximation, even further to
the Sinc numerical methods. In fact, in [25], the standard treatise of the Sinc numerical methods, the
single-exponential transformation is assumed to be employed. But why not the double-exponential
transformation? Recently, Sugihara and his colleagues have started to examine the applicability of
the double-exponential transformation to a variety of Sinc numerical methods.
In the most fundamental case, i.e., in the Sinc approximation, Sugihara makes a full study of

the error, thereby proving that when the double-exponential transformation is employed, the optimal
result is obtained just as in numerical integration [27].
Horiuchi and Sugihara combine the double-exponential transformation with the Sinc-Galerkin

method for the second-order two-point boundary problem [1]. To be speci�c, consider

ỹ′′(x) + �̃(x)ỹ′(x) + �̃(x)ỹ(x) = �̃(x); a¡x¡b;

ỹ(a) = ỹ(b) = 0:
(4.4)

Application of the variable transformation

x = �(t); a= �(−∞); b= �(∞); (4.5)

together with the change of notation

y(t) = ỹ(�(t)); (4.6)

transforms the problem to

y′′(t) + �(t)y′(t) + �(t)y(t) = �(t); −∞¡t¡∞;

y(−∞) = y(∞) = 0: (4.7)

The Sinc-Galerkin method approximates the solution of the transformed problem (4.7) by a linear
combination of the Sinc functions:

yN (t) =
n∑

k=−n

wkS(k; h)(t); N = 2n+ 1: (4.8)
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It is shown by both theoretical analysis and numerical experiments that the approximation error can
be estimated by

|y(t)− yN (t)|6c′N 5=2 exp(−c
√
N ) (4.9)

if the true solution y(t) of the transformed problem decays single exponentially like

|y(t)|6� exp(−�|t|): (4.10)

It is also shown that the approximation error can be estimated by

|y(t)− yN (t)|6c′N 2 exp
(
− cN
logN

)
(4.11)

if the true solution y(t) of the transformed problem decays double exponentially like

|y(t)|6� exp(−� exp(
|t|)): (4.12)

Evidently, the error estimates (4.9) and (4.11) show the superiority of the double-exponential trans-
formation. By the analogy with the case of the Sinc approximation we believe that the error estimate
(4.11) should be best possible, i.e., the double-exponential transformation should be optimal, though
it has not been proved yet.
Koshihara and Sugihara study the performance of the double-exponential transformation when

used in the Sinc-Collocation method for the Sturm–Liouville eigenvalue problems. It is shown that
the error behaves like (4.11) [3].
Matsuo applies the double-exponential transformation to the Sinc-pseudospectral method for the

nonlinear Schr�odinger equation and reports that a highly accurate numerical solution is obtained [4].
As seen above, the double-exponential transformation has proved to be a useful tool in numerical

analysis in a number of areas. We believe that the double-exponential transformation should prove
to be e�ective even in wider areas of numerical analysis.
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Abstract

Let T be a polynomial of degree N and let K be a compact set with C. First it is shown, if zero is a best approximation
to f from Pn on K with respect to the Lq(�)-norm, q ∈ [1;∞), then zero is also a best approximation to f ◦ T on
T−1(K) with respect to the Lq(�T)-norm, where �T arises from � by the transformation T. In particular, �T is the
equilibrium measure on T−1(K), if � is the equilibrium measure on K . For q =∞, i.e., the sup-norm, a corresponding
result is presented. In this way, polynomials minimal on several intervals, on lemniscates, on equipotential lines of compact
sets, etc. are obtained. Special attention is given to Lq(�)-minimal polynomials on Julia sets. Next, based on asymptotic
results of Widom, we show that the minimum deviation of polynomials orthogonal with respect to a positive measure on
T−1(@K) behaves asymptotically periodic and that the orthogonal polynomials have an asymptotically periodic behaviour,
too. Some open problems are also given. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction and preliminaries

Let (cjk)j; k∈N0 ;N0 :=N∪{0}, be an in�nite matrix of complex numbers and denote by P the space
of polynomials in z and �z with complex coe�cients. Further, let the linear functional L :P → C
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be given by, n ∈ N,

L


 n∑

j; k=0

djkzj �z
k


=

n∑
j; k=0

djkcjk : (1.1)

In the following let us assume that there is a compact set K ⊂C such that L is extendable to C(K).
In view of Horn [17, Theorem 4:2] the functional L is extendable to a bounded linear functional on
C(K), if |∑ cjkajk |6const supz∈K |

∑
ajkzj �z

k | for all 2-indexed sequences of complex numbers {ajk}
with only �nitely many nonzero terms. The last condition is equivalent to the fact that there exists
a complex measure � with support in K such that

cjk =L(zj �z k) =
∫
K
zj �z k d�(z); j; k ∈ N0: (1.2)

We say that a function g ∈ C(K) is orthogonal to Pn−1 (as usual, Pn denotes the space of
polynomials in z of degree less than or equal to n with complex coe�cients) if

L(zjg(z)) = 0 for j = 0; 1; : : : ; n− 1
and hermitian orthogonal to Pn−1 with respect to L if

L(zj g(z)) = 0 for j = 0; 1; : : : ; n− 1:

Example 1. (a) Let K be a recti�able curve or arc in the complex plane, w a real nonnegative
integrable function on K , and set

cjk =
∫
K
zj �z kw(z) |dz| for j; k ∈ N0:

Then the hermitian orthogonality of a polynomial pn to Pn−1 with respect to L becomes the usual
orthogonality∫

K
zjpn(z)w(z) |dz|= 0 for j = 0; : : : ; n− 1:

Naturally, if K is a subset of the real line, then there is no di�erence in the above de�nitions of
orthogonality.
(b) Let � be a complex (not necessary real and=or positive) measure on the curve or arc K , and

let

cjk = cj+k =
∫
K
zj+k d�(z): (1.3)

Then the polynomial pn ∈ Pn orthogonal with respect to L is the denominator of the so-called [n=n]
Pad�e approximant of the function

∫
K d�(z)=(y − z), i.e.,

p[1]n (y)
pn(y)

=
∫
K

d�(z)
y − z

+ O

(
1

y2n+1

)
as y → ∞;

where p[1]n is the polynomial of the second kind given by

p[1]n (y) =
∫
K

pn(y)− pn(z)
y − z

d�(z):
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Notation. For T ∈ PN\PN−1 and S ∈ PN−1, we put

LT; S(f(z)g(z)) :=L


 N∑

j=1

S(T−1
j (z))

T′(T−1
j (z))

f(T−1
j (z))g(T−1

j (z))


 : (1.4)

Here, {T−1
j : j=1; : : : ; N} denotes the complete assignment of branches of T−1. De�nition (1.4) of

the linear functional LT; S is quite natural and can be understood in the following way: By partial
fraction expansion we have

S(y)
T(y)− z

=
N∑

j=1

S(T−1
j (z))

T′(T−1
j (z))

1
y −T−1

j (z)
(1.5)

from which we get for large y ∈ C and for all k ∈ N0

LT; S


 [T(z)]

k

y − z


=

∞∑
�=0

y−(�+1)LT; S(z�[T(z)]
k
)

=
∞∑
�=0

y−(�+1)L


 N∑

j=1

S(T−1
j (z))

T′(T−1
j (z))

[T−1
j (z)]� �z k




=L


 �z k

N∑
j=1

S(T−1
j (z))

T′(T−1
j (z))

1
y −T−1

j (z)


= S(y)L

(
�z k

T(y)− z

)
: (1.6)

In the same way we also get the relation

LT; S

(
[T(z)]k

y − z

)
= S(y)L

(
zk

T(y)− z

)

especially LT; S
(

1
y − z

)
= S(y)L

(
1

T(y)− z

)
: (1.7)

In particular, we have

LT;1(zk) = 0 for k = 0; : : : ; N − 2 and thus S(y)L
(

1
T(y)− z

)
=L

(
S(z)

T(y)− z

)
: (1.8)

Now, we are ready to show how to get orthogonality properties for T-compositions.

Theorem 2. Let T and S be polynomials of degree N and m6N − 1; respectively.
(a) Suppose that L(zjg(z)) = 0 for j = 0; 1; : : : ; n− 1. Then

LT; S(zj(g ◦T)(z)) = 0 for j = 0; 1; : : : (n+ 1)N − m− 2:
(b) Suppose that L(zjg(z)) = 0 for j = 0; 1; : : : ; n− 1. Then

LT; S(zj(g ◦T)(z)) = 0 for j = 0; 1; : : : (n+ 1)N − m− 2:
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Proof. (a) From (1.6) and the linearity of the functionals LT; S and L we get

LT; S

(
(g ◦T)(z)

y − z

)
= S(y)L

(
g(z)

T(y)− z

)
:

Let us now expand both sides in a power series:
∞∑
�=0

y−(�+1)LT; S(z�(g ◦T)(z)) = S(y)
∞∑
�=0

[T(y)]−(�+1)L(z�g(z))

= S(y)
∞∑
�=n

[T(y)]−(�+1)L(z�g(z)) = O(y−(n+1)N+m);

where the second identity follows by the orthogonality property of g. Hence,

LT; S(zj (g ◦T)(z)) = 0 for j = 0; : : : ; (n+ 1)N − m− 2;
which proves part (a) of the theorem.
Part (b) follows in the same way, just by using relation (1.7).

Now of special interest are functionals with an integral representation (1.2). Then transformation
(1:4) de�nes a measure d�T; S on the inverse image T−1(K) by

LT; S(f(z)g(z)) =
N∑

j=1

∫
K
f(T−1

j (z))g(T−1
j (z))

S(T−1
j (z))

T′(T−1
j (z))

d�(z)

=:
∫
T−1(K)

f(z)g(z) d�T; S(z): (1.9)

Here, we assume that S(y)=T′(y) does not have poles on T−1(K). A su�cient, but not a necessary,
condition is that there are no critical points of T on T−1(K). But if there are critical points on
T−1(K), then they have to be canceled out by the zeros of S. Measure transformations of the kind
(1.9) have been studied, e.g., in [5,6,14].
The following example will be of importance in Section 2. Let K be a complex curve, w a real

integrable function on K , and let

d�(z) :=w(z)|dz|
be a real measure. Then

d�T; S(z) =
S(z)
T′(z)

|T′(z)|w(T(z))|dz|= sgnT′(z)S(z)w(T(z))|dz|; (1.10)

in particular we obtain for S =T′ that

d�T;T′
(z) = |T′(z)|w(T(z))|dz|:

In this paper we will study how polynomial measure transformations of form (1.9) resp. (1.10)
can be applied to Lq-approximation, q ∈ [1;∞], on curves, arcs, Julia sets, etc. Special attention
is given to a simple representation of the necessary ingredients like Green’s function, equilibrium
measure, etc. and in particular to the presentation of many examples, see Sections 2.1 and 2.2, but
also the Julia set example in Section 3. Furthermore, for the case q = 2 it is demonstrated how to
get from Widom’s theory asymptotic statements for polynomials orthogonal on inverse images of
polynomial mappings.
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2. Best approximations and minimal polynomials with respect to the Lq-norm, q ∈ [1;∞]

In this section we assume that K ⊂C is a compact set and � a positive Borel measure on K .
Let us recall some well-known facts from approximation theory (see, e.g., [1]): A Lq(�)-integrable,
q ∈ [1;∞), function f has 0 as a best approximation from Pn−1 with respect to the Lq(�)-norm on
K , i.e.,

‖f‖q;�;K = inf
p∈Pn−1

‖f − p‖q;�;K ;

where ‖f‖q;�;K = (
∫
K |f(z)|q d�(z))1=q, if and only if

∫
K
zj|f(z)|q−2f(z) d�(z) = 0 for j = 0; : : : ; n− 1: (2.1)

If f satis�es (2.1), then we say that f is Lq(�)-orthogonal on K with respect to Pn−1.
Note that Theorem 2 (put g= |f|q−2 �f there) and de�nition (1.9) imply immediately that f ◦T

is Lq(�T; S)-orthogonal on T−1(K), i.e.,∫
T−1(K)

zj|f(T(z))|q−2f(T(z)) d�T; S(z) = 0 (2.2)

for j = 0; : : : ; (n+ 1)N − m− 2, where m is the degree of the polynomial S.
As usual, a monic polynomial pn(z)= zn+ · · · of degree n is called a Lq(�)-minimal polynomial,

q ∈ [1;∞], with respect to the measure � if pn has 0 as a best approximation from Pn−1 with
respect to the Lq(�)-norm on K . Note that pn is a L∞-minimal polynomial if

max
z∈K

|pn(z)|= inf
Qn∈Pn

Qn(z)=zn+···

max
z∈K

|Qn(z)|:

Moreover, the monic Lq(�)-minimal polynomial, q ∈ [1;∞); pn of degree n is characterized by
the orthogonality condition (2.1), where f is to be replaced by pn.

Theorem 3. Let K ⊂C be a compact set, � a positive Borel measure on K; T(z) = �zN + · · · a
complex polynomial of degree N; and S a complex polynomial of degree m6N − 1. Furthermore,
let the measure �T; S be de�ned as in (1.9). Suppose that �T; S is a positive measure on T−1(K)
and q ∈ [1;∞). Then the following statements hold:
If f ∈ Lq(�) has 0 as a best approximation from Pn−1 with respect to the Lq(�)-norm on K;

then (f ◦T) has 0 as a best approximation from P(n+1)N−m−2 with respect to the Lq(�T; S)-norm
on T−1(K).
If f is continuous on K and has 0 as a best approximation from Pn−1 with respect to the

sup-norm and the positive continuous weight function w(z) on K; then f ◦ T has 0 as a best
approximation with respect to the sup-norm and weight function w ◦T on T−1(K).
Moreover, if pn is a monic Lq(�)-minimal polynomial on K; q ∈ [1;∞]; then (pn ◦T)(z)=�n =

znN + · · · is a monic Lq(�T; S)-minimal polynomial on T−1(K).

Proof. For q ∈ [1;∞) the assertion follows from (2.2) and Theorem 1. Concerning the state-
ment with respect to the sup-norm, we �rst observe that it follows from above that for every
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q ∈ [1;∞); hn−1; q ◦ T is a best approximation from P(n+1)N−m−2 of f ◦ T with respect to the
Lq((w ◦ T)q|T′||dz|)-norm if hn−1; q is a best approximation from Pn−1 of f with respect to the
Lq(wq|dz|)-norm. Now it is known (see [20]) that for f;w ∈ C(K); hn−1; q(z)→ hn−1;∞(z) as q → ∞
uniformly on K , where hn−1;∞ is the unique best approximation of f from Pn−1 with respect to the
sup-norm and weight function w. This gives the assertion.

Thus, if we know the sequence of minimal polynomials on K , we know a subsequence of minimal
polynomials on T−1(K) at least. Let us mention that by (1.9) �T; S is a positive measure on T−1(K)
if sgn S = sgnT′ on T−1(K), where sgn z = z=|z|. By di�erent methods, various special cases of
Theorem 2 have been proved in [12,19,22,23].
Before we are going to consider some examples, let us give the de�nition and notations for Green’s

function, equipotential lines, equilibrium measure, etc. of a compact set K ⊂C with cap(K)¿ 0. We
denote by g(z; K;∞) Green’s function for �C\K with pole at in�nity. Recall that g(·; K;∞) : C\K →
R+ is de�ned by being harmonic on C\K with

g(z; K;∞) = ln|z|+ O(1) as z → ∞
and

g(z; K;∞)→ 0 quasi-everywhere as z → z0 ∈ @K:

The equipotential lines of K for a value �¿ 0 are given by

A(K; �) := g−1({�}; K;∞) = {z ∈ C\K : g(z; K;∞) = �}: (2.3)

The equilibrium measure �K;e of K (if there is no danger of confusion we omit K and write
shortly �e) is the measure which satis�es

g(z; K;∞) + log(cap(K)) =
∫
K
log|z − y| d�K;e(z); (2.4)

where

− log(cap(K)) = lim
z→∞ (g(z; K;∞)− log|z|); (2.5)

and the constant cap(K) is called the logarithmic capacity of K . Finally, let g̃(z; K;∞) be a harmonic
conjugate of g(z; K;∞),

G(z; K;∞) := g(z; K;∞) + ig̃(z; K;∞)
the complex Green’s function and

�(z; K;∞) := exp(G(z; K;∞)) (2.6)

the mapping which maps the exterior of K onto the exterior of the unit circle.
Next let us show, if we know Green’s function, equilibrium measure etc. for K , then we know

them for T−1(K) also.

Lemma 4. Let T(z) = �zN + · · · then the following relations hold:
(a) g(z;T−1(K);∞) = g(T(z); K;∞)=N .
(b) �(z;T−1(K);∞) = exp(G(T(z); K;∞))1=N .
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(c) �T;T′
K;e =N = �T−1(K); e; recall de�nition (1:9).

(d) cap(T−1(K)) = (cap(K)=�)1=N .
(e) A(T−1(K); �) = {z ∈ C\T−1(K):g(T(z); K;∞) = �N}.

Proof. Concerning relation (a) see [23], this property follows immediately from the de�nition of
Green’s function. Since g̃(T(z); K;∞)=N is a harmonic conjugate of g(T(z); K;∞)=N , as can easily
be checked by the Cauchy–Riemann di�erential equations, part (b) follows. Parts (c) and (d) follow
from (2.4) and (2.5) with the help of (a), the relation

1
N
log|T(z)− y|= 1

N
log

∏
T(�)=y

|z − �|+ 1
N
log � =

1
N

N∑
j=1

log|z −T−1
j (y)|+ 1

N
log �

and the de�nition of �T;T′
K;e . Part (e) is again an immediate consequence of (a).

The above lemma is more or less known, at least for special cases (see [14,23] and also [27,
Chapter 6.5], as pointed out by one of the referees).
Let us now give some examples showing how useful Theorem 3 is.

2.1. Extremal polynomials on disconnected sets and equipotential lines

For � ∈ [0;∞) let K = E� := {z ∈ C: log |z +√
z2 − 1|= �}, where the branch of √z is chosen

such that sign
√
x2 − 1 = sign(x − 1) for x ∈ R \ [− 1; 1]. Then E0 = [− 1; 1] while for each �¿ 0

the set E� is the ellipse with foci ±1 and semi-axes equal to (e� ± e−�)=2. As it is known and can
easily be seen that

g(z; [− 1; 1];∞) = ln |z +
√
z2 − 1|: (2.7)

Therefore, the ellipses E� are the equipotential lines of E0. Now, let as usual Tn(x) = (1=2n−1) cosn
(arccos x); x ∈ [ − 1; 1], denote the classical monic Chebyshev polynomial of degree n. Then it is
known that the Tn’s are the monic L∞- as well as the L2(�)-minimal polynomials on E�, where

d�(z) = d�E�;e(z) =
|dz|√|1− z2| : (2.8)

Furthermore, it can be proved almost analogously as in the case q = 2 by using (2.1), see [10,
pp. 240–241], that Tn is also a Lq(�)-; q ∈ [1;∞), minimal polynomial on the equipotential lines
E�; � ∈ [0;∞). By the way, for �=0 this is a well-known fact. Now, let T(z)=�zN + · · · ; � 6= 0,
be a real polynomial which has N simple zeros in (−1; 1) and which satis�es

min{|T(x)|: T′(x) = 0}¿1: (2.9)

For the simple case of N = 2 compare the left picture in Fig. 1. Further, let l be the number of
points x such that |T(x)|= 1 and T′(x) = 0. Then

T−1(E�) = {z ∈ C: log|T(z) +
√
T2(z)− 1|= �}; for � ∈ [0;∞):
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Fig. 1. Left picture: polynomial T of degree 2 and set T−1(E0). Right picture: sets T−1(Ep) for �=0; 0:4; 0:9, and 1.1.

In particular, T−1(E0) is the set of N − l disjoint real intervals

{x ∈ [− 1; 1] : |T(x)|61}:
Recall that by Lemma 1 the sets T−1(E�); �¿ 0, are the equipotential lines of the N − l disjoint
real intervals T−1(E0); compare again Fig. 1 (right picture).
Hence, by Theorem 3 the polynomials Tn(T(z))=�n are the L∞− resp. Lq(�T; S)-minimal poly-

nomials, q ∈ [1;∞), on T−1(E�), where by (1.10)

d�T; S(z) =
S(z)

sgnT′(z)
|dz|√|1−T2(z)| ;

S satis�es the assumption of Theorem 3. Recall that for S=T′; �T;T′
=�T−1(K); e is the equilibrium

measure of T−1(K). By completely di�erent methods the case �= 0 has been treated in [22,23].
Using the fact that the Chebyshev polynomials of the second kind Un(z) = (1=2n)(1 − z2)−1=2

sin[(n+1)arccos z] are L2(1)-minimal polynomials on the interior of the ellipses E� (compare again
[10, Ex. 4, p. 241]), then an analogous procedure as above gives a (sub)sequence of orthogonal
polynomials on the union of complex areas with respect to a measure of form (1.9) with d�(z)=dz.

2.2. Extremal polynomials on “stars”

Let the sets E� and the measure � be given as at the beginning of Section 2.1 and let T(z) =
zN ; N¿1 be �xed. Then T−1(E0) is the 2N-star

S2N := {rek�i=N : r ∈ [0; 1]; k = 0; : : : ; 2N − 1}
and T−1(E�) is a smooth “curve around” this star for �¿ 0; compare the left picture in Fig. 2.
Again, by Theorem 3 the compositions with Chebyshev polynomials Tn(zN ) give L∞- resp.

