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Preface

This is the second volume of a three-volume set comprising a comprehensive study of
the tractability of multivariate problems. The subjects treated in the three volumes can
be briefly characterized as follows.

• Volume I [222]: we primarily studied multivariate problems specified by linear
operators and algorithms that use arbitrary linear information given by arbitrary
linear functionals.

• Volume II: we study multivariate problems specified by linear functionals and a
few selected nonlinear functionals, and algorithms that use standard information
given by function values.

• Volume III: we will study multivariate problems specified by linear operators
and a few nonlinear operators, and algorithms that use standard information
given by function values.

The problems studied in the three volumes are defined on spaces of d -variate func-
tions. It often happens in computational practice that d is very large, perhaps even
arbitrarily large. By tractability we mean that we can approximate the d -variate prob-
lem with error at most " and with cost that is not exponential either in d or in "�1.
Tractability has been studied since the 1990s, see [348], [349].

We study tractability in different settings. Each setting is specified by the definition
of the error and the cost of an algorithm. We present tractability results in the worst
case, average case, probabilistic and randomized settings. We do this for the absolute,
normalized and relative error criteria.

There are many ways of measuring the lack of exponential dependence; therefore,
we have various notions of tractability. Examples include polynomial tractability, T -
tractability and weak tractability. The reader is referred to the first two chapters of
Volume I for an overview and motivation of tractability studies.

Many multivariate problems specified by linear functionals suffer from the curse
of dimensionality. This means that even the best possible algorithm must use exponen-
tially many (in d ) function values to have error at most ". The curse of dimensionality
is usually present for linear functionals defined over standard (unweighted) spaces.
In this case all variables and groups of variables play the same role. The curse of
dimensionality can often be vanquished if we switch to weighted spaces, in which we
monitor the importance of all variables and groups of variables by sufficiently decaying
weights. As in Volume I, we want to find necessary and sufficient conditions on weights
to get various kinds of tractability.

Only standard information (or its analogues) makes sense for the approximation of
linear functionals. Standard information was not systematically studied in Volume I.
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Therefore the tractability results presented in Volume I for linear information are irrel-
evant for linear functionals.

The proof techniques for linear and standard information are quite different. For
linear information and linear operators defined over Hilbert spaces, tractability depends
on the singular values of a corresponding problem. For standard information the
situation is much more complex and tractability results depend very much on the
specific spaces and linear functionals. It is relatively easy to establish upper error
bounds; however, many of these bounds are obtained by non-constructive arguments.
It is especially hard to establish meaningful lower error bounds. Here, the concept
of decomposable reproducing kernels is helpful, allowing us to find matching lower
and upper error bounds for some linear functionals. We can then conclude tractability
results from such error bounds.

Tractability results for linear functionals are very rich in possibilities, and almost
anything can happen for linear functionals. They can be trivial, since there are Hilbert
spaces of infinite dimension for which all linear functionals can be solved with arbitrary
small error by using just one function value. They can be very hard, since there are
Hilbert spaces for which all non-trivial linear functionals suffer from the curse of
dimensionality. The last two properties hold for rather esoteric Hilbert spaces. For
“typical” Hilbert spaces some linear functionals are easy and some are hard. One of
the main challenges is to characterize which linear functionals are tractable and which
are not.

Volume II consists of twelve chapters numbered from 9 to 20 since Volume I has
the first eight chapters. We comment on their order and contents. We decided to
start with a chapter on discrepancy and integration. The notion of discrepancy is
simple and beautiful with a clear geometrical meaning. It is striking in how many
areas of mathematics discrepancy plays an important role. In particular, discrepancy is
intimately related to integration and we thoroughly explain these relations in Chapter 9.
Many people would claim that integration is the most important multivariate problem
among linear functionals since it appears in many applications such as finance, physics,
chemistry, economic, and statistics. There is a tremendous need to compute high
dimensional integrals with d in the hundreds and thousands, see Traub and Werschulz
[306]. If so, discrepancy is also very important. Moreover, it connects us to many other
mathematical areas. That is why we decided to start from discrepancy and explain its
relation to integration from the very beginning. We hope the reader will appreciate our
decision.

The order of the next chapters is as follows. We begin with the worst case setting. In
Chapter 10 we study general linear functionals, whereas in Chapter 11 we study linear
functionals specified by tensor products. In Chapter 11 we explain the idea of decom-
posable kernels and present lower error bounds. We use these lower bounds to obtain
necessary conditions on tractability, as well as to show that the curse of dimensionality
indeed occurs for many linear functionals. This also serves as a motivation for switch-
ing to weighted spaces in Chapter 12. We present a number of necessary tractability
conditions in terms of the behavior of weights. As in Volume I, we concentrate on
product and finite-order weights.
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In Chapter 13 we analyze the average case setting. For linear functionals, there is
a pleasing relation between the average case and worst case settings. Knowing this
relation, we can translate all tractability results from the worst case setting to the average
case setting. So there is no need to do additional work in the average case setting, and
so this chapter is relatively short. We stress that such a relation is only present for linear
functionals; we will not be so lucky in Volume III with linear operators.

In Chapter 14 we study the probabilistic setting. Here we also have a surprising
and pleasing relation to the average case setting. Since the average case is related to
the worst case, we conclude that the probabilistic setting is also related to the worst
case setting. This means that, with some care, we can translate all tractability results
from the worst case to the probabilistic setting. We also study the relative error. We
show that only negative results hold for the relative error in the worst case and average
case settings, and positive results are only possible in the probabilistic setting.

The relations between the average case, probabilistic and worst case settings mean
that it is enough to study tractability in the worst case setting. That is why in the next
two long chapters, Chapter 15 and Chapter 16, we return to the worst case setting.
Our emphasis is on constructive results, since many tractability results presented so far
have been based on non-constructive arguments. Chapter 15 is on the Smolyak/sparse
grid algorithms for unweighted and weighted tensor product linear functionals. These
algorithms are very popular. Many people have been analyzing error bounds of the
Smolyak/sparse grid algorithms with the emphasis on the best order of convergence.
The dependence of the error bounds on the number d of variables has been addressed
only in a few papers. Of course, this dependence is crucial for tractability which is our
emphasis in this chapter.

In Chapter 16 we return to multivariate integration. This problem was analyzed
earlier in this book. However, this was usually done as an illustration or specification of
general tractability results. We analyze multivariate integration for the Korobov spaces
of smooth and periodic functions in the first part of Chapter 16. Our emphasis is on
constructive lattice rules. We present the beautiful CBC (component-by-component)
algorithm that efficiently computes a generating vector of the lattice rule. The history
of this algorithm is reported in the introduction of Chapter 16. In the second part of
Chapter 16 we exhibit relations between Korobov and Sobolev spaces. We show how
the shifted lattice rules with the generating vectors computed by the CBC algorithm
can be used for non-periodic functions from the Sobolev space.

In Chapter 17 we turn our attention to the randomized setting. We first report when
the standard Monte Carlo algorithm for multivariate integration leads to tractability.
It is well known that the rate of convergence of the standard Monte Carlo algorithm
is independent of d . However, it is often overlooked that since the randomized error
of the standard Monte Carlo algorithm depends on the variance of a function and the
variance may depend on d , then tractability is not necessarily achieved. Indeed, this is
the case for a number of standard spaces. Again, weighted spaces can help. Tractability
conditions on weights for the standard Monte Carlo algorithm are usually more lenient
than for the best algorithms in the worst case setting. We also discuss how importance
sampling can help to relax tractability conditions or even guarantee tractability for
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unweighted spaces. In the final section, we discuss how we can approximate the local
solution of the Laplace equation by algorithms based on a random walk.

In Chapter 18 we study tractability of a few selected nonlinear functionals in the
worst case and randomized settings. We study a nonlinear integration problem where
we integrate with respect to a partially known density, the local solution of Fredholm in-
tegral equations, global optimization, and computation of fixed points and computation
of volumes, primarily of convex bodies.

Finally in Chapter 19, we briefly mention two generalizations of the material of the
previous chapters. The first generalization is when we switch from d -variate problems
with finite (and maybe arbitrarily large) d to problems for which d D 1. We illus-
trate this point for path integration and integration over a Sobolev space of functions
depending on infinitely many variables. The second generalization is when we switch
from computations performed on a classical computer to computations performed on a
(future) quantum computer and check how tractability study can be done in the quantum
setting.

In Chapter 20 we present a summary of tractability results for multivariate integra-
tion defined over three standard weighted Sobolev spaces. We cover four settings:

• worst case,
• average case,
• probabilistic,
• randomized,

and three error criteria:

• absolute,
• normalized,
• relative.

Many specific results presented in this volume have been already published and we
tried to carefully report the authors of these results in each chapter and additionally in
the Notes and Remarks of each chapter. In fact, each chapter is based on a single paper
or a few papers although in many cases we needed to generalize, synthesize or modify
the existing results. There are also many new results. Again all this is described in the
Notes and Remarks.

In the course of this volume we present a number of open problems. In Volume I
we have 30 open problems, and so we started the count of new problems in Volume II
from 31. The last open problem has the number 91 so there are 61 open problems in
Volume II. The list of open problems is in Appendix D. We call it Appendix D since
there are three appendices A, B and C in Volume I. We hope that the open problems
will be of interest to a general audience of mathematicians and many of them will be
solved soon. In this way, research on tractability will be further intensified.

We realize that this volume is very long since it has more than 650 pages. Despite
this book’s length, we did not cover some issues and tractability of linear functionals
will be continued in Volume III. The reason for this is that there are interesting relations
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between linear functionals and some linear operators. These relations allow us to apply
tractability results for linear operators to linear functionals. Since linear operators
for standard information will be thoroughly studied in Volume III, we have to wait to
present relations between linear functionals and operators, as well as the corresponding
tractability results, till Volume III.

We decided to be repetitious in a number of places. This is the case with some
notation as well as with some assumptions in the successive theorems or lemmas. This
was done to help the reader who will not have to flip too many pages and look for
the meaning of the specific notation or the specific assumption. We believe that our
approach will be particularly useful after the first reading of the book when the reader
wants to return to some specific result without remembering too much about the hidden
assumptions and notation used in the book.

At the expense of some repetitions, we tried to write each chapter as much inde-
pendent as possible of the other chapters. We hope that the reader may study Chapter n
without knowing the previous n � 1 chapters. We also think that even the last chapter
with the summary of tractability results should be understood with only some knowl-
edge of terminology already presented in Volume I.

We are grateful for valuable comments, suggestions and improvements from our
colleagues:

Josef Dick, Michael Gnewuch, Stefan Heinrich, Aicke Hinrichs, Stephen Joe,
Thomas Müller-Gronbach,Anargyros Papageorgiou, Friedrich Pillichshammer, Marcin
Pȩkalski, Klaus Ritter, Daniel Rudolf, Winfried Sickel, Kris Sikorski, Shu Tezuka, Hans
Triebel, Joseph Traub, Greg Wasilkowski.

We are especially grateful to Art Werschulz who carefully edited most of the book.
This significantly improved clarity and style of our book.

We also express our sincere thanks to Manfred Karbe and Irene Zimmermann of
the European Mathematical Publishing House for their excellent cooperation. Irene
and Manfred were always eager to help us with all our questions related to our work.
They really make the publishing of mathematical books tractable!

We are pleased to thank our home institutions, Jena University, Columbia University
and University of Warsaw, for supporting the work reported here. The second author
is also pleased to thank the National Science Foundation.

Erich Novak

Henryk Woźniakowski
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Chapter 9

Discrepancy and Integration

9.1 Introduction

The purpose of this introductory chapter is to show that discrepancy and multivariate
integration over some classes of functions are ultimately related. There are many ways
to define discrepancy and, as we shall see here, each of them corresponds to multivariate
integration over a specific class. For standard discrepancies, these classes of functions
are Sobolev spaces with smoothness measured by first mixed derivatives.

The notion of discrepancy goes back to the work of Weyl [344] in 1916 and van
der Corput [34], [35] in the 1930s. Discrepancy is a quantitative measure of the
uniformity of the distribution of points in d -dimensional Euclidean space. Today
we have various notions of discrepancy, and there are literally thousands of papers
studying different aspects of discrepancy. Research on discrepancy is very intensive,
and the reader is referred to the books by Beck and Chen [9], Beck and Sós [11],
Chazelle [23], Drmota and Tichy [61], Matoušek [184], Niederreiter [201], Sloan and
Joe [273], Strauch and Porubský [290], Tezuka [301], and Triebel [312]. The reader is
also referred to a recent book [27] Analytic Number Theory: Essays in Honor of Klaus
Roth edited by Chen, Gowers, Halberstam, Schmidt and Vaughan [27], which has many
surveys of discrepancy as well as to a recent book of Lemieux [170] Monte Carlo and
Quasi-Monte Carlo Sampling, which covers randomized and deterministic algorithms
for multivariate integration. We also want to add that Dick and Pillichshammer [53]
are finishing their research monograph Digital Nets and Sequences; Discrepancy and
Quasi-MonteCarlo Integration, where the reader may find the current state of the art for
discrepancy and multivariate integration. Their book presents many constructions of
points that nearly minimize the discrepancy or, equivalently, the error for multivariate
integration for Quasi-Monte Carlo algorithms.

Various notions of discrepancy are widely used and studied in many areas of math-
ematics such as number theory, approximation, stochastic analysis, combinatorics,
ergodic theory and numerical analysis. The notions of discrepancy are related to
Sobolev spaces, Wiener measure, VC (Vapnik–Chervonenkis) dimension and Ram-
sey theory, see the books just mentioned, as well as papers by Frank and Heinrich [68],
Larcher [165], Niederreiter and Xing [202] and [346].

We discuss first the L2 discrepancy and turn later to the case of Lp discrepancy for
general p 2 Œ1;1�. The case p D 1 is called the star discrepancy, and is usually the
most challenging.

ManyL2 discrepancies are defined over the d -dimensional unit cube Œ0; 1�d . Prob-
ably the most celebrated discrepancy in theL2 norm is the discrepancy anchored at the
origin or at 0. In this case, for x D Œx1; : : : ; xd � 2 Œ0; 1�d we consider discrepancy of
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the sets
Œ0; x/ D Œ0; x1/ � Œ0; x2/ � � � � � Œ0; xd /:

We know sharp lower and upper bounds for the minimal discrepancy anchored at 0.
More precisely, if we use n points then it is of order n�1.ln n/.d�1/=2. The lower
bound was established by Roth [254] and the upper bound by Roth [255] and Frolov
[71]. The original proofs of the upper bounds were not fully constructive, and we
needed to wait until 2002 when Chen and Skriganov [30] presented a construction of n
points satisfying the upper bound. The construction of points and sequences with L2
discrepancy anchored at 0, (or more generally, with Lp discrepancy anchored at 0 for
p 2 Œ1;1�) of order n�1.ln n/c.d�1/ for some positive c is still a challenging problem.
There are beautiful theories explaining how to achieve this goal, see the books which
we already mentioned above.

It is known that the minimal discrepancy anchored at 0 of n points is the same as
the minimal worst case error of algorithms using n function values for approximating
integrals from the unit ball of the Sobolev space anchored at zero (or one). For d D 1,
the Sobolev space anchored at ˇ 2 Œ0; 1� consists of absolutely continuous functions
vanishing at ˇ whose first derivatives are in the space L2.Œ0; 1�/. For d � 2, the
Sobolev space anchored at ˇ D Œˇ1; : : : ; ˇd � 2 Œ0; 1�d is the d -fold tensor product
of the Sobolev spaces anchored at ǰ . In particular, this space consists of functions
vanishing at any d -dimensional vector x having one component equal to ǰ for some
j 2 Œd � WD f1; 2; : : : ; dg. All functions in this space are differentiable with respect
to all variables and the resulting partial derivatives are in the space L2.Œ0; 1�d /. The
Sobolev space anchored at ˇ is the Hilbert space with the reproducing kernel given by

Kd .x; y/ D
dY
jD1

�
1C 1

2

� jxj � ǰ j C jyj � ǰ j � jxj � yj j��:
We are not sure who first realized the equality between the minimal discrepancy an-

chored at0 and the minimal worst case errors for multivariate integration for the Sobolev
space anchored at 0 (or 1), but this result can be easily deduced from Hlawka’s [135]
and Zaremba’s [362] identity, see also Section 3.1.5 of Volume I.

We achieve the same discrepancy and the worst case integration error if we use
the points tj for the discrepancy anchored at 0 and the same points for multivariate
integration over the Sobolev space anchored at 1. For the Sobolev space anchored at 0
we should use the points 1�tj , component-wise. That is why the construction of points
minimizing the discrepancy anchored at 0 and the integration error for these Sobolev
spaces is the same.

We also study the L2 discrepancy anchored at ˛ for ˛ 2 Œ0; 1�d . In this case, we
consider the discrepancy of the sets

Œmin.˛1; x1/;max.˛1; x1// � � � � � Œmin.˛d ; xd /;max.˛d ; xd //:

Then the minimal discrepancy anchored at ˛ is the same as the minimal worst case
error of multivariate integration for the Sobolev space anchored at ˛. More precisely,
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we achieve the same error if we use the points tj for discrepancy anchored at ˛ and the
points

�j D .˛ � tj / mod 1

for multivariate integration. Here, the mod operation is applied component-wise. Fur-
thermore, we show that if˛ 2 .0; 1/d then the change of the points between discrepancy
and multivariate integration is necessary.

Then we consider the L2 quadrant discrepancy anchored at ˛ whose analog in
the L1 norm was studied by Hickernell, Sloan and Wasilkowski [123]. This is the
discrepancy of the sets

Œw1.x/; z1.x// � � � � � Œwd .x/; zd .x//
with

Œwj .x/; zj .x// D Œ0; xj / if xj < j̨ ; and Œwj .x/; zj .x// D Œxj ; 1/ if xj � j̨ :

The minimal quadrant discrepancy anchored at ˛ is the same as the minimal worst case
error of multivariate integration for the Sobolev space anchored at ˛ with no change
of points.

The next example of L2 discrepancy is the extreme or unanchored discrepancy
proposed by Morokoff and Caflisch [191]. This is the discrepancy of the sets

Œx; y/ for x � y; component-wise;

with x; y 2 Œ0; 1�d . Then the minimal unanchored discrepancy is the same as the
minimal worst case errors of multivariate integration for the Sobolev subspace anchored
at 0 consisting of periodic functions with period 1. That is, f .x/ D 0 if one component
of x is either 0 or 1, see [221].

Having these relations between L2 discrepancy and multivariate integration, it is
natural to ask if such relations hold in general. The answer is yes, see [223], if we define
the L2 discrepancy for measurable sets B.t/ that are subsets of Rd for t 2 D � R�.d/

for some integer �.d/. Here, we assume that t is distributed according to some density
%, so that

R
D
%.t/ dy D 1.

For specific choices ofB.t/, we obtain theL2 discrepancy anchored at 0 or at ˛, the
L2 quadrant discrepancy anchored at ˛ or the unanchored discrepancy. We may also
obtain the ball discrepancy and periodic ball discrepancy studied by Beck [8], Beck and
Chen [10], Chen [26], Montgomery [190] and Travaglini [309]. The ball discrepancy
may be defined over a bounded set or over the whole space R.

TheL2 discrepancy for general setsB.t/ is called theB-discrepancy. Under natural
assumptions on B.t/, see (9.44) and (9.48), we prove that the minimal B-discrepancy
is the same as the minimal worst case error of multivariate integration for the unit ball
of the Hilbert space H.Kd / with the reproducing kernel Kd given by the formula

Kd .x; y/ D
Z
D

1B.t/.x/ 1B.t/.y/ %.t/ dt for x; y 2 Rd : (9.1)
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Furthermore, we obtain the same errors if we use the same points for both discrepancy
and multivariate integration. Hence, if we take B.t/ corresponding to the discrepancy
anchored at ˛ for ˛ 2 .0; 1/d then we have a double relation to multivariate integration.
The first relation is for the Sobolev space anchored at˛with the need of the point change,
and the second relation is for the space H.Kd / which is similar to the Sobolev space
of periodic functions anchored at 0 which may be, however, discontinuous at ˛ with
no need of the point change.

One can also ask the opposite question whether multivariate integration over repro-
ducing kernel Hilbert spaces is always related to L2 discrepancy for some sets B.t/.
The answer is now no, which simply follows from the fact that not every reproducing
kernel has the form (9.1). Note that if Kd is given by (9.1) then Kd .x; y/ 2 Œ0; 1�.
There are kernels that can take arbitrary values, including negative values as well. This
holds, for example, for Korobov spaces that have been extensively studied in many
papers, see also Volume I.

We indicated so far that the minimal L2 discrepancy for sets B.t/ is related to the
minimal worst case errors of multivariate integration for the unit ball of H.Kd / with
Kd given by (9.1). It is also possible to show that the minimal L2 discrepancy for
sets B.t/ is equal to the minimal average case error of multivariate integration for
some normed space Fd that is equipped with a zero-mean probability measure �d .
We should take the space Fd such that L.f / D f .x/ are well defined bounded linear
functionals for all x, and the measure �d whose covariance function is Kd given by
(9.1). For the L2 discrepancy anchored at ˛, and for the quadrant and unanchored
discrepancy, we may take Fd as the space of continuous functions with the max norm,
and �d as the zero-mean Gaussian measure with the covariance function Kd . The
first such relation to the average case setting was presented in [346]. More precisely,
it was shown that the minimal discrepancy anchored at 0 of n points is the same as the
minimal average case error of algorithms using n function values. These algorithms
approximate the integrals for the space of continuous functions with the max norm and
equipped with the Wiener sheet measure. In this case, we obtain the same errors if we
use the points tj for discrepancy, and the points 1 � tj for multivariate integration.

In this chapter we also discuss bounds on theL2 discrepancy anchored at 0, focusing
on their dependence on d . The factors in the lower and upper bounds on the minimal
discrepancy anchored at 0 depend on d , and the exact form of this dependence is
not known. Even the asymptotic constants, for which d � 2 is fixed and n tends to
infinity, are not known. The minimal discrepancy anchored at 0 is at most equal to
3�d=2 and this bound is sharp for n D 0. The case n D 0 corresponds to the initial
discrepancy anchored at 0, which is exponentially small for large d . In terms of the
corresponding integration problem, this means that the boundary conditions, f .x/ D 0

if one component of x is zero (or one), for functions f from the unit ball of the Sobolev
space anchored at 0 (or 1) imply that their integrals are at most 3�d=2. This may indicate
that this L2 discrepancy and multivariate integration are not properly normalized for
larged . We can remove the boundary conditions and switch to theweighted discrepancy
anchored at 0, and to multivariate integration for the weighted Sobolev space anchored
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at 0 (or 1). Again the minimal weighted discrepancy anchored at 0 of n points is
the same as the minimal worst case error of algorithms using n function values for
approximating the integrals for the unit ball of the weighted Sobolev space anchored
at 0 (or 1).

We use weights to moderate the influence of all groups of variables, see Volume I
and in particular see Section 5.3.2 for a discussion of weights. As we know from
Volume I, finite-order weights, see [54], allow us to model functions that are sums of
functions of at most ! variables, with ! independent of d . Product weights, see [277],
allow us to model functions that depend on the successive variables in a diminishing
way.

The weights are especially needed for large d , which occurs (as we already know)
in many applications including financial mathematics, physics, chemistry and statis-
tics. In such applications, d is often in the hundreds or thousands. Another type of
application is path integration, where d D 1 and a finite (but usually very large) d is
obtained by approximation of a path integral.

The choice of weights is, in general, a delicate problem. We believe that the weights
should be chosen such that the initial weighted discrepancy anchored at 0 is of order
1 or at most polynomially dependent on d . To see this point more clearly, let �d;u,
where u � Œd �, be the weight that moderates the behavior of the variables in u. Then
the initial weighted discrepancy anchored at 0 is� X

u�Œd�
�d;u3

�juj�1=2:
Suppose that �d;u D 0 for all juj < d and �d;Œd� D 1; we then obtain the previous

discrepancy anchored at 0 with the initial discrepancy 3�d=2. Next, suppose that
�d;u D 1 for all u � Œd �. This corresponds to the case in which all groups of variables
are equally important. Then the initial discrepancy anchored at 0 is .4=3/d=2, which
is now exponentially large in d . Neither choice is satisfactory. However, if we have
finite-order weights, �d;u D 0 for all juj > ! and �d;u 2 Œ0; 1� for juj � !, then the
initial weighted discrepancy is of order of the number of non-zero weights, which is of
order d! . For product weights, �d;u D Q

j2u �d;j for �d;j � �d;j�1 and �d;j 2 Œ0; 1�,
the initial discrepancy is

Qd
jD1.1C 1

3
�d;j /

1=2. This is even uniformly bounded in d

iff supd
Pd
jD1 �d;j < 1, and is polynomial in d iff

Pd
jD1 �d;j D O.ln.d C 1//.

We present several estimates of the L2 weighted discrepancy anchored at 0, from
which we deduce tractability of the corresponding multivariate integration problem.
More precisely, we study the minimal number of points n D n."; d/ for which the
weighted L2 discrepancy anchored at 0 in the d -dimensional case is at most ", which
corresponds to the absolute error criterion, or is at most " times the initial discrepancy,
which corresponds to the normalized error criterion. The minimal n means that we
choose points tj optimally. The coefficients in the discrepancy formula can be also
chosen optimally, or we may fix them to be n�1, as is done for the widely used QMC
(Quasi-Monte Carlo) algorithms. As we know, tractability means that n."; d/ is not
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exponential in "�1 C d . There are different ways of measuring the lack of exponential
dependence. As in Volume I, we discuss

• weak tractability1, in which lim"�1Cd!1."�1 C d/�1 ln n."; d/ D 0,

• polynomial and strong polynomial tractability, in which n."; d/ is bounded poly-
nomially in "�1 and d , or only polynomially in "�1,

• T -tractability and strongT -tractability, in whichn."; d/ is bounded by a multiple
of some power of T ."�1; d / or T ."�1; 1/. Here T is an increasing function of
both arguments and T is not exponential, i.e.,

lim
"�1Cd!1

."�1 C d/�1 ln T ."�1; d / D 0:

We present a number of tractability results. In particular, for finite-order weights
we have polynomial tractability of QMC algorithms for both the absolute and normal-
ized error criteria, see [275]. Furthermore, polynomial tractability can be achieved if
we use Niederreiter, Halton, Sobol or shifted lattice rules points. For product weights,
(strong) polynomial tractability for QMC algorithms is equivalent to (strong) polyno-
mial tractability. Strong polynomial tractability holds iff

lim sup
d

dX
jD1

�d;j < 1;

and polynomial tractability holds iff

lim sup
d

dX
jD1

�d;j

ln d
< 1;

see [221], [277]. Weak tractability for QMC algorithms is also equivalent to weak
tractability and holds, see [85], iff

lim
d

dX
jD1

�d;j

d
D 0:

We also cite conditions on T -tractability and strong T -tractability from [85].
Although the main stress in this chapter is on the (weighted) L2 discrepancy, we

also briefly discuss (weighted) Lp discrepancy for p 2 Œ1;1� and its relation to
multivariate integration. Section 9.8 mainly covers the case p < 1. We also report
various tractability results for the absolute and normalized error criteria. The case
p D 1 corresponds to the star discrepancy, which is probably the most challenging,
see Section 9.9. In this case, the absolute and normalized error criteria coincide since

1In this book by ln we always mean the natural logarithm. It may happen that n."; d/ D 0 for some "
and d , indicating that the problem is trivial for this pair. By convention, we define ln 0 D 0.



9.2 L2 Discrepancy Anchored at the Origin 7

the initial star discrepancy is 1. Surprisingly even the unweighted case is polynomially
tractable. We also report tractability results for the weighted star discrepancy. In
particular, we report a surprising result of Hinrichs, Pillichshammer and Schmid [132]
and give a (more or less) complete proof.

As in Volume I, we will propose a number of open problems throughout the suc-
cessive chapters. Since thirty open problems were presented in Volume I, and we want
to number all our open problems consecutively, the open problems in this volume start
with the number 31. In this chapter we will propose twelve open problems related to
discrepancy and integration, which are numbered from 31 to 42. The reader is also
referred to Heinrich [103] for more open problems concerning the star discrepancy.

9.2 L2 Discrepancy Anchored at the Origin

In this section we discuss L2 discrepancy for the d -dimensional unit cube Œ0; 1�d , the
case that has been most extensively studied. Let x D Œx1; : : : ; xd � 2 Œ0; 1�d . The
box Œ0; x/ denotes the set Œ0; x1/ � � � � � Œ0; xd / whose (Lebesgue) volume is clearly
x1 � � � xd . The boxes Œ0; x/ are anchored at the origin, which is why the corresponding
concept ofL2 discrepancy is called theL2 discrepancy anchored at the origin (or at 0).
Later we consider more general sets than Œ0; x/ and that will lead to different notions
of discrepancy.

For given points t1; t2; : : : ; tn 2 Œ0; 1/d , we approximate the volume of Œ0; x/ by the
fraction of the points tj which are in the box Œ0; x/. The error of such an approximation
is

x1 � � � xd � 1

n

nX
jD1

1Œ0;x/.tj /;

where 1Œ0;x/.tj / is the indicator (characteristic) function, which is equal to 1 if tj 2
Œ0; x/, and to 0 otherwise.

Observe that we use equal coefficients n�1 in the previous approximation scheme.
As we shall see, this corresponds to QMC (Quasi-Monte Carlo) algorithms for multi-
variate integration. It is a good idea to generalize this approach by allowing arbitrary
real coefficients aj instead of n�1. That is, we approximate the volume of Œ0; x/ by
the weighted sum of points in Œ0; x/, with the error given by the discrepancy function

disc.x/ ´ x1 � � � xd �
nX

jD1
aj 1Œ0;x/.tj /: (9.2)

The L2 discrepancy anchored at the origin for points t1; t2; : : : ; tn and coefficients
a1; a2; : : : ; an is just the L2 norm of the error function (9.2), i.e.,

disc2.ftj g; faj g/ D
�Z

Œ0;1�d

�
x1 � � � xd �

nX
jD1

aj 1Œ0;x/.tj /
�2

dx

	1=2
: (9.3)
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We sometimes simply call disc2.ftj g; faj g/ the L2 discrepancy if it is clear from the
context that we use the boxes Œ0; x/ as our test sets.

By direct integration, we have the explicit formula of the L2 discrepancy for the
points tj D Œtj;1; : : : ; tj;d � and the coefficients aj ,

disc22.ftj g; faj g/

D 1

3d
� 1

2d�1
nX

jD1
aj

dY
kD1

.1 � t2j;k/C
nX

i;jD1
aiaj

dY
kD1

�
1 � max.ti;k; tj;k/

�
;

(9.4)

this was first presented by Warnock in [323].
Hence, disc22.ftig; faig/ can be computed using O.dn2/ arithmetic operations.

Faster algorithms for computingL2 discrepancy for relatively small d have been found
by Heinrich [98] and Frank and Heinrich [68].

The major problem for L2 discrepancy is to find points tj and coefficients aj that
minimize disc2.ftj g; faj g/. Let

disc2.n; d/ D inf
t1;t2;:::;tn2Œ0;1/d

disc2.ftj g; fn�1g/

and
disc2.n; d/ D inf

t1;t2;:::;tn2Œ0;1/d

a1;a2;:::;an2R

disc2.ftj g; faj g/

denote the minimal L2 discrepancy when we use n points in dimension d . For the
minimal L2 discrepancy disc2.n; d/ we choose optimal tj for coefficients aj D n�1
whereas for disc2.n; d/ we also choose optimal aj .

Observe that for n D 0 we do not use any points tj or coefficients aj , and so the
initial L2 discrepancy satisfies

disc2.0; d/ D disc2.0; d/ D
�Z

Œ0;1�d
x21 � � � x2d dx

	1=2
D 3�d=2: (9.5)

Hence, the initial L2 discrepancy is exponentially small in d . This may suggest that
for large d , the L2 discrepancy is not properly normalized. We shall see later how we
can cope with this problem.

9.2.1 Bounds for the L2 Discrepancy

We briefly discuss bounds on the minimalL2 discrepancy. For a fixed d , the asymptotic
behavior of the minimalL2 discrepancy as a function ofn is known. There exist positive
numbers cd and Cd such that

cd
ln.d�1/=2 n

n
� disc2.n; d/ � disc2.n; d/ � Cd

ln.d�1/=2 n
n

(9.6)
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for all n � 2. The lower bound is a celebrated result of Roth [254] proved in 1954
for aj D n�1. For arbitrary aj , using essentially the same proof technique, the lower
bound was proved by Chen [24], [25]. The upper bound was proved by Roth and Frolov
in 1980 again for aj D n�1, see Roth [255] and Frolov [71]. The original proofs of
the upper bounds were not fully constructive and based on a randomized argument. In
fact, there are many papers along this line. We mention only one of them, where the
upper bound is achieved by using randomized digital nets in a prime base, see Cristea,
Dick and Pillichshammer [38]. A fully constructive proof was finally given in 2002 by
Chen and Skriganov [30].

The essence of (9.6) is that (modulo a logarithmic factor) the L2 discrepancy be-
haves asymptotically in n like n�1, independently of d . The power of the logarithmic
factor is .d � 1/=2 and as long as d is not too large this factor is negligible. On the
other hand, if d is large, say d D 360 as in some financial applications, the factor
ln.d�1/=2 n is very important. Indeed, the function

ln.d�1/=2 n
n

is increasing for n � exp ..d � 1/=2/. The latter number for d D 360 is

exp.179:5/ � 9 � 1077:
Obviously, it is impossible to use such a large valuedn. Hence whend is large, the good
asymptotic behavior of disc2.n; d/ cannot be really utilized for practical purposes.

Obviously if d is large, then the numbers cd and Cd from (9.6) are also very
important. We do not know much about them. However, we know that the asymptotic
constant

Ad D lim sup
n!1

disc2.n; d/
n

ln.d�1/=2 n
is super-exponentially small in d .

For large d and a relatively small n, we need other estimates on disc2.n; d/. By a
simple averaging argument of (9.4) with respect to tj for aj D n�1, we haveZ
Œ0;1�nd

disc22.ftj g; fn�1g/ dt1 dt2 � � � dtn D 1

3d
� 2

3d
C 1

n2d
C1 � n�1

3d
D 2�d � 3�d

n
:

By the mean value theorem we conclude that there are points t1; t2; : : : ; tn for which
the square of the L2 discrepancy is at most 2�d=n. Therefore

disc2.n; d/ �
�Z

Œ0;1�nd

disc22.ftj g; fn�1g/ dt1 dt2 � � � dtn

	1=2
� 2�d=2

n1=2
: (9.7)

The last estimate looks very promising since we have an exponentially small depen-
dence on d through 2�d=2. However, we should keep in mind that even the initial
L2 discrepancy is 3�d=2 which is much smaller than 2�d=2 for large d . We can apply
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Chebyshev’s inequality and conclude from the last estimate that for any numberC > 1,
the set of sample points

Ac D ˚
.t1; : : : ; tn/ j disc2.ftj g; fn�1g/ � C 2�d=2n�1=2 


has Lebesgue measure at least 1 � C�2. Hence, for C D 10 we have a set of points
t1; t2; : : : ; tn of measure at least 0:99 for which the L2 discrepancy is at most 10 �
2�d=2 n�1=2. Surprisingly enough, we still do not know how to construct such points.
Of course, such points can be found computationally. Indeed, it is enough to take
points t1; t2; : : : ; tn randomly (as independent and uniformly distributed points over
Œ0; 1�d ), and compute their discrepancy with aj D n�1. If their discrepancy is at most
10 �2�d=2n�1=2 we are done. If not, we repeat random selection of points t1; t2; : : : ; tn.
Then after a few such selections we will get the desired points since the failure of k
trials is C�2k , or 10�2k for C D 10, which is exponentially small in k.

The bound (9.6) justifies the definition of low discrepancy sequences (and points
which we do not cover here), for the coefficients aj equal n�1. Namely, the sequence
ftj g is a low discrepancy sequence if there is a positive number Cd such that

disc2.ftj g; fn�1g/ � Cd
lnd n

n
for all n � 2: (9.8)

That is, the L2 discrepancy of low discrepancy sequences enjoys almost the same
asymptotic behavior as the minimal L2 discrepancy with the only difference being in
the power of the logarithmic factor. The search for low discrepancy sequences has
been a very active research area, and many beautiful and deep constructions have been
obtained. Such sequences usually bear the name of their finders. Today we know the
low discrepancy sequences (and points) of Faure, Halton, Hammersley, Niederreiter,
Sobol, and Tezuka, as well as .t; m; s/ points and .t; m/ nets, and lattice or shifted
lattice points as their counterparts for the periodic case, see Beck and Chen [9], Beck
and Sós [11], Drmota and Tichy [61], Matoǔsek [184], Niederreiter [201], Sloan and
Joe [273] and Tezuka [301]. The reader interested in definitions and many old and new
properties of such sequences and points is referred to a recent monograph of Dick and
Pillichshammer [53].

There are also points and sequences satisfying (9.8) with more general coefficients
aj than n�1 in (9.2). An example is provided by hyperbolic points, see Temlyakov
[297] and [329], although in this case we have ln1:5d n instead of lnd n in (9.8). Explicit
bounds on theL2 discrepancy for hyperbolic points can be found in [329]. In particular,
hyperbolic points t1; t2; : : : ; tn and coefficients a1; a2; : : : ; an were constructed such
that disc2.ftj g; faj g/ � " with

n � 3:304

�
1:77959C 2:714

�1:12167C ln "�1

d � 1
	1:5.d�1/ 1

"
(9.9)

as well as

n � 7:26

�
1

"

	2:454
: (9.10)
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Observe an intriguing dependence on d in the bound (9.9). For a fixed large d , and "
tending to zero we have

n D O

�
1

"

�
ln "�1�1:5.d�1/

	
:

On the other hand, (9.10) shows that n can be bounded by a polynomial in "�1 for
all d . Again it looks more surprising than it really is since the initial L2 discrepancy
is exponentially small in d . As we shall see in the next subsection, the exponent 2:454
in (9.10) is not sharp. Clearly, it has to be at least one but its exact value is still not
known.

9.2.2 The Exponent of the L2 Discrepancy

The bound (9.10) of the previous subsection can be rewritten as

disc2.n; d/ � 2:244

n0:408
for all n; d;

and is obtained by hyperbolic points.
This bound suggests that we should try to find the smallest (or the infimum of)

positive p for which there exists a positive C such that

disc2.n; d/ � C n�1=p for all n; d 2 N: (9.11)

We stress that the last estimate holds for all n and d ; hence neither C nor p depend on
n and d . Such a minimal p is denoted by p� and is called the exponent p� of the L2
discrepancy, see [331].

The bound p� � 1 is obvious, since for d D 1 we have

disc2.n; 1/ D ‚
�

disc2.n; 1/
� D ‚.n�1/:

For aj D n�1, it is proved by Matoušek [183] that p in (9.11) must be at least 1:0669.
This means that the case of arbitrary d is harder than the univariate case, so that the
presence of the logarithmic factors in (9.6) cannot be entirely neglected.

For general coefficients aj , the upper bound p� � 1:4779 was proved in [331].
Recently it was improved in [336] to

p� � 1:41274: (9.12)

The proof of this upper bound is non-constructive. The best constructive bound
currently known is p D 2:454 from the estimate (9.10) for hyperbolic points, see
[329]. It was proved by Plaskota [244] that for hyperbolic points or (more generally)
for nested sparse grids points we have p � 2:1933. Hence, to obtain p < 2:1933 we
must use points that do not form a sparse grid. This leads us to the first open problems
in this volume.
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Open Problem 31.

• Improve the bounds for the exponent p� of the L2 discrepancy anchored at 0,
both for arbitrary coefficients aj and for the QMC coefficients aj D n�1.

Open Problem 32.

• Construct points tj for which (9.11) holds with p < 2. The cost of construction
of t1; t2; : : : ; tn must be polynomial in d and n. Of course, we prefer low degree
polynomials.

9.2.3 Normalized L2 Discrepancy

One way to omit the exponentially small initial L2 discrepancy is to switch to the
normalized case. By the normalized L2 discrepancy, we mean

disc2.ftj g; faj g/
disc2.0; d/

:

That is, we normalize the problem by the initial value of the L2 discrepancy, which
is 3�d=2. We now define

Nn."; d/ D minfn j disc2.n; d/ � " disc2.0; d/g; (9.13)

n."; d/ D minfn j disc2.n; d/ � " disc2.0; d/g (9.14)

as the minimal number of points necessary to reduce the initial discrepancy by a factor
", either with the coefficients aj D n�1 or with optimally chosen aj . We ask whether
Nn."; d/ and n."; d/ behave polynomially in "�1 and d , or at least not exponentially in
"�1 and d . We stress that the polynomial bounds on the L2 discrepancy that we have
presented above are useless for the normalized case, since we now have to compare
the minimal L2 discrepancy to " 3�d=2 instead of ".

The problem how Nn."; d/ and n."; d/ depend on d has been partially solved and
we now report its solution. First of all, notice that it directly follows from (9.5) and
(9.7) that

Nn."; d/ � 1:5d "�2: (9.15)

It was proved in [352], see also [277], that

Nn."; d/ � .1:125/d .1 � "2/: (9.16)

The bound (9.16) is also valid if all coefficients aj are non-negative. Hence, we have
exponential dependence on d .

For arbitrary aj , it was proved in [221], see also Chapter 11, that for any positive
"0 < 1 there exists a positive c such that

c 1:0628d � n."; d/ � 1:5d "�2 for all d and " 2 .0; "0/: (9.17)
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Hence, n."; d/ goes to infinity exponentially fast in d .
The lower bound 1:0628d can be slightly improved to 1:0833d , as we will show

in Section 11.5.4 of Chapter 11. Moreover, Plaskota, Wasilkowski and Zhao [248]
showed that we can improve the upper bound in (9.17) by replacing 1:5d by .4=3/d .
We will show this in Section 10.7.11 of Chapter 10. Therefore for some positive c and
"0 we have

c 1:0833d � n."; d/ � Œ4=3�d "�2 for all d and " 2 .0; "0/: (9.18)

It is not known whether 9=8 in (9.16) and 1:0833 in (9.18) can be increased, and
whether 1:5 in (9.15) and 4=3 in (9.18) can be decreased. This leads us to the next two
open problems.

Open Problem 33.

• For the normalized L2 discrepancy and aj D n�1, find the largest C1 and the
smallest C2 for which for any positive "0 there exists a positive c such that

c C d
1 � Nn."; d/ � C d

2 "
�2 for all d and " 2 .0; "0/:

Today, we know that C1 � 9=8 and C2 � 1:5.

Open Problem 34.

• For the normalized L2 discrepancy and optimally chosen aj , find the largest C1
and the smallest C2 for which for any positive "0 there exists a positive c such
that

c C d
1 � n."; d/ � C d

2 "
�2 for all d and " 2 .0; "0/:

Today, we know that C1 � 1:0833 and C2 � 4=3.

9.3 Weighted L2 Discrepancy

As already discussed in the introduction, the L2 discrepancy anchored at 0 is related
to multivariate integration for functions satisfying some boundary conditions that are
probably not very common in computational practice. To remove these boundary
conditions we need to consider a more general L2 discrepancy. Furthermore, the
integrands may depend differently on groups of variables when d is large. To address
this property, we need to consider the weighted L2 discrepancy, which is the subject
of this section.

As always, by Œd � WD f1; 2; : : : ; dg we mean the set of the first d indices, and by u
we denote an arbitrary subset of Œd �, and juj is its cardinality. We are given a sequence

� D ˚
�d;u



u�Œd�; dD1;2;:::;

of non-negative weights. For simplicity, we assume that �d;u 2 Œ0; 1�.
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As in Volume I, for a vector x 2 Œ0; 1�d let xu denote the vector from Œ0; 1�juj
with the components of x whose indices are in u. For example, for d D 7 and
u D f2; 4; 5; 6g we have xu D Œx2; x4; x5; x6�. We let dxu D Q

j2u dxj . By .xu; 1/,

we mean the vector from Œ0; 1�d with the same components as x for indices in u
and with the rest of components being replaced by 1. For our example, we have
.xu; 1/ D Œ1; x2; 1; x4; x5; x6; 1�. Recall that for given points t1; t2; : : : ; tn 2 Œ0; 1/d

and real coefficients a1; a2; : : : ; an, the function disc.xu; 1/ is given by (9.2) and takes
now the form

disc.xu; 1/ D
Y
k2u

xk �
nX

jD1
aj 1Œ0;xu/

�
.tj /u

�
:

The weighted L2 discrepancy anchored at the origin, or simply the L2 weighted dis-
crepancy, is then defined as

disc2;� .ftj g; faj g/ D
� X

u�Œd�
�d;u

Z
Œ0;1�juj

disc2.xu; 1/ dxu

	1=2
: (9.19)

Note that if �d;u D 0 for all u with juj < d , and �d;Œd� D 1, then the L2 weighted
discrepancy reduces to the L2 discrepancy studied before.

By usingWarnock’s formula (9.4), we obtain an explicit formula for theL2weighted
discrepancy. Namely,

disc22;� .ftj g; faj g/ DX
u�Œd�

�d;u

�
1

3juj � 1

2juj�1
nX

jD1
aj
Y
k2u

.1 � t2j;k/C
nX

i;jD1
aiaj

Y
k2u

.1 � max.ti;k; tj;k//

	
:

The standard (unweighted) case corresponds to � D 1, i.e., �d;u D 1 for all d and
u � Œd �. Since

X
u�Œd�

3�juj D
dX
kD0

�
d

k

	
3�k D .1C 3�1/d D �

4
3

�d
and X

u�Œd�

Y
k2u

1 � t2
j;k

2
D

dY
kD1

�
1C 1 � t2

j;k

2

	
;

we have

disc22;f1g.ftj g; faj g/ D�
4

3

	d
� 2

nX
jD1

aj

dY
kD1

3 � t2
j;k

2
C

nX
i;jD1

aiaj

dY
kD1

�
2 � max.ti;k; tj;k/

�
:
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As before, for an arbitrary sequence � D f�d;ug let

disc2;� .n; d/ D inf
t1;t2;:::;tn2Œ0;1/d

disc2;� .ftj g; fn�1g/; (9.20)

disc2;� .n; d/ D inf
t1;t2;:::;tn2Œ0;1/d ; a1;a2;:::;an2R

disc2;� .ftj g; faj g/ (9.21)

be the minimal weighted L2 discrepancies. For n D 0, we obtain

disc
2

2;� .0; d/ D disc22;� .0; d/ D
X

u�Œd�
�d;u3

�juj:

Observe that for the unweighted case, �d;u D 1, we have

disc2;f1g.0; d/ D �
4
3

�d=2
;

which is exponentially large in d .
For product weights, i.e., �d;u D Q

j2u �d;j for some �d;j 2 Œ0; 1�, we have

disc2;� .0; d/ D
dY
jD1

.1C 1
3
�d;j /

1=2:

It is easy to check that the initial discrepancy is uniformly bounded in d iff

sup
d2N

dX
jD1

�d;j < 1:

For product weights independent of d , i.e., for �d;j D �j , the last condition simply
means that

P1
jD1 �j < 1.

Hence, the initial L2 discrepancy is exponentially small in d whereas the un-
weighted L2 discrepancy is exponentially large in d . Both cases seem to be ill-
normalized. We believe that the choice of the weight sequence � should be such that
the initial weighted L2 discrepancy is of order dq for some q � 0.

How small is the minimal weighted discrepancy? To answer this question we
can average the square of the weighted L2 discrepancy for the sample points tj and
coefficients aj D n�1, assuming that tj are uniformly and independently distributed
over Œ0; 1�d . We obtainZ

Œ0;1�nd

disc22;�
�ftj g; fn�1g� dt1 dt2 � � � dtn

D
X

u�Œd�
�d;u

�
1

3juj � 1

2juj�1

�
2

3

	juj
C 1

n2

�
n

�
1

2

	juj
C .n2 � n/

�
1

3

	juj 		

D 1

n

X
u�Œd�

�d;u

��
1

2

	juj
�
�
1

3

	juj 	
:
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By the mean value theorem we conclude that

disc2;� .n; d/ � disc2;� .n; d/ � 1

n1=2

� X
u�Œd�

�d;u
�
2�juj � 3�juj��1=2: (9.22)

Applying Chebyshev’s inequality with C > 1, we also conclude that the set of sample
points®

.t1; : : : ; tn/
ˇ̌

disc2;� .¹tj º; ¹n�1º/ � C n�1=2�P
u�Œd� �d;u

�
2�juj � 3�juj��1=2 ¯

has Lebesgue measure at least 1 � C�2. For the unweighted case, �d;u 	 1, we have

disc2;f1g.n; d/ � disc2;f1g.n; d/ � n�1=2 �.3=2/d � .4=3/d �1=2 � n�1=2 1:5d=2:

We now assume product weights, �d;u D Q
j2u �d;j . Then dropping the negative

terms �3juj in (9.22) we obtain

disc2;� .n; d/ � disc2;� .n; d/ � 1

n1=2

dY
jD1

�
1C 1

2
�d;j

�
D n�1=2 exp

� dX
jD1

ln
�
1C 1

2
�d;j

� � � n�1=2 exp
�
1

2

dX
jD1

�d;j

	

D n�1=2.d C 1/
1
2

Pd
j D1 �d;j = ln.dC1/

:

It is easy to check that

sup
d2N

dX
jD1

�d;j < 1 (9.23)

implies that the minimal discrepancies do not depend on d , i.e.,

disc2;� .n; d/ D O.n�1=2/ and disc2;� .n; d/ D O.n�1=2/

with the factors in the O notation independent of d . Furthermore if

q� WD lim sup
d2N

Pd
jD1 �d;j
ln d

< 1 (9.24)

then the minimal discrepancies depend polynomially on d . More precisely, for q > q�
we have

disc2;� .n; d/ D O.d q=2 n�1=2/ and disc2;� .n; d/ D O.d q=2 n�1=2/:

Furthermore, if

lim
d!1

Pd
jD1 �d;j
d

D 0 (9.25)
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then the minimal discrepancies do not depend exponentially on d , i.e.,

lim
d!1

ln disc2;� .n; d/

d
D lim
d!1

ln disc2;� .n; d/

d
D 0:

It turns out that (9.23), (9.24) and (9.25) are also necessary conditions to have the
minimal discrepancies independent of d , polynomially dependent on d and not expo-
nentially dependent on d , respectively. The first two properties are proved in [221],
and the third one in [85]. We will also reprove these results in Chapter 11.

The consequences of the upper and lower bounds on the weighted L2 discrepancy
will be discussed later after we present relations between the weightedL2 discrepancy
and multivariate integration for some Sobolev spaces.

Remark 9.1. We end this subsection by a remark on the limiting discrepancy which is
formally defined for d D 1, see [277]. Here we assume product weights independent
of d , i.e.,

�d;u D
Y
j2u

�j for some �j 2 Œ0; 1�:

For points t .1/
i D Œti;1; ti;2; : : : � 2 Œ0; 1�1, let t .d/i D Œti;1; : : : ; ti;d � 2 Œ0; 1�d denote

their d -dimensional projections. Then the discrepancy disc2;� .ft .d/i g; fn�1g/ is a non-
decreasing function of d . The limiting discrepancy is then defined as

disc2;� .ft .1/
i g/ D lim

d!1
disc2;� .ft .d/i g; fn�1g/:

We have

disc2;� .ft .1/
i g/ < 1 iff

1X
jD1

�j < 1:

We stress that the last condition holds independently of the sample points t .1/
i . We

see once more that the condition
P1
jD1 �j < 1 is needed to have a finite limiting

discrepancy. Error bounds for quasi-Monte Carlo algorithms in an infinite dimensional
setting are studied by Hickernell and Wang [126].

9.3.1 Normalized Weighted L2 Discrepancy

As for the normalized L2 discrepancy, we define

Nn� ."; d/ D minfn j disc2;� .n; d/ � " disc2;� .0; d/ g; (9.26)

n� ."; d/ D minfn j disc2;� .n; d/ � " disc2;� .0; d/ g (9.27)

as the minimal number of points necessary to reduce the initial weighted discrepancy
by a factor ", either with the coefficients aj D n�1 or with optimally chosen aj .
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For the unweighted case, � D f1g, it was proved in [221], see also Section 11.5.4
of Chapter 11, that for any positive "0 < 1 there exists a positive c such that

c 1:0202d � nf1g."; d/ � Nnf1g."; d/ � 1:125d "�2 for all d and " 2 .0; "0/:
(9.28)

The upper bound on nf1g."; d/ can be slightly improved using Plaskota, Wasilkowski
and Zhao [248], see again Section 11.5.4 of Chapter 11, and we have

nf1g."; d/ � d.1:1143 : : : /d "�2e:
Hence, for the normalized L2 discrepancy, as well as for the normalized weighted

L2 discrepancy with �d;u D 1, we have an exponential dependence on d , and the
corresponding n."; d/ and nf1g."; d/ go exponentially fast with d to infinity. It is now
natural to ask what are necessary and sufficient conditions on the weight sequence
� D f�d;ug to not have an exponential dependence on d , and what we have to assume
about � to guarantee, say, polynomial dependence on d , or no dependence on d at all.
We will study these questions later.

9.4 Multivariate Integration

We consider multivariate integration for real functions defined on the d -dimensional
unit cube Œ0; 1�d and belonging to a Hilbert space with a reproducing kernel
Kd W Œ0; 1�d � Œ0; 1�d ! R. This space is denoted by H.Kd / and its inner product by
h�; �iH.Kd /

. The basic information about such spaces can be found in Aronszajn [2] and
in Berlinet and Thomas-Agnan [14]. Here, we only mention that Kd .�; x/ 2 H.Kd /

for all x 2 Œ0; 1�d , and that .Kd .xi ; xj //i;jD1;2;:::;m is a m � m symmetric positive
semi-definite matrix for any choice of m and xj 2 Œ0; 1�d . Furthermore, and this is
probably the most important property, for any functionf 2 H.Kd / and any x 2 Œ0; 1�d
we have

f .x/ D hf;Kd .�; x/iH.Kd /
:

The space H.Kd / is the completion of linear combinations of functions of the form

mX
jD1

ajKd .�; xj /

for any m, real aj and xj 2 Œ0; 1�d .
We illustrate the reproducing kernel Hilbert spaces for two examples. For the first

example and d D 1, we take a number ˇ 2 Œ0; 1� and define

K
ˇ
1 .x; y/ D 1

2

�jx � ˇj C jy � ˇj � jx � yj� for x; y 2 Œ0; 1�: (9.29)

Note that for ˇ D 0, we have

K01 .x; y/ D 1
2

�
x C y � jx � yj� D min.x; y/;
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whereas for ˇ D 1, we have

K11 .x; y/ D 1
2

�
1 � x C 1 � y � jx � yj� D 1 � max.x; y/:

For an arbitrary ˇ, the kernel Kˇ1 vanishes for x � ˇ � y and y � ˇ � x. This prop-
erty is important for establishing lower bounds on the minimal errors for multivariate
integration, see [221] and Chapter 11.

The space H.Kˇ1 / consists of absolutely continuous functions vanishing at ˇ and
whose first derivatives are in L2.Œ0; 1�/. That is,

H.K
ˇ
1 / D ˚

f W Œ0; 1� ! R
ˇ̌
f .ˇ/ D 0; f abs. cont. and f 0 2 L2.Œ0; 1�/



with the inner product

hf; gi
H.K

ˇ
1
/

D
Z 1

0

f 0.x/ g0.x/ dx for all f; g 2 H.Kˇ1 /:

For d � 1, we take a vector ˇ D Œˇ1; ˇ2; : : : ; ˇd � 2 Œ0; 1�d , and define H.Kˇ
d
/ as

the d -fold tensor product,

H.K
ˇ

d
/ D H.K

ˇ1

1 /˝H.K
ˇ2

1 /˝ � � � ˝H.K
ˇd

1 /;

with the reproducing kernel given by

K
ˇ

d
.x; y/ D

dY
jD1

K ǰ

1 .xj ; yj / for x; y 2 Œ0; 1�d :

The spaceH.Kˇ
d
/ consists of functions such that f .x/ D 0 if there exists an index

j 2 Œd � such that xj D ǰ , and which are differentiable with respect to all variables,
with first partial derivatives being in L2.Œ0; 1�d /. The inner product is given by

hf; gi
H.K

ˇ

d
/

D
Z
Œ0;1�d

@d

@x1@x2 � � � @xd f .x/
@d

@x1@x2 � � � @xd g.x/ dx

for f; g 2 H.Kˇ
d
/. The space H.Kˇ

d
/ is called the Sobolev space with mixed deriva-

tives of order one anchored at ˇ, or shortly the Sobolev space anchored at ˇ.
As the second example of a reproducing kernel Hilbert space, take an arbitrary

weight sequence � D f�d;ug with �d;u � 0. Define the reproducing kernel as

K
ˇ

d;�
.x; y/ D

X
u�Œd�

�d;uK
ˇ
u .x; y/

with

Kˇu .x; y/ D
Y
j2u

K
ˇ
1 .xj ; yj / D

Y
j2u

jxj � ǰ j C jyj � ǰ j � jxj � yj j
2
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for x; y 2 Œ0; 1�d .
For the unweighted case, �d;u D 1, we have

K
ˇ

d;f1g.x; y/ D
dY
jD1

�
1CK

ˇ
1 .xj ; yj /

�

D
dY
jD1

�
1C 1

2

�jxj � ǰ j C jyj � ǰ j � jxj � yj j�� :
The Hilbert spaceH.Kˇ

d;�
/ is the sum of tensor product Hilbert spacesH.Kˇu / for all

u for which �d;u is positive. If all �d;u are positive, the inner product is given by

hf; gi
H.K

ˇ

d;�
/

D
X

u�Œd�
��1
d;u

Z
Œ0;1�juj

@juj

@xu
f .xu; ˇ/

@juj

@xu
g.xu; ˇ/ dxu

for f; g 2 H.Kd;� / with the notation @xu D Q
j2u @xj and dxu D Q

j2u dxj . Here,
.xu; ˇ/ denotes the d -component vector whose j th component is xj for j 2 u and ǰ

for j … u. In particular, for u D ; we have .x;; ˇ/ D ˇ, whereas for u D Œd � we
have .xŒd�; ˇ/ D x.

For u D ;, we haveKˇ; D 1 andH.Kˇ; / D span.1/. The term in the inner product
corresponding to u D ; is equal to ��1

d;; f .ˇ/ g.ˇ/.
We have a unique decomposition of functions f from H.K

ˇ

d;�
/ given by

f D
X

u�Œd�
fu with fu 2 H.Kˇu /;

where the fu’s are mutually orthogonal and

kf k2H.Kd;� /
D

X
u�Œd�

��1
d;u kfuk2

H.K
ˇ
u/
:

If one of the weights is zero, say �d;u D 0, then the corresponding term fu D 0

and we interpret 0=0 as 0. Hence, the inner product is the sum of terms for positive
�d;u with all fu D 0 if �d;u D 0.

Observe that fu depends only on variables in u. In particular f; D f .ˇ/, and
ffj g.x/ D f .ˇ1; ˇ2; : : : ; ǰ�1; xj ; ǰC1; : : : ; ˇd / � f .ˇ/. It is shown in [155] that
for any u � Œd � we have

fu.x/ D
X
v�u

.�1/juj�jvjf .xv; ˇ/:

In general, the Hilbert space H.Kˇ
d;�
/ is not a tensor product space. This holds if

some �d;u D 0. However, for product weights, �d;u D Q
j2u �d;j for some �d;j 2
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Œ0; 1�, we have

K
ˇ

d;�
.x; y/ D

dY
jD1

�
1C �d;jK

ˇ
1 .xj ; yj /

�

D
dY
jD1

�
1C 1

2
�d;j

�jxj � ǰ j C jyj � ǰ j � jxj � yj
��
:

Hence, Kˇ
d;�

is of the product form, which implies that H.Kˇ
d;�
/ is a tensor product

space.
The spaceH.Kˇ

d;�
/ is called the weighted Sobolev space with mixed derivatives of

order one anchored at ˇ, or shortly, the weighted Sobolev space anchored at ˇ.
We are ready to define multivariate integration for functions from a general repro-

ducing kernel Hilbert space H.Kd /. First of all, we need to assume that the space
H.Kd / consists of integrable functions. To guarantee that multivariate integration is a
bounded linear functional, we need to assume that the function

hd .x/ D
Z
Œ0;1�d

Kd .y; x/ dy for x 2 Œ0; 1�d

belongs to H.Kd /.
For f 2 H.Kd /, we define the multivariate integration problem as approximation

of

Id .f / D
Z
Œ0;1�d

f .x/ dx:

Since f .x/ D hf;Kd .�; x/iH.Kd /
, we can rewrite Id .f / as

Id .f / D
�
f;

Z
Œ0;1�d

Kd .�; x/ dx

�
H.Kd /

D hf; hd iH.Kd /
:

Hence, multivariate integration is equivalent to approximating the inner product with
the generator hd . Clearly,

kIdk ´ sup
kf kH.Kd /�1

jId .f /j D khdkH.Kd /:

This means that the norm of the multivariate integration functional Id is the same as
the norm of the function hd . It is easy to check that

khdk2H.Kd /
D
Z
Œ0;1�2d

Kd .x; y/ dx dy:

We approximateId .f /by computing function valuesf .tj / at some sample points tj .
In general, these points can be chosen adaptively, i.e., the choice of tj may depend on
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the previously computed function values f .ti / for i D 1; 2; : : : ; j � 1. Furthermore,
knowing f .tj / for, say, j D 1; 2; : : : ; n, we may take

'n.f .t1/; f .t2/; : : : ; f .tn//

as an approximation of Id .f / for some, in general, nonlinear function 'n W Rn ! R. It
turns out that neither adaption nor nonlinear choices of'n help, as proved by Bakhvalov
(adaption) and by Smolyak (nonlinear 'n), see the original paper of Bakhvalov [5] that
presents both results. These results can be also found in Chapter 4 of Volume I.
Hence, without loss of generality we may restrict ourselves to linear and non-adaptive
approximations of the form

Qn;d .f / D
nX

jD1
ajf .tj / (9.30)

for some real aj and a priori (non-adaptively) given tj from Œ0; 1�d . Usually, Qn;d is
called a linear algorithm. If we let aj D n�1 then

Qn;d .f / D 1

n

nX
jD1

f .tj /

is called a QMC (Quasi-Monte Carlo) algorithm; these formulas are often used in
numerical computational practice as approximations of multivariate integrals. This is
especially the case when d is large.

The worst case error of Qn;d is defined as the largest error between Id .f / and
Qn;d .f / over the unit ball of H.Kd /, so that

ewor.Qn;d IH.Kd // D sup
f 2H.Kd /

kf kH.Kd /�1

ˇ̌
Id .f / �Qn;d .f /

ˇ̌
:

Since Id � Qn;d is linear, the worst case error is obviously the same as the norm
kId �Qn;dk. Furthermore, for any f 2 H.Kd / of arbitrary norm we haveˇ̌

Id .f / �Qn;d .f /
ˇ̌ � ewor.Qn;d IH.Kd // kf kH.Kd /:

At first glance, it may seem surprising but there is an explicit formula for the worst
case error ewor.Qn;d IH.Kd //. Indeed, we have

Qn;d .f / D
D
f;

nX
jD1

ajKd .�; tj /
E
H.Kd /

;

which yields

Id .f / �Qn;d .f / D ˝
f; hd;n

˛
H.Kd /

with hd;n D hd �
nX

jD1
ajKd .�; tj /:
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From this we easily conclude that

ewor.Qn;d IH.Kd // D kId �Qn;dk D khd;nkH.Kd /:

Using properties of the reproducing kernel Kd , we have

khd;nk2H.Kd /
D khdk2H.Kd /

� 2
nX

jD1
ajhd .tj /C

nX
i;jD1

aiajKd .ti ; tj /: (9.31)

We want to choose coefficients aj and sample points tj such that the worst case
error of Qn;d is minimized. Let

ewor.n;H.Kd // D inf
˚
ewor.Qn;d /

ˇ̌
Qn;d given by (9.30) with aj D n�1 
 ;

ewor.n;H.Kd // D inf
˚
ewor.Qn;d /

ˇ̌
Qn;d given by (9.30) with arbitrary aj



:

Here, we use the abbreviation ewor.Qn;d / D ewor.Qn;d IH.Kd //.
In numerous articles the behavior of the minimal errors ewor.n;H.Kd // and

ewor.n;H.Kd // is studied for various spaces H.Kd /. The special emphasis is on
finding sharp estimates of these quantities in terms of n and d . That is, we would like
to know how fast these minimal errors go to zero as n approaches infinity, along with
the dependence on d . In particular, we want to know if they depend polynomially or
at least non-exponentially on d . We report many such estimates in this volume.

9.5 Relations Between Multivariate Integration and Various
Notions of L2 Discrepancy

In this section we show that multivariate integration defined over the Sobolev space
anchored at ˇ is related to the L2 discrepancy. As we shall see, the test sets appearing
in the definition of the L2 discrepancy depend on the anchor ˇ.

9.5.1 Discrepancy Anchored at the Origin

First, we want to show relations between multivariate integration and the most common
discrepancy, which is the L2 discrepancy at the origin.

Consider the Sobolev space H.K1
d
/ anchored at ˇ D 1 D Œ1; 1; : : : ; 1�. Then

K11 .x; y/ D 1 � max.x; y/, and the reproducer hd D h1
d

of multivariate integration
takes now the form

h1d .x/ D 2�d
dY
jD1

�
1 � x2j

�
;

with kh1
d

kH.K1
d
/ D 3�d=2. Note that the norm of h1

d
is the same as the initial L2

discrepancy anchored at the origin.
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Consider a linear algorithm Qn;df D Pn
jD1 ajf .tj / and compute its worst case

error given by (9.31). We have

khd;nk2
H.K1

d
/

D 3�d � 2�.d�1/
nX

jD1
aj

dY
kD1

�
1 � t2j;k

�C
nX

i;jD1
aiaj

dY
kD1

�
1 � max.ti;k; tj;k/

�
;

which is exactly the formula for the L2 discrepancy (9.4). Hence,

ewor.Qn;d IH.K1d // D disc2.ftj g; faj g/;
proving that the L2 discrepancy anchored at 0 is related to multivariate integration for
the Sobolev space anchored at 1.

Do we really have to use different anchors for the L2 discrepancy and the Sobolev
space? Let us check what happens if we take the Sobolev space H.K0

d
/ anchored at

0. Then K01 .x; y/ D min.x; y/ and the reproducer hd D h0
d

is now

h0d .x/ D
dY
jD1

�
xj � 1

2
x2j
�

with kh0
d

kH.K0
d
/ D 3�d=2, as before. The worst case error of Qn;d is now equal to

khd;nk2
H.K0

d
/

D 3�d � 2
nX

jD1
aj

dY
kD1

�
tj;k � 1

2
t2j;k
�C

nX
i;jD1

aiaj

dY
kD1

min.ti;k; tj;k/;

which, at first glance, does not seem to be related to the L2 discrepancy anchored at 0.
However, let us substitute

tj;k D 1 � �j;k for k 2 Œd �:
Since min.x; y/ D 1 � max.1 � x; 1 � y/ we obtain

khd;nk2
H.K0

d
/

D 3�d � 2�.d�1/
nX

jD1
aj

dY
kD1

�
1 � �2j;k

�C
nX

i;jD1
aiaj

dY
kD1

�
1 � max.�i;k; �j;k/

�
;

which is the formula for the L2 discrepancy anchored at 0 for the sample points �j .
Hence,

ewor.Qn;d IH.K0d // D disc2.f1 � tj g; faj g/:
This means that L2 discrepancy anchored at 0 is related to multivariate integration for
both Sobolev spaces, but we either need to change the anchor of the Sobolev space
from 0 to 1, or change the sample points from tj to 1 � tj .
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Similar relations hold also between the weightedL2 discrepancy anchored at 0 and
the weighted Sobolev spaces. For the weighted Sobolev space anchored at 1, we have
the generator hd D h1

d;�
given by

h1d;� .x/ D
X

u�Œd�
�d;u 2

�juj Y
j2u

�
1 � x2j

�
;

with

kh1d;�kH.Kd;� / D
� X

u�Œd�
�d;u3

�juj�1=2:
From this we conclude that

ewor.Qn;d IH.K1d;� // D disc2;� .ftj g; faj g/; (9.32)

ewor.Qn;d IH.K0d;� // D disc2;� .f1 � tj g; faj g/: (9.33)

From these relations, it also follows that the minimal errors of multivariate integration
and the minimal L2 discrepancy anchored at 0 are the same. So we have

ewor.n;H.K0d // D ewor.n;H.K1d // D disc2.n; d/;

ewor.n;H.K0d;� // D ewor.n;H.K1d;� // D disc2;� .n; d/;

ewor.n;H.K0d // D ewor.n;H.K1d // D disc2.n; d/;

ewor.n;H.K0d;� // D ewor.n;H.K1d;� // D disc2;� .n; d/:

Hence, the study of linear algorithms with the minimal worst case errors for multivariate
integration over the (weighted) Sobolev spaces anchored at 0 or 1 is equivalent to the
study of the minimal (weighted) L2 discrepancy. We summarize the results of this
section in the following corollary.

Corollary 9.2. The (weighted) L2 discrepancy anchored at 0 corresponds to multi-
variate integration in the worst case setting for the Sobolev spaces with mixed deriva-
tives of order one. If the space is anchored at 1 then we use the same sample points,
and if the space is anchored at 0 then we change the sample points from tj to 1 � tj ,
see (9.32) and (9.33).

9.5.2 Discrepancy and Wiener Sheet Measure

So far, we have considered the worst case setting. In this subsection we consider multi-
variate integration in the average case setting and show its relations to L2 discrepancy,
see [346]. Namely, let C D C.Œ0; 1�d / be the space of continuous functions with the
norm

kf k D max
x2Œ0;1�d

jf .x/j:
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We equip the spaceC with theWiener sheet measurewd , which is a zero-mean Gaussian
measure with the covariance function

K�
d .x; y/ ´

Z
C

f .x/ f .y/wd .df / D
dY
jD1

min.xj ; yj / for x; y 2 Œ0; 1�d :

Note that
R
C
f 2.x/wd .df / D 0 if at least one component of x is zero. Hence

f .x/ D 0 with probability one if xj D 0 for some j .
As before, we want to approximate the integralId .f /by a linear algorithmQn;d .f /.

It is easy to see that the worst case error of any linear algorithmQn;d (for the unit ball
of the space C ) must be at least one since there exist continuous functions that vanish
at all tj used byQn;d and whose integrals and the norms are arbitrarily close to 1. This
means that the space C is simply too large, and so the multivariate integration problem
for this space cannot be solved in the worst case setting. That is why for the space
C we switch to the average case setting, in which the average case error of Qn;d is
defined by

eavg.Qn;d / D
�Z

C

�
Id .f / �Qn;d .f /

�2
wd .df /

	1=2
:

Note that also in the average case setting we have an explicit formula for the error.
Indeed, we haveZ
C

ŒId .f /�
2 wd .df /

D
Z
Œ0;1�2d

Z
C

f .x/ f .y/wd .df /

�
dx dy D

Z
Œ0;1�2d

dY
kD1

min.xk; yk/ dx dy D 3�d :

Furthermore,Z
C

f .t/ Id .f /wd .df / D
Z
Œ0;1�d

Z
C

f .t/ f .x/wd .df /

�
dx

D
Z
Œ0;1�d

dY
kD1

min.xk; tk/ dx D
dY
kD1

�
tk � t2k=2

�
;

and Z
C

f .tj / f .ti / wd .df / D
dY
kD1

min
�
ti;k; tj;k

�
:

Combining these formulas we conclude that

eavg.Qn;d /
2 D 3�d � 2

nX
jD1

aj

dY
kD1

�
tj;k � t2j;k=2

�
C

nX
i;jD1

aiaj
Y
kD1

min
�
ti;k; tj;k

�
:
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Let xj D 1 � tj . Since t � 1
2
t2 D 1

2
.1 � x2/ for x D 1 � t and again using

min.t; y/ D 1 � max.1 � t; 1 � y/, we may rewrite the last formula as

eavg.Qn;d /
2

D 3�d � 2�.d�1/
nX

jD1
aj

dY
kD1

�
1 � x2j;k

�
C

nX
i;jD1

aiaj

dY
kD1

�
1 � max.xi;k; xj;k/

�
:

But the last formula is the square of the L2 discrepancy for the points xj , see (9.4).
Hence, as in [346], we have

eavg.Qn;d / D disc2
�f1 � tj g; faj g� :

Obviously, we can also obtain relations with the weighted L2 discrepancy if we
equip the space of continuous functions with the weighted Wiener sheet measure, which
is a zero-mean Gaussian measure wd;� whose covariance function is given by

Kd;� .x; t/ ´
Z
C

f .x/ f .t/ wd;� .df / D
X

u�Œd�
�d;u

Y
j2u

min.xj ; tj /:

Here, as always, � D f�d;ug is a weight sequence. Then

eavg.Qn;d / D disc2;�
�f1 � tj g; faj g� : (9.34)

Hence, the minimal L2 discrepancy and weighted L2 discrepancy also yield the min-
imal average case errors for multivariate integration for the space of continuous func-
tions equipped with the standard Wiener sheet and weighted Wiener sheet measure,
respectively.

We summarize the results of this section in the following corollary.

Corollary 9.3. The (weighted) L2 discrepancy anchored at 0 corresponds to multi-
variate integration in the average case setting for the space of continuous functions
equipped with the (weighted) Wiener sheet measure with the change of the sample
points from tj to 1 � tj , see (9.34).

9.5.3 Discrepancy Anchored at ˛

The L2 discrepancy and weighted L2 discrepancy anchored at the origin are defined
by test sets Œ0; x/ for x 2 Œ0; 1�d . The L2 discrepancy anchored at the point ˛ D
Œ˛1; : : : ; ˛d � 2 Œ0; 1�d is defined if we replace the boxes Œ0; x/ by the sets

J.x/ D Œmin.˛1; x1/;max.˛1; x1// � � � � � Œmin.˛d ; xd /;max.˛d ; xd // :

That is, for j̨ � xj for all j 2 Œd �, we have J.x/ D Œ˛; x/ D Œ˛1; x1/�� � �� Œ˛d ; xd /,
whereas for j̨ � xj for all j 2 Œd �, we have J.x/ D Œx; ˛/.
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For an arbitrary ˛, the volume of J.x/ is given by

vol.J.x// D
dY
jD1

�
max. j̨ ; xj / � min. j̨ ; xj /

� D
dY
jD1

jxj � j̨ j:

It is easy to compute the L2 norm of vol.J.x//, which is

Z
Œ0;1�d

Œvol.J.x//�2 dx D
dY
jD1

�
1
3

� j̨ .1 � j̨ /
� 2 �.12/�d ; 3�d �:

Note that kvol.J /kL2
is always exponentially small in d .

We approximate the volume of the box J.x/ by a weighted sum of points tj that
are in J.x/, i.e.,

disc˛.x/ D vol.J.x// �
nX

jD1
aj 1J.x/.tj /:

The L2 discrepancy anchored at the point ˛ for points tj and coefficients aj is the L2
norm of the function disc˛ , i.e.,

disc˛2.ftj g; faj g/ D
�Z

Œ0;1�d
Œdisc˛.x/�2 dx

	1=2
:

Obviously, for ˛ D 0 this notion coincides with the L2 discrepancy studied before.
By direct integration we obtain an explicit formula,

disc˛2.ftj g; faj g/2 D
dY
kD1

�
1
3

� ˛k.1 � ˛k/
�

� 2
nX

jD1
aj

dY
kD1

tj;k.2˛k � tj;k/ 1Œ0;˛k/.tj;k/C .1 � tj;k/.1C tj;k � 2˛k/ 1Œ˛k ;1�.tj;k/

2

C
nX

i;jD1
aiaj

dY
kD1

�i;j;k;

where �i;j;k is given by�
min.ti;k; tj;k/1Œ0;˛k/

2..ti;k; tj;k//C �
1 � max.ti;k; tj;k/

�
1Œ˛k ;1�

2..ti;k; tj;k//
�
:

We now relate the L2 discrepancy anchored at ˛ to multivariate integration for
the Sobolev space anchored at some ˇ. Consider a linear algorithm Qn;d .f / DPn
jD1 ajf .�j / for some sample points �j 2 Œ0; 1�d . The worst case error of Qn;d is
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given by (9.31). We have

ewor.Qn;d IH.Kˇ
d
//2 D

dY
kD1

�
1
3

� ˇk.1 � ˇk/
�

� 2
nX

jD1
aj

dY
kD1

.ˇ2
k

� �2
j;k
/ 1Œ0;ˇk/.�j;k/C .�j;k � ˇk/.2 � �j;k � ˇk/ 1Œˇk ;1�.�j;k/

2

C
nX

i;jD1
aiaj

dY
kD1

j�i;k � ˇkj C j�j;k � ˇkj � j�i;k � �j;kj
2

:

We want to check whether the L2 discrepancy anchored at ˛ for the points tj and
coefficients aj can be the same as the worst case error of Qn;d with the sample points
�j and coefficients aj in the Sobolev space anchored at ˇ. That is, for a given ˛ and tj
we are looking for ˇ and �j such that

ewor.Qn;d IH.Kˇ
d
// D disc˛2.ftj g; faj g/:

Comparing the formulas for ewor.Qn;d / and disc˛2.ftj g; faj g/, we see that the equality
holds if

tj .2a � tj /1Œ0;a/.tj /C .1 � tj /.1C tj � 2a/1Œa;1�.tj /
is the same as

.b � �j /.b C �j /1Œ0;b/.�j /C .�j � b/.2 � �j � b/1Œb;1�.�j /;
and

min.ti ; tj /1Œ0;a/2..ti ; tj //C .1 � max.ti ; tj //1Œa;1�2..ti ; tj //

is the same as
2�1 �j�i � bj C j�j � bj � j�i � �j j� :

Here, we suppress the dependence on k by taking Œtj ; a; �j ; b� D Œtj;k; ˛k; �j;k; ˇk�.
That is, for given tj and awe want to find �j and b such that the corresponding equalities
hold.

Assume first that ˛ D 0, which corresponds to the L2 discrepancy anchored at the
origin. Then we need to guarantee that

1 � t2j D .b � �j /.b C �j /1Œ0;b/.�j /C .�j � b/.2 � �j � b/1Œb;1�.�j /;
1 � max.ti ; tj / D 2�1 �j�i � bj C j�j � bj � j�i � �j j� :

Note that this indeed holds if we take �j D tj and b D 1, or �j D 1 � tj and
b D 0. These two solutions correspond to the relations that we already discussed in
Corollary 9.2.

Assume now that ˛ D 1. By symmetry, we again have two solutions. The first one
is for �j D tj and b D 0, and the second for �j D 1 � tj and b D 1.
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We now show that for any a 2 Œ0; 1� the solution is given by

�j D .a � tj / mod 1 and b D a:

Indeed, let tj 2 Œ0; a/. Then �j D a � tj . The first formula for the discrepancy is
now tj .2a � tj /, whereas for integration the first formula is

.b � �j /.b C �j / D tj .2a � tj /;
so they agree. Similarly, for t 2 Œa; 1� we have �j D 1C a � tj , and the first formula
for the discrepancy is .1 � tj /.1C tj � 2a/, whereas for integration it is

.�j � b/.2 � �j � b/ D .1 � tj /.1C tj C 2a/;

so they again agree.
To check equality of the second formulas, note that both of them are zero if ti �

a � tj or tj � a � ti . For ti ; tj 2 Œ0; a/, we have min.ti ; tj / for the discrepancy, and

2�1 �j�i � bj C j�j � bj � j�i � �j j� D 2�1 �ti C tj � jti � tj j� D min.ti ; tj /

for integration.
For ti ; tj 2 Œa; 1�, we have 1 � max.ti ; tj / for the discrepancy, and

2�1 �j�i � bj C j�j � bj � j�i � �j j� D 2�1 �1 � ti C 1 � tj � jti � tj j�
D 1 � max.ti ; tj /;

as needed.
It is worth to notice that the choice �j D tj cannot be made for a 2 .0; 1/. Indeed,

assume that b is positive and take t 2 Œ0;min.a; b//. Then the function t .2a � t /

from the discrepancy cannot be equal to the function b2 � t2 from the integration. For
b D 0, we take t 2 Œa; 1�. Then the discrepancy function is .1 � t /.1C t � 2a/ and
the integration function is t .2 � t /. Again they are different.

Hence, for any ˛ 2 Œ0; 1�d , the L2 discrepancy for the points tj and coefficients aj
is the same as the worst case error over the unit ball of the Sobolev space anchored at ˛
of the linear algorithmQn;d using the sample points �j such that �j D �

˛ � tj
�

mod 1,
or equivalently

tj D �
˛ � �j

�
mod 1 :

The last formula is understood component-wise, i.e., tj;k D .ak � �j;k/mod 1 for
k 2 Œd �. Then

ewor.Qn;d IH.K˛d // D disc˛2.f.˛ � tj /mod 1g; faj g/:
Proceeding as before, it is also possible to find relations between the weighted L2

discrepancy anchored at ˛ and multivariate integration for the weighted Sobolev space
anchored at ˛. The weighted L2 discrepancy anchored at ˛ is defined as

disc˛2.ftj g; fag/ D
� X

u�Œd�
�d;u

Z
Œ0;1�juj

Œdisc˛u.xu/�
2 dxu

	1=2
:
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Here, disc˛u is defined as disc˛ for the juj-dimensional case for the points .tj /u.
Then the worst case error of the previousQn;d over the unit ball ofH.K˛

d;�
/ is the

same as the weighted L2 discrepancy anchored at ˛ for the points .˛ � tj /mod 1, i.e.,

ewor.Qn;d IH.K˛d;� // D disc˛2;� .f.˛ � tj /mod 1g; faj g/: (9.35)

We summarize the results of this section in the following corollary.

Corollary 9.4. The (weighted) L2 discrepancy anchored at ˛ corresponds to mul-
tivariate integration in the worst case setting for the (weighted) Sobolev space with
mixed derivatives of order one anchored at ˛ with the change of the sample points from
tj to .˛ � tj / mod 1, see (9.35).

9.5.4 Quadrant Discrepancy at ˛

We showed that the L2 discrepancy centered at ˛ is related to multivariate integration
for the Sobolev space anchored at ˛, but we needed to change the sample points from
tj to .˛ � tj /mod 1. We now show that the discrepancy studied by Hickernell, Sloan
and Wasilkowski [123], see also Hickernell [118] for a special case, allows us to use
the same points for the discrepancy and multivariate integration for the Sobolev space
with the same anchor.

For a given ˛ 2 Œ0; 1�d , we now consider test sets Q.x/ for x 2 Œ0; 1�d with

Q.x/ D Œw1.x/; z1.x// � � � � � Œwd .x/; zd .x//;

where Œwj .x/; zj .x// D Œ0; xj / if xj < j̨ , and Œwj .x/; zj .x// D Œxj ; 1/ if xj � j̨ .
That is, the set of points x 2 Œ0; 1�d is partitioned into 2d quadrants according to
whether xj < j̨ or xj � j̨ . The set Q.x/ denotes the box with one corner at x
and the opposite corner defined by the unique vertex of Œ0; 1�d that lies in the same
quadrant as x. Note that for ˛ D 1, we have Q.x/ D Œ0; x/ for x 2 Œ0; 1/d , as with
the L2 discrepancy anchored at 0. For ˛ D 0, we have Q.x/ D Œx; 1/.

Let

disc˛; quad.x/ D vol.Q.x// �
nX

jD1
aj 1Q.x/.tj /

be the error of approximating the volume of Q.x/ by a weighted sum of points tj that
are in Q.x/.

The L2 same-quadrant discrepancy with anchor at ˛, or shortly, the L2 quad-
rant discrepancy at ˛, of points tj and coefficients aj is the L2 norm of the function
disc˛; quad, i.e.,

disc˛; quad
2 .ftj g; faj g/ D

�Z
Œ0;1�d

�
disc˛; quad.x/

�2
dx

	1=2
:
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For ˛ D Œ1
2
; : : : ; 1

2
�, this type of discrepancy was studied by Hickernell [118], who

called it the centered discrepancy. For general ˛, the quadrant discrepancy was studied
in the L1 norm in Hickernell, Sloan and Wasilkowski [123], and we present its L2
analog above.

The volume of Q.x/ is

vol.Q.x// D
dY
jD1

�
xj 1Œ0; j̨ /.xj /C .1 � xj /1Œ j̨ ;1�.xj /

�
;

and Z
Œ0;1�d

Œvol.Q.x//�2 dx D
kY

jD1

�
1
3

� j̨ .1 � j̨ /
� 2

h
.12/�d ; 3�di :

To obtain an explicit formula for the L2 quadrant discrepancy at ˛, note thatZ
Œ0;1�d

vol.Q.x//1Q.x/.tj / dx

D
dY
kD1

.˛2
k

� t2
j;k
/1Œ0;˛k/.tj;k/C .tj;k � ˛k/.2 � tj;k � ak/1Œ˛k ;1�.tj;k/

2
;

whereasZ
Œ0;1�d

1Q.x/.ti / 1Q.x/.tj / dx D
dY
kD1

Ak D
dY
kD1

jti;k � ˛kj C jtj;k � ˛kj � jti;j � tj;kj
2

with

Ak D �
˛k � max.ti;k; tj;k/

�
1Œ0;˛k/

2.ti;k; tj;k/

C �
min.ti;k; tj;k/ � ˛k

�
1Œ˛k ;1�

2.ti;k; tj;k/:

Hence,

disc˛; quad
2 .ftj g; faj g/2 D

dY
jD1

�
1
3

� j̨ .1 � j̨ /
�

� 2
nX

jD1
aj

dY
kD1

.˛2
k

� t2
j;k
/1Œ0;˛k/.tj;k/C .tj;k � ˛k/.2 � tj;k � ak/1Œ˛k ;1�.tj;k/

2

C
nX

i;jD1
aiaj

dY
kD1

jti;k � ˛kj C jtj;k � ˛kj � jti;j � tj;kj
2

:

If we compare this formula to the formula for the worst case error of Qn;d for the
Sobolev space anchored at ˛, we see that they are the same if we set

ˇ D ˛ and �j D tj :
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The same is also true for the weighted case. Hence, we have

ewor.Qn;d IH.K˛d // D disc˛; quad
2 .ftj g; faj g/: (9.36)

We summarize the results of this section in the following corollary.

Corollary 9.5. The (weighted) L2 quadrant discrepancy at ˛ corresponds to mul-
tivariate integration in the worst case setting for the (weighted) Sobolev space with
mixed derivatives of order one anchored at ˛ with the same sample points, see (9.36).

9.5.5 Extreme or Unanchored Discrepancy

So far, we have used the boxes Œ0; x/, J.x/ orQ.x/ as our test sets. A different notion
of L2 discrepancy can be obtained if we use all boxes Œx; y/ with x � y (component-
wise) as test sets. That is, instead of (9.2) we now approximate the volume of Œx; y/,
which is obviously

Qd
jD1.yj � xj /, by the weighted sum of points tj belonging to the

box Œx; y/, so that

discex.x; y/ D .y1 � x1/.y2 � x2/ � � � .yd � xd / �
dX
jD1

aj 1Œx;y/.tj /; (9.37)

where 1Œx;y/ is the indicator function of the box Œx; y/.
The L2 extreme or unanchored discrepancy of points tj and coefficients aj is just

the L2 norm of the error function (9.37), i.e.,

discex
2 .ftj g; faj g/ D

�Z
Œ0;1�2d ; x�y

Œdiscex.x; y/�2 dx dy

	1=2
: (9.38)

Direct integration yields an explicit formula for the L2 unanchored discrepancy,

discex
2 .ftj g; faj g/2 D 1

12d
� 1

2d�1
nX

jD1
aj

dY
kD1

tj;k.1 � tj;k/ (9.39)

C
nX

i;jD1
aiaj

dY
kD1

�
min.ti;k; tj;k/ � ti;ktj;k

�
:

For n D 0, we obtain the initial L2 unanchored discrepancy, which is

discex
2 .0; d/ D 12�d=2:

Hence, as with the L2 discrepancy anchored at ˛ and the L2 quadrant discrepancy
anchored at ˛, the L2 extreme discrepancy is exponentially small in d .

This type ofL2 discrepancy was introduced by Morokoff and Caflisch [191]. These
authors preferred to use the unanchored discrepancy since it is “symmetric” and does
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not prefer a particular vertex, like the L2 discrepancy anchored at the origin or at ˛.
We will see that the extreme discrepancy is the error of multivariate integration for a
class of periodic functions with a boundary condition.

We begin, however, with periodic functions without a boundary condition and
summarize the analysis of Hickernell [118], [119] for this case. For d D 1 and
p D q D 2, we consider the Sobolev space of periodic functions

F1;2 D ff 2 W 1
2 .Œ0; 1�/ j f .0/ D f .1/g

with the norm
kf k2 D f .1/2 C kf 0k2L2

:

This is a rank-1 modification of the space W 1
2 .Œ0; 1�/. We obtain the kernel

K1.x; y/ D 1C .min.x; y/ � xy/ :
The analysis can be extended, by Hölder’s inequality, to arbitrary q. The norm in F1;q
is given by kf kq D jf .1/jq C kf 0kqLq

: For arbitrary d > 1, we define Fd;q by tensor
products of factors F1;q with tensor product norms.

We now discuss the respective error (or discrepancy) of a QMC algorithmQn;d for
the space Fd;2. The error of Qn;d is given by

e.Qn;d / D
� X
u�Œd�

Z
Œ0;1/2juj; xu�yu

disc2..xu; 0/; .yu; 1// dxudyu

	1=2
:

For an arbitrary linear Qn;d we obtain

e.Qn;d /
2 D 13d

12d
�

nX
iD1

2ai

dY
kD1

�
1C ti;k.1 � ti;k/

2

	

C
nX
iD1

nX
jD1

aiaj

dY
kD1

.1C min.ti;k; tj;k/ � ti;ktj;k/:

Again we can modify this to cover spaces with a boundary condition. We start with
d D 1 and p D q D 2, and we take the space

F1;2 D ff 2 W 1
2 .Œ0; 1�/ j f .0/ D f .1/ D 0g:

The kernel for this subspace is given by

K1.x; y/ D min.x; y/ � xy:
For d > 1, we use tensor product kernels and norms. For p D 2, the error e.Qn;d / of
any linear Qn;d is

e.Qn;d / D
�Z

Œ0;1/2d ; x�y
disc2.x; y/ dx dy

	1=2
D discex

2 .ftig; faig/: (9.40)
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Hence, we see that the L2 extreme discrepancy is also an error bound, this time for a
class of periodic functions with a boundary condition. To prove the error bound (9.40)
for the kernel

Kd .x; y/ D
dY
jD1

�
min.xj ; yj / � xjyj

�
;

we can simply use the general result (9.31), together with formula (9.39).
It is also possible to remove the boundary conditions f .x/ D 0 if xj 2 f0; 1g for

some j 2 Œd �, and consider the weighted L2 unanchored discrepancy. In this case, we
take

Kex
d;� .x; y/ D

X
u�Œd�

�d;u
Y
j2u

�
min.xj ; yj / � xjyj

�
:

The Hilbert space H.Kex
d;�
/ is the space of periodic functions with period one in each

variable, and is the sum of the tensor products of juj copies of the space H.Kex
1 / with

the inner product

hf; giH.Kex
d;�

/ D
X

u�Œd�
��1
d;u

Z
Œ0;1�juj

@juj

@ xu
f .xu; 1/

@juj

@ xu
g.xu; 1/ dxu

for f; g 2 H.Kex
d;�
/.

The weighted L2 unanchored discrepancy is defined as

discex
2;� .ftj g; faj g/ D

� X
u�Œd�

�d;u

Z
Œ0;1�2juj

xu�yu

Œdiscex ..xu; 1/; .yu; 1//�
2 dxu dyu

	1=2
:

Then
ewor.Qn;d IH.Kex

d;� // D discex
2;� .ftj g; faj g/: (9.41)

We summarize the results of this section in the following corollary.

Corollary 9.6. The (weighted) L2 unanchored discrepancy corresponds to multivari-
ate integration in the worst case setting for the (weighted) spaceH.Kex

d
/with the same

sample points, see (9.41).

We end this subsection with a note on the classical extreme discrepancy for the
space Fd;1, which corresponds to p D 1. For d D 1, it can be checked that the norm
of F1;1 is given by kf k D 1

2
kf 0k1:We have

discex1.ftig; faig/ D sup
x�y

jdisc.x; y/j: (9.42)

The extreme discrepancy (9.42) is polynomially tractable, see [115]. It is enough to
use equal weights n�1, for which we have an upper bound of the form

inf
t1;:::;tn

discex1.ftig; f1=ng/ � C � d1=2 � n�1=2; (9.43)

where the positive C does not depend on n or d . This bound is the same as for the star
discrepancy, which corresponds toL1 discrepancy anchored at 0, except that we might
have a different constant C . The star discrepancy will be discussed in Section 9.9.
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9.6 Are They Always Related?

The examples of the previous section may suggest that for a specific kind of L2 dis-
crepancy, there always exists a reproducing kernel Hilbert spaceH.Kd / for which the
L2 discrepancy and multivariate integration are related. We now show that, modulo
natural assumptions, this is indeed true.

We first define what we mean by a general L2 discrepancy. Let D � R�.d/ be a
measurable set and let % W D ! R be a non-negative measurable function such thatR
D
%.x/ dx D 1. Here, � W N ! N is a given function, so that �.d/ is a given positive

integer.
The choice of % as a density function is quite natural. This allows us to properly

normalize general L2 discrepancies as well to use unbounded domains D.
We assume that for any t 2 D we have a measurable set B.t/ � Rd , and let

vol.B.t// denote its Lebesgue measure (volume). We also assume that vol.B.�// is a
measurable function, and thatZ

D

Œvol.B.t//�2 %.t/ dt < 1: (9.44)

Let g.t; x/ D 1B.t/.x/ for t 2 D and x 2 Rd be the indicator function. We also
assume that g is measurable with respect to both arguments.

For example, take D D Œ0; 1�d with �.d/ D d , and %.t/ D 1. Then

• B.t/ D Œ0; t/ will correspond to the discrepancy anchored at 0, whereas

• B.t/ D J.t/ will correspond to the discrepancy anchored at ˛, and

• B.t/ D Q.t/ will correspond to the quadrant discrepancy at ˛.

To obtain the unanchored discrepancy, we define

�.d/ D 2d; D D f.x; y/ 2 Œ0; 1�2d j x � yg; and %.t/ D 2d :

Then for t D .x; y/ and B.t/ D Œx; y/ we have the unanchored discrepancy modulo a
normalizing factor. New examples of B.t/ will be presented later.

For given points t1; t2; : : : ; tn 2 Rd and coefficients a1; a2; : : : ; an 2 R, we ap-
proximate the volume of B.t/ by a weighted sum of the sample points tj that belong
to B.t/, so that

disc.t/ ´ vol.B.t// �
nX

jD1
aj 1B.t/.tj /:

The L2 B-discrepancy of points tj and coefficients aj , or shortly B-discrepancy, is
the weighted L2 norm of the last function, i.e.,

discB
2.ftj g; faj g/ D

�Z
D

�
vol.B.t// �

nX
jD1

aj 1B.t/.tj /
�2
%.t/ dt

	1=2
:
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By direct integration we then have

discB
2.ftj g; faj g/2 D

Z
D

vol.B.t//2 %.t/ dt � 2
nX

jD1
aj

Z
D

vol.B.t//1B.t/.tj / %.t/ dt

C
nX

i;jD1
aiaj

Z
D

1B.t/.ti / 1B.t/.tj / %.t/ dt:

A popular choice of coefficients is aj D n�1, which corresponds to quasi-Monte Carlo
(QMC) algorithms for multivariate integration.

We now ask if it is possible to define a reproducing kernel Hilbert space H.Kd /
for which the B-discrepancy is related to multivariate integration. Here,

Dd D
[
t2D

B.t/ � Rd ;

and Kd W Dd � Dd ! R is a reproducing kernel. We assume that Dd is measurable.
Although we have so far only considered the reproducing kernel Hilbert spaces

of functions and multivariate integration defined on Œ0; 1�d , it is easy to generalize
everything to the domain Dd . We have

Id .f / D
Z
Dd

f .x/ dx;

which can be written as Id .f / D hf; hd iH.Kd /
with

hd .x/ D
Z
Dd

Kd .y; x/ dy for x 2 Dd :

As before, we need to assume that

hd 2 H.Kd /: (9.45)

Then the worst case error of a linear algorithm Qn;d .f / D Pn
jD1 ajf .tj / is

ewor.Qn;d / D sup
f 2H.Kd /; kf kH.Kd /�1

ˇ̌
Id .f / �Qn;d .f /

ˇ̌ D khd;nkH.Kd /;

with hd;n D hd �Pn
jD1 ajKd .�; tj / and

khd;nk2H.Kd /
D
Z
D2

d

Kd .x; y/ dx dy�2
nX

jD1
aj

Z
Dd

Kd .x; tj / dxC
nX

i;jD1
aiajKd .ti ; tj /:

(9.46)
If we compare this formula with the formula for the B-discrepancy we see that the

candidate for the reproducing kernel is

Kd .x; y/ D
Z
D

1B.t/.x/ 1B.t/.y/ %.t/ dt for x; y 2 Dd : (9.47)
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Observe that Kd .x; y/ is well defined and Kd .x; y/ 2 Œ0; 1�. It is easy to check that
Kd is a reproducing kernel. Indeed, Kd .x; y/ D Kd .y; x/, and so Kd is symmetric.
Consider the m�m matrix M D .Kd .xi ; xj //i;jD1;:::;m for arbitrary points xj 2 Rd .
Then M is symmetric and it is also positive semi-definite since

.Ma; a/ D
mX

i;jD1
Kd .xi ; xj /aiaj D

Z
D

� mX
jD1

aj 1B.t/.tj /
�2
%.t/ dt � 0:

So Kd is a reproducing kernel, as claimed.
To make sure that multivariate integration for H.Kd / is well defined, we need to

assume that the function

hd .x/ D
Z
Dd

Kd .x; y/ dy D
Z
D

vol.B.t// 1B.t/.x/ %.t/ dt (9.48)

belongs to H.Kd /.
The choice of Kd by (9.47) will make the third terms in (9.46) and in the formula

for the B-discrepancy equal. We obviously need to check that the first and second
terms coincide. For the first term of (9.46), we haveZ

D2
d

Kd .x; y/ dx dy D
Z
D

Z
Dd

1B.t/.x/ dx

� Z
Dd

1B.t/.y/ dy

�
%.t/ dt

D
Z
D

vol.B.t//2 %.t/ dt;

which agrees with the first term for the B-discrepancy. Finally, for the second term of
(9.46), we haveZ

Dd

Kd .x; tj / dx D
Z
D

Z
Dd

1B.t/.x/ dx

�
1B.t/.tj / %.t/ dt

D
Z
D

vol.B.t// 1B.t/.tj / %.t/ dt

which agrees with the second term for B-discrepancy.
As before, we can define the minimal B-discrepancy, discB

2.n; d/, and the minimal
worst case error, ewor.n;H.Kd //, of multivariate integration by taking optimal sample
points tj and optimal coefficients aj . Obviously they are the same, i.e.,

discB
2.n; d/ D ewor.n;H.Kd //:

It is easy to show that the minimal B-discrepancy, or equivalently the minimal
multivariate integration error, is at most of order n�1=2 if we assume2 that vol.Dd / <
1. Indeed, take an algorithm

Qn;d .f / D vol.Dd /

n

nX
jD1

f .tj /

2In Chapter 10 we present a more relaxed assumption based on Plaskota, Wasilkowski and Zhao [248].
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for some sample points tj 2 Dd . To stress the dependence on tj , we replace Qn;d by
Qn;d;ftj g. The square of the worst case error e.t1; t2; : : : ; tn/ of Qn;d;ftj g is given by
(9.46) and takes the formZ
D2

d

Kd .x; y/ dx dy � 2vol.Dd /

n

nX
jD1

Z
Dd

Kd .x; tj / dxC vol2.Dd /

n2

nX
i;jD1

Kd .ti ; tj /:

We now compute the average value of e assuming that tj are independent and uniformly
distributed overDd . Using the standard proof technique that is also used for the study
of Monte Carlo algorithms, we obtainR

Dn
d
e.t1; : : : ; tn/ dt1 � � � dtn

vol.Dd /n

D 1

n

 
vol.Dd /

Z
Dd

Kd .x; x/ dx �
Z
D2

d

Kd .x; y/ dx dy

!

D 1

n

�
vol.Dd /

Z
D

vol.B.t// %.t/ dt �
Z
D

vol.B.t//2 %.t/ dt

	
� vol.Dd /2

n
:

By the mean value theorem, we conclude that there exists at least one choice of the
sample points tj for which the worst case error of Qn;d is at most the square root of
the last value. Hence,

ewor.n;H.Kd // � 1p
n

�
vol.Dd /

Z
Dd

Kd .x; x/ dx

	1=2
� vol.Dd /p

n
:

We summarize the analysis of this section in the following theorem.

Theorem 9.7.

• The worst case error of Qn;d in the space H.Kd / with the reproducing kernel
Kd given by (9.47) is equal to the B-discrepancy with the same sample points tj
and coefficients aj .

• We also have
discB

2.n; d/ D ewor.n;H.Kd //:

• If vol.Dd / < 1 then

discB
2.n; d/ � n�1=2 vol.Dd /:

It seems interesting to check what kinds of reproducing kernels we obtain for various
kinds of L2 discrepancy. For the L2 discrepancy anchored at 0 we have D D Œ0; 1�d ,
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%.t/ D 1 and B.t/ D Œ0; t/. Therefore Dd D Œ0; 1�d and

Kd .x; y/ D
dY
jD1

�
1 � max.xj ; yj /

�
for all x; y 2 Dd

which corresponds to the Sobolev space anchored at 1. This agrees with our previous
results.

Consider now the L2 discrepancy anchored at ˛. We now have D D Œ0; 1�d ,
%.t/ D 1 and B.t/ D J.t/, as given in Subsection 9.5.3. For d D 1, we have
B.t/ D Œt; ˛/ for t � ˛, and B.t/ D Œ˛; t/ for t > ˛. Therefore D1 D Œ0; 1� and
Dd D Œ0; 1�d . Furthermore,

K1.x; y/ D
Z ˛

0

1Œt;˛/.x/1Œt;˛/.y/ dt C
Z 1

˛

1Œ˛;t/.x/1Œ˛;t/.y/ dt

D min.x; y/ 1Œ0;˛/2..x; y//C .1 � max.x; y// 1Œ˛;1/2..x; y//:

For ˛ D 0 we obtain the previous case, whereas for ˛ D 1, we have

K1.x; y/ D min.x; y/ for all x; y 2 Œ0; 1/:

This corresponds to the Sobolev space anchored at 0.
Consider now ˛ 2 .0; 1/. Then H.K1/ is the space of functions f defined over

Œ0; 1� such that f vanishes at 0 and 1. Furthermore, f restricted to Œ0; ˛/ is absolutely
continuous with f 0 2 L2.Œ0; ˛//, and f restricted to Œ˛; 1� is absolutely continuous
with f 0 2 L2.Œ˛; 1�/. However, the function f may be discontinuous at ˛. The inner
product for f; g 2 H.K1/ is

hf; giH.K1/
D
Z ˛

0

f 0.x/g0.x/ dx C
Z 1

˛

f 0.x/g0.x/ dx D
Z 1

0

f 0.x/g0.x/ dx:

Here, the derivatives are meant point-wise almost everywhere.
Despite many similarities to a subspace of the Sobolev space anchored at ˛, the

property that f may be discontinuous at ˛ makes this space different than the Sobolev
space. We stress that the difference between H.K1/ and the Sobolev space is also
necessary from a different point of view. Namely, in Subsection 9.5.3, we showed that
we need to change the sample points from tj to .˛ � tj / mod 1 to get a relation to the
Sobolev space. Here, for the space H.K1/ we used the same sample points for both
discrepancy and integration. The last property requires the spaceH.K1/ to be different
than the Sobolev space.

For d � 1, we use the tensor product property and obtain

Kd .x; y/ D
dY
jD1

�
min.xj ; yj / 1Œ0; j̨ /

2..xj ; yj //C.1�max.xj ; yj // 1Œ j̨ ;1/
2..xj ; yj //

�
:
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We now turn to the L2 quadrant discrepancy anchored at ˛. Again we have D D
Œ0; 1�d , %.t/ D 1 and B.t/ D Q.t/, as given in Subsection 9.5.4. For d D 1, we have
B.t/ D Œ0; t/ for t < ˛, and B.t/ D Œt; 1/ for t � ˛. Therefore D1 D Œ0; 1� and

K1.x; y/ D
Z ˛

0

1Œ0;t/.x/1Œ0;t/.y/ dt C
Z 1

˛

1Œt;1/.x/1Œt;1/.y/ dt

D .˛ � max.x; y//C C .min.x; y/ � ˛/C
D1
2
.jx � ˛j C jy � ˛j � jx � yj/ :

This and the tensor product property of Q.t/ yield that

Kd .x; y/ D
dY
jD1

1
2

�jxj � j̨ j C jyj � j̨ j � jxj � yj j� for all x; y 2 Dd D Œ0; 1�d :

Hence, H.Kd / is the Sobolev space anchored at ˛, which agrees with the results of
Subsection 9.5.4.

We switch to unanchored discrepancy. We now have �.d/ D 2d , D D f.x; y/ 2
Œ0; 1�2d j x � yg, %.t/ D 2d and B.t/ D Œt1; t2/ for t D .t1; t2/ with ti 2 Œ0; 1�d and
t1 � t2. Then Dd D Œ0; 1�d . For d D 1 we have

K1.x; y/ D 2

Z 1

0

�Z 1

t1

1Œt1;t2/.x/1Œt1;t2/.y/ dt2

	
dt1

D 2

Z min.x;y/

0

�Z 1

max.x;y/
dt2

	
dt1

D 2min.x; y/.1 � max.x; y// D 2 .min.x; y/ � xy/ :
For d � 1, we use the tensor product property to obtain

Kd .x; y/ D
dY
jD1

2
�
min.xj ; yj / � xjyj

�
:

Hence,Kd D 2dKex
d

, andH.Kd / is the same as the spaceH.Kex
d
/ for the unanchored

discrepancy, modulo the normalizing factor 2d , so that

hf; giH.Kd /
D 2�d hf; giH.Kex

d
/ for all f; g 2 H.Kd /:

This agrees with the results of Subsection 9.5.5.
We can also have new examples of B.t/. For instance, let �.d/ D d C 1, and

D D f .c; r/ j c 2 Rd and r � 0 g:
The weight function % may be defined as %.c; r/ D 1 for Œc; r� 2 Œ0; 1�dC1 and zero
otherwise. We may also consider the case for which % is the density function of the
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Gaussian measure on Rd � RC,

%.c; r/ D 2.2�/�.dC1/=2 exp
�
�r2=2 �

dX
jD1

c2j =2
�
:

Then for t D .c; r/, define

B.t/ D fx 2 Rd j kx � ckp � rg
as the ball at center c and radius r in the usual lp norm given by

kx � ckp D
� dX
jD1

jxj � cj jp
�1=p

for p 2 Œ1;1/ and kx � ck1 D maxj2Œd� jxj � cj j. This corresponds to the ball
discrepancy in the lp norm.

We may also follow Chen and Travaglini [29] and define a periodic ball discrepancy
in the lp case as follows. For x; y 2 Œ0; 1�d , let

kx � yk�
p D

� dX
kD1

jxk � ykjp�
�1=p

;

where jxk � ykj� D minfjxk � ykj; 1 � jxk � ykjg. Observe that

kx � yk�
p � d1=p

2
; x; y 2 Œ0; 1�d :

Now let �.d/ D d C 1 and define

D D
²
.c; r/ j c 2 Œ0; 1�d ; 0 � r � d1=p

2

³
:

For t D .c; r/, we consider the set

B.t/ D fx 2 Œ0; 1�d j kx � ck�
p � rg:

To obtain an invariant kernel of the formKd;p.x; y/ D kd;p.x�y/we consider weights
independent of c, i.e., of the form %.c; r/ D Q%.r/. Formulas for the periodic ball
discrepancy discpball

2 .n; d/ in the case p D 2 can be found in Chen and Travaglini [29]
in terms of the Fourier coefficients of the characteristic function of the ball of radius r .
A lower bound of Beck [8] and Montgomery [190] states that for arbitrary d , there is
a constant cd such that

discpball
2 .n; d/ � cd n

�1=2�1=.2d/

for all n. This bound is essentially sharp, as shown by Beck and Chen [10]. Note that
for large d , the exponent of n�1 is close to 1

2
which is the worst possible exponent for



9.6 Are They Always Related? 43

all B-discrepancies for which the sets B.t/ are subsets ofDd with vol.Dd / < 1, see
Theorem 9.7.

We turn to the case p D 1. Then we obtain x 2 B.t/ iff

xj �r � cj � xj Cr or cj � xj Cr�1 or cj � 1�rCxj for all j: (9.49)

For given xj ; yj 2 Œ0; 1� and r 2 Œ0; 1=2�, let

`.xj ; yj ; r/ D
Z 1

0

1jxj �cj j��r.xj / 1jyj �cj j��r.yj / dcj :

Then (9.49) yields that `.xj ; yj ; r/ depends only on ˛ D jxj � yj j� and r , i.e.,
`.xj ; yj ; r/ D `.˛; r/, and `.˛; r/ D 0 if r � ˛=2, `.˛; r/ D 2r � ˛ if ˛=2 �
r � 1=2 � ˛=2, and `.˛; r/ D �1C 4r if 1=2 � ˛=2 � r � 1=2. Combining these
results, we obtain the kernel

Kd .x; y/ D
Z 1=2

0

dY
jD1

`.jxj � yj j�; r/ Q%.r/ dr:

Observe thatKd .x; y/ only depends on the jxj �yj j�. In particular,Kd is of the form
Kd .x; y/ D kd .x � y/. In the case Q% D 2 � 1Œ0;1=2� and d D 1, we obtain the kernel
K1.x; y/ D 1

2
� jx � yj� C jx � yj2�.

We finally turn to the ball discrepancy in the l1 case. We now haveD D Rd�RC D
fŒc; r� j c 2 Rd ; r � 0g and we take %.c; r/ D 1 for t D Œc; r� 2 Œ0; 1�dC1 and zero
otherwise. The sets B.t/ are taken as the balls

B.t/ D fx 2 Rd j maxj2Œd� jxj � cj j � rg:
Observe that x 2 B.t/ means that xj � r � cj � xj C r for all j 2 Œd �. Hence,
x; y 2 B.t/ and c 2 Œ0; 1�d yield that

cj 2 �max.0; xj � r; yj � r/;min.1; xj C r; yj C r/
�
:

This easily implies that

Kd .x; y/ D
Z 1

0

dY
jD1

�
min.1; xj C r; yj C r/ � max.0; xj � r; yj � r/�C dr:

From this formula we conclude that Kd .x; y/ D 0 if there exists j such that xj � 2

or yj � 2. Similarly, Kd .x; y/ D 0 if there exists j such that xj � �1 or yj � �1.
This means that the space H.Kd / consists of functions that vanish outside .�1; 2/d .

So far, we have defined B-discrepancy for the unweighted case. It is also possible
to define weighted B-discrepancy by following the approach we used in defining the
weighted L2 discrepancy. We leave this to the reader as our next open problem.



44 9 Discrepancy and Integration

Open Problem 35.

• Define weightedB-discrepancy analogously to the weightedL2 discrepancy and
find relations to multivariate integration defined over a reproducing kernel Hilbert
space. In particular, generalize the formula (9.47) for the reproducing kernel in
the weighted case.

This open problem was formulated in June 2009. Soon after that we sent this
chapter for comments to many colleagues. Michael Gnewuch became interested in
this problem and solved it in [80].

We showed that the B-discrepancy corresponds to multivariate integration for the
reproducing kernel Hilbert space H.Kd / with the reproducing kernel Kd given by
(9.47). We now may ask the opposite question: for any reproducing kernel for which
multivariate integration is well defined in the spaceH.Kd /, does there exist a family of
setsB.t/ for which (9.47) holds? We can easily see that the answer is no. IfKd is given
by (9.47) then its values are in Œ0; 1� which, in general, does not hold for reproducing
kernels. For example, we may take the Korobov space of smooth periodic functions
for d D 1, see e.g., Sloan and Joe [273]. For a specific smoothness, the kernel is

K1.x; y/ D 1C 2�2 B2 ..x � y/mod 1/ for all x; y 2 Œ0; 1�;

see Appendix A of Volume I with ˇ1 D ˇ2 D r D 1. Here, B2.t/ D t2 � t C 1
6

is
the Bernoulli polynomial of degree 2. We then have K1.x; x/ D 1 C �2=3 > 1 and
K1.

1
2
; 0/ D 1 � �2=6 < 0.

9.7 Tractability

We now recall what is meant by tractability, see Volume I for background, history
and motivation. To stress the role of QMC algorithms we also adapt the notions of
tractability for this important class of algorithms and call it QMC-tractability.

Recall that ewor.n;H.Kd // and ewor.n;H.Kd //, defined in Section 9.4, denote the
minimal worst case errors for multivariate integration in the reproducing kernel Hilbert
space H.Kd / for optimally chosen sample points and coefficients aj D n�1 or for
optimally chosen coefficients aj , respectively. For simplicity we denote both numbers
ewor.n;H.Kd // and ewor.n;H.Kd // by e.n; d/. These are the same for n D 0 with

e.0; d/ D ewor.0;H.Kd // D ewor.0;H.Kd // D kIdk:

Here, e.0; d/ denotes the initial error.
For the absolute error criterion, we want to find the smallest n for which e.n; d/ is

at most ". For the normalized error criterion, we want to find the smallest n for which
e.n; d/ is at most " e.0; d/, that is, we want to reduce the initial error by a factor ".
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Let CRId D 1 if we consider the absolute error, and CRId D e.0; d/ if we consider
the normalized error. Let

n."; d/ D min fn j e.n; d/ � "CRId g
denote the minimal number of sample points necessary to solve the problem to within
". Note that both e.n; d/ and CRId may take two different values, and so we have four
different cases of n."; d/.

Tractability means that n."; d/ does not depend exponentially on " and d . There
are obviously many different ways to measure the lack of exponential behavior, but we
restrict ourselves to only three cases in this section.

By the multivariate problem INT D fId gd2N we mean multivariate integration Id
defined on the reproducing kernel Hilbert space H.Kd / for varying d 2 N.

We say that INT is weakly tractable iff

lim
"�1Cd!1

ln n."; d/

"�1 C d
D 0:

This means that n."; d/ is much smaller than a"
�1Cd for large "�1 C d , and this holds

for any a > 1. Hence, weak tractability implies that n."; d/ may go to infinity but
slower than exponentially in "�1 C d . If weak tractability does not hold then we say
that INT is intractable. If n."; d/ is an exponential function of d for some " then we
say that INT suffers from the curse of dimensionality.

We say that INT is polynomially tractable iff there are three non-negative numbers
C , p and q such that

n."; d/ � C "�p dq for all " 2 .0; 1/; d 2 N:

Hence, polynomial tractability means thatn."; d/may grow no faster than polynomially
in "�1 and d . If q D 0 in the bound above, that is,

n."; d/ � C "�p for all " 2 .0; 1/; d 2 N;

then we say that INT is strongly polynomially tractable, and the infimum ofp satisfying
the last bound is called the exponent of strong polynomial tractability.

Non-exponential behavior of n."; d/ can occur in many ways. As in [83], let
T W Œ1;1/� Œ1;1/ ! Œ1;1/ be a non-decreasing function of the two arguments such
that

lim
xCy!1

ln T .x; y/

x C y
D 0:

We say that INT is T -tractable iff there are two non-negative numbers C and t such
that

n."; d/ � C T ."�1 d/ t for all " 2 .0; 1/; d 2 N:

We say that INT is strongly T -tractable iff there are two non-negative number C and
t such that

n."; d/ � C T ."�1 1/ t for all " 2 .0; 1/; d 2 N:
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The infimum of t satisfying one of the last two estimates is called the exponent of
T -tractability and the exponent of strong T -tractability.

Note that forT .x; y/ D xy, polynomial tractability andT -tractability are the same.
Other interesting choices of T include

T .x; y/ D exp ..1C ln x/ .1C ln y// or T .x; y/ D exp ..x C y/a/ for a 2 .0; 1/:
For these last two examples, T tends to infinity faster than a polynomial of any degree.

Obviously, polynomial tractability or T -tractability implies weak tractability, and
the lack of weak tractability implies the lack of polynomial and T -tractability.

To distinguish the case when e.n; d/ D ewor.n;H.Kd //, i.e., when we use QMC
algorithms for approximating the multivariate integrands, we will talk about QMC-
tractability instead of tractability. Obviously, QMC-tractability implies tractability.
To review our (elaborated) notation, note that we have weak, polynomial, strong poly-
nomial, and T and strong T -tractability when we use arbitrary coefficients aj , and we
have all these concepts for QMC-tractability if we use aj D n�1. Furthermore, all
these concepts are defined for the absolute or normalized error criterion.

The major problem studied in this volume is to verify for which spaces and for
which linear or non-linear functionals we have weak tractability, polynomial tractabil-
ity, strong polynomial tractability, andT -tractability. In particular, we will be interested
in finding necessary and sufficient conditions on weights � for which these notions of
tractability hold.

In this section we wish to only illustrate a few tractability results for multivariate
integration based on its relations with discrepancy. These tractability results will follow
from discrepancy error bounds reported above as well as results obtained in a number
of papers cited here. We mainly limit ourselves to multivariate integration for the
(weighted) Sobolev space anchored at 0 or 1, which as we now know, is related to the
(weighted) L2 discrepancy anchored at 0. Even in this standard case, there are still
open questions, which we will present as open problems. Much more will be presented
in further chapters for different spaces and different linear as well as few non-linear
functionals along with complete proofs.

We first consider the absolute error criterion. Note that we can now use Theorem 9.7
with Dd D Œ0; 1�d and conclude that INT is strongly polynomially QMC-tractable
with exponent at most 2. From (9.12) we conclude that INT is strongly polynomially
tractable with exponent at most 1:41274. This corresponds to the unweighted L2
discrepancy.

We stress that the exponents of strong tractability for equal, positive and general
coefficients aj are not known; it is even not known if they are different from each
other. By Matoušek’s result [183], we know that the exponent of strong polynomial
QMC-tractability must be at least 1:0669. This leads us to the following open problems.

Open Problem 36.

• Consider multivariate integration for the Sobolev space anchored at 0 or 1 in the
worst case setting for the absolute error criterion.
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– Find the exponent pstr of strong polynomial tractability allowing linear
algorithms with arbitrary sample points and arbitrary coefficients. Today,
we only know that

1 � pstr � 1:41274:

– Find the exponent pstr of strong polynomial tractability allowing linear
algorithms with arbitrary sample points and arbitrary positive coefficients.
Today, we only know that

1 � pstr � 2:

– Find the exponent pstr of strong polynomial tractability allowing linear
algorithms with arbitrary sample points and coefficients aj D n�1. Today,
we only know that

1:0669 � pstr � 2:

Open Problem 37.

• Consider multivariate integration for the Sobolev space anchored at 0 or 1 in the
worst case setting for the absolute error criterion. Construct sample points for ar-
bitrary, positive or equal coefficients achieving the exponent of strong polynomial
tractability. As always, by construction we mean a polynomial time construction
in "�1 and d .

Note that the open problems 31 and 36 are related. Namely, the infimum of p�
in Open Problem 31 is also the solution of Open Problem 36 for the corresponding
class of linear algorithms. Also, Open Problems 32 and 37 are related. The solution
of Open Problem 32 with the minimal (or the infimum of) p is also the solution of
Open Problem 37. Hence, Open Problems 36 and 37 are more difficult than Open
Problems 31 and 32. Obviously, this may convince the reader to attack first Open
Problems 31 and 32.

We now consider the normalized error criterion for multivariate integration for the
Sobolev space anchored at 0 or 1. Since the initial error is now exponentially small
in d , as we know it is 3�d=2, the tractability results are quite different. The lower
bound in (9.17) proved in [221] means that INT is now intractable, even if we allow
arbitrary coefficients. In this case, we have the curse of dimensionality. We will show
this in Chapter 11. For positive weights, the proof of (9.16) is much easier, see [352]
or Section 10.5, since the reproducing kernel is positive.

We now switch to multivariate integration for the weighted Sobolev space that
corresponds to the L2 weighted discrepancy defined in Section 9.3. More precisely,
we consider a non-zero weight sequence � D f�d;ug with �d;u � 0. For the absolute
error criterion, with CRId D 1, let

f� .d/ D
X

u�Œd�
�d;u

�
2�juj � 3�juj�;
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whereas for the normalized error criterion, with CRI2d D P
u�Œd� �d;u 3�juj, let

f� .d/ D
P

u�Œd� �d;u
�
2�juj � 3�juj�P

u�Œd� �d;u 3�juj :

For the unweighted case � D f1g, the initial error is .4=3/d=2 � 1, which implies
that multivariate integration for the absolute error is now much more difficult than
for the normalized error. This along with the lower bound in (9.28) proved in [221],
yield intractability and the curse of dimensionality of INT for both the absolute and
normalized error criteria.

Hence for both these error criteria, we must consider decaying weights to obtain
tractability. From the definition of f� , which depends on the error criteria, we can
consider simultaneously both the absolute and normalized error criteria. From (9.22)
we conclude that

n."; d/ �
�
f� .d/

"2

�
:

This yields that

lim
d!1

ln f� .d/

d
D 0

implies weak QMC-tractability of INT, whereas

lim sup
d!1

ln f� .d/

ln d
< 1

implies polynomial QMC-tractability of INT, as well as T -QMC-tractability if we
choose T .x; y/ D exp..1 C ln x/ .1 C ln y//. For T .x; y/ D exp..x C y/a/ with
a 2 .0; 1/ we obtain T -QMC-tractability if

lim sup
d!1

ln f� .d/

da
< 1:

Observe also that
sup
d

f� .d/ < 1

implies strong polynomial QMC-tractability of INT, with the exponent of strong
tractability at most 2.

We now consider special classes of weights. The weights are called finite-order
weights if

�d;u D 0 for all juj > !
for some integer ! independent of d . This concept was defined in [54], see Volume I
for more information. Then we may have O.d!/ non-zero weights, which implies that
for bounded finite-order weights, i.e., supd2N �d;u < 1, we have f� .d/ D O.d!/ for
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the absolute error criterion with the factor in the O notation independent of d and � .
For the normalized error we have

f� .d/ �
P

u�Œd�; juj�! �d;u2�jujP
u�Œd�; juj�! �d;u3�juj D

P
u�Œd�; juj�!.3=2/juj�d;u3�jujP

u�Œd�; juj�! �d;u3�juj �
�
3

2

	!
:

This means that we have polynomial QMC-tractability for the absolute error criterion,
and strong polynomial QMC-tractability for the normalized error criterion.

The weights are called finite-diameter weights if

�d;u D 0 for all diam.u/ � !;

where diam.u/ D maxi;j2u ji � j j. This concept is due to Creutzig [36], see again
Volume I for more information. Finite-diameter weights are a special case of finite-
order weights but now we can have only O.d/ non-zero weights. Therefore, f� .d/ D
O.d/ for the absolute error andf� .d/ D O.1/ for the normalized error. Again, we have
polynomial QMC-tractability for the absolute error criterion, and strong polynomial
QMC-tractability for the normalized error criterion.

For finite-order weights we know bounds on the worst case errors of the QMC
algorithms using Niederreiter, Halton or Sobol sample points. From [275] we know
that

n."; d/ � d �
.C d ln d/!

"

�
ln "�1 C ln.C d ln d/

�!
;

where � D ! for the absolute error and � D 0 for the normalized error, and C is a
number greater than one independent of "�1 and d .

Note that modulo logarithms we have the best dependence on "�1; indeed "�1 is
a lower bound since even for d D 1 we have n."; 1/ D ‚."�1/. The last bound is
especially interesting since the construction of the sample points does not depend on
the finite-order weights. Still we have only polynomial dependence on d .

We may also use a shifted lattice rule

Qn;d .f / D 1

n

n�1X
kD0

f
��
k
n
z C	

�
mod 1

�
with the generator vector z 2 f1; 2; : : : ; n � 1gd and 	 2 Œ0; 1/d . Nuyens and
Cools [226], [227], [228] proved that the generator z can be computed by the CBC
(component-by-component) algorithm with cost O.d n ln n/, see Chapter 16. Then
there exists a vector 	 such that for

n � Ca"
�2=ad !.1�1=a/;

the worst case error of Qn;d is at most " for the normalized error criterion. Here
a 2 Œ1; 2/ and Ca is a positive number depending only on a, see again [275]. This
implies that for the normalized error criterion, we have

n."; d/ � Ca "
�2=a d !.1�1=a/ for a 2 Œ1; 2/:
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Note that for a D 1 we have strong polynomial QMC-tractability whereas for a close
to 2 we have the best possible dependence on "�1 and polynomial dependence on d .
However, in this case, the choice of z and 	 depends on the finite-order weights.

We now consider product weights, which were the first type of weights studied for
multivariate integration and other multivariate problems, see [277] where this concept
was defined, and Volume I for more information.

Product weights take the form

�d;u D
Y
j2u

�d;j

for
0 � �d;d � �d;d�1 � � � � � �d;1 � 1:

The main idea behind product weights is that �d;j moderates the importance of the
j th variable and that groups of u variables are moderated by the product of weights of
variables from u. The successive variables are ordered according to their importance,
with the first variable being the most important one and so on.

For product weights, we have

f� .d/ D
dY
jD1

�
1C 1

2
�d;j

� �
dY
jD1

�
1C 1

3
�d;j

�
for the absolute error, and

f� .d/ D
dY
jD1

1C 1
2
�d;j

1C 1
3
�d;j

� 1 2
h dY
jD1

�
1C 1

8
�d;j

� � 1;
dY
jD1

�
1C 1

6
�d;j

� � 1
i

for the normalized error, since

1C 1
8
x � 1C 1

2
x

1C 1
3
x

� 1C 1
6
x

for all x 2 Œ0; 1�. Obviously, the absolute error criterion is harder than the normalized
error criterion.

For both the absolute and normalized error criterion, we obtain strong polynomial
QMC-tractability if

lim sup
d!1

dX
jD1

�d;j < 1;

and polynomial QMC-tractability if

lim sup
d!1

Pd
jD1 �d;j
ln d

< 1;
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see [277]. These conditions are also necessary for both the absolute and normalized
error criteria for strong polynomial QMC-tractability and polynomial QMC-tractability,
see again [277] for �d;j independent of d . The same conditions are also necessary
for strong tractability and polynomial tractability as proved in [221] for �d;j 	 �j
independent of d , and in [85] for general �d;j .

From [85], for both the absolute and normalized error criteria, we have the following
results:

• Weak tractability holds iff

lim
d!1

Pd
jD1 �d;j
d

D 0:

• T -tractability holds iff

lim sup
d!1

Pd
jD1 �d;j

ln.1C T .1; d//
< 1;

and

lim sup
"�1!1

ln "�1

ln.1C T ."�1; 1//
< 1:

• Strong T -tractability holds iff

lim sup
d!1

dX
jD1

�d;j < 1;

and

lim sup
"�1!1

ln "�1

ln.1C T ."�1; 1//
< 1:

So far, we have discussed the L2 discrepancy anchored at 0. Similar results hold
for the L2 discrepancy anchored at ˛, for the L2 quadrant discrepancy and for the
unanchored discrepancy. The main technical tool for lower bounds is to use the prop-
erty that the corresponding reproducing kernels are decomposable or have finite rank
decomposable parts, which allows us to use the results from [221]. This will be done
in Chapter 11.

We now briefly address tractability for multivariate integration defined for H.Kd /
with the reproducing kernel given by (9.1),

Kd .x; y/ D
Z
D

1B.t/.x/1B.t/.y/ %.t/ dt for all x; y 2 Rd :

In this case multivariate integration is related to the B-discrepancy. For simplicity we
consider only the absolute error criterion. As before, let B.t/ � Dd for all t 2 D,
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where Dd � Rd and vol.Dd / < 1. From Theorem 9.7, it is obvious that we have
strong polynomial QMC-tractability with exponent at most 2 if vol.Dd / is uniformly
bounded in d , and polynomial QMC-tractability if vol.Dd / is polynomially bounded
in d . We leave the rest of the tractability problems related to the B-discrepancy as
open problems.

Open Problem 38.

• Consider multivariate integration defined for the space H.Kd /, with Kd given
by (9.1), in the worst case setting for the normalized error criterion. Provide
necessary and sufficient conditions on weak, polynomial, strong polynomial and
T -tractability.

The next problem is related to Open Problem 35, where the reader was asked to
derive weightedB-discrepancy. Having done this, it is then natural to study tractability.

Open Problem 39.

• Consider multivariate integration defined for the Hilbert space related to weighted
B-discrepancy. Consider the worst case setting for the absolute and normalized
error criteria. Provide necessary and sufficient conditions on weights to get weak,
polynomial, strong polynomial and T -tractability.

As mentioned before, in Chapter 10 and 11 we will be studying multivariate inte-
gration for spaces that are not necessarily related to discrepancy. In particular, we will
do this for Hilbert spaces with general reproducing kernels.

9.8 Lp Discrepancy

In this section, we indicate how various notions of discrepancy can be also studied for
the Lp norm with p 2 Œ1;1�. We restrict ourselves to the Lp discrepancy anchored
at 0 and to the centered Lp discrepancy. The case p D 1 corresponds to the star
discrepancy, which we will study in the next section. In this book we only study Lp
norms of the discrepancy function, for other norms see the recent book of Triebel [312].

9.8.1 Lp Discrepancy Anchored at the Origin

The Lp discrepancy is defined analogously to the L2 discrepancy anchored at 0. That
is, we take the same sets Œ0; x/ for x 2 Œ0; 1�d as in Section 9.2, and consider the
discrepancy function

disc.x/ D x1x2 � � � xd � 1

n

nX
iD1

1Œ0;x/.ti /;

as in (9.2) with aj D 1
n

.
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The Lp discrepancy of the points t1; : : : ; tn 2 Œ0; 1�d is defined by the Lp norm of
the discrepancy function disc, i.e., for p 2 Œ1;1/ we let

disc�
p.t1; t2; : : : ; tn/ D

�Z
Œ0;1�d

ˇ̌̌
x1x2 � � � xd � 1

n

nX
iD1

1Œ0;x/.ti /
ˇ̌̌p

dx

	1=p
; (9.50)

and for p D 1 we let

disc�1.t1; t2; : : : ; tn/ D sup
x2Œ0;1�d

ˇ̌̌
x1x2 � � � xd � 1

n

nX
iD1

1Œ0;x/.ti /
ˇ̌̌
: (9.51)

It is customary to call the L1 discrepancy the star discrepancy. The main problem
for the Lp discrepancy is to find points that minimize disc�

p , and to study how this
minimum disc�

p.n; d/ depends on d and n.
We now show that the Lp discrepancy is related to multivariate integration for all

p 2 Œ1;1�. Let
W 1
q WD W .1;1;:::;1/

q .Œ0; 1�d /

be the Sobolev space of functions defined on Œ0; 1�d that are differentiable in each
variable (in the distributional sense) and whose first derivatives have finite Lq-norm,
where 1=p C 1=q D 1. More precisely, for d D 1, W 1

q is the space of absolutely
continuous functions whose first derivatives are in Lq.Œ0; 1�/, and for d > 1, W 1

q is a
tensor product of factors from the univariate case. We consider first the subspace of
functions that satisfy the boundary conditions f .x/ D 0 if at least one component of
x is 1 and under the norm

kf k�
d;q D

�Z
Œ0;1�d

ˇ̌̌̌
@d

@ x
f .x/

ˇ̌̌̌q
dx

	1=q
for q 2 Œ1;1/ and

kf k�
d;1 D sup

x2Œ0;1�d

ˇ̌̌̌
@d

@x
f .x/

ˇ̌̌̌
for q D 1. Here, @x D @x1@x2 � � � @xd . That is, we consider the space

F �
d;q D ˚

f 2 W 1
q j f .x/ D 0 if xj D 1 for some j 2 Œ1; d �; and kf k�

d;q < 1 

:

Note that for q D 2 we have F �
d;2

D H.K
ˇ

d
/ with ˇ D 0 for the spaceH.Kˇ

d
/ defined

in Section 9.4.
Consider the multivariate integration problem

INTd .f / D
Z
Œ0;1�d

f .x/ dx for f 2 F �
d;q :

We approximate INTd .f / by quasi-Monte Carlo (QMC) algorithms, which are of the
form

Qd;n.f / D 1

n

nX
jD1

f .tj /
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for some points tj 2 Œ0; 1�d . We now recall Hlawka and Zaremba’s identity, see
Hlawka [135] and Zaremba [362], which states that for f 2 W 1

q we have

INTd .f / �Qd;n.f / D
X

;6Du�Œd�
.�1/ juj

Z
Œ0;1� juj

disc.xu; 1/
@ juj

@xu
f .xu; 1/ dxu:

For d D 1 this identity has the form

INT1.f / �Q1;n.f / D �
Z 1

0

disc.x/ f 0.x/ dx;

and can be simply proved using integration by parts.
Note that

disc.xu; 1/ D
Y
k2u

xk � 1

n

nX
jD1

1Œ0;xu/

�
.tj /u

�
:

For f 2 F �
d;q

, due to the boundary conditions, all terms in Hlawka and Zaremba’s
identity vanish except the term for u D Œd � D f1; 2; : : : ; dg. Hence, for f 2 F �

d;q
we

have

INTdf �Qd;nf D .�1/d
Z
Œ0;1�d

disc.x/
@d

@x
f .x/ dx:

Applying the Hölder inequality, we obtain that the worst case error of Qn;d is

ewor
q .Qd;n/ D sup

f 2F �
d;q

; kf k�
d;q

�1

ˇ̌
INTdf �Qd;nf

ˇ̌ D disc�
p.t1; t2; : : : ; tn/;

where p is chosen such that 1=p C 1=q D 1. For q D 1 we have p D 1 and for
q D 1 we have p D 1.

Hence, the worst case error of Qn;d for the unit ball of F �
d;q

is the Lp discrepancy
for the points t1; t2; : : : ; td that are used by the QMC algorithm Qd;n.

Now take n D 0 and defineQd;0 D 0. In this case we do not sample the function f .
The error of this zero algorithm is the initial worst case error, which is the norm of the
linear functional INTd . It is easy to check that

ewor
q .0/ D ewor

q .Qd;0/ D kINTdk D
�

1

p C 1

	d=p
;

which is 1 for p D 1.
Assume for now that p < 1, or (equivalently) that we consider the multivariate

integration problem for the class F �
d;q

with q > 1. Then the initial error goes to zero
exponentially fast with d . This means that the multivariate integration problem for the
class Fd;q is poorly scaled.

One might claim that this is because we introduced boundary conditions; perhaps it
might be hard to find practical applications for which functions satisfy these boundary



9.8 Lp Discrepancy 55

conditions. Let us agree with this criticism, and remove the boundary conditions. So
we now consider the class

Fd;q D ˚
f 2 W 1

q j kf kd;q < 1

;

where the norm is given by

kf kd;q D
� X

u�Œd�

Z
Œ0;1� juj

ˇ̌̌̌
@ juj

@xu
f .xu; 1/

ˇ̌̌̌q
dxu

	1=q
:

The term for u D ; corresponds to jf .1/jq .
We return to Hlawka and Zaremba’s identity and again apply the Hölder inequality,

this time for integrals and sums, and conclude that the worst case error ofQn;d for the
unit ball of Fd;q is

ewor.Qd;n/ D sup
f 2Fd;q kf kd;q�1

ˇ̌
INTdf �Qd;nf

ˇ̌ D discp.t1; t2; : : : ; tn/;

with 1=p C 1=q D 1, where the combined Lp discrepancy discp for p 2 Œ1;1� is
given by

discp.t1; t2; : : : ; tn/ D
� X

;6Du�Œd�

�
disc�

p ..t1/u; .t2/u; : : : ; .tn/u/
�p �1=p

;

with the usual change to the maximum for p D 1.
What is now the initial error? As before, it is the worst case error of the zero

algorithm, which is again the norm of INTd . However, this time the norm is given in
the space W 1

q without boundary conditions, and

ewor.0/ WD ewor.Qd;0/ D kINTdk

D
� X

u�Œd�
.p C 1/�juj

	1=p
D
� dX
jD0

�
d

j

	
.p C 1/�j

	1=p

D
�
1C 1

p C 1

	d=p
:

So the initial error is now exponentially large in d for all p < 1 or all q > 1. For
q D 1 we have p D 1 and the initial error is 1.

We now consider the normalized error criterion, i.e., we want to reduce the initial
error by a factor " and to solve the problem to within " ewor.0/, under the natural
assumption that " 2 .0; 1/. As usual, we define nq."; d/ as the minimal number of
function values needed to solve the problem to within " ewor.0/ and ask again whether
the integration problem is tractable.

The usual bounds on theLp discrepancy are for a fixed dimension d and large n. It
is well known that the asymptotic behavior of disc�

p.n; d/ with respect to n is of order
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at most n�1.ln n/d�1, see once more Drmota and Tichy [61] and Niederreiter [201].
As before, points for which theLp discrepancy has a bound proportional to n�1.ln n/d
are called low discrepancy points. There is a deep and still evolving theory dealing
with how to construct such low discrepancy points. This theory is mostly due to
Niederreiter and his collaborators. The reader is referred to a recent monograph of
Dick and Pillichshammer [53] for the state of the art of this subject.

We discuss the Lp discrepancy for uniformly distributed points. We consider only
even p and define the average Lp discrepancy as

avgp.n; d/ D
�Z

Œ0;1�nd

disc�
p.t1; t2; : : : ; tn/

p dt

	1=p
; t D .t1; t2; : : : ; tn/:

As shown in [115], the average Lp discrepancy depends on the Stirling numbers
s.k; i/ of the first kind, and S.k; i/ of the second kind, see Riordan [250]. We have

avgp.n; d/
p D

p�1X
rDp=2

C.r; p; d/ n�r ; (9.52)

where

C.r; p; d/ D .�1/r
p�rX
iD0

�
p

r C i

	
.�1/i

iCrX
kDi

.p C 1 � r C k � i/�d s.k; i/S.i C r; k/:

(9.53)
Furthermore,

jC.r; p; d/j � .r C 1/.4p/p

.p C 1 � r/d ;
and

avgp.n; d/ � 4
p
2 p .1C p=2/�d=p

n1=2

�p=2�1X
iD0

n�i
�

1C p=2

1C p=2 � i
	d	1=p

:

Gnewuch [77] proved also the upper bound

avgp.n; d/ � 32=325=2Cd=pp.p C 2/�d=pn�1=2:

Hinrichs suggested to use symmetrization, see again Gnewuch [77] and [210], yielding

avgp.n; d/ �
´
23=2�d=pn�1=2 if p < 2d;

21=2Cd=pp1=2.p C 2/�d=pn�1=2 if p � 2d:

Formula (9.52) was generalized by Leobacher and Pillichshammer [171] to the
weighted discrepancy. These authors then deduced conditions for tractability of the re-
spective integration problems. Similar bounds for the averageLp extreme discrepancy
were proved by Gnewuch [77].

From the mean value theorem, we know that there are points t1; t2; : : : ; tn such that
disc�

p.t1; t2; : : : ; tn/ � avgp.n; d/. However, it is not known how to construct them.
This is our next open problem.
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Open Problem 40.

• Construct in time polynomial in n and d , points t1; t2; : : : ; tn for which

disc�
p.t1; t2; : : : ; tn/ � avgp.n; d/:

Since it might be difficult to construct such points, we also propose a more modest
problem. Observe that avgp.n; d/ is defined in terms of n d random numbers. Our
next question is whether we can obtain similar upper bounds on avgp.n; d/ when we
use less random numbers, see [210]. More precisely, consider generalized lattices with
shift defined by

M z;�
n D ftj D jz C	 (mod 1) j j D 0; 1; : : : ; n � 1g

with z;	 2 Œ0; 1�d . We will treat z and 	 as uniformly distributed and independent
random vectors. Then two points ti ; tj 2 M

z;�
n are uniformly distributed in Œ0; 1�d

and are independent for i 6D j . Observe that M z;�
n is given by 2d random numbers

instead of n d random numbers. Our next open problem is as follows.

Open Problem 41.

• Is it true that the inequality�Z
Œ0;1�2d

disc�
p.M

z;�
n /p dz d	

	1=p
� avgp.n; d/

holds for all even p? It can be checked that this holds for p D 2.

A positive answer to this problem would mean that not much randomness is needed.
This would be a first step towards derandomization of good sample points for Lp
discrepancy.

9.8.2 Centered Lp Discrepancy

The centered discrepancy may be also considered in the Lp norm. This discrepancy
is related to multivariate integration for the Sobolev space with first derivatives in the
Lq norm, where as always 1=p C 1=q D 1. We now present this relation, and for a
change, we start first with multivariate integration.

For d D 1, we take the space F1;q as the Sobolev space of absolutely continuous
functions whose first derivatives are in Lq.Œ0; 1�/ and that vanish at 1

2
. The norm in

F1;q is given by

kf kF1;q
D
8<:
�R 1
0

jf 0.t/jq dt
�1=q

if q < 1;

ess supt2Œ0;1� jf 0.t/j if q D 1:
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For d > 1, the space Fd;q is taken as a tensor product of factors F1;q . Then functions
from Fd;q vanish at x whenever at least one component of x is 1

2
. The norm in Fd;q is

given by

kf kFd;q
D kDE1f kLq.Œ0;1�d

D
�Z

Œ0;1�d
jDE1f .x/jq dx

	1=q
;

where E1 D Œ1; 1; : : : ; 1� and DE1 D @d=@x1 � � � @xd .
We have

Id .f / �Qn;d .f / D
Z
Œ0;1�d

D
E1f .t/DE1�hd �

nX
iD1

aiKd .�; zi /
�
.t/ dt;

with

hd .x/ D 2�d
dY
jD1

�jxj � 1
2
j � jxj � 1

2
j2� ;

Kd .x; t/ D 2�d
dY
jD1

�jxj � 1
2
j C jtj � 1

2
j � jxj � tj j� :

From this we conclude that

eq.Qn;d / ´ sup
f 2Fd;q ; kf kFd;q

�1

ˇ̌
Id .f / �Qn;d .f /

ˇ̌ D Qd cp .Qn;d /;

where Qd cp .Qn;d / is the centered Lp discrepancy given by

Qd cp .Qn;d / D
�Z

Œ0;1�d

ˇ̌̌ dY
jD1

min.xj ; 1 � xj / �
nX
iD1

ai � 1J.b.x/;x/.zi /
ˇ̌̌p

dx

	1=p
:

If q D 1 then p D 1 and, as usual, the integral is replaced by the essential supremum
in the formula above.

Let e.n; Fd;q/ D Qdp.n; d/ denote the minimal error, or equivalently the minimal
centered Lp discrepancy, that can be achieved by using n function values. The initial
error, or the initial centered Lp discrepancy, is now given by

e.0; Fd;q/ D Qd cp .0; d/ D
´
2�d .p C 1/�d=p if q > 1;

2�d if q D 1:

Hence, for all values of q, the initial centered discrepancy is at most 2�d .
The following result is from [221]. For n < 2d and p < 1, we have

Qd cp .n; d/ �
�
1 � n 2�d�1=p Qd cp .0; d/:
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Hence integration is intractable in Fd;q for the normalized error criterion, since

n."; Fd;q/ � .1 � "p/2d and lim
d!1

Qd cp .dC d de; d /
Qd cp .0; d/

D 1 for all C 2 .1; 2/:

Observe that for q D 1 we have p D 1. Since Qd cp .n; d/ is a non-decreasing
function of p, we have

Qd c1.n; d/ D Qd c1.0; d/ D 2�d for all n < 2d :

Hence, unlike the star discrepancy and the extreme discrepancy, see (9.43), we find
that integration and the centered discrepancy are intractable for the normalized error
criterion when q D 1 and p D 1.

It is known that Qd c1.n; d/ goes to zero at least like n�1.ln n/d�1. However, in
view of the previous property we must wait exponentially long in d to see this rate of
convergence.

9.8.3 Spaces Without Boundary Values

We now remove the condition that f .x/ D 0 if at least one component of x is 1
2

,
which was imposed when we discussed multivariate integration related to the centered
Lp discrepancy. That is, for d D 1 we take D1 D Œ0; 1�, and let F1;q;� denote the
Sobolev space W 1

q .Œ0; 1�/ with the norm

kf kF1;q;�
D
�ˇ̌
f .1

2
/
ˇ̌q C ��q=2

Z 1

0

jf 0.x/jq dx

	1=q
;

where � > 0. Observe that for q D 1 we have

kf kF1;1;�
D max

�
jf .1

2
/j; ��1=2 sup

t2Œ0;1�
jf 0.t/j

�
:

For q D 2, we have the Hilbert space with the kernel

K1;� .x; t/ D 1C � 1M .x; t/min.jx � 1
2
j; jt � 1

2
j/:

For d > 1 and � D f�d;ug, we take Fd;q;� D W
.1;1;:::;1/
q .Œ0; 1�d / as the tensor

product of W 1
q .Œ0; 1�/. The norm in Fd;q;� is given by

kf kFd;q;�
D
� X

u�Œd�
�

�q=2
d;u

Z
Œ0;1�juj

ˇ̌̌̌
@juj

@xu
f .xu; 1=2/

ˇ̌̌̌q
dxu

	1=q
: (9.54)
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The formula for the error of the algorithm Qn;d .f / D Pn
iD1 aif .zi / takes the

form,

Id .f / �Qn;d .f /

D
X

u�Œd�

Z
Œ0;1�juj

@juj

@xu
f .xu;

1
2
/
@juj

@xu

�
hd �

nX
iD1

aiKd .�; zi /
�
.xu;

1
2
/ dxu;

see Hickernell [118], where hd and the kernel Kd are given as before. Applying the
Hölder inequality for integrals and sums to Id .f / �Qn;d .f / we conclude that

eq.Qn;d / ´ sup
f 2Fd;q;� ; kf kFd;q;�

�1

ˇ̌
Id .f / �Qn;d .f /

ˇ̌ D d cp;� .Qn;d /;

where, as always, 1=pC1=qD 1, and the weighted centeredLp discrepancyd cp;� .Qn;d /
is given by

d cp;� .Qn;d / D
� X

u�Œd�
�
p=2

d;u

Z
Œ0;1�juj

jdiscc.n; d/.xu; 1=2/jp dxu

	1=p
; (9.55)

with

discc.n; d/.xu; 1=2/ D
Y
`2u

min.x`; 1 � x`/ �
nX
iD1

ai � 1J.a.xu/;xu/.ti /u:

Let e.n; Fd;q;� / D dp;� .n; d/ denote the minimal error, or equivalently the minimal
weighted centered Lp discrepancy, that can be achieved by using n function values.
The initial error, or the initial centered weighted Lp discrepancy, is now given by

e.0; Fd;q/ D d cp;� .0; d/ D
� X

u�Œd�
�
p=2

d;u

�
2�p

p C 1

	juj 	1=p
:

For product weights, �d;u D Q
j2u �j , we obtain

e.0; Fd;q/ D d cp;� .0; d/ D
dY
jD1

�
1C 2�p

p C 1
�
p=2
j

	1=p
:

For q D 1, we have p D 1 and

e.0; Fd;1/ D d c1;� .0; d/ D max
kD0;1;:::;d

�
2�k.�1�2 � � � �k/1=2

�
:

It was proved in [221] that

d cp;� .n; d/ �
� dX
kD0

Cd;p;k

�
2�p

p C 1

	k
� .1 � n 2�k/C

	1=p
;
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where
Cd;p;k D

X
u�Œd�;jujDk

�p=2u :

For n � 2m < 2d , this can be rewritten for p < 1 as

d cp;� .n; d/ � 2�1=p
 
1 �

Pm
kD0 Cd;p;k Œ2�p=.p C 1/�kPd
kD0 Cd;p;k Œ2�p=.p C 1/�k

!1=p
d cp;� .0; d/;

and for p D 1 as
d c1;� � 2�.mC1/ .�1�2 � � � �mC1/1=2 :

For q > 1, i.e., for p < 1, we can determine when tractability of integration does not
hold, see [221]. More precisely, consider INT D fId g with Id defined over Fd;q;� .

Then
P1
jD1 �

p=2
j D 1 implies

lim
d!1

d cp;� .n; d/

d cp;� .0; d/
D 1 for all n;

and integration INT is not strongly polynomially tractable. If

lim�
d!1

Pd
jD1 �

p=2
j

ln d
D 1

then

lim�
d!1

d cp;� .d
k; d /

d cp;� .0; d/
D 1 for all k 2 N;

and integration INT is not polynomially tractable, where lim� is lim or lim sup. Fur-
thermore, proceeding as in [85], we find that

lim sup
d!1

Pd
jD1 �

p=2
j

d
6D 0

implies that integration INT is intractable.

9.9 Star Discrepancy

We now consider multivariate integration for the spaces F �
d;1

and Fd;1 with q D 1. As
we know, these two problems correspond to the discrepancy for p D 1, i.e., to the
star discrepancy. Note that in this case, we have

disc�1.t1; t2; : : : ; tn/ D disc1.t1; t2; : : : ; tn/;



62 9 Discrepancy and Integration

and the multivariate problem is properly scaled, since the initial error is 1 for both
spaces F �

d;1
and Fd;1. Then

n."; d/ D minfn j disc�1.t1; t2; : : : ; tn/ � " for some t1; t2; : : : ; tn 2 Œ0; 1�d g
is the same for both spaces; it is just the inverse of the star discrepancy.

Hence tractability of integration INT D fId g, with Id defined over F �
d;1

or Fd;1,
depends on how the inverse of the star discrepancy behaves as a function of " and d .
Based on many negative results for classical spaces and on the fact that all variables
play the same role for the star discrepancy, it would be natural to expect an exponential
dependence on d , i.e., the curse of dimensionality and intractability of integration
INT. Therefore it was quite a surprise when a positive result was proved in [115].
More precisely, let

disc�1.n; d/ D inf
t1;t2;:::;tn2Œ0;1�d

disc�1.t1; t2; : : : ; tn/

denote the minimal star discrepancy that can be achieved with n points in the d dimen-
sional case for coefficients aj D n�1. The main result of [115] is the following.

Theorem 9.8. There exists a positive number C such that

disc�1.n; d/ � C d 1=2 n�1=2 for all n; d 2 N: (9.56)

The proof of this bound follows directly from deep results in the theory of empirical
processes. In particular, we use a result of Talagrand [292] combined with a result of
Haussler [96], as well as a result of Dudley [62] on the VC (Vapnik–Chervonenkis)
dimension of the family of rational cubes Œ0; x/. The proof is unfortunately non-
constructive, and we do not know points for which this bound holds.

The slightly worse upper bound

disc�1.n; d/ � 2
p
2 n�1=2

�
d ln

��
dn1=2

2.ln 2/1=2

�
C 1

	
C ln 2

	1=2
(9.57)

follows from Hoeffding’s inequality and is quite elementary, see also Doerr, Gnewuch
and Srivastav [58], and Gnewuch [78]. This proof is also non-constructive. However,
using a probabilistic argument, it is easy to show that many points t1; t2; : : : ; tn satisfy
both bounds modulo a multiplicative factor greater than one, see [115] for details.

One can also use the results on the average behavior of the Lp discrepancy for an
even integer p to obtain upper bounds for the star discrepancy, see again [115] and
Gnewuch [77]. For concrete values of d and n, these upper bounds seem to be better
than those presented above.

The upper bounds on disc�1.n; d/ can be easily translated into upper bounds on
n."; d/. In particular, we have

n."; d/ �
&
C 2 d

�
1

"

	2'
; " 2 .0; 1/ and d 2 N: (9.58)
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This means that we have polynomial tractability. Furthermore it was also shown in
[115] that there exists a positive number c such that

n."; d/ � c d ln "�1 for all " 2 .0; 1=64� and d 2 N:

In fact, this lower bound holds not only for quasi-Monte Carlo algorithms but in full
generality for all algorithms. The last bound was improved by Hinrichs [130] who
showed that there exist positive numbers c and "0 such that

n."; d/ � c d "�1 for all " 2 .0; "0� and d 2 N:

The essence of the lower bounds is that we do not have strong polynomial tractability,
and the factor d in the bounds on n."; d/ cannot be removed.

How about the dependence on "�1? This is open and seems to be a difficult problem.
We know that for a fixed d , the minimal star discrepancy disc�1.n; d/ behaves much
better asymptotically in n. More precisely, we know that for arbitrary d , we have

�
�
n�1.ln n/.d�1/=2� D disc�1.d; n/ D O

�
n�1.ln n/d�1� as n ! 1:

The lower bound follows from the lower bound on the minimal L2 discrepancy due to
Roth [254], whereas the upper bound is due to Halton [94], see also Hammersley [93].
Another major open problem for the star discrepancy is to find the proper power of the
logarithm of n in the asymptotic formula for disc�1.n; d/.

Hence, modulo powers of logarithms, the star discrepancy behaves like n�1, which
is optimal since such behavior is already present for the univariate case d D 1. This
means that n."; d/ grows at least as "�1. Furthermore, for any d , we have

lim
"!0

n."; d/

"�.1Cı/ D 0 for any ı > 0:

This may suggest that the exponent 2 of "�1 in the upper bound on n."; d/ in (9.58)
can be lowered. However, we think that as long as we consider upper bounds of the
form n."; d/ � Cdk"�˛ , the exponent ˛ � 2 and 2 cannot be improved. This is Open
Problem 7 presented in Volume I.

It is not too difficult to modify the proof of (9.57) to obtain similar bounds that are
achieved by “constructive” algorithms. However, the running time of such algorithms
is extremely high since it is super-exponential in d . It seems to be very difficult to
obtain constructive algorithms that have a reasonable running time that is polynomial
in d and have error bounds comparable to (9.57).

Using the concept of greedy approximations, Temlyakov [299], [300] proves con-
structive upper bounds for points with a smallLp discrepancy. For the star discrepancy
the constructive upper bound is

disc�1.n; d/ � C d3=2 max.ln d; ln n/1=2 n�1=2; d; n � 2

with a positive number C independent of n and d . This bound is only slightly worse
than (9.56), but there is no detailed analysis of the computing time, to obtain such
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points with small star discrepancy. Again we suspect that the computing time is at least
exponential in d .

Another constructive approach is given in Doerr, Gnewuch and Srivastav [58]. For
a given d and " the authors can ensure a running time for the construction algorithm of
orderC ddd .ln d/d"�2.dC2/ which is too expensive for practical applications for large
d . Improved bounds, but still exponential in d , are presented in the papers by Doerr
and Gnewuch [56], Doerr, Gnewuch, Kritzer and Pillichshammer [57], Gnewuch [78]
and Doerr, Gnewuch and Wahlström [59], [60]. The problem of constructing good n
sample points for the star discrepancy in polynomial time in n and d is presented as
Open Problem 6 in Volume I.

The upper bounds (9.56) and (9.57) were extended by other authors. We discuss
some of these results. Dick [42] proved that there is a single sequence t1; t2; : : : 2
Œ0; 1�1 such that all projections Qt1; Qt2; : : : ; Qtn 2 Œ0; 1�d to the first d coordinates have a
small discrepancy. For example, a bound C

p
d ln.nC 1/=n is possible for all n; d 2

N, with C independent of n and d . Further improvements can be found in Doerr,
Gnewuch, Kritzer and Pillichshammer [57].

We now define weighted star discrepancy and present tractability results obtained
by Hinrichs, Pillichshammer and Schmid [132]. It is natural to ask for which weights
we can achieve strong polynomial tractability or when the exponent of d is smaller
than 1. They proved that strong polynomial tractability indeed does hold for summable
product weights, and does not hold if all weights corresponding to two variables are
lower bounded by a positive number. They also provide a condition on the weights for
which the star discrepancy depends only logarithmically on d .

As before for u � Œd �, u 6D ;, let �d;u be a nonnegative real weight, juj the
cardinality of u, and for a vector x 2 Œ0; 1�d , let xu denote the vector from Œ0; 1�juj
containing the components of x whose indices are in u. By .xu; 1/we mean the vector
x from Œ0; 1�d with all components whose indices are not in u replaced by 1. The
discrepancy function is given, as before, by

disc.x/ D x1x2 � � � xd � 1

n

nX
iD1

1Œ0;x/.ti /:

The weighted star discrepancy disc1;� of sample points t1; t2; : : : ; tn 2 Œ0; 1�d and
given weights � D f�d;u j u � Œd �;u ¤ ;g is given by

disc1;� .t1; t2; : : : ; tn/ D sup
x2Œ0;1�d

max
;6Du�Œd�

�d;ujdisc..xu; 1//j: (9.59)

It comes as no surprise that the weighted star discrepancy is also related to multi-
variate integration. Indeed, in this case, we consider the weighted space Fd;1;� defined
as the space Fd;1 except that the norm is now given by

kf kFd;1;�
D

X
u�Œd�

�d;u

Z
Œ0;1�juj

ˇ̌̌̌
@juj

@xu
f .xu; 1/

ˇ̌̌̌
dxu:
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Then for any QMC algorithm Qn;d .f / D n�1Pn
jD1 f .tj /, Hlawka and Zaremba’s

identity yields

e.Qn;d / D sup
f 2Fd;1;� ;kf kFd;1;�

�1
jId .f / �Qn;d .f /j D disc1;� .t1; t2; : : : ; tn/:

Hence, weighted integration INT� D fId g, with Id defined over Fd;1;� , is ultimately
related to the weighted star discrepancy.

The following result is from Hinrichs, Pillichshammer and Schmid [132].

Theorem 9.9. There is a positive numberC such that for any n and d there exist points
t1; t2; : : : ; tn from Œ0; 1�d for which

disc1;� .t1; t2; : : : ; tn/ � C
1C ln1=2 dp

n
max

;6Du�Œd�
�d;ujuj1=2: (9.60)

Proof. For given n and d , it was shown in Theorem 3 of [115] that the probability that
an i.i.d. randomly chosen point set t1; t2; : : : ; tn from Œ0; 1�d has star discrepancy at
most 


p
d=n is at least

1 � �
K
2e�2�2�d

;

for some number K independent of n and d and for all 
 � max.1;K; 
0/, where 
0
is such that K
2 � e2�

2
for all 
 � 
0.

Consider the set

An;d WD fPn;d � Œ0; 1�d j disc1.Pn;d .u// � 
.juj=n/1=2 for all u � Œd �; u 6D ;g;
where Pn;d D ft1; t2; : : : ; tng and Pn;d .u/ WD f.t1/u; .t2/u; : : : ; .tn/ug. Furthermore,
for u � Œd �, u 6D ;, we define

Ad;u WD
²
Pn;d � Œ0; 1�d

ˇ̌
disc1.Pn;d .u// � 


q
juj
n

³
:

Then we have
An;d D

\
;6Du�Œd�

Ad;u:

Let P denote the Lebesgue measure in Œ0; 1�nd , and let Ac
d;u

D Œ0; 1�nd n Ad;u. Then

P.An;d / D P
� \

;6Du�Œd�
Ad;u

�
D 1 � P

� [
;6Du�Œd�

Acd;u

�
� 1 �

X
;6Du�Œd�

P
�
Acd;u

�
� 1 �

X
;6Du�Œd�

�
K
2e�2�2�juj D 1 �

dX
uD1

�
d

u

	�
K
2e�2�2�u

D 2 � �
1CK
2e�2�2�d

:
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Now we choose

 WD ˛ max

�
1;
p
.ln d/=.ln 2/

�
with ˛ WD max.2;K; 
0/. Then for d D 1 we obtain

P.An;1/ > 1 �K˛2e�2˛2 � 0;

since c � 
0. For d � 2 and x WD ˛2= ln 2 > 5 we have x2 � 2x � dx and
ln d � dx�1. Therefore it follows that x2 ln d � d 2x�1 and hence

˛3 ln d

.ln 2/d 2˛2=.ln 2/
� ln 2

˛ d
:

Let d � 2. From this inequality, we obtain

P.Ad / > 2 � �
1CK
2e�2�2�d � 2 �

�
1C ˛3 ln d

.ln 2/d 2˛2=.ln 2/

	d
� 2 �

�
1C ln 2

˛ d

	d
> 2 � e.ln 2/=˛ D 2 � 21=˛ > 0:

Hence for all d 2 N, we have P.Ad / > 0. Thus, there exists a point set Pn;d � Œ0; 1�d

such that for each ; 6D u � Œd � we have

disc1.Pn;d .u// � ˛max

�
1;

r
ln d

ln 2

	r juj
n

� C
�
1C

p
ln d

�r juj
n
:

For the weighted star discrepancy of this point set, we obtain

disc1;� .Pn;d / � C
1C p

ln dp
n

max
;6Du�Œd�

�d;u
p

juj;

which is the desired result.

From Theorem 9.9 we obtain the following conclusion.

Corollary 9.10. If

C� WD sup
dD1;2;:::

max
;6Du�Œd�

�d;u
p

juj < 1; (9.61)

then for the weighted star discrepancy of the point set from Theorem 9.9 we have

disc1;� .Pn;d / � C � C� 1C p
ln dp
n

; (9.62)

where the unknown positive number C from Theorem 9.9 is independent of n and d .
Hence

n."; d/ �
&
C 2 � C 2�

�
1C p

ln d
�2

"2

'
: (9.63)
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If condition (9.61) holds then (9.63) implies that weighted integration INT� , as
well as the weighted star discrepancy, is polynomially tractable with d exponent zero
and with "�1 exponent at most 2. We stress that we do not obtain strong polynomial
tractability in this case since we still have the logarithmic dependence on the dimension
d . Condition (9.61) is always fulfilled for bounded finite order weights.

We now turn to the case of product weights (independent of the dimension), i.e.,
�d;u D Q

j2u �j for some �j , and give a condition under which the weighted star
discrepancy is strongly polynomially tractable. The following result of Hinrichs, Pil-
lichshammer and Schmid [132] is an extension of Corollary 8 of Dick, Niederreiter
and Pillichshammer [49].

Theorem 9.11. Let n; d 2 N. For product weights, �d;u D Q
j2u �j , if

1X
jD1

�j < 1;

then there exist t1; t2; : : : ; tn from Œ0; 1�d such that for any ı > 0 we have

disc1;� .t1; t2; : : : ; tn/ � Cı;�

n1�ı ;

where Cı;� is independent of d and n. Hence the weighted integration INT� as well
as the weighted star discrepancy is strongly polynomially tractable with the minimal
exponent of strong polynomial tractability 1.

We add that the points t1; t2; : : : ; tn considered in Theorem 9.11 are obtained by a
superposition of digital nets over Z2. However, the proof of Theorem 9.11 in [132] is
still not constructive as it involves an averaging over all digital nets, see [49]. Construc-
tive results, requiring stronger conditions on the weights, were proved by Wang [320],
[321].

The following result of Hinrichs, Pillichshammer and Schmid [132] shows that the
logarithmic factor in the dimension d in the tractability results is really needed.

Theorem 9.12. If the weights � D f�d;u j u � Œd �;u ¤ ;g are such that

c WD inf
f.d;u/ Wu�Œd�; juj�2g

�d;u > 0;

then for any t1; t2; : : : ; tn 2 Œ0; 1�d with 2nC1 � d we have

disc1;� .Pn;d / � c

12
:

In particular, for such weights the weighted integration INT� as well as the weighted
star discrepancy is not strongly polynomially tractable.

To stress once more the difficulty of constructing points with small star discrepancy,
we pose the following open problem:
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Open Problem 42.

Find explicitly points t1; t2; : : : ; tn 2 Œ0; 1�d with star discrepancy bounded by 1/4 and

• n � 1528 for d D 15,

• n � 3187 for d D 30, and

• n � 5517 for d D 50.

The fact that such points exist follows from the bound (14) in Doerr, Gnewuch and
Srivastav [58]. Actually, taking into account known results for d < 10, see Doerr,
Gnewuch and Wahlström [60], one could conjecture that n D 10d points are enough
to obtain a star-discrepancy of at most 1/4.

9.10 Notes and Remarks

NR 9:1. This chapter is based on our papers [220] and [223]. In [220] we sur-
veyed results obtained up to roughly the year 2000 forLp discrepancy and multivariate
integration including especially the case of star discrepancy. In [223] we introduce
B-discrepancy and surveyed results on the L2 discrepancy obtained up to the year
2007.

NR 9:2. More lower and upper bounds on discrepancy can be found in Chen and
Travaglini [28], Dick, Leobacher and Pillichshammer [48], Dick and Pillichshammer
[51], Hickernell, Sloan and Wasilkowski [124], Pirsic, Dick and Pillichshammer [243]
and Temlyakov [298].

NR 9.2.2:1. The bounds on the exponent of the L2 discrepancy obtained in [331]
and [336] are based on relations between L2 discrepancy, multivariate integration and
approximation in the average case setting with a zero-mean Gaussian measure on the
space of continuous function. The covariance kernel of the Gaussian measure is the
same as the reproducing kernel of the Hilbert space of multivariate integration. The
proofs use the results from Wasilkowski [327] and from [127], [329] and are non-
constructive. Still the existing proof technique does not allow us to find the exact value
of the exponent of the L2 discrepancy.

NR 9.2.3:1. The main difficulty in the open problems of this subsection is determining
the exact exponential dependence on d . Note that even today’s lower and upper bounds
are pretty close, and the numbers C d2 appearing in the upper bounds are for C2 not
much larger than 1. This means that these upper bounds can be acceptable for relatively
small d . However, as is always the case with exponential functions, the curse of
dimensionality will eventually kick in. For example, take the upper bound with C2 D
4=3. Then for .4=3/d D 10xd with xd D d � 0:1249 : : : . We have x20 � 2:5,
x50 � 6:25 but x360 � 45.
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NR 9.3:1. Weighted L2 discrepancy appeared for the first time in [277] for product
weights �d;u D Q

j2u �j , followed by [332], which covered product weights of the
more general form �d;u D Q

j2u �d;j . The first use of general weights �d;u is probably
in [128], see Example 1 on page 38 of [128], and the idea of using general weights or,
equivalently, a general reproducing kernel of the Hilbert space for the corresponding
multivariate integration, is attributed to A. Owen.

NR 9.3.1:1. For the unweighted case �d;u D 1, the upper bounds on nf1g."; d/
are of the form C d2 "

�2 for C2 even closer to 1 than before for the normalized L2
discrepancy. In particular, we may take C2 D 1:1143 : : : and then C d2 D 10xd with
xd D d � 0:047 : : : . We now have x20 � 1:0, x50 � 2:35 but x360 � 17 is still too
large.

NR 9.4:1. The standard relations between multivariate integration andL2 discrepancy
are for QMC algorithms, that is when we use linear algorithms with coefficients aj D
n�1. As we shall see later, this choice of coefficients is not good for some spaces, such
as Korobov spaces. For Korobov spaces, although multivariate integration is properly
normalized and the initial error is 1, the worst case error of an arbitrary QMC algorithm
using n points in the d -dimensional case goes exponentially fast to infinity with d for
a fixed n. We show in Chapter 10 that a small change of the coefficients n�1 will
eliminate this bad property, and that the worst case error will then always be at most
equal to the initial error.