Lq(�T;T′
)-minimal polynomials on T−1(E�); �¿0, where by (2.8)

d�T;T′
= d�T−1(E�);e =

|zN−1| |dz|√|1− z2N |
(here, we took S(z) =T′(z)=N = zN−1). For the L∞-case see [23].
Naturally, we would like to know the whole sequence of Lq(�T;T′

)-minimal polynomials and not
only a subsequence. For the 2N-star S2N the whole sequence can be obtained as follows.
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Fig. 2. Left picture: sets T−1(E�) for �=0; 0:1, and 0:4; here N=4. Right picture: lemniscate with N=3 and r=1:2; 1; 0:7:

Proposition 5. Let n ∈ N0; 16N ∈ N; m ∈ {0; : : : ; 2N−1}; q ∈ [1;∞); w : [0; 1]→ R+ integrable;
and let pn;m(x) = xn + · · · ∈ Pn be the Lq(x−1=2+(mq=2N )w(x) dx)-minimal polynomial on [0; 1]. Then

P2nN+m(z) := zmpn;m(z2N )

is the Lq(w(z2N )|zN−1| |dz|)-minimal polynomial on the 2N -star S2N .

Proof. Put

d�̃(z) = w(z2N )|zN−1| |dz|:
Suppose that∥∥∥∥∥

2nN+m∑
�=0

c�z2nN+m−�

∥∥∥∥∥
q

q; �̃; S2N

= inf
bv∈C; b0=1

∥∥∥∥∥
2nN+m∑
�=0

b�z2nN+m−�

∥∥∥∥∥
q

q; �̃; S2N

:

Since z ∈ S2N implies eij�=N z ∈ S2N for j = 0; : : : ; 2N − 1, it follows that∥∥∥∥∥
2nN+m∑
�=0

c�z2nN+m−�

∥∥∥∥∥
q

q; �̃; S2N

=

∥∥∥∥∥|eij�m=N |
2nN+m∑
�=0

c�e−i�j�=N z2nN+m−�

∥∥∥∥∥
q

q; �̃; S2N

;

which gives by the uniqueness of the best approximation that

c� = c�e−i�j�=N for j = 0; : : : ; 2N − 1:
This last fact implies that

c� = 0 for � 6= 2Nk; k ∈ {0; : : : ; n− 1}:
Hence, the minimal polynomial is of the form zmrn;m(z2N ), where rn;m(z) is a monic polynomial of
degree n. By characterization (2.1) it follows moreover, using the transformation x = zN , that∫

S2N
z2N�|zm|q|rn;m(z2N )|q−2rn;m(z2N ) d�̃(z)

=2N
∫ 1

0
x2�|x|mq=N |rn;m(x2)|q−2rn;m(x2)w(x2) |dx|= 0 for � = 0; : : : ; n− 1:

From these conditions we get, by using the transformation y = x2, that rn;m(x) = pn;m(x).



306 F. Peherstorfer, R. Steinbauer / Journal of Computational and Applied Mathematics 127 (2001) 297–315

2.3. Extremal polynomials on special lemniscates

Let K = Ur := {|z| = r}; r ∈ [1;∞) �xed, and (for simplicity) d�(z) = |dz|. Then, by (2.1),
{zn}n∈N0 is the sequence of monic L∞- and Lq(�)-; q ∈ [1;∞), minimal polynomials on Ur . Let
T(z)=zN−r; N¿2 �xed. Then the inverse image of Ur under T, i.e., T−1(Ur), gives lemniscates;
compare the right picture in Fig. 2. By Theorem 3 the polynomials

Tn(z) = (zN − r)n

are L∞- and Lq(�T;T′
)-minimal polynomials on the lemniscates T−1(Ur) with respect to the measure

d�T;T′
(z) := |zN−1| |dz|:

But in fact, we are able to construct the whole sequence of orthogonal polynomials again, using
the structure of the inverse image, i.e., of the lemniscate.

Proposition 6. Let n ∈ N0; 26N ∈ N; m ∈ {0; : : : ; N − 1}; q ∈ [1;∞); r ∈ (0;∞); w : {|z|= r} →
R+ integrable; and let pn;m(z)=zn+ · · · ∈ Pn be the Lq((r+Re z)qm=2Nw(z) |dz|)-minimal polynomial
on {|z|= r}. Then

PnN+m(z) := zmpn;m(zN − r)

is the Lq(w(zN − r)|zN−1| |dz|)-minimal polynomial on the lemniscate
LN; r = {z ∈ C: |zN − r|= r}:

Proof. Obviously, z ∈ LN; r implies that e2ki�=N z ∈ LN; r for k ∈ Z. Thus it follows quite similarly
as in the proof of Proposition 1 that the coe�cients of the Lq-minimal polynomial

∑nN+m
�=0 c�znN+m−�

on LN; r with respect to the weight |zN−1|w(zN − r) vanish for � 6= N�, � ∈ {0; : : : ; n− 1}. Hence,
nN+m∑
�=0

c�znN+m−� = zm	n;m(zN − r);

where 	n;m(z) = zn + · · · ∈ Pn. Now, using the fact that for z ∈ LN; r

zN − r = rei’ i:e:; z = ei’=2+2ki�=N (2r cos(’=2))1=N

for a k ∈ {0; : : : ; N − 1}, and thus

|z2|mq =
(
(2r)2

(1 + cos’)
2

)mq=N

;

we obtain by (2.1) that∫
LN;r

(zN − r) jzmzm	n;m(zN − r)|zm	n;m(zN − r)|q−2w(zN − r)|zN−1| |dz|

=
1
N

∫
|v|=r

vj	n;m(v)|	n;m(v)|q−2(2r(r + Re v))mq=2Nw(v)|dv|= 0 for j = 0; : : : ; n− 1;

which proves, by the uniqueness of the minimal polynomials, the assertion.
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For q=2, r=1, w(z)=1, and N=2, the result has been shown by Godoy and Marcell�an [16] using
completely di�erent methods. Let us note that for the case q= 2, r = 1 the orthogonal polynomials
	n;m(ei’) are explicitly known (see [30]) if for instance (1 + Re z)m=Nw(z), z = ei’, ’ ∈ [− �; �], is
a Jacobi weight.

2.4. Extremal polynomials on T-invariant sets; in particular Julia sets

Now we apply our theory on Lq-minimal polynomials from Section 2 to Julia sets, i.e., to
T-invariant complex sets. For the case q= 2 compare also [3,6,26] and for q=∞ [19].
It is well known that for polynomials the Julia set JT is the boundary of the basin of attraction

of the point in�nity, i.e.,

JT = @A(∞) := @{z ∈ C :T(n)(z)→ ∞ as n → ∞};
where T(n) =T ◦T ◦ · · · ◦T (n-times). The complement of the Julia set

FT := �C\JT

is called the Fatou set of the polynomial T.
The Julia set is a completely T-invariant set, i.e.,

T(n)(JT) =T(−n)(JT) =JT for all n ∈ N:

Here, T(−n) := [T(n)]−1. Moreover, Barnsley et al. showed [3] that on every Julia set JT there
exists a unique invariant measure �, namely the equilibrium measure �JT ;e=: �e, which satis�es

� = �T;T′
= �e;

recall de�nition (1.9). Hence, by Theorem 3 the following relations hold:

pnN;q(z) = pn;q(T(z)) and pNn;q(z) =T(n)(z) + const(q); (2.10)

where, (pn;q) denotes the sequence of Lq(�)-minimal polynomials.
Here, we are not only interested in the Julia sets and their Lq-minimal polynomials. Because of

the di�cult structure of Julia sets one is interested in sets as simple as possible by which the Julia
set can be generated resp. approximated, and in the Lq-minimal polynomials on these simpler sets.
The latter minimal polynomials should be approximants of the minimal polynomials on the Julia
set. The idea is now the following: Let T(z) = �zN + · · · ; � 6= 0, be a (complex) polynomial of
degree N¿2 which generates the Julia set JT. In order to get approximants of JT, let M (0)⊆JT

be an arbitrary subset and �(0) a positive Borel measure on M (0). Then we de�ne iteratively for
every n ∈ N,

M (n) :=T−1(M (n−1)) =T(−n)(M (0)): (2.11)

By [9, Corollary 2:2] we have JT =
⋃∞

n=0M (n). With the help of the measure from (1.9) we can
de�ne measures �(n) on M (n) recursively by

∫
T−1(B)

f(z) d�(n)(z) :=
1
N

N∑
j=1

∫
B
f(T−1

j (z)) d�(n−1)(z); (2.12)
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f ∈ L1(�(n)) and B a �(n−1)-measurable subset of M (n−1). Here, for simplicity we took S =T′=N .
For each sequence of measures {�(n)} so de�ned, one can show that there holds

�(n)
weakly→ �JT ; e; (2.13)

cf., e.g., [6, Section VI] but also [3, Remark, p. 381]. Especially, �JT ;e is independent of the initial
measure �(0). Once we know the linear L∞- resp. the Lq(�(0))-, q ∈ [1;∞), minimal polynomial on
M (0), i.e., p1(z), then by (2.10) we know the L∞- resp. Lq(�(n))-minimal polynomial of degree Nn

on M (n). Certainly, the case of orthogonal polynomials, i.e., q= 2, is again of special interest.
Let us demonstrate this approach in some more detail at the example of a special class of Julia

sets, the so-called dendrites.

De�nition. A Julia set JT is called a dendrite if and only if both JT and the Fatou set FT are
connected.

Some examples of dendrites, generated by polynomials of the form T(z) = z2 + c, e.g., for
c ∈ {−2; 1}, can be found in [11, Chapter 14].
A known su�cient condition such that the Julia set is a dendrite is that all the �nite critical points

of T are strictly preperiodic, see, e.g., [4].
In what follows let T be a real polynomial with a dendrite as its Julia set. Then JT is symmetric

with respect to the real axis and thus it always contains real points. Hence, the values

� := inf{x ∈ JT: x real} and � :=max{x ∈ JT: x real} (2.14)

exist in R. Moreover, by the symmetry with respect to the real axis and the connectivity of the
Fatou set, there holds [�; �]⊆JT. In the special case when T is an odd-degree polynomial with
positive leading coe�cient then � is the largest and � the smallest �xed point of T. Anyway, we
will always assume that (�; �) 6= ∅, Following the idea from (2.11) we put

M (0) = [�; �] ∈ JT and M (n) :=T(−n)([�; �]) = {z ∈ C: T(n)(z) ∈ [�; �]}: (2.15)

Then

M (n)⊆M (n+1) (2.16)

and by [9, Corollary 2:2]

JT =
∞⋃
n=1

M (n) = lim
n→∞ M (n)= : M (∞): (2.17)

Fig. 3 shows the graph of the polynomial T(z)=2z4−1 and its Julia set JT; here [�; �]=[−1; 1].
The �rst three sets M (1), M (2), and M (3) are plotted in Fig. 4.
For the rate of convergence of the M (n)’s towards the Julia set JT compare Corollary 8 below.

The following theorem describes the minimal polynomials on the sets M (n) =T(−n)([�; �]) as well
as on the Julia set JT (i.e., on M (∞)) but also on the equipotential lines A(M (n); �) of M (n) and
of JT.

Theorem 7. Suppose that T(z)=�zN + · · · ; � 6= 0 and N¿2; is a real polynomial given as above;
let q ∈ [1;∞]; �¿0 be �xed; and let �(0) be a given real Borel measure on A([�; �]; �); where �
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Fig. 3. Polynomial T(z) = 2z4 − 1 and its Julia set JT.

Fig. 4. Approximants M (i), i = 1; 2; and 3, for the Julia set JT, where T(z) = 2z4 − 1.

and � are de�ned by (2:14). Furthermore; let �(k) be given by (2:12) and let p1; k(z)= z−ck denote
the monic linear L∞- (if q=∞) resp. Lq(�(k))-minimal polynomial on A(M (k); �=N k). Then for all
n ∈ N and k ∈ N ∪ {∞}

Pn; k(z) =
T(n)(z)− ck
�(Nn−1)=(N−1) = zN

n

+ · · · (2.18)

is the monic L∞- (if q=∞) resp. Lq(�(n+k))-minimal polynomial on the equipotential line A(M (n+k);
�=Nn+k). Moreover;

lim
k→∞

A(M (k); �) = A(JT; �) and lim
k→∞

ck = c∞; (2.19)

where ck depends on q; �; and �(0); but c∞ on q only. All the constants ck are real.

Remark. Let us point out again that for � = 0 all the equipotential lines in Theorem 7 are of the
form A(M (�); 0); � ∈ {k; k + n}, and can be replaced simply by M (�).

Proof of Theorem 7. Relation (2.18) follows immediately from Theorem 3 and

g(T(n)(z); M (k);∞) = Nng(z;M (n+k);∞)
(compare also (2.20) below), which implies

T(−n)
(
A
(
M (k);

�
N k

))
= A

(
M (n+k);

�
Nn+k

)
:

Concerning relation (2.19), let us note that (2.7) and Lemma 4(a) give

g(z;M (k);∞) = 1
Nk
ln|l(T(k)(z)) +

√
[l(T(k)(z))]2 − 1|; (2.20)
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where l denotes the linear transformation from [�; �] to [− 1; 1], i.e.,

l(x) =
2x

� − �
− � + �

� − �
:

Moreover, it is known that, see, e.g., [7,8],

g(z;JT;∞) = lim
k→∞

1
Nk
ln|T(k)(z)|: (2.21)

From these explicit representations one obtains the limit relation

lim
k→∞

[g(z;M (k);∞)− g(z;JT;∞)] = 0
uniformly on compact subsets of C\JT (note that T(k)(z)→ ∞ as k → ∞ for all z ∈ C\JT) and,
consequently, by de�nition (2.3),

lim
k→∞

A(M (k); �) = A(JT; �) for all �¿ 0 (2.22)

with respect to the Hausdor�-metric. This is the �rst part of relation (2.19). For the remaining
assertion concerning the coe�cients ck let us point out that all the sets A(M (k); �=N k) and all the
measures �(k) are symmetric with respect to the real axis. Hence, the values ck have to be real.
Furthermore, the constants ck are convergent. Denote the limit by c∞; then p0;∞(z) = z− c∞ is the
L∞- (if q=∞) resp. the Lq(�e)-minimal polynomial on A(M (∞); 0)=JT. Hence, c∞ is independent
both of � and �(0).

Remark. For the case of Lq-minimal polynomials, q ∈ [1;∞), let us point out the nice fact that
on the one hand, these minimal polynomials Pn; k(z)=:Pn; k(z; �(0)) strongly depend on the initial
measure �(0). But on the other hand, this �(0)-dependence can be described completely, and in a
simple and explicit way, only by the constants ck = ck(q; �(0)).

The following corollary gives a feeling on how fast the “�nite” sets M (n), which are approximants
of the Julia set JT, converge towards JT, or to use di�erent words, how good JT is describable
by the M (n)’s.

Corollary 8. Let T(z) = �zN + · · · ; � 6= 0 and N¿2; by the polynomial from Theorem 7. Then

cap(M (n)) =
(
� − �
4

)1=Nn

|�|−(Nn−1)=[Nn(N−1)]; n= 1; 2; 3; : : :

and

cap(JT) = |�|−1=(N−1): (2.23)

Proof. The �rst assertion follows from de�nition (2.5) and from the explicit representation of
g(z;M (n);∞) in (2.20). Next, from the identity

g(z;JT;∞) = ln |z| − ln(cap(JT)) + o(1) as z → ∞
and

g(T(n)(z);JT;∞) = Nng(z;JT;∞);
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which follows from Lemma 4 and the invariance of the Julia set, we obtain

ln|T(k)(z)| − ln(cap(JT)) = Nk(ln|z| − ln(cap(JT))) + o(1):

Now, the limiting process z → ∞ gives

ln|�(Nk−1)=(N−1)|= ln([cap(JT)]
1−Nk

);

which is relation (2.23).

Let us note that relation (2.23) is known (see, e.g., [27, Theorem 6:5:1]).

3. Asymptotics of polynomials orthogonal on inverse images of polynomials

In Propositions 5 and 6 we were able to get the whole sequence of orthogonal polynomials by
symmetry reasons. In the general case this will certainly not be possible. Let us point out at this
stage that polynomials orthogonal on curves or arcs in the complex plane (up to real intervals or
arcs on the unit circle) do not satisfy a three-term recurrence relation in general. This is one of the
reasons that they are so di�cult to handle. Therefore, we are interested in asymptotics. To be able
to obtain the asymptotics with the help of Widom’s result, we have to derive some properties of
harmonic measures. Let us recall the known fact that if Kj is a component of a compact nonpolar
set K ⊂C, then the harmonic measure of Kj with respect to K at z =∞, denoted by !(@Kj; K;∞),
is given by

!(@Kj; K;∞) = �K;e(Kj); (3.1)

see, e.g., [27, Theorem 4:3:14]. Again �K;e is the equilibrium measure on K .
The following lemma will play a crucial role. For the de�nition of a proper map and Riemann–

Hurwitz formula see, e.g., [29, pp. 4–10].

Lemma 9. Let int(K) (i.e.; the interior of K) be simply connected; let int(Q1); : : : ; int(Ql) be the
components of T−1(int(K)); and assume that T : int(Qj) → int(K) is a kj-fold proper map with
at most kj − 1 critical points in Qj. Then the following relation holds for the harmonic measure:

!(@Qj;T−1(K);∞) = kj
N

�K;e(K): (3.2)

Proof. By the Riemann–Hurwitz formula we have

lint(Qj) − 2 = kj(lint(K) − 2) + rint(Qj); (3.3)

where lint(Qj) and lint(K) denote the number of connectedness of int(Qj) and int(K), respectively, and
rint(Qj) the number of critical points of T in int(Qj). Since by assumption lint(K) = 1; rint(Qj)6kj − 1;
it follows that lint(Qj) = 1; i.e., int(Qj) is simply connected. Further, it is known that T : @Qj → @K
is also a kj-fold mapping, which implies by Lemma 4(c) and (1.7) that �T−1(K); e(Qj)=�T;T′

K;e (Qj)=
(kj=N )�K;e(K). In view of (3.1) we have !(@Qj;T−1(K);∞) = �T;T′

K;e (Qj), which proves the
statement.
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Remark. Let K be a Jordan arc and let the components Q1; : : : ; Ql of T−1(K) be Jordan arcs, too,
and assume that T: Qj → K; j = 1; : : : ; l, is a kj-fold proper map. Then relation (3.2) holds true
obviously.
Naturally, Lemma 9 could also be stated for the more general case that K consists of several

components, by considering the inverse image of each component of K . (But the assumptions become
a little bit involved.)

Now we have the necessary ingredients to show with the help of Widom’s theory on asymptotics
of orthogonal polynomials [31] that polynomials orthogonal on Jordan curves or arcs, which are
the inverse polynomial images of a Jordan curve or arc, have an asymptotically periodic behaviour.
So far, this fact is known only for the case that the inverse polynomial image of [ − 1; 1] consists
of several disjoint real intervals (see [2,22]). By the way, an asymptotically periodic behaviour
of polynomials orthogonal on several arcs of the unit circle which are the inverse image of a
trigonometric polynomial has been demonstrated by the authors in [24,25].
We say that the weight function � satis�es the generalized Szegő condition on T−1(@K) if

∮
T−1(@K)

ln �(�)
@g(�;T−1(K);∞)

@n�
|d�|¿−∞ (3.4)

and we put

mn;� :=mn;�(T−1(@K)) = min
�1 ;:::;�n∈C

∫
T−1(@K)

|�n + �1�n−1 + · · ·+ �n|2�(�) |d�|:

Theorem 10. Suppose that K and the components Qj ofT−1(K) satisfy the assumptions of Lemma 9
resp. of the above remark. Furthermore; assume that the weight function � satis�es Szegő’s con-
dition (3:4) and let (pn) be the monic polynomials of degree n hermitian orthogonal with respect
to �(�)|d�| on @K . Then we have the following asymptotic behaviour with respect to n:

mnN+j;p ∼ cap(T−1(K))2(nN+j)vj;

pnN+j(z)(cap(T−1(K)))−(nN+j)�−(nN+j)(z;T−1(K);∞) ∼ Fj(z)

for j = 0; : : : ; N − 1; where the vj’s and Fj’s are certain constants and functions; respectively (for
details see the proof below); � is de�ned in (2:6) and an ∼ bn means 1−�n6an=bn61+�n; �n → 0+.