NR 9.5:1. This section is entirely based on [223].

NR 9.5.2:1. In this subsection we presented relations between (weighted) L2 dis-
crepancy and multivariate integration in the average case setting. Since (weighted) L2
discrepancy is also related to multivariate integration in the worst case setting, this im-
plies that multivariate integration in the worst and average case settings are also related.
Such relations have been known already for some time; they even hold for general lin-
ear functionals. In the worst case setting, we consider a linear functional defined on a
reproducing kernel Hilbert space, whereas in the average case setting, we consider the
same linear functional defined over a linear space equipped with a zero-mean Gaussian
measure whose covariance function is equal to the reproducing kernel of the Hilbert
space from the worst case setting. We will use such relations extensively. In this way,
we will be able to translate tractability results for general linear functionals in the worst
case setting to tractability results for the same problems in the average case setting.

NR 9.6:1. We demonstrated in this section thatB-discrepancy is related to multivariate
integration for a Hilbert space whose reproducing kernel is given by (9.47). We find
this formula quite intriguing. In particular, this kernel takes only values from Œ0; 1�.
This is a useful property since there are a number of results valid only for Hilbert spaces
whose reproducing kernel is non-negative. In fact, this property was used in the first
paper [277] for weighted spaces to establish a lower bound on the worst case error of
QMC algorithms.
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NR 9.7:1. The purpose of the tractability section is twofold. Firstly, to remind the
reader the basic notions of tractability without necessarily reading Volume I. Secondly,
to present a number of tractability results as a warm-up before the rest of Volume II. As
always, we also presented a number of open problems, this time related to tractability.

NR 9.8:1. Much more is known about Lp discrepancy. Probably the case p D 1
corresponding to the star discrepancy has been the most studied. Again we refer
the reader to the books we mentioned earlier, and in particular, to the most recent
monograph of Dick and Pillichshammer [53].

NR 9.9:1. In this short section we discussed the star discrepancy. This is one of
a few natural examples for which we even have polynomial tractability for the un-
weighted case. The other known example is for multivariate integration defined over a
Hilbert space whose kernel is related to an isotropic Wiener measure, see [128] as well
Example 7 in Volume I, Chapter 3.

NR 9.9:2. We mention here a few more papers on star discrepancy. Further upper
bounds for the star discrepancy (as well as on the extreme discrepancy) can be found in
Doerr, Gnewuch and Srivastav [58], Gnewuch [77], [78] and Mhaskar [186]. We stress
again that the computation and/or approximation of the star discrepancy of given points
is very difficult, see Gnewuch [78], Gnewuch [79], Gnewuch, Srivastav and Winzen
[82] and Thiémard [302], [303].

Further upper bounds for the weighted star discrepancy can be found in Dick,
Niederreiter and Pillichshammer [49], Hinrichs, Pillichshammer and Schmid [132],
Joe [139], Larcher, Pillichshammer and Scheicher [166], Sinescu [266], Sinescu and
L’Ecuyer [267], Sinescu and Joe [268], [269], and Wang [320], [321].



Chapter 10

Worst Case: General Linear Functionals

10.1 Introduction

We now begin our study of the tractability of general (continuous) linear functionals in
the worst case setting for the absolute and normalized error criteria. We assume that
these functionals are defined over reproducing kernel Hilbert spaces. We study general
kernels and their specific form is assumed only in the examples. In particular, the study
of weighted kernels is deferred to the next chapters.

Obviously, linear functionals are trivial for the class ƒall of all continuous linear
functionals. This means that lower bounds established for the classƒall in Volume I are
useless for such problems. We study the classƒstd of function values and we consider
algorithms that use finitely many function values. One of our goals is to establish sharp
lower and upper error bounds. We mainly concentrate on upper bounds, whereas lower
bounds will be studied in the next chapters.

As we shall see, the results are very rich in possibilities. For example, there are
reproducing kernel Hilbert spaces, even of infinite dimension, for which all linear
functionals can be computed with an arbitrarily small error by computing just one
function value. It is possible that such spaces consist of continuous functions; their
construction is related to Peano curves. We report these results in Section 10.3.

The information complexity for a linear functional defined over a reproducing kernel
Hilbert space is always finite. This means that the nth minimal worst case error goes to
zero as n tends to infinity. However, the speed of convergence very much depends on
the space and on the linear functional. We show that there are spaces for which the nth
minimal error for the d -dimensional case can go to zero as n goes to infinity arbitrarily
slowly or quickly. That is, we can have arbitrarily bad or good convergence. Even
for d D 1, some linear functionals may require exponentially many function values
to compute an " approximation. This peculiar result holds for many standard spaces.
We illustrate this point for the Sobolev space anchored at zero, which (as we know
from Chapter 9) is related to the L2 discrepancy. In particular, we show that the sets
of linear functionals with arbitrarily good and bad convergence are both dense. This is
the subject of Section 10.4.

Not surprisingly, it is quite difficult to establish sharp lower bounds on the nth
minimal errors. This problem becomes easier if we assume that the reproducing kernel
is point-wise non-negative and we restrict ourselves to algorithms with non-negative
coefficients. For positive linear functionals, such as multivariate integration, one might
hope that the last assumption on algorithms is not restrictive. Then it is easy to derive
a lower bound from which we can conclude necessary conditions for various kinds of
tractability under the normalized error criterion. We will show this in Section 10.5.
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We then return to the question of whether the use of algorithms with non-negative
coefficients is restrictive. Surprisingly enough, sometimes this condition is very re-
strictive. To see this, we present a space of d -variate functions for which all linear
functionals are easy; they can be approximated with an arbitrarily small error if we use
at most d C1 function values. This means that we always have polynomial tractability
and the exponent of "�1 is zero, whereas the exponent of d is at most 1. On the other
hand, if we use algorithms with non-negative coefficients, then the number of function
values needed to compute an "-approximation is exponential in d . For example, for
multivariate integration the number of function values must be at least proportional
to 5d . We admit that the space with these surprising results is quite esoteric. It is an
interesting open problem to characterize such spaces and to check what happens for
more standard spaces. This is the subject of Section 10.6.

We then study the problem of determining for which spaces and for which linear
functionals the nth minimal error goes to zero at least as n�1=2. This means that the
order of convergence is independent of d and is the same as for the standard Monte
Carlo algorithm for multivariate integration. However, we stress here that we are still
in the worst case setting and our linear functionals are not necessarily multivariate
integration. We present a number of error bounds with an explicit dependence on d
and that are proportional to n�1=2. From these error bounds we conclude sufficient
conditions on tractability and present a number of multivariate problems for which
these sufficient conditions hold. Typically these bounds hold only for the absolute
error criterion when the initial error is less than one.

In Section 10.7 we study multivariate integration. In fact, we slightly generalize
what is usually meant by multivariate integration; but this is only a small technical
point, which is needed for our further study. We first study QMC (quasi-Monte-Carlo)
algorithms, which are often used with much success for high-dimensional integration.
We present a well known estimate on the worst case error of QMC algorithms in
Subsection 10.7.1 and obtain sufficient conditions on tractability.

It is also known that for some spaces the coefficients of QMC algorithms are too
large, see [280]. This is the case for the Korobov space, for which we know a priori
that all integrals are in Œ�1; 1� although the worst case error of any QMC algorithm
using n function values tends exponentially fast to infinity with d . The last example
motivates the need of a proper normalization for QMC algorithms, and this is the subject
of Subsection 10.7.6. It is easy to find the best normalization coefficient. This leads
to better tractability conditions, but only for the absolute error criterion. For tensor
product spaces, we show that we obtain strong polynomial tractability of multivariate
integration for all reproducing kernel Hilbert spaces, provided that the initial error for
d D 1 is less than 1.

The previous subsections are based on the assumption that the reproducing kernel
for equal arguments is integrable. For some spaces, this assumption does not hold,
and the error bounds presented so far are not applicable. A recent paper of Plaskota,
Wasilkowski and Zhao [248] relaxes this assumption by assuming only that its square
root is integrable. We report their results in Subsection 10.7.9 for a slightly more general
case. This leads to better error bounds, as well as relaxed conditions on tractability.
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In Section 10.8 we show that some linear functionals are related to multivariate
integration. For such functionals, we can apply the error bounds and tractability con-
ditions obtained for multivariate integration. We illustrate this relation for a number of
standard spaces.

We return to general linear functionals in Section 10.9. Based on the approach for
multivariate integration, we present conditions under which the nth minimal errors go
zero as fast as n�1=2. It turns out that this is the case for a dense set of linear functionals.
In general, this holds for linear functionals whose representers have a finite norm, the
norm being defined in this section and we illustrate the construction of this new norm
by a number of examples.

We continue to present open problems related to the subjects covered in this chapter.
In this chapter we provide six open problems numbered from 43 to 48.

10.2 Linear Functionals

For fixed d � 1, let Fd be a reproducing kernel Hilbert space of real functions
f W Dd ! R with Dd � Rd . The reproducing kernel of Fd is denoted by

Kd W Dd �Dd ! R;

and the inner product and the norm of Fd are denoted by h�; �iFd
and k � kFd

. The basic
information about reproducing kernel Hilbert spaces can be found in Aronszajn [2] and
in the books of Berlinet and Thomas-Agnan [14], and Wahba [319]. In particular, we
will often make use of the following facts:

• f .t/ D hf;Kd .�; t /iFd
for all f 2 Fd ; t 2 Dd :

• Kd .x; t/ D hKd .�; x/;Kd .�; t /iFd
for all x; t 2 Dd :

•
p
Kd .t; t/ D kKd .�; t /kFd

for all t 2 Dd :
• jKd .x; t/j � p

Kd .x; x/
p
Kd .t; t/ for all x; t 2 Dd :

We consider a (continuous) linear functional Id W Fd ! R. By Riesz’s theorem,
Id takes the form

Id .f / D hf; hd iFd
for all f 2 Fd

for some hd 2 Fd . Clearly, the initial error is given by

e.0; d/ D kIdk D khdkFd
:

Hence, e.0; d/ D 0 only for trivial problems when hd D 0 and Id .f / 	 0.
As we know from Chapter 4, we can restrict our attention to non-adaptive informa-

tion and linear algorithms. Let An;d be a linear algorithm that uses at most n function
values, so that

An;d .f / D
nX

jD1
ajf .tj / for all f 2 Fd
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for some real aj and some tj 2 Dd . Note that

Id .f / � An;d .f / D
D
f; hd �

nX
jD1

ajKd .�; tj /
E
Fd

and ˇ̌
Id .f / � An;d .f /

ˇ̌ � kf kFd

���hd �
nX

jD1
ajKd .�; tj /

���
Fd

:

Furthermore the last estimate is sharp. This implies that the worst case error of An;d
is given by a well known formula

ewor.An;d / WD sup
f 2Fd ; kf kFd

�1

ˇ̌
Id .f / � An;d .f /

ˇ̌ D
���hd �

nX
jD1

ajKd .�; tj /
���
Fd

D
h
khdk2Fd

� 2
nX

jD1
ajhd .tj /C

nX
i;jD1

aiajKd .ti ; tj /
i1=2

:

For fixed sample points tj , the coefficients aj that minimize the worst case error of
An;d are the solution of the n � n system of linear equations

Ma D b

with the symmetric and semi-positive definite matrix M D .Kd .ti ; tj //
n
i;jD1, and the

vectors b D .hd .tj //
n
jD1, a D .aj /

n
jD1. The problem of choosing the sample points tj

that minimize the worst case error ofAn;d is non-linear, in general, and therefore hard.
As in Volume I, we let e.n; d/ D ewor.n; Id / denote the nth minimal worst case

error, which in our case is equal to

e.n; d/ D inf
aj 2R; tj 2Dd

sup
f 2Fd ; kf kFd

�1

ˇ̌̌
Id .f / �

nX
jD1

ajf .tj /
ˇ̌̌

D inf
aj 2R; tj 2Dd

���hd �
nX

jD1
ajKd .�; tj /

���
Fd

:

(10.1)

Hence, the nth minimal worst case error is equal to the approximation error of the
function hd in the (at most) n dimensional subspace spanned by

Kd .�; t1/; Kd .�; t2/; : : : ; Kd .�; tn/
for the best chosen sample points tj from Dd .

Byn."; d/ D nwor."; Id /we mean the information complexity for the absolute error
criterion, with CRId D 1, or for the normalized error criterion, with CRId D kIdk,
given by

n."; d/ D min
˚
n j e.n; d/ � "CRId



:

We stress that for the linear functionals studied in this chapter, the information
complexity multiplied by the cost of one function value is practically the same as the
total complexity, see Chapter 4 for details.
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10.3 One Function Value

We begin analyzing tractability of linear functionals by taking n D 1. That is, we
now consider the minimal error e.1; d/ when we use only one function value. It is
obvious that for Id of the form Id .f / D af .t/ for some a 2 R and t 2 Dd , we
have hd D aKd .�; t / and e.1; d/ D 0. Surprisingly enough, there are spaces Fd of
arbitrary dimension such that e.1; d/ D 0 for all Id . To show such an example of Fd
we first derive the formula for e.1; d/, which will also be needed for further estimates.
We are ready to present the theorem that was originally proved in [218].

Theorem 10.1.

• For a reproducing kernel Hilbert space Fd , take Id .f / D hf; hd iFd
for all

f 2 Fd and for some hd 2 Fd . We have

ewor.1; Id / D e.1; d/ D
s
e2.0; d/ � supt2Dd

h2
d
.t/

Kd .t; t/
(10.2)

with the convention that 0=0 D 0. Moreover,

e.0; d/ > 0 implies e.1; d/ < e.0; d/:

• For any positive integer k or for k D C1, there exists a reproducing kernel
Hilbert space Fd of dimension k such that

ewor.1; Id / D 0

for all linear functionals Id .

Proof. We first prove the formula for e.1; d/. For arbitrary t 2 Dd and a 2 R, we
have

khd � aKd .�; t /k2Fd
D e2.0; d/ � 2a hd .t/C a2Kd .t; t/:

Minimizing with respect to a we get a D hd .t/=Kd .t; t/, and so

inf
a

sup
f 2Fd ; kf kFd

�1

ˇ̌̌
Id .f / � a f .t/

ˇ̌̌2 D e2.0; d/ � h2
d
.t/

Kd .t; t/
:

Here, we use the convention that 0=0 D 0. Indeed, observe that Kd .t; t/ D 0 implies
Kd .t; t/ D kKd .�; t /k2Fd

D 0, so in turn Kd .�; t / D 0, and f .t/ D 0 for all f 2 Fd .
Hence, Kd .t; t/ D 0 yields that hd .t/ D 0 and that the error is e.0; d/. This is
consistent with our convention that 0=0 D 0.

Minimizing with respect to t , we get

e2.1; d/ D e2.0; d/ � sup
t2Dd

h2
d
.t/

Kd .t; t/
;

which yields (10.2).
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Observe that e.1; d/ cannot be equal to e.0; d/ for positive e.0; d/. Indeed,
e.1; d/ D e.0; d/ implies that hd .t/ D 0 for all t 2 Dd . Hence, hd D 0 which
contradicts our assumption that e.0; d/ D khdkFd

> 0.
We now turn to the second point. The dimension of Fd is to be k, hence we

are looking for Fd D span.e1; e2; : : : ; ek/ for some linearly independent functions
ej W Dd ! R. We set Dd D Œ�1; 1�d . Let

Ee .t/ D Œe1.t/; e2.t/; : : : ; ek.t/� for all t 2 Œ�1; 1�d :
We choose the functions ej such that Ee .Œ�1; 1�d / is dense in Œ�1; 1�k . If k D C1 we
use the l2 norm, and we additionally assume that

1X
jD1

e2j .t/ < C1 for all t 2 Œ�1;C1�d :

Clearly such functions exist since we do not impose any regularity assumptions
on ej . We may define the function Ee as follows. Let ri be an ordered sequence of
all rationals from Œ�1; 1�d , and let Epi;k be an ordered sequence of all rational vectors
from Œ�1;C1�k . For k D C1, we use the diagonal ordering of successive components
such that each Epi;1 has finitely many nonzero components. Define Ee.ri / D Epi;k and
Ee.t/ D 0, otherwise. For k D C1, we see that

P1
jD1 e2j .t/ equals zero for irrational t ,

and equals k Ep i;1k2 < C1 for a rational t D ri .
It is easy to check that these functions ej are linearly independent. So we define

F1 D span.e1; e2; : : : ; ek/, with the inner product chosen such that the functions ej
are orthonormal. The reproducing kernel Kd is then given by

Kd .x; t/ D
kX

jD1
ej .x/ ej .t/ for all x; t 2 Œ�1;C1�d :

Indeed, Kd .�; t / belongs to F1 since
Pk
jD1 e2j .t/ < 1, and hf;Kd .�; t /iFd

D f .t/.
We now show that e.1; d/ D 0 for an arbitrary linear functional

Id .f / D hf; hd iFd
with hd D

kX
jD1

j̨ ej 2 Fd :

We have

e.0; d/ D khdkFd
D
h kX
jD1

˛2j

i1=2
< 1:

If e.0; d/ D 0 then e.1; d/ D 0. So assume that e.0; d/ > 0. Let Ę D Œ˛1; ˛2; : : : ; ˛k�.
Then we have

1

e.0; d/
Ę 2 Œ�1;C1�knfE0g:
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Since Ee .Œ�1;C1�d / is dense in Œ�1;C1�k , for any positive � < 1 there exists
t 2 Œ�1;C1�d such that �� Ee .t/ � Ę=e.0; d/ ��

2
� �:

This means that for small �we get kEe .t/k2 > 0, and the vectors Ee .t/ and Ę are almost
parallel. We have

h2
d
.t/

Kd .t; t/
D
�Pk

jD1 j̨ ej .t/
�2Pk

jD1 e2j .t/
:

Observe that

kX
jD1

j̨ ej .t/ D e.0; d/
� kX
jD1

ej .t/
2 C

kX
jD1

�
j̨ =e.0; d/ � ej .t/

�
ej .t/

�
:

Therefore

ˇ̌̌ kX
jD1

j̨ ej .t/
ˇ̌̌

� e.0; d/

kX
jD1

ej .t/
2
�
1 � kEe .t/ � Ę=e.0; d/k2=kEe .t/ k2

�
;

and
h2
d
.t/

Kd .t; t/
� e2.0; d/ kEe .t/k22

�
1 � �=kEe .t/k2

�2
:

Letting � go to zero, we get kEe .t/k2 ! 1 and supt2Dd
h2
d
.t/=Kd .t; t/ D e2.0; d/.

Hence, (10.2) implies that e.1; d/ D 0. This completes the proof.

The space Fd in the proof of Theorem 10.1 consists of very irregular functions. We
now show that Fd can be chosen as a subclass of the class C.Œ0; 1�d / of continuous
functions. The construction of such Fd is as follows, see [204] and [218].

The interval Œ0; 1�d is a Peano set, i.e., there exists a surjective continuous mapping

g D Œg1; g2; : : : � W Œ0; 1�d ! Œ�1; 1�N;
see, e.g., Semadeni [260]. Such a mapping g is called a Peano map or a Peano curve.
Here, gj is the j th component of g and is a continuous function.

For a given integer k or k D C1, define

Fd D ˚
f W Œ0; 1�d ! R j f D Pk

jD1 fjgj for which
Pk
jD1 j 2f 2j < C1 


with the inner product

hf; hiFd
D

kX
jD1

j 2fjhj

for h D Pk
jD1 hjgj 2 Fd .
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Observe that f .t/ D Pk
jD1 fjgj .t/ is well defined since jgj .t/j � 1 and

jf .t/j �
kX

jD1
jfj j �

� kX
jD1

j 2f 2j

�1=2� kX
jD1

j�2�1=2 � �p
6

kf kFd
:

This also implies that f is a continuous function; hence Fd � C.Œ0; 1�d /. It is easy to
check that Fd is complete so Fd is a Hilbert space.

We now show that for any continuous linear functional Id and any positive ", there
exist a nonnegative number ˇ and x 2 Œ0; 1� such that

jId .f / � ˇ f .x/j � "; for all f 2 Fd ; kf kFd
� 1: (10.3)

That is, Id can be recovered with arbitrarily small error by using at most one function
value, so that e.1; d/ D 0. Indeed, let us represent

Id .f / D hf; hd iFd
for some hd D

kX
jD1

hd;jgj 2 Fd :

The series
Pk
jD1 j 2h2d;j is convergent, and so there exists m D m."/ such that

kX
jDmC1

j 2h2d;j � "2:

Let
ˇ D max

jD1;2;:::;m jId .gj /j:
If ˇ D 0 then kIdk D khdkFd

� " and (10.3) holds. Assume then that ˇ > 0.
Observe that Id .gj / D j 2hd;j and since jjhd;j j � khdkFd

then ˇ � mkhdkFd
.

Hence
u D ˇ�1 ŒId .g1/; Id .g2/; : : : ; Id .gm/� 2 Œ�1; 1�m:

Since g is surjective, there exists x 2 Œ0; 1� such that g.x/ D Œu; 0; 0; : : : �. That is,
gj .x/ D ˇ�1Id .gj / for j D 1; 2; : : : ; m, and gj .x/ D 0 for j > m. For kf kFd

� 1

we thus have

Id .f / D
mX
jD1

fj Id .gj /C
kX

jDmC1
fj Id .gj / D ˇ

mX
jD1

fjgj .x/C
kX

jDmC1
j 2fjhd;j

D ˇ

kX
jD1

fjgj .x/C
kX

jDmC1
j 2fjhd;j D ˇ f .x/C

kX
jDmC1

j 2fjhd;j :

Hence,

jId .f / � f̌ .x/j �
kX

jDmC1
j 2jfjhd;j j � kf kFd

� kX
jDmC1

j 2h2d;j

�1=2 � ";

as claimed in (10.3). Obviously, we can set " D 0 in (10.3) if k is finite.
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Theorem 10.1 states that for some reproducing kernel Hilbert spaces, all linear
functionals Id can be solved with arbitrarily small error by using just one function
value. For such spaces the power of the class ƒall and the class ƒstd is equal since

nwor."; Id ; ƒ
all/ D nwor."; Id ; ƒ

std/ D 1 for all " < max
�
1; khdkFd

�
;

whether we use the absolute or normalized error criterion. Obviously for such spaces
we have strong polynomial tractability with exponent 0.

The reader may rightly think that this may happen only for esoteric spaces. Indeed,
the construction of such spaces indicates this. As we shall see in the next section almost
anything can happen, depending on the space Fd .

10.4 Bad or Good Convergence

Although there exist spaces for which e.1; d/ D 0 for all linear functionals, for typical
spaces and typical linear functionals we have that e.n; d/ > 0 for all n.

First of all we notice that for all Id we have

lim
n!1 e.n; d/ D 0:

Indeed, we have Id .f / D hf; hd iFd
for some hd 2 Fd D H.Kd /. It is known that

H.Kd / is the completion of the union of finite dimensional subspaces

span.Kd .�; t1/;Kd .�; t2/; : : : ; Kd .�; tm//
for an integerm and t1; t2; : : : ; tm fromDd . This means that for any positive "we may
find a finite m D m."/, aj D aj .m/ 2 R and tj D tj .m/ 2 Dd for j D 1; 2; : : : ; m

such that ���hd �
mX
jD1

ajKd .�; tj /
��� � ":

From (10.1), this implies that e.m; d/ � ". Since " can be arbitrarily small and the
sequence fe.n; d/g is monotonically non-increasing in n, the limit of e.n; d/ is zero,
as claimed.

So we always have convergence which implies that the information complexity
n."; d/ is finite for all positive " and all d 2 N. Furthermore, the argument above
shows that the sets,

Ad D ˚
hd j ewor.m; Id / D 0 for some finite m D m.Id /



;

Bd;p D ˚
hd j lim

n!1 ewor.n; Id / n
p D 0



with p > 0;

are dense inF �
1 . Since we can identify linear functionals Id with their representers hd ,

we can also say that the properties above hold for dense sets of linear functionals.
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This density result holds for any positive p. That is, for arbitrary large p, the set
of linear functionals Id for which

ewor.n; Id / D O.n�p/

is dense in Fd . Here, the factor in the O notation is independent of n but may depend
on d through Id .

This looks like a very good result stating that a dense set of linear functionals
can be recovered exactly after computing finitely many function values, and that we
can have an arbitrarily good rate of convergence. However, these properties are quite
misleading. First of all, m D m.Id / can be arbitrarily large. Secondly, we may have
to wait arbitrarily long for the good rate of convergence to happen. In Volume I, we
saw many examples of multivariate problems with an excellent rate of convergence
that suffer from the curse of dimensionality. Furthermore, these good properties are
for a dense set of linear functionals; they tell us nothing about what can happen for
the complement of this set. As we shall see, anything good or bad can happen. We
already saw spaces Fd for which ewor.1; Id / D 0 for all Id . We now exhibit examples
of spaces Fd for which the minimal errors e.n; d/ D ewor.n; Id / have both bad or
good properties, depending on Id .

Indeed, the convergence of e.n; d/ to zero can be arbitrarily slow or arbitrarily
fast, and therefore n."; d/ can go to infinity arbitrarily fast or arbitrarily slow; this can
occur for arbitrary d . So, anything can really happen; it all depends on the space Fd
and the linear functional Id .

More precisely, let g W Œ0;1/ ! Œ0; 1� be an arbitrary convex decreasing function
such that g.0/ D 1 and limx!1 g.x/ D 0. As in [218], we show that for any d
there exist a reproducing kernel Hilbert space Fd and a continuous linear functional
Id defined on Fd for which

e.n; d/ D
p
g.n/ for all n:

The function g can go to zero arbitrarily slowly. Indeed, take an integer k and define
the function g.x/ D 1= ln.k; x/, where

ln.k; x/ D ln ln � � � ln.x C ck/

with ln occurring k times and ck D exp.exp.� � � exp.1/ � � � // with exp also occurring
k times. Then g.0/ D 1, and it is decreasing to zero. It can be checked that g is convex
since g00 is positive. In this case, we have

n."; d/ D ˙
exp.exp. � � � exp."�2/ � � � // � ck

�
:

Hence, the information complexity is in this case a k-level exponential function, where
k can be arbitrarily large. Obviously this means that the problem is intractable even
for d D 1.

On the other hand, g can go to zero arbitrarily fast. In this case, the problem Id is
very easy. For example, if g.x/ D exp.k; 0/= exp.k; x/, where

exp.k; x/ D exp.exp. � � � exp.x/ � � � //
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with exp occurring k times, then g again is decreasing and convex and the information
complexity

n."; d/ D ˙
ln.ln.� � � ln

�
exp.k; 0/ "�2� � � � //�

goes to infinity extremely slowly especially if k is large. These two cases of g indeed
show that anything can happen.

We now provide two examples of spaces and linear functionals from [218] for which
e.n; d/ D p

g.n/. These examples will also play an additional role of illustrating
further estimates.

10.4.1 Example: Kernel for Non-Separable Space

Consider Fd as the space of functions defined on, say, Dd D Œ0; 1�d with the repro-
ducing kernel

Kd .t; t/ D 1 and Kd .x; t/ D 0 for x 6D t:

Hence, Fd is the Hilbert space of functions f W Dd ! R such that

f D
1X
jD1

ajKd .�; tj /

for some distinct tj from Œ0; 1�d , with

kf k2Fd
D

1X
jD1

a2j < 1:

Hence we have f .tj / D aj and f .t/ D 0 for t distinct from all tj , so that each function
f from Fd vanishes almost everywhere.

For g D P1
jD1 bjKd .�; sj /, the inner product in Fd is

hf; giFd
D

1X
i;jD1

aibjKd .ti ; sj /:

Note thatKd .�; x/ andKd .�; t / are orthonormal for x 6D t . Hence, Fd has an uncount-
able orthonormal system, and therefore is not separable.

Consider now an arbitrary linear functional

Id .f / D hf; hd iFd
for all f 2 Fd

with

hd D
1X
jD1

j̨Kd .�; t�j /;
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where t�j are distinct with

1X
jD1

˛2j D 1 and j˛1j � j˛2j � � � � :

Then khdkFd
D 1 and the absolute and normalized error criteria coincide.

Take a linear algorithm An;d .f / D Pn
jD1 ajf .tj /. Its worst case error is

ewor.An;d / D
���hd �

nX
jD1

ajKd .�; tj /
��� D

h
1 � 2

nX
jD1

ajhd .tj /C
nX

jD1
a2j

i1=2
:

We minimize the worst case error by taking aj D hd .tj /, so that

ewor.An;d / D
h
1 �

nX
jD1

h2d .tj /
i1=2

:

Sincehd .t/ D 0 for t not equal to t�j , it is obvious that the sample points tj that minimize
the worst case error should be equal to some t�j . Since ˛2j are non-increasing, the best
choice is to take tj D t�j . This means that the algorithm

A�
n;d .f / D

nX
jD1

hd .t
�
j / f .t

�
j /

minimizes the worst case error among all algorithms that use n function values. Since
hd .t

�
j / D j̨ we obtain

e.n; d/ D
h
1 �

nX
jD1

˛2j

i1=2 D
h 1X
jDnC1

˛2j

i1=2
:

For a given function g W Œ0;1/ ! R, which is convex and decreasing with g.0/ D 1

and limx!1 g.x/ D 0, define

j̨ D Œg.j � 1/ � g.j /�1=2 for j D 1; 2; : : : :

Then monotonicity of g yields that the j̨ are well defined and positive, and convexity
of g yields that j̨ � j̨C1. Indeed, since

g.tx C .1 � t /y/ � tg.x/C .1 � t /g.y/ for any t 2 Œ0; 1� and x; y 2 Œ0;1/;

it is enough to take t D 1
2

and x D j � 1, y D j C 1. Then

g.j / D g
�
1
2
.j � 1/C 1

2
.j C 1/

� � 1
2
.g.j � 1/C g.j C 1//
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which is equivalent to g.j � 1/� g.j / � g.j /� g.j C 1/ or j̨ � j̨C1, as needed.
Finally, we have

e2.n; d/ D
1X

jDnC1
Œg.j � 1/ � g.j /� D g.n/;

as claimed.
Hence, we can have arbitrarily slow/fast convergence, or equivalently, arbitrarily

bad/good information complexity.

10.4.2 Example: Unbounded Kernel

We present a separable Hilbert space Fd with an unbounded reproducing kernel Kd ,
and a continuous linear functional Id for which e.n; d/ D p

g.n/. This is done by a
simple modification of the space from the previous example. For simplicity, we restrict
ourselves to d D 1.

Define F1 as the space of functions f W Œ0; 1� ! R which are constant over the
intervals .1=.j C 1/; 1=j � for j D 1; 2; : : : . That is,

f .x/ D
1X
jD1

f .1=j / 1.1=.jC1/;1=j �.x/;

where 1.a;b� is the characteristic (indicator) function of the set .a; b�, i.e.,

1.a;b�.t/ D 1 if t 2 .a; b� and 1.a;b�.t/ D 0 if t … .a; b�:
We assume that

P1
jD1 f 2.1=j / < C1, and define the inner product of F1 as

hf; hiF1
D

1X
jD1

f .1=j / h.1=j / j�1.j C 1/�1:

Observe thatZ 1

0

f .x/h.x/ dx D
1X
jD1

Z 1=j

1=.jC1/
f .x/h.x/ dx D

1X
jD1

f .1=j / h.1=j / j�1.j C 1/�1:

Thus, hf; hiF1
D hf; hiL2

. This shows that F1 � L2.Œ0; 1�/ and kf kF1
D kf kL2

.
We now show thatF1 is a reproducing kernel Hilbert space and find the reproducing

kernel K1. For any t 2 .1=.j C 1/; 1=j � we should have

f .t/ D f .1=j / D hf;K1.�; 1=j /iF1
D

1X
kD1

f .1=k/K1.1=k; 1=j /k
�1.k C 1/�1:
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This is satisfied for all f if

K1.1=j; 1=k/ D k.k C 1/ ıj;k :

Since K1.�; t / should be piecewise constant we finally have

K1.x; t/ D j.j C 1/ if T .x/ D T .t/ D j for some j;

and K1.x; t/ D 0 otherwise. Here, T .x/ D k iff x 2 .1=.k C 1/; 1=k�. Since

K1.1=k; 1=k/ D k.k C 1/ for all k;

the kernel K1 is unbounded.
Let I1.f / D hf; h1iF1

with h1 D P1
jD1 j̨ 1.1=.jC1/;1=j �, and let

khk2F1
D

1X
jD1

˛2j j
�1.j C 1/�1 D 1:

Consider the algorithm A1.f / D Pn
jD1 ajf .tj /. Since f is piecewise constant we

may assume that tj D 1=kj for some integers kj . Since K.�; 1=i/ and K.�; 1=j /
are orthogonal for distinct i and j , it is easy to check that aj D ˛kj

k�1
j .kj C 1/�1

minimizes the error. Then the worst case error of A1 is

ewor.A1/ D
h
1 �

nX
jD1

˛2kj
k�1
j .kj C 1/�1

i1=2
:

Thenbest sample points correspond to then largest numbers of the sequence˛2j j
�1.jC

1/�1. Assume then that

˛2j1

j1.j1 C 1/
� ˛2j2

j2.j2 C 1/
� � � � � 0:

Then

e.n; 1/ D
h 1X
iDnC1

˛2ji
j�1
i .ji C 1/�1

i1=2
:

Similarly to the previous example, we define the coefficients j̨ by

j̨ D Œj.j C 1/ .g.j � 1/ � g.j //�1=2
for any convex decreasing function g, with g.0/ D 0 and limx!1 g.x/ D 0. Then

e.n; 1/ D
p
g.n/;

as claimed. Hence, we can have arbitrarily slow/fast convergence or, equivalently,
arbitrarily bad/good information complexity.

The reader may think that the spaces of the previous two examples are a little
contrived and hope that bad convergence will not occur for more standard spaces.
Unfortunately, this is not true as illustrated in the next example for the Sobolev space
anchored at zero which, as we know, is related to the L2 discrepancy.
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10.4.3 Example: Sobolev Space Anchored at 0

We now show that even for d D 1 there are linear functionals defined over the Sobolev
space F1 D W 1

0 .Œ0; 1�/ anchored at zero that are arbitrarily hard. That is, convergence
of approximating them can be arbitrarily slow.

As we know, the reproducing kernel of the Sobolev space anchored at zero is

K1.x; t/ D min.x; t/ for all x; t 2 Œ0; 1�;
and the inner product is given by

hf; giF1
D
Z 1

0

f 0.t/g0.t/ dt

for f; g 2 F1, i.e., for functions f and g that are absolutely continuous whose first
derivatives are L1.Œ0; 1�/ and f .0/ D g.0/ D 1.

For j D 1; 2; : : : , define

gj .x/ D

8̂<̂
:
0 for x 2 Œ0; 1=.j C 1/� [ Œ1=j; 1�;p
j.j C 1/ Œ�x C 1=.j C 1/� for x 2 Œ1=.j C 1/; 1

2
.1=.j C 1/C 1=j /�;p

j.j C 1/ Œx � 1=j � for x 2 Œ1
2
.1=.j C 1/C 1=j /; 1=j �:

The functions gj are piecewise linear, the support of gj is Œ1=.j C 1/; 1=j �, and these
functions have disjoint supports. They are also normalized, i.e.,kgj kF1

D 1, and are
orthonormal. Define

h1.x/ D
1X
jD1

j̨gj .x/ for all x 2 Œ0; 1�;

with

kh1k2F1
D

1X
jD1

˛2j 2 .0;1/ and ˛1 � ˛2 � � � � > 0:

Let I1.f / D hf; h1iF1
. We now prove that

ewor.n; I1/ �
h 1X
jDnC1

˛2j

i1=2
: (10.4)

We know from Chapter 4 of Volume I that

ewor.n; I1/ D inf
t1;t2;:::;tn2Œ0;1�

sup
kf kF1

�1;f .tj /D0; jD1;2;:::;n
hf; h1iF1

:

Take arbitrary t1; t2; : : : ; tn from Œ0; 1�. Without loss of generality we can assume that
tj > 0, since we know that all functions in F1 are zero at 0. Let Jk D .1=.kC1/; 1=k�
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for k D 1; 2; : : : . Then each tj 2 Jkj
for some kj . LetAn D fk1; k2; : : : ; kng. Define

the function
g.x/ D

X
j2Œ1;1/W j…An

j̨gj .x/ for all x 2 Œ0; 1�:

Then g 2 F1 and g.tj / D 0 for all j D 1; 2; : : : ; n. Clearly, g is not zero. Finally
define

f D 1

kgkF1

g:

Then kf kF1
D 1, f .tj / D 0 for j D 1; 2; : : : ; n and

hf; h1iF1
D
h X
j2Œ1;1/W j…An

˛2j

i1=2 �
h 1X
jDnC1

˛2j

i1=2
;

since An has at most n elements and the j̨ ’s are ordered.
Obviously, we can now define the coefficients j̨ as in the previous two examples

to obtain arbitrarily bad convergence of approximating the linear functional with the
representer h1.

We may hope that this bad convergence happens only for some linear functionals.
As we shall see now, this can happen for many linear functionals.

More precisely, for any k 2 N, we use the function 1= ln.k; x/, defined before,
which goes to zero extremely slowly as the reciprocal of the k-iterated logarithm.
Define

Bk D ˚
h1 2 F1 j ewor.n; I1/ � kh1kF1

= ln1=2.k; n/ for all n 2 N



as the set of linear functionals I1.f / D hf; h1iF1
for f 2 F1 for which the squares of

the nth minimal worst case errors tend to zero at least as fast as the reciprocal of the
k-iterated logarithm. One might hope that at least for large k, the set Bk is the whole
space or at least a good chunk of F1. Unfortunately, Bk does not contain any ball in
F1 no matter how large k. That is, for any ball B.h�

1; r/ with center h�
1 and positive

radius r (no matter how small), there exists h1 2 B.h�
1; r/ that does not belong to Bk ,

i.e., for which convergence is slower than the reciprocal of the k-iterated logarithm.
To prove this bad property, take the ballB.h�

1; r/. If h�
1 … Bk we are done. Assume

then that h�
1 2 Bk . If h�

1 6D 0 we take r 2 .0; kh�
1kF1

/. We define

h1 D h�
1 C rh1;kC1.x/;

where h1;kC1.x/ D P1
jD1 j̨gj .x/ is given as before with

j̨ D


1

ln.k C 1; j � 1/ � 1

ln.k C 1; j /

�1=2
:

Note that kh1;kC1kF1
D 1. Moreover h1 6D 0, since for h�

1 6D 0 we have kh1kF1
�

kh�
1kF1

� r > 0, and for h�
1 D 0 we have kh1kF1

D r > 0.
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For f 2 F1, consider the three linear functionals

I1.f / D hf; h1iF1
; I �

1 .f / D hf; h�
1iF1

; I1;kC1.f / D ˝
f; h1;kC1

˛
F1
:

Then
ewor.n; I1/ � r ewor.n; I1;kC1/ � ewor.n; I �

1 /:

From the previous estimate and the construction of the j̨ ’s we know that

ewor.n; I1;kC1/ � 1

ln1=2.k C 1; n/
:

Since h�
1 2 Bk we conclude that

ewor.n; I1/ � r

ln1=2.k C 1; n/
� kh�

1kF1

ln1=2.k; n/
:

This shows that

ewor.n; I1/ � kh1kF1

ln1=2.k; n/

cannot hold for large n. Hence, h1 … Bk , as claimed.
Obviously, arbitrarily bad convergence means that the information complexity is

arbitrarily large. Hence even for d D 1, in each ball we can find an example of a linear
functional defined over the Sobolev space anchored at zero that has arbitrarily large
information complexity, and therefore is intractable.

If we take into account the previous result that the set of linear functionals with arbi-
trarily good convergence is also dense in F1, we can conclude that indeed anything can
happen, since the sets of linear functionals with arbitrarily bad and good convergence
are both dense in F1.

Although we show this peculiar dependence only for the Sobolev spaceW 1
0 .Œ0; 1�/,

it is clear that similar results are also true for many standard Sobolev or Korobov
spaces, with more or less the same proof. In particular, increasing the smoothness in
the function space will not change this property.

10.5 Non-negative Kernels and Algorithms

Sometimes it is relatively easy to prove lower bounds on the worst case errors for
algorithms with non-negative coefficients, whereas it is usually much harder to prove
similar lower bounds for linear algorithms with arbitrary and maybe negative coeffi-
cients. Lower bounds for algorithms with non-negative coefficients were studied in,
e.g., [207], [208], [277], [352]. Here we present a general lower bound for Hilbert
spaces whose reproducing kernel is point-wise non-negative.

We assume that the reproducing kernelKd W Dd �Dd ! R of the space Fd is such
that

Kd .x; t/ � 0 for all x; t 2 Dd : (10.5)
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The lower bound will be expressed in terms of Kd and hd by the quantity

�d ´ 1

khdkFd

sup
x2Dd

jhd .x/jp
Kd .x; x/

: (10.6)

Since

jhd .x/j D ˇ̌hhd ; Kd .�; x/iFd

ˇ̌ � khdkFd
kKd .�; x/kFd

D khdkFd

p
Kd .x; x/

we have �d � 1. If �d D 1 then Id is trivial, since Theorem 10.1 then implies that
e.1; d/ D 0. This means that Id .f / can be approximated with arbitrarily small error
using only one function value. So the only interesting case is when �d < 1. As we
shall see later, the quantity �d is exponentially small in d for some spaces.

We will now consider linear algorithms An;d with non-negative coefficients aj .
Obviously, the use of such coefficients can be justified only for some linear functionals.
For example, assume that for f � 0 we have Id .f / � 0. Since An;d .f / � 0 then
jId .f /�An;d .f /j � jId .f /j and all algorithms An;d are at most as good as the zero
algorithm. However, we can hope that algorithms An;d with non-negative coefficients
can be good for positive linear functionals Id , i.e., when f � 0 implies that Id .f / � 0.
In particular, the last property holds for multivariate integration that will be studied in
the next subsection.

We present a lower bound on the worst case error that does not require Id to be of
a special form. In this section we will illustrate this bound for linear functionals that
are not related to multivariate integration and for which the assumption that aj ’s are
non-negative is not restrictive, and in the next section for multivariate integration.

We are ready to prove the following theorem basically using the same argument
that was presented for multivariate integration and for algorithms with aj � 0 in [352],
and for QMC algorithms (with aj D n�1) in [277].

Theorem 10.2. Consider a linear functional Id defined over the space Fd whose
reproducing kernel is point-wise non-negative, see (10.5).

Let An;d .f / D Pn
jD1 ajf .tj / be a linear algorithm with arbitrary aj � 0 and

arbitrary sample points tj fromDd . Then

ewor.An;d / � .1 � n �2d /1=2C khdkFd
:

Therefore, if ewor.An;d / � " khdkFd
then

n � .1 � "2/ ��2
d :

Proof. The square of the worst case error of An;d is

�
ewor.An;d /

�2 D khdk2Fd
� 2

nX
jD1

aj hd .tj /C
nX

i;jD1
aiaj Kd .ti ; tj /:

From the definition of �d we have

jhd .x/j � �d khdkFd

p
Kd .x; x/ for all x 2 Dd :
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Replacing hd .tj / by its upper bound we obtain

nX
jD1

aj hd .tj / � �d khdkFd

nX
jD1

jaj j
q
Kd .tj ; tj /

� �d khdkFd

p
n
h nX
jD1

a2j Kd .tj ; tj /
i1=2

:

Since Kd .ti ; tj / and aj are non-negative, we have

nX
i;jD1

aiaj Kd .ti ; tj / � ˇ2 ´
nX

jD1
a2j Kd .tj ; tj /:

We thus have �
ewor.An;d /

�2 � khdk2Fd
� 2�d khdkFd

p
nˇ C ˇ2:

Minimizing with respect to ˇ we obtain ˇ D �dkhdkFd

p
n, which gives the estimates

of the theorem.

The essence of Theorem 10.2 is the dependence on d for the normalized error
criterion. If �d goes to zero as d tends to infinity then n also goes to infinity. This
means that we cannot achieve strong polynomial tractability by using algorithms with
non-negative coefficients. And what is more important, if �d goes exponentially fast to
zero as d tends to infinity then nmust go exponentially fast to infinity. In this case, we
cannot achieve weak tractability by using algorithms with non-negative coefficients.

Therefore, necessary conditions to achieve various kinds of tractability for the
normalized error criterion by using algorithms with non-negative coefficients are:

• strong polynomial tractability: lim inf
d!1

�d > 0;

• polynomial tractability: lim inf
d!1

dq�d > 0;

• weak tractability: lim
d!1

ln ��1
d

d
D 0:

For polynomial tractability, q is an arbitrary positive number.
Probably the best illustration of Theorem 10.2 is for tensor product spaces and

tensor product linear functionals. We will thoroughly study these problems later. Here
we only highlight their properties in the context of the lower bound of Theorem 10.2.

Hence, assume that Dd D D d
1 and

Kd .x; t/ D
dY
jD1

K1.xj ; tj / for all x; t 2 Dd ;
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whereK1 is the reproducing kernel ofF1 withK1 � 0. ThenFd D F1˝F1˝� � �˝F1
is the tensor product of d copies of the space F1. Let

hd .x/ D
dY
jD1

h1.xj / for all x 2 Dd

for some non-zero function h1 from F1. Then Id D I1 ˝ I1 ˝ � � � ˝ I1 is the tensor
product of d copies of the linear functional I1.f / D hf; h1iF1

.
It now follows that

�d D �d1 with �1 D 1

kh1kF1

sup
x2D1

jh1.x/jp
K1.x; x/

:

Finally we assume that I1 is not trivial, i.e., �1 < 1. If we use algorithms with non-
negative coefficients and we want to reduce the initial error by ", thenn � .1�"2/ ��2d

1 .
Hence, n is exponentially large in d , and the curse of dimensionality is present for such
problems and algorithms. We summarize this in the corollary.

Corollary 10.3. Consider a tensor product linear functional

Id D I1 ˝ I1 ˝ � � � ˝ I1; d times;

defined for a tensor product space

Fd D F1 ˝ F1 ˝ � � � ˝ F1; d times;

where the reproducing kernel of F1 is point-wise non-negative. Assume that the linear
functional I1 for the univariate case is not trivial, i.e., �1 < 1.

If we want to reduce the initial error by a factor " by linear algorithms with non-
negative coefficients, then the number n of function values must be exponential in d ,
i.e.,

n � .1 � "2/ ��2d
1 :

Hence such problems suffer from the curse of dimensionality in the class of linear
algorithms with non-negative coefficients.

We now illustrate the last corollary by continuing our two examples and presenting
new examples.

10.5.1 Example: Kernel for Non-Separable Space (Continued)

We apply the last estimate to the space Fd with the kernel Kd .x; t/ D ıx;t for x; t 2
Œ0; 1�d , which can be viewed as a tensor product space with K1.x; t/ D ıx;t for
x; t 2 Œ0; 1�. Obviously such a kernel is non-negative.
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We now take h1 as

h1.x/ D
1X
jD1

j̨ K1.�; t�j / for all x 2 Œ0; 1�;

with non-negative non-increasing j̨ such that
P1
jD1 ˛2j D 1. We define

hd .x/ D
dY
jD1

h1.xj / for all x 2 Œ0; 1�d :

Then hd .x/ � 0, khdkFd
D 1, and

�1 D ˛1 and �d D ˛d1 :

Note that �1 < 1 iff ˛2 > 0. Obviously, if ˛2 D 0 then the problem is trivial since
˛1 D 1 and hd D Kd .�; Œt�1 ; : : : ; t�1 �/. In this case, Id .f / D f .t�1 ; : : : ; t�1 / can be
solved exactly using one function value, and so n."; d/ D 1. Therefore it is natural to
assume that ˛2 > 0, and then ˛1 < 1.

As we know, the best choice of aj ’s that minimize the worst case error of

An;d .f / D
nX

jD1
ajf .tj /

isaj D hd .tj / � 0 for any sample points tj from Œ0; 1�d . So in this case, the assumption
that aj are non-negative is not restrictive, and the bound presented in Theorem 10.2
also holds for the minimal worst case error e.n; d/. Hence, we have

n."; d/ � .1 � "2/ ˛�2d
1 :

From this we conclude that I D fId g is intractable and suffers from the curse of
dimensionality.

10.5.2 Example: Unbounded Kernel (Continued)

Basically, the situation is the same as for the previous example. We now take Fd
with the reproducing kernel Kd .x; t/ D Qd

jD1K1.xj ; tj / for xj ; tj 2 Œ0; 1� and with
K1.x; t/ D ıT.x/;T .t/T .t/.T .t/C 1/ as before. Let

h1 D
1X
jD1

j̨ 1.1=.jC1/;1=j �

with non-negative and ordered j̨ such that

˛21
2

� ˛22
6

� � � � � ˛2j

j.j C 1/
and

1X
jD1

˛2j

j.j C 1/
D 1:
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As in the previous example, for hd .x/ D Qd
jD1 h1.xj / we have

�1 D ˛1 and �d D ˛d1 :

The assumption that aj ’s are non-negative is again not restrictive, since the optimal
coefficients are positive with aj D ˛kj

k�1
j .kj C 1/�1 for tj D kj . Therefore

n."; d/ � .1 � "2/ ˛�2d
1 :

Hence, I D fId g is intractable and suffers from the curse of dimensionality iff we
choose h1 such that ˛1 < 1.

10.5.3 Example: Kernels Related to Discrepancies

We now consider multivariate integration for a space Fd that is one of the Sobolev
spaces considered in Chapter 9. We choose the parameters of the space Fd such that it
is a tensor product Hilbert space with the reproducing kernel

Kd .x; y/ D
dY
jD1

K1.xj ; yj / for all x; y 2 Dd D Œ0; 1�d :

Here,K1 is a reproducing kernel for the univariate case, and we consider a few examples
of K1, all related to various notions of L2 discrepancy. First we take

K1.x; y/ D min.x; y/ 1Œ0;˛/2..x; y//C .1 � max.x; y// 1Œ˛;1/2..x; y/

for x; y 2 Œ0; 1� and for some ˛ 2 Œ0; 1�. As we know from Chapter 9, this corresponds
to the L2 discrepancy anchored at ˛.

Clearly K1 as well as Kd are point-wise non-negative so that we can apply Theo-
rem 10.2. In this case we have

h1.x/ D
´
˛ x � 1

2
x2 for x 2 Œ0; ˛/;

1
2
.1 � x2/ � ˛.1 � x/ for x 2 Œ˛; 1�:

Note that h1.0/ D h1.1/ D 0, and h1 is discontinuous at ˛ if ˛ 6D 1
2

, which agrees
with Section 9.6 of Chapter 9. We have

kh1k2F1
D 1

3
� ˛.1 � ˛/:

These formulas allow us to compute

�21 D �21.˛/ D
�
2

3

	3 max3.˛; 1 � ˛/
1
3

� ˛.1 � ˛/ : (10.7)
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Note that
�21.˛/ 2 �4

9
; 8
9

�
and the lower bound �21.˛/ D 4

9
is attained for ˛ D 1

2
, whereas the upper bound

�21.˛/ D 8
9

is attained for ˛ D 0 and ˛ D 1. Obviously, �1.˛/ D �1.1 � ˛/.
Hence, when we use linear algorithms with non-negative coefficients and want to

reduce the initial error by a factor ", we must use n function values with

n � .1 � "2/�1.˛/�2d � .1 � "2/
�
9

8

	d
:

Since the second lower bound is valid for all ˛ 2 Œ0; 1�, we can also consider Fd as the
Sobolev space anchored at Ę with arbitrary components j̨ of Ę D Œ˛1; ˛2; : : : ; ˛d � for
j̨ 2 Œ0; 1�. Then the second lower bound on n holds for all such Ę as long as we use

linear algorithms with non-negative coefficients.
We now turn to the Sobolev space Fd related to the L2 quadrant discrepancy

anchored at Ę, see Section 9.6 of Chapter 9. We first assume that all components of
Ę are the same and equal to ˛ 2 Œ0; 1�, i.e., Ę D Œ˛; ˛; : : : ; ˛�. Then Fd is the tensor
product space with the reproducing kernel

K1.x; t/ D 1
2
Œjx � ˛j C jt � ˛j � jx � t j� for all x; t 2 Œ0; 1/:

Again K1 and Kd are point-wise non-negative. We now have

h1.x/ D 1
2
Œjx � ˛j C .˛ � x/.˛ C x � 1/� for all x 2 Œ0; 1�:

Note that h1.˛/ D 0 and
kh1k2F1

D 1
3

� ˛.1 � ˛/:
It is easy to check that in this case �1 D �1.˛/ is given by (10.7), just as for the L2
discrepancy anchored at ˛. Hence, we can also consider Ę with arbitrary components.
For all Ę 2 Œ0; 1�d , we have

n � .1 � "2/
�
9

8

	d
for the class of linear algorithms with non-negative coefficients that use n function
values with the worst case error at most equal to "khdk.

Our next Sobolev space Fd is related to the unanchored discrepancy, see again
Section 9.6 of Chapter 9. Then the reproducing kernel for the univariate case is

K1.x; y/ D min.x; y/ � xy for all x; y 2 Œ0; 1�:
This kernel is point-wise non-negative and we now have

h1.x/ D x � 1
2
.x � x2/:

Then h1.0/ D h1.1/ D 0 and
kh1k2F1

D 1
12
:
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Note that this is the same as for theL2 discrepancy anchored at 1
2

, and therefore in this
case

�21 D 4
9
:

So in this case

n � .1 � "2/
�
9

4

	d
:

As our last space, we take

K1.x; t/ D 1C min.x; t/;

which corresponds to the unweighted L2 discrepancy anchored at 1. Then

h1.x/ D 1C x � 1
2
x2 and kh1kF1

D .4=3/1=2;

and

�21 D 3
4

max
x2Œ0;1�

�
1C x � 1

2
x2
�2

1C x
D 29C 4

p
7

9.2C p
7/

D 1

1:0563058 : : :
:

In this case
n � .1 � "2/.1:0563/d :

In all cases considered in this example, we do not know whether linear algorithms
with some negative coefficients are significantly better than linear algorithms with
non-negative coefficients. This leads us to the next open problem.

Open Problem 43.

• Consider multivariate integration for the Sobolev spaces considered in this ex-
ample in the worst case setting. Verify whether the minimal worst case error
of linear algorithms with arbitrary coefficients is significantly smaller than the
minimal worst case error of linear algorithm with non-negative coefficients.

That is why, unlike in the last two examples, we cannot yet claim intractability of
multivariate integration considered in this example for the normalized error criterion.
In fact, we do have intractability and the curse of dimensionality for the normalized
error criterion and strong polynomial tractability for the absolute error criterion as we
shall prove later.

10.5.4 Example: Polynomials of Degree Two

Here we present an example from [208] that shows intractability of positive quadra-
ture formulas for a very small class of polynomials. Let Fd be the linear space of
f W Œ0; 1�d ! R, where f is a polynomial of degree at most two in each variable. The
space Fd is equipped with the norm

kf k2Fd
D

X
˛2f0;1;2gd

kD˛f k2L2
:
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For d D 1, define the polynomials

e1 D 1; e2.x/ D x � 1
2

and e3.x/ D .x � 1=2/2 � 1
12
:

These polynomials are orthogonal in F1 with

ke1kF1
D 1; ke2kF1

D �
1C 1

12

�1=2
and ke3kF1

D �
4C 1

3
C 1

180

�1=2
:

From this we obtain the positive reproducing kernel

K1.x; y/ D
3X

jD1

ej .x/ej .y/

kej k2F1

D 1C 12.x � 1=2/.y � 1=2/
13

C ..x � 1=2/2 � 1=12/..y � 1=2/2 � 1=12/
4C 1=3C 1=180

:

Univariate integration is clearly of the form

I1.f / D
Z 1

0

f .x/ dx D hf; 1iF1
:

For d > 1, multivariate integration is a tensor product problem. We can apply Theo-
rem 10.2 and Corollary 10.3. The number �1 is now

�1 D sup
x2Œ0;1�

1p
K1.x; x/

D 1q
K1.

1
2
; 1
2
/

� 0:9992:

We conclude that integration is intractable for positive quadrature formulas.
A better lower bound on ewor.An;d / for positive quadrature formulas An;d can be

obtained in this case since kmin D infx;y K1.x; y/ > 0. One can easily prove that

ewor.An;d /
2 � 1 � n �2d1

1C .n � 1/Œ�21kmin�d
;

see [208] for the details.
A similar example, with trigonometric polynomials instead of algebraic polyno-

mials, has already been presented as Example 2 of Chapter 3 in Volume I. Based on
this example we presented Open Problem 3. We add in passing that this problem was
put into a much wider context (but not solved) by Hinrichs and Vybíral [133]. These
authors found equivalent formulations of Open Problem 3, as well as more general
open problems that are related to different fields of mathematics.

We again obtain an open problem when we allow arbitrary quadrature formulas.

Open Problem 44.

• Prove or disprove tractability of this integration problem. In particular, are gen-
eral quadrature formulas better than positive quadrature formulas?
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• Of course, it is also interesting to study the integration problem for the class of
all C1.Œ0; 1�d /-functions with

kf k2Fd
D

X
˛2Nd

0

kD˛f k2
L2Œ0;1�d

< 1:

Again we have intractability for positive quadrature formulas. It is open what
happens for general quadrature formulas. Answer the same questions as above
for this problem.

We remind the reader that we have formulated a similar open problem in Volume I.
This is Open Problem 2 for the infinity norm. In this case, strong polynomial tractabil-
ity does not hold due to the result of J. Wojtaszczyk [345] and polynomial or weak
tractability is still open.

10.6 Power of Negative Coefficients

In the previous section, we considered spaces with non-negative reproducing kernels
and algorithms with non-negative coefficients. Obviously, for some linear functionals
the choice of algorithms with non-negative coefficients is quite bad. However, it is
interesting to ask if the assumption on non-negative coefficients is restrictive for positive
linear functionals. By a positive linear functional Id we mean that

f � 0 implies Id .f / � 0:

So multivariate integration is a positive linear functional. In particular, if we con-
sider multivariate integration for a space with non-negative kernel can we assume that
coefficients of an optimal linear algorithm are positive?

One might be inclined to believe that the answer is yes. This guess is supported by
the many successes of QMC algorithms (for which the coefficients are not only positive
but all equal to n�1) as well as by the discrepancy results reported in the previous
chapter. Furthermore, the choice of positive coefficients is often recommended to
guarantee numerical stability, and many practitioners simply refuse to use algorithms
with some negative coefficients.

On the other hand, there is the very powerful Smolyak (or sparse grid) algorithm
for general multivariate tensor product problems that uses some negative weights; in
Chapter 15 this algorithm is thoroughly analyzed. In some cases the Smolyak algorithm
for multivariate integration is better than all explicitly known algorithms with non-
negative coefficients. Of course this does not prove that general linear algorithms are
better than positive ones. Proving optimality of positive algorithms for natural function
spaces is a challenging problem.

We now show that for multivariate integration and for some other positive func-
tionals, linear algorithms with some negative coefficients may be exponentially better
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than algorithms with non-negative coefficients. We admit that our example is artificial;
we still do not know whether optimal algorithms for classes such as classical Sobolev
spaces use negative coefficients. In any case, this example shows that it is not always
true that we can ignore algorithms allowing negative coefficients.

We consider a Hilbert space Fd of functions defined on Œ0; 1�d that is a tensor
product, Fd D F1 ˝ � � � ˝ F1. The space F1 is two-dimensional and generated by the
orthonormal functions e1 and e2. To be more concrete, let us take

e1.x/ D 4
ˇ̌
x � 1

2

ˇ̌
and e2.x/ D �

x � 1
2

� � g.x/;
where g is Lebesgue measurable with jg.x/j � 1, and g is symmetric about 1

2
, i.e.,

g.1
2

� x/ D g.1
2

C x/, and takes infinitely many values. For instance, g.x/ D
1=2C 2 .x � 1=2/2 is an example of such a function. Note that

K1.x; t/ D e1.x/e1.t/C e2.x/e2.t/

is point-wise non-negative.
Let I1 be a linear functional satisfying e.1; 1/ > 0. Note that I1.f / D R 1

0
f .t/ dt

is such a functional. Indeed, we now have

h1.x/ D
Z 1

0

K1.x; t/ dt D e1.x/ for all x 2 Œ0; 1�:

Furthermore, kh1kF1
D 1 and

�1 D sup
x2Œ0;1�

e1.x/p
K1.x; x/

D max
x2Œ0;1�

1p
4.1C g2.x//

D
p
5

5
:

For any such I1, let Id D I1 ˝ � � � ˝ I1 be the d -fold tensor product functional.
As long as we use algorithms with non-negative coefficients, we can achieve an error
" only if

n � .1 � "2/ ��2d
1 ;

where �1 < 1. For multivariate integration, we have

n � .1 � "2/ 5d :
So the curse of dimensionality is present for this class of algorithms.

What can we achieve if we use general linear algorithms possibly with negative
coefficients? The surprising answer is that

e.d C 1; d/ D 0

for all linear tensor product functionals.
That is, all linear functionals Id , including multivariate integration, can be approx-

imated with an arbitrarily small error using at most d C 1 function values. This result
has been proved in [218] and will be presented in Section 11.3 of Chapter 11.
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This example shows that, at least for some spaces, allowing algorithms with negative
coefficients breaks intractability of algorithms with non-negative coefficients. It would
be of great practical importance to characterize for which spaces Fd this phenomenon
does not occur. This leads us to the next open problem.

Open Problem 45.

• Characterize reproducing kernel Hilbert spaces for which positive linear func-
tionals have optimal linear algorithms with non-negative coefficients.

• Characterize reproducing kernel Hilbert spaces for which tractability conditions
for positive linear functionals are the same for the classes of linear algorithms
with non-negative and arbitrary coefficients.

10.7 Multivariate Integration

This is the first section in which we present conditions on spaces Fd and linear func-
tionals Id under which e.n; d/ goes to zero at least as fast as n�1=2.

We begin with multivariate integration, which is defined as follows. First of all,
we assume that Fd is separable, consists of Lebesgue measurable functions and has a
reproducing kernel Kd satisfying the conditionZ

D2
d

Kd .x; t/ gd .x/ gd .t/ %d .x/ %d .t/ dx dy < 1: (10.8)

Here, %d is a non-negative function such that
R
Dd
%d .t/ dt D 1, and gd is a given real

non-zero Lebesgue measurable function.
Then by multivariate integration we mean the functional Id W Fd ! R defined as

Id .f / D
Z
Dd

f .t/ gd .t/ %d .t/ dt for all f 2 Fd :

Many papers assume that gd 	 1 but for our purposes it is better to consider arbitrary
functions gd .

We now prove that Id is a well-defined continuous linear functional. Indeed, for
any orthonormal basis f�j g of Fd we have

Kd .x; t/ D
1X
jD1

�j .x/�j .t/ for all x; t 2 Dd :

Since f D P1
jD1

˝
f; �j

˛
Fd
�j with

P1
jD1

˝
f; �j

˛2
Fd
< 1, we have

Id .f / D
1X
jD1

˝
f; �j

˛
Fd

Z
Dd

�j .t/ gd .t/ %d .t/ dt:
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Hence, Id .f / is well defined iff

a ´
1X
jD1

�Z
Dd

�j .t/ gd .t/ %d .t/ dt

	2
< 1:

Note that (10.8) implies that

a D
1X
jD1

Z
D2

d

�j .x/ �j .t/ gd .x/ gd .t/ %d .x/ %d .t/ dx dt

D
Z
D2

d

Kd .x; t/ gd .x/ gd .t/ %d .x/ %d .t/ dx dt < 1:

This also shows that

hd .x/ D
Z
Dd

Kd .x; t/ gd .t/ %d .t/ dt D
1X
jD1

Z
Dd

�j .t/ gd .t/ %d .t/ dt

�
�j .x/

is well defined and belongs to Fd . Furthermore,

Id .f / D hf; hd iFd
for all f 2 Fd ;

and Id is indeed a continuous linear functional with

kIdk D khdkFd
D
 Z

D2
d

Kd .x; t/ gd .x/ gd .t/ %d .x/ %d .t/ dx dt

�1=2
D
 Z

Dd

hd .t/ gd .dt/ %d .t/ dt

�1=2
:

10.7.1 QMC Algorithms

We first consider QMC (quasi-Monte Carlo) algorithms. For g 	 1, these algorithms
are defined by taking aj D n�1. For a general gd , we take aj D n�1gd .tj / and QMC
algorithms take the form

An;d .f / D 1

n

nX
jD1

f .tj / gd .tj / for all f 2 Fd

for some tj from Dd . To stress the role of the sample points tj , we sometimes write
Et D Œt1; t2; : : : ; tn� 2 Dn

d
and An;d D An;d;Et .

Observe that QMC algorithms are similar to the standard MC (Monte Carlo) algo-
rithms for approximating integrals. The important difference between QMC and MC
is that the sample points tj for QMC algorithms are deterministic, whereas for MC
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algorithms the sample points tj are randomly selected. We return to MC algorithms in
Chapter 17, where we study tractability in the randomized setting. In this chapter we
study the worst case setting; the points tj are always deterministic.

As in Volume I, we again stress that QMC algorithms have been used, mostly for
gd 	 1, with much success for many financial applications. The study of tractability
was initiated in the 1990s to explain why QMC algorithms are so efficient for high
dimensional integrals. The form of QMC algorithms may suggest that they can be
used only for multivariate integration. As we shall see, this is not really the case,
although multivariate integration is certainly the most important application for QMC
algorithms.

We are ready to present an estimate, which is well known for gd 	 1 on the
worst case error of QMC algorithms. This estimate sometimes enables us to establish
tractability of multivariate integration.

Theorem 10.4. Consider the multivariate integration problem Id defined for a sepa-
rable reproducing Hilbert space Fd . Assume that

C.Kd ; gd / ´
Z
Dd

Kd .t; t/ g
2
d .t/ %d .t/ dt < 1: (10.9)

Then there exists Et D Œt1; t2; : : : ; tn� 2 Dn
d

for which the worst case error of the QMC
algorithm An;d;Et satisfies

ewor.An;d;Et / �
q
C.Kd ; gd / � khdk2Fdp

n
:

Furthermore, for any C > 1, the Lebesgue measure 
.Z/ of the set

Z D
´

Et 2 Dn
d j ewor.An;d;Et / � C

q
C.Kd ; gd / � khdk2Fdp

n

μ
satisfies


.Z/ � 1 � C�2:
Proof. First of all note that (10.9) implies that (10.8) holds and therefore multivariate
integration is well defined. Indeed, since Kd .x; t/ � ŒKd .x; x/Kd .t; t/�

1=2, we findZ
D2

d

Kd .x; t/ gd .x/ gd .t/ %d .x/ %d .t/ dx dt

�
Z
D2

d

p
Kd .x; x/ jgd .x/j

p
%d .x/ %d .t/

p
Kd .t; t/ jgd .t/j

p
%d .x/ %d .t/ dx dt

�
Z
D2

d

Kd .x; x/g
2
d .x/%d .x/%d .t/dxdt

Z
D2

d

Kd .t; t/g
2
d .t/%d .x/%d .t/dxdt

�1=2
D
Z
Dd

Kd .x; x/ g
2
d .x/ %d .x/ dx D C.Kd ; gd / < 1:
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We start with the worst case error of An;d;Et , which satisfies

�
ewor.An;d;Et /

�2 D khdk2Fd
� 2

n

nX
jD1

hd .tj / gd .tj /C 1

n2

nX
i;jD1

Kd .ti ; tj / gd .ti / gd .tj /:

We now treat the sample points tj as independent identically distributed points over the
setDd with the density %d . We compute the expected value of the square of the worst
case error of An;d;Et with respect to such Et . Let

E ´
Z
Dn

d

�
ewor.An;d;Et /

�2
%d .t1/ : : : %d .tn/ dt1 � � � dtn:

Since

khdk2Fd
D
Z
Dd

hd .t/ gd .t/ %d .t/ dt;

khdk2Fd
D
Z
D2

d

Kd .x; t/ gd .x/ gd .t/ %d .x/ %d .t/ dx dt;

the integration of each hd .tj /, as well as of each Kd .ti ; tj / for i 6D j , yields khdk2Fd
,

whereas the integration of each Kd .tj ; tj / yields C.Kd ; gd /. So we obtain

E D khdk2Fd
� 2khdk2Fd

C
�
1 � 1

n

	
khdk2Fd

C 1

n
C.Kd ; gd /

D C.Kd ; gd / � khdk2Fd

n
:

By the mean value theorem, there is a vector Et D Œt1; t2; : : : ; tn� 2 Dn
d

for which
Œewor.An;d;Et /�2 is at most equal to its average value. Hence,

�
ewor.An;d;Et /

�2 � C.Kd ; gd / � khdk2Fd

n
;

as claimed.
By Chebyshev’s inequality we know that for any integrable function h with finite

expectation E D R
Dn

d
h2.Et / %d .Et / dEt , we have


.fEt W h2.Et / � C 2 Eg/ � 1 � C�2:

Taking h.Et / D �
ewor.An;d;Et /

�2
and %d .Et / D Qn

jD1 %d .tj / we get E D .C.Kd ; gd / �
khdk2Fd

/=n, which completes the proof.

In particular, Theorem 10.4 states that if C.Kd ; gd / D khdk2Fd
then multivari-

ate integration can be solved exactly, even for n D 1. Unfortunately, the equal-
ity C.Kd ; gd / D khdk2Fd

does not often happen. For example, if gd 	 1, then
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C.Kd ; gd / D khdk2Fd
holds iffZ

D2
d

Kd .x; t/ %d .x/ %d .t/ dx dt D
Z
Dd

Kd .t; t/ %d .t/ dt:

This can happen iffK.x; t/ D const as an element of the space L2;%d
.Dd /; this easily

follows from the fact that Kd .x; t/ � ŒKd .x; x/Kd .t; t/�
1=2. Hence in this case, Fd

is the space of constant functions, which is why multivariate integration is trivial. For
all interesting spaces and functions g we have

C.Kd ; gd / > khdk2Fd
I

as we shall see, for some spaces there is even an exponential difference between
C.Kd ; gd / and khdk2Fd

.
From Theorem 10.4 we obtain sufficient conditions on tractability of multivariate

integration. Namely, the bound in Theorem 10.4 yields an upper bound

n."; d/ �
&
C.Kd ; gd / � khdk2Fd

CRI2d

1

"2

'
for all " 2 .0; 1/ and d 2 N;

on the information complexity.
As earlier, CRId D 1 for the absolute error criterion, and CRId D kIdk D khdkFd

for the normalized error criterion. From this we easily conclude the following corollary.

Corollary 10.5. Consider the multivariate integration problem INT D fId g in the
worst case setting, where Id is defined for a separable reproducing kernel Hilbert
space Fd . Let

Aabs
d D

Z
Dd

Kd .t; t/ g
2
d .t/ %d .t/ dt �

Z
D2

d

Kd .x; t/ gd .x/ gd .t/ %d .x/ %d .t/ dx dt;

Anor
d D

R
Dd
Kd .t; t/ g

2
d
.t/ %d .t/ dtR

D2
d
Kd .x; t/ gd .x/ gd .t/ %d .x/ %d .t/ dx dt

� 1:

Let x 2 fabs; norg.
• If there exists a number q � 0 such that

C WD sup
d2N

Ax
d

dq
< 1

then INT is polynomially tractable for the x error criterion, and

n."; d/ � ˙
C dq "�2� for all " 2 .0; 1/ and d 2 N:

If q D 0 then INT is strongly polynomially tractable for the x error criterion.
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• If

lim
d!1

lnAx
d

d
D 0

then INT is weakly tractable for the x error criterion.

• If

A WD lim sup
d!1

lnAx
d

ln.1C T .1; d//
< 1;

B WD lim sup
"!0

ln "�1

ln.1C T ."�1; 1//
< 1

then INT isT -tractable for thex error criterionwith the exponent ofT -tractability
at most AC 2B .

• If supd A
x
d
< 1 and B < 1 then INT is strongly T -tractable for the x error

criterion with the exponent of strong T -tractability at most 2B .

The bounds on the information complexity can be obtained by QMC algorithms.

Proof. The conditions on strong polynomial, polynomial and weak tractability are
straightforward. For T -tractability we need to prove that there are some non-negative
C1 and t such that˙

Axd"
�2� � C1T ."

�1; d /t for all " 2 .0; 1/; d 2 N:

Since T ."�1; d / � 1 we can replace T ."�1; d / by 1C T ."�1; d / in the bound above
with a modified C1. Then ln.1CT ."�1; d // is always positive. Taking the logarithms
we conclude that the bound above holds if

lim sup
"�1Cd!1


lnAx

d

ln.1C T ."�1; d //
C 2 ln "�1

ln.1C T ."�1; d //

�
< 1:

Note that
max

�
T .1; d/; T ."�1; 1/

� � T ."�1; d /:
Therefore the last limit superior is bounded by AC 2B and is finite. It is easy to see
that the infimum of t is at mostAC2B , as claimed. Strong T -tractability follows from
the same argument.

We illustrate Corollary 10.5 by a number of specific examples.

10.7.2 Example: Tensor Product Problems

We assume that Fd is a tensor product Hilbert space with the reproducing kernel

Kd .x; y/ D
dY
jD1

K1.xj ; yj / for all x; y 2 Dd D D1 �D1 � � � � �D1
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for some univariate reproducing kernel K1 W D1 � D1 ! R with D1 � R. Assume
also that

gd .t/ D
dY
jD1

g1.tj / and %d .t/ D
dY
jD1

%1.tj /

for some univariate functions g1; %1 W D1 ! R.
Consider multivariate integration for the absolute error criterion in the worst case

setting. For tensor product problems, we have

Aabs
d D

Z
D1

K1.t; t/g
2
1.t/%1.t/ dt

�d
�
 Z

D2
1

K1.x; t/%1.x/g1.x/g1.t/%1.t/ dx dt

�d
:

For non-trivial spaces, we haveZ
D1

K1.t; t/g
2
1.t/%1.t/ dt >

Z
D2

1

K1.x; t/%1.x/g1.x/g1.t/%1.t/ dx dt:

If

A1 WD
Z
D1

K1.t; t/g
2
1.t/%1.t/ dt � 1 (10.10)

thenAabs
d

is uniformly bounded and we have strong polynomial tractability. Otherwise
if A1 > 1, then Aabs

d
depends exponentially on d . Hence even the condition on weak

tractability is not satisfied.
We stress that (10.10) holds for Sobolev spaces related to L2 discrepancy. Indeed,

let g1 D %1 D 1. Then for the L2 discrepancy anchored at ˛ we have

A1 D A1.˛/ D 1
2

� ˛ C ˛2 2 �1
4
; 1
2

�
;

for theL2 quadrant discrepancy anchored at ˛ we have the sameA1 D A1.˛/ as above,
and for the unanchored discrepancy A1 D 1

6
. This proves the following corollary.

Corollary 10.6.

• Multivariate integration defined on a separable tensor product space H.Kd /
with Z

D1

K1.t; t/g
2
1.t/%1.t/ dt � 1

is strongly polynomially tractable for the absolute error criterion in the worst
case setting with exponent at most 2.

• Multivariate integration with g1 D %1 D 1 defined for Sobolev spaces related
to the L2 discrepancy anchored at ˛, quadrant discrepancy anchored at ˛ and
unanchored discrepancy is strongly polynomially tractable for the absolute error
criterion in the worst case setting with exponent at most 2.
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10.7.3 Example: Modified Sobolev Space

We begin with the Sobolev space anchored at 0 with the reproducing kernel

Kd .x; t/ D
dY
jD1

min.xj ; tj / for all x; t 2 Œ0; 1�d :

We take Dd D Œ0; 1�d and gd .t/ D %d .t/ D 1. For f 2 Fd we know that f .x/ D 0

if at least one component of x is zero, and

kf k2Fd
D
Z
Œ0;1�d

�
@d

@x1 � � � @xd f .t/
	2

dt:

As we know from Chapter 9, the worst case error of QMC algorithms is related to the
L2-discrepancy anchored at 1. Observe that we have Id .f / D hf; hd iFd

with

hd .x/ D
Z
Œ0;1�d

Kd .x; t/ dt D
dY
jD1

�
xj � 1

2
x2j
�
:

Therefore

khdk2Fd
D
Z
Œ0;1�2d

Kd .x; t/ dx dt D 3�d ;

C.Kd ; 1/ D
Z
Œ0;1�d

Kd .t; t/ dt D 2�d :

Hence, multivariate integration is indeed strongly polynomially tractable for the abso-
lute error criterion since Aabs

d
D 2�d � 3�d and supd A

abs
d

D 1
6

. For the normalized
error criterion, note that

Anor
d D 1:5d � 1

is exponentially large in d . So even the condition for weak tractability does not hold.
We shall see later that multivariate integration is intractable for the normalized error
criterion. For the normalized error criterion, we have

n."; d/ �
���

3

2

	d
� 1

	
1

"2

�
for all " 2 .0; 1/: (10.11)

This estimate may be acceptable for relatively small d . For instance, for d D 10; 20; 50

we have

n."; 10/ � 101:76"�2 C 1; n."; 20/ � 103:54"�2 C 1; n."; 50/ � 108:805"�2 C 1:

We now partially remove the boundary conditions by taking the reproducing kernel
Kd D Kd;ad ;bd

as

Kd;ad ;bd
.x; t/ D ad C bd

dY
jD1

min.xj ; tj / for all x; t 2 Œ0; 1�d ;
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for some non-negative numbersad andbd . Obviously we always assume thata2
d

Cb2
d
>

0 since otherwise Kd 	 0 and the space is trivial. For ad D 0 and bd D 1 we obtain
the previous kernel.

For general non-negative ad and bd with a2
d

C b2
d
> 0, the space Fd D Fd;ad ;bd

consists of functions f .x/ D c C h.x/, where h belongs to the space Fd;0;1, and
c D f .0/. For f 2 Fd;ad ;bd

we have

kf k2Fd;ad ;bd
D 1

ad
f .0/2 C 1

bd

Z
Œ0;1�d

�
@d

@x1 � � � @xd f .t/
	2

dt;

with the convention that 0=0 D 0.
Multivariate integration Id .f / D ˝

f; hd;ad ;bd

˛
Fd;ad ;bd

is given by

hd;ad ;bd
.x/ D ad C bd

dY
jD1

�
xj � 1

2
x2j
�
:

We have

C.Kd;ad ;bd
; 1/ D ad C bd 2

�d and khd;ad ;bd
k2Fd;ad ;bd

D ad C bd 3
�d :

For the absolute error criterion, we have

Aabs
d D bd 2

�d
�
1 �

�
2

3

	d 	
:

Therefore multivariate integration is

• strongly polynomially tractable if bd D O.2d /,

• polynomially tractable if bd D O.dq2d / for some positive q,

• weakly tractable if bd D 2deo.d/, as d goes to infinity,

• T -tractable if

lim sup
d!1

ln.bd2�d /
ln.1C T .1; d//

< 1 and lim sup
"!0

ln "�1

ln.1C T ."�1; 1//
< 1:

Note that these conditions are independent of ad .
For the normalized error criterion, we have

Anor
d D ad C bd2

�d

ad C bd3�d � 1:

Then tractability conditions are the same as before, but with bd replaced by bd=ad . In
particular, multivariate integration is
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• strongly polynomially tractable if bd=ad D O.2d /.

• polynomially tractable if bd=ad D O.dq2d / for some positive q,

• weakly tractable if bd=ad D 2deo.d/, as d goes to infinity.

These conditions now depend on both ad and bd .
Clearly, for various choices ofad and bd the tractability conditions may hold for one

error criterion and not for the other. Indeed, for ad D 3�d and bd D 1, the condition
of strong polynomial tractability holds for the absolute error criterion but even the
condition for weak tractability does not hold for the normalized error criterion. On the
other hand, for ad D bd D 3d , the condition for weak tractability does not hold for
the absolute error criterion, but the condition for strong polynomial tractability holds
for the normalized error criterion.

10.7.4 Example: Korobov Space with Varying Smoothness

As in [236], we consider the Korobov space Fd of functions that are rj times differen-
tiable with respect to the j th variable. Here r D frj g is a given sequence of integers
such that

1 � r1 � r2 � � � � � rj � : : : :

That is, we may have increasing smoothness with respect to the successive variables.
For which sequences r is multivariate integration strongly polynomially, polynomially
or weakly tractable? This problem was studied in [236] for multivariate approximation
for the class ƒall in the worst case setting and it was proved that a logarithmic growth
of rj is needed for strong polynomial tractability. We want to verify if a similar result
holds for multivariate integration for the class ƒstd in the worst case setting.

More precisely, let

Fd D H1;r1 ˝H1;r2 ˝ � � � ˝H1;rd ;

whereH1;rj is the Korobov space of univariate 1-periodic complex valued functions f
defined on Œ0; 1� such that f .rj �1/ is absolutely continuous and f .rj / belongs to
L2.Œ0; 1�/. The space H1;rj is equipped with the norm

kf k2H1;rj
D
ˇ̌̌̌ Z 1

0

f .x/ dx

ˇ̌̌̌2
C
Z 1

0

jf .rj /.x/j2 dx:

The space Fd is a reproducing kernel Hilbert space whose kernel is

Kd .x; t/ D
dY
jD1

�
1C 2

.2�/2rj

1X
hD1

cos.2� h .xj � tj //
h2rj

	
for all x; y 2 Œ0; 1�d :

More about Korobov spaces for constant rj D r can be found inAppendixA ofVolume I
as well as in Chapter 16.
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Multivariate integration is defined by taking gd .t/ D %d .t/ D 1 for all t 2 Œ0; 1�d ,
so that

Id .f / D
Z
Œ0;1�d

f .t/ dt for all f 2 Fd :

Note that hd D 1 and kIdk D khdkFd
D 1, and so there is no difference between the

absolute and normalized error criteria.
We now have

Ad WD Aabs
d D Anor

d D
dY
jD1

�
1C 2 .2rj /

.2�/2rj

	
� 1;

where, as always,  is the Riemann zeta function. As usual, we estimate

dY
jD1

�
1C 2 .2rj /

.2�/2rj

	
� exp

h
2

dX
jD1

.2rj / .2�/
�2rj

i
:

Since rj ’s are non-decreasing, we have

1 � .2rj / � .2r1/ � .2/ D 1
6
�2:

Hence, tractability of multivariate integration depends on the behavior of

dX
jD2

.2�/�2rj D
dX
jD2

j�2 ln.2�/ rj = ln j :

It is easy to check that

Lsup WD lim sup
j!1

ln j

rj
< 2 ln.2�/ D 3:6757 : : :

implies that multivariate integration is strongly polynomially tractable with exponent
at most 2. Indeed, for p 2 .Lsup; 2 ln.2�// and large j , we have rj � ln.j /=p and
therefore

2 ln.2�/ rj
ln j

� 2 ln.2�/

p
> 1:

This proves that
1X
jD2

j�2 ln.2�/ rj = ln j < 1;

and supd Ad < 1. This yields strong tractability with exponent at most 2.
We now show that

Lsup D lim sup
j!1

ln j

rj
< 1



10.7 Multivariate Integration 109

implies that multivariate integration is weakly tractable. Indeed, for large j and p >
max.Lsup; 2 ln.2�//, we have rj � ln.j /=p and therefore

dX
jD2

j�2 ln.2�/ rj = ln j D O.1/C
dX
jD2

j�2 ln.2�/=p D O
�
d1�2 ln.2�/=p

�
:

Hence,

lim
d!1

lnAd
d

D O
�

lim
d!1

d�2 ln.2�/=p
� D 0;

and we have weak tractability.
We now comment on the polynomial tractability of multivariate integration. Let

Linf WD lim inf
j!1

ln j

rj
� 2 ln.2�/:

We now show that in this case our upper bound is too weak to claim polynomial
tractability. Indeed, if we take

rj D
�

ln.j /

2 ln.2�/

�
for large j , then we have Lsup D Linf D 2 ln.2�/. Furthermore

dX
jD2

j�2 ln.2�/ rj = ln j D O.1/C
dX
jD1

j�1 D O.1/C ln d;

and
Ad D O

�
d2�.2r1/

�
:

This means polynomial tractability with a d exponent at most 2.2r1/.
On the other hand, if we take

rj D
�

ln.j /

2 ln.2�/

�
1 � 1

ln ln j

	�
for large j , then againLsup D Linf D 2 ln.2�/. However, the condition on polynomial
tractability no longer holds. Indeed, we need to estimate

dX
jDj0C1

j�1 j 1= ln ln j

for some j0. Since j 1= ln ln j goes to infinity with j , the last series cannot be bounded
by a multiple of ln d , and therefore ln Ad goes faster to infinity than any multiple of
ln d , which contradicts the condition on polynomial tractability. We now show that if
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Lsup D Linf D 2 ln.2�/, then strong polynomial tractability may even hold. Take the
sequence

rj D
�

ln.j /

2 ln.2�/
.1C f .j //

�
;

where

f .j / D ln.ln2 j /

ln j
for large j:

Then we need to estimate

dX
jDj0C1

j�1�f .j / D
dX

jDj0C1

1

j ln2 j
;

which is uniformly bounded in d and yields strong polynomial tractability.
We need also to consider the case when Linf 2 .2 ln.2�/;1/. Then for p 2

.2 ln.2�/; Linf/ and for large j , we have

rj � ln.j /=p and j�2 ln.2�/rj = ln j � j�2 ln.2�/=p;

with the exponent 2 ln.2�/=p < 1. Therefore

dX
jD2

j�2 ln.2�/ rj = ln j D �
�
d1�2 ln.2�/=p

�
;

which contradicts the condition on polynomial tractability.
Let us summarize the tractability conditions. For Lsup < 2 ln.2�/ we have strong

tractability, for Lsup < 1 we have weak tractability, for Linf > 2 ln.2�/ we cannot
claim polynomial tractability, and finally forLinf D 2 ln.2�/we may or may not claim
polynomial tractability.

In any case, if rj grows faster than 2 ln.2�/ ln j then we have strong polynomial
tractability, whereas when rj goes as fast as ln j we have weak tractability. So the
logarithmic growth of rj ensures at least weak tractability. This can be compared with
multivariate approximation for the class ƒall, where the same condition on rj yields
strong tractability, see [236].

10.7.5 Example: Korobov Space with Fixed Smoothness

Consider the Korobov space Fd studied in the previous example with all rj D r � 1.
That is, we now assume the same smoothness for all variables. Multivariate integration
is still properly normalized, since

kIdk D khdkFd
D 1;
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but

C.Kd ; 1/ D
Z
Œ0;1�d

Kd .t; t/ dt D .1C Ar/
d with Ar WD 2 .2r/

.2�/2r
;

is exponentially large in d . In particular, for r D 1 we have C.Kd ; 1/ D .13=12/d .
The absolute and normalized error criteria coincide, and the condition for weak

tractability does not hold. In fact, multivariate integration is not weakly tractable, as
we will see later.

For this space, as in [280] for r D 1, we can prove that the worst case error of any
QMC algorithm with fixed n goes to infinity with d . Indeed, just now hd 	 1 and
therefore for any An;d;Et we have

�
ewor.An;d;Et /

�2 D �1C 1

n2

nX
i;jD1

Kd .ti ; tj /:

Observe that .2r/ � .2/ D �2=6 � .2�/2r=2 implies that

Kd .x; t/ � 0 for all x; t 2 Œ0; 1�d

and Kd .t; t/ D .1 C Ar/
d . Therefore we can drop all terms for i 6D j in the last

formula and obtain �
ewor.An;d;Et /

�2 � �1C .1C Ar/
d

n
:

Hence, for fixed n, the worst case of An;d;Et goes exponentially fast to infinity with d
no matter how the sample points tj are chosen. This means that any QMC algorithm is
intractable. This is a very bad property, since the worst case error of the zero algorithm
(which is arguably the most trivial) is just 1. So despite our a priori knowledge that
jId .f /j � 1 for all f from the unit ball of the space Fd , all QMC algorithms fail badly
for large d relative to n.

10.7.6 Properly Normalized QMC Algorithms

The last example shows that for some spaces QMC algorithms may significantly lose,
even with the zero algorithm. The natural question is to determine what is wrong with
QMC algorithms. The answer is that the coefficients aj D n�1 are sometimes quite
inappropriate and for spaces such as the one in the last example, they are much too
large.

Let us then ask why we want to use aj D n�1. There are two arguments for such a
choice. The first one is that they make the implementation of linear algorithms easier,
and allow the exact integration of constant functions if gd 	 1. The second reason is
that they are positive and guarantee numerical stability if we assume that gd � 0.

So let us try to find positive and equal coefficients, aj D a, to preserve the ease of
implementation and numerical stability, with the new task of eliminating exponential
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dependence in d of the worst case error of QMC algorithms. It seems natural to repeat
our reasoning from the proof of Theorem 10.4 with aj D a instead of aj D n�1, and
to find the values of a such that the expected value E is minimized. More precisely,
we now consider normalized QMC algorithms, that is, algorithms of the form

An;d;Et .f / D a

nX
jD1

f .tj / gd .tj / for all f 2 Fd

for some a 2 R and tj from Dd . Then

�
ewor.An;d;Et /

�2 D khdk2Fd
�2 a

nX
jD1

hd .tj / gd .tj /Ca2
nX

i;jD1
Kd .ti ; tj / gd .ti / gd .tj /:

Integrating over tj , as before, we obtain

E D E.a/ D khdk2Fd
.1 � a n/2 C a2 n

�
C.Kd ; gd / � khdk2Fd

�
:

Observe that the previous choice a D n�1 makes the first term equal to zero, and
E.n�1/ is exactly the same as for QMC algorithms. However, if we want to minimize
E.a/ then we should take

a D khdk2Fd

C.Kd ; gd / � khdk2Fd
C n khdk2Fd

: (10.12)

This yields

Emin WD min
a2R

E.a/ D
�
C.Kd ; gd / � khdk2Fd

�khdk2Fd

C.Kd ; gd / � khdk2Fd
C nkhdk2Fd

: (10.13)

Note that

Emin D b min

´
khdk2Fd

;
C.Kd ; gd / � khdk2Fd

n

μ
with b 2 �1

2
; 1
�
:

Furthermore, for fixed d and n tending to infinity we have

Emin D C.Kd ; gd / � khdk2Fd

n
.1C o.1//:

Assume now that n is fixed and d tends to infinity. Assume also that C.Kd ; gd / �
khdk2Fd

tends to infinity. (This holds for the space of the last example). Then

Emin D khdk2Fd
.1C o.1//:

This choice of a yields an improved version of Theorem 10.4.
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Theorem 10.7. Consider the multivariate integration problem Id defined for a sepa-
rable reproducing kernel Hilbert space Fd . Assume that

C.Kd ; gd / ´
Z
Dd

Kd .t; t/ g
2
d .t/ %d .t/ dt < 1:

Then there exists Et D Œt1; t2; : : : ; tn� 2 Dn
d

forwhich theworst case error of the properly
normalized QMC algorithm

An;d;Et .f / D khdk2Fd

C.Kd ; gd / � khdk2Fd
C n khdk2Fd

nX
jD1

f .tj / gd .tj /

satisfies

ewor.An;d;Et / � min

 
khdkFd

;

q
C.Kd ; gd / � khdk2Fdp

n

!
:

Furthermore, for any C > 1, the Lebesgue measure 
.Z/ of the set

Z D
´

Et 2 Dn
d W ewor.An;d;Et / � C min

 
khdkFd

;

q
C.Kd ; gd / � khdk2Fdp

n

!μ
satisfies


.Z/ � 1 � C�2:

Knowing Theorem 10.7 one can hope to improve Corollary 10.5. As we shall
see in a moment, it will be indeed possible, but only for the absolute error criterion.
Using (10.13) we should choose n such that�

C.Kd ; gd / � khdk2Fd

�khdk2Fd

C.Kd ; gd / � khdk2Fd
C nkhdk2Fd

� "2 CRId :

This yields

n."; d/ � n D
& 
C.Kd ; gd /

khdk2Fd

� 1
!
1

"2

 khdk2Fd

CRId
� "2

!
C

'
:

For the normalized error criterion, khdk2Fd
=CRId D 1, so that the last factor is just

1� "2 for " 2 .0; 1/. This cannot really help for tractability if " 2 .0; "0/ with "0 < 1.
Hence, in this case we have the same tractability conditions as before.

However, for the absolute error criterion the situation is quite different. For CRId D
1, the last factor is .khdk2Fd

� "2/C. We can thus restrict " to be in .0; khdkFd
/. Let

us substitute "2 D tkhdk2Fd
for t 2 .0; 1/. Then we obtain (strong) polynomial

tractability if there are non-negative C , q and p such that

n."; d/ �
& 
C.Kd ; gd /

khdk2Fd

� 1
!
1 � t
t

'
� C dq"�p D C dq

tp=2 khdkpFd
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for all t 2 .0; 1/ and d 2 N. This is equivalent to

sup
t2.0;1/; d2N

tp=2 khdkpFd

& 
C.Kd ; gd /

khdk2Fd

� 1
!
1 � t
t

'
d �q < 1:

ForC.Kd ; gd / > khdk2Fd
and fixed d , if we take t going to zero then the last inequality

can hold only if p � 2. Similarly we obtain a condition on weak tractability. This
analysis yields the improved version of Corollary 10.5.

Corollary 10.8. Consider the multivariate integration problem INT D fId g in the
worst case setting and for the absolute error criterion. Here, Id is defined for a
separable reproducing Hilbert space Fd .

• If there exist a number q � 0 and a number p � 2 such that

C WD sup
t2.0;1/; d2N

tp=2 khdkpFd

& 
C.Kd ; gd /

khdk2Fd

� 1
!
1 � t
t

'
d �q < 1

then INT is polynomially tractable, and

n."; d/ � C dq "�p for all " 2 .0; 1/ and d 2 N:

If q D 0 then INT is strongly polynomially tractable.

• If

lim
dCt�1=2khd k�1

Fd
!1

ln 1�t
t

C ln
�
C.Kd ;gd /

khd k2
Fd

� 1
�

d C t�1=2khdk�1
Fd

D 0

then INT is weakly tractable.

• If

A WD lim sup
dCt�1=2khd k�1

Fd
!1

ln 1�t
t

C ln
�
C.Kd ;gd /

khd k2
Fd

� 1
�

ln T .t�1=2khdk�1
Fd
; d /

< 1

then INT is T -tractable with the exponent of T -tractability at most A.

• If

B WD lim sup
dCt�1=2khd k�1

Fd
!1

ln 1�t
t

C ln
�
C.Kd ;gd /

khd k2
Fd

� 1
�

ln T .t�1=2khdk�1
Fd
; 1/

< 1

then INT is strongly T -tractable with the exponent of strong T -tractability at
most B .

The limits are for d 2 N and t 2 .0; 1/. The bounds on the information complexity
can be obtained by properly normalized QMC algorithms.

We illustrate Corollary 10.8 by continuing the previous examples.
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10.7.7 Example: Tensor Product Problems (Continued)

SinceKd , hd and gd are now given as products of univariate functions, we can simplify
the condition on C in Corollary 10.8. We have

C D sup
t2.0;1/; d2N

tp=2kh1kpdF1

&" 
C.K1; g1/

kh1k2F1

!d
� 1

#
1 � t
t

'
d�q :

We claim that for kh1kF1
< 1we have strong polynomial tractability with the exponent

at most

p D
´
2 if C.K1; g1/ � 1;

2C lnC.K1;g1/
ln 1=kh1kF1

if C.K1; g1/ > 1:
(10.14)

Indeed, we can bound the expression in the supremum ofC by dropping �1 and taking
q D 0, and then obtain

tp=2�1.1 � t /
h
kh1kp�2

F1
C.K1; g1/

id C tp=2kh1kpdF1
� 2:

We summarize this in the following corollary.

Corollary 10.9. Multivariate integration defined for a separable tensor product space
H.Kd / with kh1kF1

< 1 and C.K1; g1/ < 1, is strongly polynomially tractable for
the absolute error criterion in the worst case setting with the exponent at most p given
by (10.14).

We stress that Corollary 10.6 states that multivariate integration is strongly polyno-
mially tractable if C.K1; g1/ � 1, whereas Corollary 10.8 states the same fact under
a relaxed condition if kh1kF1

< 1. The exponent of strong tractability in both cases
is at most 2. If kh1kF1

< 1 < C.K1; g1/ then Corollary 10.6 does not apply whereas
Corollary 10.8 does at the expense of an exponent of strong tractability which is larger
than 2. Note that the bound on the exponent of strong tractability can be large when
kh1kF1

is close to 1 or when C.K1; g1/ is large.
We return to the problem of the exponent of strong polynomial tractability in Chap-

ter 15, where we discuss Smolyak’s algorithm. As we shall see, sometimes we obtain
better bounds than here. However, the problem of finding the exact value of the expo-
nent is still open, and we present it as our next open problem.

Open Problem 46.

• Find the exact value of the exponent of strong tractability for multivariate inte-
gration defined on a separable tensor product space H.Kd / in terms of h1; g1
and K1 with kh1kF1

< 1 and C.K1; g1/ < 1 for the absolute error criterion in
the worst case setting.
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10.7.8 Example: Modified Sobolev Space (Continued)

As before, we take the kernel

Kd;ad ;bd
.x; t/ D ad C bd

dY
jD1

min.xj ; tj / for all x; t 2 Œ0; 1�d ;

and consider only the absolute error criterion. For simplicity we restrict ourselves to
polynomial and weak tractability.

We already know that we can achieve polynomial tractability by QMC algorithms
if bd D O.dq2d /; if q D 0 then strong polynomial tractability holds. Furthermore,
weak tractability holds if bd D 2deo.d/. We want to check how much we can relax
these conditions for properly normalized QMC algorithms.

To simplify the calculation, assume that ad D 0 and bd D bd for some positive b.
Then the last conditions for QMC algorithms are equivalent and they hold iff b � 2.

It is easy to see that the conditions on strong polynomial tractability, polynomial
tractability and weak tractability for properly normalized QMC algorithms are equiv-
alent and they hold iff b < 3. For b < 3 we have strong polynomial tractability with
exponent bounded by

p D 2 max

�
1;

ln 3=2

ln 3=b

	
;

and then
n."; d/ D O."�p/ for all " 2 .0; 1/ and d 2 N:

Note that for b � 2 we have p D 2, and for b tending to 3 the value of p tends to
infinity.

Hence, for b 2 .2; 3/ we have an improvement at the expense of an increased p,
and to achieve strong polynomial tractability we need to use properly normalized QMC
algorithms. Note that b < 3 implies that khdk2Fd

D .b=3/d , so that the initial error is
exponentially small.

We now remove the boundary conditions by taking the kernel

Kd .x; t/ D
dY
jD1

�
b C min.xj ; tj /

�
for all x; t 2 Œ0; 1�d ;

for some positive b. The norm of f is now given by

kf k2Fd
D f 2.0/

bd
C

X
u6D;;u�Œd�

1

b d�juj

Z
Œ0;1�juj

�
@juj

@xu
f .tu; 0/

	2
dt:

In this case,

C.Kd ; 1/ D �
b C 1

2

�d
and khdk2Fd

D �
b C 1

3

�d
:
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Then the conditions on strong polynomial tractability, polynomial tractability and weak
tractability for QMC are equivalent and hold if b � 1

2
, whereas the conditions on

strong polynomial tractability, polynomial tractability and weak tractability for properly
normalized QMC algorithms are also equivalent but now hold if b < 2

3
. For b < 2

3
,

the exponent of strong polynomial tractability is bounded by

p D 2 max

 
1;

ln
�
b C 1

2

�
=
�
b C 1

3

�
ln 1=

�
b C 1

3

� !
;

and then
n."; d/ D O."�p/ for all " 2 .0; 1/ and d 2 N:

10.7.9 Algorithms with Arbitrary Coefficients

In Theorems 10.4 and 10.7 we assume that C.Kd ; gd / is finite. As we shall see, for
some multivariate problems it may happen that C.Kd ; gd / D 1, even though the
problem is well defined and (10.8) holds. In this case, Theorems 10.4 and 10.7 are not
applicable.

We now report a recent result of Plaskota, Wasilkowski and Zhao [248] who pre-
sented a better bound on the worst case errors without assuming that C.Kd ; gd / is
finite, provided that we agree to use algorithms with arbitrary coefficients. They pre-
sented the bound for gd 	 1 and for not necessarily properly normalized algorithms,
although their proof technique can be applied for general gd and properly normalized
algorithms. That is, we now consider algorithms of the form

An;d .f / D
nX

jD1
ajf .tj /

for some real aj and tj from Dd . As we shall see, the coefficients aj will be non-
negative for non-negative gd .

Theorem 10.10. Consider the multivariate integration Id defined on a separable re-
producing Hilbert space Fd . Assume that

C new.Kd ; gd / ´
Z
Dd

p
Kd .t; t/ jgd .t/j %d .t/ dt

�2
< 1: (10.15)

Let

a.t/ D

C new.Kd ; gd /

Kd .t; t/

�1=2
sign.gd .t// for all t 2 Dd :

Then there exists Et D Œt1; t2; : : : ; tn� 2 Dn
d

for which the worst case error of the
algorithm

An;d;Et .f / D khdk2Fd

C new.Kd ; gd / � khdk2Fd
C n khdk2Fd

nX
jD1

a.tj /f .tj /;
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with the convention 1 � 0 D 0, satisfies

ewor.An;d;Et / � min

 
khdkFd

;

q
C new.Kd ; gd / � khdk2Fdp

n

!
:

Furthermore, for any number C > 1, the weighted Lebesgue measure 
!d
.Z/ of the

set

Z D
(

Et 2 Dn
d W ewor.An;d;Et / � C min

 
khdkFd

;

q
C new.Kd ; gd / � khdk2Fdp

n

!)

with

!d .t/ D


Kd .t; t/

C new.Kd ; gd /

�1=2
jgd .t/j %d .t/ for all t 2 Dd ;

satisfies


!d
.Z/ ´

Z
Z

!d .t1/ � � � !d .tn/ dt1 � � � dtn � 1 � C�2:

Proof. First of all note that (10.15) implies (10.8) and multivariate integration is well
defined. This easily follows from the fact thatZ

D2
d

Kd .x; t/ gd .x/ gd .t/ %d .x/ %d .t/ dx dt

�
Z
D2

d

p
Kd .x; x/ jgd .x/j

p
Kd .t; t/ jgd .t/j %d .x/ %d .t/ dx dt

D
Z
Dd

p
Kd .t; t/ jgd .t/j %d .t/ dt

�2
D C new.Kd ; gd /

�
Z
Dd

Kd .t; t/ g
2
d .t/ %d .t/ dt D C.Kd ; gd /:

This also shows that C new.Kd ; gd / � C.Kd ; gd /, and hence the error bounds of
Theorem 10.10 are better than the error bounds of Theorem 10.7.

Consider algorithms of the form

Bn;d;Et .f / D a

nX
jD1

a.tj / f .tj /

for some a 2 R and Et D Œt1; t2; : : : ; td � 2 Dn
d

. Observe that for Kd .t; t/ D 0 we
formally have a.t/ D 1. However f .t/ D 0 for all f 2 Fd in this case, since
jf .t/j � kf kFd

p
Kd .t; t/: Hence if a.tj / D 1, then we have in the sum above

a.tj /f .tj / D 1 � 0, which we interpret as zero. Therefore Bn;d;Et , as well as the
algorithm An;d;Et in Theorem 10.10, is well defined for any tj .
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The worst case error of Bn;d;Et is now given by

�
ewor.Bn;d;Et /

�2 D khdk2Fd
� 2 a

nX
jD1

a.tj / hd .tj /C a2
nX

i;jD1
a.ti / a.tj /Kd .ti ; tj /:

We now treat the sample points tj as independent identically distributed points overDd ,
as in the proof of Theorem 10.4, but changing the density from %d to !d . Let

Enew ´
Z
Dn

d

�
ewor.Bn;d;Et /

�2
!d .t1/ � � �!d .td / dt1 � � � dtn:

Since a.t/ !d .t/ D gd .t/ %d .t/ we haveZ
Dd

a.tj / hd .tj / !d .tj / dtj D
Z
Dd

hd .t/ gd .t/ %d .t/ dt D khdk2Fd
:

Similarly, for i 6D j we haveZ
D2

d

a.ti / a.tj /Kd .ti ; tj / !d .ti / !d .tj / dti dtj

D
Z
D2

d

Kd .x; t/ gd .x/ gd .t/ %d .x/ %d .t/ dx dt D khdk2Fd
;

whereas for i D j , we use

a2.t/Kd .t; t/!d .t/ D
p
C new.Kd ; gd /Kd .t; t/ jgd .t/j %d .t/;

and obtainZ
Dd

a2.tj / Kd .tj ; tj / !d .tj / dtj

D
p
C new.Kd ; gd /

Z
Dd

p
Kd .t; t/ jgd .t/j %d .t/ dtj D C new.Kd ; gd /:

Hence,

Enew D Enew.a/ D khdk2Fd
.1 � a n/2 C a2 n

�
C new.Kd ; gd / � khdk2Fd

�
:

The rest of the argument is the same as before. That is, we minimize with respect to a
and then use the mean value theorem and Chebyshev’s inequality.

In particular, Theorem 10.10 states that if C new.Kd ; gd / D khdk2Fd
then the worst

case error of An;d;Et is zero even for n D 1. As before, this can only happen in rare
cases. For gd 	 1, this happens only when Fd is the space of constant functions.

If we do not care about the dependence on d , then the worst case error of An;d;Et
for a well chosen Et satisfies

ewor.An;d;Et / D O.n�1=2/:
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So multivariate integration enjoys an order of convergence, although not great, inde-
pendent of d and equal to at least 1

2
. This is the same order of convergence as for

Monte Carlo. However, Monte Carlo has this rate in the randomized setting, whereas
here we consider the worst case setting.

As Theorem 10.7, Theorem 10.10 can be also used to obtain sufficient conditions
on tractability for multivariate integration. The only difference between them is that
C.Kd ; gd / is used in Theorem 10.7 andC new.Kd ; gd / is used in Theorem 10.10. From
this we easily conclude the obvious modifications of Corollary 10.5 and Corollary 10.8.

Corollary 10.11. Consider the multivariate integration problem INT D fId g in the
worst case setting. Here, Id is defined on a separable reproducing kernel Hilbert space
Fd .

• Consider the absolute error criterion.

– If there exist a number q � 0 and a number p � 2 such that

C WD sup
t2.0;1/; d2N

tp=2 khdkpFd

& 
C new.Kd ; gd /

khdk2Fd

� 1
!
1 � t
t

'
d �q < 1

then INT is polynomially tractable, and

n."; d/ � C dq "�p for all " 2 .0; 1/ and d 2 N:

If q D 0 then INT is strongly polynomially tractable.

– If

lim
dCt�1=2khd k�1

Fd
!1

ln 1�t
t

C ln
�
C new.Kd ;gd /

khd k2
Fd

� 1
�

d C t�1=2khdk�1
Fd

D 0

then INT is weakly tractable.

– If

A WD lim sup
dCt�1=2khd k�1

Fd
!1

ln 1�t
t

C ln
�
C new.Kd ;gd /

khd k2
Fd

� 1
�

ln T .t�1=2khdk�1
Fd
; d /

< 1

then INT is T -tractable with exponent of T -tractability at most A.

– If

B WD lim sup
dCt�1=2khd k�1

Fd
!1

ln 1�t
t

C ln
�
C new.Kd ;gd /

khd k2
Fd

� 1
�

ln T .t�1=2khdk�1
Fd
; 1/

< 1

then INT is strongly T -tractable with exponent of strong T -tractability at
most B .

The limits are for d 2 N and t 2 .0; 1/.



10.7 Multivariate Integration 121

• Consider the normalized error criterion. Let

Anor-new
d D

� R
Dd

p
Kd .t; t/ jgd .t/j %d .t/ dt

�2R
D2

d
Kd .x; t/ jgd .x/j jgd .t/j %d .x/ %d .t/ dx dt

� 1:

– If there exists a number q � 0 such that

C WD sup
d2N

Anor-new
d d �q < 1

then INT is polynomially tractable, and

n."; d/ � ˙
C dq "�2� for all " 2 .0; 1/ and d 2 N:

If q D 0 then INT is strongly polynomially tractable.

– If

lim
d!1

lnAnor-new
d

d
D 0

then INT is weakly tractable.

– If

Anew WD lim sup
d!1

lnAnor-new
d

ln.1C T .1; d//
< 1;

Bnew WD lim sup
"!0

ln "�1

ln.1C T ."�1; 1//
< 1

then INT is T -tractable with exponent of T -tractability at most Anew C
2Bnew.

– If supd A
nor-new
d

< 1 and Bnew < 1 then INT is strongly T -tractable with
exponent of strong T -tractability at most 2Bnew.

The bounds on the information complexity can be obtained by algorithms with arbitrary
coefficients presented in Theorem 10.10.

We first illustrate Corollary 10.11 by continuing the example for tensor product
problems.

10.7.10 Example: Tensor Product Problems (Continued)

Proceeding exactly as before we check that kh1kF1
< 1 implies strong polynomial

tractability for the absolute error criterion with the exponent bounded by

p D
´
2 if C new.K1; g1/ � 1;

2C lnC new.K1;g1/
ln 1=kh1kF1

if C new.K1; g1/ > 1:
(10.16)



122 10 Worst Case: General Linear Functionals

That is, if kh1kF1
< 1 then we achieve strong polynomial tractability for both properly

normalized QMC algorithms and algorithms with arbitrary coefficients. However, the
bound on the exponent of strong polynomial tractability can be smaller for algorithms
with arbitrary coefficients. Indeed, take

K1.x; t/ D 5
9

C min.x; t/ for all x; t 2 Œ0; 1�;
as in the Sobolev space example with b D 5

9
. Then kh1kF1

D .8=9/1=2 < 1 and
we have strong polynomial tractability. Since C.K1; 1/ D 19=18 D 1:055 : : : , the
exponent for properly normalized QMC algorithms is bounded by

p D 2C 2
ln 19=18

ln 9=8
D 2:9180 : : : :

For algorithms with arbitrary coefficients,

C new.K1; g1/ D 4

9

"�
14

9

	3=2
�
�
5

9

	3=2 #2
D 1:0350 : : : :

and

p D 2C 2
ln 1:0350 : : :

ln 9=8
D 2:5843 : : : :

But we still do not know the exact value of the exponent. What would be most inter-
esting is to consider tensor products for whichC.K1; g1/ D 1 andC new.K1; g1/ < 1
and find the exact value of the exponent. This is our next open problem.

Open Problem 47.

• Find the exact value of the exponent of strong tractability for multivariate inte-
gration defined on a separable tensor product space H.Kd / in terms of h1; g1
and K1 with

kh1kF1
< 1 and C new.K1; g1/ < C.K1; g1/ D 1

for the absolute error criterion in the worst case setting.

We now illustrate Corollary 10.11 by an example for which

C new.Kd ; gd / < C.Kd ; gd / D 1;

so that Theorems 10.4 and 10.7 as well as Corollary 10.5 are not applicable. More
such examples can be found in Plaskota, Wasilkowski and Zhao [248].

10.7.11 Example: Another Modified Sobolev Space (Continued)

We again consider the Sobolev space with the reproducing kernel

Kd .x; t/ D
dY
jD1

min.xj ; tj / for all x; t 2 Œ0; 1�d ;
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with gd D %d 	 1. We still cannot achieve tractability for the normalized error
criterion. However, since

C new.Kd ; 1/ D
�Z 1

0

p
t dt

	2d
D
�
4

9

	d
;

we can improve the bound (10.11) on n."; d/. More precisely, for the normalized error
criterion we now have

n."; d/ �
& �

4

3

	d
� 1

!
1

"2

'
for all " 2 .0; 1/: (10.17)

We now extend the domain of functions and of the reproducing kernelKd toDd D
Œ0;1/d . We still want to have gd 	 1. Note that in this case, we cannot let %d 	 1

since (10.8) would be violated. Instead we take

%d .t/ D
dY
jD1

2
p
b

�

1

1C b t2j
for all t 2 Dd ;

for some positive number b. It is easy to check that %d is indeed a density function,
i.e.,

R
Dd
%d .t/ dt D 1.

The representer hd of multivariate integration is now

hd .x/ D
dY
jD1

Z 1

0

2
p
b

�

min.xj ; t /

1C b t2
dt:

We have

khdk2Fd
D

4b

�2

Z
Œ0;1/2

min.x; t/

.1C b x2/.1C b t2/
dx dt

�d
D


4

�2
p
b

Z
Œ0;1/2

min.x; t/

.1C x2/.1C t2/
dx dt

�d
:

Since the last double integral is 2:17759 : : : , computed by Mathematica, we finally
obtain

khdk2Fd
D

0:88254 : : :p

b

�d
:

Note that C.Kd ; 1/ D 1. Indeed, we now have

Kd .t; t/ %d .t/ D
dY
jD1

2
p
b

�

tj

1C b t2j
:
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For large tj , the last ratio is approximately proportional to 1=tj , which is not integrable.
However C new.Kd ; 1/ is finite. In fact, we have

ŒC new.Kd ; 1/�
1=2 D

dY
jD1

2
p
b

�

Z 1

0

p
t

1C b t2
dt:

Since
R1
0

p
t=.1C b t2/ dt D �=.b3=4

p
2/, we obtain

C new.Kd ; 1/ D

2p
b

�d
:

Observe that
C new.Kd ; 1/ � 1 iff b � 4:

We know that multivariate integration is strongly polynomially tractable for the
absolute error criterion if kh1kF1

< 1, which holds if

b > .0:88254 : : : /2 D 0:7788 : : : :

For the normalized error criterion and for the absolute error criterion with b �
0:7788 : : : , the condition of Corollary 10.11 for weak tractability does not hold. We
return to these cases later when we establish lower bounds on the worst case errors.

In the last example, we see that C new.Kd ; gd /=khdk2Fd
is exponentially large in d

and does not depend on b. In fact, for general spaces even a worse situation can happen:
we may have C new.Kd ; gd / D 1 and khdkFd

D 1. Such examples are presented
in Plaskota, Wasilkowski and Zhao [248]. We now provide a similar example for the
unbounded kernel that we studied earlier.

10.7.12 Example: Unbounded Kernel (Continued)

As before, we restrict our attention only to d D 1 and takeD1 D Œ0; 1� and g1 	 %1 	
1. Recall that

K1.x; t/ D k.k C 1/ for all x; t 2 .1=.k C 1/; 1=k�;

and K1.x; t/ D 0 otherwise. This implies thatZ 1

0

p
K1.t; t/ dt D

1X
kD1

p
k.k C 1/

�
1

k
� 1

k C 1

	
D

1X
kD1

1p
k.k C 1/

D 1:

Hence, C new.Kd ; 1/ D 1. On the other hand,

I1.f / D
Z 1

0

f .t/ dt for all f 2 F1
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is well defined since its representer h1 	 1 and

khdk2F1
D

1X
kD1

1

k.k C 1/
D

1X
kD1

Z 1=k

1=.kC1/
1 dt D

Z 1

0

1 dt D 1:

In this case, we know that the best sample points are tj D 1=j for j D 1; 2; : : : ; n, the
best algorithm that uses n function values is

An;1.f / D
nX

jD1

1

j.j C 1/
f .1=j /;

and the minimal worst case error e.n; 1/ is given by

e.n; 1/ D
h 1X
kDnC1

1

k.k C 1/

i1=2 D
 Z 1=.nC1/

0

1 dt

�1=2
D 1

.nC 1/1=2
:

Hence, even though C new.Kd ; 1/ D 1, we still have convergence of order n�1=2.
We add in passing that QMC algorithms for this space are quite bad. We now show

that the minimal worst case error of QMC algorithms is 1. Indeed, the square of the
worst case error of

An;1.f / D 1

n

nX
jD1

f .tj /

is

e2.An;1/ D �1C 1

n2

nX
i;jD1

K1.ti ; tj /:

Let pk D jfj 2 Œ1; n� j tj 2 .1=.k C 1/; 1=k�g be the number of sample points in the
subinterval .1=.k C 1/; 1=k�. Obviously,

P1
kD1 pk D n. Then

e2.An;1/ D �1C 1

n2

1X
kD1

p2k k.k C 1/ � �1C 2 D 1;

as claimed. The best sample points for QMC algorithms are arbitrary points in the
subinterval .1=2; 1�. Observe that for tj D 1=j we have

e2.An;1/ D �1C 1

n

nX
jD1

j.j C 1/ D �1C .nC 1/.nC 2/

3
D 1

3
n2 .1C o.1//

and this increases quadratically with n. This shows that the change of the optimal
coefficients 1=.j.j C 1// to the QMC coefficients 1=j is is quite bad for this space.
We finally observe that the properly normalized QMC algorithm is now zero since
C.Kd ; 1/ D 1 and its worst case error is just 1.
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The last example shows that for some d and some spaces Fd , it is possible to get
convergence of order n�1=2 even though C new.Kd ; gd / D 1. On the other hand,
Plaskota, Wasilkowski and Zhao [248] showed examples of spaces or, equivalently
reproducing kernels, for which C new.Kd ; gd / D 1 and the order of convergence for
multivariate integration is arbitrarily bad. Hence, we can say that finite C new.Kd ; gd /

implies that the order of convergence for multivariate integration is at least n�1=2,
whereas for infiniteC new.Kd ; gd /, the order may be the same or much worse depending
on the space Fd .

Theorems 10.4, 10.7 and 10.10 are non-constructive, since we only know the exis-
tence of sample points with the specific error bounds. However, since we also know
that the Lebesgue measure of such points is at least 1�C�1, which is sufficiently large
for large C , this offers a semi-construction of good sample points.

More precisely, we can proceed as follows. ChooseC > 1. Then pick up randomly
and independently sample points t1; t2; : : : ; tn from Dd with the density %d or !d .
Compute the worst case error of the algorithmAn;d;Et from Theorem 10.4, 10.7 or 10.10.
If ewor.An;d;Et / does not exceed the error bound of the corresponding theorem multiplied
by C , we are done. That is, for the case of Theorem 10.10 we check whether

ewor.An;d;Et / � C min

´
khdkFd

;

q
C new.Kd ; gd / � khdk2Fdp

n

μ
:

If not, we repeat random selection of the sample points tj . Since the probability of
failure of k such random selections is at most C�2k , we need only a few runs to be
successful. If we are ready to tolerate a failure of measure ı > 0, then we set

k D
�
1

2

ln ı�1

lnC

�
:

Hence with probability of failure at most ı, we can compute sample points for which
the worst case error exceeds C times the error bound presented in Theorem 10.4, 10.7
or 10.10. The cost of such construction will be of order of k n2 d arithmetic operations
needed to compute k times the worst case error and the cost of randomly selecting of
k n d numbers.

10.8 The Operator Wd

To continue the study of general linear functionals related to multivariate approxima-
tion, we need to define an operator Wd that will play a major role in this and the next
volume. To do this, let us assume that Fd is separable and that its reproducing kernel
satisfies

C.Kd / D
Z
Dd

Kd .t; t/ %d .t/ d t < 1:

Here, we simplify the notation by taking C.Kd / D C.Kd ; 1/.
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The last assumption implies that the space Fd is continuously embedded into the
space L2;%d

D L2;%d
.Dd /. Indeed, for f 2 Fd we have f .t/ D hf;Kd .�; t /iFd

,
which yields that

f 2.t/ � kf k2Fd
kKd .�; t /k2Fd

D kf k2Fd
Kd .t; t/:

Then Z
Dd

f 2.t/ %d .t/ dt �
Z
Dd

kf k2Fd
Kd .t; t/ %d .t/ dt D kf k2Fd

C.Kd /:

Hence,
kf kL2;%d

�
p
C.Kd / kf kFd

for all f 2 Fd ;
as claimed.

We are ready to define the operator Wd . For f 2 Fd , let

.Wdf / .x/ D
Z
Dd

Kd .x; t/ f .t/ %d .t/ dt for all x 2 Dd : (10.18)

We now establish a number of properties of Wd assuming1 without loss of generality
that dim.Fd / D 1.

• Wd is well defined.

Indeed, for x 2 Dd we have

j.Wdf /.x/j �
p
Kd .x; x/

Z
Dd

p
Kd .t; t/ jf .t/j %d .t/ dt

�
p
Kd .x; x/

�Z
Dd

Kd .t; t/ %d .t/ dt
Z
Dd

f 2.t/ %d .t/ dt

	1=2
D
p
Kd .x; x/

p
C.Kd / kf kL2;%d

� C.Kd /
p
Kd .x; x/ kf kFd

< 1:

• Wd maps Fd into Fd , and is a continuous linear operator.

Since Fd is separable, there exists an orthonormal basis f�j gj2N of Fd , i.e.,
�j 2 Fd and

˝
�j ; �k

˛
Fd

D ıj;k . Then

Kd .x; t/ D
1X
jD1

�j .x/ �j .t/ for all x; t 2 Dd :

Observe thatZ
Dd

Kd .t; t/ %d .t/ dt D
1X
jD1

Z
Dd

�2j .t/ %d .t/ dt D
1X
jD1

k�j k2L2;%d
:

1If dim.Fd / < 1 then we should vary the index j in all sums from 1 to dim.Fd / instead of from 1
to 1.
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Hence, 1X
jD1

k�j k2L2;%d
D C.Kd /: (10.19)

We can rewrite Wdf as

Wdf D
1X
jD1

�Z
Dd

�j .t/ f .t/ %d .t/ dt

	
�j :

Then Wdf 2 Fd iff

a ´
1X
jD1

�Z
Dd

�j .t/ f .t/ %d .t/ dt

	2
< 1:

Since�Z
Dd

�j .t/ f .t/ %d .t/ dt

	2
�
Z
Dd

�2j .t/ %d .t/ dt
Z
Dd

f 2.t/ %d .t/ dt

D k�j k2L2;%d
kf k2L2;%d

;

we have

a � kf k2L2;%d

1X
jD1

k�j k2L2;%d
D C 2.Kd / kf k2Fd

< 1:

Hence Wdf 2 Fd . Clearly, Wd is linear and

kWdf kFd
� C.Kd /kf kFd

;

so it is also continuous, as claimed.

• Wd is self-adjoint, positive semi-definite, and compact.

Clearly, for f; g 2 Fd we have

hf;WdgiFd
D
Z
Dd

f .t/ g.t/ %d .t/ dt D hWdf; giFd
:

Hence, Wd is self-adjoint. It is also positive semi-definite since

hf;Wdf iFd
D
Z
Dd

f 2.t/ %d .t/ dt � 0 for all f 2 Fd :

To show that Wd is compact, for m 2 N and f 2 Fd define

Tm;df D
mX
jD1

�Z
Dd

�j .t/ f .t/ %d .t/ dt

	
�j :
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Clearly, Tm;d W Fd ! Fd and Tm;d is a continuous linear and m-dimensional
operator, i.e., dim.Tm;d .Fd // D m. Note that

Wdf � Tm;df D
1X

jDmC1

�Z
Dd

�j .t/ f .t/ %d .t/ dt

	
�j ;

and using the previous estimates we conclude that

kWdf � Tm;df kFd
�
� 1X
jDmC1

k�j k2L2;%d

�1=2p
C.Kd / kf kFd

:

Hence,

kWd � Tm;dk �
p
C.Kd /

� 1X
jDmC1

k�j k2L2;%d

�1=2
:

Due to (10.19), the trace
P1
jDmC1 k�j k2L2;%d

goes to zero as m goes to infinity.

Hence,Wd can be approximated with arbitrarily small error by finite dimensional
operators, and therefore is compact.

• Wd is a finite trace operator.

As a self-adjoint, semi-positive and compact operator, Wd possesses eigenpairs
f�d;j ; 
d;j gj2N,

Wd�d;j D 
d;j �d;j

such that the eigenvalues are ordered and convergent to zero,


d;1 � 
d;2 � � � � and lim
j!1
d;j D 0:

For simplicity we assume that all eigenvalues 
d;j are positive2. The eigen-
functions f�d;j g form an orthonormal basis of Fd ,

˝
�d;j ; �d;k

˛
Fd

D ıj;k . They
satisfy the equationsZ

Dd

Kd .x; t/ �d;j .t/ %d .t/ dt D 
d;j �d;j .x/ for all x 2 Dd :

This yields that for all j; k 2 N we have


d;kıj;k D ˝
�d;j ; 
d;k �d;k

˛
Fd

D
Z
Dd

�d;j .t/ �d;k.t/ %d .t/ dt

D ˝
�d;j ; �d;k

˛
L2;%d

:

This proves that the �d;j are also orthogonal in L2;%d
. Furthermore,


d;j D k�d;j k2L2;%d
for all j 2 N:

2Otherwise, we should replace Fd by its subspace spanned by all 	d;j corresponding to positive eigen-
values.
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Define

��
d;j D 1p


d;j
�d;j

and then the sequence f��
d;j

g is orthonormal in L2;%d
. In general, however, this

set need not be a basis of L2;%d
since Fd can be a proper subspace of L2;%d

.

Finally observe thatZ
Dd

Kd .t; t/ %d .t/ dt D
1X
jD1

k�d;j k2L2;%d
D

1X
jD1


d;j D C.Kd / < 1:

Hence, the sum of the eigenvalues ofWd is finite, thusWd is a finite trace operator,
as claimed.

For the eigenpairs f�d;j ; 
d;j g of Wd we have

˝
f; �d;j

˛
Fd

D 1


d;j

˝
f; �d;j

˛
L2;%d

for all f 2 Fd ; (10.20)

since ˝
f; �d;j

˛
Fd

D 1


d;j

�
f;

Z
Dd

Kd .�; t /�d;j .t/ %d .t/ dt

�
Fd

D 1


d;j

Z
Dd

f .t/ �d;j .t/ %d .t/ dt D 1


d;j

˝
f; �d;j

˛
L2;%d

:

10.9 Relations to Multivariate Integration

The results on multivariate integration established in Section 10.7 may be also general-
ized to some other linear functionals defined overFd for whichC.Kd / < 1. Consider
a general continuous linear functional

Id .f / D hf; hd iFd
for all f 2 Fd ;

with hd from Fd . We now assume that

1X
jD1

˝
hd ; �d;j

˛2
Fd


d;j
< 1: (10.21)

Then

Qhd WD
1X
jD1

˝
hd ; �d;j

˛
Fdp


d;j
��
d;j D

1X
jD1

˝
hd ; �

�
d;j

˛
L2;%d


d;j
��
d;j (10.22)
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belongs to L2;%d
and its norm is

k Qhdk2L2;%d
D

1X
jD1

˝
hd ; �d;j

˛2
Fd


d;j
D

1X
jD1

˝
hd ; �

�
d;j

˛2
L2;%d


2
d;j

< 1:

We now claim that (10.21) implies that

Id .f / D
Z
Dd

f .t/ Qhd .t/ %d .t/ dt; (10.23)

so that Id is the same as multivariate integration with gd D Qhd . Indeed,

Id .f / D hf; hd iFd
D

1X
jD1

˝
f; �d;j

˛
Fd

˝
hd ; �d;j

˛
Fd

D
1X
jD1

˝
hd ; �d;j

˛
Fd


d;j

˝
f; �d;j

˛
L2;%d

D
1X
jD1

˝
hd ; �d;j

˛
Fdp


d;j

˝
f; ��

d;j

˛
L2;%d

D ˝
f; Qhd

˛
L2;%d

D
Z
Dd

f .t/ Qhd .t/ %d .t/ dt;

as claimed.
In fact, the following opposite statement is also true. Namely, if there exists gd 2

L2;%d
such that

Id .f / D hf; hd iFd
D
Z
Dd

f .t/ gd .t/ %d .t/ dt for all f 2 Fd

then, in general, gd is not unique but it can be chosen as gd D Qhd and (10.21)
holds. Indeed, since Fd is spanned by f�d;j g, we can represent the function gd as
gd D gd;1Cgd;2 with gd;2 orthogonal to all �d;j and gd;1 being a linear combination
of the �d;j . Note that gd is indistinguishable from gd;1 in the formula above since f
is a linear combination of all the �d;j . So we can take gd;2 D 0 and then gd D gd;1.
For f D �d;j we have˝

�d;j ; hd
˛
Fd

D 1


d;j

˝
�d;j ; hd

˛
L2;%d

D ˝
�d;j ; gd

˛
L2;%d

:

Hence

gd D
1X
jD1

˝
gd ; �

�
d;j

˛
L2;%d

��
d;j D

1X
jD1

1p

d;j

˝
gd ; �d;j

˛
L2;%d

��
d;j

D
1X
jD1

˝
hd ; �d;j

˛
Fdp


d;j
��
d;j D Qhd ;
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and obviously
1X
jD1

˝
hd ; �d;j

˛2
Fd


d;j
D kgdk2L2;%d

< 1;

as claimed.
To apply Theorem 10.10 and Corollary 10.11 we must check whether (10.15) holds

for g D Qhd , i.e., whether
R
Dd

p
Kd .t; t/ j Qhd .t/j %d .t/ dt < 1:This is indeed the case

since �
C new.Kd ; Qhd /

�1=2 D
Z
Dd

p
Kd .t; t/ j Qhd .t/j %d .t/ dt

�
�Z

Dd

Kd .t; t/%d .t/ dt

	1=2
k QhdkL2;%d

(10.24)

D C.Kd /
1=2k QhdkL2;%d

< 1:

We summarize this analysis in the following corollary.

Corollary 10.12. Consider a general continuous linear functional Id .f / D hf; hd iFd

for all f 2 Fd with hd satisfying (10.21), and with Qhd given by (10.22). Here we
assume that the reproducing kernel Kd of the separable Hilbert space Fd is such that
C.Kd / < 1. Then Id is the same as multivariate integration with gd D Qhd and the
results of Section 10.7 apply to Id .

We illustrate this relation to multivariate integration by an example.

10.9.1 Example: Linear Functionals in Korobov Space

We take the same Korobov space Fd as before with r D 1 and with %d 	 1 and
Dd D Œ0; 1�d . Its reproducing kernel is of the form

Kd .x; t/ D
dY
jD1

�
1C 1

2
B2.fxj � tj g/� for all x; t 2 Œ0; 1�d ;

whereB2.x/ D x2�xC 1
6

is the Bernoulli polynomial of degree two, and fxg denotes
the fractional part of x. (This corresponds to ˛ D r D 1, ˇ1 D 1 and ˇ2 D .2�/�2 in
Appendix A of Volume I.)

The eigenpairs of Wd are known for this case, see e.g., Appendix A of Volume I.
For d D 1 and k D 1; 2: : : : , we have


1 D 1; 
2k D 
2kC1 D 1

4�2 k2
;

and

�1 D 1; �2k.x/ D 1p
2� k

sin.2� kx/; �2kC1.x/ D 1p
2� k

cos.2� kx/:
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Obviously, we also have

��
1 D 1; ��

2k.x/ D p
2 sin.2� kx/; ��

2kC1.x/ D p
2 cos.2� kx/;

and the sequence f��
j g is now an orthonormal basis of L2.Œ0; 1�/.

For d � 1, the tensor product structure of Fd implies that Wd has the eigenpairs
f
d;k; �d;kgkDŒk1;k2;:::;kd �2Nd given by


d;k D
dY
jD1


kj
and �d;k.x/ D

dY
jD1

�ki
.xj /:

Consider a linear tensor product functional

Id .f / D hf; hd iFd
with hd .x/ D

dY
jD1

h1.xj /

for some h1 2 F1. Then (10.21) takes the form

1X
jD1

˝
hd ; �d;j

˛2
Fd


d;j
D
h 1X
jD1

˝
h1; �j

˛2
F1


j

id
< 1:

Hence, we need to choose h1 such that

1X
jD1

˝
h1; �j

˛2
F1


j
D

1X
jD1

˝
h1; �

�
j

˛2
L2.Œ0;1�/


2j
< 1:

Then Qhd .x/ D Qd
jD1 Qh1.xj / with

Qh1 D
1X
jD1

˝
h1; �j

˛
F1p


j
��
j and k Qh1k2L2.Œ0;1�/

D
1X
jD1

˝
h1; �

�
j

˛2
L2.Œ0;1�/


2j
< 1:

Since h1 2 F1 we know that

1X
jD1

˝
h1; �j

˛2
F1

D
1X
jD1

˝
h1; �

�
j

˛2
L2.Œ0;1�/


j
< 1:

This means that Id is related to multivariate integration if the Fourier coefficients of its
representer h1 tend to zero faster than is required in the space F1. Equivalently, since

j D ‚.j�2/, we can say that we know that

1X
jD1

j 2
˝
h1; �

�
j

˛2
L2.Œ0;1�/

< 1
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but to get a relation to multivariate integration we need to assume that

1X
jD1

j 4
˝
h1; �

�
j

˛2
L2.Œ0;1�/

< 1:

This holds iff h00
1 2 L2.Œ0; 1�/. Hence, for h1 2 F1 we know that h0

1 2 L2.Œ0; 1�/, and
the assumption (10.21) means that we need to assume that h00

1 2 L2.Œ0; 1�/.
Note that the assumption (10.21) holds for a dense set of elements h1 from F1 since

it holds for all h1 with finitely many non-zero Fourier coefficients or for all polynomials
h1 which are also dense in F1.

In the last example we already noticed that the assumption (10.21) holds for a dense
set of representers of linear functionals. In fact, this property is true in full generality.
More precisely, let

Ad WD f hd 2 Fd j hd satisfies (10.21) g
be the set of linear functionals Id (or, equivalently, the set of representers hd ) for which
Id is the same as multivariate integration for gd D Qhd . It is easy to see that the set Ad
is dense in Fd since all hd with finitely many non-zero

˝
hd ; �d;j

˛
Fd

satisfy (10.21).
Indeed, for any hd 2 Fd take

hd;m D
mX
jD1

˝
hd ; �d;j

˛
Fd
�d;j

for some integer m. Then hd;m 2 A and

khd � hd;mk2Fd
D

1X
jDmC1

˝
hd ; �d;j

˛2
Fd

can be made arbitrarily small for large m since khdk2Fd
D P1

jD1
˝
hd ; �d;j

˛2
Fd

< 1,
as claimed.

However, note that for the linear functional Id;m.f / D ˝
f; hd;m

˛
Fd

we have
ewor.m; Id;m/ D 0 and for n < m, Theorem 10.10 and (10.24) yield

ewor.n; Id;m/ �
p
C.Kd / k Qhd;mkL2;%dp

n
:

This proves the following corollary.

Corollary 10.13. Consider a separable Hilbert space Fd whose reproducing kernel
Kd satisfies C.Kd / < 1. Then

• the set of continuous linear functionals that are the same as multivariate inte-
gration for some gd is dense in Fd ,
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• for continuous linear functionals from this dense set, the worst case error of
properly chosen linear algorithms is bounded byp

C.Kd / k QhdkL2;%dp
n

:

10.10 General Case

We now consider linear continuous functionals more general than multivariate integra-
tion and show conditions under which their nth minimal errors go to zero as fast as
n�1=2. Obviously, the general form of a linear functional is Id .f / D hf; hd iFd

for an
arbitrary hd from Fd .

We know that hd can be approximated with an arbitrarily small error by a linear
combination of Kd .�; z1/;Kd .�; z2/; : : : ; Kd .�; zm/ for some integer m and zj from
Dd . So as our first step, let us assume that

hd D
mX
jD1

j̨ Kd .�; zj /: (10.25)

In this case, the linear functional Id takes the form

Id .f / D
mX
jD1

j̨f .zj / for all f 2 Fd :

Obviously,

khdk2Fd
D

mX
i;jD1

˛i j̨ Kd .zi ; zj / D
mX
jD1

j̨ hd .zj /:

To eliminate the trivial problem we assume that khdkFd
> 0. As we shall see, the

quantity

khdk�
Fd

´
mX
jD1

j j̨ j
q
Kd .zj ; zj / (10.26)

will be important for our analysis. Clearly, khdkFd
� khdk�

Fd
.

Let us consider linear algorithms

An;d;Et .f / D
nX

jD1
a.tj / f .tj /

for some not necessarily non-negative real numbers a.tj / and some sample points tj
from Dd . As we know, the square of the worst case error of An;d;Et is

�
ewor.An;d;Et /

�2 D khdk2Fd
� 2

nX
jD1

a.tj / hd .tj /C
mX

i;jD1
a.ti /a.tj /Kd .ti ; tj /:
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In analogy with the analysis of the previous sections, we now take independent and
identically distributed random sample points tj from the finite set fz1; z2; : : : ; zmg,
where the point zk is taken with probability

!.zj / D
p
Kd .zj ; zj /

khdk�
Fd

j j̨ j for j D 1; 2; : : : ; m:

Let Zm WD fz1; z2; : : : ; zmg and let

E ´
X
t12Zm

� � �
X
tn2Zm

!.t1/ � � � !.tn/
�
ewor.An;d;Et /

�2
denote the expectation of the square of the worst average error of An;d;Et . Then

E D khdk2 � 2n
mX
jD1

a.zj /hd .zj / !.zj /

C .n2 � n/
mX

i;jD1
a.zi /a.zj /Kd .zi ; zj / !.zi / !.zj /

C n

nX
jD1

a2.zj /Kd .zj ; zj / !.zj /:

We define a.zj / as

a.zj / D a
j̨

!.zj /
D a

khdk�
Fdp

Kd .zj ; zj /
sign. j̨ / for j D 1; 2; : : : ; m;

with the convention that 1 � 0 D 0, and with a not yet specified positive number a.
We stress that some a.tj / may be now negative. Then

mX
jD1

a.zj /hd .zj / !.zj / D a

mX
jD1

j̨ hd .zj / D a khdk2Fd
;

mX
i;jD1

a.zi /a.zj /Kd .zi ; zj / !.zi / !.zj / D
mX

i;jD1
˛i j̨ Kd .zi ; zj / D a2 khdk2Fd

;

nX
jD1

a2.zj /Kd .zj ; zj / !.zj / D a2
�khdk�

Fd

�2
:

This leads to

E D khdk2Fd
.1 � na/2 C a2n2

��khdk�
Fd

�2 � khdk2Fd

�
:

Choosing a to minimize the last formula, we obtain

a D khdk2Fd�khdk�
Fd

�2 � khdk2Fd
C n khdk2Fd

:
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As before, applying the mean value theorem we conclude that there exists Et for
which

ewor.An;d;Et / � min

 
khdkFd

;

q�khdk�
Fd

�2 � khdk2Fdp
n

!
: (10.27)

Consider the set

Z D
´

Et 2 Znm W ewor.An;d;Et / � C min

 
khdkFd

;

q�khdk�
Fd

�2 � khdk2Fdp
n

!μ
:

Applying Chebyshev’s inequality we conclude that for anyC > 1, a weighted measure

!.Z/ satisfies


!.Z/ ´
X
Et2Z

!.t1/ � � � !.tn/ � 1 � C�2: (10.28)

We are ready to consider the next step where hd is not necessary given by (10.25).
For a general hd from Fd , we generalize (10.26) to

khdk�
Fd

D lim sup"!0 inf
˚ mP
jD1

j j̨ jpKd .zj ; zj / j ��hd �
mP
jD1

j̨Kd .�; zj /
��
Fd

� "


:

(10.29)
In the infimum above we vary m; j̨ and zj satisfying the last inequality. As we

know, the set of suchm; j̨ and zj is non-empty and we should choose these parameters
to minimize the expression

Pm
jD1 j j̨ jpKd .zj ; zj /.

We stress that khdk�
Fd

may be infinite. Indeed, take the non-separable space Fd
as in the example we considered before with Kd .x; t/ D ı.x; t/ for x; t 2 Œ0; 1�d .
Then every hd is of the form hd D P1

jD1 j̨Kd .�; t�j / for some tj from Œ0; 1�d , and
khdk2Fd

D P1
jD1 ˛2j < 1. In this case we have

khdk�
Fd

D
1X
jD1

j j̨ j

and the last series does not have to be finite. This holds, for instance, for j̨ D j�1.
For a general space Fd and hd , we always have khdkFd

� khdk�
Fd

. In fact, it is
easy to see that k � k�

Fd
is a norm on the linear subspace

Xd D f hd 2 Fd j khdk�
Fd
< 1g

of the space Fd . Note that all hd satisfying (10.25) belong to Xd , and therefore Xd is
dense in Fd . For hd of the form (10.25), the definitions (10.26) and (10.29) coincide.

For multivariate integration satisfying (10.8), it is easy to check that

Œkhdk�
Fd
�2 D C new.Kd ; 1/I

as we know, this may be finite or infinite, depending on the space Fd .
Based on the analysis we did for hd satisfying (10.25), we obtain the following

theorem.
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Theorem 10.14. Consider the linear functional problem

Id .f / D hf; hd iFd
for all f 2 Fd and some non-zero hd 2 Fd :

Assume that
khdk�

Fd
< 1: (10.30)

Then

e.n; d/ � min

 
khdkFd

;

q�khdk�
Fd

�2 � khdk2Fdp
n

!
:

For any ı 2 .0; 1/, take hd;ı D Pm
jD1 j̨Kd .�; zj / with Kd .zj ; zj / > 0 such that

khd � hd;ıkFd
� ı khdkFd

and khd;ık�
Fd

� .1C ı/ khdk�
Fd
;

where khd;ık�
Fd

D Pm
jD1 j j̨ jpKd .zj ; zj /.

Then there exists Et D Œt1; t2; : : : ; tn� with tj 2 Zm ´ fz1; z2; : : : ; zmg for which
the worst case error of the algorithm

An;d;Et .f / D khd;ık2Fd�khd;ık�
Fd

�2 � khd;ık2Fd
C n khd;ık2Fd

nX
jD1

ajf .tj /;

with

aj D khd;ık�
Fdp

Kd .zj ; zj /
sign. j̨ /;

satisfies
ewor.An;d;Et / � ı khdkFd

CEn;ı ;

where

En;ı D .1C ı/ min

 
khdkFd

;

q�khdk�
Fd

�2 � Œ.1 � ı/=.1C ı/�2khdk2Fdp
n

!
:

Furthermore, for any C > 1, the weighted measure


!.Z/ D
X
Et2Z

!.t1/ � � � !.tn/;

where

!.zk/ D
p
Kd .zk; zk/

khd;ık�
Fd

j˛kj for k D 1; 2; : : : ; m;

of the set
Z D ˚ Et 2 Znm j ewor.An;d;Et / � ı khdkFd

C C En;d



satisfies

!.Z/ � 1 � C�2:
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Proof. First of all, note that we can always find hd;ı satisfying the conditions presented
in the theorem. Since khdk�

Fd
is finite and positive, from the definition of khdk�

Fd
we

know that for any ı 2 .0; 1/ there exists "ı such that

khd;ık�
Fd

� khdk�
Fd

C ıkhdk�
Fd

for all hd;ı for which

khd � hd;ıkFd
� min

�
"ı ; ıkhdkFd

� � ıkhdkFd
:

Hence, hd;ı exists. We then take the algorithm An;d;Et for approximating
˝
f; hd;ı

˛
Fd

.

As we did before formulating the theorem, we know that for some Et , the worst case
error of An;d;Et satisfies (10.27) as well as (10.28) with hd replaced by hd;ı . Note that
khd;ıkFd

=khdkFd
2 Œ1 � ı; 1C ı� and thereforeq�khd;ık�

Fd

�2 � khd;ık2Fd
� .1C ı/

q�khdk�
Fd

�2 � Œ.1 � ı/=.1C ı/�2khdk2Fd
:

This yields that An;d;Et approximates
˝
f; hd;ı

˛
Fd

with worst case error at most En;ı .
Finally, we observe thatˇ̌ hf; hd iFd

� An;d;Et
ˇ̌ � ˇ̌ ˝

f; hd � hd;ı
˛
Fd

ˇ̌C ˇ̌ ˝
f; hd;ı

˛
Fd

� An;d;Et
ˇ̌

and the bound khd � hd;ıkFd
� ıkhdkFd

yields the error bound of An;d;Et . Letting ı
go to zero, we obtain the estimate on e.n; d/. This completes the proof.

Note that Theorem 10.14 is exactly of the same form as Theorem 10.10, but with
C new.Kd ; gd / replaced by Œkhdk�

Fd
�2. As we already mentioned for multivariate in-

tegration C new.Kd ; 1/ D Œkhdk�
Fd
�2, and therefore Theorem 10.14 generalizes The-

orem 10.10, and is applicable to linear functionals more general than multivariate
integration as long as khdk�

Fd
< 1. Indeed, take the Hilbert space Fd with the repro-

ducing kernel Kd .x; t/ D ı.x; t/. Then multivariate integration and Theorem 10.10
are not applicable since Fd is not separable, but Theorem 10.14 is applicable.

Therefore, we can generalize Corollary 10.11 and present tractability conditions in
terms of khdk�

Fd
.

Corollary 10.15. Consider the linear functional problem I D fId g in the worst case
setting. Here, Id .f / D hf; hd iFd

for f from a reproducing kernel Hilbert space Fd
with khdk�

Fd
< 1 for all d .

• Consider the absolute error criterion.

– If there exist a number q � 0 and a number p � 2 such that

C WD sup
t2.0;1/; d2N

tp=2 khdkpFd

& 
Œkhdk�

Fd
�2

khdk2Fd

� 1
!
1 � t
t

'
d �q < 1
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then I is polynomially tractable, and

n."; d/ � C dq "�p for all " 2 .0; 1/ and d 2 N:

If q D 0 then I is strongly polynomially tractable.

– If

lim
dCt�1=2khd k�1

Fd
!1

ln 1�t
t

C ln

�
Œkhd k�

Fd
�2

khd k2
Fd

� 1
	

d C t�1=2khdk�1
Fd

D 0

then I is weakly tractable.

– If

A WD lim sup
dCt�1=2khd k�1

Fd
!1

ln 1�t
t

C ln

�
Œkhd k�

Fd
�2

khd k2
Fd

� 1
	

ln T .t�1=2khdk�1
Fd
; d /

< 1

then I is T -tractable with the exponent of T -tractability at most A.

– If

B WD lim sup
dCt�1=2khd k�1

Fd
!1

ln 1�t
t

C ln

�
Œkhd k�

Fd
�2

khd k2
Fd

� 1
	

ln T .t�1=2khdk�1
Fd
; 1/

< 1

then I is strongly T -tractable with the exponent of strong T -tractability at
most B .

The limits are for d 2 N and t 2 .0; 1/.
• Consider the normalized error criterion. Let

A
nor-gen
d

D
 khdk�

Fd

khdkFd

!2
� 1:

– If there exists a number q � 0 such that

C WD sup
d2N

A
nor-gen
d

d �q < 1

then I is polynomially tractable, and

n."; d/ � ˙
C dq "�2� for all " 2 .0; 1/ and d 2 N:

If q D 0 then I is strongly polynomially tractable.

– If

lim
d!1

lnAnor-gen
d

d
D 0

then I is weakly tractable.
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– If

Agen WD lim sup
d!1

lnAnor-gen
d

ln.1C T .1; d//
< 1;

Bgen WD lim sup
"!0

ln "�1

ln.1C T ."�1; 1//
< 1

then I is T -tractable with the exponent of T -tractability at most Agen C
2Bgen.

– If supd A
nor-gen
d

< 1 and Bgen < 1 then I is strongly T -tractable with the
exponent of strong T -tractability at most 2Bgen.

The bounds on the information complexity can be obtained by algorithms with arbitrary
coefficients presented in Theorem 10.14.

We illustrate Corollary 10.15 by an example.

10.10.1 Example: Tensor Product Problems (Continued)

As before, we takeKd and hd as the d -fold tensor product ofK1 and h1, respectively.
It is easy to check that we have strong polynomial tractability if kh1kF1

< 1 and
kh1k�

F1
< 1. Dropping �1 and taking q D 0, we estimate C by

tp=2�1.1 � t /�kh1k.p�2/=2
F1

kh1k�
F1

�2d C tp=2kh1kpdF1
� 2;

as long as we take

p D
8<:2 if kh1k�

F1
� 1;

2C 2
ln kh1k�

F1

ln 1=kh1kF1

if kh1k�
F1
> 1:

(10.31)

We summarize this in the following corollary.

Corollary 10.16. The tensor product linear functional problem I D fId g with a tensor
product Id defined for a tensor product spaceH.Kd / with

kh1kF1
< 1 and kh1k�

F1
< 1

is strongly polynomially tractable for the absolute error criterion in the worst case
setting with exponent bounded by (10.31).

We now take the non-separable space Fd with Kd .x; t/ D ı.x; t/ and

h1 D a

1X
jD1

qj�1K1.�; tj /
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for a positive a, q 2 .0; 1/ and for distinct sample points tj . Then

kh1kF1
D ap

1 � q2 and kh1k�
F1

D a

1 � q :

Hence for a2 C q2 < 1 we have kh1kF1
< 1. For a C q > 1 the exponent of strong

polynomial tractability is bounded by

p D 2C 2
� ln.1 � q/C ln a
1
2

ln.1 � q2/ � ln a
:

For a D q D 1=
p
3 we obtain kh1kF1

D p
2=2 and kh1k�

F1
D .

p
3 C 1/=2. This

yields
p D 3:7999 : : : :

Note that this example cannot be analyzed by Corollary 10.11.

Again, we do not know the exact value of the exponents. This is summarized in
our last open problem of this chapter.

Open Problem 48.

• Find the exact value of the exponent of strong polynomial tractability for tensor
product linear functionals in terms of h1 with

kh1kF1
< 1 and kh1k�

F1
< 1

for the absolute error criterion in the worst case setting.

Theorem 10.14 requires that khdk�
Fd
< 1, that is, we must assume that hd 2 Xd .

We know that the set Xd is dense in Fd . If we do not care about the dependence on d ,
we then have e.n; d/ D ewor.n; Id / D O.n�1=2/. This leads us to the next corollary.

Corollary 10.17. Consider a reproducing kernel Hilbert space Fd . Then the set of
continuous linear functionals Id for which khdk�

Fd
< 1 and

ewor.n; Id / � khdk�
Fdp
n

is dense in Fd .

10.11 Notes and Remarks

NR 10.1:1. This chapter is based on a number of papers, as indicated in the Notes and
Remarks of the successive sections.
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NR 10.3:1. This section is based on [218]. Theorem 10.1 was needed and proved
in [218] for d D 1. We present its version for arbitrary d with the same proof.

NR 10.4:1. This section is based on [218]. However, the example of the Sobolev space
anchored at zero is new. We stress that arbitrarily bad convergence can happen even
for d D 1. This means that there are intractable linear functionals even if we restrict
d to take only one value d D 1. On the other hand, there are also linear functionals
that are very easy to approximate. So indeed, anything can happen.

NR 10.4:2. Consider again the kernel Kd .x; t/ D ı.x; t/. Note that the matrix
.Kd .ti ; tj //i;jD1;2;:::;n is just the identity matrix, independently of how the sample
points tj are chosen. From this point of view, this kernel seems to be the easiest. On
the other hand, the Hilbert space with this reproducing kernel is non-separable. We
think that this is probably the most natural example of a non-separable reproducing
kernel Hilbert space. As we know, linear functionals defined over this space can be
arbitrarily hard to approximate. This tells us how really hard this space is.

NR 10.5:1. This section is based on [277], [350]. Surprisingly, many reproducing
kernels occurring in computational practice are point-wise non-negative. That is why
the assumption (10.5) is not very restrictive. As we already discussed, many practition-
ers like to use algorithms with positive coefficients, and that is why the assumptions
of Theorem 10.2 are not very restrictive. However, the message of Theorem 10.2 can
be quite negative. This is especially the case for tensor product problems studied in
Corollary 10.3. Obviously, this negative result holds for the unweighted tensor product
problems and can be viewed as motivation to consider weighted tensor product as a
way to vanquish the curse of dimensionality. This will be indeed done later.

NR 10.6:1. This section is based on [220]. We must admit that studying the power
of negative coefficients is hard, which is probably why we do not know much about it.
Nevertheless, the examples of linear functionals presented in this section once again
show that anything can happen, even for positive linear functionals. Such results are
quite counter-intuitive and, of course, they indicate that the general case is very hard
to analyze.

NR 10.7:1. This section is formally new, although many of these facts are well
known for gd 	 1. The analysis for arbitrary gd is exactly the same as for gd 	 1.
The need for general gd is motivated in the next sections. Although, as we know by
now, anything can happen with approximation of linear functionals, we believe that
for “typical” linear functionals we have order of convergence at least n�1=2 and this
problem will be studied in many subsequent sections.

NR 10.7.6:1. In Corollary 10.6 we report the good news that as long as we consider
multivariate integration for Sobolev spaces related to various notions ofL2 discrepancy,
then we have strong polynomial tractability for the absolute error criterion. We stress
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that this result sounds much better than it really is. The reason is that for large d , both
the L2 discrepancy and multivariate integration are badly scaled. Take the standard
example of the L2 discrepancy anchored at 0. Then, as we already stressed, the initial
error is 3�d=2. Assume now that d D 360. Then 3�180 D 10�85:88:::. We cannot
imagine that somebody would be interested in computing an approximation to such
integrals with " < 10�85:88:::. But if " > 10�85:88::: then the zero algorithm will do
the job with cost 0. That is why it is much more practical to consider spaces (and L2
discrepancy) for which the initial error is of order 1 or polynomially dependent on d .
This will be done later.

NR 10.7.4:1. The example for the Korobov space with varying cardinality is based
on [236], where multivariate approximation and diagonal linear multivariate problems
were studied in the worst case setting for the classƒall. Using basically the same proof
technique, in this section we found sufficient conditions for strong polynomial and
weak tractability of multivariate integration. For multivariate approximation, strong
polynomial and polynomial tractability are equivalent and hold if rj tends to infinity
at least as fast as ln j . In our case, for multivariate integration, we have a different
situation, at least in terms of sufficient tractability conditions. Strong tractability is not
equivalent to polynomial tractability and the limit of ln.j /=rj must be smaller than
2 ln.2�/ to claim strong polynomial tractability.

NR 10.7.5:1. The example of bad behavior of any QMC algorithm for the Korobov
space with r D 1 is taken from [280], and easily generalized here for arbitrary r � 1.
This example shows that the choice of coefficientsaj D n�1, although quite natural, can
indeed be dangerous. Later, in the example for unbounded kernel, we show that an even
worse property can happen for QMC algorithms for any d . Namely, even for d D 1,
the error of any QMC algorithms is at least as large as the initial error. Furthermore, if
we change the coefficients in the optimal algorithm to the QMC coefficients then the
error goes to infinity with n.

NR 10.7.6:1. This subsection is new, although quite straightforward. We stress that it
is generally necessary to use properly normalized QMC algorithms, although we must
admit that this is rarely done in computational practice. Instead of n�1, we should use

a D khdk2Fd

C.Kd ; gd / � khdk2Fd
C nkhdk2Fd

:

Usually it is not hard to compute the coefficient a, although it requires the knowledge
of the space in which we want to approximate multivariate integrals. Note also that we
have a � n�1 asymptotically in n. Hence, the difference between QMC and properly
normalized QMC disappears asymptotically. However, for initial n, it may be very
important to use a instead of n�1. We also stress that only for properly normalized
QMC algorithms we can achieve strong polynomial tractability for tensor product
problems with kh1kF1

< 1.



10.11 Notes and Remarks 145

NR 10.7.9:1. This subsection is based on Plaskota, Wasilkowski and Zhao [248] who,
however, assumed that gd 	 1 and did not use normalized algorithms. Here, we
consider algorithms that use arbitrary coefficients aj D a.tj / given in Theorem 10.10.
Note that the use of such coefficients is easy in general, and it does not require much
computation. Furthermore for gd D 1 or for any gd � 0, all aj are non-negative. As
with properly normalized algorithms, we must, however, know the space in which we
approximate multivariate integrals.

NR 10.8:1. This section is new. This is also the first section where the operator Wd
is defined. This operator already played a major role in Volume I, where we studied
algorithms using continuous linear functionals. The operatorWd is also very important
for the class of standard information, in which we only use function values. We will use
this operator extensively also in Volume III, especially for multivariate approximation.

NR 10.9:1. This section is new. We believe that relations with multivariate integra-
tion for a dense set of continuous linear functionals makes the study of multivariate
integration even more appealing.

NR 10.10:1. This section is new. We find it interesting that separability of Fd is not
needed in this section.



Chapter 11

Worst Case: Tensor Products and Decomposable
Kernels

11.1 Introduction

We continue the study of linear functionals in the worst case setting. In this chapter we
study linear tensor product functionals defined on linear tensor product reproducing
kernel Hilbert spaces. The precise definition of these problems is given in Section 11.2.
As we know from the previous chapter, for some reproducing kernel Hilbert spaces it
may happen that all linear functionals can be solved with arbitrary small error by using
just one function value. To eliminate such spaces, we assume that e.1; 1/ > 0, i.e.,
the minimal worst case error for the univariate case d D 1 is positive if we use one
function value, n D 1. Then for the normalized error criterion in the worst case setting,
it turns out that strong polynomial tractability is impossible to obtain, and polynomial
tractability may hold only with a d exponent at least equal to 1. Furthermore, in full
generality, these last two properties are sharp. That is, there exists a reproducing kernel
Hilbert space for which the .d C 1/st minimal worst case errors are zero for all linear
tensor product functionals. This is done in Section 11.3 based on [218].

In Section 11.4, we introduce the notion of a decomposable kernel from [221].
This notion allows us to find lower bounds that are sharp in many cases. In this
chapter we study decomposable kernels for the unweighted case, whereas in the next
chapter we study them for the weighted case. The reproducing kernel for a linear
tensor product space depends only on the reproducing kernel for the univariate case.
Decomposability is defined by a property of the reproducing kernel for d D 1. This
property means that each function in the space may be characterized by two orthogonal
functions (components) over two domains that are either disjoint or have at most one
point in common. If the domains have one point in common then functions vanish at
this point. For d � 1, decomposability of the reproducing kernel means that a linear
tensor product functional can be decomposed into 2d independent linear functionals
whose representers have disjoint supports. This property allows us to prove the curse
of dimensionality for the normalized error criterion in the worst case setting. The curse
holds for all linear tensor product functionals for which the representer for d D 1

has two non-zero components, see Theorem 11.8. For the absolute error criterion, the
situation is more complicated. If the norm of the representer for d D 1 is at least
one, then obviously the absolute error criterion is harder than the normalized one, and
therefore we also have the curse of dimensionality. If, however, it is less than one,
then anything can happen. We may even have strong polynomial tractability as already
shown by many examples in the previous chapter, or we may have intractability even
for d D 1. We illustrate Theorem 11.8 by several examples showing that the lower
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estimates in this theorem are sharp in general. In particular, we discuss Gaussian
integration for the Sobolev space, which for d D 1 consists of r times differentiable
functions. It turns out that Gaussian integration is intractable and suffers from the
curse of dimensionality for the normalized error criterion and is strongly tractable
for the absolute error criterion. We stress that the curse of dimensionality for the
normalized error criterion holds no matter how large r we have. We also consider
uniform integration related to the centered discrepancy for theLq norm withq 2 Œ1;1�.

Many reproducing kernels are not decomposable. However, many kernels can be
written as the sum of two kernels with one of them being decomposable. This is done
in Section 11.5. This allows us to generalize Theorem 11.8 and again prove the curse of
dimensionality for the normalized error criterion in the worst case setting under the same
assumption that the part of the representer ford D 1 corresponding to the decomposable
part has two non-zero components, see Theorems 11.12 and 11.14. However, the proofs
are more complicated. As described before, the situation is different for the absolute
error criterion and anything can happen.

Hence, we obtain lower bounds also for reproducing kernels that have a decom-
posable part for d D 1. This significantly enlarges the applicability of these results.
We illustrate this for several examples. The choice of spaces is now more natural
than before since decomposable kernels usually require spaces with sometimes unnat-
ural boundary conditions. We again study uniform integration related to the centered
discrepancy for a variety of norms.

In Section 11.6, we want to characterize tractability of all linear tensor product
functionals defined on tensor product spaces. Based on the error estimates for repro-
ducing kernels with decomposable parts, we present Theorem 11.15, which states that
either a linear tensor product is trivial and can be solved exactly using at most one
function value or it suffers the curse of dimensionality and is intractable. This holds
for the normalized error criterion and for the absolute error criterion if the representer
for d D 1 has norm at least one. In this theorem, we assume that we can identify a
decomposable part by a rank one modification of the original reproducing kernel and
this holds for all points from the domain of functions. We then check that this assump-
tion holds for a number of standard Sobolev spaces of non-periodic functions with the
smoothness parameter r D 1. We also identify Sobolev spaces of periodic functions
with smoothness parameter r � 2, for which Theorem 11.15 is not applicable. As
always we present a number of open problems related to the subjects covered in this
chapter. We have eleven open problems numbered from 49 to 59.

11.2 Linear Tensor Product Functionals

We now define linear functionals studied in this chapter. For d D 1, we assume thatF1
is a class of univariate functions defined over D1 � R, and F1 is a reproducing kernel
Hilbert space whose reproducing kernel is K1 W D1 �D1 ! R. The inner product of
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F1 is denoted by h�; �iF1
. The (continuous) linear functional I1 now takes the form

I1.f / D hf; h1iF1
for all f 2 F1

for some function h1 from F1.
For d > 1, we take

Fd D F1 ˝ F1 ˝ � � � ˝ F1

as the d -fold tensor product of F1. Then Fd is a class of multivariate functions defined
over Dd D D1 � D1 � � � � � D1 (d times). The class Fd is a Hilbert space whose
reproducing kernel Kd W Dd �Dd ! R is given by

Kd .x; t/ D
dY
jD1

K1.xj ; tj / for all x; t 2 Dd :

The inner product of Fd is denoted by h�; �iFd
. Finally, the (continuous) linear func-

tional Id D I1 ˝ � � � ˝ I1 is the d -fold tensor product of I1. This means that

Id .f / D hf; hd iFd
for all f 2 Fd ; with hd .t/ D h1.t1/h1.t2/ � � � h1.td /:

Clearly, the initial error is given by

e.0; d/ D kIdk D khdkFd
D kh1kdF1

:

Hence, e.0; d/ D 0 only for trivial problems in which h1 	 0, so that Id 	 0. As we
shall see, many results will depend on whether kh1kF1

is less than 1 or at least equal
to 1. Note, however, that if kh1kF1

< 1 then kIdk D kh1kdF1
is exponentially small

in d , whereas kh1kF1
> 1 implies that kIdk D kh1kdF1

is exponentially large in d .
Hence, the only case for which the problem is well-normalized is when kh1kF1

D 1.
As in the previous chapter, e.n; d/ D ewor.n; Id / denotes the nth minimal worst

case error, and n."; d/ D nwor."; Id / denotes the information complexity for the abso-
lute error criterion, CRId D 1, or for the normalized error criterion, CRId D kIdk.

The only range for " that really matters is " 2 �
0; khdkFd

�
for the absolute error

criterion, and " 2 .0; 1/ for the normalized error criterion. Otherwise, the zero algo-
rithm solves the problem and n."; d/ D 0 for " � khdkFd

under the absolute error
criterion, and for " � 1 under the normalized error criterion.

11.3 Preliminary Error Estimates

Theorem 10.1 states the formula for the minimal error when we use one function value,

e2.1; d/ D e2.0; d/ � sup
t2Dd

h2
d
.t/

Kd .t; t/

with the convention that 0=0 D 0. Since Fd and Id have tensor product structure, this
formula now takes the form given in the following lemma.
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Lemma 11.1. We have

e.1; d/ D e.0; d/

s
1 �

�
1 � e2.1; 1/

e2.0; 1/

	d
D
q
e2d .0; 1/ � .e2.0; 1/ � e2.1; 1//d (11.1)

D
vuutkh1k2dF1

�
�

sup
t2D1

h21.t/

K1.t; t/

	d
;

again with the convention that 0=0 D 0.
Hence, e.1; 1/ D 0 implies e.1; d/ D 0 for all d 2 N, and n."; d/ � 1 for all

" > 0; d 2 N. In this case, the problem is strongly polynomial tractable with exponent
zero.

Proof. Observe that hd .t/=Kd .t; t/ D Qd
iD1 h1.ti /=K1.ti ; ti /, and therefore

sup
t2Dd

h2
d
.t/

Kd .t; t/
D
�

sup
t2D1

h21.t/

K1.t; t/

	d
D �

e2.0; 1/ � e2.1; 1/�d ;
by the formula for e.1; 1/ in Theorem 10.1. Again using the same formula for e.1; d/
we obtain the formulas presented in the lemma. From this it is obvious that e.1; 1/ D 0

implies that e.1; d/ D 0, which completes the proof.

Hence if we can solve the problem for d D 1with arbitrary small error by using one
function value, then the same is true for all d . As we know from the previous chapter,
there are reproducing kernel Hilbert spaces even of infinite dimension for which this
indeed holds, see Section 10.3 of Chapter 10.

To omit this trivial case, from now on we assume that e.1; 1/ > 0. Observe that
Theorem 10.1 now states that e.1; d/ < e.0; d/ for alld . We present from [218] several
estimates for the sequence e.n; d/ in terms of e.0; 1/, e.1; 1/ and e.0; d/ D ed .0; 1/.

Theorem 11.2. Assume that e.1; 1/ > 0. Let

� D 1 � e2.1; 1/

e2.0; 1/
2 .0; 1/:

Then

e.d; d/ � ed .1; 1/ > 0; (11.2)

e.n; n d/

e.0; n d/
� �

1 � �d �n=2; (11.3)

lim
d!1

e.n; d/

e.0; d/
D 1 for all n; (11.4)

lim
d!1

e.ddpe; d /
e.0; d/

D 1 for all p 2 Œ0; 1/: (11.5)
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Proof. We recall from Chapter 4 of Volume I that

e.n; d/ D inf
tj 2Dd

j D1;2;:::;n

sup
f 2Fd ; kf kFd

�1

f .tj /D0; j D1;2;:::;n

hf; hd iFd
: (11.6)

In particular,
e.1; 1/ D inf

t2D1

sup
f 2F1; kf kF1

�1

f .t/D0

hf; h1iF1
:

Let � 2 .0; e.1; 1//. Then for every t 2 D1 there exists ft 2 F1 with kftkF1
D 1,

such that ft .t/ D 0 and hft ; h1iF1
� e.1; 1/ � �.

To prove (11.2), take n D d and arbitrary points t1; t2; : : : ; td 2 Dd . Let tj;j 2 D1
denote the j th component of the point tj . Define the function

f .x/ D ft1;1
.x1/ft2;2

.x2/ � � � ftd;d
.xd / for all x D Œx1; x2; : : : ; xd � 2 Dd :

Then f 2 Fd , kf kFd
D 1, and f .tj / D 0 for j D 1; 2; : : : ; d . Furthermore,

hf; hd iFd
D

dY
jD1

˝
ftj;j

; h1
˛
F1

� .e.1; 1/ � �/d :

Since this holds for arbitrary tj , we have e.d; d/ � .e.1; 1/��/d from (11.6). Letting
� go to zero we obtain (11.2).