Proof. Let � = �C\T−1(K) and let F be a function analytic in � . Note that the standard analytic
functions de�ned for the multi-connected region � have multi-valued argument in general. The
ambiguity of the argument of a function in � is characterized as follows (compare [2, p. 237]): Let

= (
1; : : : ; 
l) be a vector in Rl. Take the coordinates of 
 to be the increments in the argument of
a multi-valued function F(z) on marking circuits of the Qj’s, i.e.,


(F) =

(
: : : ;

1
2� �

@Qj

argF(z); : : :

)
: (3.5)

We take the quotient of the functions analytic in � by the equivalence relation F1(z) ≈ F2(z) ⇔

(F1) = 
(F2). Note that 
(F1) = 
(F2) is equivalent to the fact that arg(F1− F2) is single valued in
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� . The classes obtained are denoted by �
, i.e.,

F(z) ∈ �
 if 
=

(
: : : ;

1
2� �

@Qj

argF(z); : : :

)
: (3.6)

Next, let

�(z) = exp(g(z;∞) + ig̃(z;∞)):
Here, g(z;∞) is Green’s function for the set �C\� with pole at ∞ and g̃(z;∞) is a harmonic
conjugate. Further, let us set

�k := − k�
(�) (3.7)

and recall (see (2.6)) that � denotes the conformal mapping of � onto the exterior of the unit disk.
Note that by de�nition (3.5)


(�) = (!(@Q1;T−1(K);∞); : : : ; !(@Ql;T−1(K);∞)); (3.8)

see, e.g., [31, p. 141], where !(@Qj;T−1(K);∞) is the harmonic measure at z =∞ of the jth
component Qj. Furthermore, for � ∈ L1(�) let H2(�; �; �
) be the set of functions F from �
 which
are analytic on � and for which |F(z)2R(z)| has a harmonic majorant. Here, R(z) is the analytic
function without zeros or poles in � whose modulus on � is single-valued and which takes the
value �(�) on � (see, e.g., [31, p. 155] or [2, p. 237]).
For weight functions � satisfying the Szegő condition (3.4), Widom has given the following

asymptotic representation of the minimum deviation mk;� of monic polynomials pk(z) of degree k
orthogonal with respect to �(�)|d�| [31, Theorem 12:3]:

mk;� ∼ (cap(T−1(K)))2kv(�; �k)

and

pk(z)(cap(T−1(K)))−k�−k(z;T−1(K);∞) ∼ Fk(z) for A⊂�;

A compact, where Fk ∈ H2(�; �; �k) is the unique solution of the following extremal problem:

v(�; �k) = inf
F∈H2(�;�;�k )

F(∞)=1

∫
T−1(K)

|F(�)|2�(�) |d�|; (3.9)

hence,

v(�; �k) =
∫
T−1(K)

|Fk(�)|2�(�) |d�|:

Now, in the case under consideration we have by Lemma 9 that !(@Qj;T−1(K);∞)=kj=N; kj ∈ N,
for all j = 1; : : : ; l, and thus we obtain from (3.5)–(3.8)

�j+nN = �jmod 1 for all n ∈ N and j = 0; 1; : : : ; N − 1
and therefore, we have by (3.9) and the uniqueness of the extremal function,

v(p;�nN+j) = v(�; �j);

Fj+nN ≡ Fj for all n ∈ N and j = 0; : : : ; N − 1:
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For instance, the assumptions of Theorem 10 resp. Lemma 9 can be easily checked in the lemnis-
cate case, that is, if the Qj’s are the components of T−1({|z|= r|}). In particular, if r is su�ciently
large then T−1({|z| = r|}) contains all zeros of T′ and consists of one component only. On the
other hand, T−1({|z|= r|}) consists of @T= N components containing no zero of T′ if r; r ¿ 0,
is su�ciently small and T has simple zeros only.
Note that the expressions appearing in the above asymptotic formula can be simpli�ed with the

help of Lemma 9. Let us also point out that the only assumption on the weight function was that
it satis�es the Szegő condition (3.4). If the weight function is in addition of form (1.10), then we
know pnN and mnN and thus F0 and v0 explicitly. This leads us directly to our �rst problem.
Problem 1. It would be of great interest to know the remaining functions Fj; j= 1; : : : ; N − 1, in

Theorem 10 or, in other words, to �nd an explicit asymptotic expression for the remaining orthogonal
polynomials. For the case that T−1(K) is a subset of the real line or of the unit circumference, i.e.,
if the pn’s satisfy a recurrence relation, it is possible to derive (at least) asymptotic expressions for
these functions (see [13,25]).
Problem 2. If TN is a real polynomial which has N simple zeros in (−1; 1) and satis�es (2.9) and

TN (±1)= (±1)N , then it can be shown easily that JTN is a real Cantor set. Hence the orthonormal
polynomials satisfy a three-term recurrence relation. Are the recurrence coe�cients limit periodic,
i.e., is the sequence of recurrence coe�cients the limit of periodic sequences? For the special case
TN (x) = �NTN (x=�); �¿ 1; N ∈ N\{1}, this is known [6].
Problem 3. Asymptotics of minimal polynomials with respect to the Lq-norm, 0¡q¡∞, are

so far known only in case of an interval or of a closed curve [15,21]. Is it possible to carry over
Theorem 10 to the Lq-case in a suitable way (in this respect compare [18])? Recall what is needed
are asymptotics of the extremal polynomials of degree nN + j; j ∈ {1; : : : ; N − 1}; n ∈ N.
Problem 4. Is there a bounded compact set K ⊂R and a sequence of polynomials pn(x) = xn + · · · ;

(pn) 6= (Tn), such that for each n ∈ N; pn is an Lq-extremal polynomial for every q ∈ [1;∞]
with respect to the same weight function? What if we replace the condition “for every q ∈ [1;∞]”
by “for q = 2 and q =∞”, which certainly would be of foremost interest? We expect that there
is no such sequence, that is, the classical Chebyshev polynomials Tn of the �rst kind with weight
function 1=

√
1− x2 are the only polynomials which have this property. Note that subsequences of

polynomials with the above properties can easily be found, as we have shown in Section 2.1 in the
statement after Fig. 1 or in [22, Theorem 2:4]. As we have learned in the meantime, the answer to
the �rst question can be found in [28], which appeared very recently.
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1. Classical orthogonal polynomials

One aspect in the theory of orthogonal polynomials is their study as special functions. Most
important orthogonal polynomials can be written as terminating hypergeometric series and during the
twentieth century people have been working on a classi�cation of all such hypergeometric orthogonal
polynomial and their characterizations.
The very classical orthogonal polynomials are those named after Jacobi, Laguerre, and Hermite.

In this paper we will always be considering monic polynomials, but in the literature one often
uses a di�erent normalization. Jacobi polynomials are (monic) polynomials of degree n which are
orthogonal to all lower degree polynomials with respect to the weight function (1− x)�(1 + x)� on
[−1; 1], where �; �¿−1. The change of variables x 7→ 2x−1 gives Jacobi polynomials on [0; 1] for
the weight function w(x) = x�(1− x)�, and we will denote these (monic) polynomials by P(�;�)n (x).
They are de�ned by the orthogonality conditions∫ 1

0
P(�;�)n (x)x�(1− x)�xk dx = 0; k = 0; 1; : : : ; n− 1: (1.1)

The monic Laguerre polynomials L(�)n (x) (with �¿−1) are orthogonal on [0;∞) to all polynomials
of degree less than n with respect to the weight w(x) = x�e−x and hence satisfy the orthogonality
conditions∫ ∞

0
L(�)n (x)x

�e−xxk dx = 0; k = 0; 1; : : : ; n− 1: (1.2)

Finally, the (monic) Hermite polynomials Hn(x) are orthogonal to all lower degree polynomials with
respect to the weight function w(x) = e−x2 on (−∞;∞), so that∫ ∞

−∞
Hn(x)e−x2xk dx = 0; k = 0; 1; : : : ; n− 1: (1.3)
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These three families of orthogonal polynomials can be characterized in a number of ways:

• Their weight functions w satisfy a �rst order di�erential equation with polynomial coe�cients

�(x)w′(x) = �(x)w(x); (1.4)

with � of degree at most two and � of degree one. This equation is known as Pearson’s equation
and also appears in probability theory, where the corresponding weights (densities) are known as
the beta density (Jacobi), the gamma density (Laguerre), and the normal density (Hermite). Note
however that for probability density functions one needs to normalize these weights appropriately.
For the Jacobi weight we have �(x) = x(1 − x), for the Laguerre weight we have �(x) = x, and
for the Hermite weight we see that �(x)=1, so that each family corresponds to a di�erent degree
of the polynomial �.

• The derivatives of the very classical polynomials are again orthogonal polynomials of the same
family but with di�erent parameters (Sonin, 1887; Hahn, 1949). Indeed, integration by parts of
the orthogonality relations and the use of Pearson’s equation show that

d
dx

P(�;�)n (x) = nP(�+1; �+1)n−1 (x);

d
dx

L(�)n (x) = nL(�+1)n−1 (x);

d
dx

Hn(x) = nHn−1(x):

The di�erential operator D=d=dx therefore acts as a lowering operator that lowers the degree of
the polynomial.

• Pearson’s equation also gives rise to a raising operator that raises the degree of the polynomials.
Indeed, integration by parts shows that

d
dx
[x�(1− x)�P(�;�)n (x)] =−(�+ � + n)x�−1(1− x)�−1P(�−1; �−1)n+1 (x); (1.5)

d
dx
[x�e−xL(�)n (x)] =−x�−1e−xL(�−1)n+1 (x); (1.6)

d
dx
[e−x2Hn(x)] =−2e−x2Hn+1(x): (1.7)

The raising operator is therefore of the form �(x)=w(x)Dw(x). Using this raising operation repeat-
edly gives the Rodrigues formula for these orthogonal polynomials:

dn

dxn
[x�+n(1− x)�+n] = (−1)n(�+ � + n+ 1)nx�(1− x)�P(�;�)n (x); (1.8)

dn

dxn
[x�+ne−x] = (−1)nx�e−xL(�)n (x); (1.9)

dn

dxn
e−x2 = (−1)n2ne−x2Hn(x): (1.10)
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The Rodrigues formula is therefore of the form

dn

dxn
[�n(x)w(x)] = Cnw(x)Pn(x);

where Cn is a normalization constant (Hildebrandt, 1931).
• Combining the lowering and the raising operator gives a linear second-order di�erential equation
for these orthogonal polynomials, of the form

�(x)y′′(x) + �(x)y′(x) = �ny(x); (1.11)

where � is a polynomial of degree at most 2 and � a polynomial of degree at most 1, both
independent of the degree n, and �n is a constant depending on n (Bochner, 1929).

The Laguerre polynomials and the Hermite polynomials are limiting cases of the Jacobi polyno-
mials. Indeed, one has

lim
�→∞ �nP(�;�)n (x=�) = L(�)n (x); (1.12)

and

lim
�→∞ 2

n�n=2P(�;�)n

(
x +

√
�

2
√
�

)
= Hn(x): (1.13)

The Hermite polynomials are also a limit case of the Laguerre polynomials:

lim
�→∞(2�)

−n=2L(�)n (
√
2�x + �) = Hn(x): (1.14)

In this respect the Jacobi, Laguerre and Hermite polynomials are in a hierarchy, with Jacobi leading
to Laguerre and Laguerre leading to Hermite, and with a shortcut for Jacobi leading to Hermite.
This is just a very small piece in a large table known as Askey’s table which also contains classical
orthogonal polynomials of a discrete variable (Hahn, Meixner, Kravchuk, and Charlier) for which
the di�erential operator D needs to be replaced by di�erence operators � and 3 on a linear lattice
(a lattice with constant mesh, see [30]). Finally, allowing a quadratic lattice also gives Meixner–
Pollaczek, dual Hahn, continuous Hahn, continuous dual Hahn, Racah, and Wilson polynomials,
which are all in the Askey table. These polynomials have a number of q-extensions involving the
q-di�erence operator and leading to the q-extension of the Askey table. In [2] Andrews and Askey
suggest to de�ne the classical orthogonal polynomials as those polynomials that are a limiting case
of the 4’3-polynomials

Rn(�(x); a; b; c; d; q) = 4’3

(
q−n; qn+1ab; q−x; qx+1cd

aq; bdq; cq
; q; q

)
;

with �(x)=q−x+qx+1cd and bdq=q−N (these are the q-Racah polynomials) or the 4’3-polynomials

anWn(x; a; b; c; d|q)
(ab; q)n(ac; q)n(ad; q)n

= 4’3

(
q−n; qn−1abcd; aei�; ae−i�

ab; ac; ad
; q; q

)
;

with x=cos � (these are the Askey–Wilson polynomials). All these classical orthogonal polynomials
then have the following properties:

• they have a Rodrigues formula,
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• an appropriate divided di�erence operator acting on them gives a set of orthogonal polynomials,
• they satisfy a second-order di�erence or di�erential equation in x which is of Sturm–Liouville
type.

The classical orthogonal polynomials in this wide sense have been the subject of intensive research
during the twentieth century. We recommend the report by Koekoek and Swarttouw [26], the book
by Andrews et al. [3], and the books by Nikiforov and Uvarov [31], and Nikiforov, Suslov and
Uvarov [30] for more material. Szegő’s book [44] is still a very good source for the very classical
orthogonal polynomials of Jacobi, Laguerre, and Hermite. For characterization results one should
consult a survey by Al-Salam [1].

2. Multiple orthogonal polynomials

Recently, there has been a renewed interest in an extension of the notion of orthogonal polynomials
known as multiple orthogonal polynomials. This notion comes from simultaneous rational approxi-
mation, in particular from Hermite–Pad�e approximation of a system of r functions, and hence has
its roots in the nineteenth century. However, only recently examples of multiple orthogonal polyno-
mials appeared in the (mostly Eastern European) literature. In this paper we will introduce multiple
orthogonal polynomials using the orthogonality relations and we will only use weight functions. The
extension to measures is straightforward.
Suppose we are given r weight functions w1; w2; : : : ; wr on the real line and that the support of

each wi is a subset of an interval �i. We will often be using a multi-index n= (n1; n2; : : : ; nr) ∈ Nr

and its length |n|= n1 + n2 + · · ·+ nr .

• The r-vector of type I multiple orthogonal polynomials (An;1; : : : ; An; r) is such that each An; i is a
polynomial of degree ni − 1 and the following orthogonality conditions hold:∫

xk
r∑

j=1

An; j(x)wj(x) dx = 0; k = 0; 1; 2; : : : ; |n| − 2: (2.15)

Each An; i has ni coe�cients so that the type I vector is completely determined if we can �nd all the
|n| unknown coe�cients. The orthogonality relations (2.15) give |n| − 1 linear and homogeneous
relations for these |n| coe�cients. If the matrix of coe�cients has full rank, then we can determine
the type I vector uniquely up to a multiplicative factor.

• The type II multiple orthogonal polynomial Pn is the polynomial of degree |n| that satis�es the
following orthogonality conditions:∫

�1
Pn(x)w1(x)xk dx = 0; k = 0; 1; : : : ; n1 − 1; (2.16)

∫
�2

Pn(x)w2(x)xk dx = 0; k = 0; 1; : : : ; n2 − 1; (2.17)

...∫
�r

Pn(x)wr(x)xk dx = 0; k = 0; 1; : : : ; nr − 1: (2.18)
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This gives |n| linear and homogeneous equations for the |n| + 1 unknown coe�cients of Pn(x).
We will choose the type II multiple orthogonal polynomials to be monic so that the remaining
|n| coe�cients can be determined uniquely by the orthogonality relations, provided the matrix of
coe�cients has full rank.

In this paper the emphasis will be on type II multiple orthogonal polynomials. The unicity of
multiple orthogonal polynomials can only be guaranteed under additional assumptions on the r
weights. Two distinct cases for which the type II multiple orthogonal polynomials are given are as
follows.

1. In an Angelesco system (Angelesco, 1918) the intervals �i, on which the weights are supported,

are disjoint, i.e., �i ∩ �j = ∅ whenever i 6= j. Actually, it is su�cient that the open intervals
◦
�i

are disjoint, so that the closed intervals �i are allowed to touch.

Theorem 1. In an Angelesco system the Type II multiple orthogonal polynomial Pn(x) factors into
r polynomials

∏r
j=1 qnj(x); where each qnj has exactly nj zeros on �j.

Proof. Suppose Pn(x) has mj ¡nj sign changes on �j at the points x1; : : : ; xmj . Let Qmj(x) =
(x − x1) · · · (x − xmj), then Pn(x)Qmj(x) does not change sign on �j, and hence

∫
�j

Pn(x)Qmj(x)wj(x) dx 6= 0:

But this is in contradiction with the orthogonality relation on �j. Hence Pn(x) has at least nj zeros
on �j. Now all the intervals �j (j = 1; 2; : : : ; r) are disjoint, hence this gives at least |n| zeros of
Pn(x) on the real line. The degree of this polynomial is precisely |n|, so there are exactly nj zeros
on each interval �j.

2. For an AT system all the weights are supported on the same interval �, but we require that the
|n| functions

w1(x); xw1(x); : : : ; xn1−1w1(x); w2(x); xw2(x); : : : ; xn2−1w2(x); : : : ; wr(x); xwr(x); : : : ; xnr−1wr(x)

form a Chebyshev system on � for each multi-index n. This means that every linear combination

r∑
j=1

Qnj−1(x)wj(x);

with Qnj−1 a polynomial of degree at most nj − 1, has at most |n| − 1 zeros on �.

Theorem 2. In an AT system the Type II multiple orthogonal polynomial Pn(x) has exactly |n|
zeros on �. For the Type I vector of multiple orthogonal polynomials; the linear combination∑r

j=1 An; j(x)wj(x) has exactly |n| − 1 zeros on �.
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Proof. Suppose Pn(x) has m¡ |n| sign changes on � at the points x1; : : : ; xm. Take a multi-index
m=(m1; m2; : : : ; mr) with |m| = m such that mi6ni for every i and mj ¡nj for some j and construct
the function

Q(x) =
r∑

i=1

Qi(x)wi(x);

where each Qi is a polynomial of degree mi − 1 whenever i 6= j, and Qj is a polynomial of degree
mj, satisfying the interpolation conditions

Q(xk) = 0; k = 1; 2; : : : ; m;

and Q(x0)=1 for an additional point x0 ∈ �. This interpolation problem has a unique solution since
we are dealing with a Chebyshev system. The function Q has already m zeros, and since we are
in a Chebyshev system, it can have no additional sign changes. Furthermore, the function does not
vanish identically since Q(x0) = 1. Obviously Pn(x)Q(x) does not change sign on �, so that

∫
�
Pn(x)Q(x) dx 6= 0;

but this is in contrast with the orthogonality relations for the Type II multiple orthogonal polynomial.
Hence Pn(x) has exactly |n| zeros on �.
The proof for the Type I multiple orthogonal polynomials is similar. First of all, since we are

dealing with an AT system, the function

A(x) =
r∑

j=1

An; j(x)wj(x)

has at most |n| − 1 zeros on �. Suppose it has m¡ |n| − 1 sign changes at the points x1; x2; : : : ; xm,
then we use the polynomial Qm(x) = (x − x1) · · · (x − xm) so that A(x)Qm(x) does not change sign
on �, and

∫
�
A(x)Q(x) dx 6= 0;

which is in contradiciton with the orthogonality of the Type I multiple orthogonal polynomial. Hence
A(x) has exactly |n| − 1 zeros on �.

Orthogonal polynomials on the real line always satisfy a three-term recurrence relation. There
are also �nite-order recurrences for multiple orthogonal polynomials, and there are quite a few
of recurrence relations possible since we are dealing with multi-indices. There is an interesting
recurrence relation of order r + 1 for the Type II multiple orthogonal polynomials with nearly
diagonal multi-indices. Let n ∈ N and write it as n = kr + j, with 06j¡ r. The nearly diagonal
multi-index s(n) corresponding to n is then given by

s(n) = (k + 1; k + 1; : : : ; k + 1︸ ︷︷ ︸
j times

; k; k; : : : ; k)︸ ︷︷ ︸
r−j times

:
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If we denote the corresponding multiple orthogonal polynomials by

Pn(x) = Ps(n)(x);

then the following recurrence relation holds:

xPn(x) = Pn+1(x) +
r∑

j=0

an; jPn−j(x); (2.19)

with initial conditions P0(x) = 1; Pj(x) = 0 for j =−1;−2; : : : ;−r. The matrix




a0;0 1
a1;1 a1;0 1
a2;2 a2;1 a2;0 1
...

. . . . . .

ar; r ar; r−1 : : : ar;0 1

ar+1; r
. . . ar+1;0 1
. . . . . . . . . . . .

. . . . . . . . . 1
an; r an; r−1 : : : an;1 an;0




has eigenvalues at the zeros of Pn+1(x), so that in the case of Angelesco systems or AT systems
we are dealing with nonsymmetric matrices with real eigenvalues. The in�nite matrix will act as an
operator on ‘2, but this operator is never self-adjoint and furthermore has not a simple spectrum, as
is the case for ordinary orthogonal polynomials. Now there will be a set of r cyclic vectors and the
spectral theory of this operator becomes more complicated (and more interesting). There are many
open problems concerning this nonsymmetric operator.

3. Some very classical multiple orthogonal polynomials

We will now describe seven families of multiple orthogonal polynomials which have the same

avor as the very classical orthogonal polynomials of Jacobi, Laguerre, and Hermite. They certainly
deserve to be called classical since they have a Rodrigues formula and there is a �rst-order di�erential
operator which, when applied to these classical multiple orthogonal polynomials, gives another set
of multiple orthogonal polynomials. However, these are certainly not the only families of classical
multiple orthogonal polynomials (see Section 4.1). The �rst four families are AT systems which are
connected by limit passages, the last three families are Angelesco systems which are also connected
by limit passages. All these families have been introduced in the literature before. We will list some
of their properties and give explicit formulas, most of which have not appeared earlier.
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3.1. Jacobi–Piñeiro polynomials

The Jacobi–Piñeiro polynomials are multiple orthogonal polynomials associated with an AT system
consisting of Jacobi weights on [0; 1] with di�erent singularities at 0 and the same singularity at 1.
They were �rst studied by Piñeiro [37] when �0 = 0. The general case appears in [34, p. 162]. Let
�0¿ − 1 and �1; : : : ; �r be such that each �i ¿ − 1 and �i − �j 6∈ Z whenever i 6= j. The Jacobi–
Piñeiro polynomial P(�0 ;�)n for the multi-index n = (n1; n2; : : : ; nr) ∈ Nr and � = (�1; : : : ; �r) is the
monic polynomial of degree |n|= n1 + n2 + · · ·+ nr that satis�es the orthogonality conditions

∫ 1

0
P(�0 ;�)n (x)x�1 (1− x)�0xk dx = 0; k = 0; 1; : : : ; n1 − 1; (3.20)

∫ 1

0
P(�0 ;�)n (x)x�2 (1− x)�0xk dx = 0; k = 0; 1; : : : ; n2 − 1; (3.21)

∫ 1

0
P(�0 ;�)n (x)x�r(1− x)�0xk dx = 0; k = 0; 1; : : : ; nr − 1: (3.22)

Since each weight wi(x) = x�i(1− x)�0 satis�es a Pearson equation

x(1− x)w′
i(x) = [�i(1− x)− �0x]wi(x)

and the weights are related by

wi(x) = x�i−�jwj(x);
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one can use integration by parts on each of the r integrals (3.20)–(3.22) to �nd the following raising
operators:

d
dx
(x�j(1− x)�0P(�0 ;�)n (x)) =−(|n|+ �0 + �j)x�j−1(1− x)�0−1P(�0−1;�−ej)

n+ej (x); (3.23)

where ej is the jth standard unit vector. Repeatedly using this raising operator gives the Rodrigues
formula

(−1)|n|
r∏

j=1

(|n|+ �0 + �j + 1)njP
(�0 ;�)
n (x) = (1− x)−�0

r∏
j=1

[
x−�j d

nj

dxnj
xnj+�j

]
(1− x)�0+|n|: (3.24)

The product of the r di�erential operators x−�jDnj xnj+�j on the right-hand side can be taken in any
order since these operators are commuting.
The Rodrigues formula allows us to obtain an explicit expression. For the case r = 2 we write

(−1)n+m(n+ m+ �0 + �1 + 1)n(n+ m+ �0 + �2 + 1)mP(�0 ; �1 ; �2)n;m (x)

=(1− x)−�0x−�1 d
n

dxn
x�1−�2+n d

m

dxm
x�2+m(1− x)�0+n+m: (3.25)

The mth derivative can be worked out using the Rodrigues formula (1.8) for Jacobi polynomials
and gives

(−1)n(n+ m+ �0 + �1 + 1)nP(�0 ; �1 ; �2)n;m (x) = (1− x)−�0x−�1 d
n

dxn
x�1+n(1− x)�0+nP(�0+n;�2)

m (x):

Now use Leibniz’ rule to work out the nth derivative:

(−1)n(n+ m+ �0 + �1 + 1)nP(�0 ; �1 ; �2)n;m (x)

=(1− x)−�0x−�1
n∑

k=0

(
n
k

)
dk

dxk
x�1+n d

n−k

dxn−k
(1− x)�0+nP(�0+n;�2)

m (x):

In order to work out the derivative involving the Jacobi polynomial, we will use the following
lemma.

Lemma 3. Let P(�;�)n (x) be the nth degree monic Jacobi polynomial on [0; 1]. Then for �¿ 0 and
�¿− 1

d
dx
[(1− x)�P(�;�)n (x)] =−(�+ n)(1− x)�−1P(�−1; �+1)n (x); (3.26)

and

dm

dxm
[(1− x)�P(�;�)n (x)] = (−1)m(�+ n− m+ 1)m(1− x)�−mP(�−m;�+m)

n (x): (3.27)

Proof. First of all, observe that

d
dx
[(1− x)�P(�;�)n (x)] = (1− x)�−1(−�P(�;�)n (x) + (1− x)[P(�;�)n (x)]′);
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so that the right-hand side is −(� + n)(1 − x)�−1Qn(x), with Qn a monic polynomial of degree n.
Integrating by parts gives

−(�+ n)
∫ 1

0
(1− x)�−1x�+k+1Qn(x) dx

= x�+k+1(1− x)�P(�;�)n (x)|10 − (� + k + 1)
∫ 1

0
x�+k(1− x)�P(�;�)n (x) dx:

Obviously, when �¿ 0 and �¿ − 1, then the integrated terms on the right-hand side vanish. The
integral on the right-hand side vanishes for k = 0; 1; : : : ; n − 1 because of orthogonality. Hence Qn

is a monic polynomial which is orthogonal to all polynomials of degree less than n with respect
to the weight x�+1(1 − x)�−1, which proves (3.26). The more general expression (3.27) follows by
applying (3.26) m times.

By using this lemma we arrive at

(n+ m+ �0 + �1 + 1)nP(�0 ; �1 ; �2)n;m (x)

=n!
n∑

k=0

(
�1 + n

k

)(
�0 + m+ n

n− k

)
xn−k(x − 1)kP(�0+k; �2+n−k)

m (x):

For the Jacobi polynomial we have the expansion

(�+ � + n+ 1)nP(�;�)n (x) = n!
n∑

j=0

(
� + n

j

)(
�+ n
n− j

)
xn−j(x − 1) j; (3.28)

which can easily be obtained from the Rodrigues formula (1.8) by using Leibniz’ formula, so that
we �nally �nd

(n+ m+ �0 + �1 + 1)n(n+ m+ �0 + �2 + 1)mP(�0 ; �1 ; �2)n;m (x)

=n!m!
n∑

k=0

m∑
j=0

(
�1 + n

k

)(
�0 + m+ n

n− k

)(
�2 + n+ m− k

j

)(
�0 + k + m

m− j

)
xn+m−k−j(x − 1)k+j:

(3.29)

We can explicitly �nd the �rst few coe�cients of P(�0 ; �1 ; �2)m;n (x) from this expression. We introduce
the notation

Kn;m=
n!m!

(n+ m+ �0 + �1 + 1)n(n+ m+ �0 + �2 + 1)m

=
(
�0 + �1 + 2n+ m

n

)−1 (
�0 + �2 + 2m+ n

m

)−1
:

First let us check that the polynomial is indeed monic by working out the coe�cient of xm+n. This
is given by

Kn;m

n∑
k=0

m∑
j=0

(
�1 + n

k

)(
�0 + m+ n

n− k

)(
�2 + n+ m− k

j

)(
�0 + k + m

m− j

)
:
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The sum over j can be evaluated using the Chu–Vandermonde identity
m∑

j=0

(
�2 + n+ m− k

j

)(
�0 + k + m

m− j

)
=
(
�0 + �2 + n+ 2m

m

)
;

which is independent of k. The remaining sum over k can also be evaluated and gives
n∑

k=0

(
�1 + n

k

)(
�0 + m+ n

n− k

)
=
(
�0 + �1 + m+ 2n

n

)
;

and the double sum is therefore equal to K−1
n;m, showing that this polynomial is indeed monic. Now

let us write

P(�0 ; �1 ; �2)n;m (x) = xm+n + An;mxn+m−1 + Bn;mxn+m−2 + Cn;mxn+m−3 + · · · :

The coe�cient An;m of xm+n−1 is given by

−Kn;m

n∑
k=0

m∑
j=0

(k + j)
(
�1 + n

k

)(
�0 + m+ n

n− k

)(
�2 + n+ m− k

j

)(
�0 + k + m

m− j

)
:

This double sum can again be evaluated using Chu–Vandermonde and gives

An;m =−n(�1 + n)(�0 + �2 + n+ m) + m(�2 + n+ m)(�0 + �1 + 2n+ m)
(�0 + �1 + 2n+ m)(�0 + �2 + n+ 2m)

:

Similarly we can compute the coe�cient Bn;m of xn+m−2 and the coe�cient Cn;m of xm+n−3, but the
computation is rather lengthy. Once these coe�cients have been determined, one can compute the
coe�cients in the recurrence relation

xPn(x) = Pn+1(x) + bnPn(x) + cnPn−1(x) + dnPn−2(x);

where

P2n(x) = P(�0 ; �1 ; �2)n;n (x); P2n+1(x) = P(�0 ; �1 ; �2)n+1; n (x):

Indeed, by comparing coe�cients we have

b2n = An;n − An+1; n; b2n+1 = An+1; n − An+1; n+1; (3.30)

which gives

b2n= [36n4 + (48�0 + 28�1 + 20�2 + 38)n3

+ (21�20 + 8�
2
1 + 4�

2
2 + 30�0�1 + 18�0�2 + 15�1�2 + 39�0 + 19�1 + 19�2 + 9)n

2

+ (3�30 + 10�
2
0�1 + 4�

2
0�2 + 6�0�

2
1 + 2�0�

2
2 + 11�0�1�2 + 5�

2
1�2 + 3�1�

2
2

+ 12�20 + 3�
2
1 + 3�

2
2 + 13�0�1 + 13�0�2 + 8�1�2 + 6�0 + 3�1 + 3�2)n

+ �20 + �0�1 + �2�21 + 2�2�
2
1�0 + 2�

2
0�1 + �21�0 + �22�0 + �22�1 + �30�1

+ �20�
2
1 + �22�0�1 + �22�

2
1 + 2�2�

2
0�1 + 3�2�1�0 + 2�2�

2
0 + �1�2 + �30 + �0�2]

× (3n+ �0 + �2)−1(3n+ �0 + �1)−1(3n+ �0 + �2 + 1)−1(3n+ �0 + �1 + 2)−1;
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and

b2n+1 = [36n4 + (48�0 + 20�1 + 28�2 + 106)n3

+(21�20 + 4�
2
1 + 8�

2
2 + 18�0�1 + 30�0�2 + 15�1�2 + 105�0 + 41�1 + 65�2 + 111)n

2

+(3�30 + 4�
2
0�1 + 10�

2
0�2 + 2�0�

2
1 + 6�0�

2
2 + 11�0�1�2 + 3�

2
1�2 + 5�1�

2
2

+30�20 + 5�
2
1 + 13�

2
2 + 23�0�1 + 47�0�2 + 22�1�2 + 72�0 + 25�1 + 49�2 + 48)n

+18�0�2 + 8�2�20 + 4�1 + 4�
2
2�1 + 8�1�2 + 2�

3
0 + 5�

2
2�0 + 8�2�1�0 + 12�2

+7 + 15�0 + �22�
2
1 + 10�

2
0 + 6�0�1 + 2�2�

2
1 + 2�

2
0�1 + �21�0 + 5�

2
2 + �2�30

+�22�
2
0 + �21 + �2�21�0 + 2�2�

2
0�1 + 2�

2
2�0�1]

× (3n+ �0 + �2 + 1)−1(3n+ �0 + �1 + 2)−1(3n+ �0 + �2 + 3)−1(3n+ �0 + �1 + 3)−1:

For the recurrence coe�cient cn we have the formulas

c2n = Bn;n − Bn+1; n − b2nAn;n; c2n+1 = Bn+1; n − Bn+1; n+1 − b2n+1An+1; n; (3.31)

which after some computation (and using Maple V), gives

c2n= n(2n+ �0)(2n+ �0 + �1)(2n+ �0 + �2)

× [54n4 + (63�0 + 45�1 + 45�2)n3
+(24�20 + 8�

2
1 + 8�

2
2 + 42�0�1 + 42�0�2 + 44�1�2 − 8)n2

+(3�30 + �31 + �32 + 12�
2
0�1 + 12�

2
0�2 + 3�0�

2
1 + 3�0�

2
2 + 33�0�1�2 + 8�

2
1�2

+8�1�22 − 3�0 − 4�1 − 4�2)n
+�30�1 + �30�2 + 6�

2
0�1�2 + �31�2 + �1�32 + 3�0�

2
1�2 + 3�0�1�

2
2 − �0�1 − �0�2 − 2�1�2]

× (3n+ �0 + �1 + 1)−1(3n+ �0 + �2 + 1)−1(3n+ �0 + �1)−2(3n+ �0 + �2)−2

(3n+ �0 + �1 − 1)−1(3n+ �0 + �2 − 1)−1
and

c2n+1 = (2n+ �0 + 1)(2n+ �0 + �1 + 1)(2n+ �0 + �2 + 1)

× [54n5 + (63�0 + 45�1 + 45�2 + 135)n4
+ (24�20 + 8�

2
1 + 8�

2
2 + 42�0�1 + 42�0�2 + 44�1�2 + 126�0 + 76�1 + 104�2 + 120)n

3

+ (3�30 + �31 + �32 + 12�
2
0�1 + 12�

2
0�2 + 3�0�

2
1 + 3�0�

2
2 + 33�0�1�2 + 8�

2
1�2

+ 8�1�22 + 36�
2
0 + 5�

2
1 + 19�

2
2 + 54�0�1 + 72�0�2 + 66�1�2 + 87�0 + 39�1

+ 81�2 + 45)n2

+(�30�1 + �30�2 + 6�
2
0�1�2 + �31�2 + �1�32 + 3�0�

2
1�2 + 3�0�1�

2
2 + 3�

3
0 + 2�

3
2

+ 12�20�1 + 12�
2
0�2 + 6�0�

2
2 + 33�0�1�2 + 5�

2
1�2 + 11�1�

2
2 + 18�

2
0 + 20�0�1

+38�0�2 + 14�22 + 26�1�2 + 24�0 + 6�1 + 24�2 + 6)n

+�30�1 + 3�
2
0�1�2 + 3�0�1�

2
2 + �1�32 + �30 + �32 + 3�

2
0�1 + 3�

2
0�2 + 6�0�1�2

+3�0�22 + 3�1�
2
2 + 3�

2
0 + 3�

2
2 + 2�0�1 + 6�0�2 + 2�1�2 + 2�0 + 2�2]

× (3n+ �0 + �1 + 3)−1(3n+ �0 + �2 + 2)−1(3n+ �0 + �1 + 2)−2(3n+ �0 + �2 + 1)−2

(3n+ �0 + �1 + 1)−1(3n+ �0 + �2)−1:
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Finally, for dn we have

d2n = Cn;n − Cn+1; n − b2nBn;n − c2nAn;n−1;

d2n+1 = Cn+1; n − Cn+1; n+1 − b2n+1Bn+1; n − c2n+1An;n; (3.32)

giving

d2n= n(2n+ �0)(2n+ �0 − 1)(2n+ �0 + �1)(2n+ �0 + �1 − 1)
(2n+ �0 + �2)(2n+ �0 + �2 − 1)(n+ �1)(n+ �1 − �2)

(3n+ 1 + �0 + �1)−1(3n+ �0 + �1)−2(3n+ �0 + �2)−1(3n− 1 + �0 + �1)−2

(3n− 1 + �0 + �2)−1(3n− 2 + �0 + �1)−1(3n− 2 + �0 + �2)−1

and

d2n+1 = n(2n+ 1 + �0)(2n+ �0)(2n+ �0 + �1)(2n+ 1 + �0 + �1)

(2n+ 1 + �0 + �2)(2n+ �0 + �2)(n+ �2)(n+ �2 − �1)

(3n+ 2 + �0 + �1)−1(3n+ 2 + �0 + �2)−1(3n+ 1 + �0 + �1)−1(3n+ 1 + �0 + �2)−2

(3n+ �0 + �1)−1(3n+ �0 + �2)−2(3n− 1 + �0 + �2)−1:

These formulas are rather lengthy, but explicit knowledge of them will be useful in what follows.
Observe that for large n we have

lim
n→∞ bn=

4
9
= 3

(
4
27

)
;

lim
n→∞ cn=

16
243

= 3
(
4
27

)2
;

lim
n→∞dn=

64
19683

=
(
4
27

)3
:

3.2. Multiple Laguerre polynomials (�rst kind)

In the same spirit as for the Jacobi–Piñeiro polynomials, we can consider two di�erent families
of multiple Laguerre polynomials. The multiple Laguerre polynomials of the �rst kind L�

n(x) are
orthogonal on [0;∞) with respect to the r weights wj(x)= x�je−x, where �j ¿− 1 for j=1; 2; : : : ; r.
So these weights have the same exponential decrease at ∞ but have di�erent singularities at 0. Again
we assume �i − �j 6∈ Z in order to have an AT system. These polynomials were �rst considered by
Sorokin [39,41]. The raising operators are given by

d
dx
(x�je−xL�

n(x)) =−x�j−1e−xL�−ej
n+ej (x); j = 1; : : : ; r; (3.33)

and a repeated application of these operators gives the Rodrigues formula

(−1)|n|L�
n(x) = e

x
r∏

j=1

[
x−�j d

nj

dxnj
xnj+�j

]
e−x: (3.34)
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When r=2 one can use this Rodrigues formula to obtain an explicit expression for these multiple
Laguerre polynomials, from which one can compute the recurrence coe�cients in

xPn(x) = Pn+1(x) + bnPn(x) + cnPn−1(x) + dnPn−2(x);

where P2n(x) = L(�1 ; �2)n;n (x) and P2n+1(x) = L(�1 ; �2)n+1; n (x). But having done all that work for Jacobi–Piñeiro
polynomials, it is much easier to use the limit relation

L(�1 ; �2)n;m (x) = lim
�0→∞ �n+m

0 P(�0 ; �1 ; �2)n;m (x=�0): (3.35)

The recurrence coe�cients can then be found in terms of the following limits of the corresponding
recurrence coe�cients of Jacobi–Piñeiro polynomials:

bn= lim
�0→∞ b(�0 ; �1 ; �2)n �0;

cn= lim
�0→∞ c(�0 ; �1 ; �2)n �20;

dn= lim
�0→∞d(�0 ; �1 ; �2)n �30;

giving

b2n = 3n+ �1 + 1;

b2n+1 = 3n+ �2 + 2;

c2n = n(3n+ �1 + �2);

c2n+1 = 3n2 + (�1 + �2 + 3)n+ �1 + 1;

d2n = n(n+ �1)(n+ �1 − �2);

d2n+1 = n(n+ �2)(n+ �2 − �1):

Observe that for large n we have

lim
n→∞

bn

n
=
3
2
= 3

(
1
2

)
;

lim
n→∞

cn
n2
=
3
4
= 3

(
1
2

)2
;

lim
n→∞

dn

n3
=
1
8
=
(
1
2

)3
:

3.3. Multiple Laguerre polynomials (second kind)

Another family of multiple Laguerre polynomials is given by the weights wj(x) = x�0e−cjx on
[0;∞), with cj ¿ 0 and ci 6= cj for i 6= j. So now the weights have the same singularity at the
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origin but di�erent exponential rates at in�nity. These multiple Laguerre polynomials of the second
kind L(�0 ;c)n (x) appear already in [34, p. 160]. The raising operators are

d
dx
(x�0e−cjxL(�0 ;c)n (x)) =−cjx�0−1e−cjxL(�0−1;c)n+ej (x); j = 1; : : : ; r; (3.36)

and a repeated application of these operators gives the Rodrigues formula

(−1)|n|
r∏

j=1

cnjj L
(�0 ;c)
n (x) = x−�0

r∏
j=1

[
ecjx

dnj

dxnj
e−cjx

]
x|n|+�0 : (3.37)

These polynomials are also a limit case of the Jacobi–Piñeiro polynomials. For the case r = 2 we
have

L(�0 ; c1 ; c2)n;m (x) = lim
�→∞(−�)n+mP(�0 ; c1�; c2�)n;m (1− x=�): (3.38)

The recurrence coe�cients can be obtained from the corresponding recurrence coe�cients of Jacobi–
Piñeiro polynomials by

bn= lim
�→∞(1− b(�0 ; c1�; c2�)n )�;

cn= lim
�→∞ c(�0 ; c1�; c2�)n �2;

dn= lim
�→∞−d(�0 ; c1�; c2�)n �3;

giving

b2n =
n(c1 + 3c2) + c2 + �0c2

c1c2
;

b2n+1 =
n(3c1 + c2) + 2c1 + c2 + �0c1

c1c2
;

c2n =
n(2n+ �0)(c21 + c22)

c21c22
;

c2n+1 =
2n2(c21 + c22) + n[c21 + 3c

2
2 + �0(c21 + c22)] + c22 + �0c22
c21c22

;

d2n =
n(2n+ �0)(2n+ �0 − 1)(c2 − c1)

c31c2
;

d2n+1 =
n(2n+ �0)(2n+ �0 + 1)(c1 − c2)

c1c32
:

Observe that for large n we have

lim
n→∞

bn

n
=




c1 + 3c2
2c1c2

if n ≡ 0 (mod 2);
3c1 + c2
2c1c2

if n ≡ 1 (mod 2);
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lim
n→∞

cn
n2
=

c21 + c22
2c21c22

;

lim
n→∞

dn

n3
=




c2 − c1
2c31c2

if n ≡ 0 (mod 2);
c1 − c2
2c1c32

if n ≡ 1 (mod 2):

3.4. Multiple Hermite polynomials

Finally we can consider the weights wj(x)=e−x2+cjx on (−∞;∞), for j=1; 2; : : : ; r and ci di�erent
real numbers. The multiple Hermite polynomials H c

n (x) once more have raising operators and a
Rodrigues formula, and they are also limiting cases of the Jacobi–Piñeiro polynomials, but also of
the multiple Laguerre polynomials of the second kind. For r = 2 this is

H (c1 ; c2)
n;m (x) = lim

�→∞(2
√
�)n+mP(�;�+c1

√
�;�+c2

√
�)

n;m

(
x +

√
�

2
√
�

)
; (3.39)

so that the recurrence coe�cients can be obtained from the Jacobi–Piñeiro case by

bn = lim
�→∞ 2(b

(�;�+c1
√

�;�+c2
√

�)
n − 1

2 )
√
�;

cn = lim
�→∞ 4c

(�;�+c1
√

�;�+c2
√

�)
n �;

dn = lim
�→∞ 8d

(�;�+c1
√

�;�+c2
√

�)
n (

√
�)3:

This gives

b2n = c1=2;

b2n+1 = c2=2;

cn = n=2;

d2n = n(c1 − c2)=4;

d2n+1 = n(c2 − c1)=4:

Alternatively, we can use the limit transition from the multiple Laguerre polynomials of the �rst
kind:

H (c1 ; c2)
n;m (x) = lim

�→∞ �n+m
0 L

(�+c1
√

�=2; �+c2
√

�=2)
n;m (

√
2�x + �): (3.40)

The recurrence coe�cients are then also given in terms of the following limits of the recurrence
coe�cients of the multiple Laguerre polynomials of the �rst kind

bn = lim
�→∞

(
b
(�+c1

√
�=2; �+c2

√
�=2)

n − �
)
=
√
2�;
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cn = lim
�→∞ c

(�+c1
√

�=2; �+c2
√

�=2)
n =(2�);

dn = lim
�→∞ d

(�+c1
√

�=2; �+c2
√

�=2)
n =(

√
2�)3;

which leads to the same result. Observe that for large n we have

lim
n→∞

bn√
n
= 0;

lim
n→∞

cn
n
=
1
2
;

lim
n→∞

dn

(
√
n)3

= 0:

3.5. Jacobi–Angelesco polynomials

The following system is probably the �rst that was investigated in detail [20,25]. It is an Angelesco
system with weights w1(x)= |h(x)| on [a; 0] (with a¡ 0) and w2(x)= |h(x)| on [0; 1], where h(x)=
(x − a)�x�(1 − x)
 and �; �; 
¿ − 1. Hence the same weight is used for both weights w1 and w2
but on two touching intervals. The Jacobi–Angelesco polynomials P(�;�; 
)n;m (x; a) therefore satisfy the
orthogonality relations

∫ 0

a
P(�;�; 
)n;m (x; a)(x − a)�|x|�(1− x)
xk dx = 0; k = 0; 1; 2; : : : ; n− 1; (3.41)

∫ 1

0
P(�;�; 
)n;m (x; a)(x − a)�x�(1− x)
xk dx = 0; k = 0; 1; 2; : : : ; m− 1: (3.42)

The function h(x) satis�es a Pearson equation

(x − a)x(1− x)h′(x) = [�x(1− x) + �(x − a)(1− x)− 
(x − a)x]h(x);

where �(x)= (x− a)x(1− x) is now a polynomial of degree 3. Using this relation, we can integrate
the orthogonality relations by part to see that

d
dx
[(x − a)�x�(1− x)
P(�;�; 
)n;m (x; a)]

=− (�+ � + 
+ n+ m)(x − a)�−1x�−1(1− x)
−1P(�−1; �−1; 
−1)n+1;m+1 (x; a); (3.43)

which raises both indices of the multi-index (n; m). Repeated use of this raising operation gives the
Rodrigues formula

dm

dxm
[(x − a)�+mx�+m(1− x)
+mP(�+m;�+m;
+m)

k;0 (x; a)]

= (−1)m(�+ � + 
+ k + 2m+ 1)m(x − a)�x�(1− x)
P(�;�; 
)m+k;m (x; a): (3.44)
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For k = 0 and m= n, this then gives

dn

dxn
[(x − a)�+nx�+n(1− x)
+n]

= (−1)n(�+ � + 
+ 2n+ 1)n(x − a)�x�(1− x)
P(�;�; 
)n;n (x; a): (3.45)

Use Leibniz’ formula to �nd

(−1)n(�+ � + 
+ 2n+ 1)n(x − a)�x�(1− x)
P(�;�; 
)n;n (x; a)

=
n∑

k=0

(
n
k

)(
dk

dxk
x�+n(1− x)
+n

)(
dn−k

dxn−k
(x − a)�+n

)
:

Now use the Rodrigues formula for the Jacobi polynomials (1.8) to �nd

(
�+ � + 
+ 3n

n

)
P(�;�; 
)n;n (x; a)

=
n∑

k=0

(−1)n−k
(
� + 
+ 2n

k

)(
�+ n
n− k

)
(x − a)kxn−k(1− x)n−kP(
+n−k;�+n−k)

k (x):

Use of the expansion (3.28) for the Jacobi polynomial gives

(
�+ � + 
+ 3n

n

)
P(�;�; 
)n;n (x; a)

=
n∑

k=0

k∑
j=0

(
�+ n
n− k

)(
� + n

j

)(

+ n
k − j

)
(x − a)kxn−j(x − 1)n−k+j (3.46)

=
n∑

k=0

n−k∑
j=0

(
�+ n
k

)(
� + n

j

)(

+ n

n− k − j

)
(x − a)n−kxn−j(x − 1)k+j; (3.47)

where the last equation follows by the change of variable k 7→ n − k. If we write this in terms of
Pochhammer symbols, then

(
�+ � + 
+ 3n

n

)
P(�;�; 
)n;n (x; a)

=
(
+ 1)n

n!

n∑
k=0

n−k∑
j=0

(−n)k+j(−�− n)k(−� − n)j
(
+ 1)k+jk!j!