To prove (11.3) we proceed similarly. This time let � 2 .0; e.1; d//. From (11.6)
with n D 1, for any t 2 Dd there exists ft 2 Fd , kf kFd

D 1 such that ft .t/ D 0 and

hft ; hd iFd
� e.1; d/ � � D e.0; d/ .1 � �d /1=2 � �;

where we used the first formula from Lemma 11.1.
Take arbitrary points t1; t2; : : : ; tn 2 Dnd . Let tj;d 2 Dd denote the components

from .j � 1/d C 1 to j d of the point tj . For x D Œx1; x2; : : : ; xn� 2 Dnd with
xj 2 Dd for j D 1; 2; : : : ; n, define the function

f .x/ D ft1;d
.x1/ ft2;d

.x2/ � � � ftn;d
.xn/ for all x 2 Dnd :

Then f 2 Fnd , kf kFnd
D 1, f .tj / D 0 for j D 1; 2; : : : ; n, and

hf; hnd iFnd
D

nY
jD1

˝
ftj;d

; hd
˛
Fd

� �
e.0; d/ .1 � �d /1=2 � ��n

D en.0; d/

�
.1 � �d /1=2 � �

e.0; d/

	n
D e.0; nd/

�
.1 � �d /1=2 � �

e.0; d/

	n
:
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Letting � go to zero we obtain (11.3).
The last estimates (11.4) and (11.5) follow easily from (11.3). Indeed, e.n; d/ �

e.0; d/ and by letting d go to infinity in (11.3) we get (11.4). Finally, using d D
‚.ddpe d1�p/ and (11.3) for n D ddpe we have for large d ,

e.ddpe; d /
e.0; d/

� �
1 � �c d1�p�ddpe=2

for some positive c. Since 1�p is positive and �c < 1, the logarithm of the right hand
side of the last inequality is of order dp.�c/d

1�p
and goes to zero as d approaches

infinity. Thus, the right hand side goes to one. This completes the proof.

Observe that from the last two estimates of Theorem 11.2 we can conclude the
following corollary.

Corollary 11.3. If e.1; 1/ > 0 then the linear tensor product functional problem
I D fId g is not strongly polynomially tractable for the normalized error criterion. If
the problem is polynomially tractable then its exponent with respect to d is at least one.

In particular, Theorem 11.2 says that e.d; d/ is positive. We now prove that this
estimate cannot be improved in general, i.e., it can fail if d is replaced by d C 1.
Furthermore, we also show that the last estimate of Theorem 11.2 is somewhat sharp,
in the sense that it can fail for arbitrary p > 1.

Theorem 11.4. There exists a reproducing kernel Hilbert space F1 for which the
following hold:

• For all linear tensor product functionals we have

e.d C 1; d/ D 0 for all d 2 N:

• There exist linear functionals I1 defined over F1 with e.1; 1/ > 0 for which

e.d; d/ > 0 and e.d C 1; d/ D 0 for all d 2 N:

Therefore for both the absolute and normalized error criterion we have

n."; d/ � d C 1 for all " � 0 and d 2 N:

This means polynomial tractability with the exponent with respect to "�1 equal to zero,
and with the exponent with respect to d equal to at most one.

Proof. We construct a two-dimensional space F1 D span.e1; e2/, where e1 and e2
are two linearly independent functions defined on D1 D Œ0; 1�. We choose an inner
product in such a way that ej are orthonormal.

Take an arbitrary linear functional

I1f D hf; h1iF1
with h1 D ˛1e1 C ˛2e2:
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Without loss of generality1, assume that kh1k2F1
D ˛21 C ˛22 D 1. We first check for

which j̨ ’s we have e.1; 1/ D 0. The reproducing kernel of F1 is given by

K1.t; x/ D e1.t/e1.x/C e2.t/e2.x/:

Let

g.t/ D ˛1 e1.t/C ˛2 e2.t/q
e21.t/C e22.t/

for all t 2 Œ0; 1� (as always 0=0 D 0).

We know that
e.1; 1/ D �

1 � sup
t2Œ0;1�

g2.t/
�1=2

;

and e.1; 1/ D 0 iff supt2Œ0;1� g2.t/ D 1. By application of the Cauchy–Schwartz
inequality for l2, this holds if there exists t 2 Œ0; 1� such that

˛1e2.t/ D ˛2e1.t/: (11.7)

Let Z2 D ft 2 Œ0; 1� j e2.t/ D 0g denote the zero set of e2. Consider the function

r WD e1=e2 W Œ0; 1� nZ2 ! R:

Then (11.7) holds for some t 2 Œ0; 1� for arbitrary ˛1 and ˛2 iff r.Œ0; 1� nZ2/ D R. In
this case, we have e.1; 1/ D 0 for all linear functionals of F1.

From now on, we assume that the functions e1 and e2 are chosen in such a way that
r.Œ0; 1� nZ2/ is a proper subset of R. This implies that there exist linear functionals
for which e.1; 1/ > 0. They are characterized by the condition

˛1=˛2 … r.Œ0; 1� nZ2/:

For such functionals we know from (11.2) that e.d; d/ > 0.
We now prove that no matter how h1 is chosen we always have e.d C 1; d/ D 0.

To do this, we need to assume one more condition on the choice of functions e1 and e2.
Namely, that

r .Œ0; 1� nZ2/ has infinitely many elements: (11.8)

Obviously there exist functions e1 and e2 satisfying all these assumptions. For instance,
one can take e1.t/ D t and e2.t/ D t2 C 1.

For d � 2, we have Id .f / D hf; hd iFd
with

hd .x/ D hd .x1; x2; : : : ; xd / D
dY
jD1

�
˛1e1.xj /C ˛2e2.xj /

�
:

1For kh1kF1
D 1 we construct a linear algorithm AdC1;d that uses d C 1 function values and that

recovers Id exactly. For general h1 it is enough to multiply AdC1;d by kh1kd
F1

.
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We approximate Id .f / by a linear algorithm

AdC1;d .f / D
dC1X
jD1

ajf .tj ; tj ; : : : ; tj / for all f 2 Fd ; (11.9)

for some aj 2 R and tj 2 Œ0; 1�. We stress that AdC1;d uses d C 1 function values at
points whose components are all equal. The worst case error ofAdC1;d is e.AdC1;d / D
kgdkFd

with

gd D hd �
dC1X
jD1

aj Kd .�; Œtj ; tj ; : : : ; tj �/:

That is, we have

gd D
dY
jD1

�
˛1e1;j C ˛2e2;j

� �
dC1X
iD1

ai

dY
jD1

�
e1.ti / e1;j C e2.ti / e2;j

�
;

where ei;j .x/ D ei .xj /.
Define the set

Jk D ˚ Ej D Œj1; j2; : : : ; jd � j ji 2 f1; 2g; and the number of i with ji D 1 is k


;

for k D 0; 1; : : : ; d . The cardinality of the set Jk is obviously
�
d
k

�
. We now decompose

the first term in gd as

dY
jD1

�
˛1e1;j C ˛2e2;j

� D
dX
kD0

˛k1 ˛
d�k
2 e�

k ;

where
e�
k D

X
Ej 2Jk

ej1;1ej2;2 � � � ejd ;d :

Similarly we have

dY
jD1

�
e1.ti / e1;j C e2.ti / e2;j

� D
dX
kD0

ek1 .ti / e
d�k
2 .ti / e

�
k :

Substituting these expressions into the expression above for gd , we obtain

gd D
dX
kD0

�
˛k1˛

d�k
2 �

dC1X
iD1

ai e
k
1 .ti /e

d�k
2 .ti /

�
e�
k :

Hence e.AdC1;d / D 0 iff kgdkFd
D 0, which in turn holds, because the e�

0 ; e
�
1 ; : : : ; e

�
d

are linearly independent, iff

dC1X
iD1

ai e
k
1 .ti /e

d�k
2 .ti / D ˛k1˛

d�k
2 for k D 0; 1; : : : ; d:
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We have a system of d C 1 linear equations and d C 1 unknown coefficients ai . We
can find ai ’s for arbitrary ˛i ’s iff the matrix

M D �
ek1 .ti /e

d�k
2 .ti /

� D .mk;i / for k D 0; 1; : : : ; d; i D 1; 2; : : : ; d C 1;

is nonsingular.
Take points ti for which e2.ti / are nonzero and qi D r.ti / are distinct for all

i D 1; 2; : : : ; d C 1. Such points exist due to (11.8).
We claim that for these points ti the matrix M is nonsingular. Indeed, let

W D diag
�
e�d
2 .t1/; e

�d
2 .t2/; : : : ; e

�d
2 .tdC1/

�
be a diagonal matrix. By our assumptions it is nonsingular. Moreover,M W D .ak;i /

is a Vandermonde matrix with ak;i D qki . Since the qi are distinct, the matrixM W is
nonsingular, and therefore so is M . This completes the proof.

We stress that the points ti in the proof of Theorem 11.4 do not depend on the
functionals Id . More precisely, in the space Fd used in the proof of Theorem 11.4, let

Nj .f / D Œf .t1; : : : ; t1/; f .t2; : : : ; t2/; : : : ; f .tj ; : : : ; tj /�

be the information, with numbers ti for which e2.ti / are all nonzero and e1.ti /=e2.ti /
are distinct for all i . Then for any linear tensor product functional Id , we have
rwor.NdC1/ D 0, where rwor.NdC1/ stands for the radius of information in the worst
case setting, see Chapter 4 of Volume I.

In fact, for an arbitrary linear tensor product functional Id and any choice of
t1; t2; : : : ; tdC1 as above, we showed that there exist numbers aj D aj .Id / for j D
1; 2; : : : ; d C 1, such that

Id .f / D AdC1;d .f / D
dC1X
jD1

ajf .tj ; : : : ; tj / for all f 2 Fd :

The proof of Theorem 11.4 presents a two-dimensional univariate space F1 for
which all linear tensor product functionals are tractable. It is possible to generalize
the proof of Theorem 11.4 for spaces F1 of dimension p � 2. Namely, assume that
F1 D span.e1; e2; : : : ; ep/ for orthonormal ei defined on D1. For given points ti 2 D
consider the n � n matrix

M D �
e
k1

1 .ti / e
k2

2 .ti / � � � ekp
p .ti /

�
for nonnegative kj such that

k1 C k2 C � � � C kp D d and i D 1; 2; : : : ; n D
�
d C p � 1
p � 1

	
:

We prove that if there exist points t1; t2; : : : ; tn such that M is nonsingular then

e.n; d/ D 0 (11.10)
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for all linear tensor product functionals. In this case, the problem is polynomially
tractable and the exponent with respect to "�1 is zero whereas the exponent with
respect to d is at most p � 1.

Indeed, we now have

hd D
dY
jD1

�
˛1e1;j C ˛2e2;j C � � � C p̨ep;j

�
:

To decompose the last expression, let

Ap;d D ˚ Ek D Œk1; k2; : : : ; kp�; for integers ki � 0 with
Pp
iD1 ki D d



:

The cardinality of the set Ap;d is n D �
dCp�1
p�1

�
. For each Ek 2 Ap;d define the set

J Ek D ˚ Ej D Œj1; j2; : : : ; jd � W the number of ji D m is km


:

Here ji 2 f1; 2; : : : ; pg and m 2 Œ1; p�. Then

hd D
X

Ek 2Ap;d

˛
k1

1 ˛
k2

2 � � � ˛kp
p e�

Ek ;

where
e�

Ek D
X
Ej 2JEk

ej1;1ej2;2 � � � ejd ;d :

Consider An;d given by (11.9) with n D �
dCp�1
p�1

�
function values. As before we

can show that the error e.An;d / D kgdkFd
with

gd D
X

Ek 2Ap;d

�
˛
k1

1 ˛
k2

2 � � � ˛kp
p �

nX
iD1

ai e
k1

1 .ti /e
k2

2 .ti / � � � ekp
p .ti /

�
e�

Ek :

To guarantee that kgdkFd
D 0 we require that the ai ’s satisfy the system of linear

equations

nX
iD1

ai e
k1

1 .ti /e
k2

2 .ti / � � � ekp
p .ti / D ˛

k1

1 ˛
k2

2 � � � ˛kp
p for all Ek 2 Ap;d :

If the matrix M of this system is nonsingular, we can find ai for arbitrary ˛i . This
completes the proof of (11.10).

It is natural to ask for which points ti the matrix M is nonsingular. An example is
provided for D D Œ0;C1/ and ei .t/ D t

p
qi , where qi is the i th prime number, with

q1 D 1. Then

e
k1

1 .ti / e
k2

2 .ti / � � � ekp
p .ti / D t

k1Ck2
p
q2C���Ckp

p
qp

i :
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Clearly, the exponents u Ek D k1 C k2
p
q2 C � � � C kp

p
qp are different for different

vectors Ek D Œk1; k2; : : : ; kp�.

We use induction on n to check non-singularity of M D �
t
uEk
i

�
. The induction

hypothesis is that for 1 � m < n the m � m sub-matrices of M that involve only
t1; : : : ; tm can all be made nonsingular by appropriate choice of t1; : : : ; tm. If the result
holds for sub-matrices of size m D � � 1 then for each sub-matrix M
 of size � we
expand the determinant along the appropriate row to find that

det.M
/ D a tˇ
 C o.tˇ
 /; as t
 ! C1
for some nonzero a and ˇ. Hence, we can take a large t
 for which each det.M
/

is nonzero. From this it follows that choices of points always exist for which M is
non-singular.

The preceding theorem says that in some spaces all linear tensor product functionals
are polynomially tractable. We now show that the opposite can also happen.

Theorem 11.5. There exists a reproducing kernel Hilbert space for which all linear
tensor product functionals with e.1; 1/ > 0 are intractable and suffer from the curse
of dimensionality under the normalized error criterion, and under the absolute error
criterion if e.0; 1/ � 1.

Proof. Take the non-separable Hilbert space F1 that was used in the previous chapter.
That is, F1 is the space of functions defined on Œ0; 1� with the reproducing kernel
K1.t; t/ D 1 and K1.t; x/ D 0 for x 6D t .

Consider an arbitrary linear functional I1.f / D hf; h1iF1
for some h1 2 F1. Then

h1 D
1X
jD1

j̨ K1.�; tj /

for some j̨ 2 R and distinct tj 2 Œ0; 1�, with

e2.0; 1/ D kh1k2F1
D

1X
jD1

˛2j < C1:

Assume for a notational convenience that the j̨ are ordered, i.e., ˛21 � ˛22 � � � � � ˛2n.
It is easy to show that e.1; 1/ is now given by

e2.1; 1/ D e2.0; 1/ � ˛21 D
1X
jD2

˛2j :

Hence, e.1; 1/ > 0 iff ˛2 > 0, i.e., at least two j̨ ’s are nonzero.
For d � 2, we have

hd D
X
j2Nd

j̨1 j̨2
� � � j̨d

Kd .�; Œtj1
; tj2

; : : : ; tjd
�/:
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From the form of hd it is clear that the best we can do when we use n function values
is to eliminate the n largest coefficients of the sequence f j̨1 j̨2

� � � j̨d
gji 2N. The

largest element in this sequence is ˛d1 and we can decrease the square of the initial
error e2.0; d/ D kh1k2dF1

by at most n˛2d1 . Hence,

e2.n; d/ � e2.0; d/ � n˛2d1 :

To guarantee that e.n; d/ � "CRId we must take n satisfying2 the inequality

n �
 P1

jD1 ˛2j
˛21

!d  
1 � CRI2d "

2

e2.0; d/

!
: (11.11)

For the normalized error CRId D e.0; d/, we have

n."; d/ �
 
1C ˛22

˛21
C
P1
jD3 ˛2j
˛21

!d
.1 � "2/;

which is exponential in d for all " < 1. For the absolute error criterion CRId D 1,
we assumed that e.0; 1/ � 1, so that e2.0; d/ D e2d .0; 1/ � 1 and again we have an
exponential dependence on d for all " < 1. So the problem suffers from the curse of
dimensionality and is intractable. This completes the proof.

From the results we presented so far, we can say that tractability of linear func-
tionals very much depends on the Hilbert space. For some spaces, all nontrivial linear
functionals are intractable, whereas for other spaces, all linear functionals are poly-
nomially tractable with "�1 exponent zero and d exponent at most one. Such results
hold for very special spaces. We believe that in “typical” reproducing kernel Hilbert
spaces, some linear functionals are tractable and some others are not. The next theorem
presents conditions under which we can find tractable and intractable linear functionals
in a given space, see [218] where this theorem was originally presented.

Theorem 11.6. Let F1 be a reproducing Hilbert space of real-valued functions on a
domainD1 � R.

(i) For two distinct t1 and t2 fromD1, let e1 and e2 be orthonormal elements from

span .K1.�; t1/;K1.�; t2// :
If the function e1=e2 takes infinitely many values then all linear functionals

I1.f / D hf; h1iF1
with h1 2 span.e1; e2/

are polynomially tractable with exponents zero and at most one, since

e.d C 1; d/ D 0 and n."; d/ � d C 1:

2For kh1kF1
D 1, the bound (11.11) reads n � .1 � "2/˛�2d

1 , which was already presented in
the Example: Kernel for Non-separable Space in Chapter 10. Hence, (11.11) generalizes the bound from
Chapter 10 for arbitrary non-zero h1.
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(ii) If there exist two orthonormal elements e1 and e2 from the space F1 which have
disjoint supports then for all linear tensor product functionals with

h1 D ˛ e1 C
p
1 � ˛2 e2 for ˛ 2 .0; 1/

we have

n."; d/ � .1 � "2/


1

max.˛2; 1 � ˛2/
�d
:

Hence, these linear functionals are intractable and suffer from the curse of di-
mensionality.

Proof. The first part can be proved by using exactly the same proof as in Theorem 11.4,
with span.e1; e2/ now playing the role of F1. The second part was proven in [329]
p. 53, and we now repeat this short instructive proof to see for the first time how disjoint
supports allow us to obtain lower bounds on the worst case errors.

Note that kh1kF1
D 1 which, of course, implies that khdkFd

D 1 for all d , so that
there is no difference between the absolute and normalized error criteria.

For j D Œj1; j2; : : : ; jd � with ji 2 f1; 2g, let 1.j / denote the number of indices ji
equal to 1, and let 2.j / denote the number of indices ji equal to 2. Clearly, 1.j / C
2.j / D d for all 2d such integer vectors j . For x D Œx1; x2; : : : ; xd � 2 Dd , let

ej;1.x/ D
Y
i W ji D1

e1.xi / and ej;2.x/ D
Y
i W ji D2

e2.xi /:

Then

hd .x/ D
dY
jD1

�
˛e1.xj /C

p
1 � ˛2e2.xj /

�
D

X
jDŒj1;j2;:::;jd � W ji 2f1;2g

˛1.j /.1 � ˛2/2.j /=2 ej;1.x/ej;2.x/:

Let Ak be the support of ek for k D 1; 2. We assumed that A1 \ A2 D ;. Then the
support of the function ej;1ej;2 is

Aj WD Aj1
� Aj2

� � � � � Ajd
:

Therefore the functions ej;1ej;2 have disjoint supports for distinct j . Equivalently the
2d sets Ad;j are disjoint and are subsets of Dd . Note also that the functions ej;1ej;2
are orthonormal.

Take an arbitrary algorithm that uses function values f .tj / for arbitrary sample
points tj from Dd for j D 1; 2; : : : ; n. We assume that n < 2d . The points tj belong
to at most n sets Aj , and let Jd;n be the set of indices j for which

ft1; t2; : : : ; tng \ Aj D ;:
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Obviously, the cardinality jJd;nj of Jd;n is at least 2d � n � 1. Define the function

f D ad;n
X

j2Jd;n

˛1.j /.1 � ˛2/2.j /=2ej;1ej;2;

where

ad;n D
� X
j2Jd;n

˛2�1.j /.1 � ˛2/2.j /
��1=2

:

Then f 2 Fd , kf kFd
D 1, and most importantly, f .tj / D 0 for all j D 1; 2; : : : ; n.

Furthermore,

Id .f / D ad;n
X

j2Jd;n

˛2�1.j /.1 � ˛2/2.j / D
� X
j2Jd;n

˛2�1.j /.1 � ˛2/2.j /
�1=2

:

Note thatX
j2Jd;n

˛2�1.j /.1�˛2/2.j / D 1�
X

j…Jd;n

˛2�1.j /.1�˛2/2.j / � 1�n �max.˛2; 1 � ˛2/�d :
Let ˇ D max.˛2; 1 � ˛2/. Then ˛ 2 .0; 1/ implies that ˇ 2 Œ1=2; 1/, and

Id .f / � .1 � nˇd /1=2C :

Again using (11.6), we conclude that

e.n; d/ � .1 � nˇd /1=2C

and that
n."; d/ � .1 � "2/ ˇ�d for all " 2 .0; 1/;

which shows the curse of dimensionality. This completes the proof.

We believe that for “typical” spaces F1 the assumptions of (i) and (ii) are satisfied.
For example, this holds for Sobolev spaces F1 D W r.Œ0; 1�/. Hence, the classes of
tractable linear functionals and intractable linear functionals are both non-empty in
general. The trouble is that for the fixed problem I1f D hf; h1iF1

(like integration or
weighted integration) we do not know whether the problem is tractable or intractable.
We will return to this problem later when more powerful lower bounds will be estab-
lished.

We now consider a sequence of linear tensor product functionals I D fId g with
kI1k > 1. Obviously, then kIdk D kI1kd is exponentially large. Can we claim
intractability of such problems for the absolute error criterion? Theorem 11.4 says
that for some spaces F1 the initial norm kI1k is irrelevant, and we have polynomial
tractability for all I , including problems with kI1k > 1. However, the spaces F1
constructed in the proof of this theorem (and after the proof) are finite dimensional, and
then e.n; 1/ D 0 for n � dim.F1/. It is natural to ask what happens if dim.F1/ D 1
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and e.n; 1/ > 0 for all n 2 N. We strengthen the last assumption by assuming that
e.n; 1/ D �.n�˛/ for some positive (maybe arbitrarily large) ˛. This case covers
many applications of smooth functions but not C1 or analytic functions. As we shall
now prove, then we have intractability.

Theorem 11.7. Consider a sequence of linear tensor product functionals I D fId g
with kI1k > 1. Assume that for the univariate problem we have

e.n; 1/ D �.n�˛/ for some ˛ > 0:

Then I is intractable for the absolute error criterion.

Proof. We know that

e.n; d/ D inf
x1;x2;:::;xn2Dd

sup
f 2Fd ; kf kFd

D1;f .xj /D0;jD1;2;:::;n
jId .f /j:

For arbitrary points xj , we can take

f .x/ D fn.x1/
h1.x2/

kh1kF1

� � � h1.xd /kh1kF1

;

where fn is chosen such that fn 2 F1 with kfnkF1
D 1 and fn.xj;1/ D 0 for

j D 1; 2; : : : ; n with jI1.fn/j � 1
2
e.n; 1/. Here, xj;1 is the first component of xj .

Clearly, kf kFd
D 1 and

jId .f /j D jI1.fn/j kI1kd�1 � 1
2
e.n; 1/ kI1kd�1:

Since e.n; 1/ � 2c n�˛ for some positive c, we have

c n�˛kI1kd�1 � e.n; d/:

Hence, e.n; d/ � " implies

n."; d/ � c1=˛ "�1=˛ kI1k.d�1/=˛:

Therefore n."; d/ depends exponentially on d and we have intractability, as claimed.

It is not clear what can happen if we relax the assumption e.n; 1/ D �.n�˛/ and
permit sequences e.n; 1/ that go to zero faster than polynomially in n�1. For instance,

if e.n; 1/ D qn for q 2 .0; 1/ or even e.n; 1/ D q
qn

2

1 for q1 2 .0; 1/ and q2 > 1. This
is the subject of the next open problem.

Open Problem 49.

Consider a sequence of linear tensor product functionals I D fId g with kI1k > 1 and
e.n; 1/ > 0 for all n 2 N.
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• Is it possible that such a problem is polynomially or weakly tractable for the
absolute error criterion?

• If so, characterize such problems for which we have polynomial or weak tractabil-
ity.

We now discuss the case I D fId g with kI1k � 1 and e.n; 1/ D O.n�˛/ for some
positive ˛. We shall see in Chapter 15, that such problems with kI1k < 1 are even
strongly polynomially tractable and this can be achieved by the Smolyak or sparse
grid algorithm. Assume then that kI1k D 1 and e.n; 1/ D �.n�˛/. We know from
Corollary 11.3 that such problems are not strongly polynomially tractable. Note also
that Theorem 11.4 is not applicable since e.2; 1/ > 0. For all known cases of such
problems we have intractability. But it is not clear that this holds in general. This is
our next open problem.

Open Problem 50.

Consider a sequence of linear tensor product functionals I D fId g with kI1k D 1 such
that e.n; 1/ D �.n�˛/ for some ˛ > 0.

• Is it possible that such a problem is polynomially or weakly tractable?

• If so, characterize such problems that are polynomially or weakly tractable.

11.4 Decomposable Kernels

In this section we introduce the notion of decomposable reproducing kernels. As we
shall see, this notion will allow us to obtain lower bounds on the worst case minimal
errors and to conclude intractability for certain tensor product linear functionals. This
section is based on [221].

For a� 2 R, define

D.0/ D fx 2 D1 W x � a�g and D.1/ D fx 2 D1 W x � a�g:
ObviouslyD1 D D.0/ [D.1/ andD.0/ \D.1/ is either empty or consists of one point
a� if a� 2 D1. We also have

D2
1 D D.0/ �D.0/ [ D.0/ �D.1/ [ D.1/ �D.0/ [ D.1/ �D.1/:

We say that the reproducing kernel K1 is decomposable iff there exists a number
a� 2 R such that D.0/ and D.1/ are nonempty and

K1.x; t/ D 0 for .x; t/ 2 D.0/ �D.1/ [ D.1/ �D.0/; (11.12)

or equivalently iff

K1.x; t/ D 0 for all .x; t/ 2 D2
1 such that .x � a�/.t � a�/ � 0:
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To stress the role of the number a� for which the last equality holds, we sometimes say
that K1 is decomposable at a�.

The essence of this property is that the functionK1 may take non-zero values only
if x and t belong to the same quadrant D2

.0/
D D.0/ �D.0/ or D2

.1/
D D.1/ �D.1/.

Observe that if K1 is decomposable at a� 2 D1 then K1.�; a�/ D 0. This implies
that all functions inF1 vanish at a�, since f .a�/ D hf;K1.�; a�/iF1

D 0. For arbitrary

d , since Kd .x; t/ D Qd
jD1K1.xj ; tj / for all x; t 2 Dd we also have

Kd .�; x/ D 0 if xj D a� for some j:

Then all functions from Fd vanish at x 2 Dd if xj D a� for some j .
Furthermore, ifK1 is decomposable thenKd .x; t/ D 0 ifx and t belong to different

quadrants. More precisely, for a Boolean vector b 2 f0; 1gd , define

D.b/ D D.b1/ �D.b2/ � � � � �D.bd /:

ThenDd D S
b2f0;1gd D.b/. If x 2 D.bx/ and t 2 D.bt / for different Boolean vectors

bx and bt then Kd .x; t/ D 0. If a� … D1 then D.b/’s are disjoint.
Again take d D 1. If K1 is decomposable, then the space F1 can be decomposed

as the direct sum of Hilbert spaces F.0/ and F.1/ of univariate functions defined over
D.0/ and D.1/ with reproducing kernels K1

ˇ̌
D2

.0/

and K1
ˇ̌
D2

.1/

, respectively. Indeed,

functions of the form f D Pm
jD1 ǰK1.�; tj /, for some m, real ǰ and tj 2 D1, are

dense in F1. Then for all t 2 D1 we have

f .t/ D
X

.t;tj /2D2
.0/

ǰK1.t; tj /C
X

.t;tj /2D2
.1/

ǰK1.t; tj / D f.0/.t/C f.1/.t/;

where f.0/ WD P
j W tj 2D.0/

ǰK1.�; tj / 2 F.0/ and f.1/
P
j W tj 2D.1/

ǰK1.�; tj / 2 F.1/.
It is easy to see that

f.0/ D f
ˇ̌
D.0/

and f.1/ D f
ˇ̌
D.1/

:

The spaces F.0/ and F.1/ can be treated as subspaces of the space F1. Indeed,

take for instance f D Pk
jD1 ǰK1.�; tj / from F.0/. Then tj 2 D.0/ and f .t/ is well

defined for all t 2 D1. Furthermore f 2 F1 and f .t/ D 0 for t 2 D.1/. This also
shows that

kf kF.0/
D kf kF1

for all f 2 F.0/:
Obviously, kf kF.1/

D kf kF1
for all f 2 F.1/. The subspaces F.0/ and F.1/ are

orthogonal, since hf; giF1
D 0 for all f 2 F.0/ and g 2 F.1/. Hence,

F1 D F.0/ ˚ F.1/ and kf k2F1
D kf.0/k2F1

C kf.1/k2F1
for all f 2 F1:

For d > 1, we can similarly decompose the space Fd for decomposable K1. For
any Boolean vector b, we define F.b/ as the Hilbert space of multivariate functions
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defined over Dd with the reproducing kernel

Kd;.b/.x; t/ D
´
Kd .x; t/ if .x; t/ 2 D2

.b/
;

0 if .x; t/ … D2
.b/
:

Clearly, for f 2 F.b/ we have f .t/ D 0 for all t … D.b/.
Then F.b/ is a subspace of Fd and

kf kF.b/
D kf kFd

for all f 2 F.b/:
Furthermore the spaces F.b/ are mutually orthogonal and

Fd D
M

b2f0;1gd
F.b/:

If f.b/ D f
ˇ̌
D.b/

denotes the restriction of the function f from Fd to the domainD.b/,

then f.b/ 2 F.b/. Moreover f D P
b2f0;1gd f.b/ and

kf k2Fd
D

X
b2f0;1gd

kf.b/k2Fd
for all f 2 Fd : (11.13)

We now apply the last formula to the function hd that defines the linear functional
Id , i.e., for Id .f / D hf; hd iFd

for all f 2 Fd . For d D 1, we have

h1 D h1;.0/ C h1;.1/ with kh1k2F1
D kh1;.0/k2F1

C kh1;.1/k2F1
:

For d > 1, we use the fact that the function hd is the tensor product of the function h1
and obtain

hd;.b/.x/ D
Y

j2Œ1;d�Wbj D0
h1;.0/.xj /

Y
j2Œ1;d�Wbj D1

h1;.1/.xj /:

From this we get

khd;.b/kFd
D kh1;.0/k0.b/F1

kh1;.1/k1.b/F1
; (11.14)

where
0.b/ D jfj j bj D 0gj and 1.b/ D jfj j bj D 1gj

are defined as the number of zeros and ones in the Boolean vector b. Obviously,

0.b/C 1.b/ D d for any b 2 f0; 1gd :
The essence of (11.13) is that the problem of approximating

Id .f / D hf; hd iFd
D

X
b2f0;1gd

Id;.b/.f /
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can be decomposed into 2d independent subproblems of approximating

Id;.b/.f / D ˝
f; hd;.b/

˛
Fd

D ˝
f.b/; hd;.b/

˛
Fd

for all f 2 Fd
whose initial errors are given by (11.14).

Assume for a moment that a� … D1. If we use n function values at some points
tj 2 Dd with n < 2d then the sample points tj can belong to at most n different sets
D.b/. Hence, at least 2d �n of the subproblems Id;.b/ have to be approximated without
knowing function values of f.b/. The best we can then do is to approximate Id;.b/ by
zero. If all hd;.b/ are non-zero this will lead to intractability for the normalized error
criterion as well as for the absolute error criterion if kh1kF1

� 1. The proof of this
fact is presented below also for the case when a� 2 D1. As always,

e.n; d/ D ewor.n; Id /

denotes the nth minimal worst case error of approximating Id by n function values.
For n D 0 we obtain the initial error. By

n."; d/ D nwor."; Id /;

we mean the information complexity for the absolute or normalized error criterion; it
will be clear from the context which error criterion we are using.

Theorem 11.8. If K1 is a decomposable kernel then

e.n; d/ � �
1 � n˛d �1=2C e.0; d/;

where

˛ D max
�kh1;.0/k2F1

; kh1;.1/k2F1

�
kh1;.0/k2F1

C kh1;.1/k2F1

; with the convention 0=0 D 1:

Assume that both h1;.0/ and h1;.1/ are non-zero, so that ˛ 2 Œ1
2
; 1/. Then

lim
d!1

e
�bC dc; d�
e.0; d/

D 1 for all C 2 .1; 1=˛/ :

• Consider the absolute error criterion, and assume that kh1kF1
� 1.

Then I D fId g suffers from the curse of dimensionality and is intractable, since

n."; d/ �
 
1 � "2

kh1k2dF1

!�
1

˛

	d
for all " 2 �0; kh1kdF1

�
:
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• Consider the absolute error criterion, and assume that kh1kF1
< 1. Then

n."; d/ D 0 for all " > kh1kdF1
;

n."; d/ �
 
1 � "2

kh1k2dF1

!�
1

˛

	d
for all " 2 �0; kh1kdF1

�
:

Let x 2 .0; 1/ and "d D xkh1kdF1
. Then

n."d ; d / � .1 � x2/ xp "�p
d

with

p D ln ˛�1

ln kh1k�1
F1

:

If I D fId g is strongly polynomially tractable then its exponent satisfies

pstr-wor.I / � p:

• Consider the normalized error criterion.

Then I D fId g suffers from the curse of dimensionality and is intractable since

n."; d/ � .1 � "2/
�
1

˛

	d
for all " 2 .0; 1/:

Proof. First of all note that the lower bound on e.n; d/ is trivial if n˛d � 1. Hence, it
is enough to prove it for n such that n˛d < 1. Since ˛ � 1

2
this means that n < 2d .

We know that nonlinear algorithms and adaption do not help for approximating
linear problems defined over Hilbert spaces in the worst case setting, see Chapter 4 of
Volume I. So without loss of generality, we can consider linear algorithms. Take an
arbitrary linear algorithmQn;d .f / D Pn

jD1 ajf .zj /. We know that the square of the
worst case error of Qn;d is given by

e2.Qn;d / D khdk2Fd
� 2

nX
jD1

ajhd .zj /C
nX

i;jD1
aiajKd .zi ; zj /: (11.15)

Note that although the setsD.b/ do not have to be disjoint, the only elements that belong
to their intersections are vectors with at least one component equal to a�. For such
vectors the value of hd , as well as ofKd , is zero. Therefore without loss of generality
we may assume that no component of any sample point zj equals a�. We then have

nX
jD1

ajhd .zj / D
X

b2f0;1gd

X
j2Œ1;n�W zj 2D.b/

ajhd .zj /:
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This and decomposability of the kernel K1 yield

nX
i;jD1

aiajKd .zi ; zj / D
X

b2f0;1gd

X
i;j2Œ1;n�2W zi ;zj 2D2

.b/

aiajKd .zi ; zj /:

From (11.13) we can rewrite e2.Qn;d / as

e2.Qn;d / D
X

b2f0;1gd

e2.b/;

where

e2.b/ D khd;.b/k2Fd
�2

X
j2Œ1;n�W zj 2D.b/

ajhd .zj /C
X

i;j2Œ1;n�2W zi ;zj 2D2
.b/

aiajKd .zi ; zj /:

Since hd .zj / D hd;.b/.zj / for zj 2 D.b/, we see that e2.b/ is just the square of the
worst case error of approximating the continuous linear functional

Id;.b/.f / D ˝
f.b/; hd;.b/

˛
F.b/

D ˝
f; hd;.b/

˛
Fd

by using sample points zj 2 D.b/. Let

n.b/ D jfj 2 Œ1; n� j zj 2 D.b/gj
be the cardinality of the sample points zj in the set D.b/. Obviously,

n D
X

b2f0;1gd

n.b/:

If we define e.n.b/; F.b// as the n.b/th minimal error of approximating the func-
tional Id;.b/ then clearly e2.b/ � e2.n.b/; F.b//. Hence,

e2.Qn;d / �
X

b2f0;1gd

e2.n.b/; F.b//:

The last sum has 2d terms and n < 2d . Therefore at least 2d � n numbers n.b/ must
be equal to zero. Observe also that e2.0; F.b// D khd;.b/k2Fd

which, due to (11.14), is

equal to a0.b/0 a
1.b/
1 with a0 D kh1;.0/k2F1

and a1 D kh1;.1/k2F1
. From this we conclude

e2.Qn;d / �
X

b2f0;1gd Wn.b/D0
e2.0; F.b//

�
X

b2f0;1gd

e2.0; F.b// � n max
b2f0;1gd

e2.0; F.b//:
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The first sum is just khdk2Fd
D e2.0; Fd / D .a0 C a1/

d , whereas

max
b2f0;1gd

e2.0; F.b// D max
b2f0;1gd

a
0.b/
0 a

1.b/
1 D Œmax.a0; a1/�

d :

This proves that

e2.Qn;d / �
"
1 � n

�
max.a0; a1/

a0 C a1

	d#
e2.0; Fd / D

�
1 � n˛d

�
e2.0; Fd /:

Since this holds for any linear algorithm that uses n function values, we conclude that
the same lower bound holds for e2.n; d/, as claimed.

If both a0 and a1 are positive, then ˛ is strictly less than one; moreover the initial
error e.0; d/ D kh1kdF1

is positive. If n D nd D bC dc with C > 1 and C < 1=˛,

then nd˛d � .C˛/d goes to zero since C˛ < 1. Since e.n; d/ � e.0; d/ for all n, the
ratio e.nd ; d /=e.n; 0/ goes to 1 as d tends to infinity, as claimed.

Consider now the absolute error criterion. For kh1kF1
� 1, the bound on n."; d/

is straightforward. For kh1kF1
< 1, the initial error, which is also the error of the

zero algorithm, is kh1kdF1
that is exponentially small in d . Thus n."; d/ D 0 for

all " > kh1kdF1
. For " 2 .0; kh1kdF1

/, the bound on n."; d/ is straightforward. For

" D "d we have d D ln.x="d /= ln.1=kh1kF1
/ and ˛�d D .x="d /

p . Therefore
n."d ; d / D .1 � x2/xp"�p

d
, as claimed.

Assume now that the problem I is strongly polynomially tractable. Then

n."d ; d / � C� "
��
d for all " 2 .0; 1/ and d 2 N;

where � > pstr-wor. For a fixed x and d tending to infinity, we conclude that � � p.
For � tending to pstr-wor we conclude the bound pstr-wor � p, as claimed.

Consider the normalized error criterion. We now want to reduce the initial error by
a factor ". Therefore n."; d/ � .1�"2/˛�d , as claimed. This completes the proof.

The essence of Theorem 11.8 is intractability for the normalized error criterion and
for the absolute error criterion with kh1kF1

� 1. Observe that for the absolute error
criterion with kh1kF1

> 1we can even take an exponentially large ", say, " D ˇkh1kdF1

for some ˇ 2 .0; 1/; we will still need to compute at least exponentially many function
values to solve the problem since,

n
�
ˇkh1kdF1

; d
� � .1 � ˇ2/˛�d :

From Chapter 10, we know that if kh1kF1
< 1 then the problem I may be strongly

polynomially tractable depending on h1 as well as on the space F1. In particular, this
holds if kh1k�

F1
< 1, see Corollary 10.16. Clearly, this cannot be true for all h1 since

the assumption kh1kF1
< 1 is not enough to guarantee strong polynomial tractability;

we know that even the univariate problem, d D 1, may cause intractability. But if we
assume that the minimal worst case errors for d D 1 behave like O.n�k/ for some
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positive k, then strong polynomial tractability indeed holds and can be achieved by the
Smolyak or sparse grid algorithm, see [329], and this will be reported in Chapter 15.

The lower bound on the exponent of strong polynomial tractability is quite loose
since it does not depend on, in particular, how hard the problem is for d D 1. Never-
theless, this bound shows that the exponent may be arbitrarily large. For example, this
is the case if ˛ D 1

2
and kh1kF1

is close to one.
As already remarked in the proof of Theorem 11.8, the number ˛ belongs to Œ1

2
; 1�.

In fact, ˛ can take any value from this interval as we shall see later in examples. For
˛ D 1, Theorem 11.8 is trivial, since the lower bound of e.n; Fd / is zero for n � 1.
This should come as no surprise, since there exist trivial problems with ˛ D 1. For
instance, take I1.f / D f .a/ for an arbitrary a 2 D1. Then Id .f / D f .a; a; : : : ; a/

can be solved exactly using one function value. That means that e.n; d/ D 0 for all
n � 1. For this problem we have h1 D K1.�; a/ and h1;.0/ D 0 if a � a�, and
h1;.1/ D 0 otherwise. In either case, ˛ D 1.

If ˛ is smaller than one but is close to one then the exponential dependence on d
becomes less drastic, since d must be sufficiently large to be hurt by ˛�d . The largest
lower bound on e.n; d/ is when ˛ D 1

2
. We now show that this holds for decompos-

ableK1 when the setD1, the kernelK1 and the function h1 are symmetric with respect
to a�. That is, when

a� � x 2 D1 ) a� C x 2 D1;
K1.a

� � x; a� � t / D K1.a
� C x; a� C t /;

h1.a
� � x/ D h1.a

� C x/:

Indeed, symmetry of K1 implies that the spaces F.0/ and F.1/ are essentially the
same. More precisely, define the mapping P.x/ D 2a� � x for x 2 D1. Then
P 2.x/ D x and P.D.0// D D.1/, P.D.1// D D.0/. Then f 2 F.0/ iff fP 2 F.1/
and kf kF.0/

D kfP kF.1/
. For symmetric functions f 2 F1 we have

kf ˇ̌
D.0/

kF.0/
D kf ˇ̌

D.1/
kF.1/

:

Since h1 is symmetric we have

kh1;.0/kF1
D kh1;.1/kF1

D kh1kF1
=
p
2;

and for non-zero h1 we have ˛ D 1
2

, as claimed. We summarize this in a corollary.

Corollary 11.9. Let decomposableK1,D1 andh1 be symmetricwith respect toa� 2 R.
Then

e.n; d/ � �
1 � n 2�d �1=2

C e.0; d/:

The problem I D fId g is intractable for the absolute error criterion if e.0; d/ � 1,
and for the normalized error criterion if e.0; d/ > 0. For both error criteria we have

n."; Fd / � .1 � "2/ 2d for all " 2 .0; 1/:
We now illustrate Theorem 11.8 and Corollary 11.9 by several examples. In par-

ticular, we show that the estimates of Theorem 11.8 are sharp in general.
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11.4.1 Example: Weighted Integration

Let r 2 N. We take F1 D W r
0 .R/ as the Sobolev space of functions defined over R

whose .r�1/st derivatives are absolutely continuous, with the r th derivatives belonging
to L2.R/ and their derivatives up to the .r � 1/st at zero being zero. That is, we now
have D1 D R and

F1 D ff W R ! R j f .j /.0/ D 0; j 2 Œ0; r�1�; f .r�1/ abs. cont. and f .r/ 2 L2.R/g:
The inner product of F1 is given as

hf; giF1
D
Z

R
f .r/.t/g.r/.t/ dt:

It is known, and not hard to check, that this Hilbert space has the reproducing kernel

K1.x; t/ D 1M .x; t/

Z 1

0

.jt j � u/r�1C .jxj � u/r�1C
Œ.r � 1/Š�2 du;

where 1M is the characteristic (indicator) function of the set M D f.x; t/ j xt � 0g.
For r D 1, we have

K1.x; t/ D 1M .x; t/ min.jt j; jxj/:
For r � 1, observe that this kernel is decomposable at a� D 0. Indeed,

D.0/ D fx 2 R j x � 0g and D.1/ D fx 2 R j x � 0g;
andM D D2

.0/
[D2

.1/
. The kernelK1 is also symmetric sinceK1.x; t/ D K1.�x;�t /.

For d > 1, we obtain

Fd D W
r;r;:::;r
0 .Rd / D W r

0 .R/˝ � � � ˝W r
0 .R/

as the d -fold tensor product of W r
0 .R/. Hence, Fd is the Sobolev space of smooth

functions defined over Dd D Rd such that D˛f .x/ D 0 if at least one component of
x is zero for any multi-index ˛ D Œ˛1; ˛2; : : : ; ˛d � with integers j̨ 2 Œ0; r � 1�. As
always, D˛ is the partial differential operator, D˛f D @j˛jf=@˛1x1 � � � @˛dxd . The
inner product of Fd is given by

hf; giFd
D
Z

Rd

DŒr;r;:::;r�f .x/DŒr;r;:::;r�g.x/ dx:

Consider the weighted integration problem. That is,

I1.f / D
Z

R
%.t/ f .t/ dt

for some measurable non-zero weight function % W R ! RC. It is easy to check that I1
is a continuous linear functional iff the function

h1.x/ D
Z

R
%.t/K1.x; t/ dt
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belongs to F1, which holds iffZ
R2

%.t/%.x/K1.x; t/ dt dx < 1: (11.16)

It is easy to check that K1.x; t/ D O.jt xjr�1=2/, and (11.16) holds ifZ
R
%.t/ jt jr�1=2 dt < 1:

The last condition imposes a restriction on the behavior of the weight % at infinity.
If (11.16) holds, then

I1.f /D hf; h1iF1
and kI1k D kh1kF1

D
�Z

R2

%.t/%.x/K1.x; t/ dt dx

	1=2
<1:

We also have

h1;.0/.x/ D
Z 0

�1
%.t/K1.x; t/ dt and h1;.1/.x/ D

Z 1

0

%.t/K1.x; t/ dt:

For d > 1, we have

Id .f / D
Z

Rd

%d .t/ f .t/ dt with %d .t/ D %.t1/%.t2/ � � � %.td /:

We are ready to apply Theorem 11.8 for weighted integration. Observe thatD.0/ D
R� [ f0g andD.1/ D RC [ f0g. If the weight % does not vanish (in the L2 sense) over
R� and RC then the norms of h1;.0/ and h1;.1/ are positive. Hence, weighted integration
is intractable for the normalized error criterion and for the absolute error criterion if
kh1kF1

� 1. In particular, if we take a nonzero symmetric %, i.e., %.t/ D %.�t /, then
Corollary 11.9 holds and ˛ D 1

2
.

This is the case for Gaussian integration, since

%.t/ D .2�/�1=2 exp.�t2=2/

is symmetric. Hence, Gaussian integration is intractable for the normalized error
criterion since

n."; Fd / � .1 � "2/ 2d for all " 2 .0; 1/:
We stress that this intractability result holds independently of the assumed smoothness
of functions, i.e., this holds even if r is arbitrarily large.

We now consider Gaussian integration for the absolute error criterion. As we know,
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K1.x; t/ � p
K1.x; x/

p
K1.t; t/, and therefore we have

kh1kF1
D
Z

R2

%.t/%.x/K1.x; t/ dt dx �
Z

R2

%.t/%.x/
p
K1.x; x/

p
K1.t; t/ dt dx

D
�Z

R
%.t/

p
K1.t; t/ dt

	2
�
Z

R
%.t/K1.t; t/ dt

D
r
2

�

1

..r � 1/Š/2
Z 1

0

e�t2=2
Z t

0

.t � u/2.r�1/ du dt

D
r
2

�

1

..r � 1/Š/2.2r � 1/
Z 1

0

e�t2=2t2r�1 dt

D
r
2

�

2r�1

.2r � 1/.r � 1/Š < 1:

Hence, kh1kF1
< 1 for all r � 1, which opens the possibility that Gaussian integration

might be strongly polynomially tractable. In fact, it is strongly polynomially tractable
since we can apply Corollary 10.9 with

C.K1; %1/ D
Z

R
%.t/K1.t; t/ dt < 1;

as shown above. Then (10.14) states that the exponent of strong polynomial tractability
is at most 2. More precisely, we have

e.n; d/ � n�1=2
�Z

R
%.t/K1.t; t/ dt

	d=2
� n�1=2 (11.17)

which leads to n."; d/ � d"�2e.
We summarize these properties in the following corollary.

Corollary 11.10. Consider Gaussian integration for the Sobolev space

Fd D W
r;r;:::;r
0 .Rd /;

with r � 1, in the worst case setting.

• For the normalized error criterion, Gaussian integration suffers from the curse
of dimensionality and is intractable no matter how large r we have, and

n."; Fd / � .1 � "2/2d for all " 2 .0; 1/ and d 2 N:

• For the absolute error criterion, Gaussian integration is strongly polynomially
tractable with exponent at most 2, and

n."; Fd / � d"�2e for all " 2 .0; 1/ and d 2 N:
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Let us check the lower bound on the exponent given in Theorem 11.8. For r D 1,
it is not so hard to check that

kh1k2F1
D 1

�

Z
R2

C

e�.t2Cx2/=2 min.t; x/ dt dx D
p
2 � 1p
�

:

Theorem 11.8 states that

pstr-wor � ln 2

ln 1=kh1kF1

D 2 ln 2

ln
p
�=.

p
2 � 1/ D 0:953606 : : : :

The last bound is poor, since we know, see e.g., [333], that for d D 1 we have
e.n; 1/ D ‚.n�1/ and therefore pstr-wor � 1. The actual value of pstr-wor is not known,
which leads us to the next open problem.

Open Problem 51.

• Find the exponent of strong polynomial tractability of Gaussian integration for
the absolute error criterion in the worst case setting.

We now take the constant weight % over the interval Œa; b�, where a � 0 < b. More
specifically, we assume that %.t/ D 1 for t 2 Œa; b� and %.t/ D 0 otherwise. For
simplicity, we only consider r D 1. Then

h1;.0/.x/ D
Z 0

a

K1.x; t/ dt D �
a max.x; a/ � 1

2
max.x; a/2

�
C ;

h1;.1/.x/ D
Z b

0

K1.x; t/ dt D �
b min.x; b/ � 1

2
min.x; b/2

�
C :

From this we conclude that

kh1;.0/k2F1
D jaj3=3 and kh1;.1/k2F1

D b3=3:

Hence,

˛ D max.jaj3; b3/
jaj3 C b3

:

Taking b D 1 and jaj D t 2 Œ0; 1� we obtain ˛ D ˛.t/ D 1=.1 C t3/, which varies
continuously with t and takes all values from Œ1

2
; 1�. This shows that ˛ in Theorem 11.8

can be an arbitrary number from Œ1
2
; 1�. Obviously, for a D 0 Theorem 11.8 is trivial.

This means that we cannot yet claim anything about tractability of the problem

Id .f / D
Z
Œ0;1�d

f .t/ dt for all f 2 Fd :

We now take a D �b so that ˛ D 1
2

, and as before r D 1. Then the problem
I D fId g is always intractable for the normalized error criterion.



11.4 Decomposable Kernels 173

Consider then the absolute error criterion. Note that the initial error is now

e.0; d/ D
�
2b3

3

	d=2
:

Hence for b3 � 3
2

the initial error is at least one and therefore I D fId g is intractable.
Assume then that b3 < 3

2
. Theorem 11.8 states that we can have even strong

polynomial tractability. We now use an upper bound on e.n; d/ from Theorem 10.10
based on Plaskota, Wasilkowski and Zhao [248], which states that

e.n; d/ � 1p
n

Z
Dd

%d .t/
p
Kd .t; t/ dt: (11.18)

In our case, the last inequality becomes

e.n; d/ � 1p
n

�Z b

�b

p
K1.t; t/ dt

	d
D 1p

n

�
16 b3

9

	d=2
:

Hence for b3 � 9
16

we have

n."; d/ � d"�2e for all " 2 .0; 1/ and d 2 N;

which means strong polynomial tractability with pstr-wor � 2. From Theorem 11.8 we
obtain for b3 D 9

16
that

pstr-wor � 2 ln 2

ln 8=3
D 1:41339 : : : :

The exact value of pstr-wor is not known.
The case b3 2 . 9

16
; 3
2
/ has not been studied and it is not clear if I D fId g is strongly

polynomially or polynomially tractable for the absolute error criterion. This leads us
to the next open problem.

Open Problem 52.

• Consider weighted integration for r D 1 and % D 1Œ�b;b� for the absolute er-
ror criterion in the worst case setting. Find all b for which strong polynomial
tractability holds and for such b determine its exponent.

11.4.2 Example: Uniform Integration

We now defineD1 D Œ0; 1� and takeF1 D W 1
a .Œ0; 1�/ as the Sobolev space of absolutely

continuous functions whose first derivatives are inL2.Œ0; 1�/ and whose function values
are zero at the point a of the interval Œ0; 1�. That is,

F1 D ff W Œ0; 1� ! R j f .a/ D 0; f abs. cont. and f 0 2 L2.Œ0; 1�/g
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with the inner product hf; giF1
D R 1

0
f 0.t/g0.t/ dt . As we know from Chapter 9, this

Hilbert space is related to the L2 discrepancy anchored at a, and has the reproducing
kernel

K1.x; t/ D 1
2
.jx � aj C jt � aj � jx � t j/;

which can be rewritten as

K1.x; t/ D 1M .x; t/ � min.jx � aj; jt � aj/;
where M D Œ0; a� � Œ0; a� [ Œa; 1� � Œa; 1�.

Hence, the kernel K1 is decomposable at a� D a. It is symmetric only if a D 1
2

.
We have D.0/ D Œ0; a� and D.1/ D Œa; 1�.

For d > 1, we obtain

Fd D W 1;1;:::;1
a .Œ0; 1�d / D W 1

a .Œ0; 1�/˝ � � � ˝W 1
a .Œ0; 1�/; d times;

as the Sobolev space of smooth functions f defined over Dd D Œ0; 1�d such that
f .x/ D 0 if at least one component of x is a. The inner product of Fd is given by

hf; giFd
D
Z
Œ0;1�d

@d

@x1 � � � @xd f .x/
@d

@x1 � � � @xd g.x/ dx:

Consider the uniform integration problem. That is,

I1.f / D
Z 1

0

f .t/ dt:

It is easy to compute

h1;.0/.x/ D
Z a

0

min.a � x; a � t / dt D 1
2
.a � x/.aC x/ for all x 2 Œ0; a�;

h1;.1/.x/ D
Z 1

a

min.x � a; t � a/ dt D 1
2
.x � a/.2 � a � x/ for all x 2 Œa; 1�:

Furthermore,
kh1;.0/k2F1

D 1
3
a3 kh1;.1/k2F1

D 1
3
.1 � a/3:

Hence, we have

˛ D max.a3; .1 � a/3/
a3 C .1 � a/3 :

From Theorem 11.8 we conclude that the problem I D fId g is intractable for the
normalized error criterion if a 2 .0; 1/. Observe also that if a is close to zero then
˛�1 D 1 C a3 C O.a4/ is barely larger than 1. This means that although ˛�d goes
exponentially fast to infinity with d we must take really large d to get large ˛�d .

For the absolute error criterion, we have

kh1k2F1
D a3 C .1 � a/3

3
� 1

3
:
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From (11.17) or (11.18) we easily conclude that n."; d/ � d"�2e, so I D fId g is
strongly polynomially tractable for all a 2 Œ0; 1�with the exponent pstr-wor � 2. Again,
the lower bound on pstr-wor is poor. For d D 1, we know that e.n; 1/ D ‚.n�1/, and
therefore pstr-wor � 1. The exact value of pstr-wor is not known. For a D 0 or a D 1,
the problem of finding the exponent is presented in Chapter 9 as Open Problem 36. We
now generalize this open problem to arbitrary a.

Open Problem 53.

• Find the exponent of strong polynomial tractability of uniform integration for
the absolute error criterion in the worst case setting for arbitrary a 2 Œ0; 1�.

11.4.3 Example: Centered Discrepancy

We now specialize the previous example by taking a D 1
2

, which corresponds to
centered discrepancy, see Chapter 9. Then the kernel K1 and the function h1 are
symmetric. Corollary 11.9 now applies with ˛ D 1

2
and khkF1

D 12�1=2. In this case,
the worst case error of linear algorithms

Qn;d .f / D
nX

jD1
ajf .zj /

is given by

e2.Qn;d / D
Z
Œ0;1�d

ˇ̌̌ dY
jD1

min.xj ; 1 � xj / �
nX

jD1
aj � 1J.b.x/;x/.zj /

ˇ̌̌2
dx; (11.19)

where J.b.x/; x/ is the cube generated by x and the vertex b.x/ of Œ0; 1�d that is closest
to x in the sup-norm. That is, x 2 D.b/ iff b.x/ D b for almost all x 2 Œ0; 1�d . Essen-
tially the same formulas were presented by Hickernell [118], who considered spaces
similar to Fd without assuming the condition f .1

2
/ D 0 and considered algorithms

with aj D n�1.
For the space Fd with the condition f .1

2
/ D 0 we denote the centered discrepancy

by Qd c2 .n; d/. In the next section we remove this condition and consider the centered
discrepancy d c2 .Qn;d / (without the tilde), as originally studied by Hickernell [118].
The relation between uniform integration for a D 1

2
and the centered discrepancy

means that
Qd c2 .n; d/ D e.Qn;d /:

The minimal centered discrepancy is defined as

Qd c2 .n; d/2 D inf
aj ;zj

j D1;2;:::;n

Z
Œ0;1�d

ˇ̌̌ dY
jD1

min.xj ; 1 � xj / �
nX

jD1
aj � 1J.b.x/;x/.zj /

ˇ̌̌2
dx:

(11.20)
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Corollary 11.9 states that

Qd c2 .n; d/ � �
1 � n 2�d �1=2

C Qd c2 .0; d/ with Qd c2 .0; d/ D 12�d=2: (11.21)

The centered discrepancy and uniform integration fora D 1
2

may be also considered
for the spaceLq.Œ0; 1�d /with q 2 Œ1;1�. More precisely, for d D 1we take the space
F1;q as the Sobolev space of absolutely continuous functions whose first derivatives
are in Lq.Œ0; 1�/ and that vanish at 1

2
. The norm in F1;q is given by

kf kF1;q
D
�Z 1

0

jf 0.t/jq dt

	1=q
for q < 1,

and

kf kF1;1 D ess sup
t2Œ0;1�

jf 0.t/j for q D 1.

For d > 1, the space Fd;q is taken as a d -fold tensor product of F1;q . Then functions
from Fd;q vanish at x whenever at least one component of x is 1

2
and their norm is

kf kFd;q
D kDE1f kLq.Œ0;1�d

D
�Z

Œ0;1�d
jDE1f .x/jq dx

	1=q
;

where E1 D Œ1; 1; : : : ; 1�. From

Id .f / �Qn;d .f / D
Z
Œ0;1�d

D
E1f .t/DE1�hd �

nX
iD1

aiKd .�; zi /
�
.t/ dt

we conclude that

e.Qn;d / ´ sup
f 2Fd;q W kf kFd;q

�1

ˇ̌
Id .f / �Qn;d .f /

ˇ̌ D Qd cp .Qn;d /;

where 1=p C 1=q D 1 and Qd cp .Qn;d / is the centered p-discrepancy given by

Qd cp .Qn;d / D
�Z

Œ0;1�d

ˇ̌̌ dY
jD1

min.xj ; 1 � xj / �
nX
iD1

ai � 1J.b.x/;x/.zi /
ˇ̌̌p

dx

	1=p
:

If q D 1 then p D 1 and, as usual, the integral is replaced by the essential supremum
in the formula above.

Let
e.n; d; q/ D Qdp.n; d/

denote the minimal error or, equivalently, the minimal centered p-discrepancy that
can be achieved by using n function values. The initial error, or the initial centered
discrepancy, is now given by

e.0; d; q/ D Qd cp .0; d/ D 2�d

.p C 1/d=p
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for q > 1, and e.0; d; 1/ D 2�d . Similarly, let n."; d; q/ denote the information
complexity for the absolute or normalized error criterion, i.e., the smallest n for which
e.n; d; q/ � "CRId with CRId D 1 for the absolute error criterion, and CRId D
e.0; d; q/ for the normalized error criterion.

Hence, for all values of q, the initial centered discrepancy is at most 2�d . We
are ready to prove the following corollary, which easily follows from the proof of
Theorem 11.8.

Corollary 11.11. For n < 2d and p < 1, we have

Qd cp .n; d/ � �
1 � n 2�d �1=p Qd cp .0; d/:

Hence, uniform integration is intractable for the normalized error criterion since

n."; d; q/ � .1 � "p/2d and lim
d!1

Qd cp .bC de; d /
Qd cp .0; d/

D 1 for all C 2 .1; 2/:

Proof. As in the proof of Theorem 11.8, take a Boolean vector b D Œb1; : : : ; bd � 2
f0; 1gd and an algorithm Qn;d .f / D Pn

iD1 aif .zi /. The worst case error of Qn;d is
the centered discrepancy Qd cp .Qn;d /. The formula for Qd cp .Qn;d / can be written as

Qd cp .Qn;d /p D
X

b2f0;1gd

Z
D.b/

ˇ̌̌ dY
jD1

min.xj ; 1 � xj / �
nX
iD1

ai � 1J.b;x/.zi //
ˇ̌̌p

dx:

Observe that for each sample point zj and for each fixed x, there is at most one b such
that zj 2 J.b; x/. Hence, at least 2d � n terms in the last sum with respect to b have
zero contribution from the algorithm Qn;d . Since

Z
D.b/

dY
jD1

min.xj ; 1 � xj /pdx D
�
2�p�1

p C 1

	d
does not depend on b, we obtain

Qd cp .Qn;d /p � .2d � n/ 2�d
�
2�p

p C 1

	d
D �

1 � n 2�d � Qd cp .0; d/p;

as claimed. The formula for n."; d/ and the value for the limit easily follow from the
lower bound on Qd cp .n; d/. This completes the proof.

Observe that for q D 1 we have p D 1, and since Qd cp .n; d/ is a nondecreasing
function of p we have

Qd c1.n; d/ D Qd c1.0; d/ D 2�d for all n < 2d :



178 11 Worst Case: Tensor Products and Decomposable Kernels

Again this means that uniform integration is intractable for the normalized error crite-
rion since

n."; d; 1/ � 2d for all " 2 .0; 1/:
It is known that Qd c1.n; d/ goes to zero at least like n�1.log n/d�1. However, in view
of the previous property, we must wait exponentially long in d to enjoy this rate of
convergence.

The absolute error criterion has not been yet thoroughly studied for q 6D 2. However
for q � 2, we can use the results for q D 2, which state that we have strong polynomial
tractability and this can be achieved by the Smolyak or sparse grid algorithm, see
Chapter 15. Hence, uniform integration is also strongly polynomially tractable for
q � 2.

For q D 1, we obtain a classical discrepancy problem, which is not harder than
the extreme discrepancy where we take all cubes. But we know that even the extreme
discrepancy is polynomially tractable, and its information complexity is at most linear
in d . For q 2 .1; 2/, we can use bounds for q D 1 and conclude polynomial tractability.
However, it is not clear if we can have strong polynomial tractability in this case, which
leads us to the next open problem.

Open Problem 54.
• Verify strong polynomial tractability of uniform integration (or the centered dis-

crepancy) for the space Fd;q with q 2 .1; 2/ for the absolute error criterion in
the worst case setting.

11.4.4 Example: Two Function Values

We now show that the estimate of Theorem 11.8 is, in general, sharp. This will be done
for a seemingly simple problem I1 defined by only two function values. More precisely,
consider the space F1 with symmetric D1 around a� D 0 such that f�1; 1g � D1.
Let the reproducing kernel K1 of F1 be symmetric and decomposable at a� D 0. We
assume that K1.1; 1/ > 0. Define

I1.f / D f .�1/C f .1/:

Then h1.x/ D K1.x;�1/CK1.x; 1/, and

h1;.0/.x/ D K1.x;�1/ with kh1;.0/k2F1
D K1.�1;�1/ D K1.1; 1/;

h1;.1/.x/ D K1.x; 1/ with kh1;.1/k2F1
D K1.1; 1/:

We show that
e.n; d/ D �

1 � n 2�d �1=2
C e.0; d/:

By Theorem 11.8, it is enough to find a matching upper bound, that is, an algorithm

such that e.Qn;d / � �
1 � n 2�d �1=2

C e.0; d/. Observe that

Id .f / D
X

b2f�1;1gd

f .b/
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and hd .x/ D P
b2f�1;1gd Kd .x; b/. From this, we have

khdk2Fd
D

X
b2f�1;1gd

Kd .b; b/ D 2dKd .E1; E1/ D .2K1.1; 1//
d :

Define the algorithm
Qn;d .f / D

X
b2An

f .b/;

where An is a subset of f�1; 1gd and has min.n; 2d / elements. Then

Id .f / �Qn;d .f / D
X

b2f�1;1gd nAn

f .b/

and

e2.Qn;d / D
X

b2f�1;1gd �An

Kd .b; b/

D �
2d � min.n; 2d /

�
Kd1 .1; 1/ D �

1 � n 2�d �
Ce

2.0; d/;

as claimed. So in this case, the first estimate of Theorem 11.8 holds with equality.

11.5 Non-decomposable Kernels

In the previous section, we presented lower bounds on the minimal worst case errors
for decomposable kernels. In this section, we show similar lower bounds for certain
non-decomposable kernels.

For d D 1, we consider two reproducing kernels R1 and R2 each defined over
the set D2

1 . Let H.Ri / denote the Hilbert space with the reproducing kernel Ri . We
assume that

H.R1/ \H.R2/ D f0g:
Define the reproducing kernel K1 as the sum of the two kernels, i.e.,

K1 D R1 CR2: (11.22)

The Hilbert space F1 with the kernel K1 is the space of functions of the form f1 C f2
for fi 2 H.Ri / with the inner product

hf; giF1
D hf1; g1iH.R1/

C hf2; g2iH.R2/
;

where f D f1 C f2 and g D g1 C g2, see Aronszajn [2], p. 353.
As in the previous section, we define I1.f / D hf; h1iF1

for a given function h1
from F1. The function h1 has the unique decomposition

h1 D h1;1 C h1;2; with h1;j 2 H.Rj /; j D 1; 2:



180 11 Worst Case: Tensor Products and Decomposable Kernels

We will assume that the kernel R2 is decomposable. Hence, the kernel K1 has one
termR1, which may be non-decomposable, and one decomposable termR2. As in the
previous section, by h1;2;.0/ and h1;2;.1/ we denote the restriction of the function h1;2
to the sets D.0/ and D.1/, respectively.

For d > 1, we take as before

Fd D F1 ˝ F1 ˝ � � � ˝ F1

as the d -fold tensor product of F1. The reproducing kernel of Fd is

Kd .x; t/ D
dY
jD1

�
R1.xj ; tj /CR2.xj ; tj /

�
:

The continuous linear functional Id is defined (without any change) as the d -fold tensor
products of I1. That is,

Id .f / D hf; hd iFd
;

where

hd .x/ D
dY
jD1

h1.xj / D
dY
jD1

�
h1;1.xj /C h1;2.xj /

�
:

The initial error is given by

e2.0; d/ D khdk2Fd
D �kh1;1k2H.R1/

C kh1;2k2H.R2/

�d
:

We are ready to present a lower bound on the nth minimal worst case error e.n; d/ of
approximating Id over the unit ball of the space Fd .

Theorem 11.12. Assume that

H.R1/ \H.R2/ D f0g and R2 is decomposable:

Then

e2.n; d/ �
dX
kD0

�
d

k

	 �
1 � n˛k�C ˛d�k

1 ˛k2 ; with 00 D 1;

where
˛1 D kh1;1k2H.R1/

; ˛2 D kh1;2k2H.R2/
;

and

˛ D max
�kh1;2;.0/k2H.R2/

; kh1;2;.1/k2H.R2/

�
kh1;2;.0/k2H.R2/

C kh1;2;.1/k2H.R2/

2 �1
2
; 1
�
:

Proof. For x 2 Dd
1 and

u � Œd � WD f1; 2; : : : ; dg;
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we let xu denote the vector from D
juj
1 whose components corresponding to indices in

u are the same as the components of the vector x, i.e., xu;j D xj for all j 2 u. We let
x Nu denote the vector xŒd�nu.

Define the functions hu;1 W Dd�juj
1 ! R and hu;2 W Djuj

1 ! R by

hu;1.x Nu/ D
Y
j…u

h1;1.xj /; and hu;2.xu/ D
Y
j2u

h1;2.xj /:

For u D ; or u D Œd �, we take h;;2 D 1 and hŒd�;1 D 1. Let

Ru;1.x Nu; t Nu/ D
Y
j…u

R1.xj ; tj / and Ru;2.xu; tu/ D
Y
j2u

R2.xj ; tj /

be the reproducing kernels of the Hilbert spaces H.Ru;1/ and H.Ru;2/. Then hu;i 2
H.Ru;i /, and

khu;1kH.Ru;1/ D kh1;1kd�juj
H.R1/

and khu;2kH.Ru;2/ D kh1;2kjuj
H.R2/

:

For the function hd we have

hd .x/ D
dY
jD1

.h1;1.xj /C h1;2.xj // D
X

u�Œd�
hu;1.x Nu/ hu;2.xu/: (11.23)

Furthermore,

khdk2Fd
D

dY
jD1

�kh1;1k2H.R1/
C kh1;2k2H.R2/

� D
X

u�Œd�
khu;1k2H.Ru;1/

khu;2k2H.Ru;2/
:

(11.24)
Consider now the reproducing kernel Kd of the space Fd . We have

Kd .x; t/ D
dY
jD1

�
R1.xj ; tj /CR2.xj ; tj /

� D
X

u�Œd�
Ru;1.x Nu; t Nu/Ru;2.xu; tu/:

(11.25)
We are ready to give a lower bound on the worst case error of an arbitrary linear

algorithm Qn;d .f / D Pn
jD1 aif .zj /. As always, we have

e2.Qn;d / D khdk2Fd
� 2

nX
jD1

ajhd .zj /C
nX

i;jD1
aiajKd .zi ; zj /:

Using (11.23), (11.24) and (11.25) we get

e2.Qn;d / D
X

u�Œd�
e2u;
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where

e2u D khu;1k2H.Ru;1/
khu;2k2H.Ru;2/

� 2
nX

jD1
ajhu;1..zj / Nu/hu;2..zj /u/

C
nX

i;jD1
aiajRu;1..zi / Nu; .zj / Nu/Ru;2..zi /u; .zj /u/:

There exists an orthonormal basis frkg D frk;ug of the space H.Ru;1/, where k 2 �

and � is an index set that is at most countable if the space is separable. It is known that
the reproducing kernel Ru;1 may be written as

Ru;1.x Nu; t Nu/ D
X
k2�

rk.x Nu/ rk.t Nu/:

Even for an uncountable set �, the last series has always at most a countable number
of positive terms. Furthermore,

hu;1 D
X
k2�

hhu;1; rkiH.Ru;1/
rk and khu;1k2H.Ru;1/

D
X
k2�

hhu;1; rki2H.Ru;1/
:

We can thus rewrite e2u as e2u D P
k2� e

2
u;k

with

e2u;k D hhu;1; rki2H.Ru;1/
khu;2k2H.Ru;2/

� 2
nX

jD1
aj hhu;1; rkiH.Ru;1/

rk..zj / Nu/hu;2..zj /u/

C
nX

i;jD1
aiaj rk..zi / Nu/rk..zj / Nu/Ru;2..zi /u; .zj /u/:

Assume for a moment that hhu;1; rkiH.Ru;1/
6D 0, and define

a0
j D aj rk..zj / Nu/

hhu;1; rkiH.Ru;1/

:

Then e2
u;k

D hhu;1; rki2H.Ru;1/
Œe0

u;k
�2 with

�
e0

u;k

�2 D khu;2k2H.Ru;2/
� 2

nX
jD1

a0
jhu;2..zj /u/C

nX
i;jD1

a0
ia

0
jRu;2..zi /u; .zj /u/:

Observe that e0
u;k

is the worst case error of approximating Iu.f / D hf; hu;2iH.Ru;2/

over the unit ball of the spaceH.Ru;2/. The reproducing kernelRu;2 is a tensor product
of R2 which is decomposable. Therefore we may apply Theorem 11.8 to obtain

e2u;k � hhu;1; rki2H.Ru;1/

�
1 � n˛juj�

C khu;2k2H.Ru;2/
:
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Observe that the last inequality is also trivially true if hhu;1; rkiH.Ru;1/
D 0.

Summing with respect to k, we obtain

e2u � khu;1k2H.Ru;1/

�
1 � n˛juj�

C khu;2k2H.Ru;2/
D ˛

d�juj
1

�
1 � n˛juj�

C˛
juj
2 :

The lower bound on e2u is the same for all u of the same cardinality. Hence if juj D k

then we have
�
d
k

�
such u’s. Summing with respect to u, we obtain

e2.Qn;d / �
dX
kD0

�
d

k

	 �
1 � n˛�k�

C˛
d�k
1 ˛k2 :

Since this holds for any algorithm Qn;d , the same lower bound holds for the nth
minimal error e2.n; d/. This completes the proof.

Observe that Theorem 11.12 generalizes Theorem 11.8. Indeed, it is enough to
take h1;1 D 0 (which always holds for R1 D 0). Then ˛1 D 0 and the sum in
Theorem 11.12 consists of only one term for k D d . Thus

e.n; d/ � �
1 � n˛d �1=2C e.0; d/; (11.26)

as in Theorem 11.8.
Theorem 11.12 presents a lower bound on the nth minimal error. It is easy to relate

this lower bound to the initial error. We have

e2.0; d/ D .˛1 C ˛2/
d D

X
u�Œd�

˛
d�juj
1 ˛

juj
2 D

dX
kD0

�
d

k

	
˛d�k
1 ˛k2 :

If we assume that

n � a ˛�m for some a 2 .0; 1/ with m < d;

we can estimate .1 � n˛k/C from below by zero for k < m and by 1 � a for k � m.
This yields the following corollary.

Corollary 11.13. Let

n � a˛�m for some a 2 .0; 1/ with m < d:

Under the assumptions of Theorem 11.12 we have

e.n; d/ � .1 � a/1=2
"
1 �

Pm�1
kD0

�
d
k

�
˛d�k
1 ˛k2Pd

kD0
�
d
k

�
˛d�k
1 ˛k2

#1=2
e.0; d/:

We are ready to discuss tractability of I D fId g.
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Theorem 11.14. Assume that

H.R1/ \H.R2/ D f0g and R2 is decomposable:

Assume also that h1;1 as well as both h1;2;.0/ and h1;2;.1/ are non-zero. Then

lim
d!1

e.bC dc; d /
e.0; d/

D 1 for all C 2 .1; ˛�˛3=.1C˛3//;

where, as before,

˛ D max.kh1;2;.0/k2H.R2/
; kh1;2;.1/k2H.R2/

/

kh1;2;.0/k2H.R2/
C kh1;2;.1/k2H.R2/

2 �1
2
; 1
�
;

and

˛3 D kh1;2k2H.R2/

kh1;1k2H.R1/

D kh1;2;.0/k2H.R2/
C kh1;2;.1/k2H.R2/

kh1;1k2H.R1/

> 0:

• Consider the absolute error criterion, and assume that kh1kF1
� 1.

Then I D fId g suffers from the curse of dimensionality and is intractable. For
an arbitrary ˇ 2 .0; 1/, " 2 �0; ˇkh1kdF1

�
and C as above we have

n."; d/ � C d .1C o.1// as d ! 1:

• Consider the absolute error criterion, and assume that kh1kF1
< 1.

Let x 2 .0; 1/ and "d D xkh1kdF1
. Then for C as above we have

n."d ; d / � xp "
�p
d
.1C o.1// as d ! 1

with

p D lnC

ln kh1k�1
F1

:

If I D fId g is strongly polynomially tractable then its exponent satisfies

pstr-wor.I / � ˛3 ln ˛�1

.1C ˛3/ ln kh1k�1
F1

:

• Consider the normalized error criterion.

Then I D fId g suffers from the curse of dimensionality and is intractable. For
" 2 .0; 1/ and C as above we have

n."; d/ � C d .1C o.1// as d ! 1:
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Proof. Define Cd;k D ˛k3
�
d
k

�
and remember that ˛3 D ˛2=˛1. Then Theorem 11.12,

the form of the initial error, and dividing e2.n; d/ and e2.0; d/ by ˛d1 , yield

1 � e2.n; d/

e2.0; d/
�
Pd
kD0 Cd;k.1 � n˛k/CPd

kD0 Cd;k
:

We take an arbitrary a 2 .0; 1/ and n D bC dc with C 2 .1; ˛�˛3=.1C˛3//. This means
that C˛˛3=.1C˛3/ < 1. Then there exists a positive c such that

c <
˛3

1C ˛3
and C˛c < 1:

Take k.d/ D bc dc. Then for sufficiently large d , we have

n˛k � C d˛cd�1 D ˛�1.C˛c/d � a for all k 2 .k.d/; d �:
This implies that

e2.n; d/

e2.0; d/
� .1 � a/

Pd
kDk.d/C1 Cd;kPd
kD0 Cd;k

D .1 � a/Œ1 � ˛.d/�;

where

˛.d/ D
Pk.d/

kD0 Cd;kPd
kD0 Cd;k

D
Pk.d/

kD0 ˛
k
3

�
d
k

�
.1C ˛3/d

:

Let f .k/ D ˛k3
�
d
k

�
. Then f .0/ D 1 and f .1/ D ˛3d . For large d , we have

f .1/ � f .0/ and k.d/ � 1. Furthermore, for k � 1 we have

f .k/

f .k � 1/ D ˛3
d � k C 1

k
� 1 iff k � ˛3

1C ˛3
.d C 1/:

Hence, f as a function of k increases for k � k.d/. Therefore we have

˛.d/ � x.d/ ´ .bcdc C 1/˛
bcdc
3

�
d

bcdc
�

.1C ˛3/d
:

In the proof of Theorem 5.5 in Chapter 5, we used Stirling’s formula to show that

ln
�

d

bcdc
	

D d


c ln

1

c
C .1 � c/ ln

1

1 � c
�

� 1
2

ln d C O.1/:

This implies that
ln x.d/ D d g.c/C O.ln d/;

where

g.c/ D c ln
1

c
C .1 � c/ ln

1

1 � c C c ln ˛3 � ln.1C ˛3/:
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We now show that g.c/ < 0. Indeed, note that g.0/ D � ln.1 C ˛3/ < 0 and
g.˛3=.1C ˛3// D 0. Furthermore

g0.x/ D ln
.1 � x/ ˛3

x
> 0 iff x <

˛3

1C ˛3
:

Hence, g is increasing in Œ0; ˛3=.1C ˛3/�. Since we took c < ˛3=.1C ˛3/ then we
have g.c/ < g.˛3=.1C ˛3// D 0, as claimed.

This means that ln x.d/ goes to �1 as d goes to infinity, so that both x.d/ and
˛.d/ go to zero. So for any positive ı, we can find a (large) integer d.ı/ such that for
all d � d.ı/, we have

1 � e2.bC dc; d /
e2.0; d/

� .1 � a/.1 � ı/:

Since a and ı can be arbitrarily small, the limit of e.bC dc; d /=e.0; d/must be one, as
claimed.

The rest is easy. Consider the absolute error criterion with kh1kF1
� 1. For large d

and " � ˇkh1kdF1
, with ˇ 2 .0; 1/, the worst case error e.bC dc; d / is arbitrarily close

to e.0; d/ D kh1kdF1
, and therefore larger than ". Hence n."; d/ � C d .1C o.1//. For

the normalized error criterion, we take " 2 .0; 1/ and for large d we have "kh1kdF1
<

e.bC dc; d / D kh1kdF1
.1Co.1// and therefore n."; d/ � C d .1Co.1//. SinceC > 1,

in both cases this obviously means the curse of dimensionality.
For the absolute error criterion with kh1kF1

< 1 take " D "d D xkh1kdF1
. Since x

is fixed and less than one, we know that bC dc function values are not enough for large
d . Note that now d D ln.x="d /= ln.kh1k�1

F1
/ and C d D .x="d /

p , which yields the
bound on n."d ; d /.

Finally, if I D fId g is strongly polynomially tractable, then n."d ; d / � C�"
��
d

for all d 2 N with � arbitrarily close to the exponent pstr-wor. This implies that
pstr-wor � p, and we can maximize p by taking C tending to ˛�˛3=.1C˛3/. This
completes the proof.

The essence of Theorem 11.14 is intractability for the normalized error criterion and
for the absolute error criterion with kh1kF1

� 1. We stress that Theorem 11.14 is more
general than Theorem 11.8, since the reproducing univariate kernelK1 is now assumed
to have a decomposable part and can be itself non-decomposable. As before, the case
kh1kF1

< 1 may indeed lead to strong polynomial tractability, and the comment after
Theorem 11.8 applies also for non-decomposable reproducing kernels.

We now illustrate Theorems 11.12 and 11.14 by continuing the examples of the
previous section.
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11.5.1 Example: Weighted Integration (Continued)

We now remove the boundary conditions f .j /.0/ from the definition of the Sobolev
spaceW r

0 .R/ and consider F1 D W r.R/ as the Sobolev space equipped with the inner
product

hf; giF1
D

r�1X
jD0

f .j /.0/ g.j /.0/ C
Z

R
f .r/.t/g.r/.t/ dt:

The reproducing kernel K1 takes now the form

K1.x; t/ D
r�1X
jD0

xj

j Š

tj

j Š
C 1M .x; t/

Z
RC

.jt j � u/r�1C .jxj � u/r�1C
..r � 1/Š/2 du;

where, as before, 1M is the characteristic (indicator) function of the set

M D f.x; t/ W xt � 0g:
We can now take

R1.x; t/ D
r�1X
jD0

xj

j Š

tj

j Š
;

R2.x; t/ D 1M .x; t/

Z
RC

.jt j � u/r�1C .jxj � u/r�1C
Œ.r � 1/Š�2 du:

The space H.R1/ is the space of polynomials of degree at most r � 1, which has
dimension r . The space H.R2/ D W r

0 .R/ is the Sobolev space with the conditions
f .j /.0/ D 0 for j D 0; 1; : : : ; r � 1. Clearly,

H.R1/ \H.R2/ D f0g:
The kernelR2 is decomposable ata� D 0 (and is also symmetric), so all the assumptions
of Theorem 11.12 hold.

For d > 1, Fd is the d -fold tensor product Sobolev space W r.R/˝ � � � ˝W r.R/
whose inner product hf; giFd

is a sum of .rC 1/d terms. In the case r D 1 and d D 2

we have

hf; giF2
D f .0/g.0/

C
Z

R

@f

@x1
.x1; 0/

@g

@x1
.x1; 0/ dx1 C

Z
R

@f

@x1
.0; x2/

@g

@x1
.0; x2/ dx2

C
Z

R2

@2f

@x1@x2
.x1; x2/

@2g

@x1@x2
.x1; x2/ dx1 dx2:

Consider the weighted integration problem given by

I1.f / D
Z

R
%.t/ f .t/ dt with

Z
R
%.t/ jt jr�1=2 dt < 1:
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We now have

h1;1.x/ D
r�1X
jD0

xj

j Š

Z
R

tj

j Š
%.t/ dt;

and h1;2 D h1;2;.0/ C h1;2;.1/ with

h1;2;.0/.x/ D
Z 0

�1
%.t/R2.x; t/ dt and h1;2;.1/.x/ D

Z 1

0

%.t/R2.x; t/ dt:

Hence, h1;1 is a polynomial of degree at most r � 1. Note that h1;1 is not zero since
the coefficient of h1;1 for j D 0 is

R
R %.t/ dt , which is positive. We assume that % is

non-zero over R� and RC, which yields that both of the h1;2;.i/ are also non-zero and
˛ < 1. For symmetric %, we have ˛ D 1

2
.

Consider first the normalized error criterion. Theorem 11.14 states that weighted
integration is intractable no matter how large r we have.

Consider then the absolute error criterion. It seems natural to assume that % is
a density of a probability measure. If so, then

R
R %.t/ dt D 1. This implies that

kh1;1kH.R1/ � 1, and therefore the initial error is at least one. Theorem 11.14 again
implies that weighted integration is intractable. Hence, the only case for which we can
break intractability is for a not-so-natural weight % when

R
R %.t/ dt < 1.

11.5.2 Example: Uniform Integration

We now remove the condition f .a/ D 0 from the example of uniform integration
studied in the previous section. We now haveD1 D Œ0; 1� and F1 is the Sobolev space
W 1.Œ0; 1�/ with the inner product

hf; giF1;�
D f .a/g.a/C

Z 1

0

f 0.x/g0.x/ dx:

The reproducing kernel is

K1.x; t/ D 1C 1M .x; t/min.jx � aj; jt � aj/
with M D Œ0; a� � Œ0; a� [ Œa; 1� � Œa; 1�.

For d > 1, we take Fd D W .1;1;:::;1/.Œ0; 1�d / as the d -fold tensor product of
W 1.Œ0; 1�/. The inner product of Fd is now given by

hf; giFd
D

X
u�Œd�

Z
Œ0;1�juj

@juj

@xu
f .xu; a/

@juj

@xu
g.xu; a/ dxu:

Here .xu; a/ is the vector x 2 Œ0; 1�d with all components whose indices not in u are
replaced by a.



11.5 Non-decomposable Kernels 189

We consider uniform integration

Id .f / D
Z
Œ0;1�d

f .t/ dt:

We now have R1 D 1 and

R2.x; t/ D 1M .x; t/min.jx � aj; jt � aj/:
This implies that h1;1 D 1, and kh1;1kH.R1/ D 1. The functions h1;2;.0/ D h1;.0/
and h1;2;.1/ D h1;.1/ are as in the previous sections. Therefore all the assumptions of
Theorem 11.14 are satisfied as long as a 2 .0; 1/. It is easy to check that the initial
error is now

e.0; d/ D �
1C 1

3

�
a3 C .1 � a/3��d=2 �

�
13

12

	d=2
;

which is exponentially large in d .
Hence, uniform integration is intractable for both the absolute and normalized error

criteria as along as the anchor a 2 .0; 1/. We return to the case a D 0 and a D 1

later.

11.5.3 Example: Centered Discrepancy (Continued)

We now remove the condition f .1
2
/ D 0. As before, for this special case we study the

more general case of theLq norm. We restrict ourselves to q > 1. That is,D1 D Œ0; 1�

and F1;q is the Sobolev space W 1
q .Œ0; 1�/ with the norm

kf kF1;q
D
�ˇ̌
f .1

2
/
ˇ̌q C

Z 1

0

jf 0.x/jq dx

	1=q
:

Observe that for q D 1 we have

kf kF1;1 D max
�jf .1

2
/j; ess sup

t2Œ0;1�
jf 0.t/j�:

For q D 2, we have the Hilbert space with the kernel

K1.x; t/ D 1C 1M .x; t/min
�jx � 1

2
j; jt � 1

2
j�:

For d > 1, we take Fd;q D W
.1;1;:::;1/
q .Œ0; 1�d / as the tensor product ofW 1

q .Œ0; 1�/.
The norm in Fd;q is given by

kf kFd;q
D
� X

u�Œd�

Z
Œ0;1�juj

ˇ̌̌̌
@juj

@xu
f .xu; 1=2/

ˇ̌̌̌q
dxu

	1=q
: (11.27)
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We consider uniform integration

Id .f / D
Z
Œ0;1�d

f .t/ dt:

The formula for the error of the algorithm Qn;d .f / D Pn
iD1 aif .zi / takes the form,

Id .f / �Qn;d .f /

D
X

u�Œd�

Z
Œ0;1�juj

@juj

@xu
f .xu;

1
2
/
@juj

@xu

�
hd �

nX
iD1

aiKd .�; zi /
�
.xu;

1
2
/ dxu;

where hd and the kernel Kd are given as before by

hd .x/ D 2�d
dY
jD1

�jxj � 1
2
j � jxj � 1

2
j2� ;

Kd .x; t/ D 2�d
dY
jD1

�jxj � 1
2
j C jtj � 1

2
j � jxj � tj j� ;

see Hickernell [118]. Applying the Hölder inequality for integrals and sums to Id .f /�
Qn;d .f / we conclude that

e.Qn;d / ´ sup
f 2Fd;q W kf kFd;q

�1

ˇ̌
Id .f / �Qn;d .f /

ˇ̌ D d cp .Qn;d /;

where 1=p C 1=q D 1 and the centered p-discrepancy d cp .Qn;d / is given by

d cp .Qn;d / D
� X

u�Œd�

Z
Œ0;1�juj

jdisc.n; d/c.xu;
1
2
/jp dxu

	1=p
; (11.28)

with

disc.n; d/c.xu;
1
2
/ D

Y
`2u

min.x`; 1 � x`/ �
nX
iD1

ai � 1J.a.xu/;xu/.ti /u:

Since we assume that q > 1, we now have p < 1.
Let e.n; d; q/ D dp.n; d/denote thenth minimal error or, equivalently, the minimal

nth centeredp-discrepancy, that can be achieved by using n function values. The initial
error, or the initial centered p-discrepancy, is given by

e.0; d; q/ D d cp .0; d/ D
� X

u�Œd�

�
2�p

p C 1

	juj 	1=p
D
�
1C 2�p

p C 1

	d=p
:
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From Corollary 11.11 we conclude that

d cp .n; d/ �
� dX
kD0

�
d

k

	�
2�p

p C 1

	k
� .1 � n 2�k/C

	1=p
:

For n � 2m < 2d , this can be rewritten as

d cp .n; d/ � 2�1=p
 
1 �

Pm
kD0

�
d
k

�
.2�p=.p C 1//kPd

kD0
�
d
k

�
.2�p=.p C 1//k

!1=p
d cp .0; d/:

Hence, we can check intractability of I D fId g for the normalized as well as the
absolute error criterion by using the proof of Theorem 11.14.

The case q D 1 can be analyzed similarly as the case of the star discrepancy. We
leave details to the reader.

11.5.4 Example: Sobolev Space Anchored at 0

As we have already explained, the L2 discrepancy is related to uniform integration
defined on the Sobolev space Fd D W

1;1;:::;1
0 .Œ0; 1�d / anchored at 0. We now show

how to apply the results of this section to obtain interesting lower bounds on multivariate
integration, as well as on the L2 discrepancy.

We begin with the boundary case. For d D 1, the reproducing kernel of F1 is now

K1.x; t/ D min.x; t/:

This kernel is formally decomposable at a� D 0. But thenD1;.0/ D f0g and h1;.0/ D 0

since all functions inF1 vanish at zero. Therefore ˛ D 1, and so Theorem 11.8 is trivial
in this case.

However, Theorem 11.12 offers an alternative approach. If we can present the
kernel K1 as the sum of the reproducing kernels

K1 D R1;a� CR2;a�

with a decomposable R2;a� for a� 2 .0; 1/ we may have a chance of concluding that
uniform integration is intractable for the Sobolev space W 1;1;:::;1

0 .Œ0; 1�d /, and obtain
interesting bounds for the L2 discrepancy.

We now show that this approach works. For an arbitrary a� 2 .0; 1/, consider the
subspace Fa� of F1 by taking functions for which f .a�/ D 0. That is,

Fa� D ff 2 W 1
0 .Œ0; 1�/ j f .a�/ D 0 g:

Note that the projection f � f .a�/K1.�; a�/=K1.a�; a�/ belongs to Fa� for any f 2
F1. This implies that

Fa� D H.R2;a�/
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is the Hilbert space with the reproducing kernel

R2;a�.x; t/ D K1.x; t/ � K1.x; a
�/K1.t; a�/

K1.a�; a�/
:

What is important for us is that

R2;a�.x; t/ D 0 for all .x; t/ 2 Œ0; a�� � Œa�; 1� [ Œa�; 1� � Œ0; a��:

Hence, R2;a� is decomposable at a�. We also have

R1;a�.x; t/ D K1.t; a
�/K1.x; a�/

K1.a�; a�/
;

and so the one-dimensional Hilbert space H.R1;a�/ consists of functions of the form

c min.�; a�/ with real c:

ObviouslyH.R1;a�/\H.R2;a�/ D f0g, since all functions inH.R2;a�/ vanish at a�
and the only function from H.R1;a�/ that vanishes at a� is the zero function. Clearly,

F1 D H.R1;a�/˚H.R2;a�/:

For uniform integration, h1 is given by h1.x/ D x � 1
2
x2. We thus have

h1;1.x/ D h1.a
�/
K1.x; a

�/
K1.a�; a�/

D �
1 � 1

2
a�� min.x; a�/;

h1;2;.0/.x/ D 1Œ0;a��.x/
�
1
2
a�x � 1

2
x2
�
;

h1;2;.1/.x/ D 1Œa�;1�.x/
�
x � 1

2
x2 � a� �1 � 1

2
a��� :

From this we compute

kh1;1k2H.R1;a� /
D �

1 � 1
2
a��2 a�;

kh1;2;.0/k2H.R2;a� /
D .a�/3

12
;

kh1;2;.1/k2H.R2;a� /
D .1 � a�/3

3
:

All the assumptions of Theorem 11.12 now hold. In particular, we may choose a� such
that

Œa��3 D 4.1 � a�/3;

which corresponds to a� D 41=3=.1C41=3/ D 0:613511790 : : : . Then the parameters
of Theorem 11.12 are

˛ D 1
2
; ˛1 D .1�a�=2/2a�; ˛2 D Œa��3=6; and ˛3 D Œa��2=Œ6.1�a�=2/2�;
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and we obtain

˛1 D 0:294846029 : : : ; ˛2 D 0:0384873039 : : : ˛3 D 0:130533567 : : : :

Then
˛�˛3=.1C˛3/ D 1:083321840 : : : :

For the normalized error criterion, uniform integration is intractable and for all " 2
.0; 1/ we have

1:0833d .1C o.1// � n."; d/ � ˙
.4=3/d "�2� as d ! 1:

The lower bound follows from Theorem 11.14, whereas the upper bound from Plaskota,
Wasilkowski and Zhao [248], see (11.18), since in our case we have

e.n; d/ � 1p
n

�
4

9

	d=2
;

which leads to the upper bound on n."; d/.
As we know, for the absolute error criterion, uniform integration is strongly poly-

nomially tractable.
We turn to the case without boundary conditions. That is, we now have the space

Fd D W 1;1;:::;1.Œ0; 1�d /. For d D 1, the reproducing kernel is

K1.x; t/ D 1C min.x; t/;

which is not decomposable. The initial error is now .4
3
/d=2, which is exponentially

large in d .
We can modify the representation of K1 as

K1 D .1CR1;a�/C R2;a� :

From this form we conclude that K1 satisfies the assumptions of Theorems 11.12 and
11.14 with R1 D 1CR1;a� and R2 D R2;a� .

For uniform integration we now have

h1.x/ D 1C x � 1
2
x2 and kh1k2H.R1/

D 1C .1 � 1
2
a�/a�:

The functions h1;2, h1;2;.0/ and h1;2.1/ are unchanged. For a� D 41=3=.1C 41=3/ we
obtain

˛ D 1
2
; ˛1 D 1:294846029 : : : ; ˛2 D 0:0384873039 : : : ; ˛3 D 0:0297234598 : : : :

Then
˛�˛3=.1C˛3/ D 1:020209526 : : : :

Hence for both the absolute and normalized error criterion, uniform integration is
intractable. More precisely, for both criteria we have

n."; d/ � 1:0202d .1C o.1//;
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whereas

n."; d/ �
��
4

9
.9 � 4p2/

�d
"�2

�
D ˙

.1:4858 : : : /d "�2� as d ! 1

for the absolute error criterion, and

n."; d/ �
�
9 � 4p2

3

�d
"�2

�
D ˙

.1:1143 : : : /d "�2� as d ! 1

for the normalized error criterion.
Again, the lower bounds follows from Theorem 11.14, whereas the upper bounds

from Plaskota, Wasilkowski and Zhao [248], see (11.18), and the fact thatZ
Œ0;1�d

p
K.t; t/ dt D


4

9

�
9 � 4p2

��d=2
:

We add in passing that we can obtain slightly better lower bounds if we restrict
ourselves to algorithms Qn;df D Pn

jD1 ajf .tj / with non-negative aj . This class
contains the class of quasi Monte Carlo algorithms, for which aj D n�1, and which
are widely used for many applications of high-dimensional integration. Then for the
class W 1;1;:::;1

0 .Œ0; 1�d / with the boundary conditions the lower bound takes the form

n."; d/ � �
9
8

�d
.1 � "2/ for all " 2 .0; 1/ and d 2 N;

see Section 10.5 of Chapter 10 as well as [352] where this result is proved for arbitrary
non-negative aj and [277] for aj D n�1.

Hence, instead of the bound 1:0833d we now have a slightly better bound .9
8
/d D

1:125d , at the expense of restricting the class of algorithms.
Without boundary conditions, we have the class W 1;1;:::;1.Œ0; 1�d /. Then for algo-

rithms with non-negative coefficients we have

n."; d/ � .1:0563/d .1 � "2/ for all " 2 .0; 1/ and d 2 N;

as computed in Section 10.5 of Chapter 10.
Hence, instead of the lower bound 1:0202d we now have 1:0563d with the upper

bound for the same class of algorithms with 1:1143d .

We end this section by the following remark that leads to an open problem. Decom-
posability of a reproducing kernel means that the space F1 contains two orthogonal
subspaces F.0/ and F.1/ such that for all f 2 F1 we have f D f.0/ C f.1/ with
f.j / 2 F.j / and

f.0/.x/ D 0 for all x … D.1/;
f.1/.x/ D 0 for all x … D.0/:
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This property does not hold for spaces of analytic functions, and therefore not every
reproducing kernel can be expressed with a decomposable part. For example, take

K1.x; y/ D
1X
jD0

xj

j Š

yj

j Š
for all x; y 2 R: (11.29)

This reproducing kernel corresponds to a Hilbert spaceF1 of entire functions for whichP1
jD0

�
f .j /.0/

�2
< 1 with the inner product

hf; giF1
D

1X
jD0

f .j /.0/ g.j /.0/ for all f; g 2 F1:

The results of this section do not apply for this space. Therefore we have the following
open problem, which is similar to Open Problem 44 in Section 10.5.4, as well as to
Open Problem 3 in Volume I for trigonometric polynomials.

Open Problem 55.

• Characterize intractability of linear tensor product functionals defined over the
tensor product of F1 with the reproducing kernel K1 given by (11.29) for the
normalized error criterion in the worst case setting.

11.6 Which Linear Tensor Product Functionals Are Tractable?

We return to the question of characterizing linear tensor product functionals that are
weakly, polynomially, or strongly polynomially tractable or that are intractable. As we
know, the answer to this question depends very much on the space Fd . As we shall
now see, we may answer this question for some spaces based on the previous results
on decomposable kernels.

As before, let Fd D H.Kd / be a tensor product reproducing kernel Hilbert space
of real functions defined on Dd D D1 �D1 � � � � �D1 with the kernel

Kd .x; t/ D
dY
jD1

K1.xj ; tj / for all x; t 2 Dd :

We consider a linear tensor product functional Id .f / D hf; hd iFd
with the representer

hd .x/ D
dY
jD1

h1.xj / for all x 2 Dd :

For simplicity, we assume that the function h21.t/=K1.t; t/ attains its maximum, i.e.,
there exists a point t� 2 D1 such that

sup
t2D1

h21.t/

K1.t; t/
D h21.t

�/
K1.t�; t�/

: (11.30)
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As before, we use the convention that 0=0 D 0.
For any a� 2 D1, let

F1;a� D ff 2 F1 j f .a�/ D 0g:
As we already observed, the subspace F1;a� has the reproducing kernel

R2;a�.x; t/ D K1.x; t/ �R1;a�.x; t/ with R1;a�.x; t/ D K1.x; a
�/K1.a�; t /

K1.a�; a�/
(11.31)

for all x; t 2 D1.

Theorem 11.15. Consider a linear tensor product functional Id .f / D hf; hd iFd
for

f from the tensor product space Fd defined as above. Assume that (11.30) holds, and
that for any a� fromD1 the reproducing kernelR2;a� given by (11.31) is decomposable
at a�. For the absolute error criterion we additionally assume that kh1kF1

� 1. Let
I D fId g. Then

I is intractable for the absolute and normalized error criterion iff e.1; 1/ > 0.

More precisely, for " 2 .0; 1/,
either n."; d/ � 1 or n."; d/ is exponentially large in d:

Furthermore, n."; d/ � 1 holds iff

Id .f / D adf .t; t; : : : ; t / for some real a and t 2 Œ0; 1�:
Proof. We consider several cases for h1.

Case 1. Assume that h1 D 0. Then Id 	 0, and obviously n."; d/ D 0.
Case 2. Assume that h1 6D 0 and e.1; 1/ D 0. From the formula for e.1; 1/ and the

assumption (11.30), this may only happen if

h21.t
�/

K1.t�; t�/
D kh1k2F1

> 0:

Hence
h21.t

�/ D hh1; K1.�; t�/i2F1
D kh1k2F1

K1.t
�; t�/:

Since kK1.�; t�/kF1
D p

K1.t�; t�/, this means that h1 is parallel to K1.�; t�/. Since
we are in a Hilbert space, two elements are parallel iff they are multiple of each other.
Hence, h1 D ˛K1.�; t�/ with ˛ D h1.t

�/=K1.t�; t�/. Therefore

h1.x/ D h1.t
�/

K1.t�; t�/
K1.x; t

�/ for all x 2 D1:

Then I1.f / D a f .t/ for all f 2 F1, with a D h1.t
�/=K1.t�; t�/ and t D t�. Due to

the tensor product structure, Id .f / D adf .t; t; : : : ; t / for all f 2 Fd , and therefore
n."; d/ � 1.
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Case 3. Assume finally that h1 is such that e.1; 1/ > 0. For any a� 2 D1,
decompose

h1 D ha�;1;1 C ha�;1;2 with ha�;1;1 2 H.R1;a�/ and ha�;1;2 2 H.R2;a�/:

We have

ha�;1;1.x/ D h1.a
�/

K1.a�; a�/
K1.x; a

�/ for all x 2 D1;
and

ha�;1;2.x/ D h1.x/ � ha�;1;1.x/ for all x 2 D1:
Hence, e.1; 1/ > 0 implies that no matter how we choose a�, the function ha�;1;2 is
non-zero.

Since R2;a� is decomposable at a�, Theorem 11.14 for ha�;1;1 6D 0 and (11.26)
for ha�;1;1 D 0 imply that if ha�;1;2;.0/ and ha�;1;2;.1/ are both non-zero then indeed
I is intractable. This holds for the normalized error criteria as well as for the absolute
error criterion since we assume in this case that e.0; 1/ D kh1kF1

� 1.
Let

Da�;.0/ D fx 2 D1 j x � a�g and Da�;.1/ D fx 2 D1 j x � a�g:
Since ha�;1;2;.0/ is equal to ha�;1;2 overDa�;.0/, and ha�;1;2;.1/ is equal to ha�;1;2 over
Da�;.1/, with ha�;1;2.a

�/ D 0, it is enough to prove that there exists a� 2 D1 such
that ha�;1;2 is not zero over both Da�;.0/ and Da�;.1/. Assume by contradiction that
for every a� 2 D1 we have

ha�;1;2

ˇ̌
Da�;.0/

D 0 or ha�;1;2

ˇ̌
Da�;.1/

D 0:

This means that for every a� 2 D1 we have

h1.x/ D h1.a
�/

K1.a�; a�/
K1.x; a

�/ for all x 2 Da�;.0/ (11.32)

or

h1.x/ D h1.a
�/

K1.a�; a�/
K1.x; a

�/ for all x 2 Da�;.1/: (11.33)

Define

a�
L D supfa� 2 D1 j for which (11.32) holdsg;
a�
R D inffa� 2 D1 j for which (11.33) holdsg:

Note that we cannot have a�
L < a

�
R since this contradicts that (11.32) or (11.33) holds

for all a� 2 D1. Hence, a�
L � a�

R. If a�
L > a

�
R then there is a� for which both (11.32)

and (11.33) hold. Then

h1.x/ D h1.a
�/

K1.a�; a�/
K1.x; a

�/ for all x 2 D1;
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and e.1; 1/ D 0, which is a contradiction.
Assume finally that a�

L D a�
R. Then

h1.x/ D h1.a
�/

K1.a�; a�/
K1.x; a

�/ for all x 2 D1 n fa�g:

Since a� 2 D1 then ha�;1;2.a
�/ D 0 and h1.a�/ D ha�;1;1.a

�/, so that

h1.x/ D h1.a
�/

K1.a�; a�/
K1.x; a

�/ for all x 2 D1;

and again e.1; 1/ D 0. This completes the proof.

The essence of Theorem 11.15 is that for the normalized error criterion and for the
absolute error criterion with kh1kF1

� 1, we have only two options, and these two
options are not good. Either the problem is trivial and can be solved by the use of
at most one function value, or the problem suffers from the curse of dimensionality.
Nothing in between can happen.

For the absolute error criterion with kh1kF1
< 1 the situation is different. As we

know, the problem may still be intractable even for d D 1. On the other hand, we also
saw many problems that are strongly polynomially tractable in this case.

We now show that the assumptions of Theorem 11.15 hold for a number of standard
spaces.

11.6.1 Example: Sobolev Spaces with r D 1 over Œ0; 1�d

We begin with the standard tensor product Sobolev spaceFd , which has the reproducing
kernel

Kd .x; t/ D
dY
jD1

�
1C min.xj ; tj /

�
for all x; t 2 Œ0; 1�d :

As we know, the inner product is now given by

hf; giFd
D

X
u�f1;2;:::;dg

Z
Œ0;1�juj

@juj

@xu
f .xu; 0/

@juj

@xu
g.xu; 0/ dxu;

where we differentiate once with respect to variables in u and the rest of variables are
replaced by 0.

Note that now the function

g.t/ D h21.t/

K1.t; t/
D h21.t/

1C t
for all t 2 D1 WD Œ0; 1�;

is a continuous function defined on a compact set and therefore it attains its maximal
and minimal values. Hence, (11.30) holds.
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Furthermore, for a� 2 D1 we have

R2;a�.x; t/ D 1Cmin.x; t/� .1C min.x; a�//.1C min.t; a�//
1C a� for all x; t 2 Œ0; 1�:

For x � a� � t we have

R2;a�.x; t/ D 1C x � .1C x/.1C a�/
1C a� D 0;

and indeed R2;a� is decomposable at a�. Hence, Theorem 11.15 is applicable for this
space.

We add in passing that for this space and for the absolute error criterion with
kh1kF1

< 1, we may have intractability and exponential dependence on "�1 even
for d D 1. This was shown in Example 10.4.3 of Section 10.4 of Chapter 10 for
the Sobolev space anchored at 0. In fact, intractability holds for a dense set of linear
functionals in this space. Note that the Sobolev space anchored at 0 is a subspace of
the Sobolev space considered here.

We now turn to the Sobolev space whose reproducing kernel for d D 1 is

K1;˛.x; t/ D 1C 1
2
Œjx � ˛j C jt � ˛j � jx � t j� for all x; t 2 Œ0; 1�

for some ˛ 2 Œ0; 1�. Obviously, for ˛ D 0 we have the previous case. This Sobolev
space was called the second weighted Sobolev space in Appendix A of Volume I. Here,
we have the unweighted case corresponding to � D 1; the weighted case will be studied
later in Chapter 12.

As we know, this space corresponds to the unweighted L2 discrepancy anchored
at ˛. We leave to the reader to check that the assumptions of Theorem 11.15 now hold
for all ˛.

We now switch to the Sobolev space whose reproducing kernel for d D 1 is given
by

K1.x; t/ D min.x; t/ � xt for all x; t 2 Œ0; 1�:
As we know, this space is related to the L2 unanchored discrepancy.

Let us check the assumption (11.30). We now have

g.t/ D h21.t/

t.1 � t / for all t 2 Œ0; 1�:

Keeping in mind that h1 2 F1 implies that h1.0/ D h1.1/ D 0, we see that g.0/ D
g.1/ D 0, and g is continuous. That is why (11.30) holds. The reader may check that
R2;a� is decomposable for all a� 2 Œ0; 1� and again Theorem 11.15 is applicable.

We now take the Sobolev space of absolutely continuous functions whose first
derivatives are in L2.Œ0; 1�/ with the inner product

hf; giF1
D
Z 1

0

f .t/g.t/ dt C
Z 1

0

f 0.t/g0.t/ dt:
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This space has the intriguing reproducing kernel,

K1.x; t/ D ˇ f .1 � max.x; t// f .min.x; t// for all x; t 2 Œ0; 1�;
see Thomas-Agnan [304], whereˇ D 1= sinh.1/ D 2=.e�1=e/, and f .y/ D cosh.y/.

This Sobolev space was called the first weighted Sobolev space in Appendix A of
Volume I. As before, here we study the unweighted case, and defer the study of the
weighted case to Chapter 12.

Note that the kernel valuesK1.x; t/ are always positive, and forh 2 F1, the function
h21.t/=K1.t; t/ as a continuous function over Œ0; 1� attains its maximum. So (11.30)
holds.

For this kernel and for a�; x; t 2 Œ0; 1�, we have

R2;a�.x; t/

D ˇ f .1 � max.x; t// f .min.x; t//

� ˇ f .1 � max.x; a�// f .min.x; a�// f .1 � max.t; a�// f .min.t; a�//
f .1 � a�/ f .a�/

:

Take x � a � t . Then

R2;a�.x; t/ D ˇ


f .1 � t / f .x/ � f .1 � a�/ f .x/ f .1 � t / f .a�/

f .1 � a�/ f .a�/

�
D 0;

so that R2;a� is decomposable at a� and this holds for all a� 2 Œ0; 1�.
Hence, Theorem 11.15 is applicable and only trivial linear tensor product func-

tionals are tractable. In particular, multivariate integration is intractable and suffers
from the curse of dimensionality. Note that for multivariate integration we now have
h1 	 1 and kh1kF1

D 1, so the absolute and normalized error criteria coincide. The
intractability of multivariate integration was known and proved originally in [280].

We stress that the specific form of f was not really used. It is only important that f
is chosen such thatK1 is a reproducing kernel and that (11.30) holds. Decomposability
at any a� holds with no extra conditions on f .

It is then natural to ask for which functions f W Œ0; 1� ! R, the function

K1.x; t/ D f .1 � max.x; t// f .min.x; t// for all x; t 2 Œ0; 1�;
is a reproducing kernel. We now show that this holds iff

• f .1 � t / f .t/ � 0 for all t 2 Œ0; 1�;
• jf .1 � t / f .t/j � jf .1 � x/ f .x/j for all x � t from Œ0; 1�:

Indeed, we must haveK1.t; t/ D f .1� t /f .t/ � 0 for all t 2 Œ0; 1�. Furthermore,
we must have jK1.x; t/j � p

K1.x; x/
p
K1.t; t/, which for x � t implies

jf .1 � t / f .t/j �
p
f .1 � x/ f .x/

p
f .1 � t / f .t/:
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This condition can be simplified to

jf .1 � t / f .t/j � jf .1 � x/ f .x/j for all x � t from Œ0; 1�:

This shows that the two conditions above are necessary. We now show that they are
also sufficient for K1 to be a reproducing kernel. Clearly, K1 is symmetric so it is
enough to prove that

mX
i;jD1

aiajK1.xi ; xj / � 0

for all choices of integer m, real aj and xj 2 Œ0; 1�. Without loss of generality we can
order xj such that

0 � x1 � x2 � � � � � xm � 1;

and then we need to show that

mX
i;jD1

aiajf .1 � xmax.i;j // f .xmin.i:j //

D 2

mX
iD1

aif .xi /

mX
jDiC1

ajf .1 � xj /C
mX
jD1

a2j f .xj / f .1 � xj / � 0:

We can also assume thatf .1�xj / are nonzero for all j D 1; 2; : : : ; m, since else we can
eliminate the zero terms and reduce m. Then the second condition jf .1 � t / f .x/j �
jf .1 � x/ f .t/j is equivalent to the condition

0 � f .xi /

f .1 � xi / � f .xj /

f .1 � xj / for all i � j:

We now substitute

aj D bj

f .1 � xj / and zj D f .xj /

f .1 � xj / for j D 1; 2; : : : ; m:

Note that z1 � z2 � � � � � zm. Therefore

mX
i;jD1

aiajf .1 � xmax.i;j // f .xmin.i:j // D
mX

i;jD1
bibj min.zi ; zj / � 0

since min.zi ; zj / corresponds to the function min.x; t/ for x; t 2 Œ0;1/ which is
known to be the reproducing kernel. This completes the proof.

Examples of f satisfying the two conditions above include

• f .x/ D x, and then

K1.x; t/ D .1 � max.x; t// min.x; t/ D min.x; t/ � xt
corresponds, as we know, to the L2 unanchored discrepancy, and
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• f .x/ D p
ˇ cosh.x/ that was our original motivating example.

Observe that the second condition always holds for x D 1, and it holds for x D 0

if f .0/ D 0. For f positive over .0; 1/, this condition is equivalent to the condition

f .x/

f .1 � x/ is nondecreasing as a function of x 2 .0; 1/.

For example, this holds for f .x/ D x˛ for ˛ > 0.
Hence, for all functionsf satisfying the two conditions above and for which (11.30)

holds, Theorem 11.15 applies for the univariate space F1 with the kernel

K1.x; t/ D f .1 � max.x; t// f .min.x; t// for all x; t 2 Œ0; 1�:
For this space, only trivial linear functionals are tractable.

11.6.2 Example: Sobolev Space with r � 1 over Rd

We first consider the case of r D 1. For d D 1, consider the Sobolev space F1 D
W 1.R/ of real univariate functions defined overD1 WD R that are absolutely continuous
and whose first derivative are in L2.R/ with the inner product

hf; giF1
D
Z

R
f .t/g.t/ dt C

Z
R
f 0.t/g0.t/ dt:

The reproducing kernel of this space was found in Thomas-Agnan [304] and is equal
to

K1.x; t/ D 1
2

exp.�jx � t j/ for all x; t 2 R:

For d � 1, define Fd D W 1;1;:::;1.Rd / as the d -fold tensor product of F1. Then the
inner product of Fd is given by

hf; giFd
D

X
u�f1;2;:::;dg

Z
Rd

@juj

@xu
f .x/

@juj

@xu
g.x/ dx;

where we differentiate once with respect to variables present in the subset u.
Note that now the function

g.t/ D h21.t/

K1.t; t/
D 2 h21.t/ for all t 2 R:

Although the function g is defined on a non-compact set, it attains the supremum since
h1 is continuous and

R 1
0
h21.t/ dt < 1, and therefore h1 vanishes at infinity. Hence,

(11.30) holds.
Furthermore, for a� 2 D1 we have

R1;a�.x; t/ D K1.x; a
�/K1.t; a�/

K1.a�; a�/
D 1

2
exp

��jx � a�j � jt � a�j�
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for all x; t 2 R. Then

R2;a�.x; t/ D K1.x; t/ �R1;a�.x; t/

D 1
2

�
exp.�jx � t j/ � exp.�jx � a�j � jt � a�j/�

for all x; t 2 R. For x � a� � t we have

R2;a�.x; t/ D 1
2

�
exp.x � t / � exp.x � a� C a� � t /� D 0;

and R2;a� is decomposable at a�. Hence, Theorem 11.15 is applicable also for this
space.

We now show two natural examples for which Theorem 11.15 is not applicable.
The first example is for a tensor product Sobolev space of periodic functions defined
on Œ0; 1�d whose reproducing kernel for d D 1 is given by

K1.x; t/ D 1C min.x; t/ � xt for all x; t 2 Œ0; 1�: (11.34)

As in Section 9.5.5 of Chapter 9, the space F1 is then

F1 D ff 2 W 1
2 .Œ0; 1�/ j f .0/ D f .1/g;

with the inner product

hf; giF1
D f .1/g.1/C

Z 1

0

f 0.t/g0.t/ dt:

We may convince ourselves that R2;a� is not decomposable for all a� 2 .0; 1/ even
without formally checking that indeed decomposability does not hold. Decomposabil-
ity at a� means that for any function f from F1, the behavior of f over Œ0; a�/ is
independent of its behavior over .a�; 1/. But in our case f is periodic and has the
same value at 0 and 1, and this property contradicts decomposability. So, for this space
Theorem 11.15 cannot be applied.

The second example is for the Sobolev space that was called the third Sobolev space
in Appendix A of Volume I. This is the space F1 of absolutely continuous functions
whose first derivatives are in L2.Œ0; 1�/ with the inner product

hf; giF1
D
Z 1

0

f .t/ dt
Z 1

0

g.t/ dt C
Z 1

0

f 0.t/g0.t/ dt:

The reproducing kernel of this space is

K1.x; t/ D 1C 1
2
B2.jx � t j/C .x � 1

2
/.t � 1

2
/ for all x; t 2 Œ0; 1�; (11.35)

where B2.x/ D x2 � x C 1
6

is the Bernoulli polynomial of degree 2.
Again we may check that R2;a� is not decomposable for all a� 2 .0; 1/. Indeed,

suppose thatR2;a� is decomposable at some a�. Then for any f 2 H.R2;a�/ we have
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f D f.0/ C f.1/ with f.0/ vanishing over Œa�; 1� and f.1/ vanishing over Œ0; a��, and
kf k2F1

D kf.0/k2F1
C kf.1/k2F1

. Hence

kf k2F1
D
 Z a�

0

f.0/.t/ dt

�2
C
Z 1

a�
f.1/.t/ dt

�2
C
Z a�

0

�
f 0
.0/.t/

�2
dt C

Z 1

a�

�
f 0
.1/.t/

�2
dt:

On the other hand,

kf k2F1
D
Z 1

0

f .t/ dt

�2
C
Z 1

0

�
f 0.t/

�2
dt:

This implies thatZ a�

0

f.0/.t/ dt
Z 1

a�
f.1/.t/ dt D 0 for all f 2 H.R2;a�/;

which can happen only if a� D 0 or a� D 1. So for this space, Theorem 11.15 cannot
be applied.

These two examples lead us to the next open problem.

Open Problem 56.

• Characterize tractability of linear tensor product functionals for the tensor product
Sobolev space Fd with the univariate kernel given for d D 1 by (11.34).

• Characterize tractability of linear tensor product functionals for the tensor product
Sobolev space Fd with the univariate kernel given for d D 1 by (11.35).

We now briefly consider the case r � 2. Theorem 11.15 uses a rank one modifica-
tion of the original reproducing kernel, which usually is not enough for r � 2. Indeed,
take the Sobolev space considered in the weighted integration example with r � 2.
For d D 1, the reproducing kernel is given by

K1.x; t/ D
r�1X
jD1

xj

j Š

tj

j Š
C 1M.x;t/

Z
RC

.jt j � u/r�1C .jxj � u/r�1C
..r � 1/Š/2 du (11.36)

for all x; t 2 R andM D f.x; t/ j xt � 0g. Then we needed to modifyK1 by the rank
r construction of

R1.x; t/ D
r�1X
jD1

xj

j Š

tj

j Š

to obtain a decomposable kernelR2 D K1�R1. Hence, for this space Theorem 11.15
is also not applicable. We present this as our next open problem.
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Open Problem 57.

• Characterize tractability of linear tensor product functionals for the tensor product
Sobolev space Fd with the univariate kernel given by (11.36) for r � 2.

A natural modification of the Sobolev space considered in this example is a tensor
product Sobolev space of smooth functions for which the norm for d D 1 is given by

kf k D
� rX
iD1

kf .i/k2L2.D1/

�1=2
(11.37)

for r � 2, where D1 D Œ0; 1� or D1 D R.
The reproducing kernel in this case is not explicitly known. Obviously, this makes

the tractability analysis even harder. This leads us to the next open problem.

Open Problem 58.

• Characterize tractability of linear tensor product functionals for the tensor product
Sobolev space Fd with the univariate norm given by (11.37) for r � 2.

We end this chapter with the following remark about decomposable kernels. The
notion of decomposability is based on the assumption thatD1 is a subset of R and tensor
products for thed -variate case are defined as thed -fold tensor products of the univariate
case. We already mentioned in Volume I that some linear tensor product functionals
or (more generally) operators may be defined by assuming that the univariate case is
replaced by them-variate case as naturally happens for some applications withm > 1,
see Kuo and Sloan [154], Kwas [161], Kwas and Li [162], and Li [173] and NR 5.2.1
of Volume I. For such problems the notion of a decomposable kernel should be defined
forD1 being a subset of Rm withm > 1. This can be probably done by assuming that
D1 D D.0/[D.1/ for some disjoint setsD.0/ andD.1/ or some sets whose intersections
has measure zero, and by assuming that the reproducing kernel Km W D1 � D1 ! R
has the property that Km.x; t/ D 0 if x 2 D.0/ and t 2 D.1/. Then the point a�
formally disappears and it is not clear how the results based on the point a� may be
recovered. For instance, the role of a� was important in Theorem 11.15 of this section
where we assume the decomposable part of the kernel for all a� from D1 � R. Also
the case of complex numbers has not yet been covered by the notion of decomposable
kernels. This leads us to the next open problem.

Open Problem 59.

• Generalize the results of this chapter for tensor product linear functionals defined
as here but withD1 being a subset of themdimensional real or complex Euclidean
space with m > 1.
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11.7 Notes and Remarks

NR 11.1:1. This chapter is mostly based on the results originally obtained in the two
papers [218] and [221], as well as a few new results that will be indicated in the
successive sections.

NR 11.3:1. This section is based on [218], whereas the second part of Theorem 11.6
is taken from [329]. In this section, we presented reproducing kernel Hilbert spaces
for which some linear tensor product functionals are polynomially tractable with "�1
exponent equal to 0 and d exponent equal to 1, whereas other linear tensor product
functionals suffer from the curse of dimensionality.

NR11.4:1.This section is based entirely on [221]. The notion of a decomposable kernel
was introduced in [221]. Theorem 11.8 is a slightly modified and strengthened version
of Theorem 1 in [221] in which only the normalized error criterion was considered.

In the proof of Theorem 11.8, we approximated the corresponding part of the lin-
ear functional with zero error for a sample point tj belonging to D.b/. In general,
this estimate is sharp, as illustrated for the example of two function values. How-
ever, for many practically important functionals the zero estimate is not sharp since
one function value is not enough to approximate the corresponding part of the linear
functionals with zero error. Therefore, one can strengthen Theorem 11.8 by assuming
that each part of the linear functional can be approximated with a lower bound, say,
khd;.b/kFd

.n.b/ C 1/�p.d/, where n.b/ is the number of function values with sample
points from D.b/. This may improve the total lower bound. We opted for simplicity
and did not present this line of thought in the text. However, we encourage the reader
to pursue this point.

NR 11.5:1. This section is also based on [221]. The main idea for obtaining a decom-
posable part of the reproducing kernel is to use a finite rank modification of the kernel.
Equivalently, this means that we decompose the space into a finite dimensional space
plus a space with a decomposable kernel. For the weighted integration example, a
rank r modification was used, whereas for the uniform integration example a rank one
modification was enough. We stress that a finite rank modification does not always
work, as mentioned at the end of this section.

NR 11.5:2. Theorem 11.14 is a slightly improved version of Theorem 3 from [221]. In
the proof of Theorem 11.14 we used a more accurate estimate of ln

�
d

bc dc
�

and obtain
a better estimate on C .

NR 11.5.4:1. For uniform integration defined for the Sobolev space anchored at 0, we
proved that

n."; d/ � 1:0833d .1C o.1//:

This is slightly better than the result in [221], where the base of the exponent is 1:0628.
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For uniform integration defined for the Sobolev space without boundary conditions,
we proved that

n."; d/ � 1:0202d .1C o.1//:

In Section 5 of [221] we performed similar computations but forgot that the number c
in point 4 of Theorem 3 in [221] must satisfy the two inequalities and obtained wrongly
C D 1:0463 : : : . The correct value of C is 1:0202 : : : , as reported in this section.

NR 11.6:1. This section is new. It seems interesting to generalize Theorem 11.15 for
more general tensor product spaces. One possibility may include the use of higher
rank modifications of the original reproducing kernel to get decomposable parts. This
would probably require us to assume a little more about the univariate case, i.e., that
not only e.1; 1/ is positive but that at least a couple of initial errors e.n; 1/ are positive;
such an assumption is usually not restrictive.



Chapter 12

Worst Case: Linear Functionals on Weighted Spaces

12.1 Introduction

In the previous chapters we studied linear functionals in the worst case setting for un-
weighted spaces. We obtained many intractability results, especially for the normalized
error criterion. We showed that the curse of dimensionality is indeed present for the
approximation of many linear functionals.

We now begin to extend the worst case analysis for approximation of linear func-
tionals for weighted spaces. Our main goal is to find sharp conditions on the weights
that yield various tractability results, and break the curse of dimensionality.

We define weighted linear functionals in Section 12.2, just as we did in Volume I
for weighted linear operators. We consider general weights, which are specialized in
the subsequent sections.

Section 12.3 is the first section in which we present lower bounds on the nth min-
imal worst case errors for weighted tensor product functionals defined over weighted
reproducing kernel Hilbert spaces. The key assumption is that the reproducing kernel
K1 for d D 1 has a decomposable part. More precisely, we assume that

K1 D R1 CR2

for two reproducing kernels for which the Hilbert spaces H.Rj / have only the zero
element in common andR2 is decomposable. We generalize Theorems 11.12 and 11.14
from Chapter 11 by showing how weights affect lower bounds. This allows us to present
conditions on the weights that disallow certain kinds of tractability. These conditions
tell us that if the weights do not decay sufficiently fast then tractability cannot hold. The
tractability conditions are mainly for the normalized error criterion, as well as for the
absolute error criterion whenever the initial error is at least one. The last assumption is
quite natural, since we have already seen that some linear functionals are tractable for
the absolute error criterion with the initial error less than one, even for the unweighted
case. As always, we illustrate our bounds by a number of examples.

The next Section 12.4 is on product weights. For such weights, we obtain more
explicit tractability conditions. Roughly speaking, strong polynomial or strong T -
tractability does not hold if the sum of product weights is not bounded as a function
of d , whereas polynomial tractability does not hold if the sum of product weights
divided by ln d is unbounded as a function of d . We also present a condition that
rules out T -tractability. This condition states that T -tractability does not hold if the
sum of product weights divided by ln T ."�1; d / is unbounded as a function of d for "
close to 1. We also present lower bounds on the d exponent whenever polynomial or
T -tractability holds.
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Our estimates are derived for bounded product weights. We show that the as-
sumption on boundedness is indeed needed, and for unbounded product weights the
tractability results are quite different.

Section 12.5 relaxes the assumption that the reproducing kernel R2 should be de-
composable. Instead, we assume that R2 can be decomposed as R2 D R2;1 C R2;2
with the Hilbert spaces H.R2;j / having only the zero element in common and with a
decomposable R2;2. It turns out that under this relaxed assumption we obtain practi-
cally the same tractability conditions as before. We illustrate the results of this section
for weighted integration of smooth functions. We also show that tractability may de-
pend on details of how the weighted spaces are defined. For product weights, it turns
out that our necessary and sufficient conditions on tractability are the same only for
R1 D 1, whereas for more general R1 they are different; in fact, tractability is open in
this case. We are inclined to believe that R1 D 1 is indeed needed, and that otherwise
weighted integration is intractable and suffers from the curse of dimensionality. This
is presented as Open Problem 62.

Section 12.6 deals with upper bounds on the nth minimal errors. Our approach
is parallel to the approach in Chapter 10, where we derived upper bounds first for
multivariate integration and then for linear functionals whose representers have a fi-
nite star norm k � k�, see Section 10.10 of Chapter 10. For multivariate integration in
the weighted case, we obtain sufficient tractability conditions that resemble necessary
tractability conditions. For the absolute error criterion these conditions are less restric-
tive than for the normalized error criterion, in particular, they hold if the representers
have a small norm. For the normalized error criterion we need to assume a quite restric-
tive assumption that tells us that H.R1/ must be a one-dimensional space and that the
part of the representer must be related to R1, see (12.11). For R1 	 1, these assump-
tions are satisfied only for standard multivariate integration. Nevertheless, in this case
we obtain the same necessary and sufficient conditions on product weights for a num-
ber of multivariate integration problems defined over standard spaces. For arbitrary
finite-order or finite-diameter weights, we obtain strong polynomial tractability for the
normalized error criterion. As usual, we only have bounds on the exponent of strong
tractability. For some spaces we know that the minimal value of the exponent can be
achieved if we additionally assume more severe conditions on weights. Whether these
extra conditions on weights are indeed needed is an open question, which is presented
as Open Problem 63.

Section 12.7 deals with upper bounds for more general linear functionals. This
generality is achieved at the expense of more severe conditions on weights. The reason
for these extra conditions is that the star norm k � k�

Fd
is not a Hilbert norm, and so we

can no longer say that parts of a representer are orthogonal. The tractability conditions
are expressed in terms of the square root of weights. In this case, our tractability results
are not so strong as for multivariate integration. In particular, for finite-order weights
of order ! and the normalized error criterion, we obtain polynomial tractability with
a d exponent at most 2! instead of ! as before. For product weights and still for the
normalized error criterion, the difference between necessary and sufficient conditions
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is even more significant. For example, if strong polynomial tractability holds, then
the sum of product weights must be uniformly bounded in d ; however, we are able to
show strong polynomial tractability only if the sum of the squares of product weights
is uniformly bounded in d . It is not clear if the last condition is really needed; we
present this as Open Problem 64.

There are five open problems presented in this chapter, numbered from 60 to 64.

12.2 Weighted Linear Functionals

In the previous chapter we studied linear (unweighted) tensor product functionals. They
were defined on tensor product spaces

Fd D F1 ˝ F1 ˝ � � � ˝ F1; d times;

where F1 D H.K1/ was a reproducing kernel Hilbert space with a reproducing ker-
nel K1 W D1 �D1 ! R and D1 � R. We considered

Id .f / D hf; hd iFd
for all f 2 Fd ;

with

hd .x/ D
dY
jD1

h1.xj / for x 2 Dd D D1 �D1 � � � �D1; d times,

and for h1 2 F1. Then we assumed that

K1 D R1 CR2

for two reproducing kernelsR1 andR2whose reproducing kernel Hilbert spacesH.Rj /
satisfied

H.R1/ \H.R2/ D f0g:
Note that in this case, the reproducing kernel Kd of the space Fd was given by

Kd .x; t/ D
dY
jD1

K1.xj ; tj / D
X

u�Œd�

Y
j…u

R1.xj ; tj /
Y
j2u

R2.xj ; tj / for all x; t 2 Dd :

As always, Œd � D f1; 2; : : : ; dg. For u D ; and u D Œd � the value of the product with
the empty range is taken as 1.

This allowed us to decompose f 2 Fd as

f .x/ D
X

u�Œd�
f Nu;1.x Nu/ fu;2.xu/;

where
f Nu;1 2 H.R Nu;1/ with R Nu;1.x Nu; t Nu/ D

Y
j…u

R1.xj ; tj /;
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and
fu;2 2 H.Ru;2/ with Ru;2.xu; tu/ D

Y
j2u

R2.xj ; tj /:

Again, for u D ; and u D Œd � we take f;;2 D 1 and fŒd�;1 D 1.
The inner product of f; g from Fd can be written as

hf; giFd
D

X
u�Œd�

hf Nu;1; g Nu;1iH.R Nu;1/
hfu;2; gu;2iH.Ru;2/

with
˝
fŒd�;1; gŒd�;1

˛
H.R

Œd�;1
/

D 1 and hf;;2; g;;2iH.R;;2/
D 1.

We are ready to generalize these notions for a weighted case. Assume that a se-
quence

� D f�d;ugd2N;u�Œd�
of weights is given with �d;u � 0. To omit the trivial problem, we always assume that
there is a non-zero �d;u > 0 for every d .

Then we define the weighted space Fd;� as the Hilbert space with the reproducing
kernel

Kd;� .x; t/ D
X

u�Œd�
�d;u

Y
j…u

R1.xj ; tj /
Y
j2u

R2.xj ; tj / for all x; t 2 Dd :

The inner product in Fd;� takes the form

hf; giFd;�
D

X
u�Œd�

��1
d;u hf Nu;1; g Nu;1iH.R Nu;1/

hfu;2; gu;2iH.Ru;2/
:

As always, we adopt the convention that if �d;u D 0 then fu;2 D 0 for all fu;2 2
H.Ru;2/, and interpret 0=0 D 0.

Obviously, if all �d;u > 0 then Fd;� D Fd and

1

maxu �d;u
kf kFd

� kf kFd;�
� 1

minu �d;u
kf kFd

for all f 2 Fd :

However, if some �d;u D 0, then Fd;� is a proper subspace of Fd .
For general weights, Fd;� is not a tensor product space, even though we started

from the tensor product space Fd . However, if we consider product weights, i.e.,

�d;u D
Y
j2u

�d;j for all u � Œd �;

for some non-negative �d;j and with �d;; D 1, then

Kd .x; t/ D
dY
jD1

�
R1.xj ; tj /C �d;jR2.xj ; tj /

�
for all x; t 2 Dd ;
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and

Fd;� D H.R1 C �d;1R2/˝H.R1 C �d;2R2/˝ � � � ˝H.R1 C �d;dR2/

becomes a tensor product space.
We want to study the linear tensor product functional Id .f / D hf; hd iFd

over
the space Fd;� . Note that h1 2 F1 means that h1 has an orthogonal decomposition
h1 D h1;1 C h1;2 with h1;j 2 H.Rj / for j D 1; 2, and

kh1k2F1
D kh1;1k2H.R1/

C kh1;2k2H.R2/
:

Define

hd;� .x/ D
X

u�Œd�
�d;u

Y
j…u

h1;1.xj /
Y
j2u

h1;2.xj / for all x 2 Dd ;

with the value of products for empty sets taken as 1. Clearly, hd;� 2 Fd;� . It is easy
to see that

hf; hd iFd
D ˝
f; hd;�

˛
Fd;�

for all f 2 Fd;� :
Indeed, it is enough to check the last equality for f of the form

f D
mX
iD1

aiKd;� .�; xi /

for arbitrary integer m, reals ai and points xi from Dd . Then

hf; hd iFd
D

mX
iD1

ai
X

u�Œd�
�d;u

Y
j…u

h1;1..xi /j /
Y
j2u

h1;2..xi /j /

D
mX
iD1

aihd;� .xi / D ˝
f; hd;�

˛
Fd;�

;

as claimed.
Hence, we will study in this chapter weighted linear functionals

Id;� .f / D ˝
f; hd;�

˛
Fd;�

for all f 2 Fd;� :

Obviously, Id;� .f / D Id .f / for all f 2 Fd;� . This means that Id;� is the restriction
of the previous linear functional Id to the weighted spaceFd;� . We change the notation
from Id to Id;� to stress the change of the domain to the space Fd;� and the role of
the weights. Observe that for �d;u 	 1 we have the unweighted case studied in the
previous chapter. For general weights � , we have

kId;�k2 D khd;�k2Fd;�
D

X
u�Œd�

�d;ukh1;1k2.d�juj/
H.R1/

kh1;2k2juj
H.R2/

; with 00 D 1:
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We now want to determine which weights � make the problem I� D fId;�g tractable.
In the next section we study lower bounds on the minimal worst case errors of Id;� and
necessary conditions on tractability of I� , and later sections contain upper bounds and
sufficient conditions on tractability of I� .

We will address T -tractability, whose definition we recall from Section 9.7 of
Chapter 9. We repeat that T W Œ1;1/ � Œ1;1/ ! Œ1;1/ is a non-decreasing function
of the two variables and it is non-exponential, that is,

lim
xCy!1

T .x; y/

x C y
D 0:

Without loss of generality we restrict ourselves to functions T for which

lim
y!1T .x; y/ D 1 for all x > 1:

Let n."; d/ D nwor."; Id;� / denote the information complexity, that is, the minimal
number of function values needed to compute an approximation with the worst case
error "CRId , where CRId D 1 for the absolute error criterion and CRId D kId;�k for
the normalized error criterion.

We say that I� is T -tractable if the information complexity n."; d/ satisfies

n."; d/ � C T ."�1; d /t for all " 2 .0; 1/; d 2 N

for some non-negative numbers C and t . We say that I� is strongly T -tractable if

n."; d/ � C T ."�1; 1/t for all " 2 .0; 1/; d 2 N

for some non-negative numbersC and t . The infimum of t satisfying the last inequality
is called the exponent of strong T -tractability.

For T .x; y/ D xy, we recover polynomial tractability. In this case, we may
distinguish between the exponents of "�1 and d . That is, if

n."; d/ � C "�p dq for all " 2 .0; 1/; d 2 N

then p is called the "�1 exponent and q the d exponent. We stress that they are not
uniquely defined.

Finally, we say that I� is weakly tractable if 1

lim
"�1Cd!1

ln n."; d/

"�1 C d
D 0:

If weak tractability does not hold then we say that I� is intractable. If n."; d/ is
exponential in d for some " then we say that I� suffers from the curse of dimensionality.
Obviously, the curse of dimensionality implies intractability.

1We remind the reader that we adopt the convention ln 0 D 0. Hence, for the trivial problem in which
n."; d/ � 0 the condition on weak tractability is automatically satisfied.
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12.3 Lower Bounds

In this section we generalize Theorems 11.12 and 11.14 from Chapter 11 by showing
the corresponding lower bounds for the weighted case. As before, we first assume that
the reproducing kernel R2 is decomposable, i.e., there exists a real number a� such
that

R2.x; t/ D 0 for all x; t 2 D1 such that .x � a�/.t � a�/ � 0:

Since h1 D h1;1 C h1;2 with h1;j 2 H.Rj /, we can decompose

h1;2 D h1;2;.0/ C h1;2;.1/;

as in Chapter 11, with h1;2;.0/ D h1;2 over D1 \ fx W x � a�g, and h1;2;.1/ D h1;2
over D1 \ fx W x � a�g. Then h1;2;.j / 2 H.R2/ and

˝
h1;2;.0/; h1;2;.1/

˛
H.R2/

D 0.
We let e.n; d/ D ewor.n; Id;� / denote thenth minimal worst error of approximating

Id;� over the unit ball of Fd;� .

Theorem 12.1. Assume that

H.R1/ \H.R2/ D f0g and R2 is decomposable:

Then
e2.n; d/ �

X
u�Œd�

�d;u
�
1 � n˛juj�

C ˛
d�juj
1 ˛

juj
2 ; with 00 D 1;

where
˛1 D kh1;1k2H.R1/

; ˛2 D kh1;2k2H.R2/
;

and

˛ D max
�kh1;2;.0/k2H.R2/

; kh1;2;.1/k2H.R2/

�
kh1;2;.0/k2H.R2/

C kh1;2;.1/k2H.R2/

2 �1
2
; 1
�
:

Proof. We basically proceed as in the proof of Theorem 11.12. We decompose the
square of the worst case error of an arbitrary linear algorithm Qn;d as

e2.Qn;d / D
X

u�Œd�
�d;u e

2
u;

where

e2u � kh Nu;1k2H.R Nu;1/

�
1 � n˛juj�

C khu;2k2H.Ru;2/
D ˛

d�juj
1

�
1 � n˛juj�

C˛
juj
2 ;

as before. Since this holds for any algorithm Qn;d , the same lower bound holds for
the nth minimal error e2.n; d/, which completes the proof.

For �d;u 	 1, the sum over u can be rewritten as the sum over the cardinality
of u, and so Theorem 12.1 reduces to Theorem 11.12. In fact, for the order-dependent
weights, when

�d;� D �d;juj
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for some non-negative sequence f�d;j gj2Œd�;d2N, we have

e2.n; d/ �
dX
kD0

�d;k

�
d

k

	 �
1 � n˛k�C ˛d�k

1 ˛k2 :

For general weights, we can rewrite the estimate on e2.n; d/ as

e2.n; d/ �
dX
kD0

� X
uW jujDk

�d;k

� �
1 � n˛k�C ˛d�k

1 ˛k2 :

Assume for a moment that h1;1 D 0 (which always holds for R1 D 0). Then
˛1 D 0, and so Theorem 12.1 yields

e2.n; d/ � �d;Œd�.1 � n˛d /C ˛d2 D .1 � n˛d /C e2.0; d/:
For ˛ < 1 and e.0; d/ > 0, we then have intractability and the curse of dimensionality
of I� for the normalized error criterion, since

n."; d/ D nwor."; Id;� / � ˛�d .1 � "2/ for all " 2 .0; 1/ and d 2 N:

For the absolute error criterion, we have

n."; d/ � ˛�d
�
1 � "2

�d;Œd�˛
d
2

	
:

Hence, we again have intractability and the curse of dimensionality if ˛ < 1 and

e.0; d/ D �
�d;Œd�˛

d
2

�1=2 � 1.
From now on, we assume that h1;1 6D 0, and denote

˛3 D ˛2

˛1
D kh1;2k2H.R2/

kh1;1k2H.R1/

: (12.1)

Then the lower estimate of Theorem 12.1 can be rewritten as

e2.n; d/

e2.0; d/
�
Pd
kD0

�
˛k3
P

u�Œd�W jujDk �d;u
�
.1 � n˛k/CPd

kD0
�
˛k3
P

u�Œd�W jujDk �d;u
� :

For d 2 N and m 2 f0; 1; : : : ; dg, define

f .m; d/ D
Pm
kD0 ˛k3

P
u�Œd�WjujDk �d;uPd

kD0 ˛k3
P

u�Œd�WjujDk �d;u
:

This function will be important for studying the tractability of I� . Clearly f .m; d/ 2
Œ0; 1�. We are ready to formulate conditions on the lack of various notions of tractability
of I� in terms of the function f .



216 12 Worst Case: Linear Functionals on Weighted Spaces

Theorem 12.2. Consider I� D fId;�g defined as in Section 12.2 in the worst case
setting for the normalized error criterion or for the absolute error criterion with
e.0; d/ � 1. Assume that

H.R1/ \H.R2/ D f0g and R2 is decomposable:

Assume also that h1;1 as well as h1;2;.0/ and h1;2;.1/ are non-zero.

• If
lim sup
m!1

lim inf
d!1

f .m; d/ < 1

then I� is not strongly T -tractable for any tractability function T .

• If
lim sup
m!1

lim inf
d!1

f .dm ln de; d / < 1

then I� is not polynomially tractable.

• For " 2 .0; 1/, let

a" WD lim sup
m!1

lim inf
d!1

f .dm ln T ."�1; d /e; d /:

If 2

lim
"!1�

a" < 1

then I� is not T -tractable.

• If
lim inf
d!1

f .dc de; d / < 1 for some positive c < 1

then I� is intractable and suffers from the curse of dimensionality.

Proof. It is enough to consider the normalized error criterion, since e.0; d/ � 1 implies
that the absolute error criterion is harder. Since h1;2;.0/ and h1;2;.1/ are non-zero, we
know that

˛ D max
�kh1;2;.0/k2H.R2/

; kh1;2;.1/k2H.R2/

�
kh1;2;.0/k2H.R2/

C kh1;2;.1/k2H.R2/

2 �1
2
; 1
�
:

Take a 2 .0; 1/. For any integer n, define s.a; n/ as the smallest integer k for which

n˛k � a:

Obviously,

s.a; n/ D
�

ln n=a

ln 1=˛

�
2Clearly, a" is a non-increasing function of " and therefore the limit of a" exists as " goes to 1 from

below.
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and goes to infinity if a goes to zero or if n goes to infinity.
Using the proof of Theorem 11.14, we know that for d � m � s.a; n/ we have

e2.n; d/

e2.0; d/
� .1 � a/.1 � f .m; d//:

Assume that
l� WD lim sup

m!1
lim inf
d!1

f .m; d/ < 1:

Take ı 2 .0; 1 � l�/. Then there exists an integer mı such that

lim inf
d!1

f .m; d/ < l� C ı for all m � mı :

This implies that

lim inf
d!1

e2.n; d/

e2.0; d/
� .1 � a/.1 � l� � ı/:

Since this holds for arbitrarily small positive a and ı, we also have

lim inf
d!1

e2.n; d/

e2.0; d/
� 1 � l�:

We stress that this holds for arbitrarily large n. This proves that

lim sup
d!1

n."; d/ D 1 for all "2 2 .0; 1 � l�/;

and contradicts strong T -tractability, i.e., that n."; d/ � C T ."; 1/t for all d .
Assume now that

l� WD lim sup
m!1

lim inf
d!1

f .dm ln de; d / < 1:

Take an arbitrary positive integer q and let n D dq . Choose a > 0. Then no matter
how small a and how large q may be, for large d and large m 2 Œd � we have

dm ln de � s.a; dq/ D
�
q ln d C ln 1=a

ln 1=˛

�
:

Similarly as before, this proves that

lim inf
d!1

e2.dq; d /

e2.0; d/
� 1 � l� for all q 2 N;

and contradicts polynomial tractability, i.e., that n."; d/ � C "�p�
d q

�
for some p�

and q� and all "2 2 .0; 1 � l�/ and d 2 N.
Assume that

l� WD lim
"!1�

a" < 1:
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Then for any ı 2 .0; 1 � l�/ there exists a positive "ı such that

a" D lim sup
m!1

lim inf
d!1

f .dm ln T ."�1; d //e; d / � l� C ı for all " 2 .0; "ı/:

Take an arbitrary positive t and C , and let

n D dC T ."�1; d /te D C1;dT ."
�1; d /t

with C1;d � C . Note that since T ."�1; d / goes to infinity with d , we have

C1;d D C C o.d/:

Then no matter how small a and large t and C may be, for large d and large m 2 Œd �
we have

dm ln T ."�1; d /e � s.a; dC T ."�1; d /te/ D
�
t ln T ."�1; d /C lnC1;d=a

ln 1=˛

�
:

Then we conclude as before that

lim inf
d!1

e2.dC T ."�1; d /te/; d/
e.0; d/

� 1 � l� � ı for all real positive t and C :

This holds for all " � "ı . Therefore this contradicts T -tractability, i.e., that n."; d/ �
C � T ."�1 d/ t� for some C � and t� and all "2 2 .0; 1 � l�/ and d 2 N.

Assume that

l� WD lim inf
d!1

f .dc de; d / < 1 for some positive c < 1:

For a 2 .0; 1/, let
n D ba˛�c dc:

Then s.a; ba˛�c dc/ � dc de, and therefore

lim inf
d!1

e.ba˛�c dc; d /
e.0; d/

� .1 � a/1=2.1 � l�/1=2:

Hence, for "� D 1
2
.1 � a/1=2.1 � l�/1=2 we have

n."�; d / � a ˛�c d .1C o.1// as d ! 1

which shows that n."�; d / is exponential in d and I� suffers from the curse of dimen-
sionality. This completes the proof.

We now illustrate Theorem 12.2 by several examples.
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12.3.1 Example: Constant and Almost Constant Weights

Assume first that �d;u D ˇd > 0 for all u � Œd �. Then e.0; d/ D ˇ
1=2

d
kh1kdF1

, and

e.0; d/ � 1 for ˇd � kh1k�2d
F1

.
For the normalized error criterion, a positive ˇd does not matter since the function

f is invariant under a scaling of the weights, and we now have

f .m; d/ D
Pm
kD0 ˛k3

�
d
k

�Pd
kD0 ˛k3

�
d
k

� D
Pm
kD0 ˛k3

�
d
k

�
.1C ˛3/d

:

We have the same situation as in Theorem 11.14, and therefore the last condition
of Theorem 12.2 holds for any c < ˛3=.1 C ˛3/. Hence, we have the curse of
dimensionality.

Assume now that �d;; D 1 and �d;u D ˇd > 0 for all non-empty u � Œd �. Then

e2.0; d/ D kh1;1k2dH.R1/
.1 � ˇd /C ˇdkh1k2dF1

:

Clearly, e.0; d/ > 1 if kh1;1kH.R1/ � 1. For the normalized error criterion, we now
have

f .m; d/ D 1C ˇd
Pm
kD1 ˛k3

�
d
k

�
1C ˇd Œ.1C ˛3/d � 1� :

Take now ˇd D ˇd . Then for ˇ.1C˛3/ � 1we claim that I� is intractable. Indeed, as
we did before in the proof of Theorem 11.14, it is easy to check that for small positive c
and m D dc de, the terms ˛k3

�
d
k

�
are increasing for all k � dc de, and therefore

mX
kD1

˛k3

�
d

k

	
� dc de˛dc de

3

�
d

dc de
	

D exp .c .ln 1=c/ d.1C o.c/// :

Hence

ˇd

mX
kD1

˛k3

�
d

k

	
� exp .Œln.ˇ/C c ln 1=c� d.1C o.c/// :

For ˇ.1C ˛3/ > 1 and small positive c, we have

lim
d!1

f .dc de/ � lim
d!1

exp .Œ� ln.1C ˛3/C c ln 1=c� d.1C o.c/// D 0;

whereas for ˇ.1C ˛3/ D 1, we have

lim inf
d!1

f .dc de/ � 1C limd!1 exp.Œ� ln.1C ˛3/C c ln.1=c/�d.Co.c///
2

D 1

2
:

In both cases, the fourth case of Theorem 12.2 implies intractability.
For ˇ.1C ˛3/ < 1, observe that even for m independent of d , the values f .m; d/

go to 1 as d approaches infinity, and the condition on the lack of strong tractability is
not satisfied. As we shall see in the next example, the condition ˇ.1C ˛3/ < 1 may
even yield strong polynomial tractability.
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12.3.2 Example: Three Function Values

For d D 1, we take D D Œ�1; 1�, R1 	 1, and R2 as a reproducing kernel such that
1 … H.R2/, R2 is symmetric and decomposable at 0, and

R2.�1;�1/ D R2.1; 1/ D 1:

Then K1 D R1 CR2 and F1 D H.K1/.
An example of such an R2 is

R2.x; t/ D
´

min.jxj; jt j/ for xt � 0;

0 for xt < 0:

In this case, the inner product of F1 is

hf; giF1
D f .0/g.0/C

Z 1

�1
f 0.t/ g0.t/ dt for all f; g 2 F1:

Let
I1.f / D f .0/C f .�1/C f .1/ for all f 2 F1

be the sum of three function values functional. Clearly,

I1.f / D hf; h1iF1
with h1.x/ D 1CR2.x;�1/CR2.x; 1/ for all x 2 D:

We now have h1;1 D 1, h1;2 D R2.�;�1/ C R2.�; 1/ with h1;2;.0/ D R2.�;�1/ and
h1;2;.1/ D R2.�; 1/, and therefore

˛1 D kh1;1k2H.R1/
D 1; ˛2 D kh1;2k2H.R2/

D 2; ˛3 D 2; ˛ D 1
2
:

For d � 1, we then have

Id .f / D
X

b2f�1;0;1gd

f .b/ for all f 2 Fd D F1 ˝ F1 � � � ˝ F1; d times.

Hence, Id consists of 3d function values, and Id .f / D hf; hd iF1
with

hd .x/ D
dY
jD1

�
1CR2.xj ;�1/CR2.xj ; 1/

�
for all x 2 Dd D Œ�1; 1�d :

We also have
kIdk D khdkFd

D 3d=2:

For the unweighted case, Theorem 11.14 states that I� is intractable for both the absolute
and normalized error criteria.
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We now turn to the weighted case, � D f�d;ug with �d;; D 1. We have Id;� .f / D˝
f; hd;�

˛
Fd;�

with

hd;� .x/ D 1C
X

;6Du�Œd�
�d;u

Y
j2u

h1;2.xj / for all x 2 Œ�1; 1�d :

The initial error is now

kId;�k D khd;�kFd;�
D
h
1C

X
;6Du�Œd�

�d;u2
juji1=2:

We need to have an upper bound on the information complexity n."; d/. Consider
the following algorithm. Forn � 3d , choose a subsetAn of f�1; 0; 1gd of cardinalityn.
Then

An;d .f / D
X
b2An

f .b/:

Clearly,

Id .f / � An;d .f / D
X

b2f�1;0;1gd nAn

f .b/ D
D
f; hd;� �

X
b2An

Kd;� .�; b/
E
Fd;�

:

The square of the worst case error of An;d is then

e2.An;d / D
���hd;� �

X
b2An

Kd;� .�; b/
���2
Fd;�

D
X

u�Œd�
�d;u2

juj �
X
b2An

�d;ub
2jub j;

where ub D fj 2 Œd � j bj 6D 0g.
Based on this error formula, it is clear how to select the set An. First we order the

sequence f�d;u2jujg such that

�d;u1
2ju1j � �d;u2

2ju2j � � � � � �d;u
2d
2ju

2d j:

Then we take
An D ˚

�d;u1
2ju1j; �d;u2

2ju2j; : : : ; �d;un
2junj


as the n largest normalized weights. For such a choice of An, we have

e2.An;d / D e2.0; d/ �
nX

jD1
�d;uj

2juj j:

Consider now the (almost constant) weights �d;u D ˇd > 0 for all non-empty u � Œd �.
In the previous example, we already checked that the problem is intractable whenever
ˇ.1 C ˛3/ D 3ˇ � 1. We want to show that for 3ˇ < 1, the problem is strongly
polynomially tractable for both the absolute and normalized error criteria. Note that

e2.0; d/ D 1C ˇd .3d � 1/ D 1C .3ˇ/d .1 � 3�d / ! 1 as d ! 1;
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so that there is no essential difference between the two error criteria for large d .
For the algorithm An;d the largest normalized weight is �d;u1

2ju1j D 1, and so

e2.An;d / D 1C ˇd .3d � 1/ � 1 � ˇd
n�1X
kD1

2juj j � .3ˇ/d � ˇd .n � 1/:

We want to choose n such that e.An;d / � ". For "2 � .3ˇ/d we can take n D 1. For
"2 D x.3ˇ/d with x 2 .0; 1/ we take

n D 1C ˙
3d .1 � x/� D 1C ˙

"�2p xp.1 � x/ Œ 3.3ˇ/p �d �:
If we take p such that 3.3ˇ/p D 1, i.e.,

p D ln 3

ln 1=.3ˇ/
;

then we have
n � 1C ˙

"�2p� :
This proves strong polynomial tractability. However, note that p goes to infinity as ˇ
approaches 1

3
, and approaches zero as ˇ goes to zero. Of course, for ˇ going to zero,

the problem becomes trivial, which is reflected in the bound on the exponent of strong
polynomial tractability.

12.3.3 Example: Order-Dependent Weights

We now assume that
�d;u D �d;juj for all u � Œd �;

where �d;j are non-negative for j 2 Œd � and d 2 N. Take first

�d;j D �j for all j 2 Œd �; d 2 N;

for some positive � . We now have

e.0; d/ D �kh1;1k2H.R1/
C � kh1;2k2H.R2/

�d=2
:

Hence, e.0; d/ � 1 if kh1;1kH.R1/ � 1, independently of � .
Furthermore,

f .m; d/ D
Pm
kD0.˛3�/k

�
d
k

�
.1C ˛3�/d

:

This is exactly the same situation as in Theorem 11.14, but with ˛3 replaced by ˛3� .
Therefore

lim
d!1

e.bC dc; d /
e.0; d/

D 1 for all C 2 �1; ˛�˛3�=.1C˛3�/
�
:
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Hence in this case, we have intractability and the curse of dimensionality no matter
how large or small � may be. However, for small � the curse holds roughly for
C D ˛�˛3�=.1C˛3�/ which goes to 1 as � goes to zero. So the curse of dimensionality
is delayed for small � .

In any case, we will need smaller order-dependent weights if we want to vanquish
the curse. Assume then that

�d;j D �j�
d
j

�
d˛ j

for all j 2 Œd �; d 2 N;

for some ˛ > 0. For such order-dependent weights we have

f .m; d/ D 1 � .˛3�=d˛/mC1

1 � .˛3�=d˛/dC1 :

Hence,
lim sup
d!1

lim inf
d!1

f .m; d/ D 1

and the condition guaranteeing the lack of T -tractability does not hold. Indeed, we
may now even have strong polynomial tractability. To see this, let us return to the three
function values example. We now have ˛3 D 2 and

e2.0; d/ D 1 � .2�=d˛/dC1

1 � 2�=d˛ D 1C o.1/ as d ! 1;

so that there is no essential difference between the absolute and normalized error criteria
for large d .

We again consider the algorithm Ad;n with

n D
kX

jD0

�
d

k

	
D d k

kŠ
.1C o.1// as d ! 1;

for some integer k � 0 independent of d . Then the set An D fu j juj � kg, and so
the square of the worst case error of An;d is

e2.An;d / D .2�= d˛/kC1 1 � .2�=d˛/d�k

1 � 2�=d˛ D .2�= d˛/kC1.1C o.1// as d ! 1:

Without loss of generality we assume that d is so large that 2�=d˛ < 1. For every
" 2 .0; 1/ there exists a unique non-negative integer k� D k�."/ such that

"2 2 �.2�=d˛/k�
; .2�=d˛/k

��1�:
Hence, e.An;d / � " e.0; d/ if we take k D k� � 1. Note that for large d , we have

n D dk
��1.1C o.1//

.k� � 1/Š � C

�
d˛

2�

	p.k��1/=2
< C "�p
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if we take large C and p > 2=˛. This indeed proves strong polynomial tractability
with exponent at most 2=˛.

In summary, we see that for some order-dependent weights we have the curse of
dimensionality and for some other order-dependent weights we have strong polynomial
tractability. It would be of interest to have a full characterization of order-dependent
weights for which various notions of tractability hold. This leads us to the next open
problem.

Open Problem 60.

• Characterize order-dependent weights for which I� is weakly tractable, poly-
nomially tractable, T -tractable, strongly polynomially tractable or strongly T -
tractable.

• Do tractability conditions for order-dependent weights depend on a given problem
I�?

12.4 Product Weights

In this section we consider product weights. That is, we now assume that � D f�d;ug
with �d;; D 1 and

�d;u D
Y
j2u

�d;j for all non-empty u � Œd �;

where �d;j are non-negative for j 2 Œd � and d 2 N. For product weights, we can
extend Theorem 12.2 and find more explicit conditions on weights for which tractability
does not hold. This is the subject of the next theorem.

Theorem 12.3. Consider I� D fId;�g defined as in Section 12.2 in the worst case
setting for the normalized error criterion or for the absolute error criterion with
e.0; d/ � 1. Here, � is a sequence of bounded product weights, i.e.,

� WD sup
d2N; jD1;2;:::;d

�d;j < 1:

Assume that
H.R1/ \H.R2/ D f0g; with decomposable R2;

and that h1;1 as well as h1;2;.0/ and h1;2;.1/ are non-zero. Let lim� 2 flim; lim supg.
• If

lim
d!1

�
dX
jD1

�d;j D 1
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then

lim
d!1

� e.n; d/
e.0; d/

D 1 for all n 2 N

and I� is not strongly T -tractable for any tractability function T .

• Let

a� WD lim
d!1

�
Pd
jD1 �d;j
ln d

:

If a� D 1 then I� is not polynomially tractable.

If a� 2 .0;1/ then define

ˇ WD sup

´
x 2


1

1C ˛3�
; 1

� ˇ̌̌
lim
d!1

�
Qd
jD1.1C ˛3�d;j /

exp
�
x˛3

Pd
jD1 �d;j

� � 1

μ
;

where ˛3 is given by (12.1), and ˇ� D 1 if ˇ > 1=e, and ˇ� ln 1=ˇ� D ˇ if
ˇ � 1=e. Then

lim
d!1

� e.ddqe; d /
e.0; d/

D 1 for all q 2 �0; a�ˇ�˛3 ln 1=˛
�
;

where ˛ is as in Theorem 12.1.

If polynomial tractability holds then the d exponent is at least

a�ˇ�˛3 ln 1=˛:

• For " 2 .0; 1/, let

a�
" WD lim

d!1
�
Pd
jD1 �d;j

ln T ."�1; d /
:

If 3

lim
"!1�

a�
" D 1

then I� is not T -tractable. If lim"!1� a�
" 2 .0;1/ then

lim
d!1

� e.dT ."�1; d / te; d /
e.0; d/

D 1 for all t 2 �0; a�
"ˇ

�˛3 ln 1=˛
�

with ˇ� defined as before. Hence, if T -tractability holds then the exponent of
T -tractability is at least �

lim
"!1�

a�
"

�
ˇ�˛3 ln 1=˛:

3 Now a�
" is a non-decreasing function of " and therefore the limit of a" exists as " goes to 1 from below.
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• If
�d;j � �� for all j 2 Œd �; d 2 N

then I� is intractable and suffers from the curse of dimensionality since

lim
d!1

e.bC dc; d /
e.0; d/

D 1 for all C 2 �1; ˛���˛3=.1C��˛3/
�
:

• If

lim sup
d!1

Pd
jD1 �d;j
d

> 0

then I� is intractable and suffers from the curse of dimensionality.

Proof. For k D 0; 1; : : : ; d , define

Cd;k D
X

u�Œd�W jujDk
˛k3

Y
j2u

�d;j :

Note that Cd;0 D 1. Then we can rewrite the lower bound on e.n; d/=e.0; d/ from the
proof of Theorem 12.1 as

1 � e2.n; d/

e2.0; d/
�
Pd
kD0 Cd;k.1 � n˛k/CPd

kD0 Cd;k
:

Let

sd D ˛3

dX
jD1

�d;j :

We now claim that

Cd;k � s k
d

kŠ
for k D 0; 1; : : : ; d:

Indeed, this clearly holds for k D 0. For k � 1, we have

s kd D
X

i1;i2;:::;ik2Œd�

kY
jD1

˛3�d;ij :

Note that each term in Cd;k is indexed by u D fu1; u1; : : : ; ukg for distinct integers
ui and ui 2 Œd �. Such terms appear in s k

d
. In fact, each term appears kŠ times for all

permutations of the ui ’s. Therefore kŠCd;k � s k
d

, as claimed. Furthermore, the last
inequality is not sharp for k � 2 since there are terms in s k

d
with no distinct ij ’s that

are not present in Cd;k .
For given positive integer n and a 2 .0; 1/, we have

n˛k � a for k � k.n; a/ WD
�

ln n=a

ln 1=˛

�
:
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As before, we bound e.n; d/=e.0; d/ from below for d > k.n; a/ by

e2.n; d/

e2.0; d/
� .1 � a/

Pd
kDk.n;a/C1 Cd;kPd

kD0 Cd;k
D .1 � a/ �1 � ˛d;n;a

�
;

where

˛d;n;a D
Pk.n;a/

kD0 Cd;kPd
kD0 Cd;k

:

Note that

dX
kD0

Cd;k D
dY
jD1

�
1C ˛3�d;j

� D exp
h dX
jD1

ln.1C ˛3�d;j /
i
:

For x 2 Œ0; c� with an arbitrary c > 0, we have

1

1C c
x � ln.1C x/ � x:

In our case, �d;j 2 Œ0; ��, so we can take c D ˛3� and estimate

exp.sd=.1C ˛3�// �
dY
jD1

�
1C ˛3�d;j

� � exp.sd /:

These two estimates show that ˇ in Theorem 12.3 is well defined and at least equal to
1=.1C ˛3�/. As we shall see later, depending on �d;j it may take larger values.

To prove the first case of Theorem 12.3 it is enough to show that

lim
d!1

˛d;n;a D 0

for all a 2 .0; 1/ and n 2 N. Indeed, this implies that for large d , the ratio
e.n; d/=e.0; d/ is greater than roughly .1� a/1=2 and since a can be arbitrarily small,
the limit is one, as claimed.

So we need to prove that ˛d;n;a goes to zero as d approaches infinity. Since
Cd;k � s k

d
=kŠ we have

˛d;n;a � exp


� sd

1C ˛3�

� k.n;a/X
kD0

s k
d

kŠ
:

We now know that sd goes to infinity for a subsequence of d tending to infinity in
the case of lim� D lim sup or for d tending to infinity in the case of lim� D lim.
The first factor of the bound above goes to zero exponentially fast with sd , whereas
the second factor is a polynomial in sd of the fixed degree k.n; a/. Therefore the
product of these two factors goes to zero. Hence, lim�

d!1 sd D 1 implies that
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lim�
d!1 e.n; d/=e.0; d/ D 1 for all n. This clearly yields that lim�

d!1 n."; d/ D 1
for all " 2 .0; 1/, and contradicts strong T -tractability.

We now proceed to the second case of Theorem 12.3. Take now n D nd D ddqe
for q 2 .0; a�ˇ�˛3 ln 1=˛/. For a� D 1, this means that q can be arbitrarily large.
For any finite or infinite a�, we have

k.n; a/ D k.nd ; a/ D
�

lnddqe C ln 1=a

ln 1=˛

�
D q

ln 1=˛
.1C o.1// ln d as d ! 1:

Observe that ˇ� � 1 and therefore q < a�˛3 ln 1=˛.
We need to show that lim�

d!1˛d;nd ;a D 0. We now know that

lim
d!1

� sd

ln d
D a�˛3:

This implies that for large d or for a subsequence of large d , we have

sd > k.nd ; a/:

Note that the function s k
d
=kŠ of k is increasing over the interval Œ0; k.nd ; a/�. Therefore

we can estimate

k.nd ;a/X
kD0

s k
d

kŠ
� 1C k.nd ; a/

s
k.nd ;a/

d

k.nd ; a/Š
D 1C exp

�
k.nd ; a/ ln sd � ln.k.nd ; a/� 1/Š�:

Using Stirling’s formula for factorials we conclude that

k.nd ;a/X
kD0

s k
d

kŠ
� 1C exp


q.1C o.1//

ln 1=˛
ln.d/ ln

sd

q ln.d/= ln 1=˛

�
:

Let ı 2 .0; ˇ/. For large d or for a subsequence of large d , we also have

dY
jD1

�
1C ˛3�d;j

��1 � exp.�.ˇ � ı/ sd /:

This yields

˛d;nd ;a � exp

�
� ln d


.ˇ � ı/ sd

ln d
� q.1C o.1//

ln 1=˛
ln

sd

q ln.d/= ln 1=˛

�	
:

Assume that a� D 1. This means that sd= ln d goes to infinity for a subsequence
of d or for d tending to infinity depending on the meaning of lim�. In this case, the
expression in the square bracket goes to infinity in the same sense, and ˛d;nd ;a goes to
zero, as needed.
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Assume then that a� 2 .0;1/. Since ı can be arbitrarily small, the expression in
the square bracket goes to

ˇ a�˛3 � q

ln 1=˛
ln
a�˛3 ln 1=˛

q
D a�˛3

�
ˇ � x ln

1

x

	
;

where x WD q=.a�˛3 ln 1=˛/ 2 Œ0; 1�. The maximum of the function f .x/ WD x ln 1=x
is 1=e. This implies that for ˇ > 1=e, the right-hand side of the last formula is positive
for all q < ˛�˛3 ln 1=˛. If ˇ � 1=e then ˇ� � ˇ and the function f is increasing
over Œ0; ˇ�� and its maximum is ˇ� ln 1=ˇ� D ˇ. Therefore, again the right-hand side
of the last formula is positive for all q < ˛�ˇ�˛3 ln 1=˛.

Hence, in the same sense ˛d;nd ;a goes to zero and proves the second case of The-
orem 12.3. Therefore

lim
d!1

� e.ddqe; d /
e.0; d/

D 1

for all q 2 .0; a�ˇ�˛3 ln 1=˛/. The rest of this case is easy.
The third case of Theorem 12.3 is analogous to the previous case. We now take

n D n";d D dT ."�1; d /te, replace q by t , and ln d by ln T ."�1; d / and apply the
previous argument.