(x − a)n−k(x − 1)k+jxn−j

= xn(x − a)n
(

+ n
n

)
F1

(
−n;−�− n;−� − n; 
+ 1;

x − 1
x − a

;
x − 1
x

)
;
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where

F1(a; b; b′; c; x; y) =
∞∑
m=0

∞∑
n=0

(a)m+n(b)m(b′)n
(c)m+n

xmyn

m!n!

is the �rst of Appell’s hypergeometric functions of two variables.
For the polynomial P(�;�; 
)n+1; n (x; a) we have the Rodrigues formula

dn

dxn
[(x − a)�+nx�+n(1− x)
+nP(�+n;�+n; 
+n)

1;0 (x; a)]

= (−1)n(�+ � + 
+ 2n+ 2)n(x − a)�x�(1− x)
P(�;�; 
)n+1; n (x; a); (3.48)

where P(�+n;�+n; 
+n)
1;0 (x; a) = x − X (�;�; 
)

n is the monic orthogonal polynomial of �rst degree for the
weight (x− a)�+n|x|�+n(1− x)
+n on [a; 0]. If we write down the orthogonality of this polynomial to
the constant function,

∫ 0

a
(x − X (�;�; 
)

n )(x − a)�+n|x|�+n(1− x)
+n dx = 0;

then we see that

X (�;�; 
)
n =

∫ 0
a x(x − a)�+n|x|�+n(1− x)
+n dx∫ 0
a (x − a)�+n|x|�+n(1− x)
+n dx

:

A standard saddle point method gives the asymptotic behavior

lim
n→∞X (�;�; 
)

n = x1; (3.49)

where x1 is the zero of �′(x) in [a; 0], where �(x) = (x − a)x(1 − x). Combining the Rodrigues
equation in (3.48) with the Rodrigues equation (3.45) shows that

P(�;�; 
)n+1; n (x; a) = xP(�;�+1; 
)n;n (x; a)− X (�;�; 
)
n

�+ � + 
+ 2n+ 1
�+ � + 
+ 3n+ 1

P(�;�; 
)n;n (x; a): (3.50)

In order to compute the coe�cients of the recurrence relation

xPn(x) = Pn+1(x) + bnPn(x) + cnPn−1(x) + dnPn−2(x);

where

P2n(x) = P(�;�; 
)n;n (x; a); P2n+1(x) = P(�;�; 
)n+1; n (x; a);

we will compute the �rst few coe�cients of the polynomials

P(�;�; 
)n;m (x; a) = xm+n + An;mxn+m−1 + Bn;mxm+n−2 + Cn;mxn+m−3 + · · · :
First we take n = m. In order to check that our polynomial is monic, we see from (3.46) that the
leading coe�cient is given by

(
�+ � + 
+ 3n

n

)−1 n∑
k=0

k∑
j=0

(
�+ n
n− k

)(
� + n

j

)(

+ n
k − j

)
:
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Chu–Vandermonde gives

k∑
j=0

(
� + n

j

)(

+ n
k − j

)
=
(
� + 
+ 2n

k

)
;

and also
n∑

k=0

(
�+ n
n− k

)(
� + 
+ 2n

k

)
=
(
�+ � + 
+ 3n

n

)
;

so that the leading coe�cient is indeed 1. The coe�cient An;n of x2n−1 is equal to

−
(
�+ � + 
+ 3n

n

)−1 n∑
k=0

k∑
j=0

(
�+ n
n− k

)(
� + n

j

)(

+ n
k − j

)
(ak + n− k + j):

Working out this double sum gives

A(�;�; 
)n;n =
−n[�+ � + 2n+ a(� + 
+ 2n)]

�+ � + 
+ 3n
: (3.51)

For P(�;�; 
)n+1; n (x; a) the coe�cient An+1; n of x2n can be obtained from (3.50)

A(�;�; 
)n+1; n = A(�;�+1; 
)n;n − X (�;�; 
)
n

�+ � + 
+ 2n+ 1
�+ � + 
+ 3n+ 1

: (3.52)

The coe�cient bn in the recurrence relation can now be found from (3.30)

b2n =
n[n+ 
+ a(n+ �)]

(�+ � + 
+ 3n)(�+ � + 
+ 3n+ 1)
+ X (�;�; 
)

n
2n+ �+ � + 
+ 1
3n+ �+ � + 
+ 1

;

b2n+1 = (5n2 + (4�+ 4� + 3
+ 7)n+ (�+ � + 
+ 1)(�+ � + 2)

+ a[5n2 + (3�+ 4� + 4
+ 7)n+ (�+ � + 
+ 1)(� + 
+ 2)])

× (�+ � + 
+ 3n+ 1)−1(�+ � + 
+ 3n+ 3)−1

−X (�;�; 
)
n

2n+ �+ � + 
+ 1
3n+ �+ � + 
+ 1

:

The coe�cient Bn;n of x2n−2 in P(�;�; 
)n;n (x; a) is given by

B(�;�; 
)n;n =
an(�+ � + 
+ 2n)(� + n)

(�+ � + 
+ 3n)(�+ � + 
+ 3n− 1)

+
n(n− 1)

2(�+ � + 
+ 3n)(�+ � + 
+ 3n− 1)
× [(�+ � + 2n)(�+ � + 2n− 1) + 2a(�+ � + 2n)(� + 
+ 2n)

+ a2(� + 
+ 2n)(� + 
+ 2n− 1)];
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and from (3.50) we also �nd

B(�;�; 
)n+1; n = B(�;�+1; 
)n;n − X (�;�; 
)
n A(�;�; 
)n;n

�+ � + 
+ 2n+ 1
�+ � + 
+ 3n+ 1

:

Using (3.31) then gives

c2n=
n(�+ � + 
+ 2n)

(�+ � + 
+ 3n− 1)(�+ � + 
+ 3n)2(�+ � + 
+ 3n− 1)
((�+ � + 2n)(
+ n)− 2a(�+ n)(
+ n) + a2(� + 
+ 2n)(�+ n)):

and

c2n+1 =
�+ � + 
+ 2n+ 1

(�+ � + 
+ 3n+ 3)(�+ � + 
+ 3n+ 2)(�+ � + 
+ 3n+ 1)2(�+ � + 
+ 3n)

× (n(n+ 
)(�+ � + 2n+ 1)(�+ � + 
+ 3n+ 3)

− a[24n4 + (29�+ 41� + 29
+ 48)n3

+ (10�2 + 39�� + 26�
+ 29�2 + 39�
+ 10
2 + 44�+ 62� + 44
+ 30)n2

+ (�3 + 11�2� + 5�2
+ 19��2 + 24��
+ 5�
2 + 9�3 + 19�2
+ 11�
2 + 
3

+ 11�2 + 39�� + 28�
+ 28�2 + 39�
+ 11
2 + 19�+ 25� + 19
+ 6)n

+(�+ � + 
)(�+ � + 
+ 1)(�+ � + 
+ 2)(� + 1)]

+ a2n(n+ �)(� + 
+ 2n+ 1)(�+ � + 
+ 3n+ 3))

+
�+ � + 
+ 2n+ 1

(�+ � + 
+ 3n+ 3)(�+ � + 
+ 3n+ 1)2(�+ � + 
+ 3n)
X (�;�; 
)

n

× (12n3 + (16�+ 16� + 10
+ 18)n2
+ [(�+ � + 
)(7�+ 7� + 2
) + 16�+ 16� + 10
]n

+(�+ � + 
)2(�+ �) + (�+ � + 
)(3�+ 3� + 2
+ 2)

+ a[12n3 + (10�+ 16� + 16
+ 18)n2

+ [(�+ � + 
)(2�+ 7� + 7
) + 10�+ 16� + 16
]n

+(�+ � + 
)2(� + 
) + (�+ � + 
)(2�+ 3� + 3
+ 2)])

− (�+ � + 
+ 2n+ 1)2

(�+ � + 
+ 3n+ 1)2
(X (�;�; 
)

n )2:

The coe�cient Cn;n of x2n−3 in P(�;�; 
)n;n (x; a) can be computed in a similar way, and the coe�cient
Cn+1; n of x2n−2 in P(�;�; 
)n+1; n (x; a) is given by

C(�;�; 
)
n+1; n = C(�;�+1; 
)

n;n − X (�;�; 
)
n B(�;�; 
)n;n

�+ � + 
+ 2n+ 1
�+ � + 
+ 3n+ 1

:
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A lengthy but straightforward calculation, using (3.32), then gives

d2n=
−an(n+ �)(�+ � + 
+ 2n)(�+ � + 
+ 2n− 1)[n+ 
+ a(n+ �)]

(�+ � + 
+ 3n− 2)(�+ � + 
+ 3n− 1)(�+ � + 
+ 3n)2(�+ � + 
+ 3n+ 1)

+
n(�+ � + 
+ 2n)(�+ � + 
+ 2n− 1)X (�;�; 
)

n−1
(�+ � + 
+ 3n− 2)(�+ � + 
+ 3n− 1)(�+ � + 
+ 3n)2(�+ � + 
+ 3n+ 1)

× [(n+ 
)(�+ � + 2n)− 2a(n+ 
)(n+ �) + a2(n+ �)(� + 
+ 2n)];

and

d2n+1 =
n(�+ � + 
+ 2n+ 1)(�+ � + 
+ 2n)

(�+ � + 
+ 3n+ 2)(�+ � + 
+ 3n+ 1)2(�+ � + 
+ 3n)2(�+ � + 
+ 3n− 1)
× ((n+ 
)(�+ � + 2n)(�+ � + 2n+ 1)

− a(n+ �)(n+ 
)(2�+ 2� − 
+ 3n+ 1)

− a2(n+ �)(n+ 
)(−�+ 2� + 2
+ 3n+ 1)

+ a3(n+ �)(� + 
+ 2n)(� + 
+ 2n+ 1))

− n(�+ � + 
+ 2n+ 1)(�+ � + 
+ 2n)X (�;�; 
)
n

(�+ � + 
+ 3n+ 1)2(�+ � + 
+ 3n)2(�+ � + 
+ 3n− 1)
× [(n+ 
)(�+ � + 2n)− 2a(n+ �)(n+ 
) + a2(n+ �)(� + 
+ 2n)]:

The asymptotic behavior of these recurrence coe�cients can easily be found using (3.49), giving

lim
n→∞ b2n =

a+ 1
9

+
2x1
3

; lim
n→∞ b2n+1 =

5(a+ 1)
9

− 2x1
3

;

lim
n→∞ c2n =

4
81
(a2 − a+ 1); lim

n→∞ c2n+1 =−4
9
x21 +

8
27

x1 +
1
81
(4a2 − a+ 4);

lim
n→∞d2n =

4
243

[2(a2 − a+ 1)x1 − a(a+ 1)];

lim
n→∞d2n+1 =

4
729

(4a3 − 3a2 − 3a+ 4)− 8x1
243

(a2 − a+ 1);

where x1 is the zero of �′(x) in [a; 0] and �(x)= (x− a)x(x− 1). These formulas can be made more
symmetric by also using the zero x2 of �′(x) in [0; 1] and using the fact that x1 + x2 = 2(a+ 1)=3:

lim
n→∞ b2n =

a+ 1
9

+
2x1
3

; lim
n→∞ b2n+1 =

a+ 1
9

− 2x2
3

;

lim
n→∞ cn =

4
81
(a2 − a+ 1);

lim
n→∞d2n =− 4

27
�(x1); lim

n→∞d2n =− 4
27

�(x2):
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3.6. Jacobi–Laguerre polynomials

When we consider the weights w1(x) = (x − a)�|x|�e−x on [a; 0], with a¡ 0, and w2(x) =
(x − a)�|x|�e−x on [0;∞), then we are again using one weight but on two touching intervals, one
of which is the �nite interval [a; 0] (Jacobi part), the other the in�nite interval [0;∞) (Laguerre
part). This system was considered by Sorokin [38]. The corresponding Jacobi–Laguerre polynomials
L(�;�)n;m (x; a) satisfy the orthogonality relations∫ 0

a
L(�;�)n;m (x; a)(x − a)�|x|�e−xxk dx = 0; k = 0; 1; : : : ; n− 1;

∫ ∞

0
L(�;�)n;m (x; a)(x − a)�x�e−xxk dx = 0; k = 0; 1; : : : ; m− 1:

The raising operator is

d
dx
[(x + a)�x�e−xL(�;�)n;m (x; a)] =−(x − a)�−1x�−1e−xL(�−1; �−1)n+1;m+1 (x; a); (3.53)

from which the Rodrigues formula follows:

dm

dxm
[(x − a)�+mx�+me−xL(�+m;�+m)

k;0 (x; a)] = (−1)m(x − a)�x�e−xL(�;�)m+k;m(x; a): (3.54)

From this Rodrigues formula we can proceed as before to �nd an expression of the polynomials,
but it is more convenient to view these Jacobi–Laguerre polynomials as a limit case of the Jacobi–
Angelesco polynomials

L(�;�)n;m (x; a) = lim

→∞ 
n+mP(�;�; 
)n;m (x=
; a=
); (3.55)

so that (3.47) gives

L(�;�)n;n (x; a) =
n∑

k=0

n−k∑
j=0

(
�+ n
k

)(
� + n

j

)
(−1)k+j(x − a)n−kxn−j

(n− k − j)!
: (3.56)

For the recurrence coe�cients in

xPn(x) = Pn+1(x) + bnPn(x) + cnPn−1(x) + dnPn−2(x);

where P2n(x)=L(�;�)n;n (x; a) and P2n+1(x)=L(�;�)n+1; n(x; a) we have in terms of the corresponding recurrence
coe�cients of the Jacobi–Angelesco polynomials

bn = lim

→∞ 
b(�;�; 
)n (a=
);

cn = lim

→∞ 
2c(�;�; 
)n (a=
);

dn = lim

→∞ 
3d(�;�; 
)n (a=
);

and

lim

→∞ 
X (�;�; 
)

n (a=
) =
∫ 0
a x(x − a)�+n|x|�+ne−x dx∫ 0
a (x − a)�+n|x|�+ne−x dx

:=X (�;�)
n :
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This gives

b2n = n+ X (�;�)
n ;

b2n+1 = 3n+ �+ � + 2 + a− X (�;�)
n ;

c2n = n(�+ � + 2n);

c2n+1 = n(�+ � + 2n+ 1)− a(n+ � + 1) + (�+ � + 2n+ 2 + a)X (�;�)
n − (X (�;�)

n )2;

d2n =−an(� + n) + n(�+ � + 2n)X (�;�)
n−1 ;

d2n+1 = n[(�+ � + 2n)(�+ � + 2n+ 1) + a(n+ �)]− n(�+ � + 2n)X (�;�)
n :

For large n we have X (�;�)
n = a=2 + o(1) so that

lim
n→∞

bn

n
=

{
1=2 if n ≡ 0 (mod 2);
3=2 if n ≡ 1 (mod 2);

lim
n→∞

cn
n2
= 1=2;

lim
n→∞

dn

n3
=

{
0 if n ≡ 0 (mod 2);
1=2 if n ≡ 1 (mod 2):

3.7. Laguerre–Hermite polynomials

Another limit case of the Jacobi–Angelesco polynomials are the multiple orthogonal polynomials
H (�)

n;m(x) for which∫ 0

−∞
H (�)

n;m(x)|x|�e−x2xk dx = 0; k = 0; 1; : : : ; n− 1;
∫ ∞

0
H (�)

n;m(x)x
�e−x2xk dx = 0; k = 0; 1; : : : ; m− 1:

We call these Laguerre–Hermite polynomials because both weights are supported on semi-in�nite
intervals (Laguerre) with a common weight that resembles the Hermite weight. These polynomials
were already considered (for general r) by Sorokin [40]. The limit case is obtained by taking

H (�)
n;m(x) = lim

�→∞(
√
�)n+mP(�;�;�)n;m (x=

√
�;−1): (3.57)

This allows us to obtain the raising operator, the Rodrigues formula, an explicit expression, and
the recurrence coe�cients by taking the appropriate limit passage in the formulas for the Jacobi–
Angelesco polynomials. For the recurrence coe�cients this gives

bn = lim
�→∞

√
�b(�;�;�)n (a=−1);

cn = lim
�→∞ �c(�;�;�)n (a=−1);

dn = lim
�→∞ (

√
�)3d(�;�;�)n (a=−1);
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and

lim
�→∞

√
�X (�;�;�)

n (a=−1) =
∫ 0
−∞ x|x|�+ne−x2 dx∫ 0
−∞ |x|�+ne−x2 dx

:=X (�)
n ;

from which we �nd

b2n = X (�)
n ;

b2n+1 =−X (�)
n ;

c2n = n=2;

c2n+1 =
2n+ � + 1

2
− (X (�)

n )2;

d2n =
n
2
X (�)

n−1;

d2n+1 =
−n
2

X (�)
n :

For large n we have

X (�)
n =−

√
� + n
2

+ o(
√
n);

so that

lim
n→∞

bn√
n
=

{−1=2 if n ≡ 0 (mod 2);
1=2 if n ≡ 1 (mod 2);

lim
n→∞

cn
n
= 1=4;

lim
n→∞

dn

(
√
n)3

=

{−1=8 if n ≡ 0 (mod 2);
1=8 if n ≡ 1 (mod 2):

4. Open research problems

In the previous sections we gave a short description of multiple orthogonal polynomials and a few
examples. For a more detailed account of multiple orthogonal polynomials we refer to Aptekarev
[4] and Chapter 4 of the book of Nikishin and Sorokin [34]. Multiple orthogonal polynomials
arise naturally in Hermite–Pad�e approximation of a system of (Markov) functions. For this kind
of simultaneous rational approximation we refer to Mahler [28] and de Bruin [9,10]. Hermite–
Pad�e approximation goes back to the nineteenth century, and many algebraic aspects have been
investigated since then: existence and uniqueness, recurrences, normality of indices, etc. A study of
Type II multiple orthogonal polynomials based on the recurrence relation can be found in Maroni
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[29]. The more detailed analytic investigation of the zero distribution, the nth root asymptotics,
and the strong asymptotics is more recent and mostly done by researchers from the schools around
Nikishin [32,33] and Gonchar [18,19]. See in particular the work of Aptekarev [4], Kalyagin [20,25],
Bustamante and L�opez [11], and also the work by Driver and Stahl [15,16] and Nuttall [35]. First,
one needs to understand the analysis of ordinary orthogonal polynomials, and then one has a good
basis for studying this extension, for which there are quite a few possibilities for research.

4.1. Special functions

The research of orthogonal polynomials as special functions has now led to a classi�cation and
arrangement of various important (basic hypergeometric) orthogonal polynomials. In Section 3 we
gave a few multiple orthogonal polynomials of the same 
avor as the very classical orthogonal
polynomials of Jacobi, Laguerre, and Hermite. Regarding these very classical multiple orthogonal
polynomials, a few open problems arise:
(1) Are the polynomials given in Section 3 the only possible very classical multiple orthogonal

polynomials? The answer very likely is no. First one needs to make clear what the notion of classi-
cal multiple orthogonal polynomial means. A possible way is to start from a Pearson type equation
for the weights. If one chooses one weight but restricted to disjoint intervals, as we did for the
Jacobi–Angelesco, Jacobi–Laguerre, and Laguerre–Hermite polynomials, then Aptekarev et al. [7]
used the Pearson equation for this weight as the starting point of their characterization. For several
weights it is more natural to study a Pearson equation for the vector of weights (w1; w2; : : : ; wr).
Douak and Maroni [13,14] have given a complete characterization of all Type II multiple orthogonal
polynomials for which the derivatives are again Type II multiple orthogonal polynomials (Hahn’s
characterization for the Jacobi, Laguerre, and Hermite polynomials, and the Bessel polynomials if
one allows moment functionals which are not positive de�nite). They call such polynomials classical
d-orthogonal polynomials, where d corresponds to our r, i.e., the number of weights (functionals)
needed for the orthogonality. Douak and Maroni show that this class of multiple orthogonal poly-
nomials is characterized by a Pearson equation of the form

(�w)′ +	w= 0;

where w= (w1; : : : ; wr)t is the vector of weights, and 	 and � are r × r matrix polynomials:

	(x) =




0 1 0 · · · 0
0 0 2 · · · 0
...

...
...
. . .

...
0 0 0 · · · r − 1

 (x) c1 c2 · · · cr−1




;

with  (x) a polynomial of degree one and c1; : : : ; cr−1 constants, and

�(x) =




�1;1(x) �1;2(x) · · · �1; r(x)
�2;1(x) �2;2(x) · · · �2; r(x)
...

... · · · ...
�r;1(x) �r;2(x) · · · �r;r(x)


 ;
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where �i; j(x) are polynomials of degree at most two. In fact only �r;1 can have degree at most two
and all other polynomials are constant or of degree one, depending on their position in the matrix
�. Douak and Maroni actually investigate the more general case where orthogonality is given by
r linear functionals, rather than by r positive measures. We believe that Hahn’s characterization is
not the appropriate property to de�ne classical multiple orthogonal polynomials, but gives a more
restricted class. None of the seven families, given in the present paper, belong to the class studied
by Douak and Maroni, but their class certainly contains several interesting families of multiple
orthogonal polynomials. In fact, the matrix Pearson equation could result from a single weight (and
its derivatives) satisfying a higher-order di�erential equation with polynomial coe�cients. As an
example, one can have multiple orthogonal polynomials with weights w1(x) = 2x�+�=2K�(2

√
x) and

w2(x)=2x�+(�+1)=2K�+1(2
√
x) on [0;∞), where K�(x) is a modi�ed Bessel function and �¿−1; �¿0

(see [47,12]).
(2) The polynomials of Jacobi, Laguerre, and Hermite all satisfy a linear second-order di�eren-

tial equation of Sturm–Liouville type. A possible way to extend this characterizing property is to
look for multiple orthogonal polynomials satisfying a linear di�erential equation of order r + 1. Do
the seven families in this paper have such a di�erential equation? If the answer is yes, then an
explicit construction would be desirable. We only worked out in detail the case where r = 2, so
the search is for a third-order di�erential equation for all the polynomials considered in Section 3.
Such a third-order equation has been found for certain Jacobi–Angelesco systems in [25]. For the
Angelesco systems in Section 3 this third-order di�erential equation indeed exists and it was con-
structed in [7]. The existence (and construction) is open for the AT systems. A deeper problem is to
characterize all the multiple orthogonal polynomials satisfying a third order (order r+1) di�erential
equation, extending Bochner’s result for ordinary orthogonal polynomials. Observe that we already
know appropriate raising operators for the seven systems described in Section 3. If one can construct
lowering operators as well, then a combination of the raising and lowering operators will give the
di�erential equation, which will immediately be in factored form. Just di�erentiating will usually not
be su�cient (except for the class studied by Douak and Maroni): if we take P′

n;m(x), then this is
a polynomial of degree n + m − 1, so one can write it as Pn−1;m(x)+ lower order terms, but also
as Pn;m−1(x)+ lower-order terms. So it is not clear which of the multi-indices has to be lowered.
Furthermore, the lower-order terms will not vanish in general since there usually are not enough
orthogonality conditions to make them disappear.
(3) In the present paper we only considered the Type II multiple orthogonal polynomials. Derive

explicit expressions and relevant properties of the corresponding vector (An;m(x); Bn;m(x)) of Type I
multiple orthogonal polynomials. Type I and Type II multiple orthogonal polynomials are connected
by

Pn;m(x) = const:
∣∣∣∣An+1;m(x) Bn+1;m(x)
An;m+1(x) Bn;m+1(x)

∣∣∣∣ ;

but from this it is not so easy to obtain the Type I polynomials.
(4) So far we limited ourselves to the very classical orthogonal polynomials of Jacobi, Laguerre,

and Hermite. Discrete orthogonal polynomials, such as those of Charlier, Kravchuk, Meixner, and
Hahn, can also be considered and several kinds of discrete multiple orthogonal polynomials can
be worked out. It would not be a good idea to do this case by case, since these polynomials are
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all connected by limit transitions, with the Hahn polynomials as the starting family. At a later stage,
one could also consider multiple orthogonal polynomials on a quadratic lattice and on the general
exponential lattice, leading to q-polynomials. Again, all these families are related with the Askey–
Wilson polynomials as the family from which all others can be obtained by limit transitions. Do
these polynomials have a representation as a (basic) hypergeometric function? Recall that we needed
an Appell hypergeometric function of two variables for the Jacobi–Angelesco polynomials, so that
one may need to consider (basic) hypergeometric functions of several variables.
(5) Multiple orthogonal polynomials arise naturally in the study of Hermite–Pad�e approximation,

which is simultaneous rational approximation to a vector of r functions. In this respect it is quite
natural to study multiple orthogonal polynomials as orthogonal vector polynomials. This approach
is very useful in trying to extend results for the case r = 1 to the case r ¿ 1 by looking for an
appropriate formulation using vector algebra. Van Iseghem already used this approach to formulate a
vector QD-algorithm for multiple orthogonal polynomials [48]. Several algebraic aspects of multiple
orthogonal polynomials follow easily from the vector orthogonality [42,27]. A further generalization
is to study matrix orthogonality, where the matrix need not be a square matrix [43]. Orthogonal
polynomials and Pad�e approximants are closely related to certain continued fractions (J-fractions and
S-fractions). For multiple orthogonal polynomials there is a similar relation with vector continued
fractions and the Jacobi–Perron algorithm [36]. The seven families which we considered in this
paper lead to seven families of vector continued fractions, which could be studied in more detail
in the framework of continued fractions. Finally, one may wonder whether it is possible to use
hypergeometric functions of matrix argument in the study of multiple orthogonal polynomials.

4.2. Non-symmetric banded operators

In Section 2 the connection between multiple orthogonal polynomials and banded Hessenberg
operators of the form




a0;0 1
a1;1 a1;0 1
a2;2 a2;1 a2;0 1
...

. . . . . .
ar; r ar; r−1 · · · ar;0 1

ar+1; r
. . . ar+1;0 1
. . . . . . . . . . . .

. . . . . . . . . 1

an; r an; r−1 · · · an;1 an;0
. . .

. . . · · · · · · . . .




was explained. For ordinary orthogonal polynomials the operator is tridiagonal and can always be
made symmetric, and often it can be extended in a unique way to a self-adjoint operator (e.g.,
when all the coe�cients are bounded). The spectrum of this tridiagonal operator corresponds to the
support of the orthogonality measure, and the spectral measure is precisely the orthogonality measure.
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Each tridiagonal matrix with ones on the upper diagonal and positive coe�cients on the lower
diagonal, corresponds to a system of orthogonal polynomials on the real line (Favard’s theorem).
Some preliminary work on the spectral theory of the higher-order operators (r ¿ 1) was done by
Kalyagin [21–23,5], but there are still quite a few open problems here.
(1) What is the proper extension of Favard’s theorem for these higher-order banded Hessenberg

operators? Not every banded Hessenberg operator corresponds to a system of multiple orthogonal
polynomials with orthogonality relations on the real line. There needs to be additional structure, but
so far this additional structure is still unknown. There is a weak version of the Favard theorem that
gives multiple orthogonality with respect to linear functionals [48,24], but a stronger version that
gives positive measures on the real line is needed. How do we recognize an Angelesco system, an
AT system, or one of the combinations considered in [19] from the recurrence coe�cients (from
the operator)? The special case where all the diagonals are zero, except for the upper diagonal
(which contains 1’s) and the lower diagonal, has been studied in detail in [6]. They show that when
the lower diagonal contains positive coe�cients, the operator corresponds to multiple orthogonal
polynomials on an (r + 1)-star in the complex plane. Using a symmetry transformation, similar to
the quadratic transformation that transforms Hermite polynomials to Laguerre polynomials, this also
gives an AT system of multiple orthogonal polynomials on [0;∞).
(2) The asymptotic behavior of the recurrence coe�cients of the seven systems described above

is known. Each of the limiting operators deserves to be investigated in more detail. The limiting
operator for the Jacobi–Piñeiro polynomials is a Toeplitz operator, and hence can be investigated in
more detail. See, e.g., [46] for this case. Some of the other limiting operators are block Toeplitz
matrices and can be investigated as well. Are there any multiple orthogonal polynomials having such
recurrence coe�cients? The Chebyshev polynomials of the second kind have this property when one
deals with tridiagonal operators.
(3) The next step would be to work out a perturbation theory, where one allows certain perturba-

tions of the limiting matrices. Compact perturbations would be the �rst step, trace class perturbations
would allow us to give more detailed results.

4.3. Applications

(1) Hermite–Pad�e approximation was introduced by Hermite for his proof of the transcendence
of e. More recently it became clear that Ap�ery’s proof of the irrationality of �(3) relies on an AT
system of multiple orthogonal polynomials with weights w1(x) = 1; w2(x) = −log(x) and w3(x) =
log2(x) on [0,1]. These multiple orthogonal polynomials are basically limiting cases of Jacobi–Piñeiro
polynomials where �0 = 0 = �1 = �2. A very interesting problem is to prove irrationality of other
remarkable constants, such as �(5), Catalan’s constant, or Euler’s constant. Transcendence proofs will
even be better. See [4,45] for the connection between multiple orthogonal polynomials, irrationality,
and transcendence.
(2) In numerical analysis one uses orthogonal polynomials when one constructs Gauss quadra-

ture. In a similar way one can use multiple orthogonal polynomials to construct optimal quadrature
formulas for jointly approximating r integrals of the same function f with respect to r weights
w1; : : : ; wr . See, e.g., Borges [8], who apparently is not aware that he is using multiple orthogonal
polynomials. Gautschi [17] has summarized some algorithms for computing recurrence coe�cients,
quadrature nodes (zeros of orthogonal polynomials) and quadrature weights (Christo�el numbers)
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for ordinary Gauss quadrature. A nice problem is to modify these algorithms so that they compute
recurrence coe�cients, zeros of multiple orthogonal polynomials (eigenvalues of banded Hessenberg
operators) and quadrature weights for simultaneous Gauss quadrature.
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(1989) 105–139.
[30] A.F. Nikiforov, S.K. Suslov, V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer Series

in Computational Physics, Springer, Berlin, 1991.
[31] A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics, Birkh�auser, Basel, 1988.
[32] E.M. Nikishin, A system of Markov functions, Vestnik Mosk. Univ., Ser. I (4) (1979) 60–63; translated in Moscow

Univ. Math. Bull. 34 (1979) 63–66.
[33] E.M. Nikishin, On simultaneous Pad�e approximants, Mat. Sb. 113 (115) (1980) 499–519; translated in Math. USSR

Sb. 41 (1982) 409–425.
[34] E.M. Nikishin, V.N. Sorokin, Rational Approximations and Orthogonality, Translations of Mathematical Monographs,

Vol. 92, Amer. Math. Soc., Providence, RI, 1991.
[35] J. Nuttall, Asymptotics of diagonal Hermite–Pad�e polynomials, J. Approx. Theory 42 (1984) 299–386.
[36] V.K. Parusnikov, The Jacobi–Perron algorithm and simultaneous approximation of functions. Mat. Sb. 114 (156)

(1981) 322–333; translated in Math. USSR Sb. 42 (1982) 287–296.
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Abstract

We report on recent developments on orthogonal polynomials and cubature formulae on the unit ball Bd, the standard
simplex Td, and the unit sphere Sd. The main result shows that orthogonal structures and cubature formulae for these
three regions are closely related. This provides a way to study the structure of orthogonal polynomials; for example, it
allows us to use the theory of h-harmonics to study orthogonal polynomials on Bd and on Td. It also provides a way to
construct new cubature formulae on these regions. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The structure of orthogonal polynomials in several variables is signi�cantly more complicated than
that of orthogonal polynomials in one variable. Among the reasons for the complication, some are
generic; for example, there are many distinct orders among polynomials in several variables, and
consequently, the orthogonal bases are not unique. Others depend on the speci�c problems under
consideration, for example, on weight functions and regions that de�ne the orthogonality. The regions
that have attracted most attention are regular ones, such as cubes, balls, simplices, and the surface
of spheres. In the literature, orthogonal polynomials on these regions are mostly studied separately.
In the �rst part of the paper we report some recent results that reveal a close relation between

orthogonal polynomials on the unit ball Bd, the standard simplex Td, and the surface of the unit
sphere Sd of the Euclidean space. The main results state, roughly speaking, that a basis of orthogonal
polynomials on the simplex Td is equivalent, under a simple transformation, to a basis of orthogonal

1 Supported by the National Science Foundation under Grant DMS-9802265.

0377-0427/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00504-5



350 Y. Xu / Journal of Computational and Applied Mathematics 127 (2001) 349–368

polynomials on Bd that are invariant under sign changes; and a basis on Bd is equivalent to a basis
of orthogonal polynomials on Sd that are even in one of their variables. The forerunner of the results
is a relation between the spherical harmonics on Sd and a family of orthogonal polynomials on Bd

that was observed and used in the work of Hermite, Didon, Appel and de F�eriet, and Koschmieder
(see, for example, [1,15, Chapter 12, Vol. II]). The relation between spherical harmonics and a
family of orthogonal polynomials on a triangle was used in [8], and also in [6] in an application
related to the method of �nite elements. The general results are proved in [49,50] for large classes
of weight functions subject only to mild assumptions. As an important application, this allows us to
use Dunkl’s theory of h-harmonics associated with the re
ection groups [9–13] to derive compact
formulae for the reproducing kernel and to study summability of several families of orthogonal
polynomials on Bd and on Td.
The study of the structures of polynomials on the sphere, the ball, and the simplex leads us to a

close relation between cubature formulae on these regions, which is discussed in the second part of
the paper. The main results state that, roughly speaking, cubature formulae on Td are equivalent to
cubature formulae that are invariant under sign changes on Bd, and formulae on Bd are equivalent
to formulae that are invariant under the sign change of one �xed variable on Sd. In the literature,
cubature formulae on di�erent regions are mostly studied separately; all three regions have attracted
their share of attention over decades of investigation (see, for example, [14,36,41] and the references
therein). The fact that these relations are revealed only recently [49,50] seems rather remarkable.
This allows us to construct formulae on one region and use the relations to obtain formulae for
the other two regions. In this way, a number of new formulae on these regions have been derived
[18–20], most notably a family of cubature formulae for the surface measure on Sd that exists for
all d and all degrees (see Section 5). Moreover, these relations may shed light on an outstanding
conjecture of Lebedev about cubature formulae on S2, which we will discuss in some detail in the
paper.
The paper is organized as follows. Section 2 is devoted to preliminaries. Section 3 deals with

relations between orthogonal polynomials on the three regions. Applications to reproducing kernels
and orthogonal series are discussed in Section 4. The connections between cubature formulae on the
three regions are addressed in Section 5. Lebedev’s conjecture is discussed in Section 6. Several
open problems are discussed in Sections 4 and in 6.

2. Preliminaries

Basic notation: For x ∈ Rd we denote by |x|=
√

x21 + · · ·+ x2d the usual Euclidean norm and by
|x|1=|x1|+· · ·+|xd| the l1 norm. Let N0 be the set of nonnegative integers. For �=(�1; : : : ; �d) ∈ Nd

0 ,
we write |�|1 = �1 + · · ·+ �d, consistent with the notation |x|1. Throughout the paper we denote by
Bd the unit ball of Rd and Sd the unit sphere on Rd+1; that is

Bd = {x ∈ Rd: |x|61} and Sd = {y ∈ Rd+1: |y|= 1}:
We also denote by Td the standard simplex in Rd; that is

Td = {x ∈ Rd: x1¿0; : : : ; xd¿0; 1− |x|1¿0}:
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For d=2, the ball B2 is the unit disc and the simplex T 2 is the triangle with vertices at (0,0), (1,0)
and (0,1).
Polynomial spaces: For � = (�1; : : : ; �d) ∈ Nd

0 and x= (x1; : : : ; xd) ∈ Rd we write x� = x�1
1 · · · x�d

d .
The number |�|1 is called the total degree of x�. We denote by �d the set of polynomials in d
variables on Rd and by �d

n the subset of polynomials of total degree at most n. We also denote by
Pd

n the space of homogeneous polynomials of degree n on Rd and we let r d
n = dimPd

n . It is well
known that

dim�d
n =

(
n+ d

n

)
and r d

n = dimPd
n =

(
n+ d− 1
d− 1

)
:

Invariance under a �nite group: The region Bd and Sd are evidently invariant under the rotation
group. The simplex Td is invariant under the symmetric group of its vertices. If G is a subgroup of the
rotation group of Rd, we de�ne the group action on a function f on Rd by R(a)f(x)=f(xa); x ∈
Rd; a ∈ G. If R(a)f = f for all a ∈ G, we say that f is invariant under G. For example, for
the simple abelian group Zd

2 consisting of elements a = (�1; : : : ; �m), where �i = ±1; R(a)f(x) =
f(�1x1; : : : ; �dxd). For a function f de�ned on Td, we say that f is invariant on Td if it is invariant
under the symmetric group of Td; that is, if it is invariant under permutations among the variables
{x1; : : : ; xd; 1 − |x|1}. We will deal with polynomials invariant under G. We denote by �d

n(G) the
space of polynomials in �d

n that are invariant under G, and by Pd
n (G) the space of homogeneous

polynomials in Pd
n invariant under G.

Orthogonal polynomials on Bd and Td: Let 
 denote either Bd or Td. Let W be a weight function
on 
, which is assumed to be nonnegative and have �nite moments. We often normalize W so that
it has unit integral over 
. Given an order among the monomials {x�}, we can use the Gram–
Schmidt process to generate a sequence of orthogonal polynomials with respect to the inner product
of L2(W dx). It is known that for each n ∈ N0 the set of polynomials of degree n that are orthogonal
to all polynomials of lower degree forms a vector space, denoted by Vd

n(W ), whose dimension is r
d
n .