We turn to the fourth case of Theorem 12.3. We now show that ˛d;n;a is a non-
increasing function of �d;j . Indeed, for k D 0 we have Cd;0 D 1 and for k � 1, we
have

Cd;k D ˛3�d;d
X

u�Œd�1�
jujDk�1

Y
j2u

˛3�d;j C
X

u�Œd�1�
jujDk

Y
j2u

˛3�d;j

D ˛3�d;dCd�1;k�1 C Cd�1;k with Cd�1;d D 0:

Therefore

˛d;n;a D 1C ˛3�d;d
Pk.n;a/

kD1 Cd�1;k�1 CPk.n;a/

kD1 Cd�1;k
1C ˛3�d;d

Pd
kD1 Cd�1;k�1 CPd

kD1 Cd�1;k
:

From this formula it easily follows that ˛d;n;a is a non-increasing function of �d;d .
Since all �d;j ’s play the same role in ˛d;n;a, we conclude that ˛d;n;a is maximized for
the smallest values of �d;j . Since now we assume that �d;j � ��, we have

˛d;n;a �
Pk.n;a/

kD0 .˛3�
�/k

�
d
k

�Pd
kD0.˛3��/k

�
d
k

� D
Pk.n;a/

kD0 .˛3�
�/k

�
d
k

�
.1C ˛3��/d

:

The upper bound is exactly what we studied in the proof of Theorem 11.14 in Chapter 11
with ˛3 replaced by ˛3��. The rest of the proof is the same as before.

Finally, the last fifth case of Theorem 12.3 assumes that

�� WD lim sup
d!1

Pd
jD1 �d;j
d

> 0:
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This means that for a subsequence of d we have

�� d.1C o.1// D
dX
jD1

�d;j :

Without loss of generality, we can order the weights so that �d;k � �d;kC1. Remem-
bering that we consider bounded weights, so that �d;j � � , then for every k 2 .1; d/
we have

�� d.1C o.1// � .k � 1/� C .d � k C 1/�d;k :

Hence, for all j 2 Œ1; k� we can estimate

�d;j � �d;k � ��.1C o.1//
d

d � k C 1
� .k � 1/�
d � k C 1

:

Take, say, k D dd=se for s D .2�=��.1C o.1//C 1/1=2. Then for large d ,

�d;j � 1
2
�� for all j 2 Œ1; dd=se�:

We now choose n D bC dc with C > 1. For C close to 1 and large d , we have
k.n; a/ � dd=se. Then due to the property that ˛n;d;a is a non-increasing function of
�d;j , we obtain

˛d;n;a �
Pk.n;a/

kD0 Œ˛3�
�=2�k

�dd=se
k

�Pdd=se
kD0 Œ˛3��=2�k

�dd=se
k

� D
Pk.n;a/

kD0 Œ˛3�
�=2�k

�dd=se
k

�
.1C ˛3��.1C o.1///dd=se

:

This means that we have exactly the same situation as in the proof of Theorem 11.14
in Chapter 11, but with ˛3 replaced by ˛3��=2 and d replaced by dd=se. We still have
an exponential dependence on d , which means that I� is intractable and suffers from
the curse of dimensionality. This completes the proof.

Theorem 12.3 presents necessary conditions on various kinds of tractability of I�
for bounded product weights. In particular, for

sd D ˛3

dX
jD1

�d;j

we have

• strong tractability of I� may hold only if sd is uniformly bounded,
• polynomial tractability of I� may hold only if sd is bounded by a multiple of

ln d , and
• weak tractability of I� may hold only if sd is essentially less then d .
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This means that the bounded product weights must decay sufficiently fast if we want
to obtain some notions of tractability of I� . As we shall see soon, for some functionals
I� these conditions are also sufficient.

Theorem 12.3 also says that sd must be a reasonably small multiple of ln d if we
want to have polynomial tractability with a reasonable exponent of d . Indeed, if a� is
large then ddqe function values are not enough whenever q is proportional to a�. The
exponent q also depends on ˇ�. In general, ˇ� can be arbitrarily small if � is large
enough. For example, for a positive number a and d > 2, take

�d;j D
´
a if j D 1; 2; : : : ; dln de;
0 ifj D dln de C 1; : : : ; d:

Then it is easy to check that a� D � D a and ˇ D 1=.a˛3/ ln.1 C a˛3/. Hence, ˇ
and ˇ� are arbitrarily small for large a.

On the other hand, for �d;j D �j independent of d with �j � �jC1 for all j , and

a� D limd
� Pd

jD1 �j = ln d > 0, we always have ˇ D ˇ� D 1. That is, ˇ attains its
maximal value. Indeed, we now have limj �j D 0. Then for any positive ı there is an
integer d.ı/ such that

ln.1C ˛3�j / � .1 � ı/˛3�j for all j � d.ı/:

Take now x < 1 � ı. ThenQd
jD1.1C ˛3�j /

exp
�
x˛3

Pd
jD1 �j

� �
Qd.ı/
jD1.1C ˛3�j /

exp
�
x˛3

Pd.ı/
jD1 �j

� exp
h
.1 � ı � x/˛3

dX
jDd.ı/C1

�j

i
:

Since
Pd
jD1 �j and

Pd
jDd.ı/C1 �j both behave like a� ln d and go to infinity with d or

a subsequence of d , the right-hand side of the last formula goes to infinity as well. This
proves that ˇ � x and since x can be arbitrarily close to 1, we have ˇ D 1, as claimed.
Hence, for product weights independent of d , the exponent q can be arbitrarily close
to a�˛3 ln 1=˛.

12.4.1 Example: Unbounded Weights

So far, we have discussed bounded product weights, �d;j � � < 1. We now show
that this assumption is significant, and that Theorem 12.3 does not hold for unbounded
weights.

For bounded weights, the conditions on sd can be translated into conditions on the
individual weights �d;j , as we did in the proof of Theorem 12.3. For example, we used

exp.sd=.1C ˛3�// �
dY
jD1

�
1C ˛3�d;j

� � exp.sd /;
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showing that
Qd
jD1.1C ˛3�d;j / depends exponentially on sd .

For unbounded weights, this is no longer true. Consider the weights �d;1 D d

and �d;j D 0 for j D 2; 3; : : : . For these weights, we have the univariate case and
polynomial tractability holds for many linear functionals, such as integration. However,
sd D ˛3d satisfies all the assumptions of Theorem 12.3 and should imply the curse of
dimensionality. In this case, we have

dY
jD1

.1C ˛3�d;j / D 1C ˛3d D 1C sd :

So it is not exponential in sd , and the proof of Theorem 12.3 breaks down.

12.4.2 Example: Weighted Integration (Continued)

We return to weighted integration, which was studied in Chapter 11. We now partially
remove the boundary conditions by taking

R1 	 1 and R2.x; t/ D 1M .x; t/

Z 1

0

.jt j � u/r�1C .jxj � u/r�1C
Œ.r � 1/Š�2 du

with M D f.x; t/ W xt � 0g and r 2 N. This corresponds to the space F1 D
H.R1 C R2/ of real functions f defined on R whose .r � 1/st derivatives are abso-
lutely continuous, and f .r/ 2 L2.R/ as well as f satisfies the boundary conditions,
f .j /.0/ D 0 for j D 1; 2; : : : ; r � 1. The inner product in F1 is given by

hf; giF1
D f .0/g.0/C

Z
R
f .r/.t/g.r/.t/ dt for all f; g 2 F1:

The case when all boundary conditions are removed will be considered later.
As we know, R2 is decomposable at 0. Since r � 1, the space H.R2/ does not

contain constant functions. Moreover, H.R1/ D span.1/, and therefore H.R1/ \
H.R2/ D f0g, as needed.

The weighted integration problem is given by

I1.f / D
Z

R
%.t/ f .t/ dt for all f 2 F1;

where the non-negative weight function % satisfies the conditions
R

R %.t/ dt D 1 andR
R %.t/ jt jr�1=2 dt < 1. This implies thatZ

R
%.t/R2.t; t/ dt < 1:

We also assume that % is a symmetric function, i.e., %.t/ D %.�t / for all t 2 R. It is
easy to check that

h1;1 	 1 and h1;2.x/ D
Z

R
%.t/R2.x; t/ dt for all x 2 R:
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Furthermore, kh1;2;.0/kH.R2/ D kh1;2;.1/kH.R2/ > 0 and therefore ˛ D 1
2

. Obviously,
˛1 D 1 and

˛3 D ˛2 D kh1;2k2H.R2/
D
Z

R2

%.t/ %.x/R2.x; t/ dt dx;

which depends on % and r . Hence, all the assumptions of Theorem 12.3 are satisfied.
We consider product weights �d;u D Q

j2u �d;j for bounded �d;j 2 Œ0; ��. Note
that the initial error is now given by

e2.0; d/ D
dY
jD1

�
1C �d;j

Z
R2

%.t/ %.x/R2.x; t/ dt dx
	
:

Hence, the initial error is always at least one, so that the absolute error is harder than
the normalized error.

We now check that the tractability conditions presented in Theorem 12.3 are also
sufficient for tractability of weighted integration for both the absolute and normalized
error criteria. We need to get matching upper bounds. It is enough to get upper bounds
for the absolute error criterion, since they will be also valid for the normalized error
criterion. We may use one of the upper bounds presented in Chapter 10. It will be
enough to use the most simple bound given in Theorem 10.4. From this theorem (with
gd 	 1) we know that there exists a QMC algorithm An;d such that

e.n; d/ � ewor.An;d / �
dY
jD1

�
1C �d;j

Z
R
%.t/R2.t; t/ dt

	1=2
n�1=2: (12.2)

This estimate is enough for our purpose. Indeed, let us first consider strong polynomial
tractability of I� . From Theorem 12.3 we know that lim supd

Pd
jD1 �d;j < 1 is a

necessary condition. If this holds then

A WD sup
d2N

dY
jD1

�
1C �d;j

Z
R
%.t/R2.t; t/ dt

	
< 1;

and (12.2) yields

n."; d/ �
�
A

"2

�
for the absolute error criterion. Hence, strong polynomial tractability holds with an
exponent at most 2.

Similarly, strong T -tractability holds if we assume that

B WD lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1
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and then the exponent is at most 2B . It is easy to see that B < 1 is also a necessary
condition, not only for strong T -tractability but also for T -tractability whenever we
assume that

%.t/ � c > 0 for t 2 Œa; b� for some a < b:

Indeed, the assumption on % implies that the nth minimal error of the weighted inte-
gration problem is�.n�r/, and therefore we have n."; 1/ D �."�r/. The lower bound
on n."; 1/ can be bounded by C T ."�1; 1/t for some C and t only if B < 1.

We now consider polynomial tractability. Theorem 12.3 states that we now must
have

a� D lim sup
d!1

Pd
jD1 �d;j
ln d

< 1:

Let C WD R
R %.t/R2.t; t/ dt . Then for any positive ı we have

dY
jD1

�
1C �d;jC

� � exp
�
C

dX
jD1

�d;j

�
D d C

Pd
j D1 �d;j = lnd � Cı

�
d C.a

�Cı/�;
where Cı does not depend on d . This and (12.2) imply that

n."; d/ � Cıd
C.a�Cı/"�2;

and so we have polynomial tractability. We now discuss the exponent of d . For
simplicity, we take product weights independent of d for which ˇ� D 1, as already
shown. Theorem 12.3 tells us that the exponent of d must be at least a�˛3 ln 2, whereas
the last upper bound has an exponent of d arbitrarily close to C a�. Observe that
˛3 � C , and therefore the lower and upper bounds on the exponent of d differ by a
factor ˛3 ln.2/=C D ˛30:693147 : : : =C < 1.

For T -tractability, we know that

l� WD lim
"!1�

lim sup
d!1

Pd
jD1 �d;j

ln T ."�1; d /
< 1:

Proceeding similarly as before, we conclude that

n."; d/ � CıT ."
�1; d /C.l�Cı/"�2:

For small ", we can estimate "�1 by T ."�1; 1/BCı � T ."�1; d /BCı . Therefore for
any positive ı there exists a number Mı such that

n."; d/ � MıT ."
�1; d /C l�C2BCO.ı/ for all " 2 .0; 1/; d 2 N:

Hence, the problem is T -tractable.
Finally, we address weak tractability. From Theorem 12.3 we now must have

lim supd
Pd
jD1 �d;j =d D 0. Then (12.2) implies that

n."; d/ �
l
"�2

dY
jD1

.1C �d;jC/
m

� 2"�2
dY
jD1

.1C �d;jC/
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and

lim
"�1Cd!1

ln max.1; n."; d//

"�1 C d
� lim
"�1Cd!1

ln 2C 2 ln "�1 C C
Pd
jD1 �d;j

"�1 C d
D 0:

Hence we have weak tractability. We summarize these properties in the following
corollary.

Corollary 12.4. Considerweighted integration I� for bounded productweights defined
as in this example. For T -tractability we additionally assume that

%.t/ � c > 0 for t 2 Œa; b� for some a; b and c with a < b:

Then tractability conditions for the absolute and normalized error criteria are the same.
More precisely,

• I� is strongly polynomially tractable iff lim supd!1
Pd
jD1 �d;j < 1.

• I� is strongly T -tractable iff

lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1 and lim sup

d!1

dX
jD1

�d;j < 1:

• I� is polynomially tractable iff

lim sup
d!1

Pd
jD1 �d;j
ln d

< 1:

• I� is T -tractable iff

lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1 and lim

"!1�
lim sup
d!1

Pd
jD1 �d;j

ln T ."�1; d /
< 1:

• I� is weakly tractable iff

lim
d!1

Pd
jD1 �d;j
d

D 0:

We also indicated some upper bounds on the exponents of various kinds of tractabil-
ity. Lower bounds on these exponents are much harder to obtain. In particular, the
exponents may depend on the weight function %. Similar problems were considered
in [333], but only for the univariate case in terms of the order of convergence. It turns
out that the order of convergence may indeed vary depending on %. The tractability
exponents in terms of % have not been yet analyzed. This leads us to the next open
question.
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Open Problem 61.

• Find the exponents of strong polynomial tractability and strong T -tractability
for weighted integration considered in this example at least for some weight
functions %.

• Study the dependence of these exponents in terms of the weight function %.

12.5 Further Lower Bounds

In the previous section we assumed that the reproducing kernelR2 was decomposable.
For many linear functionals, the kernelR2 is not decomposable, but has a decomposable
part. That is, we have

R2 D R2;1 CR2;2

where R1; R2 W D1 �D1 ! R are reproducing kernels such that

H.R2;1/ \H.R2;2/ D f0g and R2;2 is decomposable.

The subject of this section is to extend lower bounds obtained in Section 12.3 to these
more general reproducing kernels.

The weights � D f�d;ug, the space Fd;� and the linear functionals Id;� are defined
as in Section 12.2. In particular, we have Id;� .f / D ˝

f; hd;�
˛
Fd;�

with

hd;� .x/ D
X

u�Œd�
�d;u

Y
j…u

h1;1.xj /
Y
j2u

h1;2.xj / for all x 2 Dd :

Here, h1 D h1;1 C h1;2 with h1;j 2 H.Rj / for j D 1; 2. We now decompose

h1;2 D h1;2;1 C h1;2;2 with h1;2;j 2 H.R2;j /:
Furthermore, since R2;2 is decomposable, say at a�, we have

h1;2;2 D h1;2;2;.0/ C h1;2;2;.1/

with

h1;2;2;.0/.x/ D
´
h1;2;2.x/ for x 2 D1 \ ¹x W x � a�º
0 for x 2 D1 \ ¹x W x � a�º;

and

h1;2;2;.1/.x/ D
´
h1;2;2.x/ for x 2 D1 \ ¹x W x � a�º
0 for x 2 D1 \ ¹x W x � a�º;

and h1;2;2;.j / 2 H.R2;2/. We introduce the following notation

˛1 D kh1;1k2H.R1/
; ˛2 D kh1;2k2H.R2/

;

˛2;1 D kh1;2;1k2H.R2;1/
; ˛2;2 D kh1;2;2k2H.R2;2/

:
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Obviously, ˛2 D ˛2;1 C ˛2;2 and

˛2;2 D kh1;2;2;.0/k2H.R2;2/
C kh1;2;2;.0/k2H.R2;2/

:

We now have

e2.0; d/ D
X

u�Œd�
�d;u˛

d�juj
1 ˛

juj
2

D
dX
kD0

� X
u�Œd�
jujDk

�d;u

�
˛d�k
1

kX
jD0

�
k

j

	
˛
k�j
2;1 ˛

j
2;2:

We are ready to generalize Theorem 11.14.

Theorem 12.5. Assume that

H.R1/ \H.R2/ D H.R2;1/ \H.R2;2/ D f0g and R2;2 is decomposable:

Then

e2.n; d/ �
dX
kD0

� X
u�Œd�
jujDk

�d;u

�
˛d�k
1

kX
jD0

�
k

j

	 �
1 � n˛j �C ˛k�j

2;1 ˛
j
2;2 with 00 D 1;

where

˛ D
max

�kh1;2;2;.0/k2H.R2;2/
; kh1;2;2;.1/k2H.R2;2/

�
kh1;2;2;.0/k2H.R2;2/

C kh1;2;2;.1/k2H.R2;2/

2 �1
2
; 1
�
:

Proof. As in the proof of Theorem 11.12, we decompose the square of the worst case
error of a linear algorithm Qn;d as

e2.Qn;d / D
X

u�Œd�
�d;ue

2
u

where e2u D P
k2� e

2
u;k

with e2
u;k

D hhu;1; rki2H.Ru;1/
Œe0

u;k
�2 and e0

u;k
is the worst

case error of approximating the linear functional hf; huiH.Ru;2/
, where

hu.x/ D
Y
j2u

h1;2.xj / for all x 2 Dd :

Since R2 D R2;1 CR2;2 with H.R2;1/\H.R2;;2/ D f0g and a decomposable R2;2,
we can apply Theorem 11.12 to estimate the error e0

u;k
with the obvious changes. We

now haveR2;1 instead ofR1,R2;2 insteadR2, juj instead of d , ˛2;1 instead of ˛1, ˛2;2
instead of ˛2; moreover, we use the definition of ˛ as in the current theorem. Therefore
we have

e2u;k �
jujX
jD0

� juj
j

	
.1 � n˛j /C˛juj�j

2;1 ˛
j
2;2:
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Summing over k 2 �, we obtain

e2u � ˛
d�juj
1

jujX
jD0

� juj
j

	
.1 � n˛j /C˛juj�j

2;1 ˛
j
2;2:

Finally, summing now over u, we obtain the desired estimate on e2.n; d/. This com-
pletes the proof.

Observe that for a decomposable reproducing kernelR2 we can takeR2;1 D 0; then
h1;2;1 D 0 yields ˛2;1 D 0 and ˛2;2 D ˛2. In this case the sum over j in Theorem 12.5
drops to the one term .1� n˛k/C˛k2 and Theorem 12.5 reduces to Theorem 12.1. The
same situation holds if h1;2;1 D 0, independently of whether R2;1 is zero or not.

Theorem 12.5 is trivial if ˛ D 1. That is why we need to assume that both h1;2;2;.0/
and h1;2;2;.1/ are non-zero to guarantee that ˛ < 1. Obviously, the best case is when
˛ D 1

2
.

Assume for a moment that h1;1 D 0. Then ˛1 D 0 and the sum over k in Theo-
rem 12.5 drops to one term and we have

e2.n; d/ � �d;Œd�

dX
jD0

�
d

j

	
.1 � n˛j /C˛k�j

2;1 ˛
j
2;2:

Hence modulo �d;Œd� we have the same situation as in Theorem 11.12. The square of
the initial error is now

e2.0; d/ D �d;Œd�˛
d
2

and we may apply Theorem 11.14 with the obvious changes. In particular, for non-zero
�d;Œd�, h1;2;2;.0/ and h1;2;2;.1/ we have the curse of dimensionality for the normalized
error criterion.

Assuming that h1;1 6D 0 and h1;2 6D 0, we denote, as before,

˛3 D ˛2

˛1
D kh1;2k2H.R2/

kh1;1k2H.R1/

;

and

ˇ1 D ˛2;1

˛2
D

kh1;2;1k2H.R2;1/

kh1;2k2H.R1/

and ˇ2 D ˛2;2

˛2
D

kh1;2;2k2H.R2;1/

kh1;2k2H.R1/

:

Obviously, ˇ1 C ˇ2 D 1. Then we can rewrite the estimate of Theorem 12.5 as

e2.n; d/

e2.0; d/
�
Pd
kD0

�
˛k3
P

u�Œd�W jujDk �d;u
�Pk

jD0
�
k
j

�
.1 � n˛j /Cˇk�j

1 ˇ
j
2Pd

kD0
�
˛k3
P

u�Œd�W jujDk �d;u
� :

We now show that the case studied in this section can be reduced to the case studied
in the previous section if we properly change the weights. This will allow us to use all
the results of Section 12.3 for reproducing kernels R2 that are not decomposable but
have a decomposable part.
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Corollary 12.6. Let ˛1 > 0. For an arbitrary positive cd , define

� 0
d;u D cd

X
v�Œd�
u�v

�d;v

�
˛2;1

˛1

	jvj�juj
for all u � Œd �; with 00 D 1:

Under the assumptions of Theorem 12.5 we have

e2.n; d/ � 1

cd

X
u�Œd�

� 0
d;u

�
1 � n˛juj�

C˛
d�juj
1 ˛

juj
2;2;

with equality for n D 0. Therefore

e2.n; d/

e2.0; d/
�
P

u�Œd� � 0
d;u

�
1 � n˛juj�

C ˛
d�juj
1 ˛

juj
2;2P

u�Œd� � 0
d;u
˛
d�juj
1 ˛

juj
2;2

:

Proof. Note that

1

cd

X
u�Œd�

� 0
d;u

�
1 � n˛juj�

C˛
d�juj
1 ˛

juj
2;2

D
X

u�Œd�

�
1 � n˛juj�

C˛
d�juj
1 ˛

juj
2;2

X
v�Œd�
u�v

�d;v.˛2;1=˛1/
jvj�juj

D
X

v�Œd�
�d;v˛

d�jvj
1

X
u�Œd�
u�v

˛
juj
2;2

�
1 � n˛juj�

C˛
jvj�juj
2;1

D
X

v�Œd�
�d;v˛

d�jvj
1

jvjX
jD0

X
uW u�v
jujDj

˛
j
2;2

�
1 � n˛j �C˛jvj�j

2;1

D
X

v�Œd�
�d;v˛

d�jvj
1

jvjX
jD0

� jvj
j

	
˛
j
2;2

�
1 � n˛j �C˛jvj�j

2;1

D
dX
kD0

� X
u�Œd�
jujDk

�d;u

�
˛d�k

kX
jD0

�
k

j

	�
1 � n˛j �C˛k�j

2;1 ˛
j
2;2:

Hence, we have obtained the right-hand side of the estimate on e2.n; d/ in Theo-
rem 12.5. For n D 0, the factor 1 � n˛j D 1, and we end up with the square of the
initial error. This completes the proof

Observe that the estimate in Corollary 12.6 has the same form as the estimate in
Theorem 12.1, but with �d;u replaced by � 0

d;u
and ˛2 replaced by ˛2;2. Also, the

parameter ˛ has different meanings in Theorem 12.1 and in Corollary 12.6. But the
analysis we perform after Theorem 12.1 also goes through for the case of this section.
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We now consider several special cases and indicate how to define cd to switch from
the weights �d;j to the weights � 0

d;u
. We also show that some properties of the weights

�d;u are also preserved for the weights � 0
d;j

.

• Assume that h1;2;1 D 0. For example, this holds when R2;1 D 0.

Then ˛2;1 D 0 and
� 0
d;u D cd �d;u:

In this case, we set cd D 1 and the weights are not changed. This is correct since
this case is the same as the case of Section 12.3.

• Assume product weights, � D f�d;ug with �d;u D Q
j2u �d;j for all u � Œd �.

Let c� D ˛2;1=˛1. ThenX
v�Œd�
u�v

�d;vŒc
��jvj�juj D

Y
j2u

�d;j
X

v�Œd�W u�v

Œc��jvj�juj Y
j2vnu

�d;j

D
Y
j2u

�d;j
X

v�Œd�nu

Œc��jvj Y
j2v

�d;j

D
Y
j2u

�d;j
Y

j2Œd�nu

�
1C c��d;j

�
:

Hence

X
v�Œd�
u�v

�d;vŒc
��jvj�juj D

Y
j2u

�d;j

1C c��d;j

dY
jD1

�
1C c��d;j

�
:

If we take cd D Qd
jD1.1C c��d;j /�1 and

� 0
d;j D �d;j

1C c��d;j

then � 0 D f� 0
d;u

g with � 0
d;u

D Q
j2u �

0
d;j

is also a sequence of product weights.
Furthermore, if c� > 0, then these new weights are always bounded by 1=c�,
independently of whether the product weights � are or are not bounded. For
c� D 0, i.e., when h1;2;1 D 0, we have cd D 1 and � 0

d;j
D �d;j as in the

previous point. If the product weights � are bounded by � , then the product
weights � 0 are bounded by �=.1C c��/ � � .

• Assume order-dependent weights, � D f�d;ug with �d;u D �d;juj for all u � Œd �.

Then

� 0
d;u D cd

X
v�Œd�
u�v

�d;jujŒc��jvj�juj D cd

dX
jDjuj

�
d

j � juj
	
�d;j Œc

��j�juj:
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Hence, �d;u depends only on juj, and no matter how we define cd we also have
order-dependent weights � 0 D f� 0

d;u
g.

• Assume finite-order weights, � D f�d;ug with �d;u D 0 for all juj > !.

Then � 0
d;u

D 0 for all juj > ! no matter how cd is defined. Hence, again
� 0 D f� 0

d;u
g is a sequence of finite-order weights with the same order !.

• Assume finite-diameter weights, � D f�d;ug with �d;u D 0 for all diam.u/ � q.

Then � 0
d;u

D 0 for all diam.u/ � q no matter how cd is defined, and � 0 D f� 0
d;u

g
is a sequence of finite-diameter weights with the same order q.

The essence of Corollary 12.6 and the discussion after it is to convince the reader
that we may now apply all the results of Section 12.3 for the weights � 0. In particular,
consider product weights. We now have � 0

d;j
D �d;j =.1 C c��d;j /. Formally, we

can apply Theorem 12.3 and express the lack of tractability in terms of
Pd
jD1 � 0

d;j
.

However, it is easy to check that the situation is even simpler and we can still use the
original

Pd
jD1 �d;j . The reason is that the conditions involving the sums

Pd
jD1 � 0

d;j

and
Pd
jD1 �d;j are the same. For example,

lim sup
d!1

�
dX
jD1

�d;j D lim sup
d!1

�
dX
jD1

� 0
d;j :

Indeed, if the first sum is infinite then also the second sum is infinite. This simply follows
from the following argument. If �d;j does not converge to zero then �d;j � c > 0

for some subsequence of d . But then � 0
d;j

� c=.1 C c�c/, which implies that the
second sum is infinite. On the other hand, if the first sum is still infinite but �d;j goes
to zero, then � 0

d;j
� .1 � ı/�d;j for small ı and large d , and the second sum is again

infinite. Similarly, one can show that a� and a�
" are the same for both � 0

d;j
and �d;j .

Also the conditions lim supd
Pd
jD1 � 0

d;j
=d > 0 and lim supd

Pd
jD1 �d;j =d > 0 are

equivalent.
Obviously there are some differences between the cases with � 0

d;j
and �d;j . The

most important is the difference between ˛’s. For �d;j , we have

˛ D
max

�
kh1;2;.0/k2H.R2/

; kh1;2;.1/k2H.R2/

�
kh1;2;.0/k2H.R2/

C kh1;2;.1/k2H.R2/

;

whereas for � 0
d;j

we have

˛0 D
max

�
kh1;2;2;.0/k2H.R2/

; kh1;2;2;.1/k2H.R2/

�
kh1;2;2.0/k2H.R2/

C kh1;2;2;.1/k2H.R2/

:

In general, ˛ and ˛0 are not related.
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Also ˛3 and ˇ may be different for the two cases of � 0
d;j

and �d;j . We have

˛0
3 D

kh1;2;2k2H.R2;2/

kh1;1k2H.R1/

and ˛3 D kh1;2k2H.R2/

kh1;1k2H.R1/

:

Clearly, the different ˛0
3 and ˛3 may result in different ˇ0 and ˇ. This means that the

exponents presented in Theorem 12.3 may be different for � 0
d;j

and �d;j .
For the convenience of the reader we now summarize this discussion in the following

corollary.

Corollary 12.7. Consider I� D fId;�g defined as in Section 12.2 in the worst case
setting for the normalized error criterion or for the absolute error criterion with
e.0; d/ � 1. Here, � is a sequence of bounded product weights, i.e.,

� WD sup
d2N; jD1;2;:::;d

�d;j < 1:

Assume that

H.R1/ \H.R2/ D H.R2;1/ \H.R2;2/ D f0g and R2;2 is decomposable:

and that h1;1 as well as h1;2;2;.0/ and h1;2;2;.1/ are non-zero. Let

˛0 D
max

�kh1;2;2;.0/k2H.R2;2/
; kh1;2;2;.1/k2H.R2;2/

�
kh1;2;2;.0/k2H.R2;2/

C kh1;2;2;.1/k2H.R2;2/

2 �1
2
; 1
�
;

˛0
3 D

kh1;2;2k2H.R2;2/

kh1;1k2H.R1/

; c� D
kh1;2;1k2H.R2;1/

kh1;1k2H.R1/

; � 0
d;j D �d;j

1C c��d;j
;

and let lim� 2 flim; lim supg.
• If

lim
d!1

�
dX
jD1

�d;j D 1

then

lim
d!1

� e.n; d/
e.0; d/

D 1 for all n 2 N

and I� is not strongly T -tractable for any tractability function T .

• Let

a� WD lim
d!1

�
Pd
jD1 �d;j
ln d

:

If a� D 1 then I� is not polynomially tractable.
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If a� 2 .0;1/ then define

ˇ0 WD sup

´
x 2


1

1C ˛0
3�
; 1

� ˇ̌̌̌
lim
d!1

�
Qd
jD1.1C ˛0

3�
0
d;j
/

exp
�
x˛0

3

Pd
jD1 � 0

d;j

� � 1

μ
;

and ˇ� D 1 if ˇ0 > 1=e, and ˇ� ln 1=ˇ� D ˇ0 if ˇ0 � 1=e. Then

lim
d!1

� e.ddqe; d /
e.0; d/

D 1 for all q 2 �0; a�ˇ�˛0
3 ln 1=˛0� :

If polynomial tractability holds then the d exponent is at least

a�ˇ�˛0
3 ln 1=˛0:

• For " 2 .0; 1/, let

a�
" WD lim

d!1
�
Pd
jD1 �d;j

ln T ."�1; d /
:

If
lim
"!1�

a�
" D 1

then I� is not T -tractable. If lim"!1�1 a�
" 2 .0;1/ then

lim
d!1

� e.dT ."�1; d / te; d /
e.0; d/

D 1 for all t 2 �0; a�
"ˇ

�˛0
3 ln 1=˛0�

with ˇ� defined as before. If T -tractability holds then the exponent of T -
tractability is at least �

lim
"!1�

a�
"

�
ˇ�˛0

3 ln 1=˛0:

• If
�d;j � �� for all j 2 Œd �; d 2 N

then I� is intractable and suffers from the curse of dimensionality since

lim
d!1

e.bC dc; d /
e.0; d/

D 1 for all C 2 �1; Œ˛0����˛3=.1C��.c�C˛3//
�
:

• If

lim sup
d!1

Pd
jD1 �d;j
d

> 0

then I� is intractable and suffers from the curse of dimensionality.

We illustrate Corollary 12.7 for several examples.
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12.5.1 Example: Weighted Integration (Continued)

We now remove all boundary conditions in the space F1 by defining the inner product
as

hf; giF1
D

r�1X
jD0

f .j /.0/g.j /.0/C
Z

R
f .r/.t/g.r/.t/ dt for all f; g 2 F1:

The reproducing kernel of this space is

K1.x; t/ D
r�1X
jD0

xj

j Š

tj

j Š
C1M .x; t/

Z 1

0

.jt j � u/r�1C .jxj � u/r�1C
Œ.r � 1/Š�2 du for all x; t 2 R;

with M D f.x; t/ j xt � 0g and r 2 N, as before.
If r � 2 then the kernel K1 can be decomposed as

K1 D R1 CR2;1 CR2;2;

and we consider several such decompositions.
For the first decomposition we take

R1 	 1 and R2 D R2;1 CR2;2;

where

R2;1.x; t/ D
r�1X
jD1

xj

j Š

tj

j Š

and

R2;2.x; t/ D 1M .x; t/

Z 1

0

.jt j � u/r�1C .jxj � u/r�1C
Œ.r � 1/Š�2 du:

Since r � 2 the reproducing kernel R2;1 is not zero and

H.R2;1/ D span.t; t2; : : : ; t r�1/

is a space of polynomials of dimension r � 1.
Clearly,H.R1/\H.R2/ D H.R2;1/\H.R2;2/ D f0g andR2;2 is decomposable

at 0. We now have

h1;1 	 1 and h1;2;1.x/ D
r�1X
jD1

xj

j Š

Z
R
%.t/

tj

j Š
dt for all x 2 R;

whereas

h1;2;2.x/ D
Z

R
%.t/R2.x; t/ dt for all x 2 R:
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Note that h1;1 is a polynomial of degree at most r � 1, which is not zero since the
coefficient for j D 0 is 1. The rest of the terms in the sum over j may be zero,
depending on %. For a non-zero % over fx 2 R W x � 0g and fx 2 R W x � 0g, both
h1;2;2;.0/ and h1;2;2;.1/ are non-zero and ˛0 < 1. Additionally, if % is symmetric then
˛0 D 1

2
. Hence, all the assumptions of Corollary 12.7 are satisfied.

The square of the initial error of weighted integration with product weights for this
decomposition is

e2.0; d/ D
dY
jD1


1C �d;j

� r�1X
jD1

 Z
R
%.t/

tj

j Š
dt

�2
C
Z

R2

%.t/ %.x/R2;2.x; t/ dt dx

	�
:

Hence, the initial error is always at least 1 for all weights �d;j .
As before, we check that the tractability conditions in Corollary 12.7 are also suffi-

cient for tractability of weighted integration for both the absolute and normalized error
criteria. For simplicity we now assume a little more about the weight %, namely thatZ

R
%.t/ t2.r�1/ dt < 1:

Then for the QMC algorithmAn;d considered in Theorem 10.4 of Chapter 10, we have

ewor.An;d / �
dY
jD1


1C �d;j

� r�1X
jD1

Z
R
%.t/

t2j

Œj Š�2
dt C

Z
R
%.t/R2.t; t/ dt

	�
n�1=2:

Then we can apply the same reasoning as before, with

C D
r�1X
jD1

Z
R
%.t/

t2j

Œj Š�2
dt C

Z
R
%.t/R2.t; t/ dt < 1:

Hence we obtain the following corollary, which is analogous to Corollary 12.4.

Corollary 12.8. Consider weighted integration I� for bounded product weights and
R1; R2;1 and R2;2 defined as above. For T -tractability we additionally assume that

%.t/ � c > 0 for t 2 Œa; b� for some a; b and c with a < b:

Then tractability conditions for the absolute and normalized error criteria are the same.
More precisely,

• I� is strongly polynomially tractable iff lim supd!1
Pd
jD1 �d;j < 1.

• I� is strongly T -tractable iff

lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1 and lim sup

d!1

dX
jD1

�d;j < 1:
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• I� is polynomially tractable iff

lim sup
d!1

Pd
jD1 �d;j
ln d

< 1:

• I� is T -tractable iff

lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1 and lim

"!1�
lim sup
d!1

Pd
jD1 �d;j

ln T ."�1; d /
< 1:

• I� is weakly tractable iff

lim
d!1

Pd
jD1 �d;j
d

D 0:

We now turn to different decomposition of K1 for r � 2. Namely, take an integer
k 2 f0; 1; : : : ; r � 1g and define

R1.x; t/ D
kX

jD0

tj

j Š

xj

j Š
and R2;1.x; t/ D

r�1X
jDkC1

tj

j Š

xj

j Š

with the same R2;2 as above. So we have r � 1 decompositions parameterized by k.
For k D 0, this is the decomposition we already analyzed.

We stress that the weighted integration problem depends on k, which is why we
may have r � 1 different weighted integration problems. Indeed, we now have

h1;1.x/ D 1C
kX

jD1

xj

j Š

Z
R
%.t/

tj

j Š
dt;

h1;2;1.x/ D
r�1X

jDkC1

xj

j Š

Z
R
%.t/

tj

j Š
dt;

h1;2;2.x/ D
Z

R
%.t/R2.x; t/ dt:

Let

Ak WD
kX

jD1

 Z
R
%.t/

tj

j Š
dt

�2
;

Bk WD
r�1X

jDkC1

 Z
R
%.t/

tj

j Š
dt

�2
C
Z

R2

%.t/ %.x/R2;2.x; t/ dt dx:

Note that A0 D 0. We see that A1 D 0 whenever the integral
R

R %.t/ t dt D 0.
Of course, this depends on the choice of the function %; for instance, this condition
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holds for symmetric %. However, for k � 2, we have positive Ak since the integralR
R %.t/ t

2 dt > 0.
The square of the initial error is now

e2.0; d/ D
dY
jD1

�
1C Ak C �d;j Bk

�
:

If % is chosen such that all integrals
R

R %.t/ t
j dt for j D 1; 2; : : : ; r � 1 are non-zero

then for non-zero weights �d;j , the initial errors are different for different k.
Observe that all the assumptions of Corollary 12.7 are satisfied independently of k,

which is why we have the same necessary conditions on product weights for various
kinds of tractability.

However, the upper bounds are different and significantly depend on k. Consider
once again the QMC algorithm An;d and let

A0
k WD

kX
jD1

Z
R
%.t/

t2j

Œj Š�2
dt;

B 0
k WD

r�1X
jDkC1

Z
R
%.t/

t2j

Œj Š�2
dt C

Z
R
%.t/R2;2.t; t/ dt:

Theorem 10.4 of Chapter 10 states that we now have

ewor.An;d / �
dY
jD1

�
1C A0

k C �d;j B
0
k

�1=2
n�1=2:

Formally we can apply the same reasoning as before and obtain

n."; d/ � ˙
"�2 Cd

�
;

where

Cd WD
dY
jD1

�
1C A0

k C �d;jB
0
k

�
:

Observe that for k � 1, we have positiveA0
k

and thereforeCd is exponentially large ind
even if all �d;j D 0. Hence, we cannot claim tractability of weighted integration. One
might hope that we can improve this unfortunate situation by using more sophisticated
upper bounds from Chapter 10. Unfortunately, all of them suffer from the same bad
property and we always have an exponential dependence on d . Does it really mean
that we have intractability of weighted integration? Not necessarily, since for weights
�d;j that decay sufficiently fast, we may satisfy the necessary tractability conditions.
However, since our upper bounds may be not good enough we cannot be sure whether
tractability holds. We are inclined to believe that indeed we do not have tractability
and this is presented as our next open problem.
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Open Problem 62.

• Consider weighted integration as defined here with r � 2 and k � 1. Verify
whether weighted integration suffers from the curse of dimensionality.

• Verify if the first point holds for all % for which weighted integration is well
defined or whether for some % we have intractability and for some other % we
have at least weak tractability.

12.6 Upper Bounds for Multivariate Integration

We presented several lower bounds for approximation of linear functionals in the previ-
ous sections. We now derive upper bounds and then compare them with lower bounds.
We use the results of Chapter 10, where we established a number of upper bounds for
approximating Id;� .f / D ˝

f; hd;�
˛
Fd;�

for all f 2 Fd;� . As we know, we have

hd;� .x/ D
X

u�Œd�
�d;u

Y
j…u

h1;1.xj /
Y
j2u

h1;2.xj / for all x 2 Dd : (12.3)

Here h1 D h1;1 C h1;2 with h1;j 2 H.Rj /, where F1 D H.K1/ D H.R1/ [H.R2/
with

K1 D R1 CR2 and H.R1/ \H.R2/ D f0g:
We stress that we are not assuming thatR2 is decomposable. Without loss of generality
we may assume that h1 6D 0 since otherwise hd;� D 0, and so Id;� .f / D 0 for all
f 2 Fd;� , i.e., Id;� is trivial.

We now specify h1 to obtain the multivariate integration problem that was studied
in Section 10.7. For d D 1 we take two real Lebesgue integrable functions %1 and
g1, where %1 � 0 with

R
D1
%1.t/ dt D 1 and g1 is non-zero. We assume that F1

is separable and consists of Lebesgue measurable functions, and that its reproducing
kernel K1 satisfies the conditionZ

D1

K1.t; t/g
2
1.t/%1.t/ dt < 1: (12.4)

Then

I1.f / D
Z
D1

f .t/g1.t/%1.t/ dt D hf; h1iF1
for all f 2 F1;

where

h1.x/ D
Z
D1

K1.x; t/g1.t/%1.t/ dt for all x 2 D1:
We have

h1;1.x/ D
Z
D1

R1.x; t/g1.t/%1.t/ dt for all x 2 D1;

h1;2.x/ D
Z
D1

R2.x; t/g1.t/%1.t/ dt for all x 2 D1:
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For d � 1, we now take

gd .x/ D
dY
jD1

g1.xj / for all x 2 Dd

%d .x/ D
dY
jD1

%1.xj / for all x 2 Dd

and obtain the multivariate integration problem defined by

Id;� .f / D
Z
Dd

f .t/gd .t/%d .t/ dt D ˝
f; hd;�

˛
Fd;�

for all f 2 Fd ; (12.5)

where hd;� has the form (12.3) with h1;1 and h1;2 as above. Indeed, (12.5) follows
from the following calculation. We have˝

f; hd;�
˛
Fd;�

D
X

u�Œd�

1

�d;u
�d;uau bu;

where

au D
�
f Nu;1;

Z
D

d�juj
1

Y
j…u

g1.tj /%1.tj /
Y
j…u

R1.�; tj / dt Nu
�
HR Nu;1

;

bu D
�
fu;2;

Z
D

juj
1

Y
j2u

g1.tj /%1.tj /
Y
j2u

R2.�; tj / dtu

�
HRu;2

:

Clearly,

au D
Z
D

d�juj
1

Y
j…u

g1.tj /%1.tj / f Nu;1.t Nu/ dt Nu;

bu D
Z
D

juj
1

Y
j2u

g1.tj /%1.tj / fu;2.tu/ dtu:

Then

au bu D
Z
Dd

1

gd .t/%d .t/ f Nu;1.t Nu/fu;2.tu/ dt;

and so ˝
f; hd;�

˛
Fd;�

D
X

u�Œd�

Z
Dd

1

gd .t/%d .t/ f Nu;1.t Nu/ fu;2.tu/ dt

D
Z
Dd

1

gd .t/%d .t/
X

u�Œd�
f Nu;1.t Nu/ fu;2.tu/ dt

D
Z
Dd

gd .t/%d .t/ f .t/ dt;

as claimed.
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We stress that multivariate integration (12.5) can be also obtained as Id .f / D
hf; hd iFd

, where h1 satisfies (10.21) for d D 1. More precisely, we need to assume
that

C.K1/ D
Z
D1

K1.t; t/%1.t/ dt < 1; (12.6)

and to find eigenpairs .
1;j ; �1;j / of the operator

.W1f /.x/ D
Z
D1

K1.x; t/f .t/%1.t/ dt for all x 2 D1:

We additionally assume that

1X
jD1

˝
h1; �1;j

˛2
F1


1;j
< 1: (12.7)

Then

Qhd D
1X
jD1

˝
h1; �1;j

˛
F1


1;j
�1;d 2 L2;%1

;

and we can take g1 D Qh1. Hence, (12.6) and (12.7) imply that Id is equivalent to
multivariate integration.

We want to estimate the nth minimal error e.n; d/ for approximating Id;� , where
Id;� .f / D ˝

f; hd;�
˛
Fd;�

for all f 2 Fd;� . To apply Theorem 10.7, we need to consider

C.Kd;� ; gd / D
Z
Dd

Kd;� .t; t/g
2
d .t/%d .t/ dt:

Let

˛�
1 D

Z
D1

R1.t; t/g
2
1.t/%1.t/ dt

and

˛�
2 D

Z
D1

R2.t; t/g
2
1.t/%1.t/ dt:

Note that the ˛�
j are finite by (12.4). They should be compared with the j̨ that we

have often used before. The j̨ take now the form

˛1 D kh1;1k2H.R1/
D
Z
D2

1

R1.x; t/g1.x/g1.t/%1.x/%1.t/ dx dt;

˛2 D kh1;2k2H.R2/
D
Z
D2

1

R2.x; t/g1.x/g1.t/%.x/%1.t/ dx dt:



12.6 Upper Bounds for Multivariate Integration 251

Clearly, j̨ � ˛�
j for j D 1; 2. We have

C.Kd ; gd / D
X

u�Œd�
�d;u

Z
Dd

g2d .t/%d .t/
Y
j…u

R1.tj ; tj /
Y
j2u

R2.tj ; tj / dt

D
X

u�Œd�
�d;u

�
˛�
1

�d�juj �
˛�
2

�juj

D
dX
kD0

�
˛�
1

�d�k �
˛�
2

�k X
u�Œd� I jujDk

�d;u:

This should be again compared with the square of the initial error,

e2.0; d/ D khd;�k2Fd;�
D

dX
kD0

Œ˛1�
d�k Œ˛2�k

X
u�Œd� I jujDk

�d;u:

As always, 00 D 1.
From Theorem 10.7, we know that

e.n; d/ � min

 
khd;�kFd;�

;

q
C.Kd;� ; gd / � khd;�k2Fd;�p

n

!
: (12.8)

We stress that the error bound above can be achieved by a properly normalized QMC
algorithm.

Let

f �.d/ D
Pd
kD0

�
˛�
1

�d�k �
˛�
2

�kP
u�Œd�W jujDk �d;u

CRI2d
: (12.9)

As always, CRId D 1 for the absolute error criterion, and CRId D e.0; d/ for the
normalized error criterion.

For the absolute error criterion, (12.8) implies that for " � khd;�kFd;�
we have

n."; d/ D 0, whereas for " < khd;�kFd;�
we have

n."; d/ �
&
f �.d/ � khd;�k2Fd;�

"2

'
� f �.d/

"2
:

For the normalized error criterion, (12.8) can be rewritten as

e.n; d/

e.0; d/
� min

 
1;

p
f �.d/ � 1p

n

!
:

Therefore, for " � 1 we have n."; d/ D 0, whereas for " < 1 we have

n."; d/ �
�
f �.d/ � 1

"2

�
� f �.d/

"2
:
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The two cases of the absolute and normalized error criteria can be combined and we
obtain

n."; d/ � f �.d/
"2

for all " 2 .0; 1/; d 2 N: (12.10)

From this estimate we easily obtain conditions on tractability of I� . We stress that
the function f � depends on the error criterion. That is why the conditions on f � also
depend on the error criterion. The theorem below can be applied for the absolute and
normalized error criteria by taking the function f � corresponding to the error criterion
we wish to consider.

Theorem 12.9. Considermultivariate integration I� D fId;�g with a non-zeroh1 such
that (12.4) holds. We consider the worst case setting for the absolute and normalized
error criteria.

• If
sup
d2N

f �.d/ < 1

then I� is strongly polynomially tractable with exponent at most 2. Additionally,
if

p� WD lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1

then I� is strongly T -tractable with exponent at most 2p�.

• If there exists a non-negative q such that

lim sup
d!1

f �.d/ d�q < 1

then I� is polynomially tractable with "�1 exponent at most 2 and d exponent at
most q.

• If

t� WD lim sup
"<min.1;khd;� kFd;�

=CRId /

"�1Cd!1

ln f �.d/C ln "�2

ln T ."�1; d /
< 1

then I� is T -tractable with exponent at most t�.

• If

lim
d!1

ln max.1; f �.d//
d

D 0

then I� is weakly tractable.

Proof. Clearly, if f � is uniformly bounded then (12.10) yields strong polynomial
tractability with exponent at most 2. Additionally, if p� < 1 then for an arbitrarily
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small positive ı there exists a positive "ı such that "�2 � T ."�1; 1/2.p�Cı/ for all
" � "ı . Since T ."�1; 1/ � 1 for all " 2 .0; 1/, we have

"�2 � "�2
ı T ."�1; 1/2.p�Cı/ for all " 2 .0; 1/:

This means strong T -tractability with exponent at most 2p�.
The next point on polynomial tractability is also clear. If

C WD lim sup
d

f �.d/d�q < 1

then for any positive ı there is a positive integer dı such that f �.d/ � .C C ı/ dq for
all d � dı . Therefore

f �.d/ � max
�

max
kD1;2;:::;dı�1

f �.k/; C C ı
�
dq for all d 2 N:

This implies polynomial tractability with d exponent at most q.
Assume now that t� < 1. Note that

khd;�kFd;�
=CRId D

´
khd;�kFd;�

for the absolute error criterion,

1 for the normalized error criterion:

Hence, for " � khd;�kFd;�
=CRId we have n."; d/ D 0.

For any positive ı there is a positive integer Mı such that

f �.d/ "�2 � T ."�1; d /t�Cı

for all " < min.1; khd;�kFd;�
=CRId / and "�1 C d � Mı .

For the remaining case of ."�1; d / 2 .1;1/ � N, we have

max
"�1Cd�Mı

f �.d/ "�2 � max
"�1�Mı

"�2 max
d�Mı

f �.d/ � C WD M 2
ı max
dD1;2;:::;Mı

f �.d/:

Therefore for all cases, we have

n."; d/ � f �.d/ "�2 � max.1; C / T ."�1; d /t�Cı for all " 2 .0; 1/; d 2 N:

Hence, the problem is T -tractable with exponent at most t�.
Finally, weak tractability follows from

lim
"�1Cd!1

ln n."; d/

"�1 C d
� lim
"�1Cd!1

ln max.1; f �.d//C ln "�2

"�1 C d
D 0:

This completes the proof.

We now check the conditions of Theorem 12.9 for h1;1 D 0. Then ˛�
1 D ˛1 D 0

and since we assume that h1 6D 0 we have h1;2 6D 0 and ˛2 > 0. In this case,

f �.d/ D
´�
˛�
2

�d
�d;Œd� for the absolute error criterion,�

˛�
2=˛2

�d
for the normalized error criterion.



254 12 Worst Case: Linear Functionals on Weighted Spaces

For the absolute error criterion we have

sup
d2N

f �.d/ < 1 iff �d;Œd� D O
� �
˛�
2

��d �
;

lim sup
d!1

f �.d/d�q < 1 iff �d;Œd� D O
�
dq

�
˛�
2

��d �
;

lim
d!1

ln f �.d/
d

D 0 iff �d;Œd� D exp
�
o.d/ � d ln ˛�

2

�
:

For the normalized error criterion, the situation is even simpler. Since ˛�
2 � ˛2, the

only case for which the conditions of Theorem 12.9 hold is when ˛�
2 D ˛2. In what

follows we assume that h1;1 6D 0.
Theorem 12.9 is quite straightforward but has interesting applications for finite-

order, finite-diameter and product weights. We remind the reader that finite-diameter
weights are also finite-order weights; the main difference between them is that we can
have O.d !/ non-zero finite-order weights of order !, whereas we can have 2q�1d C
O.1/ non-zero finite-diameter weights of order q, as d goes to infinity. This is the
subject of our next theorem.

Theorem 12.10. Consider multivariate integration I� D fId;�g with non-zero h1;1
and h1;2 such that (12.4) holds. We consider the worst case setting for the absolute
and normalized error criteria.

• Consider finite-order weights

�d;u D 0 for all u with juj > !:
For the absolute error criterion and bounded finite-order weights, i.e.,

sup
d2N

�d;u < 1;

we have the following:

– If

˛�
1 WD

Z
D1

R1.t; t/g
2
1.t/%1.t/ dt < 1

then I� is strongly polynomially tractable with exponent at most 2.

– If

˛�
1 < 1 and t� WD lim sup

"!0

ln "�1

ln T ."�1; 1/
< 1

then I� is strongly T -tractable with exponent at most 2t�.

– If
˛�
1 D 1

then I� is polynomially tractable with d exponent at most ! and "�1 ex-
ponent at most 2; for bounded finite-diameter weights the d exponent is at
most 1.
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– If

˛�
1 D 1 and t� WD lim sup

"<khd;� kFd;�

"�1Cd!1

k ln d C 2 ln "�1

ln T ."�1; d /
< 1

then I� isT -tractable with exponent at most t�. Here k D ! for finite-order
weights, and k D 1 for finite-diameter weights.

For the normalized error criterion and finite-orderweightswe have the following:

– If
˛�
1 D ˛1 WD kh1;1kH.R1/

then I� is strongly polynomially tractable with exponent at most 2.

– If

˛�
1 D ˛1 and t� WD lim sup

"!0

ln "�1

ln T ."�1; 1/
< 1

then I� is strongly T -tractable with exponent at most 2t�.

• Consider product weights

�d;u D
Y
j2u

�d;j for all u � Œd �:

For the absolute error criterion and product weights we have the following:

– If
˛�
1 C ˛�

2 � sup
d2N

max
jD1;2;:::;d

�d;j � 1

or

˛�
1 < 1 and lim sup

d!1

Pd
jD1 �d;j
ln d

< 1
or

˛�
1 D 1 and lim sup

d!1

dX
jD1

�d;j < 1

then I� is strongly polynomially tractable with exponent at most 2. Addi-
tionally, if

t� WD lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1

then I� is strongly T -tractable with exponent at most 2t�.

– If

˛�
1 D 1 and q� WD lim sup

d!1

Pd
jD1 �d;j
ln d

< 1

then I� is polynomially tractable with d exponent at most arbitrarily close
to ˛�

2 q
� and "�1 exponent at most 2.
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– If ˛�
1 � 1 and

t� WD lim sup
"2<

Qd
j D1

.˛�
1

C˛�
2

�d;j /

"�1Cd!1

ln "�2 C d ln ˛�
1 C .˛�

2=˛
�
1 /
Pd
jD1 �d;j

ln T ."�1; d /
< 1

then I� is T -tractable with exponent at most t�.

– If ˛�
1 � 1 and

lim
d!1

�
d ln ˛�

1 C .˛�
2 /=.˛

�
1 /
Pd
jD1 �d;j

�
C

ln d
D 0

then I� is weakly tractable.

For the normalized error criterion and product weights assume that

˛�
1 D ˛1:

Then we have the following:

– If

lim sup
d!1

dX
jD1

�d;j < 1

then I� is strongly polynomially tractable with exponent at most 2. Addi-
tionally, if

t� WD lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1

then I� is strongly T -tractable with exponent at most 2t�.

– If

q� WD lim sup
d!1

Pd
jD1 �d;j
ln d

< 1

then I� is polynomially tractable with d exponent at most arbitrarily close
to .˛�

2 � ˛2/ q�=˛1 and "�1 exponent at most 2.

– If

t� WD lim sup
"<1W "�1Cd!1

ln "�2 C .˛�
2 � ˛2/=˛1 Pd

jD1 �d;j
ln T ."�1; d /

then I� is T -tractable with exponent at most t�.

– If

lim
d!1

Pd
jD1 �d;j
d

D 0

then I� is weakly tractable.
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Proof. For the absolute error criterion and bounded finite-order weights, where �d;u �
� , we have

f �.d/ D
dX
kD0

�
˛�
1

�d�k �
˛�
2

�k X
u�Œd�W jujDk

�d;u

� �
˛�
1

�d !X
kD0

�
˛�
2=˛

�
1

�k �d
k

	
�

D �
˛�
1

�d
p!.d/;

where p! is a polynomial of degree at most !.
Thus for ˛�

1 < 1 the function f � is uniformly bounded; for ˛�
1 D 1, the values

f �.d/ are bounded by a multiple of d ! .
For finite-diameter weights, the values f �.d/ are bounded by a multiple of Œ˛�

1 �
d d .

Therefore for ˛�
1 D 1, they are bounded by a multiple of d . This and Theorem 12.9

yield the first part of Theorem 12.10.
For the normalized error criterion and finite-order weights, we assumed that ˛�

1 D
˛1. Since ˛2 > 0 and at least one �d;u is positive we have

f �.d/ D
�
˛�
1

�d P!
kD0

�
˛�
2=˛

�
1

�kP
u�Œd�W jujDk �d;u

Œ˛1�
d P!

kD0 .˛2=˛1/
kP

u�Œd�W jujDk �d;u

D
P!
kD0 .˛2=˛1/

k
�
˛�
2=˛2

�k P
u�Œd�W jujDk �d;uP!

kD0 .˛2=˛1/
kP

u�Œd�W jujDk �d;u

�
�
˛�
2

˛2

	!
:

Hence, f � is now uniformly bounded. Theorem 12.9 now yields the second part of
Theorem 12.10.

For the absolute error criterion and product weights we have

f �.d/ D
dY
jD1

�
˛�
1 C ˛�

2�d;j
�
:

Clearly,
˛�
1 C ˛�

2�d;j � ˛�
1 C ˛�

2 � sup
d2N

max
jD1;2;:::;d

�d;j :

Hence if the last bound is at most 1, the function f � is uniformly bounded and we have
strong tractability.

Let ˛�
1 � 1. Since ˛�

1 � ˛1 > 0, we rewrite f � as

f �.d/ D �
˛�
1

�d dY
jD1


1C ˛�

2

˛�
1

�d;j

�
� �

˛�
1

�d
exp

�
˛�
2

˛�
1

dX
jD1

�d;j

	
:
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Note that q� WD lim supd
Pd
jD1 �d;j = ln d < 1 implies that for any positive ı there

is a positive Cı such that

exp

�
˛�
2

˛�
1

dX
jD1

�d;j

	
� Cı d

˛�
2
.qCı/=˛�

1 for all d 2 N:

This yields that

f �.d/ � Cı
�
˛�
1

�d
d ˛

�
2
.qCı/=˛�

1 for all d 2 N:

Hence f � is uniformly bounded for ˛�
1 < 1, and polynomially bounded for ˛�

1 D 1.
The exponent of d in the latter case is at most ˛�

2 .qC ı/ and ı can be arbitrarily small.

Obviously for ˛�
1 D 1 and lim supd

Pd
jD1 �d;j < 1, we have

sup
d2N

dY
jD1

�
1C ˛�

2�d;j
�
< 1:

Hence f � is uniformly bounded, and so strong polynomial tractability holds. This
covers the proof of all cases except the last one of the third part of the theorem. For
the last case, we indeed can restrict "2 to be less than e2.0; d/ D Qd

jD1.˛�
1 C ˛�

2�d;j /

since otherwise n."; d/ D 0.
For the normalized error and product weights, it is enough to observe that

f �.d/ D
dY
jD1

1C .˛�
2=˛

�
1 / �d;j

1C .˛2=˛1/ �d;j
�

dY
jD1

�
1C .˛�

2 � ˛2/=˛1 �d;j
�
:

The rest is easy.

We now comment on Theorem 12.10. For the absolute error criterion, we must
assume that ˛�

1 � 1 to satisfy one of the tractability conditions. In particular, this holds
if g1 is sufficiently small. For the normalized error criterion we need a more restrictive
assumption that ˛�

1 D ˛1, i.e.,Z
D1

R1.t; t/ g
2
1.t/ %1.t/ dt D

Z
D2

1

R1.x; t/ g1.x/ g1.t/ %1.x/ %1.t/ dx dt: (12.11)

Obviously, this holds for g1 D 0 or for R1 D 0. For g1 D 0 the problem I� D 0

is trivial. For R1 D 0 we have h1;1 D 0 and this case has been already considered.
Therefore we now restrict ourselves to non-zero g1 and R1.

We prove that (12.11) holds iff

R1.x; t/ D e1.x/e1.t/ and e1 g1 	 constant 6D 0 in the space L2;%1
.D1/;

for some non-zero function e1.
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Note that the condition onR1means that dim.H.R1// D 1 andH.R1/ D span.e1/.
Equality in the spaceL2;%1

D L2;%1
.D1/means that the function e1g1 is constant over

the support of %1. If 1 2 H.R1/ then (12.11) holds iff

R1 	 constant > 0 and g1 	 constant 6D 0;

again with equality understood in the space L2;%1
.

Obviously, it is enough to show that (12.11) implies that R1.x; t/ D e1.x/e1.t/

and e1g1 is constant. Let us take an orthonormal basis fekgk2� of H.R1/, where � is
an index set that is at most countable if the space H.R1/ is separable. Then

R1.x; t/ D
X
k2�

ek.x/ek.t/;

where the last series is convergent and consists of at most a countable number of positive
terms. We rewrite (12.11) asX

k2�

Z
D1

e2k.t/g
2
1.t/%1.t/ dt D

X
k2�

�Z
D1

ek.t/g1.t/%1.t/dt

	2
:

Since the kth term of the left hand side is at least equal to the kth term of the right hand
side, we conclude that for all k 2 � we haveZ

D1

e2k.t/g
2
1.t/%1.t/ dt D

�Z
D1

ek.t/g1.t/%1.t/dt

	2
:

Since L2;%1
is separable, we take f�j gj2N as its orthonormal basis with �1 	 1. Then

ekg1 D
1X
jD1

˝
ekg1; �j

˛
L2;%1

yields
1X
jD1

˝
ekg1; �j

˛2
L2;%1

D hekg1; �1i2L2;%1
:

Therefore
˝
ekg1; �j

˛
L2;%1

D 0 for all j � 2 and

ekg1 D hg1; �1iL2;%1
e1 D constant 6D 0:

This holds for all k 2 �. If j�j > 2 then e1g1 D c1 and e2 g2 D c2 for non-zero cj and
therefore e1 D .c1=c2/e2. Hence, e1 and e2 are linearly dependent which contradicts
the fact that they form a part of the basis of H.R1/. This proves that j�j D 1 and
R1.x; t/ D e1.x/e1.t/ as well as that e1g1 D constant 6D 0, as claimed.

Although the assumption (12.11) for the normalized error criterion may seem to
be restrictive, it is satisfied for a number of problems related to standard multivariate
integration. We now illustrate this by several examples.
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12.6.1 Example: Weighted Integration (Continued)

This example was recently analyzed in Subsection 12.5.1. We have g1 	 1 and

R1.x; t/ D
kX

jD0

xj

j Š

tj

j Š
for all x; t 2 R;

for some k 2 f0; 1; : : : ; r � 1g. Note that for r D 1, the only option is for k to be
zero and then R1 	 1. For r � 2, if we take k D 0 then again R1 	 1. In these
two cases, (12.11) holds. It is easy to see that Corollary 12.4 is a special case of
Theorem 12.10. For r � 2 and k � 1, Theorem 12.10 does not apply, and that is why
we still have Open Problem 62.

12.6.2 Example: Uniform Integration (Continued)

This example

Id .f / D
Z
Œ0;1�d

f .t/ dt for all f 2 Fd D W 1;1;:::;1
a .Œ0; 1�d /

was analyzed in Section 11.5.2. For this example, we have

R1 D g1 D %1 D 1;

so that (12.11) holds.
For the unweighted case �d;u 	 1, we already checked that multivariate integration

is intractable for both the absolute and normalized error criteria, as long as the anchor
a 2 .0; 1/.

We now consider the weighted case for a 2 Œ0; 1�. We have

R2.x; t/ D 1M .x; t/min.jx � aj; jt � aj/ for all x; t 2 Œ0; 1�;
where M D f.x; t/ j .x � a/.t � a/ � 0; x; t 2 Œ0; 1�g. For a 2 .0; 1/, the kernel R2
is decomposable at a and

h1;2;.0/.x/ D
´
1
2
.a � x/.aC x/ for x 2 Œ0; a�;
0 for x 2 Œa; 1�;

h1;2;.1/.x/ D
´
0 for x 2 Œ0; a�;
1
2
.x � a/.2 � a � x/ for x 2 Œa; 1�:

Furthermore

kh1;2;.0/kF1
D 1

3
a3 and kh1;2;.1/kF1

D 1
3
.1 � a/3:
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Then Theorems 12.2, 12.3, 12.9 and 12.10 can be applied.
For a 2 f0; 1g we proceed as follows. It is enough to consider a D 0 since the case

a D 1 can be done analogously. We now have

R2.x; t/ D min.x; t/ for all x; t 2 Œ0; 1�;
andH.R2/ D W 1

0 .Œ0; 1�/ is the Sobolev space of absolutely continuous functions with
first derivatives in L2.Œ0; 1�/ and vanishing at 0. Take a� 2 .0; 1/ and consider the
subspace

Fa� D ff 2 H.R2/ j f .a�/ D 0g:
Note that the projection

f � f .a�/
R2.�; a�/
R2.a�; a�/

belongs to Fa� for all f 2 H.R2/. This implies that Fa� is the reproducing kernel
Hilbert space with the kernel

R2;2.x; t/ D R2.x; t/ � R2.x; a
�/R2.t; a�/

R2.a�; a�/
D min.x; t/ � min.x; a�/ min.t; a�/

a�

for all x; t 2 Œ0; 1�. Note that R2.x; t/ D 0 for all .x � a�/.t � a�/ � 0 which means
that R2 is decomposable at a�. We also have

R2;1.x; t/ D R2.x; a
�/R2.t; a�/

R2.a�; a�/
D min.x; a�/ min.t; a�/

a� for all x; t 2 Œ0; 1�

and H.R2;1/ is the one-dimensional reproducing kernel Hilbert space of functions

c min.�; a�/ for all c 2 R:

This implies that R2 D R2;1 CR2;2 and

H.R1/ \H.R2/ D H.R2;1/ \H.R2;1/ D f0g;
as needed in Theorem 12.5 and Corollary 12.7. Furthermore, for all x 2 Œ0; 1�we have

h1;1.x/ D 1;

h1;2;1.x/ D �
1 � 1

2
a�� min.x; a�/;

h1;2;2;.0/.x/ D 1Œ0;a��.x/
�
1
2
a�x � 1

2
x2
�
;

h1;2;2;.1/.x/ D 1Œa�;1�.x/
�
x � 1

2
x2 � a� �1 � 1

2
a��� ;

and

kh1;1k2H.R1/
D 1;

kh1;2;1k2H.R2;1/
D �

1 � 1
2
a��2 a�;

kh1;2;2;.0/k2H.R2;2/
D Œa��3

12

kh1;2;2;.1/k2H.R2;2/
D .1 � a�/3

3
:
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We also have

˛1 D 1 and ˛2 D 1
3

�
a3 C .1 � a/3� 2 � 1

12
; 1
3

�
;

˛�
1 D 1 and ˛�

2 D 1
2

�
a2 C .1 � a/2� 2 �1

4
; 1
2

�
:

Hence, all the assumptions of Corollary 12.7 are satisfied.
From this and Theorem 12.10 we obtain the following corollary.

Corollary 12.11. Consider uniform integration I� D fId;�g as defined in this example.
To omit the trivial case, we assume that there is at least one non-zero weight �d;u with
juj > 0 for every d . We consider the worst case setting for the absolute and normalized
error criteria.

• Consider finite-order weights

�d;u D 0 for all u with juj > !:

For the absolute error criterion and finite-order weights we have the following:

– If
sup
d2N

X
u�Œd� W juj�!

�d;u < 1 (12.12)

then I� is strongly polynomially tractable with exponent in Œ1; 2�,

– If (12.12) holds then I� is strongly T -tractable iff

t� D lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1:

If this holds, then the exponent belongs to Œt�; 2t��.
– If finite-order weights are polynomially bounded, i.e., there exists a positive
k such that

sup
d2N

�d;ud
�k < 1;

then I� is polynomially tractable with d exponent at most ! C k and "�1
exponent at most 2; for finite-diameter weights the d exponent is at most
k C 1.

– If finite-order weights are polynomially bounded and

t� WD lim sup
"<1; "�1Cd!1

k ln d C 2 ln "�1

ln T ."�1; d /
< 1

then I� is T -tractable with exponent at most t�. Here, k D ! for finite-
order weights and k D 1 for finite-diameter weights.

For the normalized error criterion and finite-orderweightswe have the following:
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– I� is strongly polynomially tractable with exponent in Œ1; 2�,

– I� is strongly T -tractable iff

t� WD lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1:

If this holds then the exponent belongs to Œt�; 2t��.

• Consider product weights

�d;u D
Y
j2u

�d;j for all u � Œd �:

For the absolute and normalized error criteria and product weights we have the
following:

– I� is strongly polynomially tractable iff

lim sup
d!1

dX
jD1

�d;j < 1

If this holds then the exponent belongs to Œ1; 2�.

– I� is strongly T -tractable iff

lim sup
d!1

dX
jD1

�d;j < 1 and t� WD lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1:

If this holds then the exponent belongs to Œt�; 2t��.
– I� is polynomially tractable iff

q� WD lim sup
d!1

Pd
jD1 �d;j
ln d

< 1:

If this holds then the d exponent is at most arbitrarily close to�
1
2

� aC a2
�
q� 2 �1

4
q�; 1

2
q�� ;

and the "�1 exponent belongs to Œ1; 2�,

– I� is T -tractable iff

lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1 and lim

"!1�
lim sup
d!1

Pd
jD1 �d;j

ln T ."�1; d /
< 1:

If this holds then

t� WD lim sup
"!1; "�1Cd!1

ln "�2 C .1
2

� aC a�/
Pd
jD1 �d;j

ln T ."�1; d /
< 1

and I� is T -tractable with exponent at most t�.
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– I� is weakly tractable iff

lim
d!1

Pd
jD1 �d;j
ln d

D 0:

We now comment on Corollary 12.11. For the absolute error criterion and finite-
order weights, we need to assume that the sum of the weights or the weights are bounded
to get strong polynomial or polynomial tractability. Indeed, take �d;f1g D w.d/ and
�d;u D 0 for all u 6D f1g. Suppose that limd!1w.d/ D 1. Clearly, this corresponds
to the univariate case, for which it is known that

n."; 1/ D �.
p
w.d/"�1/:

This contradicts strong polynomial tractability. Similarly, if the �d;u are not polyno-
mially bounded then we can take the function w such that limd!1w.d/d�k D 1
for all k and polynomial tractability does not hold.

The condition on strong T -tractability is also necessary, since for d D 1 we have
�1;f1g > 0 and n."; 1/ D �.

p
�1;f1g "�1/, which yields that t� must be finite; said t� is

also a lower bound on the exponent of strong T -tractability. The last argument shows
that the exponent of strong polynomial tractability and the "�1 exponent of polynomial
tractability are at least 1. The rest follows, more or less, directly from the results we
mentioned before.

We stress that the exponent of strong polynomial tractability, as well as strong T -
tractability, are not known exactly. As we shall see later, it will be possible to show that
the exponent of strong polynomial tractability takes its smallest value 1 if we assume
more about the product weights. Namely, the exponent is 1 if

sup
d

dX
jD1

p
�d;j < 1:

It is unknown whether this last condition on the product weights is really needed. This
leads us to the next open problem.

Open Problem 63.

• Find necessary and sufficient conditions on finite-order, finite-diameter and prod-
uct weights for which the exponent of strong polynomial tractability of multi-
variate integration considered in the example is 1.

• Do the conditions on weights depend on the anchor a?
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12.6.3 Example: Bounds on Weighted L2 Discrepancy

In Section 11.5.4 we showed bounds on uniform integration for the Sobolev space
Fd D W 1;1;:::;1.Œ0; 1�d / with no boundary conditions. For the unweighted case, we
showed that uniform integration is intractable for both the absolute and normalized
error criteria. As we know, this problem is equivalent to unweighted L2 discrepancy.

So we now consider the weighted case � D f�d;ug and show conditions on the
weights to get various kinds of tractability for weighted L2 discrepancy.

This corresponds to the previous example with a D 0, and then we obtain ˛1 D
˛�
1 D 1, ˛2 D 1

3
and ˛�

2 D 1
2

. As before, let disc2;� .n; d/ denote the minimal L2
discrepancy anchored at 0when we use n points in the d -dimensional case. We already
mentioned in Section 9.3 of Chapter 9 that

disc22;� .0; d/ D
X

u�Œd�
�d;u 3

�juj;

disc22;� .n; d/ � n�1 X
u�Œd�

�d;u
�
2�juj � 3�juj�:

For bounded finite-order weights, �d;u � � and �d;u D 0 for all juj � !, we have

disc22;� .n; d/ � n�1 �
!X
kD0

�
d

k

	
2�k D O

�
n�1 � d !

�
:

We stress that the bounds on disc2;� .n; d/ can be attained by QMC algorithms.
For bounded finite-diameter weights of order q, i.e., �d;u D 0 for all diam.u/ � q,

we have

disc22;� .n; d/ � n�1 �
X

u�Œd� W diam.u/�q
�d;u2

�k D O
�
n�1 � d

�
:

Furthermore, for finite-order weights (not necessarily bounded) of order ! we have

disc22;� .n; d/

disc22;� .0; d/
� n�1

P
juj�! �d;u2�jujP
juj�! �d;u3�juj � n�1

�
3

2

	!
;

whereas for finite-diameter weights (not necessarily bounded) of order q we have
�d;u D 0 for all juj > q and therefore

disc22;� .n; d/

disc22;� .0; d/
� n�1

P
diam.u/�q �d;u2�juP
diam.u/�q �d;u3�ju � n�1

�
3

2

	q
:

Hence, we have polynomial bounds for the absolute error criterion and strongly poly-
nomial bounds for the normalized error criterion.
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For product weights, we have

disc22;� .0; d/ D
dY
jD1

�
1C 1

3
�d;j

�
;

disc22;� .n; d/ � n�1
dY
jD1

�
1C 1

2
�d;j

�
:

From this and Corollary 12.11 we conclude the following:

• There exists a positive number C such that

disc22;� .n; d/ � C n�1 for all n; d 2 N iff sup
d2N

dX
jD1

�d;j < 1:

• There exist positive numbers C and q such that

disc22;� .n; d/ � C dq n�1 for all n; d 2 N

iff

q� WD lim sup
d2N

Pd
jD1 �d;j
ln d

< 1:

If q� < 1 then for all q > q� we have

disc22;� .n; d/ D O
�
dqn�1� for all n; d 2 N:

• Furthermore

lim
d!1

ln disc2;� .n; d/

d
D 0 for all n 2 N iff lim

d!1

Pd
jD1 �d;j
d

D 0:

This proves that the conditions (9.23), (9.24) and (9.25) presented in Chapter 9 are also
necessary.

12.6.4 Upper Bounds Based on Theorem 10.10

The upper bounds for multivariate integration presented so far in this section are based
on Theorem 10.7 that requires thatZ

D1

K1.t; t/g
2
1.t/%1.t/ dt < 1:

As we know, for some multivariate integration problems the last integral is infinite and
then the upper bounds obtained so far are not applicable.
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As in Chapter 10, we know that we can relax the last assumption by assuming thatZ
D1

p
K1.t; t/ jg1.t/j%1.t/ dt < 1; (12.13)

and then apply Theorem 10.10. More precisely, we must guarantee that

C new.Kd ; gd / ´
Z
Dd

p
Kd .t; t/ jgd .t/j %d .t/ dt

�2
< 1:

We claim that (12.13) yields that C new.Kd ; gd / is finite. Indeed, K1 D R1 C R2
implies that R1.t; t/CR2.t; t/ D K1.t; t/. Obviously Rj .t; t/ � 0, so that

ˇ�
j WD

Z
D1

q
Rj .t; t/ jg1.t/j%1.t/ dt �

Z
D1

p
K1.t; t/ jg1.t/j%1.t/ dt < 1

for j D 1; 2. Let a D ŒC new.Kd ; gd /�
1=2. Since

qP
j xj � P

j x
1=2
j for any

non-negative xj , we have

a D
Z
Dd

� X
u�Œd�

�d;u
Y
j…u

R1.tj ; tj /g
2
1.tj /%

2
1.tj /

Y
j2u

R2.t; t/g
2
1.tj /%

2
1.tj /

�1=2
dt

�
Z
Dd

X
u�Œd�

�
1=2

d;u

Y
j…u

q
R1.tj ; tj /jg1.tj /j%1.tj /

Y
j2u

p
R2.t; t/jg1.tj /j%1.tj / dt

D
X

u�Œd�
�
1=2

d;u
Œˇ�
1 �
d�jujŒˇ�

2 �
juj < 1;

as claimed.
Note that ˇ�

j � Œ˛�
j �
1=2, where ˛�

j are given as in Section 12.6, that is, ˛�
j DR

D1
Rj .t; t/ g

2
1.t/ %1.t/ dt: Let

g�.d/ D
�Pd

kD0Œˇ�
1 �
d�kŒˇ�

2 �
k
P

u�Œd�W jujDk �
1=2

d;u

�2
CRId

:

The function g� should be compared with the function f � defined by (12.9). We have

g�.d/ � jf�d;u j �d;u > 0gjf �.d/ � 2d f �.d/:

For product weights �d;u D Q
j2u �d;j , we have

g�.d/
f �.d/

D
dY
jD1

.ˇ�
1 C ˇ�

2�
1=2

d;j
/2

˛�
1 C ˛�

2�d;j
:

For general weights � , we know from Theorem 10.10 that

e.n; d/ � min

 
khd;�kFd;�

;

q
C new.Kd;� ; gd / � khd;�k2Fd;�p

n

!
;
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and this error bound can be achieved by the algorithm An;d;Et of Section 10.7.9.
Using this estimate we can repeat the argument of Section 12.6 and conclude that

for the absolute and normalized error criteria we have

n."; d/ � g�.d/
"2

for all " 2 .0; 1/; d 2 N:

Then we can use the proof of Theorem 12.9 for the function g� instead of the function
f � to get the following theorem.

Theorem 12.12. Consider multivariate integration I� D fId;�g with a non-zero h1
such that (12.13) holds. We consider the worst case setting for the absolute and
normalized error criteria.

• If
sup
d2N

g�.d/ < 1

then I� is strongly polynomially tractable with exponent at most 2. Additionally,
if

p� WD lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1

then I� is strongly T -tractable with exponent at most 2p�.

• If there exists a non-negative q such that

lim sup
d!1

g�.d/ d�q < 1

then I� is polynomially tractable with "�1 exponent at most 2 and d exponent at
most q.

• If

t� WD lim sup
"<min.1;khd;� kFd;�

=CRId /

"�1Cd!1

ln g�.d/C ln "�2

ln T ."�1; d /
< 1

then I� is T -tractable with exponent at most t�.

• If

lim
d!1

ln max.1; g�.d//
d

D 0

then I� is weakly tractable.

Proceeding similarly as in Section 12.6, we now specialize Theorem 12.12 for
finite-order and product weights.

Theorem 12.13. Consider multivariate integration I� D fId;�g with non-zero h1;1
and h1;2 such that (12.13) holds. We consider the worst case setting for the absolute
and normalized error criteria.
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• Consider finite-order weights

�d;u D 0 for all u with juj > !:
For the absolute error criterion and bounded finite-order weights, i.e.,

sup
d2N

�d;u < 1;

we have the following:

– If

ˇ�
1 WD

Z
D1

p
R1.t; t/ jg1.t/j %1.t/ dt < 1

then I� is strongly polynomially tractable with exponent at most 2.

– If

ˇ�
1 < 1 and t� WD lim sup

"!0

ln "�1

ln T ."�1; 1/
< 1

then I� is strongly T -tractable with exponent at most 2t�.

– If
ˇ�
1 D 1

then I� is polynomially tractable with d exponent at most 2! and "�1
exponent at most 2; for bounded finite-diameter weights the d exponent is
at most 2.

– If

ˇ�
1 D 1 and t� WD lim sup

"<khd;� kFd;�

"�1Cd!1

k ln d C 2 ln "�1

ln T ."�1; d /
< 1

then I� is T -tractable with exponent at most t�. Here k D 2! for finite-
order weights, and k D 2 for finite-diameter weights.

For the normalized error criterion and finite-orderweightswe have the following:

– If
Œˇ�
1 �
2 D ˛1 WD kh1;1kH.R1/

then I� is polynomially tractable with exponent at most ! for finite-order
weights and at most 1 for finite-diameter weights.

– If

Œˇ�
1 �
2 D ˛1 and t� WD lim sup

"�1Cd!1
k ln d C 2 ln "�1

ln T ."�1; d /
< 1

then I� is T -tractable with exponent at most t�. Here, as before, k D !

for finite-order weights and k D 1 for finite-diameter weights.
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• Consider product weights

�d;u D
Y
j2u

�d;j for all u � Œd �:

For the absolute error criterion and product weights we have the following:

– If

ˇ�
1 C ˇ�

2 � sup
d2N

max
jD1;2;:::;d

�
1=2

d;j
� 1

or

ˇ�
1 < 1 and lim sup

d!1

Pd
jD1 �

1=2

d;j

ln d
< 1

or

ˇ�
1 D 1 and lim sup

d!1

dX
jD1

�
1=2

d;j
< 1

then I� is strongly polynomially tractable with exponent at most 2. Addi-
tionally, if

t� WD lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1

then I� is strongly T -tractable with exponent at most 2t�.

– If

ˇ�
1 D 1 and q� WD lim sup

d!1

Pd
jD1 �

1=2

d;j

ln d
< 1

then I� is polynomially tractable with d exponent at most arbitrarily close
to 2ˇ�

2 q
� and "�1 exponent at most 2.

– If ˇ�
1 � 1 and

t� WD lim sup
"2<

Qd
j D1

.ˇ�
1

Cˇ�
2

�
1=2
d;j

/2

"�1Cd!1

ln "�2C2d ln ˇ�
1 C2.ˇ�

2=ˇ
�
1 /
Pd
jD1 �

1=2

d;j

ln T ."�1; d /
<1

then I� is T -tractable with exponent at most t�.

– If ˇ�
1 � 1 and

lim
d!1

�
2d ln ˇ�

1 C 2.ˇ�
2 /=.ˇ

�
1 /
Pd
jD1 �

1=2

d;j

�
C

ln d
D 0

then I� is weakly tractable.
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For the normalized error criterion and product weights assume that

Œˇ�
1 �
2 D ˛1:

Then we have the following:

– If

lim sup
d!1

dX
jD1

�
1=2

d;j
< 1

then I� is strongly polynomially tractable with exponent at most 2. Addi-
tionally, if

t� WD lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1

then I� is strongly T -tractable with exponent at most 2t�.

– If

q� WD lim sup
d!1

Pd
jD1 �

1=2

d;j

ln d
< 1

then I� is polynomially tractable with d exponent at most arbitrarily close
to 2 q�ˇ�

2=ˇ
�
1 and "�1 exponent at most 2.

– If

t� WD lim sup
"<1W "�1Cd!1

ln "�2 C 2 q� ˇ�
2=ˇ

�
1

Pd
jD1 �d;j

ln T ."�1; d /

then I� is T -tractable with exponent at most t�.

– If

lim
d!1

Pd
jD1 �

1=2

d;j

d
D 0

then I� is weakly tractable.

Proof. Basically we need to repeat the reasoning of Theorem 12.10 with the obvious
changes.

For the absolute error criterion and bounded finite-order weights, we have g�.d/ D
Œˇ�
1 �
2dp2k.d/, where p2k is a polynomial of degree 2k with k D ! for finite-order

weights of order !, and k D 1 for finite-diameter weights. This implies all the
statements for this error criterion.
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For the normalized error criterion and finite-order weights, we assumed that
Œˇ�
1 �
2 D ˛1. Since ˛2 > 0 and at least one �d;u is positive we have

g�.d/ D
�
ˇ�
1

�2d �P
u�Œd�W juj�k �

1=2

d;u
.ˇ�
2=ˇ

�
1 /

juj�2
Œ˛1�

d P
u�Œd�W juj�k �d;u .˛2=˛1/

juj

D
�P

u�Œd�W juj�k �
1=2

d;u
.˛2=˛1/

juj=2�.˛1=˛2/1=2.ˇ�
2=ˇ

�
1 /
�juj�2P

u�Œd�W juj�k �d;u .˛2=˛1/
juj

�
X

u�Œd�W juj�k


˛
1=2
1

˛
1=2
2

ˇ�
2

ˇ�
1

�juj
D O.dk/:

Hence, f � is now bounded by a multiple of dk , again with k D ! for finite-order
weights, and k D 1 for finite-diameter weights. This yields the next point of the
theorem.

For product weights and the absolute error criterion, we have

g�.d/ D
dY
jD1

�
ˇ�
1 C ˇ�

2�
1=2

d;j

�2
:

Then we proceed as in the proof of Theorem 12.10 with the obvious changes, and
obtain the next point of the theorem.

For product weights and the normalized error, we have

g�.d/ D
dY
jD1

.1C .ˇ�
2=ˇ

�
1 / �

1=2

d;j
/2

1C .˛2=˛1/ �d;j
� exp

�
2
ˇ�
2

ˇ�
1

dX
jD1

�
1=2

d;j

	
:

The rest is easy.

The main difference between Theorems 12.10 and 12.13 for finite-order weights
is the difference between the d exponents. For the absolute error criterion, the d
exponents are double if we switch from Theorem 12.10 to Theorem 12.13. For the
normalized error criterion, we have strong polynomial tractability in the case of Theo-
rem 12.10, and only polynomial tractability in the case of Theorem 12.13. We are not

sure if this is caused by an overestimating
qP

j xj by
P
j x

1=2
j , or it is the consequence

of replacing the assumption 12.4 by the weaker assumption 12.13. This leads us to the
next open problem.

Open Problem 64.

Consider multivariate integration I� D fId;�g for finite-order and finite-diameter
weights with non-zero h1;2 and h1;2 such thatZ

D1

K1.t; t/ g
2
1.t/ %1.t/ dt D 1 and

Z
D1

p
K1.t; t/ jg1.t/j %1.t/ dt < 1:
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• For the absolute error criterion, find the exact d exponent of polynomial tractabil-
ity.

• For the normalized error criterion, verify strong polynomial tractability. If strong
polynomial tractability does not hold, find a d exponent of polynomial tracta-
bility.

• Do the exponents depend on the kernel K1 and the functions g1 and %1?

For product weights and normalized error criterion, the estimates in Theorem 12.13
are also not completely satisfactory since they are expressed in terms of �1=2

d;j
, whereas

lower bound estimates of Chapter 11 are given in terms of �d;j . We now show that at
least sometimes we can obtain similar estimates as in Theorem 12.13 in terms of � s

d;j

for s that can be arbitrarily close to 1.
For simplicity let us assume that R1 D 1. Then the reproducing kernel is

Kd .x; t/ D
dY
jD1

�
1C �d;jR2.xj ; tj /

�
for all x; t 2 Dd

1 :

We need to find a better estimate of

C new.Kd ; gd / D
� dY
jD1

Z
D1

�
1C �d;jR2.t; t/

�1=2 jg1.t/j %1.t/ dt
	2
:

It is easy to check that for any s 2 .1
2
; 1/ there exists a positive Cs such that

.1C x/1=2 � 1C Csx
s for all x 2 Œ0;1/:

Indeed, by squaring both sides, the last inequality is equivalent to

1 � g.x/ WD 2Csx
s�1 C C 2s x

2s�1:

Clearly, g.0/ D g.1/ D 1 since the first term goes to infinity as x goes to zero,
whereas the second term goes to infinity as x goes to infinity. It is enough to check if
1 � g.x/ for x minimizing g. This x is obviously characterized by g0.x/ D 0 and is
given by

x D

2.1 � s/
Cs.2s � 1/

�1=s
:

Then

min
x2Œ0;1/

g.x/ D C 1=ss

"
2

�
2.1 � s/
2s � 1

	1�1=s
C
�
2.1 � s/
2s � 1

	2�1=s#
D 1

if we take

Cs D
"
2

�
2.1 � s/
2s � 1

	1�1=s
C
�
2.1 � s/
2s � 1

	2�1=s#�s
:
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Therefore,

C new.Kd ; gd / �
� dY
jD1

Z
D1

�
1C Cs�

s
d;j R

s
2.t; t/

� jg1.t/j %1.t/ dt
	2
:

Based on this estimate we are ready to prove the following theorem.

Theorem 12.14. Consider I� D fId;�g defined as in this section for product weights
and for the normalized error criterion. Assume thatZ

D1

jg1.t/j %1.t/ dt D
ˇ̌̌̌Z
D1

g1.t/ %1.t/ dt

ˇ̌̌̌
> 0;

and that there exists s 2 .1
2
; 1/ such thatZ
D1

Rs2.t; t/ jg1.t/j %1.t/ dt < 1:

• If

sup
d2N

dX
jD1

� sd;j < 1

then I� is strongly polynomially tractable with exponent at most 2.

• If

q� WD lim sup
d!1

Pd
jD1 � sd;j
ln d

< 1

then I� is polynomially tractable with " exponent at most 2, and d exponent at
most arbitrarily close to

2q�Cs

R
D1
Rs2.t; t/ jg1.t/j %1.t/ dtR
D1

jg1.t/j %1.t/ dt
:

• If

lim
d!1

Pd
jD1 � sd;j
d

D 0

then I� is weakly tractable.

Proof. We now have

n."; d/ � a

"2
with a WD C new.Kd ; gd /

e2.0; d/
:
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We estimate a as follows

a �
dY
jD1

� R
D1

jg1.t/j%1.t/ dt C Cs�
s
d;j

R
D1
Rs.t; t/jg1.t/j%1.t/ dt

�2� R
D1
g1.t/%1.t/ dt

�2 C �d;j
R
D2

1
R2.x; t/g1.x/g1.x/g1.t/%1.x/%1.t/ dx dt

D
dY
jD1

.1C as�
s
d;j
/2

1C b�d;j
�

dY
jD1

.1C as�
s
d;j /

2;

where

as D Cs

R
D1
Rs2.t; t/ jg1.t/j %1.t/ dtR
D1

jg1.t/j %1.t/ dt
;

b D
R
D2

1
R2.x; t/g1.x/g1.x/g1.t/%1.x/%1.t/ dx dt� R

D1
g1.t/%1.t/ dt

�2 :

From the last estimate we easily obtain all points of the theorem.

We illustrate the analysis of this section by an example.

12.6.5 Example: Integration and Unbounded Kernel

We already discussed uniform integration for the Sobolev space with the reproducing
kernel for d D 1 of the form K1.x; t/ D 1 C min.x; t/ for x; t 2 Œ0; 1�. We now
generalize this space by taking

K1.x; t/ D 1C min.x; t/ for all x; t 2 Œ0;1/:

This corresponds to the space F1 D H.K1/ of absolutely continuous functions with
first derivatives in L2.Œ0;1// and the inner product

hf; giF1
D f .0/g.0/C

Z 1

0

f 0.t/g0.t/ dt for all f; g 2 F1:

We now have R1 D g1 D 1 and R2.x; t/ D min.x; t/ for all x; t 2 D1 WD Œ0;1/.
Let %1.t/ D .1C t /�2 for t 2 Œ0;1/. It is easy to check thatZ

Œ0;1/2
K1.x; t/%1.x/%1.t/ dx dt D

Z 1

0

1C ln.1C x/

.1C x/2
dx D 2:

This means that the univariate integration problem

I1.f / D
Z 1

0

f .t/%1.t/ dt for all f 2 F1
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is well defined, with kI1k D p
2. Furthermore,

I1.f / D hf; h1iF1
with h1.x/ D 1C ln.1C x/:

Clearly, h1;1 D 1 and h1;2.x/ D ln.1C x/ and kh1;1kF1
D kh1;2kF1

D 1.
For d � 1, we take tensor products and obtain

Fd D F1 ˝ F1 ˝ � � � ˝ F1; d times;

and

Id .f / D
Z
Œ0;1/d

f .t/%d .t/ dt

with %d .t/ D Qd
jD1 %1.tj / for t D Œt1; t2; : : : ; td � 2 Œ0;1/d .

Since K1.t; t/%1.t/ D .1C t /=.1C t /2 D 1=.1C t /, we haveZ
Œ0;1/

K1.t; t/%1.t/ dt D 1;

and (12.4) with g1 D 1 is indeed not satisfied and therefore Theorems 12.9 and 12.10
are not applicable.

On the other hand
p
K1.t; t/%1.t/ D p

1C t=.1Ct /2 D .1Ct /�3=2 and thereforeZ 1

0

p
K1.t; t/%1.t/ dt D

Z 1

0

1

.1C t /3=2
dt D 2;

so that 12.13 holds, and we can apply the results presented in this section. We now
have

ˇ�
1 D ˛1 D ˛�

1 D 1;

ˇ�
2 D

Z 1

0

p
t

.1C t /2
dt D

�
�

p
t

1C t
C arctan.

p
t /

	ˇ̌̌1
0

D �

2
:

Note that Z 1

0

R2.t; t/
sjg1.t/j%1.t/ dt D

Z 1

0

ts

.1Ct/2 dt < 1

for all s 2 Œ1
2
; 1/ so that we can use Theorem 12.14 for product weights.

We summarize the results obtained in this section for this example assuming the
normalized error criterion and finite-order, finite-diameter and product weights. We
also mention a few lower bounds from Chapter 11.

• For finite-order weights of order !, the problem is polynomially tractable with
d exponent at most ! and "�1 exponent at most 2.

• For finite-diameter weights of order q, the problem is polynomially tractable
with d exponent at most 1 and "�1 exponents at most 2.

• Consider product weights � D f�d;ug with �d;u D Q
j2u �d;j .
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– If

lim sup
d!1

dX
jD1

� sd;j < 1

for some s 2 Œ1
2
; 1/ then the problem is strongly polynomially tractable.

– If the problem is strongly polynomially tractable then

lim sup
d!1

dX
jD1

�d;j < 1:

– If

lim sup
d!1

Pd
jD1 � sd;j
ln d

< 1

for some s 2 Œ1
2
; 1/ then the problem is polynomially tractable.

– If the problem is polynomially tractable then

lim sup
d!1

Pd
jD1 �d;j
ln d

< 1:

– If

lim
d!1

Pd
jD1 � sd;j
d

D 0

for some s 2 Œ1
2
; 1/ then the problem is weakly tractable.

– If the problem is weakly tractable then

lim
d!1

Pd
jD1 �d;j
d

D 0:

Clearly, there is a small gap between the necessary and sufficient conditions for
product weights since we cannot take s D 1.

12.7 Upper Bounds for the General Case

In the previous section we studied multivariate integration. For the normalized error
criterion we needed to assume (12.11) to determine conditions on tractability.

In this section we study more general linear functionals, not merely multivariate
integration. This will be done at the expense of more restrictive assumptions on the
weights needed for various kinds of tractability.
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As we know, some linear functionals are arbitrarily hard to approximate even for
d D 1. To eliminate such cases, we need to assume that we deal with linear functionals
that are relatively easy to approximate for d D 1. More precisely, since we still want to
use general upper bounds from Chapter 10, we restrict ourselves to linear functionals
Id;� for which a non-zero h1 2 F1 is chosen such that

kh1;1k�
F1
< 1 and kh1;2k�

F1
< 1: (12.14)

For the convenience of the reader we recall the definition of the norm k � k�
F1

from
Section 10.10 of Chapter 10. For f 2 F1, let

b" D inf
˚Pm

jD1 j ǰ jpK1.zj ; zj / j ��f �Pm
jD1 ǰK1.�; zj /

��
F1

� "


:

Then
kf k�

F1
D lim sup

"!0

b":

Obviously, kf kF1
� kf k�

F1
. If f D ˇ1K1.�; z1/ for some real ˇ1 2 R and some

point z1 2 D1 then we have

kf kF1
D jˇ1j

p
K1.z1; z1/ D kf k�

F1
:

Note that if dim.F1/ D 1 then we have kf k�
F1

D kf kF1
for all f 2 F1, since each

f D ˇ1K1.�; z1/ for some real ˇ1 and z1 2 D1.
Since k � k�

F1
is a norm and h1 D h1;1 C h1;2, we have

kh1k�
F1

� kh1;1k�
F1

C kh1;2k�
F2
:

As before, j̨ D kh1;j k2
H.Rj /

D kh1;j k2F1
. Analogously, we denote

˛�
1 D �kh1;1k�

F1

�2
and ˛�

2 D �kh1;2k�
F1

�2
:

For u � Œd �, let

hu.x/ D
Y
j…u

h1;1.xj /
Y
j2u

h1;2.xj / for all x 2 Dd :

Then hu belongs to the tensor product space Fd , and we have

khuk�
Fd;�

D 1p
�d;u

khuk�
Fd

� 1p
�d;u

�kh1;1k�
F1

�d�juj �kh1;2k�
F1

�juj
:

Therefore

khd;�k�
Fd;�

�
X

u�Œd�
�d;ukhuk�

Fd;�
�
X

u�Œd�

p
�d;u

�kh1;1k�
F1

�d�juj �kh1;2k�
F1

�juj
:

Hence
khd;�k�

Fd;�
�
X

u�Œd�

p
�d;u

�
˛�
1

�.d�juj/=2 �
˛�
2

�juj=2
:
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This inequality should be compared with

khd;�kFd;�
D
� X

u�Œd�
�d;u Œ˛1�

d�juj Œ˛2�juj �1=2:
By Jensen’s inequality, we find that

khd;�kFd;�
�
X

u�Œd�

p
�d;u Œ˛1�

.d�juj/=2 Œ˛2�juj=2 ;

and since j̨ � ˛�
j we have khd;�kFd;�

� khd;�k�
Fd;�

. As always, we interpret 00 D 1.
From Theorem 10.14 we know that

e.n; d/ � min

 
khd;�kFd;�

;

q�khd;�k�
Fd;�

�2 � khd;�k2Fd;�p
n

!
: (12.15)

Let

f �.d/ D
�Pd

kD0
�
˛�
1

�.d�k/=2 �
˛�
2

�k=2P
u�Œd�W jujDk

p
�d;u

�2
CRI2d

; (12.16)

where, as always, CRId D 1 for the absolute error criterion, and

CRI2d D e2.0; d/ D khd;�k2Fd;�
D

dX
kD0

Œ˛1�
d�k Œ˛2�k

X
u�Œd�W jujDk

�d;u

for the normalized error criterion.
As in the previous section, we can check that we have

n."; d/ � f �.d/
"2

for all " 2 .0; 1/; d 2 N (12.17)

for the absolute and normalized error criteria.
We can now apply exactly the same reasoning as in the proof of Theorem 12.9 to

obtain the analogous theorem.

Theorem 12.15. Consider I� D fId;�g defined as in Section 12.2 with a non-zero h1
such that kh1;1k�

F1
< 1 and kh1;2k�

F1
< 1. We consider the worst case setting for

the absolute and normalized error criteria.

• If
sup
d2N

f �.d/ < 1
then I� is strongly polynomially tractable with exponent at most 2. Additionally,
if

p� WD lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1

then I� is strongly T -tractable with exponent at most 2p�.
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• If there exists a non-negative q such that

lim sup
d!1

f �.d/ d�q < 1

then I� is polynomially tractable with "�1 exponent at most 2 and d exponent at
most q.

• If

t� WD lim sup
"<min.1;khd;� kFd;�

=CRId / W "�1Cd!1
ln f �.d/C ln "�2

ln T ."�1; d /
< 1

then I� is T -tractable with exponent at most t�.

• If

lim
d!1

ln max.1; f �.d//
d

D 0

then I� is weakly tractable.

The case h1;1 D 0 in Theorem 12.15 can be checked as in the previous section. For
h1;1 6D 0, we can apply Theorem 12.15 for finite-order and product weights. This is
the subject of our next theorem.

Theorem 12.16. Consider I� D fId;�g defined as in Section 12.2 in the worst case
setting with a non-zero h1;1 such that kh1;1k�

F1
< 1 and kh1;2k�

F1
< 1.

• Consider finite-order weights

�d;u D 0 for all u with juj > !:
For the absolute error criterion and bounded finite-order weights, i.e.,

sup
d2N

�d;u < 1;

we have the following:

– If
kh1;1k�

H.R1/
< 1

then I� is strongly polynomially tractable with exponent at most 2.

– If

kh1;1k�
H.R1/

< 1 and t� WD lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1

then I� is strongly T -tractable with exponent at most 2t�.
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– If
kh1;1k�

H.R1/
D 1

then I� is polynomially tractable with d exponent at most 2! and "�1
exponent at most 2; for bounded finite-diameter weights the d exponent is
at most 2.

– If

kh1;1k�
H.R1/

D 1 and t� WD lim sup
"<khd;� kFd;�

"�1Cd!1

k ln d C 2 ln "�1

ln T ."�1; d /
< 1

then I� is T -tractable with exponent at most t�. Here, k D 2! for finite-
order weights, and k D 2 for finite-diameter weights.

For the normalized error criterion and finite-orderweightswe have the following:

– If
kh1;1k�

H.R1/
D kh1;1kH.R1/

(which always holds for dimH.R1/ D 1) then I� is polynomially tractable
with "�1 exponent at most 2 and d exponent at most !; for finite-diameter
weights the d exponent is at most 1.

– If
kh1;1k�

H.R1/
D kh1;1kH.R1/

and

t� WD lim sup
"<1; "�1Cd!1

k ln d C 2 ln "�1

ln T ."�1; d /
< 1

then I� is T -tractable with exponent at most t�. Here, k D ! for finite-
order weights, and k D 1 for finite-diameter weights.

• Consider product weights

�d;u D
Y
j2u

�d;j for all u � Œd �:

For the absolute error criterion and product weights we have the following:

– If
kh1;1k�

H.R1/
C kh1;2k�

H.R2/
� sup
d2N

max
jD1;2;:::;d

p
�d;j � 1

or

kh1;1k�
H.R1/

< 1 and lim sup
d!1

Pd
jD1

p
�d;j

ln d
< 1
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or

kh1;1k�
H.R1/

D 1 and lim sup
d!1

dX
jD1

p
�d;j < 1;

then I� is strongly polynomially tractable with exponent at most 2. Addi-
tionally, if

t� WD lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1

then I� is strongly T -tractable with exponent at most 2t�.

– If

kh1;1k�
H.R1/

D 1 and q� WD lim sup
d!1

Pd
jD1

p
�d;j

ln d
< 1;

then I� is polynomially tractable with d exponent at most arbitrarily close
to 2

p
˛�
2 q

� and "�1 exponent at most 2.

– If kh1;1k�
H.R1/

� 1 and

t� WD lim sup
"2<

Qd
j D1

.˛1C˛2�d;j /

"�1Cd!1

ln "�2Cd ln ˛�
1 C2.˛�

2=˛
�
1 /
1=2
Pd
jD1

p
�d;j

ln T ."�1; d /
<1

then I� is T -tractable with exponent at most t�.

– If kh1;1k�
H.R1/

� 1 and

lim
d!1

�
d ln ˛�

1 C 2.˛�
2=˛

�
1 /
1=2

Pd
jD1

p
�d;j

�
C

ln d
D 0

then I� is weakly tractable.

For the normalized error criterion and product weights, assume that

kh1;1k�
H.R1/

D kh1;1kH.R1/:

We have the following:

– If

lim sup
d!1

dX
jD1

p
�d;j < 1

then I� is strongly polynomially tractable with exponent at most 2. Addi-
tionally, if

t� WD lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1

then I� is strongly T -tractable with exponent at most 2t�.
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– If

q� WD lim sup
d!1

Pd
jD1

p
�d;j

ln d

then I� is polynomially tractable with d exponent at most arbitrarily close
to 2

p
˛�
2 q

�=˛1 and "�1 exponent at most 2.

– If

t� WD lim sup
"<1W "�1Cd!1

ln "�2 C 2.˛�
2=˛1/

1=2
Pd
jD1

p
�d;j

ln T ."�1; d /

then I� is T -tractable with exponent at most t�.

– If

lim
d!1

Pd
jD1

p
�d;j

d
D 0

then I� is weakly tractable.

Proof. For bounded finite-order weights, when �d;u � � , and for the absolute error
criterion, we have

f �.d/ D
� dX
kD0

�
˛�
1

�.d�k/=2 �
˛�
2

�k=2 X
u�Œd�
jujDk

p
�d;u

�2

� �
˛�
1

�d � !X
kD0

�
˛�
2=˛

�
1

�k=2 �d
k

�p
�

	2
D �

˛�
1

�d
p2!.d/;

where p2! is a polynomial of degree at most 2!.
For bounded finite-diameter weights of order q, i.e., �d;u � � and �d;u D 0 for all

u such that diam.u/ � 1, the condition juj > q implies diam.u/ � q and therefore
�d;u D 0. Hence, we can estimate f � by

f �.d/ � �
˛�
1

�d
max

�
1; .˛�

2=˛1/
q
�
�
� X

u�Œd�
�d;u 6D0

1
�2 D �

˛�
1

�d
p2.d/;

where p2 is a polynomial of degree at most 2.
Hence for ˛�

1 D kh1;1k�
H.R1/

< 1 the function f � is uniformly bounded, and for

˛�
1 D 1, the values f �.d/ are bounded by a multiple of d2! for finite-order weights,

and by a multiple of d2 for finite-diameter weights. This and Theorem 12.9 yield the
first part of Theorem 12.10.
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For the normalized error criterion and finite-order weights we assumed that ˛�
1 D

˛1, and therefore

f �.d/ D
�
˛�
1

�d �P!
kD0

�
˛�
2=˛

�
1

�k=2P
u�Œd�W jujDk

p
�d;u

�2
Œ˛1�

d P!
kD0 .˛2=˛1/

kP
u�Œd�W jujDk �d;u

D
�P!

kD0
�
˛�
2=˛2

�k=2 �d
k

�1=2 �
.˛2=˛1/

k=2
ı�
d
k

�1=2� P
u�Œd�W jujDk

p
�d;u

�2P!
kD0 .˛2=˛1/

kP
u�Œd�W jujDk �d;u

�
P!
kD0

�
˛�
2=˛2

�k �d
k

� P!
kD0

�
.˛2=˛1/

k
ı�
d
k

�� �P
u�Œd�W jujDk

p
�d;u

�2P!
kD0 .˛2=˛1/

kP
u�Œd�W jujDk �d;u

�
P!
kD0

�
˛�
2=˛2

�k �d
k

� P!
kD0.˛2=˛1/k

P
u�Œd�W jujDk �d;uP!

kD0 .˛2=˛1/
kP

u�Œd�W jujDk �d;u

�
!X
kD0

�
˛�
2

˛2

	k �
d

k

	
D O

�
d!
�
:

Hence, f � is bounded by a polynomial of degree at most !.
For finite-diameter weights of order q, we proceed similarly, finding that

f �.d/ D
�Pq

kD0
�
˛�
2=˛2

�k=2
.˛2=˛1/

k=2
P

u�Œd�W jujDk
p
�d;u

�2Pq

kD0 .˛2=˛1/
kP

u�Œd�W jujDk �d;u

�
Pq

kD0
�
˛�
2=˛2

�k Pq

kD0.˛2=˛1/
k
�P

u�Œd�W jujDk
p
�d;u

�2Pq

kD0 .˛2=˛1/
kP

u�Œd�W jujDk �d;u

�
Pq

kD0
�
˛�
2=˛2

�k jfu j �d;u > 0gj
Pq

kD0.˛2=˛1/
k
P

u�Œd�W jujDk �d;uPq

kD0 .˛2=˛1/
kP

u�Œd�W jujDk �d;u

�
qX
kD0

�
˛�
2

˛2

	k
jfu j �d;u > 0gj D O.d/:

Hence, f � is bounded by a polynomial of degree at most 1. Theorem 12.9 yields the
second part of Theorem 12.10.

For the absolute error criterion and product weights, we have

f �.d/ D
dY
jD1

�q
˛�
1 C

q
˛�
2

p
�d;j

	2
:

Clearly,q
˛�
1 C

q
˛�
2

p
�d;j � kh1;1k�

H.R1/
C kh1;2k�

H.R2/
� sup
d2N

max
jD1;2;:::;d

p
�d;j :
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Hence if the last bound is at most 1, the function f � is uniformly bounded and I� is
strongly polynomially tractable.

If ˛�
1 � 1 then ˛�

1 � ˛1 > 0. We rewrite f � as

f �.d/ D �
˛�
1

�d dY
jD1

�
1C

�
˛�
2

˛�
1

	1=2 p
�d;j

	2

� �
˛�
1

�d
exp

�
2

�
˛�
2

˛�
1

	1=2 dX
jD1

p
�d;j

	
:

Note that q� WD lim supd
Pd
jD1

p
�d;j = ln d < 1 implies that for any positive ı there

is a positive Cı such that

exp

�
2

�
˛�
2

˛�
1

	1=2 dX
jD1

p
�d;j

	
� Cı d

2.˛�
2
=˛�

1
/1=2.q�Cı/ for all d 2 N:

This yields that

f �.d/ � Cı
�
˛�
1

�d
d 2.˛

�
2
=˛�

1
/1=2.q�Cı/ for all d 2 N:

Hence, f � is uniformly bounded for ˛�
1 < 1, and polynomially bounded for ˛�

1 D 1.
The exponent of d in the latter case is at most 2

p
˛�
2 .q

� Cı/, where ı can be arbitrarily
small.

Obviously for ˛�
1 D 1 and lim supd

Pd
jD1

p
�d;j < 1, we have

sup
d2N

dY
jD1

�
1C ˛�

2

p
�d;j

�
< 1:

So f � is uniformly bounded and strong polynomial tractability holds. Note that for
T -tractability we can restrict "2 to be less than e2.0; d/ D Qd

jD1.˛�
1 C ˛�

2�d;j / since
otherwise n."; d/ D 0.

For the normalized error criterion and product weights with the assumption that
˛�
1 D ˛1 we have

f �.d/ D
dY
jD1

�
1Cp

˛�=˛1
p
�d;j

�2
1C .˛2=˛1/ �d;j

� exp
�
2

q
˛�
2=˛1

dX
jD1

p
�d;j

�
:

The rest is easy. This completes the proof

We stress that Theorem 12.16 can be applied to problems that are not necessarily
related to multivariate integration. However, the results are usually weaker than for
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multivariate integration. In particular, for the normalized error criterion and for product
weights, we need to assume that

kh1;1k�
H.R1/

D kh1;1kH.R1/:

As already discussed, the last assumption is quite restrictive and holds if dimH.R1/ D 1

or if h1;1 D ˇ1R1.�; z1/ for any dimension of H.R1/.
We believe that much more refined analysis is needed to get sharper tractability

results, especially for linear functionals that are not necessarily related to multivariate
integration.

12.8 Notes and Remarks

NR 12.1:1. This chapter is based on the results originally obtained in [221]. There are
also a number of new results, as will be indicated in what follows.

NR 12.3:1. Theorem 12.2 generalizes Theorem 3 in [221], since Theorem 12.2 is for
general weights whereas Theorem 3 in [221] was only for product weights independent
of d . The examples are new.

NR 12.4:1. Theorem 12.3 generalizes Theorem 3 in [221], since product weights may
now depend on d . The case of finite a� that leads to lower bounds on the d exponent
is also new. The bound on C in the fourth case is also slightly improved. The fifth case
corresponds to Theorem 1 in [85]. The example of weighted integration is basically
from [221].

NR 12.5:1. Theorem 12.5 corresponds to Theorem 2 in [221], which was proved only
for product weights independent of d . Corollary 12.6 about the change of weights is
new. Its application for product weights leads to the change of weights that had already
been used in Theorem 4 in [221]. Corollary 12.7 is related to Theorem 4 in [221] for
product weights independent of d .

NR 12.6:1. This section is new. We are somewhat disappointed that the results for
multivariate integration for the normalized error criterion really apply only for standard
integration.

NR 12.6:2. Similar results on finite-order weights can be found in a number of papers.
For the normalized error criterion and for linear functionals, said results were obtained
for standard multivariate integration, see the first paper [54] on finite-order weights,
as well as [275]. For the same error criterion and for linear operators, see [334]. It
is worthwhile to mention that the titles of the last two papers state that finite-order
weights imply (polynomial) tractability. The absolute error criterion had not yet been
formally studied for finite-order weights. However, for the multivariate integration
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problem studied in [54] and for the approximation problem studied in [343], the initial
errors are 1; therefore there is no difference between the absolute and normalized error
criteria. In this case, the assumption on bounded finite-order weights was needed.
Finite-order weights were also studied for some nonlinear problems, see [341], [342].
Obviously, the case of finite-diameter weights introduced by Creutzig in 2007 is only
present in the newest papers.

NR 12.6:3. Product weights had usually been analyzed for the normalized error crite-
rion. In the first papers, starting from [277], product weights independent of d were
considered, the dependence on d was then allowed in [332]. The strong polynomial
and polynomial tractability conditions were as in Theorem 12.10.

NR 12.7:1. This section is new. We again stress that more general results for linear
functionals with finite star norms require more severe conditions on the weights. This
area is not yet well studied, much more refined analysis is probably needed to obtain
sharp tractability conditions. In particular, it would be of great interest to answer the
questions of Open Problem 64 for more general linear functionals than the integration
problem considered in this example.



Chapter 13

Average Case Setting

13.1 Introduction

In Chapters 10, 11 and 12, we studied tractability of linear functionals in the worst case
setting. In this chapter we turn to tractability of linear functionals in the average case
setting. The reader may be afraid that the average case setting will need as many pages
as the worst case setting, or even more pages since the average case setting seems more
demanding than the worst case setting. But we have a nice surprise for our readers. It
turns out that the study of the average case setting for linear functionals is practically
the same as the study of the worst case setting. More precisely, the study of a linear
functional Id in the average case setting defined over a separable Banach space Fd
equipped with a zero mean Gaussian measure�d is practically equivalent to the study of
the restriction of Id in the worst case setting defined over a corresponding reproducing
kernel Hilbert space H�d

. We stress that the Hilbert space H�d
is constructed from

the space Fd and the measure �d that appear in the average case setting. This is a vast
simplification, since we can now use all the tractability results for linear functionals
developed in the worst case setting for tractability of linear functionals in the average
case setting. Since only a few pages are needed to show how the average case setting
is related to the worst case setting, this chapter is very short. There is also one open
problem 65.

13.2 Basics of the Average Case Setting

Let Fd be a separable Banach space of real functions f W Dd ! R with Dd � Rd .
We assume that function values are continuous linear functionals in the norm of the
space Fd . That is, the linear functional Lx.f / D f .x/, defined for x 2 Dd and for
all f 2 Fd , is continuous, jLx.f /j � kLxk kf kFd

for all x 2 Dd .
The space Fd is equipped with a Gaussian measure �d with mean zero and covari-

ance operator C�d
. That is,Z

Fd

L.f /�d .df / D 0 for all L 2 F �
d ;

and C�d
W F �

d
! Fd is given by

L1.C�d
L2/ D

Z
Fd

L1.f /L2.f / �d .df / for all L1; L2 2 F �
d :
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The covariance operator is linear and symmetric, that is, L1.C�d
L2/ D L2.C�d

L1/

for all L1; L2 2 F �
d

, and positive, that is, L.C�L/ � 0 for all L 2 F �
d

.
The reader is referred to the books of Kuo [160] and Vakhania, Tarieladze and

Chobanyan [316] for basic information and properties of Gaussian measures. A short
introduction to Gaussian measure may be also found in Appendix B of Volume I.

For linear functionals Lx.f / D f .x/ and Lt .f / D f .t/, let

K�d
.x; t/ D Lx.C�d

Lt / D
Z
Fd

f .x/ f .t/ �d .df / for all x; t 2 Dd ;

denote the covariance kernel of the measure �d . Note that K�d
has all the properties

of a reproducing kernel. Indeed, K�d
.x; t/ D K�d

.t; x/ for all x; t 2 Dd , and
the symmetric matrix M D .K�d

.xi ; xj //i;jD1;2;:::;m is semi-positive definite for all
choices ofm and points xj fromDd . The last statement follows from the easy argument

0 �
Z
Fd

� mX
jD1

ajf .xj /
�2
�d .df / D

mX
i;jD1

aiaj

Z
Fd

f .xi /f .xj / �d .df /

D
mX

i;jD1
aiajK�d

.xi ; xj / for any real numbers aj :

For L 2 F �
d

, define the function hL W Dd ! R by

hL.x/ D .C�d
L/.x/ D Lx.C�d

L/ D
Z
Fd

f .x/L.f /�.df / for all x 2 Dd :

Clearly, hL 2 C�d
.F �
d
/ for all L 2 F �

d
.

From Proposition 1.6, p. 152, of Vakhania, Tarieladze and Chobanyan [316], we
know that there exists a unique Hilbert space H�d

such that

• H�d
� Fd ,

• there is a positive C for which kf kFd
� C kf kH�d

for all f 2 H�d
,

• C�d
.F �
d
/ is dense in H�d

, and

•
˝
hL1

; hL2

˛
H�d

D L1.C�d
L2/ for all L1; L2 2 F �

d
:

Note that the Hilbert space H�d
is a reproducing kernel Hilbert space and its repro-

ducing kernel is K�d
. Indeed, we have K�d

.�; t / D C�d
Lt D hLt

and˝
hL; K�d

.�; t /˛
H�d

D hhL; hLt iH�d
DLt .C�d

L/D hL.t/ for all L 2 F �
d ; t 2 Dd :

We illustrate the concepts of this section by the following example.
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13.2.1 Example: Wiener Measure

Let Fd D C.Œ0; 1�d / be the space of real continuous functions defined on Œ0; 1�d with
the norm kf k D maxx2Œ0;1�d jf .x/j. Let �d D wd be the Wiener sheet measure that

corresponds to the covariance kernelKwd
.x; t/ D Qd

jD1 min.xj ; tj /. This means that

Z
C.Œ0;1�d /

f .x/f .t/ wd .df / D
dY
jD1

min.xj ; tj / for all x; t 2 Œ0; 1�d :

In particular, this means that f .x/ D 0 with probability 1 if at least one component of
x is zero, and the average value of f 2.x/ is

Qd
jD1 xj .

The Hilbert spaceHwd
is now the Sobolev space which is the d fold tensor product

of univariate functions that vanish at zero, are absolutely continuous, and whose first
derivatives are in L2.Œ0; 1�/. The reproducing kernel of Hwd

is Kwd
and the inner

product of f; g 2 Hwd
is given by

hf; giHwd
D
Z
Œ0;1�d

@d

@x1@x2 � � � @xd f .x/
@d

@x1@x2 � � � @xd g.x/ dx:

As we shall see in the next section, the average case setting for a continuous linear
functional Id defined over the separable Banach space Fd will be closely related to the
worst case setting for the restriction of Id to the Hilbert space H�d

.

13.3 Linear Functionals

Our problem is to approximate a continuous linear functional Id W Fd ! R. The initial
error in the average case setting is defined as

eavg.0I Id / D
�Z

Fd

I 2d .f / �d .df /

	1=2
D �

Id .C�d
Id /

�1=2
:

Let hd D hId
D C�d

Id . That is,

hd .x/ D Lx.C�d
Id / D

Z
Fd

f .x/Id .f / �.df / for all x 2 Dd :

We have
khdkH�d

D �
Id .C�d

Id /
�1=2 D eavg.0I Id /:

Let �d D �dI
�1
d

. Then �d is a univariate Gaussian measure defined on Borel sets of
R with zero mean and variance

�d D Id .C�d
Id / D �

eavg.0I Id /
�2
:
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This means that for any Borel set A � R we have

�d .A/ D �d .ff 2 Fd j Id .f / 2 Ag/ D 1p
2� �d

Z
A

exp
� � t2=.2�d /

�
dt:

The measure �d tells us about the distribution of elements Id .f /.
We first consider linear algorithms for approximating Id . That is, let

An;d .f / D
nX

jD1
ajf .xj / for all f 2 Fd ;

for some real aj and xj 2 Dd . The average case error of An;d is defined as

eavg.An;d I Id / D
�Z

Fd

�
Id .f / � An;d .f /

�2
�.df /

	1=2
:

It is easy to compute the square of eavg.An;d I Id /. Indeed, we have�
eavg.An;d I Id /

�2 D
Z
Fd

I 2d .f / �.df / � 2
nX

jD1
aj

Z
Fd

Id .f /f .xj / �.df /

C
nX

i;jD1
aiaj

Z
Fd

f .xi /f .xj / �.df /

D Id .C�d
Id / � 2

nX
i;jD1

Lxj
.C�d

Id /C
nX

i;jD1
aiajLxi

.C�d
Lxj

/:

Hence, for an arbitrary linear algorithm An;d we have

eavg.An;d I Id / D
h
khdk2H�d

� 2
nX

jD1
ajhd .xj /C

nX
i;jD1

aiajK�d
.xi ; xj /

i1=2
:

13.4 Relations to the Worst Case Setting

The last formula that we obtained in the previous section should be quite familiar to the
reader. In particular, this formula can be found in Section 10.2 of Chapter 10, where
we studied the worst case error of approximating1

I res
d .f / D hf; hd iH�d

for all f 2 H�d
:

More precisely, if we define

ewor.An;d I I res
d / D sup

f 2H�d
; kf kH�d

�1

ˇ̌
I res
d .f / � An;d .f /

ˇ̌
then we obtain the following2 corollary.

1In a moment, we explain our notation I res
d

.
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Corollary 13.1. For an arbitrary linear algorithm An;d we have

eavg.An;d I Id / D ewor.An;d I I res
d /:

How are the continuous linear functionals Id and I res
d

related? First of all, the
domain Fd of Id is usually a much larger space than its subspace H�d

that is the
domain of I res

d
. However, if we restrict ourselves to H�d

then we have

I res
d .f / D Id .f / for all f 2 H�d

: (13.1)

This means that I res
d

is the restriction of Id to the reproducing kernel Hilbert spaceH�d

with kernel K�d
, which explains why we denote this restriction by I res

d
.

To show (13.1) we proceed as follows. For every f 2 H�d
and every " > 0, there

exists f" D Pm
jD1 ajK�d

.�; tj / 2 H�d
such that kf � f"kH�d

� ". Then

I res
d .f"/ D hf"; hd iH�d

D
mX
jD1

ajhd .tj /:

On the other hand,

Id .f"/ D
mX
jD1

aj Id
�
K�d

.�; tj /
�
:

Since K�d
.�; t / D C�d

Lt we have

Id
�
K�d

.�; tj /
� D Id .C�d

Ltj / D Ltj .C�d
Id / D Ltj .hd / D hd .tj /:

This implies that I res
d
.f"/ D Id .f"/. Finally,ˇ̌

Id .f / � I res
d .f /

ˇ̌ D ˇ̌
Id .f � f"/ � I res

d .f � f"/
ˇ̌

� kIdkFd !Fd
kf � f"kFd

C kI res
d kH�d

!H�d
kf � f"kH�d

� �
C kIdkFd !Fd

C khdkH�d

� kf � f"kH�d
D O."/:

For " tending to zero, we conclude that Id .f / D I res
d
.f / for all f 2 H�d

, as claimed.
Corollary 13.1 and (13.1) mean that as long as we consider linear algorithms then

their average case errors for approximating Id in the separable Banach space Fd
equipped with a zero mean Gaussian measure �d are the same as their worst case
errors for approximating the restriction of Id in the reproducing Hilbert space H�d

.
Hence for linear algorithms, the average case setting for .Fd ; �d ; Id / is equivalent to
the worst case setting for .H�d

; I res
d
/, where the Hilbert space H�d

depends crucially
on the space Fd and the Gaussian measure �d . This means that all results obtained
for linear algorithms in the worst case setting for reproducing kernel Hilbert spaces
in the previous chapters are also applicable for linear algorithms in the average case

2Corollary 13.1 is valid not only for Gaussian measures �. It holds if we assume that the first moment
(mean) is zero and the second moment of� is finite. The assumption that� is Gaussian is needed later. For
simplicity, we restrict ourselves in this chapter to Gaussian measures.



13.4 Relations to the Worst Case Setting 293

setting. In particular, we know from Section 10.4 of Chapter 10 that all continuous
linear functionals can be approximated with an arbitrarily small worst case error by
linear algorithms. Thus, the same is also true in the average case setting.

Can we thus claim the same tractability results for I avg D fId g in the average
case setting and for Iwor D fI res

d
g in the worst case setting? Not yet, since tractability

depends on the behavior of optimal algorithms, and so far we only considered linear
algorithms. However, we know that linear algorithms are optimal in the worst case
setting for linear functionals as discussed in Chapter 4 of Volume I. In the average
case setting, the situation is a little more complicated. Although linear algorithms are
not necessarily optimal, we shall see that tractability depends only on the behavior of
optimal linear algorithms.

To show this, we proceed as follows. First of all, note that the problem Id in the
average case setting and the problem I res

d
in the worst case setting have the same initial

errors. Indeed,

ewor.0I I res
d / D khdkH�d

D �
Id .C�d

Id /
�1=2 D eavg.0I Id /;

as claimed. This will enable us to consider the absolute and normalized error criteria
for both problems.

We need to discuss general algorithms in the average case setting, see Chapter 4 of
Volume I. The general form of a (nonlinear) algorithm An;d is,

An;d .f / D 'n.f /.f .x1/; f .x2/; : : : ; f .xn.f //; (13.2)

where xj can be chosen adaptively, and the average value of n.f / is at most n, i.e.,Z
Fd

n.f /�.df / � n:

Here, 'n W S1
kD1 Rk ! R. For simplicity, we may assume that 'n is measurable. The

average case error of An;d is given by

eavg.An;d I Id / D
 Z

Fd

.Id .f / � An;d .f //2 �.df /
�1=2

:

As always, let

navg."; Id / D min
˚
n j there exists An;d with eavg.An;d I Id / � "CRId



denote the minimal number of function values needed to get an average case error at
most "CRId . For the absolute error criterion we take CRId D 1 and for the normalized
error criterion we take CRId D eavg.0I Id /.

Let

navg-lin."; Id / D min
˚
n j there exists a linear An;d with eavg.An;d I Id / � "CRId
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denote the minimal number of function values to get an average case error at most
"CRId when we restrict ourselves to linear algorithms. Clearly,

navg."; Id / � navg-lin."; Id / for all " 2 .0; 1/:
Surprisingly enough, navg-lin."; Id / and navg."; Id / are closely related for Gaussian
measures. Based on the results from Wasilkowski [325], the estimate

sup
x>1

min
�
navg-lin.x"; Id /;

x2 � 1
x2

navg-lin."; Id /
�

� navg."; Id / for all " 2 .0; 1/

is presented as Theorem 5.7.2 on page 249 of [305].
Since navg-lin.x"; Id / � navg-lin."; Id / for all x � 1, the last estimate implies that

x2 � 1
x2

navg-lin.x"; Id / � navg."; Id / for all x > 1; " 2 .0; 1/:
This bound is enough for our purpose. Indeed, suppose that we have (strong)

polynomial tractability for the absolute or normalized error criterion. Then there are
non-negative numbers C , p and q such that

navg."; Id / � C "�p dq for all " 2 .0; 1/; d 2 N:

This implies that

navg-lin."; Id / � C
xpC2

x2 � 1 "
�p dq for all x > 1; " 2 .0; 1/; d 2 N:

We can take x that minimizes xpC2=.x2 � 1/, i.e., x D Œ.p C 2/=p�1=2 and obtain

navg-lin."; Id / � C
p

2

�
p C 2

p

	.pC2/=2
"�p dq for all " 2 .0; 1/; d 2 N:

Hence, modulo a different factor, we have the same (strong) polynomial tractability
bounds with the same exponents p and q when we use linear algorithms. Similarly,
weak tractability means that

lim
"�1Cd!1

ln navg."; Id /

"�1 C d
D 0;

and this easily implies that

lim
"�1Cd!1

ln navg-lin."; Id /

"�1 C d
D 0:

For T -tractability we need to assume that T ..x"/�1; d / and T ."�1; d / behave
similarly for some x > 1. For instance, if we assume that there is a number M � 1

such that T .x "�1; d / � M T."�1; d / for all " 2 .0; 1/ and d 2 N, then

navg."; Id / � C
�
T ."�1; d /

�t
for all " 2 .0; 1/; d 2 N;
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which implies that

navg-lin."; Id / � C
M x2

x2 � 1
�
T ."�1; d /

�t
for all " 2 .0; 1/; d 2 N:

Similarly, the same is true for strong T -tractability.
In summary, we see that as long as we are interested in tractability we can restrict

ourselves to linear algorithms and study navg-lin."; Id /. Due to Corollary 13.1, we know
that navg-lin."; Id / D nwor."; I res

d
/, that is, the minimal number of function values for

approximating Id in the average case setting is the same as the minimal number of
function values for approximating its restriction I res

d
in the worst case setting. Hence,

x2 � 1
x2

nwor.x"; I res
d / � navg."; Id / � nwor."; I res

d / for all x > 1:

These bounds can be written more concisely as

navg."; Id / D .1 � ax/ nwor.bx"; I
res
d /

with ax 2 Œ�1=x2; 0� and bx 2 Œ1; x� for all x > 1.
Hence, tractabilities in the average and worst case settings are equivalent. We

summarize this analysis in the following theorem.

Theorem 13.2. Consider I avg D fId g in the average case setting and Iwor D fI res
d

g in
the worst case setting, defined as in this chapter for the absolute or normalized error
criterion. Then

navg-lin."; Id / D nwor."; I res
d / for all " 2 .0; 1/; d 2 N;

and
navg."; Id / D .1 � ax/ nwor.bx"; I

res
d /

with ax 2 Œ�1=x2; 0�; bx 2 Œ1; x� for all x > 1. Let

y 2 f strongly polynomially, polynomially, weakly g:
Then

• I avg is y tractable in the average case setting iff Iwor is y tractable in the worst
case setting. Furthermore, the exponents of strong polynomial and polynomial
tractability are the same for I avg and Iwor.

• Let T be a tractability function. Suppose there are numbers x > 1 and M � 1

such that

T .x "�1; d / � M T."�1; d / for all " 2 .0; 1�; d 2 N:

Then I avg is (strongly)T -tractable in the average case setting iff Iwor is (strongly)
T -tractable in the worst case setting. Again, this holds with the same exponents
for I avg and Iwor.



296 13 Average Case Setting

This theorem tells us that we can use all the tractability results of the worst case set-
ting for approximating Iwor presented in Chapters 10, 11, and 12 to conclude tractability
of I avg in the average case setting.

For some tractability functions T , the assumption

T .x"�1; d / � M T."�1; d / for all " 2 .0; 1/; d 2 N; (13.3)

in Theorem 13.2, is not satisfied. This is the case, for example, when

T .x; y/ D exp .xp C yq/ with p; q 2 .0; 1/:
However, even if T is a general tractability function that does not satisfy (13.3), it is
easy to see that (strong) T -tractability of Iwor in the worst case setting still implies
(strong) T -tractability of I avg in the average case setting, but we do not know if the
converse statement is true. This is the subject of our next open problem.

Open Problem 65.

• Verify whether (strong) T -tractability of I avg in the average case setting implies
(strong) T -tractability of Iwor in the worst case setting for a tractability function
T for which there do not exist x > 1 and M � 1 such that

T .x"�1; d / � M T."�1; d / for all " 2 .0; 1/; d 2 N:

13.5 Notes and Remarks

NR 13.1:1. The relations between the average case and worst case settings for approx-
imating linear functionals by linear algorithms are not new. They can be found in a
number of papers and books especially for multivariate integration, see e.g., [305] and
Ritter [251].

NR 13.4:1. We used Theorem 5.7.2 of [305] for linear functionals. In fact, this theorem
is more general and also holds for linear operators. It was already used in [347] to relate
the powers of non-adaptive and adaptive information in the average case setting for
linear operators and polynomial tractability.



Chapter 14

Probabilistic Setting

14.1 Introduction

In this chapter we analyze the probabilistic setting for approximating linear functionals.
The error of an algorithm is now defined as in the worst case setting, but disregarding
a set of measure ı 2 .0; 1/. Hence, in the probabilistic setting we have one extra
parameter ı, and so we will now be studying tractability also with respect to this
parameter. As we shall see, the role of the parameter ı greatly depends on the error
criterion. For the absolute error criterion, the information complexity of approximating
a linear functional only depends weakly on ı, through

p
2 ln ı�1 .1C o.1//. This will

enable us to obtain tractability even if we allow polynomial dependence on ln ı�1.
For the normalized error criterion, we have even a more surprising situation. Namely,
the information complexity does not depend on ı at all, and the parameter ı does not
play any role in this case. This property was already indicated in Example 3.2.5 of
Chapter 3 in Volume I. The reason for this surprising behavior is that the initial error
depends weakly on ı through

p
2 ln ı�1 .1 C o.1// and goes slowly to infinity as ı

goes to zero. This means that we have a trade-off for the normalized error criterion.
The probabilistic error of an algorithm and the initial error increase with ı, and a priori
it is not clear which of these two behaviors is more important. It turns out that for the
information complexity they cancel and therefore there is no dependence on ı.

In this chapter we also consider the relative error criterion. As we have already
mentioned in Volume I, the relative error criterion for linear functionals in the worst
case and average case setting leads to negative results. More precisely, the information
complexity is infinite for linear functionals that cannot be solved exactly by using a
finite number of function values. This means that such linear functionals can not be
solved for the relative error criterion in the worst case and average case settings. We
only have positive results in the probabilistic setting. However, the parameter ı now
plays a much more important role. Indeed, the information complexity now depends as
much on ı as on ", and is usually a polynomial in ı�1. Therefore we obtain tractability
only if we allow polynomial dependence on ı�1.

The analysis of the probabilistic setting for linear functionals is quite straightforward
because of its close relation to the average case setting, which in turn is related to the
worst case setting, see Chapter 13. More precisely, the probabilistic setting for a linear
functional Id with the parameters ."; ı/ is equivalent to the average case setting for the
same linear functional Id with only one parameter "ı , where

"ı D

8̂<̂
:
" for the normalized error criterion,

"p
2 ln ı�1

.1C o.1// for the absolute error criterion,

" �
2
ı .1C o.1// for the relative error criterion.
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Here, the 1C o.1/ factor is with respect to " and ı tending to zero. This also explains
the different roles of the parameter ı for the three error criteria.

Knowing the relations between the probabilistic setting and the average case setting
for the linear functional Id , we can then apply the relations between the average case
setting for Id and the worst case setting for its restriction I res

d
as shown in Chapter 13.

In this way we relate the information complexity for Id in the probabilistic setting to
the information complexity of I res

d
in the worst case setting. This allows us to apply

tractability results obtained in the worst case setting to the probabilistic setting. The
only difference is that we need to replace Id and ."; ı/ in the probabilistic setting by
I res
d

and "ı in the worst case setting. This relation explains why also this chapter is
relatively short. There is also one open problem 66.

14.2 Tractability in the Probabilistic Setting

As in Chapter 13, we consider a separable Banach space Fd of real valued functions
f W Dd ! R with Dd � Rd . We assume that linear functionals Lx.f / D f .x/ for
f 2 Fd are continuous for all x 2 Dd . The space Fd is equipped with a zero mean
Gaussian measure �d whose covariance operator is C�d

and whose covariance kernel
is K�d

.
Let Id W Fd ! R be a continuous linear functional. Let An;d be an algorithm of

the form (13.2) for approximating Id . The cost of An;d is defined as in the worst case
setting, that is, its cost is

n D sup
f 2Fd

n.f /:

This means that varying the cardinality of information does not help in the probabilistic
setting, and without loss of generality we can consider only algorithms for which
n.f / 	 n for all f 2 Fd .

Let ı 2 .0; 1/. The error of An;d in the probabilistic setting is defined as

eprob.An;d ; ı; Id / D inf
B�Fd ; �d .B/�ı

sup
f 2Fd nB

jId .f / � An;d .f /j:

Hence, we take the worst case error modulo a set B of measure at most ı. Clearly, the
error is a non-increasing function of ı.

As in all the previous settings, the information complexity in the probabilistic setting
is defined as the minimal number of function values that is needed to guarantee that
the error is at most "CRId , i.e.,

nprob."; ı; Id / D min
˚
n j there exists An;d with eprob.An;d ; ı; Id / � "CRId



;

where, as always, CRId D 1 for the absolute error criterion and

CRId D eprob.0; ı; Id /
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for the normalized error criterion. We stress that for the normalized error criterion, the
initial error depends on ı, and as we shall see in a moment, it usually goes slowly to
infinity as ı goes to zero. The relative error criterion will be studied later in Section 14.4.

We now address tractability in the probabilistic setting. Since we now have three
parameters "; ı and d , we need to study how information complexity depends on all of
them. It is easy to modify the concept of polynomial tractability.

We say that I D fId g is polynomially tractable in the probabilistic setting for the
absolute/normalized error criterion iff there exist non-negative numbers C; p; q and s
such that

nprob."; ı; Id / � C "�p dq ı�s for all "; ı 2 .0; 1/ and d 2 N:

If q D 0 then we say that I is strongly polynomially tractable with respect to d , and if
s D 0 then we say that I is strongly polynomially tractable with respect to ı.

Analogously, weak tractability is defined when the information complexity is not
exponential in "�1, ı�1 and d . We measure the lack of exponential dependence as
before, and this leads us to the following definition.

We say that I D fId g is weakly tractable in the probabilistic setting for the abso-
lute/normalized error criterion iff

lim
"�1Cı�1Cd!1

ln nprob."; ı; Id /

"�1 C ı�1 C d
D 0:

As we shall see soon, sometimes the dependence on the parameter ı�1 is weaker than
polynomial. Indeed, sometimes the information complexity depends logarithmically
on ı�1. This explains the following modification of the definitions of polynomial and
weak tractability.

We say that I D fId g is poly-log tractable in the probabilistic setting for the
absolute/normalized error criterion if there exist non-negative numbers C; p; q and s
such that

nprob."; ı; Id / � C "�p dq
�
1C ln ı�1� s for all "; ı 2 .0; 1/ and d 2 N:

If q D 0 then we say that I is strongly poly-log tractable with respect to d , and if s D 0

then we say that I is strongly poly-log tractable with respect to ı.
We say that I D fId g is weakly-log tractable in the probabilistic setting for the

absolute/normalized error criterion iff

lim
"�1Cln ı�1Cd!1

ln nprob."; ı; Id /

"�1 C ln ı�1 C d
D 0:

Clearly, (strong) poly-log tractability implies (strong) polynomial tractability, and
weak-log tractability implies weak tractability, but the converse is not true in general.

Similarly, we can generalize T -tractability. For simplicity, we restrict ourselves to
the unrestricted case, in which � D Œ1;1/ � Œ1;1/ � N. We now assume that

T W Œ1;1/ � Œ1;1/ � Œ1;1/ ! Œ1;1/
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depends on three variables, and is non-decreasing with respect to all of them. As before,
we assume that T grows slower than exponentially, that is,

lim
x;y;z�1; xCyCz!1

ln T .x; y; z/

x C y C z
D 0:

Then we say that I D fId g is T -tractable if there exist non-negative numbers C and
t such that

nprob."; ı; Id / � C T ."�1; d; ı�1/ t for all "; ı 2 .0; 1/ and d 2 N:

We say that I D fId g is strongly T -tractable if there exist non-negative numbers C
and t such that

nprob."; ı; Id / � C T ."�1; 1; ı�1/ t for all "; ı 2 .0; 1/ and d 2 N:

The infimum of the t satisfying those bounds is called the exponent of T -tractability,
and the exponent of strong T -tractability, respectively.

Finally, we say that I D fId g isT -log-tractable if there exist non-negative numbers
C and t such that

nprob."; ı; Id / � C T ."�1; d; 1C ln ı�1/ t for all "; ı 2 .0; 1/ and d 2 N:

Similarly, we say that I D fId g is strongly T -log-tractable if there exist non-negative
numbers C and t such that

nprob."; ı; Id / � C T ."�1; 1; 1C ln ı�1/ t for all "; ı 2 .0; 1/ and d 2 N:

The infimum of the exponents t is called the exponent of T -log-tractability and strong
T -log-tractability, respectively.

Clearly, (strong) T -log-tractability implies (strong) T -tractability, but the converse
is not true in general.

We comment on T -tractability in different settings. In the worst case and average
case settings, the tractability function T depends on two variables x D "�1 and y D d ,
whereas in the probabilistic setting it depends on an additional variable z D ı�1. To
distinguish the tractability functions in different settings, we sometimes indicate the
setting by writing T D T wor, T D T avg and T D T prob. As we shall see later,
tractability conditions are related or even equivalent in the worst case and probabilistic
settings.

14.3 Relations to the Worst Case Setting

In this section we show how the probabilistic setting is related to the average and worst
case settings. We are especially interested in relations to the worst case setting, since
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we can then apply tractability results in the worst case setting developed in Chapters 10,
11 and 12 to the probabilistic setting.

We begin with the initial error eprob.0; ı; Id /, see also Chapter 8 of [305]. Let

 .z/ D
r
2

�

Z z

0

exp.�1
2
t2/ dt for all z 2 Œ0;1/

be the probability integral. Clearly,  .z/ 2 Œ0; 1/ and limz!1  .z/ D 1. We have

 .z/ D 1 � .2=�/1=2z�1 exp.�z2=2/.1C o.1// as z ! 1;

and therefore
 �1.1 � ı/ D

p
2 ln ı�1 .1C o.1// as ı ! 0:

Obviously, both  and  �1 are increasing functions.
Let �d D �dI

�1
d

be defined as in Chapter 13. That is, �d is a univariate Gaussian
measure defined on Borel sets of R, with mean zero and variance

�d D Id .C�d
Id / D �

eavg.0; Id /
�2
:

We change variables by t D Id .f / and obtain

eprob.0; ı; Id / D inf
B�Fd ; �d .B/�ı

sup
f 2Fd nB

jId .f /j D inf
A�R; 
d .A/�ı

sup
t2RnA

jt j:

Clearly, we should takeA such thatA D .�1; aı/[.aı ;1/, so that RnA D Œ�aı ; aı �,
where aı is chosen such that

ı D �d .A/ D
s

2

� �d

Z 1

ad

exp
��t2=.2�d /� dt

D
r
2

�

Z 1

aı=
p
d

exp
��1

2
t2
�

dt D 1 �  
�
aıp
�d

	
:

Hence, aı D  �1.1 � ı/p
�d , and

eprob.0; ı; Id / D aı D  �1.1 � ı/ eavg.0; Id /:

This shows that, modulo the factor  �1.1 � ı/, the initial errors in the probabilistic
and average case settings are the same.

It turns out that a similar relation holds for optimal linear algorithms, see Corol-
lary 5.3.2 of Chapter 8 in [305]. More precisely, let An;d D Pn

jD1 ajf .tj / be a linear
algorithm. Define the minimal errors

eprob-lin.n; ı; Id / D inf
linear An;d

eprob.An;d ; ı; Id /;

and
eavg-lin.n; Id / D inf

linear An;d

eavg.An;d ; Id /
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for linear algorithms in the probabilistic and average case settings. Then

eprob-lin.n; ı; Id / D  �1.1 � ı/ eavg-lin.n; Id / for all n; d 2 N: (14.1)

Due to Corollary 13.1 we can rewrite (14.1) as

eprob-lin.n; ı; Id / D  �1.1 � ı/ ewor.n; I res
d / for all n; d 2 N:

For small ı we have

eprob-lin.n; ı; Id / D
p
2 ln ı�1 .1C o.1// eavg-lin.n; Id /;

which goes slowly to infinity as ı goes to zero if eavg.n; Id / is positive.
This again means that, modulo the factor  �1.1� ı/, the minimal errors for linear

algorithms are the same in the probabilistic and average case settings. It is also known,
see Chapter 6 and 8 of [305], that the same sample points tj and the same coefficients aj
minimize the probabilistic and average case errors. Hence, the same linear algorithms
enjoy optimality properties in both settings.

Similarly to the average case setting, define nprob."; ı; Id / as the minimal number
of function values needed to guarantee that the error in the probabilistic setting is at
most "CRId when we use general algorithms, i.e.,

nprob."; ı; Id / D min
˚
n j there exists An;d with eprob.An;d ; Id / � "CRId



:

As proved in [138], see also Corollary 5.3.1 of Chapter 8 in [305], adaption does not
help in the probabilistic setting. Since it is also known that linear algorithms are optimal
in the probabilistic setting, we have

nprob."; ı; Id / D min
˚
n j eprob-lin.n; ı; Id / � "CRId



;

as long as the corresponding infimum for eprob-lin.n; ı; Id / is attained.
Similarly to Chapter 13, we can relate the information complexity in the proba-

bilistic setting to the information complexity in the average and worst case settings.
We first consider the absolute error criterion. Let

"ı WD "

 �1.1 � ı/ D "p
2 ln ı�1 .1C o.1//:

From (14.1), we have the relation

nprob."; ı; Id / D navg-lin ."ı ; Id /

between the probabilistic and average case settings.
From Chapter 13 we also conclude that for all x > 1, we have

navg ."ı ; Id / � nprob."; ı; Id / � x2

x2 � 1 n
avg ."ı=x; Id / :
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This can be concisely written as

nprob."; ı; Id / D .1C ax/ n
avg.bx "ı ; Id /

with ax 2 Œ0; 1=.x2 � 1/� and bx 2 Œ1=x; 1� for all x > 1.
From Chapter 13, we have the relation

nprob."; ı; Id / D nwor
�
"ı ; I

res
d

�
between the probabilistic and worst case settings.

We turn to the normalized error criterion. Note that

eprob-lin.n; ı; Id / � " eprob-lin.0; ı; Id / iff eavg-lin.n; Id / � " eavg-lin.0; Id /:

Hence, the parameter ı disappears and, proceeding as before, we have the bounds

nprob."; ı; Id / D navg-lin."; Id / D nwor."; I res
d /;

and

navg."; Id / � nprob."; ı; Id / � x2

x2 � 1 n
avg."=x; Id /

on the information complexity for all x > 1. These last bounds can be written as

nprob."; ı; Id / D .1C ax/ n
avg.bx"; Id /

with ax 2 Œ0; 1=.x2 � 1/� and bx 2 Œ1=x; 1� for all x > 1.
We stress that the relations between the probabilistic and worst case settings are

especially pleasing. These relations will be heavily used to obtain tractability results
in the probabilistic setting.

The bounds presented above can be used to verify under which conditions we have
equivalence of tractability in the probabilistic and average case settings for the linear
functional Id and for the absolute/normalized error criterion, as well as equivalence of
tractability in the probabilistic setting for Id and tractability in the worst case setting
for I res

d
also for the absolute/normalized error criterion. As already mentioned, we are

especially interested in relations to the worst case setting.
We now elaborate on the equivalence of tractability in the probabilistic and the

worst case settings. To simplify the presentation, by tractability of

Iwor D fI res
d g

we mean tractability of Iwor in the worst case setting, and by tractability of

I prob D fId g
we mean tractability of I prob in the probabilistic setting.
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14.3.1 Absolute Error Criterion

We consider several cases of tractability for the absolute error criterion.
• Suppose that we have polynomial tractability of I prob. That is,

nprob."; ı; Id / � C "�p dq ı�s for all "; ı 2 .0; 1/; d 2 N:

We claim that p D 0 or s D 0 can occur only if I res
d

can be approximated using a finite
number of function values with an arbitrary small error. Indeed, recall that

eprob.n; ı; Id / D  �1.1 � ı/ ewor.n; I res
d /:

Strong tractability with respect to ı, i.e., s D 0, means that for a fixed d and " there
exists n such that

eprob.n; ı; Id / D  �1.1 � ı/ ewor.n; I res
d / � " for ı ! 0:

Since  �1.1 � ı/ goes to infinity, this can happen only if ewor.n; I res
d
/ D 0. This

means that we can approximate I res
d

with an arbitrarily small worst case error by a
linear algorithm that uses at most n function values. Similarly, if p D 0 then we can
take " tending to zero, and again it can only happen if ewor.n; I res

d
/ D 0.

Hence, for all linear functionals for which ewor.n; I res
d
/ is positive for all n and d ,

we have p > 0 and s > 0, i.e., strong polynomial tractability with respect to ı cannot
happen.

For p > 0 and s > 0, we apply the bound on nprob."; ı; Id / D nwor."ı ; I
res
d
/, and

conclude that
nwor."; I res

d / � C "
�p
1 dq

�
 �1.1 � ı1/

��p
ı�s
1 ;

for all "1 2 .0; 1/ and ı1 2 .0; 1/ for which " D "1= 
�1.1� ı/ 2 .0; 1/. Substituting

"1 D " �1.1 � ı/ we have

nwor."; I res
d / � C "�p dq min

ı12.0;1/
f .ı1/;

where

f .ı1/ D 1

Œ �1.1 � ı1/�2p ıs1
:

Note that positive p and s imply that f .ı1/ tends to infinity as ı1 tends to 0 or to 1.
Therefore the minimum of f is positive, and we obtain polynomial tractability of Iwor

with the same exponents p and q as in the probabilistic setting. This also means that
strong polynomial tractability of I prob with respect to d , i.e., q D 0, implies strong
polynomial tractability of Iwor.

• Suppose that we have poly-log tractability of I prob. That is,

nprob."; ı; Id / � C "�p dq .1C ln ı�1/s for all "; ı 2 .0; 1/; d 2 N:
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Similarly as before, we then have

nwor."; I res
d / � C "

�p
1

.1C ln ı�1
1 /s

Œ �1.1 � ı1/�p ;

where " D "1= 
�1.1� ı1/. Taking, say, ı D 1

2
and "1 D " �1.1

2
/ we conclude that

Iwor is polynomially tractable with exponents p and q. Again, q D 0 implies that Iwor

is strongly polynomially tractable.

• Suppose that we have weak tractability of I prob. Then we take ı D 1
2

and

ln nwor."; I res
d
/

"�1 C d
D ln nprob. �1�1

2

�
"; 1
2
; Id /�

 �1�1
2

�
"
��1 C 2C d

�
 �1�1

2

�
"
��1 C 2C d

"�1 C d
:

Since the first factor goes to zero as "�1 C d goes to infinity, and the second factor
is uniformly bounded, the limit of the left-hand side is zero as "�1 C d approaches
infinity, and so Iwor is weakly tractable.

• Suppose that we have weak-log tractability of I prob. Then we take ı D 1
2

and

ln nwor."; I res
d
/

"�1 C d
D ln nprob. �1�1

2

�
"; 1
2
; Id /�

 �1�1
2

�
"
��1 C ln 2C d

�
 �1�1

2

�
"
��1 C ln 2C d

"�1 C d
:

As before, the first factor goes to zero as "�1Cd goes to infinity, and the second factor
is uniformly bounded. Thus Iwor is weakly tractable.

• Suppose that we have (strong) T -tractability of I prob. As already explained, we
denote T D T prob to stress that the function T prob is used in the probabilistic setting
and depends on three variables. Hence, we have

nprob."; ı; Id / � C T prob."�1; ds; ı�1/t for all "; ı 2 .0; 1/; d 2 N;

where ds D 1 for strong T prob-tractability, and ds D d for T prob-tractability.
We want to translate the T prob-tractability of I prob into T wor-tractability of Iwor. In

particular, we need to define T wor in the worst case setting that depends only on two
variables. We take ı D 1 �  .1/, so that  �1.1 � ı/ D 1, and let

T wor.x; y/ D T prob
�
x; y; Œ1 �  .1/��1� for all x; y 2 Œ1;1/:

Note that T wor is a tractability function, since it is non-decreasing in both the variables
and grows sub-exponentially. Then

nwor."; I res
d / D nprob

�
 �1. .1// "; 1 �  .1/; Id

� D nprob."; 1 �  .1/; Id /
� C T prob

�
"�1; ds; Œ1 �  .1/��1�t D C T wor."�1; ds/t :

This means (strong) T wor-tractability of Iwor with the same exponent t .
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• Suppose that we have (strong) T prob-log-tractability of I prob. We now take

T wor.x; y/ D T prob
�
x; y; 1C lnŒ1 �  .1/��1� for all x; y 2 Œ1;1/;

which again is a tractability function, and then

nwor."; I res
d / D nprob. �1. .1// "; 1 �  .1/; Id /

� C T prob
�
"�1; ds; 1C lnŒ1 �  .1/��1�t D C T wor."�1; ds/t :

This means (strong) T wor-tractability of Iwor with the same exponent t .

• Suppose that we have polynomial tractability of Iwor. That is,

nwor."; I res
d / � C "�p dq for all " 2 .0; 1/; d 2 N:

Then

nprob."; ı; Id / � C "�p dq
�
 �1.1 � ı/�p for all "; ı 2 .0; 1/; d 2 N:

Since  �1.1 � ı/ D O..1 C ln ı�1/1=2/, we obtain polynomial tractability of I prob

with the same exponents p and q. Moreover, the exponent s is positive, but it can be
arbitrarily small. We also obtain poly-log tractability of I prob with the exponents p, q
and s D p=2.

• Suppose that we have weak tractability of Iwor. Then

ln nprob."; ı; Id /

"�1 C ı�1 C d
D ln nwor."= �1.1 � ı/; I res

d
/

 �1.1 � ı/ "�1 C d

 �1.1 � ı/ "�1 C d

"�1 C ı�1 C d
:

Note that the first factor goes to zero; however, the second factor is not uniformly
bounded in general. Indeed, for a fixed d and ı D ", the second factor for small " is of
order

p
ln "�1 and goes to infinity. In fact, weak tractability of Iwor might not imply

weak tractability of I prob. Indeed, assume that Iwor is “barely” weakly tractable, with

nwor."; I res
d / D ‚

�
dq exp

�
"�1=

p
ln "�1 �� for all " 2 .0; 1/; d 2 N:

Then for ı D " and small ", we have

nprob."; "; Id / D ‚
�
dq exp

��p
2 "
��1�

1C o.1/
���
;

and I prob is indeed not weakly tractable.
To guarantee weak tractability of I prob, we must assume a little more about the

information complexity of Iwor. Namely, let us assume that

lim
"�1Cd!1

ln nwor."=
p

ln "�1; I res
d
/

"�1 C d
D 0: (14.2)
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Let x D max."�1; ı�1/. Since " � 1=x and 1=
p

ln ı�1 � 1=
p

ln x, we have

"

 �1.1 � ı/ D ".1C o.1//p
2 ln ı�1 � 1C o.1/

x
p
2 ln x

for small ı. This implies that

nwor

�
"

 �1.1 � ı/ ; I
res
d

	
� nwor

�
1C o.1/

x
p
2 ln x

; I res
d

	
;

and

ln nprob."; ı; Id /

"�1 C ı�1 C d
D ln nwor

�
"= �1.1 � ı/; I res

d

�
"�1 C ı�1 C d

� ln nwor
�
.1C o.1//=.x

p
2 ln x/; I res

d

�
x C d

:

Due to (14.2), the right-hand side goes to zero as x C d goes to infinity. This yields
weak tractability of I prob.

When can we claim weak-log tractability of I prob? For this to hold, we need to
prove that

ln nprob."; ı; Id /

"�1 C ln ı�1 C d
D ln nwor

�
"= �1.1 � ı/; I res

d

�
"�1 C ln ı�1 C d

goes to zero as "�1 C ln ı�1 C d goes to infinity. It is easy to see that (14.2) is too
weak in this case. Indeed, take ı D exp.�1="/ so that ln ı�1 D "�1. Then for small
", we have

ln nwor."= �1.1 � ı/; I res
d
/

"�1 C ln ı�1 C d
D ln nwor

�
"3=2=

p
2 .1C o.1//; I res

d

�
2"�1 C d

:

Hence, we must strengthen (14.2) by assuming that

lim
"�1Cd!1

ln nwor
�
"3=2; I res

d

�
"�1 C d

D 0: (14.3)

Indeed, to show weak-log tractability of I prob, take x D max."�1; ln ı�1/. Then

"

 �1.1 � ı/ D ".1C o.1//p
2 ln ı�1 � 1C o.1/

x3=2
p
2
;

and
ln nwor

�
"= �1.1 � ı/; I res

d

�
"�1 C ln ı�1 C d

� ln nwor
�
.1C o.1//=.x3=2

p
2/; I res

d

�
x C d

:

Due to (14.3), the right-hand side goes to zero as x C d goes to infinity. This implies
weak-log tractability of I prob, as claimed.
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• Suppose that we have (strong) T wor-tractability of Iwor. That is,

nwor
�
"; I res

d

� � C T wor."�1; ds/t for all " 2 .0; 1/; d 2 N;

where ds D 1 for strong T wor-tractability, and ds D d for T wor-tractability, as before.
We now want to translate theT wor-tractability of Iwor intoT prob-tractability of I prob.

In particular, we need to define a function T prob that now depends on three variables.
We take

T prob.x; y; z/ D T wor
�
max.1;  �1.1 � z�1/ x/; y

�
for all x; y; z 2 Œ1;1/:

(14.4)
We must check that T prob is a tractability function. First of all, T prob is well defined
since max.1;  �1.1 � z�1/ x/ � 1 belongs to the domain of T wor. Clearly, T prob is
non-decreasing in all variables. We only need to check that T prob is non-exponential,
i.e., that

lim
x;y;z�1; xCyCz!1

ln T prob.x; y; z/

x C y C z
D 0:

For a general tractability function T wor this does not hold. So we need to assume a
little more on T wor, namely that

lim
x;y�1; xCy!1

ln T wor.x
p

ln x; y/

x C y
D 0: (14.5)

Indeed, similarly as we did for weak tractability, let w D max.x; z/. Then for large z
we have

 �1.1 � z�1/ x D p
2 ln z .1C o.1// x � w

p
2 lnw .1C o.1//;

and
T wor. �1.1 � z�1/ x; y/ � T wor.w

p
2 lnw .1C o.1//; y/:

Therefore

ln T prob.x; y; z/

x C y C z
D ln T wor. �1.1 � z�1/ x; y/

x C y C z
� ln T wor.w

p
2 lnw .1C o.1//; y/

w C y
:

Due to (14.5), the right-hand side goes to zero as wC y goes to infinity. Hence, T prob

is indeed a tractability function.
The rest is easy since

nprob."; ı; Id / D nwor
�
"= �1.1 � ı/; I res

d

� � nwor
�
min.1; "= �1.1 � ı//; I res

d

�
� C T wor

�
max.1;  �1.1 � ı/ "�1/; ds

�t D C T prob."�1; ds; ı�1/t :

This means that we have (strong) T prob-tractability of I prob with the same exponent t .
We turn to (strong) T prob-log tractability. We now take

T prob.x; y; z/ D T wor
�
max.1;  �1.1 � exp.1 � z// x/; y� for all x; y; z 2 Œ1;1/:

(14.6)
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Then T prob is a tractability function if we assume that

lim
x;y�1; xCy!1

ln T wor.x3=2; y/

x C y
D 0: (14.7)

Indeed, for the same w D max.x; z/ and large z, we have

 �1.1 � exp.1 � z// D
p
2 ln exp.z � 1/.1C o.1/ D

p
2 z=e.1C o.1//;

and

ln T prob.x; y; z/

x C y C z
D T wor

�p
2 z=e.1C o.1// x; y

�
x C y C z

� T wor
�
w3=2

p
2=e.1C o.1//; y

�
w C y

:

Due to (14.7), the right-hand side goes to zero as wC y goes to infinity. Hence, T prob

is a tractability function, as claimed. Finally,

nprob."; ı; Id / D nwor
�
"= �1.1 � ı/; d� � nwor

�
min.1; "= �1.1 � ı//; d�

� C T wor.max.1;  �1.1 � ı/ "�1/; ds/t

D C T prob."�1; ds; 1C ln ı�1/t :

Hence, we have (strong) T prob-log-tractability of I prob with the same exponent t .

14.3.2 Normalized Error Criterion

For the normalized error criterion, we have

nprob."; ı; Id / D nwor."; I res
d / for all "; ı 2 .0; 1/; d 2 N;

and ı does not play any role. That is why the following statements are true.

• Polynomial tractability of I prob is equivalent to polynomial tractability of Iwor.
Furthermore, the exponent s D 0, and the exponents p and q are the same in the
tractability bounds for I prob and Iwor. In particular, strong polynomial tractability
with respect to d is equivalent for I prob and Iwor.

• Pol-log tractability of I prob is equivalent to polynomial tractability of I prob and
polynomial tractability of Iwor.

• Weak tractability of I prob is equivalent to weak tractability of Iwor.

• Weak-log tractability of I prob is equivalent to weak tractability of I prob and weak
tractability of Iwor.
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• (Strong) T prob-tractability of I prob implies (strong) T wor-tractability of Iwor if

T wor.x; y/ D T prob.x; y; 1/ for all x; y 2 Œ1;1/:

• (Strong) T wor-tractability of Iwor implies (strong) T prob-tractability of I prob-
tractability of I prob if

T prob.x; y; z/ D T wor.x; y/ for all x; y; z 2 Œ1;1/: (14.8)

• (Strong) T prob-log-tractability of I prob is equivalent to (strong) T prob-tractability
of I prob.

14.3.3 Summary

We summarize the analysis of the previous two subsections as follows.

Theorem 14.1. Consider I prob D fId g in the probabilistic setting and Iwor D fI res
d

g
in the worst case setting for the absolute or normalized error criterion, defined as in
this chapter. Then

nprob."; Id / D nwor."d ; I
res
d / for all " 2 .0; 1/; d 2 N;

where "d D "= �1.1 � ı/ for the absolute error criterion, and "d D " for the
normalized error criterion.
Consider the absolute error criterion.

• Polynomial tractability of Iwor implies polynomial tractability of I prob with the
same exponents p and q, and with an arbitrarily small positive exponent s,
as well as poly-log tractability of I prob with the same exponents p and q, and
with s D p=2. Hence, strong polynomial tractability of Iwor implies strong
polynomial tractability of I prob with respect to d .

• Weak tractability of Iwor and (14.2) imply weak tractability of I prob.

• Weak tractability of Iwor and (14.3) imply weak-log tractability of I prob.

• (Strong) T wor-tractability of Iwor with the function T wor satisfying (14.5) implies
(strong) T prob-tractability of I prob for T prob defined by (14.4).

• (Strong) T wor-log-tractability of Iwor with the function T wor satisfying (14.7)
implies (strong) T prob-tractability of I prob for T prob defined by (14.6).

Consider the normalized error criterion.

• Polynomial tractability of Iwor implies polynomial tractability, aswell as poly-log
tractability of I prob with the same exponents p and q, and s D 0.

• Weak tractability of Iwor implies weak as well as weak-log tractability of I prob.

• (Strong) T wor-tractability of Iwor implies (strong) T prob-tractability as well as
(strong) T prob-log tractability of I prob with T prob defined by (14.8).
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14.4 Relative Error

This section deals with the relative error criterion. As already mentioned a few times,
the relative error in the worst and average case settings leads to negative results for
approximating linear functionals1. We can obtain positive results and tractability only
in the probabilistic setting.

Let An;d be an algorithm given by (13.2) with n.f / 	 n. The relative error of
An;d in the probabilistic setting is given by

eprob-rel.An;d ; ı; Id / D inf
B�Fd ; �d .B/�ı

sup
f 2Fd nB

jId .f / � An;d .f /j
jId .f /j ;

with the convention that 0=0 D 0. Note that for Id 6D 0, the initial error is

eprob-rel.0; ı; Id / D 1;

so that the problem is always well normalized. As always, the information complexity
is defined as the minimal number of function values needed to find an algorithm with
error at most ", i.e.,

nprob-rel."; ı; Id / D min
˚
n j there exists An;d with eprob-rel.An;d ; ı; Id / � "



:

It was proved in [138], see also Section 6.1 of Chapter 6 in [305], that adaption does
not help and that

nprob-rel."; ı; Id / � navg-lin-nor

�
" tan.ı �=2/p

1C "2 tan2.ı �=2/
; Id

	
;

1The relative error of an algorithm An;d in the worst case setting is defined as

ewor-rel.An;d ; Id / D sup
f 2Fd

jId .f /�An;d .f /j
jId .f /j ;

with the convention that 0=0 D 0. Then as long as Id cannot be approximated exactly using finitely
many function values, ewor-avg.An;d ; Id / � 1 and the information complexity nwor."; Id / D 1 for all
" 2 .0; 1/. In fact, this result holds not only for linear functionals but also for linear operators that cannot
be approximated exactly by finitely many function values, see Section 6.1 of Chapter 6 in [305].

In the average case setting with a zero mean Gaussian measure �d , the relative error of an algorithm
An;d is defined as

eavg-rel.An;d ; Id / D
�Z

Fd

jId .f /�An;d .f /j2
jId .f /j2 �.df /

	1=2

:

Again, eavg-rel.An;d ; Id / � 1 and the information complexity navg."; Id / D 1 for all " 2 .0; 1/ as long
as Id cannot be approximated exactly by using finitely many function values. This result holds for linear
operators Id for which dim.Id .Fd // � 2, again assuming that Id cannot be approximated exactly by
finitely many function values, see Section 6.1 of Chapter 6 in [305].

The negative results in the worst and average case setting can be overcome by a modified relative error.
This is beyond the scope of this book. The reader interested in this subject is referred to Sections 6 of
Chapter 4 and 6 in [305].
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where navg-lin-nor."; Id / denotes the information complexity of approximating Id in
the average case setting for the normalized error criterion when we use only linear
algorithms. Furthermore, the last bound is sharp for small " since

nprob-rel."; ı; Id / � navg-lin-nor

�
" tan.ı1 �=2/p

1C "2 tan2.ı1 �=2/
; Id

	
with

ı1 WD min

 
1; ı

"
1 �

r
� "

4
ln
1C "

1 � "

#�1

C

!
D ı .1C O."// as " ! 0: (14.9)

For small ", we thus have

nprob-rel."; ı; Id / D navg-lin-nor ." tan.ı �=2 .1C o.1/// .1C o.1//; Id / :

Due to Theorem 13.2 in Chapter 13, we know that

navg-lin-nor."; Id / D nwor-nor."; I res
d /;

where nwor-nor stands for the information complexity in the worst case setting for the
normalized error criterion. Let

g."; d/ D " tan.ı �=2/p
1C "2 tan2.ı �=2/

for all "; ı 2 .0; 1/:

Note that for small " and ı we have

g."; ı/ D 1

2
� " ı .1C o.1//:

Therefore there exist numbers "� and ı� from .0; 1=�/ such that

1
4
� " ı � g."; ı/ � � " ı for all " 2 .0; "�� and ı 2 .0; ı��:

Additionally, we choose "� and ı� such that

ı1 � 2 ı for all ı 2 .0; ı��;

where ı1 is given by (14.9). We have

nwor-nor.g."; ı1/; I
res
d / � nprob-rel."; ı; Id / � nwor-nor.g."; ı/; I res

d / (14.10)

for all "; ı 2 .0; 1/. For small ", we have

nprob-rel."; ı; Id / D nwor-nor
�
" tan

�
1
2
ı � .1C o.1//

�
; I res
d

�
; (14.11)

and for small " and ı, we have

nprob-rel."; ı; Id / D nwor-nor
�
1
2
� " ı .1C o.1//; I res

d

�
: (14.12)
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This shows that the probabilistic setting for the relative error criterion is also closely re-
lated to the average and worst case settings for the normalized error criterion. However,
note that the role of the parameter ı is now much more important than in the previous
cases. For small " and ı, the parameter ı is just as important as the parameter ".

Tractability in the probabilistic setting for the relative error criterion is defined
exactly as for the absolute or normalized error criterion. The only difference is that we
now bound nprob-rel."; ı; Id / instead of nprob."; ı; Id /.

Tractability of I prob-rel D fId g means tractability of fId g in the probabilistic setting
for the relative error criterion. By T prob-rel we denote a tractability function that is used
in the probabilistic setting for the relative error. Again, tractability in the probabilistic
setting for the relative error criterion is closely related to tractability in the worst case
setting for the normalized error criterion. Proceeding similarly as before, we easily
check that the following statements are true:

• Suppose that we have polynomial tractability of I prob-rel. That is,

nprob-rel."; ı; Id / � C "�p dq ı�s for all "; ı 2 .0; 1/; d 2 N:

Then " � min."; "�/ � g.min."; "�/; ı�/ since g.min."; "�/; ı�/ � � min."; "�/ ı�
and �ı� � 1. This and the left-hand side of (14.10) yield that

nwor-nor."; I res
d / � nwor-nor

�
min."; "�/; I res

d

�
� nwor-nor

�
g.min."; "�/; ı�/; I res

d

�
� nwor-nor

�
g.min."; "�/; 1

2
ı�
1 /; I

res
d

�
� nprob-rel.min."; "�/; 1

2
ı�; Id / � C min."; "�/�p dq

�
1
2
ı���s

� C
�
1
2
ı���s max

�
"�p; Œ"���p

�
dq � C

�
1
2
ı���s Œ"���p "�p dq :

This means that we have polynomial tractability of Iwor with the same exponents p and
q as in the probabilistic setting for the relative error. This also means that strong poly-
nomial tractability of I prob-rel with respect to d , i.e., q D 0, implies strong polynomial
tractability of Iwor.