We denote by {Pn
�}; |�|1 = n and n ∈ N0, one family of orthonormal polynomials with respect to W

on 
 that forms a basis of Vd
n(W ), where the superscript n means that P

n
� ∈ �d

n . The orthonormality
means that∫



Pn

�(x)P
m
� (x)W (x) dx= ��;��m;n:

We note that there are many bases of Vd
n(W ); if Q is an invertible matrix of size r d

n , then the
components of QPn form another basis of Vd

n(W ), where Pn denotes the vector (Pn
�)|�|1=n, which

is orthonormal if Q is an orthogonal matrix. For results on the general structure of orthogonal
polynomials in several variables, we refer to the survey [46] and the references there.
Classical orthogonal polynomials on Td and Bd: On Td they are orthogonal with respect to the

weight functions

WT
�;�(x) = wT

�;�x
�1−1=2
1 · · · x�d−1=2

d (1− |x|1)�−1=2; x ∈ Td; (2.1)

where �i ¿− 1
2 ; �¿− 1

2 and the normalized constant w
T
�;� is de�ned by

wT
�;� =

�(|�|1 + � + (d+ 1)=2)
�(�1 + 1

2) · · ·�(�d + 1
2)�(� +

1
2)

:
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Related to WT
�;� are weight functions WB

�;� on Bd, de�ned by

WB
�;�(x) = wB

�;�|x1|2�1 · · · |xd|2�d(1− |x|2)�−1=2; x ∈ Bd; (2.2)

where �i ¿− 1
2 ; �¿− 1

2 and wB
�;�=wT

�;�. The classical orthogonal polynomials on Bd are orthogonal
with respect to WB

� :=WB
0; �; that is, the case � = 0. For � = 1

2 ; W B
1=2 = 1=volB

d is the normalized
Lebesgue measure.
We refer to [1,15, Chapter 12] for an account of earlier results on the classical orthogonal poly-

nomials; they are characterized as eigenfunctions of certain second-order partial di�erential equation
(see also [23,24]). Bases of the classical orthogonal polynomials can be constructed explicitly in
terms of Jacobi polynomials, and we will see that they can be derived from orthogonal polynomials
on the sphere Sd.
Ordinary spherical harmonics: The most important orthogonal polynomials on the sphere are

the spherical harmonics, which are orthogonal with respect to the surface measure d! on Sd. The
harmonic polynomials on Rd+1 are homogeneous polynomials satisfying the Laplace equation �P=0,
where �= @21 + · · ·+ @2d+1 on Rd+1 and @i is the partial derivative with respect to the ith coordinate.
The spherical harmonics are the restriction of harmonic polynomials on Sd. We refer to [34,40,42]
for accounts of the theory of spherical harmonics.

h-harmonics associated with re
ection groups: The theory of h-harmonics is established recently
by Dunkl (see [9–13]). For a nonzero vector C ∈ Rd+1 de�ne the re
ection �C by x�C :=x −
2〈x; C〉C=|C|2; x ∈ Rd+1, where 〈x; y〉 denotes the usual Euclidean inner product. Let G be a re
ection
group on Rd+1 with positive roots {C1; : : : ; Cm}. Assume that |Ci| = |Cj| if �Ci is conjugate to �Cj .
The h-harmonics are homogeneous orthogonal polynomials on Sd with respect to h2� d!, where the
weight function h� is de�ned by

h�(x) :=
m∏
i=1

|〈x; Ci〉|�i ; �i¿0 (2.3)

with �i = �j whenever �Ci is conjugate to �Cj in the re
ection group G generated by the re
ections
{�Ci : 16i6m}. The function h� is a positively homogeneous G-invariant function. The key ingredient
of the theory is a family of �rst-order di�erential–di�erence operators, Di (Dunkl’s operators), which
generates a commutative algebra [11], de�ned by

Dif(x) := @if(x) +
m∑

j=1

�j
f(x)− f(x�j)

〈x; Cj〉 〈Cj; ei〉; 16i6d+ 1;

where e1; : : : ; ed+1 are the standard unit vectors of Rd+1. The h-Laplacian is de�ned by �h =D2
1 +

· · · + D2
d+1, which plays the role of Laplacian in the theory of ordinary harmonics. In particular,

the h-harmonics are the homogeneous polynomials satisfying the equation �hP = 0. The h-spherical
harmonics are the restriction of h-harmonics on the sphere. The structure of the space of h-harmonics,
such as dimensionality and decomposition, is parallel to that of ordinary harmonics. In particular,
there is an intertwining operator V between the algebra of di�erential operators and the commuting
algebra of Dunkl’s operators, which helps us to transform certain properties of ordinary harmonics
to the h-harmonics. The operator V is the unique linear operator de�ned by

VPn ⊂Pn; V1 = 1; DiV = V@i; 16i6d:
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It is also proved in [37] that V is a positive operator. The closed form of V is known, however, only
in the case of the abelian group Zd

2 [12,47] and the symmetric group S3 [13]. For further properties
and results of h-harmonics, we refer to [9–13] and the references therein.
Examples of re
ection invariant weight functions: The group Zd+1

2 is one of the simplest re
ection
groups. The weight function invariant under Zd+1

2 is

h�;�(x) = a�;�|x1|�1 · · · |xd|�d |xd+1|�; x ∈ Rd+1; (2.4)

where a2�;� = 2w
T
�;�. We use � for the power of the last component of x to emphasis the connection

between h�;� and WB
�;� and WT

�;� that will become clear in the next section. For � = 0 and � = 0,
we have that a20 = 2�((d+ 1)=2)=�

(d+1)=2 = 1=!d, where !d denotes the surface area of Sd. Another
interesting case is the hyper-octahedral group G generated by the re
ections in xi = 0; 16i6d+ 1
and xi ± xj = 0; 16i; j6d+ 1; it is the Weyl group of type Bd+1. There are two conjugacy classes
of re
ections, hence two parameters for h�. We have

h�(x) =
d∏

i=1

|xi|�1
∏
i¡j

|x2i − x2j |�0 : (2.5)

The integral, hence the normalization constant, of h� can be computed by the use of Selberg’s
integral. In fact, the integral of h� in (2.3) for every re
ection group has been computed in the work
of Askey, Heckman, McDonald, Opdam and several others. See the references in [12].

3. Relation between orthogonal polynomials on the three regions

Throughout this section we �x the following notation: For y ∈ Rd+1, we write

y= (y1; : : : ; yd; yd+1) = ( y′; yd+1) = r(x; xd+1); (3.1)

where y′ ∈ Rd; r = |y|=
√

y21 + · · ·+ y2d+1 and x= (x1; : : : ; xd) ∈ Bd. We call a weight function H ,
de�ned on Rd+1, S-symmetric if it is symmetric with respect to yd+1 and centrally symmetric with
respect to the variables y′ = (y1; : : : ; yd), i.e.,

H ( y′; yd+1) = H ( y′;−yd+1) and H ( y′; yd+1) = H (−y′; yd+1)

and we assume that H is not a zero function when restricted to Sd. For example, the weight functions
of the form H (y) =W (y21 ; : : : ; y

2
d) are S-symmetric, which include H = h2� for both h� in (2.4) and

in (2.5).
In [49] we proved that there are orthonormal bases of homogeneous polynomials with respect

to the inner product of L2(H d!; Sd) for S-symmetric H . Let us denote by Hd+1
n (H) the space

of homogeneous polynomials of degree n. When H (y) = 1, we write Hd+1
n , which is the space

of ordinary harmonics of degree n. For H = h2� with h� as in (2.3), Hd+1
n (h2�) is the space of

h-harmonics. It is shown in [49] that

dimHd+1
n (H) =

(
n+ d
d

)
−
(
n+ d− 2

d

)
= dimPd+1

n − dimPd+1
n−2; (3.2)
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the same as for ordinary harmonics, and there is a unique decomposition of Pd+1
n ,

Pd+1
n =

[n=2]⊕
k=0

|y|2k Hd+1
n−2k(H): (3.3)

These results are proved using the relation between Hd+1
n (H) and orthogonal polynomials on Bd,

which we describe below.

3.1. Orthogonal polynomials on balls and on spheres

In association with a weight function H de�ned on Rd+1, we de�ne a weight function WB
H

on Bd by

WB
H (x) = H (x;

√
1− |x|2); x ∈ Bd: (3.4)

If H is S-symmetric, then the assumption that H is centrally symmetric with respect to the �rst d
variables implies that WB

H is centrally symmetric on Bd. Recall the notation Vd
n(W ) for the space

of orthonormal polynomials of degree n. We denote by {Pn
�} and {Qn

�} systems of orthonormal
polynomials that form a basis for Vd

n(W
B
1 ) and Vd

n(W
B
2 ) with respect to the weight functions

WB
1 (x) = 2W

B
H (x)=

√
1− |x|2 and WB

2 (x) = 2W
B
H (x)

√
1− |x|2;

respectively. Keeping in mind notation (3.1), we de�ne

Y (1)�;n (y) = rnPn
�(x) and Y (2)�;n (y) = rnxd+1Qn−1

� (x); (3.5)

where |�|1 = n; |�|1 = n − 1 and we de�ne Y (2)�;0 (y) = 0. It is proved in [49] that, as functions of
y; Y (1)�;n and Y (2)�;n are, in fact, elements of H

d+1
n (H). The proof of (3.2) and (3.3) follows from this

fact. On the other hand, if H is S-symmetric, then Hd+1
n (H) must have a basis that consists of

homogeneous polynomials that are either even in yd+1 or odd in yd+1. Using notation (3.1) and the
fact that x2d+1 = 1− |x|2, we can write those that are even in yd+1 as rnPn

�(x) and those that are odd
as rnxd+1Qn−1

� (x), where Pn
� and Qn−1

� are polynomials in x of degree n and n−1, respectively. Then
the polynomials Pn

� and Qn
� are orthogonal polynomials with respect to WB

1 and WB
2 , respectively.

We summarize the result as

Theorem 3.1. Let H be an S-symmetric weight function de�ned on Rd+1 and let WB
1 and WB

2 be
de�ned as above. Then relation (3:5) de�nes a one-to-one correspondence between an orthonormal
basis of Hd+1

n (H) and an orthonormal basis of Vd
n(W

B
1 )⊕ xd+1Vd

n−1(W
B
2 ).

In particular, if H (y)=1, then the theorem states that the ordinary spherical harmonics correspond
to orthogonal polynomials with respect to the weight functions 1=

√
1− |x|2 and √1− |x|2, respec-

tively. In the case of d = 1, we have H2
n = span{rn cos n�; rn sin n�}, using the polar coordinates

y1 = r cos � and y2 = r sin �. The correspondence in the theorem is then the well-known fact that
Tn(x)=cos n� and Un(x)=sin(n+1)�=sin �, where x=cos �, are orthogonal with respect to 1=

√
1− x2

and
√
1− x2 on [− 1; 1], respectively.
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Under the correspondence, the orthogonal polynomials for the weight function WB
�;� in (2.2) are

related to the h-harmonics associated with h�;� in (2.4); in particular, the classical orthogonal poly-
nomials on Bd are related to h-harmonics associated with h�(y) = |yd+1|�. Compact formulae of an
orthonormal basis of these polynomials on Bd can be obtained accordingly from the formulae in
[47]. Moreover, the second-order partial di�erential equation satis�ed by the classical orthogonal
polynomials can be derived from the h-Laplacian by a simple change of variables [56].

3.2. Orthogonal polynomials on balls and on simplices

Let WB(x) :=W (x21 ; : : : ; x
2
d) be a weight function de�ned on Bd. Associated with WB we de�ne a

weight function WT on the simplex Td by

WT (u) =W (u1; : : : ; ud)=
√
u1 · · · ud; u ∈ Td (3.6)

and we normalize the weight function W so that WB has unit integral on Bd. It follows from a
simple change of variables that WT has unit integral on Td.
A polynomial P is invariant under the group Zd

2 , if P is even in each of its variables; such a poly-
nomial must be of even degree. We denote by Vd

2n(W
B;Zd

2) the space of polynomials in Vd
2n(W

B)
that are invariant under the group Zd

2 . That is, V
d
2n(W

B;Zd
2) contains orthogonal polynomials of

degree 2n that are even in their variables.
Let P2n� be a polynomial in Vd

2n(W
B;Zd

2). Since it is even in each of its variables, we can write
it in the form of

P2n� (x) = Rn
�(x

2
1 ; : : : ; x

2
d); |�|1 = n; (3.7)

where Rn
� is a polynomial of degree n. It turns out that Rn

� is a polynomial in Vd
n(W

T ). In fact, the
relation de�nes a one-to-one correspondence.

Theorem 3.2. Let WB and WT be weight functions de�ned as above. Then relation (3:7) de�nes
a one-to-one correspondence between an orthonormal basis of Vd

2n(W
B;Zd

2) and an orthonormal
basis of Vd

n(W
T ).

Under the correspondence, the classical orthogonal polynomials on Td associated with the weight
function WT

�;� in (2.1) correspond to orthogonal polynomials with respect to WB
�;� in (2.2); compact

formulae of an orthonormal basis can be obtained from those in [47]. We note that the unit Lebesgue
measure (unit weight function) on Td corresponds to |x1 · · · xd| on Bd and the Lebesgue measure on
Bd corresponds to 1=

√
x1 · · · xd on Td, because the Jacobian of the map (x1; : : : ; xd) 7→ (x21 ; : : : ; x

2
d) is

|x1 · · · xd|. From the results in the previous subsection, polynomials inVd
2n(W

B
�;�) satisfy a di�erential–

di�erence equation that follows from the h-Laplacian and a change of variables. When we restrict to
the elements of Vd

2n(W
B
�;�;Zd

2), the di�erence part in the equation disappears owing to the invariance
under Zd

2 , and we end up with a second-order partial di�erential equation. Upon changing variables
as in correspondence (3.7), we then recover the second-order partial di�erential equation satis�ed
by the classical orthogonal polynomials on Td [56].
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3.3. Orthogonal polynomials on spheres and on simplices

Putting the results in Sections 3.1 and 3.2 together, we also have a relation between orthogonal
polynomials on Sd and those on Td. The relation can be derived from the previous two subsections;
we formulate them below for better reference.
On Sd we need to restrict to the weight function H (y) = W (y21 ; : : : ; y

2
d+1), which is evidently

S-symmetric. We denote by Hd+1
2n (H;Zd+1

2 ) the space of orthogonal polynomials in Hd+1
2n (H) that

are invariant under the group Zd+1
2 . Associated with H we de�ne a weight function on Td by

WT
H (x) = 2W (x1; : : : ; xd; 1− |x|1)=

√
x1 · · · xd(1− |x|1); x ∈ Td:

The constant 2 is there so that if H has unit integral on Sd then WT
H has unit integral on Td. Let

{S2n� } denote a basis for Hd+1
2n (H;Zd+1

2 ). Since S2n� is homogeneous and even in each of its variables,
we can use notation (3.1) and the fact that x2d+1 = 1− |x|2 to write S2n� as

S2n� (y) = r2nRn
�(x

2
1 ; : : : ; x

2
d); (3.8)

where Rn
� is a polynomial of degree n. On the other hand, given polynomials Rn

� de�ned on Td,
we can use (3.8) to de�ne homogeneous polynomials on Sd. This relation connects the orthogonal
polynomials on Sd and those on Td.

Theorem 3.3. Let H and WT
H be weight functions de�ned as above. Then relation (3:8) de�nes a

one-to-one correspondence between an orthonormal basis of Hd+1
2n (H;Zd+1

2 ) and an orthonormal
basis of Vd

n(W
T
H ).

As a consequence of this correspondence, we see that there is a unique decomposition of Pd+1
n (Zd+1

2 )
in terms of Hd

n(H;Zd+1
2 ),

Pd+1
2n (Zd+1

2 ) =
n⊕

k=0

|y|2kHd
2n−2k(H;Zd+1

2 ):

Under the correspondence, the classical orthogonal polynomials on Td associated with WT
�;� in (2.1)

correspond to h-spherical harmonics associated with h� in (2.4) with �d+1 = �. In particular, the
orthogonal polynomials with respect to the weight functions 1=

√
x1 · · · xd(1− |x|1) are related to the

ordinary spherical harmonics, and those with respect to the unit weight function on Td correspond
to h-harmonics for |x1 · · · xd+1| on Sd.

4. Reproducing Kernel and Fourier orthogonal expansion

The relations stated in the previous section allow us to derive properties for orthogonal polyno-
mials on one region from those on the other two regions. In this section, we examine the case of
h-harmonics on Sd and their counterpart on Bd and on Td. As we shall see, this approach will reveal
several hidden symmetry properties of orthogonal polynomials on Bd and on Td by relating them
to the rich structure of h-harmonics. Some of the properties are new even for classical orthogonal
polynomials.
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We start with the de�nition of Fourier orthogonal expansion. Let {Sh
�;n} denote an orthonormal

basis of h-harmonics. The reproducing kernel of Hd+1
n (h2�) is de�ned by the formula

Pn(h2�; x; y) =
∑
�

Sh
�;n(x)S

h
�;n( y);

where the summation is over all h-harmonics of degree n. For f ∈ L2(h2�; S
d), we consider the

Fourier expansion of f in terms of the orthonormal basis Sh
�;n. The partial sum of such an expansion

with respect to Hd+1
n (h2�) is given by

Pn(f; h2�; x) =
∫
Sd

f( y)Pn(h2�; x; y)h
2
�( y) d!( y) := (f ∗ Pn(h2�))(x): (4.1)

It is not hard to see that the reproducing kernel is independent of the choice of the particular
bases. In fact, for h-harmonics, the kernel enjoys a compact formula in terms of the intertwining
operator [48]

Pn(h2�; x; y) =
n+ |�|1 + (d− 1)=2
|�|1 + (d− 1)=2 V [C(|�|1+(d−1)=2)

n (〈x; ·〉)](y); (4.2)

where x; y ∈ Sd and C(�)
n is the Gegenbauer polynomial of degree n. Here and in the following

the reader may want to keep in mind that if h�(x) = 1; then the h-harmonics are just the classical
spherical harmonics and V=id is the identity operator. In that case, (4.2) is just the compact formula
for the ordinary zonal polynomials (cf. [34, p. 19] or [40, p. 149]). In the case of Zd+1

2 and the
weight function (2.4), the closed form of the intertwining operator V is given by [12,47]

Vf(x) =
∫
[−1;1]d+1

f(t1x1; : : : ; td+1xd+1)
d+1∏
i=1

c�i(1 + ti)(1− t2i )
�i−1 dt; (4.3)

where c� = 1=
∫ 1
−1(1 − t2)�−1 dt for �¿ 0, and we have taken � = kd+1. Moreover, if some �i = 0,

then the above formula holds under the limit relation

lim
�→0

c�
∫ 1

−1
f(t)(1− t2)�−1 dt = [f(1) + f(−1)]=2:

In this case, we can write down the reproducing kernel Pn(h2�; x; y) explicitly.
Although a closed form of the intertwining operator is not known in general, its average over the

sphere can be computed as shown in [48].

Theorem 4.1. Let hk be de�ned as in (2:3) associated with a re
ection group. Let V be the
intertwining operator. Then

∫
Sd

Vf(x)h2�(x) d!= Ak

∫
Bd+1

f(x)(1− |x|2)|�|1−1 dx (4.4)

for f ∈ �d; where Ak is a constant that can be determined by setting f(x) = 1.
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Eq. (4.4) is not trivial even in the case of Zd+1
2 ; the reader may try to verify it with V given

by (4.3). This result allows us to prove a general convergence theorem for the Fourier orthog-
onal expansion in h-harmonics. For �¿ 0, the Ces�aro (C; �) means, s�n, of a sequence {sn} are
de�ned by

s�n =
1(

n+ �
n

)
n∑

k=0

(
n− k + �− 1

n− k

)
sk =

1(
n+ �
n

)
n∑

k=0

(
n− k + �
n− k

)
ck ;

where the second equality holds if sn is the nth partial sum of the series
∑∞

k=0 ck . We say that {sn} is
Ces�aro (C; �) summable to s if s�n converges to s as n → ∞. Let P�

n(h
2
�; f) denote the Ces�aro (C; �)

means of the Fourier series in h-harmonics. By (4.1), we can write P�
n(f; h2�) = f ∗ P�

n(h
2
�), where

P�
n(h

2
�) denotes the (C; �) means of Pn(h2�), which can be written as V [k�

n (〈x; ·〉)](y) by (4.2), where
k�
n is the (C; �) means of the reproducing kernel for the Gegenbauer series of order |�|1 + (d− 1)=2.
Since V is a positive operator, we have |Vf(x)|6V (|f|)(x). Hence, if we apply Theorem 4.1, then
we conclude that∫

Sd
|P�

n(h
2
�; x; y)|h2�(y) d!6A�

∫
Bd+1

|k�
n (〈x; y〉)|(1− |y|2)|�|1+(d−2)=2 dy:

A standard change of variables shows that the last integral can be reduced to the integral over [−1; 1].
As a consequence, the (C; �) summability of the h-harmonics follows from that of Gegenbauer series.
We have [48].

Theorem 4.2. Let h� be de�ned as in (2:3). Let f ∈ Lp(h2�; S
d). Then the expansion of f as the

Fourier series with respect to h2� is (C; �) summable in Lp(h2�; S
d); 16p6∞, provided �¿ |�|1 +

(d− 1)=2.

Together with the relation between orthogonal polynomials on Sd; Bd and Td; the above results
on h-harmonics allow us to derive results for the reproducing kernel and for the summability of
orthogonal expansion on Bd and on Td. Instead of stating the results for the most general weight
functions on these regions, we shall restrict ourselves to the weight functions WT

�;� in (2.1) and WB
�;�

in (2.2); both are related to h�;� in (2.3), for which all formulae can be written down in closed
form. The restricted cases include those of the classical orthogonal polynomials. First, we de�ne the
reproducing kernel and the Fourier orthogonal series. Let {Pn

�} denote a sequence of orthonormal
polynomials with respect to a weight function W de�ned on 
, where 
 is either Bd or Td. The
reproduction kernel of Vd

n(W ), denoted by Pn(W ; ·; ·), is de�ned by

Pn(W ; x; y) =
∑
|�|1=n

Pn
�(x)P

n
�(y):

This kernel is, in fact, independent of the choice of the bases (see, for example, [46]). For f in
L2(W;
), we consider the Fourier orthogonal series whose nth partial sum Sn(f;W ) is de�ned by

Sn(f;W ; x) =
n∑

k=1

Pk(f;W ; x); Pk(f;W ; x) =
∫


f(y)Pk(W ; x; y)W (y) dy:
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The relation between orthogonal polynomials on the three regions lead to relations between the
reproducing kernels. In the case of W =W�;� on Bd and W =WT

�;� on Td, this allows us to derive a
compact formula for the reproducing kernel. First, we state the formula for the classical orthogonal
polynomials on Bd, that is, for WB

� =WB
0; �.

Theorem 4.3. For the classical weight function WB
� =W0; � in (2:2); where �¿0; de�ned on Bd; we

have

Pn(WB
� ; x; y) =

n+ � + (d− 1)=2
� + (d− 1)=2

×
∫ 1

−1
C(�+(d−1)=2)

n (〈x; y〉+ s
√
1− |x|2

√
1− |y|2)(1− s2)�−1 ds: (4.5)

We can also write down the compact formula for WB
�;� as a multiple integral using (4.2), (4.3)

and Theorem 3.1. The formula looks similar to (4.6) below. For d=1, formula (4.5) reduces to the
product formula of the Gegenbauer polynomials (cf. [15, Section 3:15:1, (20)]); in fact, in the �rst
proof of (4.5) in [52], we wrote Pn(WB

� ) as a multiple sum of an explicit orthonormal basis in terms
of Gegenbauer polynomials and used the product formula repeatedly to add up the sums. Essentially,
the same elementary but tedious proof is given in [47] for the compact formula of Pn(h2�), from
which the formula for WB

�;� can be derived. However, without using the relation between orthogonal
polynomials on Td and Sd, it is unlikely that the compact formulae for WT

�;� can be discovered. The
formula is given as follows.

Theorem 4.4. For WT
�;� in (2:1); where �i¿0 and �¿0; de�ned on Td; we have

Pn(W�;�; x; y) = c�
2n+ |�|1 + � + (d− 1)=2

|�|1 + � + (d− 1)=2

×
∫ 1

−1

∫
[−1;1]d

C(|�|1+�+(d−1)=2)
2n (

√
x1y1t1 + · · ·+√

xdydtd + s
√
1− |x|1

√
1− |y|1)

×
d∏

i=1

c�i(1− t2i )
�i−1 dt(1− s2)�−1 ds: (4.6)

These remarkable formulae have already been used on several occasions. In [45,53], they are used
to derive asymptotics of the Christo�el functions for the ball and for the simplex. In [54], they
are used to construct cubature formulae via the method of reproducing kernel. They also allow us
to prove various results on summability of Fourier orthogonal expansions. For example, we have
[51,52]:

Theorem 4.5. The Ces�aro (C; |�|1 +�+(d+1)=2) means of the Fourier orthogonal expansion of a
function with respect to W


�;�, where 
=B or T , de�ne a positive linear polynomial approximation
identity on C(
d); the order of summability is best possible in the sense that the (C; �) means are
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not positive for 0¡�¡ |�|1 + � + (d+ 1)=2 in the case of 
 = T and also in the case of 
 = B
when at least one �i = 0.