• Suppose that we have poly-log tractability of I prob-rel. That is,

nprob-rel."; ı; Id / � C "�p dq .1C ln ı�1/s for all "; ı 2 .0; 1/; d 2 N:

We now have

nwor-nor."; I res
d / � nprob-rel.min."; "�/; ı�; Id /

� C .1C lnŒı���1/s Œ"���p "�p dq :

This means polynomial tractability of Iwor with the exponents p and q. Again, q D 0

implies strong polynomial tractability of Iwor.

• Suppose that we have weak tractability of I prob-rel. Then

ln nwor-nor."; I res
d
/

"�1 C d
� ln nprob-rel .min."; "�/; ı�; Id /
Œmin."; "�/��1 C Œı���1 C d

Œmin."; "���1 C Œı���1 C d

"�1 C d
:
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Since the first factor goes to zero as "�1 C d goes to infinity and the second factor is
uniformly bounded, the limit is zero and we obtain weak tractability of Iwor.

• Suppose that we have weak-log tractability of I prob-rel. Then

ln nwor-nor."; I res
d
/

"�1 C d

� ln nprob-rel .min."; "�/; ı�; Id /
Œmin."; "�/��1 C lnŒı���1 C d

Œmin."; "���1 C lnŒı���1 C d

"�1 C d
:

As before, the first factor goes to zero as "�1Cd goes to infinity, and the second factor
is uniformly bounded. Thus we obtain weak tractability of Iwor.

• Suppose that we have (strong) T prob-rel-tractability of I prob-rel. That is,

nprob-rel."; ı; Id / � C T prob."�1; ds; ı�1/t for all "; ı 2 .0; 1/; d 2 N;

where ds D 1 for strong T prob-rel-tractability, and ds D d for T prob-rel-tractability.
Define

T wor-nor.x; y/ D T prob-rel
�
max.x; Œ"���1/; y; Œı���1

�
for all x; y 2 Œ1;1/:

Note that T wor is a tractability function since it is non-decreasing in both variables and
grows sub-exponentially. Then

nwor-rel."; I res
d / � nprob-rel

�
min."; "�/; ı�; Id

�
� C T prob-rel

�
max."�1; Œ"���1/; ds; Œı���1

�t
D C T wor-nor."�1; ds/t :

This means (strong) T wor-tractability of Iwor with the same exponent t .

• Suppose that we have (strong) T prob-rel-log-tractability of I prob. We now take

T wor-nor.x; y/ D T prob-rel
�
max.x; Œ"���1/; y; 1C lnŒı���1

�
for all x; y 2 Œ1;1/;

which is also a tractability function, and then

nwor-nor."; I res
d / � nprob-rel

�
min."; "�/; ı�; Id

�
� C T prob-rel

�
max."�1; Œ"���1/; ds; 1C lnŒı���1

�t
D C T wor."�1; ds/t :

This means (strong) T wor-tractability of Iwor with the same exponent t .

• Suppose that we have polynomial tractability of Iwor-nor. That is,

nwor-nor."; I res
d / � C "�p dq for all " 2 .0; 1/; d 2 N:
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Then the right-hand side of (14.10) yields

nprob-rel."; ı; Id / � nprob-rel
�
min."; "�/;min.ı; ı�/; Id

�
� nwor-nor

�
g.min."; "�/;min.ı; ı�//; I res

d

�
� nwor-nor

�
1
4
� min."; "�/ min.ı; ı�/; I res

d

�
� C .4=�/p max."�p; Œ"���p/ max.ı�p; Œı���p/ dq

� C .4=�/p Œ"���p Œı���p "�p dq ı�p

for all "; ı 2 .0; 1/; d 2 N.
Hence, we obtain polynomial tractability of I prob-rel with the same exponents p and

q, whereas the exponent s D p.
However, note that we do not obtain poly-log tractability of I prob-rel unless p D 0

which happens only for trivial problems. Indeed, p D 0 means that for all d we can
approximate I res

d
with an arbitrarily small error by using at most C dq function values.

• Suppose that we have weak tractability of Iwor-nor. In general, we cannot claim
weak tractability of I prob-rel since for ı D " and small ", from (14.12) we have

nprob-rel."; "; Id / D nwor-nor
�
1
2
� "2.1C o.1//; I res

d

�
and nwor-nor."2; I res

d
/ may be an exponential function of "�1. To guarantee weak

tractability of I prob-rel we must assume that

lim
"�1Cd!1

ln nwor-nor."2; I res
d
/

"�1 C d
D 0: (14.13)

Indeed, let x D 2�1=2 min."; ı; "�; ı�/. Then

1
4
� min."; "�/ min.ı; ı�/ � 1

4
� .

p
2 x/2 D 1

2
� x2 � x2:

Furthermore, it is easy to check that

x�1 � C ."�1 C ı�1/ with C WD p
2 max.1="�; 1=ı�/ � 1:

This in turn implies that

1

"�1 C ı�1 C d
� C

x�1 C d
for all "; ı 2 .0; 1/; d 2 N:

We already showed that

nprob-rel."; ı; Id / � nwor-nor
�
1
4
� min."; "�/ min.ı; ı�/; Iwor

d

�
:

Therefore

ln nprob-rel."; ı; Id /

"�1 C ı�1 C d
� ln nwor-nor

�
1
4
� min."; "�/ min.ı; ı�/; I res

d

�
"�1 C ı�1 C d

� ln nwor-nor
�
x2; I res

d

�
"�1 C ı�1 C d

� C
ln nwor-nor

�
x2; I res

d

�
x�1 C d

:
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Due to (14.13), the last right-hand side goes to zero as x�1 C d goes to infinity. This
implies weak tractability of I prob, as claimed.

Obviously, (14.13) holds when Iwor-nor is polynomially tractable since the depen-
dence of nwor-nor."; I res

d
/ is then polynomial in "�1, so that ln nwor-nor."2; I res

d
/ depends

logarithmically on "�1. Even if

nwor-nor."; I res
d / D O

�
exp.dq/ exp."�p/

�
then (14.13) holds for q < 1 and p < 1

2
. On the other hand, the conditions q < 1 and

p < 1 are needed to guarantee weak tractability of Iwor-nor.
When can we claim that I prob-rel is weakly-log tractable? To claim this, we need to

prove that

lim
"�1Cln ı�1Cd!1

ln nprob-rel."; ı; Id /

"�1 C ln ı�1 C d
D 0:

In this case (14.13) is too weak in general. Taking ı D exp.�1="/, so that ln ı�1 D "�1,
we see that we need to assume that

lim
"�1Cd!1

ln nwor." exp.�1="/; I res
d
/

"�1 C d
D 0: (14.14)

Indeed, (14.14) yields weak-log tractability of I prob. To show this, take

x D 2�1=2 min
�
"; "�;�1= ln min.ı; ı�/

�
and t D p

2 x:

Then min."; "�/ � p
2 x D t , min.ı; ı�/ � exp.�1=.p2 x/ D exp.�1=t/ and

1

"�1 C ln ı�1 C d
� C

1

1=.
p
2x/C d

D C
1

t�1 C d

with C WD max.1="�; ln 1=ı�/ � 1. Since

nprob-rel."; ı; Id / � nwor-nor
�
1
4
� min."; "�/ min.ı ı�/; I res

d

�
;

then
ln nprob-rel."; ı; Id /

"�1 C ln ı�1 C d
� C

nwor-nor
�
t exp.�1=t/; I res

d

�
t�1 C d

:

Due to (14.14), the last right-hand side goes to zero as t�1 C d goes to infinity. This
implies weak-log tractability of I prob, as claimed.

We stress that (14.14) is quite demanding and does not hold for many problems.
Even for d D 1, the typical behavior of nwor-nor."; I res

d
/ as a function of " is polynomial

in "�1, and so (14.14) does not hold. If

nwor-nor."; I res
d / D ‚

�
dq

�
ln "�1�p � for all " 2 .0; 1/; d 2 N; (14.15)

for some non-negative p and q, then (14.14) holds iff p < 1. The logarithmic de-
pendence on "�1 usually holds if the problem Iwor-nor is defined on analytic functions
or C1 functions. The full characterization of problems for which (14.14) or (14.15)
holds is not known and is the subject of the next open problem.
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Open Problem 66.

• Characterize problems I prob-rel in the probabilistic setting for the relative error
criterion that are weakly-log tractable.

• Equivalently, characterize problems Iwor-nor in the worst case setting for the
normalized error criterion for which (14.14) holds. In particular, characterize
problems for which (14.15) holds.

• Suppose that we have (strong) T wor-nor-tractability of Iwor-nor. That is,

nwor-nor."; I res
d / � C T wor-nor."�1; ds/t for all " 2 .0; 1/; d 2 N;

with ds D 1 for strong T wor-nor-tractability, and ds D d for T wor-nor-tractability, as
before.

We now define

T prob-rel.x; y; z/ D T wor-nor
�
4
�

max.x; 1="�/ max.z; 1=ı�/; y
�

(14.16)

for all x; y; z 2 Œ1;1/. This is a non-decreasing function of three variables. It is also
non-exponential if we additionally assume that

lim
x;y�1; xCy!1

ln T wor-rel.x2; y/

x C y
D 0: (14.17)

Indeed, for w D 2��1=2 max.x; z; 1="�; 1=ı�/ we have

1

x C y C z
� C

w C y
with C WD 2��1=2 max.1="�; 1=ı�/ � 1:

Since w � 2��1=2 max.x; 1="�/ and w � 2��1=2 max.z; 1=ı�/ then

w2 � 4

�
max.x; 1="�/ max.z; 1=ı�/;

and therefore
ln T prob-rel.x; y; z/

x C y C z
� C

ln T wor-nor.w2; y/

w C y
:

Due to (14.17), the right-hand side goes to zero as wC d goes to infinity. This means
that T prob-rel is non-exponential, and hence it is a tractability function.

Furthermore, we have

nprob-rel."; ı; Id / � nwor-rel
�
1
4
� min."; "�/ min.ı; ı�/; I res

d

�
� C T wor-nor

�
4
�

max."�1; 1="�/ max.ı�1; 1=ı�/; ds
�t

D C T prob-rel."�1; ds; ı�1/t :

Hence, we have (strong) T prob-rel-tractability of I prob-rel with the same exponent t .



318 14 Probabilistic Setting

We turn to (strong)T prob-rel-log-tractability of I prob-rel. We now redefine the function
T prob-rel as

T prob-rel.x; y; z/ D T wor-nor
�
4
�

max.x; 1="�/ max.exp.z � 1/; 1=ı�/; y
�

(14.18)

for all x; y; z 2 Œ1;1/.
We need to assume much more about the tractability function T wor-nor to prove that

T prob-rel is also a tractability function. Namely, let

lim
x;y�1; xCy!1

ln T wor-nor.x exp.x/; y/

x C y
D 0: (14.19)

Then for w D 4��1 max.x; z � 1; 1="�; ln 1=ı�/, we have

1

x C y C z
� C

w C y
with C WD 4��1 max.1="�; ln 1=ı�/ � 1;

and w � 4��1 max.x; 1="�/ and

w � 4��1 max.z � 1; ln 1=ı�/ � max.z � 1; ln 1=ı�/;

so that
exp.w/ � max

�
exp.z � 1/; 1=ı�� :

Then

lim
x;y;z�1

xCyCz!1

ln T prob-rel.x; y; z/

x C y C z
� C lim

w;y�1
wCy!1

ln T wor-nor.w exp.w/; y/

w C y
:

Due to (14.19), the right-hand side goes to zero, as w C y goes to infinity. Hence,
T prob-rel is a tractability function. Furthermore,

nprob-rel."; ı; Id / � nwor-nor
�
1
4
� min."; "�/ min.ı; ı�/; I res

d

�
� C T wor-nor

�
4
�

max."�1; 1="�/ max.ı�1; 1=ı�/; ds
�t

D C T prob-rel."�1; ds; 1C ln ı�1/t :

Hence, we have (strong) T prob-rel-log-tractability of I prob-rel with the same exponent t .
We summarize this analysis in the following theorem.

Theorem 14.2. Consider I prob-rel D fId g in the probabilistic setting for the relative
error criterion, and Iwor D fI res

d
g in the worst case setting for the normalized error

criterion, defined as in this chapter. Then

• The probabilistic setting with the relative error for I prob-rel is closely related to
the worst case setting with the normalized error criterion for Iwor-nor.

For small ", we have

nprob-rel."; ı; Id / D nwor-nor
�
" tan

�
1
2
ı � .1C o.1//

�
; I res
d

�
:
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For small " and ı, we have

nprob-rel."; ı; Id / D nwor-nor
�
1
2
� " ı .1C o.1//; I res

d

�
;

showing that the parameter ı is as important as the parameter ".

• Polynomial tractability of Iwor-nor implies polynomial tractability of I prob-rel with
the same exponents ofp and q, and with the exponent s D p. Hence, strong poly-
nomial tractability of Iwor-nor implies strong polynomial tractability of I prob-rel

with respect to d . However, if p > 0 then poly-log tractability of T prob-rel does
not hold.

• Weak tractability of Iwor-nor and (14.13) imply weak tractability of I prob-rel.

• Weak tractability of Iwor-nor and (14.14) imply weak-log tractability of Iwor-nor.

• (Strong)T wor-nor-tractability ofIwor-nor with the functionT wor-nor satisfying (14.17)
implies (strong) T prob-nor-tractability of I prob-rel for T prob defined by (14.16).

• (Strong) T wor-nor-log-tractability of Iwor-nor with the function T prob-rel satisfy-
ing (14.19) implies (strong) T prob-rel-tractability of I prob-rel for T prob-rel defined
by (14.18).

14.5 Notes and Remarks

NR 14.1:1. The relations between the probabilistic and average case setting hold not
only for linear functionals but also for linear operators, see Chapter 8 of [305] which
is based on Lee and Wasilkowski [169], Wasilkowski [325], [326] and [351]. The
relations for linear functionals and the relative error criterion are from [138].

NR 14.2:1. The definition of poly-log tractability in the probabilistic setting for
the absolute error criterion was given in [348]. It is also shown in [348] that for
linear operators and for classes ƒall and ƒstd, tractability in the probabilistic setting is
equivalent to tractability in the average case setting with a zero mean Gaussian measure
in both settings. These relations for linear operators will be used in Volume III.

As already mentioned in Volume I, there are two interesting papers by Lifshits
and Tulyakova [174] and Lifshits and Zani [175] with negative results for multivariate
approximation. For Gaussian integration, Examples 3.2.5 and 3.2.6 of Chapter 3 in
Volume I are probably the first examples of linear functionals with tractability results
in the probabilistic setting for the normalized error criterion.

The concepts of polynomial tractability, weak tractability and T -log tractability are
formally new. However, they are a direct analog of the corresponding concepts in the
previous settings.



Chapter 15

Smolyak/Sparse Grid Algorithms

15.1 Introduction

In 1963, Smolyak published a four page long paper [283] (in Russian), where he
outlined an algorithm for approximating linear tensor product problems. Today this
algorithm is called the Smolyak algorithm. Antecedents of his idea may be found earlier
in the work of Babenko [3]. There are literally hundreds of papers with important
modifications of this algorithm and they go under different names such as blending
algorithms, Boolean algorithms, hyperbolic cross point algorithms, or sparse grid
algorithms. The latter name is probably most popular and well explains the essence of
the basic algorithm. That is why we decided to name this chapter as “Smolyak/Sparse
Grid Algorithms”. A partial list of papers dealing with Smolayk/sparse grid algorithms
is given in NR 15.1.

The Smolyak/sparse grid algorithms are used for linear tensor product problems.
Their essence is that it is enough to know how to solve such problems for the univariate
case1 d D 1. Then the algorithms for arbitrary d are fully determined in terms of tensor
products of the algorithms for d D 1. In general, the univariate algorithms may use
function values or arbitrary linear functionals. Furthermore, the univariate algorithms
do not have to be optimal, although a poor choice of these algorithms makes the error
of the algorithm larger for arbitrary d .

Since this volume is primarily devoted to approximation of linear functionals, we
restrict our presentation of the Smolyak algorithm only to linear tensor products of
univariate linear functionals defined over reproducing kernel Hilbert spaces. In view
of the results for the average case and probabilistic settings in Chapters 13 and 14, it
is enough to only consider the worst case setting. In Volume III, we will revisit the
Smolyak algorithm for general linear tensor product operators in different settings.

In our case, univariate algorithms use only function values. Then the Smolyak and
sparse grid algorithms also use function values in the d -variate case chosen at the so
called hyperbolic cross sample points. The geometry of such points resembles a sparse
grid and this property was used as the motivation of the name: “sparse grid algorithms”.
Such information has been initiated by Babenko [3], who studied approximation of
periodic functions by polynomials that use Fourier coefficients whose indices are from
a hyperbolic cross. There are many papers studying the power of hyperbolic cross
information for a number of problems in different settings, see the papers cited in
NR 15.1.

1It is also possible to start the construction of the Smolyak or sparse grid algorithms by using algorithms
form-variate problems and obtain algorithms for dm-variate problems. Herem can be an arbitrary positive
integer. For simplicity, we restrict ourselves in this chapter to m D 1, although it is quite straightforward
how to generalize the construction for arbitrarym.
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We will begin with the unweighted case, as was originally done by Smolyak [283].
Our emphasis will be on the explicit dependence on d as in [329]. This will allow us
to analyze tractability of unweighted linear tensor product functionals. Suppose we
consider a non-trivial linear functional for d D 1, i.e., a linear functional that cannot be
solved exactly by using one function value. Then strong polynomial tractability holds
for the absolute error criterion if the norm of the univariate linear functional is less than
one and the nth univariate error goes polynomially fast (in n�1) to zero. This result
sounds better than it really is. The reason is simple. If the norm for the univariate case is
ˇ 2 .0; 1/, then the norm for the d -variate case is ˇd , and is exponentially small in d .
This means that we are approximating a linear functional with an exponentially small
norm. For large d , it seems to us that for most " of practical importance we will have
" � ˇd , and then the (trivial) zero algorithm will do the job. On the other hand, ifˇ > 1,
then the norm for the d -variate case is exponentially large in d . From Theorem 11.7
of Chapter 11 we know that the problem is then intractable (still for the absolute error
criterion) and suffers from the curse of dimensionality if the nth minimal worst case
error behaves polynomially. Hence, it seems that only the case ˇ D 1 is of interest.
As we already know from the previous chapters, tractability for ˇ D 1 depends on the
univariate linear functional and the underlying space and anything can happen.

Then we study the weighted case for arbitrary weights. Similarly to [332], we
analyze a class of algorithms that are called weighted Smolyak or weighted tensor
product algorithms, or shortly, WTP algorithms. They are a generalization of the
Smolyak and sparse grid algorithms for weighted linear tensor product problems. In this
chapter, we analyze WTP algorithms for linear functionals, leaving the case of weighted
linear tensor product operators to Volume III. The class of WTP algorithms depends on
several parameters characterizing weights, spaces and linear functionals. The values
of these parameters determine the efficiency of WTP algorithms. In Section 15.3.1 we
show that the WTP algorithm is a weighted sum of the Smolyak algorithm, and we
obtain an explicit form as well as explicit error and cost bounds of the WTP algorithm.

We then address when the WTP algorithms yield tractability bounds for both the
absolute and normalized error criterion. We restrict ourselves to finite-order and product
weights, leaving the case of general weights as an open problem to the reader.

For finite-order weights we propose two classes of WTP algorithms. The first
class depends on all the finite-order weights, whereas the second class is much less
dependent on the finite-order weights. In particular, for the normalized error criterion,
it is enough to know only the order! of finite-order weights to define the second class of
WTP algorithms. The main result for finite-order weights is that we have polynomial
tractability for the normalized error criterion if we only assume that the univariate
case can be solved with polynomial cost. Under some conditions on the finite-order
weights, even strong polynomial tractability can be achieved, although only for the first
class of WTP algorithms. This means that the price of a more lenient dependence on
finite-order weights is the lack of strong polynomial tractability bounds for the second
class of WTP algorithms. We illustrate finite-order weights for perturbed Coulomb
potentials, and finish this subsection by several open problems related to finite-order
weights.
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We then turn our attention to product weights, which were studied in [332]. We
present conditions on product weights for which the WTP algorithms yield tractabil-
ity bounds. In particular, we present bounds on the exponent of strong polynomial
tractability. Usually these bounds are not sharp. It would be desirable to improve the
choice of parameters defining the WTP algorithms such that the bounds on the expo-
nent are smaller. As always, we illustrate the results for several examples including
uniform integration. We also discuss how to choose product weights for Cobb Douglas
functions that occur in economics.

For both finite-order and product weights we briefly discuss the robustness of WTP
algorithms. In particular, we study what happens if we use a function that does not
belong to a space equipped with finite-order weights or if we use wrong product weights.
As originally proved in [335], we show a remarkable property of the WTP algorithm for
finite-order weights. Namely, the WTP algorithm approximates the part of a function
outside the space equipped with finite-order weights by zero, and approximates the part
of a function for which it has been designed. Hence, if the part of a function outside the
space is small or negligible, the WTP algorithms still provide good approximations.

As in all chapters, we propose several open problems. In this chapter we have six
open problems numbered 67 through 72.

15.2 Unweighted Case: Algorithms

As in Section 11.2 of Chapter 11, we consider linear tensor product functionals. We
briefly recall their definition. For d D 1, let F1 be a reproducing kernel Hilbert space
of real functions defined on D1 � R. The reproducing kernel of F1 is denoted by K1.
The (continuous) linear functional I1 is of the form

I1.f / D hf; h1iF1
for all f 2 F1;

and for some non-zero function h1 from F1. For d > 1, we take

Fd D F1 ˝ F1 ˝ � � � ˝ F1 and Id D I1 ˝ I1 ˝ � � � ˝ I1

as the d -fold tensor product of F1 and I1. The class Fd is a reproducing kernel Hilbert
space of real functions defined on Dd D Dd

1 whose kernel is

Kd .x; t/ D
dY
jD1

K1.xj ; tj / for all x; t 2 Dd :

The (continuous) linear functional Id is of the form

Id .f / D hf; hd iFd
for all f 2 Fd ;

where

hd .t/ D
dY
jD1

h1.tj / for all t 2 Dd :
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We consider approximation of Id in the worst case setting for the absolute and
normalized error criteria. As we know, the initial error is

e.0; d/ D kIdk D khdkFd
D kh1kdF1

:

We are ready to define the Smolyak/sparse grid algorithms. As already mentioned,
these algorithms for d > 1 are given by certain combinations of tensor products of
univariate algorithms. That is why we need first to discuss the univariate case d D 1.

We assume therefore that we know linear algorithms Ui , i � 1, that approximate
the linear functional I1 such that limi!1 kI1 � Uik D 0. We denote

	0 D U0 D 0; 	i D Ui � Ui�1 for all i 2 N:

Clearly,

I1.f / D
1X
iD1

	i .f / for all f 2 F1:

For d > 1, we take a non-negative integer q and approximate the linear tensor
product functionals Id by the algorithm A.q; d/ W Fd ! R given by

A.q; d/ D
X

0�i1Ci2C���Cid �q
	i1 ˝ � � � ˝	id : (15.1)

To get familiar with the formula (15.1), take d D 1. Then

A.q; 1/ D
qX

i1D0
	i1 D Uq :

For d � 1, take f of the form

f .t/ D f1.t1/ f2.t2/ � � �fd .td / for some fi 2 F1 and all t 2 Dd :
Then we have

.A.q; d/ f / .t/ D
X

0�i1Ci2C���Cid �q

�
	i1f1

�
.t1/

�
	i2f2

�
.t2/ � � � �	idfd � .td /:

Observe that for q < d , all terms in (15.1) are zero. Indeed, 0 � i1C i2C� � �C id � q

implies that one of the indices is zero, say ij D 0, and	ij D 0. Hence, q < d implies
that A.q; d/ D 0. Therefore the only interesting case is when q � d and only then we
can take all ij � 1.

The algorithmA.q; d/ given by (15.1) is the celebrated Smolyak algorithm2 already
presented by Smolyak [283]. It is indeed defined entirely by tensor products of the
differences Uij � Uij �1 of univariate algorithms.

2If I1 is a linear operator, and Id the d -fold tensor product of I1, the form ofA.q; d/ is the same, with
Ui now approximating a linear operator I1.
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In his original paper, Smolyak proved the following error estimate. Assume that
there exists a positive ˛ such that

kI � Uj k D O
�
2�j ˛� for all j 2 N:

Then for all d we have

kId � A.q; d/k D O
�
Œln 2˛ q�d�1

2�q ˛� for all q 2 N:

Here, the factor in the big O notation depends on all parameters of the problem, in-
cluding d , but it is independent of q.

The essence of this error bound for d > 1 is that modulo a power of the logarithm
of 2˛ q we have the same rate of convergence as for d D 1. For a relatively small d ,
this is an excellent result and that is why this algorithm is so popular for approximating
linear tensor product problems.

However, for large d and tractability analysis, we cannot ignore the power of the
logarithm as well as we must know how the factor in the big O notation in the error
bounds depends on d . This indicates the need to track down the dependence on d .
This painful job was done in [329].

It is also not yet clear what is the cost of the algorithm A.q; d/. Obviously, we
must assume that the univariate algorithms Ui use function values of f1. Let ni be the
(minimal) number of function values used by Ui for which kI1 � Uik D O.2�i ˛/.
Then we need to find out how many function values of fd are used by A.q; d/, and
relate the cost of A.q; d/ to its error bound.

In his original paper, Smolyak showed for a number of standard spaces and linear
operators that the error for the d -variate case is of order n�r Œln n�.d�1/ˇ if we use
n function values. Here, n�r measures the univariate error when we use n function
values, and ˇ is some positive number independent of n and d . Hence, modulo powers
of logarithm, we have the same rate of convergence for all d . We stress again that this
property made the Smolyak algorithm famous.

Back to tractability of I D fId g. We will be able to verify whether we obtain
tractability by the use of the algorithm A.q; d/ if we know:

• an explicit form of A.q; d/,
• an explicit error bound of A.q; d/,
• an explicit cost bound of A.q; d/.

These points will be addressed in the subsequent subsections based on [329].

15.2.1 Explicit Form

We want to find an explicit form of the algorithm A.q; d/ in terms of algorithms Ui .
We will use the following notation.

For Ei D Œi1; i2; : : : ; id � with non-negative integers ij , let jEi j D Pd
kD1 ik . We write

Ei � Ej if ik � jk for all k. Furthermore, by Q.q; d/ we mean the set

Q.q; d/ D ˚Ei D Œi1; i2; : : : ; id � j E1 � Ei ; j Ei j � q


; with E1 D Œ1; 1; : : : ; 1�:
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The cardinality of the set Q.q; d/ is equal to
�
q
d

�
. We have

A.q; d/ D
X

Ei2Q.q;d/

dO
kD1

	ik D
X

Ei2Q.q�1;d�1/

� d�1O
kD1

	ik

�
˝
q�jEi jX
id D1

	id

D
X

Ei2Q.q�1;d�1/

� d�1O
kD1

	ik

�
˝ U

q�jEi j;

(15.2)

since
Pm
iD1	i D Um for any m � 1. Observe that

dO
kD1

�
Uik � Uik�1

� D
X

Ę2f0;1gd

.�1/j Ę j
dO
kD1

Uik�˛k
:

Note that
Nd
kD1 Ujk

appears in A.q; d/ for all indices Ei for which ik D jk C ˛k with

Ę 2 f0; 1gd and j Ę j � q � j Ej j. Furthermore, the sign of
Nd
kD1 Ujk

in this case is
.�1/j Ę j. Let

b.i; d/ D
X

Ę2f0;1gd

j Ę j�i

.�1/j Ę j:

This and (15.2) yield

A.q; d/ D
X

Ej2Q.q;d/
b.q � j Ej j; d /

dO
kD1

Ujk
:

We now compute b.i; d/. Clearly, we can sum up with respect to j Ę j D 0; 1; : : : ; d .
Since j Ę j D j corresponds to

�
d
j

�
terms, we have

b.i; d/ D
minfi;dgX
jD0

�
d

j

	
.�1/j D .�1/i

�
d � 1
i

	
:

In particular, b.i; d/ D 0 for i � d . This yields an explicit form of A.q; d/ which is
summarized in the following lemma.

Lemma 15.1.

A.q; d/ D
X

Ei2P.q;d/
.�1/q�jEi j

�
d � 1
q � jEi j

	 dO
kD1

Uik ;

where
P.q; d/ D ˚Ei j E1 � Ei ; q � d C 1 � jEi j � q



:
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In particular, for

Ui .f / D
miX
jD1

ai;j f .xi;j / for all f 2 F1 (15.3)

with ai;j 2 R and xi;j 2 D1, we have

A.q; d/.f / D
X

Ei2P.q;d/
.�1/q�jEi j

�
d � 1
q � jEi j

	 X
E1� Ej� EmEi

aEi ; Ej f .xi1;j1
; : : : ; xid ;jd

/;

(15.4)
where aEi ; Ej D Qd

kD1 aik ;jk
and EmEi D Œmi1 ; : : : ; mid �.

We now comment on the information

Nq;d .f / D ff .xi1;j1
; : : : ; xid ;jd

/ j Ei 2 P.q; d/; Ej � EmEi g
used by the algorithm A.q; d/.

Assume that mi � M i for some M . Then Ej � EmEi yields

j1j2 � � � jd � mi1mi2 � � �mid � M jEi j � M q : (15.5)

Hence, the index Ej satisfies the so called hyperbolic inequality (15.5). However, not
every index Ej satisfying (15.5) must correspond to some .xi1;j1

; : : : ; xid ;jd
/. For

example, take d D M D 2 and mi D M i with q D 5. Then Ej D Œ5; 5� is a counter-
example.

Thus, the indices of the functionals of the information Nq;d are a subset of the
solution of the hyperbolic inequality (15.5). The solution set of (15.5) forms part of a
hyperbolic cross. This explains why the information Nq;d is called hyperbolic cross
information.

We stress that coefficients in (15.4) are of different signs even if we use algorithms
Ui with, say, positive coefficients ai;j . The use of coefficients with different signs may
result in a lack of numerical stability. We return to this point in Subsection 15.2.9,
where we discuss a couple of implementation issues of the Smolyak algorithm. Fol-
lowing [214] we show that for a relatively small d , the sum of the absolute values of
all coefficients is not large, and in this case numerical stability is not in jeopardy.

15.2.2 Explicit Error Bound

We analyze the worst case error of the algorithmA.q; d/ in terms of its error for d D 1.
The following assumptions will be used for d D 1:

kI1k � B; (15.6)

kI1 � Uik � C Di for all i � 0; (15.7)

k	ik D kUi � Ui�1k � EDi for all i � 1: (15.8)



15.2 Unweighted Case: Algorithms 327

Here, the number B bounds the norm of the operator I1, and therefore we can take
B D kI1k D kh1kF1

. Since I1 6D 0, we have B > 0. The numbers C , D, and E
describe how well Ui approximates I1. Of course, only D < 1 is of interest.

For i D 0 in (15.7), we get kI1k � C . Therefore we can assume that B � C .
Similarly, letting i D 1 in (15.8), we get

kI1k � kI1 � U1k C kU1k � D .C CE /:

Hence, we can assume that B � D.C CE/. By the same argument,

C.D�1 � 1/ � E � C.D�1 C 1/:

Since B > 0, then C , E, and D have to be positive.
We stress that, in general, we do not assume any optimality properties of linear

algorithms Ui for d D 1. We also do not assume any relation between the information
used by successiveUi . In Subsection 15.2.2.1, we derive an upper bound on the error of
A.q; d/ in this general case. In Subsection 15.2.2.2, we assume “nested” information
and optimality ofUi . Under these assumptions we improve the error bounds ofA.q; d/
and also conclude optimality of A.q; d/.

15.2.2.1 Non-nested information. Recall that e.A.q; d// D kId � A.q; d/k is the
worst case error of the algorithmA.q; d/ in the d dimensional case. Similarly, e.Ui / D
kI1 � Uik is the worst case error of Ui for the univariate case.

For q < d , we have A.q; d/ D 0 and e.A.q; d// D kIdk � Bd . For q � d , we
present the following estimates.

Lemma 15.2. If (15.6), (15.7), and (15.8) hold then for q � d we have

e.A.q; d// � C Bd�1Dq�dC1
d�1X
jD0

�
ED

B

	j �
q � d C j

j

	

� CHd�1Dq

�
q

d � 1
	
;

(15.9)

withH D max.B=D;E/.

Proof. For d D 1, Lemma 15.2 coincides with (15.7). Assume by induction that
Lemma 15.2 holds for d . Due to (15.2), we have

IdC1 � A.q C 1; d C 1/

D IdC1 �
X

Ei2Q.q;d/

� dO
kD1

	ik

�
˝ U

qC1�jEi j
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D IdC1 C
X

Ei2Q.q;d/

� dO
kD1

	ik

�
˝ �

I1 � U
qC1�jEi j

� � A.q; d/˝ I1

D
X

Ei2Q.q;d/

� dO
kD1

	ik

�
˝ �

I1 � U
qC1�jEi j

�C �
Id � A.q; d/�˝ I1:

Hence, due to (15.6), (15.7), and (15.8), we have

e.A.q C 1; d C 1// �
X

Ei2Q.q;d/
EdDjEi jCDqC1�jEi j C Be.A.q; d//

D CEdDqC1
�
q

d

	
C Be.A.q; d//:

This and the inductive assumption complete the proof of the first inequality. Estimating
.ED=B/j by maxd�1.1; ED=B/ and using the fact that

d�1X
jD0

�
q � d C j

j

	
D
�

q

d � 1
	
;

we obtain the second inequality.

15.2.2.2 Nested information and optimal algorithms. In this subsection we assume
that the algorithms

Ui .f / D
miX
jD1

ai;jf .xi;j /

use nested information Ni .f / D �
f .xi;1/; f .xi;2/; : : : ; f .xi;mi

/
�

for f 2 F1. That
is,

fxi;1; xi;2; : : : ; xi;mi
g � fxiC1;1; xiC1;2; : : : ; xiC1;miC1

g for all i 2 N:

Nested information means that there exists a sequence fxig, with xi 2 D1, such that

Ni .f / D Œf .x1/; f .x2/; : : : ; f .xmi
/� for all f 2 F1; i 2 N: (15.10)

We also assume that the algorithms Ui are optimal, i.e., that they minimize the worst
case error among all algorithms that use the informationNi . It is well known, see also
Chapter 4 of Volume I, that Ui is optimal if

Ui D I1Pi ; (15.11)

where Pi is the orthogonal projection on the linear subspace

spanfK1.�; xj / j j D 1; 2; : : : ; mig D .kerNi /
?:

We show that (15.11) implies optimality of the algorithm A.q; d/ for any d .
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Lemma 15.3. For nested information Ni of the form (15.10) and optimal Ui of the
form (15.11), we have

A.q; d/ D IdP .q; d/;

where P .q; d/ is the orthogonal projection on the linear subspace .ker.Nq;d //?. Thus,
in particular, A.q; d/ minimizes the error among all algorithms that use the same
information Nq;d .

Proof. From (15.1) and (15.11),

A.q; d/ D IdR.q; d/ for R.q; d/ D
X

Ei2Q.q;d/

dO
kD1

Rik with Rik D Pik � Pik�1:

Let hi 2 F1 be such that hi .xj / D ıj;i . Then R`hjk
D ı`;jk

hjk
. Hence, on the

subspace spanned by the functions

h.t1; t2; : : : ; td / D
dY
kD1

hjk
.tk/ with Ej � Emi and Ei 2 Q.q; d/;

the operator R.q; d/ is the identity. Moreover, R.q; d/ D 0 for the orthogonal com-
plement of this subspace. This proves that R.q; d/ D P .q; d/. As for d D 1, it is
known that this form of A.q; d/ yields the minimal worst case error.

We add in passing that the projection form of the algorithm A.q; d/ implies addi-
tional error properties. In particular,A.q; d/minimizes all local errors, see, e.g., [187],
[305], [307]. Such algorithms are sometimes referred to as being central or strongly
optimal, see also Chapter 4 of Volume I.

We now estimate the error of A.q; d/ using the property that the Ni are nested and
Ui optimal. Consider first d D 1. Then

Uif D I1Pif D hPif; h1iF1
D hf;Pih1iF1

for all f 2 F1:
This implies that I1f � Uif D hf; .I � Pi /h1iF1

with the identity If D f , and

e.Ui / D kI1 � Uik D k.I � Pi /h1kF1
for all i 2 N:

Furthermore

.Ui � Ui�1/f D hf; .Pi � Pi�1/h1iF1
for all f 2 F1:

Therefore

kUi � Ui�1k2 D kPih1 � Pi�1h1k2F1
D k.I � Pi�1/h1 � .I � Pi /h1k2F1

D k.I � Pi�1/h1k2F1
� 2 h.I � Pi /h1; .I � Pi�1/h1iF1

C k.I � P i/h1k2F1
D k.I � Pi�1/h1k2F1

� k.I � Pi /h1k2F1

D e2.Ui�1/ � e2.Ui /:
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For d � 2, we have Id .f / � A.q; d/.f / D hf; hd � P .q; d/hd iFd
, and

e2.A.q; d// D khd � P .q; d/hdk2Fd

D khdk2Fd
� 2 hhd ;P .q; d/hd iFd

C kP .q; d/hdk2Fd

D khdk2Fd
� kP .q; d/hdk2Fd ;

where

P .q; d/hd D
X

Ei2Q.q;d/

dO
kD1

.Pik � Pik�1/h1:

Note that
˝
.Pik � Pik�1/h1; .Pjk

� Pjk�1/h1
˛
F1

D 0 for ik 6D jk . Therefore the

elements
Nd
kD1.Pik � Pik�1/h1 are orthogonal for different Ei ’s. Therefore

kP .q; d/hdk2Fd
D

X
Ei2Q.q;d/

dY
kD1

k.Pik � Pik�1/h1k2F1

D
X

Ei2Q.q;d/

dY
kD1

�
e2.Uik�1/ � e2.Uik /

�
:

This yields

e2.A.q; d// D kh1k2dF1
�

X
Ei2Q.q;d/

dY
kD1

�
e2.Uik�1/ � e2.Uik /

�
: (15.12)

Note that X
Ei2Q.q;d/

dY
kD1

�
e2.Uik�1/ � e2.Uik /

�
D

X
Ei2Q.q�1;d�1/

�
e2.U0/ � e2.U

q�jEi j/
� d�1Y
kD1

�
e2.Uik�1/ � e2.Uik /

�
D kh1k2H1

�kh1k2.d�1/
F1

� e2.A.q � 1; d � 1/�
�

X
Ei2Q.q�1;d�1/

e2.U
q�jEi j/

d�1Y
kD1

�
e2.Uik�1/ � e2.Uik /

�
:

This gives the formula

e2.A.q; d// D kh1k2F1
e2.A.q � 1; d � 1//

C
X

Ei2Q.q�1;d�1/
e2.U

q�jEi j/
d�1Y
kD1

�
e2.Uik�1/ � e2.Uik /

� (15.13)

for the error of A.q; d/.
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Observe that e2.A.q; d// is a non-decreasing function of e.Ui /. Indeed, for j D
1; 2; : : : ; d define vectors xj D .x0;j ; x1;j ; : : : ; xq�dC1;j / 2 Œ0; 1/q�dC2, and x D
.x1; x2; : : : ; xd /, and consider the function

fd .x/ D
dY
kD1

x0;k �
X

Ei2Q.q;d/

dY
kD1

.xik�1;k � xik ;k/:

Obviously, for xj;k D e2.Uj /we have from (15.12) that fd .x/ is equal to e2.A.q; d//.
We now show that fd is non-decreasing in each variable as long as 0 � xj;k � xj�1;k
for all j; k holds. Take the pth component of the j th vector xj , i.e. xp;j . Then we can
rewrite fd as

fd .x/ D x0;j
Y
k 6Dj

x0;k C
X

Ei2Q.d�1;q�1/

� � x0;j C x
q�jEi j;j

� Y
k 6Dj

.xik�1;k � xik ;k/:

Hence, the terms of the last sum depend on xp;j only when jEi j D q � p. This means
that g.xp;j / WD fd .x/, with all fixed values of variables x except xp;j , has the form

g.xp;j / D x0;j
Y
k 6Dj

x0;k C �
xp;j � x0;j

� X
Ei2Q.d�1;q�1/

jEijDq�p

Y
k 6Dj

.xik�1;k � xik ;k/

C
X

Ei2Q.d�1;q�1/

jEij6Dq�p

� � x0;j C x
q�jEi j;j

� Y
k 6Dj

.xik�1;k � xik ;k/:

Hence, g is a linear function. Note that xp;j is multiplied by a non-negative number
and therefore g non-decreasing. This yields the desired property.

Due to the monotonicity property we estimate the error ofA.q; d/ given by (15.13)
using (15.6) and (15.7) and the inequality B � C ,

e2.A.q; d// � C 2e2.A.q � 1; d � 1//
C C 2d .1 �D2/d�1D2.q�dC1/ X

Ei2Q.q�1;d�1/
1

D C 2e2.A.q � 1; d � 1//C C 2d .1 �D2/d�1D2.q�dC1/
�
q � 1
d � 1

	
:

Therefore,
e2.A.q; d// � C 2dD2.q�dC1/ s.x/; (15.14)

where

s.x/ WD
d�1X
iD0

.1 � x/d�1�i
�
q � i � 1
d � i � 1

	
with x D D2:

It is easy to check that for q > .d �D2/=.1�D2/, the largest term in the last sum
is for i D 0. Therefore, in this case, one can estimate the last sum by d times the term
for i D 0.
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We find a closed form for the function s. We have

s.x/ D
d�1X
iD0

�
q � i � 1
q � d

	
.1 � x/d�1�i D

d�1X
jD0

�
q C j � d
q � d

	
.1 � x/j :

Using the binomial formula for .1� x/j and changing the order of summation, we get

s.x/ D
d�1X
kD0

.�x/k
d�1X
jDk

�
j

k

	�
q C j � d
q � d

	
:

Since the product of the two binomial coefficients in the second sum is equal to�
q C k � d

k

	�
q � d C j

q � d C k

	
;

and since the sum with respect to j of the latter coefficient is
�

q
d�1�k

�
, we get

s.x/ D
d�1X
kD0

.�x/k
�
q C k � d

k

	�
q

d � 1 � k
	
:

The product of the last two binomial coefficients is

q
�
q�1
d�1

� �
d�1
k

�
q C k � d C 1

:

Hence,

s.x/D q

�
q � 1
d � 1

	
x�qCd�1g.x/; where g.x/ WD

d�1X
kD0

.�1/k xkCq�dC1

k C q � d C 1

�
d � 1
k

	
:

Obviously, xkCq�dC1=.k C q � d C 1/ D R x
0
tkCq�d dt . Therefore,

g.x/ D
Z x

0

tq�d .1 � t /d�1 dt: (15.15)

Clearly, 1 � t � 1 and g.x/ � xq�dC1. For small x the last estimate is sharp.
We summarize this analysis in the following lemma.

Lemma 15.4. Let (15.6) and (15.7) hold. For nested informationNi of the form (15.10)
and optimal Ui of the form (15.11) we have:

• For q � d ,

e.A.q; d// � C d

s
q

�
q � 1
d � 1

	Z D2

0

tq�d .1 � t /d�1 dt

� C dDq�dC1
r�

q

d � 1
	
:

(15.16)



15.2 Unweighted Case: Algorithms 333

Moreover, if kS1 � Uik D CDi for all i � 0, then the first inequality in (15.16)
becomes an equality.

• For q � .d �D2/=.1 �D2/,

e.A.q; d// �
p
d C d Dq�dC1 .1 �D2/.d�1/=2

r�
q � 1
d � 1

	
: (15.17)

15.2.3 Explicit Cost Bound

Just as we did for the error bounds, we estimate the cost of the algorithm A.q; d/ for
arbitrary d by the cost of the algorithms Ui for d D 1. Let m.q; d/ be the number of
function values used by the algorithm U.q; d/. Since A.q; d/ is a linear algorithm, its
cost is roughly equal to the cost of computing m.q; d/ function values.

We now discuss the number mi of function values used by the algorithms Ui for
d D 1, see (15.3). In Section 15.2.2 we assume that the error of Ui is of orderDi with
D 2 .0; 1/. Hence, we want to definemi such that this error estimate holds. For many
problems, the error depends on some power of the reciprocal of mi ,

kI1 � Uik D O
�
m

�p
i

�
for some positive p. Hence, to satisfy (15.7) we have to take

mi D O
�
D�i=p�:

Hence, mi depends exponentially on i . More specifically, we assume that

mi � M0

�
M i � 1� (15.18)

for some numbers M > 1 and M0 > 0. The minus 1 in the formula above is taken
to simplify further estimates. Moreover, it makes the bound sharp for i D 0, since
U0 D 0 and m0 D 0.

Of course,m.q; d/ depends onM0 viaM d
0 . Thus, to simplify notation assume for

a moment that M0 D 1. For non-nested information, (15.4) in Lemma 15.1 implies

m.q; d/ �
X

Ei2P.q;d/

dY
kD1

M ik D
X

Ei2P.q;d/
M jEi j D

qX
iDmaxfd;q�dC1g

M i

�
i � 1
d � 1

	
:

To estimate the last sum, observe that
�
i�1
d�1

�
is a non-decreasing function of i and so

we can replace
�
i�1
d�1

�
by
�
q�1
d�1

�
. From this we have

m.q; d/ � M qC1 �Mmaxfd;q�dC1g

M � 1
�
q � 1
d � 1

	
� M

M � 1 M
q

�
q � 1
d � 1

	
:

We now analyze the case of nested information. For any Es D Œs1; : : : ; sd �, let
UEs D Nd

iD1 Usi . Since the algorithm A.q; d/ is a combination of the UEs’s, see
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Lemma 15.1, and for jEsj < q, UEs uses information contained in another UEr with Es � Er
and jEr j D q, we only need to consider the case jEsj D q.

For jEsj D q, let Es 0 D Œs1; : : : ; sd�1�. If jEs 0j D d � 1 then sd D q � d C 1 and
hence UEs requires at most .M � 1/d�1.M q�dC1 � 1/ functionals. For jEs 0j D p � d ,
there are at most

.M q�p � 1/
d�1Y
iD1

.M si �M si �1/ D .M q�p � 1/Mp�dC1.M � 1/d�1

function values used by UEs that are not used by any other UEv with jEvj D q. For a fixed
p, there are

�
p�1
d�2

�
of different Es 0 with jEs 0j D p. Since p � q � 1, the cardinality

m.q; d/ is bounded by

xm.q; d/ D .M � 1/d�1
q�1X

pDd�1

�
M q�dC1 �Mp�dC1��p � 1

d � 2
	
:

Hence

xm.q; d/ � xm.q � 1; d/ D M q�d .M � 1/d
q�1X

pDd�1

�
p � 1
d � 2

	

D M q�d .M � 1/d
�
q � 1
d � 1

	
;

where the latter equality follows from 0.151.1 of Gradshtein and Ryzhik [88]. Hence

xm.q; d/ D .M � 1/d
q�dX
jD0

M j

�
j C d � 1
d � 1

	
� .M � 1/d�1M q�dC1

�
q � 1
d � 1

	
:

We summarize the cost estimate in the following lemma.

Lemma 15.5. Let (15.18) hold and q � d . The number m.q; d/ of function values
used by A.q; d/ is bounded as follows.

• For non-nested information

m.q; d/ � M d
0

M

M � 1 M
q

�
q � 1
d � 1

	
: (15.19)

• For nested information

m.q; d/ � M d
0 .M � 1/d

q�dX
jD0

M j

�
j C d � 1
d � 1

	

�
�
M � 1
M

	d�1
M d
0 M

q

�
q � 1
d � 1

	
:

(15.20)

For mi D M0.M
i � 1/ the first inequality in (15.20) becomes an equality.
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We stress that the bounds form.q; d/ for non-nested and nested information differ
by an exponentially small factor .1 � 1=M/d�1. This will make the further steps of
the cost analysis easier.

15.2.4 "-Cost Bound

We want to determine a possibly minimal q for which the error of A.q; d/ is at most ",
and estimate the number cost."; d/ of function values used by such A.q; d/. That is,
we now consider the absolute error criterion. Obviously, the bounds for the absolute
error criterion can be also used for the normalized error criterion if we replace " by
" e.0; d/ D " kI1kd .

First of all, observe that e.U0/ � Bd implies that

cost."; d/ D 0 for " � Bd :

We also mention the easy case d D 1. For d D 1 we have e.Uq/ � C Dq and
cost.A.q; 1// � M0M

q . Hence, e.A.q; 1// � " for q D d.lnC="/=.lnD�1/e and

cost.A.q; 1// � M0M

�
C

"

	lnM= lnD�1

:

In what follows, we consider the remaining case when q � d � 2.
We begin with non-nested information. Let q D q.d; "/ be the minimal integer for

which the error bound (15.9) does not exceed ". Hence�
q

d � 1
	

� "

CHd�1Dq
(15.21)

and so (15.19) implies

m.q; d/ � M d
0 M

M � 1
q � d C 1

q

"

CHd�1

�
M

D

	q
: (15.22)

To estimate q we proceed as follows. Let q D x.d � 1/ with x � d=.d � 1/. It is
relatively easy to check that�

q

d � 1
	

�
�
x

�
1C 1

x � 1
	x�1	d�1r x

2�.d � 1/.x � 1/

� .xe/d�1 1p
.2�.d � 1//

r
x

x � 1 � .xe/d�1
s

d

2�.d � 1/ :

Let x D t= lnD�1. Using the last right-hand side instead of the left-hand side of
(15.21), we get

t � ln t C ln h with h D h."; d/ D eH

lnD�1

 
C

"

s
d

2�.d � 1/

!1=.d�1/
: (15.23)
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Observe that h > eD�1= lnD�1 � e2 since

" � Bd � CBd�1 � C.HD/d�1 < C.eHD/d�1pd=.2�.d � 1//:
Consider the following sequence of tk D tk.h/:

t0 D e

e � 1 ln h and tkC1 D ln.htk/: (15.24)

It is easy to verify that t0 satisfies (15.23), and then one can show by a simple induction
that all the tk’s also satisfy this inequality. Hence

t� � tk for all k;

where t� is the unique solution of the equation t� D ln t� C ln h. Clearly, t� > lnD�1
since x > 1.

The sequence of tk’s converges monotonically to t�. Indeed, consider yk D
ln.hyk�1/ with y0 D ln h. Then yk � t�. It can be easily checked that tk � yk
converges to zero. Moreover the convergence is quite fast, and thus this can be used in
an algorithmic implementation when computing t�.

Hence, q."; d/ � dtkC1.d � 1/= lnD�1e D x.d � 1/ with x � d=.d � 1/, and

q."; d/ � 1C tkC1
d � 1

lnD�1 for all k � 0:

Using this in (15.22), we get

m.q; d/ � M d
0 M

2

M � 1
1

DHd�1

 s
d

2�.d � 1/

!˛C1 �
eH

lnD�1 tk
	.˛C1/.d�1/ �

C

"

	˛
;

where

˛ D lnM

lnD�1 :

For simplicity we use the last inequality only for t0. Then

m.q; d/ � ˇ

�
C

"

	˛ �
ln

�
eH

lnD�1

	
C ln.

p
d=.2�.d � 1///C ln.C="/

d � 1
	.˛C1/.d�1/

;

where

ˇ D M0M
2

.M � 1/D
�

d

2�.d � 1/
	.˛C1/=2 �e2M 1=.˛C1/

0 H˛=.˛C1/

.e � 1/ lnD�1

	.˛C1/.d�1/
:

For nested information, the cardinality m.q; d/ has the same bounds as above,
multiplied by ..M�1/=M/d . For nested information and optimalUi we can use (15.16)
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of Lemma 15.4 to estimate the error of A.q; d/. To guarantee that e.A.q; d// � ", we
can take q D q."; d/ such that

C 2dD2.q�dC1/
�

q

d � 1
	

D C 2
�
C 2

D2

	d�1
D2q

�
q

d � 1
	

� "2:

This leads to the same analysis as for non-nested information with ", C , D and H
replaced by "2; C 2 and C 2=D2, respectively. In particular, h."; d/ from (15.23)
and (15.24) is now

eC 2

2D2 lnD�1
�
C 2"�2pd=.2�.d � 1//

�1=.d�1/
:

The analysis above and the relation between the cardinality m.q; d/ and the cost
lead to the following theorem. In this theorem, we use the following abbreviations:
non-nested stands for non-nested information, and nested for nested information and
optimal Ui .

Theorem 15.6. Assume that (15.6), (15.7), and (15.8) hold if non-nested information
is considered. Assume that (15.6) and (15.7) hold if nested information and optimal
Ui are considered. Assume also that (15.18) holds.

Let d � 2 and " � Bd . Define

tkC1 D ln.htk/ with t0 D e

e � 1 ln h

with h D h."; d/ given by (15.23). For

q D
�
tkC1

d � 1
lnD�1

�
with an arbitrary k � 0, the algorithm A".d/ D A.q; d/ has error at most " and its
cost is bounded by

cost.A".d// � ˛0.d/


˛1 C ˛2

ln.
p
d=.2�.d � 1///C ln.C="/

d � 1
�˛3.d�1/ �C

"

	˛
:

Here

˛ D lnM

lnD�1 ;

and depending on the specific case, the values of h, ˛1, ˛2, and ˛3 are given by

h D h."; d/ D

8̂<̂
:

eH
lnD�1

�
C
"

q
d

2�.d�1/
�1=.d�1/

; non-nested,

eC2

2D2 lnD�1

�
C2

"2

q
d

2�.d�1/
�1=.d�1/

; nested,
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˛0.d/ D
8<:
�

d
2�.d�1/

�.˛C1/=2 M0M
2

.M�1/D ; non-nested,�
d

2�.d�1/
�.˛C2/=4M0M

D2 ; nested,

˛1 D
(
˛2 ln

�
eH

lnD�1

�
; non-nested,

˛2 ln
�

e C2

2D2 lnD�1

�
=2; nested,

˛2 D

8̂<̂
:
e2M

1=.˛C1/
0

H˛=.˛C1/

.e�1/ lnD�1 ; non-nested,�
M0.M�1/

M

�2=.˛C2/ e2

.e�1/ lnD�1

�
C
D

�2˛=.˛C2/
; nested,

˛3 D
´
˛ C 1; non-nested,

˛=2C 1; nested;

whereH D maxfB=D;Eg.
We now comment on Theorem 15.6. The essence of the estimates of this theorem

is that for arbitrary d the cost of computing an "-approximation is fully determined by
the parameters from the univariate case, d D 1. To focus on the dependence on d , we
slightly simplify the estimate on cost.A".d//. Since ˛0.d/ is decreasing in d we have

cost.A".d// � ˇ1

�
ˇ2 C ˇ3

ln 1="

d � 1
	ˇ4.d�1/ �

1

"

	ˇ5

; (15.25)

where ˇ1 D ˛0.2/C
˛ , ˇ2 D ˛1 C ˛2

�
lnC=

p
2�
�
, ˇ3 D ˛2, ˇ4 D ˛3 and ˇ5 D ˛.

Observe that the leading factor .1="/ˇ5 of the cost has the same exponent for all
d . The value of ˇ5 depends on the quality of the information Ni and on the quality of
the algorithms Ui for d D 1. Sometimes we can choose them in such a way that ˇ5 is
minimized. The next leading factor of the cost is of the form

cost2."; d/ D
�
ˇ2 C ˇ3

ln 1="

d � 1
	ˇ4.d�1/

:

For fixed d and " tending to zero we have

cost2."; d/ D
�

ˇ3

d � 1
	ˇ4.d�1/ �

ln
1

"

	ˇ4.d�1/
.1C o.1// ;

where the factor in the o notation may depend on d . Observe that the asymptotic
constant goes to zero super-exponentially with d . We stress that the exponent ˇ4 is
sometimes too large. That is, for some problems, there exist algorithms for which the
cost of computing an "-approximation is

Cd

�
ln
1

"

	ˇ6.d�1/ �
1

"

	ˇ5

with ˇ6 2 .0; ˇ4/:
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This indicates that in general the algorithm does not minimize the cost of computing
an "-approximation, although the loss is usually only in a power of ln 1=". Moreover,
for those problems, the dependence of Cd on d is unknown and it could happen that
Cd might even grow super-exponentially with d .

We now fix " and vary d . Observe the very interesting dependence of cost2."; d/
on d . With increasing d , the power grows but ˇ3 ln 1=" is divided by increasing
numbers. For ˇ2 > 0, due to .1C x=.d � 1//d�1 � ex we have

cost2."; d/ � ˇ
ˇ4.d�1/
2 "�ˇ5�ˇ3ˇ4=ˇ2 :

Hence, for ˇ2 D 1 the dependence on d disappears, for ˇ2 < 1 it goes exponentially
fast to zero, and for ˇ2 > 1 it goes exponentially fast to infinity.

This indicates that the quality of the algorithmA.q; d/may depend onˇ2. However,
it is not clear whether the conditionˇ2 > 1 is an overestimate of the cost of the algorithm
A.q; d/, or that the algorithm A.q; d/ is not good, or that the tensor product problem
is hard. This is discussed in the next section.

15.2.5 Tractability

We now check when the error and cost bounds of the algorithmA.q; d/ yield tractability
of I D fId g. For d D 1, the assumptions (15.7) and (15.18) mean that we have a
polynomial rate of convergence, since

kI1 � Uik � C Di D C M�ir � M r
0 C m

�r
i with r D ˛�1 D lnD�1

lnM
:

It is then natural to ask when we can claim polynomial or even strong polynomial
tractability of I . In Chapter 11 we have seen examples of (unweighted) linear tensor
product functionals for which we have polynomial error bounds for the univariate
case d D 1, and which are intractable and suffer from the curse of dimensionality.
This was for the normalized error criterion and for the absolute error criterion, when
the initial error was at least one. Hence, the only hope to get polynomial tractability of
I D fId g for a general I1 and for the absolute error criterion is to assume that kI1k < 1.
Indeed, then we have not only polynomial but also strong polynomial tractability. This
is the subject of the next theorem.

Theorem 15.7. Consider I D fId g defined as in this section in the worst case setting
for the absolute error criterion. Assume that (15.6), (15.7), (15.8) as well as (15.18)
hold. We also assume that

kI1k < 1:

• If we take B 2 .kI1k; 1/ in (15.6) then the algorithm A".d/ D A.q; d/ with q
defined as in Theorem 15.6 has error at most " and its cost is bounded by

cost.A".d// � K "�p for all " 2 .0; 1/; d 2 N;



340 15 Smolyak/Sparse Grid Algorithms

where K D maxfM C ˛; K1g with

K1 D ˛0.2/max

´
1;

�
Cp
2�B

	˛2˛3=.˛1C˛2 lnB�1/
μ �

C

B

	˛
Bp

and
p D ˛ C ˛2˛3 q

�;
where q� is given by

q� D
´

ln �1

ln �2
if �1 ln �1 � ln �2 � 0;

q�� if �1 ln �1 � ln �2 < 0;

with �1 D ˛1C˛2 lnB�1 and �2 D B�˛2 (we always have �1 � 0 and �2 > 1),
and q�� is the unique solution from .0; 1/ of the equation

q ˛1 D 1C ln q:

The other parameters are as in Theorem 15.6.

• This means that I is strongly polynomially tractable and the exponent of strong
polynomial tractability is at most p.

Proof. For d D 1, the bound on cost.A".1// is trivial. For d � 2, Theorem 15.6 yields

cost.A".d// � K1

�
˛1 C ˛2

lnB="

d � 1
	˛3.d�1/ �

B

"

	˛
1

Bp
:

Letting B=" D .x=B˛2/.d�1/=˛2 , it is enough to verify whether

�1 C ln x � .�2 x/
q�

for all x � 1: (15.26)

Observe that �1 � 0, due to the definitions of ˛1 and ˛2, and the relations between B ,
C , D, H . Clearly, B < 1 and ˛2 > 0 imply �2 > 1. Thus, (15.26) has a solution. We
now show that q� is the smallest solution of (15.26).

Substituting y D ln x C �1 and a D �1 � ln �2, we need to show that

q� D sup
y��1

g.y/ > 0 with g.y/ WD ln y

y � a :

Note that lim1 g.y/ D 0 and g0.y/ D h.y/=.y.y � a/2/ with h.y/ D y � a�y ln y.
Moreover, h0.y/ D � ln y.

First, suppose that ln �2 � �1 ln �1 � 0 which implies �1 � 1. Then y � �1 � 1,
and so the function g attains its maximum at y� D �1 since h0.y/ is always negative
and h.�1/ � 0. Hence q� D g.�1/ D .ln �1/=.ln �2/, as claimed.

Now suppose that ln �2 � �1 ln �1 > 0. Since g0.�1/ > 0, the maximum of g
is attained at a critical point y� that is a root of h. Such a root is unique. Indeed,
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for �1 � 1, h0.y/ � 0; and for �1 < 1, h does not have a root in Œ�1; 1� since h0 is
positive and h.�1/ > 0. Therefore q� D g.y�/, where y� is the unique solution of
y� � a D y� ln y�; or equivalently of .ln y�/=.y� � a/ D 1=y�. From the definition
of g, we get g.y�/ D .ln y�/=.y� � a/ D 1=y�. Substituting y� by 1=g.y�/ in
the definition of g.y�/ we finally conclude that g.y�/ D q� is the unique solution of
1 � aq D ln q, as claimed.

As before, the numberK and the exponent p in Theorem 15.7 are fully determined
by the parameters for d D 1. However, the exponent p is usually too large, since
we are using some overestimates on the error and on the cardinality of the algorithm
A".d/. We now show that sometimes the exponent p can be lowered by a different
approach.

We consider nested information Ni and optimal Ui satisfying (15.6), (15.7) and
(15.18). For x � 1=.1 �D2/ and d � 2, let

f .x/ D M0.M � 1/M x�1 xx

.x � 1/x�1 ; g.x/ D CDx�1
s
xx.1 �D2/

.x � 1/x�1 ;

and

a.d/ D C max

´�
D2d2

2�.d � 1/
	1=4

;

�
B

C

	dμ
; b.d/ D M0M

2

D3
p
2�.d � 1/ :

Let

p� D max
x�1=.1�D2/

ln f .x/

ln .1=g.x//
: (15.27)

Since for h.x/ D ln f .x/= ln.1=g.x// we have h.x/ > lnM= lnD�1 D ˛ for large x
and limx!1 h.x/ D ˛, the number p� exists and p� 2 .˛;C1/.

Lemma 15.8. Consider I D fId g in the worst case setting with nested informationNi
and optimal Ui for which (15.6), (15.7), and (15.18) hold with B < 1. For " < Bd

with d � 2, define the algorithm A".d/ D A.q; d/ with q D dx.d � 1/C 1e, where
x is the unique solution of

gd�1.x/ a.d/ D ":

Then the error ofA".d/ is at most ", and for any positive � the cost ofA".d/ is bounded
by

cost.A".d// � Kd

�
1

"

	p�C	
� C	

�
1

"

	p�C	
; (15.28)

where
Kd D b.d/ ap

�
.d/Bd	 and C	 D max

d�2
Kd < C1: (15.29)

Moreover, if

M0.M � 1/
1 �D2

�
M

D2

	D2=.1�D2/

> C 2 (15.30)
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then

p� D lnM C ln x�

x��1
ln 1=D � 1

2
ln x�

x��1
; (15.31)

where x� > 1=.1 �D2/ is the unique solution of

ln f .x/

ln g.x/
D ln.M x=.x � 1//

ln.D.x=.x � 1//1=2/ : (15.32)

Proof. Note that the function g is decreasing and g.1=.1 � D2// D C . Hence,
gd�1.1=.1 �D2//a.d/ � Bd > " and the equation gd�1.x/a.d/ D " has a unique
solutionx > 1=.1�D2/. From the definition of qwe obtain that q D .xCy/.d�1/C1
with x � 1 and y 2 Œ0; 1=.d � 1/�. We now show that

e.A.q; d// � gd�1.x/a.d/ and m.q; d/ � f d�1.x/b.d/: (15.33)

Indeed, for x � 1=.1 � D2/ we have q � .d � D2/=.1 � D2/, and (15.17) of
Lemma 15.4 yields

e.A.q; d// � C dD.x�1/.d�1/C1.1 �D2/.d�1/=2
r
d

�
x.d � 1/
d � 1

	

� gd�1.x/CD
�

d2x

2�.x � 1/.d � 1/
	1=4

� gd�1.x/C
�

D2d2

2�.d � 1/
	1=4

;

as claimed in the first inequality of (15.33).
To show the second inequality, observe that for h.x/ D xx=.x � 1/x�1 we have

h.x C y/ � h.x/
� x

x � 1
�y
:

Using this and Lemma 15.5, we obtain

m.q; d/ � M0.M � 1/d�1F .xCy�1/.d�1/C1
�
.x C y/.d � 1/

d � 1
	

� f d�1.x/M0M
2
� x

x � 1
�y.d�1/

s
x C y

2�.d � 1/.x C y � 1/

� f d�1.x/
M0M

2

D2

s
1

2�D2.d � 1/ :

This proves (15.33).
We now prove (15.28). It follows from (15.33) that the error of the algorithmA".d/

is at most ". To estimate the cardinality m.q; d/ of A".d/ observe that the definition
of p� yields f .x/ � .1=g.x//p

�
. Hence, (15.33) yields

m.q; d/ � b.d/ g�p�.d�1/.x/ D b.d/ a.d/p
�
"�p�

� b.d/ a.d/p
�
"	 "�p��	 � b.d/ a.d/p

�
Bd 	 "�p��	 � C	 "

�p��	:
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Clearly, C	 is finite since B < 1. By direct calculation we can bound C	 as in (15.29).
To show the second part of the Lemma, denote p.x/ D � ln f .x/= ln g.x/. Of

course,
p� D max

x�1=.1�D2/
p.x/:

Observe that p0.x/ D �c.x/= ln2 g.x/ with

c.x/ D ln
�
M

x

x � 1
�

ln.g.x// � ln

�
D

r
x

x � 1
	

ln.f .x//:

Obviously, c.1=.1 �D2// D ln.M=D2/ ln.C / is negative. On the other hand,

c.x/ D ln.x/ ln.M 1=2=D/C ln.M x=.x � 1// ln.C.1 �D2/1=2/

� ln.D.x=.x � 1//1=2/ ln.M0.M � 1//;
which implies limx!1 c.x/ D C1. This means that the equation p0.x/ D 0 has a
solution x�. Of course, this equation is equivalent to (15.32). To show the uniqueness
of x�, note that c0.x/ D �.x.x � 1//�1 ln

�
g.x/=

p
f .x/

�
is always positive since

g.x/=
p
f .x/ < 1 due to (15.30). This completes the proof.

Remark 15.9. Observe that for p� � 2 we can set � D 0 in (15.28). Indeed, this
easily follows from (15.29), since C0 � maxd fb.d/ap�

.d/g and b.d/ap
�
.d/ D

O.d .p
��2/=4/. For p� > 2, we need � > 0. However, the maximum in (15.29) is then

attained for d � .p� � 2/=.4� lnB�1/.

Remark 15.10. Theorem 15.6 and Lemma 15.8 describe two different definitions of
the parameter q for which the algorithmA".d/ D A.q; d/ allows to attain strong poly-
nomial tractability. As already mentioned, the exponent p� C � given in Lemma 15.8
is usually smaller. For a fixed d , we can estimate the cost of the algorithm A".d/ in
Theorem 15.6 by

cost.A".d// � Cd "
�p��	;

where

Cd D max
"�Bd

˛0.d/ C
˛

�
˛1 C ˛2

ln.
p
d=.2�.d � 1///C ln.C="/

d � 1
	˛3.d�1/

"p
�C	�˛:

Clearly, Cd is finite since p� > ˛. On the other hand, Cd goes to infinity with d . Still,
for some small d , the inequality Cd < Kd might hold.

Hence, if we define A".d/ D A.q; d/ with q as in Theorem 15.6 if Cd < Kd and
with q as in Lemma 15.8 if Cd � Kd , then

cost.A".d// � min.Cd ; Kd / "
�p��	:

As we shall see later, this estimate will be used to lower the estimates of the cost.
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Theorem 15.7 states strong polynomial tractability for the absolute error criterion
when we assume, in particular, that kI1k < 1. From Corollary 11.3 we know that the
assumption kI1k < 1 is needed for all non-trivial problems. Indeed, if the problem Id
cannot be solved by using just one function value, i.e., the minimal worst case error
e.1; 1/ > 0 , then I D fId g is not strongly polynomially tractable for the normalized
error criterion. For kI1k � 1 the absolute error criterion is harder than the normalized
error criterion, and therefore strong polynomial tractability also does not hold for the
absolute error criterion.

Can we have polynomial tractability if kI1k � 1? Yes, we can. As we know from
Theorem 11.4 of Chapter 11, there is a reproducing kernel Hilbert space for which
e.d C 1; d/ D 0 for all linear tensor product functionals. That is, we always have
polynomial tractability with the exponent of at most 1. On the other hand, Theorem 11.6
states that for all reproducing kernel Hilbert spaces having two orthonormal elements
with disjoint supports, some linear tensor product functionals are intractable.

The Smolyak algorithm has been studied so far only for the case when the minimal
worst case errors for d D 1 decay polynomially, that is, when e.n; 1/ D O.n�˛/ for
some ˛ > 0. This obviously covers the most frequent cases occurring in computational
practice. However, the more difficult case when e.n; 1/ decays slower than polyno-
mially is also of interest. Obviously we must assume that e.n; 1/ D o.ln�1 n/ since
otherwise weak tractability cannot hold. It is not clear if the Smolyak algorithm leads
to weak tractability bounds for such e.n; 1/, even if we assume that kI1k < 1. We
leave this as an open problem.

Open Problem 67.

Consider I D fId g defined as in this section in the worst case setting for the absolute
error criterion with kI1k < 1. Assume that e.n; 1/ decays slower than polynomially.

• What are necessary and sufficient conditions on the decay of e.n; 1/ so that the
Smolyak algorithm yields weak tractability bounds?

• More specifically, let e.n; 1/ D O.ln�p n/ with p > 1. For which values of p,
does the Smolyak algorithm yield weak tractability bounds?

• For a given tractability function T , what do we need to assume about e.n; 1/ so
that the Smolyak algorithm yields T -tractability bounds?

We now illustrate the results of this section for three examples of linear tensor
products. Tensor products are defined by the univariate case for scalar functions. In
general, one may consider functions f W Œa; b� ! R for an arbitrary interval Œa; b�.
Clearly, with an obvious change of variables we can assume that a D 0, and so the new
interval becomes Œ0; ˇ� D Œ0; b � a�. That’s why we choose to work with functions
defined over Œ0; ˇ� with ˇ > 0. Then for d � 2, the domain of the functions is Œ0; ˇ�d .
We are interested in both large and modest d . For large d , we would like to have
strong polynomial tractability. As we shall see, strong polynomial tractability will
depend on ˇ. For modest d , tractability is irrelevant and the parameter ˇ does not
matter.
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15.2.6 Example: Integration of Smooth Periodic Functions

In this subsection we consider an integration problem. As we know, the worst and
average case settings for linear functionals are closely related. To again illustrate this
relation, we present this integration problem in its two equivalent formulations in the
average and worst case settings.

For d D 1, let F1 D zC r.Œ0; ˇ�/ be the Banach space of periodic r-times continu-
ously differentiable functions with period ˇ and equipped with the norm

• for r D 0,
kf kF1

D max
t2Œ0;ˇ�

jf .t/j;

• for r � 1,
kf kF1

D jf .0/j C max
t2Œ0;ˇ�

jf .r/.t/j:

We now explain how a Gaussian measure �1 on the space F1 is chosen. Let

B1 D ff j f 2 C r.Œ0; ˇ�/ and f .0/ D f 0.0/ D � � � D f .r/.0/ D 0g
be quipped with the same norm asF1. First we takewr as the classical Wiener measure
w placed on r th derivatives, so that

wr.B/ D w.ff .r/ j f 2 Bg/ for all Borel sets B � B1:

Recall thatw is a Gaussian measure with mean zero and covariance functionRw.x; t/ D
min.x; t/. Since we deal with periodic functions we also must have f .j /.ˇ/ D 0 for
j D 0; 1; : : : ; r with probability 1. To satisfy these boundary conditions, we take the
measure �1 as the conditional measure wrf � jf .j /.ˇ/ D 0; j D 0; 1; : : : ; r g.

Let G1 D R and

I1.f / D
Z ˇ

0

f .t/ dt for all f 2 F1:

This integration problem in the average case setting is equivalent to the integration
problem in the worst case setting for the reproducing kernel spaceH.R�1

/, see Chap-
ter 13. The space H.R�1

/ is the Sobolev space of periodic functions f vanishing at
0 and ˇ, i.e., f .j /.0/ D f .j /.ˇ/ D 0 for j D 0; 1; : : : ; r , and whose r th derivative
is absolutely continuous and whose .r C 1/st derivative is in L2.Œ0; ˇ�/. The norm in
H.R�1

/ is

kf kH.R�1
/ D

 Z ˇ

0

�
f .rC1/.t/

�2
dt

�1=2
:

For d � 2, we take the tensor products fFd ; Gd ; Id g. That is, Fd is now the
Banach space of periodic (in each variable) functions f with continuous mixed deriva-
tives f .j1;j2;:::;jd / for ji � r . The measure �d is Gaussian with mean zero and
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covariance function R�d
.x; t/ D Qd

jD1R�1
.xj ; tj /, where R�1

is the covariance
function of the measure �1. With probability 1, the following boundary conditions
hold: f .j1;j2;:::;jd /.t/ D 0 for all t with at least one component equal to zero or ˇ, for
all ji � r . For such functions, we have

kf kFd
D max

t2Œ0;ˇ�d
jf .r;r;��� ;r/.t/j:

Clearly, Gd D R and

Id .f / D
Z
Œ0;ˇ�d

f .t/ dt:

For the worst case setting and for d � 2, this problem corresponds to the integration
problem for the d -fold tensor product Hd of H.R�1

/,

Hd D H.R�1
/˝H.R�1

/˝ � � � ˝H.R�1
/:

We now turn to the algorithmA.q; d/, which is formally defined only for the space
Hd . But since A.q; d/ is linear, we can extend its domain to Fd . For d D 1, we need
to define the information Ni and the algorithms Ui . We take

Ni .f / D

f

�
ˇ

mi C 1

	
; f

�
2ˇ

mi C 1

	
; : : : ; f

�
miˇ

mi C 1

	�
and Ui as the trapezoidal algorithm,

Ui .f / D ˇ

mi

miX
jD1

f

�
jˇ

mi C 1

	
:

From Sections 2.1 of Chapters 5 and 7 of [305], it follows that the algorithm Ui is
optimal and its average/worst case error is given by

e.Ui / D Crˇ
.2rC3/=2

.mi C 1/rC1 ; i � 0;

where Cr D pjB2rC2j=.2r C 2/Š with the Bernoulli constant B2rC2. (Recall that
U0 D 0.) Observe that for

mi D 2i � 1
the information Ni is nested, and the assumptions (15.6), (15.7) and (15.18) hold as
equalities. Indeed, we have

B D C D Crˇ
.2rC3/=2; D D 2�.rC1/; M D 2; and M0 D 1:

Hence, the algorithm A".d/ yields strongly polynomial bounds if

ˇ < C�2=.2rC3/
r :
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For instance, for r D 0, this holds if

ˇ < 121=3 D 2:2894::: :

We now estimate the cost of the algorithm A".d/. We first compute the parameters
which appear in Theorem 15.6. We have

˛ D 1

r C 1
;

˛0.d/ D
�

d

2�.d � 1/
	 2rC3

4.rC1/

22rC3 �
�
1

�

	 2rC3
4.rC1/

22rC3;

˛1 D ˛2

2
ln

�
e 22rC1C 2r ˇ2rC3

.r C 1/ ln 2

	
;

˛2 D e2ˇ

.e � 1/.r C 1/ ln 2
C

2
2rC3
r ;

˛3 D 2r C 3

2.r C 1/
:

Then we can use the estimates of Theorems 15.6 and 15.7 with these values.
We specialize these estimates for r D 0 and assume for simplicity that ˇ D 1. This

corresponds to a Brownian bridge with

R�1
.x; t/ D min.x; t/ � xt for all x; t 2 Œ0; 1�:

We now have

B D C D 1

2
p
3

D 0:288675:::; D�1 D F D 2; M0 D 1;

and

˛ D 1;

˛0.d/ D 8

�
d

2�.d � 1/
	3=4

� 8

�
1

�

	3=4
D 3:39021:::;

˛1 D
�
1

12

	1=3
e2

2.e � 1/ ln 2
ln

e

6 ln 2
D �0:57617289:::;

˛2 D
�
1

12

	1=3
e2

.e � 1/ ln 2
D 2:7098298:::;

˛3 D 1:5:

As explained before, we need only to consider " < Bd D 12�d=2. This inequality
corresponds to modest d or, if d is large, to an unusually high precision. For d � 2,
Theorem 15.6 yields

cost.A".d// � 0:9787

�
�0:576C 2:71

�1:8148C ln 1="

d � 1
	1:5.d�1/

1

"
:
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It is known3 that the average case complexity of computing an "-approximation for
this integration problem is ‚."�1.ln "�1/.d�1/=2/ where the factors in the ‚ notation
depend on d . Hence, for fixed d and " tending to zero the cost of the algorithm A".d/

agrees with the leading term of the complexity, however, the exponent of ln 1=" is too
large.

Computing K and p from Theorem 15.7 we obtain

cost.A".d// � 0:2064 "�2:253 for " � 12�d=2: (15.34)

We now comment on the last estimate. Since the covariance function R�d
.t; t/ is

uniformly bounded ind , we know that the complexity of computing an "-approximation
for integration in the average/worst case setting is O."�2/ with the factor in the O

notation independent of d . This means that (15.34) is not satisfactory. Indeed, it is
possible to improve this bound. It can be verified that we can now use (15.17) of
Lemma 15.4. This formally corresponds to replacing C by C.1 � D2/1=2 D 1=4.
Computing p for this new value of C we get

cost.A".d// D O
�
"�2:0569�

which is better but still not satisfactory. (Of course, the factor in the O notation
does not depend on d .) This can be improved by using Lemma 15.8. Indeed, using
Newton’s iteration it was found out in [329] that p� � 1:850698. Hence, as explained
in Remark 15.9, we can take � D 0. Computing C0 it yields

cost.A".d// � 1:28068 "�1:850698:

The exact value of the exponent is unknown and it yields us to the next open problem.

Open Problem 68.

Consider the integration problem I D fId g of smooth periodic functions defined as in
this example for the average/worst case setting and for the absolute error criterion.

• For which ˇ is the problem strongly polynomially tractable?

• Find the exponent of strong polynomial tractability as a function of ˇ for all
ˇ 2 .0; C�2=.2rC3/

r /.

15.2.7 Example: Integration of Non-Periodic Functions

In this subsection we also consider an integration problem, but this time for non-smooth
and non-periodic functions. As before, we consider both the average and worst case
settings.

3This follows from the fact that periodicity does not change the dependence on ", and without periodicity
the bound on the average case complexity is derived in [346].
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For d D 1, we define fF1; G1; S1g as in Subsection 15.2.6 with r D 0 but without
assuming periodicity of functions. That is, F1 D C.Œ0; ˇ�/ is now the Banach space
of continuous functions equipped with the norm kf kF1

D maxt2Œ0;ˇ� jf .t/j. As the
measure �1 we take the Wiener measure w0 D w, which is a zero Gaussian measure
with the covariance function

R�1
.x; t/ D min.x; t/ for all x; t 2 Œ0; 1�:

This corresponds to the worst case setting for the Sobolev spaceH.R�1
/ of absolutely

continuous functions vanishing at zero and with square integrable first derivatives and
the norm

kf k2H�1
D
Z ˇ

0

�
f 0.t/

�2
dt:

For d � 2, the Banach space Fd is the class of continuous functions with the sup
norm, the measure �d is the classical Wiener sheet measure, which is Gaussian with
mean zero and covariance function

R�d
.x; t/ D

dY
jD1

min.xj ; tj / for all x; t 2 Œ0; 1�d :

This corresponds to the worst case setting for the space Hd .R�d
/ of functions for

which f .x/ D 0 if at least one component of x is zero, and with the norm

kf k2H.R�d
/ D

Z
Œ0;1�d


@df

@t1 @t2 � � � @td .t/
�2

dt:

To define the algorithm A.q; d/, we take for d D 1 the information

Ni .f / D

f

�
2ˇ

2mi C 1

	
; f

�
4ˇ

2mi C 1

	
; : : : ; f

�
2miˇ

2mi C 1

	�
(15.35)

and the algorithms

Ui .f / D 2ˇ

2mi C 1

miX
jD1

f

�
2jˇ

2mi C 1

	
: (15.36)

It is known, see Lee [168], that the algorithm Ui is optimal and its average/worst case
error is

e.Ui / D kS1 � Uik�1
D ˇ3=2p

3.2mi C 1/
; i � 0:

Observe that for
mi D 1

2

�
3i � 1�

the information Ni is nested, and the assumptions (15.6) and (15.7) hold as equalities.
Indeed, we have

B D C D ˇ3=2p
3
; D D 1=3; M D 3; and M0 D 1=2:
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Hence, the algorithm A".d/ yields strongly polynomial bounds if

ˇ < 31=3 D 1:4422 : : : :

Assume for simplicity that ˇ D 1. To estimate the cost of the algorithm, we first
compute the parameters of Theorem 15.6. We have

˛ D 1;

˛0.d/ D 13:5

�
d

2�.d � 1/
	 3

4

� 13:5

�
1

�

	 3
4

D 5:72099:::;

˛1 D e2

2 � 31=3.e � 1/ ln 3
ln

3 e

2 ln 3
D 1:77958:::;

˛2 D e2

31=3.e � 1/ ln 3
D 2:71399:::;

˛3 D 1:5:

Similarly to Subsection 15.2.6, for " � 3�d=2 the problem is trivial. For " < 3�d=2
and d � 2, Theorem 15.6 yields

cost.A".d// � 3:304

�
1:77959C 2:714

�1:12167C ln 1="

d � 1
	1:5.d�1/

1

"
:

We compare this bound with the average case complexity

‚."�1.ln "�1/.d�1/=2/;

where the factors in the‚ notation depend on d , see [346]. As in Subsection 15.2.6, the
exponent of 1=" in the cost estimate of the algorithm A.q; d// agrees with the power
of 1=" in the average case complexity, however, the power of ln 1=" is too large.

Computing K and p from Theorem 15.7 we obtain

cost.A".d// � 0:558477 "�4:23568 for " � 3�d=2:

As in Subsection 15.2.6 the last estimate is not satisfactory since the average case com-
plexity of computing an "-approximation is O."�2/, with the factor in the O notation
independent of d . As before, it is possible to improve this bound. For instance, by
using (15.17) of Lemma 15.4 we can replace C by C.1 �D2/1=2 D 2

p
2=.3

p
3/ to

get
cost.A".d// D O

�
"�4�:

The exponent p can be further lowered by using a modified Lemma 15.8. The corre-
sponding p� was computed in [329] and it turns out that p� � 2:452616. Similarly,
C	 and Kd were computed for � D 10�3 following Remark 6, and

cost.A".d// � Kd "
�2:454;
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where K1 D 0:39 and fKd g, for d � 2, is monotonically decreasing to zero with
C	 D K2 D 12:59, K3 D 8:9, K4 D 7:26 and K5 D 6:29.

Following Remark 7, these estimates can be improved for d D 2 and d D 3.
Indeed, C2 D 1:76 and C3 D 4:76. Hence, if we define A".d/ D A.q; d/ with q from
Theorem 15.6 for d D 2 and d D 3, and with q from Lemma 15.8 for d � 4 then

cost.A".d// � 7:26 "�2:454 for all d; " � 1:

Still the exponent is larger than 2.
A number of different choices of the parametersmi , as well as different information

Ni and algorithms Ui , were used in [329]. All these choices yield exponents larger
than two. The exact value of the exponent is unknown and yields us to the next open
problem.

Open Problem 69.

Consider the integration problem I D fId g of smooth non-periodic functions defined
as in this example for the average/worst case setting and for the absolute error criterion.

• For which ˇ is the problem strongly polynomially tractable?

• Find the exponent of strong polynomial tractability as a function of ˇ for all
ˇ 2 .0; 31=2/.

15.2.8 Example: Discrepancy

As we know from Chapter 9, discrepancy in the L2 norm is related to multivariate
integration in the average case setting with the Wiener sheet measure and in the worst
case setting for the Sobolev space H.R�d

/ studied in the previous subsection. That
is why the bounds presented for multivariate integrations can be also used to bound
discrepancy in the L2 norm.

More precisely, take Ni and Ui as in (15.35) and (15.36) with ˇ D 1 and mi D
.3i � 1/=2. Then (15.4) yields

A.q; d/.f / D
X

Ei2P.q;d/
cEi

X
Ej� EmEi

f
�
xEi ; Ej

�
;

where P.q; d/ D ˚Ei j E1 � Ei ; q � d C 1 � jEi j � q



and

cEi D .�1/q�jEi j 2d

3jEi j

�
d � 1
q � jEi j

	
and xEi ; Ej D


2 j1

3i1
;
2 j2

3i2
; � � � ; 2 jd

3jd

�
with EmEi D �

.3i1 � 1/=2; .3i2 � 1/=2; : : : ; .3id � 1/=2�.
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Let n D m.q; d/ be the number of function values used by the algorithm A.q; d/;
we have due to (15.20), so that

n D
q�dX
jD0

3j
�
j C d � 1
d � 1

	
:

Define n points zEi ; Ej D E1 � xEi ; Ej and let

disc.t/ D
X

Ei 2P.q;d/
cEi

X
Ej� EmEi

�Œ0;t/.zEi ; Ej / � t1t2 � � � td ;

where �Œ0;t/ is the characteristic (indicator) function of

Œ0; t/ D Œ0; t1/ � Œ0; t2/ � � � � � Œ0; td /:
The discrepancy of the n points zEi ; Ej is given by

kdisc2.zEi ; Ej /k D
�Z

Œ0;1�d
disc2.t/ dt

	1=2
:

We know that
kdisc2.zEi ; Ej /k D e.A.q; d//:

For n D 0, we have kdisc2.0; d/k D 3�d=2. Hence, the equality above also holds for
q < d . From Lemma 15.4 we have

kdisc2.zEi ; Ej /k �
�
1p
3

	d �
1

3

	q�dC1r�
q

d � 1
	
:

If we choose q to guarantee that e.A.q; d// � " � 3�d=2 as in Theorem 15.7 then

kdisc2.zEi ; Ej /k � "

for n D n."; d/ such that

n."; d/ � 3:304

�
1:77959C 2:714

�1:12167C ln 1="

d � 1
	1:5.d�1/

1

"
:

From Subsection 15.2.7 we also have

n."; d/ � �d "
�2:454 � 7:26 "�2:454 for all d; " � 1;

with �1 D 0:39, �2 D 1:76, �3 D 4:76, �4 D 7:26 and f�d g monotonically decreasing
to zero starting with d D 4. This is exactly what we reported in Section 9.2.1 of
Chapter 9.

As we know, for every ", there exist n."/ D O."�2/ points with discrepancy at most
" for all d . Construction of these points is open and presented as Open Problems 31
and 32.
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15.2.9 Implementation Issues

In this short section we discuss implementation of the Smolyak algorithm for approx-
imating (unweighted) linear tensor functionals. We will restrict ourselves only to the
absolute error criterion with kI1k < 1 since this is the only case for which we know
that the Smolyak algorithm yields strong polynomial tractability. We will address three
issues:

• initial error and polynomial tractability,
• gaps in the cardinality,
• numerical stability.

We shall argue that as long as d is relatively small all is fine with the Smolyak
algorithm, whereas for larged the situation is quite different and the Smolyak algorithm
fails quite badly. This means that the use of the Smolyak algorithms for the unweighted
case should be recommended only for relatively small d . We now discuss these three
issues in turn.

• Initial error and polynomial tractability.

The initial error for the d variate case is kIdk D kI1kd . As long as d is relatively
small, the initial error is fine independently of what is the value of kI1k. For large d and
the absolute error criterion, the initial error kI1kd becomes exponentially small. For
instance assume that kI1k D 1

2
andd D 100. Then the initial error is 2�100. As already

discussed, it is really hard to believe that there is a practically important computational
problem for which we would be interested in computing an "-approximation for the
absolute error criterion with " < 2�100. On the other hand, if " > 2�100 then our
problem is trivial since the zero algorithm will do the job. Hence, for large d it
seems to us that the domain of practical " will preclude us from using the Smolyak
algorithm for the absolute error criterion. Obviously, the situation is quite different for
the normalized error criterion since for all " < 1, the zero algorithm does not solve
the problem and we have to find out a non-trivial algorithm that would reduce the
initial error by a factor of " algorithm. As we know, sometimes (and probably in most
practical cases) such problems are intractable, but even if they are tractable we do not
know whether the Smolyak algorithm will do the job.

• Gaps in the cardinality.

The Smolyak algorithm A.q; d/ is defined for q; d 2 N. The cardinality of A.q; d/ is
the number of function values used in A.q; d/ and, as before, is denoted by m.q; d/.
If for d D 1 we use mi D M0.M

i � 1/ function values for the algorithm Ui then
Lemma 15.19 states that for nested information we have

m.q; d/ D M d
0 .M � 1/d

q�dX
jD0

M j

�
j C d � 1
d � 1

	
:
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Suppose we change the value of q by one. Then the cardinality will change from
m.q; d/ to m.q C 1; d/, and

m.q C 1; d/ �m.q; d/ D M d
0 .M � 1/d M q�dC1

�
q

d � 1
	
:

Again, as long as d is modest, there is nothing special in the change of cardinality.
However, if d is large then the gap between m.q C 1; d/ and m.q; d/ is huge. It is
obvious that for M0 > 1 or for M > 2 it is exponentially large in d . But even for
M0 D 1 and M D 2 we have

m.q C 1; d/ �m.q; d/ D 2q�dC1
�

q

d � 1
	
:

The first q of interest is q D d and we have

m.d; d/ D 1;

m.d C 1; d/ �m.d; d/ D 2d;

m.d C 2; d/ �m.d C 1; d/ D 2d.d C 1/;

m.d C 3; d/ �m.d C 2; d/ D 4
3
.d C 2/.d C 1/d:

For d D 360, which is used quite often in finance, we have

m.d; d/ D 1;

m.d C 1; d/ �m.d; d/ D 360;

m.d C 2; d/ �m.d C 1; d/ D 259 200;

m.d C 3; d/ �m.d C 2; d/ D 62 727 360

and it is already quite dubious if we can perform the fourth step of the Smolyak
algorithm.

For larged , the gaps in the cardinality of the Smolyak algorithm become so large that
we can perform only very few steps. This should be contrasted with QMC algorithms
for which there are no gaps in the cardinality. This again precludes us from using the
Smolyak algorithm for large d .

• Numerical stability

The Smolyak algorithm A.q; d/ is linear and therefore can be written as

A.q; d/.f / D
m.q;d/X
jD1

ajf .xj /

for some real numbers aj and sample points xj 2 Dd . It is well known that numerical
stability of the linear algorithm A.q; d/ holds if

C.q; d/ WD
m.q;d/X
jD1

jaj j
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is relatively small. That is why, it is a common knowledge that, if possible, we should
use coefficients aj of the same sign. Then the sum C.q; d/ of their absolute values is
bounded by the sum jId .1/j plus the error for f D 1. For largem.q; d/ this is usually
almost the same as jId .1/j.

But the Smolyak algorithm uses coefficients aj of different signs even when we
use algorithms Ui with, say, non-negative coefficients ai;j , see Lemma 15.1. So what
can we say about the sum of the absolute values of aj for the Smolyak algorithm?

For simplicity, assume that allUi ’s are QMC algorithms so that ai;j D 1=mi . Then

C.q; d/ D
qX

kDq�dC1

�
d � 1
q � k

	�
k � 1
d � 1

	
D
d�1X
jD0

�
d � 1
j

	�
q � j � 1
d � 1

	
:

For large d we are in trouble. Again, even if we take the fourth step of the Smolyak
algorithm q D d C 3 we have

C.d C 3; d/ D d.d C 1/.d C 2/

6
C .d � 1/d.d C 1/

2

C .d � 2/.d � 1/d
2

C .d � 3/.d � 2/.d � 1/
6

D 4
3
d3 C O.d2/:

For d D 360 we have
C.d C 3; d/ D 61 949 759

which is already quite large.
For q � 2d � 1 we have

�
q�j�1
d�1

� � 1 and therefore

C.q; d/ �
d�1X
jD0

�
d � 1
j

	
D 2d�1

is exponentially large in d .
We now estimate C.q; d/ for arbitrary d following [214]. Since the numbers�

q�j�1
d�1

�
decrease with j , we have obvious estimates

C.q; d/ 2
�
q � 1
d � 1

	
; 2d

�
q � 1
d � 1

	�
:

Since
�
q�1
d�1

� � .q � 1/d�1=.d � 1/Š and 2d�1=.d � 1/Š � exp.2/ we obtain

C.q; d/ � 2 exp.2/ .q � 1/d�1:

The last upper bound can be compared with the cardinality m.q; d/ of the Smolyak
algorithm. Assuming mi D M0.M

i � 1/ and non-nested information, the cardinality
m.q; d/ can be upper bounded by the estimate of the first point of Lemma 15.5, and it
can be lower bounded by the last term for j D q � d for nested information, so that

m.q; d/ D cd M
q

�
q � 1
d � 1

	
with cd 2 �M d

0

�
1 �M�1�d ;M d

0

�
1 �M�1� �:
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Note that for modest d , the coefficient cd is irrelevant. From this we get

q D lnm.q; d/

lnM
.1C o.1// as q ! 1:

Hence
C.q; d/ D O

�
Œlnm.q; d/�d�1 �;

where the factor in the big O notation depends on d , but it is irrelevant for a modest d .
Hence, if d is modest we can accept the logarithmic growth of C.q; d/ and, in this

relaxed sense, numerical stability of the Smolyak algorithm is nearly achieved.
This shows that the Smolyak/sparse grid algorithms are not really efficient or ap-

plicable for approximating linear tensor product functionals for the unweighted case
with large d . Therefore in the next section, we turn to linear weighted tensor prod-
uct functionals and check for which weights the Smolyak/sparse grid algorithms are
efficient and lead to tractability bounds.

15.3 Weighted Case: Algorithms

In this section we deal with linear weighted tensor product functionals. For such
problems, we extend the definition of the Smolyak/sparse grid algorithms and obtain
weighted Smolyak algorithms, which are also called weighted tensor product (WTP) al-
gorithms, see [332], [335] where the WTP algorithms have been introduced for product
and finite-order weights.

We define linear weighted tensor product functionals following the approach pre-
sented in Section 11.5 of Chapter 11 and Section 12.2 of Chapter 12.

As before for d D 1, we consider the reproducing kernel Hilbert space F1 D
H.K1/. Without loss of generality we may assume that K1 6D 0, and choose a point
a 2 D1 for which K1.a; a/ > 0. Let

�1.x/ D 1p
K1.a; a/

K1.x; a/ for all x 2 D1:

Then �1 2 F1 and k�1kF1
D 1. Let

R1.x; t/ D �1.x/ �1.t/ for all x; t 2 D1:
Clearly, H.R1/ D span.�1/ is one dimensional and f 2 H.R1/ means that

f .x/ D f .a/p
K1.a; a/

�1.x/ for all x 2 D1

with kf kH.R1/ D jf .a/j=pK1.a; a/. Let

R2.x; t/ D K1.x; t/ � K1.x; a/K1.a; t/

K1.a; a/
for all x; t 2 D1:
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Then R2 is a reproducing kernel with R2.a; t/ D 0 for all t 2 D1. This yields that

H.R2/ D ff 2 H.K1/ j f .a/ D 0 g
is a subspace of H.K1/ of functions vanishing at a. Clearly,

K1 D R1 CR2 with H.R1/ \H.R2/ D f0g;
so that the assumptions of Section 11.5 of Chapter 11 and Section 12.2 of Chapter 12
are satisfied.

We now define the weighted space Fd;� for d � 1 as in Section 12.2 of Chapter 12.
That is, for a given sequence

� D f�d;ugu�Œd�;d2N

of weights, we have Fd;� D H.Kd;� / with the reproducing kernel

Kd;� .x; t/ D
X

u�Œd�
�d;u

Y
j…u

R1.xj ; tj /
Y
j2u

R2.xj ; tj / for all x; t 2 Dd :

We turn to linear weighted tensor product functionals

I� D fId;�g:
For d D 1, we have I1.f / D hf; h1iF1

for all f 2 F1 and a non-zero h1. We
decompose h1 D h1;1 C h1;2 with h1;i 2 H.Ri / for i D 1; 2. We have

h1;1.x/ D h1.a/p
K1.a; a/

�1.x/;

h1;2.x/ D h1.x/ � h1.a/p
K1.a; a/

�1.x/

for all x 2 D1. Furthermore,

kh1;1kH.R1/ D jh1.a/jp
K1.a; a/

and kh1;2kH.R2/ D
�

kh1k2H.K1/
� h21.a/

K1.a; a/

	1=2
:

From Section 12.2 of Chapter 12 we know that Id;� D Id and

Id;� .f / D ˝
f; hd;�

˛
Fd;�

for all f 2 Fd;�
with

hd;� .x/ D
X

u�Œd�
�d;u

Y
j…u

h1;1.xj /
Y
j2u

h1;2.xj / for all x 2 Dd :

The initial error is now given by

kId;�k D khd;�kFd;�
D
� X

u�Œd�
�d;ukh1;1k2.d�juj/

H.R1/
kh1;2k2juj

H.R2/

�1=2
:
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This concludes the definition of linear weighted tensor product functionals.

We turn our attention to algorithms for approximating I� D fId;�g. As always we
begin with d D 1. It will be convenient to let P1 W H.K1/ ! H.R1/ be the projection
operator defined by

P1f D f .a/p
K1.a; a/

�1 for all f 2 H.K1/:

Then

.P1f /.a/ D f .a/; P1�1 D �1; h1;1 D P1h1 and h1;2 D .I � P1/h1
with the identity mapping I W F1 ! F1, i.e., I.f / D f for all f 2 F1.

We also have

I1.f / D hf; h1iH.K1/
D hf; h1;1iH.R1/

C hf; h1;2iH.R2/
for all f 2 H.K1/:

For f 2 H.R1/, we have

I1.f / D hf; h1;1iH.R1/
D h1.a/

K1.a; a/
f .a/:

This means that this subproblem can be solved exactly by using one function value at
a. Observe also that

.I1P1/.f / D h1.a/

K1.a; a/
f .a/ for all f 2 F1 D H.K1/:

For f 2 H.R2/, we have

I1.f / D hf; h1;2iH.R2/
:

Note that for h1;2 D 0, the problem trivializes, since

Id .f / D

h1.a/

K1.a; a/

�d
f .a; a; : : : ; a/ for all f 2 Fd

and so Id can be computed exactly using at most one function value. Therefore from
now on we assume that h1;2 6D 0.

For this subproblem and its (unweighted) tensor products we will be using the
Smolyak algorithm from the previous section. That is, we assume that we have a
sequence of linear algorithms fUigiD0;1;:::, Ui W H.R2/ ! R, that approximate the
linear functional I1

ˇ̌
H.R2/

such that U0 D 0 and

lim
i!1 kI1 � UikH.R2/!R D 0:
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As in Section 15.2, we denote

	0 D U0 D 0; 	i D Ui � Ui�1 for all i 2 N:

Then

I1.f / D
1X
iD1

	i .f / for all f 2 H.R2/:

We now extend the definition of algorithms Ui to the space F1 D H.K1/ by defining
linear algorithms fAigiD0;1;:::. We set A0 D 0 and

Ai .f / D h1.a/

K1.a; a/
f .a/C Ui�1

�
f � f .a/p

K1.a; a/
�1

	
for all f 2 F1 and i 2 N:

Note that f � .f .a/=
p
K1.a; a// �1 2 H.R2/ and therefore both Ui�1 and Ai are

well defined. The algorithm Ai can be also written as

Ai D I1P1 C Ui�1.I � P1/ for all i 2 N:

Clearly,

I1 � Ai D I1P1 C I1.I � P1/ � I1P1 � Ui�1.I � P1/ D .I1 � Ui�1/.I � P1/;
and therefore

lim
i!1 kI1 � AikH.K1/!R D 0:

We also have

I1 D A1 C
1X
iD1

	i .I � P1/:

Indeed,

I1 D
1X
iD1
.Ai � Ai�1/ D A1 C

1X
iD2
.Ai � Ai�1/

D A1 C
1X
iD2

.I1P1 � Ui�1.I � P1/ � I1P1 � Ui�2.I � P1//

D A1 C
1X
iD1
.Ui � Ui�1/.I � P1/ D A1 C

1X
iD1

	i .I � P1/;

as claimed.
We briefly elaborate on the algorithms Ai . Since U0 D 0, for i D 1 we have

A1.f / D h1.a/

K1.a; a/
f .a/ for all f 2 F1:
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We know that A1 D I1P1 and therefore

A1.f / D I1.f / for all f 2 H.R1/;
A1.f / D 0 for all f 2 H.R2/:

We also have

kA1kH.K1/!R D kI1kH.R1/!R D kh1;1kH.R1/ D jh1.a/jp
K1.a; a/

:

Furthermore,

Ai .f / D A1.f / for all i 2 N and f 2 H.R1/;
Ai .f / D Ui�1.f / for all i 2 N and f 2 H.R2/:

We are ready to consider d � 1. Let u � Œd �. For u D ;, define

	; D
dO
kD1

A1; i.e., 	;.f / D

h1.a/

K1.a; a/

�d
f .Ea/

with Ea D Œa; a; : : : ; a� 2 Dd .
For u 6D ;, define the set

Q.d;u/D ˚
i D Œi1; i2; : : : ; id � 2 Nd j with ik D 1 for k … u and ik � 2 for k 2 u



;

as the set of integer vectors whose components from Nu are one and from u are at least 2.
For non-empty u and i D Œi1; i2; : : : ; id � 2 Q.d;u/ define

	u;i D
dO
kD1

.Aik � Aik�1/ D
dO
kD1

�
1 Nu.k/A1 C 1u.k/ .Aik � Aik�1/

�
: (15.37)

That is, in the tensor product we take A1 if k … u and Aik � Aik�1 if k 2 u.
For v � Œd �, define the reproducing kernel

Kd;v.x; t/ D
dY
jD1

�
1 Nv.j /R1.xj ; tj / C 1v.j /R2.xj ; tj /

�
for all x; t 2 Dd :

That is, we now take R1.xj ; tj / if j … Nv and R2.xj ; tj / if j 2 v.
For v 6D ;, we have

	;.H.Kd;v// D f0g:
Indeed, it is enough to check that 	;.Kd;v.�; t // D 0 for all t 2 Dd . We have

	;.Kd;v.�; t // D
dY
jD1

�
1 Nv.j /A1R1.�; tj /C 1v.tj / A1R2.�; tj /

�
:
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Since v 6D ;, at least one factor is A1R2.�; tj / D 0, and therefore the whole product is
zero, as claimed.

For v D ;, we have

Kd;;.x; t/ D
dY
jD1

R1.xj ; tj / D
dY
jD1

�j .xj / �j .tj / for all x; t 2 Dd :

The space H.Kd;;/ is one dimensional and H.Kd;;/ D span.�d / with �d .x/ DQd
jD1 �1.xj / for x 2 Dd . We have

	;.f / D Id .f / for all f 2 H.Kd;;/:
We now check that for all u 6D ; and i 2 Q.d;u/ we have

	u;i .H.Kd;v// D f0g for all v 6D u: (15.38)

As before, it is enough to verify that 	u;i .Kd;v.�; t // D 0 for all t 2 Dd . We have

	u;i .Kd;v.�; t // D
dY
kD1

�
1 Nu.k/A1

�
Kd;v.�; t /

�
k

C 1u.k/.Aik � Aik�1/
�
Kd;v.�; t /

�
k

�
;

where �
Kd;v.�; t /

�
k

D 1 Nv.k/R1.�; tk/C 1v.k/R2.�; tk/:
For v D ;, we have

�
Kd;v.�; t /

�
k

D R1.�; tk/ for all k. For k 2 u we then have

.Aik � Aik�1/R1.�; tk/ D A1R1.�; tk/ � A1R1.�; tk/ D 0:

For v 6D ;, there is an index k such that k 2 v and k … u, or k … v and k 2 u. If
k 2 v and k … u then the kth factor of	u;i .Kd;v.�; t // isA1R2.�; tk/ D 0. Otherwise,
if k … v and k 2 u then the kth factor is

.Aik � Aik�1/R1.�; tk/ D .Uik�1 � Uik�2/.I � P1/R1.�; tk/ D 0:

Hence (15.38) holds, as claimed.
For f 2 Fd;� , we have f D P

u�Œd� fu with fu 2 H.Kd;u/ and

f .x/ D
X

u�Œd�
fu.xu; a/ for all x 2 Dd ;

where y D .xu; a/ 2 Dd with yj D a for j … u and yj D xj for j 2 u. Then (15.38)
yields

	u;i .f / D 	u;i .fu/ D ˇd�juj O
k2u

�
Uik � Uik�1

�
.fu.�; a// for all f 2 Fd;� ;

(15.39)
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where

ˇ D h1.a/

K1.a; a/
:

We now show that

Id;� D Id D 	; C
X

;6Du�Œd�

X
i2Q.d;u/

	u;i : (15.40)

Indeed, the first equality holds and the right-hand side of (15.40) is

dO
kD1

A1 C
X

;6Du�Œd�

X
i2Q.d;u/

dO
kD1

�
1 Nu.k/A1 C 1u.k/ .Aik � Aik�1/

�
D

dO
kD1

A1 C
X

;6Du�Œd�

X
i2Q.d;u/

dO
kD1

�
1 Nu.k/A1 C 1u.k/ .Uik�1 � Uik�2/.I � P1/

�
D

dO
kD1

A1 C
X

;6Du�Œd�

dO
kD1

Œ1 Nu.k/A1 C 1u.k/ I1.I � P1/�

D
dO
kD1

ŒA1 C I1.I � P1/� D
dO
kD1

I1 D Id ;

as claimed.
We are ready to define algorithms for approximating Id;� .f / for f 2 Fd;� . These

algorithms will depend on several parameters, but most of them will be suppressed,
and we list only the dependence on d and q D fq.u/gu�Œd� for some non-negative
integers q.u/ that will be specified later.

The algorithms are based on the formula (15.40). Note that the set Q.d;u/
in (15.40) is infinite. We obtain the algorithmsAw.q; d/ by truncating the setQ.d;u/
to a finite set

Q.u/ D ˚
i 2 Q.d;u/ j Pk2u ik � q.u/Cjuj 
 D ˚

i 2 Q.d;u/ ˇ̌ ji j � q.u/Cd 
:
We later choose integers q.u/ to guarantee that the worst case error of Aw.q; d/ is at
most " for the absolute or normalized error criterion. Obviously, the set Q.u/ D ; iff
q.u/ < juj.

The algorithms Aw.q; d/ are therefore of the form

Aw.q; d/ D 	; C
X

;6Du�Œd�

X
i2Q.u/

	u;i : (15.41)

We call the algorithmsAw.q; d/ as theweightedSmolyak algorithms or theweighted
tensor product (WTP) algorithms. In the next subsection we show how they are related
to the Smolyak algorithms.
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For f 2 Fd;� , we have

Aw.q; d/.f /D ˇd f .Ea/C
X

;6Du�Œd�

X
i2Q.u/

dO
kD1

�
1 Nu.k/A1 C 1u.k/.Aik � Aik�1/

�
.f /:

To get familiar with the last formula, assume for a moment that

f .x/ D
dY
jD1

fj .xj / for all x 2 Dd with fj 2 F1:

Then

Aw.d; q/.f / D ˇd f .Ea/C
X

;6Du�Œd�

X
i2Q.u/

ˇd�juj Y
k…u

fk.a/
Y
k2u

.Aik �Aik�1/.fk/:

15.3.1 Explicit Form

We first show a relation between the WTP and Smolyak algorithms. From (15.39) for
f 2 Fd;� we obtain

Aw.q; d/.f / D ˇdf .Ea/C
X

;6Du�Œd�
ˇd�juj X

i2Q.u/

O
k2u

.Uik�1 � Uik�2/ .fu.�; a// :

Note thatX
i2Q.u/

O
k2u

.Uik�1 � Uik�2/ fu.�; a/ D
X

ij �2; i1Ci2C���Cijuj�q.u/Cjuj

O
k2u

	ik�1

D
X

ij �1; i1Ci2C���Cijuj�q.u/

O
k2u

	ik :

The last sum is just the Smolyak algorithm (15.1) applied for approximating

Iu D
O
k2u

I1
ˇ̌
H.R2/

with d D juj and q D q.u/. We denote this Smolyak algorithm by Au.q.u/; juj/
to stress the dependence on active variables from the subset u. For u D ; we set
q.;/ D 0 and

A;.0; 0/ .f;.�; a// D ˇdf .Ea/:
Then we can rewrite the WTP algorithm as a weighted sum of the Smolyak algorithms,

Aw.q; d/.f / D
X

u�Œd�
ˇd�jujAu.q.u/; juj/ .fu.�; a// for all f 2 Fd;� : (15.42)

Since we know the explicit form ofAu.q.u/; juj/ from Lemma 15.1 we easily find the
explicit form of the WTP algorithm Aw.q; d/ in terms of algorithms A1 and Ui . We
summarize this explicit form in the following lemma.
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Lemma 15.11. The WTP algorithm has the form

Aw.q; d/ D
dO
kD1

A1 C
X

;6Du�Œd�
ˇd�juj X

Ei2Pu.q.u/;juj/
.�1/q.u/�jEi j O

k2u

Uik ;

where
Pu.q.u/; juj/ D ˚ Ei 2 Njuj ˇ̌ q.u/ � juj C 1 � jEi j � q.u/



:

If

Ui .f / D
miX
jD1

ai;jf .xi;j / for all f 2 H.R2/

with ai;j 2 R and xi;j 2 D1 then

Aw.q; d/.f / D ˇd f .Ea/C
X

;6Du�Œd�
ˇd�juj ˇu

with

ˇu D
X

Ei2Pu.q.u/;juj/
.�1/q.u/�jEi j

� juj � 1
q.u/ � jEi j

	 X
E1� Ej� EmEi

aEi ; Ejf
�
.xEi ; Ej /u; a

�
;

where

aEi ; Ej D
dY
kD1

aij ;jk
and EmEi D Œmi1 ; mi2 ; : : : ; mid �;

and the vector y D ..xEi ; Ej /u; a/ has components yk D xik ;jk
for k 2 u and yk D a

for k … u.

15.3.2 Explicit Error Bound

It is easy to obtain an explicit error bound of the WTP algorithms using (15.42) and the
explicit error bounds of the Smolyak algorithms established in Section 15.2.2. More
precisely, we have

Id;� .f / D
X

u�Œd�
ˇd�jujIu .fu.�; a// for all f 2 Fd;� :

This and (15.42) yield

Id;� .f / � Aw.q; d/.f / D
X

u�Œd�
ˇd�juj ŒIu .fu.�; a// � Au.q.u/; juj/ .fu.�; a//�

for all f 2 Fd;� .
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Denote with e.Au.q.u/; juj// the worst case error of the Smolyak algorithm
Au.q.u/; juj/ for approximating Iu. The estimates on e.Au.q.u/; juj// are given
in Section 15.2.2. For q.u/ < juj we have Au.q.u/; juj/ D 0. Therefore in this case
e.Au.q.u/; juj// D kIuk D kh1;2kjuj

H.R2/
.

For all f 2 Fd;� we obtainˇ̌
Id;� .f / � Aw.q; d/.f /

ˇ̌
�
X

u�Œd�
jˇjd�juj jIu .fu.�; a// � Au.q.u/; juj/ .fu.�; a//j

�
X

;6Du�Œd�
jˇjd�juj e.Au.q.u/; juj// kfu.�; a/kH.Kd;u/

D
X

;6Du�Œd�
jˇjd�juj e.Au.q.u/; juj//p

�d;u kfukFd;�

�
h X

;6Du�Œd�
�d;u jˇj2.d�juj/ e2.Au.q.u/; juj//

i1=2 kf kFd;�
:

By e.Aw.q; d// we mean the worst case error of the WTP algorithm An.q; d/. Since
the last estimates are sharp we obtain the following lemma.

Lemma 15.12. The square of the worst case error of the WTP algorithm is given by

e2.Aw.q; d// D
X

;6Du�Œd�
�d;u jˇj2.d�juj/ e2.Au.q.u/; juj//:

We are ready to apply the estimates on e2.Au.q.u/; juj// from Section 15.2.2. To
do this we need to assume the error estimates for the algorithms Ui . We proceed as in
Section 15.2.2 with the spaceF1 replaced now by the spaceH.R2/. Hence, we assume

kI1kH.R2/!R � B; (15.43)

kI1 � UikH.R2/!R � C Di for all i � 0; (15.44)

k	ik D kUi � Ui�1kH.R2/!R � EDi for all i � 1: (15.45)

Then we apply Lemma 15.2 if the algorithmsUi use non-nested information or we apply
Lemma 15.3 if the algorithms Ui use nested information (15.10) and are optimal, i.e.,

Ui D I1Pi

with the orthogonal projection Pi on the linear subspace

spanfR2. �; xj / j j D 1; 2; : : : ; mig;

see (15.11), and obtain the following lemma.
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Lemma 15.13.

• Let (15.43), (15.44) and (15.45) hold. Then

e2.Aw.q; d// �
X

;6Du�Œd�
�d;ujˇj2.d�juj/ ˇu;

where

ˇu D
´�
C H juj�1D q.u/

�
q.u/
juj�1

��2
if q.u/ � juj;

kh1;2k2 juj
H.R2/

if q.u/ < juj
withH D max.B=D;E/.

• Assume that (15.44) holds. For nested information Ni of (15.10) and optimal
Ui we have

e2.Aw.q; d// �
X

;6Du�Œd�
�d;ujˇj2.d�juj/ ˇu;

where

ˇu D
´
C 2 jujD 2.q.u/�jujC1/ � q.u/

juj�1
�

if q.u/ � juj;
kh1;2k2 juj

H.R2/
if q.u/ < juj:

15.3.3 Explicit Cost Bound

We now derive bounds on the number of function values used by the WTP algorithms.
As before, we assume that the algorithms Ui use at most mi function values such
that (15.18) holds, i.e.,

mi � M0 .M
i � 1/ (15.46)

for some M > 1 and M0 > 0.
Let mw.q; d/ denote the number of function values used by the WTP algorithm

Aw.q; d/. Then we apply Lemma 15.5 to conclude the following lemma.

Lemma 15.14. Let (15.18) hold.

• For non-nested information

mw.q; d/ � 1C M

M � 1
X

;6Du�Œd�
M

juj
0 M q.u/

�
q.u/ � 1
juj � 1

	
:

• For nested information

mw.q; d/ � 1C
X

;6Du�Œd�
M

juj
0 M q.u/

�
M � 1
M

	juj�1 �
q.u/ � 1
juj � 1

	
:
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We add in passing that for q.u/ < juj the binomial coefficients above are zero, and
this agrees with the fact that the cardinality of Au.q.u/; juj/ D 0 is indeed zero. This
explains why we do not have to consider the two cases depending on whether or not
q.u/ � juj holds as was needed for the error bounds.

15.3.4 "-Cost Bound

We want to minimize the number of function values used by the WTP algorithm
Aw.q; d/ such that the worst case error of Aw.q; d/ is at most " for the absolute
or normalized error criterion. More precisely, we want to determine q D fq.u/g such
that e.Aw.q; d// � "CRId and mw.q; d/ is as small as possible. Here, as always,
CRId D 1 for the absolute error criterion and CRId D kId;�k for the normalized error
criterion.

From now on we assume that we use nested information and optimal algorithmsUi .
For all non-empty u � Œd �, we want to approximate Iu by Au.q.u/; juj/ to within "u.
The non-negative parameters "u will be specified later in terms of " and the error
criterion.

To get the error "u we need to define q.u/. If "u � kIuk D kh1;2kjuj
H.R2/

then
we set q.u/ D 0 so that Au.q.u/; juj/ D 0. If "u < kIuk then we define q.u/ as in
Theorem 15.6. Then the number of function valuesm.q.u/;u/ used by Au.q.u/; juj/
is bounded in Theorem 15.6, see also (15.25), as

m.q.u/;u/ � ˇ1

�
ˇ2 C ˇ3

ln 1="u

juj � 1
	ˇ4.juj�1/

"�ˇ5
u

for ˇi fully determined by the parameters C;D;M0 andM for the univariate problem
I1
ˇ̌
H.R2/

, see (15.44) and (15.46). In particular,

ˇ5 D lnM= lnD�1:

For juj D 1, we formally have 10 above, and we formally set 10 D 1.
From Lemma 15.12 we obtain

e2.Aw.q; d// �
X

;6Du�Œd�
�d;ujˇj2.d�juj/"2u; (15.47)

again with 01 D 0. Let

�.u; "u/ D
´
1 if "u < kh1;2kjuj

H.R2/
;

0 otherwise:

Then the number of function values mw.q; d/ used by the algorithm Aw.q; d/ is
bounded by

mw.q; d/ � 1C ˇ1
X

;6Du�Œd�
�.u; "u/

�
ˇ2 C ˇ3

ln 1="u

juj � 1
	ˇ4.juj�1/

"�ˇ5
u : (15.48)
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We hope that it is clear what we should do next. We should select "u to minimize
the right-hand side of (15.48) subject to the condition that the right-hand side of (15.47)
is at most "2 CRI2d . This is, however, a highly nonlinear problem and the system of
nonlinear equations for such "u is quite ugly. To simplify further calculations we bound
the right-hand side of (15.48) to get rid of logarithms. We need the following lemma.

Lemma 15.15. For any positive ı define

Cı D ˇ4

�
ln
ˇ3 ˇ4

ı ˇ2
� 1C ı ˇ2

ˇ3 ˇ4

	
C

C ı ˇ4 ln ˇ:

Then �
ˇ2 C ˇ3

ln 1="

k

	ˇ4 k

� C kı "
�ı for all " 2 .0; 1/ and k 2 N:

Proof. Taking the logarithms we need to show that

ˇ4 k


ln ˇ2 C ln

�
1C ˇ3

ˇ2

ln 1="

k

	�
� k Cı C ı ln 1=";

or, equivalently, that

ln

�
1C ˇ3

ˇ2

ln 1="

k

	
� Cı � ˇ4 ln ˇ2

ˇ4
C ı

ˇ4

ln 1="

k
:

Let x D k�1 ln 1=" and c D ˇ3=ˇ2. We need to show that

f .x/ WD ln.1C c x/ � ı ˇ�1
4 x � ˇ�1

4 .Cı � ı ˇ4 ln ˇ2/ for all x 2 RC:

Since limx!1 f .x/ D �1 we conclude that supx2RC
f .x/ < 1. In fact, by standard

argument, we find out that

sup
x2RC

f .x/ D
�

ln
cˇ4

ı
� 1C ı

c ˇ4

	
C
:

Therefore for
Cı D ˇ4 sup

x2RC

f .x/C ı ˇ4 ln ˇ2;

the last inequality holds. This completes the proof.

Applying Lemma 15.15 to the right-hand side of (15.48) we obtain

mw.q; d/ � 1C ˇ1
X

;6Du�Œd�
�.u; "u/ C

juj�1
ı

"�.ˇ5Cı/
u : (15.49)

The next lemma has a standard proof and therefore its proof is omitted.
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Lemma 15.16. For non-negative ai ; bi with i D 1; 2; : : : ; k, and positive � and ",
consider the following minimization problem

min WD min
"i W "i �0; Pk

iD1 ai"
2
i

�"2

kX
iD1

bi "
��
i :

Then

min D
� kX
iD1

a
�=.�C2/
i b

2=.�C2/
i

�.�C2/=2
"��

and is achieved for

"i D "
.bi=ai /

1=.�C2/�Pk
jD1 a

�=.�C2/
j b

2=.�C2/
j

�1=2 for all i D 1; 2; : : : ; k:

If ai D 0 then we formally take "i D 1 and 0 � 1 D 0.

We are ready to apply Lemma 15.16 for our minimization problem,

min
"uW "u�0; P;6Du�Œd� �d;ujˇ j2.d�juj/ "2

u�"2 CRI2
d

X
;6Du�Œd�

C
juj�1
ı

"�.ˇ5Cı/
u :

Here, ı can be an arbitrary positive number.
Using Lemma 15.16 with k D 2d � 1, the coefficients ai given by �d;ujˇj2.d�juj/,

where jˇj D kh1;1kH.R1/, the coefficients ˇi given by C juj�1
ı

, � D p > ˇ5 and "
replaced by "CRId , we obtain the following theorem.

Theorem 15.17. Assume that algorithms Ui are optimal, we use nested information
and (15.44) and (15.46) are satisfied. Let

p >
lnM

lnD�1 :

Consider the WTP algorithms Aw.q; d/ with "u defined for all non-empty u � Œd � by

"u D "CRId

h
C

juj�1

ı

�d;u kh1;1k2.d�juj/
H.R1/

i1=.pC2//

�P
;6Dv�Œd� �

p=.pC2/
d;v

kh1;1k2.d�jvj/p=.pC2/
H.R1/

C
2.jvj�1/=.pC2/
ı

�1=2 :
Here, ı D p � lnM= lnD�1. Then

e.Aw.q; d// � "CRId

and
mw.q; d/ � 1C ˇ1 C.d; �/ "

�p; (15.50)
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where

C.d; �/ D
� X

;6Du�Œd�
�
p=.pC2/
d;u

kh1;1k2.d�juj/p=.pC2/
H.R1/

C
2.juj�1/ =.pC2/
ı

�.pC2/=2

for the absolute error criterion, and

C.d; �/ D
�P

;6Du�Œd� �
p=.pC2/
d;u

kh1;1k2.d�juj/p=.pC2/
H.R1/

C
2.juj�1/ =.pC2/
ı

�.pC2/=2�P
u�Œd� �d;u kh1;1k2.d�juj/

H.R1/
kh1;2k2juj

H.R2/

�p=2
for the normalized error criterion.

We stress that "u in the last theorem depends on the weight �d;u. Therefore, the
use of the WTP algorithm defined as in Theorem 15.17 requires the knowledge of the
weights �d;u for all u � Œd �. Later, we will discuss what happens if we use incorrect
weights. That is, we use �d;u although our functions belong to H.Kd;	/ for some
weights � D f�d;ug not necessarily equal to � .

In the next subsections we use the error and cost estimates obtained so far to
determine when the WTP algorithms yield tractability bounds for I� D fId;�g. We
limit our interest only to finite-order weights and product weights.

For general weights, various kinds of tractability hold under appropriate conditions
on C.d; �/. It would be of interest to obtain more explicit conditions on � D f�d;ug
that guarantee tractability. This leads us to the next open problem.

Open Problem 70.

Consider the WTP algorithms for general weights � D f�d;ug for approximation of
I� D fId;�g, defined as in this subsection.

• Find the most lenient explicit conditions on the weight sequence � for which
the WTP algorithm yields strong polynomial, polynomial, T -tractable or weakly
tractable bounds for I� .

15.3.5 Tractability for Finite-Order Weights

In this subsection we assume that � D f�d;ug is a sequence of finite-order weights of
order !, i.e., that

�d;u D 0 for all d and for all u with juj > !.

To make the problem non-trivial we assume that ! � 1.
We analyze two classes of WTP algorithms for finite-order weights. The first class

is specified by the choice of "u given by Theorem 15.17. Then this choice of "u leads
to the definition of q.u/ as in Theorem 15.6. As we shall see, for the first class of WTP
algorithms we obtain polynomial dependence on "�1 with an exponent p > p�, where
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p� D lnM= lnD�1 is the exponent of the univariate case. We also obtain conditions on
finite-order weights for which we have strong polynomial and polynomial tractability.
We stress again that in this case, we have to know all the weights �d;u for juj � !, as
is clear from the definition of "u in Theorem 15.17.

The second class of WTP algorithms is specified by a different choice of q.u/,
which depends much less on the finite-order weights. This will be especially clear for
the normalized error criterion where the dependence is only through !, the order of the
finite-order weights. For the absolute error criterion, the dependence is only through
! and the logarithm of the norm of kId;�k. The logarithmic dependence means that
we only need a rough upper bound on the norm of kId;�k. For the second class of
WTP algorithms we obtain a polynomial dependence on "�1 with an exponent p D p�
modulo some powers of ln "�1 independent of d . We also obtain conditions on strong
polynomial and polynomial tractability.

It is interesting to compare the tractability results for the two classes of WTP algo-
rithms. For the normalized error criterion we always have polynomial tractability for
both classes, however, strong polynomial tractability holds only for the first class under
a suitable condition on finite-order weights. Hence, the less demanding dependence on
finite-order weights for the second class is at the expense of losing strong polynomial
tractability.

Later, we briefly discuss what happens if we do not have correct information about
finite-order weights or about their order. That is when we use the WTP algorithms
for finite order weights �d;u of order ! for functions that belong to a space equipped
with finite-order weights � D f�d;ug with � not necessarily equal to � and of order not
necessarily equal to !.

15.3.6 The First Class of WTP Algorithms

We consider the WTP algorithms Aw.q; d/ with optimal algorithms Ui that use nested
information and for which the "u’s are defined in Theorem 15.17. Note that "u D 1 for
all u with juj > !. Then q.u/ D 0 and the part of the WTP algorithmAu.q.u/; juj/ D
0. This means that there are no contributions for such terms, which is quite natural
since fu D 0 and there is no need to approximate Id;� .fu/ D 0. We now specify the
estimates presented in Theorem 15.17 for finite-order weights of order !.

We first address the absolute error criterion. The number C.d; �/ is now

C.d; �/ D kh1;1kdpH.R1/

Cı

" X
u�Œd�

1�juj�!

�
p=.pC2/
d;u

�
Cı

kh1;1kpH.R1/

	2juj=.pC2/ #.pC2/=2
:

Let

Cabs;ı D 1

kh1;1kpH.R1/

max

�
1;

�
Cı

kh1;1kpH.R1/

	!�1	
:
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We stress that Cabs;ı is independent of d . Then

C.d; �/ � Cabs;ı kh1;1kdpH.R1/

� X
u�Œd�

1�juj�!

�
p=.pC2/
d;u

�.pC2/=2
:

This estimate on C.d; �/ will be used to find conditions on the lack of exponential
dependence on d and tractability conditions on I� D fId;�g for the absolute error
criterion.

We now turn to the normalized error criterion. The number C.d; �/ from Theo-
rem 15.17 is now of the form

C.d; �/ D
kh1;1kdpH.R1/

P
u�Œd�; 1�juj�! �

p=.pC2/
d;u

�
Cı

kh1;1kp

H.R1/

�2juj=.pC2/�.pC2/=2

Cı kh1;1kdpH.R1/

P
u�Œd�; juj�! �d;u

� kh1;2kH.R2/

kh1;1kH.R1/

�2 juj�p=2 :

Let

Cnor;ı D 1

kh1;2kpH.R2/

max
�
1;
�

Cı

kh1;1kp

H.R1/

�!�1�
min

�
1;
� kh1;2kH.R2/

kh1;1kH.R1/

�p.!�1/� :
We also stress that Cnor;ı is independent of d . Then

C.d; �/ � Cnor;ı

�P
u�Œd�; 1�juj�! �

p=.pC2/
d;u

�.pC2/=2�P
u�Œd�; 1�juj�! �d;u

�p=2 :

This estimate on C.d; �/ will be used to find conditions on the lack of exponential
dependence on d and tractability conditions on I� D fId;�g for the normalized error
criterion.

Theorem 15.18. Consider the problem I� D fId;�g for finite-order weights of order
! � 1. Let the WTP algorithm Aw.q; d/ be defined with optimal algorithms Ui that
use nested information and satisfy (15.44) and (15.46), and with "u defined as in
Theorem 15.17. Let

p > p� WD lnM

lnD�1 ;

where p� is the exponent for approximation of the univariate problem I1. Then

e.Aw.q; d// � " CRId

and the number mw.q; d/ of function values used by Aw.q; d/ is bounded as follows.

• For the absolute error criterion, we have

mw.q; d/ D O

�
kh1;1kdpH.R1/

� X
u�Œd�

1�juj�!

�
p=.pC2/
d;u

�.pC2/=2
"�p

	

for all " < kId;�k.
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• For the normalized error criterion, we have

mw.q; d/ D O

 �P
u�Œd�; 1�juj�! �

p=.pC2/
d;u

�.pC2/=2�P
u�Œd�; 1�juj�! �d;u

�p=2 "�p
!

for all " < 1.

The factors in the big O notation are independent of d and "�1. This implies the
following tractability conditions.

• For the absolute error criterion:

– If for some q we have

kh1;1kdpH.R1/

� X
u�Œd�

1�juj�!

�
p=.pC2/
d;u

�.pC2/=2 D O.dq/ for all d 2 N

then I� is polynomially tractable, with an "�1 exponent at most p and a d
exponent at most q. In particular, if q D 0 then I� is strongly polynomially
tractable with an exponent at most p.

– If

lim
d!1

ln kh1;1kdpH.R1/

�P
u�Œd�; 1�juj�! �

p=.pC2/
d;u

�.pC2/=2

d
D 0

then I� is weakly tractable.

• For the normalized error criterion:

– The problem I� is polynomially tractable for arbitrary finite-order weights
of order !. The "�1 exponent is at most p for any p > p�, and the d
exponent is at most !. If there is a number k 2 Œ0; !/ such thatˇ̌f�d;u j �d;u > 0 gˇ̌ D O.dk/ for all d 2 N

then the d exponent is at most k.

– If for some q 2 Œ0; !/ we have�P
u�Œd�; 1�juj�! �

p=.pC2/
d;u

�.pC2/=2�P
u�Œd�; 1�juj�! �d;u

�p=2 D O.dq/ for all d 2 N

then I� is polynomially tractable with an "�1 exponent is at most p and
a d exponent is at most q. In particular, if q D 0 then I� is strongly
polynomially tractable with an exponent at most p.

All tractability bounds are achieved by WTP algorithms.
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Proof. All points are quite clear except the point for the normalized error criterion,
which states that we always have polynomial tractability for arbitrary finite-order
weights. In this case, observe that Hölder’s inequality with p0 D .p C 2/=p and
q0 D .p C 2/=2 yields� X

u�Œd�
1�juj�!

�
p=.pC2/
d;u

�.pC2/=2 �
� X

u�Œd�
1�juj�!

�d;u

�p=2 X
u�Œd�; 1�juj�!

1:

The last sum is the cardinality of the finite-order weights of order !, and as we know
from [335], see also Volume I, p. 196, it is at most 2d ! . Therefore�P

u�Œd�; 1�juj�! �
p=.pC2/
d;u

�.pC2/=2�P
u�Œd�; 1�juj�! �d;u

�p=2 � 2 d ! :

This argument holds for all p > p�. Obviously, if we eliminate zero weights �d;u then
the same argument yields the bound in terms of the total number of non-zero weights
and if this cardinality is of order dk then the d exponent is at most k. This completes
the proof.

The tractability conditions of Theorem 15.18 can be illustrated for the absolute
error criterion as follows.

• For kh1;1kH.R1/ < 1 and uniformly bounded finite-order weights, i.e.,

sup
d2N

�d;u < 1;

the problem I� is strongly polynomially tractable with an exponent at most p�.

• For kh1;1kH.R1/ D 1 and uniformly bounded finite-order weights, the problem I�
is polynomially tractable with an "�1 exponent at most p and with a d exponent
at most !.p C 2/=2 for any p > p�.

• For kh1;1kH.R1/ > 1 and uniformly bounded finite-order weights, we cannot
claim even weak tractability of the problem I� .

For the normalized error criterion, we stress that there may be a tradeoff between
the tractability exponents p and q. Depending on the weight sequence � D f�d;ug, we
may be forced to choose large p to get a (strong) polynomial dependence on d and this
will result in a large exponent with respect to "�1. In particular we may ask for which
� we get strong polynomial tractability. For the normalized error criterion, it is easy
to rewrite the condition in Theorem 15.18 as the condition that was already presented
in [335]. Namely, let

r� D sup

�
r � 1

ˇ̌
sup
d2N

P
u�Œd�; 1�juj�! �

1=r

d;u�P
u�Œd�; 1�juj�! �d;u

�1=r < 1
	
:
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Then r� > 1 implies that I� is strongly polynomially tractable with an exponent at
most

max
�
p�;

2

r� � 1
	
:

Hence, this exponent may be arbitrarily large if r� is arbitrarily close to 1.
We illustrate Theorem 15.18 for the normalized error criterion and for the finite-

order weights of the form

�d;u D
�
d

juj
	�a

for all juj � !

for some a 2 R. Then it is easy to check that

• if a > 1 then I� is strongly polynomially tractable with an exponent at most

max
�
p�;

2

a � 1
	
;

• for all real a the problem I� is polynomially tractable with an "�1 exponent at
most p for any p > p� and a d exponent at most !.

15.3.7 The Second Class of WTP Algorithms

In the previous subsection we considered WTP algorithms that fully depend on the
finite-order weights. We also used p > p� and the corresponding numbers Cabs;ı and
Cnor;ı with ı D p � p� tend to infinity as ı goes to zero. In fact, this has to be so.
The reason is that for d > 2 there is, in general, also the logarithmic dependence on
"�1. The total cost is of order "�p�

Œln "�1�a for some positive a that may be a linear
function of d . The main point of introducing p > p� was to eliminate the powers of
ln "�1.

For finite-order weights, the powers of ln "�1 are independent of d and it is tempting
to allowp D p� at the expense of some powers of ln "�1. The subject of this subsection
is to work with p D p� and to analyze WTP algorithms with a weaker dependence on
the finite-order weights.

We again consider the WTP algorithms Aw.q; d/ with optimal algorithms Ui that
use nested information but we define q.u/ differently as before without introducing
"u. As before, we obviously define

q.u/ D 0 for all u with juj � !.

For simplicity, we also assume that

q.u/ � juj for all juj 2 Œ1; !�:
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From Lemma 15.12 we then have

e2.Aw.q; d// �
X

u�Œd�; 0<juj�!
�d;u kh1;1k2.d�juj/

H.R1/
C 2jujD2.q.u/�jujC1/

�
q.u/

juj � 1
	
:

From Stirling’s formula we know that kŠ � .k=e/k for all k 2 N. Therefore

�
q.u/

juj � 1
	

� Œq.u/�juj�1

.juj � 1/Š � Œq.u/�juj�1
�

e

juj � 1C ıjuj;1

	juj�1

� Œq.u/�juj�1
�

e

juj � 1C ıjuj;1

	�1 � p
epjuj � 1C ıjuj;1

	2juj

� !

e
Œq.u/�juj�1

� p
epjuj � 1C ıjuj;1

	2juj
;

where ıjuj;1 is the Kronecker delta.
Let

M D max
k2N

Mk for Mk D
�

C
p
e

D kh1;2kH.R2/

p
k � 1C ık;1

	2k
:

Note that M is well defined and finite since Mk tends to zero as k goes to infinity.
Let

rq.u/ D D2q.u/ Œq.u/�juj�1 for all u � Œd �; 0 < juj � !;

and let
rq D max

u�Œd�;0<juj�!
rq.u/:

Then we can estimate e2.Aw.q; d// by

e2.Aw.q; d//

! D2=e
�

X
u�Œd�

0<juj�!

�d;u kh1;1k2.d�juj/
H.R1/

kh1;2k2juj
H.R2/

Mk rq.u/

� M rq
X

u�Œd�
0<juj�!

�d;u kh1;1k2.d�juj/
H.R1/

kh1;2k2juj
H.R2/

:

Note that the last sum is just the square of the initial error. Therefore we have

e.Aw.q; d// �
p
! D2M=e

�
max
u�Œd�

0<juj�!

D2q.u/ Œq.u/�juj�1�1=2 kId;�k: (15.51)

We want to define q.u/ in such a way that the error of A1.q; d/ is at most " for the
absolute or normalized error criterion. We need the following lemma.
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Lemma 15.19. Let � 2 .0; 1/ and let ! be a positive integer. There exists a positive
number C0, depending only on � and !, such that for all ı 2 .0; �� we have

C0 � 1 � ! � 1
ln ��1 ln

�
1C ! � 1

ln ı�1 ln
ln ı�1

ln ��1 C C0
ln ��1

ln ı�1

	
: (15.52)

For such a C0, we have
�k k!�1 � ı

for

k D
´
1 if ı � �;j
C0 C ln ı�1

ln ��1 C !�1
ln ��1 ln ln ı�1

ln ��1

k
if ı < �:

Proof. First of all, note that x�1 ln x � 1=e for all x � 1 implies that the right-hand
side of (15.52) is bounded by

! � 1
ln ��1 ln

�
1C ! � 1

e ln ��1 C C0

	
;

and so we can clearly choose sufficiently large C0 such that the last expression is at
most C0 � 1. This shows that there exists C0 satisfying (15.52).

Consider now the inequality �k k!�1 � ı. For ı � � , this inequality holds for
k D 1. For ı < � , the inequality �k k!�1 � ı is equivalent to

k � ! � 1
ln ��1 ln k � ln ı�1

ln ��1 :

We now take

k� D C0 C ln ı�1

ln ��1 C ! � 1
ln ��1 ln

ln ı�1

ln ��1

D ln ı�1

ln ��1

�
1C ! � 1

ln ı�1 ln
ln ı�1

ln ��1 C C0
ln ��1

ln ı�1

	
;

and k D bk�c D k� C aı , where aı 2 .�1; 0�. Then

k � ! � 1
ln ��1 ln k � k� � 1 � ! � 1

ln ��1 ln k�:

The inequality

k� � 1 � ! � 1
ln ��1 ln k� � ln ı�1

ln ��1
is equivalent to the inequality (15.52) and is satisfied by the choice of C0. This com-
pletes the proof.

We are ready to apply Lemma 15.19 for the algorithm Aw.q; d/. We define

q.u/ D k for all u � Œd �; 0 < juj � !



378 15 Smolyak/Sparse Grid Algorithms

for some not yet specified k. From (15.51) we have

e2.Aw.q; d// � !=e D2M D2k k!�1 kId;�k2 � "2 CRI 2d ;

if we take

� D D2 and ı D e "2 CRI 2d
! D2M kId;�k2 :

Then take k as in Lemma 15.19. That is, we have

• for the absolute error criterion

q.u/ D ln kId;�k "�1

lnD�1 C ! � 1
2 lnD�1 ln ln kId;�k "�1 C O.1/;

• for the normalized error criterion

q.u/ D ln "�1

lnD�1 C ! � 1
2 lnD�1 ln ln "�1 C O.1/:

We stress that now the dependence on finite-order weights is much less than before
for the first class of WTP algorithms. For the normalized error criterion we need to
only know the order !, and for the absolute error criterion we also need to know the
logarithm of kId;�k.

We now turn to the cost of the algorithmAw.q; d/. Assuming (15.46), and keeping
in mind that nested information is used, we have from Lemma 15.14

mw.q; d/ � 1C
X

u�Œd�; 0<juj�!
M

juj
0 M q.u/

�
M � 1
M

	juj�1 �
q.u/ � 1
juj � 1

	
:

Similarly as before, we estimate�
q.u/ � 1
juj � 1

	
� Œq.u/�!�1

�
e

juj � 1C ıjuj;1

	juj�1
:

Since q.u/ D k, we obtain

mw.q; d/ � 1CM0M
k k!�1

!X
kD1

�
d

k

	�
M0.M � 1/ e
M.k � 1C ık;1/

	k�1
:

Note that the binomial coefficients
�
d
k

�
are multiplied by numbers that are uniformly

bounded in k. That is why the sum above is of order d ! .
For p D lnM= lnD�1 we have

M k D
�
"

CRId
kId;�k

	�p  
ln

�
"

CRId
kId;�k

	�1!.!�1/p=2
eO.1/;
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whereas

k!�1 D O

 "
ln
�
"

CRId
kId;�k

	�1
#!�1!

:

Therefore for all " < CRId we have

mw.q; d/ D O

 
d !

�
"

CRId
kId;�k

	�p �
ln
�
"

CRId
kId;�k

	�1	.!�1/.1Cp=2/
!
:

Here, the factor in the big O notation is independent of d and "�1.
From this we easily obtain the following theorem about tractability bounds achieved

by the WTP algorithm.

Theorem 15.20. Consider the problem I� D fId;�g for finite-order weights of order
! � 1. Let the WTP algorithm Aw.q; d/ be defined as in this subsection with optimal
algorithms Ui that use nested information and satisfy (15.44) and (15.46). Let

p D lnM

lnD�1

be the exponent for approximation of the univariate problem I1. Then

e.Aw.q; d// � " CRId

and the number mw.q; d/ of function values used by Aw.q; d/ is bounded as follows.

• For the absolute error criterion:

mw.q; d/ D O
�
d !
�kId;�kp "�p � ln.kId;�k "�1/.!�1/.1Cp=2/���

for all " < kId;�k,

• For the normalized error criterion:

mw.q; d/ D O
�
d ! "�p �ln "�1�.!�1/.1Cp=2/ �

for all " < 1.

The factors in the big O notation are independent of d and "�1. This implies the
following tractability conditions.

• For the absolute error criterion:

– If for some q we have

kId;�k D O.dq/ for all d 2 N

then I� is polynomially tractable. Then the "�1 exponent is at most p and
the d exponent is at most ! C q.
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– If

lim
d!1

ln max
�
1; kId;�k�
d

D 0

then I� is weakly tractable.

• For the normalized error criterion:

– The problem I� is polynomially tractable for arbitrary finite-order weights
of order !. The "�1 exponent is at most p and the d exponent is at most !.
If there is a number k 2 Œ0; !/ such thatˇ̌f�d;u j �d;u > 0 gˇ̌ D O.dk/ for all d 2 N

then the d exponent is at most k.

The main point of Theorem 15.20 is that for finite-order weights we achieve the same
"�1 exponent for all d at the expense of some powers of ln "�1 that are independent
of d . As before, for the normalized error criterion we have polynomial tractability for
arbitrary finite-order weights and we can achieve this by using the WTP algorithm.
For the absolute error criterion we need to control the initial error. If the finite-order
weights are chosen so that the initial error depends polynomially on d then we also
have polynomial tractability, whereas if the finite-order weights are chosen so that the
initial error is not exponentially dependent on d then we have weak tractability.

15.3.8 Example: Perturbed Coulomb Potential

Coulomb or perturbed Coulomb potentials are a natural example for which finite-order
weights occur. In this case, functions are given as small perturbation of the sum of
Coulomb pair potentials, see [76],

f˛.Ex1; Ex2; : : : ; Ex`/ D
X

1�i<j�`

1pkExi � Exj k2 C ˛
for Exi 2 � � R3:

Here ˛ � 0. For ˛ D 0 we obtain the Coulomb potential but then the function f˛ is
not well defined for Exi D Exj . To make the function f˛ well defined for all Exi 2 �, we
assume that ˛ is small but positive.

We stress that f˛ only depends on groups of two variables, each being a 3-dimen-
sional vector Exi 2 R3. From this it is clear that we should embed such functions into
a space equipped with finite-order weights of order ! D 6.

Letting x D ŒEx1; : : : ; Ex`�, we can view f˛ as a function of 3` variables, i.e.,

d D 3 `:

(Note that the perturbed Coulomb force g˛.x/ D P
1�i<j�`.kExi � Exj k2 C ˛/�1 is

even simpler than f˛ , and the analysis of this section may also be applied to g˛ .)
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For simplicity we consider only bounded domains �. Since the function

g.t1; t2; : : : ; t6/ WD
�
˛ C

3X
iD1
.ti � tiC3/2

��1=2
for all ti 2 R;

is infinitely differentiable, so is f˛ . Therefore, the (perturbed) Coulomb potential
function can be viewed as an element of many different reproducing kernel spaces of
various smoothness.

In what follows, for the sake of brevity, we will illustrate the results of this subsection
using a relatively low degree smoothness, although extensions to higher smoothness is
straightforward. For simplicity, we also assume that � is a Cartesian product of three
identical subsets of R, e.g., � is a cube in R3.

We will be using the results of this subsection for an arbitrary sequence I� D fId;�g
of linear functionals for which the assumptions of Theorems 15.18 and 15.20 hold. In
particular, we assume that p� is determined by the univariate case for approximating
I1, and to omit the powers of logarithms of "�1 we express the cost bounds in terms
of "�p for p > p�.

Let
� D D �D �D;

where, for simplicity of presentation, we take D D Œ0; 1�. As for the kernel K1 we
choose

K1.x; t/ D 1C min.x; t/ for all x; t 2 Œ0; 1�;
so that H.K1/ is the Sobolev space W 1

2 Œ0; 1� and

hf; giH.K1/
D f .0/ g.0/C

Z 1

0

f 0.t/ g0.t/ dt for all f; g 2 H.K1/:

The (perturbed) Coulomb potential function f˛ belongs to H.Kd;� / for

Kd;� .x; y/ D
X
u2Ud

Kd;u.x; y/

with d D 3 `, and Kd;; D 1 and Kd;u.x; y/ D Q
j2u min.xj ; yj / for non-empty u.

The set Ud consists of subsets

u D f3i � 2; 3i � 1; 3i; 3j � 2; 3j � 1; 3j g for i < j;

i.e., u contains indices of coefficients corresponding to two different vectors Exi and Exj .
This means that we set

�d;u D 1 for u 2 Ud and �d;u D 0 for u … Ud :

Of course, such weights are finite-order with order !� D 6. Furthermore, the cardi-
nality of non-zero weights is

jUd j D .` � 1/`
2

<
d2

18
:
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This implies that when we use Theorem 15.18 or Theorem 15.20 for approximating
I� D fId;�g then the dependence on d is at most quadratic. More precisely, if the
assumptions of Theorem 15.20 are satisfied then for the normalized error criterion we
can find an "-approximation by the WTP algorithm using mw.q; d/ function values
and

mw.q; d/ D O
�
d 2 "�p�

where the factor in the big O notation does not depend on d and "�1, whereas p > p�
with p� determined by the univariate case for I1.

We now estimate the norm kf˛kH.Kd;� /. Consider

g.Ex; Ey/ D .kEx � Eyk2 C ˛/�1=2 for all Ex; Ey 2 R3:

Let Ez D Œz1; : : : ; z6� with zi D xi for i � 3 and zi D yi�3 for i > 3. It is easy to
verify that for a non-empty subset u of f1; 2; : : : ; 6g, we have

@jujgQ
j2u @zj

.Ez/ D .�1/juj
juj�1Y
jD1

.j C 1
2
/

Q
j2uW j�3.xj � yj / Qj2uW j>3.yj�3 � xj�3/

.kEx � Eyk2 C ˛/jujC1=2 ;

with the convention that the product over the empty set is taken as one. Consider now
u D f1; 2; : : : ; 6g, and let

a WD
Z
Œ0;1�6

 
@6Q6

jD1 @zj
g.Ez/

!2
dEz

D ‚

�Z
Œ0;1�6

.z1 � z4/4.z2 � z5/4.z3 � z6/4
..z1 � z4/2 C .z2 � z5/2 C .z3 � z6/2 C ˛/13

	
dEz:

By changing variables zi D ti
p
˛ we immediately conclude that a D ‚.˛�4/ as

˛ ! 0. This implies that

kf˛kH.Kd;� / D ‚.d ˛�2/ as ˛ ! 0;

with the factor in the ‚-notation independent of d .
Hence, for O" D " kf˛k�1

H.Kd;� /
and for the normalized error criterion, we obtain

jId;� .f˛/ � Aw.q; d/.f˛/j � " kId;�k
with

mw.q; d/ D O
�
d 2Cp ˛�2p "�p�:

15.3.9 Open Problems for Finite-Order Weights

We briefly mention several open problems for finite-order weights. First of all, note
that most of the lower bound results presented in the previous chapters do not apply for
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finite-order weights. This is not too surprising, since for the normalized error criterion
we have polynomial tractability for all finite-order weights. However, for the absolute
and/or normalized error criterion, it is not clear what conditions on � are necessary
for strong polynomial, polynomial, T -tractability or weak tractability of the problem
I� D fId;�g. It is also not clear what the minimal exponents of "�1 and d are and
whether there is the tradeoff between them, as we observed for the WTP algorithms.
We summarize these questions in the next open problems

Open Problem 71.

• What are necessary and sufficient conditions on finite-order weights of order !
for which the problem I� D fId;�g is

– strongly polynomially tractable,
– polynomially tractable
– T -tractable,
– weakly tractable

for the absolute and normalized error criteria?

• Is the exponent of strong polynomial tractability always the same as the exponent
for the univariate case?

• What are the exponents of tractability?

• Is there the tradeoff between the "�1 and d exponents?

15.3.10 Tractability for Product Weights

In this subsection we assume that � D f�d;ug is a sequence of product weights, i.e.,

�d;; D 1; �d u D
Y
j2u

�d;j for all non-empty u � Œd �:

Here, f�d;j gd2N;j2Œd� is a given sequence of non-negative numbers.
We consider the WTP algorithms as defined in Theorem 15.17. As before, tractabil-

ity holds when the numbers C.d; �/ given in Theorem 15.17 are not exponential in d .
For the absolute error criterion, we have

C.d; �/

D 1

Cı

� X
;6Du�Œd�

�kh1;1k2p=.pC2/
H.R1/

�d�juj Y
j2u

�
p=.pC2/
d;j

C
2=.pC2/
ı

i.pC2/=2

D 1

Cı

h dY
jD1

�kh1;1k2p=.pC2/
H.R1/

C �
p=.pC2/
d;j

C
2=.pC2/
ı

� � kh1;1k2pd=.pC2/
H.R1/

i.pC2/=2
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D kh1;1kpdH.R1/

Cı

 dY
jD1

�
1C �

p=.pC2/
d;j

�
Cı

kh1;1kH.R1/

	2=.pC2/ 	
� 1

�.pC2/=2
:

Replacing 1C x by exp.x/ for non-negative x, we obtain

C.d; �/ � kh1;1kpdH.R1/

Cı
exp


Cı

kh1;1kH.R1/

� dX
jD1

�
p=.pC2/
d;j

�.pC2/=2�

D kh1;1kpdH.R1/
exp


O
� dX
jD1

�
p=.pC2/
d;j

�.pC2/=2�
:

The last bound will be used for tractability analysis for the absolute error criterion.
For the normalized error criterion, we have

C.d; �/ D 1

Cı

hQd
jD1

�
1C �

p=.pC2/
d;j

�
Cı

kh1;1kp

H.R1/

�2=.pC2/� � 1
i.pC2/=2

Qd
jD1

�
1C �d;j

kh1;2k2
H.R2/

kh1;1k2
H.R1/

	�p=2

� 1

Cı

dY
jD1

�
1C �

p=.pC2/
d;j

�
Cı

kh1;1kp

H.R1/

�2=.pC2/�.pC2/=2

�
1C �d;j

kh1;2k2
H.R2/

kh1;1k2
H.R1/

	p=2 :

Since the denominator is at least 1 we obtain

C.d; �/ � 1

Cı
exp


Cı

kh1;1kpH.R1/

� dX
jD1

�
p=.pC2/
d;j

�.pC2/=2�

D exp

O
� dX
jD1

�
p=.pC2/
d;j

�.pC2/=2�
:

This bound will be used for tractability analysis for the normalized error criterion.
From Theorem 15.18 and the bounds on C.d; �/ we obtain the following theorem.

Theorem 15.21. Consider the problem I� D fId;�g for product weights. Let the WTP
algorithmAw.q; d/ be defined with optimal algorithmsUi that use nested information
and satisfy (15.44) and (15.46), and with "u defined as in Theorem 15.17. Let

p > p� WD lnM

lnD�1 ;

where p� is the exponent for approximation of the univariate problem I1. Then

e.Aw.q; d// � " CRId

and the number mw.q; d/ of function values used by Aw.q; d/ is bounded as follows.
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• For the absolute error criterion, we have

mw.q; d/ D kh1;1kpdH.R1/
exp


O
� dX
jD1

�
p=.pC2/
d;j

�.pC2/=2�
"�p

for all " < kId;�k.

• For the normalized error criterion, we have

mw.q; d/ D exp

O
� dX
jD1

�
p=.pC2/
d;j

�.pC2/=2�
"�p

for all " < 1.

The factors in the big O notation are independent of d and "�1.
This implies the following tractability conditions.

• For the absolute error criterion:

– If kh1;1kH.R1/ � 1 and

� dX
jD1

�
p=.pC2/
d;j

�.pC2/=2 D O
�
1C d ln kh1;1k�1

H.R1/

�
as d ! 1 then I� is strongly polynomially tractable with an exponent at
most p.

– If kh1;1kH.R1/ � 1 and

� dX
jD1

�
p=.pC2/
d;j

�.pC2/=2 D O
�
1C ln d C d ln kh1;1k�1

H.R1/

�
as d ! 1 then I� is polynomially tractable. Hence, for kh1;1kH.R1/ < 1

the conditions on strong polynomial and polynomial tractability are the
same, and we have strong polynomial tractability with an exponent at
most p.
For kh1;1kH.R1/ D 1 strong polynomial and polynomial tractability may
differ and I� is polynomially tractable with an "�1 exponent at most p and
a d exponent at most q, with q given as for the normalized error criterion.

– If kh1;1kH.R1/ � 1 and

lim
d!1

 
p ln kh1;1kH.R1/ C Cı

�Pd
jD1 �

p=.pC2/
d;j

�.pC2/=2

d kh1;1kpH.R1/

!
C

D 0

then I� is weakly tractable.
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• For the normalized error criterion:

– If � dX
jD1

�
p=.pC2/
d;j

�.pC2/=2 D O.1/ as d ! 1

then I� is strongly polynomially tractable with an exponent at most p.

– If

a� D lim sup
d!1

�Pd
jD1 �

p=.pC2/
d;j

�.pC2/=2

ln d
< 1

then I� is polynomially tractable with an "�1 exponent at most p and a d
exponent at most q, where q > a�kh1;1kH.R1/=Cı .

– If

lim
d!1

�Pd
jD1 �

p=.pC2/
d;j

�.pC2/=2

d
D 0

then I� is weakly tractable.

All tractability bounds are attained by WTP algorithms.

Proof. The bounds on mw.q; d/ easily follow from the bounds on C.d; �/. We
also know that the factor in the big O notation in the exponential function is M WD
Cı=kh1;1kpH.R1/

. For the absolute error criterion it is clear thatM1 WD kh1;1kH.R1/ > 1

makesmw.q; d/ exponentially dependent ond and so there is no chance to get tractabil-
ity of I� . That is why we need to assume thatM1 D kh1;1kH.R1/ � 1. To get tractabil-
ity conditions we take logarithms, and for polynomial tractability we need to check
when

p d lnM1 CM
� dX
jD1

�
p=.pC2/
d;j

�.pC2/=2 � M2 C q ln d

for some M2 and q.
This means that� dX

jD1
�
p=.pC2/
d;j

�.pC2/=2 � M�1 �M2 C q ln d C p d lnM�1
1

�
D O

�
1C ln d C d lnM�1

1

�
;

as claimed.
For weak tractability we must guarantee that d�1 lnmw.q; d/ goes to zero. This

is equivalent to the condition that�
p lnM1 C d�1M

� dX
jD1

�
p=.pC2/
d;j

�.pC2/=2	
C
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goes to zero, as claimed.
For the normalized error criterion, we proceed as before, taking M1 D 1. This

completes the proof.

We now simplify tractability conditions in Theorem 15.21 for the normalized error
criterion by recalling the notion of the sum-exponent p� for product weights, see [332]
as well as Volume I, page 201. Namely,

p� D inf
˚
� � 0

ˇ̌
lim supd!1

Pd
jD1 � �d;j < 1 


with the convention that inf ; D 1.
Then I� is strongly polynomially tractable if p� < 1. Indeed, in this case we can

define p such that p=.pC 2/ is arbitrarily close to p� . That is, p is arbitrarily close to
2p�=.1 � p� / and the exponent of strong polynomial tractability is at most

max

�
p�;

2p�

1 � p�
	
:

Hence, if p� � p�

p�C2 we obtain the exponent of strong polynomial tractability p� as
for the univariate case. This agrees with the original results obtained in [332]. We
illustrate this point by continuing the example of uniform integration.

15.3.11 Example: Uniform Integration (Continued)

We want to apply the WTP algorithms for multivariate integration for the weighted
Sobolev space with the reproducing kernel

Kd;� .x; t/ D
dY
jD1

�
1C �d;j min.xj ; tj /

�
for all x; t 2 Œ0; 1�d :

We now have a D 0 which implies that �1 D 1, R1.x; t/ D 1 and R2.x; t/ D
min.x; t/ for x; t 2 Œ0; 1�. We also have h1.x/ D 1 C x � x2=2 and h1;1 D 1 with
kh1kH.R1/ D 1, and h1;2.x/ D x � x2=2 with kh1;2kH.R2/ D 3�1=2.

We now specify algorithms Ui . As always, U0 D 0 and for f 2 H.R2/ we set

Ui .f / D 1

2i�1
h
1
2
f .1/C

2i�1�1X
jD1

f .j 2�.i�1//
i

for all i 2 N:

HenceUi is the trapezoid rule, since f .0/ D 0 for f 2 H.R2/. This means thatUi .f /
is equal to the integral of piecewise linear functions interpolating f at 0; 2�.i�1/; : : : ; 1.
It is known that Ui is optimal and clearly uses nested information of cardinality 2i�1.
This implies that we can take M0 D 1 and M D 2. It is also known that

kI1 � UikH.R2/!R D ‚.2�i /
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and therefore we can take D D 1=2. Thus p D 1.
For this problem we know that the minimal p� D 1. We have already showed that

lim sup
d!1

dX
jD1

�d;j < 1

is necessary for strong polynomial tractability of multivariate integration. Under this
assumption on the product weights, we know that some QMC algorithms achieve strong
tractability bounds proportional to "�2, although it is not clear whether the exponent 2
of "�1 can be lowered.

Consider product weights with the sum exponent p� . If we have strong polynomial
tractability then p� � 1. However, we need to assume more if we want to guarantee
that the WTP algorithms achieve strong tractability error bounds. Namely, we must
assume that p� < 1. This looks like an unimportant extra assumption on the product
weights. However, if p� < 1 then the exponent of "�1 is

max
�
1;

2p�

1 � p�
	
;

which can be arbitrarily large ifp� is arbitrarily close to 1. Only forp� � 1
3

we achieve
that best possible exponent 1.

In the next chapter we analyze different algorithms that require more lenient con-
ditions on p� to get the exponent of strong tractability equal to 1. As we shall see, it
would be enough to assume that p� � 1

2
. However, we still do not know what is the

minimal condition on p� to get the exponent of strong tractability equal to 1.
There is a conjecture that the exponent of strong tractability does depend on the

sum-exponent p� of the product weight, see [353]. We repeat this conjecture here.

Open Problem 72.

Consider multivariate integration for the weighted Sobolev space with the reproducing
kernel for product weights as in this subsection. Assume that

lim sup
d!1

dX
jD1

�d;j < 1

so that strong polynomial tractability holds. Let p� be the sum exponent of product
weights.

• Prove that the exponent p of strong polynomial tractability is

p D max.1; 2p� /:

• A weaker version is to prove that

p D 1 iff lim sup
d!1

dX
jD1

�
1=2

d;j
< 1:
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15.3.12 Example: Weights for Cobb Douglas Functions

We still consider the weighted Sobolev space as in the previous subsection but for a
special sequence � D f�d;ug of product weights suggested by a problem from eco-
nomics. There is a well known family of functions studied by economists, called the
Cobb Douglas family, see e.g, [258], which consists of the functions of the form

f .x/ D
dY
kD1

.xk C ad;k/
˛d;k for all x 2 Œ0; 1�d ;

where ad;k’s are non-negative and ˛d;k � 0 with
Pd
kD1 ˛d;k D 1.

Obviously, multivariate integration for such functions is trivial since we can inte-
grate these functions explicitly. However, we may need to approximate other linear
functionals such as weighted multivariate integration. Perhaps we can get good results
by using WTP algorithms. Hence, we want to check if such functions f belong to the
weighted Sobolev space H.Kd;� /, and how to choose product weights to guarantee
that the norms of such functions f are not too large.

We now estimate the norm f in the space H.Kd;� / for arbitrary product weights.
We have

fu.xu/ D f .xu; 0/ D
Y
k2u

.xk C ad;k/
˛d;k

Y
k…u

a
˛d;k

d;k
:

ThereforeZ
Œ0;1�juj

�Y
k2u

@

@xk
fu.x/

	2Y
k2u

dxk
�d;k

D
Y
k2u

˛2
d;k

�d;k

Z 1

0

.tCad;k/2.˛d;k�1/dt
Y
k…u

a
2˛d;k

d;k
:

Since 2.˛d;k � 1/ � 0 and .t C ad;k/
2.˛d;k�1/ � a

2.˛d;k�1/
d;k

we haveZ
Œ0;1�juj

�Y
k2u

@

@xk
fu.x/

	2Y
k2u

dxk
�d;k

�
Y
k2u

˛2
d;k

a2
d;k
�d;k

dY
kD1

a
2˛d;k

d;k
:

Hence,

kf k2H.Kd;� /
�

dY
kD1

a
2˛d;k

d;k

�
1C

X
u6D;

Y
k2u

˛2
d;k

a2
d;k
�d;k

	
:

For any non-negative numbers ˇk we have

X
u6D;

Y
k2u

ˇk D
dY
jD1

.1C ˇk/ � 1 D
dX
jD1

ǰ

dY
kDjC1

.1C ˇk/;

where the last equality can be shown inductively on d , see formula (40) in [277].
Hence, X

u6D;

Y
k2u

ˇk �
� dX
jD1

ǰ

�
exp

� dX
jD1

ǰ

�
:
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Therefore,

kf k2H.Kd;� /
�

dY
kD1

a
2˛d;k

d;k

�
1C

dX
jD1

˛2
d;j

a2
d;j
�d;j

dY
kDjC1

�
1C ˛2

k

a2
k
�d;k

		
: (15.53)

We now consider two choices of �d;k for which kf kH.Kd;� / is not too large.

• Let ad D minj2Œd� ad;j and bd D maxj2Œd� ad;j . Since
Pd
jD1 ˛d;j D 1 we

have

kf k2H.Kd;� /
� b2d C b2

d

a2
d

� dX
jD1

˛2
d;j

�d;j

	
exp

�
1

a2
d

dX
jD1

˛2
d;j

�d;j

	
:

Setting �d;j D ˛d;j we conclude that

kf k2H.Kd;� /
� b2d C b2

d

a2
d

exp
�
1

a2
d

	
:

Hence, kf kH.Kd;� / has a bound which is not too large if ad is not too small and
if bd is not too large as functions of d .

• Assume for simplicity that ad;j D ad for all j 2 Œd � and all d 2 N. Setting
now �d;j D ˛2

d;j
we conclude from (15.53) that

kf k2H.Kd;� /
� a2d

�
1C 1

a2
d

dX
jD1

�
1C a�2

d

�d�j
	

D a2d
�
1C a�2

d

�d
:

For ad D p
d , say, we have

kf k2H.Kd;� /
� d

�
1C d�1�d � d e:

Hence, kf kH.Kd;� / � p
d e depends only linearly on

p
d .

This example from economics suggests to consider product weights for which

dX
kD1

�
q

d;k
D 1 for all d 2 N

for some positive q. Note that q D 1 and q D 1
2

were used above. For instance,
�d;k D 1=d1=q (for all k) or �d;k D ıd;k are two extreme examples of such sequences.
Depending on the sequence f�d;kg, the sum-exponent can be any number between 0
and q,

0 � p� � q:

Note that p� D q when, e.g., �d;k D 1=d1=q , and that p� D 0when, e.g., �d;k D ıd;k .
For such product weights, we can apply the results of this subsection for approxi-

mating I� D fId;�g. In particular, we know that I� is strongly polynomially tractable
if p� < 1.
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15.3.13 Example: Integration of Smooth Functions

We now discuss multivariate integration for classes of smooth functions, see Exam-
ple 5.14 in Volume I. For d D 1, let R1 D 1 and

R2.x; t/ D
Z 1

0

.x � u/r�1C
.r � 1/Š

.t � u/r�1C
.r � 1/Š du for all x; t 2 Œ0; 1�:

Then H.R1/ D span.1/ and

H.R2/ D ff W Œ0; 1� ! R j f .j /.0/ D 0; for all j < r;

f .r�1/ is abs. cont., f .r/ 2 L2.Œ0; 1�/ g
with

hf; giH.R2/
D
Z 1

0

f .r/.x/ g.r/.x/ dx for all f; g 2 H.R2/:
Here r is a positive integer that measures regularity of functions f , and r D 1 corre-
sponds to the uniform integration example studied before. As always,K1 D R1CR2.

For d � 2, through the tensor product construction, we obtainH.Kd;� / for product
weights � , and multivariate integration is defined as

Id;� .f / D
Z
Œ0;1�d

f .t/ dt for all f 2 H.Kd;� /:

We now have h1;1 D 1 and kh1;1kH.R1/ D 1, whereas h1;2.x/ D R 1
0
R2.x; t/ dt

and

kh1;2kH.R2/ D 1

.2r C 1/ ŒrŠ�2
:

We now specify algorithms Ui . For i D 0 we have U0 D 0 and for i � 1, the
algorithm Ui samples the function f at j 2�.i�1/ for j D 1; 2; : : : ; 2i�1, and

Ui .f / D
Z 1

0

�i .x/ dx;

where �i D �i .f / is a spline that minimizes k� .r/i k2 among all functions fromH.R2/

that interpolate f at the points j 2�.i�1/. The choice of the spline �i guarantees that
Ui is optimal. (In fact, Ui is also central.) It is well known that

kI1 � Uik D O.2�ir/;

and therefore p� D 1=r , which is also optimal.
Let p� denote the sum-exponent of product weights. Then I� is strongly tractable

if p� < 1 and then the exponent of strong polynomial tractability is at most

max

�
1

r
;
2p�

1 � p�
	
;

and this can be achieved by the WTP algorithm defined in Theorem 15.21.
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15.3.14 Robustness of WTP Algorithms

We briefly discuss the robustness of WTP algorithms. That is, we want to verify what
happens if we use the WTP algorithm designed for the weight sequence � D f�d;ug
for functions that belong to the space H.Kd;	/ with � D f�d;ug not necessarily equal
to � . We hope that if � is not much different from � then the WTP algorithm will still
behave properly, even for functions for which it has not been designed. This property
is usually called as robustness.