The su�cient part of the positivity follows from the positivity of the sums of Gegenbauer polyno-
mials (see [16] or [2]). In fact, since V is positive, the su�cient part holds for all h-harmonics and
their orthogonal polynomial counterparts on Bd and Td. The positivity of the (C; �) means implies
that the means converge in norm. However, the positivity is not necessary for convergence. From
Theorem 4.2, the compact formulae of the reproducing kernel and the relation to h-harmonics, we
have the following theorem [51,52,55].

Theorem 4.6. Let f∈Lp(W

�;�; 


d); where 
=B or 
=T . Then the expansion of f as the Fourier
orthogonal series with respect to W


�;� is (C; �) summable in Lp(W�;�; ; 
d), 16p6∞, provided
�¿ |�|1+�+(d−1)=2. Moreover; if at least one �i=0, then the expansion is not (C; �) summable
in Lp(W�;�; 
d) for p= 1 or p=∞ provided �6|�|1 + � + (d− 1)=2.

Some remarks are in order. If at least one �i=0, the index �0 := |�|1+�+(d−1)=2 is the analogy
of the critical index in Fourier analysis (cf. [40]). Indeed, as the results in the previous section show,
the case �=0 and �=0 corresponds to expansion in the classical spherical harmonics, and the index
�0 =(d−1)=2 in this case is the critical index there. The result in the theorem states that the critical
index for the classical orthogonal polynomial expansions on the ball Bd and on the simplex Td are
the same. On the other hand, the critical index for orthogonal expansions on the cube [ − 1; 1]d is
very di�erent from these cases. Indeed, the orthogonal expansions for 1=

∏d
i=1

√
1− x2i on [− 1; 1]d

is the same as the ‘− 1 summability of multiple Fourier series, which has no critical index; that is,
�0 = 0 ([3,4] and the reference therein). The summability of the general product Jacobi expansions
is studied in [29].
There are many open questions in this direction. For example, �nding a closed form of the

intertwining operator V , and �nding an explicit orthonormal basis for h-harmonics associated with
re
ection groups other than Zd+1

2 . We discuss some of them below.

Question 4.1 (Critical index). If none of the �i=0 in the setup of Theorem 4.6, then we believe that
the critical index should be �0 := |�|1 −mini{�i}, where we take �d+1 = �. Indeed, it can be shown
that (C; �) means fail to converge in L1(W�;�; T d) if �6�0. To prove that (C; �) means converge
above this critical index, however, will require a method di�erent from what we used to prove
Theorem 4.6. For convergence below the critical index, we expect results like those for the classical
spherical harmonics. We have, for example, for the Lebesgue measure on Bd the following result.

Theorem 4.7. Let p satisfy | 12−1=p|¿1=(d+2); d¿2. Then the Ces�aro (C; �) means of the Fourier
orthogonal series with respect to the Lebesgue measure converge in Lp(Bd) provided �¿max{(d+
1)|1=p− 1

2 | − 1
2 ; 0}.

There is a further relation between orthogonal polynomials on spheres and on balls, which relates
orthogonal polynomials on Sd+m to those on Bd with respect to WB

(m−1)=2. This relation allows us to
derive convergence results for WB

(m−1)=2 from those for the spherical harmonics, leading to the above
theorem. Some of the di�culties in these questions may come from the fact that we are dealing
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with re
ection group symmetry instead of rotational symmetry, so that many techniques developed
in the context of classical harmonic analysis have to be modi�ed.

Question 4.2 (Convergence inside the region). The proof of Theorem 4.6 can also be modi�ed
to prove that the partial sum Sn(f;W�;�) converges in norm if f is in C [r], where r = |�|1 + � +
(d−1)=2, and the modulus of continuity of f[r] satis�es !(f[r]; �)=o(�r−[r]), and these conditions are
sharp. However, if we are interested in pointwise convergence, then we can weaken the conditions
substantially. Indeed, using [44, Corollary 5:3] and an estimate of the Christo�el function, we can
show that Sn(f;W�;�) converge in the interior of Bd or Td when a similar condition holds with
r = d=2. Moreover, we conjecture that the sharp condition is r = (d − 1)=2, which is the same as
the convergence of ordinary harmonics. We also conjecture that for continuous functions the (C; �)
means S�

n (f;W�;�) will converge inside Bd and Td if �¿ (d − 1)=2. Naturally, we expect that the
maximum of Sn(f;W�;�) or S�

n (f;W�;�) is attained on the boundary of Bd or Td, but this has yet to
be proved.

Question 4.3 (Estimate and asymptotics of the kernel). The reproducing kernels (4.5) and (4.6)
deserve a careful study. In the one-variable case, a useful form of the kernel is given in terms of the
Christo�el–Darboux formula, which is no longer available in several variables. A detailed estimate
of the kernel will be crucial in the study of various convergence questions. More di�cult is to �nd
the asymptotics of the kernel. For the case x= y, the asymptotics of Pn(W ; x; x) have been studied
for W =WB

� on Bd in [45], and for W =WT
�;� in [53]. However, the study is incomplete in the case

of WT
�;�.

5. Cubature formulae on the three regions

In this section we discuss the connection between cubature formulae on Bd; T d and Sd. For a
given integral L(f) :=

∫
fW dx, where W is a weight function on Td or Bd, a cubature formula

of degree M is a linear functional

IM (f) =
N∑

k=1

�kf(xk); �k ∈ R; xk ∈ Rd;

de�ned on �d, such that L(f) = IM (f) whenever f ∈ �d
M , and L(f∗) 6= IM (f∗) for at least

one f∗ ∈ �d
M+1. When the weight function is supported on Sd, we need to replace �d

M by �d+1
M in

the above formulation and require xk ∈ Sd. The points x1; : : : ; xN in the formula are called nodes
and the numbers �1; : : : ; �N are called weights. If all weights of a cubature formula are positive, we
call the formula positive.
Each of the three regions Bd, Td and Sd have drawn their share of attention over the years; a

great number of cubature formulae, mostly of lower degrees, have been constructed on them; see,
for example, [5,14,36,41] and reference therein. However, the fact that cubature formulae on these
three regions are related, in fact are often equivalent, is revealed only recently [49,50]. We state
�rst the correspondence between cubature formulae on balls and on spheres. For a weight function
H de�ned on Rd+1 we de�ne WB

H on Bd as in (3.4).
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Theorem 5.1. If there is a cubature formula of degree M on Sd given by
∫
Sd

f( y)H ( y) d!=
N∑
i=1

�if( yi); (5.1)

whose nodes are all located on Sd; then there is a cubature formula of degree M on Bd for WB
H ;

∫
Bd

g(x)WB
H (x) dx=

N∑
i=1

�ig(xi); (5.2)

where xi ∈ Bd are the �rst d components of yi. On the other hand; if there is a cubature formula
of degree M in the form (5:2) whose N nodes lie on Bd; then there is a cubature formula of degree
M on Sd given by

∫
Sd

f( y)H ( y) d!=
N∑
i=1

�i

[
f
(
xi ;
√
1− |xi|2

)
+ f

(
xi ;−

√
1− |x|2

)]
=2: (5.3)

To state the correspondence between cubature formulae on Bd and on Td, we need the notion
of invariant cubature formulae. A linear functional I(f) is called invariant under a group G if
I(R(a)f) =I(f) for all a ∈ G. For u ∈ Rd, we denote its G-orbit by G(u), which is de�ned by
G(u) = {ua|a ∈ G}; we also denote by |G(u)| the number of distinct elements in G(u). A cubature
formula is invariant under G if the set of its nodes is a union of G-orbits and the nodes belonging
to the same G-orbit have the same weight. In the case of G = Zd

2 , the invariant cubature formula,
denoted by IM (f;Zd

2), takes the form

IM (f;Zd
2) =

N∑
i=1

�i

∑
�∈{−1;1}d

f(�1ui;1; : : : �dui;d)=2k(ui);

where k(u) = |Zd
2(u)|, which is equal to the number of nonzero elements of u. We use the notation

of WB and WT in Section 3.2.

Theorem 5.2. If there is a cubature formula of degree M on Td given by
∫
�d

f(u)WT (u) du =
N∑
i=1

�if(ui); (5.4)

with all ui ∈ Rd
+, then there is a cubature formula of degree 2M + 1 on the unit ball Bd given by

∫
Bd

g(x)WB(x) dx=
N∑
i=1

�i

∑
�∈{−1;1}d

f(�1
√
ui;1; : : : ; �d

√
ui;d)=2k(ui): (5.5)

Moreover; a cubature formula of degree 2M + 1 in the form of (5:5) implies a cubature formula
of degree M in the form of (5:4).

We note that the degree of formula (5.5) is 2M +1, more than twice that of formula (5.4). From
these two theorems, we can also write down a correspondence between cubature formulae on Td

and on Sd, which we shall not formulate here; see [50].
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The importance of these correspondences is evident. They allow us to construct cubature formulae
on one region from those on another region. Even from the existing list of cubature formulae, they
lead to many new formulae. However, it should be pointed out that most of the cubature formulae in
the literature are constructed for the Lebesgue measure (unit weight function). The correspondences
on these regions show that the Lebesgue measure dx on Td corresponds to |x1 · · · xd+1| d! on Sd and
|x1 · · · xd| dx on Bd, and the Lebesgue measure on Bd corresponds to |xd+1| d! on Sd and dx=

√
x1 · · · xd

on Td. In the discussion below, we will concentrate on the cubature formulae for the surface measure
d! on Sd, which corresponds to formulae for the weight function 1=

√
1− |x|2 on Bd and the weight

function 1=
√

x1 · · · xd(1− |x|1) on Td. These two weight functions are special cases of WB
� and WT

�;�;
we shall call them Chebyshev weight function on Bd and on Td, respectively.
One way to use the correspondences is to revisit the existing methods of constructing cubature

formulae on Bd or Td for the unit weight function, use them to construct formulae for the Chebyshev
weight function, and then obtain new cubature formulae for the surface measure on Sd. This approach
has been used in [18–20]. We present one notable family of cubature formulae on Sd obtained in
[20] below, and discuss symmetric formulae on S2 in the following section. We need to introduce
the following notation.
Let f be de�ned on Rd+1. Since the hyper-octahedral group Bd+1 is the semiproduct of the

symmetric group Sd+1 and Zd+1
2 , we can write∑

�∈Bd+1

f(x�) =
∑

f(±x�0 ;±x�1 ; : : : ;±x�d);

where we write x = (x0; : : : ; xd) and the sum in the right-hand side is over all choices of signs and
over all � ∈ Sd+1; that is, we write �=(�0; : : : ; �d) to denote a permutation of (0; 1; : : : ; d). Cubature
formulae that consist entirely of sums as these are invariant under Bd+1, they are also called fully
symmetric, see [41, p. 128]. For � ∈ Nd+1

0 , we will write �= (�0; : : : ; �d) in the rest of this section.
We have the following result.

Theorem 5.3. Let s ∈ N0 and n=2s+1. Then the following is a cubature formula of degree 2n+1
on Sd:∫

Sd
g(y) dw=

�(d+1)=2

22s+d

[
s∑

i=0

(−1)i (n+ (d− 1)=2− 2i)n
i!�(n+ (d+ 1)=2− i)

×
∑

|�|1=s−i;�0¿···¿�d

(
�0 − 1=2

�0

)
· · ·
(
�d − 1=2

�d

)

×
∑

�∈Bd+1

g

(( √
2�0 + 1=2√

n+ (d− 1)=2− 2i ; : : : ;
√
2�d + 1=2√

n+ (d− 1)=2− 2i

)
�

)
 :

This formula is apparently the �rst known family of cubature formulae that exist for higher degrees
and for all d. Its number of nodes is also relatively small. The drawback of the formula, however, is
that it is not positive and its condition number grows rapidly as s increases. The formula is discovered
using the correspondence in Theorems 5.1 and 5.2 as follows. In [17], a family of cubature formulae
was established for the unit weight function on Td by proving a combinatorial formula. In [20], we
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establish the analogs of these formulae for the weight function WT
�;� on Td for general � and � by

proving a combinatorial formula that contains a number of parameters. The combinatorial formula
is as follows:

22s
∏d

j=0 �(�j + �j + 1)∏d
j=0 �(�j + 1)

=
s∑

j=0

(−1) j
(
2s+ |�|1 + d+ 1

j

)

×
∑

|�|1=s−j

(
�0 + �0

�0

)
· · ·
(
�d + �d

�d

) d∏
i=0

(2�i + �i + 1)�i ; (5.6)

which holds for all � ∈ Nd
0 ; |�| = 2s + 1, and �i ¿ − 1 for 06i6d. For �0 = · · · = �d = 1

2 , this is
the formula proved in [17]. Let X � = (1 − |x|1)�0x�1

1 · · · x�d
d . Using the fact that {X �}|�|1=n forms a

basis for �d
n and the fact that the integral of X

� with respect to WT
�;� can be derived from

∫
Td

X �+� dx=

∏d
j=0 �(�j + �j + 1)

�(|�|1 + |�|1 + d+ 1)
;

it follows that (5.6) yields a cubature formula of degree 2s+ 1 for WT
�;� on Td (taking �i = �i + 1

2
for 06i6d and � = �0 + 1). Using the correspondence in Theorems 5.1 and 5.2, we then get
cubature formulae for WB

�;� on Bd and h2�;� on Sd. Theorem 5.3 is the special case of �=0 and �=0
on Sd.

6. Cubature formulae on S2 invariant under the octahedral group

Numerical integration on the sphere S2 has attracted much attention; we refer to [25–28,32,36,39,41]
and the references therein. Most of the cubature formulae on S2 are constructed by solving moment
equations under the assumption that the formulae are symmetric under a �nite group. The symmetry
helps to reduce the number of moment equations that have to be solved, owing to a fundamental
result of Sobolev [38] which states that a cubature formula invariant under a �nite group is exact for
all polynomials in a subspace P, if and only if, it is exact for all polynomials in P that are invariant
under the same group. The groups that have been employed previously in this context are mainly the
octahedral group and the icosahedral group. In particular, Lebedev constructed in [25–28] cubature
formulae of degree up to 59, many of which have the smallest number of nodes among all formulae
that are known; he also made an outstanding conjecture that we shall address in this section.
Under the correspondences in the previous section, formulae on S2 invariant under the octahedral

group (which is the symmetric group of the unit cube {±1;±1;±1} in R3) correspond to formulae
on T 2 invariant under the symmetric group of T 2. Since the octahedral group is the semi-direct
product of symmetric group and Z32, and only the action of symmetric group appears on T 2 under
our correspondence, there is a certain advantage in dealing with symmetric formulae on T 2 instead
of octahedral symmetric formulae on S2. We shall state Lebedev’s conjecture in terms of symmetric
cubature formulae on T 2. To do so, we follow the setup in [30] and use the equilateral triangle

4= {(x; y): x6 1
2 ;
√
3y − x61;−

√
3y − x61};

which can be transformed to T 2 by a simple a�ne transformation. The symmetric group S3(4) of
4 is generated by a rotation through an angle 2�=3 and a re
ection about the x-axis. It is sometimes



Y. Xu / Journal of Computational and Applied Mathematics 127 (2001) 349–368 365

convenient to use the polar coordinates, x = r cos � and y = r sin �, to denote points on 4. Let �
denote the triangle

�= {(x; y): 06x6 1
2 ; 06x6

√
3y}:

Then � is one of the fundamental regions of 4 under S3(4). To describe a symmetric cubature
formula on 4, it su�ces to determine its nodes inside �. We say that a symmetric cubature formula
is of type [m0;m1; m2; m3;m4; m5], if it has m0 nodes at the origin, m1 nodes at the vertex ( 12 ;

√
3=2),

m2 nodes at ( 12 ; 0); m3 nodes on the two sides � = 0 and �=3 (not at the vertices) of �;m4 nodes
on the side x = 1

2 (not at the vertices) of �, and m5 nodes in the interior of �. We also call the
corresponding formula on S2 type [m0;m1; m2; m3;m4; m5].
Moment equations for the type [m0;m1; m2; m3;m4; m5] formulae were set up in [30], and used to

construct cubature formulae of degree up to 20 in [30,7] for the unit weight function. In [19] the
moment equations are solved for the Chebyshev weight function (recall that it relates to the surface
measure on S2), which yields formulae of degree up to 41 for the surface measure on S2, including
those found by Lebedev. To set up the moment equations, one usually requires that the number of
parameters matches the number of equations. For a type [m0;m1; m2; m3;m4; m5] formula of degree
M , this leads to

m0 + m1 + m2 + 2m3 + 2m4 + 3m5 = [(M 2 + 6M + 12)=12];

where [x] denote the greatest integer less than or equal to x. For each M , there can be a number of
integer solutions to the equation, leading to di�erent types of cubature formulae. However, since the
moment equations are nonlinear, many types of formulae do not exist. Based on his computation,
Lebedev made the following conjecture.

Conjecture 6.1. Cubature formulae of type [1; 0; 1; 3m;m;m(m−1)] and [1; 1; 1; 3m+1;m;m2] exist.

Formulae of these types on 4 are of degree 6m+2 and 6m+5, and they correspond to formulae of
degree 12m+5 and 12m+11 on S2, respectively. Lebedev has constructed formulae for m=1; 2; 3; 4
on S2, whose nodes turn out to be rather uniformly distributed on the sphere.
The work of [25–28], as well as that of [19], is essentially numerical computation. Being so, it

gives little hint on how to prove the conjecture. The formulae invariant under the octahedral group
are also called fully symmetric formulae [41]. The structure of the fully symmetric formulae or that
of the associated moment equations have been studied in [21,22,30,31] and the references therein, but
the study appears to be still in the initial stage. In particular, the intrinsic structure of the symmetric
formulae of the types in Lebedev’s conjecture has not been studied. In the following, we discuss
some observations and other problems related to this conjecture.
Because of the fundamental result of Sobolev, it is essential to understand the structure of poly-

nomials invariant under the symmetric group. Let us denote by �2
n(S3) the space of polynomials

of degree n invariant under the group S3(4). It is easy to see that
�2

n(S3) = span{(x2 + y2)k(x3 − 3xy2) j: 2k + 3j6n}:
We can change variables t=x2 +y2 and s=x3−3xy2 so that the space �2

n(S3) becomes a subspace
spanned by monomials {tks j: 2k+3j6n}. However, the order of this polynomial subspace is messed
up; for example, the multiplication by t or s is no longer a mapping from �2

n(S3) to �2
n+1(S3).

On the other hand, for special values of n, we have the following observation.



366 Y. Xu / Journal of Computational and Applied Mathematics 127 (2001) 349–368

Proposition 6.2. Let �∗
m :=�2

3m−1(S3) for m= 1; 2; : : : : Then s�∗
m ⊂�∗

m+1 and t�∗
m ⊂�∗

m+1.

Using the fact that �∗
0 =span{1} and �∗

1 =span{1; s}, we can also write down the decomposition
of �∗

m in terms of the space of homogeneous polynomials. The observation suggests that the space
�∗

m has a structure similar to the space �2
m. What prompts us to consider this space is explained as

follows. A formula in Lebedev’s conjecture, if it exists, is like a Gaussian quadrature formulae in the
sense that its number of parameters matches up with the number of moment equations. One possible
way to establish the conjecture is to show that the nodes of the formula are common zeros of a
sequence of symmetric orthogonal polynomials. We will not discuss the connection between cubature
formulae and common zeros of orthogonal polynomials here, but refer to [33,35,36,43,46] and the
references therein. Like the case of Gaussian quadrature, for cubature formulae of degree 2n − 1,
we need to look at common zeros of orthogonal polynomials of degree n or higher. For Lebedev’s
formulae of degree 6m+5, this suggests to us looking at the polynomial space of �2

3m+2(S3)=�∗
m+1.

The mapping t → x2 +y2 and s → x3−3xy2 is nonsingular on � and it maps � to a curved trian-
gular region which we denote by �∗. Symmetric cubature formulae on 4 corresponds to formulae
on �∗ for the space �∗

n . Using a computer algebra system doing symbolic computation, we found
that the degree-5 formula on �∗, which corresponds to the degree-11 formula (m = 1 of the case
6m+ 5) in Lebedev’s conjecture, is indeed generated by common zeros of orthogonal polynomials.
To prove the conjecture along these lines, we need compact formulae for an orthonormal basis

of �∗
m, which can be obtained from the symmetric basis of orthogonal polynomials on the triangle,

or from spherical harmonics on S2 by the correspondence. However, a compact formula of an
orthonormal basis for symmetric polynomials on T 2 is the same as a basis for the spherical harmonics
invariant under the octahedral group, which is not easy to �nd. Only [8] seems to contain some
results in this direction. Moreover, the cubature formulae in Lebedev’s conjecture have nodes on the
boundary of 4. Using a procedure that resembles the passage from Gauss–Radau-type quadrature to
Gaussian quadrature, we can reduce the problem to �nding cubature formulae with all nodes inside
4 for integrals with respect to a modi�ed weight function. The new weight function is obtained by
multiplying the Chebyshev weight with a polynomial that is quadratic on each side of the boundary
of 4. The corresponding weight function on the sphere S2 is h(x) = (x21 − x22)

2(x22 − x23)
2(x23 − x21)

2,
which is a special case of h� in (2.5). Thus, this calls for a study of the h-harmonics associated
with h2 d! that are invariant under the octahedral group. At the time of this writing, no compact
formulae of an orthonormal basis for these h-harmonics are known.
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