We need to relate the norms of functions from H.Kd;� / and H.Kd;	/. For f 2
H.Kd;� / or f 2 H.Kd;	/ we have f D P

u�Œd� fu for fu 2 H.Kd;u/, and

kf k2H.Kd;� /
D

X
u�Œd�

1

�d;u
kfuk2H.Kd;u/

D
X

u�Œd�

�d;u

�d;u

1

�d;u
kfuk2H.Kd;u/

:

Therefore for all f 2 H.Kd;� / we have

Cd;min kf kH.Kd;�/ � kf kH.Kd;� / � Cd;max kf kH.Kd;�/;

where

Cd;min D min
u�Œd�

�
1=2

d;u

�
1=2

d;u

and Cd;max D max
u�Œd�

�
1=2

d;u

�
1=2

d;u

:

Here, by convention 0=0 D 0. That is, if �d;u D 0 then we must have �d;u D 0 to
guarantee that Cd;max is finite.

Assume for a moment that both Cd;min and Cd;max are positive and finite. Then
H.Kd;� / D H.Kd;	/ and their norms are equivalent. Furthermore, we know that
Id;� .f / D Id;	.f / D Id .f / for all f 2 H.Kd;� /.

Consider a WTP algorithm Aw.q; d/ designed for the space H.Kd;� / and apply
this algorithm for functions from the space H.Kd;	/. Then for a non-zero f from
H.Kd;	/ and hf D f=kf kH.Kd;�/ we have

jId;	.f / � Aw.q; d/.f /j
� kf kH.Kd;�/

ˇ̌
Id;	.hf / � Aw.q; d/.hf /

ˇ̌
� kf kH.Kd;�/ sup

khkH.Kd;�/�1
jId;	.h/ � Aw.q; d/.h/j

� kf kH.Kd;�/ sup
khkH.Kd;� /�Cd;max

jId;� .h/ � Aw.q; d/.h/j

D Cd;max kf kH.Kd;�/ sup
khkH.Kd;�/�1

jId;� .h/ � Aw.q; d/.h/j

� Cd;max

Cd;min
kf kH.Kd;!/ sup

khkH.Kd;�/�1
jId;� .h/ � Aw.q; d/.h/j:
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Note that the last estimate formally holds if Cd;min D 0 or Cd;max D 1, although in
this case Cd;max=Cd;min D 1.

Let e.Aw.q; d/IH.Kd; // denote the worst case error of the algorithm Aw.q; d/

over the unit ball of the space H.Kd; / with the weight sequence  D f d;ug. The
last estimate proves the following lemma4.

Lemma 15.22. We have

e.Aw.q; d/IH.Kd;	// � Cd;max

Cd;min
e.Aw.q; d/IH.Kd;� /:

Hence, as long as Cd;max=Cd;min are uniformly bounded or polynomially bounded in
d then tractability results based on the WTP algorithms for the weight sequence � also
apply for the weight sequence �.

The main point of the last lemma is that we do not have to know the weights exactly
to use the WTP algorithm. The price we pay for not knowing the exact weights is
measured by the ratio Cd;max=Cd;min.

For finite-order weights � of order !, the last lemma is applicable only if �d;u D 0

for all juj > !. Hence, it is not clear what happens if we do not use the correct
value of the order and apply the WTP algorithms for functions belonging to the space
with finite-order weights of order larger than !, or for the space with not necessarily
finite-order weights.

We now show that the WTP algorithms are still robust, although in a different sense
than that described in the last lemma, see Remark 2 in [335] where this property was
originally proved.

The WTP algorithms designed for finite-order weights of order ! neglect terms fu

for juj > !. These algorithms are of the form

Aw.q; d/ D 	; C
X

u�Œd�
1�juj�!

X
i2Q.u/

	u;i ;

see (15.41). Furthermore

	u;i .fv/ D 0 for all fv 2 H.Kd;v/ with v 6D u;

see (15.38).
For f 2 H.Kd;� / we have f D f! C f�! , where

f! D
X

u�Œd�
0�juj�!

fu and f�! D
X

v�Œd�
!<jvj�!

fv

with fu 2 H.Kd;u/.
4In fact, Lemma 15.22 holds not only for the WTP algorithm but also for all linear algorithms.
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For any juj � !, we have	u;i .fv/ D 0 for all jvj > !. Therefore	u;i .f�!/ D 0,
and

Aw.q; d/.f�!/ D 0 for all f�! :
This property makes the WTP algorithms robust. More precisely, assume that we

apply the WTP algorithms designed for finite-order weights of order ! for functions
with non-zero components fv for jvj > !. That is, we apply the WTP algorithm
Aw.q; d/ for incorrect functions. Formally, anything could happen. However, we
have

Id;� � Aw.q; d/.f / D Id;� .f!/ � Aw.q; d/.f!/C Id;� .f�!/:
Hence, the WTP algorithm Aw.q; d/ leaves the part of the problem Id;� .f�!/ un-
touched and does approximate the part of the problem Id;� .f!/ for which it has been
designed. Obviously,

jId;� � Aw.q; d/.f /j � jId;� .f!/ � Aw.q; d/.f!/j C jId;� .f�!/j
� e.Aw.q; d// kf!kH.Kd;� / C kId;�

ˇ̌
H�!

k kf�!kH.Kd;� /;

where H�! D N
v�Œd�;jvj>! H.Kd;v/.

Hence, if kf!kH.Kd;� / or jId;� .f�!/j is small then we can still obtain a pretty
good approximation of Id;� by using the WTP algorithm Aw.q; d/. More precisely,
suppose that jId;� .f�!/j � "CRId for some (small) ". Then applying the WTP
algorithm Aw.q; d/ as defined in Theorem 15.17 we obtain

jId;� .f / � Aw.q; d/.f /j � 2"CRId :

Hence, the WTP algorithms can be also used for functions with small components f�!
outside of the space for which it has been designed.

We finally add a few words about the robustness of WTP (and linear) algorithms for
product weights, �d;u D Q

j2u �d;j . Assume that � is also a product weight sequence,
�d;u D Q

j2u �d;j with �d;; D �d;; D 1. Then

Cd;max

Cd;min
D

maxu�Œd�
	d;j

�d;j

minu�Œd�
	d;j

�d;j

:

For example, if �d;j D c �d;j for some positive c then

Cd;max

Cd;min
D max.1; cd /

min.1; cd /
D �

max.c�1; c/
�d
:

Only for c D 1, i.e., for � D � , we do not have an exponential dependence on d .
On the other hand, if �d;j D .1C cd;j /�d;j for some non-negative cd;j then

Cd;max

Cd;min
D

dY
jD1

�
1C cd;j

�
;

which is uniformly bounded in d iff supd
Pd
jD1 cd;j < 1 and polynomially bounded

iff supd d
�qPd

jD1 cd;j < 1 for some non-negative positive q.



15.4 Notes and Remarks 395

15.4 Notes and Remarks

NR 15:1. It is impossible to cite all the papers where Smolyak or sparse grid algorithms
are used. These algorithms have been applied for specific problems usually defined on
spaces of functions with bounded mixed derivatives in the worst and average case set-
tings. We limit ourselves to Bungartz and Griebel [20], [21], Delvos [39], Delvos and
Schempp [40], Frank and Heinrich [68], Frank, Heinrich and Pereverzev [69], Garcke
and Hegland [73], Genz [74], Gerstner and Griebel [75], Gnewuch, Lindloh, Schneider
and Srivastav [81], Griebel [89], Griebel and Hamaekers [90], [91], Griebel, Schneider
and Zenger [92], Hang and Li [95], Heinrich [97], Klimke and Wohlmuth [150], Leent-
vaar and Oosterlee [167], Paskov [238], Pereverzev [239], Petras [240], Plaskota [244],
Plaskota and Wasilkowski [245], [246], Sickel [261], Sickel and Ullrich [262], Spren-
gel [287], Steinbauer [289], Temirgaliev, Kudaibergenov and Shomanova [293], Temly-
akov [294], [295], [296], [297], Trigub and Belinsky [313], Ullrich [315], Wahba [319],
Werschulz [338],Yserentant [357], [358], as well as [6], [33], [212], [213], [214], [215],
[216], [217], [247], [252], [329], [332], [347]. The reader is also referred to the recent
survey of Griebel [89], where many more references can be found.

In the majority of these papers, only asymptotic error bounds are provided, usually
for arbitrary fixed d . As we know, such error bounds are not enough to establish
tractability or intractability of a problem. The first paper with an explicit dependence
of error bounds on d and with tractability results was probably [329] for the unweighted
case, and [332] for the weighted case, see also [334], [335] for finite-order weights.

NR 15.1:1. As already indicated, this chapter is mostly based on [329], [332], [334],
[335]. The section for unweighted linear tensor product functionals is more or less the
same as in [329]. However, the subsection on implementation issues is new.

The section for weighted linear tensor product functionals is based on [329], [332],
[334], however none of these papers analyzed general weights. More precisely, [329]
studies product weights, whereas [334], [335] study finite-order weights. The criterion
of choosing some parameters of WTP algorithms are also different here, however, the
results are basically the same. The section on the robustness of WTP algorithms is new.

NR 15.1:2. We wish to stress again that the Smolyak/sparse grid algorithms are not
restricted to linear functionals. We presented here these algorithms only for linear
functionals since that is the focus of this volume. In Volume III we will revisit the
Smolyak/sparse grid algorithms for linear operators.

There are literally hundreds of papers devoted to the Smolyak/sparse grid algorithms
for approximation of linear functionals and operators. This algorithm is indeed one of
the major computational tools for approximate solutions of multivariate problems. As
long as d is not very large, say at most 5 to 10, there is no need to study tractability,
and the analysis done in most papers is enough although the dependence on d is not
explicitly known. Only for large d do we need to study the dependence on d , to find
conditions under which the cost bounds of the Smolyak/sparse grid algorithms do not
suffer from the curse of dimensionality.
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NR 15.2.5:1. One reason why the Smolyak algorithm does not lead to optimal tractabil-
ity bounds is that it does not use enough information about the problem we want to
approximate. Indeed, its efficiency depends on the choice of parameters and they, in
turn, depend only on the error bounds for the univariate case. More precisely, suppose
we have two multivariate problems for which the assumptions (15.6), (15.7), (15.8) are
satisfied for the same B;C;D and E. Then the crucial parameter q in the Smolyak
algorithm, as well as all error and cost bounds, will be the same. A possible remedy
would be to use more information about the behavior of the problem. How to do this
is presently unknown.

NR 15.3:1. We stress that the WTP algorithm is a weighted sum of the Smolyak
algorithm applied for approximation of the unweighted problems Iu. This allows us
to apply the results obtained for the unweighted problems and relate then the accuracy
"u to the total error ". This is especially visible in Theorem 15.17 in the definition
of "u, which is proportional to " and inversely proportional to the weight �d;u. In
particular for zero or small weights, "u is infinity or very large. Of course, the problem
of approximating Iu with such a large error is easy.

NR 15.3.5:1. As already indicated in Volume I, we believe that finite-order weights
properly model many multivariate problems that are computationally important. Fur-
thermore, the order ! of finite-order weights is usually small. Hence, the polynomial
dependence on d ! should be quite acceptable in computational practice.

NR 15.3.10:1. We again stress that the bounds on the exponent of strong polynomial
tractability are quite loose. This is especially the case when the sum-exponent of
product weights is close to 1, and then the bound of the exponent is huge. We hope
that a more refined analysis will eliminate this artifact.

NR 15.3.11:1. We add a comment on Open Problem 72. Suppose for a moment that the
exponent of strong polynomial tractability is indeed p D max.1; 2p� /. Then it contin-
uously varies from 1 to 2 and depends on the decay of the product weights. However, we
do not even know the weaker property that the exponent varies with the product weights
through its sum-exponent. It might be true, and very desirable from a computational
point of view, that the exponent is always 1 as long as lim supd

Pd
jD1 �d;j < 1. How-

ever, it was recently shown in [356] that the exponent of strong polynomial tractability
of multivariate integration does depend on product weights for the weighted class whose
unweighted analog is presented in Example 3 of Volume I. By analogy, we can thus
expect that the same property is also true for the weighted Sobolev class considered
here.

NR 15.3.14:1. The problem of selecting proper weights is important and hard, see [54].
Algorithms that use only partial information about weights are quite desirable, and
algorithms that can also work for “wrong” weights are definitely preferable.

For finite-order weights, we find the property that the WTP algorithm leaves un-
changed the part of the problem outside the space for which it has been designed quite
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remarkable. However, as pointed out in Sloan [282], we lose convergence to zero in
this case. That is, if mq.q; d/ goes to infinity then the WTP algorithm Aw.q; d/ goes
to Id;� .f!/,

lim
mw.q;d/!1

�
Id;� .f / � Aw.q; d/.f /

� D Id;� .f�!/:

On the other hand, for product weights, the situation is different since we always have
convergence to zero but at the expense of possible exponential dependence on d , see
again Sloan [282] and Lemma 15.22.

In view of our interest of tractability, it is not surprising that we prefer a fast
convergence to Id;� .f /CId;� .f�!/ instead of convergence to Id;� .f /with a running
time that may depend exponentially on d .



Chapter 16

Multivariate Integration for Korobov and Related
Spaces

16.1 Introduction

The reader may be surprised to see that this chapter is also devoted to multivariate
integration. After all, multivariate integration has been already studied in many sec-
tions, subsections and examples throughout Volume II. However, this was mostly done
to illustrate points studied in a given part of Volume II or to find relations between
arbitrary linear functionals and multivariate integration.

As we shall see, multivariate integration is so rich that even adding a long chapter
with about 90 pages does not entirely cover this subject. The reader should keep in mind
that there are literally thousands of recent research papers on multivariate integration
and there are streams of international conferences devoted to this subject. For example,
MCQMC (Monte Carlo and Quasi-Monte Carlo) international conferences have been
held every two years in different parts of the world. Each MCQMC conference has
its own proceedings, and the last proceedings of the MCQMC in Montreal edited
by L’Ecuyer and Owen, see [164], with about 670 pages is a vivid proof how much
multivariate integration is still being extensively studied.

This chapter is mostly devoted to multivariate integration defined over weighted
Korobov spaces. We consider periodic functions with arbitrary smoothness measured
by the decay of their Fourier coefficients. As usual, we consider arbitrary weights that
monitor the importance of successive variables and groups of variables. Multivariate
integration is properly normalized for weighted Korobov spaces. The initial error is
always 1 independently of the smoothness parameter and weights. In particular, this
means that the absolute and normalized error criteria coincide.

The main focus in this chapter is on lattice rules. They are a special case of QMC
algorithms with sample points given by a generator, which is a vector with integer
components. Lattice rules are classical algorithms that have been thoroughly studied
in the past. The reader may consult the monograph of Sloan and Joe [273] to see the
history and theoretical foundations of lattice rules as of 1994. Our presentation on
lattice rules follows the analysis done in [54].

Many results on lattice rules are non-constructive. That is, a typical result is that we
know there is a generator for which the worst case error of the lattice rule is appropriately
small. For instance, there is a generator for which the lattice rule achieves nearly
optimal convergence rate as well as allows us to achieve various tractability bounds
under appropriate conditions on weights. We also show that some of these conditions
are necessary for tractability if we consider QMC algorithms.

For d -variate integration we study lattice rules that use n function values. For
simplicity we always assume that n is a prime; however as indicated in the appropri-



16.1 Introduction 399

ate sections, there are papers where this assumption is relaxed. We believe that the
assumption on primality is not very restrictive since, as we know, for every integer m
there is a prime in the interval Œm; 2m�. Hence, instead of using m function values we
can at most double m and switch to n function values with a prime n.

The generators of lattice rules for the d -variate case with n points are in the set
f1; 2; : : : ; n � 1gd . So there are .n � 1/d generators. For small d , we can formally
perform the complete search of all generators, compute the worst case error for each
of them, and choose the generator that leads to the minimal worst case error. By
theoretical arguments we know that this minimal error is small, and all looks fine. But
if d is large, which is the main point of our tractability study, the complete search
cannot be done since its cost is exponential in d . In fact, it is highly exponential in d
since n cannot be too small. For instance, take very modest values of n and d , namely
n D 101 and d D 10. Then .n � 1/d D 1020 is quite a formidable number.

So how can we find a good generator of the lattice rule if d is large? For many
years it looked like a hopeless problem, and indeed the study of lattice rules has been
considered purely theoretical for many years. The big and beautiful surprise came
from the Australian school of Ian H. Sloan and it was named the CBC (component-by
component) algorithm. The main idea is to search for the successive components of
a good generator one component at a time. That is, we take without loss of gener-
ality the first component of the generator as 1, and assuming that the first k compo-
nents are already known we look for the .k C 1/th component by searching the set
f1; 2; : : : ; n � 1g. We do this for k D 1; 2; : : : ; d � 1. In this way, we end up with a
generator by searching through the set of .n� 1/.d � 1/ elements instead of .n� 1/d
elements.

The CBC algorithm looks very promising, but it is by far not clear whether such
a generator is good and leads to a small worst case error. This was first deemed not
likely to be a successful strategy, see Niederreiter [201] p. 987 but later it was shown
feasible. We quote Ian Sloan from [270]:

For me the idea for construction started in 1999, at the Hong Kong Work-
shop for the Complexity of Multivariate Problems. By the time of that
Workshop it was already accepted that weighted spaces gave a good set-
ting for the non-constructive proof of the existence of good QMC rules.
Also, Henryk and I were about to submit the paper on the existence of
good lattice rules that later appeared as [279]. At that time nothing was
known about construction, but I remember that there was some vigorous
discussion at the Workshop on the desirability of constructive proofs. Dur-
ing a coffee break I sat down together with Stephen Joe of the University
of Waikato, and we said to each other something along these lines: “Now
that we know that a good lattice exists, is it thinkable that we can construct
such a thing one component at a time?” Fortunately, we had at that moment
forgotten the conventional wisdom for classical lattice rules, that it is folly
to attempt to construct a good lattice rule in d dimension from one in d �1
dimensions. I say fortunately, because in the context of weighted spaces
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it turns out perfectly possible to build up good lattices one coordinate at
a time. The work that Stephen Joe and I did in that coffee break led in
due course to what is now called the “component-by-component” or CBC
construction of good lattice rules, see Sloan, Kuo and Joe [271], Sloan,
Kuo and Joe [272], Sloan and Reztsov [274].

The first constructions of the CBC algorithm were done for the weighted Sobolev
space with smoothness parameter 1 and yielded O.n�1=2/ error bounds. The choice
of this Sobolev space is not merely happenstance since it is related to the weighted
Korobov space with ˛ D 1 via the shift-invariant kernel technique introduced by
Hickernell [117], see also [128]. More will be said later in this introduction.

Kuo [152] was the first one to obtain better rates of convergence for lattice rules
with generators computed by the CBC algorithm. She obtained up to the best order
of O.n�1/ for the weighted Sobolev space and up to the best order O.n�˛/ for the
weighted Korobov space with the smoothness parameter ˛ > 1

2
. First, mostly product

weights were used for the CBC algorithm, and gradually the study of the CBC algorithm
was done for general weights, see [54].

To make the CBC algorithm really practical, we must know that the cost of con-
struction of a generator is relatively small. The first constructions for product weights
required O.d n2/ arithmetic operations. Nuyens and Cools made another breakthrough
by showing that the CBC algorithm can be done using O.d n ln n/ arithmetic opera-
tions, see [226], [227], [228]. More precisely, they prove that the CBC algorithm is
equivalent to a matrix-vector multiplication and that the matrix can be permuted to
become a circulant matrix for which the fast Fourier transform can be used. Note
that for the lattice rule we need to compute n function values at sample points of d
components. That is why the cost of the lattice rule is at least proportional to n d .
Hence, the cost of the CBC algorithm is at most only slightly larger, and modulo ln n
we match the lower bound. The fast implementation of the CBC algorithm permits
an online algorithm that constructs the generator and at the same time computes an
approximation to a multivariate integral.

The error bounds of the lattice rules with the generators computed by the CBC
algorithm allow us to prove tractability under some conditions on the weights. We
study various notions of tractability such as strong polynomial, polynomial, strong T -
tractability, T -tractability and weak tractability. Some of these conditions on weights
are sharp for QMC algorithms.

In the second part of this chapter we ask whether tractability conditions obtained
through the use of lattice rules can be relaxed if we use arbitrary algorithms. From
general IBC results presented in Chapter 4 of Volume I, we know that we can restrict
ourselves to linear algorithms. In Chapter 12 we presented a number of lower error
bounds for arbitrary linear algorithms under the assumption that the reproducing kernel
of the space is decomposable or it has a decomposable part. Unfortunately, the assump-
tions on decomposability do not hold for the weighted Korobov spaces. To overcome
this problem we show as in [129] that multivariate integration over the weighted Ko-
robov spaces is not easier than multivariate integration over certain weighted Sobolev
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spaces, and for the latter the idea of decomposable kernels works. In this way, we
prove that for product weights the tractability conditions are the same for the classes
of arbitrary and QMC algorithms.

More precisely, the last results are obtained by applying shift-invariant kernels, see
again Hickernell [117] and [128]. We know that multivariate integration for the space
with the reproducing kernelKd is not harder than multivariate integration for the space
with the shift-invariant Ksh;d kernel of Kd . Informally, we write this as

INT.Kd / � INT.Ksh;d /:

Of course, this relation can be used in two ways. Lower bounds on INT.Kd / can be
applied to INT.Ksh;d /, and upper bounds on INT.Ksh;d / can be applied to INT.Kd /.
Indeed, we use this relation in both ways.

First, we want to solve an inverse problem. That is, we look forKd for whichKsh;d

is the reproducing kernel for the weighted Korobov space. It turns out that Kd is the
kernel for a weighted Sobolev space with certain boundary conditions. Furthermore,
Kd has a decomposable part and we can apply lower bounds on INT.Kd / as well as
on INT.Ksh;d /.

Secondly, we takeKd as the kernel of a typical weighted Sobolev space and compute
Ksh;d . For some Kd corresponding to the smoothness parameter r D 1, the kernel
Ksh;d corresponds to the weighted Korobov space with the smoothness parameter
˛ D 1. Then we apply upper bounds for INT.Ksh;d / to INT.Kd /. In this way we
obtain shifted lattice rules for the weighted Sobolev space that enjoy the same error
bounds as lattice rules for the weighted Korobov spaces.

Although lattice rules and shifted lattice rules have good theoretical properties, they
do depend on the weights. That is, we must know a priori weights to construct the
generator, and for different weights we may have different generators. From one point
of view, this property is quite natural since the weights define the space, and a good
algorithm must, in general, depend on the space for which it should work well. On the
other hand, it is quite demanding to know exactly the weights and we would definitely
prefer to have algorithms with some degree of universality, that is, algorithms that work
well for some classes of weights. We briefly discussed this point already in Chapter 15.
We return to this point in this chapter in the context of the weighted Sobolev spaces.
In this case, we can not only use shifted lattice rules but also low discrepancy points or
sequences. The latter are not dependent on weights, and as we know there is a huge,
deep and beautiful theory of QMC algorithms that use such points. As in [275], we
check in the final subsection of this chapter that low discrepancy points and sequences
also work well for weighted spaces. We show error estimates for the Niederreiter
sequence in the case of finite-order weights. Surprisingly enough, for the normalized
error criterion these error bounds depend only on the order ! of finite-order weights.
Hence, if we know ! or an upper bound on ! then the QMC algorithm that uses
the Niederreiter sequence will work for all finite-order weights of order !. We also
mention that similar results hold for Halton and Sobol sequences.

As in all chapters, we include several open problems. There are five of them and
they are numbered from 73 to 77.
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16.2 Weighted Korobov Spaces

Weighted Korobov spaces are defined in Appendix A.1.1 of Volume I. We will recall a
few facts about these spaces that will be needed in this chapter.

We use the weighted Korobov space Hd;˛;� with ˛ > 1
2

for general non-negative
weights � D f�d;ug, where d 2 N and u is an arbitrary subset of

Œd � WD f1; 2; : : : ; dg:
We assume that �d;; D 1. The weighted Korobov spaces also depend on two positive
parameters ˇ1 and ˇ2. We take ˇ1 D 1 and ˇ2 D .2�/�2˛ , since this choice allows to
express the norm of functions from Hd;˛;� nicely in terms of their derivatives, as we
shall see later.

For h D Œh1; h2; : : : ; hd � 2 Zd , let uh D fj 2 Œd � j hj 6D 0g and

%d;˛;� .h/ D 1

�d;uh

Y
j2uh

j2� hj j2˛:

For �d;uh
D 0 we formally set %d;˛;� .h/ D 1. For h D 0 we have u0 D ; and

%d;˛;� .0/ D 1:

The weighted Korobov spaceHd;˛;� consists of periodic complex-valued functions
defined on Œ0; 1�d for which

kf kHd;˛;�
WD
� X
h2Zd

%d;˛;� .h/ j Of .h/j2
�1=2

< 1

with Of .h/ denoting the Fourier coefficient of f , and given by

Of .h/ D
Z
Œ0;1�d

exp.�2� i h � x/ f .x/ dx;

where i D p�1 and h � x D h1x1 C h2x2 C � � � C hdxd .
The inner product is defined for f; g 2 Hd;˛;� as

hf; giHd;˛;�
WD

X
h2Zd

%d;˛;� .h/ Of .h/ Og.h/:

If %d;˛;� .h/ D 1 then we assume that Of .h/ D 0 for all f 2 Hd;˛;� , and interpret
1 � 0 D 0, so that the corresponding term in the sums above disappears.

For this choice of ˇ1 and ˇ2, and for d D 1, ˛ D r with a positive integer r , and
�1;f1g D 1 we have the pleasing relation

kf k2Hd;˛;�
D
ˇ̌̌̌Z 1

0

f .x/ dx

ˇ̌̌̌2
C
Z 1

0

jf .r/.x/j2 dx:
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For d � 1, similar relations are exhibited in Appendix A.1.1 of Volume I.
Note that %d;˛;� is a non-decreasing function of ˛. Therefore, the norm of f is also

non-decreasing. That is, for ˛ � ˇ we have

kf kHd;˛;�
� kf kHd;ˇ;�

for all f 2 Hd;ˇ;� :
This means that the unit ball of Hd;ˇ;� is a subset of the unit ball of Hd;˛;� .

Note also that %d;˛;� is a non-increasing function of � . That is, if we have two
weight sequences � D f�d;ug and � D f�d;ug such that

�d;u � �d;u for all d 2 N and for all u � Œd �,

then %d;˛;� .h/ � %d;˛;	.h/ for all h 2 Zd and

kf kHd;˛;�
� kf kHd;˛;�

for all f 2 Hd;˛;� :
This means that the unit ball of Hd;˛;� is a subset of the unit ball of Hd;˛;	 , and
monotonically decreasing weights shrink the unit ball of the weighted Korobov spaces.

It is also of interest to ask when the unit balls Bd of the spaces Hd;˛;� are non-
decreasing, so that

B1 � B2 � � � � � Bd � � � � :
Here we assume that a function f 2 Hd;˛;� of d variables is treated as a function
of d C k variables and is independent of the d C 1; d C 2; : : : ; d C k variables for
all k 2 N. Assume for a moment that all weights �d;u are positive. Note that for
f 2 Hd;˛;� we have

kf k2HdCk;˛;�
D

X
h2ZdCk

%dCk;˛;� .h/ j Of .h/j2

D
X

hDŒh1;h2;:::;hd ;0;0;:::;0�2ZdCk

%dCk;˛;� .h/ j Of .h/j2:

For h 2 Zd and 0 2 Zk we have

%dCk;˛;� .Œh; 0�/ D 1

�dCk;uh

Y
j2uh

j2� hj j2˛ D �d;uh

�dCk;uh

%d;˛;� .h/:

Therefore

kf k2HdCk;˛;�
D

X
h2Zd

�d;uh

�dCk;uh

%d;˛;� .h/ j Of .h/j2 � max
u�Œd�

�d;u

�dCk;u
kf k2Hd;˛;�

< 1:

Hence, f 2 Hd;˛;� implies that f 2 HdCk;˛;� for all k 2 N. Furthermore, if

�d;u � �dC1;u for all d 2 N and u � Œd �; (16.1)

then
kf kHdCk;˛;�

� kf kHd;˛;�
for all f 2 Hd;˛;� and k 2 N:
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Additionally, if we have equality in (16.1) then

kf kHdCk;˛;�
D kf kHd;˛;�

for all f 2 Hd;˛;� and k 2 N:

As in [55], we say that the weight sequence � D f�d;ug is nested if (16.1) holds.
In this case, we also say that the weights �d;u are nested.

Obviously, if the weights �d;u are independent of d , i.e., �d;u D �u, then they are
nested. In particular, product weights independent of d have the form

�d;u D
Y
j2u

�j for all d 2 N and u � Œd �;

and are nested. Similarly, order-dependent weights, i.e., �d;u D �d;juj, are nested if
�d;juj D �juj does not depend on d . Finally, finite-order weights are nested if they do
not depend on d , i.e., �d;u D �u and �u D 0 for all juj > !.

We stress that weights independent of d are not only nested, but also that (16.1)
holds with equality. This means that in this case the norms of f 2 Hd;˛;� are the same
for all spaces HdCk;˛;� with k 2 N.

For nested weights, we have Bd � BdC1 and the unit balls are non-decreasing.
This also means that the weighted Korobov spaces do not decrease with d , i.e.,

H1;˛;� � H2;˛;� � � � � � Hd;˛;� � � � � :
The weighted Korobov spaceHd;˛;� is a reproducing kernel Hilbert space with the

kernel

Kd;˛;� .x; y/ D
X
h2Zd

%�1
d;˛;� .h/ exp .2� i h � .x � y//

D
X

u�Œd�
�d;u

Y
j2u

2

.2�/2˛

1X
hD1

cos.2� h .xj � yj //
h2˛

for all x; y 2 Œ0; 1�d . For x D y we obtain

Kd;˛;� .x; x/ D
X

u�Œd�
�d;u


2.2˛/

.2�/2˛

�juj
for all x 2 Œ0; 1�d ;

where, as always,  is the Riemann zeta function. Note thatKd;˛;� .x; x/ is well defined
since we assume that ˛ > 1

2
and then .2˛/ < 1.

16.3 Multivariate Integration

Multivariate integration is given as

Id .f / D
Z
Œ0;1�d

f .t/ dt for all f 2 Hd ˛;� :
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Clearly,
Id .f / D Of .0/ D hf; 1iHd;˛;�

for all f 2 Hd ˛;� :
Hence, the initial error is

e.0; d/ D kIdk D 1;

and there is no difference between the absolute and normalized error criteria.
Consider a QMC algorithm

Qn;d .f / D 1

n

nX
kD1

f .xk/ for all f 2 Hd;˛;� (16.2)

for some sample points xk 2 Œ0; 1�d . We know that the square of the worst case error
of Qn;d in the space Hd;˛;� is

e2.Qn;d IHd;˛;� / D �1C 1

n2

nX
k;sD1

Kd;˛;� .xk; xs/:

Using the formula for Kd;˛;� .x; y/ we see that the term for u D ; is 1 and therefore

e2.Qn;d IHd;˛;� /

D 1

n2

nX
k;sD1

X
;6Du�Œd�

�d;u
Y
j2u

1

.2�/2˛

1X
06Dh2Z

exp.2� i h.xk;j � xs;j /
jhj2˛

D 1

n2

nX
k;sD1

X
;6Du�Œd�

�d;u
Y
j2u

2

.2�/2˛

1X
hD1

cos.2� h .xk;j � xs;j //
h2˛

;

where xk;j and xs;j denote the j th components of xk and xs .
The formula above is a non-increasing function of ˛. This simply follows from the

fact that the unit ball of Hd;ˇ;� is a subset of the unit ball of Hd;˛;� for ˛ � ˇ and
therefore

e.Qn;d IHd;ˇ;� / � e.Qn;d IHd;˛;� / for all n; d 2 N:

This means that the smoothness, measured by ˛, helps to decrease the worst case error,
and so multivariate integration in Hd;ˇ;� is not harder than multivariate integration
in Hd;˛;� .

Similarly, for the two sequences of weights � D f�d;ug and � D f�d;ug with
�d;u � �d;u for all d 2 N and for all u � Œd �, we have

e.Qn;d IHd;˛;� / � e.Qn;d IHd;˛;	/ for all n; d 2 N:

This means that multivariate integration in Hd;˛;� is not harder than multivariate in-
tegration in Hd;˛;	 , or (equivalently) that the monotonically decreasing weights make
multivariate integration easier. In the extreme case when we take �d;u D 0 for all
non-empty u then

e.Qn;d IHd;˛;� / D 0 for all n 2 N;
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and multivariate integration is trivial. This is why we always assume that at least one
�d;u is positive for a non-empty u.

For nested weights, it is clear that d -variate integration is not harder than .d C 1/-
variate integration since the unit ball Bd of Hd;˛;� is a subset of the unit ball BdC1 of
HdC1;˛;� , i.e.,

e.Qn;d IHd;˛;� / � e.Qn;dC1IHdC1;˛;� / for all n; d 2 N:

The property that integrating functions with more variables is not easier than integrating
functions with fewer variables is quite natural.

16.4 Lattice Rules

We now specify sample points xk used by the QMC algorithmQn;d to be given by the
rank-1 lattice point set ²²

kz
n

³ ˇ̌
k D 0; 1; : : : ; n � 1

³
:

Here we assume that n is prime and z D Œz1; z2; : : : ; zd � is an integer vector whose
components are from the set

Zn WD f1; 2; : : : ; n � 1g:
By fkz=ng we denote the vector Œfkz1=ng; fkz2=ng; : : : ; fkzd=ng�with fkzj =ng being
the fractional part of kzj =n.

The assumption that n is prime can be relaxed but we do not pursue this point in
this chapter. For non-prime number n similar results can be established by applying
the approach used in Dick [41] and Kuo and Joe [153].

Hence, for lattice rules we have

xkC1 D
²
k z
n

³
for all k D 0; 1; : : : ; n � 1;

and the integer vector z is called a generator of the lattice rule. To stress the dependence
on z, we denote the worst case error of the lattice rule Qn;d with generator z as

en;d .z/ D e.Qn;d IHd;˛;� /:
We have

e2n;d .z/ D �1C 1

n2

nX
k;sD1

Kd;˛;� .xk; xs/

D �1C 1

n2

n�1X
k;sD0

X
h2Zd

%�1
d;˛;� .h/ exp

�
2� i .k � s/ h � z=n� D
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D �1C 1

n2

n�1X
sD0

� X
h2Zd

%�1
d;˛;� .h/

n�1X
kD0

exp
�
2� i .k � s/ h � z=n��:

Note that

n�1X
kD0

exp
�
2� i .k � s/ h � z=n� D

´
n if h � z 	 0 mod n;

0 otherwise:

In particular, this means that the last sum does not depend on s. Therefore each term
in the sum above over s has the same value, and we can simplify the expression for
e2
n;d
.z/ as follows,

e2n;d .z/ D �1C 1

n

n�1X
kD0

X
h2Zd

%�1
d;˛;�

dY
jD1

exp
�
2� i k hj zj =n

�
D 1

n

n�1X
kD0

X
06Dh2Zd

%�1
d;˛;�

dY
jD1

exp
�
2� i k hj zj =n

�
D 1

n

n�1X
kD0

X
;6Du�Œd�

�d;u
Y
j2u

 X
06Dh2Z

exp
�
2� i hkzj =n

�
.2� jhj/2˛

�
:

(16.3)

16.4.1 The Existence of Good Lattice Rules

By a good lattice rule we mean a lattice rule, or equivalently a generator z, with a small
worst case error. We now show the existence of good lattice rules by an averaging
argument over z 2 Zd

n , where Zd
n denotes the d -fold copy of Zn. Define

Mn;d .˛/ WD 1

.n � 1/d
X

z2Zd
n

e2n;d .z/; (16.4)

as the mean square worst case error taken over all possible z 2 Zd
n . The value of

Mn;d .˛/ was found for product weights in [279], and for general weights in [55]. In
our case, a few details are different from the study done in [55], where ˇ2 is taken as 1
and ˛ corresponds to our 2˛. In any case, following the proof from [55], it is easy to
find Mn;d .˛/ for general weights in our case.

Theorem 16.1. Let n be a prime number and ˛ > 1
2
.

• We have

Mn;d .˛/ D 1

n

X
;6Du�Œd�

�d;u


2 .2˛/

.2�/2˛

�juj
C n � 1

n

X
;6Du�Œd�

�d;u T
juj.˛/;
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where

T .˛/ D �2.2˛/
.2�/2˛

.1 � n1�2˛/
n � 1 : (16.5)

• We have

Mn;d .˛/ � 1

n � 1
X

;6Du�Œd�
�d;u


2 .2˛/

.2�/2˛

�juj
:

• There exists a generator z 2 Zd
n such that

en;d .z/ � 1p
n � 1

 X
;6Du�Œd�

�d;u


2 .2˛/

.2�/2˛

�juj!1=2
:

• Let � be the uniform distribution on Zd
n , i.e., �.z/ D .n� 1/�d for all z 2 Zd

n .
For c > 1, define the set

Zc D
´

z 2 Zd
n j en;d .z/ � cp

n � 1

 X
;6Du�Œd�

�d;u


2 .2˛/

.2�/2˛

�juj!1=2 μ
:

Then
� .Zc/ � 1 � c�2:

Proof. We use the formula (16.3) for e2
n;d
.z/ and average it over all the .n�1/d values

of z 2 Zd
n . We obtain

Mn;d .˛/ D 1

.n � 1/d
X

z2Zd
n

1

n

n�1X
kD0

X
;6Du�Œd�

�d;u
Y
j2u

 X
06Dh2Z

e2� ihkzj =n

.2� jhj/2˛
�

D 1

n

n�1X
kD0

X
;6Du�Œd�

�d;u

.n � 1/juj
X

zu2Zjuj
n

Y
j2u

� X
06Dh2Z

e2� ihkzj =n

.2� jhj/2˛
	

D 1

n

n�1X
kD0

X
;6Du�Œd�

�d;u
Y
j2u

�
1

n � 1
X
zj 2Zn

X
06Dh2Z

e2�ihkzj =n

.2� jhj/2˛
	

D 1

n

n�1X
kD0

X
;6Du�Œd�

�d;uT
juj
˛ .k; n/;

(16.6)

where

T˛.k; n/ WD 1

.n � 1/
n�1X
zD1

X
06Dh2Z

e2�ihkz=n

.2� jhj/2˛ :



16.4 Lattice Rules 409

We now show that

T˛.k; n/ D
´
2�.2˛/

.2�/2˛ if k is a multiple of n;

T .˛/ otherwise,

where T .˛/ is given by (16.5). Indeed, if k is a multiple of n we need to sum upX
06Dh2Z

1

.2� jhj/2˛ D 2

.2�/2˛

1X
jD1

1

j 2˛
D 2.2˛/

.2�/2˛
;

as claimed.
If k is not a multiple of n then we separate out the terms in the sum over h in which

h is a multiple of n and obtain

a WD 1

.2�/2˛

n�1X
zD1

� X
hDjn; 06Dj2Z

1

jhj2˛ C
X

h6�0modn

e2� ihkz=n

jhj2˛
	

D 2.2˛/

.2�/2˛
n � 1
n2˛

C 1

.2�/2˛

X
h6�0modn

1

jhj2˛
n�1X
zD1

e2� ihkz=n:

For q D e2� ihk=n we have q 6D 1 since n is prime, and qn D 1. Therefore

n�1X
zD1

e2� ihkz=n D
n�1X
zD1

qz D 1 � qn
1 � q � 1 D �1:

Hence X
h6�0modn

1

jhj2˛
n�1X
zD1

e2� ihkz=n D �
X

h6�0modn

1

jhj2˛

D �
� X
06Dh2Z

1

jhj2˛ �
X

hDjn; 0 6Dj2Z

1

jhj2˛
	

D �2.2˛/.1 � n�2˛/;

and

a D �2.2˛/
.2�/2˛

�
1 � n�2˛ � .n � 1/n�2˛� D �2.2˛/

.2�/2˛

�
1 � n1�2˛� :

This proves that T˛.k; n/ D T .˛/, as claimed.
We return to the formula (16.6) forMn;d .˛/. Separating out the k D 0 term in the

expression of Mn;d .˛/, we have

Mn;d .˛/ D 1

n

X
;6Du�Œd�

�d;u


2.2˛/

.2�/2˛

�juj
C n � 1

n

X
;6Du�Œd�

�d;uT
juj.˛/:
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This completes the first part of the theorem.
To prove the second point, write Mn;d .˛/ as

Mn;d .˛/ D 1

n

X
;6Du�Œd�

�d;u


2.2˛/

.2�/2˛

�juj
.1CR.n;u; ˛//;

where

R.n;u; ˛/ D .�1/juj.n � 1/
�
1 � n1�2˛

n � 1
	juj

:

If juj is odd then R.n;u; ˛/ 2 .�1; 0/, while if juj is even then juj � 2 and

R.n;u; ˛/ 2
 
0; .n � 1/

�
1 � n1�2˛

n � 1
	2#

�
�
0;

1

n � 1
	
:

Therefore for all juj, we have

Mn;d .˛/ � 1

n

X
;6Du�Œd�

�d;u


2.2˛/

.2�/2˛

�juj �
1C 1

n � 1
	

D 1

n � 1
X

;6Du�Œd�
�d;u


2.2˛/

.2�/2˛

�juj
:

This completes the proof of the estimate of Mn;d .˛/.
The remaining parts of Theorem 16.1 follow from an easy application of the mean

value theorem and Chebyshev’s inequality applied to (16.4).

Theorem 16.1 presents the formula and an upper bound for the mean square worst
case error in terms of the number of sample points n, the smoothness parameter ˛ and
the weights �d;u of the Korobov space Hd;˛;� .

We stress that Theorem 16.1 is not constructive since we only claim the existence
of a generator z for which

en;d .z/ D O.n�1=2/:
The convergence rate is not great. However, it is independent of d . The last part of
this theorem states that for large c, say c D 10, we have a large probability, at least
0:99 for c D 10, that randomly selected generators from Zd

n satisfy the bound on the
mean worst case error modulo a factor c.

The next theorem establishes a faster rate of convergence than is apparent in The-
orem 16.1. It shows that for a properly chosen generator z we may have the rate of
convergence arbitrarily close to ˛, i.e., en;d .z/ D O.n�� / for � < ˛. We stress that
the rate ˛ is best possible since even for the univariate case the minimal worst case
errors tend to zero like n�˛ , see [273]. The main tool to obtain such a result is Jensen’s
inequality,

1X
kD1

ak �
� 1X
kD1

a�k

�1=�
for all 
 2 .0; 1�;
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where ak are arbitrary non-negative numbers, and which has been already used many
times in Volume I as well as in Volume II.

In order to apply Jensen’s inequality we need to find a special form of the square of
the worst case error of the lattice rule with a generator z. This form should be expressed
as a sum of infinitely many non-negative terms.

It will be convenient to use an alternative notation en;d .˛; �; z/ for the worst case
error en;d .z/, in order to stress the dependence on the parameter ˛ and the weight
sequence � D f�d;ug. Let zu and hu denote the juj-dimensional vectors containing
the components of z and h with indices in u. Let

Z0 D Z n f0g
denote the set of non-zero integers. Then we have the following lemma.

Lemma 16.2. For a prime n and ˛ > 1
2
, we have

e2n;d .˛; �; z/ D
X

;6Du�Œd�

X
hu2Z

juj
0

hu�zu�0mod n

�d;uQ
j2u.2� jhj j/2˛ :

Proof. We know from (16.3) that

e2n;d .˛; �; z/ D 1

n

n�1X
kD0

X
;6Du�Œd�

�d;u
Y
j2u

h X
06Dh2Z

exp.
�
2� i hkzj =n

�
.2� jhj/2˛

i
:

We exchange the order of the product and the last sum, and obtain

e2n;d .˛; �; z/ D 1

n

n�1X
kD0

X
;6Du�Œd�

�d;u
X

hu2Zjuj
0

exp.2�ikhu � zu=n/Q
j2u.2� jhj j/2˛

D
X

;6Du�Œd�
�d;u

X
hu2Zjuj

0

1

n

n�1X
kD0

exp.2�ikhu � zu=n/Q
j2u.2� jhj j/2˛ :

This allows us to sum up with respect to k. Since

1

n

n�1X
kD0

exp.2�ikhu � zu=n/ D
´
1 if hu � zu 	 0mod n ;

0 otherwise,

we have
e2n;d .˛; �; z/ D

X
;6Du�Œd�

X
hu2Z

juj
0

hu�zu�0mod n

�d;uQ
j2u.2� jhj j/2˛ ;

as claimed.
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Lemma 16.2 expresses the square of the worst case of the lattice rules as an infinite
sum of non-negative terms. Note also that the number n now affects the terms in the
sum over hu, and the factor n�1 present in the previous formula formally disappeared.

We are ready to apply Jensen’s inequality and to get estimates with a better rate of
convergence.

Theorem 16.3. Let n be a prime number and ˛ > 1
2
.

• Then there exists a rank-1 lattice rule with a generator z� 2 Zd
n such that for all

� 2 Œ1
2
; ˛/ we have

en;d .˛; �; z
�/ � C.d; �/ .n � 1/�� ;

where

C.d; �/ D
� X

;6Du�Œd�
�
1=.2�/

d;u


2.˛=�/

.2�/˛=�

�juj 	�
: (16.7)

• Let � be the same probability measure as in Theorem 16.1. For � 2 Œ1
2
; ˛/ and

c > 1, define

Zc.�/ D ˚
z 2 Zd

n W en;d .z/ � c C.d; �/ .n � 1/��
:
Then

� .Zc.�// � 1 � c�1=� :

Proof. Applying Jensen’s inequality to the expression on e2
n;d
.˛; �; z/ given by

Lemma 16.2, we obtain for 
 2 .1=.2˛/; 1� that

e2n;d .˛; �; z/ �
� X

;6Du�Œd�

X
hu2Z

juj
0

hu�zu�0mod n

��
d;uQ

j2u.2� jhj j/2˛�
	1=�

D �
e2n;d .˛
; �

�; z/
�1=�

;

where �� denotes the weight sequence with values ��
d;u

for each u � Œd �.
This means that

en;d .˛; �; z/ � e
1=�

n;d
.˛
; ��; z/ for all 
 2 .1=.2˛/; 1�: (16.8)

For 
 < 1 we have 1=
 > 1, and we estimate the worst case error of the lattice rule
for the original weighted Korobov space by a higher power of the worst case error of
the same lattice rule for the weighted Korobov space with the modified smoothness
parameter and the modified weight sequence.
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We now apply Theorem 16.1 with ˛ replaced by ˛
 and � replaced by ��. Then
there exists a generator z� 2 Zd

n such that

en;d .˛
; �
�; z�/ � 1p

n � 1
� X

;6Du�Œd�
��d;u


2.2˛
/

.2�/2˛�

�juj	1=2
:

Now let z� 2 Zd
n be such that

en;d .˛; �; z
�/ � en;d .˛; �; z/ for all z 2 Zd

n :

Then for all 
 2 .1=.2˛/; 1� we have

en;d .˛; �; z
�/ � en;d .˛; �; z�/ � e

1=�

n;d
.˛
; ��; z�/;

and therefore

en;d .˛; �; z
�/ � .n � 1/�1=.2�/

� X
;6Du�Œd�

��d;u


2.2˛
/

.2�/2˛�

�juj	1=.2�/
: (16.9)

For � 2 Œ1
2
; ˛/, take 
 D 1=.2�/. Then 
 2 .1=.2˛/; 1�, and we rewrite (16.9) as

en;d .˛; �; z
�/ � .n � 1/��

� X
;6Du�Œd�

�
1=.2�/

d;u


2.˛=�/

.2�/˛=�

�juj	�
:

This completes the proof of the first part.
We now prove the second part. For 
 2 .1=.2˛/; 1�, we know from Theorem 16.1

that the set of z 2 Zd
n for which

en;d .˛
; �
�; z/ � c�p

n � 1
� X

;6Du�Œd�
��d;u


2.2˛
/

.2�/2˛�

�juj	1=2
has measure at least 1 � c�2�. Since e�

n;d
.˛; �; z/ � en;d .˛
; �

�; z/, then the set of z
for which

e.˛; �; z/ � c

.n � 1/1=.2�/
� X

;6Du�Œd�
��d;u


2.2˛
/

.2�/2˛�

�juj	1=.2�/
also has measure at least 1�c�2�. Substituting � D 1=.2
/we obtain the second part.
This completes the proof.

Theorem 16.3 tells us that for arbitrarily large d there is a rank-1 lattice rule whose
error is of order n�� . Since � can be arbitrarily close to ˛ we may achieve almost the
same speed of convergence as for the univariate case, which is n�˛ , and it is known that
this bound is sharp, see again [273]. Hence, as long as we control the factors C.d; �/,
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the difficulty of the d -variate integration is roughly the same as for the univariate case.
Furthermore, if we choose c such that c�1=� is small, we have large probability that
the vectors z from Zd

n satisfy the error bound of order n�� .
We now show that C.d; �/ is a non-decreasing function of � 2 Œ1

2
; ˛/. Indeed,

again by Jensen’s inequality, for �1; �2 2 Œ1
2
; ˛/ with �1 � �2, we take 
 D �1=�2 � 1

and

C.d; �1/ D
� X

;6Du�Œd�


�d;u

.2�/2˛juj

�1=.2�1/ X
j1;j2;:::;jjuj2Z0

jujY
kD1

j
�˛=�1
k

	�1

�
� X

;6Du�Œd�


�d;u

.2�/2˛juj

��=.2�1/ X
j1;j2;:::;jjuj2Z0

jujY
kD1

j
��˛=�1
k

	�1=�

D
� X

;6Du�Œd�


�d;u

.2�/2˛juj

�1=.2�2/ X
j1;j2;:::;jjuj2Z0

jujY
kD1

j
�˛=�2
k

	�2
D C.d; �2/;

as claimed. This property implies that we have a tradeoff in the estimate

en;d .z
�/ � C.d; �/ .n � 1/�� :

Namely, the increase of � improves the rate of convergence at the expense of the
increase of the factor C.d; �/. Obviously, for a relatively small d , the larger value of �
is preferable since even an exponential dependence on d can be tolerated. Of course,
this point cannot be taken to the limit, since for � tending to ˛ the factorC.d; �/ goes to
infinity. This must be so since for d � 2we know that even the nth minimal worst case
error behaves asymptotically as n�˛.ln n/a.d�1/ for some positive a. The presence of
ln nmakes it impossible to let � D ˛; equivalently, for � tending to ˛ the factorC.d; �/
must blow up.

The factor C.d; �/ blows up to infinity as � approaches ˛ since the argument of the
Riemann zeta function then tends to one, and it behaves like .1C ı/ � ı�1 for small
positive ı. If we set � D ˛.1 � ı/, then we have

C.d; ˛.1 � ı// �
� X

;6Du�Œd�
�
1=.2˛/

d;u

1

Œı�1��juj

	˛
:

It is natural to ask what is the largest � for which we still have a meaningful estimate
of en;d .z�/. Of course, this depends on how fast C.d; �/ grows. We would like to
choose the largest � for which C.d; �/ is not exponential in d . That is, we would like
to maximize the rate of convergence and still have tractability. This depends on the
weights. In the next sections we find conditions on the weights to get various kinds of
tractability.
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16.4.2 Tractability for General Weights

We are now ready to discuss tractability of multivariate integration in the weighted
Korobov spaces Hd;˛;� for general weights. From Theorem 16.3 we easily conclude
sufficient conditions on the weights for (strong) polynomial tractability, T -tractability
and weak tractability. We also provide matching necessary conditions, assuming that
the weights are chosen such that the reproducing kernel is point-wise non-negative
and we use arbitrary QMC algorithms. For this case, we use the same analysis as
in Section 6.2 of [277]. The case of arbitrary algorithms is much harder and will be
considered later in Section 16.8.

We remind the reader that the initial error is one, and there is no difference between
the absolute and normalized error criteria. Therefore for brevity, we do not mention
the error criteria for tractability results. As always, by n."; d/ we denote the minimal
number of function values that are needed to find a (linear) algorithm with the worst
case error at most ". By nQMC."; d/ we denote the minimal number of function values
that are needed to find a QMC algorithm with the worst case error at most ". Obviously,
n."; d/ � nQMC."; d/.

Theorem 16.4. Considermultivariate integration I� D fId;�g defined for theweighted
Korobov spacesHd;˛;� with ˛ > 1

2
.

For � 2 Œ1
2
; ˛/ and q � 0 define

B�;q ´ sup
d2N


1

dq

X
;6Du�Œd�

�
1=.2�/

d;u


2.˛=�/

.2�/˛=�

�juj �
: (16.10)

• If there exists a non-negative q such that B1=2;q < 1 then I� is polynomially
tractable. If

B�;q < 1 for some � 2 �1
2
; ˛
�
and a non-negative q

then I� is polynomially tractable with an "�1 exponent at most 1=� and a d
exponent at most q,

nQMC."; d/ D O
�
"�1=� dq

�
with the factor in the big O notation independent of "�1 and d .

• In particular, if
B1=2;0 < 1

then I� is strongly polynomially tractable. If

B�;0 < 1 for some � 2 �1
2
; ˛
�

then the "�1 exponent of strong polynomial tractability is at most 1=� . If

B�;0 < 1 for all � 2 �1
2
; ˛
�

then the "�1 exponent of strong polynomial tractability reaches the minimal value
1=˛.
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• Assume that the weights � D f�d;ug are chosen such that

Kd;˛;� .x; y/ � 0 for all x; y 2 Œ0; 1�d : (16.11)

Then I� is strongly polynomially tractable for QMC algorithms iff

B1=2;0 < 1;

and I� is polynomially tractable for QMC algorithms iff

B1=2;q < 1 for some q:

• Let T be a tractability function. If B1=2;0 < 1 and

t� D lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1

then I� is strongly T -tractable.

If B�;0 < 1 for some � 2 Œ1
2
; ˛/ and t� < 1 then the exponent of strong

T -tractability is at most t�=� .

• Let T be a tractability function. If

t� WD inf
�2Œ1=2;˛/

lim sup
"�1Cd!1

ln
�P

u�Œd� �
1=.2�/

d;u

�
2�.˛=�/

.2�/˛=�

�juj�C ln "�1=�

1C ln T ."�1; d /
< 1

then I� is T -tractable with the exponent t > t�. If (16.11) holds then the last
condition is also necessary for T -tractability for QMC algorithms.

• If

lim
d!1

ln
�P

u�Œd� �d;u
�
2�.2˛/

.2�/2˛

�juj�
d

D 0

then I� is weakly tractable. If (16.11) holds then the last condition is also
necessary for weak tractability for QMC algorithms.

The corresponding tractability bounds can be achieved by rank-1 lattice rules.

Proof. We prove the first part. Assume that B D B�;q is finite for some � 2 Œ1
2
; ˛/ and

some non-negative q. Then we have

X
;6Du�Œd�

�
1=.2�/

d;u


2.˛=�/

.2�/˛=�

�juj
� B dq for all d 2 N:

Hence, (16.7) yields

C.d; �/ � B� d q� for all d 2 N:
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Therefore, Theorem 16.3 implies that there exists a generator z� 2 Zd
n such that

en;d .z
�/ � C.d; �/ .n � 1/�� � B� d q� .n � 1/�� :

This implies that
nQMC."; d/ � ˙

B dq "�1=��C 1:

Thus, we have polynomial tractability with an "�1 exponent at most 1=� and a d
exponent at most q.

To prove the second part, we see that if B�;0 < 1 for some � 2 Œ1
2
; ˛/ then we

have strong polynomial tractability with an "�1 exponent at most 1=� . If B�;0 < 1
for all � 2 Œ1

2
; ˛/, then the "�1 exponent of strong polynomial tractability is at most

inf
˚
1=� j � 2 �1

2
; ˛
�
 D 1=˛:

As already mentioned, n�˛ is the best possible rate of convergence for d D 1, and
therefore the "�1 exponent of strong polynomial tractability is minimal.

We now turn to the third part. Consider an arbitrary QMC algorithm Qn;d , see
(16.2). Then the square of its worst case error is

e2
�
Qn;d IHd;˛;�

� D �1C 1

n2

nX
k;sD1

Kd;˛;� .xk; xs/:

We bound e2
�
Qn;d IHd;˛;�

�
from below by dropping all terms with k 6D s since

Kd;˛;� .xk; xs/ � 0. Furthermore, for k D s we have

Kd;˛;� .xk; xk/ D Kd;˛;� .0; 0/ D 1C
X

;u�Œd�
�d;u


2.2˛/

.2�/2˛

�juj
:

Therefore

e2
�
Qn;d IHd;˛;�

� � �1C 1

n
Kd;˛;� .0; 0/

� �1C 1

n

X
;6Du�Œd�

�d;u


2.2˛/

.2�/2˛

�juj
:

Assume that we have (strong) polynomial tractability for QMC algorithms. That is,
there is a QMC algorithm Qn;d such that

e.Qn;d IHd;˛;� / � " for n D n.";Hd;˛;� / � C"�pdq

for some non-negative C; p and q, where q D 0 when we consider strong polynomial
tractability. Take, say, " D 1

2
. Then the lower bound on the worst case error of Qn;d

for n D n.1
2
;Hd;˛;� / yields

X
;6Du�Œd�

�d;u


2.2˛/

.2�/2˛

�juj
� �

1C e2.Qn;d ;Hd;˛;� /
�
n � .1C :25/ C 2p dq :



418 16 Multivariate Integration for Korobov and Related Spaces

Hence

sup
d2N

1

dq

X
;6Du�Œd�

�d;u


2.2˛/

.2�/2˛

�juj
� 5C 2p�2 < 1:

This means that B1=2;q < 1, and the third part is proven.
We now turn to strong T -tractability. The assumption B1=2;0 < 1 means that

nQMC."; d/ D O."�2/. This can be bounded by C T t ."�1; d / if we take d D 1

and use the second assumption that the corresponding limit superior is finite. Hence,
we have strong T -tractability, as claimed. If B�;0 < 1 for some � 2 Œ1

2
; ˛/ then

nQMC."; d/ D O."�1=� /. This can be bounded by C T t ."�1; 1/ if we take t > t�=� .
This proves that the exponent of strong T -tractability is at most t�=� .

We now analyze T -tractability. Assume that t� < 1. This means that the corre-
sponding limit superior is finite for some � 2 Œ1

2
; ˛/. For this � , we know that

nQMC."; d/ �
l
C.d; �/1=� "�1=�mC 1 for all " 2 .0; 1/; d 2 N:

By taking logarithms, it is easy to check that nQMC."; d/ � C T t ."�1; d / holds if

r D lim sup
"�1Cd!1

ln
�
1C C.d; �/1=�

�C ln "�1=�

1C ln T ."�1; d /
< 1:

Substituting the formula for C.d; �/, we see that r is indeed finite, since t� < 1.
Hence, we have T -tractability with an exponent t > r . Since r can be arbitrarily close
to t�, this shows that t > t� and completes the proof of this part.

Assume now that (16.11) holds. We want to show that T -tractability for QMC
algorithms implies that t� < 1. Let

A WD sup
"2.0;1/; d2N

ln
�
1CP

;6Du�Œd� �d;u
h
2�.2˛/

.2�/2˛

ijuj�C ln "�2

1C ln T ."�1; d /
:

We first show that A < 1. For d D 1, we know that nQMC."; 1/ D ‚."�1=˛/. Then
nQMC."; 1/ � C T t ."�1; 1/ � C T t ."�1; d / implies that

sup
"2.0;1/; d2N

ln "�2

1C ln T ."�1; d /
< 1:

For d � 1, we know thatX
;6Du�Œd�

�d;u


2.2˛/

.2�/2˛

�juj
� �

1C "2
�
nQMC."; d/:

Then nQMC."; d/ � C T t ."; d/ implies that

sup
"2.0;1/; d2N

ln
�
1CP

;6Du�Œd� �d;u
h
2�.2˛/

.2�/2˛

ijuj�
1C ln T ."�1; d /

< 1:
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Adding up the last two suprema, we conclude that A < 1. The limit superior in the
definition of t� for � D 1

2
is at most A, and therefore t� is finite, as needed.

Finally, for weak tractability it is enough to show that

lim
"�1Cd!1

ln nQMC."; d/

"�1 C d
D 0:

Since nQMC."; d/ � C.d; �/1=� "�� C 2 for all � 2 Œ1
2
; ˛/, the last condition holds if

there is a number � 2 Œ1
2
; ˛/ such that

lim
"�1Cd!1

ln
�
1C C.d; �/1=�

�C ��1 ln "�1

"�1 C d
D 0:

In turn, this holds if

lim
d!1

ln
�
1C C.d; �/1=�

�
d

D lim
d!1

ln .1C C.d; �//

d
D 0:

Since C.d; �/ is a non-decreasing function of � , its minimum is attained for � D 1
2

.
We only need to guarantee that

lim
d!1

ln .1C C.d; 1=2//

d
D 0;

which is indeed satisfied due to our assumption.
Assume now that (16.11) holds and we have weak tractability for QMC algo-

rithms. That is, there exists a QMC algorithm with worst case error at most " that uses
nQMC."; d/ function values, and that ln nQMC."; d/ D o."�1 C d/. Again we use

X
;6Du�Œd�

�d;u


2.2˛/

.2�/2˛

�juj
� �

1C "2
�
nQMC."; d/:

Then we take logarithms for a fixed " and for d tending to infinity, and conclude that

lim
d!1

ln
�
1CP

;6Du�Œd� �d;u
h
2�.2˛/

.2�/2˛

ijuj�
d

D 0;

as claimed. This completes the proof.

Theorem 16.4 states matching necessary and sufficient conditions for (strong) poly-
nomial tractability of multivariate integration for QMC algorithms under the assump-
tion (16.11). That is, when we assume that the reproducing kernel is point-wise non-
negative, Kd;˛;� .x; y/ � 0. We now discuss this assumption for product weights.

For the product weights, �d;u D Q
j2u �d;j , the reproducing kernel is

Kd;˛;� .x; y/ D
dY
jD1

�
1C 2

.2�/2˛
�d;j D˛.xj � yj /

	
;
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where

D˛.t/ D
1X
hD1

cos.2� h t/

h2˛
for all t 2 R: (16.12)

Obviously, D˛ is a periodic function, with period 1.
It is known that D˛ is related to the Bernoulli polynomial B2˛ if ˛ is an integer.

Then

B2˛.t/ D 2 .�1/˛C1 .2˛/Š
.2�/2˛

D˛.t/:

Clearly,
D˛.t/ � D˛.0/ D .2˛/:

It has been proven in Brown, Chandler, Sloan and Wilson [19] that the minimum of
the function D˛ on the interval Œ0; 1� is attained at 1

2
. Since D˛.12 / is given as an

alternating series we have

� 1 < D˛
�
1
2

�
< �1C 2�2˛ for all 2˛ > 1: (16.13)

For product weights, we then have

Kd;˛;� .x; y/ � 0 for all x; y 2 Œ0; 1�d

iff 1C 2�d;jD˛.
1
2
/=.2�/2˛ � 0, or equivalently iff

�d;j � a˛ WD .2�/2˛

2jD˛.1=2/j <
.2�/2˛

2.1 � 2�2˛/
for j 2 Œd �: (16.14)

That is, the assumption (16.11) holds if we take all �d;j no larger than a˛ .
For general weights, it is easy to check that

Kd;˛;� .x; y/ � 1 �
X

;6Du2Œd�
�d;u


2.2˛/

.2�/2˛

�juj
:

Therefore X
;6Du2Œd�

�d;u


2.2˛/

.2�/2˛

�juj
� 1

implies that Kd;˛;� .x; y/ � 0 for all x; y 2 Œ0; 1�d .
The reader may ask why we put 1 C ln T ."�1; d / instead of ln T ."�1; d / in the

denominator of the limit superior defining t�. Although this is a small technical point,
this extra 1 is needed at least for some tractability functions T . Indeed, take T .x; y/ D
.x � 1/y C 1 for all x; y 2 Œ1;1/. Clearly, T is a tractability function although
ln T .1; d/ D ln 1 D 0, and without the extra 1, the denominator of the limit superior
would be zero. Take now the weights �d;; D �d;f1g D 1 and the rest of them �d;u D 0.
Then the numerator of the limit superior is always positive, and without the extra 1,
we would have t� D 1. However, the problem is T -tractable. Indeed, for these
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weights we really have the univariate case, and for d � 1 with � D 1
2

and c D
ln.1C 2.2˛/=.2�/2˛/ > 0, we have

lim sup
"�1Cd!1

c C ln "�2

1C lnŒ."�1 � 1/d C 1�
D max.2; c/ < 1;

lim sup
"�1Cd!1

c C ln "�2

lnŒ."�1 � 1/d C 1�
D 1:

We stress that Theorem 16.4 is also non-constructive. We only know that the
tractability bounds can be achieved by rank-1 lattice rules for some generators but we
do not know yet how to efficiently compute such generators. We address this issue
in the section on CBC algorithms. However, before doing that we discuss tractability
bounds for specific weights.

16.4.3 Tractability for Product Weights

We now show how to obtain necessary and sufficient conditions on (strong) polyno-
mial tractability for product weights and the spaceHd;˛;� for arbitrary ˛ > 1

2
, without

assuming (16.14). As before, by necessary conditions we mean conditions for QMC
algorithms, leaving the much harder case of arbitrary algorithms for later, see Sec-
tion 16.8.

For product weights, the case ˛ D 1 has been analyzed in [54], and for general
˛ > 1

2
in [55]. Again, for our case a few details are different but basically we repeat

the reasoning from [55]. We prove the following theorem.

Theorem 16.5. Considermultivariate integration I� D fId;�g defined for theweighted
Korobov spacesHd;˛;� with ˛ > 1

2
and product weights � D f�d;j g,

�d;u D
Y
j2u

�d;j for all d and for all u 2 Œd �,

with �d;1 � �d;2 � � � � .
We only consider QMC algorithms and necessary tractability conditions refer only

to the class of QMC algorithms.
Assume that

A ´ sup
d2N

max
j2Œd�

�d;j < 1:

• I� is strongly polynomially tractable iff

sup
d2N

dX
jD1

�d;j < 1: (16.15)
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If

sup
d2N

dX
jD1

�
1=.2�/

d;j
< 1 for some � 2 �1

2
; ˛
�

then the "�1 exponent of strong polynomial tractability is at most 1=� . If

sup
d2N

dX
jD1

�
1=.2�/

d;j
< 1 for all � 2 �1

2
; ˛
�

then the "�1 exponent of strong polynomial tractability reaches the minimal value
1=˛.

• I� is polynomially tractable iff

sup
d2N

Pd
jD1 �d;j

ln.d C 1/
< 1: (16.16)

If

sup
d2N

Pd
jD1 �

1=.2�/

d;j

ln.d C 1/
< 1 for some � 2 �1

2
; ˛
�

then the "�1 exponent of polynomial tractability is atmost1=� , and thed exponent
of polynomial tractability is at most q, where

q >
2.˛=�/

.2�/˛=�
lim sup
d!1

Pd
jD1 �

1=.2�/

d;j

ln.d C 1/
:

• I� is strongly T -tractable iff

sup
d2N

�d;j < 1 and t� D lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1:

If
sup
d2N

�
1=.2�/

d;j
< 1 for some � 2 �1

2
; ˛
�
and t� < 1

then the exponent of strong T -tractability is at most t�=� .
If

sup
d2N

�
1=.2�/

d;j
< 1 for all � 2 �1

2
; ˛
�
and t� < 1

then the exponent of strong T -tractability is t�=˛.

• I� is T -tractable iff

sup
"2.0;1/; d2N

Pd
jD1 �d;j C ln "�1=2

1C ln T ."�1; d /
< 1:
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Then the exponent of T -tractability t satisfies

t > inf
�2Œ1=2;˛/

lim sup
"�1Cd!1

�
2�.˛=�/

.2�/˛=�

� Pd
jD1 �

1=.2�/

d;j
C ln "�1=�

1C ln T ."�1; d /
:

• I� is weakly tractable iff

lim
d!1

Pd
jD1 �d;j
d

D 0:

Proof. For product weights, the third part of Theorem 16.1 states that there is a lattice
rule Qn;d such that

e2.Qn;d IHd;˛;� / � 1

n � 1
dY
jD1

�
1C 2.2˛/

.2�/2˛
�d;j

	
:

Hence we obtain (strong) polynomial tractability if

sup
d2N

Qd
jD1

�
1C 2�.2˛/

.2�/2˛ �d;j
�

.d C 1/q
< 1

for some positive q, and we obtain strong polynomial tractability if q D 0 in the
condition above. By taking logarithms, this condition is equivalent to

sup
d2N

Pd
jD1 ln

�
1C 2�.2˛/

.2�/2˛ �d;j
�

1C �q;0 ln.d C 1/
< 1;

where �q;0 D 0 for q D 0, and 1 otherwise.
It is easy to show that there exists a positive b D b.˛/ such that

b x � ln.1C x/ � x for all x 2

0;
2.2˛/

.2�/2˛
A

�
:

Hence that last condition on the weights �d;j is equivalent to

sup
d2N

Pd
jD1 �d;j

1C �q;0 ln.d C 1/
< 1: (16.17)

We then see that (16.17) is equivalent to (16.15) with q D 0, and to (16.16) with q > 0.
This proves that (16.17) implies (strong) polynomial tractability.

We now need to show that strong polynomial tractability implies (16.15) and poly-
nomial tractability implies (16.16) as long as we only use QMC algorithms. This can
be done as follows. We can decrease the weights by switching from �d;j to

�d;j D c��d;j with c� D min

�
1;
.2�/2˛

2A

	
> 0:
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Clearly, decreasing the weights does not make multivariate integration any harder.
Then

�d;j � .2�/2˛

2A
�d;j � .2�/2˛

2
� .2�/2˛

2jD˛.1=2/j ;

since 1 < 1=jD˛.12 /j due to (16.13).
Hence, the kernel Kd;˛;	 for the product weights �d;j is point-wise non-negative

and we can apply the last part of Theorem 16.4 for the weights �s;j D c��s;j . For such
weights, strong polynomial tractability for QMC algorithms implies that B1=2;0 < 1.
We now have

B1=2;0 D sup
d2N

dY
jD1

�
1C 2.2˛/

.2�/2˛
�d;j

	
� 1:

Hence, B1=2;0 < 1 is equivalent to supd
Pd
jD1 �d;j < 1, which in turn is equivalent

to supd
Pd
jD1 �d;j < 1. Therefore, strong polynomial tractability implies (16.15).

Polynomial tractability for weights �d;j implies that B1=2;q < 1 for some posi-
tive q. We now have

B1=2;q D sup
d2N

1

dq

� dY
jD1

�
1C 2.2˛/

.2�/2˛
�d;j

	
� 1

	
:

Hence, B1=2;q < 1 is equivalent to

sup
d2N

Pd
jD1 �d;j

ln.d C 1/
< 1;

as claimed.
We now discuss the exponents of (strong) polynomial tractability. If

sup
d2N

dX
jD1

�
1=.2�/

d;j
< 1

then

B�;0 D sup
d2N

dY
jD1

�
1C 2.˛=�/

.2�/˛=�
�d;j

	
� 1 < 1:

So we can apply Theorem 16.4 and conclude that the "�1 exponent of strong polynomial
tractability is at most 1=� , as claimed.

On the other hand, if supd
Pd
jD1 �

1=.2�/

d;j
= ln.d C 1/ < 1 then

B�;q D sup
d2N

1

dq

� dY
jD1

�
1C 2.˛=�/

.2�/˛=�
�
1=.2�/

d;j

	
� 1
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is finite if we take q such that

q >
2.˛=�/

.2�/˛=�
lim sup
d!1

Pd
jD1 �

1=.2�/

d;j

ln.d C 1/
:

The last fact easily follows by taking logarithms and bounding ln.1C cx/ by cx. Then
again Theorem 16.4 yields polynomial tractability with an "�1 exponent at most 1=�
and a d exponent at most q.

We now turn to strong T -tractability. Note that supd
Pd
jD1 �

1=.2�/

d;j
< 1 implies

thatB�;0 < 1, and so it is enough to use the corresponding part of Theorem 16.4. The
exact value of the exponent of strong T -tractability follows from the fact that for the
univariate case we know that nQMC."; 1/ D ‚."�1=˛/.

We now analyzeT -tractability. We know that it is enough to usenQMC."; d/ function
values to obtain an "-approximation, where

nQMC."; d/ � "�1=�
dY
jD1

�
1C 2.˛=�/

.2�/˛=�
�
1=.2�/

d;j

	
C 2

for some � 2 Œ1
2
; ˛/.

We can estimate nQMC."; d/ � C T t ."�1; d / for some positiveC and t if, by taking
logarithms,

t �
2�.˛=�/

.2�/˛=�

Pd
jD1 �

1=.2�/

d;j
C .1C o.1// ln "�1=�

1C ln T ."�1; d /
for all " 2 .0; 1/; d 2 N. Such a finite number t exists since we assumed that the
corresponding supremum is finite. This also proves the bound on t .

Assume now that we have T -tractability or weak tractability. Then we repeat
the reasoning of Theorem 16.4, and replace ln.1 C x/ by ‚.x/ for non-negative and
bounded x. We leave details to the reader. This completes the proof.

We comment on Theorem 16.5. Consider nested weights

�d;j D j�ˇ for all j 2 Œd � and some non-negative ˇ:

Then we have the following.

• For ˇ > 1, we have strong polynomial tractability with an "�1 exponent at most
max.1=˛; 2=ˇ/. Hence for ˇ � 2˛ we achieve the minimal "�1 exponent 1=˛.

• For ˇ D 1, we have polynomial tractability with an "�1 exponent at most 2 and
a d exponent at most 2.2˛/=.2�/2˛ . Note that the d exponent tends to zero
exponentially fast with ˛ going to infinity.

• For ˇ 2 .0; 1/, we have weak tractability. For

T .x; y/ D x exp.d ˇ
�
/ for all x; y 2 Œ1;1/
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with ˇ� 2 Œ0; 1/, we have T -tractability if ˇ� � 1 � ˇ. For

T .x; y/ D exp.ln.1C x/ ln.1C y// for all x; y 2 Œ1;1/;

we do not have T -tractability for QMC algorithms.

• For ˇ D 0, we have the curse of dimensionality and I� is intractable as long as
we use QMC algorithms.

In Theorem 16.5 we consider bounded weights. This assumption was needed in the
proof when we replace ln.1C x/ by ‚.x/ for non-negative and bounded x. Consider
now unbounded weights, i.e., A D 1. Since

dY
jD1

�
1C 2.2˛/

.2�/2˛
�d;j

	
� .1C "2/ nQMC."; d/

then strong polynomial tractability cannot hold. Indeed for a fixed " and varying d , the
left hand-side goes to infinity, showing that nQMC."; d/ cannot be uniformly bounded
in d . This contradicts strong polynomial tractability. Hence, the condition (16.15) is
necessary and sufficient for strong polynomial tractability for general product weights.

However, for polynomial tractability the situation is different. For example, take

�d;1 D d 2ˇ and �d;j D 0 for all j D 2; 3; : : : ;

for some positive ˇ. Then the integration problem is univariate and

nQMC."; d/ D nQMC."; 1/ D ‚
�
dˇ "�˛�:

This means that we have polynomial tractability with the minimal "�1 exponent 1=˛
and the d exponent ˇ. However, in this case, the condition (16.16) does not hold. This
means that this point of Theorem 16.5 is not valid for unbounded weights. Similarly,
the point of Theorem 16.5 for weak tractability is not valid if ˇ � 1

2
. Also the point for

T -tractability is not valid at least for some tractability functions. We leave the problem
of finding conditions on tractability for unbounded product weights to the reader.

Open Problem 73.

Consider multivariate integration I� for the weighted Korobov spaceHd;˛;� with˛ > 1
2

and unbounded product weights.

• Find necessary and sufficient conditions on � for which I� is polynomially
tractable, T -tractable or weakly tractable for QMC algorithms.

• Do the same for arbitrary algorithms.
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16.4.4 Tractability for Weights Independent of d

We now give another sufficient condition for (strong) polynomial tractability and weak
tractability for weights independent of the dimension d , i.e.,

�d;u D �u for all u � Œd �:

In this case, the weights are nested, see (16.1). For � 2 Œ1
2
; ˛/, let

D.j; �/ WD
X

u�Œj�1�
�
1=.2�/

u [fj g


2.˛=�/

.2�/˛=�

�jujC1
for all j 2 N:

The factor C.d; �/ that is present in the error bound in Theorem 16.3, see (16.7), can
now be written as

C.d; �/ D
� X

;6Du�Œd�1�
�1=.2�/u


2.˛=�/

.2�/˛=�

�juj
C D.d; �/

	�
D
� dX
jD1

D.j; �/
��
:

Assume that there exists a number A.�/, such that

D.j; �/ � A.�/ j q�1 for all j 2 Œd �: (16.18)

Then we have the following:

• If q > 0 then there exists a number A1.�/ such that

C.d; �/ � A1.�/d
q� :

Arguing as in the proof of Theorem 16.4, we have polynomial tractability with
an "�1 exponent 1=� and a d exponent q.

• If q < 0 then there exists a number A2.�/ such that

C.d; �/ � A2.�/ for all d 2 N;

and we have strong polynomial tractability with an "�1 exponent 1=� .

• If q D 0 then there exists a number A3.�/ such that

C.d; �/ � A3.�/Œln d�
� ;

and we have polynomial tractability with an "�1 exponent 1=� and an arbitrarily
small d exponent, since

nQMC."; d/ D O
�
"�1=� ln d

�
:
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An example of weights that satisfy the condition (16.18) is given by

�u [fj g D O
�
j 2�.q�1�juj/� for all u � Œj � 1� and j 2 N:

Indeed, for such weights we have

D.j; �/ D O

�
j q�1 X

;6Du�Œj�1�


2.˛=�/

.2�/˛=� j

�juj	

D O

�
j q�1

�
1C 2.˛=�/

.2�/˛=� j

	j	
D O

�
j q�1�

� A4.�/ j
q�1

for some number A4.�/. Thus, the condition (16.18) is satisfied, as claimed.
We now discuss weak tractability. Assume that

�u[fj g D j�f .j / .jujC1/ for all u � Œj � 1� and j 2 N:

Here, f W N ! .0;1/ is a non-increasing function. For QMC algorithms, we show
that I� is weakly tractable iff

lim
j!1f .j / ln j D 1:

We have

D.j; 1
2
/ D

X
u�Œj�1�


2.2˛/

.2�/2˛ j f .j /

�jujC1

D 2.2˛/

.2�/2˛ j f .j /

�
1C 2.2˛/

.2�/2˛ j f .j /

	j�1
:

Assume that we have weak tractability. Then

lnC.d; 1=2/

2d
� lnD.d; 1=2/

2d

� d � 1
2d

ln

�
1C 2.2˛/

.2�/2˛
1

d f .d/

	
C 1

2d
ln

1

df .d/
C�.1/:

Since now limd ŒlnC.d;
1
2
/�=.2d/ D 0, we conclude that limd d

f .d/ D 1, which is
equivalent to limd f .d/ ln d D 1, as claimed.

Assume now that limd f .d/ ln d D 1, or equivalently that limd 1=d
f .d/ D 0.

Then

C.d; 1
2
/1=2 D

dX
jD1

D.j; 1
2
/ �

dX
jD1

�
1C 2.2˛/

.2�/2˛
1

j f .j /

	j

�
dX
jD1

exp

�
2.2˛/

.2�/2˛
j 1�f .j /

	
:
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Note that if f .j / � 1 then j 1�f .j / � 1. If f .j / < 1 then j 1�f .j / � d 1�f .j /, and
since f is non-increasing d 1�f .j / � d 1�f .d/. Hence,

j 1�f .j / � max
�
1; d 1�f .d/�:

From this we have

C.d; 1
2
/1=2 � d exp

�
2.2˛/

.2�/2˛
max

�
1; d1�f .d/�	 :

Then
lnC.d; 1=2/1=2

d
D O

�
max

�
1

d
;

1

df .d/

		
and the right hand-side goes to zero as d goes to infinity. This implies weak tractability,
as claimed.

We leave the case of T -tractability as on open problem to the reader.

Open Problem 74.

Consider multivariate integration I� for the weighted Korobov spaceHd;˛;� with˛ > 1
2

and weights �d;u D �u independent of d .

• Find necessary and sufficient conditions on such weights for which I� is strongly
T -tractable and T -tractable for QMC algorithms.

• Do the same for arbitrary algorithms.

16.4.5 Tractability for Finite-Order and Order-Dependent Weights

We now specialize tractability conditions presented in Theorem 16.4 to finite-order
weights, finite-diameter weights and order-dependent weights.

We begin with finite-order and finite-diameter weights. As we know, finite-order
weights � D f�d;ug of order ! satisfy

�d;u D 0 for all d 2 N and for all u � Œd � with juj > !.

As before, we assume that �d;; D 1. Finite-diameter weights of order !, for which

�d;u D 0 for all d 2 N and for all u � Œd � with diam.u/ � !,

are a subclass of finite-order weights.
Here, diam.u/ D maxk;s2u jk � sj for a non-empty u, and diam.;/ D 0. The

reader may consult Section 5.3.2 of Volume I for more information on such weights.
In particular, for finite-order weights of order ! we have at most

2 d ! non-zero weights,
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and for finite-diameter weights of order ! we have at most

2min.!;d/�1 �d C 2 � min.!; d/
� D O.d/ non-zero weights.

Note that for finite-diameter weights of order !, for �d;u 6D 0 we must have juj � !.
This means that such weights are also finite-order weights of order !.

Obviously, ! D 0 means that non-zero weights only occur for u D ;, so that
multivariate integration is trivial. Hence, we always consider ! � 1.

Theorem 16.6. Considermultivariate integration I� D fId;�g defined for theweighted
Korobov space Hd;˛;� with ˛ > 1

2
and with bounded finite-order or finite-diameter

weights � D f�d;ug of order ! � 1, so that

A WD sup
d2N

max
u�Œd�

�d;u < 1:

Let

q D
´
! if finite-order weights of order ! are considered,

1 if finite-diameter weights of order ! are considered.

• There exists a rank-1 lattice rule with a generator z� 2 Zd
n such that

en;d .˛; �; z/ D O
�
d q� "�1=�� for all � 2 �1

2
; ˛
�
; (16.19)

with the factor in the big O notation independent of d and n and depending on � .

Hence, I� is polynomially tractable with an "�1 exponent 1=� , which can be
arbitrarily close to the minimal value 1=˛, and a d exponent q. The tractability
bounds are achieved by the resulting lattice rule.

• If
sup
d2N

X
u�Œd�

�d;u 6D0

�d;u < 1

then I� is strongly polynomially tractable. If

sup
d2N

X
u�Œd�

�d;u 6D0

�
1=.2�/

d;u
< 1 for some � 2 �1

2
; ˛
�

then the "�1 exponent of strong polynomial tractability is at most 1=� . If

sup
d2N

X
u�Œd�

�d;u 6D0

�
1=.2�/

d;u
< 1 for all � 2 �1

2
; ˛
�

then the "�1 exponent of strong polynomial tractability achieves the minimal
value 1=˛.
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Proof. We prove the first part. For any � 2 Œ1
2
; ˛/ we have

X
;6Du�Œd�

�
1=.2�/

d;u


2.˛=�/

.2�/˛=�

�juj
� A1=.2�/

X
uW �d;u 6D0


2.˛=�/

.2�/˛=�

�juj

� A1=.2�/ max

�
2.˛=�/

.2�/˛=�
;


2.˛=�/

.2�/˛=�

�!	 X
uW �d;u 6D0

1

D O
�
dq
�

with the factor in the big O notation independent of d and depending on � . Therefore,
from (16.7) the corresponding factor C.d; �/ in the error bound satisfies

C.d; �/ D O
�
d q�

�
:

This implies that
nQMC."; d/ D O

�
dq "�1=��;

and we have polynomial tractability of I� with exponents as indicated in the theorem.
We now turn to the second part. This part easily follows from Theorem 16.4.

Indeed, to get strong polynomial tractability we need to guarantee that B1=2;0 < 1
with B�;q given by (16.10). Since in our case we have

2.˛=�/

.2�/˛=�

�juj

with juj 2 Œ!�, these factors cannot change whether the B�;0’s are finite or not, and
therefore they can be dropped. This completes the proof.

In Theorem 16.20, we assume that the weights are bounded. As for product weights,
the assumption on bounded weights is essential. The same example, with �d;f1g D d2ˇ ,
where ˇ > 0, and �d;u D 0 for all u … f;; f1gg, shows that we have unbounded finite-
order weights of order 1, and polynomial tractability with the d exponent ˇ. This
shows that the first point of Theorem 16.6 is now not valid.

We briefly turn to order-dependent weights,

�d;u D �d;juj for all d 2 N and for all u � Œd �.

Here �d;0 D 1 and �d;j � 0 for all j 2 Œd �.
In this case, for � 2 Œ1

2
; ˛/ we have

A WD
X

;6Du�Œd�
�
1=.2�/

d;u


2.˛=�/

.2�/˛=�

�juj
D

dX
kD1

�
d

k

	
�
1=.2�/

d;k


2.˛=�/

.2�/˛=�

�juj
:

If
�d;j 2 �Ajlow; A

j
upp

�
with 0 < Alow � Aupp
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then

A 2
�
1C 2.˛=�/

.2�/˛=�
A
1=.2�/
low

	d
� 1;

�
1C 2.˛=�/

.2�/˛=�
A1=.2�/upp

	d
� 1

�
:

Hence, we have an exponential dependence on d , and we cannot even claim weak
tractability. On the other hand, if

�d;j D �
j

d;j
for all d 2 N and for all j 2 Œd �

then

A D
dY
jD1

�
1C 2.˛=�/

.2�/˛=�
�d;j

	
� 1:

So we have the same situation as for product weights, and Theorem 16.5 can now be
applied.

16.5 Worst Case Error for ˛ Approaching to 1=2

The simple proof technique needed to show the last part of Theorem 16.4 may also be
applied to the case when the parameter ˛ goes to 1

2
. As we have already seen, upper

error bounds of lattice rules depend on the factor .2˛/, which goes to infinity as ˛
goes to 1

2
. For ˛ going to 1

2
, we are losing smoothness of functions in Hd;˛;� , and its

reproducing kernel degenerates. We now prove that the error of any QMC algorithm
goes to infinity if ˛ goes to 1

2
, independently of how many function values are used.

Theorem 16.7. Consider multivariate integration for the weighted Korobov spaces
Hd;˛;� for arbitrary weights � D f�d;ug independent of ˛. We assume that at least
one �d;u for a non-empty u is non-zero.

For arbitrary n and arbitrary QMC algorithm Qn;d using sample points xk that
may depend on ˛, we have

lim
˛!1=2C

e.Qn;d IHd;˛;� / D 1:

Proof. We have

e2.Qn;d IHd;˛;� / D �1C 1

n2

nX
k;sD1

Kd;˛;� .xk; xs/;

where the points xk D xk.˛/ are arbitrary. This can be rewritten as

e2.Qn;d IHd;˛;� / D �.c C 1/C 1

n2

n�1X
k;sD0

�
c CKd;˛;� .xk; xs/

�
for all c 2 R:

(16.20)
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The kernel Kd;˛;� can be written as

Kd;˛;� .x; y/ D 1C
X

;6Du�Œd�
�d;uKu;˛;� .xu; yu/ for all x; y 2 Œ0; 1�d ;

where

Ku;˛;� .xu; yu/ D
Y
j2u

� X
06Dh2Z

e2� h.xj �yj /

.2� jhj/2˛
	

D
Y
j2u

2

.2�/2˛
D˛.fxj � yj g/:

We already indicated that

�1 < D˛.t/ � .2˛/ for all t 2 Œ0; 1�:
This implies that Ku;˛.xu; yu/ � �2.2.2˛/=..2�/2˛//juj�1 for all xu and yu, and

Kd;˛;� .x; y/ � c� ´ 1 � 2
X

;6Du�Œd�
�d;u


2.2˛/

.2�/2˛

�juj�1
:

Setting c D �c� in (16.20), we conclude that the kernel cCKd;˛;� .x; y/ is point-wise
non-negative. Thus we can drop off-diagonal elements, k 6D s, in (16.20) and obtain

e2.Qn;d IHd;˛;� / � 2
X

;6Du�Œd�
�d;u


2.2˛/

.2�/2˛

�juj�1 �
1

n

.2˛/

.2�/2˛
�
�
1 � 1

n

		
:

Since .2˛/ goes to infinity as ˛ goes to 1
2

, and at least one �d;u is positive and
independent of ˛, the error goes to infinity, as claimed.

We remind the reader that the initial error is 1, independent of the value of ˛ > 1
2

.
This means that the trivial zero algorithm has worst case error 1 even when ˛ goes to 1

2
.

This should be contrasted with the worst case error of any QMC algorithm that goes to
infinity as ˛ approaches 1

2
. The reason for this bad behavior is that the coefficient n�1

for QMC algorithms is too large. We already discussed this point in Section 10.7.6 of
Chapter 10 as a motivation to study properly normalized QMC algorithms.

16.6 CBC Algorithm

We showed in the previous section the existence of “good” lattice rules, see Theo-
rems 16.1–16.4. These theorems are unfortunatelynot constructive, although the choice
of generators of the lattice rules is from a finite set. A global optimal generator z� from
the finite set Zd

n defined by

en;d .˛; �; z
�/ � en;d .˛; �; z/ for all z 2 Zd

n ;
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satisfies the optimal error bound of Theorem 16.3. However, the full search over all
.n � 1/d different z 2 Zd

n is impossible for large d and even moderate n. In this
section we will show that the generator obtained by carrying out the construction one
component at a time still satisfies the optimal error bound of Theorem 16.3.

We now present the CBC (component-by component) algorithm of selecting gen-
erators of good lattice rules. The history of this powerful algorithm is given in the
introduction of this chapter. In this section we present this algorithm for the weighted
Korobov spaces with general weights. In Section 16.9.1 we will study this algorithm
for some Sobolev spaces of non-periodic functions.

CBC Algorithm

Suppose n is a prime number, ˛ > 1
2

and the weights f�d;ug are given.
The generator

Nz D Œ Nz1; Nz2; : : : ; Nzd �
is found as follows:

• Set the first component Nz1 of the generator Nz to 1.

• For s D 2; 3; : : : ; d and known Nz1; Nz2; : : : ; Nzs�1, find Nzs 2 Zn such that the worst
case error

e2n;s.1; Nz2; : : : ; Nzs�1; Nzs/ D 1

n

n�1X
kD0

X
;6Du�Œs�

�d;u
Y
j2u


2

1X
hD1

cos.2� hk Nzj =n/
.2� jhj/2˛

�
(16.21)

is minimized.

The cost of the CBC algorithm will be discussed later. We now show that the
lattice rule with the generator constructed by the CBC algorithm has good theoretical
properties.

Theorem 16.8. For a prime n, ˛ > 1
2

and given weights f�d;ug, let

Nz D Œ1; Nz2; : : : ; Nzd �
be found by the CBC algorithm. Then for s D 1; 2; : : : ; d and for any � 2 Œ1

2
; ˛/, we

have
en;s.1; Nz2; : : : ; Nzs/ � C.s; �/ .n � 1/�� ; (16.22)

where C.d; �/ is given in (16.7).

Proof. Let 
 D 1=.2�/ 2 .1=.2˛/; 1�. We prove by induction on s that

e2n;s.1; Nz2; : : : ; Nzs/ � .n � 1/�1=�
� X

;6Du�Œs�
��d;u


2.2˛
/

.2�/2˛�

�juj 	1=�
: (16.23)
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Let s D 1. Since Nz1 D 1, we now use the sample points xk D f.k � 1/ Nz1=ng D
.k � 1/=n. Using Lemma 16.2 and Jensen’s inequality, we have

e2n;1.1/ D
X

06Dh�0modn

�d;f1g
.2� jhj/2˛ �

� X
06Dh�0modn

��
d;f1g

.2� jhj/2˛�
	1=�

D 1

n2˛
�d;f1g

Œ2.2˛
/�1=�

.2�/2˛
� .n � 1/�1=�

�
��d;f1g

2.2˛
/

.2�/2˛�

	1=�
;

as needed.
Suppose now that s � 2, and that the generator Nzs D Œ1; Nz2; : : : ; Nzs� found by the

CBC algorithm satisfies (16.23). We prove that the .sC1/-dimensional vector ŒNzs; NzsC1�
with NzsC1 again found by the CBC algorithm satisfies (16.23) with s replaced by sC1.

From (16.3) we have

e2n;sC1.Nzs; NzsC1/ D 1

n

n�1X
kD0

X
;6Du�ŒsC1�

�d;u
Y
j2u

� X
06Dh2Z

e2�ihk Nzj =n

.2� jhj/2˛
	

D e2n;s.Nzs/C #.˛; �; Nzs; NzsC1/;
(16.24)

where

#.˛; �; Nzs; zsC1/ D 1

n

n�1X
kD0

X
u�ŒsC1�
sC12u

�d;u
Y
j2u

� X
06Dh2Z

e2�ihk Nzj =n

.2� jhj/2˛
	
: (16.25)

We need the following lemma.

Lemma 16.9. Under the assumptions of Theorem 16.8, there exists z�
sC1 2 Zn such

that

#.˛; �; Nzs; z�
sC1/ � 1

n � 1
X

u�ŒsC1�
sC12u

�d;u


2.2˛/

.2�/2˛

�juj
:

Proof. We average#.˛; �; Nzs; zsC1/ over all possible values of zsC1 2 Zn. For sC1 �
u � ŒsC1�, let zu andhu denote the juj-dimensional vectors containing the components
of .Nzs; zsC1/ and .h; hsC1/ with indices in u. We obtain

ˆ.˛; �; Nzs/ WD 1

n � 1
n�1X

zsC1D1
#.˛; �; Nzs; zsC1/

D 1

n � 1
n�1X

zsC1D1

1

n

n�1X
kD0

X
u�ŒsC1�
sC12u

�d;u
X

hu2Zjuj
0

e2�ikhu�zu=nQ
j2u.2� jhj j/2˛

D 1

n � 1
X

u�ŒsC1�
sC12u

�d;u
X

hunfsC1g2Zjuj�1
0

Y
j2unfsC1g

S.hu; zu/

.2� jhj j/2˛ ;
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where

S.hu; zu/ D
n�1X

zsC1D1

1

n

n�1X
kD0

X
hsC12Z0

e2�ikhu�zu=n

.2� jhsC1j/2˛ :

For u D fs C 1g we use the convention thatX
hunfsC1g2Zjuj�1

0

Y
j2unfsC1g

.2� jhj j/�2˛ S.hu; zu/ D S.hfsC1g; zfsC1g/:

We show that for all hu and zu we have

S.hu; zu/ 2

0;
2.2˛/

.2�/2˛

�
: (16.26)

Indeed, for s C 1 � u � Œs C 1�, we can write hu � zu D c C hsC1zsC1 for some
integer c, and

S.hu; zu/ D
n�1X
zD1

1

n

n�1X
kD0

X
h2Z0

e2�ik.cChz/=n

.2� jhj/2˛

D
n�1X
zD1

X
h2Z0

cChz�0mod n

1

.2� jhj/2˛

D 1

.2�/2˛

n�1X
zD1

X
m2Z;mn�cz�1 6D0

1

jmn � cz�1j2˛

where z�1 2 Zn is the inverse element of z satisfying zz�1 	 1mod n. In the last
step we have used the fact that c C hz 	 0mod n is equivalent to h 	 �cz�1 mod n,
i.e., h D mn � cz�1 for some integer m.

Now if c 	 0mod n, then

.2�/2˛ S.hu; zu/ D
n�1X
zD1

X
m2Z0

1

jmnj2˛ D .n � 1/
n2˛

X
m2Z0

1

jmj2˛ < 2.2˛/:

If c 6	 0mod n, then the set fcz�1 mod n j z 2 Œn � 1�g D Œn � 1�. Note that the
numbers mn � b for b 2 Œn � 1� and m 2 Z are distinct and the set

fmn � b j b 2 Œn � 1�; m 2 Zg
is a proper subset of Z0. Therefore

.2�/2˛ S.hu; zu/ D
n�1X
bD1

X
m2Z

1

jmn � bj2˛ <
X
m2Z0

1

jmj2˛ D 2.2˛/;

proving (16.26).
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Now return to the expression for ˆ.˛; �; Nzs/. Using (16.26), we have

ˆ.˛; �; Nzs/ � 1

n � 1
X

u�ŒsC1�; sC12u

�d;u

� Y
j2unfsC1g

X
h2Z0

1

.2� jhj/�2˛
	
2.2˛/

.2�/2˛

D 1

n � 1
X

u�ŒsC1�; sC12u

�d;u


2.2˛/

.2�/2˛

�juj
:

Since there exists a z�
sC1 2 Zn such that #.˛; �; Nzs; z�

sC1/ is no larger than the average
ˆ.˛; �; Nzs/, the proof of Lemma 16.9 is complete.

We now continue the proof of Theorem 16.8. The quantity #.˛; �; Nzs; zsC1/, see
(16.25), satisfies

#.˛; �; Nzs; zsC1/ � #1=�.˛
; ��; Nzs; zsC1/ for all 
 2 .1=.2˛/; 1�: (16.27)

The last estimate can be proved using the same Jensen’s inequality argument as in
the proof of Lemma 16.2. Indeed, comparing the expression for #.˛; �; Nzs; zsC1/ in
(16.25) and the expression for e2n;s.˛; �; z/ in (16.3), we see that the only difference is
that for the former the sum is over those u for which s C 1 � u � Œs C 1�, while for
the latter, the sum is over those u for which ; 6D u � Œd �. This changes the cardinality
of the sums but Jensen’s inequality is independent of the cardinality of the sum.

For the known Nzs D Œ1; Nz2; : : : ; Nzs� and with the parameters ˛ and � replaced by
˛
 and ��, it follows from Lemma 16.9 that for every 
 2 .1=.2˛/; 1� there exists
zsC1;� 2 Zn such that

#.˛
; ��; Nzs; zsC1;�/ � 1

n � 1
X

u�ŒsC1� sC12u

��d;u


2.2˛
/

.2�/2˛�

�juj
: (16.28)

For this zsC1;�, from (16.24), (16.27) (16.28), and the induction assumption we have

e2n;sC1.Nzs; zsC1;�/ D e2n;s.Nzs/C #.˛; �; Nzs; zsC1;�/
� e2n;s.Nzs/C #1=�.˛
; ��; Nzs; zsC1;�/

�
�

1

n � 1
X

;6Du�ŒsC1�
��d;u


2.2˛
/

.2�/2˛�

�juj	1=�

C
�

1

n � 1
X

u�ŒsC1�; sC12u

��d;u


2.2˛
/

.2�/2˛�

�juj	1=�

�
�

1

n � 1
X

;6Du�ŒsC1�g
��d;u


2.2˛
/

.2�/2˛�

�juj	1=�
;

where in the last step we again used Jensen’s inequality. Since NzsC1 is obtained by
minimizing e2n;sC1.Nzs; zsC1/ with respect to zsC1, we have

e2n;sC1.Nzs; NzsC1/ � e2n;sC1.Nz; zsC1;�/
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for all 
 2 .1=.2˛/; 1�, and the result (16.23) follows. Substituting � D 1=.2˛/ 2
Œ1
2
; ˛/ we obtain (16.22). This completes the proof of Theorem 16.8.

We stress that Theorems 16.4, 16.5 and 16.6 are based on error bounds from the
non-constructive Theorem 16.3. Since exactly the same error bounds hold for the
lattice rules with the generator obtained by the CBC algorithm, all tractability bounds
presented in these Theorems are valid for such lattice rules. We summarize this in the
following corollary.

Corollary 16.10. Bounds for various notions of tractability presented inTheorems16.4,
16.5 and 16.6 are achieved by the rank-1 lattice rules with the generators given by the
CBC algorithm.

16.6.1 Cost of the CBC Algorithm

We now discuss the computational cost of the CBC algorithm. In particular, for gen-
eral ˛ we must know how to compute

Y
j2u

�
2

1X
hD1

cos.2� hk Nzj =n/
.2� jhj/2˛

	
D
Y
j2u

2

.2�/2˛
D˛

�
k Nzj
n

	
;

with D˛ given by (16.12), i.e.,

D˛.t/ D
1X
hD1

cos.2� h t/

h2˛
for all t 2 R:

Hence, we need to know how to compute D˛.t/. As we already mentioned, for an
integer ˛ the functionD˛ is related to the Bernoulli polynomial of degree 2˛, and can
be computed in cost proportional to ˛. For other values of ˛, we can compute only
an approximation to D˛ . The latter problem is obviously easier for large ˛, since the
corresponding series defining D˛ converges faster when ˛ is large. More precisely,
assume that we approximate D˛.t/ for t 2 Œ0; 1� by the first k terms, i.e.,

D˛;k.t/ D
kX
hD1

cos.2� h t/

h2˛
:

Then

jD˛.t/ �D˛;k.t/j �
1X

hDkC1

1

h2˛
�
Z 1

k

1

x2˛
dx D 1

2˛ � 1
1

k2˛�1 :

For

k D
&�

1

.2˛ � 1/ "
	1=.2˛�1/'
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we obtain
jD˛.t/ �D˛;k.t/j � ":

The cost of computing D˛;k.t/ to within " is proportional to

k � 1

.2˛ � 1/1=.2˛�1/ "
�1=.2˛�1/ C 1:

As long as ˛ is not too close to 1
2

, the cost is a moderate function of "�1. For instance,
for ˛ � 1 the cost is at most "�1 C 1. Furthermore, the cost decreases as ˛ increases.
Hence, even if ˛ is an integer and we can computeD˛.t/ exactly based on the Bernoulli
polynomial of degree 2˛ with cost proportional to ˛, it is easier to compute an "-
approximation if ˛ is large and " not too small.

Even when we know how to compute D˛ exactly or approximately, we face an-
other and more difficult computational problem when arbitrary weights are considered.
Indeed, we have to sum up 2d � 1 terms as part of Step 2 of the CBC algorithm and
each term is independent since it is proportional to presumably different �d;u. The
total cost of the CBC algorithm would require then O.n22d d/ operations, which is
unfortunately exponential in d , making the algorithm impossible to use for large d . So
the cost of the CBC algorithm can only be reasonable for special families of weights.

16.6.2 Cost for Product Weights

We analyze the cost of the CBC algorithm for product weights,

�d;u D
Y
j2u

�d;j for all d 2 N and for all u � Œd �.

For simplicity, we assume that we can compute D˛.t/ at a time dependent on ˛ and
concentrate on how the cost of the CBC algorithm compares to the cost of the lattice
rule. Since we need to compute n points

xkC1 D
²
k

n
z
³

for all k D 0; 1; : : : ; n � 1;

and each point xk has d components, the cost of the lattice rule must be at least of
order n d .

We follow the analysis of Nuyens and Cools who showed that the cost of the
CBC algorithm for product weights is O.n d ln n/, see [226], [227], [228]. This is
a surprising result since we need to compute e2n;s.Nzs/ for n points and s 2 Œd �. The
formula for e2n;s.Nzs/ suggests that the cost of its computation should be proportional
to at least to n, making the total cost at least of order n2 d . The result of Nuyens and
Cools matches the cost of the lattice rule modulo at most a factor of order ln n, which is
not really large for most n occurring in computational practice. That is why this result
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allows us to use the CBC algorithm for really large n and d . Numerical experiments
with the CBC algorithm can be found in many papers.

The first step of Nuyens and Cools is to formulate the CBC algorithm as a matrix-
vector product. Then they show how to use the fast Fourier transform for this matrix-
vector product.

For product weights, the square of the error e2n;s.Nzs/ given by (16.21) can be rewrit-
ten as

e2n;s.Nzs/ D �1C 1

n

n�1X
kD0

sY
jD1

�
1C � 0

d;j D˛
�
k Nzj =n

� �
D �1C 1

n

n�1X
kD0

ps�1.k/
�
1C � 0

d;sD˛ .k Nzs=n/
�
;

where

� 0
d;j D 2

.2�/2˛
�d;j ;

and

p0.k/ D 1

ps.k/ D ps�1.k/
�
1C � 0

d;sD˛ .k Nzs=n/
�
:

We need to compute e2.Nzs�1; Nzs/ for fixed Nzs�1 and all Nz 2 Zn. We are ready to
present the matrix-vector product representation of the CBC algorithm. Denote

Eps D Œps.0/; ps.1/; : : : ; ps.n � 1/�T 2 Rn;

Ee 2s D Œe2n;s.Nzs�1; 1/; e2n;s.Nzs�1; 2/; : : : ; e2n;s.Nzs�1; n � 1/�T 2 Rn�1;
�n D �

D˛.k z=n/
�
z2Œn�1�; k2f0;1;:::;n�1g 2 Rn�1;n:

Hence, �n is the .n � 1/ � n matrix with elements D˛.k z=n/.
Let 1k;s denote the k � s matrix having all coefficients equal to 1, and let further

diagn.ak/kD0;1;:::;n�1 be the n�n diagonal matrix having the elements ak on the main
diagonal. Then the CBC algorithm can be written as follows.

CBC Algorithm

• Ep0 D E1n;1,

• for s D 1; 2; : : : ; d do

Ee 2s D �1n�1;1 C 1

n

�
1n�1;n C � 0

d;s �n
� Eps�1

Nzs D argmin Ee 2s
Eps D diagn

�
1C � 0

d;sD˛.k Nzs=n/
�
kD0;1;:::;n�1 Eps�1:
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The cost of this form of the CBC algorithm is clearly O.n/ memory, and O.n d/

operations plus the cost of d matrix-vector multiplications

�n Eps�1:
Obviously, each matrix-vector multiplication can be done with O.n2/ operations with-
out using the special form of the matrix�n. Note that�n has at most n, not .n� 1/n,
different elements, which allows us to hope that�n Eps�1 can be computed in O.n ln n/
operations.

Indeed, this is the case as shown by Nuyens and Cools [226]. The precise way how
this can be achieved is beyond the scope of this volume. We only mention that it is
enough to drop the first column of the matrix� and switch to the square .n�1/�.n�1/
matrix

�0
n�1 D �

D˛.kz=n/
�
z;k2Œn�1�:

It turns out that there exists a permutation of rows and columns of �0
n�1 such that the

resulting matrix Cn�1 is a circulant matrix. It is known that a circulant matrix has a
similarity transform Cn�1 D F �1

n�1ƒn�1Fn�1, where Fn�1 is the Fourier transform
and ƒ D diagn�1.Fn�1c/ with c being the first column of Cn�1. This allows us to
apply FFT and therefore the cost is indeed O.n ln n/.

16.6.3 Cost for Finite-Order and Finite-Diameter Weights

We now analyze the cost of the CBC algorithm for finite-order and finite-diameter
weights of order !. We rewrite (16.3) as

e2n;d .Nz/ D
X

;6Du�Œd� W�d;u 6D0
� 0
d;u e

2
n;u.Nzu/;

where

� 0
d;u D


2

.2�/2˛

�juj
;

and

e2n;u.Nzu/ D 1

n

n�1X
kD0

Y
j2u

D˛.k Nzj =n/:

Note that e2n;u.Nzu/ is basically the same as en;s.Nzs/ with s D juj and � 0
d;j

D 1, with
the missing term �1 and the missing term C1 in the product. These changes are not
important and we can still find the matrix-vector representation of the CBC algorithm
with a fast matrix-vector multiplication. This allows us to compute and store all values
of e2n.Nzu/ using O.jujn ln n/ operations and O.n/ memory. In general, we need to
repeat this calculation for each non-negative weight. Since we now have O.dq/ non-
negative weights, where q D ! for finite-order weights and q D 1 for finite-diameter
weights, the total cost of this part of the algorithm is O.! dq n ln n/ operations and
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O.dq n/ memory. Then we compute each e2n.Nzs/ by summing up � 0
d;u
e2n;u.Nzu/ using

O.dq/ operations and finally compute Nzs that minimizes e2n;s.zs/ with the total cost of
O.! dq n ln n/ operations and with O.dqn/ memory.

We stress that the computational cost is exponential in ! for finite-order weights.
In general, this must be so since we have of order d ! non-negative weights and each
of them must be used. On the other hand, the order ! is usually small so that the
exponential dependence on ! is not so dangerous.

16.6.4 Cost for Order-Dependent Weights

As in [54], we now consider order-dependent weights, i.e.,

�d;u D �d;juj for all d 2 N and for all u � Œd �

with �d;0 D 1 and �d;j � 0 for all j 2 N. Then

e2n;d .z/ D 1

n

n�1X
kD0

X
;6Du�Œd�

� 0
d;u

Y
j2u

D˛
�
k Nzj =n

�
D 1

n

n�1X
kD0

dX
mD1

� 0
d;m

X
u�Œd�; jujDm

Y
j2u

D˛
�
k Nzj =n

� D
dX

mD1
� 0
d;mD.m/;

where

� 0
d;u D


2

.2�/2˛

�juj
�d;u;

� 0
d;m D


2

.2�/2˛

�juj
�d;m

D.m/ D 1

n

n�1X
kD0

X
u�Œd�; jujDm

Y
j2u

D˛
�
k Nzj =n

�
:

Note that D.m/ can be considered as an overall measure of the quality of the m-
dimensional projections of the lattice rule with generator z. The quantity D.1/ has
the same value for all rank-1 lattice rules if n is prime, since every one-dimensional
projection of such a lattice rule is just fk=n W k D 0; 1; : : : ; n � 1g.

The formula for D.`/ involves quantities of the formX
u�Œd�; jujDm

Y
j2u

D˛
�
k Nzj ; n

�
:

We give a recursive formula to compute such quantities. Define

Tk.s;m/ D
X

u�Œs�; jujDm

Y
j2u

D˛
�
k Nzj ; n

�
for all s 2 Œd � and m 2 Œs�: (16.29)
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We can view Tk D .Tk.s;m// as a d � d lower triangular matrix. Obviously,

Tk.s; 1/ D
sX

jD1
D˛

�
k Nzj ; n

�
and Tk.s; s/ D

mY
jD1

D˛
�
k Nzj ; n

�
for s D 1; 2; : : : ; d . The elements of the d th row of Tk are used to compute

e2n;d .z/ D 1

n

n�1X
kD0

� dX
mD1

�d;m Tk.d;m/
�
:

From (16.29) we get

Tk.s;m/ D Tk.s � 1;m/CD˛ .k Nzm; n/ Tk.s � 1;m � 1/ for all s � 2; m � 2:

This allows us to compute Tk.s;m/ by the following algorithm:

Tk.1; 1/ D D˛ .k Nz1; n/ ; for s D 2; 3; : : : ; d I

Tk.s; 1/ D
sX

jD1
D˛

�
k Nzj ; n

�
and Tk.s; s/ D

sY
jD1

D˛
�
k Nzj ; n

�
;

for m D 2; 3; : : : ; s � 1I
Tk.s;m/ D Tk.s � 1;m/CD˛ .k Nzm; n/ Tk.s � 1;m � 1/:

This algorithm is especially convenient in the case when we successively increase
d D 2; 3; : : : ; s, and therefore is especially well suited to the CBC algorithm. If
the Tk.d � 1;m/’s have been computed, then the next step to compute all Tk.d;m/
as well as

Pd
mD1 �d;mTk.d;m/ requires only O.d/ operations. The computation of

e2
n;dC1.z/ requires O.nd/ operations, and therefore the total cost of the CBC algorithm

is O.n2 d 2/. Finally, if the order-dependent weights are also of finite-order of order
!, then the total cost of the algorithms is reduced to O.n2 ! d/.

We do not know how to reduce the cost of the CBC algorithm in terms of the
dependence of n. So far we have an n2 dependence and it is not clear how to achieve
O.n ln n/ by fast matrix-vector multiplication. We leave this as an open problem for
the reader.

Open Problem 75.

Consider the CBC algorithm for order-dependent weights.

• Is it possible to find an implementation of the CBC algorithm such that the
generator z can be computed using O.d 2 n ln n/ operations?
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16.7 Weighted Korobov and Sobolev Spaces

So far we have considered multivariate integration for periodic functions from the
weighted Korobov spaces, and we have only analyzed QMC algorithms. In particular,
we presented a number of lower bounds on the worst case error but only for the class
of QMC algorithms.

It is natural to ask whether arbitrary linear algorithms can be much better than
QMC algorithms and to seek possibly sharp lower bounds on the worst case errors
for arbitrary algorithms. In Chapter 11 we presented lower bounds on the worst case
error for arbitrary algorithms, assuming that the reproducing kernel is decomposable
or it has a decomposable part without boundary conditions. It is easy to see that for
spaces of periodic functions, the reproducing kernels cannot be decomposable or they
cannot have a decomposable part. The reason is simple: a decomposable part of the
reproducing kernel means that for the univariate case, functions behave independently
on the subintervals. In the case of periodic functions we know that they behave exactly
the same at the end points of the domain interval.

That is why for periodic spaces of functions, such as the weighted Korobov spaces,
we need a different proof technique to get lower bounds on the worst case error for
arbitrary algorithms.

This is the subject of the next sections. As in [129], we show that multivariate
integration for weighted Korobov spaces is closely related to multivariate integration
for non-periodic functions from certain Sobolev spaces. This will allow us to apply
the proof technique of decomposable kernels to these Sobolev spaces, and to also
determine lower bounds for weighted Korobov spaces. In particular, we show that some
tractability conditions for QMC algorithms are the same as for arbitrary algorithms. In
this way we obtain matching necessary and sufficient conditions on various kinds of
tractability for multivariate integration for weighted Korobov spaces.

16.7.1 Kernels and Shift-Invariant Kernels

In this section we present some basic properties of reproducing kernels and shift-
invariant reproducing kernels. These properties will be needed to relate weighted
Korobov spaces to certain Sobolev spaces

Let Hd D Hd .Kd / be an arbitrary Hilbert space of functions defined over Œ0; 1�d

with real-valued reproducing kernel Kd . If this kernel is absolutely integrable, then
we may compute its Fourier series coefficients, which are given by

cKd .h; �/ D
Z
Œ0;1�2d

Kd .x; t/ exp Œ�2�i.h � x C � � t /� dx dt for all h; � 2 Zd :

(16.30)
If these Fourier coefficients are absolutely summable, then we may write the kernel as

Kd .x; t/ D
X

h;�2Zd

cKd .h; �/ exp .2� i .h � x C � � t // :
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For weighted Korobov spaces and Sobolev spaces with certain boundary conditions the
reproducing kernel may be written in the form above. However, reproducing kernels
that are not periodic cannot be written as an absolutely summable series, although the
Fourier coefficients may be well defined.

A particularly interesting case occurs whencKd .h; �/ D 0 for all � ¤ �h:
Let cKd .h/ D cKd .h;�h/. Then

Kd .x; t/ D
X
h2Zd

cKd .h/ exp .2� i h � .x � t // with
X
h2Zd

jcKd .h/j < 1: (16.31)

Since our reproducing kernel is real-valued and symmetric in its arguments, one
may show that cKd .h/ D cKd .h/ D cKd .�h/:
Note thatKd of the form (16.31) depends only on the fractional parts of the successive
components of the vector x � y, i.e., on

fx � yg D Œfx1 � y1g; fx2 � y2g; : : : ; fxd � yd g� 2 Œ0; 1�d :
It is easy to check that the inner product ofH.Kd / for reproducing kernels of the form
(16.31) is

hf; giH.Kd /
D

X
h2Zd

cKd�1.h/ Of .h/ Og.h/ for all f; g 2 H.Kd /; (16.32)

with the convention that for cKd .h/ D 0 we have Of .h/ D 0 for all f 2 H.Kd / and
interpret 0=0 D 0.

The kernelKd;˛;� of the weighted Korobov spaceHd;˛;� with ˛ > 1
2

is of the form
(16.31) with

cKd .h/ D %�1
d;˛;� .h/ and then

X
h2Zd

jcKd .h/j D
X

u�Œd�
�d;u


2.2˛/

.2�/2˛

�juj
< 1:

(16.33)
We need the following lemma.

Lemma 16.11. A functionKd of the form (16.31) is a real-valued reproducing kernel
iff cKd .h/ � 0 for all h 2 Zd .

Proof. This lemma easily follows from the facts that f .x/ D Kd .x; 0/ is periodic and
positive definite1, and thatf 2 L1.Œ0; 1�d / is positive definite iff its Fourier coefficientscKd .h/ are non-negative, see Edwards [64], pp. 149–150.

1The function f is positive definite iffZ
Œ0;1�2d

f .x � y/u.x/u.y/ dx dy � 0

for all continuous complex-valued functions u.
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We need to recall a relation between arbitrary reproducing kernels and shift-invariant
reproducing kernels. As in Hickernell [117] and [128], we say that Kd is a shift-
invariant kernel iff

Kd .x; t/ D Kd .fx C	g; ft C	g/ for all x; t;	 2 Œ0; 1�d : (16.34)

It is easy to check that Kd is shift-invariant iff

Kd .x; t/ D Kd .fx � tg; 0/ for all x; t 2 Œ0; 1�d :
Thus, reproducing kernels of the form (16.31) are shift-invariant. This includes the
kernel Kd;˛;� of the weighted Korobov space Hd;˛;� .

As in Hickernell [117] and [128], for an arbitrary kernel Kd we define the shift-
invariant kernel Ksh;d associated to Kd by

Ksh;d .x; t/ D
Z
Œ0;1�d

Kd .fx C	g; ft C	g/ d	 for all x; t 2 Œ0; 1�d : (16.35)

Indeed, Ksh;d is shift-invariant, and if Kd is shift-invariant then Ksh;d D Kd . The
definition above can be used to show that the Fourier series coefficients for the associated
shift-invariant kernel are related to the Fourier series coefficients of the original kernel
by

1Ksh;d .h/ D cKd .h;�h/ for all h 2 Zd :

As in [128], see Theorem 2, we now consider multivariate integration for the spaces
H.Kd / andH.Ksh;d /. We first compute the initial errors, i.e., the worst case errors of
the zero algorithm in these spaces. We have

e2.0IH.Ksh;d // D
Z
Œ0;1�2d

Ksh;d .x; t/ dx dt

D
Z
Œ0;1�3d

Kd .fx C	g; ft C	g/ dx dt d	:

Since the function f .x; t/ D Kd .fxC	g; ft C	g/ is periodic, we can drop	 in the
inside integral of the last formula and obtain

e2.0IH.Ksh;d / D
Z
Œ0;1�2d

Kd .x; t/ dx dt D e2.0IH.Kd //:

This means that the initial errors are equal.
We now show that multivariate integration over the spaceH.Kd / is not harder than

multivariate integration over the space H.Ksh;d /. As always, let e.nIH.Kd // and
e.n;H.Ksh;d // denote the minimal worst case errors for multivariate integration in the
spaces H.Kd / and H.Ksh;d /, respectively. We show that

e.nIH.Kd // � e.nIH.Ksh;d // for all n 2 N:
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We have already shown equality when n D 0. So, let n � 1. We know that it is enough
to consider linear algorithms for both spaces. Take then an arbitrary linear algorithm

An;d .f / D
nX

jD1
ajf .xj /

for the spaceH.Ksh;d /. Formally, the aj ’s could be complex numbers. However, since
Kd and Ksh;d are real-valued, it is easy to show that the worst case error of An;d is
minimized if we take real aj . Hence, without loss of generality we assume that the
coefficients aj are real. For 	 2 Œ0; 1�d , define the algorithm

An;d;�.f / D
nX

jD1
ajf

�fxj C	g� for all f 2 H.Kd /:

That is, for a linear algorithm An;d for the spaceH.Ksh;d / we switch to the algorithm
An;d;� for the spaceH.Kd / by using the same coefficients aj and changing the sample
points xj to fxj C 	g for some not yet specified 	. We know the formulas for the
worst case errors of these algorithms. Namely,

e2.An;d IH.Ksh;d // D e2.0IH.Ksh;d // � 2
nX

jD1
aj

Z
Œ0;1�d

Ksh;d .x; xj / dx

C
nX

j;kD1
ajakKsh;d .xj ; xk/:

Note that the last integral does not depend on xj . Indeed, sinceKsh;d is shift-invariant
and periodic with period 1 in each variable, then

Ksh;d .x; xj / D Ksh;d .fx � xj g; 0/
and when we integrate over x we can drop xj , gettingZ

Œ0;1�d
Ksh;d .x; xj / dx D

Z
Œ0;1�d

Ksh;d

�fx � xj g; 0� dx D
Z
Œ0;1�d

Ksh;d .x; 0/ dx

D e2.0IH.Ksh;d // D e2.0IH.Kd //:
Therefore

e2.An;d IH.Ksh;d // D e2.0IH.Ksh;d //

�
1 � 2

nX
jD1

aj

	
C

nX
j;kD1

ajakKsh;d .xj ; xk/:

Consider now e2.An;d;�IH.Kd // and compute its average value

a WD
Z
Œ0;1�d

e2.An;d;�IH.Kd // d	
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with respect to uniformly distributed 	. We have

a D e2.0;H.Kd // � 2
nX

jD1
aj

Z
Œ0;1�2d

Kd .fxj C	g; x/ d	 dx

C
nX

j;kD1
ajak

Z
Œ0;1�d

Kd
�fxj C	g; fxk C	g� d	

D e2.0;H.Kd // � 2
nX

jD1
aj

Z
Œ0;1�2d

Kd .	; x/ d	 dx

C
nX

j;kD1
ajakKsh;d .xj ; xk/

D e2.0IH.Kd //
�
1 � 2

nX
jD1

aj

�
C

nX
j;kD1

ajakKsh;d .xj ; xk/

D e2.0IH.Ksh;d //
�
1 � 2

nX
jD1

aj

�
C

nX
j;kD1

ajakKsh;d .xj ; xk/

D e2.An;d IH.Ksh;d //:

This means that the average value of the square of the worst case error of An;d;� for
the space H.Kd / is equal to the square of the worst case error of An;d for the space
H.Ksh;d /. From the mean value theorem, there exists an 	 2 Œ0; 1�d such that

e.An;d;�IH.Kd // � e.An;d ;H.Ksh;d //: (16.36)

Since this holds for any linear algorithm An;d , we have

e.nIH.Kd // � e.nIH.Ksh;d //;

as claimed.
Let n.";H.Kd / and n.";H.Ksh;d // denote the information complexity for the

normalized error criterion for the corresponding spaces, that is, the minimal number
of function values needed to reduce the initial error by a factor of ". The last result
implies that

n.";H.Kd // � n.";H.Ksh;d // for all " 2 .0; 1/: (16.37)

In fact, a little more can be shown, which is the subject of the following lemma.

Lemma 16.12. Let Kd be a reproducing kernel defined on Œ0; 1�2d with Fourier co-
efficients cKd .h; �/, as defined in (16.30). Let zKd be a shift-invariant kernel defined

on Œ0; 1�2d with Fourier coefficients czKd .h/, as defined in (16.31). If these Fourier
coefficients satisfy the inequality

cKd .h;�h/cKd .0; 0/ �
czKd .h/czKd .0/ for all h 2 Zd ; (16.38)
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then multivariate integration for the normalized error criterion is not harder for the
spaceH.Kd / than it is for the spaceH. zKd /, i.e.,

n.";H.Kd // � n.";H. zKd // for all " 2 .0; 1/:
Proof. By (16.37) it follows that n.";H.Kd // � n.";H.Ksh;d //. Now consider the
spaces H.Ksh;d / and H. zKd /. Assumption (16.38) implies that

1Ksh;d .h/=1Ksh;d .0/ � czKd .h/=czKd .0/ for all h 2 Zd :

Multivariate integration in the space H.Ksh;d / is Id .f / D hf; �d iH.Ksh;d /
with

�d .y/ D
Z
Œ0;1�d

Ksh;d .y; t/ dt for all y 2 Œ0; 1�d :

For any linear algorithm Qn;d .f / D Pn
jD1 ajf .xj / with real aj , the representer of

the quadrature error for the space H.Ksh;d / is

�n;d .y/ WD �d .y/ �
nX

jD1
ajKsh;d .y; xj /

D 1Ksh;d .0/
�
1 �

nX
jD1

aj

�
�

X
06Dh2Zd

1Ksh;d .h/

nX
jD1

aj exp
�
2�ih � .y � xj /

�
;

and by (16.32) the square worst case error is

e2.Qn;d IH.Ksh;d //

D k�n;dk2H.Ksh;d /

D 1Ksh;d .0/
ˇ̌̌
1 �

nX
jD1

aj

ˇ̌̌2 C
X

06Dh2Zd

1Ksh;d .h/
ˇ̌̌ nX
jD1

aj exp
�
2�ih � xj

� ˇ̌̌2
:

Due to Lemma 16.11, all Fourier coefficients 1Ksh;d in the sum above are non-negative.
Also, the square of the initial error is

e2.0IH.Ksh;d // D 1Ksh;d .0/:

The worst case error for the space H. zKd // has similar expressions. The inequality
above relating the Fourier coefficients for the two kernels then implies that

e.Qn;d IH.Ksh;d //

e.0IH.Ksh;d //
� e.Qn;d IH. zKd //

e.0IH. zKd //
:

Since this holds for any Qn;d , the desired result then follows.
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16.7.2 Relations to Weighted Sobolev Space

We will use Lemma 16.12 by identifying H. zKd / as the weighted Korobov space, and
constructing a weighted Sobolev space that plays the role ofH.Kd /. To satisfy the as-
sumptions of Lemma 16.12, the Sobolev space must have certain boundary conditions.

16.7.2.1 Unweighted univariate case. We first begin with the unweighted univariate
case, d D 1. Let W r

2 .Œ0; 1�/ be the classical Sobolev space of functions defined on
Œ0; 1�with .r �1/ absolutely continuous derivatives and with r th derivatives belonging
to the space L2.Œ0; 1�/. We study the Sobolev space Hr with boundary conditions,
defined by

Hr D ff 2 W r
2 .Œ0; 1�/ j f .k/.0/ D f .k/.1/ D 0 for k D 0; 1; : : : ; r � 1 g

and with the inner product

hf; giHr
D
Z 1

0

f .r/.t/g.r/.t/ dt for all f; g 2 Hr :

We want to find the reproducing kernel Kr of Hr . For r D 1, it is known that

K1.x; t/ D min.x; t/ � xt D 1
2

�
B2.fx � tg/ � B2.x/ � B2.t/C 1

6

�
: (16.39)

For r � 2, let re denote the smallest even integer � rC1, and ro denote the smallest
odd integer � r C 1. Define the vectors and matrices:

�r;e.x/ D

B2r.x/

.2r/Š
;
B2r�2.x/
.2r � 2/Š ; : : : ;

Bre .x/

reŠ
; 1

�T
; (16.40)

�r;o.x/ D

B2r�1.x/
.2r � 1/Š ;

B2r�3.x/
.2r � 3/Š ; : : : ;

Bro.x/

roŠ

�T
; (16.41)

�r;e D

0BBBBBB@
�
.1/T
r;e .0/

�
.2/T
r;e .0/
:::

�
.r0�3/T
r;e .0/

.1; 0; : : : ; 0/

1CCCCCCA

�1

; �r;o D

0BBBB@
�
.1/T
r;o .0/

�
.3/T
r;o .0/
:::

�
.re�3/T
r;o .0/

1CCCCA
�1

: (16.42)

Here the numerical superscript denotes the order of the derivative.
Of course, theBj .x/ are Bernoulli polynomials of degree j . The matricesAr;e and

Ar;o whose inverses define �r;e and �r;o are nonsingular, as shown in the proof of the
lemma below. Note that the matrices �r;e and �r;o are symmetric.

As in [129], we claim that the reproducing kernel forHr can be written in terms of
a finite rank modification of

K1;r;1.x; t/ D 1C .�1/rC1B2r.fx � tg/
.2r/Š

; (16.43)
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the kernel for the unweighted univariate Korobov space with smoothness parameter
˛ D r .

Lemma 16.13. The reproducing kernel forHr with r � 2 is

Kr.x; t/ D .�1/rC1

.2r/Š
B2r.fx � tg/C .�1/r�Tr;e.x/�r;e�r;e.t/

C .�1/r�Tr;o.x/�r;o�r;o.t/:
(16.44)

Proof. Assume for a moment that �r;e and �r;o are well defined. Then Kr given by
(16.44) is also well defined. To prove that this is indeed the reproducing kernel, we
first show that Kr.�; t / 2 Hr for every fixed t . For j D 0; 1; : : : ; r � 1, we have
ŒBk.x/=.k/Š�

.j / D Bk�j .x/=.k � j /Š for k � j , and the j th derivative of Kr.�; t / is

K.j;0/r .x; t/ D .�1/rC1

.2r � j /ŠB2r�j .fx � tg/C .�1/r� .j /Tr;e .x/�r;e�r;e.t/

C .�1/r� .j /Tr;o .x/�r;o�r;o.t/:

Hence, the .r�1/st derivativeK.r�1;0/
r .�; t / is obviously absolutely continuous, and the

r th derivative K.r;0/r .�; t / is square integrable because K.r;0/1;r;1.�; t /, given by (16.43), is
square integrable and polynomials are, of course, square integrable over finite intervals.
Next, we check the boundary conditions.

For even derivatives, j D 0; 2; : : : ; ro � 3, the vector � .j /Tr;o .x/ consists of the
derivatives of the Bernoulli polynomials of odd degrees that are at least ro � j � 3.
Hence, for x D 0 and x D 1 it follows from the properties of Bernoulli polynomials
that � .j /Tr;o .0/ D �

.j /T
r;o .1/ D 0. So by the definition of �r;e.x/ and �r;e , we have

K.j;0/r .1; t/ D K.j;0/r .0; t/ D .�1/rC1

.2r � j /ŠB2r�j .f0 � tg/
C .�1/r� .j /Tr;e .0/�r;e�r;e.t/

D .�1/rC1

.2r � j /ŠB2r�j .t/C .�1/r
.2r � j /ŠB2r�j .t/ D 0:

A similar argument shows thatK.j;0/r .1; t/ D K
.j;0/
r .0; t/ D 0 for j D 1; 3; : : : ; re�3.

Since max.re; ro/ � 3 D r � 1, we have K.j;0/r .1; t/ D K
.j;0/
r .0; t/ D 0 for j D

0; 1; : : : ; r � 1.
Finally, we must show that Kr.�; t / has the reproducing property. Any function f

in the Sobolev space H.Kr/ must also be in the weighted Korobov space H1;r;1, so

f .t/ D hf;K1;r;1.�; t /iH1;r;1
D
Z 1

0

f .x/ dx C
Z 1

0

K
.r;0/
1;r;1.x; t/f

.r/.x/ dx:
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Since B 0
n.x/ D nBn�1.x/ we have B.r/2r .x/=Œ.2r/Š� D Br.x/=ŒrŠ� and therefore,

hf;Kr.�; t /iHr
D
Z 1

0

K.r;0/r .x; t/f .r/.x/ dx

D
Z 1

0

K
.r;0/
1;r;1.x; t/f

.r/.x/ dx

C .�1/r
Z 1

0

� .r/Tr;e .x/f .r/.x/ dx

�
�r;e�r;e.t/

C .�1/r
Z 1

0

� .r/Tr;o .x/f .r/.x/ dx

�
�r;o�r;o.t/

D f .t/ �
Z 1

0

f .x/ dx

C .�1/r
Z 1

0

� .r/Tr;e .x/f .r/.x/ dx

�
�r;e�r;e.t/

C .�1/r
Z 1

0

� .r/Tr;o .x/f .r/.x/ dx

�
�r;o�r;o.t/:

Since f and its first r � 1 derivatives vanish at 0 and 1, one can integrate by parts to
show that Z 1

0

Bj .x/

j Š
f .r/.x/ dx D

Z 1

0

.�1/rB.r/j .x/

j Š
f .x/ dx

D
´
0 j < r;

.�1/r R 1
0
f .x/ dx j D r:

Thus, it follows thatZ 1

0

� .r/Tr;e .x/f .r/.x/ dx D .�1/r
Z 1

0

f .x/ dx; 0; : : : ; 0

�T
;Z 1

0

� .r/Tr;o .x/f .r/.x/ dx D 0:

We also have

Œ1; 0; : : : ; 0�T�r;e D Œ0; : : : ; 0; 1�T and Œ1; 0; : : : ; 0�T�r;e�r;e.t/ D 1;

which holds for all t . Substituting these expressions into the formula above completes
the proof that Kr.�; t / has the reproducing property.

We now prove that �r;e and �r;o are well defined. We need to show that matrices
Ar;e and Ar;o defining �r;e and �r;o are nonsingular. Let ce and co be any vectors
satisfying

Ar;ece D 0 and Ar;oco D 0: (16.45)
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Define the polynomial p.x/ D cTe �r;e.x/C cTo �r;o.x/. By the definitions of �r;e.x/
and �r;o.x/, this polynomial has degree at most 2r . However, the bottom row of the
first condition in (16.45) is .1; 0 : : : ; 0/ce D 0. This implies that the first element of
ce vanishes, so p has degree of at most 2r � 1. The other conditions in (16.45) imply
that p.0/ D � � � D p.r�1/.0/ D p.1/ D � � � D p.r�1/.1/ D 0 by an argument similar
to that above. Thus, the polynomial p has two zeros, each with multiplicity r . Since
the degree of p is at most 2r � 1, p must be the zero polynomial, i.e., p.x/ D 0 for
all x. Since the polynomials comprising �r;e.x/ and �r;e are linearly independent, it
follows that ce D 0 and co D 0. Thus, Ar;e and Ar;o must be nonsingular.

Note that another formula for the reproducing kernel Kr appears in Ritter [251].
However, the formula in Lemma 16.13 in terms of Bernoulli polynomials makes it easier
to derive bounds on the Fourier coefficients ofKr , which are needed to eventually apply
Lemma 16.12.

Lemma 16.14. For r � 1, the Fourier coefficients of the reproducing kernel Kr have
the bounds

cKr.0; 0/ > 0 and 0 � cKr.h;�h/ � Grh
�2r for all h 6D 0

for some positive Gr .

Proof. The Fourier coefficient cKr.0; 0/ is simply the square of the norm of multivariate
integration. We know that this is nonzero because there are integrands in Hr with
nonzero integrals, e.g., xr.1 � x/r . Lemma 16.11 implies that cKr.h;�h/ � 0. Thus,
we only need to prove upper bounds on cKr.h;�h/.

Assume first that r � 2. For h ¤ 0, the Fourier coefficient cBj .h/ of the j th
degree Bernoulli polynomial is known to be �j Š.2�ih/�j . Due to (16.44), the Fourier
coefficient cKr.h;�h/ satisfies

cKr.h;�h/ D 1

.2�h/2r
C .�1/rb�r;eT .h/�r;eb�r;e.�h/

C .�1/rb�r;oT .h/�r;ob�r;o.�h/;
(16.46)

where b�r;e.h/ and b�r;o.h/ are the Fourier coefficients of �r;e.x/ and �r;o.x/, respec-
tively. This implies that for large h we have

.�1/rb�r;eT .h/�r;eb�r;e.�h/ D O.h�2re /;

.�1/rb�r;oT .h/�r;ob�r;o.�h/ D O.h�2ro/:

Since both re and ro are larger than r , the dominant term in (16.46) is the first one.
For r D 1, note that (16.39) is the same as (16.44) if we omit the last term with �r;o.

Therefore the proof for r D 1 is the same as that for r � 2, with an obvious change.
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16.7.2.2 Multivariate weighted case. We now turn to multivariate weighted Sobolev
spaces that are built from the univariate space Hr with the reproducing kernel Kr
given in Lemma 16.13. The multivariate weighted Sobolev space H sob

d;r;	
is defined as

a reproducing kernel Hilbert space whose kernel is

Ksob
d;r;	.x; t/ D 1C

X
;6Du�Œd�

�d;u
Y
j2u

Kr.xj ; tj / for all x; t 2 Œ0; 1�d : (16.47)

Here, r is a positive integer, and � D f�d;ug is a weight sequence with �d;; D 1

and with non-negative �d;u, for all non-empty u � Œd �.
For product weights �, i.e., �d;j D Q

j2u �d;j for some non-negative and non-
increasing �d;j , we have

Ksob
d;r;	.x; t/ D

dY
jD1

�
1C �d;j Kr.xj ; tj /

�
for all x; t 2 Œ0; 1�d :

In this case, the spaceH sob
d;r;	

is the tensor product of the spacesH sob
1;r;	d;j

of univariate
functions defined on Œ0; 1� with the reproducing kernel

Ksob
1;r;	d;j

.x; t/ D 1C �d;j Kr.x; t/ for all x; t 2 Œ0; 1�:

The space H sob
1;r;	d;j

consists of functions whose .r � 1/st derivatives are absolutely
continuous, r th derivatives are in L2.Œ0; 1�/, and satisfying the following boundary
conditions

f .0/ D f .1/ and f .j /.0/ D f .j /.1/ D 0 for j D 1; 2; : : : ; r � 1:
The inner product of H sob

1;r;	d;j
is

hf; giH sob
1;r;�dj

D f .0/g.0/C 1

�d;j

Z 1

0

f .r/.t/g.r/.t/ dt:

If �d;j D 0 then we assume that f r 	 0 and then the space H sob
1;r;	dj

D span.1/

consists of constant functions.
For arbitrary weights �d;u, the inner product of the multivariate Sobolev space

H sob
d;r;	

is given by

hf; giHd;r; O�
D f .0/g.0/C

X
;6Du�Œd�

Y
j2u

��1
d;j

Z
Œ0;1�juj

f .ru/.xu; 0/g
.ru/.xu; 0/ dxu;

where ru D Œ.ru/1; : : : ; .ru/d � is a vector with .ru/j D 1 if j 2 u and .ru/j D 0

otherwise. The vector xu is a juj-dimensional vector with components xj for j 2 u,
and .xu; 0/ is a d -dimensional vector with components xj if j 2 u and xj D 0

otherwise. As always, �d;u D 0 implies that f .ru/ 	 1, and we interpret 0=0 D 0.
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The Fourier coefficients of the reproducing kernel Ksob
d;r;	

are

1Ksob
d;r;	.h; �/ D y1.h; �/C

X
;6Du�Œd�

�d;u
Y
j2u

cKr.hj ; �j /Y
j…u

y1.hj ; �j / for all h; � 2 Zd :

Recall that the set of non-zero hj is denoted by uh D fj 2 Œd � j hj 6D 0g. If uh is not
a subset of u then there is an index j such that j 2 uh and j … u. Since hj 6D 0 then
y1.hj ; �j / D 0 and the u term in the sum above is zero. Therefore

1Ksob
d;r;	

.h;�h/
1Ksob
d;r;	

.0; 0/
D
P

uh�u�Œd� �d;u
Q
j2u

cKr.hj ; hj /
1CP

;6Du�Œd� �d;u
�cKr.0; 0/�juj for all h 2 Zd :

Note that for h D 0 the last ratio is one. For non-zero h 2 Zd , we apply Lemma 16.14
and obtain

Ah WD
1Ksob
d;r;	

.h;�h/
1Ksob
d;r;	

.0; 0/

D
P

uh�u�Œd� �d;u
Q
j2unuh

�cKr.0; 0/�juj�juhj Q
j2uh

cKr.hj ; hj /
1CP

;6Du�Œd� �d;u
�cKr.0; 0/�juj

�
P

uh�u�Œd� �d;u
Q
j2unuh

�cKr.0; 0/�juj�juhj
G

juhj
r

Q
j2uh

h�2r
j

1CP
;6Du�Œd� �d;u

�cKr.0; 0/�juj :

For the weighted Korobov spaceHd;˛;� we have 1Kd;˛;� .0; 0/ D 1, and for non-zero
h 2 Zd , we have

1Kd;˛;� .h;�h/ D �d;uh

Y
j2uh

.2�jhj j/�2˛:

To satisfy the conditions of Lemma 16.12 we need to guarantee that the inequality
Ah � 1Kd;˛;� .h;�h/ holds for all h 2 Zd . This holds for h D 0, so we need to
consider only non-zero h 2 Zd .

For given ˛ and � D f�d;ug we take

r D d˛e;
and denote

� 0
d;u WD �d;u

 cKr.0; 0/
.2�/2˛ Gr

�juj
and �0

d;u WD �d;u
�cKr.0; 0/�juj

:

We assume that � D f�dug is chosen such thatP
v W u�v �

0
d;v

1CP
;6Dv�Œd� �0

d;v

� � 0
d;u for all u � Œd �: (16.48)
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It is obvious that (16.48) is equivalent to Ah � 1Kd;˛;� .h;�h/ for all h 2 Zd .
We now show how to choose the sequence � so that (16.48) holds for a number of

specific sequences � .

• Consider product weights �d;j D Q
j2u �d;j . Take � also as a sequence of

product weights, �d;j D Q
j2u �d;j with

�d;j D �d;j

.2�/2˛ Gr
for all j 2 Œd �:

Then �0 is also a sequence of product weights, �0
d;v

D Q
j2v �

0
d;j

with �0
d;j

D
�d;j cKr.0; 0/ andX

v W u�v

�0
d;v D

Y
j2u

�0
d;j

X
v W u�v

Y
j2vnu

�0
d;j D

Y
j2u

�0
d;j

Y
j2vnu

.1C �0
d;j /:

ThereforeP
v W u�v �

0
d;v

1CP
;6Dv�Œd� �0

d;v

D
Q
j2u �

0
d;j

Q
j2vnu.1C �0

d;j
/Qd

jD1.1C �0
d;j
/

�
Y
j2u

�0
d;j

D
Y
j2u

�d;j
cKr.0; 0/
.2�/2˛ Gr

D � 0
d;u;

as claimed

• Consider finite-order weights of order ! such that

�d;u D
8<:
h
.2�/2˛ GrbKr .0;0/

ijuj
if juj � !;

0 if juj > !:
Take

�d;u D �d;u

Œ.2�/2˛ Gr �
juj for all u � Œd �:

Then �0
d;u

D � 0
d;u

D 1, andP
v W u�v �

0
d;v

1CP
;6Dv�Œd� �0

d;v

� 1 D � 0
d;u

trivially holds.

We summarize the analysis performed above in the following theorem.

Theorem 16.15. For the weighted Korobov space Hd;˛;� construct the weighted
Sobolev spaceH sob

d;r;	
with r D d˛e and � chosen such that (16.48) is satisfied.

Then multivariate integration over this weighted Sobolev space is not harder than
multivariate integration over this weighted Korobov space, i.e.,

n.";H sob
d;r;	/ � n.";Hd;˛;� / for all " 2 .0; 1/:



16.8 Tractability for Weighted Korobov Spaces 457

The theorem above says that lower bounds on multivariate integration for the
weighted Sobolev space H sob

d;r;	
are also lower bounds on multivariate integration for

the weighted Korobov space Hd;˛;� under the appropriate assumptions on the choice
of r and �. For the weighted Sobolev space H sob

d;r;	
we obtain lower bounds based on

the proof technique of decomposable kernels, and in this way we also obtain lower
bounds for the weighted Korobov space Hd;˛;� .

16.8 Tractability for Weighted Korobov Spaces

In this section we find necessary and sufficient conditions on tractability of multivariate
integration defined over weighted Korobov spacesHd;˛;� . For simplicity we consider
only bounded product weights, leaving the case of more general weights to the reader.
In Sections 16.4.2, 16.4.3 and 16.4.4 we already discussed tractability, but only for the
class of QMC algorithms. In this section we consider general algorithms. Necessary
conditions on tractability of multivariate integration will be achieved by switching
to weighted Sobolev spaces H sob

d;r;	
and applying the results developed in Chapter 12

based on the notion of decomposable reproducing kernels. Sufficient conditions will be
achieved by lattice rules and estimates presented in this chapter. Surprisingly enough,
these necessary and sufficient conditions match.

Theorem 16.16. Consider multivariate integration I� D fId;�g defined over the
weighted Korobov spaceHd;˛;� with ˛ > 1

2
and bounded product weights

�d;u D
Y
j2u

�d;j for all u � Œd �

with supd2N; jD1;2;:::;d �d;j < 1.

• I� is strongly polynomially tractable iff

sup
d2N

dX
jD1

�d;j < 1:

• I� is polynomially tractable iff

lim sup
d!1

Pd
jD1 �d;j

ln.d C 1/
< 1:

• I� is strongly T -tractable iff

sup
d2N

dX
jD1

�d;j < 1 and lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1:
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• I� is T -tractable iff

lim sup
"�1Cd!1

Pd
jD1 �d;j C ln "�1

1C ln T ."�1; d /
< 1:

• I� is weakly tractable iff

lim
d!1

Pd
jD1 �d;j
d

D 0:

Before we present the proof of Theorem 16.16 we need to elaborate on multivariate
integration defined over the weighted Sobolev spacesH sob

d;r;	
. We also consider product

weights �, given by
�d;u D

Y
j2u

�d;j ;

where �d;1 � �d;2 � � � � � 0.
The reproducing kernel of H sob

d;r;	
is now of the form

Ksob
d;r;	.x; t/ D

dY
jD1

�
1C �d;jKr.xj ; tj /

�
for all x; t 2 Œ0; 1�d :

As we know from Chapter 12, necessary tractability conditions are given in terms of
the univariate case, d D 1. We need to represent the univariate reproducing kernel

K1;r;	d;j
D 1C �d;jKr

as
K1;r;	d;j

D R1 C �d;j .R2 CR3/;

where theRj are reproducing kernels of the Hilbert spaceH.Rj / of univariate functions
such that

.H.Rj /˝H.Rk// \H.Rm/ D f0g
for pairwise different j; k and m with j; k;m D 1; 2; 3. We must also guarantee that
the reproducing kernel R2 is decomposable at a, that is,

R2.x; t/ D 0 for all 0 � x � a � t � 1:

As in [129], from the form of K1;r;	 it is natural to take

R1 D 1 and H.R1/ D span.1/:

We need to decompose Kr as
Kr D R2 CR3 (16.49)
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with a decomposable R2 and with .H.Rj / ˝ H.Rk// \ H.Rm/ D f0g for pairwise
different j; k and m with j; k;m D 1; 2; 3.

We take R3 as the reproducing kernel of the Hilbert space

H1;3 D span
�
K.0;0/r

��; 1
2

�
; K.0;1/r

��; 1
2

�
; : : : ; K.0;r�1/

r

��; 1
2

��
:

The space H1;3 is equipped with the inner product of the Hilbert space Hr D H.Kr/.
Let g�

j be an orthonormal basis of H1;3. Since dim.H1;3/ D r we have

R3.x; t/ D
r�1X
jD0

g�
j .x/ g

�
j .t/:

We now decompose the space Hr as

Hr D H1;3 ˚H1;2

with the Hilbert space

H1;2 D ff 2 W r
2 .Œ0; 1�/ W f .j /.0/ D f .j /

�
1
2

� D f .j /.1/ D 0; j D 0; 1; : : : ; r�1 g:
Then the reproducing kernel R2 of H1;2 is

R2 D Kr �R3:
Hence, (16.49) holds. Moreover, we have .H.Rj / ˝ H.Rk// \ H.Rm/ D f0g for
pairwise different j; k and m with j; k;m D 1; 2; 3, as needed.

We claim that R2 is decomposable at 1
2

. We need the following lemma.

Lemma 16.17. Assume that K W Œ0; 1�2 ! R is an arbitrary reproducing kernel that
is decomposable at a 2 .0; 1/. Let

A D ff 2 H.K/ j f .b1/ D f .b2/ D � � � D f .bk/ D 0 g;
where a � bj � 1 for all j D 1; 2; : : : ; k or 0 � bj � a for all j D 1; 2; : : : ; k.

Let KA be the reproducing kernel of A. Then KA is also decomposable at a.

Proof. We have
f .bj / D ˝

f;K.�; bj /
˛
H.K/

:

Let gj be an orthonormal basis of span.K.�; b1/; : : : ; K.�; bk//. Then

KA.x; t/ D K.x; t/ �
kX

jD1
gj .x/gj .t/:

If a � bj for all j , then gj .x/ D 0 for all x � a since K.x; bj / D 0. This yields
KA.x; t/ D 0 for all x � a � t . Similarly, for bj � a we have gj .t/ D 0 for all
a � t andKA.x; t/ D 0 for all x � a � t . In either case,KA is decomposable at a, as
claimed.
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We now take the Sobolev space

H.K/ D ˚
f 2 W r

2 .Œ0; 1�/ jf .0/ D � � � D f .r�1/.0/ D 0

and f
�
1
2

� D � � � D f .r�1/�1
2

� D 0



As in [221], we now show the following lemma.

Lemma 16.18. The reproducing kernelK of the space defined above is decomposable
at a D 1

2
.

Proof. Without the conditions f .j /.1
2
/ D 0, but with the boundary conditions

f .j /.0/ D 0 for j D 0; 1; : : : ; r � 1, the space W r
2 .Œ0; 1�/ has the reproducing kernel,

say, R of the form

R.x; t/ D
Z 1

0

.x � u/r�1C
.r � 1/Š

.t � u/r�1C
.r � 1/Š du:

We show an explicit form of R. It is enough to consider x � t . We use t � u D
t � x C x � u and .t � u/r�1 D Pr�1

jD0
�
r�1
j

�
.t � x/r�1�j .x � u/j to conclude by

simple integration that

R.x; t/ D xr

rŠ

r�1X
jD0

r

r C j

xj

j Š

.t � x/r�1�j

.r � 1 � j /Š :

This means that for a fixed x, the functionR.x; �/ is a polynomial in t 2 Œx; 1� of degree
at most r � 1.

Note that H.K/ is a subspace of H.R/ consisting of functions f 2 H.R/ for
which f .i/.1

2
/ D 0 for i D 0; 1; : : : ; r � 1. Observe that

f .i/
�
1
2

� D ˝
f;R.i;0/

�
1
2
; ��˛

H.R/
:

Hence, f 2 H.K/ iff f 2 H.R/ and is orthogonal to

Ar�1 D span
�
R.0;0/

�
1
2
; ��; R.1;0/�1

2
; ��; : : : ; R.r�1;0/�1

2
; ���:

Let gi 2 Ar�1 be an orthonormal basis of Ar�1 for i D 0; 1; : : : ; r � 1. Since each
R.i;0/.1

2
; �/ is a polynomial of degree at most r�1, the same holds for gi in the interval

Œ1
2
; 1�.

The reproducing kernel K of H.K/ is of the form

K.x; t/ D R.x; t/ �
r�1X
jD0

gj .x/gj .t/:

For x � 1
2

� t , we need to show that R2.x; t/ D 0. Indeed, by Taylor’s theorem we
have

K.x; t/ D
r�1X
jD0

1

j Š
K.0;j /

�
x; 1

2

� �
t � 1

2

�j C
Z t

1=2

K.0;r/.x; u/
.t � u/r�1

.r � 1/Š du:
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Observe that the terms of the sum vanish since K.0;j /.�; 1
2
/ 	 0, due to the fact that

0 D f .j /
�
1
2

� D ˝
f;K.0;j /

��; 1
2

�˛
H.K/

for all f 2 H.K/:

To show that the last term is also zero, it is enough to prove that K.0;r/.x; u/ D 0 for
all u � 1

2
� x. This follows from the fact that all gj are polynomials of degree at most

r � 1 in the interval Œ1
2
; 1�, and therefore

K.0;r/.x; u/ D R.0;r/.x; u/ D @r

@ur

Z x

0

.x � v/r�1

.r � 1/Š
.u � v/r�1

.r � 1/Š dv D 0;

as claimed. Thus, we haveR D R1;1=2CR2;1=2withR1;1=2.x; t/ D Pr�1
jD1 gj .x/gj .t/

and R2;1=2 D K is decomposable at 1
2

, as claimed.

Observe that for the space H1;2 we have

H1;2 D ff 2 H.K/ W f .1/ D � � � D f .r�1/.1/ D 0 g:
Due to Lemma 16.17, the reproducing kernelR2 ofH1;2 is therefore also decomposable
at 1
2

with the limiting case of bj tending to 1
2

and with k D r .
Consider univariate integration

I1.f / D
Z 1

0

f .x/ dx D hf; g1iH.K1;r;�d;j
/ :

We can decompose g1 as

g1 D g1;1 C �d;j .g1;2 C g1;3/;

where g1;k 2 H.Rk/. We also denote

g1;2 D g1;2;.0/ C g1;2;.1/

with g1;2;.0/.x/ D g1;2.x/ for x 2 Œ0; 1
2
�, and g1;2;.0/.x/ D 0 for x 2 Œ1

2
; 1�. Similarly,

g1;2;.1/.x/ D 0 for x 2 Œ0; 1
2
�, and g1;2;.1/.x/ D g1;2.x/ for x 2 Œ1

2
; 1�.

Multivariate integration for the space H sob
d;r;	

with the reproducing kernel Ksob
d;r;	

is
defined as

Id .f / D
Z
Œ0;1�d

f .x/ dx D hf; gd iH sob
d;r;�

with

gd .x/ D
dY
jD1

�
g1;1.xj /C �d;j Œg1;2.xj /C g1;3.xj /�

�
:

We now check that g1;2;.0/ and g1;2;.1/ are both non-zero. We have

I1.f / D
Z 1

0

f .x/ dx D ˝
f; g1;2;.j /

˛
H1;2
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for f 2 H1;2 and f .x/ D 0 for all x 2 Œ0; 1
2
� when j D 0, and f .x/ D 0 for all

x 2 Œ1
2
; 1� when j D 1. Observe that for

f1.x/ D
´
xr
�
x � 1

2

�r
if x 2 �0; 1

2

�
;

0 if x 2 �1
2
; 1
�
;

f2.x/ D
´
0 if x 2 �0; 1

2

�
;

.x � 1/r�x � 1
2

�r
if x 2 �1

2
; 1
�
;

we have fj 2 H1;2, f1 vanishes over Œ1
2
; 1�, and f2 vanishes over Œ0; 1

2
�. Since their

integrals are positive g1;2;.j / must be non-zero for j D 0 and j D 1.
We are ready to prove Theorem 16.16.

Proof of Theorem 16.16. Sufficient tractability conditions follow from Theorem 16.5
and are achieved by lattice rules.

We turn to necessary conditions. We take r D d˛e and �d;j D �d;j =..2�/
2˛ Gr/

and apply Theorem 16.15. We know that it is enough to apply necessary conditions
on tractability for the weighted Sobolev space H sob

d;r;	
and for the normalized error

criterion. We now apply the results of Section 12.5 with R2;2 D R2 and R2;1 D R3.
The reproducing kernel R2;2 is decomposable at 1

2
. Furthermore, h1;2;2;.0/ D g1;2;.0/

andh1;2;2;.1/ D g1;2;.1/ are non-zero. Hence, Corollary 12.7 applies and this completes
the proof.

We comment on Theorems 16.5 and 16.16. These theorems present necessary
and sufficient conditions on various kinds of tractability for QMC algorithms and for
arbitrary algorithms. We stress that these conditions are the same as long as we use
bounded product weights. This is indeed good news for QMC algorithms: although
they are much simpler and much easier to use than general (linear) algorithms, they
enjoy the same tractability conditions as needed for a much larger class of arbitrary
(linear) algorithms. Furthermore, we may use lattice rules of rank-1 whose generators
can be computed by the CBC algorithms with almost linear time as QMC algorithms.

That is why we think we may say that for multivariate integration defined over
weighted Korobov spaces equipped with bounded product weights, the main tractability
problems are solved.

For weights other than bounded product weights, the situation is different. Obvi-
ously, for bounded finite-order or finite-diameter weights we always have polynomial
or even strong polynomial tractability. However, it is not yet clear what are necessary
and sufficient conditions on general weights for which various notions of tractability
hold. This leads us to the next open problem.

Open Problem 76.

Consider multivariate integration defined over the weighted Korobov spaceHd;˛;� with
˛ > 1

2
and general weights � .
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• Find necessary and sufficient conditions on the weights� to obtain various notions
of tractability.

• Are these conditions different for QMC algorithms and arbitrary (linear) algo-
rithms?

16.9 Weighted Sobolev Spaces

We know that multivariate integration over certain weighted Sobolev spaces is not
harder than multivariate integration over weighted Korobov spaces. We have used this
relation so far to find lower bounds on multivariate integration over weighted Korobov
spaces. Obviously, we can also use this relation the other way around to find good
upper bounds on multivariate integration over some weighted Sobolev spaces in terms
of bounds established for weighted Korobov spaces. The reader may remember that the
weighted Sobolev spaces, which are related to weighted Korobov spaces, are defined by
some boundary conditions that are not natural per se. However, if we restrict ourselves
to the relatively small smoothness r D 1, this problem disappears. So in this section,
we analyze the anchored and unanchored weighted Sobolev spaces with the smoothness
parameter r D 1 and we follow the analysis done in [275].

More specifically, we consider the weighted Sobolev spaces that are reproducing
kernel Hilbert spaces H.Kd;� / with the reproducing kernel

Kd;� .x; y/ D 1C
X

;6Du�Œd�
�d;u

Y
j2u

�j .xj ; yj /; (16.50)

where

�j .x; y/ D 1
2
B2.fx � yg/C �

x � 1
2

� �
y � 1

2

�C �j .x/C �j .y/Cmj ; (16.51)

and � D f�d;ug is a weight sequence of non-negative numbers �d;u with �d;; D 1,
and

B2.x/ WD x2 � x C 1
6

D 1

�2

1X
hD1

cos.2�x/

h2

is the Bernoulli polynomial of degree 2. Further, �j is a function with bounded
derivative in Œ0; 1� such that

R 1
0
�j .x/ dx D 0, and the number mj is given by

mj WD
Z 1

0

.�0
j .x//

2dx:

We will study the following two choices for the function �j in (16.51):

(A) �j .x/ D max.x; aj / � 1
2
x2 � 1

2
a2j � 1

3
with arbitrary aj 2 Œ0; 1� for j 2 Œd �,

(B) �j .x/ D 0 for all j 2 Œd �.



464 16 Multivariate Integration for Korobov and Related Spaces

These two choices lead to two different kinds of Sobolev spaces:

• The choice .A/ leads to an anchored Sobolev kernel, denoted by Kd;�;A, and is
given by (16.50) with

�j .x; y/ D
´

min.jx � aj j; jy � aj j/ for .x � aj /.y � aj / > 0;
0 otherwise:

(16.52)

This reproducing kernel Hilbert space is called the anchored Sobolev space, and
is denoted by H.Kd;�;A/.

Note that �j .aj ; y/ D �j .x; aj / D 0. The point a D Œa1; : : : ; ad � is called the
anchor. In this case, mj D a2j � aj C 1

3
. Clearly, mj 2 Œ 1

12
; 1
3
�.

• The choice .B/ leads to an unanchored Sobolev kernel, denoted by Kd;�;B , and
is given by (16.50) with

�j .x; y/ D 1
2
B2.fx � yg/C �

x � 1
2

� �
y � 1

2

�
:

Note that
R 1
0
�j .x; y/ dx D 0 for all y 2 Œ0; 1�.

This reproducing kernel Hilbert space is called the unanchored Sobolev space,
and is denoted by H.Kd;�;B/.

For general weights � D f�d;ug, it can be checked that the inner product in the
space H.Kd;�;A/ is

hf; giH.Kd;�;A/
D

X
u�Œd�

��1
d;u

Z
Œ0;1�juj

@jujf .xu; a�u/

@xu

@jujg.xu; a�u/

@xu
dxu;

where xu denotes the juj-dimensional vector of components xj with j 2 u, and x�u

denotes the vector xŒd�nu; moreover .xu; a�u/ denotes a d -dimensional vector whose
j th component is xj if j 2 u and aj if j 62 u. For u D ;, we use the convention thatR
Œ0;1�;

f .x;; a�;/ dx; D f .a/.
For the space H.Kd;�;B/ with general weights, it can be checked that the inner

product is

hf; giH.Kd;�;B /

D
X

u�Œd�
��1
d;u

Z
Œ0;1�juj

�Z
Œ0;1�d�juj

@jujf .x/
@xu

dx�u

	 �Z
Œ0;1�d�juj

@jujg.x/
@xu

dx�u

	
dxu;

with the term corresponding to u D ; interpreted as
R
Œ0;1�d

f .x/ dx
R
Œ0;1�d

g.x/ dx.
The difference between the inner products is for terms indexed by u. The com-

ponents of x not in u are anchored at a for the space H.Kd;�;A/, while the same
components are integrated over Œ0; 1� for the space H.Kd;�;B/.
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Obviously, multivariate integration I� D fId;�g with

Id;� .f / D
Z
Œ0;1�d

f .x/ dx for all f 2 H.Kd;� /

is well defined, where here and later Kd;� represents either the anchored Sobolev
kernelKd;�;A or the unanchored Sobolev kernelKd;�;B . The square of the initial error
e2.0IH.Kd;� // is given by

e2.0IH.Kd;� // D
Z
Œ0;1�2d

Kd;� .x; y/ dx dy D
X

u�Œd�
�d;u

Y
j2u

mj : (16.53)

In particular, for the unanchored Sobolev space H.Kd;�;B/ the initial error is always
�d;; D 1, independent of the weights since themj ’s are zero. Hence, the absolute and
normalized error are identical for H.Kd;�;B/, and are different for H.Kd;�;A/.

As the first step we recall what happens if we take QMC algorithms

An;d .f / D 1

n

nX
jD1

f .xj / for all f 2 H.Kd;� /

for some sample points xj 2 Œ0; 1�d . When we compute the square of the worst case
error of An;d and then take the average with respect to uniform distribution of xj then
we can apply Theorem 10.4 from Chapter 10. This theorem states that there exists a
QMC algorithm An;d such that

e.An;d IH.Kd;� // � Cd;�p
n
; (16.54)

where

C 2d;� D
Z
Œ0;1�d

Kd;� .x; x/ dx �
Z
Œ0;1�2d

Kd;� .x; t/ dx dt

D
X

u�Œd�
�d;u

Y
j2u

�
mj C 1

6

� �
X

u�Œd�
�d;u

Y
j2u

mj :

This yields the following corollary.

Corollary 16.19. Consider multivariate integration I� D fId;�g defined over the
weighted Sobolev spaceH.Kd;� / with arbitrary weights.

• (A) There exists a QMC algorithm An;d such that

e.An;d IH.Kd;�;A// � 1p
n

� X
u�Œd�

�d;u
Y
j2u

�
mj C 1

6

� �
X

u�Œd�
�d;u

Y
j2u

mj

�1=2
:
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Therefore, if

sup
d2N

X
u�Œd�

�d;u
Y
j2u

�
mj C 1

6

�
< 1 for the absolute error;

sup
d2N

 P
u�Œd� �d;u

Q
j2u.mj C 1

6
/P

u�Œd� �d;u
Q
j2umj

!
< 1 for the normalized error,

then I� , defined for spaces H.Kd;�;A/, is strongly polynomially tractable for
the absolute or normalized error criterion, respectively, with an "�1 exponent at
most 2.

• (B) There exists a QMC algorithm An;d such that

e.An;d IH.Kd;�;B// � 1p
n

� X
;6Du�Œd�

�d;u6
�juj�1=2:

Therefore, if

sup
d2N

� X
;6Du�Œd�

�d;u6
�juj� < 1;

then I� , defined for spaces H.Kd;�;B/, is strongly polynomially tractable for
both the absolute and normalized error criteria, with an "�1 exponent at most 2.

16.9.1 Shifted Lattice Rules

Corollary 16.19 indicates the existence of a QMC algorithm whose convergence or-
der is n�1=2, which is obviously not optimal. To improve the convergence order we
will present a shifted lattice rule, which will allow us to obtain an optimal order of
convergence. This will be done by switching to weighted Korobov spaces and using
Theorem 16.15.

A shifted lattice rule has the form

An;d;�.f / D 1

n

nX
jD1

f

�²
j

n
z C	

³	
for all f 2 H.Kd;� /

for some generator z 2 Œn � 1�d and 	 2 Œ0; 1/d with a prime n. Note that for 	 D 0

we obtain lattice rules, which were studied before. For 	 6D 0, we shift the sample
points that are used by the lattice rule, which motivates the name.

First, we need to find the associated shift-invariant kernel Ksh;d;� of the original
kernel Kd;� . Consider first the unanchored Sobolev space H.Kd;�;B/. Its associated
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shift-invariant kernel can be easily found,

Ksh;d;�;B.x; y/ WD
Z
Œ0;1�d

Kd;�;B.fx C	g; fy C	g/ d	

D 1C
X

;6Du�Œd�
�d;u

Y
j2u

B2.fxj � yj g/

D 1C
X

;6Du�Œd�
�B
d;u

Y
j2u

2

.2�/2

1X
hD1

cos.2� h.xj � yj //
h2

;

where
�B
d;u D 2juj �d;u: (16.55)

This means that the shift-invariant kernel Ksh;d;�;B of the unanchored Sobolev space
is just the reproducing kernel of the weighted Korobov space with the weights �B D
f�B
d;u

g and with ˛ D 1, see Section 16.2, i.e.,

Ksh;d;�;B D Kd;1;�B : (16.56)

For the anchored Sobolev kernelKd;�;A.x; y/, its associated shift-invariant kernel can
also be found after some computations,

Ksh;d;�;A.x; y/ D 1C
X

;6Du�Œd�
�d;u

Y
j2u

ŒB2.fxj � yj g/Cmj �

D
X

u�Œd�
�d;u

X
v W v�u

Y
j2v

B2.fxj � yj g/
Y
j2unv

mj

D
X

v�Œd�

h X
u W v�u�Œd�

�d;u
Y
j2unv

mj

i Y
j2v

B2.fxj � yj g/

D
X

u�Œd�

h X
v W u�v�Œd�

�d;v
Y
j2vnu

mj

i Y
j2u

B2.fxj � yj g/

D
X

u�Œd�
2jujh X

v W u�v�Œd�
�d;v

Y
j2vnu

mj

i Y
j2u

2

.2�/2

1X
hD1

cos.2� .xj � yj //
h2

D e2.0IH.Kd;�;A//
X

u�Œd�
�A
d;u

Y
j2u

2

.2�/2

1X
hD1

cos.2� .xj � yj //
h2

;

where

�A
d;u D 2juj

e2.0IH.Kd;�;A//
h X

v W u�v�Œd�
�d;v

Y
j2vnu

mj

i
: (16.57)

The initial error e.0IH.Ks;A// is given by (16.53). Note that �A
d;; D 1. Thus apart

from the factor e2.0IH.Kd;�;A//, the shift-invariant kernelKsh;d;�;A is just the Korobov
reproducing kernel for the weights �A D f�A

d;u
g and the parameter ˛ D 1, i.e.,

Ksh;d;�;A D e2.0IH.Kd;�;A//Kd;1;�A : (16.58)
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The worst case errors of any QMC algorithm An;d in the spaces H.Ksh;d;�;A/ and
H.Kd;1;�A/ are therefore related by

e.An;d IH.Ksh;d;�;A//

e.0IH.Kd;�;A// D e.An;d IH.Kd;1;�A//: (16.59)

We summarize the analysis of this subsection in the following lemma.

Lemma 16.20. The shift-invariant kernel of the anchored Sobolev kernel Kd;�;A or
of the unanchored Sobolev kernel Kd;�;B is related to the weighted Korobov kernel
Kd;1;ˇ by (16.58) or (16.56), respectively, with the weights ˇ D fˇd;ug given by

ˇd;u WD
´
�A
d;u

if Kd;� D Kd;�;A;

�B
d;u

if Kd;� D Kd;�;B :

We now combine the constructive results for lattice rules with generators computed
by the CBC algorithm for multivariate integration defined over weighted Korobov
spaces and apply them to multivariate integration defined over the anchored and unan-
chored Sobolev spaces. We obtain the following theorem.

Theorem 16.21. Consider multivariate integration defined over the weighted Sobolev
spaceH.Kd;� /. For a prime number n, let z be the generator constructed by the CBC
algorithm with the parameter ˛ D 1 and the weights �A

d;u
if Kd;� D Kd;�;A and with

the weights �B
d;u

if Kd;� D Kd;�;B .

For 	 2 Œ0; 1/d , consider the shifted rank-1 lattice rule

An;d;�.f / D 1

n

nX
jD1

f

�²
j

n
z C	

³	
:

• (A) There exists a shift 	 2 Œ0; 1/d such that for any � 2 Œ1
2
; 1/, we have

e.An;d;�IH.Kd;�;A// �
�P

u�Œd�
�
�d;u

�1=.2�/Q
j2u

�
2�.1=�/

.
p
2�/1=�

Cm
1=.2�/
j

���
.n � 1/� :

• (B) There exists a shift 	 2 Œ0; 1/d such that for any � 2 Œ1
2
; 1/ we have

e.An;d;�IH.Kd;�;B// �
�P

;6Du�Œd�
�
�d;u

�1=.2�/ � 2�.1=�/

.
p
2�/1=�

�juj� �
.n � 1/� :

Proof. We first prove Part (A). From the mean value theorem, see (16.36), and from
Lemma 16.20 we know that there exists 	 2 Œ0; 1/d such that

e.An;d;�IH.Kd;�;A//
e.0IH.Kd;�;A// � en;d .1; �

A; z/;
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where en;d .1; �A; z/ is the worst case error of the lattice rule with generator z for the
weighted Korobov space Hd;1;�A . From Theorem 16.3, we have

en;d .1; �
A; z/ � CA .n � 1/�� ;

with

CA WD
� X

;6Du�Œd�

�
�Ad;u

�1=.2�/ 2.1=�/
.2�/1=�

�juj 	�
:

Let W� D 2.1=�/=.2�/1=� . Inserting the expression (16.57) for �A
d;u

into the ex-
pression for CA.d; �/ and then using Jensen’s inequality with 
 D 1=.2�/ � 1, we
have

CA D 1

e.0IH.Kd;�;A//
� X

;6Du�Œd�
W juj
�

�
2juj X

vW u�v�Œd�
�d;v

Y
j2vnu

mj

�1=.2�/	�
� 1

e.0IH.Kd;�;A//
� X

u�Œd�
2juj=.2�/W juj

�

X
vW u�v�Œd�

�
1=.2�/

d;v

Y
j2vnu

m
1=.2�/
j

	�
D 1

e.0IH.Kd;�;A//
� X

v�Œd�
�
1=.2�/

d;v

X
uW u�v

�
W�2

1=.2�/
�juj Y

j2vnu

m
1=.2�/
j

	�
D 1

e.0IH.Kd;�;A//
� X

u�Œd�
�
1=.2�/

d;u

Y
j2u

�
2.1=�/

.
p
2�/1=�

Cm
1=.2�/
j

		�
:

This proves Part (A). Part (B) follows by the same argument, but with �B
d;u

D 2juj�d;u.
This completes the proof.

We now address tractability. We have three cases since for the space H.Kd;�;A/
we have the absolute and normalized error criteria, and for the space H.Kd;�;B/ the
absolute and normalized error criteria are the same. We introduce x 2 f1; 2; 3g to
distinguish between these three cases.

• x D 1 means the space H.Kd;�;A/ and the absolute error criterion,

• x D 2 means the space H.Kd;�;A/ and the normalized error criterion,

• x D 3 means the space H.Kd;�;B/.

For � 2 Œ1
2
; 1/ and q � 0 define

Bx;�;q;d WD
24 1

dq

P
;6Du�Œd� �

1=.2�/

d;u

Q
j2u

�
2�.1=�/

.
p
2�2/1=�

C ıx;f1;2gm1=.2�/j

�
ıx;f1;3g C ıx;f2g

�P
u�Œd� �d;u

Q
j2umj

�1=.2�/
35 ;
(16.60)

and
Bx;�;q WD sup

d2N

Bx;�;q;d : (16.61)
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Here ıx;M D 1 if x 2 M and ıx;M D 0 if x … M .
This means that for x 2 f1; 2g we addmj in the numerator because then we consider

the spaces H.Kd;�;A/, and for x D 3 the term mj is missing, since we then deal with
the spacesH.Kd;�;B/. Similarly for x 2 f1; 3g we deal with the absolute error criterion
and therefore the denominator is 1. For x D 2we deal with the absolute error criterion
for the spacesH.Kd;�;A/ and therefore we divide by a proper power of the initial error.

By tractability of I� , we will mean tractability for a fixed x that will be clear from
the context. Hence, for x D 1 we mean tractability for the anchored Sobolev spaces
and for the absolute error criterion, for x D 2we mean tractability for still the anchored
Sobolev spaces but now for the normalized error criterion, and finally for x D 3 we
mean tractability for the unanchored Sobolev spaces in either absolute or normalized
error criterion since they coincide.

Using this notation, we easily obtain the following theorem from the last theorem
and Theorem 16.4.

Theorem 16.22. Consider multivariate integration I� D fId;�g for the anchored
Sobolev spaceH.Kd;�;A/with an arbitrary anchor a or the unanchored Sobolev space
H.Kd;�;B/. For x 2 f1; 2; 3g, � 2 Œ1

2
; 1/ and q � 0, let Bx;�;q;d and Bx;�;q be defined

by (16.60) and (16.61).

• If there exists a non-negative q such that Bx;1=2;q < 1 then I� is polynomially
tractable. If

Bx;�;q < 1 for some � 2 �1
2
; 1
�
and a non-negative q

then I� is polynomially tractable with an "�1 exponent at most 1=� and a d
exponent at most q.

• In particular, if Bx;1=2;0 < 1 then I� is strongly polynomially tractable. If

Bx;�;0 < 1 for some � 2 �1
2
; 1
�

then the "�1 exponent of strong polynomial tractability is at most 1=� . If

Bx;�;0 < 1 for all � 2 �1
2
; 1
�

then the "�1 exponent of strong polynomial tractability reaches the minimal
value 1.

• If Bx;1=2;0 < 1 and

t� D lim sup
"!0

ln "�1

ln T ."�1; 1/
< 1

then I� is strongly T -tractable.

If Bx;�;0 < 1 for some � 2 Œ1
2
; 1/ and t� < 1 then the exponent of strong

T -tractability is at most t�=� .
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• If

t� WD inf
�2Œ1=2;˛/

lim sup
"�1Cd!1

lnBx;�;0;d C ln "�1=�

1C ln T ."�1; d /
< 1

then I� is T -tractable with the exponent t > t�.

• If

lim
d!1

lnBx;1=2;0;d
d

D 0

then I� is weakly tractable.

Theorems 16.21 and 16.22 state that for arbitrarily large d , shifted lattice rules with
the generator constructed by the CBC algorithm and a suitable shift converge as n�� .
If � can be arbitrarily close to 1, we may achieve almost the same convergence as for
the univariate case, which is n�1, and the difficulty of the d -dimensional integration is
roughly the same as for the univariate one.

We stress that the CBC algorithm described above is not fully constructive, since
we only know that there exists a shift for which the generator computed by the CBC
algorithm leads to desired error bounds. The simultaneous construction of both a
generator and a shift with a polynomial cost is given in Sloan, Kuo and Joe [271] for
the anchored Sobolev space with ˛ D 1 and for product weights. However, the proven
convergence rate for this construction is only n�1=2. The construction of a shift vector
preserving better rates of convergence is open, and left for future research. This is the
subject of our next open problem

Open Problem 77.

Consider multivariate integration defined over the anchored or unanchored Sobolev
spaces for general weights.

• Construct a shift and a generator of the shifted lattice rule for which the conver-
gence rate is n�� for � 2 .1

2
; 1/.

• For which weights is it possible to do this in time O.d n ln n/ ?

16.9.2 Tractability for Finite-Order Weights

The theorems of the previous section are for general weights. In particular, we may
apply them to finite-order or finite-diameter weights. As we shall see, the tractability
conditions greatly simplify for such weights.

We now show that for the anchored Sobolev spaces and for the normalized error
criterion, strong polynomial tractability holds for arbitrary finite-order weights. For the
anchored Sobolev space and the absolute error criterion as well as for the unanchored
Sobolev space we get polynomial tractability, not strong polynomial tractability. This
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holds under the additional (reasonable) assumption that the finite-order weights are
bounded.

Theorem 16.23. (A) Consider multivariate integration I� D fId;�g defined over the
anchored Sobolev space H.Kd;�;A/. For arbitrary finite-order weights of order !,
there exists a QMC algorithm An;d such that the following holds:

• For the absolute error criterion, we have

e.An;d IH.Kd;�;A// � 1p
n

h
max

u�Œd� W juj�!
�d;u

X
u W �d;u 6D0

2�juji1=2:
• For the normalized error criterion, we have

e.An;d IH.Kd;�;A//
e.0IH.Kd;�;A// � 1p

n


max

uW juj�!
Y
j2u

�
1C 1

6mj

	
� 1

�1=2
� 1p

n
.3! � 1/1=2 :

Hence, the minimal number nQMC.";H.Ks;A// of function values needed to compute
an "-approximation by a QMC algorithm is bounded as follows:

• For the absolute error criterion, we have

nQMC.";H.Kd;�;A// �
l
"�2 max

u�Œd� W juj�!
�d;u

X
u W �d;u 6D0

2�jujm:
• For the normalized error criterion, we have

nQMC.";H.Kd;�;A// � ˙
"�2 .3! � 1/� :

This implies the following results:

• For the absolute error criterion and bounded finite-order weights, I� is polyno-
mially tractable with an "�1 exponent at most 2 and a d exponent at most ! and
at most 1 if finite-order weights are also finite-diameter weights.

• For the normalized error criterion and arbitrary finite-order weights, I� is
strongly polynomially tractable with an "�1 exponent at most 2.

(B) Consider multivariate integration I� D fId;�g defined over the unanchored
Sobolev space H.Kd;�;B/. For arbitrary finite-order weights of order !, there exists
a QMC algorithm An;d such that

e.An;d IH.Kd;�;B// � 1p
n
G.d/;
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where

G.d/ D
h

max
u�Œd� W juj�!

�d;u
X

u W �d;u 6D0
6�juji1=2

� max
u�Œd� W juj�!

�
1=2

d;u

 !X
kD0

�
d

k

	
6�k

�1=2

D max
u�Œd� W juj�!

�
1=2

d;u

d !=2

Œ!Š 6! �1=2

�
1C O.d�1/

�
:

Hence,
nQMC.";H.Kd;�;B// � ˙

"�2G2.d/
�
:

Thus, for bounded finite-order weights, I� is polynomially tractability with an "�1
exponent at most 2 and a d exponent at most ! and at most 1 if finite-order weights
are also finite-diameter weights.

Proof. For the weighted Sobolev space H.Kd;� /, we have from (16.54) that there
exists a QMC algorithm An;d such that

e
�
An;d IH.Kd;� /

� � 1p
n
Cd;� ;

where
C 2d;� �

X
u�Œd�

�d;u
Y
j2u

�
mj C 1

6

�
:

Heremj 2 Œ 1
12
; 1
3
� for the anchored case, andmj D 0 for the unanchored case. Clearly,

for the anchored case mj C 1
6

� 1
2

and

C 2d;� � max
u�Œd� W juj�!

�d;u
X

u W �d;u 6D0
2�juj:

For the unanchored case,mj D 0 and we have the same bound on Cd;� as above, with
2�juj replaced by 6�juj. This proves the bounds for the anchored case and the absolute
error criterion as well as for the unanchored case.

For the anchored case and the normalized error criterion, we have

e2
�
An;d IH.Kd;�;A/

� � %d � 1
n

e2.0;H.Kd;�;A//;

where

%d D
P

u�Œd�W juj�! �d;u
Q
j2u.mj C 1=6/P

u�Œd�W juj�! �d;u
Q
j2umj

D
P

u�Œd�W juj�! �d;u
�Q

j2umj
��Q

j2u

�
1C 1

6mj

��P
u�Œd�W juj�! �d;u

Q
j2umj

� max
uW juj�!

Y
j2u

�
1C 1

6mj

	
:
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Since mj 2 Œ 1
12
; 1
3
�, we have %d � 3! independently of d and independently of the

finite-order weights �d;u. Therefore

e2.An;d IH.Kd;�;A//
e2.0IH.Kd;�;A// � 1

n


max

uW juj�!
Y
j2u

�
1C 1

6mj

	
� 1

�
� 1

n
.3! � 1/ :

All the rest is easy. This completes the proof.

For the anchored Sobolev space and for the normalized error criterion we have
strong tractability for arbitrary finite-order weights. However, both the error bounds
and the minimal number nQMC.";H.Kd;�;A// of function values depend exponentially
on !. Hence, if the order ! is large, the corresponding minimal number may be huge.
We now show that the exponential growth is indeed present for both the absolute and
normalized error criteria and for some finite-order weights of order !, and this holds
for any QMC algorithm.

As in [275], we provide a lower bound on the worst case error of any QMC algo-
rithm in the space H.Kd;�;A/, and conclude that for both the absolute and normalized
error criteria, the minimal number nQMC.";H.Kd;�;A// of function values must de-
pend exponentially on !. The proof technique used in the next theorem is based on the
reproducing kernel being point-wise non-negative as in [277], see also Section 10.5 of
Chapter 10.

This assumption is obviously true for the anchored Sobolev space since we have
Kd;�;A.x; y/ � 1 for all x; y 2 Œ0; 1�d . For the unanchored Sobolev space, the kernel
also takes negative values, and therefore we are unable to provide a corresponding
lower bound in this case.

Theorem 16.24. Consider multivariate integration defined over the anchored Sobolev
spaces H.Kd;�;A/ with an arbitrary anchor a D Œa1; : : : ; ad �. There are finite-order
weights f�d;ug of arbitrary order! such that for any QMC algorithmAn;d with d � !

we have
e2.An;d IH.Ks;A//
e2.0IH.Kd;�;A// � 1 � 2c! n � 1 � 2

�
8

9

	!
n;

where

c! D min
u�Œd�; jujD!

Y
j2u

8max.a3j ; .1 � aj /3/
27.a2j � aj /C 9

2
�
4

9

	!
;

�
8

9

	!�
:

Hence, for both the absolute and normalized error criterion, we have

nQMC.";H.Kd;�;A/ � 1 � "2
2c!

� 1 � "2
2

�
9

8

	!
;

which depends exponentially on !.
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Proof. Since the kernelKd;�;A.x; y/ is always positive, see (16.52), we may use The-
orem 10.2 of Chapter 10 or Lemma 4 of [277]. This theorem states that

e2.An;d IH.Kd;�;A//
e2.0IH.Kd;�;A// � 1 � n �2d ; (16.62)

where

�2d D max
x2Œ0;1�d

h2
d
.x/

e2.0IH.Kd;�;A// Kd;�;A.x; x/ ; (16.63)

with

hd .x/ D
Z
Œ0;1�d

Kd;�;A.x; y/ dy and Kd;�;A.x; x/ D
X

u�Œd�
�d;u

Y
j2u

jxj � aj j:

By direct computation we have

hd .x/ D
X

u�Œd�
�d;u

Y
j2u

jxj � aj jwj .xj /; (16.64)

where

wj .x/ WD
´
1 � 1

2
x � 1

2
aj ; if x > aj ;

1
2
x C 1

2
aj ; if x � aj :

For u � Œd �, define

ad;u D �
1=2

d;u

Y
j2u

jxj � aj j1=2 and bd;u D �
1=2

d;u

Y
j2u

jxj � aj j1=2wj .xj /:

From (16.64), using Cauchy’s inequality we have

h2d .x/ D
� X

u�Œd�
ad;u bd;u

�2 �
X

u�Œd�
a2d;u

X
u�Œd�

b2d;u D Kd;�;A.x; x/
X

u�Œd�
b2d;u:

Based on this and (16.63) we find that

�2d � max
x2Œ0;1�d

P
u�Œd� b2d;u

e2.0IH.Kd;�;A//

D max
x2Œ0;1�d

P
u�Œd� �d;u

Q
j2u jxj � aj jw2j .xj /P

u�Œd� �d;u
Q
j2u mj

�
P

u�Œd� �d;u
Q
j2u WjP

u�Œd� �d;u
Q
j2u mj

;

(16.65)

where

Wj WD max
x2Œ0;1�

jx � aj jw2j .x/ D max

�
8a3j

27
;
8.1 � aj /3

27

	
:
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For the anchored space H.Kd;�;A/ we have mj D a2j � aj C 1
3

. As functions of aj ,

both Wj and mj are symmetric with respect to aj D 1
2

; moreover, for aj 2 Œ1
2
; 1�, we

have
Wj

mj
D 8a3j

27 .a2j � aj C 1
3
/

2 �4
9
; 8
9

�
for all j 2 Œd �:

The minimal value of this ratio is obtained for aj D 1
2

, and the maximal value for
aj D 1.

We are ready to define the finite-order weights for which Theorem 16.24 holds. As
always, �d;; D 1. Let u� be a subset for which c! is attained, i.e.,

c! D
Y
j2u�

8max.a3j ; .1 � aj /3/
27.a2j � aj /C 9

:

Then we take the weights

�d;u� D ˇ for some ˇ > 0 and �d;u D 0 for all other u:

From (16.65) we have

�2d � 1C ˇ
Q
j2u� Wj

1C ˇ
Q
j2u� mj

:

Take ˇ so large2 that

1C ˇ
Q
j2u� Wj

1C ˇ
Q
j2u� mj

� 2
Y
j2u�

Wj

mj
D 2c! : (16.66)

Then
�2d � 2c! 2 �

2
�
4
9

�!
; 2
�
8
9

�!�
:

From (16.62) we have that

e2.An;d IH.Kd;�;A//
e2.0IH.Kd;�;A// � 1 � n �2s � 1 � 2n c! � 1 � 2 �8

9

�!
n;

as claimed. Finally, note that e.0;H.Kd;�;A// � 1 and the normalized error criterion is
not harder than the absolute error criterion. Therefore the bound onnQMC.";H.Kd;�;A//

is obvious. This completes the proof.

Combining this theorem with Theorem 16.23, we see that for the normalized error
criterion and for the anchored Sobolev spaces and some finite-order weights of order!,
the minimal number nQMC.";H.Kd;�;A// of function values is bounded for any anchor
˛ and for d � ! by

1 � "2
2

�
9

8

	!
� nQMC.";H.Kd;�;A// � 3! � 1

"2
:

2Clearly, the number 2 in (16.66) can be replaced by any number greater than 1.



16.9 Weighted Sobolev Spaces 477

Moreover, for any anchor ˛ for which the first ! components have the value 1
2

, the
minimal number is bounded by

1 � "2
2

�
9

4

	!
� nQMC.";H.Kd;�;A// � 3! � 1

"2
:

These bounds depend exponentially on !. Theoretically, if ! is large the minimal
number of function values is huge. For example, for d � ! D 300, " D 1

2
and the

anchor
�
1
2
; : : : ; 1

2

�
, we have

nQMC
�
1
2
;H.Kd;�;A/

� � 3
8

�
9
4

�!
> 1:5 � 10105:

However, for many practical problems ! is small, say, ! � 3 or 5. In such cases, we
may be able to tolerate exponential dependence on !.

16.9.3 Shifted Lattice Rules for Finite-Order Weights

The next theorem, which is a corollary of Theorem 16.21, shows that lattice rules con-
structed by the CBC algorithm for finite-order weights achieve polynomial tractability
or strong polynomial tractability error bounds with high order of convergence under
similar conditions on the weights as in Theorem 16.23.

Theorem 16.25. Consider multivariate integration I� D fId;�g defined over the
Sobolev space H.Kd;� / with arbitrary finite-order weights � D f�d;ug of order !.
Let q D 1 if finite-order weights are also finite-diameter weights, otherwise let q D !.
Define

�d WD max
u�Œd�

�d;u

Nd WD ˇ̌fu � Œd � W �d;u 6D 0gˇ̌ D O.dq/:

For a prime number n, let z be the generator found by the CBC algorithm with the
parameter ˛ D 1 and the weights �A

d;u
if Kd;� D Kd;�;A, and with the weights �B

d;u
if

Kd;� D Kd;�;B , see (16.57) and (16.55).
For 	 2 Œ0; 1/d , consider the shifted rank-1 lattice rule

An;d;�.f / D 1

n

nX
jD1

f

�²
j

n
z C	

³	
:

• (A) For the absolute error criterion, there exists a shift	 2 Œ0; 1/d such that for
any � 2 Œ1

2
; 1/ we have

e.An;d;�IH.Kd;�;A// �
�
1=2

d
max

�
1; 2�.1=�/

.
p
2�/1=�

C 3�1=.2�/�! � N �
d

.n � 1/�
D O

�
�
1=2

d
d q � n���



478 16 Multivariate Integration for Korobov and Related Spaces

with the factor in the big O notation independent of d and n but dependent on � .

Hence, for polynomially bounded finite order weights, �d D O.d s/, the inte-
gration problem I� is polynomially tractable with an "�1 exponent at most 1=�
and a d exponent at most q C s=.2�/.

• (A) For the normalized error criterion, there exists a shift 	 2 Œ0; 1/d such that
for any � 2 Œ1

2
; 1/ we have

e.An;d;�IH.Kd;�;A//
e.0IH.Kd;�;A// �

�
1C 2.1=�/ .

p
6=�/1=�

�! �
N
��1=2
d

.n � 1/�
D O

�
d q.��1=2/ n���

with the factor in the big O notation independent of d and n but dependent on � .

Hence, for arbitrary finite-order weights of order!, the integration problem I� is
strongly polynomially with an "�1 exponent atmost 2, as well as it is polynomially
tractability with an "�1 exponent 1=� and a d exponent q.1 � 1=.2�//.
(B) For the absolute (and normalized) error criteria, there exists a shift 	 2
Œ0; 1/s such that for any � 2 Œ1

2
; 1/ we have

e.An;d ; 	IH.Kd;�;B// �
�
1=2

d
max

�
1; 2�.1=�/

.
p
2�/1=�

�! �
N �
d

.n � 1/�
D O

�
�
1=2

d
d q � n���

with the factor in the big O notation independent of d and n but dependent on � .

Hence, for polynomially bounded finite order weights, �d D O.d s/, the inte-
gration problem I� is polynomially tractable with an "�1 exponent at most 1=�
and a d exponent at most q C s=.2�/.

Proof. Consider the case (A) for the absolute error criterion. From Theorem 16.21 we
know that there exists a shift 	 such that

e.An;d;�IH.Kd;�;A// � CA

.n � 1/� ;

where

CA WD
� X

u�Œd�

�
�d;u

�1=.2�/ Y
j2u

�
2.1=�/

.
p
2�/1=�

Cm
1=.2�/
j

		�
:

Since mj � 1
3

and juj � ! for non-zero weights, we estimate

CA � �
1=2

d
max

�
1;

2.1=�/

.
p
2�/1=�

C 3�1=.2�/
	! �

N �
d ;

and the rest is easy.
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Consider the case (A) for the normalized error criterion. We need to estimate

CN WD
�P

u�Œd�
�
�d;u

�1=.2�/ Q
j2u

�
2�.1=�/

.
p
2�/1=�

Cm
1=.2�/
j

���
�P

u�Œd� �d;u
Q
j2umj

�1=2 :

We have

CN D

�P
u�Œd�

�
�d;u

�1=.2�/ Q
j2um

1=.2�/
j

Q
j2u

�
1C 2�.1=�/

.
p
2�/1=� m

1=.2�/

j

���
�P

u�Œd� �d;u
Q
j2umj

�1=2 :

Since mj � 1
12

and juj � !, we haveY
j2u

�
1C 2.1=�/

.
p
2�/1=� m

1=.2�/
j

	
�
�
1C 2.1=�/ 61=.2�/

�1=�

	!
:

This yields

CN �
�
1C 2.1=�/ 61=.2�/

�1=�

	! � �P
u�Œd�

�
�d;u

�1=.2�/ Q
j2um

1=.2�/
j

���P
u�Œd� �d;u

Q
j2umj

�1=2 :

Using Hölder’s inequality with 2� � 1, we obtain�P
u�Œd�

�
�d;u

�1=.2�/ Q
j2um

1=.2�/
j

���P
u�Œd� �d;u

Q
j2umj

�1=2 �
� X

u W �d;u 6D0
1
��.1�1=.2�// D N

��1=2
d

;

as claimed. The rest is easy. The case (B) is done just as the case (A) for the absolute
error criterion. This completes the proof.

For � D 1
2

, the convergence rate of shifted lattice rules is n�1=2. For the nor-
malized error criterion, the error bounds are independent of the dimension d for the
anchored Sobolev spaces, whereas for the absolute error criterion, they are polyno-
mially dependent for the anchored and unanchored Sobolev space. For � > 1

2
, the

rate of convergence of shifted lattice rules is improved to n�� but the error bounds de-
pend polynomially on the dimension d for both the anchored and unanchored Sobolev
spaces.

Hence, we have a tradeoff for the normalized error criterion and the anchored
Sobolev space. Strong polynomial tractability is possible with a smaller rate of conver-
gence, whereas polynomial tractability allows a better rate of convergence. Obviously,
for a specific d and " we can choose which is better and apply � that minimizes the
error bound.

We stress that Theorem 16.25 holds for arbitrary finite-order weights in the case
of the anchored Sobolev spaces and the normalized error criterion, and for arbitrary
polynomially bounded finite-order weights otherwise. Better results than those pre-
sented in Theorem 16.25 are possible to obtain if we assume stronger conditions on
the finite-order weights as in Theorem 16.22.
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16.9.4 Tractability Using Low Discrepancy Sequences

Lattice rules constructed by the CBC algorithm have good theoretical properties. How-
ever, these lattice rules depend on n as well as on the weights, since we minimize the
worst case error that depends on both n and the weights, see also Sloan, Kuo and
Joe [271]. In general, when the weights change, the lattice rules also change. These
properties may make those rules inconvenient for applications, since for different prob-
lems even for fixednwe may need different weights and therefore different lattice rules.
It may be a challenging problem to construct a “universal” lattice rule which is “good”
for all, or at least for many, choices of weights.

An alternative approach is to fix a sequence of sample points fxkg 2 Œ0; 1�d for
k D 0; 1; : : : , apply the QMC algorithms An;d that use the first n points xk , i.e., the
points from the set Pn WD fx0; x1; : : : ; xn�1g, and then investigate the worst case error
bounds for anchored or unanchored Sobolev spaces with different weights. To stress
the point set Pn we denote the worst case error of An;d as

e.PnIH.Kd;� // D e.An;d IH.Kd;� //:
It is natural to study the point sets given by well known low discrepancy sequences

such as Halton, Sobol or Niederreiter sequences, see e.g. Niederreiter [201] for their
precise definition. This approach has been already proposed by Hickernell and Wang
in [126] and by Wang in [321], see alsoYue and Hickernell [359]. We use this approach
for both general and finite-order weights, choosing to study explicitly the Niederreiter
sequence. We make use of a lemma proved in Wang [321], involving the L1-star
discrepancy of projections of Pn D fx0; x1; : : : ; xn�1g. We recall that the L1-star
discrepancy of Pn is defined by

D�.Pn/ D sup
t2Œ0;1/d

jdisc.t IPn/j;

where disc.t IPn/ is the local discrepancy given by

disc.t IPn/ WD
ˇ̌fj W xj 2 Œ0; t/gˇ̌

n
�

dY
jD1

tj for all t D Œt1; t2; : : : ; td � 2 Œ0; 1�d :

Lemma 16.26. Let b be a prime number, and let Pn be the first n points of the
d -dimensional Niederreiter sequence in base b, which is based on the first irreducible
polynomial over the finite field Fb . LetP u

n be the projection ofPn on the lower dimen-
sional space Œ0; 1�juj. Then for any non-empty subset u � Œd �, theL1-star discrepancy
of P u

n satisfies

D�.P u
n / � 1

n

Y
j2u

ŒC0j log2.j C b/ log2.b n/�;

where C0 is a positive number independent of n, u and d .
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Using this lemma, we will prove the following theorem.

Theorem 16.27. Let H.Kd;� / be the anchored Sobolev space H.Kd;�;A/ with an
arbitrary anchor a, or the unanchored Sobolev spaceH.Kd;�;B/. Let Pn be the point
set consisting of the first n points of the d -dimensional Niederreiter sequence in base
b. Then

e2.PnIH.Kd;� // � 1

n2

X
;6Du�Œd�

�d;u
Y
j2u

�
C1j log2.j C b/ log2.b n/

�2
; (16.67)

where C1 D 2C0 is a positive number independent of n and d .

Proof. For simplicity, we first consider the anchored Sobolev space with the anchor
a D Œ1; 1; : : : ; 1�. The corresponding kernel is, see (16.50) and (16.52),

Ks;A.x; y/ D 1C
X

;6Du�Œd�
�d;u

Y
j2u

min.1 � xj ; 1 � yj /:

The square of the worst case error is in this case equal to the square of the weighted
L2-discrepancy, see Chapter 9, and is equal to

e2.PnIH.Ks;A// D
X

;6Du�Œd�
�d;u

Z
Œ0;1�juj

disc2..xu; 1/IPn/ dxu: (16.68)

Obviously, Z
Œ0;1�juj

disc2..xu; 1/IPn/ dxu � ŒD�.P u
n /�

2;

where P u
n is the projection of Pn on Œ0; 1�juj. From Lemma 16.26 we haveZ

Œ0;1�juj

disc2..xu; 1/IPn/ dxu � 1

n2

Y
j2u

ŒC0j log2.j C b/ log2.b n/�
2:

Thus from (16.68) we have

e2.PnIH.Kd;�;A// � 1

n2

X
;6Du�Œd�

�d;u
Y
j2u

ŒC0j log2.j C b/ log2.b n/�
2;

which proves the result for the case a D Œ1; 1; : : : ; 1�.
For an arbitrary anchor a D Œa1; : : : ; ad �, the proof is similar. It is useful to

introduce some notation from Hickernell, Sloan and Wasilkowski [125]. The unit cube
Œ0; 1�d is partitioned into 2d quadrants (some of them possibly degenerate) by the planes
xj D aj for j D 1; 2; : : : ; d . Given x in the interior of one of these quadrants, let
B.xI a/ denote the box with one corner at x and the opposite corner given by the unique
vertex of Œ0; 1�d that lies in the same quadrant as x. Let Bu.xuI au/ be the projection
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of B.xI a/ on Œ0; 1�juj. Instead of .16.68/, we now have, see also Hickernell [118] and
Hickernell, Sloan and Wasilkowski [125],

e2.PnIH.Kd;�;A// D
X

;6Du�Œd�
�d;u

Z
Œ0;1�juj

R2u.xuI au/ dxu; (16.69)

with

Ru.xuI au/ D 1

n

ˇ̌
P u
n \ Bu.xuI au/

ˇ̌ � Vol .Bu.xuI au// D .An;d � Id /�Bu.xuI˛u/;

where �S denotes the indicator function for the set S . Clearly,Z
Œ0;1�juj

R2u.xuI au/ dxu � sup
xu2Œ0;1/u

R2u.xuI au/

� sup
xu<yu

�
1

n

ˇ̌
P u
n \ Œxu; yu/

ˇ̌ � Vol .Œxu; yu//

	2
� 4juj .D�.P u

n /
2:

The last step follows from the relation of the extreme discrepancy to the L1-star
discrepancy, see Niederreiter [201]. It then follows from (16.69) and Lemma 16.26
that

e2.PnIH.Kd;�;A// � 1

n2

X
;6Du�Œd�

�d;u
Y
j2u

Œ2C0j log2.j C b/ log2.b n/�
2:

We now consider the unanchored Sobolev spaceH.Kd;�;B/. It is known, see e.g.,
Hickernell [118] and [277], that the worst case error e.PnIH.Ks;B// is the norm of
the worst case integrand

�.x/ WD Id .Kd;�;B.x; �// � An;d .Kd;�;B.x; �//:
By computing its norm, we find that .16.69/ is now replaced by

e2.PnIH.Kd;�;B// D
X

;6Du�Œd�
�d;u

Z
Œ0;1�juj

�Z
Œ0;1�juj

zRu.xuI au/ dau

	2
dxu;

(16.70)
where

zRu.xuI au/ WD
�Y
j2u

�j .xj ; aj /
�
Ru.xuI au/;

and

�j .xj ; aj / WD

8̂<̂
:
1 if xj < aj ;

0 if xj D aj ;

�1 if xj > aj :
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In verifying (16.70) it may help to observe that for fixed x 2 Œ0; 1/d the quantity
zRu.xuI au/ is a piecewise-constant function of au.

Similarly to the above argument, we now useZ
Œ0;1�juj

�Z
Œ0;1�juj

zRu.xuI au/ dau

	2
dxu

� sup
xu2Œ0;1/juj

sup
au2Œ0;1/juj

R2u.xuI au/

� sup
xu<yu

�
1

n
jP u
n \ Œxu; yu/j � Vol .Œxu; yu//

	2
� 4juj .D�.P u

n //
2:

It follows from (16.70) and Lemma 16.26 that

e2.PnIH.Kd;�;B// � 1

n2

X
;6Du�Œd�

�d;u
Y
j2u

Œ2C0j log2.j C b/ log2.b n/�
2:

This completes the proof.

We are ready to prove that the QMC algorithm using the Niederreiter sequence
achieves a tractability or strong tractability error bound for finite-order weights.

Theorem 16.28. Let Pn be the point set of the first n points of the d -dimensional
Niederreiter sequence in base b.

(A) Consider the anchored Sobolev spaceH.Kd;�;A/ with an arbitrary anchor a.

• For arbitrary finite-order weights f�d;ug of order !, we have

e.P IH.Kd;�;A//
e.0IH.Kd;�;A// � C2 d

! log!2 .d C b/ log!2 .b n/

n
;

where C2 is a positive number independent of d and n.

Hence, we have optimal convergence order, and polynomial tractability for the
normalized error criterion with an "�1 exponent arbitrarily close to 1, and a d
exponent arbitrarily close to !.

• If the finite-order weights f�d;ug of order ! satisfy

M WD sup
d2N

 P
u�Œd�; juj�! �d;u

Q
j2uŒj log2.j C b/�2P

u�Œd�; juj�! �d;u
Q
j2umj

!
< 1 (16.71)

then for arbitrary ı > 0 there exists a positive number Cı independent of d and
n such that

e.PnIH.Kd;�;A//
e.0IH.Kd;�;A// � Cı n

�1Cı :

Hence, for the normalized error criterion we have strong polynomial tractability
with an "�1 exponent of strong tractability 1.
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(B) Consider the unanchored Sobolev spaceH.Kd;�;B/.

• For arbitrary bounded finite-order weights f�d;ug of order ! we have

e.P IH.Kd;�;B// � C3 d
! log!2 .d C b/ log!2 .b n/ n

�1;

where C3 is a positive number independent of d and n.

Hence, we have optimal order of convergence, and tractability with an "�1 ex-
ponent arbitrarily close to 1, and a d exponent arbitrarily close to !.

• If the finite-order weights f�d;ug of order ! satisfy

sup
d2N

� X
u�Œd�; juj�!

�d;u
Y
j2u

Œj log2.j C b/�2
�
< 1;

then for arbitrary ı > 0 there exists a positive number C 0
ı

independent of d and
n such that

e.PnIH.Kd;�;B// � C 0
ı n

�1Cı :

Hence, we have strong polynomial tractability with an "�1 exponent 1.

Proof. Consider the anchored Sobolev space H.Kd;�;A/. As we know, the square of
the initial error is

e2.0IH.Kd;�;A// D
X

u�Œd�
�d;u

Y
j2u

mj : (16.72)

For arbitrary finite-order weights f�d;ug of order !, from Theorem 16.27 we have

e2.PnIH.Kd;�;A//
e2.0IH.Kd;�;A// � 1

n2

P
0<juj�! �d;u

Q
j2u ŒC1j log2.j C b/ log2.b n/�

2P
0�juj�! �d;u

Q
j2umj

� 12!

n2

P
0<juj�! �d;u

Q
j2u ŒC1j log2.j C b/ log2.b n/�

2P
0�juj�! �d;u

� 12!

n2
max

uW juj�!
Y
j2u

ŒC1j log2.j C b/ log2.b n/�
2

� 12!C 2!1
n2

.d log2.d C b//2! .log2.b n//
2! :

Therefore,

e.PnIH.Kd;�;A//
e.0IH.Kd;�;A// � 2!

p
3! C!1 d

! log!2 .d C b/ log!2 .b n/ n
�1;

as claimed.
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Now consider finite-order weights of order! satisfying (16.71). Clearly, the bound
(16.67) in Theorem 16.27 can be rewritten as

e2.PnIH.Kd;�;A// � 1

n2

X
;6Du�Œd�

�d;u
Y
j2u

ŒC1j log2.j C b/ log2.b n/�
2

D 1

n2

!X
`D1

�
ŒC1 log2.b n/�

2`
X

jujD`

h
�d;u

Y
j2u

Œj log2.j C b/�2
i�
:

(16.73)

For an arbitrary ı > 0 define

Bı D max
`D1;2;:::;!

�
C1 log2 e

2ı

	2`
.2`/Š

�
:

It now follows from (16.72), (16.73) and (16.71) that for the anchored case we have

CA WD e2.PnIH.Kd;�;A//
e2.0IH.Kd;�;A//

� 1

n2

!X
`D1

 
ŒC1 log2.b n/�

2`

P
jujD`

˚
�d;u

Q
j2uŒj log2.j C b/�2


P
0�juj�! �d;u

Q
j2umj

!

� M

n2

!X
`D1

ŒC1 log2.b n/�
2` � BıM

n2

!X
`D1

Œ2ı loge.b n/�
2`

.2`/Š

� BıM

n2
exp Œ2ı loge.b n/� D C 2ı n

�2C2ı ;

where Cı D p
BıM bı . The case of the unanchored Sobolev space can be proven

similarly.

Results similar to those in Theorem 16.28 can be established for the Halton and
Sobol sequences. Indeed, let Pn be the first n points of the d -dimensional Halton
sequence based on the first d prime numbers, see Halton [94]. Then it is proved in
Hickernell and Wang [126] that

D�.P u
n / � 1

n

Y
j2u

ŒCHal j log2.j C 1/ log2.e n/�;

for any non-empty subset u � Œd �, with CHal being independent of u and d . For
the Sobol sequence based on the first primitive polynomial, see Sobol [284], a similar
bound is proved in Wang [321], namely

D�.P u
n / � 1

n

Y
j2u

ŒCSob j log2.j C 1/ log2 log2.j C 3/ log2.2n/�

with CSob independent of u and d . These bounds are similar to the bound for the
Niederreiter sequence. Therefore similar polynomial tractability and strong polynomial
tractability results to those in Theorem 16.28 hold for the Halton and Sobol sequences.
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16.10 Notes and Remarks

NR 16:1. In this chapter we study multivariate integration on Hilbert spaces. Banach
spaces for multivariate integration have been also studied, see the papers by Sobol
[285], Yue and Hickernell [360] and [276], [278].

There is a very important stream of research for spaces based onWalsh functions, see
Dick and Pillichshammer [50]. Walsh spaces are Hilbert spaces with many interesting
relations to Korobov spaces.

There is also the recent paper [47] for multivariate integration defined over weighted
Korobov spaces with exponentially decaying Fourier coefficients. This allows us to
obtain tractability results with polylog dependence on "�1 and polynomial dependence
on d , i.e., there are non-negative p and q such that

n."; d/ D O
��
1C ln "�1�p dq� for all " 2 .0; 1/; d 2 N:

NR 16.1:1. The first part of this chapter (till Section 16.7) is based on [54]. Of course,
the subsection on the cost of the CBC algorithm for product weights is based on Nuyens
and Cools [226], [227], [228]. Sections 16.7 and 16.8 are based on [128] and [129],
although only product weights are considered in these papers. Finally, Section 16.9 is
based on [275].

NR 16.4 and 16.6:1. We have already mentioned in the text a number of papers where
lattice rules are studied for large d . The list is by far not complete. More infor-
mation on lattice rules can be found in Dick and Kuo [43], [44], [45], Dick, Kuo,
Pillichshammer and Sloan [46], Dick and Pillichshammer [52], Hickernell and Nieder-
reiter [121], Hickernell, Sloan and Wasilkowski [122], Kritzer and Pillichshammer
[151], Kuo, Wasilkowski and Waterhouse [159], Lyness [180], Wang, Sloan and Dick
[322], Waterhouse, Kuo and Sloan [337] as well as in [157], [158].

NR 16.4.2:1. T -tractability conditions presented in this section are new but quite
straightforward. Formally, conditions on weak-tractability are also new but the ap-
proach is similar to the approach in [85].

NR 16.9:1. Corollary 16.19 is from [275]. For the anchor a D Œ1; 1; : : : ; 1�, Corol-
lary 16.19 (A) reduces to a result in [129]. For product weights, Corollary 16.19 reduces
to the results in [54]; furthermore, if the product weights f�d;j g are independent of the
dimension d , i.e., �d;j D �j , then Corollary 16.19 reduces to the results in [277] for
the anchored space with anchor a D Œ1; 1; : : : ; 1�, and reduces to the results in [280]
for the unanchored space.



Chapter 17

Randomized Setting

In this chapter we switch to the randomized setting for linear functionals defined on
Hilbert spaces. We already know from Chapter 7 of Volume I that there is a close
relationship between the worst case and randomized settings for the classƒall, and ran-
domization does not really help. Here we study the classƒstd of information consisting
of function values and obtain very different results.

A significant part of this chapter is devoted to multivariate integration which is
a continuous linear functional. This problem is probably one of the most important
continuous problems with applications in many diverse areas including financial math-
ematics, physics, chemistry, statistics and numerical analysis.

In Section 17.1 we restrict ourselves to the (standard) Monte Carlo algorithm for
multivariate integration. This is a classical algorithm due to Metropolis and Ulam [185],
which is probably the first randomized algorithm for continuous problems. Today
Monte Carlo is widely used in many areas of applied science. It is well known that
the speed of convergence of Monte Carlo is independent of the number of variables.
However, it is often overlooked that the randomized error of Monte Carlo may depend
on d through the variance of a function. We stress that the variance can be, in fact,
an arbitrary function of d . To claim good dependence on d we must know how the
variances of functions behave. We will study Monte Carlo for a number of typical spaces
with the emphasis on the dependence on d . Based on [281], we provide necessary and
sufficient conditions on the randomized error of Monte Carlo to be independent of d ,
polynomially dependent d , or at least non-exponentially dependent on d . As we shall
see, all results can happen depending on the class of functions and on the choice of the
absolute or normalized error criterion. In particular, tractability conditions of Monte
Carlo for the Sobolev spaces studied in this chapter are more lenient than tractability
conditions in the worst case setting. However, for general reproducing kernel Hilbert
spaces, the opposite may happen. In fact, there are spaces for which Monte Carlo
depends exponentially on d , although multivariate integration is trivial even in the
worst case setting.

Obviously, we are interested in the best possible algorithms in the randomized
setting, and it is clear that Monte Carlo cannot be always a good choice especially if one
considers classes of very smooth functions. Unfortunately, not much is known about
tractability of multivariate integration in the randomized setting. We hope that this will
be a major research subject in the future. This problem is quite technically demanding
and we definitely need new proof techniques to attack this problem successfully.

At the end of Section 17.1, we present lower bounds on the minimal randomized
errors for a space that is basically the L2 space of functions equipped with a weighted
norm. For this space Monte Carlo is nearly optimal. Hence, Monte Carlo tractability
conditions are exactly the same as the tractability conditions for multivariate integration.
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In Section 17.2, we present improvements of Monte Carlo based on importance
sampling. To illustrate this approach we start with a simple example and then present
results from Wasilkowski [328] and Plaskota, Wasilkowski and Zhou [248] with new,
and more lenient, sufficient conditions to obtain tractability in the randomized setting.
A space for which Monte Carlo can be improved is a periodic variant of the weighted
Sobolev space for whichWasilkowski [328] proved that tractability conditions of Monte
Carlo can be relaxed by designing a different randomized algorithm.

We also report a recent result of Hinrichs [131] on the power of importance sampling.
From his result we know that multivariate integration is strongly polynomially tractable
for the normalized error criterion when it is defined over a reproducing kernel Hilbert
space with a point-wise non-negative kernel. We stress that this result holds even for
unweighted spaces1.

In Section 17.3, we present results of Muller [193] and Motoo [192] on the local
solution of the Dirichlet problem for the Laplace equation. If we assume that the
solution of this problem is Lipschitz then the complexity of the problem is at most of
the order d 2"�2 ln "�1. Hence the problem is polynomially tractable in the randomized
setting. We find it interesting that results on the spherical process that are over 50 years
old yield polynomial tractability for the randomized setting. We stress that this problem
is not polynomially tractable in the worst case setting. There are three open problems
numbered from 78 to 80.

17.1 Monte Carlo for Multivariate Integration

This is the first section where we study the randomized setting for the classƒstd. It seems
appropriate to begin with the widely used and the most famous randomized algorithm
for continuous problems. This is of course the celebrated Monte Carlo algorithm for
approximation of multivariate integrals introduced in the 1940s by Metropolis and
Ulam, see [185]. We already discussed the Monte Carlo algorithm in Example 11 of
Chapter 3 in Volume I for multivariate integration over the d -dimensional unit cube,
and in this section we consider more general domains.

We now consider a general multivariate integration following the approach of [281].
Let Dd be a (Lebesgue) measurable subset of Rd , and let %d W Dd ! RC be a weight
function,

R
Dd
%d .x/ dx D 1. ByL2;%d

.Dd /we mean the Hilbert space of (Lebesgue)
measurable functions f W Dd ! R such that

kf k2;%d
D
�Z

Dd

%d .x/ f
2.x/ dx

	1=2
< 1:

Consider multivariate integration

INTd .f / D
Z
Dd

%d .x/ f .x/ dx for all f 2 L2;%d
.Dd /:

1Added in proof: It turns out that for some spaces the result of Hinrichs is optimal as recently proved
in [225].
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Note that INTd .f / is well defined over the space L2;%d
.Dd /.

For example, we can take Dd D Œ0; 1�d and %d .x/ D 1. In this case we obtain
uniform integration. On the other hand, if we take Dd D Rd and

%d .x/ D
dY
jD1

exp.�x2j =.2�d;j //
.2��d;j /1=2

;

as a density of a Gaussian measure, then we obtain Gaussian integration. Here, the
non-negative �d;j is the variance of the j th variable.

The Monte Carlo algorithm is of the form

MCx1;x2;:::;xn
.f / D 1

n

nX
kD1

f .xk/;

where the sample points x1; x2; : : : ; xn are independent random variables that are
distributed over Dd with density %d . Taking the expectation E with respect to the
sample points xk we obtain the well known and famous formula

�
E . j INTd .f / � MCx1;:::;xn

.f /j2 / �1=2 D
p

vard .f /

n1=2
; (17.1)

where

vard .f / D INTd .f
2/ � INT2d .f / D INTd

�
.f � INTd .f //

2
�

is the variance of the function f . The derivation of this formula is easy and can be
done exactly as it was done in Example 11 of Chapter 3 of Volume I.

Hence, the randomized error of Monte Carlo for a function f goes to zero as
n�1=2 independently of d which is the most important property of this algorithm. The
randomized error also depends on d through the variance of a function. To address the
dependence on d , let us assume that Hd is a normed linear space which is a subset
of L2;%d

.Dd /, so that INTd .f / is still well defined for all functions f 2 Hd . The
randomized error of Monte Carlo is

emc.n;Hd / D
h

sup
f 2Hd ; kf kHd

�1
E
�ˇ̌
Id .f / � MCx1;:::;xn

.f /
ˇ̌2� i1=2

:

From (17.1) we have

emc.n;Hd / D
�

var.Hd /

n

	1=2
;

where
var.Hd / D sup

f 2Hd ;kf kHd
�1

vard .f /

is the largest variance of a function from the unit ball of Hd . Hence, the randomized
error of Monte Carlo is the square root of the largest variance divided by the square
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root of the number n of randomized samples. To guarantee that var.Hd / is finite we
assume that Hd is continuously embedded in L2;%d

.Dd /, i.e., there exists a number
Cd such that kf k2;%d

� Cdkf kHd
for all f 2 Hd . Then

var.Hd / � sup
f 2Hd ;kf kHd

�1
kf k2;%d

� Cd :

Under the assumption that Hd is continuously embedded in L2;%d
.Dd /, the linear

functional INTd becomes continuous over Hd , and kINTdk � Cd .
For n D 0, we formally set MC.f / D 0 and then emc.0;Hd / D kIdk. This means

that kIdk is the initial error that can be achieved without sampling the function. If
kIdk D 0, which can happen for some spaces Hd , then multivariate integration is
trivial, since then Id .f / D 0 for all f 2 Hd . Therefore from now on we assume that
kIdk > 0.

As always, we consider the absolute error criterion, for which CRId D 1, and
the normalized error criterion, for which CRId D kINTdk. Let nmc.";Hd / denote
the minimal number of function values used by the Monte Carlo algorithm which is
needed to guarantee that its randomized error is at most "CRId for " 2 .0; 1/. That is,
the minimal n for which

emc.n;Hd / � "CRId :

We say that Monte Carlo is a polynomially tractable (PT ) algorithm if nmc.";Hd / is
bounded by a polynomial in d and "�1 for all d and all " 2 .0; 1/. That is, if there
exist non-negative numbers C; q and p such that

nmc.";Hd / � C dq "�p for all d D 1; 2; : : : and for all " 2 .0; 1/:
If q D 0 in the inequality above then we say that Monte Carlo is a strongly polynomially
tractable (SPT ) algorithm. In this case, the bound on the minimal number of function
values is independent of d and polynomially dependent on "�1.

We say that Monte Carlo is a weakly tractable (WT ) algorithm if

lim
"�1Cd!1

ln nmc.";Hd /

"�1 C d
D 0;

meaning that nmc.";Hd / does not depend exponentially on "�1 and d .
From the form of the randomized error of Monte Carlo given above, we conclude

that the Monte Carlo algorithm is strongly polynomially tractable iff

C ´ sup
dD1;2;:::

var.Hd /

CRI2d
< 1;

is polynomially tractable iff there exist non-negative C and q that such

var.Hd /

CRI2d
� C dq for all d D 1; 2; : : : ;
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and is weakly tractable iff

lim
d!1

ln var.Hd /=CRI2d
d

D 0:

If so, then we have respectively

nmc.";Hd / � dC "�2e and Monte Carlo is SPT,

nmc.";Hd / � dC dq "�2e and Monte Carlo is PT,

nmc.";Hd / � exp .o.d// "�2 and Monte Carlo is WT.

Hence, var.Hd /=CRI2d determines whether Monte Carlo is a strongly polynomially,
polynomially or weakly tractable algorithm. In general, the dependence of nmc.";Hd /

is proportional to "�2. This is the case when var.Hd / > 0.
As in [281], we now show that var.Hd / can be expressed as the largest eigenvalue

of a certain symmetric semi-positive operator. This will be done by assuming that
Hd is a Hilbert space which is not necessarily a reproducing kernel Hilbert space but
continuously embedded in L2;%d

.Dd /. Its inner product will be denoted by h�; �iHd
.

Since INTd is a continuous linear functional, by Riesz’s theorem there exists ahd 2 Hd
such that

INTd .f / D hf; hd iHd
for all f 2 Hd :

Consider the embedding operator Im W Hd ! L2;%d
.Dd / given by Imf D f .

The operator Im is again continuous and kImf k2;%d
� Cdkf kHd

. This is the same
operator which is studied for multivariate approximation, as will be done in Volume III.

Let Im� W L2;%d
.Dd / ! Hd denote the adjoint of Im, i.e.,

hIm�f; giHd
D hf; Imgi2;%d

for all f 2 L2;%d
.Dd / and g 2 Hd :

Then
Wd D Im�Im W Hd ! Hd

is a symmetric and semi-positive operator.
If Hd is a reproducing kernel Hilbert space, Hd D H.Kd /, we know that it is

enough to assume Z
Dd

%d .x/Kd .x; x/ dx < 1

which guarantees that H.Kd / is continuously embedded in L2;%d
.Dd /. Then

hd .t/ D
Z
Dd

%d .x/Kd .t; x/ dx

and the operator Wd takes the form of an integral operator,

Wdf .t/ D
Z
Dd

%d .x/Kd .t; x/ f .x/ dx:
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For a general Hilbert space Hd , we now consider a rank-one modification of the
operator Wd ,

Vdf D Wdf � INTd .f / hd :

The operator Vd W Hd ! Hd is symmetric and semi-positive since

hVdf; giHd
D INTd .fg/ � INTd .f / INTd .g/

and hVdf; f iHd
D INTd .f 2/ � INT2d .f / D vard .f / � 0. This also proves that

var.Hd / D sup
f 2Hd

kf kHd
�1

vard .f / D sup
f 2Hd

kf kHd
�1

hVdf; f iHd
D 
1.Vd /;

where 
j .M/ denotes the j th largest eigenvalue of a linear operator M .
The largest eigenvalue 
1.Vd / is related to the two largest eigenvalues of the opera-

torWd . Indeed, since Vd differs fromWd by a rank one operator, Weyl’s monotonicity
theorem says


2.Wd / � 
1.Vd / � 
1.Wd /: (17.2)

This means that we can analyze the randomized error of Monte Carlo by studying the
two largest eigenvalues of Wd .

If Hd D H.Kd / is a reproducing kernel Hilbert space then

hWdf; f iHd
D INTd .f

2/ D
Z
Dd

%d .x/ hKd .�; x/; f i2d dx

� kf k2Hd

Z
Dd

%d .x/Kd .x; x/ dx;

which implies that


1.Wd / �
Z
Dd

%d .x/Kd .x; x/ dx:

Hence, it is enough to have a polynomial bound in d onZ
Dd

%d .x/Kd .x; x/ dx=CRI2d

to guarantee that Monte Carlo is polynomially tractable.
For a general Hilbert space Hd , an important special case is when hd is an eigen-

function of Wd , that is, when Wdhd D 
� hd for some 
�. Then

INTd .h
2
d / D hWdhd ; hd iHd

D 
� hhd ; hd iHd
D 
� INTd .hd /:

Hence, 
� D INTd .h2d /=INTd .hd / � INTd .hd /. The function hd is also an eigen-
function of Vd , with the eigenvalue 
� � INTd .hd /. Observe that the rest of the
eigenpairs of Wd are also eigenpairs of Vd . Indeed, if f is an eigenfunction of Wd
different from hd then, by the self-adjointness of Wd , f is orthogonal to hd , that is



17.1 Monte Carlo for Multivariate Integration 493

hf; hd iHd
D 0, implying INTd .f / D 0, and Vdf D Wdf . Hence, if hd is an

eigenfunction of Wd then we have


1.Vd / D
´

1.Wd / if 
1.Wd / 6D 
�;
max.
1.Wd / � INTd .hd /; 
2.Wd // if 
1.Wd / D 
�:

(17.3)

We summarize this analysis in the following theorem.

Theorem 17.1.

• The largest variance in the unit ball of a Hilbert space Hd , var.Hd /, is equal
to the largest eigenvalue 
1.Vd / of the operator Vd . Monte Carlo is strongly
polynomially, polynomially or weakly tractable iff the ratio

var.Hd /

CRI2d
D 
1.Vd /

CRI2d

is bounded uniformly in d or polynomially in d or is of order exp .o.d//.

• LetHd D H.Kd / be a reproducing kernel Hilbert space.

Consider the absolute error criterion.

Monte Carlo is strongly polynomially, polynomially or weakly tractable ifZ
Dd

%d .x/Kd .x; x/ dx

is uniformly bounded in d , polynomial in d or is of order exp .o.d//.

Consider the normalized error criterion.

Monte Carlo is strongly polynomially, polynomially or weakly tractable ifR
Dd
%d .x/Kd .x; x/ dxR

D2
d
%d .x/%d .t/Kd .x; t/ dt dx

is uniformly bounded in d , polynomial in d or is of order exp .o.d//.

We add in passing that the conditions in the second part of Theorem 17.1 also guar-
antee that some quasi Monte Carlo algorithms are strongly polynomially, polynomially
or weakly tractable in the worst case setting, as we have seen in Section 10.7.1.

We now consider the case when the space Hd is given as a tensor product of the d
copies of a Hilbert space H1 of univariate functions defined on D1 � R. In this
case, we have Dd D Dd

1 . To preserve the tensor product structure of multivariate

integration we also assume that %d .x/ D Qd
jD1 %1.xj /, where %1 is a weight function

for univariate integration for the spaceH1. Clearly, kINTdk D kINT1kd , where INT1
is univariate integration for the space H1. That is why CRId D CRId1 .
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Let 
j D 
j .W1/ for j D 1; 2 denote the two largest eigenvalues of W1. Assume
that 
2 > 0, i.e., the operator W1 has rank at least two. Clearly, the largest eigenvalue
is 
1.Wd / D 
d1 , and the second largest eigenvalue 
2.Wd / D 
d�1

1 
2. From (17.2)
we therefore obtain


2


1

�

1

CRI21

	d
� vard .Hd /

CRI2d
D 
1.Vd /

CRI2d
�
�

1

CRI21

	d
: (17.4)

From these inequalities we immediately obtain the following theorem.

Theorem 17.2. Consider multivariate integration for tensor product Hilbert spaces
Hd continuously embedded in L2;%d

.Dd / and with the tensor product weight %d .
Assume that the second largest eigenvalue of the operatorW1 is positive.

Then the notions of Monte Carlo being strongly polynomially, polynomially or
weakly tractable are equivalent, and Monte Carlo is strongly polynomially tractable
iff


1.W1/ � CRI2d :

The essence of Theorem 17.2 is that in the tensor product case it is enough to analyze
the univariate case to conclude whether Monte Carlo is strongly polynomially tractable.
As we shall see, the inequality 
1.W1/ � CRI2d guaranteeing that Monte Carlo is
strongly polynomially tractable may or may not hold, depending on the space H1.

Indeed, take for an example, Hd D L2;%d
.Dd /. Then 
1.W1/ D kINT1k D 1.

Hence, the absolute and normalized error criteria coincide and Monte Carlo is strongly
polynomially tractable. In the next sections, we provide many examples of Hilbert
spaces for which
1.W1/ > kINT1k D 1, and Monte Carlo is not even weakly tractable.

17.1.1 Uniform Integration

In this section we consider uniform integration. That is, we take Dd D Œ0; 1�d and
%d .x/ D 1. We analyze a number of weighted Sobolev spaces Hd that often occur
in computational practice, and check whether Monte Carlo is strongly polynomially,
polynomially or weakly tractable by using Theorem 17.1 or Theorem 17.2. We also
compare tractability conditions for Monte Carlo with tractability conditions in the worst
case setting. The weighted Sobolev spaces considered in this section were discussed in
the context of quasi Monte Carlo algorithms in [280] and are presented in Appendix A
of Volume I.

17.1.1.1 The first Sobolev space. ConsiderHd D Hd;� as the first weighted Sobolev
space given in SectionA.2.1 ofVolume I. This is the Hilbert space with the inner product

hf; giHd;�
D

X
u�Œd�

��1
d;u

Z
Œ0;1�d

@jujf
@xu

.x/
@jujg
@xu

.x/ dx (17.5)
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for an arbitrary sequence � D f�d;ug of weights with �d;; D 1.
For multivariate uniform integration we have

INTd .f / D
Z
Œ0;1�d

f .x/ dx D hf; 1iHd;�
:

Since k1kHd;�
D 1 we have kINTdk D 1 independently of the weights �d;u. Hence,

the absolute and normalized error criteria coincide.
Let us now consider Monte Carlo for this weighted Sobolev space Hd;� . Clearly,

INTd .f 2/ � kf k2Hd;�
for any �d;u. Thus, the variance of f from the unit ball of

Hd;� is at most 1. Since kINTdk is also 1, this means that Monte Carlo is strongly
polynomially tractable for any weights � with �d;; D 1.

The same result holds if we consider the periodic variant of this weighted Sobolev
spaceHd;� . That is, if we assume that f 2 Hd;� is periodic with respect to all variables
with period 1. Uniform integration is again given by INTd .f / D hf; 1iHd;�

since the
function 1 is periodic. Therefore the norm of INTd is 1, and the variances of periodic
functions from the unit ball of Hd;� are bounded by 1. Hence, Monte Carlo is again
strongly polynomially tractable independently of � with �d;; D 1.

We summarize the results of this subsection in the following corollary.

Corollary 17.3. LetHd;� be the Sobolev space of non-periodic functions or periodic
functions with the inner product (17.5) and with arbitrary weights �d;u. Then Monte
Carlo is strongly polynomially tractable independently of the weights �d;u, and

nmc.";Hd / � d"�2e for all d D 1; 2; : : : ; and " 2 .0; 1/:
We add in passing that in the worst case setting for the product weights, �d;u DQ
j2u �d;j , we must assume that

lim sup
d!1

dX
jD1

�d;j < 1

to have strong polynomial tractability, and

lim sup
d!1

Pd
jD1 �d;j

ln.d C 1/
< 1

to have polynomial tractability, and

lim
d!1

Pd
jD1 �d;j
d

D 0;

to have weak tractability, see [54], [355], [84], respectively, and Section 12.4 of Chap-
ter 12. In particular, for the standard unweighted Sobolev space, �d;j D 1, we have
exponential dependence on d in the worst case setting whereas Monte Carlo is strongly
polynomially tractable. Hence, the switch to the randomized setting breaks the curse
of dimensionality of multivariate integration for this space.
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17.1.1.2 The second Sobolev space. Consider Hd D Hd;� as the second weighted
Sobolev space anchored at a given in Section A.2.2 of Volume I. This is the Hilbert
space of non-periodic functions with the reproducing kernel

Kd;� .x; y/ D
X

u�Œd�

�d;u

2juj
Y
j2u

�jxj � aj j C jyj � aj j � jxj � yj j� (17.6)

for an arbitrary sequence � D f�d;ug of weights. For the periodic case, the spaceHd;�
has the reproducing kernel given by

QKd;� .x; y/ D
X

u�Œd�

�d;u

2juj
Y
j2u

�jxj �aj jCjyj �aj j� jxj �yj j�2.xj �aj /.yj �aj /
�
:

(17.7)
Multivariate uniform integration for the non-periodic or periodic cases takes the form

INTd .f / D
Z
Œ0;1�d

f .x/ dx D hf; hd iHd;�

with

hd .x/ D
X

u2Œd�

�d;u

2juj
Y
j2u

�jxj � aj j C a2j � aj � x2j C xj � 1per.xj � aj /.1 � 2aj /
�
;

where 1per D 0 for the non-periodic case, and 1per D 1 for the periodic case. The norm
of INTd is

kINTdk2 D
Z
Œ0;1�d

hd .x/ dx D
X

u2Œd�

�d;u

2juj
Y
j2u

�
1�2aj C2a2j � 1

3
� 1
2
1per .1�2aj /2

�
:

Consider first the absolute error criterion. Define

f abs, non-per
� .d/ WD

Z
Œ0;1�d

Kd;� .x; x/ dx D
X

u2Œd�

�d;u

2juj
Y
j2u

�
1 � 2aj C 2a2j

�
;

f abs, per
� .d/ WD

Z
Œ0;1�d

QKd;� .x; x/ dx D
X

u2Œd�

�d;u

6juj :

Then we need to guarantee that f abs,y
� .d/ is polynomial or not exponential in d , where

y 2 fnon-per; perg.
Consider now the normalized error criterion. Define

f nor, non-per
� .d/ WD f

abs, non-per
� .d/

kINTdk2 D
P

u�Œd�
�d;u

2juj

Q
j2uŒ1 � 2aj C 2a2j �P

u�Œd�
�d;u

2juj

Q
j2uŒ1 � 2aj C 2a2j � 1

3
�
;

f nor, per
� .d/ WD f

abs, per
� .d/

kINTdk2 D
P

u�Œd�
�d;u

6jujP
u�Œd�

�d;u

.12/juj

:
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Now we need to guarantee that f nor,y
� .d/ is polynomial or not exponential in d , where

y 2 fnon-per; perg.
From this and the second point of Theorem 17.1 it is easy to obtain the following

corollary.

Corollary 17.4. LetHd;� be the weighted Sobolev space anchored at a of non-periodic
or periodic functions with the reproducing kernel kernel (17.6) or (17.7), and with
arbitrary weights �d;u. Consider the absolute or normalized error criterion. Let
x 2 fabs; norg, and y 2 fnon-per; perg. Then

• Monte Carlo is strongly polynomially tractable if

C D sup
d

f x;y
� .d/ < 1;

and then

nmc.";Hd / � dC "�2e for all d D 1; 2; : : : ; and " 2 .0; 1/:

• Monte Carlo is polynomially tractable if there is a non-negative q such that

C D sup
d

d �q f x;y� .d/ < 1;

and then

nmc.";Hd / � dC dq "�2e for all d D 1; 2; : : : ; and " 2 .0; 1/:

• Monte Carlo is weakly tractable if

lim
d!1

ln f x;y� .d/

d
D 0;

and then

nmc.";Hd / � exp.o.d// "�2 for all d D 1; 2; : : : ; and " 2 .0; 1/:

Note that Corollary 17.4 covers four cases indexed by x and y. For example, if we
consider the periodic variant of Hd;� for the normalized error criterion then we need
to study the function f per ; nor

� .
Assume now finite-order weights, �d;u D 0 for all juj > !. For the absolute

error criterion, we need to assume that the weights �d;u are uniformly bounded, say,
�d;u � M for all d and all u. Then for y 2 fnon-per, perg we have

f abs, y
� .d/ � M

!X
kD0

�
d

k

	
1

.2C 4 � 1per/k
D O.M d !/:
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For the normalized error criterion we do not need to assume anything more about
finite-order weights. For the periodic case, we obtain

f nor, per
� .d/ D

P
u�Œd�

�d;u

12juj 2
jujP

u�Œd�
�d;u

.12/juj

� 2! :

For the non-periodic case, we obtain

f nor, non-per
� .d/ D

P
u�Œd�

�d;u

2juj

Q
j2uŒ1 � 2aj C 2a2j � 1

3
�
Q
j2u

1�2aj C2a2
j

1�2aj C2a2
j

�1
3P

u�Œd�
�d;u

2juj

Q
j2uŒ1 � 2aj C 2a2j � 1

3
�

:

Note that for any a 2 Œ0; 1� we have

1 � 2aC 2a2

1 � 2aC 2a2 � 1
3

� 3;

and the last estimate is sharp for a D 1
2

. Therefore

f nor ;non�per
� .d/ � 3! :

This proves the following corollary.

Corollary 17.5. LetHd;� be the weighted Sobolev space anchored at a of non-periodic
or periodic functionswith the reproducing kernel kernel (17.6) or (17.7), andwithfinite-
order weights �d;u D 0 for all juj > !. Consider the absolute or normalized error
criterion, and for the absolute error criterion assume additionally that �d;u � M for
all d and u � Œd �.

• For the absolute error criterion, Monte Carlo is polynomially tractable and

nmc.";Hd / D O
�
M d ! "�2� for all d D 1; 2; : : : ; and " 2 .0; 1/;

with the factor in the O notation independent of "�1; d andM .

• For thenormalized error criterion,MonteCarlo is strongly polynomially tractable
and

nmc.";Hd / � ˙
.3 � 1per/

! "�2� for all d D 1; 2; : : : ; and " 2 .0; 1/:
Corollaries 17.4 and 17.5 supply sufficient conditions on weights to obtain tractabil-

ity for Monte Carlo. In particular, these conditions do not hold for the unweighted case,
�d;u D 1. Therefore, it is not clear if the unweighted case leads to intractability of
Monte Carlo.

For simplicity, we now take a D 0 and consider product weights. Product weights
for the normalized error criterion were studied in [280], and necessary as well as
sufficient conditions for Monte Carlo to be strongly polynomially or polynomially
tractable were found. We extend the analysis of [280] for the absolute error criterion
and weak tractability. We prove the following theorem.
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Theorem 17.6. LetHd;� be the weighted Sobolev space anchored at 0 of non-periodic
or periodic functions with the reproducing kernel kernel (17.6) or (17.7), and with
product weights �d;u D Q

j2u �d;j for which �d;jC1 � �d;j .
Then tractability conditions for Monte Carlo are the same for the non-periodic and

periodic cases.

• Consider the absolute error criterion.

– Monte Carlo is strongly polynomially tractable iff

lim sup
d!1

dX
jD1

�d;j < 1:

– Monte Carlo is polynomially tractable iff

lim sup
d!1

Pd
jD1 �d;j
ln d

< 1:

– Monte Carlo is weakly tractable iff

lim sup
d!1

Pd
jD1 �d;j
d

D 0:

• Consider the normalized error criterion.

– Monte Carlo is strongly polynomially tractable iff

lim sup
d!1

dX
jD1

min.�2d;j ; 1/ < 1

– Monte Carlo is polynomially tractable iff

lim sup
d!1

Pd
jD1 min.�2

d;j
; 1/

ln d
< 1:

– Monte Carlo is weakly tractable iff

lim sup
d!1

Pd
jD1 min.�2

d;j
; 1/

d
D 0:
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Proof. We want to apply Theorem 17.1 and (17.4). That is why we need to derive
estimates on the two largest eigenvalues of the operator Wd for the space Hd;� . The
space Hd;� D H1;�d;1

˝H1;�d;2
˝ � � � ˝H1;�d;d

is now a tensor product space. For
the non-periodic case, we now have

hd .x/ D
dY
jD1

�
1C �d;j .xj � 1

2
x2j /

�
; kIdk D khdkHd;�

D
dY
jD1

�
1C 1

3
�d;j

�1=2
:

For the periodic case, we have

hd .x/ D
dY
jD1

�
1C 1

2
�d;j .xj � x2j /

�
; kIdk D khdkHd;�

D
dY
jD1

.1C 1
12
�d;j /

1=2:

Note that kIdk is uniformly bounded in d for both cases iff supd
Pd
jD1 �d;j < 1.

As usual for tensor product spaces, the kernel of Wd has a factorized form. Thus
the eigenvalues of Wd are the products of the eigenvalues of the univariate operators

W�j
f .t/ D

Z 1

0

K�j
.t; x/ f .x/ dx;

with the reproducing kernelK� .t; x/ D 1C � min.t; x/ for the non-periodic case, and
K� .t; x/ D 1C � .min.t; x/ � tx/ for the periodic case.

We first consider the non-periodic case. Then W�f D 
f simplifies toZ 1

0

f .x/ dx C �

Z 1

0

min.t; x/f .x/ dx D 
f .t/ for all t 2 Œ0; 1�:

The eigenpairs of W� were found in [332], and are easily seen as the solution of the
eigenvalue problem of the differential equation

�� f .x/ D 
f 00.x/ for all x 2 .0; 1/;
with the boundary conditionsZ 1

0

f .x/ dx D 
f .0/ and f 0.1/ D 0: (17.8)

The eigenpairs are 
i D �=˛2i and fi .x/ D cos.˛i .1 � x//, where ˛i is the unique
solution of

x tan x D �; x 2 ..i � 1/�; i�/; i D 1; 2; : : : :

In what follows, by kf k1 we mean kf kH1;�
for f 2 H1;� . The largest eigenvalue


1 D 
1;� satisfies
1C 1

3
� � 
1 � 1C 1

2
�: (17.9)
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Indeed, since h1.x/ D 1C �.x � 1
2
x2/ we have kh1k21 D I1.h1/ D 1C 1

3
� , and

˝
W�h1; h1

˛
1

D
Z 1

0

h21.x/ dx D 1C 2
3
� C 2

15
�2:

Hence,


1 �
˝
W�h1; h1

˛
1

kh1k21
D 1C 2

3
� C 2

15
�2

1C 1
3
�

> 1C 1
3
�:

On the other hand,
R 1
0
K� .x; x/ dx D 1C 1

2
� implies that 
1 � 1C 1

2
� , as claimed.

We note in passing that if all �d;j D � then because 
1 > 1C 1
3
� D kI1k2 and 
2

is positive, Theorem 17.2 implies that Monte Carlo is not weakly tractable.
We now check what happens if we have non-constant weights �d;j . The largest

eigenvalue 
1;� of W� is a smooth function of � . Define

u.�/ D 
1;�

1C 1
3
�
:

Then u is continuous, and from (17.9) we have u.�/ 2 Œ1; 1:5� and u.�/ > 1 for
positive � . Moreover, by direct calculation we easily find that for all � � 0,

u.�/ � 1C 2
3
� C 2

15
�2

.1C 1
3
�/2

� 1C 1
80

min.�2; 1/: (17.10)

For � tending to infinity, it is easy to check that
1;� D 4
�2 �.1Co.1//, and therefore

u.�/ D 12
�2

�
1C o.1/

�
as � ! 1:

This proves that for any positive �� we have

inf
�2Œ��;1/

u.�/ > 1:

On the other hand, for � tending to zero we can find the asymptotic expansion of u.�/
by showing that x tan x D � for x 2 Œ0; �� implies

x2 D � � 1
3
�2 C 4

45
�3 C O.�4/:

This yields

1;� D 1C 1

3
� C 1

45
�2 C O.�3/; (17.11)

and hence
u.�/ D 1C 1

45
�2
�
1C O.�/

�
: (17.12)

This analysis shows that there exists a positive number C such that for all � � 0

we can write

u.�/ D 1C 1
45

min.�2; 1/
�
1C C� min.�; 1/

�
with jC� j � C: (17.13)
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We will also need to know how the normalized eigenfunction �1;� D f1=kf1k1
behaves for small � . We have, see also [332] p. 410,

kf1k21 D cos2.˛1/C ˛1

2�

�
˛1 � 1

2
sin.2˛1/

�
:

Since ˛21 D �=
1 we can easily check that for � tending to zero

kf1k1 D 1 � 1
3
� C 2

15
�2 C O.�3/:

Due to the first boundary condition (17.8) we haveZ 1

0

�1;� .x/ dx D 
1
f1.0/

kf1k1 D 1C 1
6
� � 1

72
�2 C O.�3/

which yields �Z 1

0

�1;� .x/ dx

	2
D 1C 1

3
� C O.�3/: (17.14)

We now consider the periodic case. Then W�f D 
f simplifies toZ 1

0

f .x/ dx C �

Z 1

0

.min.t; x/ � tx/ f .x/ dx D 
f .t/ for all t 2 Œ0; 1�:

This is equivalent to the same differential equation ��f D 
f 00 but with the different
boundary conditions


f .0/ D 
f .1/ D
Z 1

0

f .x/ dx:

It is easy to check that the eigenpairs are now �i=.4˛
2
i /, fi .x/ D cos.2˛ix � ˛i /;

where ˛i is the unique solution of

x tan x D 1
4
�:

The square of the norm of univariate integration is now 1C 1
12
� , and thus we need to

consider the function

u.�/ D 
1;�

1C 1
12
�=12

:

Hence, the previous analysis applies when we change � to 1
4
� .

Note that the conditions presented in Theorem 17.6 do not depend on scaling of �d;j .
It is obvious for the absolute case, whereas for the normalized case it follows from

1
16

min.�2d;j ; 1/ � min
�
1
16
�2d;j ; 1

� � min.�2d;j ; 1/ for all �d;j :

That is why it is enough to prove the theorem only for the non-periodic case.



17.1 Monte Carlo for Multivariate Integration 503

We consider the two largest eigenvalues of Wd . We have


1.Wd / D
dY
jD1


1;�j
;


2.Wd / D
�

max
1�j�d


2.W�j
/


1.W�j
/

	 dY
jD1


1;�j
:

Consider now the absolute error criterion. We have

var.Hd;� / � 
1.Wd / �
dY
jD1

�
1C 1

2
�d;j

� D exp
� dX
jD1

ln
�
1C 1

2
�d;j

��

� exp
�
1

2

dX
jD1

�d;j

	
D d

1
2

Pd
j D1 �d;j = lnd

:

Hence, if �d;j ’s satisfy the conditions of Theorem 17.6, Monte Carlo is strongly poly-
nomially, polynomially or weakly tractable.

To prove that these conditions are also necessary, note that ˛2 2 .�; 2�/, and we
have �=.4�2/ < 
2.W� / < �=�2. This implies that for cd D �d;1=.4�

2.1C 1
2
�d;1//

we obtain, using (17.9),

max
1�j�d


2.W�j
/


1.W�j
/

� 
2.W�1
/


1.W�1
/

� cd :

Suppose first that for some positive �� we have �d;1 � �� for all d . Then cd � c� WD
��=.4�2.1C 1

2
��//, and we have

var.Hd;� / � 
2.Wd / � c�
dY
jD1

�
1C 1

3
�d;j

�
:

Hence, if Monte Carlo is strongly polynomially tractable then supd var.Hd;� / < 1
implies that

lim sup
d

dY
jD1

�
1C 1

3
�d;j

�
< 1;

and this yields that lim supd
Pd
jD1 �d;j is finite.

Similarly, if Monte Carlo is polynomially tractable then var.Hd;� / D O.dq/ for

some q, and this implies that C WD lim supd
Pd
jD1 �d;j = ln d is finite. In fact, then we

may take q sufficiently close to 1
3
C for the non-periodic case, and 1

12
C for the periodic

case.
Weak tractability of Monte Carlo implies var.Hd;� / D exp.o.d//, and this yields

that
Pd
jD1 �d;j D o.d/, as needed.
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We need to consider the remaining case for which for an arbitrary positive ��
there exists an index d such that �d;1 < ��. This case may happen, for example, if

�d;j D d�˛ for all j � d and for some positive ˛. Let �1;d .x/ D Qd
jD1 �1;�d;j

.xj /

be the normalized eigenfunction of Wd . We have

˝
Vd�1;d ; �1;d

˛ D ˝
Wd�1;d ; �1;d

˛ � I 2d .�1;d / D 
1.Wd / �
dY
jD1

�Z 1

0

�1;�d;j
.x/ dx

	2
:

Since all �d;j � �d;1 < �� and �� can be arbitrarily small, we apply (17.11) and
(17.14) to conclude that

˝
Vd�1;d ; �1;d

˛ D
dY
jD1

�
1C 1

3
�d;j C 1

45
�2d;j .1C o.1//

��
dY
jD1

�
1C 1

3
�d;j C O.�3d;j /

�
;

which can be rewritten as

˝
Vd�1;d ; �1;d

˛ D
dY
jD1

�
1C 1

3
�d;j C 1

45
�2d;j .1Co.1//��1�

dY
jD1

�
1� 1

45
�2d;j .1Co.1//��:

Since ln.1C x/ D x.1C o.1// for small jxj we conclude that

˝
Vd�1;d ; �1;d

˛ � exp
�
1

6

dX
jD1

�d;j

	�
1 � exp

�
1

6
��

dX
jD1

�d;j

		
:

From this formula, the same conditions on �d;j easily follow. This completes the proof
for the absolute error criterion.

We now consider the normalized error. Assume first that �d;1 � �� > 0 for all d .
Then cd � c� and

c�
dY
jD1

u.�j / � cd

dY
jD1

u.�j / � 
2.Wd /

kIdk2 � 
1.Vd /

kIdk2 � 
1.Wd /

kIdk2 D
dY
jD1

u.�j /:

The error of Monte Carlo depends on the behavior of
Qd
jD1 u.�d;j /. From (17.13) we

have

dY
jD1

u.�d;j / D
dY
jD1

�
1C 1

45
min.�2d;j ; 1/

�
1C C�d;j

min.�d;j ; 1/
��
;
ˇ̌
C�d;j

ˇ̌ � C:

Monte Carlo is strongly polynomially tractable iff the last product is uniformly bounded
in d . This holds iff lim supd

Pd
jD1 min.�2

d;j
; 1/ < 1, as claimed. We also have

dY
jD1

u.�d;j / D d
Pd

j D1 lnu.�d;j /= lnd :
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From (17.13) and (17.10) we know that

1C 1
80

min.�2d;j ; 1/ � u.�d;j / � 1C 1
45
.1C C/ min.�2d;j ; 1/:

Since ln.1C x/ � x for all x � 0, and x=.1C ˇ/ � ln.1C x/ for all x 2 Œ0; ˇ� and
all positive ˇ, we take ˇ D 1

80
and conclude that

1
81

min.�2d;j ; 1/ � ln u.�d;j / � 1CC
45

min.�2d;j ; 1/:

This proves that Monte Carlo is polynomially tractable iff

lim sup
d!1

Pd
jD1 min.�2

d;j
; 1/

ln d
< 1:

Similarly, Monte Carlo is weakly tractable iff

lim sup
d!1

Pd
jD1 min.�2

d;j
; 1/

d
D 0:

For the remaining case, �d;1 � �� for sufficiently small ��, we apply (17.12) and
(17.14) to conclude that˝

Vd�1;d ; �1;d
˛

kIdk2 D
dY
jD1

�
1C 1

45
�2d;j .1C o.1//

� �
dY
jD1

�
1C O.�3d;j /

�
:

From this formula, the same conditions on �d;j easily follow. This completes the proof.

We stress the difference in the tractability conditions of Monte Carlo for the absolute
and normalized error criteria. For the absolute error, we must assume that the sum of
the first powers of �d;j behaves properly, whereas for the normalized error, we must
assume the same conditions for the sum of min.�2

d;j
; 1/. Hence, a few arbitrarily large

weights do not matter for the normalized error and Monte Carlo can be still strongly
polynomially tractable. For example, let �d;j D 2d for j D 1; 2; : : : ; p, with p � 0,
and �d;j D j�s for j � p C 1 and s > 0. Then for the absolute error criterion,
Monte Carlo is not even weakly tractable for p � 1, whereas it is weakly tractable if
p D 0, and is polynomially tractable for p D 0 and s D 1, and strongly polynomially
tractable ifp D 0 and s > 1. For the normalized error criterion, Monte Carlo is weakly
tractable for all p and s, whereas it is polynomially tractable for all p and s D 1

2
, and

strongly polynomially tractable for all p and s > 1
2

.
It is known, see [54], [279], [355], [84], respectively, and Chapter 12, that strong

polynomial tractability holds in the worst case setting for the space Hd;� and for the
normalized error criterion in both the non-periodic and periodic cases iff

lim sup
d

dX
jD1

min.�d;j ; 1/ < 1;
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polynomial tractability holds iff

lim sup
d

dX
jD1

min.�d;j ; 1/= ln d < 1;

and weak tractability holds iff

lim
d

dX
jD1

min.�d;j ; 1/=d D 0:

As we see, the conditions for polynomial behavior of Monte Carlo are more lenient.
For example, for �d;j D j�2=3 there are no polynomially tractable algorithms in the
worst case setting whereas Monte Carlo is strongly polynomially tractable.

We finally discuss sharp estimates on the exponent q if Monte Carlo is polyno-
mially tractable, i.e., when nmc.";Hd / � C dq"�2. For simplicity assume that there
exists a positive �� such that �d;1 � ��, and consider only the normalized error cri-
terion. From the proof of Theorem 17.6 we know that q must be chosen such thatQd
jD1 u.�d;j =ˇ/=dq is uniformly bounded in d , where ˇ D 1 for the non-periodic

case, and ˇ D 4 for the periodic case. Let

A D lim sup
d!1

dX
jD1

ln u.�d;j =ˇ/ = ln d :

Then Monte Carlo is polynomial iff A < 1 and q in the bound of nmc.";Hd / cannot
be smaller thanA. The numberA can be computed more easily if we consider weights
independent of d , i.e., when �d;j D �j for all d and j D 1; 2; : : : ; d . Without loss
of generality we assume that �1 � �2 � � � � . The case �1 D 0 is trivial since then
Hd D span.1/ and vard .f / D 0 for all f 2 Hd . Assume thus that �1 > 0. Then
A < 1 implies that limd �j D 0, and using the asymptotic expansion (17.12) of u,
we conclude that Monte Carlo is polynomially tractable iff

a ´ lim sup
d!1

Pd
jD1 �2j
ln d

< 1:

Then A D 1
45
a=ˇ2, and for any q > 1

45
a for the non-periodic case, and for q > 1

720
a

for the periodic case, there exists a positive C such that

nmc.";Hd / � Cdq "�2 for all d D 1; 2; : : : ; " 2 .0; 1/:

Furthermore, the exponent q cannot be smaller than 1
45
a for the non-periodic case and

1
720
a for the periodic case.
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17.1.1.3 The third Sobolev space. The third Sobolev spaceHd;� is algebraically the
same as the spaces in Sections 17.1.1.1 and 17.1.1.2 but has a different inner product
and norm, see Section A.2.3 of Appendix A, Volume I. Its reproducing kernel is

Kd;� .x; y/ D
X

u�Œd�

�d;u

2juj
Y
j2u

K.xj ; yj /; (17.15)

where

K.x; y/ D �
B2.jx � yj/C 2

�
x � 1

2

��
y � 1

2

��
for all x; y 2 Œ0; 1� (17.16)

with B2 the Bernoulli polynomial of degree 2, B2.x/ D x2 � x C 1
6

.
The Sobolev space Hd;� has the inner product

hf; giHd;�
D

X
u�Œd�

��1
d;u

Z
Œ0;1�juj

�Z
Œ0;1�d�juj

@jujf
@xu

.x/ dx�u

	

�
�Z

Œ0;1�d�juj

@jujg
@xu

.x/ dx�u

	
dxu:

Here, x�u denotes the vector xŒd�nu. For u D ;, the integral
R
Œ0;1�0

f .x/ dxu should
be replaced by f .x/.

The periodic variant of the space Hd;� is obtained as before by assuming that for
d D 1we impose the periodicity condition f .0/ D f .1/. Then the reproducing kernel
is

QKd .x; y/ D
X

u�Œd�

�d;u

2juj
Y
j2u

B2.jxj � yj j/ for all x; y 2 Œ0; 1�d : (17.17)

For multivariate integration we have INTd .f /D R
Œ0;1�d

f .x/ dxD �d;; hf; 1iHd;�
.

For the non-periodic and periodic cases, the representer of multivariate integration is
hd 	 �d;;, with kINTdk D khdkHd;�

D �
1=2

d;; , and we need to assume that �d;; > 0.
It is shown in [54] that this space of functions is related to the anova decomposition

of functions which is a popular tool to analyze the error of integration, see e.g., Efron
and Stein [65], and Sobol [286].

We analyze Monte Carlo for this space. We need to find the largest eigenvalue of
the operator Vd . First we find the largest eigenvalues for d D 1 of the operator

.Uf /.t/ D
Z 1

0

K.t; x/ f .x/ dx:

Note that for f 	 1, we haveUf D 0which means that zero is one of the eigenvalues.
We now consider Uf D 
f for a non-zero f orthogonal 1,

R 1
0
f .x/ dx D 0. Since

the kernel is B2.jt � xj//C 2ˇ.t � 1
2
/.x � 1

2
/, where ˇ D 1 for the non-periodic case

and ˇ D 0 for the periodic case, the equation Uf D 
f simplifies toZ 1

0

.x2 � ˇx/f .x/ dx C 2.ˇ � 1/ t
Z 1

0

xf .x/ dx �
Z 1

0

jt � xjf .x/ dx D 
f .t/
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for t 2 Œ0; 1�. On differentiating and setting t D 0, this yields f 0.0/ D 0 for ˇ D 1.
By double differentiating we conclude that

�2 f .x/ D 
f 00.x/

and the boundary condition
R 1
0
f .x/ dx D 0, and f 0.0/ D 0 for the non-periodic

case (ˇ D 1), and f .0/ D f .1/ for the periodic case (ˇ D 0). This has the solution
f .x/ D cos.k�x/ with the eigenvalue 
 D 2=.�2k2/ for the non-periodic case, and
f .x/ D sin.2k�x/ with the eigenvalue 
 D 2=.4�2k2/ for the periodic case; here
k D 1; 2; : : : . Hence, the largest eigenvalue of U is obtained for k D 1 and is equal
to 2=˛, where ˛ D �2 for the non-periodic case, and ˛ D 4�2 for the periodic case,
compare also with [279].

We now find the eigenvalues of Wd for d � 1. Note that Wdhd D 
�hd with

� D �d;;. For an arbitrary non-empty u � Œd �, let

fu.x/ D
Y
j2u

�
ˇ cos.�xj /C .1 � ˇ/ sin.2�xj /

�
:

Then Wdf D ˛�juj �d;u f . Hence, the largest eigenvalue of Wd is


1.Wd / D max
u�Œd�

˛�juj �d;u:

Note that for u D ; we have 
1.Wd / � �d;;.
We are ready to find the largest eigenvalue of Vd . Note that 
� � INTd .hd / D 0

is an eigenvalue of Vd . If 
1.Wd / D 
� then (17.3) yields


1.Vd / D 
2.Wd / D max
;6Du�Œd�

˛�juj �d;u:

If 
1.Wd / > 
� then (17.3) yields 
1.Vd / D 
1.Wd /. This implies that


1.Vd / D max
;6Du�Œd�

˛�juj �d;u:

From this we easily conclude the following theorem.

Theorem 17.7. Let Hd;� be the Sobolev space of non-periodic or periodic functions
with the reproducing kernel (17.15) or (17.17), respectively. Let ˛ D �2 for the non-
periodic case, and ˛ D 4�2 for the periodic case, and CRId D 1 for the absolute
error criterion, and CRId D �

1=2

d;; > 0 for the normalized error criterion. Then

• Monte Carlo is strongly polynomially tractable iff there is a non-negative number
C such that

�d;u � C CRId ˛
juj for all d and u � Œd �:

When this holds then

nmc.";Hd / � dC "�2e for all " 2 .0; 1/ and d 2 N:
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• Monte Carlo is polynomially tractable iff there are non-negative numbers C and
q such that

�d;u � C CRId d
q ˛juj for all d and u � Œd �:

If this holds then

nmc.";Hd / � dC dq "�2e for all " 2 .0; 1/ and d 2 N:

• Monte Carlo is weakly tractable iff

�d;u � CRId exp .o.d// ˛juj for all d and u � Œd �:

Note that for �d;u D ajuj, Monte Carlo is strongly tractable if a � ˛ and not weakly
tractable if a > ˛. Consider now product weights which have been studied in [279],
�d;u D Q

j2u �d;j . Then �d;; D 1, and the absolute and normalized error criteria
coincide. Then

�d;u=˛
juj D

Y
j2u

�d;j =˛

is uniformly bounded, polynomially bounded or non-exponential iff

dY
jD1

max
�
1; �d;j =˛

� D exp
� dX
jD1

�
ln �d;j =˛

�
C
�

is uniformly bounded, polynomially bounded or non-exponential. Hence, Monte Carlo
is strongly polynomially tractable iff

lim sup
d!1

dX
jD1

ln
�
�d;j =˛

�
C < 1;

is polynomially tractable iff

lim sup
d!1

Pd
jD1 ln

�
�d;j =˛

�
C

ln d
< 1;

or weakly tractable iff

lim sup
d!1

Pd
jD1 ln

�
�d;j =˛

�
C

d
D 0:

The first two conditions coincide with the conditions found in [279].
Note that these conditions hold if the weights have the property that �d;j � ˛ for

almost all j . For the worst case setting, multivariate integration for the space Hd;� in
both the non-periodic and periodic cases is strongly polynomially tractable iff

lim sup
d

dX
jD1

�d;j < 1;
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and is polynomially tractable iff

lim sup
d

Pd
jD1 �d;j
ln d

< 1;

and is weakly tractable iff

lim
d

Pd
jD1 �d;j
d

D 0;

see [54], [279], [355] and Chapter 12.
Again, the conditions on polynomial behavior on Monte Carlo are much more

lenient. For example, for �d;j D ˛, multivariate integration is intractable in the worst
case setting, whereas Monte Carlo is strongly polynomially tractable.

Take now�d;j D 4�2. Then Monte Carlo is not weakly tractable in the non-periodic
case, and it is strongly polynomially tractable in the periodic case. For such weights,
periodicity is a very powerful property and makes Monte Carlo strongly polynomially
tractable. As we shall see in Section 17.1.3, even a more extreme example is possible.
Namely, for some spaces Monte Carlo is not weakly tractable in the non-periodic case
for all weights, whereas it becomes strongly polynomially tractable in the periodic case
for some weights. However, the opposite case may also happen. That is, as we shall
see in Section 17.1.4, for some spaces Monte Carlo is strongly polynomially tractable
in the non-periodic case for some weights whereas it becomes not weakly tractable in
the periodic case for all weights. This means that the tractability behavior of Monte
Carlo essentially depends on the space and its periodic version, and in general, there
are no relations between them.

17.1.2 Gaussian Integration

In this section we consider Gaussian integration. That is, we take Dd D Rd and

%d .x/ D
dY
jD1

exp.�x2j =.2�j //=.2��j /1=2 for all x 2 Rd

as the density of a Gaussian measure, with the variance �j D �d;j > 0 of the j th
variable. We consider two spaces and check tractability conditions of Monte Carlo.

17.1.2.1 Sobolev space over Rd . For simplicity we consider now only the normal-
ized error criterion and product weights. As in [128], we take Hd;� as the weighted
Sobolev space of m times differentiable functions with respect to each variable, with
the reproducing kernel

Kd;� .x; y/ D
dY
jD1

�d;jRm
�
�d;j jxj � yj j� ; (17.18)
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where �d;j > 0 and

Rm.x/ D 1

2m

m�1X
kD0

.�1/k exp
� � jxjei�.2kC1�m/=.2m/ C i�.2k C 1 �m/=.2m/�;

with i D p�1. This space has the inner product, see Thomas-Agnan [304],

hf; giHd;�
D

X
u�Œd�

dY
jD1

��2m
d;j

Z
Rd

@mjujf
@xmu

.x/
@mjujg
@xmu

.x/ dx:

For m D 1 and d D 1, we have R1.x/ D 1
2

exp.�jxj/, and

kf k2H1;�
D kf k2L2.R/

C ��2
1;1kf 0k2L2.R/

:

We have the following theorem.

Theorem 17.8. LetHd;� be the weighted Sobolev space with kernel (17.18). Consider
the normalized error criterion.

• Monte Carlo is strongly polynomially tractable if

lim sup
d!1

dX
jD1

�d;j �d;j < 1:

• Monte Carlo is polynomially tractable if

lim sup
d

Pd
jD1 �d;j �d;j

ln d
< 1:

• Monte Carlo is weakly tractable if

lim sup
d

Pd
jD1 �d;j �d;j

d
D 0:

Proof. It is known, see Corollary 4 of [128], that

lim sup
d

dX
jD1

�d;j �d;j < 1

implies that Monte Carlo is strongly polynomially tractable. Using the same proof it
is easy to show that

lim sup
d

dX
jD1

�d;j �d;j = ln d < 1
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implies that Monte Carlo is polynomially tractable, and that

lim sup
d

dX
jD1

�d;j �d;j =d D 0

implies that Monte Carlo is weakly tractable.

We stress that the same conditions also guarantee that Gaussian integration in the
worst case setting is strongly polynomially tractable, polynomially tractable and weakly
tractable. It is not known if these conditions are also necessary for tractability of Monte
Carlo. This yields us to the next open problem.

Open Problem 78.

• Find necessary and sufficient conditions for Monte Carlo to be strongly polyno-
mially, polynomially, or weakly tractable for Gaussian integration over the space
Hd;� considered in this subsection.

17.1.2.2 Isotropic Sobolev space. We now consider an isotropic spaceHd for which
all variables play the same role and still Monte Carlo is strongly polynomially tractable
for arbitrary variances �d;j and for the normalized error criterion. This is the Sobolev
space Hd with the kernel

Kd .x; y/ D kAd xk2 C kAd yk2 C kAd .x � y/k2
2

for all x; y 2 Rd ; (17.19)

where Ad is any d � d nonsingular matrix, and k � k2 denotes the Euclidean norm of
vectors. This kernel is related to the isotropic Wiener measure (usually with Ad being
the identity), and is sometimes called Brownian motion in the Lévy sense.

The inner product of this space was characterized by Molchan [189] for odd d , and
later by Ciesielski [32] for arbitrary d , see also the book of Stein [288], and is given
by

hf; gid D ad

D
.�	/.dC1/=4f; .�	/.dC1/=4g

E
L2.Rd /

;

for f and g which have finite support, vanish at zero and are infinitely many times
differentiable. The constant ad is known,	 is the Laplace operator, and for d C 1 not
divisible by 4, the operator .�	/.dC1/=4 is understood in the generalized sense.

It is known, see Corollary 5 of [128], that the hypothesis in part (ii) of Theorem 17.1
holds (with q D 0 and C D 2 C p

2 independently of �d;j ), see also Example 7 of
Chapter 3 of Volume I. Hence, Monte Carlo as well as some deterministic algorithms
are strongly polynomially tractable. We summarize the results of this subsection in the
following theorem.

Theorem 17.9. LetHd be theweighted Sobolev spacewith kernel (17.19). ThenMonte
Carlo is strongly polynomially tractable for any variances of Gaussian integration.
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17.1.3 Periodicity May Help

We now provide an example of a spaceHd;� defined on Œ0; 1�d for which Monte Carlo
is not weakly tractable for uniform integration in the non-periodic case for all product
weights, whereas it becomes strongly polynomially tractable in the periodic case for
some product weights. For such weights periodicity of functions makes Monte Carlo
strongly polynomially tractable.

We define the reproducing kernel space Hd;� by its kernel. For d D 1, we take

K� .x; y/ D K1.x; y/C � K2.x; y/ for all x; y 2 Œ0; 1�;
where

K1.x; y/ D g1.x/g1.y/C g2.x/g2.y/; K2.x; y/ D B2.jx � yj/;
with g1.x/ D a.x � 1=2/ and g2.x/ D 1 for x 2 Œ0; 1�, with a > 2

p
3. As before,

B2.x/ D x2 � x C 1
6

is the Bernoulli polynomial of degree 2.
Observe that Ki are reproducing kernels, and they generate Hilbert spaces H.Ki /

such that

H.K1/ D span.g1; g2/; H.K2/ D ff 2 W1 W INT1.f / D 0 g:
The space H.K1/ is two dimensional, and it can easily be checked that g1 and g2 are
orthonormal. Hence, for f D c1g1 C c2g2 we have kf k2

H.K1/
D c21 C c22 . We also

have INT1.f / D c2, and INT1.f 2/ D 1
12
c21a

2 C c22 . Hence, for the function f D g1

we have var1.g1/ D 1
12
a2 > 1.

The space H.K2/ is a subspace of the periodic space which was considered in
Section 17.1.1.3 with �1 D 2. Therefore the inner product in H.K2/ is

hf; giH.K2/
D 1

2

Z 1

0

f 0.x/g0.x/ dx:

Consider now univariate integration. That is, INT1.f / D hf; h1iH1;�
with h1.x/ DR 1

0
K� .x; t/ dt D 1 D g2.x/ of norm 1. We stress that h1 has a zero component in

H.K2/.
For arbitrary d , we take the tensor product.

Hd;� D H.K�d;1
/ ˝ � � � ˝ H.K�d;d

/ ;

which has the reproducing kernel

Kd .x; y/ D
dY
jD1

K�d;j
.xj ; yj /:

For multivariate integration, we have INTd .f / D hf; hd iHd;�
with hd .x/ D 1 and

kINTdk D 1.
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Take now the function f .x/ D g1.x1/g1.x2/ � � �g1.xd /. Then kf kHd;�
D 1 and

INTd .f / D 0. Thus

vard .f / D INTd .f
2/ D INT1.g

2
1/
d D �

1
12
a2
�d

which is exponentially large in d . This proves that Monte Carlo is not weakly tractable
for any choice of the product weights �d;j .

We now turn to the periodic case. That is, for d D 1 we take

H. QK� / D ff 2 H.K� / j f .0/ D f .1/ g:
It is easy to check that

QK� .x; y/ D 1C � B2.jx � yj/;
which is the same as in Section 17.1.1.3 with the weight replaced by 2� .

For d � 1, we take

QHd;� D H. QK1;�1
/ ˝ � � � ˝ H. QK1;�d

/:

The representer of multivariate integration is still 1, with norm one. Since, the multi-
variate integration problem over QHd is the same as in Section 17.1.1.3 for the space
weights 2�d;j , from Theorem 17.7 we know, in particular, that Monte Carlo is strongly

polynomially tractable iff lim supd
Pd
jD1

�
ln.�d;j =.2�2//

�
C < 1. For such product

weights �d;j , the periodic case makes Monte Carlo strongly polynomially tractable.

17.1.4 Periodicity May Hurt

We now present a weighted space and multivariate integration for which for the normal-
ized error criterion Monte Carlo is strongly polynomially tractable for the non-periodic
case for some product weights, and it is not polynomially tractable for the periodic case
for all non-zero product weights.

LetDd D Œ0; 1�d , and %d .x/ D Qd
jD1 %1.xj / with %1.xj / D 2 for xj 2 Œ0; 1

2
� and

%1.xj / D 0 for xj 2 .1
2
; 1�.

For d D 1, we take the kernel K� of the space H.K� / to be

K� .t; x/ D h.t/h.x/C � g.t/g.x/;

where h.x/ D 1
2
%1.x/ and g.x/ D 6x.1�x/. Then h.0/ D 1, h.1/ D g.0/ D g.1/ D

0 and I1.h/ D 1 as well as I1.g/ D 1 and I1.g2/ D 6
5

. Observe thatK� .t; 1/ D 0 for
all t 2 Œ0; 1� and this implies that f .1/ D 0 for all f 2 H.K� /. Obviously, H.K� / is
a two dimensional space.

For d � 1, we take the tensor product

Hd;� D H.K�1
/ ˝ � � � ˝ H.K�d

/
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with the reproducing kernel Kd;� .x; y/ D Qd
jD1K�j

.xj ; yj /. The space Hd;� has

dimension 2d .
For multivariate integration we have INTd .f / D hf; hd iHd;�

with

hd .t/ D
Z
Œ0;1�d

%d .x/Kd .t; x/ dx D
dY
jD1

�
h.tj /C �j g.tj /

�
;

and

kINTdk2 D INTd .hd / D
dY
jD1

�
1C �d;j

�
:

On the other hand, Z
Dd

%d .x/Kd .x; x/ dx D
dY
jD1

�
1C 6

5
�d;j

�
:

Hence, for supd
Pd
jD1 �d;j < 1, (ii) of Theorem 17.1 implies that Monte Carlo is

strongly polynomial for the non-periodic case and for the absolute and normalized error
criteria.

We now turn to the periodic case. For d D 1, we already have f .1/ D 0, and
therefore we need only to assume that f .0/ D 0. That is, we switch to the subspace
QH1 D ff 2 H.K� / W f .0/ D 0g which is of dimension one and has the kernel

QK� .x; t/ D K� .x; t/ � K� .x; 0/K� .t; 0/

K� .0; 0/
D K� .x; t/ � h.x/h.t/ D � g.t/g.x/:

For d � 1 we have QHd D H. QK�d;1
/˝ � � � ˝H. QK�d;d / with the reproducing kernel

QKd .x; y/ D �d;1 � � � �d;d
Qd
jD1 g.tj /g.xj / and multivariate integration INTd has the

norm
kINTdk D �

�d;1 � � � �d;d
�1=2

:

We assume that all �d;j are positive and therefore kINTdk > 0.
Take now the function

f .x/ D Kd
�
1
2
; x
�
=Kd

�
1
2
; 1
2

�1=2 D
dY
jD1

�
1=2

d;j
gj .xj /:

Then kf kHd;�
D 1 and vard .f /=kINTdk D INT1.g2/d � 1 D .6=5/d � 1 is ex-

ponentially large in d . Therefore Monte Carlo is not even weakly tractable for the
normalized error criterion.

Obviously, for the absolute error criterion everything depends on

Ad D
��
6

5

	d
� 1

	1=2 dY
jD1

�
1=2

d;j
:
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If Ad is uniformly bounded in d then MC is strongly polynomially tractable, if Ad is
polynomially bounded in d then MC is polynomially tractable, and ifAd D exp.o.d//
then MC is weakly tractable.

We also add that this multivariate integration problem is trivial for deterministic
algorithms. Indeed, for any f 2 QHd we have f D ˛gd with gd .x/ D Qd

jD1 g.xj /
and ˛ D f .x�/.4

3
/d for x� D Œ1

2
; 1
2
; : : : ; 1

2
�. Furthermore INTd .f / D f .x�/.4

3
/d

and it can be computed exactly using one function value. As we shall see in the next
section, this can happen even for infinite dimensional spaces.

17.1.5 Monte Carlo May Lose

We have seen a number of spaces for which conditions on Monte Carlo being poly-
nomially tractable are more lenient than for the worst case setting. In this section, we
show that the opposite may happen as well. That is, for some infinite dimensional
spaces Monte Carlo is not weakly tractable, yet uniform integration is trivial in the
worst case setting.

For d D 1, let gj W Œ0; 1� ! R for j D 1; 2; : : : , be linearly independent real-valued
functions. We consider the reproducing kernel K� of the form

K� .x; t/ D g1.x/g1.t/C �

1X
jD2

gj .x/gj .t/; x; t 2 Œ0; 1�:

Then H.K� / D span.g1; g2; : : : / and the gj ’s are orthonormal. We assume that the
functions gj are chosen such that there is a number x� 2 Œ0; 1� andZ 1

0

g1.t/ dt D g1.x
�/ > 0;

gj .x
�/ D 0; j D 2; 3; : : : ;Z 1

0

gj .t/ dt D 0; j D 2; 3; : : : :

For instance, we can take g1.t/ D 2t and gj .x/ D sin.2�jx/=j for j � 2. Then the
last assumptions hold with x� D 1

2
.

For f 2 H.K� / we have f .x/ D P1
jD1 cjgj .x/ with

P1
jD1 c2j < 1. Taking

x D x� we get c1 D f .x�/=g1.x�/. Consider now univariate integration INT1 over
H.K� /,

INT1.f /D
Z 1

0

f .t/ dt D c1

Z 1

0

g1.t/ dt D c1g1.x
�/D f .x�/ for all f 2 H.K� /:

Hence, INT1.f / D hf; h1iH1;�
with h1.x/ D K� .x; x

�/ D g1.x/g1.x
�/ is a con-

tinuous linear functional which can be exactly computed using just one function value
at x�. We also have kINT1k D g1.x

�/.
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For d � 1, we take Hd;� D H.K�d;1
/ ˝ � � � ˝ H.K�d;d

/ with the reproducing
kernel

Kd .x; y/ D
dY
jD1

K�d;j
.xj ; yj /:

Multivariate integration INTd is now of the form

INTd .f / D
Z
Œ0;1�d

f .t/ dt D hf; hd iHd;�
D f .x�; x�; : : : ; x�/ for all f 2 Hd :

This follows from the fact that hd .x/ D Qd
jD1 h1.xj / D Qd

jD1K�d;j
.xj ; x

�/, and

kINTdk D gd1 .x
�/. Hence, multivariate integration is trivial since it can be computed

exactly using one function value at .x�; x�; : : : ; x�/.
On the other hand, Monte Carlo may be not weakly tractable for arbitrary product

weights �d;j . Indeed, if we take the functions gj as before, i.e.,

g1.t/ D 2t and gj .x/ D sin.2�jx/=j for j � 2

with x� D 1
2

, then g1.x�/ D 1 and kINTdk D 1. For f .x/ D Qd
jD1 g1.xj / we have

kf kHd;�
D 1, yet the variance of f , namely

INTd .f
2/ � INT2d .f / D

�Z 1

0

g21.t/ dt

	d
�
�Z 1

0

g1.t/ dt

	2d
D
�
4

3

	d
� 1;

is exponentially large in d . This proves that Monte Carlo is not weakly tractable.

17.1.6 Can Monte Carlo Be Improved?

We studied Monte Carlo for multivariate integration and presented necessary and suffi-
cient conditions to guarantee that Monte Carlo is strongly polynomially, polynomially
or weakly tractable.

It is natural to ask if tractability conditions of Monte Carlo can be weakened for
some other randomized algorithms, and what are tractability conditions for optimal
randomized algorithms for multivariate integration. In fact, not much is known about
these problems.

We present partial answers for some specific classes of functions. Section 17.2
deals with importance sampling and we report the result of Wasilkowski [328] who
improved tractability conditions of Monte Carlo for the periodic variant of the second
Sobolev space and for the normalized error criterion. We also present results from the
paper of Plaskota, Wasilkowski and Zhao [248], and from the paper of Hinrichs [131].

There are classes of functions for which Monte Carlo is nearly optimal. The simplest
such class is the spaceL2.Œ0; 1�d /. Monte Carlo has the error n�1=2, independent of d ,
and is almost optimal. This follows from Lemma 17.10 that is presented below, see
also, e.g., Mathé [181].
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To prove optimality of Monte Carlo, we need lower bounds on randomized errors for
arbitrary algorithms. So far, all lower bounds use the technique of Bakhvalov that was
already described in Section 4.3.3 of Volume I for general solution operators S . This
technique uses the fact that the randomized error of any algorithm is lower bounded by
an average case error with respect to any probability measure. For specially constructed
probability measures, we sometimes obtain sharp bounds on the minimal randomized
errors.

More precisely, as in Section 4.3.3 of Volume I, let An be a randomized algorithm
that uses at most n function values on the average for functions belonging to Fd that
is a subset of a normed space. By eran.An/ D eran.An; Fd / we mean the randomized
error of An. By

eran.n; Fd / D inf
An

eran.An; Fd /

we denote the nth minimal randomized error. Lemma 4.37 of Volume I states that

eran.n; Fd / �
p
2

2
eavg.2n; Fd ; %/; (17.20)

where eavg.2n; Fd ; %/ denotes the 2nth minimal average case error for an atomic mea-
sure % on Fd .

We prove two more lower bounds. The first bound will be slightly better than the
estimate (17.20), and the second bound will relate the d -variate case to the univariate
case. Then we present a class where Monte Carlo is nearly optimal. Hence, depending
on the space of functions, Monte Carlo may enjoy optimality or be far away from being
optimal.

17.1.6.1 Lower bounds. We slightly modify Lemma 1 from [205], p. 63.

Lemma 17.10. Let Fd be a set of integrable real functions defined on Dd and let
f1; f2; : : : ; fN be a family of functions with the following properties:

• fi 2 Fd and �fi 2 Fd for all i D 1; 2; : : : ; N ,

• the functions fi have disjoint supports and satisfy INTd .fi / D � > 0.

Then for n < N we have

eran.n; Fd / �
�
1 � n

N

�1=2
�:

Proof. We apply the idea of Bakhvalov [4] and switch to multivariate integration in
the average case setting on the set M D f˙fi j i D 1; 2; : : : ; N g with the uniform
distribution %. That is, the average case error of an algorithm A is now

eavg.A/ D

1

2N

NX
iD1

�
.INTd .fi / � A.fi //2 C .INTd .�fi / � A.�fi /2

� �1=2
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D

1

2N

NX
iD1

�
.� � A.fi //2 C .�� � A.�fi /2

� �1=2
:

Suppose first that A uses k function values, k < N . Then at least N � k supports of
fi ’s are missed and for these functions A.fi / D A.�fi /. Then

.� � A.fi //2 C .�� � A.�fi /2 � 2�2;

and therefore �
eavg.A/

�2 � 1

2N
.N � k/2�2 D

�
1 � k

N

	
�2:

Next, let A use k function values with probability pk such that
P1
kD1 pk D 1 andP1

kD1 kpk � n. Then

�
eavg.A/

�2 �
1X
kD1

pk

�
1 � k

N

	
�2 D

�
1 �

P1
kD1 kpk
N

	
�2 �

�
1 � n

N

�
�2:

Since this holds for any algorithm using n function values on the average, we conclude
that eavg.n; Fd ; %/ � .1 � n=N/1=2C �.

Take now an arbitrary randomized algorithm An that uses n function values on the
average. The square of its randomized error is

e2.An/ D sup
f 2Fd

Z �

�

.INTd .f / � An;!.f //2 �.d!/

�
Z �

�

�
1

2N

NX
iD1

�
.� � An;!.fi //2 C .�� � An;!/2

� 	
�.d!/

�
Z �

�

�
eavg.n; Fd ; %/

�2
�.d!/ D �

eavg.n; Fd ; %/
�2

�
�
1 � n

N

�2
C
�2:

This completes the proof.

We now assume that F1 is a normed space of univariate functions and univariate
integration INT1 W F1 ! R is a linear functional that we approximate by (determin-
istic or randomized) algorithms that involve n function values (on the average for the
randomized setting).

For d > 1, we assume that Fd has the tensor product property, i.e., if fi 2 F1 then
f1 � f2 � � �fd 2 Fd and the underlying norm of Fd has the property

kf1 � f2 � � �fdkFd
D

dY
iD1

kfikF1
: (17.21)
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By f1 � f2 � � �fd we mean the tensor product function, defined by

.f1 � f2 � � �fd /.x/ D
dY
iD1

fi .xi /:

Clearly,

INTd .f1 � f2 � � �fd / D
dY
iD1

INT1.fi /: (17.22)

Observe that the multivariate problem is not necessarily completely defined by
(17.22) and (17.21). We only know that tensor products (with factors in F1) belong to
Fd and we know how INTd , as well as the norm onFd , are defined for tensor products.
This is enough, however, for the proof of certain lower bounds on the minimal errors.

We consider deterministic and randomized algorithms An, and we denote by
ewor.n; Fd / and eran.n; Fd / the nth minimal error of algorithms An in the worst case
and randomized settings for multivariate integration.

Theorem 17.11. Let Fd satisfy (17.21). Then

ewor.n; Fd / � ewor.n; F1/ � kINT1kd�1;
eran.n; Fd / � eran.n; F1/ � kINT1kd�1:

Proof. Assume that An is a (randomized or deterministic) algorithm for INTd on Fd
using at most n function values (on the average in the randomized setting). Then, in
particular, the error of e.An/ is lower bounded if we consider all functions of the form

f .x/ D Qf .x1/fı.x2/fı.x3/ : : : fı.xd /; (17.23)

where Qf 2 F1 with k Qf kF1
D 1, and fı 2 F1 with kfıkF1

D 1 and INT1.fı/ �
kINT1k � ı for ı 2 .0; kINT1k/. Then f 2 Fd and kf kFd

D 1. Observe that

INTd .f / D INT1. Qf / � INT1.fı/
d�1 � INT1. Qf / � .kINT1k � ı/d�1 :

Denote all functions f of the form (17.23) by zFd . Clearly, zFd � Fd .
We define the algorithm zAn for functions from F1 by

zAn. Qf / D An.f / � INT1.fı/
1�d :

We now show that

e. zAn/ � e.An/ � .kINT1k � ı/1�d :
Indeed, consider the randomized setting. Then

e2. zAn/ D sup
Qf 2F1; k Qf kF1

�1

Z �

�

�
INT1. Qf / � An;!. Qf /

�2
�.d!/

D INT1.fı/
2.1�d/ sup

f 2 zFd

Z �

�

.INTd .f / � An;!.f //2 �.d!/

� INT1.fı/
2.1�d/ e2.An/ � .kI1k � ı/2.1�d/ e2.An/;
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as claimed. For the worst case setting we proceed similarly.
Since e. zAn/ � esett.n; Fd / for sett 2 fwor; rang, respectively, we have

e.An/ � esett.n; Fd / .kIdk � ı/d�1 :

This holds for any algorithm An and for all small ı. Therefore

esett.n; Fd / � esett.n; Fd / kIdkd�1;

as claimed.

A few comments are in order. We have to work with fı since the existence of
f0 2 F1 with kf0k D 1 and INT1.f0/ D kINT1k cannot be guaranteed. An example
would be the star-discrepancy with kINT1k D 1.

For the worst case setting, Theorem 17.11 is similar to Theorem 11.7 in Chapter 11.
However, Theorem 17.11 is more general since it applies to more general spaces Fd .
Indeed, Theorem 11.7 assumes that Fd is a reproducing kernel Hilbert space, where
Theorem 17.11 can be applied for normed spaces equipped with (weighted) Lp norms
for p 2 Œ1;1� for Dd D Œa1; b1�� Œa2; b2�� � � � Œad ; bd � for some finite or infinite aj
and bj .

From Theorems 11.7 and 17.11, we cannot conclude much about tractability if
kINT1k � 1. Even if kINT1k > 1 then all depends on the sequence esett.n; F1/. If,
for example, esett.n; F1/ D �n with � < 1 then it would be possible only to conclude
that

nsett."; d/ �
�
.d � 1/ ln kINT1k C ln "�1

ln ��1

�
for the absolute error criterion. Hence, the problem may be still tractable. However, if
the univariate problem is not “too easy” then we get intractability. The following result
holds for the randomized and for the deterministic case.

Corollary 17.12. Let Fd satisfy (17.21) and sett 2 fwor; rang. Assume that

esett.n; F1/ � C n�˛ with C; ˛ > 0 and kINT1k > 1:
Then for the absolute error criterion we have

nsett."; d/ � C 1=˛ kINT1k.d�1/=˛ "�1=˛;

i.e., the problem is intractable and suffers from the curse of dimensionality.

Proof. This follows directly from Theorem 17.11.

Remark 17.13. Theorem 17.11 and Corollary 17.12 can be slightly generalized for
the weighted case, and this will be needed later in Chapter 20. Assume that

Fd;� D F1;�d;1
˝ F1;�d;2

˝ � � � ˝ Fd;�d;d
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be the tensor product of the Hilbert spaces F1;�d;j
of univariate functions with the

norms depending on non-negative weights �d;j . Then for fj 2 H1;�d;j
we have

kf1f2 � fdkFd;�
D

dY
iD1

kfikF1;�d;i
;

and Theorem 17.11 generalizes to

ewor.n; Fd;� / � ewor.n; F1;�d;1
/ �

dY
iD2

kINT1;�d;i
k;

eran.n; Fd;� / � eran.n; F1;�d;1
/ �

dY
iD2

kINT1;�d;i
k:

Similarly, Corollary 17.12 generalizes as follows. For sett 2 fwor; rang, assume that

esett.n; F1;�d;1
/ � C�d;1

n�˛ with C�d;1
; ˛ > 0:

Then for the absolute error criterion we have

nsett."; d/ � C 1=˛�d;1

� d�1Y
iD2

kINT1;�d;i
k
�1=˛

"�1=˛:

If

C 1=˛�d;1

� d�1Y
iD2

kINT1;�d;i
k
�1=˛

goes exponentially fast to infinity with d , then the problem is intractable and suffers
from the curse of dimensionality.

17.1.6.2 Monte Carlo cannot be improved. We consider the space Fd;�d
of inte-

grable real functions defined on Œ0; 1�d which is algebraically the same as the space
L2.Œ0; 1�

d / with the norm

kf k2d D ˛�1
d

�Z
Œ0;1�d

f .x/ dx

	2
C ˇ�1

d

Z
Œ0;1�d

f 2.x/ dx;

where �d D Œ˛d ; ˇd � with positive weights ˛d and ˇd . Consider multivariate integra-
tion

INTd .f / D
Z
Œ0;1�d

f .x/ dx for all f 2 Fd;� :

Let us start with the initial error which, as always, is eran.0; Fd;�d
/ D kINTdk.

Since jINTd .f /j � kf kL2
with equality for constant functions, it is enough to consider

a constant function fc 	 c and compute c such that

kfck2d D ˛�1
d c2 C ˇ�1

d c2 D 1:
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From this we conclude that

eran.0; Fd;�d
/ D �

˛�1
d C ˇ�1

d

��1=2
:

We will prove error bounds for Monte Carlo and lower bounds for all randomized
algorithms that use n function evaluations on the average. Let eMC.n; Fd;�d

/ be the
randomized error of Monte Carlo. We know that for a specific f the error is bounded
by n�1=2 � kf kL2

and equality holds if INTd .f / D 0. From this we easily obtain

eMC.n; Fd;�d
/ D

�
ˇd

n

	1=2
:

Note that

eMC.n; Fd;�d
/ � eran.0; Fd;�d

/ iff n � ˇd

˛d
C 1:

Hence, for such small n, Monte Carlo is even not better than the zero algorithmA0 D 0.
For such n, we can modify Monte Carlo and consider

Ac.f / D c

n

nX
iD1

f .ti /

with uniformly distributed and independent ti 2 Œ0; 1�d . Hence, we just re-scale Monte
Carlo by multiplying by not yet prescribed c. One can obviously claim that there is
really not much difference between Ac and Monte Carlo, although the proper choice
of c may be helpful.

It is easy to check that the square of the randomized error of Ac for f is

eran.Ac ; f /
2 D �

1 � c�2 INT2d .f /C c2

n

�
INTd .f

2/ � INT2d .f /
�
:

From this we obtain

eran.Ac ; f /
2 � max

�
˛d
�
.1 � c/2 � c2=n�C ; ˇdc2=n� kf kd :

We choose c such that

˛d
�
.1 � c/2 � c2=n�C D ˇdc

2=n

or

c D cd D
p
n˛dp

n˛d Cp
˛d C ˇd

D 1

1C
q
1
n

C ˇd

n˛d

:

For this cd , we obtain the error bound

eran.Acd
; Fd;�d

/ � 1q
nˇ�1
d

C
q
˛�1
d

C ˇ�1
d

:
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The error of Ac is always smaller than the initial error but for large n it tends to the
error of Monte Carlo since c as a function of n tends to 1.

Assume now that we want to improve the initial error by a factor of " < 1, and let
nran."; d/ be the minimal number of randomized function values to achieve this goal
for the normalized error criterion. Then, with the algorithm Acd

from above, an easy
calculation yields the upper bound

nran."; d/ �
�
.1 � "/2
"2

�
1C ˇd

˛d

	�
: (17.24)

If instead we use Monte Carlo with c D 1 we need to perform

nMC."; d/ D
�
1

"2

�
1C ˇd

˛d

	�
(17.25)

randomized function values which is only slightly worse unless " is close to 1. Now
we prove a lower bound and establish optimality of Acd

and Monte Carlo.

Theorem 17.14. Considermultivariate integration overFd;�d
for the normalized error

criterion. Then

nran."; d/ � .1 � "/2.1C "/2

4"2

�
1C ˇd

˛d

	
for all " � 1: (17.26)

Hence, the algorithm Acd
uses at most 4, and Monte Carlo uses at most 4=.1 � "20/

2

times more randomized function values than needed. For Monte Carlo, we assume that
" 2 .0; "0� with "0 2 .0; 1/.
Proof. For the classFd;�d

we divide the domain Œ0; 1�d inN equal (in volume) disjoint
parts and define fi as a constant c in one part and zero otherwise. We have fi 2 Fd;�d

and we obtain kfikd D 1 if we take c D N=
q
˛�1
d

C ˇ�1
d

. Then INTd .fi / D � with

�2 D 1

˛�1
d

CNˇ�1
d

:

From Lemma 17.10 we have the lower bound�
eran

�
n; Fd;�d

� �2 � N � n
N

� 1

˛�1
d

CNˇ�1
d

:

We choose

N D 1C
�
1 � "2
2"2

�
1C ˇd

˛d

	�
:

Then eran.n; Fd;�d
/ � " eran.0; Fd;�d

/ implies

n � N

�
1 � "2 ˛

�1
d

CNˇ�1
d

˛�1
d

C ˇ�1
d

	
:
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Since

˛�1
d

CNˇ�1
d

˛�1
d

C ˇ�1
d

� ˛�1
d

C ˇ�1
d

C 1�"2

2"2 .ˇ
�1
d

C ˛�1
d
/

˛�1
d

C ˇ�1
d

D 1C 1 � "2
2"2

;

and

1 � "2˛
�1
d

CNˇ�1
d

˛�1
d

C ˇ�1
d

� 1 � "2
�
1C 1 � "2

2"2

	
D 1

2
.1 � "2/;

we obtain

n � 1
2
.1 � "2/N � .1 � "2/2

4"2

�
1C ˇd

˛d

	
:

Therefore

nran."; d/ � .1 � "/2.1C "/2

4"2

�
1C ˇd

˛d

	
for all " � 1;

as claimed. The rest easily follows from the randomized error bounds for Acd
and

Monte Carlo.

Theorem 17.14 states thatAcd
and Monte Carlo are almost optimal. Since "0 can be

taken arbitrarily small, both algorithms minimize the number of randomized function
values up to a factor 4. It is not clear if this factor can be improved and this leads us to
our next problem.

Open Problem 79.

• Verify how much we can improve the quality of the algorithms Acd
and Monte

Carlo or how much we can improve the lower bound presented in Theorem 17.14.

Based on Theorem 17.14 it is easy to provide tractability conditions which we
present in the following corollary.

Corollary 17.15. Consider multivariate integration INT D fINTd g for the spaces
Fd;� in the randomized setting and for the normalized error criterion. Then

• INT is strongly polynomially tractable iff

C ´ sup
d

ˇd

˛d
< 1:

Then

nran."; d/ �
�
.1C C/

.1 � "/2
"2

�
for all " 2 .0; 1� and d 2 N:
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• INT is polynomially tractable iff there is a non-negative q such that

C ´ sup
d

d�q ˇd
˛d

< 1:

Then

nran."; d/ �
�
.1C C dq/

.1 � "/2
"2

�
for all " 2 .0; 1� and d 2 N:

• INT is weakly tractable iff

lim
d!1

ln
�
1C ˇd

˛d

�
d

D 0:

Then

nran."; d/ D exp .o.d// "�2 .1 � "/2 for all " 2 .0; 1� and d 2 N:

Observe that if ˇd 	 1 and ˛d approaches infinity then the unit ball of Fd;�d

becomes the unit ball of L2.Œ0; 1�d /, and we have strong polynomial tractability. On
the other hand, if˛d 	 1 andˇd approaches infinity then the unit ball ofFd;�d

becomes
the unit ball of functions whose integrals in the absolute sense are at most 1. In this
case, we may be in trouble depending on the speed of convergence of ˇd to infinity.
For instance, if ˇd D 22

d
the problem is intractable, if ˇd D 2d then the problem is

weakly tractable but not polynomially tractable.

17.2 Importance Sampling

We first define what we mean by importance sampling and present a simple example
to demonstrate its power. Then we describe results of Wasilkowski [328], Plaskota,
Wasilkowski and Zhou [248], and Hinrichs [131], where importance sampling is used.

Let Fd be a subclass of L2;%d
.Dd / with %d > 0 and

R
Dd
%d .x/ dx D 1. For a

weighted integral

INTd;%d
.f / D

Z
Dd

f .x/%d .x/ dx for all f 2 Fd ;

importance sampling has the general form

Q!d ;n.f / D 1

n

nX
jD1

f .tj /cd .tj /;
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with randomly and independently chosen tj with distribution whose probability density
is !d and cd D %d=!d . Clearly, the randomized error of Q!d ;n is

eran.Q!d ;n; Fd / D 1p
n

sup
f 2Fd

�Z
Dd

f 2.t/ %2d .t/
1

!d .t/
d t � INT2d;%d

.f /

	1=2
:

For !d D %d 	 1 we obtain the standard Monte Carlo algorithm.
The main point of importance sampling is to find a probability density !d which

minimizes or nearly minimizes the supremum above. In particular, we would like to
find !d for which the randomized error ofQ!d ;n does not depend exponentially on d .

We illustrate the power of importance sampling by the following example. Take
now Dd D Œ0; 1�d and %d 	 1, and consider the integration problem

INTd .f / D
Z
Œ0;1�d

f .x/ dx;

this time on a Hilbert space Fd with a scalar product

hf; giHd
D
Z
Œ0;1�d

f .x/g.x/ h�1
d .x/ dx:

To be specific, we take

hd .x/ D .e � 1/�d exp
� dX
iD1

xi

�
:

We then have INTd .f / D hf; hd iHd
and khdkHd

D 1.
Of course, we may take the standard Monte Carlo algorithm that corresponds to

cd D !d 	 1. For f D hd 2 Hd with khdkHd
D 1 we obtain the variance

�2.hd / D
Z
Œ0;1�d

.hd .x/ � 1/2dx

D
Z
Œ0;1�d

hd .x/
2dx � 1

D
�
e C 1

2.e � 1/
	d

� 1 � 1:08197d :

Hence, the problem is intractable for Monte Carlo.
However, we can consider importance sampling based on the measure with Le-

besgue density hd on Œ0; 1�d . Hence we write

INTd .f / D
Z
Œ0;1�d

f .x/

hd .x/
� hd .x/ dx D

Z
Œ0;1�d

g.x/ � hd .x/ dx

with g D f=hd .
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We use again n independently chosen sampling points in Œ0; 1�d , this time chosen
with respect to the density hd , and replace the integrand f by the integral of g. That
is, !d D hd and cd D 1=hd and our algorithm Q!;n takes the form

Q!;n.f / D 1

n

nX
jD1

f .tj /
1

hd .tj /
:

Then, again, we obtain the standard error bound n�1=2 for kgkHd
� 1, i.e., forZ

Œ0;1�d

f .x/2

hd .x/2
� hd .x/ dx � 1

or for kf kHd
� 1.

Hence, the problem is strongly polynomially tractable and we proved it by using
importance sampling. Based on the known result that standard Monte Carlo is almost
optimal for L2 it is easy to prove that this algorithm is almost optimal.

This simple example demonstrates the power of importance sampling. In the succes-
sive subsections we report further examples, where importance sampling is successfully
used.

17.2.1 Results for Sobolev spaces

As in Section 17.1.1.2, consider the space Hd;� of periodic functions with the repro-
ducing kernel

QKd;� .x; y/ D
dY
jD1

�
1C �d;j .min.xj ; yj / � xjyj /

�
for all x; y 2 Œ0; 1�d :

This corresponds to the anchor a D 0 and product weights �d;u D Q
j2u �d;j with

�d;jC1 � �d;j . We assume for simplicity that supd �d;1 < 1.
Wasilkowski [328] studied the following generalization of Monte Carlo for multi-

variate integration

INTd .f / D
Z
Œ0;1�d

f .x/ dx for all f 2 H. QKd /:

For ˛ 2 Œ0; 1�, let

!d;˛.x/ D
� QKd;� .x; x/

�˛R
Œ0;1�d

� QKd;� .y; y/
�˛

dy

be a density function. Consider the algorithm

An;˛.f / D 1

n

nX
jD1

f .xj /

!d;˛.xj /
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with the randomized points x1; x2; : : : ; xn which are independent and distributed ac-
cording to the density !d;˛ . Note that for ˛ D 0, we have !d;0 	 1, andAn;0 becomes
Monte Carlo. Hence, the main point is to select ˛ to relax tractability conditions of
Monte Carlo.

The randomized error of An;˛ for f is easily seen to be

E ŒINTd .f / � An;˛.f /�2 D 1

n

Z
Œ0;1�d

f 2.x/

!d;˛.x/
dx � INT2d .f /

�
:

Let

ƒd;˛ D sup
kf kHd;�

�1

Z
Œ0;1�d

f 2.x/

!d;˛.x/
dx:

Then if we take Fd as the unit ball of H. QKd / then the randomized error eran.An;˛/ is
bounded by

1

n1=2

�
ƒd;˛ � kINTdk2�1=2C � eran.An;˛/ � 1

n1=2
ƒ
1=2

d;˛
:

We know that kINTdk2 D Qd
jD1.1C �d;j =12/, and it is shown in Wasilkowski [328]

that

ƒd;˛ D
dY
jD1


1C 1

12
�d;j C .2˛ � 1/2

720
�2d;j C B.˛/ �3d;j C O.�4d;j /

�
;

where

B.˛/ D ˛3

180
� 143 ˛2

21168
C 139 ˛3

35280
C 121

60480
:

Consider first the absolute error criterion. Using the same analysis as in Sec-
tion 17.1.1.2, it is easy to check that for any ˛ 2 Œ0; 1�, the algorithm An;˛ is strongly
polynomially, polynomially or weakly tractable iff Monte Carlo is strongly polynomi-
ally, polynomially or weakly tractable. So in this case, the parameter ˛ does not relax
tractability conditions.

The situation is quite different for the normalized error criterion. Then we need to
consider

ƒd;˛

kINTdk2 D
dY
jD1

�
1C .2˛ � 1/2

720
�2d;j C O.�3d;j /

	
: (17.27)

Hence for all ˛ 6D 1
2

, the last ratio depends on �2
d;j

, and we have exactly the same

tractability conditions for An;˛ as for Monte Carlo. But for ˛ D 1
2

the term with �2
d;j

disappears and this leads to the following theorem that was proved by Wasilkowski
[328] for the strong polynomial and polynomial parts. Obviously, the weak tractability
part also easily follows from (17.27).
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Theorem 17.16. Consider multivariate integration for the normalized error criterion
defined as in this subsection.

The algorithm An;1=2 is strongly polynomially tractable iff

sup
d

dX
jD1

�3d;j < 1;

is polynomially tractable iff

sup
d

Pd
jD1 �3d;j
ln d

< 1;

is weakly tractable iff

sup
d

Pd
jD1 �3d;j
d

D 0:

For Monte Carlo we have similar tractability conditions with the third power of �d;j
replaced by the second power. The relaxation of tractability conditions is important.
For example, take the weights �d;j D j�ˇ for a positiveˇ. Then forˇ 2 .1

3
; 1
2
/, the al-

gorithmAn;1=2 is strongly polynomially tractable and Monte Carlo is not polynomially
but weakly tractable.

We now turn to the paper of Plaskota, Wasilkowski and Zhou [248] who consider,
more generally, the weighted integration problem

INTd;%d
.f / D

Z
Dd

f .x/%d .x/ dx;

where %d > 0 and
R
Dd
%d .x/ dx D 1, i.e., % is a probability density. They assume

that the integrand is a function from a reproducing kernel Hilbert space H.Kd / and
that Kd .x; x/ > 0 for almost all x 2 Dd and

Cd D
Z
D

%d .x/Kd .x; x/
1=2 dx < 1:

They suggest to take the density

!d .t/ D
p
Kd .t; t/ %d .t/

Cd

and study importance sampling

Q!d ;n.f / D 1

n

nX
jD1

f .tj /cd .tj /;

with randomly and independently chosen tj with distribution whose probability density
is !d and cd D %d=!d .
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Define an operator S W H.Kd / ! H.Kd / by

Sd .f / D Cd

Z
Dd

f .t/
%d .t/p
Kd .t; t/

Kd . � ; t / dt

and let 
.Sd / be the largest eigenvalue of Sd . Plaskota, Wasilkowski and Zhou [248]
prove the following result.

Theorem 17.17. The randomized error ofQ!d ;n onH.Kd / is bounded by

eran.Q!d ;n/ �
p

.Sd /

n
:

The proof follows from the standard error formula

E
�jINTd;%.f / �Q!d ;n.f /j2

� D Cd

n

Z
Dd

jf .x/j2 %d .x/p
Kd .x; x/

dx � INTd;%.f /2

n
:

One may show that

Cd sup
kf kH.Kd /�1

Z
Dd

jf .x/j2 %d .x/p
Kd .x; x/

dx D 
.Sd /:

From this theorem one can deduce new tractability results for multivariate integra-
tion in the randomized setting. Tractability now depends on how 
.Sd / depends on d .

The approach of Plaskota, Wasilkowski and Zhou [248] leads, via importance sam-
pling, to better algorithms and error bounds.

Open Problem 80.

• Consider the integration problem INTd;% on H.Kd / as in the last theorem. Is it
possible to modify the density

!d .t/ D
p
Kd .t; t/%d .t/

Cd

to prove even better error bounds?

We formulated this open problem in June 2009 and also discussed it with Hinrichs.
Using deep results from the geometry of Banach spaces, such as the Pietsch Domina-
tion Theorem and the Little Grothendieck Theorem, Hinrichs [131] solved this open
problem completely by proving the following result.

Theorem 17.18. Let H be a Hilbert space of functions defined on D, D � Rd , with
reproducing kernel K. Let % be a probability density on D such that the embedding
J W H ! L1.%/ is a bounded operator. Assume that H has full support with respect
to %. Then there exists a density ! such that importance samplingQ!;n with ! for the
approximation of

INT.f / D
Z
D

f .x/%.x/ dx
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has a randomized error bounded by

eran.Q!;n/ � n�1=2 � �1
2
�
�1=2 kJ kH!L1.%/:

Full support with respect to % means that there is no set with positive measure
such that all functions from H vanish on it. Hinrichs [131] also proved the following
theorem.

Theorem 17.19. Let H be a reproducing kernel Hilbert space of functions with non-
negative kernelK, i.e.,K.x; y/ � 0 for all x and y fromD, and assume that the norm
of INT is finite, i.e.,

kINTk D
�Z

D

Z
D

K.x; y/%.x/%.y/ dx dy

	1=2
< 1:

Assume that H has full support with respect to the measure % dx. Then there exists
a density ! such that the randomized error of importance sampling with density % is
bounded by

eran.Q!;n/ � n�1=2 � �1
2
�
�1=2kINTk:

Then it follows that all such problems are strongly polynomially tractable in the
randomized setting with an "�1 exponent at most 2 for the normalized error criterion
since

nran."; d/ � ˙
1
2
�"�2�

for all " 2 .0; 1/ and d 2 N. It should be noted that, in general, these results are
non-constructive since we do not know how to construct ! from the kernel K and the
density %.2

17.3 Local Solution of the Laplace Equation

This section deals with the local solution of the Dirichlet problem for the Laplace
equation. Using classical results of Muller [193] and Motoo [192] we show that this
problem is polynomially tractable in the randomized setting for the absolute error
criterion.

We start with two assumptions:

• G � Rd is an open and bounded set and d � 2,

2Added in proof: For tensor product spaces whose univariate reproducing kernel is decomposable and
univariate integration is not trivial for the two spaces corresponding to decomposable parts, we have

eran.Qn/ � d"�2=8e for all " 2 .0; 1/ and d � 2 ln "�1 � ln 2

ln ˛�1
;

where ˛ 2 Œ 1
2
; 1/ depends on the particular space, as proved in [225]. In this case, the exponent of strong

polynomial tractability is 2.
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• f W @G ! R is continuous on the boundary @G of G.

By 	 we denote the Laplace operator

	u.x/ D
dX
iD1

@2u

@x2i
.x/ for all x 2 G;

where u W G ! R is a C 2-function. We want to solve the Dirichlet problem by finding
a continuous function

u W clG ! R

on the closure clG of G such that

	u D 0 on G;

u D f on @G.

Kakutani [143], [144] proved that it is possible to obtain results about the existence and
uniqueness of the solution of the Dirichlet problem using the Brownian motion, see
also Karatzas and Shreve [147, Chapter 4, Section 5.7] and Øksendal [229, Chapter 9].
One may also use this approach to obtain randomized algorithms, see Sabelfeld and
Shalimova [259] as well as Milstein and Tretyakov [188].

Let .W x
t /t2Œ0;1/ be a d -dimensional Brownian motion starting at x 2 G and let P

be its probability. We put

T x D infft 2 .0;1/ j W x
t 62 Gg

and obtain a random variable with values in Œ0;1� WD Œ0;1/ [ f1g. Since the paths
of the Brownian motion are continuous, we obtain

T x D infft 2 .0;1/ j W x
t 2 @Gg for all x 2 G;

i.e., T x is the hitting time of the boundary of G when we start at x 2 G. It is easy to
prove that for all x 2 Rd we have

P.fT x < 1g/ D 1:

For x 2 G, we define on fT x < 1g
Rx D W x

T x

as the boundary point that is first hit by the process that starts at x. For x 2 @G we put
Rx D x.

The distribution of Rx is called the harmonic measure on @G for the starting value
x 2 clG. Let

Bzr D fy 2 Rd j ky � zk < rg
be the open Euclidean ball with radius r > 0 and center z and its boundary is the sphere

@Bzr D fy 2 Rd j ky � zk D rg:
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The boundary @G of G is compact, hence f is bounded and f .Rx/ is a random
variable in L2. We define

u�.x/ D E.f .Rx// for all x 2 clG:

That is, u�.x/ is the expectation of f with respect to the harmonic measure for the
starting value at x. Clearly, u�.x/ D f .x/ for all x 2 @G so that u� satisfies the
boundary condition of the Dirichlet problem. We will see that u� is, under some
conditions, the unique solution of the Dirichlet problem.

Lemma 17.20. The function u� is C1 on G and harmonic.

For the proof see Karatzas and Shreve [147, Section 4.2.A, 4.2.B].

Thereforeu� is a solution of the Dirichlet problem iff it is continuous for allx 2 @G.
It is also well known that every solution of the Dirichlet problem fulfills u D u�, see
Karatzas and Shreve [147, Proposition 4.2.7].

A point x 2 @G is called regular if

P.fT x > 0g/ D 0:

We add that convexity ofG implies that all boundary points are regular. The following
characterization of regular boundary points is important.

Lemma 17.21. A point x 2 @G is regular iff

lim
y!x; y2G E.g.Ry// D g.x/

for all continuous mappings g W @G ! R.

For the proof of all these statements see Karatzas and Shreve [147, Theorem 4.2.19,
Theorem 4.2.12].

To summarize, and this is the starting point for randomized algorithms, the function
u� is the unique solution of the Dirichlet problem if every boundary point of G is
regular. This is the case for Lipschitz domains and for convex domains. From now on
we assume that all boundary points are regular.

We are ready to define our computational problem. For a fixed x 2 G we want
to approximate the solution u�.x/ D u.x/ of the Dirichlet problem at x. Obviously,
u.x/ D u.x; f / depends linearly on the boundary function of f . We assume that
f belongs to a linear space Fd that will be specified later and will be a subset of
continuous functions. That is why

Id .f / D u.x; f / for all f 2 Fd
is a linear functional. We choose Fd such that Id is also continuous. We stress that Id
is usually not a tensor product linear functional and therefore the previous results for
such linear functionals do not apply.

We first consider the randomized setting for I D fId g and later briefly mention
what happens for the worst case setting. To simplify the presentation we assume that
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• the function f is defined and continuous on clG.

To approximate
u.x/ D E.f .Rx//

it is natural to simulate Y D f .Rx/ several times and to use the mean value as an
approximation. We approximateRx by random variablesRx;ı with values in clG that
converge to Rx as ı ! 0. We discretize the Brownian motion and study the spherical
process that was developed by Muller [193].

For z 2 clG, we define

r.z/ D inffkz � yk j y 2 @Gg
and

S.z/ D @Bzr.z/;

as the largest sphere in clG with center z.
We define recursively

T x0 D 0; �W x
0 D x;

and
T xkC1 D infft 2 ŒT xk ; T x� j W x

t 2 S.�W x
k /g

and �W x
kC1 D W x

T x
kC1

:

Clearly, �W x
kC1 2 S.�W x

k / � clG:

The sequence .�W x
k
/k2N0

is called the spherical process. For ı > 0, define the
hitting time

kı D inffk 2 N j �W x
k 2 Gıg

of the spherical process of the set

Gı D fy 2 G j r.y/ � ıg
that is used as a stopping rule. Hence we consider

Rx;ı D �W x
kı

on fkı < 1g. Then, with probability 1, we obtain kı < 1 and

lim
ı!0

Rx;ı D Rx :

To obtain an approximation ofu.x/ D E.Y /we replaceY D f .Rx/ by the random
variable

Y ı D f .Rx;ı/
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and define the randomized algorithm

M ı
n D 1

n

nX
iD1

Y ıi

with independent copies Y ı1 ; Y
ı
2 ; : : : ; Y

ı
n of Y ı for the approximation of u.x/.

We present bounds for the error and the cost of M ı
n due to Motoo [192], see also

[194]. For the error bounds we need another assumption. Namely we assume that the
class Fd of functions f is chosen such that there exists a positive L for which

• the solution u and the boundary data f satisfy

ju.y/ � u.z/j C jf .y/ � f .z/j � L ky � zk for all y; z 2 clG: (17.28)

Then the following error bound is valid.

Lemma 17.22.

eran.M ı
n ; f /

2 � 1

n
kf k21 C L2ı2:

The cost ofM ı
n is given byn, the cost to compute the distances r.z/ and the expected

number E.kı/ of steps of the spherical process to reach Gı . For convex sets G this
number was estimated by Motoo [192, p. 53]. In the non-trivial case, when r.x/ > ı,
the bound is

E.kı/ < .1C ln.r.x/=ı// � 16 d: (17.29)

One may replace ln by lnC D max.ln; 0/ and then this bound holds for all ı > 0.
The proof is based on the limit case which is the half-space fy 2 Rd j y1 < r.x/g.
Therefore we obtain an explicit bound on the cost of M ı

n if we assume

• the set G � Rd is open, bounded, and convex and the cost to compute distances
r.z/ for z 2 G are bounded by c1;d .

We put
c2;d D sup

z2G
r.z/

and denote the cost of computing f .Rx;ı/ by cd . We obtain the following result.

Theorem 17.23. The cost ofM ı
n is bounded by

cost.M ı
n ; f / �

�
� d � .c1;d C d/ �

�
1C lnC

c2;d

ı

�
C cd

�
n

with a constant � > 0 that is independent of d , G, n, ı and x.

Proof. It is enough to consider the cost to simulate the random variable Y ı D f .Rx;ı/.
For the simulation ofRx;ı we needkı steps of the spherical process. Each step needs the
computation of a distance from the boundary, the simulation of the uniform distribution
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on a sphere and an addition. Since the cost for the random number generator is linear
in d (one can use the Box Muller algorithm for the normal distribution and then a
projection of the point on the sphere), we obtain

cost.Rx;ı/ � .�1 d C c1;d / � E.kı/

with a constant �1 independent on d , G, ı and x. From (17.29) we conclude

cost.Rx;ı/ � �1 � .d C c1;d / � .1C lnC.c2;d=ı// � 16 d:
Finally we need n calls of the oracle with cost n cd to compute f .Rx;ı/.

With the choice
ın D n�1=2

we finally consider the algorithms

Mn D M ın
n :

For our final result we assume the following.

• Let
c1;d � c d and cd � c d2;

as well as
kf k1 � c; L � c; and c2;d � c

for some c > 0.

Then we have an explicit bound for the costMn when we want to have an error that
is bounded by " > 0.

Theorem 17.24. Let

n."/ D
�
2 c2

"2

�
:

Then
eran.Mn."/; f / � "

and
cost.Mn."/; f / � � d 2 "�2 .1C lnC."�1//

with � > 0 that only depends on c.

As always, let n."; d/ denote the minimal number of function values to solve the
problem in the randomized setting for the absolute error criterion. Then

n."; d/ � n."/ D
�
2 c2

"2

�
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and the problem is strongly polynomially tractable in the randomized setting for the
absolute error criterion. Furthermore, its complexity increases at most quadratically in
the dimension d .

We add in passing a word about the worst case setting. If we assume that f is a
C k-function then one can obtain at most n�k=.d�1/ as the order of convergence, since
we basically have to solve an integration problem over the boundary ofG with respect
to the harmonic measure. Hence the problem is certainly not polynomially tractable
for C k-functions in the worst case setting. Hence we have another example of a
problem for which the polynomial intractability of the worst case setting is vanquished
by switching to the randomized setting.

17.4 Notes and Remarks

NR17.1:1.This section is mostly based on [281]. Subsection 17.1.6 is new and contains
slightly improved lower bounds and a new example.

NR 17.2:1. The section on importance sampling is mainly based on Wasilkowski [328]
and Plaskota, Wasilkowski, Zhou [248], again we added a new example at the beginning
of this section. At the end of this section we present the recent result of Hinrichs [131].

NR17.3:1.This section is based on the original papers of Muller [193] and Motoo [192],
with minor modifications done in [194].



Chapter 18

Nonlinear Functionals

So far we studied in this volume tractability of linear functionals. In this chapter we
study tractability of certain nonlinear functionals Snon D fSd g.

Quasi-linear multivariate problems will be thoroughly discussed in Volume III
based on [341], [342] and Werschulz [339]. Quasi-linear problems are defined by a
nonlinear operator Sd .� ; �/ that depends linearly on the first argument and satisfies a
Lipschitz condition with respect to both arguments. Both arguments are functions of
d variables. Many computational problems of practical importance have this form.
Examples include the solution of specific Dirichlet, Neumann, and Schrödinger prob-
lems. In Volume III we will show, under appropriate assumptions, that quasi-linear
problems whose domain spaces are equipped with product or finite-order weights are
polynomially tractable or strongly polynomially tractable in the worst case setting. In
this chapter we study a couple of quasi-linear multivariate problems for which Sd is
a nonlinear functional as well as a couple of multivariate problems that are not quasi-
linear.

More precisely, we study tractability of the following nonlinear functionals:

1. Integration with an unknown density function.

2. The local solution of Fredholm integral equations of the second kind.

3. Computation of fixed points.

4. Global optimization.

5. Computation of the volume.

Only the first two problems are quasi-linear, hence these problems could be ana-
lyzed by applying a theory of quasi-linear problems. Since this theory will be presented
in Volume III, here we do not use it. All five problems are analyzed by using a proof
technique very much dependent on the particular problem.

As we shall see, the nonlinear functionals studied in this chapter will be defined on
unweighted spaces. Nevertheless, we will show that some of them are polynomially or
even strongly polynomially tractable. This holds, in particular, for Problems 1 and 2 in
the randomized setting and for Problem 3 in the worst case setting. This is in a contrast
to linear functionals that are usually intractable for unweighted spaces. Hence, some
nonlinear functionals are easier than linear functionals. This shows that sometimes
nonlinearity is a very fruitful property that makes the problem tractable. The reader
should, however, keep in mind that this very much depends on the specific nonlinear
problem and there is no general result saying that nonlinear problems are always easier
than linear problems. There are seven open problems numbered from 81 to 87.
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18.1 Integration with Unknown Density

In many applications one wants to compute an integral of the formZ
�

f .x/ � c q.x/�.dx/ (18.1)

with a density c q, where the number c is unknown and related to positive q by

1

c
D
Z
�

q.x/�.dx/;

for some known measure � for which � is � measurable and �.�/ > 0.
The numerical computation of the integral defining c�1 is often as hard as the

original problem (18.1). Therefore it is desirable to have algorithms that are able to
approximately compute (18.1) without knowing the normalizing number c based solely
on n function values of f and q.

We assume that F .�/ is a class of real functions .f; q/ defined on � from the
space L2.�;�/ and q > 0. For such a class F .�/, we define the solution operator
S W F .�/ ! R by

S.f; q/ D
R
�
f .x/ � q.x/�.dx/R
�
q.x/�.dx/

for all .f; q/ 2 F .�/: (18.2)

This solution operator is linear in f but not, in general, in q. Therefore S is a nonlinear
functional.

If � is the d -dimensional unit ball with respect to the Euclidean norm and � is
the normalized Lebesgue measure, then we denote � D �d , F .�/ D F .�d / and
S D Sd . Then we obtain

Snon D fSd gd2N

and our goal is to study tractability of Snon.
We discuss algorithms for the approximate computation of S.f; q/. We start with

a short discussion of deterministic algorithms for this problem and then discuss ran-
domized algorithms.

18.1.1 Deterministic Algorithms and Quasi-Linearity

The following lemma shows that the problem is quasi-linear.

Lemma 18.1. Assume that f; Qf 2 L2.�;�/ and q; Qq 2 L2.�;�/ with

1 � q; Qq � C: (18.3)

Then

jS.f; q/ � S. Qf ; Qq/j � p
Ckf � Qf k2 C kf k2 � kq � Qqk2 C kf k2 � p

C � kq � Qqk1:
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Proof. We denote hf; giL2.�;�/
by hf; gi and kqkL1.�;�/ by kqk1. Then we can write

jS.f; q/ � S. Qf ; Qq/j D
ˇ̌̌̌
ˇ hf; qi

kqk1 �
˝ Qf ; Qq˛
k Qqk1

ˇ̌̌̌
ˇ D

ˇ̌̌̌
ˇ hf; qi

kqk1 � hf; qi
k Qqk1 C hf; qi

k Qqk1 �
˝ Qf ; Qq˛
k Qqk1

ˇ̌̌̌
ˇ :

Now we apply the triangle inequality and obtain the following estimatesˇ̌̌̌
ˇ hf; qi

k Qqk1 �
˝ Qf ; Qq˛
k Qqk1

ˇ̌̌̌
ˇ � k Qqk2

k Qqk1 kf � Qf k2 C kf k2
k Qqk1 kq � Qqk2

and ˇ̌̌̌ hf; qi
kqk1 � hf; qi

k Qqk1

ˇ̌̌̌
� kf k2 � kqk2

kqk1 � k Qqk1 kq � Qqk1:

From kqk22 � kqk1 � kqk1 we have

kqk22
kqk21

� kqk1
kqk1 � C:

From these estimates, the lemma easily follows.

At this point one could apply a theory of quasi-linear problems forSnon D fSd g. For
certain spaces ofd -variate functions we will obtain polynomial and strongly polynomial
tractability results.

However, there is a problem with this approach and hence we do not follow it in
more detail. In many interesting applications, from Bayesian statistics and statistical
physics, the numberC in (18.3) is so huge that even ford D 1 it is not clear whether one
can construct satisfactory algorithms based on the theory of quasi-linear problems. In
fact, for huge C we would like to have also tractability with respect to C and we could
only permit a polylogarithmic dependence on C . That is, if n."; d; C / is the minimal
number of function values of f and q from F .�d / to guarantee an "-approximation
for, say, the absolute error criterion in the worst case setting then for some non-negative
p1; p2 and p3 we would like to have

n."; d; C / D O
�
"�p1 d p2 ŒlnC �p3

�
(18.4)

for all " 2 .0; 1/, d 2 N and C � C0 > 1 with the factor in the big O notation
independent of "�1, d and C .

For the classes FC .�d / defined later, we prove that n."; d; C / depends polynomi-
ally on C even in the randomized setting. This means that (18.4) does not hold for the
classes FC .�d /. We leave to the reader an open problem to identify classes F .�d /

for which this holds.

Open Problem 81.
Consider Snon D fSd g defined as in this section in the worst case setting.

• Identify (interesting) classes F .�d / for which Snon is tractable in the sense
of (18.4).
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18.1.2 Randomized Algorithms

The Metropolis algorithm, or more accurately, the class of Metropolis–Hastings algo-
rithms ranges among the most important algorithms in numerical analysis and scientific
computation, see Beichl and Sullivan [12], [13], Liu [176], Randall [249] and Roberts
and Rosenthal [253]. Here we consider arbitrary randomized algorithms An that use
at most n function evaluations of f and q. Hence An is a mapping of the form

An;!.f; q/ D 'n;!
�
f .x1;!/; q.x1;!/; f .x2;!/; q.x2;!/; : : : ; f .xn;!/; q.xn;!/

�
for some random element !, see Chapter 4 of Volume I for more details.

To have more general lower bounds, see Theorem 18.2, we may even allow that the
number of function values is random and n is an upper bound for the expected number
of function values for each f and q.

As we shall see, the lower bounds hold under very general assumptions concerning
the available random number generator. Observe, however, that we cannot use a random
number generator for the target distribution�q D q ��=kqk1, since q is not completely
known.

For the upper bounds we only study two algorithms, the (non-adaptive) simple
Monte Carlo algorithm and the (adaptive) Metropolis–Hastings algorithm. The former
can only be applied if a random number generator for � on � is available. Thus there
are natural situations when this algorithm cannot be used.

The Metropolis Hastings algorithm is based on a Markov chain. We use a ball walk
as an example. Then we need a random number generator for the uniform distribution
on a (Euclidean) ball. Thus the Metropolis Hasting algorithm can also be applied when
a random number generator for � on� is not available. For the ball walk on� � Rd ,
we need a “membership oracle” for �:

On input x 2 Rd this oracle can decide with cost, say 1, whether x 2 � or not.
The randomized error ofAn is defined as in Chapter 4 of Volume I. That is, for .f; q/ 2
F .�/, we define

e.An; .f; q// D �
E! jS.f; q/ � An;!.f; q/j2

�1=2
;

where E! means the expectation with respect to random !. The randomized worst
case error of An on the class F .�/ is

e.An;F .�// D sup
.f;q/2F .�/

e.An; .f; q//:

The nth minimal randomized error is

en.F .�// D inf
An

e.An;F .�//:

We consider classes F .�/ that contain constant densities q 	 constant > 0 and
all f with kf k1 � 1, i.e.,

F1.�/ D ˚
.f; q/ j supx2� jf .x/j � 1 and q 	 constant > 0


 � F .�/:
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For the class F1.�/, the problem (18.2) reduces to the classical integration problem for
uniformly bounded functions, and it is well known that the nth minimal randomized
error decreases at a rate n�1=2. This holds under mild assumptions on the measure �,
for example, when � does not have atoms.

We will only consider classes F .�/ for which S.f; q/ 2 Œ�1; 1� and the trivial
algorithmA0 D 0 has always error 1. Therefore we do not have to distinguish between
the absolute and the normalized error criteria.

We give a short outline what will be done in this section. For the classes FC .�/

and F ˛.�/, which will be introduced below, we easily obtain the optimal order

en.F .�// D ‚
�
n�1=2�:

Of course, this does not say anything about tractability since the dependence on d as
well as on C and ˛ is hidden in the big ‚ notation. We will analyze how en.F .�//

depends on these parameters.
The classes FC .�/, analyzed in Section 18.1.3, contain all densities q for which

sup q= inf q � C . We prove that the simple (non-adaptive) Monte Carlo algorithm is
almost optimal, no sophisticated Markov chain Monte Carlo algorithm can be essen-
tially better.

In typical applications we face huge C , for instance, C D 1020. Theorem 18.2
states that we cannot decrease the error of optimal algorithms from 1 to 1=4 even with
a sample size n D 1019. Hence the class FC .�/ is so large that no algorithm can
provide an acceptable error.

Thus we have to shrink the class FC .�/ to “suitable and interesting” subclasses
and study the question whether adaptive algorithms, such as the Metropolis algorithm,
can significantly help in terms of the dependence on C .

We give a partially positive answer for the classes F ˛.�d /. That is, � D �d is
an Euclidean ball of Rd and � is the normalized Lebesgue measure �� on �. The
class F ˛.�d / contains log concave densities, where ˛ is the Lipschitz constant of ln q.
We have

F ˛.�/ � FC .�/

if we take ˛ D lnC=2. Hence even for huge C , the parameter ˛ is relatively small.
For C D 1020 we have ˛ D 45:358 : : : .

For non-adaptive algorithms one gets similar lower bounds as for the classes FC .�/,
see [182] for details. An (adaptive) Metropolis algorithm, however, is much better. The
main error estimate for this algorithm is given in Theorem 18.20.

18.1.3 Analysis for FC .�/

Let � be an arbitrary probability measure on a set � and consider the set

FC .�/ D ˚
.f; q/ j kf k1 � 1; q > 0; q.x/

q.y/
� C for all x; y 2 �
:
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Obviously, we must assume that C � 1 since otherwise the class FC .�/ would be
empty. If C D 1 then q is constant and we have the ordinary integration problem since
S.f; q/ does not depend on q and is just the integral of f . That is why, from now on
we assume that C > 1.

In many applications the constant C is huge. We will prove that the complexity of
the problem is linear in C . It follows from the next theorem that, in particular,

e.An;FC .�// � 1=6 for n � C=4:

Therefore, for largeC , the class FC .�/ is too large. We have to look for smaller classes
that contain many interesting pairs .f; q/ and have significantly smaller complexity.

We first prove lower bounds for all non-adaptive and adaptive algorithms that use
n evaluations of f and q.

Theorem 18.2. Assume that we can partition � into 4n disjoint sets with equal mea-
sure. Then for any randomized algorithm An that uses at most n values of f and q on
the average we have the lower bound

e.An;FC .�// �
p
2

12

8<:
q

C
4n

if 4n � C � 1;
3C

CC4n�1 if 4n < C � 1:
(18.5)

The lower bound will be obtained in two steps.

• We first construct a certain discrete probability measure on the class FC .�/ so
that the randomized error of An is lower bounded by the nth minimal average
case error with respect to this measure. This approach is due to Bakhvalov [4].

• For the chosen prior on FC .�/, we compute a lower bound on the nth minimal
average case error.

To construct the prior, let m D 4n and let �1; �2; : : : ; �m be the partition of � into
sets of equal measure 1=m. Let ��j

be the corresponding characteristic function of
�j for j D 1; 2; : : : ; m. Furthermore, let

s D
l m

C � 1
m
:

Denote Jms as the set of all subsets of f1; 2; : : : ; mg of cardinality equal to s, and let
�m;s be the equi-distribution on Jms , and let Em;s denote the expectation with respect to
the prior �m;s . Let ."1; "2; : : : ; "m/ be independent and identically distributed random
variables with

P."j D �1/ D P."j D 1/ D 1
2

for all j D 1; 2; : : : ; m:

The overall prior is the product probability on Jms � f˙1gm. For any realization
! D .I; "1; "2; : : : ; "m/ we assign

f! D
X
j2I

"j��j
and q! D C

X
j2I

��j
C
X
j 62I

��j
:

The following observation is useful.
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Lemma 18.3. For any subset N � f1; 2; : : : ; mg of cardinality at most 2n we have

Em;s#.I nN/ � s

2
:

Proof. Clearly, for any fixed k 2 f1; 2; : : : ; mg we have �m;s.k 2 I / D s=m, thus

Em;s#.I nN/ D
X
r2N c

Em;s�I .r/ D #.N c/
s

m
� s

2
;

where N c denotes the complement of N .

Proof of Theorem 18.2. Given the above prior, let us denote

e
avg
2n .FC .�// D inf

A2n

�
Em;sE" jS.f; q/ � A2n.f; q/j2

�1=2
; (18.6)

where the infimum is taken with respect to any, possibly adaptive, deterministic algo-
rithm which uses at most 2n values of f and q.

Any randomized algorithmAn uses with probability 1/2 at most 2n function values
and hence we have, using Bakhvalov’s argument, the relation

e.An;FC .�// � 1
2
e

avg
2n .FC .�//: (18.7)

We provide a lower bound for eavg
2n .FC .�//

2. To this end, note that for each realization
.f! ; q!/ the integral

R
�
q! d� is constant. Form � C � 1, we can bound the integral

by choosing the integer s such that

cm;s D
Z
�

q!.x/ �.dx/ D s C C .m � s/1
m

� 3: (18.8)

In the other case, when m < C � 1, we take s D 1 and obtain

cm;1 D C � 1Cm

m
:

Now, to analyze the average case error, let A2n be any (deterministic) algorithm,
and let us assume that it uses function values from the set N of nodes. We have the
decomposition

S.f! ; q!/�A2n.f! ; q!/ D
�

C

mcm;s

X
j2InN

"j

	
C
�

C

mcm;s

X
j2I\N

"j�A2n.f! ; q!/
	
:

Given the set I , the random variables in the brackets are conditionally independent,
thus uncorrelated. Hence we conclude that

Em;sE" jS.f! ; q!/ � A2n.f! ; q!/j2 � Em;sE"

ˇ̌̌̌
C

mcm;s

X
j2InN

"j

ˇ̌̌̌2
D C 2

m2c2m;s
Em;s#.J nN/ � C 2s

2m2c2m;s
;
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by Lemma 18.3. In the case m � C � 1, we take an integer s 2 Œm=C; 2m=.C � 1/.
Note that such an integer exists since the length of the last interval is larger than 1.
Then cm;s � 3 and

1
4

Em;s E" jS.f; q/ � A2n.f; q/j2 � C

72n
;

which in turn yields the first case bound in (18.5). In the other case m < C � 1, the
value of s D 1 yields the second bound in (18.5).

We now analyze an algorithm which we call the simple Monte Carlo algorithm.
For random elements X1; X2; : : : ; Xn from � that are identically and independently
distributed according to �, define the algorithm by

Asimp
n .f; q/ D

Pn
jD1 f .Xj / q.Xj /Pn

jD1 q.Xj /
: (18.9)

We will prove an upper bound for the randomized error of this algorithm, and we
start with the following lemma.

Lemma 18.4. For q 2 FC .�/, we have

• 0 < infx2� q.x/ � supx2� q.x/ < 1.

• For every probability measure � on � we have kqkL2.�;�/ � p
CkqkL1.�;�/.

Proof. To prove the first point, fix any y0 2 �. Then the assumption on q yields
q.x/ � Cq.y0/ for all x 2 �, and it proves that the supremum of q is finite. Reversing
the roles of x and y, we have 0 < q.x0/ � Cq.y/ for all y 2 �, and it proves that the
infimum of q is positive.

We turn to the second point. Note that both the assumption on q as well as the
second point are invariant with respect to multiplication of q by a constant. Due to
the first point, we may then assume that 1 � q.x/ � C for all x 2 �. Using
1 � R

�
q.x/ �.dx/ we haveZ

�

q2.x/ �.dx/ � C

Z
�

q.x/ �.dx/ � C

�Z
�

q.x/ �.dx/

	2
:

This completes the proof of the second point and of the lemma.

We turn to the error bound for the simple Monte Carlo algorithm.

Theorem 18.5. For all n 2 N, we have

e.Asimp
n ;FC .�// � 2min

 
1;

r
2C

n

!
: (18.10)
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Proof. The upper bound 2 is trivial, it even holds deterministically. Fix any pair .f; q/
from FC .�/. For any sample .X1; X2; : : : ; Xn/ and a function g from L2.�;�/ we
denote the sample mean by

Amean
n .g/ D 1

n

nX
jD1

g.Xj /:

As we know e.Amean
n ; g/ � kgk2 n�1=2. Note that

Asimp
n .f; g/ D Amean

n .f g/

Amean
n .q/

:

Then we haveˇ̌
S.f; q/ � Asimp

n .f; q/
ˇ̌

�
ˇ̌̌̌
S.f; q/ � Amean

n .f q/R
�
q.x/�.dx/

ˇ̌̌̌
C
ˇ̌̌̌
Amean
n .f q/R

�
q.x/�.dx/

� Amean
n .f q/

Amean
n .q/

ˇ̌̌̌

�
� ˇ̌R

�
f .x/q.x/�.dx/ � Amean

n .f q/
ˇ̌C

ˇ̌̌
Amean

n .fq/

Amean
n .q/

ˇ̌̌ ˇ̌R
�
q.x/�.dx/ � Amean

n .q/
ˇ̌ �

kqk1
� 1

kqk1
�ˇ̌̌̌ Z

�

f .x/q.x/�.dx/ � Amean
n .f q/

ˇ̌̌̌
C kf k1

ˇ̌̌̌ Z
�

q.x/�.dx/ � Amean
n .q/

ˇ̌̌̌	
;

where we used jAmean
n .f q/=Amean

n .q/j � kf k1 since the numerator and denominator
use the same sample. This and Lemma 18.4 yield the following error bound

e.Asimp
n ; .f; q// �

p
2

kqk1
�
e.Amean

n ; f q/C kf k1e.Amean
n ; q/

�
�

p
2

kqk1pn Œkf qk2 C kf k1kqk2� � 2
p
2kf k1p
n

kqk2
kqk1 � 2

p
2Cp
n
:

The proof is completed by taking the supremum over .f; q/ 2 FC .�/.

Theorems 18.2 and 18.5 state that the nth minimal randomized error satisfies

e.n;FC .�// D ‚
�p

C=n
�

as n ! 1:

This shows that the simple Monte Carlo algorithm is asymptotically optimal. However,
for large C we must wait very long to see this decay of the nth minimal randomized
error. For instance, take

C D 1020 and n D 1019:
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Then the second part of (18.5) yields that

e.n;FC .�// �
p
2

4

1

1:4 � 10�20 D 0:2525 � � � > 1

4
:

Hence for " < 1=4 we have

n.";FC .�// > 10
19

which is astronomically large. This proves that indeed the class FC .�/ is too large.

18.1.4 Log Concave Densities

The results of Section 18.1.3 clearly indicate that the class FC .�/ is simply too large and
hence one should look for smaller classes that still contain many interesting problems.

Randomized algorithms for problems where the target distribution is log concave
proved to be important in many studies, we refer to Frieze, Kannan and Polson [70].
One of the main intrinsic features of such classes of distributions are isoperimetric
inequalities, see Applegate and Kannan [1], Kannan, Lovász and Simonovits [145] and
Vempala [318]. Here we study the nonlinear integration problem for densities from the
class

R˛.�d / WD ˚
q j q > 0; ln q concave; jln q.x/ � ln q.y/j � ˛kx � yk2



;

where �d is the d -dimensional unit ball with respect to the Euclidean norm and �
is the normalized Lebesgue measure on �d . This class was studied in [182] together
with integrands f that are square integrable with respect to the measure with density q.
The main result of [182] was the construction of an algorithm An with an randomized
error e.An/ such that

lim
n!1 e.An/

2 � n D O
�

max.d 2; d ˛ 2/
�

with the factor in the big O notation independent of d and ˛. The authors of that paper
believe that the problem is polynomially tractable but could verify it only asymptoti-
cally.

Here we present a result of Rudolf [257] for the class

F ˛.�d / WD ˚
.f; q/ j q 2 R˛.�d / and kf k1 � 1



:

Let n.";F ˛.�d // be the minimal number of function values needed to compute an
"-approximation to Sd .f; q/ for the absolute error criterion in the randomized setting.
Rudolf [257] proved the following theorem.

Theorem 18.6. For the nonlinear integration problem Sd defined over F ˛.�d / we
have

n.";F ˛.�d // � .d C 1/ max.d C 1; ˛2/
�
64 � 106 "�2 C ˛ 1:28 � 106 C 2

�
for all " 2 .0; 1/ and d 2 N.



18.1 Integration with Unknown Density 549

This means that Snon D fSd g is polynomially tractable with an "�1- and a
d -exponent at most 2, and an ˛-exponent at most 3.

We will prove Rudolf’s theorem in the next section. Here, we comment on the
estimate of the last theorem. There are some pluses and minuses in this estimate. The
definite plus is that the bound is very concrete and there are no hanging factors in the
big O notation. The minus is that "�2 and ˛ in the square bracket are multiplied by
large numbers. In fact, such large numbers also occur in other papers in this area.

For instance, take d D 9, ˛ � 3 and " D 10�2. Then n.";F ˛.�d // is bounded
roughly by 0:64 �1014 which is huge although much smaller then 1019 that we encoun-
tered in the previous subsection. In any case, if the numbers 64 � 106 and 1:28 � 106
are sharp then despite of polynomial tractability, the practical value of the bound on
n.";F ˛.�d //would be limited only to relatively large " and relatively small d . How-
ever, it is not clear whether these factors are sharp. The hope is that a similar bound on
n.";F ˛.�d // can be proved with much smaller factors. In fact, it would be of great
interest to find sharp lower bounds on n.";F ˛.�d // and in this way to verify if large
factors are indeed present. This is our next open problem.

Open Problem 82.

Consider the nonlinear integration problem Snon D fSd g defined as in this subsection
in the randomized setting.

• Improve Rudolf’s bounds on n.";F ˛.�d //.

• In particular, check if the factors 64 � 106 and 1:28 � 106 can be significantly
lowered.

• Find sharp lower bounds on n.";F ˛.�d //.

18.1.5 Explicit Error Bounds for MCMC

In this section we present an explicit error bound of Rudolf [257] for MCMC (Markov
Chain Monte Carlo) algorithms such as the Metropolis algorithm. We will be using
the notions and terminology of MCMC, although we also try to define many of these
notions to help the reader.

The goal is to approximate an integral of the form

S.f / D
Z
�

f .x/ �.dx/; (18.11)

where � is a given set and � a probability measure of which we have only a limited
knowledge. In our case, � D �q depends on q and we can only sample q. We generate
a Markov chain X1; X2; : : : with a transition kernel K, having � as its stationary
distribution. After a certain burn-in time n0, for a given function f we compute the
approximation

An;n0
.f / D 1

n

nX
jD1

f .XjCn0
/:
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The computation of An;n0
.f / requires to compute n function values of f and n0 C n

function values of q. Therefore the cost of An;n0
is proportional to nCn0. As always,

the individual error of An;n0
for a function f is measured in the mean square sense,

i.e.,

e.An;n0
; f / D �

E
ˇ̌
S.f / � An;n0

.f /
ˇ̌2 �1=2

:

We assume that .�;A/ is a measurable space. Then we callK W �� A ! Œ0; 1� a
Markov kernel or a transition kernel if

• for each x 2 � the mapping A 2 A 7! K.x;A/ induces a probability measure
on �,

• for each A 2 A the mapping x 2 � 7! K.x;A/ is an A-measurable real
function.

In addition,
M D .�;A; fK.x; �/ W x 2 �g/

is called the (associated) Markov scheme. Notation and much of the following analysis
is taken from Lovász and Simonovits [178].

A Markov chain X1; X2; : : : is given through a Markov scheme M and a start
distribution � on �. The transition kernel K.x;A/ of the Markov chain describes the
probability of getting from x 2 � to A 2 A in one step. We assume that � is the
stationary distribution of the Markov chain, i.e.,

�.A/ D
Z
�

K.x;A/�.dx/ for all A 2 A:

Another similar but stronger restriction on the chain is reversibility. A Markov scheme
is reversible with respect to � ifZ

B

K.x;A/�.dx/ D
Z
A

K.x;B/�.dx/ for all A;B 2 A:

The next lemma is taken from Lovász and Simonovits [178]; we also give an idea of
the proof.

Lemma 18.7. Let M be a reversible Markov scheme and let F W � � � ! R be
integrable. ThenZ

�

Z
�

F.x; y/ K.x; dy/�.dx/ D
Z
�

Z
�

F.y; x/ K.x; dy/�.dx/: (18.12)

Proof. The result is shown by using a standard technique of integration theory. Since
the Markov scheme is reversible we haveZ

�

Z
�

IA	B.x; y/K.x; dy/�.dx/ D
Z
�

Z
�

IA	B.y; x/K.x; dy/�.dx/
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for A;B 2 A. We obtain the equality of the integrals for an arbitrary set C 2 A ˝ A,
where A ˝ A is the product � -algebra of A with itself. Then we consider the case of
simple functions, and this case is quite straightforward. The next step is to obtain the
equality for positive functions and after that extending the result to general integrable
functions.

Remark 18.8. If we have a Markov scheme, which is not necessarily reversible but
has a stationary distribution, then

S.f / D
Z
�

f .x/�.dx/ D
Z
�

Z
�

f .y/K.x; dy/�.dx/;

where f W � ! R is integrable. This can be easily seen by using the same steps as in
the proof of Lemma 18.7.

By Kn.x; �/ we denote the n-step transition probabilities. For x 2 � and A 2 A,
we have

Kn.x; A/ D
Z
�

Kn�1.y; A/K.x; dy/ D
Z
�

K.y;A/Kn�1.x; dy/:

It is again a transition kernel of a Markov chain sharing the invariant distribution and
reversibility with the original one. Thus Lemma 18.7 and Remark 18.8 also hold for
the n-step transition probabilities, i.e.,Z

�

Z
�

F.x; y/Kn.x; dy/ �.dx/ D
Z
�

Z
�

F.y; x/ Kn.x; dy/ �.dx/: (18.13)

For a Markov scheme M, we define a nonnegative operator P W L1.�; �/ !
L1.�; �/ by

.Pf /.x/ D
Z
�

f .y/K.x; dy/ for all x 2 �:
(Nonnegative here means that f � 0 impliesPf � 0.) This operator is called Markov
or transition operator of a Markov scheme M and describes the expected value of f
after one step with the Markov chain from x 2 �. The expected value of f from
x 2 � after n-steps of the Markov chain is given as

.P nf /.x/ D
Z
�

f .y/Kn.x; dy/:

Let us now consider P on the Hilbert space L2.�; �/ and let

hf; gi D
Z
�

f .x/g.x/ �.dx/ for all f; g 2 L2.�; �/

denote the canonical scalar product. Note that the function space is chosen according
to the invariant measure � . Then using Lemma 18.7 we have

hf; f i ˙ hf; Pf i D 1

2

Z
�

Z
�

.f .x/˙ f .y//2K.x; dy/�.dx/ � 0: (18.14)
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This implies that kP kL2!L2
� 1 and it is also easy to show that kP nkLp!Lp

� 1 for
all 1 � p � 1, see Baxter and Rosenthal [7, Lemma 1].

Let X1; X2; : : : be a reversible Markov chain. The expectation of the chain with
the starting distribution � D � and the Markov kernel K of the scheme M is denoted
by E�;K . Then for f 2 L2.�; �/ we get

E�;K.f .Xi // D E�;K.f .X1// D h1; f i D S.f /;

E�;K.f .Xi /
2/ D E�;K.f .X1/

2/ D hf; f i D S.f 2/;

E�;K.f .Xi /f .Xj // D E�;K.f .X1/f .Xji�j jC1// D hf; P ji�j jf i: (18.15)

The assumption that the initial distribution is stationary makes the calculation easy.
In the general case, where the starting point is chosen by a given probability distribution
�, we obtain for i � j and functions f 2 L2.�; �/,

E
;K.f .Xi // D
Z
�

P if .x/�.dx/;

E
;K.f .Xi /f .Xj // D
Z
�

P i .f .x/P j�if .x//�.dx/:

It is easy to verify by using (18.12) that P is self-adjoint as an operator acting on
L2.�; �/.

A Markov scheme M D .�;A; fK.x; �/ W x 2 �g/ is called lazy if

K.x; fxg/ � 1=2 for all x 2 �:
This means that the chain stays at least with probability 1=2 in the current state. The
reason for this slowing down property is to deduce that the associated Markov operator
P is positive semidefinite. Therefore we study only lazy chains. This is formalized in
the next lemma.

Lemma 18.9. Let M be a lazy, reversible Markov scheme. Then

hPf; f i � 0 for all f 2 L2.�; �/: (18.16)

Proof. We consider another Markov scheme

zM D .�;A; f zK.x; �/ W x 2 �g/;
where

zK.x;A/ D 2K.x;A/ � 1A.x/ for all A 2 A:

To verify that zK is again a transition kernel we need to show that K.x; fxg/ � 1=2.
The reversibility condition for zM holds since the scheme M is reversible. The Markov
operator of zM is given by zP D .2P �I /, where I is the identity. Since we established
reversibility of the new scheme, by applying Lemma 18.7 we obtain (18.14) for zP .
Hence,

�hf; f i � h.2P � I /f; f i � hf; f i



18.1 Integration with Unknown Density 553

and therefore
hPf; f i D 1

2
hf; f i C 1

2
h.2P � I /f; f i � 0;

as claimed.

We turn to the conductance of the Markov chain. For a Markov scheme

M D .�;A; fK.x; �/ W x 2 �g/;
which is not necessarily lazy, define the conductance as

'.K; �/ D inf
0<�.A/�1=2

R
A
K.x;Ac/�.dx/

�.A/
;

where � is a stationary distribution. The numerator of the conductance describes
the probability of leaving A in one step, where the starting point is chosen by � . An
important requirement for the next results is that the scheme has a positive conductance.

The following result will be needed and it is again from Lovász and Simonovits [178,
Corollary 1.5, p. 372].

Lemma 18.10. Let M be a lazy, reversible Markov scheme and let � be the initial
distribution. Furthermore we assume that the probability distribution � has a bounded
density function d


d�
with respect to � . Thenˇ̌̌̌Z

�

Kj .x; A/ �.dx/ � �.A/
ˇ̌̌̌

�
r

k d�
d�

k1
�
1 � '.K; �/2

2

	j
(18.17)

for A 2 A.

The left hand side of (18.17) can be transformed as followsZ
�

Kj .x; A/ �.dx/ � �.A/

D
Z
�

Z
A

Kj .x; dy/
d�

d�
.x/ �.dx/ � �.A/

D
(18.13)

Z
A

Z
�

d�

d�
.y/Kj .x; dy/ �.dx/

D
Z
A

Z
�

d�

d�
.y/ .Kj .x; dy/ � �.dy// �.dx/:

It is now clear that Lemma 18.10 for A 2 A yieldsˇ̌̌̌Z
A

Z
�

d�

d�
.y/

�
Kj .x; dy/ � �.dy/� �.dx/ˇ̌̌̌ �

r
k d�
d�

k1
�
1 � '.K; �/2

2

	j
:

(18.18)
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The right-hand side of (18.18) is a bound on the speed of convergence to stationarity
of the Markov chain. It can be further estimated byr

k d�
d�

k1
�
1 � '.K; �/2

2

	j
�
r

k d�
d�

k1 exp


�j '.K; �/

2

2

�
: (18.19)

To use the conductance we need a relation to the operator P . This will be given in
the form of the Cheeger inequality. Define

L02 D L02.�; �/ D ff 2 L2.�; �/ j S.f / D 0g :

Lemma 18.11 (Cheeger’s inequality). Let M be a reversible Markov scheme with
conductance '.K; �/. Then

hP jg; gi �
�
1 � '.K; �/2

2

	j
kgk22 for all g 2 L02: (18.20)

Proof. See Lovász and Simonovits [178, Corollary 1.8, p. 375].

For the next result, taken from Lovász and Simonovits [178, Theorem 1.9, p. 375],
we assume that the starting point is chosen according to the stationary distribution.
Then a burn-in time is not necessary.

Theorem 18.12. Let M be a lazy, reversible Markov scheme with stationary distribu-
tion � , and letX1; X2; : : : be a Markov chain generated by M with initial distribution
� . Let

S.f / D
Z
�

f .x/�.dx/ for all f 2 L2.�; �/;

and let

An.f / D An;0.f / D 1

n

nX
jD1

f .Xj / for all f 2 L2.�; �/:

Then

e.An; f /
2 D E�;K jS.f / � An.f /j2 � 4

'.K; �/2 � nkf k22:

Proof. Let g D f � S.f /. Then g 2 L02. Using Lemma 18.9, Lemma 18.11 and
kgk2 � kf k2, we have

E�;K jS.f / � An.f /j2 D E�;K

ˇ̌̌̌
1

n

nX
jD1

g.Xj /

ˇ̌̌̌2

D 1

n2

nX
i;jD1

E�;K.g.Xj /g.Xi // D
(18.15)

1

n2

nX
i;jD1

E�;K.g.X1/g.Xji�j jC1// D
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D 1

n2

�
nhg; gi C

n�1X
kD1

2.n � k/hP kg; gi
�

� 1

n2

n�1X
kD0

2.n � k/hP kg; gi

�
(18.16)

2

n

1X
kD0

hP kg; gi

�
(18.20)

2

n

1X
kD0

�
1 � '.K; �/2

2

	k
kgk22 D 4

'.K; �/2 � nkgk22 � 4

'.K; �/2 � nkf k22;

as claimed. Note that laziness of M is essentially used by applying hP kg; gi � 0 in
the second inequality.

Let us consider the more general case, where the initial distribution is not stationary.
In the next statement, a relation is established between the error of starting with � and
the error of starting not with the invariant distribution.

Lemma 18.13. Let M be a reversible Markov scheme with stationary distribution � ,
let X1; X2; : : : be a Markov chain generated by M with initial distribution �. Let d


d�

be a bounded density of � with respect to � . Then for g D f � S.f / 2 L02 we get

E
;K
ˇ̌
S.f / � An;n0

.f /
ˇ̌2

D E�;K jS.f / � An.f /j2

C 1

n2

nX
jD1

Z
�

Z
�

d�

d�
.y/
�
Kn0Cj .x; dy/ � �.dy/� g.x/2 �.dx/

C 2

n2

n�1X
jD1

nX
kDjC1

Z
�

Z
�

d�

d�
.y/

�
Kn0Cj .x; dy/ � �.dy/� g.x/P k�jg.x/ �.dx/:

(18.21)

Proof. It is easy to see that

E
;K
ˇ̌
S.f / � An;n0

.f /
ˇ̌2 D 1

n2

nX
i;jD1

E
;K.g.Xn0Cj /g.Xn0Ci //

D 1

n2

nX
jD1

Z
�

P n0Cjg.x/2 �.dx/

C 2

n2

n�1X
jD1

nX
kDjC1

Z
�

P n0Cj .g.x/P k�jg.x// �.dx/:
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For every function h 2 L2.�; �/ and i 2 N, we apply (18.13) and concludeZ
�

P ih.x/ �.dx/

D
Z
�

Z
�

h.y/Ki .x; dy/
d�

d�
.x/ �.dx/

D
(18.13)

Z
�

Z
�

d�

d�
.y/Ki .x; dy/ h.x/ �.dx/

D
Z
�

h.x/ �.dx/C
Z
�

Z
�

d�

d�
.y/

�
Ki .x; dy/ � �.dy/� h.x/ �.dx/

D
(18.13)

Z
�

P ih.x/�.dx/C
Z
�

Z
�

d�

d�
.y/

�
Ki .x; dy/ � �.dy/� h.x/ �.dx/:

Hence (18.21) follows, as claimed.

The next result modifies the convergence property described in Lemma 18.10.

Lemma 18.14. Let M be a lazy, reversible Markov scheme with stationary distribution
� , and let � be the initial distribution with bounded density d


d�
with respect to � . Then

for h 2 L1.�; �/ and j 2 N, we haveˇ̌̌̌Z
�

Z
�

d�

d�
.y/

�
Kj .x; dy/ � �.dy/� h.x/ �.dx/ˇ̌̌̌

� 4khk1

r
k d�
d�

k1
�
1 � '.K; �/2

2

	j
:

Proof. Define pj .x/ D R
�
d

d�
.y/

�
Kj .x; dy/ � �.dy/�. It is easy to see that the

measurability of the density and the kernel carries over to pj . Now we consider the
positive and negative parts of the functions h and pj . To formalize this we use

�C
C WD fx 2 � j pj .x/ � 0; h.x/ � 0g;

�C� WD fx 2 � j pj .x/ � 0; h.x/ < 0g;
��C WD fx 2 � j pj .x/ < 0; h.x/ � 0g;
��� WD fx 2 � j pj .x/ < 0; h.x/ < 0g:

These subsets of � are all included in the � -algebra A since pj and h are measurable
functions. Applying (18.18), we obtain the following upper bound:ˇ̌̌̌ Z

�

pj .x/h.x/ �.dx/

ˇ̌̌̌
�
ˇ̌̌̌ Z
�

C
C

pj .x/h.x/ �.dx/

ˇ̌̌̌
C
ˇ̌̌̌ Z
�C

�

pj .x/h.x/ �.dx/

ˇ̌̌̌
C
ˇ̌̌̌ Z
��

C

pj .x/h.x/ �.dx/

ˇ̌̌̌
C
ˇ̌̌̌ Z
��

�

pj .x/h.x/ �.dx/

ˇ̌̌̌
�
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� khk1
ˇ̌̌̌ Z
�

C
C

pj .x/ �.dx/

ˇ̌̌̌
C khk1

ˇ̌̌̌ Z
�C

�

pj .x/ �.dx/

ˇ̌̌̌
C khk1

ˇ̌̌̌ Z
��

C

pj .x/ �.dx/

ˇ̌̌̌
C khk1

ˇ̌̌̌ Z
��

�

pj .x/ �.dx/

ˇ̌̌̌

�
(18.18)

4khk1

r
k d�
d�

k1
�
1 � '.K; �/2

2

	j
: �

All results are now available to obtain the main error bound of Rudolf [257] for the
MCMC method An;n0

.

Theorem 18.15. Let X1; X2; : : : be a lazy, reversible Markov chain, defined by the
scheme M and the initial distribution �. Let the initial distribution have a bounded
density d


d�
with respect to � . Let

An;n0
.f / D 1

n

nX
jD1

f .Xn0Cj /

be the approximation of S.f / D R
�
f .x/�.dx/ for f 2 L1.�; �/. Then

e.An;n0
; f / �

2

r
1C 24

q
k d

d�

k1 exp
h
�n0 '.K;�/22

i
'.K; �/ � p

n
kf k1:

Proof. By Lemma 18.13 and Lemma 18.14 with g D f � S.f /, we have

E
;K
ˇ̌
S.f / � An;n0

.f /
ˇ̌2

� E�;K jS.f / � An.f /j2 C 4kgk21
n2

nX
jD1

r
k d�
d�

k1
�
1 � '.K; �/2

2

	jCn0

C 8kgk21
n2

n�1X
jD1

nX
kDjC1

kP k�j kL1!L1

r
k d�
d�

k1
�
1 � '.K; �/2

2

	jCn0

:

To simplify the notation we define

"0 WD
r

k d�
d�

k1 exp


�n0'.K; �/

2

2

�
: (18.22)

From (18.19) and (18.22), we obtain

a WD E
;K
ˇ̌
S.f / � An;n0

.f /
ˇ̌2

� E�;K jS.f / � An.f /j2 C 4 "0kgk21
n2

nX
jD1

�
1 � '.K; �/2

2

	j

C 8 "0kgk21
n2

n�1X
jD1

nX
kDjC1

kP k�j kL1!L1

�
1 � '.K; �/2

2

	j
:
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Summing up the geometric series and estimating kP ikL1!L1 � 1 for all i 2 N, we
get

a � E�;K jS.f / � An.f /j2 C 8 "0kgk21
'.K; �/2 � n2

C 8 "0kgk21
n2

n�1X
jD1

.n � j /
�
1 � '.K; �/2

2

	j

� E�;K jS.f / � An.f /j2 C 16 "0kgk21
'.K; �/2 � n C 8 "0kgk21

'.K; �/2 � n2

� E�;K jS.f / � An.f /j2 C 24 "0kgk21
'.K; �/2 � n:

Applying Theorem 18.12 and using kf k22 � kf k21 and kgk21 � 4kf k21, we
conclude the proof.

A further estimate yields the following conclusion.

Corollary 18.16. Let X1; X2; : : : be a lazy, reversible Markov chain. Let the initial
distribution � have a bounded density d


d�
with respect to � . Let

An;n0
.f / D 1

n

nX
jD1

f .XjCn0
/ for all f 2 L1.�; �/

with a burn-in

n0 � ln
�k d

d�

k1
�

'.K; �/2
:

Then

e.An;n0
; f / � 10

'.K; �/ � p
n

kf k1: (18.23)

If we denote by cost.f; "/ the number nC n0 of time steps that are needed for an
optimal algorithm to solve (18.11) to within an error ", then we have

cost.f; "/ �
&

ln
�k d

d�

k1
�

'.K; �/2

'
C
�
100kf k21
'.K; �/2 � "2

�
:

This means that if we control the conductance of the underlying Markov chain, then
we also control the error and the cost.

We are now ready to describe in more detail the algorithm of Rudolf. He studies a
Metropolis algorithm based on a certain ı ball walk after a burn-in time. Let � � Rd

be a convex body and let

M D .�; fQ.x; �/ W x 2 �g/



18.1 Integration with Unknown Density 559

be a reversible Markov scheme with respect to a distribution�. Here .x; A/ 7! Q.x;A/

is the transition kernel, and A is Borel measurable. We want to simulate a distribution
�q on �, which is defined by an unnormalized density q by

�q.A/ D
R
A
q.x/�.dx/R

�
q.x/�.dx/

: (18.24)

The distribution �q is simulated by computing function values of q.
If we choose a starting point X1 from a known distribution and take this as input

into the algorithm, then we obtain the new Markov kernel

Kq.x; A/ WD
Z
A

#.x; y/Q.x; dy/C 1A.x/

�
1 �

Z
�

#.x; y/Q.x; dy/

	
; (18.25)

where

#.x; y/ WD min

�
1;
q.y/

q.x/

	
is the acceptance probability, i.e., the probability that the move from x to y suggested
by Q is really done. With probability 1 � #.x; y/ we stay at x. Then the resulting
Markov scheme Mq with kernel Kq is reversible with respect to �q .

Lemma 18.17. If the Markov scheme M of the Metropolis algorithm is reversible with
respect to a distribution �, then the reversibility condition holds also for Mq with
respect to �q .

Proof. It is enough to show thatZ
A

Kq.x; B/�q.dx/ D
Z
B

Kq.x; A/�q.dx/

holds for disjoint sets A and B . Note that #.y; x/q.y/ D #.x; y/q.x/ for x; y 2 �.
Define k WD R

�
q.x/ �.dx/. ThenZ

A

Kq.x; B/�q.dx/ D
(18.25)

Z
A

Z
B

#.x; y/ Q.x; dy/�q.dx/

D
(18.24)

1

k

Z
A

Z
B

#.x; y/q.x/ Q.x; dy/�.dx/

D 1

k

Z
�

Z
�

�A.x/�B.y/ #.x; y/q.x/ Q.x; dy/�.dx/

D
(18.12)

1

k

Z
�

Z
�

�A.y/�B.x/ #.y; x/q.y/ Q.x; dy/�.dx/

D 1

k

Z
B

Z
A

#.x; y/q.x/ Q.x; dy/�.dx/

D
Z
B

Kq.x; A/�q.dx/: �
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To apply the theory presented before, we also need the laziness property. To achieve
this, we just have to flip a coin and stay at the current state with probability 1=2.
Otherwise we do one step with the chain. Formally, this means that we consider

xMq D .�;
˚ xKq.x; �/ W x 2 �
/;

where
xKq.x; A/ WD 1

2
Kq.x; A/C 1

2
1A.x/:

This Markov scheme is lazy and reversible. To apply Theorem 18.15, we need to get
a positive lower bound on its conductance. Therefore the following result is helpful.

Lemma 18.18. Let M D .�;A; fK.x;A/ W x 2 �g/ be an arbitrary reversible Mar-
kov scheme concerning � . The conductance of

xM D �
�;A;

˚ xK.x;A/ W x 2 �
 �
with xK.x;A/ D 1

2
K.x;A/C 1

2
I.x; A/ is bounded from below by

'. xK;�/ � 1
2
'.K; �/:

Proof. The result is obvious after taking the definition of the conductance into account.

We come to a concrete Markov chain defined by a ı ball walk on the convex body�.
This random walk was studied by many authors, see Lovász and Simonovits [178],
Vempala [318] and [182].

The corresponding Markov scheme is Mı D .�; fQı.x; �/ W x 2 �g/, where

Qı.x; A/ WD vol.B.x; ı/ \ A/
vol.ıBd /

C
�
1 � vol.B.x; ı/ \�/

vol.ıBd /

	
1A.x/:

Here B.x; ı/ denotes the ball of radius ı at x 2 � and ıBd WD B.0; ı/. We choose
ı � D, where D is the diameter of �. It is easily seen that Mı is reversible with
respect to the uniform distribution on �. By taking this ball walk as the kernel for the
Metropolis algorithm we get Mq;ı D .�;

˚
Kq;ı.x; �/ W x 2 �
/ with

Kq;ı.x; A/ WD
Z
A

#.x; y/Qı.x; dy/C 1A.x/

�
1 �

Z
�

#.x; y/Qı.x; dy/

	
:

Now we assume that � is the d -dimensional (Euclidean) unit ball denoted by Bd .
The following lower bound for the conductance is known, see [182, Corollary 1].

Lemma 18.19. Let the Markov scheme

Mq;ı D �
Bd ;

˚
Kq;ı.x; �/ W x 2 Bd
�

be the Metropolis chain based on the ball walk Mı , where q 2 R˛.Bd /. Then for
ı D min

˚
1=

p
d C 1; 1=˛



we have

'.Kq;ı ; �q/ � 0:0025
1p
d C 1

min

�
1p
d C 1

;
1

˛

	
: (18.26)
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We stress that the geometry of the (Euclidean) unit ball is essential since the ball
walk would get stuck with high probability in domains which have corners. Hence it
is not clear how one could modify the results of this section if the ball is replaced by a
cube or another convex body, see Open Problem 84.

Rudolf [257] studies the algorithm

Aın;n0
.f; q/ D 1

n

nX
jD1

f .XjCn0
/:

The error bound of An;n0
is given in the following theorem.

Theorem 18.20. Let X1; X2; : : : be the lazy Metropolis Markov chain which is based
on a ı ball walk with ı D min

˚
1=

p
d C 1; 1=˛



. Then

e.An;n0
;F ˛.Bd // � 8000

p
d C 1max

˚p
d C 1; ˛



p
n

;

where n0 � 1280000 � ˛.d C 1/max
˚
d C 1; ˛2



.

Proof. We start the walk with the uniform distribution � on the state space Bd . For �
and measurable A � Bd , we have

�.A/ D vol.A/

vol.Bd /
D 1

vol.Bd /

Z
A

Z
Bd

q.y/

q.x/
dy �q.dx/:

This implies that

k d�
d�q

k1 � exp.2˛/ for all q 2 R˛.Bd /:

Using this bound, the lower bound (18.26) for the conductance, and applying Lem-
ma 18.18, Lemma 18.19 and (18.23), we obtain the error bound of Theorem 18.20.

From Theorem 18.20 we easily obtain Theorem 18.6 by finding n for which the
upper bound on e.An;n0

;F ˛.Bd // is at most ". We also take n0 as the smallest number
allowed in Theorem 18.20 and keep in mind that each step of the burn-in time requires
one evaluation of q.

We conclude this subsection with two open problems.

Open Problem 83.

• Observe that the densities q 2 R˛.�/ are unimodal, they have only one local
maximum. Prove (in)tractability results for larger classes of densities that may
have many maxima.
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Open Problem 84.

• The results extend in a similar way to certain other families of convex sets�d �
Rd for which the underlying ball walk Qı with a small ı has a positive lower
bound for the conductance that is not too small. It is not clear, however, whether
similar results can be proved for classes such as F ˛.Œ0; 1�d / and we pose this as
an open problem.

18.2 Integral Equations

We study the local solution of Fredholm integral equations of the second type

u.x/ �
Z
Œ0;1�d

q.x; t/ u.t/ dt D f .x/;

whereq W Œ0; 1�2d ! R andf W Œ0; 1�d ! R. We assume that bothq andf are Lipschitz
continuous as well as kqk1 � � < 1 and kf k1 � 1. Under these conditions the
solution u exists and is unique. We want to approximate the solution u only at one
point s from Œ0; 1�d .

Let us describe the problem more formally. Define D D Œ0; 1�d and let C.D/ be
the space of continuous functions on D endowed with the supremum norm. Hence
we assume that f 2 C.D/ with kf k1 � 1, and g 2 C.D2/ with kgk1 � � . The
functions f and g are also Lipschitz continuous. We define the Lipschitz constant of
a function h W Dm ! R as

Lip.h/ WD sup

� jh.x/ � h.y/j
kx � yk1

ˇ̌̌
x; y 2 Dm; x ¤ y

	
:

Fix � 2 .0; 1/. We consider the following set of functions

Fd WD ˚
.f; q/ j q 2 C.D2/; kqk1 � �;Lip.q/ � 1;

f 2 C.D/; kf k1 � 1;Lip.f / � 1


:

To define the solution operator, we fix s 2 D and denote Id as the identity on the
spaceC.D/. Furthermore for q 2 C.D2/, let Tq denote the Fredholm integral operator
on C.D/, that is, �

Tqv
�
.x/ D

Z
D

q.x; t/v.t/ dt for all v 2 C.D/:

Define the mapping Sd W Fd ! R by

Sd .f; q/ WD �
.Id � Tq/�1f

�
.s/ D u.s/

as the solution of the Fredholm integral equation at s.
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The mapping Sd is well defined since the operator norm of Tq satisfies

kTqk � � < 1:

Hence, .Id � Tq/�1 exists and k.Id � Tq/�1k � 1=.1 � �/. Therefore

Sd .f; q/ 2
 �1
1 � � ;

1

1 � �
�
:

Using the constant functions q 	 � and f 	 ˛ with ˛ 2 Œ�1; 1�, we see that
Sd .f; g/ D ˛=.1 � �/. This proves that any number from the interval above can be
the solution. Hence, the problem Sd is scaled in the same way for any dimension d .

Obviously, Sd is linear in f and nonlinear in q. Therefore Sd is a nonlinear
functional. It can be shown that it is quasi-linear, i.e., it satisfies a Lipschitz condition
with respect to f and q but this property will not be used for our analysis.

By Snon D fSd g we denote the sequence of the local solutions of Fredholm integral
equations. We study tractability of Snon in the worst case and in two randomized
settings. We prove that Snon is intractable and suffers from the curse of dimensionality
in the worst case setting. Therefore we switch to the randomized setting. We briefly
consider the standard randomized setting and then switch to the restricted randomized
setting in which we assume that we can use only random bits. In both cases, we present
polynomial tractability results.

18.2.1 Worst Case Setting

Let n."; Fd / denote the minimal number of function values of f and q needed to
compute an " approximation to u.s/ D Sd .f; q/ for the absolute error criterion in the
worst case setting. It is known that

n."; Fd / D ‚
�
"�2d �

with the factor in the big ‚ notation independent of "�1 but dependent on d . This is
a result of Emelyanov and Ilin [67]. They also showed that the (total) complexity is
of the same order. They use a “two-grid” algorithm to prove the upper bound and we
stress that it was done already in 1967.

For small d , the result of Emelyanov and Ilin [67] is quite positive. However, for
large d , the exponent of "�1 is also large. As we know from Volume I, such a result
contradicts polynomial tractability but weak tractability is not yet clear since it depends
on the factors in the big ‚ notation.

It is easy to show that the problem Snon suffers from the curse of dimensionality
and is intractable. Indeed, it is enough to take f 	 1 and q independent of x, i.e.,
q.x; t/ D q.t/ for all x; t 2 D. Then the solution u is constant and

Sd .1; q/ D 1

1 � R
Œ0;1�d

q.t/ dt
:
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Let Id .q/ D R
Œ0;1�d

q.t/ dt be the integral of q. It is easy to see that weak tractability
of Snon

1 D fSd .1; �/g is equivalent to weak tractability of I D fId g. Indeed, note that
kqk1 � � implies that

Sd .1; q/ 2


1

1C �
;

1

1 � �
�
:

Suppose that we have an algorithm An that approximates Sd .1; �/ with the worst
case error at most " < 1

2
.1 C �/�1. Consider the algorithm Bn D 1 � A�1

n for the
approximation of Id . Then

Id .q/ � Bn.q/ D 1 � Sd .1; q/�1 � 1C A�1
n .q/ D Sd .1; q/ � An.q/

An.q/ Sd .1; q/
:

Since jSd .1; q/ � An.q/j � ", then

jAn.q/j � Sd .1; q/ � jSd .1; q/ � An.q/j � .1C �/�1 � " � 1
2
.1C �/�1:

Therefore
jId .q/ � Bn.q/j � 2.1C �/2":

Hence, weak tractability of Snon
1 implies weak tractability of I . Similarly, we can show

the reverse implication.
We know that multivariate integration I D fId g suffers from the curse of dimen-

sionality and is intractable. This was shown in Example 1 of Chapter 3 in Volume I.
Based on the result of Sukharev [291] we know that d -variate integration of Lipschitz
functions requires roughly .2� "/�d=e function values so the curse of dimensionality
is present. Hence, Snon also suffers from the curse of dimensionality and is intractable.

We add in passing that we also have intractability and the curse of dimensionality
for the normalized error criterion in the worst case setting. This simply follows from
the fact that the initial errors for both Sd and Id do not depend on d and only depend
on � .

18.2.2 Restricted Randomized Setting

The curse of dimensionality in the worst case setting is a reason to switch to the
randomized setting and to study randomized algorithms. Monte Carlo algorithms with
the (dimension independent) rate "�2 are well known, hence we have an upper bound
for the complexity in the randomized setting of the form Cd � "�2. Even the optimal
rate of convergence is known, see Heinrich and Mathé [113], it is of the form

compran."; d/ � Cd � "�2d=.dC1/ (18.27)

for some unspecified positive factors Cd dependent on d .
In this section we deviate from Heinrich and Mathé [113] in two ways:
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• We want to allow only a very restricted randomness, namely random bits or
random elements from f0; 1g. This leads to the class of “coin tossing algorithms”
or “restricted Monte Carlo algorithms”, see [206]. We ask how many random
bits, arithmetic operations, and function values of f and q are needed to achieve
an error ".

• We want to have explicit bounds, without factors Cd that depend in an uncon-
trolled way on d .

We construct a restricted Monte Carlo algorithm with error " that uses roughly "�2
function values and only d ln2 " random bits. The number of arithmetic operations is
of the order "�2 C d ln2 ". In these bounds there are no factors that depend on d or ".
Hence, the cost of our algorithm increases only mildly with the dimension d since

compcoin."; d/ D O
�
"�2 C d ln2."�1 C 1/

�
: (18.28)

In particular, this means the problem Snon is polynomially tractable in this restricted
randomized setting with an "�1 exponent at most 2 and a d exponent at most 1. The
proof of (18.28) is based on the results of [114] on the summation problem.

We now elaborate on the restricted randomized setting. We study the approximation
of the solution operator Sd on the setFd of problem elements by restricted randomized
algorithms. For such algorithms we allow the operations of the real number model of
computation with an oracle as explained in Chapter 4 of Volume I. In addition we
also allow the instruction “choose a random bit”, that is, “choose an element of f0; 1g
according to the equi-distribution”, see [206] for a formal description of this model of
computation.

Let .�;B; P / be the countable infinite product of the probability space that cor-
responds to the coin tossing instruction. Let A be a restricted randomized algorithm.
For each ! D .!1; !2; !3; : : :/ 2 �, we define a (partial) mapping A! W Fd ! R
as follows. Given a problem element .f; q/ 2 F , we apply A to .f; q/ taking, when
necessary, !i as the i th random bit. If the algorithm terminates, we set A!.f; q/ equal
to the output of the algorithm and

e.S;A; .f; q/; !/ WD jS.f; q/ � A!.f; q/j:
We define cost.A; .f; q/; !/ as the sum of the number of function evaluations, the
number of used random bits !i , and the number of arithmetic operations needed to
compute A!.f; q/.

If the mappings e.S;A; .f; q/; :/ and cost.A; .f; q/; :/ are defined almost every-
where on � and are measurable for each .f; q/ 2 Fd then the quantities

e.S;A; Fd / WD sup
.f;q/2Fd

e.S;A; .f; q// WD sup
.f;q/2Fd

�
E e2.S; A; .f; q/; �/

�1=2
and

cost.A; Fd / WD sup
.f;q/2Fd

cost.A; .f; q// WD sup
.f;q/2Fd

E cost.A; .f; q/; �/
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are called the error and cost of A on Fd , respectively. Here, E denotes the expectation
with respect to P .

We give a rough idea of our algorithm. For .f; q/ 2 Fd andm 2 N, let the function
g
.f;q/
m W Dm ! R be defined by

g.f;q/m .x/ D q.s; x1/ �
m�1Y
iD1

q.xi ; xiC1/ � f .xm/ for all x D Œx1; x2; : : : ; xm� 2 Dm:

Since .Id � Tq/�1 D Id CP1
mD1 Tmq , we apply Neumann’s series and obtain

S.f; q/ D f .s/C
1X
mD1

Z
Dm

g.f;q/m .x/ dx: (18.29)

We replace the infinite series of integrals by a finite series of sums and approximate
each term by an algorithm from [114]. This approach results in the restricted random-
ized algorithm An whose precise definition we give below as well as the proof of the
following theorem about its error and cost.

Theorem 18.21. There are positive numbers c1, c2, c3 depending only on � such that

e.Sd ; An; Fd / � c1 n
�1=2 and cost.An; Fd / � c2 nC c3 d ln2.nC 1/:

Hence, the cost ofAn increases at most linearly with the dimension d . In particular,
we see again that the problem Snon D fSd g is polynomially tractable in the restricted
randomized setting. It is clear that (18.28) follows from Theorem 18.21.

First, we precisely define the restricted randomized algorithm An. We make use of
tensor products Qd

s of the midpoint rule Q1
s , given by

Q1
s .g/ WD 1

s

sX
iD1

g
�2i � 1

2s

�
for g W Œ0; 1� ! R:

It is well known that Qd
s is an optimal algorithm in the worst case setting for the

approximation of the integration functional Id over the class

FLip D fg 2 C.D/ j Lip.g/ � 1g:
We have

sup
f 2FLip

jId .g/ �Qd
s .g/j D d

2d C 2
s�1; (18.30)

see Sukharev [291] as well as Example 1 of Chapter 3 in Volume I.
Furthermore, we use the restricted randomized algorithm zAn from [114]. This

algorithm provides an approximation of the mean of a finite sequence of real numbers
fh.i/gN�1

iD0 in the following way.
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LetP be a prime such thatP 2 ŒN; 2N /. As we know, due to Bertrand’s Postulate or
Chebyshev’s theorem, such a prime exists. For the vector h D �

h.0/; : : : ; h.N �1/� 2
RN , define the vector

Qh D Œ Qh.0/; Qh.1/; : : : ; Qh.P � 1/� D �
h.0/; : : : ; h.N � 1/; 0; : : : ; 0� 2 RP :

Then the algorithm zAn is of the form

zAn;!.h/ D P

N
�
nCp

n.P � n/=.P � 1/�
nX
kD1

Qh.i!k /;

where the i!
k

are defined as follows. Choose

x! 2 f0; 1; : : : ; P � 1g and y! 2 f1; 2; : : : ; P � 1g
independently according to the respective uniform distributions and put

i!k WD x! C .k � 1/ � y! mod P:

It turns out that c lnN random bits and arithmetic operations suffice to realize x!

and y! on the average. Here, c is a positive constant not depending on N or P . In
addition, the computation of the i!

k
and of the corresponding sum requires 4n arithmetic

operations1 and the evaluation of n components of the vector Qh. The randomized error
of zAn is bounded by

E

�
1

N

N�1X
iD0

h.i/ � zAn.h/
	2

� 2

n

1

N

N�1X
iD0

h2.i/; (18.31)

see [114] for more details.
We now can define the restricted randomized algorithm An. For n � 2, let s WD

dn1=2e and

M WD d.ln ��1/�1 ln se and nm WD d�m ne for all m D 1; : : : ;M:

Let x1s;m; : : : ; x
smd

s;m denote the sample points ofQmd
s , and let the mapping�s;m W Fd !

Rs
Md

be given by

�s;m.f; q/ D
h
g.f;q/m .x1s;m/; : : : ; g

.f;q/
m .xs

md

s;m /; : : : ; g
.f;q/
m .x1s;m/; : : : ; g

.f;q/
m .xs

md

s;m /„ ƒ‚ …
s.M�m/d times

i
:

Hence, the mean of the components of �s;m.f; q/ is equal to Qmd
s .g

.f;q/
m /. We finally

set

An;!.f; q/ D f .s/C
MX
mD1

zAnm;!

�
�s;m.f; q/

�
:

1We assume here that the modulo operation is allowed and has unit cost.
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We are ready to prove Theorem 18.21. We use positive numbers c0
i that depend on

� , but are independent of the dimension d and the point s. We first estimate the error
of An. To this end, we introduce the mapping zAs W Fd ! R by

zAs.f; q/ D f .s/C
MX
mD1

Qmd
s .g.f;q/m /:

For each .f; q/ 2 Fd , the triangle inequality yields

e
�
Sd ; An; .f; q/

�
� jSd .f; q/ � zAs.f; q/j C

MX
mD1

�
E
�
Qmd
s .g.f;q/m / � zAnm

.�s;m.f; q//
�2�1=2

:

(18.32)

The first term on the right-hand side corresponds to the error made by replacing the
infinite series

P1
mD1 Imd .g

.f;q/
m /with the finite series

PM
mD1Qmd

s .g
.f;q/
m /, the second

term corresponds to the respective error made by approximating the meanQmd
s .g

.f;q/
m /

by zAnm
.

We estimate these errors using (18.30) and (18.31). This requires knowledge of the
Lipschitz constants and of the norms of the g.f;q/m .

Lemma 18.22. Let .f; q/ 2 Fd and m 2 N. Then

Lip
�
g.f;q/m

� � .mC 1/�m�1 and kg.f;q/m k1 � �m:

Proof. The second inequality is an immediate consequence of the definition of g.f;q/m

and of the assumptions on the norms of q and f . To prove the first inequality, we take
.f; q/ 2 Fd and m 2 f2; 3; 4; : : : g, and consider the function

h.f;q/m W Dm ! R; x D Œx1; x2; : : : ; xm� 7!
m�1Y
iD1

q.xi ; xiC1/ � f .xm/:

We show by induction that

Lip
�
h.f;q/m

� � m�m�2 for all m 2 f2; 3; 4; : : : g: (18.33)

Consider m D 2. The assumptions on q and f imply

jh.f;q/2 .x1; x2/ � h.f;q/2 .x0
1; x

0
2/j D jq.x1; x2/f .x2/ � q.x0

1; x
0
2/f .x

0
2/j

� jq.x1; x2/j � jf .x2/ � f .x0
2/j

C jq.x1; x2/ � q.x0
1; x

0
2/j � jf .x0

2/j
� � � kx2 � x0

2k1 C kŒx1; x2� � Œx0
1; x

0
2�k1 � 1

� 2�2�2 � kŒx1; x2� � Œx0
1; x

0
2�k1:
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Hence, (18.33) is valid for m D 2.
Suppose now that (18.33) holds for an integer m � 2. Using

a WD h
.f;q/
mC1.x1; : : : ; xmC1/ � h.f;q/mC1.x

0
1; : : : ; x

0
mC1/

D q.x1; x2/ � �h.f;q/m .x2; : : : ; xmC1/ � h.f;q/m .x0
2; : : : ; x

0
mC1/

�
C �

q.x1; x2/ � q.x0
1; x

0
2/
� � h.f;q/m .x0

2; : : : ; x
0
mC1/

we conclude that

jaj � � �m�m�2kŒx2; : : : ; xmC1� � Œx0
2; : : : ; x

0
mC1�k1

C k.x1; x2/ � .x0
1; x

0
2/k1 � �m�1

� .mC 1/� .mC1/�2kŒx1; : : : ; xmC1� � Œx0
1; : : : ; x

0
mC1�k1:

Consequently, (18.33) holds also for m C 1. Since g.f;q/m�1 D h
.f;q/
m .s; :/, the first

inequality follows from (18.33). The lemma is proved.

We now estimate the terms on the right-hand side of (18.32).

Lemma 18.23.

(i) There is a positive constant c0
1 D c0

1.�/ such that

jSd .f; q/ � zAs.f; q/j � c0
1s

�1 for all .f; q/ 2 Fd : (18.34)

(ii) For .f; q/ 2 Fd and m D 1; 2; : : : ;M we have�
E
�
Qmd
s .g.f;q/m / � zAnm

.�s;m.f; q//
�2�1=2 � p

2 n�1=2
m �m:

Proof. Let .f; q/ 2 Fd . For m 2 N, using the bound for the Lipschitz constant
of g.f;q/m from Lemma 18.22 and the linearity of the functionals Imd and Qmd

s we
conclude from (18.30) that

jImd .g.f;q/m / �Qmd
s .g.f;q/m /j � .mC 1/�m�1 � md

2md C 2
s�1 � .mC 1/�m�1s�1:

Furthermore, we have jImd .g.f;q/m /j � �m by the second inequality of Lemma 18.22.
Consequently, we obtain

jSd .f; q/ � zAs.f; q/j �
MX
mD1

jImd .g.f;q/m / �Qmd
s .g.f;q/m /j C

1X
mDMC1

jImd .g.f;q/m /j

�
1X
mD1

.mC 1/�m�1s�1 C
1X

mDMC1
�m

D ��1� 1

.1 � �/2 � 1
�
s�1 C �

1 � � �
M :
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Since �M � s�1 by the definition of M , the point (i) follows. The second inequality
of Lemma 18.22 and (18.31) yield the point (ii).

Substituting the results of Lemma 18.23 into (18.32) we obtain

e
�
Sd ; An; .f; q/

� � c0
1s

�1 C p
2

MX
mD1

n�1=2
m � �m:

The definitions of the numbers nm and s imply

e
�
Sd ; An; .f; q/

� � c0
1s

�1 C p
2

MX
mD1

��m=2n�1=2 � �m

� c0
1s

�1 C p
2 n�1=2

1X
mD0

�m=2

� c0
2n

�1=2:

This establishes the error estimate of An.
We now prove the claim about the cost of An which is the sum of the information

cost, the randomness cost and the arithmetic cost. We first consider the information
cost. Since a function value of g.f;q/m is made up of m function values of q and of one
value of f , we have

costinfo.An; .f; q// � 1C
MX
mD1

.mC 1/nm:

From the definition of nm, we obtain

costinfo.An; .f; q// � 1C
MX
mD1

.mC 1/.�m � nC 1/

� 1C n

1X
mD1

.mC 1/�m C
MX
mD1

.mC 1/

D 1C n �
� 1

.1 � �/2 � 1
�

C M.M C 1/

2
CM:

Since M 2 � c0
3 ln2 n � c0

3n, it follows that

costinfo.An; .f; q// � c0
4 n:

Let us turn to the randomness cost. Due to the construction of An, we compute
from a realization of x! and y! , the respective components of �s;m.g

.f;q/
m / for m D

1; 2; : : : ;M . As already mentioned, c lnN random bits suffice to realize x! and y!

on the average. Since N D sMd we get

costcoin.An; .f; q// � c M d ln s:
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Since M � c0
5 ln n and ln s � 2 ln n we obtain

costcoin.An; .f; q// � c0
6 d ln2 n:

We finally consider the arithmetic cost. As also already mentioned, c lnN arith-
metic operations suffice for the realization of x! and y! on the average. For m D
1; 2; : : : ;M , the computation of the index i!

k
and the corresponding components of

�s;m.g
.f;q/
m / as well as of their sum can be accomplished in .3CmC 1/nm arithmetic

operations. We also have to compute the sum of the zAnm;!.�s;m.g
.f;q/
m // and of f .s/.

Hence, we obtain

costari.An; .f; q// � c M d ln s C
MX
mD1

.3CmC 1/nm CM:

The right hand side can be bounded similarly as above and we obtain

costari.An; .f; q// � c0
7 nC c0

6 d ln2 n:

Summing up these three cost estimates, we get

cost.An; .f; q// � c0
8 nC c0

9 d ln2 n:

This completes the proof of Theorem 18.21.

18.3 Computation of Fixed Points

In this section we briefly discuss the approximate computation of a fixed point of a
function f . We assume that�d � Rd is a convex and compact set and f W �d ! �d
is continuous. Then, by the fixed point theorem of Brouwer, f has at least one fixed
point, i.e., the set

˛.f / D fx 2 �d j f .x/ D xg � �d

is non-empty. We use algorithms An based on n function values of f to approximate
an arbitrary fixed point of f , and assume that An.f / 2 �d .

We discuss two different error criteria. For the root error criterion, we measure the
error of An by

e.An; f / D dist.An.f /; ˛.f // D inf
x2˛.f /

dist.An.f /; x/:

For dist we use the Euclidean metric in the space Rd , i.e.,

dist2.x; y/ D
� dX
jD1

jxj � yj j2
�1=2

;
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or the sup metric in the space Rd , i.e.,

dist1.x; y/ D max
iD1;2;:::;d

jxi � yi j:

For the residual error criterion, we measure the error of An by

e.An; f / D kf .An.f // � An.f /k
with the norm k � k that is either the norm in `2 or in `1.

In general, these two error criteria can be quite different. It is possible that An.f /
is quite close to a fixed point but still kf .An.f // � An.f /k is large. On the other
hand, it is also possible that the residual error is small and the root error is large. In the
following we assume that f is Lipschitz continuous and then the residual error cannot
be much larger than the root error.

For L > 0, we define the class

FL.�d / D ff W �d ! �d j kf .x/ � f .y/k � L � kx � ykg:
It is obvious that the complexity results depend on L.

We start with the case L < 1 and the root criteria. Then FL.�d / is a class of
contractions and the fixed point ˛ D ˛.f / 2 �d is uniquely defined. It is natural to
study simple iteration and to apply the fixed point theorem of Banach. We first choose
any x1 2 �d , and let

An.f / D xnC1 D f .xn/ for all n 2 N:

Then
kAn.f / � ˛.f /k � Ln � kx1 � ˛k:

If �d is the unit ball in Rd and x1 the origin, then we obtain the error bound

e.An; FL.�d // � Ln

which does not depend on d . To guarantee that the error is at most ", we perform

nsimp."; FL.�d // D
�

ln.1="/

ln.1=L/

�
(18.35)

steps of the algorithm, which is the same as the number of function values used by the
algorithm. In particular, the problem is strongly polynomially tractable if the diameter
of �d and the Lipschitz constant L < 1 do not depend on the dimension d . In fact,
we also have strong T -tractability if

lim sup
"!0

ln ln "�1

ln T ."�1; 1/
< 1:

This holds, in particular, for T .x; y/ D 1C ln x.
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All sounds very good but there can be, however, a problem. As long as L is not
too close to 1, the number nsimp."; FL.�d // is not very large even for very small ".
However, the number nsimp."; FL.�d // blows up as L goes to 1. For L D 1 � ı and
small positive ı we have

nsimp."; FL.�d // D ln "�1

ı
.1C o.1//:

For many applications L is indeed very close to 1 and sometimes L D Ld tends
to 1 as d goes to infinity. Then d reappears and tractability issues must be again
studied. Depending on how fast Ld goes to 1 we may still have polynomial or weak
tractability. On the other hand, if Ld goes sufficiently fast to 1 we may have the curse
of dimensionality and intractability. This leads us to the next open problem.

Open Problem 85.

Consider the fixed point problem for the class FLd
.�d / for the root criterion in the

worst case setting with Ld < 1.

• Take �d as the unit ball of Rd and find necessary and sufficient conditions on
the speed of convergence of Ld to 1 to get various notions of tractability.

• Characterize all �d and Ld for which we have, for instance, polynomial and
strong polynomial tractability.

Equation (18.35) is sharp for the specific algorithm of simple iteration, but it is
not clear whether this algorithm is optimal for the class FL.�d /. Actually this de-
pends on d and L. If d is relatively small and L is close to one, then an algorithm
which is based on the Nemirovsky–Yudin–Shor construction of minimum volume cir-
cumscribed ellipsoids is much better than the simple iteration, see Huang, Khachiyan
and Sikorski [137] and Sikorski [263] for details and further improvements. For this
algorithm the number of function values is of order

nNYS."; FL.�// D O

�
d2
�

ln
1

"
C ln

1

1 � L C ln d
		
:

Note that also nNYS."; FL.�// blows up as L goes to 1 but much slower than before.
Again for L D 1 � ı with a small positive ı we have

nNYS."; FL.�// D O

�
d2
�

ln
1

"
C ln ı�1 C ln d

		
:

On the other hand, based on the results of Nemirovsky [197] it was proved in [265]
that simple iteration is almost optimal if

d � ln 1="

ln 1=L
:

So far we reported results for the root criterion but it is clear that almost the same
positive results hold also for the residual error as long as L < 1.
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Now we discuss the case L � 1, again for the root criterion, and present a result of
Tsay and Sikorski [314]. Consider the class

F2 D ff W Œ0; 1�2 ! Œ0; 1�2 j kf .x/ � f .y/k2 � kx � yk2g:
Then, for any information operatorN W F2 ! Rn,N.f / D Œf .x1/; f .x2/; : : : ; f .xn/�,
there exist g; h 2 F2 such that N.g/ D N.h/ and the distance of their fixed points is
k˛.g/� ˛.h/k2 D 1. Consequently, no algorithm using finitely many function values
can solve the problem with an error less than 1

2
. Hence the complexity is infinite and

the fixed point problem is not only intractable but it is also unsolvable for d D 2 and
L D 1 and " < 1

2
. It is clear that the same is true for all d � 2 and L � 1.

We obtain a quite different result for L � 1 if we consider the residual error. It
is easy to prove that the problem is at least solvable and that the number of function
values needed for the class

Fd D ff W Œ0; 1�d ! Œ0; 1�d j kf .x/ � f .y/k2 � L � kx � yk2g
is at most of the order .L="/d . It is enough to compute all function values on a grid
and choose xj that minimizes kf .xi / � xik2 on that grid. Of course this gives only
an upper bound and it is not clear whether the problem is tractable or not. Actually it
was proved in Huang, Khachiyan and Sikorski [137] that using the interior ellipsoid
algorithm one can prove polynomial tractability for L D 1 and the upper bound

n."; Fd / D O .d ln.1="// :

We also have T -tractability for T .x; y/ D .1C ln x/ y with the exponent 1.

The case L > 1 was studied by Hirsch, Papadimitriou and Vavasis [134] and more
recently by Chen and Deng [31] for the class

zFd D ff W Œ0; 1�d ! Œ0; 1�d j kf .x/ � f .y/k1 � L � kx � yk1g:

For this class and d � 2, one needs at least
�
CL
"d2

�d�1
function values, where C > 0

does not depend on d , " and L > 1. For a fixed d , this bound shows that polynomial
tractability does not hold.

It is interesting to compare the last two results. For the 2-norm we have polynomial
tractability whereas for the 1-norm we have polynomial intractability. Hence, the
choice of the norm is very essential and drastically changes the results.

18.4 Global Optimization

In this section we discuss two problems related to global optimization. We shall see
that both problems, though they are nonlinear, are closely related to the linear L1-
approximation problem.
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More precisely, let �d be an arbitrary nonempty set and let Fd be a convex and
balanced set of bounded functions on �d .

We consider the worst case error over the classFd and discuss two different solution
operators, Sd and zSd , related to global optimization. The first one is

Sd .f / D sup
x2�d

f .x/;

i.e., we simply want to compute the supremum of a function.
In many applications we do not approximate the supremum but instead we want

to compute a point x 2 �d such that f .x/ is close to supf . Hence we consider
algorithms An with values in�d that use at most n function value of f , and define the
worst case error of An by

e.An/ D sup
f 2Fd

�
sup
x2�d

f .x/ � f .An.f //
�
:

We denote this problem by zSd .
The linear L1-approximation is given by

Appd W Fd ! L1.�d /;

where Appd denotes the identity (embedding) of Fd into L1.�d /.
The following result is mainly from Wasilkowski [324], see also [205] for a minor

modification.

Theorem 18.24. Let Fd be a convex and symmetric subset of the space C.�d / of
continuous functions. Then

1
2
ewor.n; Fd ;Appd / � ewor.n; Fd ; Sd / � ewor.n; Fd ;Appd /

and
ewor.nC 1; Fd ;Appd / � ewor.n; Fd ; zSd / � 2 � ewor.n; Fd ;Appd /:

Due to this theorem, we can apply all positive and negative results on tractability
forL1-approximation to obtain the same results for global optimization. The problem
of L1-approximation will be studied in Volume III.

It is important to note that we deal here only with the information complexity.
Due to general results, see Chapter 4, we often know for linear problems that the total
complexity is basically the same as the information complexity. Such a result usually
does not hold for nonlinear problems and it is possible that the total complexity is much
higher than the information complexity.

We stress that there are other nonlinear problems that can be reduced to linear
problems, see againWasilkowski [324] and [205]. In this way we may obtain tractability
results for these nonlinear problems by applying tractability results for linear problem.

We end this short section with two more open problems.
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Open Problem 86.

• So far we only discussed the worst case setting. Not much is known for other
settings. We believe that similar results hold for the randomized setting and pose
this as an open problem.

We illustrate the open problem presented above by an example from [205, p. 57].
Consider the class of Lipschitz functions on Œ0; 1�d , i.e.,

jf .x/ � f .y/j � max
iD1;2;:::;d

jxi � yi j:

For this class it is known that randomized algorithms An based on n function values
can be better, as compared to optimal deterministic algorithms, at most by a factor of
2�1=2�1=d . This means that we get the same intractability results for approximation
and global optimization in both the worst case and randomized settings.

The complexity of global optimization in the average case setting, for univariate
functions, was thoroughly studied, see, e.g., Calvin [22].

Open Problem 87.

• We are not aware of any work on tractability for global optimization in the average
case setting. We believe that this is a very interesting and difficult open problem.

18.5 Computation of the Volume

The approximation of volumes is an important computational problem and there are
several different approaches in the literature. We mention only very few results and
give a few pointers to the literature, see also Kannan, Lovász and Simonovits [146],
Lovász [177], Lovász and Vempala [179], as well as [340].

Since we started this volume with discrepancy, we begin here with a related problem
for convex bodies. For d 2 N, let Bd be the Euclidean ball in Rd with center 0 and
radius 1. Let 
d be the normalized Lebesgue measure in Rd such that 
d .Bd / D 1.

DefineFd as the class of convex setsK from the unit ballBd . The solution operator
Sd W Fd ! Œ0; 1� is defined as

Sd .K/ D 
d .K/ for all K 2 Fd :
That is, we want to approximate the volume of a convex set K. Note that Sd is a
nonlinear functional. We call S D fSd g the convex volume problem.

As for discrepancy, we want to approximate Sd .K/ by taking n sample points
x1; x2; : : : ; xn fromBd and verify how many of them are fromK. That is, the algorithm
An is of the form

An.K/ D 1

n

nX
iD1

1K.xi /: (18.36)
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Here, we assume that we can compute a membership oracle. That is, we can compute
the characteristic function 1K.x/ for any K from Fd and any x from Bd . This tells
us whether x belongs to K or it does not. This assumption is equivalent to computing
function values of characteristic functions, and in this sense is equivalent to the use of
standard information.

We first consider the worst case error. It is easy to see that the initial error is 1
2

for
every d , since we know a priori that S.K/ 2 Œ0; 1� and the best initial approximation
is to take 1

2
. This means that the absolute and normalized error criteria are almost the

same.
It is known that the worst case error of algorithms An of the form (18.36) is

�.n�2=.dC1//, and it is known that this lower bound is optimal up to some power
of ln n, see Matoušek [184, p. 244]. We stress that the factor in the big� notation may
depend on d . This problem is related to the numerical integration of convex functions
f W Œ0; 1�d ! R, where the optimal order of deterministic algorithms is n�2=d , see
[148].

This result means that we cannot achieve polynomial tractability if we use algo-
rithms An of the form (18.36). One might hope that we can get much smaller error
bounds by using more refined algorithms. Unfortunately, this is not the case. Indeed,
the convex volume problem is intractable and suffers from the curse of dimension-
ality. This follows from the following result. There exists a positive c, independent
of d and n, such that the (normalized) volume of the convex hull Cn of any points
x1; x2; : : : ; xn 2 Bd is less than n � d�cd , see Lovász [177]. It is easy to conclude
from this bound that the problem suffers the curse of dimensionality.

Indeed, if we choose arbitrary points xj and obtain 1K.xj / D 1 then K can be the
convex hull Cn or the whole set Bd . Since an algorithm cannot distinguish between
the volume of Cn and the volume of Bd , its worst case error is at least

1
2

�
1 � vol.Cn/

� � 1
2

�
1 � n d�cd �:

Hence, if n."; d/ denotes the minimal number of membership oracle calls in the worst
case setting then

n
�
1
4
; d
� � 1

2
d cd ;

which shows the curse of dimensionality, as claimed.
We add in passing a related result from [340]. Assume that we want to approximate

the volume of the set g.Œ0; 1�d / � Rd , where g is a smooth function from the class
C s.Œ0; 1�d /, and we use standard information of g and the worst case setting. For
d � 2 and s � 2, the optimal rate of convergence is n�s=.d�1/. As we know, this
contradicts polynomial tractability but weak tractability for this problem is open. For
s D 1, we know bounds on optimal order of convergence. The lower bound is of
order n�1=.d�1/ and the upper bound is of order n�2=..d�1/d/. Again this contradicts
polynomial tractability. However, for s D 1, we also know that the problem is in-
tractable and suffers from the curse of dimensionality. This follows from the fact that
the problem is not easier than the .d �1/ dimensional integration problem for the class
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of Lipschitz functions, and the latter problem suffers from the curse of dimensionality
by Sukharev’s [291] result.

We now turn to the randomized setting and show that the curse of dimensionality
of the convex volume problem is vanquished in this setting. If we take the standard
Monte Carlo algorithm AMC

n for which x1; x2; : : : ; xn are independent random points
distributed according to the uniform distribution onBd , then we obtain the error bound

e.AMC
n / � 1

2
p
n
:

Hence, there is no dependence on the dimension. This implies that the convex volume
problem is strongly polynomially tractable with an exponent at most2 in the randomized
setting.

Due to this positive result one is inclined to ask for more: Is it possible to compute
the volume of a convex body in polynomial (in d and "�1) time for the relative error?

To get the positive answer we must shrink a little the classFd . Namely, for r 2 .0; 1/
we define Fd;r as the class of convex bodies K from Bd for which Bd;r � K, where
Bd;r is the ball in Rd with center 0 and radius r . This means that we now assume that
convex sets K cannot be too small and they always contain the ball Bd;r .

The relative error means that we approximate S.K/ by a randomized algorithm
An;!.K/ such that

jS.K/ � An;!.K/j
S.K/

should be at most " on the average with respect to ! for all K from the class Fd;r .
The first polynomial time randomized algorithm for this problem was given by

Dyer, Frieze and Kannan [63]. This result was improved several times and the main
result of the paper by Lovász and Vempala [179] is the following.

The volume of a convex bodyK from Fd;r can be approximated to within a relative
error " with probability 1 � ı using

O

�
d 4

"2
ln9

d

"ı
C d 4 ln8

d

ı
ln r�1

	
membership oracle calls. The algorithm uses Markov chain Monte Carlo and hence is
related to results that were described in Section 18.1.

Integrating over ı, we find out that the minimal number n."; d/ of membership
oracle calls in the randomized setting satisfies

n."; d/ D O

�
d 4

"2
ln9

d

"
C d 4 ln8 d ln r�1

	
:

This means that the convex volume problem is polynomially tractable with an "�1-
exponent at most 2 and a d -exponent at most 4 in the randomized setting.
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18.6 Notes and Remarks

NR 18.1:1. Most of this section is based on Rudolf [257] and on [182]. Lemma 18.1
is taken from Master’s Thesis of Rudolf [256]. Theorem 18.2 is a modified result from
[182]; Theorems 18.20 and 18.15 are from Rudolf [257] and build on work of Lovász
and Simonovits [178].

NR 18.2:1. Section 18.2.2 is based on [211]. We add in passing that the global solution
of Fredholm equations (compute u, not only u.s/) is studied in Emelyanov, Ilin [67]
and Heinrich [99].

NR 18.2.2:1. Monte Carlo methods that use only few random bits were also studied
by Gao, Ye and Wang [72] and Pfeiffer [242], see [114] for a survey.

NR 18.3:1. In this section we only mention few results on the computation of fixed
points taken from the book Sikorski [263] and from the recent survey paper Siko-
rski [264]. Both sources contain many more results and many references.

NR 18.4:1. Section 18.4 is mainly based on results of Wasilkowski [324], see also
[205]. We mention some survey papers and books on optimization with an emphasis
towards global optimization and towards complexity issues. They are Boender and
Romeijn [16], Horst, Pardalos [136], Nemirovsky [198], Nemirovsky, Yudin [199],
Nesterov, Nemirovskii [200], Pardalos, Romeijn [237], Vavasis [317], Zabinsky [361].



Chapter 19

Further Topics

So far we studied tractability of multivariate problems for which the space dimension
d was finite but could be arbitrarily large. Moreover, all the considerations were based
on a classical computer, i.e., all computations were performed classically using the
real number model.

In this chapter we briefly discuss two-fold generalizations. In Sections 19.1, 19.2
and 19.3 we survey some results for infinite-dimensional problems such as path inte-
gration or infinite-dimensional integration, whereas in Section 19.4 we survey some
results concerning computation performed on a quantum computer. There are three
open problems numbered from 88 to 90.

19.1 Path Integration

Assume that S W F ! G, where F is a space of functions or functionals depending
on infinitely many variables. That is, F is a space of real functions f W X ! R with
dim.X/ D 1. Let n."; S/ denote the information complexity (in various settings)
which is the minimal number of function values needed to compute an " approximation
for the absolute or normalized error criterion. Since the error criterion can now change
the error only by a factor, the tractability results are really the same for both the error
criteria.

Similarly as before, we say S is weakly tractable if

lim
"!0

" ln n."; S/ D 0; (19.1)

and S is called polynomially tractable if there are non-negative numbers C and p such
that

n."; S/ � C "�p for all " 2 .0; 1/: (19.2)

The exponent of polynomial tractability is defined as the infimum of p satisfying the
bound above.

Many applications require approximate values of path integrals. The complexity
of path integration was first studied in [330], and we survey some of the results of this
and other papers.

Let � be a zero mean Gaussian measure on a separable Banach space X of infinite
dimension. An important example is the Wiener measure w on C.Œ0; 1�/. We assume
that the support of � is infinite dimensional. We wish to approximate

S.f / D
Z
X

f .x/�.dx/
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for f W X ! R which is assumed to be integrable. As before, we assume that f 2 F ,
where F is a given class representing our a priori information about functions. We
consider deterministic algorithms as well as randomized algorithms. The first result of
[330] is for the class

F r D ff W X ! R j f .r/ cont. and kf .k/.x/k � 1 for all x 2 X , k D 0; 1; : : : ; rg:
Here, f .k/ denotes the kth Frechet derivative of f . We consider the worst case set-
ting for deterministic algorithms based on function values. We now denote the min-
imal number n."; S/ of function values needed to approximate S.f / to within " by
nwor."; S; F r/.

Theorem 19.1. The path integration problem is polynomially intractable for F r , i.e.,
the bound

nwor."; S; F r/ � C "�p for all " 2 .0; 1/
does not hold no matter how we choose C and p.

This result is, at least intuitively, easy to guess since we know that for finitely
many variables d , the information complexity is of order "�d=r , and since for path
integration d can be arbitrarily large there is no way to have polynomial tractability. It
is not, however, clear whether the path integration problem is weakly tractable. This
is our next open problem.

Open Problem 88.

• Find conditions on the zero-mean Gaussian measure � under which the path
integration problem is weakly tractable in the worst case setting for the class F r .

More is known for r D 1 when we have Lipschitz functionals, i.e., when we
consider the class

FLip D ff W X ! R j jf .x/ � f .y/j � kx � yk for all x 2 X g:

The small ball function is defined as

'."/ D � log�.fx 2 X j kxk � "g/ for all " 2 .0; 1/: (19.3)

Suppose we have

'."/ D ‚
�
"�˛ .log "�1�ˇ /

for some numbers ˛ > 0 and real ˇ, as " tends to zero. For the classical Wiener
measure this holds for ˛ D 2 and ˇ D 0, see the survey by Li and Shao [172].

The following result can be found in Creutzig, Dereich, Müller-Gronbach and
Ritter [37], where the integration of Lipschitz functionals on a Banach space is studied
in detail.
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Theorem 19.2. The information complexity of the path integration problem for FLip

in the worst case setting is given by

nwor."; S; FLip/ D exp
�
‚
�
"�˛ .ln "�1/ˇ

��
:

This result easily leads the following corollary.

Corollary 19.3. Path integration is intractable in the worst case setting for Lipschitz
functionals if ˛ > 1 or ˛ D 1 and ˇ > 0. In particular, path integration is intractable
for the Wiener measure. The problem is weakly tractable if ˛ < 1 or ˛ D 1 and ˇ < 0.

In any case, the path integration problem is not polynomially tractable for F r . As
always, there are different possibilities to obtain positive results:

• we may switch to the randomized setting and ask whether path integration is
tractable in this setting,

• we may ask whether path integration is tractable even in the worst case setting
for smaller classes of integrands.

Remark 19.4. So far we assumed the standard cost function, where each evaluation
of the integrand f has a fixed cost. Although we mainly present results for this cost
function, we should admit that this cost function is often too optimistic for integrands
f that are defined on an infinite dimensional space X .

It is possible to propose a more realistic cost function for such integrands. Most al-
gorithms for path integration are of the form which is called variable subspace sampling
in Creutzig et al. [37]. Namely, we have an increasing sequence of finite dimensional
subspaces Xi � X , and compute f .x/ for x 2 S1

iD1Xi . Then it seems reasonable
to define the cost of evaluation f .x/ by inffdim.Xi / j x 2 Xig, since x is given by
this number of coordinates that have to be transferred to the oracle. The sequence of
subspaces may be chosen arbitrarily, but it is fixed for a specific algorithm. More will
be said on a variable cost in Section 19.2.

We now discuss randomized algorithms for the classes F r of integrands with finite
smoothness. In the finite dimensional case of d , we know that the minimal randomized
error with n function values is of order n�r=d�1=2. This means that the order n�1=2 of
Monte Carlo can be improved only slightly if d is large. Therefore the following result
of [330] is not surprising.

Theorem 19.5. The path integration problem is polynomially tractable for F r in the
randomized setting since

nran."; S; F r/ D O
�
"�2�:

We also have
nran."; S; F r/ D �

�
"�2�ı� for all ı > 0:

More is known in the Lipschitz case where r D 1, see again Creutzig et al. [37].
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Theorem 19.6. The information complexity of the path integration problem for FLip

in the randomized setting satisfies

lim inf
"!1

ln nran."; S; FLip/

ln "�2 D 1:

Variable subspace sampling with the cost function explained in Remark 19.4 is as
powerful as full space samplingwith the standard cost function iff˛ from (19.3) satisfies
0 < ˛ � 2.

Remark 19.7. It is very interesting that variable subspace sampling is often as powerful
as full space sampling. To prove this result, Creutzig et al. [37] use multilevel Monte
Carlo introduced by Heinrich [99], see also Heinrich [101] as well as Heinrich and
Sindambiwe [116]. The authors of the last three papers studied global solutions of
integral equations and parametric integration. A multilevel algorithm uses samples
from finite-dimensional subspacesX1 � X2 � � � � � Xm with only a small proportion
of samples taken from high-dimensional spaces.

We now return to path integration in the worst case setting for deterministic algo-
rithms. First we present a result of [330] where tractability is proved for a class of entire
functions under the assumption that we can compute the derivatives of integrands at
zero.

Let 
k be the eigenvalues of the covariance operatorC� of the zero-mean Gaussian
measure�, and let�k fromX be the normalized eigenvectors ofC�, i.e.,C��k D 
k�k .
Clearly

P1
kD1 
k < 1.

In what follows, the space H1 of entire functions will depend on a sequence of
positive numbers ˇk such that

sup
k


kˇk < 1; sup
k

ˇk < 1; and 
kˇk � 
kC1ˇkC1 for all k:

Consider the sum-exponent p�ˇ of the sequence 
ˇ D f
kˇkg defined by

p�ˇ D inf
˚
p j P1

kD1.
kˇk/p < 1

:

We clearly have p�ˇ � 1.
Let N1

0 denote the set of multi-indices i D Œi1; i2; : : : �with non-negative integers ik
such that ji j D P1

kD1 ik is finite.
The space H1 is a space of entire functions f W X ! R with inner product

hf; gi D
X
i2N1

0

�
f .i/.0/

Q1
kD1 �

ik
k

� � �g.i/.0/Q1
kD1 �

ik
k

�Q1
kD1 ikŠˇ

ik
k

:

The following results are from [330].

Theorem 19.8. Consider the path integration problem S on the unit ball F of H1.
The information is restricted to function and derivative values at zero.
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Then S is polynomially tractable and its exponent p.F / is bounded by

p.F / � 2p�ˇ

2 � p�ˇ :

For 
kˇk D ‚.k�r/ with some r > 1, we have

p.F / D 2p�ˇ

2 � p�ˇ D 2

2r � 1:

Open Problem 89.

• For the class F of entire functions, algorithms and tractability are studied in
[330] under the assumption that we can evaluate arbitrary derivatives of f 2 F
at zero. Do we obtain similar results under the assumption that only function
values of f 2 F can be computed?

Remark 19.9. Steinbauer [289] studies path integration for X D C.Œ0; 1�/ with the
Wiener measure w, i.e.,

S.f / D
Z
X

f .x/w.dx/:

He defines a classF of very smooth functions onX , for which the directional derivatives
(in the directions of normalized Schauder functions that arise in the Lévy–Ciesielski de-
composition) of even order are bounded by one. For f 2 F , he defines approximations
of S.f / by

An.f / D
nX
iD1

aif .xi /;

which are obtained by applying Smolyak’s construction to a sequence of one-dimen-
sional Gauss–Hermite quadrature formulas. He then shows that

jS.f / � An.f /j � 2�1=4 n�1=4:

Hence this path integration problem is polynomially tractable with an exponent at
most 4.

Another class of functions with infinitely many variables is studied by Hickernell
and Wang in [126].

Remark 19.10. Path integration is also important for non-Gaussian measures, and
occurs in many applications, e.g., in financial mathematics. The distribution is often
the solution of a stochastic differential equation. Complexity results can be found in
Creutzig, Dereich, Müller-Gronbach and Ritter [37], Kloeden and Platen [149], as well
as in Müller-Gronbach and Ritter [195].

Path integrals with respect to the Wiener measure give the solution to heat equations
via the famous Feynman–Kac formula. That is why the approximate computation of
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Feynman–Kac path integrals is of much interest and has been extensively studied. The
aim is to approximate Wiener integrals of the form

S.v; V / D
Z
C.Œ0;1�/

v.x.t//H

�Z t

0

V.x.s// ds

	
w.dx/ (19.4)

for some functions .v; V / from a classF , a fixed positive time t , and a fixed functionH .
Note that the formula (19.4) contains a Wiener integral but the operator S now only
depends on v and V which are functions of a single variable. Clearly, S depends
linearly on v and usually heavily non-linearly on V .

This problem is studied in [247] where the authors assume that H is a fixed entire
function and that v and V are from a space F of functions defined over R. The
authors present a new deterministic algorithm and an explicit bound on its cost. For
many important function classesF , the new algorithm is almost optimal. The algorithm
requires precomputation of some real coefficients that are combinations of multivariate
integrals with special weights. This precomputation is very difficult and so far limits
the application of the new algorithm.

We illustrate some results of [247] by an example. In a typical case we have
H.x/ D exp.x/ for x 2 R, and v; V 2 F WD C 4.Œ0; 1�/. Known algorithms are
usually randomized (Monte Carlo) algorithms. Suppose we want to compute S.v; V /
to within an error ". Then the cost of the known Monte Carlo algorithms is of order
"�2:5. In this situation, the new (almost optimal) deterministic algorithm has a cost of
order roughly "�0:25, which is a dramatic improvement.

The work [247] was continued in the papers Kwas [161], Kwas and Li [162], as well
as in Petras and Ritter [241]. The last paper studies the intrinsic difficulty of solving
linear parabolic initial-value problems numerically at a single point.

All the papers mentioned before present algorithms relying on heavy precomputa-
tion. Hence one can say that these algorithms are only semi-constructive. This leads
us to the next open problem.

Open Problem 90.

• Solve Feynman–Kac integrals by designing efficient algorithms without the need
of precomputation.

19.2 Weighted Sobolev Space with d D 1
We briefly report on integration for the weighted Sobolev space of functions depending
on infinitely many variables recently studied in [156].

The weighted Sobolev space in question is a reproducing kernel Hilbert space
defined in terms of its kernel. Let u be a finite subset of N and let � D f�ugu�N; juj<1
be a given sequence of non-negative weights such that

�; D 1 and
X

uW juj<1
�u < 1:
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Consider the kernel

K� .x; y/ D 1C
X

uW juj<1
�u

Y
j2u

min.xj ; yj / for all x; y 2 Œ0; 1�1:

Note that K� is well defined due to the assumption
P

uW juj<1 �u < 1, and

K� .x; y/ 2
h
0;

X
uW juj<1

�u

i
:

The Sobolev space H.K� / has the inner product

hf; giH.K� /
D f .0/g.0/C

X
uW1�juj<1

1

�u

Z
Œ0;1�juj

@juj

@ xu
f .xuI 0/ @

juj

@ xu
g.xu; 0/ dxu;

where xu D .xj /j2u is a vector with juj components and .xuI 0/ denotes the infinitely
dimensional vector with components xj for j 2 u and 0 otherwise. As always, for
�u D 0we assume that @juj=@ xu f .xuI 0/ 	 0 for all x 2 Œ0; 1�1 and all f 2 H.K� /,
and interpret 0=0 as 0.

Observe that for �u D 0 for all u 6� f1; 2; : : : ; dg, the space H.K� / reduces to
the standard Sobolev space for functions defined over Œ0; 1�d . For general weights
with

P
uW juj<1j �u < 1, the functions from H.K� / may depend on infinitely many

variables but with a decreasing importance of successive variables. For instance, take
a linear function f .x/ D P1

jD1 j̨xj . Then

f 2 H.K� / iff
1X
jD1

˛2j

�fj g
< 1:

Since
P1
jD1 �fj g � P

uW juj<1 �u < 1 then �fj g must go to zero and this implies that
j̨ goes to zero as well.

For product weights, �u D Q
j2u �j for some non-negative �j , we have

X
uW juj<1

�u D
1Y
jD1

.1C �j /;

and the last product is finite iff
P1
jD1 �j < 1. In this case,

K� .x; y/ D
1Y
jD1

�
1C �j min.xj ; yj /

�
and H.K� / is the infinite tensor product of the univariate reproducing kernel Sobolev
spaces with the kernels 1C �j min.xj ; yj /.
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For finite-order weights of order !, i.e., �u D 0 for all juj > !, the space H.K� /
consists of functions that are infinite sums of functions depending on at most ! vari-
ables. We stress that in this case the number of finite-order weights is, in general,
infinite for all ! � 1.

It is easy to see that the integration problem

I1.f / D
Z
Œ0;1�1

f .x/ dx for all f 2 H.K� /

is well defined, and we have

I1.f / D hf; h1iH.K� /
for all f 2 H.K� /

for
h1.x/ D 1C

X
uI1�juj<1

�u

Y
j2u

.xj � 1
2
x2j /;

and

kI1k D kh1kH.K� / D
�
1C

X
uW1�juj<1

�u3
�juj�1=2:

We are ready to discuss algorithms for approximating I1. As in [156], we assume
that we can compute f .x/ only for x with finitely many non-zero components, i.e., only
for x D .xuI 0/ for some finite u. Furthermore we assume that the cost of computing
f .x/ depends on juj and is equal to $.juj/ for a given cost function $ W f0; 1; : : : g !
Œ1;1/ that is non-decreasing. Typical examples of $ are $.k/ D Œmax.1; k/�s for some
s � 0 and $.k/ D rk for some r > 1.

The idea to relate the cost of function evaluation to the number of active variables
has been proposed in Creutzig, Dereich, Müller-Gronbach and Ritter [37], see also
Hickernell, Müller-Gronbach, Niu and Ritter [120], and is called variable subspace
sampling. We think that this is a very reasonable assumption, in particular for functions
that depend on infinitely many variables, and we hope that this assumption leads to
many new results in the near future.

As always for linear problems, we can restrict ourselves to linear algorithms that
are now of the form

An.f / D
nX

jD1
ajf

�
.xj /uj

I 0�
for some real numbers aj and sample points xj 2 Œ0; 1�1 as well as finite sets uj . The
cost of the algorithm An is now

cost.An/ D
nX

jD1
$.juj j/:

The worst case error of An is defined in the usual way,

e.An;H.K� // D sup
f W kf kH.K� /�1

jI1.f / � An.f /j;
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and the "-complexity n.";H.K� // is now understood as the minimal cost among all
algorithms with the worst case error at most ",

n.";H.K� // D inff cost.An/ j e.An;H.K� // � " g:
Tractability of I1 is defined in terms of the behavior of n.";H.K� //. In particular,

we have weak or polynomial tractability if (19.1) or (19.2) hold. However, the situation
now is much more interesting than before for the finite dimension d since we must
decide not only how to choose the sample points xj but also how to choose the sets uj
in order to minimize the cost under the condition that the worst case error is at most
". The reader is referred to [156] for detailed analysis. Here we only want to mention
two results from [156].

• Consider product weights with �j D j�1 Œln.1C j /��˛ with ˛ > 1, and $.k/ D
Œmax.1; k/�s with s > 0. Then

– I1 is intractable iff ˛ 2 .1; 3�,
– I1 is weakly tractable iff ˛ > 3.

– I1 is not polynomially tractable.

• Consider finite-order weights of order !, i.e., �u D 0 for all juj > !. Let
fuuguW juj�! D f�uj

g such that �uj
� �uj C1

for all j , and assume that

�uj
D j�ˇ for some ˇ > 1:

Then

– Independently of the cost function $, I1 is polynomially tractable with the
exponent

p 2

1;max

�
1;

2

ˇ � 1
	�
:

Hence, p D 1 for ˇ � 3,

– For $.k/ D �.ks/ with s > 0, I1 is polynomially tractable with the
exponent

p 2


max

�
1;
2 min.1; s=!/

ˇ � 1
	
;max

�
1;

2

ˇ � 1
	�
:

Hence p D max.1; 2=.ˇ � 1// for s � !.

As we see, sometimes tractability results depend on the cost function and sometimes
not. We also stress that for some cases we obtain the best results by using a variable
subspace sampling and sometimes it is enough to sample from a fixed subspace. For
finite-order weights, the decomposition formulas from [155] for multivariate functions
are very useful. Again much more can be found in [156], also for other spaces.
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19.3 The Result of Sobol

In 1974, Sobol [285] published a paper on integration for functions of infinitely many
variables. He assumed that F is a set of functions f W Œ0; 1�N ! R such that

I1.f / D
Z
Œ0;1�N

f .x/ dx

is well defined and the functions

fi;j .x/ D .xi � xj /2 for all x 2 Œ0; 1�N

belong to F for all distinct i and j from N.
He then proved that the worst case error of any QMC algorithm that uses n function

values must be at least 1
6

independently of how large n we take. Before we present
an extension of his proof, we note that the result of Sobol means that the integration
problem for the set F is unsolvable for QMC algorithms since

nQMC."/ D 1 for all " 2 �0; 1
6

�
;

where nQMC."/ denotes the minimal number of function values used for QMC algo-
rithms with the worst case error at most " for the absolute error criterion.

This result holds for the smallest set F given by

F small D ffi;j j i; j 2 N; i 6D j g:
However, note that

I1.f / D 1
6

for all f 2 F small:

This means that the constant algorithm A.f / 	 1
6

has zero error and the information
complexity

n."; F small/ D 0 for all " 2 Œ0; 1�:
Again, this shows that QMC algorithms are sometimes quite bad even for trivial inte-
gration problems.

Obviously, the result of Sobol applies for all sets F that contain F small. So let us
now take F conv as the absolute convex hull of F small, i.e.,

F conv D ˚
f j f D P

i<j ti;jfi;j ;
P
i<j jti;j j � 1



:

Note that
I1.f / D

X
i<j

1
6
ti;j

is well defined and I1.f / 2 Œ�1
6
; 1
6
� for all f 2 F conv.

By the result of Sobol, we know that all QMC algorithms are bad since their worst
case error is at least 1

6
. But maybe other algorithms are much better as we saw for the

set F small ? It turns out that this is not the case, and

n."; F conv/ D 1 for all " 2 .0;CRI/;
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where CRI D 1
6

for the absolute error criterion, and CRI D 1 for the normalized error
criterion.

We now prove this result. First of all, we may restrict ourselves to nonadaptive
information and linear algorithms since F conv is balanced and convex, see Chapter 4
of Volume I. Hence, consider a linear algorithm that uses n function values

Qn.f / D
nX
kD1

akf .xk/

for some real or complex ak and sample points xk 2 Œ0; 1�N. We now show that

e.Qn/ D sup
f 2F conv

jI1.f / �Qn.f /j � 1
6
I

modifying slightly Sobol’s proof for aj D 1=n.
For m 2 N, define the disjoint intervals Im;j D Œ.j � 1/=m; j=m/ for j D

1; 2; : : : ; m � 1, and Im;mŒ.m � 1/=m; 1�.
Let xk D Œxk;1; xk;2; : : : �. Then for all xk;j there is a unique sm.k; j / such that

xk;j 2 Im;sm.k;j /. By

sj D Œsm.1; j /; sm.2; j /; : : : ; sm.n; j /� 2 f1; 2; : : : ; mgn;
we denote the position of the j th components of the n sample points xk . Since we
have at most mn such vectors, then if we take d D mn C 1 then we find two identical
vectors si D sj for distinct i; j � d . For these two indices i and j we have

jxk;i � xk;j j � m�1 for all k D 1; 2; : : : ; n:

Then fi;j 2 F conv, I1.fi;j / D 1
6

, and

jQn.fi;j /j D
ˇ̌̌̌ nX
kD1

ak.xk;i � xk;j /2
ˇ̌̌̌

� 1

m2

nX
kD1

jakj:

Therefore ˇ̌
I1.f / �Qn.f /

ˇ̌ � 1

6
� 1

m2

nX
kD1

jakj;

and this goes to 1
6

as m approaches infinity. Since the initial error is 1
6

, this completes
the proof.

19.4 Quantum Computation

So far, all the considerations were based on a classical computer, i.e., all computa-
tions were performed classically using the real number model. In particular, all the
tractability results that we presented so far were based on this model of computation.
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In this short section, we change the model of computation to quantum computation.
We briefly present a mathematical model of quantum computation, and survey a few
results based on this model. We illustrate quantum computation by the search algorithm
of Grover that is a base of many quantum algorithms for continuous problems, in which
we are primarily interested in. We conclude this section by discussing tractability for
the quantum model of computation.

We should stress from the very beginning that we do not know whether quantum
computers can be built in the near future. It is even not completely clear how we should
formalize the model of computation and the cost function on a quantum computer. Since
we are interested in continuous problems, the model proposed by Heinrich [100] plays
a major role and we present several results under this model of quantum computation.
We briefly report on other models of quantum computation in the Notes and Remarks
of this section.

Quantum computers use the effects of quantum mechanics caused by entangled
states that allow to break the Bell inequalities. All quantum algorithms are randomized
algorithms, i.e., the output is a random variable. So it is natural to compare the quantum
results with the results in the randomized setting. We are especially interested to know
which problems can be solved significantly faster when a quantum computer is used
instead of the classical one.

19.4.1 Model of Quantum Computation

We start with a 2-dimensional Hilbert space H1 over the complex numbers C. Let e0
and e1 be two orthonormal vectors from H1. The space H1 describes quantum states
with one qubit (quantum bit) as unit vectors x,

x D ˇ0e0 C ˇ1e1 with jˇ0j2 C jˇ1j2 D 1:

To describe quantum states withmqubits, we use the2m-dimensional tensor product

Hm D H1 ˝ � � � ˝H1

with m factors. An orthonormal basis in Hm is given by the 2m vectors

b` D ei1 ˝ � � � ˝ eim for all ` D 0; 1; : : : ; 2m � 1; (19.5)

where ij 2 f0; 1g is the .m � j /th binary bit of `, i.e.,

` D
mX
jD1

ij 2
m�j :

The formally different objects .i1; i2; : : : ; im/ and ` or e` are often identified and
are called classical states. They correspond to the 2m possible states of m classical
bits.
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Every vector x 2 Hm has a unique representation

x D
2m�1X
`D0

ˇ` b` (19.6)

with ˇ0; ˇ1; : : : ; ˇ2m�1 2 C, and

kxk2 D
2m�1X
`D0

jˇ`j2:

Unit vectors x, so that kxk D 1, are called quantum states with m qubits. Every such
state defines a probability measure on the set of classical states: the probability of e`
is jˇ`j2.

A quantum algorithm is given by a finite sequence of certain unitary mappings

Ui W Hm ! Hm for i D 1; 2; : : : ; r:

The computation starts with a classical state bk 2 Hm as the input, and then the
mappings Ui are applied. The mathematical result is the quantum state

x D UrUr�1 � � �U1.bk/: (19.7)

Hence, for quantum computation we can only multiply by unitary matrices (mappings).
Form qubits these unitary matrices are 2m � 2m, so that even for moderatem they are
huge. We only allow the following three kinds of unitary mappings:

• U only changes one quantum bit, i.e.,

U.ei1 ˝ � � � ˝ eij ˝ � � � ˝ eim/ D ei1 ˝ � � � ˝ zU.eij /˝ � � � ˝ eim

with an unitary mapping zU W H1 ! H1 and j 2 f1; 2; : : : ; mg.

• U is a controlled-not mapping, i.e.,

U.ei1 ˝� � �˝eij ˝� � �˝eik ˝� � �˝eim/ D ei1 ˝� � �˝eij ˝� � �˝eik˚ij ˝� � �˝eim
with j 6D k. The symbol ˚ denotes the addition modulo 2. If the j th quantum
bit is in the state e0, the kth state stays unchanged. Otherwise the kth quantum
bit is changed from e0 to e1, or vice versa.

• U is a quantum query.

The quantum query is a unitary mapping through which we transfer the input
data of the problem that we want to solve. We will see examples of quantum
queries later.
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In the quantum model of computation, we assume that the cost of multiplying by
each unitary matrix is taken as unity. Hence, the cost of a quantum algorithm of getting
x D Ur � � �U1 bk is r . Of course, one could compute the vector x by a classical
computer. However, the cost would be then as large as 2r 4m. This means that as long
as the number of qubits m is small then we can simulate quantum computation on a
classical computer. Clearly, even for modestm there is no way that we can perform 4m

operations on a classical computer. This opens up a possibility that a quantum computer
with sufficiently many qubits may significantly outperform a classical computer.

We stress that the output of a quantum algorithm is not x, but a classical state
given by a physical measurement. This result is random and we obtain b` or ` 2
f0; 1; : : : ; 2m � 1g with the probability jˇ`j2, where ˇ` D hx; b`i is the respective
coefficient of the vector x in the orthonormal basis fb`g.

Obviously, we can also perform operations on a classical computer. So knowing `,
we can compute '.`/ classically for some mapping ' that maps f0; 1; : : : ; 2m � 1g to
the target space of the solution elements. We can also repeat quantum and classical
computations as many times as we wish.

From this short description, it should be clear that the model of quantum compu-
tation is at least as powerful as the model of classical computation. Furthermore, if
we work with m qubits, then we can have at most 2m different outputs of quantum
computation, and therefore we can approximate the solution by at most 2m elements
'.`/.

We illustrate quantum computation by a very simple quantum algorithm to realize
the instruction “choose a random bit”. Just takem D 1 andW1 W H1 ! H1 defined by

W1.ei / D 1p
2
.e0 C .�1/i e1/; for i D 0; 1;

the so-called Walsh–Hadamard-transform. In particular we obtain

W1.e0/ D 1p
2

� .e0 C e1/;

hence the algorithm outputs 0 or 1 with probability 1/2 on input 0.
For m � 1 qubits, we define Wm as the m-fold tensor product of the Walsh–

Hadamard-transform W1, i.e.,

Wm.ei1 ˝ � � � ˝ eim/ D W1.ei1/˝ � � � ˝W1.eim/:

Then

Wm.b0/ D 1

2m=2

2m�1X
`D0

b`;

and we obtain each ` with the same probability 2�m. Hence this algorithm produces
2m random elements and can be seen as an ideal random number generator.
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19.4.2 Grover’s Search Algorithm

Consider the following search problem. Let

f W f0; 1; : : : ; N � 1g ! f0; 1g

be a function such that f .`/ D 1 for exactly one `. Our problem is to search for
this `. Any deterministic or randomized algorithm that solves this problem with high
probability, say 3/4, needs to compute a number of function values f proportional
to N . The quantum algorithm of Grover, however, has a cost that is proportional to
N 1=2 � lnN . Hence we have (almost) a quadratic speed-up.

For simplicity we assume that N D 2m. The algorithm of Grover works with m
qubits and uses a quantum queryQf W Hm ! Hm for the evaluation of the function f .
The unitary mapping Qf is defined by

Qf .b`/ D .�1/f .`/ � b` for ` D 0; 1; : : : ; 2m:

In addition, we need the unitary operator Q0 with

Q0.b0/ D �b0 and Q0.b`/ D b` for ` D 1; 2; : : : ; 2m � 1:

Then the algorithm of Grover is given by

x D ��WmQ0WmQf �k�Wm.b0/�: (19.8)

It was proved by Boyer, Brassard, Høyer and Tapp [17] that the algorithm solves
the search problem with probability 1 � 2�m if we take

k D b�=4#c with sin # D 2�m=2;

see also Nielsen and Chuang [203], Section 6.1. Clearly,

# � 2�m=2 and k � �

4
N 1=2 for large N:

The cost of each iteration in (19.8) is roughly lnN , hence the complete cost of Grover’s
algorithm is of the order N 1=2 � lnN .
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To prove this result, we need to show that x given by (19.8) satisfies

jhx; b`ij2 � 1 � 2�m:

That is, the classical initial state b0 is transformed “almost” to the vector b`. The idea
of the proof is the following. Let

z D 1p
N � 1

X
k 6D`

bk

be the uniform superposition of all non-solutions. Then b` and z are orthogonal and
already the first step of the algorithm maps b0 into a linear combination of b` and z,
namely we have

Wm.b0/ D s D 1p
N

N�1X
kD0

bk D 1p
N
b` C

p
N � 1p
N

z;

or
Wm.b0/ D s D b` � sin ˛ C z � cos˛;

where

sin ˛ D 1p
N

is the angle between s and z.
We always stay in this 2-dimensional space span.b`; z/. An iteration of the map-

pings �WmQ0WmQf is a rotation with angle 2˛ of z in the direction of b`. After k
iterations we obtain the vector

x D b` � sin..2k C 1/˛/C z � cos..2k C 1/˛/:

With the k from above, we see that we almost obtain xk D b`.
It is known that Grover’s algorithm is almost optimal. To solve the search problem

with probability at least 1/2, one needs a number of oracle calls that is proportional to
N 1=2, see Nielsen and Chuang [203], Section 6.6.

19.4.3 Computation of Sums and Integrals

Quantum algorithms were designed for different problems of discrete mathematics as
well as for certain continuous problems. An important problem, still discrete, is the
summation problem. It is interesting that algorithms for this very simple problem can
be used to obtain good quantum algorithms for many continuous problems such as
integration, see also [114].

The problem is to approximate

S.f / D 1

N

N�1X
iD0

f .i/
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for a Boolean function f W f0; 1; : : : ; N � 1g ! f0; 1g.
In the worst case setting, it is easy to prove that the nth minimal error is

.N � n/C
2N

:

In the randomized setting, the nth minimal error is bounded by

1

2
p
n
;

and this bound is basically sharp.
These well known error bounds can be significantly improved in the quantum set-

ting. With n queries, one can achieve an error at most

3�

4n
with probability at least

8

�2
;

see Brassard, Høyer, Mosca and Tapp [18] and [112], [163]. This bound is also sharp
as proved by Nayak and Wu [196].

The bounds for the summation problem can be used to obtain results for multivariate
integration. Consider

S.f / D
Z
Œ0;1�d

f .x/ dx

for integrands from the unit ball of C k.Œ0; 1�d /. Then the optimal rates of convergence
are

n�.k=dCs/;

where

s D

8̂<̂
:
0 for the worst case setting;
1
2

for the randomized setting;

1 for the quantum setting.

The result for the quantum setting was proved in [209], and greatly generalized by
Heinrich [100], [102] for many other classes of functions. Path integration was studied
in the quantum setting in [308].

19.4.4 Solution of PDEs

Heinrich [108] also studied boundary value problems for elliptic PDEs in the quantum
setting, and compared the quantum results with his results from Heinrich [107] for
the randomized setting. For comparison, we also mention some known results for the
worst case setting, see Heinrich [107].

Assume we are given a second order elliptic problem Lu D f in a smooth d -
dimensional bounded domain � with homogeneous boundary conditions and right
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hand side f 2 C r.�/. The problem is to compute the solution u on a d1-dimensional
sub-manifold using function values of f . With deterministic algorithms the optimal
rate of convergence is

n�r=d

and does not depend on d1. Heinrich proved that the optimal rate is

n� minf.rC2/=d1; r=dC1=2g

in the randomized setting, and

n� minf.rC2/=d1; r=dC1g

in the quantum setting. The error is measured in the sup norm and some of the bounds
are up to log terms.

19.4.5 Tractability in the Quantum Setting

There are more results on continuous problems in the quantum setting, and we refer to
the surveys of Heinrich [106] and of Papageorgiou and Traub [233].

So far we know several continuous problems for which algorithms in the quantum
setting have a faster rate of convergence than all classical deterministic and randomized
algorithms. This is important since for problems with a relatively small number of
variables the optimal rates of convergence are enough. In these cases, we really know
the speedups between the quantum, randomized and worst case settings.

Tractability has not yet been studied in the quantum setting. The formal definition
of tractability in this setting is obvious. If we fix the probability of success for quantum
algorithms, we still have two tractability parameters "�1 and d , and we can study
different kinds of tractability as in other settings. If we prefer to have ı as a new
parameter measuring the failure of quantum algorithms, and consider the case when ı
goes to zero, then we have a similar situation as in the probabilistic setting. Then we
can study different kinds of tractability in the quantum setting with respect to the three
parameters "�1, d and ı�1.

Nevertheless, even today it is possible to translate some existing results into tractabil-
ity results. For instance, consider the multivariate integration problem described in
Section 19.4.3 for k D 1. Then we know that

• in the worst case setting, this problem is intractable and suffers from the curse
of dimensionality,

• in the randomized setting, this problem is strongly polynomially tractable with
exponent 2.

The upper bound is achieved even for the standard Monte Carlo algorithm, since
the variances of functions in this case are uniformly bounded. The exponent of
"�1 cannot be smaller than two since asymptotically in n we know that the nth
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minimal error behaves like n1=2C1=d , and therefore the information complexity
behaves like "�2=.1C2=d/, and the exponent of "�1 cannot be smaller than 2 for
all d 2 N.

• in the quantum setting, this problem is strongly polynomially tractable with
exponent 1.

The upper bound follows from the quantum summation algorithms. The exponent
"�1 cannot be smaller than one since otherwise it would contradict the optimality
of the quantum summation algorithms due to Nayak and Wu [196].

For this example, we see that the problem is strongly polynomially tractable in both
the randomized and quantum setting, and that the exponent in the quantum setting is
smaller than in the randomized setting. So, the quantum setting reduces the exponent
by one. Similar conclusions may be drawn also for several other problems studied in
this volume but we stop here. Instead, we want to finish this section by expressing our
hope that tractability will be also thoroughly studied in the quantum setting.

19.5 Notes and Remarks

NR 19.1:1. Our short section on path integration gives only a survey of complexity
results. For motivation and algorithms, the reader is referred to the papers we cited and
the references in these papers. We also recommend the book of Egorov, Sobolevsky,
Yanovich [66] that contains basic information on path integration.

NR 19.2:1. This section is based on [156]. For product weights, also �j D j�ˇ with
ˇ > 1 and �j D qj with q 2 .0; 1/ are studied. For more general integration problems
studied in [156], the domain of integration can be D1 with bounded or unbounded
D � R, the anchor point at which the inactive variables are fixed can be arbitrary as
well as we may have weighted integration. In some cases, the underlying Hilbert space
of the integration problem is not a reproducing kernel Hilbert space. This means that
function evaluations are not allowed at some sample points. However, this happens
only for sample points with infinitely many active variables that are never permitted
due to the cost assumption.

NR 19.3:1. This section is based on Sobol [285].

NR 19.4:1. Further results on continuous problems in the quantum setting can be found
in Bessen [15], Goćwin [86], Goćwin and Szczesny [87], Heinrich [104], [105], [106],
[109], Kacewicz [140], [141], [142], Nielsen and Chuang [203], Papageorgiou [230],
Papageorgiou and Traub [233] as well as [112], [163], [219].

NR 19.4:2. There are several papers studying continuous problems in the quantum
setting with a modified model of quantum computation. For example, the so-called



19.5 Notes and Remarks 599

power quantum queries were studied in [234], [235]. Power queries are much more
powerful than the usual quantum queries that are often called bit queries. They even
allow to solve NP-complete problems in polynomial time in the quantum setting, see
[235]. Obviously, today it is not clear if a future quantum computer will be able to
implement power queries. There is also a modification of the quantum model of com-
putation by allowing randomized bit queries, see [354]. For some continuous problems,
randomized bit queries are much more powerful than deterministic bit queries.



Chapter 20

Summary: Uniform Integration for Three Sobolev
Spaces

20.1 Introduction

The purpose of this chapter is to summarize and compare the results for linear func-
tionals presented in this volume in the four settings:

• worst case,
• average case,
• probabilistic,
• randomized,

and for the three error criteria:

• absolute,
• normalized,
• relative.

We faced a tough decision which problem should we choose for the summary and
comparison. On one hand, the problem should be computational important and well
represent a huge class of linear functionals studied in this volume. On the other hand,
the problem should be sufficiently easy to describe, so that we could focus on the results
and not on technical details. We also wanted to have a problem for which we know
many tractability results as well as several open issues to be hopefully resolved by our
readers in the near future.

After some thought, we decided that this problem should be multivariate integra-
tion defined over the three standard (weighted) Sobolev spaces, which are related to
discrepancy and to financial applications. These are the spaces from Appendix A of
Volume I, which already appeared in different parts of Volume II.All three of them were
studied in Chapter 17 for the randomized setting as the first, second and third Sobolev
space. We will also use this terminology in this chapter. The first and third spaces are
the unanchored Sobolev spaces. The second space is the anchored Sobolev space that
also appeared quite often in other chapters dealing with the worst case setting. The
second and third Sobolev spaces were studied in Section 16.9 of Chapter 16, where
we showed that they are related to weighted Korobov spaces. All three of them were
also studied in Section 11.6 of Chapter 11, where we characterized which unweighted
tensor product functionals are tractable. The reader may notice that the first Sobolev
space was not yet completely studied in the worst case setting, and we will partially
fill this gap in this chapter. There is one open problem 91.
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20.2 Preliminaries

We briefly remind the reader that the three weighted Sobolev space are reproducing
kernel Hilbert spaces of real functions defined on Œ0; 1�d whose first mixed derivatives
are square integrable. They differ by the choice of the norm. We consider arbitrary
weights given be a sequence

� D f�d;ugu�Œd�; d2N with �d;; D 1:

To omit the trivial case, we always assume that at least one �d;u is positive for non-
empty u for every d 2 N.

We first consider the worst case setting. We study I D fId g for

Id .f / D
Z
Œ0;1�d

f .x/ dx for all f 2 Hd ;

where Hd is the reproducing kernel Hilbert space with the following inner product:
• for the first Sobolev space

hf; giHd
D

X
u�Œd�

��1
d;u

Z
Œ0;1�d

@jujf
@ xu

.x/
@jujg
@ xu

.x/ dx;

• for the second Sobolev space

hf; giHd
D

X
u�Œd�

��1
d;u

Z
Œ0;1�juj

@jujf
@ xu

.xu; a/
@jujg
@ xu

.xu; a/ dx;

where a 2 Œ0; 1�d ,
• for the third Sobolev space

hf; giHd
D

X
u�Œd�

��1
d;u

Z
Œ0;1�juj

�Z
Œ0;1�d�juj

@jujf
@ xu

.x/ dx�u

	

�
�Z

Œ0;1�d�ju

@jujg
@ xu

.x/ dx�u

	
dxu:

For the univariate case, d D 1, the inner products simplify to

hf; giH1
D A.f; g/C ��1

1;f1g
Z 1

0

f 0.x/ g0.x/ dx;

with three different choices of A.f /:

A.f; g/ D

8̂<̂
:
R 1
0
f .x/ g.x/ dx for the first Sobolev space;

f .a/g.a/ for the second Sobolev space;R 1
0
f .x/ dx � R 1

0
g.x/ dx for the third Sobolev space.
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Let Kd;� be the reproducing kernel of one of the weighted Sobolev spaces. The
form of Kd;� is especially intriguing for the first Sobolev space. For product weights,
�d;u D Q

j2u �d;j , we have

Kd;� .x; y/ D
dY
jD1

K�d;j
.xj ; yj / for all x; y 2 Œ0; 1�d ;

where

K� .x; y/ D
p
�

sinh
p
�

cosh
�p
�.1 � max.x; y//

�
cosh

�p
� min.x; y/

�
;

see Thomas-Agnan [304] as well as Appendix A of Volume I.
For general weights, for k 2 Nd we define

ek.x/ D
dY
jD1

cos
�
�.kj � 1/xj

�
for all x 2 Œ0; 1�d :

The sequence fekgk2Nd is an orthogonal basis of the first weighted Sobolev spaceHd
and

kekkHd
D 2�jfj2Œd� j kj>1gj=2

�
1C

X
;6Du�Œd�

��1
d;u

Y
j2u

�
�.kj � 1/�2	1=2:

The reproducing kernel takes now the form

Kd;� .x; y/ D
X
k2Nd

ek.x/

kekkHd

ek.y/

kekkHd

for all x; y 2 Œ0; 1�d ;

see [343] and Appendix A of Volume I.
For the second Sobolev space, we have

Kd;� .x; y/D
X

u�Œd�
�d;u

Y
j2u

jxj � aj j C jyj � aj j � jxj � yj j
2

for all x; y 2 Œ0; 1�d ;

whereas for the third Sobolev space, we have

Kd;� .x; y/ D
X

u�Œd�
�d;u

Y
j2u

.xj � yj /2 � jxj � yj j C 1
6

C 2.xj � 1
2
/.yj � 1

2
/

2

for all x; y 2 Œ0; 1�d .
As we know, the squares of the initial errors of multivariate integration are

kIdk2 D

8̂<̂
:
1 for the first Sobolev space;P

u�Œd� �d;u
Q
j2u.a

2
j � aj C 1

3
/ for the second Sobolev space;

1 for the third Sobolev space:
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We will sometimes use the notation Hd;j and Kd;�;j to distinguish between the
three Sobolev spaces and their reproducing kernels, and the index j 2 f1; 2; 3g will
tell us which Sobolev space we have in mind. Clearly, the norm in the first space is at
least as large as in the third space,

kf kHd;3
� kf kHd;1

for all f 2 Hd;1:
This means that the unit ball ofHd;1 is a subset of the unit ball ofHd;3. This implies that
multivariate integration overHd;1 is at most as hard as overHd;3 since the initial errors
are the same in both spaces. Hence, all upper bounds that we presented in Section 16.9
for the spaceHd;3 are also valid for the spaceHd;1. Obviously, this also indicates that
we need new lower bounds for the spaceHd;1, and at this point we cannot rule out that
lower bounds for Hd;1 may be significantly smaller than lower bounds for Hd;3.

We now turn to the average case and probabilistic setting. Then we extend the
domain of Id to the Banach space Fd D C.Œ0; 1�d / of continuous functions with the
usual supremum norm. The spaceFd is equipped with a Gaussian measure�d with zero
mean whose covariance function isK�d

D Kd;� , whereKd;� is one of the reproducing
kernels of the Sobolev space. It is well known that such a Gaussian measure exists, see
Vakhania, Tarieladze and Chobanyan [316], p. 215. From Chapters 13 and 14 we know
that the average case and probabilistic settings are related to the worst case setting for
the space H�d

D H.Kd;� /, that is, to one of the Sobolev spaces. Furthermore, we
know how to translate the worst case results to get the results in the average case and
probabilistic settings.

We specify tractability results for the three Sobolev spaces in the successive three
sections. To simplify the presentation we only consider three specific families of
weights.

• CONS: �d;u D 1 for all u � Œd � and all d 2 N.

Of course, this corresponds to the unweighted case for which we usually have
intractability and the curse of dimensionality. However, the reader will see some
surprises even for these weights. In some cases, we also comment on “almost”
constant weights, where we assume that

�d;; D 1 and �d;u D c for all non-empty u � Œd � and all d 2 N;

for some positive c.

• PROD: �d;u D Q
j2u �d;j with �d;j D j�ˇ for some ˇ � 0.

This corresponds to product weights �d;j independent of d , and we choose the
specific form of �d;j D j�ˇ to simplify the tractability statements. Much more
is known for general product weights, but again we opt for simplicity in this
chapter. Obviously, we get the constant weights for ˇ D 0.

• FINO: �d;u D 1 for all juj � !, and �d;u D 0 for juj > !. Here ! � 1.

This is a special choice of finite-order weights of order ! that makes the pre-
sentation easier. We studied general finite-order weights in most parts of this
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volume, and the reader can find many tractability results for general finite-order
weights. In particular, we do not cover finite-diameter weights in this chapter.

We also restrict ourselves to three specific kinds of tractability, leaving the case of
more general tractability functions to the reader. They are:

• SPT: Strong Polynomial Tractability,

• PT: Polynomial Tractability,

• WT: Weak Tractability.

We will present several tables with tractability results, and SPT, PT and WT will
be used as the abbreviations for these three kinds of tractability.

There will be several more natural abbreviations. The settings and error criteria
will be denoted as follows.

• WOR: Worst case setting,

• AVG: Average case setting,

• PRO: Probabilistic setting,

• RAN: Randomized setting,

• ABS: Absolute error,

• NOR: Normalized error,

• REL: Relative error.

For the first and third Sobolev spaces, the initial errors are 1, and the absolute and
normalized error criteria coincide. This is simply indicated by

ABS D NOR:

Similarly, we know that the worst case and average case settings differ insignificantly,
and we have the same tractability results as long as we consider strong polynomial,
polynomial or weak tractability, see Theorem 13.2. We denote this by

WOR D AVG:

In the probabilistic setting, we have an additional tractability parameter ı. We will
study the polynomial and logarithmic dependence on ı�1. As we know, in the proba-
bilistic setting we can have strong polynomial tractability or strong polylog tractability
with respect to d and ı. By

SPT.d/-P; SPT.ı/-P; PT-P; WT-P

we mean strong polynomial with respect to d or ı, polynomial and weak tractability
for polynomial dependence on ı�1.
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We denote the probabilistic setting with polynomial dependence on ı�1 by PRO-P.
This means that if the information complexity in the probabilistic setting is bounded
by

nprob."; ı; Id / D O
�
"�1 dq ı�s� for all "; ı 2 .0; 1/; and d 2 N;

then we have SPT.d/-P whenever q D 0, SPT.ı/-P whenever s D 0, and otherwise
we have PT-P. Furthermore, if

lim
"�1Cı�1Cd!1

ln nprob."; ı; Id /

"�1 C ı�1 C d
D 0;

then we have WT-P. Similarly, by

SPT.d/-L; SPT.ı/-L; PT-L; WT-L

we mean strong polynomial with respect to d or ı, polynomial and weak tractability
for polynomial dependence on 1C ln ı�1.

We denote the probabilistic setting with logarithmic dependence on ı�1 by PRO-
L. The information complexity in the probabilistic setting now satisfies the bounds as
above with ı�1 replaced by 1C ln ı�1 or by ln ı�1, if the extra 1 is not needed.

Some results do not depend on whether we permit polynomial or logarithmic de-
pendence on ı�1. In this case, we write

SPT.d/-P=L; SPT.ı/-P=L; PT-P=L; WT-P=L:

We hope that this elaborate notation is still clear to the reader. This notation will
allow us to present tractability results in a very concise way. Finally, we add that we
are mostly interested in tractability and the exponents of tractability will be only briefly
mentioned in comments. For all three Sobolev spaces, the exponent of "�1 must be
at least 1 in the worst case setting, and at least 2

3
in the randomized setting, since the

information complexity is proportional to "�1 or to "�2=3, respectively, even for the
univariate case.

20.3 First Sobolev Space

For the first Sobolev space, the initial error of multivariate integration in the worst
case setting is one, and therefore ABS D NOR. As already explained, we also have
WOR D AVG. We are ready to present tractability results for this case.

We comment on Table 20.1. We begin with constant weights for which we claim
that multivariate integration is intractable, and in fact, suffers from the curse of dimen-
sionality. The reader cannot find this result in this volume since the first Sobolev space
has not yet been considered. The proof of this result can be found in [280]. The proof
technique is exactly the same as the proof technique that we explained in Chapters 11
and 12, and is based on the notion of decomposable kernels. The reproducing kernel of
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Table 20.1. WOR D AVG and ABS D NOR

SPT PT WT

CONS NO NO NO

PROD YES iff ˇ > 1 YES iff ˇ � 1 YES iff ˇ > 0

FINO NO YES YES

the first Sobolev space is obviously not decomposable since it is always strictly posi-
tive. However, it has a decomposable part and the corresponding parts of the univariate
representer of integration are non-zero, as shown in [280]. So we can use the results
for kernels with decomposable parts, and show the curse of dimensionality.

Suppose now that we have “almost” constant weights, i.e., �d;u D c for all non-
empty u � Œd � and all d 2 N, where c is positive. For c > 1, multivariate integration is
not easier than before and the initial error is unchanged. So the curse of dimensionality
is still present. For c < 1, we make multivariate integration easier. However, it is easy
to check that we can gain at most a factor of c1=2. That is, the information complexity
nc."; d/ for c, and the information complexity n."; d/ for c D 1 are related by

n.c�1=2 "; d/ � nc."; d/ � n."; d/:

Unfortunately, this cannot eliminate the curse of dimensionality. Hence, for all “al-
most” constant weights, multivariate integration suffers from the curse of dimension-
ality.

For product weights, we have strong polynomial tractability iff
P1
jD1 �j < 1. The

last condition holds iff ˇ > 1. Polynomial tractability holds iff
Pd
jD1 �j is bounded

by a multiple of ln d , which holds iff ˇ � 1. All of this can be found in Theorem 1
of [280] even for periodic subspaces of the first Sobolev space. The proof technique
is exactly the same as the proof technique in Chapter 12. Weak tractability was not
studied in [280] since the concept of weak tractability was formalized a few yeas later
after the paper [280] had been published. In any case, using exactly the same reasoning
as we did in Chapter 12 with estimates from [280] we check that weak tractability holds
iff limd

Pd
jD1 �j =d D 0, see also [85]. In our case, this is equivalent to ˇ > 0. This

proves the claims for the product weights.
We turn to finite-order weights. As we know, we have polynomial tractability for

bounded finite-order weights, which obviously implies weak tractability. This explains
two YES’s in the last line of Table 20.1.

We now discuss strong polynomial tractability for finite-order weights. This prob-
lem has not yet been studied. In fact, we do not have sharp lower bounds for finite-order
weights for general spaces. We presented sufficient conditions for strong polynomial
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tractability for finite-order weights, but these conditions are not satisfied for our finite-
order weights, since all of them are 1.

This means that we must prove our claim that strong polynomial tractability does
not hold for finite-order weights of order ! � 1 and for the first Sobolev space.

We will show that for any n 2 N, the nth minimal worst case error is bounded
roughly by 1 for large d . More precisely, we will prove that

lim sup
d!1

e.n; d/ D 1 for all n 2 N;

which obviously contradicts strong polynomial tractability.
For an integer m > n and h D 1=m, define the “hat”function

fh.x/ D 1�
1C 1

12
h2
�1=2

8̂<̂
:
x if x 2 �0; 1

2
h
�
;

h � x if x 2 �1
2
h; h

�
;

0 if x 2 Œh; 1�:
ByH1;1 we mean the first Sobolev space for d D 1with �1;f1g D 1. Clearly, fh 2 H1;1
and

kfhkH1;1
D

p
h and I1.fh/ D h2

4
�
1C 1

12
h2
�1=2 :

Define the shifted hat functions,

fj .x/ D fh
�
x C .j � 1/h� for all j D 1; 2; : : : ; m:

The support of fj is Œ.j � 1/h; jh�. They are orthogonal in H1;1 and

kfj kH1;1
D

p
h and I1.fj / D I1.fh/:

For k D 1; 2; : : : ; d , we take

gk.x/ D
mX
jD1

ck;jfj .x/ for all x 2 Œ0; 1�;

where ck;j 2 f0; 1g. We will take n of the ck;j zero and the rest of them 1. Then

kgkk2H1;1
D 1

m

mX
jD1

ck;j D m � n
m

� 1:

For a given positive integer s, we take

d D s m2:

Finally, define

f .x1; x2; : : : ; xd / D g1.x1/C g2.x2/C � � � C gd .xd /p
cm d

for all xj 2 Œ0; 1�;
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where cm is positive.
Clearly, f 2 Hd;1 and we choose cm such that kf kHd;1

D 1. We now show that

cm D 1C 1
16
s
�
1C o.1/

�
as m ! 1:

Indeed, we have

1 D kf k2Hd;1
D 1

cm d

� dX
i;jD1

Id .gigj /C
dX
jD1

kg0
j k2L2.Œ0;1�/

�
D 1

cm d

�
.d2 � d/�.m � n/I1.fh/

�2 C d

�
1 � n

m

		
D 1

cm

�
1C 1

16
s
�
1C o.1/

��
;

as claimed. Furthermore

Id .f / D 1p
cm d

� dX
kD1

mX
jD1

ck;j

	
I1.fh/

D 1
4

�
d

cmm2

	1=2 �
1C o.1/

�
D 1

4

�
s

cm

	1=2 �
1C o.1/

� D
�

s

s C 16

	1=2 �
1C o.1/

�
as m ! 1:

Take now an arbitrary algorithm An for the approximation of Id . We can assume
that An is linear and samples the function at points x�

1 ; x
�
2 ; : : : ; x

�
n from Œ0; 1�d . Let

x�
j D Œx�

j;1; x
�
j;2; : : : ; x

�
j;d
�, i.e., x�

j;k
is the kth component of x�

j . We want to guarantee
that

gk.x
�
j;k/ D 0 for all j D 1; 2; : : : ; n;

i.e., gk vanishes at all the kth components of the sample points x�
1 ; x

�
2 ; : : : ; x

�
n . We

can achieve this by taking exactly n of the ck;` zero. Namely, ck;` D 0 if one of the
x�
j;k

belongs to the interval Œ.` � 1/h; `h�. For such choice of the coefficients ck;`, we
have

f .x�
j / D 0 for all j D 1; 2; : : : ; n:

As we know,

ewor.An/ � Id .f / D
�

s

s C 16

	1=2
.1C o.1// as m ! 1:

Since An is arbitrary, the same bound holds for e.n; d/ with d D sm2. Hence,

lim sup
d!1

e.n; d/ �
�

s

s C 16

	2
:
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This holds for arbitrary s, and since e.n; d/ � e.0; d/ D 1, we finally conclude

lim sup
d!1

e.n; d/ D 1:

This completes the proof, and justifies NO in the last row of Table 20.1.
Finally, we add a few words about the exponents of strong polynomial and poly-

nomial tractability for product and finite-order weights. The "�1 exponent is at most
2 if ˇ � 1 or if we use finite-order weights. As we already mentioned, multivariate
integration over the first Sobolev space is not harder than over the third Sobolev space.
So we can use all estimates for the "�1 exponent as well as for the d exponent from
estimates that we presented in Section 16.9. They will also be presented in the section
for the third Sobolev space. Nevertheless, it would be of interest to study the first
Sobolev space directly and to verify whether it is possible to get better results than
those obtained for the third Sobolev space.

We now briefly mention the worst and average case settings for the relative error.
As we know, the information complexity in both settings is infinite,

nwor=avg."; Id / D 1 for all " 2 .0; 1/; d 2 N:

This means that multivariate integration is unsolvable, which is much worse than in-
tractability or the curse of dimensionality. This explains Table 20.2 with all entries
NO.

Table 20.2. WOR D AVG and REL

SPT PT WT

CONS NO NO NO

PROD NO NO NO

FINO NO NO NO

We turn to the probabilistic setting. We first consider the absolute error criterion.
We know that the probabilistic and worst case settings are related as explained in
Chapter 13, and we have

nprob."; ı; Id / D nwor

�
".1C o.1//p
2 ln ı�1 ; Id

	
:

We allow polynomial or logarithmic dependence on ı�1. This and Table 20.1 give
us the summary of tractability results as follows.

We comment on Table 20.3. The reader may be surprised that strong polynomial
tractability with respect to ı does not hold. This follows from the fact that for the
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Table 20.3. PRO and ABS

SPT.d/-P/L SPT.ı/-P/L PT-P/L WT-P/L

CONS NO NO NO NO

PROD YES iff ˇ > 1 NO YES iff ˇ � 1 YES iff ˇ > 0

FINO NO NO YES YES

absolute error criterion, we use the worst case results with " replaced roughly by
"=

p
2 ln ı�1, and since the information complexity in the worst case setting does depend

on "�1, the information complexity in the probabilistic setting must depend on
p

ln ı�1
even for the univariate case.

Although there is no difference between tractability results for polynomial and log-
arithmic dependence on ı�1, their exponents are different. For polynomial dependence
on ı�1, the ı�1 exponent is arbitrarily small, whereas for logarithmic dependence on
ı�1, the ı�1 exponent is at least 1

2
and at most 1. Furthermore, for product weights it

goes to 1
2

for large ˇ, as it will be explained in the section for the third Sobolev space.
We now consider the probabilistic setting for the normalized error criterion. As we

know from Chapter 13, we now have

nprob."; ı; Id / D nwor."; Id /;

and the information complexity does not depend on ı. That is why we have the following
summary of tractability results.

Table 20.4. PRO and NOR

SPT.d/-P/L SPT.ı/-P/L PT-P/L WT-P/L

CONS NO NO NO NO

PROD YES iff ˇ > 1 YES iff ˇ � 1 YES iff ˇ � 1 YES iff ˇ > 0

FINO NO YES YES YES

We comment on Table 20.4. We first comment on strong polynomial tractability
with respect to ı. This holds if we have

nprob."; ı; Id / D O
�
"�p dq

�
:
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This is not the case for the constant weights, even if �d;u 	 c > 0, and this explains
the first NO in the column SPT(ı)-P/L. For product weights, polynomial tractability
with respect to d holds iff ˇ � 1. That is why we needed to put the same condition for
strong polynomial tractability with respect to ı. For finite-order weights, we always
have polynomial dependence on d , and this explains the last unconditional YES.

We now turn to the probabilistic setting for the relative error. As we know, again
from Chapter 13, we now have

nprob-rel."; ı; Id / D nwor-nor
�
1
2
�"ı.1C o.1/; Id

�
: (20.1)

So the parameter ı is as important as the parameter ". In this case, the information
complexity in the probabilistic setting depends polynomially on "�1 as well as on ı�1
even for the univariate case. This means that tractability results do not hold if we only
allow logarithmic dependence on ı�1. That is, we have the summary in Table 20.5
given by all entries NO.

Table 20.5. PRO-L and REL

SPT.d/-L SPT.ı/-L PT-L WT-L

CONS NO NO NO NO

PROD NO NO NO NO

FINO NO NO NO NO

We now allow polynomial dependence on ı�1. From (20.1), it is clear that we will
obtain positive tractability results if we have tractability in the worst case setting with "
replaced by " ı. This also explains why we cannot have strong polynomial tractability
with respect to ı. We summarize tractability results in Table 20.6.

Table 20.6. PRO-P and REL

SPT.d/-P SPT.ı/-P PT-P WT-P

CONS NO NO NO NO

PROD YES iff ˇ > 1 NO YES iff ˇ � 1 YES iff ˇ > 0

FINO NO NO YES YES
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We add that the "�1 and ı�1 exponents are the same and they are from the interval
Œ1; 2�. As already mentioned, they are bounded by the exponents for the third Sobolev
class, respectively, and we will present these bounds later. They can be arbitrarily close
to 1 if we take product weights with sufficiently large ˇ. If we compare the last two
tables, we see that polynomial dependence on ı�1 partially erased some but not all
negative tractability results from the case when only logarithmic dependence on ı�1 is
allowed.

We finally turn to the randomized setting. The initial error does not depend on
the randomized setting since for n D 0 we do not use function values. Hence, the
initial error equals to 1 also in the randomized setting. As before, this means that
ABS D NOR.

The unit ball of the first Sobolev space is a subset of the space L2.Œ0; 1�d /. This
implies that the variance of a function from the unit ball is bounded by one, and the
standard Monte Carlo yields strong polynomial tractability with exponent at most 2
independently of the weights �d;u, see Corollary 17.3 of Chapter 17. Therefore we
have the following positive tractability results.

Table 20.7. RAN and ABS D NOR

SPT PT WT

CONS YES YES YES

PROD YES YES YES

FINO YES YES YES

We also add that the exponent of strong polynomial tractability must be at least 2
3

since it is known that the nth minimal errors for the univariate case are proportional
to n�3=2, see Bakhvalov [4]. Although strong polynomial tractability holds for all
weights, probably we can obtain the exponent smaller than 2 only for some weights.
It would be of interest to find conditions on, say, product weights for which this holds.
This leads us to the next open problem.

Open Problem 91.

Consider multivariate integration for the first Sobolev space in the randomized setting
for the absolute/normalized error criterion.

• Consider product weights �d;j D j�ˇ . Find all ˇ, for which the exponent of
strong polynomial tractability is less than 2, and all ˇ for which the exponent
attains its minimal value 2

3
.

• Characterize general weights for which the exponent of strong polynomial tracta-
bility is at most p 2 Œ2

3
; 2/.
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We still have one case to consider. Namely, the randomized setting with the relative
error criterion. Although this case has not been yet studied, it is relatively easy to show
that multivariate integration is still unsolvable, as for the worst case and average case
settings. In fact, even for d D 1, the minimal nth randomized error is one, and this
holds for all n. This means that for the information complexity we obtain

nran-rel."; I1/ D 1 for all " 2 .0; 1/:
The proof is as follows. As before, we use the hat functions fj for j D 1; 2; : : : ; m.

For k 2 N and c D Œc1; c2; : : : ; cm� 2 f�k;�k C 1; : : : ; kgm, define

fc.x/ D 1

k

mX
jD1

cj fj .x/ for all x 2 Œ0; 1�:

Then fc 2 H1;1 and

kfck2H1;1
D 1

k2

mX
jD1

c2j kfj k2H1;1
D 1

k2m

mX
jD1

c2j � 1:

Hence, all fc are in the unit ball of H1;1, and obviously we have .2k C 1/m of such
functions. Finally we define

Fm;k D ffc j c 2 f�k;�k C 1; : : : ; kgm g
and equipFm;k with the uniform distribution such that every fc occurs with probability
.2k C 1/�m.

We now use Bakhvalov’s approach and switch from the randomized setting to the
average case setting. More precisely, for any randomized algorithm An that uses at
most n function values, we have

eran.An/ D sup
kf kH1;1

�1
E!

jI1.f / � An;!.f /j
jI1.f /j � inf

Bn

eavg-rel.Bn/;

where

eavg-rel.Bn/ D 1

.2k C 1/m

X
f 2Fm;k

jI1.f / � Bn.f /j
jI1.f /j :

Here we take the infimum over all algorithms Bn that use at most n function values.
For the relative error we adopt the convention that 0=0 D 0.

Suppose first that Bn.f / D 0 for all f 2 Fm;k . Then

eavg-rel.Bn/ D 1

.2k C 1/m

ˇ̌ff 2 Fm;k j I1.f / 6D 0gˇ̌:
Note that I1.fc/ 6D 0 iff

Pm
jD1 cj 6D 0. We claim that at least 2k.2kC1/m�1 functions

in Fm;k have non-zero integral. Indeed, take arbitrary c1; c2; : : : ; cm�1, and consider
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the equation
mX
jD1

cj D
m�1X
jD1

cj C cm D 0

for cm 2 f�k;�kC1; : : : ; kg. Then there is at most one solution for cm. So for at least
2k choices of cm, the integral is non-zero. Since cj can take 2k C 1 different values
for j D 1; 2; : : : ; m � 1, we have at least 2k.2k C 1/m�1 choices of c with non-zero
integral, as claimed. Therefore

eavg-rel.0/ � 2k

2k C 1
:

Assume now that Bn is non-zero on Fm;k . Then there is

c� D Œc�
1 ; c

�
2 ; : : : ; c

�
m� 2 f�k;�k C 1; : : : ; kgm such that Bn.fc�/ 6D 0:

For this fc� , the algorithm Bn uses sample points x1;c� ; x2;c� ; : : : ; xn;c� from Œ0; 1�.
Then there exist indices j1; j2; : : : ; jn such that

fx1;c� ; x2;c� ; : : : ; xn;c�g �
n[
iD1

�
.ji � 1/h; jih

�
:

We have

fc�.xs;c�/ D 1

k

mX
jD1

c�
j fj .xs;c�/ D 1

k

nX
iD1

c�
ji
fji
.xs;c�/

for s D 1; 2; : : : ; n.
Choose m � 2n. Then there exist n distinct indices jnC1; jnC2; : : : ; j2n from

f1; 2; : : : ; mg n fj1; j2; : : : ; jng. Define the (fooling) function

gc� D 1

k

� nX
iD1

c�
ji
fji

�
nX
iD1

c�
ji
fjnCi

�
:

Note that gc� 2 Fm;k and gc�.xs;c�/ D fc�.xs;c�/ for all s D 1; 2; : : : ; n. This
implies that

Bn.fc�/ D Bn.gc�/ 6D 0:

Furthermore, we constructed gc� such that I1.gc�/ D 0, and therefore

eavg-rel.Bn/ � 1

.2k C 1/m
jI1.gc�/ � Bn.gc�/j

jI1.gc�/j D 1:

This proves that the randomized error of An satisfies

eran-rel.An/ � 2k

2k C 1
;
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and since k can be arbitrary large, we have eran-rel.An/ � 1.
The same argument can be applied for randomized algorithms An with varying

n.f / and with the expected value of n.f / bounded by n. Hence, no matter how
large n may be, there is no way to guarantee that the error is less than one. Hence,
nran-rel."; I1/ D 1 as claimed.

As for the worst case and average case settings, the summary of tractability results
for the randomized setting with the relative error is also given with all entries NO.

Table 20.8. RAN and REL

SPT.d/-L SPT.ı/-L PT-L WT-L

CONS NO NO NO NO

PROD NO NO NO NO

FINO NO NO NO NO

20.4 Second Sobolev Space

For the second Sobolev space, the initial error of multivariate integration is

kIdk D
�
1C

X
;6Du�Œd�

�d;u
Y
j2u

�
a2j � aj C 1

3

��1=2
;

where a is the anchor of the space.
Since the initial error is larger than one, the absolute and normalized error criteria

are different. Furthermore, the absolute error criterion is more difficult. Indeed, as
we shall see, some positive tractability results for the normalized error criterion do not
hold for the absolute error criterion.

As already explained, we also have WOR D AVG for the second Sobolev space.
We are ready to present tractability results separately for the absolute and normalized
error criteria.

We comment on Tables 20.9 and 20.10. We stress that tractability results do not
depend on the anchor a. However, as we shall see the bounds on the exponents of
tractability do depend on a.

The curse of dimensionality was proved in Chapter 11. Of course, it is enough to
prove this only for the normalized error criterion. The curse is also present for the
almost constant weights in which �d;u D c > 0 for all non-empty u � Œd �.
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Table 20.9. WOR D AVG and ABS

SPT PT WT

CONS NO NO NO

PROD YES iff ˇ > 1 YES iff ˇ � 1 YES iff ˇ > 0

FINO NO YES YES

Table 20.10. WOR D AVG and NOR

SPT PT WT

CONS NO NO NO

PROD YES iff ˇ > 1 YES iff ˇ � 1 YES iff ˇ > 0

FINO YES YES YES

For product weights, strong polynomial tractability holds for the normalized error
criterion iff ˇ > 1. Hence, ˇ > 1 is also necessary for strong polynomial tractability
and the absolute error criterion. If ˇ > 1 then the initial error is of order 1, and that
is why this condition is also sufficient for the absolute error criterion. For both the
absolute and normalized criterion, the exponent p of strong polynomial tractability
is the same and p 2 Œ1; 2�. In fact, it is easy to conclude from Theorem 16.21 of
Chapter 16 that the exponent p � max.1; 2=ˇ/ and can be achieved by shifted lattice
rules. Hence, for ˇ � 2 the exponent p D 1, as for the univariate case.

Similarly,ˇ D 1 yields polynomial tractability for both the absolute and normalized
error criteria with an "�1 exponent at most 2, and with different bounds on the d
exponents depending on the anchor and the error criterion. For simplicity, we take the
anchor a with the same components, i.e., aj D a 2 Œ0; 1�. Then the initial error is

dY
jD1

�
1C j�1.a2 � aC 1

3
/
�1=2 D ‚

�
d .a

2�aC1=3/=2�:
We now discuss bounds on the d exponents. For the absolute error criterion,

Remark 17.13 of Chapter 17 applies with ˛ D 1 and �d;1 D 1, and states that

nwor-abs."; d/ D �
�
"�1 d .a2�aC1=3/=2� for all " 2 .0; 1/; d 2 N:
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This means that the lower bound on the d exponent is .a2 � aC 1=3/=2.
We obtain an upper bound on the d exponent from Theorem 16.21 of Chapter 16

with � D 1
2

, compare also with Theorem 16.5 and the comment after the proof for the
corresponding Korobov space,

nwor-abs."; d/ D O
�
"�2 d a2�aC1=2� for all " 2 .0; 1/; d 2 N:

Let qa be the d exponent of polynomial tractability for the second Sobolev space with
the anchor a. Then

1
24

� qa;L WD 1
2

�
a2 � aC 1

3

� � qa � qa;U WD a2 � aC 1
2

� 1
2
;

and
qa;U � qa;L D 1

2

�
a2 � aC 2

3

� � 1
3
:

This means that we have pretty tight bounds on the d exponents. Furthermore, the d
exponents are quite small. For example,

• for a 2 f0; 1g we have
1
6

� qa � 1
2
;

• for a D 1
2

we have
1
24

� qa � 1
4
:

The reader may be afraid that the small d exponents are at the expense of huge
factors in the estimates of nwor-abs."; d/. This is fortunately not the case. Again from
the same Theorem 16.21 of Chapter 16, we have

nwor-abs."; d/ � 4C 2 "�2
dY
jD1

�
1C j�1 �a2 � aC 1

2

��
:

� C2 "�2 exp
��
a2 � aC 1

2

� dX
jD1

j�1�:
We now explain why we have the first term 4 and why we have the factor 2 in the
second term. The error estimate of Theorem 16.21 has the form C 1=2.n � 1/�1=2
for the specific C and with a prime n. If we solve C 1=2.n � 1/�1=2 � " we obtain
that

n � n� WD 1C ˙
"�2 C

�
:

We can find a prime n in Œn�; 2n��, and therefore

nwor-abs."; d/ � 2n� � 2.1C 1C "�2 C/ D 4C 2"�2C:
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That is why we have the extra 4 and the factor 2. Since

dX
jD1

j�1 � ln.d C 1/C CEuler

with the Euler constantCEuler D 0:5772 : : : , and 2 exp.CEuler/ D 3:5621 : : : , we finally
obtain

nwor-abs."; d/ � 4C 3:5622 "�2 .d C 1/a
2�aC1=2 for all " 2 .0; 1/; d 2 N;

and everything is under control.
We now discuss the normalized error criterion; still for product weights withˇ D 1.

In this case, we cannot apply Remark 17.13 and we do not know lower bounds on the
d exponents. However, the upper bounds on the d exponents are even better, since

nwor-nor."; d/ D O
�
"�2 d 1=6

�
:

Again, this follows from Theorem 16.21 of Chapter 16.
The d exponent is thus at most 1

6
, which is quite small. For d D 360 we have

d1=6 D 2:667 : : : and even for huge d D 106 we have d1=6 D 10.
We now check that the factors in the last big O notation are also harmless. We have

nwor-nor."; d/ � 4C 2 "�2
dY
jD1

1C j�1.a2 � aC 1=2/

1C j�1.a2 � aC 1=3/
:

Note that

dY
jD1

1C j�1.a2 � aC 1=2/

1C j�1.a2 � aC 1=3/
D exp

� dX
jD1

ln
1C .a2 � aC 1=2/=j

1C .a2 � aC 1=3/=j

�
:

For b1 � b2 � 0, one can check that lnŒ.1 C b1x/=.1 C b2x/� � .b1 � b2/x for all
x 2 Œ0; 1�. Therefore

dY
jD1

1C j�1.a2 � aC 1=2/

1C j�1.a2 � aC 1=3/
� exp

�
1

6

dX
jD1

j�1
	

� exp
�
1
6

ln.d C 1/C CEuler
� � 1

2
3:5622 .d C 1/1=6:

Hence,
nwor-nor."; d/ � 4C 3:5622 "�2 .d C 1/1=6;

and again everything is under control.
We turn to polynomially bounded finite-order weights. We now always have poly-

nomial tractability again with possibly different d exponents for the absolute and nor-
malized error criteria, see Theorem 16.25 of Chapter 16. Furthermore, we can have
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the "�1 exponent sufficiently close to 1 at the expense of a larger d exponent. For
example, for the normalized error criterion and for � 2 Œ1=2; 1/, we have

nwor-abs."; d/ D O
�
"�1=� d !.1�1=.2�//�

with the factor in the big O notation independent of "�1 and d but dependent on � . In
fact, we know that this factor must go to infinity as � goes to 1. Ignoring this factor
for a moment, we can say that the "�1 exponent can be arbitrarily close to 1 with the d
exponent always at most !=2. Furthermore, for � D 1=2 we have strong polynomial
tractability.

It is natural to ask what are these factors and how fast they go to infinity as �
approaches 1. That is, we are looking for C� for which

nwor."; d/ � 4C 2C� "
�1=� d !.1�1=.2�// for all " 2 .0; 1/; d 2 N:

We now find C� by using the explicit error bounds in Theorem 16.25 of Chapter 16. In
this theorem, Nd denotes the number of non-zero finite-order weights. We know that
Nd � 2d ! , and that for large d we have roughly Nd � d !=!Š. Since we are mostly
interested in large d , we simplify the analysis by taking Nd D d !=!Š. Then

C� D
 
1C 2.1=�/

 p
6

�

!!! �
wŠ
��.1�1=.2�//

:

For � D 1
2

we have C1=2 D 3! . For � going to 1, the Riemann zeta function blows up
since .1=�/ D 1=.1 � �/.1C o.1//. Therefore

C� D
�

2
p
6

�.1 � �/
	! 1p

!Š

�
1C o.1/

�
:

It is up to the reader to judge for which � and !, the factor C� is nasty.
We stress that all bounds presented here for product and finite-order weights can

be achieved by shifted lattice rules or by the QMC algorithms with the Niederreiter
sequence, as explained in Section 16.9 of Chapter 16.

We claim in Table 20.9 that strong polynomial tractability does not hold for finite-
order weights of order ! � 1 for the absolute error criterion. We need to prove this
claim. We proceed similarly as for the first Sobolev space. For the second Sobolev
space with the anchor a D Œa1; a2; : : : ; ad � we show that

lim sup
d!1

e.n; d/ D 1 for all n 2 N;

which contradicts strong polynomial tractability. To show this, take d functions fj
from H1;2 such that fj .aj / D 0 and kf 0kL2.Œ0;1�/ D 1. Consider the function

f .x1; x2; : : : ; xd / D f1.x1/C f2.x2/C � � � C fd .xd /p
d

for all xj 2 Œ0; 1�:
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Then f 2 Hd;2 and

kf k2Hd;2
D 1

d

�kf 0
1kL2.Œ0;1�/ C kf 0

2kL2.Œ0;1�/ C � � � C kf 0
dkL2.Œ0;1�/

� D 1:

For an arbitrary algorithmAn that uses sample pointsx�
1 ; x

�
2 ; : : : ; x

�
n , we can choose

a function fk that vanishes at the kth components of x�
j;k

for j D 1; 2; : : : ; n as well
as at aj and

Id .fj / � 1
2
e.nC 1; 1/:

Obviously such a function exists since e.nC 1; 1/ is defined as the largest integral of
univariate functions that vanish at nC 1 optimally chosen points. Then

Id .f / D d

2
p
d
e.nC 1; 1/

and goes to infinity since e.n C 1; 1/ D �.n�1/. Hence, we do not have strong
polynomial tractability, and this justifies NO in the last row of Table 20.9.

We now briefly mention the relative error. In fact, we can consider simultaneously
the relative error for the worst case, average case, randomized and probabilistic setting
with logarithmic dependence on ı�1. We claim that in all these settings,

nwor/avg/ran/pro-l."; Id / D 1 for all " 2 .0; 1/; d 2 N:

We know that this holds in the worst case and average case settings. This also can be
proved in the randomized setting with a slightly modified proof that we presented for
the first Sobolev space. Obviously, this also holds in the probabilistic setting since the
information complexity depends polynomially on ı�1.

Again, this means that multivariate integration is unsolvable, which is much worse
than intractability or the curse of dimensionality. This explains the following table with
all entries NO.

Table 20.11. WOR D AVG, RAN, PRO-L and REL

SPT PT WT

CONS NO NO NO

PROD NO NO NO

FINO NO NO NO

We now turn to the probabilistic setting. First we consider the absolute error cri-
terion. We allow polynomial or logarithmic dependence on ı�1. Similarly as for the
first Sobolev space we have the following summary of tractability results.
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Table 20.12. PRO and ABS

SPT.d/-P/L SPT.ı/-P/L PT-P/L WT-P/L

CONS NO NO NO NO

PROD YES iff ˇ > 1 NO YES iff ˇ � 1 YES iff ˇ > 0

FINO NO NO YES YES

We comment on Table 20.12. All tractability results easily follow from tractability
results presented in Table 20.9 with " replaced roughly by "=

p
2 ln ı�1.

We turn to the probabilistic setting for the normalized error criterion. We now have
the following summary of tractability results.

Table 20.13. PRO and NOR

SPT.d/-P/L SPT.ı/-P/L PT-P/L WT-P/L

CONS NO NO NO NO

PROD YES iff ˇ > 1 YES iff ˇ � 1 YES iff ˇ � 1 YES iff ˇ > 0

FINO YES YES YES YES

We comment of Table 20.13. We now have strong polynomial tractability for
finite-order weights. In fact, this holds for arbitrary finite-order weights, as shown in
Theorem 16.23 of Chapter 16. All comments on the tractability exponents that we made
for the worst case setting, are also now valid, again with " replaced by "=

p
2 ln ı�1.

In particular, this means that with logarithmic dependence on ı�1, the ı�1 exponent
is half of the "�1 exponent. However, for polynomial dependence on ı�1, the ı�1
exponent is arbitrarily small.

We have one more case for the probabilistic setting. Namely the relative error when
we allow polynomial dependence on ı�1. As we know this is the only case for which
we can have some positive tractability results. They are summarized in the next table.

We briefly comment on Table 20.14. The results reported in this table follow
from the results in Table 20.10, since the probabilistic setting for the relative error with
polynomial dependence on ı�1 is equivalent to the worst case setting for the normalized
case if we replace " by 1

2
� " ı.1C o.1//.

We finally turn to the randomized setting. Since the initial error is now larger
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Table 20.14. PRO-P and REL

SPT.d/-P SPT.ı/-P PT-P WT-P

CONS NO NO NO NO

PROD YES iff ˇ > 1 NO YES iff ˇ � 1 YES iff ˇ > 0

FINO YES NO YES YES

than 1, we need to consider the randomized setting for the absolute and normalized
error criteria, and we already mentioned negative results for the relative error criterion.
For the absolute error we have the following summary of tractability results.

Table 20.15. RAN and ABS

SPT PT WT

CONS NO NO NO

PROD YES iff ˇ > 1 YES iff ˇ � 1 YES iff ˇ > 0

FINO NO YES YES

We comment on Table 20.15. For constant weights, we may apply Theorem 17.11
and Corollary 17.12 of Chapter 17. Our problem is now indeed a tensor product
problem and kINT1k > 1, as needed for Corollary 17.12 of Chapter 17. So we have
the curse of dimensionality, and this explains the three NO’s in the first row.

For product weights, it is enough to apply Theorem 17.6 of Chapter 17. This
theorem states that the standard Monte Carlo yields

• strong polynomial tractability with exponent 2 if ˇ > 1,

• polynomial tractability if ˇ D 1, and

• weak tractability if ˇ > 0.

The same necessary conditions for ˇ for these three kinds of tractability follow from
Remark 17.13.

For finite-order weights, Corollary 17.5 states that the standard Monte Carlo yields
polynomial tractability with "�1 exponent at most 2 and d exponent at most !. This
obviously implies weak tractability. Strong polynomial tractability does not hold, and
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this can be proven by modifying the proof presented in this section. Again, we bound
the randomized error of any algorithm by

p
d eran.nC 1; 1/;

and use the fact that eran.nC 1; 1/ D �.n�3=2/.
We now turn to the randomized setting for the normalized error criterion. We remind

the reader that for the second Sobolev space, the standard Monte Carlo algorithm yields
strong polynomial tractability for product weights iff ˇ > 1

2
, see Theorem 17.6 of

Chapter 17. This may suggest that for constant weights, for which ˇ D 0, we may be
in trouble. That is why the reader may be surprised to see the following summary of
tractability results.

Table 20.16. RAN and NOR

SPT PT WT

CONS YES YES YES

PROD YES YES YES

FINO YES YES YES

We comment on Table 20.16. So we even have strong polynomial tractability for
the unweighted case. In fact, we claim that this positive result holds for arbitrary
weights �d;u. Why? It is enough to apply the surprising result of Hinrichs [131],
which was explained in Section 17.2 of Chapter 17. This result states that as long as
the reproducing kernel is point-wise non-negative and the space Hd;2 has full support
with respect to % D 1 then

nrand."; d/ � 1
2
� "�2 C 1:

In our case, these two assumptions hold. The reproducing kernel is not only point-wise
non-negative but Kd;�;2 � 1. Furthermore this holds for arbitrary �d;u and arbitrary
anchor a. Clearly, Hd;2 has full support since the constant function 1 2 Hd;2.

So we have strong polynomial tractability with exponent at most 2 for the second
Sobolev space with arbitrary weights �d;u. Therefore we have all YES’s in the last
table. Also in this case, the "�1 exponent must be at least 2

3
.

As in the Open Problem 91, we suspect that we can improve the bound on the
exponent of strong polynomial tractability under some assumptions on the weights.
The reader may also solve the analog of Open Problem 91 for the second Sobolev
space.
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20.5 Third Sobolev Space

For the third Sobolev space, the initial error of multivariate integration is again one, and
therefore ABS D NOR as well WOR D AVG. The first table of tractability results is
as follows.

Table 20.17. WOR D AVG and ABS D NOR

SPT PT WT

CONS NO NO NO

PROD YES iff ˇ > 1 YES iff ˇ � 1 YES iff ˇ > 0

FINO NO YES YES

We comment on Table 20.17. As we know, multivariate integration for the third
Sobolev space is not easier than for the first Sobolev space. Furthermore, the initial
errors are the same. Therefore lower bounds for the first Sobolev space are also valid
for the third Sobolev space. This means we can claim the curse of dimensionality for
the constant and almost constant weights for the third Sobolev space, since the curse
is present for the first Sobolev space.

For product weights, the conditions onˇwere proved in [280], again using the proof
technique based on decomposable kernels. We now say a little more about tractability
exponents based on Section 16.9 of Chapter 16. As for the second Sobolev space, for
ˇ > 1we have strong polynomial tractability with exponentp 2 Œ1; 2�. Theorem 16.21
of Chapter 16 states that p � max.1; 2=ˇ/. Hence, for ˇ � 2 the exponent p D 1

reaches its minimal value.
For ˇ D 1, we have polynomial tractability and proceeding exactly as before and

using Theorem 16.21 of Chapter 16, we can show that

nwor."; d/ � 4C 3:5622 "�2 d 1=6:

We turn to finite-order weights. Strong polynomial tractability does not hold for
the third Sobolev space since it does not even hold for the first Sobolev space for which
multivariate integration is not harder. As always, we have polynomial tractability
for finite-order weights. From Theorem 16.25 of Chapter 16 we know that for any
� 2 Œ1=2; 1/ we have

nwor."; d/ D O
�
"�1=� d !

�
with the factor in the big O notation independent of "�1 and d but dependent on � . So
the "�1 exponent can be arbitrarily close to 1 with the d exponent always at most !.
Furthermore, these bounds can be obtained by shifted lattice rules.
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Proceeding as for the second Sobolev space and using Theorem 16.25 with Nd �
2d ! , we can check that

nwor."; d/ � 4C 2C� "
�1=� d ! for all " 2 .0; 1/; d 2 N

with

C� D 2 max

�
1;

2.1=�/

.
p
2�/1=�

	!
:

For � D 1
2

we have C1=2 D 2, whereas for � tending to one, we have

C� D
� p

2

�.1 � �/
	!
:

We now briefly mention the relative error. As before, for the worst case, average
case, randomized and probabilistic setting with logarithmic dependence on ı�1, the
problem is unsolvable since the information complexity in all these settings is infinite,

nwor=avg."; Id / D 1 for all " 2 .0; 1/; d 2 N:

Again, for the randomized setting this result can be proved by a small modification of
the proof presented for the first Sobolev space. We have the same table as Table 20.11.

We turn to the probabilistic setting. For the absolute/normalized, and relative error
we have the same tractability tables as for the first Sobolev space, and we do not
repeat them for the third Sobolev space. This follows directly from relations to the
worst case setting. Obviously, the comments on tractability exponents are the same
as for the worst case for the third Sobolev space with " replaced by "=

p
2 ln ı�1 for

the absolute/normalized error criterion, and by 1
2
� " ı.1C o.1// for the relative error

criterion.
We turn now to the randomized setting for the absolute/normalized error criterion.

We still have the same table of tractability results with allYES’s but the proof is different.
That is why we repeat this table and comment on it.

Table 20.18. RAN and ABS D NOR

SPT PT WT

CONS YES YES YES

PROD YES YES YES

FINO YES YES YES
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For constant and product weights, the reproducing kernel of the third Sobolev space
is

Kd;�;3.x; y/ D
dY
jD1

 
1C j�ˇ .xj � yj /2 � .xj � yj /C 1

6

2

!
for all x; y 2 Œ0; 1�d :

Since .xj � yj /
2 � .xj � yj / C 1

6
2 Œ� 1

12
; 1
6
�, the kernel is point-wise positive, and

we can apply the result of Hinrichs [131] to claim strong polynomial tractability with
exponent at most 2. This justifies the YES’s in the first two rows of Table 20.18.

How about finite-order weights? Well, just now the reproducing kernel does not
have to be point-wise non-negative. Indeed, take ! D 1 and xj D 1

2
and yj D 0 for

j D 1; 2; : : : ; d . Then
Kd;�;3.x; y/ D 1 � 1

24
d:

For d � 25, the kernel takes negative values. Although we cannot now use the result
of Hinrichs, it does not matter since the standard Monte Carlo does the job. Using
Theorem 17.7 of Chapter 17 for the third Sobolev space with finite-order weights,
we see that nmc.";Hd;�;3/ � d"�2e. Hence, strong polynomial tractability holds
with exponent at most 2 in this case, and we have three YES’s in the last column of
Table 20.18. As for the first Sobolev space, it would be of interest to find conditions
on weights to improve the exponent of strong tractability. This means that it would be
good to solve the analog of Open Problem 91 also for the third Sobolev space.

20.6 Notes and Remarks

NR 20.1:1. This chapter is based on the results obtained in this volume. However, the
results that

• multivariate integration is not strongly polynomially tractable for finite-order
weights in the worst case, and that

• multivariate integration is unsolvable in the randomized setting for the relative
error

are new.
We remind the reader that we considered in this chapter the special finite-order

weights, �d;u D 1 for all juj � ! and �d;u D 0 for all juj > !, with ! � 1.
The results on these special finite-order weights can be generalized for arbitrary finite-
order weights. This would lead us to necessary conditions on finite-order weights to
get strong polynomial tractability. Then we could compare these necessary conditions
with the sufficient conditions we already presented. In this way, we would see if they
are sharp. We leave this problem to the reader.
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List of Open Problems

Problems 1–30 are from Volume I, some of them have been already solved.

1. Integration and approximation for the classes Fd;r , Section 3.3.

2. Integration and approximation for the classes Fd;r.d/ and Fd;1, Section 3.3.
•• Partially solved in [224].

3. Integration for a finite dimensional space Fd of trigonometric polynomials, Sec-
tion 3.3. See Hinrichs and Vybíral [133] for more information.

4. Integration for weighted Korobov spaces, Section 3.3.

5. Approximation of C1-functions from the classes Fd;p , Section 3.3.
•• Solved for p D 1 in [224].

6. Construction of points with small star-discrepancy, Section 3.3.

7. On bounds for the star-discrepancy, Section 3.3.

8. Diagonal problems for C r -functions from the class Fd;�;r , Section 3.3.

9. Construction of good points for Gaussian integration for the isotropic Wiener
measure, Section 3.3.

10. Tractability for approximation with foldedWiener sheet measures with increasing
smoothness, Section 3.3.

11. Tractability for approximation with folded Wiener sheet measures with varying
smoothness, Section 3.3.

12. Tractability for a modified error criterion, Section 3.3.

13. Tractability in the randomized setting for integration over weighted Sobolev
spaces, Section 3.3.
•• Partially solved by Hinrichs [131].

14. Tractability in the randomized setting for integration over periodic weighted
Sobolev spaces, Section 3.3.
•• Partially solved by Hinrichs [131].

15. Tractability in the randomized setting for general linear operators,
Section 3.3.

16. On the power of adaption for linear problems, Section 4.2.1.
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17. On the power of adaption for linear operators on convex sets, Section 4.2.1.

18. On the asymptotic optimality of linear algorithms for Sobolev embeddings for
ƒstd, Section 4.2.4.
•• Solved by Heinrich [110], for further results see Triebel [310], [311], [312].

19. On the existence of optimal measurable algorithms, Section 4.3.3.

20. On the power of adaption for linear problems in the randomized setting, Sec-
tion 4.3.3.

21. On the (almost) optimality of linear algorithms for linear problems in the ran-
domized setting, Section 4.3.3.

22. How good are linear randomized algorithms for linear problems?
Section 4.3.3.

23. How good are linear randomized algorithms for linear problems defined over
Hilbert spaces? Section 4.3.3.

24. On the optimality of measurable algorithms in the randomized setting,
Section 4.3.3.

25. On Sobolev embeddings in the randomized setting, Section 4.3.3.
•• Solved by Heinrich [110], [111].

26. Weak tractability of linear tensor product problems in the worst case setting with

1 D 1 and 
2 < 1, Section 5.2.
•• Solved by Papageorgiou and Petras [231].

27. Tractability of linear weighted tensor product problems for the absolute error
criterion, Section 5.3.4.

28. Weak tractability for linear tensor product problems in the average case setting,
Section 6.2.
•• Solved by Papageorgiou and Petras [232].

29. Tractability of linear weighted product problems in the average case setting for
the absolute error criterion, Section 6.3.

30. Weak tractability for linear weighted tensor product problems in the average case
setting, Section 6.3.

31. Bounds for the exponent of the L2 discrepancy, Section 9.2.2.

32. Construction of points with small L2 discrepancy, Section 9.2.2

33. Bounds for the normalized L2 discrepancy for equal weights, Section 9.2.3.

34. Bounds for the normalized L2 discrepancy for optimal weights, Section 9.2.3.
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35. Weighted B-discrepancy, Section 9.6.
•• Solved by Gnewuch [80].

36. Exponent of strong tractability for the anchored Sobolev space, Section 9.7.

37. Construction of sample points, Section 9.7.

38. Tractability for the B-discrepancy, Section 9.7.

39. Tractability for the weighted B-discrepancy, Section 9.7.

40. Construction of points with small p star discrepancy, Section 9.8.1.

41. On the average p star discrepancy for shifted lattices, Section 9.8.1.

42. Construction of points with small star discrepancy, Section 9.9.

43. Arbitrary and positive quadrature formulas for Sobolev spaces, Section 10.5.3.

44. Tractability of integration for polynomials and C1 functions, Section 10.5.4.

45. Optimality of positive quadrature formulas for RKHS, Section 10.6.

46. Exponent of strong tractability for multivariate integration for a separable tensor
product space, Section 10.7.7.

47. Exponent of strong tractability for multivariate integration for a separable tensor
product space, Section 10.7.10.

48. Exponent of strong tractability for tensor product linear functionals with finite
norms of h1, Section 10.10.1.

49. Tractability of linear tensor product functionals with kI1k > 1, Section 11.3.

50. Tractability of linear tensor product functionals with kI1k D 1, Section 11.3.

51. Exponent of strong tractability for Gaussian integration, Section 11.4.1.

52. Tractability of weighted integration for constant weight, Section 11.4.1.

53. Exponent of strong tractability for an anchored Sobolev space, Section 11.4.2.

54. Strong polynomial tractability for the centered discrepancy, Section 11.4.3.

55. Intractability for functionals for a space of analytic functions, Section 11.5.4

56. Characterization of intractability of linear tensor product functionals for certain
Sobolev spaces, Section 11.6.2.

57. Characterization of tractability of linear tensor product functionals for certain
tensor product Sobolev spaces, Section 11.6.2.
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58. Characterization of tractability of linear tensor product functionals for tensor
product Sobolev spaces with r � 2, Section 11.6.2.

59. Generalization for problems with m dimensional D1, m > 1, Section 11.6.2.

60. Tractability for order dependent weights, Section 12.3.3.

61. Exponent of strong polynomial tractability for weighted integration, Sec-
tion 12.4.2.

62. Weighted integration with r � 2 and k � 1, Section 12.5.1.

63. Conditions on weights and anchor to obtain exponent 1, Section 12.6.2.

64. Conditions on finite-order weights, Section 12.6.4.

65. Conditions for T -tractability in the average and worst case settings, Section 13.4.

66. Weak-log tractability in the probabilistic setting, Section 14.4.

67. Weak tractability or T -tractability with the Smolyak algorithm, Section 15.2.5.

68. Strong tractability with the Smolyak algorithm for integration of smooth periodic
functions, Section 15.2.6.

69. Strong tractability with the Smolyak algorithm for integration of smooth non-
periodic functions, Section 15.2.7.

70. Conditions for general weights and the WTP algorithm for various kinds of
tractability, Section 15.3.4.

71. Finite order weights for various kinds of tractability, Section 15.3.9.

72. On the sum and strong polynomial tractability exponents, Section 15.3.11.

73. Conditions on weights for weighted Korobov spaces, Section 16.4.3.

74. Conditions on weights for weighted Korobov spaces for T -tractability, Sec-
tion 16.4.4

75. Cost of the CBC algorithm for order-dependent weights, Section 16.6.4.

76. Conditions for general weights for multivariate integration over weighted Ko-
robov spaces, Section 16.8.

77. Shifted lattice rules for multivariate integration over the anchored or unanchored
Sobolev spaces, Section 16.9.1.

78. Conditions on weights for Gaussian integration with Monte Carlo, Sec-
tion 17.1.2.1.

79. Optimality of Monte Carlo for L2 with different norms, Section 17.1.6.2.
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80. Optimal densities for importance sampling, Section 17.2.1.
•• Solved by Hinrichs [131].

81. Unknown density in the worst case setting, Section 18.1.1.

82. Unknown density for the class F ˛ , Section 18.1.4.

83. Unknown density with several maxima, Section 18.1.5.

84. Unknown density on general domains, Section 18.1.5.

85. Fixed point problem, Section 18.3.

86. Global optimization in the randomized setting, Section 18.4.

87. Global optimization in the average case setting, Section 18.4.

88. Weak tractability for path integration, Section 19.1.

89. Tractability of path integration for entire functions, Section 19.1.

90. Fast algorithms for Feynman–Kac integrals without precomputation, Section 19.1.

91. Randomized setting for multivariate integration, Section 20.3.



Appendix E

Errata for Volume I

The following typos or errors have been noted in Volume I of our book

Tractability of Multivariate Problems

1. page 22, line 14.

. Nh1 Nh2 � � � Nhd /˛ should read . Nh1 Nh2 � � � Nhd /�˛ .

2. page 25, line 7.

“then” should read “than”.

3. page 25, line 13.

nwor.";APPd ; Fd;p; Gd;m;p/ should read ewor.";APPd ; Fd;p; Gd;m;p/.

4. page 26, line 10.

kf kGd;m;p
should read kfkkGd;m;p

.

5. page 69 and 163

We were not always consistent with the definition of CRId . On page 69, we
have CRId D the initial error, and on page 163, we have CRId D the square of
the initial error. The reader should use CRId as defined in the respective chapter.

6. page 157, line 1.

“of Chapter 2” should read “of Chapter 4”.

7. page 160, line -5.

dC dqe C 1; dC dqe C 1 should read dC dqe C 1; dC dqe C 2.

8. page 164, line 13.

ln2 j

ln2.j � 1/
1

1 �p
ˇ

�
�

ln 3

ln 2

	2
.2C p

2/

should read

ln2 j

ln2.j � 1/
1

.1 �p
ˇ/2

�
�

ln 3

ln 2

	2
.2C p

2/2:

9. page 178, line -16.

n."; d/ should read ln n."; d/.
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10. page 178, line -5.
n."; 1/

"�1 C 1
should read

ln n."; 1/

"�1 C 1
:

11. page 218, (5.29).

m3."; d/ in (5.29) should read lnm3."; d/.

12. page 265, line 4 of Section 6.3.

Lj should read Lj .f /.

13. page 285, lines 8 and 10.

T ..2"/�1; d / should read T .2"�1; d /.

14. page 334, line 4 of Theorem 8.25.

The definition of ai should be moved to three lines below. In this line,
should be

lim
x!0

ln fi .x/

x
D 0 for i D 1; 2:

15. page 342, line -6.

“the survey” should read “the survey of”.

16. page 345, line -6.

ˇ2 D .2�/�r should read ˇ2 D .2�/�2r .

17. page 345, line -4.

u 2 Œd � should read u � Œd �.

18. page 346, line 5.

.1 � ı0;hj
should read .1 � ı0;hj

/.

19. page 349, line 10.

2�hj should read 2� i hj .

20. page 352, line 8.

.1 � ı1;kj
/
p
2 should read .1 � ı1;kj

/2�1=2.

21. page 353, line -2.

twice K� .x; y/ should read K� .x; y/ � 1.

22. page 355, the first line of (A.17)Q
j2u �

�1
j should read ��1

d;u
.

23. page 357, line -5.

M�1.x � ˛; should read M�1.x � ˛/; .
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complexity for Feynman–Kac path integration, J. Comput. Phys. 164, 335–353, 2000.
395, 585

[248] L. Plaskota, G. W. Wasilkowski andY. Zhao, New averaging technique for approximating
weighted integrals, J. Complexity 25, 268–291. 13, 18, 38, 72, 117, 122, 124, 126, 145,
173, 193, 194, 488, 517, 526, 530, 531, 538

[249] D. Randall, Rapidly mixing Markov chains with applications in computer science and
physics, Computing in Science and Engineering 8 (2), 30–41, 2006. 542

[250] J. Riordan, An Introduction to Combinatorial Analysis, Wiley and Sons, New York, 1958.
56

[251] K. Ritter, Average Case Analysis of Numerical Problems, Lecture Notes in Math. 1733,
Springer-Verlag, Berlin, 2000. 296, 453

[252] K. Ritter, G. W. Wasilkowski and H. Woźniakowski, On multivariate integration for
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[277] I. H. Sloan and H. Woźniakowski, When are quasi-Monte Carlo algorithms efficient for
high dimensional integrals?, J. Complexity 14, 1–33, 1998. 5, 6, 12, 17, 50, 51, 69, 87,
88, 143, 194, 287, 389, 415, 474, 475, 482, 486
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